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Abstract. In this paper, weakly nondominated solutions of set-valued
optimization problems with variable ordering structures are investigated
in linear spaces. Firstly, the notion of weakly nondominated element of
a set with a variable ordering structure is introduced in linear spaces,
and the relationship between weakly nondominated element and non-
dominated element is also given. Secondly, under the assumption of
nearly C(y)-subconvexlikeness of set-valued maps, scalarization theorems
of weakly nondominated solutions for unconstrained set-valued optimiza-
tion problems are established. Finally, two duality theorems of con-
strained set-valued optimization problems are obtained. Some examples
are given to illustrate our results. The results obtained in this paper
improve and generalize some known results in the literatures.
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1 Introduction

Set-valued analysis has become an important branch of nonlinear analysis since
it is widely applied in various areas of the human real life. For example, Debreu
[5] used the fixed point theorem of the set-valued map, which is an important
mathematical tool, to prove the existence of the Walrasian equilibrium theorem.
Some works about set-valued analysis can be founded in [2,3,10]. Recently, many
researchers have paid attention to the set-valued optimization problem which is
a kind of optimization problem with the objective map being a set-valued map.
Yang et al. [16] introduced the nearly cone subconvexlike set-valued map and
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established optimality conditions involving Lagrangian multiplier and scalariza-
tion of set-valued optimization problems. Zhao et al. [19] used the improvement
set E, which was introduced by Chicco et al. [4], to define nearly E-subconvexlike
set-valued map and investigated the weak E-optimal solution of set-valued opti-
mization problems. Zhou et al. [20] studied scalarizations and optimality of con-
strained set-valued optimization using improvement sets and image space anal-
ysis.

On the other hand, in order to compare different objective values of the
optimization problem, we need to establish a partial ordering relation which is
induced by a pointed closed convex cone. Generally speaking, the ordering rela-
tion involving optimization problems is determined by a fixed convex cone. How-
ever, in actual situations, different decision-makers have different preferences in
different environments. Therefore, the partial ordering relation involved in opti-
mization problems is no longer determined by a fixed convex cone. Instead, it is
determined by a variable ordering cone related to environment, times, economy
and other factors. This kind of optimization problems are called optimization
problems with variable ordering structures. More general concepts of ordering
structures were introduced by Yu [18] in terms of domination structures. Eich-
felder and Kasimbeyli [6,7] studied optimal elements and proper optimal ele-
ments in vector optimization with variable ordering structures. Shahbeyk [13]
investigated Hartley properly and super nondominated solutions in vector opti-
mization with variable ordering structures. Further, approximate solutions of
vector optimization problems with variable ordering structures were also stud-
ied in [12,14,17].

Recently, some researchers have studied optimization problems in linear
spaces without any topology structure. Li [11] used the separation theorem of
convex sets in a real linear space to establish a theorem of the alternative for
cone subconvexlike set-valued maps and obtained optimality conditions for vec-
tor optimization of set-valued maps. In linear spaces, properly efficient solutions
of set-valued optimization problems, including Benson properly efficient solution
[8] and super efficient solution [21], also were introduced.

However, to the best of our knowledge, there are few literatures involving set-
valued optimization with variable ordering structures in linear spaces. Therefore,
how to generalize some results obtained by the above references from topological
spaces to linear spaces is interesting.

Inspired by [6,11,16,18], we will research weakly nondominated solution
of set-valued optimization problems with variable ordering structures in linear
spaces. This paper is organized as follows. In Sect. 3, we give some preliminaries
including some basic notions and lemmas. In Sects. 4, we establish scalariza-
tion characterizations of weakly nondominated solution of unconstrained set-
valued optimization problems with variable ordering structures in linear spaces.
In Sects. 5, we obtain two duality theorems of unconstrained set-valued opti-
mization problems, including a weak dual theorem and a strong dual theorem.
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2 Preliminaries and Lemmas

Throughout this paper, we suppose that X and Y are two real linear spaces. Let
A and M be two nonempty sets in X and Y , respectively. 0 stands for the zero
element in every space. The generated cone of M is defined as coneM := {λm |
m ∈ M, λ ≥ 0}. M is called a convex cone iff

λ1m1 + λ2m2 ∈ M, ∀λ1, λ2 ≥ 0, ∀m1,m2 ∈ M.

