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Abstract. Modern automobiles have numerous sensors, actuators and
electronic systems interconnected via internal sub-networks that are not
designed with security in mind. This chapter describes a novel real-time
system that employs long short-term memory networks to monitor auto-
mobile controller area networks, detect attacks and raise alerts. A repeat-
able design framework is employed to construct and train multiple long
short-term memory networks to recognize normal controller area net-
work message timing patterns. The framework lays out the computa-
tional resources as well as the data collection and preprocessing and long
short-term memory network model development and training steps. Also,
it enables new long short-term memory network models to be trained and
updated for automobiles of different makes, models and years.

The attack detection system leverages a server-client configuration
to monitor an automobile controller area network bus. The server is an
inexpensive Raspberry Pi device connected directly to the automobile
controller area network bus that captures, logs and transmits controller
area network message traffic to a client via a Wi-Fi network. The client,
a workstation located outside the automobile, provides the computa-
tional resources for real-time attack detection. Trained long short-term
memory models executing on the client workstation analyze the received
controller area network messages, identify attacks and send alerts via the
Wi-Fi network. Experimental results using a 2010 Toyota Prius testbed
and a fully-operational 2014 Toyota Prius automobile demonstrate the
effectiveness of the real-time attack detection system.

Keywords: Automobiles · Controller Area Networks · Real-Time
Attack Detection · Long Short-Term Memory Networks

1 Introduction

Modern automobiles incorporate numerous sensors, actuators and diverse elec-
tronic systems that are interconnected by sub-networks to provide safe, con-
venient and comfortable experiences to drivers and passengers. The principal
internal sub-networks, High-Speed Controller Area Network (High-Speed CAN),
Low-Speed Controller Area Network (Low-Speed CAN), Local Interconnect Net-
work (LIN) and Media Oriented Systems Transport (MOST) network, support
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automobile functionality [20]. The CAN protocol is employed by all the inter-
connected automobile applications that provide safety, convenience and com-
fort [2,3].

Unfortunately, modern automobile networks are not designed with security
in mind [4,18]. First, the four principal sub-networks are interconnected via an
automobile gateway, which increases the attack surface significantly. The lack
of network segmentation makes it possible to gain remote access to the MOST
network via the telematics module, pivot to the High-Speed CAN and target
critical automobile components such as engine control and brakes. Second, the
CAN protocol does not employ message encryption and authentication. The lack
of message encryption simplifies reverse engineering as well as message intercep-
tion, modification and fabrication. The lack of message authentication enables a
malicious actor with CAN access to inject harmful messages that interfere with
or disable any critical automobile system while remaining undetected. Addition-
ally, the message identifier priority feature enables a malicious actor to flood the
High-Speed and Low-Speed CANs with high-priority messages to deny service
to all the networked components.

The sorry state of automobile security persists as new safety, convenience
and comfort components are installed in models every year – soon, autonomous
driving systems will be the norm. Automobile manufacturers are reluctant to
segment automobile networks and components for reasons of cost, complexity
and practicality (mainly maintenance and repairs). The lack of CAN message
encryption and authentication persists due to the cost of implementation and
computational resources required by individual automobile components.

A feasible solution is to develop attack detection systems that are incorpo-
rated in automobiles as add-on components. The attack detection systems would
scrutinize CAN messages in real time and report malicious and anomalous traffic
to drivers. Eventually, these attack detection systems could inform attack mit-
igation systems. Real-time attack detection is imperative because there can be
no attack mitigation without detection.

The CAN attack detection system described in this work employs long short-
term memory (LSTM) networks [10] to monitor automobile CANs, detect attacks
and raise alerts in real time. LSTM networks are leveraged because they can learn
patterns with long sequences.

A repeatable design framework is presented for constructing and training
multiple LSTM networks that learn normal CAN message timing patterns. The
design framework lays out the computational resources as well as the data collec-
tion and preprocessing and LSTM model development and training steps. The
framework enables new LSTM models to be trained and updated for automobiles
of different makes, models and years.

Another key contribution is real-time attack detection. The attack detec-
tion system leverages a server-client configuration. The server is an inexpensive
Raspberry Pi device connected directly to a monitored automobile CAN bus
that captures, logs and transmits CAN message traffic via a Wi-Fi network to
a client workstation located outside the automobile. The client workstation pro-
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vides the computational resources needed for real-time attack detection. Trained
LSTM models executing on the client workstation process the transmitted CAN
messages, identify attacks and send alerts via the Wi-Fi network.

The attack detection system was evaluated using a 2010 Toyota Prius testbed
and a fully-operational 2014 Toyota Prius automobile. An attack device was
employed to inject random CAN message identifiers at random times. The attack
detection results are very good – LSTM model sensitivity ranged from 0.864 to
1.000 and accuracy ranged from 0.980 to 1.000. Sensitivity and accuracy are the
most important metrics because LSTM models must recognize normal traffic
and detect as many attacks as possible with high accuracy.

2 Interconnected Automobile Network

An automobile network comprises multiple sub-networks with systems that sup-
port safety, convenience and comfort [20]. The interconnected sub-networks
include the High-Speed CAN, Low-Speed CAN, LIN and MOST network:

– High-Speed CAN: A High-Speed CAN connects critical automobile elec-
tronic control units (ECUs) such as the drivetrain, power steering, transmis-
sion control, instrument cluster, revolutions per minute (RPM) management,
engine control and braking systems. A modern automobile may have multi-
ple High-Speed CANs. Because a High-Speed CAN is responsible for critical
automobile functionality, it employs a high-speed version of the CAN proto-
col that operates at bit rates between 500Kbps and 1Mbps to support fast
and reliable communications [20].

– Low-Speed CAN: A Low-Speed CAN connects convenience and comfort
components such as ventilated seats, power windows, lights, heat and air con-
ditioning, and door locks. A Low-Speed CAN employs a low-speed version of
the CAN protocol that operates at bit rates in the hundreds of Kbps [20]. An
On-Board Diagnostics (OBD-II) interface provides direct access to the High-
Speed and Low-Speed CANs via a specialized device. The OBD-II interface,
which is located by the steering wheel or instrument cluster, is used to obtain
diagnostic information required for automobile service and repair.

– LIN: A LIN connects ECUs in a Low-Speed CAN to peripheral components
such as lights and door locks. The LIN protocol complements the CAN pro-
tocol.

– MOST Network: A MOST network connects multimedia components such
as an infotainment system and cellular, Bluetooth and Wi-Fi modules in a ring
network topology [20]. Telematics service providers such as OnStar interact
with a MOST network via its cellular module.

3 Attack Vectors, Vulnerabilities and Attacks

This section lists the attack vectors that target automobile CANs. Also, it
describes CAN vulnerabilities and attacks.
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3.1 Attack Vectors

A malicious actor would be interested in accessing a High-Speed CAN because it
contains critical automobile components. Several attack vectors can be leveraged
to target the High-Speed and Low-Speed CANs.

Figure 1 shows the attack vectors that can be leveraged to access High-Speed
and Low-Speed CAN components (targets). The attack vectors include the High-
Speed CAN, OBD-II interface, Low-Speed CAN, Wi-Fi module, Bluetooth mod-
ule, cellular module and infotainment system:

– High-Speed CAN: A malicious actor can gain direct access to High-Speed
CAN targets via a physical connection to the High-Speed CAN (position 1 in
Fig. 1). Upon gaining access to the High-Speed CAN via the physical connec-
tion, the malicious actor can gain indirect access to Low-Speed CAN targets
via the automobile gateway.

