
A Dynamic Parameter Adaptive Path
Planning Algorithm

Guangyu Yao, Nan Zhang(B), Zhenhua Duan, and Cong Tian

Institute of Computing Theory and Technology, and ISN Laboratory,
Xidian University, Xi’an 710071, China

nanzhang@xidian.edu.cn, {zhhduan,ctian}@mail.xidian.edu.cn

Abstract. Path planning in complex environments has always been a
focus of research for scholars both domestically and internationally. This
study addresses the challenge of path planning that combines obstacle
avoidance and optimal path searching in scenarios lacking prior knowl-
edge. The proposed approach introduces a parameter dynamic adapta-
tion strategy for path planning. Experimental investigations are con-
ducted using grid-based maps, and the results demonstrate that the
method presented in this paper surpasses Q-learning and Sarsa algo-
rithms in terms of comprehensive exploration, enhanced stability, and
quicker convergence speed.
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1 Introduction

Path planning is essential in real-world production, optimizing processes, increas-
ing efficiency, cutting costs, and enhancing safety and flexibility. Optimal path
planning and effective obstacle avoidance are critical challenges [7]. The objec-
tive is for agents to achieve the task of searching for a relatively optimal route
from the starting point to the destination, utilizing excellent performance met-
rics [6,13].

Path planning methods have a long history, and different algorithms yield
varying results under different constraints. The traditional Dijkstra’s algorithm
[3]was introduced in 1956. This method was developed to address the single-
source shortest path problem. The A* algorithm [4] is a path planning algorithm
based on heuristic search. It combines cost and heuristic information, making it
quite efficient. Genetic algorithms [8] can also be employed to solve path planning
problems. Global search algorithms can find relatively optimal solutions in path
planning but may have slower convergence speeds.
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In many real-world applications, intelligent agents face increased uncertainty
in their environments. This has led to the rise of reinforcement learning, gain-
ing attention among researchers to address these challenges [12]. Reinforcement
Learning [9,10] is fundamentally a machine learning approach that involves
learning through a “trial-and-error” process. In [11], neural networks are com-
bined with the Q-Learning algorithm from reinforcement learning to address
path planning problems in diverse environments. [1] introduces a novel app-
roach by combining greedy and Boltzmann probability selection strategies as a
means to avoid getting trapped in local optima. In [5], heuristic knowledge is
integrated into reinforcement learning, resulting in improved efficiency for path
planning and obstacle avoidance within the Deep Q-learning Network (DQN)
algorithm. In [2], by optimizing convolutional neural networks in a specific way,
the DQN algorithm is successfully employed to navigate through 3D mazes using
visual information.

The main focus of this study is the application of reinforcement learning
methods in path planning issue. The primary objective of this research is to
enable intelligent agents to navigate even in unknown and relatively intricate
scenarios. We propose a path planning strategy that involves dynamic parameter
adaptation. The proposed strategy demonstrates more comprehensive search,
better convergence.

2 Two Reinforcement Learning Algorithms

Reinforcement Learning is a machine learning algorithm based on the interaction
between an agent and its environment, aiming to maximize the cumulative long-
term reward through a sequence of decisions. The fundamental principles are
illustrated in Fig. 1.

Fig. 1. Reinforcement Learning Diagram

Assuming the current step t, then St, St+1, At, Rt and Rt+1 respectively
represent the current state, the next state, the action, the current reward, and
the next reward. The principle is to select the best action based on the current
state and current reward, and generate the next reward and transition to the
next state. Through learning an appropriate policy, the intelligent agent can
make optimal action choices when facing different environmental states, with
the aim of maximizing its expected cumulative reward.



A Dynamic Parameter Adaptive Path Planning Algorithm 229

2.1 Q-Learning Algorithm

The Q-learning algorithm is one of the most widely used techniques in rein-
forcement learning. Q represents the value associated with a state-action pair,
representing the expected return when the agent takes action a(a ∈ A) in state
s(s ∈ S). The environment provides an immediate reward r based on the agent’s
action a. Through continuous interaction between the agent and the environ-
ment, the algorithm updates the expected values based on the actual reward r
obtained by taking action r in state s .

