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Preface

The papers in these proceedings, which consist of two volumes, were presented at the
16th Annual International Conference on Combinatorial Optimization and Applications
(COCOA 2023), December 15–17, 2023, in Honolulu, Hawaii, USA. The topics cover
most aspects of combinatorial optimization and applications pertaining to computing.

All accepted papers were selected by an international program committee consisting
of a large number of scholars from various countries and regions, distributed over the
world, includingAsia,NorthAmerica, Europe, andAustralia. Each paperwas required to
submit in double-blind style and was evaluated by at least three reviewers. The decision
was made based on those evaluations through a process containing a discussion period.

Authors of selected papers come from the following countries and regions: Canada,
China (including Hong Kong and Macau), Romania, Brazil, UK, India, Belgium, Japan,
Germany, Israel, andUSA.Manyof these papers represent reports of continuing research,
and it is expected that most of them will appear in a more polished and complete form
in scientific journals.

We wish to thank all who have made this meeting possible and successful, the
authors for submitting papers, the program committee members for their excellent work
in reviewing papers, the sponsors, the local organizers, and Springer for their support
and assistance, We are especially grateful to Yi Zhu and Xiao Li who made tremendous
efforts in local arrangements and set-up.

December 2023 Weili Wu
Jianxiong Guo
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Optimization in Graphs



An Efficient Local Search Algorithm
for Correlation Clustering on Large

Graphs

Nathan Cordner1(B) and George Kollios2

1 Utah Valley University, Orem, UT, USA
ncordner@uvu.edu

2 Boston University, Boston, MA, USA

Abstract. Correlation clustering (CC) is a widely-used clustering
paradigm, with many applications to problems such as classification,
database deduplication, and community detection. CC instances repre-
sent objects as graph nodes, and clustering is performed based on rela-
tionships between objects (positive or negative edges between pairs of
nodes). The CC objective is to obtain a graph clustering that minimizes
the number of incorrectly assigned edges (negative edges within clusters,
and positive edges between clusters).

For large CC instances, lightweight algorithms like the Pivot method
have been preferred due to their scalability. Because these algorithms do
not have state-of-the-art approximation guarantees, LocalSearch (LS)
methods have often then been applied to refine their clustering results.
Unfortunately, LS does not enjoy the same ability to scale since it is
inherently sequential and has the potential to converge slowly.

We propose a lightweight, parallelizable LS method called Inner-
LocalSearch (ILS) to use in conjunction with the Pivot algorithm. We
show that ILS still provides a significant improvement to clustering
quality while dramatically reducing the additional running time costs
incurred by LS. We demonstrate our algorithm’s effectiveness against
several LS benchmarks and other popular CC methods on real and syn-
thetic data sets.

Keywords: data mining · correlation clustering · local search

1 Introduction

The “min disagreement” correlation clustering (CC) problem, as originally
defined by Bansal et al. [6], inputs a complete graph G = (V,E) where every pair
of nodes is assigned a positive (+) or negative (−) relationship. The objective
is to cluster together positively related nodes and separate negatively related
ones, minimizing the total number of clustering “mistakes” (negatively related
pairs within clusters, and positively related pairs separated between clusters).
This clustering paradigm has been used in many applications, such has its orig-
inal motivation of classification [6], database deduplication [20], and community
detection in social networks [30,33]. This formulation of graph clustering has
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14461, pp. 3–15, 2024.
https://doi.org/10.1007/978-3-031-49611-0_1
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been especially useful, since a specific number of clusters does not need to be
specified beforehand and the only information needed as input concerns the
relationship between objects—not about the objects themselves.

One of the most popular CC algorithms is Pivot, presented by Ailon et al. [3],
which gives an expected 3-approximation result for correlation clustering. It runs
by choosing a “pivot” node at random, adding it and all other unclustered nodes
with an edge to it into a cluster, and repeating until all nodes are clustered (think
of choosing a random person in a social media network and clustering together
all “friends” of the pivot person). Currently the best known approximation factor
is 1.994 + ε, from a linear program rounding method due to Cohen et al. [13].
Unfortunately, linear programs for correlation clustering are quite large (the
number of constraints is at least cubic in the number of graph nodes). Some
work has been done to reduce the size of these linear programs [21], but even
algorithms based on these methods become intractable once input graphs have
millions of nodes. Instead, the Pivot algorithm has been revisited many times
[1,2,4,11,12,16,19,22–24,26–28,32] because of its ease of implementation and
scalability for large graphs.

A popular method of improving Pivot and other CC results is LocalSearch
(LS)1 [1,10,14,15,17,18,25,26,29,31] which moves nodes one at a time to
improve clustering costs until no more improvements can be made or a self-
imposed limit is reached. Each LS pass through the node set V examines all
nodes and all positive edges E+ (yielding a time complexity of Θ(|V | + |E+|)),
and LS has the potential to make multiple passes while improvements slowly
accrue. A LS pass that yields only a small number of improvements can trigger
another full pass through the node and positive edge sets. For larger graphs, even
running a small number of LS rounds can be less practical. The purpose of this
paper is to develop a new LS technique that still yields significant improvement
to clusterings produced by the Pivot algorithm, without the exorbitant time cost
imposed by running a full LS algorithm.

One weakness in the design of the Pivot algorithm is that it only considers
immediate connections of chosen pivot nodes. In many real-world settings, it is
reasonable to assume that not all “friends-of-friends” edges of pivot nodes are
present. We propose a new LS method called InnerLocalSearch (ILS), which runs
LS inside clusters only. The ILS algorithm still starts out with an O(|V |+ |E+|)
pass through the node set, but now has the ability to ignore positive graph edges
that go between clusters. Convergence within clusters tends to be much quicker
since smaller sets of nodes are being compared against each other, and once
individual clusters are converged the algorithm does not need to consider the
nodes inside them in future iterations. ILS is also easily parallelizable, making
it possible to run LS within multiple clusters at the same time. And though
it necessarily will not yield the same level of clustering improvement as the
full LS algorithm, we show experimentally that ILS still lowers objective values
significantly while drastically reducing the running time needed for convergence.
We compare Pivot with ILS against Pivot, several versions of Pivot with LS,
and another popular CC algorithm called Vote [15].

1 Also called “Best One Element Move” (BOEM).
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1.1 Related Work

The NP-hard correlation clustering problem was introduced by Bansal et al.
[6], who also provided its first constant approximation algorithm in the min
disagreement setting. The best known approximation factor is 1.994 + ε, from a
linear program rounding method due to Cohen et al. [13]. Correlation clustering
remains an active area of research, and many variations of the problem have
arisen over time; a general introduction to the correlation clustering problem
and some of its early variants is given by Bonchi et al. [8]. Recent research has
gone into developing sublinear time [5] and better parallel [7] CC algorithms.

The Pivot algorithm was first introduced by Ailon et al. [3]. Its efficient
run time and ease of implementation have made it very popular, and it has
been applied to many variants of correlation clustering that have arisen since.
Recently, it has been used for uncertain graphs [26], query-constrained CC [16],
online CC [24], chromatic CC [22], and fair CC [1]. It has also been shown how
to run the Pivot algorithm in parallel in various settings [11,27]. Zuylen and
Williamson [32] developed a deterministic version of Pivot that picks a best
pivot at each round, though at the cost of an increased running time complexity.
The most efficient non-parallel implementation of Pivot uses a neighborhood
oracle, where a hash table stores lists of neighbors for each node [4].

Various authors have employed LocalSearch as post-processing to improve
clustering results. LS refinements and LS-based algorithms have been used in
many CC variants and applications [1,10,14,15,17,18,25,26,29,31]. Bonchi et
al. [9] experimented with a heuristic method for running LocalSearch in parallel,
sacrificing monotone decreasing objective values for potentially faster runtimes.
Levinkov et al. [25] studied and compared other LocalSearch-based algorithms
for correlation clustering.

2 Previous Algorithms

Let G be a complete graph on node set V = {1, . . . , n}. A clustering of the graph
G is a partition C of the node set V . For a given clustering C = {C1, ..., Ck},
define intra-cluster edges to be edges between nodes within the same cluster;
define inter-cluster edges to be edges between nodes in distinct clusters.

For correlation clustering we assume the edge set E is partitioned into a set
of positive edges E+ and negative edges E−. The objective of min disagreement
correlation clustering is to find a clustering C of V that minimizes the number
of negative intra-cluster edges and positive inter-cluster edges. Let similarity
function s(u, v) = 1 if (u, v) ∈ E+, and 0 otherwise. We write the cost (or
objective value) of clustering C as

Cost(C, V ) =
∑

u,v∈V, u�=v
(u,v) is intra-cluster

(1 − s(u, v)) +
∑

u,v∈V, u�=v
(u,v) is inter-cluster

s(u, v).

For a given clustering C, we define the precision of C to be the average
number of positive edges inside clusters of C. Let Intra(C) = {(u, v) | (u, v) is
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Algorithm 1. Pivot Clustering

1: function Pivot(G = (V, E, s))
2: Initialize empty clustering C
3: while V �= ∅ do
4: Choose random u ∈ V
5: Let C = {u} ∪ {v ∈ V | (u, v) ∈ E+} � u and its unclustered neighbors
6: C = C ∪ {C} � Add cluster C to clustering C
7: V = V \ C � Remove clustered nodes from V

8: return the finished clustering C

intra-cluster}. We write

Precision(C) =
1

|Intra(C)| ·
∑

(u,v)∈Intra(C)
s(u, v).

We also define the recall of C to be the ratio of the number of positive edges
within clusters of C to the total number of positive edges |E+|. We write

Recall(C) =
1

|E+| ·
∑

(u,v)∈Intra(C)
s(u, v).

2.1 Pivot

Ailon et al. [3] proposed the randomized Pivot algorithm (Algorithm 1) for
unweighted correlation clustering. A cluster C is formed by picking a pivot node
u at random from V , then adding u and all other nodes v in V to C that are
connected by a positive edge to u (that is, (u, v) ∈ E+). If V \ C is not empty,
the algorithm continues on the subgraph induced by V \ C.

The Pivot algorithm yields a 3-approximation clustering result. Following
a common implementation method [4], we assume that every node u ∈ V has
access to a neighborhood oracle N(u) that contains all nodes v with a positive
relationship to u. We write

N(u) = {v ∈ V | (u, v) ∈ E+}.

The time complexity of Pivot is thus O(|V | + |E+|). However, Pivot often runs
much quicker than its worst-case time bound since many nodes can be removed
from V with each choice of pivot (see lines 5–7 of Algorithm 1).

2.2 LocalSearch

LocalSearch (Algorithm 2) has been a popular technique for improving the clus-
terings output by CC algorithms. LS takes a current CC instance G and a current
clustering C of the node set V . LS chooses a random permutation of nodes, and
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Algorithm 2. Local Search Improvements

1: function LocalSearch(G = (V, E, s), C, π) � π is a permutation of V (line 10)
2: for i ∈ {1, . . . , |V |} do
3: Let u = π(i), with current cluster C
4: Let C′ = arg minC′′∈C∪{∅}{Cost(C′′, u)}
5: if C′ �= C then
6: C = (C \ {C}) ∪ {C \ {u}} � Remove u from C
7: C = (C \ {C′}) ∪ {C′ ∪ {u}} � Add u to C′

8: return the augmented clustering C
9: function LocalSearchLoop(G = (V, E, s), C)

10: Choose a random permutation π of V
11: C′ = LocalSearch(G, C, π)
12: while Cost(C′, V ) < Cost(C, V ) do
13: C = C′

14: C′ = LocalSearch(G, C, π)

15: return C

iteratively makes improvements to the given clustering. A current node u con-
siders all current clusters C ∈ C, and the possibility of forming a new singleton
cluster, and chooses to move to whatever cluster minimizes its own contribution
to the overall clustering cost. When some pass through the node set yields no
new improvements, the LS algorithm halts and returns the modified clustering
C′. Limits can be imposed on LS, such as the max number of allowable iterations
through the node set or a time limit on how long LS can run before returning
its improved clustering.

For a given cluster C ⊆ V , and current node u ∈ V , we define the cost of
node u to be

Cost(C, u) =
∑

v∈C\{u}
(1 − s(u, v)) +

∑

v∈V \(C∪{u})
s(u, v).

The cost of opening a new cluster is Cost(∅, u) =
∑

v∈V \{u} s(u, v). The algo-
rithm greedily minimizes the cost of each node relative to the current clustering.

With a neighborhood oracle and a hash table containing the current node-
to-cluster assignment, line 4 of Algorithm 2 can be computed in O(|N(u)|)
time. We do this by iterating over N(u), tracking how many neighbors
of u lie in each cluster. We then consider only the clusters C that con-
tain neighbors of u (as well as the possibility of opening a new cluster),
and compute Cost(C, u) = |C| − |{neighbors of u within C}| + (|N(u)| −
|{neighbors of u within C}|); Cost(∅, u) = |N(u)|, so we can safely ignore clus-
ters that do not contain neighbors of u since in that case Cost(C, u) = |C| +
|N(u)| > Cost(∅, u). At most |N(u)|+1 clusters are considered in this process, so
finding the minimum is still O(|N(u)|). Looping over every node in V , the time
complexity of a single LS iteration is thus Θ(|V | + |E+|). The overall running
time of LocalSearch is Θ((|V |+|E+|)I), where I is the total number of iterations
made through the node set V .



8 N. Cordner and G. Kollios

Algorithm 3. InnerLocalSearch Improvements

1: function InnerLocalSearch(G = (V, E, s), C = {C1, . . . , Ck})
2: for each cluster Ci ∈ C do � Form subgraph induced by Ci

3: Let E+
i = {(u, v) | u, v ∈ Ci, u �= v, s(u, v) = 1}

4: for v ∈ Ci do
5: Let Ni(v) = {u ∈ Ci | (u, v) ∈ E+

i } � new neighborhood oracle

6: Let Gi = (Ci, E
+
i , s) be the subgraph of G induced by Ci

7: Let Ci = LocalSearchLoop(Gi, {Ci})

8: return C1 ∪ · · · ∪ Ck

3 InnerLocalSearch

Though LocalSearch has been used effectively in several applications, its has
a few drawbacks that make it less practical to run on larger instances. LS is
inherently sequential, since the decision of where to place a current node depends
on the decision of the previous nodes in the ordering, making it difficult to run in
parallel (e.g. [9]). LS decisions are also slow, since comparisons are made across
the entire vertex set (or at least all the neighbors of any given node).

To make up for these shortcomings, we propose an InnerLocalSearch algo-
rithm (Algorithm 3). On a given clustering C, we run LocalSearch to convergence
inside each cluster C ∈ C and return the updated clustering.

We note that ILS runs LS inside each cluster, with a runtime of O((|Ci| +
|E+

i |)Ii) per cluster Ci (line 7 of Algorithm 3, where Ii is the number of LS
iterations needed for cluster Ci to converge). Forming the subgraph (lines 3 to
6) across all clusters can be done in O(|V | + |E+|) time. Thus the overall time
complexity of ILS is O(|V | + |E+| + ∑k

i=1(|Ci| + |E+
i |)Ii), where k is the size of

the input clustering C. We note that ILS tends to converge much more quickly
than LS since it greatly reduces the number of comparisons needed between
nodes across the entire node set V . ILS cluster improvement can also be done in
parallel by running the For loop in line 2 of Algorithm 3 on multiple threads.

3.1 InnerLocalSearch and Pivot

Though InnerLocalSearch (and LocalSearch too) can be run on any clustering
result, we will focus on how ILS improves the Pivot algorithm. On any given
clustering round, the Pivot algorithm only checks to see if nodes have positive
edges to the chosen pivot node before deciding whether to cluster them together.
As such it is possible for many negative edges to exist within clusters formed by
the Pivot algorithm, making for a low precision clustering.

Consider Fig. 1, which shows a sample cluster from the Pivot algorithm (only
positive edges are drawn between nodes). Here node A was chosen as pivot and
all 10 nodes from A to J are put into one cluster (drawn in purple). The cost of
this cluster alone is 27, whereas the optimal partition into 3 clusters (drawn in
red) reduces the cost to just 6. By putting all nodes into one cluster, the Pivot
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Fig. 1. Pivot Cluster Example

algorithm incurred a higher cost and ignored smaller tight-knit communities. In
the worst case a Pivot cluster C might only contain |C| − 1 positive edges and
(|C|2 − 3|C| + 2)/2 negative edges, with a ratio of (|C| − 2)/2 negative edges for
every positive.

The goal of InnerLocalSearch is thus to split larger Pivot clusters containing
many negative edges into smaller clusters that contain a high number of positive
edges. In other words, InnerLocalSearch seeks to quickly boost the precision of
a Pivot clustering without greatly reducing its recall.

4 Experiments

We test the following algorithms: Pivot, Pivot with InnerLocalSearch (ILS),
Pivot with Timed LocalSearch (Timed), Pivot with full LocalSearch (Full). For
comparison, we include the Vote algorithm [15] which chooses a random node to
start a cluster and adds new nodes by greedily minimizing increase of clustering
cost. We present two implementations of ILS—sequential (clusters are improved
one at a time), and parallel (multiple clusters being improved at once). The
parallel implementation is done via Java parallel streams. For objective values,
we include one benchmark (Outer) that lists the inter-cluster cost from the
Pivot clustering; this is the maximum level of improvement that ILS can obtain if
every misclassified edge within Pivot clusters is resolved. The Timed LocalSearch
method allows full LocalSearch to run for the same amount of time used by
InnerLocalSearch. For running times we include another benchmark (Match)
that records the time full LocalSearch takes to match the same level of clustering
improvement obtained by InnerLocalSearch.
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All algorithms were implemented in Java2 and tested on a Linux server run-
ning Rocky Linux 8.7 with a 2.9 GHz processor and 16.2 GB of RAM. Mean
results are taken over 10 runs of each algorithm.

We test our algorithms on five real data sets3 (Amazon, DBLP, Youtube,
Livejournal, and Orkut), and one synthetic data set. Brief descriptions are pro-
vided in Table 1, including the value of U (the mean largest cluster size generated
by the Pivot algorithm). Edges present in these data sets are interpreted as pos-
itive edges; all other node pairs are interpreted as negative edges. The synthetic
data was generated by randomly assigning up to 5000 positive edges per node.

Objective values, relative improvements against the Pivot algorithm, and run-
ning times are reported in Tables 2 and 3. In Table 3 running times are reported
for both sequential ILS (SeqILS) and parallel ILS (ParILS). The average number
of clusters produced by each algorithm is provided in Table 4, and average pre-
cision and recall percentages for each clustering is provided in Table 5. Figure 2
contains scatter plots that show the distribution of disagreements for Pivot, ILS,
Full, and Vote across the 10 runs of each algorithm.

We first note that InnerLocalSearch improves the Pivot clustering results
significantly across all data sets. The Amazon data set has the smallest objective
value decrease at just over 20% lower than Pivot, with all others decreasing over
25%. Some (Orkut and Synthetic) even decrease by at least 30% from the Pivot
baseline.

Fig. 2. Disagreement Plots for Pivot, ILS, Full, and Vote

2 Code available at github.com/cc-conf-sub/ils-improvement.
3 Available at snap.stanford.edu/data/#communities.
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Table 1. Data Set Descriptions

Data Set |V | |E+| U Description

Amazon 334863 925872 113 joint-purchase network

DBLP 317080 1049866 149 co-author network

YouTube 1134890 2987624 500 friend network

LiveJournal 3997962 34681189 926 friend network

Orkut 3072441 117185083 1762 friend network

Synthetic 100000 165987514 4852 random edges

Table 2. Mean Objective Values

Data Set Pivot Outer ILS Timed Full Vote

Amazon 912658 0.667 0.799 0.966 0.706 0.751

DBLP 964983 0.664 0.731 0.973 0.647 0.701

YouTube 3738286 0.7 0.739 1.0 0.722 0.728

LiveJournal 43455676 0.666 0.721 0.984 0.664 0.694

Orkut 162654949 0.67 0.7 0.995 0.661 0.684

Synthetic 244469396 0.665 0.679 0.888 0.678 0.679

Table 3. Mean Running Times (s)

Data Set Pivot SeqILS ParILS Match Full Vote

Amazon 0.12 0.24 0.13 1.2 14.73 0.52

DBLP 0.11 0.22 0.12 1.12 9.65 0.62

Youtube 0.73 0.3 0.32 4.92 24.8 1.92

Livejournal 2.01 6.2 3.5 47.8 1076 20.5

Orkut 1.73 14.6 7.93 134 4380 61.5

Synthetic 0.13 13.6 13.6 63.7 1370 53.4

Table 4. Mean Number of Clusters

Data Set Pivot ILS Full Vote

Amazon 143675 193028 155423 139842

DBLP 133627 158448 145191 134345

Youtube 801928 894597 827679 7851778

Livejournal 1817576 2556263 1995222 1837134

Orkut 651394 1771069 874592 818587

Synthetic 4327 37709 18669 14581
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Table 5. Mean Precision/Recall (%)

Data Set Pivot ILS Full Vote

Amazon 51.4/34.2 88.5/24.4 85.4/36.7 76.8/37.2

DBLP 55.8/39.0 97.0/33.8 95.7/42.5 87.2/41.7

Youtube 25.9/12.4 87.3/8.7 84.0/12.0 76.2/13.0

Livejournal 28.4/16.6 88.7/11.1 85.4/20.3 78.0/18.1

Orkut 13.3/7.0 83.3/3.5 81.1/10.7 72.7/8.1

Synthetic 3.9/2.0 80.3/0.06 82.2/0.12 61.0/0.12

As expected, we see that in all cases Pivot with the full LS yields the lowest
objective values. On data sets where the Pivot clusterings have higher precision
(like Amazon and DBLP) the benefit of the full LocalSearch is greater. For
example, LS decreases by nearly 30% on Amazon compared with the just-over
20% decrease yielded by ILS. However, on data sets where Pivot precision is quite
low (like Orkut and Synthetic), the benefit of the full LS is negligible compared
to ILS. We also note that ILS improvements approach their theoretical maximum
(measured by Outer) on these low-precision data sets.

We see that the running times of full LocalSearch becomes a significant obsta-
cle on the largest data sets. For Livejournal, full LocalSearch takes an average
of 20 min to complete, and on Orkut the average is over an hour and 15 min. By
contrast, ILS takes just under 15 s to finish on Orkut and provides nearly the
same level of improvement as the full LocalSearch.

The Timed LocalSearch is unable to keep up with ILS in most cases; it is
unable to improve even 5% over Pivot within the time limit across all of the real
data sets, and on Youtube it is unable to make any gains whatsoever. The Match
benchmark also slows down considerably on the larger examples. On Livejournal
sequential ILS takes about 6 s to finish, whereas LocalSearch takes 47.8 s on
average to match the same level of improvement. Again on Orkut sequential ILS
takes under 15 s to finish, while LocalSearch takes over 2 min to match. Using
parallel threads we see that ILS is able to halve its sequential running time
on four out of the six data sets, and produce about the same running time as
sequential ILS on the other two (Youtube and Synthetic).

As we have already noted, the Pivot algorithm has the potential to yield low-
precision clusterings. On the other hand, for all the real data sets ILS reports the
highest precision (with a close second on the synthetic data set). ILS necessarily
reduces the recall from the Pivot algorithm, but it is not significantly lower than
the recall of other clustering results across all data sets. In the worst case, ILS
recall is still under 10 points lower than the Pivot recall.
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5 Conclusion

In this paper we presented the InnerLocalSearch method, a viable alternative to
running a full LocalSearch process to improve clustering results from the Pivot
algorithm. We showed experimentally that ILS requires only a fraction of the
amount of time spent by LS, while still yielding significant decreases in objective
value. In many cases ILS yields nearly the same level of improvement as LS,
especially when Pivot produces low-precision clusterings. We also showed that
ILS greatly boosts Pivot precision without too much sacrifice to its clustering
recall, and that it has the advantage of easily being run in parallel.
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Abstract. Given a road network, a source, a destination and K platoon
paths, our aim is to reach the destination in a maximum given time
using the benefits of traveling along platoons. We consider two objective
functions (maximize the total time spent as a member of a platoon or
minimize the time traveled without platoons) and for each such objective
function, we have two scenarios: in the first one we are given the moments
when platoons start to travel, while in second version we can decide these
moments. We show several NP-hardness results as well as a dynamic-
programming polynomial time algorithm (for the scenario in which the
starting times are given). Then we describe an approximation algorithm
with a factor 1/c that has running time exponential in K/c, with 1 ≤
c ≤ K.

1 Introduction

There are many problems in literature involving resource constrains that are
motivated by applications in transportation and scheduling. Simultaneously with
the development of autonomous cars, platoon based transportation gained more
interest in recent years. Based on the assumption that vehicles are capable to
communicate with each other, a platoon is formed using multiple vehicles that
move in a line, trying to maintain a fixed distance between them. Several works
show the advantages of this method of transportation with emphasize on fuel
consumption reduction by a careful planning of the route of the platoons, e.g., [4,
5]. New studies are developed for the optimization and stability of platoons, as
well as studies that explore the possibility of forming platoons from existing
vehicles on a road [8]. Moreover, there are experiments made in this field of
platoons formation, like the PATH project [7] and SARTRE project [1]. Due to
the dynamics of evolution in the transportation area, it is necessary to study
new scenarios related to transportation using platoons.

Our Results. The models proposed in this article have as main objective the
possibility to travel between two cities with a certain autonomy level. The input
consists of an undirected graph where each node represents a city, and each
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edge represents a road between two adjacent cities. We assume that the graph
is undirected since usually platoons travel on larger roads (e.g. highways) which
have typically lanes in both directions. Nevertheless, we stress the fact that with
small modifications, our results work also for directed graphs. Each edge has
assigned a weight which represents the time necessary to travel between the two
nodes which are connected with that particular edge. On the input graph, the
platoons are described as paths between nodes. We assume that each platoon
follows a path (does not visit the same vertex twice) and that the speed of the
platoons and the speed of our vehicle are equal and constant. We aim to find a
route for our vehicle from a starting vertex to a destination that maximizes the
total time travelled along with a platoon (we say that we travel along a platoon
if we travel on a road at the same moment when a platoon traverses it), or to
minimize the distance travelled without platoons. We consider two scenarios for
these problems: in the first we are given the time when each platoons start to
travel, in second we can choose the starting time for each platoon.

In Sect. 3 we prove several NP-hardness results (mostly for the case when
we are not allowed to visit a vertex twice) and in Sect. 4 we give a dynamic-
programming polynomial time algorithm (for the scenario in which the starting
times are given), using time-expanded graphs. Then, in Sect. 5 we describe an
1/c-approximation algorithm that has running time exponential in K/c, with
c ∈ [K].

These problems can be used to model other applications, for example in
planning a travel where we aim to use public transportation with a given schedule
or private transportation for which we can choose the time we use it, but not the
route. Instead of transportation we can think of public events with given paths
and schedules, like street festivals or of routes for controlling existing traffic.
Related work. Our work is related with the one of Van De Hoef, Johansson
and Dimarogonas [9,10], where the focus is on fuel consumption reduction. The
above mentioned studies use similar initial conditions as the one presented in this
paper, and the objective is mainly to find a path that intersect existing platoons
and minimize a function that captures the reduction in fuel consumption. In a
certain way, we extend the work in [6,9,10] by having the same initial conditions,
but different objectives.

As we mention later in the paper, our problems are also related to problems
like constrained shortest/longest path problems or disjoint path problems.

2 Problem Formulation

First we introduce some notations. For a positive integer n, let [n] = {1, 2, . . . , n}.
For an array v = (v1, . . . , vn) of numbers denote by v[i : j] the sub-array
(vi, . . . , vj) and sum(v) =

∑n
i=1 vi. Similarly, for a function v : [k] → R+, we

denote sum(v) =
∑

i∈[k] v(i) and also use vectorial notation v = (v(1), . . . , v(k)).
We model a road network using an undirected graph G(V,E), where each

city is represented by a vertex and each road between two cities vi and vj is
represented by an edge vivj ∈ E. Each edge has a certain time necessary to
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traverse it; more precisely we are given a function d : E → R+ where, for an
edge vivj ∈ E, d(vivj) is the time necessary to travel between nodes vi and vj
(also called cost or distance, since we can assume that our speed equals 1).

For a walk P = [x1, . . . , xp] denote by d(P ) =
∑p−1

i=1 d(xixi+1) its cost, that
is the total time to travel P and by l(P ) = p − 1 its length (number of edges).
Recall that in a walk vertices and edges may repeat, but in a path vertices are
distinct. Denote by P [i : j] the subwalk [xi, . . . , xj ].

We are given a set of K paths P1, P2, . . . , PK , that we call platoon paths; each
path Pi is traversed by platoon i (platoon i travels along path Pi). We also have
a starting time function s : [K] → R+, that represents the starting time of each
platoon (s(i) is the moment when the platoon i is at the beginning of path Pi

and starts to travel along it). Instead of notation s(i) we also use notation s(Pi)
for the starting time of platoon on path Pi, if platoon paths have no associated
indices.

Then we can determine for each vertex x of a platoon path Pz the moment
when the platoon z arrives in vertex x, called arrival-time and denoted by t(z, x):
if x is the i-th vertex of platoon path Pz, then t(z, x) = s(z)+d(Pz[1 : i]). Denote
by δ(z, x) = d(Pz[1 : i]) the time platoon z needs to travel to reach vertex x.

In this context, with platoon paths and starting times fixed, we aim to find
walks in G from source to dest on which we can travel (with same speed as
platoons, assumed 1) with two distinct objectives: first to spent a maximum
amount of time along platoons, second to travel a minimum distance without
platoons, in a given time. To model that, consider t the total time we can travel
and s : [K] → R+ the starting time function.

A t-time-travel from source to dest is a pair (P,w) where P = [x1, . . . , xp] is
a (source, dest)-walk and w : V (P ) → R+ is a waiting time function (w(i) is the
time we wait in vertex xi) such that the total time of the traveling d(P )+sum(w)
is at most t (called simpler t-travel or travel if t can be deduced from context).

Let P = [x1, . . . , xp] be a walk and (P,w) a travel. We say that the i-th edge
xixi+1 of P is covered by travel (P,w) along a platoon z (relative to starting time
s) or that we travel on edge xixi+1 along platoon z if xixi+1 ∈ Pz and the time
we arrive in xi traveling on P with waiting times w is equal to the arrival-time
of the platoon z in xi, that is: d(P [1 : i])+ sum(w[1 : i]) = t(z, xi). If there is no
platoon z such that xixi+1 is covered along platoon z we call the edge uncovered
by travel (P,w). Denote by Q(P,w) the set of edges covered by (P,w).

The covering of travel (P,w), denoted covs(P,w), is the sum of the costs of
all the edges covered by (P,w): covs(P,w) =

∑

xy∈Q(P,w)

d(xy). The autonomy of

travel (P,w), denoted autos(P,w), is the sum of the costs of all uncovered edges
of P : autos(P,w) = d(P ) − covs(P,w) =

∑

xy∈E(P )−Q(P,w)

d(xy).

For example, consider the input from Fig. 1(a) with the total time to travel
t = 30. Let P = [v1, v2, v3, v4, v5]. Depending on the time we wait in vertices
(that is on the travel associated to P ) different edges can be covered. Assume
first that the travel has waiting times w1 = (0, 2, 0, 1, 0): we arrive in v2 at
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Fig. 1. Examples of input graphs with platoons.

moment 10, wait 2 moments and then travel on edge v2v3 along platoon 1;
then we arrive in v3 at moment 17, after platoon 2 already left; thus the only
edge covered by the travel (P,w1) is v2v3, hence cov(P,w1) = d(v2v3) = 5 and
auto(P,w1) = d(v1v2)+d(v3v4)+d(v4v5) = 22. Consider now travel (P,w2) with
w2 = (0, 0, 1, 0, 0); we are in v3 at moment 15, wait 1 and then travel on edge v3v4
along platoon 2. Now Q(P,w2) = {v3v4}, cov(P,w2) = 8 and auto(P,w2) = 19.

A t-travel from source to dest relative to s is a t-travel (P , w) relative to s
where P is a walk from source to dest. We use the following notations:

maxcovs(source, dest, t) = max{covs(P,w)|(P,w)t-travel from
source to dest relative to s}

maxpathcovs(source, dest, t) = max{covs(P,w)|(P,w)t-travel from
source to dest relative to s,with P path}

Similarly define minauto and minpathauto for minimum autonomy. In the
rest of the paper, if s is given and fixed, we can omit index s from the notations;
the same holds for index t.

Remark 1. With above notations, the pair (P [1 : i], w[1 : i]) is an ti-travel from
x1 = source to xi for ti = d(P [1 : i]) + sum(w[1 : i]).

Denote by D the distance matrix of G. We consider two versions for our
problems, given the maximum travel time Tmax and for each version two different
objectives, as already mention. In the first version we are also given the starting
time of each platoon, in the second version we can decide the starting times.
In both version we seek to find a travel from source to dest that optimize one
of the criteria: maximizes the time spent as member of a platoon (determine
maxcov(source, dest, Tmax)) or minimize the time (distance) traveled without
platoons (minauto(source, dest, Tmax)). The formal definitions for our problems
follow.

Problem 1. [MaxCov] Given a graph G(V,E), a distance function d : E → R+,
two vertices source, dest ∈ V , a total time to travel Tmax ∈ R+, the platoon
paths P1, P2, . . . , PK and the starting-time function s : [K] → R+, find an
Tmax−travel (P,w) from source to dest relative to s with maximum covering
and its covering value maxcov(source, dest, Tmax).

Problem 2. [s-MaxCov] Given a graph G(V,E), a distance function d : E →
R+, two vertices source, dest ∈ V , a total time to travel Tmax ∈ R+ and the
platoon paths P1, P2, . . . , PK , find a starting-time function s : [K] → R for



20 R. Marinescu-Ghemeci et al.

which maxcovs(source, dest, Tmax) is maximum and the value of this maximum:
max{maxcovs(source, dest, Tmax)|s : [K] → R}.

But in some traveling problems and other applications we need to travel
without repeating vertices. Motivated by this restriction, we also consider two
similar problems: MaxPathCov and s-MaxPathCov, where we constrain P
to be a path, not just a walk, so we replace maxcov with maxpathcov.

As for our second objective - minimize the time we travel without platoons,
that is the autonomy, we can consider also four similar problems: MinAuto,
MinPathAuto, s-MinAuto and s-MinPathAuto.

To see the difference between these problems and their applications, we give
some examples. First consider input from Fig. 1 (b). The solution both for Max-
PathCov and MinPathAuto for Tmax = 4 is the path P = [v1, v2, v4] with the
travel having all waiting times equal to 0 (w ≡ 0). But the solution for Maxcov
is walk P = [v1, v2, v3, v2, v4] with w ≡ 0.. In this case we travel along a platoon
on edge v2v3 and then travel back on v2 just to maximize the covering. The
effort to go back from v3 to v2 is not always worthing in some transportation
problems, but is very useful in others, like travelling problems where what we
want is actually to travel along platoons (for example clients or touristic events)
as much as possible. Another example is the graph in Fig. 3. The solution for
MaxCov is ([v1, v2, v5], (0, 1, 0)) and for MinAuto is ([v1, v3, v4, v5], 0).

We prove s-MaxCov, MaxPathCov and s-MaxPathCov problems are
NP-complete and propose a polynomial time dynamic programming algorithm
for MaxCov (by reducing the problem to a longest path problem in an associ-
ated time-expanded DAG) and an approximation algorithm for s-MaxCov.

Remark 2. Let (P,w) be a t-travel with minimum autonomy, where P is a walk.
If we successively replace a subwalk from P between two equal vertices x with
x and add the cost of this subwalk to the waiting time in x we still obtain a
t-travel (P ′, w′) with minimum autonomy, where the walk P ′ is a path (after
removing a subwalk we have auto(P,w) ≤ auto(P ′, w′).

By Remark 2 we have minautos(source, dest, t) = minpathautos(source, dest, t),
so it suffices to consider only problems MinPathAuto and s-MinPathAuto.
We prove that s-MinPathAuto is NP-complete and propose a polynomial time
algorithm for MinPathAuto, similar to the one for MaxCov.

The following remark also holds. This allows us to travel on shortest path
when we do not travel along platoons.

Remark 3. Let (P = [x1, . . . , xp], w) be a t-travel. Let xi, xj ∈ P such that all
edges of subwalk P [i : j] (from xi to xj) are uncovered by (P,w). Let (P ′, w′) be
the travel constructed as follows: P ′ is obtained from P by replacing the subwalk
from xi to xj with a shortest path from xi to xj , and w′ is obtained from w by
setting the waiting times of the vertices from this shortest path to 0, except for
xj which has waiting time sum(w[i : j]) + d(P [i : j]) − D(xi, xj). Then (P ′, w′)
is also an t-travel with cov(P,w) ≥ cov(P ′, w′) and auto(P ′, w′) ≤ auto(P,w).
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3 NP-Hardness Result for MAXPATHCOV, MINPATHAUTO

and s-MAXPATHCOV

To prove that our problems are NP-complete we used the following well known
NP-Complete Problems, some of Karp’s original NP-complete problems [3].

Problem 3. [Longest Path] Let G be an unweighted and undirected graph,
source and dest two vertices of G and c a natural number. Decide if there exists
a path P from source to dest in G with l(P ) ≥ c.

Problem 4. [Subset Sum] Let B = {b1, b2, . . . , bn} a set of numbers and let c a
number. Decide if there exists a set Y ⊆ B with

∑
b∈Y b = c.

Problem 5. [Directed Edge-Disjoint - DEDP] Let G be a directed graph
and (s1, t1), . . ., (sk, tk) be a set of k pairs of vertices. Decide if there are k
edge-disjoint paths D1, . . . , Dk such that Di is a path from si to ti for i ∈ [k].

Theorem 1. MaxPathCov and s-MaxPathCov are NP-complete and as
hard to approximate as Longest Path.

Proof. Consider G, source and dest an instance of Longest Path. We construct
an instance of MaxPathCov as follows. Define d(ei) = 1,∀i. For every edge
xy ∈ G consider n platoon paths [x, y] with starting time 0, 1 . . . , n−1 - denoted
Px,y,t for t ∈ {0, 1 . . . , n−1} - and n platoon paths [y, x] with starting times also
0, 1 . . . , n − 1, denoted Px,y,t (that is there is a platoon traversing every edge ei
on both directions of the graph at any moment t from 0 to n−1). Let c be a fixed
number. We prove that there is a path from source to dest of length at least c
in G if and only if for Tmax = n−1 we have maxpathcov(sorce, dest, Tmax) ≥ c.

Assume first that P is a path from source to dest with l(P ) ≥ c. Consider the
Tmax travel (P,w) with w ≡ 0. Then every edge of P is covered by this travel.
Indeed, let xy be the t-th edge of P . We arrive in x at moment t−1 so this edge is
covered along platoon on path Px,y,t−1. It follows that each cov(P,w) = l(P ) ≥ c.

Conversely, if exists a travel (P,w) with cov(P,w) ≥ c, then d(P ) = l(P ) ≥
cov(P,w) ≥ c.

The reduction from Longest Path to s-MaxPathCov is similar to the
previous one, with the following differences. This time we consider two platoon
paths for each edge xy of the graph: Px,y = [x, y] and Py,x = [y, x]. If P is a path
with l(P ) ≥ c then let xy be the t-th edge of P ; we can define the starting time
of platoon Px,y as t− 1 and then edge xy is covered by travel (P,w) with w ≡ 0.
Thus, all edges of P are covered and we have maxpathcovs(source, dest, Tmax) ≥
cov(P,w) = l(P ) ≥ c. �

Theorem 2. s-MaxCov is NP-complete (even for trees).

Proof. We prove that Subset Sum is polynomial time reducible to s-MaxCov.
Given an instance of the Subset Sum problem, we construct an instance of s-
MaxCov as follows. Consider graph G as the star graph with center x0 and
terminal vertices x1, . . . , xn+2. Consider source = xn+1 and dest = xn+2 and
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distance function defined as follows: d(x0xi) = bi for i ∈ [n] and d(x0xn+1) =
d(x0xn+2) = ε for some ε 	 bi,∀bi ∈ B. Consider platoon paths Pj = [x0, xj ]
for j ∈ [n]. Let c be a fixed number. We will prove that there exist a subset of
B with sum c if and only if there exists a starting time function s such that for
time Tmax = 2c + 2ε we have maxcovs(source, dest, Tmax) ≥ c.

Assume first that bi1 , . . . , bik is a subset of B (i1 ≤ . . . ≤ ik) with sum c.
Consider walk P = [xn+1 = source, x0, xi1 , x0, xi2 , . . . , x0, xik , x0, xn+2 = dest]
and starting time function s defined as follows s(ij) = ε + 2 ∗ bi1 + . . . + 2 ∗ bij−1

and s(i) = Tmax for i ∈ [n] − B. Consider also a travel (P,w) with w ≡ 0. Each
edge x0xij is covered since for every j ∈ {i1, . . . , ik} we arrive in x0 at moment
ε + 2bi1 + . . . + 2bij−1 and then travel the edge x0xij along platoon ij

Hence maxcovs(source, dest, Tmax) ≥ cov(P,w) = bi1 + . . . + bik = c.
Conversely, assume there exists s such that maxcovs(source, dest, Tmax) ≥ c.

Then there exists travel (P,w) such that cov(P,w) ≥ c. When (P,w) covers an
edge x0xi from a platoon path, it must traverse the edge back since xi is a
terminal vertex. Also, P must begin with edge xn+1x0 and end with x0xn+2

It follows that d(P ) = 2ε+2∗cov(P,w) ≥ 2ε+2c. Since we must have d(P ) ≤
Tmax it follows that 2ε + 2 ∗ cov(P,w) ≤ Tmax = 2c + 2ε hence cov(P,w) ≤ c.

Since the reverse inequality also holds, we have cov(P,w) = c and the dis-
tances of the covered edges Q(P,w) correspond to a subset of sum c in B. �

Theorem 3. Problem s-MinPathAuto is NP-complete (it is hard to decide
even if the solution is 0).

Proof. (sketch) We prove DEDP is reducible to s-MinPathAuto. Let G(V,E)
be a directed graph with V = {v1, . . . , vn} and let (s1, t1), . . ., (sk, tk) be a set
of k pairs of vertices in G. Let m = |E(G)|. Consider ε such that (3k − 1)ε < 1.

We build in polynomial time an instance for s-MinPathAuto as follows.
For every pair (si = va, ti = vb) consider a gadget Gi with vertex set V (Gi) =

{vi
1, . . . , v

i
n} ∪ {xi, yi} (a copy of vertices in G plus two new vertices) and edge

set E(Gi) = {vi
pv

i
q|vpvq ∈} ∪ {xivi

a, y
ivi

b, x
iyi} (corresponding to the edges of G

but ignoring orientation, plus 3 new edges); we say that vertex vi
j corresponds

to vertex vj from G (is a copy of it). Let d(xivi
a) = d(yivi

b) = ε , d(xiyi) = ε and
d(e) = 1 for every other edge in E(Gi) (that correspond to edges in G).

Then for every i ∈ [k − 1] add the following edges between gadgets: yixi+1

with cost ε and edges vi
jv

i+1
k for j, k such that vkvj ∈ E with cost m + 1. Then

add a new vertex y0 and edge y0x1 with distance A = (k + 1)(m + 2). Denote
G′ the obtained graph. An example for this construction is in Fig. 2.

For each edge vpvq of G consider the platoon Pp,q = [v1
p, v

1
q , v

2
p, v

2
q , . . . , v

k
p , vk

q ].
Consider also for every i ∈ [k] platoons: Pi = [yi−1, xi] and P i

a = [xi, vi
a] and

P i
b = [vi

b, y
i] corresponding to pair (si = va, ti = vb) from G.

For the example from Fig. 2 platoons are indicated by arrows: platoon path
P1,2 = [v1

1 , v
1
2 , v

2
1 , v

2
2 ] corresponding to edge v1v2 with blue arrow, P2,1 corre-

sponding to edge v2v1 with green, P2,3 corresponding to v2v3 with mauve arrow.
With black arrow are platoons with one edge: P1 = [y0, x1], P2 = [y1, x2], plus
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platoon paths in gadget 1 for pair (v1, v3): P 1
1 = [x1, v1

1 ], P 1
3 = [y1, v1

3 ], plus
platoon paths in gadget 2, for pair (v2, v1): P 2

2 = [x1, v2
2 ], P 2

1 = [y1, v2
1 ].

Fig. 2. Example of reduction from DEDP to s-MinPathAuto

Let source = y0, dest = yk, Tmax = A + (3k − 1)ε + m. Then DEDP has a
solution in G for pairs (si, ti), i ∈ [k] if and only if in G′ there is a starting time
function s such that minpathautos(source, dest, Tmax) = 0. �

4 Polynomial Time Algorithm for MAXCOV

and MINPATHAUTO

Next we will describe how MaxCov and MinPathAuto can be reduced to
longest path, respectively shortest path problem in an associated time-expanded
graph. Since this graph is a DAG, polynomial time dynamic programming algo-
rithms can be used to solve the two problems.

The idea of time-expanded graph was first considered for dynamic flow prob-
lems [2]. Informally, the time-expanded version of a dynamic network is a static
network build as follows: for each vertex v and each time step t in time horizon
a vertex (v, t) is added in the time-expanded graph; an arc between (u, t) and
(v, t′) correspond to traversal in time from u to v.

In our case, assume that we have the input MaxCov (which is the same
as for MinPathAuto). The relevant moments for time horizon are the arrival-
times of platoons in vertices, plus moments 0 and Tmax. For uniformity, we define
two more platoon paths with one vertex, corresponding to source, respectively
destination: PK+1 = [p1K+1 = source] and PK+2 = [p1K+2 = dest] and extend
function s to [K + 2] by defining s(K + 1) = 0 and s(K + 2) = Tmax.

Then a time-expanded graph for our problems has as vertices pairs (u, t) with
t being the arrival time of a platoon in vertex u . An edge between two vertices
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(u, t) and (v, t′) correspond to a travel on edge uv along a platoon or to a travel
using a shortest path from u to v (see Remark 3), having the possibility to wait in
v. We can also wait in the source, so we have edges from (source, 0) to (source, t).
Formally, the directed time-expanded graph GT associated to G is defined as
follows. Let V (GT ) = {(v, t)|∃a ∈ [K] such that v ∈ Pa and t = t(a, v)}} An
edge from (u, t) to (v, t′) exists if and only if one of the cases occurs:

Case (1): u = v ∃a ∈ [K] such that uv ∈ E(Pa), t = t(u, a), t′ ≥ t(v, a)
Case (2): t′ ≥ D(u, v) + t and we are not in Case (1)
Case (3): u = v = s and t′ > t

We associate to each edge in GT two weights representing the covering and
autonomy of the corresponding path in G:

Edge in case (1): c((u, t)(v, t′)) = d(uv), a((u, t)(v, t′)) = 0
Edge in case (2): c((u, t)(v, t′)) = 0, a((u, t)(v, t′)) = D(u, v)
Edge in case (3): c((u, t)(v, t′)) = 0, a((u, t)(v, t′)) = 0

A path P T = [(x1, t1), . . . , (xp, tp)] in GT from (source, 0) to (dest, Tmax)
corresponds to a travel (P,w) in G from source to dest, where covered edges
are actually the edges corresponding to the edges of GT in Case (1), and edges
in case (2) are replaced by shortest paths; Waiting time can be calculated for
each vertex w(xi) = ti − d(xi−1xi) − ti−1 if edge xi−1xi is in Case (1), w(xi) =
ti − D(xi−1, xi) − ti−1 in Case (2), and w(s) = max{t|(s, t) ∈ T } (see Fig. 3).
Conversely, a solution (P = [x1, . . . , xp], w) for MaxCov or MinAuto that
satisfies property from Remark 3 corresponds to a path in GT from (source, 0)
to (dest, Tmax) with vertices (xi, ti) where ti = sum(d(P [1 : i]) + sum(w[1 : i])).
We have cov(P,w) = c(P T ) and auto(P,w) = a(P T )

Fig. 3. Time-expanded graph example

Thus, MaxCov is equivalent to the longest path problem in GT for weights
c and MinAuto is equivalent to the shortest path problem in GT for weights a.
These problems can be solved using dynamic programming.
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Theorem 4. MaxCov and MinPathAuto are polynomial time solvable in
O(n2K2 + n3).

Proof. Using the equivalence with longest path problem in the DAG GT for
weight c we obtain the following algorithm:

1. Consider two new platoon paths PK+1 = [p1K+1 = source] and PK+2 =
[p1K+2 = dest], with s(K + 1) = 0 and s(K + 2) = Tmax and let K = K + 2.

2. N = {(v, t)|∃a ∈ [K] such that v ∈ Pa and t = t(a, v) ≤ Tmax} = V (GT )
3. Sort N ascending by time arrival (this is a topological sorting for GT ).
4. Calculate distance matrix D of G using Floyd-Warshall algorithm
5. Set DP (source, 0) = 0
6. For every (v, t) ∈ N − {(source, 0)} calculate DP (v, t) using recurrence :

DP (v, t) = max{R1, R2} where:
R1 = max{DP (u, t′) + d(uv)|(u, t′)∈D1}, R2 = max{DP (u, t′)|(u, t′)∈ D2},
D1 = {(u, t′) ∈ N |∃a ∈ [k]uv ∈ E(Pa), t′ = t(a, u), t′ + d(uv) ≤ t},
D2 = {(u, t′) ∈ N |t′ < t, t′ + D(u, v) ≤ t}
(D1 ∪ D2 are actually the predecessors of (v, t) in GT )

7. return DP (dest, Tmax).

Since |N | ≤ nK + 2 and |E(P1)| + . . . + |E(PK)| ≤ K(n − 1), the complex-
ity O(n2K2 + n3) easily results. Using the classical way of following back the
recursion we can also build an optimum Tmax-travel in the same complexity.

The algorithm can be easily modified to solve MinAuto. Moreover, by
Remark 2 we can obtain a solution where the walk is actually a path, hence
a solution for MinPathAuto. �

Note that using this approach more general scenarios can be considered, for
example when the profit of travelling on an edge uv along a platoon is given (so
it is not necessary equal to d(uv)).

5 Approximation Algorithm for S-MAXCOV

As we proved in Sect. 3, s-MaxCov is NP-complete. In this section we describe
an approximation algorithm for this problem with a factor 1/c that has running
time exponential in K/c, with 1 ≤ c ≤ K.

Remark 4. When searching for a maximum covering we can consider only travels
(P,w) such that the edges covered by (P,w) along a platoon a induce a subpath
of P . Indeed, once we meet a platoon a there is no need to stop traveling along
it and then intersect it again, since in this time platoon a travels with the same
speed as us, so we cannot cover a bigger distance along another platoon before
meeting a again. Then it suffices to consider only travels (P,w) with the property:

∀i < j (thei-th andj-th edges are traveled along platoona) = 0 =⇒
(thek-th edge is traveled along platoona, ∀i ≤ k ≤ j) (1)
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Remark 5. Consider a walk P = [x1, . . . , xp] and assume we defined the waiting
times for x1, . . . , xi−1. If a platoon path Pa contains v = xi, we can always choose
the starting time for a and waiting time in xi such that we meet platoon a in xi

using travel (P [1 : i], w[1 : i]). More exactly, since using (P,w) we are in vertex
v at time tv = d(P [1 : i]) + w([1 : i − 1]), we can choose the starting time for a
such that we meet platoon a in v as follows: if tv > δ(a, v) set s(a) = tv −δ(a, v),
otherwise set s(a) = 0 and set the waiting time in v to δ(a, v) − tv.

Remark 6. In finding an optimal solution for s-MAxCov, Remarks 3, 4, 5 allows
us to consider only platoon paths with property (1) and starting-time function
and waiting times defined according to the strategy given in Remark 5, such
that the edges that are not covered induce shortest paths.

The main idea of our algorithm is to arbitrarily partition the set of platoon
paths in c subsets of dimension

[
K
c

]
or

[
K
c

]
+ 1, where c ∈ [K]. For each subset

we determine an exact solution for s-MaxCov if the platoon paths are only the
paths in this subset. For that, we build all walks P formed by subpaths of platoon
paths joined by shortest paths (see Remark 4). Then we calculate starting times
s and waiting times w as in Remark 5, if possible (if d(P ) + sum(w) ≤ Tmax)
and return the pair (P,w) with maximum covering obtained, together with the
starting function s associated. The algorithm is fully described in Algorithm 1.

Theorem 5. Denote by lmax = max{l1, . . . , lK}. Algorithm 1 has running time

O
(
cn ·

[
K
c

]
! (lmax)2[

K
c ]+2

)
. The approximation factor is 1/c.

Proof. Denote by kc =
[
K
c

]
+1. Substeps from step 4 are repeated at most c ·kc!

times. Since |IOi| = li(li − 1)/2 ≤ l2max and g ≤ kc, there are at most (lmax)2kc

combinations at step 4.3. For each such combination, P can be computed in
O(nkc), since is composed from at most g shortest paths and g subpaths of
platoon paths. So overall complexity is O(c · kc! (lmax)2kc nkc).

Denote by mcovI the maximum value of a covering cov(P,w) found by algo-
rithm for group I. Since we build all the pairs (P,w) that satisfies the conditions
from Remark 6, mcovI is the optimum solution if the set of platoon paths is
restricted to I. Let OPT be the optimal solution. Denote by optI the total
cost of edges covered by P belonging to platoon paths from the group I. The
value returned by the algorithm is ALG = mcov = max{mcov1, . . . ,mcovc}.
We then have that OPT = opt1 + . . . + optc and mcovI ≥ optI and hence:
ALG = max{mcov1, . . . ,mcovc} ≥ max{opt1, . . . , optc} ≥ OPT/c. �
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Algorithm 1: Approximation Algorithm for s-MaxCov Problem
Input: Graph G, paths P = {P1, . . . , PK}, d : E → R+, source, dest, Tmax

Output: starting function s : [K] → R+, an Tmax)-travel relative to s
(Pmax, wmax) and its covering mcov = cov(Pmax, wmax)
1. Set mcov = 0, Pmax = ∅, wmax = ∅.
2. Compute distance matrix D and predecessor matrix F using Floyd-Warshall

3. Partition set P arbitrarily into c groups, each having
[
K
c

]
or

[
K
c

]
+ 1 elements.

4. For each group I let g be its dimension. Iterate over all g! possible orderings of the
paths in group I. For each such ordering repeat:
4.1. Let o = (i1, . . . , ig) be the indices of the platoon paths in the current ordering
4.2. For each i ∈ o consider the set of pairs IOi = {(ini, outi)|1 ≤ ini < outi ≤ li};

each pair represents the vertex where a walk meets, respectively leaves platoon
i when following the walk and travel build at next step

4.3. For each combination ((ini1 , outi1 ), ..., (inig , outig )) with (inij , outij ) ∈ IOij :
4.3.1. consider the walk P and define s and w as follows:

– set v = start, P = ∅
– for every i ∈ o:

add to P a shortest path from v to ini (determined using matrix F )
and the subpath of platoon path Pi from ini to outi and set waiting
time 0 to added vertices; set s, w for ini according to Remark 5
(such that we meet platoon i in ini).

– add to P a shortest path from outig to dest and set waiting time 0 to
added vertices

4.3.2. If d(P ) + sum(w) ≤ Tmax and mcov < cov(P,w) then set
mcov = cov(P,w), (Pmax, wmax) = (P,w), smax = s.

6 Conclusions

This paper proposed viable models for transportation problems. We define more
scenarios for each problem and provide algorithms and NP-hardness results.
Tractable cases for the proposed problems are interesting to find. Notice that if
we have just one platoon path Px,y = [x, y] and all weights are 1, MaxPathCov
reduces to finding two vertex-disjoint paths D1, D2, with D1 from source to x
and D2 from y to dest such that d(D1) ≤ s(Px,y) and d(D2) ≤ Tmax−1−s(Px,y)
or such that d(D1) + d(D2) ≤ Tmax − 1 in s-MaxPathCov case. These are
well known problems, NP-complete: Length-bounded disjoint paths and min-
sum disjoint path problems [11,12].

Various problems can be derived from our problems if we aim, for example,
to maximize the percentage of time spent as a member of a platoon with respect
to the total time traveled. Thus, our results may lead to future papers on path
covering problems and on efficient algorithms for using platoons as a solution
for transportation.
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Abstract. In this paper, we propose new algorithms for evacuation
problems defined on dynamic flow networks. A dynamic flow network is a
directed graph in which source nodes are given supplies (i.e., the number
of evacuees) and a single sink node is given a demand (i.e., the maxi-
mum number of acceptable evacuees). The evacuation problem seeks a
dynamic flow that sends all supplies from sources to the sink such that its
demand is satisfied in the minimum feasible time horizon. For this prob-
lem, the current best algorithms are developed by Schlöter (2018) and
Kamiyama (2019), which run in strongly polynomial time but with high-
order polynomial time complexity because they use submodular function
minimization as a subroutine. In this paper, we propose new algorithms
that do not explicitly execute submodular function minimization, and
we prove that they are faster than the current best algorithms when an
input network is restricted such that the sink has a small in-degree and
every edge has the same capacity.

Keywords: dynamic flow · evacuation problem · quickest
transshipment problem · polynomial-time algorithm · base polytope

1 Introduction

The network routing problem taking into account the movement of commodities
over time is important from the viewpoint of evacuation planning. To model
such movement over time, Ford and Fulkerson [8] introduced a dynamic flow
network, which is a directed graph in which source nodes are given supplies (i.e.,
the number of evacuees), sink nodes are given a demand (i.e., the maximum
number of acceptable evacuees), and edges are given capacities and transit times.
Here, the capacity of an edge bounds the rate at which flow can enter the edge
per unit time, and the transit time represents the time required for evacuees to
travel across the edge.
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The evacuation problem is one of the most basic problems defined on a
dynamic flow network. In this problem, given a dynamic flow network with mul-
tiple sources and a single sink, the goal is to find a dynamic flow that sends
all supplies from sources to the sink such that its demand is satisfied in the
minimum feasible time horizon. For the evacuation problem, Kamiyama [16]
and Schlöter [25] independently proposed the current best Õ(m2k5 + m2nk)
time algorithms, where Õ-notation means computational complexity omitting
all poly-logarithmic terms, n is the number of nodes, m is the number of edges,
and k is the number of sources. Schlöter [25] showed that the minimum feasi-
ble time horizon can be calculated in Õ(m2k4 + m2nk) time. For a variant of
the evacuation problem where a network has multiple sinks, so-called the quick-
est transshipment problem, Schlöter et al. [24] gave an Õ(m2k̄5 + m3k̄3 + m3n)
time algorithm, where k̄ denotes the total number of sources and sinks. All
the algorithms by [16,24,25] call submodular function minimization (SFM for
short) algorithms multiple times, which results in high-order polynomial time
complexities.

On the other hand, for some restricted classes of networks, it is known that
the problems can be solved without using SFM algorithms [9,10,12,17–19,21].
For the evacuation problem, Mamada et al. [19] and Higashikawa et al. [12]
proposed O(n log2 n) and O(n log n) time algorithms for tree networks with gen-
eral and uniform edge capacity, respectively. Kamiyama et al. [17] proposed an
O(n log n) time algorithm for restricted grid networks in which the capacity and
transit times on edges are uniform, and the edges are oriented so that supplies
can take only the shortest paths to the single sink. Kamiyama et al. [18] extended
the grid networks considered in [17] to networks with a single sink and a uniform
edge capacity where all paths from each node to the sink have the same length,
and proposed an O(m + n4 log n) time algorithm. Chen and Golin [10] consid-
ered a variant of the quickest transshipment problem which has a restriction
that evacuees from the same node have to go to the same sink, and proposed
O(max{k′, log n}k′n log4 n) and O(max{k′, log n}k′n log3 n) time algorithms in
tree networks with general edge capacity and uniform edge capacity, respectively,
where k′ denotes the number of sinks. For a special case of the evacuation prob-
lem where the number of sources is one, so-called the quickest flow problem, Saho
and Shigeno [21] proposed an O(nm2 log2 n) time algorithm in general networks.

Our Contribution: In this paper, we investigate new classes of networks in
which the evacuation problem can be solved without using SFM algorithm.
Specifically, for networks in which the sink has a small in-degree and every edge
has the same capacity, we present an efficient algorithm. Note that our networks
can model structures which cannot be represented by the networks in [10,18],
i.e., in our network cycles can exist and paths from a node to the sink can have
different lengths. Our main theorem is stated below.

Theorem 1. Given a dynamic flow network N with a uniform edge capacity and
a supply/demand function, the evacuation problem can be solved in Õ(mndkd +
m2k2) time, where n is the number of nodes, m is the number of edges, d is the
in-degree of the sink, and k is the number of sources.
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Note that when d ≤ 5 and all edge capacities are uniform, our algorithm runs
in Õ(mnk5 + m2k2) time, which is faster than the algorithms by [16,25] which
run in O(m2k5 + m2nk).

Furthermore, our algorithm can be applied to a more general case, where
each edge has any positive integer capacity. Let C,D be the maximum value of
the all edge capacities and the sum of the capacities of the edges whose terminals
are the sink, respectively. Basically, by replacing each edge with multiple edges
of unit capacity, the network is constructed such that all edge capacities are
uniform. In the modified network, the number of edges is O(mC), and the in-
degree of the sink is D. Therefore, Theorem 1 implies the following corollary.

Corollary 1. Given a dynamic flow network N with a positive integer-valued
edge capacity function, and a supply/demand function, the evacuation problem
can be solved in Õ(mnCDkD + m2k2) time.
For the quickest flow problem, in a network where the capacities of all edges
are integer values, the running time of our algorithm is Õ(m2) if C and D are
constant values. This is faster than the existing O(nm2 log2 n) algorithm [21].

In addition, we propose an even faster algorithm for square grid networks
in settings more general than those in [17], where k = Θ(n) and for every pair
of adjacent nodes u and v, there are two edges (u, v) and (v, u) with the same
transit time and capacity. While we immediately have an Õ(n6) time algorithm
for this case by applying Theorem 1 (because m = O(n) and d ≤ 4 in a grid
network), we show the following theorem based on special properties of square
grid networks (see Sect. 5 in the full version [13] for the proof).
Theorem 2. Given a bidirected square grid network G and a supply/demand
function, the evacuation problems can be solved in Õ(n4) time.

Comparison with Existing Approaches: To solve the evacuation problem,
the basic approach that we also employ is to compute the minimum feasible time
horizon first and then find the corresponding dynamic flow, called a quickest flow.
For the former phase, Fleischer and Hoppe [6] showed that a trivial solution space
is O(2k) in size. To tackle this exponential solution space, the current best meth-
ods [16,25] use SFMalgorithms in a discreteNewtonmethod and solve the problem
in polynomial time. For the latter phase, Schlöter and Skutella [23] proved that a
quickest flow is obtained via a convex combination of at most k vertices of the base
polytope with O(2k) facets defined on a submodular function. To obtain such a
convex combination, Schlöter [25] utilizes an intermediate result of an execution
of SFM algorithms relying on Cunningham’s framework [5] (see Sect. 4 for more
details). In contrast, our technical advancement is in proving a solution space of
O(kd) size for computing the minimum feasible time horizon, and the base poly-
tope for a quickest flow also has O(kd) facets. Thanks to the small number of facets
of the base polytope, we also propose a geometric method for efficiently determin-
ing vertices and corresponding coefficients one by one for a convex combination
representation of a quickest flow.

Organization: This paper is organized as follows. In Sect. 2, we introduce nota-
tions and important concepts used throughout the paper. In Sect. 3, we propose
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an algorithm to compute the minimum feasible time horizon. In Sect. 4, we pro-
pose an algorithm to find the dynamic flow that sends all supplies from sources
to the sink within the minimum feasible time horizon.

2 Preliminaries

2.1 Notations and Problem Definition

Let R and R+ be the set of real values and the set of non-negative values,
respectively. A dynamic flow network N is given as a 5-tuple N = (D =
(V,E), u, τ, S+, S−), where D = (V,E) is a directed graph with node set V
and edge set E, u is a capacity function u : E → R+, τ is a transit time func-
tion τ : E → R+, and S+ ⊆ V and S− ⊆ V are sets of sources and sinks,
respectively. For a path P on N , let |P | be the total transit time along P , i.e.,
|P | =

∑
e∈P τ(e). Throughout the paper, u is a constant function, so we abuse u

as the constant capacity of every edge. Furthermore, in the evacuation problem,
N contains a single sink denoted by s− (i.e., S− = {s−}). For each node v ∈ V ,
let δ+(v) and δ−(v) denote the set of out-going edges from v and in-coming
edges to v, respectively. Let |δ+(v)| and |δ−(v)| be the out-degree and in-degree
of node v, respectively. We use n, m, and k as the cardinalities of V , E, and S+,
respectively.

The inputs of the evacuation problem are a dynamic flow network N and
a supply/demand function w : V → R that represents the amount of sup-
ply/demand at the sources/sinks. The value of the function w is w(v) > 0 for
v ∈ S+, w(v) < 0 for v ∈ S− (i.e., for v = s−), w(v) = 0 for v ∈ V \ (S+ ∪ S−),
and

∑
v∈V w(v) = 0. For any of sources/sinks subset A ⊆ S+ ∪ S−, we define

w(A) :=
∑

s∈A w(s).
On a dynamic flow network N , a (continuous) dynamic flow f is defined as

a function f : E × R → R+, where f(e, θ) represents the flow rate entering edge
e at time θ (≥ 0), and f(e, θ) = 0 holds for any θ < 0. We say that a dynamic
flow f has time horizon T if no flow remains in the network after time T , i.e.,
f(e, θ) = 0 holds for all e ∈ E and θ ≥ T − τ(e). Let us consider the following
constraints for a dynamic flow f :

0 ≤ f(e, θ) ≤ u for each e ∈ E, for each θ ∈ [0,∞), (1)

∫ θ

0

⎛

⎝
∑

e∈δ+(v)

f(e, t) −
∑

e∈δ−(v)

f(e, t − τ(e))

⎞

⎠ dt ≤ max{w(v), 0}

for any v ∈ V, for any θ ∈ [0,∞).

(2)

The constraints (1) and (2) are called the capacity constraint and the conserve
constraint, respectively. The conserve constraint (2) means that for any time θ
and any node v, the amount of flow out of v within time θ is at most the amount
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of flow entering v within θ and the supply at v. Furthermore, for a time horizon
T ∈ R+, consider the following supply/demand constraint:

∫ T

0

⎛

⎝
∑

e∈δ+(v)

f(e, t) −
∑

e∈δ−(v)

f(e, t − τ(e))

⎞

⎠ dt = w(v) for any v ∈ V. (3)

The supply/demand constraint (3) implies that for each node v ∈ V , the net
amount of flow accumulated at v within time horizon T equals its supply or
demand. If a dynamic flow f satisfies the above constraints (1), (2), and (3),
then f is said to be feasible w.r.t. (w, T ), and such time horizon T is called
a feasible time horizon w.r.t. w. Throughout the paper, T ∗ denotes the mini-
mum feasible time horizon w.r.t. w. We call f∗ a quickest flow if f∗ is a feasible
dynamic flow on N w.r.t. (w, T ∗). Then the evacuation problem requires com-
puting T ∗ and finding a corresponding dynamic flow, which is described precisely
as follows.

Evacuation Problem
Input: A dynamic flow network N = (D = (V,E), u, τ, S+, S− = {s−}) and a
supply/demand function w.
Goal: Compute the minimum feasible time horizon T ∗ w.r.t. w and a quickest
flow f∗ w.r.t. w.

2.2 Maximum Dynamic Flows

Given a dynamic flow network N , for a subset of the sources and sinks A ⊆
S+ ∪S− and a time θ ∈ R+, let oθ(A) be the maximum amount of flow that can
reach the sinks in S− \ A from the sources in A within time θ, where we assume
that there is no restriction on the amount of flow out of each source of A. Note
that oθ(S+ ∪ S−) = 0 holds for any θ. We call a flow corresponding to oθ(A) a
maximum dynamic flow from A within time θ.

For a subset of sources A ⊆ S+, we define the minimum required time θ(A)
as

θ(A) := min{θ | oθ(A) − w(A) ≥ 0}. (4)

Note that as shown later in (9), oθ(A) is a nondecreasing continuous function in
θ of range [0,∞). Thus, θ(A) is θ satisfying oθ(A) = w(A), that is,

oθ(A)(A) = w(A). (5)

Moreover, by Theorem 7.1 in [6] about the feasibility of a time horizon T ,
we immediately have the following corollary.

Corollary 2. For a dynamic flow network N and a supply/demand function w,
we have

T ∗ = max{θ(A) | A ⊆ S+}.
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Fig. 1. oθ(A) in θ and the minimum required time θ(A).

In the rest of this section, we give the properties of oθ(A) and θ(A). For this
purpose, we need to deal with a static flow network, which corresponds to an
input dynamic flow network N . A static flow network N is a directed graph
D = (V,E) with a capacity u(e) and a cost c(e) for each edge e ∈ E. On a static
flow network N , a static flow f̄ is defined as a function f̄ : E → R+, where f̄(e)
represents the amount of flow on edge e. Given a source set S+ ⊂ V and a sink
set S− ⊂ V , a static flow f̄ is said to be feasible if it holds that

0 ≤ f̄(e) ≤ u(e) for each e ∈ E, (6)
∑

e∈δ+(v)

f̄(e) −
∑

e∈δ−(v)

f̄(e) = 0 for each v ∈ V \ (S+ ∪ S−),

(7)
∑

e∈δ+(s) : s∈S−
f̄(e) −

∑

e∈δ−(s) : s∈S+

f̄(e) = 0. (8)

The minimum-cost maximum-flow is a feasible static flow f̄ that minimizes∑
e∈E c(e)f̄(e) subject to

∑
e∈δ+(s) : s∈S− f̄(e) is maximized. Given a static flow

network N and a feasible static flow f̄ on N , the residual network N f̄ is con-
structed as follows. For every edge e = (v1, v2) ∈ E such that f̄(e) > 0, reduce
its capacity to u(e) − f̄(e) and add new edge e′ = (v2, v1) of capacity f̄(e) and
cost −c(e). In the following, given a dynamic flow network N , N means the
static flow network comprising the same underlying graph as N with uniform
capacity u and cost τ(e) for every edge e ∈ E.

According to Anderson and Philpott [1], given A ⊆ S+ ∪ S− and θ ∈ R+,
oθ(A) can be obtained by applying the successively shortest path algorithm [3,
14,15] for the minimum-cost maximum-flow problem in the following manner.
Initially, set f̄ as a zero static flow, that is, f̄(e) = 0 for all e ∈ E. At each step
i (≥ 1), execute the following two procedures.
(i) Find the shortest (i.e., minimum-cost) path PA

i from A to s− in the current
residual network N f̄ . If there is no such path, then break the iteration.
(ii) Add to f̄ a static flow of amount u along path PA

i , denoted by f̄A
i .

Let pA denote the number of paths obtained when the above iteration halts. We
will refer to this algorithm as SSP from now on.
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By the operation of the algorithm SSP, we see that oθ(A) is a piecewise linear
function in θ (see Fig. 1) represented as

oθ(A) = max
h=1,...,pA

{
h∑

i=1

(θ − |PA
i |)u

}

. (9)

As for θ(A), because oθ(A) is a non-decreasing continuous function in θ of range
[0,∞) as shown in (9), θ(A) is θ satisfying oθ(A) = w(A) by definition (4). We
thus have

θ(A) = min
h=1,...,pA

{∑h
i=1 |PA

i |
h

+
w(A)
hu

}

. (10)

3 Computing the Minimum Feasible Time Horizon

In this section, we propose an algorithm that computes the minimum feasible
time horizon T ∗ given the dynamic network N and a supply/demand function
w. Throughout Sects. 3 and 4, let d denote the in-degree of the sink s−.

Corollary 2 implies that T ∗ can be obtained by computing O(2k) values of
θ(A), one for each A ⊆ S+. We will define a family of O(kd) subsets of S+,
denoted by Â, and show that Â contains A∗ ⊆ S+ that maximizes θ(A), that
is, T ∗ = θ(A∗) holds.

3.1 Definition and Property of Â
We now consider a tuple of p sources (v1, . . . , vp) ∈ (S+)p with an integer p ∈
{1, . . . , d}. We say that a source subset A ∈ S+ admits (v1, . . . , vp) if the following
are satisfied: (i) pA = p; (ii) the origins of paths PA

1 , . . . , PA
p are v1, . . . , vp,

respectively. We notice that there may exist (v1, . . . , vp) such that any subset
does not admit it. For each (v1, . . . , vp) ∈ (S+)p, let Â(v1,...,vp) be the subset of
sources A ⊆ S+ such that |A| is the largest among all A admitting (v1, . . . , vp):

Â(v1,...,vp) := argmax{|A| | A ⊆ S+, A admits (v1, . . . , vp)}. (11)

Note that Â(v1,...,vp) = ∅ if there is no subset A that admits (v1, . . . , vp). For each
p ∈ {1, . . . , d}, let Âp denote the set of Â(v1,...,vp) for all (v1, . . . , vp) ∈ (S+)p,
and let Â denote the union of all Âp:

Â :=
⋃

p∈{1,...,d}
Âp, where Âp := {Â(v1,...,vp) | (v1, . . . , vp) ∈ (S+)p}. (12)

We see that Â consists of O(kd) subsets of S+ (because
∑d

p=1 kp < 2kd for
k > 1). Note that for any A ⊆ S+ admitting the same (v1, . . . , vp), oθ(A) is the
same non-decreasing continuous function in θ by the definition (9), and Â(v1,...,vp)

maximizes w(A) over such A. Therefore, Â(v1,...,vp) maximizes θ(A) over source
subsets A admitting (v1, . . . , vp). We then have the following lemma.

Lemma 1. For a dynamic flow network N and a supply/demand function w,
we have T ∗ = max{θ(A) | A ∈ Â}.
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3.2 Algorithms

First of all, we describe an algorithm to compute Â(v1,...,vp) for given
(v1, . . . , vp) ∈ (S+)p. We use the following lemma to check whether there exists
a source subset A admitting (v1, . . . , vp). See Sect. 3 in the full version [13] for
its proof.

Lemma 2. For each p ∈ {1, . . . , d} and (v1, . . . , vp) ∈ (S+)p, there exists a
source subset A that admits (v1, . . . , vp) if and only if set {v1, . . . , vp} admits
(v1, . . . , vp).

In order to compute Â(v1,...,vp) for given (v1, . . . , vp), let A′ = {v1, . . . , vp}
and we successively compute the paths PA′

1 , PA′
2 , . . . by the algorithm SSP and

check if A′ admits (v1, . . . , vp). If so, Â(v1,...,vp) exists and P
Â(v1,...,vp)

i = PA′
i and

f̄
Â(v1,...,vp)

i = f̄A′
i holds for i ∈ {1, . . . , p}. Let us see which source Â(v1,...,vp) con-

tains. Consider static flows f̄A′
1 , . . . , f̄A′

p corresponding to paths PA′
1 , . . . , PA′

p .
Looking at the residual network N f̄ for f̄ =

∑i−1
h=1 f̄A′

h , Â(v1,...,vp) does not con-
tain any source from which s− is closer than from vi in N f̄ ; otherwise, the origin
of any minimum-cost path from Â(v1,...,vp) to s− in N f̄ is never vi, contradiction.
Furthermore, after taking all flows f̄A′

1 , . . . , f̄A′
p , there may remain source nodes

which can reach s− in N f̄ for f̄ =
∑p

h=1 f̄A′
h if p < d. Then Â(v1,...,vp) does not

contain such nodes either. See Sect. 3 in the full version [13] for the correctness
of this approach.

We then show the overall algorithm to compute the minimum feasible time
horizon T ∗. The algorithm follows Lemma 1 in a straightforward manner:
Step 1. Obtain Â by computing Â(v1,...,vp) for all p ∈ {1, . . . , d} and for all
(v1, . . . , vp) ∈ (S+)p.
Step 2. Calculate θ(A) for all A ∈ Â and take the maximum value among
them.
The bottleneck of this algorithm is that at most d minimum-cost paths are
computed O(kd) times in Step 1. Computing a minimum-cost path takes O(nm)
by applying the Moore-Bellman-Ford algorithm [2,7,20]. Therefore, we have the
following theorem for the running time (see Sect. 3 in the full version [13] for its
detailed proof).

Theorem 3. Given a dynamic flow network N with a uniform edge capacity
and a supply/demand function w, the minimum feasible time horizon T ∗ w.r.t.
w can be computed in O(mndkd) time.

4 An Algorithm for Finding a Quickest Flow

In this section, we propose an algorithm to find a quickest flow for the minimum
feasible time horizon already given. Schlöter and Skutella [23] showed that an
SFM algorithm relying on Cunningham’s framework [5] directly gives a quick-
est flow, and the current fastest algorithms [16,25] use this approach explicitly.
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Fig. 2. Base polytopes for submodular functions on U with three or four elements.

While our proposed algorithm solves the problem without using an SFM algo-
rithm, it is also based on the relationship shown by [23] between a quickest flow
and a base polytope. In the following, we give fundamental definitions for a base
polytope, describe the relationship between a quickest flow and a base polytope,
and then present our new algorithm for finding a quickest flow.

4.1 Base Polytope

Let U be a nonempty finite set, which can be considered as the set of numbers
1, 2, . . . , |U |. A set function g : 2U → R is said to be a submodular function if it
satisfies g(X)+g(Y ) ≥ g(X ∪Y )+g(X ∩Y ) for every pair of subsets X,Y ⊆ U .
For a vector x ∈ R

U and a subset A ⊆ U , let x(s) denote the s-th component of
x, and x(A) :=

∑
s∈A x(s). Given a submodular function g defined on U , a base

polytope B(g) is a convex polyhedron on R
U defined as

B(g) :=
{
x ∈ R

U
∣
∣ x(A) ≤ g(A) for all A ⊆ U, and x(U) = g(U)

}
.

Let us observe a property of B(g). Let a vertex of B(g) be the solution of
simultaneous equations consisting of x(U) = g(U) and x(A) = g(A) for other
|U |−1 subsets A ⊂ U , which is contained in the base polytope B(g). It is known
that each vertex of B(g) corresponds to a total order on U [4] (see Fig. 2). More
precisely, given a total order ≺ = (ui1 , . . . , ui|U|) on U , let b(≺,g) denote the
solution x of the following simultaneous equations:

x({ui1 , . . . , ui�
}) = g({ui1 , . . . , ui�

}) for each � ∈ {1, . . . , |U |}. (13)

4.2 Relationship Between Quickest Flows and Base Polytopes

Hoppe and Tardos [11] showed that oθ : 2S+∪S− → R is a submodular function
for any fixed time θ ∈ R+. Note that in our problem, B(oθ) is defined on R

k+1

because |S+| = k and |S−| = 1. To see the relationship between a quickest flow
and the vertices of the base polytope, we need the concept of lexicographically
maximal dynamic flow (lex-max dynamic flow for short), which is introduced by
Hoppe and Tardos [11]. Given a dynamic flow network N , a total order ≺ on
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S+ ∪ S−, and a time horizon T ∈ R+, the lex-max dynamic flow w.r.t. (≺, T ),
denoted by f (≺,T ), is the dynamic flow on N satisfying the capacity constraint (1)
and the conserve constraint (2) that maximizes the amount of flow leaving the
sources/sinks in order of ≺ within time horizon T . Note that the amount of flow
entering the source/sink is treated as a negative value.

Schlöter and Skutella [23] showed that for any total order ≺ on S+ ∪S−, the
vertex b(≺,oT ) of B(oT ) corresponds to f (≺,T ); in other words, for any source/sink
s ∈ S+ ∪S−, b(≺,oT )(s) is the amount of flow leaving s by lex-max dynamic flow
f (≺,T ). Moreover, considering a supply/demand function w as a vector in R

k+1,
there are an integer h ≤ k and some h total orders ≺1, . . . ,≺h on S+ ∪ S− such
that w can be a convex combination of b(≺1,oT ∗

), . . . , b(≺h,oT ∗
). Furthermore, the

quickest flow f∗ can be expressed as the convex combination of lex-max dynamic
flows f (≺1,oT ∗

), . . . , f (≺h,oT ∗
) corresponding to b(≺1,oT ∗

), . . . , b(≺h,oT ∗
), using the

same coefficients. Summarizing these arguments, there are some h (≤ k) total
orders ≺1, . . . ,≺h and non-negative real values λ1, . . . , λh with

∑h
i=1 λi = 1 such

that

w =
h∑

i=1

λib
(≺i,o

T ∗
) and f∗ =

h∑

i=1

λif
(≺i,T

∗). (14)

In the rest of this subsection, we give the property of the base polytope
B(oT ∗

). Let B̂(oT ∗
) denote a convex polyhedron on R

k+1 defined as

B̂(oT ∗
) :=

{
x ∈ R

k+1
∣
∣ x(A) ≤ oT ∗

(A) for all A ∈ Â, and x(S+ ∪ S−) = 0
}

.

By the definition, it clearly holds that B(oT ∗
) ⊆ B̂(oT ∗

). Not only that, we can
show that B(oT ∗

) = B̂(oT ∗
) holds.

Lemma 3. For a dynamic flow network N , a supply/demand function w, and
the minimum feasible time horizon T ∗ w.r.t. w, it holds B(oT ∗

) = B̂(oT ∗
).

Proof. It is enough to show that B̂(oT ∗
) ⊆ B(oT ∗

) holds. Let us consider any
vector x′ ∈ R

k+1 in B̂(oT ∗
) and treat vector x′ as a supply/demand function.

Because Â does not depend on a supply/demand function by definition, we can
replace w in the arguments in Sect. 3.1 with x′. Therefore, for any A ⊆ S+ ∪S−,
there exists a source subset Â ∈ Â such that x′(A) ≤ x′(Â) and oT ∗

(A) = oT ∗
(Â)

holds. Thus, we have x′(A) ≤ oT ∗
(A) for any A ⊆ S+∪S− since x′(Â) ≤ oT ∗

(Â)
holds for any Â ∈ Â by the definition of B̂(oT ∗

). This means that vector x′ is in
B(oT ∗

). Therefore, B̂(oT ∗
) ⊆ B(oT ∗

) holds. �

4.3 Algorithms

According to (14), our main task is to determine total orders ≺1, . . . ,≺h on S+∪
S− and non-negative real values λ1, . . . , λh satisfying w =

∑h
i=1 λib

(≺i,o
T ∗

). By
Lemma 3, we see that the number of constraint equations that define B(oT ∗

) =
B̂(oT ∗

) is reduced from O(2k) to |A| = O(kd).



Faster Algorithms for Evacuation Problems with the Small Degree Sink 39

Fig. 3. Illustration of points x′
1 and x′

2.

The algorithm inductively computes ≺i, f
(≺i,T

∗), b(≺i,o
T ∗

), λi for i = 1, . . . , h
in this order. Below, we detail the first iteration. Let x′

1 = w ∈ R
k+1 and

A1 = A∗. Note that we obtain A∗ during the computation for the minimum
feasible time horizon T ∗ described in Sect. 3. By (5) and θ(A1) = T ∗, for x = x′

1,
it holds that

x(A1) = oT ∗
(A1). (15)

By the definition of the supply/demand function and oT ∗
(S+ ∪ S−), we have

x(S+ ∪ S−) = oT ∗
(S+ ∪ S−) = 0. (16)

In other words, x′
1 is located on the facet of B̂(oT ∗

) determined by the above
two equations in (15) and (16), denoted by B1. This implies that all the vertices
b(≺1,oT ∗

), . . . , b(≺h,oT ∗
) satisfying (14) are located around B1. We thus arbitrarily

choose a total order ≺1 = (si1,1 , . . . , si1,k+1) on S+∪S− so that b(≺1,oT ∗
) is one of

the vertices of B1, that is, by (13), {si1,1 , . . . , si1,|A1|} and {si1,|A1|+1 , . . . , si1,k+1}
coincide with A∗ and S+ ∪ S− \ A∗, respectively. We then compute the lex-
max dynamic flow f (≺1,T ∗) using an algorithm by Hoppe and Tardos [11], which
immediately gives b(≺1,oT ∗

) as mentioned in Sect. 4.2. Next, to find the vertex
b(≺2,oT ∗

), we determine the facet of B1 denoted by B2 with which the half line
from b(≺1,oT ∗

) to x′
1 in R

k+1 intersects. Recall that B2 is determined by the
two equations in (15), (16) and one more equation x(A′) = oT ∗

(A′) for some
A′ ∈ Â \ {A1, S

+ ∪ S−}. We thus calculate intersection points on all O(|Â|)
candidate hyperplanes with the half line, and choose one that minimizes the
Euclidean distance from b(≺1,oT ∗

) to the intersection point. Let A2 be an element
of Â corresponding to the chosen hyperplane, and let x′

2 be the intersection point
on B2. Figure 3 shows the relationship between x′

1 and x′
2. Once we obtain x′

2,
we can have x′

1 as a convex combination of b(≺1,oT ∗
) and x′

2 and then employ
the coefficient of b(≺1,oT ∗

) as λ1. Subsequently, we will represent x′
2 as a convex

combination of vertices around B2 in an inductive manner. Algorithm 1 gives a
formal description.

Here, we discuss the running time of Algorithm 1. Line 3 takes O(k2) time.
Using an algorithm by Hoppe and Tardos [11] for computing a lex-max dynamic
flow (together with Orlin’s min-cost flow algorithm [22] and Thorup’s shortest
path algorithm [26]), Line 4 takes O(mk(m + n log log n) log n) time. Line 5
takes O(k|Â|) = O(kd+1) time. Line 6 takes O(1) time by reusing the results
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Algorithm 1. Find a quickest flow f∗

Input: N , w, T ∗, Â, (P A
1 , . . . , P A

pA) for all A ∈ Â, A∗

Output: f∗

1: Set i ← 1, x′
1 ← w, α1 ← 1, and Ā1 ← A∗

2: while x′
i is not a vertex of B̂(oT ∗

) do
3: Arbitrarily choose a total order ≺i on S+ ∪ S− so that the first |Āh| nodes

coincide with the elements of Āh for all h ∈ {1, . . . , i}
4: Compute f (≺i,T ∗) and calculate b(≺i,oT ∗

)

5: Calculate the intersection points on hyperplanes x(A) = oT ∗
(A) for all A ∈ Â

with the half line from b(≺i,oT ∗
) to x′

i, set Ai+1 as the one minimizing the distance

from b(≺i,oT ∗
) to the intersection point, and set x′

i+1 as that intersection point

6: Calculate positive real values βi and γi satisfying x′
i = βib

(≺i,oT ∗
) + γix

′
i+1, and

set λi ← αiβi and αi+1 ← αiγi

7: Search j ∈ {0, . . . , i} such that Āj ⊆ Ai+1 ⊆ Āj+1 (where Ā0 = ∅ and Āi+1 =
S+ ∪ S−), and set Āj+1 ← Ai+1 and Āh+1 ← Āh for h ∈ {j + 1, . . . , i}

8: Set i ← i + 1
9: return λ1f

(≺1,T ∗) + · · · + λif
(≺i,T ∗)

calculated in Line 5. Line 7 takes O(k) time. We repeat Lines 3–8 at most k
times. Combining the above argument and Theorem 3, we have the following
main theorem, which repeats Theorem 1 but with logarithmic factors.

Theorem 4. Given a dynamic flow network N with a uniform edge capacity and
a supply/demand function w, the evacuation problem can be solved in O(mndkd+
mk2(m + n log log n) log n) time.

5 Conclusion

In this paper, we proposed efficient algorithms for the evacuation problem with-
out using SFM algorithms. Specifically, for networks in which the sink has a
small in-degree and every edge has the same capacity, we presented an efficient
time algorithm Note that our networks can model structures which cannot be
represented by the networks in [10,18], i.e., in our network cycles can exist and
paths from a node to the sink can have different lengths.

In our proposed algorithm, the minimum feasible time horizon T ∗ can be
computed without using an SFM algorithm by finding a dominant family of
source subset Â such that T ∗ = max{θ(A) | A ∈ Â} and |Â| = O(kd) holds.
Furthermore, our proposed algorithm obtains a quickest flow without using an
SFM algorithm by using the relationship shown by [23] between a quickest flow
and a base polytope. As a result, given a dynamic flow network N with a uniform
edge capacity and a supply/demand function w, the evacuation problem can be
solved in O(mndkd + mk2(m + n log log n) log n) time, where n is the number
of nodes, m is the number of edges, d is the in-degree of the sink, and k is the
number of sources.
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Abstract. Motivated by demand-responsive parking pricing systems,
we consider posted-price algorithms for the online metric matching prob-
lem. We give an O(log n)-competitive posted-price randomized algorithm
in the case that the metric space is a line. In particular, in this setting
we show how to implement the ubiquitous guess-and-double technique
using prices.

Keywords: Online Algorithms · Metric Matching · Posted-Price

1 Introduction

In this paper we are generally interested in addressing a particular difficulty
that arises in the design of posted-price algorithms, which is a type of online
algorithm that uses prices to incentive clients to take actions that increase the
social good. Namely, we are interested in the “guess and double” technique
that is ubiquitous in the online algorithms literature [11], but is challenging to
implement with prices. In particular we will address this difficulty within the
context of the problem of online metrical matching on a line metric, with the
hope that the algorithmic techniques that we develop will be of use in addressing
this difficulty in the setting of other online problems. Before giving more details,
we need to give some background information.

As a motivating application for online metric matching, and for posted-price
algorithms, let us consider SFpark, which is San Francisco’s system for managing
the availability of on-street parking [2,3,13]. The goal of SFpark is to reduce the
time and fuel wasted by drivers searching for an open parking spot. The system
monitors parking usages using sensors embedded in the pavement and distributes
this information in real-time to drivers via SFpark.org and phone apps. SFpark
periodically adjusts parking meter pricing to manage demand, to lower prices
in under-utilized areas, and to raise prices in over-utilized areas. Several other
cities in the world have similar demand-responsive parking pricing systems. For
example, Calgary has had the ParkPlus system since 2008 [1].
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The problem of centrally assigning drivers to parking spots to minimize time
and fuel usage may be reasonably modeled by the online metric matching prob-
lem. The setting for this problem is a collection of servers S = {s1, . . . , sn} (the
parking spots) located at various locations in a metric space. In the case that the
metric space is a line, we name the servers so that s1 ≤ s2 . . . ≤ sn. Over time
a sequence R = {r1, . . . , rn} of requests (the cars) arrive at various locations
in the metric space. Upon the arrival of each request (car) ri, the online algo-
rithm must irrevocably be assigned ri to an available server (parking spot) sσ(i),
which results in sσ(i) being unavailable going forward. Conceptually think of the
request (car) ri moving to server (parking spot) sσ(i). Thus the cost incurred
by such an assignment is the distance d(sσ(i), ri) between the location of sσ(i)

and the location where ri arrived. The objective is to minimize the total cost of
matching the requests (cars) to the servers (parking spots).

However, in order to be implementable within the context of SFpark, online
algorithms must be posted-price algorithms. In this setting, posted-price means
that before each car arrives, the algorithm sets a price on each available parking
spot without knowing the next car’s arrival location. We assume each car is
driven by a selfish agent who moves to the available parking spot that minimizes
the sum of the price of that parking spot and the distance to that parking spot.
The objective remains to minimize the aggregate distance traveled by the cars.
It is important to note that conceptually the objective of the parking pricing
agency is minimizing social cost (or equivalently maximizing social good), not
maximizing revenue.

Research into posted-price algorithms for online metrical matching was ini-
tiated in [12], as part of a line of research to study the use of posted-price
algorithms to minimize social cost in online optimization problems. As a posted-
price algorithm is a valid online algorithm, one cannot expect to obtain a better
competitive ratio for posted-price algorithms than what is achievable by online
algorithms. So this research line has primarily focused on problems where the
optimal competitive ratio achievable by an online algorithm is (perhaps approx-
imately) known, and seeks to determine whether a similar competitive ratio can
be (again perhaps approximately) achieved by a posted-price algorithm. The
higher-level goal is to determine the increase in social cost that is necessitated
by the restriction that an algorithm has to use posted prices to incentivize selfish
agents, instead of being able to mandate agent behavior.

Essentially all results in the posted-price online algorithms literature use one
of two algorithmic design techniques. The simpler algorithmic design paradigm
is called mimicry. A posted-price algorithm A mimics an online algorithm B
if the probability that B will take a particular action is equal to the probabil-
ity that a self-interested agent will choose this same action when the prices of
actions are set using A. However, many online algorithms are not mimickable.
So another algorithmic design paradigm, called monotonization, first seeks to
identify a sufficient property for an online algorithm to be mimickable, and then
seeks to design an online algorithm with this property. In all the examples in
the literature, the identified property involves some sort of monotonicity in the



An O(log n)-Competitive Posted-Price Algorithm for OML 45

behavior of the algorithm. In particular, for online metric matching on a tree
metric (which includes a line as a special case), an online algorithm A is mimick-
able if and only if it is monotone in the sense that as the request location moves
closer to the location of an available server the probability that the request is
matched to that server cannot decrease [9].

There are three online algorithms for online metric matching on a line that
interest us here:

– The Robust Matching (RM) algorithm is a deterministic primal-dual algo-
rithm that is Θ(log n)-competitive [22]. The Robust Matching algorithm is
not mimickable [8], and intuitively seems far from being mimickable.

– The Harmonic (H) algorithm is a randomized algorithm that is Θ(log Δ)-
competitive, where Δ is the ratio of the distance between the furthest pair
of servers and the distance between the closest pair of servers [15]. The Har-
monic algorithm chooses between the first available server to the left of the
request and the first available server to the right of the request with proba-
bility inversely proportional to the distance from the request to these servers.
[12] showed that the Harmonic algorithm is mimickable, thus obtaining an
O(log Δ)-competitive posted-price algorithm.

– The Doubled Harmonic (DH) algorithm is a randomized algorithm that is
O(log n)-competitive. Doubled Harmonic combines a variation of Harmonic
that uses an estimation Z of the optimal cost (between the requests and the
servers), with a standard guess-and-double technique for maintaining a good
estimate of the current optimal cost to date [15]. We show in Appendix B
that Doubled Harmonic is not mimickable.

Thus the specific research question that we address is whether we can design
a monotone variation of Doubled Harmonic that is O(log n)-competitive, thus
leading to an O(log n)-competitive posted-price algorithm. But, even though it
is the title of the paper, obtaining a better competitive ratio is only a secondary
motivation for this research. Our primary motivation is to determine whether
in this setting we can implement guess-and-double monotonically, with the hope
that this will provide insights into designing posted-price algorithms in other set-
tings where the standard online algorithms use the ubiquitous guess-and-double
technique. To understand why answering this research question isn’t completely
straightforward, we need to first understand the Doubled Harmonic algorithm.

Firstly, for ease of presentation, we will make some simplifying assumptions,
namely:

– No pair of servers is closer than 1 unit of distance from each other. We show
that this is without loss of generality in Appendix A.1.

– All requests arrive at the location of some server. We show that this is without
loss of generality in Appendix A.2.
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Intuitively Doubled Harmonic modifies Harmonic in following ways1. Firstly,
if the distance between consecutive servers is small (less than Z/n2), where
Z is the estimate of optimal maintained by the algorithm, then this distance
is artificially inflated (to Z/n2). Secondly, if the actual optimal cost between
the requests and servers becomes at least the estimate Z, then the estimate
Z is increased geometrically until it exceeds the current optimal cost, and the
algorithm conceptually reruns itself on all the requests to date with this new
estimate to compute which servers it would ideally like to be available now. The
algorithm then continues forward imagining these servers are available, and then
correcting to the actually available servers using some optimal matching between
the imaginary available servers and the actually available servers. Unfortunately
the full algorithm, with corner cases, is a bit more complicated.

Definition 1. We define the pseudo-distance pd (si, si+1) between two adjacent
servers si and si+1 to be ∞ if si+1 − si ≥ Z, to be Z/n2 if si+1 − si ≤ Z/n2,
and si+1 − si otherwise; here Z will be a parameter in the algorithms. We then
define the pseudo-distance between two arbitrary servers si and sj, where i < j

to be
∑j−1

h=i pd (sh, sh+1).

Definition 2 (Doubled Harmonic Algorithm Description).
Until a request arrives at a location where there is not an available server, the
request is assigned to the available server where it arrives. When the first request
rt arrives at a location where there isn’t an available server, the Doubled Har-
monic algorithm maintains the following invariants:

– An estimate Z = 10j, for some integer j, such that optimal cost to date is at
least Z/10 and is strictly less than Z.

– A set of imaginary servers Sι = {sι(1), . . . sι(k)} that in some sense the algo-
rithm imagines are available (but which may or may not actually be available).
Sι is initialized to S − {sσ(1), . . . , sσ(t−1)}.

– The set Sρ = {sρ(1), . . . sρ(k)} of servers that are really available.
– An arbitrary optimal matching M between Sι and Sρ.

Then it responds to the arrival of a request rt in the following way:

– If rt is triggering, meaning that it causes the optimal cost to date to be at
least Z, then the estimate Z is set to 10j where j is the minimum integer
that will reestablish the invariant on Z, and the algorithm then performs
what we call an adjustment operation (which we define below) up through
request rt−1.

– If there is an imaginary server sι(i) at the location of rt then no action is
taken (later we will think of this as an imaginary move of length 0).

– If there is no imaginary server to the left of rt then it moves to the first
imaginary server to its right. This is called an imaginary move.

1 Technically our description of Doubled Harmonic differs in some ways from how it is
described in [15], but we believe that our description is a bit simpler, and the same
analysis holds.
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– Else if there is no imaginary server to the right of rt then it moves to the first
imaginary server to its left. This is called an imaginary move.

– Else let sι(h) and sι(h+1) be the first imaginary servers to the left and right
of rt, respectively. Then rt moves to sι(h) with probability

L(sι(h), rt, sι(h+1)) =
pd(rt, sι(h+1))

pd(rt, sι(h)) + pd(rt, sι(h+1))

and rt moves to sι(h+1) with probability

R(sι(h), rt, sι(h+1)) =
pd(rt, sι(h))

pd(rt, sι(h)) + pd(rt, sι(h+1))

So the algorithm chooses between the imaginary server to the left and the
imaginary server to the right with probability inversely proportional to the
pseudo-distance. Let us call this movement imaginary movement.

– After the imaginary movement of the request to a server in sι(j) ∈ Sι, the
request continues moving to the server in sρ(h) ∈ Sρ that sι(j) is matched to
in M , which we call a corrective move, and sι(j) is removed from Sι.

Definition 3 (Adjustment Operation Description).
This algorithm takes as input a request rt. The algorithm simulates Doubled
Harmonic on all requests up to rt, sets Sι to be the servers that would be available
at the end of this simulation, and recomputes an optimal matching M .

There are two reasons why modifying Doubled Harmonic to be monotone
isn’t straightforward (and presumably why this wasn’t done in [12]):

1. The first is that the behavior of the algorithm is quite different depending on
whether the new request is triggering or not, which is challenging to imple-
ment with prices because the prices have to be set before the location of the
request is known.

2. The correction moves used by Doubled Harmonic are intuitively not coordi-
nated with the imaginary moves.

Our main contribution is an algorithm that we call Modified Doubled Har-
monic (MDH) that circumvents these issues by modifying Doubled Harmonic in
the following way:

1. Triggering requests rt are just assigned as though they had appeared at a
location x near rt where rt would not have been triggering had it arrived at
location x. Intuitively because triggering requests are rare, it’s not particu-
larly critical that they be handled cheaply.

2. During the correction step the request moves in same direction as it would
in Doubled Harmonic, but stops at the first available server. Note that this
correction step cannot be implemented by any fixed matching, as Doubled
Harmonic does.
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One big hurdle in naturally extending poly-log competitiveness results on
posted-price algorithms for online metric matching on a spider metric [9,10] to
tree metrics is the seeming need to be able to implement guess-and-double in a
monotonic way on a tree, which was the main motivation for considering how to
accomplish this on a line [8]. So our takeaway is that this result suggests trying
to design the correction step for a tree to be as flexible as possible, so as to make
it as easy as possible to monotonically blend with the imaginary movement.

Due to space limitations some proofs have been moved to appendix.

1.1 Additional Related Work

Online metric matching was first studied in [17,18], and each showed indepen-
dently that (2n−1)-competitive is the optimal competitive ratio for deterministic
algorithms in a general metric space. The best known competitive ratio for a ran-
domized algorithm against an oblivious adversary is O

(
log2 n

)
[7,20], and the

best known lower bound is Ω(log n).
In this paper, we focus on matching on the line, which is perhaps the most

interesting case. [4] gave the first deterministic, o(n)-competitive algorithm for
this problem. [19] showed that the Generalized Work Function algorithm is
Ω(log n) and O(n) competitive. [21] showed that no randomized algorithm can
achieve a competitive ratio of o

(√
log n

)
for online matching on the line.

[14] shows how to set prices to mimic the O(1)-competitive algorithm Slow-
Fit from [5,6] for the problem of minimizing makespan on related machines.
Monotonization is used in [16] to obtain an O(1)-competitive posted-price algo-
rithm for minimizing maximum flow time on related machines.

2 Modified Doubled Harmonic Description

We explain the Modified Doubled Harmonic algorithm mainly in terms of how
it differs from Doubled Harmonic. Modified Doubled Harmonic makes the same
initial assumptions about the instance, and maintains the same invariants, as
does Doubled Harmonic. Intuitively Modified Doubled Harmonic modifies Dou-
bled Harmonic in the following ways. Firstly, it handles a triggering request (by
pretending it arrived at a nearby point where the request wouldn’t have been
triggering if it arrived there) before doing the double step of guess-and-double.
Secondly, during the correction step the request moves in same direction as it
would in Doubled Harmonic, but stops at the first available server. Unfortunately
the details of both of these two modifications are a bit complicated.

Note that the optimal matching M between Sι and Sρ partitions the real
line into subintervals of three different types:

Left Islands are maximal subintervals that contain points x where an sι(j) ∈ Sι

to the right of x is matched to a sρ(h) ∈ Sρ to the left of x in M .
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Right Islands are maximal subintervals that contain points x where an sι(j) ∈
Sι to the left of x is matched to a sρ(h) ∈ Sρ to the right of x
in M .

Stationary Islands are maximal subintervals that are disjoint from left and
right islands.

Note that this partitioning will be the same for all choices of M [22].

Definition 4 (Modified Doubled Harmonic).
The algorithm behaves the same way as Doubled Harmonic up until the first
request that arrives at the location of an unavailable server. The algorithm
responds to the arrival of a subsequent request rt in the following manner:

1. If rt appears at the location of a available server sρ(j), then it is assigned to
sρ(j).

2. Else if rt appears to the left of the leftmost available server sρ(1), then it is
assigned to sρ(1).

3. Else if rt appears to the right of the rightmost available server sρ(k), then it
is assigned to sρ(k).

4. Else if rt is not triggering,
(a) If rt appears in a left island, it is assigned to the first available server to

its left.
(b) Else if rt appears in a right island, it is assigned to the first available

server to its right.
(c) Else let sι(h) and sι(h+1) be the first imaginary servers to the left and

right of rt, respectively. Then rt moves to the first available server to its
left with probability

L(sι(h), rt, sι(h+1)) =
pd(rt, sι(h+1))

pd(rt, sι(h)) + pd(rt, sι(h+1))

and rt moves to the first available server to its right with probability

R(sι(h), rt, sι(h+1)) =
pd(rt, sι(h))

pd(rt, sι(h)) + pd(rt, sι(h+1))

So the algorithm chooses between the imaginary server to the left and
the imaginary server to the right with probability inversely proportional
to the pseudo-distance, and then moves to the nearest available server in
that direction.

5. Else (Comment: rt is triggering)
(a) Let sρ(h) and sρ(h+1) be the first available servers to the left and right of

rt, respectively.
(b) Let y� be defined in the following way: If one moves from rt to the left, let

y� be the first point x that one comes to where either rt would not have
been triggering if it had arrived at x, or x is the location of sρ(h).

(c) Let yr be defined in the following way: If one moves from rt to the right,
let yr be the first point x that one comes to where either rt would not have
been triggering if it had arrived at x, or x is the location of sρ(h+1).
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(d) Let m be the midpoint between sρ(h) and sρ(h+1).
(e) If R(sρ(h), yr, sρ(h+1)) < 1

2 then mimic the assignment of a request appear-
ing at yr.

(f) Else if R(sρ(h), y�, sρ(h+1)) > 1
2 then mimic the assignment of a request

appearing at y�.
(g) Else if rt < m then mimic the assignment of a request appearing at y�.
(h) Else rt ≥ m, and mimic the assignment of a request appearing at yr.

6. If rt was triggering (this could happen in Cases 1, 2, 3, or 5), the algorithm
updates the estimate Z and calls the adjustment operation up through request
rt (note the adjustment operation was defined when we defined Doubled Har-
monic).

To show Modified Doubled Harmonic is well-defined, we make the following
observations.

Observation 1. The following hold for Case 4 of the definition of Modified
Doubled Harmonic.

(a) If rt appears in a left island, then it has an available server to its left.
(b) If rt appears in a right island, then it has an available server to its right.
(c) If rt appears in a stationary island, then there are imaginary servers on each

side of rt.

Proof. The first two observations follow directly from the definitions of Left
Island and Right Island. The third observation follows from the fact that rt has
available servers on each side, and so it must have imaginary servers on each
side.

3 Monotonicity Analysis

Note that Modified Doubled Harmonic is a neighbor algorithm, that is it
always assigns requests to a neighboring server. In Lemma 1 we show that if a
neighbor algorithm is monotone on intervals between adjacent available servers(
sρ(i), sρ(i+1)

)
then it is monotone. In Lemma 2 we analyze the probability of a

non-triggering request in
(
sρ(i), sρ(i+1)

)
being assigned to sρ(i+1). In Lemma 3 we

analyze the probability of a triggering request in
(
sρ(i), sρ(i+1)

)
being assigned

to sρ(i+1). Then we conclude in Theorem 1 that Modified Doubled Harmonic is
monotone on each interval

(
sρ(i), sρ(i+1)

)
.

Let rt → sρ(j) denote the event that request rt is matched to sρ(j). We will
use the notation rt = x as shorthand for rt arrived at location x. We say a point
x on the line is a trigger point if a request arriving at location x would be a
triggering request, and otherwise we say x is a non-trigger point.

Lemma 1. A neighbor algorithm A is monotone if, for all intervals of adjacent
available servers

(
sρ(i), sρ(i+1)

)
, Pr

[
rt

A−→ sρ(i+1) | rt = x
]

is non-decreasing

across
(
sρ(i), sρ(i+1)

)
.
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Proof. Suppose for all intervals of adjacent available servers(
sρ(i), sρ(i+1)

)
, Pr

[
rt → sρ(i+1) | rt = x

]
is non-decreasing across

(
sρ(i), sρ(i+1)

)
.

Let u, v, sρ(j+1) ∈ R
1 be arbitrary such that v ∈ [u, sρ(j+1)] and A has an

available server at sρ(j+1). We want to show the following monotonicity condition
holds:

Pr[rt → sρ(j+1) | r = u] ≤ Pr[rt → sρ(j+1) | r = v]

We proceed by simple casework. If u = v, then we have equality; and if
v = sρ(j+1), then Pr[rt → sρ(j+1) | rt = v] = 1. Thus it remains to consider
v ∈ (

u, sρ(j+1)

)
. If sρ(j) ∈ [u, sρ(j+1)), then Pr[rt → sρ(j+1) | rt = u] = 0.

Otherwise, if there does not exist an available server to the left of u, then
Pr[rt → sρ(j+1) | rt = v] = 1. Thus, it remains to consider the case where
u, v ∈ (

sρ(j), sρ(j+1)

)
for adjacent available servers at sρ(j), sρ(j+1). We know

Pr
[
rt → sρ(j+1) | rt = x

]
is non-decreasing across this interval, and so we must

have Pr[rt → sρ(j+1) | rt = u] ≤ Pr[r → sρ(j+1) | rt = v]. Thus in all cases, the
monotonicity condition holds. If instead we pick u, v, sρ(j+1) ∈ R

1 arbitrary with
v ∈ [sρ(j+1), u], the same reasoning holds. Thus the described condition implies
A is monotone, and so it is equivalent to monotonicity for neighbor algorithms.

�
Let rt

MDH−−−→ sρ(j) denote the event that request rt is matched to available
server sρ(j) using Modified Doubled Harmonic. We now fix an arbitrary interval
of adjacent available servers

(
sρ(i), sρ(i+1)

)
.

Lemma 2. Pr
[
r

MDH−−−→ sρ(i+1) | rt = x
]

is non-decreasing across the non-

trigger points in
(
sρ(i), sρ(i+1)

)
.

Proof. Note that the interval
(
sρ(i), sρ(i+1)

)
can be expressed as the union of

a left island, a stationary island, and a right island (any two of which could
possibly be empty). Since [22] guarantees they must appear in this order, the fact
that MDH assigns a request rt in a stationary island to sρ(i+1) with probability
inversely proportional to its pseudodistance from sρ(i+1) yields the result. �

Lemma 3. For all subintervals (xL, xR) ⊆ (
sρ(i),m

) ∪ (
m, sρ(i+1)

)
contain-

ing only trigger points, where m is the midpoint of
(
sρ(i), sρ(i+1)

)
, we have

Pr
[
rt

MDH−−−→ sρ(i+1) | rt = x
]

is constant across (xL, xR).

Proof. Let (xL, xR) ⊆ (
sρ(i),m

) ∪ (
m, sρ(i+1)

)
containing only trigger points be

arbitrary. Note that the only information used to make the assignments of trig-
gering requests are the adjacent non-trigger points (or endpoints of the interval)
and the arrival location of the triggering requests relative to the midpoint. Since
(xL, xR) contains no non-trigger points and is entirely contained on one side of
m, all of this information is identical. Thus, all requests in (xL, xR) have the
same probability of being assigned to sρ(i+1).

Theorem 1. Modified Doubled Harmonic is monotone.
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Proof. The non-trigger points in
(
sρ(i), sρ(i+1)

)
, along with m, partition the

interval into subintervals for which Pr
[
rt

MDH−−−→ sρ(i+1) | rt = x
]

is constant via

Lemma 3. Further, Lemma 2 shows that Pr
[
rt

MDH−−−→ sρ(i+1) | rt = x
]

is non-
decreasing across non-trigger points, and Case 5 of Definition 4 ensures that the
probability of assigning a triggering request to sρ(i+1) is sandwiched between the
probability of assigning its neighboring non-trigger points to sρ(i+1). So, Lemma
1 implies that MDH is monotone. �

4 Cost Analysis

In this section we prove Theorem 2, which states that Modified Doubled Har-
monic is O(log n)-competitive.

Theorem 2. MDH is O(log n)-competitive for online matching on the line.

We first break the execution of Modified Doubled Harmonic into phases,
where each phase terminates with a triggering request. We show in Lemma 4
that the aggregate cost of the nontriggering requests during a phase is at most
O(log n) times the current estimate of the optimal cost plus the imaginary cost
that Doubled Harmonic would have incurred during that phase. We accomplish
this by showing that for each nontriggering request, the cost of the optimal
matching between the imaginary and available servers decreases by at least the
amount that the cost for Modified Doubled Harmonic exceeds the imaginary
cost that Doubled Harmonic would have incurred on that request. In Lemma 5
we bound the cost to Modified Doubled Harmonic for a triggering request by
twice the greedy cost (which is can be seen to be O(log n) times OPT via the
traingle inequality) and the cost to Modified Doubled Harmonic if the request
had arrived at a nearby non-trigger point. Once we have established Lemma 4
and Lemma 5, the bounding of Modified Doubled Harmonic’s cost proceeds as
in [15]. Details can be found in the Appendix.

We first need some definitions. Let Sι(t) be the set of imaginary servers
before the arrival of rt, and let Sρ(t) be the set of available servers before the
arrival of rt. Let D (Sι(t), Sρ(t)) be the optimal cost of matching Sι(t) and
Sρ(t). Let sσ(t) be the available server that Modified Doubled Harmonic used
for request rt. For a nontriggering request rt, if rt appeared in a left island or
a right island, let sγ(t) be the imaginary server that would be selected if one
selected a neighboring imaginary server to either the left or right of rt with
probability inversely proportional to the pseudo-distance. If instead rt appeared
in a stationary island, then if one moves from rt in the direction of sσ(t), let
sγ(t) be the first imaginary server one hits. Define a phase as the sequence of
requests which appear while MDH has the same estimate Z on the optimal cost.
Phases begin with a sequence of nontriggering requests, and terminate with a
single triggering request, after which the estimate Z inflates.
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Lemma 4. Consider an arbitrary phase, and renumber the nontriggering
requests in that phase to r1, r2, . . . , rk. With probability one the expression

D(Sρ(t), Sι(t)) +
t−1∑

j=1

(
d(rj , sσ(j)) − d(rj , sγ(j))

)

is a non-increasing function of t.

Proof. Define g(t) to be the above expression for the chosen phase, and let
t ∈ [1, k] be arbitrary. Then we have

g(t+1)−g(t) = D(Sρ(t+1), Sι(t+1))−D(Sρ(t), Sι(t))+d(rt, sσ(t))−d(rt, sγ(t))

where Sρ(t+1) = Sρ(t)\{sσ(t)} and Sι(t+1) = Sι(t)\{sγ(t)}. Write Sρ(t) =
{sρ(1), sρ(2), . . . , sρ(�)} and Sι(t) = {sι(1), sι(2), . . . , sι(�)} where the servers in
each set have been ordered left-to-right. Suppose sσ(t) = sρ(a) and sγ(t) = sι(b).

Now, suppose a < b. Then because sρ(a) < sρ(b) and MDH is a neighbor
algorithm, we must have rt < sρ(b). Further, because sι(a) < sι(b) and sι(b) is a
neighboring imaginary server to rt, we must have rt > sι(a). The final observation
is the trickiest to notice: rt ≤ sρ(a), meaning that a < b implies MDH cannot
assign rt leftwards. We can show this through simple casework on the description
of Modified Doubled Harmonic. The only cases where leftward assignment is
possible are Case 3, Case 4a, and Case 4c. However, in all of these cases, we
must have a ≥ b. Indeed, in Case 3, a = � ≥ b. In Case 4a, rt is in a left island,
and so [22] shows rt must have more available servers than imaginary servers on
its left, forcing a ≥ b. In Case 4c, rt is in a stationary island, and so [22] shows
there must be an equal number of available and imaginary servers to the left of
(and including the location of) rt. By definition of sγ(t) when rt is in a stationary
island, we must have a = b. Thus given a < b, leftward assignment of rt is not
possible, and so rt ≤ sρ(a). Finally, we can deduce sι(a) < rt ≤ sρ(a) < sρ(b).
Simple computation yields

g(t+ 1) − g(t) = D(Sρ(t+ 1), Sι(t+ 1)) − D(Sρ(t), Sι(t)) + d(rt, sρ(a)) − d(rt, sι(b))

≤ (
sρ(b) − sρ(a)

) − d(sρ(b), sι(b)) +
(
sρ(a) − rt

) − d(rt, sι(b))

=
(
sρ(b) − rt

) − (
d(sρ(b), sι(b)) + d(rt, sι(b))

)

= d(sρ(b), rt) − (
d(sρ(b), sι(b)) + d(rt, sι(b))

)

≤ 0

The first inequality follows by simple computation and application of the
triangle inequality, but for completeness, the proof is given in the Appendix
(Lemma 6). If a = b, direct computation gives the same result. If a > b, applying
the same reasoning as before gives sρ(b) < sρ(a) ≤ rt < sι(a), and the same result
follows. Thus in all cases, g(t + 1) − g(t) ≤ 0 giving g(t + 1) ≤ g(t). Thus g(t) is
a non-increasing function of t, completing the proof. �
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Lemma 5. Consider a triggering request rt. Let sj be the available server closest
to rt. Let y� and yr be defined as in the Modified Doubled Harmonic algorithm,
and let s� and sr be the available servers that Modified Doubled Harmonic would
have assigned a request arriving at y� and yr, respectively. Then

E
[
d

(
rt, sσ(t)

)] ≤ 2max (E [d (y�, s�)] ,E [d (yr, sr)] , d (rt, sj))

Proof (Sketch). For brevity we give the proof sketch, and the full proof is given in
the Appendix. We proceed by showing the claim holds in each potential trigger
case of Definition 4. In Cases 1, 2, and 3, the claim trivially holds, because rt is
assigned greedily to sj . It remains to consider Case 5. Suppose rt appeared in
between adjacent available servers sρ(h) and sρ(h+1), and let m be the midpoint
of

(
sρ(h), sρ(h+1)

)
.

(a) If R(sρ(h), yr, sρ(h+1)) < 1
2 , then rt mimics the assignment of a request arriv-

ing at yr. Thus E
[
d

(
rt, sσ(t)

)] ≤ E [d (yr, sr)].
(b) Else if R(sρ(h), y�, sρ(h+1)) > 1

2 , then rt mimics the assignment of a request
appearing at y�. Thus E

[
d

(
rt, sσ(t)

)] ≤ E [d (y�, s�)].
(c) Else if rt < m, then rt mimics the assignment of a request appearing at y�.

Because y� ≤ rt ≤ m and R(sρ(h), y�, sρ(h+1)) ≤ 1
2 , we have E

[
d

(
rt, sσ(t)

)] ≤
2max (E [d (y�, s�)] , d (rt, sj)).

(d) Else rt ≥ m, and rt mimics the assignment of a request appearing
at yr. Because yr ≥ rt ≥ m and R(sρ(h), yr, sρ(h+1)) ≥ 1

2 , we have
E

[
d

(
rt, sσ(t)

)] ≤ 2max (E [d (yr, sr)] , d (rt, sj)).

Thus in all cases, the claim holds.
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A Remedying Some Assumptions

A.1 Minimum Distance 1 Between Servers

First, note that we may always assume the minimum distance between servers
at different locations is 1, which can be easily remedied by a suitable scaling.
Thus to resolve the assumption that the minimum distance between adjacent
servers is 1, the important piece to resolve is that no two servers exist at the
same location.

Suppose we have a monotone neighbor algorithm A which is α-competitive
under the assumptions that all servers exist at different locations, and requests
appear at server locations. We will construct a monotone neighbor algorithm B
which is 2α-competitive and removes the first assumption.

Again we may assume the instance given to B has minimum distance 1
between adjacent servers at different locations, which can be easily remedied
by a suitable scaling. We do this primarily for ease of analysis. Let ε = 1

5n . On
the instance given to B, construct an instance for A by first placing one server
per server location; and then perturbing the extra servers at the same location
by at most ε (so that all servers are now at distinct locations). B then services
request r in the following way.

– If r appears at an available server s in the instance of B, place a simulated
request r̃ at an available server s̃ in the same “ε-window” in the instance of
A. Then r

B−→ s and r̃
A−→ s̃.

– Otherwise, let t be the location of r’s appearance. Place a simulated request
r̃ at t in the instance of A. Given r̃

A−→ s for an available server s, then r
B−→ s.

It is easy to see that B is a monotone neighbor algorithm given A is a mono-
tone neighbor algorithm. It remains to show B is 2α-competitive. Note that each
assignment in ONB and OPTB can differ from the corresponding assignment in
ONA and OPTA by at most ε. Thus

ONB ≤ ONA + nε = ONA +
1
5

and

OPTB ≥ OPTA − nε = OPTA − 1
5

If OPTB = 0, then ONB = 0, because all requests appeared at available
servers. Otherwise, OPTB > 0, and so some request is forced to match to a
server at a different location. Because the minimum distance between adjacent
servers (at different locations) is 1, we must have ONB ≥ OPTB ≥ 1. The same
property holds for the instance of A (where some request is forced to assign
outside of its “ε-window”), and so ONA ≥ OPTA ≥ 1 − 2ε ≥ 3

5 . Thus

E [ONB]
OPTB

≤ E [ONA] + 1
5

OPTA − 1
5

≤
(

1 + 1
3

1 − 1
3

) (
E [ONA]
OPTA

)

≤ 2α

and so B is 2α-competitive, as desired.
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A.2 Requests Appear at Server Locations

Suppose we have a monotone neighbor algorithm B which is β-competitive under
the assumption that requests appear at server locations. We will construct a
monotone neighbor algorithm C which is (2β + 1)-competitive and makes no
such assumption. Specifically, C services request r in the following way.

– Let t be the server closest to r, regardless of whether t is available or not.
– Place a simulated request r̃ at the location of t in the running instance of B.
– Given r

B−→ s for an available server s, then r
C−→ s.

Let S = {s1, s2, . . . , sn} be the set of servers in the instance and R =
{r1, r2, . . . , rn} be the set of requests. Without loss of generality, assume the
servers of S and the requests of R have been written, according to their loca-
tions, in increasing order of coordinate value. Let ti be the server nearest to ri,
regardless of whether it is available or not upon appearance of ri. Then the set
T = {t1, t2, . . . , tn} is written as “ordered” as well.

First, we show C is (2β + 1)-competitive. Suppose B assigns r̃i to sσ(i)

for each i. Then OPTB =
∑n

i=1 d(ti, si), ONB =
∑n

i=1 d(sσ(i), ti), OPTC =∑n
i=1 d(ri, si), and ONC =

∑n
i=1 d(sσ(i), ri), where the structure of OPTB and

OPTC is given by [22]. Note OPTC ≥ ∑n
i=1 d(ri, ti) since ti is the nearest server

to ri for each request ri. Then we have

OPTC =
1
2

(OPTC + OPTC)

≥ 1
2

(
n∑

i=1

d(ri, si) +
n∑

i=1

d(ri, ti)

)

≥ 1
2

(
n∑

k=1

d(ti, si)

)

=
1
2
OPTB

and

ONC =
n∑

i=1

d(sσ(i), ri) ≤
n∑

i=1

d(sσ(i), ti) +
n∑

i=1

d(ri, ti) ≤ ONB + OPTC

Thus

E [ONC ]
OPTC

≤ E [ONB] + OPTC

OPTC
≤ E [ONB]

1
2OPTB

+ 1 = 2
(
E [ONB]
OPTB

)

+ 1 ≤ 2β + 1

as desired. Further, it is easy to see that C is a neighbor algorithm given B is
a neighbor algorithm. Lastly, we must show C is monotone. Indeed, the sets of



An O(log n)-Competitive Posted-Price Algorithm for OML 57

points closest to si for each server si partition the real line into disjoint intervals
(where all servers at the same location are understood to share the same interval).
Any requests appearing within the same interval are treated identically in C. This
discretization ensures that because B is monotone and thus satisfies the condition
in Lemma 1, C satisfies the same condition, and so it is also monotone.

B Proof that Doubled Harmonic is Not Monotone

Consider the following instance.

s1 s2 s3 s4

4 7 20

Suppose that r1 arrives at s2. Then, r1
DH−−→ s2. Next, suppose r2 arrives

at s2. Then the optimal matching of r1 and r2 has cost 4, the estimate Z is
set to 10, the set of imaginary servers is set to Sι = {s1, s3, s4}, and the set
of available servers is set to Sρ = {s1, s3, s4}. Clearly the optimal matching M
between Sι and Sρ just assigns each server to itself. Suppose DH then performs
the imaginary move r2 → s1 and the subsequent corrective move s1 → s1. This
leaves Sι = {s3, s4} and Sρ = {s3, s4}. Now, we show that the assignment of r3
is not monotone.

Suppose that r3 appears at s1. Then, the optimal matching of the requests has
cost 7. DH performs the imaginary move r3 → s3 and the subsequent corrective
move s3 → s3, and so DH assigns r3 to s3 with probability 1.

Suppose that r3 instead appears at s2. Now, the optimal matching of the
requests has cost 11. The estimate Z is then set to 100, and the adjustment
operation is performed. With probability 4

11 , DH simulates assigning r1 to s2
and r2 to s3. The imaginary move of r3 is then to s1 with probability 27

31 , and
the subsequent corrective move assigns r3 to s3. The imaginary move of r3 to s4
has probability 4

31 , and the subsequent corrective move assigns r3 to s4. Thus
with nonzero probability, DH assigns r3 to s4 (and thus NOT to s3) in this case.

Thus the probability that DH assigns r3 to s3 is higher for arrival at s1
(probability 1) than for arrival at s2 (probability < 1). Further note that this
violation of monotonicity is induced by the fact that an adjustment operation
will not occur if r3 arrives at s1, but it will occur if r3 arrives at s2. Thus DH is
not monotone.

C Auxiliary Lemma for Lemma 4

Lemma 6. Let P,Q be two finite sets of points in R
1 with the same number

of elements. Suppose P = {p1, p2, . . . , pm} and Q = {q1, q2, . . . , qm}, where the
points have been written in increasing order of location. Let D(P,Q) be the opti-
mal cost of matching P and Q. Further, let P ′ = P \ {pg} and Q′ = Q \ {qh}
for arbitrary g, h ∈ [1,m]. Then

D (P ′, Q′) − D(P,Q) ≤
{

(ph − pg) − |ph − qh| g ≤ h
(qg − qh) − |qg − pg| g > h
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Proof. We know via [22] that

D(P,Q) =
m∑

k=1

|pk − qk|

Suppose g ≤ h. Then we have

D (P ′, Q′) =
g−1∑

k=1

|pk − qk| +
h−1∑

k=g

|pk+1 − qk| +
m∑

k=h+1

|pk − qk|

Thus

D (P ′, Q′) − D(P,Q) =

⎛

⎝
h−1∑

k=g

|pk+1 − qk| − |pk − qk|
⎞

⎠ − |ph − qh|

≤
⎛

⎝
h−1∑

k=g

|pk+1 − pk|
⎞

⎠ − |ph − qh|

=

⎛

⎝
h−1∑

k=g

(pk+1 − pk)

⎞

⎠ − |ph − qh|

= (ph − pg) − |ph − qh|
For g > h, the proof follows identically, only with P,Q and g, h switched. �

D Cost Analysis Definitions

To explicitly prove our cost results, we first introduce many useful definitions.
Let OPT(t) be the optimal cost of matching the first t requests to the servers,
and suppose that OPT(n) ∈ [

10�, 10�+1
)
. For ease of presentation, suppose that

before the estimate Z is instantiated during execution of MDH, it holds a default
value of 1. Then the estimate Z runs through Z = 10ki for 0 = k0 < k1 < k2 · · · <
km = �+1. Let Zi = 10ki for each 0 ≤ i ≤ m. We now introduce some definitions
which allow us to partition the requests according to Zi. Let

– τi be the maximum index t such that OPT(t) < Zi for each 0 ≤ i ≤ m.
– ρi be the i’th triggering request, which upon appearance causes OPT(t)

to increase from < Zi−1 to ≥ Zi−1. Equivalently ρi = rτi−1+1.
– Bi be the sequence of requests rt arriving after ρi and before ρi+1.

Let B0 and Bm be the sequence of requests appearing before ρ1 and after
ρm, respectively. This allows us to decompose the full request sequence as
B0, ρ1, B1, ρ2, . . . , Bm−1, ρm, Bm. The phase of the algorithm associated with
Zi is given by the pair (Bi, ρi+1). However, we will no longer use this phase ter-
minology, and rather reference the Bi’s and ρi’s directly. We now introduce some
definitions which allow us to partition MDH’s assignments and DH’s underlying
imaginary moves according to Zi. Let
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– Wi =
⋃

rt∈Bi
{(

rt, sσ(t)

)} be the set of assigned edges for the requests in
Bi.

– Xi =
⋃

rt∈Bi
{(

rt, sγ(t)

)} conceptually be the set of chosen imaginary moves
for the requests in Bi.

Conceptually, Xi is a set of possible imaginary moves of Doubled Harmonic.
These imaginary moves are relevant for us because we bound the cost of Modified
Doubled Harmonic’s assignments against the cost of these imaginary moves. We
are also interested in how MDH/DH simulates request assignments during an
adjustment operation. For this reason, define sμ(i,t) to be the imaginary server
chosen for the request rt during the adjustment operation triggered by ρi. Of
course, sμ(i,t) is only defined for t ≤ τi−1, because the adjustment operation
which occurs after the estimate inflates to Z = Zi only simulates request assign-
ments up to the triggering request ρi = rτi−1+1. Now, let

– Yi =
⋃τi−1

t=1 {(
rt, sμ(i,t)

)} be the set of simulated assignments of the
requests for the adjustment operation triggered by ρi.

– ei = {(
rt′ , sσ(t′)

)} be the assigned edge of ρi. Here t′ = τi−1 + 1.
– fi = {(

rt′ , sγ(t′)
)} conceptually be the chosen imaginary move for ρi. Here

t′ = τi−1 + 1, and sγ(t′) is a neighboring imaginary server to ρi chosen with
probability inversely proportional to the pseudodistance after the adjustment
operation triggered by ρi is performed.

– Ei = {e1, e2, . . . , ei} be the set of assigned edges for the triggering requests
up through ρi.

This allows us to decompose the full assigned edge set W = (
⋃m

i=0 Wi) ∪ Em

in the order W = W0, e1,W1, e2, . . . , Wm−1, em,Wm. We can further decompose
the chosen imaginary moves in the order X = X0, f1,X1, f2, . . . , Xm−1, fm,Xm.
Lastly, for an edge set U , let |U | be the sum of the lengths of the edges in U .

E Bounding Non-Trigger Costs

Let i ∈ [0,m] be arbitrary. We now pursue the goal of bounding |Wi|, the total
cost of the non-trigger assignments while Modified Doubled Harmonic has esti-
mate Z = Zi. We start by recalling an important result from [15], which gives
a cost bound on the imaginary moves and the simulated assignments from the
adjustment operation.

Lemma 7. [15] E [|Xi| + |fi| + |Yi|] ≤ C · Zi for C = O(log n).

Moving forward, we will use C to refer to the specific O(log n) function which
is used in Lemma 7. Because |Xi| is properly bounded by O(Zi log n), our goal
now becomes bounding |Wi| − |Xi|, the amount Modified Doubled Harmonic
exceeds the imaginary cost that Doubled Harmonic would have incurred on the
requests in Bi.

Let t̂i = τi−1 +2 be the time of the first request in Bi. To bound |Wi|− |Xi|,
we will bound D

(
Sρ

(
t̂i

)
, Sι

(
t̂i

))
, which will be sufficient for our purposes upon
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application of Lemma 4. We do so by constructing a matching Mi : Sι

(
t̂i

) →
Sρ

(
t̂i

)
whose cost is appropriately bounded.

Lemma 8. [15] There exists a bijection Mi : Sι

(
t̂i

) → Sρ

(
t̂i

)
such that

cost (Mi) ≤ |fi| + |Yi| + |Ei| +
i−1∑

j=0

|Wj |

Proof. [15] Cover the line with {fi}∪Yi and
(⋃i−1

j=0 Wj

)
∪Ei. For all imaginary

and available servers at the same location, match them together. Otherwise,
for each remaining imaginary server in Sι

(
t̂i

)
, follow the edges of this covering

until an available server in Sρ

(
t̂i

)
is reached, and match them together. Via the

triangle inequality, the induced matching Mi : Sι

(
t̂i

) → Sρ

(
t̂i

)
has

cost (Mi) ≤ |fi| + |Yi| + |Ei| +
i−1∑

j=0

|Wj |

�

Lemma 9. E [|Wi|] ≤ C · Zi + E

[
|Ei| +

∑i−1
j=0 |Wj |

]
.

Proof. t̂i is the time of the first request in Bi, and τi + 1 is the time of the
(i + 1)’st triggering request ρi+1. Thus t̂i ≤ τi + 1 and so Lemma 4 implies
g (τi + 1) ≤ g

(
t̂i

)
. Thus

D (Sρ (τi + 1) , Sι (τi + 1)) + (|Wi| − |Xi|) ≤ D
(
Sρ

(
t̂i

)
, Sι

(
t̂i

))

This gives

|Wi| ≤ |Xi| + D
(
Sρ

(
t̂i

)
, Sι

(
t̂i

)) − D (Sρ (τi + 1) , Sι (τi + 1))

≤ |Xi| + D
(
Sρ

(
t̂i

)
, Sι

(
t̂i

))

≤ |Xi| + cost(Mi)

≤ |Xi| + |fi| + |Yi| + |Ei| +
i−1∑

j=0

|Wj |

The third inequality follows from the fact that D
(
Sρ

(
t̂i

)
, Sι

(
t̂i

))
is the

optimal cost of matching Sρ

(
t̂i

)
and Sι

(
t̂i

)
. The last inequality follows from

Lemma 8. Applying Lemma 7 gives the desired result. �
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F Bounding Trigger Costs

We now prove a sequence of lemmas with the eventual goal of proving Lemma
13. We begin by introducing some basic functions to compute assignment costs.
In Lemma 5, we bound the cost to Modified Doubled Harmonic for a triggering
request by twice the greedy cost (which is clearly O(log n) times OPT) and the
cost to Modified Doubled Harmonic if the request had arrived at a nearby non-
trigger point. We bound the greedy cost of ρi in Lemma 12, and the cost bound
on the non-trigger points is a simple corollary from Lemma 9. Combining these
results, we prove Lemma 13.

First, we introduce some basic functions for computing assignment costs. The
function Lh(x) is the linear transformation of

(
sρ(h), sρ(h+1)

)
onto (0, 1) (which

maps sρ(h) to 0 and sρ(h+1) to 1). The function N(α, γ) = α(1− γ)+ (1−α)γ is
a “normalized” assignment cost, where we assume the adjacent available servers
exist at 0 and 1. The following lemma makes these ideas rigorous.

Lemma 10. Suppose request rt appears in between adjacent available
servers sρ(h) and sρ(h+1). Further, suppose rt assigns to sρ(h), sρ(h+1)

with probabilities 1 − p, p. Then the expected cost of rt’s assignment is(
sρ(h+1) − sρ(h)

)
N(Lh(rt), p).

Proof. The proof follows directly from simple computation. �

The utility of decomposing rt’s assignment cost in this way comes from the
fact that we may now concern ourselves with studying N , the normalized assign-
ment cost, which simplifies much of the computation. Next, we establish some
useful facts about the function N . Each fact will be used in bounding the cost
in each subcase of Case 5 of Definition 4.

Lemma 11. The following facts hold for all α, β, γ ∈ [0, 1].

(a) If α ≤ β and γ ≤ 1
2 , then N (α, γ) ≤ N(β, γ).

(b) If α ≥ β and γ ≥ 1
2 , then N (α, γ) ≤ N(β, γ).

(c) If β ≤ α ≤ 1
2 and γ ≤ 1

2 , then N (α, γ) ≤ 2max (α,N(β, γ)).
(d) If β ≥ α ≥ 1

2 and γ ≥ 1
2 , then N (α, γ) ≤ 2max (1 − α,N(β, γ)).

Proof.

(a) This follows directly via simple computation.
(b) This follows directly via simple computation.
(c)

N(α, γ)
α

=
γ + α − 2γα

α
≤ γ + α

α
= 1 +

γ

α

N(α, γ)
N(β, γ)

=
γ + α − 2γα

γ + β − 2γβ
≤ γ + α

γ + β(1 − 2γ)
≤ γ + α

γ
= 1 +

α

γ

Because min
(

γ
α , α

γ

)
≤ 1, we know N(α, γ) ≤ 2α or N(α, γ) ≤ 2N(β, γ).

Thus N (α, γ) ≤ 2max (α,N(β, γ)).



62 S. Arndt et al.

(d) Via direct computation, N(α, γ) = N(1 − α, 1 − γ) and N(β, γ) = N(1 −
β, 1 − γ). Thus upon application of (c), we have

N(1 − α, 1 − γ) ≤ 2max(1 − α,N(1 − β, 1 − γ))
N(α, γ) ≤ 2max(1 − α,N(β, γ))

�

Proof (of Lemma 5). We proceed by showing the claim holds in each poten-
tial trigger case of Definition 4. In Cases 1, 2, and 3, the claim trivially holds,
because ρi is assigned greedily to sj . It remains to consider Case 5. Suppose ρi

appeared in between adjacent available servers sρ(h) and sρ(h+1), and let m be
the midpoint of

(
sρ(h), sρ(h+1)

)
. Suppose that under the linear transformation

Lh :
(
sρ(h), sρ(h+1)

) → (0, 1), ρi maps to α, y� maps to β�, and yr maps to
βr. Further, m trivially maps to 1

2 . In comparing the costs of assignments in(
sρ(h), sρ(h+1)

)
, it suffices to compare the costs of the normalized assignments in

(0, 1), given the normalization factor of sρ(h+1) − sρ(h) is always the same.
Let p� = R(sρ(h), y�, sρ(h+1)) and pr = R(sρ(h), yr, sρ(h+1)). Lemma 11

cleanly handles each subcase of Case 5.

(a) If pr < 1
2 , then ρi mimics the assignment of a request arriving at yr. We

know α ≤ βr, and so N (α, pr) ≤ N (βr, pr).
(b) Else if p� > 1

2 , then ρi mimics the assignment of a request appearing at y�.
We know α ≥ β�, and so N (α, p�) ≤ N (β�, p�).

(c) Else if ρi < m, then ρi mimics the assignment of a request appearing at y�.
We know β� ≤ α ≤ 1

2 and p� ≤ 1
2 , and so N (α, p�) ≤ 2max (α,N(β�, p�)).

Note that α is simply the normalized greedy assignment of ρi.
(d) Else ρi ≥ m, and ρi mimics the assignment of a request appearing at yr. We

know βr ≥ α ≥ 1
2 and pr ≥ 1

2 , and so N (α, pr) ≤ 2max (1 − α,N(βr, pr)).
Note that 1 − α is simply the normalized greedy assignment of ρi.

Given ρi assigns rightwards to sρ(h+1) with probability p, in all cases, we
have

N(α, p) ≤ 2max (N (β�, p�) , N (βr, pr) ,min(α, 1 − α))

Multiplying both sides by the normalization factor of sρ(h+1) − sρ(h) gives
the desired result.

It remains to bound the cost of all individual non-trigger assignments and
the greedy assignment. First, we obtain a bound on the greedy assignment of ρi.

