
An Approximation Algorithm
for Covering Vertices by 4+-Paths

Mingyang Gong1, Zhi-Zhong Chen2(B), Guohui Lin1, and Lusheng Wang3

1 University of Alberta, Edmonton, Canada
{mgong4,guohui}@ualberta.ca

2 Tokyo Denki University, Saitama, Japan
zzchen@mail.dendai.ac.jp

3 City University of Hong Kong, Hong Kong SAR, China
lusheng.wang@cityu.edu.hk

Abstract. This paper deals with the problem of finding a collection
of vertex-disjoint paths in a given graph G = (V,E) such that each
path has at least four vertices and the total number of vertices in these
paths is maximized. The problem is NP-hard and admits an approxi-
mation algorithm which achieves a ratio of 2 and runs in O(|V |8) time.
The known algorithm is based on time-consuming local search, and its
authors ask whether one can design a better approximation algorithm
by a completely different approach. In this paper, we answer their ques-
tion in the affirmative by presenting a new approximation algorithm
for the problem. Our algorithm achieves a ratio of 1.874 and runs in
O(min{|E|2|V |2, |V |5}) time. Unlike the previously best algorithm, ours
starts with a maximum matching M of G and then tries to transform
M into a solution by utilizing a maximum-weight path-cycle cover in a
suitably constructed graph.

1 Introduction

Throughout this paper, a graph always means a simple undirected graph without
parallel edges or self-loops, and an approximation algorithm always means one
running in polynomial time. Let k be a positive integer. Given a graph G =
(V,E), MPCk+

v is the problem of finding a collection of vertex-disjoint paths
each with at least k vertices in G so that the total number of vertices in these
paths is maximized. Note that we can assume that each path in the output
collection has at most 2k −1 vertices. This is because we can split a path having
2k or more vertices into two or more paths each having at least k and at most 2k−
1 vertices. MPCk+

v has numerous real-life applications such as transportation
networks [9]. In this paper, we mainly focus on MPC4+

v .
On the one hand, MPCk+

v is related to many important optimization prob-
lems. For example, Berman and Karpinski [3] consider the maximum path cover
problem, which is the problem of finding a collection of vertex-disjoint paths in
a given graph so that the total number of edges in the paths is maximized. For
other related path cover problems with different objectives, the reader is referred
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14461, pp. 459–470, 2024.
https://doi.org/10.1007/978-3-031-49611-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49611-0_33&domain=pdf
https://doi.org/10.1007/978-3-031-49611-0_33

460 M. Gong et al.

to [1–5,8,15,16] for more details. On the other hand, MPCk+
v can be viewed

as a special case of the maximum-weight (2k − 1)-set packing problem [10,14]
because the former can be easily reduced to the latter as follows. Recall that an
instance of the latter problem is a collection C of sets each having a non-negative
weight and at most 2k − 1 elements. The objective is to select a collection of
pairwise-disjoint sets in C so that the total weight of the selected sets is maxi-
mized. To reduce MPCk+

v to the maximum-weight (2k−1)-set packing problem,
it suffices to construct an instance C of the latter problem from a given instance
graph G of MPCk+

v , where C is the collection of all paths of G with at least k
and at most 2k − 1 vertices and the weight of each path P in C is the number of
vertices in P . This reduction leads to an approximation algorithm for MPCk+

v

achieving a ratio of k because the maximum-weight (2k−1)-set packing problem
can be approximated within a ratio of k [10] or within a slightly better ratio of
k − 1