M is said to be pointed iff M ∩ (−M) = {0}. M is said to be nontrivial iff
M �= {0} and M �= Y . The algebraic dual of Y is denoted by Y ∗. Let C be a
nontrivial, pointed and convex cone in Y . The algebraic dual cone C+ of C is
defined as C+ := {y∗ ∈ Y ∗ | 〈y, y∗〉 ≥ 0, ∀y ∈ C}, where 〈y, y∗〉 denotes the
value of the linear functional y∗ at the point y.

Definition 2.1 [9]. Let M be a nonempty subset in Y . The algebraic interior
of M is the set corM := {m ∈ M | ∀h ∈ Y, ∃ε > 0, ∀λ ∈ [0, ε],m + λh ∈ M}.

Definition 2.2 [1]. Let M be a nonempty subset in Y . The vector closure of
M is the set vclM := {m ∈ Y | ∃h ∈ Y, ∀ε > 0, ∃λ ∈ [0, ε],m + λh ∈ M}.

In this paper, we assume that the variable ordering structure is given by the
set-valued map C : Y ⇒ Y with C(y) being a nontrivial pointed convex cone and
corC(y) �= ∅ for any y ∈ Y . Let F : X ⇒ Y be a set-valued map on A. We write

〈F (x), y∗〉 := {〈y, y∗〉 | y ∈ F (x)}
and

F (A) :=
⋃

x∈A

F (x).

Now, we give a new notion of generalized convexity with the variable ordering
structure.

Definition 2.3. Let F : X ⇒ Y be a set-valued map on A, and C : Y ⇒ Y be a
set-valued map with C(y) being a nontrivial pointed convex cone for all y ∈ Y . F
is called near C(y)-subconvexlike on A iff, for any y ∈ Y , vcl(cone(F (A)+C(y)))
is a convex set in Y .

Remark 2.1. When Y is a topological space and C(y) = C for any y ∈ Y ,
Definition 2.3 reduces to Definition 2.2 in [16].

Definition 2.4. [18]. Let M be a nonempty subset of Y , and C : Y ⇒ Y be a
set-valued map with C(y) being a nontrivial pointed convex cone and corC(y) �= ∅
for all y ∈ M . y ∈ M is called a nondominated element of M w.r.t. C (denoted
by y ∈ N(M, C(·))) iff there does not exist y ∈ M such that y ∈ y + C(y)\{0}.
Equivalently, y /∈ M + C(y)\{0} for any y ∈ M .

Remark 2.2. It follows from Definition 2.4 that y ∈ M is a nondominated
element of M w.r.t. C iff there exists C : Y ⇒ Y such that M ∩ (y − C(y)) = {y}
for any y ∈ M .
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Definition 2.5 [6]. Let M be a nonempty subset of Y , and C : Y ⇒ Y be a set-
valued map with C(y) being a nontrivial pointed convex cone and corC(y) �= ∅
for all y ∈ M . y ∈ M is called a weakly nondominated element of M w.r.t.
C (denoted by y ∈ WN(M, C(·))) iff there does not exist y ∈ M such that
y ∈ y + corC(y).

Remark 2.3. It follows from Definition 2.5 that y ∈ WN(M, C(·)) iff there
exists C : Y ⇒ Y such that (M − y) ∩ (−corC(y)) = ∅ for any y ∈ M .

Remark 2.4. Clearly, N(M, C(·)) ⊆ WN(M, C(·)). However, the following
example shows that WN(M, C(·)) � N(M, C(·)).
Example 2.1. Let Y = R2,M = {(y1, y2) ∈ R2|(y1 − 1)2 + (y2 − 1)2 ≤ 1} ∪
{(0, 0), (0,−1)} and y = (0, 0). The set-valued map C : Y ⇒ Y is defined as

C(y) :=
{{(y1, y2) ∈ R2| y2 − y1 ≥ 0, y2 ≥ 0, y1 ≥ 0}, y ∈ Y \ {(1, 1

2 )}
{(y1, y2) ∈ R2| y2 − y1 ≤ 0, y2 ≥ 0, y1 ≥ 0}, y = (1, 1

2 ).