– OBD-II Interface: A malicious actor can gain direct access to High-Speed
and Low-Speed CAN targets via a physical connection to the OBD-II interface
(position 2). This is because the OBD-II interface connects directly to the
High-Speed and Low-Speed CANs.

– Low-Speed CAN: A malicious actor can gain direct access to Low-Speed
CAN targets via a physical connection to the Low-Speed CAN (position 3).
Upon gaining access to the Low-Speed CAN via the physical connection, the
malicious actor can gain indirect access to High-Speed CAN targets via the
automobile gateway.

– Wi-Fi Module: A malicious actor can gain indirect access to High-Speed
and Low-Speed CAN targets via a remote connection to the Wi-Fi module in
the MOST network (position 4). This is because the MOST network connects
to the High-Speed and Low-Speed CANs via the automobile gateway.

– Bluetooth Module: A malicious actor can gain indirect access to High-
Speed and Low-Speed CAN targets via a remote connection to the Bluetooth
module in the MOST network (position 5). This is because the MOST net-
work connects to the High-Speed and Low-Speed CANs via the automobile
gateway.

– Cellular Module: A malicious actor can gain indirect access to High-Speed
and Low-Speed CAN targets via a remote connection to the cellular module in
the MOST network (position 6). This is because the MOST network connects
to the High-Speed and Low-Speed CANs via the automobile gateway.

– Infotainment System: A malicious actor can gain indirect access to High-
Speed and Low-Speed CAN targets via a physical connection to the infotain-
ment system in the MOST network (position 7). This is because the MOST
network connects to the High-Speed and Low-Speed CANs via the automobile
gateway.

3.2 Vulnerabilities

CAN vulnerabilities arise from the lack of message authentication and message
encryption, message identifier priority feature and absence of network segmen-
tation:
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Fig. 1. High-Speed and Low-Speed CAN attack vectors.
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– Message Authentication: The CAN protocol lacks message authentication.
A CAN message only contains an identifier without source and destination
addresses [14]. Therefore, receiving nodes cannot verify message source and
distinguish between real and fake messages. Thus, a malicious actor with
CAN access can transmit fake messages without being detected.

– Message Encryption: The CAN protocol lacks message encryption. All
CAN messages are transmitted in plaintext [14]. Connecting to a CAN bus
directly or via its OBD-II interface provides direct access to all CAN mes-
sages. The lack of message encryption simplifies reverse engineering as well
as message interception, modification and fabrication. Although automobile
manufacturers keep CAN message content proprietary, thorough analysis of
CAN traffic can reveal message details. The lack of encryption also enables
CAN message replay.

– Message Identifier Prioritization: A message identifier with a low binary
value has high priority on a CAN bus. A malicious actor can flood a CAN
bus with high priority messages to prevent the transmission of legitimate
messages. Such denial-of-service attacks are easy to execute and can render
critical automobile systems non-operational [14].

– Network Segmentation: CANs are not segmented adequately. Nodes in
different CANs can communicate with each other via the automobile gateway.
A malicious actor with access to an automobile gateway can target nodes in
all the connected CANs [14].

3.3 Attacks

Numerous attacks have been demonstrated on CANs in modern automobiles.
Absent custom security measures, these attacks are expected to impact practi-
cally every High-Speed and Low-Speed CAN.

Hoppe and Dittman [11] describe novel attacks on simulated CANs. They
employed CANoe software to create a virtual network comprising connected
High-Speed and Low-Speed CAN buses. The CAN buses were connected to a
virtual automobile power window system. In one experiment, they captured CAN
message frames on the CAN buses and recorded the message frames that opened
and closed the power window; the recorded frames were subsequently replayed
to control the power window. In another experiment, they used an ECU in
a Low-Speed CAN bus to obtain information from the High-Speed CAN bus,
demonstrating the lack of segmentation in the virtual CANs. These experiments
stimulated research in automobile security.

Koscher et al. [13] employed a custom CarShark CAN bus analyzer and
packet injection tool to perform experiments with stationary and moving auto-
mobiles. CarShark was used to sniff CAN frames and the message identifiers
were subsequently reverse engineered via fuzzing techniques. CAN messages
were then injected to control the radio, instrument cluster, engine components,
brakes, heating, ventilation and air conditioning, and body control module func-
tions. Denial-of-service attacks were successfully executed on the engine control
module of a stationary automobile. Several attacks were executed on a moving
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automobile, including sounding the horn, killing the engine and preventing the
automobile from restarting, and disabling the brakes. The experiments demon-
strated that a malicious actor with physical CAN bus access could wreak havoc
on stationary and moving automobiles.

Hoppe et al. [12] describe experiments involving a CAN testbed with an
electric window lift, instrument cluster, automobile gateway, warning lights and
airbag control system. They used a laptop connected to the testbed via the OBD-
II interface to directly access the CAN. Fabricated messages were transmitted
from the laptop to tamper with various CAN systems.

Checkoway et al. [6] demonstrated several remote exploits that leveraged
automobile mechanic tools, media interfaces and wireless communications. In
particular, they used the OBD-II interface and infotainment system to obtain
indirect physical network access, and Bluetooth and cellular channels to access
automobile systems. The research demonstrated that the attack surface expands
considerably as an automobile becomes more connected.

Valasek and Miller [24] leveraged custom tools to interact with automobile
networks in a 2010 Ford Escape and 2010 Toyota Prius. The automobiles were
targeted by connecting a laptop to the OBD-II interfaces. CAN messages were
captured and replayed. Also, messages were modified and injected to control the
behavior of the automobiles.

Valasek and Miller [25] also demonstrated physical and remote attacks on a
2014 Jeep Cherokee. They targeted its Harman Kardon Uconnect infotainment
system that bundles Wi-Fi connectivity, navigation, apps and cellular commu-
nications. Specifically, they gained physical access to the infotainment system
via a USB connection and were able to jailbreak the system. Next, they gained
remote access to the telematics system and exploited it by leveraging an open
diagnostics port in the CAN. Using the diagnostics port access, they uploaded
modified firmware to the microcontroller connected to the CAN. The resulting
direct access to the High-Speed and Low-Speed CAN buses enabled them to send
commands to several critical systems. A viral video [8] shows Valasek and Miller
remotely turning on the air conditioner of a moving Jeep Cherokee, activating
wiper fluid release and even disabling the brakes. The research of Valasek and
Miller led Fiat Chrysler to recall 1.4 million automobiles in 2015 [16].

4 Related Work

This section discusses LSTM networks and their applications to CAN attack and
anomaly detection.

4.1 LSTM Networks

Creating an anomaly-based detection model for automobile CANs requires a
neural network that can learn normal network traffic patterns. This research
employs a type of recurrent neural network called a long short-term memory
(LSTM) network.
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Fig. 2. LSTM cell.

A recurrent neural network comprises connected artificial neurons called cells.
Each cell processes inputs using a mathematical function and produces outputs
that are sent as inputs to other connected cells. Learning is built into the recur-
rent neural network cell in the form of a feedback loop [5]. The loop enables
information to be passed to the next iteration (time step) of the network loop.

Unfortunately, traditional recurrent neural networks can only learn short
patterns. As data propagates through a recurrent neural network, information
about older data is discarded. This is problematic when attempting to construct
a model that attempts to learn long sequences [7]. Traditional recurrent neural
networks have trouble learning patterns in applications such as speech recogni-
tion, language translation and network traffic analysis.

