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Abstract. We consider the following shared-resource scheduling prob-
lem: Given a set of jobs J , for each j ∈ J we must schedule a job-specific
processing volume of vj > 0. A total resource of 1 is available at any time.
Jobs have a resource requirement rj ∈ [0, 1], and the resources assigned to
them may vary over time. However, assigning them less will cause a pro-
portional slowdown.

We consider two settings. In the first, we seek to minimize the makespan
in an online setting: The resource assignment of a job must be fixed before
the next job arrives. Here we give an optimal e/(e − 1)-competitive algo-
rithm with runtime O(n log n). In the second, we aim to minimize the
total completion time. We use a continuous linear programming (CLP)
formulation for the fractional total completion time and combine it with
a previously known dominance property from malleable job scheduling to
obtain a lower bound on the total completion time. We extract structural
properties by considering a geometrical representation of a CLP’s primal-
dual pair. We combine the CLP schedule with a greedy schedule to obtain
a (3/2 + ε)-approximation for this setting. This improves upon the so far
best-known approximation factor of 2.

Keywords: Approximation Algorithm · Malleable Job Scheduling ·
Makespan · List Scheduling · Completion Time · Continuous Linear
Program

1 Introduction

Efficient allocation of scarce resources is a versatile task lying at the core of
many optimization problems. One of the most well-studied resource allocation
problems is parallel processor scheduling, where a number of jobs need (typically
at least temporarily exclusive) access to one or multiple machines to be com-
pleted. The problem variety is huge and might depend on additional constraints,
parameters, available knowledge, or the optimization objective (see [14]).

In the context of computing systems, recent years demonstrated a bottle-
neck shift from processing power (number of machines) towards data throughput.
Indeed, thanks to cloud services like AWS and Azure, machine power is available in
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abundance while data-intensive tasks (e.g., training LLMs like ChatGPT) rely on a
high data throughput. If the bandwidth of such data-intensive tasks is, say halved,
they may experience a serious performance drop, while computation-heavy tasks
care less about their assigned bandwidth. In contrast to the number of machines,
throughput is (effectively) a continuously divisible resource whose distribution
may be easily changed at runtime. This opens an opportunity for adaptive redistri-
bution of the available resource as jobs come and go. Other examples of similarly
flexible resources include power supply or the heat flow in cooling systems.

This work adapts formal models from a recent line of work on such flexible
resources [1,5,13] and considers them under new objectives and settings. Clas-
sical resource constrained scheduling [8,11,15,16] assumes an “all-or-nothing”
mentality (a job can be processed if it receives its required resource but is not
further affected). One key aspect of the model we consider is the impact of the
amount of received resource on the jobs’ performance (sometimes referred to as
resource-dependent processing times [9–12]). The second central aspect is that
we allow a job’s resource assignment to change while the job is running.

1.1 Model Description and Preliminaries

We consider a scheduling setting where a set J = [n] := {1, 2, . . . , n} of n ∈ N

jobs compete for a finite, shared resource in order to be processed. A schedule
R = (Rj)j∈J consists of an (integrable) function Rj : R≥0 → [0, 1] for each j ∈ J
(the job’s resource assignment) that returns what fraction of the resource is
assigned to j at time t ∈ R≥0. We use R(t) = (Rj(t))j∈J to refer to j’s resource
distribution at time t and R̄(t) :=

∑
j∈J Rj(t) for the total resource usage at time

t. Each j ∈ J comes with a (processing) volume vj ∈ R≥0 (the total amount
of resource the job needs to receive over time in order to be completed) and a
resource requirement rj ∈ [0, 1] (the maximum fraction of the resource the job
can be assigned). We say a schedule R = (Rj)j∈J is feasible if:

– the resource is never overused: ∀t ∈ R≥0 : R̄(t) ≤ 1,
– a job never receives more than its resource requirement: ∀t ∈ R≥0 : Rj(t) ≤ rj ,

and
– all jobs are completed: ∀j ∈ J :

∫ ∞
0

Rj(t) dt ≥ vj .