It is easy to check

(M − y) ∩ (−corC(y)) = ∅,∀y ∈ M.

However, there exists ỹ = (0,−1) ∈ M such that M ∩ (y − C(ỹ)) =
{(0,−1), (0, 0)} �= {(0, 0)}. Therefore, y ∈ WN(M, C(·)) and y /∈ N(M, C(·)).
Thus, WN(M, C(·)) � N(M, C(·)).
Definition 2.6 [7]. let M be a nonempty subset of Y , and C : Y ⇒ Y be a set-
valued map with C(y) being a nontrivial pointed convex cone and corC(y) �= ∅
for all y ∈ M . y ∈ M is called a weakly max-nondominated element of M
w.r.t. C (denoted by WMN(M, C(·))) iff there does not exist y ∈ M such that
y ∈ y − corC(y).

Let F : A ⇒ Y be a set-valued map with nonempty value. Consider the
following unconstrained set-valued optimization problem:

(SVOP)
{

Min F (x)
x ∈ A,

where A ⊆ X.
Based on Definition 2.5, we introduce the concept of the weakly nondomi-

nated solution of (SVOP).

Definition 2.7. x ∈ A is called a weakly nondominated solution of (SVOP)
w.r.t C iff there exist x ∈ A, y ∈ F (x) and C : Y ⇒ Y with C(y) being a
nontrivial pointed convex cone and corC(y) �= ∅ for all y ∈ F (A) such that
y ∈ WN(F (A), C(·)). (x, y) is called a weakly nondominated element of (SVOP)
w.r.t. C.
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Lemma 2.1 [15]. Let P,Q ⊆ Y be two convex sets such that P �= ∅, corQ �= ∅
and P ∩ corQ = ∅. Then, there exists a hyperplane separating P and Q in Y .

Similarly to Lemma 2.1 [11] and Lemma 3.21(b) [9], we have the following
lemmas.

Lemma 2.2. Let C : Y ⇒ Y be a set-valued map with C(y) being a nontrivial
pointed convex cone and corC(y) �= ∅ for all y ∈ Y . Then, C(y) + corC(y) =
corC(y) for y ∈ Y .

Lemma 2.3. Let C : Y ⇒ Y be a set-valued map with C(y) being a nontrivial
pointed convex cone and corC(y) �= ∅ for all y ∈ Y . Then,

corC(y) ⊆ {b ∈ Y |〈b, b∗〉 > 0,∀b∗ ∈ C(y)+ \ {0}},∀y ∈ Y.

3 Scalarization

In this section, we will establish scalarization theorems of an unconstrained set-
valued optimization problem in the sense of weakly nondominated element. Now,
we consider the following scalar problem of (SVOP):

(SVOP)ϕ

{
Min 〈F (x), ϕ〉
x ∈ A,

where ϕ ∈ Y ∗ \ {0}.

Definition 3.1 [11]. Let x ∈ A and y ∈ F (x). x is called an optimal solution of
(SVOP)ϕ iff

〈y, ϕ〉 ≤ 〈y, ϕ〉,∀y ∈ F (A).

(x, y) is called an optimal element of (SVOP)ϕ.

Now, we give an optimality necessary condition of weakly nondominated
element of (SVOP) under the suitable assumptions.

Theorem 3.1. Let C : Y ⇒ Y be a set-valued map with C(y) being a nontrivial
pointed convex cone and corC(y) �= ∅ for any y ∈ F (A). Suppose that the
following conditions hold.

(i) (x, y) is a weakly nondominated element of (SVOP) w.r.t. C;
(ii) F − y is nearly C(·)-subconvexlike on A.
Then, for any y ∈ F (A), there exists ϕ ∈ (C(y))+\{0} such that (x, y) is an

optimal element of (SVOP)ϕ.