Lemma 12. For a triggering request ρi, let s be the available server nearest to
ρi. Then E [d (ρi, s)] ≤ C · Zi + E

[
|Ei−1| +

∑i−1
j=0 |Wj |

]
.
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Proof. Run the adjustment operation on all requests up to ρi = rτi−1+1 to
generate simulated assigned servers s′

μ(i,t) and a set of simulated assignments
Y ′

i =
⋃τi−1

t=1

{(
rt, sμ(i,t)′

)}
solely for the purposes of our argumentation. This

produces a set of imaginary servers S′
ι. Cover the line with the edges in Y ′

i

and the assigned edges
(⋃i−1

j=0 Wj

)
∪ Ei−1. This covering partitions the line

into disjoint intervals for which each interval has the same number of requests,
servers in Y ′

i , and previously assigned servers in {sσ(1), sσ(2), . . . , sσ(τi−1)}. By
extension, each partition must have the same number of imaginary servers in S′

ι

and available servers in Sρ.
Now pick an imaginary server s′

γ(t′) for the triggering request ρi in the same
way we picked sγ(t′), where here t′ = τi−1 + 1. This gives a generated imaginary

move f ′
i =

{(
rt′ , s′

γ(t′)

)}
, and add f ′

i to this covering. From ρi, follow f ′
i , reach-

ing a (previously) imaginary server s′
ι(g) ∈ S′

ι. Some available server must exist
within the partition containing s′

ι(g), and so the triangle inequality ensures that

some available server exists at most distance |f ′
i | + |Y ′

i | + |Ei−1| +
∑i−1

j=0 |Wj |
from ρi. Given s is the available server nearest to ρi, we must have

E [d (ρi, s)] ≤ E

⎡

⎣|f ′
i | + |Y ′

i | + |Ei−1| +
i−1∑

j=0

|Wj |
⎤

⎦

≤ C · Zi + E

⎡

⎣|Ei−1| +
i−1∑

j=0

|Wj |
⎤

⎦

where in the final step we apply Lemma 7. �

Next, we obtain a bound on assignments of requests appearing at non-trigger
points, which is a direct corollary from Lemma 9.

Corollary 1. For a non-trigger point y, let s be the available server that Modi-
fied Doubled Harmonic would have assigned a request arriving at y, given the esti-
mate is currently Z = Zi−1. Then E [d(y, s)] ≤ C ·Zi−1+E

[
|Ei−1| +

∑i−2
j=0 |Wj |

]
.

With all of the pieces in place, we establish a cost bound on E [|ei|].

Lemma 13. E [|ei|] ≤ 2
(
C · Zi + E

[
|Ei−1| +

∑i−1
j=0 |Wj |

])
.

Proof. The proof follows directly from application of Lemma 5, Corollary 1, and
Lemma 12. Note that we apply Corollary 1 when the estimate is Z = Zi−1

because ρi causes the estimate to inflate from Z = Zi−1 to Z = Zi. �
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G Proving Theorem 2

We now make the recursive bounds on E [|Wi|], E [|ei|] established in Lemma 9,
Lemma 13 explicit through induction. The key idea is that although E [|Wi|] and
E [|ei|] are bounded in terms of all previous assignments and imaginary moves,
the geometrically increasing nature of Zi ensures their costs are simply on the
order of C · Zi.

Lemma 14. E [|Wi|] ≤ 8C · Zi and E [|ei|] ≤ 5C · Zi for all i ∈ [0,m].

Proof. First, note that for all i ∈ [0,m − 1],

i∑

j=0

Zj =
i∑

j=0

10kj ≤
ki∑

h=0

10h =
1
9

· (
10ki+1 − 1

) ≤ 1
9

· 10ki+1 =
1
9

· Zi+1

We now proceed by induction on i. The base case of |W0| = 0 is trivial, and
simply define |e0| = 0. Let i ∈ [0,m − 1] be arbitrary, and assume the claim
holds for all j ∈ [0, i]. Then

E [|ei+1|] ≤ 2

⎛

⎝C · Zi+1 + E

⎡

⎣|Ei| +
i∑

j=0

|Wj |
⎤

⎦

⎞

⎠

= 2C · Zi+1 + 2 ·
i∑

j=0

E [|ej |] + 2 ·
i∑

j=0

E [|Wj |]

≤ 2C · Zi+1 + 10C ·
i∑

j=0

Zj + 16C ·
i∑

j=0

Zj

= 2C · Zi+1 + 26C ·
i∑

j=0

Zj

≤ 2C · Zi+1 +
26C

9
· Zi+1

≤ 5C · Zi+1

and
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E [|Wi+1|] ≤ C · Zi+1 + E

⎡

⎣|Ei+1| +
i∑

j=0

|Wj |
⎤

⎦

= C · Zi+1 +
i+1∑

j=0

E [|ej |] +
i∑

j=0

E [|Wj |]

≤ C · Zi+1 + 5C ·
i+1∑

j=0

Zj + 8C ·
i∑

j=0

Zj

= 6C · Zi+1 + 13C ·
i∑

j=0

Zj

≤ 6C · Zi+1 +
13C

9
· Zi+1

≤ 8C · Zi+1

completing the induction. �

Finally, we now prove Theorem 2. The O(log n)-competitiveness of Modi-
fied Doubled Harmonic is a direct consequence of Lemma 14 and the fact the
geometric sums are asymtotically equal to their largest summand.

Proof (of Theorem 2). Aggregating the edges W = (
⋃m

i=0 Wi) ∪ Em, we have

E [|W |] = E

[(
m∑

i=0

|Wi|
)

+ |Em|
]

=
m∑

i=0

E [|Wi|] +
m∑

i=1

E [|ei|]

Applying Lemma 14,

m∑

i=0

E [|Wi|] +
m∑

i=1

E [|ei|] ≤ 8C ·
m∑

i=0

Zi + 5C ·
m∑

i=0

Zi = 13C ·
m∑

i=0

Zi

Simplifying yields

13C ·
m∑

i=0

Zi ≤ 13C

9
· 10km+1 ≤ 1.5C · 10�+2 = 150C · 10� ≤ 150C · OPT(n)

Recalling C = O(log n) completes the proof. �
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Abstract. In this paper, we present online deterministic algorithms for
minimum coloring, minimum dominating set and its variants in the con-
text of geometric intersection graphs. We consider a graph parameter:
the independent kissing number ζ, which is a number equal to ‘the size
of the largest induced star in the graph −1’. For a graph with an inde-
pendent kissing number at most ζ, we obtain an algorithm having an
optimal competitive ratio of ζ, for the minimum dominating set and the
minimum independent dominating set problems; however, for the mini-
mum connected dominating set problem, we obtain a competitive ratio of
at most 2ζ. In addition, we prove that for the minimum connected domi-
nating set problem, any deterministic online algorithm has a competitive
ratio of at least 2(ζ −1) for the geometric intersection graph of translates
of a convex object in R

2. Next, for the minimum coloring problem, we
present an algorithm having a competitive ratio of O (ζ′log m) for geo-
metric intersection graphs of bounded scaled α-fat objects in R

d having
a width in between [1, m], where ζ′ is the independent kissing number
of the geometric intersection graph of bounded scaled α-fat objects hav-
ing a width in between [1, 2]. Finally, we investigate the value of ζ for
geometric intersection graphs of various families of geometric objects.

Keywords: α-Fat objects · Coloring · Connected dominating set ·
Dominating set · Independent kissing number · t-relaxed coloring

1 Introduction

We consider online algorithms for some well-known NP-hard problems: the min-
imum dominating set problem and its variants and the minimum coloring prob-
lem. Dominating set and its variants have several applications in wireless ad-hoc
networks, routing, etc. [3,4]; while coloring has diverse applications in frequency
assignment, scheduling and many more [1,14,15].
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Minimum Dominating Set and its Variants. For a graph G = (V,E), a subset
D ⊆ V is a dominating set (DS) if for each vertex v ∈ V , either v ∈ D (con-
tainment) or there exists an edge {u, v} ∈ E such that u ∈ D (dominance). A
dominating set D is said to be a connected dominating set (CDS) if the induced
subgraph G[D] is connected (if G is not connected, then G[D] must be con-
nected for each connected component of G). A dominating set D is said to be
an independent dominating set (IDS) if the induced subgraph G[D] is an inde-
pendent set. The minimum dominating set (MDS) problem involves finding a
dominating set of the minimum cardinality. Similarly, the objectives of the mini-
mum connected dominating set (MCDS) problem and the minimum independent
dominating set (MIDS) problem are to find a CDS and IDS, respectively, with
the minimum number of vertices.

Throughout the paper, we consider online algorithms for vertex arrival model
of graphs where a new vertex is revealed with its edges incident to previously
appeared vertices. The dominating set and its variants can be considered in
various online models [4]. In Classical-Online-Model (also known as “Standard-
Model”), upon the arrival of a new vertex, an online algorithm must either
accept the vertex by adding it to the solution set or reject it. In Relaxed-Online-
Model (also known as “Late-Accept-Model”), upon the arrival of a new vertex,
in addition to the revealed vertex, an online algorithm may also include any of
the previously arrived vertices to the solution set. Note that once a vertex is
included in the solution set for either model, the decision cannot be reversed in
the future. For the MCDS problem, if we cannot add previously arrived vertices
in the solution set, the solution may result in a disconnected dominating set [3].
Therefore, in this paper, for the case of the MCDS problem, we use Relaxed-
Online-Model; while for MDS and MIDS, we use Classical-Online-Model. In
addition, the revealed induced subgraph must always be connected for the MCDS
problem.

Minimum Coloring Problem. For a graph G = (V,E), the coloring is to assign
colors (positive integers) to the vertices of G. The minimum coloring (MC)
problem is to find a coloring with the minimum number of distinct colors such
that no two adjacent vertices (vertices connected by an edge) have the same
color. In the online version, upon the arrival of each new vertex v, an algorithm
needs to immediately assign to v a feasible color, i.e., one distinct from the colors
assigned to the neighbours of v that have already arrived. The color of v cannot
be changed in future.

We analyze the quality of our online algorithm by competitive analysis [2].
An online algorithm ALG for a minimization problem is said to be c-competitive,
if there exists a constant d such that for any input sequence I, we have A(I) ≤
c × O(I) + d, where A(I) and O(I) are the cost of solutions produced by ALG
and an optimal offline algorithm, respectively, for the input I. The smallest c
for which ALG is c-competitive is known as an asymptotic competitive ratio of
ALG [3]. The smallest c for which ALG is c-competitive with d = 0 is called an
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absolute competitive ratio (also known as strict-competitive ratio) of ALG [3].
If not explicitly specified, we use the term “competitive ratio” to mean absolute
competitive ratio.

1.1 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}, where n is a positive real number. In
this paper, we focus on geometric intersection graphs due to their applications
in wireless sensors, network routing, medical imaging, etc. For a family S of
geometric objects in R

d, the geometric intersection graph G of S is an undirected
graph with set of vertices same as S, and the set of edges is defined as E =
{{u, v}|u, v ∈ S, u ∩ v �= ∅}. Several researchers have used the kissing number
as a parameter to give an upper or lower bound for geometric problems. For
instance, Butenko et al. [6] used it to prove the upper bound of the MCDS
problem in the offline setup for unit balls in R

3, whereas Dumitrescu et al. [12]
used it to prove the upper bound for the unit covering problem for balls in
R

d. Similar to kissing number, we use a graph parameter- independent kissing
number ζ. Let ϕ(G) denote the size of a maximum independent set of a graph
G = (V,E). For any vertex v ∈ V , let N(v) = {u(�= v) ∈ V |{u, v} ∈ E} be the
neighbourhood of the vertex v. Now, we define the independent kissing number
ζ for graphs.

Definition 1. (Independent Kissing Number) The independent kissing
number ζ of a graph G = (V,E) is defined as maxv∈V {ϕ(G[N(v)])}.

Note that the independent kissing number equals ‘the size of the largest
induced star in the graph −1’. In other words, a graph with independent kissing
number ζ is a K1,ζ+1-free graph. Moreover, the value of ζ may be very small
compared to the number of vertices in a graph. For example, the value of ζ
is a fixed constant for the geometric intersection graph of several families of
geometric objects like translated and rotated copies of a convex object in R

2.
However, the use of this parameter is not new. For example, in the offline setup,
Marathe et al. [20] obtained a 2(ζ − 1)-approximation algorithm for the MCDS
problem for any graph having an independent kissing number at most ζ.

Two geometric objects are said to be non-overlapping if they have no common
interior, whereas we call them non-touching if their intersection is empty. An
equivalent definition of independent kissing number ζ for a family S of geometric
objects in R

d is given below.

Definition 2. Let S be a family of geometric objects, and let u be any object
belonging to the family S. Let ζu be the maximum number of pairwise non-
touching objects in S that we can arrange in and around u such that all of them
are intersected by u. The independent kissing number ζ of S is defined to be
maxu∈S ζu.

A set K of objects belonging to the family S is said to form an independent
kissing configuration if (i) there exists an object u ∈ K that intersects all objects
in K\{u}, and (ii) all objects in K\{u} are mutually non-touching to each other.
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Here u and K \ {u} are said to be the core and independent set, respectively, of
the independent kissing configuration. The configuration is considered optimal if
|K \{u}| = ζ, where ζ is the independent kissing number of S. The configuration
is said to be standard if all objects in K \{u} are mutually non-overlapping with
u, i.e., their common interior is empty but touches the boundary of u.

A number of different definitions of fatness (not extremely long and skinny)
are available in the geometry literature. For our purpose, we define the following.
Let σ be an object and x be any point in σ. Let α(x) be the ratio between
the minimum and maximum distance (under Euclidean norm) from x to the
boundary ∂(σ) of the object σ. In other words, α(x) = miny∈∂(σ) d(x,y)

maxy∈∂(σ) d(x,y) , where
d(., .) denotes the Euclidean distance. The aspect ratio α of an object σ is defined
as the maximum value of α(x) for any point x ∈ σ, i.e., α = max{α(x) : x ∈ σ}.
An object is said to be α-fat object if its aspect ratio is α. Observe that α-fat
objects are invariant under translation, rotation and scaling. The aspect point of
σ is a point in σ where the aspect ratio of σ is attained. The minimum distance
(respectively, maximum distance) from the aspect point to the boundary of the
object is referred to as the width (respectively, height) of the object. Note that
fat objects are invariant under translation, rotation and scaling. For more details
on α-fat object, one may see [9].

1.2 Related Work

The dominating set and its variants are well-studied in the offline setup. Finding
MDS is known to be NP-hard even for the unit disk graphs [8,16]. A polynomial-
time approximation scheme (PTAS) is known when all objects are homothets
of a convex object [10]. King and Tzeng [18] initiated the study of the online
MDS problem in Classical-Online-Model. They showed that for a general graph,
the greedy algorithm achieves a competitive ratio of n − 1, which is also a tight
bound achievable by any online algorithm for the MDS problem, where n is the
length of the input sequence. Even for the interval graph, the lower bound of the
competitive ratio is n − 1 [18]. Eidenbenz [13] proved that the greedy algorithm
achieves a tight bound of 5 for the MDS of the unit disk graph.

Boyar et al. [3] considered a variant of the Relaxed-Online-Model for MDS,
MIDS and MCDS problem in which, in addition to the Relaxed-Online-Model
the revealed graph should always be connected. In this setup, they studied
these problems for specific graph classes such as trees, bipartite graphs, bounded
degree graphs, and planar graphs. Their results are summarized in [3, Table 2].
They proposed a 3-competitive algorithm for the MDS problem in the above-
mentioned model for a tree. Later, Kobayashi [19] proved that 3 is also the lower
bound for the tree in this setting. In the same setup, Eidenbenz [13] showed that,
for the MCDS problem of unit disk graph, the greedy algorithm achieves a com-
petitive ratio of 8+ε, whereas no online algorithm can guarantee a strictly better
competitive ratio than 10/3. We observe that the (asymptotic) competitive ratio
of the MCDS problem for the unit disk graph could be improved to 6.798 (see
Sect. 2.2).
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The minimum coloring problem is known to be NP-hard, even for unit disk
graphs [8]. In the offline coloring case, a 3-approximation algorithm for coloring
unit disk graphs was presented by Gräf et al. [17] and Marathe et al. [20]. Marathe
et al. [20] generalised the approach for unit disk graphs to disk graphs. They
proved that the obtained approximation for coloring disk graphs is at most 6.
For online coloring, Erlebach and Fiala [14] proved that Algorithm-First-Fit
achieves a competitive ratio of O(log n) for disk graphs. Recently, Albers and
Schraink [1] proved that the best competitive ratio of both deterministic and
randomized online algorithms for disk graphs is Θ(log n). Capponi and Pilloto [7]
proved that for any graph with an independent kissing number (see Defnition 1)
at most ζ, popular Algorithm-First-Fit achieves a competitive ratio at most
ζ. The existence of O(log m)-competitive coloring algorithm for disk graphs,
whose radius is in between [1,m], is known due to Erlebach and Fiala [14].
In this paper, we generalize this result for the geometric intersection graph of
bounded scaled α-fat objects in R

d.

1.3 Our Contributions

In this paper, we obtain the following results.

1. First, we prove that for MDS and MIDS problems, the natural greedy algo-
rithm has an optimal competitive ratio of ζ for a graph with an independent
kissing number at most ζ (Theorems 1 and 2).

2. For the MCDS problem, we prove that, for any graph with the independent
kissing number at most ζ, a greedy algorithm achieves a competitive ratio of
at most 2ζ (Theorem 3). To complement this, we prove that the lower bound
of the competitive ratio is at least 2(ζ − 1) which holds even for a geometric
intersection graph of translates of a convex object in R

2 (Theorem 4).
3. Next, we consider coloring geometric intersection graphs of bounded scaled

α-fat objects in R
d having a width in between [1,m]. For this, due to [7], the

best known competitive ratio is ζ, where ζ is the independent kissing number
of bounded scaled α-fat objects having a width in between [1,m]. Inspired by
Erlebach and Fiala [14], we present Algorithm-Layer having a competitive
ratio of at most O (ζ ′log m), where ζ ′ is the independent kissing number of
bounded scaled α-fat objects having a width in between [1, 2] (Theorem 5).
Since the value of ζ could be very large compared to ζ ′log m (see Remark 2),
it is a significant improvement.

4. All results obtained above for the MC problem, MDS problem and its variants
depend on the graph parameter: the independent kissing number ζ. Therefore,
the value of ζ becomes a crucial graph parameter to investigate. To estimate
the value of ζ, we consider various families of geometric objects. We show
that for congruent balls in R

3 the value of ζ is 12. For translates of a regular
k-gon (k ∈ ([5,∞)∪{3})∩Z) in R

2, we show that 5 ≤ ζ ≤ 6. While the value
is 2d for translates of a hypercube in R

d, for congruent hypercubes in R
d the

value is at least 2d+1. We also give bounds on the value of ζ for α-fat objects
in R

d having a width in between [1,m]. We feel that these results will find
applications in many problems. We illustrate a few in Sect. 5.
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Note that all of our algorithms are deterministic. In particular, algorithms
in items 1 and 2 do not need to know object’s representation; whereas,
Algorithm-Layer needs to know the object’s width upon arrival.

2 Dominating Set and Its Variants

In this section, we discuss the well-known greedy online algorithms for MDS
and its variants for graphs. We show how their performance depends on the
independent kissing number ζ of the graph. Note that algorithms need not know
the value of ζ in advance, and the object’s representation is also unnecessary. All
the missing proofs of this section will appear in the final version of the paper.

2.1 Minimum Dominating Set

The greedy algorithm, Algorithm-GDS, for finding a minimum dominating
set is as follows. The algorithm maintains a feasible dominating set A. Initially,
A = ∅. On receiving a new vertex v, if the vertex is not dominated by the existing
dominating set A, then update A ← A ∪ {v}. Eidenbenz [13] showed that this
algorithm achieves an optimal competitive ratio of 5 for the unit disk graph. It
is easy to generalize this result for graphs with the fixed independent kissing
number ζ.

Observation 1. The vertices returned by the Algorithm-GDS are pairwise
non-adjacent. In other words, the solution set is always an independent set.

Theorem 1. Algorithm-GDS has an optimal competitive ratio of ζ for the
MDS problem of a graph having an independent kissing number at most ζ.

As a result of Observation 1, the output produced by Algorithm-GDS is
an independent dominating set. Thus, we have the following.

Theorem 2. Algorithm-GDS has an optimal competitive ratio of ζ for the
MIDS problem of a graph having an independent kissing number at most ζ.

2.2 Minimum Connected Dominating Set

Recall that if we cannot add previously arrived vertices in the solution set for
the minimum connected dominating set problem, the solution may result in a
disconnected dominating set. Therefore, we use Relaxed-Online-Model for this
problem. Here, in addition to the Relaxed-Online-Model, the revealed induced
subgraph must always be connected for the MCDS problem. Eidenbenz [13]
proposed a greedy algorithm for unit disk graph in the aforementioned setup
and showed that the algorithm achieves a competitive ratio of at most 8 + ε.
We analyse the same algorithm for graphs with the fixed independent kissing
number ζ.
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Description of Algorithm-GCDS: Let V be the set of vertices presented
to the algorithm and A ⊆ V be the set of vertices chosen by our algorithm
such that A is a connected dominating set for the vertices in V . The algorithm
maintains two disjoint sets A1 and A2 such that A = A1 ∪ A2. Initially, both
A1,A2 = ∅. Let v be a new vertex presented to the algorithm. The algorithm
first updates V ← V ∪ {v} and then does the following.

– If v is dominated by the set A, do nothing.
– Otherwise, first, add v to A1. If v has at least one neighbour in V , choose

any one neighbour, say u, of v from V , and add u to A2. In other words,
update A1 ← A1 ∪ {v} and if necessary update A2 ← A2 ∪ {u}. Note that
u is already dominated by the existing dominating set A. As a result, if we
add u to the dominating set, it will result in a connected dominating set.

Note that the algorithm produces a feasible connected dominating set. The
addition of vertex in A1 assures that A is a dominating set, and the addition
of vertices in A2 ensures that A is a connected dominating set. Now, using
induction, it is easy to prove the following.

Lemma 1. Algorithm-GCDS maintains the following two invariants: (i) A1

is an independent set, and (ii) |A1| ≥ |A2|.
The next lemma is a generalization of a result by Wan et al. [23, Lemma 9].

Lemma 2. Let I be an independent set, and O be a minimum connected dom-
inating set of a graph with the independent kissing number ζ. Then |I| ≤
(ζ − 1)|O| + 1.

Theorem 3. Algorithm-GCDS has an asymptotic competitive ratio of at
most 2(ζ − 1) and an absolute competitive ratio of at most 2ζ for the MCDS
problem for a graph having an independent kissing number at most ζ.

Remark 1. Note that due to the result of Du and Du [11, Thm 1], for unit
disk graphs, we have |I| ≤ 3.399|O| + 4.874. As a result, similar to Theo-
rem 3, one can prove that |A| ≤ 6.798|O| + 9.748. Hence, for unit disk graphs,
Algorithm-GCDS has an asymptotic competitive ratio of at most 6.798.

2.3 Lower Bound of the MCDS Problem

In this section, first, we propose a lower bound of the MCDS problem for a wheel
graph. Then, using that, we propose a lower bound for the geometric intersection
graph of translated copies of a convex object in R

2.
Consider a wheel graph Wk = (V,E) of order k, where V = {v0, v1, . . . , vk}

and E =
{{vi, vk} | i ∈ [k−1]

}∪{{vi, v(i+1) mod k}| i ∈ [k−1]
}
. In other words,

in Wk, the vertices v0, v1, . . . , vk−1 form a cycle Ck and a single core vertex vk is
adjacent to each vertex of Ck. Now, we define a cyclone-order of vertices in Wk.
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Fig. 1. (a) Optimal independent kissing configurations for unit disks; (b) Cyclone-order
of vertices in a wheel graph. The bold arrow indicates a cyclone-order.

Definition 3. (Cyclone-order of vertices in a wheel graph) For an integer
t (0 < t < k−1), in the the cyclone order of Wk, first, we enumerate t+1 vertices
v0, v1, . . . , vt of Ck, followed by an enumeration of the remaining k−t−1 vertices
of Ck, i.e., vk−1, vk−2, . . . , vt+2, vt+1. Finally, the core vertex vk is appended. We
denote the first t+1 length sequence of Ck as a cw-part and the remaining k−t−1
length sequence as an acw-part of the cyclone-order.

Now, it is easy to obtain the following lemma.

Lemma 3. If the vertices of a wheel graph Wk are enumerated in a cyclone-
order, then any deterministic online algorithm reports a CDS of size at least k−2,
where the size of an offline optimum is 1.

Now, we give an explicit construction of a wheel graph W2ζ using translates
of a convex object having independent kissing number ζ.

Lemma 4. For a family of translates of a convex object having independent
kissing number ζ, there exists a geometric intersection graph W2ζ .

Combining Lemma 3 and 4, we have the following result.

Theorem 4. Let ζ be the independent kissing number of a family S of translated
copies of a convex object in R

2. Then the competitive ratio of every deterministic
online algorithm for MCDS of S is at least 2(ζ − 1).

3 Algorithm for the Minimum Coloring Problem

Here, we present Algorithm-Layer to find coloring for the geometric inter-
section graph of bounded scaled α-fat objects in R

d having a width in between
[1,m], where m ≥ 2. First, we describe the well-known Algorithm-First-Fit
as follows. Upon the arrival of the object σ, the algorithm assigns the small-
est color available, i.e., the smallest color that has not yet been assigned to an
adjacent vertex of σ.

Lemma 5. [7, Lemma 4] Algorithm-First-Fit has a competitive ratio of ζ
for the MC problem for a graph having an independent kissing number at most ζ.
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Now, we present a deterministic algorithm, Algorithm-Layer, that is sim-
ilar to the algorithm of Erlebach and Fiala [14] originally defined for bounded
scaled disks.
Description of Algorithm-Layer. For each j ∈ Z

+ ∪ {0}, let Lj be the jth
layer containing all objects with a width in between [2j , 2j+1). Observe that
the width of each layer’s objects falls within a factor of two. For each layer Lj ,
we use Algorithm-First-Fit separately to color the objects. When an object
σi having width wi arrives, our algorithm, first, determines the layer number
j = �log wi. Then we color σi using Algorithm-First-Fit considering already
arrived objects in Lj , and also we use the fact that a color that is used in any
other layer cannot be used for σi. A pseudo-code of Algorithm-Layer is given
in Algorithm 1.

Algorithm 1. Algorithm-Layer

1: Lj ← ∅, for all j ∈ Z
+

2: for i = 1 to n; do � arrival of an object σi having a width wi

3: begin
4: j = �log2 wi�; � Identifying the index of the layer to which σi belongs,

where ri is the width of σi.
5: Lj ← Lj ∪ {σi}; � The layer containing σi

6: F = {c(σk) : 1 ≤ k < i, σk ∈ Lj , σk ∩ σi 
= ∅} ∪ {c(σk) : 1 ≤ k < i, σk /∈ Lj};
� The set of forbidden colors

7: c(σi) = min{Z+ \ F}; � color assigned to σi

8: end
9: end for

Theorem 5. Let ζ ′ be the independent kissing number of bounded scaled α-fat
objects having a width in between [1, 2]. Algorithm-Layer has a competitive
ratio of at most O (ζ ′log m) for MC of geometric intersection graph of bounded
scaled α-fat objects in R

d having width in between [1,m].

Proof. Let A and O be the set of colors used by the Algorithm-Layer and
an offline optimum for an input sequence I. For i ∈ {0, 1, . . . , �log m�}, let the
layer Li be the collection of all α-fat objects in I having a width in

[
2i, 2i+1

)
.

Let Oi be a set of colors used by an offline optimum algorithm for the layer
Li. Let O′

i ⊆ O be the set of colors used for the layer Li. Note that the set of
colors in O′

i is a valid coloring for objects in Li. Thus, we have |Oi| ≤ |O′
i|. Let

Ai be the set of colors used by Algorithm-Layer to color layer Li. Note that
A = ∪�log m�

i=0 Ai and Ai ∩ Aj = ∅, where i �= j ∈ [�log m�]. Due to Lemma 5,
for all i ∈ [�log m�] we have |Ai| ≤ ζi|Oi| , where ζi is the independent kissing
number of bounded scaled α-fat objects having width in between [2i, 2i+1). Since
the width of objects in each layer is within a factor of two, for each i, the value
of ζi is the same as ζ ′. Since |Oi| ≤ |O′

i| ≤ |O|, we have |Ai| ≤ ζ ′|O′
i| ≤ ζ ′|O|.

Then, we have |A| =
∑�log m�

i=0 |Ai| ≤ ∑�log m�
i=0 ζ ′|Oi| = O(ζ ′ log m)|O|. Hence,

the theorem follows. �
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4 Value of ζ for Families of Geometric Objects

Note that the value of ζ for unit disk graphs is already known to be 5 [13]. Here,
we study the value of ζ for other geometric intersection graphs.

Theorem 6. The independent kissing number for the family of

(a) congruent balls in R
3 is 12;

(b) translated copies of a hypercube in R
d is 2d, where d ∈ Z

+;
(c) translated copies of an equilateral triangle is at least 5 and at most 6;
(d) translated copies of a regular k-gon (k ≥ 5) is at least 5 and at most 6;
(e) congruent hypercubes in R

d is at least 2d+1, where d ≥ 2 is an integer;
(f) bounded-scaled α-fat objects having a width in between [1,m] is at

least
(

α
2

(
m+2
1+ε

))d

and at most
(

m
α + 2

)d

, where ε > 0 is a very small
constant.

For each item (except (e)) of the above theorem, we prove both the upper and
lower bounds of the value of the independent kissing number.

Proof of Theorem 6(a).
First, we present a lower bound. Let C be a regular icosahedron whose each edge
is of length �=2+ε, where 0 < ε < 1 (in particular, one can choose ε=0.001). Let
corner points of C be the centers of unit (radius) balls σ1, σ2, . . . , σ12. Since the
edge length of the icosahedron C is greater than 2, all these balls are mutually
non-touching. Let B be the circumscribed ball of the icosahedron C. It is a well-
known fact that if a regular icosahedron has edge length �, then the radius r of
the circumscribed ball is r = � sin(2π

5 ) [21]. In our case, it is easy to see that
r < 2. In other words, the distance from the center of B to each corner point of C
is less than two units. Thus, each of these unit balls σ1, σ2, . . . , σ12 is intersected
by a unit ball σ13 whose center coincides with the center of B. This implies that
the value of ζ for congruent balls in R

3 is at least 12. The upper bound follows
from the fact that the independent kissing number for balls in R

3 is 12 [5,22].
Hence, the theorem follows. �
Proof of Theorem 6(b).
Upper Bound Let K be an optimal independent kissing configuration for trans-
lates of an axis-parallel unit hypercube in R

d. Let the core of the configuration
be u. It is easy to observe that an axis-parallel hypercube R, with a side length
of 2 units, contains all the centers of hypercubes in K \ {u}. Let us partition R
into 2d smaller axis-parallel hypercubes, each having unit side length. Note that
each of these smaller hypercubes can contain at most one center of a hypercube
in K \ {u}. As a result, we have |K \ {u}| ≤ 2d. Therefore, the independent
kissing number for translates of a hypercube in R

d is at most 2d.

Lower Bound We give an explicit construction of an independent kissing con-
figuration K where the size of the independent set is 2d. Let σ1, σ2, . . . , σ2d and
σ2d+1 be the d-dimensional axis-parallel unit hypercubes of K. We use ci to
denote the center of σi, for i ∈ [2d + 1]. Let the center c2d+1 = (12 , 1

2 , . . . , 1
2 ),
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and p1, p2, . . . , p2d ∈ R
d be corner points of the hypercube σ2d+1. It is easy to

observe that each coordinate of pi, i ∈ [2d] is either 0 or 1. Let ε be a positive
constant satisfying 0 < ε < 1

2
√

d
. For i ∈ [2d] and j ∈ [d], let us define the jth

coordinates of ci as follows:

ci(xj) =

{
−ε, if pi(xj) = 0

1 + ε, if pi(xj) = 1,
(1)

where ci(xj) and pi(xj) are the jth coordinate value of ci and pi, respectively.
To complete the proof, here, we argue that the hypercubes σ1, σ2, . . . , σ2d

are mutually non-touching, and each intersected by the hypercube σ2d+1. To see
this, first, note that, for any i ∈ [2d], the Euclidean distance d(pi, ci) between
pi and ci is

√
dε (follows from Eq. 1). Since ε < 1

2
√

d
, we have d(pi, ci) < 1

2 . As
a result, the corner point pi of σ2d+1 is contained in the hypercube σi. Thus,
σ2d+1 intersects σi, ∀ i ∈ [2d]. Now, consider any i, j ∈ [2d] such that i �= j.
Since pi and pj are distinct, it is easy to note that they will differ in at least
one coordinate. As a result, the distance between ci and cj is (1 + 2ε) under
L∞-norm. So, σi and σj are non-touching. Hence, the theorem follows. �

The proof of the remaining parts of Theorem 6 will appear in the final version
of the paper.

Remark 2. Let ζ and ζ ′ be the independent kissing number for the family
of bounded-scaled α-fat objects having a width in between [1,m] and [1, 2],
respectively. Now, we have the following remarks.

(i) ζ ′ ≤ (
2
α + 2

)d: It follows from Theorem 6(f) by putting the value of m = 2.

(ii) ζ ≥
(

(m+2)α2

4(1+ε)(1+α)

)d

ζ ′: Due to Theorem 6(f), we have ζ ≥
(

α
2

(
m+2
1+ε

))d

. Note

that ζ ≥
(

α
2

(
m+2
1+ε

))d

=
(

α
2

(
m+2
1+ε

))d (
1

2
α+2

)d (
2
α + 2

)d. Now, using the

fact ζ ′ ≤ (
2
α + 2

)d in the above expression, we have ζ ≥
(

(m+2)α2

4(1+ε)(1+α)

)d

ζ ′.

5 Applications

In this section, we mention some of the implications of Theorem 6. Combining
Theorem 6 with Theorem 1, Theorem 2 and Lemma 5, respectively, we obtain
the following results for the online MDS, MIDS and MC problems, respectively.

Theorem 7. For each of the MDS, MIDS and MC problems, there exists a
deterministic online algorithm that achieves a competitive ratio of

(a) 12 for congruent balls in R
3;

(b) 2d for translated copies of a hypercube in R
d, where d ∈ Z

+;
(c) at most 6 for translated copies of a regular k-gon (for k = 3 and k ≥ 5);

(d) at most
(

m
α + 2

)d

for bounded-scaled α-fat objects having width in between
[1,m].
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Similarly, combining Theorems 3 and 6, we have the following.

Theorem 8. For the MCDS problems, there exists a deterministic online algo-
rithm that achieves a competitive ratio of

(a) 22 for congruent balls in R
3;

(b) 2(2d − 1) for translated copies of a hypercube in R
d, where d ∈ Z

+;
(c) at most 10 for translated copies of a regular k-gon (for k = 3 and k ≥ 5);

(d) at most 2
((

m
α + 2

)d

− 1
)

for bounded-scaled α-fat objects having width

in [1,m].

Now, we present the implication of Theorem 6 on the online t-relaxed coloring
problem. For a nonnegative integer t, in the online t-relaxed coloring problem,
upon the arrival of a new vertex, the algorithm must immediately assign a color
to it, ensuring that the maximum degree of the subgraph induced by the vertices
of this color class does not exceed t. The objective of the problem is to minimize
the number of distinct colors. Combining the result of Capponi and Pilotto [7,
Thm 5] with Theorem 6, we have the following.

Theorem 9. For online t-relaxed coloring problem, there exists an online algo-
rithm that achieves an asymptotic competitive ratio of

(a) 288 for congruent balls in R
3;

(b) 22d+1 for translated copies of a hypercube in R
d, where d ∈ Z

+;
(c) at most 72 for translated copies of a regular k-gon (for k = 3 and k ≥ 5);

(d) at most 2
(

m
α +2

)2d

for bounded-scaled α-fat objects having width in between
[1,m].

6 Conclusion

We conclude by mentioning some open problems. The results obtained in this
paper, as well as the results obtained in [7,20] for other graph problems, are
dependent on the independent kissing number ζ. Consequently, the value of ζ
becomes an intriguing graph parameter to investigate. For congruent balls in
R

3 and translates of a hypercube in R
d, we prove that the value of ζ is tight

and equals 12 and 2d, respectively. In contrast, the value of ζ for translates of
a regular k-gon (for k ∈ ([5,∞) ∪ {3}) ∩ Z) is either 5 or 6. We propose to
settle the value ζ for this case as an open problem. For congruent hypercubes
in R

d, we prove that the value of ζ is at least 2d+1; on the other hand, since
congruent hypercubes are 1√

d
-fat objects, due to Theorem 6(f), it follows that ζ

is at most (2 +
√

d)d. Bridging this gap would be an open question. It would be
of independent interest to see parametrized algorithms for graphs considering ζ
as a parameter.
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Abstract. In the Near-Bipartiteness problem, we are given a sim-
ple graph G = (V,E) and asked whether V (G) can be partitioned into
two sets S and F such that S is a stable set and F induces a for-
est. Alternatively, Near-Bipartiteness can be seen as the problem
of determining whether G admits an independent feedback vertex set
S or an acyclic vertex cover F . Since such a problem is NP-complete
even for graphs with diameter three, we first study the property of
being near-bipartite on graphs having a dominating edge, a natural sub-
class of diameter-three graphs. Concerning graphs having a dominating
edge, we present a polynomial-time algorithm for Near-Bipartiteness

and prove that Connected Near-Bipartiteness, the variant where
the forest must be connected, is NP-complete. In addition, we show
that Independent Feedback Vertex Set, the problem of finding a
near-bipartition (S,F) minimizing |S|, and Acyclic Vertex Cover,
the problem of finding a near-bipartition (S,F) minimizing |F|, are
both NP-hard when restricted to such a class of graphs. Extending our
polynomial-time approach to deal with Near-Bipartiteness on graphs
having bounded dominating sets, we obtain a O(n2 ·m)-time algorithm
to solved Near-Bipartiteness on P5-free graphs, improving the cur-
rent O(n16)-time state of the art due to Bonamy, Dabrowski, Feghali,
Johnson, and Paulusma [Algorithmica, 2019].

Keywords: Near-bipartite · independent feedback vertex set · acyclic
vertex cover · stable set · dominating edge

1 Introduction

In 1972, Richard Karp presented the NP-completeness proof of 21 fundamental
problems for Computer Science [18]. Feedback Vertex Set, Independent
Set and Vertex Cover are three of these classical problems. Feedback Ver-

tex Set consists of finding a minimum set of vertices such that its removal elim-
inates all cycles of the input graph, Independent Set consists of determining
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14461, pp. 82–93, 2024.
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a maximum set of pairwise nonadjacent vertices (also known as a stable set),
and Vertex Cover is the problem of determining a minimum set of vertices
intersecting all edges (called vertex cover) of the input graph. Note that if S is
a stable set of G = (V,E) then F = V (G) \ S is a vertex cover of G.

An independent feedback vertex set (IFVS) of a graph G is a set of vertices
that is independent/stable and also a feedback vertex set of G. Defined by Yang
and Yuan in [25], a graph G = (V,E) has a near-bipartition (S,F) if there exist
S ⊆ V and F = V \S such that S is a stable set, and F induces a forest (S and
F may be empty sets). A graph that admits a near-bipartition is a near-bipartite
graph. Note that the class of near-bipartite graphs is exactly the class of graphs
having independent feedback vertex sets. Also, a graph G has an independent
feedback vertex set S if and only if it has an acyclic vertex cover F , i.e., a vertex
cover F such that G[F ] is acyclic (a vertex cover inducing a forest).

The problem of recognizing near-bipartite graphs, so-called Near-

Bipartiteness, is NP-complete even when restricted to graphs with maximum
degree four [25], graphs with diameter three [7], line graphs [8], and planar
graphs [6,15]. On the other hand, Brandstädt et al. [10] showed that Near-

Bipartiteness is polynomial-time solvable on cographs. Yang and Yuan [25]
showed that Near-Bipartiteness is polynomial-time solvable for graphs of
diameter at most two and that every connected graph of maximum degree at
most three is near-bipartite except for the complete graph on four vertices (K4).
Also, Bravo, Oliveira, Silva Junior, and Souza [12] showed that near-bipartite P4-
tidy graphs admit finite forbidden induced subgraph characterization. Besides,
Bonamy et al. [8] proved that Near-Bipartiteness on P5-free graphs can be
solved in O(n16) time. FPT algorithms parameterized by k for finding an inde-
pendent feedback vertex set of size at most k can be found in [2,19,22].

A coloring for a graph G is an assignment of colors (labels) to all vertices of
G. A proper coloring for G is an assignment of color c(u), for each vertex u ∈ V ,
such that c(u) �= c(v) if uv ∈ E(G). A graph G is k-colorable if there exists a
proper coloring for G with at most k colors. The chromatic number of G, χ(G),
is the smallest number k for G being k-colorable. A clear necessary condition for
a graph to be near-bipartite is the following.

Proposition 1. If a graph G is near-bipartite then G is 3-colorable.

However, the complexity of 3-Coloring and Near-Bipartiteness are not
necessarily the same, depending on the graph class being explored. Grötschel,
Lovász and Schrijver [17] proved that Coloring is solved in polynomial time for
perfect graphs, while Brandstädt et al. [10] proved that Near-Bipartiteness

is NP-complete in the same graph class. Near-Bipartiteness can also be seen
as a variant of 2-Coloring. For an input graph G, the question is whether
its vertex set can be colored with two colors (not necessarily properly coloring)
such that one color class is K2-free (a stable set), and the other is cycle-free (i.e.,
induces a forest). Other 2-Coloring variants have already received attention
in the literature. In [1], Achlioptas studied the problem of determining if there
exists a bipartition of V (G) where each part (color class) is H-free for some
fixed graph H. He showed that for any graph H on more than two vertices,
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the problem is NP-complete. Another variant was considered by Schaefer [24],
who asked whether a given graph G admits a 2-coloring of the vertices such
that each vertex has exactly one neighbor with the same color as itself. Schaefer
proved that such a problem is NP-complete even for planar cubic graphs. The
problem studied by Schaefer [24] is a particular case of a defective coloring called
(2, 1)-coloring. A (k, d)-coloring of a graph G is a k-coloring of V (G) such that
each vertex has at most d neighbors with the same color. Some studies on (2, 1)-
coloring include [9,14,20]. In addition, the problem of finding a bipartition where
each part induces a subgraph of minimum degree at least k (for a given integer
k) was studied in [5]. Also, the problem of partitioning the edge set of a graph
into a stable set of edges (matching) and a forest has been studied in [21,23].

Motivated by the studies of 2-coloring variants and the natural relevance of
feedback vertex sets that are independent/stable as well as vertex covers that
are acyclic, we focus on the Near-Bipartiteness problem and its variants.

Since a near-bipartition (S,F) of a graph G is a partition of V (G) into a
stable set S and an induced forest F , we consider the following problems.

Recall that the complement of an acyclic vertex cover is an independent
feedback vertex set. So, the reader can assume that we are also dealing with
the maximization version of both problems. Besides, we consider the problem
of determining whether a graph G can have its set of vertices partitioned into
a stable set and a tree, called Connected Near-Bipartiteness, which was
shown to be NP-complete even on bipartite graphs of maximum degree four [11].
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Motivated by the fact that Near-Bipartiteness remains NP-complete on
graphs with diameter three [7], we first analyse the problem on graphs having
a dominating edge, a natural subclass of graphs with diameter 3. In such a
case, we show that Near-Bipartiteness can be solved in polynomial time,
but Connected Near-Bipartiteness is NP-complete. We also prove the NP-
hardness of finding a minimum independent feedback vertex set or a minimum
acyclic vertex cover on graphs having a dominating edge. Finally, we present
a O(n2 · m)-time algorithm to solved Near-Bipartiteness on P5-free graphs,
improving the current O(n16)-time state of the art [8].

2 On Graphs Having a Dominating Edge

Recall that the class of graphs having a dominating edge is a natural sub-
class of graphs with diameter three, a class for which Near-Bipartiteness

remains NP-complete [7]. In this section, we consider the problem of partition-
ing a graph having a dominant edge into a stable set and a tree (Connected

Near-Bipartiteness), as well as the problem of partitioning it into a stable
set and a forest (Near-Bipartiteness).

Next, we show that Connected Near-Bipartiteness is NP-complete
on graphs having a dominating edge, while Near-Bipartiteness becomes
polynomial-time solvable in the same class.

Theorem 1. Connected Near-Bipartiteness is NP-complete even when
restricted to graphs having a dominating edge.

Proof. The proof is based on a reduction from 1-in-3SAT, a well-known NP-
complete problem [16]. In such a problem we are given a formula ϕ in conjunctive
normal form where each clause is limited to at most three literals, and asked
whether there exists a satisfying assignment so that exactly one literal in each
clause is set to true.

Given an instance ϕ of 1-in-3SAT, we construct a graph G such that ϕ has
a truth assignment such that each clause has exactly one literal set to true if
and only if G is partitionable into a stable set and a tree.

From ϕ we construct G as follows:

1. first consider G = ({u, v}, {uv});
2. add a chordless cycle C of size 4 in G induced by {k1, k2, k3, k4}, and add

edges from u for all vertices in C;
3. add a chordless cycle C ′ = l1,m, l2, n1, n2;
4. add the edges ul1, ul2, vm, vn1 and vn2;

At this point, notice that every (S, T )-partition of G has v ∈ S and u ∈ T .

5. for each variable xi of ϕ create vertices vxi
and vxi

and add edges vxi
vxi

,
uvxi

and uvxi
;

6. for each clause Cj of ϕ create a vertex cj in G and add the edge vcj ;
7. Finally, add an edge cjvxi

if the clause Cj contains the literal xi, and add an
edge cjvxi

if the clause Cj contains the literal xi.
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If ϕ is a 3-CNF formula having a truth assignment A such that each clause
has exactly one literal set as true, then we can construct an (S, T )-partition of
G by setting S = {k1, k3, l1, v} ∪ {vxi

: xi = false ∈ A} ∪ {vxi
: xi = true ∈ A}

(clearly S is a stable set). Since A defines a 1-in-3 truth assignment then each
vertex cj has exactly one neighbor in G[V \ S] then T = V \ S induces a tree.

Conversely, if G admits an (S, T )-partition then, by construction, it holds
that v ∈ S and u ∈ T . This implies that every vertex cj belongs to T , and that
for each pair vxi

, vxi
exactly one of these vertices belongs to T . Also, since T

is connected each cj has at least one neighbor in T , thus as T is acyclic each
vertex cj has exactly one neighbor in T (each cj must be a leaf in T ). Therefore,
we can construct a 1-in-3 truth assignment by setting xi = true iff vxi

∈ T . �

Contrasting with Theorem 1, we show that when we remove the connectivity
constraint, i.e., we look for a forest instead of a tree, the problem becomes
polynomial-time solvable.

Theorem 2. Given a graph G and a dominating edge of G, one can determine
in O(n2) time whether G is a near-bipartite graph.

Proof. Let u, v ∈ V (G) be two vertices of G such that uv is a dominant edge of
G. Suppose that G has a near-bipartition (S,F). Without loss of generality, we
may assume that G does not have vertices with degree one. At this point, we
may consider just two cases:
Case 1. Suppose that u, v ∈ F .

As uv ∈ E(F ), then N(u)∩N(v) ⊆ S, otherwise F has cycles. Thus, N(u)∩
N(v) must be a stable set. For a remaining vertex w belonging to either N(u) \
N(v) or N(v) \ N(u): if it has a neighbor in S then it must belong to F ; if it
has a neighbor z (z �= u and z �= v) that must be in F , then w must belong
to S, otherwise, the edge wz together with uv induces a cycle in F . Thus, by
checking if N(u) ∩ N(v) is stable and then successively applying the operations
previously described according to a Breadth-First Search from N(u) ∩ N(v), in
linear time, we can either conclude that such a near-bipartition with u, v ∈ F
does not exist, or build a partition (S′, F ′, U) of V (G) such that S′ is stable,
F ′ ⊇ {u, v} induces a forest, and U is the set of unclassified vertices. Note that,
by construction, no vertex in U has neighbors in S′∪F ′\{u, v}. Since any pair of
adjacent vertices together with u and v induces a cycle, G has a near-bipartition
(S,F) with {u, v} ⊆ F if and only if G[U ] has an independent vertex cover,
which is equivalent to U inducing a bipartite graph.

Case 2. Suppose that u ∈ S and v ∈ F .
If u ∈ S and v ∈ F then N(u) ⊆ F . Thus, N(u) must induce a forest and

N(u) ∩ N(v) must be a stable set. At this point, only the vertices belonging to
N(v) \ N [u] are unclassified.

Let B = N(v) \ {u}.
If G has a near-bipartition (S,F) then G[B] must be bipartite, so that its

vertices can be partitioned into two sets (B1, B2) such that B1 ⊆ S and B2 ⊆ F .
Thus, we must find a bipartition of B that satisfies the following conditions:
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– N(u) ∩ N(v) ⊆ B2;
– for each component T of G[N(u) \ N [v]] (which is a tree) it holds that:

• For each w ∈ B2, |NT (w)| ≤ 1 (otherwise {w} ∪ V (T ) induces a cycle);
• T has at most one neighbor in B2 (otherwise F has cycles).

Note that any bipartition (B1, B2) satisfying the above restrictions is suffi-
cient to form a near-bipartition such that B1 ∪{u} = S. Now, we can reduce the
problem of finding such a bipartition of G[B] to the 2SAT problem by building
a 2-CNF formula ϕ as follows:

1. for each vertex w ∈ B create a variable xw;
2. for each vertex w ∈ N(u) ∩ N(v) create a clause (xw);
3. for each edge w1w2 ∈ E(G[B]) create the clauses (xw1 +xw2) and (xw1 +xw2);
4. for each vertex w ∈ B with at least two neighbors in the same component T

of G[N(u) \ N [v]], create a clause (xw);
5. For each component T of G[N(u) \ N [v]], and for each pair of vertices w1, w2

in the neighborhood of T , create a clause (xw1 + xw2).

At this point, it is easy to see that ϕ is satisfied if and only if G[B] has a
partition (B1, B2) as requested (variables equal to true correspond to the vertices
of B2). Since ϕ can be built in O(n2) time with respect to the size of G[B] and
2SAT can be solved in linear time [3], a near-bipartition (S,F) of G can be
found in O(n2) time (if any). �

Recall that Near-Bipartiteness can be seen as the problem of determining
whether G admits an independent feedback vertex set S or an acyclic vertex cover
F . In contrast to the previous theorem, we show that the problems of finding a
minimum independent feedback vertex set and a minimum acyclic vertex cover
are both NP-complete on graphs with a dominating edge.

Theorem 3. Independent Feedback Vertex Set is NP-hard when
restricted to graphs having a dominating edge.

Proof. In Positive Min-Ones-2SAT we are given a 2SAT formula ϕ having
only positive literals and asked to decide whether there exists a satisfying assign-
ment for ϕ with at most k variables set to true. Note that Positive Min-Ones-

2SAT is equivalent to Minimum Vertex Cover, a well-known NP-complete
problem.

Given an instance ϕ of Positive Min-Ones-2SAT, we can construct a graph
G by applying the same construction as in Theorem 1 (disregarding negative
literals). At this point, variables xi set to true are equivalent to the vertices vxi

assigned to S. Therefore, ϕ has a satisfying truth assignment with at most k
trues if and only if G is partitionable into a stable set S and a forest F such
that |S| ≤ k + 4. �

Theorem 4. Acyclic Vertex Cover is NP-hard when restricted to graphs
having a dominating edge.
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Proof. First, we define a construction algorithm f that receives as input a CNF
formula ϕ and outputs a graph having a dominating edge, similar to that pre-
sented in Theorem 1. The first six steps of this construction are the same as in
Theorem 1. (to make it easier for the reader, we repeat their description here).

From ϕ we construct G as follows:

1. first consider G = ({u, v}, {uv});
2. add a cycle C of size 4 in G induced by {k1, k2, k3, k4}, and add edges from

u for all vertices in C;
3. add a cycle C ′ = l1,m, l2, n1, n2;
4. add the edges ul1, ul2, vm, vn1 and vn2;
5. for each variable xi of ϕ create vertices vxi

and vxi and add edges vxi
vxi ,

uvxi
and uvxi

;
6. for each clause Cj of ϕ create a vertex cj in G and add the edge vcj ;

Now, in Step 7, we present the necessary change for our reduction.

7. add an edge cjvxi if the clause Cj contains the literal xi, and add an edge
cjvxi

if the clause Cj contains the literal xi; (Note that an edge between cj
and vxi

is added when Cj contains the literal xi)
8. Finally, for each vertex vxi

representing a positive literal, we replace it with
n copies v1

x1
, v2

x1
, . . . , vnx1

, having the same neighbors as vx1 .

Now, given an instance ϕ with n variables and m clauses of Positive Min-

Ones-2SAT, we denote by G = f(ϕ) the graph obtained by applying f from ϕ.
Suppose that ϕ has a satisfying assignment A with weight k. From A we

construct a near-bipartition of G as follows: for each variable xi of ϕ, if xi equals
true in A, then the vertices associated with the literal xi are in F , and if xi

equals false in A, then the vertex associated with the literal xi is in F . So, we
can construct an near-bipartition (S,F) of G by setting

F =
{
{k2, k4, l2,m, n1, n2, u}

∪ {v1
xi

. . . vnxi
: “xi = true” ∈ A}

∪ {vxi
: “xi = false” ∈ A}

∪ {c1, c2, . . . , cm}
}
,

S =V \ F .

Note that |F| = m+kn+(n−k)+7, where m is the number of clause vertices,
kn is the number of vertices that represent positive literals (“xi = true” in A),
n − k is the number of vertices that represent negative literals (“xi = false” in
A), and 7 is the number of auxiliary vertices (k2, k4, l2, m, n1, n2, u) in F .

Now, let’s analyze the graph induced by the vertices in F . Every clause
vertex is in F . Also, if a clause vertex has degree two in the graph induced
by F , by construction, in the instance ϕ of Positive Min-Ones-2SAT, the
corresponding clause has 2 false literals, which contradicts the fact that A is an
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assignment that satisfies ϕ. So, the clause vertices have degree at most 1, and do
not belong to any cycle. At this point, it is easy to see that F induces a forest
with m + 7 + k · n + (n − k) vertices, and S = V \ F is a stable set.

Conversely, suppose that G has a near-bipartition (S,F) where |F| = m+7+
k ·n+(n−k). First, let’s argue that at most k gadgets gxi

have vertices associated
with true (xi) in F . By construction, each gadget gxi

contains either one vertex
representing xi in F or n vertices representing xi in F . So let’s suppose that
k + 1 gadgets have n · (k + 1) vertices associated with true in F . So this implies
that F has at least m + 7 + (k + 1) · n vertices, which is bigger than the initially
defined budget, |F| = m + 7 + k · n + (n − k). So, at most k gadgets gxi

have
vertices associated with true in F . With this, we will construct an assignment
A to ϕ as follows:

– for each gadget gxi
set xi = false if the vertex associated with xi (i.e., vxi

),
belongs to F and set xi = true otherwise.

Note that A has weight at most k. By the construction of G, each vertex
associated with the clause has degree at most 1 in F , given the property of
the forest to be acyclic. So, for each clause at least one of its literals is true.
Therefore, A satisfies ϕ with weight at most k. �

3 On P5-Free Graphs

In 2019, Bonamy, Dabrowski, Feghali, Johnson, and Paulusma showed that
Near-Bipartiteness and Independent Feedback Vertex Set can be
solved in O(n16) time. In 1990, Bacsó and Tuza [4] showed that any connected
P5-free graph has a dominating clique or a dominating P3. In 2016, Camby and
Schaudt [13] generalized this result and showed that such a dominating set can
be computed in polynomial time.

In this section, using the same approach presented in Theorem 2, we show how
to handle Near-bipartiteness on graphs having a dominating clique or a dom-
inating P3. Our results imply a faster algorithm to solve Near-bipartiteness

on P5-free graphs in time O(n4). Interestingly, we can observe that the same
technique combined with Bacsó and Tuza’s result is not very useful to get a
more efficient algorithm for Independent Feedback Vertex Set on P5-free
graphs, due our Theorem 3 showing that this problem remains NP-complete on
graphs having a dominating edge.

Theorem 5. Given a graph G and a dominating triangle of G, one can deter-
mine in O(n2) time whether G is a near-bipartite graph.

Proof. Let {u, v, z} ∈ V (G) be a dominating set of G that induces a triangle.
Suppose that G has a near-bipartition (S,F). Assume that z ∈ S and u, v ⊆ F .

Since z ∈ S, then N(z) ⊆ F and must induce a forest. Observe that N(u) ∩
N(v)∩N(z) = ∅, because near-bipartite graphs have no K4 (see Proposition 1).

At this point, only the vertices belonging to N(v) ∪ N(u) \ N [z] are unclas-
sified. Let B = N(v) ∪ N(u) \ {u, v, z}. Note that G[B] must be bipartite. So,
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we have that the vertices of G[B] can be partitioned into two sets (B1, B2) such
that B1 ⊆ S and B2 ⊆ F . Thus, we must find a bipartition of B that satisfies
the following conditions:

– N(u) ∩ N(v) ⊆ B1, otherwise F will have cycles.
– N(z) ∩ (N(u) ∪ N(v)) ⊆ B2, otherwise S will have edges.
– For each component T of G[N(z)nN [u] ∪ N [v]], which is a tree, holds that:

• For each w ∈ B2, |NT (w)| ≤ 1 (otherwise {w} ∪ V (T ) induces a cycle);
• T has at most one neighbor in B2 (otherwise F has cycles);

Note that any bipartition (B1, B2) satisfying the above restrictions is suffi-
cient to form a near-bipartition such that B1 ∪ {z} = S. At this point, we can
reduce the problem of finding such a bipartition of G[B] to the 2SAT problem,
similarly as in Theorem 2, this concludes the proof. �

Theorem 6. Given a graph G and a dominating induced P3 of G, one can
determine in O(m · n2) time whether G is a near-bipartite graph.

Proof. Let uvz be an induced P3 of G such that {u, v, z} is a dominating set in
G. Suppose that G has a near-bipartition (S,F). At this point, we may analyze
four cases:

Case 1. Suppose that the vertices {u, v} ∈ F and the vertex {z} ∈ S.

In this case the proof is similar to that of Theorem 5. The same holds if
{v, z} ∈ F and {u} ∈ S.

Case 2: Suppose that only the vertex v ∈ F and the vertices {u, z} ∈ S.

In this case, N(u) ∪ N(z) ⊆ F , otherwise S has edges. Thus, N(u) ∪ N(z)
must induce a forest. Also, G[N(u) ∪ N(z)] must contain no path between two
vertices of N(v) ∩ (N(u) ∪ N(z)), otherwise F has cycles.

Furthermore, N(v)\(N(u)∪N(z)) must induce a bipartite graph. Also, for a
vertex w belonging to N(v)\ (N(u)∪N(z)) if it has a neighbor p ∈ N(u)∪N(z)
such that p �= v and it reaches v in G[N(u)∪N(z)] then p must be in S. At this
point, similarly as in Theorem 2, we can use a 2SAT formula to decide which
unclassified vertices of N(v) \ (N(u) ∪ N(z)) must be in F and S. It is not hard
to see that this case can be performed with linear searches in addition to the
construction and resolution of a 2SAT instance in O(n2) time.

Case 3: Suppose that {u, v, z} ⊆ F .

In this case, any vertex with at least two neighbors in {u, v, z} must be in S.
Note that

(N(v) \ (N(u) ∪ N(z))) ∪ (N(z) \ (N(u) ∪ N(v))) ∪ (N(u) \ (N(v) ∪ N(z)))

must induce a bipartite graph B.
Furthermore, for a remaining vertex w belonging to B: If it has a neighbor

that must be in S then it must belong to F ; On the other hand, if w has a
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neighbor p /∈ {u, v, z} that must be in F , then w must belong to S, otherwise,
there is a cycle in F .

Thus, by checking if (N(v) ∩ N(z)) ∪ (N(u) ∩ N(v)) ∪ (N(u) ∩ N(z)) is a
stable set and then successively applying the classification process previously
described (a 2-coloring into S and F) from (N(v) ∩ N(z)) ∪ (N(u) ∩ N(v)) ∪
(N(u)∩N(z)), in linear time, we can either conclude that such a near-bipartition
of G with {v, u, z} ∈ F does not exist, or we construct a partition (S′, F ′, U) of
V (G) such that S′ is stable, F ′ ⊇ {v, u, z} induces a forest, and U is the set of
unclassified vertices. Note that, by construction, no vertex in U has neighbors
in S′ ∪ F ′ \ {v, u, z}.

Since any pair of adjacent vertices together with u, v and z induces a cycle,
G has a near-bipartition (S,F) with {v, u, z} ⊆ F if and only if G[U ] has an
independent vertex cover, which is equivalent to U inducing a bipartite graph,
which can also be checked in linear time.

Next, we discuss the most intriguing case where the vertices of the dominating
set that must be in the forest do not induce a connected component.

Case 4: Suppose that {u, z} ⊆ F and v ∈ S.
Recall that N(v) ⊆ F .
In the following, we consider two cases to be analyzed, either u and z are in

the same tree of F or they are in distinct trees.

Case A - u and z are in the same tree of F . Thus, there is a path P between
them in F . Such a path contains exactly one neighbor of u and exactly one
neighbor of z; otherwise, V (P) induces a cycle in F .

Therefore, we enumerate each pair au, az (au = az is allowed) such that
au �= v and it is neighbor of u, az �= v and it is neighbor of z, and {au, az}∪N(v)
induces a forest having a tree containing u and z.

Observe that we have O(n2) pairs au, az, and in O(m) time we can check if
{au, az} ∪ N(v) induces a forest having a tree containing u and z.

Now, for each enumerated pair au, az, we check if there is a near-bipartition
having {au, az} ∪ N(v) ⊆ F as follows.

– (N(u)∪N(z)) \ ({au, az}∪N [v]) must induce a bipartite graph B, otherwise
there is no near-bipartition having {au, az} ∪ N(v) ⊆ F .
Thus, it is enough to decide if B has a bipartition V (B) = B1 ∪B2 satisfying
the following:
Let T be the tree of G[{au, az} ∪ N(v)] containing u and z.

• Each vertex of B having at least two neighbors in a tree of G[{au, az} ∪
N(v)] must be in B1.

• Each tree of G[{au, az}∪N(v)] distinct from T has at most one neighbor
in B2.

If B has such a bipartition then B1 ∪ {v} = S and B2 ∪ {au, az} ∪ N(v) = F
form a near-bipartition of G. Again, such a bipartition, if any, can be found
using a 2SAT formula.
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The overall running time for this case is O(n4), because we consider O(n2)
pairs and for each one the described procedure can be performed in O(n2) time.

Case B - u and z are disconnected in F .
In this situation there is no path between vertices u and z in F .
Therefore, N(u)∩N(z) ⊆ S, G[N(u)∪N(z)] is bipartite, and the vertices of

(N(u)∪N(z))∩V (F) is a stable set, otherwise the vertices u and z are connected
in F . Besides that, N(v) ⊆ F .

At this point, analogously to the previous cases, we can use 2SAT to find an
appropriated classification of the vertices of N(z) ∪ N(u) into S and F (if any).

Since all the cases are performed in O(n4) time, we conclude the proof. �

Next, we improve the Bonamy, Dabrowski, Feghali, Johnson, and Paulusma’s
result [8] concerning Near-Bipartiteness on P5-free graphs.

Corollary 1. Near-bipartiteness on P5-free graphs can be solved in
O(n2 · m) time.

Proof. Near-bipartite graphs are K4-free and K4’s can be found in O(m2) time.
Also, near-bipartite P5-free graphs have either a dominating triangle or a dom-
inating P3 due to Bacsó and Tuza’s result [4]. Hence, it is enough to apply
Theorem 5 and Theorem 6. Since G is P5-free then Case 4A of Theorem 6 can
be performed in O(n2 · m) time, since either au = az or auaz is an edge of G. �

In the light of previous demonstrations, the reader may be realizing that we
are able to extend our approach to deal with Near-Bipartiteness parameter-
ized the domination number. Actually, we can proceed as follows.

Theorem 7. Given a graph G and a dominating set D of G with size k, one
can determine whether G is near-bipartite in O(2k · n2k) time.

Proof. Given G and D we can “guess” the vertices of D in S and in F in O(2k)
time. For the vertices of D ∩ V (F) there are at most 2k − 2 neighbors used to
connect some of them in the forest F (at most one pair au, az for a pair u, z ∈ D).
We can “guess” such a vertices in O(n2k−2) time. Then we can proceed in O(n2)
time using 2SAT as in the previous results. �
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Abstract. In this work, we study the problem of finding a weighted
graph with exactly k minimum spanning trees (MSTs, in short) while
minimizing the number of vertices. While finding a graph with k MSTs is
easy, finding such a graph with the minimum number of vertices remains
an interesting open problem. Recently, Stong [15] proved an upper bound
within log k multiplicative factor of the minimum. In this work, we prove
the following results which make further progress on this problem:
1. Large weights do not help in constructing a minimal weighted graph

with prime number of spanning trees.
2. For n ≥ 6 and 1 ≤ k ≤ n2, n vertices suffice for constructing a graph

with k spanning trees.

Keywords: weighted complete graphs · minimum spanning trees ·
elementary symmetric polynomials

1 Introduction

Spanning trees and their weighted counterparts, especially minimum weight ones,
have been of central interest and importance to the field of graph theory and
algorithmic graph theory. The work straddles computation, enumeration and
counting, among others. One of the cornerstone results on spanning trees is
Cayley’s Theorem, which places the number of spanning trees on an n vertex
complete graph at nn−2. Complete graphs are edge maximal simple graphs on n
vertices, and contain all n vertex graphs as subgraphs. In an unweighted graph,
every spanning tree is a minimum spanning tree and thus the number of MSTs
of a weighted graph is upper bounded by the number of spanning trees of the
equivalent unweighted graph (meaning the edge weights are all altered to 1).

Motivated by Cayley’s Theorem, and the universal nature of complete graphs
(in the sense they contain all graphs on the corresponding number of vertices,
as subgraphs) on which Cayley’s theorem is focussed, we decided to investigate
whether it is possible to assign edge weights to an n vertex complete graph to
get a prespecified number k of MSTs. Clearly, we limit the range of k to the
set of integers S = {1, 2, . . . , nn−2}. While the motivation for the problem was
sparked by Cayley’s theorem, we found that this generalised problem is rich in
combinatorics, algorithms and complexity.
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Problem 1. Given a pair of integers n and k, such that 1 ≤ k ≤ nn−2, is it
possible to assign weights to the edges of Kn, complete graph on n vertices such
that the resulting weighted graph has exactly k MSTs.

This is a decision problem, and upon further investigation, one observes that
for any fixed n, for certain values of k, the question is easy to answer, while for
others it appears more difficult. We are unaware of the status of the problem
with respect to NP-completeness.

Problem 2. Given k, what is the smallest n, for which we can assign weights to
the edges of Kn such that the resulting weighted graph has exactly k MSTs.

Although the two problems are equivalent, and rewordings of each other, we
address them both. When we focus on a fixed, but arbitrary, n, we try to break
the set S = {1, 2, . . . , nn−2} into subsets and obtain results on the distribution
of yes and no instances in different ranges of the spectrum. We also consider
specific elements in the spectrum and classify them as yes or no. This results
in a detailed study of the structure of the spectrum from various interesting
angles. This includes techniques involving prime and composite numbers and
polynomials arising thereof.

Both directly, and using results from the study of the spectrum, we obtain
results that try to get the optimal n for which one can assign weights to the
edges of Kn to achieve exactly k MSTs. At the time of writing, these results are
not guaranteed to be optimal, and the complexity of obtaining the optimal n for
any given k is unknown. We could attempt to obtain approximation algorithms
using known lower bounds on the optimum as a benchmark for the approximation
factor. In this connection, it is in order to mention a fairly simple result: When
we can achieve exactly k MSTs on weighted Kn, we can also do so on weighted
Kn+1. Equivalently, when we cannot achieve exactly k MSTs on weighted Kn

we cannot, on Kn−1 either.
In general, we can try to find the smallest n such that there exists an

unweighted graph on n vertices that has exactly k spanning trees. This can
be extended to a weighted complete graph on the same vertices by giving the
edges of the graph weight 1 and the absent edges weight 2, resulting in the
same number of MSTs as the number of spanning trees of the original graph.
We must add the caveat that the original unweighted graph must be connected.
This scenario is a special one, and allowing edge weights other than {1, 2} might
allow us to get a better optimum for some values of k. Thus as a simpler version
of the problem, we could consider finding the smallest n such that there exists
an unweighted graph on n vertices with exactly k spanning trees. The optimal
answers to this restricted problem are lower bounded by the optimal answers
to our original formulation. It would be interesting to investigate the possible
extent of the gap as also the values for which the two optima coincide.

Related Work

The notion of a graph with minimum number of vertices in a graph with exactly
k spanning trees was introduced in [13]. This notion was also studied by [1,
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9]. In particular, it was conjectured in [1] that there is an unweighted graph
with o(log k) vertices with exactly k spanning trees. It is known that at least
Ω( log k

log log k ) vertices are needed to generate a graph with k spanning trees [15].
We also know that every integer up to kk can be realized as the number of
spanning arborescences (directed spanning trees) with a fixed root in a digraph
on 3k − 3 vertices without multiple arcs [12]. It follows that the lower bound of
Ω( log k

log log k ) is tight for at least directed graphs. For undirected graphs, we need to
find a small symmetric, diagonally dominant matrix whose determinant equals
k. Symmetric determinantal representations have also been well studied [5,6].

There has also been considerable work on enumerating [8] and counting [2]
spanning trees in special classes of graphs and maximizing the number of span-
ning trees in graphs [3,4,7,10,11,14].

Our Results and Techniques

We now formally state our results and briefly comment on the techniques used
for proving them:

Theorem 1. For any prime p, there is a weighted graph with minimum number
of vertices and p MSTs which uses edge weights only from the set S = {1, 2, 3}.

The proof crucially uses the fact that minimum weight edges must appear in
every minimum spanning tree. We show that connected components induced by
weight 1 and weight 2 edges must have only one minimum spanning tree. Using
these facts, we proceed to show that it suffices to only use weights from the set
S.

Theorem 2. For any integer n ≥ 6 and any k such that 1 ≤ k ≤ n2, there is
an n-vertex unweighted graph with exactly k spanning trees.

The proof essentially employs a case analysis. In all the cases, the witnessing
graphs comprise of three edge-disjoint paths with common start and end vertices.
Note that this result immediately follows from [15]. We give an alternative proof
here which may be of interest.

Theorem 3. Every geometric range

[1, n], [n + 1, n2], . . . , [nn−3 + 1, nn−2]

has at least one integer k such that there is a n-vertex graph with exactly k MSTs.

The proof uses an inductive argument.

2 Preliminaries

2.1 Notation

We use [n] to denote the set {1, 2, . . . , n}. The n-variate degree k elementary
symmetric polynomial, denoted Sk

n , is defined as follows:

Sk
n(x1, . . . , xn) =

∑

A⊆[n],|A|=k

∏

i∈A

xi
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We use the notation G = (V,E) to denote a graph whose vertex set is V and
edge set is E. A graph is said to be complete if there is an edge between every
pair of vertices . We will denote the complete graph on n vertices by Kn. Given
two disjoint subsets S, T ⊆ V , we will denote the edges between one vertex in
S and another vertex in T as cross-connections between between S and T . A
graph is said to be connected if for any pair of vertices u, v, there is at least one
path from u to v.

A tree is a connected and acyclic graph. A tree T is said to be a spanning tree
of G if T visits every vertex of G. Further, T is said to be a minimum spanning
tree of G if the sum of weights of the constituent edges of T is the minimum
possible among all spanning trees of G.

Below, we formally define our problem.

Definition 1. Let κ(k) denote the smallest integer k such that we can assign
integer weights to the edges of Kn so that the resulting weighted graph has exactly
k MSTs.

Specifically, we are interested in knowing how small is κ(k).

2.2 Known Lower Bounds

We begin with the following well-known result on the number of spanning trees
in a complete graph.

Fact 4 (Cayley’s formula). The unweighted complete graph on n vertices,
Kn has exactly nn−2 spanning trees.

So any weight assignment to the edges of Kn will result in a weighted graph
that can have at most nn−2 MSTs. Hence if a n-vertex graph has k MSTs, k is
at most nn−2. Using this fact, one can show that κ(k) is at least log k

log log k (1+o(1))
as stated in [15]. We could not find a proof of this lower bound in [15]. For sake
of completeness, we give a detailed proof below.

Let c1, c2 be parameters and n0 be a constant such that for all n ≥ n0,
c1n log n ≤ log nn−2 ≤ c2n log n . For instance, c2 = 1 − 2

n .

log k

log log k
≤ log nn−2

log log nn−2
≤ c2n log n

log(c1n log n)
= c2

n log n

log c1 + log n + log log n

Therefore,

n ≥ 1
c2

· log c1 + log n + log log n

log n
· log k

log log k
≥ c3

log k

log log k

where c3 is a positive constant (for example, c3 = 1/c2). Finally, we note that
c3 = 1

c2
= n

n−2 = 1 + 2
n−2 .
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2.3 Connection to Arithmetic Expressions

There are a wide variety of algorithms for computing MSTs, but all of them
have some central common properties which we crucially use in our proofs. The
following fact is the main insight behind Kruskal’s algorithm:

Fact 5. Any algorithm that considers the edges sorted in non-decreasing order
of weights and picks a considered edge if and only if it doesn’t create a cycle with
edges picked earlier, always results in a minimum spanning tree. By considering
different linearisations (it is a partial order, since some edge weights may be
equal) of the sorted lists of edge weights, we will get different MSTs.

Fact 6. Every minimum spanning tree has a sorted ordering of the graph’s edges
such that the generic algorithm described in Fact 5 will generate it as the output.

Fact 7. The actual weights of the edges of a graph give more information than
necessary, to determine how many MSTs it has and which spanning trees are
minimum. The only relevant information is the relative weights of the edges. By
this we mean the classification of every pair of edges according to >,<,=, with
regard to their edge weights.

Thus, we follow the convention that the edge weights assigned are all positive
integers beginning with 1 and following successive numbers with no gaps in
between. Thus, throughout this paper, if the maximum edge weight is wMAX ,
all weighted graphs have edge weights 1, 2, . . . , wMAX with at least one edge
associated with each weight.

Further observations lead to the conclusion, that if an edge of weight w > 1
is a cut edge, in the subgraph induced by edges of weights 1, . . . , w, then it can
be changed to w − 1, without any change in the number of MSTs. Although
we study the counting of the number of MSTs, the idea of selecting edges in
non-decreasing order of their weights (as occur in Kruskal’s, Prim’s and other
algorithms for computing MSTs) is used extensively by us. Rather than thinking
of one edge at a time, we employ a multi-round strategy where in each round
we consider the edges in batches in increasing order of weights. All edges of the
same weight constitute a batch.

In each round, the number of components in a minimum spanning forest,
contained in a minimum spanning tree decreases. We maintain a sequence of
integers, one for each component in each round, with the final value being the
number of MSTs. To calculate the integer associated with a particular component
in round i, we:

1. List the components from round i − 1 that merge into this component.
2. Multiply the integers associated with those components from round i−1 and

store it.
3. These components from round i−1 are all linked together by edges of weight

i. Treat each of these components as single vertices, and assign a weight to
an edge linking two such components. The weight of any such edge is equal
to the number of edges of weight i between those components. This is for the
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purpose of calculation only, and the original graph structure is available for
future rounds.

4. List all spanning trees of the graph constructed in step 3, ignoring the weights
of the edges.

5. Compute the cost of each spanning tree obtained in step 4 as the product of
the numbers associated with each edge of that spanning tree, as defined in
step 3.

6. Add the numbers obtained in step 5 and multiply that total by the number
stored in step 2. This is the weight of this component in round i.

We can clearly see that the weight assignment problem for prescribed number
of MSTs maps directly to an arithmetic expression consisting of alternating levels
of addition and multiplication of numbers. Thus, in several cases we may use
arithmetic expressions, and calculate suitable values of the variables that lead
to the target.

2.4 Upper Bounds

Recall the definition of κ(k) (Definition 1. In this section, we present some results
on upper bounds for κ(k) where k is a positive integer. The following lemma
shows that for every integer k less than or equal to n, κ(k) ≤ n.

Lemma 1. For 1 ≤ k ≤ n, we can assign weights to the edges of Kn such that
the resulting weighted graph has exactly k MSTs.

Proof. For the value k = 1 we can assign the edges of some spanning tree weight
1 and all other edges weight 2.

For the value k = 2, create a triangle whose vertices are v1, v2, v3 whose
edges (v1, v2), (v2, v3), (v1, v3) receive weights 1, 2, 2 respectively. Connect each
one of v1, v2, v3 to all the remaining vertices, using 3(n − 3) edges of weight
1. All remaining edges are assigned weight 2. To cover the vertices other than
v1, v2, v3, some n − 3 edges of weight 1 described above need to be included. To
cover v1, v2, v3 we need to pick the edge (v1, v2) and any one of the edges (v2, v3)
and (v1, v3) yielding 2 MSTs.

For 3 ≤ k ≤ n, we use a similar argument to the one used for k = 2. We
create a length k cycle C whose vertices are v1, v2, . . . , vk and edges have weight
1, connect the remaining vertices to each one of v1, v2, . . . , vk using k(n − k)
edges of weight 1 edges and assign weight 3 to all other edges. To cover the
vertices other than v1, v2, . . . , vk, some n − k edges of weight 1 described above
need to be included. To cover v1, v2, . . . , vk, we need to pick k − 1 edges of the
cycle C which can be chosen in k different ways, yielding k different MSTs.

The following proposition shows that for upper bounding κ(k) for any positive
integer k, it is sufficient to find a good enough upper bound for κ(p) for any prime
p.

Proposition 1. For any two positive integers r, s, κ(r · s) ≤ κ(r) + κ(s) − 1.
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Proof. Let G1 = (V1, E1) be a graph with exactly r minimal spanning trees
and κ(r) vertices and G2 = (V2, E2) be another graph with exactly s minimal
spanning trees and κ(s) vertices and |V1 ∩ V2| = 1. Then the graph G1 ∨ G2 =
(V1 ∪ V2, E1 ∪ E2) has exactly κ(r) + κ(s) − 1 vertices and exactly r · s MSTs.

This suggests the following natural strategy for upper bounding κ(m) where
m is a composite number: Consider the unique prime factorization of m. Let
m = pα1

1 · pα2
2 · · · pαk

k where p1, p2, . . . pk are primes and α1, α2, . . . , αk ≥ 0. By
Proposition 1, we get the following.

κ(m) ≤
k∑

i=1

αiκ(pi)

The following proposition yields another upper bound for κ-value of composite
numbers.

Proposition 2. For any two positive integers r, s, κ(r · s) ≤ κ(r) +
⌈

s
κ(r)

⌉
.

Proof. Consider a weighted complete graph Kκ(r) with κ(r) vertices having

exactly r MSTs. Let S be an additional set of vertices with |S| =
⌈

s
κ(r)

⌉
, then

we link the vertices in S together with a tree of weight 1 edges and all other
edges with both endpoints in S are given weight 2. Exactly s of the cross con-
nections between the original Kκ(r) and the set S of vertices are given weight
one more than the maximum weight occurring in the initial complete graph, and
the remaining cross-connections are assigned the next higher integer.

This Proposition can be used to get some good upper bounds. Unlike Propo-
sition 1 we will not provide an explicit upper bound here, but will rather give
the method that can be adopted. We pick a factor and get as good a solution as
possible using known methods. We incorporate the remaining factors iteratively.
At each stage, when attempting to incorporate a factor, we pick the number of
vertices to be added, by invoking Proposition 2. Note that the best results using
this proposition will depend on carefully choosing the order in which the factors
are incorporated and some strategic use of suboptimal number of vertices, when
appropriate. Below is one example.

By Fact 4, n vertices are both sufficient as well as necessary to generate nn−2

spanning trees. In what follows, we call numbers of the form m = nn−2 as Cayley
numbers and n is called the inverse of the Cayley number m.

Definition 2. We call a factorization of a positive integer m a cayley factor-
ization when it is rendered into product of cayley numbers (numbers of the form
nn1−2
1 for any positive integer n1), covering as large a factor of the integer as

possible, and the rest being residues. In particular m can be expressed as below:

m = c · nn1−2
1 nn2−2

2 · · · nnk−2
k

where c, n1, n2, . . . , nk are positive integers.
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Note that a cayley factorization for a given number may or may not exists.
Assuming it does, given a cayley factorization, we can use the inverse of the
largest cayley factor and subsequently use a combination of Propositions 1 and
2 to get a good solution.

The problem now reduces to finding a good upper bound for κ(p) for any
prime p. We begin with observing that it suffices to find an unweighted graph
with exactly p spanning trees.

Lemma 2. If there is an unweighted graph G = (V,E) with |V | = n and k
spanning trees, there is a weight assignment w to the edges of Kn so that the
resulting weighted graph H has k MSTs.

Proof. For any edge e of Kn we assign weight 1 if e ∈ E and weight 2 otherwise.

By Lemma 1, it follows that p vertices suffice for constructing a graph with
exactly p MSTs. The following result shows that one can obtain better bounds
which hold for an infinite sequence of primes.

Theorem 8. [13] Let p ≡ 2 mod 3, p > 5. Then κ(p) ≤ p+4
3

The witnessing graph for the above result consists of a cycle of length p+4
3

with a single chord. We also know a near-optimal upper bound for a specific
class of primes, namely, Fibonacci primes.

Theorem 9. [2] The n-fan graph is formed by having a vertex adjacent to every
vertex of a n-vertex path. n-fan has F2n spanning trees where F2n is the 2nth

Fibonacci number.

Using induction, one can show that F2n ≥ 2n. Let p = F2n be a Fibonacci
prime. Then we get that κ(p) = O(log p) for Fibonacci primes. It is however
unknown whether there are infinitely many Fibonacci primes.

The following lemma is useful for constructing unweighted graphs with prime
number of spanning trees.

Lemma 3. Let v1, v2, . . . , vn be non-negative integers with at most one of them
equal to 1. There is a graph with at most

∑
i∈[n] vi vertices and

Sn−1
n (v1, v2, . . . , vn) =

∑

A⊆[n],|A|=n−1

∏

i∈A

vi

many spanning trees.

Proof. Consider the theta graph θ(v1, v2, . . . , vn) which consists of n edge dis-
joint paths of lengths v1, v2, . . . , vn with common start and end vertices. Since we
are interested only in simple graphs, there is at most one edge between any pair of
vertices. Hence we require the condition that at most one among {v1, v2, . . . , vn

is equal to one. Choosing n−1 of these n paths and deleting one edge from each
path yields a spanning tree and conversely.
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3 Minimal Weighted Graphs with Prime Number
of MSTs

Let p be a prime. In this section, we focus our attention on minimal weighted
graphs with p MSTs where minimality is with respect to number of vertices.
Since we do not know of any minimal unweighted graphs with p MSTs, a natural
question to ask is whether large edge weights can help. Here we prove Theorem 1
which shows that it is sufficient to consider edge weights from the set S =
{1, 2, 3}.

Let G be a graph with κ(p) vertices and exactly p MSTs. Due to Fact 6,
Fact 5 and Fact 7, we assume that if the maximum edge weight is wMAX ,
all weighted graphs have edge weights 1, 2, . . . , wMAX with at least one edge
associated with each weight. In fact, for a vertex v, the minimum edge weight
of an edge incident with v can be replaced by weight 1 without affecting the
number of MSTs. Consider the components of the graph induced by edges of
weight 1. If it is just one component then the other edges will never be used and
can all be set to weight 2.

In case there is more than one component of the subgraph induced by weight
1 edges, if any of these components has more than one MST, then that number
will be a divisor of the final number of MSTs. Since the final number is a prime,
this factor has to be that same prime. This means we can do it in fewer number
of vertices (restricted to the vertices of that component). Contradiction to the
optimality. Now, since each component of the subgraph induced by edges of
weight 1 have exactly one minimum spanning tree of the vertices they span,
they are linked to each other by edges of higher weight. The claim is they must
all be connected to each other using edges of weight 2 alone. The reason is that if
after using linking weight 2 edges they do not span and connect, then again each
component (1 and 2 together) must have only one spanning tree. The reasoning,
as before is, if not, then the number of spanning trees of that component is a
divisor of the prime which is a contradiction. And since the set of all edges of
weight 1 and 2 in the forest built up so far have no cycles, the edges of weight 2
across components of weight 1 can all be relabelled to 1 without impacting the
number of MSTs. Thus, it follows that in two rounds of weights, we span and
connect the whole graph. Thus weights 1, 2, 3 are all that are used.

4 Study of the Spectrum

We recall the spectrum problem below.

Problem 3. Given a positive integer n, for what values k ∈ [1, nn−2] is it possible
to assign weights to the edges of Kn, such that the resulting weighted graph has
exactly k MSTs.

In this section, as a first step towards solving the above problem, we prove
Theorem 2.
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The proof uses mathematical induction for composites and a direct approach
for numbers which are 1, 3, 7, 9 mod 10 (which duplicates some composites too,
but covers all primes). We choose to cover all prime integers which are 1, 3, 7, 9
mod 10.

For numbers 1 mod 10, we use the base case of 31. We consider three groups
of vertices with the number of cross connections being 1,3,7. The number of
MSTs is 1 × 3 + 3 × 7 + 7 × 1 = 31. If we replace the 1 with c in general
the expression becomes c × 3 + 3 × 7 + 7 × c = 10c + 21. This clearly covers
all numbers of type 1 mod 10. In order to have the required number of cross
connections, we can split the vertices into 1, n−1

2 , n−1
2 where n ≥ 15 so as to

enable 7 cross connections. The number of MSTs clearly covers all numbers
which are 1 mod 10 upto n2, asymptotically. For those numbers bypassing the
clause “asymptotically”, we have direct proofs, which are minor tinkering of
specific values. We omit the details as they are expansive.

For numbers 3 mod 10 we cover it in two subcases: 13 mod 30 and 23
mod 30. The remaining case of 3 mod 30 need not be considered as we deal
with integers greater than or equal to six and such numbers are always
composite.

For numbers 13 mod 30, we take the base case as 43. For 43, we can create a
13 cycle with a chord that splits the cycle as 10, 3. This gives us 10+3+10×3 = 43
MSTs. When we want to get other numbers which are 13 mod 30, we need to
add multiples of 30. Notice that the number of spanning trees using the chord
is 10 × 3 and and thus if we replace the vertices that are the endpoints of the
chord with a larger groups of vertices with just one spanning tree in each of the
two groups, and make extra chord connections we can increase the number of
spanning trees by 30 for every two additional chords. In order to have t chords
we need approximately

√
t vertices in each group. This results in a total of

11 +
√

t + 1 vertices to achieve 13 + 30t MSTs. From the relationship it is clear
that the number of spanning trees achievable runs upto n2 asymptotically, and
for all small values not covered, we have done a direct verification.

For numbers 23 mod 30 we use the base case as 23. Here we need an eight
cycle with a chord that splits the cycle as 3 and 5. This gives us 3+5+3×5 = 23
MSTs. For higher cases, the argument is as before, except that we need two
chords for every additional 30 MSTs, since each chord contributes 15 MSTs.

For numbers 7 mod 10, we use 17 as the base case. To achieve 17, we need
a 7 cycle with a chord that splits it as 5 and 2. This gives us 2 + 5 + 2 × 5 = 17
MSTs. Since the chord contributes 10 of the 17 spanning trees, every additional
chord provides an extra 10 while the number of spanning trees not using the
chords remains fixed at 7. Thus we cover all numbers 7 mod 10 in a range
which is asymptotically upto n2. For smaller instances, we have verified the
result directly.

For numbers 9 mod 10, we create three groups of vertices containing 1, n−1
2 ,

n−1
2 vertices. This allows the number of cross connections to be n−1

2 , n−1
2 , (n−1)2

4
respectively. For adequately large values of n, this enables connections numbering
1, 9, c where c ≤ (n−1)2

4 . This allows us to get k = 1× c+9× c+1× 9 = 10c+9
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MSTs and for sufficiently large values of c this number exceeds n2. This covers
all numbers of the type 9 mod 10 upto n2, for sufficiently large choices of n
and c. For all values escaping the clause “sufficiently large”, we have verified the
result directly, using other methods.

For Composites: We first observe that for n = 4, 5 there are instances with
1 ≤ k ≤ n2 such that there is no n-vertex graph with exactly k MSTs. n = 6
serves as the base case for our proof and has been directly verified by us. We
omit the details as they are expansive.

Inductive Hypothesis: Assume that for some k ≥ 6 and for any l such that
1 ≤ l ≤ k2 , there is a k-vertex weighted graph with exactly l MSTs. We wish to
prove that for any l such that 1 ≤ l ≤ (k + 1)2 , there is a k + 1-vertex weighted
graph with exactly l MSTs. When we move from k to k+1, a composite number
c1 in the range [k2 + 1, (k + 1)2 − 1] will have a factor c2 such that 2 ≤ c2 ≤ k.
Suppose not . Then it has at least two factors of magnitude at least k + 1. This
implies that c1 is at least (k + 1)2, contradicting the fact that c1 is in the range
[k2 + 1, (k + 1)2 − 1]. Let c1 = c2 · c3 where 2 ≤ c2 ≤ k. Then c3 is a number
which is at most k2, and hence there is a k-vertex weighted graph with exactly
c3 MSTs. Since the (n + 1)th vertex can have upto n cross connections to the
first n vertices, we can use c2 number of cross connections of light weight and
achieve the target.

For the value (k + 1)2, we use induction from two levels below. We use the
assumption that there is a weighted graph with k − 1 vertices and exactly k + 1
spanning trees. We observe that this also true for the case when k = 5. The
number of cross connections between the two extra vertices and the first k − 1
vertices is 2× (k−1) > (k+1). Thus, using that many cross connections of light
weight, we achieve (k + 1)2 MSTs.

The next result shows that one can partition the range [1, nn−2] into several
subranges such that each of the subranges has at least one value k such that
there is a weighted n-vertex graph with exactly k MSTs. Specifically, we prove
Theorem 3.

The proof is by induction on n.

Base Case: let n = 4. Here, we can generate a graph with n vertices and k
MSTs where k can be any number from 1 to 4 in [1, 4], {5, 6, 8, 9, 16} in [5, 16].
The base case is clearly true.

Inductive Step: For Kn: Assume for any integer i ≤ n − 2, there is a n-vertex
weighted graph with k MSTs where k belongs to the interval [ni + 1, ni+1].
Without loss of generality let it be (ni + x), where x ∈ N & x ≤ ni(n − 1).

When we move to Kn+1, we have an extra vertex that can have any number t
of light weight cross connections where 1 ≤ t ≤ n. This will result in a weighted
Kn+1 with value t·(ni+x). We aim to show that for some choice of t ∈ {1, . . . , n},
this gives a number in the range [(n + 1)i + 1, (n + 1)i+1].

We do this by showing that:

1. The size (number of numbers) in the target range for Kn+1 is at least as large
as k. This establishes that there is a number in the range that is an integral
multiple of k. The following formula establishes this:
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(n + 1)i+1 − (n + 1)i ≥ ni + x

This is equivalent to:
n · (n + 1)i ≥ ni + x

This may be inferred from:

n · (n + 1)i > ni+1 ≥ ni + x

2. n times the yes instance in Kn is either within or greater than the target
range. This will establish that some positive integral multiple (≤ n) of the k
is in the target range for Kn+1. This is established by the following inequality:

n · (ni + x) > (n + 1)i

To see this, observe that:

n · (ni + x) > ni+1 > (n + 1)i, for n ≥ 4, n − 3 ≥ i ≥ 1.

So, for Kn+1, every geometric range [(n + 1)i + 1, (n + 1)i+1] has a value k1
such that there is a weighted Kn+1 with exactly k1 MSTs for 0 ≤ i ≤ n − 3.
However, we have an extra range in Kn+1, i.e. [(n + 1)n−2 + 1, (n + 1)n−1]. We
know that, there is a weighted Kn with nn−3(n − 2) MSTs for n ≥ 5 [13], and
n · nn−3(n − 2) = nn−2(n − 2) is in the desired range.

The following is another result which can help in constructing graphs with
prespecified number of MSTs.

Lemma 4. If there is a weight assignment to the edges of Kn resulting in a + b
MSTs, such that some edge e lies in exactly a of them and missing from the
remaining b. Then there exists a weight assignment to the edges of Kn+t such
that it has exactly a + t · b MSTs.

Proof. We subdivide the edge e into a path of length t + 1 via t new vertices.
Each edge in the subdivision get the same weight as the original edge which was
subdivided. In the newly constructed graph:

– Every MST in the original graph containing the edge e maps to a tree con-
taining the new subdivided path. Thus there are a of them.

– Every MST missing the edge e in the original graph corresponds to t MSTs in
the new graph where the missing edge e is supplanted by t − 1 of the t edges
of the subdivided edge. There are thus t MSTs in the new graph associated
with each MST of the original graph, missing the edge e. This constitutes bt
MSTs.

Thus, the resulting weighted graph has exactly a + tb MSTs.

5 Conclusion

In this work, we showed that n vertices suffice for generating k spanning trees
where 1 ≤ k ≤ n2. A natural next question is to extend this result to higher
powers of n. In particular, find the maximum possible α such that n vertices
suffice for generating k spanning trees where 1 ≤ k ≤ nα.
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Abstract. Monotone trees - trees with a function defined on their ver-
tices that decreases the further away from a root node one travels, are
a natural model for a process that weakens the further one gets from its
source. Given an aggregation of monotone trees, one may wish to recon-
struct the individual monotone components. A natural representation of
such an aggregation would be a graph. While many methods have been
developed for extracting hidden graph structure from datasets, which
makes obtaining such an aggregation possible, decomposing such graphs
into the original monotone trees is algorithmically challenging.

Recently, a polynomial time algorithm has been developed to extract
a minimum cardinality collection of monotone trees (M-Tree Set) from a
given density tree - but no such algorithm exists for density graphs that
may contain cycles. In this work, we prove that extracting such mini-
mum M-Tree Sets of density graphs is NP-Complete. We additionally
prove three additional variations of the problem - such as the minimum
M-Tree Set such that the intersection between any two monotone trees is
either empty or contractible (SM-Tree Set) - are also NP-Complete. We
conclude by providing some approximation algorithms, highlighted by a
3-approximation algorithm for computing the minimum SM-Tree Set for
density cactus graphs.

1 Introduction

A common problem in modern data analysis is taking large, complex datasets
and extracting simpler objects that capture the true nature and underlying struc-
ture. In this paper we are interested in the case when the input data is the aggre-
gation of a collection of trees. In fact, each tree also has attributes over nodes
(e.g., the strength of certain signal) which decreases monotonically from its root
– we call such a tree a monotone tree. Such trees come naturally in modeling
a process that dissipates as it moves away from the root. One such example is
in the construction of neuronal cells: a single neuron has tree morphology, with
the cell body (soma) serving as the root. In (tracer-injection based) imaging of
brains, the signal often tails off as it moves away from the cell body and out of
the injection region, naturally giving rise to a rooted monotone tree. See Fig. 1
(D) for one such example.

Generally, we are interested in the following: given input data that is the
aggregation of a collection of monotone trees, we aim to reconstruct the indi-
vidual monotone trees. The specific version of the problem we consider in this
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https://doi.org/10.1007/978-3-031-49611-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49611-0_8&domain=pdf
http://orcid.org/0000-0002-9844-7497
http://orcid.org/0000-0001-7950-4348
https://doi.org/10.1007/978-3-031-49611-0_8


108 L. Magee and Y. Wang

paper is where the input data is a graph G = (V,E) with a density function
f : V → R

≥0 defined on its vertices. Our goal is to decompose (G, f) into
a collection of monotone trees (T1, f1), . . . , (Tk, fk) whose union sums to the
original (G, f) at each v ∈ V . See Sect. 2 for precise definitions. A primary
motivation for considering graphs to be the input is because graphs are flex-
ible and versatile, and recently, a range of methods have been proposed to
extract the hidden graph structure from a wide variety of datasets; see e.g.,
[1,4,6,8,12,13,15,16,18,20,22]. In the aforementioned example of neurons, the
discrete Morse-based algorithm of [6] has been applied successfully to extract
a graph representing the summary of a collection of neurons [2,21]. To extract
the individual neurons from such a summary would be a significant achieve-
ment for the neuroscience community - which has developed many techniques
to extract individual neuron skeletonizations from imaging datasets; see e.g.,
[5,9,19]. However, going from a graph to a collection of trees poses algorithmic
challenges.

The monotone-tree decomposition problem has been studied in the work of
[3], which develops a polynomial-time algorithm for computing the minimum
cardinality set of monotone trees (M-Tree Set) of a density function defined on
a tree (instead of a graph). However many applications for such a decomposition
have graphs that may contain cycles, with the authors of [3] explicitly mentioning
a need for algorithms that can handle such input domains.

New Work. We consider density functions defined on graphs, which we refer to
as density graphs. Our goal is to decompose an input density graph (G, f) into as
few monotone trees as possible, which we call the minimum M-Tree Decomposi-
tion problem. See Sect. 2 for formal definitions and problem setup. Unfortunately,
while the minimum M-Tree Decomposition problem can be solved efficiently in
polynomial time via an elegant greedy approach when the density graph is itself
a tree [3], we show in Sect. 3 that the problem for graphs in general is NP-
Complete. In fact, no polynomial time constant factor approximation algorithm
exists for this problem under reasonable assumptions (see Sect. 3). Addition-
ally, we show NP-Completeness for several variations of the problem (Sect. 3).
We therefore focus on developing approximation algorithms for this problem. In
Sect. 4, we first provide two natural approximation algorithms but with addi-
tive error. For the case of multiplicative error, we provide a polynomial time
3-approximation algorithm for computing the so called minimum SM-Tree Set
of a density cactus graph.

2 Preliminaries

2.1 Problem Definition

We will now introduce definitions and notions in order to formally define what
we wish to compute. Given a graph G(V,E), a density function defined on G
is a function f : V → R

≥0. A density graph (G, f) is a graph G paired with
a density function f defined on its vertices. A monotone tree is a density tree
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with a root v ∈ V such that the path from the root to every node u ∈ V is
non-increasing in density values. See Fig. 1 for explicit examples of density trees
and monotone trees. While multiple nodes may have the global maximum value
on the monotone tree, exactly one node is the root. For example, in Fig. 1 (B),
either node with the global maximum value may be its root, but only one of
them is the root.

Fig. 1. (A)–(C) Contain examples of density trees with relative maxima colored red.
(A) shows a monotone tree. (B) shows a monotone tree with multiple nodes having the
global maximum density value. (C) shows an example of a density tree that is not a
monotone tree. (D) A zoom in an individual neuron within a full mouse brain imaging
dataset. The dataset is an fMOST imaging dataset that was created as part of the
Brain Initiative Cell Census Network and is publicly available for download. (Color
figure online)

Given a density graph (G(V,E), f), we wish to build a set of monotone sub-
trees (T1, f1), (T2, f2), . . . , (Tn, fn) such that Ti ⊆ G for all i and

∑n
i=1 fi(v) =

f(v) for all v ∈ V . Note that if a node v ∈ V is not in a tree Ti then we
say that fi(v) = 0 and vice versa. We will refer to such a decomposition as a
monotone tree (M-tree) decomposition of the density graph, and refer to the set
as an M-Tree Set throughout the remainder of the paper. An M-Tree Set is a
minimum M-Tree Set for a density graph if there does not exist an M-Tree Set
of the density graph with smaller cardinality. An example of a density graph
and a minimum M-Tree Set is shown in Fig. 2. Note that a density graph may
have many different minimum M-Tree Sets. We abbreviate the cardinality of a
minimum M-Tree Set for a density graph (G, f) as |minMset((G, f))|.

There are different types of M-Tree Sets that may be relevant for different
applications. A complete M-Tree (CM-Tree) Set is an M-Tree Set with the addi-
tional restriction that every edge in the density graph G must be in at least
one tree in the set. A strong M-Tree (SM-Tree) Set is an M-Tree Set such that
the intersection between any two trees in the set must be either empty or con-
tractible. We similarly abbreviate the cardinality of a minimum SM-Tree Set of
(G, f) as |minSMset((G, f))|. A full M-Tree (FM-Tree) Set is an M-Tree Set such
that for each element (Ti(Vi, Ei), fi), fi(v) = f(v) for the root node v ∈ Vi of
(Ti, fi). The (minimum) M-Tree Set in Fig. 2 is also a (minimum) CM-Tree Set
but is neither a SM-Tree Set nor a FM-Tree Set.
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Fig. 2. A density graph (left) together with a minimum M-Tree Set (right). Note that
a minimum M-Tree Set is not necessarily unique for a density graph.

2.2 Greedy Algorithm for Density Trees [3]

We will now briefly describe the algorithm for computing minimum M-Tree Sets
for density trees developed in [3], as some of the ideas will be useful in our work.
Please refer to [3] for more details. The approach of [3] relies on a so-called
monotone sweeping operation to build individual elements of a minimum M-
Tree Sets of density trees. Algorithm 1 explicitly defines a generalized version of
this operation that we will need in a later proof. The operation takes a density
tree (T (V,E), f), a node v ∈ V , and a starting function value α such that
0 < α ≤ f(v) as input. A monotone subtree (T ′, hf,v,α) and the remainder
density tree (T,Rv,αf) where Rv,αf(u) = f(u) − hf,v,α(u) for all u ∈ V is
returned.

Algorithm 1: monotone-sweep((T (V,E), f), v ∈ V, α)
Input: A density tree (T (V, E), f), a starting node v ∈ V , and a staring value α

such that 0 < α ≤ f(v)
Output: A monotone subtree (T ′, hf,v,α) and a remainder (T, Rv,αf)
(Step 1) Initialize output density subtree T ′ to only contain the input vertex v,
with corresponding density function hf,v,α(v) = α
(Step 2) Perform DFS starting from v. For each edge (u → w) traversed:

hf,v,α(w) =

{
hf,v,α(u) f(w) ≥ f(u)

max(0, hf,v,α(u) − (f(u) − f(w))) otherwise

Return monotone tree (T ′, hf,v,α) and remainder density tree (T, Rv,αf).

Algorithm 2, which outputs a minimum M-Tree Set of density trees, per-
forms the monotone sweeping operation iteratively from certain nodes, called
the mode-forced nodes of the density tree. To compute these mode-forced nodes,
one iteratively remove leaves from the tree if their parent has greater or equal
density. Such leaves are referred to as insignificant vertices. Once it is no longer
possible to remove any additional nodes, the leaves of the remaining graph are
the mode-forced nodes of the original density graph.
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Algorithm 2: tree-algo((T (V,E), f))
Input: A density tree (T (V, E), f)
Output: A minimum M-Tree set of (T (V, E), f)
(Step 1) Find a mode forced vertex v ∈ V
(Step 2) Perform monotone-sweep((T (V, E), f), v, f(v)) to build a single element
of a minimum M-Tree Set.
(Step 3) Repeat Steps 1 and 2 on remainder (T, Rv,f(v)f) until no density
remains.

An example of a single iteration of the tree algorithm is shown in Fig. 3. The
running time complexity of Algorithm2 is O(n ∗ |minMset((T, f))|) where n is
the number of nodes in T . We note that all M-Tree Sets of a density tree are
also SM-Tree Sets, so Algorithm 2 also outputs a minimum SM-Tree Set.

Fig. 3. (A) A density graph with mode-forced nodes colored green and insignificant
vertices colored yellow. (B) A single element built by the monotone sweep operation
from a mode forced node as performed in Algorithm 2 (Color figure online).

2.3 Additional Property of Monotone Sweeping Operation

Unfortunately, the previous work of [3] cannot be directly applied to den-
sity graphs. Nevertheless, we can show Claim 2.3 which will later be of use in
developing approximation algorithms in Sect. 4. Its relatively simple proof is in
AppendixA.

Claim. Given a density tree (T (V,E), f), let v ∈ V . Let a, b ∈ R
+ such that,

without loss of generality, 0 < a < b ≤ f(v). Let (T,Rv,af) be the remainder of
monotone-sweep((T, f), v, a). We can define a similar remainder (T,Rv,bf). Then
we have |minMset((T,Rv,bf))| ≤ |minMset((T,Rv,af))|.

3 Hardness Results

Given that there exists a polynomial time algorithm for computing minimum M-
Tree Sets of density trees, it is natural to ask whether or not such an algorithm
exists for density graphs. We prove Theorem 1, stating that the problem is NP-
Complete.
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Theorem 1. Given a density graph (G(V,E), f) and a parameter k, determin-
ing whether or not there exists an M-Tree set of size ≤ k is NP-Complete.

Proof. It is easy to see that this problem is in NP, so we will now show it is
also in NP-Hard. First we consider a variation of the Set Cover problem where
the intersection between any two sets is at most 1. We refer to this problem
as Set Cover Intersect 1 (SC-1). SC-1 is a generalization of the NP-Complete
problem of covering points in a plane with as few lines as possible [17], and
approximation bounds of SC-1 are well studied in [14]. Given an instance of
SC-1 (m sets S1, S2, . . . , Sm covering a universe of n elements e1, e2, . . . , en, and
a number k), we reduce to an instance of the M-Tree Set decision problem as
follows:

– Create a bipartite graph G(V = A ∪ B,E) equipped with a density function
f : V → R

≥0 based on the input (SC-1) instance.
– In particular, for each set Si, add a node aSi

to A and set f(aSi
) = |Si|.

– For each element ej , add a node bej
to B and set f(bej

) = 1
– For each set Si, add edge between aSi

and bej
for each element ej ∈ Si.

An example of this reduction is illustrated in Fig. 4.

First Direction: If there is a Set Cover of size ≤ k, then there is an
M-Tree Set of density graph (G, f) whose cardinality is ≤ k.

Let Scover be a set cover of size n ≤ k. For each Si ∈ Scover, we will construct
a monotone tree (Ti, fi) rooted at aSi

. In particular, fi(aSi
) = f(aSi

). Then, for
each element ej ∈ Si, Ti will include bej

and the edge (aSi
, bej

), with fi(bej
) = 1.

Note that if ej is an element in multiple sets in Scover, simply pick one Si ∈
Scover such that ej ∈ Si to be the representative set of ej . Finally, for each set
Sl /∈ Scover, for each element ej ∈ Sl, add the node aSl

and the edge (bej
, aSl

)
to Ti with fi(aSl

) = 1, where (Ti, fi) is the monotone tree rooted at the node
aSi

where Si ∈ Scover is the representative set containing ej .
Firstly, each element in the M-Tree Set is connected by construction. The

only nodes in an element (Ti, fi) are the root node aSi
, where Si ∈ Scover, nodes

of the form bej
, where ej ∈ Si, and nodes of the form aSl

, where Sl /∈ Scover

and there exists ej in both Si and Sl. Edges of the form (aSi
, bej

) are part of
the domain by construction and are included in Ti. Similarly, edges of the form
(aSl

, bej
) are also part of the domain by construction and are included in Ti. For

each edge (aSl
, bej

) ∈ Ti, there must also exist an edge (aSi
, bej

). Thus all nodes
in Ti are connected to aSi

- and in particular at most 2 edges away.
Secondly, each element in the M-Tree Set is a tree. Consider element (Ti, fi).

By construction, if a cycle were to exist in Ti it would have to be of the form
aSi

, bep
, aSl

, beq
, aSi

, where both ep and eq are in both Si and Sl. However, such
a cycle would imply that two sets have at least two elements in their intersection,
which is not possible given we reduced from SC-1.

Next, each element in the M-Tree Set is a monotone tree. fi(v) = 1 for all
v ∈ Ti that are not the root aSi

of (Ti, fi) and fi(aSi
) ≥ 1.

Finally, f(v) =
∑n

a=1 fi(v) for all v ∈ G. Each node aSi
such that Si ∈ Scover

is part of one monotone tree (Ti, fi) and fi(aSi
) = f(aSi

). Each node bej
∈ B
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is also part of only one monotone tree (Ti, fi) and fi(ej) = 1 = f(ej). Finally,
for a set Sl /∈ Scover, aSl

is included in m = |Sl| monotone trees. For each such
monotone tree (Ti, fi), fi(aSl

) = 1, thus
∑n

a=1 fi(aSl
) = m = f(aSl

).
Thus, we have proven that there exists a M-Tree Set of (G, f) of size ≤ k.

Second Direction: If there is an M-Tree Set of density graph (G, f) of
size ≤ k, then there is a Set Cover of size ≤ k.

Let {(Ti, fi)} be an M-Tree set of density graph (G, f) of size k. Each mono-
tone tree (Ti, fi) in the set has a root node mi. If multiple vertices in Ti have
the maximum value of fi (as seen in Fig. 1(B)) simply set one of them to be mi.
Each edge in Ti has implicit direction oriented away from mi. First we prove
Lemma 1.

Lemma 1. Let bej
∈ B. Either bej

is the root of a monotone tree in the M-Tree
Set or at least one of its neighbors is the root of a monotone tree in the M-Tree
Set.

Proof. Assume bej
is not a root of any monotone tree. Consider a monotone

tree (Ti, fi) of the M-Tree Set containing bej
. This means that fi(bej

) > 0.
Consider node aSl

that is the parent of bej
in (Ti, fi). Assume aSl

is not the root
node of (Ti, fi). Because aSl

is not the root of the component, it must have a
parent bed

. Consider the remaining density graph (G, g = f − fi). By definition
of monotone tree, 0 < fi(bej

) ≤ fi(aSl
) ≤ fi(bed

). By construction, we also
know f(aSl

) =
∑

ej∈Sl
f(bej

). Therefore, g(aSl
) >

∑
ej∈Sl

g(bej
). Because aSl

has more density than the sum of all of its neighbors in (G, g), it is impossible
for aSl

to not be the root of at least one monotone tree in any M-Tree Set of
(G, g). Thus if bej

is not the root of any monotone tree in the M-Tree Set, aSl

must be the root of a monotone tree in the M-Tree Set.

We now construct a set cover from the M-Tree Set with the help of Lemma 1.
Initialize Scover to be an empty set. For each aSi

∈ A that is a root of a monotone
tree in the M-Tree Set, add Si to Scover. Next for each bej

∈ B that is the root
of a monotone tree in the M-Tree Set, if there is not already a set Si ∈ Scover

such that ej ∈ Si, choose a set Sl such that ej ∈ Sl to add to the Set Cover.
Every element must now be covered by Scover. A node ej that is not the root in
any monotone tree in the M-Tree Set must have a neighbor aSl

that is a root in
some monotone tree by Lemma 1. The corresponding set Sl was added to Scover

- thus ej is covered. A node em such that bem
is the root of a monotone tree in

the M-Tree Set must also be covered by Scover - as a set was added explicitly to
cover em if it was not already covered. We’ve added at most one set to the cover
for every monotone tree in the M-Tree Set, therefore |Scover| ≤ k.

Combining both directions, we prove that, given a SC-1 instance, we can
construct a density graph (G, f) such that there exists a set cover of size ≤ k
if and only if the density graph has a M-tree Set of size ≤ k. This proves the
problem is NP-Hard, and thus the problem is NP-Complete.
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Fig. 4. (A) SC-1 instance with 4 sets and seven elements (B) M-Tree decision problem
instance created by following reduction outlined in proof of Theorem 1. The top row
consists of nodes in A ⊂ V in the bipartite graph, which are nodes representing sets,
while the bottom row consists of nodes in B ⊂ V in the bipartite graph, which are
nodes representing elements.

3.1 Approximation Hardness

From the proof of Theorem 1, it is easy to see that given an instance of SC-1, the
size of its optimal set cover is equivalent to the cardinality of the minimum M-
Tree Set of the density graph constructed in the reduction. Hence the hardness
of approximation results for SC-1 translate to the minimum M-Tree Set problem
too. We therefore obtain the following result, stated in Corollary 1 which easily
follows from a similar result for SC-1. The SC-1 result from [14] is stated in
AppendixC. We note that while Corollary 1 states the bound in terms of n = of
number of relative maxima, a similar bound can be obtained where n = number
of vertices.

Corollary 1. There exists a constant c > 0 such that approximating the min-
imum M-Tree Decomposition problem within a factor of c log(n)

log(log(n)) , where n is
the number of relative maxima on the given density graph, in deterministic poly-
nomial time is possible only if NP ⊂ DTIME(2n1−ε

) where ε is any positive
constant less than 1

2 .

Proof. Under the assumptions mentioned above, there exists a c > 0 such that
SC-1 cannot be approximated within a factor of c log(n)

log(log(n)) , where n is the
number of elements in the universe [14]. We note that for a given SC-1 instance,
performing the reduction to the M-Tree Set decision problem seen in the proof
of Theorem 1 results in a density graph with at most n(n−1)

2 +n relative maxima
- the upper bound on the number of sets in the SC-1 instance. Thus, the number
of relative maxima on the density graph is O(n2).

For sufficiently large n, we have the following:
c log(n2)

log(log(n2)) = 2c log(n)
log(2log(n)) = 2c log(n)

log(log(n))+1 < 2c log(n)
log(log(n))

Thus there exists a c > 0 such that minimum M-Tree Decomposition problem
cannot be approximated within a factor of c log(n2)

log(log(n2)) under the same assump-
tions mentioned previously. Because the number of relative maxima on the den-
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sity graph is O(n2), we can substitute the number of relative maxima for n2 to
establish our final bound.

3.2 Variations of Minimum M-Tree Sets are Also NP-Complete

In addition to proving that computing minimum M-Tree Sets of density graphs
is NP-Complete, we have also proven Theorem 5 in AppendixB. The theorem
states that computing the minimum CM-Tree Sets, minimum SM-Tree Sets,
and minimum FM-Tree Sets of density graphs is also NP-Complete. It should
be noted that Corollary 1 can be extended to CM-Tree Sets and FM-Tree Sets.
In contrast, SC-1 is not used in the NP-Complete proof for SM-Tree Sets. Thus,
Corollary 1 does not apply to minimum SM-Tree Set and there is hope we can
develop tighter bounded approximation algorithms for this problem than for the
other variations.

4 Algorithms

4.1 Additive Error Approximation Algorithms

Now that we have shown that computing minimum M-Tree Sets of density
graphs, as well as several additional variations, is NP-Complete, we focus on
developing approximation algorithms. We define two algorithms with different
additive error terms. Firstly, we note that a naive upper bound for a given density
graph is the number of relative maxima on the graph. We include Algorithm6
in AppendixF to establish this naive upper bound.

Shifting focus to nontrivial approaches, Algorithm3 computes the minimum
M-Tree Set of a density graph restricted to a spanning tree T ⊆ G. We prove
that |minMset((T, f))| ≤ |minMset((G, f))|+2g, where g the genus of G, denoted
as β1G = g. For a connected graph, G(V,E), β1G = |E| − |V | + 1, which is the
number of independent cycles on the graph. This approximation error bound for
Algorithm 3 is stated in Theorem 2 and proven in AppendixD.

Algorithm 3: additive-error-algo((G(V, E), f))
Input: A density graph (G(V, E), f) such that β1G = g
Output: An (S)M-Tree set of G, f
(Step 1) Compute g edges that if removed leave a spanning tree T of G
(Step 2) Compute minimum (S)M-Tree set of density tree (T, f) via Algorithm 2

Theorem 2. Let (G(V,E), f) be a density graph with β1G = g. Let k∗ be the
size of a minimum (S)M-Tree Set of (G, f). Algorithm3 outputs an (S)M-Tree
Set of size at most k∗ + 2g.
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4.2 Approximation Algorithm for Minimum SM-Tree Sets
of Density Cactus Graphs

A cactus graph is a graph such that no edge is part of more than one simple cycle
[10]. See Fig. 5 (A) for an example. Many problems that are NP-hard on graphs
belong to P when restricted to cacti - such as vertex cover and independent set
[11]. While we do not yet know whether or not computing a minimum M-Tree
Set (or any variations) of density cactus graphs is NP-hard, we have developed a
3-approximation algorithm for computing the minimum SM-Tree Set of a density
cactus graph.

Fig. 5. (A) An example of a cactus graph where no edge is part of more than a
single simple cycle. (B) An example of an input for Algorithm 4. The density tree
is broken into two subtrees (green and blue) that have a single node as intersection
(red). Monotone sweeping is performed iteratively at mode-forced nodes only in one
of the subtrees. Once the only remaining mode-forced nodes lie on the other tree, the
output tuple containing the number of monotone sweeps performed and the remaining
density at the intersection node is returned. (Color figure online)

We first prove Theorem 3, which states that for any density cactus graph
(G, f), there exists a spanning tree T ⊆ G such that |minSMset(T, f)| is at most
3 times |minSMset(G, f)|. The proof can be found in AppendixE.

Algorithm 4: split-tree-algo((T(V, E), f), T1, T2)
Input: A density tree (T (V, E), f) and two subtrees T1, T2 of T that share a

single node v as intersection
Output: A tuple (a, b) representing the number of monotone sweeps a from

mode-forced nodes on T1 to make all mode-forced nodes on T be part
of T2, and the remaining function value b at v after the monotone
sweeps.

While there exists mode-forced node u ∈ V off of T2:
- monotone-sweep((T, f), u, f(u))
Set a = number of monotone sweeps performed
Set b = remaining density on v
Return (a, b)
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Theorem 3. Let (G(V,E), f) be a density cactus graph. There exists a spanning
tree T of G such that |minSMset(T, f)| ≤ 3|minSMset(G, f)|.

With Theorem 3 proven, we aim to compute the optimal density spanning
tree of a density cactus graph. To help compute such an optimal density span-
ning tree, we first define Algorithm4. Given a density tree (T (V,E), f) divided
into two subtrees T1 and T2 that share a single node v ∈ V as intersection,
Algorithm 4 performs monotone sweeping operations on the mode-forced nodes
of T1 until all mode-forced nodes of (T, f) are on T2. An example of a valid
input is seen in Fig. 5 (B).The output is a tuple (a, b), where a is the number of
monotone sweeps performed and b is the remaining density on v after performing
the monotone sweeps. The tuple will essentially capture how helpful monotone
sweeping from T1 is for building a minimum (S)M-Tree Set on T2.

Algorithm 4 can be used to help compute the desired density spanning tree.
In particular, it is used in Algorithm5, to cut the optimal edge from each cycle,
one cycle at a time. We prove Theorem 4 which states that Algorithm 5 returns
an SM-Tree Set at most 3 times larger than a minimum SM-Tree Set of a density
cactus graph. The running time of Algorithm5 is O(n3) where n is the number
of nodes in the input cactus graph. Algorithm 2 (O(n2)) is performed once for
each edge (O(n)) that is part of a simple cycle.

Algorithm 5: opt-spanning-tree-algo((G(V, E), f))
Input: Density cactus graph (G(V, E), f)
Output: SM-Tree Set of (G, f)
If G is a tree
- Compute optimal (S)M-Tree Set of (G, f) using Algorithm 2.
Else If G has only a single cycle
- compute optimal sized (S)M-Tree Set of each density spanning tree of G and
return smallest cardinality (S)M-Tree Set.
Else (G has multiple simple cycles)
- Compute a leaf cycle C = c1, . . . , cm connected to rest of cycles at ci

- Let GC = the simple cycle C with all branches off of each node in the cycle -
not including the branches off of ci that do not lead to other cycles in the
graph. Let GC̄ = T − GC + ci.
- Fix a spanning tree TGC̄

of GC̄ .
- For each spanning tree Ti of GC compute split-tree-algo((GC ∪ GC̄ , f), Ti, TGC̄

)
- Set G = G(V, E − e∗) such that e∗ is edge removed from C that results in
spanning tree with smallest output of split-tree-algo.
- Iterate until basecase (single cycle graph) is achieved

Theorem 4. Algorithm 5 outputs an SM-Tree Set that is at most 3 times the
size of a minimum SM-Tree Set of the input density cactus graph.

Proof. Theorem 4 clearly holds when G is a tree or contains a single cycle
(Lemma 4). Therefore, we only need to prove Theorem 4 holds when G contains
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multiple simple cycles. Because G is a cactus, a leaf cycle C = c1, . . . , cm exists.
Let GC be the graph of all nodes in the cycle and branches off of those nodes,
excluding branches off of ci that do not lead to other cycles. Let GC̄ be the graph
of G excluding C and all branches off of C, except for the node ci itself. GC has
m spanning trees, T1, . . . , Tm corresponding to the m edges of C. Fix a span-
ning tree TGC̄

of GC̄ . We next introduce Lemma 2, which we subsequently prove
with two claims. It follows from Lemma 2 that Algorithm 5 outputs a minimum
SM-Tree Set on the density spanning tree that has the smallest sized minimum
SM-Tree Set of all density spanning trees. Using this with Theorem3 finishes
the proof.

Lemma 2. Let T ∗ = spanning tree of GC such that the output of split-tree-
algo(T ∗ ∪ TGC̄

, T ∗, TGC̄
) is minimized. |minSMset((T ∗ ∪ TGC̄

, f))| ≤
|minSMset((Tk ∪ TGC̄

, f))| for any spanning tree Tk ⊆ GC .

Claim. If split-tree-algo(Tj ∪ TGC̄
, Tj , TGC̄

)[0] < split-tree-algo(Tk ∪ TGC̄
,

Tk, TGC̄
)[0] then |minSMset((Tj ∪ GC̄ , f))| ≤ |minSMset((Tk ∪ GC̄ , f))|.

Proof. Let Tj , Tk be spanning trees of GC such that aj < ak, where aj = split-
tree-algo(Tj ∪TGC̄

, Tj , TGC̄
)[0] and ak = split-tree-algo(Tk ∪TGC̄

, Tk, TGC̄
)[0]. Let

s∗ = |minSMset((TGC̄
, f))|.

Algorithm 4 performs Algorithm 2 sweeping from mode-forced nodes on Tj ,
but stops once mode-forced nodes only remain on TGC̄

. Thus it is still construct-
ing minimum SM-Tree Sets but stopping short of completion. The first element
of the output of Algorithm4 indicates the number of iterations required to have
only mode-forced nodes on TGC̄

. |minSMset((Tj ∪ TGC̄
, f))| ≤ aj + s∗. Similarly,

|minSMset((Tk ∪ TGC̄
, f))| ≥ ak + s∗ − 1.

Claim. If split-tree-algo(Tj ∪ TGC̄
, Tj , TGC̄

)[0] = split-tree-algo(Tk ∪ TGC̄
,

Tk, TGC̄
)[0] and split-tree-algo(Tj ∪ TGC̄

, Tj , TGC̄
)[1] < split-tree-algo(Tk ∪

TGC̄
, Tk, TGC̄

)[1] then |minMset((Tj ∪ GC̄ , f))| ≤ |minMset((Tk ∪ GC̄ , f))|.
Proof. Let Tj , Tk be spanning trees of GC such that aj = ak and bj < bk where
(aj , bj) = split-tree-algo(Tj ∪ TGC̄

, Tj , TGC̄
) and (ak, bk) = split-tree-algo(Tk ∪

TGC̄
, Tk, TGC̄

).
aj = ak indicates that both Tj and Tk require the same number of iteration

of monotone sweeps to leave mode-forced nodes on TGC̄
. However, bj < bk means

that Tj is more helpful than Tk for reducing the minimum SM-Tree Set size on
the remainder in the same number of monotone sweeps by Claim 2.3.

5 Conclusion

We have proven that decomposing density graphs into minimum M-Tree Sets,
and many other variations, becomes NP-Complete when the input graph is not
restricted to trees. We have also shown that, under reasonable assumptions, no
polynomial time constant factor approximation exists for most variations. We
provided additive error approximations algorithms for the minimum M-Tree Set
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problem, as well as developed a 3-approximation algorithm for minimum SM-
Tree Sets for density cactus graphs. Future work will be to close the gap between
the bounds of approximation we have established with the error bounds of the
algorithms we have developed.

A Proof of Claim 2.3

Proof. We will prove the claim by contradiction. Assume that
|minMset((T,Rv,bf))| > |minMset((T,Rv,af))|.

In particular, we will construct two new density trees, (Ta, fa) and (Tb, fb),
as follows: Ta is equal to our starting tree with the addition of two nodes va and
v∞, with two additional edges connecting to va to both v∞ and v. Set fa(va) = a
and fa(v∞) = ∞. Similarly define Tb and fb.

Now imagine we run Algorithm 2 on (Ta, fa). v∞ is a mode-forced node, and
thus we can perform the first iteration in Algorithm2 on v∞. Sweeping from v∞
will leave remainder with a minimum M-Tree Set of size |minMset((Ta, fa))| − 1.
The remainder is exactly the same as (T,Rv,af) at all nodes v ∈ V , and is zero at
our newly added nodes. Hence, |minMset((Ta, fa))| = |minMset((T,Rv,af))| + 1.
Similarly, by performing Algorithm2 on (Tb, fb), we have |minMset((Tb, fb))| =
|minMset(T,Rv,bf)|+1. Now if our initial assumption is true, then by the above
argument we have that

|minMSet((Tb, fb))| > |minMSet((Ta, fa))|. (1)

However, we could construct an M-tree set of (Tb, fb) as follows: First construct
one monotone tree rooted at v∞ that leaves no remainder at both v∞ and vb,
then perform the monotone sweep operation starting at v with starting value a
to build the rest of the component. Note that the remainder after removing this
tree is in fact (Ta, Rv,af), which we can then decompose using the minimum
M-tree set of (Ta, Rv,af). In other words, we can find a M-tree set for (Tb, fb)
with |minMset(T,Rv,af)|+1 = |minMset(Ta, fa)|. This however contradicts with
Eq. (1) (and the correctness of Algorithm 2). Hence our assumption cannot hold,
and we must have that |minMset(T,Rv,bf)| ≤ |minMset(T,Rv,af)|. This proves
the claim.

We note that while this proof is for M-Tree Sets specifically, the proof for
SM-Tree Sets follows identical arguments.

B Complexity

In this section, we prove Theorem 5, which states many variations of the mini-
mum M-Tree set problem are also NP-Complete.

Theorem 5. Given a density graph (G(V,E), f) and a parameter k, determin-
ing whether or not there exists a CM-Tree Set, SM-Tree Set, or FM-Tree Set of
size ≤ k are all NP-Complete.
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B.1 Proof of Theorem 5: CM-Tree Sets

Firstly, the problem is clearly in NP. We will follow the same reduction from SC-
1 as seen in the proof of Theorem1 to prove NP-Hardness, with one additional
step.

The first direction we follow identical arguments to create an M-Tree Set of
appropriate size, but do not yet have a CM-Tree Set. In particular, consider the
M-Tree Set at the end of the proof - the only possible edges missing are edges
(aSj

, be) such that Sj is in the Set Cover and contains e, but another set Si

containing e is in the Set Cover and fi(be) = 1. We will modify the M-Tree Set
to ensure every such edge that is left out is included in a component. Consider
an element e that is in n sets in the set cover, where n > 1. Let (Ti, fi) be
the monotone tree in the M-Tree Set such that fi(be) = 1. Set fi(be) = 1

n .
Additionally, for each set Sj in the set cover such that be ∈ Sj , add (aSj

, be)
to monotone tree (Tj , fj) and set fj(be) = 1

n . Then, for each set Sk such that
Sk is not in the set cover and be ∈ Sk, add (be, aSk

) to each (Tj , fj) and set
fj(ask

) = 1
n . We still have an M-Tree Set, as each component clearly remains

a monotone tree, and the sum of function values at each node is equal to what
it was prior to the modification. Once this modification is performed for every
element contained within multiple sets in the set cover, we have an M-Tree set
with every edge in the input domain included in at least one monotone tree. The
second direction is identical to the previous proof.

B.2 Proof of Theorem 5: SM-Tree Sets

Firstly, the problem is clearly in NP. In order to prove this decision problem
is NP-Hard - we first show that a specific instance of Vertex Cover - where for
the given input graph G(V,E), for any two vertices u, v ∈ V , there is at most
one vertex w ∈ V that is adjacent to both u and v - is NP-Complete. This
will limit the number of connected components in the intersection between two
components to be at most one in our reduction to the M-Tree problem.

Lemma 3. Given a graph G(V,E) such that for any two vertices u, v ∈ V ,
there is at most one vertex w ∈ V that is adjacent to both u and v and an
integer k, determining whether or not there exists a vertex cover of size ≤ k is
NP-Complete.

Proof. This is a specific instance of Vertex Cover and is clearly in NP. To show
it is in NP-Hard use the same reduction from 3-SAT to regular Vertex Cover
as seen in [7], but use a “restricted” version of 3-SAT where we can assume the
following:

– A clause has 3 unique literals
– A clause cannot have a literal and its negation

These assumptions are safe because we can transform any 3-SAT instance that
has any such clauses to an equivalent 3-SAT instance with no such clauses in
polynomial time. Thus this restricted version of 3SAT is also NP-Complete.
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Consider the graph created in the reduction of this restricted 3-SAT to Vertex
Cover. Two literal vertices will have no shared neighbors by design. Any literal
vertex and vertex in a clause will only have 1 neighbor if the literal vertex is
also in the clause or the clause vertex is the negation of the literal vertex. Two
vertices in clauses will only have a single shared neighbor - the literal vertex if
they are the same literal (and are thus in different clauses), or the final clause
vertex if they are in the same clause. Thus, the reduction is also a reduction to
our special Vertex Cover problem, and follows the exact same proof.

We will now reduce the special instance of Vertex Cover to the SM-Tree
decision problem to prove NP-Hardness. We follow a very similar reduction as
seen in the proof of Theorem1. We construct a bipartite graph G(V = A∪B,E),
with nodes in A corresponding to nodes in the instance of Vertex Cover, and
nodes in B representing edges in the instance of Vertex Cover. We then build
density function f on the nodes of V , setting f(av) = degree of node v in Vertex
Cover instance for each node av ∈ A, and f(be) = 1 for each edge e in the Vertex
Cover instance. Prove both directions the exact same way as shown in the proof
of Theorem 1, but note that for the first direction, because of the restriction on
our input graph, any two components of the decomposition can have at most a
single vertex in their intersection.

B.3 Proof of Theorem 5: FM-Tree Sets

Firstly, the problem is clearly in NP. To show the problem is in NP-Hard, we
follow the exact same reduction from SC-1 as seen in proof of Theorem1. For
the first direction - we note that the M-Tree Set we have constructed is also an
FM-Tree Set - as each set Si in the set cover is a root of a component (Ti, fi)
such that fi(aSi

) = f(aSi
). The second direction remains the same - though the

argument that if a node be is not the maximum of any monotone tree then one
of its neighbors must be is slightly different. In this case, the neighbor must be a
maximum in the same monotone tree it is a parent of be in - not being so would
contradict that the set is in fact a FM-Tree Set.

C Set Cover Intersection 1 Approximation Bound [14]

Theorem 6. There exists a constant c > 0 such that approximating the SC-
1 problem within a factor of c log(n)

log(log(n)) , where n is the number of elements
in the universe, in deterministic polynomial time is possible only if NP ⊂
DTIME(2n1−ε

) where ε is any positive constant less than 1
2 .

D Proof of Theorem 2

Proof. We need to prove Lemma 4 to provide an upper bound on |minMset(T, f)|
for any spanning tree T ⊆ G. Algorithm 2 will then output an M-Tree Set of
size at most equal to the upper bound, thus completing our proof. The proof is
identical for SM-Tree Sets.
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Lemma 4. Let (G(V,E), f) be a density graph with β1G = g and
|minMset(G, f)| = k∗. For any spanning tree T ⊆ G, |minMset(T, f)| ≤ k∗ + 2g

Let M = {(Ti, fi)} be a minimum M-Tree set of (G, f). Let Ecut be the set
of g edges that if removed from G leave spanning tree T . Firstly, we note that
|minMset(G, f)| ≤ |minMset(T, f)|, as any M-Tree Set of (T, f) is also an M-Tree
Set of (G, f).

We will construct an M-Tree Set of (T, f) from a minimum M-Tree Set of
G. For each monotone tree (Ti, fi) ∈ M , consider an edge ej = (u, v) ∈ Ecut

that is in Ti. There is implicit direction to ej with respect to the root of (Ti, fi),
meaning either (1) (u → v) or (2) (v → u). If (1) is the case, we can cut the
branch rooted at v off of (Ti, fi) to create two non-intersecting monotone trees.
See Fig. 6 for an example. We perform a similar operation if (2) is the case, but
instead cut the branch rooted at u. Perform this cut for each edge in Ecut to
divide (Ti, fi) into, at most, |Ecut| + 1 non-intersecting monotone trees. After
dividing each tree into at most |Ecut| + 1 non-intersecting monotone trees, we
make 2 key observations - (1) we still have a M-Tree Set of (G, f) and (2) no
edge in Ecut is in any monotone tree in the M-Tree Set. Thus the M-Tree Set is
also an M-Tree Set of (T, f).

We can shrink the size of this M-Tree Set by summing the components that
share the same root. In particular, consider an edge ej = (u, v) ∈ Ecut. We have
created as many as k∗ additional monotone trees rooted at u and as many as
k∗ additional monotone trees rooted at v. Sum the monotone trees rooted at u
to create a single monotone tree rooted at u. The sum would clearly still be a
monotone tree because all monotone trees are subtrees of tree T , so no cycle or
non-non-increasing path from u will be created. We can similarly do the same
for v, and for all edges in Ecut. This we have a new M-Tree Set of (T, f), with
(at most) an additional monotone tree rooted at each node of each edge in Ecut

when compared to the original M-Tree Set of G. Thus |minMset(T, f)| is bounded
above by k∗ + 2g.

Fig. 6. (A) shows a single monotone tree with its root colored red and an edge colored
green. Cutting the green edge leaves us with two non-intersecting monotone trees shown
in (B). (Color figure online)
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E Proof of Theorem 3

Proof. Let M = {(Ti, fi)} be a minimum SM-Tree Set of (G, f), k = |M |, and
β1G = g. Consider graph G′ =

⋃k
i=1 Ti. Let β1G

′ = g′. We note that g′ ≤ g. and
that M is also a minimum SM-Tree Set of G′. We will use G′ to help construct a
spanning tree T of G with an SM-Tree Set with the desired cardinality. Note that
if G′ has no cycles then there obviously exists a spanning tree T of G such that
|minSMset(T, f)| = |minSMset(G, f)|. Additionally, if g′ = 1, then creating T by
removing any edge from the simple cycle |minSMset(T, f)| ≤ |minSMset(G, f)|+
2 (similar arguments to Lemma 4 and Theorem 2). Therefore assume g′ ≥ 2.
Construct spanning tree T as follows:

– Add each edge in G that is not part of a simple cycle.
– For each simple cycle in G that is not in G′, add all edges of cycle to T except

for one missing in G′ (it does not matter which if multiple such edges exist).
– For each simple cycle in G that is in G′, add all edges of that cycle to T

except for one (does not matter which).

Let k′ be the |minSMset(T, f)|. k′ is bounded above by k + 2g′, because
removing edges that aren’t used in the any monotone tree in M from the domain
will not change |minSMset(G′, f)|. Additionally, removing an edge from a simple
cycle in g′ will increase the |minSMset(G′, f)| by at most 2 (again by Lemma 4).

k′ is also bounded below by 2 + g′. For each cycle in G′, the number of
monotone trees in M that contain nodes in a simple cycle must be at least 3 -
otherwise the set cannot be an SM-Tree Set. So consider a leaf cycle C0 in G′.
We know that there are at least 3 monotones trees in M that cover C0. For a
cycle C1 adjacent to C0 in G′ that there is a single path between the two cycles,
and the monotone trees that cover C0 cannot completely cover C1, otherwise M
would not be an SM-Tree Set. There must be at least one monotone tree with
nodes on C1 and no nodes on C0. Continuing traversing the graph to all cycles
and it is clear that for each cycle there must be an additional monotone tree
added to the SM-Tree Set. Thus, we cannot have an SM-Tree Set of size less
than 2 + g′.

From above, we have k′
k ≤ k+2g′

k ≤ 2+g′+2g′

2+g′ ≤ 3g′+2
g′+2 < 3.

F Algorithms

F.1 Naive Approximation Algorithm

As stated in the main paper, given a density graph (G, f), a natural upper bound
for |minSMset(G, f)| is the number of relative maxima on the density graph.
Algorithm 6 constructs monotone trees rooted at each relative maxima on the
input density graph. Starting at a root, depth-first search (DFS) is performed
to reach every node that can be reached via a non-increasing path from the
root. DFS stops once no nodes remain or all remaining nodes are not reachable
from the root via a non-increasing path. We call this graph traversal algorithm
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monotone DFS. Perform monotone DFS from each relative maxima to build an
M-Tree Set. The M-Tree Set will have size at most one less than the number of
relative maxima more than the size of a minimum M-Tree Set. Figure 7 shows
an example output of Algorithm6.

Algorithm 6: naive-algo((G(V, E), f))
Input: A density graph (G(V, E), f)
Output: An (S)M-Tree set of (G(V, E), f)
(Step 1) Compute set M containing the relative maxima of f on G.
(Step 2) For each relative maxima mi ∈ M , perform monotone DFS to build a
component (Ti, fi)
(Step 3) Return all (Ti, fi)

Fig. 7. An M-Tree Set with of a density tree with 4 monotone trees computed by
Algorithm 6.
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Abstract. In this paper, we investigate the data mule scheduling with
handling time and time span constraints (DMSTC) in which the goal is
to minimize the number of data mules dispatched from a depot that are
used to serve target sensors located on a wireless sensor network. Each
target sensor is associated with a handling time and each dispatched
data mule must return to the original depot before time span D. We also
study a variant of the DMSTC in which the objective is to minimize the
total travel distance of the data mules dispatched.

We give exact and approximation algorithms for the DMSTC on a
path and their multi-depot version. For the first objective, we show an
O(n4) polynomial time algorithm for the uniform 2-depot DMSTC on a
path where at least one depot is on the endpoint (n indicates the number
of target sensors). And we present a new 2-approximation algorithm for
the non-uniform DMSTC on a path. For the second objective, we derive
an O((n+k)2)-time algorithm for the uniform multi-depot DMSTC on a
path, where k is the number of depots. For the non-uniform multi-depot
DMSTC on a path or cycle, we give a 2-approximation algorithm.

Keywords: Data Mule Scheduling · Multi-Depot · Handling Time ·
Time Span Constraint · Approximation Algorithm

1 Introduction

Recently, Chen et al. [3] introduced the data mule scheduling with handling time
and time span constraints (DMSTC). In this paper, we consider the following
multi-depot extension of the DMSTC.