For j ∈ J we define its processing time pj := vj/rj as the minimum time that j
requires to be completed. See Fig. 1a for an illustration of these notions.

For a schedule R = (Rj)j∈J we define Cj(R) := sup{t ≥ 0|Rj(t) > 0} as
the completion time of job j ∈ J . We measure the quality of a schedule R
via its makespan M(R) := max{Cj(R)|j ∈ J} and its total completion time
C(R) :=

∑
j∈J Cj(R). Our analysis additionally considers the total fractional

completion time CF (R) :=
∑

j∈J CF
j (R), where CF

j (R) :=
∫ ∞
0

Rj(t) · t/vj dt is
job j’s fractional completion time.

Relation to Malleable Tasks with Linear Speedup. Our problem assumes an arbi-
trarily divisible resource, as for example the bandwidth shared by jobs running
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Fig. 1. Illustration of model notions (left) and a WaterFill step.

on the same host. Another common case are jobs that compete for a discrete set
of resources, like a number of available processing units. This is typically modeled
by a scheduling problem where a set J of n malleable jobs of different sizes sj

(length when run on a single machine) must be scheduled on m machines. Each
machine can process at most one job per time, but jobs j can be processed on
up to δj ∈ [m] machines in parallel with a linear speedup. Jobs are preemptable,
i.e., they can be paused and continued later on, possibly on a different number
of machines. See [14, Ch. 25] for a more detailed problem description.

This formulation readily maps to our problem by setting j’s processing vol-
ume to vj = sj/m and its resource requirement to rj = δj/m ∈ (0, 1]. The only
difference is that our schedules allow for arbitrary resource assignments, while
malleable job scheduling requires that each job j gets an integral number δj

of machines (i.e., resource assignments must be multiples of 1/m). However, as
observed by Beaumont et al. [3], fractional schedules can be easily transformed
to adhere to this constraint:

Observation 1 ([3, Theorem 3, reformulated]). Consider a feasible schedule R
for a job set J in which j ∈ J completes at Cj . Let m := 1/min{rj |j ∈ J}. We
can transform each Rj without changing Cj to get Rj(t) ∈ {i/m|i ∈ [m] ∪ {0}}
for any t ∈ R≥0 and such that each Rj changes at most once between consecutive
completion times.

We first consider online makespan minimization (Sect. 2), where the scheduler
must commit to future resource assignments as jobs arrive (as in list-scheduling).
Afterwards, we consider offline total completion time minimization (Sect. 3).

1.2 Related Work

Our model falls into the class of continuous shared-resource job scheduling as
introduced in [1] and its variants [5,13]. These models have the same relation
between a job’s resource requirement, the assigned resource, and the resulting
processing time as we but only consider makespan minimization as objective.
The two main differences are that they assumed an additional constraint on
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the number of machines and considered discrete time slots in which resource
assignments may not change.

Another closely related model is malleable job scheduling, where the number
of machines assigned to a job can be dynamically adjusted over time. If each job
j has its own upper limit δj on the number of processors it can be assigned, the
model becomes basically equivalent to our shared-resource job scheduling prob-
lem (as discussed at the end of Sect. 1.1). Drozdowski [7] gave a simple greedy
algorithm for minimizing the makespan in the offline setting (see also Sect. 2).
Decker et al. [6] considered total completion time minimization for identical
malleable jobs for an otherwise rather general (possibly non-linear) speed-up
function. They gave a 5/4-approximation for this setting. Beaumont et al. [3] is
closest to our model. In particular, they assumed job-dependent resource lim-
its δj that correspond to our resource requirements. For minimizing weighted
total completion time, they used a water-fill approach to prove the existence of
structurally nice solutions (cf. to the our water-filling approach in Sect. 2). Their
main result is a (non-clairvoyant) 2-approximation algorithm for the weighted
case. Their algorithm WDEQ assigns each job a number of processors according
to their relative weight, but no more than the limit imposed by δj . Our results
in Sect. 3 yield an improved approximation ratio of 3/2 + ε at the cost of clair-
voyance (i.e., we must know the job’s volumes and resource requirements). Also,
our algorithm only handles the unweighted case.

