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Abstract. In wireless sensor networks, ensuring k -coverage and connec-
tivity is crucial in order to efficiently gather data and relay it back to the
base station. We propose an algorithm to achieve k -coverage and connec-
tivity in randomly deployed wireless sensor networks while minimizing
the number of active sensors. It has been shown that selecting a mini-
mum set of sensors to activate from an already deployed set of sensors
is NP-hard. We address this by using a genetic algorithm that efficiently
approximates a solution close to the optimal solution. The algorithm
works by selecting random solutions and mutating them, retaining only
the best solutions for the next generation until it converges to a near-
optimal solution. We examine the time complexity of our approach and
discuss possible optimizations. Our simulation results show that our app-
roach works consistently across different types of wireless sensor networks
and for different degrees of required coverage.

Keywords: Wireless sensor networks · k -coverage · Connectivity ·
Sensor selection · Genetic algorithm

1 Introduction

A wireless sensor network (WSN) is a network consisting of wireless sensors capa-
ble of measuring various environmental conditions. These sensors are deployed
in predetermined patterns or placed randomly within a target region, enabling
a comprehensive view of the environment and valuable data collection. WSNs
face the challenge of achieving adequate coverage, connectivity, and energy effi-
ciency. The coverage problem entails that the target region is covered by at least
one sensor, while the k -coverage problem focuses on covering each point with
at least k sensors, crucial for fault tolerance. Connectivity is vital for relaying
information to the base station.

To optimize the network’s lifetime, it is essential to manage sensor states
actively or inactively. All sensors operating simultaneously lead to energy waste,
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and redundant data collection. Balancing active and inactive sensors is challeng-
ing while maintaining connectivity and coverage. Randomly deployed sensor net-
works pose additional challenges. Uniform deployment is often impractical, and
environmental factors can lead to sensor movement. Applications may require
random or near-random deployments, necessitating optimal sensor placement.

The problem of finding the minimum number of sensors for k -coverage in
randomly deployed networks is NP-hard, making an exact solution computa-
tionally infeasible. Genetic algorithms (GA), inspired by natural selection, offer
an approximation approach. GAs generate a population of solutions, evaluate
their proximity to the optimal solution, and iteratively improve them through
mutation. Our GA is designed for static sensors, as mobility consumes more
energy. We identify optimal sensor locations for k -coverage and connectivity
while retaining network lifetime. Inactive sensors can activate as active sensors
deplete energy.

2 Related Work

Yang et al. [1] establishes that selecting the minimum set of active sensors in a
randomly deployed network to achieve k -coverage is NP-hard. Previous research
efforts have tackled the k -coverage problem by introducing mobile sensors capa-
ble of moving to areas within the network where coverage is lacking. In [2], the
authors propose a GA approach that utilizes mobile sensors to optimize coverage.
This differs from our GA as we only consider static, pre-deployed sensors.

Hurizan and Kuila [3] investigate the activation of a specific set of nodes
instead of deploying all nodes within the network. They employ a GA approach
to assess the minimum selection of nodes required for full coverage, connectivity,
and energy optimization. The main distinction between our approach and [3]
lies in the integration of mobile sensors, which prevents the genetic algorithm
from frequent reactivation. This prolongs the network’s lifespan and effectively
addresses potential environmental challenges that may arise within the network.

3 Preliminaries

This section provides an introduction to some of the terminology and notation
used in our explanation of the genetic algorithm. Additionally, we outline some
assumptions relating to the coverage model.

3.1 Key Terminology and Notation

The following are key definitions:

Definition 1. Sensors and points - A sensor is denoted by S and a point is
denoted by p. The total number of sensors in a network is denoted by N and
the total number of points in a network is denoted by P.

Definition 2. Sensing and communication range - The sensing radius of a sen-
sor S is denoted by r and the communication radius is denoted by c. The sensing
range and communication range of a sensor is the area formed by the circular
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disk centered at the sensor with radius r and c, respectively. The sensing range
of a sensor S is denoted by Sr and the communication range is denoted by Sc.

Definition 3. Distance - The distance between a sensor S and a point p is
denoted by d(S, p). Similarly, the distance between two sensors S1 and S2 is
denoted by d(S1, S2).

Definition 4. Communication neighbors - Sensors S1 and S2 are considered
communication neighbors if the distance between them d(S1, S2) is less than
or equal to their communication range c (i.e. S1 and S2 are communication
neighbors if d(S1, S2) ≤ c).

Definition 5. Active sensors - The active sensor set consists of all sensors that
are currently in the active state and is denoted by Sactive.