63,700,992 + ε [14] for any ε > 0.
MPCk+

v can be solved in polynomial time if k ≤ 3 [5], but is NP-hard other-
wise [11]. Kobayashi et al. [11] design an approximation algorithm for MPC4+

v

achieving a ratio of 4. Afterwards, Gong et al. [9] give the formal definition of
MPCk+

v and present an approximation algorithm for MPCk+
v which achieves a

ratio of ρ(k) ≤ 0.4394k + 0.6576 and runs in O(|V |k+1) time. The core of their
algorithm is three local improvement operations, each of which increases the
number of vertices in the current solution by at least 1 if it is applicable. The
algorithm stops when none of the three operations is applicable. They employ
an amortization scheme to analyze the approximation ratio of their algorithm
by assigning the vertices in the optimal solution to the vertices of the solution
outputted by their algorithm. For the special case where k = 4, they design two
more local improvement operations to increase the number of vertices or the
number of paths with exactly 4 vertices in the current solution, and then use a
more careful amortization scheme to prove that the approximation ratio of their
algorithm is bounded by 2 although the running time jumps to O(|V |8). As an
open question, they ask whether one can design better approximation algorithms
for the problem by completely different approaches.

1.1 Our Contribution and Design Highlights

In this paper, we answer the open question in the affirmative for the case where
k = 4. Motivated by the approaches in [5,6,12] for similar problems, one may
want to design an approximation algorithm for MPCk+

v by first computing a
maximum path-cycle cover C of the input graph G and then transforming C
into a solution for G. Unfortunately, this approach to maximizing the number of
edges does not seem to work. Our new idea for designing a better approximation
algorithm for MPC4+

v is to let the algorithm start by computing a maximum
matching M in the input graph G. The intuition behind this idea is that the
paths in an optimal solution for G can cover at most 5

2 |M | vertices. So, it suffices
to find a solution for G of which the paths cover a large fraction of the endpoints
of the edges in M . To this purpose, our algorithm then constructs a maximum-
weight path-cycle cover C in an auxiliary graph suitably constructed from M

An Approximation Algorithm for Covering Vertices by 4+-Paths 461

and G. Our algorithm further tries to use the edges in C to connect a large
fraction of the edges of M into paths with at least four vertices. If the algorithm
fails to do so, then it will be able to reduce the problem to a smaller problem
and in turn uses recursion to get a good solution.

Due to lack of space, the proofs of most lemmas are omitted here and will
be shown in the journal version.

2 Basic Definitions

Throughout the remainder of this paper, we fix an instance G of MPC4+
v for

discussion. Let n = |V (G)| and m = |E(G)|. For the graph G, let V (G) and
E(G) be the vertex and edge set of G.

For a subset F of E(G), we use V (F) to denote the set {v ∈ V (G) | v is an
endpoint of an edge in F}. A spanning subgraph of G is a subgraph H of G with
V (H) = V (G). For a set F of edges in G, G−F denotes the spanning subgraph
(V (G), E(G) \ F). In contrast, for a set F of edges with V (F) ⊆ V (G) and
F ∩E(G) = ∅, G+F denotes the graph (V (G), E(G)∪F). The degree of a vertex
v in G, denoted by dG(v), is the number of edges incident to v in G. A vertex v
of G is isolated in G if dG(v) = 0. The subgraph induced by a subset U of V (G),
denoted by G[U], is the graph (U,EU), where EU = {{u, v} ∈ E(G) | u, v ∈ U}.
Two vertex-disjoint subgraphs of G are adjacent in G if G has an edge between
them.

A cycle in G is a connected subgraph of G in which each vertex is of degree 2.
A path in G is either a single vertex of G or a connected subgraph of G in which
exactly two vertices (called the endpoints) are of degree 1 and the others (called
the internal vertices) are of degree 2. A path component of G is a connected
component of G that is a path. If a path component is an edge, then it is called
an edge component. The order of a cycle or path C, denoted by |C|, is the number
of vertices in C. A triangle of G is a cycle of order 3 in G. A k-path of G is a
path of order k in G, while a k+-path of G is a path of order k or more in G.
A matching of G is a (possibly empty) set of edges of G in which no two edges
share an endpoint. A maximum matching of G is a matching of G whose size is
maximized over all matchings of G. A path-cycle cover of G is a set F of edges
in G such that in the spanning subgraph (V (G), F), the degree of each vertex is
at most 2. A star is a connected graph in which exactly one vertex is of degree
≥ 2 and each of the remaining vertices is of degree 1. The vertex of degree ≥ 2
is called the center, while the other vertices are the satellites of the star.

