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Abstract. We study the efficient approximation algorithm for max-
covering circle problem. Given a set of weighted points in the plane and
a circle with specified size, max-covering circle problem is to find the
proper place where the center of the circle is located so that the total
weight of the points covered by the circle is maximized. Our core app-
roach is to approximate the circle with a symmetrical rectilinear poly-
gon (SRP). We first present a method to construct the circumscribed
SRP of a given circle and disclose their area relationship. Then, we con-
vert max-covering SRP problem to SRP intersection problem, which can
be efficiently solved with simple partition and modification based on
the existing method. Finally, the optimal solution returned from max-
covering SRP problem can be used to produce an approximate answer
to max-covering circle problem. We prove that for most of the inputs,
our algorithm can give a (1 − ε) approximation to the optimal solution,
which only needs O

(
nε−1log n + nε−1 log

(
1
ε

))
time for unit points and

o
(
nε−2 log n

)
time for weighted points.

Keywords: Max-covering problem · Symmetrical rectilinear polygon ·
(1 − ε) approximation

1 Introduction

Max-covering problem is a fundamental operation in computational geometry
and database community. Given a set of weighted points Q in the plane R

2 and
a planar geometry G with specified size, max-covering problem is to find the
proper place where the center of G is located so that the total weight of the
points covered by G is maximized. In a word, max-covering problem aims to
cover the points with maximum weight in a fixed-size region. There are many
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studies on this problem that we only present some important results on rectangle
and circle.

For max-covering rectangle problem, two efficient exact algorithms are pre-
sented with O (n log n) time complexity where n is the number of points. Imai
et al. [14] solve max-covering rectangle problem by finding a maximum clique
of an intersection graph of rectangles in the plane. An alternative algorithm
is proposed by Nandy and Bhattacharya in [19]. They transform max-covering
rectangle problem into rectangle intersection problem and employ plane-sweep
technique and interval tree data structure [20] to find the intersection region with
maximum weight. Up to now, the time complexity has not been improved. Hem-
mer et al. [12] solve this algorithm regardless of whether the boundaries of the
rectangles are open or closed. Tao et al. [21] design a grid-sampling-based approx-
imation algorithm, which obtains a (1 − ε)-approximate answer with extremely
high probability in O

(
n log 1

ε + n log log n
)

time. Due to the weak scalability of
the above in-memory algorithms, Choi et al. [5] propose an I/O-optimal external-
memory algorithm. Later on, this problem is extended to trajectories and exact
and approximation algorithms are proposed in [22].

For max-covering circle problem, Chazelle and Lee [4] substantially give an
exact algorithm that runs in O(n2) time. It is widely acknowledged that the time
complexity of any exact algorithm for this problem could not be improved any
further, because it has been proved to be a 3SUM-HARD problem [2], which
means a lower bound of Ω

(
n2

)
running time must be held by any exact algo-

rithms. Mark De Berg et al. [8] present a method that gives a (1−ε)-approximate
solution in a deterministic O

(
n log n + nε−3

)
time. Although Choi et al. [5] give

a 1
4 -approximate solution in O (n log n) time, the approximation accuracy can-

not be specified by users. A special case of this problem argues that points have
unit weight. Thus this problem changes to compute the maximum number of
covered points by a circle. Aronov and Har-Peled [2] propose a random sampling
method that returns a (1− ε)- approximate solution in O

(
nε−2 log n

)
time with

high probability.
Besides max-covering problem, another type of geometric covering problem

is k-covering problem. It aims to find a smallest geometry G covering at least k
(k ≤ n) points of Q. For k-covering circle problem, Efrat et al. [9] give an exact
algorithm for O(nklog2n) time. Subsequently, Matouvsek et al. [17] present a
stochastic algorithm that runs in O(n log n + nk) expected time. All the above
exact algorithms degenerate to O(n2) when k = O(n). Har-Peled et al. [11]
improve the exact result to O(nk) and give a stochastic approximation algorithm
that runs in O

(
n + n · min

(
1

kε3 log2 1
ε , k

))
expected time. The case where G is an

axis-aligned rectangle or square has also been studied somewhat for k-covering
problem. When G is an axis-aligned square, the best result belongs to Mahapatra
[16]. He gives the algorithm with time complexity O

(
n + (n − k) log2(n − k)

)
.

