
Weili Wu
Jianxiong Guo (Eds.)

LN
CS

 1
44

62

16th International Conference, COCOA 2023
Hawaii, HI, USA, December 15–17, 2023
Proceedings, Part II

Combinatorial Optimization
and Applications

Lecture Notes in Computer Science 14462
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Weili Wu · Jianxiong Guo
Editors

Combinatorial Optimization
and Applications
16th International Conference, COCOA 2023
Hawaii, HI, USA, December 15–17, 2023
Proceedings, Part II

Editors
Weili Wu
University of Texas at Dallas
Richardson, TX, USA

Jianxiong Guo
Beijing Normal University
Zhuhai, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-49613-4 ISBN 978-3-031-49614-1 (eBook)
https://doi.org/10.1007/978-3-031-49614-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-8747-6340
https://orcid.org/0000-0002-0994-3297
https://doi.org/10.1007/978-3-031-49614-1

Preface

The papers in these proceedings, which consist of two volumes, were presented at the
16th Annual International Conference on Combinatorial Optimization and Applications
(COCOA 2023), December 15–17, 2023, in Honolulu, Hawaii, USA. The topics cover
most aspects of combinatorial optimization and applications pertaining to computing.

All accepted papers were selected by an international program committee consisting
of a large number of scholars from various countries and regions, distributed over the
world, includingAsia,NorthAmerica, Europe, andAustralia. Each paperwas required to
submit in double-blind style and was evaluated by at least three reviewers. The decision
was made based on those evaluations through a process containing a discussion period.

Authors of selected papers come from the following countries and regions: Canada,
China (including Hong Kong and Macau), Romania, Brazil, UK, India, Belgium, Japan,
Germany, Israel, andUSA.Manyof these papers represent reports of continuing research,
and it is expected that most of them will appear in a more polished and complete form
in scientific journals.

We wish to thank all who have made this meeting possible and successful, the
authors for submitting papers, the program committee members for their excellent work
in reviewing papers, the sponsors, the local organizers, and Springer for their support
and assistance, We are especially grateful to Yi Zhu and Xiao Li who made tremendous
efforts in local arrangements and set-up.

December 2023 Weili Wu
Jianxiong Guo

Organization

General Co-chair

Ding-Zhu Du University of Texas at Dallas, USA

PC Co-chairs

Weili Wu University of Texas at Dallas, USA
Jianxiong Guo Beijing Normal University, China

Web Co-chairs

Xiao Li University of Texas at Dallas, USA
Ke Su University of Texas at Dallas, USA

Finance Co-chairs

Jing Yuan University of Texas at Dallas, USA
Smita Ghosh Santa Clara University, USA

Registration Co-chairs

Xiao Li University of Texas at Dallas, USA
Garg Priyanshi University of Texas at Dallas, USA

Local Chair

Yi Zhu Hawaii Pacific University, USA

viii Organization

Program Committee Members

An Zhang Hangzhou Dianzi University, China
Andras Farago University of Texas at Dallas, USA
Annalisa De Bonis Università degli Studi di Salerno, Italy
Arash Rafiey Indiana State University, USA
Bin Liu Ocean University of China, China
Binhai Zhu Montana State University, USA
Bo Li Hong Kong Polytechnic University, China
Chenchen Wu Tianjin University of Technology, China
Chuanwen Luo Beijing Forestry University, China
Dachuan Xu Beijing University of Technology, China
Donglei Du University of New Brunswick, Canada
Fay Zhong Shanghai Jiao Tong University, China
Guochuan Zhang Zhejiang University, China
Guohui Lin University of Alberta, Canada
Habib Ammari Texas A&M University-Kingsville, USA
Ho-Lin Chen National Taiwan University, Taiwan
Huaming Zhang University of Alabama in Huntsville, USA
Jing Yuan North Texas University, USA
Joong-Lyul Lee University of North Carolina at Pembroke, USA
Juraj Hromkovic ETH Zurich, Switzerland
Kazuo Iwama Kyoto University, Japan
Lidong Wu University of Texas at Dallas, USA
Ling-Ju Hung National Taipei University of Business, Taiwan
Louxin Zhang National University of Singapore, Singapore
Lu Han Beijing University of Posts and

Telecommunications, China
Meghana Satpute University of Texas at Dallas, USA
Michael Khachay Krasovsky Institute of Mathematics and

Mechanics, Russia
Mihaela Cardei Florida Atlantic University, USA
Qianping Gu Simon Fraser University, Canada
Sergey Bereg University of Texas at Dallas
Sergiy Butenko Texas A&M University, USA
Shaojie Tang University of Texas at Dallas, USA
Shengxin Liu Harbin Institute of Technology (Shenzhen), China
Shuyang Gu Texas A&M University - Central Texas, USA
Smita Ghosh Santa Clara University, USA
Ueverton Souza Universidade Federal Fluminense, Brazil
Viet Hung Nguyen Université Pierre & Marie Curie, France
Wei Wang Xian Jiaotong University, China

Organization ix

Xianyue Li Lanzhou University, China
Yan Shi University of Wisconsin - Platteville, USA
Yifei Zou Shandong University, China
Yong Chen Hangzhou Dianzi University, China
Yongxi Cheng Xian Jiaotong University, China
Yuqing Zhu California State University, Los Angeles, USA
Zhao Zhang Zhejiang Normal University, China
Zhongnan Zhang Xiamen University, China

Contents – Part II

Modeling and Algorithms

Differentiable Discrete Optimization Using Dataless Neural Networks 3
Sangram K. Jena, K. Subramani, and Alvaro Velasquez

When Advertising Meets Assortment Planning: Joint Advertising
and Assortment Optimization Under Multinomial Logit Model 16

Chenhao Wang, Yao Wang, and Shaojie Tang

Twin-Treewidth: A Single-Exponential Logic-Based Approach 43
Maurício Pires, Uéverton S. Souza, and Bruno Lopes

Highway Preferential Attachment Models for Geographic Routing 56
Ofek Gila, Evrim Ozel, and Michael Goodrich

Complexity and Approximation

Restricted Holant Dichotomy on Domains 3 and 4 . 83
Yin Liu, Austen Z. Fan, and Jin-Yi Cai

Earliest Deadline First Is a 2-Approximation for DARP with Time Windows . . . 97
Barbara M. Anthony, Christine Chung, Ananya Das, and David Yuen

Improved Approximation for Broadcasting in k-Path Graphs 111
Hovhannes A. Harutyunyan and Narek Hovhannisyan

The Fine-Grained Complexity of Approximately Counting Proper
Connected Colorings (Extended Abstract) . 123

Robert D. Barish and Tetsuo Shibuya

Combinatorics and Computing

Strong Edge Coloring of Subquartic Graphs . 139
Junlei Zhu and Hongguo Zhu

Two Multicolor Ramsey Numbers Involving Bipartite Graphs 147
Yan Li and Ye Wang

xii Contents – Part II

Mechanism Design for Time-Varying Value Tasks in High-Load Edge
Computing Markets . 152

Qie Li, Zichen Wang, and Hongwei Du

Computing Random r-Orthogonal Latin Squares . 165
Sergey Bereg

Optimization and Algorithms

A Two-Stage Seeds Algorithm for Competitive Influence Maximization
Considering User Demand . 177

Zhiheng You, Hongwei Du, and Ziwei Liang

Practical Attribute-Based Multi-keyword Search Scheme with Sensitive
Information Hiding for Cloud Storage Systems . 190

Jie Zhao, Hejiao Huang, Yongliang Xu, Xiaojun Zhang, and Hongwei Du

Testing Higher-Order Clusterability on Graphs . 203
Yifei Li, Donghua Yang, and Jianzhong Li

The 2-Mixed-Center Color Spanning Problem . 215
Yin Wang, Yi Xu, Yinfeng Xu, and Huili Zhang

A Dynamic Parameter Adaptive Path Planning Algorithm 227
Guangyu Yao, Nan Zhang, Zhenhua Duan, and Cong Tian

On the Mating Between a Polygonal Curve and a Convex Polygon 240
Jin-Yi Liu

A Faster Parameterized Algorithm for Bipartite 1-Sided Vertex Explosion 253
Yunlong Liu, Guang Xiao, Ao Liu, Di Wu, and Jingui Huang

Multi-winner Approval Voting with Grouped Voters . 267
Yinghui Wen, Chunjiao Song, Aizhong Zhou, and Jiong Guo

EFX Allocation to Chores over Small Graph . 279
Huahua Miao, Sijia Dai, Yicheng Xu, and Yong Zhang

Extreme Graph and Others

Zero-Visibility Cops and Robber Game on Cage Graph . 295
Xiaoli Sun, Farong Zhong, and Boting Yang

Contents – Part II xiii

Online Facility Assignment for General Layout of Servers on a Line 310
Tsubasa Harada and Toshiya Itoh

Guarding Precise and Imprecise Polyhedral Terrains with Segments 323
Bradley McCoy, Binhai Zhu, and Aakash Dutt

The Bag-Based Search: A Meta-Algorithm to Construct Tractable Logical
Circuits for Graphs Based on Tree Decomposition . 337

Masakazu Ishihata

On Problems Related to Absent Subsequences . 351
Zdenek Tronicek

Some Combinatorial Algorithms on the Dominating Number of Anti-rank
k Hypergraphs . 364

Zhuo Diao and Zhongzheng Tang

Parameterized and Exact-Exponential Algorithms for the Read-Once
Integer Refutation Problem in UTVPI Constraints . 377

K. Subramani and Piotr Wojciechowski

Critical (P5, dart)-Free Graphs . 390
Wen Xia, Jorik Jooken, Jan Goedgebeur, and Shenwei Huang

Graph Clustering Through Users’ Properties and Social Influence 403
Jianxiong Guo, Zhehao Zhu, Yucen Gao, and Xiaofeng Gao

Machine Learning, Blockchain and Others

Incorporating Neural Point Process-Based Temporal Feature for Rumor
Detection . 419

Runzhe Li, Zhipeng Jiang, Suixiang Gao, and Wenguo Yang

Improving Contraction Hierarchies by Combining with All-Pairs Shortest
Paths Problem Algorithms . 431

Xinyu Song, Zhipeng Jiang, Wenguo Yang, and Suixiang Gao

Information Theory of Blockchain Systems . 443
Quan-Lin Li, Yaqian Ma, Jing-Yu Ma, and Yan-Xia Chang

Machine Learning with Low-Resource Data from Psychiatric Clinics 455
Hongmin W. Du, Neil De Chen, Xiao Li, and Miklos A. Vasarhelyi

Single Image Dehazing Based on Dynamic Convolution and Transformer 466
Quancheng Ning and Nan Zhang

xiv Contents – Part II

Reinforcement Learning for Combating Cyberbullying in Online Social
Networks . 480

Wenting Wang, Tiantian Chen, and Weili Wu

Author Index . 495

Contents – Part I

Optimization in Graphs

An Efficient Local Search Algorithm for Correlation Clustering on Large
Graphs . 3

Nathan Cordner and George Kollios

Algorithms on a Path Covering Problem with Applications
in Transportation . 16

Ruxandra Marinescu-Ghemeci, Alexandru Popa, and Tiberiu Sîrbu

Faster Algorithms for Evacuation Problems in Networks with a Single
Sink of Small Degree and Bounded Capacitated Edges . 29

Yuya Higashikawa, Naoki Katoh, Junichi Teruyama, and Yuki Tokuni

An O(log n)-Competitive Posted-Price Algorithm for Online Matching
on the Line . 43

Stephen Arndt, Josh Ascher, and Kirk Pruhs

Online Dominating Set and Coloring . 68
Minati De, Sambhav Khurana, and Satyam Singh

Near-Bipartiteness, Connected Near-Bipartiteness, Independent Feedback
Vertex Set and Acyclic Vertex Cover on Graphs Having Small Dominating
Sets . 82

Maria Luíza L. da Cruz, Raquel S. F. Bravo, Rodolfo A. Oliveira,
and Uéverton S. Souza

Exactly k MSTs: How Many Vertices Suffice? . 94
Apratim Dutta, Rahul Muthu, Anuj Tawari, and V. Sunitha

Minimum Monotone Tree Decomposition of Density Functions Defined
on Graphs . 107

Lucas Magee and Yusu Wang

Scheduling

Exact and Approximation Algorithms for the Multi-depot Data Mule
Scheduling with Handling Time and Time Span Constraints 129

Minqin Liu, Wei Yu, Zhaohui Liu, and Xinmeng Guo

xvi Contents – Part I

Two Exact Algorithms for the Packet Scheduling Problem 141
Fei Li and Ningshi Yao

Improved Scheduling with a Shared Resource . 154
Christoph Damerius, Peter Kling, and Florian Schneider

An Energy-Efficient Scheduling Method for Real-Time Multi-workflow
in Container Cloud . 168

Zaixing Sun, Zhikai Li, Chonglin Gu, and Hejiao Huang

Set-Related Optimization

Weakly Nondominated Solutions of Set-Valued Optimization Problems
with Variable Ordering Structures in Linear Spaces . 185

Zhiang Zhou, Wenbin Wei, and Kequan Zhao

The MaxIS-Shapley Value in Perfect Graphs . 196
Junqi Tan, Dongjing Miao, and Pengyu Chen

Asteroidal Sets and Dominating Paths . 211
Oleksiy Al-saadi and Jamie Radcliffe

A Novel Approximation Algorithm for Max-Covering Circle Problem 226
Kaiqi Zhang, Siyuan Zhang, Jirun Gao, Hongzhi Wang, Hong Gao,
and Jianzhong Li

GAMA: Genetic Algorithm for k-Coverage and Connectivity
with Minimum Sensor Activation in Wireless Sensor Networks 239

Syed F. Zaidi, Kevin W. Gutama, and Habib M. Ammari

Simple Heuristics for the Rooted Max Tree Coverage Problem 252
Jiang Zhou and Peng Zhang

Efficient Algorithms for k-Submodular Function Maximization
with p-System and d-Knapsack Constraint . 265

Wenzhe Zhang, Shufang Gong, and Bin Liu

Data Summarization Beyond Monotonicity: Non-monotone Two-Stage
Submodular Maximization . 277

Shaojie Tang

Greedy+Max: An Efficient Approximation Algorithm for k-Submodular
Knapsack Maximization . 287

Zhongzheng Tang, Jingwen Chen, Chenhao Wang, Tian Wang,
and Weijia Jia

Contents – Part I xvii

Applied Optimization and Algorithm

Improved Lower Bound for Estimating the Number of Defective Items 303
Nader H. Bshouty

Popularity on the Roommate Diversity Problem . 316
Steven Ge and Toshiya Itoh

On Half Guarding Polygons . 330
Erik Krohn, Alex Pahlow, and Zhongxiu Yang

Dynamic Programming for the Fixed Route Hybrid Electric Aircraft
Charging Problem . 354

Anthony Deschênes, Raphaël Boudreault, Vanessa Simard,
Jonathan Gaudreault, and Claude-Guy Quimper

Algorithms for the Ridesharing with Profit Constraint Problem 366
Qian-Ping Gu and Jiajian Leo Liang

Multi-Candidate Carpooling Routing Problem and Its Approximation
Algorithms . 380

Jiale Zhang, Xiuqi Huang, Zifeng Liu, Xiaofeng Gao, and Guihai Chen

Maximizing Utilitarian and Egalitarian Welfare of Fractional Hedonic
Games on Tree-Like Graphs . 392

Tesshu Hanaka, Airi Ikeyama, and Hirotaka Ono

The Line-Constrained Maximum Coverage Facility Location Problem 406
Hiroki Maegawa, Naoki Katoh, Yuki Tokuni, and Yuya Higashikawa

Graph Planer and Others

On Connectedness of Solutions to Integer Linear Systems 421
Takasugu Shigenobu and Naoyuki Kamiyama

An Exact Algorithm for the Line-Constrained Bottleneck k-Steiner Tree
Problem . 434

Jianping Li, Suding Liu, and Junran Lichen

The Longest Subsequence-Repeated Subsequence Problem 446
Manuel Lafond, Wenfeng Lai, Adiesha Liyanage, and Binhai Zhu

An Approximation Algorithm for Covering Vertices by 4+-Paths 459
Mingyang Gong, Zhi-Zhong Chen, Guohui Lin, and Lusheng Wang

xviii Contents – Part I

V-Words, Lyndon Words and Substring circ-UMFFs . 471
Jacqueline W. Daykin, Neerja Mhaskar, and W. F. Smyth

The Two-Center Problem of Uncertain Points on Trees . 485
Haitao Xu and Jingru Zhang

Space-Time Graph Planner for Unsignalized Intersections with CAVs 498
Caner Mutlu, Ionut Cardei, and Mihaela Cardei

The Two Sheriffs Problem: Cryptographic Formalization
and Generalization . 512

Kota Sugimoto, Takeshi Nakai, Yohei Watanabe, and Mitsugu Iwamoto

Author Index . 525

Modeling and Algorithms

Differentiable Discrete Optimization
Using Dataless Neural Networks

Sangram K. Jena1, K. Subramani1(B), and Alvaro Velasquez2

1 LDCSEE, West Virginia University, Morgantown, WV, USA
{sangramkishor.jena,k.subramani}@mail.wvu.edu

2 Department of Computer Science, University of Colorado Boulder, Boulder, CO,
USA

alvaro.velasquez@colorado.edu

Abstract. The area of combinatorial optimization is characterized by
the search for optimal combinations of discrete variables that satisfy some
set of constraints. Famous problems in this space include maximum satis-
fiability and maximum independent set. Due to their discrete dynamics,
these problems are not differentiable in their natural formulations. In this
paper, we explore the counter-intuitive direction of differentiable discrete
optimization by leveraging the recently discovered dataless neural net-
works, which have been used to yield a single differentiable function that
is equivalent to the maximum independent set problem. In particular, we
leverage the dataless neural networks framework to derive differentiable
forms for a variety of NP-hard discrete problems and prove the correct-
ness of our derivations. The proposed differentiable forms open up the
avenue for continuous differentiable optimization to be brought to bear
on classical discrete optimization problems.

1 Introduction

While hard optimization problems have been solved for decades via approxima-
tion algorithms and heuristics that leverage convex relaxations, the power of non-
convex optimization afforded by the loss function of modern neural networks and
the training algorithms based on backpropagation in said learning models may
enable more powerful solutions for discrete optimization. This introduces the
possibility to replicate the tremendous success of neural networks, as evidenced
by Chat-GPT and AlphaGo, within the realm of combinatorial optimization.
While the conventional direction would be to leverage large datasets of com-
binatorial optimization problems from which to derive relevant patterns using
neural networks, a more recent approach has emerged that requires no data. In
[2], the maximum independent set problem is framed as a single differentiable
function such that neural networks and backpropagation can then be adopted
to solve them, where only the given instance of the problem is required and no

K. Subramani and S. K. Jena—This research was supported in part by the Defense
Advanced Research Projects Agency through grant HR001123S0001-FP-004.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 3–15, 2024.
https://doi.org/10.1007/978-3-031-49614-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_1

4 S. K. Jena et al.

additional data is necessary. This approach upends the conventional wisdom of
machine learning, whereby a dataset is assumed for refining the parameters of
the learning model (e.g., a neural network) in the direction of more accurate pre-
dictions. Instead, dataless neural networks can refine their parameters in terms
of the internal connections of the network or other factors not dependent on a set
of ground-truth data. To illustrate this, consider a conventional neural network f
parameterized by weights θ to be trained on some dataset {(xi, yi)}. For example,
xi can be an instance of a discrete optimization problem and yi can be the values
of the optimal solution. The parameters θ are typically updated using backprop-
agation by minimizing a differentiable loss function L(xi, f(xi; θ)) to make the
output f(xi; θ) of the neural network as close to yi as possible. Backpropagation
updates the parameters in the direction of θ := θ−α ·∂L(xi, f(xi; θ))/∂θ, where
α controls the learning rate. The idea behind the dataless neural networks is that
there is no data, so what we have as an output of the neural network is simply
f(en; θ) = f(θ), where en is the all-ones vector representing a trivial input to the
neural network. Thus, instead of attempting to find patterns in some data set,
dataless neural networks attempt to find the optimal solution to a given discrete
optimization problem by enforcing a certain structure on f and θ.

The rest of this paper is organized as follows: In Sect. 2, we formally define the
problems and the notations considered in the paper. Section 3 describes related
work in the literature. In Sect. 4, we design a dataless neural network (dNN) for
the maximum dissociation set (MDS) problem. Section 5 discusses a dNN for the
k-coloring problem. We design a dNN for the maximum cardinality d-distance
matching problem in Sect. 6. Finally, we conclude in Sect. 7 by summarizing our
results and discussing avenues for future work.

2 Statement of Problems

In this section, we define the problems and some of the notations considered in
this paper.

Definition 1. Dissociation set (DS): Given a graph G = (V,E) and an inte-
ger k, does there exist a vertex set D ⊆ V of size at least k such that the degree
of each vertex v ∈ D is at most one in the induced graph G′ = (D,E′)?

Definition 2. Maximum dissociation set (MDS): Given a graph G =
(V,E), find a dissociation set D ⊆ V of maximum size.

Definition 3. Minimum 3-path vertex cover (M3PVC): Given a graph
G = (V,E), find a minimum size set C3 ⊆ V such that each path having three
vertices (path of order 3) contains at least one vertex from C3 in G.

Differentiable Discrete Optimization Using Dataless Neural Networks 5

It is trivial to observe that a set C3 of vertices of a graph G is a 3-path vertex
cover of G, if and only if its complement D = V \ C3 is a dissociation set of G.

Definition 4. k-coloring: Given a graph G = (V,E) and an integer k, does
there exist an assignment of at most k colors to the vertex set V such that no
two vertices sharing an edge are assigned the same color?

Definition 5. Maximum cardinality d-distance matching (MCDM):
Given a bipartite graph G = (S, T,E), where the set S = {s1, s2, . . . , sn} is
a strictly ordered set and T = {t1, t2, . . . , tr} and a distance d ∈ Z

+, find a
maximum cardinality subset M ⊆ E in G such that the degree of every vertex of
S is at most one in M and if sit, sjt ∈ M, then |j − i| ≥ d.

An activation function in a neural network transforms the summed weighted
input from the node into the node’s activation or output for that input. In our
design of dataless neural networks, we use a rectified linear activation function,
also known as the ReLU activation function. It is a piecewise linear function that
outputs the input directly if it is positive; otherwise, it outputs zero, i.e., σ(x) =
max(0, x). For any positive integer n, [n] := {1, 2, . . . , n}. Unless mentioned
otherwise, | · | represents the absolute value or modulus.

The principal contributions of this paper are as follows:

1. A differential approach for the MDS problem (see Sect. 4).
2. A differential approach for the k-coloring problem (see Sect. 5).
3. A differential approach for the MCDM problem (see Sect. 6).

3 Related Work

In this section, we discuss the state-of-the-art result related to the neural net-
work (NN) and dataless neural network (dNN) available in the literature. Our
discussion for NN and dNN is particularly based on many combinatorial opti-
mization problems (COPs). The most interesting COPs are NP-hard. It is
well-known that such problems do not have polynomial time efficient algorithms
unless some established complexity-theoretic conjectures fail. Although these
problems cannot be solved efficiently, they have applications in almost every
domain, such as scheduling, routing, telecommunications, planning, transporta-
tion, and decision-making processes [3,7]. Researchers have attempted to address
NP-hard problems with different efficient, approximate solvers [11]. Broadly,
these solvers are categorized into heuristic algorithms [1], approximation algo-
rithms [4], and conventional branch-and-bound methods [15]. Such approaches
may produce suboptimal solutions. Some of the other well-studied approaches
to dealing with NP-hard problems use parameterized [5,8,14] and exact expo-
nential algorithmic techniques [9,10].

6 S. K. Jena et al.

Yet another approach to address the COPs is to use the concept of machine
learning [3,17]. The use of reinforcement learning to automate the search of
the heuristics for COPs is discussed in [6,13]. These models require training
based on the problems. More specifically, they rely on supervised learning using
datasets of the combinatorial structures of interest drawn from some distribution
of problem instances. In [2], the authors introduced dNNs for which no data is
required for training. By designing a single differentiable function, they captured
the well-known combinatorial optimization problem, the maximum independent
set (MIS) problem. They also designed a similar dNN structure for the maximum
clique (MC) and minimum vertex cover (MVC) problems related to the MIS
problem. To prove that their dNN performs on par or outperforms the existing
learning-based methods with respect to the solution size, they implemented them
both on real and synthetic large-scale graphs.

The literature discusses several powerful heuristic solvers for the MIS prob-
lem. One of the heuristic solvers is ReduMIS [11]. It consists of two components.
The first component is an iterative implementation of a series of graph reduc-
tion techniques. The second component is the use of an evolutionary algorithm.
These methods usually involve extensive training of neural networks (NNs) using
large graph datasets for which solutions are known. Another method for the MIS
problem, similar to the method of dNN for the MIS problem discussed in [2],
was developed in [16]. The method discussed in [16] does not require training
data, whereas it uses a graph neural network. More specifically, its output is
represented by the probability of each node being in the solution. In contrast to
the method discussed in [2], it uses a loss function to adjust its parameter that
encodes the graph of interest. Furthermore, the approach discussed by Alkhouri
et al. [2] uses n trainable parameters where n is the number of vertices in the
input graph. However, the number of tunable parameters used by the approach
discussed in [16] are large in size. It uses n parameters in its last layer only. In
[2], the authors also showed some experimental results by comparing them with
the best heuristics available in the literature. They evaluated success by tak-
ing the solution size obtained by ReduMIS as a benchmark. They also showed
that their experimental results perform as well or outperform the state-of-the-art
learning-based methods discussed in [12].

4 Maximum Dissociation Set

In this section, we discuss a dataless neural network (dNN) for the maximum
dissociation set (MDS) problem. Our proposed approach is dataless. However, it
is a neural network based technique, but not a learning method. Therefore, it is
different from supervised, unsupervised, and reinforcement learning. We leverage
the construction of the dNN for the MIS problem [2] to design a dNN for the
MDS problem.

Differentiable Discrete Optimization Using Dataless Neural Networks 7

Hidden Layer 1

Hidden Layer 2 Output Layer

f(θ)

1

n

n + 1

n + �

1
2

n

en

Adjustable: {θ}

Fixed from G: {W, b} Fixed from G: {w}

Fully Connected
+ReLU

Point-Wise
Multiplication Fully

Connected

Input Layer
1
2

n

Fig. 1. Block diagram of dNN.

Let G = (V,E) be a graph with n vertices over m edges. Let � be the
total number of three paths present in G. With respect to G, we construct a
dNN f with trainable parameters θ ∈ [0, 1]n. The input to the dNN is all-ones
vector en which does not depend upon any data. The output of the dNN is
f(en; θ) = f(θ) ∈ R. The dNN for the MDS problem consists of four layers; one
input layer, two hidden layers, and one output layer (Fig. 1 represents a block
diagram of the proposed network). The input layer en is connected with the first
hidden layer through an elementwise product of the trainable parameters θ. The
first hidden layer is connected to the second hidden layer by the binary matrix
W ∈ {0, 1}n×(n+�). Observe that the binary matrix is only dependent on G. At
the second hidden layer, there exists a bias vector b ∈ {−2,− 3

4}n+�. There is
a fully connected weight matrix w ∈ {−1, n}n+� in the second hidden layer to
the output layer. Note that all the parameters are defined as a function of G as
follows:

f(en; θ) = f(θ) = wT · σ((WT · (en � θ)) + b). (1)

Here � is the element-wise Hadamard product that represents the operation of
the first hidden layer of the constructed network. The fully-connected second
hidden layer consists of the fixed matrix W and a bias vector b with a ReLU
activation function σ(x) = max(0, x). The last layer is another fully-connected
layer and is expressed in vector w.

On the other hand, we prove that when an MDS D ⊆ V in G is found, f(θ)
attains its minimum value. Therefore, f(θ) is an equivalent differentiable function
of the MDS generated in G. Moreover, D can be constructed from θ as follows.
Let θ∗ = argminθ∈[0,1]nf(θ) be an optimal solution to f . Let I : [0, 1]n → 2V

be a dissociation set corresponding to θ such that I(θ) = {v ∈ V | θ∗
v ≥ α},

for α > 0. We show that |I(θ∗)| = |D|. We choose the vertices in the MDS D

8 S. K. Jena et al.

in G corresponding to the indices of θ whose value exceeds a threshold (say α).
From an input graph G = (V,E), the fixed parameters of f can be constructed
as follows: In the binary matrix W , the first n × n submatrix represents the
vertices V of G. Its weights are set equal to the identity matrix In (see the
5 × 5 submatrix in Fig. 2(b) corresponding to the 5 vertices of G in Fig. 2(a)).
Furthermore, the remaining � columns of W represent three paths of G and for
each three path �i = (u, v, w), the value of u = v = w = 1 in the column (see
the 5 columns �1 to �5 in Fig. 2(b) corresponding to the 5 three paths of G in
Fig. 2(a)). For each vertex of G, the corresponding entry of n nodes is − 3

4 in the
biased vector b. For each three path, the corresponding value in the bias vector
is set to −2. Finally, the value of −1 is assigned in the entries corresponding to
the nodes of G in vector w. For � entries corresponding to the three paths in G,
the value is set to n in w. Hence, the parameters W , b, and w are defined as
follows:

W (i, i) = 1, vi ∈ V, i ∈ [n],
W (i, n + h) = W (j, n + h) = W (k, n + h) = 1,∀�h = (vi, vj , vk), h ∈ [�],

(2)

b(i) = −3
4
, w(i) = −1, vi ∈ V, i ∈ [n],

b(n + h) = −2, w(n + h) = n, h ∈ [�].
(3)

So, the function in (1) can be rewritten as follows:

f(θ) = −
∑

v∈V

σ(θv − 3
4
) + n ·

∑

uv∈E
vw∈E

σ(θu + θv + θw − 2). (4)

Fig. 2. Representation of a binary matrix W corresponding to G.

An example of the above discussed dNN construction is presented in Fig. 3.
The following theorem establishes the relation between an MDS and the

minimum value of f in the constructed dNN with respect to a given graph G.

Theorem 1. Let G = (V,E) be a graph and its corresponding dNN be f . G has
an MDS D ⊆ V of size k, if and only if the minimum value of f is −k

4 .

Differentiable Discrete Optimization Using Dataless Neural Networks 9

Fig. 3. Construction of dNN f corresponding to the graph in Fig. 2(a) for the MDS
problem.

Proof. Let D be an MDS of size k in G. For each vi ∈ V , set the value of θvi
as

follows: If vi ∈ D, then set θvi
= 1. Otherwise, set θvi

= 0. Consider the output
f represented in Fig. 4 for an arbitrary set of three nodes vi, vj , vk ∈ D.

As per the construction of the dNN, the three path values denote the outputs
of the preceding nodes in the network. Furthermore, the ith neurons in the first
hidden layer are denoted by η1

i and the second hidden layer is denoted by η2
i .

Observe that each node vi, vj , and vk contribute − 1
4 to the output f(θ). As per

the definition of the MDS, there does not exist a three path with the nodes vi, vj ,
and vk in D. Therefore, the output of η2

n+� = 0. Moreover, the size of the MDS
in G is |D| = k. It immediately proves that for an MDS D of size k, f(θ) = −k

4 ,
that is the minimum value of the function.

Conversely, assume that the minimum value of the output function f is
f(θ) = −k

4 . We construct an MDS D of size k in G from f as follows: From

η2
i

η2
j

η2
k

η2
n+�

f (θ)

η1
i

η1
j

η1
k

1

1

1

θi

θj

θk

θk

θk

θj

θj

θi

θi

−σ(θi − 3
4)

−σ(θj − 3
4)

−σ(θk − 3
4)

n · σ(θi + θj + θk − 2)

Fig. 4. Output with respect to three arbitrary nodes.

10 S. K. Jena et al.

the construction of the dNN, it is clear that, for each set of three nodes vi, vj ,
and vk such that they form a three path, θvi

+ θvj
+ θvk

≤ 2. Otherwise, f does
not achieve its minimum value. To prove this, assume that θvi

+θvj
+θvk

> 2. It
follows that the neuron η2

n+� contributes n · (θu + θv + θk − 2) > 0 to the output
f(θ). This is a contradiction to the fact that f achieves its minimum value. We
can simply assign the value of θvi

, θvj
, or θvk

as zero and reduce the value of f
further. So, it is clear that for any three vertices vi, vj , and vk in G, such that
these three vertices create a three path, the θ value of at most two of the three
vertices can be 1. Each such vertex, which θ value is one, contributes − 1

4 to f(θ)
through η2

i . Furthermore, it contributes a value of 0 to f(θ) through η2
n+�. That

means there are k entries of value 1 in θ. For each entry of θ with value 1, take
the corresponding vertex in the MDS D. It is clear that D is an MDS in G of
size k. 	

5 k-Coloring

In this section, we first design a dNN for the 3-coloring problem. Next, we extend
the discussed dNN of the 3-coloring problem for the k-coloring problem.

Let G = (V,E) be a graph having n vertices over m edges. With respect
to G, we construct a dNN f for the 3-coloring problem, similar to the dNN of
the MDS problem, with trainable parameters θ ∈ [1, 3]n. The input to the dNN
is all-ones vector en which does not depend upon any data. The output of the
dNN is f(en; θ) = f(θ) ∈ R. The dNN for the 3-coloring problem consists of
an input layer, two hidden layers, and one output layer. The input layer en is
connected with the first hidden layer through an elementwise product of the
trainable parameters θ. The first hidden layer is connected to the second hidden
layer by the binary matrix W ∈ {0, 1}n×(n+m), which is only depend on G.
There is a bias vector b ∈ {1,− 1

2}n+m at the second hidden layer. There is also
a fully connected weight matrix w ∈ {−1, n}n+m in the second hidden layer to
the output layer. Note that all the parameters are defined as a function of G.
The output of f is given by (5).

f(en; θ) = f(θ) = wT · σ((WT · (en � θ)) + b). (5)

On the other hand, we prove that when a 3-coloring assignment of V in
G is found, f(θ) attains its minimum value. Therefore, f(θ) is an equivalent
differentiable function of the 3-coloring solution generated in G. Moreover, each
vertex of V in G can be assigned a color with respect to θ as follows. Let θ∗ =
argminθ∈[1,3]nf(θ) be an optimal solution to f . Let I : [1, 3]n → 3V be the
corresponding 3-coloring with respect to θ such that Ii(θ) = {v ∈ V | θ∗

v = i}
for i ∈ {1, 2, 3}. We assign color i to the vertices in Ii(θ). From an input graph
G = (V,E), the fixed parameters of f can be constructed as follows: In the
binary matrix W , the first n × n submatrix represents the vertices V of G. Its
weights are set equal to the identity matrix In. Furthermore, the remaining m
columns of W represent edges of G and for each edge uv, the value of u = v = 1
in the column. For each vertex v ∈ V in G, the corresponding entry of n nodes

Differentiable Discrete Optimization Using Dataless Neural Networks 11

is − 1
2 in the biased vector b. For each edge, the corresponding value in the bias

vector is set to 1. Finally, the value of −1 is assigned in the entries corresponding
to the nodes of G in vector w. For m entries corresponding to the edges in G,
the value is set to n in w. So, the function in (5) can be rewritten as follows:

f(θ) = −
∑

v∈V

σ(θv − 1
2
) + n ·

∑

uv∈E

σ((−|θu − θv|) + 1). (6)

The following theorem establishes the relation between a solution of the 3-
coloring problem and the minimum value of f in the constructed dNN with
respect to a given graph G.

Theorem 2. Let G = (V,E) be a graph having n vertices over m edges. There
exists a 3-coloring of V in G such that n1, n2, and n3 number of vertices of G
colored with the first, second, and third colors, respectively, with n1 ≤ n2 ≤ n3

and n1 +n2 +n3 = n, if and only if the minimum value of f is −(5·n3+3·n2+n1
2).

Proof. Let there exist a 3-coloring of V in G, which colors ni vertices of V with
color i (i ∈ {1, 2, 3}). For each v ∈ V , set the value of θv as follows: If v is colored
with color i, then set θv = i. Consider the output f for an arbitrary edge uv ∈ E
represented in Fig. 5. As per the construction of the dNN, the edges denote the
outputs of the preceding nodes in the network. Furthermore, the ith neurons in
the first hidden layer are denoted by η1

i and the second hidden layer is denoted
by η2

i . Observe that, for i ∈ {1, 2, 3}, each node v ∈ V colored with i contributes
1
2 − i to the output f(θ). As per the definition of the 3-coloring problem, there
does not exist an edge uv ∈ E such that u and v are assigned with the same
color. Therefore, the output of η2

n+� = 0. It proves that the minimum value of
the function f is −(5·n3+3·n2+n1

2), if the graph is 3-colorable.

η2
i

η2
j

f (θ)

η1
i

η1
j

1

1

θi

θj

θj

θj

θi

θi

−σ(θi − 1
2)

−σ(θj − 1
2)

η2
n+� n · σ((−|θu − θv|) + 1)

Fig. 5. Output with respect to two arbitrary nodes.

12 S. K. Jena et al.

Conversely, assume that the minimum value of the output function f is
f(θ) = −(5·n3+3·n2+n1

2). We construct a 3-coloring assignment of V in G from
f as follows: From the construction of the dNN, it is clear that, for each edge
uv ∈ E, (−|θu − θv|) ≤ −1. Otherwise, f does not achieve its minimum value.
To prove this, assume that (−|θu − θv|) > −1. It follows that the neuron η2

n+�

contributes n · ((−|θu − θv|) + 1) > 0 to the output f(θ). This is a contradiction
to the fact that f achieves its minimum value. So, it is clear that for any edge
uv ∈ E in G, the θ values of u and v are different and (−|θu − θv|) ≤ −1. Each
such vertex, which θ value is i (i ∈ {1, 2, 3}), contributes 1

2 − i to f(θ) through
η2

i . Furthermore, it contributes a value of 0 to f(θ) through η2
n+�. That means

there are n3 entries of value 3, n2 entries of value 2, and n1 entries of value 1 in θ.
For each entry of θ with the value i (i ∈ {1, 2, 3}), take the corresponding vertex
in G and assign color i. It is clear that the above assignment is a 3-coloring of
V in G. 	

Corollary 1. The above-discussed dNN for the 3-coloring problem can be gen-
eralized for the k-coloring problem.

Proof. Observe that the above-discussed dNN for the 3-coloring problem can
handle the k-coloring problem by changing the trainable parameter θ. The values
of all four layers are the same in the dNN except the θ value. The θ value was
θ ∈ [1, 3]n in the 3-coloring problem. However, for the k-coloring problem, we
set the θ value θ ∈ [1, k]n. In this case, f(θ) can be represented in the same
way as in the 3-coloring problem. However, the minimum value of the function
is different. The construction and proof for the 3-coloring problem will follow for
the k-coloring problem. 	

6 Maximum Cardinality d-Distance Matching

In this section, we design a dNN for the maximum cardinality d-distance match-
ing (MCDM) problem.

Let G = (S, T,E) be a bipartite graph having n vertices over m edges. Let �
be the total number of pairs of edges present in G which share a common vertex
ti ∈ T . With respect to G, we construct a dNN f with trainable parameters
θ ∈ [0, 1]m for the MCDM problem as follows: The input to the dNN is all-ones
vector em which does not depend upon any data. The output of the dNN is
f(em; θ) = f(θ) ∈ R. The dNN for the MCDM problem consists of four layers;
one input layer, two hidden layers, and one output layer. The input layer em

is connected with the first hidden layer through an elementwise product of the
trainable parameters θ. The first hidden layer is connected to the second hidden
layer by the binary matrix W ∈ {0, 1}n×(n+m). Observe that the binary matrix
is only dependent on G. At the second hidden layer, there exists a bias vector
b ∈ {1,− 1

2}m+�. There is a fully connected weight matrix w ∈ {−1, n}m+� in
the second hidden layer to the output layer. Note that all the parameters are
defined as a function of G as follows:

Differentiable Discrete Optimization Using Dataless Neural Networks 13

f(em; θ) = f(θ) = wT · σ((WT · (em � θ)) + b). (7)

From an input graph G = (S, T,E), the fixed parameters of f can be con-
structed as follows: In the binary matrix W , the first n×n submatrix represents
the vertices S and T of G. Its weights are set equal to the identity matrix In.
Furthermore, the remaining m columns of W represent edges of G and for each
edge tisj , the value of ti = sj = 1 in the column. For each edge ei ∈ E in G, the
corresponding entry of m edges is − 1

2 in the biased vector b. For each pair of
edges, the corresponding value in the bias vector is set to −1. Finally, the value
of −1 is assigned in the entries corresponding to the edges of G in vector w. For
� entries corresponding to the pair of edges in G, the value is set to n in w. So,
the function in (7) can be rewritten as follows:

f(θ) = −
∑

ei=tksu∈E

(σ(θi − 1
2
) + n ·

∑

ei=tksu∈E
ej=tksv∈E

σ((d − |u − v|) · (θi + θj − 1)) (8)

The following theorem establishes a relation between the minimum value of
(8) and the size of the MCDM.

Theorem 3. Given a graph G = (S, T,E) and its corresponding dNN f . There
exists an MCDM M ⊆ E in G of size k, if and only if the minimum value of f
is −k

2 .

Proof. Let M be an MCDM of size k in G. For each ei = tksu ∈ E, set the
value of θi as follows: If ei ∈ M, then set θi = 1. Otherwise, set θi = 0. Consider
the output f represented in Fig. 6 for an arbitrary set of two edges ei, ej ∈ M.
As per the construction of the dNN, the pair of edges denote the outputs of the
preceding nodes in the network. Furthermore, the ith neurons in the first hidden
layer are denoted by η1

i and the second hidden layer is denoted by η2
i . Observe

η2
i

η2
j f (θ)

η1
i

η1
j

1

1

θi

θj

θj

θj

θi

θi

−σ(θi − 1
2)

−σ(θj − 1
2)

η2
n+�

n · σ((d − |m − n|) · (θi + θj − 1))

Fig. 6. Output with respect to two arbitrary edges.

14 S. K. Jena et al.

that each edge ei and ej contribute − 1
2 to the output f(θ). As per the definition

of the MCDM, there does not exist a pair of edges ei = tksu and ej = tksv in
M such that |u − v| < d. Therefore, the output of η2

n+� = 0. Moreover, the size
of the MCDM in G is |M| = k. It immediately proves that for an MCDM M of
size k, f(θ) = −k

2 , that is the minimum value of the function.
Conversely, assume that the minimum value of the output function f is

f(θ) = −k
2 . We construct an MCDM M of size k in G from f as follows: From

the construction of the dNN, it is clear that, for each pair of edges ei = tksu

and ej = tksv in M such that |u − v| < d, (d − |u − v|) · (θi + θj − 1) ≤ 0.
Otherwise, f does not achieve its minimum value. To prove this, assume that
(d − |u − v|) · (θi + θj − 1) > 0. It follows that the neuron η2

n+� contributes
n · (d − |u − v|) · (θi + θj − 1) > 0 to the output f(θ). This is a contradiction to
the fact that f achieves its minimum value. We can simply assign the value of θi

or θj as zero and reduce the value of f further. So, it is clear that for any pair of
edges ei = tksu and ej = tksv in M such that |u− v| < d, the θ value of at most
one of the two edges can be 1. Each such edge, which θ value is one, contributes
− 1

2 to f(θ) through η2
i . Furthermore, it contributes a value of 0 to f(θ) through

η2
n+�. That means there are k entries of value 1 in θ. For each entry of θ with

value 1, take the corresponding edge in the MCDM M. It is clear that M is an
MCDM in G with size k. 	

7 Conclusion

In this paper, we have formulated novel differentiable representations for a
variety of NP-hard problems. These representations open up opportunities
for mixed discrete-continuous optimization solutions to combinatorial optimiza-
tion problems. We proved the correctness of our formulations and leveraged the
framework of dataless neural networks for their derivations. We leave as future
work the application of backpropagation-based experiments using a variety of
dataless neural networks. Our primary focus is to design a generalized dataless
neural network that captures integer programming; a general purpose network
will be more complex than the problem-specific models discussed in this paper.

References

1. Akiba, T., Iwata, Y.: Branch-and-reduce exponential/FPT algorithms in practice:
a case study of vertex cover. Theoret. Comput. Sci. 609, 211–225 (2016)

2. Alkhouri, I.R., Atia, G.K., Velasquez, A.: A differentiable approach to the maxi-
mum independent set problem using dataless neural networks. Neural Netw. 155,
168–176 (2022)

3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

4. Boppana, R., Halldórsson, M.M.: Approximating maximum independent sets by
excluding subgraphs. BIT Numer. Math. 32(2), 180–196 (1992)

5. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

Differentiable Discrete Optimization Using Dataless Neural Networks 15

6. Drori, I., et al.: Learning to solve combinatorial optimization problems on real-
world graphs in linear time. In: 2020 19th IEEE International Conference on
Machine Learning and Applications (ICMLA), pp. 19–24 (2020)

7. Festa, P.: A brief introduction to exact, approximation, and heuristic algorithms
for solving hard combinatorial optimization problems. In: 2014 16th International
Conference on Transparent Optical Networks (ICTON), pp. 1–20 (2014)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES, Springer, Hei-
delberg (2006). https://doi.org/10.1007/3-540-29953-X

9. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. TTCSAES, Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

10. Gaspers, S.: Exponential Time Algorithms - Structures, Measures, and Bounds.
VDM (2010)

11. Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Finding near-optimal
independent sets at scale. In: 2016 Proceedings of the Eighteenth Workshop on
Algorithm Engineering and Experiments (ALENEX), pp. 138–150 (2016)

12. Li, Z., Chen, Q., Koltun, V.: Combinatorial optimization with graph convolutional
networks and guided tree search. In: Advances in Neural Information Processing
Systems, vol. 31 (2018)

13. Mazyavkina, N., Sviridov, S., Ivanov, S., Burnaev, E.: Reinforcement learning for
combinatorial optimization: a survey. Comput. Oper. Res. 134, 105400 (2021)

14. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

15. Segundo, P.S., Rodŕıguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm
for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)

16. Schuetz, M.J.A., Brubaker, J.K., Katzgraber, H.G.: Combinatorial optimization
with physics-inspired graph neural networks. Nat. Mach. Intell. 4(4), 367–377
(2022)

17. Wilder, B., Dilkina, B., Tambe, M.: Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 33, pp. 1658–1665 (2019)

https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-642-16533-7

When Advertising Meets Assortment
Planning: Joint Advertising

and Assortment Optimization Under
Multinomial Logit Model

Chenhao Wang1, Yao Wang2(B), and Shaojie Tang3

1 School of Data Science, The Chinese University of Hong Kong (CUHK-Shenzhen),
Shenzhen, China

chenhaowang@link.cuhk.edu.cn
2 Xi’an Jiaotong University, Xi’an, China

yao.s.wang@gmail.com
3 The University of Texas at Dallas, Richardson, USA

shaojie.tang@utdallas.edu

Abstract. While the topic of assortment optimization has received a
significant amount of attention, the relationship between advertising and
its impact on this issue has not been well-explored. This paper aims to
fill the gap in research by addressing the joint advertising and assort-
ment optimization problem. We propose that advertising can influence
product selection by increasing preference for certain products, and the
extent of this effect is determined by the product-specific effectiveness of
advertising and the resources allocated to advertising for that product.
Our goal is to find an optimal solution, which comprises of a combination
of advertising strategy and product assortment, that maximizes revenue,
taking into account budget constraints on advertising. In this paper, we
examine the characteristics of this problem and present efficient methods
to solve it under various scenarios. Both the unconstraint and cardinal-
ity constraint settings are studied and the joint assortment, pricing, and
advertising problem is also examined. We further extend our findings to
account for consumer decision-making patterns.

Keywords: budget allocation · advertising effect · assortment
optimization

1 Introduction

One of the major challenges faced by both online and offline retailers is the prob-
lem of assortment optimization, in which they choose a specific group of products
to offer to customers such that their expected revenue can be maximized. The
revenue generated by an assortment of products is usually determined by two
factors: the revenue generated by selling each individual product, and the pur-
chasing behavior of consumers. The latter is often captured by discrete choice
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 16–42, 2024.
https://doi.org/10.1007/978-3-031-49614-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_2

When Advertising Meets Assortment Planning 17

models such as a multinomial logit (MNL) model [26] and a nested logit (NL)
model [7]. Unlike previous studies that assume fixed choice models, we take
into account the fact that customer purchasing behavior may be influenced by
sophisticated selling practices such as advertising. Specifically, advertising is an
important and effective strategy for establishing brand recognition and commu-
nicating the value of a product effectively to the public. Given the importance of
advertising, determining how to allocate the promotional budget over products
and time is a critical aspect of retailers’ decision making [13,19,22], hence, it is
important for a retailer to consider the impact of advertising on their product
choices to increase revenue. To maximize this effect, the retailer should align
their advertising and product recommendations.

In this paper, we propose and investigate a joint advertising and assortment
optimization problem (JAAOP). We employ the MNL model to understand con-
sumer purchasing behavior, in which every product, including the choice not to
purchase, is assigned a random utility. Once presented with a variety of products,
the consumer chooses the one with the highest utility. Our study differs from pre-
vious research on traditional assortment optimization by taking into account the
influence of advertising. That is, rather than just selecting a group of products,
we investigate the potential of combining advertising with traditional product
selection to enhance the overall optimization. Specifically, we assume that the
platform can increase the attractiveness (a.k.a. utility) of a product by adver-
tising it, the effectiveness of which is represented by a product-specific response
function and the amount of advertising efforts allocated to that product. With
constraints on the advertising budget, our goal is to jointly determine which
products to present to consumers and how to allocate the advertising budget
among them in order to maximize expected revenue. In one extension of our
work, we also examine the sequential choice behavior of consumers [15], a com-
mon feature on online shopping platforms such as Amazon and Taobao, where
a large number of products are displayed to the consumer in stages. If the con-
sumer does not select any products in a stage, they will move on to the next
set of products. This requires the platform to not only select which products to
display, but also their positions. We formulate this problem as a joint multi-stage
advertising and assortment optimization problem.

1.1 Summary of Contributions

This section summarizes the major contributions of our work.

– We introduce the JAAOP in which the platform must concurrently select (1)
an advertising strategy and (2) a set of products to present to consumers. By
using the MNL model and assuming no constraint on the maximum number
of products that can be displayed to a user, we can obtain an optimal revenue-
ordered assortment and an efficient advertising strategy.

– When a constraint on the maximum number of products that can be dis-
played to a user is present, we analyze the problem under different response
functions. If the response function is a log function, the optimal advertising

18 C. Wang et al.

strategy is to allocate all the advertising budget to a single product. If the
response function is a general concave function, we formulate our problem as
a nonlinear continuous optimization problem and use McCormick inequalities
to convert it into a convex optimization problem. We then develop an efficient
algorithm to find the optimal strategy.

– In Appendix A and B, we study several extensions. In one extension of this
study, we include the price of each product as a decision variable and consider
the joint product assortment, pricing, and advertising optimization problem.
We also extend our model to incorporate the multi-stage purchase behav-
ior and investigate the structural properties of the problem. We develop a
heuristic method that comes with a performance guarantee.

– We also conduct a series of experiments to evaluate the performance of our
solutions and further confirm the value of advertising in AppendixC. Our
proposed heuristic method is robust and outperforms other methods in dif-
ferent settings. Specifically, the results suggest that allocating the advertising
budget uniformly or greedily leads to substantial revenue loss.

2 Literature Review

Our work is closely related to the assortment optimization problem in revenue
management, which aims to select a subset of products to maximize the expected
revenue. Various discrete choice models have been proposed to model consumer
decision-making behavior, including the MNL model [26], the Nested Logit (NL)
model, the d-level NL model and so on. Recently, several works have considered
sequential choice behavior. For example, Flores et al. [12] investigated a two-
stage MNL model, where the consumer sequentially browses two stages that
are disjoint in terms of potential products and [17] extended to the multi-stage
setting. Moreover, [15] developed a sequential MNL model, where the utility of
the no-purchase option is fixed at the beginning instead of being resampled each
time, and studied the assortment and pricing problem with impatient customers.

Another related problem is the advertising budget allocation problem. [2]
proposed a model to allocate resources among multiple brands in a single period.
[9] further considered advertising budget allocation across products and media
channels. [11] considered the lagged effect of advertising and studied the dynamic
marketing budget allocation problem for a multi-product, multi-country setting.
[1] proposed a single-product spatiotemporal model that includes the spatial
differences and sale dynamics.

Finally, our work belongs to the growing literature that aims to improve
revenue through sophisticated selling practices beyond product selection. The
approaches in this area include offering certain items only through lotteries [18]
and making certain products unattractive to consumers [4]. [4] studied the refined
assortment optimization problem for several regular choice models, including
the MNL, latent-class MNL (LC-MNL), and random consideration set (RCS)
models. While the authors in [4] focus on reducing the utilities of some products
to improve revenue, our approach aims to increase revenue by increasing the

When Advertising Meets Assortment Planning 19

utilities of some products. The main differences are: 1. [4] focus on strategically
reducing the utilities of products, whereas our study centers on increasing the
utilities of products. 2. [4] assume that changing the utility of a product has no
cost, while our model takes into account the cost of increasing the utility of a
product through advertising and considers budget constraints in the optimization
problem. We also show that the platform has no incentive to decrease the utilities
of any products in the MNL model under a cardinality constraint. A similar result
was discovered independently by [4] for an unconstrained MNL model.

3 Preliminaries and Problem Formulation

3.1 MNL Model

We list the main notations in Table 1. Generally, the input of our problem is a
set of n products N = {1, 2, · · · , n}. In the MNL model, each product i ∈ N
has a utility qi + εi, where qi is a constant that captures the initial utility of
product i, and εi is a random variable that captures the error term. We assume
that εi follows a Gumbel distribution with a location-scale parameter (0, 1). Let
v denote the preference vector of N , where vi := eqi for each i ∈ N . Given
an assortment S ⊆ N and a preference vector v, for each product i ∈ N , a
consumer will purchase product i with a probability of

φi(S,v) =

{
vi

1+
∑

j∈S vj
if i ∈ S

0 otherwise.
(1)

The no-purchase probability is φ0(S,v) = 1
1+

∑
j∈S vj

. Let r denote the revenue
vector of N , where for each product i ∈ N , ri > 0 represents the revenue from
product i. Based on the above notations, the expected revenue R(S,v) of the
assortment S is given by

R(S,v) =
∑
i∈S

ri · φi(S,v) =
∑

i∈S rivi

1 +
∑

i∈S vi
. (2)

3.2 Joint Advertising and Assortment Optimization

We use a vector x to represent an advertising strategy where for each i ∈ N ,
xi represents the amount of advertising efforts allocated to i. Let c denote the
advertising effectiveness of N . We assume that the utility of each product i ∈ N ,
increases by f(cixi) if it receives xi advertising efforts from the platform, where

20 C. Wang et al.

f(·) is called response function and ci is the advertising effectiveness of product
i. Intuitively, c and f(·) together determine the degree to which a product’s
preference weight is influenced by the advertising it receives from the platform.
For a given preference vector v, the expected revenue R(S,v,x) of an assortment
S under an advertising strategy x is calculated as

R(S,v,x) =
∑

i∈S rie
qi+f(cixi)

1 +
∑

i∈S eqi+f(cixi)
=

∑
i∈S rivig(cixi)

1 +
∑

i∈S vig(cixi)
, (3)

where g(·) = ef(·). Hence, R(S,v) = R(S,v, 0).
We next formally introduce the JAAOP.

Definition 1. Let X = {x|∑n
i=1 xi ≤ B} denote the set of all feasible adver-

tising strategies subject to the advertising budget B. JAAOP aims to jointly find
an assortment S of size at most K and a feasible advertising strategy x ∈ X to
maximize the expected revenue, that is,

max
x∈X

max
S:|S|≤K

R(S,v,x). (4)

Let S∗ and x∗ denote the optimal assortment and advertising strategy,
respectively, subject to the advertising budget B and cardinality constraint K.
In case of multiple optimal assortments, we select the one with the smallest
number of items. For ease of presentation, let Sv denote the optimal assortment
when B = 0, that is, Sv = arg maxS:|S|≤K R(S,v). In this paper, we make two
assumptions about g(·).
Assumption 1. g(·) is differentiable, concave, and monotonically increasing.

We will now provide the reasoning behind this assumption. Several
researchers have investigated the impact of advertising on customer utility,
including [10,25], and [28]. These studies all assumed logarithmic response func-
tions, which imply that market share is a concave function of advertising efforts,
meaning that the benefit of incremental advertising decreases as advertising
efforts increase. This property, also known as the law of diminishing returns, has
been widely used in other works [3,9,21]. The assumption we made in our study,
known as Assumption 1, captures this property effectively. For the market share
of product i in assortment S, that is, vig(cixi)

1+
∑

i∈S vig(cixi)
, we can verify the con-

cavity of the market share function = by observing the negativity of the second
derivative. The second assumption states that the advertising effect is zero if a
product receives zero amount of advertising efforts from the platform.

Assumption 2. g(0) = 1.

We present a useful lemma that states that there exists an optimal advertising
strategy that always uses the entire advertising budget.

Lemma 1. There exists an optimal advertising strategy x∗ for problem (4) such
that

∑
i∈S∗ xi = B.

When Advertising Meets Assortment Planning 21

4 Unconstrained JAAOP

We start by examining a special case of the JAAOP, where K = n, meaning
there is no limit on the assortment size.

In the absence of any size constraints and advertising budget, our prob-
lem becomes the standard unconstrained assortment optimization problem. As
proven by [26], the optimal assortment in this scenario is a revenue-ordered
assortment, i.e. all products generating revenue greater than a certain threshold
are included. This threshold, as demonstrated in [24], is the expected optimal
revenue.

Lemma 2 [24, Theorem 3.2]. If K = n and B = 0, there exists an optimal
assortment Sv such that Sv = {i ∈ N|ri > R(Sv,v)}.
This characteristic has been noted in other contexts as well, such as the joint
pricing and assortment optimization problem [27] and the robust assortment
optimization problem [24]. The optimal assortment, given a fixed advertising
strategy, remains revenue-ordered. Thus, to find the best solution, we find the
optimal advertising strategy for each possible revenue-ordered assortment, and
choose the one with the highest expected revenue as the final result. The number
of possible revenue-ordered assortments is at most n. The efficiency of this algo-
rithm can be improved by taking into consideration the following observations.

Lemma 3. There exists an optimal assortment S∗ such that S∗ ⊆ Sv.

Lemma 3 implies that to find the optimal advertising strategy, we must eval-
uate all the revenue-ordered assortments within Sv and determine the optimal
advertising plan. Then, for any revenue-ordered assortment S, we find the opti-
mal advertising strategy to obtain the complete solution, i.e.,

max
x≥0

∑
i∈S rivig(cixi)

1 +
∑

i∈S vig(cixi)
(5)

s.t.
∑
i∈S

xi = B.

With ui = vig(cixi), (5) can be rewritten as:

max
u

A(u)
B(u)

=
∑

i∈S riui

1 +
∑

i∈S ui
(6)

s.t. u ∈ U ,

where U = {u|∑n
i=1 mi(ui) ≤ B, ui ≥ vi, i = 1, . . . , n} and mi(·) = g−1(·

vi
)/ci.

Here (6) is a single-ratio fractional programming (FP) problem. Before present-
ing our solution to (6), we show that U is a convex set.

Lemma 4. The constraint set U in (6) is a convex set.

22 C. Wang et al.

This part describes our solution to (6) in detail. Lemma 4 indicates that (6)
is a concave-convex FP problem. We apply the classical Dinkelbach transform
[8] by iteratively solving the following parameterized problem:

max
u

h(y) = A(u) − yB(u) (7)

s.t. u ∈ U .

In particular, our algorithm starts with iteration t = 0 and y0 = A(v)
B(v) , and

in each subsequent iteration t + 1, we find ut+1 to maximize h(yt) by solving
(7) and update yt+1 = A(ut+1)

B(ut+1)
. This process iterates until the optimal solution

of (7) is 0 and we output the corresponding maximizer uF . Equation (7) can
be solved efficiently because A(u) is a concave function and B(u) is a convex
function. This algorithm is guaranteed to converge to the optimal solution [8].
After solving (6) and obtaining uF , we transform (6) to an optimal advertising
strategy such that for each i ∈ S, we set xi = mi(uF

i); that is, we allocate mi(uF
i)

efforts to i. A detailed description of our solution is presented in Algorithm1.

Algorithm 1. Optimal Solution for Unconstrained JAAOP
Input: preference weight v, revenue r, advertising effectiveness c, budget B
Output: optimal assortment S∗, advertising strategy x∗

1: Solve the classic unconstrained assortment optimization problem, and obtain the
optimal assortment Sv when B = 0

2: Solve (6) for each revenue-ordered assortment in Sv, and return the best one as
the final solution

5 Cardinality-Constrained JAAOP

We next study our problem under a cardinality constraint of K > 0. First, we
examine a scenario where g(·) is a linear function, and then we delve into the
general case where g(·) is a concave function.

5.1 g(x) as Linear Function

We first study the scenario where g(·) is a linear function, expressed as 1 + ax
for some a ≥ 0. The next lemma demonstrates the existence of an optimal
advertising strategy that allocates the entire budget to a single product. For
each i ∈ N , we define xi as a vector in which the i-th element is B and all other
elements are zero.

Lemma 5. For any assortment S, the optimal solution for the following problem
is achieved at xi for some i ∈ S:

max
x≥0

L(S,x) =
∑

i∈S rivi(1 + acixi)
1 +

∑
i∈S vi(1 + acixi)

(8)

s.t.
∑
i∈S

xi = B.

When Advertising Meets Assortment Planning 23

This lemma implies that to find the optimal advertising strategy, we need to
consider at most n candidate advertising strategies: {xi|i ∈ N}. Specifically, con-
sidering xi, we replace the original preference weight vi of i using vig(ciB) and
then solve the standard capacity-constrained assortment optimization problem
to obtain an optimal assortment. Among the n returned solutions, we return
the best one as the final solution. [23] showed that the standard cardinality-
constrained assortment optimization problem for each xi can be solved in O(n2)
time. Thus, the overall time complexity of our solution is n × O(n2) = O(n3).
Assume all products are indexed in non-increasing order of ri. The next lemma
shows that we can further narrow the search space and reduce the time complex-
ity to O(n2T), where T = max{i|i ∈ Sv} represents the index of the product
that has the smallest revenue in Sv.

Lemma 6. Assume all products are indexed in non-increasing order of ri. Let
T = max{i|i ∈ Sv}, there exists an optimal assortment S∗ such that S∗ ⊆
{1, 2, ..., T}.

We present the detailed implementation of our algorithm in Algorithm 2.

Algorithm 2. Optimal Cardinality Constrained Solution for Log Response
Function
Input: preference weight v, revenue r, cardinality constraint K, advertising effective-

ness c, budget B
Output: optimal assortment S∗ and advertising strategy x∗

1: Let T = max{i|i ∈ Sv}
2: for i = 1, . . . , T do
3: Compute an assortment Si that maximizes R(S,v,xi)
4: end for
5: Return the best (Sj ,xj).

5.2 g(x) as a General Concave Function

We next discuss the general case. Before presenting our solution, we first con-
struct an example to demonstrate that allocating the entire budget to a single
product is not necessarily optimal.

Example 1. Consider three products with revenue r = (8, 7.5, 2.8), preference
weight v = (1.2, 1, 1.7) and the effectiveness c = (0.9, 0.8, 1). Assume the car-
dinality constraint is K = 2 and the total advertising budget is B = 10. We
consider a concave function g(x) =

√
x + 1. If we are restricted to allocating

the entire budget to a single product, then the optimal advertising strategy is
(10, 0, 0), the optimal assortment is composed of the first two products, and the
expected revenue of this solution is 6.75. However, the actual optimal advertis-
ing strategy is (approximately) (8.285, 1.715, 0), the actual optimal assortment
contains the first two products, and it achieves expected revenue of 6.812. The
above example shows that the single-product advertising strategy is no longer
optimal for a general concave response function.

24 C. Wang et al.

We next present our solution. Let ui = vig(cixi) and define mi(·) =
g−1(·

vi
)/ci for each i ∈ N , we first transform (4) to an equivalent nonlinear

mixed integer program (9) by replacing
∑n

i=1 xi = B using
∑n

i=1 mi(ui) ≤ B,

max
u∈U

max
t∈{0,1}n

∑n
j=1 ujrjtj

1 +
∑n

j=1 ujtj
(9)

s.t.
n∑

i=1

ti ≤ K,

where U = {u|∑n
i=1 mi(ui) ≤ B, ui ≥ vi, i = 1, . . . , n}. We next present a useful

lemma from [6].

Lemma 7 (Theorem 1 [6]). The inner problem of (9) is equivalent to the fol-
lowing linear program

max
w,w0

n∑
j=1

riwi (10)

s.t.
n∑

i=1

wi + w0 = 1, (11)

n∑
i=1

wi

ui
≤ Kw0, (12)

0 ≤ wi

ui
≤ w0 ∀i ∈ N . (13)

Notice that (12) and (13) involve some nonlinear constraints if u is not fixed.
Thus we introduce new variables �i = wi

ui
, i ∈ N and rewrite (9) as follows:

(NO) max
u∈U

max
w,�,w0

n∑
j=1

riwi (14)

s.t.
n∑

i=1

wi + w0 = 1, (15)

n∑
i=1

�i ≤ Kw0, (16)

0 ≤ �i ≤ w0 ∀i ∈ N , (17)
wi = �iui ∀i ∈ N . (18)

When Advertising Meets Assortment Planning 25

We further use the classic McCormick inequalities ([20]) to relax the noncon-
vex constraints (18):

(MC) wi ≥ �ivi ∀i ∈ N ,

wi ≥ ui + �ivig(Bci) − vig(Bci) ∀i ∈ N ,

wi ≤ �ivig(Bci) ∀i ∈ N ,

wi ≤ ui + �ivi − vi ∀i ∈ N .

Through the above relaxation, we transform (NO) into a convex optimization
problem that can be solved efficiently. After solving this relaxed problem and
obtaining a solution w, we can compute the final assortment S as follows: we first
find the product for which the wi is strictly larger than 0, that is Sw = {i|i ∈
N , wi �= 0}. Then we sort the products in Sw by the value of wi and choose
the first K products. Notice that the advertising strategy that is obtained from
solving the previous relaxed problem may not be optimal. One can solve (6) to
find the optimal advertising strategy for S. Lastly, if the size of the input is
large, we can reduce the problem size by selecting a smaller group of candidate
products based on Lemma 6. A detailed description of our solution is listed in
Algorithm 3.

Algorithm 3. Cardinality Constrained Solution for General Response Function
Input: preference weight v, revenue r, capacity constraint K, advertising effectiveness

c, budget B
Output: assortment S and advertising strategy x
1: Let T = max{i|i ∈ Sv}
2: Solve the optimization problem (NO + MC) for the first T products to find an

assortment S
3: Solve problem (6) for S to find the advertising strategy x
4: Return (S,x).

6 Conclusion

This paper considers the JAAOP problem under the MNL model, where the
seller decides their advertising strategy for all products to improve the current
revenue. We consider both the log and general concave response functions. If
there are no capacity constraints, we show that the optimal assortment is still
revenue-ordered. However, this result does not hold in the presence of a cardi-
nality constraint. When the response function is a log function, we prove that
the optimal advertising strategy is a single-product advertising strategy, thus
the optimal solution could be found in polynomial time. For the general concave
response function, we develop an efficient algorithm to find a near-optimal solu-
tion. We further consider the seller could adjust the price simultaneously, and

26 C. Wang et al.

show that such a problem can be efficiently solvable under unconstrained setting
or be transformed as a mixed-integer nonlinear programming for the cardinal-
ity constraint setting. Additionally, as an extension, we study the multi-stage
MNL choice model, in which the customer browses the assortments sequentially.
Our results demonstrate that the seller has no incentive to decrease the utility
of any product, even under the capacity constraint. Finally, we conduct exten-
sive experiments to illustrate that the advertising strategy is more effective with
small cardinality constraint and large no-purchase utility.

Appendix

A Joint Assortment, Pricing, and Advertising
Optimization

In this section, we study the case when the price of each product is also a decision
variable. Formally, we assume that the preference weight of each product i ∈ N
can be represented as eqi+f(cixi)−pi , whose value is jointly decided by i’s initial
utility qi, i’s price pi, and the advertising efforts xi received from the platform.
Hence, the revenue ri of each product i ∈ N is ri = pi − di, where di is the
production cost of i. Based on the above notations, we can represent the expected
revenue R(S,p,x) of an assortment S as

R(S,p,x) =
∑

i∈S(pi − di)eqi+f(cixi)−pi

1 +
∑

i∈S eqi+f(cixi)−pi
=

∑
i∈S(pi − di)eqi−pig(cixi)
1 +

∑
i∈S eqi−pig(cixi)

. (A.1)

A.1 Unconstrained Case

If there is no cardinality constraint, our goal is to solve the following joint adver-
tising, pricing, and assortment optimization problem:

max
p,x,S

R(S,p,x) (A.2)

s.t.
∑
j∈S

xj ≤ B.

Before describing our solution, we first present a useful lemma from [16].

Lemma A.1 [16]. Given any assortment S, the optimal price for each product
i ∈ S is pi = W (

∑
i∈S eqi−di−1)g(cixi) + di + 1, where W (·) is the Lambert W

function; that is, W (·) is the value of x that satisfies xex = z. Moreover, the
revenue of the optimal solution is W (

∑
i∈S eqi−di−1g(cixi)).

For any given advertising strategy x and assortment S, the optimal price
and corresponding expected revenue are explicitly given by LemmaA.1. Because

When Advertising Meets Assortment Planning 27

W (·) is an increasing function, LemmaA.1 implies that the optimal assortment
must include all products. Hence, we can transform (A.2) into

max
x

n∑
i=1

eqi−di−1g(cixi) (A.3)

s.t.
n∑

i=1

xi ≤ B,

xi ≥ 0 ∀i ∈ N .

Denote αi = eqi−di−1, and rewrite the above problem as

max
x

n∑
i=1

αig(cixi) (A.4)

s.t.
n∑

i=1

xi ≤ B,

xi ≥ 0 ∀i ∈ N .

Because g(·) is a concave function (Assumption 1) and
∑n

i=1 xi ≤ B is a
linear constraint, (A.4) is a concave maximization problem with convex con-
straints. Hence, (A.4) is a convex minimization problem over a convex set, and
the problem has efficient solutions [5].

A special case where g(·) is a linear function: If g(·) is a linear function, that
is, g(x) = ax + 1 for some a ≥ 0, then the optimal advertising strategy is to
allocate the entire advertising budget to a single product.

Lemma A.2. When g(·) is a linear function, the optimal solution to (A.4) is
to allocate the entire advertising budget to the product with the largest αici.

A.2 Cardinality-Constrained Case

We next consider a case where the size of the assortment is at most K ≥ 0.
Lemma A.1 indicates that the optimal assortment contains the top K products
that have the largest eqi+f(cixi)−di−1. We next show that if ef(·) is a linear func-
tion, then we only need to consider two possible advertising strategies. Hence,
this problem can be solved efficiently.

Lemma A.3. Let αi = eqi−di−1 and g(x) = ax + 1 for some a ≥ 0.
Assume all products are indexed in non-increasing order of αi. Let t1 =
argmaxi∈{1,··· ,K}{αici} and t2 = argmaxj∈{K+1,...,n}{αj(acjB + 1)}, then the
optimal advertising strategy is xt1 or xt2 .

We next discuss a case with a general response function. For each product i ∈
N , let tj = 1 if a product j is offered in the assortment and let tj = 0 otherwise.
Our problem can be formulated as the following mixed-integer programming
problem:

28 C. Wang et al.

max
x,t

n∑
i=1

αitig(cixi) (A.5)

s.t.
n∑

i=1

xi ≤ B,

n∑
i=1

ti ≤ K,

xi ≥ 0 ∀i ∈ N ,

ti ∈ {0, 1} ∀i ∈ N .

If all products have the same advertising effectiveness, that is, ci = c, for all
i ∈ N , the optimal assortment is to select the top K products that have the
largest αi.

Lemma A.4. Assume all products are indexed in non-increasing order of αi

and ci = c for all i ∈ N . The optimal assortment is S∗ = {1, . . . , K}, and the
optimal advertising strategy x∗ satisfies x∗

i ≥ x∗
j ∀i ≤ j.

To find the optimal advertising strategy under S∗ = {1, . . . ,K}, we need
to solve an optimization problem that is similar to (A.4). Because this problem
is a concave maximization problem with convex constraints, it can be solved
efficiently.

For a general case, where advertising effectiveness is heterogeneous, the objec-
tive function of (A.5) contains the bilinear terms tig(cixi). We linearize each of
these terms by relaxation. Specifically, for each tie

f(cixi), we introduce a new
continuous variable wi = tig(cixi) and add the inequalities: g(cixi) − wi ≤
g(ciB)(1 − ti), 0 ≤ wi ≤ g(cixi), and wi ≤ g(ciB)ti. This leads to the following
mixed-integer nonlinear programming problem:

max
x,t,w

n∑
i=1

αiwi (A.6)

s.t.
n∑

i=1

xi ≤ B,

n∑
i=1

ti ≤ K,

g(cixi) − wi ≤ g(ciB)(1 − ti) ∀i ∈ N ,

0 ≤ wi ≤ g(cixi) ∀i ∈ N ,

wi ≤ g(ciB)ti ∀i ∈ N ,

xi ≥ 0 ∀i ∈ N ,

ti ∈ {0, 1} ∀i ∈ N .

When Advertising Meets Assortment Planning 29

B Sequential Joint Advertising and Assortment
Optimization

In this section, we extend our study to consider a sequential joint advertising and
assortment problem. The model put forward by [15] examines the behavior of
consumers who may visit multiple product assortments before making a purchase
or leaving the store. The consumer is assumed to progress through a sequence
of m stages, each featuring a different assortment (S = (S1, . . . , Sm)). If the
consumer chooses to buy a product in stage i, they will leave the store, but if
they do not make a purchase, they will proceed to the next stage. If no product
is selected after visiting all m assortments, the consumer exits the store without
making a purchase. This choice model is referred to as the sequential multinomial
logit (SMNL) choice model. For the purpose of simplicity, we assume that the
consumer will continue visiting subsequent assortments if they do not make a
purchase in the current stage. However, it should be noted that this assumption
can be relaxed to include the factor of consumer patience.

We will now provide a detailed explanation of the SMNL model. Given a
sequence of assortments S, the consumer will purchase product i in stage k with
a probability of

φk
i (S) =

vi

(1 +
∑k−1

�=1 V (S�))(1 +
∑k

�=1 V (S�))
.

Let V (S) =
∑

i∈S vi and W (S) =
∑

i∈S rivi. The expected revenue is repre-
sented as

R(S) =
m∑

k=1

W (Sk)

(1 +
∑k−1

�=1 V (S�))(1 +
∑k

�=1 V (S�))
.

Under the advertising strategy x, the expected revenue increases to

R(S,x) =
m∑

k=1

W (Sk,x)

(1 +
∑k−1

�=1 V (S�,x))(1 +
∑k

�=1 V (S�,x))
, (B.1)

where V (S,x) =
∑

i∈S vig(cixi) and W (S,x) =
∑

i∈S rivig(cixi).
Based on the transformation in (5), the optimization problem can be written

as

max
u,S

m∑
k=1

∑
i∈Sk

riui

(1 +
∑k−1

l=1

∑
i∈Sl

ui)(1 +
∑k

l=1

∑
i∈Sl

ui)
(B.2)

s.t. u ∈ U .

We focus on the unconstrained setting. Given an arbitrary advertising strat-
egy, [15] demonstrated that the optimal assortments are sequential revenue-
ordered assortments. Specifically, there exists a set of decreasing thresholds
{t∗1, t

∗
2, . . . , t

∗
m+1}, such that S∗

k =
{
i ∈ N : t∗k+1 ≤ ri < t∗k

}
for k ∈ M =

[1, 2, . . . ,m]. The values of {t∗i }m+1
i=1 are given in the following lemma.

30 C. Wang et al.

Lemma B.1 [15, Theorem 3.1]. There exists an optimal solution
(
S∗
1 , . . . , S∗

m

)
such that for i ∈ S∗

k , we have

t∗
k+1 ≤ ri < t∗

k. Let Rk(S∗
1 , . . . , S∗

m) =
W (S∗

k)

(1+
∑k−1

�=1 V (S∗
�
))(1+

∑k
�=1 V (S∗

�
))

. The value of t∗
k can be chosen as

follows:

t
∗
1 = +∞, t

∗
k =

Rk−1(S
∗
1 , . . . , S∗

m) + Rk(S∗
1 , . . . , S∗

m)

1
1+

∑k−2
�=1 V (S∗

�
)

− 1
1+

∑k
�=1 V (S∗

�
)

∀k ∈ M\{1}, t
∗
m+1 =

Rm(S∗
1 , . . . , S∗

m)

1
1+

∑m−1
�=1 V (S∗

�
)

.

Based on this lemma, we analyze the structure of the optimal assortments
and the advertising strategy. We denote the optimal solution of B.2 as u∗ and
S∗.

Lemma B.2. For the optimization problem (B.2), we have ∂R(S∗,u∗)
∂u∗

i
≥

∂R(S∗,u∗)
∂u∗

j
≥ 0 for all products i, j ∈ N and i < j.

[4] showed that in the MNL choice model, the partial derivative h1
i ≥ 0,

indicating that the seller has no incentive to reduce the utilities of products in
order to maximize their expected revenue. In Lemma B.2, we extend this result
to the SMNL choice model. Moreover, due to the sequential revenue-ordered
property stated in LemmaB.1 being maintained for any feasible set of products,
this result remains valid even under capacity constraints, meaning that the seller
has no incentive to decrease product utilities in the capacity-constrained scenario
either. If the seller has the ability to enhance product utilities, the optimal
advertising strategy would be to allocate the entire budget to the product that
generates the highest revenue.

Lemma B.3. Denote the optimal solution of the following optimization problem
as (x∗,S∗). x∗

1 = B and x∗
i = 0 for all i ∈ N \ {1}.

max
x,S

m∑
k=1

∑
i∈Sk

ri(vi + xi)

(1 +
∑k−1

l=1

∑
i∈Sl

(vi + xi))(1 +
∑k

l=1

∑
i∈Sl

(vi + xi))
(B.3)

s.t.
n∑

i=1

xi ≤ B

In our setting, the allocation of budget xi to product i increases its utility
to vie

f(cixi), where f is the nonlinear response function. Due to the hetero-
geneous advertising effectiveness, utility and nonlinear response function, the
optimal advertising strategy may be more complex than a single-product adver-
tising strategy. Given a specific sequence of assortments, finding the optimal
advertising strategy is equivalent to solving the following optimization problem.

max
u

m∑
k=1

∑
i∈Sk

riui

(1 +
∑k−1

l=1

∑
i∈Sl

ui)(1 +
∑k

l=1

∑
i∈Sl

ui)
(B.4)

s.t. u ∈ U

When Advertising Meets Assortment Planning 31

where U = {u|∑n
i=1 mi(ui) ≤ B, ui ≥ vi, i = 1, . . . , n} and mi(·) = g−1(·

vi
)/ci.

When m = 1, this problem is a single-ratio FP problem, which can be solved effi-
ciently. However, the sum-of-ratio problem is generally NP-complete [14]. Hence,
even though the optimal assortments may be sequential revenue-ordered assort-
ments, finding the optimal advertising strategy may not be straightforward. As
a result, we propose a heuristic method as an alternative approach.

B.1 Heuristic Method

The design of our heuristic method (listed in Algorithm4) is based on two
key observations. Firstly, given an advertising strategy, the optimal sequence of
assortments can be found efficiently in polynomial time. Secondly, given the set
of products to be displayed, the single-stage optimal advertising strategy is com-
putationally tractable. Specifically, Algorithm4 iteratively updates the assort-
ments and advertising strategy until the expected revenue cannot be improved
any further.

Algorithm 4. Heuristic for Unconstrained Multi-stage JAAOP
Input: preference weight v, revenue r, advertising effectiveness c, budget B
Output: approximate assortment S∗, advertising strategy x∗

1: i = 0, rev0 = 0
2: Implement Algorithm 1 and obtain the advertising strategy x0

3: repeat
4: i = i + 1
5: Find the optimal sequence of assortments Si and expected revenue revi based

on the current advertising strategy xi−1

6: Find the optimal advertising strategy for Si = ∪m
j=1Sj , denoted as xi

7: until revi < revi−1

By exploring the structure of the objective function in (B.2), we next show
that our heuristic method achieves an approximation ratio of 50%.

Lemma B.4. Let (S∗,x∗), (Sh,xh) be the optimal values of (B.2) and our
heuristic method. We have R(Sh,xh) ≥ 1

2R(S∗,x∗).

C Numerical Study

In this section, we explore the effect of advertising on assortment optimization
and validate the superiority of our algorithms compared with several heuristic
methods on randomly generated instances and different response functions. The
revenue of each product is drawn uniformly from the interval [1, 10]. For the
preference weight vi of product i, we first sample γi uniformly from the interval
[1, 10] and then assign vi = γi/Δ, where Δ = P0

∑
i∈N γi/(1 − P0). In this

case, we guarantee the no-purchase probability when providing all products is

32 C. Wang et al.

exactly P0. We consider three types of response functions: g1(x) =
√

x + 1,
g2(x) = log(x+1)+1, g3(x) = 2−e−x. For advertising effectiveness, we consider
the following settings.

– Setting A: The advertising effectiveness ci of each product i ∈ N is drawn
uniformly from the interval [0, 1].

– Setting B: The advertising effectiveness ci of each product i ∈ N is drawn
independently from a standard log-normal distribution and rescaled by a
factor of 1

2
√

e
to make sure the same mean as setting A. In this case, there is

more dispersion in advertising effectiveness.

We choose the number of products from {50, 100, 200}, the cardinality con-
straint K from {5, 10, 20}, and the value of P0 from {0.1, 0.3}. For the multi-stage
problem, the stage m is chosen from {3, 5, 8}. For each setting, we randomly gen-
erate 10 instances and calculate the average percentage of improvement over the
non-advertising strategy. Finally, we denote our heuristic algorithm as HA.

C.1 Compared Heuristics

For the cardinality-constrained single-stage problem, the main challenge lies in
finding the optimal advertising strategy as the optimal assortment for a given
advertising strategy can be found efficiently in polynomial time. In order to
tackle this difficulty, we propose two practical advertising strategies.

– Uniform advertising (UA) strategy: for any assortment S, we have xi = B/|S|
if i ∈ S.

– Revenue advertising (RA) strategy: for any assortment S, we have xi = B ·
ri∑

i∈S ri
if i ∈ S.

We start with the optimal assortment with no advertising strategy S1. After
allocating the budget according to the heuristic method, we recompute the opti-
mal assortment S2; if S1 �= S2, then we reallocate the budget and compute the
new assortment. This process continues until the assortment is unchanged with
advertising (Table 2).

C.2 Performance Evaluation

Table 1 presents the average performance of three heuristic algorithms for the
single-stage joint advertising and assortment problem, evaluated over 36 different
parameter settings. Algorithm 3 demonstrates superior performance compared to
the other heuristic algorithms, particularly when P0 is large and the cardinality
constraint is small. In most cases, the RA strategy performs slightly better than
the UA strategy. The performance of each heuristic algorithm does not vary
significantly with an increase in the dispersion of advertising effectiveness. When
the set of products is less attractive and the cardinality constraint is small,
advertising has a more significant impact, and the gap between our algorithm
and the compared heuristic algorithms is even larger.

When Advertising Meets Assortment Planning 33

Table 1. Average Performance of Tested Heuristic Algorithm on Single Stage Problem

Parameters g1(x) g2(x) g3(x)

Setting n K P0 HA UA RA HA UA RA HA UA RA

A 50.0 5.0 0.1 27.08 25.82 25.88 21.38 19.47 19.53 18.5 17.74 17.78

50.0 10.0 0.1 14.45 13.27 13.34 10.56 8.49 8.55 9.56 8.19 8.24

50.0 20.0 0.1 9.76 7.95 8.11 6.86 4.14 4.29 6.03 4.08 4.22

50.0 5.0 0.3 57.26 53.02 53.26 43.78 38.05 38.29 36.98 34.1 34.18

50.0 10.0 0.3 31.94 29.85 29.94 22.75 18.14 18.2 20.26 17.45 17.5

50.0 20.0 0.3 19.48 17.28 17.57 12.88 8.69 8.94 11.65 8.57 8.81

100.0 5.0 0.3 75.21 68.19 68.19 57.29 48.65 48.64 48.09 43.32 43.3

100.0 10.0 0.3 44.16 42.09 42.14 30.21 26.13 26.17 27.55 25.0 25.03

100.0 20.0 0.3 25.23 23.88 24.01 15.62 11.89 12.01 14.57 11.73 11.84

100.0 5.0 0.1 41.13 39.28 39.32 32.01 29.57 29.59 27.79 26.66 26.66

100.0 10.0 0.1 21.69 20.87 20.93 15.04 13.68 13.73 14.26 13.16 13.2

100.0 20.0 0.1 11.2 10.72 10.8 7.48 5.63 5.7 6.94 5.56 5.62

200.0 5.0 0.1 60.48 52.98 53.04 46.5 38.29 38.35 38.54 34.33 34.38

200.0 10.0 0.1 32.24 30.17 30.22 22.58 19.1 19.14 20.42 18.3 18.34

200.0 20.0 0.1 16.55 16.13 16.2 10.77 8.39 8.44 9.7 8.28 8.32

200.0 5.0 0.3 90.46 77.76 77.78 67.21 54.17 54.2 57.44 47.98 48.03

200.0 10.0 0.3 54.22 50.86 50.85 37.26 30.78 30.75 33.49 29.34 29.32

200.0 20.0 0.3 32.7 31.11 31.19 19.69 15.3 15.37 18.44 15.07 15.13

B 50.0 5.0 0.1 28.7 25.83 25.96 22.67 19.26 19.38 18.77 16.83 16.84

50.0 10.0 0.1 15.59 13.89 14.02 11.37 8.94 9.06 9.72 8.29 8.4

50.0 20.0 0.1 9.3 7.42 7.6 6.35 3.6 3.74 5.51 3.51 3.64

50.0 5.0 0.3 61.14 53.73 54.03 45.3 38.11 38.34 35.77 31.92 31.85

50.0 10.0 0.3 32.77 29.65 29.83 22.76 17.71 17.85 18.64 16.4 16.44

50.0 20.0 0.3 20.43 17.14 17.6 13.86 8.73 9.09 11.69 8.43 8.76

100.0 5.0 0.1 43.47 36.75 36.84 33.61 26.12 26.2 25.99 22.66 22.66

100.0 10.0 0.1 20.68 19.2 19.29 14.48 11.72 11.82 12.75 11.13 11.21

100.0 20.0 0.1 11.96 10.65 10.75 8.4 5.64 5.7 7.3 5.47 5.52

100.0 5.0 0.3 76.08 63.21 63.22 56.17 43.04 43.05 43.28 37.37 37.41

100.0 10.0 0.3 43.16 38.01 38.12 31.0 22.11 22.22 25.18 20.68 20.8

100.0 20.0 0.3 25.42 22.46 22.62 17.15 10.94 11.1 14.24 10.52 10.66

200.0 5.0 0.1 67.19 52.12 52.16 52.04 37.22 37.27 38.03 32.2 32.23

200.0 10.0 0.1 31.58 28.81 28.84 20.74 17.75 17.78 18.75 16.72 16.76

200.0 20.0 0.1 17.15 15.66 15.72 11.61 8.28 8.33 9.91 7.92 7.98

200.0 5.0 0.3 95.94 67.3 67.19 68.48 43.43 43.3 51.34 38.86 38.79

200.0 10.0 0.3 56.04 47.21 47.27 37.58 27.28 27.35 31.49 25.82 25.86

200.0 20.0 0.3 32.8 28.57 28.73 21.97 13.85 14.02 18.11 13.11 13.22

34 C. Wang et al.

Table 2. Average Performance of Tested Heuristic Algorithm on Multiple Stage Prob-
lem

Parameters g1(x) g2(x) g3(x)

Setting n m P0 HA UA RA HA UA RA HA UA RA

A 50.0 3.0 0.1 7.32 5.31 5.94 4.99 2.03 2.57 4.48 2.02 2.55

50.0 5.0 0.1 6.83 4.85 5.58 4.61 1.75 2.34 4.14 1.74 2.33

50.0 8.0 0.1 6.69 4.75 5.51 4.49 1.68 2.3 4.04 1.68 2.29

50.0 3.0 0.3 14.48 10.83 12.21 8.88 3.81 4.86 8.14 3.8 4.84

50.0 5.0 0.3 14.55 10.92 12.35 8.92 3.79 4.9 8.18 3.78 4.87

50.0 8.0 0.3 14.48 10.96 12.37 8.86 3.81 4.89 8.14 3.8 4.87

100.0 3.0 0.1 5.67 3.95 4.42 3.43 1.12 1.45 3.22 1.12 1.45

100.0 5.0 0.1 5.42 3.65 4.25 3.29 0.98 1.37 3.07 0.98 1.36

100.0 8.0 0.1 5.37 3.62 4.23 3.24 0.96 1.36 3.04 0.96 1.35

100.0 3.0 0.3 11.32 8.17 9.31 6.09 2.12 2.83 5.73 2.11 2.82

100.0 5.0 0.3 11.18 8.17 9.31 5.99 2.11 2.82 5.64 2.11 2.82

100.0 8.0 0.3 11.17 8.2 9.33 5.98 2.12 2.82 5.63 2.12 2.82

200.0 3.0 0.1 4.55 2.96 3.33 2.54 0.58 0.77 2.34 0.58 0.77

200.0 5.0 0.1 4.1 2.56 3.02 2.24 0.46 0.66 2.07 0.46 0.65

200.0 8.0 0.1 4.01 2.55 2.99 2.18 0.46 0.65 2.02 0.46 0.65

200.0 3.0 0.3 8.27 5.72 6.55 3.87 1.0 1.35 3.66 1.0 1.35

200.0 5.0 0.3 8.5 5.96 6.8 4.07 1.07 1.43 3.86 1.07 1.43

200.0 8.0 0.3 6.87 5.19 6.08 4.7 0.92 1.45 3.51 0.97 1.05

B 50.0 3.0 0.1 9.03 5.65 6.3 6.4 2.32 3.0 5.0 2.23 2.84

50.0 5.0 0.1 6.22 4.12 4.88 3.85 1.24 1.74 3.49 1.24 1.73

50.0 8.0 0.1 6.07 4.2 4.91 3.97 1.37 1.89 3.61 1.36 1.87

50.0 3.0 0.3 14.16 9.91 11.33 9.04 3.27 4.29 8.2 3.24 4.25

50.0 5.0 0.3 14.6 10.14 11.71 9.17 3.2 4.36 8.08 3.19 4.33

50.0 8.0 0.3 13.93 10.0 11.38 8.74 3.28 4.26 7.73 3.26 4.22

100.0 3.0 0.1 6.36 4.05 4.54 4.21 1.16 1.53 3.58 1.16 1.52

100.0 5.0 0.1 5.43 3.13 3.63 3.54 0.78 1.07 2.73 0.78 1.06

100.0 8.0 0.1 4.88 3.25 3.75 2.97 0.82 1.11 2.73 0.82 1.11

100.0 3.0 0.3 12.09 7.96 9.2 7.17 2.09 2.86 6.16 2.09 2.84

100.0 5.0 0.3 10.48 7.28 8.2 6.18 1.91 2.46 5.34 1.9 2.44

100.0 8.0 0.3 10.77 7.32 8.24 6.52 1.96 2.53 5.38 1.94 2.49

200.0 3.0 0.1 4.02 2.7 3.01 2.16 0.53 0.67 1.99 0.53 0.67

200.0 5.0 0.1 3.93 2.31 2.7 2.31 0.42 0.59 1.9 0.42 0.59

200.0 8.0 0.1 4.54 2.53 2.99 2.99 0.5 0.72 2.39 0.5 0.72

200.0 3.0 0.3 8.04 5.4 6.14 4.44 1.0 1.32 3.89 1.0 1.31

200.0 5.0 0.3 8.33 5.54 6.33 4.61 1.02 1.37 4.11 1.02 1.37

200.0 8.0 0.3 7.94 5.31 6.05 4.37 0.94 1.25 3.71 0.94 1.25

The multi-stage setting has a decreasing impact on advertising as the seller is
given more stages. Even without a cardinality constraint, the revenue improve-
ment can still be significant when the utility of the no-purchase option is rel-

When Advertising Meets Assortment Planning 35

atively high. The improvement under the UA strategy can be less than 0.5%,
while the improvement using the heuristic method is at least 2%. This shows the
importance of advertising strategy on expected revenue (Fig. 2).

Finally, we evaluate the computational efficiency of our Algorithm3. Table 3
shows its average running time for different parameters. Our algorithm has a
low computational complexity as it only requires solving two linear programming
problems to find the optimal assortment and a few convex optimization problems
to find the corresponding advertising strategy. The results in Table 3 demonstrate
that our algorithm has a running time of less than 2 s for all cases, making it
highly efficient.

Table 3. Average Running Time of Algorithm 3

Parameters g1(x) g2(x) g3(x)

n K P0 A B A B A B

50 5 0.1 0.076 0.065 1.499 1.533 1.131 1.1

50 10 0.1 0.074 0.075 1.543 1.452 1.454 1.445

50 20 0.1 0.072 0.129 1.342 0.74 1.651 1.472

50 5 0.3 0.111 0.136 0.625 0.562 0.986 0.778

50 10 0.3 0.131 0.122 0.57 0.57 0.677 0.671

50 20 0.3 0.127 0.154 0.764 0.721 0.96 0.87

100 5 0.1 0.09 0.142 1.042 1.129 1.046 0.916

100 10 0.1 0.128 0.115 0.83 0.775 1.28 0.768

100 20 0.1 0.165 0.131 0.749 0.818 1.305 1.105

100 5 0.3 0.167 0.193 0.615 0.744 0.935 0.739

100 10 0.3 0.196 0.197 0.749 0.742 0.751 0.744

100 20 0.3 0.163 0.174 0.826 0.827 0.932 0.851

200 5 0.1 0.219 0.166 0.764 1.06 1.593 1.474

200 10 0.1 0.169 0.226 0.895 0.838 1.179 1.033

200 20 0.1 0.165 0.166 1.015 1.136 0.807 0.948

200 5 0.3 0.368 0.289 0.962 1.086 1.039 0.986

200 10 0.3 0.289 0.238 1.054 1.106 0.967 1.019

200 20 0.3 0.215 0.235 1.084 1.059 1.141 1.125

C.3 Effect of Budget on Expected Revenue

In practicality, the seller must also decide on the advertising budget. Since the
return per budget investment can reduce with increasing budget, this subsection
examines the relationship between expected revenue and invested budget. The
experiment has 100 products and the budget is varied from 0 to 50 while the

36 C. Wang et al.

revenue and advertising effectiveness are kept constant. 100 preference weights
are sampled for each budget and response function. The results of the expected
revenue for each of these settings are displayed in Fig. 1.

The expected revenue is shown to increase with an increase in advertising
budget as illustrated by Fig. 1. For the first response function g1, when the
budget is adequate and P0 = 0.1, the difference in revenue between the different
cardinality constraints becomes small, as indicated by Fig. 1(a). Hence, when the
seller has an adequate budget, limiting their focus to a small group of products
does not result in a significant reduction in revenue. For the same response
function, the trend of increasing expected revenue remains consistent across
different values of P0, with lower values leading to higher expected revenue. For
the third response function, g3(x) = 2 − e−x, the increase in expected revenue
becomes insignificant when more than 20 units of the budget are allocated to
advertising.

Fig. 1. The relationship between budget and expected revenue for 100 products in
different settings

D Omitted Proofs

Proof of Lemma 1: Consider an arbitrary advertising strategy x that satisfies∑
i∈S∗ xi = B1 < B, define Δ = B − B1 and τ = arg maxi∈S∗ ri. To prove

this lemma, we can increase the expected revenue by allocating the remain-
ing budget Δ to the product τ . Let S∗ denote the optimal assortment, and x′

denote this new strategy. Because x′ and x only differs in entry τ , we rewrite

When Advertising Meets Assortment Planning 37

R(S∗,v,x′) as β+rτ vτ (g(cτ (xτ+Δ))−g(cτ xτ))
α+vτ (g(cτ (xτ+Δ))−g(cτ xτ))

and rewrite R(S∗,v,x) as β
α , where

β =
∑

i∈S∗ rivig(cixi) and α = 1 +
∑

i∈S∗ vig(cixi). Notice that

R(S∗,v,x′) − R(S∗,v,x) =
(rτα − β) · vτ (g(cτ (xτ + Δ)) − g(cτxτ))
α · (α + vτ (g(cτ (xτ + Δ)) − g(cτxτ)))

.

Because τ = arg maxi∈S∗ ri, we have rτ − ri ≥ 0,∀i ∈ S∗. Thus, rτ +∑
i∈S∗(rτ − ri)(vig(cixi)) > 0, which is equivalent to rτ (1 +

∑
i∈S∗ vig(cixi)) >∑

i∈S∗ rivig(cixi). Hence, rτα > β. Because g(·) is an increasing function, we
have g(cτ (Δ+xτ))−g(cτxτ) ≥ 0. Moreover, because both rτα−β and g(cτ (Δ+
xτ)) − g(cτxτ) are non-negative, we obtain that R(S∗,v,x′) ≥ R(S∗,v,x). �
Proof of Lemma 3: Proof: Because (S∗,x∗) is optimal solution, we have
R(S∗,v,x∗) ≥ R(Sv,v). According to Lemma 2, there exists an S∗ such that
S∗ = {i ∈ N|ri > R(S∗,v,x∗)}. The following chain proves this lemma:
S∗ = {i ∈ N|ri > R(S∗,v,x∗)} ⊆ {i ∈ N|ri > R(Sv,v)} = Sv. �
Proof of Lemma 4: Proof: Because g(·) is an increasing concave function, its
inverse function g−1(x) is a convex function. Moreover, because u

vi
is a linear

function, its composition with g−1(·) is also a convex function. Finally, because
U1 = {u|∑n

i=1 mi(ui) ≤ B}, which is the level set of
∑n

i=1 mi(ui), is a convex
set, its intersection with the convex set U2 = {u|ui ≥ vi, i = 1, . . . , n} is also a
convex set. �
Proof of Lemma 5: Proof: For a given assortment S, we can represent any
feasible advertising strategy y that satisfies

∑
i∈S yi = B as a convex combina-

tion of xi; that is, y =
∑

i∈S λixi, where λi = yi/B and
∑

i∈S λi = 1. Assume
k = argmaxj∈S L(S,xj). We have L(S,y) ≤ L(S,xk) based on the following
observation:

L(S,y) = L(S,
∑
i∈S

λixi) =
β + aB

∑
i∈S λirivici

α + aB
∑

i∈S λivici
,

where α = 1 +
∑

i∈S vi and β =
∑

i∈S rivi. By the definition of k, we have
L(S,xk) ≥ L(S,xj),∀j ∈ S. Moreover, L(S,xk) ≥ L(S,xj) is equivalent to

αckvkrk − βckvk ≥ αcjvjrj − βcjvj + aBckvk(rj − rk)cjvj , (D.1)

based on the following observation:

L(S,xk)− L(S,xj) =
β + aBrkckvk

α + aBckvk
− β + aBrjcjvj

α + aBcjvj

=
(β + aBrkckvk)(α + aBcjvj)− (β + aBrjcjvj)(α + aBckvk)

(α + aBckvk)(α + aBcjvj)

= aB · α(ckvkrk − cjvjrj) + β(cjvj − ckvk) + aBckvk(rk − rj)cjvj

(α + aBckvk)(α + aBcjvj)
.

By multiplying λj by both sides of (D.1) for all j ∈ S and summing up all
inequalities, we have

αckvkrk − βckvk ≥ α
∑
j∈S

λjcjvjrj − β
∑
j∈S

λjcjvj + aBckvk

∑
j∈S

λj(rj − rk)cjvj .

(D.2)

38 C. Wang et al.

Using a similar argument as the one used to prove the equivalence of
L(S,xk) ≥ L(S,xj) and (D.1), we show that (D.2) is equivalent to L(S,xk) ≥
L(S,

∑
i∈S λixi) = L(S,y). �

Proof of Lemma 6: Proof: Let Z = R(Sv,v) denote the expected revenue
of Sv when B = 0, we have

∑
i∈Sv

(ri − Z)vi = Z. If there exists a product
i ∈ Sv such that ri < Z, then removing this product from Sv would increase
the expected revenue, which contradicts the assumption that Sv is the optimal
assortment when B = 0. Thus, we have Sv ⊆ {1, . . . , T}, where T = max{i|i ∈
Sv}. Similarly, let Z∗ = R(S∗,v,x∗), we have S∗ ⊆ {1, . . . T ∗} where T ∗ =
maxi{i|ri ≥ Z∗}. Since Z∗ ≥ Z, we conclude that rT ∗ ≥ rT , otherwise we have
Z∗ ≤ rT ∗ < Z or Z ≤ rT ∗ < rT . Thus we have S∗ ⊆ {1, . . . T ∗} ⊆ {1, . . . , T}. �
Proof of LemmaA.2: Proof: When g(x) = ax+1 for some a ≥ 0, the objective
function of (A.4) can be written as

∑n
i=1 αi + a

∑n
i=1 αicixi. Allocating the

entire advertising budget to the product that has the largest αici maximizes∑n
i=1 αi + a

∑n
i=1 αicixi. �

Proof of LemmaA.3: Proof: Consider a fixed feasible assortment S. If f(x) =
log(ax+1) for some a ≥ 0, then the objective function R(S,p,x) can be written
as

∑
i∈S αi + a

∑
i∈S αicixi. It is easy to verify that the optimal advertising

strategy for S must come from {x0,x1, . . . ,xn}, where x0 is an all-zero vector.
Let S(x) be the optimal assortment under the advertising strategy x. Thus
S(x) contains the top K products that have the largest αi(acixi + 1). Because
acixi ≥ 0 for all i ∈ {1, . . . , n}, we have S(xi) = S(x0) = {1, . . . , K}, and
the expected revenue for S(xi) is W (

∑K
j=1 αj + aαiciB) for all i ∈ {1, ...,K}.

When j ∈ {K + 1, ..., n}, there are two possible cases: S(xj) \ S(x0) = {∅} or
S(xj) \ S(x0) = {j}.

Case 1 : When S(xj)\S(x0) = {∅} for all j ∈ {K + 1, . . . , n}, the opti-
mal assortment is {1, . . . ,K}. Because the expected revenue for S(xj) is
W (

∑K
j=1 αj) for all j ∈ {K + 1, . . . , n}, which is the same as S(x0), and

t1 = argmaxi∈{1,...,K} W (
∑K

j=1 αj + aαiciB), the optimal advertising strat-
egy is xt1 .

Case 2 : When S(xj)\S(x0) = {j} for some j ∈ {K + 1, ..., n}, the expected
revenue for S(xj) is W (

∑K−1
i=1 αi + αj(acjB + 1)). We denote this subset as

Sc. Because t2 = argmaxj∈Sc
W (

∑K−1
i=1 αi + αj(acjB + 1)), xt2 is the best

advertising strategy in {xK+1, . . . ,xn}. Moreover, because xt1 is the best
advertising strategy in {x0,x1, . . . ,xK}, the better strategy between xt1 and
xt2 must be the optimal advertising strategy. �

Proof of LemmaA.4: When ci = c for all i ∈ N , the objective function of
(A.5) can be simplified to h(x, S) =

∑
i∈S αig(cxi). To prove the first part of

this lemma, we show that for any optimal solution (S,x), we can construct a new
solution (S′,x′), where S′ = {1, . . . , K}, which is no worse than (S,x). Due to the
monotonicity of the objective function, |S| = K can be assumed. We construct
such x′ as follows: for each i ∈ {1, . . . , K}, let x′

i = xL(i), where L(i) represents
the product that has the i-th largest αi in S. Therefore h(x′, S′) − h(x, S) =

When Advertising Meets Assortment Planning 39

∑
i∈S′(αi − αL(i))g(cxi) ≥ 0; the inequality exists because S′ contains the top

K products that have the largest αi. Hence, (x′, S′) is no worse than (S,x).
We next prove that the optimal advertising strategy x∗ satisfies x∗

i ≥ x∗
j ∀i ≤

j through contradiction. Assume there exist two products i, j ∈ S∗ such that
x∗

i < x∗
j and i < j. We can construct a new advertising strategy x such that

xk = x∗
k for k /∈ {i, j}, and xi = x∗

j , xj = x∗
i . The following chain proves that

h(x, S∗) − h(x∗, S∗) = (αi − αj) · (g(cx∗
j) − g(cx∗

i)):

h(x, S∗) − h(x∗, S∗) = αig(cxi) + αjg(cxj) − αig(cx∗
i) − αjg(cx∗

j)

= αi(g(cx∗
j) − g(cx∗

i)) + αj(g(cx∗
i) − g(cx∗

j))

= (αi − αj) · (g(cx∗
j) − g(cx∗

i)).

Because αi ≥ αj and x∗
i < x∗

j , x is a better solution than x∗ which contradicts
to the assumption that x∗ is the optimal solution. �
Proof of LemmaB.2: Proof: For simplicity, let hk

i = ∂R(S∗,u∗)
∂u∗

i
be the partial

derivative for product i in assortment S∗
k , and denote Ak =

∑k
l=1 V (S∗

l) and
Bk = W (S∗

k)
V (S∗

k)
. We have

hk
i =

(ri − W (S∗
k)

1+Ak
)

(1 + Ak−1)(1 + Ak)
−

m∑
j=k+1

Bj ·
(

1
(1 + Aj−1)2

− 1
(1 + Aj)2

)
.

According to Lemma B.1, S∗
k = {i ∈ N|t∗k+1 ≤ ri < t∗k}. We first consider

the products in the same stage, that is i, j ∈ S∗
k , and i < j. hk

i ≥ hk
j because

ri ≥ rj . Then, we consider the cases i and j in two different stages. The difference
between hk

i and hk+1
j is

h
k
i − h

k+1
j =

(ri − W (S∗
k)

1+Ak
)

(1 + Ak−1)(1 + Ak)
− Bk+1 ·

(
1

(1 + Ak)2
− 1

(1 + Ak+1)2

)
−

(rj − W (S∗
k+1)

1+Ak+1
)

(1 + Ak)(1 + Ak+1)

≥
[

1

(1 + Ak−1)(1 + Ak)
− 1

(1 + Ak)(1 + Ak+1)

]
t
∗
k+1 − W (S∗

k)

(1 + Ak−1)(1 + Ak)2

− 2(1 + Ak) + V (S∗
k+1)

(1 + Ak)2(1 + Ak+1)2
· W (S

∗
k+1) +

W (S∗
k+1)

(1 + Ak)(1 + Ak+1)2

=
W (S∗

k)

(1 + Ak−1)(1 + Ak)2
+

W (S∗
k+1)

(1 + Ak)2(1 + Ak+1)
− W (S∗

k)

(1 + Ak−1)(1 + Ak)2

− 2(1 + Ak) + V (S∗
k+1)

(1 + Ak)2(1 + Ak+1)2
· W (S

∗
k+1) +

W (S∗
k+1)

(1 + Ak)(1 + Ak+1)2

=
2 + Ak + Ak+1 − 2(1 + Ak) + V (S∗

k+1)

(1 + Ak)2(1 + Ak+1)2
· W (S

∗
k+1)

= 0.

The first inequality uses the fact that ri ≥ t∗k+1 ≥ rj . Lastly, for the product

in the last assortment Sm, we have hm
i =

ri− W (S∗
m)

1+Am

(1+Am−1)(1+Am) . In this case, ri ≥
t∗m+1 = W (S∗

m)
1+Am

, which means hm
i ≥ 0. �

40 C. Wang et al.

Proof of LemmaB.3: Proof: Let Q(x) = R(S∗,x). Based on the analysis in
Lemma B.2, ∂Q(x)

∂xi
≥ ∂Q(x)

∂xj
≥ 0 for all i < j. For any x satisfying the budget

constraint, through the mean value theorem, we have

Q(x) − Q(x∗) = ∇Q(x + (1 − c)x∗)T · (x − x∗)

= Q(xc)T · (x − x∗)

=
n∑

i=2

∂Q(xc)
∂xi

xc
i +

∂Q(xc)
∂x1

(xc
1 − B)

≤ ∂Q(xc)
∂x1

n∑
i=2

xc
i +

∂Q(xc)
∂x1

(xc
1 − B)

=
∂Q(xc)

∂x1
(

n∑
i=1

xc
i − B)

≤ 0.

Here, c ∈ (0, 1), and we denote x + (1 − c)x∗ as xc. The first inequality exists
because ∂Q(xc)

∂xi
≤ ∂Q(xc)

∂x1
, and the last inequality is due to the budget constraint.

�
Proof of LemmaB.4: Proof: Let T ∗

k = ∪k
i=1S

∗
i . We have

R(S∗
, x

∗) =
m∑

k=1
·

W (T ∗
k , x∗) − W (T ∗

k−1, x∗)

(1 + V (T ∗
k−1, x∗))(1 + V (T ∗

k , x∗))

=
m−1∑

k=1

W
(
T ∗

k , x∗)

1 + V
(

T ∗
k , x∗)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

1 + V
(

T ∗
k−1, x∗) −

1

1 + V
(

T ∗
k+1, x∗)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+
W

(
T ∗

m, x∗)

(

1 + V
(

T ∗
m−1, x∗)) (

1 + V
(
T ∗

m, x∗))

≤ max
S,x

W (S, x)

1 + V (S, x)

⎡

⎢
⎢
⎢
⎣

m−1∑

k=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

1 + V
(

T ∗
k−1, x∗) −

1

1 + V
(

T ∗
k+1, x∗)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+
1

1 + V
(

T ∗
m−1, x∗)

⎤

⎥
⎥
⎥
⎦

= max
S,x

W (S, x)

1 + V (S, x)

⎡

⎢
⎢
⎣1 +

1

1 + V
(
T ∗
1 , x∗) −

1

1 + V
(
T ∗

m, x∗)

⎤

⎥
⎥
⎦

≤ 2max
S,x

W (S, x)

1 + V (S, x)

≤ 2R(Sh
, x

h).

The last inequality holds because our heuristic method starts with the optimal
solution of the single-stage problem and iteratively improves upon it. �

References

1. Aravindakshan, A., Peters, K., Naik, P.A.: Spatiotemporal allocation of advertising
budgets. J. Mark. Res. 49(1), 1–14 (2012)

2. Basu, A.K., Batra, R.: ADSPLIT: a multi-brand advertising budget allocation
model. J. Advert. 17(2), 44–51 (1988)

3. Beltran-Royo, C., Zhang, H., Blanco, L., Almagro, J.: Multistage multiproduct
advertising budgeting. Eur. J. Oper. Res. 225(1), 179–188 (2013)

4. Berbeglia, G., Flores, A., Gallego, G.: The refined assortment optimization prob-
lem. arXiv preprint arXiv:2102.03043 (2021)

http://arxiv.org/abs/2102.03043

When Advertising Meets Assortment Planning 41

5. Bertsekas, D.: Nonlinear Programming, vol. 4. Athena Scientific (2016)
6. Davis, J., Gallego, G., Topaloglu, H.: Assortment planning under the multinomial

logit model with totally unimodular constraint structures (2013, work in progress)
7. Davis, J.M., Gallego, G., Topaloglu, H.: Assortment optimization under variants

of the nested logit model. Oper. Res. 62(2), 250–273 (2014)
8. Dinkelbach, W.: On nonlinear fractional programming. Manage. Sci. 13(7), 492–

498 (1967)
9. Doyle, P., Saunders, J.: Multiproduct advertising budgeting. Mark. Sci. 9(2), 97–

113 (1990)
10. Dubé, J.P., Hitsch, G.J., Manchanda, P.: An empirical model of advertising dynam-

ics. Quant. Mark. Econ. 3(2), 107–144 (2005)
11. Fischer, M., Albers, S., Wagner, N., Frie, M.: Practice prize winner-dynamic mar-

keting budget allocation across countries, products, and marketing activities. Mark.
Sci. 30(4), 568–585 (2011)

12. Flores, A., Berbeglia, G., Van Hentenryck, P.: Assortment optimization under the
sequential multinomial logit model. Eur. J. Oper. Res. 273(3), 1052–1064 (2019)

13. Freimer, M., Horsky, D.: Periodic advertising pulsing in a competitive market.
Mark. Sci. 31(4), 637–648 (2012)

14. Freund, R.W., Jarre, F.: Solving the sum-of-ratios problem by an interior-point
method. J. Global Optim. 19(1), 83–102 (2001)

15. Gao, P., et al.: Assortment optimization and pricing under the multinomial logit
model with impatient customers: sequential recommendation and selection. Oper.
Res. 69(5), 1509–1532 (2021)

16. Hopp, W.J., Xu, X.: Product line selection and pricing with modularity in design.
Manuf. Serv. Oper. Manage. 7(3), 172–187 (2005)

17. Liu, N., Ma, Y., Topaloglu, H.: Assortment optimization under the multinomial
logit model with sequential offerings. INFORMS J. Comput. 32(3), 835–853 (2020)

18. Ma, W.: When is assortment optimization optimal? Manage. Sci. 69, 2088–2105
(2022)

19. Mahajan, V., Muller, E.: Advertising pulsing policies for generating awareness for
new products. Mark. Sci. 5(2), 89–106 (1986)

20. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: part i - convex underestimating problems. Math. Program. 10(1), 147–175
(1976)

21. Mesak, H.I.: An aggregate advertising pulsing model with wearout effects. Mark.
Sci. 11(3), 310–326 (1992)

22. Park, S., Hahn, M.: Pulsing in a discrete model of advertising competition. J. Mark.
Res. 28(4), 397–405 (1991)

23. Rusmevichientong, P., Shen, Z.J.M., Shmoys, D.B.: Dynamic assortment optimiza-
tion with a multinomial logit choice model and capacity constraint. Oper. Res.
58(6), 1666–1680 (2010)

24. Rusmevichientong, P., Topaloglu, H.: Robust assortment optimization in revenue
management under the multinomial logit choice model. Oper. Res. 60(4), 865–882
(2012)

25. Sriram, S., Kalwani, M.U.: Optimal advertising and promotion budgets in dynamic
markets with brand equity as a mediating variable. Manage. Sci. 53(1), 46–60
(2007)

42 C. Wang et al.

26. Talluri, K., Van Ryzin, G.: Revenue management under a general discrete choice
model of consumer behavior. Manage. Sci. 50(1), 15–33 (2004)

27. Wang, R.: Capacitated assortment and price optimization under the multinomial
logit model. Oper. Res. Lett. 40(6), 492–497 (2012)

28. Yang, C., Guo, L., Zhou, S.X.: Customer satisfaction, advertising competition, and
platform performance. Prod. Oper. Manag. 31(4), 1576–1594 (2022)

Twin-Treewidth: A Single-Exponential
Logic-Based Approach

Mauŕıcio Pires(B) , Uéverton S. Souza , and Bruno Lopes

Institute of Computing, Fluminense Federal University, Niterói, Brazil
mspires@id.uff.br, {ueverton,bruno}@ic.uff.br

Abstract. An equivalence class in a set is a subset of elements con-
sidered equivalent according to some criterion. This concept is applied
to different graph parameters, such as neighborhood diversity, twin-
cover, twin-width, and modular width. In this work, we introduce a new
parameter in graphs called twin-treewidth, which explores the equiva-
lence classes of twins. This parameter generalizes treewidth and neigh-
borhood diversity, two of the most studied parameters in parameterized
complexity. We demonstrate the usefulness of this parameter by propos-
ing a simple exponential-time generic procedure to solve problems that
can be expressed in a fragment of a variant of Second-Order Monadic
Logic.

Keywords: Parameterized complexity · Dynamic programming ·
Twin vertices · Treewidth · Model checking

1 Introduction

Parameterized algorithms are an effective alternative to deal with NP-hard prob-
lems. These algorithms aim to explore particular characteristics of the inputs to
obtain polynomial algorithms once the parameter value is fixed, i.e., algorithms
whose runtime is f(κ) · nc where n is the input instance size, c is a constant
independent of n and f(κ) is any computable function in the parameter. Prob-
lems that admit algorithms of this type are considered fixed-parameter tractable
(FPT). We will highlight treewidth and neighborhood diversity among all the
well-known parameters in the literature.

Many NP-hard graph problems are efficiently solvable when restricted to the
class of the trees. In that context, the graph parameter treewidth measures the
tree-likeliness of general graphs. The measure is obtained by decomposing the
input graph in non-disjointed subgraphs connected in a tree-like manner. This

This research has received funding from Rio de Janeiro Research Support Foundation
(FAPERJ) under grant agreements E-26/201.344/2021 and SEI-260003/001674/2021,
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES), National
Council for Scientific and Technological Development (CNPq) under grant agreement
309832/2020-9.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 43–55, 2024.
https://doi.org/10.1007/978-3-031-49614-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_3&domain=pdf
http://orcid.org/0000-0001-6599-9984
http://orcid.org/0000-0002-5320-9209
http://orcid.org/0000-0003-1204-0176
https://doi.org/10.1007/978-3-031-49614-1_3

44 M. Pires et al.

organization allows the development of dynamic programming algorithms [7],
which explore the subgraphs in a bottom-up computation in the tree structure.
The class of bounded treewidth graphs includes relevant graph families such
as cactus graphs, outerplanar graphs, series-parallel graphs, Halin graphs, and
Apollonian networks [4].

The neighborhood diversity introduced by Lampis [13] is an alternative to
strengthen the vertex cover of a graph as a parameter. Typically, dense graphs
(which have a quadratic number of edges concerning their number of vertices)
have an extensive vertex coverage, which makes it challenging to use them as a
parameter. On the other hand, some graph problems dispense with the exhaus-
tive computation in classes of vertices considered equivalent. In this way, by
limiting the possibilities of types of equivalence classes, Lampis reinforces the
idea of vertex coverage as a structural parameter.

The most prominent work on treewidth is Courcelle’s Theorem [6], which gen-
eralizes the work of Thatcher and Wright [15] about trees and Monadic Second-
Order Logic (MSO). In the context of graphs, consider the Monadic-Second
Order Logic with quantification over vertices and edges subsets (MSO2) as the
main logic framework to express graph problems. Courcelle’s work establishes
that given an MSO2 formula ϕ and an input graph G with bounded treewidth
exists a procedure that decides if the formula is satisfied in the graph in FPT-
time, i.e., in f(|ϕ|, twd(G))·O(n) time where |ϕ| is the formula’s size and twd(G)
is the treewidth of G. Its result has a subjacent procedure to compute the solu-
tion of the model-checking problem derived from the graph problem, turning it
into an algorithmic meta theorem [10–13]. This theorem is a relevant tool for
designing parameterized algorithms due to its dual nature. While providing an
efficient classification tool, they also provide a generic procedure to solve different
problems.

Although considered efficient in the parameterized complexity, FPT algo-
rithms may suffer performance losses due to the type of parameter function
obtained.The procedure underlyingCourcelle’s theorem implies a parameter func-
tion as an exponential tower. The height of this tower depends directly on the num-
ber of alternations of the quantifiers used in the formula that describes the prob-
lem. In this context, Lampis obtains an algorithm whose parameter function is an
exponential fixed-sized tower when considering neighborhood diversity. However,
Lampis’s result only concerns properties in graphs expressed in MSO1, the MSO
fragment that deals only with the quantification of vertices and vertex sets.

Since 1990, Courcelle’s ideas evolved into many works exploring differ-
ent logics and parameters searching for meta results. Exploring treewidth,
Pilipczuk [14] proposed a modal logic to deal with neighborhood property-based
problems, the Existential Counting Modal Logic (ECML). This work resulted in
a meta-theorem establishing a single-exponential FPT-tractability for ECML-
expressible problems concerning treewidth, even involving connectivity require-
ments. In 2019, Knop et al. [16] presented new meta-theorems about treewidth
but using extensions of Monadic Second-Order Logic (MSO) with global and
local cardinality constraints (CardMSO and MSO-LCC) and optimizing the

Twin-Treewidth: A Single-Exponential Logic-Based Approach 45

fair objective function (fairMSO). Besides treewidth, this last work also studied
neighborhood diversity.

When the input graph has large cliques, a challenge presents itself as the
size of the maximum clique is a lower bound on the treewidth of a graph. On
the other hand, neighborhood diversity equivalence classes can sometimes be
an alternative to deal with this problem. This work introduces the notion of
twin-treewidth, a new graph parameter extending treewidth and neighborhood
diversity. The idea behind this parameter is to reduce possible redundancies
in verifying solutions for problems in graphs with classes of true/false twins.
As we will see later, our parameter provides an algorithmic meta theorem for
some problems representable in a fragment of ECML. The procedure obtained
for verifying the desired property in the input graph preserves, with appropriate
differences, the simple exponential time achieved by Michal Pilipczuk in his work.

2 Preliminaries

In this work, we utilize the standard notations commonly used in the fields of
graph theory, parameterized complexity, and logic. For undefined notations, we
recommend the following references to the readers: Bondy et al. [5], Downey and
Fellows [8,9], and Cygan et al. [7], Van Dallen [17], and Biggs et al. [3].

Graph Theory and Parameterized Complexity. Let G = 〈V,E〉 be a graph.
Two vertices u and v are true twin if their closed neighborhoods are equal, i.e.,
N [u] = N [v]. The vertices will be false twins if the open neighborhoods are
equal., i.e., N(v) = N(u). As a consequence of the definition of twin, if a set
C ∈ V (G) is such that its vertices are pairwise true twins, then C is a clique.
However, if two by two vertices are false twins, then C is an independent set.

The treewidth is a parameter that quantifies the similarity between a graph
and a tree. This notion is one of the results of the work of Bertele and Brioschi [2].
They proposed to organize some subgraphs of the original graph in a tree man-
ner, obeying some restrictions, as we see in 1. Once we have an association
between tree nodes and subgraphs represented by its vertex subset, the width
of the tree decomposition, denoted by width(T), is the maximum cardinality of
these subsets, i.e., width(T) = max{|Bt| | t ∈ T}. Then, the treewidth of a graph
G, denoted by twd(G), is the minimum width among all the possible tree decom-
positions for this graph. Although the tree decomposition is not an invariant of
a graph, the treewidth is.

Definition 1 (Tree decomposition). Let G be a graph. A tree decomposition
of G is a pair T = 〈T, {Bt}∀t∈V (T)〉 where T is a tree and {Bt}t∈V (T) is the set
of bags of T . A bag Bt is a vertex subset of the graph G assigned to a tree node
t, i.e., ∀t ∈ V (T) : Bt ⊆ V (G). Every bag represents a subgraph of G, and the
assignment must hold the following properties:

1. Every vertice belongs to at least one bag, which implies
⋃

t∈V (T) Bt = V (G)
2. Every edge in graph G belongs to a bag, i.e., ∀uv ∈ E(G) such that u, v ∈

V (G), there’s a node t ∈ T such that {u, v} ⊆ Bt

46 M. Pires et al.

3. For every vertex v, the set of tree nodes whose bags contain v induce a subtree
of T , i.e., ∀v ∈ V (G), the set Tv = {t ∈ T |v ∈ Bt} induces a subtree

Usually, tree decompositions have no roots. Nevertheless, it could be conve-
nient to consider variations where we have rooted trees. One of these variations
is the extended nice tree decomposition [7]. Besides the traditional restrictions
of the tree decompositions, extended nice tree decompositions classify the tree
nodes. Then, every node in the tree could be one of the following types:

Leaf is a node t without children, and Bt = ∅.
Introduce vertex v node is a node t with child t′, such that Bt = Bt′ ∪ {v},

for some v ∈ V (G).
Introduce edge uv node is a node t with child t′ such that Bt = Bt′ , and the

edge uv appears only from t, given uv ∈ E(G).
Forget vertex v node is a node t with child t′, such that Bt = Bt′ − {v}.
Join node is a node t with children t′ and t′′, such that Bt = Bt′ = Bt′′ .

The idea of neighborhood diversity comes as a way to eliminate redundancies
on the entrance graph. Redundant vertices are said to belong to the same type,
formally described in Definition 2. Therefore, the premise of the parameter is to
group vertices that share a similar neighborhood, as shown in Definition 3. In
other words, the neighborhood diversity of a graph is the number of vertices that
this graph will have after the contraction of the vertices with the same type.

Definition 2 (Type). Let G be a graph. Two vertices u and v are of the same
type if N(u)\{v} = N(v)\{u}.

Definition 3 (Neighborhood diversity). Let G be a graph. The neighbor-
hood diversity of G is w, denoted by nd(G) = w, if G has an unique minimal
partition {V1, V2, · · · , Vw} of its vertices which every set Vi, 1 ≤ i ≤ w, is of ver-
tices of the same type. Moreover, the partition can be computed in linear time.

Existential Counting Modal Logic. Counting Modal Logic (CML) is a modal
logic tailored to deal with properties in the neighborhood of a vertex. In addition
to propositional operators (conjunction, disjunction, negation, implication) and
vertex and edge sets predicates, CML has modalities of the form ♦S , where
S is a finitely recognizable set. The meaning of formulas ♦Sϕ is “the number
of neighbors of a vertice v in which ϕ is satisfied belongs to S”. That is the
counting part of the logic. As a short syntax, we write �Sϕ to denote ¬♦S¬ϕ.
When S = N

+, one omits the set S and ♦ means “at least one neighbor” and �
means “all the neighbors.”

In [14], Pilipczuk introduces Existential Counting Modal Logic (ECML) for
graphs. First, consider the following elements of such a logic: an input graph G;
a vector X where each entry X[i] of X will be mapped to a vertex subset of
the input graph G; a vector Y where each entry Y [i] of Y will be mapped to
an edge subset of the input graph G; a vector FX where each entry represent a
set of highlighted vertices of G (such as terminal vertices of Steiner instances);

Twin-Treewidth: A Single-Exponential Logic-Based Approach 47

a vector FY where each entry represent a set of highlighted edges of G; and a
vector of non-negative integers k used in constraints on the cardinalities of sets
X and Y .

An Existential Counting Modal Logic formula has the following form:

ϕ = ∃X∃Y

[
φ ∧ ∀v (G,FX, FY ,X, Y , v) |= ψ

]

where φ is an arbitrary quantifier-free arithmetic formula over the parame-
ters, cardinalities of sets of vertices and edges of G and cardinalities of fixed and
quantified sets; and ψ is a CML formula evaluated on the graph G supplied with
all the fixed and quantified sets.

Informally, ECML formulas express “there are sets of vertices X1,X2, . . . ,
X|X| and sets of edges Y1, Y2, . . . , Y|Y | such that the sets satisfy the arithmetic
constraints on φ (such as Xi ≤ 5) and for every vertex v: given the problem
instance and fixed sets X1,X2, . . . , X|X|, Y1, Y2, . . . , Y|Y |, we have that the for-
mula ψ is satisfied in v.

Let us state some ECML-expressible problems. The vertex cover problem
consists of verifying if a set V of at most k vertices of a graph G exists such that
it covers all its edges, i.e., every edge of G has an endpoint in V . Since every
edge must have an endpoint in the cover, all its neighbors do if a vertex v is not
in V . Thus, vertex cover is an example of an ECML-expressible problem. We
represent it as

∃X⊆V (G)[|X| ≤ k ∧ ∀v(G,X, v |= ¬X ⇒ �X)]

A graph G is hamiltonian if a cycle containing all the vertices of G exists.
For this type of problem, connectivity requirements are crucial. Thus, one must
ensure that an edge set induces precisely one connected component and that all
vertices of G have only two edges that are incident to it. Let cc(X) and cc(Y)
be the number of connected components induced by the vertex set X, and the
edge set Y . The problem of determining if exists a Hamiltonian cycle in G is
denoted by

∃Y ⊆E(G)[|cc(Y)| = 1 ∧ |Y | = |V (G)| ∧ ∀v(G,Y, v |= ♦{2}Y]

Since tree decompositions explore neighborhoods to perform computations,
Pilipczuk proposes a dynamic programming approach to model check ECML-
expressible properties. His strategy involves storing information about vertex
and neighborhoods to ensure a formula is satisfied. Predicates in CML are tests
of membership for vertex and edge sets. Thus, dynamic programming bene-
fits the structure of extended nice tree decompositions, where vertex and edge
introduction is gradual. It permits updating information about a vertex once its
neighborhood is built. His algorithm runs over |J |2twd(G)O(n) where |J | is the
stored data’s size. More details about the syntax and the semantics of CML and
ECML could be consulted in the work of Pilipczuk [14].

48 M. Pires et al.

ECML1. The Existential Counting Modal Logic with quantification over vertex
sets (ECML1) stands for ECML dropped the edges predicates, and the high-
lighted edges sets. Therefore ECML1-expressible problems are those that are
expressed depending exclusively on vertex sets. For example, one can note ver-
tex cover, dominating set, Steiner tree, odd cycle transversal, and some of its
variants are ECML1 problems. However, problems like cycle cover, Hamiltonian
cycle, matching, longest path, max-cut, and spanning tree are not expressible in
this ECML fragment because they demand edge verification.

3 Twin-Treewidth

An equivalence relation is a relation that is transitive, reflexive, and symmetric.
Thus, the equality of open/closed neighborhoods, which defines the concept of
false/true twins, is a type of equivalence relation [13]. It is interesting to note that
this relation preserves an underlying structure in the graph. Vertices belonging
to the same class are neighbors of the same vertices that do not belong to its
class, i.e., if u, v ∈ S, such that S ⊆ V (G), then N(v)\S = N(u)\S. In doing
so, we prevent the original neighborhoods of the graph from being altered when
contracting the twin classes. Let G be an input graph. The twin class graph WG

is obtained by contracting the equivalence classes of false or true twins. In WG,
two vertices are adjacent if and only if the classes they denote are adjacent, i.e.,
all vertices in one class are adjacent to all vertices in the other. Refer to Fig. 1 for
an example of graph contraction into a twin-class graph. A graph has bounded
twin-treewidth, denoted by ttw, if and only if its twin-class graph has bounded
treewidth. Thus, we have ttw(G) = twd(WG).

v1

v2

v3 v4 v5

v6

v7

v8 v9 v10

v11 v12 v13

(a)

2 2
3

3

3

(b)

Fig. 1. Example of (a) a graph with a max-clique size of 8 and (b) its twin-class graph

Twin-Treewidth: A Single-Exponential Logic-Based Approach 49

Although twin-treewidth generalizes treewidth, there are limitations. The
first is the loss of the ability to handle problems involving edges and sets of
edges. Considering the combinatorial aspects between the elements of one twin
class and those of another, obtaining a result that would be simply exponential
in the parameter would be compromised. It is because we do not impose a prior
limit on the size of twin cliques or independent sets. While introducing such a
limitation might provide some control over the algorithm’s complexity, it would
lose the intended generality.

It is necessary to emphasize that the dynamic programming developed con-
siders the decomposition of the twin-class graph. Thus, each processed vertex
denotes a clique or an independent set. Therefore, we must consider all the
necessary information to validate that the formula representing the problem is
satisfied in every vertex of the original graph.

3.1 Evaluation Information Function

Pilipczuk’s work considered three types of information as crucial for verifying
the truth of the CML formula in a vertex of the graph: (1) The vertex’s member-
ship in highlighted and quantified sets; (2) The number of neighbors satisfying
formulas in the scope of a modality; (3) The satisfaction of subformulas headed
by a modality in teh current vertex. Remember that the modality denotes the
occurrence of some property in the neighbors of the current vertex. Given that
the only predicates in the logic are membership tests to sets, these three pieces
of data and a flag f indicating the type of twin class are sufficient to perform
the verification in a single vertex.

Although the size of twin classes is not limited a priori, the number of possible
memberships for each vertex in the class is. Consider a case where three sets are
quantified. There are eight possible membership configurations, ranging from not
belonging to any of the three sets to belonging to all three simultaneously. Thus,
for q quantified sets, there are 2q possible membership configurations. We will
refer to this component as grouping η, where each of the 2q entries represents a
membership configuration, and the value of that entry informs us of how many
vertices have that configuration.

Given that twin classes do not have a predefined size limit, we will restrict
the studied problems to those in which the expected number of behaviors is
limited for each class. Consider a vertex domination problem. When analyzing
this problem in a clique, we observe that the number of expected behaviors is
limited: either we dominate the clique by choosing one of its vertices, or the
clique is dominated by a vertex outside. An analogous behavior occurs in the
independent set case. Dominating an independent set is possible by selecting
either one set neighbor or all the set members.

The grouping allows for the verification of formulas at modal depth 0, i.e.,
outside the scope of a modality. In the case of formulas within the scope of a
modality, it will be necessary to analyze the neighborhood of each vertex in the
original graph. However, since all vertices in a class have the same neighborhood,
vertices belonging to the same sets and the same class will yield the same result

50 M. Pires et al.

regarding the validity of the property (formula) to be verified. Therefore, infor-
mation regarding the satisfiability of subformulas within the scope of a modality
must be computed for each possible configuration of pertinence.

Consider that the formula representing the problem has subformulas ϕi =
♦Siϕ′

i, 1 ≤ i ≤ l. For each component of the grouping, we create binary strings
of length l. These strings will encode the satisfaction of the subformulas ϕi.
This component, which we will call the evaluator μ, gathers 2q binary strings of
length l. The evaluator’s data is computed considering the data collected in the
third component of data: perception.

The perception is the component that keeps track of how many neighbors of
each vertex satisfy the subformulas ϕ′

i. This component consists of two parts.
The external perception α gathers the count of vertices outside the twin class
that satisfies the subformulas. From the perspective of the vertices within a class,
those outside the class always have the same configuration. On the other hand,
internally, this is not the case. Therefore, the internal perception β should be
divided into 2q entries, where each entry counts the number of neighbors within
the class that satisfy the subformulas ϕ′

i. Thus, the external perception has only
one entry of length l, while the internal perception has 2q entries of length l.
The values used in this counting depend on the finitely recognizable set Si that
indexes the modality of the subformula ϕi. In the case of the false twin class of
vertices, all the entries of the internal perception must be zero.

Thus, the information evaluation function regarding the twin-treewidth takes
the form ι : V (Gt) → {0, 1} × P l × (P l)2

q × ({0, 1}l)2
q × N 2q , where P and

N are monoids to which the finitely recognizable sets Si and the set of expected
behaviors for the given problem have been mapped, respectively.

3.2 Dynamic Programming

The following dynamic programming algorithm assists in verifying the existence
of a solution for the problem in the input graph. This algorithm considers two
important elements. The first one is a vector τ of non-negative integers of size q.
Each entry in this vector is associated with the cardinality of one of the q sets
quantified by the formula. Thus, when filling the dynamic programming table,
we must consider the cardinality constraints imposed by the problem. Cells in
which at least one of the entries in τ does not satisfy the cardinality constraints
should be filled with false. The second element is the information evaluation
function ι. Like any dynamic programming algorithm based on treewidth, the
filling of a cell in the table depends on the type of node associated with the cell.

Leaf Node. Since leaves in the extended nice tree decompositions have no asso-
ciated information, the sets of the partial solution and the evaluation information
function are empty. That is the only valid combination of entries of A when node
t is a leaf, which implies the relation defined in Eq. 1. All operations performed
at node type leaf are constant time. The processing of leaf nodes consumes time
|ι|ttw(G)nq.

Twin-Treewidth: A Single-Exponential Logic-Based Approach 51

Ax(τ , ι) =
{

true iff τ = 0 ∧ ι = ∅
false otherwise (1)

Introducing Vertex Node. The vertex introduction nodes represent the inser-
tion of a true twin clique of a false twin independent set in constructing the
solution. The class is inserted in isolation. Therefore, the external perception
should indicate that no external neighbors satisfy the subformulas. On the other
hand, the internal perceptions should be filled according to the grouping and the
type of the flag f . If f = 0, then we are inserting a class of false twins. Other-
wise, the inserted class is of true twin. Additionally, the entries of the evaluator
should be consistent with the information present in the internal perception, as
the information in the evaluator depends on the addition of the external percep-
tion to each entry of the internal perception. If the inserted vertex denotes an
independent set, besides the external perception, the internal perceptions must
also be empty. Equation 2 gives us the recurrence relation for a node x when x
is a node introducing the vertex v.

Ax(τ , ι) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

false if card(τ)

false if
2q∑

i=1

ηv,i �= |C|

false if ∃i ∈ {1, 2, · · · , q} : τ i < set(ηv)i

false if αv �= eH
false if ¬ check(v)
false if v �∈ ι
false if βv �= eH ∧ f = 0
Ay(τ − set(ηv), ι\{v}) otherwise

(2)

The conditions presented in Eq. 2 show types of entries of A(τ , ι) that are
not valid. The function card(τ) checks if the cardinalities of the sets satisfy
the restrictions expressed by the subformulas involving the relational operators.
This function takes constant time since the formula is fixed. The second condition
checks the consistency of the grouping. The function set(ηv) returns the values
added to the cardinalities of each set when v is included in the partial solution.
Each coordinate of the grouping denotes a subset of quantified sets that will
receive some vertices from the class. Since we defined the structure of grouping,
this function takes constant time. The third condition ensures that the difference
between the cardinalities of the set and the contribution of including the class
C, encoded in vertex v, in the partial solution is greater than or equal to zero.
The fourth condition guarantees that the external perception is empty since
the class C is currently isolated. The function check(v) verifies the consistency
between the internal perception, evaluator, and grouping. This verification also
takes constant time. Therefore, the processing of introducing a vertex in the
partial solution takes time |ι|ttw(G)nq.

52 M. Pires et al.

Introducing Edge Node. The introduction of an edge in the twin-class graph
defines a neighborhood between the vertices of one class and those of another.
Thus, this type of node denotes the change in the external perception of the
classes (vertices) that are becoming adjacent. Note that changes in the external
perception impact the information the evaluator presents. Equation 3 gives the
recurrence relation for x when introducing edge uv.

Ax(τ , ι) =

⎧
⎪⎪⎨

⎪⎪⎩

false if card(τ)
false if v �∈ ι ∨ u �∈ ι∨

δ∈Δ

Ay(τ , δ) otherwise
(3)

The set Δ denotes the set of configurations of ι such that if in a node x
we have ι(v) = (αv, βv, μv, ηv) and ι(u) = (αu, βu, μu, ηu), then in its child y we
must have δ(v) = (αv −satn(u), βv, μ′

v, ηv) and δ(u) = (αu −satn(v), βu, μ′
u, ηu).

The function satn(u) returns a vector with the numbers of vertices in the class
denoted by u that satisfy all subformulas ϕ′

i, 1 ≤ i ≤ l. The components μ′
u

and μ′
v denote consistent configurations of the evaluators given the new config-

urations of the external perception of u and v. This consistency check requires
constant time, as the formula is fixed. The processing of edge introduction nodes
consumes time |ι|ttw(G)nq.

Forgetting Vertex Node. In the context of a tree decomposition, forgetting
a vertex means that its processing has been completed. All neighbors of this
vertex have appeared in the partial solution, and all necessary information is
available. It implies the completion of verifying the desired property for this
vertex. Since the property must be satisfied in all vertices, we need to check
the configurations of A that imply the satisfaction of the property. Equation 4
provides the recurrence relation for the case when x is a forget node.

Ax(τ , ι) =

⎧
⎨

⎩

false if card(τ)∨

(α,β,μ,η)∈D
Ay(τ , ι ∪ {(v, (α, β, μ, η))}) otherwise (4)

The set D is the set of valid configurations for ι, i.e., those configurations
for which the evaluator and grouping imply the satisfaction of the property for
every group (type of vertex membership in the grouping). Determining whether
a configuration of A(τ , ι) is valid or not takes constant time since the desired
property only involves membership tests for the current vertex (grouping) and
its neighbors (external and internal perception). Thus, processing forget nodes
takes time |ι|ttw(G)nq.

Remember that the root of the tree decomposition has an empty bag. There-
fore, the roots are always forget nodes. In particular, the result of formula sat-
isfiability for the entire graph is obtained at the root.

Twin-Treewidth: A Single-Exponential Logic-Based Approach 53

Join Node. Joining two different branches of the tree decomposition means
composing information computed in two separate fragments of the neighbor-
hood of the vertices in the node’s bag. To count the number of solutions in join
nodes, it’s necessary to combinate all possible configurations which lead to a
solution. The merge of partial solutions of different branches implies updating
the quantified sets’ cardinalities and external perception and evaluator of the
vertices in the bag. Equation 5 gives the recurrence relation for a join node x
with children y and z.

Ax(τ , ι) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

false if card(τ)

false if ∃v ∈ Xx :
2q∑

i=1

ηv,i �= |Cv|
∨

τ ′+τ ′′=τ+γ(Bx)

∨

ι′+ι′′=ι

Ay(τ ′, ι′)Az(τ ′′, ι′′) otherwise

(5)

The factor γ(Bx) deals with the redundancy of the operation τ ′ + τ ′′, which
is related to the cardinality of the bag Bx. The expression ι′ + ι′′ = ι implies the
combination of the stored information for each vertex in Bx. Since the grouping
and internal perception must be the same in x and its children y and z, the
external perceptions are added, eliminating some redundancy, and the evaluator
for each group must be consistent with the values of its perceptions. All these
operations take constant time. Due to the combinatorial nature of composing
solutions, the recurrence relation for join nodes takes time |ι|2ttw(G)nq.

Tree decompositions have O(n) nodes [1]. Thus, the final complexity depends
on the computation that demands more operations. Join nodes are expensive
because of the combinatorics performed in the node children. So, our dynamic
programming performs in time (2l2q |P||N |2q+1)ttw(G)O(n). Since the formula is
fixed, l, q, |P| and |N | are constants, implying our algorithm is single-exponential
in the parameter ttw(G). We remark that the key property to preserve the single-
exponential dependence on the parameter is that since the ECML1 has constant
size, the equivalence classes will be mapped to monoids having constant size.

Therefore, the following theorem holds.

Theorem 1. Given a graph G and an ECML1 formula φ, one can decide if G
satisfy φ in 2O(ttw) · nO(1) time, where ttw is the twin-treewidth of G.

4 Final Remarks

With twin-treewidth, we gain a stronger parameter than treewidth and neighbor-
hood diversity, which is FPT-computable. We provide a well-known strategy for
implementing algorithms through dynamic programming with simple exponen-
tial time in the parameter. On the other hand, we lose the ability to guarantee,
using our framework, the parameterized tractability for problems that involve
edge verification, such as graph coloring, Hamiltonian cycle, cycle cover, and

54 M. Pires et al.

MaxCut. However, this study points to a promising result as it surpasses the
class of graphs with bounded treewidth using a strategy based on elements of
simple computation. Furthermore, it is important to highlight that, although
we found our strategy on the results obtained by Pilipczuk [14], we still need
to study how to address the connectivity requirements present in the ECML1

fragment. Since the foundations of our strategy are the equivalence classes and
the dynamic programming provided is independent of the applied equivalence
relation, it is natural to ask what results can be obtained by replacing the equiv-
alence relation for false/true twins for a more general equivalence relation.

References

1. Althaus, E., Ziegler, S.: Optimal tree decompositions revisited: a simpler linear-
time FPT algorithm. In: Gentile, C., Stecca, G., Ventura, P. (eds.) Graphs and
Combinatorial Optimization: from Theory to Applications. ASS, vol. 5, pp. 67–78.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63072-0 6

2. Bertele, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theor.
Ser. A 14(2), 137–148 (1973)

3. Biggs, N.L., et al.: Discrete Mathematics. Oxford University Press (2002)
4. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-

oret. Comput. Sci. 209(1–2), 1–45 (1998)
5. Bondy, J.A., Murty, U.S.R., et al.: Graph Theory with Applications, vol. 290.

Macmillan, London (1976)
6. Courcelle, B.: The monadic second-order logic of graphs iii: tree-decompositions,

minors and complexity issues. RAIRO-Theoret. Inf. Appl. 26(3), 257–286 (1992)
7. Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Cham (2015).

https://doi.org/10.1007/978-3-319-21275-3
8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4.

Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1
9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg

(2012)
10. Fomin, F.V., Golovach, P.A., Stamoulis, G., Thilikos, D.M.: An algorith-

mic meta-theorem for graph modification to planarity and fol. arXiv preprint
arXiv:2106.03425 (2021)

11. Grohe, M., Kreutzer, S.: Methods for algorithmic meta theorems. Model Theoret.
Meth. Finite Comb. 558, 181–206 (2011)

12. Kreutzer, S.: Algorithmic meta-theorems. In: Grohe, M., Niedermeier, R. (eds.)
IWPEC 2008. LNCS, vol. 5018, pp. 10–12. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79723-4 3

13. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1), 19–37 (2012)

14. Pilipczuk, M.: Problems parameterized by treewidth tractable in single exponential
time: a logical approach. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS,
vol. 6907, pp. 520–531. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22993-0 47

15. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an appli-
cation to a decision problem of second-order logic. Math. Syst. Theor. 2(1), 57–81
(1968)

https://doi.org/10.1007/978-3-030-63072-0_6
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/2106.03425
https://doi.org/10.1007/978-3-540-79723-4_3
https://doi.org/10.1007/978-3-540-79723-4_3
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1007/978-3-642-22993-0_47

Twin-Treewidth: A Single-Exponential Logic-Based Approach 55

16. Knop, D., Koutecký, M., Masař́ık, T., Toufar, T.: Simplified algorithmic metathe-
orems beyond MSO: treewidth and neighborhood diversity. In: Bodlaender, H.L.,
Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 344–357. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68705-6 26

17. Van Dalen, D.: Logic and Structure, vol. 3. Springer, Heidelberg (1994). https://
doi.org/10.1007/978-3-662-02962-6

https://doi.org/10.1007/978-3-319-68705-6_26
https://doi.org/10.1007/978-3-662-02962-6
https://doi.org/10.1007/978-3-662-02962-6

Highway Preferential Attachment Models
for Geographic Routing

Ofek Gila(B) , Evrim Ozel , and Michael Goodrich

University of California, Irvine, CA 92617, USA
{ogila,eozel,goodrich}@uci.edu

Abstract. In the 1960 s, the world-renowned social psychologist Stanley
Milgram conducted experiments that showed that not only do there exist
“short chains” of acquaintances between any two arbitrary people, but
that these arbitrary strangers are able to find these short chains. This
phenomenon, known as the small-world phenomenon, is explained in part
by any model that has a low diameter, such as the Barabási and Albert’s
preferential attachment model, but these models do not display the same
efficient routing that Milgram’s experiments showed. In the year 2000,
Kleinberg proposed a model with an efficient O(log2 n) greedy routing
algorithm. In 2004, Martel and Nguyen showed that Kleinberg’s analysis
was tight, while also showing that Kleinberg’s model had an expected
diameter of only Θ(log n)—a much smaller value than the greedy routing
algorithm’s path lengths. In 2022, Goodrich and Ozel proposed the neigh-
borhood preferential attachment model (NPA), combining elements from
Barabási and Albert’s model with Kleinberg’s model, and experimentally
showed that the resulting model outperformed Kleinberg’s greedy rout-
ing performance on U.S. road networks. While they displayed impressive
empirical results, they did not provide any theoretical analysis of their
model. In this paper, we first provide a theoretical analysis of a gen-
eralization of Kleinberg’s original model and show that it can achieve
expected O(log n) routing, a much better result than Kleinberg’s model.
We then propose a new model, windowed NPA, that is similar to the
neighborhood preferential attachment model but has provable theoretical
guarantees w.h.p. We show that this model is able to achieve O(log1+ε n)
greedy routing for any ε > 0.

Keywords: small worlds · social networks · random graphs

1 Introduction

Stanley Milgram, a social psychologist, popularized the concept of the small-
world phenomenon through two groundbreaking experiments in the 1960 s
[13,16]. In these experiments, Milgram determined that the median number of
hops from a random volunteer in Nebraska and Boston to a stockbroker in Boston
was six, thereby giving rise to the expression “six degrees of separation”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 56–80, 2024.
https://doi.org/10.1007/978-3-031-49614-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_4&domain=pdf
http://orcid.org/0009-0005-5931-771X
http://orcid.org/0000-0002-3260-2247
http://orcid.org/0000-0002-8943-191X
https://doi.org/10.1007/978-3-031-49614-1_4

Highway Preferential Attachment Models for Geographic Routing 57

A common and well-studied method for modeling real-world social networks
is the preferential attachment model, popularized by Barabási and Albert in
1999 [1]. In this model, nodes are added to the graph one at a time, and each
node is connected to m other nodes with probability proportional to their degree.
Put simply, in this model, nodes with a greater degree are more likely to obtain
an even greater degree, in what is commonly referred to as a “rich-get-richer”
process. Such a process leads to power law degree distributions, meaning that the
number of nodes with degree k is proportional to k−α for some constant α > 1.
In 2009, Dommers, Hofstad, and Hooghiemstra showed that the diameter of the
preferential attachment model is Ω(log n) when the power law exponent α > 3,
and Ω(log log n) when α ∈ (2, 3) [6]. While such preferential attachment models
indeed display small diameters, therefore explaining how these short paths exist,
they do not explain how these paths are found. In other words, individual nodes
in these models, using only local information, cannot find short paths to other
nodes, unlike in Milgram’s experiments.

In 2003 Dodds, Muhamad, and Watts conducted an experiment similar to
Milgram’s using email, with more than 60,000 volunteers and 18 targets in 13
countries. This experiment determined that the average number of hops was
around five if the target was in the same country and seven if the target was in a
different country, largely in line with Milgram’s results. Interestingly, this exper-
iment asked participants the reasons for picking their next particular acquain-
tance, finding that, especially during the early stages of routing, geographical
proximity was the dominant factor [5]. This result suggests that realistic models
aiming to explain the small-world phenomenon should incorporate geographical
information.

1.1 Kleinberg’s Model

In 2000, Jon Kleinberg proposed a famous model that, while not incorporating
true geographical information, does consider a notion of geographic distance by
placing nodes on an n×n grid. Kleinberg’s model connects nodes using two types
of connections—local connections, in which nodes are connected to all neigh-
bors within a fixed lattice distance, and long-range connections, in which
nodes are connected to random nodes in the graph. Importantly, these long-
range connections are chosen with distance in mind, namely that closer nodes
are picked more often as long-range connections than farther nodes. Specifi-
cally, each node u picks long-range connection v with probability proportional
to d(u, v)−s, where d(u, v) is the lattice distance between u and v and s is the
clustering exponent. This model mimics how individuals in a social network are
more likely to know people who are geographically closer to them, but also have
a small probability of knowing people who are farther away. Kleinberg showed
that, for s = 2, a greedy routing algorithm can find paths of length O(log2 n)
with high probability (w.h.p.), and that this is optimal for any s1 [9]. In 2004,
Martel and Nguyen proved tight bounds of expected Θ(log2 n) hops for greedy

1 for 2-d grids.

58 O. Gila et al.

routing, and of expected diameter of Θ(log n)—highlighting the large discrep-
ancy between the two [12]. We are not aware of any other work that achieves
an asymptotically better expected number of greedy routing hops using a con-
stant average node degree and using only a constant average amount of local
information per node.