Let G = (V,E) be an undirected graph, which represents a stationary sensor
network with vertex set V and edge set E. The vertex set V is partitioned into a
depot set R = {d1, d2, . . . , dk} and a set N = {u1, u2, . . . , un} of target sensors.
Each edge e = (u, v) ∈ E is associated with a nonnegative length, denoted by
l(e) (or l(u, v) if e = (u, v)), indicating the travel time (or travel distance) of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14461, pp. 129–140, 2024.
https://doi.org/10.1007/978-3-031-49611-0_9
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data mules along the edge e. Here data mules are mobile devices that can move
around the network to perform maintenance operations, including data collection
and battery charging/replacement, etc. All the data mules are initially located
at the depots and each data mule must return to the same depot where it is
initially situated. Each vertex u ∈ N , i.e., a target sensor, is associated with a
handling time (or service time) c(u). Let c(N ′) =

∑
u∈N ′ c(u) for any N ′ ⊆ N .

The route of a data mule corresponds to a closed walk starting from and ending
at some depot d ∈ R. The length l(C) of a closed walk C is defined as the total
length of the edges traversed by it. We are asked to find a series of closed walks
C1, C2, . . . , Cm as the routes of m data mules and a partition (N1, N2, . . . , Nm)
of N such that for j = 1, 2, . . . ,m,

(i) Cj traverses each target sensor in Nj at least once;
(ii) Cj is feasible, i.e. the load of Cj , defined as L(Cj) = l(Cj) + c(Nj), is no

more than a prescribed time span constraint D.

The goal of the problem, which we call the multi-depot DMSTC, is to minimize
the number m of data mules dispatched.

When k = 1, the multi-depot DMSTC turns into the DMSTC investigated in
[3]. We use (multi-depot) DMSTCtree (DMSTCpath, DMSTCcycle) to represent
the special case of the (multi-depot) DMSTC where the sensor network is a tree
(path, cycle).

In a variant of the DMSTC, called the DMSTCl, the objective is to mini-
mize the total travel distance of the data mules dispatched, i.e.

∑m
j=1 l(Cj). The

special cases of the DMSTCl, i.e. DMSTCtree
l , DMSTCpath

l , DMSTCcycle
l , are

defined similarly. Furthermore, we also have the multi-depot DMSTCl where
there are multiple depots available.

The uniform (multi-depot) DMSTC/DMSTCl is a particular case of the
(multi-depot) DMSTC/DMSTCl where all the handling times are identical.

The DMSTC is a fundamental optimization problem arised naturally in wire-
less sensor networks [7]. In the environment where the energy consumption of
sensors is huge for transmitting straightforwardly data between the sensors and
the depots, using data mules to move between sensors to collect data can greatly
save the energy of the sensors and hence prolong the lifetime of the whole net-
work. Apart from the wireless sensor networks, the DMSTC and its variants
have been widely used in many other practical applications as well as in our
daily life, including real-time surveillance of the battlefield [10], monitoring of
environmental conditions [12], healthcare [1] and so on.

Since the DMSTC and the DMSTCl generalize the well-known Metric Trav-
eling Salesman Problem (Metric TSP), they are both NP-hard. Consequently,
we focus on approximability results as well as their polynomially solvable special
cases.

1.1 Related Work

Chen et al. [3] proved the NP-hardness of a restricted case of the DMSTCpath,
which we denote by DMSTCpath

0 , where the depot is located at one of the
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two endpoints of the path network. However, they showed that the uniform
DMSTCpath

0 can be solved in O(n) time by a greedy algorithm. The authors also
generalized the greedy algorithm to the (non-uniform) DMSTCpath

0 and achieved
an approximation ratio of 2D−2lmax

D−2lmax
, where lmax is defined for a general network

as the length of the shortest path between the depot and the farthest target
sensor1. For the path network with the depot being one of the two endpoints,
lmax is simply the total edge length of the network.

Based on the structure properties given by Perez-Escalona et al. [11], Yu
and Liu [13] were able to show that the uniform DMSTCpath can be solved
in O(n3) time. They also gave an O(n5)-time algorithm to solve the uniform
DMSTCcycle to optimality. In addition, they described an approximation pre-
serving reduction from the DMSTC to the Distance Constrained Vehicle Rout-
ing Problem (DVRP), a special case of the DMSTC with all the handling times
being zero, and this reduction may be extended to deal with the multi-depot
problems. As a result, a 2-approximation algorithm for the DMSTCpath can be
derived from a 2-approximation algorithm for the DVRP defined on tree met-
rics given by Nagarajan and Ravi [9] and an approximation algorithm with the
same ratio for the DMSTC can be obtained from a O

(
min{log n, log D

log log D}
)
-

approximation algorithm developed by Friggstad and Swamy [5]. Very recently,
Li and Zhang [7] presented an O(log D

μ )-approximation algorithm for the DVRP,
which they called the Rooted Budgeted Cycle Cover Problem. Here μ indicates
the minimum difference of any two distances between V and the depot. For
the multi-depot DVRP, they provided an approximation algorithm with ratio
O(log n) using the s-t orienteering problem as a subroutine. Liang et al. [8]
proved that any γ-approximation algorithm for the DVRP can be transformed
into a kγ-approximation algorithm for the multi-depot DVRP. Actually, they
derived this result in a more general context of distance constrained sweep cov-
erage (see also [2]).

As for the DMSTCl, all the previous results are with respect to its special
case with all the handling times being zero, which we term as the DVRPl for
consistency (Li et al. [6] and Liang et al. [8] used other names.) Li et al. [6] demon-
strated a close relation between the DVRP and the DVRPl by showing that any
α-approximation for one of these two problems yields a 2α-approximation for
the other problem. They also gave

(
1 + αD

D−2lmax

)
-approximation algorithms for

both problems based on a tour-partitioning approach, where α indicates the best
available approximation ratio for the Metric TSP. Liang et al. [8] pointed out
that this approximation ratio only holds for the DVRPl with the assumption
that D is no more than the length of the optimal traveling salesman tour. They
showed how to remove this assumption while achieving a better approximation
ratio of αD

D−2lmax
. Moreover, the authors proved that the algorithm by Nagarajan

1 One can see that if D < 2lmax + c(ui) for some i then the DMSTC/DMSTCl has no
feasible solution and any target sensor ui with D = 2lmax + c(ui) has to be served
by a private data mule. Therefore, we assume that D > max1≤i≤n{2li + c(ui)} and
hence D > 2lmax.
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and Ravi [9] is versatile enough to achieve an approximation ratio of 2 for the
DVRPl defined on a tree.

1.2 Our Results

In this paper, we give exact and approximation algorithms for the
DMSTC/DMSTCl and their multi-depot version.

First, we present a polynomial algorithm with time complexity O(n4) for
the uniform 2-depot DMSTCpath where at least one depot is an endpoint of the
path network. For the general uniform 2-depot DMSTCpath, we give an example
to demonstrate the complicated structure of the optimal solution. Second, we
show that the algorithm for the (non-uniform) DMSTCpath

0 by Chen et al. [3]
has a tight approximation ratio of 2. Previously, Chen et al. only showed a
super-constant upper bound on the approximation ratio. We also propose a
new 2-approximation algorithm for the DMSTCpath

0 motivated by the First-Fit
algorithm for the classical bin packing problem. In addition, we extend both
algorithms to the DMSTCpath. Finally, we derive an O((n + k)2)-time exact
algorithm for the uniform multi-depot DMSTCpath

l based on which we present a
2-approximation algorithm for the multi-depot DMSTCpath

l . We also extend the
results on the (uniform) multi-depot DMSTCpath

l to the (uniform) multi-depot
DMSTCcycle

l .
The rest of the paper is organized as follows. Section 2 describes the pre-

liminaries and notations. In Sect. 3, we deal with the polynomial algorithms
for the uniform 2-depot DMSTCpath. In Sect. 4, we discuss the approximation
algorithms for the DMSTCpath. Approximation and polynomial algorithms for
the multi-depot DMSTCpath

l and the multi-depot DMSTCcycle
l are presented in

Sects. 5 and 6, respectively. Finally, we conclude the paper in Sect. 7.

2 Preliminaries

Throughout the paper, we analyze algorithms for different versions of the
DMSTC/DMSTCl formulated in the introduction. When discussing a partic-
ular problem, we denote by OPT both the optimal solution and the optimal
value. We use SOL to represent the feasible solution obtained by the algorithm
and its objective value.

For the multi-depot DMSTC/DMSTCl, the input consists of an undirected
graph G = (V,E), depot set R = {d1, d2, . . . , dk}, a set N = {u1, u2, . . . , un} of
target sensors, length function l(·) on E and a time span constraint D ≥ 0. For
any N ′ ⊆ N , let c(N ′) =

∑
u∈N ′ c(u). For a subgraph G′ of G, V (G′) and E(G′)

indicates the vertex set and edge set of G′, respectively. Given a feasible solution
consisting of a series of feasible routes (or closed walks, tours) C1, C2, . . . , Cm

and a partition (N1, N2, . . . , Nm) of N such that Nj ⊆ V (Cj) for each j, we say
that u ∈ Nj is served by the jth data mule (or Cj). The vertices in V (Cj) \ Nj

are passed by the jth data mule (or Cj) but not served by it. Here each Cj
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has a length l(Cj) =
∑

e∈E(Cj)
l(e)2 and Cj is feasible means that the load

of Cj , denoted by L(Cj) = l(Cj) + c(Nj), is at most D. When the partition
(N1, N2, . . . , Nm) is clear in the context, a feasible solution is simply represented
by the feasible routes C1, C2, . . . , Cm. The region of a depot d (with respect
to a feasible solution) is the set of targeted sensors served by the data mules
departing from depot d. Note that the regions of distinct depots are disjoint.

For the uniform multi-depot DMSTC/DMSTCl, we denote by c the common
handling time of all the target sensors. The following two lemmas describe some
situations where we can modify a given feasible solution to derive a new feasible
solution of no worse objective value.

Lemma 1. Given a feasible solution S for the uniform multi-depot
DMSTC/DMSTCl, if there are two routes C1 and C2 in S such that C1 (C2)
serves a target sensor u (v) and both routes pass by u and v, then we can derive
a new feasible solution Ŝ by switching the service of u and v (between C1 and
C2) and maintaining the service of all the vertices in N \ {u, v}. Moreover, the
objective value of Ŝ is no more than that of S.
Proof. Suppose that after switching the two routes C1 and C2 turn into Ĉ1 and
Ĉ2, respectively. Then u (v) is served by Ĉ2 (Ĉ1) in Ŝ. Since c(u) = c(v) = c
and each of C1 and C2 pass by both u and v, the load of Ĉ1 (Ĉ2) is no more
than that of C1 (C2), which can not exceed D by the feasibility of S. Because
the other routes in S are unchanged, Ŝ is indeed a feasible solution. Moreover,
l(Ĉ1) (l(Ĉ2)) is not greater than l(C1) (l(C2)), which implies that the objective
value of Ŝ can not exceed that of S. �

Lemma 2. Given a feasible solution S for the uniform multi-depot
DMSTC/DMSTCl, if there is a route C departing from some depot d in S such
that C passes by another depot d′, then we can derive a new feasible solution
Ŝ by replacing C with another route C ′ departing from d′ and maintaining the
other routes in S. Moreover, the objective value of Ŝ is no more than that of S.
Proof. Since C is a closed walk departing from d and containing d′, this walk can
also be seen as a closed walk C ′ that departs from d′ and passes by d. Clearly,
l(C ′) = l(C) and L(C ′) = L(C). In addition, all the target sensors served by C
are now served by C ′. Thus, Ŝ is a desired feasible solution. �

For the DMSTCpath/DMSTCpath
l , G = (V,E) is a path network where the

depots in R = {d1, d2, . . . , dk} and the target sensors in N = {u1, u2, . . . , un} are
aligned from left to right on a line. Without loss of generality, we assume that di

is on the left of dj and ui is on the left of uj for any i < j. For convenience, we
also rename the vertices from left to right as v1, v2, . . . , vn+k. Then the edge set
E consists of n + k − 1 edges (v1, v2), (v2, v3), . . . , (vn+k−1, vn+k). In particular,
d1 = v1 means the depot d1 is the left endpoint of the path and dk = vn+k implies
2 E(Cj) may be a multiset because an edge may be traversed multiple times by the

closed walk Cj . In that case, an edge e appearing t times in Cj will contribute t · l(e)
to l(Cj).
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that dk is the right endpoint of the path. A route departing from a depot d ∈ R
is called a one-side route if it only serves target sensors located on one side
(left or right) of d. For 1 ≤ i ≤ j ≤ n, we define [ui, uj ] = {ui, ui+1, . . . , uj}.
For 1 ≤ i ≤ j ≤ n + k, we use [vi, vj ] to denote the set {vi, vi+1, . . . , vj} of
consecutive vertices. For any V ′ ⊆ V , we use lf(V ′) (rt(V ′)) to indicate the
leftmost (rightmost) vertex of V ′. The region of a depot (in a given feasible
solution) is called continuous if it takes the form [ui, uj ] for some 1 ≤ i ≤ j ≤ n.
For 1 ≤ p < q ≤ k, if both the region of dp, say Sp, and the region of dq, say Sq,
are continuous, we have that rt(Sp) is on the left of lf(Sq).

3 Uniform 2-Depot DMSTC on a Path

In this section, we deal with the uniform 2-depot DMSTCpath. For the special
case where at least one depot is an endpoint of the path network, we show a
polynomial algorithm with time complexity O(n4). In addition, if both depots are
endpoints, the running time can be improved to O(n2). For the general uniform 2-
depot DMSTCpath, we give an example to demonstrate the complicated structure
of the optimal solution. As a result, the approach for the special case with at
least one depot being an endpoint can not be extended to the general case.

For the uniform 2-depot DMSTCpath where at least one depot is an endpoint,
we assume without loss of generality that d1 is located at the left endpoint, i.e.
v1 = d1, and d1 is on the left of d2.

Lemma 3. For the uniform 2-depot DMSTCpath with at least one depot being
an endpoint, there exists an optimal solution where both the region of d1 and the
region of d2 are continuous and the rightmost vertex of the region of d1 is on the
left of d2.

Based on the above lemma, the uniform 2-depot DMSTCpath with at least
one depot being an endpoint can be simplified to optimally partition the original
path into two disjoint subpaths by deleting a proper edge between d1 and d2 and
then solve two single-depot subproblems defined on these two subpaths. One
subproblem with depot d1 being an endpoint can be solved in O(n) time by the
Greedy Algorithm (GA) of Chen et al. [3]. The other subproblem with d2 being
the depot can be solved in O(n3) time by the algorithm of Yu and Liu [13]. Since
there are at most O(n) possible choices for the partition edge3, we have obtained
the following result.

Theorem 1. The uniform 2-depot DMSTCpath where at least one depot is an
endpoint can be solved in O(n4) time.

When d2 is also an endpoint of the original path network, the above subprob-
lem with d2 being the depot can also be solved in O(n) time by the algorithm
in [3]. This yields the following result.
3 It is possible that one of the two subproblems derived by some partition edge e is

infeasible. Then we will never choose e as the partition edge.
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Theorem 2. The uniform 2-depot DMSTCpath with both depots being endpoints
can be solved in O(n2) time.

Next we treat the general case where none of the two depots is located at an
endpoint. It turns out that for the general case, the optimal solution may not
have a continuous structure as described in Lemma 3. We will give an example to
illustrate this in the full version of the paper (The omitted proofs of the lemmas
and theorems are also provided in the full version.)

4 Non-uniform DMSTC on a Path

In this section, we treat the (non-uniform) DMSTCpath. We first show that
the algorithm for the DMSTCpath

0 by Chen et al. [3], which we call the Non-
uniform Greedy Algorithm (NGA), has a tight approximation ratio of 2. As
mentioned in the introduction, Chen et al. [3] only proved a super-constant
bound on the approximation ratio of the NGA. Our analysis of the NGA is based
on a stronger lower bound on the optimal value given by Nagarajan and Ravi [9].
Moreover, we propose a new 2-approximation algorithm for the DMSTCpath

0 .
Finally, we generalize both the NGA and our new algorithm to the DMSTCpath

while preserving the approximation ratio 2.
For convenience, we introduce some more notations. Let G = (V,E) be the

path network where V = {v1, v2, . . . , vn+1} and the single depot d = vh for some
h with 1 ≤ h ≤ n + 1. Given a subpath L′ = (V (L′), E(L′)) containing d, we
see L′ as a tree rooted at d. For any vertex v ∈ V (L′), the depth of v in L′ is
measured by the number of edges between d and v. The total length of the edges
between d and v is called the distance between d and v in L′ and is denoted by
lv. We say that v′ is a descendant of v if v lies between d and v′ (it is possible
that v′ = v.) Lv denotes the subpath of L′ induced by the set of all descendants
of v and v is called the root of Lv. Note that Ld = L′.

For a subset of vertices U ⊆ [vi, vj ] (1 ≤ i ≤ j ≤ n+1) on the path G = (V,E)
with vi = lf(U) and vj = rt(U), we use R(U) to represent the route that departs
from d, serves precisely the target sensors in U and return to d. R(U) is also
called a d-tour. One can see that the load of R(U) is given by

L(R(U)) =
{

2max{lvi
, lvj

} + c(U), if d /∈ [vi, vj ],
2(lvi

+ lvj
) + c(U \ {d}), if d ∈ [vi, vj ] .

If L(R(U)) ≤ D, then R(U) is a feasible route. If U = [vi, vj ] and L(R(U)) > D,
we say that U is a heavy cluster (this definition of heavy cluster is equivalent
to the definition given by Nagarajan and Ravi [9] for the DVRP on a tree.) For
simplicity, we write R(L′) for R(V (L′)) if L′ is a subpath.

Lemma 4. (Nagarajan and Ravi 2012) If there are h disjoint heavy clusters in
G, then the number of d-tours in an optimal solution is at least h + 1.
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Fig. 1. Description of the NGA.

Now we state in Fig. 1 the NGA for the DMSTCpath
0 where the depot d is

the left endpoint of the path. The NGA uses a greedy idea to serve the vertices
in decreasing order of the distances from the depot. Once a data mule can not
serve one vertex, say vi, due to the time constraint, it returns directly to the
depot without considering whether the vertices between d and vi can be served.

One can see that the above algorithm will execute a series of consecutive
Step (a) of the while loop and end at a execution of Step (b). The algorithm
can be easily implemented in O(n) time. Let i1 > i2 > · · · > im be the
indices of the vertex vi picked in the executions of Step (a) in this order. Set
i0 = n + 1 and im+1 = 1. Then the algorithm adds to SOL m + 1 feasible
routes R(Lvi1+1), R(Lvi2+1), . . . , R(Lvim+1), R(Ld) = R(Lvim+1

), where R(Lvit
)

serves exactly the target sensors in [vit+1, vit−1 ] (t = 1, . . . , m + 1). The corre-
sponding heavy clusters generated in Step (a) are [vit , vit−1 ] (t = 1, . . . , m). Note
that {[vi2t−1 , vi2t−2 ] | t = 1, . . . , �m

2 �} are �m
2 � disjoint heavy clusters. Applying

Lemma 4, we have OPT ≥ �m
2 � + 1. This implies that |SOL| = m + 1 ≤ 2OPT .

That is, the NGA is a 2-approximation algorithm.
On the other hand, the following example shows that the ratio 2 is tight.

There are 4n vertices to be served. The handling time list for all vertices from
left to right is [12 , 1

2n , 1
2 , 1

2n , . . . , 1
2 , 1

2n ]. The distance from all vertices to the depot
is 0. Time span constraint D = 1. It can be verified that SOL = 2n and OPT =
n + 1 (the optimal solution consists of one route serving 2n vertices of handling
time 1

2n and n routes each of which serves two vertices of handling time 1
2 . So

SOL
OPT = 2n

n+1 → 2 (n → +∞).
To sum up, we have the following result.
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Fig. 2. Description of the Modified NGA.

Theorem 3. The NGA is an O(n)-time 2-approximation algorithm for the
DMSTCpath

0 and the ratio is tight.

We observe that the NGA is actually an extension of the famous Next-Fit
algorithm for the bin packing problem, which is a special case of the DMSTCpath

0

with all the distances from the target sensors to the depot being zero. The
above tight example is exactly the folklore worst-case example for the Next-
Fit algorithm. The connection between the DMSTCpath

0 and the bin packing
problem motivates us to propose a modified version of the NGA, described in
Fig. 2, which is a generalization of another well-studied bin packing algorithm,
i.e. the First-Fit algorithm (see e.g. [4]).

Next we analyze the performance of the Modified NGA by comparing it with
the NGA. Recall that i1 > i2 > · · · > im are the indices of the vertex vi picked
in the executions of Step (a) of the NGA in this order. Set i0 = n + 1 and
im+1 = 1. By a simple induction argument, it is not hard to show that the first t
(t = 1, 2, . . . ,m+1) feasible routes constructed in the Modified NGA must have
served all the target sensors in [vit+1, vi0 ], which are exactly the target sensors
served by the first t feasible routes obtained by the NGA. As a consequence, the
number |SOL′| of d-tours generated by the Modified NGA is no more than the
number |SOL| of d-tours generated by the NGA. Combining this with Theorem
3, we have |SOL′| ≤ |SOL| ≤ 2OPT . In addition, the Modified NGA can be
implemented easily in O(n2) time. Therefore, we have obtained the following
conclusion.

Theorem 4. The Modified NGA is an O(n2)-time 2-approximation algorithm
for the DMSTCpath

0 .
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Fig. 3. Description of the Extended NGA.

Now we extend the NGA to solve the DMSTCpath where the depot is not on
the endpoint. Let GL (GR) be the subpath on the left (right) side of the depot,
including d. The extended algorithm is described in Fig. 3.

Theorem 5. The Extended NGA is an O(n)-time 2-approximation algorithm
for the DMSTCpath.

Proof. It is not hard to see that the Extended NGA has a time complexity of
O(n) and indeed obtains a feasible solution.

Suppose that |SOL1| = m1 + 1 and |SOL2| = m2 + 1. By the above analysis
of the NGA, we know that there are �m1

2 � disjoint heavy clusters in GL and �m2
2 �

disjoint heavy clusters in GR. By Lemma 4, this leads to OPT ≥ �m1
2 �+�m2

2 �+1.
Then we have |SOL| ≤ |SOL1|+|SOL2| = m1+m2+2 ≤ 2OPT . This completes
the proof. �

By replacing the NGA with the Modified NGA in Step 1 of the Extended
NGA, we obtain another algorithm, called the Extended Modified NGA, for the
DMSTCpath. Using a similar analysis, we can show the following result.

Theorem 6. The Extended Modified NGA is an O(n2)-time 2-approximation
algorithm for the DMSTCpath.

5 Multi-depot DMSTCl on a Path

In this section, we discuss the multi-depot DMSTCpath
l , where the objective is

to minimize the total travel distance of the data mules. For the uniform case,
we derive an O((n + k)2)-time algorithm to solve it. For the non-uniform case,
we present a 2-approximation algorithm.
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Theorem 7. The uniform multi-depot DMSTCpath
l can be solved in O((n+k)2)

time.

Theorem 8. The multi-depot DMSTCpath
l admits a 2-approximation algorithm.

6 Multi-depot DMSTCl on a Cycle

The approach in the previous section can be extended straightforwardly to the
multi-depot DMSTCcycle

l by noting that, this problem reduces to solving k 2-
depot DMSTCpath

l with both depots being endpoints (the corresponding 2-depot
pairs are (d1, d2), . . . , (dk−1, dk), (dk, d1)). Thus, we can obtain the following
results.

Theorem 9. The uniform multi-depot DMSTCcycle
l can be solved in O((n+k)2)

time.

Theorem 10. The multi-depot DMSTCcycle
l admits a 2-approximation algo-

rithm.

7 Conclusions

We give an O(n4) polynomial algorithm for the uniform 2-depot DMSTCpath

where at least one depot is an endpoint of the path network. However, the
approach for the special case can not be extended to the general case, as shown
by the example in Sect. 3. We leave it as an open question whether the general
uniform 2-depot DMSTCpath is polynomially solvable or NP-hard. For the (non-
uniform) DMSTCpath

0 , we show that the Non-uniform Greedy Algorithm (NGA)
has a tight approximation ratio of 2 and we also propose a new 2-approximation
algorithm, i.e. the Modified NGA, which is an extension of the famous First-
Fit algorithm for the bin packing problem. For future research, it would be
interesting to give a tight analysis on the Modified NGA. We conjecture that
the real approximation ratio of the Modified NGA is below 2. In other words,
the Modified NGA may be a better-than-2 approximation algorithm for the
non-uniform DMSTCpath

0 .
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11. Pérez-Escalona, P., Rapaport, I., Soto, J., Vidal, I.: The multiple traveling salesman
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Abstract. We consider a classic packet scheduling problem [7] and its
variants. This packet scheduling problem has applications in the areas
of logistics, road traffic, and more. There is a network and a set of unit-
length packets are to be transmitted over the network from their respec-
tive sources to their respective destinations. Each packet is associated
with a directed path on which it must travel along. Time is discrete.
Initially, all the packets stay on the first edges of their respective paths.
Packets are pending on the edges at any time. In each time step, a packet
can move along its path by one edge, given that edge having no other
packets move onto it in the same time step. The objective is to minimize
makespan – the earliest time by which all the packets arrive at their
respective destination edges. This problem was proved NP-hard [1] and
it has been studied extensively in the past three decades. In this paper,
we first provide a semi-online algorithm GRD and show that GRD is
optimal for scheduling packets on arborescence and/or anti-arborescence
forests. We then provide a parameterized algorithm PDP which finds an
optimal makespan for the general case. PDP is a dynamic programming
algorithm and its running time complexity depends on the congestion
and dilation in the input instance. The algorithm PDP’s idea is new and
it is derived from an insightful lower bound construction for the general
packet scheduling problem.

Keywords: Packet scheduling · exact algorithms · dynamic
programming

1 Introduction

A packet scheduling problem [7] has been studied extensively in the past three
decades. Consider a directed graph G = (V,E) with a set of vertices V and
a set of edges E, where |V | = n and |E| = m. There are N packets that are

N. Yao’s research is partially supported by NSF grant ECCS-2218517.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14461, pp. 141–153, 2024.
https://doi.org/10.1007/978-3-031-49611-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49611-0_10&domain=pdf
http://orcid.org/0000-0001-8016-8716
http://orcid.org/0000-0003-0414-8347
https://doi.org/10.1007/978-3-031-49611-0_10


142 F. Li and N. Yao

to be transmitted on G. Each packet p ∈ {1, 2, . . . , N} has a source sp ∈ V , a
destination tp ∈ V , and a directed path Pp with a length lp denoting the path Pp’s
number of edges |Pp|. A path Pp can be represented by an ordered set of edges
ep(1), ep(2), . . . , ep(lp) and each ep(i) ∈ E is an edge on Pp, ∀i = 1, 2, . . . , lp. All
the packet paths are simple ones and thus we have lp = |Pp| ≤ |E| = m, ∀p. The
path Pp specifies the edges as well as the order that a packet p should travel
along on G.

Time is discrete. Assume that any edge e ∈ E represents a sufficiently-large-
size buffer so that at any time, any number of packets can stay on the edge e.
The vertices V act as switches so that in each time step, each edge e accepts at
most one packet to be forwarded to the queue represented by e: In each time
slot, for any outgoing edge e = (v, w) incident to a vertex v, at most one packet
staying on v’s incoming edges (u, v) and having e as their next step’s edges can
be moved onto e. Multiple packets can be forwarded simultaneously to their next
edges in one single time step as long as these packets are not getting into the
same queue after being forwarded. For ease of notation, we assume that all the
packets p stay on their respective paths Pp’s first edges ep(1) at the end of time
step 1. A packet p’s duration dp is the time slot by which p arrives at the last
edge ep(lp) of its path Pp. Clearly, we have dp ≥ lp, ∀p. We design a scheduling
algorithm with the objective of minimizing makespan, defined as the maximum
duration maxp dp for all the packets p ∈ {1, 2, . . . , N}.

2 Related Work

This packet scheduling problem was proved NP-hard [1]. The authors in [13]
showed that an optimal makespan cannot be approximated down to the ratio 1.2
unless P = NP, even for the case in which the graph is a tree (with bidirectional
edges). Define the dilation D as the maximum path length, D = maxp lp, and the
congestion C as the maximum number of paths having a single edge in common,
C = maxe∈E |C(e)| = maxe∈E |{p|e ∈ Pp}|, where C(e) is the set of packets
having e in their paths. It is clear that any schedule’s makespan has a lower
bound of max(C,D) ≥ �C+D

2 � = Ω(C + D) [7].
A class of scheduling algorithms are called greedy, if an algorithm in such a

class never leaves an outgoing edge e = (u, v) idle (an idle edge does not accept
packets) as long as there are packets waiting in the incoming edges of v having e
as their next-step edges in the corresponding paths [9]. Any simple randomized
algorithm with the greedy strategy achieves a makespan O(C · D). In [8], the
authors gave a schedule of length O(C + D) in time O(L(log log L) log L) with a
probability at least 1 − Lβ , where β < 0 is a constant and L =

∑
p lp. This ran-

domized algorithm can be derandomized using the method of conditional prob-
abilities [11] and it became the first constant approximation algorithm, against
the lower bound �C+D

2 � of makespan. In [16], the author gave a simpler proof
of the algorithm in [8]. The algorithm is an offline algorithm which is given its
input including a complete description of the graph G and the packets’ paths
Pp, ∀p in designing a schedule. For the algorithm in [8], the hidden constant in



Two Exact Algorithms for the Packet Scheduling Problem 143

O(C +D) is high. The best known approximation ratio is 24 [14], against C +D
as well.

Some variants of this packet scheduling problem have been studied as well.
In an online setting, an algorithm only uses the information that is available
locally to a vertex v in order to determine which packet to be forwarded to
the edge (v, w), among the ones waiting on v’s incoming edges. For the class of
layered networks, [6] gave a simple online randomized algorithm with a makespan
O(C+B+log N), where B (≤ D) is the number of layers of this network. For the
case in which all the packets’ paths Pp are assumed to be the shortest ones from
the sources sp to the destinations dp (in terms of the number of edges), there
was an online algorithm with a maximum duration bounded by D + N − 1 [10].
In [12], the authors improved the result to be O(C + D + log(N · D)), with
a high probability, and in [18], the authors gave a simple online randomized
algorithm with a duration O(C + D + log N), with a high probability. The most
recent known work on online algorithms is [12], giving a universal deterministic
O(C + D + log1+ε N) algorithm. This result is almost optimal. The problem
whether there exists an online algorithm with competitive ratio bounded by
O(C +D) is still open. The algorithm in [10] is a greedy online algorithm. Some
other variants in which the edges are bufferless (i.e., at most one packet is on
an edge at any time) or the packets are allowed to wait (i.e., staying on each
of such edges for more than 1 time slots) only on some predefined edges were
discussed in [17]. Another line of research is to consider packet scheduling and
packet routing (packet routing algorithms allow packets to choose paths to get to
the destinations) together in order to minimize the makespan. The competitive
packet scheduling problem is also studied. In this problem, the packets select
their paths rationally and the makespan is the social welfare to be optimized [3].
The paper [9] gave a brief survey. More recent related work can be found from
the work following [9].

Our Contributions. In this paper, we study exact algorithms for the packet
scheduling problem. We design two algorithms. One is named GRD. GRD is
a simple, fast semi-online algorithm and it optimizes the makespan in schedul-
ing packets on arborescence and/or anti-arborescence forests. The other one is
an exact algorithm, named PDP, for the general packet scheduling case and its
running-time complexity depends on the parameters (congestion and dilation) of
the input instances. In Sect. 3 and Sect. 4, we describe the algorithms GRD and
PDP, along with their running-time analysis and performance analysis, respec-
tively.

3 GRD: Scheduling Packets on Arborescence
and Anti-Arborescence Forests

In the semi-online setting, an algorithm has no complete knowledge of the graph
G and a packet has no information regarding to the other packets’ status at
any time. A semi-online algorithm may allow packets carry some information
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on themselves — normally, such information is a constant value that cannot
embed the whole graph information nor any information on the other packets.
The values carried by the packets waiting on the incoming edges of a vertex can
be used to make the decision of transmitting them.

In this section, we design a semi-online algorithms and name it GRD (stand-
ing for greedy). Each packet p has its path information Pp.

3.1 The Ideas

GRD is based on the following two greedy ideas: Consider a packet p at the
beginning of a time step t.

1. The packet p greedily moves onto the next edge e as long as no other packets
are competing for e in the same time step. Such a best-effort movement of
p will not increase p’s duration and will not increase any delays to other
packets.

2. Consider the case when there are more than one packets including p com-
peting for an edge e. If p is not chosen to move onto e, then p’s duration is
increased by 1. Therefore, in this time step t, the idea is to forward the packet
whose duration’s increase affects the algorithm’s makespan the most. Recall
that a semi-online algorithm has no global information on the graph G nor
the information of the packets not-competing for e in the time step t, thus, a
packet p’s duration is estimated as the sum of the length of its remaining path
(ep(i+1), ep(i+2), . . . , ep(lp)) and the current time t, assuming e = ep(i+1).
The packet with the largest number of time steps to reach its destination
under the assumption of no future delays, among those pending packets for
the edge e, is moved onto the edge e.

3.2 The Algorithm

We use cp to denote the number of remaining edges that the packet p should
take in order to reach its destination, assuming there are no delays along p’s
remaining path. At the beginning of a time step t, p’s duration is estimated as
t + cp. When t = 1, cp is initialized as lp, and p should take the path Pp with lp
edges to its destination. In the algorithm GRD, the value cp is updated by the
packet p using a counter. At a time, given an edge e, GRD uses the value cp to
select the largest-value packet p to send to e. Since the value cp may be updated
over time, we use a function cp(t) to denote the value cp at the end of time step
t. The algorithm GRD is described in Algorithm 1.

Note that for each edge e = (u, v), the decision of accepting a packet p or
not by the edge e depends on the local packets’ cp(t − 1) values, hence GRD is
a semi-online algorithm.

3.3 The Analysis

In the following, we analyze GRD. We first state two assumptions with which
we do not lose generality. These two assumptions facilitate the analysis of GRD
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Algorithm 1. GRD
1: For each packet p, associate p with a value cp(t − 1) to denote its remaining time

slots needed to get p to its destination tp, starting from time t and assuming no
delay incurred in the future for forwarding p. Initially, cp(0) = lp.

2: Forward a packet p to an edge e as long as no other packets are waiting for being
forwarded to e or cp(t − 1) is the largest value for all such packets competing for
the edge e. Ties are broken arbitrarily.

3: Update cp(t) ← cp(t − 1) − 1, for each time of forwarding a packet p. Update
cq(t) ← cq(t − 1), for each time of not forwarding a packet q.

as well as the analysis of PDP which is introduced in Sect. 4. We then show
GRD’s running time analysis and prove that it is optimal for scheduling packets
on anti-arborescence forests.

Assumption 1. Any edge in the graph G must belong to a packet’s path, say
∀e ∈ E, we have e ∈ ⋃

p Pp.

Assumption 1 holds since for any algorithm, it does not schedule a packet
over an edge outside of the set of edges

⋃
p Pp and thus, such removals of edges

do not hurt the algorithm in generating the makespan. A useful fact is that
Assumption 1 implies m ≤ N .

In the packet scheduling problem’s statement, we assume that all the paths
are simple ones. Given an input instance with some packet paths having cycles,
we can always convert the input instance to be one with simple paths only. Such
conversion does not introduce a larger makespan.

Assumption 2. All packets’ paths are simple ones.

Consider a packet p and its path Pp that have cycles. We modify the path
Pp and the graph G so that the modified path Pp has no cycles. Such cycles, if
any, are removed one by one from the input instance as below. Let

Pp = {sp, v1, v2, . . . , vk−1, vk, vk+1, . . . , vw, vk, vw+1, . . . , tp}
and there is one simple cycle vk, vk+1, . . . , vw, vk. We create a new graph: having
two vertices v′

k and v′′
k so that all the edges having vk as the heads originally now

have v′
k as the heads. All the edges having vk as the tails originally now have

v′′
k as the tails. We create a subpath v′

k, vk+1, . . . , vw, v′′
k to replace the subpath

vk, vk+1, . . . , vw, vk. The vertex vk is removed from the new graph and the new
path is:

Pp = {sp, v1, v2, . . . , vk−1, v
′
k, vk+1, . . . , vw, v′′

k , vw+1, . . . , tp}
Recall here that though in the new graph we have two new edges (vk−1, v

′
k)

and (vw, v′′
k ), these two new edges belong to the packet p’s path only but not to

any others. These two edges replaces the edges (vk−1, vk) and (vw, vk). Having
these two edges does not increase p’s duration, nor any other packet’s duration.
Any algorithm on the original graph G has the same makespan on the new graph.
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Theorem 1. GRD has a running time of O(m · D log N).

Proof. We are using a charging scheme to calculate GRD’s running time com-
plexity and will show that it is O(max(m,N)D log N). With Assumption 1, we
will have Theorem 1.

First, we show GRD’s running time is O(N ·D log N). For each edge e in the
graph G, we use a priority queue to maintain all the packets staying on the edge
e at a time and the value cp is used as the key. We charge GRD’s running time
on the priority queue operations on the packets during GRD’s execution. For
each edge e, it takes time O(log N) to get the packet with the largest cp value.
For each packet p, it incurs at most lp times of getting into a new packet queue.
Note that a packet queue is associated with each edge of the path Pp. For each
such a packet transmission, it incurs queue-operation time O(log N). There are
N packets. Thus, the total running time is O(N log N maxp lp) = O(N log N ·D),
where D is the dilation.

Second, we show that the running time can be calculated as O(m·D log N) by
charging the cost to each packet at a time. Label the edges as e1, e2, . . . , em. Note
that among the packets S(ei) waiting to be sent to an edge ei, only the max-cp-
value packet p experiences log |S(ei)| time while the other packets in S(ei) \ {p}
experiences search time 0. Consider a time step t and let S(e1), S(e2), . . . , S(em)
denote the m priority queues containing the N packets, with some queues being
possibly empty. For this single time step t, the total search time incurred to
those packets being sent is

∑
i log |S(ei)| and the total search time incurred for

those packets not being sent is 0. Note S(ei) ∩ S(ej) = ∅,∀i 
= j. We have the
total search cost for a packet moving one step along its path (assuming m ≥ 2):

∑

i

log |S(ei)| = log
∏

i

|S(ei)|

≤ log
(∑

i |S(ei)|
m

)m

= m log
N

m
≤ m log N − m (1)

Inequality 1 is based on Edwin Beckenbach and Richard Bellman’s work
presented in [2]. Recall that we only need to count the search time for a packet
being sent in a time step, thus, the number of searches associated with a packet
is its length, bounded by D. The total running cost of GRD is also bounded by
O(m log N · D). Theorem 1 is proved.

In the following, we analyze GRD’s performance when the underlying graph
G is an arborescence and anti-arborescence forest. An arborescence and anti-
arborescence forest contains multiple arborescences and anti-arborescence. An
arborescence [4] is a directed graph having a root so that there is exactly one
directed path from the root to any vertex of this graph. An anti-arborescence [5]
is one created by reversing all the directed edges of an arborescence, i.e. making
them all point to the root rather than away from it.
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Theorem 2. GRD is optimal in scheduling packets on arborescence and anti-
arborescence forests.

Proof. In order to prove Theorem 2, we only need to show that GRD is opti-
mal for packet scheduling on one arborescence and one anti-arborescence since
each packet is scheduled only on one arborescence or one anti-arborescence. In
the following, we prove that GRD is optimal in scheduling packets on an anti-
arborescence. The analysis for GRD on arborescence is similar but easier. We
leave it in our full journal paper.

We inductively prove Theorem2 using an exchange argument. Let ADV
denote an adversary. At the beginning of time step 1, ADV is the same as an opti-
mal algorithm with the minimum makespan d∗. Consider an anti-arborescence
T with a root r and label the depth of the edges as 1, 2, . . . based on the dis-
tances from the directed edges’ tails to the root r. The 1-depth edges are the
edges having r as their heads. An observation is that, given the graph being an
anti-arborescence, a packet moves from an edge labelled as i to an edge labelled
as i − 1 if the packet is transmitted in this time step. We are going to show
that there exists an invariant maintained during the algorithm’s execution. The
invariant guarantees Theorem2 since at the end of the schedule, we have d∗ = d,
where d is GRD’s makespan.

– (Invariant): At the beginning of any time step t, ADV and GRD have the
same configuration so that each edge holds the same set of packets.

At the beginning of time step 1, the invariant holds. Now, we consider the first
time step t, in which, ADV and GRD sends different packets, say, q and p
respectively, to an edge e. If such a time step t does not exist, then ADV and
GRD are the same and therefore, d∗ = d.

Consider the time step t. Recall that G is an anti-arborescence, thus, the
fact that e is the edge that p and q plan to step onto in time step t implies
that p and q have their paths overlap from time t till one packet reaches to its
destination. GRD chooses p instead of q because of cp(t − 1) ≥ cq(t − 1), which
implies that the remaining path for q is embedded in the remaining path for p.
The modification on ADV is as below:

1. In time step t, we modify ADV so that ADV sends p instead of q in t.
2. In the remaining schedule, ADV switches the orders of scheduling packets

p and q. In each time step that ADV originally schedules q, the packet p
is available (considering that p is ahead of q on q’s remaining path and q’s
remaining path is embedded in p’s remaining path) and p scheduled.

3. Similarly, in each time step ADV originally schedules p, q can be scheduled
until q reaches to its destination.

4. The order and time slots of sending other packets than p and q are not
changed.

5. For the possible case in which at some point t′ in the future, the original ADV
sends q instead of p making q is again before p on their shared subpath, then
the modified ADV switches back and follows the original schedule starting
from time t′.
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Realize that such modification on ADV at time t does not increase the duration
for p since p moves ahead of where it was in its original schedule. This mod-
ification does not make q’s duration more than p’s original duration, which is
no more than the makespan d∗. This modification does not change any other
packet’s duration as well. Thus, d∗ keeps the same after we modify ADV and
the invariant holds.

For each edge that ADV and GRD schedule different packets, we apply the
above procedure to modify ADV. The above modifications make sure that the
modified ADV is with the same configuration as GRD. At the end of time step t,
ADV and GRD are with the same configuration again. Inductively, the invariant
is proved. Thus Theorem 2 holds.

4 An Optimal Algorithm for the General Case

In this section, we use the dynamic programming technique to design a parame-
terized optimal algorithm, named PDP, for the packet scheduling problem in the
general case. This algorithm’s idea is different from the ones in [14], which were
based on the integer linear programming technique. Our algorithm catches some
properties of the makespan lower bound construction for the packet scheduling
problem and we hope that such properties can be used to design better approx-
imation algorithms.

4.1 The Ideas

We introduce some concepts that will be used to describe our ideas. Consider a
packet p in a given schedule. If p moves onto an edge e at time t, then we say
that the edge e is busy at time t. Otherwise, we say that the edge e is idle at
time t. The maximal interval [t, t′] in which an edge e is continuously busy (to
accept different packets) is called a busy interval, and thus, the edge e is idle in
time step t − 1 and time step t′ + 1, if any. If at the beginning of a time step t,
a packet p and a packet q have e as their next edges in their respective paths,
then we call p and q the competing packets for e in time step t. The edge e is
called a congested edge.

Consider a packet p at the beginning of a time step t. Assume p is on the edge
ep(i) where i 
= lp. The lower bound of time steps needed for p to arrive at its
destination tp is lp −i — In the lower bound case, all the edges in ep(i+1), ep(i+
2), . . . , ep(lp) should be busy for p. Assume p has the maximum duration d∗ in
an optimal algorithm. Our ideas in PDP is to make sure that p experiences not
many delays along its path to its destination.

The first idea is as below: the packet p greedily moves onto the next edge e
as long as no other packets are competing for e in the same time step. This idea
is identical to one used by GRD. Let OPT denote an optimal algorithm. OPT
forwards a packet as long as it can. Based on the above observation, we have the
following lemma.
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Lemma 1. Assume that at the beginning of a time step t, there are k packets
competing for an edge e. Then the edge e must be continuously busy from time t
to time t + k − 1 in OPT.

Proof. As OPT is a greedy algorithm, it schedules a packet onto e as long as e
is not busy. The edge e accepts one packet at a time, then there are at least k
packets available for e to accept in the time interval [t, t + k − 1].

Another observation based on the first idea is as below: Let us category all
the packets 1, 2, . . . , N into different groups, based on the needed number of
transmissions to their destinations. We use G(t, i) to denote the group contain-
ing the packets p which need i transmissions to their respectively destinations,
starting from the beginning of a time step t. Initially, we have at most D groups:

G(1, 1), G(1, 2), . . . , G(1,D),

where D is the dilation of the input instance. Initially, a packet p has its path
length lp and thus, it belongs to the group G(1, lp). From the best-effort manner
of forwarding packets, we have the following observation.

Lemma 2. In OPT, we have

G(t, i) = G1(t + 1, i − 1)
⋃

G2(t + 1, i)

∅ = G1(t + 1, i − 1)
⋂

G2(t + 1, i)

G(t, i + 1) = G1(t + 1, i)
⋃

G2(t + 1, i + 1)

G(t + 1, i) = G1(t + 1, i)
⋃

G2(t + 1, i)

where G1(·, ·) denotes the set of packets forwarded in the time step, G2(·, ·)
denotes the set of packets not being forwarded, and any one of them can be
an empty set.

Proof. Lemma 2 holds due to the facts that a packet is either forwarded or kept
stay in a single time step and a packet can be moved at most one step in one
time slot. Consider the beginning of a time step t. For a packet p ∈ G(t, i), if p
is forwarded to the next edge of its path, then p is added to G1(t + 1, i − 1). If
p stays on the edge in the time slot t, then p is added to G2(t + 1, i).

Though Lemma 2 is obvious, it provides us a way of constructing the dynamic
program using the index i in G(t, i). Lemma 2 implies that when t is increased
by 1, the number of groups is not strictly increased.

In the following, we introduce some new observations and ideas that our
algorithm needs.

Consider a packet p. For each edge e in the path Pp, the packet experiences
at least one time step on an edge. We define

b(p, e) = delayed time slots for the packet p on the edge e,
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where b(p, e) ≥ 1 and the packet p is on the edge ep(i + 1) at time t + b(p, e)
given e = ep(i).

A packet p’s duration is the sum of its delays on the edges, say, dp =∑
e∈Pp

b(p, e). In order to calculate the values b(p, e), we introduce the time
slots to calculate b(p, e). For any edge e, the packet p arrives at e at time

tin(p, e) :=
∑

e′
b(p, e′), (2)

where e′ ∈ ep(1), ep(2), . . . , ep(i − 1) given ep(i) = e. Also, the packet p leaves
the edge e at time

tout(p, e) =
∑

e′
b(p, e′), (3)

where e′ ∈ ep(1), ep(2), . . . , ep(i) given ep(i) = e. b(p, e) is calculated as below:

b(p, e) = tout(p, e) − tin(p, e). (4)

Instead of assigning integer variables to the values tin(p, e) in Eq. (2) and
tout(p, e) in Eq. (3), we come up with a new idea. We regard the packet p as a
unit-length job, tin(p, e) as p’s release time, tout(p, e) as p’s deadline, and e as
the machine processing p. The machine e processes at most one job at a time. In
the following, we introduce the way of tuning up the values in Eq. (4) to make
the job p successfully processed. The range [tin(p, e), tout(p, e)] is the interval to
schedule the packet p on e.

We want to guarantee that for each edge e, in the time ranges that the packets
p are ready/competing to move on e, there are sufficient number of time steps
to do so. Lemma 1 indicates that starting from a time t, the edge e is busy for at
least k time slots given k competing packets for the edge e. In order to specify
the interval to schedule a packet p on the edge e, we must guarantee that the
work load density (the ratio of the number of packets and the number of time
slots in any continuous range) for the edge e cannot exceed 1 [15]. That is, for
any time range [t, t′], we have

|{p|t ≤ tin(p, e) < tout(p, e) ≤ t′}|
t′ − t + 1

≤ 1, ∀e (5)

Note that Inequality (5) is a lower bound construction for the general case’s
makespan t′ for the edge e. When this inequality is tight, it is feasible to schedule
all the packets successfully using the EDF (earliest-deadline-first) policy, where
tout(p, e) denotes the deadline. Consider the maximal interval in which the edge
e is busy. We have the following observation.

Our dynamic programming algorithm is based on the formulation in Inequal-
ity (5). Given a makespan d for an edge e (for example, d = t′ in Inequality 5), we
are looking at the earliest release time tin(p, e) for a packet p so that a schedule
on an edge e ending at time d is feasible.
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4.2 The Algorithm and Its Analysis

Along the way of describing our algorithm, we give the running time analysis as
well as the correctness analysis. Some part of the correctness analysis has been
given when we introduced the algorithm’s ideas.

Denote C(e) the set of packets having their paths Pp covering an edge e,
C(e) = {p|e ∈ Pp}. Note that maxe C(e) = C where C denotes the congestion.
Consider a packet p. Define ψ(i, j), ∀i, j, as the state of a packet i arrives at
least the j-th edge ep(j) on its path Pi. Recall that j ≤ D, where D is the
dilation. Therefore, we have in total as most DN different configurations to
show the states of all the packets at a time. We index these configurations as
Ψ(1), Ψ(2), . . . , Ψ(Z), where Z ≤ DN . Our algorithmic contribution is to reduces
the number of configurations needed. Our analysis below shows that the total
number of configurations needed in the algorithm PDP is 2N , much less than
DN where D = maxp lp.

Now, define

OPT (Ψ(k), t) =

{
1, the configration Ψ(k) happens at the end of time stept

0, otherwise

The Objective. The objective of minimizing the makespan d∗ is to return the
smallest value t so that OPT (Ψ(k), t) = 1 for the configuration Ψ(k) when all
the packets i arriving at least their destination edges with indexes j (= li) in G.

The Base Case. The base case happens at the end of time step 1. We calculate
OPT (Ψ(k), 1) for all the indexes k. For each movement of a packet p, we list
all the configurations that a greedy schedule moves packets. Consider each edge
e and the competing packets C(e). Define C(e, 1) :=

⋃
p ep(1) and P (e, 1) :=

{p|ep(1) = e}. The total running time of the base case is thus to enumerate all
the configurations Ψ(k) and get the value OPT (Ψ(k), 1).

∏

e∈C(e,1)

|P (e, 1)| ≤
(

N

|C(e, 1)|
)|C(e,1)|

<

(
N

|C(e, 1)|
)

≤
(

N

(N/2)

)

≈ 2N

√
π · N

(6)
since |⋃e P (e, 1)| = N and P (e, 1)

⋂
P (e′, 1) = ∅, for all e 
= e′. This inequality

holds due to Edwin Benckenbach and Richard Bellman’s formula, as well as the
Stirling’s approximation. We remark here that the parameterized running time∏

e∈C(e,1) |P (e, 1)| can be much less than the upper bound.

The Recursive Step. We consider the ways of calculating OPT (Ψ(k), t). Due to
the ideas introduced above, this configuration Ψ(k) comes from the one step
move for some packets and being idle for the remaining packets. For these N
packets, we consider to partition them into two groups, the group of packets
moving forward in a time step and the group of packets staying in the same time
step. For each of such a partition, we transform from one configuration to another
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configuration. These two configurations are called neighboring configurations. We
have the following recursion:

OPT (Ψ(k), t) = max
k′

OPT (Ψ(k′), t − 1) (7)

where Ψ(k′) at time t − 1 is a neighboring configuration of Ψ(k) at time t. The
correctness of the recurrence in Eq. 7 is based on the recursion discussed in
Sect. 4.1.

In the following, we calculate the running time of the recursive step. Though
the total configuration number is up to DN , in this recursion, we only consider
the neighboring configurations so that if p is in Ψ(k) given p being on at least
the j-th edge of its path Pp, then p is on at least the (j − 1)th edge in the
configuration Ψ(k) if j is forwarded in time step t, otherwise, p should be on at
least the jth edge at the beginning of time step t. The total running time in this
recursive step is therefore bounded by 2N . As t is bounded by O(C + D) [8], we
have the following result.

Theorem 3. PDP is an optimal algorithm for scheduling packets on a graph
with a total running time O

(
2N (C + D)

)
.

The instance-dependent running time has been provided above, as∏
e∈C(e,1) |P (e, 1)| in Inequality 6.

5 Conclusions

In this paper, we present two exact algorithms for the packet scheduling problem.
The solution to the general problem brings more insights on designing approx-
imation algorithms. We expect these algorithmic techniques help with solving
packet routing problems.
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Abstract. We consider the following shared-resource scheduling prob-
lem: Given a set of jobs J , for each j ∈ J we must schedule a job-specific
processing volume of vj > 0. A total resource of 1 is available at any time.
Jobs have a resource requirement rj ∈ [0, 1], and the resources assigned to
them may vary over time. However, assigning them less will cause a pro-
portional slowdown.

We consider two settings. In the first, we seek to minimize the makespan
in an online setting: The resource assignment of a job must be fixed before
the next job arrives. Here we give an optimal e/(e − 1)-competitive algo-
rithm with runtime O(n log n). In the second, we aim to minimize the
total completion time. We use a continuous linear programming (CLP)
formulation for the fractional total completion time and combine it with
a previously known dominance property from malleable job scheduling to
obtain a lower bound on the total completion time. We extract structural
properties by considering a geometrical representation of a CLP’s primal-
dual pair. We combine the CLP schedule with a greedy schedule to obtain
a (3/2 + ε)-approximation for this setting. This improves upon the so far
best-known approximation factor of 2.

Keywords: Approximation Algorithm · Malleable Job Scheduling ·
Makespan · List Scheduling · Completion Time · Continuous Linear
Program

1 Introduction

Efficient allocation of scarce resources is a versatile task lying at the core of
many optimization problems. One of the most well-studied resource allocation
problems is parallel processor scheduling, where a number of jobs need (typically
at least temporarily exclusive) access to one or multiple machines to be com-
pleted. The problem variety is huge and might depend on additional constraints,
parameters, available knowledge, or the optimization objective (see [14]).

In the context of computing systems, recent years demonstrated a bottle-
neck shift from processing power (number of machines) towards data throughput.
Indeed, thanks to cloud services like AWS and Azure, machine power is available in
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abundance while data-intensive tasks (e.g., training LLMs like ChatGPT) rely on a
high data throughput. If the bandwidth of such data-intensive tasks is, say halved,
they may experience a serious performance drop, while computation-heavy tasks
care less about their assigned bandwidth. In contrast to the number of machines,
throughput is (effectively) a continuously divisible resource whose distribution
may be easily changed at runtime. This opens an opportunity for adaptive redistri-
bution of the available resource as jobs come and go. Other examples of similarly
flexible resources include power supply or the heat flow in cooling systems.

This work adapts formal models from a recent line of work on such flexible
resources [1,5,13] and considers them under new objectives and settings. Clas-
sical resource constrained scheduling [8,11,15,16] assumes an “all-or-nothing”
mentality (a job can be processed if it receives its required resource but is not
further affected). One key aspect of the model we consider is the impact of the
amount of received resource on the jobs’ performance (sometimes referred to as
resource-dependent processing times [9–12]). The second central aspect is that
we allow a job’s resource assignment to change while the job is running.

1.1 Model Description and Preliminaries

We consider a scheduling setting where a set J = [n] := {1, 2, . . . , n} of n ∈ N

jobs compete for a finite, shared resource in order to be processed. A schedule
R = (Rj)j∈J consists of an (integrable) function Rj : R≥0 → [0, 1] for each j ∈ J
(the job’s resource assignment) that returns what fraction of the resource is
assigned to j at time t ∈ R≥0. We use R(t) = (Rj(t))j∈J to refer to j’s resource
distribution at time t and R̄(t) :=

∑
j∈J Rj(t) for the total resource usage at time

t. Each j ∈ J comes with a (processing) volume vj ∈ R≥0 (the total amount
of resource the job needs to receive over time in order to be completed) and a
resource requirement rj ∈ [0, 1] (the maximum fraction of the resource the job
can be assigned). We say a schedule R = (Rj)j∈J is feasible if:

– the resource is never overused: ∀t ∈ R≥0 : R̄(t) ≤ 1,
– a job never receives more than its resource requirement: ∀t ∈ R≥0 : Rj(t) ≤ rj ,

and
– all jobs are completed: ∀j ∈ J :

∫ ∞
0

Rj(t) dt ≥ vj .

For j ∈ J we define its processing time pj := vj/rj as the minimum time that j
requires to be completed. See Fig. 1a for an illustration of these notions.

For a schedule R = (Rj)j∈J we define Cj(R) := sup{t ≥ 0|Rj(t) > 0} as
the completion time of job j ∈ J . We measure the quality of a schedule R
via its makespan M(R) := max{Cj(R)|j ∈ J} and its total completion time
C(R) :=

∑
j∈J Cj(R). Our analysis additionally considers the total fractional

completion time CF (R) :=
∑

j∈J CF
j (R), where CF

j (R) :=
∫ ∞
0

Rj(t) · t/vj dt is
job j’s fractional completion time.

Relation to Malleable Tasks with Linear Speedup. Our problem assumes an arbi-
trarily divisible resource, as for example the bandwidth shared by jobs running
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Fig. 1. Illustration of model notions (left) and a WaterFill step.

on the same host. Another common case are jobs that compete for a discrete set
of resources, like a number of available processing units. This is typically modeled
by a scheduling problem where a set J of n malleable jobs of different sizes sj

(length when run on a single machine) must be scheduled on m machines. Each
machine can process at most one job per time, but jobs j can be processed on
up to δj ∈ [m] machines in parallel with a linear speedup. Jobs are preemptable,
i.e., they can be paused and continued later on, possibly on a different number
of machines. See [14, Ch. 25] for a more detailed problem description.

This formulation readily maps to our problem by setting j’s processing vol-
ume to vj = sj/m and its resource requirement to rj = δj/m ∈ (0, 1]. The only
difference is that our schedules allow for arbitrary resource assignments, while
malleable job scheduling requires that each job j gets an integral number δj

of machines (i.e., resource assignments must be multiples of 1/m). However, as
observed by Beaumont et al. [3], fractional schedules can be easily transformed
to adhere to this constraint:

Observation 1 ([3, Theorem 3, reformulated]). Consider a feasible schedule R
for a job set J in which j ∈ J completes at Cj . Let m := 1/min{rj |j ∈ J}. We
can transform each Rj without changing Cj to get Rj(t) ∈ {i/m|i ∈ [m] ∪ {0}}
for any t ∈ R≥0 and such that each Rj changes at most once between consecutive
completion times.

We first consider online makespan minimization (Sect. 2), where the scheduler
must commit to future resource assignments as jobs arrive (as in list-scheduling).
Afterwards, we consider offline total completion time minimization (Sect. 3).

1.2 Related Work

Our model falls into the class of continuous shared-resource job scheduling as
introduced in [1] and its variants [5,13]. These models have the same relation
between a job’s resource requirement, the assigned resource, and the resulting
processing time as we but only consider makespan minimization as objective.
The two main differences are that they assumed an additional constraint on
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the number of machines and considered discrete time slots in which resource
assignments may not change.

Another closely related model is malleable job scheduling, where the number
of machines assigned to a job can be dynamically adjusted over time. If each job
j has its own upper limit δj on the number of processors it can be assigned, the
model becomes basically equivalent to our shared-resource job scheduling prob-
lem (as discussed at the end of Sect. 1.1). Drozdowski [7] gave a simple greedy
algorithm for minimizing the makespan in the offline setting (see also Sect. 2).
Decker et al. [6] considered total completion time minimization for identical
malleable jobs for an otherwise rather general (possibly non-linear) speed-up
function. They gave a 5/4-approximation for this setting. Beaumont et al. [3] is
closest to our model. In particular, they assumed job-dependent resource lim-
its δj that correspond to our resource requirements. For minimizing weighted
total completion time, they used a water-fill approach to prove the existence of
structurally nice solutions (cf. to the our water-filling approach in Sect. 2). Their
main result is a (non-clairvoyant) 2-approximation algorithm for the weighted
case. Their algorithm WDEQ assigns each job a number of processors according
to their relative weight, but no more than the limit imposed by δj . Our results
in Sect. 3 yield an improved approximation ratio of 3/2 + ε at the cost of clair-
voyance (i.e., we must know the job’s volumes and resource requirements). Also,
our algorithm only handles the unweighted case.

Other related models, such as rigid and moldable scheduling, disallow the
resource assignment of a job to be adjusted after it has been started (see [14] for
details).

1.3 Our Contribution and Methods

For our model, makespan minimization is known to be offline solvable (see
Sect. 2). We thus concentrate on an online (list-scheduling) setting where jobs
are given sequentially and we must commit to a resource assignment without
knowing the number of jobs and future jobs’ properties. We use a water-filling
approach that is known to produce “flattest” schedules [3]. We derive properties
that are necessary and sufficient for any c-competitive algorithm by providing
conditions on c-extendable schedules (c-competitive schedules to which we can
add any job while remaining c-competitive). From this, we derive slightly weaker
universal schedules that are just barely c-extendable and show that schedules
derived via water-fill are always flatter than universal schedules. Optimizing the
value of c yields e/(e− 1)-competitiveness. We then show that no algorithm can
have a lower competitive ratio than e/(e − 1).

Our main result considers offline total completion time minimization. We
improve upon the so far best result for this variant (a 2-approximation [3]) by
providing a (3/2 + ε)-approximation running polynomial time in n, 1/ε. The
result relies on a continuous linear programming (CLP) formulation for the frac-
tional total completion time, for which we consider primal-dual pairs. The primal
solution represents the resource assignments over time, while the dual represents
the priority of jobs over time. We then extract additional properties about the
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primal/dual pair. Roughly, our method is as follows. We draw both the primal
and dual solutions into a two-dimensional coordinate system. See Fig. 3b for an
example. We then merge both solutions into a single 3D coordinate system by
sharing the time axis and use the these solutions as a blueprint for shapes in this
coordinate system (see Fig. 4). The volume of these shapes then correspond to
parts of the primal and dual objective. We use a second algorithm called Greedy
that attempts to schedule jobs as early as possible. Choosing the better one of
the CLP and the greedy solution gives us the desired approximation.

2 Makespan Minimization

This section considers our resource-aware scheduling problem under the makespan
objective. For the offline problem, it is well-known that the optimal makespan
M∗(J) for a job set J = [n] with total volume V (J) =

∑
j∈J vj is M∗(J) =

max{V (J)} ∪ {pj |j ∈ J} and that a corresponding schedule can be computed in
time On [14, Section 25.6]. The idea is to start with a (possibly infeasible) schedule
R that finishes all jobs at time pmax := max{pj |j ∈ J} by setting Rj(t) = vj/pmax

for t ∈ [0, pmax) and Rj(t) = 0 for t > pmax. This schedule uses a constant total
resource of R̄ := V (J)/pmax until all jobs are finished. If R̄ ≤ 1 (the resource is not
overused), this schedule is feasible and optimal (any schedule needs time at least
pmax to finish the “longest” job). Otherwise we scale all jobs’ resource assignments
by 1/R̄ to get a new feasible schedule that uses a constant total resource of 1 until
all jobs are finished at time V (J). Again, this is optimal (any schedule needs time
at least V (J) to finish a total volume of V (J)).

List-Scheduling Setting. Given that the offline problem is easy, the remainder
of this section considers the (online) list-scheduling setting. That is, an (online)
algorithm A receives the jobs from J = [n] one after another. Given job j ∈ J ,
A must fix j’s resource assignment Rj : R≥0 → [0, 1] without knowing n or the
properties of future jobs. We refer to the resulting schedule by A(J). As usual in
the online setting without full information, we seek to minimize the worst-case
ratio between the costs of the computed and optimal schedules. More formally,
we say a schedule R for a job set J is c-competitive if M(R) ≤ c · M∗(J).
Similarly, we say an algorithm A is c-competitive if for any job set J we have
M

(A(J)
) ≤ c · M∗(J).

An Optimal List-Scheduling Algorithm. Water-filling algorithms are natural
greedy algorithms for scheduling problems with a continuous, preemptive char-
acter. They often yield structurally nice schedules [2–4]. In this section, we show
that water-filling (described below) yields a simple, optimal online algorithm for
our problem.

Theorem 1. Algorithm WaterFill has competitive ratio e/(e − 1) for the
makespan. No deterministic online algorithm can have a lower worst-case com-
petitive ratio.
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We first describe a single step WFstep(R, ι, C) of WaterFill (illustrated
in Fig. 1b). It takes a schedule R = (Rj)j∈J for some job set J , a new job
ι /∈ J , and a target completion time C. Its goal is to augment R by ι with
completion time C, i.e., to feasibly complete ι by time C without altering the
resource assignments Rj for any j ∈ J . To this end, define the h-water-level
wlh(t) := min{rι,max{h− R̄(t), 0}} at time t (the resource that can be assigned
to ι at time t without exceeding total resource h). Note that ι can be completed
by time C iff

∫ C

0
wl1(t) dt ≥ vι (the total leftover resource suffices to complete ι’s

volume by time C). If ι cannot be completed by time C, WFstep(R, ι, C) fails.
Otherwise, it succeeds and returns a schedule that augments R with the resource
assignment Rι = wlh∗ for job ι, where h∗ := infh∈[0,1]{h| ∫ C

0
wlh(t) dt ≥ vι} is

the smallest water level at which ι can be scheduled.
WaterFill is defined recursively via WFstep. Given a job set J = [n],

define Hj := M∗([j]) · e/(e − 1) as the target completion time for job j ∈ J
(remember that M∗([j]) can be easily computed, as described at the begin-
ning of this section). Assuming WaterFill computed a feasible schedule
R(j−1) for the first j − 1 jobs (with R(0)(t) = 0 ∀t ∈ R≥0), we set R(j) :=
WFstep(R(j−1), j,Hj). If this step succeeds, the resulting schedule is clearly
e/(e − 1)-competitive by the choice of Hj . The key part of the analysis is to
show that indeed these water-filling steps always succeed.

We start the observation that water-fill schedules always result in “staircase-
like” schedules (see Fig. 1b), a fact also stated in [3] (using a slightly different
wording).

Observation 2 ([3, Lemma 3]). Consider a schedule R whose total resource usage
R̄ is non-increasing (piecewise constant). If we WFstep(R, ι, C) successfully
augments R by a job ι, the resulting total resource usage is also non-increasing
(piecewise constant).

Next, we formalize that WFstep generates the “flattest” schedules: if there
is some way to augment a schedule by a job that completes until time C, then
the augmentation can be done via WFstep.

Definition 1. The upper resource distribution AC
R(y) of a schedule R is the

total volume above height y before time C in R. Given schedules R,S (for
possibly different job sets), we say R is flatter than S (R � S) if AC

R(y) ≤ AC
S (y)

∀C ∈ R≥0, y ∈ [0, 1].

Lemma 1 ([3, Lemma 4, slightly generalized]). Consider two schedules R � S
for possibly different job sets. Let S′ denote a valid schedule that augments S
by a new job ι completed until time C. Then WFstep(R, ι, C) succeeds and
WFstep(R, ι, C) � S′.

Next, we characterize c-competitive schedules that can be augmented by any
job while staying c-competitive.

Definition 2. A schedule R is c-extendable if it is c-competitive and if it can
be feasibly augmented by any new job ι such that the resulting schedule is also
c-competitive.
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Lemma 2. Consider a job set J of volume V and with maximal processing time
pmax. A c-competitive schedule R for J is c-extendable if and only if

∀y with (c − 1)/c < y ≤ 1: A∞
R (y) ≤ (c − 1) · (1 − y)/y · max{V, pmax · y}. (1)

See the Full Version for the proof of Lemma 2. While Lemma 2 gives a strong
characterization, the bound on the right hand side of Eq. (1) cannot be easily
translated into a proper schedule for the given volume. Thus we introduce proper
(idealized) schedules that adhere to a slightly weaker version of Eq. (1). These
schedules are barely e/(e−1)-extendable. Our proof of Theorem 1 combines their
existence with Lemma 1 to deduce that WaterFill is e/(e − 1)-competitive.

Definition 3. For any V ∈ R≥0 we define the universal schedule1 UV : R≥0 →
[0, 1] via

UV (t) :=

⎧
⎪⎨

⎪⎩

1 if t < 1
e−1 · V,

1 − ln
(
t · c−1

V

)
if 1

e−1 · V ≤ t < e
e−1 · V, and

0 otherwise.
(2)

Fig. 2. Universal schedules UV and UV +v. The blue area indicates a new job ι with vol-
ume v and resource requirement r that is scheduled via WFstep(UV , ι, H). Depending
on the resource requirement r, the yellow line enters the blue area exactly once, either
on the upper plateau (a) or on the lower plateau (b).

See Fig. 2 for an illustration of universal schedules. With c = e/(e − 1),
one can easily check that A∞

UV
(y) = e1−y−1

e−1 · V ≤ (c − 1) · 1−y
y · V. Thus, by

Lemma 2, universal schedules (and any flatter schedules for the same volume)
are e/(e − 1)-extendable. Our final auxiliary lemma extends the optimality of
WaterFill from Lemma 1 to certain augmentations of universal schedules.2

See the Full Version for the proof of Lemma 3.
1 One can think of UV as a schedule for a single job of volume V and resource require-

ment 1. Since there is only one job, we identify UV with its total resource requirement
function ŪV .

2 Lemma 3 is not a special case of Lemma 1: the schedule S′ from Lemma 1 must
adhere to the new job’s resource requirement, which is not the case for the universal
schedule UV +v.

https://arxiv.org/abs/2310.05732
https://arxiv.org/abs/2310.05732
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Lemma 3. Consider the universal schedule UV , a new job ι of volume v and
processing time p, as well as a target completion time H ≥ e

e−1 · max{V + v, p}.
Then WFstep(UV , ι,H) � UV +v.

The above enables us to prove the competitiveness of WaterFill from The-
orem 1: We show inductively that WaterFill produces a feasible schedule R(j)

for the first j jobs (using that R(j−1) is “flatter” than UV ([j−1]) together with
Lemma 1) and use this to prove R(j) � UV ([j]) (via Lemma 3). By universal-
ity, this implies that all R(j) are e/(e − 1)-extendable (and thus, in particular,
e/(e−1)-competitive). The full proof of WaterFill is given in the Full Version.

3 Total Completion Time Minimization

This section considers the total completion time minimization and represents
our main contribution. In contrast to offline makespan minimization (Sect. 2), it
remains unknown whether there is an efficient algorithm to compute an offline
schedule with minimal total completion time. The so far best polynomial-time
algorithm achieved a 2-approximation [3]. We improve upon this, as stated in
the following theorem.

Theorem 2. There is a (3/2+ ε)-approximation algorithm for total completion
time minimization. Its running time in polynomial time in n and 1/ε.

For clarity of presentation, we analyze an idealized setting in the main part.
The details for the actual result can be found in the Full Version.

AlgorithmDescription. Ouralgorithmcomputes two candidate schedules using the
two sub-algorithms Greedy and LSApprox (described below). It then returns
the schedule with smallest total completion time among both candidates.

Sub-algorithm Greedy processes the jobs in ascending order of their volume.
To process a job, Greedy assigns it as much resource as possible as early as possi-
ble in the schedule. Formally, for jobs J = [n] ordered as v1 ≤ · · · ≤ vn, the sched-
ule RG for Greedy is calculated recursively using RG

j (t) = 1t<tj · min(rj , 1 −
∑j−1

i=1 RG
i (t)), where the completion time tj for job j is set such that j schedules

exactly its volume vj . See Fig. 3b for an example of a Greedy schedule. Sub-
algorithm LSApprox deals with solutions to following continuous linear program
(CLP ).

minimize
∑

j∈J

∫ ∞

0

t · Rj(t)
vj

dt

∫ ∞

0

Rj(t) dt ≥ vj ∀j ∈ J

0 ≤ Rj(t) ≤ rj ∀j ∈ J, t ∈ R≥0

∑

j∈J
Rj(t) ≤ 1 ∀t ∈ R≥0

Roughly, LSApprox first subdivides the job set into those jobs that produce a
high completion time and the remaining jobs. For the former, an approximate
solution is computed using the dual to the discretization (an LP) of above CLP .
For the latter, is enough to reserve a small portion of the resource to schedule

https://arxiv.org/abs/2310.05732
https://arxiv.org/abs/2310.05732
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Fig. 3. Schedules for a job set J = [3] with (v1, r1) = (1,3/4), (v2, r2) = (4,1/2)
and (v3,r3)=(6,2/3) . (a) Greedy’s schedule, (b) Above: A primal (resource) sched-
ule. Below: A dual (priority) schedule. With the dual variables having values α1 =
51/16,α2 = 39/16 and α3 = 31/16, the volumes of the jobs are exactly scheduled. (See
the Full Version.)

them with small completion times. For clarity of presentation, the main part will
only do a simplified analysis using an idealization of LSApprox. For the details
of this algorithm, the analysis using LSApprox and the analysis of Greedy,
we refer to the Full Version.

3.1 Analysis via a Bounded Fractionality Gap

Throughout the analysis, we use C∗ to denote the optimal total completion
time and CF∗ for the optimal fractional total completion time. We require an
algorithm that produces a schedule R with a small fractionality gap γ(R) :=
C(R)/CF∗, i.e., we compare the total completion time of R with the optimal
fractional total completion time for the same job set. We show the following
generalization of Theorem 2.

Theorem 3. Assume that there is a polynomial-time algorithm A for total com-
pletion time minimization that produces a schedule R with γ(R) ≥ 1. Then there
exists a polynomial-time (γ(R) + 1)/2-approximation for total completion time
minimization.

The proof of Theorem3 relies on Proposition 1 (three lower bounds on the
optimal total completion time) and Proposition 2 (Greedy’s objective in rela-
tion to these bounds). Lower Bound (1) (Squashed Area Bound) and Bound (2)
(Length or Height Bound) are due to Beaumont et al. [3, Def. 6,7]. Bound (3) is
our novel lower bound. The proof can be found in the Full Version.

Proposition 1. Assuming v1 ≤ · · · ≤ vn, the following are lower bounds on C∗:

https://arxiv.org/abs/2310.05732
https://arxiv.org/abs/2310.05732
https://arxiv.org/abs/2310.05732
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(1) CL := maxj∈J pj (2) CA :=
∑n

j=1

∑j
i=1 vj (3) CF∗ + 1/2 · CL

Proposition 2. The Greedy schedule RG satisfies C(RG) ≤ CA + CL.

Using them, we can give the proof of Theorem 3.

Proof of Theorem 3. We run both Greedy and A in polynomial time to produce
schedules RG and RA, respectively, and choose the schedule with the smaller
total completion time. Using Proposition 1 and 2 and the fractionality gap γ :=
γ(RA), we can bound the cost C := min(C(RA), C(RG)) of the resulting schedule
in terms of C∗:

C ≤ min(γ · C
F∗

, C
A

+ C
L
) ≤ min(γ · (C∗ − 1/2 · C

L
), C

∗
+ C

L
)

=
γ + 1

2
C

∗ − γ + 2

4
C

L
+ min

(
γ − 1

2
C

∗ − γ + 2

4
C

L
,

γ + 2

4
C

L − γ − 1

2
C

∗
)

≤ γ + 1

2
C

∗

�

3.2 The Fractionality Gap of Line Schedules

For the remainder of this paper, we will introduce line schedules and their struc-
tural properties. Roughly, a line schedule is a certain primal-dual pair for the
CLP defined in Sect. 3, and its dual, which we call DCP :

maximize
∑

j∈J
αjvj −

∑
j∈J

rj

∫ ∞

0
βj(t) dt −

∫ ∞

0
γ(t) dt

s.t. αj , βj(t), γ(t) ≥ 0 ∀j ∈ J, t ∈ R≥0 γ(t) + βj(t) ≥ αj − t/vj ∀j ∈ J, t ∈ R≥0

It is obtained by dualizing the time-discretized version of the CLP (see the
Full Version) and extending its constraints to the continuous time domain. Line
schedules formalize the idea that, if we know the dual α-values, we can recon-
struct all remaining primal/dual variables to obtain a primal-dual pair. If the
α-values are chosen correctly, then the volumes scheduled in the primal are
exactly the desired volumes (vj)j∈J .

To this end, we will assume that we have access to an algorithm called LS
that produces such a line schedule RF with CF (RF ) = CF∗. We can then show
that LS produces schedules with a fractionality gap of 2:

Proposition 3. The LS schedule RF satisfies γ(RF ) ≤ 2.

In the following, we develop the details of line schedules. To this end, first
define primal-dual pair as a tuple (R,α, β, γ, v) that fulfills the following con-
tinuous slackness conditions (sc). Again, these are found by extending the time-
discretized version of the CLP to the continuous time domain. These conditions
hold for all j ∈ J and t ∈ R≥0.

(α-sc) :αj(v̄j −
∫ ∞

0

Rj(t) dt) = 0 (β-sc) :βj(t)(rj − Rj(t)) = 0

(γ-sc) :γ(t)(1 −
∑

j∈J
Rj(t)) = 0 (R-sc) :Rj(t)(αj − t/vj − βj(t) − γ(t)) = 0

https://arxiv.org/abs/2310.05732
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If we choose arbitrary α-values, then the corresponding line schedule is still
a primal-dual pair, except that it possibly schedules a different set of volumes,
i.e., the α-sc is only true if we replace vj in the constraint by some other volume
v̄j . This fact is used for the detailed proof of our (3/2 + ε)-approximation, see
the Full Version.

To this end, define the dual line dj(t) := αj − t/vj for each j ∈ J . The
intuition behind a line schedule is now that the heights of the dual lines represent
priorities: Jobs are scheduled (with maximum remaining schedulable resource)
in decreasing order of the dual line heights at the respective time points. Jobs
are not scheduled if their dual line lies below zero. This is formalized in the
following definition. (In Fig. 3b, we supplement the example from Fig. 3a by a
depiction of the dual lines.)

Definition 4. We call a job set J non-degenerate if all job volumes are pairwise
distinct, i.e., vj 	= vj′ for all j, j′ ∈ J .3 Define a total order for each t ≥ 0 as
j′ 
t j :⇔ dj′(t) > dj(t) or dj′(t) = dj(t) and vj′ > vj .4 The line schedule of α
is a tuple (R,α, β, γ, v) (recursively) defined as follows.

Rj(t) = 1dj(t)>0 · min(rj , 1 −
∑

j′�tj
Rj′(t)) βj(t) = max(0, dj(t) − γ(t))

γ(t) = max(0, dj(t)), where j is the smallest job according to �t with Rj(t) > 0

Equipped with the definition of a line schedule, we can now tackle the proof
of Proposition 3. It requires the following two properties about the assumed
algorithm LS. First, Lemma 4 allows us to bound the completion times of a
fractional schedule in terms of the α-variables in the DCP :

Lemma 4. Algorithm LS produces a schedule RF with Cj(RF ) ≤ αjvj for all
j ∈ J .

Second, we show the following lemma. Abbreviate P =
∑

j∈J

∫ ∞
0

t ·
Rj(t)/vj dt (the primals objective), and A =

∑
j∈J αjvj , B =

∑
j∈J rj

∫ ∞
0

βj(t) dt and Γ =
∫ ∞
0

γ(t) dt (the parts of the dual objective).

Lemma 5. Algorithm LS produces a schedule RF such that there exists a
primal-dual pair (RF , ·, ·, ·) that fulfills strong duality (A = B + Γ + P ) and
balancedness (P = B + Γ ).

Using these lemmas, we can show Proposition 3.

Proof of Theorem 3. Using Lemmas 4 and 5, we show the statement as follows:

C(RF ) =
∑

j∈J

Cj(RF ) ≤
∑

j∈J

αjvj = A = A−B−Γ+P = 2P = 2CF (RF ) = 2CF∗

3 While not strictly required, this makes line schedules unique and simplifies the anal-
ysis.

4 The second part of the definition (dj′(t) = dj(t) and vj′ > vj) only exists for
disambiguation of the line schedule, but is not further relevant.

https://arxiv.org/abs/2310.05732
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Fig. 4. (a) P -shapes for job set from Fig. 3b. P -shapes are delimited from below by
dj(t) (extended into the resource axis), from above by αj , and their top surface follows
the primal schedule. (b) The shapes shown represent the union of B- and Γ -shapes.
They are delimited from the left (right) by t = 0 (dj(t)) (extended into the resource
axis), and from top and bottom by the value of dj(t) at the starting and finishing time
of some piece of j. See the Full Version for the formal definition of these shapes.

�
In the Full Version, we show the following Lemma 6, stating that line sched-

ules are indeed primal-dual pairs. We then define LS to output a schedule RF

for a line schedule (RF , α, β, γ, v) according to Lemma 6, i.e., for each j ∈ J ,∫ ∞
0

Rj(t) dt = vj . Using this definition, we can show Lemma 4.

Lemma 6. For any job set J there exists an α such that the line schedule of α
is a primal-dual pair.

Proof of Lemma 4. By definition, RF
j (t) = 0 if dj(t) ≤ 0. Hence, as dj is monoton-

ically decreasing, Cj(RF ) is bounded by the zero of dj(t), which lies at t = αjvj .
�

The remainder of this section will initiate the proof of Lemma 5. We first give
a geometric understanding of the involved quantities (P,A,B, Γ ). We build a 3D
coordinate system from a line schedule. The time axis is shared, and the ordinates
form the remaining two axes. We then draw 3D shapes into this coordinate
system that correspond to parts of the above quantities and therefore of the
CLP/DCP objectives. These shapes are described in detail in the Full Version.
Generally, these shapes are constructed such that the primal and dual schedules
can be “seen” from above or front. In our case, the primal schedule will be seen
from the top, and the dual schedule from the front. Figure 4 illustrates the shapes
in our construction. For each part of the objective Ψ ∈ {P,A,B, Γ}, we have a
corresponding shape Ψall, which is subdivided into pieces Ψ i,l, respectively.

We can show that certain pieces are pairwise non-overlapping (Lemma 7), that
the A-pieces make up all other pieces (Lemma 8) and we can relate the volume of
these pieces with one another and with the actual objective (Lemma 9).

Lemma 7. Let V and W , V 	= W , be P -pieces, B-pieces or Γ -pieces (every
combination allowed), or both be A-pieces. Then V and W do not overlap.

Lemma 8. Aall is composed of the other shapes, i.e., Aall = P all ∪ Ball ∪ Γ all.

https://arxiv.org/abs/2310.05732
https://arxiv.org/abs/2310.05732
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Lemma 9. The pieces satisfy |P i,l| = |Bi,l|+ |Γ i,l| for all i, l and |Ψall| = Ψ for
all Ψ ∈ {P,A,B, Γ}.

Due to space limitations, we give the actual construction of the pieces and
the proofs of Lemma 7 to 9 in the Full Version. Now we can give the proof of
Lemma 5.

Proof of Lemma 5. Using Lemma 7 to 9, we get

A = |Aall| = |P all ∪ Ball ∪ Γ all| = |P all| + |Ball| + |Γ all| = P + B + Γ

= |P all| + |Ball| + |Γ all| =
∑

i,l
|P i,l| + |Bi,l| + |Γ i,l| =

∑

i,l
2|P i,l| = 2P.

�
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Abstract. Cloud computing has a powerful ability to handle a large
number of tasks. Correspondingly, it also consumes a lot of energy.
Reducing the energy consumption of cloud service platforms while ensur-
ing the quality of service has become a crucial issue. In this paper,
we propose a heuristic energy-saving scheduling algorithm named Real-
time Multi-workflow Energy-efficient Scheduling (RMES) with the aim
to minimize the total energy consumption in container cloud. RMES exe-
cutes tasks as parallel as possible to enhance the resource utilization of
the running machines in cluster, therefore reducing the time of the global
process, saving energy as a result. RMES takes advantage of the affinity
between containers and machines to meet the resource quantity and per-
formance requirements of containers during scheduling. In order to follow
the change of the system state overtime, we introduce the re-scheduling
mechanism, which can automatically adjust the scheduling decisions of
the tasks that have not yet been executed in the scheduling scheme. The
experimental results show that RMES has obvious advantages over other
scheduling algorithms in terms of energy consumption and success ratio.

Keywords: Multi-workflow scheduling · Real time · Container cloud ·
Energy minimization

1 Introduction

Cloud service platform (CSP) have powerful ability to handle large-scale scien-
tific applications. These applications are submitted to CSP in real time in the
form of workflow. The different users’ workflow requests with various structures
are mixed into a multi-workflow for CSP to process. Each workflow has its Qual-
ity of Service (QoS, such as deadline) needs. Different workflows consist of tasks
with various resource requirements. CSP provides consumers with on-demand
compute and storage resources [2]. Container, a new virtualization technique, is
better suited for this multi-workflow scenario than classic virtualization technol-
ogy [14]. It has three advantages including less memory, faster startup speed and
lower management overhead [17]. In container cloud, users can specify the affinity
between containers for applications, which facilitates the container orchestration
on clusters [11], such that the special resource requirements of the tasks can be
met.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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CSP has a large number of physical machines, which consume massive energy.
Data centres are reported [6] to spend around $13 billion a year on electricity.
Massive energy usage not only increases the expense of the data center, but also
causes some damage to the environment. However, the main challenge is that we
should not only minimize the energy consumption of cloud service center, but
also ensure all the tasks to be completed on time. At present, many researches
have focused on the scheduling algorithm to reduce energy consumption in data
centers. In [12,15], the authors proposed energy-saving scheduling algorithms on
the traditional cloud. Since the complex affinity relationship between containers
and physical machines brings more constraints to energy-saving scheduling deci-
sions, these methods can not be directly used in container cloud scenarios. In [8],
an energy-saving scheduling algorithm based on Q-Learning is proposed. How-
ever, the algorithm does not consider the dependencies between tasks. The work-
flow scheduling problem is an NP-hard problem [16]. These algorithms require
a lot of computation to make decisions, which may not be suitable for real-time
scheduling scenarios that require rapid response.

The heuristic method is to set some scheduling rules to make the task
scheduling results on the cluster reach an approximately optimal state. Heuris-
tic approaches are faster than other methods at producing scheduling decisions
because they are based on empirical design rules. Therefore, this method is more
suitable for real-time scheduling scenarios. In [9], principles from generational
garbage collection (GC) reduce energy consumption in homogeneous clusters and
ensure that all requests do not violate deadline constraints as much as possible.
In [10], the authors adjust the task scheduling decision by balancing energy con-
sumption and task execution time in the real-time scenario. However, the above
methods either do not consider the real-time constraints, or ignore some special
conditions of resource constraints in container cloud, such as their affinity.

In view of the above shortcomings, we propose a real-time multi-workflow
energy-efficient scheduling (RMES) algorithm to solve real-time multi-workflow
scheduling. The objective is to minimize the energy consumption of the cluster
while completing as many workflows on time as possible. The main contributions
of this paper are as follows:

– We build a real-time multi-workflow scheduling model on heterogeneous clus-
ters considering the affinity constraints between tasks and machines.

– We propose a heuristic scheduling algorithm called RMES, which decreases
the base energy consumption of cluster by compressing the time of the global
process through executing tasks in parallel.

– RMES evaluates the current running status of the physical machines in clus-
ter, and shuts down the physical machines with low utilization in time, thus
reducing unnecessary energy consumption of the cluster.

– The performance of scheduling algorithm is verified by using workflow in
the real world. Compared with the existing algorithms, RMES reduces more
energy consumption for CSP while meeting the affinity constrains between
container and physical machine.

The rest of this paper is organized as follows. Section 2 introduces the real-
time multi-workflow scheduling and energy consumption model. In Sect. 3, a
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heuristic energy-saving scheduling algorithm is proposed. Section 4 presents the
experimentation and evaluation. Finally, Sect. 5 concludes the paper.

2 Problem Formulation

2.1 Workflow Modeling

In cloud, the system needs to schedule the workflow applications submitted
dynamically by users in real time. These workflows are composed of many
requests which can be denoted as W = {w1, w2, ..., wm}. A single request can be
described as a directed acyclic graph (DAG). We model a request wm ∈ W as
wm = {wat

m , wtrt
m , wd

m, Gm}, where wat
m , wtrt

m , wd
m and Gm represent the arrival

time, tolerable running time (the maximum time a user can tolerate for a request
to be execute), deadline and structure of wm, respectively. wd

m can be calculated
as wd

m = wat
m + wtrt

m . Gm = (Tm, Em), where Tm is the set of tasks and Em

represents the dependency between tasks. Tm = {tm1, tm2, · · · , tm|Tm|}, where
Tmi(0 < i ≤ |Tm|) represents the ith task of wm and |Tm| is the total number of
tasks contained in wm. Em is the 0–1 matrix of Tm × Tm. emu,v = 1 means that
there is a data dependence between tmu and tmv, where tmu is the immediate pre-
decessor of tmv. For the tmi, we further model it as tmi = {tImi, t

image
mi , ttypemi , tmid}.

tImi is the number of instructions contained in tmi; timage
mi is the image of con-

tainer executing tmi; ttypemi is the tmi’s type; tdmi is the sub-deadline of tmi.
A task is executed within a container and then deployed on physical machine

(PM). Container bundles the software configuration of a specific workflow into
a container image and is the smallest execution unit in the resource scheduling
system. We model container cj as cj = {ctypej , ccpuj , cmem

j , ccachej , ctaintsj }, where
cj ∈ C (0 < j ≤ |C|). C is the set of all containers in the cluster. ctypej is the
type of task that container cj runs; ccpuj is the number of CPU cores required
by container cj ; cmem

j is memory size required by container cj ; ccachej is the set
of tasks that have been assigned to container cj ; ctaintsj is taint nodes (the set
of PMs that cannot run container cj).

Since a single container can only process one task at a time, the tasks in the
cache can be divided into two types: waiting and executing. The taint node is a
set of PMs that cannot run the container. This set is defined by the user. The
reasons why a PM cannot run the container include that there are no specific
devices required by the container, the performance of some devices cannot meet
the minimum requirements for container operation, and so on. There is a one-
to-one correspondence between containers and tasks. The same type container
can only run the same type task, and tasks of the same type can only run on the
same type of container. A container is created based on the images contained in
the corresponding task.

2.2 Service Instance Modeling

A cloud service provider can provide a variety of cloud service instances, such as
virtual machines and PMs. In this paper, we only consider the case of PM P =
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{p1, p2, . . . , p|P|}. We use pk(0 < k ≤ |P|) to represent the kth PM and P is the
set of PMs in this CSP. We model a PM as pk = {pt cpu

k , pt mem
k , pt̄,u cpu

k , pt̄,u mem
k ,

pck, p
e total
k , pe base

k , pipsk }. pt cpu
k is the Number of CPU cores of the pk; pt mem

k is
the memory resources of the pk; pt̄,u cpu

k is the Number of CPU cores used in pk

at t̄ moment; pt̄,u mem
k is the memory resources used in pk at t̄ moment; pck is

the container set which contains container runs in pk; pe total
k is the power of full

load operation of pk; pe base
k is the basic power of no-load operation of pk; pipsk

is the number of instructions that a single core of pk can process per second.
pt̄,u cpu
k , pt̄,u mem

k can be calculate by Eqs.(1–2), where xt̄
j,k ∈ {0, 1}, xt̄

j,k = 1
means that the container cj is running in pk at t̄ moment.

pt̄,u cpu
k =

∑

cj∈C
xt̄
j,kc

cpu
j , (1)

pt̄,u mem
k =

∑

cj∈C
xt̄
j,kc

mem
j , (2)

Based on the model widely used [4,8] in cloud computing energy analysis, we
model the relationship between the power of the pk and the CPU utilization at
t̄ moment by Eq. (3), where Pt̄

k represent the power of pk at t̄ moment.

Pt̄
k =

⎧
⎨

⎩
0, pk is off,
pt̄,u cpu
k

pt cpu
k

(pe total
k − pe base

k ) + pe base
k , pk is on.

(3)

2.3 Workflow Scheduling Model

In this paper, workflow scheduling aims to minimize the total energy consump-
tion for executing workflows. The total energy consumption for a CSP can be
expressed by Eq. (4), where T is total running time of the system.

E =
T∑

t̄=0

|P|∑

k=1

Pt̄,
k , (4)

Task Dependency Constraints. Due to the dependency between tasks, all tasks
can be executed only when their predecessors are completed or there are no
predecessors. tEST

mu and tFT
mv mean earliest start time of tmu and finish time of

tmv, respectively. Pred(tmu) is a set of immediate predecessors of tmu, where
Pred(tmu) = {tmv|emv,u = 1,∀ tmv ∈ Tm}.

max
tmv∈Pred(tmu)

tFT
mv ≤ tEST

mu , (5)

Task Completion Time Constraint. When the system makes scheduling deci-
sions, we should ensure that the real-time tasks submitted by users can be com-
pleted on time.

max
tmv∈Tm

tFT
mv ≤ wd

m. (6)
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Fig. 1. Schedule System

Task and Container Placement Constraint. A task can only be deployed on
a single container, and its type should be the same as the task type that the
container can handle. In Eq. (7), yt̄

mi,j ∈ {0, 1} and yt̄
mi,j = 1 means tmi is

deployed on cj , otherwise we set yt̄
mi,j to 0. When we deploy containers on PMs,

we need to meet some resource level constraints. Equation (9) and Eq. (10) mean
the resources occupied by the deployed container on the PM cannot exceed the
total resources of the PM. Equation (11) means a container can only be deployed
on one PM and this PM can’t be taint node of cj .

|C|∑

j=1

yt̄
mi,j = 1. (7)

ttypemi = ctypej , yt̄
mi,j = 1. (8)

∑

cj∈C
xt̄
j,kc

cpu
j ≤ pt cpu

k , (9)

∑

cj∈C
xt̄
j,kc

men
j ≤ pt mem

k , (10)

|C|∑

j=1

xt̄
j,k = 1, pk /∈ ctaintsj . (11)
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3 Real-Time Multi-workflow Energy-Efficient Scheduling
Algorithm

3.1 Scheduling Architecture

The real-time multi-workflow scheduling architecture is shown in Fig. 1. The
architecture can be divided into three parts: end user, instance cluster and sched-
uler. End users can submit workflow requests to the system at any time. The
cloud service platform provides instance clusters to handle the requests submit-
ted by users. The scheduler is to arrange the workflow submitted by users into
the instance cluster reasonably, so that the whole system can operate efficiently.
Schedulers are mainly divided into several components: request preprocessor,
task pool, rescheduling trigger, scheduling decision maker, executor and monitor.
After the workflow request is accepted by the scheduler, the request preproces-
sor first decomposes the workflow submitted by the user into tasks and sets the
deadline and priority for each task. These tasks will be placed in the task pool
(Step 1). The rescheduling trigger will receive the status in the task pool (Step 2)
and inform the scheduling decision-maker whether to perform general scheduling
or rescheduling (Step 3). After receiving instructions, the scheduler extracts the
task information (Step 4) to be dispatched from the task pool and sends the
generated scheduling decisions to the executor (Step 5). During the execution
period, adjust the running state of the instance cluster according to the received
instructions (Step 6). The monitor will constantly monitor the status of cluster
(Step 7) and update the information in the task pool (Step 8).

3.2 Request Preprocessor

This component sets the sub-deadline for the tasks contained in the request
submitted by the user, and sorts them according to the priority. The sub-deadline
setting of each task is related to the topology level of the task in request. The
topological level of a tmi is defined as Eq. (12). For each level, we calculate the
task with the largest number of instructions in the level as the critical task of
the level. We take the duration of the task on the fastest machine in the system
as the execution time of this level (leveltime

l ).

Lev(tmi) =

⎧
⎨

⎩
1, P red(tmi) = ∅

max
tmj∈Pred(tmi)

Lev(tmj) + 1, other. (12)

Leveltl = {tmi|Lev(tmi) = l)} (13)

leveltime
l =cloadj +

t̂l
p̂ips · ccpuj

, ctypej = t̂typel , p̂=arg max
pk∈P

(pipsk ), t̂l= arg max
tmi∈Leveltl

(tImi),

(14)
where t̂l, p̂ and cloadj represent the task with maximum number of instructions in
level l, the fastest single core PM and the preparation time before the container is
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able to handle tasks after deploying, respectively. The estimated processing time
for wm can be model as Eq. (15), where L denotes the maximum level contained
in the wm. After that, we can set the sub-deadline of tmi as Eq. (16).

wet
m =

L∑

l=1

leveltime
l , (15)

tdmi =
leveltime

l

wet
m

· wtrt
m + wat

m , Lev(tmi). (16)

Our priority ranking of tasks is mainly calculated according to the number
of subsequent tasks related to the task which include all immediate and mediate
successors. We defined d(tmu) as the set of tasks which are dependent on tmu.

d(tmu) = (
⋃

tmv∈Sub(tmu)

d(tmv)) ∪ tmu, (17)

Rank(tmu) = |d(tmu)|, (18)
Sub(tmv) = {tmu|emu,v = 1,∀ tmu ∈ Tm} represents the set of immediate suc-
cessors of tmv. A task with higher rank means the task has higher scheduling
priority than other tasks at the same topology level.

3.3 Task Pool

Task pool is a mapping of task states in the system. In the cluster, tasks are
mainly divided into the following types: Task not ready: Tasks whose predeces-
sors have not been completed and have not entered the executable state; Task
ready: Tasks whose predecessors have completed but are not scheduled by the
system; Task scheduled: Tasks that have been scheduled to the container but
have not started to execute; Task running: Tasks being processed by the con-
tainer; Task finished: Tasks that have been completed on time; Task fail: Tasks
that have timed out.

3.4 Re-scheduling Trigger

In most scheduling strategies, the system only schedules tasks once, which often
falls into local optimization in real-time scenarios. In the real-time system, the
request will arrive at the cloud platform at any time, thus the state of the task
in the system will fluctuate with time. For tasks that have been scheduled before
but the container has not started to execute, there may be a better scheduling
decision in the current new system state. However, if every new task arrives,
rescheduling all the tasks in the system will greatly increase the scheduling cost
of the system and affect the quality of service. To trade off this decision, we
use θt = |Newtaskt|

|Alltaskt| to describe the state of unprocessed tasks in the system at
t moment. Newtaskt represents the set of new executable tasks at t moment
and Alltaskt represents the set of tasks that can be executed but not started.
|Newtaskt| and |Alltaskt| mean the number of elements in corresponding set. α
is re-schedule factor, (0 < α < 1). If θt > α, this means that the task state in the
system has changed greatly, and rescheduling decision will be a better choice.
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3.5 Scheduling Decision-Maker

After the above stages, the system has completed the screening and sorting of
the tasks to be scheduled. We will schedule all tasks once according to the pri-
ority of the tasks. The selection of target container and machine should consider
the scheme with the lowest energy consumption as far as possible on the basis
of ensuring that the task can be completed on time, and also consider the uni-
versality of the machine. If too many containers are deployed on a machine with
higher versatility (the machine is used as taint with fewer tasks), more picky
tasks (tasks with many Taints) may not have enough resources to deploy in
the cluster. Therefore, the selection of scheduling objectives should be compre-
hensively determined by weighing the new energy consumption caused by the
deployment of the machine and the universality of the target machine.

The calculation of new energy consumption after deployment can be divided
into the following situations: A: There is a deployed container, and the running
time of the container after deployment will not exceed the maximum running
time of the container deployed on the PM to which the container is deployed.
B: There is a deployed container, and the running time of the container after
deployment will exceed the maximum running time of the container deployed
on the PM to which the container is deployed. C: A new container needs to be
deployed on the PM that has been powered on, and the running time of the
PM will not be extended. D: A new container needs to be deployed on the PM
that has been powered on, which will cause the increment of running time of the
PM. E : Need to open a new PM to deploy the container. F : The cluster does
not have enough resources to complete the task on time. Considering the above
situations, the new energy consumption caused by the deployment tasks can be
calculated by Eq. (19).

ΔE =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ccpuj

pcpu
k

· (pe total
k − pe base

k ) · t̄r, A
ccpuj

pcpu
k

· (pe total
k − pe base

k ) · t̄r + t̄e · pe base
k , B

ccpuj

pcpu
k

· (pe total
k − pe base

k ) · (t̄r + t̄p), C
ccpuj

pcpu
k

· (pe total
k − pe base

k ) · (t̄r + t̄p) + t̄e · pe base
k , D

ccpuj

pcpu
k

· (pe total
k − pe base

k ) · (t̄r + t̄p) + (t̄r + t̄p + t̄s) · pe base
k , E

(19)

tr =
tImi

pipsk · ccpuj

, (20)

where cj , pk are the container and PM for task tmi plan to deployment, respec-
tively. t̄r, t̄e, t̄p and t̄s are task execution time, extended execution time of PM,
start time of container and start time of PM. For each PM in the platform, the
system calculates the universality of each PM (puk , (21)) according to the taints
node information submitted by the user. Cavail is a set of containers that can be
deployed to pk. The higher puk means that pk has higher versatility.

puk =
|Cavail|

|C| , (21)
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In order to meet the scheduling objectives, the system needs to allocate tasks
to lower energy consumption and more “exclusive” PMs. Qi,j,k ∈ Q is calculated
by Eq. (22), which denote the energy consumption of deploying ti to container
cj and PM pk. The system will deploy the task with a higher Q scheme.

Qi,j,k = βΔEi,j,k + (1 − β)puk , (22)

where β is the weight of energy consumption in scheduling decision, (0 < β < 1).
The detailed pseudocode of the our algorithm can be found in AppendixA.

4 Performance Evaluation

4.1 Experimental Setup

We use five well-known workflows widely used in previous work to evaluate the
algorithm: Montage, LIGO, Epigenomics, CyberShake and SIPHT1. Montage is
I/O intensive, LIGO and CyberShake are CPU intensive containing task with
high memory requirements. Epigenomics and SIPHT are CPU intensive. Details
of these workflows are described in [13]. Similar to [7], we use the rule that
the arrival interval of any two requests in the actual scenario obeys the Poisson
distribution to generate a real-time workflow.

We establish a simulation platform in Python which generates the request
workflow according DAX format file. The platform runs on a Ubuntu 20.04.2
LTS a 64bit PC with i5-9500 3.0 GHz CPU and 32 GB RAM, python 3.8.5.
In the experiment, we use eight types of PMs (see Table 1.), and the relevant
configuration parameters of these PMs are obtained by [1]. We set re-schedule
factor α to 0.05. We set wmin

m as the time it takes for the longest critical path
in the workflow to run on the fastest machine in the cluster. We select deadline
factor γ according to the uniform distribution [2, 8] and then assign the deadline
calculated by γ · wmin

m to workflows.

Table 1. Real-world PM types

Type CPU cores Mem (GB) basic power (w) full load power (w)

PM1 4 4 43 115

PM2 4 8 63 115

PM3 8 8 89.4 173

PM4 8 16 155 269

PM5 8 18 173 334

PM6 8 32 226 294

PM7 16 16 299 521

PM8 32 32 260 748

1 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator.

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
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We constructed five homogeneous scenarios (with only one workflow type)
and one heterogeneous scenario (with all workflow types) using the above work-
flows. In each scenario, the experimental parameters are composed of three
parameters, including arrival rate λ, workflow scale scale and compatibility δ.
Similar to previous works [3,7], λ includes the arrival rate of four poisson dis-
tribution of 1 workflows/s, 5 workflows/s, 10 workflows/s and 15 workflows/s.
Workflow scale represents the workflow intensity of three requests, small, medium
and large. They are composed of a mixture of multiple workflows with a total
of 1000, 2000 and 3000 tasks. The workflow contains more tasks, if it is in large
workflow scale. We set compatibility to 0.2, which represent 20% of the PMs in
the cluster as taints of the task. This represents the degree to which the task
is picky about the PMs in the cloud service provider cluster. For each workflow
structure, we conducted experiments on the different values of the above three
parameters, and a total of 24 groups of experiments were conducted.

Fig. 2. The energy consumption of each workflow with DWS, ROSA, Round-Robin,
Random and RMES

4.2 Comparison Algorithm

To verify the effectiveness of our proposed algorithm, we compare it with four
existing algorithms: Random and Round-Robin, ROSA [5] and DWS [3]. Ran-
dom is a random scheduling strategy. After disassembling the arriving workflow
into sub tasks, the system randomly assigns the tasks to the container and
schedules the container to run on the random machine. Round-Robin is one of
the default scheduling strategies of Kubernetes. The algorithm schedules tasks
to appropriate containers and PMs according to the polling rules. ROSA is an
uncertainty-aware online scheduling algorithm to schedule dynamic and multiple
workflows with deadlines. The algorithm first estimates the completion time of
the task, and then schedules the task to minimize the cost. DWS is an online
heuristic algorithm, which aims to minimize the cost of renting service instances
under the deadline. When the new workflow arrives, the system sets heuristic
rules according to the cost deadline to schedule the task to a more reasonable
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instance. To ensure the fairness of the experiment, we equivalently replace the
optimization objective function in ROSA and DWS with the same energy con-
sumption objective function as RMES.

4.3 Simulation Results

Arrival Rate. Figure 2 shows the energy consumption result of the algorithms
under different workflow structures. The arrival rate is increased from 1 to 15 in
the case of medium workflow scale. We can see that in most cases, the experi-
mental results of RMES are excellent, which is significantly improved compared
with other algorithms. When the arrival rate increases, our algorithm performs
better. When the arrival rate is 1, our algorithm improves -1%, -10%, 18.45% and
34.11% respectively compared with DWS, ROSA, Random and Round-Robin.
When arrival rate reaches 15, RMES increases to 40.57%, 19.42%, 27.89% and
39.40%. With the increasing arrival rate, the proportion of newly arrived tasks
in the task pool will increase, resulting in large changes in the status of the task
pool. Due to the setting of rescheduling mechanism in RMES, when the state of
task pool changes greatly, the scheduler can reschedule the unexecuted tasks in
the system in time, so that the scheduling results of tasks in the task pool are
more in line with the current state of task pool.

Table 2. The energy consumption of each workflow with DWS, ROSA, Round-Robin,
Random and RMES

Workflow, size Random Round-robin DWS ROSA RMES

Montage, S 0.47 0.79 0.64 0.52 0.37

Montage, M 0.83 1.10 1.06 0.73 0.55

Montage, L 1.62 1.77 1.72 1.17 1.22

LIGO, S 13.12 18.96 9.95 9.16 9.64

LIGO, M 19.86 22.81 21.68 14.71 11.98

LIGO, L 23.17 24.69 27.85 19.74 17.46

CyberShake, S 0.85 0.95 0.80 0.75 0.67

CyberShake, M 1.51 2.55 1.84 1.25 0.94

CyberShake, L 1.85 2.44 2.17 1.60 1.30

Epigenomics, S 208.48 205.63 216.23 216.22 206.24

Epigenomics, M 141.98 144.15 145.72 147.13 146.19

Epigenomics, L 163.81 162.89 160.84 172.21 162.00

SIPHT, S 12.92 13.14 17.49 12.08 11.18

SIPHT, M 13.09 15.20 12.37 10.02 10.08

SIPHT, L 30.89 46.99 44.93 28.90 23.99

multi, S 6.21 8.06 6.01 4.44 3.86

multi, M 10.95 13.91 10.85 10.95 5.51

multi, L 27.49 34.94 24.80 17.12 12.44
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Workflow Scale. Table 2 shows the energy consumption result of the algorithm
under different sizes and different workflow structures when the arrival rate is
10 workflows/s. In Table 2, ’Montage, S’ means Montage workflow small-scale
test example. In addition to the two workflow structures with fluctuating com-
pletion rates, RMES has obvious advantages over other algorithms. Under the
three workflow structures of multi, SIPHT and CyberShake, the improvement of
RMES and the comparison algorithm with the best performance increases from
13.06%, 7.45% and 10.66% on a small scale to 27.33%, 16.98% and 18.75% on a
large scale. We find that RMES algorithm has a greater improvement under the
condition of large-scale workflow.

5 Conclusion

In this paper, we focus on the real-time energy-saving multi-workflow schedul-
ing on container cloud. Firstly, we establish a cloud-based workflow scheduling
model, which considers resource quantity and performance constraints of con-
tainer deployment. Then we propose an real-time multi-workflow energy-efficient
scheduling (RMES) algorithm. By executing tasks in parallel on the running PM,
RMES can compress the time of the global process to reduce the base energy
consumption. Furthermore, RMES introduces rescheduling mechanism, so that
the task scheduling decision can be adjusted with the change of system state.
Finally, we conduct several groups of experiments under the actual workflow
conditions. Compared with other algorithms, RMES significantly reduces the
energy consumption generated by CSP.
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JCYJ20210324132406016.

Appendix for “An Energy-Efficient Scheduling Method for
Real-Time Multi-workflow in Container Cloud”

A Detailed Pseudocode of the Proposed Algorithm

The detailed procedure is given in Algorithm1. taskready and taskscheduled repre-
sent task sets of type task ready and task scheduled in the task pool, respectively.
<Qn,i,j , ci, pj> means assign taskn to ci running in pj . Firstly, we evaluate the
task state in the system and judge whether to reschedule the scheduled tasks
according to the current task state of the system, as shown in lines 2–10 of
Algorithm 1. Then, for the task to be scheduled, the system calculates the Q
value of the task deployed on the existing container, and deploys the task to the
container with the lowest Q value, as shown in lines 11–24 of Algorithm1. For a
task without a suitable container to run, the system will create a new container
for it, calculate the Q value of the container deployed to each PM in the cluster,
and select the PM with the lowest Q value to run the container, as shown in
lines 25–41 of Algorithm 1.
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Algorithm 1: RMES
Input: taskready, taskscheduled, C,P
Output: {xn,j} ,{yi,j}

1 scheduletask ← ∅;
2 Calculate θt;
3 if θt > α then
4 foreach tn ∈ taskscheduled do
5 scheduletask ← scheduletask ∪ {tn};
6 end
7 end
8 foreach tn ∈ taskready do
9 scheduletask ← scheduletask ∪ {tn};

10 end
11 foreach tn ∈ scheduletask do
12 target ← ∅;
13 foreach ci ∈ C do
14 if ctypei = tasktype

n then
15 Calculate Qn,i,j according Eq. (22);
16 target ←< Qn,i,j , ci, pj >;
17 end
18 end
19 if target �= ∅ then
20 select ci with minimum Q;
21 xn,j ← 1;
22 scheduletask ← scheduletask − {taskn};
23 end
24 end
25 if scheduletask �= ∅ then
26 foreach tn ∈ scheduletask do
27 target ← ∅;
28 create container ci;
29 foreach pmj ∈ P do
30 Calculate Qn,i,j according Eq. (22);
31 target ←< Qn,i,j , ci, pj >;
32 end
33 if target �= ∅ then
34 select ci with minimum Q;
35 xn,j ← 1;
36 yi,j ← 1;
37 scheduletask ← scheduletask − {taskn};
38 C ← C ∪ {ci};
39 end
40 end
41 end
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Abstract. In this paper, weakly nondominated solutions of set-valued
optimization problems with variable ordering structures are investigated
in linear spaces. Firstly, the notion of weakly nondominated element of
a set with a variable ordering structure is introduced in linear spaces,
and the relationship between weakly nondominated element and non-
dominated element is also given. Secondly, under the assumption of
nearly C(y)-subconvexlikeness of set-valued maps, scalarization theorems
of weakly nondominated solutions for unconstrained set-valued optimiza-
tion problems are established. Finally, two duality theorems of con-
strained set-valued optimization problems are obtained. Some examples
are given to illustrate our results. The results obtained in this paper
improve and generalize some known results in the literatures.

Keywords: Set-valued maps · Variable ordering structures · Weakly
nondominated solution · Scalarization · Duality

1 Introduction

Set-valued analysis has become an important branch of nonlinear analysis since
it is widely applied in various areas of the human real life. For example, Debreu
[5] used the fixed point theorem of the set-valued map, which is an important
mathematical tool, to prove the existence of the Walrasian equilibrium theorem.
Some works about set-valued analysis can be founded in [2,3,10]. Recently, many
researchers have paid attention to the set-valued optimization problem which is
a kind of optimization problem with the objective map being a set-valued map.
Yang et al. [16] introduced the nearly cone subconvexlike set-valued map and
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established optimality conditions involving Lagrangian multiplier and scalariza-
tion of set-valued optimization problems. Zhao et al. [19] used the improvement
set E, which was introduced by Chicco et al. [4], to define nearly E-subconvexlike
set-valued map and investigated the weak E-optimal solution of set-valued opti-
mization problems. Zhou et al. [20] studied scalarizations and optimality of con-
strained set-valued optimization using improvement sets and image space anal-
ysis.

On the other hand, in order to compare different objective values of the
optimization problem, we need to establish a partial ordering relation which is
induced by a pointed closed convex cone. Generally speaking, the ordering rela-
tion involving optimization problems is determined by a fixed convex cone. How-
ever, in actual situations, different decision-makers have different preferences in
different environments. Therefore, the partial ordering relation involved in opti-
mization problems is no longer determined by a fixed convex cone. Instead, it is
determined by a variable ordering cone related to environment, times, economy
and other factors. This kind of optimization problems are called optimization
problems with variable ordering structures. More general concepts of ordering
structures were introduced by Yu [18] in terms of domination structures. Eich-
felder and Kasimbeyli [6,7] studied optimal elements and proper optimal ele-
ments in vector optimization with variable ordering structures. Shahbeyk [13]
investigated Hartley properly and super nondominated solutions in vector opti-
mization with variable ordering structures. Further, approximate solutions of
vector optimization problems with variable ordering structures were also stud-
ied in [12,14,17].

Recently, some researchers have studied optimization problems in linear
spaces without any topology structure. Li [11] used the separation theorem of
convex sets in a real linear space to establish a theorem of the alternative for
cone subconvexlike set-valued maps and obtained optimality conditions for vec-
tor optimization of set-valued maps. In linear spaces, properly efficient solutions
of set-valued optimization problems, including Benson properly efficient solution
[8] and super efficient solution [21], also were introduced.

However, to the best of our knowledge, there are few literatures involving set-
valued optimization with variable ordering structures in linear spaces. Therefore,
how to generalize some results obtained by the above references from topological
spaces to linear spaces is interesting.

Inspired by [6,11,16,18], we will research weakly nondominated solution
of set-valued optimization problems with variable ordering structures in linear
spaces. This paper is organized as follows. In Sect. 3, we give some preliminaries
including some basic notions and lemmas. In Sects. 4, we establish scalariza-
tion characterizations of weakly nondominated solution of unconstrained set-
valued optimization problems with variable ordering structures in linear spaces.
In Sects. 5, we obtain two duality theorems of unconstrained set-valued opti-
mization problems, including a weak dual theorem and a strong dual theorem.
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2 Preliminaries and Lemmas

Throughout this paper, we suppose that X and Y are two real linear spaces. Let
A and M be two nonempty sets in X and Y , respectively. 0 stands for the zero
element in every space. The generated cone of M is defined as coneM := {λm |
m ∈ M, λ ≥ 0}. M is called a convex cone iff

λ1m1 + λ2m2 ∈ M, ∀λ1, λ2 ≥ 0, ∀m1,m2 ∈ M.

M is said to be pointed iff M ∩ (−M) = {0}. M is said to be nontrivial iff
M �= {0} and M �= Y . The algebraic dual of Y is denoted by Y ∗. Let C be a
nontrivial, pointed and convex cone in Y . The algebraic dual cone C+ of C is
defined as C+ := {y∗ ∈ Y ∗ | 〈y, y∗〉 ≥ 0, ∀y ∈ C}, where 〈y, y∗〉 denotes the
value of the linear functional y∗ at the point y.

Definition 2.1 [9]. Let M be a nonempty subset in Y . The algebraic interior
of M is the set corM := {m ∈ M | ∀h ∈ Y, ∃ε > 0, ∀λ ∈ [0, ε],m + λh ∈ M}.

Definition 2.2 [1]. Let M be a nonempty subset in Y . The vector closure of
M is the set vclM := {m ∈ Y | ∃h ∈ Y, ∀ε > 0, ∃λ ∈ [0, ε],m + λh ∈ M}.

In this paper, we assume that the variable ordering structure is given by the
set-valued map C : Y ⇒ Y with C(y) being a nontrivial pointed convex cone and
corC(y) �= ∅ for any y ∈ Y . Let F : X ⇒ Y be a set-valued map on A. We write

〈F (x), y∗〉 := {〈y, y∗〉 | y ∈ F (x)}
and

F (A) :=
⋃

x∈A

F (x).

Now, we give a new notion of generalized convexity with the variable ordering
structure.

Definition 2.3. Let F : X ⇒ Y be a set-valued map on A, and C : Y ⇒ Y be a
set-valued map with C(y) being a nontrivial pointed convex cone for all y ∈ Y . F
is called near C(y)-subconvexlike on A iff, for any y ∈ Y , vcl(cone(F (A)+C(y)))
is a convex set in Y .

Remark 2.1. When Y is a topological space and C(y) = C for any y ∈ Y ,
Definition 2.3 reduces to Definition 2.2 in [16].

Definition 2.4. [18]. Let M be a nonempty subset of Y , and C : Y ⇒ Y be a
set-valued map with C(y) being a nontrivial pointed convex cone and corC(y) �= ∅
for all y ∈ M . y ∈ M is called a nondominated element of M w.r.t. C (denoted
by y ∈ N(M, C(·))) iff there does not exist y ∈ M such that y ∈ y + C(y)\{0}.
Equivalently, y /∈ M + C(y)\{0} for any y ∈ M .

Remark 2.2. It follows from Definition 2.4 that y ∈ M is a nondominated
element of M w.r.t. C iff there exists C : Y ⇒ Y such that M ∩ (y − C(y)) = {y}
for any y ∈ M .
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Definition 2.5 [6]. Let M be a nonempty subset of Y , and C : Y ⇒ Y be a set-
valued map with C(y) being a nontrivial pointed convex cone and corC(y) �= ∅
for all y ∈ M . y ∈ M is called a weakly nondominated element of M w.r.t.
C (denoted by y ∈ WN(M, C(·))) iff there does not exist y ∈ M such that
y ∈ y + corC(y).

Remark 2.3. It follows from Definition 2.5 that y ∈ WN(M, C(·)) iff there
exists C : Y ⇒ Y such that (M − y) ∩ (−corC(y)) = ∅ for any y ∈ M .

Remark 2.4. Clearly, N(M, C(·)) ⊆ WN(M, C(·)). However, the following
example shows that WN(M, C(·)) � N(M, C(·)).
Example 2.1. Let Y = R2,M = {(y1, y2) ∈ R2|(y1 − 1)2 + (y2 − 1)2 ≤ 1} ∪
{(0, 0), (0,−1)} and y = (0, 0). The set-valued map C : Y ⇒ Y is defined as

C(y) :=
{{(y1, y2) ∈ R2| y2 − y1 ≥ 0, y2 ≥ 0, y1 ≥ 0}, y ∈ Y \ {(1, 1

2 )}
{(y1, y2) ∈ R2| y2 − y1 ≤ 0, y2 ≥ 0, y1 ≥ 0}, y = (1, 1

2 ).

It is easy to check

(M − y) ∩ (−corC(y)) = ∅,∀y ∈ M.

However, there exists ỹ = (0,−1) ∈ M such that M ∩ (y − C(ỹ)) =
{(0,−1), (0, 0)} �= {(0, 0)}. Therefore, y ∈ WN(M, C(·)) and y /∈ N(M, C(·)).
Thus, WN(M, C(·)) � N(M, C(·)).
Definition 2.6 [7]. let M be a nonempty subset of Y , and C : Y ⇒ Y be a set-
valued map with C(y) being a nontrivial pointed convex cone and corC(y) �= ∅
for all y ∈ M . y ∈ M is called a weakly max-nondominated element of M
w.r.t. C (denoted by WMN(M, C(·))) iff there does not exist y ∈ M such that
y ∈ y − corC(y).

Let F : A ⇒ Y be a set-valued map with nonempty value. Consider the
following unconstrained set-valued optimization problem:

(SVOP)
{

Min F (x)
x ∈ A,

where A ⊆ X.
Based on Definition 2.5, we introduce the concept of the weakly nondomi-

nated solution of (SVOP).

Definition 2.7. x ∈ A is called a weakly nondominated solution of (SVOP)
w.r.t C iff there exist x ∈ A, y ∈ F (x) and C : Y ⇒ Y with C(y) being a
nontrivial pointed convex cone and corC(y) �= ∅ for all y ∈ F (A) such that
y ∈ WN(F (A), C(·)). (x, y) is called a weakly nondominated element of (SVOP)
w.r.t. C.
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Lemma 2.1 [15]. Let P,Q ⊆ Y be two convex sets such that P �= ∅, corQ �= ∅
and P ∩ corQ = ∅. Then, there exists a hyperplane separating P and Q in Y .

Similarly to Lemma 2.1 [11] and Lemma 3.21(b) [9], we have the following
lemmas.

Lemma 2.2. Let C : Y ⇒ Y be a set-valued map with C(y) being a nontrivial
pointed convex cone and corC(y) �= ∅ for all y ∈ Y . Then, C(y) + corC(y) =
corC(y) for y ∈ Y .

Lemma 2.3. Let C : Y ⇒ Y be a set-valued map with C(y) being a nontrivial
pointed convex cone and corC(y) �= ∅ for all y ∈ Y . Then,

corC(y) ⊆ {b ∈ Y |〈b, b∗〉 > 0,∀b∗ ∈ C(y)+ \ {0}},∀y ∈ Y.

3 Scalarization

In this section, we will establish scalarization theorems of an unconstrained set-
valued optimization problem in the sense of weakly nondominated element. Now,
we consider the following scalar problem of (SVOP):

(SVOP)ϕ

{
Min 〈F (x), ϕ〉
x ∈ A,

where ϕ ∈ Y ∗ \ {0}.

Definition 3.1 [11]. Let x ∈ A and y ∈ F (x). x is called an optimal solution of
(SVOP)ϕ iff

〈y, ϕ〉 ≤ 〈y, ϕ〉,∀y ∈ F (A).

(x, y) is called an optimal element of (SVOP)ϕ.

Now, we give an optimality necessary condition of weakly nondominated
element of (SVOP) under the suitable assumptions.

Theorem 3.1. Let C : Y ⇒ Y be a set-valued map with C(y) being a nontrivial
pointed convex cone and corC(y) �= ∅ for any y ∈ F (A). Suppose that the
following conditions hold.

(i) (x, y) is a weakly nondominated element of (SVOP) w.r.t. C;
(ii) F − y is nearly C(·)-subconvexlike on A.
Then, for any y ∈ F (A), there exists ϕ ∈ (C(y))+\{0} such that (x, y) is an

optimal element of (SVOP)ϕ.

Proof. Since (x, y) is a weakly nondominated element of (SVOP) w.r.t. C, we
have

(F (A) − y) ∩ (−corC(y)) = ∅,∀y ∈ F (A). (1)

We assert that

cone(F (A) + C(y) − y) ∩ (−corC(y)) = ∅,∀y ∈ F (A). (2)
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Otherwise, there exsists y0 ∈ F (A) such that

cone(F (A) + C(y0) − y) ∩ (−corC(y0)) �= ∅. (3)

By (3), there exist d > 0, y1 ∈ F (A) and c ∈ C(y0) such that d(y1 + c − y) ∈
−corC(y0). Hence,

y1 + c − y ∈ −corC(y0). (4)

It follows from (4) and Lemma 2.2 that

y1 − y ∈ −c − corC(y0) ⊆ −C(y0) − corC(y0) = −corC(y0),

which contradicts (1). Hence, (2) holds. We again assert that

vcl(cone(F (A) + C(y) − y)) ∩ (−corC(y)) = ∅,∀y ∈ F (A). (5)

Otherwise, there exist y1 ∈ F (A) and a ∈ vcl(cone(F (A)+ C(y1)− y)) such that

a ∈ −corC(y1). (6)

Since a ∈ vcl(cone(F (A) + C(y1) − y)), there exist h ∈ Y and λn > 0 with
lim

n→∞ λn = 0 such that

a + λnh ∈ cone(F (A) + C(y1) − y), ∀n ∈ N, (7)

where N is the set of the natural numbers. It follows from (6) that a ∈
cor(−corC(y1)). Therefore, for the above h, there exists λ′ > 0 such that

a + λh ∈ −corC(y1),∀λ ∈ [0, λ′].

Taking a sufficiently big n′ ∈ N such that λn′ ∈ [0, λ′], we have

a + λn′h ∈ −corC(y1). (8)

It follows from (7) and (8) that a+λn′h ∈ cone(F (A)+C(y1)−y)∩ (−corC(y1)),
which contradicts (2). Therefore, (5) holds.

By Condition (ii), vcl(cone(F (A)+C(y)−y)) is a convex set for any y ∈ F (A).
Clearly, vcl(cone(F (A) + C(y) − y)) �= ∅ and cor(C(y)) �= ∅ for any y ∈ F (A).
Hence, it follows from Lemma 2.1 that there exists ϕ ∈ Y ∗ \ {0} such that

〈y2, ϕ〉 ≥ 〈y3, ϕ〉,∀y ∈ F (A),∀y2 ∈ vcl(cone(F (A)+C(y)−y)),∀y3 ∈ −C(y). (9)

By (9), we obtain

〈y2, ϕ〉 ≥ 0,∀y ∈ F (A),∀y2 ∈ F (A) + C(y) − y. (10)

Since 0 ∈ C(y) for any y ∈ F (A), it follows from (10) that

〈y, ϕ〉 ≤ 〈y, ϕ〉,∀y2 ∈ F (A). (11)
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We assert that ϕ ∈ (C(y))+ \ {0} for all y ∈ F (A). Otherwise, there exists
ỹ ∈ F (A) such that ϕ /∈ (C(ỹ))+ \ {0}. Thus, there exists c′ ∈ C(ỹ) such that

〈c′, ϕ〉 < 0. (12)

Since y ∈ F (A), ỹ ∈ F (A) and c′ ∈ C(ỹ), it follows from (10) that

〈c′, ϕ〉 ≥ 0,

which contradicts (12). Therefore, ϕ ∈ (C(y))+ \{0} for all y ∈ F (A). (11) shows
that (x, y) is an optimal element of (SVOP)ϕ. �

Remark 3.1. Theorem 3.1 improves the necessity of Theorem 3.1 [11] in the
following two aspects. Firstly, the fixed ordering cone C in Theorem 3.1 [11] has
been replaced by the variable ordering cone C(.) in Theorem 3.1. Secondly, the
C-subconvexlikeness of F in Theorem 3.1 [11] has been replaced by the near
C(·)-subconvexlikeness of F in Theorem 3.1.

The following example is used to illustrate to Theorem 3.1.

Example 3.1. Let X = Y = R2 and A = [0, 2]×{0} ⊆ R2. The set-valued map
F : X ⇒ Y on A is defined as follows:

F (x1, x2) := {(y1, y2) ∈ R
2| y1 = x1, 1 −

√
1 − (x1 − 1)2 ≤ y2 ≤ 1 +

√
1 − (x1 − 1)2} ∪ {(0, 0)},

where (x1, x2) ∈ A. Let x = (0, 0) and y = (0, 0). The set-valued map C : Y ⇒ Y is defined as

C(y) :=

{ {(y1, y2) ∈ R
2| y2 − y1 ≥ 0, y2 ≥ 0, y1 ≥ 0}, y ∈ Y \ {(1, 1

2 )}
{(y1, y2) ∈ R

2| y2 − y1 ≤ 0, y2 ≥ 0, y1 ≥ 0}, y = (1, 1
2 ).

It is easy to check that Conditions (i) and (ii) in Theorem 3.1 are satisfied. Therefore, for any

y ∈ F (A), there exists ϕ = (1, 1) ∈ (C(y))+ \ {(0, 0)} = {(y1, y2) ∈ R
2| y2 ≥ 0, y1 ≥ 0} \ {(0, 0)}

such that
〈(0, 0), ϕ〉 = 0 ≤ 〈y, ϕ〉 = y1 + y2, ∀(y1, y2) ∈ F (A).

Hence, ((0, 0), (0, 0)) is an optimal element of (SVOP)ϕ.

Theorem 3.2. Let C : Y ⇒ Y be a set-valued map with C(y) being a nontrivial
pointed convex cone and corC(y) �= ∅ for any y ∈ F (A). Let x ∈ A and y ∈ F (x).
Suppose that the following conditions hold.
(i) ϕ ∈ (C(y))+ \ {0} for any y ∈ F (A);
(ii) (x, y) is an optimal element of (SVOP)ϕ.
Then, (x, y) is a weakly nondominated element of (SVOP) w.r.t. C.

Proof. By Condition (ii), we have

〈y, ϕ〉 ≤ 〈y, ϕ〉,∀y ∈ F (A). (13)

Suppose that (x, y) is not a weakly nondominated element of (SVOP) w.r.t. C.
Then, there exists ỹ ∈ F (A) such that (F (A) − y) ∩ (−corC(ỹ)) �= ∅. Let

a ∈ (F (A) − y) ∩ (−corC(ỹ)). (14)
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It follows from (14) that there exists y1 ∈ F (A) such that

a = y1 − y ∈ −cor(C(ỹ)). (15)

By (15) and Lemma 2.3, we have

〈y1 − y, ϕ〉 < 0. (16)

On the other hand, it follows from (13) that 〈y1 − y, ϕ〉 ≥ 0, which contradicts
(16). Therefore, (x, y) is a weakly nondominated element of (SVOP) w.r.t. C. �

Remark 3.2. When C(y) = C for any y ∈ F (A), Theorem 3.2 reduces to the
sufficiency of Theorem 3.1 in [11].

The following example is used to illustrate to Theorem 3.2.

Example 3.2. In Example 3.1, let x = (0, 0) and y = (0, 0) ∈ F (0, 0). There
exists ϕ = (1, 1) ∈ (C(y))+ \ {0} = {(y1, y2) ∈ R2| y2 ≥ 0, y1 ≥ 0} \ {(0, 0)}.
Hence, Condition (i) in Theorem 3.2 holds. Clearly,

〈(0, 0), (1, 1)〉 = 0 ≤ 〈(y1, y2), (1, 1)〉 = y1 + y2,∀(y1, y2) ∈ F (A).

Therefore, Condition (ii) in Theorem 3.2 holds. It is easy to check

(F (A) − y) ∩ (−corC(y)) = ∅,∀y ∈ F (A).

Thus, (x, y) is a weakly nondominated element of (SVOP) w.r.t. C.

4 Duality

In this section, we will consider the duality problem of the constrained set-valued
optimization problem and present a weak and a strong duality theorem in sense
of weakly nondominated element.

Let Ŝ �= ∅ be a nonempty subset of X. Let D ⊆ Z be a nontrivial pointed
convex cone in Z. Let F : X ⇒ Y and G : X ⇒ Z be two set-valued map on Ŝ.
We consider the following constrainted set-valued optimization problem:

(CSVOP)

⎧
⎨

⎩

Min F (x)
G(x) ∩ (−D) �= ∅
x ∈ Ŝ.

The feasible set of (CSVOP) is denoted by S := {x ∈ Ŝ| G(x) ∩ (−D) �= ∅}.
Let C : Y ⇒ Y be a set-valued maps with C(y) being a nontrivial pointed

convex cone and corC(y) �= ∅ for any y ∈ Y . We write

C1 := {y ∈ Y |∃(ϕ, μ) ∈ (C(y)+\{0})×D+,∀d ∈
⋃

x∈Ŝ

(〈F (x), ϕ〉+〈G(x), μ〉), d ≥ 〈y, ϕ〉}.

Now, we give the definition of the weakly nondominated element of (CSVOP).
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Definition 4.1. Let x ∈ S and y ∈ F (x). x ∈ S is called a weakly nondominated
solution of (CSVOP) w.r.t C iff there exists C : Y ⇒ Y with C(y) being a
nontrivial pointed convex cone and corC(y) �= ∅ for all y ∈ F (S) such that
y ∈ WN(F (S), C(·)). (x, y) is called a weakly nondominated element of (CSVOP)
w.r.t. C.

Firsty, we present a weak duality theorem.

Theorem 4.1. For any y ∈ C1, there exists ϕ ∈ (C(y))+\{0} such that

〈y, ϕ〉 ≤ 〈y, ϕ〉,∀y ∈ F (S). (17)

Proof. Since y ∈ C1, there exists (ϕ, μ) ∈ (C(y)+\{0}) × D+ such that

d ≥ 〈y, ϕ〉,∀d ∈
⋃

x∈Ŝ

(〈F (x), ϕ〉 + 〈G(x), μ〉). (18)

By (18), we have

〈y, ϕ〉 + 〈z, μ〉 ≥ 〈y, ϕ〉,∀x ∈ S,∀y ∈ F (x),∀z ∈ G(x). (19)

According to μ ∈ D+, we have

〈z, μ〉 ≤ 0,∀z ∈ G(x) ∩ (−D). (20)

It follows from (19) and (20) that (17) holds. �

Remark 4.1. When set-valued maps F : X ⇒ Y and G : X ⇒ Z become
vector-valued maps f : X → Y and g : X → G, Theorem 4.1 reduces Theorem
4.5 in [6].

Next, we state the following strong duality theorem.

Theorem 4.2. C : Y ⇒ Y with C(y) being a nontrivial pointed convex cone
and corC(y) �= ∅ for all y ∈ C1. Suppose that the following conditions hold:

(i) (x, y) is a weakly nondominated element of (CSVOP);
(ii) F − y is nearly C(·)-subconvexlike on S;
(iii) There exists ϕ ∈ (C(y))+\{0} such that

〈y, ϕ〉 ≤ 〈y, ϕ〉,∀y ∈ F (S); (21)

(iv) For the above ϕ,

inf
⋃

x∈S

〈F (x), ϕ〉 = sup{inf
⋃

x∈Ŝ

(〈F (x), ϕ〉 + 〈G(x), μ〉)|μ ∈ D+}, (22)

and
sup{inf

⋃

x∈Ŝ

(〈F (x), ϕ〉 + 〈G(x), μ〉)|μ ∈ D+}

has at least one solution.
Then, y is a weakly max-nondominated element of C1 w.r.t. C.
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Proof. Since sup{inf
⋃

x∈Ŝ(〈F (x), ϕ〉 + 〈G(x), μ〉)|μ ∈ D+} has at least one
solution, it follows from (22) that there exists μ ∈ D+ such that

inf
⋃

x∈S

〈F (x), ϕ〉 = inf
⋃

x∈Ŝ

(〈F (x), ϕ〉 + 〈G(x), μ〉). (23)

By (21) and (23), we obtain

d ≥ inf
⋃

x∈S

〈F (x), ϕ〉 = 〈y, ϕ〉,∀d ∈
⋃

x∈Ŝ

(〈F (x), ϕ〉 + 〈G(x), μ〉). (24)

(24) shows that y ∈ C1. Therefore, y ∈ F (S) ∩ C1.
We assert that

c − y /∈ corC(c),∀c ∈ C1. (25)

Otherwise, there exists c ∈ C1 such that

c − y ∈ corC(c). (26)

According to (26) and Lemma 2.3, we have

〈c − y, ϕ′〉 > 0,∀ϕ′ ∈ (C(c))+ \ {0}. (27)

It follows from (27) that

〈c, ϕ′〉 > 〈y, ϕ′〉,∀ϕ′ ∈ (C(c))+ \ {0}. (28)

Since y ∈ F (S), (28) contradicts Theorem 4.1. Therefore, (25) holds. Thus, y is
a weakly max-nondominated element of C1 w.r.t. C. �

Remark 4.2. It follows from Theorem 3.1 that Conditions (i) and (ii) ensure
the existence of ϕ in Condition (iii).

Remark 4.3. Theorem 4.2 improves Theorem 4.6 [6] in the following two
aspects. First, the C(y)-convexity of f in Theorem 4.6 [6] has been replaced
by the nearly C(·)-subconvexlikeness of F − y in Theorem 4.2 which is much
weaker than the C(y)-convexity of f . Secondly, we delete the convexity of Ŝ and
D-convexity of G which is need in Assumption 4.1 of Theorem 4.6 [6].

5 Conclusions

In this paper, we studied weakly nondominated solutions of set-valued opti-
mization problems with variable ordering structures. We obtain some scalar-
ization characterizations and dual theorems. Our results are obtained in linear
spaces without any topological structure. In the future, we will investigate prop-
erly nondominated solutions of set optimization problems with variable ordering
structures in linear spaces.

Acknowledgements. The authors would like to express their thanks to two anony-
mous referees for their valuable comments and suggestions.
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The MaxIS-Shapley Value in Perfect
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Abstract. We investigate the application of the Shapley value to quan-
tifying the contribution of vertices to the maximum independent set
(MaxIS) in perfect graphs. The MaxIS problem in perfect graphs can
be computed in polynomial time. Many well-studied families of graphs
are perfect, for example, bipartite graphs, chordal graphs, forests, etc.
The Shapley value is a widely known numerical measure for assessing
the contribution of individuals. We study this measure in the context
of MaxIS by redefining corresponding concepts. We show that comput-
ing the Shapley value with respect to MaxIS in perfect graphs, bipartite
graphs, line graphs of bipartite graphs, chordal graphs is #P-complete.
We present parameterized algorithm and polynomial-time algorithm for
some special cases: perfect graphs whose vertices have a small number
of types, and graphs with maximum degree two. We also propose a fully
polynomial-time randomized approximation scheme (FPRAS) for gen-
eral perfect graphs.

Keywords: Shapley value · Maximum independent set · Perfect
graphs · Computational complexity · Algorithms

1 Introduction

1.1 Background

The independent set is a classic concept in graph theory. An independent set
in a graph is a vertex set that any two vertices in it are not connected. The
maximum independent set (MaxIS) is an independent set which has the largest
number of vertices among all independent sets and there may be more than one
MaxIS in a graph. Finding a MaxIS is a traditional research problem and has a
wide range of applications, for example, the MaxIS problem has been applied in
databases to handle inconsistency [17].

An inconsistent database is a database which violates some given integrity
constraints, for example, a database is inconsistent if there are two tuples which
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have the same credit card but different name. In most scenarios, each tuple has
the same weight. Therefore, we can view a database as a graph. A tuple in a
database can be viewed as a vertex in a graph. Two vertices are connected if
the tuples corresponded to them conflict with each other. A subset repair of the
database corresponds to a unique independent set [1]. An optimal subset repair
is the subset repair with minimum cost, where the cost is usually defined as the
number of the tuples deleted to make the database consistent. So, an optimal
subset repair corresponds to a unique MaxIS.