Notation 1. For a graph G,

– OPT (G) denotes an optimal solution for the instance graph G of MPC4+
v ,

and opt(G) denotes the total number of vertices in OPT (G);
– ALG(G) denotes the solution for G outputted by a specific algorithm, and

alg(G) denotes the total number of vertices in ALG(G).

462 M. Gong et al.

3 The Algorithm for MPC4+
v

Our algorithm for MPC4+
v consists of multiple phases. In the first phase, it

computes a maximum matching M in G in O(
√

nm) time [13], initializes a
subgraph H = (V (M),M), and then repeatedly modifies H and M as described
in Sect. 3.1. With a small loss of vertices, OPT can be transferred to a matching
(by moving edges) and thus we have the following lemma.

Lemma 1. |V (M)| ≥ 4
5opt(G).

3.1 Modifying H and M

We here describe a process for modifying H and M iteratively. The process
consists of two steps. During these two steps, the following will be an invariant,
which will be proved in Lemma 2.

Invariant 1. M is both a maximum matching of G and a subset of E(H). Each
connected component K of H is an edge, a triangle, a star, or a 5-path. Moreover,
if K is a 5-path, then the two edges of E(K) incident to the endpoints of K are
in M ; otherwise, exactly one edge of K is in M .

Initially, Invariant 1 clearly holds. Since M is a maximum matching, any two
vertices of V (G) \ V (H) cannot be adjacent to each other. Moreover, for any
vertex u0 ∈ V (G) \ V (H), either it is incident to two different edge components
e0, e1; incident to an unique edge component e0 or not incident to any edge
components of H. Generally speaking, for the first case, we present an operation
to generate a 5-path by connecting u0 with e0, e1. For the second case, u0 and e0
form a triangle or a star with other vertices of V (G) \V (H). Lastly, if no vertex
of V (G) \ V (H) is incident to e0, then e0 remains an edge component of H.

Definition 1. An augmenting triple with respect to H is a triple (u0, e0 =
{v0, w0}, e1 = {v1, w1}) such that u0 ∈ V (G) \ V (H), both e0 and e1 are edge
components of H. We modify H and M as follows:

C1. If {u0, v0}, {u0, v1} ∈ E(G), then add u0 and the edges {u0, v0}, {u0, v1} to
H.

C2. If {u0, v0}, {w0, v1} ∈ E(G), then add u0 and the edges {u0, v0}, {w0, v1} to
H and then modify M by replacing e0 with {u0, v0}.

Clearly, once the above modification is executed, a 5-path is generated. We
next give the first two steps for H and M as follows.

Step 1.1 Repeatedly modify H and M with an augmenting triple until it is
not applicable;
Step 1.2 Add all those edges {u, v} ∈ E(G) such that u ∈ V (G) \ V (H) and
v is an endpoint of an edge component of H, as well as their endpoints u, to
H.

We have the next lemma on H and M at the end of Step 1.2.

Lemma 2. The above Steps 1.1–1.2 can be done in O(min{m2n, n4}) time such
that Invariant 1 always holds.

An Approximation Algorithm for Covering Vertices by 4+-Paths 463

3.2 Bad Components and Rescuing Them

We consider the subgraph H and the maximum matching M at the end of Step
1.2. In the sequel, a component always means a connected component. Note that
a 5-path of H can be contained in the solution, but we can not form a 4+-path
from any other components of H, which are defined as bad.

Definition 2. A bad component of H is a connected component that is not a
5-path. By Invariant 1, a bad component is an edge, a triangle or a star.

Clearly, moving all bad components of H will lead to a large loss of the
vertices in V (M). So, in this subsection, we construct a maximum-weighted
path-cycle cover to connect a bad component of H to another bad component
or a 5-path as many as possible such that we are able to form more 4+-paths
from bad components. We call it a rescue process of bad components.