1.2 The Neighborhood Preferential Attachment Model

In 2022, Goodrich and Ozel proposed a new model that combines the preferential
attachment model with Kleinberg’s model, which they call the neighborhood
preferential attachment model [8]. In this model, as in the Barabási-Albert
model, nodes are added to the graph one at a time, but instead of connecting
to nodes solely based on their degree as in the preferential attachment models,
they also take into account the distance between the nodes, as in Kleinberg’s
model. Specifically, each node u picks a node v with probability proportional
to deg(v)/d(u, v)s, where deg(v) is the current degree of vertex v. Furthermore,
Goodrich and Ozel expanded all three models (Barabási-Albert, Kleinberg, and
their own) to work with underlying distances defined by a road network rather
than a grid. In their work, they conducted rigorous experiments on U.S.A. road
networks and showed that their model is able to outperform both the constituent
models in terms of average greedy routing hops between randomly chosen pairs
of nodes. In their paper, they describe how road networks serve as good proxies
for social networks since the density of road infrastructure is correlated with
population density. Their model was, at the time, the only randomized model to
not only capture a proxy for the position of nodes in a social network, but also the
power law distribution of node degrees that is widely common social networks.
These two facts allowed this model to be the first randomized model able to
reproduce results from Stanley Milgram’s original small-worlds social experiment
using a small average degree (only of around 30). However, importantly, they
did not prove any theoretical bounds on their model. Our paper can be seen as
a theoretical complement to their work, as we prove high probability bounds on
the average greedy routing path length of a grid version of a very similar model,
showing that it is far better than the Θ(log2 n) bound of Kleinberg’s model.

1.3 Our Results

As stated before, our main goal for this paper was to provide theoretical results
for the work of Goodrich and Ozel, or more generally, for preferential attachment
variations of Kleinberg’s model. In this paper, we propose three new models,
each combining aspects of both Kleinberg’s model and the preferential attach-
ment model. We prove that, for grid networks, each of our networks are able
to asymptotically outperform Kleinberg’s original model in terms of average
greedy routing path length, while using only a constant average amount of local
information per node and while maintaining an expected constant average node
degree.

Highway Preferential Attachment Models for Geographic Routing 59

We note that greedy routing can be improved by relaxing either of these two
constraints. For example, if we allow nodes in the Kleinberg model to have access
to more local information, we can improve greedy routing to O(log3/2 n). Simi-
larly, if we allow nodes to have a higher, O(log n), average degree, then we can
improve greedy routing to O(log n) hops [12]. The latter of these two relaxations
reveals that greedy routing can be greatly improved by getting to—and staying
on—high degree nodes. With this in mind, we consider a node highway—a set
of interconnected nodes that each have higher than average degrees. Our first
two models introduce a parameter k that controls both the size of the highway
and the degree of nodes on the highway. Specifically, the degree of nodes on
the highway is proportional to k while the number of nodes on the highway is
inversely proportional to k, such that the average degree of the entire graph is
constant.

Our first model, the Kleinberg highway model (KH), works by embedding
a Kleinberg grid within an n × n grid, such that there are n2/k nodes on the
highway. Each of the nodes on the highway grid only chooses long-range con-
nections to other nodes on the highway grid, while local connections are still
made to all neighbors within a fixed lattice distance as in the original Kleinberg
model. Our second model, the randomized highway model (RH), is similar
to the first, but instead of embedding a perfect Kleinberg grid inside the orig-
inal graph, nodes are chosen uniformly at random to be on the highway grid.
More specifically, each node has probability 1/k to become a highway node, lead-
ing to an expected Θ(n2/k) highway nodes w.h.p. Both of these generalizations
reduce to the original Kleinberg model when k = 1, that is when every node
is a highway node, and adds a constant number of long-range connections per
node. Importantly, both models reach a global minimum of O(log n) hops when
k = Θ(log n), a much better result than Kleinberg’s (see Fig. 1).

1 logn log2 n n n2

logn

log2 n

n

k

E
xp

ec
te
d
gr
ee
dy

ro
ut
in
g
pa

th
le
ng

th

Kleinberg Highway

Randomized Highway

Original Kleinberg (k = 1)

Optimal Parameter (k = log n)

Fig. 1. The average greedy routing path length of the Kleinberg highway model for
different values of parameter k.

60 O. Gila et al.

Our final model is the windowed neighborhood preferential attachment
model (windowed NPA), which like Goodrich and Ozel’s neighborhood prefer-
ential attachment model (NPA), is based on both Kleinberg’s model and the
preferential attachment model. There are two main differences between the mod-
els. First, in the NPA model, the power law degree distribution naturally arises
from the rich-get-richer selection property when adding new edges. In contrast,
in our model, the power law degree distribution is strictly enforced, with each
node picking a popularity k with probability ∝ k−α. Each node node then adds
a number of long-range connections proportional to its popularity. In order to
maintain a constant average degree, the power law exponent α must be greater
than 2, so α ≥ 2 + ε for any ε > 0. The second main difference is that instead of
there existing a probability of any two nodes being connected, in the windowed
NPA model, nodes are only connected to other nodes within a constant factor of
their popularity. The idea being that a residential street is more likely to connect
to an alley, another residential street, or an arterial road, than it is to connect
directly to a highway. This constant factor is controlled by a parameter A, and
any node u with popularity ku can only have long-range connections to nodes
with popularity kv such that kv ∈ [ku/A, ku ·A]. We prove that for any arbitrar-
ily small ε > 0, the average greedy routing path length of the windowed NPA
model is O(log1+ε n) w.h.p.2 While this result only holds for grid networks, we
provide experimental results of our new model on both grid and road networks,
showing that the windowed NPA model is able to outperform Kleinberg’s model
on both types of networks.

2 Preliminaries

As stated before, for the theoretical analysis, we will be using an n × n grid,
such that the total number of nodes |V | = n2. For simplicity, we will assume
that our grid has wrap-around edges, as is common when analyzing grid networks
[12], although our results can be extended to non-wrap-around grids. Let d(u, v)
be defined as the lattice distance between two nodes u and v in the grid, i.e.
d(u, v) = min(δx, n − δx) + min(δy, n − δy), where δx and δy are the absolute
differences in the x and y coordinates of u and v, respectively. Let Bd(u) denote
the set of nodes within lattice distance d from u. All three models have the
notion of local connections and long-range connections. Without loss of
generality, we will only consider the case where we only add immediately adjacent
local connections, that is, each node is only connected to the four nodes directly
above, below, to the left, and to the right of it. Equivalently, we can say that
each node is connected to all other nodes in B1(u), as in the case when p = 1
in Kleinberg’s original model. In this paper, when we refer to a node’s degree
deg(u), we will be referring to the number of outgoing long-range connections
from u.

2 We proved this for a slightly modified greedy routing algorithm.

Highway Preferential Attachment Models for Geographic Routing 61

3 Kleinberg Highway

As stated before, Kleinberg’s model is defined on a graph G comprising of an
n × n grid where each node u adds local connections to all nodes in BP (u)
(all nodes within lattice distance P of u), and Q long-range connections to
other nodes. The probability of adding a long-range connection to node v is
proportional to d(u, v)−r. In our model, we will set P to 1 w.l.g., and we will set
r = 2, as this is the value that Kleinberg showed was optimal for 2-dimensional
grids, and Goodrich and Ozel hypothesized could be optimal for road networks
[8,9]. Furthermore, in our model, we will define a subgraph GH , known as the
highway , which for this model is an nH × nH evenly spaced grid in G. We
introduce a new parameter k in the range of 1 ≤ k ≤ n2, where 1/k of the nodes
are designated as highway nodes, meaning that nH is equal to n/

√
k (which for

simplicity we assume is a whole number). Now, we introduce two forms of local
connections, the first connects all nodes in the entire graph G to their neighbors,
and the second connects all nodes in the highway subgraph GH to their highway
neighbors. Finally, and importantly, only highway nodes are able to add long-
range connections, and these long-range connections are directed edges added
only to other highway nodes (see Fig. 2). Since there are fewer highway nodes, we
are able to add proportionally more long-range connections per node to maintain
the same constant average degree Q. In particular, each highway node is able to
add Q × k long-range connections, where Q, as in the original Kleinberg model,
represents the average highway degree. Put simply, GH is a Kleinberg graph with
Kleinberg parameters: n = nH = n/

√
k, p = 1, q = Q × k, r = 2. We call the

entire graph G the Kleinberg highway model.

Fig. 2. An example of the Kleinberg highway model with n = 9, k = 9, and Q = 1/9.
The solid black and curved solid blue lines represent local connections for the entire
grid and for the highway grid, respectively. The value of Q was picked such that each
highway node has only one long-range connection (represented by the dashed light
green directed lines) to make the graph less cluttered. If Q were 1, each highway node
would have 9 long-range connections.

62 O. Gila et al.

3.1 Results

Our results depend on whether or not the structure of the highway is known to
the vertices. Due to the structured nature of the highway, we will assume that
its layout is known to all vertices (a constant amount of information), such that
nodes know the location of the closest highway node to them. We will include
both results for completeness, and both have the same optimum value and result,
but our standard definition of our model will include this natural assumption.

We split our decentralized algorithm to route from s to t into three steps:

1. We use local connections in G to route from s to the closest highway node.
2. We traverse the highway (GH) using standard Kleinberg routing towards t.
3. Finally, we use the local connections in G to route to t.

A straightforward proof, included for completeness in Sect. 7.2, produces the
following result:

Theorem 1. The expected decentralized routing time in a Kleinberg highway
network is O(

√
k + log2(n)/k + log n) for 1 ≤ k ≤ n2 when each node knows the

positioning of the highway grid, and O(k + log2(n)/k) otherwise.

Reassuringly, both results are consistent with the original Kleinberg model
when k is constant, with the expected routing time being O(log2 n). Our key
observation, however, is that the expected routing time reaches a global min-
imum when Θ(log n) ≤ k ≤ Θ(log2 n) when the positioning of the highway is
known, or just when k ∈ Θ(log n) in general, in which case the expected routing
time becomes O(log n), as shown visually in Fig. 1. This is a major improvement
over the original Kleinberg model.

4 Randomized Highway

The key difference between this model and the Kleinberg highway model is
that in this model highway nodes are distributed randomly through the entire
graph G instead of the unrealistic expectation that they are distributed perfectly
uniformly. As in the previous model, nodes are laid out in an n×n grid with wrap-
around, where each node is connected to its 4 directly adjacent neighbors. Each
node independently becomes a highway node with probability 1/k for 1 ≤ k ≤
n2/ log n such that there are an expected Θ(n2/k) highway nodes total w.h.p.,
and each highway node adds Q × k long-distance connections to other highway
nodes such there is an expected average of Q long-distance connections per
node w.h.p.3. As before, each highway node only considers other highway nodes
as candidates for long-distance connections, and the probability that highway
node u picks highway node v as a long-distance connection is proportional to
d(u, v)−2. An important difference, however, is that there is no clear notion of
local connections between highway nodes in this graph, which will affect the
decentralized greedy routing results. See Fig. 3.
3 This holds for k ∈ o(n2/ log n) when k ∈ Θ(n2/ log n), the density is at most αQ

w.h.p. for a large enough constant α.

Highway Preferential Attachment Models for Geographic Routing 63

Fig. 3. An example of the randomized highway model with n = 9, k = 9, and Q = 1/9.
The solid black and curved solid blue lines represent local connections for the entire
grid. In this model, there are no local connections for the highway subgraph. The
value of Q was picked such that each highway node has only one long-range connection
(represented by the dashed light green directed lines) to make the graph less cluttered.
If Q were 1, each highway node would have 9 long-range connections.

4.1 Results

As before, we split our decentralized routing algorithm into three steps: reaching
a highway node from s, traversing the highway, and reaching t from the highway.
While traversing the highway, we will only take local connections that improve
our distance to t by at least 4

√
k, for reasons that will be clear from the proof

of Lemma 3. We will show that the expected time to reach a highway node from
s is O(k + log n) w.h.p., the expected time to traverse the highway is O(log2 n)
w.h.p. for k ∈ o(log n) or O(log n) w.h.p. for k ∈ Ω(log n), and the expected
time to reach t from the highway is O(k + log n) w.h.p. From these results, we
will obtain:

Theorem 2. For k ∈ o
(

log n
log log log n

)
, the expected decentralized greedy routing

path length is O(log2 n) w.h.p., while for Θ
(

log n
log log log n

)
≤ k < Θ(log n),

the expected decentralized greedy routing path length is O(log2(n)/k) w.h.p., and
finally for Θ(log n) ≤ k ≤ Θ(n), the expected decentralized greedy routing path
length is O(k). Finally, for k ∈ Ω(n), the expected decentralized greedy routing
path length is O(n).

Note that importantly, the results of Theorem 2 are worse than the results
of Theorem 1 for values of k between Θ(1) to o

(
log n

log log log n

)
, and for values of k

greater than Θ(n). This can be attributed to two facts, the first being that the
location of the closest highway node to s is not known, and the second being
that there is no notion of local connections between the highway nodes.

64 O. Gila et al.

4.2 Greedy Routing Sketch

Proving the expected decentralized greedy routing path length results for the
randomized highway model in Theorem 2 follows similar steps to the proof for
the Kleinberg highway model in Theorem 1. We include a sketch below, leaving
the complete proofs for the appendix in Sect. 7.3.

We start by proving a lower bound on the probability that a long-range
connection exists between two arbitrary highway nodes. In order to do this, we
need to find a high probability upper bound on the normalization constant z for
any arbitrary highway node.

Lemma 1. The normalization constant z for any arbitrary highway node is at
most 25 log log log n+ 41

9
log n

k log log n +26 log n
k for n > 5 w.h.p. (for at most O(log2 n)

invocations).

This result gives us a normalization constant that is in O(log(n)/k) for k ∈
o
(

log n
log log log n

)
, and in O(log log log n) for k ∈ Ω

(
log n

log log log n

)
. Note that this

bound is worse for large values of k than the bound we obtained for the Kleinberg
highway model in Lemma 7. We can, however, improve this bound, but without
the same high probability guarantees:

Lemma 2. The normalization constant z for any arbitrary highway node is at
most 10 + 37 log n

k for n > 2 with probability at least 1/2. From now on, we will
refer to this tighter bound as z′.

This improved bound gives us a normalization constant that is in O(log(n)/k)
for k ∈ o(log n) in O(1) for k ∈ Ω(log n), a result in line with the Kleinberg
highway model. We want to be able to use this improved bound when calculating
the probability of halving the distance to the destination.

Lemma 3. Using the improved normalization constant bound z′ incurs at most
a constant factor to the probability of halving the distance to the destination while
routing w.h.p.

Now we can use these improved normalization constant bounds to find the
probability of halving our distance. Suppose we are in phase j where log(c(k +
log n)) ≤ j ≤ log n (for some constant c we will discuss later), and the current
message holder u is a highway node. Let us find the probability that we have
a long-range contact that is in a better phase. First, we find the number of
highway nodes in a better phase than us, i.e., within the ball of radius 2j around
t (B2j (t)).

Lemma 4. There are at least 22j−2/k highway nodes in a ball of radius 2j for
log(c(k + log n)) ≤ j ≤ log n with high probability (with probability at least
1 − n−0.18c2).

Each of these nodes has lattice distance less than 2j+2, allowing us to bound
the probability of them being a specific long-range contact of u. Then, we can
obtain an identical result (in asymptotic notation) to the result in Lemma 8:

Highway Preferential Attachment Models for Geographic Routing 65

Lemma 5. In the randomized highway model, the probability that a node u has
a long-range connection to a node v that halves its distance to the destination is
proportional to at most k/ log n for k ∈ O(log n) and is constant for k ∈ Ω(log n).

Once we reach phase j = log(c(k + log n)), we are at distance O(k + log n)
from the destination, reaching it in O(k + log n) local hops. As stated up until
now, we would be able to perform greedy routing with results equivalent to those
of Theorem 1 assuming no knowledge about the positioning of the highway nodes
(O(k + log2(n)/k) routing). However, we have not yet addressed the elephant
in the room: the fact that there is no notion of local contacts between highway
nodes. In simple terms, while routing, if there are no long-range contacts that
improve your distance, you must leave the highway. And when you leave the
highway, it may take a while to get back onto it. We will show that this is
not a problem for large values of k, i.e. values of k ∈ Ω(log n), but for smaller
values of k the bound will be worse than before, becoming O(log2 n) expected
routing instead of O(log2(n)/k) (note that we do not prove that the bound is
tight). In Sect. 7.5 we propose a variant which trivially achieves the improved
O(log2(n)/k) expected routing for small values of k. We consider this variant
slightly less elegant, and since it maintains the same optimal results, we do not
consider it further.

5 Windowed Neighborhood Preferential Attachment

Our previous models have a binary distinction between highway nodes and nor-
mal nodes, represented by a fixed value of k. We now describe a new model with
a continuous transition, where each node picks its own value of k, such that
the distribution of the values of k, and consequently the degree distribution,
exhibits a power law. Each node independently picks their probability k from a
distribution Pr(k) ∝ 1/k2+ε for ε > 0. Each node u then adds εQ× k long-range
connections, but only to nodes within a given range, or “window”, of popularity.
Specifically, let the window of popularity for a given node u with popularity ku

be popularities in the range [ku/A,Aku].

5.1 Results

While at first glance this model may seem irreconcilable from the previous mod-
els, consider referring to all nodes with popularity log n ≤ k ≤ A log n as the
“highway”. We expect to have O(1/ log1+ε n447) highway nodes. Ignoring all
long-range connections that do not connect two highway nodes, we find an
instance of the randomized highway model embedded within the windowed NPA
model, albeit with a small (but nevertheless constant) value of Q. With these
key observations, we are able to prove:

Theorem 3. The windowed NPA model has a decentralized greedy algorithm
that routes in O(log1+ε(n)) hops w.h.p.

66 O. Gila et al.

The complete proof for this theorem can be found in Sect. 7.6. Furthermore,
experimental results confirming that this model greedily routes significantly bet-
ter than Kleinberg’s can be found in Sect. 7.1.

5.2 Efficient Construction

The neighborhood preferential attachment model of Goodrich and Ozel [8] takes
O(|V |2) time to construct and there is no more efficient construction currently
known. The windowed NPA model can similarly be constructed sequentially in
O(|V |2) time. However, due to how each node picks their connections indepen-
dently, this model is embarrassingly parallel, and can be constructed in O(|V |)
time with |V | processors, without any communication between processors.

6 Future Work

It would be interesting to be able to prove whether our bounds are tight for our
models. Specifically, whether the bounds for the randomized highway model can
be improved to be more in line with the Kleinberg highway results. While the
diameter of models with constant degree is at least Ω(log n), there is no such
lower bound when dealing with constant average degree. It would be interesting
to either bridge the gap or show that a true gap exists between the lower bound
on the diameter of our networks, Ω(log n/ log log n), and the upper bound on
greedy routing, O(log n). Also, it would be interesting to prove whether it is
possible to achieve a greedy routing time of log n +

√
k for larger values of k if

each node knows the location of the nearest highway node (a constant amount
of additional information). This result would improve the expected running time
of the windowed NPA model to just O(log n) for 0 < ε ≤ 1. Finally, our analysis
for the randomized highway model depends on the network having a mostly
even spread of nodes. Experimentally, both our model and the original NPA
model perform worse on Alaska, a highly unevenly spread out state. It would be
interesting to generalize our results if some form of density condition is met.

7 Appendix

7.1 Experimental Analysis

Goodrich and Ozel’s paper on the neighborhood preferential model [8] was able to
show that a hybrid model combining elements from Kleinberg’s model with pref-
erential attachment is able to outperform both individual models for decentral-
ized greedy routing on road networks by showing many experimental results. In
the previous sections, we provided some theoretical justification for their results,
by proving asymptotically better greedy routing times for a similar model. In
this section, we complete our comparisons by reproducing their key experimental
results with our new model. Our experimental framework is nearly identical to
theirs, except that we implement directed versions of each algorithm, i.e. where

Highway Preferential Attachment Models for Geographic Routing 67

each long-range connection is directed (local connections are by definition always
undirected). This allows us to run experiments much more efficiently—we sample
between 30,000 to 200,000 source/target pairs for each data point, as compared
to their 1,000 pairs—but results in all algorithms having a worse performance.
For our experiments we picked ε = 0.5 and A = 1.01. It is possible that other
parameters would yield better results.

Key Results. Our main key result is that our windowed NPA model outper-
forms Kleinberg’s model for road networks by a factor of 2, as shown in Fig. 4.
This result is directly in line with Goodrich and Ozel’s experimental results with
their similar model [8]. It is worth mentioning that our directed version of the
model is worse than the undirected version from Goodrich and Ozel’s paper by
roughly a factor of 2.

Fig. 4. Comparison of greedy routing times for Kleinberg’s model and the windowed
NPA model when Q = 1, ε = 0.5, A = 1.01. The right plot is in log scale.

Similarly, we show that by increasing the degree density to 32 we can achieve
a result of less than 20 degrees of separation, which again is roughly twice the
results from Goodrich and Ozel’s paper (see Fig. 5), which we attribute primarily
to the directed implementation of the models for our experiments.

68 O. Gila et al.

Fig. 5. The greedy routing times for the windowed NPA model on the 50 US states
when Q = 32, ε = 0.5, and A = 1.01.

7.2 Kleinberg Highway Proofs

In this section, we prove Theorem 1 by proving upper bounds on each of the three
steps of the greedy routing algorithm: routing from s to the highway using local
connections, within the highway towards t using standard Kleinberg routing,
and finally from the highway to t again using local connections.

Lemma 6. It is possible to route from any node s ∈ G to a highway node h ∈ GH

in at most
√

k hops, if the location of h is known, or in at most k − 1 hops, if
the location of h is not known.

Proof. Without loss of generality, let’s assume highway nodes are located wher-
ever mod (x,

√
k) = 0 and mod (y,

√
k) = 0. Then, the maximum distance in the

x dimension to a highway node is δx = min(mod(x,
√

k),
√

k − mod(x,
√

k)) =⌊√
k
2

⌋
, and an equivalent result holds for δy. Therefore, the maximum lattice

distance to a highway node is the sum of both, or at most 2
⌊√

k
2

⌋
≤ √

k. If the
location of h is known, then we can route to it directly taking a number of hops
equal to the lattice distance to h. If the location of h is not known, we can visit
every node in a

√
k ×√

k square, guaranteeing that we will encounter a highway
node h, in k − 1 hops.

After we reach the highway subgraph GH , we can use the standard Kleinberg
routing algorithm towards t. As in Kleinberg’s original analysis, we first prove a
lower bound on the probability that a long-range connection exists between two
arbitrary highway nodes.

Highway Preferential Attachment Models for Geographic Routing 69

Lemma 7. The normalization constant z for GH is upper bounded by z ≤
4 ln(6nH) ≤ 4 ln(6n). As such, the probability of any two highway nodes u and
v being connected is at least [4 ln(6n)dH(u, v)2]−1, where dH(u, v) is the lattice
distance between u and v in GH .

Proof. This result follows directly from Kleinberg’s original analysis on the high-
way subgraph GH .

In Kleinberg’s analysis, the probability that a node u has a long-range con-
nection to a node v that halves its distance to the destination is proportional
to [log n]−1, when a node has a constant number of long-range connections Q.
In our case, each highway node has Q × k long-range connections, where k does
not need to be constant. This gives us improved distance-halving probabilities:

Lemma 8. In the Kleinberg highway model, the probability that a node u has a
long-range connection to a node v that halves its distance to the destination is
proportional to at most k/ log n for k ∈ O(log n) and is constant for k ∈ Ω(log n).

Proof. Following Kleinberg’s analysis, the probability that a single long-range
connection from u halves its distance to the destination is still proportional to
[log n]−1. Therefore, the probability that a single long-range connection does not
halve its distance to the destination is proportional to 1 − [log n]−1. The proba-
bility that all Qk long-range connections do not halve the distance is therefore

proportional to
(
1 − [log n]−1

)Qk =
[(

1 − [log n]−1
)log n

] Qk
log n ≤ e− Qk

log n . Finally,
the probability that any one of the Qk succeed in halving the distance is there-
fore proportional to 1 − e− Qk

log n . When k ∈ ω(log n), the exponential term tends
towards zero, and the probability tends towards one. For smaller values of k,
a Taylor expansion of e− Qk

log n shows that this probability is proportional to at

least 1 −
[
1 − Qk

log n + O
([

Qk
log n

]2)]
= Qk

log n − O
([

Qk
log n

]2)
. When k ∈ o(log n),

the lower order terms become asymptotically negligible, and we are left with a
probability proportional to Qk

log n = O(k/ log n). When k = Θ(log n), we are left
with a constant dependent on Q.

Importantly, this result reproduces Kleinberg’s original result when k is con-
stant, since we are left with a probability proportional to 1/ log n. Finally, we
can prove the main result of this section:

Proof (of Theorem 1). It is possible to describe the greedy routing path in
terms of at most log n phases, where a node u in phase j if it is at a lattice
distance between 2j and 2j+1 from the destination t. It is easy to see that
halving the distance to the destination results in reducing what phase a node
is in by one. The expected amount of hops spent in each phase is therefore
1/Pr(distance halving) = O(log(n)/k). Note that importantly, when no long-
range connections halve the distance, we take local connections on the highway
graph towards t, as in the original Kleinberg model. Since there are at most log n

70 O. Gila et al.

phases, we expect to spend at most O(log n(log(n)/k+1)) hops on the highway4.
Finally, the final highway node is known to be at most

√
k hops away from the

destination t. The theorem follows from these results along with the results from
Lemma 6.

7.3 Randomized Highway Proofs

We now present proofs of theorems and lemmas discussed in Sect. 4.2.

The Nested Lattice Construction. For our proofs, similarly to the Kleinberg
highway model, we will conceptually subdivide the highway into a lattice of balls
of various sizes (see Fig. 6 for an example nested lattice structure), and show
upper and lower bounds on the number of highway nodes within each ball with
varying degrees of probability bounds. Specifically we will prove:

Lemma 9. Results from the nested lattice structure:

1. All balls of radius 3
√

k log n, centered around any of the n2 nodes, contain at
least 9 log n highway nodes with high probability in n.

2. All balls of radius 3
√

k log n, centered around any of the n2 nodes, contain
fewer than 41 log n highway nodes with high probability in n.

3. O(log2 n) balls of radius 3
√

k log log n, centered
around any O(log2 n) nodes, contain fewer than 41 log log n highway nodes
with high probability in log n.

4. Any arbitrary ball of radius 2
√

k has at most 18 highway nodes with prob-
ability at least 1/2. This result is not a high probability bound, and is only
independent for balls centered around nodes with lattice distance greater than
4
√

k between them.

Proof. Consider balls of radius a
√

k log n for some constant a. There are at least
2a2k log n-many nodes within each ball of radius a

√
k log n. The probability that

any node is a highway node is 1/k, so the expected number of highway nodes
within each ball is μ ≥ 2a2 log n. We can lower bound the number of highway
nodes within each ball by using a Chernoff bound. Letting X be the number of
highway nodes within each ball, we have:

Pr(X ≤ (1 − δ)μ) ≤ e− δ2μ
2 = e−a2δ2 log n = n− a2δ2

ln 2

By union bound, the probability this fails for a ball centered at any of the
n2 vertices is at most n2− a2δ2

ln 2 . Setting δ = 1/2 and a = 3, we obtain that all
balls with radius 3

√
k log n have at least 9 log n highway nodes with probability

at least 1 − n−1.24, which is w.h.p. For an upper bound, we first note that there

4 Some minor details regarding the final log log n phases are omitted for brevity.

Highway Preferential Attachment Models for Geographic Routing 71

Fig. 6. The nested lattice construction showing balls of radius 3, centered around an
orange node. The central ball is depicted in solid light green, while the 8 adjacent balls
are shown in dashed yellow.

are fewer than 3a2k log n-many nodes within each ball of radius a
√

k log n for
radii of at least 3. Using another Chernoff bound:

Pr(X ≥ (1 + δ)μ) ≤ e− δ2μ
2+δ = e− 2a2δ2 log n

2+δ = n− 3a2δ2
ln 2(2+δ)

By setting δ = 1/2 and a = 3, we obtain that all balls with radius
3
√

k log n have fewer than 41 log n highway nodes w.h.p. (with probability at
least 1 − n−1.89). We can obtain similar bounds for smaller balls, although with
worse probabilities. For example, for balls of radius a

√
k log log n, we expect

μ < 3a2 log log n highway nodes for radii of at least 3. Using another Cher-
noff bound with δ = 1/2 and a = 3, we obtain that any given ball with radius
3
√

k log log n has more than 41 log log n highway nodes with probability less than
log−3.89 n. Assuming we will only invoke this bound at most O(log2 n) times, the
probability that any of the invocations fail is negligible (at most O(log−1.89 n)).
Finally, we consider balls of radius only 2

√
k, which have at most 18 highway

nodes with probability at least 1/2.

Finding the Normalization Constant. The probability that highway node u

picks highway node v as a long-range connection is d(u, v)−2/
[∑

w �=u d(u,w)−2
]
,

where each w in the summation is a highway node. In order to lower bound this
probability, we must upper bound the denominator, known as the normaliza-
tion constant z.

Proof (of Lemma 1). Let’s consider a lattice of balls centered around an arbitrary
highway node u. Let’s define a notion of “ball distance” b to measure the distance
between two balls in this ball lattice. Let Bb(u) be the set of all balls at ball
distance b from a ball centered at u. There is 1 ball at ball distance 0 (|B0(u)| =
1), 8 balls at ball distance 1, and in general at most 8b balls at distance b for

72 O. Gila et al.

b > 0 (see Fig. 6). The minimum distance between u to a node in another ball
at distance b is 2b − 1 times the ball radius for b > 0. Let’s consider a lattice of
balls with radius 3

√
k log n. From Lemma 9.2 we know that there are at most

41 log n highway nodes within this ball w.h.p. Let’s also find the normalization
constant in two parts, first due to highway nodes in b > 0 (z>0), and then due
to highway nodes within the same ball (z0).

Note that any two balls are separated by ball distance at most 2n/twice the
ball radius, or n

3
√

k log n
.

z>0 ≤
n

3
√

k log n∑
b=1

(max # highway nodes in Bb(u))
(min distance to node in Bb(u))2

≤
n

3
√

k log n∑
b=1

41 log n × 8b

(2b − 1)2 × 9k log n
<

37
k

n
3

√
k log n∑
b=1

b

(2b − 1)2

≤ 37
k

n
3

√
k log n∑
b=1

1
b

=
37
k

H
(

n

3
√

k log n

)

≤ 37
k

H
(

n

3
√

log n

)
< 26

log n

k
for n > 2

Now that we showed the contribution of highway nodes in different balls from
u, let’s bound the contribution due to highway nodes within the same ball. We
are only interested in the normalization constant for nodes that we visit along
the highway, which we will show is at most O(log2 n) nodes. Knowing this,
we can use the improved bound for balls of radius 3

√
k log log n, which from

Lemma 9.3 we know contain fewer than 41 log log n highway nodes w.h.p. Let’s
consider the worst case where they are all bunched up around u. Let’s denote
their contribution z0,inner.

z0,inner ≤
�√

41 log log n�∑
j=1

4j

j2
< 4H

(√
41 log log n + 1

)

< 25 log log log n for n > 5

Recall that we can still have up to 41 log n highway nodes in in the same
(large) ball as u. Let’s assume they are all as close as possible, meaning that
they are all at the edge of the inner ball. Let’s denote their contribution z0,outer.

z0,outer <
41 log n

(3
√

k log log n)2
=

41
9

log n

k log log n

Combining these results, we obtain:

z < 25 log log log n +
41
9

log n

k log log n
+ 26

log n

k
for n > 5

w.h.p., for at most O(log2 n) invocations.

Highway Preferential Attachment Models for Geographic Routing 73

We provide a tighter bound for the normalization constant, z′, in a similar
fashion:

Proof (of Lemma 2). Recall from Lemma 9.4 that balls of radius 2
√

k have at
most 18 highway nodes with probability at least 1/2. When this occurs, z0,inner

can be improved to:

z0,inner <

5∑
j=1

4j

j2
= 4H(5) < 10

Meanwhile, z0,outer changes to:

z0,outer <
41 log n

(2
√

k)2
=

41
4

log n

k

Overall, with probability at least 1/2, we obtain the improved bounds on the
normalization constant:

z′ < 10 + 37
log n

k
for n > 2

Probability of Distance Halving. As explained before, the first step is to
show that we can use the improved bounds on the normalization constant by
incurring only an increase in a constant factor to the probability of halving the
distance:

Proof (of Lemma 3). The probability of the improved normalization constant
bound z′ applying is at least 1/2, and this probability is independent for any
nodes a distance of at least 4

√
k apart (see Lemma 9.4). For values of k ∈

o
(

log n
log log log n

)
, the improved normalization constant bound is already only a

constant factor better. For values of k ∈ Ω
(

log n
log log log n

)
we will show that we

can always visit highway nodes that are at least 4
√

k apart, so that we have
independence. All our routing algorithms expect to take O(log n) hops on the
highway, or a log n hops for some constant a. We expect at least 1

2a log n of the
highway nodes visited to have the improved bounds apply. By Chernoff bound,
we visit at least 1

4a log n highway nodes with the improved bounds w.h.p. (with
probability at least 1−n− a

16 ln 2). Since a can be picked arbitrarily large, then with
high probability we will visit O(log n)-many nodes with the improved bounds
along our path, which is the same as our original expectation of how many nodes
we will visit, meaning our results are the same up to a constant hidden by the
asymptotic notation. Note that a similar reasoning works for smaller values of k
as well.

Next, we need to prove a lower bound on how many nodes are in a better
phase than us w.h.p.:

74 O. Gila et al.

Proof (of Lemma 4). Kleinberg showed that there are more than 22j−1 nodes
within lattice distance 2j of t [9], for log log n ≤ j < log n. Within this range, we
expect there to be at least 22j−1/k highway nodes. Since we are only considering
the case where j ≥ log(c(k + log n)), we can use this to create a Chernoff bound
(with δ = 1/2). Letting X be the number of highway nodes:

Pr(X ≤ μ/2) ≤ e− μ
8 = e− 22j−1

8k ≤ e− 22 log(c(k+log n))
16k

= e− [c(k+log n)]2

16k < e− c2(2k log n)
16k = n− c2

8 ln 2

< n−0.18c2

In summary, since we picked δ = 1/2, we expect at least 22j−2/k highway
nodes, to be within lattice distance 2j of t w.h.p. (with probability at least
1 − n−0.18c2).

Finally, we use these results to prove the main lemma of this section, the
probability of halving the distance:

Proof (of Lemma 5). From our previous results, we
know we can use the improved bounds for the normalization constant, z′ =
10+37 log n

k , with at most a constant factor increase in the probability of halving
the distance. Furthermore, we know that there exist at least 22j−2/k highway
nodes in better phases w.h.p. Since they are in phase j or better, they are each
within lattice distance < 2j+1 + 2j < 2j+2 from u. Using this, and letting v be
an arbitrary long-range connection of u, we obtain:

Pr(v ∈ B2j (u)) > [64kz′]−1 > [64k × 37(1 + log(n)/k)]−1

The probability of v not being in a better phase is similarly 1 − Pr(v ∈
B2j (u)). Recalling that each highway node has Qk independently chosen ran-
dom long-range connections, the probability of none of them being connected
to a better phase is therefore (1 − Pr(v ∈ B2j (u)))Qk ≤ e−Qk Pr(v∈B2j (u)). The
probability of any one of them being connected is therefore:

Pr(∃v ∈ B2j (u)) ≥ 1 − e−Qk Pr(v∈B2j (u)) > 1 − e− Qk
2368(k+log n)

When k ∈ o(log n), the log n term in the denominator dominates, and we
obtain similar asymptotic results to Lemma 8. When k ∈ Ω(log n), the k term
in the denominator dominates, cancelling out the k term in the numerator, and
leaving us with a constant term dependent on Q. It is worth noting that the
constant factors in this analysis are very loose, and also considerably decrease
for larger values of n. In any case, we obtain that the probability of halving the
distance is at least in O(k/ log n) for k ∈ o(log n), and at least f(Q) = O(1) for
k ∈ Ω(log n).

Highway Preferential Attachment Models for Geographic Routing 75

7.4 Removing Local Contact Dependence

In this section, we complete the proof of Theorem 2 by removing the dependence
on local connections. The results of the theorem directly follow.

If we do find a long-range connection that takes us to the next phase, we can
just take it, but what do we do when there aren’t any? To continue the Kleinberg
analogy, we would just keep taking local connections to keep re-rolling the dice,
and as long as we never traverse any space twice and never traverse any space
that is within 4

√
k of previous spaces (because of Lemma 9.4), we can assume

each step taken is independent of other steps. The obvious problem here is that
there is no notion of “local connections” in this randomly selected highway. We
could either greedily take local connections in the entire graph until we happen
to reach a highway node again (in expected O(k) time), or we can simply pick
any long-range connection that takes us closer to the destination by at least
4
√

k. For values of k ∈ o(log n), we will use the first method (greedily taking
local connections), and for values of k ∈ Ω(log n), we will use the second.

Values of k ∈ o
(

log n
log log log n

)
. For these smaller values of k, from Lemma

5, we expect to take O(log(n)/k) hops on highway nodes to reach the next
phase, and since there are at most log n total phases, we expect to visit at most
O(log2(n)/k) highway nodes throughout the entire routing process w.h.p. In
the worst case, whenever we can’t halve the distance, we never have any closer
long-range connections, so we would need to greedily move along local contacts
towards t until reaching another highway node. Recalling that each node has
probability 1/k of being a highway node, and that we expect to visit a highway
node every k independent hops. In order to avoid visiting highway nodes within
4
√

k of each other, we can first walk 4
√

k hops before checking for highway
nodes, which we will expect to find after 4

√
k + k ∈ O(k) hops. Over the entire

duration of the routing, we expect to spend O(log2(n)/k × k) = O(log2 n) hops
using local connections to reach highway nodes w.h.p.

Values of k ∈ Ω
(

log n
log log log n

)
For these larger values of k, we will prove that

we can find a long-range connection to an arbitrary highway node u in phase
log(c(k+log n)) ≤ j < log n that is at least 4

√
k closer to the destination t, w.h.p.

Recall that long-range connections are always only between highway nodes, so
taking them will always keep us on the highway. To find the probability of one of
these connections existing, we consider a ball of radius d − 4

√
k centered on the

destination t (Bd−4
√

k(t)), where d is the distance from u to t (d = d(u, t)). Let’s
lower bound the probability of an arbitrary long-range connection of u going
into this ball. We can assume w.l.o.g. that u shares either an x or a y coordinate
with t (see Lemma 13). As before, let’s consider the nested lattice construct,
where this time u sits at the edge of one such ball. There are exactly 2b−1 balls
closer to t than u is at ball distance b, for 1 ≤ b ≤ 2d−2

6
√

k log n
. In order to enforce

the condition that we improve the distance by at least 4
√

k, we can dismiss the
outer layer of balls, leaving us with 2b − 3 balls for 2 ≤ b ≤ d−1

3
√

k log n
− 1. The

maximum distance from u to any node in one of these balls is 2b × 3
√

k log n.

76 O. Gila et al.

From Lemma 9.1, we know that each ball of radius 3
√

k log n has at least 9 log n
highway nodes w.h.p. This lower bound must apply w.h.p. for any highway node
along our path, so we must use the looser normalization constant bound, z. We
can now lower bound the probability that v is in one of these closer balls:

Pr(v ∈ Bd−4
√

k) ≥
d−1

3
√

k log n
−1∑

b=2

(min # dist b highway nodes)
z(max dist to node at dist b)2

≥
d−1

3
√

k log n
−1∑

b=2

(2b − 3) × 9 log n

z(2b × 3
√

k log n)2

=
2

9kz

d−1
3

√
k log n

−1∑
b=2

2b − 3
b2

>
2

9kz

[
ln

(
d − 1

3
√

k log n
− 1

)]

>
ln

(
d

3
√

k log n

)

9kz

Note that this result holds for d ≥ c(k + log n) for large enough constant c.
This result holds for a single long-range connection of u. The probability that

none of u’s long-range connections are closer is:

Pr(none closer) <

⎡
⎣1 −

ln
(

d
3
√

k log n

)

9kz

⎤
⎦

Qk

=

⎛
⎜⎝

⎡
⎣1 −

ln
(

d
3
√

k log n

)

9kz

⎤
⎦

kz
⎞
⎟⎠

Q
z

< e
− Q

9z ln
(

d
3

√
k log n

)

< e− Q ln d
9z = d− Q

9z

again, holding for large enough constant c.
With this probability established, let’s try seeing how many hops we can take

before we hit a dead end. Let’s do this in two parts. First, let’s see if we can get
to within a distance of (a log n)bz from t for some constants a and b. Since the
probability of hitting a dead end only increases as we get closer, the probability of
hitting a dead end while in this range is always going to be < (a log n)− bQ

9 . This
gives us an expected number of hops of Ω

(
(a log n)

bQ
9

)
w.h.p. When setting b

large enough, we can get this to be Ω(log2 n), which is more than the maximum
number of steps we expect to spend in routing.

Highway Preferential Attachment Models for Geographic Routing 77

In the second part, we are within distance (a log n)bz ≥ d ≥ c(k + log n)
of t. From Lemma 1, we know that our normalization constant z is at most
O(log log log n) for k ∈ Ω

(
log n

log log log n

)
w.h.p., so z < w log log log n for some

constant w. This gives us probability of hitting a dead end of less than (c(k +
log n))− bQ

9w log log log n . Setting constant c large enough, we can expect to take at
least Ω

(
log n

Q
9w log log log n

)
hops on the highway within this range before hitting

a dead end w.h.p. Let’s call this our “allowance”. While this is less than the
maximum number of steps we expect to spend while routing, we only have
at most bz log(a log n) phases left in this second part, while we spend at most
O(log log log n) highway hops per phase. Putting this together, we expect to take
at most f(log log log n)2 log log n hops in this second part of the routing for some
large enough constant f . Let’s determine if our allowance is enough to get us to
t, by considering the ratio r between our allowance and the number of remaining
highway hops:

r = lim
n→∞

log n
Q

9w log log log n

f(log log log n)2 log log n

log r = lim
n→∞

Q log log n

9w log log log n
− log(f(log log log n)2 log log n)

= lim
n→∞

log log n

log log log n
− log((log log n)3) = ∞

Since log r tends towards infinity, r tends towards infinity, meaning that for
a large enough constant c, our allowance is enough to get us to t w.h.p. for
arbitrarily large n. Combining these results, we can conclude that we can reach
a highway node within distance c(k + log n) of t w.h.p. while only taking long-
range connections that improve our distance by at least 4

√
k, thus eliminating

the need for local connections.

7.5 Randomized Highway Variant

If it is desired to improve the greedy decentralized routing time of the randomized
highway model for smaller values of k to be inline with the Kleinberg highway
model, it is possible to reintroduce local connections within the highway nodes,
despite the fact that nodes are picked arbitrarily. One straightforward way to
do so is to add a local connection between each highway node to an arbitrary
highway node in each of the 8 adjacent balls of radius 3

√
k log n (see Fig. 6).

From Lemma 9.1 we know that at least one highway node will exist in each of
those balls w.h.p. At least one of these adjacent highway nodes will be at least
3
√

k log n closer to the destination. With this variant, the routing time for smaller
values of k is improved to log2(n)/k, while only increasing the average degree
by a constant, inline with the randomized highway model. However, this model
is not as clean as the original, and still maintains the same optimal parameter
k of Θ(log n) with the same result of Θ(log n) hops, so we will not consider it
further.

78 O. Gila et al.

7.6 Windowed NPA Proofs

In this section, we prove that the windowed NPA model maintains a constant
average degree while having a greedy, decentralized routing algorithm taking at
most O(log1+ε n) hops w.h.p. Specifically, we will define the routing algorithm as
follows: define the subgraph made of nodes with popularity log n ≤ k ≤ A log n
as the highway, ignoring any long-range connections that do not connect two
“highway” nodes. We expect to have O(1/ log1+ε n) highway nodes. Using the
results from the previous section, we are able to route in O(log1+ε n) hops w.h.p.

First, we prove the expected constant average degree:

Lemma 10. The average node degree in the windowed NPA model is Q.

Proof. ∫ ∞

k=1

εQk/k2+εdk = εQ

∫ ∞

k=1

1/k1+εdk = εQ × 1/ε = Q

Where the normalization constant to pick k is:
∫ ∞

k=1

1/k2+εdk =
1

1 + ε

Next, we show that there are an expected O(1/ log1+ε n) highway.

Lemma 11. There are Θ(log1+ε n) highway nodes w.h.p.

Proof. Now, let’s find the probability that a node has popularity between log n
and A log n:

Pr(log n ≤ k ≤ A log n) =
∫ A log n

k=log n

Pr(k)dk

=
∫ A log n

k=log n

1/k2+εdk

=
(A1+ε − 1) ln1+ε(2)

(1 + ε)A1+ε

1
log1+ε n

Since A and ε are predetermined constants, the probability that a node has
a popularity in this range is ∝ log−(1+ε)(n).

Importantly, each node within this range of popularities considers all other
points within this range of popularities as long-distance node candidates with
equal likelihoods, a requirement important for the analysis of the randomized
highway model. Next we must prove:

Lemma 12. Each highway node expects to connect a constant fraction of its
connections to other highway nodes, where the constant is at least [1 + A1+ε]−1.

Highway Preferential Attachment Models for Geographic Routing 79

Proof. The case where there is the least probability of overlap is when k = log n.
Let’s consider v, an arbitrary long-range connection of node u, where ku = log n.
The probability that v is part of the highway is:

Pr(v ∈ highway) =

∫ A log n

k=log n
k−2−εdk

∫ A log n

k=log n/A
k−2−εdk

= [1 + A1+ε]−1

This is enough to set up an instance of the randomized highway model.
An (N,P,Q, ε, A) instance of the windowed NPA model corresponds with an
(N ′ = N,P ′ = P,Q′ = εQ[1+A1+ε]−1, k′ = log1+ε n) instance with a few minor
modifications. The highway graph, instead of consisting of nodes with degrees
k, consists of nodes with degrees log n ≤ k ≤ A log n.

A little nuance applies since while k = log1+ε n, each of the nodes has fewer
connections, only O(log n). However, the constant probability of halving the
distance analysis still holds, and this algorithm achieves O(log1+ε n) expected
total greedy-routing steps. This concludes the proof for Theorem 3.

7.7 Miscellaneous Proofs

Lemma 13. Let Sd(w) denote the set of vertices at lattice distance d away from
any vertex w. Let u be any vertex, and let v be any vertex such that v ∈ Sd(u),
and let B = Bd(u). Then |Sj(v) ∩ B| is Θ(j) for all 1 ≤ j ≤ 2d.

Proof. Consider the ratio Rj,v = |Sj(v)∩B|
|Sj(v)| at each 1 ≤ j ≤ 2d. It is clear

that no matter where v is located in Sj(u), Rj,v always grows smaller as j
increases. The value of j that minimizes Rj,v for a particular v ∈ Sd(u) is then
2d, and we can achieve minv(Rv,2d) when v is a non-corner vertex in Sd(u), in
which case Rv,2d = d

8d = 1/8. Therefore at every 1 ≤ j ≤ 2d, we have that
1
8 ≤ |Sj(v)∩B|

4j , and therefore |Sj(v) ∩ B| ≥ j/2. Since we already have that
|Sj(v) ∩ B| ≤ |Sj(v)| ≤ 4j, the lemma follows.

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

2. Berger, N., Borgs, C., Chayes, J.T., D’Souza, R.M., Kleinberg, R.D.: Competition-
induced preferential attachment. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella,
D. (eds.) Automata, Languages and Programming: 31st International Colloquium,
ICALP 2004, Turku, Finland, July 12–16, 2004. Proceedings. Lecture Notes in
Computer Science, vol. 3142, pp. 208–221. Springer (2004). https://doi.org/10.
1007/978-3-540-27836-8 20

3. Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs.
In: Bornholdt, S., Schuster, H.G. (eds.) Handbook of Graphs and Networks: From
the Genome to the Internet, chap. 1, pp. 1–34. Wiley (2002). https://doi.org/10.
1002/3527602755.ch1

https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1007/978-3-540-27836-8_20
https://doi.org/10.1007/978-3-540-27836-8_20
https://doi.org/10.1002/3527602755.ch1
https://doi.org/10.1002/3527602755.ch1

80 O. Gila et al.

4. Borgs, C., Chayes, J.T., Daskalakis, C., Roch, S.: First to market is not everything:
an analysis of preferential attachment with fitness. In: Johnson, D.S., Feige, U.
(eds.) Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
San Diego, California, USA, June 11–13, 2007, pp. 135–144. ACM (2007). https://
doi.org/10.1145/1250790.1250812

5. Dodds, P.S., Muhamad, R., Watts, D.J.: An experimental study of search in
global social networks. Science 301(5634), 827–829 (2003). https://doi.org/10.
1126/science.1081058, https://www.science.org/doi/abs/10.1126/science.1081058

6. Dommers, S., van der Hofstad, R., Hooghiemstra, G.: Diameters in preferential
attachment models. J. Stat. Phys. 139(1), 72–107 (2010). https://doi.org/10.1007/
s10955-010-9921-z

7. Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment
model of networks. Internet Math. 3(2), 187–205 (2007). https://doi.org/10.1080/
15427951.2006.10129124

8. Goodrich, M.T., Ozel, E.: Modeling the small-world phenomenon with road net-
works. In: Renz, M., Sarwat, M. (eds.) Proceedings of the 30th International Con-
ference on Advances in Geographic Information Systems, SIGSPATIAL 2022, Seat-
tle, Washington, November 1–4, 2022, pp. 46:1–46:10. ACM (2022). https://doi.
org/10.1145/3557915.3560981

9. Kleinberg, J.M.: The small-world phenomenon: an algorithmic perspective. In: Yao,
F.F., Luks, E.M. (eds.) Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, May 21–23, 2000, Portland, OR, USA, pp. 163–170. ACM
(2000). https://doi.org/10.1145/335305.335325

10. Kumar, R., Liben-Nowell, D., Tomkins, A.: Navigating low-dimensional and hier-
archical population networks. In: Azar, Y., Erlebach, T. (eds.) Algorithms - ESA
2006, 14th Annual European Symposium, Zurich, Switzerland, September 11–13,
2006, Proceedings. Lecture Notes in Computer Science, vol. 4168, pp. 480–491.
Springer (2006). https://doi.org/10.1007/11841036 44

11. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic
routing in social networks. Proc. Natl. Acad. Sci. U.S.A. 102(33), 11623–11628
(2005). https://doi.org/10.1073/pnas.0503018102

12. Martel, C.U., Nguyen, V.: Analyzing Kleinberg’s (and other) small-world models.
In: Chaudhuri, S., Kutten, S. (eds.) Proceedings of the Twenty-Third Annual ACM
Symposium on Principles of Distributed Computing, PODC 2004, St. John’s, New-
foundland, Canada, July 25–28, 2004, pp. 179–188. ACM (2004). https://doi.org/
10.1145/1011767.1011794

13. Milgram, S.: The small world problem. Psychol. Today 1(1), 61–67 (1967)
14. Mitzenmacher, M.: A brief history of generative models for power law and lognor-

mal distributions. Internet Math. 1(2), 226–251 (2004)
15. Slivkins, A.: Distance estimation and object location via rings of neighbors. In:

Aguilera, M.K., Aspnes, J. (eds.) Proceedings of the Twenty-Fourth Annual ACM
Symposium on Principles of Distributed Computing, PODC 2005, Las Vegas, NV,
USA, July 17–20, 2005, pp. 41–50. ACM (2005). https://doi.org/10.1145/1073814.
1073823

16. Travers, J., Milgram, S.: An experimental study of the small world problem.
Sociometry 32(4), 425–443 (1969)

https://doi.org/10.1145/1250790.1250812
https://doi.org/10.1145/1250790.1250812
https://doi.org/10.1126/science.1081058
https://doi.org/10.1126/science.1081058
https://www.science.org/doi/abs/10.1126/science.1081058
https://doi.org/10.1007/s10955-010-9921-z
https://doi.org/10.1007/s10955-010-9921-z
https://doi.org/10.1080/15427951.2006.10129124
https://doi.org/10.1080/15427951.2006.10129124
https://doi.org/10.1145/3557915.3560981
https://doi.org/10.1145/3557915.3560981
https://doi.org/10.1145/335305.335325
https://doi.org/10.1007/11841036_44
https://doi.org/10.1073/pnas.0503018102
https://doi.org/10.1145/1011767.1011794
https://doi.org/10.1145/1011767.1011794
https://doi.org/10.1145/1073814.1073823
https://doi.org/10.1145/1073814.1073823

Complexity and Approximation

Restricted Holant Dichotomy on Domains
3 and 4

Yin Liu(B), Austen Z. Fan, and Jin-Yi Cai

University of Wisconsin-Madison, Madison, WI 53715, USA
yinliuchr@gmail.com, {afan,jyc}@cs.wisc.edu

Abstract. Holant∗(f) denotes a class of counting problems specified by
a constraint function f . We prove complexity dichotomy theorems for
Holant∗(f) in two settings: (1) f is any symmetric arity-3 real-valued
function on input of domain size 3. (2) f is any symmetric arity-3 {0, 1}-
valued function on input of domain size 4.

Keywords: Holant problem · Dichotomy · Higher domain

1 Introduction and Background

Counting problems arise in many branches in computer science, machine learn-
ing and statistical physics. Holant problems encompass a broad class of count-
ing problems [1,2,7,8,10,12,16,17,19,22–24]. For symmetric constraint functions
(a.k.a. signatures) this is also equivalent to edge-coloring models [20,21]. These
problems extend counting constraint satisfaction problems. Freedman, Lovász
and Schrijver proved that some prototypical Holant problems, such as count-
ing perfect matchings, cannot be expressed as vertex-coloring models known as
graph homomorphisms [14,18]. The complexity classification program of count-
ing problems is to classify the computational complexity of these problems.

Formally, a Holant problem on domain D is defined on a graph G = (V,E)
where edges are variables and vertices are constraint functions. Given a set of
constraint functions F defined on D, a signature grid Ω = (G, π) assigns to each
vertex v ∈ V an fv ∈ F . The aim is to compute the following partition function

HolantΩ =
∑

σ:E→D

∏

v∈V

fv

(
σ|E(v)

)
.

The computational problem is denoted by Holant(F). E.g., on the Boolean
domain, it is over all {0, 1}-edge assignments. On domain size 3, it is over all
{R,G,B}-edge assignments, signifying three colors Red, Green and Blue. On
domain size 4, it is over all {R,G,B,W}-edge assignments. As an example, on
the Boolean domain, if every vertex has the Exact-One function (which eval-
uates to 1 if exactly one incident edge is 1, and evaluates to 0 otherwise), then
the partition function gives the number of perfect matchings. As another exam-
ple, on domain size k, if every vertex has the All-Distinct function, then the
partition function gives the number of valid k-edge colorings.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 83–96, 2024.
https://doi.org/10.1007/978-3-031-49614-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_5

84 Y. Liu et al.

A symmetric signature is a function that is invariant under any permutation
of its variables. The value of such a signature depends only on the numbers of
each color assigned to its input variables. The number of variables is its arity;
unary, binary, ternary signatures have arities 1, 2, 3. We denote a symmetric
ternary signature g on domain size 3 by a “triangle” consisting of 10 numbers:

g3,0,0

g2,1,0 g2,0,1

g1,2,0 g1,1,1 g1,0,2

g0,3,0 g0,2,1 g0,1,2 g0,0,3

where gi,j,k is the value on inputs having i Red, j Green and k Blue. Similarly,
we denote a symmetric ternary signature g on domain size 4 by a “tetrahedron”:

g3,0,0,0

g2,0,1,0

g1,0,2,0

g0,0,3,0

g2,1,0,0

g1,2,0,0

g0,3,0,0

g2,0,0,1

g1,0,0,2

g0,0,0,3g0,0,2,1
g0,0,1,2

g0,1,2,0

g0,2,1,0
g0,2,0,1

g0,1,0,2

g1,1,1,0
g1,1,0,1

g1,0,1,1

g0,1,1,1

While much progress has been made for the classification of counting CSP [3]
[4,5,13], and some progress for Holant problems [6,11,15], classifying Holant
problems on higher domains is particularly challenging. One of the few existing
work on a higher domain is [11], in which a dichotomy for Holant∗(f) is proved
where f is a ternary complex symmetric function on domain size 3 and the
∗ means all unary functions are available. (Note that Holant problems with
signatures of arity ≤ 2 are all P-time tractable; the interesting case where both
tractable and #P-hardness occur starts with ternary signatures.)

In this work, we attempt to extend this to Holant problems on domain size
4. Our effort only met with partial success. We are able to prove a complexity
dichotomy for Holant∗(f) for any {0, 1}-valued symmetric ternary constraint
function f (see Theorem 4).

Our technique is to try to reduce a domain 4 problem to a domain 3 problem,
and then analyze the situation using the existing domain 3 dichotomy [11]. To
do so, we will need to be able to construct (or interpolate) a suitable constraint
function that allows us to effectively restrict the problem to a domain 3 problem,
where the new domain elements are superpositions of old domain elements under
a holographic transformation. This turns out to be a nontrivial task. And one
reason that we cannot extend to a more general domain 4 dichotomy is that
for some real-valued signatures, it is impossible to construct such a constraint
function. On the other hand, for {0, 1}-valued domain 4 signatures, we are able
to succeed in this plan (using several different constructions).

Restricted Holant Dichotomy on Domains 3 and 4 85

To carry out this plan, we use the domain 3 dichotomy [11] extensively.
This motivates us to examine the domain 3 dichotomy more closely, when the
constraint function f is real-valued. Since the domain 3 dichotomy [11] applies to
all complex-valued functions it certainly also applies to real-valued functions1.
However, we found out that applying the dichotomy for complex-valued functions
directly is very cumbersome, so much so that the attempt to use it for our
exploration in domain 4 grinds to a halt.

So, we return to domain size 3, and found that there is a cleaner form of
the dichotomy of Holant∗(f) on domain size 3 for real-valued f . This turns out
to be a non-trivial adaptation, as we prove that certain tractable forms in the
complex case cannot occur for real-valued signatures (see Theorem 2). In the
proof of this real Holant∗ dichotomy, orthogonal holographic transformations
are heavily used.

Armed with this more effective form of the domain 3 dichotomy, we return
to Holant problems on domain 4, and prove a dichotomy for Holant∗(f) where
f is {0, 1}-valued (see Theorem 4). We use several strategies that are more
generally applicable and are worth mentioning (see Sect. 3.1). For general real-
valued ternary symmetric signatures on domain 4, we prove Theorem 3. It gives
some broad classes of constraint functions that define P-time tractable Holant
problems. We conjecture that this is actually a complexity dichotomy.

Some Preliminaries. We can picture a signature as a vertex with several
dangling edges as its input variables. Connecting a unary signature u to another
signature f of arity r ≥ 1 creates a signature of arity r−1. If f is symmetric then
this does not depend on which variable (dangling edge of f) u is connected to,
and the resulting signature is denoted by 〈f, u〉. In particular, if f is also a unary,
then 〈f, u〉 is a scalar value, equal to the dot product of their signature entries.
One should note that, for complex unary signatures, this dot product (without
conjugation) is not the usual inner product and it is possible that 〈u, u〉 = 0 for
u �= 0. We call a vector u isotropic if 〈u, u〉 = 0 (including u = 0).

A signature is identified with a tensor, listing its values lexicographically as
a truth table. We use Holant (R | G) to denote bipartite Holant problems on
bipartite graphs H = (U, V,E), where each signature on a vertex in U or V is
from R or G, respectively. Suppose T is an invertible matrix of the same size
as that of the domain. We say that there is a holographic transformation from
Holant (R | G) to Holant (R′ | G′) by T , if R′ = RT−1 and G′ = TG, where
RT−1 = {f(T−1)⊗r(f) | f ∈ R}, TG = {T⊗r(f)f | f ∈ G} and r(f) is the arity
of f . Here each signature is written as a column/row vector in lexicographical
order as a truth-table. We also write Tf for T⊗r(f)f when the arity r(f) is clear.

1 There is a slight issue that for a real-valued f , Holant∗(f) naturally refers to
having free real-valued unary functions, while the existing Holant∗ dichotomy for
complex-valued f assumes all complex-valued unary functions are available for free.
In Lemma 9 we address this technical difficulty.

86 Y. Liu et al.

Theorem 1 (Valiant’s Holant Theorem [23]). Suppose there is a
holographic transformation from Holant (R | G) to Holant (R′ | G′), then
Holant (R | G) ≡T Holant (R′ | G′), where ≡T means equivalence up to a P-time
reduction.

Therefore, if there is a holographic transformation from Holant (G | R) to
Holant (G′ | R′), then one problem is in P iff the other one is, and similarly
one problem is #P-hard iff the other one is. For any general graph, we can
make it bipartite by adding an additional vertex on each edge (thus forming
the vertex-edge incidence graph), and assigning those new vertices the binary
Equality signature (=2) of the corresponding domain size. Note that for the
binary Equality, if T is orthogonal, then it is unchanged under the holographic
transformation by T . Hence, Holant(F) ≡T Holant (=2| F) ≡T Holant(TF) for
any orthogonal matrix T .

2 A Real Dichotomy for Holant∗(f) on Domain 3

In this section we prove a complexity dichotomy of Holant∗(f) for any real-
valued symmetric ternary function f over the domain {R,G,B}. We investigate
the three tractable forms of Theorems 3.1 and 3.2 in [11] when f is real-valued. It
turns out that they take more special forms, and one tractable case for complex-
valued f does not occur for real-valued f . However, complex tensors are still
needed to express one of the two tractable forms. Lemmas 2, 3 and 4 address
each of the three tractable families.

Lemma 1. For all β ∈ C
3, if 〈β, β〉 = 0 then there exists a 3-by-3 real orthogo-

nal matrix T , such that Tβ = c(1, i, 0)T where c ∈ R.

Proof. Write β = γ + δi, γ, δ ∈ R
3. Then 0 = 〈β, β〉 = 〈γ, γ〉 − 〈δ, δ〉 + 2〈γ, δ〉i.

Considering its real and imaginary parts separately, ‖γ‖ = ‖δ‖ and γ ⊥ δ. Then
there exists a real orthogonal T , such that Tγ = ce1 and Tδ = ce2, where
c = ‖γ‖ ∈ R. It follows that Tβ = T (γ + δi) = c(1, i, 0)T .

Lemma 2. If there exist α, β, γ ∈ C
3 such that f = α⊗3 + β⊗3 + γ⊗3,

〈α, β〉 = 〈β, γ〉 = 〈γ, α〉 = 0, and f is real-valued, then there exist α′, β′, γ′ ∈
R

3, s.t., f = α′⊗3 +β′⊗3 +γ′⊗3, 〈α′, β′〉 = 〈β′, γ′〉 = 〈γ′, α′〉 = 0. Thus, there is a
real orthogonal transformation T , such that Tf = ae⊗3

1 + be⊗3
2 + ce⊗3

3 , for some
a, b, c ∈ R.

Proof. Let Mi = 〈f, ei〉 = αiα
⊗2 + βiβ

⊗2 + γiγ
⊗2, i = 1, 2, 3, then Mi is a real

symmetric matrix.
If there is any v among {α, β, γ} that is non-isotropic, i.e., 〈v, v〉 �= 0, then

by symmetry, assume it is α. Then α �= 0. At least one of αi �= 0. Say α1 �= 0.
We have Miα = λiα, where λi = αi〈α, α〉. So λi is an eigenvalue of a real

symmetric matrix Mi, therefore it is real (i = 1, 2, 3). As 〈α, α〉 �= 0 and α1 �= 0,
αi

α1
= λi

λ1
is real and is well defined (i = 1, 2, 3). We can then write α = μu, where

μ ∈ C, u ∈ R
3 and ‖u‖ = 1. As α �= 0, we have μ �= 0 and 〈u, β〉 = 〈u, γ〉 = 0.

Restricted Holant Dichotomy on Domains 3 and 4 87

Thus f = μ3u⊗3 + β⊗3 + γ⊗3. We have 〈f, u〉 = μ3u⊗2. Since f and u are
both real, and u �= 0, we have μ3 ∈ R. Thus, μ3 = t3 for some real t ∈ R. It
follows that α⊗3 = t3u⊗3 = (tu)⊗3.

Then we replace α with tu. Similarly, if β or γ is a non-isotropic vector, we
can replace it with a real vector, without changing f . Thus we get a new form
f = α⊗3 +β⊗3 +γ⊗3 where α, β, γ are either real or isotropic (and since the zero
vector is real we may further assume α, β, γ are either real or nonzero isotropic.)

If they are all real, then we can use a real orthogonal matrix T to transform
f , i.e., Tf = ae⊗3

1 + be⊗3
2 + ce⊗3

3 , for some a, b, c ∈ R. Then we are done.
Now suppose there is at least one nonzero isotropic vector among {α, β, γ}.

W.o.l.o.g., we can assume γ is nonzero and isotropic. By Lemma 1, there exists
a real orthogonal T , s.t., Tγ = r(1, i, 0)T , r ∈ R \ {0} . Then since 〈Tα, Tγ〉 =
〈Tβ, Tγ〉 = 0, Tα, Tβ each must have the form (c, ci, d)T . If, in addition, α is
also isotropic, then Tα must have the form (c, ci, 0)T , which is a multiple of Tγ.
As γ is nonzero, α is hence a multiple of γ. Then α can be absorbed into γ
and form a new isotropic vector γ′, and 〈γ′, β〉 = 0, f = β⊗3 + γ′⊗3. We have
the same argument for β. So w.o.l.o.g., we can write f = α⊗3 + β⊗3 + γ⊗3,
and there is at most one, and therefore, exactly one, nonzero isotropic vector
among {α, β, γ}, and the others are real vectors and could be zero. We have
f = γ⊗3 +R, where R is some real-valued tensor. Hence γ⊗3 is real. Since γ �= 0,
we have γ⊗3 �= 0. But then, 〈〈〈γ⊗3, γ〉, γ〉, γ〉 = 〈γ⊗3, γ⊗3〉 �= 0. In particular,
0 �= 〈γ⊗3, γ〉 = 〈γ, γ〉γ⊗2 = 0. This is a contradiction.

Lemma 3. If there exist α, β1, β2 ∈ C
3 such that f = α⊗3+β⊗3

1 +β⊗3
2 , 〈α, βi〉 =

〈βi, βi〉 = 0, i = 1, 2, and f is real-valued, then there is a real orthogonal transfor-
mation T , such that cTf = ε(β⊗3

0 +β0
⊗3

)+λe⊗3
3 , where β0 = (1, i, 0)T , ε ∈ {0, 1}

and c, λ ∈ R, c �= 0. Thus, there exist α ∈ R
3 and β ∈ C

3, s.t., f = α⊗3 + β⊗3 +
β

⊗3
, 〈α, β〉 = 〈β, β〉 = 0.

Proof. First we assume β1 = β2 = 0. As f is real, by a similar argument as in the
proof of Lemma 2, we know that there exists an α′ ∈ R

3, f = α⊗3 = α′⊗3. Thus
there is a real orthogonal T , Tα′ = (0, 0, d)T , d ∈ R, so Tf = (Tα′)⊗3 = d3e⊗3

3 .
Now without loss of generality, we can assume β1 �= 0.
Suppose 〈α, α〉 = 0. By Lemma 1, there exists a real orthogonal transforma-

tion T , such that Tβ1 = c(1, i, 0)T for some c �= 0. Since 〈Tα, Tβ1〉 = 0, and that
α is also isotropic, Tα must have the form (a, ai, 0)T , thus a multiple of Tβ1. So,
α is a multiple of β1. Then α can be absorbed into β1 and form a new isotropic
vector μβ1 for some μ. Then we replace β1 with μβ1 and f = β⊗3

1 + β⊗3
2 .

Else, 〈α, α〉 �= 0, then α �= 0. Let Mi = 〈f, ei〉, i = 1, 2, 3, then Mi is a real
symmetric matrix. Miα = αi〈α, α〉α. By the same argument as in the proof of
Lemma 2, there exists an α′ ∈ R

3, s.t., α⊗3 = α′⊗3.
Hence in both cases, we get a new form f = α⊗3 + β⊗3

1 + β⊗3
2 , where α ∈ R

3

is real (possibly 0), 〈α, βi〉 = 〈βi, βi〉 = 0, i = 1, 2. Since α is real, there is some
real orthogonal T , Tα = te3 = (0, 0, t)T , t ∈ R. In this new form, if β1 = β2 = 0,
we are done by the same argument. Thus we may assume β1 �= 0 for the new
form as well.

88 Y. Liu et al.

Case 1: α �= 0, i.e., t �= 0. Since 〈Tβi, Tα〉 = 0, i = 1, 2 and βi is isotropic,
we have Tβ1 = u(1,±i, 0)T , Tβ2 = v(1,±i, 0)T , u �= 0. If β2 is a multiple of
β1, it can be absorbed into β1 and form a new isotropic vector s(1,±i, 0)T

for some s. Then we get Tf = (te3)⊗3 + s3((1,±i, 0)T)⊗3. As Tf is real and
t is real, we get s = 0 and we are done. Else, β1, β2 are independent, i.e.,
Tf = (te3)⊗3 + u3((1,±i, 0)T)⊗3 + v3((1,∓i, 0)T)⊗3 where uv �= 0. As Tf is
real, it follows that u3 + v3 ∈ R and u3 − v3 = 0, and thus u3 = v3 ∈ R. So
1
u3 Tf = β⊗3

0 + β0
⊗3

+ t3

u3 e⊗3
3 , where β0 = (1, i, 0)T .

Case 2: α = 0, i.e., t = 0. We have f = β⊗3
1 + β⊗3

2 , 〈βi, βi〉 = 0, i = 1, 2, and
β1 �= 0. By Lemma 1, there exists a real orthogonal T , Tβ1 = u(1, i, 0)T , u ∈
R\{0}. If β2 = 0, then Tf = Tβ⊗3

1 = u3((1, i, 0)T)⊗3, where the LHS is real but
the RHS is not, which is a contradiction. So we have β2 �= 0. Let β′

i = Tβi, and
we have Tf = β′⊗3

1 + β′⊗3
2 . Let Mi = 〈Tf, ei〉 = β′

1iβ
′⊗2
1 + β′

2iβ
′⊗2
2 , i = 1, 2, 3.

Both β′
1, β

′
2 �= 0. Then,

{
Miβ

′
1 = λ2iβ

′
2

Miβ
′
2 = λ1iβ

′
1,

where

{
λ1i = β′

1i〈β′
1, β

′
2〉

λ2i = β′
2i〈β′

1, β
′
2〉.

Applying Mi twice, we get M2
i β′

1 = λ2iλ1iβ
′
1. Since Mi is real symmetric, so is

M2
i . As β′

1 �= 0, λ2iλ1i is an eigenvalue of M2
i , therefore real, i.e., β′

1iβ
′
2i〈β′

1, β
′
2〉2 is

real, i = 1, 2, 3. Recall β′
1 = u(1, i, 0)T , and now let β′

2 = (x, y, z)T ∈ C
3. Let τ =

x+yi, and μ = 〈β′
1, β′

2〉 = uτ . Then we have

{
β′

11β
′
21μ

2 = ux · u2τ2 = u3τ2x

β′
12β

′
22μ

2 = uiy · u2τ2 = u3τ2yi,

both of which are real. Since u ∈ R \ {0}, we know τ2x, τ2yi ∈ R.
If τ = 0, then y = xi and hence z = 0 (because β′

2 is isotropic). It follows
that β′

2 can be absorbed into β′
1. We can then rewrite Tf = λ((1, i, 0)T)⊗3 for

some λ. As Tf is real, we know λ = 0 and we are done.
Now we can assume τ �= 0. Since both τ2x, τ2yi ∈ R, adding them we know

τ3 is real. Then for some k ∈ {0, 1, 2}, ωkτ ∈ R, where ω3 = 1. Replacing β′
2 by

ωkβ′
2, which satisfies (ωkβ′

2)
⊗3 = β′⊗3

2 , we may assume τ ∈ R \ {0}.
We have y = (x − τ)i. Since τ2x ∈ R, we know x ∈ R. Because Tf =

β′⊗3
1 + β′⊗3

2 is real, we know

{
(Tf)2,1,0 = u3i + x2y = (u3 + x2(x − τ))i ∈ R

(Tf)0,3,0 = y3 − u3i = −(u3 + (x − τ)3)i ∈ R.

From the fact that x, τ ∈ R and the above relations, we know x − τ = −u
(which gives y = −ui), and x = ±u. As β′

2 is isotropic, it follows that z = 0 and
hence β′

2 = ±u(1,∓i, 0)T . If it is +u(1,−i, 0)T , then 1
u3 Tf = β⊗3

0 + β0
⊗3

. If it
is −u(1,+i, 0)T , then f = 0.

Lemma 4. If f is a real-valued signature such that there exist β, γ ∈ C
3,

f = fβ + β⊗2 ⊗ γ + β ⊗ γ ⊗ β + γ ⊗ β⊗2, where β �= 0, 〈β, β〉 = 0, and fβ

is a complex ternary signature satisfying 〈fβ , β〉 = 0, then there exists a real
orthogonal transformation T such that Tf = λe⊗3

3 , λ ∈ R. It implies that there
is an α ∈ R

3, f = α⊗3.

Restricted Holant Dichotomy on Domains 3 and 4 89

Proof. Let β = (β1, β2, β3)T , we have 〈f, β〉 = 〈γ, β〉β⊗2. Let Mi = 〈f, ei〉, for
i = 1, 2, 3, so Mi is real symmetric. Then Miβ = 〈〈f, ei〉, β〉 = 〈〈f, β〉, ei〉 =
βi〈γ, β〉β, for i = 1, 2, 3. As β �= 0, we know βi〈γ, β〉 is a real eigenvalue of Mi.

Suppose 〈γ, β〉 �= 0. Since β �= 0, we can, without loss of generality, assume
β1 �= 0. Then βi

β1
= βi〈γ,β〉

β1〈γ,β〉 is real and well defined (i = 1, 2, 3). We can then write
β = λu, where λ ∈ C, u ∈ R

3 and λ �= 0, u �= 0. In particular, 0 �= λ2〈u, u〉 =
〈β, β〉 = 0. This is a contradiction.

So we have 〈γ, β〉 = 0. Then, 〈f, β〉 = 0. From Lemma 1, we know there exists
some real orthogonal matrix T such that Tβ = tβ0 where t ∈ R, β0 = (1, i, 0)T .
Since β �= 0, we have t �= 0. Then 0 = 〈f, β〉 = 〈Tβ, Tf〉. So Tf has the form

a
ai b

−a bi c
−ai −b ci d

Since Tf is real, we get a = b = c = 0. Thus, Tf = de⊗3
3 for some d ∈ R.

Theorem 2. Let f be a real-valued symmetric ternary function over domain
{R,G,B}. Then Holant∗(f) is #P-hard unless the function f in expressible as
one of the following two forms, in which case the problem is in FP.

1. f = α⊗3 + β⊗3 + γ⊗3 where α, β, γ ∈ R
3 and 〈α, β〉 = 〈β, γ〉 = 〈γ, α〉 = 0.

2. f = α⊗3 + β⊗3 + β
⊗3

where α ∈ R
3, 〈α, β〉 = 〈β, β〉 = 0.

This is equivalent to the existence of a real orthogonal transformation T , s.t.,

1. Tf = ae⊗3
1 + be⊗3

2 + ce⊗3
3 for some a, b, c ∈ R.

2. cTf = ε(β⊗3
0 + β0

⊗3
) + λe⊗3

3 where β0 = (1, i, 0)T , ε ∈ {0, 1}, and for some
c, λ ∈ R and c �= 0.

Proof. This follows from Theorems 3.1 and 3.2 in [11] and Lemmas 2, 3, and 4.

Theorem 2 is the adapted real dichotomy for Holant∗(f) with any real-valued
signature f of arity 3 on domain 3. We showed that in the real case, we can take
a real orthogonal transformation to the corresponding canonical forms. Also
the third tractable case in the scenario of complex dichotomy does not exist
anymore in the real case, which will simplify and expedite the analysis of further
exploration of real dichotomies on domain 4.

3 Holant∗(f) Dichotomy for {0, 1}-Valued f on Domain 4

In this section we give a dichotomy for a single {0, 1}-valued arity-3 symmetric
signature f which is defined on a domain of size 4. We will prove this dichotomy
theorem using a dichotomy for Holant∗(f) on domain 2 [9], and the Holant∗(f)
dichotomy for real-valued signatures f on domain 3 from Sect. 2.

90 Y. Liu et al.

Theorem 3. Let f be a real symmetric ternary function defined on a domain of
size 4. If there is a real orthogonal transformation T such that Tf has one of the
following forms, then Holant∗(f) is P-time computable, where β0 = (1, i, 0, 0)T

and β1 = (0, 0, 1, i)T .

1. For some a, b, c, d ∈ R, Tf = ae⊗3
1 + be⊗3

2 + ce⊗3
3 + de⊗3

4 .
2. For some c, λ1, λ2 ∈ R, and c �= 0, cTf = β⊗3

0 + β0
⊗3

+ λ1e
⊗3
3 + λ2e

⊗3
4 .

3. For some λ1, λ2 ∈ R, Tf = λ1(β⊗3
0 + β0

⊗3
) + λ2(β⊗3

1 + β1
⊗3

).

The proof is by a holographic transformation. The details will be given in the
full version. Notice that Theorem 3 does not claim to be a dichotomy, although
we believe that the listed tractability in fact is a complete list.

Theorem 4. Let f be a {0, 1}-valued symmetric ternary function defined on a
domain of size 4. If f is not among the P-time computable cases in Theorem 3,
then the problem Holant∗(f) is #P-hard. Moreover, for {0, 1}-valued f , only
cases 1 and 2 in Theorem 3 occur.

We remark that for {−1, 1}-valued symmetric ternary functions, the third
tractable case of Theorem 3 does occur. The following is an example:

−1

−1

1

1

−1

1

1

1

−1

−1
1 −1

−1

1
−1

1

−1
−1

1

1

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

1+
√
2

2
√√

2+2
− 1

2
√√

2+2

−√
2−1

2
√√

2+2

1

2
√√

2+2
−1+

√
2

2
√

2−√
2

1

2
√

2−√
2

−1+
√
2

2
√

2−√
2

1

2
√

2−√
2

−3+2
√
2

2
√

10−7
√
2

1−√
2

2
√

10−7
√
2

3−2
√
2

2
√

10−7
√
2

−1+
√
2

2
√

10−7
√
2

−3−2
√
2

2
√

7
√
2+10

1+
√
2

2
√

7
√
2+10

−3−2
√
2

2
√

7
√
2+10

1+
√
2

2
√

7
√
2+10

⎤
⎥⎥⎥⎥⎥⎥⎦

On the left is a signature g. On the right is an orthogonal matrix Q. In fact,
under the transformation, Qg =

√
2 − √

2(β⊗3
0 +β0

⊗3
)−

√
2 +

√
2(β⊗3

1 +β1
⊗3

),
which is one example of the third tractable case of Theorem 3.

There are only a finite (albeit a large) number of {0, 1}-valued symmetric
ternary signatures on domain 4. We will prove Theorem 4 by going through
all signatures using five general strategies. When one signature could not be
identified as #P-hard by any of the five strategies in Sect. 3.1, it is shown that
it actually satisfies the first or second tractable conditions in Theorem 3.

3.1 Strategies

There are five different strategies we use to identify #P-hard signatures.

1. Use gadgets to form a binary symmetric signature which when written as a
matrix M has rank 2. Then apply an orthogonal holographic transformation

T , which transforms M to the form
[

0 0 0 0
0 0 0 0
0 0 λ 0
0 0 0 μ

]
, λμ �= 0. We then interpolate

diag(0, 0, 1, 1), a Boolean equality on the last two (new) domain elements by
Lemma 6. Finally apply the Boolean domain dichotomy.

Restricted Holant Dichotomy on Domains 3 and 4 91

2. Similarly, we form a binary symmetric signature which when written as a
matrix has rank 3. Then apply an orthogonal transformation T and get[0 0 0 0

0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

]
, λ1λ2λ3 �= 0, and interpolate diag(0, 1, 1, 1) by Lemma 5. Finally,

apply Theorem 2 to Tf on the last three (new) domain elements.
3. Find a nonzero unary signature u ∈ R

4, such that 〈f, u〉 = 0. Then define an
orthogonal matrix T with (normalized) u as the first row. T transforms f to
a signature supported on a lower domain (all 0’s except the bottom face of
the signature tetrahedron). Then apply the corresponding dichotomy.

4. Find some nonzero unary signature u ∈ R
4, and nonzero c ∈ R, such that

〈f, u〉 = cu · uT . Define an orthogonal T using (normalized) u to be the first
row. T will transform f to be domain separated (where the first new domain
element R′ is separated from the rest {G′, B′,W ′}, i.e., Tf evaluates to 0,
when R′ is among its input, except possibly on (R′, R′, R′)). Then apply the
domain 3 dichotomy Theorem 2.

5. Use gadgets to construct a symmetric binary signature M which when writ-
ten as a matrix has rank 4, and its 4 eigenvalues λ1, λ2, λ3, λ4 satisfy some
condition under which we can interpolate (by Lemma 7 and Lemma 8) either
diag(0, 0, 1, 1) or diag(0, 1, 1, 1) from diag(λ1, λ2, λ3, λ4). Form the orthogonal
matrix Q such that QMQT = diag(λ1, λ2, λ3, λ4). Finally apply the corre-
sponding lower domain dichotomy to the corresponding part of Qf .

We now show several examples using some of the strategies above.
Consider the tetrahedron on the left; we call this signature g. (Ignore the

triangle on the right for now.)
0

0

1

1

0

0

1

1

1

0
1 1

0

1
0

1

1
1

0

1

− 41
24

√
3

1
4
√
2

− 1
12

√
6

2√
3

0 − 5
3
√
3

− 2√
2

√
2√
3

1√
2

−
√
2

3
√
3

We use strategy 5. Connecting a unary e4 = (0, 0, 0, 1)T to g produces a binary

symmetric function M =
[

1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 0

]
whose eigenvalues are {3, 1,−1,−1}. We

then use an orthogonal matrix Q = 1
2
√

3

[√
3

√
3

√
3

√
3

−1 −1 −1 3

−√
6 0

√
6 0√

2 −2
√

2
√

2 0

]
to diagonalize M ,

i.e., QMQT = diag(3,−1, 1,−1). It follows that we are able to interpolate
diag(0, 1, 1, 1), an equality on the new domain subset {G′, B′,W ′} (by Lemma 7).
We build a new signature grid where we add a binary vertex on each edge between
two Qg’s, and assign diag(0, 1, 1, 1) on all the new degree 2 vertices. Restricting
Qg on {G′, B′,W ′} gives the domain 3 function depicted as the triangle on the

92 Y. Liu et al.

right in the figure above. The binary diag(0, 1, 1, 1) restricts all edges in the new
signature grid to be assigned a color only from {G′, B′,W ′} (no R′) in order the
evaluation of any product term in the partition function to be nonzero. It follows
that we have a problem on domain size 3, which is defined by the ternary signa-
ture on domain 3 shown on the right as a “triangle”. We can apply Theorem 2,
and find that it is #P-hard. Therefore, the problem Holant∗(g) is #P-hard.

Let’s show a tractable example:
0

1

0

1

0

0

0

1

0

1
1 1

0

1
1

0

1
1

0

0

0

0

0

1

0

0

0

0

0

1
1 1

0

2
2

0

0
0

0

0

On the left is g, a ternary signature on domain size 4. There is a unary u =
(1,−1, 0, 0)T such that 〈u, g〉 = 0. Hence, we construct an orthogonal Q =⎡

⎣
1√
2

− 1√
2

0 0

1√
2

1√
2

0 0

0 0 1 0
0 0 0 1

⎤

⎦ (where its first row is the normalized u), such that under the

transformation, g becomes Qg (on the right) and Qg = α⊗3 + β⊗3 where α =
(0,−2

1
6 , 2− 1

3 , 2− 1
3)T and β = (0, 2

1
6 , 2− 1

3 , 2− 1
3)T . Here, after we use strategy

number 3 to transform the problem to one on domain 3, we find it is tractable.
For all {0, 1}-valued ternary signatures on domain size 4, we went through

them using one of the above 5 strategies. It is found that we either can prove
it is #P-hard, or when it fails to do so, it is tractable by being in one of the
tractable forms in Theorem 4.

Tricks in Applying the Domain 3 Dichotomy. To apply the domain 3
dichotomy, there are also several tricks that can help simplify the calculation.

1. When checking whether a real ternary domain 3 signature satisfies the first
tractable form f = α⊗3 + β⊗3 + γ⊗3, we can use different unary signatures
u to connect to it and get different binary functions. Written as a matrix
form M = 〈f, u〉, it’s obviously symmetric. Write its eigen-decomposition
as M = QΛQT , where Q is an orthogonal matrix Q = [q1, q2, q3] where qi

(i = 1, 2, 3) are column vectors, and Λ = diag(λ1, λ2, λ3). If λ1, λ2, λ3 are all
distinct (at most one of them can be 0), and if f falls into the first tractable
case, then the set {±q1,±q2,±q3} is independent of u.

Proof. If f satisfies the first tractable form f = α⊗3 + β⊗3 + γ⊗3, then M =
〈u, f〉 = 〈u, α〉ααT + 〈u, β〉ββT + 〈u, γ〉γγT . Then Mα = 〈u, α〉〈α, α〉α, so α is
an eigenvector of M (if nonzero). Similarly, nonzero β, γ are both eigenvectors
of M . As rankM ≥ 2, at most one of α, β, γ can be 0. So at least two of them

Restricted Holant Dichotomy on Domains 3 and 4 93

are scalar multiples of qi (i = 1, 2, 3). So, at least two of ±qi (i = 1, 2, 3) do not
depend on the choice of u, and the third is uniquely determined by those two
up to a ± factor.

2. When checking whether a real ternary domain 3 signature is in the first
tractability case, we can search for whether there exists a unary u such that
〈u, f〉 = 〈u, u〉uuT . If a nonzero f does not have such a nonzero unary, it
cannot be in the first tractable case since α, β, γ satisfy this relation.

3. To check whether a real ternary domain 3 signature is in the second tractabil-
ity case, assume it has the form f = α⊗3 + β⊗3 + β

⊗3
. If β = 0, then it also

falls into the first tractability category. Now we assume β �= 0. Then we have
a nonzero β such that 〈β, f〉 = 〈β, β〉β β

T
and 〈β, β〉 = 0. So if there does

not exist such a nonzero isotropic β, it is not in the second tractable case.

3.2 Interpolate Restricted Equalities

Suppose for some unary u, the 4-by-4 matrix A = 〈u, f〉 has rank 3. Because A
is a real symmetric matrix, we can construct an orthogonal matrix T so that

TATT =
[0 0 0 0

0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

]
(1)

where λ1λ2λ3 �= 0. We denote by =G,B,W the binary function in (1) if all λi = 1.

Lemma 5. Let H : {R,G,B,W}2 → R be a rank 3 binary function of the form
(1). Then for any F containing H, we have

Holant(F ∪ {=G,B,W }) ≤T Holant(F).

Similarly, we denote by =B,W the binary function in (1) if λ1 = 0 and
λ2 = λ3 = 1. We have

Lemma 6. Let H : {R,G,B,W}2 → R be a rank 2 binary function of the form[
0 0 0 0
0 0 0 0
0 0 λ 0
0 0 0 μ

]
where λμ �= 0. Then for any signature set F containing H, we have

Holant(F ∪ {=B,W }) ≤T Holant(F).

Lemma 5 and 6 enable us to construct instances on a lower domain which
can help establish #P-hardness. In the next two lemmas we interpolate a lower
domain equality directly from a rank 4 real symmetric matrix.

Lemma 7. Let H : {R,G,B,W}2 → R be a rank 4 symmetric binary func-

tion. Let Q be the orthogonal matrix such that QHQT =

[
λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

]
where

λ1λ2λ3λ4 �= 0. If the four eigenvalues λ1, λ2, λ3, λ4 further satisfy the condition:
for all s, a, b, c ∈ Z, s > 0, if a + b + c = s then λs

1 �= λa
2λb

3λ
c
4. Then for any F

containing H, we have

Holant(QF ∪ {=G,B,W }) ≤T Holant(F).

94 Y. Liu et al.

Similarly, we have Lemma 8.

Lemma 8. Let H : {R,G,B,W}2 → R be a rank 4 symmetric binary func-

tion. Let Q be the orthogonal matrix such that QHQT =

[
λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

]
where

λ1λ2λ3λ4 �= 0. If the four eigenvalues λ1, λ2, λ3, λ4 further satisfy the condition:
for all s, t, a, b ∈ Z, s, t ≥ 0, s + t > 0, if a + b = s + t then λs

1λ
t
2 �= λa

3λb
4. Then

for any F containing H, we have

Holant(QF ∪ {=B,W }) ≤T Holant(F).

Let U be the set of all complex unaries and f be a possibly complex signature,
both over domain 3. Then by definition, Holant∗(f) = Holant(f ∪U). When f is
a real-valued signature, we temporarily define Holantr∗(f) as the Holant problem
where only all the real unaries are available. In Lemma 9, we prove that in fact
the complexity of the problem Holantr∗(f) is the same as Holant∗(f). (Hence,
after Lemma 9, this new notation Holantr∗(f) will be seen as unimportant, as
far as the complexity of the problem is concerned.) The same lemma also holds
for any domain k; the proof of Lemma 9 is easily adapted.

Lemma 9. For any real signature f over domain 3, we have

Holant∗(f) ≤T Holantr∗(f).

Proof. By Theorem 3.1 in [11], the problem Holant∗(f) is either polynomial-
time solvable, or it is #P-hard. If it is polynomial-time solvable, then the
reduction trivially holds. Otherwise, it is #P-hard. This means that there exist
finitely many unaries u1, u2, . . . , uk, possibly complex-valued, such that the
problem Holant({f, u1, . . . , uk}) is #P-hard. We prove that Holant({f, u}) ≤T

Holantr∗(f), for any complex-valued u, and then use induction, as k is a constant.
Now consider an arbitrary instance I of Holant({f, u}) and suppose the unary

function u appears m times in I. We write u = [x, y, z] where x, y, z ∈ C. We
may assume u �= 0, and by symmetry we may assume z �= 0. We stratify the edge
assignments according to the number of Red, Green and Blue assigned to the
u’s. Specifically, let ρij denote the sum of products of the evaluations of all f ’s,
where the sum is over all assignments with exactly i many times Red, j many
times Green, and (m − i − j) many times Blue are assigned to the u’s. Then

the Holant value on the instance I can be written as
m∑

i=0

m−i∑
j=0

ρijx
iyjzm−i−j =

zm
m∑

i=0

m−i∑
j=0

ρij(x
z)i(y

z)j . Observe that once we know all the values of ρij , we can

compute the Holant value of I in P-time. We now interpolate the values of ρij .
We construct the instances Ik, 1 ≤ k ≤ (

m+2
2

)
, for the problem Holantr∗(f).

For any such k, let Ik be the same signature grid as I except we replace every
appearance of u by the real unary [3k, 2k, 1]. Then, the Holant value for Ik

Restricted Holant Dichotomy on Domains 3 and 4 95

equals to
m∑

i=0

m−i∑
j=0

ρij3ki2kj . Therefore, we can write a non-degenerate Vander-

monde system, where the matrix has entries 3ki2kj with the columns indexed
by lexicographical order of the tuples (i, j) and the rows indexed by k, and the
unknown variables are ρij . We can then solve for ρij and therefore compute the
Holant value of I in polynomial time. This finishes the proof of the lemma.

References

1. Backens, M.: A full dichotomy for Holantc, inspired by quantum computation.
SIAM J. Comput. 50(6), 1739–1799 (2021). https://doi.org/10.1137/20M1311557

2. Backens, M., Goldberg, L.A.: Holant clones and the approximability of conservative
Holant problems. ACM Trans. Algorithms 16(2), 23:1-23:55 (2020). https://doi.
org/10.1145/3381425

3. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on
a 3-element set. JACM 53(1), 66–120 (2006). https://doi.org/10.1145/1120582.
1120584

4. Cai, J.Y., Chen, X.: Complexity of counting CSP with complex weights. JACM
64(3), 19:1-19:39 (2017). https://doi.org/10.1145/2822891

5. Cai, J.Y., Chen, X., Lu, P.: Nonnegative weighted# CSP: an effective complexity
dichotomy. SIAM J. Comput. 45(6), 2177–2198 (2016). https://doi.org/10.1137/
15M1032314

6. Cai, J., Guo, H., Williams, T.: The complexity of counting edge colorings and
a dichotomy for some higher domain Holant problems. In: 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA,
USA, October 18–21, 2014, pp. 601–610. IEEE Computer Society (2014). https://
doi.org/10.1109/FOCS.2014.70

7. Cai, J.Y., Guo, H., Williams, T.: A complete dichotomy rises from the capture of
vanishing signatures. SIAM J. Comput. 45(5), 1671–1728 (2016). https://doi.org/
10.1137/15M1049798

8. Cai, J.Y., Lu, P.: Holographic algorithms: from art to science. J. Comput. Syst.
Sci. 77(1), 41–61 (2011). https://doi.org/10.1016/j.jcss.2010.06.005

9. Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms by Fibonacci gates and Holo-
graphic reductions for hardness. In: 2008 49th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 644–653 (2008). https://doi.org/10.1109/FOCS.
2008.34

10. Cai, J.Y., Lu, P., Xia, M.: Holant problems and counting CSP. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, pp. 715–724
(2009). https://doi.org/10.1145/1536414.1536511

11. Cai, J.Y., Lu, P., Xia, M.: Dichotomy for Holant* problems with domain size 3. In:
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6–8, 2013, pp.
1278–1295. SIAM (2013). https://doi.org/10.1137/1.9781611973105.93

12. Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms with matchgates capture pre-
cisely tractable planar #CSP. SIAM J. Comput. 46(3), 853–889 (2017). https://
doi.org/10.1137/16M1073984

13. Dyer, M., Richerby, D.: An effective dichotomy for the counting constraint satis-
faction problem. SIAM J. Comput. 42(3), 1245–1274 (2013). https://doi.org/10.
1137/100811258

https://doi.org/10.1137/20M1311557
https://doi.org/10.1145/3381425
https://doi.org/10.1145/3381425
https://doi.org/10.1145/1120582.1120584
https://doi.org/10.1145/1120582.1120584
https://doi.org/10.1145/2822891
https://doi.org/10.1137/15M1032314
https://doi.org/10.1137/15M1032314
https://doi.org/10.1109/FOCS.2014.70
https://doi.org/10.1109/FOCS.2014.70
https://doi.org/10.1137/15M1049798
https://doi.org/10.1137/15M1049798
https://doi.org/10.1016/j.jcss.2010.06.005
https://doi.org/10.1109/FOCS.2008.34
https://doi.org/10.1109/FOCS.2008.34
https://doi.org/10.1145/1536414.1536511
https://doi.org/10.1137/1.9781611973105.93
https://doi.org/10.1137/16M1073984
https://doi.org/10.1137/16M1073984
https://doi.org/10.1137/100811258
https://doi.org/10.1137/100811258

96 Y. Liu et al.

14. Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity,
and homomorphism of graphs. J. Amer. Math. Soc. 20(1), 37–51 (2007)

15. Fu, Z., Yang, F., Yin, M.: On blockwise symmetric matchgate signatures and higher
domain #CSP. Inf. Comput. 264, 1–11 (2019). https://doi.org/10.1016/j.ic.2018.
09.012

16. Guo, H., Huang, S., Lu, P., Xia, M.: The complexity of weighted Boolean #CSP
modulo k. In: 28th International Symposium on Theoretical Aspects of Computer
Science, STACS, pp. 249–260 (2011). https://doi.org/10.4230/LIPIcs.STACS.2011.
249

17. Guo, H., Lu, P., Valiant, L.G.: The complexity of symmetric Boolean parity
Holant problems. SIAM J. Comput. 42(1), 324–356 (2013). https://doi.org/10.
1137/100815530

18. Hell, P., Nešetřil, J.: Graphs and Homomorphisms, Oxford Lecture Series in Math-
ematics and its Applications, vol. 28. Oxford University Press (2004)

19. Kowalczyk, M., Cai, J.Y.: Holant problems for 3-regular graphs with complex edge
functions. Theory Comput. Syst. 59(1), 133–158 (2016). https://doi.org/10.1007/
s00224-016-9671-7

20. Szegedy, B.: Edge coloring models and reflection positivity. J. Am. Math. Soc.
20(4), 969–988 (2007)

21. Szegedy, B.: Edge Coloring Models as Singular Vertex Coloring Models, pp. 327–
336. Bolyai Society Mathematical Studies. Springer, Berlin Heidelberg pp (2010)

22. Valiant, L.G.: Accidental algorithms. In: 47th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS, pp. 509–517. IEEE (2006). https://doi.org/
10.1109/FOCS.2006.7

23. Valiant, L.G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008).
https://doi.org/10.1137/070682575

24. Xia, M.: Holographic reduction: a domain changed application and its partial
converse theorems. Int. J. Softw. Informatics 5(4), 567–577 (2011). https://
www.ijsi.org/ch/reader/view abstract.aspx?file no=i109 https://www.ijsi.org/
ch/reader/view abstract.aspx?file no=i109 https://www.ijsi.org/ch/reader/view
abstract.aspx?file no=i109

https://doi.org/10.1016/j.ic.2018.09.012
https://doi.org/10.1016/j.ic.2018.09.012
https://doi.org/10.4230/LIPIcs.STACS.2011.249
https://doi.org/10.4230/LIPIcs.STACS.2011.249
https://doi.org/10.1137/100815530
https://doi.org/10.1137/100815530
https://doi.org/10.1007/s00224-016-9671-7
https://doi.org/10.1007/s00224-016-9671-7
https://doi.org/10.1109/FOCS.2006.7
https://doi.org/10.1109/FOCS.2006.7
https://doi.org/10.1137/070682575
https://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i109
https://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i109
https://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i109
https://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i109
https://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i109
https://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i109

Earliest Deadline First Is
a 2-Approximation for DARP with Time

Windows

Barbara M. Anthony1 , Christine Chung2 , Ananya Das3(B) ,
and David Yuen4

1 Southwestern University, Georgetown, TX 78626, USA
anthonyb@southwestern.edu

2 Connecticut College, New London, CT 06320, USA
cchung@conncoll.edu

3 Middlebury College, Middlebury, VT 05753, USA
adas@middlebury.edu

4 Kapolei, HI 96707, USA

yuen888@hawaii.edu

Abstract. Dial-a-Ride problems (DARP) require determining a sched-
ule to efficiently serve transportation requests in various scenarios. We
consider a variant of offline DARP in a uniform metric space where
requests have release times and deadlines, and are all of equal dura-
tion and value. The goal is for a single unit-speed, unit-capacity server
to serve as many requests as possible by an overall time limit, and this
problem is NP-hard. We show that a natural greedy algorithm, Earliest
Deadline First, is a 2-approximation, and this is tight.

Keywords: Approximation algorithms · Deadline scheduling ·
Dial-a-Ride problems

1 Introduction

The widely studied Dial-a-Ride Problem (DARP) requires scheduling one or
more servers to complete a sequence of rides, each consisting of a pickup location
(or source) and delivery location (or destination). Common optimality criteria
include minimizing makespan (i.e., the time the server has completed the last
request), minimizing the average flow time (i.e., the difference in a request’s
completion and release times), or maximizing the number of served requests
within a specified time limit. In many variants preemption is not allowed, so if
the server begins to serve a request, it must do so until completion. Applications
include the transport of people and goods, including package delivery services,
ambulances, ride-hailing services, and paratransit services. For an overview of
DARP and its many variants, please refer to the surveys [13,18,23].

In this work we study offline DARP on the uniform metric space with a
single unit-capacity server, where each request has a source, destination, release
time, and deadline. Requests can be served only between their release time and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 97–110, 2024.
https://doi.org/10.1007/978-3-031-49614-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_6&domain=pdf
http://orcid.org/0000-0002-2493-1251
http://orcid.org/0000-0003-3580-9275
http://orcid.org/0000-0001-9445-1475
http://orcid.org/0000-0001-9827-0962
https://doi.org/10.1007/978-3-031-49614-1_6

98 B. M. Anthony et al.

their deadline and may not be preempted. The server also has a specified time
limit T after which no more requests can be served, and the goal is to maximize
the number of requests served within T . This variant may be useful for settings
where several equal-length requests must be completed within a deadline and
each one has a specified time window for completion.

For the remainder of this paper, we refer to this request-maximizing, Time-
bounded DARP variant, where each request has a specified Time Window (its
release time to its deadline) as TDARPTW. TDARPTW is NP-hard because a
special case of the problem without time windows, TDARP, where each request
can be considered to have release time 0 and deadline T , has already been shown
to be NP-hard in [1]. At any time t, given the current server location, we refer to
a request as servable if it has not already been served, and can feasibly be served
by its deadline. In this work, we show that the algorithm, which we refer to as
earliest deadline first (edf), that continuously serves the servable request
with the earliest deadline, has approximation ratio at most 2 for TDARPTW.

A common objective studied in previous DARP work is to minimize the time
needed to serve all requests, as inspired by the original objective of the Traveling
Salesperson Problem, since DARP is a generalization of TSP [8,17]. We note
that this more classical DARP objective can be reduced to the time-bounded
variant we study here, which has the objective of maximizing the number of
requests served by time T . A solution for our time-bounded request-maximizing
TDARP can be invoked a polynomial number of times to find the minimum
time-bound where all requests can be served. Hence TDARP is at least as hard
as its corresponding more classical DARP variants.

There has been limited prior work on approximation algorithms for TDARP
in the offline setting. The work in [5] gives a O(log n)-approximation for the
closely related Vehicle Routing with Time Windows problem where n nodes in
a metric space have release times and deadlines and the goal is to visit as many
nodes as possible within their time windows. The work of [1] presented a 3/2-
approximation algorithm for the uniform metric version of the problem without
the constraint of time windows, or equivalently, where the time window for each
request was assumed to be [0, T]. The work of [2] showed that the Segmented
Best Path algorithm of [11,12] is a 4-approximation for TDARP on non-uniform
metric spaces. That same work also shows that a greedy algorithm that repeat-
edly serves the fastest set of k remaining requests has an approximation ratio of
2 + �λ�/k, where λ denotes the aspect ratio of the metric space.

In much of the voluminous and wide-ranging DARP literature, which is most
often generated by applied researchers in operations and management, the term
“time windows” often refers to slightly different notions than in our model, where
we simply have a release time and a deadline per request. DARP in settings with
time windows has been extensively studied with various parameters [16,19,21,
24], and the particular definition of time windows in our model has also been
studied in works such as [26–28], which unlike all the empirical research in DARP,
lies instead in the domain of competitive analysis of online DARP problems. In
this domain, there have been a number of notable recent developments, albeit
with different objectives [4,6,7].

EDF is a 2-Approx for TDARPTW 99

ODAPRTW, investigated by [27], is the same as our TDARPTW problem,
except the server has no overarching time limit, and their problem is online,
so the requests are not known a priori, but instead arrive over time. They also
assume the time windows are of uniform length for all requests, and their goal
is to maximize the number of requests that meet their deadlines. They give an
algorithm with competitive ratio (2−Δ)/(2Δ), where Δ denotes the diameter of
the metric space. In [26] they consider time windows of non-uniform length, as
we do, but in the online setting. They find that a greedy-by-deadline algorithm
is 3-competitive in the uniform metric.

DARP problems also generalize scheduling problems, as they require requests
to be served with the additional constraint of a metric space in which the server
must move to reach each request it wishes to serve. Scheduling requests with a
given deadline for each request is part of the setting in many classical problems
studied in scheduling theory literature, and the Deadline Scheduling Problem,
for example, is well-known to be (strongly) NP-hard [20].

The edf scheduling algorithm is a simple greedy approach that is well-
known to be effective in many different contexts—offline, online, and in real-
time systems—for various scheduling objectives where jobs to be scheduled have
deadlines (for a sample of such settings, see [9,10,14,15,20,25]). Due to space
constraints, we omit a more detailed discussion of the scheduling literature here.
To our knowledge, our work is the first to present an approximation guarantee
for greedy edf scheduling of DARP requests with release times and deadlines.

2 Formalizing the Problem and Algorithm

The input for an instance of our problem, TDARPTW, consists of a uniform
metric space, an origin, a set of requests S, and an overall time limit T . The
origin o, a point in the metric space, indicates where the server is at time 0; a
request may start at o but need not. Each request is an ordered tuple (s, d, a, b)
consisting of the source s, destination d, release time a, and deadline b. We focus
on the offline variant, where all information is known at time 0.

We assume without loss of generality that all time values (e.g., release times,
deadlines, T) are integers. We do not allow preemption so if the server begins
serving a request, it will serve it to completion. For any request i, let ai and
bi denote the release time and deadline of i, respectively, with 0 ≤ ai < bi. We
refer to [ai, bi] as the time window for request i. The goal for TDARPTW is
to maximize the number of requests that a single unit-capacity server can serve
within their time windows by the time limit T .

For an algorithm alg and a TDARPTW instance I, alg(I) denotes the
schedule created by alg on I, i.e., the action prescribed by alg for the server
at each time unit, and opt(I) denotes an optimal schedule on I. |alg(I)| and
|opt(I)| denote the number requests served by alg and opt, respectively, on
instance I. When the instance is clear from the context, (I) may be dropped.

We define a request to be “servable” at a given time if it can be reached and
served within its time window. We also define “drive” below, similarly to [1].

100 B. M. Anthony et al.

In the uniform metric space, all drives (empty or service) each take one time
unit. We emphasize that because the schedule is part of the definition of a drive,
serving the same request in edf(I) and opt(I), even during the same time unit,
is considered two distinct drives.

Definition 1. For a request i and a time t, let hi(t) be an indicator variable
where hi(t) = 0 if the server is at the source of request i at time t and hi(t) = 1
otherwise. We characterize request i as servable at time t if request i has not
already been served by time t and ai ≤ t + hi(t) and bi ≥ t + hi(t) + 1.

Definition 2. A drive refers to one movement of the server from one point in
the metric space to a second (not necessarily distinct) point at a specific time in
a given schedule (e.g. edf or opt). A drive that serves a request is a service
drive. A drive that does not serve a request but simply re-positions the server or
allows it to remain at the current location for one time unit is an empty drive.

2.1 The Earliest Deadline First (EDF) Algorithm

One might be inclined to think it is trivial to find an algorithm that serves a
request every other time unit, giving a 2-approximation. However, due to the
constraints of the release times and deadlines, such schedules may not always
exist or be straightforward to find.

The focus of this paper is on an algorithm inspired by the well-established
earliest deadline first greedy algorithms from the scheduling literature (see, e.g.,
[20,25]). Informally, we greedily consider all servable requests, serving one with
the soonest deadline, breaking ties arbitrarily, as long as time remains. Our edf
algorithm is formally described in Algorithm 1. Note that edf does not simply
sort by earliest deadline, as a request is servable only if it has been released.
Furthermore, edf will first consider requests that can be served in the next two
time units rather than only those in the next time unit, as only those requests
that begin where the server is currently located can be served in the next time
unit. Requiring the server to prioritize requests at its current location could result
in serving requests with later deadlines while requests with earlier deadlines are
available. This is not necessarily beneficial as we show in Theorem 4.

3 Our Results

We first lower bound the performance of edf by showing that there exist
instances of TDARPTW such that |edf| = |opt|/2.

Theorem 1. There exist arbitrarily large instances of TDARPTW such that
|opt| = 2 · |edf|.
Proof. Consider an instance which consists of T requests, each with release time
0 and deadline T , where the destination of one request is the source of the next
request, and T/2 requests, each with release time 1 and deadline T −1, where all

EDF is a 2-Approx for TDARPTW 101

Algorithm 1. The Earliest Deadline First (edf) algorithm
1: Input: Metric space of points, set S of requests, time limit T , origin o.
2: while t ≤ T − 2 do
3: if there are no servable requests (recall definition of servable) then
4: t = t + 1
5: else
6: Choose a request, r, with the earliest deadline among all servable requests.
7: Let s and d denote the source and destination, respectively, of r.
8: if the server is at s then
9: Serve r during time [t, t + 1]. Set t = t + 1.

10: else
11: During [t, t + 1], move the server to s and during [t + 1, t + 2] serve r.
12: Set t = t + 2.
13: end if
14: end if
15: end while
16: if t = T − 1 and there is a servable request then
17: Serve any such servable request during [t, T].
18: end if

the sources and destinations are distinct points in the metric space. No requests
have their source at the origin.

opt can serve all T − 1 of the requests with release time 0 and deadline T ;
no better solution is possible in time T as there is no request beginning at the
origin. Thus, |opt| = T − 1. edf chooses a request with deadline T − 1 over
any request with deadline T . Accordingly, edf serves all (T −1)/2 requests with
deadline T −1 and must do an empty drive between every pair of requests, giving
|edf| = (T − 1)/2 = |opt|/2. ��

For the upper bound, we will show by induction that |opt(I)| ≤ 2|edf(I)|+1
for any input instance I. The most involved case of the proof is when edf(I) has
as least two consecutive empty drives, so we define terminology for that scenario
and a given instance I, enabling us to derive various facts that we can then use
in the overall proof. Key to our work is considering what requests are or could
have been servable before the first time edf makes two consecutive empty drives,
since without two consecutive empty drives, edf would be serving at least one
request every other time unit, immediately giving us the ratio of 2. Accordingly,
let the earliest such occurrence of two consecutive empty drives by edf(I) be
during the interval [τ, τ + 2], for some time τ ≤ T − 2. Let w be the number of
requests edf(I) has served by time τ .

We now focus on requests that are served before τ , and in particular, requests
whose deadlines are after τ , since our induction will be based on a smaller
instance created by removing such requests. Let E∗ be the set of empty drives
that opt(I) makes during [0, τ]. Let R∗ be the set of requests with deadline
≥ τ + 2 that opt(I) serves during [0, τ + 2]. We define a set R to be analogous
to R∗ except served by edf(I) instead of by opt(I). Formally, let R be the set

102 B. M. Anthony et al.

of requests with deadline ≥ τ +2 that edf serves during [0, τ +2]. Note that the
deadline requirement for R∗ requests ensures that R∗ ⊆ R, since if a request in
R∗ was not served by edf during [0, τ], it could have then been served during
[τ, τ + 2] in which edf makes two empty drives. The size of the set R − R∗ is
important in the inductive proof of Theorem 2.

We further partition the requests in R into two sets depending upon whether
or not they were served in edf(I) after an empty drive. Formally, define dis-
joint sets X and Y with X ∪ Y = R as follows: Y ⊆ R are requests served in
edf(I) after time interval [0, 1] that do not immediately follow another request in
edf(I); they must follow an empty drive in edf(I). X ⊆ R are requests which
are either served at time 0 or immediately follow another request in edf(I),
which could have been in X but could likewise have been in Y or need not have
been in R at all if its deadline was less than τ + 2.

Let the set Q be all requests served in edf(I) by time τ that were not
preceded in edf(I) by an empty drive. Thus, all requests in Q are either served
at time 0 or immediately follow another request served by edf. Q is a superset of
X, as unlike X, the requests in Q are not constrained to have a deadline ≥ τ +2.

Since τ is the first time at which two consecutive empty drives occur in edf’s
schedule, every empty drive by edf in [0, τ] is followed by a request served. We
can thus add the number of requests served by edf by time τ , or w, to the
number of empty drives by edf prior to τ , or w − |Q|, to get

τ = 2w − |Q| (1)

Understanding how edf differs from opt allows us to bound edf’s perfor-
mance. As such, we construct an alternating sequence of drives that we call a
trace that allows us to catalog edf’s non-optimal choices, as well as what opt
was doing when edf served a different request, “tracing” through the two par-
allel schedules to the roots of the discrepancies between the two schedules. See
Fig. 1 for an example.

Definition 3. An alternating trace, or simply a trace, is a sequence of dis-
tinct drives that alternates between drives of opt and drives of edf. A trace
is constructed using the rules below, beginning with the initialization in Rule 1
and then iterating between Rule 2 and Rule 3 as applicable until a termination
condition (Rule 4-Rule 6) is reached. A maximal alternating trace is a trace
that is not a proper subsequence of any other trace.

Rule 1 Begin the trace with a drive in edf from R or a drive in opt from R∗.
Rule 2 If the drive most recently added to the trace is a request served by opt,

it is immediately followed in the trace by the edf drive serving the same
request. (Note that we know edf has indeed served the same request
at some point due to Lemma 1 below.)

Rule 3 If the drive most recently added to the trace is a drive edf did at some
time t and is preceded in edf by an empty drive, then the next drive
in the trace is the drive opt did at time t.

EDF is a 2-Approx for TDARPTW 103

Fig. 1. An alternating trace. This figure depicts the schedule of drives in edf in parallel
with that of opt, with time increasing to the right. Each drive (empty or service) is
represented by a directed edge to the right between two points. The trace itself is
represented by the dashed edges leading from a drive in one schedule to a drive in the
other. The trace shown here starts with a drive in edf serving a request from Y ⊆ R,
and ends with an empty drive of opt (in E∗). Drives that are the same shade serve
the same request.

Rule 4 If the drive most recently added to the trace is one that edf did at time
t that was not preceded in edf by an empty drive at time t − 1, then
the trace terminates after said drive.

Rule 5 An empty drive in opt ends the trace.
Rule 6 If the preceding rules ever result in an attempt to add a drive that is

already part of the trace, the trace instead terminates (e.g., if there is
a request served by both edf and opt at the same time, and applying
Rule 2 would cause the same edf drive to be added to the trace a second
time). This rule prevents the same drive within a schedule from being
repeated in the trace.

Maximal alternating traces are disjoint from one another due to the deter-
ministic nature of their construction. We use the following lemma for Rule 2,
above, as well as for our main result in Theorem 2.

Lemma 1. In a maximal trace, every request served by a drive of opt must
also be served by a drive of edf, and these drives never occur past τ + 2.

Proof Idea. Suppose there is a trace with a drive of opt before time τ + 2
serving a request q ∈ R∗. Then edf could have served q at time τ + 1, but did
not because edf has two empty moves during [τ, τ + 2]. Therefore edf must
have already served q before time τ , implying q ∈ R. The difficult case is when
q /∈ R∗, having a deadline before τ + 2, and hence also q /∈ R. For this case, we
strengthen the inductive hypothesis, and show any request satisfying certain time
window constraints (which any request served by opt must also satisfy) will be
served by edf. Due to space limitations, the proof is deferred to the full version
([3]). ��

To aid in categorizing maximal traces, in Lemma 2 we state their possible
termination types. Note that every request in R and R∗ appears exactly once
in some maximal trace. To relate |edf| to |opt| we endeavor to find a relation

104 B. M. Anthony et al.

between the sizes of R − R∗, Q, and E∗. An increase in |R − R∗| can decrease
what edf serves after time τ , an increase in |Q| increases what edf serves before
time τ , and an increase in |E∗| decreases what opt serves before time τ .

Lemma 2. Other than traces that consist of a drive from opt and a drive from
edf that serve the same request in the same time unit2, any maximal alternating
trace ends in Q or E∗.

Proof. By Lemma 1 and Rule 2, a maximal trace cannot end at a request served
by opt except in the case of Rule 6. Thus the only way of ending a trace is if
edf serves a request in Q (Rule 4), or if opt does an empty drive (Rule 5). ��

Let C denote the collection of all maximal alternating traces. Due to Lemma
2, we may partition C into six categories C0 through C5 as described below.
(Also see Fig. 2.) For the remainder of this work, the term “trace” always refers
to maximal traces.

Fig. 2. Small examples depicting four general categories of traces (from left to right):
C1, C2, C3, and C4. Recall that Y ⊆ R. To avoid crossing lines, these are samples of
traces that proceed from later in the schedules to earlier, but as shown in Fig. 1, the
upward edges may, more generally, also point forward in time rather than backward.

Trace categories C0 and C5 are not shown in Fig. 2, as they are special cases
where the trace includes only a single request.
C0: traces consisting solely of requests from X (terminated immediately due to

Rule 4)
C1: traces beginning with a request from Y ⊆ R and ending with an empty drive

from E∗ (terminated due to Rule 5); one such trace was also seen in Fig. 1.
C2: traces beginning with a request from R∗ and ending with an empty drive

from E∗ (terminated due to Rule 5)
C3: traces beginning with a request from Y ⊆ R and ending with a request from

Q (terminated due to Rule 4)
C4: traces beginning with a request from R∗ and ending with a request from Q

(terminated due to Rule 4)
C5: traces consisting only of two drives: the same request served at the same

time in both R∗ and Y (terminated due to Rule 6)

Definition 4. For any set of requests P , we define Pi to be the number of
requests from P that occur in a trace from category Ci.
2 In this special case, represented by category C5, the trace ends in R∗ or Y .

EDF is a 2-Approx for TDARPTW 105

We derive the following facts about the size of R∗ by considering trace cat-
egories C0 to C5. From Lemma 1, we know that R∗

i ≤ Ri = Xi + Yi for any
trace category i = 1 . . . 5, and we also know from Rule 2 that every request of
Xi or Yi was preceded in the trace by a request of R∗

i , so R∗
i = Xi + Yi, unless

the trace started with an additional drive from edf. So for trace categories that
start with an initial edf request (from Y , in the case of C1 or C3, or from X,
in the case of C0) we must subtract |Ci| in computing the size of R∗.

Fact 0: R∗
0 = X0 + Y0 − |C0|. (Here, Y0 = 0 and X0 = |C0|, so R∗

0 = 0.)
Fact 1: R∗

1 = X1 + Y1 − |C1|. (Here, X1 = 0.)
Fact 2: R∗

2 = X2 + Y2. (Here, X2 = 0.)
Fact 3: R∗

3 = X3 + Y3 − |C3|.
Fact 4: R∗

4 = X4 + Y4.
Fact 5: R∗

5 = X5 + Y5. (Here, X5 = 0.)

We are now ready to prove the main theorem of this work.

Theorem 2. |opt(I)| ≤ 2|edf(I)|+1 for any input instance I of TDARPTW.

Proof. We proceed by induction on |edf(I)| + T . Base step: |edf(I)| + T = 1.
In this case T = 1 and |edf(I)| = 0. Since edf cannot serve any requests, then
neither can opt. So |opt(I)| = 0, and the claim is satisfied.

Inductive step: For the inductive step, we thus consider |edf(I)|+T ≥ 2 and
suppose the theorem holds for any instance I ′ where |edf(I ′)|+T < |edf(I)|+T .

We consider two cases depending upon the size of T compared to |edf(I)|.
Case 1: T ≤ 2|edf(I)|+1. In this straightforward case, because of the time limit,
opt can serve at most 2|edf(I)| + 1 requests, so the claim holds.
Case 2: T ≥ 2|edf(I)| + 2. Since T − |edf(I)| ≥ |edf(I)| + 2, edf(I) must have
|edf(I)|+2 or more empty drives, and thus at least two consecutive empty drives.
As defined above, the earliest such occurrence is during the interval [τ, τ + 2].

Summing the six labeled facts above and noting that |R| = |X| + |Y | =
X0 + X3 + X4 + Y1 + Y2 + . . . + Y5, we have

|R| − |R∗| = |C1| + |C3| + |C0|. (2)

We now define a sub-instance I ′ of the original instance I as follows. We
remove all requests that edf served by time τ , and we also remove any requests
with deadline at most τ +2. The origin is at the point in the metric space where
edf(I) (edf’s schedule on the original instance) places the server at time τ + 1;
denote said point as m. The new time limit is T −(τ +1), but to avoid confusion,
we will view the time in I ′ as running from time τ + 1 to time T .

Observe that by construction there are no servable requests in this sub-
instance I ′ at time τ + 1: any request with release time τ + 1 or earlier and
deadline greater than τ + 2 would have already been served by edf because
otherwise edf(I) would not have had two consecutive empty drives at time τ .

Let w∗ denote the number of requests served by opt(I) in [0, τ + 2]. To give
a lower bound on opt’s performance on the sub-instance (opt(I ′)), we consider

106 B. M. Anthony et al.

the subschedule of opt(I) starting at time τ + 2 continuing on opt(I)’s path
to time T . We let P denote this subschedule concatenated with a single drive
from m to the front. The requests served by following P on I ′ number at least
|opt(I)| − w∗ − (|R| − |R∗|): this accounts for all of the requests that opt(I)
serves in time [τ +2, T] (the |opt(I)|−w∗) as well as those served by edf(I) by
time τ +2 with deadline τ +2 or later (collectively |R|), except for those opt(I)
had served by time τ + 2 (which total |R∗|). Hence,

|opt(I)| − w∗ − (|R| − |R∗|) ≤ |opt(I ′)|. (3)

By induction on the sub-instance I ′, since no request can be served in the
first time unit, we have |opt(I ′)| ≤ 2|edf(I ′)|. Observe that edf(I ′) has the
same schedule as the suffix of edf(I) starting from τ + 1. Thus, since edf(I)
serves w requests by time τ , edf(I ′) serves precisely |edf(I)|−w requests. Thus,

|opt(I)| ≤ w∗ + (|R| − |R∗|) + 2|edf(I)| − 2w. (4)

To bound w∗, we let z be a binary indicator variable denoting whether or not
opt(I) serves a request at time [τ + 1, τ + 2], with value 1 if it does. Thus,
w∗ ≤ (τ + 1) + z − |E∗|. Combined with Eqs. 2 and 4, we get

|opt(I)| ≤ τ + 1 + z − |E∗| + (|C1| + |C3| + |C0|) + 2|edf(I)| − 2w. (5)

We now consider how |E∗| relates to other quantities, defining E′ informally
as the empty drives of opt not appearing in any trace. Formally, let E′ =
E∗ − (E∗

1 ∪ E∗
2), since empty drives of opt appear in traces of category C1 or

C2 only. Using the observations that E∗
1 = |C1| and E∗

2 = |C2|, we have

|E∗| = |E′| + |C1| + |C2|. (6)

Substituting Eqs. 1 and 6 into Eq. 5 gives:

|opt(I)| ≤ −|Q| + 1 + z − |E′| − |C2| + |C3| + |C0| + 2|edf(I)|. (7)

Because each C0, C3 or C4 trace has an element from Q and such requests
are all distinct, |Q| ≥ |C0| + |C3| + |C4|. Combining that with Eq. 7 gives

|opt(I)| ≤ 1 + z − |E′| − |C2| − |C4| + 2|edf(I)|. (8)

Observe that if z = 1, the opt request at time [τ + 1, τ + 2] begins a C2 or
C4 trace, ensuring |C4| + |C2| ≥ z, whether z is 1 or 0. Thus,

|opt(I)| ≤ 1 − |E′| + 2|edf(I)|, (9)

allowing us to conclude that |opt(I)| ≤ 2|edf(I)| + 1. ��
If opt(I) did not serve a request in the first time unit we can remove the

additive 1 term in the upper bound, getting a stronger formulation. Note that
this case will always occur if there is no request whose source is the origin.

EDF is a 2-Approx for TDARPTW 107

Theorem 3. For any instance I of TDARPTW on which opt(I) does not serve
a request during the time [0, 1], |opt(I)| ≤ 2|edf(I)|.
Proof. In the straightforward case where T ≤ 2|edf(I)| + 1, if opt does not
serve a request in the first time unit, then opt can serve at most 2|edf(I)|,
satisfying the claim.

For the other case, where T ≥ 2|edf(I)| + 2, we begin with Eq. 9 from
Theorem 2, |opt(I)| ≤ 1 − |E′| + 2|edf(I)|, which holds for any instance of the
problem, and now consider how it can be refined when opt(I) does not serve a
request during [0, 1]. We consider whether edf(I) served a request during [0, 1].
If edf(I) also did not serve a request during [0, 1] then opt(I)’s empty drive at
[0, 1] does not appear in any trace (since according to the rules of traces, empty
drives of edf do not belong in any trace), but is in E′, so |E′| ≥ 1, and thus
|opt(I)| ≤ 2|edf(I)|, satisfying the claim.

If edf(I) does serve a request, call it r1, during [0, 1] we now show by induc-
tion on a smaller instance that the same conclusion is reached. This smaller
instance I differs from the original input I in that its origin ō is the destination
of r1, request r1 is removed from the set of requests, and the time limit is T − 1.
Note that |edf(I)| = |edf(I)| − 1.

Let P denote the path that proceeds from ō to where opt(I) is at time 2 (call
that location f) and then continues on opt(I)’s path for the remaining T − 2
units of time. We will use P to serve as a proxy for opt to bound the value of
opt(I). Let z be an indicator variable denoting whether or not there is a servable
request at time 2 from ō to f . We lower bound the number of requests P served
by considering that while P largely aligns with opt(I), if opt served r1, P will
not because r1 is no longer present in I and P may now make a different move
during time [1, 2]. Accordingly, |P | ≥ |opt(I)|− 2+ z, or |opt(I)| ≤ |P |+2− z.
By Theorem 2, |P | ≤ |opt(I)| ≤ 2(|edf(I)| − 1) + 1.

When z = 1, |opt(I)| ≤ 2(|edf(I)| − 1) + 1 + 2 − z = 2|edf(I)|. In the case
z = 0, if |P | = 2(|edf(I)| − 1) + 1, then P is an optimal path on I. As such, the
inductive hypothesis, |opt(I)| ≤ 2(|edf(I)|, guarantees |P | ≤ 2(|edf(I)| − 1).
Thus, when z = 0, |opt(I)| ≤ |P | + 2 − z ≤ 2(|edf(I)| − 1) + 2 − z = 2|edf(I)|.

Hence, the proof is complete. ��
From Theorems 1 and 3, we obtain the following corollary.

Corollary 1. When no requests have their source at the origin, the approxima-
tion ratio of the edf algorithm for TDARPTW is 2 (and this is tight).

One may wonder if a better performance can be achieved if the server does not
make an empty drive to serve an earlier-deadline request when there is a request
available at its current location. Informally, the opportunistic edf algorithm,
denoted edfo, determines the set of servable requests that begin where the
server is located. If that set is nonempty, it chooses a request arbitrarily among
those in the set with the earliest deadline; if that set is empty, it chooses a request
as in edf. Whenever t is incremented, it repeats this procedure. We show that
the same upper bound holds for edfo as for edf. Moreover, this edfo algorithm

108 B. M. Anthony et al.

need not be better than edf. The full version ([3]) provides instances for which
|opt| = |edf| but |opt|/|edfo| is arbitrarily close to 2.

Theorem 4. edfo is a 2-approximation for TDARPTW (and this is tight).

Proof. Apply the proof of Theorem 2, replacing edf with edfo, except for
the distinctions we now note. Few changes are needed since when edf serves
a request that is preceded by an empty drive, it chooses the earliest deadline
among all servable requests. As such, all claims about the traces and almost all
equations still hold. However, we need to consider the situation in which opt
serves a request in the first time slot, [0, 1]. In such a case, though edf may not
have served a request during [0, 1], edfo must; call this request r̄.

Reviewing the definitions of various sets of requests, r̄ ∈ Q as it is served by
edfo prior to time τ and not preceded by an empty drive. Accordingly, we have
to adjust the proof of Theorem 2 from right after Eq. 7 where we first consider
the size of Q. Because r̄ is not counted in C0, C3 or C4 but is part of Q, we
can state that for edfo we have |Q| ≥ |C0| + |C3| + |C4| + 1. Combining this
inequality with Eq. 7 gives

|opt(I)| ≤ −|C4| + z − |E′| − |C2| + 2|edfo(I)|.

Identically to the proof of Theorem 2, if z = 1, the opt request at time [τ +
1, τ + 2] begins a C2 or C4 trace, ensuring |C4| + |C2| ≥ z, and hence that
|opt(I)| ≤ 2|edfo(I)|.

The matching lower bound is deferred to the full version [3] due to space
limitations. ��

4 Concluding Remarks

Preliminary experimental results indicate that while edf may serve as few as
half of the requests that opt serves, that is rare; edf often performs close to
optimally and determines a schedule quickly [22].

A natural extension to TDARPTW would be to consider the problem in the
online setting, where requests are not known until their release times. The work
of [26] studies ODARPTW, which is the online form of TDARPTW, but with-
out the overall time limit T . They show that an online algorithm that sched-
ules requests greedily by “waiting time,” which is a proxy for the deadline of
the request, is 3-competitive. For the online form of TDARPTW, preliminary
investigations provide instances guaranteeing that the online form of edf has a
competitive ratio no better than 3; our conjecture is that the online form of edf
is in fact 3-competitive for the online form of TDARPTW, consistent with [26].
However, if requests were known one time unit prior to their release, perhaps
akin to how users call-ahead for ride services, the ratio of 2 from the offline
setting holds. This is because our offline edf algorithm uses information about
a request only one time unit before it serves the request.

EDF is a 2-Approx for TDARPTW 109

References

1. Anthony, B.M., et al.: Maximizing the number of rides served for dial-a-ride. In:
19th Symposium on Algorithmic Approaches for Transportation Modelling, Opti-
mization, and Systems, vol. 75, pp. 11:1–11:15 (2019)

2. Anthony, B.M., Christman, A.D., Chung, C., Yuen, D.: Serving rides of equal
importance for time-limited dial-a-ride. In: Mathematical Optimization Theory
and Operations Research, pp. 35–50 (2021)

3. Anthony, B.M., Chung, C., Das, A., Yuen, D.: Earliest deadline first is a 2-
approximation for DARP with time windows (2023). http://cs.conncoll.edu/
cchung/research/publications/cocoa2023full.pdf

4. Baligács, J., Disser, Y., Mosis, N., Weckbecker, D.: An improved algorithm for open
online dial-a-ride. In: Chalermsook, P., Laekhanukit, B. (eds.) Approximation and
Online Algorithms. WAOA 2022. Lecture Notes in Computer Science, vol. 13538,
pp. 154–171. Springer International Publishing, Cham (2022). https://doi.org/10.
1007/978-3-031-18367-6 8

5. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for
deadline-TSP and vehicle routing with time-windows. In: 36th Annual ACM Sym-
posium on Theory of Computing, pp. 166–174 (2004)

6. Birx, A., Disser, Y.: Tight analysis of the Smartstart algorithm for online dial-a-
ride on the line. SIAM J. Discret. Math. 34(2), 1409–1443 (2020)

7. Birx, A., Disser, Y., Schewior, K.: Improved bounds for open online dial-a-ride on
the line. Algorithmica 85(5), 1372–1414 (2023)

8. Charikar, M., Raghavachari, B.: The finite capacity dial-a-ride problem. In: 39th
Annual Symposium on Foundations of Computer Science, pp. 458–467 (1998)

9. Chen, S., He, T., Wong, H.Y.S., Lee, K.W., Tong, L.: Secondary job scheduling
in the cloud with deadlines. In: IEEE International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum, pp. 1009–1016 (2011)

10. Chetto, H., Chetto, M.: Some results of the earliest deadline scheduling algorithm.
IEEE Trans. Software Eng. 15(10), 1261–1269 (1989)

11. Christman, A., Chung, C., Jaczko, N., Milan, M., Vasilchenko, A., Westvold, S.:
Revenue maximization in online dial-a-ride. In: 17th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems, vol. 59, pp.
1:1–1:15. Dagstuhl, Germany (2017)

12. Christman, A.D., et al.: Improved bounds for revenue maximization in time-limited
online dial-a-ride. Oper. Res. Forum 2(3), 1–38 (2021). https://doi.org/10.1007/
s43069-021-00076-x

13. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann.
Oper. Res. 153(1), 29–46 (2007)

14. Dertouzos, M.L.: Control robotics: the procedural control of physical processes. In:
Proceedings IFIP Congress, 1974 (1974)

15. Dertouzos, M.L., Mok, A.K.: Multiprocessor online scheduling of hard-real-time
tasks. IEEE Trans. Software Eng. 15(12), 1497–1506 (1989)

16. Desrosiers, J., Dumas, Y., Soumis, F.: A dynamic programming solution of the
large-scale single-vehicle dial-a-ride problem with time windows. Am. J. Math.
Manag. Sci. 6(3–4), 301–325 (1986)

17. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. In: 17th Annual Symposium on Foundations of Computer Sci-
ence, pp. 216–227 (1976)

http://cs.conncoll.edu/cchung/research/publications/cocoa2023full.pdf
http://cs.conncoll.edu/cchung/research/publications/cocoa2023full.pdf
https://doi.org/10.1007/978-3-031-18367-6_8
https://doi.org/10.1007/978-3-031-18367-6_8
https://doi.org/10.1007/s43069-021-00076-x
https://doi.org/10.1007/s43069-021-00076-x

110 B. M. Anthony et al.

18. Ho, S.C., Szeto, W., Kuo, Y.H., Leung, J.M., Petering, M., Tou, T.W.: A survey
of dial-a-ride problems: literature review and recent developments. Transp. Res.
Part B: Methodol. 111, 395–421 (2018)

19. Jaw, J.J., Odoni, A.R., Psaraftis, H.N., Wilson, N.H.: A heuristic algorithm for
the multi-vehicle advance request dial-a-ride problem with time windows. Transp.
Res. Part B: Methodol. 20(3), 243–257 (1986)

20. Leung, J.Y.: Handbook of Scheduling: Algorithms, Models, and Performance Anal-
ysis. CRC Press (2004)

21. Madsen, O.B., Ravn, H.F., Rygaard, J.M.: A heuristic algorithm for a dial-a-ride
problem with time windows, multiple capacities, and multiple objectives. Ann.
Oper. Res. 60, 193–208 (1995)

22. Medina, A., Anthony, B.M.: Evaluating an earliest deadline first algorithm for a
dial-a-ride problem [poster]. Tapia Celebration of Diversity in Computing (2023)

23. Molenbruch, Y., Braekers, K., Caris, A.: Typology and literature review for dial-a-
ride problems. Ann. Oper. Res. 3, 295–325 (2017). https://doi.org/10.1007/s10479-
017-2525-0

24. Solomon, M.M., Desrosiers, J.: Survey paper-time window constrained routing and
scheduling problems. Transp. Sci. 22(1), 1–13 (1988)

25. Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C.: Fundamentals of
EDF Scheduling. In: Deadline Scheduling for Real-Time Systems. The Springer
International Series in Engineering and Computer Science, vol. 460, pp. 27–65.
Springer, US, Boston, MA (1998). https://doi.org/10.1007/978-1-4615-5535-3 3

26. Yi, F., Song, Y., Xin, C., Walter, I., Kai, K.W.: Online dial-a-ride problem with
unequal-length time-windows. In: 2009 International Conference on Management
and Service Science, pp. 1–5 (2009)

27. Yi, F., Tian, L.: On the online dial-a-ride problem with time-windows. In: Megiddo,
N., Xu, Y., Zhu, B. (eds.) AAIM 2005. LNCS, vol. 3521, pp. 85–94. Springer,
Heidelberg (2005). https://doi.org/10.1007/11496199 11

28. Yi, F., Xu, Y., Xin, C.: Online dial-a-ride problem with time-windows under a
restricted information model. In: Algorithmic Aspects in Information and Man-
agement, pp. 22–31 (2006)

https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/978-1-4615-5535-3_3
https://doi.org/10.1007/11496199_11

Improved Approximation
for Broadcasting in k-Path Graphs

Hovhannes A. Harutyunyan and Narek Hovhannisyan(B)

Department of Computer Science and Software Engineering, Concordia University,
Montreal H3G 1M8, Canada

haruty@cs.concordia.ca, narek.hovhannisyan@mail.concordia.ca

Abstract. Broadcasting is an information dissemination primitive
where a message is passed from one node (called originator) to all other
nodes in the network. With the increasing interest in interconnection
networks, an extensive amount of research was dedicated to broadcast-
ing. Two main research goals of this area are finding inexpensive network
structures that maintain efficient broadcasting and finding the broadcast
time for well-known and widely used network topologies. In the scope of
this paper, we will mainly focus on determining the broadcast time and
the optimal broadcasting scheme for graphs. Determination of the broad-
cast time of a node x in an arbitrary network G is known to be NP-hard.
Polynomial time solutions are known only for a few classes of networks.
There also exist various heuristic and approximation algorithms for dif-
ferent network topologies. In this paper, we will consider networks that
can be represented as k-path graphs. We will present a polynomial time
2-approximation algorithm for the broadcast time problem in k-path
graphs.

Keywords: Interconnection networks · Information dissemination ·
Broadcasting · Approximation algorithms

1 Introduction

Broadcasting is one of the most important information dissemination processes
in an interconnected network. Over the last four decades, a large amount of
research work has been published concerning broadcasting in networks under
different models [12,18,21]. These models can have different numbers of origi-
nators, numbers of receivers at each time unit, distances of each call, numbers
of destinations, and other characteristics of the network such as the knowledge
of the neighborhood available to each node. In the context of this paper, we are
going to focus on the classical model of broadcasting. The network is modeled
as an undirected connected graph G = (V,E), where V (G) and E(G) denote the
vertex set and the edge set of G, respectively. The classical model follows the
below-mentioned basic assumptions.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 111–122, 2024.
https://doi.org/10.1007/978-3-031-49614-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_7

112 H. A. Harutyunyan and N. Hovhannisyan

1. The broadcasting process is split into discrete time units.
2. The only vertex that has the message at the first time unit is called originator.
3. In each time unit, an informed vertex (sender) can call at most one of its

uninformed neighbors (receiver).
4. During each unit, all calls are performed in parallel.
5. The process halts as soon as all the vertices in the graph are informed.

We can represent each call in this process as an ordered pair of two vertices
(u, v), where u is the sender and v is the receiver. The broadcast scheme is the
order of calls made by each vertex during a broadcasting process and can be
represented as a sequence (C1, C2, ..., Ct), where Ci is the set of calls performed
in time unit i. An informed vertex v is idle in time unit t if v does not make any
call in time t. A broadcast scheme is called busy if any informed vertex sends a
message to one of its uninformed neighbors during each round. These schedules
guarantee that as long as there remains an uninformed neighbor, vertices are
never idle.

Given that every vertex, other than the originator, can be informed by exactly
one vertex, the broadcast scheme forms a directed spanning tree (broadcast tree)
rooted at the originator. We are also free to omit the direction of each call in
the broadcast tree.

Definition 1. The broadcast time of a vertex v in a given graph G is the
minimum number of time units required to broadcast in G if v is the originator
and is denoted by b(v,G). The broadcast time of a given graph G, is the maximum
broadcast time from any originator in G, formally b(G) = maxv∈V (G){b(v,G)}.

A broadcast scheme for an originator v that uses b(v,G) time units is called
an optimal broadcast scheme. Obviously, by the assumption (3), the number
of informed vertices after each time unit can at most be doubled. Meaning, in
general, the number of informed vertices after time unit i is upper bounded by
2i. Therefore, it is easy to see that b(v,G) ≥ �log n�, where n is the number of
vertices in G, which implies that b(G) ≥ �log n�.

The general broadcast time decision problem is formally defined as follows.
Given a graph G = (V,E) with a specified set of vertices V0 ⊆ V and a positive
integer k, is there a sequence V0, E1, V1, E2, V2, . . . , Ek, Vk where Vi ⊆ V , Ei ⊆
E(1 ≤ i ≤ k), for every (u, v) ∈ Ei, u ∈ Vi−1, v ∈ Vi, v /∈ Vi−1, and Vk = V . Here
k is the total broadcast time, Vi is the set of informed vertices at round i, and
Ei is the set of edges used at round i. It is obvious that when | V0 |= 1 then this
problem becomes our broadcast problem of determining b(v,G) for an arbitrary
vertex v in an arbitrary graph G.

Generally, the broadcast time decision problem in an arbitrary graph is NP-
complete [11,25]. Moreover, the minimum broadcast time problem was proved to
be NP-complete even for some restricted graph families, such as 3-regular planar
graphs [23]. The study of the parameterized complexity of the broadcast time
problem was initiated in [9]. There is a very limited number of graph families,
for which an exact algorithm with polynomial time complexity is known for
the broadcast time problem. Exact linear time algorithms are available for the

Improved Approximation for Broadcasting in k-Path Graphs 113

broadcast time problem in trees [24,25], in connected graphs with only one
cycle (unicyclic graphs) [17,18], in necklace graphs (chain of rings) [14], in k-
restricted cactus graphs [7], in fully connected trees [13], and in Harary-like
graphs [3,4]. For a more detailed introduction to broadcasting, we refer the
reader to [10,16,19,20].

In this paper, we discuss the broadcast time problem in k-path graphs, which
are a subfamily of 2-connected series-parallel graphs. We present a polynomial-
time 2-approximation algorithm for the broadcast time problem in k-path
graphs, which improves the currently known best approximation ratio of (4 − ε)
[2]. Moreover, the proposed algorithm has O(k) time complexity, which is better
than O(|V | + k log k) complexity of the one in [2].

The rest of this paper is organized as follows. In Section 2, we discuss some
previous results on broadcasting in k-path graphs. Further, in Section 3, we
present our approximation algorithm for the broadcast time problem in general
k-path graphs when the originator is a junction vertex. In Section 4, we briefly
present our approximation algorithm for broadcasting in k-path graphs when the
originator is an internal vertex. Finally, we will conclude the paper in Section 5.

2 k-Path Graphs

In this section, we discuss a simple subfamily of 2-connected series-parallel graphs
that are usually referred to as k-path graphs or melon graphs. A k-path graph
G = (P1, P2, ..., Pk) is obtained from a pair of vertices u and v, by adding k ≥ 2
internally vertex-disjoint paths P1, P2, ..., Pk between u and v. Vertices u and v
are called junctions of G (Fig. 1).

Fig. 1. Example of a k-path graph.

We assume that paths are indexed in a non-increasing order of their lengths.
Formally, l1 ≥ l2 ≥ ... ≥ lk, where li is the number of vertices on path Pi

(excluding u and v) for all 1 ≤ i ≤ k. Note that since we consider all input
graphs to be simple, only lk can be 0.

Since k-path graphs are one of the simplest graphs that contain intersect-
ing cycles, they are very interesting to research in terms of the broadcast time
problem.

114 H. A. Harutyunyan and N. Hovhannisyan

The broadcast time problem was researched for general series-parallel graphs
as well as for subclasses of series-parallel graphs [21,22]. In [22], the authors
prove that there is a O(log n/ log log n)-approximation algorithm for the mini-
mum broadcast time problem in graphs with bounded treewidth (for an intro-
duction to treewidth we refer the reader to [5,6]). As series-parallel graphs have
a treewidth of 2, the result also applies to series-parallel graphs.

Currently, the best-known results for the broadcast time problem in k-path
graphs were introduced in [2]. The authors introduce a (4 − ε)-approximation
algorithm for the broadcast time problem in general k-path graphs. Additionally,
for some particular subclasses of k-path graphs, the authors give better approx-
imations or optimal algorithms. The complete set of results introduced in [2] is
presented in Table 1.

The main algorithm, introduced in [2], first counts the number of uninformed
vertices on each path in each time unit. Then, based on the relation between
these numbers decides on the order of calls placed by the junction vertices. In
this paper, we design a simple algorithm that achieves a better approximation
ratio without counting the remaining lengths of the paths.

Table 1. Summary of known results for k-path graphs [2]

Case Algorithm Result

General k-path Spath (4 − ε)-approximation

lj ≥ lj+1 + 2 and k ≤ lk + 1 Spath optimal

lj = lj+1 and k ≤ lk + 1 Spath optimal

lj = lj+1 + 1 and k ≤ lk + 1 Spath (4
3

− ε)-approximation

lj = lj+1 + 1, k ≤ lk + 1 and u is the originator Apath (7
6

− ε)-approximation

In the same paper, the authors also presented several lower bounds and other
auxiliary results for the broadcast time problem.

Given a k-path graph Gk and junction vertex u authors proved the following.

Lemma 1 ([2]). There exists a minimum broadcast scheme from the originator
u in Gk in which the shortest path Pk is informed in the first time unit.

Similarly, given an internal vertex w authors proved the following.

Lemma 2 ([2]). There exists a minimum broadcast scheme from the originator
w in Gk in which w first sends the message along a shorter path towards a
junction vertex.

Improved Approximation for Broadcasting in k-Path Graphs 115

3 Broadcasting from a Junction Vertex

Let G = (P1, P2, ..., Pk) be a k-path graph with junction vertices u and v.
It is easy to see that in any broadcast scheme where a junction vertex is

the originator, an internal (non-junction) vertex w has at most one uninformed
neighbor after being informed. Thus, to describe a busy broadcast scheme, it is
sufficient to specify the order of calls placed by u and v. Algorithm 1 describes
the behavior of u and v in our approximation algorithm, assuming, without loss
of generality (w.l.o.g.), that u is the originator.

Algorithm 1. Broadcasting from a junction vertex
Input A k-path graph G = (P1, P2, ..., PK), junction vertices u and v, and an

originator u
Output A broadcast scheme with time bAlg(u, G) for the graph G and the origi-

nator u

1: procedure BroadcastingFromJunction
2: In the first time, unit u passes the message along the path Pk

3: for 2 ≤ i ≤ k do
4: if Pi−1 contains an uninformed vertex then
5: u passes the message along the path Pi−1 in time unit i
6: end if
7: end for
8: v gets the message in time unit lk + 1
9: for 2 ≤ j ≤ k do

10: if Pk−j+1 contains an uninformed vertex then
11: v passes the message along the path Pk−j+1 in time unit lk + j
12: end if
13: end for
14: end procedure

3.1 Complexity Analysis

Note that all basic steps of Algorithm 1 require constant time. Moreover, the
order of calls placed by each vertex is predefined and does not require any com-
putation. Meaning that the time required to inform each path can be computed
in constant time. Hence, Algorithm 1 returns a broadcast scheme in O(1) time
and can be used to calculate the corresponding broadcast time in O(k) time.

3.2 The Approximation Ratio

Theorem 1. Algorithm 1 is a polynomial-time 2-approximation algorithm for
general k-path graphs when the originator is a junction vertex. Moreover, when
lk ≥ 1, it guarantees (2 − ε)-approximation for some 0 < ε ≤ 1.

116 H. A. Harutyunyan and N. Hovhannisyan

Proof. Let Pi be a path that contained an uninformed vertex before the last
time unit of the broadcast scheme described in Algorithm 1. In order to calculate
bAlg(u,G), we will consider three cases: vertices in Pi were informed by both u
and v, Pi was informed only by u, and Pi was informed only by v.

Case 1: Only u (but not v) placed a call towards the path Pi.
According to our algorithm, u informs path Pi in time unit i + 1. Then, it

will require li − 1 time units for the path Pi to get fully informed. Hence,

bAlg(u,G) = li + i (1)

In [2], the authors showed that for any 1 ≤ i ≤ k − 1, the following lower
bound for the broadcast time holds.

b(u,G) ≥
⌈

lk + li + i + 1
2

⌉
≥ lk + li + i + 1

2
(2)

The approximation ratio directly follows from Eqs. 1 and 2.

bAlg(u,G)
b(u,G)

≤ li + i
lk+li+i+1

2

< 2 (3)

Case 2: Only v (but not u) placed a call towards the path Pi.
According to our algorithm, u informs path Pi in time unit i + 1. Since, in

this case, path Pi was informed solely by v, then we can claim that it was fully
informed in time unit i + 1 as the latest. Hence,

b(u,G) ≤ i + 1 ≤ k + 1 (4)

In [2], the authors also proved the following lower bound.

b(u,G) ≥
⌈

lk + k + 1
2

⌉
≥ lk + k + 1

2
(5)

Again, the approximation ratio directly follows from Eqs. 4 and 5.

bAlg(u,G)
b(u,G)

≤ k + 1
lk+k+1

2

≤ 2 (6)

Case 3: Both u and v placed a call towards the path Pi.
According to our algorithm, u informs path Pi in time unit i + 1, and v

informs path Pi no later than time unit lk + k − i + 1. To calculate bAlg(u,G),
we need to consider two subcases.

Subcase 3.a: i + 1 ≤ lk + k − i + 1.

Improved Approximation for Broadcasting in k-Path Graphs 117

In this case, a single vertex on path Pi is informed in each time unit between
i + 1 and lk + k − i + 1. Afterward, up to 2 vertices can be informed. Hence,

b(u,G) = lk + k − i +
⌈

li − (lk + k − i − i)
2

⌉

=
⌈

2lk + 2k − 2i + li − lk − k + 2i)
2

⌉

=
⌈

lk + k + li
2

⌉
≤ lk + k + li + 1

2

(7)

Subcase 3.b: i + 1 > lk + k − i + 1.
Similar to the previous case,

b(u,G) = i +
⌈

li − (i − (lk + k − i))
2

⌉

= i +
⌈

li − i + lk + k − i)
2

⌉

=
⌈

2i + li − 2i + lk + k)
2

⌉

=
⌈

li + lk + k

2

⌉
≤ lk + k + li + 1

2

(8)

Hence, in both subcases, we have the same upper bound for bAlg(u,G).
The following lower bound for the broadcast time is easy to see from Eqs. 2

and 5.

b(u,G) =
b(u,G)

2
+

b(u,G)
2

≥ lk + k + 1
4

+
lk + li + i + 1

4

>
lk + k + 1

4
+

li
4

=
lk + k + li + 1

4

(9)

From Eqs. 7, 8 and 9,

bAlg(u,G)
b(u,G)

<
lk+k+li+1

2
lk+k+li+1

4

= 2 (10)

Thus, we showed that bAlg(u,G)
b(u,G) ≤ 2 in all possible cases. Moreover, we can

see from Eqs. 3 and 6 that the equality is only possible when lk = 0.

4 Broadcasting from an Internal Vertex

Let G = (P1, P2, ..., PK) be a k-path graph with junction vertices u and v. Let
w be a vertex on path Pm, where 1 ≤ m ≤ k.

118 H. A. Harutyunyan and N. Hovhannisyan

It is easy to see that in any broadcast scheme where w is the originator, any
internal (non-junction) vertex other than w has at most one uninformed neighbor
after being informed. Thus, in order to describe a busy broadcast scheme, it is
sufficient to specify the order of calls placed by u, v, and w.

Let d be the length of the path wu, and hence, lm + 1 − d be the length of
the path wv. W.l.o.g assume d ≤ lm + 1 − d. Also let τ(m) = lm + 2 − 2d. Note
that d ≥ 1 and τ(m) ≥ 1.

In the proposed algorithm, w passes the message along the shorter path
towards u in the first time unit. Then, in the second time unit, w informs the
vertex on path Pm towards v. Clearly, u gets informed in time unit d. Moreover,
there will be lm + 1 − d − (d − 1) = τ(m) uninformed vertices on path Pm. After
that, if τ(m) ≥ lk + 1, then u informs its neighbor on path Pk. Otherwise, u
follows the main broadcasting scheme. We let tv denote the time unit when v is
informed. Algorithm 2 describes the behavior of u, v, and w in our approximation
algorithm.