Definition 6. Parent sensors - A sensor is considered a parent sensor if it is
active and the base station is within its communication range. The set of all
parent sensors is denoted by Sparent. The parent sensor set is a subset of the
active sensor set (Sparent ⊆ Sactive).

Definition 7. Connected sensors - The set of all active sensors that are con-
nected to a parent sensor via communication neighbors is denoted by Sconn. The
connected sensor set is a subset of the active sensor set (Sconn ⊆ Sactive).

Definition 8. Covered points and k -covered points - The set of all points in the
target region that are at least 1-covered is denoted by pcov. The set of all points
in the target region that are at least k -covered is denoted by pkcov. The set of
k -covered points is a subset of the set of covered points (pkcov ⊆ pcov).

3.2 Assumptions

The following are assumptions that our approach is based upon:

Assumption 1. All sensors in the network are homogeneous i.e. all sensors have
the same sensing and communication range.

Assumption 2. Sensors communicate to the base station via neighboring sen-
sors within their communication range. If a sensor is a parent sensor it relays
information from neighboring nodes to base station.

Assumption 3. The target region is populated with mobile sensors, which are
randomly deployed. Similarly, the base station is also positioned randomly within
a predefined area located at the center of the target region.

Assumption 4. The deployed sensor network is dense enough to k -cover the
region despite the random deployment. If the sensor network is not dense enough
to k -cover the region, the algorithm will return the minimum set of active sensors
that k -covers the region as much as possible.
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Assumption 5. The algorithm operates under the assumption that the sensors
remain stationary; however, the inclusion of mobile sensors serves the purpose
of seamlessly replacing a failed or dying sensor within the network by utilizing a
neighboring sensor. This enables continuous k -coverage of the area even in the
event of sensor failure.

4 Genetic Algorithm

In this section, we present our genetic algorithm approach and go into detail
about the design.

4.1 Coverage Model

The target region consists of an m × n grid with m ∗ n grid points. We utilize
a point coverage model where a target region is considered k -covered if all grid
points within that target region are k -covered. For example, a 50 m × 50 m target
region would have 2500 grid points. We consider this target region k -covered if
all 2500 grid points are k -covered. A point p in the target region is considered
covered by a sensor S if the distance d(S, p) from S to p is less than or equal
to the sensing radius r (i.e. p is covered if d(S, p) ≤ r.).

4.2 Genetic Algorithm

Before starting the algorithm, we deploy a given number of sensors in the target
region and we deploy the base station randomly in a bounded region towards the
center of the target region. A sensor determines its location using GPS technol-
ogy which is communicated to the base station through a communication path.
Since the algorithm is centralized, the base station takes charge of monitoring
sensor locations and keeping track of potential solutions.

The algorithm randomly generates an initial population of potential solutions
(see Fig. 1). Generating additional potential solutions for a larger sensor network
is logical, however, scaling the population size linearly with the number of sensors
in the network would result in excessive computational costs. On the other hand,
scaling logarithmically with the number of sensors would result in a population
size that is too small to properly explore solutions in a large network. Therefore,
we compute the population size as a radical function of the total number of
sensors N. We start with a base population size of 10 for small networks where√
N would not result in a sufficiently large population size. Then, we add to the

population size
√
N
2 (we divide by 2 to reduce the population size further). Since

the population size must be a whole number, we can apply a floor operation to
the

√
N
2 term in case the result is a fraction. This calculation can be represented

as the following function of N :

pop(N) = 10 + �
√
N

2
�
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To generate potential solutions, the algorithm picks a random number of
sensors from 1 to N, denoted by rand(N), and then randomly picks rand(N)
sensors to activate from the network. After activating these sensors, it deter-
mines the following metrics to evaluate the fitness of the solution: the rate of
coverage of the target region RoC(pcov, P ), the rate of k -coverage of the target
region RokC(pkcov, P ), the rate of connectivity among the set of active sensors
Conn(Sconn, Sactive), and the rate of inactivity RoI(Sactive, N). This process
is repeated pop(N) times to get pop(N) possible solutions in a single generation.

Fig. 1. Represents how a solutions is generated.