Q-learning employs a temporal difference (TD) method to update the value
Q(st,at), and the update formula is as follows: Q(st,at) ← Q(st,at) + α(R +
γ max

a′
Q(st+1,a′) − Q(st,at)). a′ represents the action that yields the maximum

value in the subsequent state. The pseudocode for the Q-learning algorithm is
presented in Table 1.

Table 1. Q-learning Algorithm Pseudocode

Algorithm 2.1: Q-learning Algorithm

Initialization:

set the learning rate α; the discount factor γ; maximum number of iterations T ;
the value function Q(s,a)

while Repeat for each episode do

Initialize the starting state s

while Repeat for each step of the episode do

Choose action a from state s

Take action a, observe reward R and new state s′

Update Q(s,a) using the Q-learning update rule:

Q(s,a) ← Q(s,a) + α(R + γ max
a

Q(s′,a) − Q(s,a))

Update state s ← s′

end while

end while

2.2 Sarsa Algorithm

The distinction between the Sarsa algorithm and the Q-learning algorithm lies in
the different strategies for selecting the next action and the timing of updating
the value function Q(s,a).

In Q-learning, the next action is determined using a greedy policy, selecting
the action with the highest Q value. In contrast, Sarsa employs an ε-greedy
policy. Additionally, the timing of Q(s,a) updates also varies between the two
algorithms. In Q-learning, the update of Q(s,a) takes place immediately after
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executing the current action and selecting the next action. In Sarsa, the update
of Q(s,a) occurs after executing both the current action and the selected next
action.

The pseudocode for the Sarsa algorithm is presented in Table 2.

Table 2. Sarsa Algorithm Pseudocode

Algorithm 2.2: Sarsa Algorithm

Initialization:

set the learning rate α; the discount factor γ; maximum number of iterations T ;
the value function Q(s,a); The value of ε in the ε-greedy policy

while Repeat for each episode do

Initialize the starting state s

while Repeat for each step of the episode do

Choose action a from state s

Take action a, observe reward R and new state s′

Choose next action a′ from new state s′

Update Q(s,a) using the Sarsa update rule:

Q(s,a) ← Q(s,a) + α(R + γQ(s′,a′) − Q(s,a))

Update state s ← s′ action a ← a′

end while

end while

3 DPARL Algorithm

The Dynamic Parameter Adaptive-Reinforcement Learning (DPARL) algorithm
is a reinforcement learning approach with dynamically changing parameters.
Specifically, it involves the dynamic adjustment of the ε-greedy policy in the
Sarsa algorithm. Depending on the progression of the path search process,
whether at different episodes or different time steps within the same episode,
the probability of random exploration varies accordingly. This adaptive app-
roach is aimed at enhancing the interaction efficiency between the agent and the
environment, ultimately improving the performance of the original algorithm.

Consider the path planning problem on a grid map as an example. During the
initial exploration phase, the agent lacks a comprehensive understanding of the
environment, necessitating substantial random actions for exploration. Towards
the end of exploration, the agent should become more targeted in its exploration,
requiring adaptive adjustments to its perception range. In the original strategy,
the value of ε remains fixed. Thus, altering the ε factor in stages to accommodate
the needs of path planning is crucial. The aim is to have a higher-than-average
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likelihood of random exploration in the initial stage of the program and a lower-
than-average likelihood towards the end.

The expression for the sigmoid function is as follows:

Sigmoid(x) =
1

1 + e−x
(1)

The graph of this function is depicted in Fig. 2. The graph illustrates that as x
approaches negative infinity, the function value approaches 0 with a small slope.
Conversely, as x tends towards positive infinity, the function value approaches 1
with a small slope. The function is bounded with values between 0 and 1. And
the curve is smooth, continuously differentiable everywhere. Hence, the sigmoid
function aligns with the desired probability reduction approach.

Fig. 2. Sigmoid Function

This paper proposes a path planning strategy called DPARL that improves
Sarsa algorithm.