The idea is to transform k-covering problem into iteratively solving max-covering
problem by using the characteristics of the square. When G is an axis-aligned
rectangle, the objective of solving k-covering problem usually falls into two cat-
egories: minimizing the perimeter of the rectangle and minimizing the area of
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the rectangle. For the former, the first two algorithms with O
(
n3

)
time com-

plexity and O
(
k2n log n

)
time complexity are given by Aggarwal et al. [1].

The second result is subsequently improved by Eppstein & Erickson [10] and
Datta et al. [6] to O

(
n log n + k2n

)
running time and again by Kaplan et al.

[15] to O
(
n log n + nk3/2 log2 k

)
time complexity. For the latter, there is an

O
(
n5/2 log2 n

)
algorithm given by Kaplan et al. [15]. Besides, de Berg et al.

[7] gives a k-sensitive algorithm with O
(
n log2 n + nk2 log n

)
time complexity.

The optimal result for k-covering problem of rectangular perimeter or area min-
imization belongs to Timothy M. Chan and Sariel Har-Peled [3]. They propose a
general algorithm with O

(
n2 log n

)
running time (for both perimeter and area),

and, at the same time, a k-sensitive algorithm with O(n log n + nk log k) time
(perimeter) and a k-sensitive algorithm with O

(
nk log n

k log k
)

time (area).

Our Contributions. In this paper, we concentrate on studying the efficient
approximation algorithm for max-covering circle problem. From the previous
work, we have the following observations. (1) For existing algorithms, solving
max-covering rectangle problem has a better time complexity than solving max-
covering circle problem. (2) A symmetrical rectilinear polygon (SRP) can approx-
imate the circle in terms of area. Thus, the solution of max-covering SRP problem
can be used to approximatively solve max-covering circle problem. These give
birth to our core idea. We first present a method to construct the circumscribed
SRP of a given circle and disclose their area relationship. The area difference is
determined by the number of edges in the circumscribed SRP. Then, we con-
vert max-covering SRP problem to SRP intersection problem, which can be
efficiently solved with simple partition and modification based on the existing
method. Finally, the optimal solution returned from max-covering SRP problem
can be used to produce an approximate answer to max-covering circle problem.
We prove that for most of the inputs, our algorithm can give a (1 − ε) approx-
imation to the optimal solution, which only needs O

(
nε−1log n + nε−1 log

(
1
ε

))

time for unit points and o
(
nε−2 log n

)
time for weighted points.

2 Preliminaries

Let us consider a set of points Q in 2-dimensional space R
2. Each point q ∈ Q

has a non-negative weight w(q).

Definition 1. (Covering Weight). Given a set of points Q and a geometry G,
the covering weight of G is:

covering-weight(G,Q) =
∑

q ∈ Q ∩ G

w(q)

Definition 2. (Max-Covering Problem). Given a set of weighted points Q and a
geometry G with specified size, max-covering problem is to find the proper place
of G to maximize the covering weight of G.
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The geometry can be arbitrary shape, including circle, rectangle, rectilinear
polygon, etc. Similarly, let G be a circle with a given diameter, this problem
can be renamed as max-covering circle (MaxC-C) problem. In the following, we
formally define (1 − ε)-approximate max-covering circle problem.

Definition 3. ((1 − ε)-Approximate Max-Covering Circle Problem). Given a
set of points Q and a circle C with specified diameter, for any ε (0 < ε < 1) ,
(1 − ε)-approximate max-covering circle problem finds a place in R

2 to place C
that satisfies

covering-weight(C) ≥ (1 − ε) × covering-weight(C∗)

where C∗ is an optimal circle of the original problem.
In this paper, we propose an approximation algorithm for solving MaxC-

C problem with a (1 − ε) accuracy to the optimal solution. In other words, our
algorithm can solve (1−ε)-approximate MaxC-C problem. We achieve this result
by approximatively converting MaxC-C problem to Max-covering symmetrical
rectilinear polygon problem. Here, symmetrical rectilinear polygon is a special
polygon which will be introduced below.

