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Abstract. The Industry 4.0 paradigm aims to obtain high levels of pro-
ductivity and efficiency, more competitive final products and compliance
with the demanding regulations related to industrial safety. To achieve
these objectives, the industrial systems must be equipped with condition
monitoring systems for the detection and isolation of faults. The paper
presents the design of a fault diagnosis system with robust behavior for
industrial plants by using Type-2 Fuzzy algorithm. In order to improve
the classification, a kernel variant is implemented in the proposed algo-
rithms to accomplish a better differentiation between classes. Several
experiments were conducted (without noise, 2%, and 5% of noise level)
by using the T2FCM, IT2FCM, KT2FCM, and KIT2FCM algorithms
for the DAMADCIS benchmark, obtaining excellent results.

Keywords: Industry 4.0 · Fault diagnosis · Industrial Plants · Type-2
Fuzzy sets

1 Introduction

A main premise in the Industry 4.0 paradigm is to obtain high production lev-
els with low operating expenses to improve the relation benefits-costs [6,10].
An important cause of the increase in operating expenses and the descending
productivity in industrial plants is the occurrence of faults [3,17].

Many research results on the fault diagnosis topic in industrial systems have
been published in the scientific literature in the last two decades under two
main approaches: model based, and data based fault diagnosis [14,15]. However,
the advances in the Internet of Things (IoT) and Big Data technologies have
currently allowed a major attention and results in the last approach [2,11].

Several computational tools have been displayed in scientific papers and
books to improve the performance of industrial fault diagnosis systems [7,8].
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However, the need to develop new strategies remains open because the results
depend on the type of industrial plant analyzed.

The training stage of a data-based supervised fault diagnosis system is deci-
sive for achieving the best online performance. To accomplish better results in
training, the different classes that represent the operation of the industrial plant
have to be very well identified [16]. However, this is a very complex task due to
the uncertainties that characterize the industrial measurements by the effect of
external disturbances and noise [18].

To overcome some difficulties of type-1 fuzzy sets to deal with the uncertain
that characterize the industrial process due to noise and external disturbances
type-2 fuzzy sets are used. In type-1 fuzzy sets, the memberships degree is a
crisp number, but in type-2 fuzzy sets, the memberships degree is a type-1 fuzzy
number. The goal is that higher membership values should contribute more than
memberships that are smaller when the cluster centers are updated [19,20]. In
this paper, a fault diagnosis methodology based on type-2 fuzzy classification
algorithms is presented.

The main contribution of this paper is to present a robust condition moni-
toring scheme versus external disturbances and noise. For this, a scheme based
on the use of Type-2 Fuzzy sets is displayed. For misclassification reduction, a
kernel variant is implemented of the proposed algorithms to accomplish a better
differentiation between classes. The proposal exhibits high performance in the
presence of noisy observations

2 Materials and Methods

2.1 Type-2 Fuzzy C-Means Algorithm (T2FCM) and Kernelized
T2FCM (KT2FCM)

For updating the cluster centers in T2FCM, the weighted mean of all obser-
vations is used [19]. The membership values for the Type 2 membership are
obtained as follow:

aik = uik − 1 − uik

2
(1)

where aik and uik are the type-2 and type-1 memberships respectively. The clus-
ter centers are updated according to the traditional FCM but taking into account
the new type-2 fuzzy membership . Although T2FCM has proven effective for
spherical data, it fails when the data structure of input patterns is non-spherical.
A way of increasing the accuracy of the T2FCM is using a kernel function for
calculating the distance of data point from the cluster centers, i.e., mapping the
data points from the input space to a high dimensional space. This algorithm is
used to obtain a better separability among classes improving the classification
results. In the KT2FCM algorithm is minimized the following objective function:
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JKT2FCM =
l∑

i=1

N∑

k=1

a∗m
ik ‖Ψ(zk) − Ψ(vi)‖2 (2)

where, ‖Ψ(zk) − Ψ(vi)‖2 is the square of the distance between Ψ(zk) and Ψ(vi).
In the feature space, the distance is computed through the kernel in the input
space as:

‖Ψ(zk) − Ψ(vi)‖2 = K(zk, zk) − 2K(zk,vi)
+K(vi,vi) (3)

In the scientific bibliography, many kernel functions are found, and the most
appropriate depends on the applications [13]. Nonetheless, the most used is the
Gaussian Kernel Function (GKF).

