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Abstract. Trusted computing, often referred to as confidential com-
puting, is an attempt to enhance the trust of modern computer systems
through a combination of software and hardware mechanisms. The area
increased in popularity after the release of the Intel Software Guard
Extensions software development kit, enabling industry actors to create
applications compatible with the interfaces required to leverage secure
enclaves. However, the prime choices of users are still libraries and solu-
tions that facilitate code portability to Software Guard Extension envi-
ronments without any modifications to native applications. While these
have proved effective at eliminating additional development costs, they
inherit all the security concerns for which Software Guard Extensions
has been criticized.

This chapter proposes a split computing method to enhance the pri-
vacy of deep neural network models outsourced to trusted execution envi-
ronments. The key metric that guides the approach is split computing
performance that does not involve architectural modifications to deep
neural network models. The model partitioning method enables stricter
security guarantees while producing negligible levels of overhead. This
chapter also discusses the challenges involved in developing a pragmatic
solution against established Intel Software Guard Extensions attacks.
The results demonstrate that the method introduces negligible perfor-
mance overhead and reliably secures the outsourcing of deep neural net-
work models.

Keywords: Trusted Computing - Intel Software Guard Extensions -
Machine Learning

1 Introduction

Machine Learning as a Service (MLaaS) platforms are increasingly deployed by

cloud infrastructure providers such as Amazon Web Services and Microsoft Azure
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to support remote computations for sensitive decision making and security-
critical environments. The use of cloud infrastructure assets expands the attack
surfaces of machine learning applications that support critical operations. These
include attacks from malicious programs and adversaries that compromise oper-
ating systems and hypervisors, posing serious threats to the integrity and privacy
of machine learning models.

1.1 Trusted Execution Environment

Trusted execution environments utilize hardware and software protection mech-
anisms to isolate sensitive code from the remaining portions of applications.
They offer practical solutions for enterprises and cloud service providers that
support the secure handling of confidential information. Trusted execution envi-
ronments such as ARM TrustZone and Intel Software Guard Extensions (SGX)
are widely used by many processors to provide integrity and privacy guarantees.
In the context of outsourced machine language computations, trusted execution
environments outperform pure cryptographic implementations by several orders
of magnitude [24]. However, the isolation guarantees of trusted execution envi-
ronments come with the steep price of poor scalability compared with other
untrusted alternatives executing in native environments.

1.2 Intel Software Guard Extensions

Intel SGX is a set of hardware enforcement mechanisms designed to provide
integrity and confidentiality guarantees to the operating system, kernel, hypervi-
sors and privileged software. It enables user programs to allocate private memory
regions called enclaves that isolate application code and data through hardware-
based memory encryption. Intel SGX also enables cross-enclave communications
via software attestation to verify that an application is running on real hardware
in an up-to-date trusted execution environment with the expected initial state.

Nevertheless, Intel SGX has been criticized by the research community for its
vulnerabilities to attacks that target page units, segmentation units, CPU caches,
dynamic RAM, page tables, branch predictions, enclave interfaces and hardware.
Some notable attacks include SGXPectre [1], CacheZoom [13], DRAMA [15]
and rowhammer [23]. Intel SGX has also been criticized because its software
development kit introduces high development and integration costs, and does
not enable native applications to execute out of the box. As a result, efforts
have been undertaken to develop libraries that port applications into Intel SGX
environments.

2 Background

Intel SGX is computationally expensive due to its design limitations and lim-
ited memory. The implementation requires application code to be divided into
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trusted and untrusted components. Trusted component code accesses the con-
fidential data within the Intel SGX enclave whereas the untrusted component
accesses the remaining application data outside the protection of the enclave.
This distinction requires major code refactoring to successfully execute natively-
developed applications on Intel SGX.

In order for trusted and untrusted components to interact with each other,
enclave and outside calls (ecalls and ocalls) must be invoked to interface with
the hardware, which causes overhead. Zhao et al. [26] have demonstrated that
ecall and ocall cycles per operation are higher than system and function calls.
Furthermore, the page swapping mechanism triggered when the available enclave
memory is exceeded increases the overhead for each page swap by several hundred
thousand CPU cycles. Nevertheless, the security mechanisms offered by Intel
SGX enable developers to seek trade-offs between security enhancements and
computational costs. Additionally, Intel SGX utilization must consider issues
such as discovered vulnerabilities and the development overhead incurred to
adjust code to the hardware and the software development kit. Fortunately,
porting frameworks such as Gramine-SGX [7] and Mystikos-SGX [4] provide out-
of-the-box code integration to Intel SGX, drastically reducing the engineering
effort required to deploy applications in trusted execution environments.