3 Symmetrical Rectilinear Polygon Construction

We first formulate several definitions of rectilinear polygon and symmetrical
rectilinear polygon.

Definition 4. (Rectilinear Polygon). A polygon is said to be a rectilinear poly-
gon if the following conditions hold in a two-dimensional rectangular coordinate
system: (1) For each of the given x-axis and y-axis, each side of this polygon is
either perpendicular to the given coordinate axis or parallel to the given coor-
dinate axis. (2) Any two sides of this polygon do not intersect except at the
endpoints.

Definition 5. (Symmetrical Rectilinear Polygon). A rectilinear polygon RP,
assuming that its center is at the origin, is symmetrical if ∀q(x, y) ∈ RP such
that q1(−x, y) ∈ RP, q2(x,−y) ∈ RP and q3(−x,−y) ∈ RP.

In a word, symmetrical rectilinear polygon is both centrosymmetric and
axisymmetric. To simplify the presentation, symmetrical rectilinear polygon can
be abbreviated to SRP. Max-covering symmetrical rectilinear polygon problem
can thus be called as MaxC-SRP problem.

Definition 6. (Circumscribing and Inscribing). Given a circle C and a positive
number k, take the diameter (Y -axis-parallel) of the circle and divide it into k
segments equally. Then, make k − 1 vertical lines of this diameter through these
k-bisected points respectively and intersect the circle at 2k−2 points axisymmetri-
cally. Moreover, connect adjacent points on the circumference with line segments
perpendicular to and parallel to this diameter. The resulting polygon is said to be
the circumscribed SRP of the circle. Similarly, circle C is said to be the inscribed
circle of this circumscribed SRP.
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For a given circle, the circumscribed SRP depends only on k. Once k is
determined, let Sk be the circumscribed SRP of the circle.

Given a circle, the construction methods of every circumscribed SRP have
been presented above. As far as our work goes, that is not the exact point. What
we need to do is, for a given parameter ε, choose an appropriate k such that for
most of the inputs, the optimal solution of MaxC-SRP problem with respect to
Sk can be used to produce a (1− ε) approximation answer to MaxC-C problem.
We denote the part that belongs to Sk but not C as Sk − C. It is a simple fact
that, the area of Sk − C can be a useful measure of how well the circumscribed
SRP Sk approximates the circle C.

Let AG be the area of any closed geometry G. We can infer the following
relationship between ASk−C and ASk

.

Theorem 1. e is the base of natural logarithm and ε is in range (0, 1), there is
an even number k = O

(
ε−1

)
such that ASk−C

ASk
< ε

e .

Proof. We consider the length from the center of the circle to each corner of Sk.
Since k is even, we can only consider the part of Sk which is above the horizontal
line that goes through the center of the circle. Let r be the radius. For the i-th
corner

(
1 ≤ i ≤ k

2

)
, from bottom to top of this part, the length from the center

of the circle to it is r
√(

1 + 8i−4
k2

)
, with simple geometric derivations.

Obviously, the following inequality holds

πr2 < ASk
< πr2(1 +

4k − 4
k2

)

Then, we have
ASk−C

ASk

<
4k−4

k2

1 + 4k−4
k2

<
4k − 4

k2

We just choose

k = 2�1 + �4eε−1�
2

	
This guarantees 4eε−1 ≤ k ≤ 4eε−1 + 1 and 2|k. Therefore, there is an even

number k, which satisfies

k = O
(
ε−1

)

ASk−C

ASk

<
4k − 4

k2
<

4
k

<
ε

e

4 Algorithm for MaxC-SRP Problem

In this section, we discuss how to solve MaxC-SRP problem. In fact, this problem
is not difficult and we can solve it completely with existing techniques.