Fitness Metrics

RoC(pcov, P ) =
|pcov|
P

RokC(pkcov, P ) =
|pkcov|
P

Conn(Sconn, Sactive) =
|Sconn|
|Sactive|

RoI(Sactive, N) =
N − |Sactive|

N
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After determining the metrics of each solution, the algorithm calculates the
score of each solution using the fitness function and keeps track of the top 20%
of the solutions as this provides the best results (determined through trial and
error). We also keep track of the best solution for each generation and compare it
to the universal best solution. If the best solution of the current generation has a
higher score than the universal best solution, then the universal best solution is
assigned the best solution of the generation (i.e. bestSolUniv = max(bestSolGen,
bestSolUniv)). Storing the best universal solution is not only useful for deter-
mining the final result, but it also helps terminate the generation loop.

The next step is to create a new generation based on the best solutions of the
current generation. We start by picking a random solution from the best solutions
and apply a mutation factor to it in order to mimic random genetic mutation.
This is an important step in order to explore different solution permutations. If
the number of sensors N is less than or equal to 100, then the mutation factor is
randomly picked from the range of integers from −3 to 3, inclusive. Otherwise,
the mutation factor is randomly picked from the range of integers from −N

30 to N
30 ,

inclusive. These ranges represent a 0–3% mutation. The function for computing
the mutation factor can be written as:

mut(N) =

{
randInt(−3, 3), N ≤ 100
randInt(−N

30 , N
30 ), N > 100

If the mutation factor is a positive integer, then we must activate mut(N)
more sensors in the current network. If the mutation factor is a negative integer,
then we must deactivate mut(N) sensors in the current network. Note that the
mutation factor can also be 0, in which case there will be no changes to the
current solution (see Fig. 2). Once a solution is mutated, we add it to our new
generation. This step of randomly selecting a solution from the best solutions and
mutating it is done pop(N) times to produce a new generation. After creating a
new generation, we can repeat the algorithm, starting from the fitness evaluation
step, to create an even more fit generation. See Algorithm 1 for the psuedo-code
of the genetic algorithm.

4.3 Terminating Conditions

As we start to create better solutions in each generation and approach the opti-
mal solution, we need a terminating condition to stop the generational loop.
Since there is no way to verify the correctness of a solution in polynomial time,
we must utilize a heuristic that assumes we have determined the optimal solu-
tion based on a terminating condition. One way is to set a constant limit to
the number of generational loops. This limit can be a large upper bound to the
number of generations required to compute an optimal solution (such as 1000
generations) to ensure that we arrive at the most optimal solution that the algo-
rithm can generate before exiting the loop. This approach, however, introduces
redundancy as some networks will arrive at the optimal solution significantly
quicker than other networks despite having the same number of sensors. So, a
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Fig. 2. Represents how a solutions is generated.

given network may arrive at the optimal solution long before the generation
limit is reached and continue to unnecessarily calculate new solutions, wasting
computational resources.

Another way to terminate the generational loop is to compute a score thresh-
old and stop the loop when that threshold has been exceeded. The score threshold
can be computed by inputting the metrics of a desired solution into the fitness
function. We can then use this threshold as our terminating condition for the
generational loop, ensuring that the resulting solution meets the metrics require-
ment of our desired solution. In other words, the resulting solution is as good as
or better than our desired solution. An issue that can arise with setting a score
threshold is that an infinite loop can occur if the algorithm is unable to generate
a solution that exceeds the threshold. To combat this, we can set a constant limit
for the number of generations in the event that a solution with a score exceeding
the threshold is unattainable. If this is the case, then the algorithm will continue
computing more generations despite having already achieved the most optimal
solution it can produce, resulting in the same issue of excess computation.

Perhaps the best terminating condition - if we are concerned with efficiently
arriving at a solution reasonably close to the most optimal solution - is to keep
track of the highest score across all generations, and if that score has not been
exceeded after a set number of generations, we can assume that the algorithm has
arrived at the optimal solution and terminate the generational loop. The number
of generations after which we want to break the loop if we have not achieved a
higher score can be referred to at the ”repeat threshold” (since the highest score
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is repeating). Having a high repeat threshold ensures that the solution is the
most optimal, but also requires the computation of more generations. Finding
the right number depends on the specific use case; however, in our simulations
we found having the repeat threshold set to 5 provided the best results when
considering accuracy and saving time.

Deciding which terminating condition to use depends on the application of
the algorithm. If the goal is to efficiently find a solution close to the optimal
solution that the algorithm can generate, then we can use the repeat threshold.
If we simply aim to achieve a desired solution and stop computation once that
solution has been attained, we can set a score threshold. If the goal is to simply
achieve the most optimal possible solution that the algorithm can come up with
regardless of time and computational constraints, then we can set a large upper
bound on the generational loop.