Algorithm 2. Broadcasting from an internal vertex
Input A k-path graph G = (P1, P2, ..., PK), junction vertices u and v, and an

originator w on path Pm

Output A broadcast scheme with time bAlg(w, G) for the graph G and the origi-
nator w

1: procedure BroadcastingFromInternal
2: In the first time unit, w passes the message along the path wu
3: In the second time unit, w passes the message along the path wv
4: for 1 ≤ i ≤ k do
5: if u has an uninformed neighbor on path Pi then
6: u passes the message along the path Pi in time unit d + i
7: end if
8: end for
9: v gets the message in time unit lk + 1

10: for 1 ≤ j ≤ k do
11: if v has an uninformed neighbor on path Pj then
12: v passes the message along the path Pj in time unit tv + k − j
13: end if
14: end for
15: end procedure

4.1 Complexity Analysis

Algorithm 2 has a complexity similar to the one of Algorithm 1. Hence, Algo-
rithm 2 returns a broadcast scheme in O(1) time and can be used to calculate
the corresponding broadcast time in O(k) time.

Improved Approximation for Broadcasting in k-Path Graphs 119

4.2 The Approximation Ratio

Theorem 2. Algorithm 2 is a polynomial-time 2-approximation algorithm for
general k-path graphs when the originator is an internal vertex and τ(m) < lk+1.
Moreover, when lk ≥ 1, it guarantees (2 − ε)-approximation for some 0 < ε ≤ 1.

Proof. Since τ(m) < lk +2, then vertex v will be informed via the direct path from
w, and hence, tv = d + τ(m). We will use a technique similar to the one used for
proving Theorem 1. Let Pi be a path that contained an uninformed vertex before
the last time unit of the broadcast scheme described in Algorithm 2.

First, let us consider the case when i = m. According to our broadcast
scheme, path Pm will be fully informed in time unit 1 + lm + 1 − d − 1 =
lm + 1 − d ≤ lm. Moreover, any optimal broadcast scheme will fully inform path
Pm no earlier than b(w,G) ≥ ⌈

lm+lk
2

⌉ ≥ lm+lk
2 . The approximation ratio follows.

bAlg(w,G)
b(w,G)

≤ lm
lm+lk

2

= 2 (11)

Next, we prove the theorem for any i �= m.

Case 1: Only u (but not v) placed a call towards the path Pi.
Path Pi requires li − 1 time units to be fully informed, after time unit d + i

when the first call to it happens. Hence,

bAlg(w,G) = d + i + li − 1 (12)

In [2], the authors showed that for any 1 ≤ i ≤ k − 1, i �= m, the following
lower bound for the broadcast time holds.

b(w,G) ≥ d +
⌈

li + τ(m) + i − 1
2

⌉
≥ d +

li + τ(m) + i − 1
2

(13)

The approximation ratio directly follows from Eqs. 12 and 13.

bAlg(w,G)
b(w,G)

≤ d + li + i − 1

d + li+τ(m)+i−1
2

< 2 (14)

Case 2: Only v (but not u) placed a call towards the path Pi.
According to our algorithm, u informs path Pi in time unit d + i. Since, in

this case, path Pi was informed solely by v, then we can claim that it was fully
informed in time unit i + 1 as the latest. Hence,

b(w,G) ≤ d + i ≤ d + k (15)

In [2], the authors also proved the following lower bound.

b(w,G) ≥ d +
⌈

k + τ(m) − 1
2

⌉
≥ d +

k + τ(m) − 1
2

(16)

120 H. A. Harutyunyan and N. Hovhannisyan

Again, the approximation ratio directly follows from Eqs. 4 and 5.

bAlg(w,G)
b(w,G)

≤ d + k

d + k+τ(m)−1
2

< 2 (17)

Case 3: Both u and v placed a call towards the path Pi.
According to our algorithm, u informs path Pi in time unit d + i, and v

informs path Pi in time unit d + τ(m) + k − i.
Subcase 3.a: d + i ≤ d + τ(m) + k − i.
When this is the case, in every time unit between d + i and d + τ(m) + k − i

a single vertex on path Pi is informed. After d + τ(m) + k − i up to 2 vertices
can be informed in each time unit. Hence,

b(w,G) = d + τ(m) + k − i − 1 +
⌈

li − (d + τ(m) + k − i − d − i)
2

⌉

=
⌈

2d + 2τ(m) + 2k − 2i − 2 + li − τ(m) − k + 2i)
2

⌉

=
⌈

2d + τ(m) + li + k − 2
2

⌉
≤ 2d + τ(m) + li + k − 1

2

(18)

Subcase 3.b: d + i > d + τ(m) + k − i.
Similar to the previous case,

b(w,G) = d + i − 1 +
⌈

li − (d + i − (d + τ(m) + k − i))
2

⌉

= d + i − 1 +
⌈

li − i + τ(m) + k − i

2

⌉

=
⌈

2d + 2i − 2 + li − i + τ(m) + k − i)
2

⌉

=
⌈

2d + τ(m) + li + k − 2
2

⌉
≤ 2d + τ(m) + li + k − 1

2

(19)

Hence, in both subcases, we have the same upper bound for bAlg(u,G).
The following lower bound for the broadcast time is easy to see from Eqs. 13

and 16.

b(w,G) =
b(w,G)

2
+

b(w,G)
2

≥ 2d + li + τ(m) + i − 1
4

+
2d + k + τ(m) − 1

4

>
2d + li + τ(m) − 1

4
+

k

4
=

2d + li + k + τ(m) − 1
4

(20)
From Eqs. 18, 19 and 20,

bAlg(w,G)
b(w,G)

<
2d+τ(m)+li+k−1

2
2d+τ(m)+li+k−1

4

= 2 (21)

Improved Approximation for Broadcasting in k-Path Graphs 121

Thus, we showed that bAlg(w,G)
b(w,G) ≤ 2 in all possible cases. Moreover, we can

see from Eqs. 11 that the equality is only possible when lk = 0.

Theorem 3. Algorithm 2 is a polynomial-time 2-approximation algorithm for
general k-path graphs when the originator is an internal vertex and τ(m) ≥ lk+1.
Moreover, when lk ≥ 1, it guarantees (2 − ε)-approximation for some 0 < ε ≤ 1.

The proof of Theorem 3 uses a technique similar to the one used for Theorem
2 and is omitted due to space limitations.

5 Conclusion and Future Work

In this paper, we devised a polynomial-time broadcasting algorithm for arbitrary
k-path graphs that guarantees an approximation ratio of 2. Moreover, we showed
that the introduced algorithm is a (2 − ε)-approximation algorithm for k-path
graphs where the junction vertices are not adjacent. Our algorithm improves the
best previously known approximation algorithm, introduced in [2], by a factor
of 2. So far, there is no known inapproximability result for the broadcast time
problem on k-path graphs, nor is it known to be NP-hard. Hence, in the future,
we plan on either improving the known approximation ratio or introducing an
inapproximability lower bound for this problem. Potentially, a polynomial-time
exact algorithm for the broadcast time problem in k-path graphs can still be
devised. Another direction for future research is applying the techniques used
in this paper to other graph families that share some similarities with k-path
graphs. For instance, it may be possible to apply the algorithm to flower graphs
(also called k-cycle graphs [1]). Currently, the best known approximation algo-
rithm for broadcasting in flower graphs was introduced in [8].

References

1. Bhabak, P., Harutyunyan, H.A.: Constant approximation for broadcasting in k -
cycle graph. In: Ganguly, S., Krishnamurti, R. (eds.) CALDAM 2015. LNCS,
vol. 8959, pp. 21–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
14974-5 3

2. Bhabak, P., Harutyunyan, H.A.: Approximation algorithm for the broadcast time
in k-path graph. J. Interconnection Netw. 19(04), 1950006 (2019)

3. Bhabak, P., Harutyunyan, H.A., Kropf, P.: Efficient broadcasting algorithm in
Harary-like networks. In: 46th International Conference on Parallel Processing
Workshops (ICPPW 2017), pp. 162–170. IEEE (2017)

4. Bhabak, P., Harutyunyan, H.A., Tanna, S.: Broadcasting in Harary-like graphs. In:
17th International Conference on Computational Science and Engineering (CSE
2014), pp. 1269–1276. IEEE (2014)

5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oret. Comput. Sci. 209(1–2), 1–45 (1998)

6. Bodlaender, H.L., Koster, A.M.: Combinatorial optimization on graphs of bounded
treewidth. Comput. J. 51(3), 255–269 (2008)

https://doi.org/10.1007/978-3-319-14974-5_3
https://doi.org/10.1007/978-3-319-14974-5_3

122 H. A. Harutyunyan and N. Hovhannisyan

7. Čevnik, M., Žerovnik, J.: Broadcasting on cactus graphs. J. Comb. Optim. 33,
292–316 (2017)

8. Ehresmann, A.L.: Approximation Algorithms for Broadcasting in Flower Graphs.
Master’s thesis, Concordia University (2021)

9. Fomin, F.V., Fraigniaud, P., Golovach, P.A.: Parameterized complexity of broad-
casting in graphs. In: International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2023) (2023)

10. Fraigniaud, P., Lazard, E.: Methods and problems of communication in usual net-
works. Discret. Appl. Math. 53(1–3), 79–133 (1994)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. freeman San
Francisco (1979)

12. Gholami, S., Harutyunyan, H.A.: Broadcast graphs with nodes of limited memory.
In: Pacheco, D., Teixeira, A.S., Barbosa, H., Menezes, R., Mangioni, G. (eds.) Com-
plex Networks XIII. Springer Proceedings in Complexity. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-17658-6 3

13. Gholami, S., Harutyunyan, H.A., Maraachlian, E.: Optimal broadcasting in fully
connected trees. J. Interconnection Netw. 23(01), 2150037 (2023)

14. Harutyunyan, H.A., Hovhannisyan, N., Maraachlian, E.: Broadcasting in chains
of rings. In: Submitted to International Workshop on Combinatorial Algorithms
(IWOCA 2023) (2023)

15. Harutyunyan, H.A., Li, Z.: A simple construction of broadcast graphs. In: Du,
D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 240–253.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4 20

16. Harutyunyan, H.A., Liestman, A.L., Peters, J.G., D., R.: Broadcasting and Gos-
siping. In: Handbook of Graph Theory, pp. 1477–1494. Chapman and Hall (2013)

17. Harutyunyan, H., Maraachlian, E.: Linear algorithm for broadcasting in unicyclic
graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 372–382. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73545-8 37

18. Harutyunyan, H.A., Maraachlian, E.: On broadcasting in unicyclic graphs. J.
Comb. Optim. 16(3), 307–322 (2008)

19. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18(4), 319–349 (1988)

20. Hromkovič, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in
interconnection networks (Broadcasting & Gossiping). In: Du, DZ., Hsu, D.F. (eds.)
Combinatorial Network Theory. Applied Optimization, vol. 1. Springer, Boston,
MA (1996). https://doi.org/10.1007/978-1-4757-2491-2 5

21. Kortsarz, G., Peleg, D.: Approximation algorithms for minimum-time broadcast.
SIAM J. Discret. Math. 8(3), 401–427 (1995)

22. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.,
III.: Bicriteria network design problems. J. Algorithms 28(1), 142–171 (1998)

23. Middendorf, M.: Minimum broadcast time is NP-complete for 3-regular planar
graphs and deadline 2. Inf. Process. Lett. 46(6), 281–287 (1993)

24. Proskurowski, A.: Minimum broadcast trees. IEEE Trans. Comput. 30(05), 363–
366 (1981)

25. Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees.
SIAM J. Comput. 10(4), 692–701 (1981)

https://doi.org/10.1007/978-3-031-17658-6_3
https://doi.org/10.1007/978-3-030-26176-4_20
https://doi.org/10.1007/978-3-540-73545-8_37
https://doi.org/10.1007/978-1-4757-2491-2_5

The Fine-Grained Complexity
of Approximately Counting Proper

Connected Colorings (Extended Abstract)

Robert D. Barish(B) and Tetsuo Shibuya

Division of Medical Data Informatics, Human Genome Center,
Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku,

Tokyo 108-8639, Japan

rbarish@ims.u-tokyo.ac.jp, tshibuya@hgc.jp

Abstract. A k-proper connected 2-coloring for a graph is an edge bipar-
tition which ensures the existence of at least k vertex disjoint simple
alternating paths (i.e., paths where no two adjacent edges belong to
the same partition) between all pairs of vertices. In this work, for every
k ∈ N>0, we show that exactly counting such colorings is #P -hard under
many-one counting reductions, as well as #P -complete under many-one
counting reductions for k = 1. Furthermore, for every k ∈ N>0, we rule

out the existence of a 2
o
(

n
k2

)
time algorithm for finding a k-proper con-

nected 2-coloring of an order n graph under the ETH, or for exactly
counting such colorings assuming the moderated Counting Exponential
Time Hypothesis (#ETH) of (Dell et al.; ACM Trans. Algorithms 10(4);
2014). Finally, assuming the Exponential Time Hypothesis (ETH), and
as a consequence of a recent result of (Dell & Lapinskas; ACM Trans.
Comput. Theory 13(2); 2021), for every k ∈ N>0 and every ε > 0, we are

able to rule out the existence of a 2
o
(

n
k2

)
/ε2 time algorithm for approxi-

mating the number of k-proper connected 2-colorings of an order n graph
within a multiplicative factor of 1 + ε.

Keywords: proper connected coloring · edge coloring · counting
complexity · approximate counting · Exponential Time Hypothesis
(ETH) · Counting Exponential Time Hypothesis (#ETH) · NP · #P

1 Introduction

The notion of an alternating path or alternating trail in a graph with an edge
partition, where no two successive edges along the path or trail belong to the
same partition, appears to trace its origins to the factor enumeration scheme in

This work was supported by JSPS Kakenhi grants {20K21827, 20H05967, 21H04871},
and JST CREST Grant JPMJCR1402JST.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 123–136, 2024.
https://doi.org/10.1007/978-3-031-49614-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_8&domain=pdf
http://orcid.org/0000-0001-5207-0375
http://orcid.org/0000-0003-1514-5766
https://doi.org/10.1007/978-3-031-49614-1_8

124 R. D. Barish and T. Shibuya

the original 19th century proof argument of Petersen’s 2-factor theorem [35,36]
(i.e., that every 2k-regular simple graph can be partitioned into k edge disjoint
2-factors). Since this time, alternating paths and trails have appeared in numer-
ous pure and applied graph theoretic contexts (see, e.g., [4] for a review). This
has ranged from Tutte’s extensions [39,40] of Petersen’s work to characterize
the existence of f -factors for every f ∈ N>0, to Edmond’s [17] O (|V |2 · |E|)
time “blossom algorithm” for finding maximum matchings in general graphs,
and Micali & Vazirani’s [34] O

(√|V | · |E|
)

time improvement of the “blossom
algorithm”.

In the style of Menger’s theorem [33], there have also been extensive efforts
to develop a theory of connectivity for edge colored graphs based on alternating
paths, cycles, and trails. While it is not possible to exhaustively survey this
literature – see [4,5,12,32,38,42] for a review – we can highlight the somewhat
surprising fact that it was shown to be NP -complete to find a pair of vertex
disjoint alternating paths connecting a pair of vertices in a graph (Manoussakis
[32] credits a private communication with R. Häggkvist for the proof of this
fact). This finding was later extended by Abouelaoualim et al. [2] to show that,
for every k ∈ N>1, it is NP -complete to decide the existence of k vertex disjoint
or edge disjoint paths or trails connecting a given pair of vertices in an edge
colored graph. On the other hand, finding a single alternating path between a
pair of vertices in a w-edge colored graph was shown to be linear time solvable
for every w ∈ N>0 [5,38].

In this work, we concern ourselves with Borozan et al.’s [9] and Andrews et
al.’s [3] more recent variation (developed independently) on the aforementioned
Menger-type theorems for alternating paths. Here, in lieu of finding alternating
paths between a fixed pair of vertices in an edge colored graph, and akin to
Chartrand et al.’s [10,11] rainbow connectivity problem, the objective is instead
to find an edge coloring of a simple graph guaranteeing the existence of some
number of vertex disjoint alternating paths (i.e., properly colored paths or proper
paths) between all pairs of vertices. More specifically, we can ask for a k-proper
connected w-coloring of a graph [3,9], which corresponds to a partition of the
graph’s edge set into at most w distinct color classes under the constraint that
there must be at least k vertex disjoint proper paths between all pairs of vertices.

We now remark that, despite impressive efforts on characterizing the exis-
tence of k-proper connected w-colorings for special classes of graphs [3,9,16,18,
20,22,29,31] (e.g., bipartite graphs [9,18,22] and Erdős-Rényi random graphs
[20]), and despite applications to a realistic variant of the frequency assignment
problem (see Sect. 2), very little is known concerning the complexity of finding k-
proper connected w-colorings. In particular, beyond a circa 2020 proof of Huang
& Li [23,24]1 that deciding the existence of a 1-proper connected 2-coloring is

1 We became aware of Huang & Li’s result [23,24] only after completing an earlier
draft of the proof for Theorem 1 of the current work, which, despite being a counting
complexity result, yields an independent proof that deciding the existence of a 1-
proper connected 2-coloring is NP -complete. We additionally remark that the proof
strategy of Huang & Li [23,24] requires the construction of a complete graph on

Approximately Counting Proper Connected Colorings 125

NP -complete, the complexity of finding k-proper connected w-colorings remains
open for any ordered pair (k,w) where k ∈ N>0 and w ∈ N>1. Concerning
counting complexity, we remark that there exist some #P -completeness results
for counting k-proper connected 2-colorings as part of a study on counting spe-
cial types of bipartite graph orientations [7]. However, these hardness results
are transitively via reduction from evaluating the Tutte polynomial at the point
TG (0, 2), and thus, do little to inform us as to the complexity of finding or
approximately counting such colorings (e.g., approximability of the Tutte poly-
nomial at this point remains uncharacterized [19]).

To fill this gap, we carry out a fine-grained complexity analysis of both finding
and counting k-proper connected (w = 2)-colorings of graphs. In particular, we
sketch a proof – note that the current work is an extended abstract due to
space constraints – that counting k-proper connected 2-colorings is #P -complete
under right-bit-shift reductions in the case where k = 1 (Theorem 1) and #P -
hard under many-one counting reductions for every k ∈ N>0 (Corollary 1).
We furthermore show that, for every k ∈ N>0, no 2o(n

k2) time algorithm can
exist for either finding or counting k-proper connected 2-colorings of an order
n graph under the ETH or the #ETH, respectively (Corollary 2). Finally, for
any k ∈ N>0 and any input error parameter ε > 0, we note a recent finding of
Dell & Lapinskas [14] that allows us to rule out the existence of a 2o(n

k2)/ε2 time
ε-approximation algorithm for the number of k-proper connected 2-colorings of
an order n graph (Corollary 3).

2 Applications of k-Proper Connected w-Colorings
to the Frequency Assignment Problem

As explicitly noted by Li & Magnant [29], k-proper connected w-colorings have
direct application in the context of a variation on the well-known frequency
assignment problem [1,21,41]. To elaborate, in the typical frequency assignment
problem [1,21,41] one asks for a proper coloring of a geometric intersection graph
of disks corresponding to an assignment of sparse and expensive frequency bands
(colors) to radio stations or other emitters (vertices representing disks) with
overlapping emission profiles (encoded as edges). However, we can instead ask
for an edge coloring of such a graph under the fairly realistic constraint that
the incoming and outgoing signals at any particular station have a sufficient
frequency separation (e.g., ≈ 50−−100 kHz [41]) to avoid interference [29]. Here,
if we have w available frequency bands (colors), and have a redundancy criterion
of requiring k vertex disjoint paths between all pairs of vertices satisfying this
non-interference criterion, we arrive at exactly the problem of finding a k-proper
connected w-coloring.

2n + m + 1 vertices, where n and m correspond to the number of variables and
clauses, respectively, in an input NAE-3-SAT instance. Accordingly, this only allows

for the exclusion of a 2o(
√

n) time algorithm for finding a 1-proper connected 2-
coloring under the ETH.

126 R. D. Barish and T. Shibuya

If we now consider the frequency assignment problem in the context of design-
ing a communication network to survive natural and man-made disasters – e.g.,
in the manner of the fault-tolerant adaptable packet switching models realized
in the form of the late 1960s ARPANET project [6,37] – an important question
arises as to how “robust” the network is, as well as our ability to randomly
sample suitable assignments of frequencies to base stations. We remark that our
ability to answer such questions fundamentally relates to our ability to exactly
or approximately count witnesses for the frequency assignment problem (see,
e.g., [27,28] concerning the direct relationship between counting and uniform
sampling), or in the current context, k-proper connected w-colorings.

3 Preliminaries

3.1 Graph Theoretic Notions and Terminology

With regards to basic graph theoretic terminology, we will generally follow Dies-
tel [15], or where appropriate, Bondy & Murty [8]. All graphs in this work should
be assumed to be simple (i.e., loop and multiedge-free), and unless otherwise
specified, undirected. All references to paths in graphs should be understood as
references to simple paths which do not revisit vertices or edges.

Concerning some less standard terminology, when we refer to a w-edge col-
oring of a graph, we mean an edge coloring of the graph using a palette of at
most w colors. When we identify a vertex va with a vertex vb, we delete va and
vb, then construct a new vertex vc adjacent to every vertex formerly adjacent
to either va or vb. When we identify a vertex va with a graph S (assumed to
be disjoint from the graph containing va), we delete va, then create an instance
of the graph S where every vertex in the graph is made adjacent to all vertices
formerly adjacent to va. In addition, letting V and E be the vertex and edge
sets for a graph G, recall that an automorphism is an isomorphism of a graph
onto itself, on in other words, a bijection f : V → V where vi ↔ vj ∈ E if
and only if f (vi) ↔ f (vj) ∈ E. If G is edge colored in this context, we say
that f is an edge-color-preserving automorphism if it additionally ensures that
vi ↔ vj and f (vi) ↔ f (vj) have the same coloration. Finally, when we refer to
a path ingressing (resp. egressing) from a subgraph (e.g., a gadget), we mean
that there exists an ordered pair of vertices (va, vb) along some orientation of
the path, where va occurs prior to vb, where va (resp. vb) is disjoint from the
subgraph or gadget, and where vb (resp. va) belongs to the subgraph or gadget.

3.2 Counting Complexity

The class #P consists of all integer counting problems of the form f : Σ∗ → N0,
wherein the objective is to count the number of witnesses for an instance of an
NP language. To reduce a problem f ∈ #P to a problem h ∈ #P via a many-
one counting reduction, we require two polynomial time computable functions
R1 : Σ∗ → Σ∗ and R2 : N → N such that f(x) = R2(h(R1(x))). If R2 is the

Approximately Counting Proper Connected Colorings 127

identity function, then we may refer to the many-one counting reduction as a
parsimonious reduction. Additionally, if R2 corresponds to integer division by a
power of 2 (i.e., a “right-bit-shift” operation in binary), then we may refer to
the many-one counting reduction as a right-bit-shift reduction (see, e.g., [30]).

3.3 Approximate Counting

Let φ be an arbitrary instance of some counting problem #X, and let f be an
oracle for #X (i.e., a function which returns the exact answer to the counting
problem). In this context, an ε-approximation algorithm for #X is a function f̂

which satisfies the constraint that (1 − ε) f (φ) ≤ f̂ (φ) ≤ (1 + ε) f (φ) for some
input error parameter ε > 0.

3.4 Exponential Time Hypothesis (ETH) and Counting Exponential
Time Hypothesis (#ETH)

The Exponential Time Hypothesis (ETH) of Impagliazzo & Paturi [25] is defined
as follows:

Definition 1. Exponential Time Hypothesis (ETH) [25]. Letting n and m be the
number of variables and clauses for a k-SAT instance, where we assume k ≥ 3,
and letting sk = inf{δ : k-SAT can be solved in 2(δ·n) ·poly (m) time}, we have
that sk > 0.

In this context, letting #k-SAT be the #P problem of counting the number of
solutions for an instance of k-SAT, the Counting Exponential Time Hypothesis
(#ETH) of Dell et al. [13] can be defined as the following moderated conjecture:

Definition 2. Counting Exponential Time Hypothesis (#ETH) [13]. Letting n
and m be the number of variables and clauses for a #k-SAT instance, where we
assume k ≥ 3, and letting sk = inf{δ : #k-SAT can be solved in 2(δ·n) ·poly (m)
time}, we have that sk > 0.

3.5 Variants of Not-All-Equal SAT

For i, j ∈ N>0, let x(i,j) be a Boolean variable, let w(i,j) (resp. ¬ w(i,j)) be
a positive (resp. negative) literal corresponding to x(i,j), and let w∗

(i,j) be a
literal corresponding to x(i,j) that must later be specified to be positive or
negative. As an example, the 3-SAT formula φ =

(
w(1,1) ∨ ¬ w(1,2) ∨ w(2,1)

) ∧(¬ w(1,1) ∨ w(1,2) ∨ ¬ w(3,4)

)
has Boolean variables {x(1,1), x(1,2), x(2,1), x(3,4)},

literals {w(1,1),¬ w(1,1), w(1,2), ¬ w(1,2), w(2,1),¬ w(3,4)}, and can also be written

as
(
w∗

(1,1) ∨ w∗
(1,2) ∨ w∗

(2,1)

)
∧

(
w∗

(1,1) ∨ w∗
(1,2) ∨ w∗

(3,4)

)
.

Now let fNAE be a function which accepts any combination of positive and
negative literals, then returns “True” if and only if not all of the input literals uni-
formly evaluate to “True” or uniformly evaluate to “False”. Here, we can define

128 R. D. Barish and T. Shibuya

Not-All-Equal-k-SAT (NAE-k-SAT) as the problem of deciding the satisfiabil-
ity of fNAE

(
w∗

(1,1), w
∗
(1,2), . . . , w

∗
(1,k)

)
∧ fNAE

(
w∗

(2,1), w
∗
(2,2), . . . , w

∗
(2,k)

)
∧ . . .,

where each positive or negative literal w∗
(i,j) may be equivalent to (or distinct

from) any other positive or negative literal. In this context, we can also define
Monotone NAE-k-SAT (Mon-NAE-k-SAT) as a variant of NAE-k-SAT where
all literals are strictly positive.

4 Exactly and Approximately Counting Proper
Connected Colorings

In this section, after first proving a pair of helper lemmas (Lemma 1 and Lemma
2), we will proceed to sketch a proof of our main Theorem 1 concerning the
#P -completeness of counting 1-proper connected 2-colorings under right-bit-
shift reductions. We will subsequently establish the corollaries of this theorem
detailed at the end of Sect. 1 (i.e., Corollary 1 through 3).

Lemma 1. Counting satisfying assignments for arbitrary Monotone Not-All-
Equal 3-SAT formula, #Mon-NAE-3-SAT, is #P -complete under right-bit-shift
reductions.

Proof. Observe first that there is a right-bit-shift reduction from #3-SAT to
#NAE-4-SAT. Specifically, following the notation given in Sect. 3.5 and let-
ting y be a positive literal, observe that any 3-SAT formula of the form
φ =

(
w∗

(1,1) ∨ w∗
(1,2) ∨ w∗

(1,3)

)
∧ . . . ∧

(
w∗

(n,1) ∨ w∗
(n,2) ∨ w∗

(n,3)

)
can be parsimo-

niously reduced to a 3-SAT formula of the form φ′ =
(
w∗

(1,1) ∨ w∗
(1,2) ∨ w∗

(1,3)

)
∧

. . . ∧
(
w∗

(n,1) ∨ w∗
(n,2) ∨ w∗

(n,3)

)
∧ (y ∨ y ∨ y). Observe further that, letting z be

another positive literal, the 3-SAT formula φ′ can be reduced via a right-bit-
shift reduction to an NAE-4-SAT formula φ′′ = fNAE

(
w∗

(1,1), w
∗
(1,2), w

∗
(1,3), z

)
∧

. . .∧fNAE

(
w∗

(n,1), w
∗
(n,2), w

∗
(n,3), z

)
∧fNAE (y, y, y, z), such that there are exactly

two satisfying assignments of φ′′ per satisfying assignment of φ. This is a conse-
quence of our requiring that y
= z, and our being able to everywhere reverse the
assignment of “True” and “False” values to variables to obtain another satisfying
assignment for φ′′. As #NAE-4-SAT is straightforwardly in #P , we therefore
have that #NAE-4-SAT is #P -complete under right-bit-shift reductions.

Next, letting y(i,j) (resp. ¬ y(i,j)) be a positive (resp. negative) literal for
any i, j ∈ N>0, observe that there is a parsimonious reduction from #NAE-
4-SAT to #NAE-3-SAT, where we decompose each NAE-4-SAT clause of the
form fNAE

(
w∗

(i,1), w
∗
(i,2), w

∗
(i,3), w

∗
(i,4)

)
into the following five clause NAE-3-

SAT expression: fNAE

(
w∗

(i,1), w
∗
(i,2), y(i,1)

)
∧ fNAE

(
w∗

(i,1),¬
(
w∗

(i,3)

)
, y(i,1)

)
∧

fNAE

(
¬

(
w∗

(i,1)

)
, w∗

(i,4),¬ y(i,1)

)
∧ fNAE

(
w∗

(i,3), w
∗
(i,4), y(i,2)

)
∧ fNAE

(
y(i,1),

y(i,1), y(i,2)
)
.

Approximately Counting Proper Connected Colorings 129

Finally, observe that we can parsimoniously reduce #NAE-3-SAT to #Mon-
NAE-3-SAT by replacing any negative literal ¬ p (e.g., where p = w(...) or
p = y(...)) with a new positive literal q, then adding the NAE-3-SAT clause
fNAE (p, q, q) to require q = ¬ p.

Putting everything together, as #Mon-NAE-3-SAT is trivially in #P , and
as we doubled the number of witnesses in reducing #3-SAT to #NAE-4-SAT
prior to parsimoniously reducing #NAE-4-SAT to #Mon-NAE-3-SAT, #Mon-
NAE-3-SAT is accordingly #P -complete under right-bit-shift reductions. ��
Lemma 2. A w-edge coloring for a graph with n vertices and m edges can be
verified as a 1-proper connected w-coloring in O (

n2 · m
)
time for every w ∈ N>0.

Proof. Let G be a graph with n vertices, m edges, and an edge coloring using
at most w ∈ N>0 colors. If w = 1, observe that we simply need to verify in
O (m) time if G is a clique. Otherwise, for w = 2, we can observe a result of
Bang-Jensen & Gutin [5], or for w ≥ 2, a more general result of Szeider [38],
that a proper path between any pair of vertices (if one exists) can be found in
O (m) time. Accordingly, to check if a given edge coloring is a 1-proper connected
(w ≥ 2)-coloring, it suffices to use this procedure to check for the existence of a
proper path between all pairs of vertices in O (

n2 · m
)

time. ��
Theorem 1. Counting 1-proper connected 2-colorings is #P -complete under
right-bit-shift reductions.

Proof sketch. Let φMonNAE be an arbitrary Mon-NAE-3-SAT formula with n
variables and m clauses of the form φMonNAE = C1 ∧C2 ∧ . . .∧Cm. We will pro-
ceed by giving a right-bit-shift reduction from the #Mon-NAE-3-SAT problem
of counting witnesses for φMonNAE – which we can recall is #P -complete under
right-bit-shift reductions by Lemma 1 – to the problem of counting 1-proper
connected 2-colorings of a graph.

Our reduction involves three basic steps. In (Step 1.1), for each of the m
clauses of φMonNAE , we construct an instance of the “NAE-3-SAT Clause Gad-
get” shown in Fig. 1(a) (see also Fig. 1(b) for a simplified abstraction). In (Step
1.2), for each of the n variables of φMonNAE , we construct an instance of the
“NAE-3-SAT Variable Gadget” shown in Fig. 2(a) (see also Fig. 2(b) for a sim-
plified abstraction) where the number of output edges, z, is specified to be equal
to the number of times the given variable occurs in φMonNAE .

Finally, in (Step 1.3), for each literal w(i,j) corresponding to some variable
xj of φMonNAE , and belonging to a clause Ci of φMonNAE , let γi be the “NAE-
3-SAT Clause Gadget” constructed for Ci in (Step 1.1) and let ζj be the “NAE-
3-SAT Variable Gadget” constructed for xj in (Step 1.2). Here, for some pair of
vertices {v(out,r,1), v(out,r,2)} in ζj , where the selected value of r is unique for each
literal corresponding to the variable xj , we delete the vertex v(out,r,2) and identify
the vertex v(out,r,1) with any degree 1 vertex in the set {v(in,1,1), v(in,1,2), v(in,1,3)}
of input vertices for γi.

Let us now make the following assumption: (Assumption 1.1) the edge col-
oration schemes for the “NAE-3-SAT Clause Gadget”, shown in Fig. 1(c.1)

130 R. D. Barish and T. Shibuya

Fig. 1. Illustration and details of the “NAE-3-SAT Clause Gadget”; (a) the “NAE-3-
SAT Clause Gadget” with vertex labels and edges left uncolored, having 3 input edges:
{v(in,1,1) ↔ v(in,1,2), v(in,2,1) ↔ v(in,2,2), v(in,3,1) ↔ v(in,3,2)}; (b) gadget-level abstrac-
tion of the “NAE-3-SAT Clause Gadget” having 3 input edges; (c.1) through (c.6)
show all possible manners of coloring the edges of the “NAE-3-SAT Clause Gadget”
using a palette of 2 distinct colors (indicated using dashed and solid thick lines for
edges), up to color inversion (though not, in this case, edge-color-preserving automor-
phism), such that there may exist a proper path between any two vertices in a given
reduction construct.

through 1(c.6), and the “NAE-3-SAT Variable Gadget”, shown in Fig. 2(a), are
the only possible edge coloration schemes, up to edge-color-preserving automor-
phism and color inversion, that allow the reduction construct to be 1-proper
connected using a palette of 2 distinct colors.

Under (Assumption 1.1), it is straightforward to understand how the reduc-
tion works. Specifically, let c1 (solid thick coloration in Fig. 1(c.1) through
Fig. 1(c.6)) and c2 (dashed coloration in Fig. 1(c.1) through Fig. 1(c.6)) be the
two distinct edge colorations, and arbitrarily specify that c1 corresponds to
“True” and c2 corresponds to “False”. Observe that the “NAE-3-SAT Clause
Gadget” will allow the reduction construct to be 1-proper connected if and
only if one of its input edges – which will correspond to the edges {v(in,1,1) ↔
v(in,1,2), v(in,2,1) ↔ v(in,2,2), v(in,3,1) ↔ v(in,3,2)}, respectively – has color c1

Approximately Counting Proper Connected Colorings 131

Fig. 2. Illustration and details of the “NAE-3-SAT Variable Gadget”; (a) the “NAE-
3-SAT Variable Gadget” with vertex labels, having z output edges – v(out,1,1) ↔
v(out,1,2), v(out,2,1) ↔ v(out,2,2), . . . , v(out,z,1) ↔ v(out,z,2) – where we show the only
possible manner of coloring the edges of the gadget using a palette of 2 distinct colors
(indicated using dashed and solid thick lines for edges), up to color inversion and edge-
color-preserving automorphism, such that there may exist a proper path between any
two vertices in a given reduction construct, and where all vertices labeled vq correspond
to the same vertex; (b) gadget-level abstraction the “NAE-3-SAT Variable Gadget”
with z output edges; (c) subgraph of the “NAE-3-SAT Variable Gadget” induced by
the vertices in the set {i.1, i.2, i.3, i.4, i.5, i.6, i.7, i.8, i.9, i.12, (((i − 2) mod z) + 1) .13},
where 1 ≤ i ≤ z, with the edge coloration scheme shown in (a); (d) subgraph of
the “NAE-3-SAT Variable Gadget” showing a “pathological” edge coloring scheme,
forced (up to edge-color-preserving automorphism and color inversion) only by a fail-
ure to monochromatically color the edges of the C3 cycle induced by the vertex set
{i.1, i.2, i.3}, where we have that no proper path can connect the vertices i.6 and i.9
regardless of the coloration of the (thin dotted) edge (((i − 2) mod z) + 1) .13 ↔ i.2.

(encoding the input “True”) and one of the edges it is adjacent to has color c2
(encoding the input “False”), and furthermore, that there are two possible edge
coloration schemes for each permutation of inputs. For example, the edge col-
oration scheme shown in Fig. 1(c.1) and Fig. 1(c.2) are the only two edge coloring
schemes for the “NAE-3-SAT Clause Gadget” that accept the input {v(in,1,1) ↔
v(in,1,2), v(in,2,1) ↔ v(in,2,2), v(in,3,1) ↔ v(in,3,2)} = {c1, c2, c2}, and their color
inverses are likewise the only two edge coloring schemes that accept the input
{v(in,1,1) ↔ v(in,1,2), v(in,2,1) ↔ v(in,2,2), v(in,3,1) ↔ v(in,3,2)} = {c2, c1, c1}.

132 R. D. Barish and T. Shibuya

Observe further that each of the outputs of the “NAE-3-SAT Variable Gad-
get” – encoded in the color of the edge v(out,i,1) ↔ v(out,i,2) for each 1 ≤ i ≤ z
– will have the same coloration. Additionally, observe that we may invert the
colorations for each of the 3z pairs of edges connecting degree 1 vertices to a
common vertex, and likewise invert the colors of the set of edges in each of the
2z length 4 loops containing the vertex vq to obtain an edge-color-preserving
automorphism of the “NAE-3-SAT Variable Gadget”. We therefore have that,
up to color inversion of all edges in the graph constructed for the reduction, there
are exactly 25z edge coloring schemes for each “NAE-3-SAT Variable Gadget”
encoding a variable set to either “True” or “False”.

We now make an additional assumption (Assumption 1.2), that provided
(Assumption 1.1) is correct, for any truth assignment to the variables of the
φMonNAE formula encoded in the aforementioned reduction construct, there
will be a 1-proper connected 2-coloring of the reduction construct if and only if
the truth assignment is a witness for φMonNAE . With this assumption, we can
now observe the following lemma:

Lemma 3. Assuming the correctness of (Assumption 1.1) and (Assumption
1.2), our reduction from #Mon-NAE-3-SAT to counting 1-proper connected 2-
colorings of graphs will multiply the number of witnesses for an input Mon-
NAE-3-SAT formula with m clauses by a factor of exactly 2(16m+1), implying
that counting 1-proper connected 2-colorings of graphs is #P -hard under right-
bit-shift reductions.

Proof. Let φMonNAE be the original Mon-NAE-3-SAT formula with m clauses
in the reduction of an instance of #Mon-NAE-3-SAT to an instance of counting
1-proper connected 2-colorings. For a given satisfying truth assignment for the
variables in φMonNAE , recall that, up to inversion of all colors in the graph con-
structed for the reduction, there will be exactly 25z edge coloring schemes for
each “NAE-3-SAT Variable Gadget” (where z corresponds to the number of gad-
get outputs) permitting the reduction construct to have a 1-proper connected 2-
coloring. Furthermore, recall that, for a given satisfying truth assignment for the
variables in φMonNAE , and for a specific coloration of the edges in each “NAE-
3-SAT Variable Gadget”, there will be exactly two permitted colorations of each
“NAE-3-SAT Clause Gadget”. Finally, recall that, assuming the correctness of
(Assumption 1.1) and (Assumption 1.2), any 1-proper connected 2-coloring of
the reduction construct must correspond to a witness for φMonNAE .

Putting everything together and accounting for color inversions, we have that
there will be exactly 2m · 2(5×3m) · 2 = 2(16m+1) instances of 1-proper connected
2-colorings for the reduction construct per satisfying assignment of φMonNAE .
This implies that our reduction from #Mon-NAE-3-SAT to counting 1-proper
connected 2-colorings is a right-bit-shift reduction, and by Lemma 1, that the
latter problem is accordingly #P -hard under right-bit-shift reductions. ��

To complete the current proof, it now suffices to establish the correctness of
(Assumption 1.1) and (Assumption 1.2). Concerning (Assumption 1.2), we will in
particular need to show that, for every edge coloration of the reduction construct

Approximately Counting Proper Connected Colorings 133

corresponding to a witness for the encoded Mon-NAE-3-SAT formula, there will
exist a proper path in a reduction construct connecting a pair of vertices va and
vb in each of the following cases: (case 1.1) va = vq and vb is internal to a “NAE-
3-SAT Variable Gadget”; (case 1.2) va = vq and vb is internal to a “NAE-3-SAT
Clause Gadget”; (case 1.3) va and vb are both internal to the same “NAE-3-
SAT Variable Gadget”; (case 1.4) va and vb are internal to distinct instances of
the “NAE-3-SAT Variable Gadget”; (case 1.5) va is internal to a “NAE-3-SAT
Variable Gadget” and vb is internal to a “NAE-3-SAT Clause Gadget”; (case 1.6)
va and vb are both internal to the same “NAE-3-SAT Clause Gadget”; (case 1.7)
va and vb are internal to distinct instances of the “NAE-3-SAT Clause Gadget”.

Here, as proofs of correctness for (Assumption 1.1) and (Assumption 1.2)
ultimately required a long and complex case analysis, due to space constraints
we are forced to omit the details in this extended abstract.

Putting everything together, we can appeal to Lemma 3 to determine that
counting 1-proper connected 2-colorings of graphs is #P -hard under right-bit-
shift reductions. It remains to observe that the problem at hand is also in #P
as a straightforward consequence of Lemma 2, yielding the current theorem. ��
Corollary 1. Counting k-proper connected 2-colorings is #P -hard under many-
one counting reductions for every k ∈ N>0.

Proof. Recall that a orientation of an undirected graph G is a directed graph
generated by assigning a direction to each of the edges of G, and that a unilateral
orientation of G is a directed graph where, for every pair of vertices va or vb, there
exists at least one directed path from va to vb or from vb to va. Here, we can also
introduce the notion of a k-unilateral orientation [7], wherein we require k ∈ N>0

vertex disjoint directed paths connecting any pair of vertices va and vb, and where
each such path is permitted to originate at va and end at vb or vice versa. Now
observe that, in the specific context of a bipartite graph, 1-unilateral connected
orientations and 1-proper connected 2-colorings are in bijection according to
what Bang-Jensen & Gutin [4] refer to as the “BB correspondence” – simply
color each edge in accordance with the partite set membership of the vertex that
it is oriented towards, and notice that any directed path becomes a proper path.
From this we can immediately infer that k-unilateral connected orientations and
k-proper connected 2-colorings are also in bijection.

To proceed, we will slightly modify a construction given in “Theorem 3.6”
of [7], which allows one to transform any bipartite graph H with vertex set VH

– and two non-adjacent degree 1 vertices attached to a pair of adjacent degree
3 vertices – in O (|VH | · f(k)) time into a graph M with z (k, |VH |) instances
of k-unilateral connected orientations (equiv. k-proper connected 2-colorings)
per unilateral orientation (equiv. 1-proper connected 2-coloring) of H, where
f(k) ∈ O (

k2
)

is a polynomial time computable function of k and z (k, |VH |) is
a polynomial time computable function of k and |VH |.

Here, let G be an arbitrary simple undirected graph of order ≥ 3, with vertex
set VG, constructed from an input Mon-NAE-3-SAT formula via the reduction
given in Theorem 1, and let SG be any spanning tree of G (which can be com-
puted in O (|VG|) time). Next, exchange the input bipartite graph H for SG in

134 R. D. Barish and T. Shibuya

the “Theorem 3.6” reduction from [7] – treating any pair of non-adjacent degree
1 vertices as the degree 1 vertices attached to adjacent degree 3 vertices in the
original “Theorem 3.6” reduction – and call the graph resulting from this reduc-
tion W. Finally, create a graph W ′ by adding the edges in G that do not occur
in SG. While these changes may impact the “BB correspondence”, it can be
observed that the exact relationship between the number of 1-proper connected
2-colorings of H and k-proper connected 2-colorings of M from the original “The-
orem 3.6” reduction will still hold for 1-proper connected 2-colorings of G and
k-proper connected 2-colorings of W ′ in our modified construction. Accordingly,
W ′ will have exactly z (k, |VG|) instances of k-proper connected 2-colorings per
1-proper connected 2-coloring of G, yielding the corollary at hand. ��

Corollary 2. For every k ∈ N>0, it holds that no 2o(n
k2) time algorithm can

exist for either finding a k-proper connected 2-coloring assuming the ETH, or
for counting such colorings assuming the #ETH.

Proof. Observe that Theorem 1 gives an O (n · m) time many-one counting
reduction, transitively from an arbitrary instance of #3-SAT with n variables
and m clauses, to the problem of counting 1-proper connected 2-colorings. Here,
as the sparsification lemma of Impagliazzo et al. [26] implies that no 2o(n) time
algorithm can exist for sparse (i.e., m ∈ Θ (n)) instances of 3-SAT or #3-SAT
under the ETH and #ETH, respectively, we have that no 2o(n) time algorithm
can exist for determining the existence of or counting 1-proper connected 2-
colorings under the ETH or #ETH, respectively. Next, observe that Corollary
1 gives a many-one counting reduction, transitively from an arbitrary instance
of #3-SAT with n variables and m clauses, to the problem of counting k-proper
connected 2-colorings for every k ∈ N>0, with a O (

k2
)

overhead on the time
complexity of the Theorem 1 reduction. Thus, for every k ∈ N>0, we have that
no 2o(n

k2) time algorithm can exist for determining the existence of or counting
k-proper connected 2-colorings under the ETH or #ETH, respectively. ��
Corollary 3. Assuming the ETH, for every k ∈ N>0 and any input error
parameter ε > 0, no 2o(n

k2)/ε2 time ε-approximation algorithm exists for number
of k-proper connected 2-colorings of an order n graph.

Proof. This result follows from Corollary 2 and a finding of Dell & Lapinskas
[14] that, for any input error parameter ε > 0, under the ETH no 2o(n)/ε2 time
ε-approximation algorithm can exist for an n variable instance of #3-SAT. ��

5 Concluding Remarks

We strongly believe that our results can be extended to rule out at least the
existence of a 2o(n

k2) time algorithm for finding or counting k-proper connected
w-colorings under the ETH and #ETH, respectively, for each ordered pair of
parameters (k,w), where k ∈ N>0 and w ∈ N>1. We leave this problem open.

Approximately Counting Proper Connected Colorings 135

References

1. Aardal, K.I., van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.:
Models and solution techniques for frequency assignment problems. Ann. Oper.
Res. 153(1), 79–129 (2007)

2. Abouelaoualim, A., Das, K.C., Faria, L., Manoussakis, Y., Martinhon, C., Saad,
R.: Paths and trails in edge-colored graphs. Theoret. Comput. Sci. 409(3), 497–510
(2008)

3. Andrews, E., Lumduanhom, C., Laforge, E., Zhang, P.: On proper-path colorings
in graphs. J. Comb. Math. Comb. Comput. 97, 189–207 (2016)

4. Bang-Jensen, J., Gutin, G.: Alternating cycles and paths in edge-coloured multi-
graphs: a survey. Discrete Math. 165(166), 39–60 (1997)

5. Bang-Jensen, J., Gutin, G.: Alternating cycles and trails in 2-edge-coloured com-
plete multigraphs. Discrete Math. 188(1–3), 61–72 (1998)

6. Baran, P.: The beginnings of packet switching: some underlying concepts. IEEE
Commun. Mag. 40(7), 42–48 (2002)

7. Barish, R.D.: On the Number of k-Proper Connected Edge and Vertex Colorings
of Graphs. Accepted for publication in Thai J, Math (2023)

8. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan Press:
New York, NY, 1st edn. (1976)

9. Borozan, V., et al.: Proper connection of graphs. Discrete Math. 312(17), 2550–
2560 (2012)

10. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in
graphs. Math. Bohem. 133(1), 85–98 (2008)

11. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: The rainbow connectivity
of a graph. Networks 54(2), 75–81 (2009)

12. Chou, W.S., Manoussakis, Y., Megalakaki, O., Spyratos, M., Tuza, Z.: Paths
through fixed vertices in edge-colored graphs. Mathématiques et Sciences Humaines
127, 49–58 (1994)

13. Dell, H., Husfeldt, T., Marx, D., Taslaman, N., Wahlén, M.: Exponential time
complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms
10(4), 21:1–21:32 (2014)

14. Dell, H., Lapinskas, J.: Fine-grained reductions from approximate counting to deci-
sion. ACM Trans. Comput. Theory 13(2), 8:1–8:24 (2021)

15. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

16. Ducoffe, G., Marinescu-Ghemeci, R., Popa, A.: On the (di)graphs with (directed)
proper connection number two. Discrete Appl. Math. 281, 203–215 (2020)

17. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
18. Gerek, A., Fujita, S., Magnant, C.: Proper connection with many colors. J. Comb.

3(4), 683–693 (2012)
19. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial. Inform.

Comput. 206(7), 908–929 (2008)
20. Gu, R., Li, X., Qin, Z.: Proper connection number of random graphs. Theoret.

Comput. Sci. 609, 336–343 (2016)
21. Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12),

1497–1514 (1980)
22. Huang, F., Li, X., Qin, Z., Magnant, C.: Minimum degree condition for proper

connection number 2. Theoret. Comput. Sci. 774, 44–50 (2019)

https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3

136 R. D. Barish and T. Shibuya

23. Huang, Z., Li, X.: Hardness results for three kinds of colored connections of graphs,
pp. 1–23 (2020). arxiv.org/abs/2001.01948

24. Huang, Z., Li, X.: Hardness results for three kinds of colored connections of graphs.
Theoret. Comput. Sci. 841, 27–38 (2020)

25. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

26. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

27. Jerrum, M.: Counting, sampling and integrating: algorithms and complexity. Lec-
tures in Mathematics, ETH Zuerich, Birkhauser Verlag, Basel, Switzerland (2013)

28. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci. 43(2–3), 169–188
(1986)

29. Li, X., Magnant, C.: Properly colored notions of connectivity - a dynamic survey.
Theory Appl. Graphs 0(1), 1–16 (2015)

30. Lískiewicz, M., Ogihara, M., Toda, S.: The complexity of counting self-avoiding
walks in subgraphs of two-dimensional grids and hypercubes. Theoret. Comput.
Sci. 304(1–3), 129–156 (2003)

31. Lumduanhom, C., Laforge, E., Zhang, P.: Characterizations of graphs having large
proper connection numbers. Discuss. Math. Graph Theory 36(2), 439–453 (2016)

32. Manoussakis, Y.: Alternating paths in edge-colored complete graphs. Discret. Appl.
Math. 56(2–3), 297–309 (1995)

33. Menger, K.: Zur allgemeinen kurventheorie. Fundam. Math. 10(1), 96–115 (1927)

34. Micali, S., Vazirani, V.V.: An O
(√|V | · |E|

)
algorithm for finding maximum

matching in general graphs. In: Proceedings of the 21st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 17–27 (1980)

35. Mulder, H.M.: Julius Petersen’s theory of regular graphs. Discrete Math. 100(1–3),
157–175 (1992)

36. Petersen, J.: Die theorie der regulären graphs. Acta Math. 15, 193–220 (1891)
37. Roberts, L.G.: Multiple computer networks and intercomputer communication. In:

Proceedings of the 1st ACM Symposium on Operating System Principles (SOSP),
pp. 3.1-3.6 (1967)

38. Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discret. Appl.
Math. 126(2–3), 261–273 (2003)

39. Tutte, W.T.: The factors of graphs. Can. J. Math. 4, 314–328 (1952)
40. Tutte, W.T.: The method of alternating paths. Combinatorica 2(3), 325–332 (1982)
41. de Werra, D., Gay, Y.: Chromatic scheduling and frequency assignment. Discrete

Appl. Math. 49(1–3), 165–174 (1994)
42. Yeo, A.: A note on alternating cycles in edge-coloured graphs. J. Comb. Theory,

Ser. B 69(2), 222–225 (1997)

http://arxiv.org/2001.01948

Combinatorics and Computing

Strong Edge Coloring of Subquartic
Graphs

Junlei Zhu1(B) and Hongguo Zhu2

1 College of Data Science, Jiaxing University, Jiaxing 314001, China
zhujl-001@163.com

2 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
zhuhongguo@zjnu.edu.cn

Abstract. A strong k-edge coloring of a graph G is a mapping c :
E(G) → {1, 2, 3, ..., k} such that for any two edges e and e′ with distance
at most two, c(e) �= c(e′). The strong chromatic index of G, written
χ′
s(G), is the smallest integer k such that G has a strong k-edge coloring.

In this paper, using color exchange method and discharging method, we
prove that for a subquartic graph G, χ′

s(G) ≤ 11 if mad(G) < 8
3
, where

mad(G) = max{ 2|E(G)|
|V (G)| , H ⊆ G}.

Keywords: subquartic graph · strong edge coloring · maximum
average degree

1 Introduction

To solve the Channel Assignment Problem in wireless communication networks,
Fouquet and Jolivet [8] first introduced the notion of strong edge coloring in 1983.
A strong k-edge coloring of a graph G is a mapping c : E(G) → {1, 2, 3, · · · , k}
such that c(e) �= c(e′) for any two edges e and e′ with distance at most two. The
smallest integer k such that G has a strong k-edge coloring of G is called the
strong chromatic index of G, written χ′

s(G). By greedy algorithm, it is easy to
see that 2Δ2−2Δ+1 is a trivial upper bound on χ′

s(G), where Δ is the maximum
degree of G. However, it is NP-complete to decide wether χ′

s(G) = k holds for
a general graph G [14]. In 1989, Erdős and Nešetřil [7] proposed the following
important conjecture while studying the strong edge coloring of graphs.

Conjecture 1. [7] For any graph G with maximum degree Δ, χ′
s(G) ≤ 5

4Δ2 if Δ
is even, χ′

s(G) ≤ 5
4Δ2 − 1

2Δ + 1
4 if Δ is odd.

In [7], Erdős and Nešetřil constructed two classes of graphs satisfying χ′
s(G) =

χ′(G) = |E(G)| while |E(G)| attains the upper bound in Conjecture 1. This
illustrate that the upper bound is sharp if Conjecture 1 is true. Also, they asked a
question: For a general graph G, is there any positive number ε such that χ′

s(G) ≤
(2−ε)Δ2, where Δ is the maximum degree of G. As yet, there are many research
results on strong edge coloring. For a graph G with sufficient large Δ, Molloy
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 139–146, 2024.
https://doi.org/10.1007/978-3-031-49614-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_9&domain=pdf
http://orcid.org/0000-0003-1561-5772
http://orcid.org/0000-0002-2876-7153
https://doi.org/10.1007/978-3-031-49614-1_9

140 J. Zhu and H. Zhu

and Reed [15] proved that χ′
s(G) ≤ 1.998Δ2 using probabilistic methods. In the

next decides, this result was improved to 1.93Δ2 by Bruhn and Joos [4], 1.835Δ2

by Bonamy, Perrett and Postle [3]. For graphs with small Δ, scholars also made
a lot of research works. It is an obvious result that χ′

s(G) ≤ 5 = 5
4Δ2 while

Δ = 2. For subcubic graphs, the above conjecture was verified by Andersen [1],
and independently by Horák, Qing, Trotter [10]. For subquartic graphs, χ′

s(G) ≤
22 was proven by Cranston [6] using algorithms. Huang, Santana and Yu [11]
reduced 22 to 21. For graphs with Δ = 5, Zang [18] confirmed that χ′

s(G) ≤ 37.
For graphs with maximum average degree restriction, there are also a mount

of results. The maximum average degree of a graph G, written mad(G), is the
largest average degree of its subgraph. In other words, mad(G) = max{2|E(H)|

|V (H)| :
H ⊆ G}. In 2013, Hocquard [9] studied the strong chromatic index of subcubic
graphs with maximum average degree and obtained the following theorem.

Theorem 1. [9] Let G be a graph with Δ(G) = 3.

(1) If mad(G) < 7
3 , then χ′

s(G) ≤ 6;
(2) If mad(G) < 5

2 , then χ′
s(G) ≤ 7;

(3) If mad(G) < 8
3 , then χ′

s(G) ≤ 8;
(4) If mad(G) < 20

7 , then χ′
s(G) ≤ 9.

The given upper bound on mad(G) in Theorem 1(1)(2)(4) is optimal since
there exist subcubic graphs with mad(G) = 7

3 (or mad(G) = 5
2 , 20

7) and χ′
s(G) >

6 (or χ′
s(G) > 7, 9), see Fig. 1.

Fig. 1. mad(G) = 7
3

(or 5
2
, 20

7
) and χ′

s(G) = 7 (or χ′
s(G) = 8, 10)

For subquartic graphs with bounded maximum average degree, Lv et al. [13]
gave out the following theorem, which improved the corresponding upper bound
on mad(G) due to Bensmail et al. [2].

Theorem 2. [13] Let G be a graph with Δ(G) = 4.

(1) If mad(G) < 61
18 , then χ′

s(G) ≤ 16;
(2) If mad(G) < 7

2 , then χ′
s(G) ≤ 17;

(3) If mad(G) < 18
5 , then χ′

s(G) ≤ 18;
(4) If mad(G) < 26

7 , then χ′
s(G) ≤ 19;

(5) If mad(G) < 51
13 , then χ′

s(G) ≤ 20.

Ruksasakchai and Wang [17] studied the strong edge coloring of graphs with
Δ(G) ≤ 4 and mad(G) < 3 and obtained the following theorem.

Strong Edge Coloring of Subquartic Graphs 141

Theorem 3. [17] If G is a graphs G with maximum degree Δ ≤ 4 and
mad(G) < 3, then χ′

s(G) ≤ 3Δ + 1.

For graphs with maximum degree 5 and bounded maximum average degree,
Qin et al. [16] obtained the following theorem.

Theorem 4. [16] Let G be a graph with Δ(G) = 5.

(1) If mad(G) < 8
3 , then χ′

s(G) ≤ 13;
(2) If mad(G) < 14

5 , then χ′
s(G) ≤ 14.

Additionally, Choi et al. [5] studied the strong edge coloring of graphs with
maximum degree Δ ≥ 7 and bounded maximum average degree. They obtained
a theorem as follows.

Theorem 5. [5] Let G be a graph with maximum degree Δ.

(1) If Δ ≥ 9 and mad(G) < 8
3 , then χ′

s(G) ≤ 3Δ − 3;
(2) If Δ ≥ 7 and mad(G) < 3, then χ′

s(G) ≤ 3Δ.

Recently, Li et al. [12] studied the strong edge coloring of graphs with max-
imum degree Δ ≥ 6 and bounded maximum average degree. The following the-
orem is given in [12].

Theorem 6. [12] Let G be a graph with maximum degree Δ.

(1) If Δ ≥ 6 and mad(G) < 23
8 , then χ′

s(G) ≤ 3Δ − 1;
(2) If Δ ≥ 7 and mad(G) < 26

9 , then χ′
s(G) ≤ 3Δ − 1.

In this paper, we further consider the strong edge coloring of subquartic
graphs by using color exchange method and discharging method. We obtained
the following theorem.

Theorem 7. If G is a graph with Δ(G) = 4 and mad(G) < 8
3 , then χ′

s(G) ≤ 11.

G1 G2 G3

Fig. 2. Subquartic graphs.

G1, G2, G3 in Fig. 2 are subquartic graphs, where mad(G1) = 8
3 , χ′

s(G1) = 10;
mad(G2) = 20

7 , χ′
s(G2) = 11 and mad(G3) = 3, χ′

s(G3) = 12 (we can take the
graph obtained from G1 by deleting two 1-vertices, G2 by deleting the 1-vertex

142 J. Zhu and H. Zhu

and G3 as subgraphs, respectively). We do not know whether the upper bound
mad(G) < 8

3 in Theorem 7 is optimal. However, due to the graph G3 in Fig. 2, we
know that there exists a graph G with Δ(G) = 4, mad(G) = 3 and χ′

s(G) = 12.
For the strong edge coloring of subquartic graphs, Theorem 2 gives out some

sufficient conditions for χ′
s(G) ≤ 16 (respectively 17,18,19,20). Theorem 3 indi-

cates that any graph G with Δ(G) = 4 and mad(G) < 3 satisfies χ′
s(G) ≤ 13.

Therefore, Theorem 7 enriches the results of strong edge coloring for subquartic
graphs.

2 Notations

All graphs considered here are finite undirected simple graphs. For a graph G,
V (G), E(G), Δ(G) and δ(G) denote its vertex set, edge set, maximum degree
and minimum degree respectively. For v ∈ V (G), dG(v) (abbreviated by d(v))
denotes the degree of v in G. v is a i (or i+, i−)-vertex if d(v) = i (or d(v) ≥ i,
d(v) ≤ i). For a vertex v, a i-neighbor of v is a i-vertex in N(v). A ij-vertex
is a i-vertex adjacent to exactly j 2-vertices. A 2-vertex is bad if it is adjacent
to a 2-vertex, semi-bad if it is adjacent to a 32-vertex. A 2-vertex is good if it
is neither bad nor semi-bad. For an edge e, F (e) denotes the set of forbidden
colors for it.

3 Proof of Theorem 7

Suppose G is a counterexample with minimum 2+-vertices and then with min-
imum edges. Let H be the graph obtained from G by deleting all 1-vertices.
Obviously, H ⊆ G and then mad(H) ≤ mad(G) < 8

3 . In the following, we first
illustrate some properties of H.

Lemma 1. H does not have vertices of degree 1.

Proof. Suppose v is a 1-vertex in H and uv ∈ E(H). Since H is the graph
obtained from obtained from G by deleting all 1-vertices, dG(v) > 1 and v has
at least one 1-neighbor v1 in G. Compared with G, G − v1 has the same 2+-
vertices but fewer edges. By the minimality of G, χ′

s(G − v1) ≤ 11. Note that in
G, |F (vv1)| ≤ 6. Thus, vv1 can be colored, which leads to a contradiction.

Lemma 2. If dH(v) = 2, then dG(v) = 2.

Proof. Suppose dG(v) > 2. Then, v has at least one 1-neighbor v1 in G. Com-
pared with G, G − v1 has fewer edges while the same 2+-vertices. By the min-
imality of G, χ′

s(G − v1) ≤ 11. Note that in G, |F (vv1)| ≤ 9. Thus, vv1 can be
colored, which leads to a contradiction.

Lemma 3. If v is a 3i-vertex in H, where i ≥ 1, then dG(v) = 3.

Strong Edge Coloring of Subquartic Graphs 143

Proof. Suppose dG(v) > 3. Then, v has at least one 1-neighbor v′ in G. Let v1
be a 2-neighbor of v in H, By Lemma 2, dG(v1) = 2. Let G′ = G−v′. Compared
with G, G′ has the same 2+-vertices but fewer edges. By the minimality of G,
χ′
s(G− v1) ≤ 11. Note that in G, |F (vv′)| ≤ 10. Thus, vv′ can be colored, which

leads to a contradiction.

Lemma 4. Every bad vertex in H is adjacent to a 4-vertex.

Proof. Suppose v is a bad vertex in H and it is adjacent to a 2-vertex u and a
3−-vertex w. By Lemma 2, dG(u) = dG(v) = 2. Denote NG(u) = {u1, v}. Note
that 2 ≤ dH(w) ≤ 3. If dH(w) = 2, then dG(w) = 2 by Lemma 2. If dH(w) = 3,
then by Lemma 3, dG(w) = 3 since dH(v) = 2. Let G′ = G − uv + ww1, where
ww1 is a pendent edge incident with w. Note that 3 ≤ dG′(w) ≤ 4 and G′

has fewer 2+-vertices than G. By the definition of maximum average degree,
mad(G′) < 2 if mad(G) < 2 and mad(G′) ≤ mad(G) < 8

3 if 2 ≤ mad(G) < 8
3 .

By the minimality of G, χ′
s(G

′) ≤ 11. Let c be a strong 11-edge coloring of
G′. Note that in G, |F (uv)| ≤ 8. If c(uu1) �= c(vw), then uv can be colored,
which is a contradiction. If c(uu1) = c(vw), then we first exchange the colors on
pendant edges wv and ww1 in G′. After that, uv can be colored, which leads to
a contradiction.

Lemma 5. H does not have 33-vertices.

Proof. Suppose v is a 33-vertex in H and NH(v) = {v1, v2, v3}. By Lemma 2,
dG(vi) = 2, i = 1, 2, 3. By Lemma 3, dG(v) = 3. Let G′ = G − v. Note that G′

has fewer 2+-vertices than G. By the minimality of G, χ′
s(G

′) ≤ 11. Note that
in G, |F (vvi)| ≤ 6, i = 1, 2, 3, vvi can be colored, which is a contradiction.

Lemma 6. Every semi-bad vertex in H is adjacent to a 4-vertex.

Proof. Suppose v is a semi-bad vertex in H and it is adjacent to a 32-vertex
u and a 3−-vertex w. Let NH(u) = {u1, u2, v}, where dH(u1) = 2 (see Fig. 3).
By Lemma 2, dG(u1) = dG(v) = 2. By Lemma 3, dG(u) = 3. Note that 2 ≤
dH(w) ≤ 3 and dH(v) = 2, we have dG(w) = dH(w) by Lemma 2 and Lemma 3.
Let G′ = G−uv+ww1, where ww1 is a pendant edge incident with w. Note that
G′ has fewer 2+-vertices than G, by the definition of maximum average degree,
mad(G′) < 2 if mad(G) < 2 and mad(G′) ≤ mad(G) < 8

3 if 2 ≤ mad(G) < 8
3 . By

u1 u v w

u2

Fig. 3. .

v1 v v3u

v2

Fig. 4. .

v1 v v3v1u

v2

Fig. 5. .

144 J. Zhu and H. Zhu

the minimality of G, χ′
s(G

′) ≤ 11. Let c be a strong 11-edge coloring of G′. Erase
on color on uu1. Note that in G, |F (uu1)| ≤ 9, |F (uv)| ≤ 9. If c(uu2) �= c(vw),
then uu1, uv can be colored, which is a contradiction. If c(uu2) = c(vw), then
we first exchange the colors on pendant edges wv and ww1 in G′. After that,
uu1 and uv can be colored, which leads to a contradiction.

Lemma 7. Let v be a 4i-vertex in H, where i ≥ 3. Then its 2-neighbors are all
good vertices.

Proof. Suppose that v1, v2, v3 are 2-neighbors of v and at least one of them is
not good. Without loss of generality, we assume that v1 is not a good vertex.
This implies that v1 is adjacent to a 2-vertex or a 32-vertex.

If v1 is adjacent to a 2-vertex u (see Fig. 4), then by Lemma 2, dG(vi) =
dG(u) = 2, i = 1, 2, 3. Let G′ = G − v1. Note that G′ has fewer 2+-vertices
than G. By the minimality of G, χ′

s(G
′) ≤ 11. Note that in G, |F (uv1)| ≤ 7,

|F (vv1)| ≤ 9, uv1, vv1 can be colored, which is a contradiction.
If v1 is adjacent to a 32-vertex v′

1 and u �= v1 is the other 2-neighbor of
v′
1 (see Fig. 5). By Lemma 2, dG(vi) = dG(u) = 2, i = 1, 2, 3. By Lemma 3,

dG(v′
1) = 3. Let G′ = G− v1. Note that G− v1 has fewer 2+-vertices than G. By

the minimality of G, χ′
s(G

′) ≤ 11. Note that in G, |F (v1v′
1)| ≤ 9, |F (vv1)| ≤ 10.

Thus, vv1, v1v
′
1 can be colored in order, which is a contradiction.

Proof of Theorem 7: We define weight function w(v) = d(v) for each
v ∈ V (H) and we define five discharging rules R1-R5 as follows. Let w′(v) be
the final weight function while discharging finished. As we know, the sum weigh
is fixed. However, we shall prove that w′(v) ≥ 8

3 for each v ∈ V (H). This will
lead to a contradiction as follow.

8
3
|V (H)| ≤

∑

v∈V (H)

w′(v) =
∑

v∈V (H)

w(v) ≤ mad(H)|V (H)| <
8
3
|V (H)|.

Discharging Rules:

R1 Each 4-vertex gives 2
3 to each adjacent bad vertex.

R2 Each 4-vertex gives 1
2 to each adjacent semi-bad vertex.

R3 Each 4-vertex gives 1
3 to each adjacent good vertex.

R4 Each 32-vertex gives 1
6 to each adjacent semi-bad vertex.

R5 Each 31-vertex gives 1
3 to each adjacent good vertex.

In the following, we shall verify that w′(v) ≥ 8
3 for each v ∈ V (H).

By Lemma 1, δ(H) ≥ 2.

• d(v) = 2

If v is bad, then by Lemma 4, v is adjacent to a 4-vertex. By R1, w′(v) =
2 + 2

3 = 8
3 .

If v is semi-bad, then by Lemma 6, v is adjacent to a 4-vertex. By R2 and
R4, w′(v) = 2 + 1

2 + 1
6 = 8

3 .
If v is good, then by the definition of good vertex and Lemma 5, each neighbor

of v is either 31-vertex or 4-vertex. By R3 and R5, w′(v) = 2 + 1
3 × 2 = 8

3 .

Strong Edge Coloring of Subquartic Graphs 145

• d(v) = 3

By Lemma 5, v is 3i-vertex, where 0 ≤ i ≤ 2.
If v is a 32-vertex, then by R4, w′(v) ≥ 3 − 1

6 × 2 = 8
3 .

If v is a 31-vertex, then by R5, w′(v) ≥ 3 − 1
3 = 8

3 .
If v is a 30-vertex, then w′(v) = w(v) = 3.

• d(v) = 4

If v is a 4i-vertex, where i ≥ 3, then by Lemma 7, the 2-neighbors of v are
good. Thus, w′(v) ≥ 4 − 1

3 × 4 = 8
3 by R3.

If v is a 4i-vertex, where 0 ≤ i ≤ 2, then by R1-R3, w′(v) ≥ 4 − 2
3 × 2 = 8

3 .
Therefore, for each v ∈ V (H), w′(v) ≥ 8

3 and the proof of Theorem 7 is
finished. �	

4 Further Considered Problems

Theorem 7 illustrates that χ′
s(G) ≤ 11 holds for any graph G with Δ(G) = 4

and mad(G) < 8
3 . For the graph G3 in Fig. 2, it satisfies that Δ(G3) = 4,

mad(G3) = 3 and χ′
s(G3) = 12. Then a question follows out naturally. What

is the supremum M such that any graph G with Δ(G) = 4 and mad(G) < M
satisfying χ′

s(G) ≤ 11?

Acknowledgement. This research was supported by National Natural Science Foun-
dation of China under Grant Nos. 11901243, 12201569 and Qin Shen Program of Jiaxing
University.

Declaration of Competing Interest. We declare that we have no conflicts of inter-
est to this work. We also declare that we do not have any commercial or associative
interest that represents a conflict of interest in connection with the work submitted.

References

1. Andersen, L.D.: The strong chromatic index of a cubic graph is at most 10. Discrete
Math. 108(1–3), 231–252 (1992)

2. Bensmail, J., Bonamy, M., Hocquard, H.: Strong edge coloring sparse graphs. Elec-
tron. Note Discrete Math. 49, 773–778 (2015)

3. Bonamy, M., Perrett, T., Postle, L.: Colouring graphs with sparse neighbourhoods:
bounds and applications. J. Combin. Theory Ser. B 155, 278–317 (2022)

4. Bruhn, H., Joos, F.: A strong bound for the strong chromatic index. Combin.
Probab. Comput. 27(1), 21–43 (2018)

5. Choi, I., Kim, J., Kostochka, A.V., Raspaud, A.: Strong edge-colorings of sparse
graphs with large maximum degree. European J. Combin. 67, 21–39 (2018)

6. Cranston, D.W.: A strong bound edge-colouring of graphs with maximum degree
4 using 22 colours. Discrete Math. 306, 2772–2778 (2006)

7. Erdős, P., Nešetřil, J., Halász, G.: Irregularities of Partitions, pp. 161–349.
Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-61324-1

https://doi.org/10.1007/978-3-642-61324-1

146 J. Zhu and H. Zhu

8. Fouquet, J.L., Jolivet, J.L.: Strong edge-colorings of graphs and applications to
multi-k-gons. Ars Combin. 16, 141–150 (1983)

9. Hocquard, H., Montassier, M., Raspaud, A., Valicov, P.: On strong edge-colouring
of subcubic graphs. Discrete Appl. Math. 161(16–17), 2467–2479 (2013)

10. Horák, P., Qing, H., Trotter, W.T.: Induced matching in cubic graphs. J. Graph
Theory 17(2), 151–160 (1993)

11. Huang, M.F., Santana, M., Yu, G.X.: Strong chromatic index of graphs with max-
imum degree four. Electron. J. Combin. 25(3), 3–31 (2018)

12. Li, X.W., Li, Y.F., Lv, J.B., Wang, T.: Strong edge-colorings of sparse graphs with
3Δ − 1 colors. Inform. Process. Lett. 179, 106313 (2023)

13. Lv, J.B., Li, X.W., Yu, G.X.: On strong edge-coloring of graphs with maximum
degree 4. Discrete Appl. Math. 235, 142–153 (2018)

14. Mahdian, M.: On the computational complexity of strong edge-coloring. Discrete
Appl. Math. 118(3), 239–248 (2002)

15. Molloy, M., Reed, B.: A bound on the strong chromatic index of a graph. J. Combin.
Theory Ser. B 69(2), 103–109 (1997)

16. Qin, L.Z., Lv, J.B., Li, J.X.: Strong edge-coloring of some sparse graphs. Adv.
Math. (China) 51(1), 41–52 (2022)

17. Ruksasakchai, W., Wang, T.: List strong edge coloring of some classes of graphs.
Australas. J. Combin. 68, 106–117 (2017)

18. Zang C.Y.: The strong chromatic index of graphs with maximum degree Δ.
arXiV1510.00785vl (2015)

Two Multicolor Ramsey Numbers
Involving Bipartite Graphs

Yan Li1 and Ye Wang2(B)

1 University of Shanghai for Science and Technology, Shanghai 200093, China
2 Harbin Engineering University, Harbin 150001, China

ywang@hrbeu.edu.cn

Abstract. For graphs G and H, the multicolor Ramsey number
rk,1(G,H) is the minimum N such that any edge-coloring of KN by k+1
colors contains a monochromatic G in the first k colors or a monochro-
matic H in the last color. In this note, we show the asymptotic upper
bounds for rk,1(Km,n;G) and rk,1(Bn;Kt,s) if n is large, where G is any
graph with at least one edge and Bn is a book.

Keywords: Multicolor Ramsey number · Bipartite graph · book

1 Introduction

For positive functions f(n) and g(n), we write f(n) = O(g(n)) if there is a
constant C > 0 such that f(n) ≤ Cg(n), and f(n) = Θ(g(n)) if f(n) = O(g(n))
and g(n) = O(f(n)). Denote by f(n) = o(1) if f(n) → 0 as n → ∞.

For graphs Gi with 1 ≤ i ≤ k + 1, the multicolor Ramsey number
r(G1, G2, . . . , Gk+1) is defined as the minimum N such that any edge-coloring of
KN by k +1 colors contains a monochromatic Gi in color i, where 1 ≤ i ≤ k +1.
In particular, if G1 = G2 = . . . = Gk, we write r(G1, G2, . . . , Gk+1) as
rk,1(G1;Gk+1).

For graphs G and H and integer k ≥ 2, the Ramsey number rk,1(G;H)
has been studied with special focus on the case of cycles and complete
graphs first. Alon and Rödl [1] showed that rk,1(C3;Kn) = Θ(nk+1poly log n)
and rk,1(C2m+1;Kn) = Ω(n1+ k

2m−1 /(log n)k+ 2k
2m−1). Xu and Ge [15] improved

the cases of rk,1(C5;Kn) and rk,1(C7;Kn) by showing that rk,1(C5;Kn) =
Ω((n

log n)
3k
8 +1) and rk,1(C7;Kn) = Ω((n

log n)
2k
9 +1). Zhang, Chen and Cheng [16]

showed that rk,1(C4;K1,n) ≤ n +
⌈
k
√

n + (k2 + 2k − 3)/4
⌉

+ k(k+1)
2 for n ≥ 2.

Wang, Li and Li [13] showed that rk,1(Kt,s;Km,n) ≤ n + (1 + o(1))km(s − t +
1)1/tn1−1/t as n → ∞. For more results on the multicolor Ramsey numbers, see,
e.g., [3,6–12,14,17].

In this note, we show the asymptotic upper bounds for rk,1(Km,n;G) and
rk,1(Bn;Kt,s) for large n as follows, where G is a graph with at least one edge
and Bn is a book consisting of n triangles sharing a common edge.

Supported in part by NSFC (No. 12301451, 12101156).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 147–151, 2024.
https://doi.org/10.1007/978-3-031-49614-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_10&domain=pdf
http://orcid.org/0000-0002-1699-2337
http://orcid.org/0000-0002-8721-8488
https://doi.org/10.1007/978-3-031-49614-1_10

148 Y. Li and Y. Wang

Theorem 1. Let G be a graph with χ = χ(G) ≥ 2. For fixed positive integers k
and m, it holds

rk,1(Km,n;G) ≤ (1 + o(1))km(χ − 1)mn

as n → ∞.

Theorem 2. For k ≥ 1 and s ≥ t ≥ 1, it holds

rk,1(Bn;Kt,s) ≤ (k + 2)!n,

for large n.

2 Proofs of Main Results

For graph G, the Turán number, denoted by ex(N,G), is defined as the maximum
number of edges of a graph on N vertices containing no G as a subgraph. A well-
known argument called Erdős-Stone Theorem showed that for any fixed graph
G with χ = χ(G) ≥ 2,

ex(N,G) ≤
(χ − 2

χ − 1
+ ε

)(
N

2

)
(1)

for large N , where the speed of ε → 0 can be at most O(1
log N) as N → ∞, see

[2]. In particular, for t ≥ 3,

ex(N,Kt) ≤ (t − 2)
2(t − 1)

N2. (2)

For complete bipartite graphs, Kövari, Sós and Turán [5] showed that

ex(N,Kt,s) ≤ 1
2
[
(s − 1)1/tN2−1/t + (t − 1)N

]

for s ≥ t ≥ 1, and Füredi [4] proved

ex(N,Kt,s) ≤ 1
2
[
(s − t + 1)1/tN2−1/t + tN + tN2−2/t

]
. (3)

To simplify proofs, we shall change the bound slightly as

ex(N,Kt,s) ≤ 1
2
[
s1/tN2−1/t + (t − 1)N

]
(4)

for s ≥ t ≥ 1.

Proof of Theorem 1. It is shown in (1) that ex(N,G) ≤ (χ−2
χ−1 + c

log N)
(
N
2

)
,

where c > 0 is a constant. Let N = km(χ−1)mn+� with � = (1+o(1))cmkm(χ−
1)m+1 n

log n . Consider an edge coloring of KN by colors 1, 2, · · · , k + 1. If
(

N

2

)
> k · ex(N,Km,n) + ex(N,G),

Two Multicolor Ramsey Numbers Involving Bipartite Graphs 149

then rk,1(Km,n;G) ≤ N . Since the upper bound (4), it suffices to show that
(

N

2

)
>

k

2
[
n1/mN2−1/m + (m − 1)N

]
+

(χ − 2
χ − 1

+
c

log N

)(
N

2

)
,

equivalently

1 − k(χ − 1)(m − 1) + 1
N

>
(km(χ − 1)mn

N

)1/m +
c

log N
(χ − 1)(1 − 1

N
). (5)

Note that

(km(χ − 1)mn

N

)1/m =
(
1 − �

N

)1/m = 1 − �

mN
+ Θ

(�2

N2

)
,

and thus (5) becomes

�

mN
≥ k(χ − 1)(m − 1) + 1

N
+

c(χ − 1)
log N

+ Θ
(�2

N2

)
. (6)

Since Θ
(

�2

N2

)
= o(1

log N), if � = (1 + o(1))cm(χ − 1) N
log N = (1 + o(1))cmkm(χ −

1)m+1 n
log n , then (6) holds for all large n and the claimed statement follows. �

By the upper bounds (2) and (3), we obtain the following corollaries using
the similar argument as in the proof of Theorem 1.

Corollary 1. For k,m ≥ 1 and t ≥ 3, it holds

rk,1(Km,n;Kt) ≤ kmn + c,

where c = c(k,m, t) > 0 is a constant.

Corollary 2. For k,m ≥ 1 and s ≥ t ≥ 1, it holds

rk,1(Km,n;Kt,s) ≤ kmn + (1 + o(1))m(s − t + 1)1/t(kmn)1−1/t

as n → ∞.

In the following proof, when we color edges of KN by k + 1 colors, we shall
write the monochromatic graph induced by edges in color i as Hi for 1 ≤ i ≤
k + 1. For a vertex v, we denote by di(v) the degree of v in the graph Hi.
We extend the notation of rk,1(G,H) slightly as follows. For graphs G, H and
F , and integers k, p, s ≥ 1, we write rk,p,s(G;H;F) for the Ramsey number
r(G, . . . , G, H, . . . , H, F . . . , F), where the numbers of G, H and F are k, p and
s, respectively. Denote by e(G) the number of edges of graph G.

Proof of Corollary 2. Let Ni = (1 + o(1))
[
i!(1 +

∑i
j=1

1
j!)(k − 1) + 1

]
n as

n → ∞. We shall show that ri,k−i,1(Bn;K1,n;Kt,s) ≤ Ni for 1 ≤ i ≤ k by
induction.

For i = 1, we shall show that r1,k−1,1(Bn;K1,n;Kt,s) ≤ N1 = (1+o(1))(2k −
1)n as n → ∞. Note that by Corollary 2, we have rk,1(K1,n;Kt,s) ≤ N0 =

150 Y. Li and Y. Wang

(1 + o(1))kn. Consider an edge coloring of KN1 by k + 1 colors. It is easy to see
that d1(v) ≤ rk,1(K1,n;Kt,s)−1 ≤ N0−1 for any vertex v, otherwise there exists
a Bn in H1, or a graph Kt,s in Hk+1, or a star K1,n in some Hi with 2 ≤ i ≤ k.
Then

e(H1) =
1
2

∑
v

d1(v) ≤ 1
2
N1(N0 − 1).

Hence
k+1∑
j=2

e(Hi) =
(

N1

2

)
− e(H1) ≥ N1(N1 − N0)

2
.

Therefore, there exists a Bn in H1, or a graph Kt,s in Hk+1, or a star K1,n in
some Hi with 2 ≤ i ≤ k if

N1(N1 − N0)
2

> (k − 1)
N1(n − 1)

2
+ ex(N1,Kt,s).

Equivalently, by (4), we only need to show

N1(N1 − N0)
2

> (k − 1)
N1(n − 1)

2
+

1
2
[
s1/tN

2−1/t
1 + (t − 1)N1

]
,

which is
N1 − N0 > (k − 1)(n − 1) + s1/tN

1−1/t
1 + t − 1.

So we can take N1 = (1 + o(1))(2k − 1)n as claimed.
Now we assume that ri,k−i,1(Bn;K1,n;Kt,s) ≤ Ni = (1 + o(1))

(
i!(1 +∑i

j=1
1
j!)(k − 1) + 1

)
n as n → ∞, and we shall prove it holds for i + 1.

Consider an edge coloring of KNi+1 by k + 1 colors. It is easy to see that
dj(v) ≤ ri,k−i,1(Bn;K1,n;Kt,s) − 1 for any vertex v and 1 ≤ j ≤ i + 1, oth-
erwise there exists a Bn in some Hj with 1 ≤ j ≤ i + 1, or a star K1,n in some
Hj with i + 2 ≤ j ≤ k, or a graph Kt,s in Hk+1. Then

e(Hj) =
1
2

∑
v

dj(v) ≤ 1
2
Ni+1(Ni − 1),

for 1 ≤ j ≤ i + 1. Hence

k+1∑
j=i+2

e(Hi) =
(

Ni+1

2

)
−

i+1∑
j=1

e(Hi) ≥
(

Ni+1

2

)
− i + 1

2
Ni+1(Ni − 1).

Therefore, there exists a Bn in some Hj with 1 ≤ j ≤ i + 1, or a star K1,n in
some Hj with i + 2 ≤ j ≤ k, or a graph Kt,s in Hk+1 if

Ni+1(Ni+1 − (i + 1)Ni + i)
2

> (k − i − 1)
Ni+1(n − 1)

2
+ ex(Ni+1,Kt,s).

Equivalently, we only need to show

Ni+1(Ni+1 − (i+ 1)Ni + i)

2
>

(k − i− 1)Ni+1(n− 1)

2
+

1

2

[
s1/tN

2−1/t
i+1 + (t− 1)Ni+1

]
,

Two Multicolor Ramsey Numbers Involving Bipartite Graphs 151

which is

Ni+1 ≥ (i + 1)Ni + (k − i − 1)n + s1/tN
1−1/t
i+1 + t − k.

As N
1−1/t
i+1 = o(n), we can take

Ni+1 = (1 + o(1))(i + 1)Ni + (k − i − 1)n

= (1 + o(1))
[
(i + 1)!(1 +

i+1∑
j=1

1
j!

)(k − 1) + 1
]
n

as claimed. Thus we have Nk =
[
k!(1+

∑k
i=1

1
i!)(k − 1)+1+ o(1)

]
n ≤ (k +2)!n,

completing the proof. �

References

1. Alon, N., Rödl, V.: Sharp bounds for some multicolor Ramsey numbers. Combina-
torica 25, 125–141 (2005)

2. Bollobás, B., Erdős, P.: On the structure of edge graphs. Bull. London. Math. Soc.
5, 317–321 (1973)

3. Conlon, D., Fox, J., Sudakov, B.: Recent developments in graph Ramsey theory.
Surv. Combinatorics 424, 49–118 (2015)

4. Füredi, Z.: New asymptotics for bipartite Turán numbers. J. Comb. Theory Ser.
A 75, 141–144 (1996)

5. Kövári, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math.
3, 50–57 (1954)

6. Lenz, J., Mubayi, D.: Multicolor Ramsey numbers for complete bipartite versus
complete graphs. J. Graph Theory 77, 19–38 (2014)

7. Li Y., Lin Q.: Elementary methods of graph Ramsey theory. Springer (2022).
https://doi.org/10.1007/978-3-031-12762-5

8. Li, Y., Li, Y., Wang, Y.: Multicolor Ramsey numbers of bipartite graphs and large
books. Graphs Combin. 39, 21 (2023)

9. Liu, M., Li, Y.: Ramsey numbers involving an odd cycle and large complete graphs
in three colors. Graphs Combin. 38, 182 (2022)

10. Omidi, G., Raeisi, G.: A note on Ramsey number of stars-complete graphs. Europ.
J. Combin. 32, 598–599 (2011)

11. Omidi, G., Raeisi, G., Rahimi, Z.: Stars versus stripes Ramsey numbers. Europ. J.
Combin. 67, 268–274 (2018)

12. Wang, L.: Some multi-color Ramsey numbers on stars versus path, cycle or wheel.
Graphs Combin. 36, 515–524 (2020)

13. Wang, Y., Li, Y., Li, Y.: Ramsey numbers of several Kt,s and a large Km,n. Dis-
crete. Math. 345, 112987 (2022)

14. Wang Y., Song Y., Li Y., Liu M.: Multi-color Ramsey numbers of two bipartite
graphs. submitted

15. Xu, Z., Ge, G.: A note on multicolor Ramsey number of small odd cycles versus a
large clique. Discrete Math. 345, 112823 (2022)

16. Zhang, X., Chen, Y., Cheng, T.: On three color Ramsey numbers R(C4, C4,K1,n).
Discrete Math. 342, 285–291 (2019)

17. Zhang, X., Chen, Y., Cheng, T.: Bounds for two multicolor Ramsey numbers con-
cerning quadrilaterals. Finite Fields Appl. 79, 101999 (2022)

https://doi.org/10.1007/978-3-031-12762-5

Mechanism Design for Time-Varying
Value Tasks in High-Load Edge

Computing Markets

Qie Li, Zichen Wang, and Hongwei Du(B)

School of Computer Science and Technology, Harbin Institute of Technology
(Shenzhen), Shenzhen 518055, China

hongwei.du@ieee.org

Abstract. A large number of computing task requests are generated by
user terminals during peak hours in high-demand areas, but the resource
capacity of edge servers is limited. It is necessary to design appropri-
ate resource allocation and pricing mechanisms to address this resource
competition dilemma. This paper proposes an auction-based mechanism
called GMPO from an economic perspective. A market where multiple
buyers and sellers compete with each other is considered, and the auc-
tion mechanisms is used to prevent these entities from falsely reporting
information. As an extension of the concept of the age of information,
the value of delay-sensitive computing tasks will decrease over time.
This paper allocates resources greedily according to defined priorities
and charge based on critical prices. The experiment results demonstrate
that the proposed mechanism can effectively improve social welfare and
guarantee the economic properties of auctions.

Keywords: Auction theory · Edge computing · Resource allocation

1 Introduction

Compared with traditional remote centralized cloud computing, edge computing
(EC) has lower transmission delay because edge servers are closer to user equip-
ments (UEs). With the development of the Internet of Things (IoT) and other
technologies, there will be a massive amount of time-sensitive computationally
intensive tasks that need to be offloaded to edge resource providers (ERPs) for
processing. For example, these ERPs can be Google, AT&T, etc. The UEs can
be smartphones, UAVs or smart vehicles etc. However, EC servers may not be
able to fulfill a large number of user requests simultaneously during peak periods
of resource shortage. Therefore, ERPs tend to prioritize UEs with higher cost-
effectiveness, while UEs may be willing to pay more to enhance their competitive
advantage and ensure a better service experience.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 152–164, 2024.
https://doi.org/10.1007/978-3-031-49614-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_11

Mechanism Design for Time-Varying Tasks in Edge Computing 153

Some researches focus on the resource allocation problems between ERPs and
UEs. Zhang et al. [1] proposed a decentralized multi-ERP resource allocation to
maximize the total profit of all ERPs. Zeng et al. [2] used an improved match-
ing algorithm to associate UEs and ERPs to maximize the final profit of ERPs.
Chen et al. [3] proposed a stable matching algorithm for the cooperation and
competition between UAVs and unmanned ground vehicles. But these matching
algorithms cannot prevent buyers and sellers from falsely reporting information.
As a reliable mechanism, auction theory [4] has been applied to many edge sce-
narios. Huang et al. [5] proposes a multi-dimensional dynamic programming and
equivalent package algorithm based on auction theory, which allocates backhaul
capacity and cache space for streams on ERPs. Yang et al. [6] used a multi-round
sequential combinatorial auction mechanism to transform the matching problem
into a multi-dimensional grouping knapsack problem, which can be efficiently
solved using dynamic programming.

Age of information (AoI) [7] was originally defined as the time elapsed from
the generation of the current information at the source until the reception of
decision feedback. As a more reasonable indicator, AoI related models are widely
used in real-time computing [8]. Lv et al. [9] proposed an auction framework with
dynamic programming and preemption factors to minimize weighted AoI. Chen
et al. [10] considered a multi-buyer and multi-seller market with stackelberg
method to solve resource allocation problems, and developed an iterative algo-
rithm to find equilibrium prices. However, these researches lack consideration
for market with multidimensional heterogeneous resources and multiple-entities
participation.

This paper proposes a mechanism called Greedy Method with Priority Order
(GMPO) based on auction theory to address the resource allocation and pricing
problem between UEs and ERPs. The contributions of this paper are as follows:

• This paper considers a competitive EC market with multiple buyers and
sellers and uses auction mechanisms to prevent entities from lying. As an
extension of AoI, the value of delay-sensitive tasks will decrease over time.

• This paper proposes the algorithm called Greedy Method with Priority Order
(GMPO). The defined priority ensures that the winner decision process satis-
fies monotonicity, and the final transaction price is determined by the defined
critical competitor. Experiments have shown that this algorithm can achieve
higher social welfare in high-load environments. We have proven that the
algorithm meets the economic properties of auctions.

• This paper compares the proposed GMPO mechanism with the GMMU,
FCFS, and Random methods. The experimental results show that GMPO
effectively improves the social welfare of the entire system.

The paper is organized as follows: Sect. 2 introduces the system model.
Section 3 focuses on the detailed design of GMPO, including resource alloca-
tion strategies, winner determination algorithms, and pricing mechanisms. In
Sect. 4, we give the simulation results on social welfare and the income of edge
service providers. Finally, we conclude this paper in Sect. 5.

154 Q. Li et al.

2 System Model and Problem Statement

As Fig. 1 shows, UEs use sealed bidding to upload their time-varying value and
the number of requested resources to the auctioneer. ERPs provide their available
bandwidth, CPU computing resources, and cost functions to the auctioneer. The
auctioneer centrally combines this information to determine how ERPs and UEs
are matched and how to allocate resources and determine the payment. Consider
an area where M sellers ERP={1,2,...,M } are evenly distributed to provide
bandwidth and computing resources to users, and N buyers U={1,2,...,N } are
UEs who sealed bidding for performing computing tasks. Assuming that the tasks
that each user i (i ∈ U) needs to perform do not overlap, the user i mentioned
below is equivalent to task i. If a user has multiple tasks to execute, these tasks
can be abstractly represented as multiple virtual users. Divide a period of time
into consecutive L time slots T={1,2,...,L}. User i requests services from ERPs
within the communication range at a certain time t, and the bidding information
is represented as:

Fig. 1. System Architecture.

Bi(t) = {ta,i, si, gi, vi(t),DDLi} ,∀i ∈ U,∀t ∈ T (1)

where ta,i is the arrival time of task i, si is the data size of task i (bit), gi is the
number of CPU cycles required for task i, vi(t) is the time-varying value of task
i. DDLi is the time elapsed from task i ’s generation to the time when vi(t) = 0.

Mechanism Design for Time-Varying Tasks in Edge Computing 155

The time-varying value [9] of the task is simply represented by a monotone
and nonincreasing linear function:

v(t) =
{

v0 − kt, ta ≤ t ≤ DDL
0, otherwise (2)

where v0 is the initial value of the task, and k is derived from the d of B(t).

2.1 Resource Model of the System

Radio Resources: This paper uses the Rayleigh fading model to describe
the wireless channel. If ERP j allocated bandwidth φij(HZ) to user i during
communication, then according to Shannon’s theorem, the data transmission
rate (bits/s) can be expressed as:

rij = xijφijΛ log2

(
1 +

Pih
u
ij

σ2
j

)
(3)

where xij ∈ {0, 1} indicates that ERP j communicates with user i, Λ is the
duration of one time slot, Pi is wireless transmission power of user i, hu

ij is the
uplink channel gain between user i and ERP j, σ2

j is the noise power of ERP j .
The corresponding transmission delay from user i to ERP j is:

T trans
ij =

⌈
si

rij

⌉
(4)

Computing Resources: The computing resources requested by user i are the
number of CPU cycles required to complete the task. Assuming that the CPU
frequency allocated by ERP j to user i is fij , the computing latency is:

T exe
ij =

⌈
gi

fijΛ

⌉
(5)

The Cost Function of Resources: The cost of wireless resources held by
the seller ERP j is fixed and recorded as cb

j . The cost of computing resources
varies with changes in CPU power consumption, denoted as cf

j (zf
j (t)) [11], zf

j (t)
representing the CPU frequency usage of ERP j at time t, pf

0 (t) representing
the lowest threshold of frequency cost, γf

j , εf
j are power consumption parameter

and related to Dynamic Voltage and Frequency Scaling (DVFS) technology.

cf
j (zf

j (t)) =

{
pf
0 + γf

j zf
j (t)1+εf

j , if zf
j ∈

[
0, Cf

j

]
+∞, otherwise

(6)

Because the data si is very small compared to ERP j’s total storage resources,
the cost of storage is ignored here.

156 Q. Li et al.

2.2 Utility Model of the System

The Utility of Buyer: If Wu is the set of users who won the auction at time t
and the completion time of the task i ∈ Wu is t′, then the utility of the winning
buyer i in the auction is the difference between the task value and the payment
pi. The utility of the unselected buyer in the auction is 0.

utili =
{

vi(Δt) − pi, ∀t ∈ T, i ∈ Wu

0, otherwise (7)

The Utility of Seller: The utility of seller ERP j in auctions is its income
minus cost.

utilj =
∑
t∈T

∑
i∈Wu

xij

(
pi − cf

j

(
zf
j(t)

)
fij − cb

jφij

)
, ∀j ∈ ERP, xij ∈ {0, 1} (8)

System Utility: The utility of the entire system is the sum of the utility of all
buyers and sellers participating in the auction:

utilsys =
∑
t∈T

⎛
⎝ ∑

i∈Wu

utili +
∑

j∈ERP

utilj

⎞
⎠ (9)

2.3 Optimization Goals for Maximizing Social Welfare

We define social welfare as the total utility of the system, and design the opti-
mization objective of the problem to maximize social welfare:

maximize
∑
t∈T

∑
i∈Wu

⎛
⎝vi(Δt) −

∑
j∈ERP

xij

(
cf
j

(
zf
j(t)

)
fij + cb

jφij

)⎞
⎠ (10)

s.t. zf
j (t) ∈ [0, Fj] ,∀t ∈ T, j ∈ ERP (11)∑

i∈Wu

xijφij ≤ Wj ,∀t ∈ T, j ∈ M (12)

∑
i∈Wu

xijfij ≤ zf
j (t),∀t ∈ T, j ∈ M (13)

xij ∈ {0, 1} (14)

The constraint (11) indicates that the current CPU frequency usage of ERP j
does not exceed the total amount of its own computing frequency. (12) indicates
that bandwidth allocated by ERP j to users does not exceed the total bandwidth
it has. (13) indicates that the calculation frequency allocated by ERP j to users
does not exceed the current CPU frequency usage. The xij in (14) represents
the decision variable, xij = 1 indicates that ERP j will allocate its resources to
user i. This problem is an NP-hard mixed integer optimization problem.

Mechanism Design for Time-Varying Tasks in Edge Computing 157

3 The Greedy Auction Mechanism

In this section, the Greedy Method with Priority Order (GMPO) is presented.
The appendix demonstrated that GMPO satisfies the economic nature of auc-
tions.

3.1 Resource Allocation Strategy

Using Γij = 〈fij , φij〉 represent that ERP j allocate CPU frequency resources
fij and bandwidth φij to the winning user i . The different resource allocation
schemes affect the completion time of tasks, and the completion time of tasks is
closely related to their time-varying value. The system utility corresponding to
allocation plan Γij is:

utils Γij
= vi(Δt) − cf

j

(
zf
j (t)

)
fij − cb

jφij (15)

Δt = T trans + T exe (16)

Then we have:

utilsΓij
= v0,i − k

Si

φijΛ log2

(
1 +

Pihu
ij

σ2
j

) − k
wi

Λfij
− cf

j

(
zf
j(t)

)
fij − cb

jφij (17)

The resource allocation plan is based on the following idea: If the given task
i can be transmitted or calculated within a one-time slot, and the remaining
resources of ERP j is sufficient to complete the allocation, then resource alloca-
tion will be carried out; otherwise, no allocation will be carried out. Because the
allocation schemes of bandwidth and frequency do not affect each other, they
can be decoupled into the following two issues:

Determine the allocated frequency resources:

∗ fij =
{

gi

Λ , gi

Λ <= Fj−remain

0, otherwise (18)

Determine the allocated bandwidth resources:

∗ φij =

⎧⎨
⎩

si

Λ log2

(
1+

Pihu
ij

σ2
j

) , si

Λ log2

(
1+

Pihu
ij

σ2
j

) <= BWj−remain

0, otherwise
(19)

If the utility after allocation is greater than 0, resources will be allocated accord-
ing to the plan, otherwise, no allocation will be made.

3.2 GMPO-W Winner Decision

In order to maximize social welfare, the priority function Dij is introduced to
represent the cost-effectiveness of user i using ERP j to perform tasks, which is
the ratio of task value to resource cost consumed by user i:

Dij :
vi√

cb
j ∗ ϕij + cf

j ∗ fij

(20)

158 Q. Li et al.

Algorithm 1: GMPO-W winner decision and resource allocation algorithm
Input: U,ERP,Fj , BWj

Bi(t) = {ta,i, si, gi, vi(t),DDLi} ,∀i ∈ U,∀t ∈ T

cb
j , c

f
j

(
zf
j (t)

)
∀j ∈ ERP, t ∈ T

Output: Wu, utilsys

1 initialization Na ← ∅,Wu ← ∅,∀t ∈ T, utilsys = 0;
2 for t ∈ T do
3 for j ∈ ERP do
4 Update the resource cost function at the current time cf

j ;
5 end
6 for i ∈ U do
7 if ta,i ≤ t ≤ ta,i + DDLi and i /∈ Wu then
8 Na ← Na ∪ {i} ;
9 Calculate the ERP set of user i within the communication

range Mi;
10 end
11 end
12 for i ∈ Na, j ∈ Mi do

13 Dij ←< Bi(t),Γij , c
b
j , c

f
j

(
zf
j (t)

)
> ;

14 end
15 while Priority list D is not empty do
16 〈i, j〉 ← argmax D;
17 if i /∈ Wu and Γij �= ∅ then
18 Wu ← Wu ∪ {i}, utilsys+ = utilsΓij

, Na ← Na/{i}
19 ERP j allocate resources as Γij and update remaining resource

capacity Fj remain, BWj remain;
20 end
21 end
22 end
23 return Wu, utilsys ;

The greater the Dij is, the greater the contribution of the 〈i, j〉 pair to social
welfare. Sort Dij by nonincreasing order and allocate resources accordingly and
define the partial order relationship � as follows:

Bi1 � Bi2 ⇔ (
vi1 > vi2

) ∩ (φi1 < φi2) ∩ (fi1 < fi2) (21)

If Bi1 � Bi2 , The time-varying task value of i1 is higher than that of i2, and
the cost of resource consumption is lower. The partially ordered set satisfies
monotonicity.

Based on the above definition, this article designs a winner determination and
resource allocation algorithm as Agorithm 1. At the beginning of each moment,
update the frequency cost function of ERP j based on the existing CPU resource
usage (Line 4). Next, add the user requests that have not timed out to the
active user set Na(Line 8). Calculate the value of priority Dij between users

Mechanism Design for Time-Varying Tasks in Edge Computing 159

and their reachable servers in the active user set Na (Line 13), traverse Dij

in nonincreasing order, select the UE-ERP pair corresponding to the highest
priority, i.e.〈i, j〉 pairs, and determine whether single slot resource allocation Γij

can be used for resource allocation (Line 17). If the allocation is possible, add
users to the winner set Wu and update the system utility and the remaining
resource capacity of ERP. The result returns the winner set Wu and system
utility utilsys.

3.3 GMPO-P Price Determination Mechanism

Determine the payment price pi of the winning user i ∈ Wu by searching its
critical competitors.

Algorithm 2: GMPO-P Price determination mechanism for winning users

Input: U,ERP,D,Γij , c
b
j , c

f
j

(
zf
j (t)

)
∀i ∈ U, ∀j ∈ ERP

Output: pi

1 p0 ← cb
i ∗ bi + cf

j

(
zf
j (t)

)
∗ fi;

2 Traverse the global priority list D in non increasing order, get buyer q and
seller s;

3 for q ∈ Uand q �= i do
4 Allocates bandwidth and frequency resources for q based on Γij

5 if s = j and there is not enough resources on ERP j for buyer i after
allocation then

6 cc(i) ← q

7 pi ← max
(

Dcc(i)j ∗
√

cb
j ∗ ϕij + cf

j ∗ fij , p0

)

8 end
9 if pi < p0 then

10 pi ← p0

11 end
12 end
13 return pi

Definition 1. Critical Competitors
Sort priority D by the nonincreasing order and allocate resources corresponding
to the 〈i, j〉 pairs. If there is a user q(q �= i) for the remaining user U/{i}
excluding the winning user i ∈ Wu. If after allocating corresponding resources
to user q on ERP j, user i will no longer be able to be allocated to resources on
ERP j, then user q is a critical competitor of user i, denoted as cc(i).

As shown in Algorithm 2. The critical price pi that user i should pay on ERP
j is derived from the priority Dcc(i)j :

pi√
cb
j ∗ ϕij + cf

j ∗ fij

>= Dcc(i)j , (pi >= p0) (22)

160 Q. Li et al.

p0 is the cost of resources, and the above formula can be written as:

pi = max
(

Dcc(i)j ∗
√

cb
j ∗ ϕij + cf

j ∗ fij , p0

)
(23)

Theorem 1. The mechanism proposed in this thesis is truthful, individual ratio
national, budget balance, and can be completed within polynomial time.

Proof. (Individual Rationality) Users only agree to execute tasks when the value
of the task exceeds the cost of payment, while ERP only provides resources when
the revenue exceeds the cost. Both will make rational decisions to ensure their
utility is not negative.
(Budget Balance) The total payment amount of all users is greater than or equal
to the total fee amount of all ERP, satisfying the weak budget balance.
(Polynomial Time Complexity) The auction mechanism consists of the win-
ner decision algorithm GMPO-W and the payment mechanism GMPO-P. The
time complexity of the winner determining algorithm GMPO-W is O(nm +
nm log(nm)), the running time of the payment mechanism GMPO-P is O(nm),
but it needs to be called O(n) times, so the total running time of the GMPO
mechanism is O

(
n2m + nm log(nm)

) ≤ O
(
n2m2

)
. Satisfy polynomial time com-

plexity.
(Truthfulness) If user i cannot obtain higher profits by lying with Bi, then the
truthfulness is satisfied. According to Myerson theorem [12], auction mechanisms
that satisfy both monotonicity and critical price are strategy-proof.

4 Evaluation Results

4.1 Experimental Settings

Table 1. Experimental simulation parameters

Parameter Value

Inter-base station distance 300 m

Base station coverage radius 450 m

Total CPU frequency of each base station 20 GHz

Total radio frequency of each base station 10 MHz

Data size of each task 0.5–1.5 MB

Computational workload of each task 1–4G[cycles]

Deadline of each task 3–9 s

Initial value of each task 50–150

Wireless transmission power of each task 1.5 W

Noise power 10−9W

Mechanism Design for Time-Varying Tasks in Edge Computing 161

Consider a dense deployment of the cellular network in an area of 600 m ×
600 m, consisting of M = 9 uniform-distributed ERP and U = 2000 randomly-
distributed task requests. The bandwidth cost function of ERP j is cb

j = 2, and
the frequency cost function is pf

0 ∼ u[5, 10], γf
j ∼ u[0.4, 0.6], εf

j ∼ u[1.8, 2.2].
Adopting Rayleigh fading channel model, where the channel gain from user i to
ERP j is hu

ij = Aud−3
ij rij , the antenna gain is Au = 6.25 ∗ 10−4(−32 dB), dij

is the distance from user i to ERP j, −3 is the path loss exponent, and rij is a
random variable following a Rayleigh distribution. Other parameters are shown
in Table 1.

Each experiment lasts for L = 20 time slots, with each time slot Λ = 1
second. We adopt the average value of 100 experiments as the final result. The
proposed GMPO algorithm is compared with the following mechanisms:

• Greedy Method with Maximum Utility (GMMU): Similar to GMPO, GMMU
adopts a priority strategy with social welfare in a non-increasing order and
determines the payment based on the critical price.

• Random Allocation: Resources are randomly allocated to arriving users using
a single time-slot resource allocation strategy. Instead of the ctitical price, the
charging price is half of the sum of the task completion value and its resource
cost.

• First Come First Served (FCFS): Resources are allocated to arriving users in
order using a single time-slot resource allocation strategy. The charging price
is also half of the sum of the task completion value and its resource cost.

Fig. 2. Fix the scale of ERP to M=9, and gradually increase the number of task
requests from 1200 to 2800

162 Q. Li et al.

4.2 Numerical Results

The scale of ERP is initially set to M = 9, and the number of task requests is
gradually increasing from 1200 to 2800. It can be seen in Fig. 2(a) and 2(b) that
as the number of users increases, the total social welfare and total ERPs’ revenue
obtained by the four methods all increase. The results of GMPO and GMMU
are close, with GMPO slightly better than GMMU. And their social welfare
and total system income are much higher than those of FCFS and Random
algorithms that do not adopt priority and critical pricing mechanisms.

It can be seen in Fig. 2(c) and 2(d) that when ERPs’ resources are sufficient,
as the number of users increases, the total transaction volume of the system
increases and CPU utilization increases. When ERPs’ resources enter a state
of oversupply, the number of users further increases, and the total transaction
volume of the system stabilizes after CPU utilization reaches saturation. At this
point, the system transaction volume achieved by GMPO is higher than that
of other algorithms, which means that when resources are scarce, the GMPO
algorithm can achieve higher user satisfaction.

Fig. 3. Fix the number of task requests as U=2000, and the scale of ERP gradually
increases from 4 to 25

Further, the number of task requests is fixed as U = 2000, and the scale of
ERP gradually increases from 4 to 25. It can be seen in Fig. 3(a) that as the scale
of ERP increases, more and more users are able to receive services. The social
welfare of GMPO and GMMU are close, and still higher than that of FCFS
and Random algorithms. Taking all three factors into consideration, it can be

Mechanism Design for Time-Varying Tasks in Edge Computing 163

seen from Fig. 3(b), 3(c) and 3(d) that after the ERPs’ scale changed from 9
to 25, the resource utilization situation changed from demand exceeding supply
to supply exceeding demand. The transaction volume of the four algorithms is
similar, but GMMU and GMPO will choose users who are more conducive to
increasing social welfare for services, so the transaction volume is slightly lower
than FCFS and Random algorithms.

With the growth of scale and transaction volume, the total ERPs’ revenue
of FCFS and Random gradually increases. But the ERPs’ revenue of GMMU
and GMPO first increases and then decreases. This suggests that when ERPs’
resources are in short supply, UEs’ prices are determined by their critical com-
petitors. When ERPs’ resources are in oversupply, the price charged is the cost
price. However, the charging price of FCFS and Random is always half of the
sum of the value of the task and its resource cost, which is higher than the cost
price. This result reflects that the proposed auction mechanism is more suitable
for scenarios where resource supply exceeds demand, but can still achieve higher
social welfare in situations where resource supply exceeds demand.

5 Conclusion

This paper has considered an edge computing market where multiple buyers
and sellers compete with each other in a high-load environment. GMPO was
proposed based on auction theory. The winner selection algorithm GMPO-W
is used to select the winning UE-ERP pairs. The defined priority ensures the
monotonicity of the selection process; The GMPO-P mechanism is designed to
determine the payment price for the winning user based on critical prices. The
experimental results show that GMPO can effectively improve the social welfare
of the entire system and maintain some economic attributes of auction.

Acknowledgment. This work is supported by National Natural Science Foundation
of China (No. 62172124). It was also supported by the Shenzhen Basic Research Pro-
gram (Project No. JCYJ20190806143011274).

References

1. Zhang, C., Du, H., Ye, Q., Liu, C., Yuan, H.: DMRA: a decentralized resource
allocation scheme for multi-SP mobile edge computing. In: 2019 IEEE 39th inter-
national conference on distributed computing systems (ICDCS), pp. 390–398.
IEEE(2019)

2. Zeng, G., Zhang, C., Du, H.: An efficient mechanism for resource allocation in
mobile edge computing. In: Wu, W., Zhang, Z. (eds.) COCOA 2020. LNCS, vol.
12577, pp. 657–668. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64843-5 44

3. Chen, W., Su, Z., Xu, Q., Luan, T.H., Li, R.: VFC-based cooperative UAV com-
putation task offloading for post-disaster rescue. In: IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, pp. 228–236. IEEE. (2020)

https://doi.org/10.1007/978-3-030-64843-5_44
https://doi.org/10.1007/978-3-030-64843-5_44

164 Q. Li et al.

4. Qiu, H., et al.: Applications of auction and mechanism design in edge computing:
a survey. IEEE Trans. Cogn. Commun. Netw. 8(2), 1034–58 (2022)

5. Hung, Y.H., Wang, C.Y., Hwang, R.H.: Optimizing social welfare of live video
streaming services in mobile edge computing. IEEE Trans. Mob. Comput. 19(4),
922–34 (2019)

6. Yang, S.: A task offloading solution for internet of vehicles using combination
auction matching model based on mobile edge computing. IEEE Access. 8, 53261–
73 (2020)

7. Kaul, S., Yates, R., Gruteser, M.: Real-time status: how often should one update?.
In: 2012 Proceedings IEEE INFOCOM, pp. 2731–2735. IEEE. (2012)

8. Yates, R.D., Sun, Y., Brown, D.R., Kaul, S.K., Modiano, E., Ulukus, S.: Age
of information: an introduction and survey. IEEE J. Sel. Areas Commun. 39(5),
1183–210 (2021)

9. Lv, H., Zheng, Z., Wu, F., Chen, G.: Strategy-proof online mechanisms for weighted
AoI minimization in edge computing. IEEE J. Sel. Areas Commun. 39(5), 1277–92
(2021)

10. Chen, Y., Li, Z., Yang, B., Nai, K., Li, K.: A Stackelberg game approach to multiple
resources allocation and pricing in mobile edge computing. Futur. Gener. Comput.
Syst. 108, 273–87 (2020)

11. He, X., Shen, Y., Ren, J., Wang, S., Wang, X., Xu, S.: An online auction-based
incentive mechanism for soft-deadline tasks in collaborative edge computing. Futur.
Gener. Comput. Syst. 137, 1–3 (2022)

12. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)

Computing Random r-Orthogonal Latin
Squares

Sergey Bereg(B)

Department of Computer Science, Erik Jonsson School of Engineering and Computer
Science, University of Texas at Dallas, Richardson, USA

besp@utdallas.edu

Abstract. Two Latin squares of order n are r-orthogonal if, when super-
imposed, there are exactly r distinct ordered pairs. The spectrum of all
values of r for Latin squares of order n is known. A Latin square A of
order n is r-self-orthogonal if A and its transpose are r-orthogonal. The
spectrum of all values of r is known for all orders n �= 14. We develop
randomized algorithms for computing pairs of r-orthogonal Latin squares
of order n and algorithms for computing r-self-orthogonal Latin squares
of order n.

Keywords: Latin squares · Latin rectangles · r-orthogonal Latin
squares

1 Introduction

For a positive integer n, a Latin square of order n is an n × n array filled with
n different symbols, each occurring exactly once in each row and exactly once
in each column. For a positive integer n, let [n] denote the set {1, 2, . . . , n}. We
denote the (i, j)-th element of a Latin square A by Ai,j . In this paper, we assume
that the symbols in a Latin square of order n are in [n], i.e. Ai,j ∈ [n] for all
i, j ∈ [n].

Two Latin squares A and B of order n are said to be orthogonal if every
ordered pair of symbols occurs exactly once among the n2 pairs (Ai,j , Bi,j), i ∈
[n], j ∈ [n]. Orthogonal Latin squares were studied in detail by Leonhard Euler
see Fig. 1. Orthogonal Latin squares exist for all orders n > 1 except n = 2, 6.

Aα Bδ Cβ Dγ

Bγ Aβ Dδ Cα

Cδ Dα Aγ Bβ

Dβ Cγ Bα Aδ

Fig. 1. Orthogonal Latin squares using Euler’s notation (one Latin square uses the first
n upper-case letters from the Latin alphabet and the other uses the first n lower-case
letters from the Greek alphabet). Orthogonal Latin squares also known as a Graeco-
Latin square or Euler square.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 165–174, 2024.
https://doi.org/10.1007/978-3-031-49614-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_12

166 S. Bereg

If A and B are orthogonal Latin squares, then we say that A is an orthogonal
mate of B and vice versa. In 1779 Euler [11] proved that for every even n there
exists a Latin square of order n that has no orthogonal mate. van Rees [25] called
such squares bachelor Latin squares. The existence of bachelor Latin squares of
orders n ≡ 1 (mod 4) was shown by Mann [21]. In 2006 Evans [12] and Wanless
and Webb [27] completed the remaining case of Latin squares of orders n ≡ 3
(mod 4).

Theorem 1 ([12,27]). For any positive integer n /∈ {1, 3} there exists a Latin
square of order n that has no orthogonal mate.

van Rees [25] has conjectured that the portion of bachelor Latin squares of
order n tends to one as n → ∞. However, this conjecture was based on a study of
Latin squares of small orders. Computational results by Egan and Wanless [10]
show that only a small proportion of Latin squares of orders 7, 8 and 9 possess
orthogonal mates. McKay et al. [24] tested 10 million random Latin squares of
order 10 and estimated that around 60% of Latin squares of order 10 have mates.

A set of Latin squares of the same order, all pairs of which are orthogonal is
called a set of mutually orthogonal Latin squares (MOLS). The study of mutually
orthogonal Latin squares is a subject that has attracted much attention due to
applications in error correcting codes, cryptographic systems, compiler testing,
and statistics (the design of experiments) [18].

The construction of MOLS is a notoriously difficult combinatorial problem,
see for example [22,23]. In this paper we study the problem of computing r-
orthogonal Latin squares. Two Latin squares of order n are r-orthogonal (r-OLS)
if their superposition produces exactly r distinct ordered pairs. Belyavskaya [3–
5] systematically treated the following question: For which integers n and r
does a pair of r-orthogonal Latin squares of order n exist? The spectrum of
r-orthogonal Latin squares of order n was determined by Colbourn and Zhu [8]
(with few exceptions) and completed later by Zhu and Zhang [29].

Table 1. (a) Genuine exceptions of pairs of r-orthogonal Latin squares of order n. (b)
Genuine exceptions of r-self-orthogonal Latin squares of order n.

n Genuine exceptions of r

2 4

3 5, 6, 7

4 7, 10, 11, 13, 14

5 8, 9, 20, 22, 23

6 33, 36

(a)

n Genuine exceptions of r

2 4

3 5, 6, 7, 9

4 6, 7, 8, 10, 11, 12, 13, 14

5 8, 9, 12, 16, 18, 20, 22, 23

6 32, 33, 34, 36

7 46

(b)

Computing Random r -Orthogonal Latin Squares 167

Theorem 2 (Zhu and Zhang [29]). For any integer n ≥ 2, there exists a
pair of r-orthogonal Latin squares of order n if and only if n ≤ r ≤ n2 and
r /∈ {n + 1, n2 − 1} with the exceptions of n and r shown in Table 1(a).

A Latin square which is orthogonal to its transpose is called a self-orthogonal
Latin square (SOLS). It is known that self-orthogonal Latin squares exist for
all orders n /∈ {2, 3, 6} [13]. We say that a Latin square A is r-self-orthogonal
(r-SOLS) if A and its transpose AT are r-orthogonal. The spectrum of r-SOLS
has been almost completely decided by Xu and Chang [29] and Zhang [28], as
shown in the following theorem.

Theorem 3 (Zhang [28]). For any integer n ≥ 1, there exists an r-self-
orthogonal Latin square of order n if and only if n ≤ r ≤ n2 and r /∈ {n+1, n2−1}
with 26 genuine exceptions of n and r shown in Table 1(b) and one possible excep-
tion of (n, r) = (14, 142 − 3).

In this paper we develop randomized algorithms for computing r-orthogonal
Latin squares and r-self-orthogonal Latin squares. The benefit of this approach
is that r-orthogonal Latin squares of large orders can be computed. This is due
to the polynomial running time. Our experiments show that the difficult case
is when r is close to n2. An evidence of this is the open problem of finding a
193-self-orthogonal Latin square of order 14 [28] which is the only case left to
complete the spectrum of r-self-orthogonal Latin squares.

Related work. Keedwell and Mullen [19] investigated the construction of sets
of t Latin squares of a given non-prime-power order q which are as close as
possible to being a mutually orthogonal set. Dinitz and Stinson [9] studied the
problem of constructing sets of s Latin squares of order m such that the aver-
age number of different ordered pairs obtained by superimposing two of the s
squares in the set is as large as possible. Arce-Nazario et al. [1] discussed some
computational problems concerning the distribution of orthogonal pairs in sets
of Latin squares of small orders.

2 Preliminaries

A partial Latin square of order n is an n × n array in which

(i) each entry is either empty or it contains an element from [n], and
(ii) each of the symbols 1, 2, . . . , n occurs at most once in each row and at most

once in each column of the array. Completing partial Latin squares is NP-
complete [7]. However some partial Latin squares can always be completed,
for example, Latin rectangles.

Theorem 4 (M. Hall [14]). Every r × n Latin rectangle, 0 ≤ r ≤ n, can be
completed to a Latin square of order n.

The proof is based on the following theorem for SDR. A system of distinct
representatives, or SDR, for a collection of finite sets S1, S2, . . . , Sm, is a sequence
〈s1, s2, . . . , sm〉 of m distinct elements si ∈ Si. Each si is called a representative of
set Si. For example, the set 〈2, 3, 1〉 is an SDR for the sets S1 = {2}, S2 = {1, 3}
and S3 = {1, 2}.

168 S. Bereg

Theorem 5 (P. Hall [15]). Let S1, S2, . . . , Sm be a collection of m finite sets.
Then an SDR for these sets exists if and only if, for all k ∈ {0, 1, . . . ,m},
|Si1 ∪ Si2 ∪ · · · ∪ Sik | ≥ k, where the k sets Si1 , . . . , Sik represent any collection
of k sets chosen from the m sets S1, S2, . . . , Sm.

The proof of Theorem 4 uses a collection of sets Si, i ∈ [n], where Si is the
set of all x ∈ [n] such that x does not occur in the column j of a r × n Latin
rectangle A. It can be shown that these sets satisfy Hall’s condition (Theorem
5): for all k ∈ {0, 1, . . . , n}, the union of any k sets in the collection contains at
least k elements. By Theorem 5, an SDR for these sets exists. Therefore Latin
rectangle A can be extended to a (r + 1) × n Latin rectangle by adding a row of
the representatives. An SDR can be computed as a matching in a bipartite graph
GA = (V1, V2, E) where V1 = {v1, . . . , vn}, V2 = {u1, . . . , un}, E = {(vi, uj) | j ∈
Si}. A Latin square can be computed using this step n − r times.

3 Completing Orthogonal Latin Rectangles

In order to construct r-orthogonal Latin squares of order n, we apply a random-
ized algorithm called Algorithm A1 where

1. the first rows of two Latin squares A and B are computed as random permu-
tations of [n] and

2. the remaining rows of A and B are computed using a matching algorithm
applied to bipartite graphs GA′ and GB′ and random order of sets Si where
A′ and B′ are the current Latin rectangles.

A = B =

Fig. 2. A pair of 53-orthogonal Latin squares of order 7 where all pairs (i, j) except
(2, 7), (3, 2), (3, 4), (4, 5), (4, 7), (6, 1), (7, 3) appear if A and B are superimposed.

We implemented Algorithm A1 and run it for n ∈ [5, 20], see for example
42-orthogonal Latin squares of order 7 in Fig. 2. The range of values of r for
n ∈ [5, 20] computed by Algorithm A1 is shown in Table 2. One can observe
that the range is complete for n = 5 and n = 6 (by Theorem 2). For n ≥ 7,
the algorithm only found a subset of possible values of r for two r-orthogonal
Latin squares. For example, it computed 36 values of r for n = 10 which is
33
89 · 100 ≈ 37.07% of all values. For n = 20, it computed 70 values of r which

Computing Random r -Orthogonal Latin Squares 169

is 70
379 · 100 ≈ 18.46% of all values. So, one needs to develop an algorithm for

computing r-orthogonal Latin squares of order n for large and small values of r.
It also gives rise to an interesting problem.

Open problem. Let r(A,B) be the orthogonality of two Latin squares A
and B of order n, i.e. the number of distinct ordered pairs when A and B
are superimposed. What is the expected value of r(A,B) of two random
Latin squares A and B of order n?

We computed approximately the expected value of r(A,B) of two random
Latin squares A and B using the program1 developed by Paul Hankin [16] imple-
menting an algorithm for generating random Latin squares by Jacobson and
Matthews [17]. 10000 runs were used for n = 5, . . . , 12 and 1000 runs were used
for n = 13, . . . , 20. The result is shown in Table 2 (column r(A,B)). For all
n ∈ {5, 6, . . . , 20}, the expected value of r(A,B)/n2 is close to 0.63.

Table 2. Pairs of r-orthogonal Latin squares of order n computed by Algorithm A1
(column A1) and Algorithm A2 (column A2). No entry in column A2 means the same
result as in column A1. Column r(A,B) shows the average orthogonality of two random
Latin squares using the program developed by Paul Hankin [16].

n A1 A2 r(A,B)

5 5, 7, 10–19,21, 25 - 15.8478

6 6, 8–32, 34 - 22.7416

7 13–44 7, 9, 11–47,49 30.9792

8 25–53 8, 10–60 40.4537

9 35–65 9,11–77 51.2081

10 47–79 10, 12–93 63.2259

11 60–93 11,13–114 76.55

12 71–109 12, 14–135 91.0366

13 85–128 13,15–157 106.847

14 102–145 14, 16–183 124.075

15 117–166 15, 17–210 142.279

16 137–189 16,18–236 161.437

17 155–207, 209 17, 19–268 182.85

18 173, 176–233 18, 20–300 204.693

19 196–257, 259, 261 19, 21–334 228.004

20 218–286, 290 20,22–370 252.536

1 It is based on the Java implementation described by Ignacio Gallego Sagastume
https://github.com/bluemontag/igs-lsgp.

https://github.com/bluemontag/igs-lsgp

170 S. Bereg

In order to extend the range of r(A,B) computed by Algorithm A1, a plau-
sible approach would be to solve the problem of extending two k × n Latin
rectangles to two (k +1)×n Latin rectangles maximizing (minimizing) r(A,B).
This problem seems difficult and we consider an approach where one Latin rect-
angle is extended first and then the other Latin rectangle is extended by solving
the following problem.

Problem MaxRAB (MinRAB). Let A be a k × n Latin rectangle, k < n,
and let B be a (k + 1) × n Latin rectangle. Extend A to a (k + 1) × n Latin
rectangle A′ maximizing (resp. minimizing) r(A′, B).

Theorem 6. Problems MaxRAB and MinRAB can be solved by O(n3) time
algorithm.

Proof. Let A be a k × n Latin rectangle and B be a (k + 1) × n Latin rectangle.
Let Aj denote the set of positive integers that do not occur in column j of
A. Let S = {(Ai,j , Bi,j) | i ∈ [k], j ∈ [n]}. Construct a weighted bipartite
graph G = (V1, V2, E) where V1 = {v1, . . . , vn}, V2 = {u1, . . . , un}, and E =
{(vi, uj) | j ∈ Ai}. To complete the construction, we assign the weight to each
edge (vi, uj) ∈ E as

w(vi, uj) =

{
1 if (j, Bk+1,i) /∈ S,

0 if (j, Bk+1,i) ∈ S.

Graph G has a perfect matching since Latin rectangle A can be extended to
a (k +1)×n Latin rectangle by Theorem 4. In order to solve problem MaxRAB,
we compute the maximum weight matching M which is the solution of the
assignment problem. It can be found using the Hungarian method [6,20] in
O(n3) time. We extend Latin rectangle A to a (k + 1) × n Latin rectangle A′ by
setting A′

k+1,i = j if (vi, uj) is an edge of the matching. It remains to prove that
r(A′, B) is maximized.

Let A∗ be an extension of A (i.e. A∗ is a (k + 1) × n Latin rectangle such
that the first k rows of A∗ and A are the same) maximizing r(A∗, B). Consider
the permutation A∗

k+1,1, A
∗
k+1,2, . . . , A

∗
k+1,n. Clearly, A∗

k+1,i ∈ Ai for all i ∈ [n].
Therefore M∗ = {(vi, uj) | i ∈ [n], j = A∗

k+1,i} is a matching in graph G. Let B′

be a k×n Latin rectangle obtained using first k rows of Latin rectangle B. Then
r(A∗, B) − r(A,B′) is the number of pairs (A∗

k+1,i, Bk+1,i) in [n]2 \ S. Therefore
r(A∗, B) − r(A,B′) = w(M∗). Similarly r(A′, B) − r(A,B′) = w(M). Since M
is the solution of the assignment problem, w(M) ≥ w(M∗). Then

r(A′, B) = r(A,B′) + w(M)
≥ r(A,B′) + w(M∗)
= r(A∗, B).

Computing Random r -Orthogonal Latin Squares 171

Fig. 3. (a) A Latin square A. (b) Switching a row cycle in A between the third row
and the fifth row. (c) Switching a symbol cycle in A on symbols 2 and 3.

Since r(A∗, B) ≥ r(A′, B), we have r(A∗, B) = r(A′, B). So, Latin rectangle
A′ is optimal.

A similar argument can be used to solve problems MinRAB. The minimum
weight matching can be applied on the same graph G. �

By Theorem 6, the extension of Latin rectangle A is optimal. However, the
extension of Latin rectangle B in our approach might be not the best. We
attempt to optimize (maximize or minimize) r(A,B) using cycle switches [2,26].

Switching cycles. Consider distinct rows r and s in a Latin square A. Let πr,s

be a permutation which maps Ar,i to As,i. Clearly, πr,s is a derangement, i.e.
it has no fixed points. Take any cycle of πr,s and let C be the set of columns
involved in the cycle. Switching row cycle C in A is defined by

A′
i,j =

⎧⎪⎨
⎪⎩

As,j if i = randj ∈ C,

Ar,j if i = sandj ∈ C,

Ai,j otherwise,

see an example in Fig. 3(b). A column cycle is a set of elements which forms a row
cycle when the square is transposed. Switching a symbol cycle on two symbols a
and b is achieved by replacing every occurrence of a in the cycle by b and vice
versa, see an example in Fig. 3(c).

In our approach, we have Latin rectangles instead of Latin squares. Switching
row cycles can be applied to Latin rectangles since the rows are full. We adapt
column cycles to Latin rectangles as column paths. Consider distinct columns
c and d in a Latin rectangle A. Let fc,d be a function that maps Ai,c to Ai,d.

Fig. 4. (a) A Latin rectangle A. (b) Function f1,3 for A induces a cycle (3,5) and a
path (1,4,2). A Latin rectangle after switching column path (1,4,2) in A is shown. (c)
Switching a symbol path in A on symbols 3 and 4.

172 S. Bereg

Start with a symbol Ai,c in column c which is not present in column d. Do the
following step for row i. Find Ai,d in column c, say Aj,c = Ai,d if it exists. Swap
Ai,c and Ai,d. If j is not found then stop; otherwise set i = j and repeat. See
an example in Fig. 4(b). We have c = 1 and d = 3. Start with symbol A4,1 = 1
which is not present in column 3 in Fig. 4(a). Function f1,3 maps 1 to 4, 4 to 2.
Swap A4,1 and A4,3, then swap A1,1 and A1,3. The result is shown in Fig. 4(b).

Symbol cycles may occur in Latin rectangles. We also apply symbol paths
which are defined as follows. Consider distinct symbols a and b in a Latin rect-
angle A. Start with a symbol Ai,j = a in column j such that symbol b is not
present in column j, so (i, j) is the first cell in the symbol path. Repeat the
following step. Find symbol {a, b} \ Ai,j in row i, say Ai,j′ . Append (i, j′) to
the path. Find symbol {a, b} \ Ai,j′ in column j′. If it does not exist, then stop.
Suppose it exists, say Ai′,j′ . Then append (i′, j′) to the path, set i = i′, j = j′

and repeat the step. When the path is computed, swap symbols a and b in the
path, see an example in Fig. 4(c).

We implemented algorithm A2 using method from Theorem 6 combined with
switching row/column/symbol cycles and column/symbol path. The results for
n = 7, . . . , 20 are shown in Table 2. Note that the low values of r(A,B) are cov-
ered completely (by Theorem 2) and new values of r(A,B) larger than the ones

Table 3. r-self-orthogonal Latin squares of order n computed by Algorithm A3 (column
A3) and Algorithm A4 (column A4). No entry in column A4 means the same result
as in column A3. Column r(A,AT) shows the average value of r(A,AT) of a random
Latin square A using the program developed by Paul Hankin [16].

n A3 A4 r(A,AT)

5 5,7,10–11,13–15,17,19,21,25 - 11.2769

6 6,8–31 - 15.4191

7 7, 9–45, 47, 49 - 20.2193

8 8,10–58 8,10–62,64 25.9692

9 20–69 9,11–79,81 32.368

10 29, 33–84 10, 12–98 39.5512

11 42, 44–99 11, 13–119 47.4226

12 56, 59–117 12, 14–140 56.1379

13 72–133 13, 15–163 65.5507

14 83–84,86,88–152 14, 16–214 75.7708

15 101, 103–170, 172–173 15, 17–211 86.5367

16 118, 120–196 16, 18–242 98.443

17 141–216 17, 19–271 110.387

18 161–239 18, 20–307 123.722

19 178–266, 268, 272 19, 21–340 137.122

20 202–292 20, 22–375 152.056

Computing Random r -Orthogonal Latin Squares 173

computed by algorithm A1. The problem of computing all large values of r(A,B)
is quite difficult. Specifically, the problem of computing random orthogonal Latin
squares (i.e. for r(A,B) = n2) is very difficult.

4 Computing Self-orthogonal Latin Rectangles

We experiment with two algorithms using the algorithms developed in the pre-
vious section. If A is a k × n Latin rectangle then we assume that B is an n × k
Latin rectangle B = AT . For example, if a column cycle is applied to Latin
rectangle A, it also affect B. We call the algorithms corresponding to algorithms
A1 and A2, Algorithm A3 and A4, respectively. The range of values of r for
n ∈ [5, 20] computed by Algorithm A3 is shown in Table 3. One can observe that
the range is complete for 5 ≤ n ≤ 9 (by Theorem 3). In general, algorithms A3
and A4 cover more values of r comparing to algorithms A1 and A2.

It is also related to an interesting problem: What is the expected value of
r(A,AT) where A is a random Latin square of order n? We computed approx-
imately the expected value of r(A,AT) of a random Latin square A using the
program developed by Paul Hankin [16] implementing an algorithm for gener-
ating random Latin squares by Jacobson and Matthews [17]. 10000 runs were
used for n = 5, . . . , 15 and 1000 runs were used for n = 16, . . . , 20. The result
is shown in Table 3 (see column r(A,AT)). For example, the expected value of
r(A,AT)/n2 is close to 0.395 for n = 10 and is close to 0.38 for n = 20.

References

1. Arce-Nazario, R.A., Castro, F.N., Córdova, J., Hicks, K., Mullen, G.L., Rubio,
I.M.: Some computational results concerning the spectrum of sets of Latin squares.
Quasigroups Related Syst. 22, 159–164 (2014)

2. Asratyan, A., Mirumyan, A.: Transformations of Latin squares (Russian). Diskret.
Mat. 2, 21–28 (1990)

3. Belyavskaya, G.B.: r-orthogonal quasigroups I. Math. Issled. 39, 32–39 (1976)
4. Belyavskaya, G.B.: r-orthogonal quasigroups II. Math. Issled. 43, 39–49 (1977)
5. Belyavskaya, G.B.: r-orthogonal Latin squares. In: DL enes, A.K.J., editor, Latin

Squares: New Developments, pp. 169–202 (Chapter 6). Elsevier (1992)
6. Burkard, R.E., Çela, E.: Linear assignment problems and extensions. In: Du, D.,

Pardalos, P.M., editors, Handbook of Combinatorial Optimization, pp. 75–149.
Springer (1999). https://doi.org/10.1007/978-1-4757-3023-4 2

7. Colbourn, C.J.: The complexity of completing partial Latin squares. Discret. Appl.
Math. 8(1), 25–30 (1984)

8. Colbourn, C.J., Zhu, L.: The spectrum of r-orthogonal Latin squares. In: Col-
bourn, C.J., Mahmoodian, E.S. (eds.) Combinatorics Adv., pp. 49–75. Springer,
US, Boston, MA (1995)

9. Dinitz, J.H., Stinson, D.R.: On the maximum number of different ordered pairs of
symbols in sets of Latin squares. J. Comb. Des. 13(1), 1–15 (2005)

10. Egan, J., Wanless, I.M.: Latin squares with restricted transversals. J. Comb. Des.
20(7), 344–361 (2012)

https://doi.org/10.1007/978-1-4757-3023-4_2

174 S. Bereg

11. Euler, L.: Recherche sur une nouvelle espéce de quarrés magiques. Leonardi Euleri
Opera Omnia 7, 291–392 (1923)

12. Evans, A.B.: Latin squares without orthogonal mates. Des. Codes Cryptogr. 40(1),
121–130 (2006)

13. Finizio, N.J., Zhu, L.: Self-orthogonal Latin squares (SOLS). In: Colbourn, C.J.,
Dinitz, J.H., editors, The Handbook of Combinatorial Designs, pp. 211–219. Chap-
man/CRC Press (2007)

14. Hall, M.: An existence theorem for Latin squares. Bull. Amer. Math. Soc. 51(6),
387–388 (1945)

15. Hall, P.: On representative of subsets. J. London Math. Soc. 10, 26–30 (1935)
16. Hankin, P.: Generating random Latin squares (blog). https://blog.paulhankin.net/

latinsquares/ (2019)
17. Jacobson, M.T., Matthews, P.: Generating uniformly distributed random Latin

squares. J. Comb. Des. 4(6), 405–437 (1996)
18. Keedwell, A.D., Dénes, J.: Latin squares and their applications. Elsevier (2015)
19. Keedwell, A.D., Mullen, G.L.: Sets of partially orthogonal Latin squares and pro-

jective planes. Discret. Math. 288(1–3), 49–60 (2004)
20. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res.

Logist. Quart. 2(1–2), 83–97 (1955)
21. Mann, H.B.: On orthogonal Latin squares. Bull. Amer. Math. Soc. 50, 249–257

(1944)
22. Mariot, L., Formenti, E., Leporati, A.: Constructing orthogonal Latin squares from

linear cellular automata. CoRR, abs/1610.00139 (2016)
23. Mariot, L., Gadouleau, M., Formenti, E., Leporati, A.: Mutually orthogonal Latin

squares based on cellular automata. Des. Codes Cryptogr. 88(2), 391–411 (2020)
24. McKay, B.D., Meynert, A., Myrvold, W.: Small Latin squares, quasigroups, and

loops. J. Comb. Des. 15(2), 98–119 (2007)
25. van Rees, G.H.J.: Subsquares and transversals in Latin squares. Ars Combin. 29B,

193–204 (1990)
26. Wanless, I.M.: Cycle switches in Latin squares. Graphs Comb. 20(4), 545–570

(2004)
27. Wanless, I.M., Webb, B.S.: The existence of Latin squares without orthogonal

mates. Des. Codes Cryptogr. 40(1), 131–135 (2006)
28. Zhang, H.: 25 new r-self-orthogonal Latin squares. Discret. Math. 313(17), 1746–

1753 (2013)
29. Zhu, L., Zhang, H.: Completing the spectrum of r-orthogonal Latin squares. Dis-

cret. Math. 268(1–3), 343–349 (2003)

https://blog.paulhankin.net/latinsquares/
https://blog.paulhankin.net/latinsquares/

Optimization and Algorithms

A Two-Stage Seeds Algorithm
for Competitive Influence Maximization

Considering User Demand

Zhiheng You, Hongwei Du(B), and Ziwei Liang

School of Computer Science and Technology, Harbin Institute of Technology
(Shenzhen), Shenzhen 518055, China

hongwei.du@ieee.org, ziweiliang@stu.hit.edu.cn

Abstract. Competitive influence maximization (CIM) in online social
network has received widespread attention and research in recent years.
The traditional competitive influence maximization problem explores the
competition between multiple entities on the same network, aiming to
select a certain number of seeds for one of the entities to maximize the
spread of its influence. However, the latest competitive influence max-
imization researches ignore the impact of differences in user demand
on the spread process of competitive influence in real-world competi-
tive relationships. Therefore, a novel propagation model called Compet-
itive Linear Threshold Model considering User Demand (CLTMcUD) is
presented, which takes into account the difference in user demand for
two different brands of the same product category. For this propagation
model, a two-stage algorithm named Dual Influence Assessment based
on Community Structure (DIACS) algorithm is proposed, which utilizes
the characteristics of community structure and dual-influence of nodes
to select candidate seeds and maximize the influence of a competitor. We
test our algorithm on four real-world datasets and show that it outper-
forms state-of-the-art algorithms.

Keywords: Competitive influence maximization · User demand · Dual
influence · Community structure

1 Introduction

With the flourishing growth of online social networks, millions of people may now
engage with one another and produce record-breaking volumes of data, provid-
ing social networks a tremendous amount of potential. This potential has led
to an increasing interest in studying social networks, including analyzing their
structures and exploring the distribution of communities [14]. Social networks
can be regarded as complex networks composed of individuals and their relation-
ships in society. They are important structures for information transmission and
dissemination between individuals. The process of information propagation in
social networks has great practical significance in viral marketing, personalized
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 177–189, 2024.
https://doi.org/10.1007/978-3-031-49614-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_13&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_13

178 Z. You et al.

recommendations, target advertising, and so on, all of which relate to the prob-
lem of maximizing the influence. The classic influence maximization problem’s
objective is to choose a group of k online social network members, or the “seed
set”, that maximizes the anticipated number of users who would be influenced
by the information spread through the seed set [10,12].

In recent years, many scholars have studied the competitive influence maxi-
mization and propose different kinds of propagation models, including Compet-
itive Linear Threshold model [7], Competitive Independent Cascade model [2],
and so on [1,8,13]. In the real world, competition among different brands of
the same product category is very common. Taking smartphones as an example,
almost no one can live without them nowadays. Some people choose well-known
brands such as iPhone for their high-quality experience while some choose more
affordable brands that provide high cost-performance ratio. However, the exiting
works have not taken this circumstance into consideration.

In this paper, we introduce the difference in user demand for two differ-
ent brands of the same product category based on the CIM problem proposed
by Bozorgi et al. [4], and explored the solution for the competition influence
maximization problem under this scenario. The community structure in social
networks has a significant impact on information dissemination and many schol-
ars have conducted in-depth research on community-based impact maximization
algorithms [6,15]. We also utilize the community structure and present a novel
algorithm. We summarise the major contributions in this paper as follows:

1. We propose a new propagation model called Competitive Linear Threshold
Model considering User Demand (CLTMcUD). In CLTMcUD, each node has
the ability to affect its neighbors in a similar way to the conventional linear
threshold model.

2. We present a competitive influence maximization method considering user
demand, namely dual influence assessment based on community structure
(DIACS) algorithm. In the DIACS algorithm, there are two steps for finding
the seeds SB that can ultimately maximize the influence of the competitor B
against the already given seeds SA of the competitor A.

3. we rely on four intricate real-world networks of varying sizes and complexity
to verify the effectiveness and feasibility of the DIACS algorithm.

The rest of this paper is structured as follows. In Sect. 2, the competi-
tive propagation model is introduced in detail, and the competitive influence
maximization problem is defined and the corresponding algorithm is proposed.
Section 3 shows and analyzes the experimental results of the DIACS algorithm.
Section 4 presents the conclusion of this paper.

A Two-Stage Seeds Algorithm for CIM Considering User Demand 179

2 Propagation Model and Algorithm

2.1 Propagation Model

Decidable Competitive Model (DCM) propagation model was proposed by
Bozorgi et al. [4], which can reflect some competitive phenomena in reality but
ignores the competition relationship between entities of similar types. On this
basis, we propose a model, CLTMcUD, which is suitable for the competition
relationship between entities of similar types proposed in this paper.

Given a directed graph G = (V,E,W, T), where V represents the set of
all nodes, E represents the set of all directed edges, W represents the set of
edge weights corresponding to the elements in the directed edge set E, and T
represents the set of node tags corresponding to the elements in the node set V .
We assume that there are two competing entities A and B in the network. The
node in CLTMcUD spreads with discrete time steps, and its propagation rule is
as follows:

(1) Each node v may be in one of four states, which are inactive, thinking,
active+, and active−. Here, the inactive state represents that the node v is
still in an inactive state, the active+ state represents that the node v has
chosen to accept entity A, while the active− state represents that the node
v has chosen to accept entity B. While the thinking state represents that
the node v has been activated for the first time but has not yet selected to
accept any entity. And node v will choose to accept an entity and become
active+ or active− state after t timestamps after entering the thinking state
people who want to buy a certain product often consider a certain amount
of time before buying a product in real life.

(2) Each node v has a tag tv which can take the values 1, 2, or 3. Here, we
define that nodes with tag 1 have a higher demand for entity A, nodes with
tag 2 have a higher demand for entity B, and nodes with tag 3 have equal
demand for both entities. Nodes with less demand for an entity require an
additional activation threshold θt(0 ≤ θt ≤ 1) to be activated by that entity.

(3) Taking the node v with tag 1 as an example, when the total inbound prop-
agation probability of node v satisfies:

∑

u∈Nin
active+

pu,v ≥ θv (1)

or ∑

u∈Nin
active−

pu,v ≥ θv + θt (2)

The node v will switch to the thinking state from the inactive state, or
it will stay in the inactive state otherwise. Nodes that enter the thinking
state will choose the entity to accept after t timestamps, and the acceptance
rules are as follows:

180 Z. You et al.

statev =

⎧
⎪⎨

⎪⎩

active+, if
∑

u∈A
+
T+t

pu,v ≥ ∑

u∈A
−
T+t

pu,v

active−, if
∑

u∈A
+
T+t

pu,v <
∑

u∈A
−
T+t

pu,v and
∑

u∈A
−
T+t

pu,v ≥ θv + θt

(3)

Here, A+
T+t represents the set of nodes in the predecessor nodes of node v

with status active+ and A−
T+t represents the set of nodes in the predecessor

nodes of node v with status active−.
(4) Any node can only be activated by one competing entity at the same time,

and once it is activated by any entity, it cannot be activated by the other
entity.

An example model is shown as Fig. 1:

Fig. 1. A Example of Competitive Linear Threshold Model with User Demand

In this paper, we assume that there are two competing entities A and B in
the network and make nodes marked as 1 have a higher demand for entity A,
nodes marked as 2 have a higher demand for entity B, and nodes marked as 3
have an equal demand for both entities. For each node, we set the activation
threshold of each node to θv = 0.3. For example, as shown in Fig. 1, any entity
that activates a node with low demand for itself requires an additional activation
threshold θt = 0.3. At time T , node c is marked as 3 and receives a propagation
probability of 0.56 from entity A and 0.4 from entity B. Node e will be activated
by entity B and enter the thinking state at T + 1 because 0.4 > 0.3. Similarly,
node c will be activated by entity B and enter the thinking state, and node h
will be activated by entity A and enter the thinking state. After t timestamps,
nodes c, e, and h will simultaneously choose which entity to accept. Although
node e receive a propagation probability of 0.56 from entity A, which is greater
than 0.4 from entity B, node e will accept entity B. The reason is node e is
marked as 2, which means node e have a higher demand for entity B and will
accept entity B with a less activation threshold θv. And the propagation from
entity A is less than θv + θv = 0.6 so that node e cannot be activated by entity

A Two-Stage Seeds Algorithm for CIM Considering User Demand 181

A. Therefore, node e is activated by entity B. Similarly, node c will be activated
by entity B, and node h will be activated by entity A. While node b cannot be
activated by entity B because node b has already chosen to accept entity A.

2.2 Problem Formulation

We first introduce the definition of influence propagation score and some graph
theory concepts. we present the definition and objective of the competitive influ-
ence maximization problem studied in this paper.

Definition 1. (Spread Influence Function f): We define the propagation influ-
ence of node v in CLTMcUD as f(v), which represents the number of nodes that
can be activated by node v according to the propagation rule we establish in the
social network. The diffusion influence of a node set S is defined as the number
of nodes that can be activated by simultaneously diffusing all nodes in the set
until no additional nodes can be activated. The formula is expressed as follows:

f(S) =
∑

v∈S

f(v) (4)

Theorem 1. Given a directed graph G = (V,E,W, T), two competitors A, B
and a seed set SA ⊂ V of A, the spread influence function f satisfies monotonic-
ity and submodularity on the seed set SB ⊂ V in the CLTMcUD model.

Proof. Monotonicity: According to the propagation rule of the CLTMcUD
model mentioned in Sect. 2.1, each node that has reached the final state, i.e.,
either active+ or active−, will only propagate influence to its neighbors and will
not change its own state again. Therefore, for any seed sets SB, adding any node
v ∈ V \(SA ∪ SB) to SB will always satisfy f(SB ∪ {v}) ≥ f(SB). It means the
function f satisfies monotonicity.

Submodularity: When function f satisfies the property of “diminishing
marginal returns,” we refer to it as submodularity. We let F (S) represent the set
of nodes that the set S can activate and suppose S can activate node v if and only
if S can reach v within time t. For any set SB ⊆ T ⊂ V and any node u ∈ V \T ,
for any node v ∈ F (T ∪ {u})\F (T), we set that T ∪ {u} can reach v within time
t, but T cannot. Therefore, starting from node u must be able to reach v within
time t. Because SB ⊆ T , we can easily know SB cannot reach v within time t.
It means v ∈ F (SB ∪ {u})\F (SB), i.e. F (T ∪ {u})\f(T) ⊆ f(SB ∪ {u})\f(SB).
Then we can infer that f(T ∪{u})−f(T) ≤ f(SB∪{u})−f(SB), which illustrates
that f satisfies the submodularity.

We have proven that the influence spread function f satisfies monotonicity
and submodularity, which means that greedy algorithms can be used on the
CLTMcUD model and obtain an approximation ratio of 1 − 1

e .
In order to quickly assess the impact of nodes in the network, we use the

Topology Importance (TI) value to rank the nodes. Here, we use N in(v) [16] to

182 Z. You et al.

denote the set of internal neighbors of node v which are within the same commu-
nity, and Nex(v) to represent the set of external neighbors of node v which are
in other communities. In addition, since our CLTMcUD model is an improve-
ment over the traditional linear threshold (LT) model, each activated node will
continue to have an influence on its neighbors. Therefore, we use Eigenvector
Centrality(EC) to evaluate the importance of a node in the network. This is
important because EC can reflect the importance of a node and its neighbors,
which is why we include it in the TI value. Next, we provide the definition of
TI:

Definition 2. (Topology Importance, TI): TI consists of three components,
that is used to evaluate the impact of a node within a community and across
different communities. The calculation formula of TI is expressed as follows:

TIv =
∣∣N in(v)

∣∣ +
|Nex(v)| − Minui∈V (|Nex(ui)|)

Maxui∈V (|Nex(ui)| − Minui∈V (|Nex(ui)| + ECv (5)

The first parameter
∣∣N in(v)

∣∣ represents the number of nodes in the set of
internal neighbors of node v. And the second parameter is the normalized value
of the set of external neighbors of node v. The third is the eigenvector centrality
of node v.

Definition 3. (Competitive Influence Maximization considering User Demand,
CIMcUD): Given a directed social network G = (V,E,W, T) and two compet-
itively similar entities A and B, where V represents the set of all nodes in the
network, E represents the set of all edges in the network, W represents the cor-
responding weight set on edge set E, and the weight wi on node vi is used to
represent the probability of propagation influence between two nodes, with wi

being a real number between 0 and 1. T represents the set of tags corresponding
to each point in the network, with possible values of label ti for node vi being
1, 2, or 3. In this paper, the seeds SA of entity A has been given and SB of
entity B are selected from the remaining nodes after entity A has chosen its own
seed nodes. Specifically, entity B selects k different nodes as its seeds, which is
the same as the number of seeds selected by A. The objective of CIMcUD is to
maximize the spread influence function f(SB) for entity B.

