
A Parallel Approach for RegularSearch
Algorithm

Jairo A. Lefebre-Lobaina(B) and José Ruiz-Shulcloper

Universidad de Ciencias Informáticas, La Habana, Cuba
jairo.lefebre@gmail.com, jshulcloper@uci.cu

Abstract. The process of finding minimal subsets of features that can
differentiate objects belonging to different classes, known as typical
testors, is an exponential complexity problem. Several algorithms have
been proposed to improve the search process efficiency by utilizing dif-
ferent properties and techniques, including parallelism. In this paper, we
propose a parallel version of the RegularSearch algorithm to find all typ-
ical testors related to a supervised classification problem. The proposed
algorithm is compared with the most recent algorithm in the literature,
and the comparative analysis shows the advantages of our proposal over
the compared methods, using both synthetic and real problem datasets.

Keywords: Feature selection · Typical testors · Reducts ·
Parallelization

1 Introduction

Supervised classification problems often involve structured data represented as
features that describe a set of objects. However, as the number of features
increases, it becomes more challenging to estimate the relevance of each feature
and can impact the efficiency and accuracy of classification algorithms. Feature
selection methods (FS) can help reduce the time required to train classification
algorithms while maintaining accuracy [13]. One such approach to FS is the Test
Theory, which was proposed by Zhuravlev [3].

Initially used for classification problems with two classes and objects
described by Boolean features in the Pattern Recognition context, the concept
of a testor was later extended to allow for its application in more complex situ-
ations [8]. Testors Theory has been successfully used to solve various problems,
including text categorization [16], document clustering [11], fault diagnosis in
steam turbines [5], and breast cancer diagnosis in medicine [4]. Moreover, it has
been applied to estimate the relevance of each feature classification problems and
for the FS process with mixed and incomplete data [20]. This is done by search-
ing for typical testors, a concept related to reducts from Rough Sets Theory [9]
and minimal transversal from Hyper Graph Theory [1].

The process of finding all typical testors (TT) has an exponential time com-
plexity of 2n, where n is the number of features describing the objects [8]. Also,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Y. Hernndez Heredia et al. (Eds.): IWAIPR 2023, LNCS 14335, pp. 72–83, 2024.
https://doi.org/10.1007/978-3-031-49552-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49552-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-49552-6_7

A Parallel Approach for RegularSearch Algorithm 73

several algorithms have been developed to improve the efficiency of this search
process in different scenarios [19]. The algorithms for searching all typical testors
can be divided into two main groups based on their search strategy: external type
algorithms and internal type algorithms. The external type algorithms induce an
order on the power set of features and use logical properties to minimize the
number of comparisons carried out with most efficient approaches published
in [6,12,15,17]. However, none of the recent approaches of mentioned algorithms
have a proposed parallel version to find all typical testors.

On the other hand, the internal type algorithms focus their strategy on select-
ing comparisons between objects that fulfill certain properties and use these ele-
ments to build the typical testor set [2]. The updated version of YYC algorithm
proposed by Piza et al. [14] is the latest and fastest approach for finding all
typical testors in a parallel way.

In this paper, we propose a parallel approach for the internal type algorithm
RegularSearch [10] to search for all typical testors related to a supervised classi-
fication problem. The rest of the paper is structured as follows: Sect. 2 presents
the concepts used in this work, Sect. 3 describes the proposed algorithm in detail,
Sect. 4 shows the results of the experimental study carried out, and finally, Sect. 5
presents our conclusions and proposals for future work.

2 Concepts Definition

Testor theory current research is based on three main concepts: the training
matrix (TM), the difference matrix (DM), and the basic matrix (BM). The TM
contains m objects, {O1, O2, ..., Om}, each of which is described by n features,
R = {x1, x2, . . . , xn}. We denote the value of feature xi in object Oj as xi(Oj).
The MD is a matrix that represents the difference or not (value 0) between each
feature related to objects that belong to different classes.