Step 2.1 Construct a spanning subgraph G1 of G of which the edge set
consists of all the edges {v1, v2} of G such that v1 and v2 appear in different
components of H and at least one of the components is bad.

Definition 3. A set F of edges in G1 saturates a bad component K of H if at
least one edge in F is incident to a vertex of K. The weight of F is the number
of bad components saturated by F .

Lemma 3. A maximum-weighted path-cycle cover in G1 can be found in
O(mn log n) time.

Step 2.2. Compute a maximum-weighted path-cycle cover C of G1 (as in
the proof of Lemma 3).
Step 2.3. As long as C contains an edge e such that C \ e has the same
weight as C, repeatedly remove e from C, that is, C is updated to C \ e.

Notation 2. – C denotes the maximum-weighted path-cycle cover of G1 com-
puted at the end of Step 2.3.

– MC denotes the subset of the maximum matching M containing those edges
in 5-paths of H or in bad components of H saturated by C.

Intuitively, the maximum-weighted path-cycle cover C connects as many bad
components as possible with each other or 5-paths. So, the vertices of MC is
relatively larger than opt(G) since it only removes the vertices (exactly two
vertices in V (M) by Invariant 1) of each bad component not saturated by C.
The following lemma shows this fact.

Lemma 4. |V (MC)| ≥ 4
5opt(G).

464 M. Gong et al.

3.3 Structure of Composite Components of H + C

By Lemma 4, in order to obtain a good approximate solution for G, it suffices
to focus on MC instead of its superset M . By Step 2.3, we remove the edges of
C such that the weight of C is unchanged. So, it gives us simpler structures of
each connected component of H + C.

Notation 3. – H +C denotes the spanning subgraph (V (G), E(H)∪C). In the
sequel, we use K to refer to a component in H + C.

– (H +C)m denotes the graph obtained from H +C by contracting each compo-
nent of H into a single node. In other words, the nodes of (H+C)m one-to-one
correspond to the components of H and two nodes are adjacent in (H + C)m
if and only if C contains an edge between the two corresponding components.
We use (K)m to refer to the component of (H + C)m corresponding to the
component K in H + C.

We next show the structures of each component (K)m.

Lemma 5. For each component (K)m of (H + C)m (see Notation 3), the fol-
lowing statements hold:

1. (K)m is an isolated node, an edge, or a star.
2. If (K)m is an edge, then at least one endpoint of (K)m corresponds to a bad

component of H.
3. If (K)m is a star, then each satellite of (K)m corresponds to a bad component

of H.

If (K)m is isolated, then K is defined as isolated as well. Otherwise, K is a
composite component and it contains two or more components of H, which are
connected through the edges of C. If (K)m is isolated, K is a 5-path or a bad
component of H, not saturated by C. Recall that we only focus on the vertices
of MC . So, we can assume (K)m is a 5-path if (K)m is isolated. We next discuss
the case that (K)m is an edge or a star. By the second statement in Lemma 5,
when (K)m is an edge, we choose an endpoint corresponding to a bad component
of H as the satellite, while the other endpoint as the center.

Definition 4. For each composite component K of H + C, its center element
is the component of H corresponding to the center of (K)m, and it is denoted
as Kc in the sequel; the other components of H contained in K are the satellite
elements of K.

Every vertex v of Kc is defined as an anchor. The edge connecting v to
a satellite element S in C is called the rescue-edge for S and v is called the
supporting anchor for S. For a nonnegative integer j, an anchor v is a j-anchor
if v is the supporting anchor for exactly j satellite elements of H + C.

Since C is a path-cycle cover of G1, each anchor is a 0-, 1-, or 2-anchor. When
(K)m is isolated, then K is a 5-path and thus opt(K) = 5. One might ask whether
the solution OPT (K) can be easily computed for a composite component K. The
following lemma answers this question in the affirmative.

An Approximation Algorithm for Covering Vertices by 4+-Paths 465

Lemma 6. For each component K of H + C, an OPT (K) can be computed in
O(1) time.