2.1 Evaluation Setup

The evaluation setup employed in the research comprised a Microsoft Azure
Standard DC4s v2 machine with four virtual Intel Xeon E-2288G 3.70 GHz
CPUs, 200 GiB storage and 16 GiB of memory. The machine executed Ubuntu
20.04 LTS (Linux Version 5.13.0-1017-Azure). All the Intel SGX frameworks
were allocated 8 GB of trusted memory for the implementation to utilize and
execute machine learning model inference.

2.2 Gramine-SGX

Gramine-SGX is a lightweight guest operating system designed to execute appli-
cations in isolated environments with benefits that include ease of porting and
process migration with minimal host requirements. It comprises the library oper-
ating system and a shared library named shim in the source code. Additionally,
it includes the platform adaption layer and GNU C Library, a set of shared
libraries, that initializes upon loading the Intel SGX enclave.

Each application requires a manifest file, a metadata file containing infor-
mation about the resources and required environment for executing a Gramine-
SGX application [7]. Gramine-SGX includes a framework for developing privacy-
preserving machine learning applications. The framework enables machine learn-
ing model training and inference workloads to execute in third-party environ-
ments while providing integrity and confidentiality guarantees to the models and
inputs.
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This research employed the PyTorch machine learning framework. The Intel
SGX enclave in an untrusted machine isolates the PyTorch runtime environ-
ment from attacks that target confidentiality and integrity. It also provides
cryptographic attestation to the correct initialization and execution of differ-
ent enclaves, enabling distributed computations. The workflow of the PyTorch
workload in a Gramine-SGX environment is detailed in [6].

This research has benchmarked the machine learning inference performance
against several PyTorch deep neural network model variants — Squeezenet [19],
MobileNet V3 Small and MobilNet V3 Large [18], ResNet50 and ResNet101 [17],
AlexNet [16] and VGG16 and VGG19 [20].

2.3 Mystikos-SGX

Mystikos-SGX is a set of runtime tools for running Linux applications in trusted
execution environments. It streamlines the processing of lift-and-shift applica-
tions in a containerized Intel SGX trusted execution environment using Docker.
Developers have control over the trusted computing base, which enables effective
monitoring of all the components involved in program execution [4].

However, proper key management and attestation are out of scope for the par-
ticular Mystikos-SGX implementation. In addition, Mystikos-SGX is only com-
patible with applications developed with the musl library. In contrast, Gramine-
SGX uses glibc as its default C library and also allows musl to be mounted.

3 Threat Model

Figurel shows the Intel SGX threat model. The Intel Enhanced Privacy ID
(EPID) cloud server used to attest EPID keys from the server is outside the
scope of this research as are attacks originating from remote clients. Attacking
applications running on Intel SGX enclaves by breaking their isolation and con-
fidentiality are considered to be more important by the research community [3].

Fei et al. [5] specify a taxonomy of Intel SGX security vulnerabilities derived
by capitalizing on risky channels that can be compromised to initiate attacks
against Intel SGX security. These include address translation, CPU cache,
dynamic RAM, branch prediction, and enclave software and hardware vulnera-
bilities. Mainstream attacks on Intel SGX are geared towards successfully exe-
cuting cache side-channel attacks that generally exploit CPU cache, dynamic
RAM and branch prediction vulnerabilities.

Intel [8] has determined that providing defensive measures against side-
channel attacks are beyond its scope. Therefore, it is up to developers to devise
security mechanisms against the attacks. In a standard CPU, each physical core
has exclusive access to the L1 and L2 caches while time-sharing other levels of
cache with the remaining CPU cores. Under the assumption that all software
running in an Intel SGX stack shares access to the same memory cache, an
adversary can exploit side-channels such as the time difference between cache
accesses.
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Fig. 1. Intel SGX threat model.

