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Abstract. We consider a classic packet scheduling problem [7] and its
variants. This packet scheduling problem has applications in the areas
of logistics, road traffic, and more. There is a network and a set of unit-
length packets are to be transmitted over the network from their respec-
tive sources to their respective destinations. Each packet is associated
with a directed path on which it must travel along. Time is discrete.
Initially, all the packets stay on the first edges of their respective paths.
Packets are pending on the edges at any time. In each time step, a packet
can move along its path by one edge, given that edge having no other
packets move onto it in the same time step. The objective is to minimize
makespan – the earliest time by which all the packets arrive at their
respective destination edges. This problem was proved NP-hard [1] and
it has been studied extensively in the past three decades. In this paper,
we first provide a semi-online algorithm GRD and show that GRD is
optimal for scheduling packets on arborescence and/or anti-arborescence
forests. We then provide a parameterized algorithm PDP which finds an
optimal makespan for the general case. PDP is a dynamic programming
algorithm and its running time complexity depends on the congestion
and dilation in the input instance. The algorithm PDP’s idea is new and
it is derived from an insightful lower bound construction for the general
packet scheduling problem.

Keywords: Packet scheduling · exact algorithms · dynamic
programming

1 Introduction

A packet scheduling problem [7] has been studied extensively in the past three
decades. Consider a directed graph G = (V,E) with a set of vertices V and
a set of edges E, where |V | = n and |E| = m. There are N packets that are
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to be transmitted on G. Each packet p ∈ {1, 2, . . . , N} has a source sp ∈ V , a
destination tp ∈ V , and a directed path Pp with a length lp denoting the path Pp’s
number of edges |Pp|. A path Pp can be represented by an ordered set of edges
ep(1), ep(2), . . . , ep(lp) and each ep(i) ∈ E is an edge on Pp, ∀i = 1, 2, . . . , lp. All
the packet paths are simple ones and thus we have lp = |Pp| ≤ |E| = m, ∀p. The
path Pp specifies the edges as well as the order that a packet p should travel
along on G.

Time is discrete. Assume that any edge e ∈ E represents a sufficiently-large-
size buffer so that at any time, any number of packets can stay on the edge e.
The vertices V act as switches so that in each time step, each edge e accepts at
most one packet to be forwarded to the queue represented by e: In each time
slot, for any outgoing edge e = (v, w) incident to a vertex v, at most one packet
staying on v’s incoming edges (u, v) and having e as their next step’s edges can
be moved onto e. Multiple packets can be forwarded simultaneously to their next
edges in one single time step as long as these packets are not getting into the
same queue after being forwarded. For ease of notation, we assume that all the
packets p stay on their respective paths Pp’s first edges ep(1) at the end of time
step 1. A packet p’s duration dp is the time slot by which p arrives at the last
edge ep(lp) of its path Pp. Clearly, we have dp ≥ lp, ∀p. We design a scheduling
algorithm with the objective of minimizing makespan, defined as the maximum
duration maxp dp for all the packets p ∈ {1, 2, . . . , N}.

2 Related Work

This packet scheduling problem was proved NP-hard [1]. The authors in [13]
showed that an optimal makespan cannot be approximated down to the ratio 1.2
unless P = NP, even for the case in which the graph is a tree (with bidirectional
edges). Define the dilation D as the maximum path length, D = maxp lp, and the
congestion C as the maximum number of paths having a single edge in common,
C = maxe∈E |C(e)| = maxe∈E |{p|e ∈ Pp}|, where C(e) is the set of packets
having e in their paths. It is clear that any schedule’s makespan has a lower
bound of max(C,D) ≥ �C+D

2 � = Ω(C + D) [7].
A class of scheduling algorithms are called greedy, if an algorithm in such a

class never leaves an outgoing edge e = (u, v) idle (an idle edge does not accept
packets) as long as there are packets waiting in the incoming edges of v having e
as their next-step edges in the corresponding paths [9]. Any simple randomized
algorithm with the greedy strategy achieves a makespan O(C · D). In [8], the
authors gave a schedule of length O(C + D) in time O(L(log log L) log L) with a
probability at least 1 − Lβ , where β < 0 is a constant and L =

∑
p lp. This ran-

domized algorithm can be derandomized using the method of conditional prob-
abilities [11] and it became the first constant approximation algorithm, against
the lower bound �C+D

2 � of makespan. In [16], the author gave a simpler proof
of the algorithm in [8]. The algorithm is an offline algorithm which is given its
input including a complete description of the graph G and the packets’ paths
Pp, ∀p in designing a schedule. For the algorithm in [8], the hidden constant in
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O(C +D) is high. The best known approximation ratio is 24 [14], against C +D
as well.