Definition 5. For each composite component K of H + C, let s(K) = |V (K) ∩
V (MC)|. A critical component of H + C is a component K with s(K)

opt(K) ≥ 14
11 .

Generally speaking, by computing an OPT (K) for every K of H + C and
outputting their union as an approximate solution for G, we obtain an approx-
imation algorithm for MPC4+

v achieving a ratio of 5
4 maxK

s(K)
opt(K) because of

Lemma 4, unless K is critical (Definition 4) and responsible (Definition 8). If K

is an isolated 5-path, then by Invariant 1, we have s(K)
opt(K) = 4

5 . But if K is a

composite component, s(K)
opt(K) is not necessarily small (smaller than our target

value which is about 1.4992). Next, we show the possible structures of a critical
component in Fact 1.

Fact 1. A critical component K of H + C has one 2-anchor or two 2-anchors.
Moreover, Kc is an edge or a 5-path. If Kc is an edge, then s(K) = 8; if Kc is
a 5-path, then s(K) ∈ {8, 10, 14, 16, 18}. Figure 1 shows all possible structures of
a critical component.

Proof. We can prove the fact by discussing the number of 2-anchors in Kc.

Remark 1. Even if a satellite element S of K can be a star or triangle, we almost
always draw only one edge of S in Fig. 1 for simplicity.

Definition 6. A 2-anchor of H + C is critical if it appears in a critical com-
ponent of H + C. A satellite element of H + C is critical if its rescue-anchor is
critical in H + C.

By Fact 1, every critical component must have one or two critical 2-anchor.

Definition 7. Suppose that v is a 0- or 1-anchor in H + C and S is a satellite
element in H +C such that S has a vertex w with {v, w} ∈ E(G). Then, moving
S to v in H + C is the operation of modifying C by replacing the rescue-edge of
S with the edge {v, w}.

Suppose a critical component K has exactly one 2-anchor. Then if we move
one of critical satellite element to an isolated 5-path (if possible), K and the 5-
path will be both not critical since they do not have 2-anchor. So, such moving
decreases the number of critical components by one. However, we cannot guar-
antee that every moving will reduce critical components. In Fact 2, we discuss
the different movings and their effects.

Fact 2. For each critical component K of H+C and its critical satellite element
S, the following statements hold:

1. If we move S to another component (not K), then K is no longer critical and
will not become isolated.

466 M. Gong et al.

Fig. 1. The possible structures for a critical component K of H + C, where thick
(respectively, dashed) edges are in the matching M (respectively, the path-cycle cover
C), thin edges are not in M ∪C, the filled (respectively, blank) vertices are in (respec-
tively, not in) V (M), gray vertices are 2-anchors, and the fraction on the right side of

each structure is s(K)
opt(K)

.

2. If v is a 0-anchor of K such that v is adjacent to S in G, then moving S to
v in H + C makes K no longer critical.

3. If v is a 1-anchor in K, then moving S to v makes K remain critical only if K
has the first structure of Fig. 1, or K has the last or the second last structure
in the bottom row of Fig. 1 and the rescue-anchor of S is the leftmost 2-anchor
in K.

Roughly speaking, we might need to pay more attention to 1-anchors since if
a critical satellite element is moved to a 1-anchor v, then v is possible to become
a critical 2-anchor. So, we introduce the following definition of 1-anchors.

Definition 8. Let K be a composite component of H + C. If K has a 1-anchor
v such that G has an edge between v and some critical satellite-element S of
H + C in G and moving S to v in H + C makes K critical in H + C, then we
call K a responsible component of H + C and call v a responsible 1-anchor of
H + C.

By the third statement in Fact 2, a component of H +C can be both critical
and responsible only if it has the first or one of the last two structures in Fig. 1.

Lemma 7. Suppose that a component K of H + C is both critical and respon-
sible. If K has the first structure in Fig. 1, then s(K) = 8 and we find a feasible
solution with at least 7 vertices in O(1) time; otherwise, s(K) = 14 and we find
a feasible solution with at least 12 vertices in O(1) time.