Prominent timing-channel attacks on the memory cache include three main
variants, Evict+Reload [22], Prime+Probe and Flush+Reload [25]. These vari-
ants are fundamental to more advanced side-channel attacks like the SGXPectre
attack [1]. The speculative execution threads of Intel SGX can be exploited by the
SGXPectre attack that subverts the confidentiality of SGX enclaves. The control
flow of an SGX enclave as well as its branch prediction can be compromised to
enable cache state changes to be measured and confidential information about
the machine learning model and inputs to be extracted. Furthermore, SGXPectre
can steal encryption keys and attestation keys from enclaves that could jeopar-
dize entire projects. The effectiveness of the attack has been demonstrated on
the SGX software development kit.

The Large-Scale Data and Systems Group at Imperial College London [12]
has demonstrated a conceptual branch prediction Intel SGX attack that was
inspired by the Meltdown attack on Intel SGX [21]. The enclave application
reads an input from outside the enclave by invoking a function. However, before
the application can invoke the function, the attack flushes the cache line using
the c1flush instruction to force the application to load the input that resides
in the cache [21]. The conceptual attack is only feasible on the SGX software
development kit framework. It cannot be implemented on the Gramine-SGX
framework although it shares the same library vulnerability.

The Intel SGX attacks mentioned above have minimal feasibility, but mitiga-
tion methods to prevent them from successfully using confidential applications
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are crucial. In this research, the mitigations would have to combat attempts at
extracting a machine learning model residing in an Intel SGX enclave. These
would guarantee the confidentiality of the machine learning model and ensure
that is not used by untrusted parties.

4 Split Computing Model for Security

Split computing without architectural modifications to deep neural network
models has been studied for image classification tasks [9], speech recogni-
tion [11], object detection [2,10] and sentiment analysis. Narra et al. [14] have
employed Origami split computing to ensure privacy-preserving inference while
also improving performance. The approach splits a machine learning model into
multiple partitions and encrypts the first partition inside an Intel SGX enclave.
It then sends the encrypted output to an untrusted environment for computa-
tion using a GPU. The de-blinding factors are kept private by the enclave and
only decrypted after the untrusted computations have been completed. However,
an adversary could still access layers that are not computed in the Intel SGX
enclave, thereby compromising its confidentiality.

As the name suggests, split computing is a model partitioning method that
enables the independent execution of certain layers of a deep neural network
model in a pipelined manner to produce the same inference results without any
increase in model complexity. The technique has been proven to be especially
useful in collaborative edge computing, where mobile devices with limited com-
puting power can execute portions of a machine learning model collaboratively
with a server. However, at this time, there is no mention in the research literature
of this technique being leveraged for security objectives.

All the deep neural network models considered in this work were faith-
fully implemented from their descriptions in the research literature without any
notable modifications.

The first step in the approach is to split a deep neural network model in a
manner that maximizes the number of partitions. Figure 2 illustrates how the
AlexNet architecture for image classification is split using a few images from the
ImageNet dataset for inference. The deep neural network variants employed in
this research are compatible with this splitting approach in which a flatten layer
is always inserted after a two-dimensional adaptive pooling layer. The flatten
layer is needed to support sub-model inferences without having to completely
reshape the existing model layers. The number of submodels that could be split
depends on the number of iterable layers. In the case of an AlexNet PyTorch
model, the maximum number of submodels that could be extracted via splitting
is 22.

Model splitting is guided by the maximum number of possible combinations
that an adversary could encounter when using a brute-force attack. Table 1 shows
the increase in complexity due to model splitting. Specifically, the number of
combinations yielded by model splitting is the factorial of the number of mod-
els/submodels.
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Fig. 2. Breakdown of the split computing method for AlexNet.

Table 2 shows the total inference times required by various deep neural net-
work models without model splitting and with model splitting to 12 submodels.
The inference times provide insights into the optimal number of submodels to
achieve the desired complexity.

Specifically, in the case of the AlexNet model, the time required for a single
inference with one model in an Intel SGX enclave is 2.028153s (Table 2). Split-
ting the model into 12 submodels does not affect the runtime, but it increases
the total possible model reconstruction combinations to 479,001,600 (Table1).
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Table 1. Possible combinations based on the number of submodel splits.