2.3 Algorithm Consider Dual Influence Assessment Based
on Community Structure

Based on the CIMcUD problem, the seed selection algorithm of this paper will
be influenced to some extent by the nodes already selected by competitors.
Traditional CIM approaches may use community-based greedy algorithms, but
they ignore the lasting influence of nodes on their neighboring nodes in the LT
model [4]. Therefore, we design the DIACS algorithm, a two-stage algorithm. The
first stage is a filter stage, which aims to quickly select a subset of nodes from
all nodes as candidate seeds. The second stage is a greedy stage, which selects

A Two-Stage Seeds Algorithm for CIM Considering User Demand 183

a group of seed nodes with the highest benefits through the marginal benefits
coefficient. We now introduce the detailed algorithms for each step shown in
Algorithm 1.

Algorithm 1. Dual Influence Assessment based on Community Structure Algo-
rithm
Require: Graph G, Competitive Seeds SA, Number of Seeds k
Ensure: Seeds {SB}
1: C ⇐ Louvain(G)
2: Calculate the TI of all nodes
3: Select top-30% TI node as the Scandidate

4: for each v ∈ C ∩ v ∈ Scandidate do
5: Calculate a CELF list of Infp1, Infp2
6: set iterv = 0
7: end for
8: Select the node n with max Infp2 with max Infp1
9: remove n from CELF list

10: while len(SB) < k do
11: Select the node n with max Infp2 with max Infp1
12: for each seed s ∈ SB do
13: if s, n belong to the same community then
14: if iters == itern then
15: Add n into SB and delete n from CELF list
16: break
17: end if
18: Update Infp1, Infp2, itern of n in CELF list
19: end if
20: end for
21: if n not belong to any community of the node in SB then
22: Add n into SB and delete n from CELF list
23: end if
24: end while
25: return SB

The two-stage algorithm is based on community structure and we use Louvain
algorithm [3] to partition the social network into communities, which is based
on modularity optimization and can be applied to networks of different types
and sizes. The formula of the calculation of modularity is as follow [3]:

Q =
1

2m

∑

i,j

(
Aij − kikj

2m

)
δ(ci, cj) (6)

By using the Louvain algorithm, we can obtain non-overlapping communities,
which ensures that each node has a unique TI value during the filter stage.

The filter stage is shown in Line 2 to Line 3, where we calculate TI values
for all nodes on the community-by-community basis mentioned before. By cal-
culating the TI value of each node, we can quickly sort the nodes and select

184 Z. You et al.

the top 30% nodes with the highest TI values as candidate seeds. In the next
greedy phase, we will only assess the dual-influence value on the candidate seeds
instead of all nodes.

Line 4 to Line 24 show the greedy stage, which first establish a CELF list [11]
according to the dual-influence values of candidate seeds. The dual-influence con-
sists of two parts, Infp1 and Infp2. The value of Infp1(v) represents the number
of nodes that the node v can activate directly. The calculation method of Infp1

is the same as the marginal benefit function considered by traditional greedy
algorithms. It can help us understand the direct influence that can be gener-
ated when adding node v to the seed set. Based on this, we propose the Infp2

parameter to evaluate the second-level influence of nodes. In the LT propagation
model, each activated node will continue to influence its neighbors until the end
of the propagation. Therefore, in addition to the neighbors that can be directly
activated by the node, we also consider its influence on neighbors that have not
yet been activated, which we refer to as the second-level influence infp2 . In other
words, the second-level influence is the influence of all nodes eventually activated
by the set S on their neighbors that are in the inactive or thinking state. The
formulas for calculating Infp1 and Infp2 are shown below:

infp1(S) =
∑

v∈S

infp1(v) (7)

infp2(S) =
∑

v∈infp1 (S)

infv,a

θa
(8)

Where node a is a node in the inactive or thinking state, infv,a represents the
probability of node v propagating to node a, and θa represents the activation
threshold for node a to be activated by the entity represented by node v.

After that, we built a CELF table based on the dual-influence of candidate
seeds, and each time choose to add to the seed set S2 the node with the highest
dual-influence. It should be emphasized that we initially check the node with
the current maximum dual-influence while choosing seeds, and if it belongs to
the same community as the nodes in the current seed set, we update its dual-
influence value and iteration flag itern in the CELF table. The selected node is
added to the seeds only when its iteration flag is equal to the current iteration
number, which is showed from Line 12 to Line 19. When the node with the
current maximum dual-influence does not belong to the same community as the
nodes in the current seed set, it is directly added to the seeds. Repeat the above
procedure until the same number of seeds as S1 has been selected.

3 Experiment

3.1 Dataset

We validate the algorithm on four real social networks, namely Wiki-Vote, CA-
HepPh, Slashdot, and Amazon. The relevant information of the four datasets is

A Two-Stage Seeds Algorithm for CIM Considering User Demand 185

shown in Table 1, where #nodes and #edges respectively represent the number
of nodes and edges in the dataset and ave-degree represents the average degree
of nodes in the dataset. All four datasets are obtained from the website1

Table 1. Real-world datasets

Wiki-Vote CA-HepPh Slashdot Amazon

#nodes 7115 12008 82168 262111

#edges 103689 118521 948464 1234877

ave-degree 29.11 19.71 23.06 2.77

3.2 Experiment Design

In this paper, we set the additional propagation influence θt to 0.5 for an entity
to activate a node that has a lower demand for it. The in-degree of each node is
defined as in−degree, and the propagation probability of each edge is 1

in−degree .
In addition, we stipulate that each node which enters the thinking state will
select the entity it receives after 7 timestamps and propagate its influence [4].
We will confirm the viability and effectiveness of the algorithm through the
following experiments:

Experiment 1 (Spread Influence): We stipulate the method of selecting
seeds and the number of seeds for u1. Here, we use the high-degree algorithm [9]
to select the seeds for u1. Then we compare the spread influence generated by the
same number of seeds selected by u2, which we present, using DIACS algorithm
and other different seeds selection algorithms.

Experiment 2 (Running Time): Similarly, we use high-degree algorithm to
select the seeds for u1 and set the number of seeds as u1. Then we compare the
running time required for seeds selection of the DIACS algorithm with that of
other algorithms.

We select the following algorithms for comparative experiments:
Random Algorithm, which randomly selects seeds.
High-Degree Algorithm, which selects the top-ranked nodes based on

their degree as seeds.
PageRank Algorithm [9] , which selects the top-ranked nodes based on

their PageRank values as seeds.

1 http://snap.stanford.edu/.

http://snap.stanford.edu/

186 Z. You et al.

DegreeDiscount Algorithm [5] , which measures the influence of nodes
based on their degree, calculates the DegreeDiscount value for each node by
averaging the degrees of its neighbors, and selects the top-ranked nodes based
on their DegreeDiscount values as seeds.

CI2 Algorithm [4] , which first partitions the social network into com-
munities and subsequently utilizes a local greedy algorithm to identify the node
with the maximum marginal benefit in each community. It selects the node with
the highest marginal benefit among all communities as the seed and updates the
node with the maximum marginal benefit in the selected community.

3.3 Experiment Results

Spread Influence. As we can see in Fig. 2, overall, the DIACS algorithm con-
sistently achieves propagation results comparable to the CI2 algorithm, and even
outperforms the CI2 algorithm in most cases on the four datasets. The CI2 algo-
rithm is a simple greedy algorithm based on community structure, and its theo-
retically achievable results are already locally optimal. Furthermore, the DIACS
algorithm also performs better in terms of spread influence than other heuristic
algorithms.

Fig. 2. Spread influence of different algorithms to select seeds on four datasets

As the Table 1 shows, the CA-HepPh and Wiki-Vote datasets have around
ten thousand nodes, with an average degree of up to twenty or thirty. As shown
in Fig. 2(a)(b), as the number of seeds increases, the propagation influence gen-
erated by the seeds selected by the DIACS algorithm is increasingly higher com-
pared to other algorithms. This indicates that when the node average degree
of the dataset is high, the dual-influence function we used can achieve better
propagation influence when there are more seeds. However, Fig. 2(c) shows that

A Two-Stage Seeds Algorithm for CIM Considering User Demand 187

in the Slashdot dataset, which also has a high average node degree, the DIACS
algorithm can only achieve propagation influence results similar to or even lower
than the CI2 algorithm. We believe that the reason is the number of selected
seeds is not sufficient, resulting in the average performance of the dual-influence
function. When the dataset, such as Amazon, has many nodes but a low aver-
age degree, the activation of a node is often affected by the difference in the
probability of propagation on a single edge. This makes the second influence of
the dual-influence function more important. Therefore, as shown in Fig. 2(d),
when the number of seeds is 50, the DIACS algorithm’s propagation influence is
far superior to other algorithms. Therefore, the DIACS algorithm demonstrates
certain advantages in terms of spread influence.

Running Time. As shown in the 3, although the greedy phase of the DIACS
algorithm results in a similar growth rate of running time to the CI2 algo-
rithm that uses a simple greedy algorithm, the DIACS algorithm is still always
faster than the CI2 algorithm, which achieves similar propagation results in four
datasets. Specifically, the DIACS algorithm is between 1

2 and 1
3 faster than the

CI2 algorithm, indicating that the quality of candidate seeds selected during the
filter stage of the DIACS algorithm is superior.

The DIACS algorithm demonstrates superiority as it achieves comparable or
even better propagation results than the CI2 algorithm while being faster.

Fig. 3. Running time of different algorithms to select seeds on four datasets

4 Conclusion

In this paper, we study the competitive influence maximization problem con-
sidering user demand and dual influence, and propose a competitive influence

188 Z. You et al.

diffusion model named CLTMcUD that takes user demand into account to sim-
ulate the competition of dual entities under different user preferences. Then,
we provide a two-stage dual influence algorithm named DIACS based on com-
munity structure. This algorithm first selects candidate seeds in the filter stage
after partitioning the social network into non-overlapping communities, and then
chooses the final seeds in the greedy stage. Finally, we validate the effectiveness
and feasibility of the algorithm on 4 real-world datasets, demonstrating that our
approach surpasses currently available state-of-the-art approaches.

Acknowledgment. This work is supported by National Natural Science Foundation
of China (No. 62172124). It was also supported by the Shenzhen Basic Research Pro-
gram (Project No. JCYJ20190806143011274).

References

1. Ali, K., Wang, C.Y., Chen, Y.S.: Leveraging transfer learning in reinforcement
learning to tackle competitive influence maximization. Knowl. Inf. Syst. 64(8),
2059–2090 (2022)

2. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social
networks. In: Internet and Network Economics: Third International Workshop,
WINE: San Diego, CA, USA, December 12–14, 2007. Proceedings 3. Springer,
Heidelberg, pp. 306–311 (2007)

3. Blondel, V.D., Guillaume, J.L., Lambiotte, R., et al.: Fast unfolding of communities
in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

4. Bozorgi, A., Samet, S., Kwisthout, J., et al.: Community-based influence maximiza-
tion in social networks under a competitive linear threshold model. Knowl.-Based
Syst. 134, 149–158 (2017)

5. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 199–208 (2009)

6. Guo, J., Wu, W.: Influence maximization: seeding based on community structure.
ACM Trans. Knowl. Disc. Data (TKDD) 14(6), 1–22 (2020)

7. He, X., Song, G., Chen, W., et al.: Influence blocking maximization in social net-
works under the competitive linear threshold model. In: Proceedings of the 2012
SIAM International Conference on Data Mining. Society for Industrial and Applied
Mathematics, pp. 463–474 (2012)

8. Huang, H., Meng, Z., Shen, H.: Competitive and complementary influence max-
imization in social network: a follower’s perspective. Knowl.-Based Syst. 213,
106600 (2021)

9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

10. Krömer, P., Nowaková, J.: Guided genetic algorithm for the influence maximiza-
tion problem. In: Computing and Combinatorics: 23rd International Conference,
COCOON: Hong Kong, China, August 3–5, 2017, Proceedings 23. Springer Inter-
national Publishing, pp. 630–641 (2017)

11. Leskovec, J., Krause, A., Guestrin, C., et al.: Cost-effective outbreak detection in
networks. In: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 420–429 (2007)

A Two-Stage Seeds Algorithm for CIM Considering User Demand 189

12. Li, Y., Fan, J., Wang, Y., et al.: Influence maximization on social graphs: a survey.
IEEE Trans. Knowl. Data Eng. 30(10), 1852–1872 (2018)

13. Liang, Z., He, Q., Du, H., et al.: Targeted influence maximization in competitive
social networks. Inf. Sci. 619, 390–405 (2023)

14. Naderipour, M., Fazel Zarandi, M.H., Bastani, S.: Fuzzy community detection on
the basis of similarities in structural/attribute in large-scale social networks. Artif.
Intell. Rev. 55, 1373–1407 (2021). https://doi.org/10.1007/s10462-021-09987-x

15. Qiu, L., Jia, W., Yu, J., et al.: PHG: a three-phase algorithm for influence maxi-
mization based on community structure. IEEE Access 7, 62511–62522 (2019)

16. Xie, X., Li, J., Sheng, Y., et al.: Competitive influence maximization considering
inactive nodes and community homophily. Knowl.-Based Syst. 233, 107497 (2021)

https://doi.org/10.1007/s10462-021-09987-x

Practical Attribute-Based Multi-keyword
Search Scheme with Sensitive Information

Hiding for Cloud Storage Systems

Jie Zhao1, Hejiao Huang1(B), Yongliang Xu2, Xiaojun Zhang3,
and Hongwei Du1

1 School of Computer Science and Technology, Harbin Institute of Technology
(Shenzhen), Shenzhen 518055, China

zhaojswpu2017@163.com, {Huanghejiao,hwdu}@hit.edu.cn
2 School of Mathematics and Statistics, Fuzhou University, Fuzhou 350108, China

xylwork@yeah.net
3 School of Computer Science, Research Center for Cyber Security,

Southwest Petroleum University, Chengdu 610500, China
zhangxjdzkd2012@163.com

Abstract. Attribute-based multi-keyword search (ABMKS) facilitates
searching with fine-grained access control over outsourced ciphertexts.
However, two critical issues impede wide application of ABMKS. Firstly,
the majority of ABMKS schemes have suffered huge computation and
communication costs in the process of ciphertexts matching and trans-
mission. Secondly, the contents of data file containing sensitive informa-
tion are encrypted as a whole, and data users with varying roles should
have different access rights to the ciphertext returned by cloud, thereby
preventing sensitive information in data files from being leaked to semi-
trusted data users. In this paper, we tackle the issue of content access
rights by introducing sensitive information hiding, a novel concept in the
field of attribute-based keyword search. Specifically, we propose a prac-
tical multi-keyword search scheme with sensitive information hiding by
integrating a modified blindness filtering technique into ciphertext pol-
icy attribute-based encryption under the multi-keyword search model. To
minimize communication costs in the ciphertext transmission process, we
utilize a super-increasing sequence to aggregate multiple blinding data
blocks into a single ciphertext. The ciphertext can be recovered by using a
recursive algorithm. Security analysis proves that our scheme is provably
secure within the random oracle model, it guarantees keyword secrecy
and selective security against chosen-keyword attacks. Performance eval-
uations demonstrate that our scheme surpasses state-of-the-art ABMKS
schemes, making it highly suitable for cloud storage systems.

Keywords: Attribute-based multi-keyword search · Sensitive
information hiding · Blindness filtering technique · Super-increasing
sequence · Cloud storage systems

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 190–202, 2024.
https://doi.org/10.1007/978-3-031-49614-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_14&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_14

ABMKS-SIH 191

1 Introduction

Cloud computing has gained significant attention for its notable benefits like
extensive storage capacity and flexible resource management [1]. However, the
emergence of security and privacy issues has raised concerns among users, hin-
dering their enjoyment of cloud storage and computing services [2]. To deter
potential adversary attacks from posing a threat to data privacy, users often
encrypt their data before uploading it to the cloud servers. While ensuring data
confidentiality is crucial in cloud, encryption mechanisms inherently impose cer-
tain limitations on data availability [3,4].

Searchable encryption (SE) [5] enables users to search encrypted data files
in the cloud based on user-specified keywords, just like searching on plaintext
datasets. The original idea of SE was introduced by Song et al. [6], where
symmetric keys were employed to construct keyword indexes and search trap-
doors. Goh [7] formalized a security model for symmetric SE and proposed a
secure searchable symmetric encryption scheme by leveraging a Bloom filter
within this defined framework. Wang and Cao [8] proposed an effective order-
preserving symmetric encryption mechanism specifically designed to facilitate
ranked-keyword search. To address the secret key distribution problem inherent
in symmetric SE, a new concept about public-key encryption based on key-
word search (PEKS) was proposed by Boneh et al. [9]. Building upon the work
of Boneh et al. [9], Cui et al. [10] proposed a novel approach to key-aggregate
searchable encryption, which supports group data files sharing. Zhang and Huang
[11] developed a biometric identity-based keyword search scheme using lattice-
based technique over outsourced ciphertext, enhancing the security of ciphertext
retrieval. Nevertheless, most of the previous SE schemes primarily operate in a
“one-to-one” search mode and lack support for more expressive data sharing.

Fortunately, the attribute-based encryption (ABE) mechanism was developed
by Sahai et al. [12], which provides a novel “one-to-many” ciphertext sharing
paradigm for cloud users. To realize keyword search with fine-grained access con-
trol over ciphertext, Su et al. [13] put forward an attribute-based keyword search
(ABKS) scheme in cloud storage. In ABKS, the access structure is determined by
the data owner (DO) and embedded into the ciphertext. Only when the attribute
set of data user (DU) satisfies the requirements of the access structure and the
keyword within the search trapdoor matches the keyword in the index, the DU
can get the relevant search results. Subsequently, Bao et al. [2], Zheng et al. [14],
and Huang et al. [15] put forward an attribute-based keyword search scheme with
distinct functional characteristics in the cloud-assisted healthcare systems. Most
existing ABKS schemes lack the capability to facilitate multi-keyword search.
This limitation arises from the insufficient power of a single keyword, resulting
in an abundance of irrelevant search results and reducing search efficiency. To
address this issue, Chen et al. [16] introduced a dual server model for attribute-
based multi-keyword rank search. By combining a modified homomorphic MAC
and a conjunctive keyword technique, Wen et al. [17] constructed a scheme for
security searching multi-keyword search while maintaining privacy. Miao and Ma
[18] presented a multi-keyword search scheme with attribute comparisons using
0-encoding and 1-encoding. However, these schemes incur huge communication

192 J. Zhao et al.

and computation costs in the process of message transmission and ciphertext
matching. Thus, how to design an effective multi-keyword searchable encryption
mechanism in cloud storage systems is a crucial demand [19].

In addition, although existing ABKS schemes [3,14,20,21] have achieved
“one-to-many” or “many-to-many” search mode with cloud access control, they
mainly focus on matching user queries with ciphertexts encrypted by multiple
distributed data users, overlooking the management of content rights over the
returned ciphertext for data users with different roles. In some applications, data
files owned by the DO often contain individual sensitive information that necessi-
tates distinct access privileges for various data users [5]. For example, in a cloud-
assisted healthcare sharing system, the patient acts as the data owner, doctors
serve as the full-trusted (internal) searchers, and researchers as the semi-trusted
(external) searchers. Nonetheless, considering the varying data user rights, the
patient requires that doctors have access to the entire EMR, including sensitive
information. On the contrary, researchers should only be granted the authority to
access these shared contents within the EMR, while excluding sensitive informa-
tion. Wu and Srivastava [22] put forward two structural models based on genetic
algorithm, which filter user’s sensitive information based on different thresholds
of sensitive framework, but they do not realize fine-grained access control of out-
sourced ciphertext. Hence, it becomes urgent to develop effective methods for
implementing a two-layer access control mechanism in ABKS, thereby ensuring
comprehensive content rights management.

To address outsourced ciphertexts sharing issues and provide aforementioned
functionalities, in this paper, we proposed ABMKS-SIH, a practical scheme for
attribute-based multi-keyword search with sensitive information hiding in cloud
storage systems. The main contributions of this work are elaborated below:

1. We combine a modified blindness filtering technique and block ciphers to real-
ize the sensitive information hiding and other non-sensitive content sharing
in data files. Any data user with a sufficient number of valid attributes can
execute the keyword search operation of outsourced ciphertext by using the
extracted keyword set, but only full-trusted DUs are granted access to the
sensitive information in response ciphertext.

2. ABMKS-SIH leverages a super-increasing sequence to aggregate multiple
blinding data blocks into a single ciphertext. This approach not only sig-
nificantly reduces the communication overhead between two logical entities
in the system but also facilitates the rapid recovery of the original data files by
using a recursive algorithm. As such it enhances the overall search experience
for users.

3. We formalize the security model of ABMKS-SIH and provide its correspond-
ing security proofs based on the hardness assumption of decisional Diffie-
Hellman (DDH) within the random oracle model. ABMKS-SIH guarantees
keyword secrecy and selective security against chosen-keyword attack [14].

ABMKS-SIH 193

2 Problem Formulation and Preliminaries

2.1 System Model

The system model is depicted in Fig. 1 comprises the trusted authority (TA),
data owner (DO), data users (DUs), and cloud server (CS). TA is in charge of
determining public parameters Para and master secret key Msk, and assigns the
Para to other entities in the system. According to the attribute set S of DU,
it can generate an attribute key SK. DO is the original data owner who has
numerous data files to outsource to CS. To enhance the data privacy protection
and ensure efficient ciphertext search, DO first hides the sensitive information in
data file, then constructs a ciphertext index based on the extracted keyword set
and predefined access policies. Finally, DO uploads the storage data (i.e., cipher-
text and secure index) to CS. DUs is the collective term for all data searchers
in the system, including the internal searchers and external searchers. A new
data user with attribute set S registers with TA to obtain the corresponding
attribute key SK. When executing the ciphertext retrieval in the cloud, he/she
can generate a secure search trapdoor based on his/her interests and send it to
CS. CS, managed by the cloud server provider, provides cloud users with conve-
nient storage services and rich computing resources. Upon receiving the search
trapdoor from DUs, CS checks whether the DUs have permission to access the
storage data of DO. If not, CS outputs ⊥; otherwise, it executes the ciphertext
matching operation and responds the corresponding search results to DUs.

Fig. 1. System model of ABMKS-SIH.

2.2 Threats Model and Design Goals

According to the proposed ABMKS-SIH system model, we mainly consider
threats from three different several angles: honest-but-curious CS and semi-
trusted internal searchers. The CS follows the agreed-upon protocol to perform
the ciphertext retrieval tasks, but it is awfully curious about the keywords over
secure indexes or the keywords over search trapdoors. The external searchers
may try to derive the sensitive information about the DO from the search results.
Even worse, they impersonate other DUs to learn valuable information about
the target DUs, seeking unauthorized data access.

194 J. Zhao et al.

The proposed ABMKS-SIH scheme seeks to reach the following goals: (1)
Data Confidentiality. It should prevent the CS and other malicious DUs from
accessing the content of outsourced storage data. The external searchers should
not learn sensitive information about the DO from the response search results.
(2) Keyword Security. The CS should not have the ability to identify keywords
from the secure index or search trapdoors, nor link secure index or search trap-
doors sent by the same DO/DUs, even if they have the same keywords. (3)
Dual Access Control. The DO can define fine-grained access policies for the out-
sourced data file with sensitive information hiding. CS can execute the task of
multi-keyword search matching if the attributes of DUs meet DO’s access poli-
cies. External searchers only have permission to access the shared content on
the data file, excluding the sensitive information. (4) High Performance. Ensur-
ing high performance of ABMKS-SIH has always been a pressing demand for
cloud storage systems. Particularly, maintaining an appropriate trapdoor size,
regardless of the number of searching keywords, will minimize the network delay
between CS and DUs. The Computation costs of ciphertext search matching and
decryption should be kept as low as possible.

2.3 Preliminaries

Bilinear Pairing. Given two multiplicative cyclic groups G and GT , both
having a prime order q. The generator of G is denoted as g. Let ê be a bilin-
ear pairing ê : G × G → GT , which should satisfies: Bilinearity : ∀a, b ∈ Zq,
ê(ga, gb) = ê(g, g)ab; Non-degeneracy : ê(g, g) �= 1; Computability : ê can be effec-
tively calculated.

Decisional Diffie-Hellman (DDH) Assumption. Given a quintuple (g,
ga, gb, gab, gχ) ∈ G

5 for unknown random values a, b, χ ∈ Z
∗
q , the goal of DDH

problem in the group G is to distinguish whether gab or gχ from the quintuple.
For any probabilistic polynomial-time (PPT) adversary A, the probability of
figuring out the DDH problem is considered negligible, This can be expressed as
AdvDDH

G,A (ς) = |Pr[A(q,G, g, ga, gb, gab) = 1]−Pr[A(q,G, g, ga, gb, gχ) = 1]| ≤ ε,
where ε is a negligible advantage.

Super-Increasing Sequence. Super-increasing sequence is a key technique for
handling multi-dimensional data. It is a sequence of positive integers {ρ1 = 1, ρ2,

· · · , ρn}, ∀ı, j ∈ [1, n], ı < j, ρj >
∑j−1

ı=1 ρı. Here, each element ρi (1 ≤ i ≤ n)
surpasses the cumulative total of all preceding elements within the sequence.

Access Policy Tree. An access tree can embody the access structure T [20].
This structure involves two types of nodes: leaf nodes lns and non-leaf nodes
nlns, Each leaf node xinlns within T is linked to an attribute att(x), and the
non-leaf node ν ∈ nlns denotes a threshold gate (kν , Numν). Here, kν ∈ [1, n]
denotes the threshold value of ν and Numν indicates the number of children in
ν. When kν = 1, the threshold gate function as an Or gate, whereas it behaves
as an And gate when kx = Numx. For each inner node ν in the T , it generates

ABMKS-SIH 195

a polynomial Γν with a degree kν − 1 from top to bottom. If the ν is the T ’s
root node R, Γν=R(0) = s, where s is a secret value chosen for the T . Otherwise,
Γν(0) is set to Γparent(ν)(index(ν)). Here, parent(ν) denotes the parent of ν,
and index(ν) represents the sequence number associated with ν in the T . Let
Γ (S, Tν) = 1 indicate that the attribute set S of att(x) meets the access policies
of subtree Tν . For a non-leaf node ν, at least kx children return 1 if Γ (S, Tν) = 1
holds by recursive calculation [3]. For a leaf node x, if Γ (S, Tx) = 1 holds, than
att(x) ∈ S. As a result, a data user DU with the attribute set S should satisfy
the minimum requirements of the T when he/she intends to access a ciphertext
generated based on access policy.

3 The Proposed ABMKS-SIH Scheme

Now we describe the concrete construction of ABMKS-SIH, consisting of a com-
bination of five algorithms described as follows.

Setup(1ς) → (Ppub,Msk): Input a security parameter ς, TA define a bilinear
mapping ê : G×G −→ GT , where G and GT are two multiplicative cyclic groups
with the same prime order q. Here, g serves as a generator in G. TA selects three
distinct values α, β,� ← Z

∗
q and proceeds to calculate A = ê(g, g)α, B = gβ ,

and W = gα�. Then, it determines three collision-resistant functions: H0 :
{0, 1}∗ −→ G, H1 : GT −→ Z

∗
q , and H2 : {0, 1}∗ −→ Z

∗
q , respectively. TA defines

a pseudorandom function Prf : {1, 2, · · · , n} × Z
∗
q → Z

∗
q and selects a secure

symmetric encryption algorithm pair Enc/Dec. TA generates a super-increasing
sequence with n positive integers {ν1 = 1, ν2, · · · , νn}. As for ∀ı, j ∈ [1, n], j > ı,
the coefficients need to satisfy q > νj >

∑j−1
ı=1 νı · ϕı · n, where ϕı denotes the

upper bound of the ı-th data block. Finally, TA sets μ̃ = {ν1, ν2, · · · , νn}, and
issues all public parameters Ppub and saving the master secret key Msk as:

(

Para = {(ê,G,GT , g, q), A,B,W,H0 ∼ H2, P rf,Enc/Dec, μ̃},
Msk = (gα, β,�)

)

. (1)

KeyGen(Para,Msk, S) → SK: TA takes the public parameters Para, mas-
ter secret key Msk, and an attribute set S of DUs as inputs, it then generates
the attribute key SK for the DUs using the Eq. (2). Particularly, the TA needs
to randomly select a value r ← Z

∗
q for DUs. As for each attribute value j ∈ S

of the DUs, it chooses a number rj ← Z
∗
q randomly. Finally, TA returns the

attribute key SK = (K1,K2,∀j ∈ S : Kj ,K
′
j) to the DUs by a secure channel.

SK =
(

K1 = gα(1+r), K2 = gα(r−β�),
{∀j ∈ S : Kj = gαr × H0(j)rj , K ′

j = grj }

)

. (2)

IndexGen(Para, F, Prf, κ, μ̃, T , Enc) → Ω: The DO takes the public
parameters Para, a data file F , the pseudorandom function Prf with a seed
secret key κ, the super-increasing sequence μ̃, a certain access policy T , and
a symmetric encryption algorithm Enc as inputs. Then it generates the secure
index of F by executing the following algorithm steps.

196 J. Zhao et al.

1. Given a data file F = {f1, f2, · · · , fn} with the file identifier Fname ∈ Z
∗
q ,

the DO first blinds these data blocks corresponding to sensitive information
in F by computing the following Eq. (3).

f∗
i = fi ⊕ ξi, ξi ← Prfκ(i, Fname), (3)

where f∗
i �= fi if and only if i ∈ [1, n] and i ∈ K. Here, K represents the

index set corresponding to the sensitive information of F ; otherwise, f∗
i = fi.

The κ is shared between DO and internal searchers. Finally, the data file
F = {f1, f2, · · · , fn} is blinded as F ∗ = {f∗

1 , f∗
2 , · · · , f∗

n}.
2. To minimize the communication cost in the process of data file outsourcing,

the DO exploits the super-increasing sequence μ̃ to aggregate the n blinding
data blocks into a single ciphertext value ̂F below:

̂F = ν1f
∗
1 + ν2f

∗
2 + · · · + νnf∗

n =
i=n
∑

i=1

νif
∗
i ∈ Z

∗
q . (4)

3. The DO selects a random element ∂ ← GT and computes ζ = H1(∂). Then,
it chooses a random value s0 ← Z

∗
q as the secret value of root node R in T

and encrypts ̂F as:

C = Encζ(̂F), C1 = gs0 , C2 = ∂ · As0 = ∂ · ê(g, g)αs0 . (5)

4. Let the leaf node set as Y in access policy T , for each leaf node y ∈ Y , the
DO calculates the ciphertext as:

∀y ∈ Y : Cy = gΓy(0), C ′
y = H0(att(y))Γy(0), (6)

5. The DO extracts the keyword set KW = {kw1, kw2, · · · , kwm} from the
binding data file F ∗. After that, it generates the secure index IF ∗ = {I1, I2,
· · · , Im} by computing the following Eq. (7).

∀kw� ∈ KW : I� = Bs0 · gH2(kw�) = gβs0+H2(kw�). (7)

Finally, the DO sets CF ∗ = {C,C1, C2,∀y ∈ Y : Cy, C ′
y}Fname and uploads

the storage data Ω = (CF ∗ , IF ∗) to CS.

TrapGen(Para, SK,KW ′) → TK: The DUs input the public parameters
Para, the attribute key SK, and a queried keyword set KW ′ = {kw′

1, kw′
2, · · · ,

kw′
υ}, where KW ′ ⊆ KW . Then, it selects a random value η ← Z

∗
q and outputs

a search trapdoor TK by computing the following Eq. (8).

TK =
(

̂D =
∏i=�

i=1 gηH2(kw′
i),D1 = Kτ

2 = gα(r−β�)η,D2 = W η = gα�η,
{∀j ∈ S : Dj = Kη

j = gαrη · H0(j)ηrj , D′
j = K ′

j
η = gηrj }

)

. (8)

Finally, DUs submit the search trapdoor TK to the CS and keeps η in secret.
CiphertextSearch((Para,Ω, TK) → Λ): The CS inputs the public param-

eters Para, DUs’s search trapdoor TK, and the storage data Ω. Then, it checks

ABMKS-SIH 197

whether the attribute set S of DUs satisfies the access tree T . If not, the CS sus-
pends the ciphertext search testing process and outputs ⊥; otherwise, it outputs
the search result Λ by executing the following algorithm steps.

1. Let y represent a leaf node in T , with j denoting the attribute associated
with y. The CS assigns j the attribute of y by setting j = att(y). If j ∈ S, an
Error is emitted, resulting in Ey =⊥; otherwise, the CS calculates Ey as

Ey =
ê(Dj , Cy)
ê(D′

j , C
′
y)

= ê(g, g)αrηΓy(0). (9)

2. If y is a non-leaf node within T and x is one of its child nodes, the CS can
compute Ex = ê(g, g)αrηΓx(0). Let Sy be a random set of child nodes x with
a size of z, such that Ex �=⊥. In case there is no such set, CS outputs ⊥ by
emitting an Error; otherwise, it computes Ey as

Ey =
∏

x∈Sy

E
Δz,S′

y
(0)

x =
∏

x∈Sy

(ê(g, g)αrη(qparent(y)(index(y))))Δz,S′
y
(0)

=
∏

x∈Sy

(ê(g, g)αrηqy(z))Δz,S′
y
(0) = ê(g, g)αrηΓy(0),

(10)

where Δj,S′
y
(0) denotes the Lagrange coefficient, z = index(x) indicates that

x is the z-th child node of y, and S′
y = {index(x)}∀x∈Sy

.
3. Only when the attribute set S meets the requirement of T , the root node

R can be computed as ER = ê(g, g)αrηΓR(0) = ê(g, g)αrηs0 . CS performs the
ciphertext search testing by verifying

ê(D1, C1) · ê(
i=�
∏

i=1

Ii,D2)
?= ER · ê(̂D,W). (11)

If the above ciphertext search testing Eq. (11) does not hold, it means that
no valid ciphertext is found and the CS outputs ⊥; otherwise, it returns the
search result Λ = {C,C1, C2, ER}Fname to the DUs.

CiphertextDecrypt((Para, ψ,Dec, η, μ̃, P rf, κ) → F ∗/F): DUs utilize the
following inputs: public parameters Para, search result ψ, symmetric decryption
algorithm Dec, super-increasing sequence μ̃, random value η, and pseudorandom
function Prf with a seed secret key κ. It outputs the blinding data file F ∗ or
original data file F by performing the following algorithm steps.

1. The DUs recover the random element ∂ by computing

C2 · (ER)1/η

ê(K1, C1)
= ∂ · ê(g, g)αs · (ê(g, g)αrηs)1/η

ê(gα(1+r), gs)
= ∂. (12)

2. The DUs compute ζ = H1(∂) and make it as the secret key of symmetric
decryption algorithm. After that, it recovers the ̂F by computing

̂F = Decζ(C) = Decζ(Encζ(̂F)). (13)

198 J. Zhao et al.

3. Based on the ̂F and the super-increasing sequence μ̃ = {ν1, ν2, · · · , νn}, the
DUs can exploit the recursive method f∗

i = (̂F − (̂F mod νi))ν−1
i to retrieve

F ∗ = {f∗
1 , f∗

2 , · · · , f∗
n}.

4. Furthermore, if the DUs are the internal searchers, they can recover all of
the original contents F from F ∗ by utilizing the pseudorandom function Prf
with the secret seed key κ. Specifically, the internal searchers compute ξi ←
Prfκ(i, Fname) and fi = f∗

i ⊕ ξi, where i ∈ [1, n], i ∈ K. Hence, the blinding
data file F ∗ = {f∗

1 , f∗
2 , · · · , f∗

n} is decrypted as F = {f1, f2, · · · , fn}.

4 Security Analysis of ABMKS-SIH

4.1 Security Model

The proposed ABMKS-SIH scheme presents a formal security model of the selec-
tive CKA game and keyword secrecy game.

4.2 Security Proofs

The security of the ABMKS-SIH scheme can be rigorously established through
the following two theorems.

Theorem 1. ABMKS-SIH demonstrates selective secure against chosen-
keyword attacks under the DDH problem, where H0(·) and H2(·) are treated
as a random oracle machine and a collision-resistant hash function, respectively.

Theorem 2. ABMKS-SIH guarantees keyword secrecy within the framework of
the random oracle model. Within this model, H0(·) and H2(·) are treated as
random oracle machine and a collision-resistant hash function, respectively.

5 Comparison and Evaluation

In this section, we evaluate a comprehensive performance of our scheme with
state-of-the-art ABKRS-KGA scheme [16] and PAB-MKS scheme [18] from the
perspective of computation communication costs. The experimental simulations
are conducted using the C language and the pairing-based cryptography (PBC)
library1. All implementations are executed on an Ubuntu 22.04 Linux system
(x86-64) with an Intel(R) Core(TM) i9-12900K CPU operating at 3200 MHz
and 31.00 GB of RAM. To ensure accuracy, we average the results from 30
trials.

We first specify the following notations of cryptographic operation: Tbp, Tex,
Ten, Tmu, TH , and Th represent the execution time of a bilinear pairing, a modu-
lar exponentiation operation, a symmetric encryption operation, a multiplication
1 The PBC library defines the Type A curve as E(Fp) :< y2 = x3 + x >. It includes

two multiplicative cyclic groups G and GT , both of order q, which are subgroups of
E(Fp). Two large primes p and q have sizes of 512 bits and 160 bits, respectively.

ABMKS-SIH 199

operation, a hash-to-point operation, and a general hash operation, respectively.
The bit length of elements in the groups G and GT is denoted by |G| and |GT |,
respectively. |E| stands for the symmetric encryption algorithm such as AES-
256. For comparison convenience, let’s use the variables n, m, �, θ, and ϑ to
represent different quantities: n = 10000 stands for the number of data blocks in
the data file F , m = 50 stands for the number of keywords in the index, � = 20
refers to the number of keywords in the trapdoor, θ ∈ [1, 100] refers to the num-
ber of attributes in T , and ϑ ∈ [1, 50] stands for the number of attributes in the
DU. Table 1 presents the computational costs of various schemes, while Fig. 2
(a)-(d) illustrates the corresponding implementation result of the computation
costs comparison. Specifically, according to Fig. 2 (a), it can be observed that
the computational costs of all schemes exhibit a linear increase as the number of
submitted attributes for the KeyGen algorithm grows. Our scheme and PAB-
MKS [18] is more efficient than ABKRS-KGA [16]. In Fig. 2 (b), our scheme does
incur lower computational costs compared to the ABKRS-KGA [16] scheme but
higher than PAB-MKS [18] when performing the IndexGen. This is because in
our ABMKS-SIE scheme, the data blocks corresponding to sensitive informa-
tion require a certain amount of time to undergo blinding encryption during
the process. The implementation results of trapdoor generation are depicted in
Fig. 2 (c), demonstrating the superior efficiency of ABMKS-SIE compared to
other related schemes. From the Fig. 2 (d), we can get that computation costs
are sensitive to the size of the submitted attribute ϑ, and the primary reason is
that the size of ϑ determines the iteration times of CS.

Optimizing end-to-end network latency is a crucial factor that impacts the
deployment of ABMKS-SIE. In this paper, we compare ABMKS-SIE along with
related schemes such as ABKRS-KGA [16] and PAB-MKS [18] in terms of com-
munication cost. Table 2 presents the communication costs of various schemes.
The corresponding implementation results of the communication costs com-
parison are exhibited in Fig. 2 (e)-(f). For the Fig. 2 (e), we can obtain that
ABKRS-KGA [16] and PAB-MKS [18] require over 100 times more communi-
cation cost than our scheme, when the leaf node is θ = 100. This demonstrates

Table 1. The Computation Costs in Related Schemes

Algorithms ABKRS-KGA [16] PAB-MKS [18] ABMKS-SIH

KeyGen (4Tex + TH + Tmu)ϑ
+ Tex

(3Tex + TH + Tmu)ϑ
+ 2Tex + 3Tmu

(3Tex + TH + Tmu)ϑ
+ 2Tex + 2Tmu

IndexGen (2Tex + TH + Tmu)θ+
(3Tex + TH + Tmu)m
+ 2Tex

(2Tex + TH)θ +
(Tex + TH + Tmu)m
+ 3Tex + nTen

(2Tex + TH)θ +
(Tex + Th + Tmu)m
+ Tex + Tbp + Ten

TrapGen Texϑ + 2Tex +
(2Tex + TH + Tmu)�

2Texϑ + 2Tex +
(2Tex + TH + Tmu)�

2Texϑ + 3Tex + Th�

CipertextSearch (Tbp + Tex + Tmu)ϑ
+ (2Tbp + 5Tex)�
+ 2Tbp + 2Tex

(Tbp + Tex + Tmu)ϑ
+ (Tex + 2Tmu)�
+ 7Tbp + 2Tmu

(Tbp + Tex + Tmu)ϑ
+ (Tex + Tmu)�
+ 6Tbp + 2Tmu

200 J. Zhao et al.

Fig. 2. The performance comparison between our scheme and related schemes: Compu-
tation costs of (a) KeyGen, (b) IndexGen, (c) TrapGen, (d) Search. Communication
costs of (e) Secure Index Uploading, (f) Search Trapdoor Uploading.

that the super-increasing sequence indeed greatly reduces the communication
cost of index outsourcing phase. From the Fig. 2(f), we can obtain that our
scheme and PAB-MKS [18] are lower than ABKRS-KGA [16] when the number
of submitted attributes is less than 40, however, as the number of attributes
submitted by the DU continues to increase, the experimental results show the
opposite trend. This is attributed to the fixed number of 20 keywords in the
trapdoor that we maintained during the experimental simulations. Therefore,
the proposed ABMKS-SIE scheme is still feasible in practical applications.

Table 2. The Communication Costs (Communi-Costs) in Related Schemes

Schemes IndexUpload Communi-Costs TrapUpload Communi-Costs

ABKRS-KGA [16] |G1|θ + |E|n + 2|G2| + 2|G1|m |G1|ϑ + |G2| + 2|G1| + |G2|�
PAB-MKS [18] 2|G|θ + |E|n + 3|G| + |G|m 2|G|ϑ + 3|G|
ABMKS-SIH 2|G|θ + |E| + |G| + |GT | + |G|m 2|G|ϑ + 3|G|
Notes. In the context of an asymmetric bilinear parting, the bit length of elements in
groups G1 and G2 is denoted by |G1| and |G2|, respectively.

6 Conclusion

In this paper, we proposed ABMKS-SIH, a practical scheme for attribute-based
multi-keyword search with sensitive information hiding in cloud storage systems.

ABMKS-SIH 201

ABMKS-SIH enables data users multiple keywords to accurately retrieve the
ciphertext with high efficiency in cloud. Meanwhile, it manages the content rights
of the returned search ciphertext for data users with varying roles. Full-trusted
searchers are granted the right to access the whole original data file including
sensitive information. Conversely, the semi-trusted searchers are only allowed
access to shared contents in data file excluding sensitive information. We conduct
a formal security analysis and evaluate the performance of communication and
computation costs with state-of-the-art schemes.

Acknowledgments. This work is supported by the Shenzhen Science and Tech-
nology Program under Grant No. GXWD20220817124827001, and No. JCYJ202-
10324132406016.

References

1. Gan, Q., Wang, X., Huang, D., Li, J., Zhou, D., Wang, C.: Towards multi-client
forward private searchable symmetric encryption in cloud computing. IEEE Trans.
Serv. Comput. 15(6), 3566–3576 (2022)

2. Bao, Y., Qiu, W., Tang, P.: Efficient, revocable, and privacy-preserving fine-grained
data sharing with keyword search for the cloud-assisted medical IoT system. IEEE
J. Biomed. Health Inform. 26(5), 2041–2051 (2021)

3. Wang, M., Miao, Y., Guo, Y., Huang, H., Wang, C., Jia, X.: Aesm2 attribute-based
encrypted search for multi-owner and multi-user distributed systems. IEEE Trans.
Parallel Distrib. Syst. 1(34), 92–107 (2023)

4. Zhao, J., Zheng, Y., Huang, H., Wang, J., Zhang, X., He, D.: Lightweight cer-
tificateless privacy-preserving integrity verification with conditional anonymity for
cloud-assisted medical cyberCphysical systems. J. Syst. Architect. 138, 102860
(2023)

5. Xu, C., Wang, N., Zhu, L., Sharif, K., Zhang, C.: Achieving searchable and privacy-
preserving data sharing for cloud-assisted E-healthcare system. IEEE Internet
Things J. 5(6), 8345–8356 (2019)

6. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 44–55.
IEEE, Berkeley (2000). https://doi.org/10.1109/SECPRI.2000.848445

7. Goh, E. J.: Secure indexes. Cryptology ePrint Archive, pp. 1–18 (2003)
8. Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over

encrypted cloud data. In 2010 IEEE 30th International Conference on Distributed
Computing Systems ICDCS, pp. 253–262. IEEE (2011). https://doi.org/10.1109/
SECPRI.2000.848445

9. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1109/ICDCS.2010.34

10. Cui, B., Liu, Z., Wang, L.: Key-aggregate searchable encryption (KASE) for group
data sharing via cloud storage. IEEE Trans. Comput. 65(8), 2374–2385 (2015)

11. Zhang, X., Huang, C., Gu, D., Wang, H.: BIB-MKS: post-quantum secure biometric
identity-based multi-keyword search over encrypted data in cloud storage systems.
IEEE Trans. Serv. Comput. 16(1), 122–133 (2023)

https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/ICDCS.2010.34
https://doi.org/10.1109/ICDCS.2010.34

202 J. Zhao et al.

12. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

13. Sun, W., Liu, X., Lou, W., Hou, Y. T., Li, H.: Catch you if you lie to me: efficient
verifiable conjunctive keyword search over large dynamic encrypted cloud data.
In 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 2110–
2118. IEEE (2015). https://doi.org/10.1109/INFOCOM.2015.7218596

14. Zheng, Q., Xu, S., Ateniese, G.: VABKS: verifiable attribute-based keyword
search over outsourced encrypted data. In: IEEE INFOCOM 2014-IEEE Confer-
ence on Computer communications, pp. 522–530 (2014). https://doi.org/10.1109/
INFOCOM.2014.6847976

15. Huang, Q., Yan, G., Yang, Y.: Privacy-preserving traceable attribute-based key-
word search in multi-authority medical cloud. IEEE Trans. Cloud Comput. 11(1),
678–691 (2023)

16. Chen, Y., Li, W., Gao, F., Wen, Q., Wang, H.: Practical attribute-based multi-
keyword ranked search scheme in cloud computing. IEEE Trans. Serv. Comput.
2(15), 724–735 (2022)

17. Wan, Z., Deng, R.H.: VPSearch: achieving verifiability for privacy-preserving multi-
keyword search over encrypted cloud data. IEEE Trans. Depend. Secure Comput.
15(6), 1083–1095 (2018)

18. Miao, Y., Ma, J., Liu, X., Li, X., Liu, Z., Li, H.: Practical attribute-based multi-
keyword search scheme in mobile crowdsourcing. IEEE Internet Things J. 5(4),
3008–3018 (2018)

19. Liu, J., Wu, M., Sun, R., Du, X., Guizani, M.: BMDS: a blockchain-based medical
data sharing scheme with attribute-based searchable encryption. ICC 2021, IEEE
International Conference on Communications, pp. 14–23. IEEE (2021). https://
doi.org/10.1109/ICC42927.2021.9500966

20. Liu, Z., Liu, Y., Xu, J., Wang, B.: Privacy-preserving attribute-based multi-
keyword search encryption scheme with user tracing. In: Vaidya, J., Zhang, X.,
Li, J. (eds.) CSS 2019. LNCS, vol. 11983, pp. 382–397. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-37352-8 34

21. Yin, H., Zhang, W., Deng, H., Qin, Z., Li, K.: An attribute-based searchable
encryption scheme for cloud-assisted IIoT. IEEE Internet Things J. 10(12), 11014–
11023 (2023)

22. Wu, J.M.T., Srivastava, G., Jolfaei, A., Fournier-Viger, P., Lin, J.C.W.: Hiding
sensitive information in eHealth datasets. Futur. Gener. Comput. Syst. 1(117),
169–180 (2021)

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1109/INFOCOM.2015.7218596
https://doi.org/10.1109/INFOCOM.2014.6847976
https://doi.org/10.1109/INFOCOM.2014.6847976
https://doi.org/10.1109/ICC42927.2021.9500966
https://doi.org/10.1109/ICC42927.2021.9500966
https://doi.org/10.1007/978-3-030-37352-8_34

Testing Higher-Order Clusterability
on Graphs

Yifei Li1,2(B) , Donghua Yang1 , and Jianzhong Li2

1 Harbin Institute of Technology, Harbin, Heilongjiang, China
yf.li@stu.hit.edu.cn, yang.dh@hit.edu.cn

2 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

lijzh@hit.edu.cn

Abstract. Analysis of higher-order organizations, usually small con-
nected subgraphs called motifs, is a fundamental task on complex net-
works. This paper studies a new problem of testing higher-order cluster-
ability: given query access to an undirected graph, can we judge whether
this graph can be partitioned into a few clusters of highly-connected
motifs? This problem is an extension of the former work proposed by
Czumaj et al. (STOC’ 15), who recognized cluster structure on graphs
using the framework of property testing. In this paper, a good graph
cluster on high dimensions is first defined for higher-order clustering.
Then, query lower bound is given for testing whether this kind of good
cluster exists. Finally, an optimal sublinear-time algorithm is developed
for testing clusterability based on triangles.

Keywords: Higher-order Clustering · Property Testing · High
Dimensional Expander · Spectral Graph Theory

1 Introduction

1.1 Motivation

In many real-world systems, interactions and relations between entities are not
pairwise, but occur in higher-order organizations that are usually small con-
nected patterns denoted as motifs, including triangles, wedges, cliques, etc. Some
researches focus on higher-order clustering [2], which captures connected motifs
into cohesive groups while motifs between different groups have few connec-
tions. Authors in [2] gave an example of clustering based on a particular triangle
motif, which correctly represents three well-known aquatic layers in Florida Bay
foodweb. Higher-order clustering has been widely applied in social network anal-
ysis [16], gene regulation [8] and neural networks [6]. However, graphs such as

This work was supported by the National Natural Science Foundation of
China under grants 61832003, Shenzhen Science and Technology Program
(JCYJ202208181002205012) and Shenzhen Key Laboratory of Intelligent Bioinformat-
ics (ZDSYS20220422103800001).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 203–214, 2024.
https://doi.org/10.1007/978-3-031-49614-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_15&domain=pdf
http://orcid.org/0009-0005-6912-0582
http://orcid.org/0000-0002-6102-1804
http://orcid.org/0000-0002-4119-0571
https://doi.org/10.1007/978-3-031-49614-1_15

204 Y. Li et al.

Actors [1] and Coauthoring [18], which are nearly bipartite, are not suitable for
higher-order clustering based on triangles or cliques. Therefore, it is important
to judge whether the given graph is suitable for clustering based on the specified
motif. A helpful method is to use property testing [19], which is a framework
that decides whether an object has a specific property or is “far” from objects
having this property. However, none of the former property testing on graphs
considered higher-order motifs.

In this paper, we develop a new framework of testing whether a given graph
is higher-order clusterable, which is compatible with the low-order testing prob-
lem given by Czumaj et al. [4]. First, what is a good high-dimension cluster
is defined on undirected graphs. Requirements of the high-dimension cluster
wouldn’t violate the topological structure in lower-dimension. The problem of
testing higher-order clusterability is then proposed. It asks whether there exists
a good high-dimension cluster or is far from having that kind of cluster. Finally,
A sublinear-time algorithm for testing triangle-based clusterability is developed,
which reaches the lower bound, Ω(

√
n), and is nearly optimal.

1.2 Related Work

This section reviews some previous researches and analyze their shortages or
differences compared to the work in this paper.

Previous Work on Higher-Order Graph Clustering. Earlier researches
on higher-order clustering is related to hypergraph partitioning [14]. Benson
et al. [2] proposed a generalized framework with motif conductance that could
cluster higher-order connectivity patterns. They implemented an algorithm with-
out suffering hypergraph fragmentation and its time complexity is bounded by
the number of motifs. Tsourakakis et al. [21] shared the same contribution in
parallel that a weighted graph can be used to replace the hypergraph in motif-
based clustering. Li et al. [17] proposed an edge enhancement approach to solve
the issue in isolated nodes.

However, there solutions have some drawbacks. First, whether there exists
triangle expanders that are not edge expanders is still unknown. It means that
triangle-based clustering in [21] could still violate lower-order cluster structure.
In addition, time complexity of higher-order clustering are bounded by the num-
ber of motifs, which is Ω(n3/2) if motif is triangle and is far from sublinear. Fur-
thermore, they do not consider whether the given graph is suitable for higher-
order clustering. As a result, an inappropriate clustering would suffer severe
computation cost on huge graphs.

Previous Work on Graph Property Testing. Framework on testing graph
properties was first proposed by Goldreich and Ron [11], who present an alterna-
tive model that each query on bounded-degree graph returns a vertex with one
indexed neighbor. They showed that testing whether a graph is an expander

Testing Higher-Order Clusterability on Graphs 205

requires Ω(
√

n) queries under this model. Latter work [5,12] provided opti-
mal algorithms that reach this lower bound. Czumaj et al. [4] defined (k, φ)-
clusterable graphs that can be partitioned into k clusters with requirements
on both internal and external conductance. They maintained a logarithmic gap
between two conductance so that testing clusterability is equivalent to testing
expansion when k = 1. Chiplunkar et al. [3] eliminated the logarithmic gap at the
cost of rising the lower bound to Ω(n1/2+O(ε)). Gluch et al. [10] designed a clus-
tering oracle that allows fast query access and proposed an optimal algorithm.

All the above testers consider the property of low-order expansion and fail
to unravel higher-order organizations such as dense cluster of triangles. Further-
more, these testers adopt simple or lazy random walk that starts from vertices,
which cannot catch information of triangles or k-cliques. Therefore, they cannot
be easily extended to learning clusterability of higher order motifs.

1.3 Contributions

Specifically, contributions are summarized as follows:

1. Problem of testing higher-order clusterability based on a new definition of
high-dimension cluster.

2. Proof that the redefined problem is compatible with the original one defined
by Czumaj et al. [4]

3. An Ω(
√

n) query lower bound of testing higher-order clusterability.
4. A sublinear-time algorithm for testing triangle-based clusterability, which

reaches the lower bound with neighbor query oracle.

1.4 Organization of the Paper

Section 2 provides preliminary and statement of testing higher-order cluster-
ability on bounded degree graphs. Section 3 establishes relationship between
higher-order clusterability and counterpart, and then gives a query lower bound.
Section 4 proposes algorithms for testing triangle clusterability and analysis of
correctness and running time. Section 5 gives a summary on the whole paper and
presents the future work.

2 Preliminary and Problem Statement

2.1 Testing Clusterability on Bounded-Degree Graphs

Here is a brief review on the problem of testing graph cluster structure. Let
G = (V,E) be an undirected graph. deg(v) denotes the degree of vertex v. For
two non-empty vertex sets S and C, S ⊂ C ⊆ V , let V ol(S) = Σv∈Sdeg(v)
denote the volume of set S. The external conductance [13] of S on C is defined
as

ΦC(S) =
|E(S,C\S)|

min{V ol(S), V ol(C\S)} ,

206 Y. Li et al.

where E(S,C\S) is the set of edges with two endpoints contained in set S and
C\S respectively. In addition, G[C] denotes the induced graph whose vertex set
is C and whose edge set consists of all edges with both endpoints included in C.
Then the internal conductance is defined as

Φ(G[C]) = min
∅�=S⊂C

|S|≤|C|/2

|E(S,C\S)|
V ol(S)

.

Since ΦC(S) = ΦC(C\S), usually only vertex sets S with |S| ≤ |V |/2 are con-
sidered for convenience. The definition of characterizing the cluster structure of
undirected graph is shown as follows,

Definition 1 ((k, φin, φout)-cluster [9]). Given an undirected graph G(V,E)
with parameters k, φin, φout, find an h-partition P of V , P = (P1, P2, . . . , Ph)
with 1 ≤ h ≤ k, and for each i, 1 ≤ i ≤ h, Φ(G[Pi]) ≥ φin and ΦG(Pi) ≤ φout.

In the property testing framework, G is given as a neighbor query oracle. When
given an index pair (v, i), the oracle returns the predetermined ith neighbor of
vertex v if i doesn’t exceed the degree of v, otherwise it would return NULL.

Definition 2 (Testing (k, φin, φout, ε)-clusterability) [4]. Given a neighbor
oracle access to graph G(V,E) with maximum degree at most dmax and param-
eters k,φin,φout,ε, in which φin, φout satisfy φout = O(ε4

log nφ2
in), with probability

at least 2/3,

– accept if there exists a (k, φin, φout)-cluster on G,
– reject if G is ε-far from having a (k, φin, φout)-cluster,

where ε-far means that G cannot be accepted by modifying (inserting or deleting)
no more than εdmaxn edges.

Authors in [4] gave a detailed explanation on why they chose a logarithmic
gap between φ2

in and φout. This paper maintains the gap of [4] in testing higher-
order cluster structure and show that the 1-dimension cluster is compatible with
(k, φin, φout)-cluster in Theorem 1.

2.2 Testing Higher-Order Clusterability on Bounded-Degree
Graphs

A few concepts on simplicial complex would be introduced before showing the
Definition 6 of higher-order cluster and the Problem 7 of testing higher-order
clusterability. These concepts could help us understand the graph in a high
dimensional view. A d-simplex [20] is the simplest geometric figure in d dimen-
sion, e.g., point (0-simplex), line segment (1-simplex), triangle (2-simplex) and
tetrahedron (3-simplex). A d-simplicial complex X is a collection of sets con-
structed by gluing together simplices with maximal dimension d. X should sat-
isfy a closure property that for any simplex σ ∈ X, all of its subsets τ ⊂ σ are
also in X. σ is denoted as a face of X. Dimension of a face dim(σ) equals to the
number of vertices in it minus 1, i.e., dim(σ) = |σ|−1. Empty set satisfies ∅ ∈ X
with dimension −1 to keep closure. Other definitions are shown as follows:

Testing Higher-Order Clusterability on Graphs 207

– i-faces Xi is a set of all faces with dimension i.
– i-cochain C(i) is a subset of Xi. Space of i-cochain is Si(X).
– Degree of face degd(σ) is the number of d-dimension faces that contain σ.
– Volume of i-cochain V old(C(i)) =

∑

τ∈C(i)

degd(τ).

– Norm of i-cochain ‖C(i)‖d = V old(C(i))
V old(Xi)

.
– Adjacent i-dimension faces a ∼ b means there exists a face τ ∈ Xi+1 that

a, b ⊂ τ .
– Induced (i + 1)-subcomplex C(i)[Xi+1] = (C(i), {σ ∈ Xi+1|∃τ ∈ σ : τ ∈

C(i)}).

Kaufman and Mass [15] proposed a high dimensional expander as follows,

Definition 3 (Colorful Expander [15]). Let X be a d-dimension simplicial
complex. X is an ε-colorful expander, ε > 0, if for any i-cochain C(i) ∈
Si(X), 0 ≤ i < d, 0 < ‖C(i)‖d ≤ 1/2,

‖F(C(i),Xi\C(i))‖d

‖C(i)‖d
≥ ε,

where F(C(i),Xi\C(i)) is the expander face (similar to cut on graphs) that is
defined as

F(C(i),Xi\C(i)) = {σ ∈ Xi+1|∃τ, τ ′ ⊂ σ : τ ∈ C(i), τ ′ ∈ Xi\C(i)}.

Similar to the internal and external conductance on undirected graphs, a nor-
malized version of conductance is extended to simplicial complex.

Definition 4 (Normalized External Conductance). Let X be a d-dimensi-
on simplicial complex, d ≥ 1, 0 ≤ i < d, C(i) and S(i) are both i-cochains,
∅ �= S(i) ⊂ C(i) ⊆ Xi, the normalized external conductance of S(i) on C(i)
equals to

Ψd,C(i){S(i)} =
‖F(S(i), C(i)\S(i))‖d

min{‖S(i)‖d, ‖C(i)\S(i)‖d} .

Definition 5 (Normalized Internal Conductance). Let X be a d-dimensi-
on simplicial complex, d ≤ 1, 0 ≤ i < d, C(i) is an i-cochain, ∅ �= C(i) ⊆ Xi.
The normalized internal conductance of C(i) is

Ψd(C(i)[Xi+1]) = min
∅�=S(i)⊂C(i)

V old(S(i))≤V old(C(i))/2

‖F(S(i), C(i)\S(i))‖d

‖S(i)‖d
.

The final step is to establish a unique mapping from simple undirected graph
to d-dimension simplicial complex, which is easy to implement since the process
can be seen as dimension raising.

208 Y. Li et al.

Lemma 1. Given an undirected graph G(V,E) and integer d > 1, there exists
a unique d-dimension simplicial complex Xd(G) = {X0(G),X1(G),X2(G),
. . . , Xd(G)} that satisfies X0(G) = V,X1(G) = E, for each i, 1 < i ≤ d,

Xi(G) = {
⋃

(s1, s2, . . . , si+1)|sj , sk ∈ Xi−1(G) : sj ∼ sk,∀1 ≤ j < k ≤ i + 1}.

More generally, Xd(G) is constructed by gluing together all i-cliques (triangles
when i = 3) to be its (i−1)-faces. The formal definition of high-dimension cluster
that mentioned in the abstract is as follows,

Definition 6 (d-dimension (k, ψin, ψout)-cluster). Given an undirected gr-
aph G(V,E) with parameters d, k, ψin, ψout, find an h-partition P of V , P =
(P1, P2, . . . , Ph) with 1 ≤ h ≤ k, and for each i, r, 1 ≤ i ≤ h,0 ≤ r < d,
Ψd(Xr(G[Pi])[Xr+1(G)]) ≥ ψin and Ψd,Xr(G)(Xr(G[Pi])) ≤ ψout.

The problem of testing higher-order clusterability is defined as follows,

Definition 7 (Testing d-dimension (k, ψin, ψout, ε)-clusterability). Given
a neighbor oracle access to graph G(V,E) with maximum degree at most dmax

and parameters d,k, ψin,ψout,ε, in which ψin, ψout satisfies ψout = O(ε4

log nψ2
in),

with probability at least 2/3,

– accept if there exists a d-dimension (k, ψin, ψout)-cluster on G,
– reject if G is ε-far from having a d-dimension (k, ψin, ψout)-cluster,

where ε-far denotes G cannot be accepted by modifying (insertion or deletion)
no more than εdmaxn edges.

3 Analysis of Compatibility and Lower Bound

3.1 Compatibility with Framework of Testing Clusterability

The relationship between 1-dimension (k, ψin, ψout)-partiton and (k, φin, φout)-
partiton [9] is shown as follows,

Theorem 1. 1-dimension (k, ψin, ψout)-cluster is equivalent to (k, ψin

2 , ψout

2)-
cluster on undirected graph.

Proof. For 1-dimension (k, ψin, ψout)-partiton, 1 ≤ i ≤ h, X0 = V and X1 = E,
so X0(Pi[G])[X1(G)] = Pi[G], X0(Pi[G]) = Pi and X0(G) = V . Therefore,

ψout ≥ Ψd,Xr(G)(Xr(Pi[G])) =
|E(Pi, V \Pi)|/|E|
V ol(Pi)/V ol(V)

= 2ΦV (Pi).

Similarly, ψin ≤ Ψd(X0(Pi[G])[X1(G)]) = 2Φ(Pi[G]). The proof is finished by
combining these two inequalities.

According to Theorem 1, algorithms for testing 1-dimension (k, ψin, ψout, ε)-
clusterability can also test (k, ψin

2 , ψout

2 , ε)-clusterability in [4].

Testing Higher-Order Clusterability on Graphs 209

3.2 Compatibility of High-Dimension (k, ψin , ψout)-Cluster

This section mainly deals with undirected graphs without outliers, which means
all vertices or edges are contained in at least one triangle or d-clique. It is natural
since if the graph has outliers, they can be eliminated without affecting quality of
higher-order clustering. Following definition is necessary to prove compatibility,

Definition 8 (Induced i-graph [15]). Given a d-dimension simplicial complex
X. For any i with 0 ≤ i < d, the i-graph Gi(Vi, Ei) satisfies,

1) Every i-dimension face τ in Xi is corresponding to a unique vertex V (τ).
2) There is an edge between the corresponding vertex for any two adjacent i-

dimension faces τ, τ ′, i.e., Ei = {(V (τ), V (τ ′))|τ ∼ τ ′}
Generally speaking, induced i-graph is a dimensional reduction that maps the
complex constructed by two i-faces (Xi,Xi+1) to an undirected graph. Corre-
sponding to the graph without outliers, pure simplicial complex X is adopted
that for any face τ ∈ X with dim(τ) < dim(X), there exists a face σ ∈ X,
dim(σ) = dim(X), such that τ ⊂ σ. Then the following lemma holds,

Lemma 2. Let X be a pure d-dimension simplicial complex. Given t that sat-
isfies 1 ≤ t < d, for any i-cochain C(i) that satisfies 0 ≤ i < t, the external
conductance is equal to ‖F(C(i),Xi\C(i))‖d

‖C(i)‖d
.

Lemma 3. Let X be a pure d-dimension ε-colorful expander, then for any t that
1 ≤ t < d, X must be a t-dimension ε-colorful expander.

Through the above two lemmas, it can be proved that if there exists a good
cluster in high dimension, it is exactly a good cluster in lower dimension.

Theorem 2. Given an undirected graph G(V,E) without outliers, if h-partition
P is a d-dimension (k, ψin, ψout)-cluster with d ≥ 2, 1 ≤ h ≤ k, then P must be
a t-dimension (k, ψin, ψout)-cluster for all t that satisfies 1 ≤ t ≤ d − 1.

3.3 Lower Bound of Testing Higher-Order Clusterability

Theorem 3. With neighbor query oracle access, testing d-dimension (k, ψin,
ψout, ε)-clusterability on bounded-degree graph with neighbor query oracle has a
lower bound Ω(

√
n).

Proof. Consider the special case when k = 1. The origin testing problem would
reduce to testing d-dimension ψ-colorful expansion, while any ψout > 0 could be
satisfied. Consider an undirected graph G without outliers, which means a pure d-
dimension simplicial complex X can be constructed on it. According to Lemma 3
and Theorem 1, if X is a pure d-dimension ψin-colorful expander, (X0,X1)
should be a 1-dimension ψin-colorful expander, which means G is a normal ψin

2 -
expander. Goldreich and Ron [11] proved that testing expansion on bounded
degree graphs with has an Ω(

√
n) lower bound. Suppose that there exists an

algorithm that can test d-dimension (1, ψin, ψout)-clusterability in o(
√

n) queries,
it can also answer the expansion test in o(

√
n) queries, which is a contradiction.

To conclude, query lower bound of testing higher-order clusterability is Ω(
√

n).

210 Y. Li et al.

In the next section, we would give an approach on triangle-based clusterabil-
ity that could reach this lower bound.

Algorithm 1: 2-dimension Random Walk (2DRW)
Input: Initial vertex v0 or edge e0, length l.
Output: (v0, v1, . . . , vl) if input is vertex; (e0, e1, . . . , el) if input is edge.

1 for Step t ∈ [0, l − 1] do
2 if Move from vertex vt then
3 for Each neighbor ut of vt do
4 Search all neighbors of ut and vt;
5 Set the number of common neighbors c(ut) to ut;

6 Choose u′
t with probability

c(u′
t)∑

ut∼vt
c(ut)

as vt+1 and move to it.;

7 else if Move from edge et = (xt, yt) then
8 Search all neighbors of xt and yt;
9 for Each common neighbor zt do

10 Put edges (xt, zt) and (yt, zt) into candidate set C(et);

11 Choose et+1 from set C(et) uniformly at random and move to it;

4 Algorithm of Testing Triangle-Based Clusterability

4.1 Design of Triangle-Based k-Cluster Tester

This section would give an example how to recognize triangle-based clusterability
in sublinear-time with neighbor query oracle access. High-order random walk,
which is used to catch information of network motifs, would be invoked in our
algorithm. Related definition is shown as follows,

Definition 9 (High-order Random Walk [15]). Given a simplicial complex
X with d-dimension higher than i, the i-dimension high-order random walk Wi

starts from an initial i-dimension face τ0 ∈ Xi. Then let τt be the position Wi

stays after t steps. Choose τt+1 as follows

1) Choose an (i+1)-dimension σt ⊃ τt with probability proportional to its degree
degd(σt).

2) Uniformly choose an i-dimension face τt+1 ⊂ σt, τt+1 �= τt at random and
move to it.

Wi stops at τt if no σt or τt+1 exists.

The exact probability for moving from τ to τ ′, where τ ∼ τ ′, is as follows:

Pr[τt+1 = τ ′|τt = τ] =
degd(τ ∪ τ ′)

∑
τ ′′∼τ degd(τ ∪ τ ′′)

Testing Higher-Order Clusterability on Graphs 211

Generally speaking, high-order random walk is an up-down Markov chain that
moves on the induced i-subcomplex (Xi,Xi+1). Also, this random walk is equiva-
lent to simple random walk on induced i-graph [15] with probability distribution
π0, π1, · · · ∈ R

|Xi| and πt+1 = πt·Ãi, where Ãi is the normalized adjacency matrix
of the i-graph. Thus, the distribution becomes stable when it equals to one of
the eigenvectors of Ãi. A complex with high expansion should satisfy that any
high-order random walk converges rapidly to the uniform distribution.

However, neighbor query oracle cannot directly catch i-dimension face, so it
is necessary to simulate this process by using more queries for each moving step.
A 2-dimension random walk sampler in 1 is implemented for testing triangle-
based clusterability. Given a vertex or edge as input, this sampler could perform
the same up-down walk as that on the induced 0-graph and 1-graph. Transition
probability is proportional to the degree of the pass edge or triangle. Note that
if no common neighbor exists, which means it is an outlier, the sampler would
stop here as an endpoint.

Algorithm 2: Triangle-based k-cluster tester
Input: Query oracle of undirected bounded-dmax graph G(V, E), maximum

cluster k, error ε
Output: Decision Accept or Reject

1 Sample a set S0 of s vertices independently and uniformly at random with
query oracle;

2 For each v ∈ S, perform m times of lazy 2DRW (v, l) and calculate the

distribution πl
u of the endpoints;

3 if k-cluster-test(πl, |V |, k, s, m, θ, δ, ε) rejects then
4 Abort and return Reject;

5 else
6 Sample a set S1 of s edges independently and uniformly at random with

edge sampler S(G, η);
7 For each e ∈ S, perform m times of lazy 2DRW (e, l) and calculate the

distribution πl
e of the endpoints;

8 return k-cluster-test(πl, |E|, k, 2s, m, θ, δ, ε);

Here we briefly introduce our algorithm in 2. Similar to the approach in [4]
and [3], the algorithm embeds samples of vertices or edges into points on
Euclidean spaces and cluster them based on the estimates of Euclidean dis-
tances. There are two main differences between our method and former ones.
First, it is a two-step approach with k-cluster-tester 3 that tests whether the
distribution vectors can be embedded into no more than k clusters on Euclidean
space. Second, simulated high-order random walks, which is promised to con-
verge rapidly in high-dimension expander, is performed to estimate distribution
of endpoints that reveals the similarities to each other. Note that lazy random
walk means with the probability 1/2 for each step, the walk stay at the current

212 Y. Li et al.

vertex or edge. The edge sampler [7] returns an edge that is n uniformly at ran-
dom with bias η. Running time of the edge sampler is O(n√

m
), which is O(

√
n)

on bounded-degree graphs. Our algorithm would use the same configuration as
that in [3] that η = 1

2 and number of edge samples would be doubled.

Algorithm 3: k-cluster-test
Input: Distribution of endpoints πl, maximum set size n, maximum cluster k,

sample size s, number of each distribution m, parameters θ, δ, ε
Output: Decision Accept or Reject

1 Similarity Graph H = (∅, ∅);
2 For each u ∈ S, if l22-norm(πl

v, θ, m, s) rejects, abort and return Reject;

3 For each pair of u, v ∈ S, if l2-distribution(πl
u, πl

v, m, s, δ, ε) accepts, then add
an edge (u, v) to H;

4 If H contains more than k connected components, return Accept; Else, return
Reject;

4.2 Correctness and Running Time Analysis

Now we prove the correctness of our algorithm. Since high order random walks
are different from simple random walk, it is essential to make sure that distri-
butions of endpoints converge as the input of k-cluster-test.

Lemma 4 (Mixing Rate [15]). Given an undirected graph G(V,E), Ã is its
normalized adjacency matrix, 1 = α1 ≥ α2 ≥ · · · ≥ αn ≥ −1 the eigenvalues
of Ã and α = max{|α2|, |α|V ||}. Then for any initial probability distribution
π0 ∈ R|V | and any t ∈ N,

‖πt − π‖2 ≤
√

dmax

dmin
αt,

where πt is the probability distribution after t steps of the random walk, π is the
stationary distribution, dmax = max

v∈V
{deg(v)} and dmin = min

v∈V
{deg(v)}.

We prove that a lazy 2-dimension random walk with 11 times number of the
original steps is enough for k-cluster-test.

Lemma 5. Given an undirected graph G(V,E), mixing rate of lazy 2-
dimension random walk is μ′, for any initial probability distribution π0 ∈ R|V |

and any t ∈ N,

‖πt − π‖2 ≤
√

dmax

dmin
μ′11t,

where πt is the probability distribution after t steps of the random walk, π is the
stationary distribution, dmax = max

v∈V
{deg(v)} and dmin = min

v∈V
{deg(v)}.

Testing Higher-Order Clusterability on Graphs 213

Then Theorem 4 can be deduced by the next lemma. In convenience, we
set ψin = ψ and ψout = O(ε4ψ2/ log(n)). We say a given graph is 2-dimension
(k, ψ)-clusterable if there exists a 2-dimension (k, ψin, ψout)-cluster on it.

Lemma 6. Given the same constants c3.1, c4.2, c4.3 as those in [4], set
s = 1536k ln(18(k+1))

ε2 , l = 11max{c4.2,c4.3}k4 log(n)
ψ2 ,m = 384c3.1s

√
skn ln s, θ =

288sk
n , δ = 1

24s2 . k-cluster-test accepts 2-dimension (k, ψ)-clusterable graph and
rejects every graph ε-far from being 2-dimension (k, ψ)-clusterable with probabil-
ity at least 5

6 .

Then Theorem 4 holds since our algorithm invoke k-cluster-test twice.

Theorem 4 (Correctness). With proper setting of the parameters, algo-
rithm 2 can accept every 2-dimension (k, ψin, ψout)-clusterable graph with proba-
bility at least 2

3 and reject every graph ε-far from being 2-dimension (k, ψin, ψout)-
clusterable with probability at least 2

3 .

Theorem 5 (Running Time). With proper setting of parameters, triangle-

based k-cluster tester runs in time O(
√

nk7d3
max(ln k)7/2 ln 1/ε lnn

ψ2
inε5

).

Proof First, the algorithm generates a sample set of s vertices with query oracle
and s edges with edge sampler. Next, the algorithm performs m random walks
with step l for all s samples, while time for each step is O(d3max). Then, the
algorithm invoke l22-norm tester, which has running time O(m), for each sample
in S. Finally, the algorithm invoke l2-distribution tester with running time O(m)
for each pair of samples in S. To conclude, the total running time of the algorithm
is O(s

√
n + d3maxsml + sm + s2m) = O(

√
nk7d3

max(ln k)7/2 ln 1/ε lnn

ψ2
inε5

).

5 Summary and Future Work

In this work, a problem of testing higher order clusterability is proposed based
on the new definition of high-dimension cluster. Besides, an algorithm for testing
triangle-based clusterability, which reaches the proved lower bound, is designed.
In the future, we would seek the lower bound when the logarithmic gap between
normalized internal and external conductance is eliminated. We also plan to
develop new algorithms for testing clique-based clusterability with more powerful
query and sample oracles.

References

1. The internet movie database. http://www.imdb.com/
2. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex

networks. Science 353(6295), 163–166 (2016)
3. Chiplunkar, A., Kapralov, M., Khanna, S., Mousavifar, A., Peres, Y.: Testing graph

clusterability: algorithms and lower bounds. In: 2018 IEEE 59th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pp. 497–508. IEEE (2018)

http://www.imdb.com/

214 Y. Li et al.

4. Czumaj, A., Peng, P., Sohler, C.: Testing cluster structure of graphs. In: Proceed-
ings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, pp.
723–732 (2015)

5. Czumaj, A., Sohler, C.: Testing expansion in bounded-degree graphs. Comb.
Probab. Comput. 19(5–6), 693–709 (2010)

6. Duval, A., Malliaros, F.: Higher-order clustering and pooling for graph neural net-
works. In: Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, pp. 426–435 (2022)

7. Eden, T., Rosenbaum, W.: On sampling edges almost uniformly. In: 1st Symposium
on Simplicity in Algorithms (2018)

8. Gama-Castro, S., et al.: Regulondb version 9.0: high-level integration of gene reg-
ulation, coexpression, motif clustering and beyond. Nucleic Acids Res. 44(D1),
D133–D143 (2016)

9. Gharan, S.O., Trevisan, L.: Partitioning into expanders. In: Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1256–
1266. SIAM (2014)

10. Gluch, G., Kapralov, M., Lattanzi, S., Mousavifar, A., Sohler, C.: Spectral cluster-
ing oracles in sublinear time. In: Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 1598–1617. SIAM (2021)

11. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. In: Proceedings
of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 406–
415 (1997)

12. Kale, S., Seshadhri, C.: An expansion tester for bounded degree graphs. SIAM J.
Comput. 40(3), 709–720 (2011)

13. Kannan, R., Vempala, S., Vetta, A.: On clusterings: Good, bad and spectral. J.
ACM (JACM) 51(3), 497–515 (2004)

14. Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. In: Proceed-
ings of the 36th Annual ACM/IEEE Design Automation Conference, pp. 343–348
(1999)

15. Kaufman, T., Mass, D.: High dimensional random walks and colorful expansion. In:
8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

16. Li, P., Dau, H., Puleo, G., Milenkovic, O.: Motif clustering and overlapping clus-
tering for social network analysis. In: IEEE INFOCOM 2017-IEEE Conference on
Computer Communications, pp. 1–9. IEEE (2017)

17. Li, P.Z., Huang, L., Wang, C.D., Lai, J.H.: Edmot: an edge enhancement approach
for motif-aware community detection. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 479–487
(2019)

18. Newman, M.E., Watts, D.J., Strogatz, S.H.: Random graph models of social net-
works. Proc. Natl. Acad. Sci. 99(suppl-1), 2566–2572 (2002)

19. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-
tions to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

20. Spanier, E.H.: Algebraic Topology. Springer, New York (1981). https://doi.org/10.
1007/978-1-4684-9322-1

21. Tsourakakis, C.E., Pachocki, J., Mitzenmacher, M.: Scalable motif-aware graph
clustering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 1451–1460 (2017)

https://doi.org/10.1007/978-1-4684-9322-1
https://doi.org/10.1007/978-1-4684-9322-1

The 2-Mixed-Center Color Spanning
Problem

Yin Wang1,2, Yi Xu3, Yinfeng Xu1,2, and Huili Zhang1,2(B)

1 School of Management, Xi’an Jiaotong University, Xi’an 710049, Shaanxi,
People’s Republic of China
zhang.huilims@xjtu.edu.cn

2 State Key Lab for Manufacturing Systems Engineering, Xi’an 710049, Shaanxi,
People’s Republic of China

3 School of Economics and Management, Xi’an University of Technology, Xi’an
710054, Shaanxi, People’s Republic of China

Abstract. Inspired by the applications in cloud manufacturing, we
introduce a new 2-mixed-center version of the minimum color spanning
problem, the first mixed-center model for color spanning problems to
the best of our knowledge. Given a set P of n colored points on a plane,
with each color chosen from a set C of m ≤ n colors, a 2-mixed-center
color spanning problem determines the locations and radii of two disks
to make the union of two disks contains at least one point of each color.
Here, one center is called a discrete center, which is selected from P ,
while the other center is called a continuous center, which is selected
from a plane. The objective is to minimize the maximum of three terms,
i.e. the radii of the two disks and the distance between the two centers.
We develop an exact algorithm to find the optimal solution in time com-
plexity of O(n7, n5m3 log n). Furthermore, we propose a 2-approximation
algorithm that reduces the time complexity to O(nm logn).

Keywords: Color-spanning · Mixed center problem · Voronoi
diagram · Approximation algorithm

1 Introduction

The minimum color-spanning problem (CSP) focuses on finding a location that
minimizes the cost to cover all types of facilities, such as hospitals, schools,
etc. [16]. In the realm of cloud manufacturing involving m types of n suppliers,
each type of suppliers provides unique component for production of personalized
products to fulfill online orders.

To meet a wide range of personalized demands, a common approach involves
establishing multiple centers. However, this often results in hefty construction
cost and transfer cost between centers. To reduce some construction cost, we can
enlist the help of the suppliers to locate the center instead of setting up all the
centers from scratch. This gives rise to what we term as the mixed center span-
ning problem, specially the 2-mixed center color-spanning problem (abbreviated
as 2-MCCSP) in this study. This problem includes a discrete center selected from
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 215–226, 2024.
https://doi.org/10.1007/978-3-031-49614-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_16

216 Y. Wang et al.

Type 1

Type 2

Type 3

Type 4

Type 5

Supplier 1

Supplier 2

Supplier 3

Supplier 7

Supplier 4

Type 6

Supplier 5

Supplier 6

Continuous center

Discrete center

Fig. 1. An illustration of the mixed centers for cloud manufacturing. There are 7 sup-
pliers of 6 different types. One disk centered at Supplier 3 covers suppliers of Type
1, Type 2, Type 3 and Type 4. The other disk with a continuous center covers the
suppliers of Type 4, Type 5 and Type 6. The cost of 2-MCCSP here depends on the
maximum of three terms, i.e. the radii of the two disks and the distance between cen-
ters. In this case, the maximum is the radius of discrete center on Supplier 3, which is
indicated by the wave line here.

existing suppliers and a continuous center on a plane. These two centers collab-
orate to assemble the components from the nearest suppliers and produce the
ordered products. To improve the manufacturing efficiency, it becomes essential
to determine the optimal locations of the two centers to curtail transportation
costs. This includes the cost of transporting components from the suppliers to
the centers, as well as the inter-center transfer. Specifically, we aim to determine
two disks spanning all types of suppliers, intending to minimize the maximum
of the radii of the disks and the distance between two centers. See Fig. 1 as an
example.

Our Contribution. To the best of our knowledge, we are the first to explore the
mixed center model for color spanning problems. For n points and each of which
has one of m colors, we propose an exact algorithm based on algorithms inspired
by Abellanas et al. [2] and Banerjee et al. [4] which achieves the time complex-
ity of O(n7, n5m3 log n). In addition, we develop an efficient O(nm log n)-time
algorithm based on Voronoi diagrams, and prove that its approximation ratio
is 2.

Roadmap. The remaining parts of the paper are organized as follows. Related
works are reviewed in Sect. 2. We introduce essential concepts, terminologies,
and notations in Sect. 3. An exact algorithm for the 2-MCCSP is presented in
Sect. 4, while an approximation algorithm is discussed in Sect. 5. We make a
conclusion and discussion about future research in Sect. 6.

The 2-Mixed-Center Color Spanning Problem 217

2 Literature Review

Our work explores the Minimum Color Spanning Problem (CSP) within the
mixed center setting. CSP aims to identify smallest color spanning regions of
various types. The concept was originally proposed by Abellanas et al. in 2001
[1]. It finds applications in areas such as location planning, statistical clustering,
and pattern recognition [7]. This section will provide an overview of related works
in this field.

Specific instances of CSPs, such as the minimum color spanning disk and
minimum area axis-parallel square, can be solved in O(mn log n) time by com-
puting the upper envelope of Voronoi surfaces, as indicated by Abellanas et al.
in their 2001 work [1]. They also discussed the Farthest Color Voronoi Diagram
(FCVD) in which the region of a c-colored site p includes all points in the plane
for which c is the farthest color and the site p is the nearest c-colored site. The
minimum color spanning disk can be determined by an O(n2α(m) logm)-time
algorithm if the FCVD is given for its formulation and in time O(m3n log n)
without FCVD [1], where α(·) is the inverse of the Ackermann’s function. For
the minimum area axis-parallel square, Khanteimouri et al. [14] presented an
efficient algorithm that runs in O(nlog2n) time.

Abellanas et al. [2] further explored two additional CSPs, the narrowest color
spanning corridor and the minimum area color spanning axis-parallel rectangle.
Here a corridor is defined as an open region bounded by a pair of parallel lines
that intersects the convex hull of the given n points. The former problem can be
solved in O(n2α(m) logm) time, while the latter one has a time complexity of
O(n(n−m) log2 m). Das et al. [7] revisited the narrowest color spanning corridor
problem to O(n2 log n) and also proposed an O(n3 logm)-time algorithm to solve
the minimum area color spanning rectangle of arbitrary orientation.

The minimum diameter color spanning set (MDCS) problem was approached
by Zhang et al. [23] using a brute-force O(nm)-time algorithm. Fleischer and Xu
continued to explore the MDCS problem in [8,9] and showed that it can be
solved in polynomial time when the distance is measured under the L1 and L∞
metrics, while it is NP-hard for all other Lp metrics even in two dimensions.
The approximability of the MDCS problem was further studied in a series of
works [8,9,13,15], where inapproximability was established, and a constant ratio
approximation algorithms were introduced.

Bereg et al. [5] investigated the FPT tractability of the related problems.
Several researchers extended the color spanning model to include more geomet-
ric properties [12] and showed all these problems become NP-hard. In partic-
ular, an exact algorithm for 2 centers from given point set P with n points
and k colors was offered by Banerjee et al. [4], running in O(n3, (n2klog2n +
min{mkn log n,m2kω−2}) log n) time, where m = min{2k, n2}, ω denotes a word
of length m over the alphabet {1, 2, . . . , s∗}, and s∗ denotes the maximal demand
among all the colors.

The mixed center problem [21] involves finding m discrete centers from
a given point set and k − m centers on the plane to minimize the maximal
radius, which was solved using Megiddo’s algorithm ([17]) within complexity of

218 Y. Wang et al.

O(n2 log n). Furthermore, following the work of Chen and Chen’s work [6], Xu
et al. [22] discussed a new relaxation algorithm suitable for both the uncapac-
itated continuous and discrete p-center problems, proving an important result
about the optimal solution of the mixed minimax 2-center problem. The time
complexity is O(n2 log2 n) time for covering all demands in their works.

More earlier, for the discrete 2-center problem, it was solved in O(n
4
3 log5n)

time [3,11] and then improved to near-linear time O(n log3 n) by Sharir [18].
Instead of selecting from the given points for the discrete center, the continuous
center is located at anywhere on given region. The continuous 2-center version
was solved in O(n2) by Hershberger [11] and improved to O(nlog2n) [19].

To date, to the best of our knowledge, no studies have adapted the mixed-
center setting to the color spanning model. Our 2-approximation algorithm
achieves the time complexity of O(mn log n), filling this gap in the literature
of approximation algorithm with constant ratio.

3 Preliminary

Given a set of n points P = {p1, p2, . . . , pn} in R
2 with a coloring function φ(·)

assigning each point one of the m colors C = {c1, c2, . . . , cm}. To avoid naming
confusions, we may refer to the points in P as sites. Let Pj = {p ∈ P | φ(p) =
cj}, j ∈ {1, 2, . . . ,m}, signify all points in Pj of the same color cj . We denote
I = (P,C,

⋃
Pj) as a specific instance of the problem.

For any two points p, q ∈ R
2, let d(p, q) measure the distance between them.

We extend the notation as d(p, cj) or d(p, Pj) to define the minimum distance
between point p and sites of the color cj , as per Eq. 1.

d(p, cj) = d(p, Pj) = min
q∈Pj

d(p, q). (1)

Let qi,j be the nearest site with color cj to pi, i.e. d(pi, cj) = d(pi, Pj) =
d(pi, qi,j).

The 2-MCCSP seeks two disks, where one disk is at a discrete center p ∈ P ,
and the other is at a continuous center o on a plane. Let D(p, r(p)) be a disk
centering at a discrete center p ∈ P with a radius r(p). The colors covered by
disk D(p, r(p)) are collected in a color subset Cp. Similarly, let D(o, r(o)) be a
disk centering at a continuous center o with radius r(o), let Co be the set of
colors covered by disk D(o, r(o)). We also use r(p,Cp) and r(o, Co) as the radii
of disks to cover Cp and Co, respectively. It is required that Cp ∪ Co = C.

The 2-Mixed-Center Color Spanning Problem 219

The operation cost includes the distribution cost between suppliers and cen-
ter, as well as the transportation costs between the two centers. Therefore, This
cost is formulated as the maximum of three terms: the radii of the two disks and
the distance between the centers, as per Eq. 2. Summarizing, for an instance I,
the 2-MCCSP problem aims at finding two disks D(p, r(p)) and D(o, r(o)) to
minimize

fI = f(p, o) = max{r(p), r(o), d(p, o)}. (2)

We denote (p∗, o∗) as the optimal locations for the mixed centers with f∗
I =

f(p∗, o∗) = max{r(p∗), r(o∗), d(p∗, o∗)} representing the optimal cost. For any
approximation algorithm A, the approximation ratio αA is defined as per Eq. 3.

αA = sup
I

A(I)
OPT (I)

= sup
I

fI

f∗
I

(3)

4 The Exact Algorithm for 2-MCCSP

In this section, we propose an exact algorithm based on two key observations.

Observation 1. A tight disk can be determined by two or three sites of different
colors, where the sites with these colors only locate on the boundary of the disk.

Observation 2. For a given disk D(p, rp)(or D(o, ro)) of 2-MCCSP, this disk
is included in the optimal solution only when the centers are both within a single
disk, or when o (or p) lies on the boundary of D(p, rp)(or D(o, ro)).

Note that this case, studied in [21,22], where all sites of different colors
(i.e.|Pj | = 1,∀j ∈ [n]), is a special case of our research.

Employing these observations, we enumerate all potential optimal pairs of
centers. As Observation 1 applied to both discrete and continuous disks, we first
use the discrete-continuous process to obtain p and o, followed by the continuous-
discrete process to retrieve o and p similarly. We utilize the algorithm of [4] to
determine the p and algorithm of [1] to determine o, as detailed in Algorithm 1.

For simplicity, we refer to a pair or a triplet of points of different colors as a
candidate in this section.

220 Y. Wang et al.

Algorithm 1: Exact Algorithm for 2-MCCSP
Data: a set C of m colors; a set P of n colored points that can be

partitioned by colors into P = P1

⋃̇
. . .

⋃̇
Pm;

a center p ∈ P with radius r(p,Cp), where Cp is the color
Result: D(p∗, r(p∗), D(o∗, r(o∗)), f(p∗, o∗) = max{r(p∗), r(o∗), d(p∗, o∗)};

1 initialization;
2 For each j ∈ {1, 2, . . . ,m}, construct the Voronoi diagram V Dj for points

in Pj ;
3 foreach candidate do /*continuous-discrete process /
4 Compute continuous center o by algorithm of [1] with smallest radius

enclosing the sites in a candidate;
5 Save Co as the colors covered by disk D(o, r(o, Co)) and compute

C \ Co, s(o) ← o;
6 end
7 foreach o ∈ s(o) do
8 foreach p ∈ D(o, r(o, Co)) ∩ P do /*to determine p /
9 Compute D(p, r(p,C \ Co)) based on V Ds, and get f(p, o);

10 end
11 po ← argmin f(p, o) ;
12 end
13 f1(p, o) = mino∈s(o) f(po, o);
14 foreach p ∈ P do /*discrete-continuous process /
15 Compute all candidates containing p by algorithm in [4] based on

V Ds;
16 end
17 foreach candidate containing p do
18 Compute the minimal disk enclosing the points in the candidate

centering on p,;
19 Save Cp as the colors covered by disk D(p, r(p,Cp));
20 Compute all possible location of continuous center o by algorithm of

[1] with minimum radius enclosing the candidates of colors in C \ Cp

/*to determine o /;
21 if one possible location of o is in D(p, r(p,Cp)) then
22 s(o) ← o, and compute f(p, o);
23 end
24 o(p) ← argmino∈s(o) f(p, o) for each candidate containing p;
25 end
26 f(p, op) = minop

f(p, o(p)) ;
27 f2(p, o) = minp∈P f(p, op) ;
28 f(p∗, o∗) = min{f1(p, o), f2(p, o)} return D(p∗, r(p∗), D(o∗, r(o∗)),

f(p∗, o∗)

Theorem 1. Given a set of n points on the plane, each with one of m col-
ors, the optimal solution of 2-MCCSP can be found with a time complexity of
O(n7, n5m3 log n).

Proof. Let nj be the number of sites in Pj , j ∈ {1, 2, . . . ,m}. Since the time com-
plexity of constructing V Dj is O(nj log nj) by Fortune’s algorithm [10], Line 2
will take O

(∑m
j=1 nj log nj

)
= O(n log n) time. The continuous-discrete pro-

The 2-Mixed-Center Color Spanning Problem 221

cess from Line 3 to Line 6, which involves all candidates of continuous cen-
ters, requires O(m3n log n) time [2]. The size of these candidates is O(n3)(i.e.
|s(o)| = O(n3)) at most. Given that each discrete center in the third for-loop in
Line 9 requires m times of point locations in V Ds, it takes O(mn2 log n) for at
most n sites satisfied D(o, r(o, Co))∩P . Hence, all candidates in s(o) necessitate
O(n5m log n) time to find paired optimal discrete centers, with the final selection
of minimum f(p, o) taking O(n3).

Similarly, Line 15 takes O(n3, n2mlog2n) time [4]. The time complexity of
the last for-loop (from Line 17 to Line 25) mainly relies on the computing of
Line 20 , which requires O(m3n log n) as per the Algorithm in [2]. The number
of all candidates of continuous center paired with a given p could be at most
O(n3). They all need to judge if o ∈ D(p, r(p,Cp)) and compute their distance to
given p with a time complexity of O(n3) from Line 21 to Line 23. Thus, the total
computation for n points requires O(n7, n5m3 log n) time by O(n3, n2mlog2n)+
n × n3 × (O(m3n log n) + O(n3) + O(n3)) = O(n7, n5m3 log n), considering all
candidates of the discrete centers with a size of O(n3) from Line 14 to Line
27. The extremum selections require negligible time. In conclusion, the total
computation and selection thus takes a total of O(n7, n5m3 log n) of time, i.e.

T (n,m) = O(nm log n)+O(n5m log n)+O(n7, n5 m3 log n) = O(n7, n5 m3 log n)

given that the number of colors m is no more than the number of points n. ��

5 A 2-Approximation Algorithm for 2-MCCSP

In this section, we introduce an 2-approximation algorithm, Algorithm 2, which
reduces the time complexity to O(mn log n). The approximation ratio is vali-
dated in Theorem 3.

Similar to the exact algorithm, we also requires a Voronoi diagram of a set of
sites. The central concept is as follows. For each site pi ∈ P , we first determine the
minimum radius di,m that encompasses all colors based on Voronoi diagrams.
We then locate the discrete center at the site ī that has the smallsest radius
among all sites, where dī,m = minpi∈P di,m. The continuous center is placed on
the line between the discrete center and its farthest color or anywhere within
the discrete disk, dependenting on the circumstance. The algorithm’s specifics
are outlined in Algorithm 2.

222 Y. Wang et al.

Algorithm 2: Approximation Algorithm for 2-MCCSP
Data: a set C of m colors; a set P of n colored points that can be

partitioned by colors into P = P1

⋃̇
. . .

⋃̇
Pm

Result: D(pī, r(pī, Cpī
)), D(oī, r(oī, Coī

)) and f(pī, oī)
1 Initialization;
2 For each j ∈ {1, 2, . . . ,m}, construct the Voronoi diagram V Dj for points

in Pj ;
3 foreach pi ∈ P do
4 Compute d(pi, cj), j = 1, · · · ,m;
5 Obtain the farthest color distance di,m = max{j=1,··· ,m}{d(pi, cj)} and

the farthest color ci,m = argmax{j=1,··· ,m} d(pi, cj), where ci,m is the
color of qi,m ;

6 Obtain di,m−1 = maxc∈C\ci,m{d(pi, c)}
7 end
8 ī = argmin{i=1,2,··· ,n} di,m;
9 if dī,j 	= dī,m for some j ∈ [m] then /*Case 1 /

10 Put oī on the line between pī and qī,m satisfying that
d(oī, qī,m) = dī,m+dī,m−1

2 ;
11 foreach cj ∈ C do
12 Compute d(pī, cj) and d(oī, cj) ;
13 if d(pī, cj) ≥ d(oī, cj) then
14 Coī

← Coī
∪ cj ;

15 else
16 Cpī

← Cpī
∪ cj ;

17 end
18 end
19 r(pī, Cpī

) = maxc∈Cpī
r(pī, c);

20 r(oī, Coī
) = maxc∈Coī

r(oī, c);
21 f(pī, oī) = max{r(pī, Cpī

), r(oī, Coī
), d(oī, qī,m)};

22 else /*Case 2 /
23 Put oī on anywhere within the disk D(pī, dī,m);
24 r(pī, Cpī

) = dī,m with Cpī
= C;

25 r(oī, Coī
) = ε, Coī

= φ, where ε is a positive number that is small
enough;

26 f(pī, oī) = dī,m;
27 end
28 return D(pī, r(pī, Cpī

)) and D(o, r(oī, Coī
)) the objective value f(pī, oī).

The location of o is determined from Line 9 to Line 27. It is divided into two
cases as shown in Fig. 2, where Case 1 is in Fig. 2.a, and Case 2 is in Fig. 2.b.

Theorem 2. Algorithm 2 runs in time O(nm log n).

Proof. The time complexity of constructing a V D for n points is O(n log n)
according to Fortune’s algorithm [10]. Hence, Line 2 takes O

(∑m
j=1 nj log nj

)
=

O(n log n) time, where nj represents the number of sites in Pj for j ∈
{1, 2, . . . ,m}. Each computation of d(pi, cj) in Line 4 takes O(log n) time, and
identifying the maximum di,m and di,m−1 in Line 5 and 6 takes O(m) time.
Therefore, the total time from Line 3 to Line 7 is O(nm log n). The selec-
tion of discrete center pī in Line 8 clearly requires linear time O(n). Line 9

The 2-Mixed-Center Color Spanning Problem 223

Fig. 2. Two instances of Case 1 and Case 2 respectively. P = {p1, p2, p3, p4, p5} and
C = {c1, c2, c3, c4, c5}, n = 5, m = 5, where pī is on p2, the colors are presented by
different shapes. In particular, dī,2 = dī,3 = dī,3 = dī,4=1 in Case 2.

takes O(m) time for check the condition, Case 1 from Line 10 to Line 22 takes
O(m log n + m) = O(m log n) time, Case 2 from Line 23 to Line 27 takes O(1)
time.

In conclusion, our algorithm has the time complexity of O(nm log n), i.e.
T (n,m) = O(n log n) + O(nm log n) + O(n) + O(m log n) = O(nm log n). ��
Lemma 1. The solution (pī, oī) by Algorithm 2 satisfies:

f(pī, oī) = max{r(oī, Co), r(pī, Cp), d(pī, oī)} ≤ dī,m

such that the covered color sets satisfied Cp ∪ Co = C.

Proof. There are two cases about the location rule to oī in Algorithm 2.

– Case 1: ∀j ∈ {1, 2, . . . ,m}, dī,j 	= dī,m. The center oī at the location between
pī and qī,m with d(oī, qī,m) = dī,m+dī,m−1

2 ≤ dī,m. Here, the radius of discrete
disk has the inequality r(pī, Cp) = maxj={1,2,··· ,m} r(pī, cj) ≤ r(pī, C) = dī,m.
At the same time, the radius of continuous disk oī has

r(oī, Co) = max
j={1,2,··· ,m}

r(oī, cj) ≤ r(oī, C) =
dī,m + dī,m−1

2
≤ dī,m,

where last equation is proved by Wang et al. [20]. Thus, we have f(pī, oī) =
max{r(pī, Cp), r(oī, Co), d(pī, oī)} ≤ dī,m.

– Case 2: ∀j ∈ {1, 2, . . . ,m}, dī,j = dī,m. We have the equation that r(pī, Cp) =
maxj={1,2,··· ,m} r(pī, cj) = r(pī, C) = dī,m. As r(oī) = ε and d(pī, oī) ≤ dī,m,
we know that f(pī, oī) = dī,m in this case. We have

f(pī, oī) = max{r(pī, Cp), r(oī, Co), d(pī, oī)} ≤ dī,m.

To sum up, f(pī, oī) ≤ dī,m . This proves the lemma. ��

224 Y. Wang et al.

In the following, we will prove the lower bound of the optimal solution.

Lemma 2. The optimal solution of 2-MCCSP satisfies:

f(p∗, o∗) = max{r(o∗, Co), r(p∗, Cp), d(o∗, p∗)} ≥ dī,m

2
such that the covered color sets satisfied Cp ∪ Co = C.

Proof. Let i∗ ← argmini∈{1,2,...,n} max{r(pi∗), r(oi∗ , d(pi∗), oi∗))}. The main
idea in this proof is based on the difference between definitions of di∗,m and
dī,m. It holds that dī,m ≤ di∗,m according to definition of ī.

We prove it by deriving a contradiction. Suppose that an optimal solution
f(p∗, o∗) = max{r(p∗, Cp∗), r(o∗, Co∗), d(o∗, p∗)} <

di∗,m

2 exists. It leads to that
r(o∗, Co∗) <

di∗,m

2 , r(p∗, Cp∗) <
di∗,m

2 and d(p∗, o∗) <
di∗,m

2 . Let color of qi∗,m

be color ci∗,m, which is d(p∗, qi∗,m) = d(p∗, ci∗,m) = di∗,m. ci∗,m must be covered
by at least one of the disk D(p∗, r(p∗, Cp∗)) and disk D(o∗, r(o∗, Co∗)). Because
of r(p∗, Cp∗) <

di∗,m

2 , ci∗,m must be covered D(o∗, r(o∗, Co∗)). Let qx be the
nearest site of color ci∗,m. we consider the following two cases.
– Case 1: qx /∈ D(p∗, di∗,m)∩P . It means that qx is out of D(p∗, di∗,m). See the

instance of Fig. 3. (a) as an example. We can conduct that d(p∗, qx) >
di∗,m

2
because the qx /∈ D(p∗, di∗,m). Thus, we must have d(o∗, qx) ≥ d(p∗, qx) −
d(p∗, o∗) >

di∗,m

2 because of the triangle inequality. It makes that f(p∗, o∗) ≥
r(o∗, Co∗) ≥ r(o∗, ci∗,m) = d(o∗, qx) >

di∗,m

2 , which is in contradiction with
the assumption f(p∗, o∗) <

di∗,m

2 .
– Case 2: qx ∈ D(p∗, di∗,m) ∩ P . It means that qx is in D(p∗, di∗,m). See

the instance of Fig. 3. (b) as an example. As the ci∗,m is covered by
D(o∗, r(o∗, Co∗)), r(o∗, Co∗) ≥ d(o∗, ci∗,m) = d(o∗, qi∗,m). Because of the
triangle inequality d(o∗, p∗) + d(o∗, qi∗,m) > di∗,m and d(o∗, p∗) <

di∗,m

2 ,
f(p∗, o∗) ≥ r(o∗, Co∗) ≥ d(o∗, qi∗,m) >

di∗,m

2 , which is in contradiction with
the assumption of f(p∗, o∗) <

di∗,m

2 .

Thus, the assumption of f(p∗, o∗) <
di∗,m

2 does not hold, and we have f(p∗, o∗) ≥
di∗,m

2 ≥ dī,m

2 , in which the last inequality follows the definition of ī.
This proves the Lemma 2. ��

Theorem 3. The approximation ratio of Algorithm2 for the 2-MCCSP is at
most 2.

Proof. The approximation ratio α can be conducted by

α =
f(pī, oī)
f(p∗, o∗)

=
max{r(pī), r(oī), d(pī, oī)}
max{r(p∗), r(o∗), d(p∗, o∗)}

≤ max{r(pī), r(oī), d(pī, oī)}
dī,m

2

≤ dī,m

dī,m

2

= 2,

where the first inequality comes from Lemma 2, and the last inequality follows
from Lemma 1. This proves the theorem. ��

The 2-Mixed-Center Color Spanning Problem 225

Fig. 3. Two cases in the proof of Lemma 2. Case 1 is about qx out of D(p∗, di∗,m)∩P ,
and Case 2 is that qx in D(p∗, di∗,m) ∩ P . In both instances, all sites are in set P =
{p1, p2, p3, p4, p5, p6}, and all colors are in set C = {c1, c2, c3, c4, c5}, where n = 6,
m = 5, p∗ is on p2, di∗,m = d(p2, p5).

6 Conclusions

Inspired by the concept of cloud manufacturing, we introduced a novel variant of
Min-Cost Color-spanning Problems with Mixed Centers, termed as 2-MCCSP.
This variant represents a mixed-center adaptation of the classic color-spanning
disk problem. We presented an exact algorithm with a polynomial time complex-
ity of O(n7, n5m3 log n), utilizing two existing algorithms for n points, where each
point is assigned one of the given m colors (m ≤ n). Moreover, we developed a
2-approximation algorithm, which significantly reduces the time complexity to
O(nm log n).

Looking forward, it would be intriguing to extend our model to other cost
formulations and color-spanning objects. This could pave the way for designing
even more efficient and effective algorithms.

Acknowledgements. YW and YX are supported by the National Natural Science
Foundation of China (NSFC) (Grant No. 71832001). YX is partially supported by
the National Natural Science Foundation of China (NSFC) (No.72301209). HZ is par-
tially supported by the National Natural Science Foundation of China (NSFC) (No.
72071157, No. 72192834).

References

1. Abellanas, M., et al.: Smallest color-spanning objects. In: auf der Heide, F.M. (ed.)
ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44676-1_23

2. Abellanas, M., et al.: The farthest color voronoi diagram and related problems. In:
European Workshop on Computational Geometry, pp. 113–116 (2006)

3. Agarwal, P.K., Sharir, M., Welzl, E.: The discrete 2-center problem. In: Proceedings
of the Thirteenth Annual Symposium on Computational Geometry, pp. 147–155
(1997)

https://doi.org/10.1007/3-540-44676-1_23
https://doi.org/10.1007/3-540-44676-1_23

226 Y. Wang et al.

4. Banerjee, S., Misra, N., Nandy, S.C.: Color spanning objects: algorithms and hard-
ness results. Disc. Appl. Math. 280, 14–22 (2020)

5. Bereg, S., Ma, F., Wang, W., Zhang, J., Zhu, B.: On some matching problems
under the color-spanning model. Theor. Comput. Sci. 786, 26–31 (2019)

6. Chen, D., Chen, R.: New relaxation-based algorithms for the optimal solution of
the continuous and discrete p-center problems. Comput. Oper. Res. 36(5), 1646–
1655 (2009)

7. Das, S., Goswami, P.P., Nandy, S.C.: Smallest color-spanning object revisited. Int.
J. Comput. Geom. Appl. 19(05), 457–478 (2009)

8. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets. In: Inter-
national Workshop on Frontiers in Algorithmics, pp. 285–292 (2010)

9. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets is hard.
Inf. Process. Lett. 111(21–22), 1054–1056 (2011)

10. Fortune, S.: A sweepline algorithm for voronoi diagrams. In: Proceedings of the
Second Annual Symposium on Computational Geometry, pp. 313–322 (1986)

11. Hershberger, J.: A faster algorithm for the two-center decision problem. Inf. Pro-
cess. Lett. 47(1), 23–29 (1993)

12. Ju, W., Fan, C., Luo, J., Zhu, B., Daescu, O.: On some geometric problems of
color-spanning sets. J. Comb. Optim. 26(2), 266–283 (2013)

13. Kazemi, M.R., Mohades, A., Khanteimouri, P.: Approximation algorithms for color
spanning diameter. Inf. Process. Lett. 135, 53–56 (2018)

14. Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Computing the small-
est color-spanning axis-parallel square. In: International Symposium on Algorithms
and Computation, pp. 634–643 (2013)

15. Li, C., Fan, C., Luo, J., Zhong, F., Zhu, B.: Expected computations on color
spanning sets. J. Comb. Optim. 29(3), 589–604 (2015)

16. Mantas, I., Papadopoulou, E., Sacristán, V., Silveira, R.I.: Farthest color Voronoi
diagrams: complexity and algorithms. In: Latin American Symposium on Theoret-
ical Informatics, pp. 283–295 (2021)

17. Megiddo, N.: Linear-time algorithms for linear programming in rˆ3 and related
problems. SIAM J. Comput. 12(4), 759–776 (1983)

18. Sharir, M.: A near-linear algorithm for the planar 2-center problem. In: Proceed-
ings of the Twelfth Annual Symposium on Computational Geometry, pp. 106–112
(1996)

19. Wang, H.: On the planar two-center problem and circular hulls. Disc. Comput.
Geom. 68, 1–52 (2022)

20. Wang, Y., Xu, Y., Zhang, H., Tong, W.: Online k-color spanning disk problems
(2023)

21. Xu, Y., Peng, J., Xu, Y.: The mixed center location problem. J. Comb. Optim. 36,
1128–1144 (2018)

22. Xu, Y., Peng, J., Xu, Y., Zhu, B.: The discrete and mixed minimax 2-center prob-
lem. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS,
vol. 9486, pp. 101–109. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26626-8_8

23. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K., Kitsuregawa, M.: Keyword search
in spatial databases: towards searching by document. In: IEEE 25th International
Conference on Data Engineering, pp. 688–699 (2009)

https://doi.org/10.1007/978-3-319-26626-8_8
https://doi.org/10.1007/978-3-319-26626-8_8

A Dynamic Parameter Adaptive Path
Planning Algorithm

Guangyu Yao, Nan Zhang(B), Zhenhua Duan, and Cong Tian

Institute of Computing Theory and Technology, and ISN Laboratory,
Xidian University, Xi’an 710071, China

nanzhang@xidian.edu.cn, {zhhduan,ctian}@mail.xidian.edu.cn

Abstract. Path planning in complex environments has always been a
focus of research for scholars both domestically and internationally. This
study addresses the challenge of path planning that combines obstacle
avoidance and optimal path searching in scenarios lacking prior knowl-
edge. The proposed approach introduces a parameter dynamic adapta-
tion strategy for path planning. Experimental investigations are con-
ducted using grid-based maps, and the results demonstrate that the
method presented in this paper surpasses Q-learning and Sarsa algo-
rithms in terms of comprehensive exploration, enhanced stability, and
quicker convergence speed.

Keywords: Path planning · Reinforcement learning · ε-greedy policy

1 Introduction

Path planning is essential in real-world production, optimizing processes, increas-
ing efficiency, cutting costs, and enhancing safety and flexibility. Optimal path
planning and effective obstacle avoidance are critical challenges [7]. The objec-
tive is for agents to achieve the task of searching for a relatively optimal route
from the starting point to the destination, utilizing excellent performance met-
rics [6,13].

Path planning methods have a long history, and different algorithms yield
varying results under different constraints. The traditional Dijkstra’s algorithm
[3]was introduced in 1956. This method was developed to address the single-
source shortest path problem. The A* algorithm [4] is a path planning algorithm
based on heuristic search. It combines cost and heuristic information, making it
quite efficient. Genetic algorithms [8] can also be employed to solve path planning
problems. Global search algorithms can find relatively optimal solutions in path
planning but may have slower convergence speeds.

This research is supported by National Natural Science Foundation of China under
Grant Nos. 62272359 and 62172322; Natural Science Basic Research Program of
Shaanxi Province under Grant Nos. 2023JC-XJ-13 and 2022JM-367.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 227–239, 2024.
https://doi.org/10.1007/978-3-031-49614-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_17

228 G. Yao et al.

In many real-world applications, intelligent agents face increased uncertainty
in their environments. This has led to the rise of reinforcement learning, gain-
ing attention among researchers to address these challenges [12]. Reinforcement
Learning [9,10] is fundamentally a machine learning approach that involves
learning through a “trial-and-error” process. In [11], neural networks are com-
bined with the Q-Learning algorithm from reinforcement learning to address
path planning problems in diverse environments. [1] introduces a novel app-
roach by combining greedy and Boltzmann probability selection strategies as a
means to avoid getting trapped in local optima. In [5], heuristic knowledge is
integrated into reinforcement learning, resulting in improved efficiency for path
planning and obstacle avoidance within the Deep Q-learning Network (DQN)
algorithm. In [2], by optimizing convolutional neural networks in a specific way,
the DQN algorithm is successfully employed to navigate through 3D mazes using
visual information.

The main focus of this study is the application of reinforcement learning
methods in path planning issue. The primary objective of this research is to
enable intelligent agents to navigate even in unknown and relatively intricate
scenarios. We propose a path planning strategy that involves dynamic parameter
adaptation. The proposed strategy demonstrates more comprehensive search,
better convergence.

2 Two Reinforcement Learning Algorithms

Reinforcement Learning is a machine learning algorithm based on the interaction
between an agent and its environment, aiming to maximize the cumulative long-
term reward through a sequence of decisions. The fundamental principles are
illustrated in Fig. 1.

Fig. 1. Reinforcement Learning Diagram

Assuming the current step t, then St, St+1, At, Rt and Rt+1 respectively
represent the current state, the next state, the action, the current reward, and
the next reward. The principle is to select the best action based on the current
state and current reward, and generate the next reward and transition to the
next state. Through learning an appropriate policy, the intelligent agent can
make optimal action choices when facing different environmental states, with
the aim of maximizing its expected cumulative reward.

A Dynamic Parameter Adaptive Path Planning Algorithm 229

2.1 Q-Learning Algorithm

The Q-learning algorithm is one of the most widely used techniques in rein-
forcement learning. Q represents the value associated with a state-action pair,
representing the expected return when the agent takes action a(a ∈ A) in state
s(s ∈ S). The environment provides an immediate reward r based on the agent’s
action a. Through continuous interaction between the agent and the environ-
ment, the algorithm updates the expected values based on the actual reward r
obtained by taking action r in state s .

Q-learning employs a temporal difference (TD) method to update the value
Q(st,at), and the update formula is as follows: Q(st,at) ← Q(st,at) + α(R +
γ max

a′
Q(st+1,a′) − Q(st,at)). a′ represents the action that yields the maximum

value in the subsequent state. The pseudocode for the Q-learning algorithm is
presented in Table 1.

Table 1. Q-learning Algorithm Pseudocode

Algorithm 2.1: Q-learning Algorithm

Initialization:

set the learning rate α; the discount factor γ; maximum number of iterations T ;
the value function Q(s,a)

while Repeat for each episode do

Initialize the starting state s

while Repeat for each step of the episode do

Choose action a from state s

Take action a, observe reward R and new state s′

Update Q(s,a) using the Q-learning update rule:

Q(s,a) ← Q(s,a) + α(R + γ max
a

Q(s′,a) − Q(s,a))

Update state s ← s′

end while

end while

2.2 Sarsa Algorithm

The distinction between the Sarsa algorithm and the Q-learning algorithm lies in
the different strategies for selecting the next action and the timing of updating
the value function Q(s,a).

In Q-learning, the next action is determined using a greedy policy, selecting
the action with the highest Q value. In contrast, Sarsa employs an ε-greedy
policy. Additionally, the timing of Q(s,a) updates also varies between the two
algorithms. In Q-learning, the update of Q(s,a) takes place immediately after

230 G. Yao et al.

executing the current action and selecting the next action. In Sarsa, the update
of Q(s,a) occurs after executing both the current action and the selected next
action.

The pseudocode for the Sarsa algorithm is presented in Table 2.

Table 2. Sarsa Algorithm Pseudocode

Algorithm 2.2: Sarsa Algorithm

Initialization:

set the learning rate α; the discount factor γ; maximum number of iterations T ;
the value function Q(s,a); The value of ε in the ε-greedy policy

while Repeat for each episode do

Initialize the starting state s

while Repeat for each step of the episode do

Choose action a from state s

Take action a, observe reward R and new state s′

Choose next action a′ from new state s′

Update Q(s,a) using the Sarsa update rule:

Q(s,a) ← Q(s,a) + α(R + γQ(s′,a′) − Q(s,a))

Update state s ← s′ action a ← a′

end while

end while

3 DPARL Algorithm

The Dynamic Parameter Adaptive-Reinforcement Learning (DPARL) algorithm
is a reinforcement learning approach with dynamically changing parameters.
Specifically, it involves the dynamic adjustment of the ε-greedy policy in the
Sarsa algorithm. Depending on the progression of the path search process,
whether at different episodes or different time steps within the same episode,
the probability of random exploration varies accordingly. This adaptive app-
roach is aimed at enhancing the interaction efficiency between the agent and the
environment, ultimately improving the performance of the original algorithm.

Consider the path planning problem on a grid map as an example. During the
initial exploration phase, the agent lacks a comprehensive understanding of the
environment, necessitating substantial random actions for exploration. Towards
the end of exploration, the agent should become more targeted in its exploration,
requiring adaptive adjustments to its perception range. In the original strategy,
the value of ε remains fixed. Thus, altering the ε factor in stages to accommodate
the needs of path planning is crucial. The aim is to have a higher-than-average

A Dynamic Parameter Adaptive Path Planning Algorithm 231

likelihood of random exploration in the initial stage of the program and a lower-
than-average likelihood towards the end.

The expression for the sigmoid function is as follows:

Sigmoid(x) =
1

1 + e−x
(1)

The graph of this function is depicted in Fig. 2. The graph illustrates that as x
approaches negative infinity, the function value approaches 0 with a small slope.
Conversely, as x tends towards positive infinity, the function value approaches 1
with a small slope. The function is bounded with values between 0 and 1. And
the curve is smooth, continuously differentiable everywhere. Hence, the sigmoid
function aligns with the desired probability reduction approach.

Fig. 2. Sigmoid Function

This paper proposes a path planning strategy called DPARL that improves
Sarsa algorithm.

The ε-greedy policy is a commonly used trade-off strategy for exploration
and exploitation in reinforcement learning. In the ε-greedy policy, ε is a positive
number less than 1, typically between 0 and 1. The main idea of the strategy is
that, during each action selection, the action with the highest estimated value is
chosen with a probability of 1-ε, while random exploration is conducted with a
probability of ε by selecting a random action. Therefore, the value of ε controls
the degree of exploration. For example, if ε = 0.1, then in each decision-making
step, there is a 90% probability of selecting the action with the highest estimated
value, and a 10% probability of selecting a random action. The parameter ε can
be adjusted using the following formula:

ε =
ρ

1 + e−(max iterations
2 −n iter)

+ φ (2)

In the initial stage of the program, when n iter − max iterations
2 is at its min-

imum, max iterations
2 −n iter is at its maximum, ε ≈ ρ+φ is at its maximum. As

the program progresses, when n iter−max iterations
2 = 0, max iterations

2 −n iter =
0, ε = ρ

2 +φ. In the final stage of the program, when n iter − max iterations
2 is at

its maximum, max iterations
2 −n iter is at its minimum, ε ≈ φ is at its minimum.

232 G. Yao et al.

Hence, by appropriately setting the parameters ρ and φ according to the specific
problem, the desired probability reduction approach will be satisfied.

For a single episode’s iteration cycle, ε can also be dynamically adjusted.
When the agent is farther from the target location, set ε to a value higher than
the average probability, promoting exploration. Conversely, when the agent is
closer to the target location, set ε to a value lower than the average probabil-
ity, focusing on exploitation. Using μ to represent the adaptive factor for the
fluctuation of ε. As shown in the formula 3 (ε in formula 3 is the same as ε in
formular 2):

εepisode =
μ

1 + e−[(row current+col current)− row+col
2]

+ ε − μ

2
(3)

In a single episode iteration, when the agent is at the farthest distance from
the target position, (row current + col current) − row+col

2 is at its maximum,
εepisode = ε+ μ

2 is at its maximum. This encourages exploration with a probabil-
ity higher than the average ε. When the agent is closest to the target position,
(row current + col current) − row+col

2 is at its minimum, εepisode = ε − μ
2 is at

its minimum. This leads to exploration with a probability lower than the average
ε.

The parameter dynamic adjustment path planning strategy adapts the ran-
dom exploration probability, enhancing the efficiency of exploring the envi-
ronment. This strategy better balances the exploration-exploitation trade-off,
improves the interaction efficiency between the agent and the environment, and

Table 3. DPARL Algorithm Pseudocode

Algorithm 3.1: DPARL Algorithm

Initialization:

set the learning rate α; the discount factor γ; maximum number of iterations
T ; the adaptive factor ρ; the adaptive factor φ; the adaptive factor μ; the value
function Q(s,a); the value of ε in the ε-greedy policy

while Repeat for each episode do

Initialize the starting state s

Update the value of ε

while Repeat for each step of the episode do

Update the value of εepisode

Choose action a from state s through ε-greedy policy

Take action a, observe reward R and new state s′

Update Q(s,a) using the Sarsa update rule:

Q(s,a) ← Q(s,a) + α(R + γQ(s′,a′) − Q(s,a))

Update state s ← s′ action a ← a′

end while

end while

A Dynamic Parameter Adaptive Path Planning Algorithm 233

enhances the performance of the original algorithm. The pseudocode for the
DPARL algorithm is presented in Table 3.

4 Experimental Setup and Experimental Results

4.1 Description of the Path Planning Problem

The experimental environment consists of maps constructed using grid cells,
as depicted in Fig. 3. There are two maps: one composed of 5*5 grid cells and
the other of 10*10 grid cells. Gray grid cells represent obstacles, white grid
cells depict possible paths, red dots indicate the starting points, and blue dots
mark the destination points. The agent begins from the starting coordinates and
navigates to the destination point while passing only through white grid cells.

(a)5*5 Grid Map (b)10*10 Grid Map

Fig. 3. Grid Maps (Color figure online)

4.2 Modeling and Parameter Settings for the Path Planning
Problem

4.2.1 State and Action Set
The starting grid cell serves as the initial state, the termination grid cell denotes
the goal state, while the collection of all white grid cells constitutes the state set.
The set of actions comprises valid actions after excluding illegal ones, defined as
actions that would lead the agent to step outside the grid boundaries. The set
of actions can be represented using coordinate transformations.

4.2.2 Q-Matrix
The matrix contains probabilities corresponding to state-action pairs.

4.2.3 Reward Function
When the agent moves out of the map boundaries or enters a gray grid cell, it
receives a punitive reward of -10. When the agent reaches the target location, it
receives a reward of 10. As the agent gets closer to the target location, it receives
a reward of 0. If the agent moves away from the target location, it receives a
punitive reward of –0.2.

234 G. Yao et al.

4.2.4 Partial Parameter Settings
For a 5*5 map, the iteration number T is set to 100. For a 10*10 map, the
iteration number T is set to 500. Learning rate α is 0.1. Discount factor γ is
0.9. Greedy policy parameter ε is 0.2. Dynamic adaptive factor φ is 0.15. ε
adjustment factor μ is 0.05.

4.2.5 Experimental Environment
The experiments were conducted on a machine with 64 GB of RAM, using
VMware Workstation 15 as the virtualization software. The operating system
employed was Ubuntu 20.04, with 16 GB of virtual memory allocated. The pro-
gramming language used for the experiments was Python 3.

4.2.6 Evaluation Metrics

(1) Runtime: The time taken for the algorithm to perform one path planning
task. Shorter runtime indicates lower resource consumption of the algorithm.

(2) Average steps: The average length of paths generated by the algorithm in
one path planning task.

(3) First detection of optimal path time: The time taken by the algorithm to
first detect the expected optimal path in one path planning task.

(4) First detection of optimal path iteration number: The iteration number at
which the algorithm first detects the expected optimal path in one path
planning task.

4.3 Experimental Results and Analysis

The experiment designed two scenarios: a 5*5 grid map and a 10*10 grid map.
Path planning was conducted using three different methods in each scenario.
Optimal path diagrams were generated and the performance of the three meth-
ods was compared.

4.3.1 5*5 Grid Map Scenario
In Experiment Scenario 1, it’s evident that there is more than one shortest
path. Even among paths with the same shortest length, some algorithms might
favor turns while others might prefer straight-line paths. In this experiment,
each algorithm was trained 100 times, and the resulting path data was collected.
The path that appeared most frequently was chosen as the optimal path for
that algorithm. The optimal paths generated by these three algorithms in this
experiment are displayed in Fig. 4, where the red dashed line represents the
optimal path for each algorithm.

A Dynamic Parameter Adaptive Path Planning Algorithm 235

(a) Q-learning Algorithm (b) Sarsa Algorithm (c) DPARL Algorithm

Fig. 4. Three Different Algorithms’ Optimal Paths (Color figure online)

From Fig. 4, it is apparent that all three algorithms can provide optimal
paths. However, the Q-learning algorithm exhibits fewer turns, while the other
two algorithms display more frequent turns, indicating that the Q-learning algo-
rithm tends to favor straight-line exploration and is less likely to change its
behavioral habits. Conversely, this suggests that the other two algorithms lean
towards comprehensive exploration, resulting in a more evenly distributed behav-
ior pattern. In addition to this, the paper also compares the performance of the
three algorithms by calculating the average runtime, average step count, time
taken for the first detection of the optimal path, and the number of iterations for
the first detection of the optimal path over 100 runs. The results are summarized
in Table 4.

Table 4. Performance Comparison of Three Algorithms (Averaged Over 100 Runs)

Algorithm Q-learning Sarsa DPARL

Average Runtime (ms) 77.8 52.5 53.6

Average Step Count(steps) 17.6 14.6 13.5

Time for 1st Optimal Path(ms) 18.3 17.2 11.9

Iterations for 1st Path 12.5 6.2 4.6

From Table 4, it is evident that among the three algorithms, the Sarsa algo-
rithm consumes the least amount of time and Q-learning requires the longest
time. Looking at the average step count, both the DPARL and Sarsa algorithms
exhibit similar step counts, both significantly lower than the Q-learning algo-
rithm. Analyzing the time taken for the first detection of the optimal path, the
DPARL algorithm demonstrates the shortest time and the Q-learning algorithm
takes the longest time. In terms of the number of iterations required for the first
optimal path, DPARL demands the fewest iterations, followed by Sarsa, and Q-
learning requires the most iterations. This observation suggests that the DPARL
algorithm is capable of finding the optimal path with fewer iterations and less
time, showcasing excellent stability and a lower frequency of encountering invalid
paths.

236 G. Yao et al.

In Scenario 1, the path planning was performed using three different algo-
rithms, and the reward curves for single training runs are depicted in Fig. 5. The
horizontal axis represents the current iteration episodes, while the vertical axis
represents the total reward obtained in each episode.

Fig. 5. The rewards curves for the three different algorithms

From Fig. 5, it can be observed that when using the DPARL algorithm, the
agent is able to reach the optimal path earlier and more frequently. On the other
hand, the Q-learning algorithm and Sarsa algorithm take longer to converge to
the optimal path and exhibits more instability.

4.3.2 10*10 Grid Map Scenario
In Experiment Scenario 2, similar to Experiment Scenario 1, each algorithm
was trained 100 times, and the most frequent path result among the trials was
selected as the best path for that algorithm. The best paths obtained by the three
algorithms in this experiment are illustrated in Fig. 6, where the red dashed lines
represent the optimal paths determined by each algorithm.

(a) Q-learning Algorithm (b) Sarsa Algorithm (c) DPARL Algorithm

Fig. 6. Three Different Algorithms’ Optimal Paths (Color figure online)

From Fig. 6, it is evident that all three algorithms are capable of providing
optimal paths. However, Q-learning algorithm demonstrates fewer turns in com-
parison to Sarsa algorithm, while the DPARL algorithm exhibits more turns. In
addition to this, the paper also compares the performance of the three algorithms

A Dynamic Parameter Adaptive Path Planning Algorithm 237

by calculating the average runtime, average step count, time taken for the first
detection of the optimal path, and the number of iterations for the first detection
of the optimal path over 100 runs. The results are summarized in Table 5.

Table 5. Performance Comparison of Three Algorithms (Averaged Over 100 Runs)

Algorithm Q-learning Sarsa DPARL

Average Runtime (ms) 7707.2 517.5 490.7

Average Step Count(steps) 597.4 36.9 32.9

Time for 1st Optimal Path(ms) 7299.1 201.3 161.5

Iterations for 1st Path 135.4 80.3 66.5

From Table 5, it is evident that among the three algorithms, DPARL algo-
rithm has the shortest runtime, while Q-learning’s runtime is 14 times that of
the former two. Looking at the average number of steps, both DPARL and Sarsa
algorithms exhibit similar values, significantly fewer than Q-learning algorithm.
Regarding the time taken for the first detection of the optimal path, DPARL
algorithm performs the best and Q-learning has the longest time. In terms of the
number of iterations required for the first detection of the optimal path, DPARL
algorithm outperforms the others, while Q-learning requires the most iterations.
This indicates that DPARL algorithm is capable of finding the optimal path with
fewer iterations and in less time, demonstrating good stability, and resulting in
fewer occurrences of ineffective paths.

In Scene 2, the path planning was performed using three different algorithms.
The reward curves for each algorithm in a single training run are shown in Fig. 7.
The horizontal axis represents the current iteration episodes, while the vertical
axis represents the total reward obtained in each episode.

Fig. 7. The rewards curves for the three different algorithms

From Fig. 7, it is evident that when using the DPARL algorithm, the intelli-
gent agent is able to reach the optimal path earlier and more frequently. As the
complexity of the scene increases, the DPARL algorithm exhibits strong stabil-
ity, avoiding the occurrence of overly long paths. This algorithm appears to be
well-suited for path planning in intricate maps.

238 G. Yao et al.

5 Conclusions

In complex environments lacking prior environmental information, traditional
path planning algorithms suffer from drawbacks such as high computational
complexity, low efficiency, and unstable results. To address this challenge, this
paper proposes a path planning strategy called DPARL. This strategy increases
the random search probability in the early stage and decreases it in the later
stage of the program, enhancing the interaction efficiency between the agent
and the environment, and improving the performance of the existing algorithm.
The paper compares the DPARL with the Q-learning algorithm and the Sarsa
algorithm. The DPARL demonstrates more comprehensive search, better con-
vergence, and the ability to find optimal paths with fewer iterations and less
time. Additionally, it maintains high stability even in complex maps.

In future work, further enhancement of the adaptability of the adaptive algo-
rithm is needed. Additionally, applying parameter adaptive path planning algo-
rithm to high-precision modeling environments is also a potential research area.

References

1. Chen, H., Ji, Y., Niu, L.: Reinforcement learning path planning algorithm based
on obstacle area expansion strategy. Intell. Serv. Robot. 13(2), 289–297 (2020)

2. Devo, A., Costante, G., Valigi, P.: Deep reinforcement learning for instruction
following visual navigation in 3D maze-like environments. IEEE Rob. Autom. Lett.
5(2), 1175–1182 (2020)

3. Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Edsger
Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022)

4. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

5. Jiang, L., Huang, H., Ding, Z.: Path planning for intelligent robots based on deep
q-learning with experience replay and heuristic knowledge. IEEE/CAA J. Auto-
matica Sinica 7(4), 1179–1189 (2019)

6. Patle, B., Pandey, A., Parhi, D., Jagadeesh, A., et al.: A review: on path planning
strategies for navigation of mobile robot. Defence Technol. 15(4), 582–606 (2019)

7. Polydoros, A.S., Nalpantidis, L.: Survey of model-based reinforcement learning:
applications on robotics. J. Intell. Rob. Syst. 86(2), 153–173 (2017)

8. Santiago, R.M.C., De Ocampo, A.L., Ubando, A.T., Bandala, A.A., Dadios, E.P.:
Path planning for mobile robots using genetic algorithm and probabilistic roadmap.
In: 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Infor-
mation Technology, Communication and Control, Environment and Management
(HNICEM), pp. 1–5. IEEE (2017)

9. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,
Cambridge (2018)

10. Szepesvári, C.: Algorithms for Reinforcement Learning. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-01551-9

11. Wei, J., De Hua, Z., Shuangbao, M., Gaocheng, Y., Wei, C.: Dynamic walking
characteristics and control of four-wheel mobile robot on ultra-high voltage multi-
split transmission line. Trans. Inst. Meas. Control. 44(6), 1309–1322 (2022)

https://doi.org/10.1007/978-3-031-01551-9

A Dynamic Parameter Adaptive Path Planning Algorithm 239

12. Yang, Y., Juntao, L., Lingling, P.: Multi-robot path planning based on a deep
reinforcement learning DQN algorithm. CAAI Trans. Intell. Technol. 5(3), 177–
183 (2020)

13. Zhang, H.Y., Lin, W.M., Chen, A.X.: Path planning for the mobile robot: a review.
Symmetry 10(10), 450 (2018)

On the Mating Between a Polygonal
Curve and a Convex Polygon

Jin-Yi Liu(B)

School of AI and Software, Liaoning Petrochemical University, Fushun 113001,
Liaoning, People’s Republic of China

j y liu@sina.com

Abstract. Given a simple polygonal curve with m edges and a convex
polygon with n edges lying respectively in two distinct parallel planes,
we consider both the decision version and the optimization version of
their mating problem. The decision version asks for whether a simple
polyhedron can be constructed by a triangle connection between them
without new vertices being inserted, and the optimization version is to
obtain an optimal polyhedron if possible. This restricted curve-polygon
mating problem is a natural variant of the previously studied polygon-
polygon mating problem, whose computational complexity is still open
even in the special case with one polygon being convex. In this paper, we
first present an O(mn4)-time dynamic-programming algorithm for both
the decision version and the optimization version, and then present an
O(mn + n2)-time greedy algorithm for the decision version only. Addi-
tionally, we show that whether a polygonal curve is potentially matable
with some convex polygon can be decided in linear time.

Keywords: Mating · Polygonal curve · Convex polygon · Polyhedron

1 Introduction

Motivated by exploring the fundamental issues raised in the reconstruction of
three-dimensional objects from parallel slices, an extensively studied topic in the
area of medical imaging, O’Rourke [8] first introduced the terminology “mating”
and proposed the polygon-polygon mating problem with his students [5]. We
now recite its definition as follows. Let A and B be two polygons, assumed lying
respectively in two distinct parallel planes. A mating of A and B is a triangle
connection between A and B which forms a simple polyhedron, and a triangle
connection is an assignment that maps each edge of A to a single vertex of B
and maps each edge of B to a single vertex of A. Notably, the double-pyramid
connection is not a mating of two polygons, and Steiner vertices are not allowed
to be inserted if not specially mentioned.

Given two simple polygons, the existence of a mating had ever been taken for
granted for years until Gitlin et al. [5] presented a nonmatable pair of polygons,
where one polygon is a triangle and the other is a labyrinthine polygon with 63
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 240–252, 2024.
https://doi.org/10.1007/978-3-031-49614-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_18&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_18

Mating Between a Polygonal Curve and a Convex Polygon 241

vertices. Barequet et al. [1] simplified the labyrinthine polygon to 45 vertices and
additionally gave an unbounded family of nonmatable pairs of polygons. These
counterexamples immediately aroused the question: given two polygons, is there
a mating between them? This is just the decision version of the polygon-polygon
mating problem (called matability in [1]). About this problem, the following facts
have been made clear: (1) the matability is invariant to a polygon’s translation
and uniform scaling [8]; (2) the cycling constraint and some shadow conditions
are necessary to guarantee non-self-intersection [5]; (3) there are several classes
of polygon-polygon pairs (e.g., two star-shaped polygons) that are sufficiently
matable [1]. Besides, a recent work by Biedl et al. [2] shows that if the two
polygons have the same number of vertices and the mating is limited to “banded”
connection, then their matability can be decided in polynomial time. However,
since no conditions which are both necessary and sufficient (polynomial-time
checkable) have been known, whether this problem is tractable is still open. It
is true even in the special case with one polygon being convex (by a personal
communication with Gill Barequet).

The curve-polygon mating problem is a natural variant of the polygon-
polygon mating problem. Here, the input is a simple polygonal curve P with
m edges and a simple polygon Q with n edges, assumed lying on two parallel
planes. A triangle connection between them is an assignment that maps each
edge of Q to a single vertex of P and maps each edge of P , however, to two
distinct vertices of Q. A mating of them is a triangle connection that forms a
mountain-like simple polyhedron with exactly m + n + 1 vertices and 2m + n
connecting triangles. Apparently this definition obeys Euler’s formula for poly-
hedra too. While it seems that the curve-polygon mating problem can hardly be
exploited in the area of medical imaging, it may have potential applications in
the area of constructing objects from sketches [10] or the area of planar shape
morphing [6].

Although the curve-polygon mating problem possesses similar properties with
the polygon-polygon mating problem, it cannot be reduced to the latter, neither
vice versus. But from the fact that there is a very simple nonmatable curve-
polygon pair (Fig. 1(a)), we can presume that it may be easier to solve than the
latter. But it is not easy enough, since it is almost unimaginable that the so
curled four-edge chain in Fig. 1(b) is matable with a convex quadrilateral. To
the best of the author’s knowledge, there are only two sufficient conditions for
the trivial cases of the problem: a point or a line segment is matable with any
simple polygon [5].

In this paper, restricting the polygon to being convex, we try to solve in
polynomial time both the decision version and the optimization version of the
curve-polygon mating problem. The optimization version of the polygon-polygon
merging (not mating) problem has ever been considered by many authors under
the goal to obtain a good reconstructed object, where several optimization cri-
teria have been employed, including Maximum Volume [7], Minimum Surface
Area [4], and Minimum Spanning Length [3]. Generally, all the three optimiza-
tion objectives can be accomplished in cubic time (O(m2n) or O(mn2)) by a

242 J.-Y. Liu

dynamic-programming schema. However, all the three optimization criteria, as
well as others (e.g., the angle criterion in [9]), are no guarantee of non-self-
intersection. Unlike these previous approaches, the pursuit of this paper is a
possible validity-guaranteed optimal object.

The results and organization of the paper are as follows. After giving some
preliminary notations and definitions in Sect. 2, we in Sect. 3 derive a neces-
sary and sufficient condition for the existence of a mating between a polygo-
nal curve and a convex polygon. Interestingly, this condition is unrelated to
the edge lengths of the input curve. Based on this condition, we present a
series of polynomial-time algorithms in Sect. 4. We first present an O(mn4)-time
dynamic-programming algorithm for both the decision version and the optimiza-
tion version, where the optimization criteria can be any of the above three. Then
we present an O(mn + n2)-time greedy algorithm for the decision version only.
Also in this section, we show that whether a given polygonal curve is potentially
matable with some convex polygon can be decided in linear time, and if yes, we
present a linear-time algorithm for generating such a convex polygon. At last in
Sect. 5, we conclude the paper and raise some questions that deserve research in
the future.

p
0

p
1

p
2

p
3

p
4

q
0 q

1

q
2

q
3

p
0

p
1

p
2

q
0

q
1

q
2

(a) (b)

Fig. 1. (a) A nonmatable curve-polygon pair. (b) A matable curve-polygon pair and
their one mating viewed orthogonally.

2 Preliminaries

In the rest of the paper, we always use P to denote the given m-edge polygonal
curve, described by the vertex sequence (p0, p1, . . ., pm), and use Q to denote
the given n-edge (maybe non-strict) convex polygon, described by the vertex
cycle (q0, q1, . . ., qn−1). W.l.o.g., we assume that Q is in the xoy plane with the
counterclockwise cycling direction, and P is in the plane z = h with h being a
given positive height. (In fact, if we are only concerned with the decision version
or the optimization version under the Maximum Volume criterion, the actual
value of h is not needed.) That is to say, the inputs of our problem are only x-

Mating Between a Polygonal Curve and a Convex Polygon 243

and y-coordinates of m+n+1 vertices and the possible h. For the vertices of Q
and sub-chains of Q, we follow the convention that modulo operations on the
indices are omitted. For example, when we use qi−1 and qi+1 for some 0 ≤ i < n,
their indices actually refer to (n+i−1) mod n and (i+1) mod n respectively.

For 0 ≤ k ≤ �≤m, we use Pk� to denote the sub-curve of P formed by the
vertex sequence (pk, pk+1, . . ., p�). For 0 ≤ i �= j <n, we use Qij to denote the
sub-chain of Q formed by the vertex sequence (qi, qi+1, . . ., qj−1, qj). According
to this notation, Qi+1,i includes all the edges of Q except qiqi+1, and Qi,i+1 is
just the edge qiqi+1. We especially define Qii to be empty. For two sub-chains
of Q, Qij and Qi′j′ , if the vertex sequence of Qi′j′ is a substring of the vertex
sequence of Qij , we use Qi′j′ ⊆ Qij to denote their relation.

Throughout the paper, we use vertex-ordered line segments, e.g., ab repre-
sents the closed line segment starting from point a and ending at point b. We
define

−→
ab := b − a to be the (free) vector directed from point a to point b. In the

whole paper we only deal with planar vectors. We follow the normal notations
for the cross product and the dot product of two planar vectors. To characterize
the relations among planar vectors, we define several other notations for them,
which perhaps seem “abnormal.” Suppose that u and v are two non-degenerate

planar vectors. First we use u →= (
→
�=)v to denote whether (or not) u has the

same direction with v. Then we define a closed vector range [u,v] as follows:

[u,v] :=

{
{αu + βv : α ≥ 0, β ≥ 0, α + β > 0} if u

→
�= −v

{w : u × w ≥ 0,w �= 0} if u →= −v.

Note that when u
→
�= −v, we have [u,v] = [v,u]. This notation [u,v] allows us

to simply represent the vector relations induced by sub-chains of Q.

Observation 1. Let Qi′′j′′⊆Qi′j′⊆Qij be three nested sub-chains of Q. Then by
the convexity of Q, we have [−−−→qjqi′′ ,−−−→qiqj′′] ⊆ [−−−→qj′qi′′ ,−−−→qi′qj′′], [−−→qjqi′ ,−−→qiqj′].

For a connecting triangle between P and Q, we also use vertex-ordered deno-
tations such that it has a unique normal, and say that it is positive if its normal
vector points outwards from the constructed object. We now define a mating
of P and Q to be positive if all the connecting triangles are positive. From the
knowledge of a simple polyhedron, we can immediately claim that there is a
mating of P and Q if and only if there is positive mating of P and Q. Hence-
forth, in the rest of the paper, we shall only pursuit a positive mating for both
the decision version and the optimization version of the problem.

Now, let us consider the two connecting triangles sharing an edge of P in
a mating. We view them integrally as a patch of surface, and call it a ridging
triangle-pair. We use ♦pkpk+1qiqj to denote the ridging triangle-pair sharing the
edge pkpk+1, and use the convention that its two triangles are �pkpk+1qi and
�pk+1pkqj . This convention guarantees that �pkpk+1qi and �pk+1pkqj must be
simultaneously positive or simultaneously negative. Based on the assumption on
P and Q, we immediately have a rule to decide whether a ridging triangle-pair
is positive: ♦pkpk+1qiqj is positive iff −−→qiqj × −−−−→pkpk+1 > 0.

244 J.-Y. Liu

Next, let us explore the triangle-fan in a mating determined by some pk of
P and some Qij of Q. If the triangles in the fan are all positive, they must
be in the form of �pkqiqi+1, �pkqi+1qi+2, . . ., �pkqj−1qj , by the direction of
Q. For convenience, we use F(pk, Qij) to denote this triangle-fan and call it a
hilling triangle-fan. Unlike a ridging triangle-pair, the definition of F(pk, Qij)
guarantees that it must be positive.

The following lemma, which characterizes two neighboring ridging triangle-
pairs and induced hilling triangle-fans, can be viewed as a fitting of the cycling
constraint (Theorem 1 of [4] or Lemma 6 of [5]) to the curve-polygon mating
problem. But we give an independent proof.

Lemma 1. Let ♦pk−1pkqi′qj′ and ♦pkpk+1qiqj be two positive ridging triangle-
pairs in a positive mating of P and Q. Then Qi′j′ ⊆ Qij, and F(pk, Qii′) as well
as F(pk, Qj′j) is a part of the mating.

Proof. Let us first consider �pk−1pkqi′ and �pkpk+1qi. If qi �= qi′ , there exists
a hole H on the surface of the constructed object which takes as boundary pkqi,
pkqi′ , and a sub-chain of Q between qi and qi′ . This hole H must be filled with
a positive hilling triangle-fan which is either F(pk, Qii′) or F(pk, Qi′i). But in
fact, the latter is impossible since �pkqi−1qi belongs to it and �pkqi−1qi is not
consistent with the known �pkpk+1qi (for their common edge is not in reversed
orders). On the contrary, F(pk, Qii′) can appropriately fill the hole H. Thus, we
have the conclusion that F(pk, Qii′) is a part of the mating.

Similarly, we can conclude that F(pk, Qj′j) is also a part of the mating. These
two conclusions also imply that qj′ , qj /∈ Qii′ and qi′ , qi /∈ Qj′j , so there is only
one possibility: Qi′j′ ⊆ Qij .
�

Applying induction on k from Lemma 1, we immediately derive a nec-
essary condition for the matability of P and Q: If there is a positive mat-
ing of P and Q, then there must be a nested sequence of Q’s sub-chains,
Qi1j1⊆Qi2j2⊆· · ·⊆Qimjm

, such that each ♦pk−1pkqik
qjk

is positive for k =
1, . . . ,m. But this condition may not be sufficient because the induced ridging
triangle-pairs and hilling triangle-fans may be intersecting.

Here, following [1,5], the notion “intersecting” (with its verb or noun) always
excludes “normally touching,” and it is concise to describe it with the word stab.
Given a line segment ab and a triangle � in the space, we say that ab stabs �
if they share exactly one common point c such that c /∈ {a, b}. Then given two
connecting triangles � and �′ between P and Q, we say they are intersecting
if and only if one connecting edge of � stabs �′, or one connecting edge of �′

stabs �. About the intersection of two P -based triangles, we have the following
observation which can be easily verified.

Observation 2. Let pk−1pk and p�−1p� be two distinct edges of P , and qi and
qj be two distinct vertices of Q. Then �pk−1pkqi and �p�−1p�qj are intersecting
iff there are a point p′∈pk−1pk and a point p∈p�−1p� such that

−→
p′p →= −−→qjqi.

For considering a part of a mating, we need a notation for a sub-mating. For
1 ≤ k ≤ m, a sub-mating M(P0,k, Qij) is a part of a positive mating of P and Q,

Mating Between a Polygonal Curve and a Convex Polygon 245

which is induced by P0,k and Qij . That is, if it exists, M(P0,k, Qij) is a simple
polygonal surface which takes qjpk, pkpi, and Qij as its closed boundary. Then
we give a property of a sub-mating which is useful in the next section.

Lemma 2. Let M(P0,k, Qij) be a sub-mating in a positive mating of P and Q,
and let qrp� be a connecting edge of it. Then qrp� cannot stab �pkqjqi from the
negative side to the positive side.

Proof. First we point out that qrp� cannot stab �pkqjqi at its boundary since
qrp� must be shared by two connecting triangles. Now suppose that qrp� stabs
�pkqjqi at an interior point s of �pkqjqi from its negative side to its positive
side. Then, the intersection of M(P0,k, Qij) and the plane Π�pkqjqi

must include
a continuous polygonal curve C that starts from s and ends at an intersection
point p = P�,k−1 ∩ Π�pkqjqi

. The existence of p is based on the fact that pk−1 is
on the negative side of �pkqjqi (by the positiveness of ♦pk−1pkqiqj) and p� is
on the positive side of �pkqjqi, and the continuousness of C is enabled by the
fact that M(P0,k, Qij) is made up of connecting triangles. Now, considering that
on Π�pkqjqi

, s is inside �pkqjqi and p is outside �pkqjqi, and also considering
that C cannot pass through pk (since p cannot belongs to pk−1pk), we have that
either pkqi or pkqj must strictly intersect C, i.e., either pkqi or pkqj must stab a
connecting triangle of M(P0,k, Qij), leading to a contradiction.
�
Remark. In the arguments for Lemmas 1 and 2, the convexity of Q is not
exploited, thus they hold for general curve-polygon pairs. But if Q is a gen-
eral simple polygon, the decision whether a ridging triangle-pair ♦pkpk+1qiqj is
positive needs additional conditions beyond −−→qiqj × −−−−→pkpk+1 > 0.

At the end of this section, we mention that although the property that the
matability is invariant to translation and uniform scaling was proved for polygon-
polygon pairs in [8], it also holds for curve-polygon pairs (no mater whether Q
is convex).

3 A Necessary and Sufficient Condition

In this section, we will derive a necessary and sufficient condition for the matabil-
ity of P and Q by exploring the possible intersections among the ridging triangle
pairs and hilling triangle-fans induced by a nested subsequence of Q’s sub-chains.
We start with exploring the two hilling triangle-fans sandwiched between two
neighboring ridging triangle-pairs.

Lemma 3. Suppose that there are Qi′j′ ⊆ Qij with ♦pk−1pkqi′qj′ and ♦pkpk+1

qiqj being both positive. Then F(pk, Qii′) and F(pk, Qj′j) are non-intersecting
with ♦pk−1pkqi′qj′ or ♦pkpk+1qiqj.

Proof. By the convexity of Q and the positiveness of the ridging triangle-pairs,
these two triangle-fans are separated from ♦pkpk+1qiqj by the plane Π�pkqiqj ,
and separated from ♦pk−1pkqi′qj′ by the plane Π�pkqi′qj′ , except the common
edges.
�

246 J.-Y. Liu

How about two neighboring ridging triangle-pairs themselves? At first glance,
♦pk−1pkqi′qj′ and ♦pkpk+1qiqj seem to be non-intersecting under the condi-
tion that Qi′j′ ⊆ Qij and they are both positive, but they can really intersect.
Although their intersection can be easily checked with spacial geometry, the
following planar checking conditions are crucial for deriving our algorithms.

Lemma 4. Suppose that there are Qi′j′ ⊆ Qij with ♦pk−1pkqi′qj′ and ♦pkpk+1

qiqj being both positive. Then we have two equivalent conditions for the relations
between ♦pk−1pkqi′qj′ and ♦pkpk+1qiqj: they are

(a) intersecting iff [−−→qjqi′ ,−−→qiqj′] ⊂ [−−−−→pk−1pk,−−−−→pkpk+1], and
(b) non-intersecting iff [−−→qjqi′ ,−−→qiqj′] ∩ [−−−−→pk−1pk,−−−−→pkpk+1] = ∅.
Proof. First, we show that it is impossible that −−−−→pk−1pk ∈ [−−→qjqi′ ,−−→qiqj′] or−−−−→pkpk+1 ∈ [−−→qjqi′ ,−−→qiqj′] under the given conditions. By the convexity and direc-
tion of Q, we have −−→qjqi′ × −−→qiqj′ ≥ 0, −−→qjqi′ × −−→qiqj ≥ 0, and −−→qiqj′ × −−→qiqj ≥ 0. So
if −−−−→pkpk+1 ∈ [−−→qjqi′ ,−−→qiqj′], we immediately have −−−−→pkpk+1 × −−→qiqj ≥ 0, which is a
contradiction to the positiveness of ♦pkpk+1qiqj . Similarly we can argue that−−−−→pk−1pk /∈ [−−→qjqi′ ,−−→qiqj′]. By now, we have only two possibilities for the four vectors−−→qjqi′ , −−→qiqj′ , −−−−→pk−1pk, and −−−−→pkpk+1, which are respectively given in (a) and (b).