Other related models, such as rigid and moldable scheduling, disallow the
resource assignment of a job to be adjusted after it has been started (see [14] for
details).

1.3 Our Contribution and Methods

For our model, makespan minimization is known to be offline solvable (see
Sect. 2). We thus concentrate on an online (list-scheduling) setting where jobs
are given sequentially and we must commit to a resource assignment without
knowing the number of jobs and future jobs’ properties. We use a water-filling
approach that is known to produce “flattest” schedules [3]. We derive properties
that are necessary and sufficient for any c-competitive algorithm by providing
conditions on c-extendable schedules (c-competitive schedules to which we can
add any job while remaining c-competitive). From this, we derive slightly weaker
universal schedules that are just barely c-extendable and show that schedules
derived via water-fill are always flatter than universal schedules. Optimizing the
value of c yields e/(e− 1)-competitiveness. We then show that no algorithm can
have a lower competitive ratio than e/(e − 1).

Our main result considers offline total completion time minimization. We
improve upon the so far best result for this variant (a 2-approximation [3]) by
providing a (3/2 + ε)-approximation running polynomial time in n, 1/ε. The
result relies on a continuous linear programming (CLP) formulation for the frac-
tional total completion time, for which we consider primal-dual pairs. The primal
solution represents the resource assignments over time, while the dual represents
the priority of jobs over time. We then extract additional properties about the
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primal/dual pair. Roughly, our method is as follows. We draw both the primal
and dual solutions into a two-dimensional coordinate system. See Fig. 3b for an
example. We then merge both solutions into a single 3D coordinate system by
sharing the time axis and use the these solutions as a blueprint for shapes in this
coordinate system (see Fig. 4). The volume of these shapes then correspond to
parts of the primal and dual objective. We use a second algorithm called Greedy
that attempts to schedule jobs as early as possible. Choosing the better one of
the CLP and the greedy solution gives us the desired approximation.

2 Makespan Minimization

This section considers our resource-aware scheduling problem under the makespan
objective. For the offline problem, it is well-known that the optimal makespan
M∗(J) for a job set J = [n] with total volume V (J) =

∑
j∈J vj is M∗(J) =

max{V (J)} ∪ {pj |j ∈ J} and that a corresponding schedule can be computed in
time On [14, Section 25.6]. The idea is to start with a (possibly infeasible) schedule
R that finishes all jobs at time pmax := max{pj |j ∈ J} by setting Rj(t) = vj/pmax

for t ∈ [0, pmax) and Rj(t) = 0 for t > pmax. This schedule uses a constant total
resource of R̄ := V (J)/pmax until all jobs are finished. If R̄ ≤ 1 (the resource is not
overused), this schedule is feasible and optimal (any schedule needs time at least
pmax to finish the “longest” job). Otherwise we scale all jobs’ resource assignments
by 1/R̄ to get a new feasible schedule that uses a constant total resource of 1 until
all jobs are finished at time V (J). Again, this is optimal (any schedule needs time
at least V (J) to finish a total volume of V (J)).

List-Scheduling Setting. Given that the offline problem is easy, the remainder
of this section considers the (online) list-scheduling setting. That is, an (online)
algorithm A receives the jobs from J = [n] one after another. Given job j ∈ J ,
A must fix j’s resource assignment Rj : R≥0 → [0, 1] without knowing n or the
properties of future jobs. We refer to the resulting schedule by A(J). As usual in
the online setting without full information, we seek to minimize the worst-case
ratio between the costs of the computed and optimal schedules. More formally,
we say a schedule R for a job set J is c-competitive if M(R) ≤ c · M∗(J).
Similarly, we say an algorithm A is c-competitive if for any job set J we have
M

(A(J)
) ≤ c · M∗(J).