Hochreiter and Schmidhuber [10] introduced LSTM networks to address the
long-term memory limitation of traditional recurrent neural networks. Their
design uses gates within cells that allow certain data to flow through cells. Each
cell also has a long-term state called the cell state and a short-term state called
the hidden state. These innovations enable an LSTM network to learn patterns
with long sequences.

Figure 2 shows a single LSTM cell. All the cell inputs and outputs are vectors.
At time step t, input x(t) and the previous hidden state h(t − 1) are fed to
the cell, which outputs y(t) and the updated hidden state h(t). The horizontal
line on the top of the cell (running between c(t − 1) and c(t)) denotes the cell
state, which gives the LSTM cell its long-term memory capability. In an LSTM
network implementation, the cell state runs through an entire chain of cells and
is updated as needed. Information is added to and removed from the cell state
using gates. A cell has three types of gates, forget gate, input gate and output
gate:

– Forget Gate: A forget gate decides how much information in inputs x(t) and
h(t − 1) is discarded from the cell state. The output updates the cell state.

– Input Gate: An input gate decides how much information from inputs x(t)
and h(t − 1) is added to the cell state. The output is added to the cell state.
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– Output Gate: The output gate decides how much information should be
read from the cell inputs and cell state, and produces the cell outputs h(t)
and y(t). The output yields the cell outputs h(t) and y(t).

The cell state enables an LSTM cell to store important inputs for a period of
time. The forget gate in an LSTM cell determines how much information should
be discarded. The input gate enables an LSTM cell to learn the important inputs.
The output gate produces the LSTM outputs at a specific time step.

An LSTM cell is the fundamental building block of an LSTM network. Each
layer in an LSTM network contains tens to hundreds of LSTM cells. The number
of layers in an LSTM network depends on the complexity of the problem.

4.2 Attack and Anomaly Detection

Several researchers have employed LSTM networks to detect attacks and anoma-
lies in automobile CANs. The approaches differ in their LSTM model architec-
tures and features used to detect attacks and anomalies.

Taylor et al. [23] were the first to employ an LSTM model to detect attacks
leveraging CAN message data field values. An LSTM model was trained to pre-
dict data in the next message corresponding to a given CAN identifier. The
trained model recognized fabricated CAN messages as anomalous and indicators
of attacks.

Zhu et al. [28] developed a multi-dimensional LSTM model for detecting
anomalies in CANs. They combined the values in the CAN timestamp and data
fields to produce samples with a single feature that were used to train an LSTM
model to identify anomalous CAN traffic. The trained model was positioned in
a mobile edge computing server to collect and analyze CAN traffic.

Xiao et al. [26] developed a convolutional LSTM model to examine spa-
tiotemporal relationships in CAN traffic. The model was trained using samples
with CAN timestamp and data field values. Correlation coefficients between
predicted data and real data were computed. A specific range of correlation
coefficient values indicated anomalous behavior. Tariq et al. [22] also developed
a convolutional LSTM model for predicting normal and abnormal CAN message
sequences. Their model is similar to the model of Xiao et al. [26], but it focused
on transfer learning, which enabled it to detect novel attacks based on knowledge
about previously-seen attacks.

Yang et al. [27] developed an LSTM model to learn the fingerprints of analog
CAN signals emanating from ECUs. Their approach differed from others in that
it examined CAN message fields. The LSTM model, which was trained using
analog CAN signals from ECUs as they processed messages, was implemented
using field-programmable gate array hardware for real-time detection.

Hanselmann et al. [9] developed an unsupervised anomaly-based intrusion
detection system using LSTM models. An LSTM model was assigned to each
CAN identifier and each model was trained to learn the temporal features asso-
ciated with its CAN identifier. The outputs of all the LSTM models were input
to an autoencoder, which produced an anomaly score.
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Sun et al. [21] developed a convolutional LSTM model with attention for
anomaly-based detection in CANs. The model incorporated a one-dimensional
convolution layer for feature extraction and a bidirectional LSTM layer for time
characteristic learning in the forward and backward directions. The model was
trained using analog CAN signals instead of CAN message fields. Anomaly-based
detection was tested on a scaled-down CAN with three ECUs.

Aldhyani and Alkahtani [1] developed a convolutional LSTM model for clas-
sifying attacks on automobile CANs. The model, which was trained using CAN
message timestamp, identifier, data length and data fields, classified CAN traffic
as spoofing, flooding, replay or benign.

Several research efforts have trained LSTM models to learn traffic sequence
patterns using the CAN message identifier and data fields, but not the time-
stamp field. Four efforts stand out as exceptions. Hanselmann et al. [9] focused
on learning temporal features of CAN identifiers, but they developed an LSTM
model for each CAN identifier, which resulted in a large system. Xiao et al. [26]
considered the CAN message timestamp field in addition to other fields, but
little information is provided about their implementation. Zhu et al. [28] com-
bined one-bit timestamp and 64-bit data fields. Aldhyani and Alkahtani [1] also
combined the timestamp with other features.

Most of the related research efforts did not focus on live systems that mon-
itored CANs in operating automobiles. Three efforts are exceptions. Yang et
al. [27] implemented their model using field-programmable gate array hardware
for real-time detection. Zhu et al. [28] proposed a mobile-edge computing archi-
tecture for real-time detection. However, neither Yang et al. nor Zhu et al. tested
their systems on live CAN traffic. The work of Sun et al. [21] stands out because
their model was tested on an automobile CAN, although it incorporated only
three ECUs.

The anomaly-based CAN attack detection approach described in this work
advances previous research by focusing on message timing in live automobile
CAN traffic. An unsupervised machine learning framework is employed to train
LSTM models to recognize normal CAN traffic patterns based on the timestamp
and identifier fields. The resulting LSTM models identify mistimed CAN mes-
sages as attack indicators. Other unique features of the approach are real-time
attack detection in operating automobiles and adaptability to multiple automo-
bile CANs.

5 Attack Detection Design Framework

The attack detection design framework covers the five steps in the machine
learning workflow: data collection, data preprocessing, model development and
training, model testing, and model enhancement and deployment.

5.1 Data Collection

Tens of thousands of CAN data samples are required to develop LSTM networks
for detecting attacks in automobile CANs. During the research, CAN data was
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Fig. 3. Sample CAN log file.

collected by connecting a Raspberry Pi with a PiCAN interface board to the
monitored CAN bus and logging the data.

The Raspberry Pi device captured CAN traffic logs. The can-utils pack-
age, specifically its candump utility [20], facilitated the logging of CAN messages.
The Raspberry Pi was set up with the can0 SocketCAN interface. SocketCAN
provides CAN drivers as network devices in a Linux operating system [20]. Appli-
cation access to the CAN bus was enabled by a network socket programming
interface. The can0 interface provided direct access to the connected automobile
CAN bus.

The CAN log files were saved to Google Drive for data preprocessing. Figure 3
shows a sample CAN log file. Each row depicts a single message broadcasted on
the connected CAN bus. The first column lists the timestamps, the absolute
times connected to the Raspberry Pi system clock. The second column lists
the can0 interface. The third column specifies the CAN message identifiers and
associated data. The CAN message identifier is the hexadecimal string to the
left of the hash symbol and the data field is the hexadecimal string to the right
of the hash symbol. The data field size is between one and eight bytes.

5.2 Data Preprocessing

CAN log data must be preprocessed before it can be used for training and
testing. The CAN message timestamp and identifier were selected as features
for developing LSTM network models. The feature values are shown in the first
column and the left half of the third column in Fig. 3. The CAN data field was not
used because attack detection focuses on the timing patterns of CAN messages.