Given a set of geometries G and a point q in R
2, let Gq be the set of geometries

covering q, denoted by Gq = {G | ∀G ∈ G, q ∈ G}. Each geometry G ∈ G has a
non-negative weight w(G).
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Definition 7. (Geometry Intersection Problem). Given a set of weighted geome-
tries G, the intersection problem of G is to find a point q ∈ R

2 that maximizes

covered-weight(q,G) =
∑

G ∈ Gq

w(G)

Given a point q and a circumscribed SRP SRP, let SRPq be the circumscribed
SRP whose center point is at q and size is the same with SRP. For a set of points
Q, we define SRPQ = {SRPq | ∀q ∈ Q}.

Lemma 1. Given a set of weighted points Q, ∀q ∈ R
2, covering-

weight(SRPq, Q) = covered-weight(q, SRPQ).

Proof. We first prove the following two statements:
(1)∀q′ ∈ Q, if q′ is covered by SRPq, q is also covered by SRPq′ .
We let the coordinates of q be (xq, yq) and the coordinates of q′ be (xq′ , yq′).

By the centrosymmetry of SRP in the definition, the fact that SRPq contains
q′(xq′ , yq′) implies that it also contains q′′(2xq − xq′ , 2yq − yq′). Considering
translating SRPq so that its center becomes q′, we obtain SRPq′ , which contains
q, since q is the position of q′′ after translation. Now, statement (1) is proved.

(2)∀q′ ∈ Q, if q′ is not covered by SRPq, q is not covered by SRPq′ either.
We assume that ∃q ∈ R

2, q′ is not contained by SRPq, but q is contained by
SRPq′ . If so, then by centrosymmetry it is equally possible to obtain that SRPq′

contains the point q′′(2xq′ − xq, 2yq′ − yq). Thus, after translating the center of
SRPq′ to q, the point corresponding to q′′ is q′. This implies that SRPq contains
the point q′, contradicting the assumption, and thus statement (2) holds.

Based on the above statements, we have
covering-weight(SRPq, Q) =

∑
q′∈Qcovered

w(q′) =
∑

SRP∈SRPQcovering q w

(SRP) = covered-weight(q, SRPQ).

Theorem 2. Given a set of weighted points Q, let q∗ is the answer to intersec-
tion problem of SRPQ, then SRPq∗ is an optimal SRP to MaxC-SRP problem in
Q.

Proof. We assume that SRPq∗ is not an optimal SRP to MaxC-SRP problem
in Q. Then, ∃q ∈ R

2, covering-weight(SRPq, Q) > covering-weight(SRPq∗ , Q).
With Lemma 1, we have both covering-weight(SRPq, Q) = covered-weight(q,
SRPQ) and covering-weight(SRPq∗ , Q) = covered-weight(q∗, SRPQ). This shows
that covered-weight(q, SRPQ) > covered-weight(q∗, SRPQ), which implies that
q∗ is not the answer to intersection problem of SRPQ, contradicting our premise.
Therefore, the theorem is proved.

Now we just need to give the method to solve the intersection problem of n
SRPs. We use the division method to divide each SRP into several rectangles
with parallel axes. We specify that for each SRP, the tangent along the line where
its respective horizontal edges is located. Due to symmetry, let the number of
horizontal edges to the left of its axis be l. Then each SRP is divided into
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l − 1 rectangles. With a known input SRP, the time required to compute these
rectangles is O(l): we scan the SRP horizontally from top to bottom and group
its horizontal boundaries two by two. For n SRPs, it takes O(nl) time to compute
all divided n(l − 1) rectangles. Meanwhile, we want these n(l − 1) rectangles to
satisfy that the individual rectangles divided by the same SRP are disjoint, which
requires determining the attribution of common edges between these rectangles
at the time of division. We simply specify that the common edge of two adjacent
rectangles divided by the same SRP belongs to the rectangle that is entirely
above this edge.