An Approximation Algorithm for Covering Vertices by 4+-Paths 467

By the above lemma, we know for each critical and responsible component
K, we can find a feasible solution for K in constant time, which is still denoted
as OPT (K) for ease of presentation, with s(K)

opt(K) < 14
11 . Now, we can regard each

critical and responsible component K as a non-critical component. So, any crit-
ical component cannot be responsible or vice versa. Hereafter, a critical compo-
nent always refers to a critical but not responsible component and a responsible
component always refers to a responsible but not critical component.

By Definition 8, the structure for a responsible component of H +C can only
be obtained by deleting a critical satellite-element from one of the structures
in Fig. 1. So, by Fig. 1, we can easily list all possible structures for responsible
components of H + C.

3.4 Operations for Modifying Critical Components

In this subsection, we define three operations for modifying C (and accordingly
one or more critical components of H +C) so that after the modification, H +C
will hopefully have fewer critical components. Let v be a vertex of a satellite
element S in a critical component K and v′ be a vertex of K ′ in H + C. We
remark that K and K ′ may be the same. Suppose {v, v′} ∈ E(G) \ C and we
design the following three operations.

Operation 1. Suppose v′ is a 0-anchor of K or v′ is a non-responsible 1-
anchor. Then, the operation modifies C by replacing the rescue-edges of S with
{v, v′}.

Clearly, Operation 1 does not change the weight of C by the first state-
ment in Fact 2. Suppose v′ is a 0-anchor. If K = K ′, then after Operation 1,
K is no longer critical by the second statement of Fact 2. Then, we suppose
K
= K ′. Obviously, K is no longer critical but K ′ may become critical after
Operation 1. So, Operation 1 may not necessarily decrease but does not increase
the number of critical components in H + C. Fortunately, Operation 1 changes
v′ from a 0-anchor to a 1-anchor. Similarly, it is not hard to check if v′ is a
non-responsible 1-anchor, then Operation 1 makes K,K ′ both not critical. So,
Operation 1 decreases the number of 0-anchors in H + C by 1 or the number of
critical components in H + C by 1. Obviously, Operation 1 does not change the
number of components in H + C.

Operation 2. Suppose v′ is in a satellite-element S′ of K ′ and the center ele-
ment K ′

c of K ′ is an edge or a star to which no satellite element other than S′ is
adjacent in H + C. Then, the operation modifies C by replacing the rescue-edge
of S with {v, v′}.

Obviously, Operation 2 does not change the weight of C by the first statement
of Fact 2. Note that K ′ has no 2-anchor and hence K ′ is not critical by Fact 1.
So, K
= K ′ since K is critical. Moreover, after Operation 2, S′ becomes the
center element of K ′ and hence Lemma 5 still holds. Furthermore, by the first
statement in Fact 2 and Fact 1, K,K ′ are not critical after Operation 2 and

468 M. Gong et al.

thus Operation 2 decreases the number of critical components in H + C by 1.
Clearly, Operation 2 does not change the number of components in H + C.
Before Operation 2, K ′ may have one 0-anchor x. After Operation 2, x will be
in a satellite element of H + C and hence will not be a 0-anchor, but S′ will
become a center element with two satellite elements adjacent to it in H + C,
implying that one vertex of S′ may become a 0-anchor in H + C (or not an
anchor, if S′ is a star). In summary, Operation 2 does not increase the number
of 0-anchors in H + C.

Operation 3. Suppose v′ appears in a satellite-element S′ of K ′ and K ′
c is a

5-path , or K ′
c is an edge or a star to which at least one more satellite element

other than S′ is adjacent in H +C. Then, the operation modifies C by replacing
the rescue-edges of S and S′ with the edge {v, v′}.