The pandas Python library was primarily used for data preprocessing [17].
The library uses high-level data structures called DataFrames and various meth-
ods to simplify data conversion. A DataFrame is a tabular data structure with an
ordered collection of columns, potentially with different types. Several built-in
methods were employed to manipulate DataFrames during data preprocessing.
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The CAN log file was read and the feature data was stored in a pandas
DataFrame using the read_csv method. Only the CAN message timestamp and
identifier features were considered in this research. The timestamp feature was
converted from a string to numeric value using the to_numeric method.

The LSTM networks were trained using Δ timestamp values corresponding
to CAN identifiers. A Δ timestamp value denotes the frequency at which a CAN
identifier is transmitted on a CAN bus. The composite groupby(df.ID).diff
method computes the difference between the current and previous timestamps
of a given CAN identifier. The difference value replaces the timestamp in the
timestamp column in the DataFrame. Because there is no previous timestamp
before the first row of a respective CAN identifier, null values are stored in the
first differenced rows. The dropna method eliminates rows with null values from
the DataFrame.

After the data is loaded in a DataFrame, groups of CAN messages must be
binned into smaller DataFrames based on the frequency of CAN identifiers. This
is necessary because of potential biasing in a machine learning model. Specifi-
cally, CAN message identifiers that appear more frequently in a log file induce
bias during model training. Biasing causes a model to make incorrect assump-
tions, which hinders effective machine learning [7].

The k-means clustering algorithm [15] was used to place CAN messages into
bins based on their frequency. The algorithm was selected because it quickly
and efficiently clusters datasets [7]. The k-means algorithm clustered the data
samples into bins based on the timestamp feature in a loaded DataFrame. A
separate DataFrame was subsequently created for each bin.

Figure 4 shows an example of the binning process. A DataFrame is accepted
as input to the k-means clustering algorithm. Three bins are generated as outputs
by the algorithm. The highest frequency messages are stored in Bin 0, medium
frequency messages in Bin 1 and lowest frequency messages in Bin 2. Each bin
is treated separately throughout the rest of the design process and a separate
LSTM model is trained using each bin.

Feature data is required to be in a numeric format [5]. However, the CAN
identifier feature values are hexadecimal strings that correspond to categorical
data (i.e., labels that describe their semantics). Therefore, the CAN identifiers
were converted to numeric values using an integer encoding that gives a unique
integer value to each CAN identifier. Conversions of timestamp feature values
were not required because timestamps have a numeric format.

Feature data must be scaled [5]. This was accomplished by normalizing the
numeric CAN identifier feature values between zero and one. The timestamp
feature values were rescaled so that the mean of the values was zero and standard
deviation was one. This was done because the timestamp feature values had a
well-behaved mean and standard deviation. The CAN identifier feature values
did not have this property, which is why they were normalized.

The data conversion process invokes the LabelEncoder, MinMaxScaler and
StandardScaler methods in the Scikit-Learn library [7]. The input is the Data-
Frame with the CAN timestamp and identifier features. The CAN identifier
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Fig. 4. Binning process.

feature values are encoded as integers and subsequently normalized. Finally,
the CAN timestamp feature values are standardized to produce the converted
DataFrame.

Note that the encoder objects created during data conversion must be saved
for future use. This is because all data input to the attack detection system must
be encoded and scaled in the same format.

LSTM networks require three-dimensional data [7]. Therefore, the final data
preprocessing step converts the data to a batch of sequences in three dimensions,
batch size, time step and input dimensionality:

– Batch Size: The batch size is the number of CAN message sequences input
to an LSTM network. When training a machine learning model, the batch
size is of the order of tens to hundreds of thousands of sequences.

– Time Step Size: The time step is the window size used to train an LSTM
network. It represents the memory of an LSTM network – given n time steps,
the LSTM network is trained to remember the previous n observations.

– Input Dimensionality: The input dimensionality is the number of features
used to train an LSTM network. Two features, CAN message timestamp and
identifier, are employed to develop the LSTM-based attack detection system
in this dissertation research.

Figure 5 shows an example of the sequence creation process. In the example,
the time step is five, number of samples is seven and number of features is two.
The process employs a sliding window approach, where the time step window
moves across the rows of the dataset. Sequence 0 takes the first five samples
shown in gray. Sequence 1 moves down one row and takes the next five samples.
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Fig. 5. Sequence creation process.

Sequence 2 moves down another row and takes the next five samples. The input
dimensionality in this example is 3× 5× 2, which is fed to an LSTM network.

5.3 Model Development and Training

The CAN network attack detection model employs LSTM networks with autoen-
coder architectures. The LSTM network layers capture temporal relationships
between CAN message timestamp and identifier features. The autoencoder archi-
tectures capture dense representations of the training data.

An autoencoder learns to copy inputs to outputs using data compression and
reconstruction [7]. Specifically, it uses data compression and reconstruction to
learn the important characteristics of data. Given CAN data, an autoencoder
learns normal CAN traffic patterns.

An autoencoder incorporates an encoder and decoder. The encoder com-
presses the input data to a fixed-sized vector with less dimensionality. The
decoder reconstructs the data from the fixed-size vector of less dimensionality
to produce an output. A well-trained autoencoder produces output values close
to its input values. However, due to network constraints and data complexity,
training an autoencoder is not a trivial task. The autoencoder must learn effi-
cient ways to represent the training data in order to have its outputs resemble
its inputs.

Figure 6 shows an LSTM network with an autoencoder architecture. The
architecture has two LSTM layers, a repeat vector layer and a time distributed
layer.

The first LSTM layer is the encoder. This layer accepts the input with a time
step of 15 and input dimensionality of two. It is designed for an arbitrary batch
size as input, so the batch size is labeled none. The layer outputs a compressed
feature vector of size 1× 30.

The repeat vector layer serves as the bridge between the encoder and
decoder [19]. The layer accepts a feature vector of size 1 × 30 as input and
replicates it 15 times. It outputs a 15 × 30 vector that is input to the second
LSTM layer.

The second LSTM layer is the decoder layer, which reconstructs the encod-
ing [19]. The layer accepts a 15×30 vector as input and outputs a reconstruction
of the encoding with size 15× 30.
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Fig. 6. LSTM network with an autoencoder architecture.

The time distributed layer converts the reconstructed output to the same
size as the input. It creates a 30 × 2 output with input dimensionality of two.
The output of the second LSTM layer (15 × 30) is matrix-multiplied with the
output of the time distributed layer (30× 2). The resulting output size of 15× 2
is the same as the input size.

After an LSTM network is constructed, the model must be compiled and
fitted. The compilation process, which is a pre-fitting step for the model, converts
the sequences of layers in Fig. 6 to matrix transforms that can be executed on
central processing units (CPUs), graphics processing units (GPUs) or tensor
processing units (TPUs) [5].

A constructed LSTM model is compiled using the optimizer and loss function
parameters. The optimizer is an algorithm that updates the model weights during
training. Adaptive moment estimation, a popular optimization algorithm due to
its overall performance [5], was employed. Additionally, the algorithm does not
require constant tuning.

The loss function determines the performance of an LSTM model. Since a
model predicts numerical values based on given input, it attempts to solve a
regression problem. The mean-squared error (MSE) loss function employed is
given by:

MSE loss =
n∑

i=1

(xi − yi)2

n

where xi is the model input, yi is the predicted model output and n is the number
of data samples over which the loss is computed.