The computation of optimal subset repairs has attracted a lot of attention.
However, there are some scenarios that are overlooked: a database may have some
important tuples that should not be deleted although it is necessary to remove
these tuples to make the database consistent, and the number of the tuples
deleted should be limited to guarantee the reliability of the database. Existing
research results do not deal well with these situations. If the contribution of
tuples to the optimal subset repair can be quantified, we can give tuples priorities
and decide the amount or the order of tuples to be deleted. This problem equals
to quantifying the contribution of vertices to the MaxIS. A conventional approach
to dividing the contribution for a quantitative property (here the cardinality of a
MaxIS) among players (here the vertices) is the Shapley value, which is a highly
desirable solution concept for wealth distribution in cooperative games.

The Shapley value was named in honor of Lloyd Shapley [20], who introduced
it in 1951 and won the Nobel Memorial Prize in Economic Sciences for it in 2012.
It was proposed for the aim of allocating profits or wealth between players based
on a wealth function. The wealth function v accepts a set of players as its input
and outputs the profits or wealth these players can produce. To compute the
Shapley value of a player p, we consider all the permutations of all the players.
For each permutation, we view the set of players which appear in front of p as
S. The Shapley value of p is the average value of v(S ∪ {p}) − v(S).

With perfect properties (efficiency, symmetry, linearity, and dummy player
property), the Shapley value has been applied in many fields, such as answering
queries in database [15], assigning profits in economics [12], pollution respon-
sibility in ecology [19]. The Shapley value with respect to MaxIS can not only
work on optimal subset repair, but also deal with problems in other areas which
adopt MaxIS as the core technique, such as collusion detection [2], automated
map labeling [9], and social network analysis [10]. The Shapley value provides
a priority for each vertex and it works well when the vertices we can operate
is limited. The Shapley value with respect to MaxIS can be easily extended to
the Shapley value with respect to minimum vertex cover or maximum clique as
well. What’s terrible is that computing a MaxIS is a NP-hard problem [13], so
it is intractable to compute the Shapley value with respect to MaxIS in general
graphs as its formula involves computing MaxISs.

In this paper, we apply the Shapley value to quantifying the contribution of ver-
tices to MaxIS in perfect graphs. Perfect graph is a class of graph in which the chro-
matic number of every induced subgraph equals the order of the largest clique of
that subgraph (clique number).TheMaxISproblem inperfect graphs canbe solved
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in polynomial time [11]. Perfect graphs contain a variety of famous subclasses, such
as bipartite graphs, chordal graphs, comparability graphs, forests. These graphs
correspond toa lot of real-world scenarios.TheShapleyvaluewith respect toMaxIS
in perfect graphs will have many real-world applications.

1.2 Related Work

The complexity and algorithmic issues of computing the Shapley value in coop-
erative games have been the topic of detailed studies, varieties of results are
presented. Computing the Shapley value in a number of cooperative games has
been proved to be intractable, such as weighted voting games [16], weighted
majority games [8]. On the other hand, Deng and Papadimitriou [8] and Ieong
and Shoham [14] presented polynomial-time algorithms to compute the Shapley
value in weighted subgraph games and marginal contribution nets respectively.

In recent years, computing the Shapley value in matching games has attracted
much attention, which is established on optimal matching problems. Deng et al. [7]
showed that the core was characterized efficiently by the dual theorem and prob-
lems related to the core and the least core of matching games can be easily solved.
Aziz and Keijzer [3] showed that computing the Shapley value of matching games
can be computed in polynomial time when restricted on paths or graphs with a
constant number of clique or coclique modules. Based on the results of Aziz and
Keijzer, Zhao et al. [23] showed that the Shapley value of threshold cardinality
matching games can be computed in polynomial time when graphs are restricted
to some special graphs, such as linear graphs and complete k-partite graphs.

1.3 Contribution

We study the algorithmic aspects and computational complexity of computing
the MaxIS-Shapley value in perfect graphs. For better application of Shapley
value, we redefine some corresponding concepts. We show that computing the
MaxIS-Shapley value in perfect graphs, bipartite graphs, line graphs of bipartite
graphs, chordal graphs is #P-complete. The proofs are by Turing reductions
from three classic #P-complete problems. We present a parameterized algorithm
for perfect graphs whose vertices have a small number of types, a polynomial-
time algorithm for graphs of maximum degree two, a fully polynomial time
randomized approximation scheme (FPRAS) for general perfect graphs.

2 Preliminaries

The Shapley value is a solution concept in cooperative game theory. A cooper-
ative game consists of a set A of n players and a characteristic function v that
maps subsets of players to the real numbers: 2A → R. The Shapley value mea-
sures the share of each individual player a ∈ A in v(A). Let σ be a permutation
over the players in A and σa be the set of players that appear before a in σ.
We refer to the value v (σa ∪ {a}) − v (σa) as the marginal contribution of a to
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σ. The Shapley value of a player a ∈ A in a cooperative game is denoted by
Shapley(A, v, a) and is defined as follows, where ΠA is the set of all possible
permutations over the players in A.

Shapley(A, v, a) def=
1

|A|!
∑

σ∈ΠA

(v (σa ∪ {a}) − v (σa)) (1)

Let G = (V,E) be a perfect graph and va be a vertex of G. For S ⊆ V , we
denote by G(S) the subgraph of G induced by S, i.e., the graph (S, {e ⊆ E :
e ⊆ S × S}). The size of a MaxIS in G is called the independence number of G
and is usually denoted by α(G). We denote the Shapley value with respect to
MaxIS as MaxIS-Shapley value. The MaxIS-Shapley value of va in G is denoted
by Shapley(G,α, va) and is defined as follows.

Shapley(G,α, va) def=
∑

S⊆V \{va}

|S|! · (|V | − |S| − 1)!
|V |! (α(G(S ∪{va}))−α(G(S)))

(2)
In this paper, we view G as consisting of two types of vertices: general vertices

and stable vertices. Stable vertices stand for the vertices that we do not have per-
mission to operate and are assumed not to claim any contribution or responsibil-
ity to the MaxIS of G. We denote by X the set of all stable vertices. For a perfect
graph G = (V,E) with stable vertices, the formula for MaxIS-Shapley value is
the following, where α(G,X, S, va) stands for α(G(X ∪S∪{va}))−α(G(X ∪S)).

Shapley(G,α, va) =
∑

S⊆V \(X∪{va})

|S|! · (|V \ X| − |S| − 1)!
|V \ X|! α(G,X, S, va) (3)

Lemma 1. Adding a vertex to a graph can only change the size of a MaxIS by
0 or 1. The MaxIS-Shapley value of a vertex is 1 if and only if this vertex is not
adjacent to any other vertices.

Therefore, computing the MaxIS-Shapley value is a counting problem.

3 Computational Complexity

In this section, we examine the computational complexity of computing the
MaxIS-Shapley value in perfect graphs. As computing the MaxIS-Shapley value
is a counting problem, it is easy to see that this problem is a member of the
complexity class #P. We want to prove this problem is also a member of the
complexity class #P-complete. Instead of investigating the computational com-
plexity of computing the MaxIS-Shapley value in perfect graphs, we study it
in three common subclasses of perfect graphs, bipartite graphs, line graphs of
bipartite graphs and chordal graphs.

Theorem 1. Computing the MaxIS-Shapley Value in bipartite graphs is #P-
complete.
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Proof. Theproof is by aTuring reduction from the problemof computing theTutte
polynomial T (U , 2, 1) on transversal matroids. The input of this problem is an
undirected and unweighted bipartite graph G = (I ∪S,E), the output is the num-
ber of B ⊆ S, such that the size of a maximum cardinality matching in G(I ∪ B)
equals the size of B. Colbourn et al. proved this problem is #P-complete [6].

Fig. 1. Constructions in the reduction of the proof of Theorem 1.

The reduction is illustrated in Fig. 1. Given an undirected and unweighted
bipartite graph G = (I ∪S,E), we construct n+1 graphs by adding new vertices
and edges to G, where n = |S|. For the i-th graph Gi, we add i independent
vertices to S. Then we add an vertex v to I and make it connected to all vertices
in S.

Next, we compute the MaxIS-Shapley value of v in Gi. We assume that all
the vertices in I \ {v} are stable vertices. According to the formula of MaxIS-
Shapley value, the core part is computing the number of B ⊆ S, such that
α(Gi(I∪B))−α(Gi(I\{v}∪B)) = 1. To make α(Gi(I∪B))−α(Gi(I\{v}∪B)) =
1, all the MaxISs in Gi(I ∪ B) should contain v. Then, I must be a MaxIS in
Gi(I ∪ B). I \ {v} is a MaxIS in Gi(I \ {v} ∪ B). According to Kőnig’s theorem,
the size of a maximum cardinality matching in Gi(I \{v}∪B) equals |B|. Thus,
the number of B is the output of T (U , 2, 1).

We split T (U , 2, 1) into n terms: T (U , 2, 1) =
∑n

k=0 T k(U , 2, 1). Each term
T k (U , 2, 1) computes the number of B ⊆ S, such that the size of a maximum
cardinality matching in G(I ∪ B) equals |B| and |B| = k.

The MaxIS-Shapley value of v in Gi can be computed as following.

Shapley(Gi, α, v) =
1

(n + i + 1)!

n∑

k=0

T k(U , 2, 1) · k! · (n − k + i)! (4)
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Since we construct n+1 bipartite graphs based on G, we can get the following
system of equations, where each Si stands for Shapley(Gi, α, v):

⎛

⎜⎜⎜⎝

0!(n + 1)! 1!n! . . . n!1!
0!(n + 2)! 1!(n + 1)! . . . n!2!

...
...

...
...

0!(2n + 1)! 1!(2n)! . . . n!(n + 1)!

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

T 0(U , 2, 1)
T 1(U , 2, 1)

...
Tn(U , 2, 1)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

(n + 2)!S1

(n + 3)!S2

...
(2n + 2)!Sn+1

⎞

⎟⎟⎟⎠

(5)
We denote the (n + 1) × (n + 1) matrix in the above systems of equations as

M . We divide each column j of M by j! and reverse the order of the columns.
Bacher [4] proved this matrix is non-singular. We can use Gaussian elimination
to obtain each unique T k(U , 2, 1) in O(n3) time, and then, compute T (U , 2, 1)
in linear time.

Lemma 2. Given an undirected and unweighted bipartite graph G, let L(G) be
the line graph of G, v be a vertex in L(G), and e be an edge corresponding to v in
G. Computing the MaxIS-Shapley value of v in L(G) is equivalent to computing
the MaxCM-Shapley value of e in G.

Proof. We denote the Shapley value of an edge with respect to maximum car-
dinality matching (MaxCM) as MaxCM-Shapley value. There is a one-to-one
correspondence between the vertex sets of L(G) and the edge sets of G. Let S1

be a vertex set of L(G) and S2 be an edge set corresponding to S1 in G. If S1

is a independent set of L(G), S2 must be a matching of G, and they have same
size. As computing the MaxIS-Shapley value (MaxCM-Shapley value) can be
reduced to computing the number of permutations in which a vertex’s(edge’s)
marginal contribution doesn’t equal 0, the lemma is proved.

Theorem 2. Computing the MaxCM-Shapley Value in bipartite graphs is #P-
complete.

Theorem 3. Computing the MaxIS-Shapley Value in chordal graphs is #P-
complete.

The proofs of Theorem 2 and Theorem 3 can be found in the Appendix.

4 Algorithms

As computing the MaxIS-Shapley value in perfect graphs has been proved to be
#P−complete in Sect. 3, it is difficult to propose polynomial-time algorithms. In
this section, we propose efficient algorithms for special graphs and approximate
algorithm for general perfect graphs.

For the sake of concise representation of the algorithms, we assume that
graphs are connected. So we need to prove that computing the MaxIS-Shapley
value in a disconnected graph can be reduced to computing the MaxIS-Shapley
value in a connected component.
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Lemma 3. Let G = (V,E) be a disconnected graph with k connected compo-
nents: G1 = (V1, E1), G2 = (V2, E2), ..., and Gk = (Vk, Ek). Let v be a vertex
in Gi. Then, Shapley(G,α, v) = Shapley(Gi, α, v).

Proof. The MaxIS-Shapley value is equivalent to the problem of computing the
average marginal contribution of v in all permutations. We can generate the
permutations of V based on the permutations of Vi. For each permutation π of
Vi, we can generate (|Vi| + 1) · (|Vi| + 2) . . . |V | permutations by inserting each
vertex in V \ {Vi} into π one by one. Let τ be a permutation generated by π.
We denote by τv the set of vertices that appear before v in τ , and πv the set of
vertices that appear before v in π. Then, the following holds.

α(G(τv ∪ {v})) − α(G(τv))
= (α(G(πv ∪ {v})) + α(G(τv \ πv)))

− (α(G(πv)) + α(G(τv \ πv)))
= α(G(πv ∪ {v})) − α(G(πv))
= α(Gi(πv ∪ {v})) − α(Gi(πv))

(6)

Therefore, the following holds.

Shapley(Gi, α, v)

=
1

|Vi|!
∑

σ∈ΠVi

(α (Gi(σv ∪ {v})) − α (Gi(σv)))

=
(|Vi| + 1) . . . |V |

|Vi|! · (|Vi| + 1) . . . |V |
∑

σ∈ΠVi

(α (Gi(σv ∪ {v})) − α (Gi(σv)))

=
1

|V |!
∑

σ∈ΠV

(α (G(σv ∪ {v})) − α (G(σv)))

= Shapley(G,α, v)

(7)

4.1 Parameterized Algorithm

Ueda et al. [21] showed that computing the Shapley value of any player can be
done in polynomial time by using a type-based characteristic function represen-
tation. Our algorithm is based on this technique. At first, we need to know how
to partition vertices into different types.

Lemma 4. Let vi, vj be two vertices in a perfect graph G = (V,E). If N(vi) \
{vj} = N(vj) \ {vi} where N(v) = {u ∈ V : (u, v) ∈ E}, then α(G(S ∪ {vi})) =
α(G(S ∪ {vj})) for every S ⊆ V \ {vi, vj}.
Proof. For any independent set of G(S ∪{vi}) which contains vi, if we replace vi

with vj , it is still an independent set. Therefore, α(G(S∪{vi})) = α(G(S∪{vj})).
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Algorithm 1: Partition Algorithm 1
Input: A perfect graph G = (V, E) and V = {v1, v2, . . . , vn}
Output: A size k partition

1 k = 1;
2 S1 = {v1};
3 for i = 2 to n do
4 find =False;
5 for j = 1 to k do
6 Let vx be a vertex in Sj ;
7 if vx and vi are adjacent and N(vi) \ {vx} = N(vx) \ {vi} then
8 find =True;
9 Sj = Sj ∪ {vi};

10 break;

11 if find == False then
12 k = k + 1;
13 Sk = {vi};

14 return {S1, S2, . . . , Sk}.

According to Lemma 4, there are two partition algorithms. The first is shown
in Algorithm 1. We can obtain the second partition algorithm by replacing the
condition in line 7 with N(vi) = N(vx).

Both algorithms take only polynomial time. The following figure shows the
results of two algorithms executed on the same perfect graph. Vertices of same
type have same color. We choose the partition with a smaller size of the two
algorithms, here is 3 (Fig. 2).

Fig. 2. The results of two partition algorithms executed on a perfect graph G = (V, E).
(Color figure online)

We denote each S ⊆ V as a vector 〈t1, t2, t3〉. For example, S = {v1, v3} can
be denoted as 〈1, 1, 0〉 because S contains one vertex of type 1, one vertex of
type 2, and no vertex of type 3. Thus, 64 possible S can be represented by 24
vectors. For a perfect graph G with a size k partition, we denote each set of
vertices of G as a vector 〈t1, t2, . . . , tk〉. Let ni be the number of vertices of type
i and va be a vertex of type k in G, the function c(〈t1, t2, . . . , tk〉) is defined as
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follows where t stands for t1 + t2 + . . . + tk and n stands for n1 + n2 + . . . + nk.

c(〈t1, t2, . . . , tk〉) =
(

n1

t1

)(
n2

t2

)
. . .

(
nk − 1

tk

)
t!(n − t − 1)!

n!
(8)

Let G(〈t1, t2, . . . , tk〉) be an induced subgraph of G which contains t1 vertices
of type 1, t2 vertices of type 2, . . ., tk vertices of type k. G(〈t1, t2, . . . , tk〉) is not
unique. The function ϕ(〈t1, t2, . . . , tk〉) is defined as follows.

ϕ(〈t1, t2, . . . , tk〉) = α(G(〈t1, t2, . . . , tk〉 ∪ {va})) − α(G(〈t1, t2, . . . , tk〉)) (9)

The MaxIS-Shapley value of va can be computed by the following formula.

Shapley(G,α, va) =
n1∑

t1=0

n2∑

t2=0

. . .

nk−1∑

tk=0

c(〈t1, t2, . . . , tk〉)ϕ(〈t1, t2, . . . , tk〉) (10)

If we denote the time of computing the MaxIS of a perfect graph as
O(poly(n)) and assume that k is a constant, the MaxIS-Shapley value can be
computed in O(poly(n) · nk) time.

4.2 O(n4) Algorithm for Graphs of Degree at Most Two

A graph with degree at most two is a disjoint union of cycles and linear graphs.
Our algorithm takes the approach that Aziz and Keijzer [3] used for computing
the Shapley value of a player in a matching game on an unweighted linear graph:
subdivide the problem in separate cases and take the sum of them. For the sake
of brevity, our algorithm takes a special case, a linear graph for example.

Let G = (V,E) be a linear graph, where V = {vj : 1 ≤ j ≤ n} and E =
{{vj , vj+1} : 1 ≤ j ≤ n−1}. Let [n] be the set of {j : 1 ≤ j ≤ n}. For any vertex
vi ∈ V , let P s

i be the number of B ∈ V \{vi} of size s, for which α(G(B∪{vi})−
α(G(B)) = 1. We subdivide P s

i as ps,left
i + ps,right

i + ps,connect
i + ps,isolated

i .

– Define P s,left
i (k) to be the number of B ∈ V \{vi} of size s for which α(G(B∪

{vi}) − α(G(B)) = 1 and B contains the line segment {vi+1, vi+k+1}, but
does not contain {vi−1, . . . , vi+k+2}. As adding a vertex to the left of a (non-
empty) line segment L increases the size of a MaxIS if and only if L has an
even number of vertices, we can compute P s,left

i as follows.

P s,left
i (k) =

⎧
⎨

⎩

0 if k is even,( |[n]\{i − 1, . . . , i + k + 2}|
s − |{i + 1, . . . , i + k + 1} ∩ [n]|

)
otherwise. (11)

Define P s,left
i to be

∑max(n−i−1,s−1)
k=1 ps,left

i (k).
– P s,right

i (k) and P s,right
i can be computed in a similar way.
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– Define P s,connect
i (k1, k2) to be the number of B ∈ V \ {vi} of size s

for which α(G(B ∪ {vi}) − α(G(B)) = 1 and B contains the line seg-
ments {vi−k1−1, . . . , vi−1} and {vi+1, . . . , vi+k2+1}, but does not contain
{vi−k1−2, vi+k2+2}. As a vertex increases the size of a MaxIS of the union
of two line segments L1 and L2 by connecting L1 and L2 if and only if L1 and
L2 both have an even number of vertices, we can compute P s,connect

i (k1, k2)
as follows.

P s,connect
i (k1, k2) =

⎧
⎨

⎩

0 if k1 is even or k2 is even,( |[n]\{i − k1 − 2, . . . , i + k2 + 2}|
s + 1 − |{i − k1 − 1, . . . , i + k2 + 1} ∩ [n]|

)

otherwise.

(12)
We can then define P s,connect

i as the sum of all possible P s,connect
i (k1, k2):

P s,connect
i =

max(i−2,s−1)∑

k1=1

max(n−i−1,s−k1−2)∑

k2=1

P s,connect
i (k1, k2) (13)

– Define P s,isolated
i to be the number of B ∈ V \ {vi−1, vi, vi+1} of size s.

P s,isolated
i is easy to determine:

P s,isolated
i =

( |[n]\{i − 1, i, i + 1}| ) (14)

Hence, we have that:

Shapley(G,α, vi) =
n−1∑

s=0

s! · (n − s − 1)!
n!

ps
i (15)

It is easy to see that computing Shapley(G,α, vi) takes O(n4) time. Our
algorithm is easily extended to a cycle. It is worth noting that a cycle of odd
length greater than three is not a perfect graph according to the strong perfect
graph theorem [5]. But our algorithm still works. From Lemma 3, the MaxIS-
Shapley value in graphs with maximum degree 2 can be computed in polynomial
time.

4.3 Approximation Algorithm

Our approximation algorithm works as a Fully Polynomial-Time Randomized
Approximation Scheme(FPRAS). Let f be a numeric function and x be the
input of f , a FPRAS is an algorithm for f that returns an ε-approximation of
f(x) with probability at least 1 − δ where ε, δ ∈ (0, 1). The running time of a
FPRAS is required to be polynomial in x, 1/ε, and log(1/δ). Our FPRAS is
shown in Algorithm 2.

Using the Chebyshev’s inequality, we easily prove that it is an FPRAS. The
proof can be found in the Appendix.
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Algorithm 2: Approximation Algorithm
Input: A perfect graph G = (V, E)(|V | = n) and a specified vertex vi ∈ V
Output: Shapley(G, α, vi)

1 sv = 0;
2 if N(vi) == ∅ then
3 sv = 1;

4 else if N(vi) == V \ {vi} then
5 sv = 1/n;

6 else
7 for i = 1 to

⌈
6n2(n − 1)2/ε2

⌉
do

8 Select a random permutation π over V .
sv = sv + α(G(πvi ∪ {vi})) − α(G(πvi);

9 sv = sv/
⌈
6n2(n − 1)2/ε2

⌉

10 return sv;

5 Conclusion

In this paper, we apply the Shapley value to quantify the contribution of vertices
to the MaxIS in perfect graphs. We prove that computing the Shapley value with
respect to MaxIS in perfect graphs, bipartite graphs, line graphs of bipartite
graphs, chordal graphs is #P-complete. We propose a parameterized algorithm
and a polynomial-time algorithm for some special cases: perfect graphs whose
vertices have a small number of types, graphs with maximum degree two. Finally,
we present a fully polynomial time randomized approximation scheme (FPRAS)
for general perfect graphs.

In the future, we plan to obtain the computational complexity of the MaxIS-
Shapley value in other subclasses of perfect graphs, like forests.

Appendix A

Proof of Theorem 2. The proof is by a Turing reduction from #PERFECT
MATCHINGS. The input of this problem is a bipartite graph G with 2n nodes,
the output is the number of perfect matchings. Valiant [22] proved this problem
is #P-complete.
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Fig. 3. Constructions in the reduction of the proof of Theorem 2.

The reduction is illustrated in Fig. 3. Given a bipartite graph G = (I ∪
S,E)(|I| = |S|), we construct n + 1 graphs by adding new vertices and edges to
G, where n = |E|. For the i-th graph Gi, we add i independent vertices to S.
Then we add an vertex v to I and make it connected to all vertices in S. Finally,
we add an vertex v′ to S and make it connected to all vertices in I.

Next, we compute the MaxCM-Shapley value of e in Gi. We assume that
all the edges which connect only one black vertex are stable edges. We need to
compute the number of B ⊆ E, such that there exists a MaxCM in the spanning
subgraph of Gi with edge set B ∪ X that doesn’t have commom vertex with e.
Then, B should be a subset of E in G and contain a perfect matching of G.
Otherwise, every MaxCM in the spanning subgraph of Gi with edge set B ∪ X
that would have commom vertex with e.

We define a counting problem #CPM: Given a bipartite graph G = (I ∪ S,E)
(|I| = |S|), compute the number of B ⊆ E, such that B contains a perfect match-
ing of G. We split #CPM into n terms: #CPM =

∑n
k=0 #CPMk. Every item

#CPMk computing the number of B ⊆ E, such that B contains a perfect match-
ing of G and |B| = k. Thus, #CPM|I| is equivalent to #PERFECT MATCH-
INGS. The MaxCM-Shapley value of e in Gi can be computed as follows, where
Shapley(Gi, |MaxCM |, e) stands for the MaxCM-Shapley value of e in Gi.

Shapley(Gi, |MaxCM |, e) =
1

(n + i + 1)!

n∑

k=0

#CPMk · k! · (n − k + i)! (16)

Since we construct n+1 bipartite graphs based on G, we can get the following
system of equations, where each Si stands for Shapley(Gi, |MaxCM |, e).

⎛

⎜⎜⎜⎝

0!(n + 1)! 1!n! . . . n!1!
0!(n + 2)! 1!(n + 1)! . . . n!2!

...
...

...
...

0!(2n + 1)! 1!(2n)! . . . n!(n + 1)!

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

#CPM0

#CPM1
...

#CPMn

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

(n + 2)!S1

(n + 3)!S2

...
(2n + 2)!Sn+1

⎞

⎟⎟⎟⎠

(17)
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The (n+1)× (n+1) matrix in the above equation is the same as the matrix
in (5). We can obtain a unique #CPM|I| in O(n3) time by Gaussian elimination.

Proof of Theorem 3. The proof is by a Turing reduction from #SET COVERS.
Let X be a finite set, and S ⊆ 2X be a family of subsets of X. A set cover of
X is a subfamily F ⊆ S such that

⋃ F = X. The output of #SET COVERS
is the number of set covers of X. Provan and Ball [18] proved this probelem is
#P-complete.

The idea is similar with Theorem 2 and Theorem 3. Given a finite set X
and a family of subsets S for which we wish to compute #SET COVERS, we
construct n + 1 chordal graphs, where n = |S|. The construction process of the
i-th graph is as follows:

Step 1. For each element in X, we build a vertex. We build an edge between
every two vertices.

Step 2. For each subset of X in S, we build a vertex and let it connected to
the vertices in Step 1 that it contains.

Step 3. We build a vertex v and make it connected to all vertices in Step 1.
Step 4. We build i independent vertices and make them connected to v.
Next, we compute the MaxIS-Shapley value of v in Gi. We assume that

all the vertices in Step 1 are stable vertices. We need to compute the number
of B, such that B doesn’t contain v and stable vertices, and there exists a
MaxIS in Gi(B) in which every vertex isn’t connected to v. According to our
constructions, the number of B equals the output of #SET COVERS. We regard
#SET COVERS as the sum of n terms: #SET COVERS =

∑n
k=0 #SCk. Each

term #SCk computes the number of set covers with size k.
The MaxIS-Shapley value of v in Gi can be computed as follows.

Shapley(Gi, α, v) =
1

(n + i + 1)!

n∑

k=0

#SCk · k! · (n − k + i)! (18)

Since we construct n + 1 chordal graphs based on the input of #SET COV-
ERS, we can get a system of equations like (5). We can obtain each #SCk

in polynomial time (e.g., via Gaussian elimination), and then, compute #SET
COVERS in linear time.

Theorem 4. Algorithm 2 is an FPRAS.

Proof. If we denote α(G(πvi
∪ {vi})) − α(G(πvi

) as X, the following holds.

E[X] = Shapley(G,α, vi) (19)

If vi has n − 1 neighbors, Algorithm 2 is certainly an FPRAS. We assume
that vi has at most n − 2 neighbors. Let v′ be not a neighbor of vi. There are
(n − 2)! permutations which satisfy the conditions that v′ is in the first position
and vi is in the second position. Therefore:

(n − 2)!
n!

≤ Shapley(G,α, vi) (20)
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Therefore, the following holds.

Var[X] = E[X2] − E[X]2

≤ E[X2] ≤ 1 =
(n!)2

(n!)2

≤ n2(n − 1)2 Shapley(G,α, vi)2

(21)

Let Y =
∑
6n2(n−1)2/ε2�

j=1 Xj

�6n2(n−1)2/ε2� , where Xj are independent random variables with
the same distribution as X. Hence, we have that:

E[Y ] = E[X] = Shapley(G,α, vi) (22)

Using the Chebyshev’s inequality, the following holds, where Shapley stands
for Shapley(G,α, vi).

Pr[|Y − E[Y ]| ≥ εE[Y ]]
= Pr[|Y − Shapley | ≥ εShapley]

≤ Var[Y ]
ε2 Shapley2 =

Var
[

1
�6n2(n−1)2/ε2�

∑[6n2(n−1)2/ε2�
j=1 Xj

]

ε2Shapley2

=

(
Var[X]

�6n2(n−1)2/ε2�
)

ε2 Shapley2

≤ n2(n − 1)2 Shapley2


6n2(n − 1)2/ε2� · ε2 Shapley2

=
1
6

(23)

It is easy to see that Algorithm 2 is an FPRAS.
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Abstract. An independent set of three vertices is called an aster-
oidal triple (AT) if there exists a path between any two of them that
avoids the neighborhood of the third. Asteroidal triple-free (AT-free)
graphs are very well-studied, but some of their various superclasses are
not. We study two of these superclasses: hereditary dominating pair
(HDP) graphs and diametral path graphs. We correct a mistake that
has appeared in the literature claiming that the class of diametral path
graphs are a superclass of HDP. More specifically, we show that a graph
with a dominating shortest path does not necessarily contain a dominat-
ing diametral path. We say a graph is a strict dominating pair graph if it
contains a dominating pair but has no dominating diametral path, and
we show structural and algorithmic properties of these graphs. To study
properties of HDP graphs, we introduce the notion of spread in asteroidal
triples. Given a dominating pair, we show that all paths between this pair
meet the common neighborhood of some pair from each asteroidal triple.
We use these results to improve the best known time complexity for the
recognition of chordal HDP graphs.

Keywords: asteroidal triple · hereditary dominating pair · diametral
path · chordal · distance

1 Introduction

Asteroidal triple-free (AT-free) graphs capture a common property which
imposes the linearity we see in a multitude of classic graph classes. For exam-
ple, asteroidal triples are forbidden in interval, permutation, and trapezoidal
graphs. A famous result by Lekkerkerker and Boland [12] states that interval
graphs are exactly the class of chordal AT-free graphs. Several problems that
are NP-Complete in general have been shown to have polynomial-time solutions
on AT-free graphs, including independent set and feedback vertex set
[2,9]. The recognition of AT-free graphs is known to be polynomial [10]. Corneil,
Olariu and Stewart [3] showed that AT-free graphs have two key properties: First,
all AT-free graphs have a dominating pair, a set of two vertices such that any
path between them dominates the vertex set of the graph. Second, all AT-free
graphs have a dominating diametral path. Because the class of AT-free graphs is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14461, pp. 211–225, 2024.
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hereditary, these two properties hold true for all connected, induced subgraphs
of any AT-free graph. Later, these two properties were generalized to their own
graph classes by Deogun and Kratsch [4,5].

The class of dominating pair graphs is the largest graph class for which
the dominating pair property is hereditary. Dominating pair graphs that have
asteroidal triples were investigated by Pržulj, Corneil, and Köhler [13], where
the name hereditary dominating pair (HDP) was introduced. We will use the
term HDP when referring to dominating pair graphs in order to better distin-
guish them from the weaker class of graphs that have a dominating pair but do
not necessarily have a dominating pair in every connected, induced subgraph.
Polynomial-time algorithms for steiner sets, minimum connected dominat-
ing sets exist for HDP graphs [1]. Dominating set and total dominating
set have also been solved in polynomial-time [11] on graphs with dominating
shortest path. In a general sense, HDP graphs may find an intuitive applica-
tion as a topology for wireless, ad hoc networks or critical systems [5] because
communication may be less susceptible to disruption.

A graph is diametral path if it contains a dominating diametral path in every
connected, induced subgraph. Recently, rainbow vertex coloring was stud-
ied on the class of diametral path graphs, drawing parallels to encryption and
data security [7]. Although it has been claimed that a graph with a dominating
shortest path also has a dominating diametral path [4,14] and this has been
referred to in other literature [6], we show a counterexample. If a graph contains
a dominating pair but has no dominating diametral path, then the graph is strict
dominating pair.

In Sect. 3, we analyze strict dominating pair graphs. We prove that the diam-
eter of these graphs is close to the distance of a dominating pair, a result that
can be used to quickly compute the diameter if given a dominating pair. We give
a necessary condition (Theorem 1) to be in strict dominating pair. We show that
strict dominating pair graphs have diameter 3, 4, or have an asteroidal number
of at least 4.

In Sect. 4, we introduce the notion of spread in asteroidal triples. We show
that HDP graphs may not contain asteroidal triples with 3-spread. Intuitively
speaking, an asteroidal triple without 3-spread has a pair of vertices that remain
“close” in every connected, induced subgraph that contains the given asteroidal
triple. So, 3-spread describes a hereditary structure that can be exploited to
design algorithms, such as identifying cut sets or points of weakness of a network.
This allows us to improve the run-time complexity for the recognition of chordal
HDP graphs.

2 Preliminaries

Our graph theory notation basically follows that of Golumbic [8]. By G we
denote a simple, undirected, and finite graph with n vertices. The vertex set of
G is denoted by V and the edge set of G is denoted by E. For any x ∈ G let
N(x) = {y : {x, y} ∈ E} be the (open) neighborhood of x and N [x] = N(x)∪{x}
the closed neighborhood of x.
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A set S ⊆ V dominates a set T ⊆ S if every vertex in T is contained in the
closed neighborhood of S. We write u ∼ v to indicate that vertices u and v are
adjacent. More generally, we write u ∼ S if there exists v ∈ S such that u ∼ v.
We denote by CN (S) the common neighborhood of S. i.e.

CN (S) =
⋂

v∈S

N(v).

A sequence of vertices P = 〈u = x0, x1, . . . , xk−1, xk = v〉 is called a walk if xi ∼
xi+1 for all i ∈ {0, 1, . . . , k − 1}. We say P is a path if the vertices x0, x1, . . . , xk

are all distinct. A walk with endpoints u and v may be called a u, v-walk. If v ∼ v′

then we denote by P−v′ the walk 〈u = x0, x1, . . . , xk−1, xk = v, v′〉. Similarly,
if P = 〈x0, x1, . . . , xk〉 and P ′ = 〈y0, y1, . . . , yq〉 are walks and xk ∼ y0, then we
let P−P ′ = 〈x0, . . . , xk, y0, . . . , yq〉. We write P [xi, xj ] where (0 ≤ i ≤ j ≤ k) for
the subwalk 〈xi, . . . , xj〉 of P . It is well known that every walk contains a path.
In other words, we can extract a u, v-path from the vertex set of every u, v-walk.
The length of a path is the number of edges it contains.

We say a walk P meets some set S if P ∩S 
= ∅ and that P avoids S if P ∩S =
∅. The notation dG(u, v) denotes geodesic distance, the length of a shortest path,
between the vertices u and v. The diameter of G, denoted also as diam(G), is the
greatest geodesic distance between any two vertices in G. Formally, diam(G) =
max{dG(u, v) : u, v ∈ G}. A diametral pair is a pair of vertices (u, v) such that
dG(u, v) = diam(G). A diametral vertex is any vertex that belongs to a diametral
pair, and a diametral path is any path whose endpoints form a diametral pair.
We use the following generalization of asteroidal triples:

Definition 1. An asteroidal set S is an independent set of at least three vertices
such that, for every vertex v ∈ S, there exists a path between any two remaining
vertices of S \ {v} that avoids N [v]. We call such a path an asteroidal path.
The cardinality of the largest asteroidal set in a graph is known as the asteroidal
number of that graph, denoted by an(G). An asteroidal triple is an asteroidal
set of size 3.

Definition 2. Two vertices a and b form a dominating pair (a, b) if every a, b-
path dominates G. A dominating pair path is any path between a dominating
pair of vertices. A graph is called a hereditary dominating pair graph (HDP) if
every connected, induced subgraph has a dominating pair.

It is simple to see that a graph with a dominating pair contains a dominating
shortest path. We introduce the notion of spread as a characteristic of certain
asteroidal triples.

Definition 3. An asteroidal triple has k-spread if between any pair of vertices in
the triple there is an induced path of length at least k that avoids the neighborhood
of the third.
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Fig. 1. On the left, a strict dominating pair graph where (a, b) is a dominating pair
and the white vertices form an asteroidal set of size 4. On the right, a diametral path
graph that does not contain a dominating pair

3 Dominating Pairs and Diametral Paths

In this section, we study the structural discrepancy between graphs with domi-
nating pairs and graphs with dominating diametral paths. We state new results
on the relationship between the two properties and expressly state conditions
for when a graph is strict dominating pair. We begin with a correction to the
assumption in past literature that any graph with a dominating shortest path
contains a dominating diametral path.

Proposition 1. A graph with a dominating shortest path does not necessarily
contain a dominating diametral path.

Proof. See the left graph in Fig. 1 for an example. The pair (a, b) is a dominating
pair, and thus every shortest a, b-path is dominating. Notice that (a, b) is not
diametral. It is easy to verify that no dominating diametral path exists. �

With respect to the HDP and diametral path graph classes, both are super-
classes of AT-free graphs, yet by Proposition 1 neither is a superclass of the
other. To prepare for our main results, we present several results that relate the
diameter of G to the distance between any dominating pair.

Lemma 1. Let (a, b) be a dominating pair. There exists a diametral pair with
one vertex contained in N [a] and the other contained in N [b].

Proof. Let P be a shortest a, b-path of the form 〈a = x0, x1, . . . , xk = b〉, i.e.
dG(a, b) = k. Pair (a, b) is not diametral, otherwise we are done. Let (d1, d2) be
a diametral pair. Certainly d1, d2 are adjacent to P because P is a dominating
path by definition of dominating pair (a, b). If d1 ∼ 〈x1, . . . , xk−1〉 and d2 ∼
〈x1, . . . , xk−1〉 then dG(d1, d2) ≤ k, a contradiction. Therefore, at least one of d1
and d2 is adjacent to a or b. If d1 ∼ a and d2 ∼ b then we are done; therefore,
w.l.o.g. suppose d1 ∼ x1 and d2 ∼ b. If dG(d1, d2) = dG(a, d2) then (a, d2) is
diametral s.t. d2 ∈ N(b), and we are done. Notice that dG(a, d2) = k + 1. So,
there exists an a, d2-path Q of length k. Let Q = 〈a = u0, u1, . . . , uk = d2〉. The
path Q−b must be dominating and d1 
∼ b, so d1 ∼ Q. We let d1 ∼ ui where
i > 0. Now dG(d1, d2) ≤ 1 + (k − i) < k, a contradiction to the diameter of G.
Thus, d1 ∈ N [a] and d2 ∈ N [b]. �
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Immediately, we see the following:

Corollary 1. Let G contain a dominating pair (a, b). The diameter of G is
bounded by the following inequality:

dG(a, b) ≤ diam(G) ≤ dG(a, b) + 2.

Moreover, if G is strict dominating pair then diam(G) = dG(a, b) + 1 and there
exists d1 ∈ N(a) and d2 ∈ N(b) s.t. (d1, d2) is a diametral pair.

Proof. By Lemma 1, there exists a diametral pair (d1, d2) s.t. d1 ∈ N [a] and
d2 ∈ N [b]. If diam(G) = dG(a, b) then any a, b-path is a dominating diametral
path, a contradiction. If diam(G) = dG(a, b)+2, let P be any shortest a, b-path.
We must have d1 
= a and d2 
= b. The path d1−P−d2 is a diametral path that
dominates G because it contains P as a subpath.

In the remaining case, diam(G) = dG(a, b)+1. If d1 = a or d2 = b then either
P−b or a−P is a dominating diametral path, a contradiction. �

Theorem 1 gives an interesting necessary condition, but not a characteriza-
tion, of strict dominating pair graphs. The proof of Theorem1 appears in the
appendix.

Theorem 1. Let G be a strict dominating pair graph. Either diam(G) ∈ {3, 4}
or an(G) ≥ 4.

We remark that the converse of the above theorem is not true. For example,
consider the graph shown on the left in Fig. 1. If a pendant is added to the left-
most black vertex, we obtain a graph that is HDP, has a dominating diametral
path, has asteroidal number 4, and has diameter 4.

As stated by Corollary 1, strict dominating pair graphs have a diameter more
tightly constrained to the distance between any two dominating pair vertices
than HDP graphs in general. It is also easy to check that these graphs may not
have diameter less than or equal to 2. No linear-time method to compute the
diameter is known to exist for AT-free, HDP, or diametral path graphs even
when a dominating pair is given. Hence, we have proven the following corollary
concerning the complexity of diameter on this class of graphs.

Corollary 2. Let G be a strict dominating pair graph with a given dominating
pair. The diameter can be computed in linear-time.

Proof. Let (a, b) be the given dominating pair. We perform a breadth-first-search
to calculate dG(a, b). By Corollary 1, we have that diam(G) = dG(a, b) + 1. �

4 Cut Sets in HDP Graphs

In this section, we explore the structure of graphs that have dominating pairs
and asteroidal triples, and show that dominating pair paths are necessarily “fun-
nelled” through the common neighborhood of some pair of each asteroidal triple.
Our intuition is that as asteroidal number increases, the placement of a domi-
nating pair path is restricted such that there are never more than two distinct
points of contact required to dominate a asteroidal set. We complete this section
with an improved algorithm for the recognition of chordal HDP graphs.
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4.1 Asteroidal Paths and Dominating Pairs

If a graph contains a dominating pair (a, b) and an asteroidal set S, then any
a, b-path P dominates every vertex in S. We define notation in order to more
easily refer to the outermost vertices in P that dominate vertices in S.

Definition 4. Let (a, b) be a dominating pair, let S be an asteroidal set, and
let P be an a, b-path. We denote by fP ( resp. �P ) the first ( resp. last) vertex of
P that is adjacent to any vertex in S. These exist since P dominates S. We let
FP = N(fP ) ∩ S and LP = N(�P ) ∩ S. When necessary to distinguish, we will
write FP

S and LP
S .

Certainly fP ∈ CN (FP ) and �P ∈ CN (LP ). It is possible that fP = �P .
With the following, we show that no such vertex is on any asteroidal path.

Proposition 2. Let G contain an dominating pair (a, b) and an asteroidal set
S, then if P is an a, b-path with fP = �P then S is an asteroidal set in G\{fP }.

Proof. Since there is only one vertex in P , viz. fP = �P , that is adjacent to
any vertex in S, we have that fP dominates S, and in particular is not on any
asteroidal path for S. �

Next, we discuss the cardinality of FP and LP , for a given dominating pair
path P .

Lemma 2. Let G be HDP. Given a dominating pair (a, b), an a, b-path P and
an asteroidal set S, then |FP | ≥ 2 or |LP | ≥ 2.

Proof. If FP or LP have size at least 2, we are done. Otherwise, suppose FP =
{x}. If LP = {x} then P [a, fP ]−x−P [�P , b] is an a, b-path not dominating any
vertex in S \ {x}. Suppose then w.l.o.g. that LP = {y}, with y 
= x. Pick
z ∈ S \ {x, y}. Since S is an asteroidal set, there exists an x, y-path P ′ that does
not dominate z. Now P [a, fP ]−P ′−P [�P , b] is an a, b-walk from which we can
extract an a, b-path that does not dominate z, a contradiction. �

Pržulj, Corneil, and Köhler [13] investigated a subclass of HDP graphs called
frame HDP. Below, we give a definition of a frame HDP graph.

Definition 5. A frame hereditary dominating pair (frame HDP) graph G is a
hereditary dominating pair graph with an asteroidal triple T such that all vertices
of G are on some asteroidal path with endpoints in T .

In particular, Pržulj, Corneil, and Köhler explored the location of dominating
pairs in frame HDP graphs and proved that such graphs have diam(G) ≤ 5. They
showed that every dominating pair satisfies strong constraints on the location of
the endpoints relative to the fixed asteroidal triple. Lemma2 generalizes this by
putting constraints on all paths between any dominating pair of vertices.

An important result about the structure of HDP graphs is directly implied
by Lemma 2:
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Fig. 2. Some HDP graphs that are not frame HDP. Note that in each case vertices a, b
are not on any asteroidal path for T = {x, y, z} or T = {x′, y′, z′}

Corollary 3. HDP graphs do not contain an asteroidal triple with 3-spread.

Proof. Let G be HDP. Given an asteroidal triple T with 3-spread, let H =
G\(CN (x, y)∪CN (y, z)∪CN (x, z)). H has a dominating pair (a, b) and contains
T . Let P be an arbitrary a, b-path. Then, by Lemma 2 one of fP , �P is in the
common neighborhood of some pair from T , a contradiction. �

Diametral path graphs may contain asteroidal triples with arbitrarily large
spread. See, for instance, the right-hand graph in Fig. 1.

In Lemma 2, we proved that given a dominating pair (a, b) and an asteroidal
triple T , every a, b-path passes through the common neighborhood of some pair
from T . In fact, we will show in Theorem 2 that such a pair can be chosen
uniformly for all a, b-paths. Before we can prove such a theorem, we prove two
useful lemmas. For now, we apply Definition 4 with respect to asteroidal sets of
cardinality 3 (i.e., asteroidal triples). Later, we will generalize these lemmas to
graphs with greater asteroidal number.

Lemma 3. Let G be HDP. Given a dominating pair (a, b), an AT {x, y, z} = T ,
and a, b-paths P and P ′, we have FP ∪ LP ′

= FP ′ ∪ LP = T .

Proof. By Lemma 2, either |FP | ≥ 2 or |LP | ≥ 2. W.l.o.g., suppose that FP =
{x, y}. If LP ′

contains z, then we are done. First we will show that FP ∪LP ′
= T .

Otherwise, since LP ′
is not empty, we may suppose that LP ′

contains x. The
walk P [a, fP ]−x−P ′[�P

′
, b] contains an a, b-path that does not dominate z, a

contradiction.
Now we will show that FP ′ ∪ LP = T . By the first paragraph, applied with

P = P ′, we know that z ∈ LP . If {x, y} ⊆ FP ′ ∪ LP we are done. Otherwise,
w.l.o.g. x 
∈ FP ′ ∪ LP . If y ∈ FP ′

then let R be an asteroidal y, z-path. The
walk P ′[a, fP ′

]−R−P [�P , b] contains an a, b-path that does not dominate x, a
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contradiction. Finally, the only remaining possibility is that FP ′
= {z}, in which

case P ′[a, fP ′
]−z−P [�P , b] contains an a, b-path that does not dominate x, a

contradiction (Fig. 3). �

Fig. 3. Setup of the first part of Lemma 3. The a, b-walk P [a, fP ]−x−P [�P
′
, b] does

not dominate z

At this stage, Lemmas 2 and 3 give us a strong understanding of how a
dominating pair path dominates asteroidal triples. Next, we give a lemma that
describes the orientation of two or more a, b-paths that meet the same common
neighborhood of some pair in an asteroidal triple.

Lemma 4. Let G be HDP. Given a dominating pair (a, b), an AT {x, y, z} = T ,
and two a, b-paths P and P ′, it cannot be that FP = LP ′

unless FP = LP ′
= T .

Proof. Suppose that FP = LP ′ 
= T . W.l.o.g. FP contains x but not z. Then let
Q = P [a, fP ]−x−P ′[�P

′
, b]. From the walk Q, we can extract a path that does

not dominate z, a contradiction. �
We prove an important lemma that will be useful for proving the proceeding

theorem.

Lemma 5. Let G be HDP. Given dominating pair (a, b), an asteroidal triple
T = {x, y, z}, and two a, b-paths P, P ′, there exists a pair in T s.t. P and P ′

meet its common neighborhood.

Proof. First note that if either path meets CN (T ), then by Lemma 2 the result
holds.
Case 1. Suppose that one of the paths, w.l.o.g. P , has FP and LP disjoint, so
in particular one of them is a singleton. W.l.o.g. FP = {x, y} and LP = {z}. By
Lemma 3, FP ′

contains {x, y} and we are done.
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Case 2. Otherwise, each of FP , LP , FP ′
and LP ′

have size 2. Then two of them
and equal and by Lemma 2 they cannot be contained on the same path; therefore,
we are done. �

We are prepared to prove a major theorem that describes the structure of
dominating pair paths in asteroidal triples in HDP graphs.

Theorem 2. Let G be HDP. Given a dominating pair (a, b) and an asteroidal
triple T = {x, y, z}, there exists a pair Da,b ⊆ T s.t. all a, b-paths meet CN (Da,b).

Proof. Suppose for the sake of contradiction that P, P ′, and P ′′ are a, b-paths
avoiding CN (x, y), CN (x, z), and CN (y, z), respectively. Consider I = FP ∩FP ′ ∩
FP ′′

. Everything in J = T \ I is contained, by Lemma 3, in J = LP ∩LP ′ ∩LP ′′
.

Thus one of I, J has size at least 2, a contradiction. �

Fig. 4. On the left, any pair of a, b-paths shown satisfy Lemma 5. But, Theorem 2
is contradicted. Dotted circles represent the the common neighborhoods of pairs in
the AT {x, y, z}. On the right, we detail that the left graph contains an a, b-walk

P [a, fP ]−z−P ′[�P
′
, b] that does not dominate y

Theorem 2 is important because it shows that an example like the one shown
on the left of Fig. 4 may not occur. The unique structure of asteroidal triples
that are allowed in HDP graphs shows that if (a, b) is a dominating pair in such
a graph and Da,b corresponds to some asteroidal triple T then either CN (Da,b)∩
(a, b) is non-empty or CN (Da,b) is a cut set in G.

We have strengthened Lemma 2 with Theorem 2. Recall that they apply
to every asteroidal triple in an asteroidal set S. The next lemma generalizes
Lemma 3 to asteroidal sets of arbitrary size.

Lemma 6. Let G be HDP. Given an asteroidal set S, a dominating pair (a, b),
and a, b-paths P and P ′, we have FP ∪ LP ′

= FP ′ ∪ LP = S.
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Proof. Suppose that FP
S ∪ LP ′

S 
= S. By Lemma 2, one of FP
S and LP ′

S has size
at least 2. W.l.o.g. we assume |FP

S | is at least 2. Therefore, we can pick x ∈ FP
S

and y ∈ LP ′
S with x 
= y. By assumption, there exists z 
∈ FP

S ∪LP ′
S . Now we will

consider FP
{x,y,z} and LP ′

{x,y,z}. Since x ∈ FP
S and y ∈ LP ′

S , we have fP
S = fP

{x,y,z}
and �P

′
S = �P

′
{x,y,z}. By assumption, z belongs to neither of FP

{x,y,z} nor LP ′
{x,y,z}.

This contradicts Lemma 3. �

Fig. 5. Given a dominating pair (a, b) and letting P be an a, b-path on the left, we have
an HDP graph with FP ∪ LP = S. On the right, we show an example with asteroidal
number 5. White vertices denote the asteroidal set

Next, we make a more general statement regarding all dominating pair paths
between a given dominating pair and asteroidal sets of any size in HDP graphs.

Theorem 3. Let G be HDP. Given an asteroidal set S and a dominating pair
(a, b), let F =

⋂
P

FP
S and L =

⋂
P

LP
S for all a, b-paths P . Then F ∪ L = S.

Proof. Suppose otherwise. There exists x ∈ S where x 
∈ F and x 
∈ L. Then,
there exist a, b-paths P ′, P ′′ such that x 
∈ FP ′

S and x 
∈ LP ′′
S . This contradicts

Lemma 6. �
Consider Fig. 5. In both graphs, the white vertices denote the asteroidal set S.

On the left graph we depict Theorem3 where F = {x, y, z2} and L = {z1, z2, z3}.
On the right graph, we show a specific example of the more symbolic depiction
shown on the left.

In general, HDP graphs become inherently more dense as asteroidal number
increases. An interesting and extreme case of Theorem 3 is where F = S (or,
L = S). Then, it trivially holds that F ∪L = S. Consequently, CN (F ) dominates
S despite CN (F ) being a cut set in G. Observe that CN (F ) does not establish S
in this case, so the removal of CN (F ) leaves a connected, induced subgraph that
contains the asteroidal set S, and this follows by Proposition 2. We demonstrate
this case in the right graph of Fig. 2.
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4.2 On Networks and Faster Recognition of Chordal HDP Graphs

With respect to application of HDP graphs in critical systems or ad hoc networks,
Theorem 3 poses a problem. A cut vertex or cut set is naturally a point of
weakness in a network. Therefore, if one is interested in utilizing dominating
pairs, the inclusion of an asteroidal triple may necessitate the reinforcement
of articulation vertices in some manner. Certainly, such a restriction gives us
greater control in regards to the algorithmic complexity of certain problems in
HDP graphs. The notion of spread, in particular, is a useful algorithmic tool.

We present a method for faster recognition of chordal HDP graphs from a
previous best run-time of O(n7) in [13]. A complete set of forbidden subgraphs for
the class of chordal HDP graphs is shown in their paper and reproduced in Fig. 6.
The forbidden subgraphs have an asteroidal triple with 3-spread. Therefore, a
faster algorithm for recognition is apparent.

Fig. 6. Forbidden induced subgraphs for Chordal HDP graphs

Theorem 4. Chordal HDP graphs are exactly the graphs that are chordal and
have no asteroidal triples with 3-spread. In particular, chordal HDP graphs can
be recognized in O(n3.82).

Proof. If G contains an asteroidal triple with 3-spread, then by Corollary 3,
G is not HDP. On the other hand, if G contains no asteroidal triple with 3-
spread, then in particular it does not contain any of the forbidden subgraphs
that characterize chordal HDP graphs (see Fig. 6), and hence is chordal HDP.

Iterating through all asteroidal triples in a graph G requires time O(n2.82)
[10]. Additionally, checking whether an asteroidal triple has 3-spread requires
time O(n) and can be accomplished as follows. Let T = {x, y, z} be any asteroidal
triple in G. We remove the sets CN (x, y), CN (y, z) and CN (x, z) from G to form
subgraph H. We check that T is an asteroidal triple in H, which requires linear
time. If so, then T has 3-spread. Lastly, it is well-known that checking that a
graph is chordal is linear [8]. Thus, the total time-complexity is O(n3.82). �
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5 Appendix

In this appendix, we prove Theorem 1. To simplify the proofs, we introduce the
notion of corner vertices, vertices that bear witness to the fact that a diametral
path is not dominating but a given pair (a, b) is a dominating pair.

Definition 6. If Q is a non-dominating diametral path in a graph G and (a, b)
is a dominating pair, then vertex c is a corner w.r.t. (Q, a) if c is not dominated
by Q, an endpoint of Q is adjacent to a, and c ∈ N(a).

Note that corners are adjacent to elements of the dominating pair, rather
than to intermediate vertices on dominating pair paths. Next, we prove that
corner vertices are inevitable in strict dominating pair graphs.

Lemma 7. Let G have a dominating pair (a, b) and let k = dG(a, b), but no
dominating diametral path (and thus in particular diam(G) = k+1). Let (d1, d2)
be a diametral pair s.t. d1 ∈ N(a) and d2 ∈ N(b). There exists a diametral d1, d2-
path Q that contains b and a corner vertex c w.r.t. (Q, a).

Proof. By Corollary 1 we have dG(d1, d2) = k + 1. We claim that dG(d1, b) = k.
By Corollary 1, dG(d1, b) ≤ k+1. If dG(d1, b) < k then dG(d1, d2) < k+1 because
d2 ∼ b, a contradiction. Thus, dG(d1, b) = k. Similarly, dG(a, d2) = k. Let M be
a shortest d1, b-path. By assumption, diametral path M−d2 is not dominating
while dominating pair path a−M is dominating. Since (a−M) \ (M−d2) = {a},
there exists c ∈ N(a) s.t. c 
∼ (M−d2). Thus, we can set Q = M−d2 and we are
done (Fig. 7). �

The remaining proofs will utilize the existence of corner vertices to resolve
various properties of strict dominating pair graphs.

Lemma 8. Under the hypotheses of Lemma 7, let P1, P2 be diametral d1, d2-
paths containing b and a, respectively. Let c1 and c2 be corner vertices w.r.t.
(P1, a) and (P2, b), respectively. If c1 ∼ c2 then diam(G) ∈ {3, 4}.
Proof. It is easy to check that k ≥ 2. Notice that there exists a path R =
〈a, c1, c2, b〉 of length 3. If R is induced, then k = 3 and thus diam(G) = k+1 = 4.
If R is not induced, then k < 3. �

Fig. 7. On the left we depict a single corner vertex c. On the right, Lemma 7 is applied
to both dominating pair vertices a and b. The thick path is a shortest a, b-path of
length k. The double-lined path is Q within the proof. Dotted edges may not exist
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Next, we consider the effect that corner vertices have on the asteroidal num-
ber of the graph. To prepare for the theorem, we resolve general consequences
of having a corner vertex that does not belong to a diametral pair.

Lemma 9. Under the hypotheses of Lemma 7, let c be a corner vertex w.r.t.
(Q, a) where Q is a diametral d1, d2-path that contains b. The following hold:

1. If R is a shortest c, b-path and dG(c, b) < k, then N [d1] ∩ R = ∅.
2. If G \ N [d1] disconnects c from b, then (c, d2) is a diametral pair. Moreover,

if R′ is any shortest c, d2-path in G, then d1 is adjacent to the first vertex on
R′ following c.

Proof. Assume for the sake of contradiction that v ∈ N [d1] ∩ R. Since v 
= c the
walk d1−R[v, b]−d2 has length strictly less than k + 1, a contradiction.

For the second half, let R′ be a shortest c, d2-path and suppose that
dG(c, d2) ≤ k. Since R′−b is a c, b-walk, there exists w on R′−b such that
w ∈ N [d1]. Note that w 
= c by definition and w 
= b since k ≥ 2. The path
R′′ = d1−R′[w, d2] has length strictly less than k + 1, a contradiction. Thus
(c, d2) is diametral and R′ has length k +1. Note that the same argument shows
that w cannot occur later than the first vertex on R′ following c. �

We can see that Lemma 9 is symmetric with respect to a and b for a given
dominating pair (a, b).

To simplify the following proof, we define new relationship notation. Let (a, b)
be a dominating pair and let (d1, d2) be a diametral pair such that d1 ∈ N(a)
and d2 ∈ N(b). Let c be a corner vertex with respect to (P, a) where P is a
diametral d1, d2-path that contains b. In that case, we say that d1 ≺P c (Fig. 8).

Lemma 10. Let G satisfy the hypotheses of Lemma 7 and let diam(G) > 4.
There exist c, c′ ∈ N(a) with a shortest c, b-path P and a shortest c′, b-path P ′

s.t. N [c] ∩ P ′ = N [c′] ∩ P = ∅.
Proof. By Corollary 1, we let (d1, d2) be a diametral pair s.t. d1 ∈ N(a) and
d2 ∈ N(b). We let c0 = d1 and P0 be a diametral d1, d2-path that contains b.
We will construct a sequence of distinct corner vertices c1, c2, . . . in N(a), and
diametral paths P1, P2, . . . such that Pi is a ci, d2-path and ci+1 is a corner
vertex w.r.t. (Pi, a). Moreover, our sequence will satisfy the condition that for
each ci, set N [ci] meets every shortest ci+1, b-path.

To be precise, given c0 ≺P0 c1 ≺P1 · · · ≺Pi−1 ci ≺Pi we let ci+1 be a corner
vertex w.r.t. (Pi, a), as promised by Lemma 7, distinct from c0, . . . , ci. If there
is no corner vertex distinct from the earlier ones, the process terminates at the
path Pi.

The step above alternates with the one we describe now, that of finding a
path to add to c0 ≺P0 c1 ≺P1 · · · ≺Pi−1 ci ≺Pi ci+1. At this point there are two
ways at which we might be done. If dG(ci+1, b) < k then by the definition of a
corner vertex and Lemma 9 we have N [ci+1]∩Pi = ∅ and N [ci]∩Pi+1 = ∅, so we
are done, letting c = ci+1, c′ = ci, P ′ = Pi \ {d2}, and P = Pi+1 \ {d2}. Also, if
N [ci] does not meet every shortest ci+1, b-path, then there exists a ci+1, b-path
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R of length k in G \ N [ci]. Now c = ci+1, c′ = ci, P ′ = Pi \ {d2}, and P = R
satisfy the conclusion of the lemma.

On the other hand if dG(ci+1, b) = k and N [ci] does meet every shortest ci, b-
path, then by Lemma 7 there exists a diametral ci+1, d2-path Pi+1 that contains
b which we add to the end of our sequence.

If in our construction we never succeeded in producing the required c, c′, P, P ′

then the construction must have terminated because we could not find a corner
vertex cf+1 distinct from all the earlier ci. Thus we have constructed

c0 ≺P0 c1 ≺P1 c2 ≺P2 · · · ≺Pf−1 cf ≺Pf .

By Lemma 7 there is a corner vertex cf+1 w.r.t. (Pf , a) and so, by assumption,
there exists h in the set {0, 1, . . . , f − 1} such that cf+1 = ch. Suppose that
h = f − 1. Then we have (cf−1 = ch) ∼ Pf , a contradiction. Otherwise, we have
h < f − 1. We will prove that this leads to a contradiction.

Let P ′
h = ch−(Ph+1 \ {ch+1}) and let s, s′ be the first vertices in Ph, P ′

h

following ch. We will prove by reverse-induction that for all h + 1 < j ≤ f that
cj ∼ s and cj ∼ s′. This holds for j = f since cf+1 = ch and by construction
N [cf ] meets every shortest cf+1, b-path.

Now suppose that h+1 < j < f . By the inductive hypothesis cj+1−(Ph\{ch})
is a diametral cj+1, d2-path, and thus, since N [cj ] meets every diametral cj+1, d2-
path at its second vertex, cj ∼ s. Similarly, since cj+1−(P ′

h \ {ch}) is diametral,
cj ∼ s′ (Fig. 8)

Finally, when j = h + 2 we reach a contradiction. We must have ch+2 
∼ s′

since ch+1 is a corner w.r.t. (Ph+1, a) and s′ ∈ Ph+1. This contradiction estab-
lishes that the construction must have terminated through one of the conditions
that give us appropriate c, c′, P, P ′. �

Lemma 10 is also symmetric with respect to either vertex in a given domi-
nating pair. Applying the lemma twice, we find there are four vertices such that

Fig. 8. Depicting Lemma 10 where c3 ≺P3 c0, so h = 0. The thick path is Ph \ {d2}
and the double-lined path is Ph′ \ {d2}
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the removal of the closed neighborhood of any one of them does not disconnect
the remaining three. These four vertices form an asteroidal set of size 4. Thus,
we complete the proof of Theorem 1.
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Abstract. We study the efficient approximation algorithm for max-
covering circle problem. Given a set of weighted points in the plane and
a circle with specified size, max-covering circle problem is to find the
proper place where the center of the circle is located so that the total
weight of the points covered by the circle is maximized. Our core app-
roach is to approximate the circle with a symmetrical rectilinear poly-
gon (SRP). We first present a method to construct the circumscribed
SRP of a given circle and disclose their area relationship. Then, we con-
vert max-covering SRP problem to SRP intersection problem, which can
be efficiently solved with simple partition and modification based on
the existing method. Finally, the optimal solution returned from max-
covering SRP problem can be used to produce an approximate answer
to max-covering circle problem. We prove that for most of the inputs,
our algorithm can give a (1 − ε) approximation to the optimal solution,
which only needs O

(
nε−1log n + nε−1 log

(
1
ε

))
time for unit points and

o
(
nε−2 log n

)
time for weighted points.

Keywords: Max-covering problem · Symmetrical rectilinear polygon ·
(1 − ε) approximation

1 Introduction

Max-covering problem is a fundamental operation in computational geometry
and database community. Given a set of weighted points Q in the plane R

2 and
a planar geometry G with specified size, max-covering problem is to find the
proper place where the center of G is located so that the total weight of the
points covered by G is maximized. In a word, max-covering problem aims to
cover the points with maximum weight in a fixed-size region. There are many
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studies on this problem that we only present some important results on rectangle
and circle.

For max-covering rectangle problem, two efficient exact algorithms are pre-
sented with O (n log n) time complexity where n is the number of points. Imai
et al. [14] solve max-covering rectangle problem by finding a maximum clique
of an intersection graph of rectangles in the plane. An alternative algorithm
is proposed by Nandy and Bhattacharya in [19]. They transform max-covering
rectangle problem into rectangle intersection problem and employ plane-sweep
technique and interval tree data structure [20] to find the intersection region with
maximum weight. Up to now, the time complexity has not been improved. Hem-
mer et al. [12] solve this algorithm regardless of whether the boundaries of the
rectangles are open or closed. Tao et al. [21] design a grid-sampling-based approx-
imation algorithm, which obtains a (1 − ε)-approximate answer with extremely
high probability in O

(
n log 1

ε + n log log n
)

time. Due to the weak scalability of
the above in-memory algorithms, Choi et al. [5] propose an I/O-optimal external-
memory algorithm. Later on, this problem is extended to trajectories and exact
and approximation algorithms are proposed in [22].

For max-covering circle problem, Chazelle and Lee [4] substantially give an
exact algorithm that runs in O(n2) time. It is widely acknowledged that the time
complexity of any exact algorithm for this problem could not be improved any
further, because it has been proved to be a 3SUM-HARD problem [2], which
means a lower bound of Ω

(
n2

)
running time must be held by any exact algo-

rithms. Mark De Berg et al. [8] present a method that gives a (1−ε)-approximate
solution in a deterministic O

(
n log n + nε−3

)
time. Although Choi et al. [5] give

a 1
4 -approximate solution in O (n log n) time, the approximation accuracy can-

not be specified by users. A special case of this problem argues that points have
unit weight. Thus this problem changes to compute the maximum number of
covered points by a circle. Aronov and Har-Peled [2] propose a random sampling
method that returns a (1− ε)- approximate solution in O

(
nε−2 log n

)
time with

high probability.
Besides max-covering problem, another type of geometric covering problem

is k-covering problem. It aims to find a smallest geometry G covering at least k
(k ≤ n) points of Q. For k-covering circle problem, Efrat et al. [9] give an exact
algorithm for O(nklog2n) time. Subsequently, Matouvsek et al. [17] present a
stochastic algorithm that runs in O(n log n + nk) expected time. All the above
exact algorithms degenerate to O(n2) when k = O(n). Har-Peled et al. [11]
improve the exact result to O(nk) and give a stochastic approximation algorithm
that runs in O

(
n + n · min

(
1

kε3 log2 1
ε , k

))
expected time. The case where G is an

axis-aligned rectangle or square has also been studied somewhat for k-covering
problem. When G is an axis-aligned square, the best result belongs to Mahapatra
[16]. He gives the algorithm with time complexity O

(
n + (n − k) log2(n − k)

)
.

The idea is to transform k-covering problem into iteratively solving max-covering
problem by using the characteristics of the square. When G is an axis-aligned
rectangle, the objective of solving k-covering problem usually falls into two cat-
egories: minimizing the perimeter of the rectangle and minimizing the area of
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the rectangle. For the former, the first two algorithms with O
(
n3

)
time com-

plexity and O
(
k2n log n

)
time complexity are given by Aggarwal et al. [1].

The second result is subsequently improved by Eppstein & Erickson [10] and
Datta et al. [6] to O

(
n log n + k2n

)
running time and again by Kaplan et al.

[15] to O
(
n log n + nk3/2 log2 k

)
time complexity. For the latter, there is an

O
(
n5/2 log2 n

)
algorithm given by Kaplan et al. [15]. Besides, de Berg et al.

[7] gives a k-sensitive algorithm with O
(
n log2 n + nk2 log n

)
time complexity.

The optimal result for k-covering problem of rectangular perimeter or area min-
imization belongs to Timothy M. Chan and Sariel Har-Peled [3]. They propose a
general algorithm with O

(
n2 log n

)
running time (for both perimeter and area),

and, at the same time, a k-sensitive algorithm with O(n log n + nk log k) time
(perimeter) and a k-sensitive algorithm with O

(
nk log n

k log k
)

time (area).

Our Contributions. In this paper, we concentrate on studying the efficient
approximation algorithm for max-covering circle problem. From the previous
work, we have the following observations. (1) For existing algorithms, solving
max-covering rectangle problem has a better time complexity than solving max-
covering circle problem. (2) A symmetrical rectilinear polygon (SRP) can approx-
imate the circle in terms of area. Thus, the solution of max-covering SRP problem
can be used to approximatively solve max-covering circle problem. These give
birth to our core idea. We first present a method to construct the circumscribed
SRP of a given circle and disclose their area relationship. The area difference is
determined by the number of edges in the circumscribed SRP. Then, we con-
vert max-covering SRP problem to SRP intersection problem, which can be
efficiently solved with simple partition and modification based on the existing
method. Finally, the optimal solution returned from max-covering SRP problem
can be used to produce an approximate answer to max-covering circle problem.
We prove that for most of the inputs, our algorithm can give a (1 − ε) approx-
imation to the optimal solution, which only needs O

(
nε−1log n + nε−1 log

(
1
ε

))

time for unit points and o
(
nε−2 log n

)
time for weighted points.

2 Preliminaries

Let us consider a set of points Q in 2-dimensional space R
2. Each point q ∈ Q

has a non-negative weight w(q).

Definition 1. (Covering Weight). Given a set of points Q and a geometry G,
the covering weight of G is:

covering-weight(G,Q) =
∑

q ∈ Q ∩ G

w(q)

Definition 2. (Max-Covering Problem). Given a set of weighted points Q and a
geometry G with specified size, max-covering problem is to find the proper place
of G to maximize the covering weight of G.
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The geometry can be arbitrary shape, including circle, rectangle, rectilinear
polygon, etc. Similarly, let G be a circle with a given diameter, this problem
can be renamed as max-covering circle (MaxC-C) problem. In the following, we
formally define (1 − ε)-approximate max-covering circle problem.

Definition 3. ((1 − ε)-Approximate Max-Covering Circle Problem). Given a
set of points Q and a circle C with specified diameter, for any ε (0 < ε < 1) ,
(1 − ε)-approximate max-covering circle problem finds a place in R

2 to place C
that satisfies

covering-weight(C) ≥ (1 − ε) × covering-weight(C∗)

where C∗ is an optimal circle of the original problem.
In this paper, we propose an approximation algorithm for solving MaxC-

C problem with a (1 − ε) accuracy to the optimal solution. In other words, our
algorithm can solve (1−ε)-approximate MaxC-C problem. We achieve this result
by approximatively converting MaxC-C problem to Max-covering symmetrical
rectilinear polygon problem. Here, symmetrical rectilinear polygon is a special
polygon which will be introduced below.

3 Symmetrical Rectilinear Polygon Construction

We first formulate several definitions of rectilinear polygon and symmetrical
rectilinear polygon.

Definition 4. (Rectilinear Polygon). A polygon is said to be a rectilinear poly-
gon if the following conditions hold in a two-dimensional rectangular coordinate
system: (1) For each of the given x-axis and y-axis, each side of this polygon is
either perpendicular to the given coordinate axis or parallel to the given coor-
dinate axis. (2) Any two sides of this polygon do not intersect except at the
endpoints.

Definition 5. (Symmetrical Rectilinear Polygon). A rectilinear polygon RP,
assuming that its center is at the origin, is symmetrical if ∀q(x, y) ∈ RP such
that q1(−x, y) ∈ RP, q2(x,−y) ∈ RP and q3(−x,−y) ∈ RP.

In a word, symmetrical rectilinear polygon is both centrosymmetric and
axisymmetric. To simplify the presentation, symmetrical rectilinear polygon can
be abbreviated to SRP. Max-covering symmetrical rectilinear polygon problem
can thus be called as MaxC-SRP problem.

Definition 6. (Circumscribing and Inscribing). Given a circle C and a positive
number k, take the diameter (Y -axis-parallel) of the circle and divide it into k
segments equally. Then, make k − 1 vertical lines of this diameter through these
k-bisected points respectively and intersect the circle at 2k−2 points axisymmetri-
cally. Moreover, connect adjacent points on the circumference with line segments
perpendicular to and parallel to this diameter. The resulting polygon is said to be
the circumscribed SRP of the circle. Similarly, circle C is said to be the inscribed
circle of this circumscribed SRP.
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For a given circle, the circumscribed SRP depends only on k. Once k is
determined, let Sk be the circumscribed SRP of the circle.

Given a circle, the construction methods of every circumscribed SRP have
been presented above. As far as our work goes, that is not the exact point. What
we need to do is, for a given parameter ε, choose an appropriate k such that for
most of the inputs, the optimal solution of MaxC-SRP problem with respect to
Sk can be used to produce a (1− ε) approximation answer to MaxC-C problem.
We denote the part that belongs to Sk but not C as Sk − C. It is a simple fact
that, the area of Sk − C can be a useful measure of how well the circumscribed
SRP Sk approximates the circle C.

Let AG be the area of any closed geometry G. We can infer the following
relationship between ASk−C and ASk

.

Theorem 1. e is the base of natural logarithm and ε is in range (0, 1), there is
an even number k = O

(
ε−1

)
such that ASk−C

ASk
< ε

e .

Proof. We consider the length from the center of the circle to each corner of Sk.
Since k is even, we can only consider the part of Sk which is above the horizontal
line that goes through the center of the circle. Let r be the radius. For the i-th
corner

(
1 ≤ i ≤ k

2

)
, from bottom to top of this part, the length from the center

of the circle to it is r
√(

1 + 8i−4
k2

)
, with simple geometric derivations.

Obviously, the following inequality holds

πr2 < ASk
< πr2(1 +

4k − 4
k2

)

Then, we have
ASk−C

ASk

<
4k−4

k2

1 + 4k−4
k2

<
4k − 4

k2

We just choose

k = 2�1 + �4eε−1�
2

	
This guarantees 4eε−1 ≤ k ≤ 4eε−1 + 1 and 2|k. Therefore, there is an even

number k, which satisfies

k = O
(
ε−1

)

ASk−C

ASk

<
4k − 4

k2
<

4
k

<
ε

e

4 Algorithm for MaxC-SRP Problem

In this section, we discuss how to solve MaxC-SRP problem. In fact, this problem
is not difficult and we can solve it completely with existing techniques.

Given a set of geometries G and a point q in R
2, let Gq be the set of geometries

covering q, denoted by Gq = {G | ∀G ∈ G, q ∈ G}. Each geometry G ∈ G has a
non-negative weight w(G).
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Definition 7. (Geometry Intersection Problem). Given a set of weighted geome-
tries G, the intersection problem of G is to find a point q ∈ R

2 that maximizes

covered-weight(q,G) =
∑

G ∈ Gq

w(G)

Given a point q and a circumscribed SRP SRP, let SRPq be the circumscribed
SRP whose center point is at q and size is the same with SRP. For a set of points
Q, we define SRPQ = {SRPq | ∀q ∈ Q}.

Lemma 1. Given a set of weighted points Q, ∀q ∈ R
2, covering-

weight(SRPq, Q) = covered-weight(q, SRPQ).

Proof. We first prove the following two statements:
(1)∀q′ ∈ Q, if q′ is covered by SRPq, q is also covered by SRPq′ .
We let the coordinates of q be (xq, yq) and the coordinates of q′ be (xq′ , yq′).

By the centrosymmetry of SRP in the definition, the fact that SRPq contains
q′(xq′ , yq′) implies that it also contains q′′(2xq − xq′ , 2yq − yq′). Considering
translating SRPq so that its center becomes q′, we obtain SRPq′ , which contains
q, since q is the position of q′′ after translation. Now, statement (1) is proved.

(2)∀q′ ∈ Q, if q′ is not covered by SRPq, q is not covered by SRPq′ either.
We assume that ∃q ∈ R

2, q′ is not contained by SRPq, but q is contained by
SRPq′ . If so, then by centrosymmetry it is equally possible to obtain that SRPq′

contains the point q′′(2xq′ − xq, 2yq′ − yq). Thus, after translating the center of
SRPq′ to q, the point corresponding to q′′ is q′. This implies that SRPq contains
the point q′, contradicting the assumption, and thus statement (2) holds.

Based on the above statements, we have
covering-weight(SRPq, Q) =

∑
q′∈Qcovered

w(q′) =
∑

SRP∈SRPQcovering q w

(SRP) = covered-weight(q, SRPQ).

Theorem 2. Given a set of weighted points Q, let q∗ is the answer to intersec-
tion problem of SRPQ, then SRPq∗ is an optimal SRP to MaxC-SRP problem in
Q.

Proof. We assume that SRPq∗ is not an optimal SRP to MaxC-SRP problem
in Q. Then, ∃q ∈ R

2, covering-weight(SRPq, Q) > covering-weight(SRPq∗ , Q).
With Lemma 1, we have both covering-weight(SRPq, Q) = covered-weight(q,
SRPQ) and covering-weight(SRPq∗ , Q) = covered-weight(q∗, SRPQ). This shows
that covered-weight(q, SRPQ) > covered-weight(q∗, SRPQ), which implies that
q∗ is not the answer to intersection problem of SRPQ, contradicting our premise.
Therefore, the theorem is proved.

Now we just need to give the method to solve the intersection problem of n
SRPs. We use the division method to divide each SRP into several rectangles
with parallel axes. We specify that for each SRP, the tangent along the line where
its respective horizontal edges is located. Due to symmetry, let the number of
horizontal edges to the left of its axis be l. Then each SRP is divided into
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l − 1 rectangles. With a known input SRP, the time required to compute these
rectangles is O(l): we scan the SRP horizontally from top to bottom and group
its horizontal boundaries two by two. For n SRPs, it takes O(nl) time to compute
all divided n(l − 1) rectangles. Meanwhile, we want these n(l − 1) rectangles to
satisfy that the individual rectangles divided by the same SRP are disjoint, which
requires determining the attribution of common edges between these rectangles
at the time of division. We simply specify that the common edge of two adjacent
rectangles divided by the same SRP belongs to the rectangle that is entirely
above this edge.

Obviously, computing the intersection problem of these n SRPs is equiva-
lent to settle the intersection problem of corresponding n(l − 1) axis-parallel
rectangles. This has been proved in [22]. The existing sweepline algorithm [19]
solves this problem well by using an interval tree for updating and counting
events, returning the region with the greatest total weight and the correspond-
ing weight. In the original MaxC-SRP problem, the former of the returned results
corresponds to the positions where the SRP can be placed and the latter corre-
sponds to the total weight of points it covers at most. Therefore, our algorithm is
to divide the SRP into rectangles and then use the sweepline algorithm for these
n(l − 1) rectangles. Considering that these rectangles may have open or closed
boundaries (open boundaries may exist only in the horizontal direction), we use
the improved algorithm [12], which is able to handle this case with no increase
in time complexity and space complexity compared to the classical sweepline
algorithm. When this algorithm is applied to solve our problem, it has a time
complexity of O (nl(log n + log l)) and a space complexity of O (nl). The total
time complexity of this algorithm is the same as it, for the time of dividing is
O (nl).

5 Approximation Algorithm for MaxC-C Problem

Now, we know that the MaxC-SRP algorithm, based on binary tree search,
returns the correct result in deterministic O (nl(log n + log l)) time and O (nl)
space when each SRP has O (l) edges. Actually, this algorithm can be used to
approximatively compute the MaxC-C problem. Given a set of points Q and a
specified circle C, we first construct the circumscribed SRP Sk of C based on
a given approximate accuracy ε. Then, the optimal SRP SRP∗ can be returned
by MaxC-SRP algorithm. Finally, the inscribed circle of SRP∗ can be a desir-
able approximation to the optimal solution of MaxC-C problem for most of the
inputs of Q. For a few specific inputs of Q, our result is not a satisfying approx-
imation. Obviously, the correctness of the approximation degree depends on the
distribution of points (i.e., the inputs of Q). We would like to analyze whether
the algorithm can give correct results for various different inputs and discuss its
performance.

Assuming a random distribution of n points in the plane is clearly not a
good choice. To discuss the various inputs without bias, we assume a random
distribution of m points inside the SRP (the remaining n−m points are outside
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the SRP). For practical applications with a large number of different inputs, we
believe that this assumption is reasonable. For a given ε, we use our MaxC-SRP
algorithm on Sk, where k = O

(
ε−1

)
and ASk−C

ASk
< ε

e are both satisfied. Then, for
each point within Sk, let the probability that it falls within C be 1 − p and the
probability that it falls within Sk −C be p. By Theorem 1 and the assumptions,
we thus easily know that p < ε

e . Let the total weight of these m points falling
within Sk − C be the random variable X.

5.1 Points with Unit Weight

If each point has unit weight, max-covering problem changes to compute the
maximum number of covered points and X represents the number of these m
points falling within Sk − C. Hence, X follows a binomial distribution, that
is X ∼ B(m, p). The mathematical expectation E(X) of X is mp. Based on
Chernoff inequality [18], we have the following bound.

Theorem 3. Let Y1, Y2, ..., Ym be m independent Bernoulli trials, where
Pr{Yi = 1} = pi and Pr{Yi = 0} = 1 − pi for i = 1, 2, ...,m. Define
Y =

∑m
i=1 Yi. Then, for any ε > 0,

Pr {Y ≥ (1 + ε)E(Y )} ≤
(

eε

(1 + ε)1+ε

)E(Y )

X coincides with Theorem 3, we thus have

Pr {X ≥ mε} < Pr {X ≥ emp} = Pr {X ≥ (1 + e − 1)E(X)} ≤ e−E(X)

For any 0 < p < ε
e , if p ≥ ε

3e , then

Pr {X ≥ mε} < e−E(X) = e−mp ≤ e− mε
3e

For 0 < p < ε
3e , let ε

3e ≤ p∗ < ε
e and its corresponding random variable to

be X∗, X∗ ∼ B(m, p∗). It is obvious that

Pr {X ≥ mε} < Pr {X∗ ≥ mε} < e− mε
3e

Therefore, for given m and ε, Pr {X ≥ mε} < e− mε
3e always holds. Now we

discuss the value of this probability. We consider two cases separately. When m =
Ω

(
ε−1log n

)
, we can easily say that our algorithm gives (1 − ε) approximations

for most inputs. This is because

Pr {X ≥ mε} < e− mε
3e < n− c

3e

where c is a suitable constant. Then we have

Pr {(m − X) ≥ m(1 − ε)} > 1 − n− c
3e
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We know that m−X represents the number of points covered by the inscribed
circle of SRP. Therefore, we know that under our assumption

Pr

{
(m − X)

m
≥ (1 − ε)

}
> 1 − n− c

3e

We note the fact that the maximum number of points that can be covered by
the circumscribed SRP of a circle must be not less than the maximum number
of points that can be covered by this circle. Let C∗ be the optimal circle of the
MaxC-C problem and m∗ = covering-weight(C∗). We have

m∗ ≤ m

Pr

{
(m − X)

m∗ ≥ (1 − ε)
}

≥ Pr

{
(m − X)

m
≥ (1 − ε)

}
> 1 − n− c

3e

The above equation tells us that, when m = Ω
(
ε−1log n

)
, for most of the

inputs (at least 1 − n−c1 times of the total input (c1 = c
3e )), the inscribed circle

of the SRP returned by our algorithm can be used as a (1 − ε) approximation
to the optimal solution. From Sect. 4, we know that the MaxC-SRP algorithm
takes O

(
nε−1log n + nε−1 log

(
1
ε

))
running time when l = O (k) = O

(
ε−1

)
.

For the other cases (i.e., m = o
(
ε−1log n

)
), the order of magnitude of m is

not sufficient for our algorithm to return satisfactory solutions for most inputs.
However, due to m∗ ≤ m, we know that the maximum number of points that
can be covered by a given circle does not exceed m. This is equivalent to the
fact that the depth of the deepest point in the arrangement of a set of circles
does not exceed m. Another fact is that m is already computed when we run
the algorithm. Now we simply use the conclusion [2] that, given any set X of
n psedocircles, we can compute the deepest point in A(X) in O (nd + n log n),
where d = depth(X) = o

(
ε−1log n

)
. Therefore, we just use the exact algorithm to

compute the solution when m is not big enough. The time cost is o
(
nε−1 log n

)
.

Given n points Q, circle radius r and approximation accuracy ε, the basic
procedure of the algorithm for (1−ε)-approximate MaxC-C problem is as follows.

Step 1. Construct Sk based on given r and ε.
Step 2. Compute the optimal SRP SRP∗ of MaxC-SRP problem based on Q

and Sk.
Step 3. Count the number of points inside SRP∗, denoted by m.
Step 4. Make a judgment based on the value of m: (1) If m ≥ cε−1log n where

c is an arbitrarily chosen positive real number, the center of the corresponding
SRP∗ is used as the center of the circle, and r is used as the radius to construct
the circle. The circle is returned as the approximate solution of the circle position,
and the number of points covered by this circle (which requires additional O(n)
time complexity to calculate it) is returned as the approximate solution of the
maximum number of points covered by the circle. (2) Otherwise, we directly
calculate max-covering circle problem.

In summary, our algorithm finishes running in O
(
nε−1log n + nε−1 log

(
1
ε

))

time and returns a (1 − ε) approximation for at least 1 − n−c1 events for all



A Novel Approximation Algorithm for Max-Covering Circle Problem 235

possible values of m. Compared to almost all previous methods, our algorithm
consumes surprisingly less time. It can be used either alone as an approximation
algorithm (running when there is some tolerance for errors) or as a preprocessor
for other approximation algorithms to reduce their time consumption.

5.2 Weighted Points

If points have different weights, X cannot follow a binomial distribution. The
mathematical expectation E(X) of X is Mp where M is the total weight of point
inside the SRP. From Hoeffding inequality [13], we have the following bound.

Theorem 4. Let Y1, Y2, ..., Ym be independent and identically distributed ran-
dom variables where Yi ∈ [a, b] for i = 1, 2, ..,m. Define Y =

∑m
i=1 Yi. Then

Pr(Y − E[Y ] ≥ α) ≤ e
− 2α2

m(b−a)2

X coincides with Theorem 4, we thus have

Pr {X ≥ Mε} < Pr {X ≥ eMp} = Pr {X − E(X) ≥ (e − 1)E(X)} ≤ e
− 2(e−1)2E(X)2

mb2

For any 0 < p < ε
e , if p ≥ ε

3e , then

Pr {X ≥ Mε} ≤ e− 2(e−1)2E(X)2

mb2 = e− 2(e−1)2M2p2

mb2 ≤ e− 2(e−1)2M2ε2

9e2mb2

For 0 < p < ε
3e , let ε

3e ≤ p∗ < ε
e and its corresponding random variable to

be X∗, X∗ coincides with Theorem 4. It is obvious that

Pr {X ≥ Mε} < Pr {X∗ ≥ Mε} < e− 2(e−1)2M2ε2

9e2mb2

Therefore, for given M and ε, Pr {X ≥ Mε} < e− 2(e−1)2M2ε2

9e2mb2 always holds.
In fact, M =

∑m
i=1 w(qi) = mw where w =

∑m
i=1 w(qi)

m . Then

Pr {X ≥ Mε} < e− 2(e−1)2mw2ε2

9e2b2

We argue that w and b are stable and can be regarded as constants. When
m = Ω(ε−2log n), we can easily say that our algorithm gives (1 − ε) approxima-
tions for most inputs. Because

Pr {X ≥ Mε} < n−c

where c is a suitable constant. Then we have

Pr {(M − X) ≥ M(1 − ε)} > 1 − n−c

Similar to points with unit weight, M−X is the total weight of points covered
by the inscribed circle of SRP. Thus
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Pr

{
(M − X)

M
≥ (1 − ε)

}
> 1 − n−c

Let C∗ be the optimal circle of the MaxC-C problem and M∗ =
covering-weight(C∗). We have

M∗ ≤ M

Pr

{
(M − X)

M∗ ≥ (1 − ε)
}

≥ Pr

{
(M − X)

M
≥ (1 − ε)

}
> 1 − n−c

The above equation tells us that, when m = Ω
(
ε−2log n

)
, for most of

the inputs (at least 1 − n−c times of the total input), the inscribed circle
of the SRP returned by our algorithm can be used as a (1 − ε) approxima-
tion to the optimal solution. Recall Sect. 4 again, MaxC-SRP algorithm takes
O

(
nε−1log n + nε−1 log

(
1
ε

))
time when l = O (k) = O

(
ε−1

)
.

For the other cases (i.e., m = o
(
ε−2log n

)
), the order of magnitude of m is

not sufficient for our algorithm to return satisfactory solutions for most inputs.
However, due to M∗ ≤ M , that is the total weight of points that can be covered
by a given circle does not exceed M . We know that M∗ ≤ M ≤ bm where b is
the maximum weight of all the points. In fact, M can be computed when we run
MaxC-SRP algorithm. Then, in the case of m = o

(
ε−2log n

)
, the griding method

of Mark De Berg et al. [8] can achieve a time complexity of o
(
nε−2 log n

)
. It

suffices to note that M∗ ≤ M ≤ bm holds, such that each circular region equal
in size to the input circle has at most b

am points. And each grid in [8] can be
covered by a constant number of circles, so the number of points in each grid is
o
(
ε−2log n

)
and the running time of their method is o

(
nε−2 log n

)
.

In summary, our algorithm finishes running in o
(
nε−2 log n

)
time when l =

O(k) = O
(
ε−1

)
time and returns a (1 − ε) approximation for at least 1 − n−c

events for all possible values of m.

6 Conclusion

We propose a novel approximation algorithm for max-covering circle problem.
We first construct the circumscribed SRP of a given circle and disclose their
area relationship. The area difference is determined by the number of edges in
the circumscribed SRP. Then, we convert max-covering SRP problem to SRP
intersection problem, which can be efficiently solved with simple partition and
modification based on the existing method. Finally, the optimal solution returned
from max-covering SRP problem can be used to produce an approximate answer
to max-covering circle problem. We prove that for most of the inputs, our algo-
rithm can give a (1−ε) approximation to the optimal solution, which only needs
O

(
nε−1log n + nε−1 log

(
1
ε

))
time for unit points and o

(
nε−2 log n

)
time for

weighted points.
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Abstract. In wireless sensor networks, ensuring k -coverage and connec-
tivity is crucial in order to efficiently gather data and relay it back to the
base station. We propose an algorithm to achieve k -coverage and connec-
tivity in randomly deployed wireless sensor networks while minimizing
the number of active sensors. It has been shown that selecting a mini-
mum set of sensors to activate from an already deployed set of sensors
is NP-hard. We address this by using a genetic algorithm that efficiently
approximates a solution close to the optimal solution. The algorithm
works by selecting random solutions and mutating them, retaining only
the best solutions for the next generation until it converges to a near-
optimal solution. We examine the time complexity of our approach and
discuss possible optimizations. Our simulation results show that our app-
roach works consistently across different types of wireless sensor networks
and for different degrees of required coverage.

Keywords: Wireless sensor networks · k -coverage · Connectivity ·
Sensor selection · Genetic algorithm

1 Introduction

A wireless sensor network (WSN) is a network consisting of wireless sensors capa-
ble of measuring various environmental conditions. These sensors are deployed
in predetermined patterns or placed randomly within a target region, enabling
a comprehensive view of the environment and valuable data collection. WSNs
face the challenge of achieving adequate coverage, connectivity, and energy effi-
ciency. The coverage problem entails that the target region is covered by at least
one sensor, while the k -coverage problem focuses on covering each point with
at least k sensors, crucial for fault tolerance. Connectivity is vital for relaying
information to the base station.

To optimize the network’s lifetime, it is essential to manage sensor states
actively or inactively. All sensors operating simultaneously lead to energy waste,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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and redundant data collection. Balancing active and inactive sensors is challeng-
ing while maintaining connectivity and coverage. Randomly deployed sensor net-
works pose additional challenges. Uniform deployment is often impractical, and
environmental factors can lead to sensor movement. Applications may require
random or near-random deployments, necessitating optimal sensor placement.

The problem of finding the minimum number of sensors for k -coverage in
randomly deployed networks is NP-hard, making an exact solution computa-
tionally infeasible. Genetic algorithms (GA), inspired by natural selection, offer
an approximation approach. GAs generate a population of solutions, evaluate
their proximity to the optimal solution, and iteratively improve them through
mutation. Our GA is designed for static sensors, as mobility consumes more
energy. We identify optimal sensor locations for k -coverage and connectivity
while retaining network lifetime. Inactive sensors can activate as active sensors
deplete energy.

2 Related Work

Yang et al. [1] establishes that selecting the minimum set of active sensors in a
randomly deployed network to achieve k -coverage is NP-hard. Previous research
efforts have tackled the k -coverage problem by introducing mobile sensors capa-
ble of moving to areas within the network where coverage is lacking. In [2], the
authors propose a GA approach that utilizes mobile sensors to optimize coverage.
This differs from our GA as we only consider static, pre-deployed sensors.

Hurizan and Kuila [3] investigate the activation of a specific set of nodes
instead of deploying all nodes within the network. They employ a GA approach
to assess the minimum selection of nodes required for full coverage, connectivity,
and energy optimization. The main distinction between our approach and [3]
lies in the integration of mobile sensors, which prevents the genetic algorithm
from frequent reactivation. This prolongs the network’s lifespan and effectively
addresses potential environmental challenges that may arise within the network.

3 Preliminaries

This section provides an introduction to some of the terminology and notation
used in our explanation of the genetic algorithm. Additionally, we outline some
assumptions relating to the coverage model.

3.1 Key Terminology and Notation

The following are key definitions:

Definition 1. Sensors and points - A sensor is denoted by S and a point is
denoted by p. The total number of sensors in a network is denoted by N and
the total number of points in a network is denoted by P.

Definition 2. Sensing and communication range - The sensing radius of a sen-
sor S is denoted by r and the communication radius is denoted by c. The sensing
range and communication range of a sensor is the area formed by the circular
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disk centered at the sensor with radius r and c, respectively. The sensing range
of a sensor S is denoted by Sr and the communication range is denoted by Sc.

Definition 3. Distance - The distance between a sensor S and a point p is
denoted by d(S, p). Similarly, the distance between two sensors S1 and S2 is
denoted by d(S1, S2).

Definition 4. Communication neighbors - Sensors S1 and S2 are considered
communication neighbors if the distance between them d(S1, S2) is less than
or equal to their communication range c (i.e. S1 and S2 are communication
neighbors if d(S1, S2) ≤ c).

Definition 5. Active sensors - The active sensor set consists of all sensors that
are currently in the active state and is denoted by Sactive.

Definition 6. Parent sensors - A sensor is considered a parent sensor if it is
active and the base station is within its communication range. The set of all
parent sensors is denoted by Sparent. The parent sensor set is a subset of the
active sensor set (Sparent ⊆ Sactive).

Definition 7. Connected sensors - The set of all active sensors that are con-
nected to a parent sensor via communication neighbors is denoted by Sconn. The
connected sensor set is a subset of the active sensor set (Sconn ⊆ Sactive).

Definition 8. Covered points and k -covered points - The set of all points in the
target region that are at least 1-covered is denoted by pcov. The set of all points
in the target region that are at least k -covered is denoted by pkcov. The set of
k -covered points is a subset of the set of covered points (pkcov ⊆ pcov).

3.2 Assumptions

The following are assumptions that our approach is based upon:

Assumption 1. All sensors in the network are homogeneous i.e. all sensors have
the same sensing and communication range.

Assumption 2. Sensors communicate to the base station via neighboring sen-
sors within their communication range. If a sensor is a parent sensor it relays
information from neighboring nodes to base station.

Assumption 3. The target region is populated with mobile sensors, which are
randomly deployed. Similarly, the base station is also positioned randomly within
a predefined area located at the center of the target region.

Assumption 4. The deployed sensor network is dense enough to k -cover the
region despite the random deployment. If the sensor network is not dense enough
to k -cover the region, the algorithm will return the minimum set of active sensors
that k -covers the region as much as possible.
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Assumption 5. The algorithm operates under the assumption that the sensors
remain stationary; however, the inclusion of mobile sensors serves the purpose
of seamlessly replacing a failed or dying sensor within the network by utilizing a
neighboring sensor. This enables continuous k -coverage of the area even in the
event of sensor failure.

4 Genetic Algorithm

In this section, we present our genetic algorithm approach and go into detail
about the design.

4.1 Coverage Model

The target region consists of an m × n grid with m ∗ n grid points. We utilize
a point coverage model where a target region is considered k -covered if all grid
points within that target region are k -covered. For example, a 50 m × 50 m target
region would have 2500 grid points. We consider this target region k -covered if
all 2500 grid points are k -covered. A point p in the target region is considered
covered by a sensor S if the distance d(S, p) from S to p is less than or equal
to the sensing radius r (i.e. p is covered if d(S, p) ≤ r.).

4.2 Genetic Algorithm

Before starting the algorithm, we deploy a given number of sensors in the target
region and we deploy the base station randomly in a bounded region towards the
center of the target region. A sensor determines its location using GPS technol-
ogy which is communicated to the base station through a communication path.
Since the algorithm is centralized, the base station takes charge of monitoring
sensor locations and keeping track of potential solutions.

The algorithm randomly generates an initial population of potential solutions
(see Fig. 1). Generating additional potential solutions for a larger sensor network
is logical, however, scaling the population size linearly with the number of sensors
in the network would result in excessive computational costs. On the other hand,
scaling logarithmically with the number of sensors would result in a population
size that is too small to properly explore solutions in a large network. Therefore,
we compute the population size as a radical function of the total number of
sensors N. We start with a base population size of 10 for small networks where√
N would not result in a sufficiently large population size. Then, we add to the

population size
√
N
2 (we divide by 2 to reduce the population size further). Since

the population size must be a whole number, we can apply a floor operation to
the

√
N
2 term in case the result is a fraction. This calculation can be represented

as the following function of N :

pop(N) = 10 + �
√
N

2
�
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To generate potential solutions, the algorithm picks a random number of
sensors from 1 to N, denoted by rand(N), and then randomly picks rand(N)
sensors to activate from the network. After activating these sensors, it deter-
mines the following metrics to evaluate the fitness of the solution: the rate of
coverage of the target region RoC(pcov, P ), the rate of k -coverage of the target
region RokC(pkcov, P ), the rate of connectivity among the set of active sensors
Conn(Sconn, Sactive), and the rate of inactivity RoI(Sactive, N). This process
is repeated pop(N) times to get pop(N) possible solutions in a single generation.

Fig. 1. Represents how a solutions is generated.

Fitness Metrics

RoC(pcov, P ) =
|pcov|
P

RokC(pkcov, P ) =
|pkcov|
P

Conn(Sconn, Sactive) =
|Sconn|
|Sactive|

RoI(Sactive, N) =
N − |Sactive|

N
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After determining the metrics of each solution, the algorithm calculates the
score of each solution using the fitness function and keeps track of the top 20%
of the solutions as this provides the best results (determined through trial and
error). We also keep track of the best solution for each generation and compare it
to the universal best solution. If the best solution of the current generation has a
higher score than the universal best solution, then the universal best solution is
assigned the best solution of the generation (i.e. bestSolUniv = max(bestSolGen,
bestSolUniv)). Storing the best universal solution is not only useful for deter-
mining the final result, but it also helps terminate the generation loop.

The next step is to create a new generation based on the best solutions of the
current generation. We start by picking a random solution from the best solutions
and apply a mutation factor to it in order to mimic random genetic mutation.
This is an important step in order to explore different solution permutations. If
the number of sensors N is less than or equal to 100, then the mutation factor is
randomly picked from the range of integers from −3 to 3, inclusive. Otherwise,
the mutation factor is randomly picked from the range of integers from −N

30 to N
30 ,

inclusive. These ranges represent a 0–3% mutation. The function for computing
the mutation factor can be written as:

mut(N) =

{
randInt(−3, 3), N ≤ 100
randInt(−N

30 , N
30 ), N > 100

If the mutation factor is a positive integer, then we must activate mut(N)
more sensors in the current network. If the mutation factor is a negative integer,
then we must deactivate mut(N) sensors in the current network. Note that the
mutation factor can also be 0, in which case there will be no changes to the
current solution (see Fig. 2). Once a solution is mutated, we add it to our new
generation. This step of randomly selecting a solution from the best solutions and
mutating it is done pop(N) times to produce a new generation. After creating a
new generation, we can repeat the algorithm, starting from the fitness evaluation
step, to create an even more fit generation. See Algorithm 1 for the psuedo-code
of the genetic algorithm.

4.3 Terminating Conditions

As we start to create better solutions in each generation and approach the opti-
mal solution, we need a terminating condition to stop the generational loop.
Since there is no way to verify the correctness of a solution in polynomial time,
we must utilize a heuristic that assumes we have determined the optimal solu-
tion based on a terminating condition. One way is to set a constant limit to
the number of generational loops. This limit can be a large upper bound to the
number of generations required to compute an optimal solution (such as 1000
generations) to ensure that we arrive at the most optimal solution that the algo-
rithm can generate before exiting the loop. This approach, however, introduces
redundancy as some networks will arrive at the optimal solution significantly
quicker than other networks despite having the same number of sensors. So, a
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Fig. 2. Represents how a solutions is generated.

given network may arrive at the optimal solution long before the generation
limit is reached and continue to unnecessarily calculate new solutions, wasting
computational resources.

Another way to terminate the generational loop is to compute a score thresh-
old and stop the loop when that threshold has been exceeded. The score threshold
can be computed by inputting the metrics of a desired solution into the fitness
function. We can then use this threshold as our terminating condition for the
generational loop, ensuring that the resulting solution meets the metrics require-
ment of our desired solution. In other words, the resulting solution is as good as
or better than our desired solution. An issue that can arise with setting a score
threshold is that an infinite loop can occur if the algorithm is unable to generate
a solution that exceeds the threshold. To combat this, we can set a constant limit
for the number of generations in the event that a solution with a score exceeding
the threshold is unattainable. If this is the case, then the algorithm will continue
computing more generations despite having already achieved the most optimal
solution it can produce, resulting in the same issue of excess computation.

Perhaps the best terminating condition - if we are concerned with efficiently
arriving at a solution reasonably close to the most optimal solution - is to keep
track of the highest score across all generations, and if that score has not been
exceeded after a set number of generations, we can assume that the algorithm has
arrived at the optimal solution and terminate the generational loop. The number
of generations after which we want to break the loop if we have not achieved a
higher score can be referred to at the ”repeat threshold” (since the highest score
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is repeating). Having a high repeat threshold ensures that the solution is the
most optimal, but also requires the computation of more generations. Finding
the right number depends on the specific use case; however, in our simulations
we found having the repeat threshold set to 5 provided the best results when
considering accuracy and saving time.

Deciding which terminating condition to use depends on the application of
the algorithm. If the goal is to efficiently find a solution close to the optimal
solution that the algorithm can generate, then we can use the repeat threshold.
If we simply aim to achieve a desired solution and stop computation once that
solution has been attained, we can set a score threshold. If the goal is to simply
achieve the most optimal possible solution that the algorithm can come up with
regardless of time and computational constraints, then we can set a large upper
bound on the generational loop.

Algorithm 1: Genetic Algorithm
1 initialize number of sensors as N
2 initialize population size as popSize

3 initialize empty list solutions
4 for (i = 0 to popSize) do
5 create a solution object sol
6 numActive = random integer from 1 to N
7 activate numActive sensors in sol
8 append sol to solutions

9 initialize empty list scoredSolutions
10 while repeatCounter < repeatThreshold do
11 for (j = 0 to popSize) do
12 score = fitness(solutions[j])
13 add current solution and score to scoredSolutions

14 sort scoredSolutions in ascending order
15 bestSolutions = top 20% of scoredSolutions

16 update repeatCounter and highest score

17 // create new generation
18 initialize empty list newGen
19 for (j = 0 to popSize) do
20 sol = random solution from bestSolution
21 if mut(N) > 0 then
22 activate mut(N) more sensors in sol

23 else
24 deactivate mut(N) sensors in sol

25 append sol to newGen

26 solutions = newGen
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4.4 Fitness Function

The fitness function calculates a score for each generated solution based on
the following parameters: coverage, k -coverage, connectivity, and inactivity. The
goal is to maximize each of these metrics, but to do it with different priority.
For example, we must prioritize connectivity over inactivity since a connected
sensor network is preferable to a disconnected sensor network with less sensors.
Therefore, we must multiply each metric by a weight that represents its priority.
Connectivity takes the highest precedence as a sensor network must be connected
to the base station in order to relay any information it gathers. As such, we
assign the highest weight to connectivity. Next, we prioritize coverage, then k -
coverage, and lastly inactivity. This order of precedence ensures that we first
achieve a connected network, then achieve 1-coverage, after which we focus on
achieving k -coverage, and lastly, once we have a connected and k -covered sensor
network, we can focusing on reducing the number of active sensors.

An issue that can arise when calculating the fitness of a solution is that a solu-
tion can come close to achieving an optimal metric, but not be exactly optimal.
For example, if the optimal achievable k -coverage in a randomly deployed sensor
network is 100% but requires the activation of far more sensors than achieving
99% k -coverage, then the fitness function will give a higher score to a solution
that achieves 99% k -coverage with fewer sensors than to a solution that achieves
100% k -coverage with more sensors. To prioritize achieving optimal k -coverage
and connectivity before minimizing the number of active sensors, we enhance the
scoring of solutions that reach these optimal metrics. Specifically, we multiply
the weight of a metric by 10 when it is considered optimal, thereby assigning a
significantly higher score to solutions that meet these criteria compared to those
that do not achieve any optimal metrics. By adopting this approach, the genetic
algorithm will experience notably faster convergence to the optimal solution,
given that solutions with optimal metrics will consistently attain the highest
scores. If a solution achieves optimal connectivity, coverage, and k -coverage,
then its score will be 0.99. From there, the fewer the number of active sensors in
a solution, the closer its score will be to 1. The score of a solution should never
actually be 1 as this would require the solution to have optimal metrics with 0
active sensors, which is not possible. See Algorithm 2 for the pseudo-code of the
fitness function.

4.5 Time Complexity

The algorithm computes pop(N) solutions in every iteration of the generational
loop. The generational loop will typically terminate when an optimal solution
has been achieved; however, we set some bounding constant C as the limit of the
generational loop in the event that this does not occur. This operation reduces
to O(

√
N).

The computation of every solution requires us to activate or deactivate sen-
sors and update coverage. To update coverage, the algorithm maintains two sets,
pcov and pkcov. It iterates through all active sensors, employing a depth-first
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Algorithm 2: Fitness Function

Input : coverageRate, kCoverageRate, connectivity, inactivity
Ouput: solutionScore

1 // boost score if solution reaches optimal metrics
2 if (coverageRate == optimalCoverageRate) then
3 coverageRate = coverageRate * 10

4 if (kCoverageRate == optimalKCoverageRate) then
5 kCoverageRate = kCoverageRate * 10

6 if (connectivity == optimalConnectivity) then
7 connectivity = connecitivity * 10

8 solutionScore = (0.045 * connectivity + 0.030 * coverageRate + 0.024 *
kCoverageRate + 0.01 * inactivity)

9 return solutionScore

search starting at the sensor’s location to update the coverage of only the points
covered by the sensor. This approach has a time complexity of O(a∗r2), where a
is the number of active sensors, and r is the radius of the sensing disk, accounting
for the quadratic scaling of the area. This process is also used when deactivating
sensors to remove points from the respective sets if they are no longer 1-covered
or k-covered.

Activating a sensor also requires that we initialize its communication neigh-
bors to determine connectivity. In order to do this, we must iterate through every
currently active sensor and check if it is communication neighbors with the newly
activated sensor. Similarly, when we deactivate a sensor, we need to remove it
from the communication neighbor set of every other active sensor, which also
requires us to iterate through Sactive. Doing this for every active sensor results
in a time complexity of O(a2).

Once we have computed a potential solution, we need to determine its met-
rics in order to give it a score. Calculating coverage, k -coverage, and inactivity
are constant time operations, but computing connectivity requires a depth-first
search traversal of all currently active sensors. Since we need to traverse all active
sensors at least once, the time complexity of this traversal is O(a).

The time complexity of this algorithm stands at O(
√
N ∗ (a ∗ r2 + a2)) (the

O(a) step of computing connectivity reduces here). In the worst case, the number
of total sensors N is equal to the number of active sensors a and taking this into
account, we must write the time complexity as O(

√
(N) ∗ (N ∗ r2 +N2)). N2 is

greater than N ∗ r2 when the number of sensors N is greater than the sensing
radius r squared which is the most likely case in a randomly deployed sensor
network dense enough to k -cover a target region. Therefore, we can say that the
overall time complexity of the genetic algorithm is O(N2

√
N).
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5 Simulation

In this section, we present our experimental results under different simulation
conditions. Figures 3a, 3b and 3c show the minimum number of active sensors
generated by the genetic algorithm with respect to different degrees of required
coverage. Figure 3d hows the number of active sensors generated by the algorithm
with respect to different sensing ranges.

5.1 Coverage Degree Vs. Number of Active Sensors

Simulation parameters for Fig. 3a: 50 m × 50 m target region (2500 points to
cover), 100 deployed sensors, 10 m sensing range, and 20 m communication range
(N = 100, r = 10, c = 20). Simulation parameters for Fig. 3b: 100 m × 100 m
target region (10,000 points to cover), 300 deployed sensors, 15 m sensing range,
and 30 m communication range (N = 300, r = 15, c = 30). Simulation parameters
for Fig. 3c: 150 m × 150 m target region (22,500 points to cover), 500 deployed
sensors, 20 m sensing range, and 40 m communication range (N = 500, r = 20,
c = 40).

Note that the minimum number of active sensors for each value of k in
Figs. 3a, 3b and 3c is the average of 10 simulations, each ran with a different
randomly deployed sensor network. In Fig. 3a the algorithm computes an average
of 40.7 active sensors for k = 2, 57 for for k = 3, and 72.9 for k = 4. We can
see that the number of active sensors increases linearly with the required degree
of coverage. The same trend can be observed in Figs. 3b and 3c, demonstrating
that the algorithm performs similarly for sensor networks of different sizes and
varying sensor density.

Furthermore, the average number of generations to compute a solution (which
is averaged among 30 different simulations - 10 for each value of k) is roughly the
same for each figure, and does not scale with any of the simulation parameters.
This demonstrates that the algorithm computes solutions in roughly the same
amount of generations regardless of the specific attributes of a wireless sensor
network, and also explains why the number of generations is constant when
computing the time complexity of the algorithm.

5.2 Sensing Range Vs. Number of Active Sensors

Following are the simulation parameters for Fig. 3d 100 m × 100 m target region
(10,000 points to cover), 300 deployed sensors, the required degree of coverage
is 3, and the communication range is twice the sensing range (N = 300, k = 3,
c = 2 ∗ r). Note that, as with the previous experimental results, the number of
active sensors for each value of r is the average of the results of 10 simulations.
We can see in Fig. 3d that as we increase the sensing range r, the number of
active sensors that the algorithm computes decreases which is consistent with
the expected result.
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Fig. 3. Simulation Results

6 Conclusion and Future Work

In this paper, we proposed a genetic algorithm approach to the k-coverage
problem. Specifically, we focused on finding the minimum set of active sensors
required to k-cover a region among a randomly deployed wireless sensor network
while ensuring connectivity. We detailed how our genetic algorithm selects only
the best solutions in each generation and mutates them, converging closer to the
optimal solution in each iteration. Through our simulation results, we showed
that the algorithm performs consistently across different types of wireless sensor
networks and across varying degrees of required coverage.

Our future works consists of improving the time complexity of our algorithm
by finding a faster way to verify area or point coverage. Furthermore, we plan
to extend our approach by developing a scheme that allows inactive sensors to
activate and move to the location of dying active sensors in order to prolong the
lifetime of the network.

Acknowledgements. We would like to thank Dr. Habib M. Ammari, NSF REU Site
PI, for his diligent support and review of our paper, which helped improve its overall
quality. This work is funded by the US National Science Foundation under NSF grant
2338521.
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Abstract. The Max Tree Coverage (MTC) problem is the dual of the
classic k-MST problem and has wide applications in areas such as net-
work design and vehicle routing. Given a graph G with nonnegative costs
defined on edges, a vertex r ∈ V (G), and a budget B, the rooted Max
Tree Coverage problem asks to find a tree rooted at r having total cost
at most B, so that the number of vertices included in the tree is maxi-
mized. This problem is NP-hard and has constant factor approximation
algorithms. However, the existing approximation algorithms for rooted
MTC is very complicated and hard to be implemented practically.

In this paper, we develop a simple CMSA heuristic for rooted MTC
for the first time, where CMSA (Construct, Merge, Solve and Adapt) is
a meta-heuristic proposed recently. We also formulate a polynomial size
mixed integer linear program for rooted MTC for the first time. Experi-
mental results show that CMSA has very good practical performance. For
the small size instances of the problem, CMSA almost finds the optimal
solutions. For the large size instances, CMSA finds solutions better than
that of CPLEX within the same running time and two additional greedy
algorithms. Note that within an admissible running time limit, CPLEX
returns the best solutions ever found (not guarantee to be optimal).

Keywords: Max Tree Coverage · Meta-heuristic · CMSA · k-MST ·
Combinatorial Optimization

1 Introduction

The Minimum Spanning Tree (MST) problem is one of the most fundamental
problems in algorithm theory and combinatorial optimization. Given a weighted
graph G, we want to find a subgraph containing all the vertices of G so that
the total weight of all edges of the subgraph is minimized. As an important
variant of MST, the k-MST problem has also been extensively studied in the
literature [1,2,6,12,16], which asks to find a minimum cost tree of the input
graph spanning at least k vertices. In this paper, we consider the rooted Max
Tree Coverage (MTC) problem, which is the dual of the k-MST problem.

Definition 1. The Rooted Max Tree Coverage Problem.
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Instance: An undirected graph G = (V,E) with edge costs c : E → R
+, a

vertex r ∈ V and a non-negative budget B.
Goal: Find a tree in G rooted at r with cost at most B such that the number

of vertices spanned by the tree is maximized.

One can find that the goal of rooted k-MST is to minimize the total cost of
the tree, which is just a constraint in rooted MTC (i.e., the total cost of the tree
is at most B). The goal of rooted MTC is to maximize the number of vertices
spanned by the tree, which is just a constraint in rooted k-MST (i.e., spanning
at least k vertices). In this sense, we say that rooted MTC is a dual of rooted
k-MST.

The rooted MTC problem finds wide applications in real world [10,18]. For
example, a communication company wants to lay fiber optic cables between cities
in an area, where a central city is designated to must be included. The cost of
laying fiber optic cable varies from city to city. However, the communication
company has a limited budget and needs to maximize the number of cities con-
nected by the laid cables. This scenario is just captured by the rooted MTC
problem.

Like k-MST, the rooted MTC problem is in fact a very basic problem and
its algorithms can be used as sub-routines in network design and vehicle routing
[5,13]. For example, finding a cycle (the trajectory of a vehicle) containing a
depot that visits as many as possible nodes can be solved by using the rooted
MTC problem.

The Max Tree Coverage problem with budget consists of two sub-problems,
i.e., the (unrooted) MTC problem and the rooted MTC problem. In the MTC
problem, there is merely no root given in the input. The problem is to find a
tree of the input graph spanning as many as possible vertices, with the total cost
of the tree not exceeding a given budget. The MTC problem is just the dual of
the k-MST problem, while the rooted MTC problem is the dual of the rooted
k-MST problem.

We will mainly consider the rooted version of the Max Tree Coverage prob-
lem, since the un-rooted version can be reduced easily to the rooted one by
trying every vertex as the root and returning the cheapest one of the solutions
obtained.

As usual, given a graph, we use n to denote the number of vertices in the
graph and m the number of edges. Given a combinatorial optimization problem,
we use OPT to denote the optimal value of its instance.

1.1 Related Work

The k-MST problem is NP-hard, and its best known approximation ratio is 2
[12]. As its dual, the rooted MTC problem is also NP-hard. Although k-MST
has been paid much attention from researchers, only less research has been done
for the MTC problem.

The (unrooted) MTC problem was first studied in [13]. Johnson et al. [13]
gave a 5 + ε approximation algorithm for the MTC problem. The proof for this
result was only sketched in [13].



254 J. Zhou and P. Zhang

On the other hand, the rooted MTC problem was explicitly proposed first
until the work of Blum et al. [5] (the conference version is in FOCS 2003). This
problem is called the (rooted) Max Prize Tree problem in [5]. Blum et al. [5]
observed that the Max Prize Tree problem can be reduced to the (rooted) Max
Prize Path problem. Specifically, Blum et al. [5] proved that if the Max Prize
Path problem can be approximated within α, then the Max Prize Tree problem
can be approximated within 2α. In [5], the Max Prize Path problem (also called
the (rooted) Orienteering problem in [5]) is approximated within 4 via still a
reduction to the Min Excess Path problem. The Min Excess Path problem in
[5] is approximately solved by using a dynamic programming approach, which
in turn calls an approximation algorithm for the k-Path problem given in [8].
As a result, [5] showed that the rooted MTC problem (i.e., the Max Prize Tree
problem) can be approximated within 8.

Later, Bansal et al. [3] gave an improved 3-approximation algorithm for the
Orienteering problem. This means that rooted MTC can be approximated within
6.

Chekuri et al. [9] gave an improved approximation algorithm for the Orien-
teering problem. Based on the framework of [5], Chekuri et al. [9] reduced the
Orienteering problem to the k-Stroll problem via the Min Excess Path problem.
In [9], the k-Stroll problem was approximately solved using dynamic program-
ming, and the solution was adapted to a solution to the Orienteering problem,
resulting in a (2 + ε)-approximation for Orienteering. Consequently, Chekuri et
al. [9] showed that the rooted MTC problem can be approximated within 4 + ε,
which is currently the best ratio for the problem.

1.2 Our Results

Both the work of [5,9] aim to design approximation algorithms with better ratios
for the rooted MTC problem (and other problems therein). One can see that the
algorithms given in [5,9] for rooted MTC, although running in polynomial time,
are very complicated and difficult to be implemented. In this paper, we study
the rooted MTC problem from the aspect of heuristics, giving simple heuristic
algorithms for rooted MTC with good practical performance. Our contributions
are summarized as follows.

(i) We develop a CMSA heuristic for the rooted MTC problem for the first
time. The CMSA (Construct, Merge, Solve and Adapt) heuristic is a powerful
meta-heuristic proposed recently by Blum et al. [7]. CMSA has been widely
applied to solve many combinatorial optimization problems, e.g., [14,15,17].

(ii) Moreover, we provide a polynomial-size MILP (mixed integer linear pro-
gram) model for the rooted MTC problem for the first time. The most common
integer linear program (ILP) for the spanning tree-like problems such as MST
and rooted MTC, usually contains a connectivity constraint which is defined
on cuts. Since the number of cuts is exponential in the number of vertices, this
way cannot lead to a polynomial-size ILP for rooted MTC. We overcome this
difficulty via a flow approach.
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(iii) We do experiments to test the performance of the CMSA heuristic. In
order to make a comparison, we additionally provide two more polynomial time
greedy algorithms for rooted MTC. They are Algorithm G and Algorithm P.
Algorithm G uses the approach of the Prim Algorithm for MST, while Algorithm
P uses an idea of minimum average cost. Moreover, we also use CPLEX to solve
the MILP for rooted MTC. So, in the experiments we test four algorithms for
rooted MTC, namely, CMSA, Algorithm G, Algorithm P, and CPLEX. They
all run on five data sets. The first two data sets come from a benchmark for a
similar problem (since there is no direct benchmark for rooted MTC), and the
last three data sets are randomly generated according to different graph models.

We set a running time limit of 1800 s for both CMSA and CPLEX. The exper-
imental results show that for the small size instances of rooted MTC, CMSA
almost always finds the optimal solutions. For the large size instances, within
the same running time limit, CMSA performs best in the sense that it almost
always finds solutions better than that of CPLEX, Algorithm G, and Algorithm
P. We also find that in the experiments Algorithm G performs better than Algo-
rithm P. Our experimental findings show that CMSA can be a good heuristic
for the rooted MTC problem in practice.

It is well-known that CPLEX can find optimal solutions by solving integer
program for a combinatorial optimization problem. However, in our experiments,
since the instances of MTC have large sizes, if one insists to use CPLEX to find
the optimal solutions, the running time would be impractically high and cannot
be tolerated. Therefore, we have to set a running time limit. To guarantee the
fairness, the running time limit is used for both CPLEX and CMSA. Note that
within the running time limit, CPLEX returns the best solution ever found. In
other words, CPLEX cannot guarantee to find the optimal solutions within this
time limit. So, it is possible that CMSA performs better than CPLEX on large
size instances using a common running time limit.

Algorithm G and Algorithm P are fast and they normally finish within 1800 s
in all of our experiments.

(iv) We provide a bi-criteria approximation algorithm for rooted MTC. We
prove that when the input graph is restricted to be a tree, the rooted MTC
problem is polynomial time solvable using a dynamic programming approach.

Organization of the Paper. The remainder of the paper is organized as
follows. In Sect. 2, we show that rooted MTC is NP-hard and give a bi-criteria
approximation algorithm for the problem. In Sect. 3, we describe the CMSA
heuristic. In Sect. 4, we give two additional greedy algorithms for the rooted
MTC problem. Next, we show the experimental results in Sect. 5. In Sect. 6, we
show that rooted MTC in trees is polynomial time solvable using the dynamic
programming approach. Finally, we give the conclusions of this paper in Sect. 7.

2 NP-Hardness and Bi-criteria Approximation

Theorem 1. The rooted MTC problem is NP-hard.
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Proof. The k-MST problem is known to be NP-hard even in the graphs with
edge costs only coming from the set {1, 2, 3} [16]. Given such an instance
(denoted by I) of the k-MST problem (rooted version), its optimal solution
cost clearly lies in the interval [k, 3k]. Now we assume that there exists an algo-
rithm (denoted by A) which optimally solves the rooted MTC problem. We then
run algorithm A on instance I with budget B initialized to be k, the smallest
possible optimum of the k-MST instance I. If the solution obtained spans less
than k vertices, we then increase the budget B by one and continue to run algo-
rithm A on instance I. The first solution found in this procedure that spans at
least k vertices must be the optimal solution to the k-MST instance. The whole
procedure obviously consists of polynomial number of iterations. In this way, we
reduce k-MST to rooted MTC via a Turing reduction. Since k-MST is NP-hard,
this means that rooted MTC is also NP-hard. �

We now use the search idea similar to the proof of Theorem 1 to give a
bi-criteria approximation algorithm for the rooted MTC problem.

Theorem 2. Given a polynomial time α-approximation algorithm for the rooted
k-MST problem, we can find in polynomial time a solution to the rooted MTC
problem whose total cost ≤ αB and which spans ≥ OPT number of vertices,
where OPT is the optimum of the rooted MTC problem.

Proof. Let A be the α-approximation algorithm for k-MST. Starting from k = 1
and each time increasing k by one, we repeatedly run algorithm A on the rooted
MTC instance, say, I. The procedure terminates until the cost of the solution
found by algorithm A exceeds αB. Suppose that the value of k is k′ in the last
iteration of the procedure. Clearly, we need only to prove that k′ ≥ OPT .

Since the optimal solution to rooted MTC spanns OPT vertices using a tree
with cost ≤ B, when running algorithm A with k = OPT , the solution found by
A must have cost ≤ αB since A is an α-approximation algorithm. The search
procedure will continue after this point until a tree with cost > αB is found.
Therefore, the last value of k must be greater than or equal to OPT . �

The best approximation ratio currently known for rooted k-MST is 2 [12].
Therefore, Theorem 2 shows that there exists a bi-criteria (1, 2)-approximation
algorithm for the rooted MTC problem, where the first factor one is the approx-
imation ratio, and the second factor 2 is the violation degree of the budget.

3 CMSA Heuristic for Rooted MTC

The CMSA meta-heuristic proposed in [7] is an iterated approach whose each
iteration consists of the following four stages.

– Construct: At each iteration, the heuristic generates a certain number of
feasible random solutions.

– Merge: The solution components found in these solutions are merged together
to form a sub-instance with smaller size than the original instance.
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– Solve: Apply an exact solver (e.g., CPLEX) to solve the sub-instances
obtained in the merge step.

– Adapt: The heuristic adapts the sub-instances based on the results of each
iteration, keeping the solution components that are frequently used and dis-
carding those that are never used after a certain number of iterations.

As for our CMSA heuristic for rooted MTC (see Algorithm 1), the construc-
tion stage corresponds to step 5, the merge stage corresponds to steps 6–7, the
solving stage corresponds to step 9, and the adaption stage corresponds to steps
11–14.

The secret of success for CMSA is that it repeatedly improves the current
solution to the original instance (denoted by I) by solving a generated instance
(denoted by J ) with smaller size. Instance J is generated by merging a certain
number of random solutions. Consequently, it is structured and easy to be solved.
Moreover, instance J is adapted through iterations, so better solutions may be
found in the process.

We solve the smaller instance in our CMSA heuristic by CPLEX. One may
wonder why CMSA is compared with CPLEX in the experiments, as CPLEX
has already been called as a subroutine in CMSA. The answer is that in our
CMSA heuristic CPLEX is only called to solve the generated smaller instance.
Since the size of the generated instance is small, CPLEX can terminate within
an admissible running time. In the final experiments, CPLEX is again used as a
separated algorithm to solve the whole instance of MTC, and is compared with
other three algorithms (including CMSA).

3.1 An MILP Model for Rooted MTC

Since in the solving stage of CMSA we need to optimally solve the sub-instances
of rooted MTC by using CPLEX, we first introduce an mixed integer linear
program (MILP) model for the rooted MTC problem. The model is shown as
(MILP).

The key point of the model (MILP) is that its has polynomial size. This is
very vital since we will solve this model by CPLEX in the CMSA heuristic. We
want to find a tree in the rooted MTC problem. An usual approach to formulate
a tree in a mathematical program is to use the cut based constraints. However,
this approach would lead to a model of exponential size as there are exponential
number of cuts in a graph. Instead, we use the flow approach in our (MILP)
model to formulate a tree. By the flow approach, we finally obtain a model for
rooted MTC having polynomial size.

max
∑

v∈V

xv (MILP)
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s.t.
∑

u∈N(r)

fru −
∑

u∈N(r)

fur =
∑

v∈V,

xv − 1 (1)

∑

u∈N(v)

fuv −
∑

u∈N(v)

fvu = xv, ∀v �= r (2)

∑

v∈V

xv =
∑

e∈E

ye + 1 (3)

∑

e∈E

ceye ≤ B

xv ≤
∑

e∈δ(v)

ye, ∀v ∈ V

xr = 1
fuv ≤ (n − 1)ye, ∀e = (u, v)
fvu ≤ (n − 1)ye, ∀e = (u, v)
xv, ye ∈ {0, 1}, ∀v ∈ V

fuv, fvu ≥ 0, ∀e = (u, v)

For each v ∈ V , we associate a variable xv. The equality xv = 1 indicates
that vertex v is included in the solution (i.e., the tree). Similarly, we associate
a variable ye with each edge e ∈ E, and ye = 1 indicates that edge e is included
in the tree. Besides, for each edge e = (u, v) we set two variables fuv and fvu,
where fuv is the flow value from u to v, and fvu is the flow value of the opposite
direction.

To force the selected edges form a connected subgraph, our method is to
deploy a single source multi-sink flow from the root r to each vertex (with flow
value one) in the subgraph. Therefore, constraint (1) guarantees the flow value
outgoing from the root r is

∑
v∈V xv − 1, i.e., the number of vertices spanned

by the tree minus one. If vertex v �= r is included (i.e., xv = 1), then there is a
unit flow from the root to v (constraint (2)). The constraint (3) says that in the
subgraph the number of vertices should be equal to the number of edges plus
one, guaranteeing that the connected subgraph forms a tree. In (MILP) N(v) is
the set of neighbours of vertex v.

3.2 The CMSA Heuristic

The CMSA heuristic for the rooted MTC problem is given in Algorithm 1.
Besides the instance as the part of the input, Algorithm 1 requires further three
parameters na, agemax, and drate, whose meanings are given below.

– na: the number of random trees generated at each iteration.
– agemax: the maximum allowed age of an edge e.
– drate: the threshold used when generating a random tree.

At the beginning, Algorithm 1 initializes the best solution currently found
(Sbsf ) and sub-instance E′. The age of every edge is initialized to zero (see line
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2 of Algorithm 1). Then, Algorithm 1 repeats the following procedure until the
allowed running time is out.

Line 5 of Algorithm 1 corresponds to the construction stage, where a bud-
geted random tree rooted at r is generated. Lines 6–7 of Algorithm 1 are the
merging stage. The algorithm generates na random trees and merge them all
into E′. Note that E′ actually forms a new instance of rooted MTC with smaller
size than the original instance G.

Line 9 of Algorithm 1 is the solving stage. We run CPLEX on the MILP
model with the instance E′ to obtain an optimal tree Sopt. If Sopt contains more
vertices than Sbsf , Sbsf is replaced by Sopt. (See line 10 of Algorithm 1). The
last stage adaption is implemented in lines 11–14. For each edge e ∈ E′, if e is in
Sopt, then its age is reset to zero. Otherwise, the age is increased by one. Then
all edges in E′ with age(e) > agemax are removed from E′, which are those never
used in any solutions Sopt’s in the last agemax iterations.

Algorithm 1. CMSA for rooted MTC (Algorithm CMSA)
Input: Graph G, root r, budegt B, na, agemax, drate.
Output: A budgeted tree Sbsf rooted at r.
1: Sbsf ← NULL, E′ ← ∅.
2: ∀e ∈ E, age(e) ← 0.
3: while CPU time limit not reached do
4: for i ← 1 to na do
5: S ← GenerateRandomTree(G, drate, r, B).
6: ∀e ∈ S \ E′, age(e) ← 0.
7: E′ ← E′ ∪ S.
8: end for
9: Run CPLEX on the instance E′ to obtain a tree Sopt.

10: if |V (Sopt)| > |V (Sbsf )| then Sbsf ← Sopt.
11: for each e ∈ E′ do
12: if e ∈ Sopt then age(e) ← 0 else age(e) ← age(e) + 1.
13: end for
14: Remove all edges from E′ with age(e) > agemax.
15: end while
16: return Sbsf .

Since Algorithm 1 calls CPLEX on a sub-instance, each iteration of Algorithm
1 uses exponential time. However, since the solved sub-instance has small size,
the running time of each iteration is acceptable in practice. When implementing
Algorithm 1, a running time limit is used. The algorithm will terminate when
the admissible running time is out.

3.3 Generate a Random Tree

Algorithm 2 is the GenerateRandomTree() algorithm used in Algorithm 1. The
algorithm maintains a tree (denoted by S, the set of edges in the tree) rooted
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at r. Initially, the tree contains only the root. In each iteration, an edge lying
in the border of V (S) (denoted by δ(V (S))) is chosen and added to the current
tree, until the cost of the tree exceeds the budget B. Here, by border of V (S),
we mean the set of edges whose one endpoint is in V (S) and the other endpoint
is outside of V (S).

Lines 5–7 of Algorithm 2 describe how we choose an edge from the border A.
First, we generate a random number a between 0 and 1. Then we compare a and
drate. If a ≤ drate, we choose the edge with the minimum cost from A and add
it to S′. Otherwise, we choose an edge uniformly at random from A and add it
to S′. Thus, the current tree gets larger, and the border A accordingly changes.
At the beginning of each iteration, we save S′ in S, so that we can remember
the tree before its cost exceeds B.

Algorithm 2. GenerateRandomTree
Input: Graph G, root r, budget B, threshold drate.
Output: An edge set S that forms a tree.
1: S′ ← ∅.
2: A ← δ(r).
3: while A �= ∅ and c(S′) ≤ B do
4: S ← S′.
5: Choose a random number a ∈ [0, 1].
6: if a ≤ drate then let e′ be the edge in A with the minimum cost.
7: else let e′ be an edge in A chosen uniformly at random.
8: S′ ← S′ ∪ {e′}.
9: A ← δ(V (S′)).

10: A ← Reduce(A).
11: end while
12: if c(S′) > B then return S else return S′.

Algorithm Reduce(A). Note Algorithm 2 calls Reduce(A) as a sub-routine.
Algorithm Reduce(A) does the following work. If there are more than one edges
in A with the common endpoint outside of V (S′), say v, only the edge with the
minimum cost remains in A. All the other edges with endpoint v are removed
from A.

4 Two Greedy Algorithms

In this section we introduce two greedy algorithms for the rooted MTC problem.

4.1 Greedy Algorithm Based on Prim

Algorithm 3 is a greedy algorithm for rooted MTC which is based on the Prim
algorithm for MST. Starting from the root vertex r, each time the algorithm
selects the minimum cost edge from the border of the current tree, until the
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cost of the current tree exceeds the budget B. Algorithm 3 returns the tree just
before its cost exceeds B as the solution. This algorithm is essentially identical
to Prim, and has the same time complexity as that of Prim. It is known that
the Prim algorithm can be implemented in O(m + n log n) time.

Algorithm 3. Greedy algorithm based on Prim (Algorithm G)
Input: Graph G, root r, budget B.
Output: An edge set S that forms a tree.
1: S′ ← ∅.
2: A ← δ(r).
3: while A �= ∅ and c(S′) ≤ B do
4: S ← S′.
5: let e′ be the edge in A with the minimum cost.
6: S′ ← S′ ∪ {e′}.
7: A ← δ(V (S′)).
8: A ← Reduce(A).
9: end while

10: if c(S′) > B then return S else return S′.

4.2 Greedy Algorithm Based on Average Cost

Recall that an optimal tree to the rooted MTC problem spans as many as possible
vertices using edges with total cost at most the budget B. Since in a tree the
number of vertices equals to the number of edges plus one, the ratio of total
edge cost and the number of edges, called average cost, is an intuitively good
indicator to find a budgeted tree spanning as many as possible vertices. Inspired
by this idea, we design Algorithm 4.

Algorithm repeatedly finds a shortest r-t path which has the length at most
the remaining budget and the minimum average cost among {t �= r | t ∈ V },
where the average cost of a path is defined as the ratio of its length and the
number of edges contained in the path. Once such a path is found, it is united to
the current tree S. The vertices in S (note that r ∈ S) are merged into r in G,
so that the newly found path does not overlap with S. All self-loops appearing
in the merging process are removed. If multiple edges occur, only one edge with
the minimum cost is remained.

Each iteration of Algorithm 4 can be implemented in time O(m + n log n)
when using Fibonacci heap to implement Dijkstra’s shortest path algorithm.
Since at least one vertex is merged in each iteration, the time complexity of
Algorithm 4 is O(mn + n2 log n).

5 Experimental Evaluation

We do experiments to test the performance of Algorithm CMSA for the rooted
MTC problem. In the experiments we also run Algorithm G, Algorithm P, and



262 J. Zhou and P. Zhang

Algorithm 4. Greedy algorithm using average cost (Algorithm P)
Input: Graph G = (V, E), root r, budget B.
Output: An edge set S that forms a tree.
1: S ← ∅.
2: while E(G) �= ∅ do
3: Find a shortest r-t path P having c(P ) ≤ B and the minimum average cost

among {t �= r | t ∈ V }.
4: if not found then break.
5: B ← B − c(P ).
6: S ← S ∪ P .
7: Merge all vertices in P into r in G.
8: end while
9: return S.

CPLEX in order to compare their performances with Algorithm CMSA. Note
that there are two places we use CPLEX in the experiments. One is the solving
stage of Algorithm CMSA. The other is a separate usage where we use CPLEX
to solve the whole rooted MTC problem.

We test the above four algorithms on five data sets in the experiments. The
first two sets are ehrfrei and blxh from the benchmark library KCTLIB [4,11].
The last three sets Gnp, Conf, and PA are randomly generated according to three
graph models G[n, p], configuration, and preferential attachment, respectively.

Due to space limitation, only experimental findings are stated here. The
whole description of the experiments will be given in the full version of the paper.
The experimental results show that for the small size instances of rooted MTC,
CMSA almost always finds the optimal solutions. For the large size instances,
within the same running time limit, CMSA performs best in the sense that it
almost always finds solutions better than that of CPLEX, Algorithm G, and
Algorithm P. Note that within the running time limit, CPLEX returns the best
solution ever found. We also find that in the experiments Algorithm G performs
better than Algorithm P. Our experimental findings show that CMSA can be a
good heuristic for the rooted MTC problem in practice.

6 Rooted MTC on Trees

In this section we show that the rooted MTC problem is polynomial-time solvable
when the input graph is a tree. Our approach is dynamic programming. When
designing a dynamic programm for rooted MTC in trees, one have to consider
how to split remaining budget among the subtrees of a node in the input tree.
However, this cannot be directly finished in polynomial time since in general
the budget is not polynomial bounded. To overcome this difficulty, we use an
indirect way to solve the rooted MTC problem. We actually give a dynamic
program for its dual, the k-MST problem on trees. This is possible since in our
dynamic program for k-MST, we need only consider how to split the number of
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vertices to be covered in the subtrees of a node. This can be done in polynomial
time.

Theorem 3. The rooted MTC problem is polynomial-time solvable in trees.

The details of the dynamic programming and the proof of Theorem 3 are
omitted due to space limitation, and will appear in the full version of the paper.

7 Conclusions

The rooted MTC problem arises from network design and vehicle routing area.
The problem is interesting since it is a dual of the classic k-MST problem. We
design a simple heuristic algorithm for rooted MTC by applying the CMSA
(construct, merge, solve, and adapt) strategy. Experimental results show that
our CMSA heuristic for rooted MTC has very good practical performance.
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Abstract. The k-submodular function is a generalization of the submod-
ular function. The k-submodular optimization problems have important
applications in influence maximization problems and sensor placement
problems with k kinds of sensors. In this paper, we study the problems of
maximizing k-submodular functions subject to two kinds of constraints.
We set α = 2 when f is monotone and α = 3 when f is non-monotone. For
the p-system constraint, we get a 1−ε

p+α
-approximation ratio. For the inter-

section of p-system and d-knapsack constraints, we get an approximation
ratio of 1−ε

p+α+2d
. And subsequently, we propose an improved algorithm that

improves the approximation ratio to 1−ε

p+α+ 1+
√

5
2 d

.

Keywords: k-submodular maximization · p-system constraint ·
d-knapsack constraint · Approximation algorithm

1 Introduction

Submodular functions have important applications in many combinatorial opti-
mization problems, such as sensor placement [11,18], influence maximization
[10,13], etc. Given a finite set N , a set function f : N → R+ is submodular if
f(A∪{e})−f(A) ≥ f(B∪{e})−f(B), for any A ⊆ B ⊆ N , e ∈ N \B. An equiv-
alent definition of the submodular function is f(A)+f(B) ≥ f(A∩B)+f(A∪B)
for any subset A ⊆ N , B ⊆ N .