An Optimal List-Scheduling Algorithm. Water-filling algorithms are natural
greedy algorithms for scheduling problems with a continuous, preemptive char-
acter. They often yield structurally nice schedules [2–4]. In this section, we show
that water-filling (described below) yields a simple, optimal online algorithm for
our problem.

Theorem 1. Algorithm WaterFill has competitive ratio e/(e − 1) for the
makespan. No deterministic online algorithm can have a lower worst-case com-
petitive ratio.
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We first describe a single step WFstep(R, ι, C) of WaterFill (illustrated
in Fig. 1b). It takes a schedule R = (Rj)j∈J for some job set J , a new job
ι /∈ J , and a target completion time C. Its goal is to augment R by ι with
completion time C, i.e., to feasibly complete ι by time C without altering the
resource assignments Rj for any j ∈ J . To this end, define the h-water-level
wlh(t) := min{rι,max{h− R̄(t), 0}} at time t (the resource that can be assigned
to ι at time t without exceeding total resource h). Note that ι can be completed
by time C iff

∫ C

0
wl1(t) dt ≥ vι (the total leftover resource suffices to complete ι’s

volume by time C). If ι cannot be completed by time C, WFstep(R, ι, C) fails.
Otherwise, it succeeds and returns a schedule that augments R with the resource
assignment Rι = wlh∗ for job ι, where h∗ := infh∈[0,1]{h| ∫ C

0
wlh(t) dt ≥ vι} is

the smallest water level at which ι can be scheduled.
WaterFill is defined recursively via WFstep. Given a job set J = [n],

define Hj := M∗([j]) · e/(e − 1) as the target completion time for job j ∈ J
(remember that M∗([j]) can be easily computed, as described at the begin-
ning of this section). Assuming WaterFill computed a feasible schedule
R(j−1) for the first j − 1 jobs (with R(0)(t) = 0 ∀t ∈ R≥0), we set R(j) :=
WFstep(R(j−1), j,Hj). If this step succeeds, the resulting schedule is clearly
e/(e − 1)-competitive by the choice of Hj . The key part of the analysis is to
show that indeed these water-filling steps always succeed.

We start the observation that water-fill schedules always result in “staircase-
like” schedules (see Fig. 1b), a fact also stated in [3] (using a slightly different
wording).

Observation 2 ([3, Lemma 3]). Consider a schedule R whose total resource usage
R̄ is non-increasing (piecewise constant). If we WFstep(R, ι, C) successfully
augments R by a job ι, the resulting total resource usage is also non-increasing
(piecewise constant).

Next, we formalize that WFstep generates the “flattest” schedules: if there
is some way to augment a schedule by a job that completes until time C, then
the augmentation can be done via WFstep.

Definition 1. The upper resource distribution AC
R(y) of a schedule R is the

total volume above height y before time C in R. Given schedules R,S (for
possibly different job sets), we say R is flatter than S (R � S) if AC

R(y) ≤ AC
S (y)

∀C ∈ R≥0, y ∈ [0, 1].

Lemma 1 ([3, Lemma 4, slightly generalized]). Consider two schedules R � S
for possibly different job sets. Let S′ denote a valid schedule that augments S
by a new job ι completed until time C. Then WFstep(R, ι, C) succeeds and
WFstep(R, ι, C) � S′.

Next, we characterize c-competitive schedules that can be augmented by any
job while staying c-competitive.

Definition 2. A schedule R is c-extendable if it is c-competitive and if it can
be feasibly augmented by any new job ι such that the resulting schedule is also
c-competitive.
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Lemma 2. Consider a job set J of volume V and with maximal processing time
pmax. A c-competitive schedule R for J is c-extendable if and only if

∀y with (c − 1)/c < y ≤ 1: A∞
R (y) ≤ (c − 1) · (1 − y)/y · max{V, pmax · y}. (1)

See the Full Version for the proof of Lemma 2. While Lemma 2 gives a strong
characterization, the bound on the right hand side of Eq. (1) cannot be easily
translated into a proper schedule for the given volume. Thus we introduce proper
(idealized) schedules that adhere to a slightly weaker version of Eq. (1). These
schedules are barely e/(e−1)-extendable. Our proof of Theorem 1 combines their
existence with Lemma 1 to deduce that WaterFill is e/(e − 1)-competitive.