Given a row fi ∈ MD and a feature xq ∈ R, we denote the value of fi in the
feature xq as fi[xq]. A row fi ∈ MD is considered a sub-row of fs ∈ MD if and
only if for each xq ∈ R, fi[xq] ≤ fs[xq] and there exists a feature xp such that
fi[xq] < fs[xq]. The matrix formed by all sub-rows in DM is called basic matrix
(BM) and the rows in BM are a subset of the set of rows in DM [7].

Table 1. Transformations from TM to DM to BM.

TM x1 x2 x3 x4

C1

O1 0 a 1 7

O2 1 b 0 4

O3 ? b 1 4

C2
O4 1 a 0 4

O5 1 b 1 7

DM x1 x2 x3 x4

O14 1 0 1 1

O15 1 1 0 0

O24 0 1 0 0

O25 0 0 1 1

O34 1 1 1 0

O35 1 0 0 1

BM x1 x2 x3 x4

O24 0 1 0 0

O25 0 0 1 1

O35 1 0 0 1

74 J. A. Lefebre-Lobaina and J. Ruiz-Shulcloper

In Table 1, we provide an example of an ME and the corresponding MD
and MB. In this example, several data types are used in the presented features,
including missing values (represented as ?), and all comparisons are made using
a strict equality function with Boolean output. However, the testor theory has
evolved to allow for more than two disjoint classes, different kinds of features,
and comparison output values [8].

The density of value 1 is defined as D(1) = U/(mb ∗ n), where mb is the
number of rows in BM and U is the number of 1 values contained in BM.
D(1) represents the minimum difference degree between objects that belong to
different classes. If there are not many differences between objects that belong
to different classes, the D(1) value is low. For the BM presented in Table 1, we
have D(1) = 0.416.

A subset of features T is a testor, if and only if when all features except
those on T are removed from TM, the resulting sub matrix MEt, contains no
descriptions of equal objects that belong to different classes. This means that
there are no zero rows in the sub matrix from the BM and DM formed by the
features in T . T is a typical testor if and only if �T ‘, T ‘ ⊂ T and T ‘ is a testor [7].
For the TM presented in Table 1, and corresponding BM (and DM), the typical
testor set is T = {{x1, x2, x3}, {x2, x4}}.

2.1 Compatible and Regular Sets

Given two elements aij = apq = 1 from BM (or DM) in different rows and
columns, the element aij is said to be compatible with apq if and only if apj =
aiq = 0. We will denote the compatibility relation between aij and apq as aij ∼
apq. The set of elements D = {e1, e2, ..., er},D ∈ BM is a compatible set if and
only if r = 1 or et ∼ ep for t �= p and t, p = 1, 2, ..., r [7]. Let MC be a sub-
matrix of BM formed by the columns associated with the elements in D. For
each feature xa ∈ MC, there exists at least one row with value 0 in all features
except in xa.

From the previous definition, it can be deduced that any non-empty subset
Q ⊂ D is also a compatible set. Moreover, if Z is not a compatible set, any
superset W that holds Z ⊂ W will also not be a compatible set.

Let D be a compatible set and MC be the sub-matrix of BM formed by the
columns associated with the elements in D. D is a regular set if and only if the
corresponding features in MC satisfy the testor property, which is equivalent to
saying that MC does not have any row with 0 values. Moreover, if D is a regular
set, then the set of features T ∈ MC is also a typical testor [7].

3 Parallel RegularSearch

In this work, is proposed a parallel version of the RegularSearch algorithm to
identify all typical testors related to a supervised classification problem. The
original RegularSearch algorithm was presented in [10] with the aim of finding
all regular sets in the power sets of features from BM. The algorithm starts by

A Parallel Approach for RegularSearch Algorithm 75

selecting the first feature in BM as an initial candidate and then incrementally
adds new features during the search process.

In [10] is also proposed an arrangement process for BM to avoid comparisons
with elements that will never be a testor. However, in order to provide a simpler
description and better understanding of the parallel approach, we have simplified
the sorting method.