Some variants of this packet scheduling problem have been studied as well.
In an online setting, an algorithm only uses the information that is available
locally to a vertex v in order to determine which packet to be forwarded to
the edge (v, w), among the ones waiting on v’s incoming edges. For the class of
layered networks, [6] gave a simple online randomized algorithm with a makespan
O(C+B+log N), where B (≤ D) is the number of layers of this network. For the
case in which all the packets’ paths Pp are assumed to be the shortest ones from
the sources sp to the destinations dp (in terms of the number of edges), there
was an online algorithm with a maximum duration bounded by D + N − 1 [10].
In [12], the authors improved the result to be O(C + D + log(N · D)), with
a high probability, and in [18], the authors gave a simple online randomized
algorithm with a duration O(C + D + log N), with a high probability. The most
recent known work on online algorithms is [12], giving a universal deterministic
O(C + D + log1+ε N) algorithm. This result is almost optimal. The problem
whether there exists an online algorithm with competitive ratio bounded by
O(C +D) is still open. The algorithm in [10] is a greedy online algorithm. Some
other variants in which the edges are bufferless (i.e., at most one packet is on
an edge at any time) or the packets are allowed to wait (i.e., staying on each
of such edges for more than 1 time slots) only on some predefined edges were
discussed in [17]. Another line of research is to consider packet scheduling and
packet routing (packet routing algorithms allow packets to choose paths to get to
the destinations) together in order to minimize the makespan. The competitive
packet scheduling problem is also studied. In this problem, the packets select
their paths rationally and the makespan is the social welfare to be optimized [3].
The paper [9] gave a brief survey. More recent related work can be found from
the work following [9].

Our Contributions. In this paper, we study exact algorithms for the packet
scheduling problem. We design two algorithms. One is named GRD. GRD is
a simple, fast semi-online algorithm and it optimizes the makespan in schedul-
ing packets on arborescence and/or anti-arborescence forests. The other one is
an exact algorithm, named PDP, for the general packet scheduling case and its
running-time complexity depends on the parameters (congestion and dilation) of
the input instances. In Sect. 3 and Sect. 4, we describe the algorithms GRD and
PDP, along with their running-time analysis and performance analysis, respec-
tively.

3 GRD: Scheduling Packets on Arborescence
and Anti-Arborescence Forests

In the semi-online setting, an algorithm has no complete knowledge of the graph
G and a packet has no information regarding to the other packets’ status at
any time. A semi-online algorithm may allow packets carry some information
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on themselves — normally, such information is a constant value that cannot
embed the whole graph information nor any information on the other packets.
The values carried by the packets waiting on the incoming edges of a vertex can
be used to make the decision of transmitting them.

In this section, we design a semi-online algorithms and name it GRD (stand-
ing for greedy). Each packet p has its path information Pp.

3.1 The Ideas

GRD is based on the following two greedy ideas: Consider a packet p at the
beginning of a time step t.

1. The packet p greedily moves onto the next edge e as long as no other packets
are competing for e in the same time step. Such a best-effort movement of
p will not increase p’s duration and will not increase any delays to other
packets.

2. Consider the case when there are more than one packets including p com-
peting for an edge e. If p is not chosen to move onto e, then p’s duration is
increased by 1. Therefore, in this time step t, the idea is to forward the packet
whose duration’s increase affects the algorithm’s makespan the most. Recall
that a semi-online algorithm has no global information on the graph G nor
the information of the packets not-competing for e in the time step t, thus, a
packet p’s duration is estimated as the sum of the length of its remaining path
(ep(i+1), ep(i+2), . . . , ep(lp)) and the current time t, assuming e = ep(i+1).
The packet with the largest number of time steps to reach its destination
under the assumption of no future delays, among those pending packets for
the edge e, is moved onto the edge e.

