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Abstract. In the Industry 4.0 paradigm, the cybersecurity is a key aim
to obtain high levels of performance of the industries based on the use
of the IoT technology and the Big Data analysis. To achieve this objec-
tive, the cyberphysical industrial plants must be equipped with cyber-
security systems for early detection and location of cyberattacks. This
paper presents a robust approach of an industrial cybersecurity system
by using non-standard Pythagorean membership grades. The proposed
scheme was validated using the Two-Tanks benchmark with excellent
results. The proposal was compared with other computational intelli-
gence tools recently presented in the scientific literature, and the results
showed the best performance of the proposed scheme.
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1 Introduction

At present, terms such as Smart Factory and Industry 4.0 are closely related
to the automation of industrial plants characterized by increasingly connected
physical systems and a stronger integration of digital technologies [4,8]. This
higher level of integration allows higher levels of productivity, more competi-
tive final products, and excellent compliance of the industrial safety standards.
However, despite these significant commercial benefits, the safety risk of these
cyberindustrial environments is also increased. Therefore, there is an urgent need
for increasing the cybersecurity in industrial processes [1,2].

A major quality of the use of fuzzy sets is the insertion of membership degrees.
With the aim of improving the ability of fuzzy sets to capture and model mem-
bership information, several researchers have begun to use non-standard fuzzy
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sets such as the intuitionistic [3], that allow to insert imprecision and uncertainty
in the specification of the membership degrees.

The Pythagorean Fuzzy Sets (PFS) were presented in [10], where it is demon-
strated that the space of Pythagorean membership degrees is larger than the
space of intuitionistic membership degrees. This represents an important advan-
tage in condition monitoring because it allows the insertion of uncertainty in the
specification of membership degrees as result of noisy measurements.

The aim of this paper and its main contribution is to propose a cybersecu-
rity scheme with a high performance in the detection and location of cyberat-
tacks and with a robust behaviour versus noisy observations obtained from an
industrial plant. The proposal is based on the modification of the Kernel Fuzzy
C-Means algorithm by using the non standard Pythagorean membership grades.
The modified algorithm, called Kernel Pythagorean Fuzzy C-Mean algorithm
(KPyFCM), significantly reduces classification errors in the attack detection and
location even in the presence of noisy observations. On the other hand, a per-
formance comparison is developed with successful algorithms used in different
applications [6,12].

2 Materials and Methods

2.1 Main Characteristics of Pythagorean Fuzzy Sets

In [10], the PFS were introduced. The Pythagorean Membership Grades (PMG)
associated with them are expressed as follow:

• Two values, r(z) and d(z), are assigned for each z ∈ Z.
• If r(z) ∈ [0, 1], it is labeled strength of commitment at z
• If d(z) ∈ [0, 1], it is labeled direction of commitment at z.
• HY (z) is a membership grade which indicates the support for membership of

z in H.
• HN (z) is a membership grade which indicates the support against member-

ship of z in H.
• HY (z) and HN (z) are defined as

HY (z) = r(z)cos(ϕ(z)) (1)

HN (z) = r(z)sin(ϕ(z)) (2)

where
ϕ(z) = (1 − d(z))

π

2
(3)

and ϕ(z) ∈ [0, π
2 ] is expressed in radians.

Lemma: HY (z) and HN (z) are Pythagorean complements with respect to r(z)

Proof: See [11]
In general, a PMG is formalized by using a pair of values (e, f) such that

e, f ∈ [0, 1] and e2 + f2 ≤ 1.
Intuitionistic membership grades are also represented by a pair (e, f) which

satisfies e, f ∈ [0, 1] and e + f ≤ 1 [3].
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Theorem: The set of Pythagorean Membership Grades is greater than the set
of intuitionistics membership grades

Proof: See [11]
This result indicates the possibility of using PFS in more situations than

intuitionistics fuzzy sets. For cybersecurity systems this characteristic of the
PFS is very important for improving their performance.