Definition 3. For any V ∈ R≥0 we define the universal schedule1 UV : R≥0 →
[0, 1] via

UV (t) :=

⎧
⎪⎨

⎪⎩

1 if t < 1
e−1 · V,

1 − ln
(
t · c−1

V

)
if 1

e−1 · V ≤ t < e
e−1 · V, and

0 otherwise.
(2)

Fig. 2. Universal schedules UV and UV +v. The blue area indicates a new job ι with vol-
ume v and resource requirement r that is scheduled via WFstep(UV , ι, H). Depending
on the resource requirement r, the yellow line enters the blue area exactly once, either
on the upper plateau (a) or on the lower plateau (b).

See Fig. 2 for an illustration of universal schedules. With c = e/(e − 1),
one can easily check that A∞

UV
(y) = e1−y−1

e−1 · V ≤ (c − 1) · 1−y
y · V. Thus, by

Lemma 2, universal schedules (and any flatter schedules for the same volume)
are e/(e − 1)-extendable. Our final auxiliary lemma extends the optimality of
WaterFill from Lemma 1 to certain augmentations of universal schedules.2

See the Full Version for the proof of Lemma 3.
1 One can think of UV as a schedule for a single job of volume V and resource require-

ment 1. Since there is only one job, we identify UV with its total resource requirement
function ŪV .

2 Lemma 3 is not a special case of Lemma 1: the schedule S′ from Lemma 1 must
adhere to the new job’s resource requirement, which is not the case for the universal
schedule UV +v.

https://arxiv.org/abs/2310.05732
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Lemma 3. Consider the universal schedule UV , a new job ι of volume v and
processing time p, as well as a target completion time H ≥ e

e−1 · max{V + v, p}.
Then WFstep(UV , ι,H) � UV +v.

The above enables us to prove the competitiveness of WaterFill from The-
orem 1: We show inductively that WaterFill produces a feasible schedule R(j)

for the first j jobs (using that R(j−1) is “flatter” than UV ([j−1]) together with
Lemma 1) and use this to prove R(j) � UV ([j]) (via Lemma 3). By universal-
ity, this implies that all R(j) are e/(e − 1)-extendable (and thus, in particular,
e/(e−1)-competitive). The full proof of WaterFill is given in the Full Version.

3 Total Completion Time Minimization

This section considers the total completion time minimization and represents
our main contribution. In contrast to offline makespan minimization (Sect. 2), it
remains unknown whether there is an efficient algorithm to compute an offline
schedule with minimal total completion time. The so far best polynomial-time
algorithm achieved a 2-approximation [3]. We improve upon this, as stated in
the following theorem.

Theorem 2. There is a (3/2+ ε)-approximation algorithm for total completion
time minimization. Its running time in polynomial time in n and 1/ε.

For clarity of presentation, we analyze an idealized setting in the main part.
The details for the actual result can be found in the Full Version.

AlgorithmDescription. Ouralgorithmcomputes two candidate schedules using the
two sub-algorithms Greedy and LSApprox (described below). It then returns
the schedule with smallest total completion time among both candidates.

Sub-algorithm Greedy processes the jobs in ascending order of their volume.
To process a job, Greedy assigns it as much resource as possible as early as possi-
ble in the schedule. Formally, for jobs J = [n] ordered as v1 ≤ · · · ≤ vn, the sched-
ule RG for Greedy is calculated recursively using RG

j (t) = 1t<tj · min(rj , 1 −
∑j−1

i=1 RG
i (t)), where the completion time tj for job j is set such that j schedules

exactly its volume vj . See Fig. 3b for an example of a Greedy schedule. Sub-
algorithm LSApprox deals with solutions to following continuous linear program
(CLP ).