Models/ Combinations
Submodels | Combinations

1 =1

2 20 =2

4 4! =24

8 8! = 40,320

10 10! = 3,628,800
12 12! = 479,001,600

Table 2. Inference time increase due to submodel reassembly.

Model One Model Twelve Submodels
Inference Time | Inference Time

Squeezenet 0.226625 s 3.442 yrs

Mobilenet V3 Small | 0.163645 s 2.485yrs

Mobilenet V3 Large | 0.331020s 5.027 yrs

ResNet50 1.230008 s 18.682 yrs
ResNet101 2.044985s 31.061 yrs
AlexNet 2.028153 s 30.805 yrs
VGG16 4.991928 s 75.822 yrs
VGG19 5.113581s 77.670yrs

An adversary running an inference on every possible combination to deduce
the correct model would require 30.805 years assuming comparable computing
resources (Table2). Indeed, due to the exponential growth of the possible com-
binations caused by model splitting, it is advantageous to split a deep neural
network model to the maximum number of submodels possible.

The next step is to encrypt each submodel with a unique AES secret key
to prevent the adversary from inspecting the raw data. The AES encryption
employed a 32-byte key with the cipher-block chaining (CBC) mode. The CBC
mode enhances machine learning model security by having different ciphers for
identical blocks. This is ideal for deep neural network models that comprise iden-
tical nodes in their hidden layers. An AlexNet model has 7 x ReLu activation
layers, 5 x Conv2d layers, 3 x MaxPool2d layers, 3 x linear layers and 2 X
dropout layers. These interchangeable layers have to be encrypted with different
ciphers to further protect the models from being successfully recovered. Fortu-
nately, the overhead incurred when encrypting the submodels with individual
AES secret keys is minimal.

Figure 3 shows the memory growth due to encryption for various model splits
into submodels. Encrypting the model with splitting incurs memory growth



Deep Neural Network Protection in Intel SGX Environments 185

Original size Encrypted size

244.43

244.425

244.42

244.415

Size (megabytes)

244.41

244.405
1 2 4 6 8 10 12
Number of models/submodels

Fig. 3. Memory growth due to encryption for model splits.

from 244.412MB to 244.426 MB, which is 0.014 MB. Splitting the model into
12 submodels incurs memory growth from 244.412MB to 244.426 MB, which
is 0.014 MB. The memory overhead is negligible and does not cause significant
additional loads to the SGX enclave application and its execution.

Next, all the AES secret keys are encoded with a wrapper key generated
by Gramine-SGX. The encoded secret keys can only be decoded by a provi-
sioned secret from the Intel SGX quote generator. The encrypted submodels
and encoded secret keys are then uploaded to the Intel SGX enclave. In order
to decode the encoded secret keys, a user would have to complete an attestation
process to ensure that the executing machine is trusted.

5 Remote Attestation via EPID Keys

The remote attestation workflow using EPID keys is provided by the provision-
ing enclave that requests an EPID key from the Intel provisioning service. The
EPID-based remote attestation starts with the enclaved application opening a
file to start an SGX report write up. Gramine-SGX employs a hardware instruc-
tion that creates a SGX report, which opens up another SGX quote file for
reading. Gramine-SGX then uses the quoting enclave to receive the SGX quote.
Thereafter, the quoting enclave uses the EPID key provided by the provisioning
enclave. The provisioning enclave then requests the EPID key linked to the Intel
SGX machine from the Intel provisioning service. The quoting enclave creates
the SGX quote from the SGX report and directs it to the enclaved application.
The enclaved application then stores the SGX quote in its enclave memory.

To validate the SGX enclave, the enclaved application requests remote attes-
tation and forwards the SGX quote to the trusted Intel SGX machine. A user
employs the Intel attestation service by sending the SGX quote to receive an
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Fig. 4. Average AlexNet inference time in Gramine-SGX.

acknowledgment of the trustworthiness of the Intel SGX machine. Based on the
verification procedure, the user can trust the Intel SGX machine and receive the
wrapper to decrypt the encoded secret keys [7].

6 Experimental Results and Discussion

Experiments were conducted to evaluate the split computing method as a means
to enhance the security of deep neural network models in a trusted execution
environment. The experiments employed the Gramine-SGX trusted execution
environment, which involved no code modification and provided reduced memory
consumption.