The first step in the sorting process is to arrange the rows in BM in such
a way that the first row in the matrix has the lowest number of elements with
value 1. If there is more than one row that meets this criteria, any of them can be
selected. The order of the remaining rows is not relevant. In the second step, the
columns are sorted so that all elements with value 1 in the first row are grouped
on the left side of BM. An example of this process is presented in Table 2, where
BMs is the sorting output.

Table 2. Sorting process example.

BM x1 x2 x3 x4 x5

O1 0 0 1 1 1

O2 1 0 0 0 1

O3 0 1 0 1 0

O4 1 1 1 0 0

BMs x1 x5 x2 x3 x4

O2 1 1 0 0 0

O1 0 1 0 1 1

O3 0 0 1 0 1

O4 1 0 1 1 0

The search process begins with a candidate set of features denoted by C,
where |C| = 1 and contains a single feature that, by definition, is a compatible
set. Let MC be the submatrix from BM formed by the features in C. The algo-
rithm continues to add new features to C incrementally, also checking that MC
contains at least one subset of elements that holds the compatible set property
and involves all the features in C. If MC contains a regular set (i.e., it has
no zero rows), then C is added to the typical testor set (TT), and the search
process for that candidate stops, because any superset will be a testor but will
not hold the typicity property. If a feature xa ∈ BM is added to C, and the
corresponding MC does not contain a compatible set, the search process stops
because any superset from C will not be a compatible set either. In that situa-
tion, xa is replaced with the feature xa+1 in C to continue the search process.
If xa is the last feature, the process stops.

All the steps mentioned above are described in the algorithm GetRegularities
used by RegularSearch [10], and updated in Algorithm 1. This process is carried
out in a recursive way. In every recursive call, the compatible set description
contained in MC is generated. The behavior of the algorithm can be topologi-
cally represented as a depth-first tree search with a pre-order traversal strategy
and a pruning process based on the compatible and regular sets properties.
The main difference with [10] is that in the current proposal, GetRegularitiesT

76 J. A. Lefebre-Lobaina and J. Ruiz-Shulcloper

initializes the sets TT , ZR, and OD to run independently in a parallel process
call (thread), and returns a subset of the typical testor set.

To ensure proper data structuring between iterations, hashing-based dictio-
naries are utilized as a data structure to store tuples in the form of (xi, ri). A
dictionary is denoted as OD[xi] = ri, where OD is the dictionary, xi is a feature
from BM, ri is a set of row positions in BM, and |OD| represents the number
of stored tuples in OD. Additionally, the set of row positions in BM related to
the feature xi that only contains zeros is denoted as z(xi), while the remaining
rows are denoted as o(xi).

Algorithm 1. GetRegularitiesT
input: BM , F , C, TT , ZR, OD
output: TT

1: define cn as last element in C
2: if |C| = 1 then
3: define TT = ∅
4: ZR = z(cn)
5: OD[cn] = o(cn)
6: end if
7: for all fj ∈ F , where cn ∈ F and j > n do
8: define Inf as ZR ∩ o(fj)
9: if |Inf | > 0 then

10: define row unitary as True
11: define nOD as an empty dictionary
12: for all xi, ri ∈ OD do
13: nOD[xi] = ri − o(fj)
14: if |nOD[xi]| = 0 then
15: define row unitary as False
16: break loop
17: end if
18: end for
19: if row unitary then
20: if |ZR| = 0 then
21: add C to TT
22: else
23: nOD[fj] = Inf
24: define nC = C ∪ {fj}
25: define nZR = ZR − o(fj)
26: GetRegularitiesT (BM, F, nC, TT, nZR, nOD)
27: end if
28: end if
29: end if
30: end for
31: return TT

A Parallel Approach for RegularSearch Algorithm 77

Let TT be a typical testor set from BM, F the sorted set of features in BM,
a sorted candidate set C �= ∅, C ⊂ F , MC the submatrix from BM formed by
the features in C, ZR the set of zero row positions in MC, and OD a dictionary
to store the relation associated with feature xi ∈ C with the row position set
from BM with zero value in all features except in xi. Algorithm 1 describes the
search for regular sets.