minimize
∑

j∈J

∫ ∞

0

t · Rj(t)
vj

dt

∫ ∞

0

Rj(t) dt ≥ vj ∀j ∈ J

0 ≤ Rj(t) ≤ rj ∀j ∈ J, t ∈ R≥0

∑

j∈J
Rj(t) ≤ 1 ∀t ∈ R≥0

Roughly, LSApprox first subdivides the job set into those jobs that produce a
high completion time and the remaining jobs. For the former, an approximate
solution is computed using the dual to the discretization (an LP) of above CLP .
For the latter, is enough to reserve a small portion of the resource to schedule

https://arxiv.org/abs/2310.05732
https://arxiv.org/abs/2310.05732
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Fig. 3. Schedules for a job set J = [3] with (v1, r1) = (1,3/4), (v2, r2) = (4,1/2)
and (v3,r3)=(6,2/3) . (a) Greedy’s schedule, (b) Above: A primal (resource) sched-
ule. Below: A dual (priority) schedule. With the dual variables having values α1 =
51/16,α2 = 39/16 and α3 = 31/16, the volumes of the jobs are exactly scheduled. (See
the Full Version.)

them with small completion times. For clarity of presentation, the main part will
only do a simplified analysis using an idealization of LSApprox. For the details
of this algorithm, the analysis using LSApprox and the analysis of Greedy,
we refer to the Full Version.

3.1 Analysis via a Bounded Fractionality Gap

Throughout the analysis, we use C∗ to denote the optimal total completion
time and CF∗ for the optimal fractional total completion time. We require an
algorithm that produces a schedule R with a small fractionality gap γ(R) :=
C(R)/CF∗, i.e., we compare the total completion time of R with the optimal
fractional total completion time for the same job set. We show the following
generalization of Theorem 2.

Theorem 3. Assume that there is a polynomial-time algorithm A for total com-
pletion time minimization that produces a schedule R with γ(R) ≥ 1. Then there
exists a polynomial-time (γ(R) + 1)/2-approximation for total completion time
minimization.

The proof of Theorem3 relies on Proposition 1 (three lower bounds on the
optimal total completion time) and Proposition 2 (Greedy’s objective in rela-
tion to these bounds). Lower Bound (1) (Squashed Area Bound) and Bound (2)
(Length or Height Bound) are due to Beaumont et al. [3, Def. 6,7]. Bound (3) is
our novel lower bound. The proof can be found in the Full Version.

Proposition 1. Assuming v1 ≤ · · · ≤ vn, the following are lower bounds on C∗:

https://arxiv.org/abs/2310.05732
https://arxiv.org/abs/2310.05732
https://arxiv.org/abs/2310.05732
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(1) CL := maxj∈J pj (2) CA :=
∑n

j=1

∑j
i=1 vj (3) CF∗ + 1/2 · CL

Proposition 2. The Greedy schedule RG satisfies C(RG) ≤ CA + CL.

Using them, we can give the proof of Theorem 3.

Proof of Theorem 3. We run both Greedy and A in polynomial time to produce
schedules RG and RA, respectively, and choose the schedule with the smaller
total completion time. Using Proposition 1 and 2 and the fractionality gap γ :=
γ(RA), we can bound the cost C := min(C(RA), C(RG)) of the resulting schedule
in terms of C∗:

C ≤ min(γ · C
F∗

, C
A

+ C
L
) ≤ min(γ · (C∗ − 1/2 · C

L
), C

∗
+ C

L
)

=
γ + 1

2
C

∗ − γ + 2

4
C

L
+ min

(
γ − 1

2
C

∗ − γ + 2

4
C

L
,

γ + 2

4
C

L − γ − 1

2
C

∗
)