3.2 The Algorithm

We use cp to denote the number of remaining edges that the packet p should
take in order to reach its destination, assuming there are no delays along p’s
remaining path. At the beginning of a time step t, p’s duration is estimated as
t + cp. When t = 1, cp is initialized as lp, and p should take the path Pp with lp
edges to its destination. In the algorithm GRD, the value cp is updated by the
packet p using a counter. At a time, given an edge e, GRD uses the value cp to
select the largest-value packet p to send to e. Since the value cp may be updated
over time, we use a function cp(t) to denote the value cp at the end of time step
t. The algorithm GRD is described in Algorithm 1.

Note that for each edge e = (u, v), the decision of accepting a packet p or
not by the edge e depends on the local packets’ cp(t − 1) values, hence GRD is
a semi-online algorithm.

3.3 The Analysis

In the following, we analyze GRD. We first state two assumptions with which
we do not lose generality. These two assumptions facilitate the analysis of GRD
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Algorithm 1. GRD
1: For each packet p, associate p with a value cp(t − 1) to denote its remaining time

slots needed to get p to its destination tp, starting from time t and assuming no
delay incurred in the future for forwarding p. Initially, cp(0) = lp.

2: Forward a packet p to an edge e as long as no other packets are waiting for being
forwarded to e or cp(t − 1) is the largest value for all such packets competing for
the edge e. Ties are broken arbitrarily.

3: Update cp(t) ← cp(t − 1) − 1, for each time of forwarding a packet p. Update
cq(t) ← cq(t − 1), for each time of not forwarding a packet q.

as well as the analysis of PDP which is introduced in Sect. 4. We then show
GRD’s running time analysis and prove that it is optimal for scheduling packets
on anti-arborescence forests.

Assumption 1. Any edge in the graph G must belong to a packet’s path, say
∀e ∈ E, we have e ∈ ⋃

p Pp.

Assumption 1 holds since for any algorithm, it does not schedule a packet
over an edge outside of the set of edges

⋃
p Pp and thus, such removals of edges

do not hurt the algorithm in generating the makespan. A useful fact is that
Assumption 1 implies m ≤ N .

In the packet scheduling problem’s statement, we assume that all the paths
are simple ones. Given an input instance with some packet paths having cycles,
we can always convert the input instance to be one with simple paths only. Such
conversion does not introduce a larger makespan.

Assumption 2. All packets’ paths are simple ones.

Consider a packet p and its path Pp that have cycles. We modify the path
Pp and the graph G so that the modified path Pp has no cycles. Such cycles, if
any, are removed one by one from the input instance as below. Let

Pp = {sp, v1, v2, . . . , vk−1, vk, vk+1, . . . , vw, vk, vw+1, . . . , tp}
and there is one simple cycle vk, vk+1, . . . , vw, vk. We create a new graph: having
two vertices v′

k and v′′
k so that all the edges having vk as the heads originally now

have v′
k as the heads. All the edges having vk as the tails originally now have

v′′
k as the tails. We create a subpath v′

k, vk+1, . . . , vw, v′′
k to replace the subpath

vk, vk+1, . . . , vw, vk. The vertex vk is removed from the new graph and the new
path is:

Pp = {sp, v1, v2, . . . , vk−1, v
′
k, vk+1, . . . , vw, v′′

k , vw+1, . . . , tp}
Recall here that though in the new graph we have two new edges (vk−1, v

′
k)

and (vw, v′′
k ), these two new edges belong to the packet p’s path only but not to

any others. These two edges replaces the edges (vk−1, vk) and (vw, vk). Having
these two edges does not increase p’s duration, nor any other packet’s duration.
Any algorithm on the original graph G has the same makespan on the new graph.
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Theorem 1. GRD has a running time of O(m · D log N).