Let BM a basic matrix related to a supervised classification problem, and
let TT the typical testor set in BM. The process to find all TT in a parallel way
is described in Algorithm 2. It’s important to highlight that, after the sorting
process, the number of threads required will be the same as the number of non-
zero values in the first row of BM .

Algorithm 2. ParallelRegularSearch
input: BM output: TT

1: sort BM according to 1 values contained in rows
2: define F as sorted set of features in BM
3: define TList as a list of threads
4: define TT = ∅
5: for all xi ∈ F do
6: define r1 as first row position in BM
7: if r1 ∈ z(xi) then
8: break loop
9: end if

10: define C = {xi} as a sorted set of features
11: if |z(xi) = 0| then
12: add C to TT
13: else
14: add GetRegularitiesT (BM, F, C, ZR, OD) as a thread call to TList
15: end if
16: end for
17: for all tci ∈ TList do
18: define tti as the output of tci thread
19: TT = TT ∪ tti
20: end for
21: return TT

The ParallelRegularSearch algorithm uses the GetRegularitiesT subroutine
as the search strategy over the feature set in BM. Avoiding unnecessary compar-
isons is the core reason behind the efficiency of the GetRegularitiesT subroutine.
Additionally, the tree-like search process ensures that every possible candidate is
evaluated only once, which is the main characteristic that allows the paralleliza-
tion of the searching process, increasing the efficiency without losing effective-
ness. Since GetRegularitiesT does not compare xi ∈ F with previous features in
F during the search process, ParallelRegularSearch provides each feature xi as a
new candidate for each thread. Each thread will return the typical testor subset,
where xi is the first feature, and the remaining features xj hold j > i. Finally,

78 J. A. Lefebre-Lobaina and J. Ruiz-Shulcloper

the set union of the different outputs will be the typical testor set associated
with the input BM .

3.1 Execution Example

To show how the ParallelRegularSearch algorithm works, Table 3 describes each
step executed using BMs presented in Table 2 for a single thread call. Since the
presented example is only for a single thread call the output will contain all
typical testors that contains x1.

Table 3. Execution steps description.

Step C Description

1 {x1} Take x1 as candidate, due is not a typical testor and (by definition) is a
compatible set

2 {x1, x5} Add x5 to C, due MC contains a compatible set, but C is not a testor

3 {x1, x5} Ignore x2, due MC corresponding to {x2} ∪ C not contains a compatible set
that include all features

4 {x1, x5} Ignore x3, due MC corresponding to {x3} ∪ C not contains a compatible set
that include all features

5 {x1, x5} Ignore x4, due MC corresponding to {x4} ∪ C not contains a compatible set
that include all features. Since there is no other combination the search
process for {x1, x5} stop (β)

6 {x1, x2} Add x2 to C, due MC contains a compatible set, but C is not a testor

7 {x1, x2, x3} Add x2 to C, due MC contains a compatible set and also a regular set, the
current C is a typical testor and is added to TT set; since any super set of
features form C will be not a typical testor (β)

8 {x1, x2} Ignore x4, due MC corresponding to {x4} ∪ C not contains a compatible set
that include all features. Since there is no other combination the search
process for {x1, x2} stop (β)

9 {x1, x3} Add x3 to C, due MC contains a compatible set, but C is not a testor

10 {x1, x3} Ignore x4, due MC corresponding to {x4} ∪ C not contains a compatible set
that include all features. Since there is no other combination the search
process for {x1, x3} stop (β)

11 {x1, x4} Add x4 to C, due MC contains a compatible set and also a regular set, the
current C is a typical testor and is added to TT set; since any super set of
features form C will be not a typical testor (β)

12 – Return the typical testors found since there is no possible feature to
compare with after x4. TT = {{x1, x2, x3}, {x1, x4}}

In each step of the algorithm, a different candidate is tested, and the algo-
rithm will not proceed to the next step if MC does not contain a compatible
set with at least one element in each column. This is why the values in C in
Table 3 can change without an explicit insertion or elimination; the algorithm
backtracks (represented as β) to a previous state. When C satisfies the typical
testor definition, the values are highlighted in bold.