2.2 Kernel Pythagorean Fuzzy C-Means Algorithm

Using the PFS theory, the objective function of the Pythagorean FCM (PyFCM)
algorithm can be obtained in the similar form to the Intuitionistic Fuzzy C-Means
algorithm (IFCM) [3] according to the equation

JPyFCM =
l∑

i=1

N∑

k=1

u∗m
ik d2ik +

l∑

i=1

π∗
i e1−π∗

(4)

where m > 1 is the fuzziness regulation factor of the partition [9], l is the quantity
of classes, N is the quantity of observations.

u∗
ik = um

ik+πik. u∗
ik represents the pythagorean fuzzy membership, uik denotes

the typical fuzzy membership of the kth observation in the ith class, and πik is
the hesitation degree, formalized as:

πik = 1 − u2
ik − (1 − uα

ik)2/α, α > 0 (5)

and

π∗
i =

1
N

N∑

k=1

πik, k ∈ [1, N ] (6)

Kernel functions permit to map non-linear observation of the input space
into a higher-dimensional space. This is very useful in classification tasks
because allow for greater separability among classes. With this aim, the Kernel
Pythagorean Fuzzy C Mean algorithm (KPyFCM) is designed. In this algorithm,
the following objective function is minimized:

JKPyFCM =
l∑

i=1

N∑

k=1

u∗m
ik ‖Ψ(zk) − Ψ(qi)‖2

+
l∑

i=1

π∗
i e1−π∗

(7)

where, ‖Ψ(zk) − Ψ(qi)‖2 denotes the square of the distance between Ψ(zk) and
Ψ(qi). In the feature space, the distance is computed by using the kernel function
as follows:

‖Ψ(zk) − Ψ(qi)‖2 = K(zk, zk) − 2K(zk,qi)
+K(qi,qi) (8)
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There exist many kernel functions and the choice of the most appropriate
depends on the application [5]. Nonetheless, the most used is the Gaussian Kernel
function (GKF).

If the GKF is used, then K(z, z) = 1 and ‖Ψ(zk) − Ψ(qi)‖2 =
2 (1 − K(zk,qi)). So, Eq. (7) can be expressed as:

JKPyFCM = 2
l∑

i=1

N∑

k=1

u∗m
ik ‖1 − K(zk,qi)‖2

+
l∑

i=1

π∗
i e1−π∗

(9)

where,
K(zk,qi) = e−‖zk−qi‖2/δ2

(10)

where δ is the bandwidth which indicates the smoothness degree of the GKF [9].
Minimizing Eq. (9), yields:

u∗
ik =

1
∑l

j=1

(
1−K(zk,qi)
1−K(zk,qj)

)1/(m−1)
(11)

qi =
∑N

k=1 (u∗m
ik K(zk,qi)zk)

∑N
k=1 u∗m

ik K(zk,qi)
(12)

KPyFCM algorithm is displayed in Algorithm 1.

Algorithm 1: KPyFCM algorithm
Data: l, γ > 0, m > 1, δ, Itrmax (maximum number of iterations)
Result: fuzzy partition U, class centers Q

1 Initialize U to random fuzzy partition;
2 Itr ← 1 ;
3 repeat
4 Update the class centers Q according to (12);
5 Calculate the distances according to (8);
6 Update U according to (11).;
7 Itr ← Itr + 1;

8 until ‖Ut − Ut−1‖ < γ ∧ Itr ≥ Itrmax;

2.3 Proposal of Scheme for Detection and Localization
of Cyberattacks

The proposal of scheme for Detection and Location of Cyberattacks is shown
in Fig. 1. It is formed for two phases: a training phase executed offline and a
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recognition phase developed online. In the first phase, the data obtained from the
process allow to train offline the Cyberattack Detection and Location (CADL)
algorithm. After training, the CADL algorithm is used online to analyze each
new observation taken from the process. Training is the most important stage,
since the center of the different classes that represent the process operation
states are determined (normal operation class and the classes that represent the
different cyberattacks).

Fig. 1. Proposal of scheme for cyberattack detection and location.

Offline Training Stage. In this stage, the CADL system is trained with a set of
historical data which contain the necessary information of each known operating
state or class of the industrial plant (normal operation condition (NOC) and
states of attack). The main aim of the training process is to determine the center
of the known classes Q = {q1,q2, ...,qc} to be used in the on-line recognition
stage.

On-Line Recognition Stage. In this stage, each observation (Ok) obtained
from the process is assigned to a known class based on the distance between the
observation and the centers of the different classes. Subsequently, the member-
ship degree of the observation k for each class is obtained. The observation is
assigned to the class with the highest membership degree such as is showed in
Eq. (13). (See Algorithm 2).