Proof. We are using a charging scheme to calculate GRD’s running time com-
plexity and will show that it is O(max(m,N)D log N). With Assumption 1, we
will have Theorem 1.

First, we show GRD’s running time is O(N ·D log N). For each edge e in the
graph G, we use a priority queue to maintain all the packets staying on the edge
e at a time and the value cp is used as the key. We charge GRD’s running time
on the priority queue operations on the packets during GRD’s execution. For
each edge e, it takes time O(log N) to get the packet with the largest cp value.
For each packet p, it incurs at most lp times of getting into a new packet queue.
Note that a packet queue is associated with each edge of the path Pp. For each
such a packet transmission, it incurs queue-operation time O(log N). There are
N packets. Thus, the total running time is O(N log N maxp lp) = O(N log N ·D),
where D is the dilation.

Second, we show that the running time can be calculated as O(m·D log N) by
charging the cost to each packet at a time. Label the edges as e1, e2, . . . , em. Note
that among the packets S(ei) waiting to be sent to an edge ei, only the max-cp-
value packet p experiences log |S(ei)| time while the other packets in S(ei) \ {p}
experiences search time 0. Consider a time step t and let S(e1), S(e2), . . . , S(em)
denote the m priority queues containing the N packets, with some queues being
possibly empty. For this single time step t, the total search time incurred to
those packets being sent is

∑
i log |S(ei)| and the total search time incurred for

those packets not being sent is 0. Note S(ei) ∩ S(ej) = ∅,∀i 
= j. We have the
total search cost for a packet moving one step along its path (assuming m ≥ 2):

∑

i

log |S(ei)| = log
∏

i

|S(ei)|

≤ log
(∑

i |S(ei)|
m

)m

= m log
N

m
≤ m log N − m (1)

Inequality 1 is based on Edwin Beckenbach and Richard Bellman’s work
presented in [2]. Recall that we only need to count the search time for a packet
being sent in a time step, thus, the number of searches associated with a packet
is its length, bounded by D. The total running cost of GRD is also bounded by
O(m log N · D). Theorem 1 is proved.

In the following, we analyze GRD’s performance when the underlying graph
G is an arborescence and anti-arborescence forest. An arborescence and anti-
arborescence forest contains multiple arborescences and anti-arborescence. An
arborescence [4] is a directed graph having a root so that there is exactly one
directed path from the root to any vertex of this graph. An anti-arborescence [5]
is one created by reversing all the directed edges of an arborescence, i.e. making
them all point to the root rather than away from it.
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Theorem 2. GRD is optimal in scheduling packets on arborescence and anti-
arborescence forests.

Proof. In order to prove Theorem 2, we only need to show that GRD is opti-
mal for packet scheduling on one arborescence and one anti-arborescence since
each packet is scheduled only on one arborescence or one anti-arborescence. In
the following, we prove that GRD is optimal in scheduling packets on an anti-
arborescence. The analysis for GRD on arborescence is similar but easier. We
leave it in our full journal paper.

We inductively prove Theorem2 using an exchange argument. Let ADV
denote an adversary. At the beginning of time step 1, ADV is the same as an opti-
mal algorithm with the minimum makespan d∗. Consider an anti-arborescence
T with a root r and label the depth of the edges as 1, 2, . . . based on the dis-
tances from the directed edges’ tails to the root r. The 1-depth edges are the
edges having r as their heads. An observation is that, given the graph being an
anti-arborescence, a packet moves from an edge labelled as i to an edge labelled
as i − 1 if the packet is transmitted in this time step. We are going to show
that there exists an invariant maintained during the algorithm’s execution. The
invariant guarantees Theorem2 since at the end of the schedule, we have d∗ = d,
where d is GRD’s makespan.

– (Invariant): At the beginning of any time step t, ADV and GRD have the
same configuration so that each edge holds the same set of packets.

At the beginning of time step 1, the invariant holds. Now, we consider the first
time step t, in which, ADV and GRD sends different packets, say, q and p
respectively, to an edge e. If such a time step t does not exist, then ADV and
GRD are the same and therefore, d∗ = d.

