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Abstract. Class imbalance is a common problem in (binary) classifi-
cation problems. It appears in many application domains, such as text
classification, fraud detection, churn prediction and medical diagnosis. A
widely used approach to cope with this problem at the data level is the
Synthetic Minority Oversampling Technique (SMOTE) which uses the K-
Nearest Neighbors (KNN) algorithm to generate new, artificial instances
in the minority class. It is however known that SMOTE is not ideal for
high-dimensional data. Therefore, we propose an alternative oversam-
pling strategy for imbalanced classification problems in high dimensions.
Our approach is based on the sparse inverse covariance matrix estimated
trough the Ledoit-Wolf method for high-dimensional data. The results
show that our proposal has a competitive performance with respect to
popular competitors.

Keywords: Imbalanced classes · Oversampling · High-dimensional
data · Sparse Covariance Matrix Estimation · Ledoit-Wolf estimator

1 Introduction

Oversampling is a popular solution to the problem of imbalanced data, where
the number of instances in one class, i.e. the minority class, is significantly lower
than the number of instances in the other class. In oversampling strategies, the
minority class is artificially increased by creating new synthetic data based on
the existing sample [21,23].

A very popular and widely used oversampling method is SMOTE (Synthetic
Minority Oversampling Technique) [2,5]. Various alternatives have been pro-
posed in literature to achieve a good balance such as: SMOTE-Borderline [6],
SMOTE-RSB* [18], ADASYN [7], ROS [22] and SMOTE-COV [13].
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The sample covariance matrix is a commonly used estimator of the true
covariance matrix, and is calculated directly from the data by taking the average
of the outer product of the centered data matrix. However, the sample covariance
matrix can be unreliable when the number of variables is large compared to the
number of observations, as it can be noisy and have unstable eigenvalues.

Covariance matrix estimation methods with sparsity and shrinkage estima-
tion like the Ledoit-Wolf estimator improved the accuracy and stability of the
estimated covariance matrix [10–12]. These methods typically involve some form
of regularization or shrinkage, which involves adding a bias to the estimator to
reduce its variance [3,14]. In addition to the Ledoit-Wolf shrinkage estimator,
there are several other methods that have been proposed for estimating the
covariance matrix in high-dimensional settings. Some of these methods include
Graphical Lasso with �1 regularization, Sparse PCA, Random matrix theory and
Bayesian methods [12].

In high-dimensional imbalanced data, oversampling can be particularly chal-
lenging to generate meaningful synthetic samples. One approach to overcome
this challenge is to simulate synthetic data by using the sparse covariance matrix
while oversampling and improve the classifiers. It is known that the behavior of
SMOTE in high-dimensional data is not always ideal. (i) Oversampling can lead
to an increase in the number of redundant or irrelevant features, which can
reduce the performance of the classifier. This is because synthetic samples gen-
erated by SMOTE are based on existing features, and can therefore inherit the
same irrelevant or noisy features [9]. (ii) SMOTE can lead to overfitting. This is
because SMOTE generates synthetic samples by interpolating between existing
samples, which can lead to over-representation of certain regions of the feature
space. In high-dimensional data this can be biased, since the number of combi-
nations of features grows exponentially [9]. (iii) SMOTE can be computationally
expensive in high-dimensional data, as the number of possible combinations of
features grows exponentially. This can make it difficult to generate a sufficient
number of synthetic samples to balance the class distribution in the minority
class [9]. (iv) SMOTE uses the classical Euclidean distance metric to compute
the neighbors. In the high-dimensional case, it may follow that a lot of instances
or all of them have the same distances. This can lead to an ineffective interpo-
lation [1]. (v) SMOTE can experience over-generalization. Class overlap can be
increased because the method ignores the majority class, allowing the creation
of synthetic samples over the majority class [8,15,16].

Some modifications of SMOTE to balance data sets by applying feature selec-
tion or reduction before or after generating synthetic instances to obtain good
results in high-dimensional classification problems have been proposed recently,
see for example SDDSMOTE [17], FW-SMOTE [19] and SMOTE-SF [20].

The main contributions of this paper are: (i) We introduce a novel strategy of
the resampling based on the Ledoit-Wolf covariance matrix and shrinkage selec-
tion in high-dimensional imbalanced classification. (ii) We propose an empirical
evaluation of the SMOTE algorithms for imbalanced classification in small and
high dimensions synthetics data sets.