Obviously, computing the intersection problem of these n SRPs is equiva-
lent to settle the intersection problem of corresponding n(l − 1) axis-parallel
rectangles. This has been proved in [22]. The existing sweepline algorithm [19]
solves this problem well by using an interval tree for updating and counting
events, returning the region with the greatest total weight and the correspond-
ing weight. In the original MaxC-SRP problem, the former of the returned results
corresponds to the positions where the SRP can be placed and the latter corre-
sponds to the total weight of points it covers at most. Therefore, our algorithm is
to divide the SRP into rectangles and then use the sweepline algorithm for these
n(l − 1) rectangles. Considering that these rectangles may have open or closed
boundaries (open boundaries may exist only in the horizontal direction), we use
the improved algorithm [12], which is able to handle this case with no increase
in time complexity and space complexity compared to the classical sweepline
algorithm. When this algorithm is applied to solve our problem, it has a time
complexity of O (nl(log n + log l)) and a space complexity of O (nl). The total
time complexity of this algorithm is the same as it, for the time of dividing is
O (nl).

5 Approximation Algorithm for MaxC-C Problem

Now, we know that the MaxC-SRP algorithm, based on binary tree search,
returns the correct result in deterministic O (nl(log n + log l)) time and O (nl)
space when each SRP has O (l) edges. Actually, this algorithm can be used to
approximatively compute the MaxC-C problem. Given a set of points Q and a
specified circle C, we first construct the circumscribed SRP Sk of C based on
a given approximate accuracy ε. Then, the optimal SRP SRP∗ can be returned
by MaxC-SRP algorithm. Finally, the inscribed circle of SRP∗ can be a desir-
able approximation to the optimal solution of MaxC-C problem for most of the
inputs of Q. For a few specific inputs of Q, our result is not a satisfying approx-
imation. Obviously, the correctness of the approximation degree depends on the
distribution of points (i.e., the inputs of Q). We would like to analyze whether
the algorithm can give correct results for various different inputs and discuss its
performance.

Assuming a random distribution of n points in the plane is clearly not a
good choice. To discuss the various inputs without bias, we assume a random
distribution of m points inside the SRP (the remaining n−m points are outside
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the SRP). For practical applications with a large number of different inputs, we
believe that this assumption is reasonable. For a given ε, we use our MaxC-SRP
algorithm on Sk, where k = O

(
ε−1

)
and ASk−C

ASk
< ε

e are both satisfied. Then, for
each point within Sk, let the probability that it falls within C be 1 − p and the
probability that it falls within Sk −C be p. By Theorem 1 and the assumptions,
we thus easily know that p < ε

e . Let the total weight of these m points falling
within Sk − C be the random variable X.

5.1 Points with Unit Weight

If each point has unit weight, max-covering problem changes to compute the
maximum number of covered points and X represents the number of these m
points falling within Sk − C. Hence, X follows a binomial distribution, that
is X ∼ B(m, p). The mathematical expectation E(X) of X is mp. Based on
Chernoff inequality [18], we have the following bound.

Theorem 3. Let Y1, Y2, ..., Ym be m independent Bernoulli trials, where
Pr{Yi = 1} = pi and Pr{Yi = 0} = 1 − pi for i = 1, 2, ...,m. Define
Y =

∑m
i=1 Yi. Then, for any ε > 0,

Pr {Y ≥ (1 + ε)E(Y )} ≤
(

eε

(1 + ε)1+ε

)E(Y )

X coincides with Theorem 3, we thus have

Pr {X ≥ mε} < Pr {X ≥ emp} = Pr {X ≥ (1 + e − 1)E(X)} ≤ e−E(X)

For any 0 < p < ε
e , if p ≥ ε

3e , then

Pr {X ≥ mε} < e−E(X) = e−mp ≤ e− mε
3e

For 0 < p < ε
3e , let ε

3e ≤ p∗ < ε
e and its corresponding random variable to

be X∗, X∗ ∼ B(m, p∗). It is obvious that

Pr {X ≥ mε} < Pr {X∗ ≥ mε} < e− mε
3e

Therefore, for given m and ε, Pr {X ≥ mε} < e− mε
3e always holds. Now we

discuss the value of this probability. We consider two cases separately. When m =
Ω