In recent years, the problem of maximizing k-submodular functions has
attracted much attention due to its widely applications in influence maximiza-
tion with k kinds of topics [17], feature recognition [24] and information cov-
erage maximization [21], etc. Given a finite set N and an integer k, we define
[k] = {1, 2 . . . , k} and the set of k-sets (k + 1)N = {(X1, . . . , Xk)|Xi ⊆ N , i ∈
[k],Xi ∩ Xj = ∅, i 	= j}. A function f : (k + 1)N → R+ is called k-submodular
[7] if

f(x) + f(y) ≥ f(x 
 y) + f(x � y),
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where
x 
 y = (X1 ∩ Y1, . . . , Xk ∩ Yk),

x � y = (X1 ∪ Y1 \ (
⋃

i�=1

Xi ∪ Yi), . . . , Xk ∪ Yk \ (
⋃

i�=k

Xi ∪ Yi)).

And a k-submodular function f is monotone if

f(X1, . . . , Xi ∪ {e}, . . . ,Xk) − f(X1, . . . , Xi, . . . , Xk) ≥ 0,

for any x ∈ (k + 1)N , i ∈ [k], and e /∈ ⋃
1≤j≤k Xj .

The k-submodular function is an extension of the submodular function, which
is the submodular function when k = 1. And the k-submodular maximization
problems are also NP-hard [29] . In this paper, we consider the problems of
maximizing k-submodular functions subject to two kinds of constraints. Given
a monotone or non-monotone k-submodular function f : (k + 1)N → R+, and
f(∅, ∅, . . . , ∅) = 0, we consider

Problem (1) : {max f(x)|x ∈ (k + 1)N , supp(x) ∈ I};

Problem (2) : {max f(x)|x ∈ (k + 1)N , supp(x) ∈ I, ci(x) ≤ 1, 1 ≤ i ≤ d}.

Let I ⊆ 2N , we call the pair (N , I) is a p-system if (1) ∅ ∈ I; (2) if B ∈ I
and A ⊆ B, we have A ∈ I; (3) for every S ⊆ N , the ratio between the
sizes of the largest base of S and the smallest base of S is at most p. And d-
knapsack constraint means that there are d functions c1, . . . , cd and d positive
values B1, . . . , Bd. We assume that Bi = 1 for every integer 1 ≤ i ≤ d. This can
be guaranteed by scaling the cost functions ci.

Related work
The submodular maximization problem with cardinality constraint can be
approximated by a simple greedy algorithm [15] to obtain the ratio of 1 − 1

e ,
which is the best guarantee one can hope for. Then Badanidiyuru et al. [2]
reduced the time complexity from O(n2) to O(n

ε log n
ε ). Due to the phenomenon

of big data, the computer cannot store all elements. In this case, Badanidiyuru
et al. [1] proposed the streaming algorithm for the cardinality constrained prob-
lem and obtained the (12 −ε)-approximation ratio with at most O(k

ε log k) space.
Later on, Kazemi et al. [9] reduced the space complexity to O(k

ε ). Buchbinder
et al. [3] proposed an online 1

4 -approximation algorithm with O(k) memory. For
the monotone submodular maximization problem under p-system constraint,
Fisher et al. [5] got a 1

p+1 -approximation ratio. For the non-monotone submod-
ular maximization problem under p-system constraint, Gupta et al. [6] proposed
a p

(p+1)(3p+3) -approximation algorithm. Then Mirzasoleiman et al. [14] increased
the approximation ratio to p

(p+1)(2p+1) . For the intersection of p-system con-
straint and d-knapsack constraints, Badanidiyuru and Vondrák [2] used the
threshold technique to get a 1

p+2d+1 -approximation ratio. Then Li et al. [12]

increased the approximation ratio to 1+O(ε)

p+ 4
7d+1

.
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In recent years, there are extensive research on the k-submodular maximiza-
tion problems. For the unconstrained problem, Ward and Z̆ivný [28] studied this
problem and got a 1

3 -approximation ratio. Iwata et al. [8] designed the stochastic
algorithm to improve the approximation ratio to k

2k−1 . Then, Oshima [19] elim-
inated the random told in Iwata et al. [8] but it increased the time complexity.
For the total size constraint, Ohsaka and Yoshida [17] proposed a greedy algo-
rithm for the monotone case and obtained an approximation ratio of 1

2 . Qian et
al. [21] proposed a random multi-objective evolutionary algorithm for the mono-
tone k-submodular maximization problem and obtained the same approximate
ratio in expectation. Zheng et al. [32] studied the problem of maximizing approx-
imately k-submodular functions subject to the total size constraint and got an
approximate ratio of (1−ε)2

2(1−ε+εb)(1+ε) . Nguyen et al. [16] proposed the streaming
algorithm, then obtained a (13 − ε)-approximation ratio when f is monotone and
a ( 14 − ε)-approximation ratio when f is non-monotone. For the individual size
constraint, Ohsaka and Yoshida [17] proposed a greedy algorithm for monotone
case and obtained an approximation ratio of 1

3 . Then, Alina and Nguyen [4]
proposed a streaming algorithm for this problem and got a 1

4 approximation
ratio.

For the knapsack constraint, Zhang et al. [31] studied the k-submodular
maximization problem under the individual budget constraint, and got a 1

5 (1 −
1
e )-approximation ratio with O(n2k) query complexity. Tang et al. [26] studied
the k-submodular maximization problem under the total budget constraint, and
got a 1

2 (1− 1
e )-approximation ratio with O(n4k3) query complexity. Then, Wang

and Zhou [27] improved the approximation ratio from 1
2 (1 − 1

e ) to 1
2 − ε. Pham

et al. [20] proposed the streaming algorithm, then obtained an approximation
ratio of (14 − ε) when f is monotone and (15 − ε) approximation ratio when f is
non-monotone.

For the matroid constraint, Sakaue et al. [23] proposed a greedy algorithm
with an approximation ratio of 1

2 for the monotone k-submodular function.
Rafiey and Yoshida [22] improved the time complexity of Sakaue from O(nkr)
to O(nk ln r lnr

ε ). For the non-monotone k-submodular maximization problem
under the matroid constraint, Li et al. [25] got a 1

3 -approximation algorithm with
a high probability. Then, Li et al. [30] also studied monotone and no-monotone
k-submodular maximization problem with the intersection of a knapsack and m

matroid constraints. And they got a 1−e−(m+2)

m+2 -approximation ratio when f is

monotone, a 1−e−(m+3)

m+3 -approximation ratio when f is non-monotone. However,
their algorithms may not be polynomial time since the number of greedy swaps
cannot be bounded polynomially.

Our Contribution. The main contributions of this paper are as follows.
• In this paper, we propose the greedy algorithm for k-submodular maximization
under the p-system constraint. For this constraint, we get a 1

p+2 -approximation
ratio when f is monotone and a 1

p+3 -approximation ratio when f is non-
monotone.
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• We propose a threshold algorithm for k-submodular maximization under
the intersection of p-system and d-knapsack constraint to get a 1−ε

p+2+2d -
approximation when f is monotone and a 1−ε

p+3+2d -approximation ratio when
f is non-monotone. We then propose an improved algorithm to improve the
approximation ratio to 1−ε

p+2+ 1+
√

5
2 d

when f is monotone and 1−ε

p+3+ 1+
√

5
2 d

when f

is non-monotone. Compared to [30], the problem we study has a wider range of
constraints and the algorithmic time is polynomial.

2 Preliminaries

In this section, we will introduce some symbols and basic properties of the k-
submodular function. We let |N | = n, 0 = (∅, ∅, . . . , ∅), and (e, i) be a vec-
tor whose i-th position is the set of element e and the rest of the positions
are the empty set. For any x = (X1, . . . , Xk) ∈ (k + 1)N , let supp(x) =⋃

1≤i≤k Xi. For every e ∈ supp(s), s(e) denotes the position of element e in
s. e,if(x) = f(x� (e, i))−f(x). And e,ie

f(s) represents benefits from adding
element e to the position that produces the greatest marginal benefit. For any
x = (X1, . . . , Xk),y = (Y1, . . . , Yk) ∈ (k + 1)N , we define the partial order rela-
tionship x � y if Xi ⊆ Yi, i ∈ [k]. And for any k-sets x and y, we define y \ x as
follows. Let y \ x � y and supp(y \ x) = supp(y) \ supp(x).

Definition 1. [18] A function f : (k + 1)N → R+ is orthant submodular if

e,if(x) ≥ e,if(y)

for any x, y ∈ (k + 1)N , i ∈ [k], x � y, e /∈ supp(y).

Definition 2. [18] A function f : (k + 1)N → R+ is pairwise monotone if

e,if(x) + e,jf(x) ≥ 0.

for any x ∈ (k + 1)N , e /∈ supp(x), i, j ∈ [k], i 	= j.

Proposition 1. [29] A function f is k-submodular if and only if f is orthant
submodular and pairwise monotone.

Definition 3. We say that the k-sets z1, . . . , zt is a partition of a k-set x if
z1, . . . , zt � x, and

⋃t
i=1 supp(zi) = supp(x), supp(zi) ∩ supp(zj) = ∅, for any

1 ≤ i, j ≤ t, i 	= j.

In order to analyze algorithms, we define the following notation. Let
(
ej , ij

)

be the j-th element added to the output solution of the algorithm. And
sj =

{(
e1, i1

)
, . . . ,

(
ej , ij

)}
is the solution when adding j elements in the main

loop of the algorithm. Let o be an optimal solution, oj =
(
o � sj

) � sj and
oj−1/2 =

(
o � sj

) � sj−1. Clearly o0 = o. For sj−1/2, we define it in two cases.
If ej ∈ supp(o), sj−1/2 = sj−1 � (

ej ,o
(
ej

))
. Else, sj−1/2 = sj−1. By the above

definitions, we can get sj � oj−1/2 � oj .
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3 k-Submodular Maximization Under the p-System
Constraint

In this section, we propose the greedy algorithm for Problem (1), i.e. k-
submodular maximization under the p-system constraint. The algorithm is as
follows.

Algorithm 1. Greedy algorithm
Require: a k-submodular function f , a p-system (N , I)
Ensure: an approximation solution s.
1: s0 ← (∅, ∅, . . . , ∅), i = 0
2: while N �= ∅ do
3: (e, j) ← arg maxe∈N ,j∈[k] �e,jf(si)
4: if supp(si) + e ∈ I then
5: si+1 ← si � (e, j), i = i + 1
6: end if
7: N ← N \ {e}
8: end while
9: return s

Lemma 1. For any x,y ∈ (k +1)N ,x � y, and z1, . . . , zt is a partition of y\x.
We have

f(y) − f(x) ≤
∑

1≤i≤t

f(x � zi) − f(x).

Proof.

f(y) − f(x) =
∑

1≤i≤t

f(x � z1 � . . . � zi) − f(x � z1 � . . . � zi−1)

≤
∑

1≤i≤t

f(x � zi) − f(x).


�
Due to page limitations, we have placed some of the proofs of this section in
Appendix A.

Lemma 2. Let o be an optimal solution of Problem (1), sl be the output solution
of Algorithm 1 and c = o \ sl 	= (∅, ∅, . . . , ∅). Then there exists a partition of c:
c1, c2, . . . ,cl such that:
(1) for all i ∈ [k], pi ≤ p, where pi = |supp(ci)|;
(2) for all i ∈ [k], pi[f(si) − f(si−1)] ≥ f(sl � ci) − f(sl).

Lemma 3. Suppose that st(1 ≤ t ≤ l) is the current solution after t iterations
of Algorithm 1, and f is a monotone k-submodular function. We have

f(o) − f(ot) ≤ f(st).
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Lemma 4. Suppose that st(1 ≤ t ≤ l) is the current solution after t iterations
of Algorithm 1, and f is a non-monotone k-submodular function. We have

f(o) − f(ot) ≤ 2f(st).

Theorem 1. Algorithm 1 has O(n2k) query complexity and outputs a 1
p+2 -

approximation solution when f is monotone, and a 1
p+3 -approximation solution

when f is non-monotone.

4 k-Submodular Maximization Under the Intersection
of p-System and d-Knapsack Constraints

In this section, we propose the threshold greedy algorithm for Problem (2), i.e.
k-submodular maximization under the intersection of p-system and d-knapsack
constraints. The algorithm is as follows.

Algorithm 2. Threshold Greedy Algorithm With Known ρ

Require: a k-submodular function f , a p-system (N , I), knapsack-cost functions
ci, 1 ≤ i ≤ d and a threshold ρ

Ensure: an approximation solution s.
1: (emax, jmax) ← arg maxe∈N ,j∈[k] �e,jf(0)
2: s0 ← (∅, ∅, . . . , ∅), i = 0
3: while N �= ∅ do

4: if
�e,jf(si)∑
1≤i≤d ci(e)

≥ ρ then

5: if supp(si) + e ∈ I, and max1≤t≤d ct(si) + ct(e) ≤ 1
6: si+1 ← si � (e, j), i = i + 1 then
7: end if
8: if supp(si) + e ∈ I and max1≤t≤d ct(si) + ct(e) ≥ 1 then
9: return arg max{f(si), f((emax, jmax))}

10: end if
11: end if
12: N ← N \ {e}
13: end while
14: return arg max{f(si), f((emax, jmax))}

Due to page limitations, we have placed some of the proofs of this section in
Appendix B.

Theorem 2. Algorithm 2 returns a solution s that satisfies f(s) ≥
min{ 1

2ρ, f(o)−ρd
p+2 } when f is monotone and f(s) ≥ min{ 1

2ρ, f(o)−ρd
p+3 } when f

is non-monotone, where ρ can be determined later.

Next, we need to find a suitable threshold value ρ. For a monotone function
f , let 1

2ρ = f(o)−ρd
p+2 . Then, we get a threshold ρ = 2f(o)

p+2+2d . Similarly, we can
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get a threshold ρ = 2f(o)
p+3+2d when f is non-monotone. Therefore, we propose

Algorithm 3 to enumerate the thresholds.

Algorithm 3. Threshold Greedy Algorithm
Require: a k-submodular function f , a p-system (N , I), knapsack-cost functions

ci, 1 ≤ i ≤ d and a parameter ε
Ensure: an approximation solution s.
1: M ← arg maxe∈N ,j∈[k] f((e, j))
2: if f is monotone then
3: α = 2
4: else
5: α = 3
6: end if
7: Λ = {j ∈ N+| M

1+ε
≤ (1 + ε)j ≤ nM}

8: for j ∈ Λ do

9: sj ← Algorithm 2 (f, (N , I), ci,
2(1+ε)j

p+α+2d
)

10: end for
11: return arg max{f(sj)|j ∈ Λ}

Theorem 3. Algorithm 3 has O(n2k log n
ε ) query complexity and provides a

1−ε
p+2+2d -approximation ratio if f is monotone, and a 1−ε

p+3+2d -approximation ratio
if f is non-monotone.

Proof. For the monotone case, let j = �log1+ε f(o)�. Then we have 2(1−ε)f(o)
p+2+2d ≤

2(1+ε)j

p+α+2d ≤ 2f(o)
p+2+2d . By Theorem 2, we have

f(s) ≥ min{1
2
ρ,

f(o) − ρd

p + 2
} ≥ 1 − ε

p + 2 + 2d
f(o).

For the non-monotone case, we have 2(1−ε)f(o)
p+3+2d ≤ 2(1+ε)j

p+α+2d ≤ 2f(o)
p+3+2d .

And by Theorem 2 , we have

f(s) ≥ min{1
2
ρ,

f(o) − ρd

p + 3
} ≥ 1 − ε

p + 3 + 2d
f(o).


�

5 Improved Algorithm for k-Submodular Maximization
Under the Intersection of p-System and d-Knapsack
Constraints

In this section we propose an improved algorithm for k-submodular maximiza-
tion under the intersection of p-system and d-knapsack constraint. Unlike the
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previous algorithms, we filter out some “large” set of elements (μ ∈ N is called
“large” element if for some 1 ≤ i ≤ d, ci(μ) > 1

λ ) and output a feasible solution
from them. In the next operation, we only need to deal with the “small” set of
elements (μ ∈ N is called “small” element if for any 1 ≤ i ≤ d, ci(μ) ≤ 1

λ ) and
output a better solution among them.

For the set of the “small” element, we proceed as follows. For each element
μ ∈ supp(sj+1), if it satisfies the d-knapsack constraint, it is added to the set
Tt = {μ1, . . . , μt−1}(1 ≤ t ≤ λ + 1). Until the knapsack constraint is violated
when the element μ is added, then μ is noted as μt. And at the end, the set with
the largest weight

∑
1≤i≤d ci(T ) is selected and the position of the corresponding

element corresponds with sj+1. The algorithm is as follows.

Algorithm 4. Improved Threshold Greedy Algorithm With Known ρ

Require: a k-submodular function f , a p-system (N , I), knapsack-cost functions
ci, 1 ≤ i ≤ d and parameters λ > 1, ε

Ensure: an approximation solution s.
1: B ← {μ ∈ N|∃1 ≤ i ≤ d, ci(μ) > 1

λ
}

2: sB ← arg maxe∈B,i∈[k] f((e, i))
3: s0 ← (∅, ∅, . . . , ∅), j ← 0
4: while there exists an element μ ∈ N \ (supp(sj) ∪ B) such that supp(sj) + μ ∈ I

and Δμ,iμf(sj) ≥ ρ
∑

1≤i≤d ci(μ) do
5: Let vj+1 be an element maximizing Δμ,iμf(sj) among all the elements
6: sj+1 ← sj ∪ (vj+1, ivj+1)
7: if max1≤i≤d ci(sj+1) ≤ 1 then
8: j ← j + 1
9: else

10: return the output of Extract Algorithm (λ, sj+1)
11: end if
12: end while
13: return s = arg max{f(sB), f(sj)}

We place the Extract Algorithm and some of the proofs of this section in
Appendix C. According to the SetExtract Algorithm proposed by Li et al. [12],
we get the following lemma.

Lemma 5. [12] If Algorithm 4 returns in Line 10, then max1≤i≤d ci(s) ≤ 1,
and

∑
1≤i≤d ci(s) ≥ λ

λ+1 .

Lemma 6. Let E be the event that Algorithm 4 returns through Line 10. If the
event E happens, then Algorithm 5 returns a solution s that satisfies f(s) ≥ λρ

λ+1 .

Lemma 7. Assume E does not happen, let l be the final value of the variable
j of Algorithm 4. Let ol � o and supp(ol) = supp(o) \ (B ∪ {μ ∈ supp(o) \
supp(sl)|Δμ,iμ

f(sl) < ρ
∑

1≤i≤d ci(μ)}). If c = ol \ sl, we have

f(sl) ≥ f(sl � c)
p + 1

.
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The proof is similar to Lemma 2.

Lemma 8. If f is monotone, we have

f(sl � c) ≥ f(o) − f(b) − ρd − f(sl) +
ρ|supp(b)|

λ
.

If f is non-monotone, we have

f(sl � c) ≥ f(o) − f(b) − ρd − 2f(sl) +
ρ|supp(b)|

λ
.

Lemma 9. When event E does not happen, Algorithm 4 gets a solution s. If f
is monotone, we have

f(s) ≥ f(o) − ρd + ρ
λ |supp(b)|

p + 2 + |supp(b)| .

If f is non-monotone, we have

f(s) ≥ f(o) − ρd + ρ
λ |supp(b)|

p + 3 + |supp(b)| .

Next, we need to find a suitable threshold value ρ. For a monotone function f ,
let f(o)−ρd+ ρ

λ |supp(b)|
p+2+|supp(b)| = λρ

λ+1 . Then, we get a threshold

ρ =
(λ + 1)f(o)

(λ + 1)d − λ+1
λ |supp(b)| + λ(p + 2 + |supp(b)|) .

Similarly, we can get a threshold

ρ =
(λ + 1)f(o)

(λ + 1)d − λ+1
λ |supp(b)| + λ(p + 3 + |supp(b)|) .

when f is non-monotone.

Lemma 10. When f is monotone, let ρ = (λ+1)f(o)

(λ+1)d− λ+1
λ |supp(b)|+λ(p+2+|supp(b)|) .

And we set λ = 1+
√
5

2 , Algorithm 4 can get a 1

p+2+ 1+
√

5
2 d

-approximation ratio.

Similarly, Algorithm 4 can get a 1

p+3+ 1+
√

5
2 d

-approximation ratio when f is non-

monotone.

When λ = 1+
√
5

2 , the value of ρ is only relevant to the optimal solution. There-
fore, we can use a technique proposed by Badanidiyuru et al. [1] to estimate the
optimal value using the following algorithm.
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Algorithm 5. Improved Threshold Greedy Algorithm
Require: a k-submodular function f , a p-system (N , I), knapsack-cost functions

ci, 1 ≤ i ≤ d and a parameter ε
Ensure: an approximation solution s.
1: M ← arg maxe∈N ,j∈[k] f(e, j)
2: if f is monotone then
3: α = 2
4: else
5: α = 3
6: end if
7: Λ = {j ∈ N+| M

1+ε
≤ (1 + ε)j ≤ nM}

8: for j ∈ Λ do

9: sj ← Algorithm 4 (f, (N , I), ci,
(
√
5+3)(1+ε)j

(
√
5+3)d+(

√
5+1)(p+α)

)

10: end for
11: return arg max{f(sj)|j ∈ Λ}

Theorem 4. Algorithm 6 has O( log n
ε nk(n + d)) time complexity and pro-

vides a 1−ε

p+2+ 1+
√

5
2 d

-approximation ratio if f is monotone, and a 1−ε

p+3+ 1+
√

5
2 d

-

approximation ratio if f is non-monotone.

Proof. Let j = �log1+ε f(o)�. Then we have

(
√
5 + 3)(1 − ε)f(o)

(
√
5 + 3)d + (

√
5 + 1)(p + α)

≤ (
√
5 + 3)(1 + ε)j

(
√
5 + 3)d + (

√
5 + 1)(p + α)

≤ (
√
5 + 3)f(o)

(
√
5 + 3)d + (

√
5 + 1)(p + α)

.

By Lemma 10, we have

f(s) ≥ 1 − ε

p + α + 1+
√
5

2 d
f(o) ≥ 1 − ε

p + α + 2d
f(o).


�

6 Conclusion

In this paper, we mainly study maximizing k-submodular functions subject to
two kinds of constraints, Problem (1) and Problem (2). Problem (1) is maxi-
mizing a k-submodular function with the p-system constraint. And we design a
greedy algorithm for this problem. Problem (2) is maximizing a k-submodular
function with the intersection of p-system and d-knapsack constraints. We utilize
the greedy and threshold ideas to propose a deterministic algorithm. Further-
more, we improve the approximation guarantee of problem (2). In the future, one
can investigate other constraints or further improve the algorithm performance.
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Abstract. The objective of a two-stage submodular maximization prob-
lem is to reduce the ground set using provided training functions that
are submodular, with the aim of ensuring that optimizing new objective
functions over the reduced ground set yields results comparable to those
obtained over the original ground set. This problem has applications
in various domains including data summarization. Existing studies often
assume the monotonicity of the objective function, whereas our work pio-
neers the extension of this research to accommodate non-monotone sub-
modular functions. We have introduced the first constant-factor approx-
imation algorithms for this more general case.

1 Introduction

In this paper, we are motivated by the application of data summarization
[8,9,16,17] and tackle the two-stage submodular optimization problem. In these
applications, we are often faced with multiple user-specific submodular functions,
which are used to evaluate the value of a set of items. A typical objective is to
select a set of k items to maximize each submodular function [7]. While maxi-
mizing a single submodular function has been widely explored in the literature,
the feasibility of existing solutions diminishes when confronted with a substan-
tial number of submodular functions and items. Consequently, our objective is
to reduce the size of the ground set in a manner that minimizes the loss when
optimizing a new submodular function over the reduced ground set, as compared
to the original ground set.

The problem at hand can be framed as a two-stage submodular maximiza-
tion problem, as initially introduced in [1]. While the majority of prior studies
in this domain presume that each submodular function exhibits monotone non-
decreasing behavior, real-world scenarios often involve objective functions that
are non-monotone. These instances include feature selection [4], profit maximiza-
tion [14], maximum cut [6], and data summarization [9]. A significant contribu-
tion presented in our work is the development of the first constant-factor approx-
imation algorithm for the non-monotone two-stage submodular maximization
problem, with an approximation ratio of 1/2e. Remarkably, when the objective
function is monotone, our algorithm achieves an improved approximation ratio
of (1 − 1/e2)/2, thereby recovering the result presented in [11].
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1.1 Related Work

The problem of non-monotone submodular maximization has garnered substan-
tial attention in the literature [3,5,12,13,15]. The current state-of-the-art solu-
tion for this problem, especially when accounting for a cardinality constraint, is
a 0.385-approximation algorithm [2]. However, it is noteworthy that even though
each individual objective function considered in our problem exhibits submod-
ularity, the overall objective function is not submodular in general. As a result,
the existing findings on non-monotone submodular maximization do not directly
apply to our specific setting.

The most closely related work to our research is the study by [1,10,11]. They
have developed constant-factor approximation algorithms, primarily tailored for
the monotone case. Our work builds upon and extends their results to address
the more general and challenging non-monotone scenario. To achieve this goal,
we have integrated the “local-search” approach [11] with “sampling” technique
[12] in a non-trivial way, resulting in the creation of a novel sampling-based
algorithm. Furthermore, we have incorporated a trimming phase into our algo-
rithm, enabling us to attain the first constant-factor approximation ratio for the
non-monotone case.

2 Problem Formulation

The input of our problem is a set of n items Ω. There is a group of m non-
monotone submodular functions f1, · · · , fm : 2Ω → R≥0. Let Δi(x,A) = fi({x}∪
A) − fi(A) denote the marginal gain of adding x to the set A when considering
the function fi. Here we say fi is submodular if and only if Δi(x,A) ≥ Δi(x,A′)
for any two sets A and A′ such that A ⊆ A′ ⊆ Ω, and any item x ∈ Ω such that
x /∈ A′.

Our objective is to compute a reduced ground set S of size l, where l � n,
such that it yields good performance across all m functions when the choice is
limited to items in S. Formally, let

F (S) =
∑

i∈[m]

max
A⊆S:|A|≤k

fi(A) (1)

where k is the size constraint of a feasible solution. Our goal is to find an optimal
solution O ⊆ Ω that maximizes F , i.e.,

O ∈ argmax
S⊆Ω:|S|≤l

F (S). (2)

It is worth mentioning that the objective function F (·) is typically non-
submodular, as observed in [1]. Consequently, classical algorithms designed for
submodular optimization may not provide any approximation guarantees.
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3 Algorithm Design and Analysis

Before presenting our algorithm, we need some additional notations. For each
i ∈ [m], we define the gain associated with removing an item y and replacing
it with x as ∇i(x, y,A) = fi({x} ∪ A \ {y}) − fi(A). Then for each i ∈ [m], we
define the largest possible gain brought by x, through local-search, with respect
to an existing set A as ∇i(x,A). Here the local-search can be realized either
by directly adding x to A (while maintaining the cardinality constraint) or by
substituting it with an item from A. Formally,

∇i(x,A) =

⎧
⎪⎨

⎪⎩

0 if x ∈ A

max{0,maxy∈A ∇i(x, y,A),Δi(x,A)} if x /∈ A and |A| < k

max{0,maxy∈A ∇i(x, y,A)} if x /∈ A and |A| = k

(3)

Let Repi(x,A) represent the item in A that, when replaced by x, maximizes
the incremental gain while maintaining feasibility. Formally,

Repi(x,A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if ∇i(x,A) = 0
∅ if ∇i(x,A) > 0 and |A| < k

and maxy∈A ∇i(x, y,A) < Δi(x,A)
arg maxy∈A ∇i(x, y,A) if ∇i(x,A) > 0 and |A| < k

and maxy∈A ∇i(x, y,A) ≥ Δi(x,A)
arg maxy∈A ∇i(x, y,A) if ∇i(x,A) > 0 and |A| = k

(4)

Now we are ready to present the design of our algorithm Sampling-Greedy
(Algorithm 1). Initially, we introduce a set Φ of l dummy items to the ground
set Ω to construct an extended ground set Ω′ = Ω ∪ Φ. Here for all i ∈ [m],
we define Δi(x,A) = 0 for any x ∈ Φ and A ⊆ Ω′. We introduce these dummy
items to prevent negative marginal utility item selection. Notably, these dummy
items can be safely removed from the solution without altering its utility.

Throughout the process, Sampling-Greedy maintains a solution set denoted
as S, along with a set of feasible solutions Ti ⊆ S for each function fi (all of
which are initially set to empty). In each iteration, it first computes the top l
items M from the extended ground set Ω′ based on its combined contribution
to each fi, indicated by

∑m
i=1 ∇i(x, Ti). That is,

M = argmax
A⊆Ω′:|A|=l

∑

x∈A

m∑

i=1

∇i(x, Ti). (5)

Then it randomly selects one item, say x∗, from M and adds x∗ to S.
Sampling-Greedy then verifies if any of the sets Ti can be improved. This can
be achieved by either directly adding x∗ (while adhering to the cardinality con-
straint) or substituting it with an item from Ti. For each i ∈ [m], we update Ti

if and only if ∇i(x∗, Ti) > 0.
Note that there might exist some i ∈ [m] and x ∈ Ti such that fi(Ti)−fi(Ti \

{x}) < 0. In other words, certain subsets Ti could contain items that provide
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negative marginal utility to the set Ti. Consequently, we introduce a “trimming”
phase (Algorithm 2) to refine each Ti and ensure that no item contributes nega-
tive utility to it. This can be achieved through an iterative process of evaluating
the marginal utility of each item within Ti and subsequently removing any items
with negative marginal utility. By the submodularity of fi, we can show that
after this trimming phase, Ti does not contain any items whose marginal utility
if negative. It is also easy to verify that the trimming phase does not decrease
the utility of our solution. A formal description of these properties is presented
in the following lemma.

Algorithm 1 . Sampling-Greedy
1: S ← ∅, Ti ← ∅(∀i ∈ [m])
2: for j ∈ [l] do
3: M = argmaxA⊆Ω′:|A|=l

∑
x∈A

∑m
i=1 ∇i(x, Ti).

4: randomly pick one item x∗ from M , S ← S ∪ {x∗}
5: for i ∈ [m] do
6: if ∇i(x

∗, Ti) > 0 then
7: Ti ← Ti \ Repi(x

∗, Ti) ∪ {x∗}
8: Ti ← Trim(Ti, fi)
9: return S, T1, T2, · · · , Tm

Algorithm 2 . Trim(B, fi)
1: A ← B
2: for x ∈ A do
3: if fi(A) − fi(A \ {x}) < 0 then
4: A ← A \ {x}
5: return A

Lemma 1. Consider any set of items B ⊆ Ω and a function fi. Assume A is
returned from Trim(B, fi), we have fi(A) ≥ fi(B) and for all x ∈ A, we have
fi(A) − fi(A \ {x}) ≥ 0.

Proof. The proof that fi(A) ≥ fi(B) is straightforward, as it follows from the
fact that the trimming phase only eliminates items with a negative marginal
contribution. We next prove that for all x ∈ A, we have fi(A)− fi(A \ {x}) ≥ 0.
We prove this through contradiction. Suppose there exists an item y ∈ A such
that fi(A) − fi(A \ {y}) < 0. Let’s denote the solution before considering the
inclusion of y as A′. In this case, it must hold that fi(A′) − fi(A′ \ {y}) ≥ 0, as
otherwise, the trimming phase would eliminate y from the solution. Furthermore,
it is straightforward to confirm that A ⊆ A′. As a consequence, based on the
assumption that fi is a submodular function, we have fi(A) − fi(A \ {y}) ≥
fi(A′) − fi(A′ \ {y}). This, together with fi(A′) − fi(A′ \ {y}) ≥ 0, implies that
fi(A)−fi(A\{y}) ≥ fi(A′)−fi(A′\{y}) ≥ 0. This contradicts to the assumption
that fi(A) − fi(A \ {y}) < 0. �
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3.1 Performance Analysis

First, it is easy to verify that Sampling-Greedy requires O(l(mkl+mn)) function
evaluations. This is because Sampling-Greedy comprises l iterations, where each
iteration involves mkl function evaluations in Line 3 of Algorithm 1, along with
an additional mn function evaluations in Algorithm 2. In the following theorem,
we show that the expected utility of our solution is at least a constant-factor
approximation of the optimal solution.

Theorem 1. Sampling-Greedy returns a random set S of size at most l such
that

ES [F (S)] ≥ 1
2e

F (O) (6)

where O represents the optimal solution.

The rest of this section is devoted to proving this theorem. The basic idea
behind the proof is to establish a lower bound on the expected marginal utility
achieved by adding x∗ to set S after each iteration. We demonstrate that this
utility increment is substantial enough to guarantee a 1/2e approximation ratio.
Consider an arbitrary round t ∈ [l] of Sampling-Greedy, let S and T1, · · · , Tm

denote the solution obtained at the end of round t. By the design of Sampling-
Greedy, we randomly pick an item x∗ from M and add it to S, hence, by the
definition of M , the expected marginal utility of adding x∗ to S before the
“trimming phase” is

Ex∗ [
m∑

i=1

∇i(x∗, Ti)] =
1
l

max
A⊆Ω′:|A|=l

∑

x∈A

m∑

i=1

∇i(x, Ti). (7)

Recall that the trimming phase does not decrease utility. Therefore,
the ultimate expected utility increment after each iteration is at least
Ex∗ [

∑m
i=1 ∇i(x∗, Ti)]. Moreover, because F is a monotone function, it is safe

to assume that the size of the optimal solution is l, i.e., |O| = l. We next provide
a lower bound on Ex∗ [

∑m
i=1 ∇i(x∗, Ti)].

Observe that

Ex∗ [
m∑

i=1

∇i(x∗, Ti)] =
1
l

max
A⊆Ω′:|A|=l

∑

x∈A

m∑

i=1

∇i(x, Ti)

≥ 1
|O|

∑

x∈O

m∑

i=1

∇i(x, Ti) =
1
l

∑

x∈O

m∑

i=1

∇i(x, Ti) (8)

Let Oi ⊆ O represent a subset with a maximum size of k items, chosen to
maximize fi, i.e., Oi = argmaxA⊆O:|A|≤k fi(A). Inequality (8) implies that

Ex∗ [
m∑

i=1

∇i(x∗, Ti)] ≥ 1
l

∑

x∈O

m∑

i=1

∇i(x, Ti) ≥ 1
l

m∑

i=1

∑

x∈Oi

∇i(x, Ti). (9)
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For the sake of simplifying our analysis, let’s assume that the size of Oi is
fixed at k, i.e., |Oi| = k. If Oi does not initially contain exactly k items, we can
add additional dummy items to bring its size up to k. Please note that if x is a
dummy item, then ∇i(x, Ti) = 0. This stems from the observation that Ti does
not contain any items that would yield negative marginal utility, a consequence
of the trimming phase (Lemma 1). Hence, adding dummy items to Oi does not
affect inequality (9).

It is easy to verify that there is a mapping π between Oi and Ti such that
every item of Oi ∩ Ti is mapped to itself, and every item of Oi \ Ti is mapped
to either the empty set or an item in Ti \ Oi. We next give a lower bound of
∇i(x, Ti).

Lemma 2. For all i ∈ [m] and x ∈ Oi, we have

∇i(x, Ti) ≥ Δi(x, Ti) − Δi(π(x), Ti \ {π(x)}). (10)

Proof. We prove this lemma in three cases. We first consider the case when
x /∈ Ti and π(x) �= ∅. In this case, the following chain proves this lemma.

∇i(x, Ti) ≥ fi({x} ∪ Ti \ {π(x)}) − fi(Ti) (11)
= Δi(x, Ti) − Δi(π(x), Ti ∪ {x} \ {π(x)}) (12)
≥ Δi(x, Ti) − Δi(π(x), Ti \ {π(x)}) (13)

where the first inequality is by the definition of ∇i(x, Ti) and the second inequal-
ity is by the assumption that fi is a submodular function.

We next consider the case when x /∈ Ti and π(x) = ∅. In this case, because
π(x) = ∅, i.e., x is not mapped to any item from Ti, we have |Ti| < k. Hence,

∇i(x, Ti) = max{0,max
y∈Ti

∇i(x, y, Ti),Δi(x, Ti)} ≥ Δi(x, Ti). (14)

Moreover, π(x) = ∅ implies that

Δi(π(x), Ti \ {π(x)}) = 0. (15)

It follows that

∇i(x, Ti) ≥ Δi(x, Ti) − 0 = Δi(x, Ti) − Δi(π(x), Ti \ {π(x)}), (16)

where the inequality is by inequality (14) and the equality is by equality (15).
At last, we consider the case when x ∈ Ti. In this case, we have Δi(x, Ti) = 0,

and Δi(π(x), Ti \{π(x)}) ≥ 0, a consequence of the trimming phase (Lemma 1).
Hence, Δi(x, Ti) − Δi(π(x), Ti \ {π(x)}) ≤ 0. It follows that

∇i(x, Ti) ≥ 0 ≥ Δi(x, Ti) − Δi(π(x), Ti \ {π(x)}). (17)

�
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Inequality (9) and Lemma 2 imply that

Ex∗ [
m∑

i=1

∇i(x∗, Ti)] ≥ 1
l

m∑

i=1

∑

x∈Oi

∇i(x, Ti) (18)

≥ 1
l

m∑

i=1

∑

x∈Oi

(Δi(x, Ti) − Δi(π(x), Ti \ {π(x)})). (19)

Because fi is submodular, we have
∑

x∈Oi

Δi(x, Ti) ≥ fi(Oi ∪ Ti) − fi(Ti). (20)

Moreover, no two items from Oi are mapped to the same item from Ti, we
have

∑

x∈Oi

Δi(π(x), Ti \ {π(x)}) =
∑

y∈Ti

Δi(y, Ti \ {y}) ≤ fi(Ti) (21)

where the inequality is by the assumption that fi is submodular.
Inequalities (19), (20) and (21) together imply that

Ex∗ [
m∑

i=1

∇i(x∗, Ti)] ≥ 1
l

m∑

i=1

∑

x∈Oi

(Δi(x, Ti) − Δi(π(x), Ti \ {π(x)})) (22)

≥ 1
l

m∑

i=1

(fi(Oi ∪ Ti) − fi(Ti) − fi(Ti)) (23)

=
1
l

m∑

i=1

(fi(Oi ∪ Ti) − 2fi(Ti)). (24)

Taking the expectation over T1, · · · , Tm for both the left and right hand sides
of (24), we have

ET1,··· ,Tm

[
Ex∗ [

m∑

i=1

∇i(x∗, Ti)]
]

(25)

≥ ET1,··· ,Tm
[
1
l

m∑

i=1

(fi(Oi ∪ Ti) − 2fi(Ti))] (26)

= ET1,··· ,Tm
[
1
l

m∑

i=1

(fi(Oi ∪ Ti))] − ET1,··· ,Tm
[

m∑

i=1

2
l
fi(Ti))] (27)

=
1
l
ET1,··· ,Tm

[
m∑

i=1

(fi(Oi ∪ Ti))] − 2
l
ET1,··· ,Tm

[
m∑

i=1

fi(Ti))] (28)

≥ 1
l
(1 − 1

l
)t

m∑

i=1

fi(Oi) − 2
l
ET1,··· ,Tm

[fi(Ti))] (29)

=
1
l
(1 − 1

l
)tF (O) − 2

l
ET1,··· ,Tm

[fi(Ti))]. (30)
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The second inequality is by the observation that ET1,··· ,Tm
[
∑m

i=1(fi(Oi ∪Ti))] ≥
(1− 1

l )
t
∑m

i=1 fi(Oi). To prove this inequality, recall that in each round, Sampling-
Greedy randomly picks an item from M to be included in S. Hence, right before
entering round t of Sampling-Greedy, each item x ∈ Ω′ has a probability of at
most p = 1−(1− 1

l )
t of being included in S and consequently in Ti for all i ∈ [m].

By Lemma 2.2 of [3], we have ETi
[fi(Oi∪Ti)] ≥ (1−p)fi(Oi) = (1− 1

l )
tfi(Oi) for

all i ∈ [m]. It follows that ET1,··· ,Tm
[
∑m

i=1(fi(Oi ∪ Ti))] ≥ (1 − 1
l )

t
∑m

i=1 fi(Oi).
Let Xt denote the value of ET1,··· ,Tm

[
Ex∗ [

∑m
i=1 ∇i(x∗, Ti)]

]
at the end of

round t. Inequality (30) implies that

Xt+1 − Xt ≥ 1
l
(1 − 1

l
)tF (O) − 2

l
Xt (31)

⇒ 2(Xt+1 − Xt) ≥ 1
l
(1 − 1

l
)tF (O) − 2

l
Xt (32)

⇒ 2Xt+1 − 2Xt ≥ 1
l
(1 − 1

l
)tF (O) − 2

l
Xt (33)

⇒ 2Xt+1 ≥ 1
l
(1 − 1

l
)tF (O) + (2 − 2

l
)Xt. (34)

Based on the above inequality, we next prove through induction that 2Xt ≥
t
l (1− 1

l )
t−1F (O). Note that X0 = 0, meaning that the utility before the start of

the algorithm is zero. The induction step is established in the following manner:

2Xt+1 ≥ 1
l
(1 − 1

l
)tF (O) + (2 − 2

l
)Xt (35)

⇒ 2Xt+1 ≥ 1
l
(1 − 1

l
)tF (O) + (1 − 1

l
)
t

l
(1 − 1

l
)t−1F (O) (36)

=
1
l
(1 − 1

l
)tF (O) +

t

l
(1 − 1

l
)tF (O) (37)

=
t + 1

l
(1 − 1

l
)tF (O). (38)

It follows that the value of 2Xl is at least (1 − 1
l )

l−1F (O), which itself is
bounded from below by (1/e) · F (O). Here, Xl represents the expected utility of
our algorithm upon completion. Hence, the expected utility of our algorithm is
at least Xl ≥ (1/2e) · F (O).

3.2 Enhanced Results for Monotone Case

For the case when fi is both monotone and submodular, we will demonstrate
that the approximation ratio of Sampling-Greedy is improved to (1 − 1/e2)/2
which recovers the results presented in [11]. Observe that if fi is monotone, we
have fi(Oi ∪ Ti) ≥ fi(Oi). Hence, inequality (28) implies that
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ET1,··· ,Tm

[
Ex∗ [

m∑

i=1

∇i(x∗, Ti)]
]

(39)

≥ 1
l
ET1,··· ,Tm

[
m∑

i=1

(fi(Oi ∪ Ti))] − 2
l
ET1,··· ,Tm

[
m∑

i=1

fi(Ti))] (40)

≥ 1
l
ET1,··· ,Tm

[
m∑

i=1

(fi(Oi))] − 2
l
ET1,··· ,Tm

[
m∑

i=1

fi(Ti))] (41)

=
1
l

m∑

i=1

fi(Oi) − 2
l
ET1,··· ,Tm

[
m∑

i=1

fi(Ti))] (42)

=
1
l
F (O) − 2

l
ET1,··· ,Tm

[
m∑

i=1

fi(Ti))] (43)

where the first equality is because Oi is a fixed set for all i ∈ [m]. Let Xt denote
the value of ET1,··· ,Tm

[
Ex∗ [

∑m
i=1 ∇i(x∗, Ti)]

]
at the end of round t. Inequality

(43) implies that

Xt+1 − Xt ≥ 1
l
F (O) − 2

l
Xt. (44)

Previous research [11] has demonstrated that by inductively solving the equation
above, we can establish that Xl ≥ ((1 − 1/e2)/2) · F (O).
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Abstract. This paper studies the problem of maximizing a k-
submodular function under a knapsack constraint. A k-submodular func-
tion is a generalization of submodular functions, which takes k disjoint
subsets of elements as input and outputs a real value. Many problems
in combinatorial optimization and machine leaning can be modeled as
k-submodular maximization problems, such as influence maximization,
sensor placement, feature selection, etc. In this paper, we propose a
novel greedy-based algorithm, called Greedy+Max, which augments
every partial greedy solution by a feasible item with maximum marginal
gain, and returns the best augmented solution. We prove that it achieves
a 1

3
-approximation for monotone functions and a 1

4
-approximation for

non-monotone functions, with a low query complexity.

Keywords: k-submodularity · knapsack constraint · approximation

1 Introduction

Given a finite nonempty set V = {a1, a2, . . . , an}, a set function f : 2V → R

defined on subsets of V is called submodular if for all S, T ⊆ V ,

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).

Submodular functions play a pivotal role in the realm of operations research
[3,10,11,18] and theoretical computer science [1,7]. Examples of these functions
encompass matroid rank functions, cut capacity functions and entropy functions.

In this paper, we study a natural generalization of submodularity, the k-
submodularity, firstly proposed by Huber and Kolmogorov [6] in 2012. Instead
of a single set, k-submodular functions take k disjoint subsets as input and return
a real value. Formally, given a finite nonempty set V , the family of k disjoint sets
is denoted as (k+1)V := {(X1, . . . , Xk) | Xi ⊆ V ∀i ∈ [k],Xi ∩Xj = ∅ ∀i 	= j},
where [k] := {1, . . . , k}.
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Definition 1 (k-submodularity [6]). A function f : (k + 1)V → R is called
k-submodular, if for any x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) in (k + 1)V , we
have

f(x) + f(y) ≥ f(x 
 y) + f(x � y),

where

x 
 y :=

⎛
⎝X1 ∪ Y1\(

⋃
i�=1

Xi ∪ Yi), . . . , Xk ∪ Yk\(
⋃
i�=k

Xi ∪ Yi)

⎞
⎠ ,

x � y := (X1 ∩ Y1, . . . , Xk ∩ Yk) .

k-Submodular functions are a generalization of submodular functions. While
submodular functions take a single subset of a set V as input and exhibit a dimin-
ishing returns property, k-submodular functions consider k disjoint subsets, and
we must specify not only which element we are adding to the solution, but also
which subset it is being added to. This generalization enables the function to
capture interactions across multiple dimensions.

k-Submodular functions have found applications in a variety of fields, includ-
ing influence maximization [24], sensor placement [13], feature selection [21], doc-
ument summarization [9], and more, with the core of many of these problems
being the maximization of a k-submodular function.

– Sensor Placement: Various types of sensors are strategically positioned in
different locations to gather diverse data, for example, a scenario with k kinds
of sensors and N available locations for their placement. With the assumption
that each location can host one sensor, we can create a correlation between
every k-tuple of disjoint subsets and N locations. The aim is to optimize
the information derived from the sensors, hence the assessment of a sensor
deployment strategy is performed using k-submodular functions.

– Influence Maximization: Assume k topics are available, and social users
initially adopt a topic. The objective is to maximize the anticipated number
of users ultimately influenced by at least one topic. This mirrors scenarios
in viral marketing or product recommendations, wherein a company aims to
disseminate an advertising campaign spotlighting k products to users through
social networks or the internet.

– Feature Selection: Feature selection is paramount in various research
domains, such as machine learning and data mining, as it assists in amplifying
the analysis of vast datasets by curbing their dimensionality. In multi-class
feature selection issues, characterized by a medley of features intertwined with
k unrelated prediction variables, the goal is to identify the most informative
features and classify them based on the prediction variables. This engenders
a k-submodular optimization problem.

The maximization problem of k-submodular functions is NP-hard, being
a generalization of the NP-hard submodular maximization problem. Despite
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this, substantial research has been devoted to developing efficient approxima-
tion algorithms with good approximation ratios for this problem under various
constraints, e.g., size constraints, matroid constraints, and knapsack constraint,
which is the focus of this work.

Our Contributions. In this paper, we investigate the k-submodular maxi-
mization problem with a knapsack constraint, referred to as the k-submodular
knapsack maximization (kSKM) problem. Each item a ∈ V has an associated
cost c(a), and the goal is to select k disjoint subsets in (k +1)V that maximizes
a k-submodular function, under the constraint that the total cost of the selected
items does not exceed a given budget B.

For kSKM, we propose a novel greedy-based algorithm, Greedy+Max. It
first runs the Greedy algorithm, which iteratively adds an item into a subset
(i.e., an item-dimension pair) that achieves the largest marginal density, until no
item fits. At the beginning of each iteration, the current solution maintained by
Greedy is called a partial greedy solution. Then, for each partial greedy solu-
tion, the algorithm adds one more feasible item into a subset with the maximum
marginal gain (this process is Max). Finally, it returns the best one among such
augmented solutions. We prove that it achieves a 1

3 -approximation for mono-
tone functions and a 1

4 -approximation for non-monotone functions. The analysis
framework follows Yaroslavtsev et al. [27], who propose the Greedy+Max algo-
rithm for the submodular knapsack maximization problem, and prove that it has
a 1

2 -approximation for monotone submodular functions.
The time efficiency of algorithms is measured by the query complexity, which

is the times that it queries an oracle to find the function value on a given input.
The query complexity of Greedy+Max is O(kn · min{n,B}). Compared with
the best known approximation ratio (1 − e−2)/2 ≈ 0.432 for monotone kSKM
and (1− e−3)/3 ≈ 0.316 for non-monotone kSKM, while their query complexity
are O(n10k9) and O(n23k22), respectively, our Greedy+Max algorithm signif-
icantly outperforms theirs in terms of time complexity.

Related Work. Huber and Kolmogorov first introduced k-submodular func-
tions a decade ago [6], aiming to express submodularity when selecting k disjoint
sets of elements rather than a single set. The concept of k-submodular functions
has since evolved into a significant research area [4,5,12,19], with a particular
focus on the problem of maximizing k-submodular functions.

Tang et al. [23] were the first to explore the k-submodular maximization
under a knapsack constraint (i.e., kSKM). They demonstrated that greedily
extending all feasible size-2 solutions can achieve 1

2 (1 − 1
e )-approximation if the

function is monotone. Chen et al. [2] considered the Greedy+Singleton algo-
rithm, which compares the greedy solution with the best singleton solution and
selects the superior one. This algorithm, known for its simplicity and efficiency,
has been widely researched in knapsack problems involving linear and submod-
ular objective functions. Chen et al. proved an approximation ratio of 1

4 (1 − 1
e )

for the kSKM.
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Pham et al. [16] proposed streaming algorithms with approximation ratios
of 1

4 − ε and 1
5 − ε for monotone and non-monotone cases, respectively. The

method requires O(n
ε log n) queries of the k-submodular function. Wang and

Zhou [24] introduced an algorithm based on multilinear extension. It expands
a k-submodular function to a continuous space and then rounds the fractional
solution, achieving an asymptotically optimal ratio of 1

2 − ε. Additional studies
relevant to kSKM include [15,22,26,28].

Researchers have also explored the problem of maximizing k-submodular
functions with no constraints or various other types of constraints. Ward and
Živnỳ [25] demonstrated that a greedy algorithm is a 1

2 -approximation for uncon-
strained monotone k-submodular maximization. Subsequently, Iwata et al. [8]
proposed a randomized k

2k−1 -approximation algorithm, revealing that the ratio
is asymptotically tight. Oshima [14] provided a k2+1

2k2+1 -approximation for uncon-
strained non-monotone maximization. For monotone k-submodular maximiza-
tion under a total size constraint (i.e., at most a given number of items can
be selected), Ohsaka and Yoshida [13] proposed a 1

2 -approximation algorithm,
while for individual size constraints (i.e., in each dimension at most a given
number of items can be selected), they introduced a 1

3 -approximation algorithm.
Under a matroid constraint, Sakaue [17] demonstrated that a fully greedy algo-
rithm is a 1

2 -approximation for the monotone case, and Sun et al. [20] offered a
1
3 -approximation algorithm for the non-monotone case.

2 Preliminaries

Recall that V is the ground set, and let f be a non-negative k-submodular
function defined in Definition 1. For every k-tuple x = (X1, . . . , Xk) ∈ (k +1)V ,
there exists a unique set S = {(a, d) | a ∈ Xd, d ∈ [k]} consisting of item-
dimension pairs. In other words, an item-dimension pair (a, d) belongs to S,
referred to as a solution, if and only if a ∈ Xd in x. For simplicity, we will use x
and its corresponding solution S interchangeably. For any solution S ∈ (k+1)V ,
we define U(S) := {a ∈ V | ∃d ∈ [k] (a, d) ∈ S} as the set of items included, and
the size is denoted by |S| = |U(S)|. For two solutions S, S′ ∈ (k + 1)V , S ⊆ S′

indicates that all items in U(S) also belong to U(S′) and the dimensions in both
are consistent. Without loss of generality, we assume that f(∅) = 0.

The marginal gain of adding an item-dimension pair (a, d) to S is

Δa,df(S) := f(S ∪ {(a, d)}) − f(S),

and the marginal density is ρa,d(S) :=
Δa,df(S)

c(a) . Ward and Živnỳ [25] prove that
a k-submodular function f satisfies the orthant submodularity

Δa,df(S) ≥ Δa,df(S′),

∀S, S′ ∈ (k + 1)V with S ⊆ S′, a /∈ U(S′), d ∈ [k],

and the pairwise monotonicity

Δa,d1f(S) + Δa,d2f(S) ≥ 0,
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∀S ∈ (k + 1)V with a /∈ U(S), d1, d2 ∈ [k], d1 	= d2.

They further prove that the converse is also true.

Lemma 1 ( [25]). A function f : (k + 1)V → R is k-submodular if and only if
f is orthant submodular and pairwise monotone.

The following important lemma will be implicitly used in our analysis.

Lemma 2 ( [23]). For any solutions S, S′ with S ⊆ S′, we have

f(S′) − f(S) ≤
∑

(a,d)∈S′\S

Δa,df(S).

In the kSKM problem, each item a ∈ V is associated with a non-negative
cost c(a). The cost of a solution S is defined as the sum of the costs of all items
included in U(S), denoted as c(S) =

∑
a∈U(S) c(a). The goal is to find a solution

S that maximizes the value f(S), subject to the constraint that the total cost
does not exceed the given budget B ∈ R+.

3 GREEDY+MAX Algorithm

For the submodular maximization problem under a knapsack constraint,
Yaroslavtsev et al. [27] prove that Greedy+Max gives a 1

2 -approximation in
O(min{n,B}·n) queries, where B is the knapsack capacity. Following their work,
we describe the Greedy+Max algorithm for kSKM.

The Greedy algorithm starts with an empty set G and in each iteration
selects an item-dimension pair (a, d) with the highest marginal density ρa,d(G)
that still fits into the knapsack. We refer to the solution at the beginning of each
iteration as a partial (greedy) solution, and refer to the resulting solution as the
greedy solution. The Max process augments each partial solution with an item-
dimension pair of the largest marginal value (as opposed to density). Finally,
Greedy+Max (see Algorithm 1) returns the best among such augmented solu-
tions.

In Algorithm 1, let Gi be the partial greedy solution with i items, and G0 =
∅. For each i, it finds an augmenting pair (a′

i, d
′
i) which maximizes f((a′

i, d
′
i)∪Gi)

among all items that still fit, i.e. c((a′
i, d

′
i) ∪ Gi) ≤ B.

Let OPT be the optimal solution f the kSKM. Let o1 ∈ V be the item
of the largest cost in U(OPT ). W.l.o.g. and only for the sake of analysis of
approximation we scale the function values and costs so that f(OPT ) = 1 and
c(OPT ) = B = 1. Let G be the greedy solution computed by Greedy and let
(g1, d

g
1), (g2, d

g
2), . . . , (gm, dg

m) be the pairs in G in the order they were added.
Then we have Gi = {(g1, dg

1), . . . , (gi, d
g
i )}. We introduce a greedy performance

function g(x) that continuously tracks the performance of the greedy solution.
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Algorithm 1. Greedy+Max
Input: V = {a1, . . . , an}, non-negative monotone k-submodular function f , cost func-

tion c(·), capacity B.
Output: A feasible solution in (k + 1)V .
1: G0 ← ∅, S ← ∅, i ← 1
2: while V �= ∅ do
3: (a′

i, d
′
i) ← arg max

a∈V,d∈[k]
Δa,df(Gi−1): the pair that maximizes the marginal value

4: if f(S) < f(Gi−1 ∪ (a′
i, d

′
i)) then

5: S ← Gi−1 ∪ (a′
i, d

′
i)

6: end if
7: (gi, d

g
i ) ← arg max

a∈V,d∈[k]

Δa,df(Gi−1)

c(a)
: the pair that maximizes the marginal density

8: Gi ← Gi−1 ∪ (gi, d
g
i )

9: B ← B − c(gi)
10: i ← i + 1
11: V ← V \ ({gi} ∪ {a ∈ V |c(a) > B}): remove gi and all items that no longer fit
12: end while
13: return S

Definition 2 (Greedy performance function). For x ∈ [0, c(G)), let i be
the smallest index such that c(Gi) > x. Define g(x) as

g(x) = f(Gi−1) + (x − c(Gi−1)) · ρgi,d
g
i
(Gi−1).

It is easy to see that g is a continuous and monotone piecewise-linear function
such that g(0) = 0. The monotonicity of g holds even when f is non-monotone,
because f is pairwise-monotone by Lemma 1. Let g′ be the right derivative of g,
which is well defined on the interval [0, c(G)) and non-negative.

Next, we consider adding o1, the largest item from OPT, to every partial
greedy solution, and define a performance function g1. Note that g1 is only
defined when o1 still fits. Consider the last item added by the greedy solution
before the cost of this solution exceeds 1−c(o1). Define c∗ such that 1−c(o1)−c∗

is the cost of the greedy solution before this item is added.
Consider the case when c(G) ≤ 1 − c(o1). If there is an item a ∈ U(OPT )

in the optimal solution that is not included in G, since c(a) ≤ c(o1) and there
is enough capacity for adding it, Greedy+Max would continue to add items,
giving a contradiction to the fact that G is the output. Thus, all items in OPT
must have been included in G. Because Greedy is a 1

2 -approximation algorithm
for maximizing a monotone k-submodular function without constraint [25], we
have 2 · f(G) ≥ f(OPT ), and G is already a 1

2 -approximation. Therefore, we
only need to consider the case when c(G) > 1 − c(o1).

Definition 3 (Greedy+Max performance lower bound). For any x ∈
[0, 1− c(o1)− c∗], let i be the smallest index so that c(Gi)) > x. Define g1(x) as

g1(x) = g(x) + max
d∈[k]

Δo1,df(Gi−1).
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An illustration of functions g(x) and g1(x) is shown in Fig. 1. Note that g1 is
a lower bound on the performance of Greedy+Max, because Greedy+Max
adds the pair with largest marginal gain to the current partial greedy solution.
g1 is piecewise-linear but not necessarily continuous and monotone.

Fig. 1. An illustration of functions g(x) and g1(x).

4 Approximations

We consider an arbitrary subset of items V ′ = {a1, a2, . . . , al} ⊆ V . By the pair-
wise monotonicity, there exists an optimal solution T = {(a1, d

∗
1), . . . , (al, d

∗
l )}

that maximizes the function value over V ′ without any constraint (note that
T may be not feasible for the kSKM). Let S = {(a1, d1), . . . , (al, dl)} be the
solution returned by the greedy algorithm that aims to maximizing the function
value over items V ′ without any constraint, which considers the items in an order
of a1, a2, . . . , al, and assigns each item to the dimension with largest marginal
gain.

For j = 0, 1, . . . , l, define

Sj = {(a1, d1), . . . , (aj , dj)} and (1)

Tj =
(
T\{(a1, d

∗
1), . . . , (aj , d

∗
j )}

) ∪ Sj . (2)

That is, Sj is the first j item-index pairs in the greedy solution S, and Tj is
obtained from the optimal solution T by replacing the first j item-index pairs
with Sj . Clearly, S0 = ∅, Sl = S, T0 = T and Tl = S.

The following lemma was noticed by Ward and Živnỳ [25] and Xiao et al.
[26], and says that the optimal value f(T ) is at most twice the value of any
partial greedy solution St, plus the total marginal gain of other item-dimension
pairs in the optimal solution. For completeness, we write down the proof in our
notations.

Lemma 3. For t = 0, 1, . . . , l,

(a) if f is monotone, then f(T ) ≤ 2f(St) +
∑

(a,d)∈Tt\St
Δa,df(St);
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(b) if f is non-monotone, then f(T ) ≤ 3f(St) +
∑

(a,d)∈Tt\St
Δa,df(St);

Proof. For j = 0, . . . , t − 1, introduce an intermediate Pj := Tj\(aj+1, d
∗
j+1) =

Tj+1\(aj+1, dj+1). That is, Pj consists of l−1 items (excluding aj+1), where the
dimensions of items a1, . . . , aj align with those in S, and the dimensions of other
items align with those in T . Then

f(Tj) = f(Pj) + Δaj+1,d∗
j+1

f(Pj),

f(Tj+1) = f(Pj) + Δaj+1,dj+1f(Pj).

When f is monotone, the difference of f(Tj) and f(Tj+1) is

f(Tj) − f(Tj+1) = Δaj+1,d∗
j+1

f(Pj) − Δaj+1,dj+1f(Pj)

≤ Δaj+1,d∗
j+1

f(Sj) (3)

≤ Δaj+1,dj+1f(Sj) (4)
= f(Sj+1) − f(Sj).

Eq. (3) follows from the fact of Sj ⊆ Pj and the monotonicity of f . Equation
(4) follows from the fact that Greedy always assign the index with maximum
marginal gain to the item considered, and (aj+1, dj+1) is the (j+1)-st pair added
by Greedy. Summing up from j = 0 to t − 1, we have

f(T0) − f(Tt) ≤ f(St) − f(S0) = f(St).

Since St ⊆ Tt and Lemma 2, we have

f(T ) ≤ f(St) + f(Tt) ≤ 2f(St) +
∑

(a,d)∈Tt\St

Δa,df(St).

When f is non-monotone, Eq. (3) no longer holds. Instead, we bound the
difference of f(Tj) and f(Tj+1) by

f(Tj) − f(Tj+1) = Δaj+1,d∗
j+1

f(Pj) − Δaj+1,dj+1f(Pj)

= 2Δaj+1,d∗
j+1

f(Pj) − [Δaj+1,d∗
j+1

f(Pj) + Δaj+1,dj+1f(Pj)]

≤ 2Δaj+1,d∗
j+1

f(Pj) (5)

≤ 2Δaj+1,d∗
j+1

f(Sj)

≤ 2Δaj+1,dj+1f(Sj)
= 2f(Sj+1) − 2f(Sj),

where Eq. (5) follows from the pairwise monotonicity. Summing up from j = 0
to t − 1, we have

f(T0) − f(Tt) ≤ 2f(St) − 2f(S0) = 2f(St).

Since St ⊆ Tt and Lemma 2, we have

f(T ) ≤ 2f(St) + f(Tt) ≤ 3f(St) +
∑

(a,d)∈Tt\St

Δa,df(St).

�
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Next, we build differential inequalities with respect to g and g1.

Lemma 4. For any x ∈ [0, 1 − c(o1) − c∗],

(a) if f is monotone, then 2g1(x) + (1 − c(o1)) · g′(x) ≥ 1;
(b) if f is non-monotone, then 3g1(x) + (1 − c(o1)) · g′(x) ≥ 1.

Proof. Since the right derivative g′ is piecewise-constant, it suffices to prove the
inequality only for the points where x = c(Gi−1) for some i ≥ 1. We have

g1(x) = g(c(Gi−1)) + max
d∈[k]

Δo1,df(Gi−1) = f(Gi−1) + max
d∈[k]

Δo1,df(Gi−1). (6)

We consider the items in U(OPT ) ∪ U(Gi−1). Assume w.l.o.g. that V ′ =
U(OPT ) ∪ U(Gi−1) = {a1, a2, . . . , al}, and a1 = g1, a2 = g2, . . . , ai−1 = gi−1.
Let T be an optimal solution of the maximization problem over V ′ without any
constraint, and S = {(a1, d1), . . . , (al, dl)} be the solution returned by the greedy
algorithm, which considers the items in an order of a1, a2, . . . , al, and assigns each
item to the dimension with largest marginal gain. Recall the definitions in (1)
and (2), and then we have Sj = Gj for j = 0, . . . , i − 1. We further assume that
o1 /∈ U(Gi−1), and o1 is the i-th item in V ′, i.e., ai = o1. When f is monotone,
we apply Lemma 3(a) to t = i. (If o1 ∈ U(Gi−1), a similar analysis follows by
applying Lemma 3(a) to t = i − 1). Since Si = Si−1 ∪ (ai, di) = Gi−1 ∪ (o1, di),

f(T ) ≤ 2f(Si) +
∑

(a,d)∈Ti\Si

Δa,df(Si)

= 2f(Gi−1 ∪ (o1, di)) +
∑

(a,d)∈Ti\(Gi−1∪(o1,di))

Δa,df(Gi−1 ∪ (o1, di)). (7)

By Eq. (7), we have

1 = f(OPT ) ≤ f(T )

≤ 2f(Gi−1 ∪ (o1, di)) +
∑

(a,d)∈Ti\(Gi−1∪(o1,di))

Δa,df(Gi−1 ∪ (o1, di))

= 2g1(x) +
∑

(a,d)∈Ti\(Gi−1∪(o1,di))

Δa,df(Gi−1 ∪ (o1, di)) (8)

= 2g1(x) +
∑

(a,d)∈Ti\(Gi−1∪(o1,di))

c(a) · ρa,d(Gi−1 ∪ (o1, di)). (9)

Eq. (8) follows from Eq. (6), and Eq. (9) follows from the definition of
marginal density.

Since x ≤ 1 − c(o1) − c∗, all items in U(Ti\(Gi−1 ∪ (o1, di))) still fit at the
point of x, as o1 is the largest item in OPT . Since the greedy algorithm always
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selects the item with the largest density, then

max
(a,d)∈Ti\(Gi−1∪(o1,di))

ρa,d(Gi−1 ∪ (o1, di)) ≤ max
(a,d)∈Ti\(Gi−1∪(o1,di))

ρa,d(Gi−1)

≤ ρgi,d
g
i
(Gi−1) = g′(x).

Hence, we have

1 ≤ 2g1(x) +
∑

(a,d)∈Ti\(Gi−1∪(o1,di))

c(a) · ρa,d(Gi−1 ∪ (o1, di))

≤ 2g1(x) +
∑

(a,d)∈Ti\(Gi−1∪(o1,di))

c(a) · g′(x)

= 2g1(x) + g′(x) · c(Ti\(Gi−1 ∪ (o1, di))) ≤ 2g1(x) + g′(x) · (1 − c(o1)),

where the last inequality follows from the fact that g′(x) is always non-negative.
Note that the above analysis also applies to the non-monotone case, since

the pairwise monotonicity guarantees the non-negativity of g′(x). When f is
non-monotone, applying Lemma 3(b) instead of (a), we have

1 ≤ 3g1(x) + g′(x) · (1 − c(o1)).

�

Theorem 1. For the k-submodular maximization problem under a knapsack
constraint, Greedy+Max is 1

3 -approximation and 1
4 -approximation for mono-

tone and non-monotone functions, respectively, with O(kn ·min{n,B}) queries.
Proof. When f is monotone, applying Lemma 4(a) at the point x = 1−c(o1)−c∗,
we have

2g1(1 − c(o1) − c∗) + (1 − c(o1)) · g′(1 − c(o1) − c∗) ≥ 1. (10)

If g1(1 − c(o1) − c∗) ≥ 1
3 , then we already have a 1

3 -approximation, because

g1(1 − c(o1) − c∗) = g(1 − c(o1) − c∗) + max
d∈[k]

Δo1,df(Gi−1)

= f(Gi−1) + max
d∈[k]

Δo1,df(Gi−1),

which is no more than the function value of the (i − 1)-th augmented solution.
Then we consider the case when g1(1 − c(o1) − c∗) < 1

3 . By Eq. (10), we have

g′(1 − c(o1) − c∗) ≥ 1 − 2g1(1 − c(o1) − c∗)
1 − c(o1)

>
1

3(1 − c(o1))
.

Since g(0) = 0 and g′ is non-increasing by the orthant submodularity, for any
x ∈ [0, 1] we have

g(x) =
∫ x

0

g′(y)dy ≥
∫ x

0

g′(x)dy = g′(x)
∫ x

0

dy = g′(x) · x.
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Applying this inequality at the point x = 1 − c(o1) − c∗, then we have

g(1 − c(o1) − c∗) ≥ g′(1 − c(o1) − c∗) · (1 − c(o1) − c∗) ≥ 1 − c(o1) − c∗

3(1 − c(o1))
.

Recall that 1−c(o1)−c∗ is the cost of the last partial greedy solution (i.e., Gi−1)
such that adding o1 still fits, and thus, the next item that the greedy solution
selects has a cost greater than c∗. Therefore, the function value after Greedy
selects this item is at least

f(Gi−1) + c∗ · ρgi,d
g
i
(Gi−1) = g(1 − c(o1) − c∗) + c∗ · g′(1 − c(o1) − c∗)

≥ 1 − c(o1) − c∗

3(1 − c(o1))
+

c∗

3(1 − c(o1))
=

1
3
.

When f is non-monotone, applying Lemma 4(b) at the point x = 1− c(o1)−
c∗, a similar analysis follows by discussing the two cases when g1(1−c(o1)−c∗) ≥
1
4 and g1(1 − c(o1) − c∗) < 1

4 , which gives a 1
4 -approximation. �


5 Conclusion

In this work, we explored the monotone and non-monotone k-submodular maxi-
mization under a knapsack constraint. We introduced Greedy+Max algorithm,
which augments all partial greedy solutions by integrating the most advanta-
geous additional item (the one with the highest marginal value). The algorithm
provides a 1

3 -approximation for monotone functions and a 1
4 -approximation for

non-monotone functions, using O(kn ·min{n,B}) queries. These results demon-
strate that Greedy+Max delivers notable approximation ratios while preserv-
ing favourable query complexity.
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Abstract. Let X be a set of items of size n that contains some defective
items, denoted by I, where I ⊆ X. In group testing, a test refers to a
subset of items Q ⊂ X. The outcome of a test is 1 if Q contains at least
one defective item, i.e., Q ∩ I �= ∅, and 0 otherwise.

We give a novel approach to obtaining lower bounds in non-adaptive
randomized group testing. The technique produced lower bounds that

are within a factor of 1/log log
k· · · log n of the existing upper bounds for

any constant k. Employing this new method, we can prove the following
result.

For any fixed constants k, any non-adaptive randomized algorithm
that, for any set of defective items I, with probability at least 2/3, returns
an estimate of the number of defective items |I| to within a constant
factor requires at least

Ω

(
log n

log log
k· · · log n

)

tests.
Our result almost matches the upper bound of O(log n) and solves

the open problem posed by Damaschke and Sheikh Muhammad in [8,9].
Additionally, it improves upon the lower bound of Ω(log n/ log log n)
previously established by Ron and Tsur [21] and independently by
Bshouty [2].

Keywords: Group Testing · Randomized Algorithm · Estimation

1 Introduction

Let X be a set of n items, among which are defective items denoted by I ⊆ X.
In the context of group testing, a test is a subset Q ⊆ X of items, and its result
is 1 if Q contains at least one defective item (i.e., Q ∩ I �= ∅), and 0 otherwise.

Although initially devised as a cost-effective way to conduct mass blood test-
ing [10], group testing has since been shown to have a broad range of applications.
These include DNA library screening [20], quality control in product testing
[22], file searching in storage systems [16], sequential screening of experimental

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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variables [18], efficient contention resolution algorithms for multiple-access com-
munication [16,26], data compression [14], and computation in the data stream
model [7]. Additional information about the history and diverse uses of group
testing can be found in [6,11,12,15,19,20] and their respective references.

Adaptive algorithms in group testing employ tests that rely on the outcomes
of previous tests, whereas non-adaptive algorithms use tests independent of one
another, allowing all tests to be conducted simultaneously in a single step. Non-
adaptive algorithms are often preferred in various group testing applications [11,
12].

In this paper, we give a novel approach to obtaining lower bounds in non-
adaptive group testing. The technique produced lower bounds that are within
a factor of 1/log log k. . . log n of the existing upper bounds for any constant k.
Employing this new method, we can prove a new lower bound for non-adaptive
estimation of the number of defective items.

Estimating the number of defective items d := |I| to within a constant factor
of α is the problem of identifying an integer D that satisfies d ≤ D ≤ αd. This
problem is widely utilized in a variety of applications [4,17,23–25].

Estimating the number of defective items in a set X has been extensively
studied, with previous works including [3,5,8,9,13,21]. In this paper, we focus
specifically on studying this problem in the non-adaptive setting. Bshouty [2]
showed that deterministic algorithms require at least Ω(n) tests to solve this
problem. For randomized algorithms, Damaschke and Sheikh Muhammad [9]
presented a non-adaptive randomized algorithm that makes O(log n) tests and,
with high probability, returns an integer D such that D ≥ d and E[D] = O(d).
Bshouty [2] proposed a polynomial time randomized algorithm that makes
O(log n) tests and, with probability at least 2/3, returns an estimate of the num-
ber of defective items within a constant factor. Damaschke and Sheikh Muham-
mad [9] gave the lower bound of Ω(log n); however, this result holds only for
algorithms that select each item in each test uniformly and independently with
some fixed probability. They conjectured that any randomized algorithm with a
constant failure probability also requires Ω(log n) tests. Ron and Tsur [21]1 and
independently Bshouty [2] prove this conjecture up to a factor of log log n. In
this paper, we establish a lower bound of

Ω

(
log n

(c log∗ n)(log∗ n)+1

)

tests, where c is a constant and log∗ n is the smallest integer k such that log log k. . .
log n < 2. It follows that the lower bound is

Ω

(
log n

log log k. . . log n

)

for any constant k.

1 The lower bound in [21] pertains to a different model of non-adaptive algorithms,
but their technique implies this lower bound.
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An attempt was made to establish this bound in [1]; however, an error
was discovered in the proof. As a result, the weaker bound of Bshouty,
Ω(log n/ log log n), was proved and published in [2].

The paper is organized as follows: The next subsection introduces the tech-
nique used to prove the lower bound. Section 2 defines the notation and ter-
minology used throughout the paper. Section 3 contains the proof of the lower
bound.

1.1 Old and New Techniques

In this section, we will explain both the old and new techniques used to prove
the lower bounds.

Let X = [n] be the set of items, and let I = 2X be the collection of all the
possible sets of defective items. The objective is to establish a lower bound for
the test complexity of any non-adaptive randomized algorithm that, for any set
of defective items I ∈ I, with probability at least 2/3, returns an integer P(I)
such that2 |I| ≤ P(I) ≤ 2|I|.

Old Technique: The method used by Bshouty in [2] can be described as follows.
Suppose we have a non-adaptive randomized algorithm A that makes s tests,
denoted by the random variable set Q = {Q1, . . . , Qs}. For every set of defective
items I ∈ I, the algorithm returns an integer P(I) such that, with probability
at least 2/3, |I| ≤ P(I) ≤ 2|I|.

First, he defines a partition of the set of tests Q =
⋃r

i=1 Q(i), where each
Q(i), i ∈ [r], contains the set of tests of sizes in the interval [ni, ni+1], with n0 = 1
and ni+1 = poly(log n) · ni. There are r = Θ(log n/ log log n) such intervals. Let
c be a small constant. By Markov’s bound, there exists j (that depends only
on A, not the seed of A) such that, with high probability (at least 1 − 1/c),
|Q(j)| ≤ cs/r.

He then identifies an integer d that depends on j (and therefore on A) such
that, for every m ∈ [d, 4d] and for a uniform random I ∈ Im := {I ∈ I : |I| =
m}, the outcomes of all tests that lie outside Q(j) can be determined (without
having to perform a test) with high probability. This probability is obtained by
applying the union bound to the probability that the answer to each test in
Q\Q(j) can be determined by a randomly selected I ∈ I ′ := ∪m∈[d,4d]Im. The
key idea here is that since Q(j) = {Q ∈ Q : |Q| ∈ [nj , poly(log n)nj ]}, there is d
such that for a random uniform set of a defective item of size m ∈ [d, 4d], with
high probability, the answers to all the tests Q that satisfy |Q| > poly(log n)nj

are 1, and, with high probability, the answers to all the tests Q that satisfy
|Q| < nj are 0.

This proves that the set of tests Q(j) can, with high probability, estimate the
size of a set of defective items of a uniformly random I ∈ I ′, i.e., |I| ∈ [d, 4d]. In
particular, it can, with high probability, distinguish3 between a set of defective
items of size d and a set of defective items of size 4d.
2 The constant 2 can be replaced by any constant.
3 This is because the algorithm for |I| = d return an integer in the interval [d, 2d] and

for |I| = 4d returns an integer in the interval [4d, 8d] and both intervals are disjoint.
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If cs/r < 1, then |Q(j)| < 1, and therefore, with high probability, Q(j) = ∅.
This leads to a contradiction. This is because the algorithm cannot, with high
probability, distinguish between the case where |I| = d and |I| = 4d with-
out any tests. Therefore, cs/r ≥ 1, resulting in the lower bound s > r/c =
Ω(log n/ log log n) for any non-adaptive randomized algorithm that solves the
estimation problem.

New Technique: The union bound required for proving that the outcome of
the tests in Q\Q(j) can be determined with high probability necessitates a small
enough value of r. Consequently, to satisfy the condition cs/r < 1, s must also
be sufficiently small. This is the bottleneck in getting a better lower bound.

We surmount the bottleneck in this paper by implementing the following
technique. Let τ = log∗ n. As in the old technique, we define a partition of
the set of tests Q = ∪r

i=1Q(i). By Markov’s bound there is j such that, with
probability at least 1 − 1/τ , |Q(j)| ≤ τs/r. Next, we identify a subset I ′ ⊂ I
such that, for a uniform random I ∈ I ′, the outcomes of all the tests that lie
outside Q(j) can be determined with a probability of at least 1 − 1/τ .

We then present the following algorithm A′ that, with high probability, solves
the problem for defective sets I ∈ I ′:

Algorithm 1. Algorithm A′ for solving problem P
Require: I ∈ I′

Ensure: An estimate D of |I|
1: Let φ : X → X be a uniform random permutation.
2: Let Q be the set of tests that the algorithm A makes.
3: For every test that is outside Q(j), return the determined answer.
4: If |Q(j)| ≤ τs/r, then make the tests in Q(j)

φ := {φ(Q)|Q ∈ Q(j)}. Otherwise, FAIL.

5: Run the algorithm A with the above answers to get an estimation D of |φ−1(I)|.
6: Return D.

We then prove that if the algorithm A solves the estimation problem for
any set of defective items I with a success probability of at least 2/3, then
algorithm A′ solves the estimation problem for I ∈ I ′ with a success probability
of at least 2/3 − 2/τ .

This follows from:

– Making the tests in Q(i)
φ with a defective set of item I is equivalent to making

the tests in Q with a defective set of items φ−1(I), and therefore, with a
random uniform defective set of size |I|.

– Since φ−1(I) is a random uniform set of size |I|, the answers to the tests
outside Q(j) can be determined with high probability.

– With high probability, |Q(j)| ≤ τs/r.

Now, as before, if τs/r < 1, then, with high probability, Q(j) = ∅, and the
above algorithm does not require any tests to be performed. If, in addition, there
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are two instances I1 and I2 in I ′ where |I1| < 4|I2| (then, the outcome for I1
cannot be equal to the outcome of I2), then we get a contradiction. This is
because if the algorithm makes no tests, it cannot distinguish between I1 and
I2. This contradiction, again, gives the lower bound r/τ for any non-adaptive
randomized algorithm that solves the estimation problem.

To obtain a better lower bound, we again take the algorithm A′ that solves
P for I ∈ I ′ with the tests Q′ := Q(j) with a success probability 2/3 − 2/τ and,
using the same procedure as before, we generate a new non-adaptive algorithm
A′′ that solves P for I ∈ I ′′ ⊂ I ′ using the tests in Q′′ ⊂ Q′, with success
probability 2/3 − 4/τ . The test complexity of the algorithm A′′ is τ2s/(rr′)
where r′ = O(log log n/ log log log n) is the number of set partitions of Q′. The
lower bound obtained here is now rr′/τ2 = Ω(log n/((log∗ n)2 log log log n)),
which is better than the lower bound r/τ obtained before4.

If this process is repeated � := τ/24 − log∗ τ times, we get an algorithm that
makes t := τ �s/(rr′r′′ · · · ) tests. If t < 1, the algorithm makes no tests and,
with a probability of at least5 2/3 − 2(τ/24)/τ = 7/12 > 1/2, it can distinguish
between two sets of defective items I1 and I2 that cannot have the same outcome.
This gives the lower bound rr′r′′ · · · /(τ τ/24) = log n/(c′τ)τ/24 for some constant
c′.

Old Attempt: An attempt was made to establish this bound in [1]; how-
ever, an error was discovered in the proof. As a result, the weaker bound of
Ω(log n/ log log n) was proved and published in [2]. In [1], Bshouty did not use
Algorithm 1. Instead, he performs the same analysis on Q(j) (instead of Q(j)

φ ),
which results in many dependent events in the proof. The key to the success
of our analysis is the inclusion of the random permutation φ in Algorithm 1.
This permutation makes the events independent, allowing us to repeat the same
analysis for Q(j).

2 Definitions and Notation

In this section, we introduce some definitions and notation.
We will consider the set of items X = [n] = {1, 2, . . . , n} and the set of

defective items I ⊆ X. The algorithm knows n and has access to a test oracle OI .
The algorithm can use the oracle OI to make a test Q ⊆ X, and the oracle
answers OI(Q) := 1 if Q ∩ I �= ∅, and OI(Q) := 0 otherwise. We say that an
algorithm A, with probability at least 1− δ, α-estimates the number of defective
items if, for every I ⊆ X, A runs in polynomial time in n, makes tests with the
oracle OI , and with probability at least 1 − δ, returns an integer D such that
|I| ≤ D ≤ α|I|. If α is constant, then we say that the algorithm estimates the
number of defective items to within a constant factor.

4 We can take τ as a small constant and get the lower bound Ω(log n/ log log log n).
5 Unlike in the previous footnote, τ cannot be taken as constant here.



308 N. H. Bshouty

The algorithm is called non-adaptive if the tests are independent of the
answers of the previous tests and, therefore, can be executed simultaneously
in a single step. Our objective is to develop a non-adaptive algorithm that min-
imizes the number of tests and provides, with a probability of at least 1 − δ, an
estimation of the number of defective items within a constant factor.

We will denote log[k] n = log log k. . . log n, log[0] n = n. Notice that
log log[i] n = log[i+1] n and 2log

[i] n = log[i−1] n. Let N = {0, 1, · · · }. For two
real numbers r1, r2, we denote [r1, r2] = {r ∈ N|r1 ≤ r ≤ r2}. Random variables
and random sets will be in bold.

3 The Lower Bound

In this section, we prove the lower bound for the number of tests in any non-
adaptive randomized algorithm that α-estimates the number of defective items
for any constant α.

3.1 Lower Bound for Randomized Algorithm

In this section, we prove.

Theorem 1. Let τ = log∗ n and α be any constant. Any non-adaptive ran-
domized algorithm that, with probability at least 2/3, α-estimates the number of
defective items must make at least

Ω

(
log n

(480τ)τ+1

)

tests.

We first prove the following.

Lemma 1. Let n1 = n. Let i ≥ 1 be an integer such that log[i] n ≥ τ := log∗ n.
Suppose there is an integer ni = nΩ(1) ≤ n and a non-adaptive randomized
algorithm Ai that makes

si :=
log[i] n

(480τ)τ−i+2
(1)

tests and for every set of defective items I of size

d ∈ Di :=

[
n

ni
,
n(log[i−1] n)1/4

ni

]
,

with probability at least 1 − δ, α-estimates d. Then there is an integer ni+1 =
nΩ(1) ≤ n and a non-adaptive randomized algorithm Ai+1 that makes si+1 tests
and for every set of defective items I of size d ∈ Di+1, with probability at least
1 − δ − 1/(12τ), α-estimates d.
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Proof. Let

Ni =

[
ni

(log[i−1] n)1/4
, ni

]
.

We will be interested in all the tests Q of the algorithm Ai that satisfies |Q| ∈ Ni.
We now partition Ni into smaller sets. Let

Ni,j =

[
ni

(log[i] n)4j+4
,

ni

(log[i] n)4j

]

where j = [0, ri − 1] and

ri =
log[i] n

16 log[i+1] n
. (2)

Since the lowest endpoint of the interval Ni,ri−1 is

ni

(log[i] n)4(ri−1)+4
=

ni

24ri log[i+1] n
=

ni

2(1/4) log[i] n
=

ni

(log[i−1] n)1/4

and the right endpoint of Ni,0 is ni, we have, Ni = ∪ri−1
j=0 Ni,j .

Let Q = {Q1, . . . ,Qsi
} be the (random variable) tests that the randomized

algorithm Ai makes. Let Tj be a random variable representing the number
of tests Q ∈ Q that satisfies |Q| ∈ Ni,j . Since Ai makes si tests, we have
T0 + · · · + Tri

≤ si. Therefore, by (1) and (2), (in the expectation, Ej , j is
uniformly at random over [0, ri − 1] and the other E is over the random seed of
the algorithm Ai)

Ej [E[Tj ]] = E [Ej [Tj ]] ≤ si

ri
=

16 log[i+1] n

(480τ)τ−i+2
.

Therefore, there is 0 ≤ ji ≤ ri − 1 that depends only on the algorithm Ai (not
the seed of the algorithm) such that

E[Tji
] ≤ 16 log[i+1] n

(480τ)τ−i+2
.

By Markov’s bound, with probability at least 1 − 16/(480τ) = 1 − 1/(30τ),

|{Q ∈ Q : |Q| ∈ Ni,ji
}| = Tji

≤ log[i+1] n

(480τ)τ−i+1
= si+1. (3)

Define

ni+1 =
ni

(log[i] n)4ji+2
. (4)

Since ni = nΩ(1) and

(log[i] n)4ji+2 ≤ (log[i] n)4ri−2 =
(log[i−1] n)1/4

(log[i] n)2
,
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we have that ni+1 = nΩ(1) ≤ n. Notice that this holds even for i = 1. This is
because n1 = n and (log[0] n)1/4 = n1/4 so n2 ≥ n1/4 log2 n = nΩ(1).

Consider the following randomized algorithm A′
i:

1. Let Q = {Q1, . . . ,Qsi
} be the set of tests of Ai.

2. Choose a uniformly at random permutation φ : [n] → [n].
3. Let Q′ = {Q′

1, . . . ,Q
′
si

} where Q′
i = φ(Qi) := {φ(q)|q ∈ Qi}.

4. Make all the tests in Q′ and give the answer to Ai.
5. Run Ai with the above answers on Q′ and output what Ai outputs.

Consider the following algorithm Ai+1:

1. Let Q = {Q1, . . . ,Qsi
} be the set of tests of Ai.

2. Choose a uniformly at random permutation φ : [n] → [n].
3. Let Q′ = {Q′

1, . . . ,Q
′
si

} where Q′
i = φ(Qi) := {φ(q)|q ∈ Qi}.

4. For all the tests in

Q0 :=

{
Q′

i ∈ Q′ : |Q′
i| ≤ ni

(log[i] n)4ji+4

}
,

answer 0.
5. For all the tests in

Q1 :=

{
Q′

i ∈ Q′ : |Q′
i| ≥ ni

(log[i] n)4ji

}
,

answer 1.
6. Let

Q′′ =

{
Q′

i ∈ Q′ :
ni

(log[i] n)4ji+4
< |Q′

i| <
ni

(log[i] n)4ji

}

= {Q′
i ∈ Q′ : |Q′

i| ∈ Ni,ji
}

7. If

|Q′′| > si+1 =
log[i+1] n

(480τ)τ−i+1

return −1 (FAIL) and halt.
8. Make all the tests in Q′′.
9. Run Ai with the above answers on Q′ and output what Ai outputs.

We now show that for every set of defective items |I| of size

d ∈ Di+1 :=

[
n

ni+1
,
n(log[i] n)1/4

ni+1

]
, (5)

with probability at least 1 − δ − 1/(12τ), algorithm Ai+1 α-estimates d using
si+1 tests.
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In algorithm Ai+1, Step 8 is the only step that makes tests. Therefore, by
step 7 the test complexity of Ai+1 is si+1.

By the definition of Di, and since, by (4), n/ni+1 > n/ni, and, by (4) and (2)

n(log[i] n)1/4

ni+1
=

n

ni
(log[i] n)4ji+2.25 ≤ n

ni
(log[i] n)4ri−1.75 ≤ n(log[i−1] n)1/4

ni
,

we can conclude that Di+1 ⊂ Di.
Consider the following events:

1. Event M0: For some Q′ = φ(Q) ∈ Q′ such that |Q′| ≤ ni/(log[i] n)4ji+4 (i.e.,
Q′ ∈ Q0), Q′ ∩ I �= ∅ (i.e., the answer to the test Q is 1).

2. Event M1: For some Q′ = φ(Q) ∈ Q′ such that |Q′| ≥ ni/(log[i] n)4ji , (i.e.,
Q′ ∈ Q1) Q′ ∩ I = ∅ (i.e., the answer to the test Q is 0).

3. Event W : |Q′′| > si+1 = log[i+1] n
(480τ)τ−i+1 .

The success probability of the algorithm Ai+1 on a set I of defective items with
|I| = d ∈ Di+1 is (here the probability is over φ and the random tests Q)

Pr[Ai+1 succeeds on I] = Pr[(A′
i succeeds on I) ∧ M̄0 ∧ M̄1 ∧ W̄ ]

≥ Pr[A′
i succeeds on I] − Pr[M0 ∨ M1 ∨ W ]

≥ Pr[A′
i succeeds on I] − Pr[M0] − Pr[M1] − Pr[W ].

Now, since |φ−1(I)| = |I| and Q′ ∩ I = φ(Q) ∩ I �= ∅ if and only if Q ∩
φ−1(I) �= ∅,

Pr
φ,Q

[A′
i succeeds on I] = Pr

φ,Q
[Ai succeeds on φ−1(I)] ≥ 1 − δ.

Therefore, to get the result, it is enough to show that Pr[M0] ≤ 1/(300τ),
Pr[M1] ≤ 1/(300τ) and Pr[W ] ≤ 1/(30τ).

First, since |Q′| = |φ(Q)| = |Q| we have

|Q′′| = |{Q′
i : |Q′

i| ∈ Ni,ji
}| = |{Qi : |Qi| ∈ Ni,ji

}| = Tji
.

By (3), with probability at most 1/(30τ),

|Q′′| = Tji
>

log[i+1] n

(480τ)τ−i+1
.

Therefore, Pr[W ] ≤ 1/(30τ).
We now will show that Pr[M0] ≤ 1/(300τ). We have, (A detailed explanation

of every step can be found below.)

Pr
φ,Q

[M0] = Pr
φ,Q

[(∃Q ∈ Q,φ(Q) ∈ Q0) φ(Q) ∩ I �= ∅] (6)

= Pr
φ,Q

[(∃Q ∈ Q,φ(Q) ∈ Q0) Q ∩ φ−1(I) �= ∅] (7)
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≤ si

(
1 −

d−1∏
k=0

(
1 − ni

(log[i] n)4ji+4(n − k)

))
(8)

≤ si

⎛
⎝1 −

(
1 − 2ni

(log[i] n)4ji+4n

)d
⎞
⎠ (9)

≤ sid
2ni

(log[i] n)4ji+4n
(10)

≤ log[i] n
(480τ)τ−i+2

· n(log[i] n)1/4

ni+1

2ni

(log[i] n)4ji+4n
(11)

=
log[i] n

(480τ)τ−i+2
· n(log[i] n)4ji+2 1

4

ni

2ni

(log[i] n)4ji+4n
(12)

=
2

(480τ)τ−i+2(log[i] n)3/4
≤ 1

300τ
. (13)

(6) follows from the definition of the event M0. (7) follows from the fact that
for any permutation φ : [n] → [n] and two sets X,Y ⊆ [n], φ(X) ∩ Y �= ∅ is
equivalent to X ∩ Φ−1(Y ) �= ∅. (8) follows from:

1. The union bound and |Q0| ≤ |Q| = si.
2. For a random at uniform φ, and a d-subset of [n], φ−1(I) is a random uniform

d-subset of [n].
3. For every Q ∈ Q such that φ(Q) ∈ Q0, |Q| = |φ(Q)| ≤ ni/(log[i] n)4ji+4.

(9) follows from the fact that since d ∈ Di+1 and ni+1 = nΩ(1) by (5), we have
d ≤ n/2. (10) follows from the inequality (1 − x)d ≥ 1 − dx. (11) follows from
(1) and (5). (12) follows from (4). (13) follows from the fact that since log[i] n ≥
τ = log∗ n, we have i ≤ τ , and therefore (480τ)τ−i+2 ≥ (480τ)2 ≥ 600τ .

We now prove that Pr[M1] ≤ 1/(300τ).

Pr
φ,Q

[M1] = Pr
φ,Q

[(∃Q ∈ Q,φ(Q) ∈ Q1) φ(Q) ∩ I = ∅] (14)

= Pr
φ,Q

[(∃Q ∈ Q,φ(Q) ∈ Q1) Q ∩ φ−1(I) = ∅] (15)

≤ si

d−1∏
k=0

(
1 − ni

(log[i] n)4ji(n − k)

)
(16)

≤ si

(
1 − ni

(log[i] n)4jin

)d

≤ si exp

(
− dni

(log[i] n)4jin

)
(17)

≤ log[i] n
(480τ)τ−i+2

exp

(
−

n
ni+1

ni

(log[i] n)4ji

n

)
(18)

≤ log[i] n
(480τ)τ−i+2

exp(−(log[i] n)2) (19)

≤ 1
300τ

. (20)
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(14) follows from the definition of the event M1. (15) follows from the fact that for
any permutation φ : [n] → [n] and two sets X,Y ⊆ [n], φ(X)∩Y = ∅ is equivalent
to X ∩ Φ−1(Y ) = ∅. In (16), we again use the union bound, |Q1| ≤ |Q| = si,
the fact that φ−1(I) is a random uniform d-subset, and for Q′ ∈ Q1, |Q′| ≥
ni/(log[i] n)4ji . (17) follows from the inequalities (1−y/(n−k)) ≤ (1−y/n) and
1 − x ≤ e−x for every x, and y ≥ 0. (18) follows from (1) and (5). (19) follows
from (4). (20) follows from the fact that i ≤ τ , and therefore (480τ)τ−i+2 ≥
(480τ)2 ≥ 300τ . ��

We are now ready to prove Theorem 1.

Proof. Suppose, for the contrary, there is a non-adaptive randomized algorithm
A1 that, with probability at least 2/3, α-estimates the number of defective items
and makes

m :=
log n

(480τ)τ+1

tests. Recall that n1 = n and log[0] n = n. We use Lemma 1 with δ = 1/3,
D1 = [1, n1/4] and s1 = m.

Now let � be an integer such that log log∗ n < log[�] n ≤ log∗ n = τ . Then
log[�−1] n > 2log

[�] n > 2log log∗ n = τ . Now use Lemma 1 with i = � − 1 and get

s� =
log[�] n

(480τ)τ−�+2
≤ τ

(480τ)2
< 1.

So, algorithm A� makes no tests and with probability at least 2/3−�/(12τ) ≥
7/12 > 1/2 α-estimates the size of defective items I provided that

|I| ∈ D� =

[
n

n�
,
n(log[�−1] n)1/4

n�

]
.

In particular, with probability more than 1/2, we can distinguish between defec-
tive sets of size n/n� and size greater than αn/n� without performing any test,
which is impossible. A contradiction. ��

4 Conclusion

In this paper, we have presented a novel approach to obtaining lower bounds in
non-adaptive randomized group testing. Our technique has allowed us to estab-
lish a lower bound of Ω(log n/((c log∗ n)log

∗ n), for some constant c, on the test
complexity of any randomized non-adaptive algorithm that estimates the num-
ber of defective items within a constant factor. This lower bound significantly
improves upon the previous bound of Ω(log n/ log log n) that was established
in [2,21].

The key to our success was the introduction of a random permutation φ in
Algorithm 1, which enabled us to make the events independent and repeat the
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analysis to the set Q(j). This crucial step allowed us to overcome the bottleneck
in the previous technique and achieve a better lower bound.

A challenging open problem is establishing a lower bound of Ω(log n) for
the test complexity in non-adaptive randomized algorithms that estimate the
number of defective items within a constant factor.
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Problem
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Abstract. A recently introduced restricted variant of the multidimen-
sional stable roommates problem is the roommate diversity problem. We
study the roommate diversity problem with the notion of popularity.

We show that for the roommate diversity problem with the room size
fixed to 2, a popular partitioning of agents is guaranteed to exist and
can be computed in polynomial time. By contrast, when there are no
restrictions on the room size of a roommate diversity game, a popular
partitioning may fail to exist and the problem becomes intractable.

Keywords: Stable roommates problem · Popularity · Dichotomous
Trichotomous preferences · Coalition formation · Algorithms ·
Co-NP-hard

1 Introduction

The formation of stable coalitions in multi-agent systems is a computational
problem that has several variations with different conditions on the coalition
size. Boehmer and Elkind [5] recently introduced a restricted variant of the mul-
tidimensional stable roommates problem called the roommate diversity problem:
each agent belongs to one of two types (e.g., red and blue), and the agents’ pref-
erences over the rooms solely depend on the fraction of agents of their own type
among their roommates. Ties are allowed in the preferences of the agents.

Diversity preferences were originally introduced by Bredereck et al. [7] in
the context of hedonic games. Hedonic diversity games have been extensively
studied by Bredereck et al. [7], Boehmer and Elkind [4], and Darmann [13].
Ganian et. al. [15] analyzed the parameterized complexity of hedonic diversity
games using a combination of the parameters: number of agent types (colors);
maximum coalition size; maximum number of coalitions; and number of agent
(preference) types.

The roommate diversity model captures important aspects of several real-
world coalition formation scenarios, such as seating arrangements at events, and
splitting students into teams for group projects. In the latter scenario, a local
student may have difficulty communicating in English and an international stu-
dent may not be able to speak the local language well. Thus, the preference of
a student may solely rely on the fraction of international group members, where
the ranking of the fractions depend on how much they want to learn the other
language and the ease of communication they require.
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Various notions that define the stability or optimality of a partitioning of
agents exist. The notion of popularity was introduced by Gärdenfors [16] in
1975. Popular matchings have been an exciting area of research [20]. Cseh [10]
has recently provided a survey on popular matchings.

Computing a popular partition in a stable roommates game is NP-hard,
even if the preferences are strict [12,14,19]. One method of obtaining tractability
results from intractable coalition formation problems is to put restrictions on the
agents’ preferences for which the associated computational problems become
tractable. This approach has been successfully used in the stable roommates
problem [1–3,8,9,11]. Diversity preferences is the same type of approach.

The roommate diversity problem has been studied with the notions envy-
freeness, exchange stability, core stability, and Pareto optimality. For the major-
ity of these notions computing a stable/optimal partitioning of a roommate
diversity game is NP-hard or co-NP-hard. On the other hand, for some of the
stability notions the problem is FPT when using the room size as parameter [5].

1.1 Our Results

We show that popularity on the roommate diversity problem with the room size
fixed to 2 is tractable. Particularly, a popular partitioning of agents is guaran-
teed to exist and can be computed in polynomial time. Additionally, a mixed
popular partitioning of agents is always guaranteed to exist in any roommate
diversity game. By contrast, when there are no restrictions on the room size of a
roommate diversity game, a popular partitioning may fail to exist and the prob-
lem becomes intractable. Our intractability results are summarized as follows:
Determining the existence of a popular partitioning is co-NP-hard, even if the
agents’ preferences are trichotomous; Determining the existence of a strictly pop-
ular partitioning is co-NP-hard, even if the agents’ preferences are dichotomous;
A mixed popular outcome for a roommate diversity game is not computable in
polynomial time, even if the agents’ preferences are dichotomous, unless P = NP.

Our hardness proofs are inspired by Theorem 7.3 of the work by Boehmer and
Elkind [5] in combination with Sect. 4.2.2 of the work by Brandt and Bullinger
[6]. We also use Proposition 1 of the work by Brandt and Bullinger [6] to show
that a mixed popular partitioning of agents is always guaranteed to exist in any
roommate diversity game.

2 Preliminaries

In this work, we slightly extend the notation and definitions described in Sect. 2
and Theorem 7.3 of the work by Boehmer and Elkind [5], and Sect. 3 of the work
by Brandt and Bullinger [6]. For our hardness results, we construct polynomial
time reductions from the Exact Cover by 3-Sets (X3C) problem, which is known
to be NP-complete [17].

For s ∈ N, t ∈ N
+, we define the integer sets [t] = {1, . . . , t} and [s, t] =

{s, . . . , t}.
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2.1 Roommate Diversity Problem

A roommate diversity game G with room size s and agent set N = R ∪ B is
a quadruple (R,B, s, (�a)a∈R∪B), where |N |= ks for some k ∈ N. The pref-
erence relation �a, where a ∈ N , is a complete transitive weak order over
D =

{
j
s |j ∈ [0, s]

}
. We call the agents in R red agents and the agents in B blue

agents. An s-sized subset of N is called a room. An outcome π = {C1, . . . , Ck}
of G is a partitioning of the agents N into k rooms. Let π(a) denote the room
in π that contains agent a ∈ N . For a room C ⊆ N , let θ(C) = |C∩R|

|C| denote
the fraction of red agents in C. We say that C has fraction θ(C) or the fraction
of C is θ(C).

For an agent a ∈ N , the preference relation �a are the preferences of a over
the fraction of red agents in its room. For example, 2

s �a
3
s means that agent

a likes being in a room with 2 red agents at least as much as being in a room
with 3 red agents. Note that a red agent cannot be in a room with fraction 0

s
and a blue agent cannot be in a room with fraction s

s . Thus, discarding these
‘impossible’ fractions in their preference relation does not impact our results.
We write θ(S) �a θ(T ) and say that agent a strictly prefers room S over room
T if θ(S) �a θ(T ) and θ(T ) � �a θ(S). Additionally, we say that agent a weakly
prefers S over T if θ(S) �a θ(T ). If agent a weakly prefers S over T and T over
S, we write θ(S) ∼a θ(T ) and say that a is indifferent between S and T .

The preference relation of an agent a is trichotomous, if there exists a parti-
tioning of D into three sets D+

a , Dn
a , D−

a such that for all d+ ∈ D+
a , dn ∈ Dn

a , and
d− ∈ D−

a it holds that d+ �a dn and dn �a d−. Additionally, for all d+1 , d+2 ∈ D+
a

it holds that d+1 ∼a d+2 , for all dn
1 , dn

2 ∈ Dn
a it holds that dn

1 ∼a dn
2 , and for all

d−
1 , d−

2 ∈ D−
a it holds that d−

1 ∼a d−
2 . We say that agent a approves of, is neutral

about, disapproves of the fractions in D+
a , Dn

a , D−
a respectively.

We shall use tables to define the tri- and dichotomous preferences. The first
column specifies an agent a. The second column denotes the set D+

a . In the
example table below, we have that D+

a = {f1, . . . , fl}. The sets Dn
a and D−

a are
defined analogously in the third and fourth column respectively. In the case of
dichotomous preferences, the third column defining the set Dn

a is discarded. The
final column may contain additional comments regarding the range of a variable.

Agent Preference Profile
D+

a Dn
a D−

a

a {f1, . . . , fl} {fl+1, . . . , fm} {fm+1, . . . , fn} “additional comments”

For an outcome π, let D+
π denote the agents that approve of the fraction of its

room in π, i.e., D+
π = {a ∈ N |θ(π(a)) ∈ D+

a }. We define Dn
π and D−

π analogously.



Popularity on the Roommate Diversity Problem 319

2.2 Popularity

For outcomes π, π′, let N(π, π′) = {a ∈ N |θ(π(a)) �a θ(π′(a))} be the set of
agents who prefer π over π′ and φ(π, π′) = |N(π, π′)|−|N(π′, π)|. We call φ(π, π′)
the popularity margin of π and π′.

An outcome π is strictly more popular than outcome π′ if φ(π, π′) > 0. An
outcome π is popular if for any outcome π′ we have φ(π, π′) ≥ 0. An outcome π
is strictly popular if for any other outcome π′ �= π we have φ(π, π′) > 0. Note
that there can be at most one strictly popular outcome.

A mixed outcome p = {(π1, p1), . . . , (πt, pt)} is a set of pairs, where for
each i ∈ [t], πi is an outcome of a roommate diversity game and (p1, . . . , pt) is
a probability distribution. For mixed outcomes p = {(π1, p1), . . . , (πt, pt)} and
q = {(σ1, q1), . . . , (σu, qu)}, we define the popularity margin of p and q to be

φ(p, q) =
t∑

i=1

u∑

j=1

piqjφ(πi, σj). A mixed outcome p is popular if for any mixed

outcome q we have φ(p, q) ≥ 0.

2.3 Exact Cover by 3-Sets Problem

Let X = [m], where m ∈ N
+ and m mod 3 = 0, and let C = {A1, . . . , Aq} be a

collection of 3-element subsets of X. An instance of the X3C problem is a tuple
(X,C) and asks: does there exist a subset C ′ ⊆ C such that C ′ partitions X?
We call such a C ′ a solution of (X,C).

For i ∈ X, let J i =
{
ji
1, . . . , j

i
mi

}
be the set of indices of the 3-sets in C that

contain i, i.e., j ∈ J i ⇐⇒ i ∈ Aj (or equivalently J i = {j ∈ [q]|i ∈ Aj}).

3 Room Size Two

For a roommate diversity game G = (R,B, 2, (�a)a∈R∪B) with room size 2,
a room S ⊆ R ∪ B, can have exactly one of 3 possible fractions, i.e., θ(S) ∈{

0
2 , 1

2 , 2
2

}
. Let us call a room with fraction 0

2 or 2
2 a pure blue or pure red room

respectively. A room with fraction 1
2 is called a mixed room.

As mentioned in Sect. 2, we can discard the ‘impossible’ fractions from the
preference relations of the agents. Thus, the only relevant fractions for a red
agent are 1

2 and 2
2 and the only relevant fractions for a blue agent are 0

2 and 1
2 .

Let us call an agent that is in a room with one of their most preferred fractions
happy. Otherwise, we call the agent sad. That is, an agent a ∈ R∪B is happy in
outcome π if for each f ∈ {

0
2 , 1

2 , 2
2

}
we have θ(π(a)) �a f . An agent a ∈ R ∪ B

is sad in outcome π if there exists f ∈ {
0
2 , 1

2 , 2
2

}
such that θ(π(a)) ≺a f .

A red agent r can only have one of 3 possible preference relations, namely
1
2 �r

2
2 , 1

2 ≺r
2
2 , or 1

2 ∼r
2
2 . We call a red agent r with preference relation 1

2 �r
2
2 ,

1
2 ≺r

2
2 , or 1

2 ∼r
2
2 a mixed, pure, or indifferent red agent respectively. We define

mixed, pure, and indifferent blue agents using fractions 0
2 and 1

2 analogously.
Let us define the set of pure red agents Rp =

{
r ∈ R|22 �r

1
2

}
, the set of

mixed red agents Rm =
{
r ∈ R| 22 ≺r

1
2

}
, and the set of indifferent red agents
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Ri =
{
r ∈ R| 12 ∼r

2
2

}
. We define the set of pure blue agents Bp, the set of mixed

blue agents Bm, and the set of indifferent blue agents Bi analogously. Note that
R = Rp ∪ Rm ∪ Ri and B = Bp ∪ Bm ∪ Bi.

We show that a popular outcome is guaranteed to exist in roommate diversity
game G and can be computed in polynomial time by reducing G to the maximum
weight perfect matching problem.

Let us define an undirected weighted complete graph Gm = (R∪B,E) where
for each pair of distinct agents a, b ∈ R ∪ B, we use w(a, b) to denote the weight
of the edge (a, b) ∈ E, where

w(a, b) =

⎧
⎪⎨

⎪⎩

2 {a, b} is a room with exactly 2 happy agents;
1 {a, b} is a room with exactly 1 happy agent;
0 {a, b} is a room with exactly 0 happy agents.

Since the room size is 2, we have that |R ∪ B| is even. For the weighted graph
Gm, let w(M) be the weight of a perfect matching M ⊆ E. Given a perfect
matching M of Gm, we define the points pM (a) of an agent a ∈ R∪B as follows:
For each (a, b) ∈ M ,

1. if w(a, b) = 2, then pM (a) = pM (b) = 1;
2. (a) if w(a, b) = 1 where a is happy and b is sad, then pM (a) = 1 and pM (b) = 0;

(b) if w(a, b) = 1 where a is sad and b is happy, then pM (a) = 0 and pM (b) = 1;
3. if w(a, b) = 0, then pM (a) = pM (b) = 0.

We have that for any perfect matching M of Gm,

w(M) =
∑

(a,b)∈M

w(a, b) =
∑

a∈R∪B

pM (a). (1)

Lemma 1. For the weighted graph Gm = (R∪B,E) as defined above, the max-
imum weight perfect matching M∗ of Gm is popular.

Theorem 1. Let G = (R,B, 2, (�a)a∈R∪B) be a roommate diversity game with
room size 2. We can find a popular outcome π in polynomial time.

The proofs of Lemma 1 and Theorem 1, which show the guaranteed existence
and polynomial time computability, can be found in [18].

4 Strict Popularity

In this section, we show that determining the existence of a strictly popular out-
come is co-NP-hard, even if the preferences are dichotomous. We shall construct
a roommate diversity game G = (R,B, s, (�a)a∈R∪B) with dichotomous pref-
erences from an X3C instance (X,C) such that there exists a solution C ′ ⊆ C
that partitions X if and only if no strictly popular outcome exists for G. The
full reduction and proofs can (also) be found in [18].
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4.1 Roommate Diversity Game

We set the room size to s = 5(q +1)+1+m = 5q +6+m. The agents and their
preference profiles are defined in Table 1, Table 2, and Table 3.

4.2 Predefined Outcomes

In this section, we shall define the monolithic outcome πmon and the reduced
outcome πC′ , where C ′ ⊆ C is a solution of (X,C). In these outcomes every
agent is assigned a room with a fraction that it approves of.

Table 1. Set of red agents R = Rset ∪ Rmon ∪ Rred.

Table 2. Set of blue agents B = Beven ∪ Bmon ∪ Badd ∪ Bfill.

Table 3. Preference profile (�a)a ∈ R ∪ B.

Agent Preference Profile
D+

a D−
a

a = ri ∈ Rset

{
5ji1+1

s
, . . . ,

5jimi
+1

s

}
∪ {1} D \ D+

a

a = rpj ∈ Rred
j

{
5j+1

s
, 5j−2

s

}
D \ D+

a j ∈ [q]

a = rpmon ∈ Rmon
{
1, 5(q+1)+1

s

}
D \ D+

a

a = bpj ∈ Bfill
j

{
5j+1

s
, 5j−2

s

}
D \ D+

a j ∈ [q]

a = b̃pj ∈ Badd
j

{
5j−2

s
, 0

}
D \ D+

a j ∈ [q]

a = bpmon ∈ Bmon
{

5(q+1)+1
s

, 0
}

D \ D+
a

a = bpeven ∈ Beven {0} D \ D+
a
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Remark 1. Observe that any outcome π, that assigns every agent to a room with
a fraction that it approves of, is popular. That is, for any outcome π, such that
∀a∈R∪B : θ(π(a)) ∈ D+

a , is popular.

Monolithic Outcome. We define the sets of agents:

Pj = Badd
j ∪ Rred

j ∪ Bfill
j for j ∈ [q];

Rr = Rset ∪ Rmon;
Br = Bmon ∪ Beven.

Define the monolithic outcome as πmon = {P1, · · · , Pq, Rr, Br}. Note that πmon

is a valid partitioning, as every agent in R ∪ B is assigned a room and that

|Pj | = |Rred
j |+|Bfill

j |+|Badd
j |= (5j − 2) + s − (5j − 2) − 3 + 3 = s,

|Rr| = |Rmon|+|Rset|= 5(q + 1) + 1 + m = s,

|Br| = |Bmon|+|Beven|= s − (5(q + 1) + 1) + (5(q + 1) + 1) = s.

Every agent is assigned a room by πmon with a fraction that it approves of. The
monolithic outcome always exists.

Reduced Outcome. Let C ′ ⊆ C be a solution that partitions X. We define
the following sets of agents:

P ′
j =

{
{ri ∈ Rset|i ∈ Aj} ∪ Rred

j ∪ Bfill
j , if Aj ∈ C ′

Badd
j ∪ Rred

j ∪ Bfill
j , if Aj /∈ C ′ for j ∈ [q];

R′
r = Rmon ∪ Bmon;

B′
r = Beven ∪

⋃

Aj∈C′
Badd

j .

We define the reduced outcome as πC′ = {P ′
1, · · · , P ′

q, R
′
r, B

′
r}. Note that πC′

is a valid outcome, as every agent in R ∪ B is assigned a room and that

|P ′
j | =

{
|{ri ∈ Rset|i ∈ Aj} |+|Rred

j |+|Bfill
j |= 3 + 5j − 2 + s − (5j − 2) − 3 = s

|Badd
j |+|Rred

j |+|Bfill
j |= 3 + 5j − 2 + s − (5j − 2) − 3 = s,

|R′
r| = |Rmon|+|Bmon|= 5(q + 1) + 1 + s − (5(q + 1) + 1) = s,

|B′
r| = |Beven|+

∑

Aj∈C′
|Badd

j |= 5(q + 1) + 1 + m = s.

Every agent is assigned a room by πC′ with a fraction that it approves of. A
reduced outcome exists if and only if (X,C) has a solution.
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4.3 Hardness

We demonstrate co-NP-hardness by showing that the monolithic outcome πmon

is the only popular outcome and therefore strictly popular, if (X,C) has no
solution. Otherwise, we have multiple popular outcomes.

Lemma 2. Let G be a roommate diversity game constructed as in Sect. 4.1 and
π be an outcome of G such that every agent is in a room with a fraction that it
approves of. We have that π is either the monolithic outcome πmon or a reduced
outcome πC′ , where C ′ ⊆ C partitions X.

Proof. Let ri ∈ Rset be an arbitrary set agent. As ri must be assigned a room in π
with a fraction that it approves of, we have that θ(π(ri)) = 1 or θ(π(ri)) = 5j+1

s ,
where j ∈ J i. Let us consider the following cases.

1. θ(π(ri)) = 1.
Since there are exactly s red agents that approve of fraction 1, namely the
agents in Rset ∪ Rmon, these agents must be contained in the same room,
i.e., Rset ∪ Rmon ∈ π. A redundant agent rp

j′ ∈ Rred cannot be in a room
with fraction 5j′+1

s as there are only s − 3 remaining agents that approve
of that fraction. Thus, any redundant agent rp

j′ must be in a room with
fraction 5j′−2

s . The rooms must be Rred
j′ ∪ Bfill

j′ ∪ Badd
j′ for j′ ∈ [q] as these

are exactly the agents that approve of fraction 5j′−2
s , i.e. for j′ ∈ [q] we

have Rred
j′ ∪ Bfill

j′ ∪ Badd
j′ ∈ π. We have s remaining blue agents, namely

Beven ∪ Bmon, that must belong to the same room. Thus, π must be πmon.
2. θ(π(ri)) = 5j+1

s .
There are exactly s red agents, including ri, that approve of fraction 1. Since
θ(π(ri)) �= 1 and π is an outcome such that every agent is in a room with a
fraction that it approves of, the outcome π cannot contain a room with only
red agents. Thus, every set agent ri′ ∈ Rset must be in a room with fraction
5j′+1

s such that i′ ∈ Aj′ . There are exactly 3 set agents that approve of 5j′′+1
s

for each j′′ ∈ [q]. Thus, for some solution C ′ ⊆ C of (X,C), every set agent
must be in a room with the shape {ri|i ∈ Aj} ∪ Rred

j ∪ Bfill
j where Aj ∈ C ′,

i.e., for each Aj ∈ C ′ we have {ri|i ∈ Aj} ∪ Rred
j ∪ Bfill

j ∈ π.

The remaining redundant agents rp
j′′′ ∈ Rred must be in a room with fraction

5j′′′−2
s as only s − 3 remaining agents approve of fraction 5j′′′+1

s . The rooms
must be Rred

j′′′ ∪ Bfill
j′′′ ∪ Badd

j′′′ for Aj′′′ /∈ C ′, i.e., for each Aj′′′ /∈ C ′ we have
Rred

j′′′ ∪ Bfill
j′′′ ∪ Badd

j′′′ ∈ π. Since there is no room with only red agents, the red
monolith agents must be in a room with the blue monolith agents, i.e., Rmon∪
Bmon ∈ π. We have s remaining blue agents, namely Beven ∪ ⋃

Aj∈C′
Badd

j , that

must belong to the same room. Thus, π must be πC′ . �
Theorem 2. Determining whether a strict popular outcome exists in a room-
mate diversity game is co-NP-hard, even if the preferences are dichotomous.
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Proof. From Lemma 2 and Remark 1, we have that if (X,C) has no solution,
then πmon is strictly popular. Otherwise, we have multiple popular outcomes
and therefore no outcome is strictly popular. �

5 Mixed Popularity

We show that a mixed popular outcome is guaranteed to exist. However, under
the assumption that P �=NP, a mixed popular outcome cannot be computed in
polynomial time, even if the preferences are dichotomous.

Theorem 3. Any roommate diversity game is guaranteed to have a mixed pop-
ular outcome.

Proof. Every roommate diversity game can be viewed as a finite two-player
symmetric zero-sum game where the rows and columns of the game matrix are
indexed by all possible outcomes π1, . . . , πt and the entry at (i, j) of the game
matrix has value φ(πi, πj). By the minimax theorem [21], we have that the value
of this game is 0. Therefore, any maximin strategy is popular. �

To show that a mixed popular outcome for a roommate diversity game cannot
be computed in polynomial time, we change the reduction for strict popularity
in Sect. 4 by doubling the agents, adding new agents, and changing the room
size and preference profiles accordingly. These modifications ensure that the
monolithic outcome is strictly popular if (X,C) has no solution and that the
monolithic outcome is not popular if (X,C) has a solution. The full reduction
and (proofs of) remarks, lemmas, and theorems can be found in [18].

6 Popularity

In this section, we show that a popular outcome is not guaranteed to exist in a
roommate diversity game.

Let R = {r1, r2, r3} and B = {b1, b2, b3, b4, b5, b6}. Consider the roommate
diversity game G = (R,B, 3, (�a)a∈R∪B) with the following preference profiles:

Agent Preference Profile
D+

a Dn
a D−

a

a = r1
{

1
3

} {
2
3
, 3
3

}
a ∈ {r2, r3}

{
2
3

} {
1
3
, 3
3

}
a ∈ {b1, b2, b3, b4}

{
1
3

} {
2
3

} {
0
3

}
a ∈ {b5, b6}

{
0
3

} {
1
3
, 2
3

}

Let us define the rooms P1 = {r1, β1, β2} ;P2 = {r2, r3, β3} ;P3 =
{b5, b6, β4} , where β1, β2, β3, β4 ∈ {b1, b2, b3, b4}. An outcome πtop is called a
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top-type outcome if we can write πtop = {P1, P2, P3}. We can show that for any
non-top-type outcome π, a top-type outcome π′ exists such that π′ is strictly
more popular than π. However, for any top-type outcome π′, we can construct
another top-type outcome π′′ such that π′′ is strictly more popular than π′.

Lemma 3. For any outcome π of G, we have that there are at least 2 agents in
a room with a fraction that it does not approve of.

Proof. To derive a contradiction, assume that there exists an outcome π of G
such that |Dn

π ∪ D−
π |< 2. Consider the following cases.

1. |Dn
π ∪ D−

π |= 0.
Then b1, b2, b3, b4 ∈ D+

π , therefore each of b1, b2, b3, b4 must be in a room with
fraction 1

3 . We require at least 2 rooms S1, S2 with fraction 1
3 so that each

of b1, b2, b3, b4 is contained in a room with fraction 1
3 . There is exactly 1 red

agent that approves of fraction 1
3 , namely r1. Thus, S1 or S2 must contain a

red agent r that does not approve of fraction 1
3 . Thus, |Dn

π ∪ D−
π |≥ 1 in this

case as r ∈ D−
π . This contradicts |Dn

π ∪ D−
π |= 0.

2. |Dn
π ∪ D−

π |= 1.
Let us write Dn

π ∪ D−
π = {a}. Consider the following cases regarding a.

2.1 a = r1.
Then b1, b2, b3, b4 ∈ D+

π , therefore each of b1, b2, b3, b4 must be in a room
with fraction 1

3 . We require at least 2 rooms S1, S2 with fraction 1
3 so

that each of b1, b2, b3, b4 is contained in a room with fraction 1
3 . There is

exactly 1 red agent that approves of fraction 1
3 , namely r1. Thus, S1 and

S2 both must contain a red agent r, r′ ∈ R that do not approve of fraction
1
3 . Thus, |Dn

π ∪ D−
π |≥ 2 as r, r′ ∈ D−

π . This contradicts |Dn
π ∪ D−

π |= 1.
2.2 a ∈ {r2, r3}.

W.l.o.g. assume that a = r2. We have that r3 ∈ D+
π , thus the room S that

contains r3 must be of fraction 2
3 . There are exactly 2 agents that approve

of fraction 2
3 , namely r2 and r3. Since r2 /∈ S, as r2 ∈ D−

π , the room S
must contain a red agent r �= r2 such that r ∈ D−

π . Thus, |Dn
π ∪ D−

π |≥ 2
in this case as r2, r ∈ D−

π . This contradicts |Dn
π ∪ D−

π |= 1.
2.3 a ∈ {b1, b2, b3, b4}.

Analogous to case 2.1.
2.4 a ∈ {b5, b6}.

Analogous to case 2.1. �
Lemma 4. For any outcome π of G, if |Dn

π |= 1 and |D−
π |= 1, then π is a

top-type outcome.

Proof. Let π be an outcome such that |Dn
π |= 1 and |D−

π |= 1. Let us write
Dn

π = {an} and |D−
π |= {a−}. Since the agents in {b1, b2, b3, b4} are the only

agents with a non-empty corresponding Dn
a , we have that an ∈ {b1, b2, b3, b4}.

To derive a contradiction, assume that a− /∈ {b1, b2, b3, b4}. Then we have
that a− ∈ {r1, r2, r3, b5, b6}. Let us consider the following cases.
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1. a− = r1.
Then each agent b ∈ {b1, b2, b3, b4} \ {an} must be in a room that it approves
of, i.e., b ∈ D+

π . We require at least 2 rooms S1, S2 with fraction 1
3 so that

each agent in {b1, b2, b3, b4} \ {an} is contained in a room with fraction 1
3 .

There is exactly 1 red agent that approves of fraction 1
3 , namely r1. Thus,

S1 and S2 both must contain a red agent r, r′ ∈ R that do not approve of
fraction 1

3 . Thus, |D−
π |≥ 2 as r, r′ ∈ D−

π . This contradicts |D−
π |= 1.

2. a− ∈ {r2, r3}.
W.l.o.g. assume that a = r2. We have that r3 ∈ D+

π , thus the room S that
contains r3 must be of fraction 2

3 . There are exactly 2 agents that approve
of fraction 2

3 , namely r2 and r3. Since r2 /∈ S, as r2 ∈ D−
π , the room S must

contain a red agent r �= r2 such that r ∈ D−
π . Thus, |D−

π |≥ 2 as r2, r ∈ D−
π .

This contradicts |D−
π |= 1.

3. a− ∈ {b5, b6}.
Analogous to case 1. �

Remark 2. For any outcome π of G, we have that |D−
π |≥ 1.

Remark 3. For any outcome π of G, if |Dn
π ∪ D−

π |= 2, then Dn
π ∪ D−

π ⊆
{b1, b2, b3, b4}.

Lemma 5. Let π be an outcome that is not a top-type outcome. There exists a
top-type outcome π′ that is strictly more popular than π.

Proof. By Lemma 3 we have that |Dn
π ∪ D−

π |≥ 2. By Lemma 4 we have that
|Dn

π |�= 1 or |D−
π |�= 1. Let us consider the following cases.

1. |D−
π |�= 1.

By Remark 2 and case assumption we have that |D−
π |≥ 2.

1.1. |D−
π |= 2.

1.1.1. |Dn
π |= 0.

By Remark 3 we have that D−
π ⊆ {b1, b2, b3, b4}. Let us write D−

π =
{a1, a2}. Since a1, a2 ∈ {b1, b2, b3, b4}, there exists a top-type outcome
π′ such that D−

π′ = {a1} and Dn
π′ = {a2}. Thus, φ(π′, π) = 1.

1.1.2. |Dn
π |≥ 1.

Let us write D−
π = {a1, a2} and a3 ∈ Dn

π . We have that a3 ∈
{b1, b2, b3, b4}. Let π′ be a top-type outcome such that {a3} = Dn

π′

and {a−} = D−
π′ . Note that N(π, π′) ⊆ {a−}.

1.1.2.1. N(π, π′) = ∅.
Then we have that a− ∈ D−

π . W.l.o.g. assume that a1 = a−. We
have that a2 ∈ D+

π′ and a2 ∈ N(π′, π). Thus, φ(π′, π) > 0.
1.1.2.2. N(π, π′) = {a−}.

Then we have that a− ∈ Dn
π ∪D+

π and a1, a2 ∈ D+
π′ . Thus, a1, a2 ∈

N(π′, π). Therefore, φ(π′, π) > 0.
1.2. |D−

π |> 2.
Let us write a1, a2, a3 ∈ D−

π . Let π′ be an arbitrary top-type outcome
with {an} = Dn

π′ and {a−} = D−
π′ . Note that N(π, π′) ⊆ {an, a−}.
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1.2.1. a− ∈ D−
π .

W.l.o.g. assume that a1 = a−. In this case, we have that N(π, π′) ⊆
{an}. We have that a2, a3 ∈ N(π′, π). Thus, φ(π′, π) > 0.

1.2.2. a− /∈ D−
π .

Since N(π, π′) ⊆ {a−, an} and a1, a2, a3 ∈ N(π′, π), φ(π′, π) > 0.
2. |Dn

π |�= 1.
2.1. |Dn

π |= 0.
By Lemma 3, we have that |D−

π |≥ 2. This case is the same as case 1.1.1.
2.2. |Dn

π |≥ 2.
Let us write a1, a2 ∈ Dn

π . We have that {a1, a2} ⊆ {b1, b2, b3, b4}. By
Remark 2, we have that |D−

π |≥ 1.
2.2.1. a3 ∈ {b1, b2, b3, b4}.

We construct a top-type outcome π′ such that D−
π′ = {a3}, Dn

π′ =
{a2}, and a1 ∈ D+

π′ . We have N(π, π′) = ∅ and |N(π′, π)|≥ 1.
2.2.2. a3 /∈ {b1, b2, b3, b4}.

We construct a top-type outcome π′ s.t. D−
π′ = {a−}, Dn

π′ = {a1},
and a2, a3 ∈ D+

π′ . We have N(π, π′) ⊆ {a−} ∧ a2, a3 ∈ N(π′, π). �
Lemma 6. A top-type outcome π is not popular.

Proof. Let π be a top-type outcome. We can write

π = {P1, P2, P3} = {{r1, β1, β2} , {r2, r3, β3} , {b5, b6, β4}} ,

where β1, β2, β3, β4 ∈ {b1, b2, b3, b4}. Let us construct outcome

π′ = {P1 \ {β2} ∪ {β3} , P2 \ {β3} ∪ {β4} , P3 \ {β4} ∪ {β2}} .

We have that N(π, π′) = {β2} and N(π′, π) = {β3, β4}. Thus, π′ is strictly more
popular than π. �
Theorem 4. A popular outcome is not guaranteed to exist in a roommate diver-
sity game G.

Proof. From Lemma 5 and 6 we have that no popular outcome exists in G. Thus,
not every roommate diversity game permits a popular outcome. �

The idea of the co-NP-hardness reduction is to combine the reduction of
Sect. 5 with the proof of a popular outcome not being guaranteed to exist. Par-
ticularly, the reduced-type outcome is introduced, which is a combination of the
reduced outcome and top-type outcome. In this reduction, we have that a pop-
ular outcome exists if and only if (X,C) has no solution. The full reduction and
(proofs of) remarks, lemmas, and theorems can be found in [18].



328 S. Ge and T. Itoh

7 Conclusion

We have demonstrated that determining the existence of a (strictly) popular
outcome for a roommate diversity game is co-NP-hard and a mixed popular
outcome cannot be computed in polynomial time, unless P = NP. Even when
the preferences are tri- or dichotomous, the problem remains intractable. An
avenue for future research would be demonstrating completeness for a certain
complexity class. We conjecture that the problem is Πp

2-complete. The com-
plexity of computing a popular outcome for a roommate diversity game with
dichotomous preferences is also unknown.

A popular outcome is guaranteed to exist when the room size is fixed to 2.
Additionally, it is possible to compute a popular outcome in polynomial time.
As the problem becomes tractable when fixing the room size to 2, it may be
possible to construct an FPT algorithm with the room size as parameter.

References

1. Abraham, D.J., Levavi, A., Manlove, D.F., O’Malley, G.: The stable roommates
problem with globally-ranked pairs. In: Deng, X., Graham, F.C. (eds.) WINE 2007.
LNCS, vol. 4858, pp. 431–444. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-77105-0_48

2. Bartholdi, J., Trick, M.A.: Stable matching with preferences derived from a psy-
chological model. Oper. Res. Lett. 5(4), 165–169 (1986)

3. Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the marriage and
roommates problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol.
6078, pp. 97–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13073-1_10

4. Boehmer, N., Elkind, E.: Individual-based stability in hedonic diversity games. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 02, pp.
1822–1829 (2020)

5. Boehmer, N., Elkind, E.: Stable roommate problem with diversity preferences.
In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence. IJCAI’20 (2021). https://doi.org/10.24963/ijcai.2020/14

6. Brandt, F., Bullinger, M.: Finding and recognizing popular coalition structures. J.
Artif. Int. Res. 74 (2022). https://doi.org/10.1613/jair.1.13470.https://jair.org/
index.php/jair/article/view/13470

7. Bredereck, R., Elkind, E., Igarashi, A.: Hedonic diversity games. In: International
Foundation for Autonomous Agents and Multiagent Systems, pp. 565–573 (2019).
https://ora.ox.ac.uk/objects/uuid:f99dde29-43d0-4cd8-95a9-6268ae764637

8. Bredereck, R., Chen, J., Finnendahl, U.P., Niedermeier, R.: Stable roommates with
narcissistic, single-peaked, and single-crossing preferences. Auton. Agent. Multi-
Agent Syst. 34(2), 53 (2020)

9. Chung, K.S.: On the existence of stable roommate matchings. Games Econ. Behav.
33(2), 206–230 (2000)

10. Cseh, Á.: Popular matchings, chap. 6, p. 105–122. Lulu. com (2017). https://
archive.illc.uva.nl/COST-IC1205/Book/

11. Cseh, A., Juhos, A.: Pairwise preferences in the stable marriage problem. ACM
Trans. Econ. Comput. 9(1) (2021). https://doi.org/10.1145/3434427. https://dl.
acm.org/doi/abs/10.1145/3434427

https://doi.org/10.1007/978-3-540-77105-0_48
https://doi.org/10.1007/978-3-540-77105-0_48
https://doi.org/10.1007/978-3-642-13073-1_10
https://doi.org/10.1007/978-3-642-13073-1_10
https://doi.org/10.24963/ijcai.2020/14
https://doi.org/10.1613/jair.1.13470
https://jair.org/index.php/jair/article/view/13470
https://jair.org/index.php/jair/article/view/13470
https://ora.ox.ac.uk/objects/uuid:f99dde29-43d0-4cd8-95a9-6268ae764637
https://archive.illc.uva.nl/COST-IC1205/Book/
https://archive.illc.uva.nl/COST-IC1205/Book/
https://doi.org/10.1145/3434427
https://dl.acm.org/doi/abs/10.1145/3434427
https://dl.acm.org/doi/abs/10.1145/3434427


Popularity on the Roommate Diversity Problem 329

12. Cseh, Á., Kavitha, T.: Popular matchings in complete graphs. Algorithmica 83(5),
1493–1523 (2021)

13. Darmann, A.: Hedonic diversity games revisited. In: Fotakis, D., Ríos Insua, D.
(eds.) ADT 2021. LNCS (LNAI), vol. 13023, pp. 357–372. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-87756-9_23

14. Faenza, Y., Kavitha, T., Powers, V., Zhang, X.: Popular matchings and lim-
its to tractability, pp. 2790–2809. https://doi.org/10.1137/1.9781611975482.173.
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.173

15. Ganian, R., Hamm, T., Knop, D., Schierreich, Š, Suchỳ, O.: Hedonic diversity
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Abstract. Given a polygon P and a set of potential guard locations
G ∈ P , the art gallery problem asks for the minimum number of guards
needed to guard the polygon. The art gallery problem with different
types of polygons has been studied extensively. Variants of the art gallery
problem have also been studied including limiting the polygon to be a
monotone or an orthogonal polygon. Limitations have also been applied
to the guard where a guard cannot see 360° and even limitations on the
distance a guard can see.

In this paper, we study the art gallery problem using half guards
(guards that see 180°) in various settings. We show that the VC dimen-
sion of half guarding a terrain is exactly 2 or 3, depending on certain
assumptions, and exactly 4 with half guarding a monotone polygon where
all critical points are located on the boundary. We provide so-called art
gallery theorems for half guards with different polygon types. Finally, we
provide a linear time exact algorithm for half guarding a spiral polygon.

1 Introduction and Related Work

Given a polygon P and a set of potential guard locations G ∈ P , the art gallery
problem asks for the minimum number of guards G′ ∈ G needed such that every
point in the polygon is seen by at least one point in G′. This problem has been
studied extensively [4,5,11]. Two points, p and q, see each other if the pq line
segment them does not go outside of the polygon. We define a full guard as a
guard that can see 360°. In our paper, we define a half guard as a guard that sees
180° and only sees to the right. Restricting the guard to seeing less than 360°
has been studied in [1–3]. VC dimension is a measure of the complexity of some
set system. It asks how many guards can be shattered. A set of guards G in P is
said to be shattered if for every Gs ⊆ G, there exists a point that is seen by the
guards in Gs and by no guards in G \ Gs. It has been studied by researchers for
many variants of the art gallery problem [6,7,9,10,12,15–17]. Guarding simple
polygons with full guards has a VC dimension between 6 and 14 [11]. The terrain
guarding problem with full guards has a VC dimension of exactly 4 [14]. The VC
dimension of guarding monotone (or simple) polygons with full guards, where
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key points are limited to being on the boundary of the polygon, was shown to
be exactly 6 in both types of polygons [8,9]. The structure half guards add to
the art gallery problem is interesting because the difference, as compared to, full
guards, is not trivial. For example, convex polygons have a VC dimension of 1
with half guards despite having a VC dimension of 0 with full guards.

1.1 Notation/Definitions

A terrain T is an x-monotone polygonal chain. Let p < q mean that point p is
to the left of q, i.e. the x coordinate of p.x < q.x. With half guarding a polygon
(resp. terrain), a point p sees a point q if the line segment connecting p and
q does not go outside of the polygon (resp. below the terrain) and p.x ≤ q.x.
Let p and q be two points such that p.x < q.x, then [p, q) denotes every point
in the polygon (or on the terrain) between p and q, including the vertical line
containing p but excluding the vertical line containing q. Let l be the leftmost
point and r be the rightmost point of some monotone polygon. A monotone
polygon is two x-monotone polygonal chains that do not intersect except at the
l and r vertices. The ceiling (resp. floor) denotes every boundary point in [l, r] as
we travel clockwise (resp. counterclockwise) from l to r. We define viewpoint as a
point that is exactly seen by a subset of the guards. For example, the viewpoint
vp(AC) is a point in the polygon that is seen by guards A and C but is not seen
by any other guards.

1.2 Our Results

In Sect. 2.1, we show that the VC dimension of half guarding a terrain is exactly
2 or 3, depending on certain assumptions. In Sect. 2.2, we show that the VC
dimension is exactly 4 with half guarding a monotone polygon with guards and
viewpoints on the boundary of the monotone polygon. In Sect. 3, we show that
n − 2 (resp. n − 1, n−2

2 , n − 2) half guards are sometimes necessary and always
sufficient to guard a monotone/simple polygon (resp. terrain, orthogonal poly-
gon, spiral polygon). Finally in Sect. 4, we provide a linear time exact algorithm
for half guarding a spiral polygon.

2 VC Dimension

2.1 VC Dimension of Terrains

We start by discussing the VC dimension of terrains with respect to half guards.
The VC dimension of a terrain with half guards depends on if a point on the
terrain can be considered both a guard and a viewpoint. If guards and viewpoints
must be disjoint, then the VC dimension is 2. If a point on the terrain can be
both a guard and a viewpoint, then the VC dimension is 3. Figure 1 (resp. 2)
shows an example of a terrain being shattered with 2 (resp. 3) guards depending
on the assumption. We use the standard order claim without proof.
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Fig. 1. Terrain shattered by 2 half
guards where guards and viewpoints are
disjoint

Fig. 2. Terrain shattered by 3 half
guards where C and vp(BC) are the
same point

Claim. Let A,B,C,D be 4 points on a terrain with A.x < B.x < C.x < D.x. If
A sees C and B sees D, then A must see D.

Theorem 1. If a terrain guarding problem does not (resp. does) allow a guard
and a viewpoint to be the same point, then the VC dimension of a terrain is
exactly 2 (resp. 3).

Proof. We will first consider the case where guards and viewpoints cannot be
located at the same point. Let A,B and C be guards such that A.x < B.x < C.x.
Assuming that a guard and viewpoint cannot be the same point, the viewpoints
that are seen by C must be strictly to the right of C. It follows that B.x <
C.x < vp(BC).x and B.x < C.x < vp(AC).x. If vp(BC).x < vp(AC).x, then we
have B.x < C.x < vp(BC).x < vp(AC).x. By the order claim, B sees vp(AC),
a contradiction. If vp(AC).x < vp(BC).x, then A.x < B.x < vp(AC).x <
vp(BC).x. By the order claim, A sees vp(BC), a contradiction.

Next we consider the VC dimension of terrains where a guard and a viewpoint
can be at the same point. In this case, the VC dimension is 3. We achieve a lower
bound of 3 by giving an example of a terrain shattering 3 guards in Fig. 2.

We will show that it is impossible for such a terrain to have a VC dimension
of 4. Let A,B,C,D be the guards of this terrain with A.x ≤ B.x ≤ C.x ≤ D.x:

1. If vp(AC).x < vp(BD).x, then A.x < B.x < C.x ≤ vp(AC).x < vp(BD).x.
By the order claim using A,B, vp(AC), vp(BD), A sees vp(BD).