Proof. Since (x, y) is a weakly nondominated element of (SVOP) w.r.t. C, we
have

(F (A) − y) ∩ (−corC(y)) = ∅,∀y ∈ F (A). (1)

We assert that

cone(F (A) + C(y) − y) ∩ (−corC(y)) = ∅,∀y ∈ F (A). (2)
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Otherwise, there exsists y0 ∈ F (A) such that

cone(F (A) + C(y0) − y) ∩ (−corC(y0)) �= ∅. (3)

By (3), there exist d > 0, y1 ∈ F (A) and c ∈ C(y0) such that d(y1 + c − y) ∈
−corC(y0). Hence,

y1 + c − y ∈ −corC(y0). (4)

It follows from (4) and Lemma 2.2 that

y1 − y ∈ −c − corC(y0) ⊆ −C(y0) − corC(y0) = −corC(y0),

which contradicts (1). Hence, (2) holds. We again assert that

vcl(cone(F (A) + C(y) − y)) ∩ (−corC(y)) = ∅,∀y ∈ F (A). (5)

Otherwise, there exist y1 ∈ F (A) and a ∈ vcl(cone(F (A)+ C(y1)− y)) such that

a ∈ −corC(y1). (6)

Since a ∈ vcl(cone(F (A) + C(y1) − y)), there exist h ∈ Y and λn > 0 with
lim

n→∞ λn = 0 such that

a + λnh ∈ cone(F (A) + C(y1) − y), ∀n ∈ N, (7)

where N is the set of the natural numbers. It follows from (6) that a ∈
cor(−corC(y1)). Therefore, for the above h, there exists λ′ > 0 such that

a + λh ∈ −corC(y1),∀λ ∈ [0, λ′].

Taking a sufficiently big n′ ∈ N such that λn′ ∈ [0, λ′], we have

a + λn′h ∈ −corC(y1). (8)

It follows from (7) and (8) that a+λn′h ∈ cone(F (A)+C(y1)−y)∩ (−corC(y1)),
which contradicts (2). Therefore, (5) holds.

By Condition (ii), vcl(cone(F (A)+C(y)−y)) is a convex set for any y ∈ F (A).
Clearly, vcl(cone(F (A) + C(y) − y)) �= ∅ and cor(C(y)) �= ∅ for any y ∈ F (A).
Hence, it follows from Lemma 2.1 that there exists ϕ ∈ Y ∗ \ {0} such that

〈y2, ϕ〉 ≥ 〈y3, ϕ〉,∀y ∈ F (A),∀y2 ∈ vcl(cone(F (A)+C(y)−y)),∀y3 ∈ −C(y). (9)

By (9), we obtain

〈y2, ϕ〉 ≥ 0,∀y ∈ F (A),∀y2 ∈ F (A) + C(y) − y. (10)

Since 0 ∈ C(y) for any y ∈ F (A), it follows from (10) that

〈y, ϕ〉 ≤ 〈y, ϕ〉,∀y2 ∈ F (A). (11)
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We assert that ϕ ∈ (C(y))+ \ {0} for all y ∈ F (A). Otherwise, there exists
ỹ ∈ F (A) such that ϕ /∈ (C(ỹ))+ \ {0}. Thus, there exists c′ ∈ C(ỹ) such that

〈c′, ϕ〉 < 0. (12)

Since y ∈ F (A), ỹ ∈ F (A) and c′ ∈ C(ỹ), it follows from (10) that

〈c′, ϕ〉 ≥ 0,

which contradicts (12). Therefore, ϕ ∈ (C(y))+ \{0} for all y ∈ F (A). (11) shows
that (x, y) is an optimal element of (SVOP)ϕ. �

Remark 3.1. Theorem 3.1 improves the necessity of Theorem 3.1 [11] in the
following two aspects. Firstly, the fixed ordering cone C in Theorem 3.1 [11] has
been replaced by the variable ordering cone C(.) in Theorem 3.1. Secondly, the
C-subconvexlikeness of F in Theorem 3.1 [11] has been replaced by the near
C(·)-subconvexlikeness of F in Theorem 3.1.

The following example is used to illustrate to Theorem 3.1.