≤ γ + 1

2
C

∗

�

3.2 The Fractionality Gap of Line Schedules

For the remainder of this paper, we will introduce line schedules and their struc-
tural properties. Roughly, a line schedule is a certain primal-dual pair for the
CLP defined in Sect. 3, and its dual, which we call DCP :

maximize
∑

j∈J
αjvj −

∑
j∈J

rj

∫ ∞

0
βj(t) dt −

∫ ∞

0
γ(t) dt

s.t. αj , βj(t), γ(t) ≥ 0 ∀j ∈ J, t ∈ R≥0 γ(t) + βj(t) ≥ αj − t/vj ∀j ∈ J, t ∈ R≥0

It is obtained by dualizing the time-discretized version of the CLP (see the
Full Version) and extending its constraints to the continuous time domain. Line
schedules formalize the idea that, if we know the dual α-values, we can recon-
struct all remaining primal/dual variables to obtain a primal-dual pair. If the
α-values are chosen correctly, then the volumes scheduled in the primal are
exactly the desired volumes (vj)j∈J .

To this end, we will assume that we have access to an algorithm called LS
that produces such a line schedule RF with CF (RF ) = CF∗. We can then show
that LS produces schedules with a fractionality gap of 2:

Proposition 3. The LS schedule RF satisfies γ(RF ) ≤ 2.

In the following, we develop the details of line schedules. To this end, first
define primal-dual pair as a tuple (R,α, β, γ, v) that fulfills the following con-
tinuous slackness conditions (sc). Again, these are found by extending the time-
discretized version of the CLP to the continuous time domain. These conditions
hold for all j ∈ J and t ∈ R≥0.

(α-sc) :αj(v̄j −
∫ ∞

0

Rj(t) dt) = 0 (β-sc) :βj(t)(rj − Rj(t)) = 0

(γ-sc) :γ(t)(1 −
∑

j∈J
Rj(t)) = 0 (R-sc) :Rj(t)(αj − t/vj − βj(t) − γ(t)) = 0

https://arxiv.org/abs/2310.05732
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If we choose arbitrary α-values, then the corresponding line schedule is still
a primal-dual pair, except that it possibly schedules a different set of volumes,
i.e., the α-sc is only true if we replace vj in the constraint by some other volume
v̄j . This fact is used for the detailed proof of our (3/2 + ε)-approximation, see
the Full Version.

To this end, define the dual line dj(t) := αj − t/vj for each j ∈ J . The
intuition behind a line schedule is now that the heights of the dual lines represent
priorities: Jobs are scheduled (with maximum remaining schedulable resource)
in decreasing order of the dual line heights at the respective time points. Jobs
are not scheduled if their dual line lies below zero. This is formalized in the
following definition. (In Fig. 3b, we supplement the example from Fig. 3a by a
depiction of the dual lines.)

Definition 4. We call a job set J non-degenerate if all job volumes are pairwise
distinct, i.e., vj 	= vj′ for all j, j′ ∈ J .3 Define a total order for each t ≥ 0 as
j′ 
t j :⇔ dj′(t) > dj(t) or dj′(t) = dj(t) and vj′ > vj .4 The line schedule of α
is a tuple (R,α, β, γ, v) (recursively) defined as follows.

Rj(t) = 1dj(t)>0 · min(rj , 1 −
∑

j′�tj
Rj′(t)) βj(t) = max(0, dj(t) − γ(t))

γ(t) = max(0, dj(t)), where j is the smallest job according to �t with Rj(t) > 0

Equipped with the definition of a line schedule, we can now tackle the proof
of Proposition 3. It requires the following two properties about the assumed
algorithm LS. First, Lemma 4 allows us to bound the completion times of a
fractional schedule in terms of the α-variables in the DCP :

Lemma 4. Algorithm LS produces a schedule RF with Cj(RF ) ≤ αjvj for all
j ∈ J .

Second, we show the following lemma. Abbreviate P =
∑

j∈J

∫ ∞
0

t ·
Rj(t)/vj dt (the primals objective), and A =

∑
j∈J αjvj , B =

∑
j∈J rj

∫ ∞
0

βj(t) dt and Γ =
∫ ∞
0

γ(t) dt (the parts of the dual objective).