2. If vp(BD).x < vp(AC).x, then A.x < B.x < C.x < vp(BD).x < vp(AC).x.
By the order claim using B,C, vp(BD), vp(AC), B sees vp(AC).

2.2 VC Dimension of Monotone Polygons

We show that the VC dimension of half guarding a monotone polygon is exactly
4. We obtain the lower bound for monotone polygons by giving an example of a
monotone polygon being shattered by 4 guards as seen in Fig. 3. We now show
that the 5 guards cannot be shattered with a case analysis. A few cases are
shown in the paper with the remaining ones moved to the appendix due to lack
of space. Proofs for each of these lemmas can be found in the appendix. One can
see Figs. 4 and 5 for a visualization of what the proof looks like.
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Lemma 1. Let s < t < u ≤ v where s, t, u are on the ceiling (resp. floor), s
sees u, t sees v, and s does not see v. The floor (resp. ceiling) must block s from
seeing v.

Fig. 3. Monotone polygon shattered by 4 half guards

Fig. 4. Visualization of Lemma 1 Fig. 5. Visualization of Lemma 2

Lemma 2. Let p and q be two points on the boundary and p < q. If p is on the
ceiling (resp. floor) and is blocked from q using the floor (resp. ceiling), then no
point in [l, p] can see q.

Lemma 3. Let s < t < u, where t and u are on opposite sides of the polygon, s
sees u, and t does not see u. It must be that t cannot see any point in [u, r].

Proof. Assume, w.l.o.g., that t is on the floor. Note that t cannot be blocked
from u using the ceiling since by Lemma 2, s would not see u. Thus, t must be
blocked from u using the floor. Let v denote some point to the right of u. If the−→
tv line crosses above u, then the ceiling will block t from v. If the

−→
tv line crosses

below u, then the floor will block t from v since the floor is blocking t from u. ��
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Corollary 1. Let t < u, t is on the floor (resp. ceiling), u is on the ceiling (resp.
floor), and the floor (resp. ceiling) is blocking t from seeing u. It must be that t
cannot see any point in [u, r].

We obtain an upper bound of 4 by showing that it is impossible to shatter
5 half guards in a monotone polygon. The upper bound proof is obtained by
breaking the problem up into different cases. Unfortunately, every viewpoint,
when considered by itself without placing any other viewpoints, can be placed
when there are 5 guards. However, depending on the location of the guards,
certain viewpoint combinations are impossible. We provide a few cases below.
Consider a monotone polygon with 5 guards: {A,B,C,D,E} such that A.x ≤
B.x ≤ C.x ≤ D.x ≤ E.x.

Case 1: Let {A,C} be on one side (e.g. the floor) and {B,D} be on the
opposite side (e.g. the ceiling). The position of E does not matter (with respect
to the ceiling or floor). We show that it is impossible to place the points vp(BCE)
and vp(ADE). Note that vp(BCE) and vp(ADE) must be to the right of, or on
the same vertical line, as E. Figures for 1c and 1d are in the appendix.

Case 1a: If vp(BCE) is on the ceiling to the left of vp(ADE), or on same
vertical line as vp(ADE), then consider how B must be blocked from vp(ADE).
The B guard cannot be blocked from vp(ADE) using the ceiling because of
Lemma 1 where s = B, t = D,u = vp(BCE) and v = vp(ADE). The floor must
then be used to block B from vp(ADE). By Lemma 2, using o = A, p = B, q =
vp(ADE), the A guard would not be able to see vp(ADE). Therefore, B cannot
be blocked from vp(ADE). This case is illustrated in Fig. 6.

Case 1b: If vp(ADE) is on the ceiling to the left of vp(BCE), or on same line,
then consider how C is blocked from seeing vp(ADE). This case is illustrated in
Fig. 7. Similar to the previous argument, if C is blocked from seeing vp(ADE)
using the floor, then by Corollary 1 using t = C, u = vp(ADE), C cannot see
vp(BCE). If the ceiling blocks C from seeing vp(ADE), then by Lemma 2 using
o = A, p = C, q = vp(ADE), A is blocked from seeing vp(ADE).

Fig. 6. Visualization of Case 1a Fig. 7. Visualization of Case 1b

Case 1c: If vp(BCE) is on floor to the left of vp(ADE), or on same line as
vp(ADE), then consider how D must be blocked from vp(BCE). If the ceiling
blocks D from seeing vp(BCE), then D does not see vp(ADE) by Corollary 1
when t = D,u = vp(BCE). If the floor blocks D from seeing vp(BCE), then by
Lemma 2 with o = C, p = D, q = vp(BCE), C cannot see vp(BCE).
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Case 1d: If vp(ADE) is on floor to the left of vp(BCE), or on same line as
vp(ADE), then consider how B is blocked from vp(ADE). If the floor blocks B
from vp(ADE), then by Lemma 2 with o = A, p = B, q = vp(ADE), A does not
see vp(ADE). If the ceiling blocks B from vp(ADE), then by Corollary 1 with
t = B, u = vp(ADE), B does not see vp(BCE).

Therefore, {A,C} and {B,D} cannot be on opposite sides of the polygon.
These cases are just a few examples of how to show the VC dimension of a
monotone polygon with half guards and viewpoints on the boundary is exactly
4. The 25 = 32 cases that we consider, where the remaining ones are in the
appendix, are the following: there are any 4 guards that are on the same side
(12 cases), {A,C} are on the same side and {B,D} are on the opposite side
(4 cases), {A,E} are on the same side and {B,C,D} are on the opposite side
(2 cases), {C,E} are on the same side and {A,B,D} are on the opposite side
(2 cases), {A,B} are on the same side and {C,D} are on the opposite side (4
cases), {A,D} are on the same side and {B,C} are on the opposite side (4
cases), {B,E} are on the same side and {A,C,D} are on the opposite side (2
cases), and {A,B,C} are on the same side and {D,E} are on the opposite side
(2 cases). Proving these cases are not realizable gives us the following theorem.

Theorem 2. The VC dimension of half guarding a monotone polygon where
guards and viewpoints are on the boundary is exactly 4.

3 Art Gallery Theorems

In this section, we provide several claims and proofs for half guarding certain
types of polygons.

Claim. For half guarding a simple, monotone, or spiral polygon, n−2 half guards
are always sufficient and are sometimes necessary to guard the entire polygon.

Proof. We show necessity by constructing the example in Fig. 8. We get suffi-
ciency by triangulating the polygon into n − 2 triangles, and placing a point at
the leftmost point of each triangle. ��
Claim. For half guarding a terrain, n − 1 half guards are always sufficient and
are sometimes necessary to guard the entire terrain.

Proof. We show necessity by constructing the example in Fig. 9. We get suffi-
ciency by placing a guard at every vertex in the terrain but the rightmost vertex.

��

Claim. For half guarding an orthogonal polygon, n−2
2 half guards are always

sufficient and are sometimes necessary to guard the entire polygon.
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Fig. 8. Polygon with n − 2
guards.

Fig. 9. Terrain with n − 1
guards.

Fig. 10. Orthogonal poly-
gon with n−2

2
guards.

Proof. We show necessity by constructing the example in Fig. 10. In this figure,
there is a staircase on the “ceiling” that requires 1 guard per “step.” Each step
consists of 2 vertices. In this figure, the rightmost vertices are excluded since they
are seen by the guards being placed for the steps. This gives us n−2

2 steps where
each step requires a guard. We get sufficiency by first quadrilateralizing the
polygon as shown in [13]. We remove a quadrilateral from the polygon such that
the remaining polygon is simple and place a guard at the leftmost point of that
quadrilateral. In doing so, the quadrilateral that was removed contains 2 vertices
that will never be considered again. The guard placed for this quadrilateral is
charged to these 2 vertices. The last quadrilateral contains 4 vertices that 1
guard is sufficient for. This gives us as most n−2

2 convex quadrilaterals. ��

4 Exact Algorithm for Half Guarding Spiral Polygons

A spiral polygon is a polygon that starts at some vertex s and ends at some vertex
t. The outer (inner) boundary are the edges that start at s and are obtained by
walking clockwise (or counterclockwise) on the boundary until reaching t. We
assume that s and t are vertices on both the outer and inner boundary. The
interior angles of the outer (inner) boundary are always less than (greater than)
180°, see Fig. 11. Let vp(g) be the visibility polygon of some guard g.

Fig. 11. Blue inner edges and yellow
outer edges. (Color figure online)

Fig. 12. Example of Lemmas 4 and 5.
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Consider the starting vertex s and let p be some point on the outer (resp.
inner) boundary. Let osp (resp. (isp)) be the distance from s to p as one walks on
the outer (resp. inner) boundary from s to p. We first present several lemmas and
claims about spiral polygons before introducing the algorithm. Due to lack of
space, several proofs have been moved to the appendix. However, quick sketches
of each proof are provided.

Lemma 4. A guard g placed on the outer boundary sees a continuous portion
of the inner boundary.

Lemma 5. A point p on the inner boundary is seen by a continuous portion of
the outer boundary.

Sketch of Lemmas 4 and 5 Proofs: As shown in Fig. 12, g sees p and r and all of
the inner boundary from p to r. No boundary can block g from a point q between
p and r on the inner boundary. A similar argument is made for what guards can
see p. If g and g′′ are outer boundary guards that see p, then an outer boundary
guard between g and g′′ also sees p.

Lemma 6. W.l.o.g., assume a guard g is placed on the outer boundary of the
polygon such that g can see the inner boundary that is directly below (or above)
g. Let p and q be points in P such that p sees q. The line segment connecting p
and q cannot cross the boundary of vp(g) more than once.

Sketch of Lemma 6 Proof: As shown in Fig. 13, no point to the left of g can see
through the vp region. Since the ge ray crosses at g, no point can see through
gv, cross the ge ray and then cross the ge ray again.

Fig. 13. Visibility polygon with 2 inter-
nal edges.

Fig. 14. Sample polygon.

Let k be a vertex in P such that k is only seen by itself, i.e. a guard must be
placed at k in order to guard P . Let K be the set of all such vertices. For each
vertex k ∈ K, we define ik to be the leftmost vertex on the inner chain that k
sees. Let Pk be the portion of vp(k) that is to the right of k and to the left of
ik, see Fig. 14. Any guard placed at k will see the entire Pk region.
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4.1 Vertical Edges

A simple greedy algorithm that places guards from left-to-right is sufficient if
vertical outer boundary edges are not allowed. The algorithm and proof can be
found in the appendix. To see the issue, in Fig. 15, the optimal solution does not
place a guard at either vertex on the leftmost edge. Rather, it must be placed in
some exact location. A greedy solution may not be able to guess where to place
such a guard on this vertical edge. Therefore, a new algorithm is needed.

Fig. 15. Optimal solution does not place
a guard at a vertex.

Fig. 16. The guards that see the edges
connected to j see the right side of the
polygon. Also, an optimal guard o sees
more of the inner boundary then g.

Lemma 7. If the inner boundary and the vertical outer boundary edges are half
guarded, and half guards are placed at all k ∈ K, then the polygon is half guarded.

Proof. If a guard is placed at some k ∈ Pk, then all of Pk is guarded since Pk is a
convex polygon. In a similar fashion, one can think of a vertical outer boundary
edge as a “point” that must be guarded by itself. This vertical outer boundary
edge creates a region similar to Pk regions. A guard placed on the vertical outer
boundary edge will see itself and the similar Pk region.

Consider an inner boundary edge e = (u, v) where u is left of v. W.l.o.g.,
assume that a ray shot upwards from e goes through the polygon and hits the
outer boundary, see Fig. 15. Let g be the guard on the outer boundary that is
directly above u. The g guard sees u by assumption. The g guard also sees v since
there is no inner boundary edge that can block g from v. The outer boundary
cannot block g from v otherwise it is not a spiral polygon. By Lemma 4, g sees
e. Consider the portion of the polygon directly above e. The g guard will see this
entire region since no part of the boundary can block it. Therefore, if some inner
boundary edge e is seen, the entire polygon directly above (below) e is seen.

Lastly, let j be a vertex on the inner boundary polygon such that both edges
(e′ and e′′) leaving j are strictly left of j. As shown in Fig. 16 , some guard g′

sees the portion of e′ just left of j and some guard g′′ sees the portion of e′′ just
left of j. Because the polygon is spiral, the entire portion of the polygon to the
right of j is seen by these 2 guards. ��
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Lemma 7 says that the algorithm only needs to guard the inner edges and the
vertical outer boundary edges after it places a guard at all k ∈ K. The minimum
number of guards needed to guard these areas plus the number of guards in K
will be the minimum number to guard the entire polygon.

A high level overview of the algorithm is this. Start walking on the inner
boundary from s to t and stop when the next point is unseen. The algorithm
will find the “best” point on the outer boundary to guard this unseen point. The
algorithm presented in [18] gives a linear time algorithm for guarding a spiral
polygon with full guards. However, such an algorithm fails with half guarding.
An example of the problem is shown in Fig. 16 with a guard being placed at o′

when the better solution is to place one at guard g. Therefore, the algorithm
must choose a better location for a guard when a vertical outer boundary edge
appears. The algorithm repeatedly guards the inner boundary until the entire
inner boundary is guarded. We will compare the solution G obtained in Algo-
rithm 1 with some optimal solution O.

Algorithm 1. Half Guarding Spiral Polygon
1: Input: Spiral Polygon P
2: G ← ∅
3: for all k ∈ K do
4: G ← G ∪ k
5: end for
6: while the entire inner boundary is not yet guarded do
7: Let q be the point on the inner boundary such that the entire inner boundary

[s, q] is seen by some guard g ∈ G and isq is maximized
8: if q is seen by a vertical edge e on the outer boundary and e is not seen by any

g′ ∈ G then
9: Let g be a point on e such that g sees q and osg is maximized

10: G ← G ∪ g
11: else
12: Let g be a point on the outer boundary such that g sees q and osg is maximized
13: G ← G ∪ g
14: end if
15: end while
16: return G

Our algorithm considers a (possibly disconnected) list of edges that must be
guarded. We claim that Algorithm 1 will see at least as much of these edges as
some optimal guard set as guards are being placed to guard certain areas of the
polygon. The edge list that we wish to guard is the edge list E that we add to
in the following fashion. Start with s and walk on the inner boundary to t. Let
i0, i1, . . . , im be the vertices of the inner edge boundary where s = i0 and t = im.
When we reach ij , where 1 ≤ j ≤ m, we add (ij−1, ij) to E . If (ij−1, ij) and
(ij , ij+1) are both to the right of j, then we check if j is seen by some vertical
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outer boundary edge e. If it is, then we add e to E . To illustrate this, in Fig. 17,
the yellow inner edges are added to E first, then the green outer edge is added to
E , then the red inner edges are added to E , then the purple outer edge is added
to E , and lastly the blue inner edges are added to E . This ordering of edges is
how we argue our algorithm stays ahead of the optimal solution.

Let G′ (resp O′) be a partial guard covering from G (resp. O). Let X(E) be the
maximal continuous guarded section of E that starts at s for some partial guard
placement X. We claim that as the algorithm places guards, G′(E) ≥ O′(E).

The following lemma was proved as Lemma 3.2 in [18]:

Fig. 17. Example of the order in which edges are added to E . (Color figure online)

Lemma 8. There exists a minimum stationary posting of guards in a spiral
polygon such that all guards are on the convex chain.

The outer boundary, as described in this paper, is the convex chain since
all interior angles of the outer boundary are convex. This gives us the following
corollary whose proof is in the appendix due to lack of space.

Corollary 2. There exists a minimum placement of half guards in a spiral poly-
gon such that all half guards are on the outer boundary.

Consider the start of the algorithm. Both G′ and O′ must contain guards
placed at all k ∈ K, else, these points would not be guarded. At this point,
G′(E) == O′(E). Let q be the point such that G′(E) is maximized. The algo-
rithm will place a guard g on the outer boundary such that g sees q and osg is
maximized. In other words, g is the “furthest” along the outer boundary it can
be but still see q. By Corollary 2, we will consider the optimal solution to have
had all of its guards pushed to the outer boundary. We will consider 2 cases.

Let g ∈ G and o ∈ O be guards that see q such that osg and oso are maximal.
First we assume that osg ≥ oso. If o is to the left of g, then by Lemma 6, g sees
more of the unseen inner boundary than o. If o is to the right of g, then since
the inner boundary from s to q was already seen, o cannot see an unseen inner
point that g, or some guard already in G′, sees. Therefore, g dominates o with
respect to the unseen portion of E .
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Second, assume that osg < oso, see Fig. 16. In this case, an optimal guard o
that sees q could see more of the inner boundary than g. This can only happen
in step 10 of Algorithm 1. Since a point further along the outer boundary saw
q, by Lemma 5, the topmost vertex of that vertical edge sees q and we place a
guard at the vertex that has the largest osg value. An optimal guard o′ must
also be on the vertical edge in order to see the vertical edge. Therefore, the g
guard will dominate the o′ guard with respect to the unseen regions of E up to
this point in the algorithm. Now consider the next guard location the algorithm
considers. Since g saw q and the optimal guard o sees q. Our subsequent guard
will be placed, at minimum, at the o guard location. By Lemma 6, we are then
able to charge the subsequent g′ guard to the o guard since g′ will necessarily
dominate the o guard with respect to the unseen regions of E . In this case, g
dominates o and g′ dominates o′ with respect to the unseen regions of E .

The algorithm runs in linear time. The outer boundary points that need
to be considered are vertices of the outer boundary and critical locations where
visibility of the inner edge changes. An inner edge e = (u, v) can shoot a ray from
u through v and v through u to hit the outer boundary. These O(n) locations also
need to be considered as potential guard locations. This gives us the following:

Theorem 3. There is a linear time exact algorithm for half guarding a spiral
polygon.

Appendix

VC dimension Monotone Polygons

The following proofs and cases are provided for completeness.

Fig. 18. Visualization of Case 1c Fig. 19. Visualization of Case 1d

Proof. (Proof of Lemma 1) W.l.o.g., assume s, t and u are on the ceiling. If a
point p′ on the ceiling is used to block s from v such that s.x < p′.x < u.x, then
s is blocked from u. If a point p′ on the ceiling is used to block s from v such
that t.x < p′.x < v.x, then t is blocked from v. If the ceiling wraps underneath
v to block s from v, then the polygon is not monotone. Therefore, if s does not
see v, the floor must block it.
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Proof. (Proof of Lemma 2) W.l.o.g, assume that p is on the ceiling and the floor
is blocking p from q. Let o be some point in [l, p]. The −→oq ray lies in between
the −→pq ray and the floor. If this were not the case, then p would have blocked o
from q. If the floor blocks p from q, the −→oq ray must also go through the floor
and therefore, q must also be blocked from o.

Case 2: In this case, {A,E} are on the floor (resp. ceiling) and {B,C,D}
are on the opposite side. In this case, it is impossible to place both vp(BDE)
and vp(ACD).

Case 2a: The viewpoint vp(ACD) is on the ceiling to the left of vp(BDE)
or on same line as vp(BDE). We consider how C is blocked from vp(BDE). We
can’t block C from vp(BDE) with the ceiling by Lemma 1, where s = C, t =
D,u = vp(ACD), v = vp(BDE). If we try to block C from vp(BDE) using the
floor, we end up blocking B from vp(BDE) by Lemma 2 with o = B, p = C, q =
vp(BDE)).

Case 2b: The viewpoint vp(BDE) is on the ceiling to the left of vp(ACD),
or on same line as vp(ACD). By Lemma 1 with s = B, t = C, u = vp(BDE), v =
vp(ACD), we must use the floor to block B from vp(ACD). However, if we use
the floor to block B from vp(ACD), then by Lemma 2 with o = A, p = B, q =
vp(ACD), the A guard is blocked from seeing vp(ACD).

Case 2c: The viewpoint vp(ACD) on floor to the left of vp(BDE). In this
case, we consider how B is blocked from vp(ACD). If the ceiling blocks B from
vp(ACD), then by Corollary 1 with t = B, u = vp(ACD), B does not see
vp(BDE). If the floor blocks B from vp(ACD), then by Lemma 2 with o =
A, p = B, q = vp(ACD), the A guard does not see vp(ACD).

Fig. 20. Visualization of Case 2a Fig. 21. Visualization of Case 2b

Fig. 22. Visualization of Case 2c Fig. 23. Visualization of Case 2d
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Case 2d: The viewpoint vp(BDE) is on floor to the left of vp(ACD). In this
case, consider how C is blocked from seeing vp(BDE). If the floor blocks C from
seeing vp(BDE), then by Lemma 2 with o = B, p = C, q = vp(BDE), B would
not see vp(BDE). If the ceiling blocks C from vp(BDE), then by Corollary 1
with t = C, u = vp(BDE), C would not see vp(ACD).

Case 3: In this case, {C,E} are on the floor (resp. ceiling) and {A,B,D}
are on the opposite side. In this case, it is impossible to place both vp(ADE)
and vp(BCDE).

Case 3a: The viewpoint vp(ADE) on ceiling to the left of vp(BCDE). In
this case, we consider how C is blocked from vp(ADE). If the floor blocks C
from vp(ADE), then by Corollary 1 with t = C, u = vp(ADE), C does not
see vp(BCDE). If the ceiling blocks C from vp(ADE), then by Lemma 2 with
o = A, p = C, q = vp(ADE), the A guard does not see vp(ADE).

Fig. 24. Visualization of Case 3a Fig. 25. Visualization of Case 3b

Case 3b: The viewpoint vp(BCDE) is on the ceiling to the left of vp(ADE),
or on same line as vp(BCDE). By Lemma 1 with s = B; t = D;u =
vp(BCDE); v = vp(ADE), we must use the floor to block B from vp(ADE).
However, if we use the floor to block B from vp(ADE), then by Lemma 2 with
o = A, p = B, q = vp(ADE), the A guard is blocked from seeing vp(ADE).

Case 3c: The viewpoint vp(ADE) on floor to the left of vp(BCDE). In
this case, we consider how B is blocked from vp(ADE). If the floor blocks B
from vp(ADE), then by Corollary 1 with t = B, u = vp(ADE), A does not
see vp(ADE). If the ceiling blocks B from vp(ADE), then by Lemma 2 with
o = A, p = B, q = vp(ADE), the B guard does not see vp(BCDE).

Fig. 26. Visualization of Case 3c Fig. 27. Visualization of Case 3d

Case 3d: The viewpoint vp(BCDE) is on the floor to the left of vp(ADE),
or on same line as vp(BCDE). By Lemma 1 with s = C; t = E;u =
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vp(BCDE); v = vp(ADE), we must use the ceiling to block C from vp(ADE).
However, if we use the ceiling to block C from vp(ADE), then by Lemma 2 with
o = A, p = C, q = vp(ADE), the A guard is blocked from seeing vp(ADE).

Case 4: Any four guards are on the same side. For example, {A,B,C,D}
are on the floor (resp. ceiling). Then it is impossible to place both vp(ACD) and
vp(ABD).

Case 4a: The viewpoint vp(ACD) on ceiling to the left of vp(ABD). In
this case, we consider how B is blocked from vp(ACD). If the floor blocks B
from vp(ACD), then by Corollary 1 with t = B, u = vp(ACD), B does not
see vp(ABD). If the ceiling blocks B from vp(ACD), then by Lemma 2 with
o = A, p = B, q = vp(ACD), the A guard does not see vp(ACD).

Fig. 28. Visualization of Case 4a Fig. 29. Visualization of Case 4b

Case 4b: The viewpoint vp(ABD) on ceiling to the left of vp(ACD). In
this case, we consider how C is blocked from vp(ABD). If the floor blocks C
from vp(ABD), then by Corollary 1 with t = C, u = vp(ABD), C does not
see vp(ACD). If the ceiling blocks C from vp(ABD), then by Lemma 2 with
o = A, p = C, q = vp(ABD), the A guard does not see vp(ABD).

Case 4c: The viewpoint vp(ABD) is on the floor to the left of vp(ACD), or
on same line as vp(ACD). By Lemma 1 with s = B; t = C;u = vp(ABD); v =
vp(ACD), we must use the ceiling to block B from vp(ACD). However, if we
use the ceiling to block B from vp(ACD), then by Lemma 2 with o = A, p =
B, q = vp(ACD), the A guard is blocked from seeing vp(ACD).

Fig. 30. Visualization of Case 4c Fig. 31. Visualization of Case 4d
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Case 4d: The viewpoint vp(ACD) is on the floor to the left of vp(ABD), or
on same line as vp(ABD). By Lemma 1 with s = C; t = D;u = vp(ACD); v =
vp(ABD), we must use the ceiling to block C from vp(ABD). However, if we
use the ceiling to block C from vp(ABD), then by Lemma 2 with o = A, p =
C, q = vp(ABD), the A guard is blocked from seeing vp(ABD).

Case 5: In this case, {A,B} are on the floor (resp. ceiling) and {C,D} is
on the opposite side. In this case, it is impossible to place both vp(BCE) and
vp(ADE).

Case 5a: The viewpoint vp(BCE) on ceiling to the left of vp(ADE), or on
same line as vp(ADE). By Lemma 1 with s = C; t = D;u = vp(BCE); v =
vp(ADE), we must use the ceiling to block C from vp(ADE). However, if we
use the floor to block C from vp(ADE), then by Lemma 2 with o = A; p =
C; q = vp(ADE), the A guard is blocked from seeing vp(ADE).

Case 5b: The viewpoint vp(ADE) on ceiling to the left of vp(BCE). In
this case, we consider how B is blocked from vp(ADE). If the floor blocks B
from vp(ADE), then by Corollary 1 with t = B, u = vp(ADE), B does not
see vp(BCE). If the ceiling blocks B from vp(ADE), then by Lemma 2 with
o = A, p = B, q = vp(ADE), the A guard does not see vp(ADE).

Case 5c: The viewpoint vp(ADE) on floor to the left of vp(BCE). In this
case, we consider how C is blocked from vp(ADE). If the ceiling blocks C from
vp(ADE), then by Corollary 1 with t = C, u = vp(ADE), C does not see
vp(BCE). If the floor blocks C from vp(ADE), then by Lemma 2 with o =
A, p = C, q = vp(ADE), the A guard does not see vp(ADE).

Fig. 32. Visualization of Case 5a Fig. 33. Visualization of Case 5b
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Fig. 34. Visualization of Case 5c Fig. 35. Visualization of Case 5d

Case 5d: The viewpoint vp(BCE) on floor to the left of vp(ADE). In this
case, we consider how D is blocked from vp(BCE). If the ceiling blocks D
from vp(BCE), then by Corollary 1 with t = D,u = vp(BCE), D does not
see vp(ADE). If the floor blocks D from vp(BCE), then by Lemma 2 with
o = C, p = D, q = vp(BCE), the A guard does not see vp(ADE).

Case 6: In this case, {A,D} are on the floor (resp. ceiling) and {B.C} is
on the opposite side. In this case, it is impossible to place both vp(BDE) and
vp(ACE).

Case 6a: The viewpoint vp(ACE) on ceiling to the left of vp(BDE). In
this case, we consider how D is blocked from vp(ACE). If the floor blocks D
from vp(ACE), then by Corollary 1 with t = D,u = vp(ACE), D does not
see vp(BDE). If the ceiling blocks D from vp(ACE), then by Lemma 2 with
o = A, p = D, q = vp(ACE), the A guard does not see vp(ACE).

Case 6b: The viewpoint vp(BDE) on ceiling to the left of vp(ACE), or on
same line as vp(ACE). By Lemma 1 with s = B; t = C;u = vp(BDE); v =
vp(ACE), we must use the floor to block B from vp(ACE). However, if we use
the floor to block B from vp(ACE), then by Lemma 2 with o = A; p = B; q =
vp(ACE), the A guard is blocked from seeing vp(ACE).

Fig. 36. Visualization of Case 6a Fig. 37. Visualization of Case 6b

Case 6c: The viewpoint vp(BDE) on floor to the left of vp(ACE). In this
case, we consider how C is blocked from vp(BDE). If the ceiling blocks C from
vp(BDE), then by Corollary 1 with t = C, u = vp(BDE), C does not see
vp(ACE). If the ceiling blocks C from vp(BDE), then by Lemma 2 with o =
B, p = C, q = vp(BDE), the B guard does not see vp(BDE).
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Fig. 38. Visualization of Case 6c Fig. 39. Visualization of Case 6d

Case 6d: The viewpoint vp(ACE) on floor to the left of vp(BDE). In this
case, we consider how B is blocked from vp(ACE). If the ceiling blocks B from
vp(ACE), then by Corollary 1 with t = B, u = vp(ACE), B does not see
vp(BDE). If the floor blocks B from vp(ACE), then by Lemma 2 with o =
A, p = B, q = vp(ACE), the A guard does not see vp(ACE).

Case 7: {B,E} are on the floor and {A,C,D} are on the ceiling. Then it is
impossible to place both vp(BCE) and vp(ADE).

Case 7a: The viewpoint vp(BCE) on ceiling to the left of vp(ADE), or on
same line as vp(ADE). By Lemma 1 with s = C; t = D;u = vp(BCE); v =
vp(ADE), we must use the floor to block C from vp(ADE). However, if we use
the floor to block C from vp(ADE), then by Lemma 2 with o = A; p = C; q =
vp(ADE), the A guard is blocked from seeing vp(ADE).

Case 7b: The viewpoint vp(ADE) on ceiling to the left of vp(BCE). In
this case, we consider how B is blocked from vp(ADE). If the floor blocks B
from vp(ADE), then by Corollary 1 with t = B, u = vp(ADE), B does not
see vp(BCE). If the ceiling blocks B from vp(ADE), then by Lemma 2 with
o = A, p = B, q = vp(ADE), the A guard does not see vp(ADE).

Fig. 40. Visualization of Case 7a Fig. 41. Visualization of Case 7b

Case 7c: The viewpoint vp(BCE) on floor to the left of vp(ADE), or on
same line as vp(ADE). By Lemma 1 with s = B; t = E;u = vp(BCE); v =
vp(ADE), we must use the ceiling to block B from vp(ADE). However, if we
use the ceiling to block B from vp(ADE), then by Lemma 2 with o = A; p =
B; q = vp(ADE), the A guard is blocked from seeing vp(ADE).
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Fig. 42. Visualization of Case 7c Fig. 43. Visualization of Case 7d

Case 7d: The viewpoint vp(ADE) on floor to the left of vp(BCE). In this
case, we consider how C is blocked from vp(ADE). If the ceiling blocks C from
vp(ADE), then by Corollary 1 with t = C, u = vp(ADE), C does not see
vp(BCE). If the floor blocks C from vp(ADE), then by Lemma 2 with o =
A, p = C, q = vp(ADE), the A guard does not see vp(ADE).

Case 8: {A,B,C} are on the floor and {D,E} are on the ceiling. Then it is
impossible to place both vp(ACE) and vp(BDE).

Case 8a: The viewpoint vp(BDE) on the ceiling to the left of vp(ACE).
In this case, we consider how C is blocked from vp(BDE). If the floor blocks
C from vp(BDE), then by Corollary 1 with t = C, u = vp(BDE), C does not
see vp(ACE). If the ceiling blocks C from vp(BDE), then by Lemma 2 with
o = B, p = C, q = vp(BDE), the B guard does not see vp(BDE).

Fig. 44. Visualization of Case 8a Fig. 45. Visualization of Case 8b

Case 8b: The viewpoint vp(ACE) on the ceiling to the left of vp(BDE).
In this case, we consider how B is blocked from vp(ACE). If the floor blocks
B from vp(ACE), then by Corollary 1 with t = B, u = vp(ACE), B does not
see vp(BDE). If the ceiling blocks B from vp(ACE), then by Lemma 2 with
o = A, p = B, q = vp(ACE), the A guard does not see vp(ACE).

Case 8c: The viewpoint vp(ACE) on the floor to the left of vp(BDE). In
this case, we consider how D is blocked from vp(ACE). If the ceiling blocks D
from vp(ACE), then by Corollary 1 with t = D,u = vp(ACE), D does not
see vp(BDE). If the floor blocks D from vp(ACE), then by Lemma 2 with
o = A, p = D, q = vp(ACE), the A guard does not see vp(ACE).
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Fig. 46. Case 8c Fig. 47. Case 8d

Case 8d: The viewpoint vp(BDE) on floor to the left of vp(ACE), or on
same line as vp(ACE). By Lemma 1 with s = B; t = C;u = vp(BDE); v =
vp(ACE), we must use the ceiling to block B from vp(ACE). However, if we use
the ceiling to block B from vp(ACE), then by Lemma 2 with o = A; p = B; q =
vp(ACE), the A guard is blocked from seeing vp(ACE).

Half Guarding Spiral Polygon

In this section, we provide a simple proof for guarding a spiral polygon that does
not contain any vertical edges.

Proof. (Proof of Lemma 4). Let p, q and r be 3 points on the inner boundary
such that isp < isq < isr. Now assume that a guard g on the outer boundary
sees p and r but does not see q. The outer boundary cannot block g from q since
this would require the outer boundary to pierce the gp or the gr line segment,
see Fig. 12. The inner boundary cannot pierce the gq either. If it does, then the
inner boundary would require an interior angle less than 180° to reach a spot
that g can see again, in this case, the point r. This contradicts the description
of a spiral polygon. ��
Proof. (Proof of Lemma 5) Let g, g′ and g′′ be 3 guards on the outer boundary
such that osg < osg′ < osg′′ . Now assume that g and g′′ see p but g′ does not see
p. The inner boundary cannot block g′ from p since this would require the inner
boundary to pierce the gp or the g′′p line segment, see Fig. 12 (use same figure
as last proof but just a different part of the polygon for this part, use a similar
dotted line to block g’ from p). The outer boundary cannot pierce the g′p either.
If it does, then the outer boundary would require an interior angle greater than
180° to reach the g′′ guard. This contradicts the description of a spiral polygon.

��
Proof. Since g is on the outer boundary, there are at most two edges of vp(g)
that are interior to P . The vertical line segment, denoted gv, directly below
(above) g is one such edge. If vp(g) has only one such edge, then the claim is
trivially true.

If vp(g) has a second edge interior to P , then it must be the case that the
inner boundary is blocking g. The outer boundary cannot create such an edge
for vp(g) otherwise it would not be a spiral polygon. The inner boundary cannot
create more than one such edge, otherwise it would not be a spiral polygon. Let
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ge be the edge of vp(g) that the inner boundary created and let o(ge) be the
point on the outer boundary that ge hits, see Fig. 13.

For the pq line segment to cross both gv and ge, the p point must be to the
left of g. This allows pq to cross gv. Now consider the point q. It must be to the
right of gv. The line segment go(ge) is, by definition, to the right of gv. Since p
is to the left of gv, the pq line segment must cross the go(ge) line segment twice
in order to reach q. Since they are both line segments, this is impossible. ��
Claim. Consider any partial guard placement G. The leftmost unseen point will
either be a point in K or a point on the inner boundary.

Proof. If the leftmost unseen point is a point in K, then the claim is trivially
true. For each k ∈ K that has been chosen to be in G, the Pk region for that k
is entirely seen. The leftmost unseen point must be to the right of one of these
seen Pk regions. Let u be the leftmost unseen point and assume it is not in K
nor on the inner boundary.

Since u is not in Pk, in order for u to look up and down and only see the
outer boundary, it must be that u is to the right of some inner boundary. In this
case, a guard must see some point arbitrarily close to the left of u. Any guard
that sees this point arbitrarily close to u must also see u. The outer boundary
cannot block this guard from seeing u, else it would not be a spiral polygon.
Therefore, when u looks up and down, it must see the inner boundary at least
once.

W.l.o.g., assume u looks up to see the inner boundary. Since u is not on
the inner boundary, some guard must see the point v that is some ε distance
above-and-left of u such that the line segment connecting v to u does not cross
the inner boundary. Any guard g that sees this point must be blocked from u
since u is assumed to be unseen. The inner boundary cannot block g from u
since v is seen by g and by assumption, the inner boundary does not cross the
vu line segment. If the inner boundary does block some guard g from seeing u,
then u was not the leftmost unseen point. The only way to block g from u is to
use the outer boundary. This is not possible because the interior angles of the
outer boundary are less than 180°. Therefore, if u is unseen, it must be on the
inner boundary. ��

We now describe the algorithm and use an exchange argument to prove that
the algorithm is no worse than any other solution. Find the leftmost unseen
point of the polygon. If the leftmost unseen point is on the outer boundary of
the polygon, place a guard at this point. If the leftmost point is not on the
outer boundary of the polygon, then shoot a ray up (or down) to hit the outer
boundary and place a guard at this location on the outer boundary. Repeat until
the entire polygon is seen.

Consider an optimal solution O. Now consider the guards placed by the
algorithm. The first guard placed by the algorithm must be a guard in O, else
the leftmost point on the outer boundary is unseen. In general, if the leftmost
unseen point can only be seen by itself, then it is obvious that the guard we place
is identical to the one in O. Now consider an unseen point that can be seen by
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more than just itself. The optimal solution must contain all guards in K since
vertices in K are leftmost and can only be seen by themselves. Each of these
points will be the leftmost unseen points at some point and the algorithm will
also place all guards at vertices in K. Because of this, for each k, the Pk region
associated with it is seen. Let h be the leftmost unseen point that the algorithm
considers next and assume h is not a vertex in K. Since all Pk regions are seen
and h is on the inner boundary by Claim 4.1, when the h point shoots a ray up
(down), it must hit the outer boundary. The algorithm will place a guard at the
outer boundary that is directly above (below) h. Consider the optimal guard o′

that sees h. By Lemmas 9 and 6, moving o′ to this new location will not decrease
the visibility of o′. The guard placed by the algorithm will see at least as much
as the guards placed in the partial optimal solution. The leftmost unseen point
in the greedy algorithm cannot have been seen by a guard in the partial optimal
solution since the greedy guards always see at least as much as the optimal
guards that have been potentially moved. Because of this, the new guard in the
partial optimal solution can be moved to the location specified by the greedy
algorithm. Such an optimal guard will never have been considered/moved before.

Proof of Corollary 2

In order to prove the corollary, we use the following lemma.

Lemma 9. Consider any half-guarding solution for some spiral polygon P . For
each guard k ∈ K, no guard is required to be in Pk.

Proof. For each k ∈ K, the optimal solution must place a guard at k, else k is not
seen. Consider a guard g that was placed in Pk. If the Pk region is removed from
the polygon, there remains at most 2 polygons that meet at exactly one point,
namely, ik. We call these polygons A and B, see Fig. 14. The g guard cannot see
an unseen point in both A and B. Assume that this is possible and let p ∈ A
and q ∈ B be the two unseen points that g sees. In order to be unseen, neither p
nor q can be seen by k. It is not possible to block k from p nor q using the outer
boundary since the outer boundary cannot have an interior angle greater than
180°. Therefore, the inner boundary must be used to block k from both p and q.
As one looks from g, the kp line segment must be closer to the inner boundary
than the gp line segment. This allows the inner boundary to block k from p,
see Fig. 14. In a similar fashion, the line segment kq must also be closer to the
inner boundary than gq. Since k is to the left of o, this orientation is impossible.
Therefore, g cannot see an unseen point in both A and B.

The g guard can, therefore, only see unseen points in at most one of A or B.
W.l.o.g., assume g can see an unseen point in A. Let s be the outer boundary
point directly above ik in polygon A. By Lemma 6, the g guard cannot see an
unseen point in A that s does not also see. Therefore, the g guard can be moved
to the s location without losing any visibility. Since Pk is, by definition, to the
left of ik, this outer boundary point s is not in Pk. ��
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Proof. Consider an optimal guard g placed in the interior of the spiral polygon.
By Lemma 9, any optimal guard placed in Pk can be moved out of Pk. A sim-
ple extension of Lemma 7 says that any optimal guard placed in the polygon
must have the inner boundary above (resp. below) it and the outer boundary
below (resp. above) it. Let g′ be the location on the outer boundary directly
above/below g. Since g and g′ are on the same vertical line, any point that g
sees that g′ doesn’t see must be to the right of them. Consider Fig. 13, the g
guard, by definition, lies on the g′

v edge. In order for g to see a point in the
polygon that g′ does not see, the g guard must see beyond the g′

e line. The g
guard is on one side of this line. We draw a line from g to this point. In order
to stay in the polygon, this line must cross the g′

e line. It then must cross the
g′
e line again in order to reach a point that g′ does not see. This is impossible,

therefore, g′ dominates g. ��
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Abstract. Air mobility is rapidly moving towards the development and
usage of hybrid electric aircraft in multi-flight missions. Aircraft opera-
tors must consider numerous infrastructure and operational constraints
in their planning, during which predicting energy usage is critical. We
introduce this problem as the Fixed Route Hybrid Electric Aircraft Charg-
ing Problem (FRHACP). Given a fixed route, this problem aims to decide
how much to refuel/charge at each terminal as well as the energy types
to use during each flight leg (hybridization). The objective is to mini-
mize the total energy-related monetary costs while satisfying scheduling
and hybridization constraints. We propose a dynamic programming algo-
rithm to solve this problem and show that it is optimal under assump-
tions usually satisfied in real-life settings. We then propose a gradient
descent post-treatment to relax one of these assumptions while main-
taining optimality. Results on realistic instances demonstrate that the
developed algorithms outperform greedy heuristics, reaching an average
cost reduction of up to 19.4%.
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engines significantly increased with the general aim of reducing aircraft green-
house gas emissions. For that purpose, electricity-powered aircraft have been
proposed, including hybrid electric aircraft which combines internal combustion
engines with electrical power sources. It is envisioned that the future of air mobil-
ity will include these aircraft in a significant number of multi-flight missions, even
possibly on demand, of varying length and duration [3].

Many challenges arise from the use of electricity as propulsion energy. Not
only must one determine the trajectory of the vehicle, but also manage its energy
consumption over the whole mission course according to aircraft, infrastruc-
ture, security, and schedule specifications. Given a flight route, this manage-
ment aspect is particularly important in a planning perspective, since charging
currently requires a non-negligible and non-linear amount of time [6,15]. Air-
craft operators must thus decide how much to refuel and charge at each mis-
sion terminal. Furthermore, the consideration of hybrid electric aircraft requires
hybridization decisions on the energy types to use (fuel and/or electricity) during
each flight leg. These decisions must take into account consumption predictions
from non-linear energy models [7,17], as well as mass variations and schedule
requirements, to globally minimize energy-related monetary costs.

In this paper, we introduce the above-described optimization problem as the
Fixed Route Hybrid Electric Aircraft Charging Problem (FRHACP) and propose
a Dynamic Programming (DP) algorithm to solve it. Section 2 describes the
FRHACP. Section 3 relates this problem to other work in the literature, notably
the FRVCP for electric vehicles [7,15]. The DP algorithm is presented in Sect. 4,
including details on the assumptions to guarantee its optimality, as well as a
post-treatment to relax one of these assumptions. The algorithms are validated
and compared to greedy heuristics on realistic instances in Sect. 5, while we
conclude in Sect. 6.

2 The Fixed Route Hybrid Electric Aircraft Charging
Problem (FRHACP)

The FRHACP considers hybrid electric aircraft in a multi-flight mission setting.
A mission is defined as a fixed route r := (n1, n2, . . . , n|N |) of subsequent nodes
ni ∈ N . Each nodes from the route is either a terminal from set T or a waypoint
from set W (N := T ∪ W ). A terminal is typically an airport, where facilities
are available to refuel and charge the aircraft. The route r starts and ends
at a terminal, i.e. n1, n|N | ∈ T , while r induces a natural order t1, t2, . . . , t|T |
on the terminals in T . Between consecutive terminals, the route is defined by
waypoints, typically reference points in the air that must be part of the aircraft
trajectory. We define legs as route segments connecting two consecutive nodes
such as L := {(ni, ni+1) : i = 1, . . . , |N |−1}.

The FRHACP asks to decide how much to refuel and charge the aircraft
at each terminal. Fuel quantity in the aircraft is limited by a minimal security
margin fmin and the tank capacity fmax. Similarly, the aircraft battery State
of Charge (SoC) is limited by minimal and maximal security margins, smin and
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smax. Each terminal t ∈ T is also associated with a scheduled departure time
dtime

t to respect as a hard constraint. The time needed to charge the battery
from SoC s1 to s2 at terminal t ∈ T is predicted with αs

t (s1, s2), usually non-
linear [6,15]. Refueling duration is given by a constant rate αf depending on
quantity.

Hybridization decisions on the energy types to use (fuel and/or electricity)
during each leg are also part of the FRHACP. On that matter, it is known in the
literature that the optimal energy management strategy on a leg is to use the fuel
first, then the electricity [16]. Furthermore, fuel has a non-negligible mass, here
encoded as a constant ratio of mf depending on volume. This is known to be an
important non-linear factor impacting the fuel and electricity consumption [17].
Thus, this problem encodes hybridization on each leg as a percentage of its
distance using fuel, while the remaining distance is done using electricity, with
fuel used first. Aircraft mass, ma, and payload mass at terminal t, mp

t , are also
considered. Fuel and electricity consumption prediction models are encoded as
functions dependant on the travel distance d and the total mass m, denoted
respectively by δf (d,m) and δs(d,m). These functions are usually based on non-
linear energy models including numerous other physical parameters [7,17] that
are assumed constant on a given leg, but allowed to vary between legs (e.g.,
speed, altitude, and trajectory angle).

We resume the decisions variables of this problem as follows. For each ter-
minal t ∈ T , FD

t ∈ [fmin, fmax] and SD
t ∈ [smin, smax] are respectively the fuel

quantity and SoC of the aircraft when departing from terminal t. Then, for each
leg l ∈ L, Hl ∈ [0, 1] is the hybridization on leg l as its percentage traveled using
fuel. Intermediate variables FA

t and SA
t describe the deduced fuel quantity and

SoC upon arrival at terminal t ∈ T .
Finally, each terminal t ∈ T has a fuel (resp. electricity) cost cf

t (cs
t ) per

refueled (charged) quantity. The FRHACP objective is thus to minimize the
mission total cost according to energy decisions, i.e.

min
∑

t∈T

(
cf
t

(
FD

t − FA
t

)
+ cs

t

(
SD

t − SA
t

))
. (1)

3 Related Work

The FRHACP is highly related to the Fixed Route Electric Vehicle Charging
Problem (FRVCP) introduced by Montoya et al. [15], which has recently been
extended with non-linear energy management in the context of an electric vehicle
route planning [7]. In this problem, the objective is to minimize the total route
duration including its charging time by considering variable vehicle speed and
charging detours, while handling the non-linearity of electricity. The FRVCP has
been solved using dynamic programming [5], Mixed Integer Programming [7] and
labeling algorithms [10]. The FRHACP can naturally be seen as a variant of the
FRVCP adapted to the context of hybrid electric aircraft. The main differences
are the hybridization decisions and the objective function.
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It is also well known in the literature that the non-linearity of energy models,
depending among others on vehicle specifications, speed, mass, and tempera-
ture, are essential for energy-related predictions and planning [2,4,6,17]. Prior
work in the hybrid electric aircraft domain mainly relates to optimal hybrid
management [16], energy architecture [14,18] and fuel/electricity consumption
models for different aircraft configurations [13,19]. Notably, OpenAP provides
open-source aircraft performance and emission models based on open data and
accessible for air transport research [17].

4 Dynamic Programming Algorithm

The FRHACP defined in Sect. 2 is more complex than the FRVCP and its vari-
ants [5,7] since two energy sources must be simultaneously considered (fuel and
electricity). It is thus harder to design a dynamic programming algorithm follow-
ing the approach of Deschênes et al. [5]. At least one state space must be added
for the fuel. This would increase the computation time based on the number of
sampled fuel quantities, say f̃ . When refueling and charging, combinations of
fuel and SoC will need to be considered, say f̃ · s̃. Thus we can estimate that
the algorithm would be at least f̃2 · s̃ times slower, without even considering the
additional computation time of 2-dimensional interpolation. With f̃ = 50 and
s̃ = 10, it would be at least 25 000 times slower. Thus, the dynamic programming
curse of dimensionality quickly arises.

Nevertheless, under some assumptions, it is possible to design a dynamic
programming algorithm that optimally solves the problem. This algorithm is
presented in Sect. 4.1. In Sect. 4.2, we develop a gradient descent post-treatment
that allows to relax one of these assumptions while maintaining optimality.

4.1 Minimizing Total Cost

The proposed approach looks at the total cost minimization problem from the
perspective of minimizing the fuel quantity in a number of subproblems. Each
flight between consecutive terminals ti and ti+1 defines a different subproblem,
leading to the following question for all nodes nk between ti and ti+1 inclu-
sively: Given a current SoC s, what is the minimal fuel quantity F ∗

nk
(s) needed

to reach terminal ti+1 from node nk while satisfying all constraints? Equation (2)
presents the recurrence used to answer this question.

F ∗
nk

(s) =

⎧
⎨

⎩
fmin if nk = ti+1

min
h∈[0,1]

[
F ∗

nk+1
(s − Δs

lk
(h)) + Δf

lk
(h)

]
otherwise (2)

If node nk is terminal ti+1, the minimal quantity to reach itself is trivially the
margin fmin. Otherwise, the minimal quantity from nk depends on the hybridiza-
tion decision h ∈ [0, 1] on leg lk := (nk, nk+1). Here, we respectively denote
Δf

lk
(h) and Δs

lk
(h) the fuel and electricity consumption on leg lk given h. The

SoC at node nk+1 is thus given by s − Δs
lk

(h), while the minimal fuel quantity



358 A. Deschênes et al.

needed at nk+1 is F ∗
nk+1

(s − Δs
lk

(h)). We must then add the amount of fuel
needed on leg lk as given by Δf

lk
(h). Taking the minimal value over all h, F ∗

nk
(s)

returns the minimal fuel quantity from nk. Proposition 1 directly follows from
this inductive reasoning.

Proposition 1. The problem of minimizing the fuel quantity between consecu-
tive terminals ti and ti+1 admits an optimal substructure. In other words, given
a current SoC s, F ∗

nk
(s) is the minimal fuel quantity to reach ti+1 from node nk

for all nk ∈ N between ti and ti+1.

To solve the recurrence, we compute h̃ values of h and take the minimal com-
puted quantity. Δf

lk
(h) is obtained with δf (h · dk,m(h)) where dk is the total dis-

tance of leg lk and m(h) is the mass, considering ma, mp
ti , and the fuel mass in the

tank depending on h. Similarly, Δs
lk

(h) is obtained with δs((1 − h) · dk,m(h)).
As in Deschênes et al. [5], the state space of s is continuous, thus we use the
same techniques to solve the problem. We sample F ∗

nk
(s) for s̃ different SoC s

for each node nk. Finally, we use Akima interpolation [1] to approximate the
overall function F ∗

nk
(s) for each node nk.

Constructing the Route Solution. Our proposed DP algorithm solves the
problem by constructing decisions for the complete route. It first starts at termi-
nal t1 with the initial fuel and SoC of the aircraft. Then, it finds SD

t1 satisfying
the schedule dtime

t1 and margin smax using a binary search. From SD
t1 , it uses

recurrence (2) to compute FD
t1 and follows it until reaching terminal t2. Note

that it always makes sure fmin, fmax, and smin are satisfied. The hybridization
decisions Hlk on legs lk between t1 and t2 are simultaneously computed by the
recurrence (as the arg min). At each following terminal ti ∈ T , we determine
SD

ti and FD
ti in the same way. This gives us our final solution. In order to prove

this solution is optimal when minimizing the total cost under some assumptions,
the following definition is needed.

Definition 1 (Independence of subproblems). All subproblems are inde-
pendent if FA

t = fmin and SA
t = smin ∀t ∈ T in the optimal solution.

The independence of subproblems is known to imply at least these necessary
conditions: (1) Fuel cost cf

t is the same at each terminal t ∈ T ; (2) Between
each consecutive terminal, the optimal solution consumes all fuel and electric-
ity. Note that other conditions might be needed to fully ensure independence
of subproblems on some instances. For example, it is possible to construct an
instance where dtime

t constrains the charging time in a way that electricity must
be stored from a previous terminal, violating the independence while satisfying
the above-mentioned conditions.

Proposition 2. Suppose that consumption functions δf (d,m) and δs(d,m) are
monotonically increasing with respect to d and m, that we have independence of
subproblems, and that electricity costs cs

t are significantly lower than fuel costs
cf
t . Then the DP constructed solution optimally minimizes total cost.
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Proof. With independence of subproblems, the constructed solution is such that
all fuel and electricity is consumed between all consecutive terminals. According
to Eq. (1) and the assumption about electricity costs, the only way to reduce the
total cost would be to reduce the fuel consumption in each subproblem. Since
δf (d,m) and δs(d,m) are monotonically increasing (more fuel leads to more
mass, increasing the overall consumption), reducing the consumption is only
possible by reducing the fuel quantity. However, by Proposition 1, this quantity
is already minimal. ��

Complexity Analysis. Suppose the calls to δf (d,m) and δs(d,m) consumption
functions are executed in constant time. To solve the problem, we compute the
recurrence for s̃ values of SoC for each node nk ∈ N . Computing F ∗

nk
(s) has

a time complexity of Θ(h̃) testing h̃ hybridization decisions. Since computing
the Akima interpolation is done in a linear time, the overall time complexity is
Θ(s̃ · h̃ · |N |). Thus, the algorithm running time increases pseudo-linearly with
the number of nodes in the route.

4.2 Gradient Descent Post-treatment

Most of the assumptions of Proposition 2 are usually satisfied in real-life settings,
except for the implied condition that fuel cost is the same at each terminal.
Algorithm 1 relaxes independence of subproblems by allowing FA

t > fmin at all
terminals t ∈ T .

The algorithm starts by computing the DP solution before improving it
further with a gradient descent. The problem is encoded as a directed graph
G = (T ,E), where E := {(ti, tj) : ti, tj ∈ T , i < j, cf

ti < cf
tj}. It defines the possi-

bilities of transferring fuel between terminals ti and tj to save on fuel costs. The
action of transferring x quantity of fuel from terminal tj to ti, denoted Trans-
fer(x, ti, tj), ensures that FA

tj is increased by x. It is achieved by increasing FD
ti

by at least x. The action takes into consideration the non-linearity of δf (d,m)
and δs(d,m), i.e. that taking more fuel at terminal ti will increase the mass and
thus the energy consumption until we reach terminal tj . It takes into account
the fact that we may need to add more fuel to compensate for the mass increase
or the hybridization correction on the legs to ensure electricity margins. Indeed,

Algorithm 1. Gradient Descent Post-Treatment (DP+GD)
1: Compute a solution using the DP algorithm
2: Construct the directed graph G = (T, E), E := {(ti, tj) : ti, tj ∈ T , i < j, cfti < cftj}
3: Initialize gradients ge ← 1, ∀ e ∈ E
4: while ∃e ∈ E such that ge > 0 do
5: Compute ge for each edge e ∈ E
6: Find (ti, tj) ∈ E such that g(ti,tj) is maximal
7: if g(ti,tj) > 0 then Transfer(α · g(ti,tj), ti, tj)

8: return The updated solution
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the latter is due to the fact that, because of the schedule, we cannot take more
electricity to compensate for the increase in electricity consumption, thus we
instead increase the fuel consumption by modifying the hybridization decisions.
Finally, the action is only possible if the transfer allows to satisfy fmax and
dtime

ti .
The algorithm computes the gradient g(ti,tj) of each edge (ti, tj) ∈ E, i.e.

how much a small transfer of fuel from terminal tj to ti changes the overall cost
of the solution. We then do a gradient descent to transfer fuel on the maximum
gradient edge. These transfers are repeated until we reach convergence, i.e. when
all gradients are non-positive. If the maximal gradient is g(ti,tj) > 0, we do
Transfer(α · g(ti,tj), ti, tj) to transfer the fuel, where α is a strictly positive
learning rate. Thus, at each iteration, the solution changes. Since by definition
the graph is acyclic and we can only transfer in the direction of the edge (i.e.
not backwards), the algorithm terminates in a finite number of steps.

Proposition 3. Suppose the assumptions of Proposition 2 where we relax the
independence of subproblems by allowing FA

t > fmin at all terminals t ∈ T .
Then Algorithm 1 converges to the global optimum.

Proof. Let c∗
a be the cost of solution a returned by Algorithm 1. Suppose the

contrary, i.e. that there exists a solution π following the assumptions with total
cost c∗

π < c∗
a. By Proposition 2, we know that the decrease in cost cannot be

from using less fuel or using the electricity. Thus, the only option would be by
exploiting the relaxed assumption. This implies that solution π takes more fuel
at least at one terminal to reduce the total cost, thus that there exist terminals ti
and tj with cf

ti < cf
tj not exploited by solution a. By construction of Algorithm 1,

this leads to an edge (ti, tj) with gradient g(ti,tj) > 0. However, this is impossible
since the algorithm terminates with all gradients non-positive. ��

5 Experiments

The main goal of the experiments is to compare the proposed DP algorithms with
heuristics on real-life inspired instances. It aims at showing the benefits of using
the electric engine, while doing optimized refueling, charging, and hybridization
decisions.

Fuel First Heuristic (FF-H). This heuristic aims at globally maximizing the
fuel usage during the flight route. It imposes a hybridization decision of 100%
fuel (Hl := 1) on each leg. Then, the departure fuel FD

t is adjusted to minimize
the consumption while satisfying the minimal margin fmin. Summarized steps
of this heuristic are presented in Algorithm 2.
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Algorithm 2. Fuel First Heuristic (FF-H)
1: Initialize FD

t ← fmax and SD
t ← smin for t ∈ T ; Hl ← 1 for l ∈ L

2: Compute FA
t for t ∈ T

3: For ti ∈ T, i = 1, . . . , |T |−1, correct FD
ti so that FA

ti+1 = fmin

Maximize Battery Usage Heuristic (MB-H). This heuristic aims at glob-
ally maximizing the electricity usage during the flight route. It tries to impose
a hybridization decision of 100% electricity (Hl := 0) on each leg. This is often
impossible, thus it handles these cases based on a greedy hypothesis of using
the fuel first. The minimal quantity of fuel is computed so that the arrival SoC
SA

t reaches the margin smin for t ∈ T . Summarized steps of this heuristic are
presented in Algorithm 3.

Algorithm 3 Maximize Battery Usage Heuristic (MB-H)
1: Initialize FD

t ← fmin for t ∈ T
2: Set SD

t to its maximal value given dtime
t for t ∈ T ; Hl ← 0 for l ∈ L

3: Compute SA
t for t ∈ T

4: for all t ∈ T where SA
t ¡ smin do

5: Set FD
t to the minimal fuel quantity satisfying smin, with Hl using fuel first

6: For ti ∈ T, i = 1, . . . , |T |−1, correct SD
ti so that SA

ti+1 = smin

5.1 Experimental Setup

We implemented the algorithms described in Sect. 4 and the heuristics in Python.
The experiments were performed on an Intel Core i7-8750H CPU @ 2.20 GHz, 6
cores and 8 GB of RAM. The DP algorithm has two different hyperparameters
affecting the quality of the solution and its computation time: h̃, the number
of hybridization values tested on each leg, and s̃, the number of SoC values
sampled to determine the minimal fuel. For our experiments, we used h̃ = 40 and
s̃ = 10. These values were empirically determined to yield good results in a decent
computation time. For the DP+GD algorithm, the gradient is approximated by
forward difference. We also used a constant learning rate α = 500 empirically
determined for converging quickly.

5.2 Instances

Our dataset consists of four real-life inspired instances, created from day-long
sequences of commercial flights with the same aircraft in Canada and France. The
routes and their schedule are generated using available data in FlightRadar24 [9],
while the fuel and electricity costs are directly taken from various credible
sources [8,11,12]. For the purpose of comparison, we convert EUR (€) costs
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in CAD ($) using 1.49 as exchange rate. Table 1 presents the particularities of
each instance. In France, PNT4W59 describes two round trips between Paris and
Nice, while TBT5W42 includes a round trip from Toulouse to Lille followed by
a round trip from Bordeaux to Marseille. In Canada, MST6W30 includes a flight
from Montreal to Quebec City, followed by a round trip to the Magdalen Islands,
then a flight to Sept-̂Iles. OTT7W43 describes a flight from Ottawa to Toronto,
followed by a round trip to St. John’s, Newfoundland.

Table 1. Description of the four real-life inspired instances forming the dataset.

Instance |T | |W | Duration Distance (km) cs ($/kWh) cf ($/L)

PNT4W59 4 59 4 h30 2740 0.1397 1.46

TBT5W42 5 42 6 h42 2812 0.1397 1.46

MST6W30 6 30 7 h22 2294 0.0533 [1.16, 1.25]

OTT7W43 7 43 9 h34 4709 [0.0533, 0.1140] [1.03, 1.28]

All instances suppose a Cessna S550 Citation II as the aircraft. Following
the approach of Wang et al. [18], we suppose a battery of 216 kWh with a mass
of 600 kg, giving a total mass ma of 4256 kg. We also suppose a payload mp

t

varying at terminals t ∈ T between 400 kg and 800 kg. The Cessna uses Jet-A1
fuel with ratio mf 0.819 kg/L, a fuel capacity fmax of 3260 L, and a refueling
rate αf of 1086 L per minute. In addition, the following security margins are
considered: fmin = 163 L (5%), smin = 10%, and smax = 95%.

We use OpenAP aircraft performance model [17] to predict the fuel con-
sumption as function δf (d,m). To do so, we deduce altitude, distance, speed,
and trajectory angle from the instance generated route. We also suppose a cruise
phase at an altitude of 10.7 km with a speed of 777 km/h. All other parameters
are implicitly encoded in the OpenAP model. For predicting the electricity con-
sumption δs(d,m), we use OpenAP predicted net thrust and convert it to kWh.

For the charging time prediction αs
t (s1, s2), we use for all terminals t ∈ T the

non-linear charging function from Deschênes et al. [7]. Although this function is
unrealistic given that it has been designed for a 40 kWh battery of an electric
vehicle, we envision that charging technology in a near future may allow similar
durations.

5.3 Results

Table 2 presents the results of our experiments. For each algorithm (DP,
DP+GD, FF-H, MB-H) and each instance, we report the solving time, as well
as costs and consumed quantities related to each energy type. We also distin-
guish the solving time of the algorithms (internal) from the calls to OpenAP
performance model (external). The smallest total costs are in bold. Note that
it is possible to check that all instances follow the assumptions discussed in
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Table 2. Solving time of each instance in seconds—distinguished between internal
(algorithms) and external (OpenAP) time—as well as costs and consumed quantities
for fuel and electricity. Results reported for the Dynamic Programming algorithm (DP),
DP with the Gradient Descent post-treatment (DP+GD), the Fuel First heuristic (FF-
H) and the Maximum Battery heuristic (MB-H).

Instance Algorithm Solving time (s) Costs ($) Consumption

Internal External Total Fuel Elec. Total Fuel (L) Elec. (kWh)

PNT4W59 DP 0.43 4.65 5.08 4284 148 4433 2930 712

DP+GD - - - - - - - -

FF-H 0.06 0.06 0.12 5316 0 5316 3634 0

MB-H 0.40 0.55 0.95 4579 128 4707 3131 614

TBT5W42 DP 0.32 3.78 4.10 4335 142 4477 2991 805

DP+GD - - - - - - - -

FF-H 0.05 0.05 0.10 5421 0 5421 3740 0

MB-H 0.26 0.40 0.66 4630 126 4756 3195 691

MST6W30 DP 0.23 2.40 2.63 3148 28 3176 2650 899

DP+GD 0.40 2.56 2.96 3084 28 3112 2659 899

FF-H 0.02 0.02 0.04 4081 0 4081 3429 0

MB-H 0.14 0.14 0.28 3315 24 3338 2789 798

OTT7W43 DP 0.34 4.32 4.66 6449 95 6543 5408 1210

DP+GD 1.79 5.94 7.73 6173 95 6268 5523 1210

FF-H 0.05 0.05 0.10 7822 0 7822 6540 0

MB-H 0.37 0.50 0.87 6836 83 6919 5730 1038

Sect. 4. Since PNT4W59 and TBT5W42 have no fuel cost variation, DP is optimal
for these instances by Proposition 2 and the gradient descent post-treatment is
not required. On the other hand, DP+GD is optimal for MST6W30 and OTT7W43

by Proposition 3.
As expected, heuristics have the smallest solving times, while all algorithms

terminate within 8 s. We remark that the gradient descent can increase the com-
putation time of up to 40.0% (OTT7W43). On average, 92% of DP computation
time comes from external calls, i.e. OpenAP. This is reduced to 80 % with
DP+GD.

About costs, DP and DP+GD (when applicable) obtain the smallest total
cost on all instances. The reduction mainly comes from lower fuel consumption.
On instances where the fuel costs vary (MST6W30, OTT7W43), the gradient descent
post-treatment of DP+GD allows an average reduction of 3.1% compared to DP.
As expected, the electricity costs remain constant, since the post-treatment does
not affect charging decisions. FF-H obtains the highest costs on all instances,
with the DP algorithms leading to a reduction of up to 23.7% (average 19.4%).
This clearly shows the benefits of using the electric engine. MB-H has smaller
costs compared to FF-H, but the DP algorithms can reduce them of up to 9.4%
(average 7.0%). This shows that smarter hybridization and refueling decisions
can lead to better solutions.
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6 Conclusion

In this paper, we introduced the FRHACP, a variant of the FRVCP adapted
to the context of hybrid electric aircraft. The problem aims to handle refuel-
ing/charging and hybridization decisions given a fixed route, while minimizing
energy costs and satisfying various requirements, such as mass and schedule.
To solve the problem, we proposed a dynamic programming algorithm that has
been shown to be optimal under some assumptions. In order to fit for more real-
life settings, we relaxed one of these assumptions and allowed fuel costs to vary
between terminals by proposing a gradient descent post-treatment while main-
taining optimality. The algorithms were compared to two greedy heuristics on
four real-life inspired instances that showed the benefits of considering electric
engines and doing smart hybridization decisions. Results demonstrated an aver-
age cost reduction of up to 19.4%. The proposed algorithms found the optimal
solution within 8 s on all instances.
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Abstract. Mobility-on-demand (MoD) ridesharing is a promising way
to improve the occupancy rate of personal vehicles and reduce traffic con-
gestion and emissions. Maximizing the number of passengers served and
maximizing a profit target are major optimization goals in MoD rideshar-
ing. We study the ridesharing with profit constraint problem (labeled as
RPC) which considers both optimization goals altogether: maximize the
total number of passengers subject to an overall drivers’ profit target.
We give a mathematical formulation for the RPC problem. We present
a polynomial-time exact algorithm framework (including two practical
implementations of the algorithm) and a 1

2
-approximation algorithm for

the case that each vehicle serves at most one passenger. We propose a
2
3λ

-approximation algorithm for the case that each vehicle serves at most
λ ≥ 2 passengers. Our algorithms revolve around the idea of maximum
cardinality matching in bipartite graphs and hypergraphs (set packing)
with general edge weight. Based on a real-world ridesharing dataset in
Chicago City and price schemes of Uber, we conduct an extensive empir-
ical study on our model and algorithms. Experimental results show that
practical price schemes can be incorporated into our model, our exact
algorithms are efficient, and our approximation algorithms achieve ∼90%
of optimal solutions in the number of passengers served.

Keywords: Ridesharing with profit · exact and approximation
algorithms · graph matching · network flow · computational study

1 Introduction

Personal vehicles and mobility-on-demand (MoD) systems are major transporta-
tion tools worldwide. MoD systems, such as Uber, Lyft and DiDi, have become
popular due to their convenience. MoD system operators and drivers partici-
pated in such systems are mostly motivated by profit. Solely focusing on profit
and market share from MoD systems and drivers may have increased conges-
tion and CO2 emissions; the use of MoD has increased the number of single-
passenger vehicles on the road significantly [10,19,30]. This, coupled with the
saturated personal vehicle usage (with low occupancy rate) in Europe and North
America, causes more traffic congestion and emissions [22]. According to studies
in [7,11,27], personal vehicles were the main transportation mode in the United
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14461, pp. 366–379, 2024.
https://doi.org/10.1007/978-3-031-49611-0_26
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States and Canada in recent years and in more than 200 European cities between
2001 and 2011. In Europe 2017 [11], the transport sector accounted for 27% of
total greenhouse gas emissions; and of these 27% gas emissions, 31.55% (8.52%
total) were from passenger cars.

On the other hand, there is an urgency to reduce traffic congestion and
greenhouse gas emissions. Ridesharing using MoD systems has been proposed
and studied in the academia [22,23,28,31]. Major themes from many previous
studies include maximizing the total number of passengers served, minimizing
the total cost to serve all passengers and maximizing a profit target. Studies,
such as those in [2,3,6,29], have shown that ridesharing is a promising effective
way to increase the occupancy rate and reduce congestion. An important factor
for the adoption of ridesharing in practice is the profit/pricing scheme. Demand-
and-pricing of a ridesharing system is important for its adaptability of actual
ridesharing in practice [31]. Recently, ridesharing with profit as taxi ridesharing
(e.g., [24,25]) and pricing based platform (MoD) equilibrium analysis (e.g., [5,
33]) have received much attention.

This study is motivated by the fact that profits-as-incentives may promote
ridesharing in practice for both MoD operators and drivers. The potential of
ridesharing has been recognized in the academia, but the potential of ridesharing
in profit-maximizing platforms/MoDs is not well understood. The ridesharing
problem we study can be summarized in the following (formal definition is given
in Sect. 2):

– A centralized system periodically receives a set of ridesharing offer trips
(drivers) and a set of ridesharing request trips (passengers). We say a pas-
senger is served if the passenger is assigned a driver who can deliver the pas-
senger to his/her destination on time. A driver can serve multiple passengers
together, which is a ridesharing match consisting of a driver and a group of
passengers served by the driver. The system computes a profit for each match.
An optimizing goal on the profit only, called Ridesharing with Profit (RP)
problem, is to maximize the overall profit obtained from the served matches.
In this paper, we study a more complex optimization problem called Rideshar-
ing with Profit Constraint (RPC) problem which maximizes the number of
served passengers subject to satisfying a specified profit goal.

The RPC problem provides a new framework to consider maximizing both the
number of passengers served and drivers’ profit target. To the best of our knowl-
edge, such an optimization problem has not been studied before. Our model
allows a flexible pricing for the MoD system operators and for different pricing
schemes (e.g., [21,32]). Although the problem studied by Santos and Xavier [25]
is closely related to the RPC problem, their optimization goals differ from
ours, and they focus on heuristics. Similarly, only (meta)heuristics are discussed
in [20].

Online and offline approaches have been used to handle ridesharing requests.
In the online approach, a request trip is processed immediately without the infor-
mation of later trips. In the offline approach, the system accumulates a set of
offer and request trips for each time interval (known as batching); and the set of
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trips is processed at once for that interval. This is a common approach in the lit-
erature (e.g., [2,12,15,26]). Under the offline setting, two optimization problems
related to ridesharing problems are the Dial-A-Ride problem (DARP) and the
Vehicle Routing problem (VRP). There are some major differences between these
two problems and the RP/RPC problems. The drivers and passengers in DARP
and VRP have less parameters and/or less restricted parameters than that of the
drivers and passengers in RPC. A variant of the Vehicle Routing Problems with
Profits, called the Team Orienteering Problem (TOP) [17], is related to RPC
problem. However, profit calculations in VRPPs and TOP are static compared
to the profit calculation in RPC, which is more dynamic since it depends on
each different driver-passenger(s) assignment. The most salient difference is that
the capacity of a vehicle in DARP and VRP is substantially higher than that in
ridesharing. This causes finding an optimal routing for a vehicle in DARP and
VRP harder, making many general approaches of DARP and VRP not suitable
for the RPC problem since they focus on different fundamentals.

In this paper, we follow the offline setting and our model uses a graph match-
ing approach. All feasible matches between all drivers and passengers are com-
puted first; and then based on some optimization goal/objective, an assignment
consisting of a set of disjoint feasible matches is selected. By this approach, the
RP problem can be converted to the maximum weight hypergraph matching (or
maximum weight set packing problem), which is NP-hard in general [14]. We
give a mathematical formulation, an exact and approximate algorithms for the
RPC problem. Our algorithms are based on applications of maximum matching
in bipartite graphs and hypergraphs. We also conduct empirical studies on our
algorithms. One hurdle for empirical studies for the RPC problem is the lack
of practical data instances. To clear this hurdle, we incorporate the real-world
ridesharing dataset from Chicago City with the driver’s profit model of Uber to
generate test instances for practical scenarios. Our contributions in this paper
are summarized as follows:

1. A new optimization problem (the RPC problem) is studied, and a mathemat-
ical formulation of the RPC problem is given. The NP-hardness of the RP
problem implies that the RPC problem is NP-hard.

2. We give a polynomial-time exact algorithm framework (including two practi-
cal implementations of the algorithm) and a 1

2 -approximation algorithm for
a special case of the RPC problem that each match contains λ = 1 passenger
(labeled as RPC1).

3. Another special case of the RPC problem is that only matches with non-
negative profit are considered and each match has at most λ ≥ 2 passengers
(labeled as RPC+). This case is still NP-hard, and we give a 2

3λ -approximation
algorithm for a specific range of profit target in this case.

4. Based on a real-world ridesharing dataset in Chicago City, profit model
of Uber and practical scenarios, we create datasets for an extensive com-
putational study on RPC1 and RPC+ problems. Experiment results show
that practical profit schemes can be incorporated into our model. The
exact algorithm implementations are efficient, and the 1

2 -approximation algo-
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rithm achieves 96% to 99% (for different practical scenarios) and the 2
3λ -

approximation algorithm achieves 90% of optimal solutions in the number of
passengers served.

The rest of the paper is organized as follows. In Sect. 2, we give the prelim-
inaries and formally define the RPC problem. In Sect. 3, we describe the exact
algorithms for RPC1. The 2

3λ -approximation algorithm for RPC+ is presented
in Sect. 4. We discuss the empirical study and algorithms in Sect. 5.

2 Preliminaries

Let G(V,E,w) be an edge-weighted graph with w : E → R that assigns each
edge e ∈ E a weight w(e). A path P in G is a sequence of vertices v1, v2, . . . , vp

such that (vi, vi+1) is an edge of E for 1 ≤ i ≤ p − 1 and denoted by P =
(v1, . . . , vp). The distance of a path P = (v1, . . . , vp) is defined as dist(P ) =
w(P ) =

∑p−1
i=1 w(vi, vi+1). The length of a path P is the number of edges in P ,

denoted by |P |.
An MoD system has a road network, modeled as a directed graph G(V,E,w),

where V is the set of vertices representing geographical sites, E ⊆ V × V is the
set of edges (each edge represents a connection between two sites), and a distance
function w : E → R that assigns each edge a weight. The system periodically
receives two sets of trips: a set D = {η1, . . . , ηk} of k drivers (each operates
a vehicle) and a set R = {r1, . . . , rl} of l passengers. Each driver ηi ∈ D is
represented by a tuple (oi, di, λi) of parameters containing an origin location oi

(a vertex oi ∈ V (G)), a destination location di ∈ V (G), and a passenger capacity
λi ≥ 1 of ηi’s vehicle. Each driver ηi also has an earliest departure time at oi,
a latest arrival time at di, a detour time/distance limit and a maximum trip
duration. Each passenger ri ∈ R is represented by a tuple (oi, di) as defined
above, along with an earliest departure time at oi, a latest arrival time at di and
a maximum trip duration..

For a driver ηi ∈ D and a group of passengers Ri ⊆ R, (ηi, Ri) is a feasible
match if there exists a feasible path FP(ηi, Ri) in N used by ηi to deliver all
of Ri such that travelling along FP(ηi, Ri) satisfies all constraints specified by
ηi and every rj ∈ Ri. These constraints include |Ri| ≤ λi, detour limit of ηi,
and time constraints of ηi and Ri. An assignment Π is a set of feasible matches
such that for every two feasible matches (ηi, Ri) and (ηj , Rj) in Π, ηi �= ηj and
Ri ∩ Rj = ∅. For an assignment Π = {(ηi, Ri) | ηi ∈ D,Ri ⊆ R}, each driver
ηi in the assignment follows a shortest feasible path SFP(ηi, Ri) to serve trips
in Ri. For example, let Ri = {ra, rq} be the set of passengers in feasible match
(ηi, Ri). There are six different visiting orders of Ri in which the passengers of
Ri can be picked-up and dropped-off by ηi, which correspond to six paths in
road network G(V,E,w). Below are the six visiting orders driver ηi can use:

{(oi, oa, oq, da, dq, di), (oi, oa, da, oq, dq, di), (oi, oa, oq, dq, da, di),
(oi, oq, oa, da, dq, di), (oi, oq, dq, oa, da, di), (oi, oq, oa, dq, da, di)}.



370 Q.-P. Gu and J. L. Liang

Path SFP(ηi, Ri) is the path in G corresponds to one of the six visiting orders
that is feasible and has the shortest distance. Every feasible match (ηi, Ri) along
with SFP(ηi, Ri) can be computed efficiently with small |Ri|, as described in [2,
15,26].

Each feasible match (ηi, Ri) is associated with a revenue rev(ηi, Ri), a travel
cost tc(ηi, Ri) and a profit w(ηi, Ri), which are computed by the MoD system.
The revenue and cost are decided by several parameters such as SFP(ηi, Ri),
travel time, regions, pricing policies, etc. The profit of a feasible match (ηi, Ri)
is w(ηi, Ri) = rev(ηi, Ri) − tc(ηi, Ri), which can be negative, and we assume
it is expressed in integers (e.g., cents, smallest payable amount). We estimate
rev(ηi, Ri) and tc(ηi, Ri) based on the profit model of Uber and practical sce-
narios, as described in Sect. 5 (and in [16]).

The RP (ridesharing with profit) problem is to assign passengers of R to
drivers D with total profit maximized. In this paper, we focus on a more com-
plex optimization problem, called the Ridesharing with Profit Constraint (RPC)
problem. In application, MoD may want to serve as many passengers as possi-
ble while maintaining a profit target. With this in mind, we introduce a profit
constraint and a formulation for the RPC problem as follows.

max
Π

∑

(ηi,Ri)∈Π

|Ri| (i)

subject to ηi �= ηj ∧ Ri ∩ Rj = ∅, ∀(ηi, Ri) �= (ηj , Rj) ∈ Π (ii)
∑

(ηi,Ri)∈Π

w(ηi, Ri) ≥ c (iii)

The objective function (i) is to maximize the total number of passengers served.
Constraint (ii) ensures that each passenger request is assigned to only one driver
and each driver serves at most one feasible match (a unique group of passengers).
Constraint (iii) ensures the system profit meets a given target. An assignment
Π containing any feasible match (ηi, Ri) with negative profit (w(ηi, Ri) < 0)
means that the driver ηi loses money.

We construct an integer-weighted hypergraph H(V,E,w) to represent the
formulation (i)-(iii) as follows. Initially, V (H) = D ∪ R. For each ηi ∈ D and for
every subset Ri of R with 1 ≤ |Ri| ≤ λi, create a hyperedge e = {ηi} ∪ Ri in
E(H) if (ηi, Ri) is a feasible match. Each edge e = {ηi}∪Ri ∈ E(H) has weight
w(e) = w(ηi, Ri), the profit of ηi. Remove all isolated vertices from H. Let H−

be the subgraph of H such that H− contains all edges of H with negative weight
and H+ = H \ H−. For an assignment Π, let w(Π) =

∑
(ηi,Ri)∈Π w(ηi, Ri) be

the profit of Π. There are at most
∑

1≤a≤λi

(
l
a

)
edges incident to each ηi in

H. Let λ = maxηi∈D λi. If λ is a small constant, the size of H is polynomially
bounded. In practice, it is reasonable to assume λ is small; however when λ is
not small, we may purposely restrict the number of edges incident to each vertex
so that |E(H)| becomes reasonable for practice.

For an edge-weighted (hyper)graph G(V,E) and E′ ⊆ E(G), the weight of
E′ is denoted by w(E′) =

∑
e∈E′ w(e), where w(e) is the weight of edge e. A

matching M in a (hyper)graph G is a set of edges of G such that every pair
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of edges in M do not have a common vertex. The size |M | of a matching M is
the number of edges in M and the weight of M is w(M). The RPC problem is
then to find a matching M in H such that

∑
{ηi}∪Ri∈M |Ri| is maximized and

w(M) > c. Let c∗ be the weight of a maximum weight matching in the above
constructed hypergraph H and c ≤ c∗ be a profit target. Finding a matching M
in H+ with w(M) = c∗ is equivalent to finding a maximum weight set packing
in H+, which is NP-hard in general for λ ≥ 2 [14]. This implies Theorem 1 (a
proof of this theorem is in [16]).

Theorem 1. The RPC problem is NP-hard for an arbitrary c and λ ≥ 2.

Hazan et al. [18] showed that the (λ + 1)-set packing problem cannot
be approximated to within Ω( ln(λ+1)

λ+1 ) in general for λ ≥ 2. There exists a
polynomial-time 2

λ+2 -approximation algorithm for approximating the maximum
profit of Π [4]. However, similar algorithms [4,8] cannot be directly applied to
the RPC problem. This is because such algorithms only approximate the max-
imum profit w(Π), and they do not consider the cardinality and the different
kinds of elements of each subset/match in Π. Algorithms for the maximum set
packing problem (e.g., [13]) cannot apply to the RPC problem either since such
algorithms do not consider general integer weight. Due to the NP-hardness of
the RPC problem and the inapproximability of the weighted set packing prob-
lem, we study two variants of the RPC problem: RPC1 and RPC+. The RPC1
problem variant assumes that for a given instance of the RPC problem, λi = 1
for every driver ηi ∈ D (λ = 1). To solve the RPC1 variant, we use an approach
in solving the maximum matching problem on bipartite graphs. For the RPC+
problem variant, we include one more constraint (called the non-negative profit
constraint) to formulation (i)-(iii) of the RPC problem:

w(ηi, Ri) ≥ 0,∀(ηi, Ri) ∈ Π. (iv)

To solve the RPC+ variant, we use a local search approach similar to the ones
in [4,8].

3 RPC1 Variant - Capacity of One

For λ = 1, the weighted hypergraph H(V,E,w), constructed in Sect. 2, becomes
a weighted bipartite graph. A solution to the RPC problem for λ = 1 (with
c ≤ c∗) is a matching M in H with w(M) ≥ c and |M | maximized. We first give
a polynomial-time exact algorithm (referred to as ExactNF) framework that
uses network flow to find an optimal solution and two practical implementations
of ExactNF.

ExactNF: Exact Algorithm Framework

1. Construct a flow network N(V,E) from H, where V (N) = {s, t} ∪ V (H), s
is the source, and t is the sink. For each ηi ∈ V (H), create an edge (s, ηi) in
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E(N) with cost 0 and capacity 1. For each (ηi, rj) ∈ E(H), create an edge
(ηi, rj) in E(N) with cost −w(ηi, rj) and capacity 1. For each rj ∈ V (H),
create an edge (rj , t) in E(N) with cost 0 and capacity 1. Note that the
maximum amount of flow that can be sent from s to t in N is at most
nmin = min{|V (H) ∩ D|, |V (H) ∩ R|}.

2. For 1 ≤ y ≤ nmin, find a minimum cost flow fy of value y (sent from s to t)
or conclude that there is no flow of value y in N .

3. For an edge e ∈ E(N), let fy(e) be the flow value passing through e in fy.
Let c(fy) =

∑
e∈E(N)|fy(e)>0 w(e) be the cost of flow fy. If a flow fy with

c(fy) ≤ −c is computed in Step 2, then y = argmaxy − c(fy) ≥ c, and output
the edges ∪e∈E(N)|fy(e)>0∧e∈E(H) with positive flow value in fy as solution
M ; otherwise, conclude there is no matching in H with profit at least c.

Theorem 2. Algorithm ExactNF finds a matching M with w(M) ≥ c and |M |
maximized or concludes that there is no matching M with w(M) ≥ c in H in
polynomial time.

A proof of Theorem 2 can be found in [16]. The computational time heavily
depends on how fy is computed. We give two implementations (ExactNF1
and ExactNF2) to compute fy. The first one uses a linear programming (LP)
approach to find fy by a min-cost flow LP formulation, and the second one to
find fy by graph algorithms (details for both algorithms can be found in Sect. 3
of [16]).
ExactNF1: LP Approach for Computing fy. First, find the maximum flow
value y∗ of network N . Then for y = y∗ to 1, find the min-cost flow fy of value
y in N by a min-cost flow LP formulation. Output a solution M , as described
in Step 3 of ExactNF.

Corollary 1. Algorithm ExactNF1 finds a matching M with w(M) ≥ c and
|M | maximized or concludes that there is no matching M with w(M) ≥ c in H
in O(nmin · t(N)) time, where t(N) is the time to find a min-cost flow fy by an
LP solver.

ExactNF2: Graph Algorithm Approach for Computing fy. First, re-
weight the edges of N to be non-negative by Johnson’s shortest path algo-
rithm [9]. Then, find a min-cost flow fy of value y in N using the successive
shortest path algorithm [1]. Output a solution M , as described in Step 3 of
ExactNF.

Theorem 3. Algorithm ExactNF2 finds a matching M with w(M) ≥ c and |M |
maximized or concludes that there is no matching M with w(M) ≥ c in H in
time O(|V (N)||E(N)| + nmin · t(N)), where t(N) is the time for computing an
s − t path in a residual network of N .

Next, we give a simple greedy 1
2 -approximation algorithm which may have

some advantages in practice (referred to as Greedy):

1. Compute a maximum weight matching M ′ in H.
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2. Let M = M ′. For each iteration, select an edge e′′ in H− = H \H+ such that

e′′ = argmaxe∈E(H−)\M | e∩e′=∅ ∀e′∈Mw(e).

If w(M)+w(e′′) ≥ c, then add e′′ to M . Repeat this until such an edge e′′ does
not exist (every edge of H intersects with an edge of M) or w(M)+w(e′′) < c.

Theorem 4. Let M be the matching found by the Greedy algorithm and M∗

be a matching in H with w(M∗) ≥ c and |M∗| maximized. Then, |M |
|M∗| ≥ 1

2 ,
implying Greedy is 1

2 -approximate to RPC1.

A proof of Theorem 4 can be found in [16]. Algorithm Greedy has a running
time of O(t(H) + m log m), where t(H) is the time to find a maximum weight
matching in H and m = |E(H)|. Algorithm Greedy runs faster and achieves a
higher profit than the exact algorithms in some cases, which provides an alter-
native choice.

4 RPC+ Variant

Due to the non-negative profit constraint (iv), only edges in H+ can be selected
to solve the RPC+ problem (formulation (i)-(iv)) Inherently, the profit target
must be non-negative for the RPC+ problem. In this case, a matching M with
w(M) ≥ c and |M | maximized may not be an optimal solution to RPC+. For
instance, a matching M1 = {e1, e2, e3} with three edges may contain only three
passenger vertices of V (H)∩R, whereas a matching M2 = {e4} can contain four
passenger vertices (assuming λ ≥ 4). We need to find a matching M in H such
that the number of passenger vertices V (H) ∩ R contained in M is maximized
and w(M) ≥ c.

We propose a local search algorithm for λ ≥ 2, called LS2. For an edge
e = {ηi} ∪ Ri ∈ E(H), let R(e) = Ri (the passengers of e). For a subset
E′ ⊆ E(H), let R(E′) = ∪e∈E′R(e). For an edge e ∈ E(H), let N(e) be the
set of edges incident to e, and N+(e) = N(e) ∩ E(H+). By constraint (iv), we
only need to consider the subgraph H+. Although the profit target c is an input
parameter of an RPC+ instance, one needs to determine that c should be at most
c∗ (the weight of a maximum weight matching in H) so that it admits a feasible
solution. However, finding c∗ is NP-hard as mentioned in the preliminaries. Note
that as c gets closer to c∗, the chance of having a lower objective value is higher.
We suggest a way to set c to be a reasonable target value. We use a heuristic to
compute a weight c̃ to approximate c∗ and set c ≤ c̃ as a profit target. In fact,
our experiment shows that the total profit of solutions with respect to c is not
too far way from the total profit of solutions with respect to c∗ in practice.

There are two steps in Algorithm LS2. In the first step, LS2 uses the sim-
ple greedy in [4,8] to find an initial weighted set packing (hypergraph match-
ing) to get c̃. In the second step of LS2, a local search is used to improve
the solution computed in the first step. The first step produces a solution
with a 1

2λ -approximation ratio, and the second step gives a solution with a
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2
3λ -approximation ratio when a specific condition on the profit target is met.
Algorithm LS2 is given in the following, starting with M ′ = ∅.

1. In each iteration, select an edge e′′ ∈ E(H+) that does not intersect with
any edge of M ′ and has maximum weight. That is, find an edge e′′ in E(H+)
such that

e′′ = argmaxe∈E(H+)\M ′ | e∩e′=∅ ∀e′∈M ′w(e),

and add e′′ to M ′. Repeat this until every edge of E(H+)\M ′ intersects with
M ′. Determine c by setting c ≤ c̃ = w(M ′).

2. Let M = M ′ be the matching obtained after Step 1. Let A = {e ∈ M |
|R(e)| = 1} and assume A = {a1, . . . , aq} with w(ai) ≤ w(aj) for 1 ≤ i < j ≤
q. An improvement δe of an edge e ∈ M is a subset of edges in N+(e) such
that

– |δe| ≤ 2, all edges of (M ∪ δe) \ {e} are pairwise vertex-disjoint, |R(δe)| >
|R(e)| and w(M) + w(δe) − w(e) ≥ c.

An improvement δe is maximum if |R(δe) \ R(M)| is maximum among all
improvements of e.
(a) If λ = 2, execute the following for-loop for each ai ∈ A.

– For i = 1 to q do, if there is an improvement δai
of ai such that

|R(δai
)| = 4, then perform an augmentation as M = (M ∪ δai

) \ {ai}.
(b) Else if λ ≥ 3, execute the following for-loop for each ai ∈ A.

– For i = 1 to q do, if there is an improvement of ai, then find a
maximum improvement δai

and perform M = (M ∪ δai
) \ {ai}.

Output M .

The analysis of Algorithm LS2 (including Theorem 5) can be found in [16].

Theorem 5. Let M ′ be the matching found by Step 1 of the LS2 algorithm and
M be the final matching found by the LS2 algorithm. Let A = {e ∈ M ′ | |R(e)| =
1}. Let 0 ≤ c ≤ w(M ′) and M∗ be a matching in H+ such that |R(M∗)| is
maximized and w(M∗) ≥ c. |R(M ′)|

|R(M∗)| ≥ 1
2λ for λ ≥ 1, and if c ≤ w(M ′\A)+ 2w(A)

λ+1

for λ ≥ 2, then |R(M)|
|R(M∗)| ≥ 2

3λ .

5 Numerical Experiments

We conduct an extensive empirical study to evaluate our model and algorithms
for RPC1 and RPC+. To the best of our knowledge, there is no practical test
dataset publicly available for the RPC problem. To clear this hurdle, we cre-
ate a simulation dataset by incorporating a real-world ridesharing dataset from
Chicago City with the driver profit model of Uber. A comprehensive and detailed
description of the simulation setup, profit estimation and trip generation can be
found in Sect. 5 of [16].
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5.1 Create Test Instances

The simulated centralized system receives a batch of driver offer trips D and
passenger request trips R in a fixed time interval (total of 72 intervals in a day).
The drivers and passengers along with their parameters are generated based on
a (publicly available) ridesharing dataset in Chicago City. Each data record in
the dataset contains the time and location of a completed trip. For each time
interval, we first generate a set R of passengers and then a set D of drivers,
using the dataset to determine time constraints and the origins and destinations
of drivers and passengers.

To estimate revenue rev(ηi, Ri), travel cost tc(ηi, Ri) and profit w(ηi, Ri) of a
feasible match (ηi, Ri), we utilize the ridesharing dataset and Uber’s cost estima-
tor/price scheme (since the dataset contains both the total amount paid and tips
paid by the passengers and its data are reported by rideshare companies in the
US). The travel duration and distance of SFP(ηi, Ri), vehicle sharing (rideshar-
ing), surge pricing, vehicle type and Uber’s commission are all considered in our
estimation.

Feasible matches are computed from D and R in each time interval. Shortest
paths in our simulation are computed in real-time. To speedup the computation
for practical reasons, we apply a conditional check to see if a driver ηi ∈ D and a
passenger rj ∈ R should be considered in a base match by estimating the travel
distance without computing any shortest path. A base match consists of exactly
one driver and one passenger. We also limit the number of matches a driver ηi

can have. Any driver ηi can have at most 100 base matches and 500 feasible
matches in total; and each passenger can belong to at most 20 base matches.

5.2 Computational Results

A more detailed discussion of the computational results can be found in [16].
All algorithms were implemented in Java, and the experiments were conducted
on an Intel Core i7-6700 processor with 2133 MHz of 12 GBs RAM available to
JVM. All ILP formulations in our algorithms are solved by CPLEX v12.10.1. We
label the algorithm CPLEX uses to solve ILP formulations (i)-(iii) and (i)-(iv)
for RPC1 and RPC+ by Exact. A passenger rj ∈ R is called served if rj ∈ Ri

s.t. match (ηi, Ri) belongs to a solution computed by one of the algorithms.

RPC1 Results. Table 1 shows the overall results for the base case instances
with profit targets c1 = w(M ′), c2 = 0.8 ·w(M ′) and c3 = 0.6 ·w(M ′), where M ′

is a max-weight matching in H for each interval. As can be seen from Table 1,
ExactNF2 has the best running time, and ExactNF1/2 produce optimal solutions
with the highest profits. The Greedy solutions serve about 99.76% of passengers
served by the optimal solutions. We also tested our model and algorithms on
a more practical pricing scheme by considering drivers’ day-to-day operation
costs, such as gas price, maintenance and depreciation. Such tests paint a more
realistic picture, and Greedy has better performances in some cases (please check
Sect. 5.4.1 of [16] for more details).
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Table 1. Performances of algorithms for RPC1 on base case instances, where c′
a, 1 ≤

a ≤ 3, is the sum of target ca of all 72 intervals (in dollars).

Greedy ExactNF1 ExactNF2 Exact

Total # of passengers served in all intervals (c′
1 = $1587436) 109770 109771 109771 109771

(c′
2 = $1269949) 109775 110035 110035 110035

(c′
3 = $952462) 109775 110035 110035 110035

Total profit of served matches in all intervals (c′
1 = $1587436) 1587436 1587436 1587436 1587436

(c′
2 = $1269949) 1587432 1586707 1586707 1465676

(c′
3 = $952462) 1587432 1586707 1586707 1457338

Avg running time (second) per interval (c′
1 = $1587436) 5.573 6.249 4.765 7.030

(c′
2 = $1269949) 5.670 6.223 4.484 6.591

(c′
3 = $952462) 5.765 6.379 4.565 6.298

Total number of drivers and passengers generated, respectively 124340 and 126625

RPC+ Results. Recall that the 2
3λ -approximation algorithm that solves RPC+

is labeled as LS2 and the first step of LS2 is labeled as SimpleGreedy. For
this variant, the profit target c is upper bounded by the weight w(M ′) of the
matching M ′ found by SimpleGreedy. Recall that A = {e ∈ M ′ | |R(e)| = 1},
as defined in the description of LS2. We set a lower bound LB = min{w(M ′ \
A) + 2w(A)/(λ + 1), 0.6w(M ′)}. We tested three profit targets c1 = w(M ′),
c2 = 0.5 · (w(M ′) − LB) + LB and c3 = LB. The overall results are shown
in Table 2. The performances of SimpleGreedy and LS2 are about 89.25% and
90.04% of the exact algorithm (Exact), in the total number of passengers served.
The running time of LS2 is only 0.031 s longer than that of SimpleGreedy on
average. The running time of Exact is 470–630 times longer than that of LS2,
depending on the profit target. For very large instances though, Exact may not
be suitable for real-time computation.

Table 2. Performances of algorithms for RPC+ on base case instances. For 1 ≤ a ≤ 3,
c′

a =
∑18

h=1

∑4
ht=1 ca (in dollar).

SimpleGreedy LS2 Exact

Total # of passengers served in all intervals (c′
1 = $845817) 63554 64099 71197

(c′
2 = $676653) 63554 64118 71208

(c′
3 = $507490) 63554 64118 71208

Total profit of served matches in all intervals (c′
1 = $845817) 845817 848677 846893

(c′
2 = $676653) 845817 848271 702130

(c′
3 = $507490) 845817 848271 681472

Avg running time (second) per interval (c′
1 = $845817) 0.0445 0.0761 47.880

(c′
2 = $676653) 0.0386 0.0708 33.279

(c′
3 = $507490) 0.0397 0.0695 35.664

Total number of drivers and passengers generated, respectively 40573 and 126625
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Discussion. We also computed optimal solutions (maximum weight matchings
in H) to the RP problem using some RPC1 and RPC+ test instances. The
full results can be found in [16]. From Table 3, optimal solutions to RPC1 and
RPC+ serve about the same and 8.02% more passengers than the respective RP
optimal solutions. The profits of the optimal solutions for RPC1 and RPC+ are
reasonably close to that of the RP optimal solutions.

Table 3. Total number # of passengers served and total profit $ of served matches in
all intervals. (*) Optimal solutions to RP. (�) Optimal solutions to RPC1 (for ExactNF
and c2) and RPC+ (for Exact and c1).

RPC1 base RPC+ base RPC1 base RPC+ base

* #109770 #65913 � #109771 #71197

$1587436 $893879 $1586707 $846893

Based on the RPC1 and RPC+ results, our algorithms are effective for achiev-
ing the optimization goal of RPC in practical scenarios. Although the RPC
problem is NP-hard, the exact algorithms are efficient to find optimal solutions
(can be practical, depending on applications). Algorithms Greedy and LS2 can
achieve 96.1% and 90.04% of the optimal solutions to RPC1 and RPC+, respec-
tively, in the number of passengers served. Furthermore, the average occupancy
rate is 1.89 and close to 2 during peak hours for the exact solutions to RPC1.
For RPC+, the average occupancy rates for Exact and LS2 are 2.76 and 2.59,
respectively (the detailed results can be found in [16]). Both these numbers are
better than the reported occupancy rate in the US, which was 1.5 in 2017 [7].

Our model of the RPC problem provides a new framework to incorporate a
flexible pricing scheme to maximize the number of passengers served while meet-
ing a profit target. The RPC problem is a more complex variant of the maximum
set packing problem, and hence, it is NP-hard. We give a polynomial-time exact
algorithm (with two different practical implements) and approximation algo-
rithms for special cases (RPC1 and RPC+) of the problem. Experimental results
show that practical profit (price) schemes can be incorporated into our model
and suggest that there is potential in profit-maximizing/profit-incentive MoD
platforms by utilizing ridesharing.

The RPC+ variant considers only matches with non-negative profit, which
may cover the MoD systems’ profit-incentive, but it may impose a limit on
improving the number of passengers served. It is worth developing algorithms
for more general cases where matches with negative profit are also considered
although the local search idea of LS2 may not be easily apply to this general
case. This is because an improvement in LS2 now has to carefully consider both
the weight w(M) and |R(M)| of the current matching M at the same time.

Acknowledgement. The authors thank the reviewers for their constructive com-
ments.
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Abstract. Motivated by the carpooling services, we investigate a new
and more challenging scenario for carpooling and model it as the
Multi-candidate Carpooling Routing Problem (MCRP). The MCRP can
be regarded as a new variant of TSP called Generalized Precedence-
Constaint Asymmetric Subset Traveling Salesman Path Problem (GPAS-
TSPP) and we construct complexity hierarchies for the related problems.
We propose a 4-approximation algorithm for its special case Carpooling
Routing Problem (CRP), followed by a (5 + ε)-approximation algorithm
for MCRP on the planar graph. We also design an exact algorithm based
on dynamic programming to solve the general MCRP, serving as a bench-
mark. To the best of our knowledge, we are the first to explore the com-
plexity hierarchy of carpooling problems in the TSP family and give
constant-approximation algorithms for these new practical variants.

Keywords: Carpooling · TSP · Approximation · Exact Algorithm

1 Introduction

As a low-carbon way to travel, carpooling services have proliferated in recent
years, which provides passengers and drivers with a more economical and efficient
travel experience [17]. Route planning is an essential problem for carpooling,
requiring determining a sequence with the minimum cost for a car driver to pick
up and drop off multiple passengers. It forms complex combinatorial optimization
problems different from other routing problems [23]. In this paper, we investigate
a more challenging scenario in which the driver can choose from several possible
candidate pick-up/drop-off locations for each passenger.

We explain the application scenario of the problem with a toy example shown
in Fig. 1. A car, denoted as c, starts from position pc and picks up passenger 1
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Fig. 1. An Example of Carpooling Routing Problem

and passenger 2 from their respective pick-up points and drops them off at their
corresponding drop-off points. Each pick-up point and drop-off point has a set of
candidate points for the driver to choose from. We can find the optimal pick-up
and drop-off route, as shown by the red path. However, the selection of pick-up
points and the sequence of pick-ups and drop-offs greatly affect the length of the
route. When we exchange the sequence of candidate pick-ups and drop-offs from
(pc, p2o, p

1
o, p

2
d, p

1
d) (red line) to (pc, p1o, p

2
o, p

1
d, p

2
d) (purple line), we find that the

total pick-up and drop-off length increases. At the same time, if we select the
wrong candidate point, for example, changing passenger 2’s pick-up point from
p
2(2)
o to p

2(1)
o (green line), the driver needs to turn around to pick up passenger

2, resulting in the wasted distance.
Therefore, both the selection of candidate pick-up and drop-off positions and

their order have a significant impact on the length of the final route. Tiny modifica-
tions can reduce the total route weight greatly since the car could avoid the U-turn,
detours, and so on [14]. We delve into this multi-candidate scenario, providing the-
oretical proof and algorithms. The main contributions are summarized as follows:

– We formulate the Multi-Candidate Carpooling Routing Problem (MCRP)
problem and conduct it as a new variant of TSP by giving the complexity
hierarchy (see Sect. 2).

– We give 4 approximation algorithms for the symmetric version of CRP by
shortcut two subgraph solutions based on the 1.5-approximation s − t path
TSP algorithm (see Sect. 4).

– We design a (5 + ε)-approximation algorithm for MCRP with symmetric and
planar constraints, which combines a (1+ ε) approximation algorithm for the
group Steiner tree (see Sect. 5).

– We put forward an O(n2 · 22l) exact algorithm for the general MCRP by
improving the dynamic programming method for the TSP problem without
increasing the time complexity (see Sect. 6).

2 Problem Formulation and Complexity Hierarchy

We model the road network as a directed graph G = (V,E,W ), where vi ∈ V
represents the road intersection, and eij = (vi, vj) ∈ E represents the road with
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a weight wij = w(vi, vj) ∈ W . The weight wij ≥ 0 could be defined as road
length, travel time, or other customized metrics, and we take the road length as
an example for the following discussion. We first introduce some basic concepts.

2.1 Basic Concepts and Definitions

Definition 1 (Carpooling Order). A carpooling order including a car and
multiple passengers is defined as {l, pc, p

′
c,P} (referred as the order in the fol-

lowing). The pc and p′
c represent the start position and destination of the car.

The l represents the number of passengers in the order. The P =
⋃l

i=1{P i
o, P

i
d}

represents the set of positions where the car can pick up or drop off passengers.
The P i

o and P i
d are the set of positions where the car can pick up and drop off

the i-th passenger correspondingly. (All positions are denoted by the vertexes in
the graph, i.e. pc, p

′
c ∈ V , ∀i, P i

o, P
i
d ⊂ V .)

Then we define the concept of multiple candidate points below:

Definition 2 (Multiple Candidate Points). Each passenger may have mul-
tiple candidate pick-up and drop-off positions. Denote the number of pick-up and
drop-off positions for the i-th passenger in a carpooling order as ki

o and ki
d. The

sets of candidate pick-up and drop-off points are P i
o = {p

i(1)
o , p

i(2)
o , · · · , p

i(ki
o)

o }
and P i

d = {p
i(1)
d , p

i(2)
d , · · · , p

i(ki
d)

d }, respectively.

The carpooling service recommends a sequence of the pick-up and drop-off
positions of passengers to guide the driver in completing the carpooling request.
We give the definition of a carpooling sequence as follows:

Definition 3 (Carpooling Sequence). For a given order {l, pc, p
′
c,P}, where

P =
⋃l

i=1{P i
o, P

i
d}, a carpooling sequence S = 〈pc, p1, p2, · · · , p2l, p

′
c〉 is a

sequence of 2l + 2 positions that satisfies the following constraints:
Completeness constraint: ∀i = 1, 2, · · · , l,∃pj ∈ {p1, p2, · · · , p2l}, pj ∈ P i

o

and ∃pj′ ∈ {p1, p2, · · · , p2l}, pj′ ∈ P i
d.

Precedence constraint: ∀i = 1, 2, · · · , l, pj ∈ P i
o, pj′ ∈ P i

d , there is j < j′.

The completeness constraint is to guarantee all passengers are delivered to
their destinations. The precedence constraint is to guarantee the pick-up position
pio precedes the drop-off position pid.

Definition 4 (Length of Sequence). The length L(S) for a carpooling
sequence S = 〈pc, p1, p2, · · · , p2l, p

′
c〉 is defined as L(S) = dist(pc, p1) +

dist(p2l, p′
c) +

∑2l−1
i=1 dist(pi, pi+1), where the distance function dist(vi, vj)

denotes the length of the shortest path from vi to vj in the graph G = (V,E,W ).
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2.2 Problem Formulation and NP Hardness Proof

Based on the four concepts above, we give the formal statements of the two
problems we study in this work.

Definition 5 (Carpooling Routing Problem, CRP). Given a road network
G = (V,E,W ). For a carpooling order (l, pc, p′

c,P), where P =
⋃l

i=1{{pio}, {pid}}.
Find a carpooling sequence with the minimum length in G.

Definition 6 (Multi-Candidate Carpooling Routing Problem, MCRP).
Given a road network G = (V,E,W ). For a carpooling order (l, pc, p′

c,P, ), where

P =
⋃l

i=1{P i
o, P

i
d}, P i

o = {p
i(1)
o , p

i(2)
o , · · · , p

i(ki
o)

o }, P i
d = {p

i(1)
d , p

i(2)
d , · · · , p

i(ki
d)

d },
and the largest number of candidate points is k = maxi{ki

o, k
i
d}. Find a carpooling

sequence with the minimum length in graph G.

Theorem 1. The CRP and MCRP are NP-Hard.

Proof. Since CRP is a special case of MCRP where k = 1, we can just prove
CRP is NP-Hard by Karp-reduction from the TSP. To complete the proof, the
following discussion considers the decision versions of all mentioned optimization
problems, and we skip the derivations regarding thresholds K to provide YES or
NO answers for Karp’s reduction. For any TSP instance ITSP defined on a graph
G = (V,E,W ), where V = {v1, v2, · · · , vn}, we can construct a corresponding
CRP instance ICRP with road network G and carpooling order (n−1, v1, v1,P),
where P = {{v2}, {v2}, {v3}, {v3}, · · · , {vn}, {vn}}. Then ICRP ≡ ITSP .

2.3 Problem Generalization to Variants of TSP

Motivated by the reduction process from TSP to CRP, we find that CRP
and MCRP can be regarded as variants of TSP. We give canonical names to
CRP and MCRP for further investigation and analysis. CRP can be regarded
as Precedence-Constraints Asymmetric Subset Traveling Salesman Path Prob-
lem (PAS-TSPP), and MCRP can be regarded as Generalized Precedence-
Constraints Asymmetric Subset Traveling Salesman Path Problem (GPAS-
TSPP).

Definition 7 (GPAS-TSPP) Let G = (V,E,W ) be a directed graph, with
vertex set V = {vi|i = 1, 2, · · · , n}, edge set E = {eij = (vi, vj)|vi, vj ∈ V }
(|E| = m), and weights W = {wij |eij ∈ E}. For a category set C =
{C1, C2, · · · , C|C|}, with |C|, Ci = {ci,1, ci,2, · · · , ci,|Ci|}, Ci ⊂ V, 1 ≤ i ≤
|C|,Ci ∩Cj = ∅ for ∀(i, j) such that i = j, and a precedence constraints set Pr =
{(Co1, Cd1), (Co2, Cd2), · · · }. Find a shortest sequence Sg = 〈v1, v2, · · · , v|C|〉 s.t.
① Sg ∩ Ci = ∅, for 1 ≤ i ≤ |C| ② ∀(Coi, Cdi) ∈ Pr, if vj ∈ Coi, vj′ ∈ Cdi, then
vj appears later than vj′ in Sg.
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The canonical name for this problem implies its differences with the orig-
inal TSP, which we explain as follows: ① Generalized: There is a category
set with disjoint subsets of V as its elements, C = {C1, C2, · · · , C|C|}, with
Ci = {ci,1, ci,2, · · · , ci,|Ci|}, Ci ⊂ V, 1 ≤ i ≤, Ci ∩ Cj = ∅ for ∀(i, j) such that
i = j. ② Precedence Constraints: There is a precedence constraint set for the
categories Pr = {(Co1, Cd1), (Co2, Cd2), · · · }. Where the vertex in subset Coi is
required to appear earlier than the vertex in subset Cdi. ③ Asymmetric: w(v1, v2)
may not equals w(v2, v1). ④ Subset:

⋃|C|
i=1 Ci is a subset of V that may not equal

V . ⑤ Path: Find a path instead of a cycle, with a given start and end.
PAS-TSPP is a special case of GPAS-TSPP where ∀i, |Ci| = 1.

2.4 Complexity Hierarchy of Related TSP Variants

Fig. 2. Complexity Hierarchy of TSP and Its Variants: All Problems are NP-Hard

The GPAS-TSPP problem can be divided into four basic variants of the Trav-
eling Salesman Problem (TSP), including ① Traveling Salesman Path Problem
(TSPP), ② Generalized Traveling Salesman Problem (GTSP), ③ Asymmetric
Traveling Salesman Problem (ATSP), and ④ Precedence Constrained Traveling
Salesman Problem (PCTSP).

Figure 2 provides a complexity hierarchy for TSP variants based on the num-
ber of additional variances. The first level is TSP itself. The second level encom-
passes the four basic variants. The third level includes six variants formed by
combining two variances, while the fourth level consists of problems with three
or more variances. We review the literature on approximation algorithms for
these variants. Note that, we do not take Subset TSP that can be polynomial
reduced to TSP as a class of variants. All discussions are based on metric graphs.

For both TSP and TSP-Path, 1.5-approximation algorithms have been devel-
oped [13], classifying them as APX problems. The best-known approximation
ratios (not special cases) for GTSP [10], ATSP [1], GTSPP, and ATSPP are
O(log n), indicating they fall under the category of LOG-APX. PCTSP and
its path version SOP can be approximated within O(n), making them part of
POLY-APX. However, for the remaining problems in Fig. 2, there are currently
no known approximation algorithms, and we label them as NPO problems. This
highlights a gap between the existing approximation algorithms and the prob-
lems we are studying.
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3 Discussion of Previous Work

Starting from TSP and TSP-Path, in this section we will discuss the approximate
algorithms for the GTSP, ATSP, and PCTSP. Table 1 provides an overview of
significant research contributions, along with their approximation ratios.

Table 1. A Summary of TSP and Its Variants

Problem Solution Constraint Approximation

TSP Math Program 1971 [11] – 2
DAIO 1991 [13] – 3/2
IPCO 2023 [15] – 3/2 − ε

TSP-Path Oper. Res. Lett. 1991 [13] – 5/3
FOCS 2016 [19] – 3/2 +1/34
SODA 2019 [22] – 3/2

GTSP J. Algorithms 2000 [10] Geometry O(log2 n log log n log m)
ICALP 2005 [7] Geometry 9.1α + 1
Proc. Steklov I. Math 2017 [16] Geometry 3/2 + 8

√
2 + ε

ATSP Networks 1982 [9] – log(n)
SODA 2010 [1] – O(log n/ log log n)
J. ACM 2020 [21] Relax Connectivity O(1)

PCTSP J. Discrete Algorithms 2013 [3] Linear Order 2.5 − 2/k

TSP and TSP-Path. Serdyukov [20] and Christofides [6] give a 3/2 approxima-
tion algorithm for the symmetric TSP with triangle inequality. The Held-Karp
relaxation, a well-known LP relaxation of the TSP, is introduced by Held and
Karp [11], which provides an approximation ratio of 2. Klein Karlin [15] intro-
duces a maximum entropy algorithm with a deterministic approach, achieving a
3/2 − ε approximation ratio. While TSP-Path shares similarities with the TSP,
its non-cyclic nature brings difficulty in finding optimal solutions. Hoogeveen [13]
proposes a natural variant of Christofides’ algorithm for TSP-Path and achieved
a 5/3 approximation ratio. Sebo and Vygen [19] enhance Christofides’ trees by
removing edges, resulting in a 3/2+1/34 approximation. Zenklusen [22] utilized
dynamic programming techniques to obtain a 1.5 approximation for TSP-Path.
GTSP and Group Steiner Tree. Garg et al. [10] propose a randomized algo-
rithm for the group Steiner tree problem, improving the approximation ratio for
GTSP and achieving an approximation ratio of O(log2 n log log n log m). Elbas-
sioni et al. [7] introduce geometric constraints to the GTSP problem and pro-
vide a unified framework that encompasses the TSP with neighborhoods and the
group Steiner tree problem, with an approximation ratio of (9.1α + 1). Addi-
tionally, Khachai et al. [16]. There is also work that presents an (1.5+8

√
2+ ε)-

approximation algorithm for GTSP under geometric constraints. Solutions to the
group Steiner tree problem can be applied for GTSP [10], and previous research
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gives appropriate approximations on it. The group Steiner tree problem with
geometry constraints can achieve O

(
log2 n log k log log n

)
approximation with

O(log n log log n) complexity by derandomizing approximation algorithm [4,10].
And via spanner bootstrapping and prize collecting, Bateni et al. [2] gives a PATS
algorithm with (1 + ε) approximation with planar constraints, which serves as
an inspiration for our problem. Recent research has heavily relied on methods
such as Variable Neighborhood Search [8], random global search optimization
[18], and Lin-Kernighan adaptation techniques [12].

4 A 4-Approximation Algorithm for Symmetric CRP

Based on the discussion above, we can see that it is quite difficult to get a
good approximation for the original CRP and MCRP. In this section, we give 4
approximation algorithm of the symmetric version of CRP. The asymmetry of
road networks is low and can be approximated as a symmetric problem.

4.1 Existing 1.5-Approximation Algorithm for the TSP-Path

There is a 1.5-approximation algorithm for the symmetric s− t path TSP [22]. It
utilizes a variation of the dynamic programming idea introduced by Traub and
Vygen and exploits a seminal result of Karger on the number of near-minimum
cuts. For the asymmetric situation, there is a O(log n)- approximation [5], which
is based on a combination of local search and dynamic programming. It first con-
structs a feasible solution using a local search algorithm and then uses dynamic
programming to improve the solution and obtain the final approximation. We
denote the approximation algorithm for s − t path TSP as Ap(G, s, t).

– Input: G = (V,E,W ) is a graph. s ∈ V is the start point of the path. t ∈ V
is the end point of the path.

– Output: A sequence Sp = 〈v1, v2, · · · , vn〉, where n = |V |, v1 = s, vn = t and
the length of Sp, denoted as L(Sp).

4.2 Approximation Algorithm for Symmetric CRP

We develop a constant-approximation ratio algorithm for CRP in a metric sym-
metric graph G = (V,E,W ), based on the existing approximation algorithm for
Ap. The complexity of the algorithm is O(n3) + l · O(Ap).

4.3 Approximation Ratio Analysis for Symmetric CRP

For the convenience of approximation ratio analysis, we use the following symbols
in this section. OPT1 and OPT2 represent the length of the optimal solution for
the TSP-Path on G1 and G2 in Algorithm 1 with pc as its start point and arbi-
trary destination. OPT represents the length of the optimal solution for the sym-
metric CRP. For the proof of the approximation ratio, we first present a lemma
derived from the triangle inequality (the proof is provided in the appendix).
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Algorithm 1: Approximation Algorithm for Symmetric CRP
Input: G = (V,E,W ), a carpooling order (l, pc, p′

c, P ).
Output: A Carpooling Sequence S.

1 Run Floyd-Warshall algorithm on G to get pair-wise shortest distances;
2 G′ ← (V ′, E′,W ′), with V ′ = P ∪ {pc, p′

c} as its vertex set, pair-wise
shortest distance as edge weight;

3 G1 ← vertex induced subgraph of G′ with {pc, p
1
o, · · · , plo} as vertex set;

4 G2 ← vertex induced subgraph of G′ with {p′
c, p

1
d, · · · , pld} as vertex set;

5 for i ← 1 to l do
6 S

(i)
p1 ← Ap(G1, pc, p

i
o), S

(i)
p2 ← Ap(G2, p

i
d, p

′
c);

7 S1 ← argminiL(S(i)
p1 ), S2 ← argminiL(S(i)

p2 );
8 S ← Concatenate S1 and S2;

Lemma 1. In a metric graph G, the shortest path containing a set of point
P = {p1, p2, · · · , pl} is no shorter than the shortest path containing a set P ′ =
{p′

1, p
′
2, · · · , p′

l′}, if P ′ ⊂ P .

Proof. Denote the shortest path in G that contains all points in P as S =
〈pi1 , pi2 , · · · , p′

j1
, · · · , p′

j2
, · · · , p′

jl′
, · · · 〉, where p′

j1
, p′

j2
, · · · , p′

jl′
are the point that

belong to P ′.
By the triangle inequality in metric graph ∀(vi, vj , vk), w(vi, vk) ≤

w(vi, vj) + w(vj , vk), we have L(〈p′
j1

, p′
j2

〉) ≤ L(〈p′
j1

, · · · , p′
j2

〉), L(〈p′
j2

, p′
j3

〉) ≤
L(〈p′

j2
, · · · , p′

j3
〉), · · · , L(〈p′

jl′−1
, p′

jl′
〉) ≤ L(〈p′

jl′−1
, · · · , p′

jl′
〉).

Let S1 = 〈p′
j1

, p′
j2

, · · · , p′
jl′

〉. We have L(S1) ≤ L(S). Let S′ be the shortest
path containing the set P ′. Since S1 is a feasible path in G containing P ′, L(S′) ≤
L(S1). Therefore, L(S′) ≤ L(S1) ≤ L(S).

Theorem 2. The approximation ratio for algorithm 1 is 4.

Proof. Let S1 = 〈pc, v(1)
1 , v

(1)
2 , v

(1)
l 〉, S2 = 〈v(2)

1 , v
(2)
2 , v

(2)
l , p′

c〉. The length of the
sequence output by Algorithm 1 is L(S) = L(S1) + L(S2) + L(〈vl

o, v
1
d〉).

Since the vertex of G1, G2, and {vl
o, v

1
d} are all subsets of P , according to

lemma 1, we have OPT1, OPT2, L(〈vl
o, v

1
d〉) ≤ OPT . Denote the approximation

ratio for algorithm Ap as γ, we have L(S1) ≤ γOPT1 and L(S2) ≤ γOPT2.
Therefore, L(S1) + L(S2) ≤ γ(OPT1 + OPT2) ≤ 2γOPT .

L(S) ≤ (2γ + 1)OPT , since the approximation ratio for s − t path TSP is
γ = 1.5, we have L(S) < 4 · OPT . The approximation ratio for algorithm 1 is 4.

5 A (5 + ε)-Approximation Algorithm for Planar MCRP

5.1 Existing PTAS for Planar Group Steiner Tree

An approximation scheme for GTSP can be obtained with solutions for the group
Steiner tree problem. By applying the classical tree-doubling operation [10], we
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can create a generalized traveling salesman tour that requires no more than twice
the cost of the group Steiner tree. We denote the approximation algorithm for
the group Steiner tree as Ags(G,C).

– Input: A symmetric planar graph G = (V,E,W ), a category set C =
{C1, C2, · · · , C|C|}, for 1 ≤ i ≤ |C|, Ci = {ci,1, ci,2, · · · , ci,|Ci|}, Ci ⊂ V

– Output: A Steiner tree T = {Vg, Eg}, where Vg = {v1, v2, · · · , v|C|} satisfying
Vg ∩ Ci = ∅, for 1 ≤ i ≤ |C|, and the length of this tree ( sum of the weights
of Eg), denoted as L(Eg).

We apply the approximation algorithm in [2] to handle the planar group
Steiner tree problem. The algorithm overcomes the barrier of designing a PTAS
(Polynomial-Time Approximation Scheme) for this challenging problem by intro-
ducing the “spanner bootstrapping” technique. The key steps of the algorithm
include constructing a spanner that approximates the optimal solution, as well
as a series of carefully designed reward collection processes that balance the cost
and benefit of reaching or avoiding specific terminal nodes. The algorithm can
find a (1+ε)-approximation solution in polynomial time, where ε is an arbitrarily
small positive constant.

5.2 Constant-Approximation Algorithm Design for MCRP

We develop a (5+ ε)-approximation ratio algorithm for MCRP in a metric sym-
metric planar graph based on the existing (1 + ε)-approximation algorithm for
the group Steiner tree Ags. The complexity of the algorithm is O(n) + O(Ags).

Algorithm 2: (5 + ε)-Approximation Algorithm for Planar MCRP
Input: G = (V,E,W ), a carpooling order (l, pc, p′

c,P).
Output: A Carpooling Sequence SG.

1 C ← {{pc}, {p′
c}, P 1

o , P 2
o , · · · , P l

o, P
1
d , P 2

d , · · · , P l
d};

2 T ← Ags(G,C);
3 SG1 ← Construct a cycle from T by traversing each edge in T twice;
4 //(Tree doubling to construct a cycle with no more than twice length)
5 SG ← Traverse SG1 twice from pc and add p′

c at the end.

5.3 Approxiamtion Ratio Analysis for MCRP

For the convenience of approximation ratio analysis, we use the following symbols
in this section. OPTT represents the length of the optimal solution for the group
Steiner tree on C in Algorithm 2. OPTG denotes the length of the optimal
solution for the symmetric MCRP.

Theorem 3. The approximation ratio for algorithm 2 is (5 + ε).
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Proof. Firstly, we can see that SG is a feasible solution. Since SG1 contains vertex
in ∀P i

o, P
i
d ∈ P. SG contains double SG1 so that we can pick up passengers at

the vertexes in P i
o for the first round and drop off them at the vertexes in P i

d for
the second round and go to the destination p′

c at last.
The length of the sequence output by Algorithm 2 is L(SG) = 2L(SG1) +

L(〈pc, p′
c〉) = 4L(T ) + L(〈pc, p′

c〉). Since all solutions for the GTSP-path on C

are also group Steiner trees on C. We have OPTT ≤ OPTG. By the triangle
inequality, L(〈pc, p′

c〉) ≤ OPTG since the solution for MCRP starts from pc and
ends at p′

c and 〈pc, p′
c〉 is a shortcut of it.

Denote the approximation ratio for algorithm Ags as γ, we have L(T ) ≤
γOPTT . Therefore, L(SG) = 4L(T ) + L(〈pc, p′

c〉) ≤ 4γOPTT + OPTG ≤
4γOPTG +OPTG = (4γ +1)OPTT . Since the approximation ratio for the group
Steiner tree is γ = 1 + ε, we have L(SG) < (5 + ε)OPTG. The approximation
ratio for algorithm 2 is (5 + ε).

6 An Exact Algorithm for MCRP

In this section, we design an exact algorithm for MCRP based on dynamic
programming, serving as a practical solution for real applications with several
passengers. We extend the dynamic programming algorithm for the TSP to
suit this problem. To make the algorithm concise, we define the output as the
length of the shortest sequence. The sequence itself can be easily obtained by
backtracking OPT . The complexity of this exact algorithm is O(n2 · 22l).

Algorithm 3: Dynamic Programming for MCRP
Input: G = (V,E,W ), a carpooling order (l, pc, p′

c,P).
Output: The shortest length of a Carpooling Sequence.

1 OPT [pc][0] ← 0
2 for s ← 1 to 22l do
3 Initialize OPT [v][s] ← +∞,∀v ∈ V ;
4 Ps ← get the s th subset of P
5 foreach Ci ∈ Ps do
6 if Ci = P i′

o and P i′
d ∈ P then

7 continue; //(Skip invalid states)
8 i′ ← the serial number of subset Ps − {Ci};
9 foreach v ∈ Ci do

10 foreach Cj ∈ Ps − {Ci} do
11 tmp ← min∀u∈Cj

{OPT [u][i′]) + w(u, v)};
12 OPT [v][s] ← min{OPT [v][s], tmp};

13 return min∀p∈⋃
i P

i
o∪P i

d
OPT [p][22l] + w(p, p′

c)

State function OPT (v,P′) denotes the minimum cost to pass the vertexes
of the categories in the subset P

′ ⊂ P and arrive at v that ∃Ci ∈ P
′, v ∈ Ci,
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satisfying the precedence constraint: If ∃P i′
d ∈ P

′, then Ci = P i′
o .

OPT (v,P′) = min
∀u∈Cj ,Cj∈P′−{Ci}

OPT (u,P′ − {Ci}) + w(u, v).

This state transition function holds for ∀v ∈ Ci that satisfies the precedence
constraint. To traverse all of the possible legal states, we need to enumerate the
subsets of P in an order that the required states are all obtained when calculating
OPT (v,P′). We order the subsets of P by the binary representations of whether
it contains each of the elements. Let P = {P 1

o , P 2
o , · · · , P l

o, P
1
d , P 2

d , · · · , P l
d}, we

represent a subset P
′ = {P i1

o , P i2
o , · · · , P ik

o , P
i′1
d , P

i′2
d , · · · , P

i′
k′

d } with its serial
number

∑k
j=1 2ij +

∑k′

j=1 2i
′
j+l. The time complexity to translate a subset to a

number is O(l), and vice versa.

7 Conclusion and Future Work

We formulate the MCRP for a new carpooling scenario and classify it into a
family of TSP variants. Then we propose a 4-approximation algorithm for its
special case CRP, and design a (5 + ε)-approximation algorithm for MCRP on
the planar graph. We also give an exact dynamic programming algorithm for the
general MCRP. To the best of our knowledge, we are the first to explore such
carpooling problems from the perspective of the TSP family and give constant-
approximation algorithms for these new practical variants. The proposed approx-
imation algorithm for MCRP can be generalized to the general GPAS-TSPP with
parameterized constraints on asymmetry and the height of the precedence con-
straint tree. Hopefully, we can find a polynomial-approximation algorithm for it,
which remains as future work.
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with simple precedence constraints. J. Discrete Algorithms 21, 32–40 (2013)

4. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: deterministic
approximation algorithms for group steiner trees and k-median. In: ACM Sympo-
sium on Theory of Computing (STOC), pp. 114–123 (1998)

5. Chekuri, C., Pál, M.: An O(log n) approximation ratio for the asymmetric traveling
salesman path problem. Theory Comput. 3(1), 197–209 (2007)

6. Christofides, N.: Worst-case analysis of a new heuristic for the travelling sales-
man problem. Carnegie-Mellon University Pittsburgh Pa Management Sciences
Research Group, Technical Report (1976)



Approximation for Multi-Candidate Carpooling Routing Problem 391

7. Elbassioni, K., Fishkin, A.V., Mustafa, N.H., Sitters, R.: Approximation algorithms
for Euclidean group tsp. In: International Colloquium on Automata, Languages and
Programming (ICALP), pp. 1115–1126 (2005)

8. Fatih Tasgetiren, M., Suganthan, P.N., Pan, Q.K.: An ensemble of discrete differ-
ential evolution algorithms for solving the generalized traveling salesman problem.
Appl. Math. Comput. 215(9), 3356–3368 (2010). https://doi.org/10.1016/j.amc.
2009.10.027

9. Frieze, A.M., Galbiati, G., Maffioli, F.: On the worst-case performance of some
algorithms for the asymmetric traveling salesman problem. Networks 12(1), 23–39
(1982)

10. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

11. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning
trees. Oper. Res. 18(6), 1138–1162 (1970)

12. Helsgaun, K.: Solving the equality generalized traveling salesman problem using
the Lin–Kernighan–Helsgaun Algorithm. Math. Program. Comput. 7(3), 269–287
(2015). https://doi.org/10.1007/s12532-015-0080-8

13. Hoogeveen, J.: Analysis of christofides’ heuristic: some paths are more difficult
than cycles. Oper. Res. Lett. 10(5), 291–295 (1991)

14. Hu, G., Shao, J., Shen, F., Huang, Z., Shen, H.T.: Unifying multi-source social
media data for personalized travel route planning. In: ACM International Confer-
ence on Research and Development in Information Retrieval (SIGIR), pp. 893–896
(2017)

15. Karlin, A.R., Klein, N., Oveis Gharan, S.: A deterministic better-than-3/2 approx-
imation algorithm for metric tsp. In: International Conference on Integer Program-
ming and Combinatorial Optimization (IPCO), pp. 261–274 (2023)

16. Khachai, M.Y., Neznakhina, E.: Approximation schemes for the generalized trav-
eling salesman problem. Proc. Steklov Inst. Math. 299, 97–105 (2017)

17. Liu, H., Luo, K., Xu, Y., Zhang, H.: Car-sharing problem: online scheduling with
flexible advance bookings. In: Annual International Conference on Combinatorial
Optimization and Applications (COCOA), pp. 340–351 (2019)

18. Schmidt, J., Irnich, S.: New neighborhoods and an iterated local search algorithm
for the generalized traveling salesman problem. EURO J. Comput. Optim. 10,
100029 (2022). https://doi.org/10.1016/j.ejco.2022.100029

19. Sebo, A., Van Zuylen, A.: The salesman’s improved paths: A 3/2+ 1/34 approx-
imation. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp.
118–127 (2016)

20. Serdyukov, A.I.: Some extremal bypasses in graphs. Diskretnyi Analiz i Issledovanie
Operatsii 17, 76–79 (1978)

21. Svensson, O., Tarnawski, J., Végh, L.A.: A constant-factor approximation algo-
rithm for the asymmetric traveling salesman problem. J. ACM 67(6), 1–53 (2020)

22. Zenklusen, R.: A 1.5-approximation for path TSP. In: ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1539–1549 (2019)

23. Zheng, T., Jiang, Y.: Driver-rider matching and route optimization in carpooling
service for delivering intercity commuters to the high-speed railway station. Expert
Syst. Appl. 227, 120231 (2023)

https://doi.org/10.1016/j.amc.2009.10.027
https://doi.org/10.1016/j.amc.2009.10.027
https://doi.org/10.1007/s12532-015-0080-8
https://doi.org/10.1016/j.ejco.2022.100029


Maximizing Utilitarian and Egalitarian
Welfare of Fractional Hedonic Games

on Tree-Like Graphs

Tesshu Hanaka1(B) , Airi Ikeyama2, and Hirotaka Ono2

1 Kyushu University, Fukuoka, Japan
hanaka@inf.kyushu-u.ac.jp

2 Nagoya University, Nagoya, Japan
ikeyama.airi.f4@s.mail.nagoya-u.ac.jp, ono@nagoya-u.jp

Abstract. Fractional hedonic games are coalition formation games
where the utility of a player is determined by the average value they
assign to the members of their coalition. These games are a variation of
graph hedonic games, which are a class of coalition formation games that
can be succinctly represented. Due to their applicability in network clus-
tering and their relationship to graph hedonic games, fractional hedonic
games have been extensively studied from various perspectives. How-
ever, finding welfare-maximizing partitions in fractional hedonic games
is a challenging task due to the nonlinearity of utilities. In fact, it has
been proven to be NP-hard in general and can be solved in polynomial
time only for a limited number of graph classes, such as trees. This
paper presents (pseudo)polynomial-time algorithms to compute welfare-
maximizing partitions in fractional hedonic games on tree-like graphs.
We consider two types of social welfare measures: utilitarian and egali-
tarian. Tree-like graphs refer to graphs with bounded treewidth and block
graphs. An NP-hardness result demonstrates that the pseudopolynomial-
time solvability is the best possible under the assumption P �= NP.

Keywords: Fractional hedonic game · Utilitarian welfare · Egalitarian
welfare · treewidth · block graphs

1 Introduction

1.1 Definition and Motivation

The hedonic game [11] is a game of modeling coalition formation based on indi-
vidual preferences. Graphical variants of hedonic games have been considered to
express the preferences succinctly. In this work, we deal with a variant of the
graphical hedonic games called a fractional hedonic game (FHG), a subclass of
hedonic games in which each agent’s utility is the average of valuations over the
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other agents in the belonging coalition. Similarly to ordinary graphical hedonic
games, fractional hedonic games are coalition formation games on a graph, in
which vertices represent agents and the weight of edge (i, j) denotes the value
that agent i has for agent j. Although fractional hedonic games in the most
general setting are defined on weighted directed graphs, simpler versions of frac-
tional hedonic games are well studied [1]. For example, fractional hedonic games
are said to be symmetric and are represented on undirected graphs when all
pairs of two agents are equally friendly. Furthermore, fractional hedonic games
are said to be simple and are represented on unweighted graphs when all of the
edge weights are 1. This work deals with fractional hedonic games on undirected
graphs as [1].

In fractional hedonic games, a coalition structure is represented by a partition
of the vertices, where each set represents a coalition. Given a coalition structure,
the utility of each agent is defined as the average weights of its incident edges, as
explained above. This definition implies that if two coalitions contain an identical
set of agents (vertices) adjacent to agent v, the sums of the edge weights incident
to v are equal, but the smaller coalition is more desirable for v. Such a property
is suitable for finding a partition into dense subgraphs, which is why it is used
for network clustering.

Under this definition of individual utility, two significant measures are well
considered in welfare maximization: utilitarian or egalitarian social welfare. The
former measure is the sum of the utilities of all agents. The latter is the mini-
mum utility among the utilities of all agents. Hence, we call the partitions that
maximize utilitarian and egalitarian welfare the maximum utilitarian welfare
coalition structure (partition) and the maximum egalitarian welfare coalition
structure (or partition), respectively.

Although many papers have already studied the computational complexity of
finding the maximum utilitarian and egalitarian welfare coalition structure, pos-
itive results are few; even for restricted classes of graphs, they are NP-hard, and
polynomial-time solvable classes are very restricted as summarized in Table 1.
Noteworthy, the complexity of the problem for bounded treewidth remained
open [6]. Such unwieldiness might be due to the nonlinearity of the objective
function of the problem.

Therefore, this paper tries to enlarge solvable classes of graphs for the prob-
lems. In particular, we focus on block graphs and design a polynomial-time
algorithm for computing the maximum utilitarian welfare coalition structure.
Furthermore, we also focus on graphs with bounded vertex cover numbers and
treewidth, for which we can design (pseudo)polynomial-time algorithms for find-
ing the maximum utilitarian and egalitarian welfare coalition structures, which
resolves the open problem left in [6]. At the same time, finding the maximum
egalitarian welfare partition is shown to be weakly NP-hard even for graphs
with vertex cover number 4. The detailed results obtained in this paper are
summarized in Our contribution.
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1.2 Our Contribution

This paper first shows a polynomial-time algorithm for computing the maximum
utilitarian welfare partition on block graphs (Theorem 2). We see how a coalition
structure forms in the maximum utilitarian welfare coalition structure on a block
graph; by computing average utilities elaborately, we can show that there is a
maximum utilitarian welfare coalition structure on a block graph in which every
coalition forms a clique or a star. By utilizing the characterization, we design
a dynamic programming-based algorithm that runs along a tree structure of a
block graph.

Table 1. Complexity of the utilitarian and egalitarian welfare maximization on graph
classes.

objective graph class complexity

utilitarian general, unweighted NP-hard [3,7]

cubic graphs, unweighted NP-hard [6]

δ ≥ n − 3, unweighted P [6]

bipartite, unweighted NP-hard [6]

block, unweighted P [Theorem 2]

tree, unweighted P [7]

egalitarian general, unweighted NP-hard [3]

Table 2. Complexity of the utilitarian and egalitarian welfare maximization with graph
parameters.

objective parameter unweighted weighted

utilitarian treewidth nO(ω) [Theorem 3] (nW )O(ω) [Theorem 3]

vertex cover number nO(τ) [Theorem 4] nO(τ) [Theorem 4]

egalitarian treewidth nO(ω) [Theorem 5] (nW )O(ω) [Theorem 5]

vertex cover number nO(τ) [Corollary 1] paraNP-hard [Theorem 6]

We then focus on the complexity of maximizing utilitarian and egalitarian
welfare for well-known graph parameters: treewidth and vertex cover number,
which indicate how tree-like or star-like a graph is, respectively (Table 2). For
the utilitarian welfare maximization, we give an (nW )O(ω)-time algorithm and
an nO(τ)-time algorithm where ω is the treewidth of G, τ is the vertex cover
number of G, and W is the maximum absolute weight of edges. This resolves
the open question left in [6] of whether the utilitarian welfare maximization
on unweighted fractional hedonic games (equivalently, Dense Graph Parti-
tioning) can be solved in polynomial time on bounded treewidth graphs. We
mention that it remains open whether there exists a polynomial-time algorithm
on weighted bounded treewidth graphs though we can design the one on bounded
vertex cover number graphs.
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For the egalitarian welfare maximization, we also give an (nW )O(ω)-time
algorithm for treewidth ω. We then show that in contrast to the utilitarian case,
egalitarian welfare maximization is NP-hard on bounded vertex cover number
graphs; it implies that the pseudopolynomial-time solvability is best possible
under the assumption P �= NP.

1.3 Related Work

Hedonic games are coalition formation games, which are well-studied in the fields
of Economics, Artificial Intelligence, and Multi-Agent Systems [2,5,8,11]. From
the computer science perspective, the computational complexity and parameter-
ized complexity of finding desirable coalition structures in (graphical) hedonic
games have garnered significant attention [2,5,14–17]. For further reading for
hedonic games, we refer the readers to the relevant chapter of computational
social choice book [4].

A fractional hedonic game is a variant of hedonic games. It has been studied
from several aspects, including complexity, algorithm, and stability. Here, we
only pick up work on algorithms and complexity. From the algorithmic point of
view, computing a coalition structure maximizing utilitarian welfare or egalitar-
ian welfare is NP-hard [3,7]. On the other hand, it is computed in polynomial
time only for a few graph classes, such as trees [7]. Furthermore, a problem
equivalent to computing the maximum utilitarian welfare coalition structure
in fractional hedonic games is studied under a different name; Dense Graph
Partitioning [6,10]. It is the problem of finding a partition with maximum
density for a given graph. From the study on Dense Graph Partitioning, it
is known that computing the maximum utilitarian welfare coalition structure is
NP-hard even for cubic graphs [6]. Table 1 shows the complexity of computing
the maximum utilitarian welfare coalition structure and computing the maxi-
mum egalitarian welfare coalition structure. δ denotes the minimum degree of
the input graph.