Consider the time step t. Recall that G is an anti-arborescence, thus, the
fact that e is the edge that p and q plan to step onto in time step t implies
that p and q have their paths overlap from time t till one packet reaches to its
destination. GRD chooses p instead of q because of cp(t − 1) ≥ cq(t − 1), which
implies that the remaining path for q is embedded in the remaining path for p.
The modification on ADV is as below:

1. In time step t, we modify ADV so that ADV sends p instead of q in t.
2. In the remaining schedule, ADV switches the orders of scheduling packets

p and q. In each time step that ADV originally schedules q, the packet p
is available (considering that p is ahead of q on q’s remaining path and q’s
remaining path is embedded in p’s remaining path) and p scheduled.

3. Similarly, in each time step ADV originally schedules p, q can be scheduled
until q reaches to its destination.

4. The order and time slots of sending other packets than p and q are not
changed.

5. For the possible case in which at some point t′ in the future, the original ADV
sends q instead of p making q is again before p on their shared subpath, then
the modified ADV switches back and follows the original schedule starting
from time t′.
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Realize that such modification on ADV at time t does not increase the duration
for p since p moves ahead of where it was in its original schedule. This mod-
ification does not make q’s duration more than p’s original duration, which is
no more than the makespan d∗. This modification does not change any other
packet’s duration as well. Thus, d∗ keeps the same after we modify ADV and
the invariant holds.

For each edge that ADV and GRD schedule different packets, we apply the
above procedure to modify ADV. The above modifications make sure that the
modified ADV is with the same configuration as GRD. At the end of time step t,
ADV and GRD are with the same configuration again. Inductively, the invariant
is proved. Thus Theorem 2 holds.

4 An Optimal Algorithm for the General Case

In this section, we use the dynamic programming technique to design a parame-
terized optimal algorithm, named PDP, for the packet scheduling problem in the
general case. This algorithm’s idea is different from the ones in [14], which were
based on the integer linear programming technique. Our algorithm catches some
properties of the makespan lower bound construction for the packet scheduling
problem and we hope that such properties can be used to design better approx-
imation algorithms.

4.1 The Ideas

We introduce some concepts that will be used to describe our ideas. Consider a
packet p in a given schedule. If p moves onto an edge e at time t, then we say
that the edge e is busy at time t. Otherwise, we say that the edge e is idle at
time t. The maximal interval [t, t′] in which an edge e is continuously busy (to
accept different packets) is called a busy interval, and thus, the edge e is idle in
time step t − 1 and time step t′ + 1, if any. If at the beginning of a time step t,
a packet p and a packet q have e as their next edges in their respective paths,
then we call p and q the competing packets for e in time step t. The edge e is
called a congested edge.

Consider a packet p at the beginning of a time step t. Assume p is on the edge
ep(i) where i 
= lp. The lower bound of time steps needed for p to arrive at its
destination tp is lp −i — In the lower bound case, all the edges in ep(i+1), ep(i+
2), . . . , ep(lp) should be busy for p. Assume p has the maximum duration d∗ in
an optimal algorithm. Our ideas in PDP is to make sure that p experiences not
many delays along its path to its destination.

The first idea is as below: the packet p greedily moves onto the next edge e
as long as no other packets are competing for e in the same time step. This idea
is identical to one used by GRD. Let OPT denote an optimal algorithm. OPT
forwards a packet as long as it can. Based on the above observation, we have the
following lemma.
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Lemma 1. Assume that at the beginning of a time step t, there are k packets
competing for an edge e. Then the edge e must be continuously busy from time t
to time t + k − 1 in OPT.

Proof. As OPT is a greedy algorithm, it schedules a packet onto e as long as e
is not busy. The edge e accepts one packet at a time, then there are at least k
packets available for e to accept in the time interval [t, t + k − 1].

Another observation based on the first idea is as below: Let us category all
the packets 1, 2, . . . , N into different groups, based on the needed number of
transmissions to their destinations. We use G(t, i) to denote the group contain-
ing the packets p which need i transmissions to their respectively destinations,
starting from the beginning of a time step t. Initially, we have at most D groups:

G(1, 1), G(1, 2), . . . , G(1,D),

where D is the dilation of the input instance. Initially, a packet p has its path
length lp and thus, it belongs to the group G(1, lp). From the best-effort manner
of forwarding packets, we have the following observation.