An LSTM model is fitted after the compilation step. This is the step where
the LSTM model is trained. To solve the regression problem, training data is fed
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to the model and the weights are adjusted to make the model fit the training
data to the desired extent [5].

The following command from the Keras ML library [7] fits a constructed
LSTM model:

model.fit(x, y, epochs=20, batch_size=15, validation_split=0.2)

where x is the preprocessed input training data and y is the expected output.
This is equivalent to an autoencoder architecture because the model is trained
to make the outputs close to or equal to the inputs.

An epoch corresponds to one pass through the entire training dataset. The
batch size specifies how many samples the model processes before the weights
are updated.

The validation split holds out a portion of the training data to create the val-
idation dataset. The model.fit command holds out 20% of the training data for
validation to improve the problem generalization ability of the LSTM model [7].
The validation dataset is used during the training phase to tune the model.

Model learning curves created during training provide visual indications of
how the LSTM model is learning [5]. The learning curves plot the MSE losses
with the training and validation datasets during model training. Most well-
trained models have curves with exponential decays. Training must be termi-
nated when the training and validation curves taper off because overtraining
can cause problems. It is also important to repeat the training process multi-
ple times to verify that the model works well. Neural networks are stochastic,
meaning that different predictions are made when the same model is trained on
the same data over multiple runs [5].

Data pertaining to a trained model is saved in two files for use in the final two
steps of the machine learning workflow, model testing, and model enhancement
and deployment. The model architecture is saved in a JSON file. The model
weights are saved in an HDF5-formatted file.

5.4 Model Testing

A trained model is tested and verified using unseen CAN data. Data in the
testing dataset is preprocessed in the exact same way as the training data in
order to enhance accuracy.

Table 1 shows the files created for model testing that are subsequently
updated after model enhancement. The model architecture and weights are
loaded from the saved JSON and HDF5 files. The encodings as well as the
standardizing and normalizing parameters are loaded from the saved PKL files.

The maximum MSE loss during testing is computed as follows. Each test
data sequence passes through the LSTM model and an output sequence is gen-
erated. The MSE loss is computed between the input and output sequences.
The maximum MSE loss is output at the end of the loop. A model with good
generalization ability has a low maximum MSE loss, similar to the MSE loss of
the training data.
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Table 1. Files created for model testing and updated after model enhancement.

File Description

model.json Stores the model architecture
weights.h5 Stores the model weights
standardizeScaler.pkl Stores the standardizing parameters

for the timestamp feature
labelEncoder.pkl Stores the integer encodings of the

CAN identifier feature
normalizeScaler.pkl Stores the normalizing parameters

for the CAN identifier feature

Fig. 7. Attack detection system configuration.

5.5 Model Enhancement and Deployment

A trained and tested LSTM model can always be enhanced. Model enhance-
ment starts with the LSTM model files produced after testing and proceeds
to update the LSTM model files for deployment in a production environment.
Model enhancement and deployment require updated versions of the files used
for testing (Table 1).

6 Real-Time Attack Detection System

This section describes the deployment of the LSTM models in the real-time CAN
attack detection system.

6.1 System Configuration

The attack detection system leverages a server-client configuration on a mon-
itored automobile CAN bus. This configuration eliminates the need to have a
large system connected to the CAN bus and supports remote attack detection.
The attack detection system uses commercial off-the-shelf components.

Figure 7 shows the attack detection system configuration. The server is con-
nected to the monitored CAN bus. The server and client are connected via a
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Wi-Fi network. The client processes CAN data received from the server and
presents attack statistics.

Server Configuration. The server is an embedded system that is designed to
connect to an automobile CAN bus. The embedded hardware was chosen for its
lightweight, powerful computing and low cost features.

The server executes on a Raspberry Pi 4 Model B running the 64-bit Rasp-
berry Pi OS Lite. The Raspberry Pi incorporates a PiCAN3 board, which con-
tains an MCP2562 CAN transceiver, MCP2515 CAN controller and 3A switch
mode power supply board. The Raspberry Pi is mounted inside the automobile
to be monitored for CAN attacks.

Client Configuration. The client is a rack-mounted computer workstation
located outside the automobile being monitored. The workstation was selected
to provide the computational resources and processing speed needed for real-
time attack detection. The client executes on a Macintosh Pro Rack version
2019 running an Ubuntu virtual machine. The virtual machine is used for all
client command and control.

6.2 System Processes

Real-time attack detection involves CAN message logging, processing and pre-
diction. Python scripts were written for the server and client to implement the
necessary tasks.

Server Process. The server is responsible for receiving CAN messages, storing
the messages in queues and handling client message requests. CAN messages are
split into queues depending on the number of LSTM models trained for the CAN
bus. A queue is reserved for each LSTM model (bin) created during the model
training phase. The server transmits CAN messages from relevant queues upon
requests from the client. The server process includes the CAN message handling
subprocess and client handling subprocess.

The CAN message handling subprocess determines the number of bins and
the CAN messages that go in the bins. Each bin corresponding to an LSTM
model contains the CAN identifiers associated with a queue. The server listens
for messages on the CAN bus. When a CAN message is received, the difference
between the timestamp of the current message and previous message with the
same CAN identifier is computed. Following this, the CAN message is placed in
the appropriate queue.

The client handling subprocess handles the queues generated by the CAN
message handling subprocess. The server listens for a message request from the
client. When a request is received from the client, the server parses the request to
determine the number of requested messages and the queue in which they exist.
If the number of messages requested is greater than the number of messages
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in the queue, the server waits for the queue to hold the requested number of
messages. The server then sends the requested messages to the client.

The CAN message and client handling subprocesses operate concurrently.
This ensures that no CAN messages or message requests are dropped. The queues
contain data that is shared by the CAN message handling and client handling
subprocesses.

Client Process. The client is responsible for examining the received CAN mes-
sages and detecting attacks. First, the client requests a set of messages from the
server. After receiving the messages, the client preprocesses the messages and
feeds them to the appropriate LSTM model. The LSTM model compresses and
reconstructs the messages, and computes the mean-squared error. The client pro-
cess includes the client message requesting and message prediction subprocesses.

An attack detection system user specifies the number of iterations of requests
at client startup. The client message requesting subprocess sends a request to
the server that includes the number of messages requested and LSTM model
(bin number) for processing the messages. The number of requested messages is
equal to the time step in the corresponding LSTM model.

Messages received from the server are encoded and scaled for input to the
LSTM model. This is an important step because all the messages have to be
encoded and scaled in exactly the same manner as the training data. The encod-
ing and scaling files saved after LSTM model training are processed to pro-
duce tensors of transformed data. A tensor is a three-dimensional vector of size
batch size × time step × input dimensionality. The batch size is one, the time
step is dependent on the LSTM model and the input dimensionality is two (CAN
timestamp and identifier features). The tensor is placed in a shared data queue
for the client message prediction subprocess.

An attack detection system user may specify the number of iterations
required for attack prediction at client startup. Alternatively, the client message
prediction subprocess can run continuously. The client message prediction sub-
process receives a tensor of messages from the shared queue. The tensor is passed
to the appropriate LSTM model and returns a reconstructed tensor. Finally, the
client message prediction subprocess computes the MSE loss between the input
and output tensors.

The client message requesting and prediction subprocesses execute concur-
rently to support real-time attack detection. The tensor queue is shared by the
two subprocesses.