For the “if” part of (a), we note that for any p′ ∈ pk−1pk and any p ∈ pkpk+1

with p′ �= p, we have
−→
p′p ∈ [−−−−→pk−1pk,−−−−→pkpk+1]. So, if [−−→qjqi′ ,−−→qiqj′] ⊂ [−−−−→pk−1pk,−−−−→pkpk+1],

there must be some p′ ∈ pk−1pk and some p ∈ pkpk+1 such that
−→
p′p →= −−→qjqi′ ,

leading to the intersection between �pk−1pkqi′ and �pkpk+1qj , by Obs. 2.
For the “if” part of (b), by the convexity of Q, we note that −−→qiqi′ ,−−→qjqj′ ∈

[−−→qjqi′ ,−−→qiqj′] if they are non-degenerate. Hence if [−−→qjqi′ ,−−→qiqj′] ∩ [−−−−→pk−1pk,−−−−→pkpk+1]=
∅, there are no such p′ ∈ pk−1pk and p ∈ pkpk+1 that

−→
p′p →=−−→qjqi′ ,−−→qiqj′ ,−−→qiqi′ , or −−→qjqj′ . That is, by Obs. 2, there are no intersections between

�pk−1pkqi′ and �pkpk+1qj , between �pk−1pkqj′ and �pkpk+1qi, between
�pk−1pkqi′ and �pkpk+1qi, or between �pk−1pkqj′ and �pkpk+1qj ; or simply
say, there is no intersection between ♦pk−1pkqi′qj′ and ♦pkpk+1qiqj .

Since there are only two possibilities, we have no need to argue the “only if”
parts for (a) and (b).
�

About two non-neighboring ridging triangle-pairs, we have an important nec-
essary condition: Two non-neighboring ridging triangle-pairs are non-intersecting
if their in-between neighboring ones are all non-intersecting.

Lemma 5. Let Pk−1,� be a sub-curve of P with 1 < k+1 < � ≤ m. Suppose
there are Qikjk

⊆Qik+1jk+1⊆ · · · ⊆Qi�j�
such that each ♦pr−1prqir

qjr
is positive

for r = k, . . . , �, and each neighboring pair ♦pr−1prqir
qjr

and ♦prpr+1qir+1qjr+1

are non-intersecting for r = k, . . . , �−1. Then ♦pk−1pkqik
qjk

and ♦p�−1p�qi�
qj�

are non-intersecting.

Proof. Suppose for the aim of contradiction that ♦pk−1pkqik
qjk

and ♦p�−1

p�qi�
qj�

are intersecting. Then by Obs. 2, there must be a point s ∈ pk−1pk

and a point t ∈ p�−1p� such that
−→
st

→= −−−→qj�
qik

, −−−→qi�
qjk

, −−−→qi�
qik

, or −−−→qj�
qjk

. In any of

Mating Between a Polygonal Curve and a Convex Polygon 247

the four cases, we have that
−→
st ∈ [−−−→qj�

qik
,−−−→qi�

qjk
]. Let pr be a farthest vertex to

the line through st among the vertices of Pk,�−1. (If there are multiple farthest
vertices, pr can be any one of them.) We now claim that ♦pr−1prqir

qjr
and

♦prpr+1qir+1qjr+1 must be intersecting, which is a contradiction. The reason of
the claim is as follows. Let ζ be the line passing through pr and parallel to st.
We use the following way to choose two different points p′ and p respectively on
pr−1pr and prpr+1: if pr−1 is on ζ, we choose p′ := pr−1 and p := pr; if pr+1 is
on ζ, we choose p′ := pr and p := pr+1; otherwise, since pr is a farthest vertex to
the line through st, there must be a line ξ which is parallel to ζ and intersects
pr−1pr and prpr+1 at exactly two points, then we choose p′ := ξ ∩ pr−1pr and
p := ξ ∩ prpr+1. In any of the three cases, since P is simple, we have

−→
p′p →=

−→
st .

Considering that
−→
st ∈ [−−−→qj�

qik
,−−−→qi�

qjk
] ⊆ [−−−−−→qjr+1qir

,−−−−−→qir+1qjr
] by Obs. 1, we have−→

p′p ∈ [−−−−−→qjr+1qir
,−−−−−→qir+1qjr

]. Since we additionally have
−→
p′p ∈ [−−−−→pr−1pr,

−−−−→prpr+1], we
now have [−−−−−→qjr+1qir

,−−−−−→qir+1qjr
] ∩ [−−−−→pr−1pr,

−−−−→prpr+1] �= ∅, implying that ♦pr−1prqir
qjr

and ♦prpr+1qir+1qjr+1 are intersecting, by condition (b) of Lemma 4.
�
Now it is the time to give out the whole sufficient condition, and then the

whole necessary and sufficient condition. We say that a nested sequence of Q’s
sub-chains Qi1j1⊆Qi2j2⊆· · ·⊆Qimjm

is viable if each ♦pk−1pkqik
qjk

is positive for
k = 1, . . . ,m, and each neighboring pair ♦pk−1pkqik

qjk
and ♦pkpk+1qik+1qjk+1

are non-intersecting for k = 1, . . . , m−1.

Lemma 6. Suppose that there is a viable nested sequence of Q’s sub-chains
Qi1j1⊆Qi2j2⊆· · ·⊆Qimjm

. Then all the induced ridging triangle-pairs and hilling
triangle-fans are non-intersecting.

Proof. The proof is by induction. First we note that the terminal F(p0, Qi1j1)
doesn’t intersect ♦p0p1qi1qj1 .

Now suppose that for some 1 ≤ k < m, there is no intersection among all
the hilling triangle-fans and ridging triangle-pairs induced by the subsequence
Qi1j1⊆Qi2j2⊆· · ·⊆Qikjk

, i.e., they form a M(P0,k, Qikjk
). With the existence of

Lemma 3 and 5, what we need to argue in the inductive step is only that neither
F(pk, Qik+1ik

) nor F(pk, Qjkjk+1) intersects M(P0,k, Qikjk
). In fact, let qrp� be a

connecting edge of M(P0,k, Qikjk
). Then by the convexity of Q, if qrp� stabs any

triangle of F(pk, Qik+1ik
) or F(pk, Qjkjk+1), it must first stabs �pkqik

qjk
since qr

cannot lie in the positive side of any triangle of F(pk, Qik+1ik
) or F(pk, Qjkjk+1).

But this is impossible by Lemma 2.
At last, considering that the terminal F(pm, Qjmim

) and M(P0,m, Qimjm
)

are also non-intersecting, we accomplish the proof.
�
Theorem 1. There is a (positive) mating of P and Q if and only if there is a
viable nested sequence of Q’s sub-chains Qi1j1⊆Qi2j2⊆· · ·⊆Qimjm

.

Corollary 1. The matability P and Q is invariant to edge length changing to
P , as long as the edge directions and the simplicity of P are preserved.

248 J.-Y. Liu

4 The Algorithms

4.1 The Dynamic-Programming Algorithm

Based on Theorem 1, we can easily derive a dynamic-programming algorithm
to solve the optimization version and the decision version at the same time.
The algorithm either returns an optimal positive mating of P and Q, or decide
its non-existence. The optimization criteria can be any of Maximum Volume,
Minimum Area, and Minimum Spanning Length. For convenience, we unitively
treat all the three optimization criteria as minimization criteria. This is feasible
because maximizing the volume is equivalent to minimizing its negation.

We first describe the dynamic-programming algorithm in a straightforward
way, and then improve on it. In our description, we use |S| to denote the weight
(volume, area, or length) induced by a connecting patch S.

To fit to the dynamic-programming paradigm, we directly use a 3-dimensional
table A[1..m, 0..n−1, 0..n−1], where for 1≤k≤m and 0≤i�=j < n, A[k, i, j] is
defined as the minimum of the weights induced by all possible M(P0,k, Qij)’s.
The entries of table A can be computed by the recursive formula

A[k + 1, i, j] =

⎧⎨
⎩

∞ if ♦pkpk+1qiqj not positive,
|F(p0, Qij)| + |♦p0p1qiqj | if k = 0 and ♦p0p1qiqj positive,
minQi′j′⊆Qij

w(k, i, j, i′, j′) if k > 0 and ♦pkpk+1qiqj positive,

where w(k, i, j, i′, j′) := ∞ if ♦pkpk+1qiqj intersects ♦pk−1pkqi′qj′ , and other-
wise

w(k, i, j, i′, j′) := A[k, i′, j′] + |F(pk, Qii′)| + |F(pk, Qj′j)| + |♦pkpk+1qiqj |.

After all the entries of the table A are computed (with memoization or in
a bottom-up way), we need another step to compute min0≤i�=j<n(A[m, i, j] +
|F(pm, Qji)|), which is the final optimal value. If the final optimal value is not
∞, there must exist an optimal mating, and we can reconstruct it with a standard
reconstruction procedure, by using another table B also with m×n×n entries,
maintained in the process of evaluating table A.

By now, what we have described is an O(mn5)-time and O(mn2)-space algo-
rithm. The time bound is determined by the process of evaluating table A. There
are O(mn2) entries in table A. For each entry (except the one in the first layer),
we have to access O(n2) possible Qi′j′ ’s, and for each Qi′j′ , we need two O(n)-
time innermost loops to compute |F(pk, Qii′)| and |F(pk, Qj′j)|.

We observe two tricks to improve the current straightforward algorithm. The
first trick is based on the fact that all the entries in the (k+1)-th layer of table
A is only dependent on the entries on the k-th layer. Thus we can use two n×n
table to substitute for the 3-dimensional table A. However, this trick doesn’t
affect the asymptotical space bound because the 3-dimensional table B cannot be
contracted. The second trick is to remove the two innermost loops for computing
|F(pk, Qii′)| and |F(pk, Qj′j)|, by using preprocessing at the beginning. Precisely,
we employ another 3-dimensional table W [1..m, 0..n− 1, 0..n− 1] with W [k, i, j]

Mating Between a Polygonal Curve and a Convex Polygon 249

defined as |F(pk, Qij)|. In the preprocessing step, we evaluate each W [k, i, j]
for 1≤k≤m and 0≤i�=j < n, in at most O(mn3) time. Then, in the process of
evaluating table A, for each Qi′j′⊆Qi,j only constant time is needed because we
can now compute |F(pk, Qii′)| + |F(pk, Qj′j)| by

|F(pk, Qii′)| + |F(pk, Qj′j)| = W [k, i, j] − W [k, i′, j′].

(If the optimization criterion is Minimum Spanning Length, the formulae in this
subsection needs some slight revision to avoid duplicate or omitted counting.)
Therefore, the second trick decrease the time bound to O(mn4).

Theorem 2. In O(mn4) time and in O(mn2) space, we can obtain an optimal
mating of P and Q if it exists, or decide its non-existence.

4.2 The Greedy Algorithm

If we are only concerned with the decision version, the mating problem can
be solved more efficiently with a greedy approach. For 0≤i1 < n, our greedy
algorithm calls Algorithm 1 repeatedly, until finding a viable nested sequence
of Q’s sub-chains Qi1j1⊆Qi2j2⊆· · ·⊆Qimjm

with Qi1j1 = Qi1,i1+1, with either
ik+1 = ik or jk+1 = jk or both for 1≤k < m, and with each Qikjk

as short as
possible. All the three properties are realized in Algorithm 1.

The time analysis of our greedy algorithm is easy: Algorithm 1 is called at
most n times, and in Algorithm 1, with the increase of k from 1 to m, the sub-
chains Qikjk

never decreases; so the total time cost is O((m+n)n). Its correctness
is guaranteed by the following three claims, whose proofs are omitted here.

Claim 1. Suppose that there are Qi′j′ ⊆ Qij with either i = i′ or j = j′

or both, and with ♦pk−1pkqi′qj′ and ♦pkpk+1qiqj being both positive. Then
♦pk−1pkqi′qj′ and ♦pkpk+1qiqj are non-intersecting.

Claim 2. Suppose that there are Qi′j′ ⊆ Qij with ♦pk−1pkqi′qj′ and ♦pkpk+1

qiqj being both positive and non-intersecting. Then, if −−−−→pk−1pk × −−−−→pkpk+1 ≥ 0,
we have either ♦pkpk+1qi′qj′ or ♦pkpk+1qi′qj or both are positive (and non-
intersecting with ♦pk−1pkqi′qj′), and otherwise, we have either ♦pkpk+1qi′qj′ or
♦pkpk+1qiqj′ or both are positive (and non-intersecting with ♦pk−1pkqi′qj′)

Claim 3. Suppose that there are Qi′′j′′⊆Qi′j′⊆Qij such that ♦pk−1pkqi′′qj′′ ,
♦pkpk+1qi′qj′ , and ♦pkpk+1qiqj are all positive. Then, ♦pk−1pkqi′′qj′′ and
♦pkpk+1qi′qj′ are non-intersecting iff ♦pk−1pkqi′′qj′′ and ♦pkpk+1qiqj are non-
intersecting.

Claim 1 guarantees that there is no need to do intersection check for two
neighboring ridging triangle-pairs obtained in Algorithm 1. Claim 2 guarantees
that each Qikjk

obtained in Algorithm 1 is as short as possible. At last, Claim 3
guarantees that there is any viable nested sequence of Q’s sub-chains, if and only
if there is the one found by our greedy algorithm.

Theorem 3. Whether there is a mating of P and Q can be decided in O(mn +
n2) time and O(m + n) space.

250 J.-Y. Liu

Algorithm 1. Decide whether there is a positive mating starting with Qi1,i1+1

Input: P,Q, and an index i1 with 0≤i1 < n.
Output: The indices for viable Qi1,i1+1⊆Qi2j2⊆· · ·⊆Qimjm if yes, or false otherwise.

1: qj1 := qi1+1

2: if ♦p0p1qi1qj1 is not positive then
3: return false
4: for k := 1 to m − 1 do
5: if −−−−→pk−1pk × −−−−→pkpk+1 ≥ 0 then
6: let qb be the first vertex satisfying that ♦pkpk+1qikqb is positive, when

scanning Qjkik in the counterclockwise order from qjk to qik
7: if qb exists then
8: qik+1 := qik , qjk+1 := qb
9: else
10: return false
11: else
12: let qa be the first vertex that satisfying ♦pkpk+1qaqjk is positive, when

scanning Qjkik in the clockwise order from qik to qjk

13: if qa exsits then
14: qik+1 := qa, qjk+1 := qjk

15: else
16: return false
17: return the indices for obtained Qi1j1⊆Qi2j2⊆· · ·⊆Qimjm

4.3 Characterizing Polygonal Curves Matable with Some Convex
Polygon

Intuitively, if P is very spiralling, it cannot be matable with any convex polygon.
This subsection confirms this intuition by providing algorithms. Let U be the
universe of all non-degenerate planar vectors.

Lemma 7. P is matable with some Q iff
⋃m−1

k=1 [−−−−→pk−1pk,−−−−→pkpk+1] �= U.

Proof. Suppose that there is a mating between P and some Q. Then by Theorem
1 and condition (b) of Lemma 4, there must be viable Qi1j1⊆Qi2j2⊆· · ·⊆Qimjm

satisfying that [−−−−−→qjk+1qik
,−−−−−→qik+1qjk

] ∩ [−−−−→pk−1pk,−−−−→pkpk+1] = ∅ for each 1≤k<m. Since
[−−−→qjm

qi1 ,
−−−→qim

qj1] ⊆ [−−−−−→qjk+1qik
,−−−−−→qik+1qjk

] for each 1≤k<m, we have [−−−→qjm
qi1 ,

−−−→qim
qj1] ∩

[−−−−→pk−1pk,−−−−→pkpk+1] = ∅ for each 1≤k<m. That is, we have
⋃m−1

k=1 [−−−−→pk−1pk,−−−−→pkpk+1] �=
U, because [−−−→qjm

qi1 ,
−−−→qim

qj1] cannot be empty.
We now prove the “if” part by showing that if

⋃m−1
k=1 [−−−−→pk−1pk,−−−−→pkpk+1] �= U,

we can generate a convex polygon Q which is matable with P . First we note
that

⋃m−1
k=1 [−−−−→pk−1pk,−−−−→pkpk+1] is a closed vector range because [−−−−→pk−1pk,−−−−→pkpk+1] ∩

[−−−−→pkpk+1,
−−−−−−→pk+1pk+2] �= ∅ for 0 < k < m−1. Thus U \ ⋃m−1

k=1 [−−−−→pk−1pk,−−−−→pkpk+1] is an
open vector range, and we denote it by R. Once R is known, we can construct
Q as follows. Set Q to be comprised of 2m + 2 vertices, all on the boundary of
a “slim” rectangle (maybe not axis-aligned). The four corners of the rectangle
are q0, qm, qm+1, and q2m+1 with Qm,m+1⊆Q0,2m+1, and the other vertices are

Mating Between a Polygonal Curve and a Convex Polygon 251

uniformly aligned on q0qm and qm+1q2m, such that for 0≤i≤m, each qiq2m+1−i

is perpendicular to q0qm and qm+1q2m+1. The size and direction of the rectangle
are so arranged that each [−−−−−−−−→q2m+1−iqi+1,

−−−−−→qiq2m−i] ⊂ R for 0≤i<m. An example
of the given P and the constructed Q are shown in Fig. 2. Note that our rule
to construct Q guarantees that all qiq2m−i are parallel for 0≤i < m, and all
qiq2m+2−i are parallel for 1≤i≤m.

We now give a claim about the constructed Q: For any 1≤k≤m and any
0≤i < m, one of ♦pk−1pkqiq2m−i and ♦pk−1pkqi+1q2m+1−i must be positive.
The reason of this claim is as follows. From [−−−−−−−−→q2m+1−iqi+1,

−−−−−→qiq2m−i] ⊂ R, we
have −−−−→pk−1pk /∈ [−−−−−−−−→q2m+1−iqi+1,

−−−−−→qiq2m−i]. Then making a deduction on these three
vectors, we immediately have either −−−−−→qiq2m−i × −−−−→pk−1pk > 0 or −−−−−−−−→qi+1q2m+1−i ×−−−−→pk−1pk > 0 or both.

Based on the above claim, we now show that Q is matable with P by obtain-
ing a viable nested sequence Qi1j1⊆Qi2j2⊆· · ·⊆Qimjm

. At the beginning, we
choose Qi1j1 to be either Qm,m+2 or Qm−1,m+1 according to which is positive.
Now suppose that Qikjk

has been chosen for some 1≤k < m, and it is either
Qi,2m−i or Qi+1,2m+1−i for some i. Then we choose Qik+1jk+1 as

Qik+1jk+1 :=

⎧
⎪⎪⎨

⎪⎪⎩

Qi,2m−i if Qikjk =Qi,2m−i,♦pkpk+1qiq2m−i positive,
Qi,2m+2−i if Qikjk =Qi,2m−i,♦pkpk+1qiq2m+2−i positive,
Qi+1,2m+1−i if Qikjk =Qi+1,2m+1−i,♦pkpk+1qi+1q2m+1−i positive,
Qi−1,2m+1−i if Qikjk =Qi+1,2m+1−i,♦pkpk+1qi−1q2m+1−i positive.

If two cases are satisfied in the above formula, we can choose any one. Anyway,
Qik+1jk+1 is either unchanged or moved by one block, so the i in the above
formula is guaranteed in the range [m−k,m−1]. In the end, we obtain a sequence
Qi1j1⊆Qi2j2⊆· · ·⊆Qimjm

satisfying that either ik+1 = ik or jk+1 = jk or both
for each 1≤k<m, and ♦pk−1pkqik

qjk
is positive for each 1≤k≤m. According to

Claim 1, such an obtained sequence Qi1j1⊆Qi2j2⊆· · ·⊆Qimjm
must be viable.
�

Theorem 4. Given P , in O(m) time we can decide whether it is matable with
some convex polygon, and if yes, we can generate such a convex polygon also in
O(m) time.

qm

......

qm+1

qm-1 qi+1 qi qi-1 q
1 q

0

qm+2 q
2m-i q

2m+1-i q
2m+2-i q

2m q
2m+1

p
0

p
1

p
2 pm

pm-1
pm-2

............

Fig. 2. An example of the given P and the constructed Q, such that they are matable.

252 J.-Y. Liu

5 Conclusion

Up to the polynomial-time sense, this paper has solved a restricted curve-polygon
mating problem by providing a series of algorithms. While the arguments are
somewhat long, each algorithm can be implemented very simply, say, with at
most one hundred lines of programming code. We raise the following questions
which deserve further research:

1. Can the optimization algorithm and the decision algorithm for P and Q
presented in this paper be sped up?

2. Can the general curve-polygon mating problem be solved in polynomial time?
3. How to decide the matability of P and Q if Steiner vertices are allowed to

be added on the edges of Q? From Theorem 1, we know that adding Steiner
vertices on P does not help the matability at all. But on Q, it may help
(consider Fig. 1(a) with one vertex added on the edge q0q1), or may not help
(consider the case where Q is a triangle and P is a three-edge curve with each
edge parallel to an edge of Q).

Besides the polygon-polygon and curve-polygon mating problems mentioned
in this paper, the curve-curve mating problem (also in the sense to construct a
simple polyhedron) is also well-defined and has potential applications too. To
the knowledge of the author, no previous study exists on this mating problem.

References

1. Barequet, G., Steiner, A.: On the matability of polygons. Int. J. Comput. Geom.
Appl. 18, 469–506 (2008)

2. Biedl, T., Bulatovic, P., Irvine, V. Lubiw, A., Merkel, O., Naredla, A.M.: Recon-
structing a polyhedron between polygons in parallel slices. In: 31st Canadian Con-
ference on Computational Geometry, pp. 139–145. Edmonton, Alberta (2019)

3. Christiansen, H.N., Sederberg, T.W.: Conversion of complex contour line defini-
tions into polygonal element mosaics. Comput. Graphics 13, 187–192 (1978)

4. Fuchs, H., Kedem, Z.M., Uselton, S.P.: Optimal surface reconstruction from planar
contours. Commun. ACM 20, 693–702 (1977)

5. Gitlin, C., O’Rourke, J., Subramanian, V.: On reconstructing polyhedra from par-
allel slices. Int. J. Comput. Geom. Appl. 6, 103–122 (1996)

6. Guibas, L., Hershberger, J., Suri, S.: Morphing simple polygons. Discrete Comput.
Geom. 24, 1–34 (2000)

7. Keppel, E.: Approximating complex surface by triangulation of contour lines. IBM
J. Res. Dev. 19, 2–11 (1975)

8. O’Rourke, J.: On the scaling heuristic for reconstruction from slices. Graph. Model
Image Process. 56, 420–423 (1994)

9. Welzl, E., Wolfers, B.: Surface reconstruction between simple polygons via angle
criteria. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 397–408. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57273-2 75

10. Zou, M., Ju, T., Carr, N.: An algorithm for triangulating multiple 3D polygons.
Comput. Graph. Forum 32, 157–166 (2013)

https://doi.org/10.1007/3-540-57273-2_75

A Faster Parameterized Algorithm
for Bipartite 1-Sided Vertex Explosion

Yunlong Liu1(B) , Guang Xiao1, Ao Liu2, Di Wu3, and Jingui Huang1(B)

1 College of Information Science and Engineering, Hunan Provincial Key Laboratory
of Intelligent Computing and Language Information Processing,

Hunan Normal University, Changsha 410081, People’s Republic of China
{ylliu,xiaoguang,hjg}@hunnu.edu.cn

2 Xiangtan University, Xiangtan 411101, People’s Republic of China
hnsdxjp@163.com

3 School of Computer Science and Engineering, Central South University, Changsha
410083, People’s Republic of China

csuwudi@csu.edu.cn

Abstract. Given a bipartite graph G = (T ∪B,E), the problem bipar-
tite 1-sided vertex explosion is to decide whether there exists a pla-
nar 2-layer embedding of G after exploding at most k vertices of B. For
this problem, which is known to be NP-complete, parameterized algo-
rithms have received increasing attention more recently. In this paper, we
focus on the problem parameterized by the number k of allowed exploded
vertices of B and develop a faster algorithm for it. More specifically, we
show that this parameterized problem admits a kernel of at most 10.5k
vertices, and present a fixed-parameter tractable algorithm running in
time O(2.31k·m), where m is the number of edges of G.

Keywords: Vertex explosion · Planar embedding · Kernel · Branching

1 Introduction

Bipartite graphs are mostly used in modeling the relationships between two dis-
joint sets of entities. Typical examples include the 2-layer networks between two
communities [15], the tangle-gram layouts for comparing phylogenetic trees [16],
the representation for the relationship between human anatomical structures
and cell types [14], and so on. Drawing a bipartite graph G in a visualizable and
understandable way is then a primary step in these applications.

A 2-layer drawing of a bipartite graph G = (T ∪ B,E) is a drawing which
maps the vertices in T to points on a line and those in B to points on another
parallel line, and maps edges in E to straight-line segments connecting their

This research was supported in part by the National Natural Science Foundation of
China under Grant (No.61572190), Hunan Provincial Science and Technology Program
(No.2018TP1018), and Changsha Municipal Natural Science Foundation (Grant No.
kq2202247).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 253–266, 2024.
https://doi.org/10.1007/978-3-031-49614-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_19&domain=pdf
http://orcid.org/0000-0003-2686-5240
http://orcid.org/0000-0002-6965-7989
https://doi.org/10.1007/978-3-031-49614-1_19

254 Y. Liu et al.

respective end points [8]. In particular, a 2-layer drawing D of a bipartite graph
G is called a planar 2-layer embedding of G if there are no edge-crossings in D.

Deciding whether a given bipartite graph admits a planar 2-layer embedding
can be done in linear time [7]. When a bipartite graph doesn’t admit any planar
2-layer embedding, an alternative approach is to explode some of its vertices such
that the resulting graph does. Given a vertex v in a graph G, a vertex explosion
operation on v means replacing v by deg(v) vertices of degree 1, each incident
to exactly one edge that was originally incident to v, where deg(v) denotes the
degree of v in G [3]. Motivated by the fact that the two vertex sets of a bipartite
graph play different roles in some applications, the problem bipartite 1-sided
vertex explosion, where vertex explosion is confined to only one vertex set,
has been formulated in recent years [1,2,14].

More formally, the bipartite 1-sided vertex explosion problem asks,
for a given bipartite graph G = (T ∪ B,E), whether there is a planar 2-layer
embedding of G after exploding at most k vertices of B (abbreviated as BSVE).
Figure 1 gives a planar 2-layer embedding of a bipartite graph after exploding 2
vertices. The BSVE problem is known to be NP-complete [2,5].

1 2 3 4 5 6

a b c d e

2

a1 c1

1

a2 b

3

a3 c2 d e c4

4 5 6

c3

Fig. 1. A bipartite graph G (left) and a planer 2-layer embedding of G after exploding
2 vertices a and c (right).

Parameterized algorithms have recently been an efficient approach to deal
with many NP-hard problems in graph drawing [4,12,13]. In particular, param-
eterized algorithms for the BSVE problem have received attention more
recently [1,3]. When parameterized by the number of allowed exploded vertices,
its parameterized version can be formally defined as follows [1].

bipartite 1-sided vertex explosion (p-BSVE)
Input: A bipartite graph G = (T ∪ B,E), a positive integer k;
Parameter: k;
Task: Decide whether there is a planar 2-layer embedding of G after exploding
at most k vertices of B?

For the p-BSVE problem, Ahmed et al. [1] showed a kernel of at most O(k6)
vertices, which results in a parameterized algorithm with running time 2O(k6)·m,
where m is the number of edges of G. More recently, Baumann et al. [3] studied

A Faster Parameterized Algorithm 255

this problem in a more general setting (named as POVE), i.e., for an undirected
graph G = (V,E), a set S ⊆ V , and a positive integer k, decide whether there
exists a set W ⊆ S with |W | ≤ k such that the graph resulting from exploding
all vertices in W admits a 2-layer drawing without crossings. They showed a
kernel of at most 16k2 +16k vertices and a branching algorithm of running time
O(4k·m) for the POVE problem.

Improving the running time of the algorithm for the p-BSVE problem was
posed as an open question [1]. Baumann et al.’s algorithm [3] was proposed
with respect to a more general setting. Thus, we further study the p-BSVE
problem and aim to propose a faster algorithm by exploiting the special proper-
ties of bipartite graphs. In this paper, we present an algorithm running in time
O(2.31k·m), where m is the number of edges of G. Our algorithm consists of
the following two parts:

1. We show a kernel of at most 10.5k vertices. Our work on kernelization includes
making a more refined analysis on some reduction rules proposed by Ahmed
et al. [1], employing the strategy used by Baumann et al. [3] to shorten each
long path to constant size, and introducing a new reduction rule to eliminate
a type of special substructures. The kernelization procedure is not only the
basis of our algorithm, but also has much independent interest.

2. We present a series of efficient branching rules. In particular, we propose a
novel approach to derive these rules, in which we first reduce the instance
exhaustively such that multiple forbidden substructures stay close to each
other, and then exploit the relationship among them.

2 Terminology and Notations

We consider only undirected simple bipartite graphs without isolated vertices.
Let G = (T ∪ B,E) be a bipartite graph, where T is the set of top vertices
and B is the set of bottom vertices. We also denote by V (G) and E(G) the set
of its vertices and edges, respectively. For a vertex v ∈ V (G), we use N(v) to
denote the set of neighbors of v, N2(v) to denote the set of vertices, excluding
{v} ∪ N(v), that are adjacent to a vertex in N(v), and deg(v) to denote the
degree of v. For a subset S ⊂ V (G), we denote by N(S) =

⋃
v∈S N(v) \ S. A

vertex u ∈ N(v) is called a pendant neighbor of v if u has degree 1. For a vertex
v ∈ V (G), we let deg∗(v) = |{u | u ∈ N(v) and deg(u) > 1}| denote the degree
of v ignoring its pendent neighbors. If deg∗(v) = d, we refer to v as a vertex
of degree∗ d. An edge e connecting two vertices u and v is denoted by uv. A
path P connecting two endpoints u and v is denoted by Puv. Moreover, we call
a bipartite graph G as an empty graph if V (G) = ∅.

Given two sets A and B, we use A \B to denote the set of all elements that
belong to A but not to B, |A| to denote the number of elements in A. Given
a graph G and any vertex v ∈ V (G), we use G − v to denote the subgraph of
G obtained by removing the vertex v together with all the edges incident to it
from G.

256 Y. Liu et al.

We use a series of reduction rules and branching rules for the presentation of
our search tree algorithm. For an instance (G, k) of the p-BSVE problem, we say
that a reduction rule R1 is safe if R1 reduces (G, k) to (G′, k′) such that (G, k) is
a yes-instance if and only if (G′, k′) is. Given an instance (G, k), a branching rule
R2 creates t ≥ 2 subinstances (G′

1, k
′
1),. . . , (G

′
t, k

′
t). We also say that the rule R2

is safe if (G, k) is a yes-instance if and only if (G′
i, k

′
i) is for some 1 ≤ i ≤ t. We

also use the branching number to describe the base of the (exponential) search
tree size, which can be computed using standard branching analysis tools [6].

Because of the space limit, most of the proofs are deferred to a full version.

3 Linear Kernel

For the p-BSVE problem, Ahmed et al. [1] gave a kernel of at most O(k6)
vertices. Baumann et al. [3] obtained a kernel of at most 16k2 + 16k vertices
for a more general version of it. To obtain a smaller kernel, we will follow the
work done by Ahmed et al. [1] and conduct a further investigation, which includes
making a more refined analysis on the number of vertices in the reduced instance,
employing the technique used by Baumann et al. [3] to shorten the long paths,
and introducing a new reduction rule to eliminate a type of special substructures.

We start with restating some reduction rules introduced by Ahmed et al. [1].
For a given instance (G0 = (T0 ∪ B0, E0), k0), let B0,tr = {v | v ∈ B0 and
deg∗(v) ≥ 3}. Obviously, each vertex in B0,tr must be exploded.

Reduction Rule 1 ([1]). Remove the vertices in B0,tr from graph G0 and let
k1 = k0 − |B0,tr|.

Denote by G1 = (T1 ∪ B1, E1) the graph obtained from G0 by executing
Reduction Rule 1.

Reduction Rule 2 ([1]). Let v ∈ T1 ∪ B1 be a vertex with deg(v) = 1 and let
u be the unique neighbor of v in G1. If deg(u)≥ 3, then remove v from G1. The
new instance is (G1 − v, k1).

After executing Reduction Rule 2 exhaustively, we denote by (G2 = (T2 ∪
B2, E2), k2) the resulting instance, where k2 = k1. Note that for each vertex
u ∈ B2, the degree of u is at most 2.

For the graph G2, Ahmed et al. [1] showed a degree bound on the vertices
in T2. Namely, for each vertex v ∈ T2, it holds that deg(v) ≤ k2 + 2 if there
exists a planar 2-layer drawing of G2 with at most k2 exploded vertices [1].
Let T2,deg(v)≥3 be the set of all vertices of degree at least three in T2. Ahmed
et al. [1] also obtained a bound on the number of vertices in T2,deg(v)≥3.

Lemma 1. ([1]) It holds that |T2,deg(v)≥3| ≤ 2k2 if there exists a planar 2-layer
drawing of G2 with at most k2 exploded vertices.

Based on the degree bound on the vertices in T2 and Lemma 1, Ahmed
et al. [1] claimed that |N(T2,deg(v)≥3)| ≤ 2k2 · (k2 + 2) if (G2, k2) is a yes-
instance. Herein, by making an analysis from a different perspective, we obtain
an improved upper bound for it.

A Faster Parameterized Algorithm 257

Lemma 2. In graph G2, the set N(T2,deg(v)≥3) has at most 5k2 vertices if there
exists a planar 2-layer embedding of G2 with at most k2 exploded vertices.

Proof. Assume that G2 = (T2∪B2, E2) admits a planar 2-layer embedding E after
exploding at most k2 vertices of B2. Let v be an arbitrary vertex in T2,deg(v)≥3.
According to Reduction Rule 2, vertex v has not any pendent neighbors in
B2, therefore, to obtain a planar 2-layer embedding of G2, all but at most two
neighbors of v must be exploded. In other words, vertex v has at most 2 neighbors
that are not exploded in E . Therefore, by Lemma 1, N(T2,deg(v)≥3) contains at
most 2k2×2 = 4k2 vertices that are not exploded in E . Suppose for contradiction
that N(T2,deg(v)≥3) contains at least 5k2+1 vertices. Then, at least (5k2+1)−4k2
= k2 + 1 vertices in N(T2,deg(v)≥3) must be exploded, which contradicts the
assumption that G2 has at most k2 exploded vertices. 	

Let C denote the set of vertices in T2,deg(v)≥3

⋃
N(T2,deg(v)≥3). The subgraph

induced by the vertices in C is called the core of G2 [1]. Observe that some
vertices in (T2 ∪ B2) \ C induce some isolated cycles or paths (i.e., these cycles
or paths are not connected to the core of G2). Let I1 (resp. I2) be the set of
isolated cycles (resp. paths) induced by some vertices in (T2∪B2)\C. Each cycle
in I1 and each path in I2 can be handled separately.

Reduction Rule 3.
3.1 For each cycle l ∈ I1 do : remove l; take one vertex v ∈ B2 on l as an

exploded vertex; set k2 = k2 − 1 ([1]).
3.2 For each path in I2, we remove it separately.
Denote by (G3 = (T3 ∪ B3, E3), k3) the instance resulted from (G2, k2) by

executing Reduction Rule 3 exhaustively. Let P be the set of paths induced by
some vertices in V (G3) \ T3,deg(v)≥3 and connected to the core of G3. Note that
the core of G3 is also that of G2. Now, we deal with the long paths in P. In
dealing with each such path p ∈ P, we employ the technique used by Baumann
et al. [3], i.e., shortening each path to constant size. Since the input graph in the
p-BSVE problem is a bipartite graph, our rule is more straight-forward.

We divide the paths in P into two classes. The first class, denoted by P1,
consists of the paths whose two endpoints lie in N(T3,deg(v)≥3). The second class,
denoted by P2, consists of those in P\ P1. Let Puv ∈ P be a path connecting
endpoints u and v.

Reduction Rule 4 illustrated in Fig. 2.
4.1 If Puv ∈ P1 has length at least 4, then shorten Puv until Puv has length

2, i.e., iteratively remove one of the middle vertices of Puv and identify its two
neighbors.

4.2 If Puv ∈ P2 has length at least 2, then shorten Puv until it has length
1, i.e., for the path Puv, remove all vertices but u and w, where w is the first
neighbor of u on Puv.

Denote by (G4 = (T4∪B4, E4), k4) the instance resulted from (G3, k3) by exe-
cuting Reduction Rule 4 exhaustively, where k4 = k3. For the instance (G4, k4),
we have the following lemma.

258 Y. Liu et al.

Fig. 2. A path Puv ∈ P1 of length 8 is reduced to one of length 2 (left) and another
path Puv ∈ P2 of length 8 is reduced to one of length 1 (right).

Lemma 3. (G4, k4) is a yes-instance of the p-BSVE problem if and only if
(G3, k3) is a yes-instance of the p-BSVE problem.

We now introduce a new reduction rule for eliminating a type of special
substructures that may be contained in graph G4.

Reduction Rule 5. Let r ∈ T4,deg(v)≥3 have h neighbors of degree 2 and let S
= {t | t ∈ N2(r) and 1 ≤ deg(t) − |N(r) ∩N(t)| ≤ 2}. If there exist at least two
vertices of degree 2 in N(r), say s1 and s2, such that deg∗(s1) = 1 and deg∗(s2)
= 1 respectively, then put the vertices in N(r)\{s1, s2} into the solution set, set
k4 = k4 − (h − 2), and delete all vertices in {r} ∪ N(r). Furthermore, for each
vertex v ∈ S, if a new isolated path or cycle (resp. an unisolated path) passing
through v still occurs in the current graph, then deal with it by using Reduction
Rule 3 (resp. Reduction Rule 4). See Fig. 3 for an illustration.

Fig. 3. An example for Reduction Rule 5. Here, graph Gb is obtained from graph Ga

by deleting all vertices in {r}∪N(r); graph Gc is obtained from graph Gb by shortening
the path Pt1t3 .

Lemma 4. Reduction Rule 5 is safe.

Denote by (G5 = (T5 ∪ B5, E5), k5) the instance resulted from (G4, k4) by
executing Reduction Rule 5 exhaustively. Based on Lemma 4, we obtain a linear
kernel for the p-BSVE problem.

Theorem 1. The p-BSVE problem admits a kernel with at most 10.5k0 vertices.

Proof. Let (G5 = (T5∪B5, E5), k5) be a reduced instance of the p-BSVE problem.
Denote by T5,deg(v)≥3 the set of all vertices of degree at least 3 in T5. By Lemma 1
and 2, the set C in G5, i.e., T5,deg(v)≥3

⋃
N(T5,deg(v)≥3), contains at most 2k5 +

5k5 = 7k5 vertices. Next, we bound the number of vertices in V (G5) \ C by
estimating the number of paths in P1 ∪ P2 induced by some vertices in V (G5) \

A Faster Parameterized Algorithm 259

T5,deg(v)≥3. By Lemma 2, it holds that |N(T5,deg(v)≥3)| ≤ 5k5. Observe that for
each path in P2, only one endpoint lies in N(T5,deg(v)≥3). Instead, for each path
in P1, both endpoints lie in N(T5,deg(v)≥3). Thus, |P1∪P2| achieves its maximum
value only if |P2| achieves its maximum value. Furthermore, since G5 has been
processed by Reduction Rules 5, each vertex in T5,deg(v)≥3 has at most one
neighbor serving as an endpoint of a path in P2. Thus, the maximum value for
|P2| is 2k5. When |P2| = 2k5, it holds that |P1| = (5k5−2k5)/2 = 1.5k5. Moreover,
after being reduced by Reduction Rule 4, each path in P1 ∪ P2 contains only
one vertex in V (G5) \C. It follows that |V (G5) \C| ≤ (2k5 +1.5k5)× 1 = 3.5k5,
which means that |V (G5)| ≤ 7k5 + 3.5k5 = 10.5k5 ≤ 10.5k0. 	

4 Efficient Branching Rules

Let (G = (T ∪B,E), k) be an instance reduced by the reduction rules in Sect. 3
exhaustively. In this section, we present a processing rule and several efficient
branching rules on graph G. To facilitate the description of these rules, we intro-
duce a special subgraph named W2 as follows.

Formally, a W2 substructure is a bipartite subgraph consisting of a root vertex
r adjacent to three distinct vertices of degree 2. See Fig. 4 (a) for an example.
We use r(s1, s2, s3) to denote the W2 substructure rooted by r that has three
neighbors s1, s2 and s3. Given a bipartite graph (T ∪B,E) containing a W2 sub-
structure r(s1, s2, s3), we from now on assume that r ∈ T . The W2 substructure
is a variant of N2 substructure introduced by Baumann et al. [3] with respect
to the bipartite graphs. It can be easily inferred from [3] that a bipartite graph
G admits a planar 2-layer embedding if and only if G is acyclic and contains
no W2 substructure. Hence, the functions of our processing rule and branching
rules are to eliminate the cycles and the W2 substructures in G.

r

s1 s2

t r

s1 s2 s3 s4 s5

r

s1 s2 s3
(c)(a) (b)

Fig. 4. A subgraph W2 (a), a situation for Processing Rule 1 (b), and a situation for
Branching Rule 2 (c).

Considering the description of our rules in graphs without any cycle C4

becomes more concise, we first present a rule to eliminate the C4 in G. We
still denote by Tdeg(v)≥3 the set of all vertices of degree at least three in T .

Processing Rule 1. Let r, s1, t, and s2 induce a cycle C4 in G, where r ∈
Tdeg(v)≥3. Then, eliminating this C4 can be done by arbitrarily exploding one
vertex in {s1, s2}, and the parameter k is decreased by 1. See Fig. 4 (b) for an
illustration.

260 Y. Liu et al.

Lemma 5. Processing Rule 1 is safe. Moreover, one can find a C4 in G (if
exists) in time O(m), where m is the number of edges of G.

Let r ∈ Tdeg(v)≥3. Assume that r has h (for h ≥ 3) neighbors of degree 2.
Since only at most 2 neighbors of r can be safely drawn in any planar 2-layer
embedding of G, h − 2 neighbors of r must be simultaneously exploded. In the
following, we distinguish three cases to deal with the neighbors of r based on
the degree h.

Case 1: h ≥ 5, namely, r has at least 5 neighbors of degree 2.

Branching Rule 2. Let r have h (for h ≥ 5) neighbors of degree 2. Then,
eliminating the subgraph induced by vertices in {r}∪N(r)∪N2(r) can be done
by

(
h

h−2

)
ways, i.e., enumerating all possible ways of exploding h − 2 vertices

among the h neighbors, and the parameter k is decreased by h− 2 in each case.
Figure 4 (c) gives one way for exploding 3 neighbors of a vertex with degree 5.

Lemma 6. Branching Rule 2 is safe, and the corresponding branching number
is at most 2.16.

Case 2: h = 4, namely, r has exactly 4 neighbors of degree 2.
In this case, if we directly deal with them using the same approach as Branch-

ing Rule 2, then the branching number is at least 2.44. To improve the branching
number, we now propose a novel branching rule for them.

For ease of presentation, we from now on use the notation exploding (v1, v2)
to denote exploding both v1 and v2 at the same time.

Branching Rule 3. Let r have exactly 4 neighbors of degree 2, say s1, s2, s3,
and s4. Then, eliminating the subgraph induced by vertices in {r}∪N(r)∪N2(r)
can be done by exploding s1, exploding (s2, s3), exploding (s2, s4), or exploding
(s3, s4), decrease parameter 1 for the first case and 2 for other three cases. See
Fig. 5 for an illustration.

r

s1 s2 s3 s4
(a)

r

s1 s2 s3 s4
(b)

r

s1 s2 s3 s4
(c)

r

s1 s2 s3 s4
(d)

Fig. 5. Four branches in Branching Rule 3.

Note that in the resulting graph G′ obtained from G by exploding s1, the
vertex r still has three neighbors of degree 2, which is forbidden in any planar
2-layer embedding of G′. The task of exploding another neighbor of r is moved
to case 3, which contains the special rules dealing with the vertices of degree∗ 3.

Lemma 7. Branching Rule 3 is safe, and the corresponding branching number
is at most 2.31.

A Faster Parameterized Algorithm 261

Case 3: h = 3, namely, r has exactly three neighbors of degree 2.
If we use s1, s2 and s3 to denote the neighbors of r, then the subgraph induced

by vertices in {r}∪N(r)∪N2(r) is exactly a W2 substructure and can be denoted
by r(s1, s2, s3). Given a W2 substructure r(s1, s2, s3), there are 3 basic ways to
eliminate it, namely, exploding s1, exploding s2, and exploding s3. To derive
more efficient branching rules, we present a novel strategy that is quite distinct
from some popular approaches in [9–11].

We deal with the instance by using a series of reduction rules and simple
branching rules exhaustively such that the resulting graph becomes a special
combinatorial structure, where distinct W2 substructures stay close to each
other. When eliminating multiple W2 substructures, we can find some redun-
dant solutions that can be safely discarded, which leads to some more efficient
branching rules.

In the following, we first introduce a simple branching rule to deal with a
type of substructures containing a single W2.

Branching Rule 4.1. Let r(s1, s2, s3) be a W2 substructure in G such that
only s2 has one pendant neighbor t2. Then, eliminating this W2 substructure
can be done by two branches: exploding s1 and exploding s3. The parameter k
is decreased by 1 in each case.

Lemma 8. Branching Rule 4.1 is safe, and the branching number is 2.

Next, we introduce two branching rules to eliminate multiple W2 substruc-
tures simultaneously.

Given two W2 substructures r1(s1, s2, s3) and r2(p1, p2, p3), we define two
structure relationships between them. (1) Two W2 substructures r1(s1, s2, s3)
and r2(p1, p2, p3) are called jointed with each other if {s1, s2, s3}∩ {p1, p2, p3} �=
∅. See Fig. 6 (a) for an example. (2) Two W2 substructures r1(s1, s2, s3) and
r2(p1, p2, p3) are called adjacent to each other if there exists at least one vertex
s ∈ {s1, s2, s3} and at least one vertex p ∈ {p1, p2, p3} such that N(s) \ {r1} =
N(p) \ {r2}. Specifically, r1(s1, s2, s3) and r2(p1, p2, p3) are called adjacent by
(si, pj) if N(si) \ {r1} = N(pj) \ {r2}, where 1 ≤ i, j ≤ 3. Figure 6 (b) gives
two W2 substructures adjacent by (s3, p1). Note that it is possible that two W2

substructures are both jointed and adjacent. Figure 6 (c) gives an example.

r1 r2

s1 s2 s3 p1 p2 p3

r1

s1 s2

s3

p1 p2

r2
r1 r2

s1 s2 s3(p1)p2 p3
(a) (b) (c)

t

Fig. 6. (a) Two W2 substructures are jointed with each other; (b) two W2 substructures
are adjacent to each other; and (c) two W2 substructures are both jointed and adjacent.

Given two adjacent W2 substructures, we have the following observation.

262 Y. Liu et al.

Lemma 9. Let r1(s1, s2, s3) and r2(p1, p2, p3) be two W2 substructures in G
such that they are adjacent by (s3, p1). If there exists a planar 2-layer embedding
E1 of G1 obtained from G by exploding (s3, p1), then there exists a planar 2-layer
embedding E2 of G2 obtained from G by exploding (s3, p2) and a planar 2-layer
embedding E3 of G3 obtained from G by exploding (s3, p3).

Based on Lemma 9, we now introduce an efficient branching rule for the
structure which consists of two adjacent W2 substructures.

Branching Rule 4.2. Let r1(s1, s2, s3) and r2(p1, p2, p3) be adjacent by (s3, p1).

(1) If |N(r1)∪N(r2)| = 5, then eliminating both r1(s1, s2, s3) and r2(p1, p2, p3)
can be determinately done by exploding the vertex in N(r1) ∩ N(r2). See
Fig. 6 (c) for an example, in which s3 is exploded.

(2) Otherwise, namely, |N(r1)∪N(r2)| = 6, then eliminating both r1(s1, s2, s3)
and r2(p1, p2, p3) can be done by four branches. See Fig. 6 (b) for an exam-
ple, in which the branches consist of exploding (s1, p2), exploding (s1, p3),
exploding (s2, p2), and exploding (s2, p3)1.

Lemma 10. Branching Rule 4.2 is safe, and the corresponding branching num-
ber is at most 2.

An instance is called an exhaustively processed instance if it has been pro-
cessed by Reduction Rules 1–5, Processing Rule 1, and Branching Rules 2, 3,
4.1, 4.2 exhaustively. In an exhaustively processed instance, the W2 substruc-
tures stay close to each other. More precisely, given a W2 substructure, it is
jointed with three W2 substructures at the same time (we will later show it in
Lemma 12).

Based on Branching Rule 4.2, we can eliminate four W2 substructures simul-
taneously in an exhaustively processed instance, which leads to another efficient
branching rule. Let r1(s1, s2, s3) be a W2 substructure. Assume that it is jointed
with r2(p1, p2, p3), r3(q1, q2, q3), and r4(t1, t2, t3) at the same time. Based on
the number of vertices in N(r2) ∪ N(r3) ∪ N(r4) \ N(r1), we distinguish four
combinatorial structures among them. See Fig. 7 for an illustration.

r1
r2 r3

s1
s2

s3

p2

p1 q1

r1r2 r3
s1

s2

s3

p2

p1
q1

t1

r1
r2 r3

r4

s1
s2

s3

p2

r4r4

q1
t1

p1
t2

r1r2 r3

r4

s1
s2

s3 q1
t1

p1
t2

p2 q2

(a) (b) (c) (d)

Fig. 7. Four combinatorial structures in which a W2 substructure is jointed with other
three W2 substructures at the same time.

Branching Rule 4.3. Let r1(s1, s2, s3) be jointed with three W2 substructures
simultaneously, say r2(p1, p2, p3), r3(q1, q2, q3), and r4(t1, t2, t3).
1 For brevity, we only present this general rule, although there are some more refined

rules for special subcases including |N2(r1) ∩ N2(r2)| = i, for i = 2 or i = 3.

A Faster Parameterized Algorithm 263

(1) If |N(r2)∪N(r3)∪N(r4) \N(r1)| = 3, then eliminating these W2 substruc-
tures can be determinately done by exploding three vertices. See Fig. 7 (a)
for an example, in which exploding (s1, p1, q1) is done.

(2) If |N(r2)∪N(r3)∪N(r4) \N(r1)| = 4, then eliminating these W2 substruc-
tures can be determinately done by exploding two vertices. See Fig. 7 (b)
for an example, in which exploding (s2, p2) is done.

(3) If |N(r2)∪N(r3)∪N(r4) \N(r1)| = 5, then eliminating these W2 substruc-
tures can be done by 9 branches. See Fig. 7 (c) for an example, in which
the branches consist of exploding (s2, p2), exploding (s1, p2, t1), exploding
(s1, p2, t2), exploding (s1, q1, t1), exploding (s1, q1, t2), exploding (s3, p1, t1),
exploding (s3, p1, t2), exploding (s3, p2, t1), and exploding (s3, p2, t2).

(4) Otherwise, namely, |N(r2) ∪ N(r3) ∪ N(r4) \ N(r1)| = 6, then eliminating
these W2 substructures can be done by 12 branches. See Fig. 7 (d) for an
example, in which the branches consist of exploding (s1, q1, t1), exploding
(s1, q1, t2), exploding (s1, q2, t1), exploding (s1, q2, t2), exploding (s2, p1, q1),
exploding (s2, p1, q2), exploding (s2, p2, q1), exploding (s2, p2, q2), explod-
ing (s3, p1, t1), exploding (s3, p1, t2), exploding (s3, p2, t1), and exploding
(s3, p2, t2).

Lemma 11. Branching Rule 4.3 is safe, and the branching number is bounded
by 2.29.

5 A Whole Parameterized Algorithm

On the algorithms for the p-BSVE problem, Ahmed et al. [1] directly used a
brute-force searching on the kernel, which runs in time 2O(k6)·m, where m is the
number of edges of the input graph. More recently, in studying a general version
of this problem, Baumann et al. [3] employed a basic branch-and-bound process
to eliminate a kind of forbidden substructures, which runs in time O(4k·m).

Now, we combine the kernelization procedure consisting of all reduction rules
in Sect. 3 and the branch-and-bound process consisting of the processing rule
and all branching rules in Sect. 4, which leads to an algorithm of running time
O(2.31k·m). Figure 8 describes the main steps of our algorithm. Herein, the
reduction rules include all rules in Sect. 3, which are executed in the order they
appear; Rules 1–4.3 stand for the corresponding rules in Sect. 4.

To guarantee step 3.6 would go smoothly, we give the following lemma.

Lemma 12. Let r1(s1, s2, s3) be a W2 substructure in an exhaustively processed
instance (G = (T ∪ B,E), k). Then, for each i (1 ≤ i ≤ 3), one can always find
another W2 substructure Xi such that r1(s1, s2, s3) and Xi are jointed with each
other. Moreover, all root vertices on X1,X2, and X3 are distinct.

Proof. We first show that one can find another W2 substructure X1 from s1 such
that r1(s1, s2, s3) and X1 are jointed with each other. Since s1 ∈ B, s1 has degree
2. Assume that N(s1) \ {r1} = {u}, where u ∈ T . If u has degree 1, then it has
been processed by Reduction Rule 5 or Branching Rule 4.1. If the degree of u is

264 Y. Liu et al.

Fig. 8. A parameterized algorithm for the p-BSVE problem.

more than 3, then it has been processed by Branching Rule 2 or 3. In the following,
we argue that u does not have degree 2. Assume towards a contradiction that u
has degree 2. Let N(u) \ {s1} = {w}, where w ∈ B. Note that w has degree 2.
If w ∈ N(r1) \ {s1}, then u has been processed by Processing Rule 1. Otherwise,
namely, w /∈ N(r1) \ {s1}, let N(w) \ {u} = {v}. If the degree of v is more than
3, then it has also been processed by Branching Rule 2 or 3. Since G has been
exhaustively reduced by Reduction Rule 4, vertex v does not have degree 2 or 1. If v
has degree 3, then {v}∪N(v)∪N2(v) induce aW2 substructureX such thatX and
r1(s1, s2, s3) are adjacent to each other, which leads to the executing of Branching
Rule 4.2. In a word, vertex u having degree 2 contradicts the assumption that G
is an exhaustively processed graph. Thus, vertex u must have degree 3 and can
be viewed as the root of another W2 substructure X1, say u(p1, p2, p3). Moreover,
{s1, s2, s3} ∩ {p1, p2, p3} = {s1}, namely, r1(s1, s2, s3) and X1 are jointed with
each other. Along the same line, one can also find a W2 substructure X2 (resp.
X3) from s2 (resp. s3) such that r1(s1, s2, s3) and X2 (resp. X3) are jointed with
each other. Moreover, since Processing Rule 1 has been executed, all root vertices
on X1,X2, and X3 are distinct. 	

As shown in Fig. 8, the instance at the beginning of step 3.6 has been
processed exhaustively. By Lemma 12, Branching Rule 4.3 will be executed
smoothly, which leads to the following conclusion.

Theorem 2. The algorithm EXPV(G, k) solves the p-BSVE problem in time
O(2.31k·m), where m is the number of edges of G.

6 Conclusion and Further Work

We show a kernel of at most 10.5k vertices and a parameterized algorithm of
running time O(2.31k·m) for the bipartite 1-sided vertex exploding prob-

A Faster Parameterized Algorithm 265

lem with respect to the number of exploded vertices, where m is the number of
edges of the input graph. Our algorithm consists of a kernelization procedure
and a branch-and-bound process, which work in an alternating fashion.

Some problems are interesting and deserve further research. (1) Our algo-
rithm may be further improved by exploiting more refined branching rules. (2)
We believe that our strategy for deriving branching rules can be applied to other
graph drawing problems.

Acknowledgements. The authors thank the anonymous referees for their valuable
comments and suggestions.

References

1. Ahmed, R., Kobourov, S., Kryven, M.: An FPT algorithm for bipartite vertex
splitting. In: Angelini P., Hanxleden R. von (eds.) Graph Drawing and Network
Visualization. GD 2022. LNCS, vol. 13764. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-22203-0 19

2. Ahmed, R., et al.: Splitting vertices in 2-layer graph drawings. IEEE Comput.
Graph. 43(3), 24–35 (2023)

3. Baumann, J., Pfretzschner, M., Rutter, I.: Parameterized complexity of vertex
splitting to pathwidth at most 1. In: Paulusma, D., Ries, B. (eds.) Graph-Theoretic
Concepts in Computer Science. WG 2023. LNCS, vol. 14093. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-43380-1 3

4. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms
for queue layouts. J. Graph Algorithms Appl. 26(3), 335–352 (2022)

5. Chaudhary, A., Chen, D.Z., Hu, X.S., Niemier, M.T., Ravichandran, R., Whitton,
K.: Fabricatable interconnect and molecular QCA circuits. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 26(11), 1978–1991 (2007)

6. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-21275-3

7. Eades, P., McKay, B.D., Wormald, N.C.: On an edge crossing problem. In: ACSC
1986, pp. 327–334 (1986)

8. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algo-
rithmica 11(4), 379–403 (1994)

9. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347
(2004)

10. Liu, Y., Wang, J., Guo, J., Chen, J.: Complexity and parameterized algorithms for
cograph editing. Theoret. Comput. Sci. 461, 45–54 (2012)

11. Liu, Y., Wang, J., You, J., Chen, J., Cao, Y.: Edge deletion problems: branching
facilitated by modular decomposition. Theoret. Comput. Sci. 573, 63–70 (2015)

12. Liu, Y., Chen, J., Huang, J., Wang, J.: On parameterized algorithms for fixed-
order book thickness with respect to the pathwidth of the vertex ordering. Theoret.
Comput. Sci. 873, 16–24 (2021)

13. Liu, Y., Chen, J., Huang, J.: On book thickness parameterized by the vertex cover
number. Sci. Chin. Inf. Sci. 65(4), 1–2 (2022). https://doi.org/10.1007/s11432-
021-3405-x

14. Paul, H., Börner, K., Herr II, B.W., Quardokus, E.M.: ASCT+B REPORTER.
https://hubmapconsortium.github.io/ccf-asct-reporter/. Accessed 06 June 2022

https://doi.org/10.1007/978-3-031-22203-0_19
https://doi.org/10.1007/978-3-031-22203-0_19
https://doi.org/10.1007/978-3-031-43380-1_3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s11432-021-3405-x
https://doi.org/10.1007/s11432-021-3405-x
https://hubmapconsortium.github.io/ccf-asct-reporter/.

266 Y. Liu et al.

15. Pezzotti, N., Fekete, J.D., Höllt, T., Lelieveldt, B.P.F., Eisemann, E., Vilanova, A.:
Multiscale visualization and exploration of large bipartite graphs. Comput. Graph.
Forum 37(3), 549–560 (2018)

16. Scornavacca, C., Zickmann, F., Huson, D.H.: Tanglegrams for rooted phylogenetic
trees and networks. Bioinformatics 27(13), i248–i256 (2011)

Multi-winner Approval Voting
with Grouped Voters

Yinghui Wen1(B), Chunjiao Song1, Aizhong Zhou2, and Jiong Guo1(B)

1 Shandong University, Qingdao, Shandong, China
{yhwen,chjsong}@mail.sdu.edu.cn, jguo@sdu.edu.cn
2 Ocean University of China, Qingdao, Shandong, China

zhouaizhong@ouc.edu.cn

Abstract. We consider the general case of approval-based committee
elections, where some attributes divide the voters into diverse groups
which vary in size. This scenario occurs in applications like the presi-
dential election, where voters come from different parties, or the student
board election at a university with students from different schools. How-
ever, all existing committee election rules either are derived for the single-
group case, or neglect the welfare of groups with few votes. Therefore,
new voting rules are needed for this setting. In this paper, We propose
two natural axioms for this setting, namely, small group benefited rep-
resentation (SGBR) and large group benefited representation (LGBR).
SGBR requires that if the committee size exceeds the number of groups,
at least one candidate approved by each group is in the winning commit-
tee. LGBR requires that the winning committee must have at least as
many candidates approved by a large group as by a small group. Based
on the axioms, we propose three models and investigate parameterized
complexity of the models with respect to various parameters. We show
that all models are fixed-parameter tractable (FPT) when parameter-
ized by the number n of votes, whereas they become fixed-parameter
intractable when parameterized by the size k of the committee or d of
the satisfaction bound.

Keywords: Parameterized Complexity · Voting Problems ·
Computational Social Choice

1 Introduction

Voting problems, which form a core topic in the field of artificial intelligence and
computational social choice [8,13], have great significance in serving as a tool
to aggregate conflicting preferences [8,13] and receive a considerable amount of
attention [28]. The axiomatic properties as well as algorithmic and computational
aspects of voting problems have been extensively studied [2,9], where voters
express their preferences over all candidates and the goal is to compute winners
according to voting rules. Herein, the most widely used and straightforward
voting rules are based on Approval Voting (AV), which is originally defined for
dichotomous votes, where each vote assigns an approval to each of her favorite
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 267–278, 2024.
https://doi.org/10.1007/978-3-031-49614-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_20&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_20

268 Y. Wen et al.

candidates and all other candidates receive disapproval. The winner set consists
of those candidates who receive the most approvals.

AV has many desirable properties in single-winner case including simplicity,
monotonicity and robustness against manipulation [5,17]. But it becomes less
favorable for the case of multiple winners and the most significant drawback is the
lack of egalitarian [20]. Attempting to address fairness when using AV for multi-
winner voting, some variants of AV have been introduced in the literature [20].
Among them are Proportional Approval Voting (PAV) [27], Satisfaction Approval
Voting (SAV) [7], Approval Chamberlin-Courant Voting (CCAV) [12,27], and
Minimax approval voting (MAV) [6]. The AV, SAV, PAV, and CCAV use a score
to represent each vote’s satisfaction with respect to the committee, and MAV
use a score to represent each vote’s dissatisfaction with respect to the commit-
tee. The goal is to select a committee, which maximizes the sum of all votes’
satisfaction scores for AV, SAV, PAV, and CCAV, or minimizes the maximum
of all votes’ dissatisfaction scores for MAV. Among the rules, only AV and SAV
are polynomial-time solvable the others are NP-hard [2,22,25].

Most of previous researches of committee elections consider each voter as an
individual, who is independent of other voters and there is no relation among
the voters. However, we often have the scenario in real-world applications, where
every voter belongs to a group due to some attributes, which can be formulated
as committee election problems with vote attributes. Below we describe several
scenarios.

Student Board Election. The first example is the student board election of a
university. Here, students are voters and the schools or departments they belong
to define an attribute of the voters.

International Sports Election. The second one is people from different coun-
tries try to elect a sort of place to hold an international sports event, where each
voter has a natural attribute that the country he comes from.

Favorite Singers and Best Film. In some TV shows, like The Singer, audi-
ences are asked to vote for TOP3 favorite singers and the audiences from different
ages may like different kind of singers. Similarly, for the election of the best film
of the year with votes being given by different film websites, voters from the
same website may have the same taste.

Under these scenarios, voters are partitioned into different groups according
to these attributes. The groups might admit significantly different sizes. In the
first example, a medical school normally has thousands of students, while less
than a hundred students are enrolled in a school of sport sciences. Obviously,
the rules for committee elections without voter attributes are not appropriate
for this application. For example, if PAV is applied, then the opinion of the sport
sciences students might be completely ignored.

Some researches considered the case where the candidates are defined by
some attributes and the goal is to select a committee that for each attribute
offers a certain representation [4,10,11,18,21]. While, there are few researches
consider the case of committee elections, where the voters are associated with

Multi-winner Approval Voting with Grouped Voters 269

some attributes. In addition, a lot of axioms studied these years only focus on the
welfare of large groups, the welfare of a group with few voters always be neglected
[1,16]. For instance, Justified Representation (JR) is introduced to make sure
that if a large enough group of voters exhibits agreement by supporting the
same candidate, then at least one voter in this group has an approved candidate
in the winning committee.

Therefore, new voting rules are needed for this setting, which takes the fol-
lowing consideration into account: (1) Even small groups have the right to be
represented in the committee. (2) Candidates approved by a large group have no
less chance to be members of the committee than that approved by a small group.
We formally define the two axioms in Sect. 2, namely, Small group benefited rep-
resentation (SGBR) and Large group benefited representation (LGBR). Based on
the above two goals, we propose three models, namely, Group Representative-σ-π
(GR-σ-π), Group Average-π (GA-π), and Group Egalitarian-π (GE-π).

GR-σ-π. With π ∈ {AV, SAV, PAV, CCAV, MAV}, this voting rule can be
thought as having two rounds. To be more specific, we first use an internal
election rule σ to select or construct a set of votes for each group based on the
votes in the group, which will serve as that group’s representation, called the
representative votes of the group. Then, based on the representative votes of all
groups, we use a voting rule π to select a winning committee.

GA-π. With π ∈ {SAV, PAV, CCAV, MAV}, this rule uses the average sat-
isfaction of the votes in a group as the satisfaction of that group. More pre-
cisely, use the average π-score of the votes in a group as the π-score of that
group. Then, find a committee maximizes the minimum score of all groups for
π ∈ {SAV, PAV, CCAV}, or a committee minimizes the maximum score of all
groups.

GE-π. Despite having rules that satisfy at least one of the LGBR and SGBR
as we will show in Sect. 3, GR-σ-π and GA-π both have shortcomings. In GR-
σ-π, the satisfaction of minorities in a group is ignored; more specifically, a
group member whose approved candidates differ from the majority’s of the group
may not be taken into account. In GA-π with π ∈ {PAV, CCAV}, if a group
contains some individuals whose choices for candidates differ from those of the
majority, the group’s score is likely to be lower. Here, we design two voting
rules to overcome these drawbacks, called Group Egalitarian-PAV (GE-PAV)
and Group Egalitarian-CCAV (GE-CCAV), such that a minority’s opinion does
not lead to a decrease in the group’s score, and furthermore, an increase in
the group’s score if the candidates approved by minorities are members of the
winning committee.

Related Work. The goal of selecting a subset of candidates with different
attributes under fairness constraints has recently been the focus of a lot of
research [4,10,11,18,21]. Fairness constraints are typically captured by abso-
lute upper bounds and/or lower bounds on the number of selected candidates in
specific attributes, or proportional representative of selected candidates in spe-
cific attribute. In contrast to our setup where the groups of voters are provided

270 Y. Wen et al.

in the input, Talmon [26] and Faliszewski and Talmon [15] studied the question
of how to partition the votes into disjoint groups. A vertex-labeled graph with
each vertex representing a vote is provided as input; the task is to divide the
graph into disjoint groups and assign a member of the committee to each group,
so that each vote is represented by one of her preferred alternatives. The axioms
that concern the fairness of groups of votes also been studied these years, namely,
Justified Representation (JR) [1], Extended Justified Representation (EJR) [1]
and Proportional Justified Representation (PJR) [16]. They concentrate on the
scenario where a number of voters supporting the same candidates form a group,
and at least a certain number of voters in this group has an approved candidate
in the winning committee. While, the welfare of a group with few voters might
be neglected. For instance, PAV satisfies all the axioms but fails to fulfil the
SGBR, the small group benefited representation.

2 Preliminaries

In this section, we introduce the definitions and notations used in our models for
the committee elections with grouped voters. A committee election with grouped
voters can be denoted as E = (C, V, ζ), where C = {c1, c2, . . . , cm} is the set
of the candidates, V = {v1, v2, . . . , vn} is a list of voters represented by their
votes, and ζ = {G1, G2, . . . , G�} denotes the set of groups with Gi

⋂
Gj = ∅ and

⋃�
i=1 Gi = V . In this paper, we interchangeably use the terms vote and voter.

The number of the votes in a certain group Gi ∈ ζ is denoted as |Gi| = |{v |
v ∈ Gi}|. We focus on approval votes, where an approval vote vi ∈ V can be
considered as a {0, 1}-vector of length m. The x-th position of vi is denoted as
vi[x] with vi[x] ∈ {0, 1}, where vi[x] = 1 (or 0) means that the candidate cx is
approved (or disapproved) by vi. Given a vote v ∈ V and a subset of candidates
C ′ ⊆ C, we let v ∩ C ′ denote the set of candidates approved by v in C ′. Let
k be a non-negative integer. A k-committee is a k-size subset of candidates. A
k-committee selection rule maps each election (C, V) and every non-negative
integer k with k ≤ |C| to a collection of k-committees of C with the winning
k-committees of (C, V) having the optimal scores under this rule.

2.1 Approval Voting Rules

We first introduce some important approval-based multi-winner voting rules,
namely, AV, SAV, PAV, CCAV, and MAV. With respect to each rule, each k-
subset of C receives a score and the winning k-committees are those with the
desired score.

Under AV , the score of a candidate c ∈ C, denoted as AV(c), is the number
of votes approving c. Given a subset C ′ ⊆ C, AV(C ′) =

∑
c∈C′ AV(c). Under

the SAV, PAV, CCAV, and MAV, given a subset C ′ ⊆ C and a vote v ∈ V ,
the scores with respect to C ′ and v are set as follows. SAV(v, C ′) = |v∩C′|

|v| .
PAV(v,W) = 1 + 1

2 + · · · + 1
|v∩C′| . If v ∩ C ′ �= ∅, CCAV(v, C ′) = 1; otherwise,

Multi-winner Approval Voting with Grouped Voters 271

CCAV(v, C ′) = 0. SAV(v,W) = H(v, C ′) with H being the Hamming distance
between v and C ′, that is, H(v, C ′) = |Cv \ C ′| + |C ′ \ Cv| with Cv being the
candidates approved by v.

Given a vote set V ′ ∈ V and a candidate set C ′ ∈ C, the score with respect
to V ′ and C ′ is set as π(V ′, C ′) =

∑
v∈V ′ π(v, C ′) with π being SAV, PAV, and

CCAV. For MAV, we have MAV(V ′, C ′) = maxv∈V ′ MAV(v, C ′).
The π-Winner Determination (π-WD) problem is defined as: Input: given

an election E = (C, V), a committee size k and a rational number d. Question:
is there a committee W ⊆ C with |W | = k satisfying that, AV(W) ≥ d with
π = AV, or π(V,W) ≥ d with π ∈ {SAV, PAV, CCAV}, or π(V,W) ≤ d with
π = MAV.

2.2 Axioms

We introduce two axioms for multi-winner approval voting with grouped votes,
namely, large group benefited representation and small group benefited repre-
sentation. The first axiom captures the intuition that a large group deserves no
fewer representatives than a small group. The second axiom considers that even
a small group still deserve at least one representative if the committee size is no
less than the number of groups.

Definition 1. Let E = (C, V, ζ) be an election, k be an integer, W be a com-
mittee with |W | = k:

1. W provides large group benefited representation (LGBR) for E if there
do not exist two groups Gi, Gj ∈ ζ with |Gi| > |Gj |, such that |⋃v∈Gi

v ∩
W | < |⋃v′∈Gj

v′ ∩ W |.
2. W provides small group benefited representation (SGBR) for E if for

each group Gi ∈ ζ, we have (
⋃

v∈Gi
v) ∩ W �= ∅.

We say that an approval-based voting rule satisfies LGBR (SGBR) if for each
election E and target committee size k it outputs a committee providing LGBR
(SGBR).

2.3 The Models

Given an election E = (C, V, ζ) and an integer k of the target committee size, we
define the score of a group Gi ∈ ζ with respect to a k-size subset of C, denoted
as C ′, as follows.

Group Representative-σ-π (GR-σ-π). We set GR-σ-π(Gi, C
′) =

π(V i, C ′) with V i being the set of representative votes of Gi.
Group Average-π (GA-π). We use the average π-score of the votes in a

group as the π-score of that group, that is, GA-π(Gi, C
′) =

∑
v∈Gi

π(v,C′)
|Gi| .

Group Egalitarian-π (GE-π). GE-PAV(Gi,W) = 1 + 1
2 + 1

3 + · · · +
1∑

v∈Gi
|v∩W | . In GE-CCAV, the input contains a set of integer {t1, · · · , t�}.

GE-CCAV(Gi,W) = 1 + 1
2 + 1

3 + · · · + 1
|{v|v∈Gi,|v∩W |≥ti}| .

272 Y. Wen et al.

We now have all tools to define the problem of this paper, called Win-
ner Determination for τ (τ -WD), where τ ∈{GR-σ-π1, GE-π2} with π1 =
{AV, SAV, PAV, CCAV, MAV} and π2 = {PAV, CCAV}.

Winner Determination for τ (τ-WD)
Input: An election E = (C, V, ζ), a positive integer k, and a positive
rational number d, and a set of integer {t1, · · · , t|ζ|} for GE-CCAV.
Question: Is there a k-size subset W ⊆ C satisfying maxG∈ζ τ(G,W) ≤ d
for π being MAV, or

∑
G∈ζ τ(G,W) ≥ d for π being others?

GA-π3-WD with π3 = {SAV, PAV, CCAV, MAV} can be defined similarly by
replacing the question as: Is there a k-size subset W ⊆ C satisfying that (1) for
π being MAV, maxG∈ζ τ(G,W) ≤ d, or (2) minG∈ζ τ(G,W) ≥ d for π being
others?

In this paper, we consider the following parameters: m = |C|, n = |V |,
� = |ζ|, k, the maximal size of groups max

i
|Gi|, and d (called the total satisfaction

bound).

3 Large/Small Group Benefited Representation

GR-σ-π. We first show that, no matter what σ is, it might be a bad idea to
allow each group to have multiple representative votes.

Theorem 1. (*) (1) If there exists a group having more than one representative
vote, then GR-σ-π does not satisfy SGBR even with � = 2, where π ∈ {AV, SAV,
PAV, CCAV, MAV}. (2) If groups can have more than one representative vote,
then GR-σ-π does not satisfy LGBR even with � = 3, where π ∈ {AV, SAV,
PAV, CCAV, MAV}.

The theorem above implies that if we use π to handle the grouped voters
case without making any changes, then π does not satisfy SGBR and LGBR
with π ∈ {AV, SAV, PAV, CCAV, MAV}. Here, we only need to let all votes
in a group be the representative votes of the group, which can be seen as an
internal election rule σ.

Corollary 1. AV, SAV, PAV, CCAV, and MAV do not satisfy both SGBR and
LGBR.

We then look into the possibility that each group only has one representative
vote. In this situation, some voting rules can fulfil SGBR even while none of
them satisfies LGBR.

Theorem 2. (*) If each group has exactly one representative vote, then (1) GR-
σ-π does not satisfy SGBR even with � = 3, where π ∈ {AV, SAV}. (2) GR-σ-π
satisfies SGBR with π ∈ {PAV, CCAV}. (3) if |vGi | = |vGj | with Gi, Gj ∈ ζ, GR-
σ-MAV satisfies SGBR. (4) if |vGi | > |vGj | with |Gi| > |Gj | for all Gi, Gj ∈ ζ,
GR-σ-MAV does not satisfy SGBR even with � = 2.

Multi-winner Approval Voting with Grouped Voters 273

It is easy to show that GR-σ-π does not satisfy LGBR, since each group
have exactly one representative vote. As a result, the voting rule cannot make
use of the information about the sizes of the groups. Indeed, GR-σ-π fails to
fulfill LGBR even if we allow |vGi | > |vGj | if |Gi| > |Gj | with π ∈ {AV, SAV,
PAV, CCAV}., where Gi, Gj ∈ ζ, vGi , vGj are the representative votes of Gi, Gj ,
and |vGi |(|vGj |) is the number of candidates approved by vGi(vGj).

Theorem 3. (*) If each group has exactly one representative vote, then (1) GR-
σ-π does not satisfy LGBR even with � = 3, where π ∈ {AV, SAV, PAV, CCAV}.
(2) if |vGi | = |vGj | with Gi, Gj ∈ ζ, GR-σ-MAV does not satisfy LGBR even
with � = 2. (3) if |vGi | > |vGj | with |Gi| > |Gj | for all Gi, Gj ∈ ζ, GR-σ-MAV
satisfies LGBR.

It can be seen that even if there is only one representative vote per group,
most of the voting rules studied in this subsection fail to satisfy both LGBR and
SGBR. Finding a voting rule that fulfills both axioms in this setting is therefore
important. To address this issue, we define a voting rule Group-based General-
ized Approval Voting (GGAV) as follows, which can be seen as generalization of
GAV [19]. For each group Gi ∈ ζ, there is a score-vector wi = {a1

i , · · · , am
i }. The

score of a subset of C, denoted as W , with respect to Gi and ζ are defined as
GGAV(Gi,W) =

∑|vGi∩W |
j=1 aj

i , and GGAV(ζ,W) =
∑

Gi∈ζ GGAV(Gi,W). By
carefully designing each vector, we can make GGAV satisfy LGBR and SGBR.
Given a set of groups ζ = {G1, · · · , G�} with |Gp| ≥ |Gq| if p > q, we set aj

i

with 1 ≤ i ≤ � as follows. (1) ak
i = � − i + 1; (2) aj

i = 0, for k < j ≤ m. (3)
aj

i =
∑

j+1<β≤k

∑
1≤α≤� aβ

α +
∑

i+1<γ≤� aj
γ , for 1 ≤ j < k. In other word, if we

denote aj
i as b(k−j)×k+(n−i+1), then bp =

∑
1≤q<p bq with p > �. By doing this,

We say the score-vectors are set to grouped setting. It is easy to see that, GR-σ-
PAV is a special case of GR-σ-GGAV by setting wi as wi = {1, 1

2 , 1
3 , · · · , 1

m} for
each group Gi ∈ ζ. Therefore, we do not study the parameterized complexity of
GGAV in Sect. 4, since all the hardness results of GR-σ-PAV hold for GGAV.

Theorem 4. (*) If each group has exactly one representative vote, GR-σ-GGAV
satisfies both LGBR and SGBR with score-vectors being set to grouped setting.

Theorem 5. (*) (1) GA-π satisfies SGBR with π ∈ {SAV, PAV, CCAV}. (2)
GA-MAV does not satisfy SGBR. (3) GA-π does not satisfy LGBR even with
� = 2, where π ∈ { SAV, PAV, CCAV, MAV}.

Unfortunately, even GE-PAV and GE-CCAV can overcome the shortcomings
of GR-σ-Π and GA-Π, neither of them satisfies the LGBR and SGBR.

Theorem 6. (*) GE-PAV and GE-CCAV do not satisfy the LGBR and SGBR.

4 Parameterized Complexity

In this section, we demonstrate the parameterized complexity results of GR-
σ-π-WD, GA-π-WD, and GE-π-WD with parameter being n,m, k, �,maxi |Gi|,

274 Y. Wen et al.

and d. With σ being AV, SAV, or t-Count, it is obvious that GR-σ-AV-WD,
GR-σ-SAV-WD, and GA-SAV-WD can be solved in polynomial time. All other
problems are NP-hard since PAV-WD, CCAV-WD, and MAV-WD are NP-hard
even in the non-grouped setting. Unsurprisingly, parameterized complexity of
GR-σ-π-WD with π ∈ {PAV, CCAV, MAV} is quite similar. Specifically, for
a certain parameter, if GR-σ-PAV is W-hard, then GR-σ-CCAV and GR-σ-
MAV are also W-hard; likewise, if GR-σ-PAV is FPT, GR-σ-CCAV and GR-
σ-MAV are also FPT. To GA-π-WD, the same thing took place. Therefore,
instead of displaying the parameterized complexity of all models of GR-σ-π-WD
and GA-π-WD, we choose GR-(t-Count)-PAV-WD and GA-MAV-WD to serve
as exemplars of R-σ-π-WD and GA-π-WD and examine their parameterized
complexity. In addition, we also investigate the parameterized complexity of
GE-PAV-WD and GE-CCAV-WD. See Table 1 for the summary of the results.

Table 1. Summary of the results. The results with m as parameter are trivial (by
trying all size-k subsets of candidates in O∗(2m) time). Here, m = |C|, n = |V |,
� = |ζ|, k is the size of committee, max

i
|Gi| is the maximal size of groups, and d is the

total satisfaction bound.

GE-CCAV GE-PAV GR-(t-Count)-PAV GA-MAV

m FPT FPT FPT FPT

n FPT FPT FPT FPT

� Para-NP-hard open FPT open

max
i

|Gi| W[2]-hard Para-NP-hard Para-NP-hard Para-NP-hard

k W[2]-hard W[2]-hard W[1]-hard W[2]-hard

d W[1]-hard open open W[2]-hard

Theorem 7. (*) (1) GE-CCAV-WD is FPT with respect to n.
(2) Even with only one group, GE-CCAV-WD is NP-hard and W[2]-hard with k
as parameter.
(3) GE-CCAV-WD is NP-hard even when max

i
|Gi| = 1.

(4) GE-CCAV-WD is W[1]-hard with d as parameter.
(5) GE-PAV-WD is FPT with respect to n.
(6) GE-PAV-WD and GR-(t-Count)-PAV-WD are W[1]-hard with k as param-
eter.
(7) GR-(t-Count)-PAV-WD is FPT with respect to � or n. (8) GA-MAV-WD is
NP-hard even if max

i
|Gi| = 1.

Theorem 8. GA-MAV-WD is FPT with n as parameter.

Proof. In the following, we use the tool of integer linear program (ILP) to prove
the theorem.

We can think of all votes as an n×m matrix M with binary values. From the
column perspective, there are m columns which can be considered as a collection
of n-dimensional vectors. We call two columns identical, if both columns contain

Multi-winner Approval Voting with Grouped Voters 275

the same value at each position. The set of pairwise identical columns is called
a column type. Clearly, there are at most 2n different column types. Moreover,
let T denote the set of different column types, and for each type t ∈ T , let nt

denote the number of columns of type t in the input. Additionally, let Σ = {0, 1}.
The ILP can be formulated as follows. It contains 2 × 2n variables xt,ϕ, where
t denotes a column type and ϕ ∈ Σ. The value of xt,ϕ denotes the number of
columns of type t whose corresponding positions in the winning committee W
are set to be ϕ. We use ϕt,i,j to denote the value of the vote vj

i at the positions
corresponding to columns of type t. Considering that the goal of GA-MAV-WD
is to minimize the maximum score among all groups, we aim to minimize

max
1≤i≤�

∑
1≤j≤|Gi|

∑
t∈T

∑
ϕ∈(Σ\{ϕt,i,j}) xt,ϕ

|Gi| ,

where � denotes the number of groups and the number of votes in a certain
group Gi is represented by |Gi|. Notice that the above objective function can be
replaced by the following constraint by introducing the maximum distance d:

∑

1≤j≤|Gr|

∑

t∈T

∑

ϕ∈(Σ\{ϕt,i,j})

xt,ϕ ≤ d × |Gi| , ∀1 ≤ i ≤ �

Doing so, we arrive at an ILP without objective function. In addition, we add
the following constraints:

∑

ϕ∈Σ

xt,ϕ = nt, ∀t ∈ T,

which means that each column is assigned a value of 0 or 1 in the corre-
sponding position of W , determining whether the corresponding candidate is
selected in W or not. All variables xt,ϕ must be non-negative integers, that
is, xt,ϕ ∈ {0, 1, 2,. . . , nt},∀t ∈ T and ∀ϕ ∈ {0, 1}. We need an equation con-
straint to make sure that the winning committee contains exactly k candidates:∑

t∈T xt,1 = k.
If there is a solution for the above ILP instance, then we can construct a size-k

committee W by adding xt,1 many candidates whose corresponding column type
is t to W . Thus, we can give an ILP formulation for GA-MAV-WD, where the
number of variables depends solely on the parameter value n, the total number
of the votes. It is easy to verify that the above ILP has a solution if and only if
the GA-MAV-WD instance has a solution. The theorem follows from the result
of Lenstra’s [23].
�
Theorem 9. GA-MAV-WD is W[2]-hard with respect to parameters k and d.

Proof. We prove the theorem by reducing Dominating Set to GA-MAV-WD. The
Dominating Set problem is defined as below. Input: A non-negative integer k′

and an undirected graph G′ = (V ′, E′) with |V ′| = n′ and |E′| = m′. Question:
Is there a subset S ⊆ V ′ with k′ vertices such that every vertex v ∈ V ′ is
contained in S or has at least one neighbor in S?

276 Y. Wen et al.

Dominating Set is W[2]-hard with respect to k′ [14]. Without loss of gener-
ality, we assume each vertex in G′ has a degree at least k′, since we can add a
k′-clique to G′ if there is a vertex v′ ∈ G′, whose degree is less than k′, then make
v′ be adjacent to each vertex of the added k′-clique. Given an instance (G′, k′) of
Dominating Set, we construct an instance F ((C, V, ζ), k, d) as follows. We create
a candidate for each vertex in the graph G′. We call these candidates as “real
candidates”, denoted as c1, c2, . . . , cm with m = n′. In addition, we construct
3n′ “dummy candidate” denoted as: c′

1, c
′
2, . . . , c

′
3n′ . There are 4n′ candidates in

total. For each vertex v′
i ∈ V ′, we construct a group Gi, where the votes one-

to-one correspond to the edges incident to vi. In addition, we add a “special”
vote to each group. Therefore, the total number |Gi| of votes in group Gi is
deg(v′

i) + 1, where deg(v′
i) denotes the degree of vertex v′

i, that is, the number
of edges incident to v′

i. Observe that each edge in G′ corresponds to two votes,
because it has two endpoints. The total number n of votes is 2m′ + n′. For a
vote vj in group Gi constructed for the edge ej = {v′

r, v
′
s}, it solely approves the

two real candidates cr and cs, who correspond to the endpoints v′
r and v′

s, but
disapproves of all other candidates. We can consider this vote as a vector with
two positions of value 1 and 4n′ − 2 positions of value 0. For the special vote in
group Gi, it only approves three dummy candidates, c′

(i−1)×3+1, c
′
(i−1)×3+2 and

c′
(i−1)×3+3 but disapproves all other candidates. In fact, each dummy candidate

is approved only once, because each special vote approves three distinct dummy
candidates. By doing so, adding a dummy candidate to the committee is never
better than adding a real candidate. We denote a committee as a {0, 1}4n′

vec-
tor which has exactly k′ 1’s in the real candidate part, so that the Hamming
distance of each special vote to the winning committee is k′ +3. Then, let k = k′

and d = k′ + 2. We show the equivalence between the instances in the following.
Here we omit the “⇒”.

“⇐”: Assume that there is a solution of GA-MAV-WD, which means that
there is a winning committee W of size k′ satisfying GA-MAV(Gi,W) ≤ d =
k′ + 2 with 1 ≤ i ≤ n′. Let W = W1

⋃
W2, where W1 denotes the set of real

candidates in W and W2 denotes the set of dummy candidates in W . We consider
the following cases according to whether |W2| = 0 or not.

Case 1: |W2| = 0: Then, |W1| = k′. That is, all candidates in W are real
candidates. Let S be the set of the vertices corresponding to the candidates in
W . Since the score of each group is at most d = k′ + 2 and each vote in the
group approves either two real candidates or three dummy candidates, there is
at least one vote in this group Gi whose Hamming distance to W is at most k′,
meaning that this vote approves at least one candidate in W and thus there is
at least one neighbor of the corresponding vertex v′

i in S. This implies that the
set S forms a dominating set.

Case 2: |W2| �= 0: Let |W2| = j and |W1| = k′ − j. By the construction, each
dummy candidate is approved exactly once by a special vote in a group. Thus,
adding a dummy candidate to W can only decrease the score of one group. Then
we can replace this dummy candidate by a real candidate, which is approved by
other votes in this group but not in W . With the degree of each vertex in G′

Multi-winner Approval Voting with Grouped Voters 277

being at least k′, we can conclude that such a real candidate exists. By doing so,
we decrease |W2| by one without increasing the score of any group. Repeating
this replacing operation for all dummy candidates in W2, we arrive at another
solution W , containing only real candidates, and Case 1 applies. In summary, a
solution of GA-MAV-WD implies a dominating set in G′.
�

5 Concluding Remarks

In this paper, we propose three models to deal with the case of approval-based
committee elections with grouped voters. At the same time, we propose two
axioms named Large group benefited representation and small group benefited
representation, and investigate whether the proposed models satisfy the two
axioms. We show that all models can hardly satisfy both axioms except the
GGAV with the score-vectors being set to grouped setting. We show that all
models are fixed-parameter tractable (FPT) when parameterized by the number
n of votes, whereas they become fixed-parameter intractable when parameterized
by the size k of the committee or d of the satisfaction bound.

We left four questions in Table 1 open, GE-PAV-WD, GR-(t-Count)-PAV-
WD and GCMAV-WD with respect to d, GE-PAV-WD and GA-MAV-WD with
the parameterization by �. Thus, one future research goal is to resolve the param-
eterized complexity for them.

Inspired by the work of Baumeister and Dennisen [3], we propose the direction
for future research to extend the voting models to other forms of votes, such as
trichotomous votes, complete linear orders, and partial linear orders. Another
task worthy of detailed study is the problem of coalitional manipulation in the
case of committee elections with grouped voters [24].

References

1. Aziz, H., Brill, M., Conitzer, V., Elkind, E., Freeman, R., Walsh, T.: Justified
representation in approval-based committee voting. Soc. Choice Welfare 48(2),
461–485 (2017)

2. Aziz, H., Gaspers, S., Gudmundsson, J., Mackenzie, S., Mattei, N., Walsh, T.:
Computational aspects of multi-winner approval voting. In: AAMAS 2015, pp.
107–115 (2015)

3. Baumeister, D., Dennisen, S., Rey, L.: Winner determination and manipulation in
minisum and minimax committee elections. In: ADT 2015. vol. 9346, pp. 469–485
(2015)

4. Bei, X., Liu, S., Poon, C.K., Wang, H.: Candidate selections with proportional
fairness constraints. Auton. Agent. Multi-Agent Syst. 36(1), 5 (2022)

5. Brams, S.: Mathematics and democracy: designing better voting and fair-division
procedures. Math. Comput. Modell. 48(9–10), 1666–1670 (2008)

6. Brams, S., Kilgour, D.M., Sanver, M.R.: A minimax procedure for electing com-
mittees. Public Choice 132, 401–420 (2007)

7. Brams, S.J., Kilgour, D.M.: Satisfaction approval voting. In: Fara, R., Leech, D.,
Salles, M. (eds.) Voting Power and Procedures. SCW, pp. 323–346. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-05158-1 18

https://doi.org/10.1007/978-3-319-05158-1_18

278 Y. Wen et al.

8. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.): Handbook
of Computational Social Choice. Cambridge University Press, Cambridge (2016)

9. Bredereck, R., Chen, J., Faliszewski, P., Guo, J., Niedermeier, R., Woeginger, G.J.:
Parameterized algorithmics for computational social choice: Nine research chal-
lenges. Tsinghua Sci. Technol. 19(4), 358–373 (2014)

10. Bredereck, R., Faliszewski, P., Igarashi, A., Lackner, M., Skowron, P.: Multiwinner
elections with diversity constraints. In: Proceedings of the 32nd AAAI Conference
on Artificial Intelligence, pp. 933–940 (2018)

11. Celis, L.E., Huang, L., Vishnoi, N.K.: Multiwinner voting with fairness constraints.
In: Proceedings of the 27th International Joint Conference on Artificial Intelligence,
pp. 144–151 (2018)

12. Chamberlin, J., Courant, P.: Representative deliberations and representative deci-
sions: proportional representation and the Borda rule. Am. Polit. Sci. Rev. 77(3),
718–733 (1983)

13. Conitzer, V.: Making decisions based on the preferences of multiple agents. Com-
mun. ACM 53(3), 84–94 (2010)

14. Downey, R., Fellows, M.: Parameterized Complexity. Springer Science & Business
Media (2012)

15. Faliszewski, P., Talmon, N.: Between proportionality and diversity: balancing dis-
trict sizes under the Chamberlin-courant rule. In: Proceedings of the 17th Inter-
national Conference on Autonomous Agents and Multi-Agent Systems, pp. 14–22
(2018)

16. Fernández, L., et al.: Proportional justified representation. In: Proceedings of the
31st AAAI Conference on Artificial Intelligence, pp. 670–676 (2017)

17. Fishburn, P.: Axioms for approval voting: direct proof. J. Econ. Theory 19(1),
180–185 (1978)

18. Ianovski, E.: Electing a committee with dominance constraints. Ann. Oper. Res.
318(2), 985–1000 (2022)

19. Kilgour, D.M., Marshall, E.: Approval balloting for fixed-size committees. Electoral
systems: paradoxes, assumptions, and procedures, pp. 305–326 (2012)

20. Kilgour, M.: Approval balloting for multi-winner elections. In: Handbook on
Approval Voting, pp. 105–124. Springer (2010). https://doi.org/10.1007/978-3-
642-02839-7 6

21. Lang, J., Skowron, P.: Multi-attribute proportional representation. Artif. Intell.
263, 74–106 (2018)

22. LeGrand, R., Markakis, E., Mehta, A.: Some results on approximating the minimax
solution in approval voting. In: AAMAS 2007, p. 198 (2007)

23. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

24. Obraztsova, S., Zick, Y., Elkind, E.: On manipulation in multi-winner elections
based on scoring rules. In: AAMAS 2013, pp. 359–366 (2013)

25. Procaccia, A.D., Rosenschein, J.S., Zohar, A.: On the complexity of achieving
proportional representation. Soc. Choice Welfare 30(3), 353–362 (2008)

26. Talmon, N.: Structured proportional representation. Theoret. Comput. Sci. 708,
58–74 (2018)

27. Thiele, T.N.: Om flerfoldsvalg. Oversigt over det Kongelige Danske Videnskabernes
Selskabs Forhandlinger 1895, 415–441 (1895)

28. Zwicker, W.S.: Introduction to the theory of voting. In: Handbook of Computa-
tional Social Choice, pp. 23–56. Cambridge University Press (2016)

https://doi.org/10.1007/978-3-642-02839-7_6
https://doi.org/10.1007/978-3-642-02839-7_6

EFX Allocation to Chores over Small
Graph

Huahua Miao1,2, Sijia Dai1,2, Yicheng Xu1,2, and Yong Zhang1,2(B)

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, People’s Republic of China

{hh.miu,sj.dai,yc.xu,zhangyong}@siat.ac.cn
2 University of Chinese Academy of Sciences, Beijing, People’s Republic of China

Abstract. When allocating indivisible items among agents, achieving
envy-free (EF) allocation is not always feasible. Hence a specific area of
interest lies in determining whether envy-freeness up to any item (EFX)
allocation is feasible for indivisible items. The existence of EFX alloca-
tions poses a significant open problem in the field of fair division, even
when considering additive valuations. However, while there is a wealth
of research on the allocation of goods, relatively little is known about
the allocation of chores. Notably, for instances involving bi-valued val-
uations, existence results have only been established for cases involving
three agents. Therefore, we study a natural relaxation of these two fair-
ness constraints, where agents are located on the node of a linear graph
and the envy is only possible between adjacent agents. Our main con-
tribution lies in determining the impact of the number of special agents
and the presence of arrows in scenarios involving four agents, finding the
algorithm that guarantees an EFX allocation when allocating m indivis-
ible bi-valued chores among four linearly structured agents.

Keywords: Fair allocation · EFX · Chores

1 Introduction

The study of fair allocation problem originated with the formal introduction of
the cake-cutting problem by Banach, Knaster and Steinhaus. Over time, the
focus has expanded to include the allocation of a set M of m items to a group
N of n agents, where each agent may have a distinct valuation function for the
items. In cases where the valuation functions yield positive values, the items are
considered goods such as resources, while negative values correspond to chores,
such as tasks and housework.

Several notions of fairness have been proposed and analyzed in the last two
decades. Among these, envy-free (EF) stands out as the most compelling cri-
terion [6]. An envy-free allocation of goods ensures that no agent prefers the

Supported by NSFC (Grant No.12071460, 12371321) and the Shenzhen Science and
Technology Program (Grant No.CJGJZD20210408092806017).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 279–291, 2024.
https://doi.org/10.1007/978-3-031-49614-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_21&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_21

280 H. Miao et al.

set of goods allocated to any other agent over their own. Unfortunately, when
dealing with indivisible goods, the existence of an envy-free allocation is not
guaranteed [8]. Consequently, researchers have explored natural relaxations of
envy-free, such as envy-free up to one good (EF1) [15] and envy-free up to any
good (EFX) [9].

It is known that EF1 allocations are guaranteed to exist and can be found in
polynomial time for goods [15], chores, and the mixture of the two types [4]. For
the case of goods, Plaut and Roughgarden [18] have shown that EFX conditions
exist in some special cases: (1) identical (combinatorial) valuations, (2) IDO
(identical ordering) additive valuations, and (3) n = 2. Chaudhury et al. [10],
Amanatidis et al. [1] and Mahara et al. [16] further extended the existence of
EFX allocations to the cases when (4) n = 3, (5) bi-valued valuations, (6)
binary valuations under the assumption of budget constraint [11], and (7) when
all agents have one of two (general) valuation functions.

Compared to the allocation of goods, there is limited knowledge concerning
an EFX allocation for chores. Existing research indicates that an EFX alloca-
tion is guaranteed to exist for IDO instances [14] and instances with leveled
preferences [12]. Under bi-valued instances, Zhou and Wu [20] demonstrate the
existence of a polynomial time algorithm for computing an EFX allocation under
bi-valued instances when there are three agents.

A few other works have explored fairness concepts using non-complete graphs
in the context of resource allocation. In this line of research [5,7,13,19], graphs
are used to characterize feasible allocations, emphasizing that the resources allo-
cated to each agent should be connected. Another aspect of this research involves
placing agents on the vertices of an undirected graph G, where agents can only
view the allocations of their adjacent agents in the graph. For example, envy-free
housing allocation over a graph has been investigated, where agents receive one
good each and must not envy their neighbors [3]. Aziz et al. [2] focus on finding
allocations that are epistemically envy-free, meaning that no vertex envies its
neighbors. Moreover, they ensure that for any vertex x, there exists an alloca-
tion of the remaining goods to the other agents such that x does not envy any
other agent. Recently, Payan et al. [17] show that when G is represented as a
three-edge path, a G-EFX allocation exists for agents with goods.

OurContributions. In this paper, our main focus is to investigate linear-graph-
based relaxations of EFX allocation. We make two key contributions: First, we
demonstrate that when there are three arrows connecting four agents in the graph
structure, it is possible to compute an EFX allocation in polynomial time. Second,
we establish that even in scenarios where there are no three arrows connecting four
agents, an EFX allocation can still be computed. These results provide a practical
algorithmic approach for achieving EFX allocation in such cases.

2 Preliminaries

We consider how to fairly allocate a set of m indivisible chores M to a group of
n agents N , and agents are linear structured with bi-valued cost functions.

EFX Allocation to Chores over Small Graph 281

A bundle is defined as a subset of items denoted as X ⊆ M . An allocation is
represented by an n-partition X = (X1, · · · ,Xn) of the items, where Xi∩Xj = ∅
for all i �= j and ∪i∈NXi = M . In the allocation X, each agent i ∈ N receives
bundle Xi. Each agent i ∈ N has an additive cost function ci : 2M → R

+ ∪ {0}.
Specifically,, for any i ∈ N and X ⊆ M , ci(S) =

∑
e∈X ci({e}).

To enhance readability, we write ci(e) instead of ci({e}), It is assumed that
all cost functions are normalized i.e., for any i ∈ N, ci(M) = 1. For a bundle
Xi and chore e, we will write Xi + e or Xi − e to denote Xi ∪ {e} or Xi\{e},
respectively.

Definition 1. (Linear fair allocation problem(LFA)) An instance of the
LFA is a triple tuple I = (G,N , C) where

• G = (V,E) is a path graph. V represents the set of vertices, symbolizing
individual agents, while E represents the set of edges, which denotes the presence
of envy among these agents,

• N = 1, · · · , n is a set of agents,
• C is an n-tuple of additive cost function ci.

As Fig. 1 shows, we refer to elements of V as agents.

Fig. 1. linear structured agents.

We primarily focus on studying the existence of EFX allocation in bi-valued
instances. In a bi-valued instance, for any i ∈ N and g ∈ M , there exist constants
a, b ≥ 0, ci(e) ∈ {a, b}. Equivalently, for any a �= b, we can scale the cost function
so that ci(e) ∈ {ε, 1}, where ε ∈ [0, 1).

Due to the particularity of bi-valued instances, we only need to consider
two cost values. In the process of allocating chores, the classical Round-Robin
algorithm will the agent who finishes picking items later jealous of the agents
who finish picking items before her, different valuations of the same item by
different agents become the key to solve the problem. When an agent’s jealousy
of another agent satisfies EF1, if there is still an unallocated sunken item, the
envied agent will estimate its cost smaller, while the envied agent will estimate
its cost larger. Then assigning this item to the envy-generating agent would
effectively implement EFX allocation. Of course this is the simplest case, more
complex cases cannot be solved so easily, and to cope with more cases we give
the following definition

Definition 2. (Special chore). We remark chore e ∈ M a special chore to
agent i, if there exists a set of neighbors i − 1, i, i + 1 ∈ V , satisfying ci−1(e) =
1, ci(e) = ε, ci+1(e) = 1, and we use ei to represent this chore.

282 H. Miao et al.

If this chore satisfies ci−1(e) = ε, ci(e) = ε, ci−1(e) = 1, we will use ei,i+1 to
represent this special chore, respectively. (When agent i is at an endpoint, only
one-sided neighbor is considered)

Definition 3. (Special agent). We remark agent i ∈ V a special agent if
she possesses at least one special chore, and if there exists a chore e, a pair of
neighbors (i, j) ∈ V satisfying ci(g) = ε, cj(e) = 1, we say i is a special agent
to j.

Definition 4. (Envy-free(EF)) An allocation X = (X1,X2, · · · ,Xn) is EF
for chores if for every (i, j) ∈ V , ci(Xi) ≤ ci(Xj).

Definition 5. An allocation X = (X1,X2, · · · ,Xn) is

a) Envy-free up to one item(EF1) if for every (i, j) ∈ V , there exists a chore
g ∈ Xj, such that ci(Xi\{g}) ≤ ci(Xj).

b) Envy-free up to any item(EFX) if for every (i, j) ∈ V and every chore e ∈
Xj, it holds that ci(Xi\{e}) ≤ ci(Xj).

We say the agent i strongly envies an agent j if there exists some chore
g ∈ Xj such that ci(Xi\{e}) > ci(Xj). When the agents are arranged on the
graph G, our goal is to output an allocation X of the set of chores M among
the agents N such that there is no edge (i, j) ∈ E with agent i strongly envious
of agent j.

The algorithm we use to compute an EFX allocation is based on the Round-
Robin algorithm and Divide-and-Choose algorithm. Initially, all chores start off
unallocated. In our proof, unless otherwise specified, it is assumed that the spe-
cial chores corresponding to different special agents will not be the same.

3 Warm-Up: EFX Allocation for Three Agents and Star
Structured Agents

Consider the case where three agents are structured in a non-complete graph,
specifically in a linear structure. In this scenario, a straightforward approach
can be employed. The central agent initially divides the items into three bundles
that satisfy her EFX condition(i.e., no matter which package the central agent
gets, her jealousy of the other two bundles is EFX satisfied). Subsequently, the
remaining two agents take turns selecting their preferred bundle.

Similarly, when the agents are structured in a star pattern, with one central
agent connected to multiple peripheral agents, envy can only occur from the
peripheral agents towards the central agent. The same algorithm is applicable
in this case. The central agent divides the items into n bundles that meet her
EFX condition, and the peripheral agents then select their preferred bundles
randomly.

Therefore, for both linear structured agents (with 3 agents) and star struc-
tured agents (with n agents), an EFX allocation can be computed for both goods
and chores, regardless of the specific valuation functions.

EFX Allocation to Chores over Small Graph 283

Proposition 1. For linear structured agents consisting of either 3 agents or n
agents arranged in a star structured, an EFX allocation can be computed for both
goods and chores, regardless of the specific valuation functions.

4 An EFX Allocation for LFA

In the following, we present an algorithm that computes an EFX allocation for
LFA when n = 4.

We use the Fig. 2 in the following as an example to illustrate the existence
of a special agent. Case (a) indicates that i is a special agent to j, and j is
not a special agent to i. Case (b) indicates that i and j have identical valuation
functions. Case (c) indicates that i may be a special agent to j, and j may be
a special agent to i (means that it is not important whether i is a special agent
for j or j is a special agent for i). It should be noted that if an agent is a special
agent (represented by a shadow), there must be an arrow pointing from that
agent.

Fig. 2. The presence or absence of special agents.

The Round-Robin algorithm takes a set of items S′ and an ordering L of
the agents as input. The algorithm proceeds by allowing agents to choose their
favorite chore (the one with the minimum cost) one by one, following the specified
order until all items are allocated. It should be noted that unlike allocating goods,
our order L in allocating chores refers to the ending order, that is, if L:(1,2,3),
it means that agent 3 takes the last item in S’ as the last person to take it. We
call the output allocation X a Round-Robin allocation.

In this algorithm, the order of agents L is determined by the order of arrows.
When there are (n−1) arrows connecting n agents, the agent with an out-degree
of 0 is randomly placed at the end. Then, the sorting proceeds from back to front
according to the order indicated by the arrows (when there exists an agent with
an out-degree of 2, the agents pointed to by the arrows are randomly arranged).
For example, in the case of four agents, if agent 1 has arrows pointing to agent 2,
agent 2 and agent 4 both have an arrow pointing to agent 3, the order could be
1,2,4,3 or 1,4,2,3. To describe the allocation process, we index each round using
integers 1, 2, · · · , and the last round agent i received a chore is denoted by ri.

Lemma 1. Let L be any ordering of N and X0 = (∅, · · · , ∅). Then Algorithm 1
with input (N,S′,X,L) produces an EF1 allocation in polynomial time. x

284 H. Miao et al.

Algorithm 1: Round-Robin
Input: set of agents: N , set of unallocated chores: S′, partial allocation: X, an

ordering of N : L
1 Xi = ∅ for all i,and k = 1;
2 while S′ �= ∅ do
3 g = argmine∈S′cL[k](e);
4 XL[k] = XL[i] ∪ {e};
5 S′ = S′\{g};
6 k = k + 1 mod n;

Output: X

Proof. Consider two agents i �= j. Without loss of generality, assume that ri < rj ,
for every round r in which agent i receives a chore e, there exists a round r′

satisfying r < r′ < r + n, in which agent j received an chore e′.
Now, since e has the minimum cost among the agents in round r, we have

ci(e) ≤ ci(e′) which leads to ci(Xi) ≤ ci(Xj).
Similarly, for agent j, excluding the last chore e′′ agent j received, we have

cj(Xj − e′′) ≤ cj(Xi).
Therefore, the algorithm produces an EF1 allocation. Furthermore, the algo-

rithm runs in polynomial time as it iterates through the set of unallocated chores,
and each iteration can be performed in constant time. ��
Lemma 2. Given the Round-Robin allocation on items set M ′ and agents i
and j that are neighbors to each other, if i is a special agent to j, then in the
allocation (· · · ,Xi + e,Xj , · · ·), agent i is EFX towards agent j, while agent j
is EF towards agent i.

Proof. From Lemma 1, we have ci(Xi) = ci(Xi + e′′) − ε ≤ ci(Xj), which leads
to agent i being EFX towards agent j. As for agent j, we have cj(Xi + e′′) =
cj(Xi)+1 ≥ cj(Xj), since agent j does not envy agent i by more than one chore.
Therefore, agent j is EF towards agent i. ��

Algorithm 2: New Divide-and-Choose
Input: set of agents: N , set of unallocated chores: S′, partial allocation: X, an

ordering of N : L
1 Initialize: |N | = n, Xi = ∅ for all i,and k = 1 ;
2 let L[n] divides S′ into n bundles P = (P1, · · · , Pn) which satisfy her EFX;
3 while S′ �= ∅ do
4 XL[k] = argmin{cL[k](P1), · · · , cL[k](Pn)};
5 P ′ = P ′\ XL[k];
6 k = k + 1 mod n;

Output: X

EFX Allocation to Chores over Small Graph 285

The New Divide-and-Choose algorithm takes a set of unallocated chores S′

and an ordering L of the agents as input. The algorithm proceeds by allowing
the last agent in L to divide S′ into n bundles, then has each agent choose their
favorite bundle by ordering L. The meaning of n bundles P satisfying the EFX
of the agent L[n] is that no matter which bundle agent L[n] receives, she will
not develop strong envy towards the agent who receives other bundles.

Based on the aforementioned discussion, we now delve into the analysis of
the number of special agents involved.

4.1 At Least Three Special Agents

Let us first examine the scenario where there are at least three special agents.
Without loss of generality, we assume that agent 1 and agent 2 are the special
agents, and at least one of agent 3 or agent 4 also holds this designation.

Lemma 3. For the case where there are three solid arrows connecting the four
agents, an EFX allocation can be efficiently computed using the Round-Robin
algorithm in polynomial time.

Proof. If there are solid arrows between any two agents, Algorithm 1 can be
employed to compute an EFX allocation. These arrows can be categorized into
two distinct scenarios. The first scenario arises when all three arrows point in
the same direction (see Fig. 3) situation, we designate the agent without any
in-degree as agent 1.

The second scenario occurs when one of the arrows exhibits the opposite
direction compared to the other two arrows. In this case we can always find an
agent with an in-degree of 2, we label this agent as agent 2. ��

Fig. 3. 3 arrows point in the same direction.

Lemma 4. When we can not find the three solid arrows, an EFX allocation can
be computed.

Proof. If we fail to find the three arrows that connect the four agents, it indicates
that either agent 2 and agent 3 or agent 3 and agent 4 possess identical valuation
functions. Base on the location of identical agents, we can use Algorithm 3 to
compute an EFX allocation.

In Algorithm 3, agents with zero in-degree and out-degree determine the
order of L. When such an agent is at an endpoint, they and their neighbors
are randomly sorted at the beginning of L. Agents from the other endpoint
follow, and the last agent is placed at the end of L. Alternatively, Algorithm 2
is employed.

286 H. Miao et al.

Algorithm 3: Double Divide-and-Choose
Input: N , S′,X, L, L′

1 Initialize: |N | = 4,Xi = ∅ for all i, k = 1;
2 if one of the agents at the endpoints, named agent q, has zero outdegree and

zero indegree (call her neighbor as agent p) then
3 let L[4] divides S′ into 4 bundles P = (P1, · · · , P4) which satisfy her EFX;
4 while S′ �= ∅ do
5 XL[k] = argmin{cL[k](P1), · · · , cL[k](P4)};
6 P ′ = P ′\ XL[k];
7 k = k + 1 mod n;

8 S′ = Xp;
9 Xp = ∅;

10 let agent p divides S’ into 2 bundles P ′ = (P ′
1, P

′
2) which satisfy her EFX;

11 if S′ �= ∅ then
12 Xp = argmax{cL[4](P

′
1), cL[4](P

′
2)};

13 Xq = P ′\ Xp;

14 else
15 Computing Divide-and Choose algorithm with L′ : (1, 4, 3, 2);

Output: (X1, X2, X3, X4)

• When agent 2 and agent 3 have the identical valuation functions, then use
algorithm 2 with L:(1,4,2,3). We have

c1(X1) ≤ c2(X2), c4(X4) ≤ c3(X3)

c2(X2) − ε ≤ c2(Xi), c3(X3) − ε ≤ c3(Xi)

and our results absolutely can meet the EFX condition.
• Considering agent 3 and agent 4 have the identical valuation functions, and

then use Algorithm 3 with L:(1,3,3,2), p = 3, q = 4. We call the bundle
obtained by agent 3 in the first round X ′

3 and X ′′
3 , cause agent 3 and agent 4

have identical valuation functions. Hence,

c3(X ′
3) ≤ c3(X2), c3(X ′′

3) ≤ c3(X2).

For agent 1, c1(X1) ≤ c1(X2), for agent 4, and for every e ∈ M , c4(X4 − g) ≤
c3(X3).
For agent 2,

c2(X2 − e) ≤ c2(X ′
3) (1)

c2(X2 − e) ≤ c2(X ′′
3) (2)

adding inequality 1 and 2 yields the following inequality

c2(X2) − c2(e) ≤ c2(X ′
3 + X ′′

3)/2
≤ max{c2(X ′

3), c2(X
′′
3)}

EFX Allocation to Chores over Small Graph 287

Recall that X3 = max{c2(P1), c2(P2)}, and X3 ∪ X4 = X ′
3 ∪ X ′′

3 . We have

c2(X2) − c2(e) ≤ c2(X3 + X4)/2
≤ max{c2(X3), c2(X4)}
= c2(X3)

then agent 2 is EFX towards agent 3.
For agent 3, c3(Xi) = c4(Xi),

c3(X3 + X4) = c3(X3) + c4(X4)
≤ 2 · c3(X2)

• When c3(X3) ≤ c3(X4), we have c3(X3) ≤ c3(X3 + X4)/2 ≤ c3(X2).
• When c3(X4) ≤ c3(X3), then c3(X3 − e) ≤ c3(X4), we have

c3(X3 − e) ≤ c3(X3 + X4)/2 ≤ c3(X2).

Hence, (X1,X2,X3,X4) is an EFX allocation.

��

4.2 Two Special Agents

Next, we consider the case when there are exact two special agents. Before
proving, we show all valuation scenarios for chores of agents firstly (see table 1).

Table 1. Valuation functions for chores.

agents

chores
e1 e2 e3 e4 e5 · · ·

1 1 ε ε 1 1

2 ε ε ε ε 1

3 1 1 ε ε 1

4 1 1 ε or 1 ε or 1 1

Lemma 5. When there exists three arrows that connect those four agents, an
EFX allocation can be computed in polynomial time.

Fig. 4. 2 special agents with 3 arrows that connect 4 agents.

288 H. Miao et al.

Proof. Those two special agents must be agent 2 and agent 3, due to symmetry,
when e2,3 and e3,2 exist at the same time, the situation is similar to that of
only e2,3. To simplify the proof, we consider the case where only e2,3 exists.(see
Fig. 4)

By carefully deciding the ordering of agents, we can compute a Round-Robin
allocation (S1, S2, S3, S4) on items M ′, satisfying r2 < r1 < r3 < r4, we call this
ordering as L′ (see algorithm 4).

• If there exists e′ ∈ M ′, satisfying c1(e′) = 1, c2(e′) = ε, c3(e′) = 1.
After executing Round-Robin algorithm, agent 1 and agent 3 is EF1 towards
agent 2, agent 4 is EF1 towards agent 3. Similar to the proof above, (X1,X2+
e′,X3 + e3,4,X4) is an EFX allocation.

• If there exists e′ ∈ M ′, satisfying c1(e′) = c2(e′) = ε.
We only need to prove agent 2 is EFX towards agent 1 and agent 3. After
executing Round-Robin algorithm,

c2(X2) ≤ c2(X1), c2(X2) ≤ c3(X2).

then

c2(X2 + e2,1 + e2,3) − ε = c2(X2) + ε ≤ c2(X1 + e′) = c2(X1) + ε,

So as to agent 3, (X1+e′,X2+e2,1+e2,3,X3+e3,4,X4) is an EFX allocation.

• If neither of these e′ ∈ M ′ can be found.
Apparently, agent 2 and agent 3 have identical valuations in M ′ under our
assumption, and

for every e ∈ M ′ ∪ {e2,1}, c1(e) = 1,

After executing Round-Robin algorithm, agent 1 is EFX towards agent 2.
Then, (X1,X2 +e2,3,X3 + e3,X4) is an EFX allocation.

��
Lemma 6. When there dose not exist three arrows that connect those four
agents, an EFX allocation can be computed.

Proof. If we cannot find three arrows that connect those four agents, it means
either there is one pair of agents, two pairs of agents, or three agents with the
identical valuation functions. The same as at least three special agents, these
can be solved using Algorithm 2, or Algorithm 3 to obtain an EFX allocation.

��

EFX Allocation to Chores over Small Graph 289

Algorithm 4: Algorithm for 2 special agents with 3 arrows that connect
4 agents
Input: N , S′,X, L′, M

1 Initialize: Xi = ∅ for all i, M ′ = M\{e2,1, e2,3, e3};
2 if there exists e′ ∈ M ′, satisfying c1(e

′) = 1, c2(e
′) = ε, c3(e

′) = 1, then
3 S′ = M\{e′, e3};
4 Computing Round-Robin algorithm with L′;
5 X2 = X2 + e′, X3 = X3 + e3;

6 if there exists e′ ∈ M ′, satisfying c1(e
′) = c2(e

′) = ε, then
7 S′ = M ′\{e′};
8 Computing Round-Robin algorithm with L′;
9 X1 = X1 + e′, X2 = X2 + e2,1 + e2,3, X3 = X3 + e3;

10 else
11 Computing Round-Robin algorithm with L′;
12 X2 = X2 + e2,3, X3 = X3 + e3;

Output: (X1, X2, X3, X4)

4.3 At Most One Special Agent

Finally, we consider the case when there is at most one special agent. When
there is only one special agent, it can be divided into two situations.

One is the special agent located at the endpoint of the line, say agent 1.
It means that for any chore, the other three agents have exactly the identical
valuation for it. Therefore, we only need to use Algorithm 2 with L:(1,2,3,4).
Our results absolutely can meet an EFX allocation.

The other is the special agent is not at the end of the line, say agent 2. Hence,
agent 3 and agent 4 have identical valuation functions. We can use Algorithm 3
with L: (1,3,3,2), p = 3, q = 4 to find an EFX allocation.

When there is no special agent, the situation becomes simpler because all
four agents have identical valuation functions.

Building upon the previous analysis, we are now ready to present our main
theorem:

Theorem 1. An algorithm can be devised to compute an EFX allocation of four
linear structured agents for bi-valued instances.

5 Discussion and Conclusion

In our study, we explore the EFX allocation for chores in the context of graph
structures. Introducing graphs as a relaxation is a natural approach, as many
real-life agents are primarily concerned with interactions among specific agents.
This relaxation allows us to achieve results that were not attainable when consid-
ering complete graphs. Additionally, demonstrating positive results on natural
classes of graphs may contribute to establishing the existence of EFX allocations
more broadly.

290 H. Miao et al.

Our findings reveal the existence of EFX allocation for a bi-valued instance
involving four linearly structured agents. An intriguing direction for further
investigation would be to explore whether EFX allocation exists for other non-
complete graph structures, such as circular graphs. Moreover, graphs offer the
opportunity to define and explore several other notions of fairness, such as
local proportionality and local max-min share, which could be pursued in future
research endeavors.

References

1. Amanatidis, G., Birmpas, G., Filos-Ratsikas, A., Hollender, A., Voudouris, A.A.:
Maximum Nash welfare and other stories about EFX. Theoret. Comput. Sci. 863,
69–85 (2021)

2. Aziz, H., Bouveret, S., Caragiannis, I., Giagkousi, I., Lang, J.: Knowledge, fair-
ness, and social constraints. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, p. 1 (2018)

3. Beynier, A., et al.: Local envy-freeness in house allocation problems. Auton. Agent.
Multi-Agent Syst. 33, 591–627 (2019)

4. Bhaskar, U., Sricharan, A., Vaish, R.: On approximate envy-freeness for indivisible
chores and mixed resources. arXiv preprint arXiv:2012.06788 (2020)

5. Bouveret, S., Cechlárová, K., Elkind, E., Igarashi, A., Peters, D.: Fair division of
a graph. arXiv preprint arXiv:1705.10239 (2017)

6. Brams, S.J., Taylor, A.D.: Fair Division: from cake-cutting to dispute resolution.
Cambridge University Press (1996)

7. Bredereck, R., Kaczmarczyk, A., Niedermeier, R.: Envy-free allocations respecting
social networks. Artif. Intell. 305, 103664 (2022)

8. Budish, E.: The combinatorial assignment problem: approximate competitive equi-
librium from equal incomes. J. Polit. Econ. 119(6), 1061–1103 (2011)

9. Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.:
The unreasonable fairness of maximum Nash welfare. ACM Trans. Econ. Comput.
(TEAC) 7(3), 1–32 (2019)

10. Chaudhury, B.R., Garg, J., Mehlhorn, K.: EFX exists for three agents. In: Pro-
ceedings of the 21st ACM Conference on Economics and Computation, pp. 1–19
(2020)

11. Dai, S., Gao, G., Liu, S., Lim, B.H., Ning, L., Xu, Y., Zhang, Y.: EFX under
budget constraint. In: Frontiers of Algorithmic Wisdom - International Joint Con-
ference, IJTCS-FAW 2022. Lecture Notes in Computer Science, vol. 13461, pp.
3–14. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20796-9 1

12. Gafni, Y., Huang, X., Lavi, R., Talgam-Cohen, I.: Unified fair allocation of goods
and chores via copies. arXiv preprint arXiv:2109.08671 (2021)

13. Igarashi, A., Peters, D.: Pareto-optimal allocation of indivisible goods with con-
nectivity constraints. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 33, pp. 2045–2052 (2019)

14. Li, B., Li, Y., Wu, X.: Almost (weighted) proportional allocations for indivisible
chores. In: Proceedings of the ACM Web Conference 2022, pp. 122–131 (2022)

15. Lipton, R.J., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations
of indivisible goods. In: Proceedings of the 5th ACM Conference on Electronic
Commerce, pp. 125–131 (2004)

http://arxiv.org/abs/2012.06788
http://arxiv.org/abs/1705.10239
https://doi.org/10.1007/978-3-031-20796-9_1
http://arxiv.org/abs/2109.08671

EFX Allocation to Chores over Small Graph 291

16. Mahara, R.: Extension of additive valuations to general valuations on the existence
of EFX. arXiv preprint arXiv:2107.09901 (2021)

17. Payan, J., Sengupta, R., Viswanathan, V.: Relaxations of envy-freeness over graphs
(2023)

18. Plaut, B., Roughgarden, T.: Almost envy-freeness with general valuations. SIAM
J. Discret. Math. 34(2), 1039–1068 (2020)

19. Suksompong, W.: Fairly allocating contiguous blocks of indivisible items. Discret.
Appl. Math. 260, 227–236 (2019)

20. Zhou, S., Wu, X.: Approximately EFX allocations for indivisible chores. arXiv
preprint arXiv:2109.07313 (2021)

http://arxiv.org/abs/2107.09901
http://arxiv.org/abs/2109.07313

Extreme Graph and Others

Zero-Visibility Cops and Robber Game
on Cage Graph

Xiaoli Sun1,2(B), Farong Zhong1,2, and Boting Yang2

1 Department of Computer Science, Zhejiang Normal University, Jinhua, China
hengxiangdaying@163.com

2 Department of Computer Science, University of Regina, Regina,
Saskatchewan S4S 0A2, Canada

Abstract. We consider zero-visibility cops and robber game that the
cops lack of information on the location of the robber at all times, which
is a variant of the classical cops and robbers game. First of all, we use
the idea of splitting to study properties of cage graphs. Then we apply
properties of cage graphs to investigate the lower bounds of cop number
and the monotonic zero-visibility cop number of cage graphs. We also
propose a searching algorithm to calculate the monotonic zero-visibility
cop number of cage graphs.

Keywords: Graph searching · Pursuit-evasion · Cops and robber ·
Cage graph

1 Introduction

Graph searching, also called pursuit-evasion problem. For a given graph, the core
problem is to determine the minimum number of searchers needed to search for
robbers [1–4]. In recent years, Graph searching has evolved into a powerful tool
that can provide corresponding search models to solve practical problems based
on different real-world problems. One of the practical problems, such as mobile
robot target hunting and large warehouse retrieval of goods, can be solved by
the cops and robbers game. Cops and robber game is one of the graph search-
ing model, which is a perfect information two player game on the graph and
introduced independently by Nowakowski and Winkler [5] and Quilliot [6].

Many variants of Cops and robber game have been considered [7]. The Zero-
visibility cops and robber game is variant of the Cops and robbers game proposed
by Tošić, which has the same setting as Cops and robbers except that the cops
have no information about the position of the robber [8]. It means that the robber
is invisible to cops. Compared to the perfect information Cops and robbers
model, it is harder for cops to catch robber in the zero-visibility cops and robber
model. Our goal is to determine the smallest number of cops that can capture
the robber definitely.

To the best of our knowledge, despite extensive research on Cops and rob-
bers game, research on zero-visibility cops and robber game remains a huge
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 295–309, 2024.
https://doi.org/10.1007/978-3-031-49614-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_22&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_22

296 X. Sun et al.

challenge. Tošić described graphs which one cop enough to capture the robber
and calculated the minimum zero-visibility cop number for the paths, complete
graphs, circle and complete bipartite graphs [8]. Additionally, Tang studied the
zero-visibility cops and robber game on tree and acyclic graphs, determined the
minimum zero-visibility cop number of tree and acyclic graphs and proposed a
square time algorithm to compute zero-visibility cop number of tree [9]. There
are still some left, Dereniowski et al. proved that the zero-visibility cop num-
ber of the graph is related to the pathwidth of graph, they also gave the proof
that the upper and lower bounds of the zero-visibility cop number are related
to the multiple of the path width [10]. Dereniowski also gave a linear time
algorithm for calculating the zero-visibility cop number on the tree and proved
that the problem of determining the zero-visibility cop number of the graph is
NP-complete [11].

It can be seen that research on zero-visibility cops and robber game is not
abundant. Therefore, we mainly give a study of the zero-visibility cop number on
cage graphs and related search algorithm in this paper. It is extremely meaningful
to determine the zero-visibility cop number for more different structured graphs.

The structure of the paper is as follows. In Sect. 2 we give some terms and
concepts that is related with the paper. In Sect. 3 we make a thorough inquiry
about the monotonic zero-visibility cop number of cage graphs. In Sect. 4 zero-
visibility searching algorithm on the cage graphs is proposed. And we summa-
rized the paper in Sect. 5.

The corresponding results in the paper are summarized in appendix Table 1.

2 Preliminaries and Basic Definitions

2.1 Graph Theory Notion

All graphs are assumed to be undirected without multiple edges and loops in
this paper. We introduce the following terminology regarding this game.

Let G = (VG, EG) be a graph with vertex set VG and edge set EG. A graph
G′=(VG′ , EG′) is a subgraph of G if and only if VG′ ⊆ VG and EG′ ⊆ EG. We use
uv to represent a edge connecting the vertex u and vertex v. If uv ∈ EG, we say
that u and v are adjacent, expressed as u ∼ v. For any subset X of VG, the set

NG(X) = {u ∈ VG | ∃v ∈ X such that u ∼ v}

is the neighbourhood of X. If X = {u} is a singleton, we use NG(u) rather
than NG({u}) to represent the neighbourhood of u. Clearly, the number of
neighbourhood of a vertex u is exactly the degree or valency of the vertex
u, i.e. degG(u) = |NG(u)|. The minimum degree of graph G is written as
δ(G) = min(|NG(v) | v ∈ VG).

A walk is an alternating sequence W = v0, e1, v1, ..., ek, vk of vertices and
edges such that each edge ei, 1 ≤ i ≤ k, has endpoints vi−1 and vi. A path is
a walk that the vertices except that its first vertex and its last vertex in it are
different. We use p = v1v2...vk to denote a path with ends v1 and vk. A cycle

Zero-Visibility Cops and Robber Game on Cage Graph 297

is a path that its first vertex is the same as its last vertex. A trail is a walk
in which no edge occurs more than once. A circuit is a trail whose first vertex
is the same as its last. The length of the shortest cycle in the graph is called
the girth, marked g. The edges that are not in the cycle but its two endpoints
are in the cycle are called the chord. The induced cycle of G is that does not
contain chord. A matching in a graph is a set of edges such that no two edges
are incident. A matching M covers a vertex v if there is an edge in M that has
v as an endpoint. The matching number of the graph G, M(G), is the size of a
maximum matching in the graph G.

A graph is said to be regular of valency r if each of its vertices has valency r.
A regular graph with valency r and girth g is called a (r, g)-graph. A (r, g)-graph
with the least possible number of vertices is called a (r, g)-cage and marked Gr,g.
The number of vertices of a (r, g)-cage is denoted by |VGr,g

|. Any cage with odd
girth g must have at least 1+r

∑(g−3)/2
i=0 (r−1)i vertices, and any cage with even

girth g must have at least 2
∑(g−2)/2

i=0 (r − 1)i vertices [12,13].
For r = 2, the (2, g)-cage is the g-cycle. For g = 2, the (r, 2)-cage has just

two vertices and they are joined by exactly r edges. For g = 3, the (r, 3)-cage
is the (r + 1)-clique. Hereafter, we study cage graph with r = 3, 3 ≤ g ≤ 12,
r = 4, 3 ≤ g ≤ 8, g = 4, 3 ≤ r ≤ 7 in this paper. For a cage graph with r = 3,
the neighbor connecting with the chord of vj , denoted by vcj . The neighbor
connecting with the non-chords of vj , denoted by vnj

. For a cage graph with
r = 4, the neighbor of vj is connected by a chord, which is an edge on the second
smallest cycle of vj , and is denoted as vc longj . The neighbor of vj is connected by
a chord, which is an edge on the smallest cycle of vj , and is denoted as vc shortj .

2.2 Cops and Robber

The zero-visibility cops and robber game is played on an undirected connected
graph G and consists of two sides of the confrontation, which a cop player con-
trols the movements of a fixed number of cops and a robber player controls the
movement of a single robber. Both cop player and robber player let them move
on the graph. The robber has all information about the locations and movements
of all cops while the cops have no information about the location and movement
of the robber at any time. i.e., the robber is invisible to cops. Cop can only
guess the location of the robber based on his previous moves, and the robber
has been evading cops tracking at all times. The game is played in a sequence
of rounds. Each round consists of a pair of turns, a cops’ turn to move, followed
by a robber’s turn to move.

At the 0th round, the cops occupy some of the vertices on the graph, and the
robber occupies a vertex without cops. At round i(i ≥ 1), the cops move from
the current vertex to one of its neighbors, and the robber moves to its neighbor
that is not occupied by cop from the current vertex. They can all choose to stay
at current vertices. The cops capture the robber if one of them occupies the same
vertex as the robber and it happens in a finite number of movements. Otherwise,
the robber wins. The zero-visibility cop number of G, denoted by c0(G), is the

298 X. Sun et al.

minimum number of cops required to capture the robber on G. A cop − win
strategy for G is optimal if it uses c0(G) cops to capture the robber.

The vertex is cleared if we are sure that a vertex is not occupied by the robber.
Otherwise, it’s contaminated. The set of cleared vertices is denoted as VC . The
set of contaminated vertices is denoted as VZ . Similarly, the set of edges that
robber will be caught immediately or next turn if he passes is denoted as EC .
The set of other edges is denoted as EZ . If the cleaned vertices in VC become
contaminated again, it is called recontamination. The cleared vertex in the i
round is denoted as V i

C .
For each edge uv and vertices u, v of G, we want to construct a strategy

that can clean the graph G. A zero-visibility cops and robber search strategy of
a graph is a sequence of movement that clear the whole graph. We call the two
vertices u and v guarded from the robber if there is a cop that moves back and
forth between u and v. It will be caught either immediately or on the next turn
if the robber moves onto either while this is occurring. Considering this activity
in the graph cleaning model, although the vertices u and v are possibly being re-
contaminated over and over, the contamination will never spread through them.
Because they are cleaned before they can possibly re-contaminated any further
vertices. We refer to the above activity as vibrating on the edge uv.

In a pursuit-evasion game of this sort, a topic of general interest is that of the
monotonicity of strategies. Typically, a strategy is monotonic if recontamination
never occurs. In other words, it satisfies V i

Z ≤ V i−1
Z . We wish to take advantage of

the above strategic element. However, sometimes monotonicity is not guaranteed
during the search process. And there may occur some recontamination vertices
after each cleanup. Thus, we define a weakly monotonic strategy with length T.
In a weakly monotonic strategy, there may occur some cleaned vertices that are
re-contaminated after each cleanup. But if on the cops’ next round, cops can
immediately clean up the re-contaminated vertices, then the contamination is
not spread. Thus, if the cop player is following a weakly monotonic strategy and
the robber moves onto a vertex that has been previously visited by a cop, he
will be caught on the every next turn.

The monotonic zero-visibility cop number of a connected graph G is the
minimum order mc0 = mc0(G) among successful weakly monotonic strategies
on G. It is the smallest cop number required to capture the robber utilising a
weakly monotonic strategy. We are exclusively interested in weakly monotonic
strategies, so we will simply use the term monotonic with the meaning of weakly
monotonic. That is to say, for convenience of description, they are collectively
referred to as monotonicity hereinafter. Clearly, we have c0(G) ≤ mc0(G) for all
graphs G.

3 The Monotonic Zero-Visibility Cop Number of Cage
Graph

This section includes two subsections: in the first subsection, we will give lower
bounds on zero-visibility cop number of cage graph that r ≥ 3 and g ≥ 3; in

Zero-Visibility Cops and Robber Game on Cage Graph 299

the second subsection, we will apply the lower bounds to give the monotonic
zero-visibility cop number of cage graph.

3.1 Lower Bounds of Cop Number

Lemma 1. For a cage graph G, let H =G − Vk. Here Vk ⊆ VG, if it satisfies
|VH | ≤ |EH |, then there is at least one cycle in H.

Proof. If an undirected graph has n vertices and n−1 edges, it can be connected.
It’s obvious that there is no cycle (i.e., spanning tree). But with an additional
edge and let there is no vertex with degree less than one , it will form a cycle
without considering the heavy edge. �	

Property 1. For a cage graph G with r = 3, g ≥ 3, there are at most
|VG3,g |

g
cycles with length ≥ g in the graph G, and it is the smallest number of cycles
containing all vertices of G.

Theorem 1. For a cage graph G with r = 3, 3 ≤ g ≤ 12, c0(G3,g) ≥ 2|VG3,g |
g .

Proof. We prove it as follows, where Hi = G3,g − V i−1
C , |N i

Z [vn]| is the number
of contaminated neighbors of vn .

– (i) When g = 3, |VG3,3 | = 4, |EG3,3 | = 6,M(G3,3) = 2, so matching covers
G3,3. First, we place a cop on each endpoint of edges in matching and let
they begin vibrating on the matching, then the cops win in the first round.
If not, we use one cop and place the cop on a vertex on the G3,3. It’s obvious
that there is a cycle on G3,3, and it’s a graph of robber-win. So c0(G3,3) =

2 =
|VG3,3 |

2 ≥ 2|VG3,3 |
g .

– (ii) When g = 4, |VG3,4 | = 6, |EG3,4 | = 9, M(G3,4) = 3. Similar to (i), we can

prove that c0(G3,4) = 3 =
|VG3,4 |

2 ≥ 2|VG3,4 |
g .

– (iii) When g ≥ 5, we assume that c0(G3,g) ≤ 2|VG3,g |
g − 1, and consider an

optimal strategy with at most
2|VG3,g |

g − 1 cops. We will use induction to

show that |V i
C | ≤ 2

2|VG3,g |
g − 2 for all i ≥ 0. When i = 0, it’s easy to see that

|V 0
C | ≤ 2|VG3,g |

g −1 < 2
2|VG3,g |

g −2. We assume that|V i−1
C | ≤ 2

2|VG3,g |
g −2 holds

for round i − 1, where i ≥ 1. There are two cases.
• Case 1: the remaining vertices and edges in Hi satisfies |V i

Z | ≤ |Ei
Z |.

Owing to c0(G3,g) ≤ 2|VG3,g |
g − 1 <

|VG3,g |
2 and |V i−1

C | ≤ 2
2|VG3,g |

g − 2 ≤
2
2|VG3,g |

5 − 2, there is a vertex vn in Hi that it has at least two adjacent
contaminated vertices. In other words, |N i

Z [vn]| ≥ 2. It follows Lemma 1,
it exists at least one cycle in Hi. According to property1, we can see
that it exists at most

|VG3,g |
g cycles with length ≥ g in the graph G. If

2|VG3,g |
g −1 cops occupied

2|VG3,g |
g −1 vertices on

|VG3,g |
g −1 cycles in round

300 X. Sun et al.

i − 1, it exists one cycle without cop. In round i, we move a cop that is
adjacent to the cycle to this cycle to clear. It’s obvious that one cop can
not clear one cycle. If not, in the round i − 1, we assume that there are
2|VG3,g |

g −1 vertices occupied by cops and there are two or more cops that
are adjacent to the cycle. We move these cops to clear Hi in round i. In
case of |V i−1

C | ≤ 2
2|VG3,g |

g − 2, |V i
Z | ≥ |VG3,g | − 2

2|VG3,g |
g +2 >

2|VG3,g |
g − 1,

and it exists vertices in V i−1
C that get re-contaminated after the robber’s

turn in round i from above, therefore |V i
C | ≤ |V i−1

C | ≤ 2
2|VG3,g |

g − 2.
• Case 2: the remaining vertices and edges in Hi satisfies |V i

Z | > |Ei
Z |.

Since c0(G3,g) ≤ 2|VG3,g |
g − 1 <

|VG3,g |
2 , it exists a vertex vn that is non-

adjacent to cops and unoccupied by cops. And in the previous i − 1
round, if we move

2|VG3,g |
g − 2 cops to vibrate on 2

2|VG3,g |
g − 4 vertices

with |V i−1
C | ≤ 2

2|VG3,g |
g − 2, then |V i

Z | = |VG3,g | − 2
2|VG3,g |

g + 4 ≥ 6. If it
exists one path that contains vn with length ≥ 2 in Hi, then the remaining
one cop can not clear remaining Hi. Similar to case 1, if we move other
cop to clear Hi, then |V i

C | ≤ |V i−1
C | ≤ 2

2|VG3,g |
g − 2.

From the above, we have |V i
C | ≤ 2

2|VG3,g |
g − 2 for all i ≥ 0 while we use at

most
2|VG3,g |

g −1 cops, which is a contradiction. Hence, c0(G3,g) ≥ 2|VG3,g |
g , where

g ≥ 3. This ends the proof. �	

Theorem 2. For a cage graph with r = 4, 3 ≤ g ≤ 8, c0(G4,g) ≥ 2|VG4,g |
7 .

Proof. We prove it as follows, where Hi = G3,g − V i−1
C .

– when g = 3. |VG4,3 | = 5, |EG4,3 | = 10,M(G4,3) = 2, if we place two cops on
the one endpoint of edges in matching, and let them begin vibrating on the
matching, then there is a vertex not covered by matching. If not, in case of
there exists intersect cycles of G, two cops can not capture the robber. So,
c0(G4,3) > 2. If we place two cops on the one endpoint of edges in matching,
and let they begin vibrating on the matching. Then place the third cop on
the vertex that is not covered. We can capture the robber now. So c0(G4,3) =

3 >
2|VG4,3 |

7 .
– when g = 4. |VG4,4 | = 8, |EG4,4 | = 16,M(G4,4) = 4, if we place four cops on

the one endpoint of edges in matching, and let they begin vibrating on the
matching, we can capture the robber in the first round.

– when g ≥ 5. Assume that c0(G4,g) ≤ 2|VG4,g |
7 − 1 in the whole process of

search. We use an optimal strategy that makes cop win on G4,g with at most
2|VG4,g |

7 − 1 cops, and we show that |V i
C | ≤ 4|VG4,g |

7 − 2 for all i ≥ 0. When

i = 0, it’s easy to see that |V 0
C | ≤ 2|VG4,g |

7 − 1 ≤ 4|VG4,g |
7 − 2. We assume that

|V i−1
C | ≤ 4|VG4,g |

7 − 2 holds for round i − 1, when i ≥ 1. There are two cases.

Zero-Visibility Cops and Robber Game on Cage Graph 301

• Case 1: the remaining vertices and edges in Hi satisfy |V i
Z | ≤ |Ei

Z |. Owing

to c0(G4,g) ≤ 2|VG4,g |
7 − 1 <

|VG4,g |
2 and |V i−1

C | ≤ 4|VG4,g |
7 − 2, it exists a

vertex vn in Hi that satisfies |N i
Z [vn]| ≥ 3. It follows from Lemma 1, it

exists at least a cycle in Hi. In round i, if there is a cop that is adjacent
to this cycle, then we move the cop to clear Hi. It’s obvious that one
cop can not clear a cycle. If not, it exists at least two cops are adjacent
to this cycle. We move these cops to clear Hi in round i. In this way,
we may clear this cycle. However, since |V i−1

C | ≤ 4|VG4,g |
7 − 2, |V i

Z | ≥
|VG4,g | −

4|VG4,g |
7 + 2 >

2|VG4,g |
7 − 1, it exists vertices in V i−1

C that get re-
contaminated after the robber’s turn in round i from above. Therefore,
|V i

C | ≤ |V i−1
C | ≤ 4|VG4,g |

7 − 2.
• Case 2: the remaining vertices and edges in Hi satisfy |V i

Z | > |Ei
Z |. Since

c0(G4,g) ≤ 2|VG4,g |
7 −1 <

|VG4,g |
2 , it exists a vertex vn that is non-adjacent

to cops and is not occupied by cops. And since |V i−1
C | ≤ 4|VG4,g |

7 − 2, if

we move
2|VG4,g |

7 − 2 cops to vibrate on
4|VG4,g |

7 − 4 vertices, then |V i
Z | =

|VG4,g | − 4|VG4,g |
7 + 4 ≥ 6. If there is a path contains vn with length ≥ 2,

then the remaining one cop can not clear remaining Hi. Similar to case
1, if we move other cop to clear Hi, it exists vertices in V i−1

C that get

re-contaminated, then |V i
C | ≤ |V i−1

C | ≤ 4|VG4,g |
7 − 2.

From the above, we have |V i
C | ≤ 4|VG4,g |

7 −2 for all i ≥ 0 while we use at most
2|VG4,g |

7 − 1 cops, which is a contradiction. Hence, c0(G4,g) ≥ 2|VG4,g |
7 , where

g ≥ 3 .

�	

3.2 Cop Number of Cage Graph

As below, we will give some lemmas about mc0(G3,g),mc0(G4,g) and mc0(Gr,4).

Lemma 2. For a cage graph with r = 3, g = 3,mc0(G3,3) = 2 .

Lemma 3. For a cage graph with r = 3, g = 4,mc0(G3,4) = 3 .

The proof of Lemma 2 and Lemma 3 are easy and are omitted.

Lemma 4. For a cage graph with r = 3, g = 5, mc0(G3,5) = 4 .

Proof. It follows Theorem 1, mc0(G3,5) ≥
 2|VG3,5 |
5 � ≥ 4.

Here is the monotonic strategy of four cops to clear G3,5(see Fig. 1). We place
cops c1, c2, c3, c4 on vertex v1, then move c1 from v1 along v1v6 to v6 and let
c1 begin vibrating on v1v6 in whole search process. Since the robber sees the
location of the cops, the robber does not choose to move to v1,v6. If robber does
that, he will be caught immediately or next turn. Therefore, the robber will only
choose to move along the path in Hi. We move cop c2 along v1v2v7 to v7, and

302 X. Sun et al.

let c2 begin vibrating between v7v10 in whole search process. Similarly, since the
robber can see the location of the cop, he will not choose to move to vertex v7,
v10. It’s obvious that there is a tree with only six vertices in Hi. Then we move
the cop c3, c4 along v1v5v4 to v4. Let c3 begin vibrating on v4v3 in whole search
process, and let c4 search along the path of Hi. We can easily clear G3,5 from
above strategy for four cops. Thus, the lemma holds. �	

Fig. 1. Cage(3, 5).

Lemma 5. For a cage graph with r = 3, g = 6, mc0(G3,6) = 5.

Proof. It follows Theorem 1, mc0(G3,6) ≥
 2|VG3,6 |
6 � ≥ 4.

Here is the monotonic strategy to clear G3,6(see Fig. 2). We place cops
c1, c2, c3, c4 on vertex v1, let c1 move from v1 along v1v10 to v10 and begin
vibrating on v1v10 in whole search process. Since the robber sees the location of
the cops, the robber does not choose to move to v1,v10. If robber does that, he
will be caught next turn. Therefore the robber will only choose to move along
the path in H. We move cop c2 to v3. Let c2 begin vibrating between v3v12 in
whole search process. Similarly, since the robber can see the location of the cop,
he will not choose to move to vertex v3,v12. We move cop c3 to v6, and let c3
begin vibrating between v6v7 in whole search process. Then it exists a cycle in

Zero-Visibility Cops and Robber Game on Cage Graph 303

H. Now we can only move c4 to clear H. Obviously, it can not guarantee to
capture robber in this way. If not, the vertex in VC will be re-contaminated.
That is to say, c0(G3,6) > 4. If there are five cops, from above strategy, we move
cops c4, c5 to v14, and then let c5 search along the cycle in H. We can easily
prove that five cops can clear G3,6 from above strategy. Thus, Lemma 5 holds.

�	

Fig. 2. Cage(3, 6).

Due to the limited space, when 7 ≤ g ≤ 12, we will not list proof of them
one by one. We give the Theorem 3 below to summarize the zero-visibility cop
number when r = 3, 3 ≤ g ≤ 12.

Theorem 3. For a cage graph with r = 3, 3 ≤ g ≤ 12, there is
2|VG3,g |

g ≤
mc0(G3,g) ≤ 2|VG3,g |

g + 2.

Lemma 6. For a cage graph with r = 4, g = 3, mc0(G4,3) = 3 .

Proof. It follows Theorem 2, we have mc0(G4,3) ≥ � 2|VG4,3 |
7 ≥ 2.

Here is the monotonic strategy of two cops to clear G4,3.
We place cops c1, c2 on vertex v1, and let c1 begin vibrating on v1v4 in whole
search process. Since the robber sees the location of the cops, the robber does
not choose to move to v1,v4. If robber do that, he will be caught next turn.
Therefore, the robber will only choose to move the path in H. There is a cycle
with three vertices in H. Obviously, we can only move c2 to clear H, and it can
not guarantee to capture robber in this way. If not, the vertex in VC will be
re-contaminated. That is to say, mc0(G4,3) > 2. If there are three cops, from
above strategy, we move cops c2, c3 to v5, and let c3 search along the path in H.
We can easily prove that three cops can clear G4,3 from above strategy. Thus,
Lemma 6 holds (Fig. 3).

304 X. Sun et al.

Fig. 3. Cage(4, 3).

Lemma 7. For a cage graph with r = 4, g = 4, mc0(G4,4) = 4.

Proof. It follows Theorem 2, mc0(G4,4) ≥ � 2|VG4,4 |
7 ≥ 3.

There is a monotonic strategy of four cops to clear G4,4. We place cops c1, c2, c3
on vertex v1, and let c1 begin vibrating on v1v4 in whole search process. Since
the robber sees the location of the cops, the robber does not choose to move
to v1,v4. If robber do that, he will be caught next turn. Therefore the robber
will only choose to move the path in H. We move c2 to v8, and let c2 begin
vibrating on v8v5 in whole search process. There is a cycle with four vertices
in H. Obviously, we can only move c3 to clear H and it can not guarantee to
capture robber in this way. If not, the vertex in VC will be re-contaminated.
That is to say, mc0(G4,4) > 3. If there are four cops, from above strategy, we
move cops c3, c4 to v2, and let c4 search along the path in H. We can easily
prove that four cops can clear G4,4 from above strategy. Thus, Lemma 7 holds
(Fig. 4).

Fig. 4. Cage(4, 4).

Zero-Visibility Cops and Robber Game on Cage Graph 305

Due to the limited space, when 5 ≤ g ≤ 8, we will not list proof of them
one by one. We give the Theorem 4 below to summarize the zero-visibility cop
number when r = 4, 3 ≤ g ≤ 8.

Theorem 4. For a cage graph with r = 4, 3 ≤ g ≤ 8,
2|VG4,g |

7 ≤ mc0(G4,g) ≤
2|VG4,g |

7 + 2.

Theorem 5. For a cage graph with 3 ≤ r ≤ 7, g = 4, mc0(Gr,4) = r.

Proof. We place r cops, c1, ...cr on v1, where 1 ≤ j ≤ |VGr,4 |.
For i from 1 to r − 2, j from 1 to |VGr,4 |,
move ci from vj to vjvj+3 and let ci begin vibrating on vjvj+3.
i ← i + 1, j ← j + 2.
We move the remaining two cops to clear the remaining cycles in H. �	

4 Algorithm for the Monotonic Zero-Visibility Strategy
of Cage

In this section, we propose a zero-visibility search algorithm(ZCRSC-Cleaning
a cage graph Gr,g in a monotonic manner) for searching cage graphs. In this
algorithm, Input: A cage graph G(r, g), Output: the cops’ sequence. The idea
of our algorithm as follows, firstly, we place n cops c1, c2, ..., cn on v1, secondly,
Starting from the first round, we compare the sizes of |EZ |,|VZ | in each round. If
|EZ | ≥ |VZ | and there is a vertex connected to three or more contaminated edges.
This means that the remaining graph has multiple cycles that intersect, and we
need to call a function(BreakCycle-Cleaning a cage graph Gr,g in a monotonic
manner)to break these cycles. If |EZ | < |VZ | and there is a vertex connected
to three or more contaminated edges. This means that the remaining graph has
multiple paths that intersect and we need to call a function(IZ-Cleaning a cage
graph Gr,g in a monotonic manner) to search paths. If |EZ | < |VZ | and there is
no a vertex connected to three or more contaminated edges. This means that the
remaining graph has multiple disjoint paths, we move cops to search every path.
If |EZ | ≥ |VZ | and there is no a vertex connected to three or more contaminated
edges. This means that the remaining graph has multiple disjoint cycles, we
move cops to search every cycle. Since we have a finite number of vertices and
edges, according to the above, we can easy to get that is a linear time complexity
algorithm to clean cage graph. We can see appendix for detailed algorithms.

5 Conclusion and Further Discussion

The paper studies zero-visibility cops and robber game on cage graphs. First
of all, we solve the lower bounds of zero-visibility cop number on cage graphs.
Secondly, we prove that the monotonic zero-visibility cop number of cage graphs.
Thirdly, a linear time complexity algorithm has been proposed to clean cage
graph in a monotonic manner. In future studies, we will design effective algorithm

306 X. Sun et al.

about other graph searching problems. For example, zero-visibility cops and
robber game on crown graphs. At the same time, we are also interested to some
problems such as fast searching on cage graphs.

Appendices

Table 1. zero-visibility cop number of Cage graph.