Ci = {i : max {u∗
ik} ,∀i, k} (13)

2.4 Case Study: Two-Tanks

The test system consists of two tanks (T1, T2) interconnected through a pipe with
a valve Vb which is actuated by an ON-OFF controller (see Fig. 2) [7]. Tank T1



Detection and Location of Cyberattacks in Industrial Processes 101

Algorithm 2: Recognition stage
Data: observation zk, class centers Q, m, c
Result: Current State

1 Calculate the distances among the observation zk and the class centers using
Eq. (8);

2 Calculate the membership degree of the observation zk to the c classes
according to Eq. (11);

3 Determine using Eq. (13) the class to which observation zk belongs;

is fed by the pump P1 controlled by a proportional integral (PI) controller. Tank
T2, is equipped with the manual outlet valve V0. The variables of the process
are: Inflow to T1 (Qp), Water level in T1 (h1), Water level in T2 (h2), Pump
control signal on T1 (Up, Outflow to consumers (Q0), Outflow at T1 (Qf1) and
Outflow at T2 (Qf2).

Fig. 2. Schematic diagram of the Two-Tank test system.

In dependence of the type of cyberattack, different scenarios can be obtained.
In this paper, the following five scenarios were simulated:

– Scenario 1 (NOC): Normal Operation Condition.
– Scenario 2 (A1): Scenario corresponding to Attack 1 due to a water leak in

Tank 1 (T1) at a constant flow Qf1 = 10−4 m3/s in the period of time from
t = 40 s to t = 80 s.

– Scenario 3 (A2): Short-term water theft from T1 with hidden signal added
to the hm

1 level measurement (Deception attack). The attacker extracts a
constant flow Qf1 = 10−4 m3/s through the pump between t = 40 s and 80
s. In this period of time a signal is added to the level sensor output at T1 to
hide the theft. For the PI controller the level at T1 seems to remain constant
and its output does not change.

– Scenario 4 (A3): This scenario corresponds to Attack 3 due to a water
leak in Tank 2 (T2) at a constant flow Qf2 = 10−4 m3/s in the time period
t = 40 s − t = 80 s.
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– Scenario 5 (A4): The attacker steals water when the system has reached the
steady state. Before doing so, the attacker saves several measurements of the
level sensors before the water is stolen from the tanks. In the attack phase, the
attacker steals water and replacing the real data with the saved ones (Replay
attack). Specifically, water is stolen in the period of time between t = 100 s
and t = 200 s and the controller is fooled by using the measurements saved
in the 50 s prior to the attack.

2.5 Design of Experiments

For building the training database, simulations were carried out to obtain 160
observations of each class (NOC and Attacks). For validating the behavior of
the CADL system in the online stage were used another set of 40 observations
of each class. Figures 3 and 4 shows a comparison between the water levels in
the tanks with scenario 1 (NOC) and the different attacks scenarios (2, 3, 4
and 5). The values of the parameters used in the KPyFCM algorithm were: ε
= 10−5, m = 2, σ = 10. The value of σ was selected after the development of
10 experiments (σ = 10,20,30,40,...,100). Three experiments were developed to
evaluate the robustness of the cyberattack detection and location system against
noise:

1. Without noise in the measurements.
2. Measurements with 2% of noise level.
3. Measurements With 5% of noise level.

Fig. 3. Comparison between scenarios 1 (NOC), 2 (Attack 1) and 3 (Attack 2).
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Fig. 4. Comparison between scenarios 1 (NOC), 4 (Attack 3) and 5 (Attack 4).

3 Analysis and Discussion of Results

For the performance analysis of the proposed CADL system the Confusion
Matrix (CM) was used. The values CMrs for r �= s in the CM show the number
of observations of the operation mode r that the CADL system misclassifies in
the operation modes.

Table 1 shows the CM (without noise in the measurements) where NOC:
Normal Operation Condition, A1: Attack 1, A2: Attack 2, A3: Attack 3 and A4:
Attack 4. The main diagonal presents the number of observations successfully
classified. The accuracy TA for each class was computed as TA = correctly clas-
sified observations of the class/total observations of the class. The last row shows
the average (AVE) of TA. Figure 5 show the classification results for the different
scenarios by using the proposed CADL system for Two-Tank benchmark.

3.1 Comparison with Other Algorithms

For improving the classification process, the Density-Based Weighted FCM
(DBFCM) algorithm [6], the Maximum-Entropy-Regularized Weighted FCM
(EWFCM) algorithm [12], and the Kernel based EWFCM (KEWFCM) algo-
rithm [12], all of them with excellent performance in different applications, have
been presented in the scientific literature. Follow a comparison with these algo-
rithms.