A Parallel Approach for RegularSearch Algorithm 79

In the sorted matrix, if the search process takes the feature x2 as a new
candidate in C, to find the possible typical testors with the remaining features
(x3 and x4), any combination will not generate a testor because it will contain
a row with zero values in MC. For this reason, only two threads are required to
process that dataset.

The remaining steps using BMs are carried out in parallel. Theoretically, if
an infinite number of threads were available, the searching time would be the
time required for the first thread to finish, because the search space is reduced by
half in each following thread. Also, the amount of threads required is the same as
the amount of ones in the first row of BMs. The output of the second thread for
searching the typical testors associated with x5 in BMs is {x5, x2}, {x5, x3, x4}}.
The final TT set is the set union of each thread result:

TT = {{x1, x2, x3}, {x1, x4}, {x5, x2}, {x5, x3, x4}}.

4 Experimental Results

To demonstrate the advantages of the parallel approach for the RegularSearch
algorithm (P-RS), several experiments were conducted using synthetic and real-
world problem datasets. For the comparison process, the proposal was compared
with the parallel version of the YYC algorithm (P-YYC).

Recent research has shown that modern algorithms exhibit variations in effi-
ciency based on the D(1) value [18]. To focus on the efficiency of the compared
algorithms, the primary comparison criteria selected were the D(1) value and
the total time required to find all typical testors.

Fig. 1. Results for BMs with 250 rows and 20 columns.

To conduct experiments with synthetic matrices, several BMs of fixed dimen-
sions were randomly generated. To match the expected D(1) value, the synthetic

80 J. A. Lefebre-Lobaina and J. Ruiz-Shulcloper

matrices were generated with a similar distribution of ones in each row. For each
D(1) value 50 matrices were generated, and then calculated the mean execution
time, for a total of 650 BM s. All experiments were conducted on an Asus ROG
Zephyrus G14 computer equipped with an AMD RyzenTM 7 4800HS processor
and 16 GB of RAM.

As shown in Fig. 1, the P-RS algorithm has better results for higher D(1)
values, while P-YYC performs better for lower values. However, to show how
the obtained values may change when using more complex datasets, two more
test sets were conducted following the same comparison criteria.

Fig. 2. Results for BMs with 250 rows and 30 columns.

For the next test with synthetic datasets, it was decided to increase the num-
ber of features while keeping the number of rows fixed. Is a know fact that the
search space will increase and the complexity of the problem as the number of
features increases. However, the Fig. 2 also shows that the relationship between
the number of rows and columns may also affect the performance of the algo-
rithms. Although P-RS still outperforms P-YYC for high D(1) values with up
to 9 s of difference, the results for lower densities are considerably worse. On the
other hand, in the Fig. 3, it can be observed that P-YYC always performs worse
than P-RS, with differences up to 13 s, when the number of rows is increased
while keeping the number of columns fixed.

The second test set was carried out using well-known datasets from the UCI
Machine Learning Repository1 to evaluate the behavior of the compared algo-
rithms on real-life problems. The only dataset that is not from UCI is the Higher
Education Students Performance Evaluation (K-higher edu) dataset, which was

1 UCI Machine Learning Repository https://archive.ics.uci.edu/.

https://archive.ics.uci.edu/

A Parallel Approach for RegularSearch Algorithm 81

Fig. 3. Results for BMs with 1000 rows and 20 columns.

taken from Kaggle2. Since the previous experiments were conducted according
to the D(1) value, several datasets with different D(1) values associated with
BM were selected. The algorithms were implemented in Java using the Runnable
interface and published on GitHub.3.

Table 4. Dataset experimets.