The first set of experiments employed the AlexNet deep neural network model
to assess the impacts of various submodel splits on inference time, CPU utiliza-
tion, memory footprint and power consumption in a Gramine-SGX execution
environment.

Figure4 shows that splitting a single AlexNet model all the way up to 12
submodels does not increase or decrease the average inference time significantly.
In fact, the average inference time is quite consistent despite the increase in the
number of splits.

Figure5 compares the CPU utilization during AlexNet inference in the
Gramine-SGX environment for the single (non-secure) model against the 12-
split (secure) model in the Gramine-SGX environment. The two CPU utilization
curves track each other with negligible differences.

Figure 6 compares the memory footprints during AlexNet inference in the
Gramine-SGX environment for the single (non-secure) model against the 12-split
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Fig. 6. Memory footprint during AlexNet inference in Gramine-SGX.

(secure) model in the Gramine-SGX environment. The two memory footprint
curves are very similar and relatively close to each other.

Figure 7 shows the power consumption during AlexNet inference in the
Gramine-SGX environment for a single (non-secure) model and a 12-split
(secure) model. The two power consumption curves more or less track each
other without significant differences. Overall, the experimental results show that
model splitting, while enhancing security, does not introduce significant overhead
in terms of time and performance.

Figure8 compares the average memory footprints in the Gramine-SGX,
native and Mystikos-SGX environments. As expected, the native environment
has the lowest average memory footprint. However, the Gramine-SGX environ-
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Fig. 8. Average memory footprints in Gramine-SGX, native and Mystikos-SGX.
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lower than the footprint in the Mystikos-SGX environment.

The next set of experiments sought to benchmark the performance times
of eight selected deep neural network models during image classification infer-
encing in the Gramine-SGX environment versus the native environment. The
performance time was broken down into inference time, compilation time and
total execution time. The inference time was computed as the total execution
time minus the compilation time because inference by a deployed deep neural

network model does not require any recompilation.
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Table 4. Inference performance in Mystiko-SGX.

Model Mystiko-SGX | Mystiko-SGX | Mystiko-SGX
Inference Compilation Total
Time Time Execution
Time
Squeezenet 0.517s 234.154s 295.096 s
MN V3 Small | 0.424 s 237.655s 293.790s
MN V3 Large | 0.814s 233.927s 313.108s
ResNet50 1.934s 245.885's 308.637s
ResNet101 2.856's 258.251s 322.315s
AlexNet 3.330s 264.795s 332.852s
VGG16 6.816s 301.268's 373.483s
VGG19 7.287s 291.093s 368.719s

Table 3 shows that the model compilation times in the Gramine-SGX envi-
ronment are significantly greater than the compilation times in the native envi-
ronment. The inference times are also greater in the Gramine-SGX environment
than in the native environment. The results are not unexpected because security
always comes with a price.

Another set of experiments were conducted to obtain the inference times,
compilation times and total execution times of the eight deep neural network
models during image classification inferencing in a Mystiko-SGX environment.
The results in Table4 show that the inference and compilation times for all
eight models are significantly higher in the Mystiko-SGX environment than the
Gramine-SGX environment. For example, AlexNet model inference in Mystikos-
SGX takes 1.3 s longer than in Gramine-SGX. Also, as seen in Fig. 8, its runtime
memory footprint is 2.32 GB compared with 0.54 GB for Gramine-SGX. In gen-
eral, Gramine-SGX is a better trusted execution environment than Mystiko-SGX
in that it is less memory intensive and provides more utility and compatibility
for applications intended to be ported to Intel SGX.

An additional safeguard would be to implement cache clearance at execution
time. This would combat Prime+Probe attack variants that attempt to identify
the sets being used by leveraging temporal cache access traces. However, Intel
CPUs do not as yet provide an operation for flushing the cache at the user level
before exiting an enclave.

7 Conclusions

This research has demonstrated that split computing can be leveraged as a deter-
rence measure to enhance the confidentiality of deep neural network models
ported to Intel SGX environments. The evaluation demonstrates that the app-
roach introduces negligible overhead while securing deep neural network models
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in transit and at rest in the hardware enclave. The research also provides useful
benchmarking of the available libraries for out-of-the-box porting to Intel SGX
trusted execution environments such as Gramine-SGX and Mystikos-SGX.
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