Cage graph G3,g

Name Vertices Edges lower bounds mc0

G3,3 4 6 c0(G3,3) ≥ 2|VG3,3 |
3

2

G3,4 6 9 c0(G3,4) ≥ 2|VG3,4 |
4

3

G3,5 10 15 c0(G3,5) ≥ 2|VG3,5 |
5

4

G3,6 14 21 c0(G3,6) ≥ 2|VG3,6 |
6

5

G3,7 24 36 c0(G3,7) ≥ 2|VG3,7 |
7

6

G3,8 30 45 c0(G3,8) ≥ 2|VG3,8 |
8

8

G3,9 58 87 c0(G3,9) ≥ 2|VG3,9 |
9

13

G3,10 70 105 c0(G3,10) ≥ 2|VG3,10 |
10

16

G3,11 112 168 c0(G3,11) ≥ 2|VG3,11 |
11

22

G3,12 126 189 c0(G3,12) ≥ 2|VG3,12 |
12

23

Cage graph G4,g

G4,3 5 10 c0(G4,3) ≥ 2|VG4,3 |
7

3

G4,4 8 16 c0(G4,4) ≥ 2|VG4,4 |
7

4

G4,5 19 38 c0(G4,5) ≥ 2|VG4,5 |
7

6

G4,6 26 52 c0(G4,6) ≥ 2|VG4,6 |
7

8

G4,7 67 134 c0(G4,7) ≥ 2|VG4,7 |
7

19

G4,8 80 160 c0(G4,8) ≥ 2|VG4,8 |
7

22

Cage graph Gr,4

G3,4 6 9 r 3

G4,4 8 16 r 4

G5,4 10 25 r 5

G6,4 12 36 r 6

G7,4 14 49 r 7

Zero-Visibility Cops and Robber Game on Cage Graph 307

Algorithm 1. ZCRSC-Cleaning a cage graph Gr,g in a monotonic manner
Require: A cage graph Gr,g(r = 3, 3 ≤ g ≤ 12 and r = 4, 3 ≤ g ≤ 8)
Ensure: The sequence of the searchers’movements S
1: Place n cops on a vertex.
2: while EZ �= ∅ do
3: if |EZ | ≥ |VZ | and there is vj with |EZ(vj)| ≥ 3 then
4: call BreakCycle()
5: end if
6: if |EZ | < |VZ | and there is vj with |EZ(vj)| ≥ 3 then
7: call IZ()
8: end if
9: if |EZ | < |VZ | and there is no vj with |EZ(vj)| ≥ 3 then
10: move cops along each path to search robber.
11: end if
12: if |EZ | ≥ |VZ | and there is no vj with |EZ(vj)| ≥ 3 then
13: move cops along each cycle to search robber.
14: end if
15: end while
16: if VZ �= ∅ then
17: move cops to contaminated vertices to search robber.
18: end if
19: return S.

Algorithm 2. BreakCycle-Cleaning a cage graph Gr,g in a monotonic manner
Require: A cage graph Gr,g(r = 3, 3 ≤ g ≤ 12 and r = 4, 3 ≤ g ≤ 8)
Ensure: The sequence of the searchers’movements S
1: function BreakCycle()
2: if r = 3, g = 5 then
3: find a vertex vi from G with |EZ(vi)| = max and move cops from v1 to vi.
4: else
5: find a vertex vi with |EZ(vi)| = max and |EZ(vni)| = max and move cops

from v1 to vi
6: end if
7: if there is a vertex vip in NH(vi) with |EZ(vip)| = max then
8: move cop from vi along vivip to vip and let the cop vibrate on vivip until

cops win.
9: end if
10: end function

308 X. Sun et al.

Algorithm 3. IZ-Cleaning a cage graph Gr,g in a monotonic manner
Require: A cage graph Gr,g(r = 3, 3 ≤ g ≤ 12 and r = 4, 3 ≤ g ≤ 8)
Ensure: The sequence of the searchers’movements S
1: function IZ()
2: if there are vertices with |EZ(vp)| = 0 and |EZ(vu)| ≥ 2, and there is no

|EZ | < |VZ | without the vertices with |EZ(vp)| = 0 then
3: move cop to the vertex v with EZ(v) = max and let this cop vibrate on vvu

until cops win.
4: move another cop along paths to search robber.
5: else if |VZ | ≤ 6 then
6: move cops along paths to search robber.
7: else
8: move cop to the vertex v with |EZ(v)| = max and move another cop along

paths to search robber.
9: end if
10: return
11: end function

References

1. Bonato, A., Yang, B.: Graph searching and related problems. In: Pardalos, P.M.,
Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp.
1511–1558. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4419-7997-
1 76

2. Parsons, T.D.: Pursuit-evasion in a Graph. In: Alavi, Y., Lick, D.R. (eds.) the
International Conference on Theory and Applications of Graphs 1976, Lecture
Notes in Mathematics, vol. 642, pp. 426–441. Springer, Heidelberg (1978). https://
doi.org/10.10007/BFb0070400

3. Megiddo, N., HakimiS, L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The
complexity of searching a graph. J. Assoc. Comput. Mach. 35(1), 18–44 (1988)

4. Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theor. Comput. Sci.
47, 205–218 (1986)

5. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discret. Math.
43(2–3), 235–239 (1983)

6. Quilliot, A.: Problemes de jeux, de point Fixe, de connectivite et de representa-
tion sur des graphes, des ensembles ordonnes et des hypergraphes. PhD thesis,
Universite de Paris VI (1978)

7. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs: Student
Mathematical Library, American Mathematical Society, Providence, Rhode Island,
vol. 61, pp. 191–220 (2011)

8. Tos̆ić.: Vertex to Vertex Search in a Graph. In: Proceedings of the Sixth Yugoslav
Seminar on Graph Theory. University of Novi Sad, pp. 43–56 (1985)

9. Tang, A.: Cops and Robber with Bounded Visibility. Masters thesis, Dalhousie
University (2004)

10. Dereniowski, D., Dyer, D., Tifenbach, R.M., Yang, B.: Zero-visibility cops and
robber and the pathwidth of a graph. J. Comb. Optim. 29, 541–564 (2015)

https://doi.org/10.1007/978-1-4419-7997-1_76
https://doi.org/10.1007/978-1-4419-7997-1_76
https://doi.org/10.10007/BFb0070400
https://doi.org/10.10007/BFb0070400

Zero-Visibility Cops and Robber Game on Cage Graph 309

11. Dereniowski, D., Dyer, D., Tifenbach, R.M., Yang, B.: The complexity of zero-
visibility cops and robber. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014.
LNCS, vol. 8497, pp. 60–70. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-08016-1 6

12. Survey, C.-A.: Pak-Ken Wong. J. Graph Theor. 6, 1–22 (1982)
13. WIKIPEDIA Homepage. http://en.wikipedia.org/wiki/Cage (graph theory).

Accessed 4 Oct 2018
14. Clarke, N.E., Macgillivray, G.: Characterizations of K-copwin Graphs. J. Discrete

Math. 312(8), 1421–1425 (2012)

https://doi.org/10.1007/978-3-319-08016-1_6
https://doi.org/10.1007/978-3-319-08016-1_6
http://en.wikipedia.org/wiki/Cage_(graph_theory)

Online Facility Assignment for General
Layout of Servers on a Line

Tsubasa Harada(B) and Toshiya Itoh

Department of Mathematical and Computing Science, Tokyo Institute of Technology,
2 -12 -1 Ookayama, Meguro-ku, Tokyo 152 -8550, Japan
harada.t.ak@m.titech.ac.jp, titoh@c.titech.ac.jp

Abstract. In the online facility assignment on a line OFAL(S, c) with
a set S of k servers and a capacity c : S → N, each server s ∈ S with a
capacity c(s) is placed on a line, and a request arrives on a line one-by-
one. The task of an online algorithm is to irrevocably match a current
request with one of the servers with vacancies before the next request
arrives. An algorithm can match up to c(s) requests to a server s ∈ S. In
this paper, we propose a new online algorithm PTCP (Policy Transition
at Critical Point) for OFAL(S, c) and show that PTCP is (2α(S) + 1)-
competitive, where α(S) is informally the ratio of the diameter of S to
the maximum distance between two adjacent servers in S. Depending
on the layout of servers, α(S) ranges from O(1) to O(k). Among all of
known algorithms for OFAL(S, c), this upper bound on the competitive
ratio is the best when α(S) is small. We also show that the competitive
ratio of any MPFS (Most Preferred Free Servers) algorithm [6] is at least
2α(S) + 1, where MPFS is a class of algorithms whose competitive ratio
does not depend on a capacity c. Recall that the class MPFS includes the
natural greedy algorithm and PTCP, etc. Thus, this implies that PTCP
is the best for OFAL(S, c) in the class MPFS.

Keywords: Online algorithm · Competitive analysis · Online metric
matching · Online matching on a line · Online facility assignment ·
Greedy algorithm

1 Introduction

The online facility assignment (OFA) or online transportation problem was
introduced by Kalyanasundaram and Pruhs [10]. In this problem, an online
algorithm is given a set S of k servers and a capacity c : S → N, and receives n
requests one-by-one in an online fashion. The task of an online algorithm is to
match each request immediately with one of the k servers. Note that the num-
ber of requests is at most the sum of each server’s capacity, i.e., n ≤ ∑

s∈S c(s).
The maximum number of requests that can be matched with a server s ∈ S is
c(s), and the assignment cannot be changed later once it has been decided. The
cost of matching a request with a server is determined by the distance between

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 310–322, 2024.
https://doi.org/10.1007/978-3-031-49614-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_23&domain=pdf
http://orcid.org/0000-0001-8101-4153
http://orcid.org/0000-0002-3706-2163
https://doi.org/10.1007/978-3-031-49614-1_23

Online Facility Assignment for General Layout of Servers on a Line 311

them. The goal of the problem is to minimize the sum of the costs of matching
n requests. When the underlying metric space is restricted to be a line, we refer
to such a variant of OFA as OFA on a line (denoted by OFAL).

This problem OFA has many applications. Consider a car-sharing service
where there are k car stations and each station s has c(s) available cars. This
service must assign users arriving one after another to car stations immediately.
It is desirable that all users can use a nearby car station as many as possible.
OFAL also can be viewed as the following real-world problem: Consider a rental
shop that must rent skis with appropriate length to skiers. What kind of algo-
rithm can be used to reduce the gap between the length of the appropriate skis
and the actual rented skis? In this case, each server s is one type of skis, and its
capacity c(s) is the number of available skis for rent.

Ahmed et al. [1] dealt with classical competitive analysis for OFAL under
the assumption that the servers are evenly spaced. We refer to the setting as
OFALeq. Ahmed et al. [1] showed (with rough proofs) that the natural greedy
algorithm matching a request with its closest available server is 4k-competitive
and the Optimal-fill algorithm is k-competitive for any k > 2. On the other
hand, Itoh et al. [7] analyzed the competitive ratio for OFALeq with small k ≥ 2.
They showed that (i) for k = 2, the greedy algorithm is 3-competitive and best
possible, and (ii) for k = 3, 4, and 5, the competitive ratio of any algorithm is
at least 1 +

√
6 > 3.449, 4+

√
73

3 > 4.181, and 13
3 > 4.333, respectively.

For OFA, Harada et al. [6] introduced a class of algorithms called MPFS
(Most Preferred Free Servers) as a natural generalization of the greedy algo-
rithm and showed that the competitive ratio of any MPFS algorithm does not
depend on a capacity c. This is referred to as the capacity-insensitive property.
In addition, they determine the exact competitive ratio of the greedy algorithm
for OFALeq to be 4k − 5 (k ≥ 2) by using the properties of MPFS algorithms.
Moreover, they present an MPFS algorithm IDAS (Interior Division for Adjacent
Servers) for OFAL and showed that the competitive ratio of IDAS for OFALeq

is 2k − 1 and best possible among all MPFS algorithms for OFALeq.

1.1 Our Contributions

In this paper, we present a new MPFS algorithm PTCP (Policy Transition at
Critical Point) for OFAL with a set S of k servers and a capacity c : S → N, and
show that the competitive ratio of PTCP is exactly 2α(S) + 1 and best possible
among all MPFS algorithms for OFAL. As we have mentioned, IDAS [6] is best
possible only for OFALeq. Informally, α(S) is the ratio of the diameter of S to
the maximum distance between two adjacent servers in S (see (1) for details).
We emphasize that PTCP has the capacity-insensitive property. Note that α(S)
is a constant when the distances between adjacent servers increase exponentially,
and becomes up to k − 1 when k servers are evenly placed.

We already have three upper bounds on the competitive ratio for OFAL
with a set S of k servers and a capacity c. These upper bounds can be optimal
according to the specific layout of servers.

312 T. Harada and T. Itoh

(1) 2k − 1 (achieved by the greedy algorithm [6,9]),
(2) 2U(S) + 1 (achieved by IDAS [6]) and
(3) O(log c(S)) (achieved by Robust-Matching [13,14]),

where U(S) is the aspect ratio of S, i.e., the ratio of the diameter of S to the
minimum distance between two adjacent servers in S and c(S) :=

∑
s∈S c(s).

Let us compare the upper bound of PTCP to the above three upper bounds.
For the upper bound (1), it follows that 2α(S) + 1 ≤ 2k − 1 < 2k − 1 if k ≥ 3
and 2α(S) + 1 = 22 − 1 = 3 if k = 2. Then, our new algorithm PTCP performs
better than the greedy algorithm when k ≥ 3 and performs as well as the greedy
algorithm when k = 2. For the upper bound (2), we always have α(S) ≤ k − 1 ≤
U(S) and the equalities hold if and only if k servers are evenly placed. Hence,
PTCP is better than IDAS except for OFALeq and performs as well as IDAS for
OFALeq. For the upper bound (3), there are cases when PTCP performs worse
than Robust-Matching, for example, the case where the servers are evenly placed
and the capacity of each server is 1. In this case, we have O(log c(S)) = O(log k) ≤
k − 1 = α(S). However, we also have another two cases where the performance of
PTCP is better than that of Robust-Matching. The first case is when the capacity
of each server is very large, especially when c(S) = Ω(2α(S)), and the second case
is when α(S) is small, especially when α(S) = o(log k).

Furthermore, we observe that PTCP is advantageous against the existing
algorithms. In fact, we show that there exists a layout of servers such that
PTCP performs very well but the greedy algorithm performs very poorly (in
Theorem 3), and there exists another layout of servers such that PTCP performs
well but the permutation algorithm [1,8] performs poorly (in Theorem 4).

1.2 Related Work

Kalyanasundaram and Pruhs [10] studied OFA under the weakened adversary
model where the adversary has only half as many capacities of each server as the
online algorithm and the length of a request sequence is at most c(S)/2 where
c(S) =

∑
s∈S c(s). They showed that the greedy algorithm is Θ(min(k, log c(S)))-

competitive and present an O(1)-competitive algorithm under this assumption.
Chung et al. [4] also studied OFA under another weakened adversary where the
adversary has one less capacity of each server against the online algorithm. Under
this model, they presented an O(log k)-competitive deterministic algorithm on an
α-HST [4] metric where α = Ω(log k) and an O(log3 k)-competitive randomized
algorithm on a general metric.

The special cases of OFA and OFAL, where the capacity of each server is 1,
have been known as the online metric matching problem (OMM) and the online
matching problem on a line (OML) respectively. For OMM, Kalyanasundaram
and Pruhs [8] and Khuller et al. [11] presented a deterministic online algorithm
which is called Permutation [8], and showed that it is (2k − 1)-competitive and
best possible. In addition, Kalyanasundaram and Pruhs [8] also determined the
exact competitive ratio of the greedy algorithm to be 2k −1. The best randomized
algorithm for OMM so far [3] is O(log2 k)-competitive and the best lower bound on

Online Facility Assignment for General Layout of Servers on a Line 313

the competitive ratio [3] is Ω(log k). For OML, there have been many active stud-
ies [2,5,13,14] and the best upper bound on the competitive ratio [14] is O(log k),
which is achieved by the deterministic algorithm called Robust-Matching [13]. The
best lower bound on the competitive ratio [12] is Ω(

√
log k).

2 Preliminaries

2.1 Online Facility Assignment Problem

Let (X, d) be a metric space, where X is a (possibly infinite) set of points and
d : X × X → R is a distance function. We use S = {s1, . . . , sk} to denote the
set of k servers and use σ = r1 · · · rn to denote a request sequence. For each
1 ≤ j ≤ k, a server sj is characterized by the position p(sj) ∈ X and sj has
capacity c(sj) ∈ N, i.e., sj can be matched with at most c(sj) requests. We
assume that n ≤ c(s1) + · · · + c(sk). For each 1 ≤ i ≤ n, a request ri is also
characterized by the position p(ri) ∈ X.

The set S is given to an online algorithm in advance, while requests are given
one-by-one from r1 to rn. At any time of the execution of an algorithm, a server
is called free if the number of requests matched with it is less than its capacity,
and full otherwise. When a request ri is revealed, an online algorithm must
match ri with one of free servers. If ri is matched with the server sj , the pair
(ri, sj) is added to the current matching and the cost d(p(ri), p(sj)) is incurred
for this pair. The cost of the matching is the sum of the costs of all the pairs
contained in it. The goal of online algorithms is to minimize the cost of the final
matching. We refer to such a problem as the online facility assignment problem
with servers S and a capacity c : S → N, which is denoted by OFA(S, c). For the
case that c(s1) = · · · = c(sk) = � ≥ 1, it is immediate that n ≤ k� and we simply
use OFA(S, �) to denote the online facility assignment problem with servers S
(of uniform capacity �).

2.2 Online Facility Assignment Problem on a Line

By setting X = R, we can regard the online facility assignment problem with
servers S as the online facility assignment problem on a line with servers S, and
we denote such a problem by OFAL(S, c) for a general capacity c : S → N and
OFAL(S, �) for a uniform capacity � ≥ 1. Without loss of generality, we assume
that p(s1) < · · · < p(sk).

To precisely describe the upper bound of the competitive ratio, we introduce
the following notation: for any T = {t1, . . . , tm} ⊆ S where p(t1) < · · · < p(tm),
let

L(T) :=
p(tm) − p(t1)

maxu(p(tu+1) − p(tu))
and α(S) := max

T⊆S
L(T). (1)

For convenience, let L(S) = 0 and α(S) = 0 if |S| ≤ 1.
In the rest of the paper, we will abuse the notations ri ∈ R and sj ∈ R for

OFAL(S, c) instead of p(ri) ∈ R and p(sj) ∈ R, respectively, when those are
clear from the context.

314 T. Harada and T. Itoh

2.3 Notations and Terminologies

For a request sequence σ, let |σ| be the number of requests in σ. For an
(online/offline) algorithm A for OFA(S, c) and a request sequence σ = r1 · · · rn,
we use sA(ri;σ) to denote the server with which A matches ri for each 1 ≤ i ≤ n
when A processes σ. Let A(σ|S) be the total cost incurred when A processes σ.
We use Opt to denote the optimal offline algorithm, i.e., Opt knows the entire
sequence σ = r1 · · · rn in advance and minimizes the total cost incurred by Opt
to match each request ri with the server sOpt(ri;σ). Let Fi(A) be the set of all
free servers just after A matches ri.

To evaluate the performance of an online algorithm A, we use the (strict)
competitive ratio. We say that A is α-competitive if A(σ|S) ≤ α · Opt(σ|S)
for any request sequence σ. The competitive ratio R(A) of A is defined to be
the infimum of α ≥ 1 such that A is α-competitive, i.e., R(A) = inf{α ≥ 1 :
A is α-competitive}.

2.4 Technical Lemmas

In this subsection, we introduce some important notions about OFAL(S, c):
MPFS (Most Preferred Free Servers) algorithm [6], surrounding-oriented algo-
rithm [2,7], and faithful algorithm [6]. In this paper, we mainly deal with
surrounding-oriented and faithful MPFS algorithms. To begin with, we state
the definition of an MPFS algorithm and its significant property.

Definition 1. Let A be an online algorithm for OFA(S, c). We say that A is
an MPFS (most preferred free servers) algorithm if it is specified by the following
conditions: Let σ = r1 . . . rn be a request sequence.

1. For each i, the priority of all servers for ri is determined by only p(ri),
2. A matches ri with a server with the highest priority among free servers.

Let MPFS be the class of MPFS algorithms. For each MPFS algorithm A, the
following strong theorem [6] is known.

Theorem 1. Let A ∈ MPFS and suppose that A is α-competitive for
OFA(S, 1). Then, for any capacity c : S → N, A is also α-competitive for
OFA(S, c).

By this theorem, it turns out that there is no need to specify the capacity of
each server in evaluating the competitive ratio of an MPFS algorithm.

Definition 2. Given a request r for OFAL(S, c), the surrounding servers for r
are sL and sR, where sL is the closest free server to the left of r (if any) and sR

is the closest free server to the right of r (if any). If r = s for some s ∈ S and
s is free, then the surrounding server of r is only the server s.

Next, we present the notion of surrounding-oriented algorithms [2,7] for
OFAL(S, c).

Online Facility Assignment for General Layout of Servers on a Line 315

Definition 3. Let A be an online algorithm for OFAL(S, c). We say that A is
surrounding-oriented if for every request sequence σ, it matches every request r
of σ with one of the surrounding servers of r.

For surrounding-oriented algorithms, the following useful lemma [2,7] is known.

Lemma 1. Let A be an online algorithm for OFAL(S, c). Then there exists a
surrounding-oriented algorithm A′ for OFAL(S, c) such that A′(σ|S) ≤ A(σ|S)
for any σ.

By Lemma 1, we assume that any algorithm for OFAL(S, c) is surrounding-
oriented in the rest of this paper if otherwise stated.

Finally, we introduce the notion of a faithful algorithm [6] and its useful
property. Let A be an online/offline algorithm for OFAL(S, c) and σ = r1 · · · rn

and τ = q1 · · · qn be request sequences. We say that τ �= σ is closer than σ w.r.t.
A if for each i, ri ≥ qi ≥ sA(ri;σ) or ri ≤ qi ≤ sA(ri;σ).

Definition 4. Let A be an online/offline algorithm for OFAL(S, c). For any
request sequence σ = r1 · · · rn and any request sequence τ = q1 · · · qn that is
closer than σ w.r.t. A, we say that A is faithful if sA(ri;σ) = sA(qi; τ) for each
1 ≤ i ≤ n.

We say that a request sequence σ is opposite w.r.t. A if every request r in σ
is located between sA(ri;σ) and sOpt(ri;σ). The following lemma [6] holds for
an opposite request sequence w.r.t. A for OFAL(S, c).

Lemma 2. Let A be a faithful online algorithm for OFAL(S, c). Then, for any
request sequence σ with Opt(σ|S) > 0, there exists an opposite τ w.r.t. A such
that A(σ|S)/Opt(σ|S) ≤ A(τ |S)/Opt(τ |S).

By the above lemma, it suffices to analyze only opposite request sequences in
order to derive the upper bound for the competitive ratio of faithful algorithms.

3 “Hybrid” Algorithm

In this section, we mention the properties of the “hybrid” algorithm. This idea
was first used in [5]. Let A ∈ MPFS. For an integer i ≥ 1 and a server s ∈
Fi−1(A), the algorithm HA

i,s matches the requests r1, . . . , ri−1 with the same
servers as A, ri with s, and ri+1, . . . , rk with some servers according to A. We
call HA

i,s a hybrid algorithm of A. If s = sA(ri;σ), then A and HA
i,s are completely

the same. Then, in the rest of the paper, we consider the case s �= sA(ri;σ). We
abbreviate HA

i,s as Hi,s when A is clear from the context.

Lemma 3. For OFA(S, 1), let A ∈ MPFS and σ = r1 . . . rk be an request
sequence. Suppose sA(ri;σ) �= s. Then, there exists some t∗ ≥ i, {at}t∗

t=i, and
{ht}t∗

t=i such that

(1) Ft(A) \ Ft(Hi,s) = {at} and Ft(Hi,s) \ Ft(A) = {ht} for each i ≤ t ≤ t∗

316 T. Harada and T. Itoh

(2) Ft(A) = Ft(Hi,s) for each t ≥ t∗ + 1.

By the proof of Lemma 3, it is easy to see that the following proposition on
{at}t∗

t=i and {ht}t∗
t=i holds.

Proposition 1. For OFA(S, 1) let A ∈ MPFS and σ be an request sequence.
Suppose sA(ri;σ) �= s. Then, the following conditions hold:

(P1) at = at+1 or ht = ht+1 for each i ≤ t ≤ t∗ − 1,
(P2) If at �= at+1(resp. ht �= ht+1), then rt+1 is matched with at(resp. ht+1) by

A and with at+1(resp. ht) by Hi,s for each i ≤ t ≤ t∗ − 1, and
(P3) rt∗+1 is matched with at∗ by A and with ht∗ by Hi,s.

The discussion so far holds for general metrics and any MPFS algorithm A.
Next, we state an important lemma that holds for a surrounding-oriented MPFS
algorithm on a line metric.

Lemma 4. For OFAL(S, 1), let A be a surrounding-oriented MPFS algorithm
and σ be a request sequence. If sA(ri;σ) �= s and there is no free server between
sA(ri;σ) and s, then there is no free server between at and ht for each i ≤ t ≤ t∗,
and either at∗ ≤ · · · ≤ ai < hi ≤ · · · ≤ ht∗ or ht∗ ≤ · · · ≤ hi < ai ≤ · · · ≤ at∗ .

4 An Optimal MPFS Algorithm for OFAL

In this section, we present a new MPFS algorithm PTCP (Policy Transition at
Critical Point) and show that PTCP is (2α(S) + 1)-competitive, where α(S)
is given in (1). We consider the following properties of MPFS algorithms for
OFAL(S, c).

Definition 5. Let A ∈ MPFS for OFAL(T, c). We say that C(A, T) holds if
A satisfies the following conditions: (C1) A is faithful, (C2) A is surrounding-
oriented, and (C3) For OFAL(T, 1), let σ = r1 . . . r|T | be a request sequence. For
|T | ≥ 2, consider the hybrid algorithm HA

i,s where s �= sA(ri;σ) is a surrounding
server1 of ri. Then, |ht∗ − ri| ≤ α(S)|ri − ai|.

4.1 A New Algorithm: Policy Transition at Critical Point

To present the algorithm PTCP A∗, we provide several notations. For a set
S = {s1, . . . , sk} of servers where s1 < · · · < sk and maxu(su+1−su) = sa+1−sa,
let

S1 := {s1, . . . , sa}, S2 := {sa+1, . . . sk}, and x :=
(Δ2 + D) · D

(Δ1 + D) + (Δ2 + D)
, (2)

where Δ1 := sa − s1, Δ2 := sk − sa+1, and D := sa+1 − sa. Note that the value
of x is determined by the idea similar to the algorithm IDAS [6].
1 If the number of surrounding servers of ri is one, then s is one of the free servers

which is just to the left/right of sA(ri; σ).

Online Facility Assignment for General Layout of Servers on a Line 317

Let A∗[S] be A∗ for OFAL(S, c) and A∗[S](r, F) be a server with which
A∗[S] matches r for a set F ⊆ S of free servers. By using A∗[S1] and A∗[S2], we
inductively define A∗[S](r, F) as follows:

A∗[S](r, F) =

⎧
⎨

⎩

s if F = {s},
A∗[S1](r, F1) if (r ≤ sa + x and F1 �= ∅) or (F2 = ∅),
A∗[S2](r, F2) if (sa + x < r and F2 �= ∅) or (F1 = ∅),

(3)

where F1 := F ∩ S1 and F2 := F ∩ S2. A∗ also has the following description.

1. If r ≤ sa + x, then match a new request r with a server in S according to
A∗[S1]. When all servers in S1 are full just before r is revealed, match r with
a server in S2 according to A∗[S2].

2. If r > sa + x, then match a new request r with a server in S2 according to
A∗[S2]. When all servers in S2 are full just before r is revealed, match r with
a server in S1 according to A∗[S1].

The following important lemma holds for A∗ defined in (3).

Lemma 5. Let S, S1, and S2 be sets of servers defined in (2). If C(A∗, S1) and
C(A∗, S2) hold, then C(A∗, S) also holds.

Proof. First, we prove that A∗[S] satisfies (C1). Consider the situation where
A∗[S] matches a request r with a server s and observe what happens when a
request q (located between r and s) occurs instead of r. Suppose s ∈ S1. There
are two possible cases: (1) r ≤ sa + x, or (2) r > sa + x and all servers in S2 are
full. For the case (1), A∗[S] matches r with s according to A∗[S1]. Since A∗[S1]
is faithful, it turns out that A∗[S] matches q with s. For the case (2), s is the
rightmost free server and s < r holds. Therefore, A∗[S] matches q with s. The
same discussion can be applied to the case s ∈ S2. Hence, A∗[S] is faithful, i.e.,
A∗[S] satisfies (C1).

Next, we prove that A∗[S] satisfies (C2). By contradiction, assume that there
exist a request sequence r1 . . . rn and a request rt such that A∗[S] matches rt

with a server s that is not a surrounding server of rt. Let s′ be a free server
between rt and s. If s, s′ ∈ S1 (resp. s, s′ ∈ S2), then A∗[S] matches rt with
s according to A∗[S1] (resp. A∗[S2]). However, this contradicts the fact that
A∗[S1] (resp. A∗[S2]) is surrounding-oriented. If s ∈ S1 and s′ ∈ S2, then we
have s < sa + x < s′ ≤ rt. Since sa + x < rt and there exists a free server
s′ ∈ S2, A∗[S] must match rt with a free server in S2 according to A∗[S2] and
this contradicts the assumption that A∗[S] matches rt with s ∈ S1. The same
discussion can be applied to the case where s ∈ S2 and s′ ∈ S1. Therefore, A∗[S]
is surrounding-oriented, i.e., A∗[S] satisfies (C2).

Finally, we prove that A∗[S] satisfies (C3). Fix any request sequence σ =
r1 . . . rk for OFAL(S, 1). Let s �= sA∗[S](ri;σ) be a surrounding server of ri and
consider the hybrid algorithm Hi,s of A∗[S]. By definition, it follows that ai = s
and hi = sA∗[S](ri;σ). We use the following claim whose proof is omitted.

Claim. If ai, hi ∈ S1 (resp. ai, hi ∈ S2), then at, ht ∈ S1 (resp. at, ht ∈ S2) for
each i ≤ t ≤ t∗ where t∗ is defined in Lemma 3.

318 T. Harada and T. Itoh

If ai, hi ∈ S1, then let σ1 be a subsequence of σ consisting of all requests r
that satisfies sA∗[S](r;σ) ∈ S1. By the definition of A∗[S], each request in σ1

is matched with a server in S1 according to A∗[S1]. By the above claim and
Proposition 1, we have at, ht ∈ S1 for each i ≤ t ≤ t∗ and all requests that may
affect the changes in {at}t∗

t=i and {ht}t∗
t=i are included in σ1. In addition, the

way of changes in {at}t∗
t=i and {ht}t∗

t=i depends only on the behavior of A∗[S1].
Then, by the assumption that C(A∗, S1) holds, we can see that A∗[S] satisfies
(C3). Analogously, it can be shown that A∗[S] satisfies (C3) for ai, hi ∈ S2.

Hence, the remaining possible cases are (1) ai ∈ S1 and hi ∈ S2, and (2)
hi ∈ S1 and ai ∈ S2. For the case (1), by the fact ai ≤ sa < sa + x ≤ ri ≤ hi, it
follows that

|ht∗ − ri|
|ri − ai| ≤ Δ2 + D − x

x
=

Δ1 + Δ2 + D

D
= L(S) ≤ α(S),

where the second equality and the last inequality are due to the definition of L(S)
and α(S) in (1). For the case (2), by using the fact hi ≤ ri ≤ sa +x < sa+1 ≤ ai,
we have

|ht∗ − ri|
|ri − ai| ≤ Δ1 + x

D − x
=

Δ1 + Δ2 + D

D
= L(S) ≤ α(S).

Therefore, A∗[S] satisfies (C3). ��

4.2 An Upper Bound on the Competitive Ratio of PTCP

The goal of this subsection is to prove the following theorem, which claims that
PTCP is (2α(S) + 1)-competitive.

Theorem 2. For OFAL(S, c), A∗ defined in (3) is (2α(S) + 1)-competitive,
where c : S → N is an arbitrary capacity.

To prove Theorem 2, we introduce a simpler algorithm similar to A∗ and
show the important lemma about the algorithm. Let S = {s1, . . . , sk} be a set
of servers where s1 < · · · < sk, and A ∈ MPFS be a (2α(S) + 1)-competitive
algorithm for which C(A, S) holds. Let d and x be parameters such that sk+1 =
sk + d and 0 < x < d, and define a new MPFS algorithm Ad,x for OFAL(S ∪
{sk+1}, c) as follows:

1. If r ≤ sk + x, then match a new request r with a server in S according to A.
When all servers in S are full just before r is revealed, match r with sk+1.

2. If r > sk + x, then match a new request r with sk+1. When sk+1 is full just
before r is revealed, match r to a server in S according to A.

For the competitive ratio of Ad,x defined above, we have the following lemma.

Lemma 6. Let S = {s1, . . . , sk} and S̃ = {s1, . . . , sk+1} be sets of servers,
where s1 < · · · < sk < sk+1, and A ∈ MPFS be a (2α(S) + 1)-
competitive algorithm for which C(A, S) holds. Then, for any request sequence σ

Online Facility Assignment for General Layout of Servers on a Line 319

of OFAL(S̃, c), Ad,x(σ|S̃) ≤ Cd,x(S) · Opt(σ|S̃), where Cd,x(S) := max{2α(S) +
1, 2d−x

x , 2Δ+d+x
d−x }, Δ := sk − s1, d = sk+1 − sk, 0 < x < d, and c : S̃ → N is an

arbitrary capacity.

Proof of Theorem 2: The proof is by induction on the number k of servers. For
the base case k = 1, A∗[{s}] is a trivial algorithm that matches every request
to the unique server s. Then, C(A∗, {s}) holds and A∗[{s}] is 2α({s}) + 1 = 1-
competitive since α(S) = 0 for |S| ≤ 1.

For the inductive step, assume that A∗[T] is (2α(T) + 1)-competitive and
C(A∗, T) holds for any set T of servers such that |T | ≤ k−1. Let S = {s1, . . . , sk}
be a set of k ≥ 2 servers where s1 < · · · < sk and a be any integer such that
maxu(su+1 − su) = sa+1 − sa. Note that S1, S2, Δ1, Δ2 and x are given by (2).
By the induction hypothesis, A∗[S1] (resp. A∗[S2]) is (2α(S1) + 1)-competitive
(resp. (2α(S2) + 1)-competitive) and C(A∗, S1) (resp. C(A∗, S2)) holds. Then,
by Lemma 5, C(A∗, S) holds.

Fix a request sequence σ for OFAL(S, 1) arbitrarily. Note that since A∗ is
in MPFS, it suffices to consider request sequences for OFAL(S, 1). Let m be
the number of requests in σ that occur in (−∞, sa + x]. There are three cases:
m = a, m > a and m < a.

For the case m = a, define σ1 (resp. σ2) to be a subsequence of σ consisting
of all requests r such that r ≤ sa + x (resp. sa + x < r). Since A∗ and Opt2

match each request in σ1 (resp. σ2) with a server in S1 (resp. S2), we have that

A∗(σ|S) = A∗(σ1|S1) + A∗(σ2|S2)
≤ (2α(S1) + 1)Opt(σ1|S1) + (2α(S2) + 1)Opt(σ2|S2)
≤ (2α(S) + 1)Opt(σ|S).

For the case m > a, define subsequences σ1 and σ2 of σ as follows: σ1 consists
of all requests r such that r ≤ sa + x and σ2 consists of all requests r that is
matched with a server in S2 by A∗. Let R be a set of requests consisting of all
requests that belong to both σ1 and σ2. Note that R consists of the last |σ1| − a
requests in σ1. We use σ′

2 to denote a request sequence obtained by moving the
position of each request of σ2 in R to sa+1. Consider the following operations for
σ1 and σ′

2: Operation (1) A∗[S1]D,x processes σ1 with servers S̃1 = S1 ∪ {sa+1}
and a capacity c1 where c1(sj) = 1 for each 1 ≤ j ≤ a and c1(sa+1) = |R|, and
Operation (2) A∗ processes σ′

2 with servers S2 and a capacity c2(s) = 1 for each
s ∈ S2. By the definition of A∗ and A∗[S1]D,x, we have

A∗(σ|S) = A∗[S1]D,x(σ1|S̃1) + A∗(σ′
2|S2) and

Opt(σ|S) = Opt(σ1|S̃1) + Opt(σ′
2|S2),

where A∗[S1]D,x(σ1|S̃1) denotes the cost of an algorithm A∗[S1]D,x for the oper-
ation (1) and A∗(σ′

2|S2) denotes the cost of an algorithm A∗ for the operation
(2). We define Opt(σ1|S̃1) and Opt(σ′

2|S2) analogously. Thus, by Lemma 6,
2 One of the optimal matchings is obtained by matching i-th request from the left

with i-th server from the left for i = 1, . . . , k.

320 T. Harada and T. Itoh

A∗(σ|S) = A[S1]D,x(σ1|S̃1) + A∗(σ′
2|S2)

≤ CD,x(S1)Opt(σ1|S̃1) + (2α(S2) + 1)Opt(σ′
2|S2)

≤ CD,x(S1, S2)Opt(σ|S), (4)

where CD,x(S1, S2) := max{2α(S1)+1, 2α(S2)+1, 2D−x
x , 2Δ1+D+x

D−x }. By substi-
tuting x = D(Δ2+D)/(Δ1+Δ2+2D), it follows that CD,x(S1, S2) ≤ 2α(S)+1.
Thus, A∗(σ|S) ≤ (2α(S) + 1)Opt(σ|S) for the case m > a.

For the last case m < a, we can use the proof for the case m > a by symmetry.
By replacing S1, S2, Δ1, and x in (4) with S2, S1, Δ2, and D − x respectively,
we have A∗(σ|S) ≤ CD,D−x(S2, S1)Opt(σ|S) and by substituting x = D(Δ2 +
D)/(Δ1 + Δ2 + 2D), it follows that CD,D−x(S2, S1) ≤ 2α(S) + 1. Therefore, we
finally get A∗(σ|S) ≤ (2α(S) + 1)Opt(σ|S) for the case m < a. ��

4.3 Comparisons with Other Algorithms

In this subsection, we compare the performance of the PTCP algorithm with
other well-known algorithms for OFAL(S, c), e.g. the greedy algorithm and the
permutation algorithm [1,8].

Comparison with the Greedy Algorithm. The greedy algorithm (denoted
by G) for OFAL(S, c) is an algorithm that matches a new request to the nearest
free server. For the competitive ratio of A∗ and G, we have the following theorem,
which implies that there exists a server layout where A∗ performs very well while
G performs very poorly.

Theorem 3. Define S = {s1, . . . , sk} as follows: s1 = 0 and si = 2i−1 for
i = 2, . . . , k. For the server layout S, A∗ is 5-competitive and the competitive
ratio of G is at least 2k − 1.

Comparison with the Permutation Algorithm. For OFA(S, 1), the per-
mutation algorithm (denoted by P) is known as the best possible algorithm.
For OFAL(S, c), let σ = r1 . . . rn be a request sequence and Mi be an optimal
matching of r1, . . . , ri for i = 1, . . . , n. Define Si (i = 1, . . . , n) to be the set of
servers included in Mi and S0 to be ∅ for convenience. It is known that there
is a sequence of optimal matchings {Mi}n

i=1 such that Si \ Si−1 is singleton for
i = 1, . . . , n [8].

When an i-th request ri is revealed, P determines the server s such that
Si \ Si−1 = {s} and matches ri with s. For the competitive ratio of A∗ and P,
we also have the following theorem, which implies that there is a server layout
where A∗ performs well and P performs poorly.

Theorem 4. For any ε > 0, define S = {s1, . . . , s2k} as follows: for i = 1, . . . , k,
sk+i = (1−δi)/(1−δ), sk−i+1 = −sk+i, where δ > 0 is taken to satisfy δk+δ(4k−
1) < ε and (1−δ)−1 < 1+ ε/2. For the server layout S, A∗ is (3+ ε)-competitive
and the competitive ratio of P is at least 4k − 1 − ε.

Online Facility Assignment for General Layout of Servers on a Line 321

5 A Lower Bound on the Competitive Ratio of MPFS

In this section, we derive a tight lower bound on the competitive ratio of algo-
rithms in MPFS. In other words, we will show that the following theorem.

Theorem 5. Let A ∈ MPFS for OFAL(S, c). Then, R(A) ≥ 2α(S) + 1.

To prove Theorem 5, the following lemma [6] is useful.

Lemma 7. Let A ∈ MPFS for OFAL(S, c). Then, there exists a request
sequence σ such that A(σ|S) ≥ (2L(S) + 1)Opt(σ|S).

By the definition of L(S) and α(S) in (1), we have L(S) ≤ maxT⊆S L(T) = α(S).
Therefore, Theorem 5 improves Lemma 7.
Proof of Theorem 5: Fix an algorithm A ∈ MPFS for OFAL(S, c) arbitrarily.
By Lemma 1, it suffices to consider the case where A is surrounding-oriented.
Let S′ ⊆ S be a set of servers such that L(S′) = maxT⊆S L(T) = α(S).

Define a request sequence σ as follows: for each s ∈ S \ S′, we first give c(s)
requests on s. Since A is surrounding-oriented, both A and Opt match a request
on s ∈ S \ S′ with s and are incurred no cost at this stage. Next, we give a
request sequence σ′ for OFAL(S′, c) which satisfies the condition of Lemma 7,
i.e. A(σ′|S′) ≥ (2L(S′) + 1)Opt(σ′|S′). Then, we have

A(σ|S) = A(σ′|S′) ≥ (2L(S′) + 1)Opt(σ′|S′) = (2α(S) + 1)Opt(σ|S).

Since L(S′) = α(S) and Opt(σ′|S′) = Opt(σ|S), this completes the proof. ��
By Theorem 5, the PTCP algorithm A∗ turns out to be best possible among

all MPFS algorithms, and thus we have R(A∗) = 2α(S) + 1.

6 Concluding Remarks and Open Questions

In this paper, we dealt with the online facility assignment problem on a line
OFAL(S, c) where S is a set of servers and c : S → N is a capacity of each
server. We proposed a new MPFS algorithm PTCP (Policy Transition at Critical
Point) and showed that for OFAL(S, c), PTCP is (2α(S) + 1)-competitive (in
Theorem 2), where α(S) is given in (1). We also showed that the competitive
ratio of any MPFS algorithm is at least 2α(S) + 1 (in Theorem 5), i.e., for
OFAL(S, c), PTCP is best possible among the MPFS algorithms.

However, it is not known if there is an algorithm A /∈ MPFS whose com-
petitive ratio is less than 2α(S) + 1. Moreover, we do not even know whether
there exists an algorithm A /∈ MPFS with the capacity-insensitive property
for OFA(S, c) or not. Specifically, it would be interesting to study whether the
competitive ratio of the permutation algorithm [1,8] or the Robust-Matching
algorithm [13] for OFA(S, c) depends on a capacity c or not.

322 T. Harada and T. Itoh

References

1. Ahmed, A.R., Rahman, M.S., Kobourov, S.: Online facility assignment. Theor.
Comput. Sci. 806, 455–467 (2020)

2. Antoniadis, A., Fischer, C., Tönnis, A.: A collection of lower bounds for online
matching on the line. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.)
LATIN 2018. LNCS, vol. 10807, pp. 52–65. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77404-6 5

3. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: An O(log2k)-Competitive Algo-
rithm for Metric Bipartite Matching. In: Arge, L., Hoffmann, M., Welzl, E. (eds.)
ESA 2007. LNCS, vol. 4698, pp. 522–533. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-75520-3 47

4. Chung, C., Pruhs, K., Uthaisombut, P.: The online transportation problem: on the
exponential boost of one extra server. In: Laber, E.S., Bornstein, C., Nogueira,
L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 228–239. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78773-0 20

5. Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS,
vol. 7391, pp. 424–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31594-7 36

6. Harada, T., Itoh, T., Miyazaki, S.: Capacity-insensitive algorithms for online facil-
ity assignment problems on a line. online ready in discrete mathematics, algorithms
and applications (2023)

7. Itoh, T., Miyazaki, S., Satake, M.: Competitive analysis for two variants of online
metric matching problem. Discrete Math. Algorithms Appl. 13(06), 2150156 (2021)

8. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),
478–488 (1993)

9. Kalyanasundaram, B., Pruhs, K.: On-line network optimization problems. In: Fiat,
A., Woeginger, G.J. (eds.) Online Algorithms. LNCS, vol. 1442, pp. 268–280.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0029573

10. Kalyanasundaram, B., Pruhs, K.R.: The online transportation problem. SIAM J.
Discret. Math. 13(3), 370–383 (2000)

11. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipar-
tite matching and stable marriages. Theoret. Comput. Sci. 127(2), 255–267 (1994)

12. Peserico, E., Scquizzato, M.: Matching on the line admits no o(
√

log n)-competitive
algorithm. ACM Trans. Algorithms 19(3), 1–4 (2023)

13. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipar-
tite matching. In: Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM 2016). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2016)

14. Raghvendra, S.: Optimal analysis of an online algorithm for the bipartite matching
problem on a line. In: 34th International Symposium on Computational Geometry
(SoCG 2018). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)

https://doi.org/10.1007/978-3-319-77404-6_5
https://doi.org/10.1007/978-3-319-77404-6_5
https://doi.org/10.1007/978-3-540-75520-3_47
https://doi.org/10.1007/978-3-540-75520-3_47
https://doi.org/10.1007/978-3-540-78773-0_20
https://doi.org/10.1007/978-3-642-31594-7_36
https://doi.org/10.1007/978-3-642-31594-7_36
https://doi.org/10.1007/BFb0029573

Guarding Precise and Imprecise
Polyhedral Terrains with Segments

Bradley McCoy1 , Binhai Zhu1(B) , and Aakash Dutt2

1 Gianforte School of Computing, Montana State University,
Bozeman, MT 59717, USA

{bradleymccoy,bhz}@montana.edu
2 Department of Computer Science, University of Maryland,

College Park, MD 20742, USA
adutt12@umd.edu

Abstract. Guarding polyhedral terrains is a fundamental problem with
realistic applications. In this paper we study three such problems when
the terrains are precise and imprecise respectively. The first problem we
consider is to place a segment pq with a fixed length over a precise input
terrain T with n vertices in 2D (resp. 3D), such that pq can see every
point on T and the maximum y-coordinate (resp. z-coordinate) of p and q
is minimized. For terrains in 2D and 3D we present algorithms running in
O(n) and O(n3 log n) time respectively. The second problem is to place
two horizontal segments p1q1 and p2q2 of a fixed length and with the
minimum y-coordinate to cover a 2D terrain (x-monotone chain), which
we solve in O(n2 log n) time.

Given a polyhedral terrain T of n vertices in 3D, a shortest watchtower
is a vertical segment erected on T such that every point on T is visible
from the top of the segment and the length of the segment is minimized.
The problem was solved in O(n log n) time more than 30 years ago. In
this paper, we investigate the problem under the imprecise model where
each vertex of T is on a given vertical interval. We show that when the
location of a watchtower is fixed, the problem in 2D and 3D can be solved
with linear programming, which leads to an additive ε-approximation for
the general problem. We implement this algorithm using CPLEX which
demonstrate the efficiency and accuracy of the algorithm when n ≤ 100.

Keywords: Polyhedral terrains · visibility problems · shortest
watchtower · linear programming

1 Introduction

Polyhedral terrains, which model the surface of mountains, are important objects
in GIS, aerial surveillance and path planning, etc. Guarding polyhedral terrains
hence has become a fundamental problem in computational geometry since 1988,
when Sharir first gave an O(n log2 n) time algorithm to compute the shortest
watchtower of a polyhedral terrain T of n vertices in 3D (also called a 2.5D
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 323–336, 2024.
https://doi.org/10.1007/978-3-031-49614-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_24&domain=pdf
http://orcid.org/0009-0009-1450-5978
http://orcid.org/0000-0002-3929-4128
https://doi.org/10.1007/978-3-031-49614-1_24

324 B. McCoy et al.

terrain) [16]. Subsequently, Cole and Sharir studied the more general problem
of guarding T with a minimum number of vertex guards, for which they proved
its NP-hardness [5].

Following Cole and Sharir’s research, since the terrain guarding problem
with multiple guards is NP-hard, Bose et al. considered using the number of
(vertex/edge) guards which are always sufficiently and sometimes necessary to
guard a terrain with n vertices (aka. similar to the famous Art Gallery Theorem)
[4]. Recently, Duraisamy et al. studied the problem of guarding a terrain collec-
tively with a set of guards of limited vision (e.g., can only see with a viewing
angle of π) [7].

Regarding the shortest watchtower problem, Zhu improved Sharir’s bound to
O(n log n) [20,21]. More recently, researchers have considered guarding a terrain
with two or more watchtowers [1,2,17]. Besides watchtowers (which are vertical
segments), Katoh et al. studied guarding a terrain in 2D (also called a 1.5D
terrain) with two shortest horizontal segments at a fixed height, for which an
O(n log2 n) time algorithm was obtained [11]. (Here, a horizontal segment could
be considered as the trajectory of a drone or a helicopter.) Most recently, Seth
et al. studied a generalization of the shortest watchtower problem in 3D which
they called the acrophobic guard watchtower problem, for which they solved it
in O(n log n) time [15]. At the top of such an acrophobic guard tower there is a
horizontal unit square and in 2D that becomes a horizontal unit segment.

In this paper, the first problem investigated is to place a segment pq of fixed
length over a terrain such that the maximum z-coordinate (y-coordinate in 2D)
of p and q is minimized. (Note that pq could certainly be rotated and translated.)
We present O(n) and O(n3 log n) time algorithms to solve this problem in 2D
and 3D respectively. The second problem we consider is to place two segments
p1q1 and p2q2 of a fixed length on a horizontal line �∗ to guard a 1.5D terrain such
that the y-coordinate of �∗ is minimized. We solve this problem in O(n2 log n)
time.

In practice, sometimes the data on terrains cannot be precise. Consequently,
in another path of research on polyhedral terrains, imprecise (or uncertain) ter-
rains are seriously considered. In 2004, Gray and Evans proposed the imprecise
terrain model as one where the vertices have precise x and y-coordinates, but
the z-coordinates are uncertain [8]. In fact, it was proposed that in such a model,
the z-coordinate of a vertex v is within some interval [av, bv]. Many interesting
problems have been considered using the imprecise model; for instance, finding
shortest paths on such a model, flow computation and smoothing out the terrain
[6,8–10,13].

In this paper, the third problem we consider is to compute the shortest
watchtower on such an uncertain terrain. For a 1.5D imprecise terrain I with
n vertical intervals, we first show that the discrete version, i.e., when the x-
coordinate of the watchtower is given, can be formulated as a linear programming
(LP) problem. Then this solution can be used as a subroutine to obtain an
additive ε-approximation for the general problem. We also implement this part
using CPLEX to obtain some empirical results.

Guarding Polyhedral Terrains with Segments 325

2 Preliminaries

Given a terrain T in 2D, which is an x-monotone polygonal chain T =
〈v1, v2, ..., vn〉 (with x(v1) < x(v2) < · · · < x(vn), hence T is also called a
1.5D terrain), if we compute the intersection of the halfplanes containing the
point (0,+∞), each bounded by the extension line �i of an edge ei = vivi+1, i =
1, ..., n−1, then the intersection of these halfplanes gives us an unbounded convex
polygon P (which can be computed in linear time [12]). The shortest watchtower
uv of T contains two cases:

1. v is a vertex of T , and
2. u is a vertex of P .

Figure 1 shows both cases: the unlabelled vertical segment shows case (1),
while the labelled vertical segment shows case (2). We follow the standard visi-
bility definition, i.e., two points p and q are visible to each other if the segment
pq (or (p, q)) does not intersect any edge of T (except it is possibly tangent to
some vertex of T). Then, clearly, for case (2), since u is a vertex of P it is visible
from any point on T . When all the points on T are visible from a guarding object
O (which would be a set of points or a segment, etc.), then we say that T is
guarded or covered by O.

T

u

v

P

Fig. 1. The shortest watchtower problem for a 1.5D terrain T .

By the monotonicity of T , any halfplane Hi bounded by �i contains the point
(0,+∞). Hence, we say that all Hi’s are upward and we assume that all the
halfplanes in consideration are upward henceforth. We classify these halfplanes
by the slopes of their bounding lines �i’s. If the slope of �i is in [0, π/2), the
corresponding halfplane Hi is called a left halfplane; otherwise, if the slope of �i

is in (π/2, π), then Hi is called a right halfplane. A pair of halfplanes Hi and Hj

form opposing halfplanes if one of them is left and the other is right.

326 B. McCoy et al.

When T is a 2.5D terrain with m faces, the above definitions can usually easily
generalize, with the twist that Hi, extended from each face fi, is now a halfspace
and P is a convex polyhedron (which can be computed in O(n log n) time [14]).
Certainly, we cannot say Hi being left or right anymore as the direction of a
plane is determined by a normal vector in 3D.

Note that, the segment pq can be placed over T when pq is translated and
rotated to τ(pq) = (τ(p), τ(q)). In Sect. 3, we design polynomial-time algo-
rithms for guarding a 1.5D (resp. 2.5D) terrain T with n vertices in O(n) (resp.
O(n3 log n)) time, by placing pq properly above T such that T is guarded by
τ(pq). In Sect. 4, we solve the problem of guarding a 1.5D terrain with two
horizontal segments with a fixed length such that their common y-coordinate
is minimized. In Sect. 5, we cover the problem of guarding an imprecise 1.5D
terrain with a shortest watchtower.

3 Polynomial-Time Algorithms on Guarding Polyhedral
Terrains with a Segment

In this section we solve the problem of placing a segment pq with a fixed length
to guard a terrain such that the maximum y-coordinate of the placed segment
τ(pq) is minimized.

3.1 A Linear Time Algorithm for 1.5D Terrains

As a warm-up, we first present a simple linear-time algorithm for 1.5D terrains.

Lemma 1. Given a 1.5D terrain T and a given segment pq, there is an optimal
placement of pq, τ(pq), such that τ(pq) is horizontal.

l1l2

p

l3

q

a

b

c

Fig. 2. The optimally placed guarding segment is bounded by a pair of opposing half-
planes.

Lemma 2. Given a 1.5D terrain T and a given segment pq, there is an optimal
placement of pq, τ(pq), such that τ(pq) is horizontal and is bounded by a pair of
opposing halfplanes.

Guarding Polyhedral Terrains with Segments 327

Proof. We refer to Fig. 2. Following Lemma 1, assume that τ(pq) is horizontal
and it intersects all the upward halfplanes defined by the edges of T . Clearly
τ(pq) does not have to intersect the common intersection of all the halfplanes
(e.g., the region bounded by �i and �j and above a in Fig. 2), as we could easily
move τ(pq) downward to reduce the maximum y-coordinate of τ(p) and τ(q).

Now suppose that τ(pq) intersects all the halfplanes but it is not bounded
by (i.e., touching) any extended line of T . We first move τ(pq) horizontally, say
to the left, such that moving any ε distance further to the left τ(q) would be out
of a right halfplane Hj determined by a line �j (extended from an edge of T).
Up to this point τ(pq) still intersects all the halfplanes Hl’s.

Then, we slide τ(pq) downward with the constraint that τ(q) always stays
on �j (which we say τ(q) is anchored at �j). If the process stops when τ(p) also
hits a line �i and all Hl’s intersect τ(pq) then we are done, as τ(pq) is exactly
bounded by two opposing halfplanes (defined by �i and �j in Fig. 2). If in the
process τ(q) hits a vertex c, which is the intersection of two halfplanes Hi and
Hk (determined by �k), then we need to change the anchor of τ(q) from �j to �k.
It is easily seen that since we have at most O(n) lines in L(T), this process must
exit after switching O(n) anchor lines and when τ(p) and τ(q) are bounded by
two opposing halfplanes. ��

The above lemma implies a linear time algorithm for solving this problem.
Let � be the horizontal copy of pq.

1. For each halfplane Hi, compute the Minkowski sum Hi ⊕ �.
2. Compute the intersection of all Hi ⊕ �, i = 1..n, let the common intersection

be P ⊕ �.
3. Compute the lowest position in P ⊕ � such that a copy of � can be placed.

Each of the three steps takes O(n) time, with the second step implemented using
Lee and Preparate’s linear-time algorithm [12]. We hence have the following
theorem.

Theorem 1. Given a 1.5D terrain T with n vertices and a given segment pq,
an optimal placement of pq, τ(pq), can be computed in O(n) time.

We comment that the above algorithm is very similar to the one given by Seth
et al. [15]. The difference is that in their problem the segment is constrained to
be horizontal while in our case we first need to show that there is an optimal
placement of pq which is horizontal.

3.2 An Almost Cubic Time Algorithm for 2.5D Terrains

The above algorithm for 1.5D terrains does not seem to generalize to 2.5D ter-
rains at the first glance. The main reason is that while we could still prove that
there is an optimal solution in which τ(pq), with a fixed length �, is horizontal,
its direction could be arbitrary.

Given a 2.5D terrain T , let Si be the halfspace extended from a face fi of
T . We define opposing halfspaces to be a triple of three halfspaces Si, Sj and

328 B. McCoy et al.

Sk with a common intersection containing a point at +∞, say (0,+∞). It is
straightforward to place τ(pq) horizontally, below Si ∩ Sj ∩ Sk and with the
minimum z-coordinate such that τ(pq) intersects the three halfspaces Si, Sj and
Sk. In fact, the intersection of a horizontal plane G below Si ∩ Sj ∩ Sk with
Si, Sj and Sk is a triangle (possibly unbounded), and the problem is to place
τ(pq) to intersect the three edges of this triangle. If the triangle is bounded, the
optimal plane G (i.e., with the minimum z-coordinate) must have the property
that � is the minimum height of this triangle; otherwise, it is the length of the
only bounded edge. See Fig. 3 for an illustration where one can take G1 as the
optimal G.

In Fig. 3, where in (I) the triangle is bounded and in (II) the triangle is
unbounded, we have in fact more information included. Note that if G1, G2 are
horizontal planes and G2 is above G1, then if a2b2 is a feasible solution for τ(pq)
then we can compute the optimal solution, say a1b1 on G1. The reason is that
they form a linear relation, parameterized by the vertical distance between G1

and G2.
We can then use a brute-force algorithm to solve the problem: First we extend

each face fi of T to a halfspace Si. Then we enumerate O(n3) triples of opposing
halfspaces and for each triple compute a horizontal placement of pq, τ(pq), with
the minimum z-coordinate. Finally we check if all halfspaces are intersected by
τ(pq); if so, record the corresponding z-coordinate of τ(pq). At the end, we return
the minimum recorded z-coordinate. The running time is obviously O(n4).

To improve the trivial brute-force method, we make use of the following result
as a subroutine: given n convex polygons in the plane, compute the shortest
segment that intersects all the convex polygons in O(n log n) time [3]. Let us
call this algorithm SS. Then we present our algorithm as follows.

Hi

Hj

G1

G2

G1

G2

Hi

Hj

Hk

a1
b1

a2
b2

Hk

a1

b1

a2

b2

(I) (II)

Fig. 3. When restricted to intersect Si, Sj and Sk, the optimally placed guarding seg-
ment can be computed in constant time: (I) when the triangle is bounded; (II) when
the triangle is unbounded.

Guarding Polyhedral Terrains with Segments 329

1. Compute the arrangement A of all halfspaces Si’s, each extended from a face
fi of T . Let the vertices of A be L, ordered according to their ascending
z-coordinates.

2. Use binary search on L to locate two vertices vj and vj+1 such that at z(vj)
the SS-algorithm would report that there is not a segment of length at most
|pq| that intersects all the halfplanes Si ∩ (Z = z(vj)), while at z(vj+1) the
SS algorithm would report that there is a segment of length at most |pq| that
intersects all the halfplanes Si ∩ (Z = z(vj+1)).

3. Compute the optimal placement of pq, τ(pq), at a minimum height between
Z = z(vj) and Z = z(vj+1) (e.g., G1 and G2 as illustrated in Fig. 3).

The arrangement A could have O(n3) vertices, hence L can be computed
and sorted in O(n3 log n) time. As the SS-algorithm takes O(n log n) time, the
whole binary process takes O(log n3) × O(n log n) = O(n log2 n) time. Once vj

and vj+1 are found, the remaining step takes linear time. Hence the total running
time is O(n3 log n)+O(n log2 n) = O(n3 log n). Therefore, we have the following
theorem.

Theorem 2. Given a 2.5D terrain T with n vertices and a given segment pq,
an optimal placement of pq, τ(pq), can be computed in O(n3 log n) time.

In practice, we could avoid computing L and search in the z-interval (0, h),
where h is the lowest z-coordinate of any vertex in P = ∩i=1..mSi.

Corollary 1. Given a 2.5D terrain T with n vertices and m = O(n) faces,
a given segment pq, an optimal placement of pq, τ(pq), can be computed in
O(n log n log h) time, where h is the lowest z-coordinate of any vertex in P =
∩i=1..mSi.

4 A Polynomial-Time Algorithm on Guarding 1.5D
Polyhedral Terrains with Two Horizontal Segments

The problem we study in this section is complementary to what has been studied
by Katoh et al., where given a 1.5D terrain T of n vertices and a horizontal
line H, compute two shortest segments with the same length on H to cover
T completely, the problem can be solved in O(n log2 n) time using parametric
search [11]. Here we consider the complementary problem: given two segments
p1q1 and p2q2 of a fixed length, compute the lowest line H∗ such that p1q1 and
p2q2 can be placed on H∗ to cover T completely.

We solve this variation in O(n2 log n) time, using the algorithm by Katoh et
al. (we call it the KWXZ-algorithm) as a subroutine — certainly with additional
details to be sorted out. The following is a sketch of the algorithm.

1. Compute the arrangement A of all halfplanes Hi’s, where Hi is extended
from the edge ei of T . Let the vertices of A be L, ordered according to their
ascending y-coordinates.

330 B. McCoy et al.

2. Use binary search on L to locate two vertices vj and vj+1 such that at y =
y(vj) the KWXZ-algorithm would report that there are not two segments
of length at most |p1q1| = |p2q2| that can collectively guard T , while at
y = y(vj+1) the KWXZ-algorithm would report that it is feasible to place
two segments p1q1 and p2q2 on y = y(vj+1) to guard T .

3. Compute the optimal horizontal line H∗ with the minimum y-coordinate
between y = y(vj) and y = y(vj+1) such that p1q1 and p2q2 can be placed on
H∗ to guard T .

Similar to the analysis in the previous section, L is of size O(n2) and can
be computed and sorted in O(n2 log n) time. The binary search step takes
O(log n2) · O(n log2 n) = O(n log3 n) time. Hence, as long as Step 3 can be
solved in O(n2 log n) time the whole problem can be solved in O(n2 log n) time.

We show next that Step 3 can be done in O(n2) time.
We refer to Fig. 4, based on the binary procedure, we know an optimal solu-

tion must exist between y = y(vj) and y = y(vj+1). Hence, the central problem
is to find a horizontal line H∗ with its y-coordinate being in (y(vj), y(vj+1)).

First of all, it is easily seen that if p1q1 is placed to the left of p2q2 then
p1q1 must be bounded by the leftmost left halfspace Hp, say defined by line
y = k1x + b1. Similarly, p2q2 is bounded by the rightmost right halfspace Hq,
defined by line y = k2x + b2. Now assume that p1 is on Hp and p1 = (x1, y1),
similarly, p2 is on Hq and p2 = (x2, y2). If we enforce that y1 = y2 = h (h being a
variable in (y(vj), y(vj+1)) and let � = |p1q1| = |p2q2|, then p1 = ((h−b1)/k1, h),
q1 = ((h − b1)/k1 + �, h), p2 = ((h − b2)/k2, h) and q2 = ((h − b2)/k2 − �, h).

Now, h is determined when q1 and q2 collectively guard some edges between
x(q′

1) and x(q′
2), which come from the placement of p1q1 and p2q2 at the height

of y = y(vj). In Fig. 4 we illustrate such an edge e = (pe, qe), which is on the
line y = k3x + b3. Then, we have the following lemma.

Lemma 3. Let e1, e2, ..., et be the list of edges between x(q′
1) and x(q′

2) which
are collectively covered by q1 and q2 in an optimal solution, then there must be
ek, 1 ≤ k ≤ t, such that ek can be partitioned into two parts ek = ek,1 · ek,2 such
that ek,2 is only covered by q1 and ek,1 is covered by q2.

Proof. If some part of ek is not covered by q1 and q2, then the solution is infeasi-
ble. If ek is composed of three parts ek,1 · ek,3 · ek,2 such that ek,2 is only covered
by q1, ek,1 is covered by q2 and ek,3 is covered by both q1 and q2, then we can
lower p1q1 and p2q2 until ek,3 becomes a single point. ��

With the above lemma, we proceed as follows. We use e to denote any ek, 1 ≤
k ≤ t. Let 〈u1, u2, ..., ul(= pe)〉 be the part of the shortest path to the right of

Guarding Polyhedral Terrains with Segments 331

epe qe

q2 p2p1 q1

y=h

y=y(vj)p’1 q’1 p’2q’2

u’1

u’j

u’j+1

u1

ui

ui+1

HqHp

Fig. 4. Computing the minimum height h: when p1q1 and p2q2 have to guard an edge
e collectively.

q′
1 from v1 to pe. When q1 cannot see e completely, it must be blocked by some

ui = (ai, bi). The line of q1ui has an equation

y − bi

x − ai
=

k1h − k1bi

h − b1 + k1� − k1ai
,

which, when intersecting e (with an equation y = k3x + b3) would give the
x-coordinate of the intersection on e as

x =
fi,e(h)
gi,e(h)

,

where fi,e, gi,e are linear functions on h. (For instance, gi,e = k1h − k1bi − k3.)
Consequently, when we extend the lines uiui+1, i = 1..l, they naturally divide

e into l + 1 red intervals and each interval would give a function in the form of
x = fi,e(h)

gi,e(h)
.

Symmetrically, let 〈u′
1, u

′
2, ..., u

′
l′〉 be the part of the shortest path to the left

of q′
2 from vn to qe. If q2 cannot see e completely, it must be blocked by some

u′
j = (a′

j , b
′
j). The line q2u

′
j intersects e and results in an equation like

x =
f ′

j,e(h)
g′

j,e(h)
,

with f ′
j,e and g′

j,e being linear functions on h.
Now to decide if q1 and q2 can guard e completely is reduced to deciding if

fi,e(h)
gi,e(h)

≤ f ′
j,e(h)

g′
j,e(h)

,

332 B. McCoy et al.

which is very much equivalent to solving a quadratic equation on h. We show
below that this can be done in O(n) time for each e.

First we extend the lines u′
ju

′
j+1, j = 1..l′, to intersect and divide e into l′ +1

blue intervals. We need to find some red and blue intervals which overlap and
an h can be found such that

fi,e(h)
gi,e(h)

=
f ′

j,e(h)
g′

j,e(h)
.

The testing whether fi,e(h)
gi,e(h)

≤ f ′
j,e(h)

g′
j,e(h)

is easily done by checking this equality.
The difficulty here is that even when e is fixed, we cannot enumerate all

pairs of i and j, which has a size of O(n2). We here use prune-and-search to
obtain a linear time algorithm. The idea is to first merge the red and blue
intervals into a list of sorted base intervals of size O(l + l′) = O(n), then pick
the
(l + l′)/2�-th base interval and check if there is some h satisfying fi,e(h)

gi,e(h)
=

f ′
j,e(h)

g′
j,e(h)

, recall that i determines (ai, bi) and j determines (a′
j , b

′
j). If so, then

we are done. If fi,e(h)
gi,e(h)

<
f ′
j,e(h)

g′
j,e(h)

then we can eliminate the leftmost (l + l′)/2
base intervals and recurse; otherwise, we eliminate the rightmost (l + l′)/2 base
intervals and recurse. This recursion continues until the base interval, where the
right h satisfies fi,e(h)

gi,e(h)
= f ′

j,e(h)

g′
j,e(h)

is found or reports that such an h does not exist.
The running time of this process is

T (n) = T (n/2) + O(1) = O(n).

Since we could have O(n) number of e’s, the total cost after the O(n2 log n)
sorting is O(n2), then the following theorem follows.

Theorem 3. Given a 1.5D terrain T with n vertices and two given segments
p1q1 and p2q2 of the same fixed length, an optimal (lowest) horizontal line can
be computed in O(n2 log n) time, such that p1q1 and p2q2 can be placed on the
line to collectively guard T .

We note that this idea seems to be hard to generalize to 2.5D terrains, i.e.,
placing p1q1 and p2q2 on the lowest plane to cover T . The reason is that in 3D
when one computes the visibility region from some line above T , the line of sight
could be a quadratic surface [19], so unless we specify the starting points, say p1
and p2, and maybe even the directions of the placed segments, it seems hard to
generalize the ideas for 1.5D terrain to 2.5D terrains.

In the next section, we briefly discuss how to compute an approximate short-
est watchtower to guard a 1.5D imprecise terrain I.

5 Guarding a 1.5D Imprecise Terrain

Given a set of vertical intervals I = {〈(xi, ci), (xi, di)〉|ci ≤ di, xi’s are sorted
from left to right, i = 1..n}, the shortest watchtower problem on an imprecise

Guarding Polyhedral Terrains with Segments 333

terrain is to compute a terrain T composed of vertices {(xi, yi)|ci ≤ yi ≤ di, i =
1..n} such that a shortest watchtower uv, where v is put on T , u can see every
point of T and |uv| is minimized over all possible T ’s. When the x-coordinate of
u and v are fixed, we call the corresponding problem discrete shortest watchtower
problem on an imprecise terrain. See Fig. 5 for an example.

Let u = (x, y). The constraint that u is above the line through the j-th edge
ej = 〈(xj , yj), (xj+1, yj+1)〉 is

y − yj ≥ yj+1 − yj

xj+1 − xj
(x − xj),

which is not a linear inequality as x, y, yj , yj+1 are all variables. To make it
linear, we need to fix x — to have a discrete version. Now, suppose that x is a
fixed constant between xi and xi+1, we have the following LP formulation. (Note
that the constraint (1) is linear now.) For convenience, denote [n] = {1, ..., n}.

min y − yi+1 − yi

xi+1 − xi
(x − xi) − yi (LP1)

s.t. y − yj ≥ yj+1 − yj

xj+1 − xj
(x − xj), ∀j ∈ [n] (1)

cj ≤ yj ≤ dj , ∀j ∈ [n]
x is a fixed constant in (xi, xi+1)

Following Vaidya’s algorithm [18], LP can be solved in O((m+n)1.5nL) time,
where m is the number of constraints, n is the number of variables and L is the
precision measure (in bits). Hence we have the following lemma.

u=(x,y)

ei

ej

Fig. 5. A 1.5D imprecise terrain T and the visibility computation regarding u.

Lemma 4. The discrete shortest watchtower problem on an imprecise terrain
specified by n vertical intervals can be solved in O(n2.5L) time, where L is the
precision measure in bits.

334 B. McCoy et al.

If x is not fixed, we could obtain a close (additive) approximation for the
shortest watchtower problem by running through all the ε-intervals from x1 to xn.
Note that we need to change the objective functions n−1 times, which correspond
to the scenarios when the tower is above ei = 〈(xi, yi), (xi+1, yi+1)〉, i = 1..n− 1.

Let kmax be the maximum absolute value of the slope of ei’s. We set
ε = ε/(2kmax), then we cut the range [x1, xn] into � xn−x1

ε/(2kmax)
� = � 2(xn−x1)kmax

ε �
intervals of length ε/kmax (except possibly the last one). Then we just run
LP1 when x is set to be among these interval points, one by one. (Recall that
the objective function could be adjusted when x is moved from [xi−1, xi) to
[xi, xi+1)). It is easily seen that if the optimal solution is OPT, then the addi-
tive error generated by the algorithm is at most 2kmax · ε = ε. We then have the
following theorem.

Theorem 4. The shortest watchtower problem on an imprecise terrain specified
by n vertical intervals can be approximated with an additive error of ε, the algo-
rithm runs in O(n2.5L · � (xn−x1)kmax

ε �) time, where L is the precision measure
in bits, kmax is the maximum absolute value of the slope of ei’s in the impre-
cise terrain, and x1 and xn are the leftmost and rightmost x-coordinates of the
terrain vertices respectively.

We have several comments regarding this result.

1. The algorithm seems to be hard to generalize to the regular multiplicative
approximation algorithm. In fact, if OPT=0, the current algorithm would
incur an infinite (multiplicative) factor — unless the optimal solution is
exactly located at some interval point.

2. The algorithm can be generalized to 2.5D terrains, when an underlying tri-
angulation is given for those given vertical intervals. The plane through a
triangle of three points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3), where xi’
and yi’s are constants and zi’s are variables, would define an equation like
niX + njY + nkZ = K. When we fix X and Y , then a point (X,Y,Z) is
above this plane is realized as niX + njY + nkZ ≥ K, which is linear as nk

is not involving the variables zi’s.
3. We implement this algorithm in 2D using Python and CPLEX, the program

runs reasonably well and returns a close approximate solution for n ≤ 100
and decently small ε.

6 Concluding Remarks

We study three problems on guarding a terrain with (horizontal) segments. Sev-
eral questions are still open. For instance, for the first problem in 3D, can we
obtain a sub-cubic algorithm? For the second problem, can something non-trivial
be done to obtain some result in 3D? For the third problem on guarding impre-
cise terrains in 2D, is the problem NP-hard? And what can be done if we are in
3D and the underlying triangulation is not given?

Acknowledgments. This research is supported by NSF under grant CNS-2243010.

Guarding Polyhedral Terrains with Segments 335

References

1. Agarwal, P.K., et al.: Guarding a terrain by two watchtowers. Algorithmica 58(2),
352–390 (2010)

2. Bespamyatnikh, S., Chen, Z., Wang, K., Zhu, B.: On the planar two-watchtower
problem. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 121–130.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44679-6 14

3. Bhattacharya, B.K., Czyzowicz, J., Egyed, P., Toussaint, G.T., Stojmenovic, I.,
Urrutia, J.: Computing shortest transversals of sets. Int. J. Comput. Geom. Appl.
2(4), 417–442 (1992)

4. Bose, P., Shermer, T.C., Toussaint, G.T., Zhu, B.: Guarding polyhedral terrains.
Comput. Geom. Theo. Appl. 7, 173–185 (1997)

5. Cole, R., Sharir, M.: Visibility problems for polyhedral terrains. J. Symb. Comput.
7(1), 11–30 (1989)

6. Driemel, A., Haverkort, H.J., Löffler, M., Silveira, R.I.: Flow computations on
imprecise terrains. J. Comput. Geom. 4(1), 38–78 (2013)

7. Duraisamy, N., et al.: Half-guarding weakly-visible polygons and terrains. In:
Dawar, A., Guruswami, V., editors, 42nd IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS’2022),
December 18–20, 2022, IIT Madras, Chennai, India, volume 250 of LIPIcs, pp.
18:1–18:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

8. Gray, C., Evans, W.S.: Optimistic shortest paths on uncertain terrains. In: Proceed-
ings of the 16th Canadian Conference on Computational Geometry (CCCG’2004),
Concordia University, Montréal, Québec, Canada, August 9–11, 2004, pp. 68–71
(2004)

9. Gray, C., Kammer, F., Löffler, M., Silveira, R.I.: Removing local extrema from
imprecise terrains. Comput. Geom. Theo. Appl. 45(7), 334–349 (2012)

10. Gray, C., Löffler, M., Silveira, R.I.: Smoothing imprecise 1.5d terrains. Int. J. Com-
put. Geom. Appl. 20(4), 381–414 (2010)

11. Katoh, N., Wang, W., Yinfeng, X., Zhu, B.: Parametric search: three new applica-
tions. Front. Math. China 5(2), 65–73 (2010)

12. Lee, D.T., Preparata, F.P.: An optimal algorithm for finding the kernel of a poly-
gon. J. ACM 26(3), 415–421 (1979)

13. Lubiw, A., Stroud, G.: Computing realistic terrains from imprecise elevations.
In: Y. Bahoo., Georgiou, K., editors, Proceedings of the 34th Canadian Confer-
ence on Computational Geometry, (CCCG’2022), Toronto Metropolitan University,
Toronto, Ontario, Canada, August 25–27, 2022, pp. 227–234 (2022)

14. Preparata, F.P., Muller, D.E.: Finding the intersection of n half-spaces in time O(n
log n). Theor. Comput. Sci. 8, 45–55 (1979)

15. Seth, R., Maheshwari, A., Nandy, S.C.: Acrophobic guard watchtower problem.
Comput. Geom. Theo. Appl. 109, 101918 (2023)

16. Sharir, M.: The shortest watchtower and related problems for polyhedral terrains.
Inf. Process. Lett. 29(5), 265–270 (1988)

17. Tripathi, N., Pal, M., De, M., Das, G., Nandy, S.C.: Guarding polyhedral terrain
by k -watchtowers. In: Chen, J., Lu, P. (eds.) FAW 2018. LNCS, vol. 10823, pp.
112–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78455-7 9

18. Vaidya, P.M.: Speeding-up linear programming using fast matrix multiplication
(extended abstract). In: 30th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November
1989, pp. 332–337. IEEE Computer Society (1989)

https://doi.org/10.1007/3-540-44679-6_14
https://doi.org/10.1007/978-3-319-78455-7_9

336 B. McCoy et al.

19. Wang, C., Zhu, B.: Three dimensional weak visibility: complexity and algorithms.
Theor. Comput. Sci. 234(1–2), 219–232 (2000)

20. Zhu, B.: Improved algorithms for computing the shortest watchtower of polyhedral
terrains. In: Proceedings of the 3rd Canadian Conference on Computational Geom-
etry (CCCG’1992), St. John’s, Newfoundland, Canada, August 1992, pp. 286–291.
Memorial University of Newfoundland (1992)

21. Zhu, B.: Computing the shortest watchtower of a polyhedral terrain in O(n log n)
time. Comput. Geom. Theo. Appl. 8, 181–193 (1997)

The Bag-Based Search: A Meta-Algorithm
to Construct Tractable Logical Circuits
for Graphs Based on Tree Decomposition

Masakazu Ishihata(B)

NTT Communication Science Laboratories, Kyoto, Japan
masakazu.ishihata@ntt.com

Abstract. Tractable logical circuits (TLCs) have attracted more attention in the
AI field as bases of knowledge representation and tractable probabilistic mod-
eling. We propose the bag-based search (BBS), a new meta-algorithm for con-
structing a TLC that accepts all subgraphs of a given input graph that satisfies
a target graph property. We implemented BBS examples for various graph prop-
erties, including independent set, k-edgeset, dominating set, k-matchings, and
spanning trees, and applied them to artificial and real-world graphs. The exper-
imental results showed that BBS generated significantly smaller circuits than
ZDDs obtained by the frontier-based search (FBS).

1 Introduction

Tractable logical circuits (TLCs) have played a central role in the AI field for a long
time as a language of knowledge representation [9], and recently, have received more
attention as a fundamental tool of tractable probabilistic modeling (TPM) [6]. A prob-
abilistic circuit (PC) is a logical circuit that represents a probability distribution, and
a logical circuit is tractable for a target query if it satisfies some structural properties
required for answering the target query in polynomial time in its size. In the context of
TPM, smoothness, determinism, and structured-decomposability have been recognized
as essential structural properties because PCs satisfying those properties provide vari-
ous basic queries, including marginal and conditional inference, moments of distribu-
tions, maximum a-posteriori inference, expectations [6], and various advanced queries,
such as expected predictions [15], SHAP scores [3], and some information-theoretic
queries [31]. By making full use of the various queries described above, PCs have
been applied to not only probabilistic modeling but also a wide variety of applications,
including lossless compression [18], fair prediction [27], and more.

One of the most promising applications of PCs is modeling structured probabilis-
tic space [4], distributions over discrete structures, e.g., combinations, permutations,
and graphs. For instance, PCs have been used for modeling distributions over sub-
graphs to ranking routes on maps [5], maximizing the influence spread [19], construct-
ing reliable communication networks [23,30], evaluating the scan statistics [12], and
more. Hence, constructing smooth, deterministic, and structured-decomposable PCs for
graphs is increasingly essential to use the above wide range of queries when modeling

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 337–350, 2024.
https://doi.org/10.1007/978-3-031-49614-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_25&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_25

338 M. Ishihata

structured probabilistic space. Whereas several empirically efficient and accurate meth-
ods have been proposed for learning the structure of PCs for non-structured probabilistic
space [17], there has been little discussion on how to construct PCs for graph structures.

Theoretically, constructing a deterministic and structured-decomposable circuit for
the graph property described in monadic second-order logic is fixed-parameter tractable
(FPT) of treewidth [1], and smoothing such circuits is almost linear in their size [28].
However, there is still a large gap between theory and practice: the theoretical FPT
algorithm is too complicated to implement and practically inefficient because of an
unrealistic huge constant factor of treewidth. Several practically efficient construction
methods have been proposed to fill this gap. The frontier-based search (FBS) [14,16] is
the most widely used method to efficiently construct circuits that accept subgraphs satis-
fying various graph properties, including trees, paths, matchings, and connected compo-
nents. FBS constructs a zero-suppressed decision diagram (ZDD) [21], a deterministic
and structured-decomposed circuit but non-smooth where its decomposition structure
is restricted in a linear form (the detail will be explained later). Recently, the FBS-like
constructions for sentential decision diagrams (SDDs) [8] and zero-suppressed SDDs
(ZSDDs) [24] have also been proposed [22,25,26,29]. A (Z)SDD is non-smooth in
common with ZDDs, but its restriction on decomposition is relaxed in a tree form.

This paper aims to go one step further; we propose a new FBS-like method directly
constructing smooth, deterministic, and structured-decomposable circuits of various
graph properties that is easy to implement and practically efficient. The contributions
of this paper are three-fold. First, we propose the bag-based search (BBS), a new meta-
algorithm for constructing a TLC that accepts all subgraphs of an input graph satisfying
a target graph property. BBS is dynamic programming (DP) on a tree decomposition
of the input graph and constructs TLCs of various properties by slightly modifying its
DP update; i.e., BBS is easy-to-implement. Second, we show specific BBS examples,
including independent set, k-edgeset, dominating set, k-matching, and spanning tree.
Third, we empirically show that circuits constructed by BBS are much smaller than
ZDDs obtained by FBS in many real-world instances; i.e., BBS is practically efficient.

2 Preliminary

This paper aims to construct a TLC of a Boolean function, which accepts all subgraphs
of an input graph that satisfy a target property, in a dynamic programming manner on
a tree decomposition (TD) of the input graph. We handle four types of graphs: G is
the input graph, C is the TLC to be constructed, S is the vtree (explain later in detail)
respected by C, and T is a TD of G. To avoid confusion, we define these graphs as
follows: G � 〈V,E〉 where V is a vertex set and E is an edge set, C � 〈G,W 〉 where
G is a gate set and W is a wire set, S � 〈P,L〉 where P is a point set and L is a line
set, and T � 〈N,A〉 where N is a node set and A is an arc set.

2.1 Subgraphs and Their Boolean Representation

We first introduce the general notation of graphs and use the same notation for G, C,
S, and T. G is undirected if E ⊆ {e ⊆ V | |e| = 2} is an undirected edge set and is

The Bag-Based Search for Constructing Tractable Logical Circuits 339

directed if E ⊆ {(u, v) | {u, v} ⊆ V } is a directed edge set. For any directed G and
u ∈ V , cld(u) � {c ∈ V | (u, c) ∈ E)} is the children of u and par(u) � {p ∈ V |
(p, u) ∈ E} is the parents of u. u is a leaf, root, and internal if cld(u) = ∅, par(u) = ∅,
and cld(u) �= ∅, respectively. G is rooted if G has exactly one root, and is acyclic if
G has no directed cycle. For any U ⊆ V and F ⊆ E, let E[U] � {e ∈ E | e ⊆ U}
and V [F] � {v ∈ V | ∃e ∈ F, v ∈ e}. Given any G, U and F , G[U] � 〈U,E[U]〉
is a vertex-induced subgraph, G[F] � 〈V [F], F 〉 is an edge-induced subgraph, and
G[U,F] � 〈U,F 〉 is a subgraph if V [F] ⊆ U .

We next introduce a Boolean representation of subgraphs. For any u ∈ V and e ∈
E, let Xu and Xe be Boolean variables and xu and xe ∈ {0, 1} be their realizations.
Let XV � {Xu | u ∈ V }, XE � {Xe | e ∈ E}, and XG � XV ∪ XE be variable
sets. Similarly, let xV � {xu | u ∈ V }, xE � {xe | e ∈ E}, and xG � xV ∪ xE

be their realizations. Then, XV and XE represent a subset of V and E denoted by
V (XV) � {u ∈ V | Xu = 1} and E(XE) � {e ∈ E | Xe = 1}, respectively.
In addition, we say that XV , XE , and XG also represent G[U], G[F], and G[U,F],
respectively, where U = V (XV) and F = E(XE). In the rest of this paper, we explain
the case of XG as the general case of XV and XE .

Let fP(XG) be a Boolean function that represents a particular graph property P; in
other words, fP(XG) = 1 ⇔ G[XG] satisfies the target propertyP . For example, letG
be undirected and consider the following two properties: (1) U ⊆ V is an independent
set (IS) of G if E[U] = ∅, and (2) F ⊆ E is a spanning tree (ST) of G if G[V, F] is
connected and has no cycle. Then, fIS represents IS if fIS(XV) = 1 ⇔ V (XV) is an
IS, and fST represents ST if fST(XE) = 1 ⇔ E(XE) is an ST.

2.2 Tractable Logical Circuits (TLCs)

A logical circuit is a rooted directed acyclic graph (DAG) representing a Boolean func-
tion. Let f(XG) be a Boolean function and C � 〈G,A〉 be a rooted DAG representing
f whose each gate g ∈ G has a type denoted by type(g). When g is a leaf, type(g) is
a literal: type(g) = X or ¬X (X ∈ XG). When g is an internal, type(g) is a logical
operator ⊗ (AND) or ⊕ (OR). g is referred to as a ⊗-gate, ⊕-gate, and input if type(g)
is ⊗, ⊕, and a literal, respectively. Each g represents a Boolean function denoted by
fg(Xg) where Xg ⊆ XG is the variable set of g: each input represents its literal,
each ⊗/⊕-gate performs conjunction/disjunction of its children, and the root r satisfies
fr(Xr) = f(XG). Consequently, fg and Xg are recursively defined as follows:

Xg �
{

{X} type(g) ∈ {X,¬X}⋃
{Xg′ | g′ ∈ cld(g)} type(g) ∈ {⊗,⊕}

fg(Xg) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X type(g) = X

¬X type(g) = ¬X∧
{fg′(Xg′) | g′ ∈ cld(g)} type(g) = ⊗∨
{fg′(Xg′) | g′ ∈ cld(g)} type(g) = ⊕

For the sake of simplicity, we assume that there is at most one leaf g such that type(g) =
X (resp. ¬X) for each X ∈ XG, and use g(X, 1) (resp. g(X, 0)) to denote such g. For

340 M. Ishihata

any t ∈ {⊗,⊕} and g′, g′′ ∈ G, we introduce an operation apply(t, g′, g′′) that returns
g ∈ G such that type(g) = t and cld(g) = {g′, g′′} if it exists; otherwise it creates such
g before returning. One can construct a target logical circuit by recursively applying
apply(t, g′, g′′) for the initial circuit C0 � 〈{g(X,x) | X ∈ XG, x ∈ {0, 1}}, ∅〉.

We next define the tractableness of circuits. Let Xg � {Xg′ | g′ ∈ cld(g)} be the
family of variable sets of g’s children and Gt � {g ∈ G | type(g) = t}. C is smooth if
∀g ∈ G⊕, |Xg| = 1: the variable sets are the same for all children of every ⊕-gate. C is
deterministic if the Boolean functions are mutually exclusive between the two children
of every ⊕-gate; i.e., ∀g ∈ G⊕,∀{g′, g′′} ⊆ cld(g) ,¬ (fg′(Xg′) ∧ fg′′(Xg′′)). C is
decomposable if Xg forms a partition of Xg for every ⊗-gate g; i.e., the variable sets
are disjoint between the two children of every ⊗-gate. A vtree of XG, denoted by
S � 〈P,L〉, is a directed full binary tree whose leaves have a one-to-one correspondence
with the variables in XG. For any leaf point p ∈ P , let Xp � {X} where X ∈ XG is
the variable corresponding to p, and for any internal p ∈ P , let Xp �

⋃
{Xp′ | p′ ∈

cld(p)} be the variable set under p; i.e., Xp � {Xp′ | p′ ∈ cld(p)} forms a partition
of Xp. For any g ∈ G⊗ and p ∈ P , g respects p if Xg = Xp; i.e., g and p represent
the same partition. C respects S if all ⊗-gate represents some point in S, and C is
structured-decomposable if there exists a vtree S that C respects. C is tractable if C
is smooth, deterministic, and structured-decomposable. We aim to construct tractable C
of fP(XG) for various properties P using apply(t, g′, g′′) in a dynamic programming
manner on a tree decomposition of G explained in the following.

2.3 Tree Decompositions (TDs)

A TD of G is a tree whose each node has a corresponding subset of V called a bag.
Let T � 〈N,A〉 be a tree, U � {Un ⊆ V | n ∈ N} be the family of bags, and
Nu � {n ∈ N | u ∈ Un} be the set of nodes that includes u ∈ V . Then, T is a TD
of G if it satisfies the following conditions: (1) ∀u ∈ V,∃n ∈ N,u ∈ Un, (2) ∀e ∈
E,∃n ∈ N, e ⊆ Un, and (3) ∀u ∈ V, T [Nu] is connected. The width of T is defined as
wT � max{|Un| | n ∈ N} − 1. T is said to be a path decomposition (PD) if T forms a
path. Let TG and PG be all possible TDs and PDs ofG, and twG � min{wT | T ∈ TG}
and pwG � min{wT | T ∈ PG} be the treewidth and pathwidth of G. By definition,
twG = 1 if G is a tree, pwG = 1 if G is a path, and twG ≤ pwG holds for any G.

A very nice tree decomposition (VNTD) [2] is a variant of TDs whose each node n
additionally has a corresponding subset Fn ⊆ E. We refer to Un and Fn as the vbag
and ebag, respectively, and denote the family of ebags by F � {Fn ⊆ E | n ∈ N}.
Then, a rooted directed tree T is a VNTD of G if it satisfies the followings: (1) T and
U form a TD of G, (2) ∀n ∈ N , V [Fn] ⊆ Un, (3) Un = Fn = ∅ if n is the root or a
leaf, and (4) n is one of the following five types if n is an internal:

1. Introduce vertex (IV): n has exactly one child m such that Fn = Fm and Un =
Um ∪ {u} for some u ∈ V \Um,

2. Introduce edge (IE): n has exactly one child m such that Un = Um and Fn =
Fm ∪ {e} for some e ∈ E\Fm,

3. Forget vertex (FV): n has exactly one child m such that Fn = Fm and Un =
Um \ {u} for some u ∈ Um,

The Bag-Based Search for Constructing Tractable Logical Circuits 341

4. Forget edge (FE): n has exactly one childm such thatUn = Um and Fn = Fm\{e}
for some e ∈ Fm,

5. Join (J): n has exactly two children m and m′ such that Un = Um = Um′ and
Fn = Fm = Fm′ .

Consequently, for any n ∈ N , Un and Fn forms an induced subgraph of G denoted
by Bn � G[Un, Fn]. For any internal n ∈ N , Let type(n) ∈ {IV, IE,FV,FE, J} be
the type of n, and let un and en be the vertex and edge introduced/forgotten at n if it
exists. On a VNTD T, each vertex and edge is forgotten just once [2]. For any n ∈ N ,
let Xn be the variable set that Xv ∈ Xn (resp. Xe ∈ Xn) if-and-only-if v (resp. e) is
forgotten at/under n. Hence,Xr = XG holds for the root r, andXm ∩Xm′ = ∅ holds
for any join n where cld(n) = {m,m′}. Given a TD T with width wT, one can make
it very nice without changing its width in O(w2

T max{|V |, |N |}) time, and the size of
the VNTD is at most O(wT|N |) [7].

3 The Bag-Based Search (BBS)

This paper aims to construct a TLC C of fP(XG) of an input graphG where P is a tar-
get graph property, and proposes the bag-based search (BBS) that is a meta-algorithm
to construct C for various property P in a dynamic programming (DP) manner on a
VNTD T of G. BBS employs two types of DP states, M-state (meta-state) and S-state
(specific-update), and two types of DP updates,M-update and S-update; the M-state and
M-update are common to all properties, while the S-state and S-update are different for
each property. Thus, BBS is easy-to-implement because one can implement various
BBS examples by modifying only S-states and S-updates. Some concrete examples of
S-states and S-updates for various graph properties are shown in Sect. 4.

3.1 S-States and S-Updates

Let XBn
� XVn

∪ XFn
be a Boolean representation of a subgraph of Bn, xBn

be
its realization, and sn be an S-state at n. Note that xBn

and sn may have multiple
instantiations for the same n. BBS generates a new instantiation of sn by the following
S-updates depending on type(n);

Supdate(xBn
, sm | type(n)) type(n) ∈ {IV, IE},

Supdate(xBm
, sm | type(n)) type(n) ∈ {FV,FE},

Supdate(xBn
, sm, sm′ | type(n)) type(n) = J,

where m,m′ ∈ cld(n). Each update returns a new instantiation of sn or a special sym-
bol ⊥ that means pruning. Let the default S-state be ∅, and let the default S-update
always return the input; no pruning occurs. The BBS with the default S-states and S-
updates constructs a TLC of the tautological Boolean function f(XG) � 1. One can
implement BBS examples by modifying the default S-state and S-updates to the spe-
cialized ones for the target property P .

342 M. Ishihata

3.2 M-States and M-Updates

Let mn � 〈xBn
, sn, gn〉 be an M-state where xBn

is a realization of XBn
, sn is

an instantiation of the S-state, and gn ∈ G is a gate of C under construction. BBS
manages instantiations of mn by DP table Tn : (xBn

, sn) �→ gn, and constructs
Tn from Tm (m ∈ cld(n)) by M-update Mupdate(n, cld(n) | type(n)) shown in
Algorithm 1, where 〈xBn

, sn, gn〉 ∈ Tn denotes Tn(xBn
, sn) = gn. The M-update

obtains a new xBn
by adding (resp. deleting) xun

or xen to (resp. from) xBm
if

type(n) ∈ {IV, IE} (resp. {FV,FE}), and computes new sn by the corresponding S-
update. When type(n) ∈ {FV,FE}, it constructs new gate g = apply(⊗, gm, g(X,x)),
where X is the variable of the forgotten vertex/edge at n and x is its realization. Then,
it gets a disjunction of new gates with the same xBn

and sn. When type(n) = J, it
constructs new gate g = apply(⊗, gm, gm′) where gm and gm′ correspond to the same
xBn

.

The Bag-Based Search for Constructing Tractable Logical Circuits 343

3.3 The Bag-Based Search (BBS)

The main DP part of BBS is shown in Algorithm 2. First, it constructs a VNTD T of
the input graph G and the initial circuit C. Then, it initializes the DP table Tn of each
leaf n ∈ N with one element mn = 〈∅, ∅, true〉, and constructs Tn of each internal
n ∈ N by the M-update in a DP manner. Finally, it constructs the root gate g that is
a disjunction of all gates in Tr where r is the root of T, and returns C as a TLC of
fP(XG) where P is the target property.

The complexity of BBS depends on the concrete definition of the S-state and S-
update. Let f(n) be the domain size (the number of possible instantiations) of S-
state sn and g(n) be the time complexity of the S-update for n. Then, the maxi-
mum number of elements in the DP table Tn is O(f(n)2|Un|+|Fn|) and the time
complexity of constructing Tn is O(g(n)f(m)2|Um|+|Fm|) if type(n) �= J; otherwise
O(g(n)f(m)f(m′)2|Un|+|Fn|) where m,m′ ∈ cld(n). Let f � max{f(n) | n ∈ N},
g � max{g(n) | n ∈ N}, and w � max{|Un| + |Fn| | n ∈ N}. Then, BBS’s space
and time complexity is O(|N |f2w) and O(|N |gf22w), respectively. Basically, f(n)
and g(n) are functions of |Un| and |Fn|, not |V | and |E| (see examples of Sect. 4). In
such cases, BBS is FPT of treewidth wG; i.e., f , g, and w are regarded as constants if
wG is a constant.

3.4 Tractableness of Generated Circuits by BBS

Suppose C is the circuit generated by BBS and represents fP(G) that is NOT a contra-
diction. We here prove that C is tractable.

Corollary 1. For any n ∈ N , every instantiation of gn in the DP tableTn is a Boolean
function of Xn and contains at least one literal of each X ∈ Xn.

Proof. In BBS, each literal g(X,x) is only introduced in Mupdate(n, | type(n))
cld(n) such that type(n) ∈ {FV,FE}; namely, a literal of Xvn

(resp. Xen) is added
to gn at n if-and-only-if n forgets vn (resp. en). Hence, by the definition of Xn, the
variable set of gn must correspond toXn.

344 M. Ishihata

Corollary 2. For any n ∈ N , instantiations of gn in the DP table Tn are mutually
exclusive.

Proof. When n is a leaf, Tn has exactly one instantiation of gn: gn = true. Hence,
Corollary 2 holds for n of leaves. When n is an internal, we assume Corollary 2 holds
for each m ∈ cld(n) and prove that it holds for n. When type(n) ∈ {IV, IE}, instan-
tiations of gn are obviously exclusive because they are copies of gm. When type(n) ∈
{FV,FE}, for each gm, BBS generates new gates g = apply(⊗, gm, g(X,x)) where
X corresponds to the forgotten vertex or edge at n and x is its realization. The new
gates are mutually exclusive because all gm are exclusive, and X is a new variable.
BBS constructs an OR gate of two new gates if they correspond to the same xBn

and
sn; i.e., every new gate g never becomes inputs of different OR gates. Hence, the OR
gates must also be mutually exclusive. When type(n) = J, BBS generates new gates
g = apply(⊗, gm, gm′), where gm and g′

m share no variable because Xm ∩ Xm′ = ∅;
Hence, the new gates must be exclusive because all gm (or g′

m) in them are mutually
exclusive. Consequently, for each n ∈ N , instantiations of gn are mutually exclusive
by mathematical induction.

Corollary 3. For any g ∈ G⊕, every g′ ∈ cld(g) shares the same variable set.

Proof. BBS operates apply(⊕, g, g′) in Construct(G) or Mupdate(n, | type(n))
cld(n) (type(n) ∈ {FV,FE}) where g and g′ are chosen from the same DP table. Corol-
lary 1 guarantees that every gate in the same DP tableTn has the same variable setXn.
Hence, the children of every ⊕-gate g share the same variable set Xg.

Lemma 1. C is smooth.

Proof. For any g ∈ G⊕ and g′ ∈ cld(g), Xg = Xg′ (i.e., Xg = {Xg}) holds by
Corollary 3; hence, C is smooth.

Lemma 2. C is deterministic.

Proof. For any g ∈ G⊕, g′ and g′′ are mutually exclusive where cld(g) = {g′, g′′} by
Corollary 2; hence, C is deterministic.

Lemma 3. C is decomposable.

Proof. In BBS, Mupdate(n, cld(n) | type(n)) operates apply(⊗, g, g′) only when
type(n) ∈ {FV,FE, J}. When type(n) ∈ {FV,FE}, it operates apply(⊗, gm, g(X,x))
where X is the variable corresponding to the forgotten vertex or edge at n. Because
each vertex/edge is forgotten exactly once in a VNTD, gm never contains X; i.e.,
the variable sets of gm and g(X,x) must be disjoint. When type(n) = J, it operates
apply(⊗, gm, gm′) where cld(n) = {m,m′} and Xm and Xm′ are disjoint; i.e., gm
and gm′ must be disjoint. Hence, for any g ∈ G⊗, Xg is a partition of Xg; i.e., C is
decomposable.

The Bag-Based Search for Constructing Tractable Logical Circuits 345

Lemma 4. C is structured-decomposable.

Proof. Let’s consider the vtree S constructed by below:

Table 1. The list of properties, their variable sets, and their domains of S-states

Property P Variable Set Domain of sn

Independent Set (IS) XV {∅}
k-edgeset (k-ES) XV {0, . . . , k}
Dominating Set (DS) XV {0, 1}Un

k-matching (k-MT) XE {0, . . . , k}Un

Spanning Tree (ST) XE {1, . . . , |Un|}Un

1. Let S be a copy of T and for any point p ∈ P , np ∈ N be the original node in T
corresponding to p.

2. Contract all p ∈ P that type(np) ∈ {IV, IE}; i.e., ∀p ∈ P, type(np) ∈ {FV,FE, J}
holds on the resulting S.

3. For any p ∈ P such that type(np) ∈ {FV,FE}, add a new child q to cld(p) and
correspond X to q where X is the variable of the forgotten vertex or edge at np.

For any g ∈ G⊗, let ng be the node that g is generated. Then, each g respects some
p such that np = ng; namely, C respects the above vtree S. C is decomposable by
Lemma 3. Hence, C is structured-decomposable.

Theorem 1. C is tractable.

Proof. It follows from Lemmas 1, 2, and 4.

4 BBS Examples

We show some examples of S-states and S-updates of some graph properties, including
independent set (IS), spanning tree (ST), k-edgeset (k-ES; U ⊆ V is a k-ES of G if
E[U] ≤ k), dominating set (DS; U ⊆ V is a DS of G if ∀v ∈ V \ U,∃u ∈ U, {u, v} ∈
E), and k-matching (k-MT; F ⊆ E is a k-MT of G if ∀u ∈ V [F], the degree of u on
G[F] is less than or equal to k).

Table 1 shows the variable set and the domain of the S-state for each property, and
the following examples are the S-state and S-update of each property. In the following
examples, sn is initialized as a copy of sm. Due to space limitations, pseudo-codes of
S-updates for some examples are shown in the Appendix. We also omit the proof of the
correctness of each specific algorithm because one can obtain it by slightly modifying
the proof of the corresponding TD-based algorithm shown in [7].
Independent Set (IS): The pseudo-code of the modified Supdate(xUn

, ∅ | IE) for IS
is shown in Appendix, and the other S-updates are the same as default. The S-state of

346 M. Ishihata

IS is ∅; i.e., the S-updates of IS require no additional information other than xUn
. When

en = {u, v}, Supdate(xUn
, ∅ | IE) returns ⊥ if xu = 1∧xv = 1: two vertices in Un

are connected.

k-Edgeset (k-ES): The pseudo-codes of the modified Supdate(xUn
, sm | IE) and

Supdate(xUn
, sm, sm′ | J) for k-ES are shown in Appendix, and the other S-updates

are the same as default. The S-state of k-ES is an Integer sn ∈ {0, . . . , k} that indicates
the current number of induced edges. Consider introducing en = {u, v}. When xu = 0
or xv = 0, en is not induced. When xu = 1 ∧ xv = 1, en is a new induced edge and
Supdate(xUn

, sm | IE) increments sn by one and returns sn if sn ≤ k; otherwise
it returns ⊥: pruning takes place. Supdate(xUn

, sm, sm′ | J) computes sn = sm +
sm′ −c where c is the number of induced edges in the currentBn[xBn

] that corresponds
to the number of doubly counted induced edges (i.e., Inclusion-Exclusion Principle).
Then, it returns sn if sn ≤ k; otherwise it returns ⊥.

Dominating Set (DS): The pseudo-code of the modified S-updates for DS are shown in
Appendix. The S-state of DS is a Boolean array sn ∈ {0, 1}Un where sn[u] = 1 (u ∈
Un) indicates that u is dominated. Supdate(xUn

, sm | IV) initializes sn[un] = 0: un

is not dominated yet. When en = {u, v}, Supdate(xUn
, sm | IE) sets sn[u] = 1 if

xv = 1: u is dominated by v. Supdate(xUn
, sm, sm′ | J) computes an element-wise

OR of sm and sm′ as a new sn. Supdate(xUm
, sm | FV) returns ⊥ if dun

= 0: un is
forgotten without dominated; otherwise it returns sn.

k-Matching (k-MT): The pseudo-codes of the modified S-updates for k-MT are shown
in Appendix1. The S-tate of k-MT is an Integer array sn ∈ {0, . . . , k}Un where
sn[u] (u ∈ Un) indicates the current degree of u. Supdate(xFn

, sm | IV) initial-
izes sn[un] = 0; un is an isolated vertex. When en = {u, v}, Supdate(xFn

, sm | IE)
increments sn[u] and sn[v] by one and returns sn if (sn[u] ≤ k) ∧ (sn[v] ≤ k); other-
wise it returns ⊥. Supdate(xFn

, sm, sm′ | J) computes sn[u] = sm[u] + sm[u]− du
where du is the degree of u in B[E(xFn

)] that corresponds to the number of doubly
counted degree of u. Supdate(xFm

, sm | FV) returns sn if ∀u ∈ Un, sn[u] ≤ k;
otherwise it returns ⊥.

Spanning Tree (ST): The pseudo-code of the modified S-updates for ST are shown
in Appendix. The S-state of ST is an Integer array sn ∈ {0, . . . , |Un|}Un that rep-
resents hidden connectivity on Un (a partition of Un) whose blocks correspond to
connected components. Supdate(xFn

, sm | IV) adds un to sn an isolated vertex.
Supdate(xFn

, sm | IE) returns ⊥ if Bn[E(xFn
)] considering the hidden connectivity

sn has a cycle. When en = {u, v} and xen = 1, Supdate(xBn
, sm | FE) unites u

and v on sn: the forgotten connection en is stored in sn. Supdate(xBn
, sm, sm′ | J)

returns ⊥ if Bn[E(xUn
)] considering sm and sm′ has a cycle; otherwise it returns the

merge of sm and sm′ as sn.

5 Experiments

We implemented our BBS and the conventional FBS and compared the size of TLCs
and ZDDs. FBS is the most widely used method for constructing logical circuits of
1 Appendix is provided on the author’s website.

The Bag-Based Search for Constructing Tractable Logical Circuits 347

Fig. 1. The comparison results of the FBS and BBS. Each point corresponds to a pair of a graph
G and a property P where its x-axis (resp. y-axis) indicates the size of the circuit of fP(XG)
generated by the FBS (resp. BBS); i.e., each point under the solid black line, indicating y = x,
means that the BBS constructs a smaller circuit than the FBS. Note that both the x- and y-axis
are logarithmic axes and each dotted black line indicates y = 10±dx where d ∈ {1, 2, . . . }.

fP(XG) for various properties P . FBS generally constructs a reduced ZDD that is a
structured-decomposed and deterministic logical circuit but is non-smooth; however,
we got smooth ZDDs in the experiment by omitting its reduction step. A ZDD is
structured-decomposed, but its structure has a restriction that a vtree S respected by
a ZDD must be linear: Each internal point p ∈ P has two children, and at least one
child is a leaf; hence, linear S has no join. The restriction is derived from FBS being
based on PD, not TD. This experiment aims to see how this difference affects the sizes
of the constructed TLCs and ZDDs.

5.1 Experimental Setting

We implemented the proposed BBS and the conventional FBS in C++ and built them
with g++ 13.0.0 with the O3 option. We conducted experiments on a computer with an
Intel Core i7 CPU (3.2GHz), 64 GB main memory, and macOS Big Sur. We imple-
mented specific FBSs for IS, k-ES, DS, k-MT, and ST using TdZdd [13].

We used a greedy heuristic search to find a TD/PD with a small width. We imple-
mented three criteria for TD: degree, fillin, and degree+fillin used in [20], and five crite-
ria for PD: DFS, BFS, NDS, LUD, and RFS used in [11]. We applied greedy heuristics
with each criterion for each input graph, and employed the TD and PD with the smallest
width in the experiment.

We constructed three datasets grid, spider, and pace. The grid consists of
(w, h)-grids with w = 1, . . . , 10 and h = 10 where the (w, h)-grid is a grid graph
with width w and height h; i.e., w × h vertices. The treewidth and pathwidth of the
(w, h)-grid (w ≤ h) are both w, and the greedy heuristics obtained an optimal TD and
PD. The spider consists of (k, �)-spiders with k = 1, . . . , 10 and � = 10 where the
(k, �)-spider is a spider-like k-tree with k + �2 vertices formed by the following steps:
(1) let C = {1, . . . , k}, (2) let U = C, (3) add a new vertex u to U and make U a
clique, (4) remove the oldest vertex from U , (5) repeat (3)-(4) � times, and (6) repeat
(2)-(5) � times. The treewidth and pathwidth of the (k, �)-spider (k ≤ �) are k and
2k, respectively, and the greedy heuristics obtained an optimal TD and PD. The pace
consists of some instances for the exact treewidth challenge in PACE2017 [10] where

348 M. Ishihata

all instances are based on real-world data, and their true treewidth is known. We applied
the greedy heuristics for each instance and selected ones whose smallest width of PD is
less than or equal to 20 as pace. As a result, the pace consists of 30 real-world graphs,
and the details of those graphs are given in Appendix.

5.2 Experimental Results

Figure 1 shows the comparison results of BBS and FBS. Each point corresponds to a
pair of a graph and a property, and its x- and y-axis indicate the size of the constructed
ZDD and TLC, respectively. We here define the size of a TLC as the number of gen-
erated wires by BBS and that of a ZDD as six times the number of generated vertices
by FBS because one ZDD vertex is equivalent to three logical gates with two inputs
(namely, six wires) [9]. Further details of the experiment are given in the Appendix.

We applied BBS and FBS to each (w, h)-grid and (k, �)-spider with each properties
IS, 10-ES, DS, 1-MT, 2-MT, and ST. In case (w, h)-grid, both BBS and FBS success-
fully constructed the TLC and ZDD for each w and property, and their size is shown in
Fig. 1(a). Because the treewidth and pathwidth of the (w, h)-grid is both w, there was
no significant difference between TLC and ZDD sizes; however, in the most significant
case, ZDD was almost 30 times larger than TLC. In case (k, �)-spider, FBS failed in
constructing ZDDs for 2-MT with k ≥ 8 and for ST with k ≥ 7 due to lack of memory.
Figure 1(b) shows the TLC and ZDD sizes except for the above failure cases. Because
the pathwidth of the (k, �)-spider is 2k while its treewidth is k, the ZDD size tends to be
much larger than the TLC size, and in the most significant case, ZDD was almost 8,000
times larger than TLC. This result indicates that BBS is significantly more efficient than
FBS when the treewidth of the input graphs is smaller than its pathwidth.

We applied BBS and FBS to every 30 graphs in pace with three properties IS, 10-
ES, and DS, where we omitted k-MT and ST due to lack of memory, and the results
are shown in Fig. 1(c). TLC was larger than ZDD only in eight cases of 90, and the
most significant difference was less than three times. In contrast, TLC was smaller in
the rest 82 cases, and ZDD was more than 6,000 times larger than TLC in the most
significant case. This result suggested that BBS is significantly more efficient than FBS
for real-world graphs.

6 Conclusion

We proposed BBS, an easy-to-implement and practically efficient meta-algorithm for
constructing TLCs of various graph properties. BBS is based on DP on a VNTD of
the input graph and constructs a TLC using two types of updates, M- and S-update.
M-update is common to all properties, whereas S-update differs for each. We showed
concrete BBS examples for various properties; independent set, k-edgeset, dominating
set, k-matching, and spanning tree, and applied them to various graphs. The experimen-
tal results suggested that BBS constructs smaller circuits than FBS in many cases.

TLCs have been widely applied for modeling structured probabilistic space, and
the computational costs of logical and probabilistic queries on TLCs are polynomial to

The Bag-Based Search for Constructing Tractable Logical Circuits 349

their size. Hence, constructing smaller TLCs accelerates all applications that use such
queries of TLCs; our BBS is expected to reduce the execution time of such applications.

Designing FBS for the target graph constraint is a thorny task because one has to
design and implement its appropriate update that generally contains complex condi-
tional branches and exception handling. BBS is also expected to alleviate the suffering
because one only has to implement four types of S-updates that can be intuitively associ-
ated with four types of vertex of VNTD; i.e., our BBS is easy to design and implement.

References

1. Amarilli, A., Bourhis, P., Jachiet, L., Mengel, S.: A circuit-based approach to efficient enu-
meration. In: ICALP (2017)

2. Bannach, M., Berndt, S.: Practical access to dynamic programming on tree decompositions.
In: ESA (2018)

3. Van den Broeck, G., Lykov, A., Schleich, M., Suciu, D.: On the tractability of SHAP expla-
nations. In: AAAI (2021)

4. Choi, A., den Broeck, G.V., Darwiche, A.: Tractable learning for structured probability
spaces: a case study in learning preference distributions. In: IJCAI (2015)

5. Choi, A., Shen, Y., Darwiche, A.: Tractability in structured probability spaces. In: NIPS
(2017)

6. Choi, Y., Vergari, A., Van den Broeck, G.: Probabilistic circuits: A unifying framework for
tractable probabilistic models. In: Technical report, UCLA (2020)

7. Cygan, M., et al.: Parameterized Algorithms. Springer (2015)
8. Darwiche, A.: SDD: a new canonical representation of propositional knowledge bases. In:

IJCAI (2011)
9. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264

(2002)
10. Dell, H., Husfeldt, T., Jansen, B.M.P., Kaski, P., Komusiewicz, C., Rosamond, F.A.: The first

parameterized algorithms and computational experiments challenge. In: IPEC (2017)
11. Inoue, Y., Minato, S.: Acceleration of ZDD construction for subgraph enumeration via path-

width optimization. In: TCS-TR-A16-80, Hokkaido University (2016)
12. Ishihata, M., Maehara, T.: Exact bernoulli scan statistics using binary decision diagrams. In:

IJCAI (2019)
13. Iwashita, H.: Tdzdd: a top-down/breadth-first decision diagram manipulation framework.

https://github.com/kunisura/TdZdd
14. Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enumerating all

constrained subgraphs with compressed representation. IEICE Trans. 100-A(9), 1773–1784
(2017)

15. Khosravi, P., Choi, Y., Liang, Y., Vergari, A., Van den Broeck, G.: On tractable computation
of expected predictions. In: NeurIPS (2019)

16. Knuth, D.E.: The art of computer programming, volume 4A: combinatorial algorithms, part
1. Pearson Education India (2011)

17. Liu, A., Van den Broeck, G.: Tractable regularization of probabilistic circuits. In: NeurIPS
(2021)

18. Liu, A., Mandt, S., Van den Broeck, G.: Lossless compression with probabilistic circuits. In:
ICLR (2022)

19. Maehara, T., Suzuki, H., Ishihata, M.: Exact computation of influence spread by binary deci-
sion diagrams. In: WWW (2017)

https://github.com/kunisura/TdZdd

350 M. Ishihata

20. Maniu, S., Senellart, P., Jog, S.: An experimental study of the treewidth of real-world graph
data. In: ICDT (2019)

21. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: DAC
(1993)

22. Nakahata, Y., Nishino, M., Kawahara, J., Ichi Minato, S.: Enumerating all subgraphs under
given constraints using zero-suppressed sentential decision diagrams. In: SEA (2020)

23. Nishino, M., Inoue, T., Yasuda, N., Minato, S., Nagata, M.: Optimizing network reliability
via best-first search over decision diagrams. In: INFOCOM (2018)

24. Nishino, M., Yasuda, N., Minato, S., Nagata, M.: Zero-suppressed sentential decision dia-
grams. In: AAAI (2016)

25. Nishino, M., Yasuda, N., Minato, S., Nagata, M.: Compiling graph substructures into sen-
tential decision diagrams. In: AAAI (2017)

26. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams. In: IJCAI
(2015)

27. Selvam, N.R., Van den Broeck, G., Choi, Y.: Certifying fairness of probabilistic circuits. In:
AAAI (2023)

28. Shih, A., Van den Broeck, G., Beame, P., Amarilli, A.: Smoothing structured decomposable
circuits. In: NeurIPS (2019)

29. Sugaya, T., Nishino, M., Yasuda, N., Minato, S.: Tree decomposition-based approach for
compiling independent sets. J. Inf. Process. 28, 354–368 (2020)

30. Suzuki, H., Ishihata, M., Minato, S.: Designing survivable networks with zero-suppressed
binary decision diagrams. In: WALCOM (2020)

31. Vergari, A., Choi, Y., Liu, A., Teso, S., Van den Broeck, G.: A compositional atlas of tractable
circuit operations for probabilistic inference. In: NeurIPS (2021)

On Problems Related to Absent
Subsequences

Zdenek Tronicek(B)

State University of New York, Oneonta, NY, USA
zdenek.tronicek@oneonta.edu

Abstract. The paper introduces the absent subsequence automaton
as a compact representation of shortest absent subsequences and mini-
mal absent subsequences and describes its application to various related
problems. It also reveals interesting combinatorial properties of minimal
absent subsequences and derives an algorithm for computing the number
of minimal absent subsequences.

Keywords: Absent subsequences · Subsequence automaton · Directed
Acyclic Subsequence Graph · Distinguishing words

1 Introduction

A subsequence of a string T is any string that can be obtained by removing
zero or more symbols from T . In other words, a string S = s1s2 . . . sm is a
subsequence of a string T = t1t2 . . . tn if there exist indices i1, i2, . . . , im such
that 1 ≤ i1 < i2 < . . . < im ≤ n and s1 = ti1 , s2 = ti2 , . . . , sm = tim . Problems
related to subsequences have been researched for decades and there are dozens
of papers on them (see a survey [14] by Kosche et al. for details).

One fundamental task related to subsequences is the subsequence matching
problem: given two strings, a pattern S of length m and a text T of length n, we
are to decide whether S is a subsequence of T . If S is a subsequence of T , we may
also want to find indices i1, i2, . . . , im such that s1 = ti1 , s2 = ti2 , . . . , sm = tim .
One approach is to preprocess the pattern to a deterministic finite automaton
that searches for a subsequence S. Another approach is to preprocess the text to
a deterministic finite automaton that accepts all subsequences of T . This finite
automaton was first mentioned by Hebrard and Crochemore [8] who also described
a right-to-left algorithm for building. Baeza-Yates [1] called the finite automaton
“Directed Acyclic Subsequence Graph” and described how it can be extended to
multiple texts. Crochemore et al. [3] described a left-to-right algorithm for build-
ing the Directed Acyclic Subsequence Graph for one text as well as for multi-
ple texts. The complete finite automaton for a text of length n has n + 2 states
and can be built in O(nσ) time where σ is the size of the alphabet. Hoshino
et al. [9] described an online algorithm for building the subsequence automaton
for multiple texts. Bille et al. [2] considered a compact representation of the subse-
quence automaton based on default transitions, which do not consume any input
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 351–363, 2024.
https://doi.org/10.1007/978-3-031-49614-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_26&domain=pdf
http://orcid.org/0000-0002-2737-1317
https://doi.org/10.1007/978-3-031-49614-1_26

352 Z. Tronicek

symbol. This clever representation provides a trade-off between the size of the
finite automaton and the delay when processing the input symbols. If we accept
the delay O(log σ), the size of the finite automaton can be reduced to O(n log σ).
Concerning the size of the subsequence automaton for multiple texts, it has been
proved that in the worst case, the number of states is exponential in the number
of texts (see [4] and [17]).

An absent subsequence of a string T is any string that is not a subsequence
of T . A shortest absent subsequence (SAS) of T is an absent subsequence of T
of the minimum length. Let SAS(T) denote the set of shortest absent subse-
quences of T . A minimal absent subsequence (MAS) of T is an absent subse-
quence of T whose every subsequence is not absent. Let MAS(T) denote the set
of minimal absent subsequences of T . A trivial fact is that SAS(T) ⊆ MAS(T).
As an example, let’s consider T = ababb. Then SAS(T) = {aaa, baa, bba} and
MAS(T) = SAS(T) ∪ {aabbb, bbbb}. This shows that not every MAS is a SAS.

Absent subsequences were introduced by Kosche et al. [13] as an analogy
to absent substrings. They defined minimal absent subsequences and shortest
absent subsequences and showed several combinatorial and algorithmic results
related to them. Their motivation to deal with absent subsequences stemmed
from the problems related to Simon’s congruence ∼k, which is defined as follows:
given two strings u and v, u is equivalent to v (we write u ∼k v) if and only if
u and v have the same set of subsequences of length at most k.

Fleischer and Kufleitner [5] researched the problem of testing whether two
strings are ∼k-equivalent. The problem is related to the notion of a distinguishing
string of u and v, which is the shortest string that is a subsequence of one
string and an absent subsequence of the other string. Gawrychowski et al. [7]
investigated a similar problem: given two strings u and v, we are to find the
largest k for which u ∼k v. Kim et al. [10] showed how to build, for a given
string u, a finite automaton that accepts any string congruent to u under Simon’s
congruence and designed an algorithm that, given a string u, an integer k, and
a language L, decides whether there exists a string v ∈ L such that u ∼k v. Kim
et al. [11] described how to find all substrings of a text that are congruent to a
pattern under Simon’s congruence.

Kosche et al. [12] considered subsequences in bounded ranges: given two
strings u and v and an integer p, we are to decide whether there exists a substring
of v of length p that contains u as a subsequence. If such a substring exists,
we say that u is a p-subsequence of v. They extended the definition of absent
subsequences to absent p-subsequences and researched problems related to them.

Garel [6] dealt with minimal separators of two strings. Given two strings u
and v, a separator of u and v is a string that is a subsequence of exactly one
of u and v. She described an algorithm for building a finite automaton that
recognizes the shortest separators of two strings.

The scientific contribution of this paper is the introduction of the absent sub-
sequence automaton as a compact representation of shortest absent subsequences
and minimal absent subsequences, the description of combinatorial properties of
minimal absent subsequences, and the derivation of a dynamic programming
algorithm for computing the number of minimal absent subsequences.

On Problems Related to Absent Subsequences 353

The rest of the paper is organized as follows. Section 2 defines the absent sub-
sequence automaton and its transition graph, Sect. 3 relates the transition graph
to shortest absent subsequences, Sect. 4 relates the transition graph to mini-
mal absent subsequences, reveals interesting combinatorial properties of mini-
mal absent subsequences, and derives an algorithm for computing the number of
minimal absent subsequences, Sect. 5 describes an application of absent subse-
quence automata to the problem of finding separators of two strings, and Sect. 6
concludes.

2 Absent Subsequence Automaton

A finite automaton is a 5-tuple (Q,Σ, δ, q0, F), where Q is a finite set of states,
Σ is an input alphabet, δ : Q × Σ → Q is a transition function, q0 is the initial
state, and F ⊆ Q is the set of final states. The notation [i, j] means the closed
interval of integers i through j, σ is the size of Σ, and ε is the empty word.

Given a string T = t1t2 . . . tn over an alphabet Σ, the subsequence automaton
for T is the deterministic finite automaton (Q,Σ, δ, q0, F) where

– Q = {q0, q1, . . . , qn+1},
– F = {q0, q1, . . . , qn}, and
– δ(qi, a) = qj where j = min({j | j > i and a = tj} ∪ {n + 1}) for each a ∈ Σ

and each i ∈ [0, n + 1].

The complete automaton has n + 1 final states and one nonfinal (sink) state. It
can be built in O(nσ) time and represented in O(nσ) space.

Definition 1. Given a string T over an alphabet Σ, the absent subsequence
automaton for T is the deterministic finite automaton (Q,Σ, δ, q0, Fa) where
Q, Σ, and δ are defined the same way as in the subsequence automaton and
Fa = {qn+1}.
Informally, we can get the absent subsequence automaton from the subsequence
automaton by changing final states to nonfinal and vice-versa (see Fig. 1).

q0 q1 q2 q3 q4 q5 q6
a

b

b

a

a

b

b

a

b

a

a, b

a, b

Fig. 1. The absent subsequence automaton for ababb.

Lemma 1. The absent subsequence automaton for T accepts a string S if and
only if S is an absent subsequence of T .

354 Z. Tronicek

Proof. This directly follows from the definition of the absent subsequence
automaton. �	
Definition 2. Given a finite automaton A = (Q,Σ, δ, q0, F), the transition
graph of A is G = (V,E) where V = Q is a set of vertices and E = {(p, a, q) :
δ(p, a) = q,∀p, q ∈ Q, a ∈ Σ} is a set of edges.

3 Shortest Absent Subsequences

Since the absent subsequence automaton for T accepts all absent subsequences
of T , it must accept also the shortest absent subsequences of T and the minimal
absent subsequences of T .

Theorem 1. A string S is a SAS of T if and only if it is the labeling of a
shortest path from q0 to qn+1 in the transition graph of the absent subsequence
automaton for T .

Proof. ⇒: S is an absent subsequence and thus S must be the labeling of a path
from q0 to qn+1 in the transition graph. Let’s assume there exists a path P from
q0 to qn+1 that is shorter than S. Then the labeling of this path is an absent
subsequence that is shorter than S, which contradicts the assumption that S is
a SAS of T .
⇐: S is the labeling of a path from q0 to qn+1 and thus S is an absent subse-
quence. Let’s assume there exists an absent subsequence P that is shorter than
S. Then P must be accepted by the absent subsequence automaton and thus
there must be a path from q0 to qn+1 labeled with P in the transition graph.
Since P is shorter than S, the path labeled with P must be shorter than the
path labeled with S, which contradicts the assumption that S is the labeling of
a shortest path from q0 to qn+1. �	
Example 1. In the absent subsequence automaton in Fig. 1, there are three dif-
ferent shortest paths from q0 to q6. The labelings of these paths are aaa, baa,
and bba, which are the shortest absent subsequences of ababb.

The transition graph of the absent subsequence automaton can be used to solve
various problems related to absent subsequences. If we store at each vertex qi

the length of the shortest path from q0 to qi (it can be computed by breadth-
first search), we can answer the question “Is S = s1s2 . . . sm a SAS of T?” as
follows: we start in q0 and go through a transition for s1 if it goes to a vertex
with a greater distance. Then we go through a transition for s2 if it goes to a
vertex with a greater distance, and so on until sm. If we end up in qn+1, we
can conclude that S is a SAS. Otherwise, the last visited vertex determines the
longest prefix of S that is also a prefix of a SAS.

Since the transition graph contains all shortest absent subsequences, we can
use a graph traversal to count them and enumerate them. Counting the shortest
absent subsequences of T requires O(nσ) time and enumerating them requires
O(nσ + M) time, where M is the total length of shortest absent subsequences.

On Problems Related to Absent Subsequences 355

4 Minimal Absent Subsequences

Definition 3. Let T = t1t2 . . . tn be a string over an alphabet Σ. The alphabet
of T , denoted by Σ(T), is a set of symbols used in T , i.e., Σ(T) = {a ∈ Σ | ∃i ∈
[1, n] : a = ti}.
The following lemma formalizes that we can find the alphabet of ti . . . tj by
inspecting edges of qi−1 in the transition graph.

Lemma 2. Let T = t1t2 . . . tn be a string over an alphabet Σ and GT be the
transition graph of the absent subsequence automaton for T . Then Σ(ti . . . tj) =
{a ∈ Σ | ∃k ∈ [i, j] : δ(qi−1, a) = qk} for 1 ≤ i ≤ j ≤ n.

Proof. This directly follows from the definition of the transition function δ. �	
The ALPHABET function computes the alphabet of a string that is specified
by two vertices p and r of the transition graph. If p = qi and r = qj for some
0 ≤ i < j ≤ n, the function returns the alphabet of ti . . . tj .

Algorithm 1 *
ALPHABET(p, r)

1: alph = ∅
2: for a ∈ Σ do
3: q = δ(p, a)
4: if q.num ≤ r.num then
5: alph = alph ∪ {a}
6: end if
7: end for
8: return alph

Given a vertex v of the transition graph, let level(v) denote the length of the
longest simple path from q0 to v. (A simple path contains each vertex at most
once.)

Theorem 2. Let T = t1t2 . . . tn be a string over an alphabet Σ and GT be the
transition graph of the absent subsequence automaton for T . Let v0, v1, . . . , vm

be the vertices of a simple path from q0 to qn+1 in GT and S = s1s2 . . . sm be
the labeling of this path. Then S is a MAS of T if and only if si ∈ Σ(tj+1 . . . tk)
where j = level(vi−2) and k = level(vi−1) for each i ∈ [2,m].

Proof. ⇒: Assume there exists r ∈ [2,m] such that sr �∈ Σ(tj+1 . . . tk) where
j = level(vr−2) and k = level(vr−1). Let S′ be a string derived from S by
removing sr−1, i.e., S′ = s1 . . . sr−2sr . . . sm. The path s1 . . . sr−2 goes to vertex
vr−2. Since sr �∈ Σ(tj+1 . . . tk), the transition from vr−2 for sr goes to vr and the
path continues to qn+1 the same way as for S. This means that S′ is an absent
subsequence of T , which contradicts the assumption that S is a MAS of T .

356 Z. Tronicek

⇐: Since S is the labeling of a path from q0 to qn+1, it is an absent subsequence.
To prove that it is minimal, we need to prove that any proper subsequence of S
is a subsequence of T . Let Sm be a string derived from S by removing sm, i.e.,
Sm = s1s2 . . . sm−1. Since v0v1 . . . vm is a simple path and vm = qn+1, vm−1 is
not qn+1. Sm goes to vm−1 and thus Sm is a subsequence of T . Let Sm−1 be a
string derived from S by removing sm−1, i.e., Sm−1 = s1s2 . . . sm−2sm. The path
s1s2 . . . sm−2 goes to vm−2. Since sm ∈ Σ(tj+1 . . . tk) where j = level(vm−2)
and k = level(vm−1), the transition for sm from vm−2 goes to q� where � ∈
[j + 1, k]. Thus, Sm−1 is a subsequence of T . Similarly, we can show that Sm−2

is a subsequence of T , and so on. �	
Example 2. In the absent subsequence automaton in Fig. 1, there are five paths
from q0 to q6 that satisfy conditions specified in theorem 2. The labelings of
these paths are aaa, baa, bba, bbbb, and aabbb, which are the minimal absent
subsequences of ababb.

Theorem 2 provides direction on how to find minimal absent subsequences in the
transition graph. We can check whether a string is a MAS, find a longest MAS,
and enumerate all minimal absent subsequences. The FIND-A-LONGEST-
MAS algorithm is based on the well-known algorithm for the longest path in
an acyclic graph, which begins with the topological sort. Since we know the
topological ordering of vertices (it is q0, q1, . . . , qn+1), we can immediately process
them in that order. There can be multiple longest minimal absent subsequences,
but only one is found. The algorithm requires O(nσ) time.

The following two lemmas show how minimal absent subsequences change
when we remove the first symbol of T and when we append a new symbol at
the end of T . This knowledge can be used to efficiently compute minimal absent
subsequences for a sliding window (see also [16] for changes required in the
subsequence automaton).

Lemma 3. Let T = t1t2 . . . tn be a string over an alphabet Σ and T ′ = t2t3 . . . tn
be T with the first symbol removed. Let S = s1s2 . . . sm be a MAS of T . If s1 = t1,
S′ = s2s3 . . . sm (i.e., S′ is S with the first symbol removed) is a MAS of T ′. If
s1 �= t1, S is a MAS of T ′ if either (i) δ(q0, s1) = qn+1 or (ii) δ(q0, s1) = qk and
s2 ∈ Σ(t2 . . . tk) for some k ∈ [2, n].

Proof. S is a MAS of T and so there is a path labeled with S from q0 to qn+1

in the transition graph GT . If s1 = t1, there is a path labeled with s2s3 . . . sm

from q1 to qn+1, which implies that s2s3 . . . sm is a MAS of T ′. If s1 �= t1, since
q0 and q1 have transitions to the same vertex for each a ∈ Σ \ {t1}, there is
a path labeled with S from q1 to qn+1. Then, either (i) m = 1 or (ii) m > 1.
If m = 1, there is a transition from q1 to qn+1 labeled with s1, which implies
that S is a MAS of T ′. If m > 1, according to Theorem 2, S is a MAS of T ′ if
s2 ∈ Σ(t2 . . . tk). �	
Example 3. Let T = abab and T ′ = bab be strings over alphabet Σ = {a, b}.
The minimal absent subsequences of T are aaa, aabb, baa, bba, and bbb and the
minimal absent subsequences of T ′ are aa, abb, bba, and bbb.

On Problems Related to Absent Subsequences 357

Algorithm 2 *
FIND-A-LONGEST-MAS(G)

1: for i = 0 to n + 1 do
2: qi.dist = 0
3: end for
4: q0.pred = null
5: for a ∈ Σ do
6: p = δ(q0, a)
7: p.dist = 1
8: p.pred = q0
9: p.symbol = a

10: end for
11: for i = 1 to n do
12: Σi = ALPHABET(qi.pred, qi)
13: for each a ∈ Σi do
14: p = δ(qi, a)
15: if p.dist < qi.dist + 1 then
16: p.dist = qi.dist + 1
17: p.pred = qi
18: p.symbol = a
19: end if
20: end for
21: end for
22: lmas = null
23: p = qn+1

24: while p.pred �= null do
25: lmas = concat(p.symbol, lmas)
26: p = p.pred
27: end while
28: return lmas

Lemma 4. Let T = t1t2 . . . tn be a string over an alphabet Σ and T ′ = Ttn+1

be T with a symbol tn+1 appended. Let S = s1s2 . . . sm be a MAS of T and
t1t2 . . . tk−1 be the shortest prefix of T that contains s1s2 . . . sm−1 as a subse-
quence. If sm = tn+1, S′ = Sb (i.e., S′ is S with a new symbol appended) is a
MAS of T ′ for each b ∈ Σ(tk . . . tn). If sm �= tn+1, S is a MAS of T ′.

Proof. S is a MAS of T and so there is a path labeled with S from q0 to qn+1 in
the transition graph GT . If sm = tn+1, the path goes to qn+1 in the transition
graph GT ′ and needs to be extended to qn+2. According to Theorem 2, if b ∈
Σ(tk . . . tn), Sb is a minimal absent subsequence of T ′. If sm �= tn+1, the path
goes to qn+2 in the transition graph GT ′ and so S is a MAS of T ′. �	
Example 4. Let T = abab and T ′ = ababa be strings over alphabet Σ = {a, b}.
The minimal absent subsequences of T are aaa, aabb, baa, bba, and bbb and the
minimal absent subsequences of T ′ are aaaa, aaab, aabb, baaa, baab, bbaa, and
bbb.

358 Z. Tronicek

Let Σ = {a, b} be an alphabet and An be a string over Σ defined as follows:

An =

{
(ab)k, if n = 2k,
(ab)ka, if n = 2k + 1, for some integer k ≥ 0.

We are going to investigate the number of minimal absent subsequences of An.
To simplify the notation, let’s define a string Bn as An+1 without the first a and
let’s denote mas(An) the number of minimal absent subsequences of An and
masc(An) the number of minimal absent subsequences of An that begin with
c, for some c ∈ Σ. Let’s assume n ≥ 3 and focus on the first three vertices of
the transition graph of the absent subsequence automaton for An (see Fig. 2).
If a MAS begins with a, we use the transition from q0 to q1 and then, since
Σ(a) = {a}, we can continue from q1 only with a. If a MAS begins with b, we use
the transition from q0 to q2 and then, since Σ(ab) = {a, b}, we can continue from
q2 with a or b. Thus, mas(An) = masa(Bn−1)+mas(An−2). From q1, we continue
with a transition for a to q3, and from q3 we can continue with a or b. Therefore,
masa(Bn−1) = mas(Bn−3). We get mas(An) = mas(Bn−3)+mas(An−2). From
symmetry, mas(An) = mas(Bn) and thus

q0 q1 q2 q3 q4 q5 q6
a

b

b

a

a

b

b

a

a

b

a, b

a, b

Fig. 2. The absent subsequence automaton for A5.

mas(An) = mas(An−3) + mas(An−2).

This recurrence equation defines a sequence 2, 2, 3, 4, 5, 7, 9, 12, 16, . . ., which is
the Padovan sequence (sequence A000931 in [15]) with offset 8. The recurrence
equation can be solved by the characteristic root technique, which provides a
solution in the form mas(An) = αrn

1 +βrn
2 +γrn

3 where α, β, and γ are constants
and r1, r2, and r3 are roots of the characteristic equation x3 − x − 1 = 0 (one of
them is real and two are complex). The real root is known as the plastic number

ρ =
3

√
9 +

√
69

18
+

3

√
9 − √

69
18

= 1.32471...

and the complex roots are conjugates with an absolute value of less than 1. In
other words, the number of minimal absent subsequences of An grows exponen-
tially with n.

Similarly, we can derive equations for the number of minimal absent subse-
quences of a string over a general alphabet. Let T = t1t2 . . . tn be a string over

On Problems Related to Absent Subsequences 359

an alphabet Σ and let mas-a(T) denote the number of minimal absent subse-
quences of T that end with a. Let’s discuss how the minimal absent subsequences
change when we append a symbol a at the end of T . A MAS of T that ends with
a becomes a subsequence of Ta and needs to be extended to be a MAS of Ta.
It can always be extended with a and sometimes also with other symbols. This
implies that the number of minimal absent subsequences that end with a does
not change:

mas-a(Ta) = mas-a(T).

A MAS of T that ends with b �= a is also a MAS of Ta. However, new minimal
absent subsequences that end with b may appear. Let’s denote last(a) the last
occurrence of symbol a in T :

last(a) = max({i | 1 ≤ i ≤ n : a = ti} ∪ {0}).

When we append a symbol a to T and there is an occurrence of b between the
last occurrence of a and the end of T , a MAS of t1 . . . tlast(b)−1 that ends with a
can be extended with b:

mas-b(Ta) =

{
mas-b(T) + mas-a(t1 . . . tlast(b)−1), if last(b) > last(a),
mas-b(T), otherwise.

These equations are used in the COUNT-MAS function, which computes the
number of minimal absent subsequences by dynamic programming. The param-
eters of the function are T and its length.

Let Σ = {a1, a2, . . . , aσ} be an alphabet and Cn be a string over Σ defined
recurrently as follows:

Cn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε, if n = 0,
a1a2 . . . an, if 1 ≤ n ≤ σ,
a1a2 . . . aσaσaσ−1 . . . a2σ−n+1, if σ < n ≤ 2σ,
a1a2 . . . aσaσaσ−1 . . . a1Cn−2σ, if 2σ < n.

Example 5. Let’s enumerate C0, C1, . . . , C9 over Σ = {a, b, c}: ε, a, ab, abc, abcc,
abccb, abccba, abccbaa, abccbaab, abccbaabc.

We are going to investigate the set of minimal absent subsequences of Cn and
show that if n is a multiple of σ (i.e., n = kσ for some k ≥ 0), all minimal
absent subsequences are shortest absent subsequences. Let’s sketch a proof by
induction. Since MAS(ε) = {a1, a2, . . . , aσ}, it holds for k = 0. For the inductive
step, let’s investigate how minimal absent subsequences change when we append
a symbol to Cn. Let’s assume that Cn ends with a1 (the case when Cn ends
with aσ is analogous). When we append a1, the minimal absent subsequences
that end with a1 become subsequences of Cn+1, and all other minimal absent
subsequences remain absent. Let’s denote S a MAS of Cn that ends with a1. In
the transition graph for Cn+1, the path labeled with S goes to qn+1 with the

360 Z. Tronicek

Algorithm 3 *
COUNT-MAS(T, n)

1: for each a ∈ Σ do
2: last[a] = 0
3: end for
4: for each a ∈ Σ do
5: mas[a][0] = 1
6: end for
7: for i = 1 to n do
8: for each a ∈ Σ do
9: if a �= ti and last[a] > last[ti] then

10: d = last[a] − 1
11: mas[a][i] = mas[a][i − 1] + mas[ti][d]
12: else
13: mas[a][i] = mas[a][i − 1]
14: end if
15: end for
16: last[ti] = i
17: end for
18: m = 0
19: for each a ∈ Σ do
20: m = m + mas[a][n]
21: end for
22: return m

last transition from qn to qn+1. Since Σ(a1) = {a1}, we can continue from qn+1

only with a1. Thus, by appending a1 to Cn, the minimal absent subsequences
that end with a1 need to be extended with a1. Let’s continue and append a2 to
Cn+1 and denote S′ a MAS of Cn+1 that ends with a2. In the transition graph
for Cn+2, the path labeled with S′ goes to qn+2 with the last transition from
qn−1, qn or qn+1. Since Σ(a1a1a2) = {a1, a2}, we can continue from qn+2 only
with a1 or a2. Thus, by appending a2 to Cn+1, the minimal absent subsequences
that end with a2 need to be extended with a1 or a2. We can append a3 to Cn+2

and show that the minimal absent subsequences that end with a3 need to be
extended with a1, a2 or a3, and so on. Thus, when we append a new symbol,
only the minimal absent subsequences that end with that symbol need to be
extended and they are extended only with symbols that were already appended.
In other words, when appending ai, 1 ≤ i ≤ σ, we never extend a MAS that was
extended when we appended aj , 1 ≤ j < i. So, when we append aσ, all minimal
absent subsequences of Cn+σ were created by appending one symbol to a MAS
of Cn and thus all minimal absent subsequences of Cn+σ have the same length
and are the shortest absent subsequences of Cn+σ.

On Problems Related to Absent Subsequences 361

5 Distinguishing Words

Let S and T be strings over an alphabet Σ. A string w distinguishes S and T if
w is a subsequence of one and only one of S and T . A string w that distinguishes
S and T is called a separator of S and T (see also [6]). We can use the absent
subsequence automaton for S and the absent subsequence automaton for T to
check whether a string w is a separator of S and T because each separator is
accepted by exactly one of these two finite automata. We can also use the finite
automata to build a finite automaton that accepts all separators of S and T .

Theorem 3. Let S and T be strings over an alphabet Σ. Let (QS , Σ, δS , qS0, FS)
be the absent subsequence automaton for S and (QT , Σ, δT , qT0, FT) be the absent
subsequence automaton for T . We define Q, δ, q0, and F as follows:
Q = {(pS , pT) | pS ∈ QS and pT ∈ QT },
δ((pS , pT), a) = (δS(pS , a), δT (pT , a)) for all a ∈ Σ,
q0 = (qS0, qT0),
F = {(pS , pT) | pS ∈ FS and pT �∈ FT } ∪ {(pS , pT) | pS �∈ FS and pT ∈ FT }.
Then a finite automaton Asep = (Q,Σ, δ, q0, F) accepts a string w if and only if
w distinguishes S and T .

Proof. The theorem directly follows from the definition of a separator. �	
Since the number of states of the finite automaton accepting distinguishing
strings of S and T is Ω(mn) in the worst case (see [4] and [17] for details),
we can view the two absent subsequence automata as a compact representation
of the finite automaton accepting all separators.

A string w that distinguishes S and T is a minimal separator of S and T
if no proper subsequence of w is a separator of S and T . Informally, we can
say that w is minimal if no string created from w by removing one or more
symbols is a separator of S and T . A string w that distinguishes S and T is a
shortest separator of S and T if no shorter separator of S and T exists. Since the
finite automaton Asep accepts all separators of S and T , it must also accept the
shortest separators of S and T . Thus, we can find the shortest separators by a
breadth-first search of the Asep transition graph. The following lemma provides
direction on how to find the shortest separators of S and T if we already know
the minimal absent subsequences of S and T .

Lemma 5. Let S and T be strings over an alphabet Σ. If w is a shortest sepa-
rator of S and T then w ∈ MAS(S) ∪ MAS(T).

Proof. Assume w is a subsequence of S and an absent subsequence of T . If
w �∈ MAS(T), we can remove some symbols from w and get a shorter absent
subsequence of T , which is still a subsequence of S. This contradicts the assump-
tion that w is a shortest separator. �	

362 Z. Tronicek

6 Conclusion

The paper has introduced the absent subsequence automaton as a compact rep-
resentation of shortest absent subsequences and minimal absent subsequences
and described how the finite automaton can facilitate solving various problems
related to absent subsequences. It has also revealed an interesting connection
between the number of minimal absent subsequences and the Padovan sequence
and derived a dynamic programming algorithm for computing the number of
minimal absent subsequences.

References

1. Baeza-Yates, R.A.: Searching subsequences. Theor. Comput. Sci. 78(2), 363–376
(1991)

2. Bille, P., Gørtz, I.L., Skjoldjensen, F.R.: Subsequence automata with default tran-
sitions. J. Disc. Algor. 44, 48–55 (2017)

3. Crochemore, M., Melichar, B., Trońıček, Z.: Directed acyclic subsequence graph–
overview. J. Disc. Algor. 1(3–4), 255–280 (2003)

4. Crochemore, M., Trońıček, Z.: On the size of DASG for multiple texts. In: Laender,
A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 58–64. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45735-6 6

5. Fleischer, L., Kufleitner, M.: Testing Simon’s congruence. In: International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS), pp. 62:1–62:13
(2018)

6. Garel, E.: Minimal separators of two words. In: Apostolico, A., Crochemore, M.,
Galil, Z., Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 35–53. Springer,
Heidelberg (1993). https://doi.org/10.1007/BFb0029795

7. Gawrychowski, P., Kosche, M., Koß, T., Manea, F., Siemer, S.: Efficiently test-
ing Simon’s congruence. In: International Symposium on Theoretical Aspects of
Computer Science (STACS), pp. 34:1–34:18 (2021)

8. Hebrard, J.J., Crochemore, M.: Calcul de la distance par les sous-mots. RAIRO-
Theor. Inf. Appl. 20(4), 441–456 (1986)

9. Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: Online construction of sub-
sequence automata for multiple texts. In: Symposium on String Processing and
Information Retrieval (SPIRE), pp. 146–152. IEEE (2000)

10. Kim, S., Han, Y.S., Ko, S.K., Salomaa, K.: On Simon’s congruence closure of a
string. In: Han, Y.S., Vaszil, G. (eds.) DCFS 2022. LNCS, vol. 13439, pp. 127–141.
Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-13257-5 10

11. Kim, S., Ko, S.K., Han, Y.S.: Simon’s congruence pattern matching. In: Interna-
tional Symposium on Algorithms and Computation (ISAAC). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2022)

12. Kosche, M., Koß, T., Manea, F., Pak, V.: Subsequences in bounded ranges: match-
ing and analysis problems. In: Lin, A.W., Zetzsche, G., Potapov, I. (eds.) RP 2022.
LNCS, vol. 13608, pp. 140–159. Springer, Heidelberg (2022). https://doi.org/10.
1007/978-3-031-19135-0 10

13. Kosche, M., Koß, T., Manea, F., Siemer, S.: Absent subsequences in words. In:
Bell, P.C., Totzke, P., Potapov, I. (eds.) RP 2021. LNCS, vol. 13035, pp. 115–131.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89716-1 8

https://doi.org/10.1007/3-540-45735-6_6
https://doi.org/10.1007/BFb0029795
https://doi.org/10.1007/978-3-031-13257-5_10
https://doi.org/10.1007/978-3-031-19135-0_10
https://doi.org/10.1007/978-3-031-19135-0_10
https://doi.org/10.1007/978-3-030-89716-1_8

On Problems Related to Absent Subsequences 363

14. Kosche, M., Koß, T., Manea, F., Siemer, S.: Combinatorial algorithms for subse-
quence matching: a survey. In: International Workshop on Non-Classical Models
of Automata and Applications (NCMA), vol. 367, pp. 11–27 (2022)

15. Sloane, N.J., et al.: The on-line encyclopedia of integer sequences (2018). https://
oeis.org/

16. Troǹıček, Z.: Operations on DASG. In: Champarnaud, J.-M., Ziadi, D., Maurel, D.
(eds.) WIA 1998. LNCS, vol. 1660, pp. 82–91. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48057-9 7

17. Troǹıček, Z., Shinohara, A.: The size of subsequence automaton. Theor. Comput.
Sci. 341(1–3), 379–384 (2005)

https://oeis.org/
https://oeis.org/
https://doi.org/10.1007/3-540-48057-9_7
https://doi.org/10.1007/3-540-48057-9_7

Some Combinatorial Algorithms
on the Dominating Number of Anti-rank

k Hypergraphs

Zhuo Diao1(B) and Zhongzheng Tang2

1 School of Statistics and Mathematics, Central University of Finance and
Economics, Beijing 100081, China

diaozhuo@amss.ac.cn
2 School of Science, Beijing University of Posts and Telecommunications,

Beijing 100876, China

tangzhongzheng@amss.ac.cn

Abstract. Given a hypergraph H(V, E), a set of vertices S ⊆ V is a
dominating set if every vertex v ∈ V \ S is adjacent to at least one
vertex in S. The dominating number γ(H) is the minimum cardinality
of a dominating set in H. H is anti-rank k if each edge contains at least
k vertices. In this paper, we prove some upper bounds of dominating
number for anti-rank k hypergraphs without isolated vertices. (i) For
anti-rank 3 hypergraphs, γ(H) ≤ n

3
. (ii) For anti-rank 4 hypergraphs,

γ(H) ≤ n
4
. (iii) For anti-rank k hypergraphs, γ(H) ≤ n

k
for many special

hypergraphs. (iv) For the classical random hypergraph model H(n, p)
and H ∈ H(n, p), for any positive number ε > 0, γ(H) ≤ (1 + ε)n

k

holds with high probability. These results are a generalization of Ore’s
Theorem on simple graphs, which states γ(G) ≤ n

2
.

Keywords: anti-rank k hypergraphs · dominating number · upper
bound

1 Introduction

A hypergraph is a generalization of a graph in which an edge can join any number
of vertices. A simple hypergraph is a hypergraph without multiple edges. Let
H = (V,E) be a simple hypergraph with vertex set V and edge set E. As for a
graph, the order of H, denoted by n, is the number of vertices. The number of
edges is denoted by m.

For each vertex v ∈ V , the degree d(v) is the number of edges in E that
contains v. We say v is an isolated vertex of H if d(v) = 0. Hypergraph H is
k-regular if each vertex’s degree is k (d(v) = k,∀v ∈ V). The maximum degree of
H is Δ(H) = maxv∈V d(v). The minimum degree of H is δ(H) = minv∈V d(v).

Supported by National Natural Science Foundation of China under Grant No.11901605,
No.12101069, the disciplinary funding of Central University of Finance and Economics.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 364–376, 2024.
https://doi.org/10.1007/978-3-031-49614-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_27&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_27

Combinatorial Algorithms on the Dominating Number of Hypergraphs 365

Hypergraph H is anti-rank k if each edge contains at least k vertices (|e| ≥
k, ∀e ∈ E). Hypergraph H is k-uniform if each edge contains exactly k vertices
(|e| = k, ∀e ∈ E).

Let k ≥ 2 be an integer. A cycle of length k, denoted as k-cycle, is a vertex-
edge sequence C = v1e1v2e2 · · · vkekv1 with: (1){e1, e2, . . . , ek} are distinct edges
of H. (2){v1, v2, . . . , vk} are distinct vertices of H. (3){vi, vi+1} ⊆ ei for each
i ∈ [k], here vk+1 = v1. We consider the cycle C as a subhypergraph of H
with vertex set {vi, i ∈ [k]} and edge set {ej , j ∈ [k]}. Similarily, a path of
length k, denoted as k-path, is a vertex-edge sequence P = v1e1v2e2 · · · vkekvk+1

with: (1){e1, e2, . . . , ek} are distinct edges of H. (2){v1, v2, . . . , vk+1} are distinct
vertices of H. (3){vi, vi+1} ⊆ ei for each i ∈ [k]. We consider the path P as a
sub-hypergraph of H with vertex set {vi, i ∈ [k + 1]} and edge set {ej , j ∈ [k]}.
A hypergraph H = (V,E) is called connected if any two of its vertices are linked
by a path in H. A hypergraph H = (V,E) is called a hyertree if H is connected
and acyclic, not containing any cycles, denoted by T (V,E).

For any vertex set S ⊆ V , we write H\S for the subhypergraph of H obtained
from H by deleting all vertices in S and all edges incident with some vertices in
S. For any edge set A ⊆ E, we write H \A for the subhypergraph of H obtained
from H by deleting all edges in A and keeping vertices. If S is a singleton set
{s}, we write H \ s instead of H \ {s}.