Algorithm 1: Genetic Algorithm
1 initialize number of sensors as N
2 initialize population size as popSize

3 initialize empty list solutions
4 for (i = 0 to popSize) do
5 create a solution object sol
6 numActive = random integer from 1 to N
7 activate numActive sensors in sol
8 append sol to solutions

9 initialize empty list scoredSolutions
10 while repeatCounter < repeatThreshold do
11 for (j = 0 to popSize) do
12 score = fitness(solutions[j])
13 add current solution and score to scoredSolutions

14 sort scoredSolutions in ascending order
15 bestSolutions = top 20% of scoredSolutions

16 update repeatCounter and highest score

17 // create new generation
18 initialize empty list newGen
19 for (j = 0 to popSize) do
20 sol = random solution from bestSolution
21 if mut(N) > 0 then
22 activate mut(N) more sensors in sol

23 else
24 deactivate mut(N) sensors in sol

25 append sol to newGen

26 solutions = newGen
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4.4 Fitness Function

The fitness function calculates a score for each generated solution based on
the following parameters: coverage, k -coverage, connectivity, and inactivity. The
goal is to maximize each of these metrics, but to do it with different priority.
For example, we must prioritize connectivity over inactivity since a connected
sensor network is preferable to a disconnected sensor network with less sensors.
Therefore, we must multiply each metric by a weight that represents its priority.
Connectivity takes the highest precedence as a sensor network must be connected
to the base station in order to relay any information it gathers. As such, we
assign the highest weight to connectivity. Next, we prioritize coverage, then k -
coverage, and lastly inactivity. This order of precedence ensures that we first
achieve a connected network, then achieve 1-coverage, after which we focus on
achieving k -coverage, and lastly, once we have a connected and k -covered sensor
network, we can focusing on reducing the number of active sensors.

An issue that can arise when calculating the fitness of a solution is that a solu-
tion can come close to achieving an optimal metric, but not be exactly optimal.
For example, if the optimal achievable k -coverage in a randomly deployed sensor
network is 100% but requires the activation of far more sensors than achieving
99% k -coverage, then the fitness function will give a higher score to a solution
that achieves 99% k -coverage with fewer sensors than to a solution that achieves
100% k -coverage with more sensors. To prioritize achieving optimal k -coverage
and connectivity before minimizing the number of active sensors, we enhance the
scoring of solutions that reach these optimal metrics. Specifically, we multiply
the weight of a metric by 10 when it is considered optimal, thereby assigning a
significantly higher score to solutions that meet these criteria compared to those
that do not achieve any optimal metrics. By adopting this approach, the genetic
algorithm will experience notably faster convergence to the optimal solution,
given that solutions with optimal metrics will consistently attain the highest
scores. If a solution achieves optimal connectivity, coverage, and k -coverage,
then its score will be 0.99. From there, the fewer the number of active sensors in
a solution, the closer its score will be to 1. The score of a solution should never
actually be 1 as this would require the solution to have optimal metrics with 0
active sensors, which is not possible. See Algorithm 2 for the pseudo-code of the
fitness function.

4.5 Time Complexity

The algorithm computes pop(N) solutions in every iteration of the generational
loop. The generational loop will typically terminate when an optimal solution
has been achieved; however, we set some bounding constant C as the limit of the
generational loop in the event that this does not occur. This operation reduces
to O(

√
N).

The computation of every solution requires us to activate or deactivate sen-
sors and update coverage. To update coverage, the algorithm maintains two sets,
pcov and pkcov. It iterates through all active sensors, employing a depth-first
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Algorithm 2: Fitness Function

Input : coverageRate, kCoverageRate, connectivity, inactivity
Ouput: solutionScore

1 // boost score if solution reaches optimal metrics
2 if (coverageRate == optimalCoverageRate) then
3 coverageRate = coverageRate * 10

4 if (kCoverageRate == optimalKCoverageRate) then
5 kCoverageRate = kCoverageRate * 10

6 if (connectivity == optimalConnectivity) then
7 connectivity = connecitivity * 10

8 solutionScore = (0.045 * connectivity + 0.030 * coverageRate + 0.024 *
kCoverageRate + 0.01 * inactivity)

9 return solutionScore

search starting at the sensor’s location to update the coverage of only the points
covered by the sensor. This approach has a time complexity of O(a∗r2), where a
is the number of active sensors, and r is the radius of the sensing disk, accounting
for the quadratic scaling of the area. This process is also used when deactivating
sensors to remove points from the respective sets if they are no longer 1-covered
or k-covered.