6.3 Client Operation Modes

While the server has a single operation mode, the client has three modes, thresh-
old testing mode, attack detection mode and default execution mode:

– Threshold Testing Mode: This mode enables an attack detection system
user to determine the appropriate MSE loss threshold for detecting attacks.
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The client executes thousands of iterations. Upon completing the iterations,
statistics are printed for a user to determine an appropriate MSE loss thresh-
old for attack detection.

– Attack Detection Mode: This mode is used for attack detection statistics
generation after threshold testing. An attack is indicated when the MSE loss
value is greater than the set threshold. The attack detection statistics include
the true-positive, false-positive, true-negative and false-negative error rates.

– Default Execution Mode: This mode alerts an attack detection system
user to attacks. It does not print attack detection statistics.

Multiple client processes must execute concurrently to analyze all the mes-
sages transmitted on a CAN bus. A separate client process executes for each
LSTM model used in attack detection. A bash script initiates a client process
for each model. The client processes leverage the central processing unit cores
on the Macintosh Pro workstation to run the LSTM models concurrently.

7 Experimental Testbeds and Results

This section describes the experimental testbeds and the results of evaluating
the performance of the real-time attack detection system.

7.1 Experimental Testbeds

Two experimental testbeds were employed to evaluate the performance of the
real-time attack detection system for CANs, a 2010 Toyota Prius testbed and a
fully-operational 2014 Toyota Prius automobile.

2010 Toyota Prius Testbed. Figure 8 shows the 2010 Toyota Prius testbed.
The testbed comprises a CAN test bench with ECUs and a Raspberry Pi attack
device (mounted on the wooden board on the table), a black Raspberry Pi server
for attack detection (just to the left of the test bench on the table) and a Macin-
tosh Pro Rack version 2019 client running an Ubuntu 22.04 LTS virtual machine
using VMware Fusion 12 Pro (on the floor).

The test bench comprises a CAN bus connecting four ECUs from a wrecked
2010 Toyota Prius. The ECUs include the smart key, transmission control, power
management control and instrument cluster modules. The accelerator pedal and
gear shift mechanism are connected to the power management control and trans-
mission control modules. The Raspberry Pi on the bottom-left of the testbed is
the attack device. The black Raspberry Pi just to the top-left of the test bench is
the attack detection server. The Raspberry Pi attack device and the Raspberry
Pi attack detection server are connected directly to the High-Speed CAN bus in
the testbed.

Table 2 specifies the 2010 Toyota Prius test bench LSTM model architecture.
The architecture comprises four LSTM models trained to analyze the message



Real-Time Attack Detection in Automobile Controller Area Networks 241

Fig. 8. 2010 Toyota Prius testbed.

timing patterns of the 28 CAN message identifiers listed in the table. Four mod-
els were constructed for the 28 CAN message identifiers to prevent model bias
towards higher frequency identifiers. CAN message identifiers 612, 613, 616, 619
and 61A were not included due to their low transmission frequencies.

The time step specifies the memory window used by an LSTM model. The
LSTM cell configuration corresponding to each model specifies the number of
cells used in the LSTM encoder and decoder layers. Each LSTM model has a
repeat vector layer between the LSTM encoder and decoder layers, and a time-
distributed layer positioned after the LSTM decoder layer. The epochs and batch
sizes used for training the LSTM models are also listed.

2014 Toyota Prius Automobile. A fully-operational 2014 Toyota Prius auto-
mobile with all the connected ECUs was also employed in the experimental eval-
uation. Figure 9 shows the Raspberry Pi attack device located below the steering
column (left) and the Raspberry Pi server for attack detection located on the
center console (right). The attack device is connected directly to the High-Speed
CAN bus via the OBD-II diagnostics interface whereas the server is connected to
the High-Speed CAN bus via the twisted pair. The Macintosh Pro Rack version
2019 in the 2010 Toyota Prius testbed is also used as the attack detection client
for this testbed.
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Table 2. 2010 Toyota Prius testbed LSTM model architecture.

LSTM Model CAN Identifiers Time
Step

Cell
Config.

Epoch Batch
Size

0 127, 245, 247 5 10–10 5 5
1 3F9, 6C0, 45C, 45F,

442, 44D
10 20–20 10 10

2 4A8, 499, 49A, 49B,
49D, 3B3, 610

10 20–20 10 10

3 630, 632, 633, 635,
399, 3BB, 3BC, 4A6,
421, 3B6, 611, 3BD

15 30–30 20 15

Fig. 9. Attack device (left) and attack detection server (right).

Table 3 specifies the 2014 Toyota Prius automobile LSTM model architec-
ture. The architecture comprises six LSTM models trained to analyze the mes-
sage timing patterns of the 79 CAN message identifiers listed in the table. Six
models were constructed for the 79 CAN message identifiers to prevent model
bias towards higher frequency identifiers. CAN message identifiers 383, 381, 382,
3B6, 612, 613, 616, 619 and 61A were not included due to their low transmission
frequencies.

The time step corresponds to the memory window used by an LSTM model.
The LSTM cell configuration corresponding to each LSTM model specifies the
number of LSTM cells used in the LSTM encoder and decoder layers. Each
LSTM model has a repeat vector layer between the LSTM encoder and decoder
layers, and a time-distributed layer positioned after the LSTM decoder layer.
The epochs and batch sizes used for training the LSTM models are also listed.
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Table 3. 2014 Toyota Prius automobile LSTM model architecture.

LSTM
Model

CAN Identifiers Time
Step

Cell
Config.

Epoch Batch
Size

0 0AA, 127, 020, 025, 024, 245, 260,
1C4, 224, 247, 230, 0B4, 235

15 30–30 10 15

1 1AA, 32A, 320, 0B6, 262, 361, 351 10 20–20 15 10
2 6C0, 3F9, 394, 3B7, 620 5 10–10 20 5
3 63B, 4A0, 4A1, 4A2, 610, 4A8, 499,

49A, 49B, 49D, 4A7, 498, 49C, 3B3,
3D3

20 40–40 50 20

4 44D, 45C, 45F, 440, 442, 443 10 40–40 50 10
5 4A6, 4C1, 3B0, 626, 611, 3B1, 420,

4C8, 423, 621, 622, 624, 638, 639,
680, 3B9, 4C3, 3BC, 38E, 4C7, 387,
4C6, 38F, 4DD, 3BD, 3BB, 630, 399,
632, 421, 42F, 633, 635

35 200–200 100 35

All the parameters are the same as those used in the LSTM models for the 2010
Toyota Prius testbed.

Test Environment

Figure 10 shows the test environment. The attack device and attack detection
server are connected to the monitored CAN bus. The client and server are
connected via a Wi-Fi network. During testing, random synthetic attacks were
injected by the attack device into the monitored CAN bus.

The synthetic CAN message injection process implemented by the attack
device executes for a duration specified in seconds. This process chooses a ran-
dom CAN message identifier from a specified bin. If no bin number is specified,
then the process chooses a bin at random to obtain a CAN message identifier.
The attack device injects the CAN message identifier along with a flag that
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Fig. 10. Test environment.

indicates the absolute truth corresponding to an attack. At this point, the pro-
cess displays that a particular message was injected along with the bin associated
with its identifier. The process then waits for a randomly-generated time in sec-
onds between a specified lower bound and an upper bound.

Table 4. Attack detection data.