Given a hypergraph H(V,E), some classical parameters are listed as follows:

– A set of vertices S ⊆ V is a dominating set if every vertex v ∈ V \ S is
adjacent to at least one vertex in S. The dominating number γ(H) is the
minimum cardinality of a dominating set in H.

– A set of vertices S ⊆ V is an independent set if every two vertices in S,
there is no edge connecting the two. The independent number α(H) is the
maximum cardinality of an independent set in H.

– A set of vertices S ⊆ V is a transversal if every edge is incident with at
least a vertex in S. The transversal number is the minimum cardinality of a
transversal, denoted by τ(H).

– A set of edges A ⊆ E is a matching if every two distinct edges have no
common vertex. A perfect matching is a matching that covers every vertex
of the hypergraph. The matching number is the maximum cardinality of a
matching, denoted by ν(H).

In this paper, we focus on the dominating number in anti-rank k hypergraphs.

1.1 Related Works

Dominations in hypergraphs are well studied in the literatures [1–15].
Ore [14] established the following upper bound on the domination number of

a simple graph in terms of its order.

Theorem 1. (Ore’s Theorem) If G is an isolated-free graph of order n, then
γ(G) ≤ n

2 .

366 Z. Diao and Z. Tang

There are many different versions of proofs for Ore’s Theorem. An Ore’s
lemma states that the complement V \D of any minimal dominating set D in
an isolate-free graph G(V,E) is also a dominating set. The Ore’s Theorem is an
immediate consequence of this lemma. The Ore’s lemma also applies to hyper-
graphs and the Ore’s Theorem on hypergraphs is stated as follows:

Theorem 2. If H(V,E) is an isolated-free hypergraph of order n, then γ(H) ≤
n
2 .

It is interesting to ask the question: H(V,E) is a k-uniform hypergraph with-
out isolated vertices. Does γ(H) ≤ n

k hold? For k = 2, the result is the Ore’s
Theorem. C. Bujtás et al. [13] proved the following theorem and its corollar-
ies,which verifies the question for k ∈ {3, 4}. For k = 5, C. Bujtás et al. con-
structed a 5-uniform hypergraph H of order n without isolated vertices satisfying
γ(H) = 2n

9 > n
5 . There are some counterexamples for k ≥ 5, but it is reasonable

to believe γ(H) ≤ n
k for almost all k-uniform isolated-free hypergraphs.

Theorem 3. If H is a k-uniform hypergraph of order n and size m without
isolated vertices and k ≥ 3. Then γ(H) ≤ n+� k−3

2 �m

� 3(k−1)
2 � and this bound is sharp.

Corollary 1. For k ∈ {3, 4}. Let H is a k-uniform hypergraph of order n with-
out isolated vertices. Then γ(H) ≤ n

k .

1.2 Our Results

In this paper, for anti-rank k isolated-free hypergraph H(V,E), some combina-
torial algorithms on the dominating number are designed:

– In Sect. 2, for isolated-vertex-free anti-rank 3 hypergraph H(V,E), a combi-
natorial algorithm is designed to get a dominating set of no more than n/3.

– In Sect. 3, for isolated-vertex-free anti-rank 4 hypergraph H(V,E), a combi-
natorial algorithm is designed to get a dominating set of no more than n/4.

– In Sect. 4, for isolated-vertex-free anti-rank k hypergraphs, we prove that the
dominating number is no more than n/k in many special hypergraphs.

– In Sect. 5, for the classical random hypergraph model H(n, p) and H ∈
H(n, p), given any positive number 0 < ε < 1, we prove γ(H) ≤ (1 + ε)n

k
holds with high probability.

2 The Anti-rank 3 Hypergraphs

In this section, we focus on isolated-vertex-free anti-rank 3 hypergraphs with n
vertices. We introduce an algorithm designed to identify a dominating set of size
no greater than n/3. Algorithm 1 is directly implied by Theorem 4.

Theorem 4. H(V,E) is an isolated-vertex-free anti-rank 3 hypergraph. Then
the dominating number γ(H) ≤ n

3 where n is the number of vertices.

Combinatorial Algorithms on the Dominating Number of Hypergraphs 367

Proof. We prove the theorem by contradiction. Take out a counterexample with
the minimum number of edges. H(V,E) is an isolated-vertex-free anti-rank 3
hypergraph with order n, γ(H) > n

3 . Let us break the proof into a series of
claims.

Claim 1. Every edge contains at least a vertex with degree one.

If there is an edge e ∈ E and every vertex v ∈ e has degree at least two.
Then H \ e is also an isolated-vertex-free anti-rank 3 hypergraph with order n.
Because H is a counterexample with the minimum number of edges, we have
γ(H\e) ≤ n

3 . H\e is a spanning subhypergraph of H. Thus γ(H) ≤ γ(H\e) ≤ n
3 .

This is a contradiction with γ(H) > n
3 .

Claim 2. For every vertex v ∈ V , the degree of v is at most one.

If there is a vertex u ∈ V with d(u) ≥ 2. Take out arbitrarily two edges
e1, e2 adjacent to u. According to Claim 1, every edge ei contains at least a
vertex vi with degree one, as shown in Fig. 1. v1, v2 are two 1-degree vertices in
H, thus H \ u has at least two isolated vertices v1, v2. Deleting all the isolated
vertices in H \ u and denote the subhypergraph as H ′. Because u, v1, v2 are
deleted, the order of H ′ is at most n − 3. Because H is a counterexample with
the minimum number of edges, we have γ(H ′) ≤ n−3

3 . Take out a minimum
dominating set S′ of H ′, then S′ ∪ {u} is a dominating set of H. Thus we have
γ(H) ≤ γ(H ′) + 1 ≤ n−3

3 + 1 ≤ n
3 . This is a contradiction with γ(H) > n

3 .

Fig. 1. Schematic diagram of the proof of Claim 2

According to Claim 2, each component of H is a single edge and every edge
contains at least three vertices. Obviously γ(H) ≤ n

3 . This is a contradiction
with γ(H) > n

3 . �	
For 3-uniform hypergraphs, according to Theorem 4, the next corollary is

instant:

Corollary 2. H(V,E) is an isolated-vertex-free 3-uniform hypergraph with
order n. Then γ(H) ≤ n

3 .

Remark 1. Theorem 4 implies a recursive combinatorial algorithm, as demon-
strated in Algorithm 1. The core idea of this recursive algorithm is that if we
can find a dominating set of size no more than n′/3 in a small hypergraph with
order n′, then a dominating set of size no more than n/3 can be obtained in a
larger hypergraph with order n. This algorithm involves two basic operations:
edge deletion and vertex deletion.

368 Z. Diao and Z. Tang

Algorithm 1. Dominating set of anti-rank 3 hypergraphs

Input: An isolated-vertex-free anti-rank 3 hypergraph H with n vertices.

Output: A dominating set with size no more than n
3 .

1: while there is an edge e with d(v) ≥ 2 for each v ∈ e do

2: H ← H\e

3: if H contains a vertex u with d(u) ≥ 2 then

4: Denote the isolated vertex set of H\u as I.

5: return ALG1(H\u\I)∪{u}
6: else

7: Let D be the vertex set formed by selecting a vertex from each edge.

8: return D

3 The Anti-rank 4 Hypergraphs

In this section, we examine isolated-vertex-free anti-rank 4 hypergraphs contain-
ing n vertices. We present an algorithm to identify a dominating set whose size
does not exceed n/4. Algorithm 2 directly follows from Theorem 5.

Theorem 5. H(V,E) is an isolated-vertex-free anti-rank 4 hypergraph. Then
the dominating number γ(H) ≤ n

4 where n is the number of vertices.

Proof. We prove the theorem by contradiction. Take out a counterexample with
the minimum number of edges. H(V,E) is an isolated-vertex-free anti-rank 4
hypergraph with order n, γ(H) > n

4 . Let us break the proof into a series of
claims.

Claim 3. Every edge contains at least a vertex with degree one.

If there is an edge e ∈ E and every vertex v ∈ e has degree at least two.
Then H \ e is also an isolated-vertex-free anti-rank 4 hypergraph with order n.
Because H is a counterexample with the minimum number of edges, we have
γ(H\e) ≤ n

4 . H\e is a spanning subhypergraph of H. Thus γ(H) ≤ γ(H\e) ≤ n
4 .

This is a contradiction with γ(H) > n
4 .

Claim 4. For every vertex v ∈ V , the degree of v is at most two.

If there is a vertex u ∈ V with d(u) ≥ 3. Take out arbitrarily two edges
e1, e2, e3 adjacent to u. According to Claim 3, every edge ei contains at least a
vertex vi with degree one, as shown in Fig. 2. v1, v2, v3 are three 1-degree vertices
in H, thus H \u has at least three isolated vertices v1, v2, v3. Deleting all the iso-
lated vertices in H \u and denote the subhypergraph as H ′. Because u, v1, v2, v3
are deleted, the order of H ′ is at most n − 4. Because H is a counterexample
with the minimum number of edges, we have γ(H ′) ≤ n−4

4 . Take out a minimum

Combinatorial Algorithms on the Dominating Number of Hypergraphs 369

Fig. 2. Schematic diagram of the proof of Claim 4

dominating set S′ of H ′, then S′ ∪ {u} is a dominating set of H. Thus we have
γ(H) ≤ γ(H ′) + 1 ≤ n−4

4 + 1 ≤ n
4 . This is a contradiction with γ(H) > n

4 .

Claim 5. H has some cycles.

Assume H is acyclic, by König Property, the transversal number is equal to
the matching number, thus τ(H) = ν(H). H(V,E) is isolated-vertex-free, any
transversal is also a dominating set, thus γ(H) ≤ τ(H). Every edge contains at
least four vertices, thus ν(H) ≤ n

4 . Above all, we have γ(H) ≤ τ(H) = ν(H) ≤
n
4 , a contradiction with γ(H) > n

4 .
Take out a minimum cycle C = v1e1v2...vtetv1 in H, here {vi, 1 ≤ i ≤ t}

are distinct vertices, {ei, 1 ≤ i ≤ t} are distinct edges. The vertices vi, vi+1 are
adjacent to edge ei for each i ∈ [t]. C is a minimum cycle in H, thus for each
nonadjacent edges pair {ei, ej} in C, ei and ej have no common vertices.

Claim 6. Each edge ei in the cycle C contains exactly one vertex with degree 1.

Assume ei has more than one vertex with degree 1. By Claim 3, u, v are two
1-degree vertices in ei and w is a 1-degree vertex in ei+1, as shown in Fig. 3.
u, v, w are three 1-degree vertices in H, thus H \ vi+1 has at least three isolated
vertices u, v, w. Deleting all the isolated vertices in H \ vi+1 and denote the
subhypergraph as H ′. Because u, v, w, vi+1 are deleted, the order of H ′ is at most
n − 4. Because H is a counterexample with the minimum number of edges, we
have γ(H ′) ≤ n−4

4 . Take out a minimum dominating set S′ of H ′, then S′∪{vi+1}
is a dominating set of H. Thus we have γ(H) ≤ γ(H ′) + 1 ≤ n−4

4 + 1 ≤ n
4 . This

is a contradiction with γ(H) > n
4 .

Fig. 3. Schematic diagram of the proof of Claim 6

370 Z. Diao and Z. Tang

Claim 7. The length of C is not even.

Assume C is an even cycle with length t = 2k. The vertices {vi, 1 ≤ i ≤ 2k}
can be partitioned into two sets Vo = {vi | 1 ≤ i ≤ 2k, i ≡ 1 (mod 2)} and
Ve = {vi | 1 ≤ i ≤ 2k, i ≡ 0 (mod 2)}, here |Vo| = |Ve| = k. By Claim 3,
for 1 ≤ i ≤ 2k, ui is a 1-degree vertex in ei, as shown in Fig. 4. Consider the
subhypergraph H \ Vo:

– In H\Vo, all the edges {ei | 1 ≤ i ≤ 2k} of C are deleted, thus {ui | 1 ≤ i ≤ 2k}
are isolated vertices.

– In H \ Vodd, by Claim 4, all the vertices in Ve are isolated vertices.

In H \ Vo, Vo are deleted, Ve and {ui | 1 ≤ i ≤ 2k} are isolated vertices.
Deleting all the isolated vertices in H \Vo and denote the subhypergraph as H ′.
Thus the order of H ′ is at most n − 4k. Because H is a counterexample with
the minimum number of edges, we have γ(H ′) ≤ n−4k

4 . Take out a minimum
dominating set S′ of H ′, then S′ ∪ Vo is a dominating set of H. Thus we have
γ(H) ≤ γ(H ′) + k ≤ n−4k

4 + k ≤ n
4 . This is a contradiction with γ(H) > n

4 .

Fig. 4. Schematic diagram of the proof of Claim 7

Claim 8. The length of C is not odd.

Assume C is an odd cycle with length t = 2k + 1. The vertices {vi | 1 ≤ i ≤
2k+1} can be partitioned into two sets Vo = {vi | 1 ≤ i ≤ 2k+1, i ≡ 1 (mod 2)}
and Ve = {vi | 1 ≤ i ≤ 2k + 1, i ≡ 0 (mod 2)}, here |Vo| = k + 1, |Ve| = k. By
Claim 3, for 1 ≤ i ≤ 2k + 1, ui is a 1-degree vertex in ei. By Claim 6, in the
edge e2k+1, the vertices other than u2k+1 are two degree. e2k+1 has at least four
vertices, we can take out a 2-degree vertex u in e2k+1 with u /∈ {v2k, v2k+1}. e
is the edge adjacent to u other than e2k+1 and v is a 1-degree vertex in e, as
shown in Fig. 5. Consider the subhypergraph H \ (Ve ∪ {u}):

Combinatorial Algorithms on the Dominating Number of Hypergraphs 371

– In H \ (Ve ∪ {u}), all the edges {ei | 1 ≤ i ≤ 2k + 1} of C are deleted, thus
{ui | 1 ≤ i ≤ 2k + 1} are isolated vertices.

– In H \ (Ve ∪ {u}), by Claim 4, all the vertices in Vo are isolated vertices.
– In H \ (Ve ∪ {u}), e is deleted and v is an isolated vertex.

In H \ (Ve ∪ {u}), Ve and u are deleted, Vo, {ui | 1 ≤ i ≤ 2k + 1} and v are
isolated vertices. Deleting all the isolated vertices in H\(Ve∪{u}) and denote the
subhypergraph as H ′. Thus the order of H ′ is at most n−4k−4. Because H is a
counterexample with the minimum number of edges, we have γ(H ′) ≤ n−4k−4

4 .
Take out a minimum dominating set S′ of H ′, then S′ ∪Ve ∪{u} is a dominating
set of H. Thus we have γ(H) ≤ γ(H ′) + k + 1 ≤ n−4k−4

4 + k + 1 ≤ n
4 . This is a

contradiction with γ(H) > n
4 .

Fig. 5. Schematic diagram of the proof of Claim 8

According to Claim 5, Claim 7 and Claim 8, there is a contradiction. Thus
our assumption doesn’t hold and the theorem is proved. �	

For 4-uniform hypergraphs, according to Theorem 5, the next corollary is
instant:

Corollary 3. H(V,E) is an isolated-vertex-free 4-uniform hypergraph with
order n. Then γ(H) ≤ n

4 .

Remark 2. Theorem 5 implies a recursive combinatorial algorithm, as demon-
strated in Algorithm 2. The core idea of this recursive algorithm is that if we
can find a dominating set of size no more than n′/4 in a small hypergraph with
order n′, then a dominating set of size no more than n/4 can be obtained in a
larger hypergraph with order n. This algorithm involves three basic operations:
edge deletion, vertex deletion, and cycle deletion.

372 Z. Diao and Z. Tang

Algorithm 2. Dominating set of anti-rank 4 hypergraphs

Input: An isolated-vertex-free anti-rank 4 hypergraph H with n vertices.

Output: A dominating set with size no more than n
4 .

1: while there is an edge e with d(v) ≥ 2 for each v ∈ e do

2: H ← H\e

3: if H contains a vertex u with d(u) ≥ 3 then

4: Denote the isolated vertex set of H\u as I1.

5: return ALG2(H\u\I1)∪{u}
6: if H is acyclic then

7: Find a minimum transversal set S by Algorithm 3 in [16].

8: return S

9: Find a minimum cycle C = v1e1v2 · · · vtetv1 in H. Set Vo = {vi | 1 ≤ i ≤
t, i ≡ 1 (mod 2)} and Ve = {vi | 1 ≤ i ≤ t, i ≡ 0 (mod 2)}.

10: if there exists ei ∈ C containing at least 2 vertices with degree 1 then

11: Denote the isolated vertex set of H\vi+1 as I2.

12: return ALG2(H\vi+1\I2)∪{vi+1}
13: if C is a even cycle then

14: Denote the isolated vertex set of H\Vo as I3.

15: return ALG2(H\Vo\I3)∪Vo

16: else

17: Take u �∈ {vt−1, vt} with degree 2 from et.

18: Denote the isolated vertex set of H\(Ve ∪ {u}) as I4.

19: return ALG2(H\(Ve ∪ {u})\I4)∪(Ve ∪ {u})

4 The Anti-rank k Hypergraphs

In this section, we consider isolated-vertex-free anti-rank k hypergraphs with
n vertices. In many hypergraphs, n/k is the upper bound of the dominating
number. The content is structured as follows:

– In Theorem 6, for isolated-vertex-free anti-rank k hypergraph with the max-
imum degree Δ and the minimum degree δ, a combinatorial algorithm is
designed to get a dominating set of no more than Δn

δk . Specially, for regular
hypergraphs, the bound is n/k.

– Theorem 7 asserts that for every isolated-vertex-free anti-rank k hypergraph
possessing the König Property, the dominating number does not exceed n/k.

Combinatorial Algorithms on the Dominating Number of Hypergraphs 373

– Theorem 8 states that for every isolated-vertex-free anti-rank k hypergraph
with perfect matching, the dominating number is no more than n/k.

– Theorem 9 indicates that in any isolated-vertex-free anti-rank k hypergraph
with the strong coloring property, the dominating number is at most n/k.

Theorem 6. H(V,E) is an isolated-vertex-free anti-rank k hypergraph with
order n. Then the dominating number γ(H) ≤ Δn

δk , where Δ is the maximum
degree and δ is the minimum degree.

Proof. Let S be an arbitrary maximal independent set of H. It’s important
to note that every maximal independent set is a dominating set. Therefore,
γ(H) ≤ |S|. Given that S is an independent set, the sets {e | v ∈ e}, v ∈ S
are disjoint. This implies |S|δ ≤ ∑

v∈S d(v) ≤ m. Furthermore, when summing
over

∑
v∈V d(v), each edge is counted at least k times. This results in Δn ≥∑

v∈V d(v) ≥ km. Taking into account the above inequalities, we conclude that:

γ(H) ≤ |S| ≤ m

δ
≤ Δn

δk
.

�	
Remark 3. Theorem 6 implies a combinatorial algorithm for determining a dom-
inating set with size no more than Δ

δ
n
k .

For k-uniform hypergraphs, the following two corollaries emerge directly from
Theorem 6:

Corollary 4. H(V,E) is an isolated-vertex-free k-uniform hypergraph with
order n. Then the dominating number γ(H) ≤ Δ

δ
n
k , here Δ is the maximum

degree and δ is the minimum degree.

Corollary 5. H(V,E) is an isolated-vertex-free k-uniform regular hypergraph
with order n. Then the dominating number γ(H) ≤ n

k .

Theorem 7. H(V,E) is an isolated-vertex-free anti-rank k hypergraph with
order n. If the König Property holds in H: the transversal number equals to
the matching number, τ(H) = ν(H), then the dominating number γ(H) ≤ n

k .

Proof. H(V,E) is an isolated-vertex-free hypergraph, any transversal is also a
dominating set. Thus γ(H) ≤ τ(H). Every edge in H contains at least k vertices.
Thus ν(H) ≤ n

k . Combining the König Property, we have γ(H) ≤ τ(H) =
ν(H) ≤ n

k . �	
Theorem 8. H(V,E) is an isolated-vertex-free anti-rank k hypergraph with
order n. If H has a perfect matching, then the dominating number γ(H) ≤ n

k .

Proof. Let M represent a perfect matching of H, and let H ′ be the spanning
subhypergraph of H induced by M . It follows that γ(H) ≤ γ(H ′). Consequently,
the dominating number γ(H) ≤ γ(H ′) = |M | ≤ n

k . �	

374 Z. Diao and Z. Tang

A strong coloring is a function that maps vertex set to a set of colors such that
all vertices within any single hyperedge are mapped to distinct colors. The strong
chromatic number χs(H) is the smallest number of colors needed to strongly
color H.

Theorem 9. H(V,E) is an isolated-vertex-free anti-rank k hypergraph with
order n. If there is an isolated-vertex-free spanning subhypergraph H ′ of H and
the strong coloring number χs(H ′) = k, then the dominating number γ(H) ≤ n

k .

Proof. H ′ is a spanning subhypergraph of H, thus γ(H) ≤ γ(H ′). The strong
coloring number of H ′ is k, so H ′ is k-uniform. Consider a strong k-vertex-color
S, the vertices are divided into k independent sets {Si, 1 ≤ i ≤ k}. Because
H ′ is an isolated-vertex-free k-uniform hypergraph, every edge contains exactly
one vertex in {Si, 1 ≤ i ≤ k}. Thus any independent set {Si, 1 ≤ i ≤ k} is a
transversal set of H ′, also a dominating set of H ′. Above all we have γ(H) ≤
γ(H ′) ≤ min{|Si|, 1 ≤ i ≤ k} ≤ n

k . �	

5 The Random Hypergraph Model

In this section, we demonstrate that in the classical random hypergraph model
H(n, p) and H ∈ H(n, p), for any positive number ε > 0, γ(H) ≤ (1 + ε)n/k
holds with high probability.

In extending the random graph model G(n, p), we introduce a random k-
uniform hypergraph model, denoted H(n, p), where k ≥ 5. Given 0 ≤ p ≤ 1, in
H(n, p) model, the probability Pr[{v1, v2, . . . , vk} ∈ H] = p holds for all distinct
vertices v1, v2, . . . , vk in H, and these probabilities are mutually independent.
We employ probabilistic methods to determine the probabilistic properties of the
dominating number’s upper bound in random k-uniform hypergraphs. Firstly,
we introduce some symbols in asymptotic analysis as follows.

– f(n) = Ω(g(n)): ∃ c > 0, n0 ∈ N+,∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).
– f(n) = o(g(n)): ∀ c > 0,∃ n0 ∈ N+,∀n ≥ n0, 0 ≤ f(n) < cg(n).

Next, we establish a concentration property for vertex degree.

Lemma 1. If H ∈ H(n, p) and p ∈ Ω(1/nk−2), then for any 0 < ε < 1, it holds
that

Pr[Δ(H)/δ(H) ≤ 1 + ε] = 1 − o(1).

Proof. Consider an arbitrary vertex v. For each k − 1 set {v1, v2, . . . , vk−1} ⊆
V \v, let Xv1v2···vk−1 be the random variable defined by Xv1v2···vk−1 = 1 if
{v, v1, . . . , vk−1} ∈ E(H) and 0 otherwise. Xv1v2···vk−1 , {v1, v2, . . . , vk−1} ⊆ V \v
are independent 0-1 variables satisfying E[Xv1v2···vk−1] = p, and the degree of v,
written as d(v) satisfies d(v) =

∑
{v1,v2,...,vk−1}⊆V \v Xv1v2···vk−1 and E[d(v)] =

Combinatorial Algorithms on the Dominating Number of Hypergraphs 375

(
n−1
k−1

)
p = μ. We know that μ → ∞ when n → ∞. For given ε, using Chernoff’s

Inequality and Union Bound Inequality [17], we obtain

Pr[Δ(H) ≥ (1 + ε/3)μ] = Pr[∃v, d(v) ≥ (1 + ε/3)μ]

≤
∑

v∈V

Pr[d(v) ≥ (1 + ε/3)μ] ≤ n · exp(−ε2μ

27
) = o(1).

Pr[δ(H) ≤ (1 − ε/3)μ] = Pr[∃v, d(v) ≤ (1 − ε/3)μ]

≤
∑

v∈V

Pr[d(v) ≤ (1 − ε/3)μ] ≤ n · exp(−ε2μ

18
) = o(1).

Then, we have Pr[Δ(H) ≤ (1 + ε/3)μ, δ(H) ≥ (1 − ε/3)μ] = 1 − o(1). Given
that Δ(H) ≤ (1 + ε/3)μ and δ(H) ≥ (1 − ε/3)μ, it follows that Δ(H)/δ(H) ≤
(1+ ε/3)/(1− ε/3) ≤ 1+ ε. Consequently, Pr[Δ(H)/δ(H) ≤ 1+ ε] = 1− o(1). �	
Theorem 10. If H ∈ H(n, p) and p ∈ Ω(1/nk−2), then for any 0 < ε < 1, it
holds that

Pr[γ(H) ≤ (1 + ε)
n

k
] = 1 − o(1).

Proof. According to Lemma 1, consider

Pr[δ(H) = 0] ≤ Pr[δ(H) ≤ (1 − ε/3)μ] = o(1),

which means that H is isolated-vertex-free with high probability. According to
Theorem 6 and Lemma 1, we have

Pr[γ(H) ≤ (1 + ε)
n

k
] ≥ Pr[

Δ

δ

n

k
≤ (1 + ε)

n

k
]

= Pr[
Δ

δ
≤ 1 + ε] = 1 − o(1).

�	

Acknowledgement. The authors are very indebted to three anonymous referees for
their invaluable suggestions and comments.

References

1. Henning, M.A., Yeo, A.: Hypergraphs with large transversal number and with edge
sizes at least 3. J. Graph Theory 59(4), 326–348 (2008)

2. Henning, M.A., Löwenstein, C.: Hypergraphs with large domination number and
with edge sizes at least three. Disc. Appl. Math. 160(12), 1757–1765 (2012)

3. Jose, B.K., Tuza, Z.: Hypergraph domination and strong independence. Appl. Anal.
Disc. Math. 3(2), 347–358 (2009)

376 Z. Diao and Z. Tang

4. Cockayne, E.J., Hedetniemi, S.T., Slater, P.J.: Matchings and transversals in hyper-
graphs, domination and independence-in trees. J. Comb. Theory Series B 26(1),
78–80 (1979)

5. Behr, A., Camarinopoulos, L.: On the domination of hypergraphs by their edges.
Disc. Math. 187(1–3), 31–38 (1998)

6. Acharya, B.D.: Domination in hypergraphs ii. new directions. In Proceedings of
International Conference-ICDM, pp. 1–16 (2008)

7. Acharya, B.D.: Domination in hypergraphs. AKCE Int. J. Graphs Comb. 4(2),
117–126 (2007)

8. Bujtás, C., Henning, M.A., Tuza, Z.: Transversal game on hypergraphs and the 34-
conjecture on the total domination game. SIAM J. Disc. Math. 30(3), 1830–1847
(2016)

9. Bujtás, C., Patkós, B., Tuza, Z., Vizer, M.: Domination game on uniform hyper-
graphs. Disc. Appl. Math. 258, 65–75 (2019)

10. Dong, Y., Shan, E., Kang, L., Li, S.: Domination in intersecting hypergraphs. Disc.
Appl. Math. 251, 155–159 (2018)

11. Kang, L., Li, S., Dong, Y., Shan, E.: Matching and domination numbers in r-
uniform hypergraphs. J. Comb. Optim. 34, 656–659 (2017)

12. Shan, E., Dong, Y., Kang, L., Li, S.: Extremal hypergraphs for matching number
and domination number. Disc. Appl. Math. 236, 415–421 (2018)

13. Bujtás, C., Henning, M.A., Tuza, Z.: Transversals and domination in uniform
hypergraphs. Eur. J. Comb. 33(1), 62–71 (2012)

14. Ore, O.: Theory of graphs. In: Colloquium Publications. American Mathematical
Society (1962)

15. Cyman, J.: The outer-connected domination number of a graph. Aust. J. Comb.
38, 35–46 (2007)

16. Chen, Z., Chen, B., Tang, Z., Diao, Z.: A sharp upper bound for the transversal
number of k-uniform connected hypergraphs with given size. J. Comb. Optim.
45(1), 37 (2023)

17. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University
Press, Cambridge (2017)

Parameterized and Exact-Exponential
Algorithms for the Read-Once Integer

Refutation Problem in UTVPI
Constraints

K. Subramani(B) and Piotr Wojciechowski

LDCSEE, West Virginia University, Morgantown, WV, USA
{k.subramani,pwojciec}@mail.wvu.edu

Abstract. In this paper, we discuss parameterized and exact-exponential
algorithms for the read-once integer refutability problem in Unit Two Vari-
able Per Inequality (UTVPI) constraint systems. UTVPI constraint sys-
tems (UCSs) arise in a number of domains including operations research,
program verification and abstract interpretation. The integer feasibility
problem in UCSs is polynomial time solvable and there exist several algo-
rithms for the same. This paper is concerned with refutations of integer fea-
sibility in UCSs. Inasmuch as the integer feasibility problem is in P, there
exist polynomial time algorithms to establish unrestricted refutations of
integer feasibility. The focus of this paper is on a specific class of refuta-
tions called read-once refutations. Previous research has established that
the problem of determining the existence of read-once refutations of inte-
ger feasibility in UCSs is NP-hard. This paper extends that research by
examining the read-once refutability from the parameterized perspective.
Using the number of refutation steps in the shortest read-once refutation,
we establish fixed-parameter tractability. We also show that no polynomial
size kernel exists for this problem. From the exact perspective, we design
a non-trivial exponential algorithm.

1 Introduction

This paper is concerned with the read-once integer refutation problem in Unit
Two Variable Per Inequality (UTVPI) constraints. The problem of checking the
integer feasibility of a UTVPI constraint system (UCS), henceforth the UTVPI
Integer Feasibility (UTIF) problem, occurs in a number of disparate domains
such as abstract interpretation [1,11], array bounds checking [10], packing and
scheduling [7] and so on. As per the literature, there exist several algorithms
for the UTIF problem [10,19]. Inasmuch as those decision procedures, they pro-
vide unrestricted refutations for infeasible instances. Recall that a refutation is a
“negative” certificate in that it certifies the infeasibility of an infeasible instance.
Unrestricted refutations are difficult to manage and “visualize”. In contrast,

This research was supported in part by the Defense Advanced Research Projects
Agency through grant HR001123S0001-FP-004.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 377–389, 2024.
https://doi.org/10.1007/978-3-031-49614-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_28&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_28

378 K. Subramani and P. Wojciechowski

read-once refutations (RORs) are easy to understand and visualize [8]. In this
paper, we focus on the problem of checking whether a UCS has an ROR in the
cutting plane proof (refutation) system [6] (UTVROR). Previous research has
established that the UTVROR problem is NP-hard [16]. As with any NP-hard
problem, it is worthwhile to study the problem from a fine-grained perspective
[3], in order to derive sufficient conditions for the existence of efficient algo-
rithms. We use the number of inference steps in an optimal length refutation as
our parameter of interest. Using this parameter, we derive a number of interest-
ing results for the UTVROR problem. In particular, we show that the problem is
fixed-parameter tractable (FPT). We also establish that no polynomial kernel-
izations can exist, unless coNP ⊆ NP/poly. We also design exact exponential
algorithms for the UTVROR problem.

2 Statement of Problem

In this section, we formally describe the constraint system, the refutation system
and the refutation type of interest.

2.1 Constraint System

Definition 1. A linear constraint of the form ai · xi + aj · xj ≤ bij is said to be
a Unit Two Variable Per Inequality (UTVPI) constraint, if ai, aj ∈ {0, 1,−1}
and bij ∈ Z.

A conjunction of UTVPI constraints is called a UTVPI constraint system
(UCS) and can be written in matrix form as: A · x ≤ b. We assume without loss
of generality that ai, aj �= 0 in each constraint of our UCS [18]. The following
problem is called the UTVPI Integer Feasibility (UVIF) problem: Given a UCS
A · x ≤ b, does it enclose a lattice point, i.e., a vector a, all of whose components
are integers?

2.2 Refutation System

We utilize a refutation system consisting of two inference rules to establish inte-
ger infeasibility.

1. Transitive rule -

ai · xi + aj · xj ≤ bij −aj · xj + ak · xk ≤ bjk

ai · xi + ak · xk ≤ bij + bjk

Observe that the transitive rule preserves linear (all) solutions. Note that this
rule is a restricted version of the addition rule for linear inequalities.

2. Tightening rule -

ai · xi + aj · xj ≤ bij ai · xi − aj · xj ≤ b′
ij

ai · xi ≤
⌊
bij+b′

ij

2

⌋

Parameterized and Exact-Exponential Algorithms 379

Together, the transitive and tightening rules form a variation of the cutting
plane refutation system with the tightening rule being used to add new cuts to
the system. Recall that a cut is a constraint that is added to the system; a cut
removes linear solutions, while preserving integer solutions.

We will refer to the above refutation system as the UCUT refutation system
(since we apply it exclusively to UCSs). The UCUT refutation system is sound,
complete and efficient [17,19].

Definition 2. An integer refutation of a UCS U, is a sequence of applications
of the transitive and tightening inference rules that results in a constraint of the
form 0 ≤ b, where b < 0.

2.3 Read-Once Refutations

Definition 3. A read-once integer refutation (ROR) is a refutation in which
each constraint is used only once either as part of the transitive rule or as part
of the tightening rule.

However, a constraint can be re-derived as long it can be derived from an
unused set of input constraints.

The read-once integer refutation problem in UCSs (UTVROR) is defined as
follows: Given a UCS U : A · x ≤ b, does it have a read-once refutation of integer
feasibility, i.e., a read-once integer refutation?

The principal contributions of this paper are as follows:

1. A O(2k · kO(log k) · n · m · log m) FPT algorithm for the UTVROR problem
parameterized by k, the length of the refutation.

2. A likely lower bound on the size of kernelizations for the UTVROR problem,
when it is parameterized by the length of the refutation.

3. An O∗(2
m
3) exact exponential algorithm for the UTVROR problem.

4. A 2o(n) likely lower bound on the running times of exact exponential algo-
rithms for the UTVROR problem.

3 Motivation and Related Work

UTVPI constraints occur in a number of practical domains such as abstract
interpretation [2], program verification [11], array bounds checking [10], and
packing and covering [7]. Both the linear and integer feasibility problems in
UCSs have been investigated by a number of researchers. Algorithms for the
linear feasibility problem in UCSs have been described in [11,18] and [10]. For
the integer feasibility problem, an optimal, certifying algorithm is detailed in [19].

The read-once refutation model was introduced in [8]. In that paper, the
constraint system was Boolean formulas in CNF and the refutation system was
resolution [13]. The authors made a convincing case for the study of read-once
refutations. In essence, they argued that weakening the refutation system could
potentially result in “short” refutations. Unfortunately, they discovered that

380 K. Subramani and P. Wojciechowski

asking if a 3CNF formula has a read-once resolution refutation is NP-hard.
Their result was strengthened in [9], where it was shown that the read-once
refutation problem is NP-hard even for UCSs.

On the continuous side, i.e., linear programs, the refutation system of choice
is the ADD refutations system (see [16]). Under this refutation system, it has
been shown that difference constraint systems always have a read-once refutation
and that such a refutation can be found in polynomial time [14]. In [15], it is
shown that UCSs do not always have a read-once refutation of linear feasibility.
However, if one exists, it can be detected in polynomial time.

In the case of integer feasibility, variants of the cutting plane refutation sys-
tem have been studied. It was shown in [17] that the problem of detecting a
read-once refutation in UCSs in the cutting plane refutation system is NP-
hard.

4 A Fixed-Parameter Algorithm

In this section, we describe an FPT algorithm for finding a read-once refutation
of a UCS U. This algorithm is parameterized by the number of input constraints
that can be used in a read-once refutation.

First, we provide a randomized algorithm (Algorithm 4.1) for solving the
UTVROR problem for a UCS U, with m constraints over n variables. This
algorithm will be derandomized later.

Input: UCS U

Output: true, if U has a read-once refutation and false otherwise.

1: procedure UTVROR-Rand(U)

2: for (each variable xi in U) do

3: Create the empty sets U+
i and U−

i .

4: for (each constraint Uj ∈ U) do

5: Uniformly and at random choose whether Uj is added to the set U+
i

or the set U−
i .

6: if (xi ≤ b can be derived from U+
i , −xi ≤ b′ can be derived from U−

i ,

and b + b′ < 0) then

7: return true.

8: return false.

Algorithm 4.1: Randomized algorithm for the UTVROR problem

Theorem 1. If Algorithm 4.1 returns true, then U has a read-once refutation.

Proof. If Algorithm 4.1 returns true, then for some xi, there exist sets U+
i and

U−
i such that a constraint of the form xi ≤ b can be derived from U+

i and the
constraint −xi ≤ b′ can be derived from U−

i . This can be determined by using
an integer closure algorithm for UTVPI constraints [20]. If the constraint xi ≤ b

Parameterized and Exact-Exponential Algorithms 381

can be derived from U+
i , then it can be derived using each constraint at most

once. The same holds for deriving −xi ≤ b′ from U−
i .

Since U+
i and U−

i are disjoint, the derivations of xi ≤ b and −xi ≤ b′. can
be combined with an inference step to derive 0 ≤ b + b′ < 0. This is a read-once
refutation of U. ��
Theorem 2. If U has a read-once refutation that uses at most k input con-
straints, then Algorithm 4.1 will return true with probability at least 1

2k
.

Proof. Let R be a read-once refutation of U of that uses at most k input con-
straints. Since R is a read-once refutation of U, xi ≤ b and −xi ≤ b′ must be
derived from disjoint subsets of U. Let R+ ⊆ U be the set of input constraints
used to derive xi ≤ b and let R− ⊆ U be the set of input constraints used to
derive −xi ≤ b′. Since R uses at most k input constraints, |R+| + |R−| ≤ k.

Algorithm 4.1 will find R if every constraint in R+ is added to the set U+
i and

every constraint in R− is added to the set U−
i . The probability of this happening

is 1

2|R+|+|R−| ≥ 1
2k

. ��
To obtain an FPT algorithm for solving the UTVROR problem we will

derandomize Algorithm 4.1. This derandomization utilizes (m, k)-universal sets
[12]. These sets are defined as follows:

Definition 4. Let S be a set of size m. An (m, k)-universal set is a family F of
subsets of S, such that for any set R ⊆ S of size k, the family {A ∩ R : A ∈ F}
contains every subset of R.

Note that we can construct an (m, k)-universal set for U of O(2k · kO(log k) ·
log m) size in O(2k · kO(log k) · m · log m) time [12].

Let R be a read-once refutation of U that uses at most k input constraints.
Let UR be the set of input constraints used by R. Since R is a read-once refu-
tation of U, xi ≤ b and −xi ≤ b′ must be derived from disjoint subsets of UR.
Let R+ ⊆ UR be the set of input constraints used to derive xi ≤ b and let
R− ⊆ UR be the set of input constraints used to derive −xi ≤ b′. Note that
R+ ∪ R− = UR.

Let F be an (m, k)-universal set for U. Let r = |UR|. Since r ≤ k, F is also
an (m, r)-universal set for U. Thus, for some A ∈ F, A ∩UR = R+. This means
that (U \ A) ∩ UR = R−. Thus, R+ ⊆ A and R− ⊆ U \ A. Consequently, the
constraint xi ≤ b can be derived from A and the constraint −xi ≤ b′ can be
derived from U \ A. Note that both these derivations are read-once.

It follows that Algorithm 4.2 checks if U has a read-once refutation using at
most k input constraints, with k and U as inputs.

Constructing F takes O(2k ·kO(log k) ·m · log m) time. Additionally, processing
each of the (2k·kO(log k)·log m) elements of F takes O(m·n) time. Thus, Algorithm
4.2 runs in time O(2k · kO(log k) · n · m · log m). In other words, Algorithm 4.2 is
an FPT algorithm for the UTVROR problem.

Instead of storing the entire (m, k)-universal set F, we can utilize a generator
that creates each set in F.

382 K. Subramani and P. Wojciechowski

Input: UCS U and integer k

Output: true, if U has a read-once refutation using at most k input con-

straints, false otherwise.

1: procedure UTVROR-Param(U, k)

2: Construct an (m, k)-universal set F for U.

3: for (each A ∈ F and each variable xi) do

4: if (xi ≤ b can be derived from A, −xi ≤ b′ can be derived from U \ A,

and b + b′ < 0) then

5: return true.

6: return false.

Algorithm 4.2: Parameterized algorithm for the UTVROR problem

5 Kernelization Lower Bounds

In this section, we establish that a polynomial size kernelization cannot exist for
the UTVROR problem, unless coNP ⊆ NP/poly. This result applies when the
problem is parameterized by the length of the shortest refutation. This is done
through the use of an OR-distillation [4].

Definition 5. Let P and Q be a pair of problems and let t : N → N \ {0} be
a polynomially bounded function. Then a t-bounded OR-distillation from P
into Q is an algorithm that for every s, given as input t(s) strings x1, . . . , xt(s)

with |xj | = s for all j:

1. Runs in polynomial time, and
2. Outputs a string y of length at most t(s) · log s such that y is a yes instance

of Q if and only if xj is a yes instance of P for some j ∈ {1, . . . , t(s)}.
If any NP-hard problem has a t-bounded OR-distillation, then coNP ⊆

NP/poly [4]. If coNP ⊆ NP/poly, then ΣP
3 = ΠP

3 [21]. Thus, the polynomial
hierarchy would collapse to the third level.

Theorem 3. The UTVROR problem does not have a polynomial sized kernel
unless coNP ⊆ NP/poly.

Proof. We will prove this by showing that if the UTVROR problem has a
polynomial sized kernel, then there exists a t-bounded OR-distillation from the
UTVROR problem into itself.

For each l, let Ul be a UCS with n variables and m constraints such that,
for each constraint ai · xi + aj · xj ≤ b, b ≤ Bmax for a fixed integer Bmax. We
have that s = |Ul| = m · (log n + log Bmax).

Assume that for some constant c, the UTVROR problem has a kernel of size
kc. Let t(s) = sc. Note that t(s) is a polynomial.

Parameterized and Exact-Exponential Algorithms 383

For each j = 1 . . . t(s), let Ul be a UCS with n variables and m constraints
such that |Ul| = s. From these UCSs, we can create a new UCS network U
with t(s) · n variables and t(s) · m constraints such that U is a disjoint union of
U1, ...,Ut(S).

Note that no constraint in U corresponding to a constraint in Ul shares
variables with a constraint in U corresponding to a constraint in Ul′ , l′ �= l. Thus,
any refutation of U corresponds to a refutation of Ul for some l ∈ {1, . . . , t(s)}.
Consequently, U has a read-once refutation of length k, if and only if Uj has a
read-once refutation of length k for some j ∈ {1, . . . , t(s)}.

Let U′ be a kernel of U such that |U′| ≤ kc. Since k ≤ m ≤ s, we have that
|U′| ≤ kc ≤ sc = t(s). Additionally, U′ has a read-once refutation of length k if
and only if Uj has a read-once refutation of length k for some j ∈ {1, . . . , t(s)}.
Thus, we have a t-bounded OR-distillation from the UTVROR problem to itself.
This cannot happen unless coNP ⊆ NP/poly. ��

6 Lower Bounds on Exponential Algorithms

In this section, we show that the UTVROR problem cannot be solved in time
2o(n) unless the Exponential Time Hypothesis (ETH) fails. This is accomplished
by a reduction from 3SAT. Let Φ be a 3CNF formula with m′ clauses over n′

variables. From Φ, we construct a UCS U as follows:

1. Create the variables x0 and y0.
2. Create the constraint −x0 − y0 ≤ −1.
3. For each variable xi in Φ: (a) Create the variable xi. (b) Create the variables

y+
i,0 through y+

i,k+
i

, where k+
i is the number of clauses that use the literal xi.

(c) Create the constraints y+
i,j−1 − y+

i,j ≤ 0 for j = 1, . . . , k+
i . Additionally,

create the constraints xi−1 − x+
i,0 ≤ 0 and x+

i,k+
i

− xi ≤ 0. (d) Create the

variables y−
i,0 through y−

i,k−
i

, where k−
i is the number of clauses that use the

literal ¬xi. (e) Create the constraints y−
i,j−1 − y−

i,j ≤ 0 for j = 1, . . . , k−
i .

Additionally, create the constraints xi−1 − x−
i,0 ≤ 0 and x−

i,k−
i

− xi ≤ 0.
4. Create the constraint x0 + xn′ ≤ 1.
5. For each clause φr in Φ, create the variable yr.
6. Create the constraint ym′ − x0 ≤ 0.
7. For each clause φj in Φ, and each variable xi in φj : (a) If φr is the jth

clause to use the literal xi, create the constraints yr−1 − x+
i,j−1 ≤ 0 and

x+
i,j − yr ≤ 0. (b) If φr is the jth clause to use the literal ¬xi, create the

constraints yr−1 − x−
i,j−1 ≤ 0 and x−

i,j − yr ≤ 0.

Note that U has n = (3 + 2 · n′ + 2 · m′) variables.

Lemma 1. Let Φ be a 3CNF formula with m′ clauses over n′ variables, and let
U be the corresponding UCS. Φ is satisfiable, if and only if U has a read-once
integer refutation.

384 K. Subramani and P. Wojciechowski

A proof of Lemma 1 can be found in the journal version of the paper. Using
Lemma 1, we can establish a lower bound on the running time of any exact
exponential algorithm for the UTVROR problem.

Theorem 4. Unless the ETH fails, the UTVROR problem cannot be solved in
time 2o(n).

Proof. Let Φ be a 3CNF formula with m′ clauses over n′ variables. Using the
construction above, we are able to construct a UCS U from Φ with n = (3 + 2 ·
n′+2 ·m′) variables. From Lemma 1, U has a read-once refutation, if and only if,
Φ is satisfiable. Thus, if the WPVCT problem can be solved in 2o(n) time, then
3SAT can be solved in 2o(m

′+n′) time. This, through the Sparcification Lemma,
violates the ETH. ��

7 An Exact Exponential Algorithm

In this section, we describe an exact exponential algorithm for the UTVROR
problem. We first make the following assumptions about the structure of U: For
each variable xi in U, at least one constraint in U uses the term xi and at least
one constraint in U uses the term −xi: If xi appears as only a positive term or
only a negative term in U, then no refutation of U contains any input constraint
that uses xi. Thus, all such constraints can be removed from U without affecting
the existence of read-once refutations.

From these observations, we get the following reduction rules for the
UTVROR problem. 1. If xi appears as only a positive term, then remove all
constraints containing xi from U. 2. If xi appears as only a negative term, then
remove all constraints containing xi from U.

We now introduce the concept of a decomposable read-once refutation.

Definition 6. A read-once refutation R of a UCS U is decomposable, if for
some terms li and lj, R can be divided into: 1. A derivation Ri of the constraint
li ≤ b1, such that no two input constraints in Ri share a non-li term. 2. A
derivation Rj of the constraint lj ≤ b2, such that no two input constraints in
Rj share a non-lj term. 3. A derivation Rij of −li − lj ≤ b3, such that no two
input constraints in Rij share any terms. Note that we can have Rij = ∅. This
can happen when li = −lj.

We have the following result on decomposable read-once refutations in UCSs.

Theorem 5. Let U be a UCS. If U has a read-once refutation, then it has a
decomposable read-once refutation.

Proof. Let R be a read-once refutation of U, and let deriving 0 ≤ b + b′ from
x1 ≤ b and −x1 ≤ b′ be the last step of R. Observe that R can be divided into a
read-once derivation of xk ≤ b (say, R+

k), and a read-once derivation of −xk ≤ b′

(say, R−
k).

We first focus on R+
k , the read-once derivation of xk ≤ b.

Parameterized and Exact-Exponential Algorithms 385

We can decompose R+
k as follows: 1. A derivation, R1, of the constraint

ai · xi ≤ bi. 2. A derivation, R2, of the constraint xk − ai · xi ≤ bik.
We know that no two variables are used by both R1 and R2 (except for xi).

Let Ri be the set of constraints used by R1.
From our choice of xk, U\Ri contains a derivation of −xk ≤ b′. Additionally,

U \ Ri contains the derivation R2 of xk − ai · xi ≤ bik. Thus, U \ Ri contains a
derivation of −ai · xi ≤ b′ + bik.

Using the same argument as before (replacing xi with xj and xk with −ai ·xi),
we can divide the derivation of −ai · xi ≤ b′ + bik in U \ Ri into a derivation of
aj · xj ≤ bj for some variable xj , such that no two input constraints used in this
derivation share a non-xj term and a derivation of −ai · xi − aj · xj ≤ bij such
that no two input constraints used in this derivation share a term. Let Rj and
Rij denote the sets of input constraints used in these derivations respectively.
The sets Ri, Rj , and Rij form the decomposable read-once refutation R′. ��

Thus, we only need to look for decomposable read-once refutations of U.
We make the following additional observation about the structure of read-

once refutations of UCSs.

Theorem 6. Let U be a UCS and let R be a shortest decomposable read-once
refutation of U. Additionally, let Ri, Rj, and Rij be the components of R. Fur-
thermore, let ai · xi and aj · xj denote the terms referred to in Definition 6. No
variable is used by both a constraint in Rj and a constraint in Rij.

Proof. Assume that there exists a variable xk that is used in both Rij and Rj .
Thus, Rj can be divided into a derivation of aj · xj + xk ≤ b and a derivation
of aj · xj − xk ≤ b′. Similarly Rij can be divided into either: 1. A derivation of
−ai·xi+xk ≤ b′′ and a derivation of −aj ·xj−xk ≤ b′′′. In this case, we can get the
following decomposable read-once refutation of U: (a) Derive ai ·xi ≤ bi from Ri.
(b) Derive −xk ≤ b′+b′′′

2 � from aj ·xj−xk ≤ b′ and −aj ·xj−xk ≤ b′′′. (c) Derive
a contradiction from ai · xi ≤ bi, xk ≤ b′+b′′′

2 � and, −ai · xi + xk ≤ b′′. Observe
that this new derivation is shorter than the original one, because no constraint
from the derivation of aj · xj + xk ≤ b has been used in the new derivation. 2.
A derivation of −ai · xi − xk ≤ b′′ and a derivation of −aj · xj + xk ≤ b′′′. In
this case, we can get the following decomposable read-once refutation of U: (a)
Derive ai · xi ≤ bi from Ri. (b) Derive xk ≤ b+b′′′

2 � from aj · xj + xk ≤ b and
−aj ·xj +xk ≤ b′′′. (c) Derive a contradiction from ai ·xi ≤ bi, xk ≤ b+b′′′

2 � and,
−ai · xi − xk ≤ b′′. Observe that this new derivation is shorter than the original
one, because no constraint from the derivation of aj ·xj −xk ≤ b′ has been used
in the new derivation. In either case, we get a contradiction to the choice of R
as the shortest decomposable read-once refutation of U. ��

Algorithm 7.1 finds a decomposable read-once refutation of U. Note that on
Line 10, Algorithm 7.1 chooses to add the constraint ag · xg + ah · xh ≤ b to the
set U+

i or to the set U−
i . Let C represent the set of all possible sequences of

choices made by Algorithm 7.1 on Line 10.

386 K. Subramani and P. Wojciechowski

Input: UCS U

Output: true if U has a read-once refutation, false otherwise.

1: procedure UTVROR-Eff(U)

2: for (each pair of terms ai · xi �= aj · xj) do

3: Let U+
i be the constraints used for the derivation of ai · xi ≤ b1.

4: Let U−
i be the constraints used for the derivation of −ai · xi ≤ b2.

5: Add all constraints using the term ai · xi to U+
i .

6: Add all constraints using the term aj · xj to U−
i .

7: if (ai · xi �= −aj · xj) then

8: Add all constraints using the term −ai · xi or −aj · xj to U−
i .

9: for (each constraint ag · xg + ah · xh ≤ b ∈ U \ (U+
i ∪ U−

i)) do

10: Add ag · xg + ah · xh ≤ b to U+
i or U−

i .

11: if (ag · xg + ah · xh ≤ b was added to U+
i) then

12: if (only one constraint uses the term −ag · xg (−ah · xh)) then

13: Add that constraint to U+
i .

14: Add all other constraints using ag · xg (ah · xh) to U+
i .

15: else if (ag ·xg +ah ·xh ≤ b is the only constraint to use the term

ag · xg (ah · xh)) then

16: Add all the constraints using −ag · xg (or −ah · xh) to U+
i .

17: else

18: Add all other constraints using ag · xg or ah · xh to U−
i .

19: else

20: if (only one constraint uses the term −ag · xg (−ah · xh)) then

21: Add that constraint to U−
i .

22: Add all other constraints using ag · xg (ah · xh) to U−
i .

23: else if (ag ·xg +ah ·xh ≤ b is the only constraint to use the term

ag · xg (ah · xh)) then

24: Add all constraints using −ag · xg (−ah · xh) to U−
i .

25: else

26: Add all other constraints using ag · xg or ah · xh to U+
i .

27: if (xi ≤ b1 can be derived from U+
i and −x1 ≤ b2 can be derived

from U−
i such that b1 + b2 < 0) then

28: return true.

29: return false.

Algorithm 7.1: A more efficient exact exponential algorithm for the
UTVROR problem

Parameterized and Exact-Exponential Algorithms 387

Lemma 2. Let U be a UCS. If, for some sequence of choices c ∈ C, Algorithm
7.1 returns true, then U has a read-once refutation.

Proof. If, for some sequence of choices c ∈ C, Algorithm 7.1 returns true, then
for some variable xi there exist disjoint sets U+

i and U−
i such that the constraint

xi ≤ b1 can be derived from U+
i and the constraint −xi ≤ b2 can be derived

from U−
i . This means that U has a read-once refutation [9]. ��

Lemma 3. Let U be a UCS with a read-once refutation. For some sequence of
choices c ∈ C, Algorithm 7.1 will return true.

The proof of Lemma 3 can be found in the journal version of the paper.

Theorem 7. Let U be a UCS. Running Algorithm 7.1 for every sequence of
choices in C will return true, if and only if U has a read-once refutation.

Proof. From Lemma 2, if Algorithm 7.1 returns true for some sequence of choices
c ∈ C, then U has a read-once refutation. From Lemma 3, if U has a read-once
refutation, then some sequence of choices c ∈ C, will result in Algorithm 7.1
returning true. ��

For each iteration of the for loop on Line 9, at least 3 constraints are assigned
to either U+

i or U−
i . These constraints are ag · xg + ah · xh ≤ b, one constraint

using the term ag · xg or −ag · xg, and one constraint using the term ah · xh or
−ah · xh. Finding and processing these constraints can be done in O(m) time.

Thus, running Algorithm 7.1 over all possible choices is governed by the
recurrence relation T (m) ≤ T (m − 3) + T (m − 3) + O(m). Using the techniques
in [5], it can be shown that Algorithm 7.1 runs in time O∗(2

m
3). This can be

approximated as O∗(1.26m).
Once a sequence of choices c is made we do not need that sequence again.

Thus, we never need to store the entirety of C. Thus, in each run of Algorithm
7.1, we only need space to store the m

3 choices in c, the sets U+
i and U−

i , and
the UCS U. This can be done in O(m + n) space.

8 Conclusion

This paper examined the UTVROR problem from the perspective of parame-
terized and exact-exponential algorithms. Previous research had established the
NP-hardness of this problem and hence this study is justified. We designed
an FPT algorithm. We also argued that the problem does not admit a polyno-
mial sized kernel, unless a well-accepted complexity conjecture fails. Finally, we
designed a non-trivial exact exponential algorithm.

388 K. Subramani and P. Wojciechowski

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: Weakly-relational shapes for numeric
abstractions: improved algorithms and proofs of correctness. Formal Methods Syst.
Des. 35(3), 279–323 (2009)

2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

3. Cygan, M., Fomin, F.V., Kowalik, �L, Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

4. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

5. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. TTCSAES, 1st edn.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

6. Gomory, R.E.: Solving linear programming problems in integers. Combinat. Anal.
10, 211–215 (1960)

7. Hochbaum, D., Megiddo, N., Naor, J., Tamir, A.: Tight bounds and 2-
approximation algorithms for integer programs with two variables per inequality.
Math. Program. 62, 63–92 (1993)

8. Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Proceedings of
the 10th Annual Conference on Structure in Complexity Theory (SCTC 1995), Los
Alamitos, CA, USA, June 1995, pp. 29–36. IEEE Computer Society Press (1995)

9. Büning, H.K., Wojciechowski, P.J., Subramani, K.: Finding read-once resolution
refutations in systems of 2CNF clauses. Theor. Comput. Sci. 729, 42–56 (2018)

10. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI con-
straints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 168–183.
Springer, Heidelberg (2005). https://doi.org/10.1007/11559306 9

11. Miné, A.: The octagon abstract domain. Higher-Order Symb. Comput. 19(1), 31–
100 (2006)

12. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp.
182–191 (1995)

13. John Alan Robinson: A machine-oriented logic based on the resolution principle.
J. ACM 12(1), 23–41 (1965)

14. Subramani, K.: Optimal length resolution refutations of difference constraint sys-
tems. J. Autom. Reas. (JAR) 43(2), 121–137 (2009)

15. Subramani, K., Wojciechowki, P.: A polynomial time algorithm for read-once certi-
fication of linear infeasibility in UTVPI constraints. Algorithmica 81(7), 2765–2794
(2019)

16. Subramani, K., Wojciechowki, P.: Integer feasibility and refutations in UTVPI
constraints using bit-scaling. Algorithmica 85, 610–637 (2022)

17. Subramani, K., Wojciechowski, P.J.: A bit-scaling algorithm for integer feasibility
in UTVPI constraints. In: Combinatorial Algorithms - 27th International Work-
shop, IWOCA 2016, Helsinki, Finland, 17–19 August 2016, Proceedings, vol. 9843,
pp. 321–333 (2016)

18. Subramani, K., Wojciechowski, P.J.: A combinatorial certifying algorithm for linear
feasibility in UTVPI constraints. Algorithmica 78(1), 166–208 (2017)

19. Subramani, K., Wojciechowski, P.J.: A certifying algorithm for lattice point fea-
sibility in a system of UTVPI constraints. J. Combinat. Optim. 35(2), 389–408
(2018)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/11559306_9

Parameterized and Exact-Exponential Algorithms 389

20. Subramani, K., Wojciechowski, P.J.: On integer closure in a system of unit two
variable per inequality constraints. Ann. Math. Artif. Intell. 88(10), 1101–1118
(2020)

21. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor.
Comput. Sci. 26(3), 287–300 (1983)

Critical (P5, dart)-Free Graphs

Wen Xia1,2, Jorik Jooken3, Jan Goedgebeur3,4, and Shenwei Huang1,2(B)

1 College of Computer Science, Nankai University, Tianjin 300071, China
2 Tianjin Key Laboratory of Network and Data Security Technology,

Nankai University, Tianjin 300071, China
shenweihuang@nankai.edu.cn

3 Department of Computer Science, KU Leuven Campus Kulak-Kortrijk,
8500 Kortrijk, Belgium

{jorik.jooken,jan.goedgebeur}@kuleuven.be
4 Department of Applied Mathematics, Computer Science and Statistics,

Ghent University, 9000 Ghent, Belgium

Abstract. Given two graphs H1 and H2, a graph is (H1, H2)-free if it
contains no induced subgraph isomorphic to H1 nor H2. A dart is the
graph obtained from a diamond by adding a new vertex and making it
adjacent to exactly one vertex with degree 3 in the diamond.

In this paper, we show that there are finitely many k-vertex-critical
(P5, dart)-free graphs for k ≥ 1. To prove these results, we use induction
on k and perform a careful structural analysis via Strong Perfect Graph
Theorem combined with the pigeonhole principle based on the proper-
ties of vertex-critical graphs. Moreover, for k ∈ {5, 6, 7} we characterize
all k-vertex-critical (P5, dart)-free graphs using a computer generation
algorithm. Our results imply the existence of a polynomial-time certi-
fying algorithm to decide the k-colorability of (P5, dart)-free graphs for
k ≥ 1 where the certificate is either a k-coloring or a (k+1)-vertex-critical
induced subgraph.

Keywords: Graph coloring · k-critical graphs · Strong perfect graph
theorem · Polynomial-time algorithms

1 Introduction

All graphs in this paper are finite and simple. A k-coloring of a graph G is a
function φ : V (G) −→ {1, . . . , k} such that φ(u) �= φ(v) whenever uv ∈ E(G).
Equivalently, a k-coloring of G can be viewed as a partition of V (G) into k stable
sets. If a k-coloring exists, we say that G is k-colorable. The chromatic number
of G, denoted by χ(G), is the minimum number k such that G is k-colorable. A

The research of Jan Goedgebeur was supported by Internal Funds of KU Leuven. Jorik
Jooken is supported by a Postdoctoral Fellowship of the Research Foundation Flanders
(FWO) with contract number 1222524N. Shenwei Huang(the corresponding author) is
supported by National Natural Science Foundation of China (12171256).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 390–402, 2024.
https://doi.org/10.1007/978-3-031-49614-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_29&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_29

Critical (P5, dart)-Free Graphs 391

graph G is k-chromatic if χ(G) = k. A graph G is k-critical if it is k-chromatic
and χ(G − e) < χ(G) for any edge e ∈ E(G). For instance, K2 is the only 2-
critical graph and odd cycles are the only 3-critical graphs. A graph is critical
if it is k-critical for some integer k ≥ 1. Vertex-criticality is a weaker notion. A
graph G is k-vertex-critical if χ(G) = k and χ(G − v) < k for any v ∈ V (G).

For a fixed k ≥ 3, it has long been known that determining the k-colorability
of a general graph is an NP-complete problem [22]. However, the situation
changes if one restricts the structure of the graphs under consideration.

Let H be a set of graphs. A graph G is H-free if it does not contain any
member in H as an induced subgraph. When H consists of a single graph H or
two graphs H1 and H2, we write H-free and (H1,H2)-free instead of {H}-free
and {H1,H2}-free, respectively. We say that G is k-vertex-critical H-free if it
is k-vertex-critical and H-free. In this paper, we study k-vertex-critical H -free
graphs. The following problem arouses our interest: Given a set H of graphs and
an integer k ≥ 1, are there finitely many k-vertex-critical H-free graphs? This
question is very important because the finiteness of the set has a fundamental
algorithmic implication.

Theorem 1 (Folklore). If the set of all k-vertex-critical H-free graphs is finite,
then there is a polynomial-time algorithm to determine whether an H-free graph
is (k − 1)-colorable. ��

Let Kn be the complete graph on n vertices. Let Pt and Ct denote the path
and the cycle on t vertices, respectively. The complement of G is denoted by G.
For two graphs G and H, we use G + H to denote the disjoint union of G and
H. For a positive integer, we use rG to denote the disjoint union of r copies of
G. For s, r ≥ 1, let Kr,s be the complete bipartite graph with one part of size r
and the other part of size s. Our research is mainly motivated by the following
two theorems.

Theorem 2 ([16]). For any fixed integer k ≥ 5, there are infinitely many k-
vertex-critical P5-free graphs.

It is natural to consider which subclasses of P5-free graphs have finitely
many k-vertex-critical graphs. In 2021, Cameron, Goedgebeur, Huang and Shi [8]
obtained the following dichotomy result.

Theorem 3 ([8]). Let H be a graph of order 4 and k ≥ 5 be a fixed integer.
Then there are infinitely many k-vertex-critical (P5,H)-free graphs if and only
if H is 2P2 or P1 + K3.

This theorem completely solves the finiteness problem of k-vertex-critical
(P5,H)-free graphs for |H| = 4. In [8], the authors also posed the natural
question of which five-vertex graphs H lead to finitely many k-vertex-critical
(P5,H)-free graphs.

392 W. Xia et al.

It is known that there are exactly 13 5-vertex-critical (P5, C5)-free graphs
[16]. Recently, Cameron and Hoàng constructed infinite families of k-vertex-
critical (P5, C5)-free graphs for k ≥ 6 [7]. It has been proven that there are
finitely many k-vertex-critical (P5, banner)-free graphs for k = 5 [18] and 6 [5]
and there are finitely many k-vertex-critical (P5, P5)-free graphs for fixed k [10].
Hell and Huang proved that there are finitely many k-vertex-critical (P6, C4)-
free graphs [14]. This was later generalized to (Pt,Kr,s)-free graphs in the con-
text of H-coloring [21]. This gives an affirmative answer for H = K2,3. In [4],
Cai, Goedgebeur and Huang showed that there are finitely many k-vertex-
critical (P5, gem)-free graphs and finitely many k-vertex-critical (P5, P3 + P2)-
free graphs. Later, Cameron and Hoaǹg [6] gave a better bound on the order
of k-vertex-critical (P5, gem)-free graphs and determined all such graphs for
k ≤ 7. Moreover, it has been proven that there are finitely many 5-vertex-
critical (P5, bull)-free graphs [17] and finitely many 5-vertex-critical (P5, chair)-
free graphs [19].

Our Contributions. A dart (see Fig. 1) is the graph obtained from a diamond
by adding a new vertex and making it adjacent to exactly one vertex with degree
3 in the diamond. Our main result is as follows.

Fig. 1. The dart graph.

Theorem 4. For every fixed integer k ≥ 1, there are finitely many k-vertex-
critical (P5, dart)-free graphs.

We prove a Ramsey-type statement (see Lemma 4) which allows us to prove
our main result by induction on k. This is another example of a result that is
proved by induction on k for the finitess problem besides the one in [10].

We perform a careful structural analysis via Strong Perfect Graph Theorem
combined with the pigeonhole principle based on the properties of vertex-critical
graphs. Moreover, for k ∈ {5, 6, 7} we computationally determine a list of all k-
vertex-critical (P5, dart)-free graphs.

Our results imply the existence of a polynomial-time certifying algorithm
to decide the k-colorability of (P5, dart)-free graphs for k ≥ 1. (An algorithm
is certifying if, along with the answer given by the algorithm, it also gives a
certificate which allows to verify in polynomial time that the output of the
algorithm is indeed correct; in case of k-coloring the certificate is either a k-
coloring or a (k + 1)-vertex-critical induced subgraph.)

Critical (P5, dart)-Free Graphs 393

Theorem 5. For every fixed integer k ≥ 1, there is a polynomial-time certifying
algorithm to decide the k-colorability of (P5, dart)-free graphs.

Proof. Let G be a (P5, dart)-free graph. We first run the polynomial-time algo-
rithm for determining whether a P5-free graph is k-colorable from [15] for G. If
the answer is yes, the algorithm outputs a k-coloring of G. Otherwise G is not
k-colorable. In this case, G must contain a (k + 1)-vertex-critical (P5, dart)-free
graph as an induced subgraph. For each (k + 1)-vertex-critical (P5, dart)-free
graph H, it takes polynomial-time to check whether G contains H. Since there
are only finitely many such graphs by Theorem 4, we can do this for every such
graph H and the total running time is still polynomial.

The remainder of the paper is organized as follows. We present some pre-
liminaries in Sect. 2 and give structural properties around an induced C5 in a
(P5,dart)-free graph in Sect. 3. We show that there are finitely many k-vertex-
critical (P5,dart)-free graphs for all k ≥ 1 in Sect. 4 and computationally deter-
mine an exhaustive list of such graphs for k ∈ {5, 6, 7} in Sect. 5. Finally, we give
a conclusion in Sect. 6.

2 Preliminaries

For general graph theory notation we follow [1]. For k ≥ 4, an induced cycle of
length k is called a k-hole. A k-hole is an odd hole (respectively even hole) if k
is odd (respectively even). A k-antihole is the complement of a k-hole. Odd and
even antiholes are defined analogously.

Let G = (V,E) be a graph. If uv ∈ E(G), we say that u and v are neighbors or
adjacent, otherwise u and v are nonneighbors or nonadjacent. The neighborhood
of a vertex v, denoted by NG(v), is the set of neighbors of v. For a set X ⊆ V (G),
let NG(X) = ∪v∈XNG(v)\X. We shall omit the subscript whenever the context
is clear. For x ∈ V (G) and S ⊆ V (G), we denote by NS(x) the set of neighbors
of x that are in S, i.e., NS(x) = NG(x) ∩ S. For two sets X,S ⊆ V (G), let
NS(X) = ∪v∈XNS(v) \ X.

For X,Y ⊆ V (G), we say that X is complete (resp. anticomplete) to Y if every
vertex in X is adjacent (resp. nonadjacent) to every vertex in Y . If X = {x}, we
write “x is complete (resp. anticomplete) to Y ” instead of “{x} is complete (resp.
anticomplete) to Y ”. If a vertex v is neither complete nor anticomplete to a set
S, we say that v is mixed on S. For a vertex v ∈ V and an edge xy ∈ E, if v is
mixed on {x, y}, we say that v is mixed on xy. For a set H ⊆ V (G), if no vertex
in V (G) \ H is mixed on H, we say that H is a homogeneous set, otherwise H is
a nonhomogeneous set.

A vertex subset S ⊆ V (G) is stable if no two vertices in S are adjacent. A
clique is the complement of a stable set. Two nonadjacent vertices u and v are
said to be comparable if N(v) ⊆ N(u) or N(u) ⊆ N(v). For an induced subgraph
A of G, we write G − A instead of G − V (A). For S ⊆ V , the subgraph induced
by S is denoted by G[S]. We say that a vertex w distinguishes two vertices u
and v if w is adjacent to exactly one of u and v.

394 W. Xia et al.

We proceed with a few useful results that will be used later. The first folk-
lore property of vertex-critical graph is that such graphs contain no comparable
vertices. A generalization of this property was presented in [8].

Lemma 1 ([8]). Let G be a k-vertex-critical graph. Then G has no two
nonempty disjoint subsets X and Y of V (G) that satisfy all the following condi-
tions.

– X and Y are anticomplete to each other.
– χ(G[X]) ≤ χ(G[Y]).
– Y is complete to N(X).

Lemma 2 ([17]). Let G be a 5-vertex-critical P5-free graph and S be a homo-
geneous set of V (G). For each component A of G[S],

(i) if χ(A) = 1, then A is a K1;
(ii) if χ(A) = 2, then A is a K2;
(iii) if χ(A) = 3, then A is a K3 or a C5.

We extend Lemma 2 to all critical graphs, which may be of independent
interest.

Lemma 3 (♠1). Let G be a k-vertex-critical graph and S be a homogeneous set
of V (G). For each component A of G[S], if χ(A) = m with m < k, then A is an
m-vertex-critical graph.

Next, we prove an important lemma, which will be used frequently in the
proof of our results.

Lemma 4. Let G be a dart-free graph and c be a fixed integer. Let S, T be two
disjoint subsets of V (G) such that |S| ≤ c and G[T ∪ S] is connected. If every
vertex in S is adjacent to at least one of w1 and w2 where w1 and w2 are two
arbitrary nonadjacent vertices in T , and there exists a vertex w ∈ V (G)\(S ∪ T)
such that w is complete to S ∪ T , then |T | ≤ c(χ(T))1 + . . . + c(χ(T))2χ(T)+1.

Proof. Let N0 = S, Ni = {v|v ∈ T \ ∪i−1
j=0Nj , v has a nonneighbor in Ni−1}

where i ≥ 1. Let u ∈ Ni−1 and v, v′ ∈ Ni with vv′ /∈ E(G). Since G[T ∪ S] is
connected, Ni �= ∅.

First, we show that u is adjacent to at least one of v and v′. If i = 1, we are
done. Now we consider the case of i ≥ 2. Suppose that u is adjacent to neither
v nor v′. Let u′ ∈ Ni−2 be the nonneighbor of u. Then u′ is complete to v and
v′ by the definition of Ni. Since w is complete to S ∪ T . Then {v, v′, u′, w, u}
induces a dart. So u is adjacent to at least one of v and v′.

1 The proofs of theorems and lemmas marked with a ♠ have been omitted in the
interest of space. They can be found in an extended version of this paper [24].

Critical (P5, dart)-Free Graphs 395

Next, we show that |Ni| ≤ c(χ(T))i. We have χ(Ni) ≤ χ(T). Hence, we can
partition Ni into at most χ(T) stable sets, because u is adjacent to at least one
of v and v′. Thus, each vertex in Ni−1 has at most χ(T) nonneighbors in Ni.
Since |N0| = |S| ≤ c, we have |Ni| ≤ c(χ(T))i.

Finally, we show that i ≤ 2χ(T) + 1. Suppose not. By the definition of Ni,
Ni and Nj are complete when |i − j| > 1. Then we take a vertex ui ∈ Ni where
i is even. Now, {u2, u4, . . . , u2χ(T)+2} induces a Kχ(T)+1, a contradiction. This
shows i ≤ 2χ(T) + 1.

Therefore, |T | ≤ c(χ(T))1 + . . . + c(χ(T))2χ(T)+1.

The following theorem tells us there are finitely many 4-vertex-critical P5-free
graphs.
Theorem 6 ([2,23]). If G = (V,E) is a 4-vertex-critical P5-free graph, then
|V | ≤ 13.

A property on bipartite graphs is shown as follows.

Lemma 5 ([11]). Let G be a connected bipartite graph. If G contains a 2K2,
then G must contain a P5.

The clique number of G, denoted by ω(G), is the size of a largest clique in
G. A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G.
Another result we use is the famous Strong Perfect Graph Theorem.

Theorem 7 (The Strong Perfect Graph Theorem [9]). A graph is perfect
if and only if it contains no odd holes or odd antiholes.

3 Structure Around 5-Hole

Let G = (V,E) be a graph and H be an induced subgraph of G. We partition
V \V (H) into subsets with respect to H as follows: for any X ⊆ V (H), we denote
by S(X) the set of vertices in V \V (H) that have X as their neighborhood among
V (H), i.e.,

S(X) = {v ∈ V \ V (H) : NV (H)(v) = X}.

For 0 ≤ m ≤ |V (H)|, we denote by Sm the set of vertices in V \V (H) that have
exactly m neighbors in V (H). Note that Sm =

⋃
X⊆V (H):|X|=m S(X).

Let G be a (P5, dart)-free graph and C = v1, v2, v3, v4, v5 be an induced C5

in G. We partition V \ C with respect to C as follows, where all indices below
are modulo five.

S0 = {v ∈ V \V (C) : NC(v) = ∅},

S2(i) = {v ∈ V \V (C) : NC(v) = {vi−1, vi+1}},

S1
3(i) = {v ∈ V \V (C) : NC(v) = {vi−1, vi, vi+1}},

S2
3(i) = {v ∈ V \V (C) : NC(v) = {vi−2, vi, vi+2}},

S4(i) = {v ∈ V \V (C) : NC(v) = {vi−2, vi−1, vi+1, vi+2}},

S5 = {v ∈ V \V (C) : NC(v) = V (C)}.

396 W. Xia et al.

Let S2 =
⋃5

i=1 S2(i), S1
3 =

⋃5
i=1 S1

3(i), S2
3 =

⋃5
i=1 S2

3(i) and S4 =
⋃5

i=1 S4(i).
Since G is P5-free, we have that

V (G) = S0 ∪ S2 ∪ S1
3 ∪ S2

3 ∪ S4 ∪ S5.

We now list a number of useful properties of these sets. The proofs can be
found in an extended version of this paper [24].
(1) S0 is anticomplete to S2 ∪ S1

3 .
(2) For each 1 ≤ i ≤ 5, S2

3(i) is not mixed on any edge of S0.
(3) S0 is anticomplete to S4 ∪ S5 .
(4) Let A be a component of S0, then A is homogeneous and P3-free.
(5) For each 1 ≤ i ≤ 5, S1

3(i) is not mixed on any edge of S2(i).
(6) For each 1 ≤ i ≤ 5, S2(i) is complete to S1

3(i + 1) ∪ S1
3(i − 1).

(7) For each 1 ≤ i ≤ 5, S2(i) is anticomplete to S1
3(i + 2) ∪ S1

3(i − 2).
(8) For each 1 ≤ i ≤ 5, S2(i) is complete to S2

3(i).
(9) For each 1 ≤ i ≤ 5, S2(i) is anticomplete to S2

3 \ S2
3(i).

(10) For each 1 ≤ i ≤ 5, S2(i) is anticomplete to S4(i).
(11) For each 1 ≤ i ≤ 5, S2(i) is complete to S4 \ S4(i).
(12) For each 1 ≤ i ≤ 5, S2(i) is complete to S2(i + 1) ∪ S2(i − 1).
(13) For each 1 ≤ i ≤ 5, S2(i+2)∪ S2(i − 2) is not mixed on any edge of S2(i).
(14) If S2 �= ∅, then S5 = ∅. If S5 �= ∅, then S2 = ∅.
(15) Let A be a component of S2(i). Then A is homogeneous and A is P3-free.
(16) For each 1 ≤ i ≤ 5, S5 is complete to S2

3(i).
(17) Let u, u′ ∈ S5 with uu′ /∈ E(G). Then every vertex in S1

3 ∪ S4 is adjacent
to at least one of u and u′.

(18) For 1 ≤ i ≤ 5, S1
3(i), S2

3(i) and S4(i) is a clique, respectively.

4 The Proof of Theorem 4

Proof. We prove the theorem by induction on k. If 1 ≤ k ≤ 4, there are finitely
many k-vertex-critical (P5, dart)-free graphs by Theorem 6. In the following, we
assume that k ≥ 5 and there are finitely many i-vertex-critical graphs for i ≤
k − 1. Now, we consider the case of k.

Let G = (V,E) be a k-vertex-critical (P5, dart)-free graph. We show that
|G| is bounded. Let L = {Kk, C2k−1}. If G has a subgraph isomorphic to a
member L ∈ L, then |V (G)| = |V (L)| by the definition of vertex-critical and
so we are done. So, we assume in the following G has no induced subgraph
isomorphic to a member in L. Then G is imperfect. Since G is k-vertex-critical
and χ(C2t+1) ≥ k+1 if t ≥ k, it follows that G does not contain C2t+1 for t ≥ k.
Moreover, since G is P5-free, it does not contain C2t+1 for t ≥ 3. It then follows
from Theorem 7, G must contain some C2t+1 for 2 ≤ t ≤ k − 2. To finish the
proof, we only need to prove the following two lemmas.

Lemma 6. If G contains an induced C5, then G has finite order.

Critical (P5, dart)-Free Graphs 397

Proof. Let C = v1, v2, v3, v4, v5 be an induced C5. We partition V (G) with
respect to C.

Since G is Kk-free, combined with (18), we have S1
3(i), S2

3(i) and S4(i) is
Kk−2-free, respectively. Then |S1

3(i)| ≤ k −3, |S2
3(i)| ≤ k −3 and |S4(i)| ≤ k −3.

Therefore, |S1
3 | ≤ 5k − 15, |S2

3 | ≤ 5k − 15 and |S4| ≤ 5k − 15. Thus, in the
following, we only need to bound S0, S2 and S5.

We first bound S0.

Claim 4.01. Let A be a component of S0, then χ(A) ≤ k − 2.

Proof. Suppose that χ(A) ≥ k − 1. Since G is connected, there must exist v ∈
N(A) and v ∈ S2

3 by (1)–(3). Since A is homogeneous, v is complete to A.
Then χ(G[V (A) ∪ {v}]) ≥ k. Since G[V (A) ∪ {v}] ⊂ G, it contradicts with G is
k-vertex-critical.

Let A be a component of G, we call A a Ki-component if A ∼= Ki where
i ≥ 1.

Claim 4.02. Each component of S0 is a Km where 1 ≤ m ≤ k − 2. For each
1 ≤ m ≤ k − 2, the number of Km-components is not more than 25k−15.

Proof. By (4), S0 is a disjoint union of cliques. Combined with Claim 4.01, it
follows that each component of S0 is a Km where 1 ≤ m ≤ k − 2.

Suppose that the number of K1-components in S0 is more than 25k−15 ≥
2|S2

3 |. The pigeonhole principle shows that there are two K1-components u, v
having the same neighborhood in S2

3 . Since S0 is anticomplete to S2∪S1
3∪S4∪S5.

Then u, v have the same neighborhood in V (G). This contradicts with Lemma 1.
Similarly, we can show that the number of K2-components , . . . , Kk−2-

components is not more than 25k−15, respectively.

By Claim4.02, it follows that S0 is bounded. Next, we bound S2 and S5.
Note that at least one of S2 and S5 is an empty set by (14). In the following,
we first assume that S5 �= ∅. Then S2 = ∅.

Claim 4.03. S5 is bounded.

Proof. Let N0 = S1
3 ∪ S4, Ni = {v|v ∈ S5 \ ∪i−1

j=0Nj , v has a nonneighbor in
Ni−1} where i ≥ 1.

If G[S5 ∪ S1
3 ∪ S4] is connected. Since |S1

3 ∪ S4| ≤ 10k − 30 and there exist
w ∈ V (C) such that w is complete to S1

3∪S4∪S5. By (17), every vertex in S1
3∪S4

is adjacent to at least one of w1 and w2 where w1, w2 ∈ S5 and w1w2 /∈ E(G).
Then |S5| is a function of χ(S5) by Lemma 4. Since χ(S5) ≤ k−3, it follows that
S5 is bounded.

If G[S5 ∪ S1
3 ∪ S4] is not connected. Then there exists an integer j ≥ 0 such

that N0, N1, . . . , Nj �= ∅ but Nj+1 = ∅. Then S5−∪j
i=0Ni is complete to ∪j

i=0Ni,
and so S5 − ∪j

i=0Ni is a homogeneous set. Since χ(S5 − ∪j
i=0Ni) ≤ k − 3, each

component of S5 − ∪j
i=0Ni is an m-vertex-critical graph with 1 ≤ m ≤ k − 3

by Lemma 3. By the inductive hypothesis, it follows that there are finitely many

398 W. Xia et al.

m-vertex-critical (P5, dart)-free graphs with 1 ≤ m ≤ k − 3. By the pigeonhole
principle, the number of each kind of graph is not more than 2. So, S5 − ∪j

i=0Ni

is bounded. For each Ni with 1 ≤ i ≤ j, Ni is bounded by Lemma 4. Therefore,
S5 is bounded.

Thus, |G| is bounded if S5 �= ∅. Next, we assume that S2 �= ∅. Then S5 = ∅
by (14).

Claim 4.04. Each component of S2(i) is a Km where 1 ≤ m ≤ k − 2. For each
1 ≤ m ≤ k − 2, the number of Km-components is not more than 2k−2 + 1.

Proof. By (15), S2(i) is a disjoint union of cliques. If S2(i) contains a Kk−1,
then G contains a Kk, a contradiction. So each component of S2(i) is a Km

where 1 ≤ m ≤ k − 2.
Suppose that the number of K1-components in G[S2(1)] is more than 2k−2+

1 ≥ 2 · 2|S1
3(1)| + 1. By the pigeonhole principle, there are y1, y2, y3 having the

same neighborhood in S1
3(1). For any yi �= yj with i, j ∈ {1, 2, 3}, since yi and

yj are not comparable, there must exist y′
i ∈ N(yi) \ N(yj), y′

j ∈ N(yj) \ N(yi).
By (5)–(13), y′

i, y
′
j ∈ S2(3) ∪ S2(4).

If y′
i, y

′
j ∈ S2(3), then y′

iy
′
j ∈ E(G). For otherwise {y′

i, yi, v5, yj , y
′
j} is an

induced P5. Then {y′
i, y

′
j , yj , v2, v1} is a dart, a contradiction. By symmetry,

y′
i, y

′
j /∈ S2(4). In the following, by symmetry, we assume that y′

i ∈ S2(3), y′
j ∈

S2(4). Then y′
iy

′
j ∈ E(G), otherwise {yj , y

′
j , v3, v4, y

′
i} is an induced P5. Let

yl �= yi, yj with 1 ≤ l ≤ 3. Then yly
′
i /∈ E(G), otherwise {yi, y

′
i, yl, v2, v1} is a

dart. By symmetry, yly
′
j /∈ E(G). Since yi and yl are not comparable, there must

exist y′
l ∈ N(yl) \ N(yi). Then y′

l ∈ S2(4), yjy
′
l /∈ E(G) and yly

′
j /∈ E(G). Then

y′
ly

′
j ∈ E(G), otherwise {yl, y

′
l, v3, y

′
j , yj} is an induced P5. Then {yj , y

′
j , y

′
l, v5, v1}

is a dart, a contradiction.
Similarly, we can show that the number of K2-components , . . . , Kk−2-

components is not more than 2k−2 + 1, respectively.

Therefore, |G| is bounded if S2 �= ∅. This completes the proof of Lemma 6.

Lemma 7 (♠). If G contains an induced C2t+1 for 3 ≤ t ≤ k − 2, then G has
finite order.

By Lemma 6–Lemma 7, it follows that Theorem4 holds.

5 Complete Characterization for k ∈ {5, 6, 7}
In Sect. 4, we proved that there are finitely many k-vertex-critical (P5, dart)-
free graphs by showing the existence of an upper bound for the order of such
graphs for every integer k ≥ 1. These bounds are not necessarily sharp. In the
current section, we show sharp upper bounds for k ∈ {5, 6, 7} by computationally
determining an exhaustive list of all k-vertex-critical (P5, dart)-free graphs.

We created two independent implementations of the algorithm from Goedge-
beur and Schaudt [13], which we extended for the (P5, dart)-free case. The source

Critical (P5, dart)-Free Graphs 399

code of these implementations can be downloaded from [12] and [20]. The algo-
rithm expects three parameters as an input: an integer k ≥ 1, a set of graphs H
and a graph I. It generates all k-vertex-critical H-free graphs that contain I as
an induced subgraph. The pseudocode is given in Algorithm 1. The algorithm is
not guaranteed to terminate (e.g. there could be infinitely many such graphs).
However, if the algorithm terminates, it is guaranteed that the generated graphs
are exhaustive. The algorithm works by recursively extending a graph with one
vertex and adding edges between this new vertex and already existing vertices.
In each step of the recursion, the algorithm uses powerful pruning rules that
restrict the ways in which the edges are added. These pruning rules allow the
algorithm to terminate some branches of the recursion and are the reason why
the algorithm itself can terminate in some cases. For example, a graph which is
not (k − 1)-colorable cannot appear as a proper induced subgraph of a k-vertex-
critical graph, so the algorithm does not need to extend such graphs. In general,
the pruning rules that are used by the algorithm are much more sophisticated
than this. We refer the interested reader to [13] for further details about the
correctness of the algorithm and the different pruning rules.

Algorithm 1. Extend(An integer k, A set of graphs H, A graph I)
1: if I is H-free AND not generated before then
2: if I is not (k − 1)-colorable then
3: if I is a k-vertex-critical graph then
4: output I
5: end if
6: else
7: for every graph I ′ obtained by adding a new vertex u to I and edges between

u and vertices in V (I) in all possible ways that are permitted by the pruning
rules do

8: Extend(k,H,I ′)
9: end for

10: end if
11: end if

We now prove the following characterization theorem:

Theorem 8. There are exactly 184 5-vertex-critical (P5, dart)-free graphs and
the largest such graphs have order 13. There are exactly 18,029 6-vertex-critical
(P5, dart)-free graphs and the largest such graphs have order 16. There are exactly
6,367,701 7-vertex-critical (P5, dart)-free graphs and the largest such graphs have
order 19.

Proof. We saw in Sect. 4 that every k-vertex-critical (P5, dart)-free graph is
either Kk, C2k−1 or contains C5 as an induced subgraph or contains C2t+1 as
an induced subgraph for some 2 ≤ t ≤ k − 2. If Algorithm1 is called with the
parameters k ∈ {5, 6, 7}, H = {P5, dart} and I one of these graphs, the algo-
rithm terminates in less than a second for k = 5, less than a minute for k = 6

400 W. Xia et al.

and a few hours for k = 7 (for all choices of k and I). The counts of these graphs
are reported in Table 1. The results of the two independent implementations of
this algorithm (cf. [12] and [20]) are in complete agreement with each other.

Table 1. The number of k-critical and k-vertex-critical (P5, dart)-free graphs (for
k ∈ {5, 6, 7}).

Vertices 5 6 7 8 9 10 11 Total

5-critical 1 1 1 7 1
5-vertex-critical 1 1 6 172 1
6-critical 1 1 1 6 33
6-vertex-critical 1 1 6 171 17,834
7-critical 1 1 1 6
7-vertex-critical 1 1 6 171
Vertices 12 13 14 15 16 19

5-critical 3 14
5-vertex-critical 3 184
6-critical 2 1 13 58
6-vertex-critical 2 1 13 18,029
7-critical 28 250 6 2 1 35 331
7-vertex-critical 17,834 6,349,644 6 2 1 35 6,367,701

Table 1 gives an overview of the number of k-critical and k-vertex-critical
(P5, dart)-free graphs for k ∈ {5, 6, 7}. A graph G is k-critical (P5, dart)-free
if it is k-chromatic, (P5, dart)-free and every (P5, dart)-free proper subgraph
of G is (k − 1)-colorable. The graphs from Table 1 can be obtained from the
meta-directory of the House of Graphs [3] at https://houseofgraphs.org/meta-
directory/critical-h-free. Moreover, the k-critical graphs from Table 1 can also
be inspected in the searchable database of the House of Graphs [3] by searching
for the keywords “critical (P5,dart)-free”. The 5-critical (P5, dart)-free graphs
are shown in Fig. 2.

https://houseofgraphs.org/meta-directory/critical-h-free
https://houseofgraphs.org/meta-directory/critical-h-free

Critical (P5, dart)-Free Graphs 401

Fig. 2. All 14 5-critical (P5, dart)-free graphs.

6 Conclusion

In this paper, we have proved that there are finitely many k-vertex-critical
(P5, dart)-free graphs for k ≥ 1 and computationally determined an exhaus-
tive list of such graphs for k ∈ {5, 6, 7}. Our results gave an affirmative answer
to the problem posed in [8] for H = dart. In the future, it is natural to inves-
tigate the finiteness of the set of k-vertex-critical (P5,H)-free graphs for other
graphs H of order 5, see [7].

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Heidelberg (2008)
2. Bruce, D., Hoàng, C.T., Sawada, J.: A certifying algorithm for 3-colorability of

P5-free graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 594–604. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-10631-6_61

https://doi.org/10.1007/978-3-642-10631-6_61
https://doi.org/10.1007/978-3-642-10631-6_61

402 W. Xia et al.

3. Coolsaet, K., D’hondt, S., Goedgebeur, J.: House of graphs 2.0: a database of
interesting graphs and more. Discrete Appl. Math. 325, 97–107 (2023)

4. Cai, Q., Goedgebeur, J., Huang, S.: Some results on k-critical P5-free graphs.
Discrete Appl. Math. 334, 91–100 (2023)

5. Cai, Q., Huang, S., Li, T., Shi, Y.: Vertex-critical (P5, banner)-free graphs. In:
Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS, vol. 11458, pp. 111–120.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18126-0_10

6. Cameron, B., Hoàng, C.T.: A refinement on the structure of vertex-critical
(P5, gem)-free graphs. Theoret. Comput. Sci. 961, 113936 (2023)

7. Cameron, B. and Hoàng, C. T.: Infinite families of k-vertex-critical (P5, C5)-free
graphs. arXiv arXiv:2306.03376v1 [math.CO] (2023)

8. Cameron, K., Goedgebeur, J., Huang, S., Shi, Y.: k-critical graphs in P5-free
graphs. Theoret. Comput. Sci. 864, 80–91 (2021)

9. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Ann. Math. 164, 51–229 (2006)

10. Dhaliwal, H.S., Hamel, A.M., Hoàng, C.T., Maffray, F., McConnell, T.J.D., Panait,
S.A.: On color-critical (P5, co-P5)-free graphs. Discrete Appl. Math. 216, 142–148
(2017)

11. Fouquet, J.L.: A decomposition for a class of (P5, P5)-free graphs. Discrete Math.
121, 75–83 (1993)

12. Goedgebeur, J.: Homepage of generator for k-critical H-free graphs. https://caagt.
ugent.be/criticalpfree/

13. Goedgebeur, J., Schaudt, O.: Exhaustive generation of k-critical H-free graphs. J.
Graph Theor. 87, 188–207 (2018)

14. Hell, P., Huang, S.: Complexity of coloring graphs without paths and cycles. Dis-
crete Appl. Math. 216, 211–232 (2017)

15. Hoàng, C.T., Kamiński, M., Lozin, V.V., Sawada, J., Shu, X.: Deciding k-
colorability of P5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)

16. Hoàng, C. T., Moore, B., Recoskiez, D., Sawada, J., Vatshelle. M.: Constructions
of k-critical P5-free graphs. Discrete Appl. Math. 182, 91–98, (2015)

17. Huang, S., Li, J., Xia, W.: Critical (P5, bull)-free graphs. Discrete Appl. Math.
334, 15–25 (2023)

18. Huang, S., Li, T., Shi, Y.: Critical (P6, banner)-free graphs. Discrete Appl. Math.
258, 143–151 (2019)

19. Huang, S., Li, Z.: Vertex-critical (P5, chair)-free graphs. Discrete Appl. Math. 341,
9–15 (2023)

20. Jooken, J.: GitHub page containing generator for k-vertex-critical H-free graphs.
https://github.com/JorikJooken/kVertexCriticalGraphs

21. Kamiński, M., Pstrucha, A.: Certifying coloring algorithms for graphs without long
induced paths. Discrete Appl. Math. 261, 258–267 (2019)

22. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series. Springer, Boston (1972). https://doi.org/10.
1007/978-1-4684-2001-2_9

23. Maffray, F., Morel, G.: On 3-colorable P5-free graphs. SIAM J. Discrete Math. 26,
1682–1708 (2012)

24. Xia, W., Jooken, J., Goedgebeur, J., Huang, S.: Critical (P5, dart)-Free Graphs.
arXiv arXiv:2308.03414v2 [math.CO] (2023)

https://doi.org/10.1007/978-3-030-18126-0_10
http://arxiv.org/abs/2306.03376v1
https://caagt.ugent.be/criticalpfree/
https://caagt.ugent.be/criticalpfree/
https://github.com/JorikJooken/kVertexCriticalGraphs
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/2308.03414v2

Graph Clustering Through Users’
Properties and Social Influence

Jianxiong Guo1, Zhehao Zhu2, Yucen Gao2, and Xiaofeng Gao2(B)

1 Advanced Institute of Natural Sciences, Beijing Normal University,
Zhuhai 519087, China

jianxiongguo@bnu.edu.cn
2 Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai, China
zhehaozhu11@gmail.com, guo ke@sjtu.edu.cn, gao-xf@cs.sjtu.edu.cn

Abstract. Clustering is a basic technology in data mining, and similar-
ity measurement plays a crucial role in it. The existing clustering algo-
rithms, especially those for social networks, pay more attention to users’
properties while ignoring the global measurement across social relation-
ships. In this paper, a new clustering algorithm is proposed, which not
only considers the distance of users’ properties but also considers users’
social influence. Social influence can be further divided into mutual influ-
ence and self influence. With mutual influence, we can deal with users’
interests and measure their similarities by introducing areas and activi-
ties, thus better weighing the influence between them in an indirect way.
Separately, we formulate a new propagation model, PR-Threshold++,
by merging the PageRank algorithm and Linear Threshold model, to
model the self influence. Based on that, we design a novel similarity by
exploiting users’ distance, mutual influence, and self influence. Finally, we
adjust K-medoids according to our similarity and use real-world datasets
to evaluate their performance in intensive simulations.

Keywords: Graph Clustering · Social Influence · K-medoids · Data
Mining

1 Introduction

Clustering is one of the most commonly used methods in data mining. It hopes
to divide data points into several groups, and make sure instances in the same
group are similar to each other but different from those in other groups [6].
Clustering has been widely used in a variety of fields, such as machine learning
[4,8], pattern classification [9,12], image segmentation [3,14], and so on. For

This work was supported in part by the National Key R&D Program of China
[2020YFB1707900], the National Natural Science Foundation of China (NSFC)
[62202055, 62272302, 62172276], and Shanghai Municipal Science and Technology Major
Project [2021SHZDZX0102].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 403–415, 2024.
https://doi.org/10.1007/978-3-031-49614-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_30&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_30

404 J. Guo et al.

example, a general method for clustering is called “centroid-based clustering”.
Its key point is to find the cluster center, which is related to the number of
clusters K. The most important part of clustering is how to define features, and
then group instances with similar features together. They realize grouping, try
to improve the quality of clustering by measuring similarity and repeat until
they converge. Therefore, when it comes to clustering, the similarity measure
should be predefined according to the requirements of real-world applications.

However, in the existing similarity measure of users in social networks, they
tended to obtain information directly from graph structure or make use of the
inherent properties such as users’ age and gender. In other words, the similarity
measures used for clustering in the past were usually single-dimensional. In fact,
this is not enough. For example, global factors such as social influence were
usually neglected. Social influence is the influence of a group of users through
their words and behaviors. By analyzing and mining social networks, we can
understand how people communicate with each other and how the information
spreads in social networks. Naturally, when defining similarity, we should take
the influence analysis into account and the similarity measure should be multi-
dimensional. Therefore, our design is based on the following assumptions. Firstly,
we divide users’ interests into several areas, and each area has several activities.
Then, the users’ interests can be taken advantage of to find out the activities
they participate in. For one thing, we need to make use of the direct connection
between users. For another thing, some messages are contained in the users’
participation in different areas and activities. Secondly, the influence of each user
should be contained instead of being discarded because the influential people for
an area or activity can be considered similar to some extent.

Based on the above Observations, We can Summarize our Main Inno-
vations as Follows. Firstly, the influence in social networks can be divided into
mutual influence and self influence by us. Mutual influence depends on users’
interests, and it will be quantified by studying the areas and activities that
users are engaged in. Inspired by this, we novelly define the MatchScore and
MismatchScore between any two users, so as to weigh the similarity in the mutual
influence part and optimize the influence propagation in the self influence part.
Secondly, self influence is more about the accumulation of influence in social net-
works, and the results are generated by the users themselves. In the process of
influence propagation, both PageRank (PR) algorithm and linear threshold (LT)
model in the influence maximization (IM) problem [2,5] ignore the topic when
propagating messages. In order to solve these challenges, we merge them together
and propose a new influence propagation model, PR-Threshold++, where the
weights of edges are defined by using the above matching scores. Thirdly, by
comprehensively considering users’ properties, mutual influence, and self influ-
ence, we propose a multi-dimensional similarity measure, which is totally differ-
ent from the existing single-dimensional ones. Finally, under our proposed simi-
larity measure, we design a new clustering algorithm, Clustering with Influence
Analysis (CIAA), based on K-medoids clustering [1]. In addition, we also prove
that our CIAA algorithm can achieve the clustering that contains various factors

Graph Clustering Through Users’ Properties and Social Influence 405

compared to the common K-medoids algorithm [7,13]. At the same time, we
put forward a new index, sparsity, to evaluate our results, which indicate the
correctness and effectiveness of our proposed clustering.

2 Problem Statement

A social network usually relies on graph, which is denoted by G(V,E) where
V represents node (user) set and E represents edge set. There are two types
of edges: undirected (v1, v2) and directed 〈v1, v2〉. In the directed graphs, the
node v’s in-degree is the number of edges whose destination is v, and out-degree
is the number of edges whose source is v. There are two kinds of graph in our
problem: Distance graph and Propagation graph. A Distance graph is defined as
Gd(V,E,D), where D represents the set of distances corresponding to set E and
is calculated according to the adopted method. A Propagation graph includes
User network and Activity network, which is used to deal with self influence
and mutual influence respectively. A User Network is defined as Gu(V,E, P),
where P is the set of influence probability which goes with each edge in E.
In other words, each element p ∈ P decides the probability whether this edge
exists or not. The Activity network is of great significance. It consists of several
independent subsets, each of which represents an area (a kind of activities). Each
element in an area is a specific activity. For example, an Activity network might
include areas like music, while in the area of music, it has activities like playing
flute, blues, and so on.

Fig. 1. Structure of Graphs and Networks

We take Fig. 1 to illustrate our problem in detail. As shown in Fig. 1, the (a)
shows the format of user information. There are two kinds of knowledge about
her for each user. The first part is her properties like age, height, and job, which
makes it convenient to calculate the distance between different users. The second
part is her interests, where areas range from 1 to m and in each area, activities
range from 1 to n. The (b) offers an example of Distance graph, where the value
on each undirected edge represents the distance between two users calculated
by their properties. The (c) shows us a case of User network, in which users are
connected through directed edges. Each user has her own influence ability, thus
the possibility p of each edge is used in influence propagation and we temporarily

406 J. Guo et al.

dismiss it here. The (d) is an example of Activity network. To better explain, we
combine Activity network with User network, where the red edges from users to
activities represent that the user is fond of its corresponding area. For example,
there are four areas like music, sport, reading, and movie.

Fig. 2. Propagation Graph and Bipartite
Relationship

Fig. 3. Compositions of Similarity Mea-
sure

Activity network is denoted by the set Sa = S1 ∪ S2 ∪ · · · ∪ Sm, where Sk

represents the set of the kth area and contains at most n different activities.
Thus, Activity network Sa can be described as a graph with no edge, like the
right part of Fig. 2. When we temporarily ignore the directed edge in the User
network, a bipartite graph is established from users in the User network to activ-
ities in the Active network, which is shown in Fig. 2. The core problem is to
partition users V into K disjoint clusters, and ensure the clustering
results in densely connected groups and each has nodes with simi-
lar influence ability and activity behaviors through designing a new
similarity measure.

3 Similarity Measure

In clustering, it is important to distinguish whether two instances are similar.
In this section, we are going to take three factors into consideration Distance,
Mutual Influence, and Self Influence. As Shown in Fig. 3, we will use L2-
norm to calculate the distance between user’s properties. Given two instance X =

(x1, · · · , xd) and Y = (y1, · · · , yd), we have Dist(X,Y) =
√∑d

i=1(xi − yi)2. In
the influence part, we will use MatchScore and MismatchScore to deal with
Mutual influence, then put forward PR-Threshold++ that combines PageRank,
LT model, and MatchScore to calculate Self influence. Finally, the components
in orange boxes together form the Gap function.

3.1 Mutual Influence

In the mutual influence part, we should determine their matching degree accord-
ing to their interests. We put forward two indicators to measure the similarity

Graph Clustering Through Users’ Properties and Social Influence 407

and dissimilarity respectively, MatchScore (MaS) and MismatchScore (MiS).
Here, we define the importance (popularity) of an area or activity with the
rate they make up. For example, if 10 person-times (10 out of 100 people) are
interested in music, the importance of music will be graded as 0.1. The”person-
time” is statistical counts, not a person. The degree to which two users match
each other depends on how many common activities they share within the scope
of our statistics.

We set a matrix Am×n for every user. In such a matrix, m represents the
number of areas and n represents the number of activities in an area. Then,
Au[x][y] = 1 if and only if the user u is fond of activity y in the area x; otherwise,
we have Au[x][y] = 0. The extent to which two nodes match, for example, u and
v, will be calucated as Eq. (1):

MaS(u, v) =
∑M

i=1

∑N

j=1
(Au[i][j]&Av[i][j]) × z[i][j] (1)

where & is logical AND. The z[i][j] represents the importance of area i or activity
j in the area i. For example, z[music][·] = 0.1 is defined according to the above
example, which can be considered as a weighted index. Correspondingly, the
extent to which u and v mismatch will be calculated as Eq. (2):

MiS(u, v) =
∑M

i=1

∑N

j=1
(Au[i][j] ⊕ Av[i][j]) × z[i][j] (2)

where ⊕ is logical Exclusive OR. Here, MaS is mainly used in self influence and
MiS is mainly used to measure the gap in mutual influence, but it also plays a
role in influence propagation.

3.2 Self Influence

In self influence part, we try to measure the ability of each node to spread
messages and influence others in the network. PageRank is an algorithm for
evaluating the importance and quality of a webpage in a search system. From
these points of view, the influence exerted by a node is related to its neighboring
nodes, similar to the idea of social network analysis.

To the PageRank algorithm, we first calculate the PR values of those nodes
who are not destinations of any other nodes. Then, we can further use them as
source, and calculate the PR values of those nodes that are only connected to
the source nodes. Afterwards, the process will repeat until every node has its
own PR value. For each user u, its PR value is defined as

PR(u) =
∑

v∈Iu
PR(v)/L(v), (3)

where Iu is the set of inbound links of page u and L(v) is the number of out-
bound links of v. We have to get the topological orders of nodes, thus the time
complexity is O(|V |2).

In fact, the process in PageRank algorithm is closer to the accumulation
of influence. It is carried out in a fixed way, and the interactions between the

408 J. Guo et al.

Fig. 4. Example of Linear Threshold Model

nodes can not simulate diffusion in social networks. Thus, we turn to the LT
model [2], which can be summarized as follows (a little different from its original
definition): 1) Each directed edge (u, v) has a weight w(u, v) ∈ [0, 1]; 2) Each
node v has a threshold θv randomly chosen in [0, 1]; 3) At the beginning, only
nodes in the seed set S0 are active; 4) In round t, the inactive nodes v ∈ V \St−1

will be activated by its in-neighbors if their influence sum exceeds v’s threshold,
then adding the newly activated node in this round to St−1.

Let us take Fig. 4 as an example. At the beginning, node A and node B
are active, their influence values are 0.5 and 0.2 respectively. The threshold
θ is set as 0.5. In the first round, node C can be activated because InfC =

InfA
out−degreeA

+ InfB
out−degreeB

= 0.5 + 0.2
2 = 0.6 > 0.5. In the second round, node

D cannot be activated because InfD = InfB
out−degreeB

+ InfC
out−degreeC

= 0.6
2 + 0.2

2 =
0.4 < 0.5. In the third round, node E cannot be activated as well because InfE =

InfC
out−degreeC

= 0.6
2 = 0.3 < 0.5. In fact, we find some shared characteristics of

these two models: Firstly, in PR Algorithm, it arranges the weight of each edge
according to the out-degree of the source of edges. And in LT model, it randomly
decides the weight of each edge theoretically but it takes a similar method as
PR in real applications. Secondly, the influence goes along the edges in both
two models, which means the propagation ways are the same. The LT model
defined above is a little different from its original definition in [2] because we use
influence values of nodes. That is to say, we can calculate the influence ability
with the help of PR algorithm and then simulate the propagation in LT model.

Because of too many random operations, LT model also has some shortcom-
ings. It is mainly summarized as the following two points: (1) The influence
degree of active users on inactive users is uncertain, because the weight of each
edge is determined randomly; and (2) The threshold of each node are also ran-
domly assigned. In order to improve the problems in LT model and help the
whole model get better performance, we made the following adjustments. As for
the first drawback, with the help of mutual influence, we can weigh the simi-
larity between users by MaS, thus deciding how much the inactive users are
affected. We will compare the MaS and MiS, as well as the reciprocal of out-
degree of source. The rule of comparison is: if MaS ≥ MiS, then the influence
will propagate in the greater one between the similarity (MaS) and the recip-
rocal of out-degree of source. Otherwise, we compare MiS and the reciprocal of

Graph Clustering Through Users’ Properties and Social Influence 409

out-degree of source. If MiS is bigger, then the propagation weight will be zero;
Otherwise, the propagation will be the reciprocal of out-degree of source. The
weight in LT model between u and v is shown as Eq. (4).

w(u, v) =

{
max{MaS(u, v), 1

od(u)},MaS(u, v) ≥ MiS(u, v)
cmp{MiS(u, v), 1

od(u)},MaS(u, v) < MiS(u, v), (4)

where od(u) means out-degree of user u and function cmp defined as Eq. (5):

cmp
{

MiS(u, v),
1

od(u)

}
=

{
0,MiS(u, v) ≥ 1

od(u)
1

od(u) ,MiS(u, v) < 1
od(u) .

(5)

As for the second drawback, we have already made the threshold of subsequent
activation after initialization should not be lower than the PR values of the first
20% users, thus ensuring that influence ability of users in active set will not be
too weak.

To sum up, the new propagation model, PR-Threshold++, has been formu-
lated, which combines PR algorithm and LT model to measure the ability to
spread influence. It can be used to calculate the self influence of any user. Given
any user u, the SelfInfluence(u) can be calculated by following steps:

1. Initialize each node with PR value of 1/|V |.
2. Compute the PR value of all nodes until convergence based on Eqn. (3).
3. Initialize S0 = {u}.
4. Repeat from t = {1, 2, · · · } until no activation happens: For any node v that

is newly activated in round t − 1, it can diffuse its influence to its inactive
out-neighbor v′ ∈ N+(v) ∪ (V \St−1). Here, the weigh w(v, v′) is defined in
Equ. (4). If we have

∑
x∈N−(v′)∩St−1

w(x, v′) ≥ θv′ , then v′ can be activated
and St = St−1 ∪ {v′}. Here, N+(·) and N−(·) are out- and in-neighbor set.

5. Return the final number of active nodes |St|.

3.3 The Combination of Different Parts

Because we emphasize the influence factor, we can even map self influence and
mutual influence to multiple times of the average gap, which leads to greater
differences in the calculation of similarity between influences. This kind of com-
bination is much better since both parts can make a difference. However, it is
worth mentioning that the number of times cannot be too large. On the con-
trary, after mapping, ideally, the distance is greater than the difference between
users’ influence in the same cluster, but less than the difference between users’
influence from two different clusters. Along with this thought, we can find out
the coefficient of Distance, Self Influence and Mutual Influence. We denote
them by w0, w1, and w2 respectively. And we can draw a conclusion about the
final similarity measure between user u and user v as

Gap(u, v) = w0 · Dist(u, v) + w1 · |SeG(u, v)| + w2 · |MiS(u, v)| (6)

where SelfGap(u, v) is abbreviated as SeG(u, v), which is to represent the value
of |SelfInfluence(u) − SelfInfulence(v)| as shown in Fig. 3.

410 J. Guo et al.

4 Clustering with Influence Analysis Algorithm

In this section, we are going to talk about the clustering algorithm that we
proposed: Clustering with Influence Analysis Algorithm (CIAA). We will go
from several aspects, including the general algorithm, as well as some details we
have changed and adjusted according to our similarity measure. On the whole,
we can choose a clustering algorithm from K-means and K-medoids. In this
paper, since function Gap contains influence factors other than distance, it is
more likely to have noise. Although K-medoids run slowly, we still choose it to
avoid the negative results brought by K-means. Finally, we choose K-medoids as
the template to design our CIAA as shown in Algorithm 1.

Algorithm 1: CIAA Clustering

Input: Social network (both user’s properties and Graph G)
Output: K clusters and its composition

1 Run PR-Threshold++, obtain the influence ability of each node ;
2 Run DENCLUE and get initial cluster centroids, for example

C = {c1, c2, · · · , ck};
3 repeat
4 For every node v, compute its Gap to the k cluster centers respectively

according to Eq. (6) ;
5 Allocate the instance to its nearest cluster;
6 For each ci, update cluster center according to Eq. (7);

7 until Cluster centers no change or the iterations reach upper bound ;

Initialization: The main work in the initialization part is to decide which nodes
to be centroids. As to how to choose initial centroids, it is an important problem
in clustering algorithms because it will directly affect the results. Here, we adopt
DENCLUE [10], which chooses centroids from the densest area. Thus, the first
step is to compute the density for each user node in the social graph. The density
of a certain node can be computed by D(ui) =

∑
uj∈V,uj �=ui

1/Gap(ui, uj), where
the Gap is defined in Eqn. (6). If a user node has a large density, it is close
to surrounding users in distance and has adequate connections with them. In
the meanwhile, it shares highly similar areas or activities with the surrounding
neighbors. Thus, we choose the top K user node with the highest density as
initial centroids, which is denoted by {c1, c2, · · · , ck}.

Cluster Objectives: The clustering objective is to minimize the sum of dis-
tance within every cluster. However, we have to adjust the distance calculation
since we not only consider the distance part but take the influence part into
account as well, which has been defined in Eqn. (6). Besides, the property of
convergence can be easily inherited from K-medoids.

Node Assignment and Updating Process: The goal of our clustering algo-
rithm is to minimize the Gap. When it comes to node assignment, we will allocate
a node to the cluster whose centroid has the minimum Gap to the current node.

Graph Clustering Through Users’ Properties and Social Influence 411

To explain it specifically, when a number of nodes are assigned to its closest
cluster centroid, we have to re-determine and update the centroid of the cluster.
To find such a node, we need to compute the Gap between a chosen node and
other nodes, then the centroid will be updated as the node with minimum Gap.
For example, for node ui, the Gap between it and other nodes is

Sum =
∑

uj∈Vc,ui �=uj

Gap(ui, uj), (7)

where Uc represents the user set of the cluster that ui and uj in. In the meantime,
we would like to find out the cluster’s interest label. To realize it, we only need
to evaluate the most popular area or activity in this cluster.

5 Experiment and Performance

In this section, we would like to carry out the experiments and analyze the per-
formance of our CIAA clustering. To declare, all executing time in this section is
in microseconds. The experiments can be separated into several parts to demon-
strate the superiority of our algorithm from different angles. First, the SSE refers
to the sum of squared estimate of errors. In clustering, it can be conveniently
calculated as SSE =

∑k
i=1

∑
p∈Ci

|p − mi|2, where Ci refers to the ith cluster, p
is data point in the Ci, and mi is the mean value of all the sample points in Ci.
Therefore, the smaller SSE is, the more accurate the results are and the better
the clustering algorithm is.

The Way to Choose Proper K. To decide the proper value of K, a commonly
used method is ”Elbow Method”. As the number of clusters (K) increases, the
degree of aggregation of each cluster gradually increases and the clusters are
getting finer-grained, thus the SSE will become smaller. When K is under the
real number of clusters, the SSE will decrease significantly because the degree of
aggregation inside each cluster increases significantly as K increases. However,
when K reaches the real number of clusters, the aggregation payback will go
down rapidly even though K keeps going up. Therefore, the SSE will turn into a
steady trend. For a randomly generated dataset, the K begins from 1. Before K
is set as 3, the SSE goes down rapidly. But the speed lowers dawn and goes in
a steady trend after that. Thus, we should set the number of clusters as three,
which goes with the fact. The variation tendency between SSE and K is shown
in Fig. 5.

Sparsity. To analyze the performance of our CIAA algorithm, the SSE is one
of the chosen quantitative standards. However, since we have changed the sim-
ilarity measure in CIAA, it is not proper to compare their performances under
this measurement. Thus, we design a new index to characterize the clustering
effects, Sparsity, which is defined as Sparsity = IntelGap/InnerGap, where
IntelGap refers to the average Gap between the final centroids of each cluster
and InnerGap refers to the average Gap between the nodes which are in the

412 J. Guo et al.

Fig. 5. Relationship between SSE and K Fig. 6. Comparison of Execute Time

same cluster. This index ignores the difference brought about by the inconsis-
tency between various measurements. Since we take K-medoids model, the time
complexity is a great part that we care about. Therefore, we make comparisons
in the execution time. Then, we observe whether the objective function in CIAA
will help the clustering process converge faster. Besides, we will look into the
inner structure and composition of the clusters to understand the clustering
results.

The dataset is based on Cora [11], it consists of two separate files, which are
Content file and Site file. In the Site file, it describes the relationship between
papers in the form of < referred paper id > and < paper id >, and the edge
goes from the right to the left. The experimental results of their corresponding
running time and sparsity are shown in Fig. 6 and Fig. 7. Shown as Fig. 6, in
the running time, CIAA can help clusters converge faster. No matter how many
clusters there are, CIAA consumes much less time than K-medoids. As we pre-
dicted before, since the introduction of social influence by CIAA, the value of
SSE cannot be on the same scale, where the SSE of CIAA is five to nine times
of that in K-medoids. The SSE can be controlled by adjusting the weights in
Gap function. Then, we change our mind and turn to Sparsity. Shown as Fig. 7,
we compare these two algorithms. It is obvious that the two models are quite
close in Sparsity, which reflects the structures and compositions of the clusters
are almost the same in density. Although the sparsity of CIAA is slightly smaller
than that of K-medoids when K is five, CIAA performs better than K-medoids
when K increases to 10, 20, 50, and 100, which indicates that it achieves a good
performance in clustering.

Composition of Clusters. We realize that when the number of clusters is large
enough, the social graph will be partitioned into many pieces and the clusters
can be very fine-grained. In this case, the number of nodes in each cluster will be
quite small. Hence, we would like to check whether the influence of the nodes in
the same cluster is quite close under this circumstance. The trends of composition
and reduction ratio are shown in Fig. 8.

Graph Clustering Through Users’ Properties and Social Influence 413

Fig. 7. Comparison of Sparsity Fig. 8. Composition of Clusters and
Reduction Ratio

Firstly, we set the number of clusters as 1000 since there are 2700 nodes in
the graph in all. The reason is the average number of nodes in each cluster will
be 2.7 by doing so and it is convenient for us to dive into the inside composition.
Therefore, in this situation, we can compare the nodes in the same cluster and
check the difference in their influence abilities. Furthermore, if two users who
are in the same clusters have a similar influence, we can consider merging them.
Shown as Fig. 8, the number of pairs between which the difference in influence
ability is less than 0.05 is 372. If we enlarge the range, the number of pairs that
are less than the range will increase. For these pairs of nodes, their Gap are
small enough. If we merge them, then we can reduce the size of nodes in the
whole social graph. The maximum reduction ratio is achieved if all the nodes
are merged into one of them. However, it is quite rare in real applications. The
method we take is to merge these nodes pair by pair, which corresponds to the
minimum reduction ratio. Even in this case, the reduction ratio is close to 30%
if we allow merging nodes whose influence difference is less than 0.3. When we
set the number of clusters as 2000, all indexes in Fig. 8 decrease compared to
that in K = 1000. This is because the average number of nodes in a cluster is
1.35, thus there is only one node in most clusters, which cannot be merged.

To sum up, we should properly set the number of clusters if we want to reduce
the size of nodes by merging them together. A good suggestion is to make the
average number of nodes in a single cluster to be slightly more than 2. Here, we
validate that when the number of clusters is large enough, nodes in the same
cluster tend to be very close in Gap values. If we want to promote something in
the whole social network, we can choose a representative among the nodes with
a close Gap value, thus saving the cost. Take IM for example, we can design
heuristic seed selection strategies based on this clustering, and thus accelerate
the process within this reduced graph.

6 Conclusion

To summarize, we propose a new clustering algorithm, CIAA, in this paper,
which can be effectively applied to clustering in social networks. Different from
the previous work, we not only consider users’ properties, but also pay attention

414 J. Guo et al.

to social influence from a global perspective, where the influence exerted by users’
direct relationships and influence generated through indirect ways like common
interests. The distance part in traditional clustering algorithm still exists in
our mind, and we study social influence by mutual influence and self influence.
With these taken into consideration, we put forward a new PR-Threshold++
model and make many improvements. The PR-Threshold++ can be divided into
two steps: influence accumulation via PageRank and influence diffusion through
adjusted LT Model. Last but not least, we design a new similarity measure by
combining the distance factor with the influence. We incorporate this similarity
into K-medoids and make corresponding modifications. Through experiments
and analysis, we conclude that CIAA really helps us achieve multi-dimensional
clustering and get good performance.

References

1. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edition.
Morgan Kaufmann (2011)

2. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a
social network. International Conference on Knowledge Discovery and Data Mining
(ACM SIGKDD), pp. 137–146 (2003)

3. Kim, W., Kanezaki, A., Tanaka, M.: Unsupervised learning of image segmentation
based on differentiable feature clustering. IEEE Trans. Image Process. 29, 8055–
8068 (2020)

4. Knattrup, Y., Kubecka, J., Ayoubi, D., Elm, J.: Clusterome: a comprehensive
data set of atmospheric molecular clusters for machine learning applications. ACS
Omega 8(28), 25155–25164 (2023)

5. Li, Y., Gao, H., Gao, Y., Guo, J., Wu, W.: A survey on influence maximization:
from an ml-based combinatorial optimization. ACM Trans. Knowl. Discov. Data
17(9), 133:1–133:50 (2023)

6. Mishra, P.K., Verma, S.K.: A survey on clustering in wireless sensor network. In:
2020 11th International Conference on Computing, Communication and Network-
ing Technologies (ICCCNT), pp. 1–5. IEEE (2020)

7. Park, H.S., Jun, C.H.: A simple and fast algorithm for k-medoids clustering. Expert
Syst. Appl. 36(2, Part 2), 3336–3341 (2009)

8. Parker, A.J., Barnard, A.S.: Selecting appropriate clustering methods for materials
science applications of machine learning. Adv. Theory Simul. 2(12), 1900145 (2019)

9. Ran, X., Zhou, X., Lei, M., Tepsan, W., Deng, W.: A novel k-means clustering
algorithm with a noise algorithm for capturing urban hotspots. Appl. Sci. 11(23),
11202 (2021)

10. Rehioui, H., Idrissi, A., Abourezq, M., Zegrari, F.: DENCLUE-IM: a new approach
for big data clustering. Int. Conf. Ambient Syst. Netw. Technol. (ANT) 83, 560–
567 (2016)

11. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93–93 (2008)

12. Taunk, K., De, S., Verma, S., Swetapadma, A.: A brief review of nearest neigh-
bor algorithm for learning and classification. In: 2019 International Conference on
Intelligent Computing and Control Systems (ICCS), pp. 1255–1260. IEEE (2019)

Graph Clustering Through Users’ Properties and Social Influence 415

13. Velmurugan, T., Santhanam, T.: Computational complexity between k-means and
k-medoids clustering algorithms for normal and uniform distributions of data
points. J. Comput. Sci. 6(3), 363–368 (2010)

14. Zhang, H., Li, H., Chen, N., Chen, S., Liu, J.: Novel fuzzy clustering algorithm with
variable multi-pixel fitting spatial information for image segmentation. Pattern
Recogn. 121, 108201 (2022)

Machine Learning, Blockchain
and Others

Incorporating Neural Point Process-Based
Temporal Feature for Rumor Detection

Runzhe Li, Zhipeng Jiang, Suixiang Gao, and Wenguo Yang(B)

School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing, China

lirunzhe20@mails.ucas.ac.cn, {jiangzhipeng,sxgao,yangwg}@ucas.ac.cn

Abstract. Social network platforms have facilitated information
exchange, but also made the spread of rumors more convenient and
rapid. Rumors on the internet leave behind multiple pieces of infor-
mation with each repost, with temporal information playing a crucial
role. Existing studies have focused on extracting various features to dis-
cern the veracity of rumors, but the direct analysis of repost timing has
been overlooked. In this paper, we present a comprehensive rumor detec-
tion method by incorporating temporal features derived from a neural
point process model. Our approach investigates the divergences in tem-
poral patterns of reposts between true and false rumors. Moreover, our
proposed features can be easily integrated with existing rumor detec-
tion methods based on alternative features. We conduct experiments on
two publicly available datasets to validate the effectiveness of tempo-
ral features. The results demonstrate our proposed model outperforms
competing methods.

Keywords: Social networks · Deep learning · Rumor detection

1 Introduction

In the era of high-speed information dissemination through social media and
online platforms such as Twitter, rumors have become an epidemic and influ-
ential force in shaping public opinion. The rapid increase of rumors poses a
significant challenge, as they can spread swiftly, often lacking verifiable evidence
or factual basis. Consequently, identifying and combating rumors has become a
critical endeavor, requiring effective and efficient methods for rumor detection.

In recent years, deep learning models have emerged as the dominant app-
roach for rumor detection, replacing traditional machine learning methods such
as Decision Tree [1]. Concurrently, the range of available information and data
types has expanded significantly. For instance, Ma et al. [2] processed the text
content of tweets using Recurrent Neural Network (RNN) and Long Short-Term

Supported by the National Key R&D Program of China under grant 2022YFA1003900
and by the National Natural Science Foundation of China under grant numbers
12071459 and 11991022.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 419–430, 2024.
https://doi.org/10.1007/978-3-031-49614-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_31&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_31

420 R. Li et al.

Memory (LSTM) to detect rumors, while Bian et al. [3] employed a bi-directional
graph neural network to handle rumor propagation structure through user rela-
tionship chains. Lu et al. [4] utilized multiple neural networks, including RNN,
Convolutional Neural Network (CNN), and attention mechanism, to incorporate
various information sources, such as text, user characteristics, and relationships
between users, resulting in improved detection performance. However, most arti-
cles do not incorporate modules specifically designed to handle temporal infor-
mation, and the utilization of temporal information often converts to the study
of propagation sequences or cascades [1,5–7]. Research has indicated notable
differences in the temporal characteristic between the spread of true and false
rumors [6]. Moreover, unlike text and personal information, time information
in social media is difficult to manipulate or tamper with, making it a robust
characteristic that researchers can leverage to determine the veracity of rumors.

Point process is used to describe the underlying temporal mechanism govern
a series of events occurring in chronological order [8]. The Hawkes process [9],
as a specific type of point process, captures the unique mechanism of mutual
excitation between events, making it suitable for capturing the complex temporal
dynamics involved in the rumor propagation. Therefore, point process methods
have recently been employed in rumor detection tasks. Naumzik et al. [10] present
a probabilistic model that classifies true and false rumors based on the underlying
spreading process on Twitter. Zeng et al. [11] utilized neural Hawkes process [12]
to determine the optimal stopping time for rumor detection models, ensuring
both speed and reliable results. While the parameter-defined point process has
obvious limitations in the context of social networks, neural networks have shown
better performance. However, there has been no direct research utilizing neural
point processes to generate temporal features for rumor detection tasks.

Our research focuses on leveraging two fundamental and simple pieces of
information: the original text and the timestamps of reposts. We firmly believe
that delving deeper into the analysis of temporal information can offer valuable
insights, and temporal point processes provide a robust theoretical foundation
for our investigation. In this work, our primary contributions are as follows:

• We employ a neural point process model to capture the underlying temporal
pattern behind the propagation of true rumors, making the simple timestamps
generated during rumor propagation more meaningful.

• We construct several temporal features for rumor detection tasks, which can
easily be combined with existing models, augmenting their detection ability.

• Through extensive experiments conducted on publicly available datasets, we
demonstrate the effectiveness of our temporal features and show that our
proposed model outperforms state-of-the-art models.

2 Related Work

The emergence of deep learning technology has propelled the development of
rumor detection and point process methods to a new peak. In this section, we
introduce several relevant deep learning methods.

Incorporating Neural Point Process-Based Temporal Feature 421

2.1 Rumor Detection Methods with Multiple Features

To extensively explore diverse sources of information and capture high-level
features, many rumor detection methods based on deep learning models have
recently been proposed. Graph-aware Co-Attention Networks [4] utilized a mixed
model consisting of five different modules to generate prediction results. Bi-
GCN [3] extracted propagation and dispersion features through Top-Down graph
convolutional networks and Bottom-Up graph convolutional networks, respec-
tively. In addition, Song et al. [13] introduced Credible Early Detection (CED)
by combining RNN and CNN to efficiently detect rumors at an early stage. Tan
et al. [14] conducted a comprehensive review of the research status in rumor
detection from multiple perspectives, including feature selection methods. How-
ever, above mentioned methods are not efficient in directly capturing features
from temporal information. Moreover, due to the limited interpretability of deep
learning models, the latent features used to determine the veracity of rumors
fail to provide additional information, resulting in a lack of theoretical support.
Recently, Zhang et al. [15] proposed Dual Emotion Features for distinguishing
true and false news, our temporal feature is inspired by their work.

2.2 Deep Learning Approaches for Point Process

In the context of information diffusion, point processes have been employed to
capture the temporal dynamics of rumor spread and information propagation
in social networks. Recently, Deep learning approaches for point processes have
gained significant attention, since they offer powerful tools for capturing complex
patterns and dependencies in the data [16]. For instance, Mei et al. [12] utilized
a neurally self-modulating multivariate point process with a continuous-time
LSTM, allowing past events to influence future event intensities. Similarly, [17]
used a feed-forward neural network to model the integral of the intensity func-
tion, enabling exact evaluation of the log-likelihood function without numerical
approximations. Zhang et al. [18] designed a model called self-attentive Hawkes
process (SAHP) bring more interpretable than RNN-based models. Moreover,
[19] showed that existing research on neural point processes primarily focuses
on their applications in web-related domains, such as modeling user behavior on
social media platforms. This contextual background is why we opt for a neural
network model to generate temporal features.

3 Preliminaries

We introduce several fundamental concepts that are essential for understanding
the related problem. Firstly, we provide a concise problem description as follows.

3.1 Problem Statement

The goal of the rumor detection task is to predict the labels (true or false) of
rumors based on certain known information. Let C = {c1, c2, . . . , cm} be a set of

422 R. Li et al.

rumor instances, where ci represents the i-th rumor and m is the total number
of instances. Each rumor instance ci = {yi,oi, Si} is composed of the ground-
truth label yi ∈ {0, 1}, the text content of the original post oi, and a set of
relevant repost timestamps in chronological order Si =

{
t1, t2, . . . , t|Si|

}
. The

label yi indicates ci is false if yi = 1 or true otherwise. |Si| denotes the number
of relevant reposts, and tj represents the timestamp of the j-th repost, which
is defined as the relative time of the j-th repost with respect to the original
post, such that tj−1 < tj for j ≥ 1, with the convention t0 = 0. The objective
is to learn a rumor detection classifier f : f(oi, Si) → yi that maximizes the
prediction accuracy for any given instance ci.

3.2 Neural Temporal Point Process

Temporal point process (TPP) is a probabilistic model that captures the behav-
ior of sequences of discrete events observed in continuous time, such as informa-
tion spreading in social media. The intensity function [20] is a convenient and
intuitive way of specifying TPP, which is defined as

λ(t) = lim
h→0+

P (N(t, t + h] > 0)
h

(1)

where N(t, t + h] indicates the count of the number of events in an interval of
length h. λ(t) intuitively measures the rate at which the events occur.

In most cases, events in a TPP mutually influence each other. Therefore,
we need to consider the historical information before time t, denoted as Ht =
{ti}ti<t, when define a conditional intensity function

λ (t | Ht) = lim
Δ �→0

P (one event occur in [t, t + Δ) | Ht)
Δ

(2)

Hawkes process defines a classical parameterized form for the conditional inten-
sity function as λ (t | Ht) = μ + α

∑
ti<t exp (− (t − ti)), where μ and α are

positive parameters.
However, utilizing neural network models to describe TPP is more suitable

for complex real-world scenarios than simply using parameterized forms to define
conditional intensity functions. RMTPP [21] uses a recurrent neural network to
calculate the influence of the history up to the i-th event hi by

hi = max
{
Wyyi + Wtti + Whhi−1 + bh, 0

}
(3)

where yi and ti are the mark (additional information accompanying an event)
feature and time feature of the i-th event,

{
Wy,Wt,Wh,bh

}
are learnable

parameters. Based on hi, the conditional intensity function can be formulated
by a exponential function

λ (t | Ht) = exp
(
vt� · hi + wt (t − ti) + bt

)
(4)

Incorporating Neural Point Process-Based Temporal Feature 423

where vt is a column vector, and wt, bt are scalars. According to the conditional
intensity function, the conditional density function can be specified by

f (t | Ht) = λ (t | Ht) exp
(

−
∫ t

ti

λ (s | Ht) ds

)
(5)

Then, the timing for the next event can be estimated by using the expectation

t̂i+1 =
∫ ∞

ti

t · f (t | Ht) dt (6)

3.3 Temporal Pattern in Rumor Propagation

On social media platforms, rumors propagate through user actions, such as
clicking the share button, which are recorded with timestamps, forming a time
sequence {t1, t2, . . . , tn} along with the rumor cascade. The cascade exhibits com-
plex and specific statistical temporal characteristics, such as the self-exciting or
rich-get-richer effect, where the accumulation of more shares indicates a higher
likelihood of further reposts.

The previously mentioned Hawkes process is a point process used to describe
the self-exciting nature and has been employed to capture the temporal pat-
tern of rumor cascades. Prior research on rumor detection assumes the exis-
tence of distinct Hawkes processes, MT and MF , underlying true and false
rumors, respectively. Empirical validation has demonstrated the feasibility and
effectiveness of this assumption. Furthermore, authoritative research has indi-
cated significant differences in the propagation characteristics between true and
false rumors. Therefore, the temporal structure characteristics are well-suited
for detecting rumors and, objectively, they are more challenging to manipulate
compared to common features such as textual and user-based features.

However, in our preliminary research, when attempting to utilize a neural
point process model to fit the latent point processes corresponding to true and
false rumors, we observed that true rumors exhibit a more consistent temporal
pattern, while learning a universal temporal pattern for false rumors proved
difficult. This challenge may arise from the fact that false rumors contain various
fabricated information without a unified false characteristic, leading to a lack of
consistent temporal pattern. To address this issue, in our upcoming research, we
assume that true rumors exhibit a relatively consistent temporal pattern, while
false rumors deviate from this pattern to some extent.

4 Model

In this section, we propose a novel model for rumor detection by incorporating
neural point process-based temporal features. The core idea of our approach
is to explore the underlying information contained in each simple timestamp
throughout the rumor propagation process. Figure 1 illustrates the procedure
of extracting temporal features and integrating them with textual features to
predict the rumor label.

We first discuss how to generate the temporal features of an instance ci.

424 R. Li et al.

Fig. 1. Model framework. To simplify the explanation, we have omitted the subscript i.
The integrated temporal feature e is composed of four components and is concatenated
with the textual feature x for the final prediction.

4.1 Temporal Feature Construction

To capture the underlying statistical distribution of cascades in the propagation
of true rumors, we employ a neural point process model [17] to fit this distribu-
tion. The objective of the model is to compute the cumulative hazard function,
which is defined as follows

Φ (t − ti | hi) =
∫ t−ti

0

φ (s | hi) ds (7)

where hi is the hidden state of the RNN which captures the historical information
up to time ti. φ is a non-negative function referred to as the hazard function and
the following equation hold numerically

φ (t − ti | hi) = λ (t | Ht) (8)

By directly estimating (7) instead of (8), we can avoid the numerical loss caused
by approximating the integral, leading to more accurate results.

After training the model, we obtain a neural point process RT that captures
the underlying distribution of true rumor reposts. Subsequently, we fix all model
parameters and calculate the joint likelihood Pci for the time sequence {t1, ..., tn}
of each rumor cascade ci by

Pci (t1, . . . , tn) =
n∏

i=1

λ (ti | Ht) · exp
{

−
∫ t

0

λ (s | Hs) ds

}
(9)

Since we can determine the proximity of a sequence to the true distribution
RT by Pci , naturally, the temporal feature can be defined as it. Consequently,

Incorporating Neural Point Process-Based Temporal Feature 425

we obtain the likelihood vector elv
i = (l1, ..., lz) ∈ R

z and the mean likelihood
feature eml

i = 1
z

∑z
i=1 li ∈ R. Here, li = Pci (ti, . . . , ti+k) represents the likelihood

in an observed k-events subsequence.
Considering the predictive performance of the NPP model is also a crucial

metric, we can further define the temporal feature as a distance vector edv
i =

(d1, ..., dz) ∈ R
z which describes the absolute error between the actual time

of each repost and the model’s predicted repost time. Here, dj =
∥
∥t̂j − tj

∥
∥.

Similarly, the mean distance feature emd
i = 1

z

∑z
i=1 di ∈ R.

Finally, our integrated temporal feature is a concatenated vector that includes
the likelihood vector, mean likelihood feature, distance vector, and mean distance
feature as follows

ei = [elv
i , eml

i , edv
i , emd

i] ∈ R
2z+2 (10)

Note that for the variable z, assuming we have observed a total of n reposts and
the NPP model has an RNN with a window length set to k, then z = n + 1 − k.

4.2 Rumor Detection Module

Recognizing the limitations of relying solely on temporal features for achieving
highly accurate predictions, it is necessary to integrate a rumor detection module
capable of handling textual information. By adopting a combined approach that
leverages both temporal and textual features, we can derive a comprehensive
framework for making the final prediction label.

Textual Feature Generation. For the raw text oi of the original post, we
need to transform words and sentences into textual feature xi. To accomplish
this, we employ GloVe [22] to obtain word embeddings for each word, which
are then fed into a BiGRU (Bi-directional Gated Recurrent Unit) model [15].
Subsequently, mean pooling is applied to derive the textual feature xi.

Model Prediction. Our objective is to predict whether rumor ci is true or false
by utilizing both the temporal feature ei and textual feature xi. These features
are concatenated and then input into a multi-layer feedforward neural network
to generate the binary prediction vector ŷi as follows

ŷi = softmax (ReLU (Wf [ei,xi] + bf)) (11)

where Wf is the matrix of learnable parameters and bf is the bias. Note that
ŷi = [p̂0, p̂1], where p̂0 and p̂1 correspond to the predicted probabilities of label
yi being 0 and 1, respectively. Thus, it holds that p̂0 + p̂1 = 1.

We train the rumor detection module by minimizing the cross-entropy value,
which is defined as follows

L(Θ) = −yi log (p̂0) − (1 − yi) log (p̂1) (12)

where Θ denotes all the learnable parameters in the neural network.

426 R. Li et al.

5 Experiments

In this section, we first validate the effectiveness of temporal features. Next,
we compare our approach with several baseline methods. Finally, we provide
illustrative examples to demonstrate that temporal features can enhance and
refine text-based rumor detection task.

5.1 Settings and Datasets

Datasets. We evaluate our proposed method on two real-world datasets: Twit-
ter15 and Twitter16 [23]. These datasets comprise original posts and their cor-
responding sequences of reposts. Our study focuses solely on differentiating
between true and false (fake) labels. The labels of each instance are based on the
veracity tag of the corresponding article from rumor debunking websites such
as snopes.com and Emergent.info [23]. For each dataset, we allocate half of the
data for training the point process model. The training and testing set ratio is
set at 4:1, with 20 percent of the training set being partitioned as the validation
set. The remaining half of each dataset is divided into training, validation, and
testing sets for the rumor detection task, with a ratio of 3:1:1.

Competing Methods. We compare our proposed method with several state-
of-the-art baselines, including:

• SVM-TS [24]: A linear SVM classifier that constructs a time-series model by
using handcrafted features.

• CSI [25]: An RNN-based model that integrates three key features of rumor:
article text, user response, and source user behavior.

• mGRU [2]: A modified gated recurrent unit model for detecting rumors on
microblogging platforms, which mainly captures contextual information of
reposts.

• dEFEND [26]: An explainable rumor detection model that utilizes a sentence-
comment co-attention sub-network to analyze both post contents and user
comments.

• BiGRU: A bidirectional gated recurrent unit model is used to better capture
the semantic information embedded in the original post text. The BiGRU
model fused with corresponding temporal features will be represented as +
feature.

Evaluation Metrics. We use four metrics to evaluate our model: Accuracy,
Precision, Recall, and F1 score. Referring to the experiments conducted in [15],
we adopt the macro F1 score to evaluate the effectiveness of our temporal
features.

5.2 Experimental Results

Effectiveness of Temporal Features. We aim to validate the effectiveness
of our temporal features as crucial information for distinguishing between true

Incorporating Neural Point Process-Based Temporal Feature 427

and false rumors. To achieve this, we utilize different temporal features as inputs
to a multi-layer perceptron (MLP) model for rumor detection task. We choose
the mean delay time as the temporal feature for comparison. The results on
three datasets, namely Twitter15 (T15) and Twitter16 (T16), are presented
in Table 1. T16 e presents experiments on the entire Twitter16 dataset, here
we trained the NPP model using a portion of the Twitter15 data and then
generated temporal features for the Twitter16 data. In Table 1, we can see that
the effectiveness of the four different features varies across different datasets, with
the overall integrated temporal feature demonstrating the highest efficacy across
all datasets. Additionally, compared to T16, the results on T16 e demonstrate
stability, indicating that the temporal dynamics behind real rumor propagation
learned from T15 can be transferred across different datasets, consistent with
the viewpoint in [16].

Table 1. Macro F1 scores on the MLP model.

Temporal Features Datasets

T15 T16 T16 e

Mean Delay Time 0.448 0.658 0.670

Mean Likelihood Feature 0.526 0.714 0.717

Mean Distance Feature 0.474 0.760 0.764

Likelihood Vector 0.512 0.690 0.682

Distance Vector 0.483 0.664 0.687

Integrated Temporal Vector 0.587 0.783 0.767

Table 2. Main results on two datasets.

Twitter15 Twitter16

Method F1 Rec Pre Acc F1 Rec Pre Acc

SVM-TS 0.519 0.519 0.520 0.520 0.692 0.691 0.693 0.693

mGRU 0.510 0.515 0.515 0.555 0.556 0.562 0.560 0.661

CSI 0.717 0.687 0.699 0.699 0.630 0.631 0.632 0.661

dEFEND 0.654 0.661 0.658 0.738 0.631 0.638 0.637 0.702

BiGRU 0.765 0.816 0.721 0.750 0.737 0.667 0.824 0.762

+ eml 0.800 0.789 0.811 0.803 0.884 0.905 0.864 0.881

+ emd 0.825 0.808 0.786 0.816 0.844 0.905 0.792 0.833

+ elv 0.811 0.789 0.833 0.816 0.850 0.810 0.895 0.857

+ edv 0.872 0.895 0.850 0.868 0.878 0.857 0.900 0.881

+ e 0.897 0.921 0.875 0.895 0.909 0.952 0.870 0.905

428 R. Li et al.

Main Results. The performance of our proposed method and the compared
methods are summarized in Table 2. We can clearly find that the BiGRU model
combined with integrated temporal feature e outperforms the competing meth-
ods across most metrics on both datasets. Even two global temporal features
(mean likelihood feature eml and mean distance feature emd) with the dimen-
sion of 1 significantly improve the detection accuracy of BiGRU by 7.07% and
8.80% on Twitter15 and 15.6% and 9.32% on Twitter16. However, due to the
limitation of information scale, they did not reach the optimal level. The BiGRU
model with the addition of integrated temporal feature e showed improvements
of 19.3% and 18.8% on Twitter15 and Twitter16 respectively. These results prove
the effectiveness of our proposed temporal features for rumor detection. Finally,
we provide two examples in Fig. 2 to demonstrate the contribution of temporal
features in rumor detection. These two false rumors were incorrectly classified
as true by the BiGRU model that only utilized textual features x as input.
However, after incorporating temporal feature e, they were correctly identified
with high confidence. This demonstrates that temporal features can help for
the limitations of textual features in discerning specific narratives from another
perspective.

Fig. 2. Two false rumors misclassified by the BiGRU model using only textual feature
xi were correctly identified after incorporating temporal feature ei.

6 Conclusions

In this study, we explored the feasibility of directly utilizing temporal informa-
tion for rumor detection. We employed a neural point process model to capture
the underlying temporal patterns behind real rumor propagation. Then our pro-
posed temporal features are generated via it. Evaluation results on two public
datasets show the effectiveness and the reasonable explainability of our tempo-
ral features. In future work, we will explore incorporating additional information
into temporal features, such as user information and structural information. We
will also investigate the effectiveness of temporal features in early rumor detec-
tion tasks.

Incorporating Neural Point Process-Based Temporal Feature 429

References

1. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In:
Proceedings of the 20th International Conference on World Wide Web, pp. 675–
684. Association for Computing Machinery, Hyderabad (2011). https://doi.org/10.
1145/1963405.1963500

2. Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks.
In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, pp. 3818–3824. AAAI Press, New York (2016). https://doi.org/10.
5555/3061053.3061153

3. Bian, T., et al.: Rumor detection on social media with bi-directional graph convolu-
tional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence
34(01), pp. 549–556 (2020)

4. Lu, Y., Li, C.: GCAN: graph-aware co-attention networks for explainable fake news
detection on social media. In: Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 505–514. Association for Computational
Linguistics, Vancouver (2020). https://doi.org/10.18653/v1/2020.acl-main.48

5. Ma, J., Gao, W., Wong, K.: Rumor detection on twitter with tree-structured recur-
sive neural networks. In: Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 1980–1989. Association for Computational
Linguistics, Melbourne (2018). https://doi.org/10.18653/v1/P18-1184

6. Soroush, V., Deb, R., Sinan, A.: The spread of true and false news online. Science
359, 1146–1151 (2018)

7. Wu, K., Yang, S., Zhu, K.: False rumors detection on sina weibo by propagation
structures. In: 2015 IEEE 31st International Conference on Data Engineering, pp.
651–662. IEEE, Rio de Janeiro (2015). https://doi.org/10.1109/icde.2015.7113322

8. David, V.: An Introduction to the Theory of Point Processes: Volume I: Elementary
Theory and Methods. Springer, Heidelberg (2003)

9. Hawkes, A.: Spectra of some self-exciting and mutually exciting point processes.
Biometrika 58(01), 83–90 (1971)

10. Naumzik, C., Feuerriegel, S.: Detecting false rumors from retweet dynamics on
social media. In: Proceedings of the ACM Web Conference 2022, pp. 2798–
2809. Association for Computing Machinery, Lyon (2022). https://doi.org/10.
1145/3485447.3512000

11. Zeng, F., Gao, W.: Early Rumor Detection Using Neural Hawkes Process with
a New Benchmark Dataset. In: Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 4105–4117. Association for Computational Linguistics,
Seattle (2022). https://doi.org/10.18653/v1/2022.naacl-main.302

12. Mei, H., Eisner, J.: The neural hawkes process: a neurally self-modulating mul-
tivariate point process. In: Proceedings of the 31st International Conference on
Neural Information Processing Systems, pp. 6757–6767. Curran Associates Inc.,
California (2017). https://doi.org/10.5555/3295222.3295420

13. Song, C., Yang, C., Chen, H., Tu, C., Liu, Z., Sun, M.: CED: credible early detection
of social media rumors. IEEE Trans. Knowl. Data Eng. 33(8), 3035–3047 (2021)

14. Tan, L., Wang, G., Jia, F., Lian, X.: Research Status of Deep Learning Methods
for Rumor Detection. Kluwer Academic Publishers 82(2), 2941–2982 (2022)

15. Zhang, X., Cao, J., Li, X., Sheng, Q., Zhong, L., Shu, K.: Mining dual emotion for
fake news detection. In: Proceedings of the Web Conference 2021, pp. 3465–3476.
Association for Computing Machinery, Ljubljana (2021). https://doi.org/10.1145/
3442381.3450004

https://doi.org/10.1145/1963405.1963500
https://doi.org/10.1145/1963405.1963500
https://doi.org/10.5555/3061053.3061153
https://doi.org/10.5555/3061053.3061153
https://doi.org/10.18653/v1/2020.acl-main.48
https://doi.org/10.18653/v1/P18-1184
https://doi.org/10.1109/icde.2015.7113322
https://doi.org/10.1145/3485447.3512000
https://doi.org/10.1145/3485447.3512000
https://doi.org/10.18653/v1/2022.naacl-main.302
https://doi.org/10.5555/3295222.3295420
https://doi.org/10.1145/3442381.3450004
https://doi.org/10.1145/3442381.3450004

430 R. Li et al.

16. Zhao, Q., Erdogdu, M., He, H., Rajaraman, A., Leskovec, J.: SEISMIC: a self-
exciting point process model for predicting tweet popularity. In: Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1513–1522. Association for Computing Machinery, Sydney (2015).
https://doi.org/10.1145/2783258.2783401

17. Omi, T., Ueda, N., Aihara, K.: Fully neural network based model for general tem-
poral point processes. In: Proceedings of the 33rd International Conference on
Neural Information Processing Systems, pp. 2122–2132. Curran Associates Inc.,
New York (2019). https://doi.org/10.5555/3454287.3454477

18. Zhang, Q., Lipani, A., Kirnap, O., Yilmaz, E.: Self-attentive hawkes process. In:
Proceedings of the 37th International Conference on Machine Learning, pp. 11183–
11193. PMLR, Vienna (2020). https://doi.org/10.5555/3524938.3525975

19. Shchur, O., Türkmen, A., Januschowski, T., Günnemann, S.: Neural temporal point
processes: a review. In: Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, pp. 4585–4593. International Joint Conferences on Arti-
ficial Intelligence Organization, Montreal (2021). https://doi.org/10.24963/ijcai.
2021/623

20. Rasmussen, J.: Bayesian inference for Hawkes processes. Methodol. Comput. Appl.
Probab. 15(3), 623–642 (2013)

21. Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., Song, L.: Recur-
rent marked temporal point processes: embedding event history to vector. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 1555–1564. Association for Computing Machinery,
California (2016). https://doi.org/10.1145/2939672.2939875

22. Jeffrey, P., Richard, S., Christopher, M.: GloVe: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, pp. 1532–1543. Association for Computational Linguistics,
Doha (2014). https://doi.org/10.3115/v1/D14-1162

23. Ma, J., Gao, W., Wong, K.: Detect rumors in microblog posts using propagation
structure via kernel learning. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 708–717.
Association for Computational Linguistics, Vancouver (2017). https://doi.org/10.
18653/v1/P17-1066

24. Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.: Detect rumors using time series of
social sontext information on microblogging websites. In: Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management,
pp. 1751–1754. Association for Computing Machinery, Melbourne (2015). https://
doi.org/10.1145/2806416.2806607

25. Ruchansky, N., Seo, S., Liu, Y.: CSI: a hybrid deep model for fake news detec-
tion. In: Proceedings of the 2017 ACM on Conference on Information and Knowl-
edge Management, pp. 797–806. Association for Computing Machinery, Singapore
(2017). https://doi.org/10.1145/3132847.3132877

26. Shu, K., Cui, L., Wang, S., Lee, D., Liu, H.: DEFEND: explainable fake news
detection. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 395–405. Association for Computing
Machinery, Anchorage (2019). https://doi.org/10.1145/3292500.3330935

https://doi.org/10.1145/2783258.2783401
https://doi.org/10.5555/3454287.3454477
https://doi.org/10.5555/3524938.3525975
https://doi.org/10.24963/ijcai.2021/623
https://doi.org/10.24963/ijcai.2021/623
https://doi.org/10.1145/2939672.2939875
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/P17-1066
https://doi.org/10.18653/v1/P17-1066
https://doi.org/10.1145/2806416.2806607
https://doi.org/10.1145/2806416.2806607
https://doi.org/10.1145/3132847.3132877
https://doi.org/10.1145/3292500.3330935

Improving Contraction Hierarchies
by Combining with All-Pairs Shortest

Paths Problem Algorithms

Xinyu Song, Zhipeng Jiang(B), Wenguo Yang, and Suixiang Gao

School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China

songxinyu21@mails.ucas.ac.cn, {jiangzhipeng,yangwg,sxgao}@ucas.ac.cn

Abstract. Contraction hierarchies (CH) is a two-phase effective short-
est path algorithm for large-scale road networks based on node contrac-
tion. However, the remaining graphs tend to be complete near the end of
preprocessing, which slows down the preprocessing speed. We combine
CH with the all-pairs shortest paths (APSP) problem algorithms which
are efficient on complete graphs, to propose a new method. Near the end
of the CH preprocessing phase, we use the APSP algorithm to obtain
a distance table that contains the shortest path between all remaining
nodes. Query performs a bidirectional Dijkstra search combined with a
table lookup. Experimental results show that our method achieves both
preprocessing and query acceleration compared to the raw CH algorithm.
It allows for parameter adjustment based on spatial requirements and can
be interpreted as an interpolation between CH and APSP algorithms.

Keywords: Shortest path · Contraction hierarchies · All-pairs
shortest paths problem

1 Introduction

Given a graph, the shortest path problem is finding a path with the shortest
“distance” between a source and a destination. In an actual network, “distance”
can be the length, time, cost, etc. This problem is not only one of the core
problems of graph theory but also the foundation of complex problems such as
transportation, logistics and facility location. The classic methods to calculate
the shortest path include the Dijkstra algorithm [7], the Floyd algorithm [5], and
so on.