Activating a sensor also requires that we initialize its communication neigh-
bors to determine connectivity. In order to do this, we must iterate through every
currently active sensor and check if it is communication neighbors with the newly
activated sensor. Similarly, when we deactivate a sensor, we need to remove it
from the communication neighbor set of every other active sensor, which also
requires us to iterate through Sactive. Doing this for every active sensor results
in a time complexity of O(a2).

Once we have computed a potential solution, we need to determine its met-
rics in order to give it a score. Calculating coverage, k -coverage, and inactivity
are constant time operations, but computing connectivity requires a depth-first
search traversal of all currently active sensors. Since we need to traverse all active
sensors at least once, the time complexity of this traversal is O(a).

The time complexity of this algorithm stands at O(
√
N ∗ (a ∗ r2 + a2)) (the

O(a) step of computing connectivity reduces here). In the worst case, the number
of total sensors N is equal to the number of active sensors a and taking this into
account, we must write the time complexity as O(

√
(N) ∗ (N ∗ r2 +N2)). N2 is

greater than N ∗ r2 when the number of sensors N is greater than the sensing
radius r squared which is the most likely case in a randomly deployed sensor
network dense enough to k -cover a target region. Therefore, we can say that the
overall time complexity of the genetic algorithm is O(N2

√
N).
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5 Simulation

In this section, we present our experimental results under different simulation
conditions. Figures 3a, 3b and 3c show the minimum number of active sensors
generated by the genetic algorithm with respect to different degrees of required
coverage. Figure 3d hows the number of active sensors generated by the algorithm
with respect to different sensing ranges.

5.1 Coverage Degree Vs. Number of Active Sensors

Simulation parameters for Fig. 3a: 50 m × 50 m target region (2500 points to
cover), 100 deployed sensors, 10 m sensing range, and 20 m communication range
(N = 100, r = 10, c = 20). Simulation parameters for Fig. 3b: 100 m × 100 m
target region (10,000 points to cover), 300 deployed sensors, 15 m sensing range,
and 30 m communication range (N = 300, r = 15, c = 30). Simulation parameters
for Fig. 3c: 150 m × 150 m target region (22,500 points to cover), 500 deployed
sensors, 20 m sensing range, and 40 m communication range (N = 500, r = 20,
c = 40).

Note that the minimum number of active sensors for each value of k in
Figs. 3a, 3b and 3c is the average of 10 simulations, each ran with a different
randomly deployed sensor network. In Fig. 3a the algorithm computes an average
of 40.7 active sensors for k = 2, 57 for for k = 3, and 72.9 for k = 4. We can
see that the number of active sensors increases linearly with the required degree
of coverage. The same trend can be observed in Figs. 3b and 3c, demonstrating
that the algorithm performs similarly for sensor networks of different sizes and
varying sensor density.

Furthermore, the average number of generations to compute a solution (which
is averaged among 30 different simulations - 10 for each value of k) is roughly the
same for each figure, and does not scale with any of the simulation parameters.
This demonstrates that the algorithm computes solutions in roughly the same
amount of generations regardless of the specific attributes of a wireless sensor
network, and also explains why the number of generations is constant when
computing the time complexity of the algorithm.

5.2 Sensing Range Vs. Number of Active Sensors

Following are the simulation parameters for Fig. 3d 100 m × 100 m target region
(10,000 points to cover), 300 deployed sensors, the required degree of coverage
is 3, and the communication range is twice the sensing range (N = 300, k = 3,
c = 2 ∗ r). Note that, as with the previous experimental results, the number of
active sensors for each value of r is the average of the results of 10 simulations.
We can see in Fig. 3d that as we increase the sensing range r, the number of
active sensors that the algorithm computes decreases which is consistent with
the expected result.
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Fig. 3. Simulation Results

6 Conclusion and Future Work

In this paper, we proposed a genetic algorithm approach to the k-coverage
problem. Specifically, we focused on finding the minimum set of active sensors
required to k-cover a region among a randomly deployed wireless sensor network
while ensuring connectivity. We detailed how our genetic algorithm selects only
the best solutions in each generation and mutates them, converging closer to the
optimal solution in each iteration. Through our simulation results, we showed
that the algorithm performs consistently across different types of wireless sensor
networks and across varying degrees of required coverage.

Our future works consists of improving the time complexity of our algorithm
by finding a faster way to verify area or point coverage. Furthermore, we plan
to extend our approach by developing a scheme that allows inactive sensors to
activate and move to the location of dying active sensors in order to prolong the
lifetime of the network.
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