The ε-greedy policy is a commonly used trade-off strategy for exploration
and exploitation in reinforcement learning. In the ε-greedy policy, ε is a positive
number less than 1, typically between 0 and 1. The main idea of the strategy is
that, during each action selection, the action with the highest estimated value is
chosen with a probability of 1-ε, while random exploration is conducted with a
probability of ε by selecting a random action. Therefore, the value of ε controls
the degree of exploration. For example, if ε = 0.1, then in each decision-making
step, there is a 90% probability of selecting the action with the highest estimated
value, and a 10% probability of selecting a random action. The parameter ε can
be adjusted using the following formula:

ε =
ρ

1 + e−(max iterations
2 −n iter)

+ φ (2)

In the initial stage of the program, when n iter − max iterations
2 is at its min-

imum, max iterations
2 −n iter is at its maximum, ε ≈ ρ+φ is at its maximum. As

the program progresses, when n iter−max iterations
2 = 0, max iterations

2 −n iter =
0, ε = ρ

2 +φ. In the final stage of the program, when n iter − max iterations
2 is at

its maximum, max iterations
2 −n iter is at its minimum, ε ≈ φ is at its minimum.
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Hence, by appropriately setting the parameters ρ and φ according to the specific
problem, the desired probability reduction approach will be satisfied.

For a single episode’s iteration cycle, ε can also be dynamically adjusted.
When the agent is farther from the target location, set ε to a value higher than
the average probability, promoting exploration. Conversely, when the agent is
closer to the target location, set ε to a value lower than the average probabil-
ity, focusing on exploitation. Using μ to represent the adaptive factor for the
fluctuation of ε. As shown in the formula 3 (ε in formula 3 is the same as ε in
formular 2):

εepisode =
μ

1 + e−[(row current+col current)− row+col
2 ]

+ ε − μ

2
(3)

In a single episode iteration, when the agent is at the farthest distance from
the target position, (row current + col current) − row+col

2 is at its maximum,
εepisode = ε+ μ

2 is at its maximum. This encourages exploration with a probabil-
ity higher than the average ε. When the agent is closest to the target position,
(row current + col current) − row+col

2 is at its minimum, εepisode = ε − μ
2 is at

its minimum. This leads to exploration with a probability lower than the average
ε.

The parameter dynamic adjustment path planning strategy adapts the ran-
dom exploration probability, enhancing the efficiency of exploring the envi-
ronment. This strategy better balances the exploration-exploitation trade-off,
improves the interaction efficiency between the agent and the environment, and

Table 3. DPARL Algorithm Pseudocode

Algorithm 3.1: DPARL Algorithm

Initialization:

set the learning rate α; the discount factor γ; maximum number of iterations
T ; the adaptive factor ρ; the adaptive factor φ; the adaptive factor μ; the value
function Q(s,a); the value of ε in the ε-greedy policy

while Repeat for each episode do

Initialize the starting state s

Update the value of ε

while Repeat for each step of the episode do

Update the value of εepisode

Choose action a from state s through ε-greedy policy

Take action a, observe reward R and new state s′

Update Q(s,a) using the Sarsa update rule:

Q(s,a) ← Q(s,a) + α(R + γQ(s′,a′) − Q(s,a))

Update state s ← s′ action a ← a′

end while

end while
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enhances the performance of the original algorithm. The pseudocode for the
DPARL algorithm is presented in Table 3.

4 Experimental Setup and Experimental Results

4.1 Description of the Path Planning Problem

The experimental environment consists of maps constructed using grid cells,
as depicted in Fig. 3. There are two maps: one composed of 5*5 grid cells and
the other of 10*10 grid cells. Gray grid cells represent obstacles, white grid
cells depict possible paths, red dots indicate the starting points, and blue dots
mark the destination points. The agent begins from the starting coordinates and
navigates to the destination point while passing only through white grid cells.

(a)5*5 Grid Map (b)10*10 Grid Map

Fig. 3. Grid Maps (Color figure online)

4.2 Modeling and Parameter Settings for the Path Planning
Problem

4.2.1 State and Action Set
The starting grid cell serves as the initial state, the termination grid cell denotes
the goal state, while the collection of all white grid cells constitutes the state set.
The set of actions comprises valid actions after excluding illegal ones, defined as
actions that would lead the agent to step outside the grid boundaries. The set
of actions can be represented using coordinate transformations.