Lemma 5. Algorithm LS produces a schedule RF such that there exists a
primal-dual pair (RF , ·, ·, ·) that fulfills strong duality (A = B + Γ + P ) and
balancedness (P = B + Γ ).

Using these lemmas, we can show Proposition 3.

Proof of Theorem 3. Using Lemmas 4 and 5, we show the statement as follows:

C(RF ) =
∑

j∈J

Cj(RF ) ≤
∑

j∈J

αjvj = A = A−B−Γ+P = 2P = 2CF (RF ) = 2CF∗

3 While not strictly required, this makes line schedules unique and simplifies the anal-
ysis.

4 The second part of the definition (dj′(t) = dj(t) and vj′ > vj) only exists for
disambiguation of the line schedule, but is not further relevant.
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Fig. 4. (a) P -shapes for job set from Fig. 3b. P -shapes are delimited from below by
dj(t) (extended into the resource axis), from above by αj , and their top surface follows
the primal schedule. (b) The shapes shown represent the union of B- and Γ -shapes.
They are delimited from the left (right) by t = 0 (dj(t)) (extended into the resource
axis), and from top and bottom by the value of dj(t) at the starting and finishing time
of some piece of j. See the Full Version for the formal definition of these shapes.

�
In the Full Version, we show the following Lemma 6, stating that line sched-

ules are indeed primal-dual pairs. We then define LS to output a schedule RF

for a line schedule (RF , α, β, γ, v) according to Lemma 6, i.e., for each j ∈ J ,∫ ∞
0

Rj(t) dt = vj . Using this definition, we can show Lemma 4.

Lemma 6. For any job set J there exists an α such that the line schedule of α
is a primal-dual pair.

Proof of Lemma 4. By definition, RF
j (t) = 0 if dj(t) ≤ 0. Hence, as dj is monoton-

ically decreasing, Cj(RF ) is bounded by the zero of dj(t), which lies at t = αjvj .
�

The remainder of this section will initiate the proof of Lemma 5. We first give
a geometric understanding of the involved quantities (P,A,B, Γ ). We build a 3D
coordinate system from a line schedule. The time axis is shared, and the ordinates
form the remaining two axes. We then draw 3D shapes into this coordinate
system that correspond to parts of the above quantities and therefore of the
CLP/DCP objectives. These shapes are described in detail in the Full Version.
Generally, these shapes are constructed such that the primal and dual schedules
can be “seen” from above or front. In our case, the primal schedule will be seen
from the top, and the dual schedule from the front. Figure 4 illustrates the shapes
in our construction. For each part of the objective Ψ ∈ {P,A,B, Γ}, we have a
corresponding shape Ψall, which is subdivided into pieces Ψ i,l, respectively.

We can show that certain pieces are pairwise non-overlapping (Lemma 7), that
the A-pieces make up all other pieces (Lemma 8) and we can relate the volume of
these pieces with one another and with the actual objective (Lemma 9).

Lemma 7. Let V and W , V 	= W , be P -pieces, B-pieces or Γ -pieces (every
combination allowed), or both be A-pieces. Then V and W do not overlap.

Lemma 8. Aall is composed of the other shapes, i.e., Aall = P all ∪ Ball ∪ Γ all.

https://arxiv.org/abs/2310.05732
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Lemma 9. The pieces satisfy |P i,l| = |Bi,l|+ |Γ i,l| for all i, l and |Ψall| = Ψ for
all Ψ ∈ {P,A,B, Γ}.

Due to space limitations, we give the actual construction of the pieces and
the proofs of Lemma 7 to 9 in the Full Version. Now we can give the proof of
Lemma 5.

Proof of Lemma 5. Using Lemma 7 to 9, we get

A = |Aall| = |P all ∪ Ball ∪ Γ all| = |P all| + |Ball| + |Γ all| = P + B + Γ

= |P all| + |Ball| + |Γ all| =
∑

i,l
|P i,l| + |Bi,l| + |Γ i,l| =

∑

i,l
2|P i,l| = 2P.

�
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