Dateset Rows Cols D(1) P-YYC P-RS

kr.vs.kp 29 36 0.02 <1 2

anneal 93 38 0.13 30 177

soybean 30 35 0.2 13 6

dermatology 1124 34 0.34 311791 51969

K-higher edu 2367 32 0.46 4272242 172153

cardiotocography 9751 35 0.54 23455339 125839

HCV-Egyptian 1442 28 0.67 15412 159

promoter 2761 57 0.75 26751971 28994

waveform5000 908 40 0.92 6 <1

DARWIN 1681 451 0.98 650407 198

The table presented in Table 4 provides a description of the BM associated
with each dataset, sorted in ascending order according to the D(1) value. Addi-
tionally, the table includes the execution time required for the algorithms P-YYC
2 Kaggle dataset https://www.kaggle.com/datasets/mariazhokhova/higher-educatio

n-students-performance-evaluation.
3 GitHub shared repository https://github.com/J41R0/RegularSearch.

https://www.kaggle.com/datasets/mariazhokhova/higher-education-students-performance-evaluation
https://www.kaggle.com/datasets/mariazhokhova/higher-education-students-performance-evaluation
https://github.com/J41R0/RegularSearch

82 J. A. Lefebre-Lobaina and J. Ruiz-Shulcloper

and P-RS, presented in milliseconds. The results obtained are consistent with
the experimentation using synthetic datasets, with differences of up to 7 h show-
ing the superior performance of P-RS in BMs with high D(1) value. Also, in all
experiments can be appreciated that P-YYC for D(1) > 0.5 tends to improve
the performance, but in any experiment get better results that P-RS.

The experimentation results clearly demonstrate that the algorithms exhibit
different behavior depending on the proportion of rows and columns in the input
BM . Therefore, further study is necessary for the precise selection of a typical
testor finding algorithm according to the characteristics of the BM .

5 Conclusions

This paper presents a parallel approach to the internal type algorithm Reg-
ularSearch for finding all typical testors related to a supervised classification
problem. The proposed algorithm parallelizes the search process of all typical
testors associated with a feature with others on the left of the basic matrix, and
the complete typical testor set is obtained by taking the union of all the subsets
found.

The experiments conducted show that the proposed algorithm is more effi-
cient than the parallel version of the YYC algorithm when D(1) values are high.
The results obtained with synthetic and real-life datasets confirm the behavior
of the algorithm and its ability to handle real problems that generate a BM with
high D(1) value.

For future work, we suggest developing a methodology for comparing typical
testor finding algorithms that considers the input matrix dimensions and D(1)
value. It would be interesting to investigate the relationship between the pro-
posed approach and parallelization paradigms for BigData and HPC. Addition-
ally, we propose developing a version of the algorithm that can take advantage
of the computing capabilities of GPUs.

References

1. Alba-Cabrera, E., Godoy-Calderon, S., Lazo-Cortés, M.S., Mart́ınez-Trinidad, J.F.,
Carrasco-Ochoa, J.A.: On the relation between the concepts of irreducible testor
and minimal transversal. IEEE Access 7, 82809–82816 (2019)

2. Alba-Cabrera, E., Ibarra-Fiallo, J., Godoy-Calderon, S., Cervantes-Alonso, F.:
YYC: a fast performance incremental algorithm for finding typical testors. In:
Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 416–
423. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12568-8 51

3. Dmitriev, A., Zhuravlev, Y.I., Krendeliev, F.: About mathematical principles of
objects and phenomena classification. Diskretni Analiz 7, 3–15 (1966)

4. Gallegos, A., Torres, D., Álvarez, F., Soto, A.T.: Feature subset selection and
typical testors applied to breast cancer cells. Res. Comput. Sci. 121(1), 151–163
(2016)

https://doi.org/10.1007/978-3-319-12568-8_51

A Parallel Approach for RegularSearch Algorithm 83

5. Gómez, J.P., Hernández Montero, F.E., Gómez Mancilla, J.C.: Variable selection
for journal bearing faults diagnostic through logical combinatorial pattern recog-
nition. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds.)
IWAIPR 2018. LNCS, vol. 11047, pp. 299–306. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01132-1 34

6. Gómez, J.P., Montero, F.E.H., Sotelo, J.C., Mancilla, J.C.G., Rey, Y.V.: RoPM:
an algorithm for computing typical testors based on recursive reductions of the
basic matrix. IEEE Access 9, 128220–128232 (2021)