Example 3.1. Let X = Y = R2 and A = [0, 2]×{0} ⊆ R2. The set-valued map
F : X ⇒ Y on A is defined as follows:

F (x1, x2) := {(y1, y2) ∈ R
2| y1 = x1, 1 −

√
1 − (x1 − 1)2 ≤ y2 ≤ 1 +

√
1 − (x1 − 1)2} ∪ {(0, 0)},

where (x1, x2) ∈ A. Let x = (0, 0) and y = (0, 0). The set-valued map C : Y ⇒ Y is defined as

C(y) :=

{ {(y1, y2) ∈ R
2| y2 − y1 ≥ 0, y2 ≥ 0, y1 ≥ 0}, y ∈ Y \ {(1, 1

2 )}
{(y1, y2) ∈ R

2| y2 − y1 ≤ 0, y2 ≥ 0, y1 ≥ 0}, y = (1, 1
2 ).

It is easy to check that Conditions (i) and (ii) in Theorem 3.1 are satisfied. Therefore, for any

y ∈ F (A), there exists ϕ = (1, 1) ∈ (C(y))+ \ {(0, 0)} = {(y1, y2) ∈ R
2| y2 ≥ 0, y1 ≥ 0} \ {(0, 0)}

such that
〈(0, 0), ϕ〉 = 0 ≤ 〈y, ϕ〉 = y1 + y2, ∀(y1, y2) ∈ F (A).

Hence, ((0, 0), (0, 0)) is an optimal element of (SVOP)ϕ.

Theorem 3.2. Let C : Y ⇒ Y be a set-valued map with C(y) being a nontrivial
pointed convex cone and corC(y) �= ∅ for any y ∈ F (A). Let x ∈ A and y ∈ F (x).
Suppose that the following conditions hold.
(i) ϕ ∈ (C(y))+ \ {0} for any y ∈ F (A);
(ii) (x, y) is an optimal element of (SVOP)ϕ.
Then, (x, y) is a weakly nondominated element of (SVOP) w.r.t. C.

Proof. By Condition (ii), we have

〈y, ϕ〉 ≤ 〈y, ϕ〉,∀y ∈ F (A). (13)

Suppose that (x, y) is not a weakly nondominated element of (SVOP) w.r.t. C.
Then, there exists ỹ ∈ F (A) such that (F (A) − y) ∩ (−corC(ỹ)) �= ∅. Let

a ∈ (F (A) − y) ∩ (−corC(ỹ)). (14)
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It follows from (14) that there exists y1 ∈ F (A) such that

a = y1 − y ∈ −cor(C(ỹ)). (15)

By (15) and Lemma 2.3, we have

〈y1 − y, ϕ〉 < 0. (16)

On the other hand, it follows from (13) that 〈y1 − y, ϕ〉 ≥ 0, which contradicts
(16). Therefore, (x, y) is a weakly nondominated element of (SVOP) w.r.t. C. �

Remark 3.2. When C(y) = C for any y ∈ F (A), Theorem 3.2 reduces to the
sufficiency of Theorem 3.1 in [11].

The following example is used to illustrate to Theorem 3.2.

Example 3.2. In Example 3.1, let x = (0, 0) and y = (0, 0) ∈ F (0, 0). There
exists ϕ = (1, 1) ∈ (C(y))+ \ {0} = {(y1, y2) ∈ R2| y2 ≥ 0, y1 ≥ 0} \ {(0, 0)}.
Hence, Condition (i) in Theorem 3.2 holds. Clearly,

〈(0, 0), (1, 1)〉 = 0 ≤ 〈(y1, y2), (1, 1)〉 = y1 + y2,∀(y1, y2) ∈ F (A).

Therefore, Condition (ii) in Theorem 3.2 holds. It is easy to check

(F (A) − y) ∩ (−corC(y)) = ∅,∀y ∈ F (A).

Thus, (x, y) is a weakly nondominated element of (SVOP) w.r.t. C.

4 Duality

In this section, we will consider the duality problem of the constrained set-valued
optimization problem and present a weak and a strong duality theorem in sense
of weakly nondominated element.

Let Ŝ �= ∅ be a nonempty subset of X. Let D ⊆ Z be a nontrivial pointed
convex cone in Z. Let F : X ⇒ Y and G : X ⇒ Z be two set-valued map on Ŝ.
We consider the following constrainted set-valued optimization problem:

(CSVOP)

⎧
⎨

⎩

Min F (x)
G(x) ∩ (−D) �= ∅
x ∈ Ŝ.