Most of the proofs are omitted due to space limitations. For the complete
proofs, see the full version [13].

2 Preliminaries

2.1 Definitions, Terminologies, and Notation

Let G = (V,E) be an undirected graph. We denote by G[C] = (C,E(C)) the
subgraph of G induced by C ⊆ V and by NG(v) the set of neighbors of v in
G. The degree dG(v) of v is defined by dG(v) = |NG(v)|. We denote by ΔG

the maximum degree of G. The distance of u and v is defined by the length
of the shortest path between them and denoted by dist(u, v). The diameter of
G denote with diam(G) and diam(G) = maxu,v∈V dist(u, v). For a connected
graph G, a vertex v is called a cut vertex if the graph obtained by deleting v is
disconnected. Similarly, for a connected graph G, an edge e is called a bridge if
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the graph obtained by deleting e is disconnected. An isolated vertex is a vertex
with degree zero. A vertex set K is called a clique if G[K] is a complete graph. A
vertex set I is called an independent set if no two vertices in I are adjacent. For a
vertex set V = {v1, . . . , vn}, a graph whose edge set is E = {{v1, vj} | 2 ≤ j ≤ n}
is called a star. The vertex v1 is called the center of the star, and other vertices
are called leaves.

A block graph is a graph whose every biconnected component is a clique. A
vertex set S ⊆ V (G) is a vertex cover if every edge has at least one endpoint in S.
The vertex cover number τ(G) is the size of a minimum vertex cover. Treewidth
is a parameter that represents how close a graph is to a tree and is defined by
the minimum width among all tree decompositions of G, though the definition is
omitted here. For the definition of a tree decomposition and its property, see [9].

2.2 Fractional Hedonic Game

A fractional hedonic game is defined on a weighted and directed graph G =
(V,E,w), whose weights represent preferences. Without loss of generality, we
suppose no edge has weight 0. In this paper, we consider a symmetric fractional
hedonic game, which is defined on an undirected graph. If all of the edge weight
is 1, a fractional hedonic game is called simple and it is defined on an unweighted
graph.

A partition C of V is called a coalition structure. A vertex set C ∈ C is called
a coalition. The utility U(v, C) of a vertex v that belongs to a coalition C is
defined by the sum of edge weights of neighbors of v in C divided by |C|, i.e.,

U(v, C) =
∑

u∈NG[C](v) wvu

|C| .
The utilitarian welfare uw(C) of C ∈ C and the one uw(C) of a coalition

structure C are defined by the sum of the utility of each v ∈ C and the sum
of the utility of each vertex in G, respectively, i.e., uw(C) =

∑
v∈C U(v, C) and

uw(C) =
∑

C∈C uw(C) =
∑

C∈C
∑

v∈C U(v, C). The egalitarian welfare ew(C) of
C ∈ C is defined by the minimum utility of v ∈ C, i.e., ew(C) = minv∈C U(v, C).
Analogously, the egalitarian welfare ew(C) of a coalition structure C is defined
by the minimum utility of v ∈ V under C, i.e., ew(C) = minv∈C,C∈C U(v, C).

In this paper, we consider the problem to find a maximum utilitarian wel-
fare coalition structure and the problem to find a maximum egalitarian welfare
coalition structure. We use C∗ as an optimal coalition structure.

For fractional hedonic games, the following basic properties hold.

Property 1 ([7]). In a symmetric fractional hedonic game, uw(C) = 2|E(C)|/|C|
holds for any coalition C.

Property 2. In a simple symmetric fractional hedonic game, if a coalition C forms
a clique of size k, uw(C) = k − 1.

Property 3. In a simple symmetric fractional hedonic game, if a coalition C forms
a star of size k, uw(C) = 2(k − 1)/k.
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3 Maximizing Utilitarian Welfare on Block Graphs:
Characterization

In this section, we characterize an optimal coalition structure on block graphs,
and show that there exists a maximum utilitarian welfare coalition structure on
the block graph in which each coalition induces a clique or a star. This charac-
terization is used for designing a polynomial-time algorithm on block graphs.

Theorem 1. There exists a maximum utilitarian welfare coalition structure on
the block graph in which each coalition induces a clique or a star.

To show this, we show the following two lemmas, though the proofs are omitted.

Lemma 1. Let C be a coalition such that the diameter of G[C] is 2. Then C
can be partitioned into cliques or stars without decreasing utilitarian welfare.

Then we prove that a coalition C with diameter at least 3 can be partitioned
into stars and cliques as in Lemma 1. This implies the existence of an optimal
coalition structure consisting of stars and cliques.

Lemma 2. Let C be a coalition such that the diameter of G[C] is at least 3. Then
C can be partitioned into coalitions of diameter at most 2 without decreasing
utilitarian welfare.

By combining Lemmas 1 and 2, we can obtain a coalition structure whose
coalitions form stars or cliques from any coalition structure. This implies Theo-
rem 1.

4 Maximizing Utilitarian Welfare on Block Graphs:
Algorithm

In this section, we show Utilitarian Welfare Maximization on block graphs
can be computed in polynomial time. We give a polynomial-time algorithm based
on dynamic programming using optimal coalition structures shown in Theorem 1.

Theorem 2. Utilitarian Welfare Maximization on unweighted block
graphs can be computed in time O(nΔ4).

Our algorithm is a dynamic programming-based algorithm on the block-cut
tree.

4.1 Block-Cut Tree

For a block graph G = (V,E), let B = {B1, . . . , Bβ} be the set of maximal
cliques, called blocks, in G and C = {c1, . . . , cγ} be the set of cut vertices in G.
Then the block-cut tree T (G) = (X,E) of G is a tree such that X = B ∪ C and
each edge in E connects a block B ∈ B and a cut vertex c ∈ C∩B. For simplicity,
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we sometimes write T instead of T (G). We call B ∈ B a block node and c ∈ C a
cut node of T . For convenience, we consider a block-cut tree rooted by a block
node Br. We denote by Tx(G) a subtree consisting of a node x ∈ X and its
descendants on T , by pT (x) the parent node of x ∈ X \ {Br}, and by ChildT (x)
the set of children nodes of x ∈ X in T (see Figs. 1 and 2). We also denote by Vx

the set of vertices in G corresponding to Tx and by G[Vx] the induced subgraph
of G corresponding to Tx. For each block node B ∈ B \ {Br} and its parent
node pT (B) ∈ C, cp denotes the cut vertex in B ∩ pT (B). For B ∈ B, we define
R(B) := B \ C as the set of non-cut vertices in B. For a rooted block-cut tree,
its leaves are block nodes.

Fig. 1. Example of a block graph. Fig. 2. The corresponding tree structure
of block graph in Fig. 1.

4.2 Recurrence Relations: Overviews

By Theorem 1, we design a dynamic programming algorithm on block-cut trees
to find an optimal coalition structure such that each coalition is either a clique
or a star.

For a block node B ∈ B, we define TB = {iso, cl, sc, sl} as the set of states
of the cut vertex cp ∈ B∩pT (B) that represents the role of cp within the coalition
containing cp in the intermediate steps of the algorithm for a block node. For
a coalition structure PB of G[VB ], iso means that cp is a singleton in PB, cl
means that cp belongs to a coalition that forms a clique of size at least 2 in
PB , sc means that cp belongs to a coalition that forms a star (not a singleton)
and cp is its center in PB, and sl means that cp belongs to a coalition that
forms a star (not a singleton) and cp is its leaf in PB . Figure 3 shows the role of
cp ∈ B ∩ pT (B) with respect to TB .
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We also define Tc = {iso, cl, sc1, . . . , sc|ChildT (c)|, scu, sl} for a cut node
c ∈ C as the set of states of cut vertex c that represents the role of c in the
intermediate step of the algorithm. Intuitively, in a cut node, the results of its
children’s block nodes are integrated. The states iso, cl, sl of cut vertex c are
the same meaning as the ones in TB . The states sc� denote that the cut vertex c
is the center vertex in the coalition that forms a star with � leaves in G[Vc]. The
state scu denotes that the cut vertex c is the center vertex in the coalition that
forms a star with leaves in G[Vc] and the coalition to which c ∈ C belongs will
contain one vertex (denote it vleaf) in the parent node pT (c) ∈ B as a leaf. Note
that since the coalition forms a star and pT (c) forms a clique, it can contain at
most one vertex in pT (c). For state scu, we need not preserve the number of
leaves of the star of c because the maximum utilitarian welfare with respect to
scu can be computed from the values with respect to sc� for 1 ≤ � ≤ |ChildT (c)|.
Figure 4 shows the role of c ∈ C with respect to types in Tc.

Now, we define the recurrence relations for block nodes and cut nodes.
For block nodes, we define f∗(B, typeB , k) as the maximum utilitarian welfare
among coalition structures in G[VB ] that satisfies the following condition:

Fig. 3. The role of cp ∈ B ∩ pT (B) in B with respect to TB .

Fig. 4. The role of c ∈ C in its cut node with respect to Tc.

– cp is the parent cut node of B and the role of the cp within the coalition to
which cp belongs is typeB ∈ {iso, cl, sc, sl}.

– if ChildT (B) �= ∅, there are exactly k cut vertices c1, . . . ck ∈ ChildT (B) such
that the coalition that ci belongs to contain no vertex in Vci\{ci} for 1 ≤ i ≤ k.

For a cut node c ∈ C and typec ∈ {iso, cl, sc1, . . . , sc|ChildT (c)|, sl}, let
g∗(c, typec) be the maximum utilitarian welfare in the coalition structures in
G[Vc] in which the role of c is typec.
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Also, g∗(c, scu) denotes the maximum utilitarian welfare in G[Vc ∪ {vleaf}]
when the cut node c ∈ C becomes the center of a star in its coalition and
vleaf ∈ pT (c) becomes a leaf of c’s star coalition. Then we can compute g∗(c, scu)
from g∗(c, sc�) for 1 ≤ � ≤ |ChildT (c)| as follows:

g∗(c, scu) = max
�

{

g∗(c, sc�) +
2

(� + 1)(� + 2)

}

.

Since the utilitarian welfare of a star with � leaves and a star with � + 1 leaves
are 2�/(� + 1) and 2(� + 1)/(� + 2), respectively, the increase of the utilitarian
welfare when a leaf is added to the coalition that forms a star with � leaves is
2(� + 1)/(� + 2) − 2�/(� + 1) = 2/(� + 1)(� + 2). Thus, the equation holds.

Let g∗(c, fin) = maxtypec∈{cl,sc1,...,sc|ChildT (c)|,sl}{g∗(c, typec)} be the max-
imum utilitarian welfare in G[Vc]. If there is no coalition structure that satisfies
the conditions, we set f∗(B, typeB , k) = −∞ and g∗(c, typec) = −∞ as invalid
cases. In the following, we define the recurrence relations of the dynamic pro-
gramming algorithm to compute f∗(B, typeB , k) and g∗(c, typec) recursively.

4.3 Recurrence Relations in the Block Nodes

We give recurrence relations only for the block nodes. For cut nodes, see the
full version [13]. We first show that for such an optimal coalition structure, the
following lemma holds. In T , let B ∈ B be the parent node of the cut node c ∈ C.
Then, the following lemma holds.

Lemma 3. Let B ∈ B be a block node in a rooted block-cut tree. Then there
exists an optimal coalition structure such that at most one cut vertex c in
ChildT (B) that is the center of a star having both vertices in VB \ B and in
B as leaves.

From Lemma 3, there is at most one cut vertex in ChildT (B) whose role is scu in
the coalition structure that realizes f∗(B, typeB , k). Therefore, we consider two
cases (1) no cut vertex in ChildT (B) takes the role scu and (2) exactly one cut
vertex in ChildT (B) takes the role scu. We here see only case (1). For a block
node B and c1, c2, . . . , ci ∈ ChildT (B) where 1 ≤ i ≤ |ChildT (B)|, we define
f(B, typeB , i, k) as the maximum utilitarian welfare in G[{cp}∪R(B)∪⋃i

j=1 Vcj ]
that satisfies the following conditions:

– cp is the parent cut node of B and the role of the cp within the coalition to
which cp belongs is typeB ∈ {iso, cl, sc, sl}.

– There are exactly k cut vertices among c1, c2, . . . , ci such that each of k such
cut vertices does not form the coalition with vertices in its subtree, and each
of exactly i − k other cut vertices among c1, c2, . . . , ci forms a coalition with
only vertices in its subtree.

Note that 0 ≤ k ≤ i ≤ |ChildT (B)|. Then, the maximum utilitarian welfare
in G[VB ] in Case (1) can be expressed by f(B, typeB , |ChildT (B)|, k). We can
compute f(B, typeB , |ChildT (B)|, k) by the following argument.
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As the base case, we consider the maximum utilitarian welfare in G[{cp} ∪
R(B)]. For convenience, we set this case as i = 0. Since G[{cp} ∪ R(B)] is a
clique, we have

f(B, typeB , 0, 0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if R(B) = ∅
|R(B)| − 1 if R(B) �= ∅& typeB = iso

|R(B)| if R(B) �= ∅& typeB = cl

max{1, |R(B)| − 1} otherwise.

For the case i > 0, we need to consider for each typeB . Here, we only show
the case of typeB = iso. For the other cases, see the full version [13].

f(B, iso, i, k)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f(B, iso, i − 1, 0) + g∗(ci, fin) if k = 0

max

{
f(B, iso, i − 1, 0) + g∗(ci, iso),
f(B, iso, i − 1, 1) + g∗(ci, fin)

}

if k = 1&R(B) = ∅

max

{
f(B, iso, i − 1, k − 1) + g∗(ci, iso) + 1,

f(B, iso, i − 1, k) + g∗(ci, fin)

}

otherwise.

The above equation holds by the following observation: Consider the differ-
ence between the coalition structures in G[{cp} ∪ R(B)

⋃i
j=1 Vcj ] and G[{cp} ∪

R(B)
⋃i−1

j=1 Vcj ]. When k = 0, the cut node ci in G[Vci ] is not in the same coalition
with any vertex in B.

When k ≥ 1, the cut node ci in G[Vci ] belongs to either a coalition containing
a vertex in B (g∗(ci, iso)) or not (g∗(ci, fin)). Thus, we take the maximum one.
Suppose that k = 1 and R(B) = ∅. We have two choices: ci is a singleton or ci

belongs to a coalition containing only vertices in Vci . On the other hand, consider
the case when k ≥ 2 or R(B) �= ∅. Then if ci belongs to a coalition with vertices
in B, its coalition forms a clique of size at least 2. Thus the utilitarian welfare
will increase by 1.

5 Graphs of Bounded Treewidth or Vertex Cover
Number

In this section, we design (pseudo)polynomial-time algorithms on graphs of
bounded treewidth and bounded vertex cover number for computing a maxi-
mum utilitarian welfare coalition structure and a maximum egalitarian welfare
coalition structure.

5.1 Maximizing Utilitarian Welfare

For graphs with bounded treewidth, we can design a DP-based algorithm on a
nice tree decomposition. We have the theorem below, though we omit the detail.
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Theorem 3. Utilitarian Welfare Maximization can be computed in time
(nW )O(ω) where ω is the treewidth of an input graph and W is the maximum
absolute weight of edges.

Next, we give a polynomial-time algorithm for computing the maximum util-
itarian welfare on graphs of bounded vertex cover numbers.

Theorem 4. Utilitarian Welfare Maximization can be computed in time
nO(τ) where τ is the vertex cover number of an input graph.

To prove this, we first show the key lemma as follows.

Lemma 4. For any graph G, there exists an optimal coalition structure with at
most τ + 1 coalitions.

Proof. Suppose that there exists an optimal coalition structure with more than
τ + 1 coalitions. Let S be a minimum vertex cover. Then at most τ coalitions
contain vertices in S. Thus, other coalitions only contain vertices in V \S. Since
V \ S is an independent set, the utilitarian welfare of such a coalition is 0.
Therefore, we can merge them into one coalition without decreasing utilitarian
welfare. This means that there exists an optimal coalition structure with at most
τ + 1 coalitions. �

We then design an algorithm for graphs of bounded vertex cover number.
We first guess the number of coalitions in the optimal coalition structure. Let b
(≤ τ + 1) be the number of coalitions. We further guess the number of vertices
in each coalition. Let C1, . . . , Cb be b coalitions and n1, . . . , nb be the number
of vertices in them. Note that ni ≥ 1 for 1 ≤ i ≤ b. The number of possible
patterns of n1, . . . , nb is at most nb.

Let S be a minimum vertex cover of size τ in G. We guess assignments of
vertices in S to b coalitions. The number of such possible assignments is at most
bτ . If there exists a coalition Ci such that the number of vertices in it exceeds
ni, then we immediately reject such an assignment.

Finally, we consider assignments of vertices in V \ S to coalitions. Suppose
that the size of coalition Cj is fixed at nj . Then if v ∈ V \S is assigned to Cj , the
increase of the utilitarian welfare is computed as avj =

∑
u∈N(v)∩Cj∩S 2wvu/nj .

Note that V \ S is an independent set.
In order to find a maximum utilitarian welfare coalition structure, all we need

to do is to find an assignment maximizing the sum of values avj for v ∈ V \ S
under the capacity condition. This can be formulated as the following bin packing
problem.
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Max k-bin packing can be solved in time nO(k) by a simple dynamic pro-
gramming algorithm.

Lemma 5. Max k-bin packing can be solved in time nO(k).

Proof. Let DP[i; d1, . . . , dk] be the maximum value obtained by assigning items
1, . . . , i to bins so that the capacity of bin j is dj for each j. Then, DP[i; d1, . . . , dk]
can be computed by dynamic programming. First, we initialize the DP table as
DP[0; 0, . . . , 0] = 0. Next, we define the recurrence relation of DP[i; d1, . . . , dk]
as follows:

DP[i; d1, . . . , dk] = max
{

max
j∈{1,...,k}

{DP[i − 1; d1, . . . , dj − 1, . . . , dk] + avj}
}

.

It is not hard to see the correctness of the recurrence relation. Since the size of
DP table is at most nk+1 and the recurrence relation can be computed in O(k),
the total running time is O(k · nk+1) = nO(k). �

By replacing items by vertices in V \ S and bins by coalitions and letting
cj = nj − |Cj ∩ S|, we can reduce the above assignment problem to Max k-bin
packing. By Lemma 5, the utilitarian welfare maximization can be computed
in time

∑τ+1
b=1 nb · bτ · nO(b) = nO(τ). Therefore, Theorem 4 holds.

5.2 Maximizing Egalitarian Welfare

In this subsection, we consider a coalition structure that maximizes egalitar-
ian welfare. We first design a pseudopolynomial-time algorithm on bounded
treewidth graphs. Then we show that the egalitarian welfare maximization is
NP-hard on bounded vertex cover number graphs. This is in contrast to the
utilitarian welfare maximization.

Theorem 5. Egalitarian Welfare Maximization can be computed in time
(nW )O(ω) where ω is the treewidth of an input graph and W is the maximum
absolute weight of edges.

The algorithm in Theorem 5 is similar to the one in Theorem 3 for com-
puting the maximum utilitarian welfare coalition structure. The different point
is preserving in the DP table the maximum value of the minimum utility, i.e.,
maximum egalitarian welfare, instead of maximum utilitarian welfare. The detail
of the proof appears in the full version [13].

Since ω ≤ τ holds for any graph, we have the following corollary.

Corollary 1. Egalitarian Welfare Maximization can be computed in
time (nW )O(τ) where τ is the vertex cover number of an input graph and W
is the maximum absolute weight of edges.

On the other hand, even restricting τ = 4, we can show that Egalitarian
Welfare Maximization is NP-hard.
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Theorem 6. Egalitarian Welfare Maximization is NP-hard on graphs of
bounded vertex cover number.

Proof. We give a reduction from Partition. In the problem, given a set A =
{a1, . . . , an} of n integers, the task is to determine whether there exists a subset
A′ ⊆ A such that

∑
a∈A′ = W/2 where W =

∑
a∈A a. This problem is NP-hard

if we require |A′| = n/2 [12]. Thus, we suppose that |A| is even.
From an instance of Partition, we construct an instance of Egalitarian

Welfare Maximization. First, we create four vertices v1, v2, w1, w2 and n
vertices va1 , . . . , van

corresponding to n integers. Let VA = {va1 , . . . , van
}. Two

vertices v1 and v2 are connected to each vai
∈ VA by edges {v1, va} and {v2, va}

with weight (n/2+2)ai, respectively. For w1 and w2, we connect them to vai
∈ VA

by edges with weight (n/2+2)((n+7/2)W −ai). Moreover, we add edges {v1, w1}
and {v2, w2} with weight (n/2 + 2)(n + 3)W . Finally, we connect v1 and v2 by a
large negative weight edge. The weight −∞ denotes a large negative weight. Let
G = (V,E) be the constructed graph. Then G has a vertex cover {v1, v2, w1, w2}
of size 4 because the graph obtained by deleting them forms singletons.

We can show that there exists a subset A′ ⊆ A such that
∑

a∈A′ = W/2
if and only if there exists a partition P of V such that the least utility among
agents is at least (n + 7/2)W . For the details, see the full version [13]. �
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7. Bilò, V., Fanelli, A., Flammini, M., Monaco, G., Moscardelli, L.: Nash stable out-
comes in fractional hedonic games: existence, efficiency and computation. J. Artif.
Intell. Res. 62, 315–371 (2018)

8. Bogomolnaia, A., Jackson, M.O.: The stability of hedonic coalition structures.
Games Econ. Behav. 38(2), 201–230 (2002)

9. Cygan, M., et al.: Parameterized Algorithms (2015)
10. Darlay, J., Brauner, N., Moncel, J.: Dense and sparse graph partition. Discret.

Appl. Math. 160(16), 2389–2396 (2012)
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Abstract. We consider the maximum coverage facility location prob-
lem in the plane. In this paper, we restrict the facilities to be located
on the given line, and propose an O(n2) algorithm for this problem by
transforming the problem to the maximum weight k-link path problem
in a complete directed acyclic graph, and by proving the concave Monge
property inherent to the edge weights of the graph by which the substan-
tial improvement of the running time compared with the straightforward
implementation is attained.

Keywords: Maximum Coverage Facility Location Problem ·
Line-constrained Facility Location Problem · Maximum Weight k-link
Path · Concave Monge Property

1 Introduction

This paper considers the maximum coverage facility location problem defined
as follows: Given n points with positive weights in the plane, we consider the
problem of finding the locations of k facilities that maximize the sum of the
weights of the points covered by k disks centered at the facilities. In this paper,
we assume that facilities are restricted to be located on the given line.

This problem has been studied by numerous researchers over several decades.
See the paper by Farahani et al. (2012) for a comprehensive survey on more than
160 papers on the covering problems in facility location [1]. This paper classified
problems in terms of models, algorithms and applications.

de Berg, Cabello and Har-Peled (2009) addressed this problem as NP-hard,
and proposed an O(n log n) time (1 − ε)-approximation algorithm [2].

Megiddo, Zemel and Hakimi (1983) discussed the maximum coverage facility
location problem on a network in which vertices have positive weights repre-
senting the number of customers and edge weights indicate the distance, and
proposed an O(n2k) algorithm in case a graph is restricted to a tree [3].

Our paper was motivated by the following practical problem for sensor loca-
tion problem. Maegawa and Katoh are engaged in joint research with local gov-
ernments and companies that are conducting research aiming at early detection
of road disasters such as slope deformation and falling rocks along roads [4]. As
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part of this joint research, small sensor devices that can remotely observe data
such as slope angle and vibration have been installed along roads, but there are
hundreds to thousands of locations where disasters may occur even in one munic-
ipality. Considering the problem of optimal placement of sensor devices from the
viewpoint of prioritizing the monitoring of high-risk areas with a limited number
of devices is practically required. This is our motivation of this paper.

Based on this motivation, we shall consider the maximum coverage problem
where the placement of facilities is restricted to a given line [5] and propose
a polynomial-time algorithm to find the optimal location of facilities using the
algorithm based on the concave Monge property, with the aim of utilizing it in
the application field.

The organization of this paper is as follows: Sect. 2 gives preliminaries, a
problem formulation and some necessary basic definitions. Section 3 shows that
our problem can be reduced to the problem of finding a maximum weight k-
link path in a complete directed acyclic graph, and then proposes an O(n2)
algorithm for our problem. Section 4 proves the convex Monge property for our
subproblems by which substantial improvement of the running time is attained,
and lastly Sect. 5 summarizes our accomplishments and addresses our future
challenges.

2 Preliminaries

Suppose that we are given a set of n points P = {p1, p2, . . . , pn} in the plane
where a positive weight wa is associated with each point pa and a straight line
L is also given. Let F = {f1, f2, . . . , fk} be a set of k facilities. When a facility
fj ∈ F is within a distance d from a point pa, pa is said to be covered by fj . In
this paper, facilities are assumed to be constrained on the line L. We are asked
to locate k facilities on the line L so as to maximize the sum of the weights of the
points covered by at least one of these k facilities. Letting y = (y1, y2, . . . , yk)
denote the locations of k facilities F = {f1, f2, . . . , fk} on L, the problem can
be formulated as follows:

Q(k) : maximize gk(y) =
{ ∑

wa | pa is covered by at least one fj located at yj
}

(1)

The area where a facility can cover the point pa is defined as a disk Da with
radius d centered at point pa. The intersection of the disk Da and the line L is
called coverable interval Ia = [la, ra] (hereafter referred to as c-interval Ia) (i.e.,
any facility in the c-interval Ia can cover pa). The weight of Ia is defined to be
w(Ia) (which is the weight of the point pa).

Let E denote the collection of endpoints la, ra of Ia, i.e., ∪n
a=1{la, ra}. Let

X = {x1, x2, . . . , x2n} be the set of values in E rearranged in increasing order
of their values (see Fig. 1). It is assumed through this paper that all values of
xi’s are distinct. An interval [xi, xi+1) defined by two consecutive values of X
is called a primitive interval (denoted by p-interval for short). There are 2n − 1
p-intervals which are denoted by J1, J2, . . . , J2n−1 such that Ji = [xi, xi+1) holds.
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Observation 1. For a point y ∈ Ji for any i with 1 ≤ i ≤ 2n − 1, the set of
points in P that y can cover remains the same irrespective of the position y as
long as y belongs to Ji.

The difficulty of the problem lies in how we enumerate the points without
duplication that are covered by at least one of facilities when we are given loca-
tions of facilities. In the next section, we will develop an algorithm that overcomes
the difficulty.

Fig. 1. Line L and c-intervals Ia

3 Algorithm for Our Problem

3.1 Reduction to Maximum k-Link Path Problem

Define the set of c-intervals I(i, j) as follows:

I(i, j) := {Ia | xi ≤ la < xj , 1 ≤ a ≤ n}. (2)

I(i, j) represents the set of c-intervals with the left endpoint being greater than
or equal to xi and less than xj . For a point y on the line L and for I(i, j), let

cover(y, I(i, j)) = {I | I ∈ I(i, j), y ∈ I} (3)

which denotes the set of c-intervals in I(i, j) that contain y, and

p-cover(y) = {p ∈ P | y covers p}. (4)

Let
W (y, I(i, j)) =

{ ∑
w(I) | I ∈ cover(y, I(i, j)

}
. (5)

Let OPT (1, i, j) denote the optimal value such that OPT (1, i, j) =
max{W (y, I(i, j) | y ∈ [xi, xj)}. Let OPT (p, i, j) be the optimal value such
that OPT (p, i, j) = max{∑ wa | (y1, y2, . . . , yp) with xi ≤ y1 < y2 < . . . < yp <
xj , pa ∈ P is covered by at least one facility at yh ∈ [xi, xj)}.

In Sect. 4, the following notation will often be used.

value(S,Q) = max{W (y, I(Q)) | y ∈ S}, (6)
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where Q is the set of c-intervals defined as I(i, j) for some interval [xi, xj) with
1 ≤ i < j ≤ 2n, and S is a subinterval of [xi, xj). In particular, when S = [xi, xj),

value(S,Q) = OPT (1, i, j) (7)

holds.
The problem we deal with is to compute OPT (k, 1, 2n). For this purpose,

employing the scheme introduced by Higashikawa et al. [6] and by Theorem 1,
we reformulate this problem using a k-dimensional vector y, and a (k + 2)-
dimensional vector d called divider vector given on L. d = (d0 = 1, d1, . . . , dk+1 =
2n) such that d0 < d1 < · · · < dk+1(= 2n) such that xd0(= x1) < xd1 < · · · <
xdk+1(= x2n) holds.

Now define a complete directed acyclic graph (DAG) G = (N,A) such that
N = {u1(= 1), u2, . . . , u2n(= 2n)} and for every vertex pair (ui, uj) with 1 ≤
i < j ≤ 2n, there exists an edge which is directed from ui to uj and associated
with the weight of OPT (1, i, j).

An edge in a path in a complete DAG is called a link of the path. We call a
path in the graph a k-link path if the path contains exactly k links. For any two
vertices, i and j, we call a path from i to j a maximum k-link path if it contains
exactly k links and among all such paths it has the maximum weight.

As will be shown in Theorem 1, solving Q(k) is reduced to finding a
maximum weight k-link path from u1 to u2n in the complete DAG G. Let
y∗ = (y∗

1 , y
∗
2 , . . . , y

∗
k) with y∗

1 < y∗
2 < . . . < y∗

k be an optimal location of Q(k).

Theorem 1. For an optimal location y∗ of Q(k), there exists (k+1)-
dimensional vector d∗ = (d∗

0 = 1, d∗
1, . . . , d

∗
k+1 = 2n) such that the sum of edge

weights in the maximum weight k-link path in the complete DAG induced by the
pair (y∗,d∗) is equal to the optimal objective value of problem Q(k).

Proof. y∗ is an optimal location of k facilities that maximize the objective func-
tion gk(y) of Q(k). We shall show that there exists a divider vector d = (d∗

0 =
1, d∗

1, d
∗
2, . . . , d

∗
k−1, d

∗
k = 2n) with d∗

0 < d∗
1 < d∗

2 < . . . < d∗
k−1 < d∗

k such that for
the maximum weight k-link path induced by (y∗,d∗), the sum of edge weights on
the path is equal to the optimal objective value of problem Q(k). We shall prove
the existence of such d∗ in a constructive manner, namely, in such a way that we
construct a sequence of optimal dividers d∗

0, d
∗
1, d

∗
2, . . . , d

∗
k−1, d

∗
k in this order.

Let p-cover(y∗
j ) = {pa | 1 ≤ a ≤ n, y∗

j ∈ Ia}, let d∗
0 = 1.

The first step is to determine d∗
1. Let

lmin = min{la | y∗
2 ∈ Ia, y

∗
1 �∈ Ia} (8)

and let s ∈ {1, 2, . . . , 2n} such that

xs = lmin.
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Namely, for all left endpoints of c-intervals such that are covered by y∗
2 but not

by y∗
1 , we choose the leftmost point as xs, we set

d∗
1 = s. (9)

Then, any interval which is covered by y∗
2 but not by y∗

1 belongs to I(d∗
1, d

∗
2)

where d∗
2(> d∗

1) will be determined in the next step.
The second step is to determine d∗

2. This is done in a manner similar to the
first step. Let

lmin = min{li | y∗
3 ∈ Ii, y

∗
h /∈ Ii(h = 1, 2)} (10)

and let s ∈ {1, 2, . . . , 2n} such that

xs = lmin.

We set
d∗
2 = s. (11)

Then, any interval which is covered by y∗
3 but not by y∗

1 or y∗
2 belongs to I(d∗

2, d
∗
3)

where d∗
3(> d∗

2) will be determined in the next step.
d∗
3, d

∗
4, . . . , d

∗
k−1 will be determined essentially in the same manner as the first

and second steps (See Fig. 2).

Fig. 2. The optimal solution y∗ and dividers d∗

We shall prove that
∑

1≤j≤k W (y∗
j , I(d∗

j−1, d
∗
j )) is equal to the optimal value

of Q(k).
We shall define a set P∗ = {P ∗

1 , P ∗
2 , . . . , P ∗

k } as follows:
For j = 1,

P ∗
1 = p-cover(y∗

1). (12)

For j ≥ 2,
P ∗
j = p-cover(y∗

j ) \ p-cover(∪j−1
h=1y

∗
h). (13)

This means that P ∗
1 is a set of points covered by y∗

1 , P ∗
2 is a set of points

covered by y∗
2 but not y∗

1 , and P ∗
3 is a set of points covered by y∗

3 except y∗
1

and y∗
2 , and so on. The points covered by at least one facility are divided into k

disjoint point sets, {P ∗
1 , P ∗

2 , . . . , P ∗
k }.

Since y∗
j is a feasible solution for the problem to compute OPT (1, d∗

j−1, d
∗
j ),

we have
W (y∗

j , I(d∗
j−1, d

∗
j )) ≤ OPT (1, d∗

j−1, d
∗
j ). (14)
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Therefore,
k∑

j=1

W (y∗
j , I(d∗

j−1, d
∗
j )) ≤

k∑

j=1

OPT (1, d∗
j−1, d

∗
j ). (15)

Since y∗
j covers points of P ∗

j which corresponds to the set of c-intervals
I(d∗

j−1, d
∗
j ) and the sum of the point weights of P ∗

j is equal to W (y∗
j , I(d∗

j−1, d
∗
j )),

k∑

j=1

W (y∗
j , I(d∗

j−1, d
∗
j )) (16)

equals gk(y∗). Let z∗
j be the optimal facility location of OPT (1, d∗

j−1, d
∗
j ). Then

z∗ = (z∗
1 , z∗

2 , . . . , z∗
k) is a feasible solution of Q(k).

Since z∗
j is an optimal solution of OPT (1, d∗

j−1, d
∗
j ), we have

W (y∗
j , I(d∗

j−1, d
∗
j )) ≤ W (z∗

j , I(d∗
j−1, d

∗
j )).

Thus,
k∑

j=1

W (y∗
j , I(d∗

j−1, d
∗
j )) ≤

k∑

j=1

W (z∗
j , I(d∗

j−1, d
∗
j )) (17)

follows. The right-hand side of (17) is the maximum weight of k-link path in the
DAG, and the left-hand side is the optimal value of Q(k). The inequality (15)
implies that the value of the right-hand side of (17) must be equal to the optimal
value of Q(k). This completes the proof. �

Schieber [7] showed that minimum k-link path problem can be solved by
querying edge weights n ·min{O(

√
k log n+log n), 2O(

√
log k log log n)} times if the

input DAG satisfies the concave Monge property. Since this paper deals with
maximization problem, we shall prove instead convex Monge property1, that is,
for all integers i, j satisfying 1 ≤ i + 1 < j ≤ n,

OPT (i, j) + OPT (i + 1, j + 1) ≥ OPT (i + 1, j) + OPT (i, j + 1). (18)

In case of convex Monge property, the results related to time complexity obtained
for concave Monge property can be directly applied to the case for concave Monge
property.

3.2 Computing OPT(1, h, j ) for j = h + 1, . . . , 2n

In order to compute the maximum weight k-link path in a DAG, it is necessary
to answer the query for the edge weight OPT (1, h, j) for any h and j.

1 In papers [7,8], the term convex Monge property is already used without formal
definition. However, its definition is obvious from the context, and thus we used this
term.
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Algorithm 1. Computation of OPT (1, h, j) for j = h + 1, . . . , 2n

1: function OPT(h, events for X)
2: W ← 0
3: Wmax ← 0
4: for i ← h, . . . , 2n − 1 do
5: if event at xi is Type 1 then
6: W = W + w(I)
7: Wmax = max{W,Wmax}
8: else if event at xi is Subtype 2a then
9: W = W − w(I)
10: end if
11: OPT (1, h, i+ 1) = Wmax

12: end for
13: end function

Lemma 1. When h is given, Algorithm 1 computes all values of OPT (1, h, j)
for j = h + 1, . . . , 2n in O(n) time.

Proof. The input for this problem is a set of c-intervals Ia = [la, ra] with weight
w(Ia)(a = 1, 2, . . . , n). Given h and j such that xh < xj , with 1 ≤ h, j ≤ 2n,
find a point p with xh < p < xj such that for a set of c-intervals I such that any
Ia ∈ I satisfies xh ≤ la and p < ra, the sum of weights of Ia ∈ I is maximum.
The algorithm for this problem is as follows:

For each xi ∈ X for i with h ≤ i ≤ 2n, we have one of the following events:

Type 1: New c-interval I with w(I) starts from xi.
Type 2: An existing c-interval I with w(I) terminates at xi. There are two

subtypes:
Subtype 2a: The left endpoint of I is larger than or equal to xh.
Subtype 2b: The left endpoint of I is smaller than xh.

The algorithm for computing OPT (1, h, j) for j = h + 1, . . . , 2n is shown
Algorithm 1. It consists of single for loop for h, . . . , 2n. Therefore, this algorithm
computes all values of OPT (1, h, j) for j = h+1, . . . , 2n at once in O(n) running
time. �

Lemma 2. We can query for OPT (1, h, j) in O(1) time if we precompute
OPT (1, h, j) for all pairs of values h and j with 1 ≤ h < j ≤ 2n as a pre-
processing, using O(n2) space.

Proof. Applying Algorithm 1 for all h = 1, 2, . . . , 2n, we can compute
OPT (1, h, j) for all pairs of h and j with 1 ≤ h < j ≤ 2n in O(n2) time, and
store them with O(n2) space. Then we can answer the query for OPT (1, h, j) in
O(1).
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3.3 Description of Overall Algorithm

As mentioned in Sect. 3.1, our problem is reducible to the problem of finding the
maximum weight k-link path in a complete DAG. Our maximization problem
can transform into a minimization problem by negating link weights so that the
algorithm for finding a minimum weight k-link path in a complete DAG [7] can
be directly applied to our problem.

This remark was mentioned in paper [7]. Application IV in [7] deals with
the problems of computing the maximum area k-gon and the maximum perime-
ter k-gon that are contained in a given convex n-gon. The paper [7] mentioned
Aggarwal et al. [9] showed that the distance matrix involved in computing the
maximum area and the maximum perimeter polygon contained in a given con-
vex polygon has the convex Monge property. It also noted that because finding
the maximum weight k-link path in convex DAGs is equivalent to finding the
minimum weight k-link path in concave DAGs, the algorithm for computing the
minimum k-link path in concave DAGs can be directly applied to compute the
maximum k-link path in convex DAGs. Thus we obtain the following.

Proposition 1. To find the maximum weight k-link path in a complete DAG
utilizing the algorithm [6], the edge weights of the graph will be queried
n · min{O(

√
k log n + log n), 2O(

√
log k log log n)} times when edge weights possess

convex Monge property.

Theorem 2. The line-constrained maximum coverage facility location problem
can be solved in O(n2) time with O(n2) space.

Proof. From Lemma 2, we can obtain the answer to the query OPT (1, h, j) for
1 ≤ h < j < 2n in O(1) time with O(n2) preprocessing time and O(n2) space.
Thus, by Proposition 1, the maximum k-link path in DAG can be found in O(n ·
min{O(

√
k log n+log n), 2O(

√
log k log log n)} time. Since the time for preprocessing

(i.e., O(n2) time) is the dominant part in the entire computation, the theorem
follows.

4 Convex Monge Property of OPT(1, h, j )

A function f : N
2 → R possesses concave Monge property if the following

inequality holds for any natural numbers i and j:

f(i, j) + f(i + 1, j + 1) ≤ f(i + 1, j) + f(i, j + 1). (19)

If the following inequality with the inequality sign reversed holds for any
natural numbers i and j, f posesses convex Monge property:

f(i, j) + f(i + 1, j + 1) ≥ f(i + 1, j) + f(i, j + 1). (20)

Lemma 3. Let f(i, j) = OPT (1, i, j). Then, f(i, j) possesses the convex Monge
property.
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Proof. We prove that the following inequality holds:

OPT (1, i, j) + OPT (1, i + 1, j + 1) ≥ OPT (1, i + 1, j) + OPT (1, i, j + 1). (21)

For the sake of simplicity, we denote OPT (l, r) = OPT (1, l, r). Using this
notation, inequality (21) can be rewritten as:

OPT (i, j) + OPT (i + 1, j + 1) ≥ OPT (i + 1, j) + OPT (i, j + 1). (22)

Some preparation is required for this proof, and many cases need to be con-
sidered afterwards.

The domain intervals of the first and second terms of the left-hand side of
inequality (22) are [i, j) and [i + 1, j + 1), respectively while those of the first
and and second terms of the right-hand side of (22) are [i + 1, j) and [i, j + 1),
respectively. We simply denote these four intervals [i, j), [i + 1, j + 1), [i + 1, j)
and [i, j + 1) as I, II, III, and IV, respectively (see Fig. 3). Using these notations,
the inequality of (22) can be rewritten as follows:

OPT (I) + OPT (II) ≥ OPT (III) + OPT (IV). (23)

Fig. 3. Intervals referred to by each term in inequality (23)

We abuse the notations OPT ([a, b)) and I([a, b)) to stand for OPT (a, b) and
I(a, b), respectively. The c-intervals involved in the computation of OPT (I) is
I(I) = I(i, j), and that involved in the computation of OPT (III) is I(III) =
I(i + 1, j). By I(I) ⊇ I(III), the following inequality holds:

OPT (I) ≥ OPT (III). (24)

Similarly, the c-intervals that are dealt with by OPT (II) is I(II) = I(i+1, j+
1), and since I(II) ⊇ I(III), the following inequality also holds:

OPT (II) ≥ OPT (III). (25)

Therefore, if the following inequality holds, convex Monge property (23) fol-
lows by (24).

OPT (II) ≥ OPT (IV). (26)
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Similarly, if the following inequality holds, convex Monge property (23) fol-
lows by (25).

OPT (I) ≥ OPT (IV). (27)

Note that the domain c-intervals of OPT (IV) is I(IV) = I(i, j + 1), and by
I(II) ⊆ I(IV), the following inequality holds:

OPT (II) ≤ OPT (IV). (28)

Similarly, by I(I) ⊆ I(IV), the following inequality holds:

OPT (I) ≤ OPT (IV). (29)

Inequalities (26) and (28) together lead to:

OPT (II) = OPT (IV), (30)

and inequalities (27) and (29) together lead to:

OPT (I) = OPT (IV). (31)

Property 1. If either (30) or (31) holds, convex Monge property (23) follows.

Now let optpos(l, r) denote the position of the facility that attains OPT (l, r).
We define the intervals [i, i+1), [i+1, j), and [j, j+1) as A, B, and C, respectively
(as shown in Fig. 4). optpos(l, r) = B means that the optimal location is one of
p-intervals ∈ [i + 1, j), so the optpos(l, r) can then be in either of the intervals
A, B, or C. In case there are multiple p−interval that attains OPT (l, r) we use
the convention to choose the rightmost one.

Fig. 4. Definition of intervals A, B, and C

To prove inequality (23), we enumerate all possible combinations of posi-
tions of optpos(I), optpos(II), optpos(III), and optpos(IV) (We abuse the nota-
tion optpos(l, r) to stand for optpos([l, r))). optpos(I) may lie in either A or B,
optpos(II) may lie in either B or C, optpos(III) is always B, and optpos(IV) can
be A, B, or C. This results in 2 × 2 × 1 × 3 = 12 possible combinations which
are shown in Table 1 (left). optpos(III) is not included in the case name because
it always belongs to B.

According to the similarity in proof strategies, the 12 cases are classified into
five groups as shown in Table 1 (right). We will prove (23) for each group.
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Let position denote any of the facility locations A, B, or C, and let p-interval
be one of the intervals I, II, III, IV. The value(position, p-interval) represents
the sum of weights of the c-intervals when the facility is placed at position in
p-interval. Note that unlike OPT (l, r), it is not always guaranteed to an optimal
value.

Table 1. 12 cases for the proof of (23) (left), and their classification into five groups
(right)

No. optpos Case Name

(I) (II) (III) (IV)

1 A B B A AB-A

2 A B B B AB-B

3 A B B C AB-C

4 A C B A AC-A

5 A C B B AC-B

6 A C B C AC-C

7 B B B A BB-A

8 B B B B BB-B

9 B B B C BB-C

10 B C B A BC-A

11 B C B B BC-B

12 B C B C BC-C

No. Case Name Group

1 AB-A Group 1

4 AC-A

8 BB-B

11 BC-B

2 AB-B Group 2

5 AC-B

7 BB-A

10 BC-A

3 AB-C Group 3

9 BB-C

6 AC-C Group 4

12 BC-C Group 5

Group 1
Group 1 consists of four cases where optpos(I) = optpos(IV). First, let us consider
the cases where optpos(I) = optpos(IV) = A: namely, Case 1 (AB-A) and Case 4
(AC-A), and we will then consider the cases where optpos(I) = optpos(IV) = B:
namely, Case 8 (BB-B) and Case 11 (BC-B).

(1) Case 1 (AB-A) and Case 4 (AC-A)

The difference between optpos(I) and optpos(IV) may occur when there exists
a c-interval Ia = {[la, ra] | la = xj}. Specifically, the computation of optpos(I)
does not take care of this Ia, while that of optpos(IV) does. However, since
optpos(IV) = A, such an Ia does not affect the value of OPT (IV) (see Fig. 5).
Therefore, OPT (I) = OPT (IV) holds, and thus by Property 1, convex Monge
property (23) follows.
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Fig. 5. Illustration of Group 1, Case 1 (AB-A) and Case 4 (AC-A)

(2) Case 8 (BB-B) and Case 11 (BC-B)

In this case, the same reasoning as the above applies. If optpos(IV) ∈ B,
then such Ia does not affect the value of OPT (IV). Therefore, OPT (I) =
OPT (IV), and by Property 1, convex Monge property (23) follows.

The proof for Groups 2, 3, 4 and 5 is omitted due to page limitation.

5 Conclusion

In this paper, we proved Theorem 1 by reducing the maximum coverage facility
location problem to the problem of finding the maximum weight k-link path in
a complete DAG with facility locations being restricted on the given line, taking
advantage of the convex Monge property of OPT (1, i, j).

Essential ingredient of this outcome is the O(n) algorithm to solve 1-facility
location problem, OPT (1, i, j), and O(n2) for all pairs of i and j. However, we
are sure there is a subquadratic algorithm, i.e., an algorithm faster than O(n2)
time, to solve this subproblem. However, because of the page limit, we could
not describe the details. The core idea for this improvement is that we do not
precompute the values of OPT (1, h, j) for all possible pairs of h and j, instead
for O(n) of (say, �√(n)�) values of h, and store these values. For an arbitrary
query, say OPT (1, h, j) such that h = a�√(n)� − b with positive integers a

and b(< �√(n)�), we use the precomputed values of OPT (1, a�√(n)�, j) to
determine OPT (1, h, j) in O(log n) time by using binary search tree.

Moreover, our problem can have extensions, like a case in which there are
two or more lines (roads) in the plane, or the problem with a tree-structured
graph being given. These extensions are still our challenges in the future.
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Abstract. An integer linear system (ILS) is a linear system with inte-
ger constraints. The solution graph of an ILS is defined as an undirected
graph defined on the set of feasible solutions to the ILS. A pair of feasible
solutions is connected by an edge in the solution graph if the Hamming
distance between them is 1. We consider a property of the coefficient
matrix of an ILS such that the solution graph is connected for any right-
hand side vector. Especially, we focus on the existence of an elimination
ordering (EO) of a coefficient matrix, which is known as the sufficient
condition for the connectedness of the solution graph for any right-hand
side vector. That is, we consider the question whether the existence of
an EO of the coefficient matrix is a necessary condition for the con-
nectedness of the solution graph for any right-hand side vector. We first
prove that if a coefficient matrix has at least four rows and at least three
columns, then the existence of an EO may not be a necessary condition.
Next, we prove that if a coefficient matrix has at most three rows or at
most two columns, then the existence of an EO is a necessary condition.

Keywords: integer linear system · solution graph · elimination
ordering

1 Introduction

An integer linear system (ILS) has an m × n real coefficient matrix A, an m-
dimensional real vector b, and a positive integer d. In this case, a feasible solution
of the ILS is an n-dimensional integer vector x ∈ {0, 1, . . . , d}n such that Ax ≥ b.
The solution graph of an ILS is defined as an undirected graph defined on the
set of feasible solutions to the ILS. A pair of feasible solutions is connected by
an edge in the solution graph if the Hamming distance between them is 1.

We consider a property of the coefficient matrix of an ILS such that the
solution graph is connected for any right-hand side vector. Especially, we focus
on the existence of an elimination ordering (EO) of a coefficient matrix, which
is know as the sufficient condition for the connectedness of the solution graph
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for any right-hand side vector. (See Sect. 2 for the definition of an EO.) That
is, we consider the question whether the existence of an EO of the coefficient
matrix is a necessary condition for the connectedness of the solution graph for
any right-hand side vector.

The results of this paper are summarized as follows. We first prove that if
a coefficient matrix has at least four rows and at least three columns, then the
existence of an EO may not be a necessary condition (Theorem 1). On the other
hand, we also prove that if a coefficient matrix has at most three rows or at most
two columns, then the existence of an EO is a necessary condition (Theorem 2).
In fact, we prove the contraposition of the statament. That is, we prove that if
a coefficient matrix does not have an EO, then there exists an right-hand side
vector such that the solution graph is not connected.

Kimura and Suzuki [5] proved that if the coefficient matrix of an ILS has
an EO, then the solution graph of the ILS is connected for any right-hand side
vector. Precisely speaking, Kimura and Suzuki [5, Theorem 5.1] proved that if
the complexity index of the coefficient matrix of an ILS introduced by Kimura
and Makino [4] is less than 1, then the solution graph is connected. Furthermore,
Kimura and Makino [4, Lemma 3] proved that the complexity index is less than
1 if and only if the coefficient matrix has an EO. The complexity index of the
coefficient matrix of an ILS is a generalization of the complexity index for the
Boolean satisfiability problem (SAT) introduced by Boros, Crama, Hammer,
and Saks [1], and it depends only on the sign of the elements of the matrix. It
is known that we can determine whether the coefficient matrix of an ILS has an
EO in polynomial time.

The connectedness of the solution graph of an ILS is closely related to a
reconfiguration problem of the ILS. A reconfiguration problem is a problem of
finding a sequence of feasible solutions from the initial solution to the target
solution (see, e.g., [3,6]). For ILS, the standard reconfiguration problems asks
whether a given pair of feasible solutions to the ILS belong to the same connected
component of the solution graph of the ILS. Therefore, if the solution graph of
an ILS is connected, then the answer is always YES. Kimura and Suzuki [5]
proved that computational complexity of the reconfiguration problem for the set
of feasible solutions of an ILS has trichotomy.

An ILS is closely related to SAT. An instance of SAT can be formulated by an
ILS. It is known that computational complexity of the reconfiguration problem
of SAT has dichotomy [2,7].

Due to space limitations, we omit the proofs of the statements marked by �.

2 Preliminaries

In this paper, let R and Z>0 denote the sets of real numbers and positive integers,
respectively. For all integers n ∈ Z>0, we define [n] := {1, 2, . . . , n}. First, we
formally define an integer linear system and its solution graph. Throughout this
paper, we fix a positive integer d. Define D := {0, 1, . . . , d}. The set D represents
the domain of a variable in an integer linear system.
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Definition 1 (Integer linear system). An integer linear system (ILS) has
a coefficient matrix A = (aij) ∈ R

[m]×[n] and a vector b ∈ R
[m]. This ILS is

denoted by I = (A, b). A feasible solution to I is a vector x ∈ D[n] such that
Ax ≥ b. The set of feasible solutions to I is denoted by R(I) or R(A, b).

Definition 2 (Hamming distance). Define the function dist : R[n] × R
[n] →

R by dist(x, y) := |{j ∈ {1, . . . , n} : xj �= yj}| for all vectors x, y ∈ R
[n]. This

function is called the Hamming distance on R
[n].

Definition 3 (Solution graph). Let R be a subset of D[n]. We define the
vertex set V (R) := R and the edge set E(R) := {{x, y} : x, y ∈ V (R),dist(x, y) =
1}. We define the solution graph G(R) as the undirected graph with the vertex
set V (R) and the edge set E(R). Furthermore, for each ILS I, we define G(I) :=
G(R(I)).

Next, we define elimination and an eliminated matrix. These concepts are
used to define an elimination ordering (EO).

Definition 4 (Elimination). Let A = (aij) be a matrix in R
[m]×[n]. Let j be

an integer in [n]. We say that A can be eliminated at the column j if it satisfies
at least one of the following conditions.

(i) For all integers i ∈ [m], if aij > 0, then aij′ = 0 for all integers j′ ∈ [n]\{j}.
(ii) For all integers i ∈ [m], if aij < 0, then aij′ = 0 for all integers j′ ∈ [n]\{j}.
Definition 5 (Eliminated matrix). Let A be a matrix in R

[m]×[n]. Let J be
a subset of [n]. We define the eliminated matrix elm(A, J) ∈ R

[m]×([n]\J) as the
matrix obtained from A by eliminating the jth column for all integers j ∈ J . We
call the matrix elm(A, J) the eliminated matrix of A by J .

Definition 6 (Elimination ordering). Let A be a matrix in R
[m]×[n]. Let S =

(j1, j2, . . . , jn) be a sequence of integers in [n]. Then S is called an elimination
ordering (EO) of A if, for all integers t ∈ [n], elm(A, {j1, j2, . . . , jt−1}) can be
eliminated at jt.

Finally, we define the sign function as follows.

Definition 7 (Sign function). For all real numbers x ∈ R, the sign function
sgn : R → {−1, 0, 1} is defined as follows. If x < 0, then we define sgn(x) := −1.
If x = 0, then we define sgn(x) := 0. If x > 0, then we define sgn(x) := 1.

2.1 Our Contribution

In this paper, we prove following theorems.

Theorem 1. Suppose that m ≥ 4 and n ≥ 3. Then there exists a matrix A ∈
R

[m]×[n] satsisfying the following conditions. (i) A does not have an EO. (ii) For
all vectors b ∈ R

[m], the solution graph G(R(A, b)) is connected.

Theorem 2. Let A be a matrix in R
[m]×[n]. Suppose that, for all vectors b ∈

R
[m], the solution graph G(R(A, b)) is connected. Then if at least one of m ≤ 3

and n ≤ 2 holds, then A has an EO.
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3 Proof of Theorem 1

First, we prove following lemma. This lemma plays an important role in the
proof of Theorem 1.

Lemma 1. There exists a matrix A ∈ R
[4]×[3] satsisfying the following condi-

tions. (i) The matrix A does not have an EO. (ii) For all vectors b ∈ R
[4], the

solution graph G(R(A, b)) is connected.

Proof. We define the matrix A as follows.

A =

⎛
⎜⎜⎝

1 1 0
1 −1 0

−1 0 1
−1 0 −1

⎞
⎟⎟⎠ . (1)

It is not difficult to see that A does not have an EO.
Suppose that R(I) is not empty. We take arbitrary vectors b ∈ R

[4] and
s, t ∈ R(I). Without loss of generality, we suppose that s1 ≥ t1. We take the
path P from s to t defined by

s =

⎛
⎝

s1
s2
s3

⎞
⎠ → u1 =

⎛
⎝

s1
t2
s3

⎞
⎠ → u2 =

⎛
⎝

t1
t2
s3

⎞
⎠ → t =

⎛
⎝

t1
t2
t3

⎞
⎠ .

We prove that u1 ∈ R(I) because

s1 + t2 ≥ t1 + t2 ≥ b1, s1 − t2 ≥ t1 − t2 ≥ b2,

−s1 + s3 ≥ b3, −s1 − s3 ≥ b4.

We prove that u2 ∈ R(I) because

t1 + t2 ≥ b1, t1 − t2 ≥ b2,

−t1 + s3 ≥ −s1 + s3 ≥ b3, −t1 − s3 ≥ −s1 − s3 ≥ b4.

These imply that every vertex of P is contained in R(I). Thus, G(I) is connected.
This completes the proof. �

Proof (Theorem 1). Let A be the matrix defined in (1). If m > 4 or n > 3, then
we add rows and columns whose all elements are 0 to A until A becomes an
m × n matrix. Lemma 1 completes the proof. �

4 Proof of Theorem 2

First, we prove Lemma 2, which we call Expansion Lemma. Expansion Lemma
means that the columns which can be eliminated have nothing to do with the
connectedness of the solution graph.
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4.1 Expansion Lemma

Let A = (aij) be a matrix in R
[m]×[n]. Suppose that A does not have an EO.

We define the subsets Δ, E ⊆ [n] as the output of Algorithm 1. We define the
matrix Ar = (ar

ij) as the submatrix of A whose index set of columns is Δ.

Algorithm 1. Algorithm for defining Δ and E.
1: Δ ← ∅, E ← ∅
2: while elm(A, E) can be eliminated at some column do
3: Find an index j ∈ E at which the matrix elm(A, E) can be eliminated.
4: E ← E ∪ {j}
5: end while
6: Δ ← [n] \ E
7: Output Δ, E

Lemma 2 (Expansion Lemma). Suppose that there exists a vector br ∈ R
[m]

such that the solution graph G(Ir) of the ILS Ir = (Ar, br) is not connected.
Then there exists a vector b ∈ R

[m] such that the solution graph G(I) of the ILS
I = (A, b) is not connected.

Proof. We define the vector xe ∈ DE as follows.

xe
k :=

{
1 if the column vector Ak is eliminated by the rule (i) in Definition 4
0 otherwise.

With this vector xe, we define the vector be ∈ D[m] by

be
i :=

∑
k∈E

ae
ikd(1 − xe

k) (i ∈ [m]).

With the vectors be and br, we define the vector b by b := br + be. We prove
that the solution graph G(I) of the ILS I = (A, b) is not connected. For each
vector z ∈ DΔ and each vector ζ ∈ DE , we define the vector (z, ζ) ∈ D[n] by

(z, ζ)k :=

{
zk (k ∈ Δ)
ζk (k ∈ E).

Proposition 1. There exists a vector ζ ′ ∈ DE such that (z, ζ ′) ∈ R(I) for all
feasible solutions z ∈ R(Ir).

Proof. We define the vector ζ ′ ∈ DE by ζ ′
k := d(1 − xe

k) for all integers k ∈ E.
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Since z ∈ R(Ir), for all integers i ∈ [m], we have
∑

k∈Δ ar
ikzk ≥ br

i . Thus, for
all integers i ∈ [m], we have

∑
k∈[n]

aik(z, ζ ′)k − bi =
∑
k∈Δ

ar
ikzk − br

i +
∑
k∈E

ae
ikζ ′

k − be
i

≥
∑
k∈E

ae
ikζ ′

k −
∑
k∈E

ae
ikd(1 − xe

k) = 0.

Thus, we have (z, ζ ′) ∈ R(I). This completes the proof. �

Proposition 2. For all vectors z ∈ DΔ\R(Ir) and ζ ∈ DE, we have (z, ζ) /∈
R(I).

Proof. Since z is not a feasible solution in R(Ir), there exists an integer i ∈ [m]
such that

∑
k∈Δ ar

ikzk < br
i .

We prove that there exists an integer j ∈ Δ such that ar
ij �= 0. Suppose that

ar
ij = 0 for all integers j ∈ Δ. For all vectors z′ ∈ R(Ir), 0 =

∑
k∈Δ ar

ikz′
k ≥ br

i .
Therefore, we have

∑
k∈Δ ar

ikzk = 0 ≥ br
i . It contradicts

∑
k∈Δ ar

ikzk < br
i . There

exists an integer j ∈ Δ such that ar
ij �= 0. We fix such an integer j ∈ Δ.

We prove that, for all integers k ∈ E, xe
k = 1 (resp. xe

k = 0) implies ae
ik ≤ 0

(resp. ae
ik ≥ 0). Suppose that there exist an integer k ∈ E such that xe

k = 1 (resp.
xe

k = 0) and ae
ik > 0 (resp. ae

ik < 0). Since xe
k = 1 (resp. xe

k = 0) and k ∈ E,
the column vector Ak is eliminated by the rule (i) (resp. (ii)) in Definition 4.
Therefore, since ae

ik > 0 (resp. ae
ik < 0), for all integers j′ ∈ [n]\{j}, we have

aij′ = 0. However, we have ar
ij �= 0 and j ∈ Δ ⊆ [n]\{j}. This is a contradiction.

Thus, for all integers k ∈ E, xe
k = 1 (resp. xe

k = 0) implies ae
ik ≤ 0 (resp. ae

ik ≥ 0).
We define E1 (resp. E0) as the set of integers k ∈ E such that xe

k = 1
(resp. xe

k = 0). For all integers k ∈ E1, since ae
ik ≤ 0, we have ae

ikζk ≤ ae
ik0 =

ae
ikd(1 − xe

k). Similarly, for all integers k ∈ E0, since ae
ik ≥ 0, we have ae

ikζk ≤
ae

ikd = ae
ikd(1 − xe

k). Thus, for all integers k ∈ E, we have ae
ikζk ≤ ae

ikd(1 − xe
k).

We have
∑

k∈[n]

aik(z, ζ)k − bi =
∑
k∈Δ

ar
ikzk − br

i +
∑
k∈E

ae
ikζk − be

i <
∑
k∈E

ae
ikζk − be

i

≤
∑
k∈E

ae
ikd(1 − xe

k) −
∑
k∈E

ae
ikd(1 − xe

k) = 0,

where the strict inequality follows from
∑

k∈Δ ar
ikzk < br

i . This completes the
proof. �

We take vectors p, q ∈ R(Ir) that are not connected on G(Ir). We take a vec-
tor ζ ′ ∈ DE satisfying the condition in Proposition 1. We obtain (p, ζ ′), (q, ζ ′) ∈
R(I). We take an arbitrary path P from (p, ζ ′) to (q, ζ ′) on G(D[n]). Let
(p, ζ ′) = (u(0), v(0)) → (u(1), v(1)) → · · · → (u(�), v(�)) = (q, ζ ′) denote P .

Define the map F r : D[n] → DΔ by F r((z, ζ)) := z for all vectors (z, ζ) ∈
D[n]. Define the path P r as F r((u(0), v(0))) → · · · → F r((u(�), v(�))) on G(DΔ)
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(P r may contain some duplicate vertices). Since p, q are not connected on G(Ir),
there exists a positive integer k < � such that F r((u(k), v(k))) /∈ R(Ir).

By Proposition 2, F r((u(k), v(k))) /∈ R(Ir) implies that, for any vector ζ ∈
DE , (F r((u(k), v(k))), ζ) /∈ R(I). If we take v(k) as ζ, then we have (u(k), v(k)) =
(F r((u(k), v(k))), v(k)) /∈ R(I). This implies that P is not a path in G(I). Thus,
the solution graph G(I) is not connected. This completes the proof. �

4.2 Two Rows

In this subsection, we consider the case where the coefficient matrix of an ILS
consists of two rows.

Proposition 3 (�). Let A = (aij) be a matrix in R
[2]×[n]. Suppose that A cannot

be eliminated at any column. Then for all integers j ∈ [n], sgn(a1j) = − sgn(a2j),
sgn(a1j) �= 0, and sgn(a2j) �= 0.

Lemma 3. Let A = (aij) be a matrix in R
[2]×[n]. Suppose that A cannot be

eliminated at any column. Then there exists a vector b ∈ R
[2] such that the

solution graph G(I) of the ILS I = (A, b) is not connected.

Proof. We define the set of integer {j11 , . . . , j1n} = [n] (resp. {j21 , . . . , j2n} = [n])
by |a1j1

k
| ≤ |a1j1

k+1
| (resp. |a2j2

k
| ≤ |a2j2

k+1
|) for all integers k ∈ [n − 1]. That is,

we arrange the elements in each row in non-decreasing order.
Define the vector x ∈ {0, 1}[n] by

xk :=

{
0 (a1k > 0)
1 (a1k < 0).

Notice that Proposition 3 implies that ak �= 0.
We define the vector b ∈ R

[2] by

(
b1

b2

)
:=

⎛
⎜⎜⎜⎝

∑
k∈[n]\{j1

2}
a1kd(1 − xk) + a1j1

2
((d − 1)(1 − xj1

2
) + xj1

2
)

∑
k∈[n]\{j2

1}
a2kd(1 − xk) + a2j2

1
((d − 1)(1 − xj2

1
) + xj2

1
)

⎞
⎟⎟⎟⎠ .

Then we consider the ILS I = (A, b). We define the vectors p, q ∈ D[n] as follows.

pk :=

{
d(1 − xk) (k �= j11)

(d − 1)(1 − xk) + xk (k = j11),
qk :=

{
d(1 − xk) (k �= j12)

(d − 1)(1 − xk) + xk (k = j12).

We prove that the vectors p, q belong to R(I) and they are not connected on the
solution graph G(I).

Proposition 4 (�). The vectors p, q belong to R(I).
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Proposition 5 (�). For all integers j ∈ [n], a1j(1 − 2xj) = |a1j | and a2j(1 −
2xj) = −|a2j |.

We define Y as the set of vectors y ∈ D[n] such that dist(q, y) = 1. In other
words, the subset Y is the set of neighborhood vertices of q on G(D[n]). Then
we prove that y /∈ R(I) for all vectors y ∈ Y .

We arbitrarily take a vector y ∈ Y . From the definition, the following equa-
tion is obtained for the vector y.

yk =

{
qk (k �= j)
ξ (k = j),

where j is an integer in [n] and ξ is an integer in D such that ξ �= qj .
Case 1 (j �= j12). If j �= j12 , then we have
∑

k∈[n]

a1kyk − b1 =
∑

k∈[n]\{j}
a1kqk + a1jξ − b1

=
∑

k∈[n]\{j,j1
2}

a1kd(1 − xk) + a1j1
2
((d − 1)(1 − xj1

2
) + xj1

2
) + a1jξ

−
⎛
⎝ ∑

k∈[n]\{j1
2}

a1kd(1 − xk) + a1j1
2
((d − 1)(1 − xj1

2
) + xj1

2
)

⎞
⎠

= a1j(ξ − d(1 − xj)).

Case 1.1 (a1j > 0). If a1j > 0, then xj = 0. Since qj = d(1 − xj) = d, the
inequality 0 ≤ ξ ≤ d − 1 is obtained. We have

∑
k∈[n]

a1kyk − b1 = a1j(ξ − d(1 − xj)) ≤ a1j((d − 1) − d) = −a1j < 0.

Case 1.2 (a1j < 0). If a1j < 0, then xj = 1. Since qj = d(1 − xj) = 0, the
inequality 1 ≤ ξ ≤ d is obtained. We have

∑
k∈[n]

a1kyk − b1 = a1j(ξ − d(1 − xj)) ≤ a1j(1 − 0) = a1j < 0.

Case 2 (j = j12). If j = j12 , then we have
∑

k∈[n]

a1kyk − b1 =
∑

k∈[n]\{j}
a1kqk + a1jξ

−
⎛
⎝ ∑

k∈[n]\{j}
a1kd(1 − xk) + a1j((d − 1)(1 − xj) + xj)

⎞
⎠

= a1j(ξ − ((d − 1)(1 − xj) + xj)).
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Case 2.1 (a1j > 0). If a1j > 0, then xj = 0. Thus, qj = (d − 1)(1 − xj) + xj =
d − 1. Therefore, either 0 ≤ ξ ≤ d − 2 or ξ = d is satisfied. We have

∑
k∈[n]

a1kyk − b1 = a1j(ξ − ((d − 1)(1 − xj) + xj)) = a1j(ξ − (d − 1)).

Case 2.1.1 (0 ≤ ξ ≤ d − 2). If 0 ≤ ξ ≤ d − 2, then we have
∑

k∈[n]

a1kyk − b1 = a1j(ξ − (d − 1)) ≤ a1j((d − 2) − (d − 1)) = −a1j < 0.

Case 2.1.2 (ξ = d). If ξ = d, then we consider b2.
Case 2.1.2.1 (j �= j21). By Proposition 5, if j �= j21 , then we have

∑
k∈[n]

a2kyk − b2

=
∑

k∈[n]

a2kyk −
⎛
⎝ ∑

k∈[n]\{j2
1}

a2kd(1 − xk) + a2j2
1
((d − 1)(1 − xj2

1
) + xj2

1
)

⎞
⎠

= a2j(ξ − d(1 − xj)) + a2j2
1
(yj2

1
− ((d − 1)(1 − xj2

1
) + xj2

1
))

= a2j(d − d(1 − 0)) + a2j2
1
(qj2

1
− ((d − 1)(1 − xj2

1
) + xj2

1
))

= a2j2
1
(d(1 − xj2

1
) − ((d − 1)(1 − xj2

1
) + xj2

1
))

= a2j2
1
(1 − 2xj2

1
) = −|a2j2

1
| < 0.

Case 2.1.2.2 (j = j21). If j = j21 , then a2j < 0 follows from a1j > 0 and
Proposition 3.

∑
k∈[n]

a2kyk − b2

=
∑

k∈[n]

a2kyk −
⎛
⎝ ∑

k∈[n]\{j}
a2kd(1 − xk) + a2j((d − 1)(1 − xj) + xj)

⎞
⎠

= a2j(ξ − ((d − 1)(1 − xj) + xj))
= a2j(d − ((d − 1)(1 − 0) + 0)) = a2j < 0.

Due to space limitations, we omit the remaining part of the proof.
We obtain y /∈ R(I) for all the cases. Therefore, any neighborhood vertex of

q on G(D[n]) is not a feasible solution. This completes the proof. �

Lemma 4. Let A = (aij) be a matrix in R
[2]×[n]. Suppose that A does not have

an EO. Then there exists a vector b ∈ R
[2] such that the solution graph G(I) of

the ILS I = (A, b) is not connected.

Proof. We define Ar in the same way as in Sect. 4.1. Then Ar cannot be elimi-
nated at any column. By Lemma 3, there exists a vector br such that the solution
graph G(R(Ar, br)) is not connected. Lemma 2 completes the proof. �
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4.3 Two Columns

In this subsection, we consider the case where the coefficient matrix of an ILS
consists of two columns. We prove the following lemma.

Lemma 5 (�). Let A = (aij) be a matrix in R
[m]×[2]. Suppose that A does not

have an EO. Then there exists a vector b ∈ R
[m] such that the solution graph

G(I) of the ILS I = (A, b) is not connected.

4.4 Three Rows

In this subsection, we consider the case where the coefficient matrix of an ILS
consists of three rows. We prove the following lemma. At the end of this section,
we prove Theorem 2.

Lemma 6. Let A = (aij) be a matrix in R
[3]×[n]. Suppose that A cannot be

eliminated at any column. Then there exists a vector b ∈ R
[3] such that the

solution graph G(I) of the ILS I = (A, b) is not connected.

Proof. For all integers i1, i2 ∈ [3], we define

Λi1,i2 := {j ∈ [n] : sgn(ai1j) = − sgn(ai2j) �= 0}.

Proposition 6 (�). If there exist integers i1, i2 ∈ [3] such that |Λi1,i2 | ≥ 2,
then for all integers d ∈ Z>0, there exists a vector b ∈ R

[3] such that the solution
graph G(I) of the ILS I = (A, b) is not connected.

Proposition 7 (�). If n �= 3, then there exist integers i1, i2 ∈ [3] such that
|Λi1,i2 | ≥ 2.

Proposition 8 (�). Suppose that n = 3 and there are distinct integers
i′1, i

′
2, i

′
3 ∈ [3] such that Λi′

1,i′
2

∩ Λi′
2,i′

3
�= 0. Then there exist integers i1, i2 ∈ [3]

such that |Λi1,i2 | ≥ 2.

Proposition 6 implies that if there exist integers i1, i2 ∈ [3] such that |Λi1,i2 | ≥
2, then the proof is done. Suppose that, for all integers i1, i2 ∈ [3], |Λi1,i2 | = 1. By
Proposition 7, we have n = 3. By Proposition 8, Λ1,2, Λ2,3, and Λ1,3 are pairwise
disjoint. Notice that, for all integers j ∈ [3], there exist integers i1, i2 ∈ [3]
such that j ∈ Λi1,i2 . Without loss of generality Λ1,2 = {1}, Λ2,3 = {2}, and
Λ1,3 = {3}. We have a12 = a23 = a31 = 0. For example, if a12 �= 0, then 2 ∈ Λ1,2

or 2 ∈ Λ1,3.
We define the vector x ∈ {0, 1}[3] by

xk :=

{
0 if akk > 0
1 if akk < 0

(k ∈ [3]).
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For all integers i ∈ [3], we assume that {ji
1, j

i
2, j

i
3} = [3] and |aiji

1
| ≤ |aiji

2
| ≤

|aiji
3
|. By the definition, for all integers i ∈ [3], we have aiji

1
= 0. We define the

vector b ∈ R
[3] by

bi :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k∈[n]

aikd(1 − xk) if ji
2 = i

∑
k∈[n]

aik((d − 1)(1 − xk) + xk) if ji
2 �= i

(i ∈ [3]).

Then we consider the ILS I = (A, b).
We define the vectors p, q ∈ D[3] as follows.

pi := d(1 − xi) (i ∈ [3]),
qi := (d − 1)(1 − xi) + xi (i ∈ [3]).

We prove that the vectors p, q belong to R(I) and they are not connected on the
solution graph G(I).

Proposition 9 (�). The vectors p, q belong to R(I).

Proposition 10 (�). For all integers j ∈ [3], we have ajj(1 − 2xj) = |ajj |.
For all integers i ∈ [3] and all integers s ∈ {2, 3}, if ji

s �= i, then we have
aiji

s
(1 − 2xji

s
) = −|aiji

s
|.

We define Y as the set of vectors y ∈ D[n] such that dist(p, y) = 1. In other
words, the subset Y is the set of neighborhood vertices of p on G(D[n]). Then
we prove that y /∈ R(I) for all vectors y ∈ Y .

We arbitrarily take a vector y ∈ Y . From the definition, the following equa-
tion is obtained for the vector y.

yk =

{
pk (k �= �)
ξ (k = �).

where � is an integer in [3] and ξ is an integer in D such that ξ �= p�.
Suppose that j�

2 = �. For all vectors y ∈ Y , we have
∑
k∈[3]

a�kyk − b� =
∑
k∈[3]

a�kyk −
∑
k∈[3]

a�kd(1 − x�) = a��(ξ − d(1 − x�)).

If a�� > 0, then x� = 0. Since p� = d(1−x�) = d, the inequality 0 ≤ ξ ≤ d−1
is obtained. We have

∑
k∈[3]

a�kyk − b� = a��(ξ − d(1 − x�)) ≤ a��(d − 1 − d) = −a�� < 0.

If a�� < 0, then x� = 1. Since p� = d(1 − x�) = 0, the inequality 1 ≤ ξ ≤ d is
obtained. We have

∑
k∈[3]

a�kyk − b� = a��(ξ − d(1 − x�)) ≤ a�� < 0.
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Suppose that j�
2 �= �. By Proposition 10, for all vectors y ∈ Y , we have

∑
k∈[3]

a�kyk − b� = a�j�
2
d(1 − xj�

2
) + a��ξ − b�

= a�j�
2
(d(1 − xj�

2
) − ((d − 1)(1 − xj�

2
) + xj�

2
)

+ a��(ξ − ((d − 1)(1 − x�) + x�))
= a�j�

2
(1 − 2xj�

2
) + a��(ξ − ((d − 1)(1 − x�) + x�))

= −|a�j�
2
| + a��(ξ − ((d − 1)(1 − x�) + x�)).

If a�� > 0, then x� = 0. Since p� = d(1−x�) = d, the inequality 0 ≤ ξ ≤ d−1
is obtained.

∑
k∈[3]

a�kyk − b� = −|a�j�
2
| + a��(ξ − ((d − 1)(1 − x�) + x�))

≤ −|a�j�
2
| + a��(d − 1 − (d − 1)) = −|a�j�

2
| < 0.

If a�� < 0, then x� = 1. Since p� = d(1 − x�) = 0, the inequality 1 ≤ ξ ≤ d is
obtained. We have

∑
k∈[3]

a�kyk − b� = −|a�j�
2
| + a��(ξ − ((d − 1)(1 − x�) + x�))

≤ −|a�j�
2
| + a��(1 − 1) = −|a�j�

2
| < 0.

For all vectors y ∈ Y , we obtain y ∈ R(I). Therefore, any neighborhood
vertex of p on G(D[n]) is not a feasible solution. This completes the proof. �

Lemma 7. Let A = (aij) be a matrix in R
[3]×[n]. Suppose that A does not have

an EO. Then there exists a vector b ∈ R
[3] such that the solution graph G(I) of

the ILS I = (A, b) is not connected.

Proof. We define Ar in the same way as in Sect. 4.1. Then Ar cannot be elimi-
nated at any column. By Lemma 6, we have the vector br such that the solution
graph G(R(Ar, br)) is not connected. Lemma 2 completes the proof. �

Proof (Theorem 2). We consider the contraposition of the statement in Theorem
2. If m = 2 (resp. n = 2, m = 3), Lemma 4 (resp. Lemma 5, Lemma 7) completes
this proof. �

References

1. Boros, E., Crama, Y., Hammer, P.L., Saks, M.: A complexity index for satisfia-
bility problems. SIAM J. Comput. 23(1), 45–49 (1994). https://doi.org/10.1137/
S0097539792228629

2. Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of
Boolean satisfiability: computational and structural dichotomies. SIAM J. Comput.
38(6), 2330–2355 (2009). https://doi.org/10.1137/07070440X

https://doi.org/10.1137/S0097539792228629
https://doi.org/10.1137/S0097539792228629
https://doi.org/10.1137/07070440X


On Connectedness of Solutions to Integer Linear Systems 433

3. Ito, T., et al.: On the complexity of reconfiguration problems. Theoret. Comput.
Sci. 412(12–14), 1054–1065 (2011). https://doi.org/10.1016/j.tcs.2010.12.005

4. Kimura, K., Makino, K.: Trichotomy for integer linear systems based on their sign
patterns. Discret. Appl. Math. 200, 67–78 (2016). https://doi.org/10.1016/j.dam.
2015.07.004

5. Kimura, K., Suzuki, A.: Trichotomy for the reconfiguration problem of integer linear
systems. Theoret. Comput. Sci. 856, 88–109 (2021). https://doi.org/10.1016/j.tcs.
2020.12.025

6. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018).
https://doi.org/10.3390/a11040052

7. Schwerdtfeger, K.W.: A computational trichotomy for connectivity of Boolean satis-
fiability. J. Satisfiability, Boolean Model. Comput. 8(3–4), 173–195 (2014). https://
doi.org/10.3233/sat190097

https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1016/j.dam.2015.07.004
https://doi.org/10.1016/j.dam.2015.07.004
https://doi.org/10.1016/j.tcs.2020.12.025
https://doi.org/10.1016/j.tcs.2020.12.025
https://doi.org/10.3390/a11040052
https://doi.org/10.3233/sat190097
https://doi.org/10.3233/sat190097


An Exact Algorithm
for the Line-Constrained Bottleneck

k-Steiner Tree Problem

Jianping Li1(B), Suding Liu1, and Junran Lichen2

1 School of Mathematics and Statistics, Yunnan University,
East Outer Ring South Road, Kunming 650504, People’s Republic of China

jianping@ynu.edu.cn, suding2020@163.com
2 School of Mathematics and Physics, Beijing University of Chemical Technology,
No.15, North Third Ring East Road, Beijing 100190, People’s Republic of China

J.R.Lichen@buct.edu.cn

Abstract. In this paper, we address the line-constrained bottleneck k-
Steiner tree (LcBkStT) problem. Specifically, given an input line l, a set
P of n points in R

2 and a positive integer k, we are asked to find at most
k Steiner points located on this line l and additionally a spanning tree
Tl on these n + k points, the objective is to minimize the length of the
longest edge in Tl, where the edges in Tl are not allowed to cross this
line l and the length of each edge in Tl is equal 0 if the two endpoints of
that edge are located on the aforementioned line l. Using a technique of
oriented Voronoi diagram, we design an exact algorithm for the LcBkStT
problem in O(n log n+f(k)·nk) time, where f(k) is a function dependent
only on the positive integer k. This algorithm is an exact algorithm for
the LcB1StT problem (for k = 1) in O(n log n) time.

Keywords: Line-constrained bottleneck Steiner tree · Steiner points ·
Computational geometry · Oriented Voronoi diagram · Exact
algorithms

1 Introduction

The minimum spanning tree (MST) problem is one of classic and well-known
combinatorial optimization problems [16,23]. The Euclidean minimum spanning
tree (EMST) problem is a special version of the MST problem, and it is defined
as follows. Given a set P of n points in R

2, it is asked to find an interconnecting
tree of minimum total length, whose vertices are the n points in P . The EMST
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problem is solved by using many well-known exact algorithms [9,16,23] to solve
the MST problem in at least O(n2) time. Using techniques to construct the
Voronoi diagram of n points in P , Shamos and Hoey [24] in 1975 presented an
exact algorithm to resolve the EMST problem in O(n log n) time.

The minimum Steiner tree (MStT) problem [16] is one of the most funda-
mental NP-hard problems, which is a generalization of the MST problem and the
shortest path problem. Over the past five decades, the MStT problem has been
studied extensively, and many approximation algorithms to solve this problem
can be found in those references [1,6,21]. The Euclidean minimum Steiner tree
(EMStT) problem is a new form of the MStT problem. Specifically, given a set
P of n points in R

2, called terminals, it asks to find a shortest possible tree
interconnecting these n points in R

2, allowing the addition of auxiliary points
to the set (Steiner points). Graham and Johnson [13] in 1977 showed that the
EMStT problem is still NP-hard. There are many approximation algorithms to
solve this problem [2,19,20,27].

Wang and Du [25] in 2002 addressed the bottleneck Steiner tree (BStT)
problem. Specifically, given a set P of n terminals in R

2 and a positive integer k,
it is asked to find a Steiner tree, with at most k Steiner points, the objective is
to minimize the length of a longest edge in such a Steiner tree. The same authors
[25] proved that the BStT problem remains NP-hard even to approximate within
ratio

√
2, unless P = NP, then they presented a 2-approximation algorithm to

solve the BStT problem. Wang and Li [26] in 2002 presented the approximation
algorithm that achieves an approximation ratio of 1.866 for the BStT problem.
Cardei et al. [7] in 2006 provided by far the best-known approximation algorithm
with approximation ratio of

√
3 + ε, where ε is an arbitrary positive number.

Bae et al. [4] in 2010 focused on finding exact solutions to the BStT prob-
lem for a small constant k. Having based on geometric properties of optimal
location of Steiner points, Bae et al. [4] presented an optimal Θ(n log n)-time
exact algorithm for the case k = 1 and an O(n2)-time algorithm for the case
k = 2 of the BStT problem, respectively. The same authors [4] also presented
an optimal Θ(n log n)-time exact algorithm for any constant k for a special case
where there is no edge between Steiner points. In addition, Bae et al. [3] in 2011
studied this problem in the Lp metric for any 1 � p � ∞ and then presented
a fixed-parameter tractable algorithm, running in f(k) · n log2 n time, for the
L1 and the L∞ metrics and an exact algorithm, running in f(k) · (nk + n log n)
time, for the Lp metric for any fixed rational p with 1 < p < ∞, where f(k) is
a function dependent only on this constant k.

Georgakopoulos and Papadimitriou [14] in 1987 considered the 1-Steiner tree
problem. Specifically, given a set P of n points in R

2, it is asked to find a new
point s ∈ R

2 such that the total length of the minimum spanning tree on the set
P ∪ {s} is as short as possible. Using a technique of oriented Voronoi diagram
(OVD) [8], the same authors [14] presented an exact algorithm to solve the
1-Steiner tree problem in O(n2) time.

Holby [15] in 2017 discussed a variation of the EMStT problem by introducing
a free Steiner line and attempting to construct a minimum Steiner network using
this line, and the author [15] proposed a heuristic algorithm for this variation on
larger sets. Li et al. [17] in 2020 reconsidered this Holby’s problem and restated
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that one as the 1-line Euclidean minimum Steiner tree (1L-EMStT) problem.
Specifically, given an input line l and a set P of n terminals in R

2, it is asked
to find a Steiner tree Tl to interconnect this line l and the n terminals with
the shortest possible length, where the length of each edge in Tl is equal 0 if
the two endpoints of that edge are located on the line l. When Steiner points
added are all located on such a line l, the authors [17] called this version as the
constrained Euclidean minimum Steiner tree (CEMStT) problem. Li et al. [17]
designed a polynomial-time exact algorithm for the CEMStT problem and then
a 1.214-approximation algorithm for the 1L-EMStT problem in O(n log n) time.

Chen and Zhang [10] in 2000 considered the constrained Euclidean minimum
spanning tree problem, which is a variation of the EMST problem. Given an
input line l and a set P of n points located at the same side of this line l in
R

2, it is asked to find one point s on this line l such that the total length of
the minimum spanning tree on the set P ∪ {s} is as short as possible. The
same authors [10] applied the divide-and-conquer technique to design an exact
algorithm to solve this problem in O(n2) time.

Bose et al. [5] in 2022 addressed the restricted k-Steiner tree problem. Specif-
ically, given an input line l and a set P of n points in R

2, it is asked to find a
Steiner tree T such that the number of Steiner points in T are no more than k,
which are all located on the line l, the objective is to minimize the total length
of that Steiner tree T . When k = 1, the same authors [5] refer to this prob-
lem as the restricted 1-Steiner tree problem. Bose et al. [5] provided an exact
algorithm to solve the restricted k-Steiner tree problem in O(nk) time for any
constant k > 1 and an exact algorithm for the restricted 1-Steiner tree problem
in Θ(n log n) time, respectively.

Motivated by these aforementioned interesting problems, we address the line-
constrained bottleneck k-Steiner tree (LcBkStT) problem. Specifically, given an
input line l, a set P = {p1, p2, . . . , pn} of n points (called as terminals), located
at the outside of this line l in R

2, and a positive integer k, it is asked to find at
most k Steiner points located on this line l and additionally a spanning tree Tl

on these n+k points, the objective is to minimize the length of the longest edge
in such a Steiner tree Tl, i.e., minTl

max{|pq| | e = pq ∈ Tl}, where the edges
in Tl are not allowed to cross the line l, the length of each edge in Tl is equal
0 if the two endpoints of that edge are located on the line l, and otherwise the
length of edge is the Euclidean distance between two endpoints. In particular,
we are interested in the version k = 1 of the LcBkStT problem, and we refer this
problem as the line-constrained bottleneck 1-Steiner tree (LcB1StT) problem.

The bottleneck Steiner tree problems and their variations have many known
applications in VLSI layout [11], multi-facility location, and wireless communica-
tion network design [18]. The LcBkStT problem has an immediate application in
the design of wireless networks. A security and protection system includes many
sensors capable of collecting the changes of environment and sending signals to
data collection node through the sensor network. To ensure the transmission
efficiency of the sensor network, it is common practice to utilize wired networks
at a global scale, while employing wireless sensor networks at a local level. Con-
sequently, the supplementary sensors onto the wired network become essential
for relaying the signals collected by the wireless sensors into the wired network.
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Generally, sensors use batteries to provide power. In the radio-frequency wireless
sensor networks, the power required to transfer a signal is related to the distance
between the source and destination sensors. In general, shorten distance among
nodes means longer network lifetime.

2 Properties of Bottleneck Steiner Trees

In this section, we present some properties of bottleneck Steiner trees to ensure
the correctness of our algorithms.

Given any two points p and q in R
2, we denote by pq the line segment between

two points p and q, and we denote by |pq| the Euclidean length of this segment
pq. Given a point p and a straight line l in R

2, we denote by |pl| the Euclidean
length of perpendicular segment pl from the point p to the fixed line l, and we
denote by lp the vertical foot from the point p to the line l, i.e. plp⊥l.

Lemma 1. [24] The Euclidean minimum spanning tree problem can be optimally
solved by the Shamos-Hoey algorithm in O(n log n) time.

Given a set P of n points in R
2, a (Euclidean) bottleneck spanning tree of

P is a spanning tree of P such that the length of the longest edge is minimized.
We call the length of the longest edge in a bottleneck spanning tree T of P as
the bottleneck of that tree T , denoted by B(T ).

Lemma 2. [4] Each Euclidean minimum spanning tree of P is a bottleneck
spanning tree of P .

Given a set P of n points, an input line l in R
2 and a positive integer k

as an instance (P, l; k) of the LcBkStT problem, we denote by T ∗
l the shortest

optimal solution that is an optimal Steiner tree for the LcBkStT problem with
the minimum total length.

Lemma 3. Each shortest optimal solution T ∗
l must have the following properties

(1) No two edges, in T ∗
l , cross each other; (2) If two edges, in T ∗

l , on the same
side of the line l meeting at a point form an angle, then this angle is of at least
60◦; (3) If two edges, in T ∗

l , on the same side of the line l form an angle of
exactly 60◦, then these two edges have the same length.

Proof. (1) We may suppose, to the contrary, that two edges ac and bd in T ∗
l

cross at point o. Note that quadrangle abcd must have an inner angle of at least
90◦. Without loss of generality, we may assume that ∠abc � 90◦. Then, we have
|ab| < |ac| and |bc| < |ac|. When an edge ac is removed from T ∗

l , T ∗
l would

be broken into two parts, the one containing vertex a and the other containing
vertex c, respectively. One of the two parts, which contains the vertex a, must
contain vertex b. Adding an edge bc results in a shorter tree to be still optimal for
the CBkStT problem. This contradicts the fact that T ∗

l is the shortest optimal
solution. Thus, (1) holds.
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(2) We may suppose, to the contrary, that two edges ab and bc meet at point
b and that these two edges form an angle ∠abc < 60◦. Then, we have |ac| <
max{|ab|, |bc|}. Using an edge ac with length |ac| to substitute for either an edge
ab or an edge bc with length max{|ab|, |bc|}, we would reduce the total length of
that tree T ∗

l , contradicting the length-minimality of T ∗
l among optimal solutions.

Thus, (2) holds. The statement (3) can be proved by a similar arguments. �

Without loss of generality, we may treat the input line l as the x-axis in
R

2. This line can be parameterized by x-coordinates. Let an interval on l be
the set of points on l in between and including two fixed x-coordinates, called
the endpoints of the interval. The coordinates of the leftmost point and the
rightmost point in P are 0 and r, respectively. Then, the Steiner points we want
to determine are in the interval [0, r].

We consider the positive x-axis to be the basis for measuring angles, so that
0 radians is the positive x-axis, π/3 radians is a counterclockwise rotation of the
positive x-axis about the origin by π/3 radians, and so on. Given two radians
θ1 and θ2, we denote by C(p, θ1, θ2) the cone with apex p and limiting angles θ1
and θ2. We denote by Ci

p the cone C(p, (i − 1)π/3, iπ/3), where p is a point in
[0, r] and i = 1, 2, . . . , 6. In other words, the cones Ci

p are obtained by dividing
the plane up into six interior-disjoint cones of angle π/3 all apexed on p.

Lemma 4. There exists a shortest optimal Steiner tree T ∗
l for the LcBkStT

problem such that the Steiner points s∗ in T ∗
l have degree at most six. These

neighbors of s∗ are located in different cones Ci
s∗ . If the point pi in Ci

s∗ is the
neighbor of s∗ in T ∗

l , then pi is the closest point of P to s∗ in Ci
s∗ .

Proof. By using the property (2) of Lemma 3, if two edges on the same side of
this line l meeting at a Steiner point s∗ may form an angle, then this angle is at
least 60◦. If there are four or more edges that are incident to s∗ on the same side
of the line l (see Fig. 1), then we obtain α1 + α2 + α3 + α4 + α5 > 180◦, where
α2, α3, α4 � 60◦. This contradicts that a straight angle is 180◦. Then, there are
at most three edges that are incident to s∗ on the same side of the line l. Thus,
the Steiner point s∗ has degree at most six.

Let point pi be the neighbor of s∗ in Ci
s∗ . We may suppose, to the contrary,

that qi is the closest point of P to s∗ in Ci
s∗ , i.e., |s∗qi| < |s∗pi|. We have the

facts ∠pis
∗qi < 60◦ and |piqi| < |s∗pi|. When the edge s∗pi is removed from T ∗

l ,
then T ∗

l would be broken into two parts. Adding either edge s∗pi or edge piqi
results in a shorter tree to be still optimal for the LcBkStT problem (see Fig. 2).
This contradicts that T ∗

l is the shortest optimal solution. �

Lemma 5. [5] Given a set P of n points and a straight line l in R
2, using

the OVD algorithm [8], the interval [0, r] on the line l can be divided into O(n)
interior-disjoint intervals such that each interval I has the property that, for
every pair of points p, q ∈ I, the closest point in Ci

p ∩ P to p is the same as in
Ci

q ∩ P to q (see Fig. 2), and it runs in Θ(n log n) time using O(n) space.
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Fig. 1. Four edges that are incident to s∗ on the same side of the line l

Given a set P of n points in R
2, we denote by MST (P ) any fixed minimum

spanning tree of P . Denote e1, e2, . . ., en−1 to be the edges of MST (P ) in the
order that their lengths are not increasing. Given an instance (P, l; k) of the
LcBkStT problem, where we treat the input line l as the x-axis in R

2, we denote
by P1 the n1 points in P to be located on the upper side of l and by P2 the n2

points in P to be located on the lower side of l, respectively. We have n = n1+n2.

Lemma 6. For any two minimum spanning trees MST (P1) on the set P1 and
MST (P2) on the set P2, there exists a shortest optimal Steiner tree T ∗

l for
the LcBkStT problem such that each edge of T ∗

l either belongs to MST (P1) ∪
MST (P2) or is incident to a Steiner point s∗.

Proof. Suppose that there are two points p, q ∈ P1 such that the edge pq belongs
to T ∗

l , but not to MST (P1). Let τ be the unique path in MST (P1) between p
and q, and P ′

1 and P ′′
1 be the bipartition of P1 obtained by removing pq from

T ∗
l . Note that τ excludes the edge pq. Then, there must exist an edge e �= pq

on τ such that e connects P ′
1 and P ′′

1 , i.e., this edge e is between one point in
P ′
1 and another in P ′′

1 . Because MST (P1) is a minimum spanning tree on the
set P1 and T ∗

l is a shortest optimal Steiner tree, we have |e| = |pq|. Then, we
remove the edge pq from T ∗

l and add e to obtain a new Steiner tree, denote by
T ′
l . Hence, T ′

l is another optimal bottleneck Steiner tree. We repeat the above
operations to obtain a shortest optimal Steiner tree with the claimed property
after performing the operation a finite number of times. �

Lemma 7. Let e′
1, e

′
2, . . . , e

′
n1−1 be the edges of MST (P1) in the edge-length

non-increasing order and e′′
1 , e′′

2 , . . . , e′′
n2−1 the edges of MST (P2) in the edge-

length non-increasing order. Then, the optimal Steiner tree T ∗
l for the LcBkStT

problem must satisfy B(T ∗
l ) � max{|e′

3k|, |e′′
3k|}.

Proof. We may assume, to the contrary, that B(T ∗
l ) < |e′

3k|. There are at least
3k + 1 connected components when we remove the first 3k edges e′

1, e
′
2, . . . e

′
3k

from MST (P1). Using Lemma 6, we obtain that there is at least one Steiner
point s in T ∗

l with degree four. By Lemma 4, this contradicts that there are at
most three edges that are incident to s on the same side of the line l. �
Lemma 8. Given an instance (P, l; k) of the LcBkStT problem, there exists a
optimal Steiner tree T ∗

l such that, for any Steiner point s in T ∗
l , the edge sp1

either is perpendicular to the line l, i.e., (sp1⊥l), or has the same length as sp2,
i.e., |sp1| = |sp2|, where spi (i � 6) are the edges in T ∗

l that are incident to the
Steiner point s and |sp1| � |sp2| � · · · .
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Fig. 2. The plane is divided into six cones of π/3 radians. The blue points labelled as
pi are the closest point of P to s∗ in Ci

s∗ , where 1 � i � 6. If s∗ connects to a point in
the cone Ci

s∗ , s∗ must connect to pi. The green interval I has the property that this is
true everywhere we slide s∗ and its cones in I. Every point along the green interval I
of l has the same potential neighbors (the blue points) in the same cone. (Color figure
online)

Proof. Suppose that Tl be an optimal solution of the LcBkStT problem that the
edge sp1 in Tl is not perpendicular to the line l and the length of sp1 is longer
than sp2, where spi (i � 6) are the edges in Tl that are incident to the Steiner
point s, satisfying that |sp1| > |sp2| � · · · . Let lp1 be the vertical foot from the
point p1 to the line l, i.e., p1lp1⊥l. Now, we slightly move point s towards point
lp1 until either sp1 ⊥ l or |sp1| = |sp2| (see Fig. 3). Thus, we can obtain another
optimal Steiner tree with the claimed property. �

Fig. 3. (a) Sliding point s towards point lp1 until the edge sp1 is perpendicular to the
line l; (b) Sliding point s towards point lp1 until |sp1| = |sp2|.
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3 The LcB1StT Problem

In this section, we present an exact algorithm for the line-constrained bottleneck
1-Steiner tree (LcB1StT) problem. In details, the LcB1StT problem is to find
just one Steiner point s∗ on the line l and additionally a spanning tree T ∗

s

on the set P ∪ {s∗}, the objective is minimize the longest edge in T ∗
s , i.e.,

mins∗ max{|pq| | e = pq ∈ T ∗
s }.

Given an instance (P, l) of the LcB1StT problem, where we treat the input
line l as the x-axis in R

2, we may choose the n1 − 1 edges of MST (P1) to
satisfy |e′

1| � |e′
2| � · · · � |e′

n1−1| and the n2 − 1 edges of MST (P2) to satisfy
|e′′

1 | � |e′′
2 | � · · · � |e′′

n2−1| (see Lemma 7), respectively. For convenience, we may
denote e1, . . . , en−2 to be the n − 2 edges of MST (P1) ∪ MST (P2) in the edge-
length non-increasing order. We denote by eb the edge in the order, satisfying
|eb| > max{|e′

3|, |e′′
3 |} and |eb+1| � max{|e′

3|, |e′′
3 |}. Then, we have that b � 4.

By using Lemma 7, the optimal Steiner tree T ∗
s must have B(T ∗

s ) � |eb+1|.
We can remove at most four longest edges from MST (P1) ∪ MST (P2). Thus,
new edges added are all incident to Steiner point s∗ on the line l. Our exact
algorithm to solve the LcB1StT problem is described in details as follows.

Algorithm: A1

Input: a straight line l and a set P = {p1, p2, . . . , pn} of n points in R
2;

Output: a line-constrained bottleneck 1-Steiner tree TA.
Begin
Step 1 Set TA = ∅, B(TA) = +∞;
Step 2 Use the Shamos-Hoey algorithm [24] to construct two Euclidean min-
imum spanning trees MST (P1) and MST (P2), respectively;
Step 3 Use the OVD algorithm [8] to divide the input line l into O(n) interior-
disjoint intervals;
Step 4 For each interval I along l do:

For i = 0 to b do:
Remove i longest edge(s) from MST (P1) ∪ MST (P2);
Find the optimal Steiner point si for the interval Ii;
If (B(Tsi) < B(TA)) then

TA = Tsi , B(TA) = B(Tsi);
Step 5 Output TA.
End

Theorem 1. The algorithm A1 is an exact algorithm for solving the LcB1StT
problem, and it runs in O(n log n) time, where n is the number of points in P .

Proof. Given an instance (P, l) of the LcB1StT problem, denote by T ∗
s the opti-

mal Steiner tree for the LcB1StT problem to satisfy the following

(1) The Steiner point s∗ in T ∗
s has degree at most six;

(2) The edge s∗p1 either is perpendicular to line l (s∗p1⊥l) or has the same
length as s∗p2 (|s∗p1| = |s∗p2|), where s∗pi (i � 6) are the edges in T ∗

s that
are incident to the Steiner point s∗ and |s∗p1| � |s∗p2| � · · · ;
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(3) Each edge of T ∗
s either belongs to MST (P1) and MST (P2) or is incident

to the Steiner point s∗.

By Lemma 5, the interval [0, r] on the line l can be divided into O(n) interior-
disjoint intervals such that each interval I has the property that, for every pair
of points p, q ∈ I, the closest point in Ci

p ∩ P to p is the same as in Ci
q ∩ P to q.

Now, we show how to find the optimal Steiner point s for the interval I.
As shown in Fig. 2, each interval I has the property that, for any point

s ∈ I, the six potential neighbors are determined. Consider an interval I and
its set of potential neighbors PI ⊂ P of size at most six. For each subset Pi of
PI , using Lemma 8, we can compute a constant number of candidate optimal
Steiner points in I. In each interval, we solve an optimization problem to find
the optimal placement for a Steiner point si in that interval, i.e., minimize the
longest distances of potential neighbors to the Steiner point, which takes O(1)
time since each of these O(1) subproblems has O(1) size.

We execute repeat steps in each interval to look for the solution by finding the
optimal placement of a Steiner point in that interval. Once we have computed
an optimal placement for a Steiner point in each computed interval, we want to
compute one Steiner point, which is the one of these O(n) candidates to produce
the minimum bottleneck Steiner tree, i.e., the candidate sA that produces the
smallest length of the B(TA). Once we determine the candidate optimal Steiner
points si for the interval I, we need to compare si against the current best
solution sA. In other words, for each candidate si, we need to compare B(Tsi)
with B(TA).

We may assume that the Steiner point s∗ in the optimal Steiner tree T ∗
s

is located in the interval I. Denote by si as the candidate optimal Steiner
points in I. We can obtain that B(Tsi) � B(Ts∗). Because sA is the optimal
Steiner points among all the candidates, we have B(TA) � B(Tsi). Thus, we
have B(TA) � B(Tsi) � B(Ts∗). Because T ∗

s is the optimal Steiner tree for the
LcB1StT problem, we can obtain that B(TA) = B(Ts∗). Further, the algorithm
A1 is an exact algorithm for the LcB1StT problem.

The complexity of the Algorithm A1 can be determined in the following
ways. (1) By Lemma 1, the Euclidean minimum spanning trees MST (P1) and
MST (P2) can be computed by Shamos-Hoey algorithm [24] in O(n log n) time.
(2) By Lemma 5, the OVD algorithm [8] runs in Θ(n log n) time using O(n)
space. (3) The interval [0, r] on the line l can be divided into O(n) interior-disjoint
intervals. For each interval, we find the optimal placement for a Steiner point
si which takes O(1) time. Thus, the whole algorithm A1 can be implemented in
O(n log n) time. �

4 The LcBkStT Problem

In this section, we extend the arguments for a single Steiner point to multiple k
(> 1) Steiner points for the line-constrained bottleneck k-Steiner tree problem.

As similar arguments in an instance (P, l) of the LcB1StT problem, we may
choose e′

1, . . . , e
′
n1−1 to be the n1 − 1 edges of MST (P1) and e′′

1 , . . . , e′′
n2−1 to be
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the n2 − 1 edges of MST (P2), in the edge-length non-increasing order. Denote
by e1, e2, . . . , en−2 as the n−2 edges of MST (P1)∪MST (P2) in the edge-length
non-increasing order. We denote by ed the edge in the order, satisfying |ed| >
max{|e′

3k|, |e′′
3k|} and |ed+1| � max{|e′

3k|, |e′′
3k|}. We obtain the fact d � 6k − 2.

By using Lemma 7, the optimal Steiner tree T ∗
l must have B(T ∗

l ) � |ed+1|.
We can use the idea of the single Steiner point location to solve multiple

Steiner points of the LcBkStT problem. For a fixed integer c, where 1 � c � d,
we remove e1, e2, . . ., ec from MST (P1) ∪ MST (P2) to obtain some subtrees
T c
1 , T c

2 , · · · . We then find at most k Steiner points on the line l to reconnect the
T c
i with new edges incident to the Steiner points, minimizing the longest edge

length. Finally, we choose the best solution among all integers c as an optimal
solution for the original problem.

This motivates another variation of the LcBkStT problem, called the bottle-
neck Steiner tree problem with a fixed topology on subtrees. As shown in earlier
works [12,22], the term “topology” is used to denote a tree whose vertices are
labeled by a single or multiple terminals in P or symbolically by each Steiner
point without its location. Then, a topology can be seen as a combinatorial
structure that consists of information only about how the terminals and Steiner
points to be connected, which can be obtained from a Steiner tree. The topology
Tp appears in this problem consists of a set of vertices V = {s1, . . ., sk, t1, t2,
. . .}, where ti represents subtree T c

i consisting of terminals in P and sj represents
a Steiner point. Thus, the strategy for the LcBkStT problem is summarized in
the following

(1) Use the Shamos-Hoey algorithm [24] to construct two Euclidean minimum
spanning trees MST (P1) and MST (P2), respectively.
(2) Use the OVD algorithm [8] to divide the input line l into O(n) interior-
disjoint intervals.
(3) Enumerate all possible ways to put k Steiner points into O(n) different
intervals; There are at most O(nk) possible to locate this k Steiner points.
(4) Do a binary search on the collected critical values {|e1|, . . ., |ed|} to find the
optimal value ec; Remove edges e1, e2, . . ., ec from MST (P1) ∪ MST (P2) to
obtain some subtrees T c

1 , T c
2 , · · · .

(5) Enumerate all possible (combinatorially distinct) topology trees. For a fixed
integer c, we have at most k

∑6
i=0 Ci

6 (= kO(1)) possible topology trees.
(6) For a fixed topology Tp on all subtrees T c

i and k Steiner points as vertices,
using Lemma 8, we can find an optimal location of k Steiner points in O(k)
time.

Theorem 2. Given an instance (P, l; k) of the LcBkStT problem, an optimal
line-constrained bottleneck k-Steiner tree can be produced in O(n log n+f(k) ·nk)
time, where f(k) = kO(1).

Proof. From the aforementioned strategy, we can find an optimal locations of k
Steiner points and then an optimal line-constrained bottleneck k-Steiner tree, as
shown in the theorem. We divide the input line l into O(n) intervals, and then
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enumerate all possible ways to put k Steiner points into O(n) different intervals.
For fixed c with 1 ≤ c ≤ d, we remove e1, e2, . . ., ec from MST (P1) ∪ MST (P2)
to obtain some subtrees T c

1 , T c
2 , · · · . We enumerate all possible topology trees Tp

that consist of a set of vertices V = {s1, . . ., sk, t1, t2, . . .}, where ti represents
subtree T c

i consisting of terminals in P and sj represents a Steiner point. We
solve an optimization problem to find the optimal placement for the Steiner
points with a fixed topology Tp, i.e., minimize the longest distances of potential
neighbors to the Steiner points. Enumerating all such topologies gives us an
exact solution to the LcBkStT problem.

The complexity of the algorithm for the LcBkStT problem can be determined
as follows. (1) By Lemma 1, the Euclidean minimum spanning trees MST (P1)
and MST (P2) can be computed by Shamos-Hoey algorithm [24] in O(n log n)
time. (2) By using Lemma 5, the OVD algorithm [8] runs in Θ(n log n) time
using O(n) space. There are at most nk · log(6k − 2) · k

∑6
i=0 Ci

6 possible topology
trees. For each fixed topology tree, we can find an optimal location of k Steiner
points in O(k) time. Let f(k) = log(6k − 2) · k

∑6
i=0 Ci

6 · O(k) = kO(1). Thus, the
whole algorithm can be implemented in O(n log n + f(k) · nk) time. �

5 Conclusion

In this paper, we consider the line-constrained bottleneck k-Steiner tree problem.
It is asked to find at most k Steiner points on the line l such that the length of
the longest edge in the spanning tree on these n + k points is minimized.

(1) We design an exact algorithm for the LcB1StT problem, and this algorithm
runs in O(n log n) time.
(2) We present an exact algorithm for the LcBkStT problem, and it runs in
O(n log n + f(k) · nk) time, where f(k) is a function dependent only on k.

For our further research, a challenging task is to solve the LcBkStT problem
with lower running time.
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Abstract. Motivated by computing duplication patterns in sequences,
a new fundamental problem called the longest subsequence-repeated sub-
sequence (LSRS) is proposed. Given a sequence S of length n, a letter-
repeated subsequence is a subsequence of S in the form of xd1

1 xd2
2 · · · xdk

k

with xi a subsequence of S, xj �= xj+1 and di ≥ 2 for all i in [k] and
j in [k − 1]. We first present an O(n6) time algorithm to compute the
longest cubic subsequences of all the O(n2) substrings of S, improving
the trivial O(n7) bound. Then, an O(n6) time algorithm for computing
the longest subsequence-repeated subsequence (LSRS) of S is obtained.
Finally we focus on two variants of this problem. We first consider the
constrained version when Σ is unbounded, each letter appears in S at
most d times and all the letters in Σ must appear in the solution. We
show that the problem is NP-hard for d = 4, via a reduction from a
special version of SAT (which is obtained from 3-COLORING). We then
show that when each letter appears in S at most d = 3 times, then the
problem is solvable in O(n4) time.

Keywords: Tandem duplications · Longest common subsequence ·
Longest letter-duplicated subsequence · NP-completeness · Dynamic
programming

1 Introduction

Finding patterns in long sequences is a fundamental problem in string algo-
rithms, combinatorial pattern matching and computational biology. In this paper
we are interested in long patterns occurring at a global level, which has also been
considered previously. One prominent example is to compute the longest square
subsequence of a string S of length n, which was solved by Kosowski in O(n2)
time in 2004 [6]. The bound is conditionally optimal as any o(n2−ε) solution
would lead to a subquadratic bound for the traditional Longest Common Sub-
sequence (LCS) problem, which is not possible unless the SETH conjecture fails
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[2]. Nonetheless, a slight improvement was presented by Tiskin [18]; and Inoue et
al. recently tried to solve the problem by introducing the parameter M (which is
the number of matched pairs in S) and r (which is the length of the solution) [5].

In biology, it was found by Szostak and Wu as early as in 1980 that gene
duplication is the driving force of evolution [17]. There are two kinds of dupli-
cations: arbitrary segmental duplications (i.e., an arbitrary segment is selected
and pasted at somewhere else) and tandem duplications (i.e., in the form of
X → XX, where X is any segment of the input sequence). It is known that the
former duplications occur frequently in cancer genomes [4,13,16]. On the other
hand, the latter are common under different scenarios; for example, it is known
that the tandem duplication of 3 nucleotides CAG is closely related to the Hunt-
ington disease [12]. In addition, tandem duplications can occur at the genome
level (acrossing different genes) for certain types of cancer [14].

As duplication is common in biology, it was not a surprise that in the first
sequenced human genome around 3% of the genetic contents are in the form
of tandem repeats [10]. In 2004, Leupold et al. posed a fundamental question
regarding tandem duplications: what is the complexity to compute the mini-
mum tandem duplication distance between two sequences A and B (i.e., the
minimum number of tandem duplications to convert A to B). In 2020, Lafond et
al. answered this open question by proving that this problem is NP-hard for an
unbounded alphabet [7]. Later in [8], Lafond et al. proved that the problem is
NP-hard even if |Σ| ≥ 4 by encoding each letter in the unbounded alphabet proof
with a square-free string over a new alphabet of size 4 (modified from Leech’s
construction [11]), which covers the case most relevant with biology, i.e., when
Σ = {A, C, G, T} or Σ = {A, C, G, U} [8]. Independently, Cicalese and Pilati showed
that the problem is NP-hard for |Σ| = 5 using a different encoding method [3].

Besides duplication, another driving force in evolution is certainly mutation.
As a simple example, suppose we have a toy singleton genome ACGT (note that a
real genome certainly would have a much larger alphabet) and it evolves through
two tandem duplications ACGT·ACGT·ACGT then another one on the second GTA to
have H = ACGT ·AC ·GTA ·GTA ·CGT. If in H some mutation occurs, e.g., the first G
is deleted and the second G is changed to T to have H ′ = ACT ·AC ·TTA ·GTA ·CGT,
then it is difficult to retrieve the tandem duplications from H ′. Motivated by
the above applications, Lai et al. [9] recently proposed the following problem
called the Longest Letter-Duplicated Subsequence: Given a sequence S of length n,
compute a longest letter-duplicated subsequence (LLDS) of S, i.e., a subsequence
of S in the form xd1

1 xd2
2 · · · xdk

k with xi ∈ Σ, where xj �= xj+1 and di ≥ 2 for all
i in [k], j in [k − 1] and

∑
i∈[k] di is maximized. A simple linear time algorithm

can be obtained to solve LLDS. But some constrained variation, i.e., all letters
in Σ must appear in the solution, is shown to be NP-hard.

In this paper, we extend the work by Lai et al. by looking at a more gen-
eral version of LLDS, namely, the Longest Subsequence-repeated Subsequence
(LSRS) problem of S, which follows very much the same definition as above
except that each xi is a subsequence of S (instead of a letter). As a comparison,
for the sequence H ′, one of the optimal LLDS solutions is AATTTT = A2T4 while
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the LSRS solution is ACAC ·TAGTAG = (AC)2(TAG)2 which clearly gives more infor-
mation about the duplication histories. This motivates us studying LSRS and
related problems in this paper. Let d be the maximum occurrence of any letter
in the input string S, with |S| = n. Let LSDS+(d) be the constrained version
that all letters in Σ must appear in the solution, and the maximum occurrence
of any letter in S is at most d. We summarize the results of this paper as follows.

1. We show that the longest cubic subsequences of all substrings of S can be
solved in O(n6) time, improving the trivial O(n7) bound.

2. We show that LSRS can be solved in O(n6) time.
3. When d ≥ 4, LSRS+(d) is NP-complete.
4. When d = 3, LSRS+(3) can be solved in O(n4) time.

Note that the parameter d, i.e., the maximum duplication number, is practically
meaningful in bioinformatics, since whole genome duplication is a rare event
in many genomes and the number of duplicates is usually small. For example,
it is known that plants have undergone up to three rounds of whole genome
duplications, resulting in a number of duplicates bounded by 8 [20].

It should also be noted that our LSRS and LSRS+ problems seem to be
related to the recently studied problems Longest Run Subsequence (LRS) [15],
which is NP-hard; and Longest (Sub-)Periodic Subsequence [1], which is polyno-
mially solvable. But these two problems are different from our LSRS and LSRS+
problems. For instance, in an LRS solution a letter can appear in at most one
run while in our LSRS and LSRS+ solutions, say ACAC · TAGTAG for the input
string H ′, a substring (e.g., AC) can appear many times, hence a letter (e.g., A)
could appear many times but non-consecutively in LSRS and LSRS+ solutions.
On the other hand, in the Longest (Sub-)Periodic Subsequence problem one is
very much only looking for the repetition of a single subsequence of the input
string, while obviously in our LSRS and LSRS+ problems we need to find the
repetitions of multiple subsequences of the input string (e.g., AC and TAG).

This paper is organized as follows. In Sect. 2 we give necessary definitions.
In Sect. 3 we give an O(n6) time algorithm for computing the longest cubic
subsequences of all substrings of S, as well as the solution for LSRS. In Sect. 4
we prove that LSRS+(4) is NP-hard and then we show that LSRS+(3) can be
solved in polynomial time. We conclude the paper in Sect. 5.

2 Preliminaries

Let N be the set of natural numbers. For q ∈ N, we use [q] to represent the
set {1, 2, ..., q} and we define [i, j] = {i, i + 1, . . . , j}. Throughout this paper, a
sequence S is over a finite alphabet Σ. We use S[i] to denote the i-th letter in S
and S[i..j] to denote the substring of S starting and ending with indices i and
j respectively. (Sometimes we also use (S[i], S[j]) as an interval representing
the substring S[i..j].) With the standard run-length representation, S can be
represented as ya1

1 ya2
2 · · · yaq

q , with yi ∈ Σ, yj �= yj+1 and ai ≥ 1, for i ∈ [q], j ∈
[q − 1]. Finally, a subsequence of S is a string obtained by deleting some letters
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in S. Specifically, a square subsequence of S is a subsequence of S in the form
of X2, where X is also a subsequence of S; and a cubic subsequence of S is a
subsequence of S in the form of X3, where X is a also subsequence of S. One is
certainly interested in the longest ones in both cases.

A subsequence S′ of S is a subsequence-repeated subsequence (SRS) of S if
it is in the form of xd1

1 xd2
2 · · · xdk

k , with xi being a subsequence of S, xj �= xj+1

and di ≥ 2, for i ∈ [k], j ∈ [k − 1]. We call each xdi
i in S′ a subsequence-

repeated block (SR-block, for short). For instance, let S = ACGAGCGCAGCGA, then
S1 = AGAG · CGCGCG, S2 = ACGACG · CGCG and S3 = ACGACG · CACA are multiple
solutions for the longest subsequence-duplicated subsequence of S, where any
maximal substring in Si separated by · forms a SR-block. As a separate note,
given this S, the longest square subsequence is CAGCG · CAGCG = (CAGCG)2 and
the longest cubic subsequence is CGACGACGA = (CGA)3.

3 A Polynomial-Time Solution for LSRS

In this section we proceed to solve the LSRS problem. Firstly, as a subroutine,
we need to compute the longest cubic subsequences of all O(n2) substrings of
S in O(n6) time. Assuming that is the case, we have a way to solve LSRS as
follows.

3.1 Solution for the LSRS Problem

With Kosowski’s quadratic solution for the longest square subsequence (even
though we could achieve our goal without using it, see Sect. 3.2) and our O(n6)
time solution for the longest cubic subsequence (details to be given in Sect. 3.2),
we solve the LSRS problem by dynamic programming. We first have the following
observation.

Observation 1. Suppose that there is an optimal LSRS solution for a given
sequence S of length n, in the form of xd1

1 xd2
2 . . . xdk

k . Then it is possible to
decompose it into a generalized SR-subsequence in the form of ye1

1 ye2
2 . . . y

ep
p ,

where

– 2 ≤ ei ≤ 3, for i ∈ [p],
– p ≥ k,
– yj does not have to be different from yj+1, for j ∈ [p − 1].

The proof is straightforward: For any natural number � ≥ 2, we can decom-
pose it as � = �1 + �2 + . . . + �z ≥ 2, such that 2 ≤ �j ≤ 3 for 1 ≤ j ≤ z.
Consequently, for every di > 3, we could decompose it into a sum of 2’s and 3’s.
Then, clearly, given a generalized SR-subsequence, we could easily obtain the
corresponding SR-subsequence by combining yei

i y
ei+1
i+1 when yi = yi+1.

We now design a dynamic programming algorithm for LSRS. Let L(i) be the
length of the optimal LSRS solution for S[1..i]. Let Q2[i, j] and Q3[i, j] store the
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longest square and cubic subsequences of S[i..j] respectively. The recurrence for
L(i) is as follows.

L(0) = 0,

L(1) = 0,

L(i) = max

{
L(j) + Q2[j + 1, i], j < i − 1
L(j) + Q3[j + 1, i], j < i − 2

Computing all the cells Q2[j, k] takes O(n4) time as there are O(n2) cells
and each can be computed using Kosowski’s algorithm in quadratic time. (As
we will show right after Theorem 1, the O(n4) time bound can also be obtained
without using Kosowski’s algorithm.) Computing all Q3[j, k] takes O(n7) time:
there are O(n2) cells, each can be computed in O(n5) time using the only known
brute-force solution. However, in the next subsection we show that the longest
cubic subsequences of all substrings of S, i.e., all Q3[j, k] can be computed in
O(n6) time. Therefore, after Q2[−,−] and Q3[−,−] are all computed, it takes
O(n2) time to update and fill the whole table L(−). The value of the optimal
LSRS solution for S can be found in L(n). Consequently, we have a running
time of O(n6). To make the solution complete, we next show the algorithm for
computing the longest cubic subsequences of all substrings of S.

3.2 An O(n6) Time Bound for the Longest Cubic Subsequences
of All Substrings of the Input String

First of all, notice that an O(n5) time brute-force solution for the longest cubic
subsequence problem is trivial: just enumerate in O(n2) time all the cuts cutting
S into three substrings, and then compute the longest common subsequence
over this triple of substrings in O(n3) time. The longest of all would give us the
solution. Then, to compute all Q3[j, k] it takes O(n7) time since there are O(n2)
cells. To improve this bound, a different idea is needed.

The idea is that when one computes the longest common subsequence of
three sequences A,B and C, one would use dynamic programming to compute,
for each triple of i, j, k, the longest common subsequence of A[1..i], B[1..j] and
C[1..k]. When i, j are fixed this dynamic programming algorithm can in fact
compute the longest common subsequences of A[1..i], B[1..j] and all C[1..k′],
with 1 ≤ k′ ≤ k. Therefore, by enumerating i and j, in O(n2 ·n3) = O(n5) time,
we can compute all longest cubic subsequences of a prefix A · B · C of S. To
compute the longest cubic subsequences of all substrings of S, it suffices to run
the above algorithm on every suffix of S. Hence, in O(n) · O(n5) = O(n6) time
we can compute the longest cubic subsequences of all substrings of S.

Theorem 1. The longest cubic subsequences of all substrings of an input string
of length n can be computed in O(n6) time and O(n3) space.

Note that we can use this idea to compute the longest square subsequences
for all substrings of the input string S in O(n4) time, without using Kosowski’s
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algorithm at all. In this case, using the standard dynamic programming for
computing the longest common subsequence of A and B, we compute all longest
square subsequences of a prefix A · B of the input sequence S in O(n3) time.
Then we run this algorithm on all suffix of S, giving a total running time of
O(n4). In this process, there is no need to use Kosowski’s algorithm.

Finally, together with the algorithm in Sect. 3.1, we have the following theo-
rem.

Theorem 2. The longest subsequence-repeated subsequence problem can be
solved in O(n6) time.

4 The Variants of LSRS

In this section, we focus on the following variations of the LSRS problem.

Definition 1. Constrained Longest Subsequence-Repeated Subse-
quence (LSRS+ for short)

Input: A sequence S with length n over an alphabet Σ and an integer �.
Question: Does S contain a subsequence-repeated subsequence S′ with length

at least � such that all letters in Σ appear in S′?

Definition 2. Feasibility Testing (FT for short)
Input: A sequence S with length n over an alphabet Σ.
Question: Does S contain a subsequence-repeated subsequence S′′ such that

all letters in Σ appear in S′′?

For LSRS+ we are really interested in the optimization version, i.e., to maxi-
mize �. Note that, though looking similar, FT and the decision version of LSRS+
are different: if there is no feasible solution for FT, certainly there is no solution
for LSRS+; but even if there is a feasible solution for FT, computing an optimal
solution for LSRS+ could still be non-trivial.

Finally, let d be the maximum number of times a letter in Σ appears in
S. Then, we can represent the corresponding versions for LSRS+ and FT as
LSRS+(d) and FT (d) respectively.

It turns out that (the decision version of) LSRS+(d) and FT (d) are both
NP-complete when d ≥ 4, while when d = 3 both LSRS+(3) and FT (3) can be
solved in O(n4) time. We present the details below.

4.1 LSRS+(4) is NP-Hard

We first show that (3+, 1, 2−)-SAT is NP-complete; in this version of SAT all
variables appear positively in 3-CNF clauses (i.e., clauses containing exactly 3
positive literals) and each variable appears exactly once in total in these 3-CNF
clauses; moreover, the negation of the variables appear in 2-CNF clauses (i.e.,
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clauses containing 2 negative literals), possibly many times. A valid truth assign-
ment for an (3+, 1, 2−)-SAT instance φ is one which makes φ true; moreover, each
3-CNF clause has exactly one true literal.

A folklore reduction was discussed in the internet at some point; here we give
a formal sketch of the proof.

Theorem 3. (3+, 1, 2−)-SAT is NP-complete.

Proof. As the problem is easily seen to be in NP, let us focus more on the
reduction from 3-COLORING. In 3-COLORING, given a graph G = (V,E), one
needs to assign one of the 3 colors to each of the vertex u ∈ V such that for any
edge (u, v) ∈ E, u and v are given different colors.

For each vertex u, we use u1, u2 and u3 to denote the 3 colors, then, obviously,
we have the 3-CNF clause (u1∨u2∨u3). Therefore, the positive 3-CNF formulae
are

C+ =
∧

u∈V

(u1 ∨ u2 ∨ u3).

We have 2 kinds of 2-CNF clauses. First, for each u ∈ V , we have a type-1
2-CNF clause which demands that one cannot select two colors i and j for u at
the same time:

ui ∧ uj = (ūi ∨ ūj),

for 1 ≤ i �= j ≤ 3. Then, for each edge (u, v) ∈ E, we have a type-2 2-CNF
clause which demands that u and v cannot have the same color i:

ui ∧ vi = (ūi ∨ v̄i),

for i = 1, 2, 3.
Let C− be the conjunction of these 2-CNF clauses. Then φ = C+ ∧ C−, and

it is clear that G has a 3-coloring if and only if φ has a valid truth assignment.
The reduction obviously takes linear time. Hence the theorem is proven. 	


Fig. 1. An illustration of the proof of Theorem 3. In this case, C+ = (u1 ∨ u2 ∨ u3) ∧
(v1 ∨ v2 ∨ v3) ∧ (w1 ∨ w2 ∨ w3) ∧ (y1 ∨ y2 ∨ y3).

In Fig. 1, we show an example for the proof of Theorem 3. The example will
be used in the following paragraphs.
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We next reduce (3+, 1, 2−)-SAT to FT(4). Let the input φ for (3+, 1, 2−)-SAT
be constructed directly from a 3-COLORING instance; moreover, let φ have 3n
variables x1, x2, · · · , x3n and m 2-CNF clauses. We label its 3-CNF clauses as
F+
1 , F+

2 , · · · , F+
n and its 2-CNF clauses as F−

1 , F−
2 , · · · , F−

m . (For the example in
Fig. 1, we can take as u1, u2, u3, · · · , y1, y2, y3 alphabetically as x1, x2, · · · , x12.)

In the example in Fig. 1, the type-1 2-CNF clauses on u are

(ū1 ∨ ū2) ∧ (ū1 ∨ ū3) ∧ (ū2 ∨ ū3) = F−
1 ∧ F−

2 ∧ F−
3 ,

the type-2 2-CNF clauses on edge (u, v) are

(ū1 ∨ v̄1) ∧ (ū2 ∨ v̄2) ∧ (ū3 ∨ v̄3) = F−
4 ∧ F−

5 ∧ F−
6 ,

and the type-2 clauses on edge (u,w) are

(ū1 ∨ w̄1) ∧ (ū2 ∨ w̄2) ∧ (ū3 ∨ w̄3) = F−
7 ∧ F−

8 ∧ F−
9 .

For each variable xi, let L(xi) be the list of type-1 2-CNF clauses containing
x̄i followed with the list of type-2 2-CNF clauses containing x̄i, each repeating
twice consecutively. (For the example in Fig. 1, L(x1) = L(u1) = F−

1 F−
1 F−

2 F−
2 ·

F−
4 F−

4 F−
7 F−

7 .) For each F+
i we also define three unique letters 1i, 2i and 3i.

Hence, the alphabet we use to construct the final sequence H is

Σ = {F−
j |j ∈ [m]} ∪ {1i, 2i, 3i|i ∈ [n]} ∪ {gk, g′

k|k ∈ [n − 1]},

where gk and g′
k are used as separators.

Let F+
i = (xi,1 ∨ xi,2 ∨ xi,3). We construct

Hi = 2i · L(xi,1) · 1i2i1i · L(xi,2) · 2i · L(xi,3) · 3i2i3i,

where 2i and all the 2-CNF clauses each appear 4 times in Hi, while 1i and 3i

each appears twice. Finally we construct a sequence H as

H = H1 · g1g
′
1g1g

′
1 · H2 · g2g

′
2g2g

′
2 · H3 · · · · gn−1g

′
n−1gn−1g

′
n−1 · Hn,

where gj and g′
j each appears twice. We claim that φ has a valid truth assignment

if and only if H induces a feasible SRS which contains all 1i, 2i, 3i (i = 1..n), all
F−

j (j = 1..m) and all gkg′
kgkg′

k (k = 1..n − 1).
The forward direction, i.e., when φ has a valid truth assignment, is straight-

forward. In this case, suppose exactly one of xi,1, xi,2 and xi,3 (say xi,j ,
1 ≤ j ≤ 3) is assigned TRUE, then we delete L(xi,j) for j = 1, 2 or 3 in Hi.
Finally we delete some 1i, 2i and 3i to obtain a feasible solution H ′

i as follows.

1. If j = 1, we have H ′
i = 2i1i2i1i · L(xi,2) · L(xi,3) · 3i3i.

2. If j = 2, we have H ′
i = L(xi,1) · 1i2i1i2i · L(xi,3) · 3i3i.

3. If j = 3, we have H ′
i = L(xi,1) · 1i1i · L(xi,2) · 2i3i2i3i.

It is noted that exactly one L(xi,j) is deleted in all three cases. (We focus on j = 1
next.) Hence, the deleted letters (2CNF clauses in the form of F−

k ) in L(xi,1)
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would still appear in the claimed feasible solution, even after the deletion of
L(xi,1). For example, if F−

k is type-1 which contains x̄i,1 and x̄i,2, then F−
k F−

k

must appear in L(xi,2), which is not deleted. Similarly, if F−
k is type-2 which

contains x̄i,1 and x̄�,1, where (xi, x�) is an edge in the graph G, then F−
k F−

k

appears in L(x�,1) which must be kept — if L(x�,1) were also deleted, it would
imply that both xi and x� are colored with color-1. Therefore, all the 2CNF
clauses appear in the claimed feasible solution.

The reverse direction is slightly more tricky. We first show the following
lemma.

Lemma 1. If H admits a feasible (SRS) solution, then exactly two (non-empty
subsequences) of L(xi,1), L(xi,2) and L(xi,3) appear in the feasible solution H ′

(or, exactly one of the three is completely deleted from H).

Proof. See full version. 	

Let L′(xi,j) be a non-empty subsequence of L(xi,j). With the above lemma,

the reverse direction can be proved as follows.

1. If H ′
i = 2i1i2i1i · L′(xi,2) · L′(xi,3) · 3i3i, then assign xi,1 ← TRUE, xi,2 ←

FALSE, xi,3 ← FALSE.
2. If H ′

i = L′(xi,1) · 1i2i1i2i · L′(xi,3) · 3i3i, then assign xi,1 ← FALSE, xi,2 ←
TRUE, xi,3 ← FALSE.

3. If H ′
i = L′(xi,1) · 1i1i · L′(xi,2) · 2i3i2i3i, then assign xi,1 ← FALSE, xi,2 ←

FALSE, xi,3 ← TRUE.

Clearly, this gives a valid truth assignment for φ — as all the 2-CNF clauses
(x̄i,j ∨ x̄k,�) must appear in L′(xi,j) or L′(xk,�) in H ′, and at least one of xi,j

and xk,� is assigned FALSE. We thus have the following theorem.

Theorem 4. FT(4) is NP-complete.

Since FT(4) is NP-complete, the optimization problem LSRS+(4) is certainly
NP-hard.

Corollary 1. The optimization version of LSRS+(4) is NP-hard.

Note that the above proof implies that the optimization version of LSRS+(4)
does not admit any polynomial-time approximation (regardless of the approx-
imation) as any such approximate solution would form a feasible solution for
FT(4). In fact, using a similar argument as in [9], even finding a good bi-criteria
approximation, i.e., approximating the optimal length as well as the maximum
number of letters covered, for LSRS+(4) is not possible (unless P=NP). On the
other hand, we show next that LSRS+(3) is polynomially solvable.
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4.2 LSRS+(3) is Polynomially Solvable

We now try to solve LSRS+(3), where the input is a sequence S of length n
where each letter appears at most three times and at least twice. As a matter
of fact, an optimal solution must be in the form of xd1

1 · · · xdk

k , where xi is a
subsequence of S and di ∈ {2, 3} for i ∈ [k]. Throughout this subsection we
assume that all letters in S appear at least twice and at most three times — if
a letter appears only once in S then there is no solution for the corresponding
LSRS+(3) instance.

Our idea is again dynamic programming, based on the above observation
that in an optimal solution each SR-block is either a square or a cube. Define
6 tables, S2[i, j], C2[i, j], S3[i, j], C3[i, j], L[i, j] and C[i, j], with 1 ≤ i < j ≤ n.
The first 4 are only used to initialize L[i, j]’s.

– C2[i, j] is the set of letters that all appear at least twice in S[i..j] if at least
one letter appears exactly twice in S[i, j]; otherwise C2[i, j] is empty.

– S2[i, j] is the length of a longest square subsequence in S[i, j] containing all the
letters in C2[i, j]. If such a local feasible solution does not exist, set S2[i, j] ←
−1; otherwise, we say that this local feasible solution is 2-feasible.

– C3[i, j] is the set of letters that all appear three times in S[i..j] if no letter in
S[i, j] appears exactly twice; otherwise C3[i, j] is empty.

– S3[i, j] is the length of a longest cubic subsequence (if exists) in S[i, j] contain-
ing all the letters in C3[i, j]; otherwise S3[i, j] is the length of a longest square
subsequence containing all the letters in C3[i, j]. If such a local feasible solu-
tion (cube or square) does not exist, set S3[i, j] ← −1; otherwise, we say that
this local feasible solution is 3-feasible or 2-feasible respectively (depending on
whether the local solution is cubic or square).

– C[i, j] is the set of letters appearing at least twice in S[i..j]. The C[i, j]’s can
be computed, each with a linear scan, in a total of O(n3) time. C[i, j]’s are
only used to enforce the coverage condition.

– L[i, j] is the length of a feasible solution of S[i..j] which covers all the letters
in C[i, j].

The initial values of L[i, j], for i < j, can be set as follows.

L[i, j] =

⎧
⎪⎨

⎪⎩

S3[i, j] if S3[i, j] > 0
S2[i, j] else if S2[i, j] > 0
−1 otherwise.

Note that the initialized solution might not be final. For example, S[1..9] =
ababbcacc, then S3[1, 9] = S2[1, 9] = −1 and L[1, 9] = −1, i.e., there is no local
3-feasible (cubic) or 2-feasible (square) solution that covers all the letters in
C[1..9]. But obviously an optimal solution, i.e., (ab)2c3, exists. Hence we need
to proceed to update L[i, j].

Then we update the general case for L[i, j] recursively as follows. This is done
bottom-up, ordered by the ascending length of S[i..j].
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L[i, j] =

⎧
⎪⎪⎨

⎪⎪⎩

max{maxi<k<j{L[i, k] + L[k + 1, j]}, L[i, j]} if L[i, k] > 0, L[k + 1, j] > 0

and

C[i, j] == C[i, k] ∪ C[k + 1, j]

−1 otherwise.

Two examples can be used to illustrate the update step. In the first exam-
ple, S[1..9] = abacbabcc, L[1, 9] is initially assigned with S3[1, 9] = 6 (which
corresponds to (abc)2). After the update step L[1, 9] = 8 (i.e., corresponds to
(ab)3(cc)). In the second example, S[1..9] = abacabccb, L[1, 9] is also initialized
with S3[1, 9] = 6 (which corresponds (abc)2). After the update step L[1, 9] = 6
(which corresponds to (ab)2(cc) or (abc)2 — in the actual implementation, there
is no need to perform an explicit update for this example; but such a piece
of information cannot be known before the update step, as shown in the first
example).

Note that the condition C[i, j] == C[i, k]∪C[k+1, j], is to ensure that L[i, j]
is updated only when all the letters in C[i, j] are covered. Then, the maximum
of L[i, k] + L[k + 1, j], if greater than L[i, j], replaces (the previous) L[i, j].

An optimal solution is computed if L[1, n] > 0, and its solution value is
stored in L[1, n]. Clearly, with an additional table, one can easily retrieve such
an optimal solution, if exists.

Regarding the correctness of our algorithm, we have several simple lemmas.

Lemma 2. C2[i, j] ∩ C3[i, j] = ∅.
Proof. This is obvious, as, by definition, C2[i, j] is non-empty only when there is a
letter appearing exactly twice in S[i, j]. On the other hand, C3[i, j] is non-empty
when there is no letter appearing exactly twice in S[i, j]. The two conditions are
complementary. 	

Regarding S3[i, j], the following lemma says that if a 3-feasible solution does not
exist then any of those 2-feasible solutions could be stored.

Lemma 3. If a 3-feasible solution for S3[i, j] does not exist, then any 2-feasible
solution for S[i, j] can be stored (without changing the optimal solution value).

Proof. By definition, C3[i, j] contains all the letters in S[i, j] which appear
exactly three times; moreover, there is no letter x which appears exactly twice in
S[i, j]. Hence, if a letter y appears exactly once in S[i, j] it would never appear
as a local feasible solution for S3[i, j].

Therefore, if a 3-feasible solution does not exist, by definition, we would
consider only a 2-feasible solution for S[i..j] which covers all the letters in C3[i, j].
The length of such a 2-feasible solution is exactly 2 · |C3[i, j]|. 	


An example for this lemma is S[1..6] = baabab. There is no 3-feasible solu-
tion. On the other hand, either abab or baba would make a valid 2-feasible
solution, to be stored in S3[1, 6]. On the other hand, aabb could also make a
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final solution via the update of L[i, j], made of two 2-feasible solutions aa and
bb, for S2[1, 3] and S2[4, 6] respectively. But aabb itself is not considered as a
2-feasible solution in, say, S[1..6].

Theorem 5. Given a string S of length n, where each letter appears at most
three times, the problem of LSRS+(3) can be solved in O(n4) time.

Proof. See full version. 	

Clearly, LSRS+(3) has a solution (i.e., L[1, n] > 0) if and only if FT(3) has

a feasible solution.

5 Concluding Remarks

Obviously, the most prominent open problem is to decide if it is possible to
compute the longest cubic subsequence in o(n5) time. Recently, Wang and Zhu
gave an improved O(k3n2) time algorithm (where k is the minimum number of
letters deleted to have a feasible solution), but the worst case running time is
still O(n5) when k = Θ(n) [19].

Acknowledgments. We thank anonymous reviewers for some insightful comments.
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Abstract. This paper deals with the problem of finding a collection
of vertex-disjoint paths in a given graph G = (V,E) such that each
path has at least four vertices and the total number of vertices in these
paths is maximized. The problem is NP-hard and admits an approxi-
mation algorithm which achieves a ratio of 2 and runs in O(|V |8) time.
The known algorithm is based on time-consuming local search, and its
authors ask whether one can design a better approximation algorithm
by a completely different approach. In this paper, we answer their ques-
tion in the affirmative by presenting a new approximation algorithm
for the problem. Our algorithm achieves a ratio of 1.874 and runs in
O(min{|E|2|V |2, |V |5}) time. Unlike the previously best algorithm, ours
starts with a maximum matching M of G and then tries to transform
M into a solution by utilizing a maximum-weight path-cycle cover in a
suitably constructed graph.