Density-Based Weighted Fuzzy C-Means Algorithm. In this algorithm,
the weight of an object is decided by the density of the objects around this
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Table 1. Confusion matrix: KPyFCM (NOC: 40, A1: 40, A2: 40, A3: 40, A4: 40)

NOC A1 A2 A3 A4 TA (%)

NOC 38 0 2 0 0 95.00

A1 0 39 1 0 0 97.50

A2 3 0 37 0 0 92.50

A3 0 0 0 40 0 100.0

A4 2 0 0 0 38 95.00

AVE 96.00

Fig. 5. Classification (%) for Two-Tank process.

object. There are two stages of the density-based weighted FCM. The first stage
is designed to calculate the weights of every object, the second stage is the
clustering stage.

Maximum-Entropy-Regularized Weighted Fuzzy C-Means and Ker-
nel Maximum-Entropy-Regularized Weighted Fuzzy C-Means Algo-
rithms. A maximum-entropy-regularized weighted fuzzy c-means (EWFCM)
algorithm is proposed to extract the important features and improve the cluster-
ing. In EWFCM algorithm, the attribute-weight entropy regularization is defined
in the new objective function to achieve the optimal distribution of the attribute
weights. The kernel based EWFCM (KEWFCM) clustering algorithm is devel-
oped for clustering the data with non-spherical shaped clusters.

Table 2 show the results of the CM (without noise) corresponding to the
algorithms used in the comparison.

Figure 6 shows the classification results by using the mentioned algorithms
and the KPyFCM algorithm for the observations without noise, with 2% and
5% of noise level.

All experiments were performed on a computer with the following charac-
teristics: Intel Core i7-6600U 2.6–2.81 GHz, memory RAM: 16 GB. The average
computational time of each algorithm to perform an execution was: DBFCM
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Table 2. Confusion matrix: DBWFCM, EWFCM, KEWFCM (NOC: 40, A1: 40, A2:
40, A3: 40, A4: 40)

Fig. 6. Global classification (%) obtained for each algorithm.

(0.5520 s), EWFCM (0.4962 s), KEWFCM (0.6315 s), and KPyFCM (0.6035 s).
When comparing these times with the time constant of the process, it can be seen
that they are very small and, therefore, show the feasibility of their application
to the proposed scheme.

The Friedman was applied, and its results confirmed that at least, the per-
formance of one algorithm is significantly different to the performances of the
other algorithms.

The Wilcoxon test was applied to compare the algorithms in pairs where 1:
DBWFCM, 2: EWFCM, 3: KEWFCM, 4: KPyFCM. Table 3 displays the results.
The first row contains the values of the sum of the positive rank (R+) and the
second row presents the sum of the negative rank (R−) for each comparison. The
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third row shows the statistical values T , and the fourth row, the critical value
of T for a significance level α = 0.05. The last row displays number the win-
ner algorithm in each comparison. Table 4 shows the times that each algorithm
was the winner. This results demonstrate the proper performance of the CADL
scheme proposed.

Table 3. Results of the Wilcoxon test

1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4
∑

R+ 5 0 0 0 0 0
∑

R− 50 55 55 55 55 55

T 5 0 0 0 0 0

Tα=0.05 8 8 8 8 8 8

Winner 2 3 4 3 4 4

Table 4. Final result of the comparison between algorithms

Algorithm No.Wins Ranking

DBWFCM 0 4

EWFCM 1 3

KEWWFCM 2 2

KPyFCM 3 1

4 Conclusions

To achieve the successful implementation of the Industry 4.0 paradigm in indus-
trial plants, cybersecurity must be guaranteed. In this paper, an attack detec-
tion and location system with a high performance and robustness versus noisy
measurements was presented. The CADL system was implemented by using a
KPyFCM algorithm which significantly improves the performance in the detec-
tion and location process based on two key characteristics of the elements that
make it up. The first is related with the fact that the Pythagorean membership
grades permit to use a larger set of numeric values for assigning the member-
ship degree to an observation than the standard and intuitionistic membership
grades. The second is related with use of kernel functions which allow to achieve
greater separability among the classes. The high performance of the proposal
of CADL scheme was confirmed using the Two-Tank process benchmark. The
results obtained by the proposed CADL system were compared with the results
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of three algorithms of high performance recently presented in the scientific lit-
erature demonstrating the superiority of the proposal for detection and loca-
tion of cyberattacks. For future research, an interesting idea will be designing a
monitoring scheme that integrally addresses fault diagnosis and cyberattacks in
industrial plants.
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