4.2.2 Q-Matrix
The matrix contains probabilities corresponding to state-action pairs.

4.2.3 Reward Function
When the agent moves out of the map boundaries or enters a gray grid cell, it
receives a punitive reward of -10. When the agent reaches the target location, it
receives a reward of 10. As the agent gets closer to the target location, it receives
a reward of 0. If the agent moves away from the target location, it receives a
punitive reward of –0.2.
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4.2.4 Partial Parameter Settings
For a 5*5 map, the iteration number T is set to 100. For a 10*10 map, the
iteration number T is set to 500. Learning rate α is 0.1. Discount factor γ is
0.9. Greedy policy parameter ε is 0.2. Dynamic adaptive factor φ is 0.15. ε
adjustment factor μ is 0.05.

4.2.5 Experimental Environment
The experiments were conducted on a machine with 64 GB of RAM, using
VMware Workstation 15 as the virtualization software. The operating system
employed was Ubuntu 20.04, with 16 GB of virtual memory allocated. The pro-
gramming language used for the experiments was Python 3.

4.2.6 Evaluation Metrics

(1) Runtime: The time taken for the algorithm to perform one path planning
task. Shorter runtime indicates lower resource consumption of the algorithm.

(2) Average steps: The average length of paths generated by the algorithm in
one path planning task.

(3) First detection of optimal path time: The time taken by the algorithm to
first detect the expected optimal path in one path planning task.

(4) First detection of optimal path iteration number: The iteration number at
which the algorithm first detects the expected optimal path in one path
planning task.

4.3 Experimental Results and Analysis

The experiment designed two scenarios: a 5*5 grid map and a 10*10 grid map.
Path planning was conducted using three different methods in each scenario.
Optimal path diagrams were generated and the performance of the three meth-
ods was compared.

4.3.1 5*5 Grid Map Scenario
In Experiment Scenario 1, it’s evident that there is more than one shortest
path. Even among paths with the same shortest length, some algorithms might
favor turns while others might prefer straight-line paths. In this experiment,
each algorithm was trained 100 times, and the resulting path data was collected.
The path that appeared most frequently was chosen as the optimal path for
that algorithm. The optimal paths generated by these three algorithms in this
experiment are displayed in Fig. 4, where the red dashed line represents the
optimal path for each algorithm.
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(a) Q-learning Algorithm (b) Sarsa Algorithm (c) DPARL Algorithm

Fig. 4. Three Different Algorithms’ Optimal Paths (Color figure online)

From Fig. 4, it is apparent that all three algorithms can provide optimal
paths. However, the Q-learning algorithm exhibits fewer turns, while the other
two algorithms display more frequent turns, indicating that the Q-learning algo-
rithm tends to favor straight-line exploration and is less likely to change its
behavioral habits. Conversely, this suggests that the other two algorithms lean
towards comprehensive exploration, resulting in a more evenly distributed behav-
ior pattern. In addition to this, the paper also compares the performance of the
three algorithms by calculating the average runtime, average step count, time
taken for the first detection of the optimal path, and the number of iterations for
the first detection of the optimal path over 100 runs. The results are summarized
in Table 4.

Table 4. Performance Comparison of Three Algorithms (Averaged Over 100 Runs)

Algorithm Q-learning Sarsa DPARL

Average Runtime (ms) 77.8 52.5 53.6

Average Step Count(steps) 17.6 14.6 13.5

Time for 1st Optimal Path(ms) 18.3 17.2 11.9

Iterations for 1st Path 12.5 6.2 4.6

From Table 4, it is evident that among the three algorithms, the Sarsa algo-
rithm consumes the least amount of time and Q-learning requires the longest
time. Looking at the average step count, both the DPARL and Sarsa algorithms
exhibit similar step counts, both significantly lower than the Q-learning algo-
rithm. Analyzing the time taken for the first detection of the optimal path, the
DPARL algorithm demonstrates the shortest time and the Q-learning algorithm
takes the longest time. In terms of the number of iterations required for the first
optimal path, DPARL demands the fewest iterations, followed by Sarsa, and Q-
learning requires the most iterations. This observation suggests that the DPARL
algorithm is capable of finding the optimal path with fewer iterations and less
time, showcasing excellent stability and a lower frequency of encountering invalid
paths.