By the first statement of Fact 2, Operation 3 does not change the weight of
C since K,K ′ will not be an isolated bad component of H. Operation 3 uses
the edge {v, v′} to connect S and S′ into a new composite component Knew of
H +C. By Fact 1, Knew is not critical. If K = K ′, then clearly Operation 3 does
not increase the number of critical components in H+C. Otherwise, Operation 3
makes K not critical because of the first statement in Fact 2, but it is possible
that Operation 3 makes K ′ critical. In any case, Operation 3 does not increase the
number of critical components in H + C. Luckily, Operation 3 always increases
the number of components in H + C by 1.

Lemma 8. Operations 1–3 can be repeatedly performed at most O(n2) times.
Suppose that G has an edge {v, v′} such that v is in a critical satellite-element

S of H + C and v′ /∈ V (S) when none of Operations 1–3 is applicable. Then v′

is a 2-anchor or a responsible 1-anchor.

3.5 Bounding opt(G)

Let R denote the set of vertices v ∈ V (H) such that v is a 2-anchor or a
responsible 1-anchor in H + C. By Lemma 8, once none of Operations 1–3 is
applicable, any critical satellite element can be only incident to the vertices of R.
Clearly, |R∩V (K)| is bounded by the total number of 1- and 2-anchors in Kc (Kc

is not a triangle). Thus, if Kc is an edge, then |R ∩ V (K)| ∈ {0, 1, 2}; if Kc is a
star, then |R∩V (K)| ∈ {0, 1}; if Kc is a 5-path, then |R∩V (K)| ∈ {0, 1, 2, 3, 4, 5}.
By Fact 1 and Lemma 7, each critical component K has one or two 2-anchors
and no responsible 1-anchor. That is, |R ∩ V (K)| ∈ {1, 2}.

Notation 4. For the components in H + C, we define the notations as follows.

– Let K be the set of composite components or isolated 5-paths of H + C.
– For each i ∈ {0, 1, 2, 3, 4, 5}, let Ki ⊆ K be a subset of K such that |R ∩

V (K)| = i.
– For each i ∈ {1, 2}, let Ki,c be the set of critical components in Ki.
– Let Rc be the set of 2-anchors in the critical components of H + C.

An Approximation Algorithm for Covering Vertices by 4+-Paths 469

– Uc =
⋃

v∈Rc
{w ∈ V (H) | w is in a critical satellite-element whose rescue-

anchor is v}.
– Let Gc = G[V (G) \ (Rc ∪ Uc)].

Lemma 9. opt(G) ≤ opt(Gc) + 7
∑5

i=1 i|Ki|.
The above lemma indicates that though there are many critical components

in H+C, after we “destroyed” all the critical components, the problem is reduced
to a smaller problem on Gc and opt(Gc) is not far away from opt(G). So, it is
possible to get a good solution of G by recursively solving the problem on Gc.

4 Summary of the Algorithm

Let r = 15+
√
505

20 ≈ 1.874 be the positive root to the quadratic equation 10r2 −
15r − 7 = 0. Our algorithm proceeds as follows.

0. If |V (G)| ≤ 4, find an optimal solution by brute-force search, output it, and
then halt.

1. Construct the graph H as follows:
(a) Compute a maximum matching M in G and initialize H = (V (M),M).
(b) Modify M and H by performing Steps 1.1 and 1.2 in Sect. 3.1.

2. Compute a maximum path-cycle cover C and modify it as follows:
(a) Perform Steps 2.1, 2.2, and 2.3 in Sect. 3.2 to compute a maximum path-

cycle cover C in an auxiliary graph G1.
3. Repeatedly perform Operations 1, 2, and 3 in Sect. 3.4 to modify C, until

none of them is applicable.
4. If no component of H + C is critical, or

∑5
i=1 i|Ki|

|K1,c|+2|K2,c| > 5
7r, then

(a) compute OPT (K) for each component K of H +C that is not an isolated
bad component of H by Lemma 6;

(b) output their union as a solution for G, and then halt.
5. Otherwise, there is at least one critical component and

∑5
i=1 i|Ki|

|K1,c|+2|K2,c| ≤ 5
7r.

(a) Recursively call the algorithm on the graph Gc to obtain a solution
ALG(Gc).