1 Introduction

Throughout this paper, a graph always means a simple undirected graph without
parallel edges or self-loops, and an approximation algorithm always means one
running in polynomial time. Let k be a positive integer. Given a graph G =
(V,E), MPCk+

v is the problem of finding a collection of vertex-disjoint paths
each with at least k vertices in G so that the total number of vertices in these
paths is maximized. Note that we can assume that each path in the output
collection has at most 2k −1 vertices. This is because we can split a path having
2k or more vertices into two or more paths each having at least k and at most 2k−
1 vertices. MPCk+

v has numerous real-life applications such as transportation
networks [9]. In this paper, we mainly focus on MPC4+

v .
On the one hand, MPCk+

v is related to many important optimization prob-
lems. For example, Berman and Karpinski [3] consider the maximum path cover
problem, which is the problem of finding a collection of vertex-disjoint paths in
a given graph so that the total number of edges in the paths is maximized. For
other related path cover problems with different objectives, the reader is referred
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14461, pp. 459–470, 2024.
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to [1–5,8,15,16] for more details. On the other hand, MPCk+
v can be viewed

as a special case of the maximum-weight (2k − 1)-set packing problem [10,14]
because the former can be easily reduced to the latter as follows. Recall that an
instance of the latter problem is a collection C of sets each having a non-negative
weight and at most 2k − 1 elements. The objective is to select a collection of
pairwise-disjoint sets in C so that the total weight of the selected sets is maxi-
mized. To reduce MPCk+

v to the maximum-weight (2k−1)-set packing problem,
it suffices to construct an instance C of the latter problem from a given instance
graph G of MPCk+

v , where C is the collection of all paths of G with at least k
and at most 2k − 1 vertices and the weight of each path P in C is the number of
vertices in P . This reduction leads to an approximation algorithm for MPCk+

v

achieving a ratio of k because the maximum-weight (2k−1)-set packing problem
can be approximated within a ratio of k [10] or within a slightly better ratio of
k − 1

63,700,992 + ε [14] for any ε > 0.
MPCk+

v can be solved in polynomial time if k ≤ 3 [5], but is NP-hard other-
wise [11]. Kobayashi et al. [11] design an approximation algorithm for MPC4+

v

achieving a ratio of 4. Afterwards, Gong et al. [9] give the formal definition of
MPCk+

v and present an approximation algorithm for MPCk+
v which achieves a

ratio of ρ(k) ≤ 0.4394k + 0.6576 and runs in O(|V |k+1) time. The core of their
algorithm is three local improvement operations, each of which increases the
number of vertices in the current solution by at least 1 if it is applicable. The
algorithm stops when none of the three operations is applicable. They employ
an amortization scheme to analyze the approximation ratio of their algorithm
by assigning the vertices in the optimal solution to the vertices of the solution
outputted by their algorithm. For the special case where k = 4, they design two
more local improvement operations to increase the number of vertices or the
number of paths with exactly 4 vertices in the current solution, and then use a
more careful amortization scheme to prove that the approximation ratio of their
algorithm is bounded by 2 although the running time jumps to O(|V |8). As an
open question, they ask whether one can design better approximation algorithms
for the problem by completely different approaches.

1.1 Our Contribution and Design Highlights

In this paper, we answer the open question in the affirmative for the case where
k = 4. Motivated by the approaches in [5,6,12] for similar problems, one may
want to design an approximation algorithm for MPCk+

v by first computing a
maximum path-cycle cover C of the input graph G and then transforming C
into a solution for G. Unfortunately, this approach to maximizing the number of
edges does not seem to work. Our new idea for designing a better approximation
algorithm for MPC4+

v is to let the algorithm start by computing a maximum
matching M in the input graph G. The intuition behind this idea is that the
paths in an optimal solution for G can cover at most 5

2 |M | vertices. So, it suffices
to find a solution for G of which the paths cover a large fraction of the endpoints
of the edges in M . To this purpose, our algorithm then constructs a maximum-
weight path-cycle cover C in an auxiliary graph suitably constructed from M
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and G. Our algorithm further tries to use the edges in C to connect a large
fraction of the edges of M into paths with at least four vertices. If the algorithm
fails to do so, then it will be able to reduce the problem to a smaller problem
and in turn uses recursion to get a good solution.

Due to lack of space, the proofs of most lemmas are omitted here and will
be shown in the journal version.

2 Basic Definitions

Throughout the remainder of this paper, we fix an instance G of MPC4+
v for

discussion. Let n = |V (G)| and m = |E(G)|. For the graph G, let V (G) and
E(G) be the vertex and edge set of G.

For a subset F of E(G), we use V (F ) to denote the set {v ∈ V (G) | v is an
endpoint of an edge in F}. A spanning subgraph of G is a subgraph H of G with
V (H) = V (G). For a set F of edges in G, G−F denotes the spanning subgraph
(V (G), E(G) \ F ). In contrast, for a set F of edges with V (F ) ⊆ V (G) and
F ∩E(G) = ∅, G+F denotes the graph (V (G), E(G)∪F ). The degree of a vertex
v in G, denoted by dG(v), is the number of edges incident to v in G. A vertex v
of G is isolated in G if dG(v) = 0. The subgraph induced by a subset U of V (G),
denoted by G[U ], is the graph (U,EU ), where EU = {{u, v} ∈ E(G) | u, v ∈ U}.
Two vertex-disjoint subgraphs of G are adjacent in G if G has an edge between
them.

A cycle in G is a connected subgraph of G in which each vertex is of degree 2.
A path in G is either a single vertex of G or a connected subgraph of G in which
exactly two vertices (called the endpoints) are of degree 1 and the others (called
the internal vertices) are of degree 2. A path component of G is a connected
component of G that is a path. If a path component is an edge, then it is called
an edge component. The order of a cycle or path C, denoted by |C|, is the number
of vertices in C. A triangle of G is a cycle of order 3 in G. A k-path of G is a
path of order k in G, while a k+-path of G is a path of order k or more in G.
A matching of G is a (possibly empty) set of edges of G in which no two edges
share an endpoint. A maximum matching of G is a matching of G whose size is
maximized over all matchings of G. A path-cycle cover of G is a set F of edges
in G such that in the spanning subgraph (V (G), F ), the degree of each vertex is
at most 2. A star is a connected graph in which exactly one vertex is of degree
≥ 2 and each of the remaining vertices is of degree 1. The vertex of degree ≥ 2
is called the center, while the other vertices are the satellites of the star.

Notation 1. For a graph G,

– OPT (G) denotes an optimal solution for the instance graph G of MPC4+
v ,

and opt(G) denotes the total number of vertices in OPT (G);
– ALG(G) denotes the solution for G outputted by a specific algorithm, and

alg(G) denotes the total number of vertices in ALG(G).
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3 The Algorithm for MPC4+
v

Our algorithm for MPC4+
v consists of multiple phases. In the first phase, it

computes a maximum matching M in G in O(
√

nm) time [13], initializes a
subgraph H = (V (M),M), and then repeatedly modifies H and M as described
in Sect. 3.1. With a small loss of vertices, OPT can be transferred to a matching
(by moving edges) and thus we have the following lemma.

Lemma 1. |V (M)| ≥ 4
5opt(G).

3.1 Modifying H and M

We here describe a process for modifying H and M iteratively. The process
consists of two steps. During these two steps, the following will be an invariant,
which will be proved in Lemma 2.

Invariant 1. M is both a maximum matching of G and a subset of E(H). Each
connected component K of H is an edge, a triangle, a star, or a 5-path. Moreover,
if K is a 5-path, then the two edges of E(K) incident to the endpoints of K are
in M ; otherwise, exactly one edge of K is in M .

Initially, Invariant 1 clearly holds. Since M is a maximum matching, any two
vertices of V (G) \ V (H) cannot be adjacent to each other. Moreover, for any
vertex u0 ∈ V (G) \ V (H), either it is incident to two different edge components
e0, e1; incident to an unique edge component e0 or not incident to any edge
components of H. Generally speaking, for the first case, we present an operation
to generate a 5-path by connecting u0 with e0, e1. For the second case, u0 and e0
form a triangle or a star with other vertices of V (G) \V (H). Lastly, if no vertex
of V (G) \ V (H) is incident to e0, then e0 remains an edge component of H.

Definition 1. An augmenting triple with respect to H is a triple (u0, e0 =
{v0, w0}, e1 = {v1, w1}) such that u0 ∈ V (G) \ V (H), both e0 and e1 are edge
components of H. We modify H and M as follows:

C1. If {u0, v0}, {u0, v1} ∈ E(G), then add u0 and the edges {u0, v0}, {u0, v1} to
H.

C2. If {u0, v0}, {w0, v1} ∈ E(G), then add u0 and the edges {u0, v0}, {w0, v1} to
H and then modify M by replacing e0 with {u0, v0}.

Clearly, once the above modification is executed, a 5-path is generated. We
next give the first two steps for H and M as follows.

Step 1.1 Repeatedly modify H and M with an augmenting triple until it is
not applicable;
Step 1.2 Add all those edges {u, v} ∈ E(G) such that u ∈ V (G) \ V (H) and
v is an endpoint of an edge component of H, as well as their endpoints u, to
H.

We have the next lemma on H and M at the end of Step 1.2.

Lemma 2. The above Steps 1.1–1.2 can be done in O(min{m2n, n4}) time such
that Invariant 1 always holds.
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3.2 Bad Components and Rescuing Them

We consider the subgraph H and the maximum matching M at the end of Step
1.2. In the sequel, a component always means a connected component. Note that
a 5-path of H can be contained in the solution, but we can not form a 4+-path
from any other components of H, which are defined as bad.

Definition 2. A bad component of H is a connected component that is not a
5-path. By Invariant 1, a bad component is an edge, a triangle or a star.

Clearly, moving all bad components of H will lead to a large loss of the
vertices in V (M). So, in this subsection, we construct a maximum-weighted
path-cycle cover to connect a bad component of H to another bad component
or a 5-path as many as possible such that we are able to form more 4+-paths
from bad components. We call it a rescue process of bad components.

Step 2.1 Construct a spanning subgraph G1 of G of which the edge set
consists of all the edges {v1, v2} of G such that v1 and v2 appear in different
components of H and at least one of the components is bad.

Definition 3. A set F of edges in G1 saturates a bad component K of H if at
least one edge in F is incident to a vertex of K. The weight of F is the number
of bad components saturated by F .

Lemma 3. A maximum-weighted path-cycle cover in G1 can be found in
O(mn log n) time.

Step 2.2. Compute a maximum-weighted path-cycle cover C of G1 (as in
the proof of Lemma 3).
Step 2.3. As long as C contains an edge e such that C \ e has the same
weight as C, repeatedly remove e from C, that is, C is updated to C \ e.

Notation 2. – C denotes the maximum-weighted path-cycle cover of G1 com-
puted at the end of Step 2.3.

– MC denotes the subset of the maximum matching M containing those edges
in 5-paths of H or in bad components of H saturated by C.

Intuitively, the maximum-weighted path-cycle cover C connects as many bad
components as possible with each other or 5-paths. So, the vertices of MC is
relatively larger than opt(G) since it only removes the vertices (exactly two
vertices in V (M) by Invariant 1) of each bad component not saturated by C.
The following lemma shows this fact.

Lemma 4. |V (MC)| ≥ 4
5opt(G).
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3.3 Structure of Composite Components of H + C

By Lemma 4, in order to obtain a good approximate solution for G, it suffices
to focus on MC instead of its superset M . By Step 2.3, we remove the edges of
C such that the weight of C is unchanged. So, it gives us simpler structures of
each connected component of H + C.

Notation 3. – H +C denotes the spanning subgraph (V (G), E(H)∪C). In the
sequel, we use K to refer to a component in H + C.

– (H +C)m denotes the graph obtained from H +C by contracting each compo-
nent of H into a single node. In other words, the nodes of (H+C)m one-to-one
correspond to the components of H and two nodes are adjacent in (H + C)m
if and only if C contains an edge between the two corresponding components.
We use (K)m to refer to the component of (H + C)m corresponding to the
component K in H + C.

We next show the structures of each component (K)m.

Lemma 5. For each component (K)m of (H + C)m (see Notation 3), the fol-
lowing statements hold:

1. (K)m is an isolated node, an edge, or a star.
2. If (K)m is an edge, then at least one endpoint of (K)m corresponds to a bad

component of H.
3. If (K)m is a star, then each satellite of (K)m corresponds to a bad component

of H.

If (K)m is isolated, then K is defined as isolated as well. Otherwise, K is a
composite component and it contains two or more components of H, which are
connected through the edges of C. If (K)m is isolated, K is a 5-path or a bad
component of H, not saturated by C. Recall that we only focus on the vertices
of MC . So, we can assume (K)m is a 5-path if (K)m is isolated. We next discuss
the case that (K)m is an edge or a star. By the second statement in Lemma 5,
when (K)m is an edge, we choose an endpoint corresponding to a bad component
of H as the satellite, while the other endpoint as the center.

Definition 4. For each composite component K of H + C, its center element
is the component of H corresponding to the center of (K)m, and it is denoted
as Kc in the sequel; the other components of H contained in K are the satellite
elements of K.

Every vertex v of Kc is defined as an anchor. The edge connecting v to
a satellite element S in C is called the rescue-edge for S and v is called the
supporting anchor for S. For a nonnegative integer j, an anchor v is a j-anchor
if v is the supporting anchor for exactly j satellite elements of H + C.

Since C is a path-cycle cover of G1, each anchor is a 0-, 1-, or 2-anchor. When
(K)m is isolated, then K is a 5-path and thus opt(K) = 5. One might ask whether
the solution OPT (K) can be easily computed for a composite component K. The
following lemma answers this question in the affirmative.
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Lemma 6. For each component K of H + C, an OPT (K) can be computed in
O(1) time.

Definition 5. For each composite component K of H + C, let s(K) = |V (K) ∩
V (MC)|. A critical component of H + C is a component K with s(K)

opt(K) ≥ 14
11 .

Generally speaking, by computing an OPT (K) for every K of H + C and
outputting their union as an approximate solution for G, we obtain an approx-
imation algorithm for MPC4+

v achieving a ratio of 5
4 maxK

s(K)
opt(K) because of

Lemma 4, unless K is critical (Definition 4) and responsible (Definition 8). If K

is an isolated 5-path, then by Invariant 1, we have s(K)
opt(K) = 4

5 . But if K is a

composite component, s(K)
opt(K) is not necessarily small (smaller than our target

value which is about 1.4992). Next, we show the possible structures of a critical
component in Fact 1.

Fact 1. A critical component K of H + C has one 2-anchor or two 2-anchors.
Moreover, Kc is an edge or a 5-path. If Kc is an edge, then s(K) = 8; if Kc is
a 5-path, then s(K) ∈ {8, 10, 14, 16, 18}. Figure 1 shows all possible structures of
a critical component.

Proof. We can prove the fact by discussing the number of 2-anchors in Kc.

Remark 1. Even if a satellite element S of K can be a star or triangle, we almost
always draw only one edge of S in Fig. 1 for simplicity.

Definition 6. A 2-anchor of H + C is critical if it appears in a critical com-
ponent of H + C. A satellite element of H + C is critical if its rescue-anchor is
critical in H + C.

By Fact 1, every critical component must have one or two critical 2-anchor.

Definition 7. Suppose that v is a 0- or 1-anchor in H + C and S is a satellite
element in H +C such that S has a vertex w with {v, w} ∈ E(G). Then, moving
S to v in H + C is the operation of modifying C by replacing the rescue-edge of
S with the edge {v, w}.

Suppose a critical component K has exactly one 2-anchor. Then if we move
one of critical satellite element to an isolated 5-path (if possible), K and the 5-
path will be both not critical since they do not have 2-anchor. So, such moving
decreases the number of critical components by one. However, we cannot guar-
antee that every moving will reduce critical components. In Fact 2, we discuss
the different movings and their effects.

Fact 2. For each critical component K of H+C and its critical satellite element
S, the following statements hold:

1. If we move S to another component (not K), then K is no longer critical and
will not become isolated.
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Fig. 1. The possible structures for a critical component K of H + C, where thick
(respectively, dashed) edges are in the matching M (respectively, the path-cycle cover
C), thin edges are not in M ∪C, the filled (respectively, blank) vertices are in (respec-
tively, not in) V (M), gray vertices are 2-anchors, and the fraction on the right side of

each structure is s(K)
opt(K)

.

2. If v is a 0-anchor of K such that v is adjacent to S in G, then moving S to
v in H + C makes K no longer critical.

3. If v is a 1-anchor in K, then moving S to v makes K remain critical only if K
has the first structure of Fig. 1, or K has the last or the second last structure
in the bottom row of Fig. 1 and the rescue-anchor of S is the leftmost 2-anchor
in K.

Roughly speaking, we might need to pay more attention to 1-anchors since if
a critical satellite element is moved to a 1-anchor v, then v is possible to become
a critical 2-anchor. So, we introduce the following definition of 1-anchors.

Definition 8. Let K be a composite component of H + C. If K has a 1-anchor
v such that G has an edge between v and some critical satellite-element S of
H + C in G and moving S to v in H + C makes K critical in H + C, then we
call K a responsible component of H + C and call v a responsible 1-anchor of
H + C.

By the third statement in Fact 2, a component of H +C can be both critical
and responsible only if it has the first or one of the last two structures in Fig. 1.

Lemma 7. Suppose that a component K of H + C is both critical and respon-
sible. If K has the first structure in Fig. 1, then s(K) = 8 and we find a feasible
solution with at least 7 vertices in O(1) time; otherwise, s(K) = 14 and we find
a feasible solution with at least 12 vertices in O(1) time.
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By the above lemma, we know for each critical and responsible component
K, we can find a feasible solution for K in constant time, which is still denoted
as OPT (K) for ease of presentation, with s(K)

opt(K) < 14
11 . Now, we can regard each

critical and responsible component K as a non-critical component. So, any crit-
ical component cannot be responsible or vice versa. Hereafter, a critical compo-
nent always refers to a critical but not responsible component and a responsible
component always refers to a responsible but not critical component.

By Definition 8, the structure for a responsible component of H +C can only
be obtained by deleting a critical satellite-element from one of the structures
in Fig. 1. So, by Fig. 1, we can easily list all possible structures for responsible
components of H + C.

3.4 Operations for Modifying Critical Components

In this subsection, we define three operations for modifying C (and accordingly
one or more critical components of H +C) so that after the modification, H +C
will hopefully have fewer critical components. Let v be a vertex of a satellite
element S in a critical component K and v′ be a vertex of K ′ in H + C. We
remark that K and K ′ may be the same. Suppose {v, v′} ∈ E(G) \ C and we
design the following three operations.

Operation 1. Suppose v′ is a 0-anchor of K or v′ is a non-responsible 1-
anchor. Then, the operation modifies C by replacing the rescue-edges of S with
{v, v′}.

Clearly, Operation 1 does not change the weight of C by the first state-
ment in Fact 2. Suppose v′ is a 0-anchor. If K = K ′, then after Operation 1,
K is no longer critical by the second statement of Fact 2. Then, we suppose
K 
= K ′. Obviously, K is no longer critical but K ′ may become critical after
Operation 1. So, Operation 1 may not necessarily decrease but does not increase
the number of critical components in H + C. Fortunately, Operation 1 changes
v′ from a 0-anchor to a 1-anchor. Similarly, it is not hard to check if v′ is a
non-responsible 1-anchor, then Operation 1 makes K,K ′ both not critical. So,
Operation 1 decreases the number of 0-anchors in H + C by 1 or the number of
critical components in H + C by 1. Obviously, Operation 1 does not change the
number of components in H + C.

Operation 2. Suppose v′ is in a satellite-element S′ of K ′ and the center ele-
ment K ′

c of K ′ is an edge or a star to which no satellite element other than S′ is
adjacent in H + C. Then, the operation modifies C by replacing the rescue-edge
of S with {v, v′}.

Obviously, Operation 2 does not change the weight of C by the first statement
of Fact 2. Note that K ′ has no 2-anchor and hence K ′ is not critical by Fact 1.
So, K 
= K ′ since K is critical. Moreover, after Operation 2, S′ becomes the
center element of K ′ and hence Lemma 5 still holds. Furthermore, by the first
statement in Fact 2 and Fact 1, K,K ′ are not critical after Operation 2 and
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thus Operation 2 decreases the number of critical components in H + C by 1.
Clearly, Operation 2 does not change the number of components in H + C.
Before Operation 2, K ′ may have one 0-anchor x. After Operation 2, x will be
in a satellite element of H + C and hence will not be a 0-anchor, but S′ will
become a center element with two satellite elements adjacent to it in H + C,
implying that one vertex of S′ may become a 0-anchor in H + C (or not an
anchor, if S′ is a star). In summary, Operation 2 does not increase the number
of 0-anchors in H + C.

Operation 3. Suppose v′ appears in a satellite-element S′ of K ′ and K ′
c is a

5-path , or K ′
c is an edge or a star to which at least one more satellite element

other than S′ is adjacent in H +C. Then, the operation modifies C by replacing
the rescue-edges of S and S′ with the edge {v, v′}.

By the first statement of Fact 2, Operation 3 does not change the weight of
C since K,K ′ will not be an isolated bad component of H. Operation 3 uses
the edge {v, v′} to connect S and S′ into a new composite component Knew of
H +C. By Fact 1, Knew is not critical. If K = K ′, then clearly Operation 3 does
not increase the number of critical components in H+C. Otherwise, Operation 3
makes K not critical because of the first statement in Fact 2, but it is possible
that Operation 3 makes K ′ critical. In any case, Operation 3 does not increase the
number of critical components in H + C. Luckily, Operation 3 always increases
the number of components in H + C by 1.

Lemma 8. Operations 1–3 can be repeatedly performed at most O(n2) times.
Suppose that G has an edge {v, v′} such that v is in a critical satellite-element

S of H + C and v′ /∈ V (S) when none of Operations 1–3 is applicable. Then v′

is a 2-anchor or a responsible 1-anchor.

3.5 Bounding opt(G)

Let R denote the set of vertices v ∈ V (H) such that v is a 2-anchor or a
responsible 1-anchor in H + C. By Lemma 8, once none of Operations 1–3 is
applicable, any critical satellite element can be only incident to the vertices of R.
Clearly, |R∩V (K)| is bounded by the total number of 1- and 2-anchors in Kc (Kc

is not a triangle). Thus, if Kc is an edge, then |R ∩ V (K)| ∈ {0, 1, 2}; if Kc is a
star, then |R∩V (K)| ∈ {0, 1}; if Kc is a 5-path, then |R∩V (K)| ∈ {0, 1, 2, 3, 4, 5}.
By Fact 1 and Lemma 7, each critical component K has one or two 2-anchors
and no responsible 1-anchor. That is, |R ∩ V (K)| ∈ {1, 2}.

Notation 4. For the components in H + C, we define the notations as follows.

– Let K be the set of composite components or isolated 5-paths of H + C.
– For each i ∈ {0, 1, 2, 3, 4, 5}, let Ki ⊆ K be a subset of K such that |R ∩

V (K)| = i.
– For each i ∈ {1, 2}, let Ki,c be the set of critical components in Ki.
– Let Rc be the set of 2-anchors in the critical components of H + C.
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– Uc =
⋃

v∈Rc
{w ∈ V (H) | w is in a critical satellite-element whose rescue-

anchor is v}.
– Let Gc = G[V (G) \ (Rc ∪ Uc)].

Lemma 9. opt(G) ≤ opt(Gc) + 7
∑5

i=1 i|Ki|.
The above lemma indicates that though there are many critical components

in H+C, after we “destroyed” all the critical components, the problem is reduced
to a smaller problem on Gc and opt(Gc) is not far away from opt(G). So, it is
possible to get a good solution of G by recursively solving the problem on Gc.

4 Summary of the Algorithm

Let r = 15+
√
505

20 ≈ 1.874 be the positive root to the quadratic equation 10r2 −
15r − 7 = 0. Our algorithm proceeds as follows.

0. If |V (G)| ≤ 4, find an optimal solution by brute-force search, output it, and
then halt.

1. Construct the graph H as follows:
(a) Compute a maximum matching M in G and initialize H = (V (M),M).
(b) Modify M and H by performing Steps 1.1 and 1.2 in Sect. 3.1.

2. Compute a maximum path-cycle cover C and modify it as follows:
(a) Perform Steps 2.1, 2.2, and 2.3 in Sect. 3.2 to compute a maximum path-

cycle cover C in an auxiliary graph G1.
3. Repeatedly perform Operations 1, 2, and 3 in Sect. 3.4 to modify C, until

none of them is applicable.
4. If no component of H + C is critical, or

∑5
i=1 i|Ki|

|K1,c|+2|K2,c| > 5
7r, then

(a) compute OPT (K) for each component K of H +C that is not an isolated
bad component of H by Lemma 6;

(b) output their union as a solution for G, and then halt.
5. Otherwise, there is at least one critical component and

∑5
i=1 i|Ki|

|K1,c|+2|K2,c| ≤ 5
7r.

(a) Recursively call the algorithm on the graph Gc to obtain a solution
ALG(Gc).

(b) For each v ∈ Rc, compute a 5+-path Pv since v is a 2-anchor.
(c) Output the union of ALG(Gc) and ∪v∈Rc

Pv, and halt.

Theorem 1. The running time of the
algorithm is bounded by O(min{m2n2, n5}) and the approximation ratio is at
most r = 15+

√
505

20 < 1.874.

Due to the page limitation, the proof of Theorem 1 is omitted here.
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Abstract. We say that a family W of strings over Σ+ forms a Unique
Maximal Factorization Family if and only if for every w ∈ W, w has a
unique maximal factorization. Then an UMFF W is a circ-UMFF when-
ever it contains exactly one rotation of every primitive string x ∈ Σ+.
V -order is a non-lexicographical total ordering on strings that determines
a circ-UMFF. In this paper we propose a generalization of circ-UMFF
called the substring circ-UMFF and extend the combinatorial research on
V -order by investigating connections to Lyndon words. Then we extend
concepts to considering any total order. Applications of this research
arise in efficient text indexing, compression, and search tasks.
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1 Introduction

V -order [8] (Definition 3) is a non-lexicographic global order on strings that was
introduced more than 25 years ago [8,9]. Similar to conventional lexicographical
order (lexorder), V -order string comparison can be performed using a simple lin-
ear time, constant space algorithm [3–5,12,13], further improved in [1,2]. Much
theoretical research has been done on this ordering [12,13,17], including effi-
cient construction of the so-called V -BWT or V -transform [17], a variant of the
lexicographic Burrows-Wheeler transform (BWT).

In this paper we extend combinatorial research on V -order and circ-UMFFs.
We first show that there are infinitely more V -words (Definition 9) than Lyndon
words (Definition 1). Then we study instances of circ-UMFFs having similar
properties to V -words and/or Lyndon words. Finally, we propose a generalization
of the circ-UMFF (Definition 17) called the substring circ-UMFF (Definition 28)
and show that for a generalized order T , with order relation �, classes of border-
free words exist that form circ-UMFFs and substring circ-UMFFs, respectively.
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2 Preliminaries

A string (or word) is an ordered sequence of elements drawn from a finite
totally ordered set Σ of cardinality σ = |Σ|, called the alphabet . The elements
of Σ are referred to a characters (letters). We refer to strings using mathbold:
x, w instead of x,w. The length of a string w[1..n] is |w| = n. The empty string
of length zero is denoted by ε. The set of all nonempty strings over the alphabet
Σ is denoted by Σ+, with Σ∗ = Σ+∪ε. If x = uwv for (possibly empty) strings
u,w,v ∈ Σ∗, then u is a prefix , w a substring or factor , and v a suffix of
x. A substring u of w is said to be proper if |u| < |w|. A string w has a border
u if u is both a proper prefix and a proper suffix of w. If w has only the empty
border ε then it is called border-free .

For x = x[1..n] and an integer sequence 0 < i1 < i2 < · · · < ik ≤ n,
the string y = x[i1]x[i2] · · · x[ik] is said to be a subsequence of x, proper
if |y| < n. If x = uk (a concatenation of k copies of u) for some nonempty
string u and some integer k > 1, then x is said to be a repetition ; otherwise,
x is primitive . A string y = Ri(x) is the ith conjugate (or rotation) of
x = x[1..n] if y = x[i + 1..n]x[1..i] for some 0 ≤ i < n (so that R0(x) = x).

Definition 1. A Lyndon word [6] is a primitive string that is minimum in
lexorder < over its conjugacy class.

The following Lyndon factorization (LF) theorem is fundamental in stringology
and underpins the wide-ranging applications of Lyndon words:

Theorem 2. [6] Any nonempty string x can be written uniquely as a product
LFx = x = u1u2 · · · uk of k ≥ 1 Lyndon words, with (u1 ≥ u2 ≥ · · · ≥ uk).

For further stringological definitions and theory, see [7,25].

3 V -order

In this section we start by defining V -order and describing some of its important
properties used later in the paper.

Let x = x1x2 · · · xn be a string over Σ. Define h ∈ {1, . . . , n} by h = 1 if
x1 ≤ x2 ≤ · · · ≤ xn; otherwise, by the unique value such that xh−1 > xh ≤
xh+1 ≤ xh+2 ≤ · · · ≤ xn. Let x∗ = x1x2 · · · xh−1xh+1 · · · xn, where the star *
indicates deletion of xh. Write xs∗ = (...(x∗)∗...)∗ with s ≥ 0 stars. Let g =
max{x1, x2, . . . , xn}, and let k be the number of occurrences of g in x. Then the
sequence x,x∗,x2∗, ... ends gk, ..., g1, g0 = ε. From all strings x over Σ we form
the star tree (see Example 5), where each string x labels a vertex and there is a
directed edge upward from x to x∗, with the empty string ε as the root.

Definition 3 (V -order [8]). We define V -order ≺ for distinct strings x, y.
First x ≺ y if in the star tree x is in the path y,y∗,y2∗, . . . , ε. If x,y are

not in a path, there exist smallest s, t such that x(s+1)∗ = y(t+1)∗. Let s = xs∗

and t = yt∗; then s �= t but |s| = |t| = m say. Let j ∈ [1..m] be the greatest
integer such that s[j] �= t[j]. If s[j] < t[j] in Σ then x ≺ y; otherwise, y ≺ x.
Clearly ≺ is a total order on all strings in Σ∗.



V -Words, Lyndon Words and Substring circ-UMFFs 473

See the star tree path and star tree examples in Examples 4 and 5, respec-
tively.

Example 4. [Star tree path] Figure 1 illustrates the star tree for the case x ≺
y if in the star tree x is in the path y,y∗,y2∗, . . . , ε. Consider the V -order
comparison of the strings x = 929 and y = 922911. The subscript h indicates the
V letter to be deleted (defined above as xh−1 > xh ≤ xh+1 ≤ xh+2 ≤ · · · ≤ xn).
Since 929 is in the path of star deletions of 922911, therefore 929 ≺ 922911.

Fig. 1. 929 ≺ 922911

Example 5. [Star tree] Figure 2 illustrates the star tree for the non-path case
using the V -order comparison of the words x = unique and y = equitant. As in
the previous example, the subscript h indicates the V letter to be deleted (defined
above as xh−1 > xh ≤ xh+1 ≤ xh+2 ≤ · · · ≤ xn). The circled letters are those
compared in alphabetic order (defined above as s[j] �= t[j]).

Definition 6 (V -form [8,9,12,13]). The V -form of any given string x is

Vk(x) = x = x0gx1g · · · xk−1gxk ,

where g is the largest letter in x—thus we suppose that g occurs exactly k times.
Note that any xi may be the empty string ε and we let Lx = g, Cx = k.
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Fig. 2. unique � equitant

Lemma 7. [8,9,12,13] Suppose we are given distinct strings x and y with cor-
responding V -forms

x = x0Lxx1Lxx2 · · · xj−1Lxxj ,

y = y0Lyy1Lyy2 · · · yk−1Lyyk,

where j = Cx , k = Cy . Let h ∈ 0..max(j, k) be the least integer such that
xh �= yh. Then x ≺ y if and only if one of the following conditions holds:

(C1) Lx < Ly

(C2) Lx = Ly and Cx < Cy

(C3) Lx = Ly , Cx = Cy and xh ≺ yh.

Lemma 8. [12,13] For given strings x and y, if y is a proper subsequence of
x, then y ≺ x.

By Lemma 8, suffix sorting becomes a trivial problem in V -order, which
otherwise requires a non-trivial linear algorithm in lexorder [16]. For instance,
for x = 7547223 we have 3 ≺ 23 ≺ 223 ≺ 7223 ≺ 47223 ≺ 547223 ≺ 7547223.

We now introduce the V -order equivalent of the lexorder Lyndon word:

Definition 9 (V -word [9]). A string x over an ordered alphabet Σ is a V -word
if it is the unique minimum in V -order ≺ in the conjugacy class of x.

Thus, like a Lyndon word, a V -word is necessarily primitive.
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Example 10. [≺] We can apply Definition 3, equivalently the methodology of
Lemma 7, to conclude that

6263 ≺ 6362 ≺ 2636 ≺ 3626,

so that 6263 is a V -word, while on the other hand 2636 is a Lyndon word.
Similarly, 62626263 and 929493 are V -words, while conjugates 26262636 and
294939 are Lyndon words.

We now define another important ordering below:

Definition 11 (V -word order). Suppose x and y are V -words on an ordered
alphabet Σ. If xy is also a V -word, then we write x <V y; if not, then x ≥V y.

Thus, corresponding to the Lyndon factorization into Lyndon words using ≥
(Theorem 2), we arrive at a V -order factorization expressed in terms of V -word
order ≥V :

Lemma 12. [12,13,16] (V -order Factorization) Using only linear time and
space (see Algorithm VF in [13]), a string x can be factored uniquely, using
V -word order, into V -words x = x1x2 · · · xm , where x1 ≥V x2 ≥V · · · ≥V xm .

Example 13. For x = 33132421, the Lyndon decomposition (computed using
lexorder) is 3 ≥ 3 ≥ 13242 ≥ 1, while the V -order factorization identifies
nonextendible V -words 33132 and 421 with 33132 ≥V 421. (Note however that
33132 ≺ 421! See [11] for more background on this phenomenon.) Similarly, from
Example 10, the string

x = uvw = (6263)(62626264)(929493)

has the unique V -order factorization u ≥V v ≥V w, even though u ≺ v ≺ w.

It will also be useful to order strings x, y based on a lexicographic approach
to their factorizations into identified substrings; this will be applied in Sect. 5
to handle string factorization based not on letters but substrings. We call this
ordering, denoted ≺LEX(F ), lex-extension order, expressed here with respect to
substring ordering using ≺—but note that other substring ordering methodolo-
gies could instead be applied.

Definition 14 (Lex-extension order [9,13,17]). Suppose that according to
some factorization F , two strings x,y ∈ Σ+ are expressed in terms of nonempty
factors:

x = x1x2 · · · xm , y = y1y2 · · · yn .

Then x ≺LEX(F ) y if and only if one of the following holds:

(1) x is a proper prefix of y (that is, xi = yi for 1 ≤ i ≤ m < n); or
(2) for some least i ∈ 1..min(m,n), xj = yj for j = 1, 2, . . . , i1, and xi ≺ yi .
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4 UMFF and Circ-UMFF Theory

Motivated by classical Lyndon words, investigations into combinatorial aspects
of the factoring and concatenation of strings led to the concepts of UMFF and
circ-UMFF [9–11] whose properties we overview here and apply in Sect. 5.

For given x = x[1..n] ∈ Σ+, if x = w1w2 · · ·wk , 1 ≤ k ≤ n, then
w1w2 · · ·wk is said to be a factorization of x; moreover, if every factor wj ,
1 ≤ j ≤ k, belongs to a specified set W, then w1w2 · · ·wk is said to be a
factorization of x over W, denoted by FW(x). A subset W ⊆ Σ+ is a fac-
torization family (FF) of Σ if for every nonempty string x on Σ there exists a
factorization FW(x). If, for every j = 1, 2, ..., k, every factor wj is of maximum
length, then the factorization FW(x) is unique and said to be maximal .

Definition 15. Let W be an FF on an alphabet Σ. Then W is a unique max-
imal factorization family (UMFF) if and only if there exists a maximal fac-
torization FW(x) for every string x ∈ Σ+.

Factors cannot overlap in a unique maximal factorization of a string:

Lemma 16. (The xyz Lemma [9]) An FF W is an UMFF if and only if
whenever xy,yz ∈ W for some nonempty y, then xyz ∈ W.

An important class of UMFFs can now be specified:

Definition 17. An UMFF W over Σ+ is a circ-UMFF if and only if it con-
tains exactly one rotation of every primitive string x ∈ Σ+.

A circ-UMFF W expresses a concatenation order:

Definition 18. ([11]) If a circ-UMFF W contains strings u,v and uv, we write
u <W v (called W-order).

Observe that V -word order (Definition 11) is a particular instance of the
W-order.

Structural properties of circ-UMFFs are summarized as follows:

Theorem 19. ([10]) Let W be a circ-UMFF.
(1) If u ∈ W then u is border-free.
(2) If u,v ∈ W and u �= v then uv is primitive.
(3) If u,v ∈ W and u �= v then uv ∈ W or vu ∈ W (but not both).
(4) If u,v,uv ∈ W then u <W v where <W is a total order on W.
(5) If w ∈ W and |w| ≥ 2 then there exist u,v ∈ W with w = uv.

The first known circ-UMFF is believed to be the set of Lyndon words, whose
specific W-order is lexorder; that is, the same ordering of the strings of Σ+ is
used to obtain Lyndon words:

Theorem 20. ([20]) Let L be the set of Lyndon words, and suppose u,v ∈ L.
Then uv ∈ L if and only if u precedes v in lexorder.

Note that, from Definition 15, V -order factorization determines an UMFF,
which, by Definitions 9 and 17, is a circ-UMFF.
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5 V -words, Lyndon Words and Circ-UMFF

In this section we further investigate the relationship and differences between
Lyndon and V -words and introduce generalized words over any total order.

We begin with the following observation, stated in [11], which follows imme-
diately from Duval’s fundamental Theorem 20 [20]:

Observation 21. Let Σ∗
lex denote the lexicographic total ordering of Σ∗. Then

the lexordered set L of Lyndon words is a suborder of Σ∗
lex.

However, observe that there is no corresponding architecture for V -words. In
V -ordered Σ∗, for x = 21,y = 31, we have x ≺ y by Lemma 7 (C1), while
in the class of V -words we have x ≥V y by Definition 11 of V -word order. For
further details on the distinction between ≺ and ≥V see Lemma 3.16 in [13].

Lyndon words and V -words are generally distinct [13]. For instance, the inte-
ger string 1236465123111 factors into Lyndon words (12316465)(123)(1)(1)(1)
and into V -words (1)(2)(3)(6465123111)—no correspondence whatever. Never-
theless, as the following result tells us, when substrings are restricted to a single
letter, a rather remarkable result holds, which is a newly observed special case
of Theorem 4.1 in [9] and leads to the concept of V -Lyndons:

Lemma 22. Suppose x is a string whose V -form is x = Lxx1Lxx2 · · ·
xj−1Lxxj, where x0 = ε and |xh| = 1 for 1 ≤ h ≤ j. Let x′ = x1x2 · · · xj−1xj.
Then x is a V -word if and only if x′ is a Lyndon word.

To see that the requirement |xh| = 1 is necessary, consider x = 321312 with
Lx = 3, |x1| = |x2| = 2. Certainly x′ = x1x2 = 2112 is not a Lyndon word,
but since x ≺ 312321, x is a V -word. Thus Lemma 22 does not generalize to V -
form substrings with |xh| > 1. Nonetheless, there does exist a kind of reciprocity
between infinite classes of Lyndon words and V -words:

Observation 23. For any Lyndon word x[1..n], n ≥ 2, on ordered alphabet Σ:

(1) If Lx is the largest letter in x, then (L′)kx is a V -word for L′ > Lx and
every integer k > 0.

(2) If �x is the smallest letter in x, then (�x)kx is also a Lyndon word for every
integer k > 0.

We shall call V -words having the form specified by Lemma 22 V -Lyndons.
Then, building on Lemma 22 and Observation 23(1), we can show that there are
infinitely more V -words than there are Lyndon words:

Theorem 24. Suppose that �[1..n] is a Lyndon word over an ordered alphabet
Σ and further that there exists L� ∈ Σ such that L� > �[i] for i ∈ 1..n. Then we
can construct infinitely many V -words from � over Σ.
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Proof. For the first V -word v1, applying Lemma 22 we write � as v1[1..2n] where
for i ∈ 1..2n, if i is odd, v1[i] = L� , while if i is even, v1[i] = �[i/2]; that is,
v1 = L��[1]L��[2]..L��[n].

For V -words vh, h > 1, rewrite � as vh = L��[1]hL��[2]h..L��[n]h. Lemma 7
(C1) shows that if a ≺ b for letters a, b (that is, a < b in Σ), then ah ≺ bh and
hence the Lyndon property (Lemma 22) of � is preserved for vh using Definition
14 for lex-extension order of strings. �

It might then be natural to suppose that V -words exhibit the same struc-
tural properties as Lyndon words and support equivalent string operations. For
instance, a defining property of Lyndon words is that they are strictly less in
lexorder than any of their proper suffixes; that is, for a Lyndon word � = p�s� ,
with p� , s� �= ε, we have

� < s� < s�p� .

This central Lyndon property relates to two important operations on strings:
ordering and concatenation. For Lyndon words, these operations are consistent
with respect to lexorder: that is, for every proper suffix s� of �, by virtue of the
ordering � < s� , we can construct a Lyndon word �s�

h by concatenation for
every h ≥ 1.

In contrast, for V -order, these operations are not necessarily consistent. First,
by Lemma 8, a proper suffix u of a string x is less than x in V -order; thus, for
example, given the V -word v = 43214123, even though substrings 23 ≺ v and
4123 ≺ v, on the other hand, by definition of a V -word, v ≺ 41234321. So for a
V -word v = pvsv , with pv , sv �= ε, we have

sv ≺ v ≺ svpv .

Nevertheless, like a Lyndon word, a V -word can be concatenated with any of
its proper suffixes (although they are less in V -order) to form a larger V -word
(Lemma 3.21 in [13]). Hence we are interested in those combinatorial properties
related to operations like concatenation and indexing in conjugacy classes which
hold both for Lyndon words and V -words. Examples include border-freeness,
existence of uv and vu in the conjugacy class where u and v are Lyndon words,
and the FM-index Last First mapping property [16,21].

We proceed to introduce a general form of order, T :

Definition 25. Let T be any total ordering of Σ∗ with order relation � so that
given distinct strings x, y they can be ordered deterministically with the relation
�: either x � y or y � x.

So for Lyndon words (V -words) the ordering T is lexorder (V -order) and the
corresponding order relation � is < (≺). Using the general order T , we can
extend Definition 1 (9) from Lyndon words (V -words) to T�-words:

Definition 26. A string x over an ordered alphabet Σ is said to be a T�-word
if it is the unique minimum in T -order � in the conjugacy class of x.
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Similarly, Definition 14 can be generalized by replacing the order ≺ by T -order
�: x �LEX(F ) y if and only if xi � yi and xj = yj , 1 ≤ j < i. We call this
Tlex-order .

Applications of circ-UMFFs in the literature arise in linear-time variants of
the Burrows-Wheeler transform: the V -order based transform V − BWT [17];
the binary Rouen transform B − BWT derived from binary block order which
generated twin transforms [15]; the degenerate transform D −BWT for indeter-
minate strings implemented with lex-extension order [18] which supports back-
ward search [14]. These instances stimulate the quest for new circ-UMFFs and
we pave the way for this by next introducing a generalization of circ-UMFFs.

6 Substring circ-UMFF: Generalization of circ-UMFF

Definitions 25 and 26 encourage considering conjugacy classes for substrings
Lxxi rather than individual letters:

Definition 27. Given a string x = Lxx1Lxx2 · · · xj−1Lxxj in V -form over
an ordered alphabet Σ, with maximal letter Lx , then a string y = Rt(x) =
LxxtLxxt+1 · · · xj−1LxxjLxx1 · · · Lxxt−1 is the tth substring conjugate (or
substring rotation) of x = x[1..n].

We then obtain a form of the xyz Lemma 16 for substrings:

Corollary 1. An FF W is an UMFF if and only if whenever xy,yz ∈ W for
some nonempty y, where each of xy,yz and y are in V -form, then xyz ∈ W.

Then a natural generalization of circ-UMFFs is the substring circ-UMFF
where a conjugate is selected from the conjugacy class of substrings of a string
rather than the usual rotation of letters.

Definition 28. An UMFF W over Σ+ is a substring circ-UMFF if and only
if it contains exactly one substring rotation of every primitive string x ∈ Σ+

expressed in V -form.

Definition 29. A string x = Lxx1Lxx2 · · · xj−1Lxxj in V -form over an
ordered alphabet Σ, with maximal letter Lx , is said to be a Tlex-word if it is the
unique minimum in Tlex-order in the conjugacy class of the Lxxi.

To clarify, consider the primitive integer string 431412 where, with reference
to V -form, L = 4, then the conjugate 412431 is least in co-lexorder (lexorder of
reversed strings) for the letter-based conjugates, while the substring conjugate
431412 is least in Lex-Ext co-lexorder in the comparison of 431412 and 412431.
Note that depending on the particular context, the substrings may be of the
form Lxxi such as when using co-lexorder and x0 = ε, or in the case of V -order,
Lemma 7 Part (C3) shows that it suffices for the substrings to simply have the
form xi. The following then holds for circ-UMFFs over an ordered alphabet Σ
and a letter L such that for σi ∈ Σ, σi < L:
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Theorem 30. Suppose T -order � is a total order over Σ∗. (i) The class of
border-free T�-words forms a circ-UMFF T over the conjugacy class of letters.
(ii) The class of border-free Tlex-words forms a substring circ-UMFF over the
conjugacy class of substrings.

Proof. For this we apply Lemma 16 and Theorem 3.1 in [10], that is Theorem
19, which describes the structure of a circ-UMFF.

Part (i). Let T consist of precisely the set of border-free T�-words over Σ∗, and
we will show that T is a circ-UMFF. First, by construction of T every letter in
Σ is in T so we proceed to consider strings of non-unit length.

Suppose that xy and yz, with x, y, z nonempty, are both border-free T�-
words in T , where by Definition 26 they must be primitive. Consider the string
xyz and suppose that it is the repetition uk, k > 1. If u is a proper prefix of
xy then xy is bordered, whereas if xy is a prefix of u then yz is bordered, and
so we conclude that xyz is primitive. Since xyz is primitive then it must have
a border-free conjugate - the classic argument for this is that the conjugate in
the conjugacy class which is a Lyndon word must be border-free. So we next
consider a border-free conjugate cT of xyz which is in T .

So suppose that we do not have xyz minimal in T -order in its conjugacy
class and border-free. Let x = x1x2 · · · xr, y = y1y2 · · · ys and z = z1z2 · · · zt,
r, s, t ≥ 1. Assume then that a conjugate c = xc+1 · · · xryzx1 · · · xc, c + 1 > 1
and r > 1, is minimal, border-free, and belongs to T . Then applying Lemma
16 to distinct c and xy would imply that the bordered word xc+1 · · · xryzxy
is in T . So assume that a conjugate c′ = yd+1 · · · yszxy1 · · · yd, d + 1 ≥ 0, is
minimal and belongs to T . Again applying Lemma 16 to distinct c′ and xy
would imply that the bordered word yd+1 · · · yszxy is in T . Finally, assume
that c′′ = ze+1 · · · ztxyz1 · · · ze, e+1 > 1, and a similar argument for c′′ and yz
would imply that the bordered word ze+1 · · · ztxyz is in T . Hence the primitive
conjugate xyz is border-free and so must be the one, cT , in T , and by con-
struction of T , xyz must be least in T -order � in its conjugacy class. Applying
Lemma 16, since xy, yz and xyz with non-empty y all belong to T we have
that T is an UMFF. From each conjugacy class of a primitive string we have
selected a border-free word for T thus satisfying Definition 17 and moreover
circ-UMFFs are necessarily border-free (Theorem 19 Part (1)). Hence we con-
clude that T is a circ-UMFF.

Part (ii). This follows similarly to Part (i) and by substituting Definition
26 for T�-words with Definition 29 for Tlex-words and applying Corollary 1 for
substrings. Here we let T ∫ consist of precisely the set of border-free Tlex-words
over Σ∗. Then, by construction of T ∫ , the strings of length one have the form
Lw where w ∈ Σ∗. So if w is the empty string we get the word L. Then strings of
length � will have � occurrences of L. In the analysis of T ∫ , for the existence of a
border-free substring conjugate, we refer to the circ-UMFF IL of Indeterminate
Lyndon Words [18] whose words are necessarily border-free (an indeterminate
string on an alphabet Σ is a sequence of nonempty subsets of Σ). Then there
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exists a border-free indeterminate Lyndon word in the substring conjugacy class.
The rest of the argument follows as in Part (i). �

Observe that Theorem 30 shows that if a circ-UMFF or a substring circ-
UMFF is defined using a total order (which is not necessary) then every element
of the (substring) circ-UMFF is obtained using the same total order and no
other ordering technique. Observe further that the proof did not depend on any
particular method of totally ordering Σ∗, however the method must be total for
border-free primitive strings in Σ∗.

We illustrate concepts from Theorem 30 with the following:

Example 31. Consider the primitive and border-free integer string x =
3177412. Then the (unordered) conjugacy class of x is given by

3 1 7 7 4 1 2
2 3 1 7 7 4 1
1 2 3 1 7 7 4
4 1 2 3 1 7 7
7 4 1 2 3 1 7
7 7 4 1 2 3 1
1 7 7 4 1 2 3

The third conjugate, 1231774, is the Lyndon word as it is least in lexorder. The
sixth conjugate, 7741231, is the V -word as it is least in V -order; it is also a co-
lexorder word as it is least in co-lexorder; furthermore, it is least in relex order
(reverse lexorder). The fifth conjugate, 7412317, is the sixth largest in lexorder
but is a bordered word. And the seventh conjugate, 1774123, is least in alternating
lexorder (indexing strings from 1, odd indexed letters are compared with < and
even with >).

Implementing the FM-Index in V -order was considered in [16] leading to
V -order substring pattern matching using backward search whereby computing
only on the k conjugates starting with the greatest letter, essentially a substring
circ-UMFF, reduced the BWT matrix to O(nk) space. Hence, the substring circ-
UMFF concept promises future optimization opportunities in particular related
to indexing and pattern matching applications.

7 Galois Words

Finally, we show the necessity of the border-free requirement in Theorem 30 with
Galois words [24], which are based on alternating lexicographic order (alternating
lexorder, denoted ≺alt), defined informally for comparing conjugates as: starting
with <, string letters are compared in alternating < and > order. The Alter-
nating Burrows-Wheeler Transform (ABWT) is an analogous transform to the
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BWT which applies alternating lexorder [22]; an algorithmic perspective of the
ABWT is given in [23].

It is straightforward to show that ≺alt is a total order and so a candidate for
Theorem 30, so consider an analogous concept to Lyndon and V -words:

Definition 32. [24] A primitive word w is a Galois word if for each non-
trivial factorization w = uv, w ≺alt vu.

Examples of Galois words: ab, aba, abb, abba, ababa, ababaa, ababba. Observe that
these words are not necessarily border-free and can be palindromic. Applying
Lemma 16 to the Galois words xy = ababa and yz = ab with y = a then
xyz = ababab, namely a repetition, while Galois words are necessarily primitive.
Hence, Galois words do not form an UMFF or therefore circ-UMFF. A related
sentiment (Example 44 in [19]) shows that, while it follows from Theorem 20
that the unique maximal Lyndon factorization of a word has the least number
of Lyndon factors, this is not necessarily the case with Galois words.

8 Concluding Comments

The concept of circ-UMFFs for uniquely factoring strings is a generalization
of Lyndon words, which are known to be border-free string conjugates. The
literature includes instances of circ-UMFFs for both regular and indetermi-
nate (degenerate) strings. In this paper we have extended current knowledge on
circ-UMFF theory including a further generalization to substring circ-UMFFs.
Known instances of circ-UMFFs have been defined using a total order over Σ∗,
such as V -order for arbitrary alphabets generating V -words, binary B-order
generating B-words, and lex-extension order generating indeterminate Lyndon
words.

We establish here that given any total ordering methodology T over Σ∗,
and a subset of Σ∗ consisting of border-free conjugates minimal in T -order, the
subset defines a circ-UMFF. An analogous result is established for substring
circ-UMFFs. The border-free requirement is illustrated using Galois words by
showing that they do not necessarily yield unique maximal string factorization
– Galois words are thus worthy of deeper investigation in this context.

We have also delved further into the relationship between Lyndon and V -
words, in particular showing that there are infinitely more V -words than Lyndon
words. Novel concepts are illustrated throughout.
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Abstract. In this paper, we consider the (weighted) two-center prob-
lem of uncertain points on a tree. Given are a tree T and a set P
of n (weighted) uncertain points each of which has m possible loca-
tions on T associated with probabilities. The goal is to compute two
points on T , i.e., two centers with respect to P, so that the maxi-
mum (weighted) expected distance of n uncertain points to their own
expected closest center is minimized. This problem can be solved in
O(|T | + n2 log n log mn + mn log2 mn log n) time by the algorithm for
the general k-center problem. In this paper, we give a more efficient and
simple algorithm that solves this problem in O(|T | + mn log mn) time.

Keywords: Algorithms · Two-center · Trees · Uncertain points

1 Introduction

Facility locations play a significant role in operations research due to its wide
applications in transportation, sensor deployments, circuit design, etc. Consider
the inherent uncertainty of collected data caused by measurement errors, sam-
pling discrepancy, and object mobility. It is natural to consider facility location
problems on uncertain points. The locational model for uncertain points has been
considered a lot in facility locations [10,14,16], where the location of an uncer-
tain point is represented by a probability density function (pdf). In this paper,
we study the two-center problem, one of classical facility location problems, for
uncertain points on a tree under the locational model.

Let T be a tree. We consider each edge e of T as a line segment of a positive
length so that we can talk about “points” on e. Formally, we specify a point x of
T by an edge e that contains x and the distance between x and an incident vertex
of e. For any two points p and q on T , the distance d(p, q) is the sum of all edges
on the simple path from p to q. Let P be a set of n uncertain points P1, · · · , Pn.
Each Pi ∈ P is associated with m locations pi1, pi2, · · · , pim each being a point
on T , and each location pij has a probability fij ≥ 0 for Pi appearing at location
pij . Additionally, each Pi has a non-negative weight wi.

For any (deterministic) point x on T , the distance of any uncertain point Pi

to x is the expected version and defined as
∑m

j=1 fij ·d(pij , x). We use Ed(Pi, x) to
denote the expected distance of Pi to x. Let x1 and x2 be any points on T . We say
that an uncertain point Pi is expectedly closer to x1 if Ed(Pi, x1) ≤ Ed(Pi, x2).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Define φ(x1, x2) = max1≤i≤n{wi · min(Ed(Pi, x1),Ed(Pi, x2))}. The two-
center problem aims to compute two points on T so as to minimize φ(x1, x2) and
the two optimal points, denoted by q∗

1 and q∗
2 , are called centers with respect to

P on T . We say that Pi is covered by q∗
1 if Pi is expectedly closer to q∗

1 .
The algorithm [17] for the general k-center problem can address our problem

in O(|T | + n2 log n log mn + mn log2 mn log n) time. In this paper, however, we
present an O(|T | + mn log mn)-time algorithm with the assistance of our pro-
posed linear-time approach for the decision two-center problem. Note that the
time complexity of our algorithm almost matches the O(|T |+mn log m+n log n)
result [18] for the case of T being a path.

1.1 Related Work

If every Pi has exactly one location then the problem falls into the deterministic
case. Ben-Moshe et al. [3] adapted Megiddo’s prune-and-search technique [13]
to solve in O(n) time the deterministic two-center on a tree where each vertex
is a demand point. On a cactus graph, the two-center problem was addressed in
their another work [2], and an O(n log3 n)-time algorithm was proposed. On a
general graph, Bhattacharya and Shi [5] reduced the decision problem into the
two-dimensional Klee’s measure problem [7] so that the problem can be solved
in polynomial time. The planar version was studied in several works [6,9,15].
The state-of-the-art result is an O(n log2 n) deterministic algorithm given by
Wang [15].

In general, every Pi has more than m > 1 locations on T . As mentioned above,
Wang and Zhang [17] considered the general k-center problem so that the two-
center problem can be addressed in O(|T | + n2 log n log mn + mn log2 mn log n)
time. If T is a path, the two-center was solved in O(|T | + mn log m + n log n)
time in our previous work [18]. One of the most related problems is the one-
center problem. Wang and Zhang [16] generalized Megiddo’s prune-and-search
technique to solve the one-center of P on a tree in linear time. Hu and Zhang [10]
studied the uncertain one-center problem on a cactus graph and proposed an
O(|T | + mn log mn)-time algorithm. Moreover, Li and Huang [11] considered
the planar Euclidean uncertain k-center and gave an approximation algorithm.
Later, Alipour and Jafari [1] improved their result to an O(3+ ε)-approximation
and proposed a 10-approximation algorithm for any metric space.

1.2 Our Approach

The locations of the uncertain points of P may be in the interior of edges of T .
A vertex-constrained case happens when all locations are at vertices of T and
each vertex of T contains locations. As shown in [17], any general case can be
reduced to a vertex-constrained case. In the following, we focus on discussing
the vertex-constrained case.

Let λ∗ be the minimized objective value. The median of each Pi ∈ P is the
point where Ed(Pi, x) reaches its minimum. We first solve the decision problem
that determines whether λ ≥ λ∗ for any given λ, i.e., decide if λ is feasible.
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This can be addressed in O(mn log2 mn) time by the algorithm [17], which relies
on several dynamic data structures requiring O(mn log2 mn)-time constructions.
Since the convexity of each Ed(Pi, x) on any path, we develop a much simpler
algorithm that is free of any data structures and runs faster in O(mn) time.

Regarding our decision problem, there is an observation that there exists an
edge e on T such that a center must be placed on e to cover all uncertain points
whose medians are on one of the two subtrees generated by removing e from
T . Such an edge is called a peripheral-center edge. Our decision algorithm first
computes a peripheral-center edge in O(mn) time. With this edge, the feasibility
of λ can be known in O(mn) time.

To compute centers q∗
1 and q∗

2 , we first compute the two critical edges that
respectively contain q∗

1 and q∗
2 . Because an essential lemma can decide in O(mn)

time which split subtree of any given point contains a critical edge. Our algorithm
finds each critical edge on T recursively with the assistance of this lemma. Once
the two edges are found, q∗

1 and q∗
2 can be computed in O(mn log n) time.

2 Preliminaries

Let u and v be any two vertices on T . Denote by e(u, v) the edge incident to
both u and v. For any two points p and q on T , we let π(p, q) be the simple path
between p and q. As in [17], the lowest common ancestor data structure [4] can
be applied to T so that with an O(mn) preprocessing work, the path length of
π(p, q), i.e., the distance d(p, q), can be known in constant time.

Let π be any simple path on T and x be any point on π. For any Pi ∈ P, as
analyzed in [16], Ed(Pi, x) is a convex piece-wise linear function in x ∈ π, and
it monotonically increases or decreases as x moves on any edge of π from one
ending vertex to the other.

Fig. 1. The point x has three split
subtrees T1, T2 and T3.

Fig. 2. Illustrating the tree Th for the case
C = 2 where V = {v1, v2} and Γ (V ) =
{T 1

h , · · · , T 6
h}.

Let x be any point on T . Removing x from T generates several disjoint
subtrees. Consider x as an “open vertex” on each subtree that is free of any
locations. We call each obtained subtree a split subtree of x. See Fig. 1 for an
example. For any Pi ∈ P and any subtree T ′ of T , we refer to the sum of
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probabilities of Pi’s all locations in T ′ as the probability sum of Pi in T ′. Denote
by p∗

i the median of Pi that minimizes Ed(Pi, x) among all points on T . The
following lemma was given in [16].

Lemma 1. [16] Consider any point x on T and any uncertain point Pi of P.

1. If x has a split subtree whose probability sum of Pi is greater than 0.5, then
p∗
i must be in that split subtree.

2. The point x is p∗
i if the probability sum of Pi in each of x’s split subtrees is

less than 0.5.
3. The point x is p∗

i if x has a split subtree in which the probability sum of Pi is
equal to 0.5.

Note that the median of Pi may not be unique. But all points on T minimizing
Ed(Pi, x) induce a connected subtree of T . Let p∗

i be any of these points. Due to
the convexity of Ed(Pi, x), we have that Ed(Pi, x) monotonically increases as x
moves along any path away from p∗

i .

3 The Decision Algorithm

Given any value λ > 0, the decision problem is to determine whether there exist
no more than two points, i.e., centers, on T so that the expected distance of
each Pi ∈ P to at least one of them is at most λ. If yes, then λ ≥ λ∗ and so λ is
feasible. Otherwise, λ < λ∗ and λ is infeasible. Clearly, λ∗ is the smallest feasible
value.

To establish a context for our work, we first introduce the algorithm [17] for
the decision k-center problem. Let Tm be the minimum subtree of T spanning
the medians of n uncertain points. We say that an uncertain point is covered by
a center if their expected distance is at most λ. The convexity of Ed(Pi, x) leads
the greedy algorithm that places minimum centers in the bottom-up manner
whenever it “has to.” During the post-order traversal, for each vertex v, con-
sidering all ‘active’ uncertain points whose medians are in the subtree rooted at
v, a center must be placed on the edge incident to v and its parent vertex u if
one of these uncertain points has its expected distance at u larger than λ. If so,
then the center is placed on this edge at the point where the maximum expected
distance of these uncertain points equals λ, and next all uncertain points covered
by this center are “deactivated.” With the assistance of several data structures,
minimum centers can be placed on T in O(mn log2 mn) time.

We say that an edge e of T is a peripheral-center edge if a center must
be placed on e so that this center is determined by all uncertain points whose
medians are on one of the two subtrees generated by removing e from T (but
keeping its two incident vertices), and the center on e is a peripheral center.

Regarding our problem, the goal is to determine whether two peripheral
centers can be found on T so that the expected distance of every uncertain
point to at least one of them is no more than λ. Our algorithm thus first finds a
peripheral-center edge and then applies Lemma 2 to decide the feasibility of the
given λ. If it is feasible then the two centers are returned. The proof of Lemma 2
is in the full paper.
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Lemma 2. Given a peripheral-center edge e on T , we can determine in O(mn)
time whether λ ≥ λ∗, and if yes, the two centers can be computed in O(mn)
time.

To find a peripheral edge on T , each round of our algorithm consists of two
pruning steps: The first pruning step is a recursive procedure that “shrinks” T to
find a peripheral-center edge recursively. After at most log m+1 recursive steps,
we obtain a subtree of at most |P|/2 vertices. It follows that at least a quarter
of uncertain points are pruned from P in the second step. After at most log n
rounds, only O(1) uncertain points remain, or a subtree of T with O(1) vertices
is obtained. At this point, a peripheral-center edge can be found in O(mn) time.

3.1 The First Pruning Step

We first compute the centroid c of T , which is a vertex so that every split subtree
of c has no more than |T |/2 vertices, in O(|T |) time by traversing the tree [12,13].
We then decide whether a center is at c, and if yes, then Lemma 2 is used to
decide the feasibility of λ in O(mn) time. Otherwise, we determine which split
subtree of c contains a peripheral-center edge. Lemma 6 can be utilized to solve
this problem in O(|T |) time. Note that if c has more than one such split subtree
then c is associated with a flag equal to true in Lemma 6.

Next, we set c as a connector on the obtained split subtree T ′ in O(|T |) time
as [16] by traversing the connector subtree {c} ∪ (T/T ′), denoted by T ′(c), to
compute the location information of each Pi in T ′(c). Specifically, we first create
two information arrays Fc[1 · · · n] and Dc[1 · · · n]. Initialize them as zero. We
then traverse T ′(c) and during the traversal, for each location pij , we add fij to
Fc[i] and add value wifij · d(pij , c) to Dc[i]. Last, we associate c on T ′ with the
two information arrays. Clearly, for each 1 ≤ i ≤ n, Fc[i] is the probability sum
of Pi in T ′(c), and Dc[i] is called the distance sum of Pi’s locations in T ′(c) to c.

In O(|T |) time, we obtain a subtree of at most |T |/2 vertices that must
contain a peripheral-center edge. We continue to perform the above procedure
recursively on T ′ to find a peripheral-center edge. Suppose we are about to
perform the h-th recursive step. Denote by Th−1 the obtained subtree after the
(h− 1)-th recursive step. Th−1 consists of at most |T |/2h−1 vertices and at most
h − 1 connectors.

Similarly, we first compute its centroid c in O(|Th−1|) time. During the traver-
sal, we also count the number of vertices with true flags. If more than one such
vertices exist, then at least three centers must be placed on T to cover P under
λ since two (pruned) connector subtrees and Th each must contain center(s) and
so we return λ < λ∗. Otherwise, we decide if one center must be placed at c.
If yes, Lemma 2 is applied to decide λ’s feasibility immediately in O(mn) time.
Otherwise, we determine which split subtree of c contains a peripheral-center
edge. Lemma 6 can address the problem in O(|Th−1| + n · (h − 1)) time.

In general, we obtain a subtree Th of at most |T |/2h vertices, and it must
contain a peripheral-center edge. Note that Th has h connectors. We then set c as
a connector on Th by computing its information arrays Fc[1 · · · n] and Dc[1 · · · n].
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This can be done in the above way except that when we visit a connector u on
Th, we scan its information arrays to add Fu[i] to Fc[i] and add value Du[i] +
wiFu[i]d(u, c) to Dc[i] for each 1 ≤ i ≤ n. Thus, the time complexity of the h-th
recursive step is O(|Th−1| + n · (h − 1)).

We perform the above procedure for h = 1 + log m recursive steps. At this
moment, by the definition of the centroid, we have |Th| ≤ |T |/2h = mn/2h =
n/2. The running time of the h recursive steps, i.e., the first pruning step, is
O(

∑h−1
i=0 (Ti + i · n), which is O(mn) due to T0 = T and h = 1 + log m.

Due to |Th| ≤ n/2, we can see that there are at least n/2 uncertain points in
P so that they have no locations in Th. Let P ′ be the subset of these uncertain
points. To compute this subset, we create an array I[1 · · · n] so that Pi ∈ P ′ if
I[i] is true. It is easy to see that I[1 · · · n], i.e., P ′, can be computed in O(|Th|)
time by traversing Th. Below we will show in the second pruning step that at
least half of P ′, i.e., a quarter of uncertain points in P, can be pruned.

3.2 Pruning Uncertain Points

We first traverse Th to count the number of vertices with true flags. If more than
one such vertices exist, then we return λ < λ∗ in that at least three centers are
needed to be placed on T . Otherwise, denote by C the number of connectors
on Th. Depending on the value of C, our algorithm will proceed accordingly for
three cases: C = 1, C = 2 and C > 2.

The Case C = 1: Let c be the connector on Th. If the flag of c is true, then the
connector subtree Th(c) must contain centers. By Lemma 6, we also have that
peripheral-center edge(s) on Th must be decided by uncertain points with medi-
ans on Th, i.e., whose probability sums in Th are at least 0.5. Because Lemma 6
always returns a subtree without any true-flag vertices unless no such subtrees
exist. Keeping c’s flag being true leads that P ′ can be pruned as computing a
peripheral-center edge on Th further. So, we keep entries of I[1 · · · n] for P ′ being
true.

Otherwise, the connector subtree Th(c) does not contain any centers. Denote
by xt any point on Th at distance t to c. For each Pi ∈ P ′, since all its locations
are in Th(c), we have Ed(Pi, xt) = Ed(Pi, c)+wi·t where Ed(Pi, c) = Dc[i]. Denote
by Pi′ the uncertain point of P ′ that determines the furthest point to c on Th to
cover P ′, i.e., that has the smallest t-value by resolving Ed(Pi, c) + wi · t = λ for
all Pi ∈ P ′. Clearly, any point on Th that covers Pi′ must cover all in P ′. Thus,
P ′ −{Pi′} can be pruned in the further step to compute a peripheral-center edge
on Th. To find Pi′ , we scan I[1 · · · n] to compute the t-value of each Pi ∈ P ′: If
I[i] is true, we compute in O(1) time (λ − Ed(Pi, c))/wi, i.e., the t-value. The
larger t-value is always maintained during the scan so that Pi′ can be found
in O(n) time. Last, we set I[i′] as false. Hence, it takes O(n) time to find all
uncertain points of P ′ that will be pruned.

It can be seen that for either case, at least a half of P ′, that is, a quarter of
uncertain points in P, can be pruned as we further search for peripheral-center
edges on Th. Additionally, if I[i] for any 1 ≤ i ≤ n is true then Pi can be
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pruned. Last, we reconstruct a tree to prune these uncertain points. Traverse
the connector subtree Th(c), i.e., {c}∪T/Th. For each location pij on Th(c) with
I[i] being false, we create a dummy vertex v, set v as an incident vertex of c
on Th by a dummy edge of length d(c, v), and reassign pij to v. These can be
carried out totally in O(|T |) time.

A tree T+ is thus obtained: T+ contains at most 3n/4 uncertain points and
hence its size is 3mn/4. T+ has dummy vertices and each of them is a leaf.
Additionally, the subtree generated by removing all dummy vertices from T+ is
exactly Th which contains a peripheral-center edge. As the flag of c on T+ is
maintained, computing a peripheral-center edge on Th is equivalent to computing
a non-dummy peripheral-center edge on T+.

The Case C = 2: Let c1 and c2 be the two connectors on Th. Consider the
path π(c1, c2) between c1 and c2. Let V be the set of vertices on π(c1, c2) except
for c1 and c2. For any vertex v ∈ V , denote by Γ (v) the set of all split subtrees
of v in Th excluding the two containing c1 and c2. Let Γ (V ) = ∪v∈V Γ (v). V and
Γ (V ) can be computed in O(Th) time. See Fig. 2 for an example.

We proceed with determining whether Γ (V ) contains peripheral-center edges.
This is an instance of the center-edge detecting problem, defined below in
Sect. 3.4, and it can be solved in O(|T |) time by Lemma 7. If one split subtree
T ′ of Γ (V ) is returned then we can reduce this case to the case C = 1 by setting
the vertex v′ of T ′ in V as a connector on T ′ in O(|Th| + n) time. Note that the
flag of v′ is set properly in Lemma 7. Otherwise, if no subtrees are returned then
π(c1, c2) must contain a peripheral-center edge. Depending on whether Th(c1)
and Th(c2) contain centers, we have different pruning approaches.

Suppose c1’s flag is equal to true, i.e., Th(c1) contains centers. Let P ′
c1 be

the subset of uncertain points in P ′ whose medians are in Th(c1) and P ′
c2 be

the subset of the remaining uncertain points in P ′ whose medians are in Th(c2).
Lemma 6 implies that the peripheral-center edge on π(c1, c2), i.e., that center,
is decided by uncertain points whose medians are in T/Th(c1). Keeping c1’s
flag being true allows us to prune P ′

c1 in the further rounds of computing a
peripheral-center edge on π(c1, c2). So, we keep entries of I[1 · · · n] for P ′

c1 being
true.

Next, we find uncertain points of P ′
c2 that can be pruned in the further

rounds. Let xt be any point on π(c1, c2) at distance t to c1. Because all locations
of uncertain points in P ′ are in the two connector subtrees. Each Pi ∈ P ′ has
Ed(Pi, xt) = Ed(Pi, c1) + wiFc1 [i] · t − wiFc2 [i] · t, which is Dc1 [i] + Dc2 [i] +
wi(Fc1 [i] − Fc2 [i])t + wiFc2 [i]d(c1, c2). Clearly, Ed(Pi, xt) changes linearly as xt

moves from c1 to c2. We resolve Ed(Pi, xt) = λ in O(1) time for each Pi ∈ P ′
c2 .

(For any 1 ≤ i ≤ n, if I[i] is true and Fc2 [i] ≥ 0.5 then Pi ∈ P ′
c2 .) Let t′ be

the largest value among all obtained, and t′ defines the furthest point to c2 on
π(c1, c2) that covers P ′

c2 .
If t′ < 0 then Ed(Pi, x) < λ for each Pi ∈ P ′

c2 and any x ∈ π(c1, c2). This
means that any center on π(c1, c2) is irrelevant to P ′

c2 . We thus are allowed to
prune P ′

c2 when we shall compute a peripheral-center edge on π(c1, c2). Other-
wise, t′ ≥ 0 and let xt′ be the point at distance t′ to c1 on π(c1, c2). We then call
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Lemma 6 on xt′ to decide in O(|Th|+n) time whether xt′ must contain a center.
If yes, then the feasibility of λ can be decided in O(mn) time by Lemma 2,
and otherwise, a peripheral-center edge must be on π(xt′ , c2) in that the split
subtrees in Γ (V ) of each v on π(xt′ , c2) do not contain centers. It follows that
P ′
c2 can be pruned during the further searching for the peripheral-center edge on

π(xt′ , c2). Hence, we join a vertex v′ for xt′ into the path if xt′ is in the interior
of an edge, and set the flag of v′ as true in O(1) time to find a peripheral-center
edge on π(v′, c2) in further steps. For either t′ < 0 or t′ ≥ 0, P ′

c2 can be pruned,
and so we keep entries of I[1 · · · n] being true for P ′

c2 .
It is clear to see that if one of c1 and c2 has a true flag, we find in O(|T |) time

a subpath π of π(c1, c2) that contains a peripheral-center edge and at least a half
of uncertain points in P ′ that can be pruned in the further rounds of computing
a peripheral-center edge on π. Notice that the flags of vertices are maintained in
the above procedure.

On the other hand, both c1 and c2 have false flags. We first compute the
furthest point x1 (resp., x2) to c1 (resp., c2) on π(c1, c2) that covers P ′

c1 (resp.,
P ′
c2), which can be computed in O(n) time as the above. We then find irrelevant

uncertain points for each below case.
In the first case, x1 is to the left of x2. There must be a peripheral-center edge

on π(x2, c2) (resp., π(c1, x1)) if split subtrees in Γ (V ) of vertices on π(x2, c2)
(resp., π(c1, x1)) do not contain any vertex with a true flag, which can be deter-
mined in O(|Th|) time. Suppose it is on π(x2, c2). Since any point on π(x2, c2)
cannot cover P ′

c1 under λ, P ′
c1 can be pruned by setting the flag of x2 as true

in our further searching on π(x2, c2). Additionally, all in P ′
c2 except for the one

determining x2 can be pruned, which can be found in O(n) time. So, we join
a vertex v′ of a true flag for x2 if necessary, and set the entry in I[1 · · · n] as
false for the uncertain point determining x2. The case where π(c1, c1) does con-
tain a peripheral-center edge can be processed similarly. It is not hard to see
that in O(|Th| + n) time we obtain a subpath π of π(c1, c2) that must contain a
peripheral-center edge, and all irrelevant uncertain points can be found in O(n)
time.

Another case is that x1 is to the right of x2. Similarly, if split subtrees in
Γ (V ) of vertices on π(c1, x2) (resp., π(x1, c2)) contain any vertex of a true flag
then there must be a peripheral-center edge on π(x2, c2) (resp., π(c1, x1)), which
can be known in O(|Th|) time. If π(x2, c2) (resp., π(c1, x1)) contains a peripheral-
center edge, then P ′ can be pruned except for the one in P ′

c2 (resp., P ′
c1) deter-

mining x2 (resp., x1). For the situation where a peripheral-center edge is on
π(x2, c2) (resp., π(c1, x1)), we join a vertex for x2 if necessary and set its flag as
true, and then reset the entry of I[1 · · · i] as false for that uncertain point deter-
mines x2 (resp., x1). Clearly, all these operations can be done in O(|Th| + n)
time.

Otherwise, only split subtrees in Γ (V ) of vertices on π(x2, x1)/{x1, x2} may
contain a true-flag vertex. If such a split subtree exists, supposing it intersects
π(c1, c2) at vertex v′, then we apply Lemma 6 to v′ to decide which split sub-
tree of v′ contains a peripheral-center edge. Because π(c1, c2) must contain a
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peripheral-center edge. A split subtree of v′ containing c1 or c2 must be returned.
If it includes c2 (resp., c1), then P ′ can be pruned as we further compute a
peripheral-center edge on π(v′, c2) (resp., π(c1, v′)). For either case, we main-
tain the path containing a peripheral-center edge and set the flag of v′ as true.
Clearly, this case can be handled in O(|Th| + n) time as well.

If no true-flag vertices are found in split subtrees of Γ (v) of vertices on
π(x2, x1)/{x1, x2}, then solving the decision problem is equivalent to solving the
path-constrained version that is to decide whether two points can be found on
π(c1, c2) to cover P by the given λ. This is because no centers are necessary to
be placed on split subtrees of Γ (V ) and the two connectors subtrees. Moreover,
the path-constrained decision version can be solved in O(mn) time by Lemma 3,
whose proof is in the full paper.

Lemma 3. The path-constrained decision problem can be solved in O(mn) time.

It follows that for the case where x1 is to the right of x2, we spend O(|Th|+n)
time on computing a subpath π of π(c1, c2) that contains a peripheral-center
edge, and at least a quarter of uncertain points of P that can be pruned in our
further rounds on π.

Last, x1 is exactly x2. We first decide whether a center must be placed at x1

by Lemma 6 in O(|Th| + n) time. If yes, then the feasibility of λ can be decided
by Lemma 2 in O(mn) time. Otherwise, one split subtree of x1 is returned
and it must contain either c1 or c2. Assume it contains c2. We shall compute a
peripheral-center edge on π(x2, c2) so that all uncertain points in P ′ except for
the one determining x2 can be pruned. Similar to the above, we join a vertex v′

for x2, set its flag as true since there must be a center on the connector subtree
Th(v′), and reset the entry in I[1 · · · n] of that uncertain point leading x2 to be
true.

As a consequence, for the case C = 2, generally, in O(|T |) time, either we
reduce the problem into the case C = 1, or we obtain a subpath π on π(c1, c2)
that is known to contain a peripheral-center edge. For the former case, the
above approach for the case C = 1 is applied to prune at least a quarter of
uncertain points of P in O(|T |) time. For the other case, supposing the two
ending vertices of π are u and u′, we then prune these irrelevant uncertain
points as follows. Traverse the connector subtrees Th(u) and Th(u′), which can
be obtained in O(|T |) time. For each location pij in T (u) (resp., T (u′)), we create
a dummy vertex incident to u (resp., u′) by a dummy edge of length d(pij , u)
(resp., d(pij , u′)) if I[i] is false. We perform the same procedure on each split
subtree in Γ (V ) of each vertex v on π(u, u′)/{u, u′} and additionally, we set
v’s flag as true if its split subtrees in Γ (V ) have a true-flag vertex. It is not
hard to see that in O(|T |) time we obtain a tree T+ so that T+ contains at
most 3n/4 uncertain points and T+/π(u, u′) are induced by dummy vertices.
Clearly, computing a peripheral-center edge on T is equivalent to computing a
non-dummy peripheral-center edge on T+.
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The Case C > 2: In general, Th has more than two connectors. We utilize an
approach similar to [16] to “shrink” Th until the problem is reduced to one of
the previous two cases.

A vertex z of Th is called a connector-centroid if each split subtree of z has
no more than C/2 connectors, which can be found in linear time [16]. We first
compute the connector-centroid z of Th and then determine whether a center
must be at z, and if not, which split subtree of z contains a peripheral-center
edge. These can be decided in O(|Th| + h · n) time by applying Lemma 6 to z.
Generally, a split subtree is returned. Set z as a connector on this subtree in
O(|Th| + h · n) time. Let Th+1 be the obtained tree. Clearly, the size of Th+1 is
at most |Th| but it has no more than C/2 connectors. We perform the above
procedure recursively on Th+1. After at most log C steps, we obtain a subtree
T ′ with at most two connectors. The total time complexity is O(

∑logC
i=1 (|Th| +

n · C/2i)), which is O(|T |) due to C ≤ 1 + log m and Th ≤ n
2 . It follows that the

above O(|T |) pruning approach is applied to T ′ accordingly to prune at least a
quarter of uncertain points from P. Consequently, a tree T+ containing at most
3n/4 uncertain points is achieved in O(|T |) time so that computing a peripheral-
center edge on Th is equivalent to computing a non-dummy peripheral-center
edge on T+.

3.3 Wrapping Things Up

The above procedure gives an O(|T |)-time algorithm that computes a tree T+

of at most 3n/4 uncertain points and at most 3mn/4 vertices, such that com-
puting a peripheral-center edge on T is equivalent to computing a non-dummy
peripheral-center edge on T+. Note that all dummy vertices on T+ are leaves and
flags of vertices are maintained. Because our Lemma 6 and Lemma 7 are defined
in Sect. 3.4 consider the situation where the given tree may contain dummy ver-
tices and connectors. We thus continue the same procedure recursively on T+ to
compute a non-dummy peripheral-center edge.

After h − 1 rounds, the obtained tree T+
h−1 consists of at most ( 34 )h−1 · n

uncertain points and at most (34 )h−1 · mn vertices. It is not hard to see that
performing the h-th round on T+

h−1 takes O(|T+
h−1|) time. We stop until we obtain

a tree T ′ that contains O(1) uncertain points or T ′ consists of O(1) non-dummy
vertices, that is, after at most log n rounds. At this moment, a peripheral-center
edge of T can be computed in O(mn) time by Lemma 4, whose proof is in the
full paper. Thus, the total time complexity is O(

∑log n
i=1 ( 34 )i · mn) time, which is

O(mn).

Lemma 4. The non-dummy peripheral-center edge on T ′ can be computed in
O(mn) time.

Once a peripheral-center edge is found, we call Lemma 2 to decide the feasi-
bility of λ in an additional O(mn) time. We thus have the following result.

Lemma 5. The decision two-center problem can be solved in O(mn) time.
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3.4 Lemma 6 and Lemma 7

Let Th be a tree obtained after several recursive steps of the first pruning step
in a round of our algorithm. Suppose Th contains nh uncertain points and t
connectors. Additionally, T ′ may contain dummy vertics but all of them are
leaves, and at most one vertex of T ′ has a true flag. We have the following
lemma and its proof is in the full paper.

Lemma 6. Given any point x on Th, we can decide in O(|Th| + t · nh) time
whether a center must be placed at x, and if not, which split subtree of x on Th

contains a peripheral-center edge.

Furthermore, we have the following result for solving the peripheral-center
detecting problem on the obtained tree T+ after several rounds of the above
algorithm. So, T+ has n+ uncertain points and |T+| = mn+. All dummy vertices
of T+ are leaves, and T+ may contain at most one true-flag vertex. Note that
no connectors are on T+ (Fig. 3).

Fig. 3. Illustrating an example for the peripheral-center detecting problem: Y =
{y1, y2, · · · , y6} and Γ = {T+

1 , T+
2 , · · · , T+

8 } shown with triangles.

Given are a set Y of points y1, · · · , yt on T+ and a set Γ of split subtrees
T+
1 , · · · , T+

s of points in Y on T+. The peripheral-center detecting problem is to
decide which split subtree of Γ contains a peripheral-center edge. We have the
following result and its proof is in the full paper.

Lemma 7. The peripheral-center detecting problem can be solved in O(|T+|)
time.

4 Computing Centers q∗
1 and q∗

2

This section presents our algorithm that computes centers q∗
1 and q∗

2 in
O(mn log mn) time. We say that an edge of T containing a center is a criti-
cal edge. Similar to the decision algorithm, our algorithm recursively computes
each critical edge on T with the assistance of the following key lemma. See its
proof in the full paper.
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Lemma 8. Given any point x on T , we can decide whether x is a center, and
if not, which split subtree of x contains a critical edge; further, if one center is
at x then centers q∗

1 and q∗
2 can be computed in O(mn) time.

At the beginning, T is known to contain a critical edge and so we let T0 = T .
We first compute the centroid c of T0 in O(|T0|) time and apply Lemma 8 to
c in O(mn) time. Either we obtain two adjacent vertices of c so that the two
corresponding split subtrees of c each must have a critical edge, or only one
adjacent vertex of c is returned so that both critical edges are in that split
subtree of x containing this vertex. For the former case, we set T1 as either
subtree, which can be done in O(|T0|) time, and let the flag of c on T1 as true.
In the other case, we let T1 be the only split subtree. Clearly, |T1| ≤ |T0|/2. We
continue to search in T1 for a critical edge. First, compute the centroid c of T1

in O(|T1|) time, and then apply Lemma 8 to c on T1, which always takes O(mn)
time. If two split subtrees are obtained, then the one without any true-flag vertex
must contain a critical edge. We thus let T2 be this subtree and set c’s flag as true
on T2. Otherwise, let T2 be the only split subtree returned. Clearly, |T2| ≤ |T1|/2.
We recursively find a critical edge on T2. Clearly, the obtained subtree Th of the
h − 1-th recursive step consists of at most |T 0|/2h−1 vertices. Since Lemma 8
always runs in O(mn) time, the time complexity of each recursive step is O(mn)
time.

After at most log mn steps, an edge of T remains and it must contain a
center. Denote by e∗

1 this critical edge. We then adapt the above procedure to
find the other critical edge e∗

2 on T . The only difference is that every recursive
step, if two split subtrees are returned by Lemma 8, then we always consider the
one excluding e∗

1. Therefore, e∗
2 can be obtained after at most log mn recursive

steps, i.e., in O(mn log mn) time. At this moment, we can compute q∗
1 and q∗

2 in
O(mn) time by the following lemma.

Lemma 9. Given two critical edges e∗
1 and e∗

2 on T , we can find centers q∗
1 and

q∗
2 in O(mn log n) time.

As mentioned in Sect. 2, any given general case can be reduced into a vertex-
constrained case in O(|T | + mn log mn) time. We have the following result.

Theorem 1. The two-center problem of n uncertain points on a tree T can be
solved in O(|T | + mn log mn) time.
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Abstract. Emerging autonomous intersection management systems
control the entry order and trajectory for connected and autonomous
vehicles ready to traverse a road intersection. They aim to compute tra-
jectories that are safe and optimal in order to reduce congestion, environ-
mental impact, and to cut travel time. We propose a novel approach for
computing the fastest waypoint trajectory using search in a discretized
space-time graph that produces collision-free paths with variable vehi-
cle speeds complying with traffic rules and vehicle dynamics constraints.
The resulting trajectories allow high levels of intersection sharing, high
evacuation rate, with a low algorithm runtime even with large scenarios
with 1200 vehicles (5.5 s on a laptop).

Keywords: space-time graph · intersection management · autonomous
cars

1 Introduction

There are about 15 million road intersections in the continental US alone,
and 44% of the road incidents occur at intersections [1]. Time waste and
fuel consumption [2] at intersections also have negative societal impact. In
contrast to traditional signaled intersections, signal-free intersections con-
trolled by Autonomous Intersection Management Systems (AIMS) do not
employ semaphores and provide conflict-free intersection transit for Connected
Autonomous Vehicles (CAVs). CAVs talk to AIMS on a network, such as cellular,
vehicle-to-vehicle (V2V), vehicle-to-instructure (V2I), and others [3].

A CAV contacts the nearby AIMS and sends an admission request with its
predicted arrival time at the intersection entry and its intended intersection exit
lane. The AIMS considers new requests, the trajectories of CAVs already in tran-
sit, and computes control commands for each new vehicle. The computation can
be centralized in the infrastructure or it can be distributed among coordinating
CAVs. Possible AIMS goals include minimizing exit time for each vehicle in a
fair first-in/first-out (FIFO) way or maximizing the global exit flow, across all
vehicles.
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Management of CAVs in an unsignaled AIMS environment can be catego-
rized under two broad problem classes, “vehicular scheduling” and “vehicular
control” [4]. Both can be addressed separately, but a true optimal trajectory
would require solving both concurrently. A vehicle control system formulates
a solution describing commands for vehicle actuators, such as steering, throt-
tle, braking. Some examples use model predictive control [5] or optimal control
[6]. On the other hand, a vehicle scheduler is a trajectory planner that gives a
sequence of waypoints (location + time) that must be traversed by the CAV. At
a minimum, it just provides an entry sequence to the intersection, enough for
vehicles to avoid collisions if they stick to their desired lane. Reservation-based
systems [6,7] schedule vehicles to leave the intersection in FIFO order, under-
utilizing shared intersection space. Solutions that solve a discrete optimization
problem [8] are limited by the exponential growth of the search space - unfeasi-
ble for realistic large scenarios with hundreds of vehicles. Graph search methods
model the intersection as a graph in 2D. Depth first spanning tree (DFST) meth-
ods [4,9] do conflict analysis and determine an entry order that increases parallel
access to the intersection.

In this paper we are concerned with the problem of finding the shortest
collision-free space-time trajectory through an intersection, constrained by traffic
rules and vehicle limitations. Such a trajectory can then be passed to the CAV’s
navigation unit to generate actuator commands.

We propose a solution – the Fastest Trajectory Planner algorithm – that a)
models the intersection road map as a discretized graph Gu; b) expands Gu’s
vertices and edges to the time dimension into a space-time graph Gt so that a
Gu vertex or an edge used at a particular time corresponds to vertices and edges
in Gt that will be removed from Gt for subsequent vehicles; c) finds the fastest
variable-speed trajectory complying to constraints using a shortest path algo-
rithm in the space-time graph. Our algorithm was inspired by our earlier work on
drone traffic management [10–13], with addition of the variable speed capability
and vehicle dynamic constraints. The algorithm has a low runtime complexity
and scales well: scenarios with 1200 vehicles at a 4-lane 4-way intersection are
solved in about 5.5 s on a typical laptop, with code in Python.

This paper continues with related work in Sect. 2, the problem statement in
Sect. 3, the proposed algorithm in Sect. 4.4, a performance evaluation in Sect. 5,
and conclusions (Sect. 6).

2 Related Work

Papers [4,14] study global optimality for vehicular scheduling problems in an
AIMS. Their method models vehicles with vertices and they build a Conflict
Directed Graph where edges map from pair-wise path conflicts. An Improved
Depth First Search Spanning Tree is used to design a conflict-free passing order
through the intersection. A second algorithm uses a complementary Coexisting
Undirected Graph built from nonconflicting vehicle pairs to compute the Min-
imum Clique Cover. That gives an optimal passing order with the minimum
evacuation time.
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The conflict-duration approach in [15] builds a Gantt-chart inspired conflict-
duration diagram. Its axes are conflict locations and timing stamps. The conflict-
duration diagram registers double or triple conflicts between vehicles. By con-
sidering the physical size (L x W) of each vehicle, the total duration where a
physical conflict persists between two or three vehicles is represented on the
conflict-duration diagram as overlapping time duration at a particular conflict
point. By removal of the overlapping time region, through rescheduling speed
profile of one or more vehicle(s), a conflict can be prevented between any pair of
vehicles.

In our prior work on drone traffic management, we developed the concept of
shortest path search in a space-time graph for vehicle trajectory planning. We
initially formulated the point-to-point trajectory planner for drone package deliv-
ery in [10] using multi-source/multi-destination BFS on the space-time graph.
The planner computes shortest space-time paths with edges traversed in one
time unit and no constraints on vehicle dynamics. We improved that approach
in [12] with a batch scheduling method that has a lower complexity and better
results. We addressed in [11] the problem of energy-constrained drone pack-
age delivery with multiple warehouses and customers using a multi-source A*
algorithm running on the space-time graph. More recently, [13] presents a multi-
source/multi-destination search algorithm for the fastest trajectory between two
disjoint groups of vertices in the space-time graph. This is suitable for drone
planning when the operator has multiple drones available stationed through the
network and has to deliver packages to multiple customers.

Our contribution in this paper differs from prior work with space-time graphs
by complying to vehicle dynamic constraints and by allowing multiple possible
times for space-time edge traversal, necessary for supporting variable average
edge velocities. The collision constraints and resource sharing rules are different
from drone scenarios.

Fig. 1. (a) a 4-lane, 4-way intersection. (b) the graph for the intersection traffic road
network. Paths possible from the two South entry vertices are highlighted with different
colors. (Color figure online)
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3 Problem Statement

Figure 1a illustrates a typical 4-lane, 4-way intersection, with legal trajectories
highlighted. Vehicles moving in perpendicular directions have paths that inter-
sect at shared points. The shared space forces vehicles to serialize their passage
in order to avoid collisions. An AIMS runs the algorithms presented in Sect. 4.4.
It uses the graph representation for the road network described below.

We model a road map as a directed graph with tuple G = (V,E, pos), with
edge set E and vertex set V , as in Fig. 1b. A segment corresponds to a directed
edge (u, v) ∈ E. If a road segment (u, v) is bidirectional, then (v, u) ∈ E, too.
Function pos : V → R

2 defines the position of a vertex.
A collision between two vehicles occurs when their trajectories overlap in

space and time. Vehicles can safely occupy the same space at different times
sufficiently separated.

A vehicle’s admission request is as an object Request(src, dst, ts, Tmax),
where src, dst ∈ V are the source and destination vertices, ts ∈ R≥0 is the
vehicle arrival time at the intersection, and Tmax ∈ R

+ is the maximum allowed
trajectory duration. Tmax = ∞ if a vehicle may take indefinitely to exit the
intersection. The intersection manager accepts requests over a finite time inter-
val [0, tend].

Vehicle movement on the road is limited by the maximum legal speed smax,
maximum acceleration a+

max, maximum deceleration a−
max, and vehicle length,

packaged all in an object Cons(smax, a+
max, a−

max, L).
The computed trajectory between the req.src and req.dst is defined

by a list of space-time waypoints that the vehicle must reach: Tr(times,
positions, velocities) indicating the time at each waypoint in times =
(t0, t1, ..., tm−1), the position of each waypoint positions = (p0, p1, ..., pm−1),
and a velocity vector for each waypoint.

A Tr object for which a solution cannot be found has no waypoints:
Tr((), (), ()), where () is the empty sequence. Otherwise, that is a valid tra-
jectory.

We define the problem of finding trajectories for vehicles on a traffic map as
follows:

Problem Definition. Given a road network graph G = (V,E, pos), vehicle
constraints Cons, and a list of vehicle admission objects (Request)i over a time
interval [0, tend], the Fastest Trajectory Planning problem is finding a tra-
jectory with mi waypoints for each vehicle i through the road network that has
the earliest arrival time tmi−1, subject to these conditions:

1. vehicles move on edges in E,
2. there are no collisions between any two vehicles on the road network,
3. vehicle constraints as defined by Cons are satisfied at all times.

The problem objective is locally greedy. An algorithm that globally minimizes
the maximum delay is NP-complete because of the combinatorial explosion of
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the number of ways in which vehicle moves can be sequenced over time edges
and space-time edges.

Performance Metrics
The intersection trajectory planner accepts a sequence of N requests reqs
and produces a sequence of N Tr objects, from which n are valid: trji =
Tr(timesi, positionsi, velocitiesi), i = 0, ..., N − 1, and with attribute timesi =
(t0, t1, ..., tm−1)i, for mi waypoints. We define the following performance metrics
for a planning solution:

Definition 1. The trajectory delay for a valid trajectory i is the difference
between trajectory arrival time at destination and the request start time: delay =
tm−1 − t0.

The following metrics apply to a batch reqs of N Requests resulting in n
valid trajectories that complete in tevac = maxi tmi−1.

Definition 2. The average trajectory delay is delayavg = 1
n

∑
i delayi over

valid trajectories. The maximum trajectory delay is delaymax = maxi delayi

Definition 3. The request admission ratio is the fraction of valid trajecto-
ries vs. the total number of requests submitted, adm = n/N .

Definition 4. The traffic flow rate is the number of vehicles that reach their
destination vertex per time unit. This is the exit rate from the intersection. The
traffic flow rate over a time period of duration tevac is flowT = n/tevac [s−1].

We make the following assumptions to design our algorithm:

1. The waypoint trajectory is converted by the CAV’s own control systems to
commands for actuators (throttle control, braking, steering) to maintain a
trajectory with high fidelity.

2. Without loss of generality, all vehicles have the same dynamic constraints.
3. The optimization objective for the planning algorithm is to minimize the

delay of each request while preserving the first in - first out order at intersec-
tion entry lanes. Minimizing the travel time reduces the overall utilization of
shared intersection resources, such as graph edges and vertices, contributing
to increased traffic flow.

4 The Space Time Graph Methodology for Trajectory
Search

The proposed solution, Fastest Trajectory Planner (FTP), is inspired from the
Space-Time graph planner for the drone delivery problems introduced in articles
[10–13]. In contrast to our earlier work, the new algorithm works for autonomous
cars carrying people and goods, supports multiple average speeds on graph edges,
enforces dynamic vehicle constraints (e.g. min/max acceleration), and applies
collision avoidance rules specific to road vehicles.
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4.1 Collision Avoidance and Graph Representation

Figure 2 illustrates several collision scenarios on graph G. Figure 2a shows two
vehicles moving on different edges in Gu towards the same vertex. Figure 2b
shows the red vehicle moving on an edge towards a vertex v occupied by the
blue vehicle standing still. Figure 2c shows the red vehicle on edge (u, v) and
the blue vehicle on edge (v, u) moving towards each other. A vehicle (red) can
stand still in the middle of an edge (u, v) while the blue vehicle comes barreling
towards it from vertex u, Fig. 2d.

Fig. 2. Examples of collisions scenarios.

At the same time, two vehicles moving on the same long edge in the same
direction, with similar speeds should be perfectly fine, with no collision.

Three salient observations are apparent:

(a) Graph edges and vertices occupied by a vehicle at a time are resources that
must be allocated to vehicles with mutual exclusion on that time.

(b) Time-dependent allocation of resources for one request controls allocation
for other vehicles, hence their movement, collision avoidance, and perfor-
mance metrics.

(c) The original graph G derived from the road map has insufficient space and
time resolution for an adequate fine-grained granularity to achieve effective
resource reuse.

The basic approach of our proposed algorithm is summarized here:

1. Discretize the original road map graph G to a spatial unit graph Gu that
has fine-grained “granularity”, e.g. 5 m.

2. From Gu, build a space-time graph Gt, with time edges for each vertex for
a vehicle that stands there still for a time unit, and space-time edges for
a vehicle that moves from one vertex to another during one or more time
units.

3. Time variable availability of edges and vertices in Gu is modeled by existence
of edges in the space-time graph.

4. A vehicle trajectory is expressed by a path in this space-time graph. Edges
and vertices in Gt that form a trajectory and their adjacent neighbors are
“allocated” exclusively to a vehicle’s trajectory and removed from Gt. A
trajectory (vehicle) cannot use vertices and edges in Gt already allocated to
other trajectories.
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5. The fastest ending (shortest) path in the space-time graph is a good approx-
imation to the fastest trajectory in the original graph G.

Next are the key ideas underlining the Fastest Trajectory Planner’s algo-
rithm.

4.2 Discretized Graph and Discrete Time

The original road map graph G is discretized with unit length D (e.g. 5 m) so
that each original edge (u, v) ∈ E is split into smaller edges of length D and
at most one shorter edge (w, v) at the end of (u, v). The new discretized graph
is denoted by Gu(Vu, Eu, pos), with V ⊆ Vu. pos(u) represents the position of
vertex u, as before. The size bound of the discretized graph is about the order
of |Vu| = Θ(D−1|V |), and |Eu| = Θ(D−1|E|). Since V ⊆ Vu, the route planning
problem on G is equivalent to the same problem on graph Gu. However, an
optimal solution for Gu is suboptimal for the problem in G because of space
discretization error.

Discretizing the graph allows one to run the planner in discrete time, with
time units of δt (e.g. 1 s) expressed in time ticks.

We allow an edge to be traversed in discrete multiples of δt: {δt, 2δt, ..., pδt}.
This is called a slow fragment and p is called the edge time multiplier. We also
allow for up to q consecutive edges to be traversed in just one δt time inter-
val. We call this a fast fragment and q is the edge speed multiplier. The unit
edge speed is su = D

δt
. The set of possible average speeds on edges in Eu of

length D is {su, 2su, 3su, ..., q su} ∪ { su

2 , su

3 , ..., su

p }, where constants p, q ∈ N
+

are selected such that qsu ≤ smax and su

p exceeds the minimum possible vehicle
speed allowed. In our simulations p = 2 and q = 4. These parameters also affect
runtime complexity, as discussed later.

4.3 The Space-Time Graph

We assume the planner computes trajectories for a sequence of requests over
a finite time horizon H > 0, with H = min{{reqi.tf}i=0..n−1 ∪ {Tmax}}. The
discrete time horizon is defined as K =

⌊
H
δt

⌋
, where Tmax is the maximum

simulation time.
The space-time graph Gt is built from the discretized unit graph Gu as

follows. Each vertex u ∈ Vu converts to K space-time vertices (k, u) ∈ Vt. Time
edges in Et are defined as ((k, u), (k + 1, u)) for all 0 ≤ k < K − 1 and u ∈ Vu.
Space-time edges are defined as ((k, u), (k + 1, v)) for all 0 ≤ k < K − 1 and
(u, v) ∈ Eu. A space-time edge is added for each edge in the discretized graph
Gu and each time unit. The size of Gt is given by |Vt| ∈ Θ(Kδ−1

t |V |), and
|Et| ∈ Θ(Kδ−1

t |E|). The space-time graph for a very simple Gu is shown in
Fig. 3a.
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Fig. 3. a) Space-time graph Gt is derived from Gu by “extending” (u, v) edges in time
(red) and by adding time edges (blue) for each vertex. b) space-time paths for two
vehicles (red and blue wide arrows). Edges crossed with an X are pruned from Gt after
admission to prevent collisions. c) a slow fragment (green dashed line) of one Gu edge
traversed in more than one single tick at half the normal edge speed. d) a fast fragment
(green dashed line) of more than 2 edges in one tick leads to higher speeds. (Color
figure online)

4.4 The Fastest Trajectory Planner Algorithm

The key ideas behind the use of the space-time graph are:

1. A shortest path for Request(src, dst, ts, Tmax) in the discretized graph Gu

between vertices src and dst can be found by computing the “earliest
ending” path in the space-time graph Gt between any space-time vertices
(ks, src) and (kf , dst), with ts ≤ ksδt ≤ kfδt ≤ ts+Tmax, such that kf is the
minimum such value that is possible. This is the same as the multi-source,
multi-destination shortest path problem in the space-time graph.

2. A space-time edge e = ((ku, u), (ku + 1, v)) is traversable at time ku from
u to v only if e ∈ Et. We remove (prune) space-time edges from Gt to
prevent collisions when ulterior requests (with later start times) are com-
puted. Figure 3b shows shortest space-time paths for two vehicles. Blue’s
path u → x is computed first. The algorithm finds a path with the edges
covered by the wide blue arrow and, then, it prunes from Gt the edges
marked with X signs from Gt. The path computation for the red vehicle
will not see those deleted edges and it will find the space-time path drawn
with the wide red arrows. The edges marked with X signs will be pruned
from Et. Space-time edges in Gt used by a solution path are removed from
Gt

3. Support for multiple speeds (and dynamic constraints) is added by modify-
ing the Dijkstra algorithm to consider during the “vertex expansion step”
space-time path fragments (i.e. subpaths) corresponding to multiple traver-
sal times and multiple space-time edges.
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No Optimality with Constraints: since our planner enforces dynamic constraints
(min/max acceleration) involving successive edges, we cannot prove that it finds
the fastest path. Without constraints on acceleration, it does.

Several functions implement the planning algorithm.

4.5 planRequests: Top Level Algorithm

The entry to the planner is a function called planRequests, implemented in
Algorithm 1. Function planRequests(Gu, reqs) computes a trajectory for each
Request in list reqs, in the given input order.

Algorithm 1 : compute N admssion from list requests.
1: function planRequests(Gt, requests) � Process a list of requests
2: trjs = [ ] � empty list
3: for all reqinrequests do
4: path ← computePath(Gu, req) � plan one path: list of Vt vertices
5: trj ← convertToTrajectory(Gu, req, path) � convert path to Tr
6: trjs.append(trj)

7: return trjs � all trajectories, including Tr((), (), ()) for failed ones

Line 4 calls function computePath(Gt, req) to compute the space-time path
for the current request req. That is the main part of the planning algorithm. It
returns in variable path a list of vertices (waypoints) in Gt that defines a space-
time trajectory in format [(k0, v0), (k1, v1), ....], indicating that the vehicle must
be at vertex v0 at tick k0, at v1 at tick k1, etc. This works also when multiple
space-time edges are traversed in one tick.

4.6 computePath: The Shortest Space-Time Path Algorithm

The computePath(Gt, req) function call (Algorithm 2) computes the fastest
space-time path from vertex req.src to vertex req.dst using only available edges
in the space-time graph Gt. This algorithm runs a multi-source/multi-destination
version of Dijkstra’s shortest path algorithm. Once a space-time vertex (ku, u) is
reached our algorithm explores all feasible path fragments that start from time
tick ku like this:

• slow fragments (u, v) with exactly two space vertices that can be traversed
in 1, 2, ..., q ticks; the average speed on this fragment does not exceed su

(Fig. 3c).
• fast fragments (u, ..., v) with three or more space vertices that can be tra-

versed in exactly 1 tick; the average speed on this fragment may exceed D/δt

(Fig. 3d).
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A path fragment is feasible if it satisfies intersection/traffic lane constraints,
its space-time edges are available in Gt, and if speed, acceleration/deceleration
constraints (including vs. the previous fragment) are satisfied.

The priority queue that orders space-time vertex expansion holds objects
of type QueueEntry(k1, k0, priorV elocity, fragment, priorQe). fragment is a
list of Vu vertices [u, ..., v] that forms a subpath in Gt traversable from tick k0
at u, arriving at v on tick k1. The fragment is constrained by available space-
time edges in Gt and vehicle constraints. priorQe is the currently expanding
QueueEntry object. priorV elocity is the average 2D velocity vector across the
priorQe.fragment fragment.

QueueEntry objects in the priority queue created on line 5 are ordered by
their k1 attribute, the arrival at their fragment’s end vertex.

Algorithm 2. computes the shortest space-time path for one Request.
1: function computePath(Gt, req)
2: ks ← �req.ts/δt� and kf ← �req.tf/δt� � arrival ticks; last allowed exit time

in ticks
3: explored ← {(ks, req.src)}
4: queue ← new PriorityQueue()
5: queue.enqueue(new QueueEntry(ks, ks, (0.0, 0.0), [req.src], None))
6: ktime ← ks � ktime keeps the current exploration time tick
7: path ← [ ]
8: while path == [ ] and queue.size > 0 and ktime ≤ kf do
9: qe ← queue.dequeue() � ordered by fragment end time, qe.k1

10: continue if impossible to reach req.dst from qe.fragment[0] by tick tf
11: update ktime from qe.k1
12: nextQes ← discoverFragments(Gt, req, explored, qe)
13: if nextQes.size > 0 then � if fragments were found
14: for all nqe in nextQes with nqe.k1 ≤ kf do
15: if req.dst ∈ nqe.fragment then � reached destination?
16: path ← extract path from nqe and its predecessors
17: prune space time edges in path from Gt

18: break
19: else
20: queue.enqueue(nqe)

21: return path

Function discoverFragments computes the feasible fragments consisting of
feasible edges in the space-time graph: available in Gt and that satisfy the con-
straints on vehicle dynamics and intersection lanes (line 12). Line 16 checks
if the destination vertex was reached. If so, it computes path from the chain
of queue entries, going backwards in time towards the root queue entry. In
case of failure to find a path, the function returns the empty list [ ]. The
call to discoverFragments(Gt, req, explored, qe) explores the current space-time
vertex from (qe.k1, qe.fragment.last) and returns new QueueEntry objects



508 C. Mutlu et al.

for the shortest feasible fragments with duration between 1 and maximum q
ticks. Its algorithm runs a Breadth-First Search starting from space-time vertex
(qe.k1, qe.fragment.last) in Gt with a search radius limited to q ticks.

Each shortest feasible fragment [u, ..., v] returned by function discoverFrag-
ments, with u at k0 and v and k1 has these properties:

– it has no cycles if it is longer than 2 vertices;
– it forms no cycles going back on the queue entry chain history;
– has only space-time edges available in Gt and that comply with constraints;
– there is no other faster fragment with the same space endpoints u and v.

Function discoverFragments uses the space-time vertices in parameter
explored and updates it during search with each encountered space-time ver-
tex.

Runtime Complexity Analysis
In the following, f is the maximum number of exits reachable from any entry
vertex, typically 2-4. The constrained effective average out-degree for exploration
in Vu is b � 1. In the 4-lane 4-way example from Fig. 1, b = 1.0833 and f = 1.
Search in the space-time graph search will now branch only on time edges.

Other parameters for runtime complexity include (with typical values): the
total number of requests to consider N : 101 − 103, the discrete time horizon for
trajectory computation K = Θ

(
Hδ−1

t

)
: 101 − 103, the edge time multiplier p: 4

- 8, and the edge average speed multiplier q: 1, 2.
The runtime of convertToTrajectory is O(K). The time complexity of the

top-level planRequests algorithm is O(NfK(p + bq+1 + log2 fK)), with a heap
priority queue. For intersections parameters f , p, q have moderate values and
can be considered constant. In that case, the runtime is O(NfK log2 fK) and
does not seem to depend directly on the road map’s graph topology, but on the
discretization granularity D.

Fig. 4. Algorithm runtime and average trajectory delay.
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5 Performance Evaluation

We evaluate the performance of the Fastest Trajectory Planner for the 4-lane,
4-way intersection in Fig. 1b. |Vu| = 36, |Eu| = 56 edges, with average out-
degree 1.55. Legal lanes restrict the effective edge out-degree during search to
b = 1.0833. The space edge discretization length D = 10 m and the time tick
unit is δt = 1 s. The speed multiplier q = 2 and the edge time multiplier p = 4.
The top acceleration/deceleration is 2m/s2, consistent with a comfortable ride
with enough braking ability.

Vehicle admission requests (random source/destination, no U-turns) are gen-
erated from time 0 to tend = 600 s with a rate that varies from 0.1/s (N = 60)
to 2/s (N = 1200) in 0.05 s (δN = 30) increments. All charts have on the hor-
izontal axis this independent variable. The maximum allowed trajectory delay
Tmax ∈ {40, 60, 120, 600}s.

Saturation starts when the request rate approaches 1/s, N = 600 requests.
When resource availability drops, vehicles experience higher waiting time, and
metrics start deteriorating. This congestion behavior, with an inflection point,
is common in scheduling with resource sharing. After congestion starts, requests
will be rejected, bringing relief for resource contention. Most relief is seen for
scenarios with Tmax < 600.

The average runtime is shown in Fig. 4a. It is proportional to the trajectory
duration and it has the N log2 N asymptotic trend. The worst running time was
for a request rate of 2/s (N = 1200), with 4.323 ms/request, and a 5.5 s total.

Figure 4b shows the average trajectory delay. It has a very slow growth under
1 request/s, followed by a sharper growth above 1/s, when congestion begins that
tapers off, converging to Tmax. Note the a lower Tmax value causes more requests
to be dropped. This is evident in the request admission ratio chart from Fig. 5a.
The admission ratio stays at 100% for all scenarios before congestion begins (at
1/s–1.1/s). After that, the admission ratio starts a linear drop, delayed by a
higher value for Tmax.

Fig. 5. Request admission ratio and intersection exit flow rate.
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Figure 5b shows the evolution of the intersection exit flow rate vs. request
rate. It follows the identity function before the congestion threshold, for all
Tmax values. It is constant for Tmax = 600 s after that since the admission ratio
is 100% up to the end and no requests are dropped. However, for Tmax < 600 s
the admission ratio is less than 100%, allowing only shorter trajectories. That
causes a higher exit flow rate.

Finally, in the maximum traffic flow regime, we counted on average 14 vehicles
present at the same time in the intersection. This high resource utilization should
lead to superior traffic flow rates compared to alternatives.

6 Conclusions

This paper proposes a novel algorithm for the Fastest Trajectory Planning prob-
lem for intersections with CAVs. The algorithm uses a shortest path search in
a space-time discretized graph derived from the original road network graph.
The algorithm enforces vehicle constraints (e.g. acceleration/deceleration) and
it has a low runtime compared to that reported for state of art algorithms using
Conflict Detection Graphs [4,14]. The algorithm scales well with the number of
admission requests and with the traffic graph size, the main limitation being the
maximum path duration parameter Tmax.

Future research directions include improving the search algorithm with A*
and local search heuristics that reorder vehicle advance at each search step.
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Abstract. The two sheriffs problem is the following problem. There are
two sheriffs, and each of them has their own list of suspects. Assuming that
these lists are the result of a proper investigation, we can say that a culprit
is the intersection of them even if the sheriffs do not know who the cul-
prit is. Now, they wish to identify the culprit through an open channel,
i.e., to compute the intersection of two lists, without letting an eavesdrop-
per know the culprit who observed all communications. This cryptographic
problem was proposed by Beaver et al., and a combinatorial solution using
a bipartite graph was proposed. In this paper, we propose a formulation
of the two sheriffs problem by introducing a secrecy evaluation based on
the eavesdropper’s attack success probability. Furthermore, we propose an
improved version of Beaver et al.’s protocol that an arbitrary number of
players can execute and has less attack success probability.

Keywords: Two sheriffs problem · communication protocol · shared
secret

1 Introduction

1.1 Background

We say two parties, Alice and Bob, share a secret if there is a question Q that
only they know its answer. Using the shared secret between the two parties,
they can share a bit x with public communication without any other secrets.
For example, suppose that Q is a yes-or-no question, and only Alice and Bob
know its answer. With a public channel, Alice sends Bob a message “The bit x
is 0 if the answer of Q is YES, 1 otherwise,” and Bob determines the bit x is
either 0 or 1 since he knows the answer of Q. As a result, Alice and Bob share
a bit x. In contrast, no one except Alice and Bob cannot determine the bit x.
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We can also consider a situation where Alice and Bob do not know the answer
to the question Q; however, each has some non-independent knowledge about it.
For example, when Alice and Bob each make a narrowed-down list of possible
answers to question Q, they are somehow convinced that both lists contain the
answer to question Q. In this setting, they do not know the answer; however,
they know that any of the elements in their list is the answer. Under these
circumstances, can Alice and Bob share the answer using communication with
public communications (without anyone determining the answer), and can they
share a bit using it? In [1], Beaver et al. performed a combinatorial analysis of
the above setting in a mathematical model using bipartite graphs and proposed
a communication protocol based on it. As an example of such situations, they
introduced the two sheriffs problem.

Two Sheriffs Problem: The problem settings are the following. There is a list
of suspects in a case. Two sheriffs, Alice and Bob, narrowed down the list each
other by conducting investigations independently. If the two sheriffs investigate
in proper ways, it is natural to assume that the culprit is the intersection of
their lists. Unfortunately, they are now separated and it is not possible to meet
to identify the culprit. Hence, they want to identify the culprit by only using
public communications, where Eve eavesdrops on their communications. The
goal of the two sheriffs problem is to establish secure communications under the
above situations.

Formally, the above problem can be described as follows. For a set of whole
suspects S, which is public information, two players, Alice and Bob, have A ⊆ S
and B ⊆ S, respectively. Assume that they do not know each other’s set, but
they are convinced that the intersection exists and it is the culprit they want to
know. Now, the two players are going to start communications for specifying the
set intersection of A and B, namely, A∩B. However, an eavesdropper, Eve, taps
all communications between Alice and Bob to know A ∩ B. To sum up, the two
sheriffs problem asks one to construct a communication protocol that allows the
two players who share no secrets to obtain A ∩ B while not allowing Eve, who
taps all communications, to identify it.

Related Work. Related work of two sheriffs problem is not so many. The two
sheriffs problem is an application of the problem called isolation of common
secret [1]. Related to this problem, the problem called cryptogenography problem
was proposed in [2], and it is recently discussed in [3,4]. Cryptogenography aims
to design the protocols to share a secret held by one of the players keeping who
had the secret hidden from the eavesdropper who monitors the transcripts. The
upper and lower bounds of the success probabilities of attacks. On the other
hand, the success probability in the two sheriffs problem is not discussed in [1].

1.2 Motivation and Our Contribution

Beaver et al. [1] proposed three protocols for solving the two sheriff problem, one
is deterministic and the other two are probabilistic. We summarize the compar-
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Table 1. Comparison of BHW protocols [1] and Ours

Number of
players

Number of
Steps

Execution
condition

Attack success
probability

BHW-1 2 4 |S| ≥
2 |A| |B|

1/2

BHW-2 2 4 |S| ≥
2 |A| |B|

1/2

BHW-3 2 2 |S| ≥
|B| (1 +√|A| − 1)2

(|A| − 1)/ |A|

Ours n (≥ 2) 2n |S| ≥
2

∏n
�=1 |S�|

⌊|S|/∏n
�=1 |S�|

⌋−1

ison among the three protocols in Table 1. The first protocol, called BHW-1, is
the deterministic one that works only when |S| ≥ 2|A||B| with the success prob-
ability 1/2 assuming that the dummy set in the protocol is chosen uniformly at
random. The same performance can be obtained by the second non-deterministic
protocol, called BHW-2. The third protocol, BHW-3, is also non-deterministic,
which attains a smaller number of steps at the expense of attack success prob-
ability. Namely, BHW-2 and BHW-3 have a trade-off between the number of
steps and attack success probability.

On the other hand, there are several problems in BHW protocols. First, the
definition of security against the eavesdropper is weak. Actually, in Beaver et al.’s
definition, the communication is secure if the suspect is not uniquely determined
by the eavesdropper, and further, it is not formalized mathematically. Second, the
problem only considered two-party protocols, and only the intersection of two lists
is computed.

This paper formalizes a framework of two sheriffs problem where the security
is evaluated by success probability by the eavesdropper when the dummy set is
selected uniformly at random. The formulation involves the multi-sheriff problem
as a generalization of the two sheriffs problem regarding the number of players.
In addition, we propose a protocol for the multi-sheriff problem. Our protocol is
superior to the BHW protocols in terms of success probability and the number of
players. Extension of our protocol to set operations other than the set intersection
is possible, but it will be reported in the full version due to space limitations.

The comparison among BHW protocols and ours is shown in Table 1. Our
protocol can be executed by any n (≥ 2) players, the attack success probability
is the same or smaller than that of protocols Beaver et al. proposed (BHW
protocol), and the number of Steps becomes the same as BHW protocols when
the number of players is 2. In addition, BHW protocol can be executed when the
execution condition, |S| ≥ 2 |A| |B|, is satisfied, and our protocol can be executed
when |S| ≥ 2

∏n
�=1 |S�|, the generalized version of the execution condition of

BHW protocol, is satisfied.
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1.3 Organization

The rest of this paper is organized as follows. We first formalize the two sheriffs
problem in Sect. 2, which extends the original problem to a multi-shriff problem.
After describing the idea of BHW-2 protocol in Sect. 3, we propose our protocol
for multi-sheriff problem in Sect. 4, and the security proof is sketched. In Sect. 4,
the extension of our protocol to the other set operations is briefly discussed.

2 Formalization of the Multi-Sheriff Problem

For a finite set X , we denote its cardinality by |X |. We use also [n] to denote
{1, 2, . . . , n} for any positive interger n ∈ N.

In this section, we introduce the multi-sheriff problem, the generalized version
of the two sheriffs problem, and formalize it. We denote n players P1,P2, . . . ,Pn,
instead of Alice and Bob in the two sheriffs problem, and for all k ∈ [n], Sk is the
set the player Pk has. The multi-sheriff problem is equivalent to the two sheriffs
problem where n = 2.

2.1 Settings of the Multi-Sheriff Problem

There are a set S, which is public information, and n (≥ 2) players P1,P2, . . . ,Pn

who have S1,S2, . . . ,Sn, subsets of S, respectively. Each player only knows their
own set and does not share any secrets with other players. They aim to share
the set intersection

⋂n
�=1 S� (�= ∅) after communicating with each other via

authenticated channels. However, an eavesdropper, Eve, taps all communications
among the n players to determine

⋂n
�=1 S�.

2.2 Multi-Sheriff Problem Protocol Construction

We define the multi-sheriff problem protocol π as a pair of two phases, the
communication and output phases.

Communication Phase: Each player creates a transcript from previous com-
munications and sends it to other players. For simplicity, we assume that all
transcripts are broadcast to all other players and transcripts are subsets of the
universe S since players’ information is only subsets of S. Let Mi ⊆ 2S be an
i-th transcript created by some player, say Pk, and Trani be the next message
function that outputs Mi. Trani is a probabilistic algorithm that takes as input
all up to (i − 1)-th transcripts M1, . . . ,Mi−1 and Pk’s set Sk, and outputs the
i-th transcript Mi. For every i = 1, 2, . . ., a player Pji ∈ {P1,P2, . . . ,Pn} runs

Mi ← Trani(M1,M2, . . . ,Mi−1,Sji),

as an i-th transcript and broadcasts it.
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Output Phase: Suppose that the players run τ -round communications. Each
player Pk runs the output function OutputPk

that takes as input the universe,
all transcripts, and their own set and outputs a set most likely to be

⋂n
i=1 Si,

denoted by MPk
. Eve also has their output function OutputE that takes as input

the universe and all transcripts and outputs ME. Formally, the output functions
are probabilistic algorithms written as follows:

MPk
← OutputPk

(S,M1, . . . ,Mτ ,Sk),
ME ← OutputE(S,M1, . . . ,Mτ ),

where k ∈ [n].

2.3 Requirements of the Multi-Sheriff Problem

We define the correctness property and security notion for the multi-sheriff prob-
lem. First, we define the correctness; every party gets the correct output, i.e.,⋂n

k=1 Sk.

Definition 1 (Correctness). We say that a τ -round protocol π satisfies the
correctness if π satisfies that:

Pr

(

MP1 = MP2 = · · · = MPn
=

n⋂

k=1

Sk

)

= 1,

where Mi ← Trani(M1,M2, . . . ,Mi−1,Sji) and MPk
← OutputPk

(S,M1, . . . ,
Mτ ,Sk) for i ∈ [τ ] and k ∈ [n].

We next formalize a security notion. To do so, we define the success probabil-
ity of Eve’s attack, i.e., the probability that Eve succeeds in guessing

⋂n
k=1 Sk.

Definition 2 (Attack Success Probability). Let π be a τ -round protocol.
For any (even computationally unbounded) eavesdropper Eve, the attack success
probability is defined as:

ε(OutputE) := Pr

(

ME =
n⋂

k=1

Sk

)

, (1)

where the probability is taken over the possible outcomes of the internal coin
tosses of Tran1, . . . ,Tranτ , and OutputE.

Definition 3 (p-Secrecy). We say that a τ -round protocol π satisfies p-secrecy
if Eve’s attack success probability satisfies:

max
outputE

ε(outputE) ≤ p. (2)

We say that a protocol π solves the multi-sheriff problem with a probability p if
it satisfies Definitions 1 and 3.
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Fig. 1. An example of BHW protocol execution

3 BHW Protocols for Two Sheriffs Problem

Beaver et al. [1] proposed three protocols for the two sheriffs problem, and we
explain the simplest one among them, which we refer to as the BHW protocol.
Based on the formalization of the Sect. 2, we describe how the BHW protocol
works (Fig. 1).

3.1 Overview of the BHW Protocol

We describe how the BHW protocol works with a concrete example as introduced
in [1]. For simplicity, we denote P1 as Alice, P2 as Bob, and the sets each of them
has as A and B. We assume |S| ≥ 2|A||B| and A ∩ B �= ∅. In this example, it is
assumed that S = [8], A = {1, 2} and B = {2, 3}.

Communication Phase

Step 1. Alice partitions S into |S| / |A| = 4 sets so that one of them is A =
{1, 2}, and the elements of the other three sets, where the size of each is two,
are randomly chosen. For example, Alice randomly chooses {3, 4}, {5, 6}, and
{7, 8}, and she defines M1 below and broadcasts it:

M1 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}} .

Step 2. Bob calculates the intersections of B = {2, 3} and each element of
M1 = {X (1)

1 , . . . ,X (1)
4 }, then he makes two sets according to the rule whether

or not X (1)
i shares elements of B = {2, 3}; one is the union of {1, 2} and {3, 4}

and the other is the union of {5, 6} and {7, 8}. He defines M2 as follows and
broadcasts it:

M2 = {{1, 2} ∪ {3, 4}, {5, 6} ∪ {7, 8}} .
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Step 3. Alice can identify that {5, 6} ∪ {7, 8} and A ∪ B are disjoint since A ∩
({5, 6} ∪ {7, 8}) = ∅. She then randomly chooses one of {5, 6} and {7, 8} as a
dummy of A (here suppose that{5, 6} was chosen), and defines M3 as follows
and broadcasts it.

M3 = {{1, 2}, {5, 6}} .

Step 4. Bob can identify {1, 2} = A from M3, since one of the subsets in M3

shares an element of B while the other does not. He determines A ∩ B = {2},
and randomly chooses {5} or {6} as a dummy of A ∩ B. He defines M4 as
follows and broadcasts it.

M4 = {{2}, {5}} .

Output Phase

Alice: Alice can determine A ∩ B = {2} since only one of the subsets of M4

shares an element of B, i.e., A ∩ B. Therefore, she outputs {2} as MAlice.
Bob: Bob already determined A ∩ B = {2} in Step 4, and so he outputs {2} as

MBob.

Correctness and Secrecy: In this example, BHW protocol obviously satisfies
the correctness defined in Definition 1 since it holds that

Pr (MAlice = MBob = A ∩ B) = 1.

It is obvious that Eve cannot identify which set is A in Step 1. In Step 2, two
sets are computed from randomly chosen two subsets from M1 from Eve’s view.
In Step 3, Eve now knows A is either {1, 2} or {5, 6}. Finally, after Step 4, she
knows that either {2} or {5} is A∩B. However, regardless of her computational
power, she cannot guess A∩B with more than probability 1/2 since all the same
transcripts might appear even if Therefore, the optimal attack strategy is to
randomly choose either one of {2} or {5} as ME. Therefore, the attack success
probability ε(outputE) = Pr(ME = {2}) = 1/2, and this holds for any attacker
Eve. Hence, the BHW protocol satisfies the 1/2-secrecy defined in Definition 3
since it holds that

max
outputE

ε(outputE) = 1/2.

4 Our Solution for Multi-Sheriffs Problem

In this section, we construct a protocol for the multi-sheriff problem based on
the above BWH protocol. The technical challenge to construct such a protocol is
two-fold. First, all protocols shown by Beaver et al. are two-player protocols, and
therefore it is unclear how we generalize it to an n-player protocol. Second, from
the point of cryptologic view, the attack success probability should be as small
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as possible. However, the success probability of each Beaver et al.’s protocol is
at least 1/2 regardless of the sizes of S, A, and B.1 Therefore, we aim to realize
a protocol that provides smaller success probability than 1/2.

4.1 Observation and Our Construction Idea

Generalizing the Number of Players. The core construction idea of the
BHW protocols is the partitioning of the set S into two sets; one includes A ∪ B
and the other, called the dummy, is disjoint to A∪B. Steps 1 and 2 of the BHW
protocol provide this partitioning properly.

This idea can be applied when generalizing the number of players. In particu-
lar, the number of players does not affect the number of partitions. For example,
suppose a three-player setting where Alice, Bob, and Carol have A, B, and C,
respectively. Then, as in the BHW protocol, partitioning into two sets is suffi-
cient to give the meaningful upper bound of the attack success probability; if S
can be partitioned into a set including A ∪ B ∪ C and that disjoint to A ∪ B ∪ C,
we can construct a protocol that has the success probability at most 1/2 as in
the BHW protocol. The same holds even for n players. Therefore, we aim to
show how we realize such partition of S into two sets, one includes

⋃n
i=1 Si and

the other is disjoint to
⋃n

i=1 Si.

Improving Secrecy. The original two sheriffs problem [1] asks whether there
exists a protocol that Alice and Bob can share the intersection of their sets
while Eve cannot determine it from the transcripts. In this sense, all protocols
proposed by Beaver et al. are sufficient since the attack success probability is less
than one. In particular, in the BHW protocol in the previous section, a single
dummy is sufficient to provide the success probability 1/2.

In this work, we aim to achieve better success probability than the BHW
protocol by increasing the number of dummies. Observing Step 4 of the BHW
protocol, the number of subsets included in the last transcript M4 directly leads
to the attack success probability, since the partitioning technique provides the
two partitioned sets such that each of them is equally likely to include the inter-
section. Therefore, we extend the partitioning technique to provide as many
partitioned sets as possible while each is equally likely to include an intersection
of all players’ sets.

4.2 Construction of Our Protocol

Execution Conditions. We assume that it holds |S| ≥ 2
∏n

�=1 |S�| and⋂n
�=1 S� �= ∅. These execution conditions are generalized ones of the BHW pro-

tocol (also see Sect. 3.1). Indeed, the conditions are equivalent to those of the
BHW protocol when n = 2.

1 To be precise, the attack success probability of the third protocol is at most (|A| −
1)/|A|, and it means that it depends on the size of |A| (also see Table 1). Nonetheless,
it holds (|A| − 1)/|A| ≥ 1/2 for any A s.t. |A| ≥ 2.
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Overview of Our Protocol. As described above, the attack success proba-
bility depends on the number of partitions. Therefore, for notational simplicity,
let

αk :=

⌊
|S|

∏k
�=1 |S�|

⌋

,

be the number of partitions that a player Pk initially creates. Note that it
holds α1 ≥ · · · ≥ αn. The communication phase of our protocol consists of
2n steps. Specifically, for all k ∈ [n], a player Pk creates two transcripts in Steps
k and n + k. In Step k, a player Pk partitions S into αk sets. At the end of
Step n, i.e., after all players created their first transcripts, they share αn equal-
sized partitioned sets, T (n),D(n)

1 ,D(n)
2 , . . . ,D(n)

αn−1, where (
⋃n

k=1 Sk) ⊂ T (n) and
D(n)

� ∩ (
⋃n

k=1 Sk) = ∅ for all � ∈ [αn − 1]. In the second round, the players try
to identify the intersection with their second transcripts. At the end of Step 2n,
all players share αn equal-sized partitioned sets, T (2n),D(2n)

1 ,D(2n)
2 , . . . ,D(2n)

αn−1,
where T (2n) =

⋂n
k=1 Sk and D(2n)

� ⊂ D(n)
� for all � ∈ [αn − 1]. In the output

phase, each player Pk just outputs a set X such that it holds X ∩ Sk �= ∅. Note
that there exists only one set satisfying the condition in M2n.

Communication Phase

Step 1. Let S̃ be an arbitrary subset of S such that S̃ includes S1 and |S̃| =
α1|S1|. P1 sets T (1) = S1 and divides S̃ \ S1 into α1 − 1 sets D(1)

1 ,D(1)
2 , . . . ,

D(1)
α1−1 such that it holds

∣
∣
∣D(1)

�

∣
∣
∣ = |S1| for every � ∈ [α1 − 1].2 P1 broadcasts

M1 :=
{

T (1),D(1)
1 ,D(1)

2 , . . . ,D(1)
α1−1

}
.

Step k (= 2, 3, . . . , n). Pk computes and broadcasts Mk−1 = {T (k),D(k)
1 ,D(k)

2 ,

. . . ,D(k)
αk−1} as follows.

(I) Initially, let M̃k−1 = Mk−1. For � = 1, 2, . . . , αk − 1, Pk makes an �-th
dummy D(k)

� as follows. Roughly speaking, Pk randomly chooses (uncho-
sen) |Sk| sets from the last transcript Mk−1, and sets the union of the
sets as the �-th dummy. Namely, Pk randomly chooses |Sk| distinct sets

X1,X2, . . . ,X|Sk| ∈ M̃k−1,

such that it holds Xi ∩ Sk = ∅ for every i ∈ [|Sk|], and sets

D(k)
� =

|Sk|⋃

i=1

Xi, and M̃k−1 = M̃k−1 \ {X1,X2, . . . ,X|Sk|}.

2 Even if it holds that Sk �⊂ S̃ for some k ∈ {2, . . . , n}, it does not matter; the protocol

works well since S̃ includes S1, which also includes
⋂n

k=1 Sk.
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(II) Pk computes T (k) as follows. Pk randomly chooses |Sk| distict sets

Y1,Y2, . . . ,Y|Sk| ∈ M̃k−1,

such that it holds Yi ∩ Sk �= ∅ for every i ∈ [|Sk|], and sets

T (k) =
|Sk|⋃

i=1

Yi.

Note that although there might be unused elements in M̃k−1∪{Y1, . . . ,Y|Sk|},
it does not matter and the protocol works well.

Step n+1. P1 finds T (n) such that S1 ⊂ T (n) from Mn, and sets T (n+1) = S1.
Let D(n)

1 ,D(n)
2 , . . . ,D(n)

αn−1 be other αn−1 dummy elements of Mn. For all � ∈
[αn − 1], P1 randomly chooses D(n+1)

� ⊆ D(n)
� such that

∣
∣
∣D(n+1)

�

∣
∣
∣ =

∣
∣T (n+1)

∣
∣.

P1 broadcasts Mn+1 =
{

T (n+1),D(n+1)
1 ,D(n+1)

2 , . . . ,D(n+1)
αn−1

}
.

Step n+k (for k = 2, 3, . . . , n). Pk finds T (n+k−1) such that Sk ∩T (n+k−1) �= ∅
from Mn+k−1, and sets

T (n+k) = Sk ∩ T (n+k−1).

Let D(n+k−1)
1 ,D(n+k−1)

2 , . . . ,D(n+k−1)
αn−1 be other αn − 1 dummy elements of

Mn+k−1. For all � ∈ [αn − 1], Pk randomly chooses

D(n+k)
� ⊆ D(n+k−1)

� such that
∣
∣
∣D(n+k)

�

∣
∣
∣ =

∣
∣
∣T (n+k)

∣
∣
∣ .

Finally, Pk broadcasts Mn+k :=
{

T (n+k),D(n+k)
1 ,D(n+k)

2 , . . . ,D(n+k)
αn−1

}
.

Output Phase

Local operations. For any k ∈ [n], since there exists only one set X ∈ M2n

such that it holds X ∩ Sk �= ∅, Pk can determine and output
⋂n

�=1 S� = X .

4.3 Proof for Correctness and Secrecy

We have the following theorems.

Theorem 1. Our protocol satisfies the correctness in Definition 1 under the
execution condition |S| ≥ 2

∏n
�=1 |S�|.

Proof. In Step k for any k ∈ {2, 3, . . . , n}, Pk can make T (k) that includes
⋃k

�=1 S� since T (1) = S1 and
⋂n

�=1 Sk �= ∅ is assumed. Specifically, in Step k,
T (k−1) contains at least one element of Sk since it holds

⋂n
�=1 S� �= ∅, and

therefore, Pk can correctly compute T (k). At the end of Step n, all players have
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Mn =
{

T (n),D(n)
1 ,D(n)

2 , . . . ,D(n)
αn−1

}
and they can determine T (n) since only

T (n) contains (at least one) elements of Sk for all k ∈ [n]; all other dummy sets
do not include any element of them. Hence, from Steps n + 1 to 2n, each player
Pk can determine T (n+k−1) and compute its intersection with Sk. Therefore,
our protocol satisfies the correctness since all players can compute and output⋂n

k=1 Sk from M2n. �

Theorem 2. Our protocol satisfies p-secrecy in Definition 3 under the execution
condition |S| ≥ 2

∏n
�=1 |S�|, where p = �|S|/

∏n
�=1 |S�|�−1.

Proof. It is obvious that Eve cannot identify which element of M1 is S1 in Step
1. After Step k (k = 2, 3, . . . , n), αk sets are computed from randomly chosen
|Sk| element of Mk from Eve’s view. After Step n+1, Eve knows that one of the
αn elements of Mn+1 must be S1, however, she cannot determine which element
it is since each element in Mn+1 is equally likely to be S1. Similarly, after Step
n+k (k = 2, 3, . . . , n), Eve knows that one of the αn elements of Mn+k must be
⋂k

�=1 S�. However, since each element in Mn+k is equally likely to be
⋂k

�=1 S�,
Eve cannot determine it from Mn+k. Hence, regardless of her computational
power, she cannot guess

⋂n
�=1 S� with more than probability α−1

n . Therefore,
the optimal attack strategy for any attacker Eve is to randomly choose one
of the αn elements of M2n as ME. Therefore, the attack success probability
is ε(outputE) = Pr(ME =

⋂n
�=1 S�) = α−1

n = �|S|/
∏n

�=1 |S�|�−1. Thus, our
protocol satisfies the p-secrecy where p = �|S|/

∏n
�=1 |S�|�−1 since it holds that

max
outputE

ε(outputE) =

⌊
|S|

∏k
�=1 |S�|

⌋−1

.

It completes the proof. �

4.4 Extension of Our Protocol

As can be seen above, we generalized the BHW protocol and showed our protocol
that enables n players to share the intersection of their sets S1,S2, . . . ,Sn. In
this section, we show that this protocol can be extended to a protocol that allows
n players to share the result of arbitrary set operations on S1,S2, . . . ,Sn.

We describe below the construction idea of the generalized protocol, and will
give the formal description in the full version of this paper. From Steps n+1 to 2n
of our protocol, Pk receives

⋂k−1
�=1 S� (included in Mn+k−1) and updates it to

⋂k
�=1 S�. Finally, Pn calculates

⋂n
�=1 S� and shares it among all players. The

procedures are obviously specific to the set intersection. Roughly speaking, we
can extend the procedures so that each player has all sets of S1,S2, . . . ,Sn at the
last step of the communication phase. To do so, we modify the protocols so that
the transcripts always contain all elements of S1, . . . ,Sn, whereas the proposed
protocol allows players to discard some elements in Steps 1 to n, which we call
the discarded elements the remaining set. For the proposed protocol, we do not
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care what elements the remaining set contains since we are only interested in the
intersection of the players’ sets; the remaining set never contains any element
in the intersection. On the other hand, e.g., if we consider a protocol for the
set union, the remaining set is crucial to construct the protocol since it might
contain some elements in some player’s set. Therefore, we modify the steps so
that they do not produce any remaining set.
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