The feasible set of (CSVOP) is denoted by S := {x ∈ Ŝ| G(x) ∩ (−D) �= ∅}.
Let C : Y ⇒ Y be a set-valued maps with C(y) being a nontrivial pointed

convex cone and corC(y) �= ∅ for any y ∈ Y . We write

C1 := {y ∈ Y |∃(ϕ, μ) ∈ (C(y)+\{0})×D+,∀d ∈
⋃

x∈Ŝ

(〈F (x), ϕ〉+〈G(x), μ〉), d ≥ 〈y, ϕ〉}.

Now, we give the definition of the weakly nondominated element of (CSVOP).
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Definition 4.1. Let x ∈ S and y ∈ F (x). x ∈ S is called a weakly nondominated
solution of (CSVOP) w.r.t C iff there exists C : Y ⇒ Y with C(y) being a
nontrivial pointed convex cone and corC(y) �= ∅ for all y ∈ F (S) such that
y ∈ WN(F (S), C(·)). (x, y) is called a weakly nondominated element of (CSVOP)
w.r.t. C.

Firsty, we present a weak duality theorem.

Theorem 4.1. For any y ∈ C1, there exists ϕ ∈ (C(y))+\{0} such that

〈y, ϕ〉 ≤ 〈y, ϕ〉,∀y ∈ F (S). (17)

Proof. Since y ∈ C1, there exists (ϕ, μ) ∈ (C(y)+\{0}) × D+ such that

d ≥ 〈y, ϕ〉,∀d ∈
⋃

x∈Ŝ

(〈F (x), ϕ〉 + 〈G(x), μ〉). (18)

By (18), we have

〈y, ϕ〉 + 〈z, μ〉 ≥ 〈y, ϕ〉,∀x ∈ S,∀y ∈ F (x),∀z ∈ G(x). (19)

According to μ ∈ D+, we have

〈z, μ〉 ≤ 0,∀z ∈ G(x) ∩ (−D). (20)

It follows from (19) and (20) that (17) holds. �

Remark 4.1. When set-valued maps F : X ⇒ Y and G : X ⇒ Z become
vector-valued maps f : X → Y and g : X → G, Theorem 4.1 reduces Theorem
4.5 in [6].

Next, we state the following strong duality theorem.

Theorem 4.2. C : Y ⇒ Y with C(y) being a nontrivial pointed convex cone
and corC(y) �= ∅ for all y ∈ C1. Suppose that the following conditions hold:

(i) (x, y) is a weakly nondominated element of (CSVOP);
(ii) F − y is nearly C(·)-subconvexlike on S;
(iii) There exists ϕ ∈ (C(y))+\{0} such that

〈y, ϕ〉 ≤ 〈y, ϕ〉,∀y ∈ F (S); (21)

(iv) For the above ϕ,

inf
⋃

x∈S

〈F (x), ϕ〉 = sup{inf
⋃

x∈Ŝ

(〈F (x), ϕ〉 + 〈G(x), μ〉)|μ ∈ D+}, (22)

and
sup{inf

⋃

x∈Ŝ

(〈F (x), ϕ〉 + 〈G(x), μ〉)|μ ∈ D+}

has at least one solution.
Then, y is a weakly max-nondominated element of C1 w.r.t. C.
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Proof. Since sup{inf
⋃

x∈Ŝ(〈F (x), ϕ〉 + 〈G(x), μ〉)|μ ∈ D+} has at least one
solution, it follows from (22) that there exists μ ∈ D+ such that

inf
⋃

x∈S

〈F (x), ϕ〉 = inf
⋃

x∈Ŝ

(〈F (x), ϕ〉 + 〈G(x), μ〉). (23)

By (21) and (23), we obtain

d ≥ inf
⋃

x∈S

〈F (x), ϕ〉 = 〈y, ϕ〉,∀d ∈
⋃

x∈Ŝ

(〈F (x), ϕ〉 + 〈G(x), μ〉). (24)

(24) shows that y ∈ C1. Therefore, y ∈ F (S) ∩ C1.
We assert that

c − y /∈ corC(c),∀c ∈ C1. (25)

Otherwise, there exists c ∈ C1 such that

c − y ∈ corC(c). (26)

According to (26) and Lemma 2.3, we have

〈c − y, ϕ′〉 > 0,∀ϕ′ ∈ (C(c))+ \ {0}. (27)

It follows from (27) that

〈c, ϕ′〉 > 〈y, ϕ′〉,∀ϕ′ ∈ (C(c))+ \ {0}. (28)

Since y ∈ F (S), (28) contradicts Theorem 4.1. Therefore, (25) holds. Thus, y is
a weakly max-nondominated element of C1 w.r.t. C. �

Remark 4.2. It follows from Theorem 3.1 that Conditions (i) and (ii) ensure
the existence of ϕ in Condition (iii).