236 G. Yao et al.

In Scenario 1, the path planning was performed using three different algo-
rithms, and the reward curves for single training runs are depicted in Fig. 5. The
horizontal axis represents the current iteration episodes, while the vertical axis
represents the total reward obtained in each episode.

Fig. 5. The rewards curves for the three different algorithms

From Fig. 5, it can be observed that when using the DPARL algorithm, the
agent is able to reach the optimal path earlier and more frequently. On the other
hand, the Q-learning algorithm and Sarsa algorithm take longer to converge to
the optimal path and exhibits more instability.

4.3.2 10*10 Grid Map Scenario
In Experiment Scenario 2, similar to Experiment Scenario 1, each algorithm
was trained 100 times, and the most frequent path result among the trials was
selected as the best path for that algorithm. The best paths obtained by the three
algorithms in this experiment are illustrated in Fig. 6, where the red dashed lines
represent the optimal paths determined by each algorithm.

(a) Q-learning Algorithm (b) Sarsa Algorithm (c) DPARL Algorithm

Fig. 6. Three Different Algorithms’ Optimal Paths (Color figure online)

From Fig. 6, it is evident that all three algorithms are capable of providing
optimal paths. However, Q-learning algorithm demonstrates fewer turns in com-
parison to Sarsa algorithm, while the DPARL algorithm exhibits more turns. In
addition to this, the paper also compares the performance of the three algorithms
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by calculating the average runtime, average step count, time taken for the first
detection of the optimal path, and the number of iterations for the first detection
of the optimal path over 100 runs. The results are summarized in Table 5.

Table 5. Performance Comparison of Three Algorithms (Averaged Over 100 Runs)

Algorithm Q-learning Sarsa DPARL

Average Runtime (ms) 7707.2 517.5 490.7

Average Step Count(steps) 597.4 36.9 32.9

Time for 1st Optimal Path(ms) 7299.1 201.3 161.5

Iterations for 1st Path 135.4 80.3 66.5

From Table 5, it is evident that among the three algorithms, DPARL algo-
rithm has the shortest runtime, while Q-learning’s runtime is 14 times that of
the former two. Looking at the average number of steps, both DPARL and Sarsa
algorithms exhibit similar values, significantly fewer than Q-learning algorithm.
Regarding the time taken for the first detection of the optimal path, DPARL
algorithm performs the best and Q-learning has the longest time. In terms of the
number of iterations required for the first detection of the optimal path, DPARL
algorithm outperforms the others, while Q-learning requires the most iterations.
This indicates that DPARL algorithm is capable of finding the optimal path with
fewer iterations and in less time, demonstrating good stability, and resulting in
fewer occurrences of ineffective paths.

In Scene 2, the path planning was performed using three different algorithms.
The reward curves for each algorithm in a single training run are shown in Fig. 7.
The horizontal axis represents the current iteration episodes, while the vertical
axis represents the total reward obtained in each episode.

Fig. 7. The rewards curves for the three different algorithms

From Fig. 7, it is evident that when using the DPARL algorithm, the intelli-
gent agent is able to reach the optimal path earlier and more frequently. As the
complexity of the scene increases, the DPARL algorithm exhibits strong stabil-
ity, avoiding the occurrence of overly long paths. This algorithm appears to be
well-suited for path planning in intricate maps.
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5 Conclusions

In complex environments lacking prior environmental information, traditional
path planning algorithms suffer from drawbacks such as high computational
complexity, low efficiency, and unstable results. To address this challenge, this
paper proposes a path planning strategy called DPARL. This strategy increases
the random search probability in the early stage and decreases it in the later
stage of the program, enhancing the interaction efficiency between the agent
and the environment, and improving the performance of the existing algorithm.
The paper compares the DPARL with the Q-learning algorithm and the Sarsa
algorithm. The DPARL demonstrates more comprehensive search, better con-
vergence, and the ability to find optimal paths with fewer iterations and less
time. Additionally, it maintains high stability even in complex maps.

In future work, further enhancement of the adaptability of the adaptive algo-
rithm is needed. Additionally, applying parameter adaptive path planning algo-
rithm to high-precision modeling environments is also a potential research area.
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