(
ε−1log n

)
, we can easily say that our algorithm gives (1 − ε) approximations

for most inputs. This is because

Pr {X ≥ mε} < e− mε
3e < n− c

3e

where c is a suitable constant. Then we have

Pr {(m − X) ≥ m(1 − ε)} > 1 − n− c
3e
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We know that m−X represents the number of points covered by the inscribed
circle of SRP. Therefore, we know that under our assumption

Pr

{
(m − X)

m
≥ (1 − ε)

}
> 1 − n− c

3e

We note the fact that the maximum number of points that can be covered by
the circumscribed SRP of a circle must be not less than the maximum number
of points that can be covered by this circle. Let C∗ be the optimal circle of the
MaxC-C problem and m∗ = covering-weight(C∗). We have

m∗ ≤ m

Pr

{
(m − X)

m∗ ≥ (1 − ε)
}

≥ Pr

{
(m − X)

m
≥ (1 − ε)

}
> 1 − n− c

3e

The above equation tells us that, when m = Ω
(
ε−1log n

)
, for most of the

inputs (at least 1 − n−c1 times of the total input (c1 = c
3e )), the inscribed circle

of the SRP returned by our algorithm can be used as a (1 − ε) approximation
to the optimal solution. From Sect. 4, we know that the MaxC-SRP algorithm
takes O

(
nε−1log n + nε−1 log

(
1
ε

))
running time when l = O (k) = O

(
ε−1

)
.

For the other cases (i.e., m = o
(
ε−1log n

)
), the order of magnitude of m is

not sufficient for our algorithm to return satisfactory solutions for most inputs.
However, due to m∗ ≤ m, we know that the maximum number of points that
can be covered by a given circle does not exceed m. This is equivalent to the
fact that the depth of the deepest point in the arrangement of a set of circles
does not exceed m. Another fact is that m is already computed when we run
the algorithm. Now we simply use the conclusion [2] that, given any set X of
n psedocircles, we can compute the deepest point in A(X) in O (nd + n log n),
where d = depth(X) = o

(
ε−1log n

)
. Therefore, we just use the exact algorithm to

compute the solution when m is not big enough. The time cost is o
(
nε−1 log n

)
.

Given n points Q, circle radius r and approximation accuracy ε, the basic
procedure of the algorithm for (1−ε)-approximate MaxC-C problem is as follows.

Step 1. Construct Sk based on given r and ε.
Step 2. Compute the optimal SRP SRP∗ of MaxC-SRP problem based on Q

and Sk.
Step 3. Count the number of points inside SRP∗, denoted by m.
Step 4. Make a judgment based on the value of m: (1) If m ≥ cε−1log n where

c is an arbitrarily chosen positive real number, the center of the corresponding
SRP∗ is used as the center of the circle, and r is used as the radius to construct
the circle. The circle is returned as the approximate solution of the circle position,
and the number of points covered by this circle (which requires additional O(n)
time complexity to calculate it) is returned as the approximate solution of the
maximum number of points covered by the circle. (2) Otherwise, we directly
calculate max-covering circle problem.

In summary, our algorithm finishes running in O
(
nε−1log n + nε−1 log

(
1
ε

))

time and returns a (1 − ε) approximation for at least 1 − n−c1 events for all
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possible values of m. Compared to almost all previous methods, our algorithm
consumes surprisingly less time. It can be used either alone as an approximation
algorithm (running when there is some tolerance for errors) or as a preprocessor
for other approximation algorithms to reduce their time consumption.

5.2 Weighted Points

If points have different weights, X cannot follow a binomial distribution. The
mathematical expectation E(X) of X is Mp where M is the total weight of point
inside the SRP. From Hoeffding inequality [13], we have the following bound.