MSE Loss
Above Threshold

Flag Set Result

Yes Yes TP
Yes No FP
No No TN
No Yes FN

The attack detection system uses the attack detection mode to raise alerts
about attacks and collect historical real-time attack data. Table 4 shows the
results generated by the attack detection system for High-Speed CAN message
sequences. A true positive (TP) output is received when the MSE loss is above
the set threshold and a CAN message is received with an attack flag set. A false
positive (FP) output is received when the MSE loss is above the set threshold and
a CAN message is received with no attack flag set. A true negative (TN) output
is received when the MSE loss is below the set threshold and a CAN message is
received with no attack flag set. A false negative (FN) output is received when
the MSE loss is below the set threshold and a CAN message is received with an
attack flag set. When the attack detection system is terminated, the historical
real-time attack data is presented to the user.

Note that error propagation often occurs when an attack message is injected.
Specifically, when an attack occurs, two message sequences that result in MSE
loss above the set threshold are received. The first corresponds to the attack
message sequence (true positive) and the second is the next message sequence,
which is recognized as part of the attack.
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7.2 Experimental Results

This section presents the real-time attack detection results. The true positive,
false positive, true negative and false negative detection values are used to com-
pute the attack detection performance metrics.

Performance Metrics. Five metrics are employed to characterize attack detec-
tion system performance, precision, sensitivity, specificity, accuracy and F1 score.

The precision metric P describes how well LSTM models detect actual attacks
relative to the total number of predicted attacks:

P =
TP

TP + FP

The sensitivity (recall) metric Se describes the ability of LSTM models to
correctly determine attacks:

Se =
TP

TP + FN

The specificity metric Sp describes how well LSTM models recognize normal
activity without attacks:

Sp =
TN

TN + FP
The accuracy metric A describes how well LSTM models can determine all

observations correctly:

A =
TP + TN

TP + TN + FP + FN

The F1 score metric is the harmonic mean of precision and sensitivity (recall):

F1 =
TP

TP + 1
2 (FP + FN)

While it is desirable for all five metrics to be high during testing, sensitivity
and accuracy are the principal metrics for evaluating LSTM models. This is
because it is most important that LSTM models detect as many attacks as
possible with high accuracy.

2010 Toyota Prius Testbed Attack Detection Results. Real-time attack
testing was conducted on the 2010 Toyota Prius testbed. During the one-hour
test, the attack device injected CAN message identifiers at random (28 different
identifiers). The tests evaluated the four LSTM models concurrently using the
specified MSE loss thresholds.

Table 5 shows the precision, sensitivity, specificity, accuracy and F1 score for
each LSTM model. All the LSTM models, except for LSTM Model 0, achieved
the maximum precision, sensitivity, specificity, accuracy and F1 score. LSTM
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Table 5. 2010 Toyota Prius testbed concurrent test results.

LSTM
Model

MSE Loss
Threshold

Messages
Analyzed

Attacks
Injected

Attacks
Detected

P Se Sp A F1

0 0.005 490,015 192 192 0.985 1.000 1.000 1.000 0.992
1 0.300 62,890 209 209 1.000 1.000 1.000 1.000 1.000
2 1.000 50,770 174 174 1.000 1.000 1.000 1.000 1.000
3 1.000 44,010 205 205 1.000 1.000 1.000 1.000 1.000

Model 0 generated three false positives, which reduced its precision and F1 score.
Accuracy and specificity were affected negligibly due to the small number of false
positives. LSTM Model 0 achieved the maximum sensitivity.

The MSE loss threshold for LSTM Model 0 could be increased to reduce the
number of false positives. Also, the model could be improved by model tuning
and retraining, or model restructuring. Overall, the four models were able to
distinguish between normal CAN traffic and attack traffic with the 28 CAN
message identifiers.

2014 Toyota Prius Automobile Attack Detection Results. Four tests
were conducted on the 2014 Toyota Prius automobile. The first and second tests
evaluated the six LSTM models concurrently for half-hour periods. These two
real-time tests involving CAN attacks were performed when the automobile was
stationary for safety and network configuration reasons.

The third real-time test evaluated the six LSTM models concurrently when
the automobile was moving forward and reversing. The fourth test, which was not
performed in real time, evaluated the six LSTM models separately under normal
driving conditions. No attacks were launched during the third and fourth tests
for safety reasons.

Table 6 shows the results of the first test, which evaluated all six LSTM mod-
els executing concurrently. During the half-hour test, the attack device injected
CAN message identifiers selected at random (79 different identifiers). The concur-
rency test evaluated the six LSTM models using the specified MSE loss thresh-
olds. The precision, sensitivity, specificity, accuracy and F1 score are presented
for each LSTM model.

In the first test, LSTM Model 0 generated 121 false positives, which reduced
its precision, specificity, accuracy and F1 score. Note that the precision (0.142)
and F1 score (0.248) are very low. This is due to the decreased rate of true posi-
tives caused by the attack device selecting identifiers from random bins instead of
identifiers only from the bin associated with LSTM Model 0. Nevertheless, LSTM
Model 0 yielded good attack detection accuracy of 0.997. The model achieved
maximum attack detection sensitivity at the cost of detecting false positives.

LSTM Models 2 and 4 generated six and two false positives, respectively,
which reduced their precision, specificity, accuracy and F1 scores. However, the
models achieved the maximum sensitivity. LSTM Models 1, 3 and 5 achieved
the maximum precision, sensitivity, specificity, accuracy and F1 scores.
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Table 6. 2014 Toyota Prius automobile concurrent test results (Run 1).

LSTM
Model

MSE Loss
Threshold

Messages
Analyzed

Attacks
Injected

Attacks
Detected

P Se Sp A F1

0 0.025 707,520 20 20 0.142 1.000 0.997 0.997 0.248
1 0.250 256,620 48 48 1.000 1.000 1.000 1.000 1.000
2 0.500 31,415 43 43 0.878 1.000 0.999 0.999 0.935
3 0.450 55,220 42 42 1.000 1.000 1.000 1.000 1.000
4 0.300 18,420 45 45 0.978 1.000 0.999 0.999 0.989
5 0.100 60,655 46 46 1.000 1.000 1.000 1.000 1.000

Overall, LSTM Models 1 through 5 were able to distinguish between nor-
mal CAN traffic and attack traffic with the 79 CAN message identifiers. LSTM
model 0 achieved high accuracy for attack detection, but it generated several
false positives. The MSE loss threshold for LSTM Model 0 could be increased in
an attempt to reduce the number of false positives. Also, LSTM Model 0 could
be improved with model tuning and retraining, or model restructuring.

Table 7. 2014 Toyota Prius automobile concurrent test results (Run 2).

LSTM
Model

MSE Loss
Threshold

Messages
Analyzed

Attacks
Injected

Attacks
Detected

P Se Sp A F1

0 0.025 703,800 19 19 0.158 0.864 0.998 0.998 0.268
1 0.250 257,200 47 47 0.979 1.000 1.000 1.000 0.959
2 0.750 31,490 48 48 0.941 1.000 1.000 1.000 0.970
3 0.450 55,180 56 56 0.982 1.000 1.000 1.000 0.991
4 0.500 18,470 38 38 1.000 1.000 1.000 1.000 1.000
5 0.100 60,795 35 35 0.854 1.000 0.996 0.996 0.921

Table 7 shows the results of the second test with all six LSTM models exe-
cuting concurrently. During the half-hour test, the attack device injected CAN
message identifiers at random (79 different identifiers). The concurrency test
evaluated the six LSTM models using the specified MSE loss thresholds. The
precision, sensitivity, specificity, accuracy and F1 score were computed for each
LSTM model.