If the GKF is used, then K(z, z) = 1 and ‖Ψ(zk) − Ψ(vi)‖2 =
2 (1 − K(zk,vi)). So, Eq. (2) can be expressed as:

JKT2FCM = 2
l∑

i=1

N∑

k=1

a∗m
ik ‖1 − K(zk,vi)‖2 (4)

where,
K(zk,vi) = e−‖zk−vi‖2/δ2

(5)

where δ is the bandwidth which illustrates the smoothness degree of the GKF.
Minimizing Eq. (4), yields:

a∗
ik =

1
∑l

j=1

(
1−K(zk,vi)
1−K(zk,vj)

)1/(m−1)
(6)

qi =
∑N

k=1 (a∗m
ik K(zk,vi)zk)

∑N
k=1 a∗m

ik K(zk,vi)
(7)

2.2 Interval Type-2 Fuzzy C-Means Algorithm (IT2FCM) and
Kernelized IT2FCM (KIT2FCM)

The parameter m is crucial in fuzzy clustering algorithms to determine the par-
tition matrix uncertainty. Nevertheless, it is not an easy task to decide the value
of m in advance. IT2FCM regards the fuzzification coefficient as an interval
[m1,m2] and minimizes the objective function as [20]:

JIT2FCM =
l∑

i=1

N∑

k=1

u∗m
ik d2ik (8)
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where the parameter m is substituted by m1 and m2 that represent different
fuzzy degrees and provide different objective functions compared with FCM. To
minimize the objective function [20]:

ui(k) = max

⎛

⎝1/

l∑

j=1

(dik/djk)2/(m1−1), 1/

l∑

j=1

(dik/djk)2/(m2−1)

⎞

⎠ (9)

ui(k) = min

⎛

⎝1/
l∑

j=1

(dik/djk)2/(m1−1), 1/
l∑

j=1

(dik/djk)2/(m2−1)

⎞

⎠ (10)

where d2ik = ‖zk − qi‖ is the distance between input patterns zk and cluster
centers qi. ui(k) (ui(k)) is the upper (lower) membership function of zk to qi.

Distinct from FCM, the output of IT2FCM algorithm is an interval type-2
fuzzy set, that it is not possible to convert to a crisp set directly by a defuzzi-
cation operation. To calculate the centroid of a type-2 fuzzy set and reduce the
type-2 fuzzy set to the type-1 fuzzy set is executed the type reduction just as
the first step of output processing [9]. The interval-valued cluster centers are
calculated as:

q̃i = [q̃i,1, q̃i,2] =
∑

ui1

· · ·
∑

ui1

1
∑N

k=1 um∗
ik zk

∑N
k=1 um∗

ik

(11)

supported on such type-2 memberships. m∗ switches from m1 to m2, and q̃i,1

and q̃i,2 are usually obtained by Karnik-Mendel algorithm [5]. The procedure to
obtain the kernel version of the IT2FCM algorithm (KIT2FCM) is similar to the
one used in the case of T2FCM algorithm. The distance is calculated through
the kernel function using the Gaussian Kernel Function (GKF).

2.3 Proposed Methodology

The proposed classification scheme for Fault Detection and Isolation (FDI) is
displayed in Fig. 1. It exhibits an offline training phase and a recognition phase
executed online. In the first phase, the fuzzy classifier is trained using a training
database builds with historical data of the process. In the online phase, the
classifier analyzes each observation collected from the process. The result offers
information to the operator about the state of the system in real time. Training
is the most important stage, since the center of each of the classes that represent
the operation of the process will be determined, either in normal operation or
in the presence of faults.
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Fig. 1. Classification scheme for detection and isolation of faults.

Offline Training Phase. In this phase, the FDI system is trained with a set of
historical data which contain the necessary information of each known operating
state or class of the industrial plant (normal operation condition (NOC) and
states of fault). The main aim of the training process is to determine the center
of the known classes Q = q1,q2, . . . ,qc is determined to be used in the on-line
recognition stage.

On-Line Recognition Phase. In this phase, it is determined to which class
each observation k belongs at each time instant. First, the distance between the
observation and the centers of the classes that were determined in the offline
stage is computed. Subsequently, the degree of membership of the observation k
is obtained for each class. It will be assigned to the class with the highest degree
of membership (See Algorithm 1).

Algorithm 1: Recognition stage
Data: observation zk, class centers Q, m, c
Result: Current State

1 Calculate the distances among the observation zk and the class centers;
2 Calculate the membership degree of the observation zk to the c classes;
3 Determine the class to which observation zk belongs;

2.4 Case Study: DAMADICS

To verify that, the proposed methodology was used in the DAMADICS test
problem. It represents an intelligent electro-pneumatic actuator widely used in
industries [1]. The diagram of this actuator is shown in Fig. 2. Table 1 and Fig. 3
(with 300 observations per class) shows the operation modes evaluated in the
actuator and the measured variables used. Selected faults occur in different parts
of the actuator and were selected in order to test the robustness of the diagnostic
system.
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Fig. 2. Diagram of benchmark actuator system [1].

Table 1. Operation modes and measured variables in DAMADICS.

Operation
Mode

Description Variable Description

NO Normal Operation CV Process control external signal

F1 Valve clogging P1 Pressure on inlet valve

F7 Critical flow P2 Pressure on outlet valve

F12 Electro-pneumatic
transducer fault

X Valve plug displacement

F15 Positioner spring fault F Main pipeline flow rat

F19 Flow rate sensor fault PV Process value

2.5 Design of Experiments

Table 2 shows the characteristics of the training database used, which is free of
outliers, noise, and missing variables. The values of the parameters used for the
applied algorithms were: ε = 10−5, m = 2, σ = 50. The parameters were taken
from [12].