18 I. Leguen-de-Varona et al.

2 Covariance Matrix Estimation in High-Dimensional
Imbalanced Classification

Let a set of data, independent and identically distributed (i.i.d.) X =
{X1, . . . XN} with Xi ∈ R

p, be N samples drawn from a p-dimensional Gaus-
sian distribution N (μ,Σ). The task to estimate the inverse covariance matrix
Θ = Σ−1 (also known as the covariance precision), solves the following loglike-
lihood regularized optimization problem

Θ∗ = argmin
Θ�0

{−logdet(Θ) + tr(SΘ) + g(Θ)}. (1)

where g(Θ) is the convex and normally non-differentiable regularization function
and S,Θ ∈ R

p×p are the estimated sample covariance matrix and inverse covari-
ance matrix. The expression to compute the sample mean μ and the sample
covariance matrix S are:

μ =
1
N

N∑

i=1

Xi, S =
1
N

N∑

i=1

(Xi − μ)(Xi − μ)T . (2)

In high-dimensional conditions (p ≈ N or p � N) the sample covariance matrix
S will be singular [4], and the likelihood estimator of the covariance matrix has
many weaknesses such as inaccuracy. Several studies [2,3,8–11], research the
problem of the high dimensions using sparsity and shrinkage methods for esti-
mating Θ considering that the number of the parameters increase quadratically
with respect to the number of variables p.

In the Ledoit-Wolf class of estimators a linear combinations of the identity
matrix Ip and the sample covariance matrix S is considered, so that the opti-
mization problem of the shrinkage estimation and selection became

min
ρ1,ρ2

E

[
‖Θ̂ − Θ‖2F

]

s.t. Θ̂ = ρ1Ip + ρ2S. (3)

The solution to Eq. 3 can also be written as a convex linear combination

Θ̂∗ = λ∗μpIp + (1 − λ∗)S, λ∗ =
β2

γ2
, (4)

where β2 = E
[‖S − ΘT ‖2F

]
and γ2 = ‖S −μIp‖2F . With the asymptotic analysis

we have special interest in the problem with a large number of attributes p/N →
c ∈ (0,∞], that is p and N have similar behaviour in infinity. The case of p � N
was not considered in this study. Finally, the covariance matrix estimator Θ̂∗

and the optimal shrinkage parameter λ∗ can be computed in the following steps
described in Algorithm 1. The synthetic data that must be generated for the
minority class can be simulated using the multivariate normal distribution with
N (μ,Σ∗) in the proportion established in the configuration.
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Algorithm 1. Ledoit-Wolf covariance matrix estimation
Input: X
Output: Θ∗, λ∗

Compute μ and S (eq. 2)
γ̂2 = ‖S − μIp‖2

F

β̂2 = min{γ̂2, 1
N

∑N
i=1 ‖S − XT

i Xi‖2
F }

Compute λ∗ and Θ∗ with eq. 3

3 Numerical Data Simulation and Empirical Study

In this empirical evaluation, we compare several classifiers (MLP, SVM, KNN)
in different conditions of imbalance and number of features (Twelves synthet-
ics datasets with p = {50, 200, 500, 1000, 3000, 5000} and IR = {0.03, 0.05}).
Also, some variants of the SMOTE oversampling strategy were combined with
the classifiers to improve the accuracy. Table 1 shows in details the main char-
acteristics of the classifiers and the resampling methods. In case of the over-
sampling methods studied, two resampling strategies were evaluated while the
classifiers tuned several parameters to choose the best model parameter. Each
pipeline was executed over five splits and three iterations of the classifier. In
this primary research, it was decided to conduct an empirical study with data
sets generated using the multivariate normal distribution N (0, Σ) for the binary
classification problem. Two levels of the imbalance were considered, namely 3%
and 5%. Also, six different feature sizes (p = 50, 200, 500, 1000, 3000, 5000) were
used to build the numerical simulation of the moderate (first three p values)
and high-dimensional (the last three) case. In all of the databases, the number
of samples was N = 1000 (p/N → c = 5 for the more high-dimensional cases)
and 60% of the features were considered informative. Figure 1 shows the two
principal component of a simulated database.

Table 1. The parameters considered for fine tuning of the classifiers.

Method Fine Tunning

Oversampling
strategies

SMOTE Resampling 50:50

ADASYM Resampling 50:50

ROS Resampling 50:50

Cov HD

Classifiers KNN n neighbors

Random Forest max depth, n estimators, min samples split,
min samples leaf

MLP hidden layer sizes, activation, solver, learning
rate, alpha, learning rate

SVM kernel, gamma, C
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In our future work, five highly imbalanced and high-dimensional data sets
from the GEMLeR collection with continuous attributes and a binary class will
be considered for the empirical evaluation.

Fig. 1. A simulated database in high-dimensional imbalanced classification.

3.1 Empirical Evaluation

The AUC (Area Under the Curve) is commonly used in machine learning for
evaluating the performance of binary classification models. The AUC represents
the area under the Receiver Operating Characteristic (ROC) curve, which is a
plot of the true positive rate (TPR) against the false positive rate (FPR) at
various classification thresholds. The TPR is the fraction of positive samples
that are correctly classified as positive, while the FPR is the fraction of negative
samples that are incorrectly classified as positive. Similar to precedent works,
the AUC is also useful for imbalanced classification problems. The AUC metric
is attractive because it is insensitive to the threshold used to classify instances,
and provides a single number that summarizes the overall performance of the
model.

In Table 2, we show the AUC metric for each classifier and oversampling
strategy with all possible combinations of data sets that we propose. The best
values are indicated in bold.