However, with the increase in network scale, it is often required to answer
queries in a very short time. Traditional methods can no longer meet the require-
ments. Therefore, many researchers have turned their attention to preprocessing-
based algorithms. The key idea is to pre-calculate some auxiliary information in
the preprocessing phase so that the subsequent query can be answered faster
than the classic methods while ensuring optimality.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 431–442, 2024.
https://doi.org/10.1007/978-3-031-49614-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_32&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_32

432 X. Song et al.

In recent years, preprocessing-based algorithms can be roughly categorized
into goal-directed and hierarchical techniques, as well as a combination of both.
The former includes the ALT algorithm [10], based on A∗ search, Landmarks,
and Triangle inequality, the Arc Flags [12] algorithm that precomputes “sign-
posts” for each edge, and so on. The latter includes Highway Hierarchies(HHs)
[13], Highway-Node Routing(HNR) [14], Reach-Based Routing [11], Contraction
Hierarchies [9], and so on.

Among them, the CH algorithm has shown good performance on large-scale
road networks. CH heuristically contracts nodes and adds shortcuts. A road
network with one million nodes and edges can be preprocessed in 30 seconds,
while queries run in about 2 milliseconds.

CH can also be combined with other technologies, such as the CHASE algo-
rithm [4] (combined with Arc Flags), the CH-TNR algorithm [2] (combined with
TNR), and the CH-HL algorithm [8] (combined with Hub Labels [1]).

CH-TNR and CH-HL are currently two competitive algorithms. They all use
table lookup or vector lookup techniques for query acceleration. CH-HL stores
the distance between access nodes in advance according to the level, and the
query algorithm firstly searches and then uses a two-hops vector lookup. CH-
TNR stores the distance to access nodes and between access nodes in advance but
uses a locality filter to determine whether to perform local searches. Although
the query speed of the above two algorithms is faster than CH, they require more
preprocessing time. In addition, the time required to contract a node increases
at the end of CH, and the graph generated by the remaining nodes tends to be
complete.

APSP is one of the most famous problems in algorithm design. It refers to the
problem of distances and shortest paths between all pairs of nodes in a graph.

In this paper, we present a new shortest path algorithm combining CH and
APSP algorithm, which reduce both preprocessing and query time to less than
CH. Towards the end of the preprocessing phase of the CH algorithm, we substi-
tute the time-consuming preprocessing step with the computation of a complete
pairwise distance table for the remaining nodes using APSP algorithm.

In Sect. 2, we outline the basics of CH and APSP problems. Section 3 shows
how to combine CH and APSP and gives schemes for preprocessing and query.
In Sect. 4, we conduct an experimental evaluation on real road networks and
analyze the practical effect and the impact of parameters on preprocessing and
query.

2 Preliminaries

Given a directed graph G = (V,E) with |E| = m edges and |V | = n nodes.
Each edge (u, v) ∈ E has a non-negative weight w(u, v), where w : E → R

+.
A path P = 〈v1, v2, ...vp〉 is an ordered sequence of nodes such that s = v1, t =
vp, (vi, vi+1) ∈ E, and its length is defined as w(P) :=

∑p−1
i=1 w(vi, vi+1). The

path with the minimum length between s, t ∈ V is called the shortest path SPs,t

and its length is denoted as d(s, t).

Improving CH by Combining with APSP Algorithms 433

2.1 Contraction Hierarchies

Contraction Hierarchies is an efficient two-phase shortest path algorithm based
on shortcuts, which is commonly used in large road networks. It has a trade-off
between preprocessing and query time.

The first phase is systematic preprocessing based on node contraction and
shortcut addition. CH heuristically sorts nodes by some measures of impor-
tance and prioritizes removing the least important node v. In order not to affect
the shortest paths between the remaining nodes, the above removal process is
achieved by replacing the path 〈u, v, x〉 with a shortcut 〈u, x〉. However, 〈u, x〉
is required if and only if 〈u, v, x〉 is the only shortest path between u and x. A
simple way to achieve this is to perform a shortest path search called witness
path search that ignores v from each source node u. Note that if a shortcut
〈u, x〉 is added when 〈u, v, x〉 is not the shortest path between u and x, the
correctness of the shortest path is not affected. However, it may influence the
speed of preprocessing and querying. The length of the new shortcut 〈u, x〉 is
w(u, x) = w(u, v) + w(v, x).

The second phase is the query phase using a variant of the bidirectional Dijk-
stra algorithm. After preprocessing, let G+ = (V,E+) denotes the new graph,
where E+ contains all edges of E and added shortcuts, and α : V → {1, ..., n}
denotes the contraction order. Split G+ into an upward graph G↑ := (V,E↑)
with E↑ := {(u, v) ∈ E+ : α(u) < α(v)} and a downward graph G↓ := (V,E↓)
with E↓ := {(u, v) ∈ E+ : α(u) > α(v)}. For the shortest path query from s to
t, CH performs a bidirectional Dijkstra search, including a forward search in G↑
and a backward search in G↓. If and only if there exists a shortest s − t path
in the original graph, the two search scopes eventually meet at node v with the
highest order among all nodes included in the shortest s − t path.

2.2 All-Pairs Shortest Paths Problem

Given a graph G = (V,E), APSP obtains the shortest path between all pairs
of nodes on G. APSP problems can be solved by running a single-source short-
est paths problem(SSSP) algorithm |V | times. The simple Dijkstra algorithm
calculates SSSP in O(n2) time for non-negative real-weighted graphs. If the
binary min-heap implementation of the min-priority queue is used, then it runs
in O((m + n) log n) time. Combining the Fibonacci heap, Dijkstra can compute
SSSP problem in O(m + n log n) time and, by repeated application, APSP in
O(mn + n2 log n) time.

When some edges have negative weight, the Dijkstra algorithm cannot be
used directly, and it is more suitable to use the Floyd algorithm, a dynamic
programming algorithm for solving the APSP problem and performing well on
dense graphs. Floyd algorithm uses an adjacency-matrix representation instead
of an adjacency-list representation of the graph and can solve the APSP problem
in O(n3) time.

434 X. Song et al.

3 CH-APSP

As the preprocessing approach of CH proceeds, the remaining graph will grad-
ually become dense, and it will take more time to contract a node. Take the
road network of the Great Lakes provided for the 9th DIMACS challenge [6],
which consists of around 2.7 million nodes and 6.9 million edges, as an exam-
ple. Only use lazy updates and do not periodically reevaluate all priorities or
recompute the priority of the neighbors. In Fig. 1, the time difference between
two contractions gradually increases, and the increasing speed is relatively fast.

Fig. 1. Line chart of the time difference between two contractions of the last 10000
nodes of the road network of the Great Lakes.

The above results may be due to the significant impact of a node’s contraction
on its neighbors. As the density of the remaining graph increases, it tends to be
a complete graph, and the probability of edges between any two nodes increases.
So each time a node is contracted, the number of nodes affected increases, and
the importance evaluation of nodes changes significantly. Therefore, more lazy
updates are required, and the time difference between two node contractions
increases, resulting in slower preprocessing speed.

In addition, according to the experimental results in CH-TNR, the time of
the table query is less than that of the Dijkstra search, and as the number of
transit nodes increases, the number of access nodes may decrease.

Therefore, based on the above observations, we propose the CH-APSP algo-
rithm by combining the APSP problem with the CH algorithm.

3.1 Preprocessing

At the beginning of the preprocessing of CH-APSP, it is the same as the original
CH algorithm. When the remaining graph becomes dense near the end of the
preprocessing phase, then turn to use the APSP algorithm.

Improving CH by Combining with APSP Algorithms 435

Given a node contraction order α : V → {1, ..., n}, let G(i) = (Vi, Ei) denotes
the graph obtained from G after i contractions and G(0) = G. Use V (P) =
{v1, ..., vp} and E(P) = {(vi, vi+1)|i = 1, ..., p − 1} to denote the nodes and edges
of path P , respectively.

Let M be the number of remaining non-contracted nodes. When the num-
ber of remaining nodes is M , stop the preprocessing of CH, and the graph
G(n − M) = (En−M , Vn−M) is obtained, with Vn−M = {v|v ∈ V and v is not
contracted} and En−M = {(u, v)|u, v are not contracted , (u, v) ∈ E or (u, v)
is a shortcut}. Solve the APSP problem on G(n − M) and obtain the distance
table D. After that, D and a graph G′+ = (V,E′+) are obtained, where E′+

contains edge (u, v) which belongs to E or is an added shortcut, but v and u
cannot both belong to Vn−M . The process is shown in Algorithm 1.

Algorithm 1: Preprocessing of CH-APSP algorithm
Input: Non-negative weighted graph G = (V,E) and M ∈ Z, 0 ≤ M ≤ |V | = n.
Output: Graph G′+ = (V,E′+) and a distance table D.

1 Initialization: n′ ← n.
2 while n′ > M do
3 Heuristically sort nodes based on measures of importance.
4 Select a node v which is the least important node.
5 Contract v.
6 n′ ← n′ − 1.

7 end
8 Obtain graph G(n − M).
9 Solve the APSP problem on G(n − M).

3.2 Query

The query of the CH-APSP algorithm performs a modified bidirectional Dijkstra
shortest path search combined with a table lookup.

After preprocessing, the graph G′+ = (V,E′+) and the distance table D are
obtained. Split G′+ into two parts as is said in Sect. 2.1, the upward graph G′

↑
and the downward graph G′

↓. Given a source node s and a target node t, perform
a forward Dijkstra search on G′

↑ starting from s and a backward Dijkstra search
on G′

↓ starting from t. When v is settled and belongs to Vn−M , do not relax the
edges incident to v. That is, do not continue the search from v. This node is
called an access node.

Let E∧ and E∨ denote the set of all access nodes found in the forward and
backward search respectively. Let Pst denote the s− t path obtained when there
is no reached but not settled node. Pst = P∧ + P∨, where P∧ and P∨ are the
paths obtained from the upward and downward search. If there is no s − t path,
then Pst is ∞. The shortest s − t path is obtained by the following:

436 X. Song et al.

d(s, t) = min
{

w(Pst), min
v∈E∧,v′∈E∨

{d↑(s, v) + D(v, v′) + d↓(v′, t)}
}

(1)

D(v, v′) is obtained by looking up table D. d↑ is obtained by forward search in
G′

↑, while d↓ is obtained by downward search in G′
↓.

Fig. 2. A graph of the query of the two-stage CH-APSP algorithm search process.

In fact, the query can be split into two parts, one with and one without the
table lookup. (See Fig. 2). Both parts can obtain the possible shortest path of
their respective parts, and the shortest path between the two paths is the final
s − t shortest path. The query process is shown in Algorithm 2.

Algorithm 2: Query of the CH-APSP algorithm.
Input: G′+ := (V,E′+), Vn−M , distance table D and s, t ∈ V .
Output: The shortest s − t path.

1 Initialization: d∧[s] ← 0, d∧[v] ← ∞ for all v �= s, d∨[t] ← 0, d∨[v] ← ∞ for all
v �= t, Q∧ ← {s}, Q∨ ← {t}, w(Pst) ← ∞, w(SPst) ← ∞;

2 while Q∧ �= ∅ ‖ Q∨ �= ∅ do
3 Find a node v ∈ Q∧ such that d∧[v] = min {d∧[u]|u ∈ Q∧};
4 Q∧ ← Q∧ \ {v};
5 if w(Pst) < d∧[v] then
6 Continue;
7 end
8 if v ∈ Vn−M then
9 E∧ ← E∧ ∪ {v}

10 else
11 Relax edges of v;
12 (Add nodes to Q∧ and change d∧, just like Dijkstra algorithm.)

13 end
14 w(Pst) = min {w(Pst), d

∧[v] + d∨[v]};
15 Repeat steps 3 to 14 on G′

↓;
16 end
17 for v ∈ E∧ do
18 for v′ ∈ E∨ do
19 w(SPst) ← min {w(Pst), d

∧[v] + D(v, v′) + d∨[v′]};
20 end

21 end

Improving CH by Combining with APSP Algorithms 437

In Algorithm 2, steps 5 to 7 prune the search space. We can also use Pst to
reduce the number of access nodes between steps 16 and 17. If d∧[v](or d∨[v])>
w(Pst), then remove v from E∧ (or E∨).

Before proving correctness, we present the following lemma given and proved
by Bauer et al. [3]. We restate the lemma here with the definition in this paper.

Lemma 1. Given s, t ∈ V , let k = min {α(s), α(t)} − 1.
(a): For any s-t path P in G(k), there exists a sequence of s-t paths P = Pk,

Pk−1,..., P0, such that Pi is a path in G(i) and w(Pi) = w(P).
(b): For any shortest s-t path P in G, there exists a sequence of shortest s-t

paths P = P0, P1, ..., Pk, such that Pi is a path in G(i) , V (P)∩Vi ⊆ V (Pi), and
w(Pi) = w(P).

Proof. Same as the proof of Lemma 1 in [3]. �

The correctness of CH has been proved by Geisberger et al. in [9]. A funda-
mental property of CH is that we can assume that a path P consists of upward
edges from s towards u followed by downward edges from u towards t. Since a
shortcut may only exist between two nodes when there is a path between them
in G, the path in CH corresponds to a path in G. Every shortest s − t path in
G still exists in CH.

The sub-path of any two nodes in the shortest path in CH is also the shortest.
Otherwise, a shorter path can be obtained by replacing it with a shorter one in
G. So the forward search of the CH query can find the shortest path to u and
to the first transit node v on P .

Since the preprocessing of CH-APSP is the same as that of CH in the early
stage, the shortcuts before the remaining M nodes are the same. Consider the
upward search on G↑. When the path to settle u does not contain any access
node except u, it can be also used to settle u on G′

↑, and the length is the same
because the pruning only occurs at the access node.

Theorem 1. Given s, t ∈ V , d(s, t) ≤ w(Pst) and d(s, t) ≤ d↑(s, v)+D(v, v′)+
d↓(v′, t) for all v ∈ E∧, v′ ∈ E∨.

Proof. Since Pst corresponds to a s − t path in G, d(s, t) ≤ w(Pst) obviously.
In the same way, for all v ∈ E∧ and v′ ∈ E∨, we have d(s, v) ≤ d↑(s, v) and
d(v′, t) ≤ d↓(v′, t). According to the definition of APSP, D(v, v′) = w(P (n−M)

vv′),
where P

(n−M)
vv′ is the shortest v − v′ path in G(n − M). According to (a) of

Lemma 1, there is a v − v′ path Pvv′ in G such that w(Pvv′) = w(P (n−M)
vv′).

w(Pvv′) = d(v, v′), or otherwise there is a P
′(n−M)
vv′ ∈ G(n − M) such that

d(v, v′) = w(P ′(n−M)
vv′) < w(P (n−M)

vv′) < w(P ′(n−M)
vv′). Therefore, d(s, t) =

d(s, v)+d(v, v′)+d(v′, t) ≤ d↑(s, v)+D(v, v′)+d↓(v′, t) for all v ∈ E∧, v′ ∈ E∨.
�

Theorem 2. The query of the two-stage CH-APSP algorithm is correct.

Proof. Given a node contraction order α : V → {1, ..., n}. Suppose SPst =
〈s = V1, ..., Va, ..., Vu, ..., Vb, ..., Vp = t〉, α(Vi+1) > α(Vi), i ∈ [1, u), α(Vi+1) <
α(Vi), i ∈ [u, p).

438 X. Song et al.

(i) Suppose M ≥ α(Vu). Vu will be settled before pruning in both upward
and downward searching and the length is the same as that in CH. So we have
d(s, t) = d↑(s, Vu) + d↓(Vu, t).

(ii) Suppose α(Va), α(Vb) ≥ M , α(Va−1), α(Vb+1) < M . According to (i)
and the property of CH, we have d(s, Va) = d↑(s, Va), d(Vb, t) = d↓(Vb, t) and
D(Va, Vb) = d(Va, Vb). Therefore, d(s, t) = d(s, Va) + d(Va, Vb) + d(Vb, t) =
d↑(s, Va) + D(Va, Vb) + d↓(Vb, t).

Combined with Theorem 1, the query of the two-stage CH-APSP algorithm
is correct. �

4 Experiments and Analysis

The algorithms are implemented by C++. We used two machines, one laptop
with Intel Core i7-11800H and 16 GB of RAM, and a server with Intel Xeon
Platinum 8280 CPU and 1TB of RAM.

The experiment works on the road networks provided for the 9th DIMACS
challenge on shortest paths [6]. The number of nodes and edges of the networks
are shown in Table 1. We randomly query 100,000 times. Experiment on graphs
of USA is performed on the server, and experiments on the rest are performed
on the laptop.

Table 1. The number of nodes and edges of the networks

Nodes Edges

New York City(NY) 0.26M 0.73M

Great Lakes(LKS) 2.76M 6.89M

Full USA(USA) 23.95M 58.33M

Our implementation is not parallel. We only use lazy updates and do not
periodically reevaluate all priorities or recompute the priority of the neighbors.
Contract a node when the difference between its new and old importance is less
than 10. The priority function is:

2 ∗ edgeDifference + contractedNeighbors + nodeDepth

During the simulated node contraction, we do not perform the witness path
search but use the maximum possible number of shortcuts to calculate the impor-
tance. However, Dijkstra witness path search with binary min-heap is performed
while actually contracting the node.

4.1 Impact of APSP Algorithms and Remaining Nodes(M)
on Preprocessing

Here we only consider the basic algorithms for solving APSP problems: Floyd
algorithm and Dijkstra with binary min-heap. Table 2 shows some results of the

Improving CH by Combining with APSP Algorithms 439

preprocessing time of different M and APSP algorithms. Whether Dijkstra or
Floyd algorithm is used, the preprocessing time is less than the CH algorithm
in a specific range of M .

We take NY as an example to further show the influence of M on prepro-
cessing. Figure 3 shows the variation of preprocessing time with M . Regardless
of whether Dijkstra or Floyd is used, the preprocessing time of the CH-APSP
algorithm decreases first and then increases. The results of using Dijkstra are
significantly better than Floyd, especially on larger graphs.

Table 2. Total preprocessing time of CH-APSP algorithm using different M and APSP
algorithms

CH(s) M
CH-APSP algorithms |Vn−M |

CH-Dijkstra (s) CH-Floyd (s)

NY 23.081

100 22.874 22.866 9122

900 18.216 18.374 131147

1700 16.965 20.465 137050

LKS 1327.15

1000 978.959 985.238 634293

1500 669.427 669.347 927239

7500 395.439 804.066 356581

USA 23398.9

14000 3933.87 18469.9 6091641

20000 3050.68 20109.9 2977571

25000 3048.57 40182.5 2460052

The graph gradually becomes sparse as M increases, but the number of nodes
and edges also increases. When the graph in the early stage of the CH algorithm
is sparse, the preprocessing speed is fast, and it slows down when the graph tends
to be complete. The APSP algorithm could be faster in processing the complete
graph, but the speed will slow as the number of nodes and edges increases.

(a) CH-Dijkstra (b) CH-Floyd

Fig. 3. The variation of preprocessing time with M . The red dotted line indicates the
preprocessing time of the original CH algorithm. (Color figure online)

440 X. Song et al.

Therefore, CH-APSP can be seen as an interpolation of APSP and CH.
When M = 0, CH-APSP is the original CH algorithm; when M = |V |, CH-
APSP is the APSP algorithm. The time in both extreme cases is relatively slow,
and the suitable combination can be faster than both. When the time changes
continuously with M , there exists a minimum value.

In addition, although Floyd performs better than Dijkstra on dense graphs
when calculating the shortest path, its time has a cubic relationship with the
number of nodes. Hence, the suitable range of M using CH-Dijkstra is more
extensive than CH-Floyd. Take NY as an example, when the preprocessing time
using CH-Floyd is more than CH, the corresponding M is 1900, while CH-
Dijkstra is about 7000.

4.2 Impact of M on Query

The different algorithms for solving the APSP problem will only affect the pre-
processing speed. They will not affect G′+ = (V,E′+) and distance table D.
Therefore, only the preprocessing algorithm using Dijkstra will be studied here.
Table 3 shows the impact of different M on query.

Table 3. Impact of different M on query. The last column represents the proportion
of the shortest path obtained through table lookup.

CH(ms) M
CH-APSP

Time(ms) |E∧| + |E∨| Table lookup(%)

NY 0.784

100 0.762 52 17.7

1000 0.597 109 70.7

2000 0.537 144 93.6

LKS 6.974

1000 6.492 80 29.8

1500 6.142 113 40.8

7500 6.131 406 95.8

USA 164.718

20000 162.845 526 80.4

30000 153.949 471 85.4

40000 158.270 378 88.6

The results on all three graphs show that the query time of CH-APSP is
shorter than that of CH. CH-APSP accelerates approximately 31% compared to
CH when M = 2000 on the graph of NY. While on the graph of the USA, it
is 3.9% when M = 20000. The performance of CH-APSP on extensive graphs
could not as good as on slightly smaller graphs.

We also take NY as an example. Figure 4(a) shows the variation of the number
of access nodes with M . As M increases, the number of access nodes increases
rapidly, but there are fluctuations. However, it decreases at M = 2000, and the
descent speed gradually slows. Figure 4(b) shows the proportion of the shortest
path obtained by table lookup. At around M = 1500, the rate of increase slows
down and eventually stabilizes, approaching but not reaching 1.

Improving CH by Combining with APSP Algorithms 441

Figure 5 shows the variation of query time with M . As M increases, the
query time gradually decreases. Initially, the descent speed is faster, but after
M = 3500, it is slower and tends to stabilize. Based on the results in Fig. 4,
the reason may be that as M increases, the number of access nodes gradually
stabilizes, resulting in a relatively stable number of table lookups. In addition,
most of the shortest paths come from table lookups, so the query time also tends
to stabilize.

(a) (b)

Fig. 4. (a) The variation of number of access nodes with M . (b) The proportion of the
shortest path obtained by table lookup.

Fig. 5. The variation of query time with M .

5 Conclusions and Future Work

We have presented an algorithm that can both reduce preprocessing and query
time to less than CH, allowing for parameter adjustment based on spatial require-
ments. It can be regarded as an interpolation between CH and APSP. Though
CH-APSP can utilize the graph’s properties to achieve preprocessing and query
acceleration, there is still room for improvement. Firstly, CH-APSP stores the
complete distance table. Consider using the properties of the graph to pure the
distance table and improve its structure. Secondly, we simply used Pst to pure
the access nodes without considering more effective methods. Finally, our algo-
rithm does not perform well enough on large graphs like the USA, so we are
considering further improvements.

442 X. Song et al.

References

1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling
algorithm for shortest paths in road networks. In: Pardalos, P.M., Rebennack, S.
(eds.) Experimental Algorithms, pp. 230–241. Springer, Berlin Heidelberg, Berlin,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20662-7 20

2. Arz, J., Luxen, D., Sanders, P.: Transit node routing reconsidered. In: Bonifaci,
V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) Experimental Algorithms,
pp. 55–66. Springer, Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38527-8 7

3. Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contraction
hierarchies. Theoret. Comput. Sci. 645, 112–127 (2016)

4. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:
Combining hierarchical and goal-directed speed-up techniques for dijkstra’s algo-
rithm. ACM J. Exp. Algorithmics 15 (2010)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge, MA, USA (2001)

6. Demetrescu, C., Johnson, D.S., Goldberg, A.V.: The Shortest Path Problem: Ninth
Dimacs Implementation Challenge (2009)

7. Dijkstra, E.: A note on two problems in Connexion with graphs. Numer. Math. 1,
269–271 (1959)

8. Funke, S.: Seamless interpolation between contraction hierarchies and hub labels
for fast and space-efficient shortest path queries in road networks. In: Kim, D.,
Uma, R.N., Cai, Z., Lee, D.H. (eds.) Computing and Combinatorics, pp. 123–135.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-
030-58150-3 10

9. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster
and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) Exper-
imental Algorithms, pp. 319–333. Springer, Berlin Heidelberg, Berlin, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68552-4 24

10. Goldberg, A., Harrelson, C.: Computing the shortest path: a* search meets graph
theory, Tech. Rep., MSR-TR-2004-24 (2004). https://www.microsoft.com/en-us/
research/publication/computing-the-shortest-path-a-search-meets-graph-theory/

11. Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms
optimized for road networks. In: ALENEX/ANALC, pp. 100–111 (2004)

12. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Geoinformation und Mobilität-von der
Forschung zur praktischen Anwendung, vol. 22, pp. 219–230. IfGI prints, Institut
für Geoinformatik, Münster (2004)

13. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries.
In: Brodal, G.S., Leonardi, S. (eds.) Algorithms - ESA 2005, pp. 568–579. Springer,
Berlin Heidelberg, Berlin, Heidelberg (2005). https://doi.org/10.1007/11561071 51

14. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.)
Experimental Algorithms, pp. 66–79. Springer, Berlin Heidelberg, Berlin, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-72845-0 6

https://doi.org/10.1007/978-3-642-20662-7_20
https://doi.org/10.1007/978-3-642-38527-8_7
https://doi.org/10.1007/978-3-642-38527-8_7
https://doi.org/10.1007/978-3-030-58150-3_10
https://doi.org/10.1007/978-3-030-58150-3_10
https://doi.org/10.1007/978-3-540-68552-4_24
https://www.microsoft.com/en-us/research/publication/computing-the-shortest-path-a-search-meets-graph-theory/
https://www.microsoft.com/en-us/research/publication/computing-the-shortest-path-a-search-meets-graph-theory/
https://doi.org/10.1007/11561071_51
https://doi.org/10.1007/978-3-540-72845-0_6

Information Theory of Blockchain
Systems

Quan-Lin Li1, Yaqian Ma1, Jing-Yu Ma2(B) , and Yan-Xia Chang1

1 School of Economics and Management, Beijing University of Technology,
Beijing 100124, China

2 Business School, Xuzhou University of Technology, Xuzhou 221018, China

mjy0501@126.com

Abstract. In this paper, we apply the information theory to provide an
approximate expression of the steady-state probability distribution for
blockchain systems. We achieve this goal by maximizing an entropy func-
tion subject to specific constraints. These constraints are based on some
prior information, including the average numbers of transactions in the
block and the transaction pool, respectively. Furthermore, we use some
numerical experiments to analyze how the key factors in this approximate
expression depend on the crucial parameters of the blockchain system.
As a result, this approximate expression has important theoretical signif-
icance in promoting practical applications of blockchain technology. At
the same time, not only do the method and results given in this paper
provide a new line in the study of blockchain queueing systems, but
they also provide the theoretical basis and technical support for how to
apply the information theory to the investigation of blockchain queueing
networks and stochastic models more broadly.

Keywords: Blockchain · Information theory · Maximum entropy
principle · Steady-state probability distribution

1 Introduction

Blockchain has become a prominent topic of discussion in recent years, revolu-
tionizing various aspects of life through its significant impact on many practical
application fields. For example, finance by Kowalski et al. [8]; the Internet of
Things by Torky and Hassanein [24]; healthcare by Sudeep et al. [23]; and oth-
ers. The active participation of miners in the mining process is fundamental to
ensuring the secure and stable operation of blockchain systems, as well as guar-
anteeing its sustainable development. However, the inner workings of blockchain
mining are extremely obscure and challenging to examine. Conducting direct
measurements on mining networks is highly complex due to the miners’ privacy

Supported by the National Natural Science Foundation of China under grant No.
71932002 and the Social Science Foundation of Jiangsu Province under grant No.
23GLB018.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 443–454, 2024.
https://doi.org/10.1007/978-3-031-49614-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_33&domain=pdf
http://orcid.org/0000-0002-0396-1232
https://doi.org/10.1007/978-3-031-49614-1_33

444 Q.-L. Li et al.

concerns, whereas blockchain data provides a method of direct measurement.
Consequently, it is essential to develop statistical techniques using accessible
blockchain data for investigating the blockchain systems.

So far blockchain research has obtained many important advances, readers
may refer to a book by Swan [22]; a key research framework shown by Daneshgar
et al. [3], Lindman et al. [13] and Risius and Spohrer [19]; decision in blockchain
mining by Ma and Li [16] and Chen et al. [2]; and others by Lu et al. [15] and
Yang et al. [25].

Applying queueing theory and Markov processes to analyze the blockchain
systems is interesting and challenging, since each blockchain system not only is
a complicated stochastic system but also has multiple key factors and a physical
structure with different levels. Li et al. [10] provided a two-stage queueing model
of the PoW blockchain system, clearly described and expressed the physical
structure with multiple key factors, furthermore the matrix geometric solution
was applied to give a complete solution such that the performance evaluation
of the PoW blockchain system was established in a simple form. Seol et al. [20]
proposed an M(1, n)/Mn/1 queueing model to analyze the blockchain system in
Ethereum; Zhao et al. [26] established a non-exhaustive queueing model with a
limited batch service and a possible zero-transaction service, derived the average
number of transactions and the average confirmation time of a transaction; Mis̆ić
et al. [17] applied the Jackson network to analyze the blockchain network.

Compared with the queueing theory, the Markov process is mainly used to
evaluate the throughput, confirmation time, security and privacy protection of
the blockchain systems. Huang et al. [4] proposed the Markov process with an
absorption state and conducted an analysis on the performance of the Raft con-
sensus algorithm in private blockchains. Srivastava [21] calculated the transac-
tion confirmation time in blockchain systems. Li et al. [11] discussed block access
control mechanisms in wireless blockchain networks. Nguyen et al. [18] investi-
gated the task offloading problem in mobile blockchain with privacy protection
using the Markov processes and deep reinforcement learning.

The traditional reluctance of miners to share insider information regard-
ing their competitive advantages, leading to great difficulties for these two
approaches when dealing with more complex blockchain systems, such as those
involving multiple mining pools. The purpose of this paper is to apply the max-
imum entropy principle to provide an approximate expression for blockchain
systems. In information theory, entropy serves as a probabilistic measure to
quantify the uncertainty of information associated with random variables. In
recent years, the information entropy has been implemented in various practical
domains of blockchain technology. For example, industrial Internet of Things by
Khan and Byun [7]; renewable energy by Liu et al. [14]; fake news prevention by
Chen et al. [1]; and medical data sharing by Liang et al. [12].

The degree of randomness in a random variable can be measured by applying
the maximum entropy when its information is most uncertain. For example, a
large amount of information can only be partially obtained and utilized. Jaynes
[5,6] initially proposed the maximum entropy principle, which offered an approx-

Information Theory of Blockchain Systems 445

imate computational approach for unknown probability distributions. Such an
approach provided a uniquely correct self-consistent method of inference for esti-
mating probability distributions based on the available information.

The main contributions of this paper are twofold. The first one is to apply
the maximum entropy principle to study blockchain queueing systems for the
first time. This approach can be applied to the performance analysis of queue-
ing systems, since expected values of various distributions can be obtained by
making measurements in an operational sense. Unlike previous works for the
applying queueing theory or the Markov processes, we just need to take sta-
tistical techniques by simple observation on miners. The second contribution of
this paper is to provide the approximate expression of the steady-state prob-
ability distribution for the blockchain systems. So far, numerous categories of
blockchain systems have yet to be thoroughly analyzed using the queueing theory
or the Markov processes due to difficulties in the expression of the steady-state
probability distributions. For example, the PoW blockchain systems with mul-
tiple mining pools, the PBFT blockchain systems of dynamic nodes, the DAG-
based blockchain systems, the Ethereum, and the large-scale blockchain systems
with either cross-chain, side-chain, or off-chain. Therefore, the results of this
paper give new insights into the application of the maximum entropy principle
to more complex blockchain systems, and partially solve a challenging problem
in blockchain technology.

The rest of this paper is organized as follows. Section 2 introduces the
blockchain queueing model briefly. In Sect. 3, we apply the maximum entropy
principle to give the approximate expression of the steady-state probability dis-
tribution for the blockchain system. We also conduct numerical experiments
to analyze how the key factors of the approximate expression depend on some
crucial parameters in Sect. 4. Finally, the whole work is concluded in the last
section.

2 Model Description

In this section, we describe a blockchain system as two stages of asynchronous
processes: block-generation and blockchain-building, which is depicted in Fig. 1.
To ensure clarity, we review the blockchain queueing model and adopt the nota-
tions of Li et al. [10] briefly.

Arrival Processes: Transactions arrive at the blockchain system according
to a Poisson process with arrival rate λ. Each transaction must first enter and
queue up in a transaction pool with infinite size.

Block-generation Processes: Each arrival transaction first queues up in the
transaction pool and then waits to be mined into a block successfully. We assume
that the block-generation times are i.i.d. and exponential with service rate μ1.
The transactions are chosen into the block, but they are not completely based
on the First Come First Service (FCFS) from the order of transaction arrivals.

446 Q.-L. Li et al.

Fig. 1. A blockchain queueing system.

Block Capacity: To avoid spam attacks, we assume that the maximum size
of each block is limited to b transactions. If there are more than b transactions
in the transaction pool, then the b transactions are selected to form a full block
while the rest of transactions are still waiting in the transaction pool and may
be used to construct another block.

Blockchain-building Processes: The block with a group of transactions will
be pegged to a blockchain. We assume that the blockchain-building times are
i.i.d. and exponential with the service rate μ2.

Independence: We assume that all the random variables defined above are
independent of each other.

Let I(t) and J(t) be the numbers of transactions in the block and in the
transaction pool at time t, respectively. Then, (I(t), J(t)) may be regarded as
a state of the blockchain system at time t. The state space of this blockchain
system is

Ω = {(i, j) , 0 ≤ i ≤ b, 0 ≤ j ≤ ∞} .

The following lemma provides a necessary and sufficient condition under
which the blockchain system is stable. Here, we only restate it without proof,
while readers may refer to Chap. 3 of Li [9] and Li et al. [10] for more details.

Lemma 1. The blockchain system is stable if and only if

bμ1μ2

μ1 + μ2
> λ. (1)

Information Theory of Blockchain Systems 447

In what follows, we assume that the stable condition (1) is satisfied, then
this blockchain system is stable. The limit

lim
t→+∞ p {I(t) = i, J(t) = j}

exists and is unique. Let

p(i, j) = lim
t→+∞ p {I(t) = i, J(t) = j} .

Then, p(i, j), (i, j) ∈ Ω is the steady-state probability distribution of the
blockchain system.

By using the matrix-geometric solution, we can write the steady-state prob-
ability distribution under the stable condition (1), see Li et al. [10]. In the next
section, we will introduce the maximum entropy principle to provide the approx-
imate expression of the steady-state probability distribution for the blockchain
system.

3 Maximum Entropy in Blockchain Systems

In this section, we provide an entropy function and some prior information,
and use Lagrange method of undetermined multipliers to give the approximate
expression of the steady-state probability distribution.

3.1 Entropy Function

Based on the steady-state probability distribution p(i, j), we introduce the
entropy function

H(p) = −
∑

(i,j)∈Ω

p(i, j) ln p(i, j)

or

H(p) = −
∞∑

j=0

b∑

i=0

p(i, j) ln p(i, j). (2)

The maximum entropy principle states that of all distributions satisfying the
constraints supplied by the given information, the minimally prejudiced distri-
bution p(i, j), (i, j) ∈ Ω is the one that maximizes the entropy function of the
blockchain queueing system.

3.2 Prior Information

To approximate the steady-state probability distribution p(i, j), (i, j) ∈ Ω using
the maximum entropy principle by maximizing (2), we need to provide some
prior information as follows:

(i) The normalisation: ∑

(i,j)∈Ω

p(i, j) = 1. (3)

448 Q.-L. Li et al.

(ii) The average number of transactions in the block:

b∑

i=0

i
∞∑

j=0

p(i, j) = I. (4)

(iii) The average number of transactions in the transaction pool:

∞∑

j=0

j

b∑

i=0

p(i, j) = J. (5)

Remark 1. Note that the statistics of prior information selected always may be
known numerically via system measurements during finite observation periods or
can be determined symbolically via known analytic formulae based on operational
or stochastic assumptions. For example, blockchain data has the advantage of
providing direct measurements, as the fields of a block are filled by the miner of
that block.

3.3 The Maximum Entropy Principle

The steady-state probability distribution p(i, j), (i, j) ∈ Ω is considered as an
independent variable. We maximize the entropy function (2) subject to con-
strains (3)–(5), the optimization model of the maximum entropy principle can
be written as

max H(p) = −
∞∑

j=0

b∑

i=0

p(i, j) ln p(i, j),

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
j=0

b∑
i=0

p(i, j) = 1,

b∑
i=0

i
∞∑
j=0

p(i, j) = I,

∞∑
j=0

j
b∑

i=0

p(i, j) = J.

The following theorem provides the approximate expression of the steady-
state probability distribution for the blockchain system by the maximum entropy
principle.

Theorem 1. For the steady-state probability distribution of the blockchain sys-
tems p(i, j), (i, j) ∈ Ω, there exists a tuple of positive numbers x, y and z such
that the approximate expression p̃(i, j) has the following form

p̃(i, j) = xyizj .

Information Theory of Blockchain Systems 449

Proof: By introducing β0, β1 and β2 to equations (3)–(5), we write Lagrangian
function as

L(p, β0, β1, β2) = −
∞∑

j=0

b∑

i=0

p(i, j) ln p(i, j) + β0

⎛

⎝1 −
∞∑

j=0

b∑

i=0

p(i, j)

⎞

⎠

+ β1

⎛

⎝I −
b∑

i=0

i
∞∑

j=0

p(i, j)

⎞

⎠ + β2

⎛

⎝J −
∞∑

j=0

j
b∑

i=0

p(i, j)

⎞

⎠ , (6)

where β0, β1 and β2 are the Lagrange multipliers corresponding to constraints
(3)–(5), respectively.

To find the maximum entropy solution p(i, j), maximizing (2) subject to
constraints (3)–(5) is equivalent to maximizing (6).

The Lagrangian function L(p, β0, β1, β2) is a multivariate function with
respect to variables p(i, j), β0, β1 and β2. To obtain the maximum entropy
solutions, we take the partial derivatives of L(p, β0, β1, β2) with respect to p(i, j)
and then set the results equal to zero, i.e., ∂L/∂p(i, j) = 0.

If (i, j) is determined, then

∂

∂p(i, j)

⎡

⎣−
∞∑

j=0

b∑

i=0

p(i, j) ln p(i, j)

⎤

⎦ = − ln p(i, j) − 1.

It is clear that for all (i, j), i �= i and j �= j,

∂

∂p(i, j)
p(i, j) ln p(i, j) = 0.

Thus, we obtain

∂L

∂p(i, j)
= [− ln p(i, j) − 1] − β0 − β1i − β2j = 0,

which indicates
ln p(i, j) = −1 − β0 − β1i − β2j. (7)

It follows from (7) that

p(i, j) = exp [− (1 + β0)] exp (−β1i) exp (−β2j) . (8)

Let
x = exp [− (1 + β0)] , y = exp (−β1) and z = exp (−β2) .

Then, we rewrite (8) as
p(i, j) = xyizj . (9)

Substituting (9) into (3) and utilizing algebraic knowledge, we have

x =
(1 − y)(1 − z)

1 − yb+1
. (10)

450 Q.-L. Li et al.

Similarly, substituting (9) into (4) and (5), respectively, we have

yb+1 −
b∑

n=1

1
b − I

yn +
I

b − I
= 0 (11)

and
z =

J

1 + J
. (12)

Therefore, if the average number of transactions in the block and the trans-
action pool can be provided, respectively, the positive numbers x, y and z exist
to give the approximate expression for p̃(i, j). This completes the proof. �

Remark 2. The theoretical expression of the mean values I and J given by
Li et al. [10] are restricted to Poisson arrival processes and exponential ser-
vice times, meaning that these expression are only theoretically applicable in this
particular case. Nevertheless, the maximum entropy principle is not dependent
on this assumption of the Poisson arrival processes and the exponential service
times. It can be applied to non-Poisson arrival processes and non-exponential ser-
vice times, as long as I and J can be provided, the non-linear equations can be
solved to derive the approximate expression of the steady-state probability distri-
bution for the blockchain queueing system. Therefore, the approximate expression
derived in Sect. 3.3 has broad applicability.

4 Numerical Experiments

In this section, we provide some numerical examples to verify computability of
our theoretical results and analyze how the key factors y and z of the approximate
expression depend on some crucial parameters of the blockchain queueing system.

Taking the situation of the Poisson arrival processes and the exponential
service times in Li et al. [10] as an example, since the theoretical expression of
the mean values I and J are composed of the crucial parameters λ, μ1, μ2 and b,
we can observe the relation between the key factors and crucial parameters. Note
that x is represented by y and z according to equations (10)–(12), we just need
to focus on how y and z depend on these crucial parameters through numerical
examples.

In the Examples 1 and 2, we take some common parameters: the maxi-
mum block size b = 80, the block-generation service rate μ1 = 6, 7.5, 10, the
blockchain-building service rate μ2 = 2 and the arrival rate λ ∈ (1, 3.5).

Example 1. We analyze how y depends on λ and μ1. From Fig. 2, it is seen
that y decreases as λ increases, while it also decreases as μ1 increases.

Example 2. We analyze how z depends on λ and μ1. From Fig. 3, it is seen
that z increases as λ increases, while it increases as μ1 decreases.

Information Theory of Blockchain Systems 451

Fig. 2. y vs. λ for three different values of μ1.

Fig. 3. z vs. λ for three different values of μ1.

Example 3. We specifically observe how y and z depend on the maximal block
size b, respectively. We take some common parameters: the arrival rate λ =
1.5, the blockchain-building service rate μ2 = 2, the maximum block size b =
40, 80, 160 and the block-generation service rate μ1 ∈ (5, 7.5). From Fig. 4 and
Fig. 5, it is seen that y and z decrease as μ1 increases, while they increase as b
increases.

452 Q.-L. Li et al.

Fig. 4. y vs. μ1 for three different values of b.

Fig. 5. z vs. μ1 for three different values of b.

5 Concluding Remarks

In this paper, we apply the maximum entropy principle of the information theory
to study the blockchain queueing system, and provide an approximate expression
of its steady-state probability distribution. By obtaining this approximation, we
have partially resolved a challenging issue in the blockchain technology, i.e.,
how to directly express the steady-state probability distributions of some large-
scale and complex blockchain queueing systems. On the other hand, we use
numerical examples to verify the computability of our theoretical results and

Information Theory of Blockchain Systems 453

analyze how the key factors of the approximate expression depend on some
crucial parameters. Along these lines, we will continue our future research in the
following directions:

• Investigating blockchain queueing systems with multiple mining pools, differ-
ent consensus mechanisms and so on.

• Extending the information theory to blockchain queueing networks or stochas-
tic models.

• Applying the information theory to provide a more accurate approximate
expression by utilizing more prior information, such as the second and the
third moments.

References

1. Chen, C.C., Du, Y., Peter, R., et al.: An implementation of fake news prevention by
blockchain and entropy-based incentive mechanism. Soc. Netw. Anal. Min. 12(1),
114 (2022)

2. Chen, J., Cheng, Y., Xu, Z., et al.: Decision on block size in blockchain systems
by evolutionary equilibrium analysis. Theor. Comput. Sci. 942, 93–106 (2023)

3. Daneshgar, F., Ameri Sianaki, O., Guruwacharya, P.: Blockchain: a research frame-
work for data security and privacy. In: Barolli, L., Takizawa, M., Xhafa, F.,
Enokido, T. (eds.) WAINA 2019. AISC, vol. 927, pp. 966–974. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-15035-8 95

4. Huang, D., Ma, X., Zhang, S.: Performance analysis of the Raft consensus algo-
rithm for private blockchains. IEEE Trans. Syst. Man. Cybern. Syst. 50(1), 172–
181 (2019)

5. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4),
620–630 (1957)

6. Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. 108(2),
171–190 (1957)

7. Khan, P.W., Byun, Y.: A blockchain-based secure image encryption scheme for the
industrial Internet of Things. Entropy 22(2), 175 (2020)

8. Kowalski, M., Lee, Z.W., Chan, T.K.: Blockchain technology and trust relation-
ships in trade finance. Technol. Forecast. Soc. 166, 120641 (2021)

9. Li, Q.L.: Constructive Computation in Stochastic Models with Applications: The
RG-Factorizations. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11492-2 2

10. Li, Q.L., Ma, J.Y., Chang, Y.X.: Blockchain queue theory. In: Chen, X., Sen, A.,
Li, W.W., Thai, M.T. (eds.) CSoNet 2018. LNCS, vol. 11280, pp. 25–40. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-04648-4 3

11. Li, Y., Cao, B., Liang, L., et al.: Block access control in wireless blockchain network:
design, modeling and analysis. IEEE Trans. Veh. Technol. 70(9), 9258–9272 (2021)

12. Liang, X., Chen, W., Li, J., et al.: Incentive mechanism of medical data shar-
ing based on information entropy in blockchain environment. J. Phys: Conf. Ser.
1302(2), 022056 (2019)

13. Lindman, J., Tuunainen, V.K., Rossi, M.: Opportunities and risks of blockchain
technologies - a research agenda. In: Proceedings of the 50th Hawaii International
Conference on System Sciences, Hawaii, pp. 1533–1542 (2017)

https://doi.org/10.1007/978-3-030-15035-8_95
https://doi.org/10.1007/978-3-642-11492-2_2
https://doi.org/10.1007/978-3-642-11492-2_2
https://doi.org/10.1007/978-3-030-04648-4_3

454 Q.-L. Li et al.

14. Liu, Z., Huang, B., Hu, X., et al.: Blockchain-based renewable energy trading using
information entropy theory. IEEE T. Netw. Sci. Eng. 1–12 (2023)

15. Lu, Y., Huang, X., Zhang, K., et al.: Blockchain empowered asynchronous federated
learning for secure data sharing in internet of vehicles. IEEE Trans. Veh. Technol.
69(4), 4298–4311 (2020)

16. Ma, J.Y., Li, Q.L.: Optimal dynamic mining policy of blockchain selfish mining
through sensitivity-based optimization. J. Comb. Optim. 44(5), 3663–3700 (2022)

17. Mis̆ić, J., Mis̆ić, V.B., Chang, X.: Performance of bitcoin network with synchro-
nizing nodes and a mix of regular and compact blocks. IEEE T. Netw. Sci. Eng.
7(4), 3135–3147 (2020)

18. Nguyen, D.C., Pathirana, P.N., Ding, M., et al.: Privacy-preserved task offloading
in mobile blockchain with deep reinforcement learning. IEEE Trans. Netw. Service
Manag. 17(4), 2536–2549 (2020)

19. Risius, M., Spohrer, K.: A blockchain research framework. Bus. Inform. Syst. Eng.
59(6), 385–409 (2017)

20. Seol, J., Kancharla, A., Ke, Z., et al.: A variable bulk arrival and static bulk service
queueing model for blockchain. In: The 2nd ACM International Symposium on
Blockchain and Secure Critical Infrastructure, Taipei, pp. 63–72. Association for
Computing Machinery (2020)

21. Srivastava, R.: Mathematical assessment of blocks acceptance in blockchain using
Markov model. Int. J. Blockchains Cryptocurrencies 1(1), 42–53 (2019)

22. Swan, M.: Blockchain: Blueprint for a new economy. O’Reilly Media, Inc. (2015)
23. Sudeep, T., Karan, P., Richard, E.: Blockchain-based electronic healthcare record

system for healthcare 4.0 applications. J. Inf. Secur. Appl. 50, 102407 (2020)
24. Torky, M., Hassanein, A.E.: Integrating blockchain and the internet of things in

precision agriculture: analysis, opportunities, and challenges. Comput. Electron.
Agr. 178, 105476 (2020)

25. Yang, L., Li, M., Si, P., et al.: Energy-efficient resource allocation for blockchain-
enabled industrial Internet of Things with deep reinforcement learning. IEEE Inter-
net Things J. 8(4), 2318–2329 (2020)

26. Zhao, W., Jin, S., Yue, W.: Analysis of the average confirmation time of trans-
actions in a blockchain system. In: Phung-Duc, T., Kasahara, S., Wittevrongel,
S. (eds.) QTNA 2019. LNCS, vol. 11688, pp. 379–388. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-27181-7 23

https://doi.org/10.1007/978-3-030-27181-7_23

Machine Learning with Low-Resource
Data from Psychiatric Clinics

Hongmin W. Du1, Neil De Chen2, Xiao Li3(B), and Miklos A. Vasarhelyi1

1 Accounting and Information Systems Department, Rutgers University, Piscataway,
NJ 08854, USA

hd255@scarletmail.rutgers.edu, miklosv@business.rutgers.edu
2 School of Medicine, Saint Luis University, St. Louis, MO 63103, USA

3 Department of Computer Science, University of Texas at Dallas, Richardson,
TX, USA

xiao.li@utdallas.edu

Abstract. Amidst the rapid growth of big data, the success of machine
learning is critically tethered to the availability and quality of training
data. A pertinent challenge faced by this symbiotic relationship is the
issue of “low-resource data,” characterized by insufficient data volume,
diversity, and representativeness, and exacerbated by class imbalances
within datasets. This study delves into the intersection of machine learn-
ing and big data, exploring innovative methodologies to counteract the
challenges of data scarcity. Focusing on psychiatric clinic data, marked by
subjectivity and inconsistency, we outline the unique challenges posed by
the nature of data in this domain. To address these challenges, we explore
the potential of data augmentation-using transformations or operations
on available data-and transfer learning, where knowledge from a pre-
trained model on a large dataset is transferred to a smaller one. Through
a comprehensive exploration of these methodologies, this research aims
to bolster the effectiveness of machine learning in low-resource environ-
ments, with a vision of advancing the digital landscape while navigating
inherent data constraints.

Keywords: Small Data · Medical Data · Machine Learning · Low
Resource Data · Data Augmentation

1 Introduction

In the era of exponential data growth, the role of machine learning has emerged
as a pivotal force in extracting valuable insights and knowledge from vast and
complex datasets, commonly referred to as big data. This symbiotic relation-
ship between machine learning and big data has led to significant advancements
across numerous domains, ranging from healthcare and finance to marketing
and autonomous systems. However, amidst the remarkable progress achieved, a
persistent challenge looms large, casting a shadow on the efficacy of machine

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 455–465, 2024.
https://doi.org/10.1007/978-3-031-49614-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_34&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_34

456 H. W. Du et al.

learning algorithms-the scarcity of adequate training data and the pervasive
issue of class imbalance within datasets. This challenge, synonymous with the
term “low-resource data,” has garnered substantial attention and constitutes a
paramount concern in the field of machine learning.

Despite the undeniable potential of machine learning to revolutionize
decision-making and predictive modeling, its effectiveness crucially hinges upon
the quality and quantity of training data available. While the digital landscape is
inundated with data, a considerable portion of it remains inadequate in terms of
volume, diversity, and representativeness. This limitation not only impedes the
development of accurate and robust machine learning models but also dimin-
ishes their potential to generalize to new, unseen instances. Concurrently, the
uneven distribution of class labels within datasets, commonly referred to as class
imbalance, further compounds the predicament by skewing the learning process
in favor of the majority class, often at the expense of the minority classes. Con-
sequently, these inherent challenges collectively underscore the pressing need to
devise innovative strategies and methodologies that address the intricacies of
low-resource data and mitigate the associated adversities.

In this research endeavor, we delve deep into the multifaceted domain of
machine learning and big data, centering our focus on the intersection between
model performance and the scarcity of training data. By analyzing the mani-
fold implications of low-resource data scenarios and the intricate nature of class
imbalance, we aim to unearth novel approaches that enable the harnessing of
invaluable insights even from data-scarce environments. Through a comprehen-
sive exploration of methodologies ranging from transfer learning and active learn-
ing to data augmentation and synthetic data generation, we strive to not only
elucidate the intricacies of these strategies but also evaluate their effectiveness
in ameliorating the performance of machine learning models when confronted
with the challenges of low-resource data.

As we navigate through the unknown areas of this research, our ultimate goal
is to contribute to the arsenal of tools and techniques that empower machine
learning practitioners to transcend the constraints imposed by data scarcity
and class imbalance. By doing so, we envision a future where the promise of
machine learning remains steadfast, unswayed by the inherent limitations of data
availability, and continues to pave the way for unprecedented advancements in
our ever-evolving digital landscape.

For example, in the analysis of psychiatric clinics data, we face a difficult
situation that the available data is not large enough due to the following.

– Psychiatry is a highly subjective field when it comes to gathering patient data,
characterized by a scarcity of numerical information and marked inconsistency
in the documentation of symptoms, signs, concerns, and the progression of
cases across different psychiatrists. The lack of standardized language, apart
from diagnostic criteria, presents a significant challenge for Natural Language
Processing (NLP) to effectively capture and analyze the data in a coherent
manner.

Machine Learning with Low-Resource Data from Psychiatric Clinics 457

– Diagnosis does not always dictate the treatment plan; more frequently, it
serves as a coding tool. However, diagnoses can undergo changes quite easily.
Moreover, many medications are employed in off-label capacities, deviating
from algorithmic guidelines. As a consequence, this diversity leads to a wide
array of distinct approaches.

– Medical records in the field of psychiatry are often unreliable, with numerous
patients receiving incorrect diagnoses that do not align with current diagnos-
tic criteria. There is a prevalence of inaccurate or misleading information that
may not be rectified by subsequent psychiatrists, leading to a lack of proper
sanitization of the records.

– There is no evidence indicating that superior documentation or clustering
of patient data directly results in improved patient outcomes. This raises an
ethical dilemma, as it could be perceived that such practices primarily benefit
hospital administration financially, potentially exacerbating the challenges
patients face in accessing proper care.

The aforementioned facts underscore the challenging nature of researching
psychiatric clinic data. Given this context, what methodologies can be employed?
In this concise article, we explore potential techniques that could be applied to
the analysis of psychiatric clinic data. By comparing these techniques, our aim is
to identify a more effective approach. Subsequently, in future research endeavors,
we aspire to extract valuable insights from psychiatric clinic data, benefiting both
psychiatrists and their patients.

2 Data Augmentation

One of the ways for dealing with low-resource data is so called data augmenta-
tion. What is data augmentation? This involves artificially increasing the size
of the training set by creating new data instances through transformations or
operations on available data. The following are three examples.

In [9], data augmentation is employed to deal with the task of image classi-
fication. They compared and analyzed multiple methods of data augmentation,
including classical image transformations like rotating, cropping, zooming, his-
togram based methods, and operations at Style Transfer and Generative Adver-
sarial Networks, together with the representative examples. They also presented
their own method of data augmentation based on image style transfer. Those
methods generate the new images of high perceptual quality, which can be used
to pre-train the given neural network in order to improve the training process
efficiency. Finally, the three medical case studies are carried out to validate pro-
posed method. They are skin melanomas diagnosis, histopathological images and
breast magnetic resonance imaging (MRI) scans analysis. The image classifica-
tion is utilized to provide helpful information for a diagnose. In such medical
case studies, the data deficiency is a very important relevant issue. Moreover,
they discussed the advantages and disadvantages of discussed methods.

In the study of computer vision, augmented data are still images. Considered
operations include horizontally flipping, random cropping, tilting, and altering

458 H. W. Du et al.

the color channels of the original images. Since the content of the new image
is still the same, the label of the original image is preserved. This situation
is changed in training networks for NLP tasks such as Machine Translation.
Given a source and target sentence pair (S, T), one may need to alter it in a
way that preserves the semantic equivalence between S and T. For low-resource
language pairs, this is difficult to do. In [4], a novel data augmentation approach
is proposed to target low-frequency words by generating new sentence pairs
containing rare words in new, synthetically created contexts. Their method is
found to have improved translation quality.

For text classification tasks, four simple but powerful operations are synonym
replacement, random insertion, random swap, and random deletion. In [20], data
augmentation techniques with those operations are employed in the study of five
text classification tasks. They demonstrate strong results for smaller datasets
and improve performance for both convolutional and recurrent neural networks.
Across five datasets, with mentioned data augmentation techniques, using only
50% of the available training set achieved the same accuracy as normal training
with all available data. Moreover, they give suggested parameters for practical
use.

All above three examples contain helpful information for the analysis of psy-
chiatric clinics data.

– Psychiatric clinics data is in text format. The task of identifying proper diag-
nosis is equivalent to doing text classification. Therefore, those operations
mentioned in [20] may be useful.

– However, we have to select operations carefully because label (i.e., diagno-
sis) should be preserved, such as summarization and rearrange ordering of
sentences and consider those in the case of skin melanomas diagnosis in [9].

– To preserve the label, we may treat psychiatric clinics data as data pairs of
patient’s suboptimal statement and doctor’s diagnosis with treatment. Then,
employ techniques in [4] to augment data pairs.

3 Transfer Learning

Transfer learning is a simple and powerful method. It can be used to boost
model performance of low-resource neural machine translation. This technique
includes taking a pre-trained model (usually trained on a large dataset) and
fine-tuning it on a smaller dataset. The idea is that the pre-trained model has
already learned useful features from the larger dataset, which can be applied to
the smaller dataset.

Existing transfer learning methods for neural machine translation are simply
transfer knowledge from a parent model to a child model once via parameter
initialization. It has been showed that the encoder-decoder framework for neural
machine translation is very effective in large data scenarios, but much less effec-
tive for low-resource languages. In [21], a transfer learning method is presented.
This method significantly improves BLEU (Bilingual Evaluation Understudy)
scores across a range of low-resource languages. The key idea is to first train a

Machine Learning with Low-Resource Data from Psychiatric Clinics 459

high-resource language pair of encoder-decoder (the parent model), then transfer
the learned parameters to the low-resource pair (the child model) to initialize
and constrain training.

In [8], a novel transfer learning method, namely ConsistTL, for neural
machine translation is proposed. ConsistTL is able to continuously transfer
knowledge from the parent model to the child model during the training of
the child model. Specifically, the child model learning each instance under the
guidance of the parent model, that is, for each training instance of the child
model, ConsistTL constructs the semantically-equivalent instance for the par-
ent model and encourages prediction consistency between the parent and child
for this instance. Experimental results demonstrate that ConsistTL results gives
significant improvements over strong transfer learning baselines.

A unified framework is introduced in [14] that converts all text-based lan-
guage problems into a text-to-text format, which explores the landscape of trans-
fer learning techniques for NLP. With this framework, a systematic study is made
in the same paper to compare retraining objectives, architectures, unlabeled data
sets, transfer approaches, and other factors on dozens of language understanding
tasks.

A new idea for unsupervised domain adaptation via a remold of Prototypical
Networks is introduced in [11]. The goal is to learn an embedding space and
perform classification via a remold of the distances to the prototype of each
class. They present Transferrable Prototypical Networks for adaptation such
that the prototypes for each class in source and target domains are close in the
embedding space and the score distributions predicted by prototypes separately
on source and target data are similar.

If we want to use this technique to analyze psychiatric clinics data, then we
may need to do the following.

– Identify a machine learning model for analysis of psychiatric clinics data.
– Find a medical data with high resource which can have the same machine

learning model. This seems very hard task since psychiatry is so different
from other medical fields.

4 Few-Shot/Zero-Shot Learning

This is a technique where the model is designed to make accurate predictions
given only a few or no examples. This approach often involves meta-learning
where the model is learning the structure or meta-knowledge across different
tasks, so it learns a prior over models that is useful for new tasks. Let us first
look at a few examples.

In [16], Prototypical Networks are proposed for the problem of few-shot clas-
sification. Given only a small number of examples of each new class, a clas-
sifier must generalize to new classes not seen in the training set. By comput-
ing distances to prototype representations of each class, Prototypical Networks
learn a metric space in which classification can be performed. Compared to

460 H. W. Du et al.

recent approaches for few-shot learning, their approach is simpler and achieve
excellent results. Actually, they provide an analysis showing that some sim-
ple design decisions can yield substantial improvements over recent approaches;
those approaches involve complicated architectural choices and meta-learning.

Meta-learning is a framework to address the challenging few-shot learning
setting. It leverages a large number of similar few-shot tasks in order to learn
how to adapt a base-learner for a new task when for the new task, only a few
labeled samples are available. In [17], a novel few-shot learning method, called
meta-transfer learning, is proposed. This method learns to adapt a deep neural
networks for few shot learning tasks. Here, by meta, it means to train multiple
tasks, and by transfer it means that learning is achieved by scaling and shifting
functions of deep neural network weights for each task.

Deep neural networks is successful in the large data domain, but perform
poorly on few-shot learning tasks if a classifier has to quickly generalize after
seeing very few examples for the class. Generally speaking, gradient-based opti-
mization in high capacity classifiers needs many iterative steps over many exam-
ples in order to perform well. In [15], a meta-learner model LSTMbased is pro-
posed to learn the exact optimization algorithm used to train another learner
neural network classifier in the few-shot regime. This meta-learning model is
competitive with deep metric-learning techniques for few-shot learning.

In [7], an effort is made on prompts for pre-trained language models. It
has shown great performance in bridging the gap between pre-training tasks
and various downstream tasks. Especially, prompt tuning freezes pre-trained
language models and only tunes soft prompts, gives an efficient and effective
solution for adapting large scale pre-trained language models to downstream
tasks.

This technique is similar to transfer learning. They transfer information
obtained from high-resource data to low-resource data. Therefore, we may see it
as a variation of transfer learning. The difference is that the parent’s model and
the child model have closer relationship.

5 Active Learning

This is a special case of machine learning where a learning algorithm can actively
choose the data it wants to learn from. It’s particularly useful when unlabeled
data may be abundant or easy to collect, but labeling data is costly, time-
consuming, or requires expert knowledge. Thus, it looks like another variation
of transfer learning. We may find three examples in [3,5,6].

In text classification, labels are usually expensive and the data is often char-
acterized by class imbalance. This gives a challenge in Real world scenarios for
active learning. In [3], a large-scale empirical study is presented on active learn-
ing techniques for BERT-based classification, and a diverse set of AL strategies
and datasets is addressed.

In active learning, a small subset of data is selected for annotation such that
a classifier learned on the data is highly accurate. Usually, selection is done by

Machine Learning with Low-Resource Data from Psychiatric Clinics 461

using heuristics. To improve the effectiveness of such methods, an effort in [5] is
made by introducing a novel formulation which reframes the active learning as
a reinforcement learning problem and explicitly learning a data selection policy.
Here, the policy takes the role of the active learning heuristic.

Active learning methods rely on being able to learn and update models from
small amounts of data. Recent advances in deep learning are notorious for their
dependence on large amounts of data. This difference makes deep learning is
difficult to be used in active learning. However, in [6], authors combine recent
advances in Bayesian deep learning into the active learning framework in a prac-
tical way and develop an active learning framework for high dimensional data,
which is a task extremely challenging.

6 Self-supervised Learning

This is a type of machine learning where the model generates its own supervised
learning signals from the input data itself. It is a method of training where
the labels for the training data are automatically generated from the data itself,
without any human annotation. For example, a model might be trained to predict
the next word in a sentence, and the learned word embeddings can then be used
for a task like sentiment analysis. One paradigm for self-supervised learning is
from few labeled examples while making best use of a large amount of unlabeled
data, that is, unsupervised pre-training followed by supervised fine-tuning.

For self-supervised learning from images, the goal is to construct image rep-
resentations. They are semantically meaningful via pretext tasks that do not
require semantic annotations. A lot of pretext tasks lead to representations that
are covariant with image transformations. However, in [10], authors argue that
semantic representations should be invariant under such transformations. More-
over, they develop Pretext-Invariant Representation Learning that learns invari-
ant representations based on pretext tasks.

Self-supervised learning is learning from few labeled examples while making
best use of a large amount of unlabeled data. [1], authors proposed an approach
by using big (deep and wide) networks during pretraining and fine-tuning. They
found that for their approach, the fewer the labels, the more this approach (task-
agnostic use of unlabeled data) benefits from a bigger network.

In [2], a new language representation model is introduced in [2]. This new
model is designed to pretrain deep bidirectional representations from unlabeled
text by jointly conditioning on both left and right context in all layers. It is a
pretrained model, which can be finetuned with just one additional output layer
to create state-of-the-art models for a wide range of tasks

In [12], a new global logbilinear regression model is proposed. This model
combines the advantages of the two major model families in the literature, global
matrix factorization and local context window methods. It efficiently leverages
statistical information by training only on the nonzero elements in a word-word
co occurrence matrix.

462 H. W. Du et al.

7 Multi-task Learning

This involves training a model on multiple related tasks at the same time, with
the aim that learning from each task with high-resource data can help improve
performance on the other task with low-resource data. Examples can be found
in [13,18,19].

8 Conclusion

Summarizing the above six techniques, we found that there are only two ways
to deal with low-resource data for our particular use case.

– Data Augmentation: Generate more data by data operations.
– Transfer Learning in Wide Sense: Transfer the information or parameters from

analysis of high-resource data to low-resource data. In Transfer Learning,
it transfers from a parent model to a child model. In Few-Shot/Zero-Shot
Learning, it transfer from previous task to new task. In Active Learning, it
transfers from unlabeled data to labeled data. In Self-Supervised Learning, it
transfers from own unlabeled data to labeled data. In Multi-Task Learning,
it transfers one to another data where they are processed together.

How to use these techniques in analysis of psychiatric clinic data? We have
discussed at the ends of Sects. 2 and 3, respectively.

Other than selection of machine learning techniques, selection of research
goal is also important for analysis of psychiatric clinics data. The following sug-
gestions stem from via the point of a psychiatrist.

If we are interested in creating a tool, then we may consider the following:

– Develop a tool capable of analyzing a patient’s historical records, past med-
ical information, and the patient’s current daily note (encompassing both
Subjective and Objective aspects of the visit). Utilize this information to
generate a “recommended diagnosis” primarily for coding purposes-assigning
a corresponding code to a specific diagnosis for billing purposes. The goal
is to alleviate the documentation burden on physicians. While similar tools
already exist in certain documentation systems, there’s potential to enhance
and refine this approach in comparison to the existing solutions. However, it
remains uncertain whether surpassing the capabilities of systems like Epic is
achievable.

If we are interested in clustering, then we may consider the following:

– Would recommend limiting scope to a single type of diagnosis and looking
for clusters within that diagnosis, ie possible clusters of major depressive
disorder.

– A lot of psychiatry involves trial-and-error for final medication selection and
titration; one hypothesis is that there are subtypes which are as yet invisible
to our diagnostic criteria. Identifying these subtypes and predicting them

Machine Learning with Low-Resource Data from Psychiatric Clinics 463

would result in fewer trials of medications before achieving optimal control.
In this case, if you have enough data, I would try repeating your analysis
but only on patients with a single psychiatric diagnosis (ie, major depressive
disorder); but many patients will have enough diagnoses to make me cry

– Remember that all pilots should start with small scope, your overall dataset
is small for NLP but covers a massive diagnostic space in psychiatry

If you want to be spicy, then we may consider the following:

– Look at patient outcome differences between patients seen by NPs (nurse
practitioners) versus MD/DO (fully trained physician)

– There is a lot of “bad psychiatry” being practiced in the US because of NPs
being significantly cheaper to hire - lot of existing data on poorer outcomes
but not limited to psychiatry

– Can also look at telehealth vs. in-person outpatient outcomes I am assuming
you can not obtain a dataset from another medical specialty; if possible,
would look into datasets with more standardized vocabulary (if you are fixed
on the use of NLP) - i.e., radiology, pathology, results of endoscopies, etc. For
example, in radiology, it might be very nice to take an image’s READ and try
to predict the IMPRESSION (the radiologist’s tldr), which would save some
time, and you already essentially have the training data if you have a bunch
of these

In conclusion, the invaluable insights provided by the psychiatric expert offer
a significant opportunity to elevate the trajectory of future research focused on
psychiatric patient datasets. The suggested approach not only sheds light on the
complexities of mental health data but also presents a framework to enhance the
quality and depth of these datasets.

By incorporating the guidance of an up and coming psychiatric, future
research endeavors can adopt a more holistic and clinically informed perspec-
tive. The emphasis on capturing the subjective experiences of patients, alongside
objective observations, serves to paint a comprehensive picture of their mental
health journey. This nuanced approach not only humanizes the data but also
enables a more accurate representation of the intricate interplay between symp-
toms, concerns, and treatment progress.

Furthermore, the call for standardized language and categorization aligns
with the broader objective of creating cohesive and interoperable datasets.
This standardization not only facilitates meaningful comparisons across different
patient cases but also streamlines data integration, thus bolstering the potential
for advanced analyses and insights.

However, these suggestions come with the recognition that the ethical dimen-
sion remains of paramount importance. Ensuring patient privacy, informed con-
sent, and protection against biases must remain at the forefront of research
endeavors. By weaving these considerations into the fabric of future studies,
researchers can pave the way for responsible innovation in psychiatric health-
care data.

464 H. W. Du et al.

Incorporating the recommended approach into future research not only has
the potential to advance our understanding of mental health but also contributes
to the ongoing dialogue between the medical and research communities. The
collaborative integration of clinical expertise and data-driven insights promises
to yield datasets that are not only robust but also imbued with empathy-a vital
combination in the pursuit of meaningful breakthroughs in psychiatric care.

Acknowledgement. We appreciate very much to Guanghua Wang for his help in
collecting references.

References

1. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised
models are strong semi-supervised learners. In: Advances in Neural Information
Processing Systems, vol. 33. NeurIPS (2020)

2. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of NAACL-
HLT 2019, pp. 4171–4186. Minneapolis, Minnesota (2019)

3. Ein-Dor, L., et al.: Active learning for BERT: an empirical study. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 7949–7962. Association for Computational Linguistics (2020)

4. Fadaee, M., Bisazza, A., Monz, C.: Data augmentation for low-resource neural
machine translation. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Short Papers), pp. 567–573 Vancouver, Canada
(2017)

5. Fang, M., Li, Y., Cohn, T.: Learning how to active learn: a deep reinforcement
learning approach. In: Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pp. 595–605, Copenhagen, Denmark (2017)

6. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image data.
In: Proceedings of the 34th International Conference on Machine Learning, vol. 70,
pp. 1183–1192. PMLR (2017)

7. Gu, Y., Han, X., Liu, Z., Huang, M.: PPT: pre-trained prompt tuning for few-
shot learning. In: Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics, Volume 1: Long Papers, pp. 8410–8423 (2022)

8. Li, Z., Liu, X., Wong, D.F., Chao, L.S., Zhang, M.: ConsistTL: modeling consis-
tency in transfer learning for low-resource neural machine translation. In: Proceed-
ings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 8383–8394 (2022)

9. Miko�lajczyk, A., Grochowski, M.: Data augmentation for improving deep learn-
ing in image classification problem. In: 2018 International Interdisciplinary PhD
Workshop (IIPhDW) (2018). https://doi.org/10.1109/IIPHDW.2018.8388338

10. Misra, I., van der Maaten, L.: Self-supervised learning of pretext-invariant repre-
sentations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6707–6717 (2020)

11. Pan, Y., Yao, T., Li, Y., Wang, Y., Ngo, C.-W., Mei, T.: Transferrable prototypical
networks for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2239–2247
(2019)

https://doi.org/10.1109/IIPHDW.2018.8388338

Machine Learning with Low-Resource Data from Psychiatric Clinics 465

12. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543. Doha, Qatar (2014)

13. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. OpenAI blog 1, 9 (2019)

14. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21(1), 1–67 (2020)

15. Ravi, S., Larochelle, H.: Optimization as a Model for Few-Shot Learning, ICLR
(2017)

16. Snell, J., Swersky, K., Zemel, R.,: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems, vol. 30. NIPS (2017)

17. Sun, Q., Liu, Y., Chua, T.-S., Schiele, B.: Meta-transfer learning for few-shot learn-
ing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 403–412 (2019)

18. Thoppilan, R., et al.: LaMDA: language models for dialog applications.
arXiv:2201.08239 (2022)

19. Touvron, H., et al.: LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 (2023)

20. Wei, J., Zou, K.: EDA: easy data augmentation techniques for boosting perfor-
mance on text classification tasks. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing, pp. 6382–6388. Hong Kong, China
(2019)

21. Zoph, B., Yuret, D., May, J., Knight, K.: Transfer learning for low-resource neural
machine translation. In: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 1568–1575. Austin, Texas (2016)

http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2302.13971

Single Image Dehazing Based on Dynamic
Convolution and Transformer

Quancheng Ning and Nan Zhang(B)

Institute of Computing Theory and Technology, Xidian University,
Xi’an 710071, China

21181214419@stu.xidian.edu.cn, nanzhang@xidian.edu.cn

Abstract. In this paper, an end-to-end multi-stage dehazing network
based on convolution and Transformer is proposed. The network design
is divided into three parts: encoding network, feature fusion network
and decoding network. The encoding network extracts primary features
of the haze image, the feature fusion network uses the serial Transformer
module and the dynamic convolution module to make the information
extracted from the features richer, and the decoding network is used to
recover the image resolution. In the resolution restoration stage of the
decoding module, the MixUp module is used to restore the high res-
olution image by combining the extracted primary features to reduce
the loss of information. Extensive experiments were conducted on syn-
thetic and real datasets to validate the role of Transformer module and
Dynamic Convolution module in dehazing respectively. The results show
that the proposed method achieves a good objective evaluation score and
reconstructs a subjectively better dehazing image with a PSNR of 35.37
and a SSIM of 0.9849 on the SOTS test dataset.

Keywords: Image Dehazing · Dynamic Convolution · Gate
Aggregation · Transformer

1 Introduction

In a haze scene, the presence of a large number of tiny suspended particles in
the outdoor air will produce refraction and scattering of light. The refracted
and scattered light will be mixed with the light reflected by the object to be
observed. It will greatly reduce the clarity and contrast of the collected outdoor
image, and even cause the image color to shift and a lot of details to be lost. As
a result, the real image information cannot be obtained. In order to solve such
problems, many image defogging algorithms have been proposed. Image dehazing
is generally the first step of image processing since using dehazed images can
improve the accuracy of target detection tasks.

This research is supported by National Natural Science Foundation of China under
Grant Nos. 62272359 and 62172322; Natural Science Basic Research Program of
Shaanxi Province under Grant Nos. 2023JC-XJ-13 and 2022JM-367.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 466–479, 2024.
https://doi.org/10.1007/978-3-031-49614-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_35&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_35

Single Image Dehazing Based on Dynamic Convolution and Transformer 467

Atmospheric Scattering Model (ASM) proposed by McCartney [1] is a famous
mathematical model in computer vision and computer graphics used to describe
the formation of haze images. This model is expressed as

I(x) = t(x)J(x) + (1 − t(x))A

where I is the haze image, x is the pixel location of the image, t(x) is the
medium transmission map, J(x) is the scene radiance (dehazed image), and A
is the atmospheric light vector in RGB domain. The formula expresses that the
formation process of haze images is the combination of light reflected by objects
and atmospheric light.

Many dehazing methods based on atmospheric scattering models estimate
a priori the medium transmission map t(x) and atmospheric light values as a
prerequisite for computing a haze-free image, as shown in the above equation.
For example, the dark channel prior [2] is the most successful a priori method
and many subsequent methods have been inspired by it. The bounded context
regularisation method [3] estimates the value of t(x) by imposing a constraint
on t(x), and then estimates the atmospheric light A via the dark channel prior,
which is used to obtain the dehazing image via an atmospheric scattering model.
Several features related to dehazing in image dehazing are investigated in [4],
including dark channel, contrast, chroma, and saturation, and it is experimen-
tally verified that the dark channel is most relevant to the haze concentration.
The first network to use deep learning for image dehazing is DehazeNet [5],
which estimates the transmittance map t by means of a neural network, which
sorts the network’s output of the transmittance map from smallest to largest,
and finds the pixels in the smaller first 0.01 of the transmittance as candidate
pixels for the atmospheric light, and finds the brightest pixel among these candi-
date pixels that is the estimate of the atmospheric light. The idea of generative
adversarial is applied to image dehazing in the dense pyramid dehazing network
[6], which uses two sub-networks to estimate the medium transmission map t
and the atmospheric light A, respectively, and then dehaze the image based on
the atmospheric scattering model. The dehaze image and medium transmission
image are spliced and input to the discriminative network, which determines
whether the medium transmission map estimation of the defogged image is close
to the real medium transmission map, which reflects the important role of the
medium transmission map.

All-in-One Network [7] adopts the above idea, but adds a bias coefficient
to the atmospheric scattering model, and then uses neural network to learn
the above ratio, that is, the output of the network is multiplied by the foggy
image to get the defogged image. GridDehazeNet [8] illustrates their conjec-
ture through experiments, and thinks that it is less difficult for the network
to learn the mapping from haze to dehazing directly than to learn the trans-
mittance and atmospheric light and then restore the clear image through the
atmospheric scattering model, so a pixel-to-pixel image dehazing method is pro-
posed. GCANet [9] realizes the idea of end-to-end dehazing, and uses the pair
of haze and clear images to make the model learn the mapping relationship

468 Q. Ning and N. Zhang

between haze images and clear images. The above models all use haze and clear
image pairs to train the network, which is a supervised learning mode. You Only
Look Yourself [10] uses the idea of de-entanglement to decompose the haze image
into a sub-network of haze-free images, a sub-network of medium transmission
map and a sub-network of atmospheric light estimation, and then applies an
atmospheric scattering model to reduce the original haze image to the output
of the three sub-networks. The closer the reduced haze image is to the input
haze image, the better the decomposition effect of each subnetwork on the haze
image is, i.e., the better the dehazing effect is, which is an unsupervised learning
model. FFA [14] is an important model in the field of dehazing, which proposes
channel attention and pixel attention that can apply attention to features in the
channel direction and pixel space, resulting in a large improvement in network
dehazing performance. With the excellent performance of VisonTransformer in
various visual tasks, DehazeFormer [21] was proposed specifically for dehazing
tasks.

Image dehazing algorithms based on deep learning currently achieve opti-
mal performance by modelling neural networks trained on haze datasets. In the
process of real image dehazing, as the distribution of haze in the image is not
the same, the parameters of the convolution kernel of the ordinary convolutional
layer are fixed after the network training is completed, and the value of the con-
volution kernel parameters can not be modified according to the input, but in the
process of image dehazing if it is possible to modify the parameters of the convo-
lution kernel according to the haze features, the expressive power of the network
will be improved. Dynamic convolutional layer [11] is not using only one convolu-
tional kernel per layer, but each layer is based on multiple convolutional kernels,
the convolutional kernel undergoes softmax to generate an attention score, and
then a linear combination of the score and convolutional kernel to get the fused
convolutional kernel, this convolutional kernel is the one that is finally used for
convolutional operations. The dynamic convolution operation can improve the
performance of the model on the basis of only a little increase in computational
complexity. At the same time, the neural network used for dehazing also has
the problem of gradient vanishing, in order to alleviate the problem of gradient
vanishing, the gradient flow of the network can flow from the deep layer to the
shallow layer through the residual connection. In the process of image dehazing
the extracted haze feature map is very important, in order to make full use of
the features using a combination of dense network and residual network to form
a dense residual network. Specifically, a skip structure is added between different
convolutional layers, i.e., the input of each layer is the output of the previous
layers, making full use of the extracted feature maps. The ordinary convolutional
layers in the dense residual network are replaced with dynamic convolution to
obtain a dynamic dense residual structure. The convolution module can cap-
ture the local associations of features, but it has limited ability to capture the
associations between features. In order to fully capture the associations between
features, it is proposed to place the transformer module before the dynamic con-
volution to obtain the associations between features, and then input the feature
to the dynamic convolution module. Considering that the low-level features may

Single Image Dehazing Based on Dynamic Convolution and Transformer 469

be lost in the process of dehazing, this paper designs the gated aggregation mod-
ule to fuse the features of different levels, so that the information of the obtained
features is richer.

The main contributions of our work are as follows: (1) A new image dehazing
algorithm based on dynamic convolution and Transformer is proposed. The net-
work can be divided into three parts:encoding network, feature fusion network
and decoding network. (2) In order to make the feature fusion network able to
fuse the global information of the features as well as the local information of
the features, the T-DRC module is designed in this paper, which firstly extracts
the global information by using the transformer module and then fuses the local
information by using the dynamic residual component. (3) In this paper, a gated
aggregation module is designed to weight different layers of features to form a
feature containing more information, which is decoded to recover a haze-free
image. (4) A large number of experiments have been carried out on synthetic
dataset and real world dataset. The subjective and objective evaluations show
that our image dehazing algorithm can achieve better dehazing results than tra-
ditional algorithms, and outperforms some current advanced algorithms interms
of Peak Signal to Noise Rate (PSNR).

2 Our Method

In this paper, we propose an image dehazing algorithm based on convolution
and Transformer, which can implement the dehazing process end-to-end, and
the overall structure of the network is shown in Fig. 1. The network mainly
contains three parts: Encoding Network, Feature Fusion Network, and Decod-
ing Network. Specifically, the input haze image first goes through the encoding
network for preliminary feature extraction and quadruple downsampling. The
encoding network consists of three depth-separable convolutional modules, each
of which consists of a depth-separable convolutional layer (consisting of two con-
volutional layers, one for group convolution and one for point-wise convolution),
a batch normalization layer, and ReLU as the activation function. The first of
these models is used will be used to increase the original image channel with-
out changing the resolution. After the encoding network the primary features of
the haze image are extracted and used to input the feature fusion network for
feature fusion. The feature fusion network is the feature fusion of the extracted
primary features using serial transformer module and dynamic residual compo-
nent. The decoding network consists of two transposed convolution modules and
one ordinary convolution layer, the transposed convolution module consists of a
transposed convolution layer, a batch normalization layer and a ReLU activation
function. When recovering the resolution of the features again, the MixUp mod-
ule is used to fuse the primary features extracted from the coding network with
the features that have gone through the fusion network. The last convolutional
layer is used for dimensionality reduction. The haze image is skip-connection into
the network output to form a residual structure to get the final haze-free image.
The components of the model and the loss function are described separately
next.

470 Q. Ning and N. Zhang

2.1 T-DRC Module

The module consists of two serial transformer modules and two dynamic residual
components. The module structure is shown in Fig. 1.

2.2 Improved Dynamic Residual Module

The dynamic residual component of [12] consists of a dynamic dense residual
block, a dynamic convolution layer, and channel attention and pixel attention
modules. In my experiments, I found that dynamic convolution with this struc-
ture is difficult to train, in this paper, we use a boosted dynamic convolution
module [22] to replace the original dynamic convolution module, and the overall
architecture of the improved module is shown in Fig. 2.

Fig. 1. Overall Architecture of the Network

Fig. 2. Improved Dynamic Residual Module

RDB (Residual Dense Block) in [13] connects the residual structure, dense
feature fusion across layers to better ensure the flow of information. The dense
connection structure can reduce the shallow feature loss problem to some extent
with the gradual deepening of the network, and at the same time lose a little

Single Image Dehazing Based on Dynamic Convolution and Transformer 471

computational complexity to improve the network performance without increas-
ing the depth of the network. The residual structure can alleviate the gradient
vanishing or gradient explosion problem of this module, allowing for better con-
vergence. The channel attention and pixel attention modules are added to enable
the network to notice different haze concentrations. Specifically, the dynamic
dense residual module is shown in Fig. 2.

2.3 Dual Attention Module

The distribution of foggy in haze images taken in the real world is usually uneven,
in order to enable the model to notice the difference in the distribution of haze,
inspired by the literature [14], adding the channel attention mechanism and pixel
attention mechanism in the feature extraction module can enhance the effect of
haze removal. In this paper, this kind of module is also used to enhance the effect
of haze removal, because the haze has different effects on different channels, the
channel attention can apply different weights to different channels; the effects on
different pixels in the features are also different, the pixel attention can apply
different weights to different pixels. The structure of the channel attention and
pixel attention module is shown in Fig. 3.

Fig. 3. Channel Attention and Pixel Attention

Specifically, the features first after global average pooling to obtain the aver-
age value of each channel, that is, in the spatial dimension of the compression of
features, to get 1 * 1 * C features, after the convolution layer, ReLU activation,
convolution layer, sigmoid to produce each channel in the weight, and then get
to the attention and the corresponding channel multiplication that is achieved
to the attention of the channel. Channel Attention Formula:

Wc = σ(Conv(δ(Conv(AvgPool(x)))))

After the channel attention feature map calculation formula:

Fc = Wc

⊗
F

Pixel Attention Formula:

Wp = σ(Conv(δ(Conv(Fc))))

After the pixel attention feature map formula:

Fp = Wp

⊗
Fc

472 Q. Ning and N. Zhang

where AvgPool represents the global average pooling operation, Conv represents
the convolution operation, δ represents ReLU activation function, σ represents
Sigmoid activation function,

⊗
represents dot product operation, F is the input

feature, which represents the feature that passes through the channel’s attention
and the feature that passes through the pixel’s attention.

2.4 Transformer Module

Convolution operation has a weak ability to capture the correlation between fea-
tures. Inspired by [15], this paper designs a transformer module, the structure of
which is shown in Fig. 4. Specifically, the input features are first passed through
RescaleNorm [22], through MDTA (Multi-Dconv Head Transposed Attention)
[15] module, and then the output features are affine transformed, skip-connextion
and summed with the input features, and input to the next RescaleNorm nor-
malisation layer, through the GDFN (Gated Dconv Feed-Forward Network) [15]
network, and then after affine transformation, skip-connection summation to get
the output of Transformer module.

Fig. 4. Transformer Module

2.5 Gated Fusion Block

As shown in [16], fusing features from different levels is usually beneficial for
both low-level and high-level tasks. To implement this idea, feature pyramids
are used in [16] to fuse high-level semantic feature maps at all scales. In this
paper, the gated aggregation block is designed. The structure of the block is
shown in Fig. 5.

Fig. 5. Gated Aggregation Module

Single Image Dehazing Based on Dynamic Convolution and Transformer 473

Assume that the output features of the three serial modules are FL, FM,
and FH, which are fed into the gated aggregation block. The gated aggrega-
tion block outputs three different importance weights, and the fusion features
are obtained by linearly combining the features of different levels and the corre-
sponding weights. The calculation formula is as follows:

(Wl,Wm,Wh) = Softmax(Conv(Fl, Fm, Fh))

F = Wl ∗ Fl + Wm ∗ Fm + Wh ∗ Fh

where Conv stands for convolutional layer, Softmax stands for softmax layer. Fl

stands for low level features, Fm stands for middle level features, Fh stands for
high level features and F stands for fused features. In the process of implemen-
tation, the number of input features of the gating module can also be flexibly
changed to fuse multiple features of different layers.

2.6 MixUp Module

The MixUp module is borrowed from the module in AECR-Net [22], and the
way the module aggregates features is shown in Fig. 6 below. The formula for
fusing features is shown below:

f↑2 = Mix(f↓1, f↑1) = σ(θ1) ∗ f↓1 + (1 − σ(θ1)) ∗ f↑1

f↑ = Mix(f↓2, f↑2) = σ(θ2) ∗ f↓2 + (1 − σ(θ2)) ∗ f↑2

Fig. 6. MixUp Module. The first and second rows are downsampling and upsampling
operations, respectively

where f↓i and f↑i are feature maps from the i-th downsampling and upsampling
layer, respectively. f↑ is the final output. σ(θi), i = 1, 2 is the i-th learnable factor
to fuse the inputs from the i-th downsampling layer and the i-th upsampling one,
whose value is determined by the sigmoid operator σ on parameter θi. During
training, we can effectively learn these two learnable factors, which achieves
better performance than the constant factors.

474 Q. Ning and N. Zhang

2.7 Loss Function

This paper uses L1 Loss function and contrast Loss function as the Loss function
of model training. L1 Loss function calculation formula:

L1 =|| φ(I, w) − J ||1
where φ refers to the dehazing network, w the network parameters, I the haze
image, and J refers to clear image.

Reference [17] introduces contrastive learning into the field of image dehazing,
as traditional image dehazing only applies clear images and does not fully utilize
haze images. The author views the dehazing image as an anchor box, the clear
image as a positive sample, and the haze image as a negative sample. Therefore,
the process of image dehazing can be seen as a process of making the anchor
box close to the positive sample and away from the negative sample. Calculation
formula of contrast loss function in [17]:

Lc =
∑n

i=1 wi
D(Gi(J),Gi(φ(I,w)))
D(Gi(I),Gi(φ(I,w)))

where D refers to distance measurement, Gi, i=1,2,..., N represents the feature
map extracted from the i-th layer of the fixed network, wi representing the weight
of the output feature map of the i-th layer of the fixed network.

The total loss function is composed of the above two loss functions, and the
calculation formula of the total loss function is:

L = L1 + γLc

where γ refers to the weight of Lc in the total loss L.

3 Experiments

3.1 Datasets and Evaluation Indicators

In order to verify the network’s effect of dehazing in synthetic and real haze
images, experiments are done on synthetic haze images and real haze images
respectively. The synthetic haze image training dataset is the ITS dataset in
Reside, and the test set is the SOTS-indoors dataset in Reside [18]. There are
1,399 clear haze-free images in the ITS dataset, and each haze-free image cor-
responds to 10 haze images with different concentrations synthesised according
to the atmospheric scattering model. The SOTS indoors dataset was chosen as
a test set in order to verify the effectiveness of the model. The real haze image
training dataset is the NH-HAZE [19], which consists of 55 pairs of haze-free
images and real haze images. In this paper, the first 50 pairs of images are used
as the training set and the last five pairs of images are used as the test dataset.
Since the number of haze-free and haze image pairs in the NH-HAZE dataset
is too small, this paper adopts random cropping to crop image blocks with a
resolution of 256*256 in the original images, and after censoring, the dataset is

Single Image Dehazing Based on Dynamic Convolution and Transformer 475

finally expanded to 3,877 haze-free and haze image pairs. In this paper, a general
approach is adopted, and in order to evaluate the dehazing performance of this
method, Peak Signal-To-Noise Ratio (PSNR) and Structural Similarity (SSIM)
are used for quantitative and objective evaluation on two datasets.

3.2 Experimental Setup

This experiment is based on Pytorch 1.11.0 framework, and the graphics card
NVIDIA GeForce RTX 3080 is used for the experiment. Randomly cropped
image blocks of size 256*256 on the ITS dataset in Reside were used as input to
the network during training, while data enhancement was performed by opera-
tions such as horizontal inversion and rotation of the data, with a batch size of
6. The Adam optimiser was used for training, with momentum decay exponen-
tial sums of 0.9 and 0.999, respectively, and an initial learning rate of 0.0002.
The weights of the loss function were 1. 200 epochs were trained in this experi-
ment, the first 100 epochs every 10 epochs learning rate decay half, the last 100
epochs can use cosine learning rate decay for learning, or set the appropriate
initialisation learning rate for exponential decay learning. In this paper, several
classical methods in the field of image defogging are selected for quantitative
and qualitative comparison, including DCP [2], DehazeNet [5], AOD-Net [7],
GridDehazeNet [8], KDDN [20], FFA [14], and DehazeFormer-T [21].

Table 1. Quantitative comparison of dehazing results on SOTS indoor synthetic
dataset and NH-HAZE real dataset

Method SOTS NH-Haze Pram

PSNR SSIM PSNR SSIM Mb

DCP 15.09 0.7649 10.57 0.5196 –

DehazeNet 20.64 0.7995 16.62 0.5238 0.01

AOD-Net 19.82 0.8178 15.40 0.5693 0.002

GridDehazeNet 32.16 0.9836 13.80 0.5370 0.96

KDDN 34.72 0.9845 17.39 0.5897 5.99

FFA 36.39 0.9886 – – 4.46

DehazeFormer-T 35.15 0.989 – – 0.69

Our 35.37 0.9849 20.03 0.6710 5.31

3.3 Synthetic Haze Image Dataset Experiment

After training on the ITS training set, the training model is saved. Tested using
SOTS-indoors test set. The defogging results are analyzed qualitatively and
quantitatively. Table 1 lists the quantitative comparison results of this paper’s
method with representative methods.

Compared to deep learning algorithms, DCP is based on a priori dehazing
algorithm, so the PSNR and SSIM are lower; DehazeNet improves the PSNR

476 Q. Ning and N. Zhang

and SSIM to some extent compared to DCP; AOD-Net reduces the cumula-
tive error by estimating the transmittance and atmospheric light at the same
time to improve the SSIM to 0.8178; GridDehazeNet based on attention and
multi-scale makes the PSNR and SSIM reach 32.16dB and 0.9836, respectively;
KDDN further improves the PSNR, compared with GridDehazeNet, the PSNR
is improved by 2.56dB, and the SSIM is improved by 0.0009. The method in this
paper achieves a PSNR of 35.37 and a SSIM of 0.9849. With close number of
model parameters, the peak SNR increases by 0.65 compared to KDDN network.
Compared to FFA the PSNR and SSIM are low. Compared to DehazeFormer-T
model PSNR is close and SSIM is low. Which is visualised for the chosen dehaze
method as shown in Fig. 7 and Fig. 8.

3.4 Real Haze Image Dataset Experiment

Real haze scenes have problems such as uneven haze distribution, incomplete
haze removal and colour distortion. In order to verify the dehaze effect of the
method proposed in this paper in real haze scenes. It is trained and tested in
NH-HAZE. The training dataset is an expanded 3877 pairs of haze and haze-
free image pairs, and the test set is selected from five haze and haze-free image
pairs after NH-HAZE. From Table 1, it can be seen that the PSNR and SSIM
of the DCP method are low, and DehazeNet is improved to some extent com-
pared to the DCP method; AOD-Net is improved by 0.0455 in SSIM compared

Fig. 7. There is haze image, DCP, DehazeNet, AOD-Net and haze-free image from left
to right

Fig. 8. There is haze image, GridDehaze, FFA, Our, and haze-free image from left to
right

Single Image Dehazing Based on Dynamic Convolution and Transformer 477

to DehazeNet; and the performance of GridDehazeNet is not further improved
compared to AOD-Net; KDDN achieves PSNR and SSIM of 17.39 and 0.5879,
respectively. The method in this paper achieves SSIM of 0.6710 and PSNR of
20.03. However, there is still a problem of colour bias for the dehazing of the real
scene, and it is guessed that the reason is that most of the 3,877 pairs of haze
and haze-free image pairs that form the dataset are grassy scenes, and so the
model tends to restore the fogged scenes to grass scenes. The chosen dehazing
method is visualised as shown in Fig. 9 below.

Fig. 9. There is haze image, DCP, DehazeNet, AOD-Net, Our, and clear image from
left to right

3.5 Ablation Experiments

In order to verify the role of dynamic convolution and the effectiveness of the
transformer module, in this paper, four ablation experiments are done on the
SOTS dataset, and the following four models are designed:

1) Without adding the Transformer module, the convolution module is a static
convolution as Baseline.

2) Add Transformer module on top of 1).
3) Replace static convolution with dynamic convolution based on 1).
4) Add Transformer module to 3).

The experimental results are shown in Table 2.

Table 2. Performance comparison of four different model architectures

PSNR SSIM

Baseline 30.88 0.9622

Baseline+Transformer 33.79 0.9799

Basline+Dy 30.27 0.9624

Baseline+Dy+Transformer 35.37 0.9849

From the experimental results, it can be seen that without the transformer
module, the PSNR of baseline model is on the low side; when the Transformer

478 Q. Ning and N. Zhang

module is added, the PSNR and the SSIM of the model are greatly improved;
After changing the static convolution to dynamic convolution in Baseline, the
PSNR decreases slightly, and the SSIM and baseline are close to each other,
which may be due to the initialisation problem of the model; after combining the
dynamic convolution and transformer module, the dehazing performance of the
model is improved, and the PSNR reaches 35.37, and the SSIM reaches 0.9849,
which demonstrates that combining the dynamic convolution and transformer
block can improve the dehazing performance of the network.

4 Conclusion

In this paper, we propose an image dehazing algorithm based on the serial trans-
former module and the dynamic residual model component module, which can
recover haze and haze-free images end-to-end. In order to utilize the global infor-
mation between the features and extract the local information between the fea-
tures, this paper serialises the transformer module and the dynamic residual
model component module to accomplish this goal. At the same time, a gating
aggregation module is designed for context aggregation, which improves the per-
formance of dehaze to a certain extent compared with other dehaze methods.
Next, we will explore whether meta-learning, domain generalisation, and large
language models can be applied to image dehazing, or use other attentions to
replace the attention in the Transformer module to reduce the complexity of
generating attention in this module.

References

1. McCartney, E.J.: Optics of the Atmosphere: Scattering by Molecules and Particles,
New York, John Wiley and Sons Inc, p. 421 (1976)

2. He, K., et al.: Single image haze removal using dark channel prior. IEEE Trans.
Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

3. Meng, G., et al.: Efficient image dehazing with boundary constraint and contex-
tual regularization. In: Proceedings of the 2013 IEEE International Conference on
Computer Vision IEEE (2013)

4. Tang, K., Yang, J., Wang, J.: Investigating haze-relevant features in a learning
framework for image dehazing. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (2014)

5. Cai, B., et al.: DehazeNet: an end-to-end system for single image haze removal.
IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

6. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2018)

7. Li, B., et al.: AOD-Net: all-in-one dehazing network. In: 2017 IEEE International
Conference on Computer Vision (ICCV) IEEE (2017)

8. Liu, X., et al.: GridDehazeNet: attention-based multi-scale network for image
dehazing (2019)

Single Image Dehazing Based on Dynamic Convolution and Transformer 479

9. Chen, D., et al.: Gated context aggregation network for image dehazing and
deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE (2019)

10. Li, B., et al.: You only look yourself: unsupervised and untrained single image
dehazing neural network. Int. J. Comput. Vis. 129, 1754–1767 (2021)

11. Chen, Y., et al.: Dynamic convolution: attention over convolution kernels. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (2020)

12. Zhe, L., Yudong, L., Jiaying, L.: Adaptive image defogging algorithm based on
dynamic convolutional kernel. Comput. Sci. 50(06), 200–208 (2023)

13. Zhang, Y., et al.: Residual dense network for image super-resolution. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

14. Qin, X., et al.: FFA-Net: feature fusion attention network for single image dehazing.
In: National Conference on Artificial Intelligence Association for the Advancement
of Artificial Intelligence (AAAI) (2020)

15. Zamir, S.W., et al.: Restormer: efficient transformer for high-resolution image
restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2022)

16. Lin, T.-Y., et al.: Feature pyramid networks for object detection. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

17. Wu, H., et al.: Contrastive learning for compact single image dehazing. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021)

18. Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image
Process. 28(1), 492–505 (2018)

19. Ancuti, C.O., Ancuti, C., Timofte, R.: NH-HAZE: an image dehazing bench-
mark with non-homogeneous hazy and haze-free images. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(2020)

20. Hong, M., et al.: Distilling image dehazing with heterogeneous task imitation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2020)

21. Song, Y., et al.: Vision transformers for single image dehazing. IEEE Trans. Image
Process. 32, 1927–1941 (2023)

22. Li, Y., et al.: Revisiting Dynamic Convolution via Matrix Decomposition (2021)

Reinforcement Learning for Combating
Cyberbullying in Online Social Networks

Wenting Wang(B), Tiantian Chen, and Weili Wu

Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA

{wenting.wang,tiantian.chen,weiliwu}@utdallas.edu

Abstract. In recent decades, social network holds a pivotal role for peo-
ple’s communication, but it is also a particularly susceptible to cyberbul-
lying due to their rapid information dissemination capabilities. The state-
of-art research in cyberbullying mainly focus on cyberbullying detection
and literature discover, which encounters significant challenges in aspects
like theoretical assurances, time effectiveness, and adaptability to broad
contexts. In this paper, we present a resilient framework leveraging deep
reinforcement learning (DRL) to tackle the problem of cyberbullying
in online social networks. Our approach leverages dynamic graph neural
networks to perform network embedding and the double deep Q-network
(DDQN) for the parameter learning. To evaluate the effectiveness of our
proposed approach, we conducted a comprehensive set of experiments
using realistic datasets. The experimental findings demonstrate that our
approach outperforms the comparison methods, even we train our model
with small randomly generated ER graphs. This shows the strong gen-
eralization ability of our proposed model.

Keywords: Graph neural networks · Deep reinforcement learning ·
Social network · Cyberbullying · Target nodes · Seed selection

1 Introduction

In today’s world, the rapid growth of the internet has had a profound impact on
our lives, the remarkable development of social networks have reshaped the way
people connect and communicate. Concurrently, social platforms like Facebook,
Twitter, LinkedIn and WhatsApp have been supplanting traditional media out-
lets, becoming the primary means of disseminating information and facilitating
communication. These platforms have provided unprecedented opportunities for
people to interact, share ideas, and build communities. However, along with
their tremendous success, social networks have also given rise to a pressing and
detrimental issue - cyberbullying. This harmful phenomenon has had serious and
far-reaching negative consequences, particularly within the social networks.

Cyberbullying, often referred to as online bullying, is a malicious form of
harassment carried out through modern electronics, such as mobile phones or
computers. Online bullying or harassment has affected 59% of teenagers in the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 480–493, 2024.
https://doi.org/10.1007/978-3-031-49614-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49614-1_36&domain=pdf
https://doi.org/10.1007/978-3-031-49614-1_36

Reinforcement Learning for Combating Cyberbullying 481

United States [20]. Cyberbullying situations often involve complexities that may
not be immediately apparent. Just as in face-to-face bullying scenarios, these
situations typically encompass three distinct roles: the victim, the bully, and the
bystander [1].

– Bully: original attacker who made offensive statement to attack others.
– Victim: specific users who are targeted and attacked by bullies.
– Bystander: individuals who observe instances of cyberbullying, and these

can be categorized into three groups based on their behavioral reactions:
defenders, reinforcers, and outsiders.

Social networks are particularly vulnerable to cyberbullying due to conve-
nience of information dissemination. Bully or attackers may rally a group of
followers to support and perpetuate their harmful behaviors. As the influence
of bullies grows, it can lead to the activation of more individuals who become
attackers, exacerbating the problem of cyberbullying. Naturally, the challenge
lies in devising effective measures to combat cyberbullying, with the aim of min-
imizing the number of victims users activated by bullying source people. This
issue is commonly referred to as the problem of combating cyberbullying within
social networks.

In order to protect the target victim from the attacking of bullies, we need
research into cyberbullying to better understand its evolving nature and the
impact of preventive measures, and use data-driven insights to refine and improve
protective strategies. Inspired by the existing rumor blocking problem research
in social networks, which goal is to find an optimal or near-optimal set of nodes
(the blockers) to block or immunize in such a way that it minimizes the spread
of the rumor or information [2], we can address the combating cyberbullying
problem with analogous methods for bullying blocking for target victims. But
it’s important to note that while the problems of combating cyberbullying and
rumor blocking share some similarities, they differ in one significant aspect -
Targeted Recipients. Typically, cyberbullying is aimed at particular individuals
or groups, necessitating a concentrated effort on safeguarding and aiding these
directly affected users. In contrast, the objective of rumor blocking isn’t tied to
specific recipients; instead, it seeks to limit the dissemination of false information
without predefining any particular victims.

In this paper, we illustrate that the presence of some bystanders who take
a stand against cyberbullying or actively promote positive information to sup-
port cyberbullying victims can lead to a substantial reduction in the negative
impact experienced by these targeted victims. An illustrative example of com-
batting cyberbullying is presented in Fig. 1, the directed edges denote the flow
of influence propagation, and each edge is annotated with a numerical value
indicating the probability of propagation. The nodes are categorized into four
distinct groups: bully node, victim node, bystander node, and defender node
which is selected to be the defender to spread positive influence in the network.
In Fig. 1(b) shows the situation that vistims will be influenced by bullies with-
out any defender’s protection, in (c) we choose node {6} as the defender node

482 W. Wang et al.

from bystander nodes and take a stand by spreading positive information to the
victim nodes, this collective action can effectively halt the attacks.

Fig. 1. An example to illustrate combating cyberbullying. (a) The initial network; (b)
Cyberbullying propagation without control; (c) Combating cyberbullying with defender
node 6.

In the realm of combatting cyberbullying (CCB), adopting a comprehensive
and multifaceted approach that integrates various strategies and technologies
is imperative. We fond reinforcement learning (RL) methods hold significant
promise in the fighting against cyberbullying due to their adaptability, personal-
ized approach, and ability to balance trade-offs. Given the remarkable advance-
ments of DRL in various domains, including artificial intelligence, there has been
a growing body of research dedicated to applying DRL techniques to tackle com-
plex combinatorial optimization problems. In light of this progress, we introduce
a pioneering end-to-end DRL framework. Our framework is designed to address
the combating cyberbullying problem with a novel architecture featuring inter-
active graph neural networks for network embedding and leverages the DDQN
for parameter learning. In summary, our contributions can be outlined as follows:

– To our knowledge, we are pioneering the introduction of an end-to-end deep
reinforcement learning framework designed to efficiently tackle the problem
of combating cyberbullying.

– We design a customized Random Walk method for initial node embeddings
by considering both local and global nodes centrality and influences.

– To grasp the critical ripple effects of information propagation and network
structure, we’ve devised an innovative framework that utilizes interconnected
graph neural networks to acquire network embeddings.

– To evaluate our model, we conducted experiments using three real-world
datasets in social networks. The comprehensive simulations substantiate the
superiority of our approach over the comparison methods.

Organizations: In Sect. 2, we delve into a review of related works. Section 3
defines the preliminaries and outlines the problem statement. Section 4 is dedi-
cated to presenting our proposed GNN and RL framework. Section 5 is dedicated
to experiments and results. Section 6 concludes the paper.

Reinforcement Learning for Combating Cyberbullying 483

2 Background and Related Work

Contemporary research on cyberbullying frequently draws from disciplines like
sociology and psychology. These studies commonly adopt methods such as case
studies and statistical analyses to gain a deeper understanding of the issue and
provide pertinent recommendations [3,4,21].

The exploration of cyberbullying dates back to [5], a study that investigates
the phenomenon and considers its potential to escalate into a challenge on par
with traditional bullying. This concern is amplified by the escalating reliance on
technology within society. Recently, most researchers focus on the cyberbullying
identification to detect the bully events happend in social networks, Reynolds
et al. [6] demonstrates how machine learning algorithms can be trained to iden-
tify specific linguistic cues used by both cyberbullies and their victims, enabling
automated detection of cyberbullying content. In [10], R. Yan et al. demonstrate
that the problem of combating cyberbullying is NP-hard and its objective is sub-
modular. They propose a stochastic algorithm using reverse sampling techniques
to tackle this issue. However, this approach has limitations in terms of compu-
tational overhead and scalability in large networks. The study by Dadvar et al.
[7] builds upon existing literature by not only validating earlier findings using
the same datasets but also extending the work to include new data. They found
that deep learning models were more effective in the task at hand compared
to traditional machine learning models previously applied to the same dataset.
This suggests that deep learning could offer improvements in performance for
similar applications. Hinduja et al. [8,9] compare cyberbullying to traditional
bullying, offering specific prevention strategies for schools to implement.

The rapid advancements in DRL have led to a growing body of research
that employs learning-based methods to tackle the combinatorial optimization
(CO) problem. These new approaches offer promising avenues for addressing the
complexities and computational challenges traditionally associated with such
problems. As established in [10], the challenge of combating cyberbullying can
be framed as a combinatorial optimization (CO) problem. Given this, it’s logical
to explore solutions for the cyberbullying challenge using deep learning (DL)
and reinforcement learning (RL) strategies. Fan et al. [11]introduced a Deep
Reinforcement Learning (DRL) algorithm called FINDER to address the issue
of dismantling networks. The model’s objective is to pinpoint influential nodes
in intricate network structures. To achieve this, they employed GraphSAGE
as the function approximator within their Deep Q-Network (DQN) framework.
Kamarthi et al. [12]used Deep Q-Learning to detect key subgraphs, tackled the
Influence Maximization problem there, and then select the higher influential
nodes as seeds in the whole graph. Z. Li et al. [14] point out the existing works’
limitation in the field of multi-field features as an unstructured combination
and introduce a novel model called Feature Interaction Graph Neural Networks
(Fi-GNN) designed to capture complex interactions among feature fields within
graph-structured data in a more flexible and explicit manner.

484 W. Wang et al.

3 Problems Formulation

A social network is commonly represented by a directed graph G = (V,E),
where V denotes the set of users or nodes, and E represents the collection of
relationships or edges between nodes. For a given edge (u, v) ∈ E, u is termed the
in-neighbor of v, while v is designated the out-neighbor of u. The in-neighbors
and out-neighbors sets for a particular node v are labeled as N in

v and Nout
v ,

respectively. For the edge e = (u, v) ∈ E, each has a value puv ∈ p denotes the
probability that node u will active node v. A node becomes activated when it
assimilates information from other nodes, it remains inactive otherwise.

3.1 Diffusion Model

To propagate a concept across a social network, an initial set of seed nodes is
activated to kick-start the influence spread. The diffusion stops when there are
no more nodes left to activate. It’s worth noting that the Independent Cascade
(IC) model is initially conceived for single-cascade diffusion processes, but for
our CCB problem, we need to consider the influence from both bullies(negative
influence) and defenders(positive influence). Thus, in our research we need the
Competitive Independent Cascade (CIC) model which is a variant of the Inde-
pendent Cascade (IC) model that is extended to handle competition between
multiple pieces of information or multiple campaigns. In the Competitive Inde-
pendent Cascade model, multiple types of information or influence campaigns
can compete for the chance to activate a node. In this paper, We use the CIC
model to exemplify a scenario in which two competing cascades, such as negative
influence and positive influence, spread simultaneously within a social network.

3.2 Problem Statement

Given a social network denoted as G = (V,E, P), with the node set V , edge set
E, and the propagation probability set P . Let B denote the set of initial bully
nodes, T denote the target victim set and k be a positive integer for a limited
budget. The Combatting CyberBullying (CCB) problem is to find a small
subset S ⊆ V \ (B ∪ T) as seed defenders to spread positive influence and active
the maximum number of victim nodes in target set T .

We can calculate the marginal influence gain as adding a node v into a seed
set S with σ(v;S) = σ(S∪{v})−σ(S). Let St stand for the present choice of seed
nodes. Our goal is to pick the node that maximizes the value of σ(v;St) to be
the subsequent seed node. Calculating the impact dissemination for a set of seed
nodes is a #P-hard problem, making computation of marginal gain particularly
challenging. Rather than producing numerous Reverse Reachable (RR) sets as
done in cutting-edge approximation methods, our paper treats CCB problem
as a Reinforcement Learning problem. The objective is to discover an optimal
policy for selecting k nodes to a sequence of k actions to get the maximum
impact dissemination in the target victim nodes set. In the RL environment, we
can denote the marginal gain as the reward for an action. Then we can utilize
the DRL framework to estimate the Q-value using parameterized function.

Reinforcement Learning for Combating Cyberbullying 485

4 Methodology

In this section, we will begin by introducing the GNN for the network embed-
ding and then use the RL framework for the combating cyberbullying problem.
Inspired [15], the CCB problems include two stages, the first involves determin-
ing the embedding of nodes, and the second employs an RL greedy method to
select the k defenders.

4.1 Initial Node Embedding

Graph models generally encompass nodes, edges, global context, and connectiv-
ity features. Given their proficiency in tasks such as node classification, Graph
Neural Networks (GNN) serve as an effective tool for systematically representing
graphs, where edges encode node dependencies.

Algorithm 1. Customized DeepWalk (CDW)
Input: G = (V, E), length threshold L, component weight α, learning rate η, embed-

ding dimension l
Output: The embedding for each node u ∈ V , Xu ∈ R, Iu ∈ R

l, Ru ∈ R
l

1: Initialize influence contexts C ← ∅, and Xu, Iu, Ru with N(0, 0.01)
2: for each u ∈ V do
3: Cl

u ← ∅, Cg
u ← ∅, Cu ← ∅

4: Cl
u ← (L · α) random walk with restart probability 0.15

5: Cg
u ← (1 − α) · L nodes uniformly sample from Nout

u

6: Cu ← Lu ∪ Gu

7: Insert (u, Cu) into C
8: end for
9: for each (u, Cu) ∈ C do

10: for each v ∈ Cu do
11: Update Xu, Iu, Xv, Rv

12: Use negative sampling technique to calculate:
13: log Pr(v|u) ≈ log σ(zv) +

∑
w∈N log σ(−zw)

zv = Xu · Iu · Rv + Xv, and σ(x) is sigmoid function
14: for each w ∈ N do
15: Update Xu, Iu, Xv, Rv with stochastic gradient descent
16: Φ ← Φ + η ∂

∂Φ
(log Pr(v|u))

17: end for
18: end for
19: end for
20: return Xu, Iu, Ru for each node u

For the CCB problem, we need to consider both negative influence from bul-
lies and positive from defenders, Rather than relying on random initialization
for embeddings, we design the Customized DeepWalk (CDW) method to gen-
erate the initial nodes embeddings for the input of the subsequent GNN layer.

486 W. Wang et al.

Inspired by [13] we design the CDW to collect the nodes contexts for both local
and global, and then predict the context with skip-gram method. For each node
u denote Cu as the node context which includes both local which conclude the a
sample nodes set of u′s neighbors that could be influenced from node u and the
part of global context which is selected from u′s r-hop out-neighbors. Because
cascading effect essentially involves dynamic interaction between node states,
their influence potential, and their propensity to be impacted. In our research
node embedding, which represent nodes as vectors to encapsulate the network’s
structural topology, should encapsulate three key components: the states of node
itself, the influence ability to out-neighbors, and the node’s own propensity to
be influenced by its in-neighbors. Hence, for each node u, its embedding incor-
porates three features: Xu, Iu and Ru, where Xu ∈ R stands for the node u’s
activation state, Iu ∈ R

l is the influence potential of u to its out-neighbor nodes
and Ru ∈ R

l is the receptivity propensity to be influenced by it in-neighbors. As
shown in Algorithm 1, we calculate the local context Cl

u and global context Cg
u

to build the context Cu of node u, then use the softmax functions to calculate
the probability of a node v being influenced by node u.

The CDW approach, outlined in Algorithm 1, encompasses two phases: influ-
ence Context Creation which forms the contextual environment for each node
and embedding which segment refines the parameters based on the generated
context. The algorithm operates with a time complexity of O(|V | · |E|) (Fig. 2).

Fig. 2. Reinforcement learning framework

4.2 Dynamic Interactive Graph Neural Network

Recognizing the mutual influence between the initial embeddings in X, IandR,
we introduce an Dynamic Interactive Graph Neural Network (DIGNN). This
model can effectively captures the ongoing interplay between node features.
In DIGNN, each node u is associated with a feature embedding vector Fu =
(Xu, Iu, Ru) and the state of graph is composed of these nodes embedding.

For state Xu of node u is designed to represent a node’s activated state. In
the influence process, initial bully nodes are given a constant value of X = −1.
If node v is part of the current seed set St, its activation status becomes 1.
Otherwise, the value of X can get cascade from both negatively and positively
within the range of [−1, 1], influenced by the in-neighboring nodes. The refreshed
activation status of the node v at next layer k+1 is determined with the following
formula that takes into account the influence from its in-neighbors:

Reinforcement Learning for Combating Cyberbullying 487

X(k+1)
v =

⎧
⎪⎨

⎪⎩

1, if v ∈ St

−1, if v ∈ B

tanh(ξ(k)X X
(k)
v + ξ

(k)
q q

(k)
v), otherwise

(1)

Here ξ
(k)
X , ξ

(k)
q ∈ R are coefficient weights, σ(·) is sigmoid function and q

(k)
v

represents the anticipated influence for the node v accumulates from its incoming
neighbors.

q(k)
v =

∑

u∈Nin
v

(δ
(k)
1 puv + δ

(k)
2 InfluGate(I(k)

u , R(k)
v)) · X(k)

u . (2)

We dynamically capture the diffuse weight between node v’s in-neighbors’
influence embedding and v’s embedding of receptivity propensity. We define
e
(k)
uv = η(k)[W (k)I

(k)
u ,W (k)R

(k)
v] to assess the evolving significance of node u in

relation to v, where η(k) ∈ R
2h(k+1)

is weight parameter, W (k) ∈ R
h(k+1)×h(k)

is
the matrix for transformation from h(k) dimension to h(k+1) between two layers,
here [·, ·] represents the concatenation. To ensure the comparability of coefficients
across nodes, we employ a softmax function in combination with LeakyReLU [16]
for normalization the attention coefficients.

InfluGate(I(k)
u , R(k)

v) =
exp(LeakyReLU(e

(k)
uv))

∑
u∈Nin

v
exp(LeakyReLU(e

(k)
uv))

, (3)

For the influence potential feature Iu ∈ R
l of u to other nodes and the

receptivity propensity Ru ∈ R
l to be influenced by others, we design the similer

dynamic interactive GNN to illustrate the interactive influence as following:

I(k+1)
v = tanh(γ(k)

I I(k)v + γ
(k)
b b(k)v + γ

(k)
X X(k)

v), (4)

R(k+1)
v = tanh(μ(k)

I R(k)
v + μ(k)

c c(k)v + μ
(k)
X X(k)

v), (5)

Here γ
(k)
I , γ

(k)
b , γ

(k)
X ∈ R and μ

(k)
S , μ

(k)
c , μ

(k)
X ∈ R are weight parameters.

During DIGNN, both data propagation and structural attributes are commu-
nicated among nodes. After K cycles, the node embeddings will have assimilated
insights from their neighbors. The embedding of node u′s could be generated with
concatenating all the three components: [X(K)

u , I
(K)
u , R

(K)
u]. Using acquired node

embeddings, we define the marginal gain of node u ∈ S̄t = V \St concerning the
present seeds set St as follows:

Q̂(u, St; Θ) = θ�
1 ReLU

([
θ2I

(K)
u , θ3

∑

v∈St

I(K)
v , θ4

∑

w∈T\(St∪{u})

R(K)
w

])

(6)

Q̂(u, St;Θ) will be influenced by parameters denoted θ1 ∈ R
2l, θ2, θ3, θ4 ∈ R

l×l

which will be computed in DIGNN, We train these parameters collectively using
Reinforcement Learning.

488 W. Wang et al.

4.3 Reinforcement Learning

Reinforcement Learning revolves the idea of an intelligent agent determining
which actions to take in a given state to maximize cumulative rewards when
interacting with its environment. Based on the characteristics of the CCB prob-
lem, we formulate the associated RL environment to address its unique chal-
lenges and constraints. RL allows intelligent agents to make decisions in com-
plex environments to maximize cumulative rewards, making it suitable for prob-
lems like cyberbullying detection and defense, where decision-making involves
dynamic and adaptive strategies to combat evolving threats. RL’s ability to
handle sequential decision-making and adapt to changing conditions makes it a
valuable choice for tackling such problems effectively. To elaborate, we specify
the components of the reinforcement learning setup as follows: states, actions,
rewards, and the decision-making strategy:

– State: use vector St ∈ R
|V | to represent network state, here the value associ-

ated with node u is -1 if u ∈ B, 1 if u ∈ St, and 0 otherwise.
– Action: select a node v ∈ S̄t as the defender, and we represent the action by

using node embedding Xu = 1 for node u.
– Reward: the reward in RL environment r(St, u) is calculate as the difference

in reward when node u is added to current seeds set St, expressed as r(St, u) =
σ(St ∪ {u}) − σ(St), and for the initial state r(∅) = 0. This ensures that the
cumulative reward when get Sb will correspond to the diffusion of seed set
Sb, such that σ(Sb) =

∑b−1
i=0 r(Si, ui).

If we represent the optimal value of Q-function for this Reinforcement Learn-
ing problem as Q∗, then the function Q̂(u, St;Θ) parameterized with embedding
will be the approximator for Q∗. This function will be learned through the Dou-
ble Deep Q-Network approach. Based on Q̂(u, St;Θ), a deterministic greedy
policy will takes the optimal action arg maxu∈S̄t

Q̂(u, St;Θ). Using the node
embeddings we’ve acquired, the score function for evaluating the incremental
benefit of including a node u ∈ S̄t = V \ St in the seed set St is calculated with
function(7).

We use Double DQN to improve the stability and performance of RL algo-
rithms. Double DQN use two separate neural networks: target network and online
network during the learning process. It uses the online network to select the
action and the target network to estimate the Q-value of that action. This helps
reduce the overestimation bias and leads to more accurate Q-value estimates.

5 Experiments

In this section, we assess our proposed model using three real-world networks.
First, we outline the datasets and experimental configurations. Then, we delve
into the analysis and interpretation of results from various viewpoints and com-
pare our approach with other well-established methods in the field.

Reinforcement Learning for Combating Cyberbullying 489

5.1 Experiment Setup

For the training phase, we generate 50 Erdős-Renyi (ER) graphs with an edge
probability of 0.15 and node sizes ranging between 500 and 1000 for training pur-
poses. ER graphs are commonly used for training because their random structure
offers a generalized, unbiased representation. This ensures that models trained
on them are versatile and not overfitted to specific network types, making them
suitable for various real-world applications. The proposed framework and base-
line models are evaluated on both synthetic graph and three realistic datasets
from SNAP and KONECT, with their statistics detailed in Table 1. The Wiki
Vote dataset encompasses all Wikipedia voting activities from its inception until
January 2008, with 7,115 nodes representing users and 103,663 edges indicat-
ing user-to-user voting interactions. Google+ directed network comprises links
between Google+ users, nodes correspond to individual users, and directed edges
signify that one user includes the other in their circles. Epinions is a trust net-
work derived from the Epinions online social platform, nodes represent Epinions
users, and directed edges represent trust relationships between users.

Table 1. Evaluation datasets statistics.

Dataset # of nodes # of edges Type

Synthetic 2000 299501 Connection Relationship

Wiki Vote 7115 103663 Voting Relationship

Google+ 23628 39242 Friendship

Epinions 75897 508837 Trust Relationship

Setup. For the directed graph G = (V,E, P), we uniformly select 3% of nodes
from V as the initial bully nodes set B and select various size of nodes in V \B as
the victim nodes. For the evaluation experiments, we choose to use CIC model
as the diffusion model and set propagation probability p = 0.5 for each edge.

Contrastive Approaches. We compare the performance for our dynamic inter-
ative GNN RL (DI-RL) with the following advanced approximation algorithm
for CCB problem:

– Reverse Influence Sampling(RIS) [10]. Utilizes a stochastic approach
through reverse sampling techniques to maximize the activation of target
nodes by defenders.

– Out-Degree (OD) [17]. Identifies the top k nodes with the highest out-
degree as the seed set.

– Betweenness Centrality(BC) [19]. Selects the top k nodes with the highest
betweenness centrality as the seed set for positive defenders.

– PageRank (PR) [18]. Chooses the top k nodes with the highest PageRank
scores as the seed set for defenders.

490 W. Wang et al.

Fig. 3. Positive protected performance comparisons among different methods.

5.2 Results

We examine the association between budget k and the quantity of victim nodes
triggered by both bully and defender nodes. Here we set the source bully nodes
with 3% and budget k ∈ [0, 30]. For Wiki-Vote we set the diffusion probability p
= 0.5 and choose the size of target victim set |T | = 500, the size of target victim
set |T | = 1000 on Google+ and Epinions social networks.

In Fig. 3, the vertical axis is used for the count of nodes in T that have
been activated by defenders exhibiting positive influence. The horizontal axis
represents budget k. The results indicate that as the budget k increases, the
positive impact on our target victim nodes also increases, leading to a reduction
in the impact of cyberbullying. Based on the data gathered from our experiments,
our proposed algorithm demonstrates superior results when compared to the
other heuristic algorithms and works very well on big realworld data sets.

Figure 4 proves that our method by active more victim nodes with positive
influence from defenders would definitely reduce the number activated by neg-
ative bully nodes. The vertical axis is used for the count of nodes in T that
have been activated by cyberbully nodes exhibiting negative influence. The hor-
izontal axis represents budget k. As we increase the budget for defender nodes,

Reinforcement Learning for Combating Cyberbullying 491

Fig. 4. Negative bullying performance comparisons among different methods.

the number of bullied victim nodes decreases. Our observations show that our
method performs the best across all budgets for both synthetic and real-world
networks.

6 Conclusions

In this paper, we present a framework for tackling the issue of cyberbullying
through a deep reinforcement learning approach, anchored in dynamic interactive
graph neural network embeddings. Our model aims to optimize the activation
of defender nodes in a way that inherently reduces the negative bullying impact
of bully nodes within the target victim node set. And we have rigorously tested
our proposed solution through a comprehensive set of experiments. Our findings
reveal that our approach excels at identifying high-quality seed defenders across
various networks. Additionally, when benchmarked against several cutting-edge
techniques, our method consistently outperforms the alternatives.

Acknowledgements. This work was supported in part by NSF under Grant No.
1907472 and No. 1822985.

492 W. Wang et al.

References

1. Reynolds, K., Kontostathis, A., Edwards, L.: Using machine learning to detect
cyberbullying. In: Proceedings of the 2011 10th International Conference on
Machine Learning and Applications and Workshops (ICMLA’11), vol. 2, pp. 241–
244. IEEE (2011)

2. Budak, C., Agrawal, D., ElAbbadi, A.: Limiting the spread of misinformation in
social networks. In: Proceedings of the 20th International Conference on World
Wide Web. ACM, pp. 665–674 (2011)

3. Hinduja, S., Patchin, J.W.: Cyberbullying: an exploratory analysis of factors
related to offending and victimization. Deviant Behav. 29(2), 129–156 (2008)

4. Walrave, M., Heirman, W.: Cyberbullying: predicting victimisation and perpetra-
tion. Child. Soc. 25(1), 59–72 (2011)

5. Patchin, J.W., Hinduja, S.: Bullies move beyond the schoolyard: a preliminary look
at cyberbullying. Youth Violence Juvenile Justice 4(2), 148–169 (2006)

6. Reynolds, K., Kontostathis, A., Edwards, L.: Using machine learning to detect
cyberbullying. In: Proceedings of the 2011 10th International Conference on
Machine Learning and Applications and Workshops (ICMLA 2011), vol. 2, pp.
241–244. IEEE (2011)

7. Dadvar, M., Eckert, K.: Cyberbullying detection in social networks using deep
learning based models. In: Song, M., Song, I.-Y., Kotsis, G., Tjoa, A.M., Khalil,
I. (eds.) DaWaK 2020. LNCS, vol. 12393, pp. 245–255. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59065-9 20

8. Hinduja, S., Patchin, J.W.: Cyberbullying. Cyberbullying Research Center (2014).
Retrieved 7 September, 2015

9. Slonje, R., Smith, P.K., Frisén, A.: The nature of cyberbullying, and strategies for
prevention. Comput. Hum. Behav. 29(1), 26–32 (2013)

10. Yan, R., Li, Y., Li, D., Wang, Y., Zhu, Y., Wu, W.: A stochastic algorithm based on
reverse sampling technique to fight against the cyberbullying. ACM Trans. Knowl.
Discov. Data (TKDD) 15(4), 1–22 (2021)

11. Fan, C., Zeng, L., Sun, Y., Liu, Y.-Y.: Finding key players in complex networks
through deep reinforcement learning. Nature Mach. Intell. 2(6), 317–324 (2020)

12. Kamarthi, H., Vijayan, P., Wilder, B., Ravindran, B., Tambe, M.: Influence max-
imization in unknown social networks: Learning policies for effective graph sam-
pling. In: Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems, pp. 575–583 (2020)

13. Feng, S., Cong, G., Khan, A., Li, X., Liu, Y., Chee, Y.M.: Inf2vec: latent repre-
sentation model for social influence embedding. In: 2018 IEEE 34th International
Conference on Data Engineering (ICDE). IEEE, pp. 941–952 (2018)

14. Li, Z., Cui, Z., Wu, S., Zhang, X., Wang, L.: Fi-gnn: modeling feature interactions
via graph neural networks for CTR prediction. In: Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pp. 539–548
(2019)

15. Chen, T., Yan, S., Guo, J., Wu, W.: ToupleGDD: a fine-designed solution of influ-
ence maximization by deep reinforcement learning. IEEE Trans. Comput. Soc.
Syst. (2023)

16. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural
network acoustic models. In: Proc. icml, vol. 30, no. 1. Citeseer, p. 3 (2013)

17. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a
social network. In: Proceedings of the 9th ACMSIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

https://doi.org/10.1007/978-3-030-59065-9_20

Reinforcement Learning for Combating Cyberbullying 493

18. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the web. In: Proceedings of ASIS, pp. 161–172 (1998)

19. Brandes, U.: On variants of shortest-path betweenness centrality and their generic
computation. Soc. Networks 30(2), 136–145 (2008)

20. Pew Research center. https://www.pewresearch.org/internet/2018/09/27/a-majo
rity-of-teens-have-experienced-some-form-of-cyberbullying/

21. https://www.tandfonline.com/loi/wjsv20

https://www.pewresearch.org/internet/2018/09/27/a-majority-of-teens-have-experienced-some-form-of-cyberbullying/
https://www.pewresearch.org/internet/2018/09/27/a-majority-of-teens-have-experienced-some-form-of-cyberbullying/
https://www.tandfonline.com/loi/wjsv20

Author Index

A
Al-saadi, Oleksiy I-211
Ammari, Habib M. I-239
Anthony, Barbara M. II-97
Arndt, Stephen I-43
Ascher, Josh I-43

B
Barish, Robert D. II-123
Bereg, Sergey II-165
Boudreault, Raphaël I-354
Bravo, Raquel S. F. I-82
Bshouty, Nader H. I-303

C
Cai, Jin-Yi II-83
Cardei, Ionut I-498
Cardei, Mihaela I-498
Chang, Yan-Xia II-443
Chen, Guihai I-380
Chen, Jingwen I-287
Chen, Pengyu I-196
Chen, Tiantian II-480
Chen, Zhi-Zhong I-459
Chung, Christine II-97
Cordner, Nathan I-3

D
da Cruz, Maria Luíza L. I-82
Dai, Sijia II-279
Damerius, Christoph I-154
Das, Ananya II-97
Daykin, Jacqueline W. I-471
De Chen, Neil II-455
De, Minati I-68
Deschênes, Anthony I-354
Diao, Zhuo II-364
Du, Hongmin W. II-455
Du, Hongwei II-152, II-177, II-190
Duan, Zhenhua II-227

Dutt, Aakash II-323
Dutta, Apratim I-94

F
Fan, Austen Z. II-83

G
Gao, Hong I-226
Gao, Jirun I-226
Gao, Suixiang II-419, II-431
Gao, Xiaofeng I-380, II-403
Gao, Yucen II-403
Gaudreault, Jonathan I-354
Ge, Steven I-316
Gila, Ofek II-56
Goedgebeur, Jan II-390
Gong, Mingyang I-459
Gong, Shufang I-265
Goodrich, Michael II-56
Gu, Chonglin I-168
Gu, Qian-Ping I-366
Guo, Jianxiong II-403
Guo, Jiong II-267
Guo, Xinmeng I-129
Gutama, Kevin W. I-239

H
Hanaka, Tesshu I-392
Harada, Tsubasa II-310
Harutyunyan, Hovhannes A. II-111
Higashikawa, Yuya I-29, I-406
Hovhannisyan, Narek II-111
Huang, Hejiao I-168, II-190
Huang, Jingui II-253
Huang, Shenwei II-390
Huang, Xiuqi I-380

I
Ikeyama, Airi I-392
Ishihata, Masakazu II-337

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14462, pp. 495–497, 2024.
https://doi.org/10.1007/978-3-031-49614-1

https://doi.org/10.1007/978-3-031-49614-1

496 Author Index

Itoh, Toshiya I-316, II-310
Iwamoto, Mitsugu I-512

J
Jena, Sangram K. II-3
Jia, Weijia I-287
Jiang, Zhipeng II-419, II-431
Jooken, Jorik II-390

K
Kamiyama, Naoyuki I-421
Katoh, Naoki I-29, I-406
Khurana, Sambhav I-68
Kling, Peter I-154
Kollios, George I-3
Krohn, Erik I-330

L
Lafond, Manuel I-446
Lai, Wenfeng I-446
Li, Fei I-141
Li, Jianping I-434
Li, Jianzhong I-226, II-203
Li, Qie II-152
Li, Quan-Lin II-443
Li, Runzhe II-419
Li, Xiao II-455
Li, Yan II-147
Li, Yifei II-203
Li, Zhikai I-168
Liang, Jiajian Leo I-366
Liang, Ziwei II-177
Lichen, Junran I-434
Lin, Guohui I-459
Liu, Ao II-253
Liu, Bin I-265
Liu, Jin-Yi II-240
Liu, Minqin I-129
Liu, Suding I-434
Liu, Yin II-83
Liu, Yunlong II-253
Liu, Zhaohui I-129
Liu, Zifeng I-380
Liyanage, Adiesha I-446
Lopes, Bruno II-43

M
Ma, Jing-Yu II-443
Ma, Yaqian II-443

Maegawa, Hiroki I-406
Magee, Lucas I-107
Marinescu-Ghemeci, Ruxandra I-16
McCoy, Bradley II-323
Mhaskar, Neerja I-471
Miao, Dongjing I-196
Miao, Huahua II-279
Muthu, Rahul I-94
Mutlu, Caner I-498

N
Nakai, Takeshi I-512
Ning, Quancheng II-466

O
Oliveira, Rodolfo A. I-82
Ono, Hirotaka I-392
Ozel, Evrim II-56

P
Pahlow, Alex I-330
Pires, Maurício II-43
Popa, Alexandru I-16
Pruhs, Kirk I-43

Q
Quimper, Claude-Guy I-354

R
Radcliffe, Jamie I-211

S
Schneider, Florian I-154
Shibuya, Tetsuo II-123
Shigenobu, Takasugu I-421
Simard, Vanessa I-354
Singh, Satyam I-68
Sîrbu, Tiberiu I-16
Smyth, W. F. I-471
Song, Chunjiao II-267
Song, Xinyu II-431
Souza, Uéverton S. I-82, II-43
Subramani, K. II-3, II-377
Sugimoto, Kota I-512
Sun, Xiaoli II-295
Sun, Zaixing I-168
Sunitha, V. I-94

Author Index 497

T
Tan, Junqi I-196
Tang, Shaojie I-277, II-16
Tang, Zhongzheng I-287, II-364
Tawari, Anuj I-94
Teruyama, Junichi I-29
Tian, Cong II-227
Tokuni, Yuki I-29, I-406
Tronicek, Zdenek II-351

V
Vasarhelyi, Miklos A. II-455
Velasquez, Alvaro II-3

W
Wang, Chenhao I-287, II-16
Wang, Hongzhi I-226
Wang, Lusheng I-459
Wang, Tian I-287
Wang, Wenting II-480
Wang, Yao II-16
Wang, Ye II-147
Wang, Yin II-215
Wang, Yusu I-107
Wang, Zichen II-152
Watanabe, Yohei I-512
Wei, Wenbin I-185
Wen, Yinghui II-267
Wojciechowski, Piotr II-377
Wu, Di II-253
Wu, Weili II-480

X
Xia, Wen II-390
Xiao, Guang II-253
Xu, Haitao I-485
Xu, Yi II-215

Xu, Yicheng II-279
Xu, Yinfeng II-215
Xu, Yongliang II-190

Y
Yang, Boting II-295
Yang, Donghua II-203
Yang, Wenguo II-419, II-431
Yang, Zhongxiu I-330
Yao, Guangyu II-227
Yao, Ningshi I-141
You, Zhiheng II-177
Yu, Wei I-129
Yuen, David II-97

Z
Zaidi, Syed F. I-239
Zhang, Huili II-215
Zhang, Jiale I-380
Zhang, Jingru I-485
Zhang, Kaiqi I-226
Zhang, Nan II-227, II-466
Zhang, Peng I-252
Zhang, Siyuan I-226
Zhang, Wenzhe I-265
Zhang, Xiaojun II-190
Zhang, Yong II-279
Zhao, Jie II-190
Zhao, Kequan I-185
Zhong, Farong II-295
Zhou, Aizhong II-267
Zhou, Jiang I-252
Zhou, Zhiang I-185
Zhu, Binhai I-446, II-323
Zhu, Hongguo II-139
Zhu, Junlei II-139
Zhu, Zhehao II-403

	 Preface
	 Organization
	 Contents – Part II
	 Contents – Part I
	Modeling and Algorithms
	Differentiable Discrete Optimization Using Dataless Neural Networks
	1 Introduction
	2 Statement of Problems
	3 Related Work
	4 Maximum Dissociation Set
	5 k-Coloring
	6 Maximum Cardinality d-Distance Matching
	7 Conclusion
	References

	When Advertising Meets Assortment Planning: Joint Advertising and Assortment Optimization Under Multinomial Logit Model
	1 Introduction
	1.1 Summary of Contributions

	2 Literature Review
	3 Preliminaries and Problem Formulation
	3.1 MNL Model
	3.2 Joint Advertising and Assortment Optimization

	4 Unconstrained JAAOP
	5 Cardinality-Constrained JAAOP
	5.1 g(x) as Linear Function
	5.2 g(x) as a General Concave Function

	6 Conclusion
	A Joint Assortment, Pricing, and Advertising Optimization
	A.1 Unconstrained Case
	A.2 Cardinality-Constrained Case

	B Sequential Joint Advertising and Assortment Optimization
	B.1 Heuristic Method

	C Numerical Study
	C.1 Compared Heuristics
	C.2 Performance Evaluation
	C.3 Effect of Budget on Expected Revenue

	D Omitted Proofs
	References

	Twin-Treewidth: A Single-Exponential Logic-Based Approach
	1 Introduction
	2 Preliminaries
	3 Twin-Treewidth
	3.1 Evaluation Information Function
	3.2 Dynamic Programming

	4 Final Remarks
	References

	Highway Preferential Attachment Models for Geographic Routing
	1 Introduction
	1.1 Kleinberg's Model
	1.2 The Neighborhood Preferential Attachment Model
	1.3 Our Results

	2 Preliminaries
	3 Kleinberg Highway
	3.1 Results

	4 Randomized Highway
	4.1 Results
	4.2 Greedy Routing Sketch

	5 Windowed Neighborhood Preferential Attachment
	5.1 Results
	5.2 Efficient Construction

	6 Future Work
	7 Appendix
	7.1 Experimental Analysis
	7.2 Kleinberg Highway Proofs
	7.3 Randomized Highway Proofs
	7.4 Removing Local Contact Dependence
	7.5 Randomized Highway Variant
	7.6 Windowed NPA Proofs
	7.7 Miscellaneous Proofs

	References

	Complexity and Approximation
	Restricted Holant Dichotomy on Domains 3 and 4
	1 Introduction and Background
	2 A Real Dichotomy for Holant*(f) on Domain 3
	3 Holant*(f) Dichotomy for {0,1}-Valued f on Domain 4
	3.1 Strategies
	3.2 Interpolate Restricted Equalities

	References

	Earliest Deadline First Is a 2-Approximation for DARP with Time Windows
	1 Introduction
	2 Formalizing the Problem and Algorithm
	2.1 The Earliest Deadline First (EDF) Algorithm

	3 Our Results
	4 Concluding Remarks
	References

	Improved Approximation for Broadcasting in k-Path Graphs
	1 Introduction
	2 k-Path Graphs
	3 Broadcasting from a Junction Vertex
	3.1 Complexity Analysis
	3.2 The Approximation Ratio

	4 Broadcasting from an Internal Vertex
	4.1 Complexity Analysis
	4.2 The Approximation Ratio

	5 Conclusion and Future Work
	References

	The Fine-Grained Complexity of Approximately Counting Proper Connected Colorings (Extended Abstract)
	1 Introduction
	2 Applications of k-Proper Connected w-Colorings to the Frequency Assignment Problem
	3 Preliminaries
	3.1 Graph Theoretic Notions and Terminology
	3.2 Counting Complexity
	3.3 Approximate Counting
	3.4 Exponential Time Hypothesis (ETH) and Counting Exponential Time Hypothesis (#ETH)
	3.5 Variants of Not-All-Equal SAT

	4 Exactly and Approximately Counting Proper Connected Colorings
	5 Concluding Remarks
	References

	Combinatorics and Computing
	Strong Edge Coloring of Subquartic Graphs
	1 Introduction
	2 Notations
	3 Proof of Theorem 7
	4 Further Considered Problems
	References

	Two Multicolor Ramsey Numbers Involving Bipartite Graphs
	1 Introduction
	2 Proofs of Main Results
	References

	Mechanism Design for Time-Varying Value Tasks in High-Load Edge Computing Markets
	1 Introduction
	2 System Model and Problem Statement
	2.1 Resource Model of the System
	2.2 Utility Model of the System
	2.3 Optimization Goals for Maximizing Social Welfare

	3 The Greedy Auction Mechanism
	3.1 Resource Allocation Strategy
	3.2 GMPO-W Winner Decision
	3.3 GMPO-P Price Determination Mechanism

	4 Evaluation Results
	4.1 Experimental Settings
	4.2 Numerical Results

	5 Conclusion
	References

	Computing Random r-Orthogonal Latin Squares
	1 Introduction
	2 Preliminaries
	3 Completing Orthogonal Latin Rectangles
	4 Computing Self-orthogonal Latin Rectangles
	References

	Optimization and Algorithms
	A Two-Stage Seeds Algorithm for Competitive Influence Maximization Considering User Demand
	1 Introduction
	2 Propagation Model and Algorithm
	2.1 Propagation Model
	2.2 Problem Formulation
	2.3 Algorithm Consider Dual Influence Assessment Based on Community Structure

	3 Experiment
	3.1 Dataset
	3.2 Experiment Design
	3.3 Experiment Results

	4 Conclusion
	References

	Practical Attribute-Based Multi-keyword Search Scheme with Sensitive Information Hiding for Cloud Storage Systems
	1 Introduction
	2 Problem Formulation and Preliminaries
	2.1 System Model
	2.2 Threats Model and Design Goals
	2.3 Preliminaries

	3 The Proposed ABMKS-SIH Scheme
	4 Security Analysis of ABMKS-SIH
	4.1 Security Model
	4.2 Security Proofs

	5 Comparison and Evaluation
	6 Conclusion
	References

	Testing Higher-Order Clusterability on Graphs
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions
	1.4 Organization of the Paper

	2 Preliminary and Problem Statement
	2.1 Testing Clusterability on Bounded-Degree Graphs
	2.2 Testing Higher-Order Clusterability on Bounded-Degree Graphs

	3 Analysis of Compatibility and Lower Bound
	3.1 Compatibility with Framework of Testing Clusterability
	3.2 Compatibility of High-Dimension (k,in,out)-Cluster
	3.3 Lower Bound of Testing Higher-Order Clusterability

	4 Algorithm of Testing Triangle-Based Clusterability
	4.1 Design of Triangle-Based k-Cluster Tester
	4.2 Correctness and Running Time Analysis

	5 Summary and Future Work
	References

	The 2-Mixed-Center Color Spanning Problem
	1 Introduction
	2 Literature Review
	3 Preliminary
	4 The Exact Algorithm for 2-MCCSP
	5 A 2-Approximation Algorithm for 2-MCCSP
	6 Conclusions
	References

	A Dynamic Parameter Adaptive Path Planning Algorithm
	1 Introduction
	2 Two Reinforcement Learning Algorithms
	2.1 Q-Learning Algorithm
	2.2 Sarsa Algorithm

	3 DPARL Algorithm
	4 Experimental Setup and Experimental Results
	4.1 Description of the Path Planning Problem
	4.2 Modeling and Parameter Settings for the Path Planning Problem
	4.3 Experimental Results and Analysis

	5 Conclusions
	References

	On the Mating Between a Polygonal Curve and a Convex Polygon
	1 Introduction
	2 Preliminaries
	3 A Necessary and Sufficient Condition
	4 The Algorithms
	4.1 The Dynamic-Programming Algorithm
	4.2 The Greedy Algorithm
	4.3 Characterizing Polygonal Curves Matable with Some Convex Polygon

	5 Conclusion
	References

	A Faster Parameterized Algorithm for Bipartite 1-Sided Vertex Explosion
	1 Introduction
	2 Terminology and Notations
	3 Linear Kernel
	4 Efficient Branching Rules
	5 A Whole Parameterized Algorithm
	6 Conclusion and Further Work
	References

	Multi-winner Approval Voting with Grouped Voters
	1 Introduction
	2 Preliminaries
	2.1 Approval Voting Rules
	2.2 Axioms
	2.3 The Models

	3 Large/Small Group Benefited Representation
	4 Parameterized Complexity
	5 Concluding Remarks
	References

	EFX Allocation to Chores over Small Graph
	1 Introduction
	2 Preliminaries
	3 Warm-Up: EFX Allocation for Three Agents and Star Structured Agents
	4 An EFX Allocation for LFA
	4.1 At Least Three Special Agents
	4.2 Two Special Agents
	4.3 At Most One Special Agent

	5 Discussion and Conclusion
	References

	Extreme Graph and Others
	Zero-Visibility Cops and Robber Game on Cage Graph
	1 Introduction
	2 Preliminaries and Basic Definitions
	2.1 Graph Theory Notion
	2.2 Cops and Robber

	3 The Monotonic Zero-Visibility Cop Number of Cage Graph
	3.1 Lower Bounds of Cop Number
	3.2 Cop Number of Cage Graph

	4 Algorithm for the Monotonic Zero-Visibility Strategy of Cage
	5 Conclusion and Further Discussion
	References

	Online Facility Assignment for General Layout of Servers on a Line
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Online Facility Assignment Problem
	2.2 Online Facility Assignment Problem on a Line
	2.3 Notations and Terminologies
	2.4 Technical Lemmas

	3 ``Hybrid'' Algorithm
	4 An Optimal MPFS Algorithm for OFAL
	4.1 A New Algorithm: Policy Transition at Critical Point
	4.2 An Upper Bound on the Competitive Ratio of PTCP
	4.3 Comparisons with Other Algorithms

	5 A Lower Bound on the Competitive Ratio of MPFS
	6 Concluding Remarks and Open Questions
	References

	Guarding Precise and Imprecise Polyhedral Terrains with Segments
	1 Introduction
	2 Preliminaries
	3 Polynomial-Time Algorithms on Guarding Polyhedral Terrains with a Segment
	3.1 A Linear Time Algorithm for 1.5D Terrains
	3.2 An Almost Cubic Time Algorithm for 2.5D Terrains

	4 A Polynomial-Time Algorithm on Guarding 1.5D Polyhedral Terrains with Two Horizontal Segments
	5 Guarding a 1.5D Imprecise Terrain
	6 Concluding Remarks
	References

	The Bag-Based Search: A Meta-Algorithm to Construct Tractable Logical Circuits for Graphs Based on Tree Decomposition
	1 Introduction
	2 Preliminary
	2.1 Subgraphs and Their Boolean Representation
	2.2 Tractable Logical Circuits (TLCs)
	2.3 Tree Decompositions (TDs)

	3 The Bag-Based Search (BBS)
	3.1 S-States and S-Updates
	3.2 M-States and M-Updates
	3.3 The Bag-Based Search (BBS)
	3.4 Tractableness of Generated Circuits by BBS

	4 BBS Examples
	5 Experiments
	5.1 Experimental Setting
	5.2 Experimental Results

	6 Conclusion
	References

	On Problems Related to Absent Subsequences
	1 Introduction
	2 Absent Subsequence Automaton
	3 Shortest Absent Subsequences
	4 Minimal Absent Subsequences
	5 Distinguishing Words
	6 Conclusion
	References

	Some Combinatorial Algorithms on the Dominating Number of Anti-rank k Hypergraphs
	1 Introduction
	1.1 Related Works
	1.2 Our Results

	2 The Anti-rank 3 Hypergraphs
	3 The Anti-rank 4 Hypergraphs
	4 The Anti-rank k Hypergraphs
	5 The Random Hypergraph Model
	References

	Parameterized and Exact-Exponential Algorithms for the Read-Once Integer Refutation Problem in UTVPI Constraints
	1 Introduction
	2 Statement of Problem
	2.1 Constraint System
	2.2 Refutation System
	2.3 Read-Once Refutations

	3 Motivation and Related Work
	4 A Fixed-Parameter Algorithm
	5 Kernelization Lower Bounds
	6 Lower Bounds on Exponential Algorithms
	7 An Exact Exponential Algorithm
	8 Conclusion
	References

	Critical (P5,dart)-Free Graphs
	1 Introduction
	2 Preliminaries
	3 Structure Around 5-Hole
	4 The Proof of Theorem 4
	5 Complete Characterization for k {5,6,7}
	6 Conclusion
	References

	Graph Clustering Through Users' Properties and Social Influence
	1 Introduction
	2 Problem Statement
	3 Similarity Measure
	3.1 Mutual Influence
	3.2 Self Influence
	3.3 The Combination of Different Parts

	4 Clustering with Influence Analysis Algorithm
	5 Experiment and Performance
	6 Conclusion
	References

	Machine Learning, Blockchain and Others
	Incorporating Neural Point Process-Based Temporal Feature for Rumor Detection
	1 Introduction
	2 Related Work
	2.1 Rumor Detection Methods with Multiple Features
	2.2 Deep Learning Approaches for Point Process

	3 Preliminaries
	3.1 Problem Statement
	3.2 Neural Temporal Point Process
	3.3 Temporal Pattern in Rumor Propagation

	4 Model
	4.1 Temporal Feature Construction
	4.2 Rumor Detection Module

	5 Experiments
	5.1 Settings and Datasets
	5.2 Experimental Results

	6 Conclusions
	References

	Improving Contraction Hierarchies by Combining with All-Pairs Shortest Paths Problem Algorithms
	1 Introduction
	2 Preliminaries
	2.1 Contraction Hierarchies
	2.2 All-Pairs Shortest Paths Problem

	3 CH-APSP
	3.1 Preprocessing
	3.2 Query

	4 Experiments and Analysis
	4.1 Impact of APSP Algorithms and Remaining Nodes(M) on Preprocessing
	4.2 Impact of M on Query

	5 Conclusions and Future Work
	References

	Information Theory of Blockchain Systems
	1 Introduction
	2 Model Description
	3 Maximum Entropy in Blockchain Systems
	3.1 Entropy Function
	3.2 Prior Information
	3.3 The Maximum Entropy Principle

	4 Numerical Experiments
	5 Concluding Remarks
	References

	Machine Learning with Low-Resource Data from Psychiatric Clinics
	1 Introduction
	2 Data Augmentation
	3 Transfer Learning
	4 Few-Shot/Zero-Shot Learning
	5 Active Learning
	6 Self-supervised Learning
	7 Multi-task Learning
	8 Conclusion
	References

	Single Image Dehazing Based on Dynamic Convolution and Transformer
	1 Introduction
	2 Our Method
	2.1 T-DRC Module
	2.2 Improved Dynamic Residual Module
	2.3 Dual Attention Module
	2.4 Transformer Module
	2.5 Gated Fusion Block
	2.6 MixUp Module
	2.7 Loss Function

	3 Experiments
	3.1 Datasets and Evaluation Indicators
	3.2 Experimental Setup
	3.3 Synthetic Haze Image Dataset Experiment
	3.4 Real Haze Image Dataset Experiment
	3.5 Ablation Experiments

	4 Conclusion
	References

	Reinforcement Learning for Combating Cyberbullying in Online Social Networks
	1 Introduction
	2 Background and Related Work
	3 Problems Formulation
	3.1 Diffusion Model
	3.2 Problem Statement

	4 Methodology
	4.1 Initial Node Embedding
	4.2 Dynamic Interactive Graph Neural Network
	4.3 Reinforcement Learning

	5 Experiments
	5.1 Experiment Setup
	5.2 Results

	6 Conclusions
	References

	Author Index