(b) For each v ∈ Rc, compute a 5+-path Pv since v is a 2-anchor.
(c) Output the union of ALG(Gc) and ∪v∈Rc

Pv, and halt.

Theorem 1. The running time of the
algorithm is bounded by O(min{m2n2, n5}) and the approximation ratio is at
most r = 15+

√
505

20 < 1.874.

Due to the page limitation, the proof of Theorem 1 is omitted here.

470 M. Gong et al.

References

1. Asdre, K., Nikolopoulos, S.D.: A linear-time algorithm for the k-fixed-endpoint
path cover problem on cographs. Networks 50, 231–240 (2007)

2. Asdre, K., Nikolopoulos, S.D.: A polynomial solution to the k-fixed-endpoint path
cover problem on proper interval graphs. Theoret. Comput. Sci. 411, 967–975
(2010)

3. Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1,2)-TSP. In: Pro-
ceedings of ACM-SIAM SODA 2006, pp. 641–648 (2006)

4. Cai, Y., et al.: Approximation algorithms for two-machine flow-shop scheduling
with a conflict graph. In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol.
10976, pp. 205–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94776-1 18

5. Chen, Y., et al.: Path cover with minimum nontrivial paths and its application
in two-machine flow-shop scheduling with a conflict graph. J. Comb. Optim. 43,
571–588 (2022)

6. Chen, Z.-Z., Konno, S., Matsushita, Y.: Approximating maximum edge 2-coloring
in simple graphs. Discret. Appl. Math. 158, 1894–1901 (2010)

7. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph
and bidirected network flow problems. In: Proceedings of ACM STOC 1983, pp.
448–456 (1983)

8. Gomez, R., Wakabayashi, Y.: Nontrivial path covers of graphs: existence, mini-
mization and maximization. J. Comb. Optim. 39, 437–456 (2020)

9. Gong, M., Fan, J., Lin, G., Miyano, E.: Approximation algorithms for covering
vertices by long paths. In: Proceedings of MFCS 2022. LIPIcs, vol. 241, pp. 53:1–
53:14 (2022)

10. Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover and set packing
problems. Discret. Appl. Math. 6, 243–254 (1983)

11. Kobayashi, K., et al.: Path cover problems with length cost. In: Mutzel, P.,
Rahman, M.S., Slamin (eds.) WALCOM 2022. LNCS, vol. 13174, pp. 396–408.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96731-4 32

12. Kosowski, A.: Approximating the maximum 2- and 3-edge-colorable subgraph
problems. Discret. Appl. Math. 157, 3593–3600 (2009)

13. Micali, S., Vazirani, V.V.: An O(
√|V ||E|) algorithm for finding maximum match-

ing in general graphs. In: Proceedings of IEEE FOCS 1980, pp. 17–27 (1980)
14. Neuwohner, M.: An improved approximation algorithm for the maximum weight

independent set problem in d-claw free graphs. In: Proceedings of STACS 2021,
pp. 53:1–53:20 (2021)

15. Pao, L.L., Hong, C.H.: The two-equal-disjoint path cover problem of matching
composition network. Inf. Process. Lett. 107, 18–23 (2008)

16. Rizzi, R., Tomescu, A.I., Mäkinen, V.: On the complexity of minimum path cover
with subpath constraints for multi-assembly. BMC Bioinform. 15, S5 (2014)

https://doi.org/10.1007/978-3-319-94776-1_18
https://doi.org/10.1007/978-3-319-94776-1_18
https://doi.org/10.1007/978-3-030-96731-4_32

	An Approximation Algorithm for Covering Vertices by 4+-Paths
	1 Introduction
	1.1 Our Contribution and Design Highlights

	2 Basic Definitions
	3 The Algorithm for MPC4+v
	3.1 Modifying H and M
	3.2 Bad Components and Rescuing Them
	3.3 Structure of Composite Components of H+C
	3.4 Operations for Modifying Critical Components
	3.5 Bounding opt(G)

	4 Summary of the Algorithm
	References