The AUC metric in the combination of KNN + COV HD shows the most
difference with respect to the rest of the combinations. The Friedman test with
Holm correction posthoc, for each classifier in combination with the oversam-
pling strategies, shows only significant differences in the combination KNN +
COV HD with respect to the rest of the strategies.

Another encouraging result in the empirical evaluation is that, although there
are no significant differences, in the case of SVM and MLP the Friedman rank-
ings give the proposed approach the first place. A differentiated analysis of the
Friedman test where we focus on the three bases we considered high-dimensional
for our study, is shown in Table 3.
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Table 2. The AUC metric in the empirical evaluation. The best values are indicated
in bold.

Classifiers Algorithms 50 features 100 features 500 features 1000 features 3000 features 5000 features

KNN 3%
imbalance

COV HD 0.895201 0.914929 0.873684 0.93615 0.936687 0.933655

ADASYN 0.810062 0.871649 0.565015 0.60443 0.5 0.501577

ROS 0.639319 0.743857 0.723529 0.7742 0.539938 0.752563

SMOTE 0.873375 0.844378 0.585139 0.587025 0.501548 0.506309

KNN 5%
imbalance

COV HD 0.847678 0.962677 0.89195 0.908879 0.943653 0.932986

ADASYN 0.5 0.5 0.5 0.5 0.5 0.5

ROS 0.734211 0.673678 0.868885 0.766381 0.587616 0.780436

SMOTE 0.5 0.5 0.5 0.5 0.5 0.5

Classifiers Algorithms 50 features 100 features 500 features 1000 features 3000 features 5000 features

MLP 3%
imbalance

COV HD 0.866873 0.89315 0.868421 0.887193 0.822291 0.730087

ADASYN 0.765325 0.921258 0.855418 0.8414 0.809288 0.761632

ROS 0.754489 0.916977 0.829721 0.880305 0.669969 0.669558

SMOTE 0.871207 0.88347 0.729412 0.800819 0.780186 0.707216

MLP 5%
imbalance

COV HD 0.574303 0.69099 0.627245 0.634773 0.612384 0.604617

ADASYN 0.66161 0.670514 0.60031 0.526806 0.604334 0.495532

ROS 0.544892 0.622673 0.65356 0.694713 0.375851 0.632725

SMOTE 0.673375 0.587118 0.721053 0.601452 0.613003 0.520104

Classifiers Algorithms 50 features 100 features 500 features 1000 features 3000 features 5000 features

SVM 3%
imbalance

COV HD 0.873976 0.946667 0.80901 0.925051 0.787658 0.83101

ADASYN 0.796351 0.918283 0.872673 0.886465 0.801065 0.844747

ROS 0.866158 0.508333 0.852197 0.89707 0.5 0.5

SMOTE 0.863179 0.912727 0.803611 0.882525 0.785489 0.853636

SVM 5%
imbalance

COV HD 0.600521 0.758586 0.621742 0.645657 0.642219 0.5

ADASYN 0.630119 0.661717 0.503351 0.5 0.649106 0.671818

ROS 0.766754 0.5 0.633842 0.53626 0.5 0.514747

SMOTE 0.627513 0.657778 0.5 0.526061 0.649106 0.671717

Table 3. The Friedman test analysis in high-dimensional data sets.

Classifier Ranking Statistic P-value

high-dimensional KNN COV HD, ADASYN, SMOTE, ROS 11.45 0.009

SVM COV HD, ADASYN, ROS, SMOTE 3.6 0.308

MLP COV HD, ADASYN, SMOTE, ROS 1.4 0.706

4 Concluding Remarks and Further Work

In this paper we have introduced a new classification approach for high-
dimensional imbalanced problems based on sparse inverse covariance estimation
using the Ledoit-Wolf method. The empirical evaluation demonstrated the effec-
tiveness of oversampling data trough sparser covariance estimation compared to
others state-of-the-art methods. COV HD showed similar or comparable results
considering the results of the AUC metric and the Friedman test. In addition,
we found significant differences for specific classifiers. In general, we can con-
clude that the strategy of resampling based on sparser covariance matrix is a
competitive method for high-dimensional imbalanced classification problems.

Future work is planned in several directions to expand this contribution. On
the one hand, the most exhaustive evaluation of the sparser covariance matrix
for high dimensions should be considered while introducing the new block-wise
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covariance learning with very high efficiency. On the other hand, a real problem
in high and ultra-high dimensions with imbalanced classes from several domains
can be consider.
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SMOTE-Cov: a new oversampling method based on the covariance matrix. In: Vas-
ant, P., Litvinchev, I., Marmolejo-Saucedo, J.A., Rodriguez-Aguilar, R., Martinez-
Rios, F. (eds.) Data Analysis and Optimization for Engineering and Computing

https://doi.org/10.1186/1471-2105-14-106
https://doi.org/10.1007/11538059_91


Oversampling Method Based Covariance Matrix Estimation 23

Problems. EICC, pp. 207–215. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-48149-0 15

14. Lotfi, R., Shahsavani, D., Arashi, M.: Classification in high dimension using the
Ledoit-Wolf shrinkage method. Mathematics 10(21), 4069 (2022)
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