Lemma 2. In OPT, we have

G(t, i) = G1(t + 1, i − 1)
⋃

G2(t + 1, i)

∅ = G1(t + 1, i − 1)
⋂

G2(t + 1, i)

G(t, i + 1) = G1(t + 1, i)
⋃

G2(t + 1, i + 1)

G(t + 1, i) = G1(t + 1, i)
⋃

G2(t + 1, i)

where G1(·, ·) denotes the set of packets forwarded in the time step, G2(·, ·)
denotes the set of packets not being forwarded, and any one of them can be
an empty set.

Proof. Lemma 2 holds due to the facts that a packet is either forwarded or kept
stay in a single time step and a packet can be moved at most one step in one
time slot. Consider the beginning of a time step t. For a packet p ∈ G(t, i), if p
is forwarded to the next edge of its path, then p is added to G1(t + 1, i − 1). If
p stays on the edge in the time slot t, then p is added to G2(t + 1, i).

Though Lemma 2 is obvious, it provides us a way of constructing the dynamic
program using the index i in G(t, i). Lemma 2 implies that when t is increased
by 1, the number of groups is not strictly increased.

In the following, we introduce some new observations and ideas that our
algorithm needs.

Consider a packet p. For each edge e in the path Pp, the packet experiences
at least one time step on an edge. We define

b(p, e) = delayed time slots for the packet p on the edge e,
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where b(p, e) ≥ 1 and the packet p is on the edge ep(i + 1) at time t + b(p, e)
given e = ep(i).

A packet p’s duration is the sum of its delays on the edges, say, dp =∑
e∈Pp

b(p, e). In order to calculate the values b(p, e), we introduce the time
slots to calculate b(p, e). For any edge e, the packet p arrives at e at time

tin(p, e) :=
∑

e′
b(p, e′), (2)

where e′ ∈ ep(1), ep(2), . . . , ep(i − 1) given ep(i) = e. Also, the packet p leaves
the edge e at time

tout(p, e) =
∑

e′
b(p, e′), (3)

where e′ ∈ ep(1), ep(2), . . . , ep(i) given ep(i) = e. b(p, e) is calculated as below:

b(p, e) = tout(p, e) − tin(p, e). (4)

Instead of assigning integer variables to the values tin(p, e) in Eq. (2) and
tout(p, e) in Eq. (3), we come up with a new idea. We regard the packet p as a
unit-length job, tin(p, e) as p’s release time, tout(p, e) as p’s deadline, and e as
the machine processing p. The machine e processes at most one job at a time. In
the following, we introduce the way of tuning up the values in Eq. (4) to make
the job p successfully processed. The range [tin(p, e), tout(p, e)] is the interval to
schedule the packet p on e.

We want to guarantee that for each edge e, in the time ranges that the packets
p are ready/competing to move on e, there are sufficient number of time steps
to do so. Lemma 1 indicates that starting from a time t, the edge e is busy for at
least k time slots given k competing packets for the edge e. In order to specify
the interval to schedule a packet p on the edge e, we must guarantee that the
work load density (the ratio of the number of packets and the number of time
slots in any continuous range) for the edge e cannot exceed 1 [15]. That is, for
any time range [t, t′], we have

|{p|t ≤ tin(p, e) < tout(p, e) ≤ t′}|
t′ − t + 1

≤ 1, ∀e (5)

Note that Inequality (5) is a lower bound construction for the general case’s
makespan t′ for the edge e. When this inequality is tight, it is feasible to schedule
all the packets successfully using the EDF (earliest-deadline-first) policy, where
tout(p, e) denotes the deadline. Consider the maximal interval in which the edge
e is busy. We have the following observation.

Our dynamic programming algorithm is based on the formulation in Inequal-
ity (5). Given a makespan d for an edge e (for example, d = t′ in Inequality 5), we
are looking at the earliest release time tin(p, e) for a packet p so that a schedule
on an edge e ending at time d is feasible.
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4.2 The Algorithm and Its Analysis

Along the way of describing our algorithm, we give the running time analysis as
well as the correctness analysis. Some part of the correctness analysis has been
given when we introduced the algorithm’s ideas.