In the second test, LSTM Model 0 generated 101 false positives, which
reduced its precision, specificity, accuracy and F1 score. Note that its preci-
sion (0.158) and F1 score (0.268) are very low. This is due to the decreased
rate of true positives caused by the attack device selecting identifiers from ran-
dom bins instead of only identifiers from the bin associated with LSTM Model 0.
The model generated three false negatives, which reduced its sensitivity to 0.864.
However, LSTM Model 0 yielded good attack detection accuracy of 0.998 despite
the false positives.

LSTM Models 1, 2, 3 and 5 generated one, three, one and six false positives,
respectively, which reduced their precision and F1 scores. Specificity and accu-
racy were affected negligibly due to the small numbers of false positives. All four
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Table 8. 2014 Toyota Prius automobile forward/reverse motion test results.

LSTM
Model

MSE Loss
Threshold

Messages
Analyzed

Sp

0 0.025 40,680 0.998
1 0.250 13,910 0.999
2 0.750 1,635 0.997
3 0.450 3,340 1.000
4 0.500 1,170 1.000
5 0.100 60,795 0.772

models achieved the maximum sensitivity. LSTM Model 4 fared best, achieving
the maximum precision, sensitivity, specificity, accuracy and F1 score.

Overall, LSTM Models 1 through 5 were able to distinguish between nor-
mal CAN traffic and attack traffic with the 79 CAN message identifiers. LSTM
Model 0 achieved high accuracy for attack detection, but generated several false
positives. Because the model generated false positives and false negatives, adjust-
ing the MSE loss threshold would likely not improve its performance. However,
LSTM Model 0 could be improved with model tuning and retraining, or model
restructuring.

Although attacks could not be launched when the automobile was moving,
it was important to test the attack detection system under normal operating
conditions. Table 8 shows the results of the forward/reverse motion test. During
the two-minute test, the automobile moved forward ten feet and reversed ten
feet. Because no attacks were launched, only the specificity metric was computed
using the true negatives and false positives.

LSTM Models 0, 1, 2 and 5 generated five, one, one and 18 false positives,
respectively, negatively affecting their specificity. LSTM Models 3 and 4 achieved
the maximum specificity. Overall, the LSTM models were able to recognize nor-
mal CAN traffic. LSTM Model 5 likely yielded a lower specificity of 0.772 due
to CAN traffic interruptions when engaging the gear shift mechanism.

The final test involved the execution of the six LSTM models under normal
driving conditions. CAN traffic was logged while driving around campus and
the log file was input to the six LSTM models. Table 9 shows the results of
the normal driving test. Because no attacks were launched, only the specificity
metric was computed using the true negatives and false positives.

LSTM Models 0, 2, 3 and 5 generated 28, 1, 2 and 27 false positives, respec-
tively, which reduced their specificity. LSTM Models 1 and 4 achieved the max-
imum specificity. Overall, the six LSTM models were able to recognize normal
CAN traffic. Model 5 likely yielded a lower specificity of 0.892 due to CAN traffic
interruptions during normal driving conditions.
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Table 9. 2014 Toyota Prius automobile normal driving test results.

Model MSE Loss
Threshold

Messages
Analyzed

Sp

0 0.025 171,615 0.998
1 0.250 32,670 1.000
2 0.750 4,040 0.999
3 0.450 6,940 0.994
4 0.500 2,330 1.000
5 0.100 7,770 0.892

Potential Model Improvements. For the 2010 Toyota Prius testbed, pre-
cision ranged from 0.985 to 1.000, sensitivity, specificity and accuracy were a
perfect 1.000, and the F1 score ranged from 0.992 to 1.000. For the 2014 Toyota
Prius automobile, precision ranged from 0.142 to 1.000, sensitivity ranged from
0.864 to 1.000, specificity ranged from 0.772 to 1.000, accuracy ranged from 0.980
to 1.000, and the F1 score ranged from 0.248 to 1.000. The low precision and
F1 scores were due to high false positive to true positive rates in just the LSTM
Model 0 in the 2014 Toyota Prius automobile tests. Nevertheless, the attack
detection results are very good. Specifically, sensitivity ranged from 0.864 to
1.000 and accuracy ranged from 0.980 to 1.000 for the LSTM models in the 2014
Toyota Prius automobile tests. Sensitivity and accuracy are the most important
metrics because the LSTM models must recognize normal traffic and detect as
many attacks as possible with high accuracy.

LSTM model performance could be improved by reducing the false positives
and/or false negatives. One approach is to adjust the MSE loss threshold to
make the model more or less sensitive; this may be done using a trial-and-error
procedure or using a receiver operating characteristic (ROC) curve. Another
approach is to redesign the LSTM model or retrain it using additional data
and epochs, but this would be more time consuming than MSE loss threshold
adjustment. Alternatively, the LSTM model may be divided into smaller models
to simplify the message sequences to be learned. This would involve dividing a
CAN message identifier bin into smaller bins. Bin subdivision, while effective,
would be more time consuming than the MSE loss threshold adjustment and
model redesign/retraining approaches.

It is possible that some CAN message identifiers do not have periodic timing
patterns. Since an LSTM model cannot not be trained effectively with aperiodic
timing patterns, the corresponding CAN message identifiers would have to be
discarded.

8 Conclusions

The CAN attack detection system described in this work employs LSTM net-
works to monitor automobile CANs, detect attacks and raise alerts in real
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time. LSTM networks are leveraged because they can learn patterns with long
sequences. To address LSTM network bias, binning is employed as a novel con-
cept in LSTM model development for automobile CANs. In this process, CAN
message identifiers are separated into bins depending on their relative message
frequencies. A separate LSTM model is trained to recognize the traffic patterns
of the CAN message identifiers in each bin.

A repeatable design framework is presented for constructing and training
multiple LSTM networks that learn normal CAN message timing patterns. The
design framework lays out the computational resources as well as the data collec-
tion and preprocessing and LSTM model development and training steps. The
framework enables new LSTM models to be trained and updated for automobiles
of different makes, models and years.

Another key contribution is the implementation of real-time attack detection.
The attack detection system leverages a server-client configuration on a moni-
tored automobile CAN bus. The server is an inexpensive Raspberry Pi device
connected directly to an automobile CAN bus that captures, logs and transmits
CAN message traffic to a client via a Wi-Fi network. The client, a workstation
located outside the automobile, provides the computational resources needed for
real-time attack detection. Trained LSTM models executing on the client work-
station process the transmitted CAN messages, identify attacks and send alerts
via the Wi-Fi network.

The attack detection system was evaluated using a 2010 Toyota Prius testbed
and a fully-operational 2014 Toyota Prius automobile. An attack device was
employed to inject random CAN message identifiers at random times. For the
2010 Toyota Prius testbed, the attack detection precision ranged from 0.985 to
1.000, sensitivity, specificity and accuracy were perfect 1.000, and the F1 score
ranged from 0.992 to 1.000. For the 2014 Toyota Prius automobile, the attack
detection precision ranged from 0.142 to 1.000, sensitivity ranged from 0.864
to 1.000, specificity ranged from 0.772 to 1.000, accuracy ranged from 0.980
to 1.000, and the F1 score ranged from 0.248 to 1.000. The low precision and
F1 scores were due to high false positive to true positive rates in just one of
the six LSTM models in the attack detection system used in the 2014 Toyota
Prius automobile experiments. Nevertheless, the attack detection results are very
good – LSTM model sensitivity ranged from 0.864 to 1.000 and accuracy ranged
from 0.980 to 1.000. Sensitivity and accuracy are the most important metrics
because LSTM models must recognize normal traffic and detect as many attacks
as possible with high accuracy.
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