K-cross-validation method with K = 5 was chosen for training (800 obser-
vations) and validation (200 observations). In the experiments of the online
phase 2400 observations were used (400 new observations of each operation
mode not used in the training). Each experiment was replicated 100 times to
ensure repeatability of results. The average of the 100 results was considered as
final result. To evaluate the robustness of the proposal, three experiments were
developed:
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Fig. 3. Operation modes.

Table 2. Characteristics of the training database.

Parameter Description Quantity

l Operation Modes (Classes) 6

p Measured Variables 6

k Number of Observations per class 1000

n Number of Observation in the training database 6000

1. Observations without noise.
2. Observations with 2% of noise level
3. Observations with 5% of noise level.

3 Discussion of Results

4 Online Recognition Stage

The confusion matrix (CM) tool was used to evaluate the performance of the
FDI system proposed. The values CMrs for r �= s in the CM show the number
of observations of the operation mode r that the classifier algorithm misclassifies
in the operation modes.

Table 3 shows the confusion matrix (without noise in the measurements)
where the results for the operation states Normal Operation Condition (NOC),
Fault 1 (F1), Fault 7 (F7), Fault 12 F12), Fault 15 (F15) and Fault 19 (F19) are
presented. In the main diagonal are presented the number of observations well
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classified. The accuracy of the classification process is obtained as TA=correctly
classified observations/total observations. The average (AVE) of TA is displayed
in the last row.

Figure 4 show the classification results for the different operation modes
(NOC and faults 1, 7, 12, 15, 19) by using the T2FCM, IT2FCM, KT2FCM
and KIT2FCM algorithms for DAMADICS process. They show a classification
percentage obtained for each data set. Figure 5 displays a global classification
percentage obtained for each algorithm (without noise, 2% and 5% of noise level).

Table 3. Confusion matrix for the DAMADICS process (NOC: 400, F1: 400, F7: 400,
F12: 400, F15: 400, F19: 400)

4.1 Statistical Tests

Since several algorithms are used, statistical tests should be applied to compare
their performance [4]. The statistical Friedman test can be used in order to
establish if the differences among the obtained performances are significant. If
significant differences are found, a comparison in pairs should be developed to
find the best classifier. In this case, the statistical Wilcoxon test was used.

Friedman Test. Applying the test for k = 4 algorithms and N = 10 datasets,
the value obtained for the statistical Friedman FF = 241. FF is distributed
according to the F distribution with k−1 = 3 and (k−1)×(N −1) = 27 degrees
of freedom. From the distribution F table, F (3,27) for α = 0.05 is 2.9604, so the
null-hypothesis (F (3,27) < FF ) is rejected. This means that there are significant
differences among the obtained performances.
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Fig. 4. Classification (%) for DAMADICS process.

Fig. 5. Global classification (%) obtained for each algorithm.

Wilcoxon Test. Table 4 exhibits the results of applying the Wilcoxon test
(A1: T2FCM, A2: IT2FCM, A3: KT2FCM, A4: KIT2FCM). First row displays
the sum of positive ranks R+, and the second rows displays the sum of the
negative ranks R− obtained from the comparison developed. The values of the
T statistic and its critical values for a significance level α = 0.05 are shown
below. Finally, the winning algorithm are shown in each comparison. Table 5
shows that KT2FCM and KIT2FCM obtain the best results.
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Table 4. Results of the Wilcoxon test

A1 vs A2 A1 vs A3 A1 vs A4 A2 vs A3 A2 vs A4 3 vs 4
∑

R+ 10 0 0 0 0 15
∑

R− 45 55 55 55 55 40

T 10 0 0 0 0 15

Tα=0.05 8 8 8 8 8 8

Winner – 3 4 3 4 –

Table 5. Algorithm comparison summary

Algorithm No.Wins Ranking

T2FCM 0 2

IT2FCM 0 2

KT2FCM 2 1

KIT2FCM 2 1

5 Conclusions

This paper presented the design of a fault diagnosis system with robust behavior
by using type-2 fuzzy classification algorithm. The main contribution of the
proposal was the application of the theory of Type-2 Fuzzy Sets to overcome
the effect of uncertainties that characterize the industrial process due to noisy
observations and external disturbances.

The capacity of the function kernels to discriminate better among the
operation modes reducing misclassification was demonstrated in the developed
experiments. The proposed FDI scheme was successfully validated using the
DAMADICS process benchmark.
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11. Quiñones-Grueiro, M., Verde, C., Prieto-Moreno, A., Llanes-Santiago, O.: An unsu-
pervised approach to leak detection and location in water distribution networks.
Int. J. Appl. Math. Comput. Sci. 28(2), 283–295 (2018). https://doi.org/10.2478/
amcs-2018-0020
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