Theorem 4. Let Y1, Y2, ..., Ym be independent and identically distributed ran-
dom variables where Yi ∈ [a, b] for i = 1, 2, ..,m. Define Y =

∑m
i=1 Yi. Then

Pr(Y − E[Y ] ≥ α) ≤ e
− 2α2

m(b−a)2

X coincides with Theorem 4, we thus have

Pr {X ≥ Mε} < Pr {X ≥ eMp} = Pr {X − E(X) ≥ (e − 1)E(X)} ≤ e
− 2(e−1)2E(X)2

mb2

For any 0 < p < ε
e , if p ≥ ε

3e , then

Pr {X ≥ Mε} ≤ e− 2(e−1)2E(X)2

mb2 = e− 2(e−1)2M2p2

mb2 ≤ e− 2(e−1)2M2ε2

9e2mb2

For 0 < p < ε
3e , let ε

3e ≤ p∗ < ε
e and its corresponding random variable to

be X∗, X∗ coincides with Theorem 4. It is obvious that

Pr {X ≥ Mε} < Pr {X∗ ≥ Mε} < e− 2(e−1)2M2ε2

9e2mb2

Therefore, for given M and ε, Pr {X ≥ Mε} < e− 2(e−1)2M2ε2

9e2mb2 always holds.
In fact, M =

∑m
i=1 w(qi) = mw where w =

∑m
i=1 w(qi)

m . Then

Pr {X ≥ Mε} < e− 2(e−1)2mw2ε2

9e2b2

We argue that w and b are stable and can be regarded as constants. When
m = Ω(ε−2log n), we can easily say that our algorithm gives (1 − ε) approxima-
tions for most inputs. Because

Pr {X ≥ Mε} < n−c

where c is a suitable constant. Then we have

Pr {(M − X) ≥ M(1 − ε)} > 1 − n−c

Similar to points with unit weight, M−X is the total weight of points covered
by the inscribed circle of SRP. Thus
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Pr

{
(M − X)

M
≥ (1 − ε)

}
> 1 − n−c

Let C∗ be the optimal circle of the MaxC-C problem and M∗ =
covering-weight(C∗). We have

M∗ ≤ M

Pr

{
(M − X)

M∗ ≥ (1 − ε)
}

≥ Pr

{
(M − X)

M
≥ (1 − ε)

}
> 1 − n−c

The above equation tells us that, when m = Ω
(
ε−2log n

)
, for most of

the inputs (at least 1 − n−c times of the total input), the inscribed circle
of the SRP returned by our algorithm can be used as a (1 − ε) approxima-
tion to the optimal solution. Recall Sect. 4 again, MaxC-SRP algorithm takes
O

(
nε−1log n + nε−1 log

(
1
ε

))
time when l = O (k) = O

(
ε−1

)
.

For the other cases (i.e., m = o
(
ε−2log n

)
), the order of magnitude of m is

not sufficient for our algorithm to return satisfactory solutions for most inputs.
However, due to M∗ ≤ M , that is the total weight of points that can be covered
by a given circle does not exceed M . We know that M∗ ≤ M ≤ bm where b is
the maximum weight of all the points. In fact, M can be computed when we run
MaxC-SRP algorithm. Then, in the case of m = o

(
ε−2log n

)
, the griding method

of Mark De Berg et al. [8] can achieve a time complexity of o
(
nε−2 log n

)
. It

suffices to note that M∗ ≤ M ≤ bm holds, such that each circular region equal
in size to the input circle has at most b

am points. And each grid in [8] can be
covered by a constant number of circles, so the number of points in each grid is
o
(
ε−2log n

)
and the running time of their method is o

(
nε−2 log n

)
.

In summary, our algorithm finishes running in o
(
nε−2 log n

)
time when l =

O(k) = O
(
ε−1

)
time and returns a (1 − ε) approximation for at least 1 − n−c

events for all possible values of m.

6 Conclusion

We propose a novel approximation algorithm for max-covering circle problem.
We first construct the circumscribed SRP of a given circle and disclose their
area relationship. The area difference is determined by the number of edges in
the circumscribed SRP. Then, we convert max-covering SRP problem to SRP
intersection problem, which can be efficiently solved with simple partition and
modification based on the existing method. Finally, the optimal solution returned
from max-covering SRP problem can be used to produce an approximate answer
to max-covering circle problem. We prove that for most of the inputs, our algo-
rithm can give a (1−ε) approximation to the optimal solution, which only needs
O

(
nε−1log n + nε−1 log

(
1
ε

))
time for unit points and o

(
nε−2 log n

)
time for

weighted points.
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