7. Lazo-Cortés, M., Ruiz-Shulcloper, J.: Determining the feature relevance for non-
classically described objects and a new algorithm to compute typical fuzzy testors.
Pattern Recogn. Lett. 16(12), 1259–1265 (1995)

8. Lazo-Cortes, M., Ruiz-Shulcloper, J., Alba-Cabrera, E.: An overview of the evolu-
tion of the concept of testor. Pattern Recogn. 34(4), 753–762 (2001)

9. Lazo-Cortés, M.S., Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A., Sanchez-Diaz,
G.: Are reducts and typical testors the same? In: Bayro-Corrochano, E., Hancock,
E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 294–301. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-12568-8 36

10. Lefebre-Lobaina, J.A., Ruiz-Shulcloper, J.: Regularsearch, a fast performance algo-
rithm for typical testors computation (ND) (Under review)

11. Li, F., Zhu, Q.: Document clustering in research literature based on NMF and
testor theory. JSW 6(1), 78–82 (2011)

12. Lias-Rodriguez, A., Sanchez-Diaz, G.: An algorithm for computing typical testors
based on elimination of gaps and reduction of columns. Int. J. Pattern Recognit.
Artif. Intell. 27(08), 1350022 (2013)

13. Mafarja, M., Qasem, A., Heidari, A.A., Aljarah, I., Faris, H., Mirjalili, S.: Efficient
hybrid nature-inspired binary optimizers for feature selection. Cogn. Comput. 1–26
(2019)

14. Piza-Davila, I., Sanchez-Diaz, G., Lazo-Cortes, M.S., Noyola-Medrano, C.: Enhanc-
ing the performance of YYC algorithm useful to generate irreducible testors. Int.
J. Pattern Recognit. Artif. Intell. 32(01), 1860001 (2018)

15. Piza-Dávila, I., Sánchez-Dı́az, G., Lazo-Cortés, M.S., Villalón-Turrubiates, I.: An
algorithm for computing minimum-length irreducible testors. IEEE Access 8,
56312–56320 (2020)

16. Pons-Porrata, A., Gil-Garćıa, R., Berlanga-Llavori, R.: Using typical testors for
feature selection in text categorization. In: Rueda, L., Mery, D., Kittler, J. (eds.)
CIARP 2007. LNCS, vol. 4756, pp. 643–652. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-76725-1 67

17. Rodŕıguez-Diez, V., Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A., Lazo-Cortés,
M.S.: A new algorithm for reduct computation based on gap elimination and
attribute contribution. Inf. Sci. 435, 111–123 (2018)

18. Rodŕıguez-Diez, V., Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A., Lazo-Cortés,
M.S.: The impact of basic matrix dimension on the performance of algorithms
for computing typical testors. In: Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A.,
Olvera-López, J.A., Sarkar, S. (eds.) MCPR 2018. LNCS, vol. 10880, pp. 41–50.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92198-3 5

19. Sánchez-Dı́az, G., Lazo-Cortés, M.S., Aguirre-Salado, C.A., Piza-Davila, I., Garcia-
Contreras, J.P.: A review of algorithms to computing irreducible testors applied to
feature selection. Artif. Intell. Rev. 1–22 (2022)

20. Solorio-Fernández, S., Carrasco-Ochoa, J.A., Mart́ınez-Trinidad, J.F.: A survey
on feature selection methods for mixed data. Artif. Intell. Rev. 55(4), 2821–2846
(2022)

https://doi.org/10.1007/978-3-030-01132-1_34
https://doi.org/10.1007/978-3-030-01132-1_34
https://doi.org/10.1007/978-3-319-12568-8_36
https://doi.org/10.1007/978-3-540-76725-1_67
https://doi.org/10.1007/978-3-540-76725-1_67
https://doi.org/10.1007/978-3-319-92198-3_5

	A Parallel Approach for RegularSearch Algorithm
	1 Introduction
	2 Concepts Definition
	2.1 Compatible and Regular Sets

	3 Parallel RegularSearch
	3.1 Execution Example

	4 Experimental Results
	5 Conclusions
	References