Remark 4.3. Theorem 4.2 improves Theorem 4.6 [6] in the following two
aspects. First, the C(y)-convexity of f in Theorem 4.6 [6] has been replaced
by the nearly C(·)-subconvexlikeness of F − y in Theorem 4.2 which is much
weaker than the C(y)-convexity of f . Secondly, we delete the convexity of Ŝ and
D-convexity of G which is need in Assumption 4.1 of Theorem 4.6 [6].

5 Conclusions

In this paper, we studied weakly nondominated solutions of set-valued opti-
mization problems with variable ordering structures. We obtain some scalar-
ization characterizations and dual theorems. Our results are obtained in linear
spaces without any topological structure. In the future, we will investigate prop-
erly nondominated solutions of set optimization problems with variable ordering
structures in linear spaces.
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10. Khan, A.A., Tammer, C., Zǎlinescu, C.: Set-Valued Optimization: An Introduc-
tion with Applications. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-642-54265-7

11. Li, Z.M.: The optimality conditions for vector optimization of set-valued maps. J.
Math. Anal. Appl. 237, 413–424 (1999)

12. Sayadi-Bander, A., Kasimbeyli, R., Pourkarimi, L.A.: A coradiant based scalariza-
tion to characterize approximate solutions of vector optimization problems with
variable ordering structures. Oper. Res. Lett. 45, 93–97 (2017)

13. Shahbeyk, S., Soleimani-damaneh, M., Kasimbeyli, R.: Hartley properly and super
nondominated solutions in vector optimization with a variable ordering structure.
J. Global Optim. 71, 383–405 (2018)

14. Soleimani, B.: Characterization of approximate solutions of vector optimization
problems with variable order structure. J. Optim. Theory Appl. 162, 605–632
(2014)

15. Tiel, J.V.: Convex Analysis. Wiley, New York (1984)
16. Yang, X.M., Li, D., Wang, S.Y.: Near-subconvexlikeness in vector optimization

with set-valued functions. J. Optim. Theory Appl. 110, 413–427 (2001)
17. You, M.X., Li, G.H.: Optimality characterizations for approximate nondominated

and Fermat rules for nondominated solutions. Optimization 71, 2865–2889 (2022)
18. Yu, P.L.: Cone convexity, cone extreme points, and nondominated solutions in

decision problems with multiobjectives. J. Optim. Theory Appl. 14, 319–377 (1974)
19. Zhao, K.Q., Yang, X.M., Peng, J.W.: Weak E-optimal solution in vector optimiza-

tion. Taiwan. J. Math. 17, 1287–1302 (2013)
20. Zhou, Z.A., Chen, W., Yang, X.M.: Scalarizations and optimality of constrained

set-valued optimization using improvement sets and image space analysis. J.
Optim. Theory Appl. 183, 944–962 (2019)

21. Zhou, Z.A., Yang, X.M.: Scalarization of ε-super efficient solutions of set-valued
optimization problems in real ordered linear spaces. J. Optim. Theory Appl. 162,
680–693 (2014)

https://doi.org/10.1007/3-540-28445-1
https://doi.org/10.1007/3-540-28445-1
https://doi.org/10.1007/978-3-642-17005-8
https://doi.org/10.1007/978-3-642-54265-7
https://doi.org/10.1007/978-3-642-54265-7

	Weakly Nondominated Solutions of Set-Valued Optimization Problems with Variable Ordering Structures in Linear Spaces
	1 Introduction
	2 Preliminaries and Lemmas
	3 Scalarization
	4 Duality
	5 Conclusions
	References