Denote C(e) the set of packets having their paths Pp covering an edge e,
C(e) = {p|e ∈ Pp}. Note that maxe C(e) = C where C denotes the congestion.
Consider a packet p. Define ψ(i, j), ∀i, j, as the state of a packet i arrives at
least the j-th edge ep(j) on its path Pi. Recall that j ≤ D, where D is the
dilation. Therefore, we have in total as most DN different configurations to
show the states of all the packets at a time. We index these configurations as
Ψ(1), Ψ(2), . . . , Ψ(Z), where Z ≤ DN . Our algorithmic contribution is to reduces
the number of configurations needed. Our analysis below shows that the total
number of configurations needed in the algorithm PDP is 2N , much less than
DN where D = maxp lp.

Now, define

OPT (Ψ(k), t) =

{
1, the configration Ψ(k) happens at the end of time stept

0, otherwise

The Objective. The objective of minimizing the makespan d∗ is to return the
smallest value t so that OPT (Ψ(k), t) = 1 for the configuration Ψ(k) when all
the packets i arriving at least their destination edges with indexes j (= li) in G.

The Base Case. The base case happens at the end of time step 1. We calculate
OPT (Ψ(k), 1) for all the indexes k. For each movement of a packet p, we list
all the configurations that a greedy schedule moves packets. Consider each edge
e and the competing packets C(e). Define C(e, 1) :=

⋃
p ep(1) and P (e, 1) :=

{p|ep(1) = e}. The total running time of the base case is thus to enumerate all
the configurations Ψ(k) and get the value OPT (Ψ(k), 1).

∏

e∈C(e,1)

|P (e, 1)| ≤
(

N

|C(e, 1)|
)|C(e,1)|

<

(
N

|C(e, 1)|
)

≤
(

N

(N/2)

)

≈ 2N

√
π · N

(6)
since |⋃e P (e, 1)| = N and P (e, 1)

⋂
P (e′, 1) = ∅, for all e 
= e′. This inequality

holds due to Edwin Benckenbach and Richard Bellman’s formula, as well as the
Stirling’s approximation. We remark here that the parameterized running time∏

e∈C(e,1) |P (e, 1)| can be much less than the upper bound.

The Recursive Step. We consider the ways of calculating OPT (Ψ(k), t). Due to
the ideas introduced above, this configuration Ψ(k) comes from the one step
move for some packets and being idle for the remaining packets. For these N
packets, we consider to partition them into two groups, the group of packets
moving forward in a time step and the group of packets staying in the same time
step. For each of such a partition, we transform from one configuration to another
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configuration. These two configurations are called neighboring configurations. We
have the following recursion:

OPT (Ψ(k), t) = max
k′

OPT (Ψ(k′), t − 1) (7)

where Ψ(k′) at time t − 1 is a neighboring configuration of Ψ(k) at time t. The
correctness of the recurrence in Eq. 7 is based on the recursion discussed in
Sect. 4.1.

In the following, we calculate the running time of the recursive step. Though
the total configuration number is up to DN , in this recursion, we only consider
the neighboring configurations so that if p is in Ψ(k) given p being on at least
the j-th edge of its path Pp, then p is on at least the (j − 1)th edge in the
configuration Ψ(k) if j is forwarded in time step t, otherwise, p should be on at
least the jth edge at the beginning of time step t. The total running time in this
recursive step is therefore bounded by 2N . As t is bounded by O(C + D) [8], we
have the following result.

Theorem 3. PDP is an optimal algorithm for scheduling packets on a graph
with a total running time O

(
2N (C + D)

)
.

The instance-dependent running time has been provided above, as∏
e∈C(e,1) |P (e, 1)| in Inequality 6.

5 Conclusions

In this paper, we present two exact algorithms for the packet scheduling problem.
The solution to the general problem brings more insights on designing approx-
imation algorithms. We expect these algorithmic techniques help with solving
packet routing problems.
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