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Abstract. As humans, we automate more and more critical areas of our
lives while using machine learning algorithms to make autonomous deci-
sions. For example, these algorithms may approve or reject job applica-
tions/loans. To ensure the fairness and reliability of the decision-making
process, a validation is required. The solution for explaining the deci-
sion process of ML models is Explainable Artificial Intelligence (XAI).
In this paper, we evaluate four different XAI approaches - LIME, SHAP,
CIU, and Integrated Gradients (IG) - based on the similarity of their
explanations. We compare their feature importance values (FIV) and
rank the approaches from the most trustworthy to the least trustworthy.
This ranking can serve as a specific fidelity measure of the explanations
provided by the XAI methods.

Keywords: ML · XAI · Local Interpretable Model-Agnostic
Explanations (LIME) · SHapley Additive exPlanations (SHAP) ·
Contextual Importance and Utility (CIU) · Integrated Gradients (IG)

1 Introduction and Motivation

Automated systems are increasingly present in various aspects of our lives. Cur-
rent research shows that it is even possible to use AI to automate the processing
of job applications so that positions can be filled as quickly as possible and suit-
able candidates can be found more efficiently [1]. In the field of medical imaging,
AI is being used as a decision support system to more effectively evaluate the
large amounts of data generated by procedures such as MRI [13,19]. AI also has a
significant impact on the financial sector, with the growing field of financial tech-
nology (FinTech) using AI in decision-making processes, including lending and
insurance [3,12]. However, there is a gap in providing meaningful information to
human decision makers. Given the vast amounts of data, these decision-makers
rely on AI evaluations, but these evaluations should also be justified.
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2 Problem Description and Motivation

In the financial context, automated decisions can have a critical impact on indi-
viduals. Credit approval serves as a representative use case to illustrate the
limitations and issues of using AI predictions in this domain. To address the
lack of transparency, Fig. 1 illustrates the AI-assisted part of the credit approval
process, which relies on a predictive model built using deep learning. The model
uses various features to determine an individual’s ability to repay the loan.

Fig. 1. An example for the lack of transparency in the credit approval use case. The
input and output behavior of a black box predictor is shown. For the clarity of the
standardised input data, there are two test instances presented and the resulting prob-
abilities by the AI model.

The input to the Credit Approval: AI model is a set of features presented
in tabular form on the left side of Fig. 1. Each row represents a person as vec-
tor, consisting of 34 features. The model’s outcome is a probability of accepting
or rejecting the credit, visualized on the right side of the figure. The problem
with this approach is the lack of transparency in the decision-making process.
The model makes predictions based on specific features without revealing the
underlying decision process for the individual case. Providing an explanation
of the decision-making process can increase the transparency of the prediction
model. For instance, an individual denied credit could ask, “Why was the credit
rejected?”. Additionally, there may be laws and regulations that require account-
ability for automated decisions. XAI algorithms can help bridge the transparency
gap by providing optimal support for people in decision-making positions, such
as credit approval. The research questions (RQx) as well as the hypothesis (Hx)
of this paper are as follows.

– RQ1: How similar are the explanations provided by XAI approaches for inputs
that differ by no more than 1% in one feature?

– H1: If the inputs are almost identical, then it is expected that only minor
changes appear in the explanation. This can be used as a scoring metric for
the stability of a XAI algorithm.

– RQ2: Is there a correlation between scaling a selected feature by a factor of
a and the resulting feature importance value?

– H2: Scaling a feature by a certain degree, results in a correlation with the
feature importance movement.
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3 Background and Related Work

Minh et al. [17, p. 3511] define XAI in their survey paper as “the study of
explainability and transparency for socio-technical systems, including AI.” There
are several taxonomies according to [4,7,15,21] to classify XAI methods. The
focus of this work lies on the evaluation of model-agnostic and model-specific
XAI approaches.

3.1 LIME by Ribeiro et al. 2016 [20]

The idea behind LIME is to consider the local model as a black box model. The
mode of operation of LIME is based on perturbing an original data point as
input into the black box model and using the resulting predictions to train an
interpretable surrogate model, which locally approximates the predictions of the
black box model. The explanation provided by LIME is defined by:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (1)

In Eq. 1, ξ is the explanation of instance x, which is obtained through an opti-
mization task. Function g is an interpretable local model and G is a class of
potentially interpretable models. The function f is the original predictor, and
πx defines the radius of the neighborhood around instance x. L is the loss func-
tion that measures the accuracy of the prediction from instance x with respect
to the interpretable model g and the original prediction by f in the area of πx

around the original prediction. Ω is a complexity measure of g and serves as a
penalty function. LIME calculates feature importance values that show the con-
tribution of each feature for and against a prediction in a certain classification
category.

3.2 SHAP by Lundberg and Lee 2017 [16]

The idea of the SHAP has its origins in the game theory. It calculates the extent
to which a coalition (set of features) contributes or does not contribute to a par-
ticular classification based on the so-called Shapley values. The used implemen-
tation was the framework by Lundberg and Lee [16], known as SHap Additive
exPlanations. The following definition describes the generation of explanations
by the algorithm [16,18]:

g(z′) = φ0 +
M∑

i=1

φiz
′
i (2)

The function g describes the explanatory model and z′ describes the data
instance to be interpreted. Here, z′ may have only a subset of all features. The
explanation is generated by a linear model where φi ∈ R and z′

i is either zero
or one for representing the presence or absence of a value from the feature set
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z′ [16]. Lundberg and Lee provide in their framework (implementation) different
explainer models. The computational model approximates Shapley values with
perturbations of z′. By that, the complexity problem of computing Shapley val-
ues could be solved. SHAP also generates feature importance values like LIME
and the expressive power are the same.

3.3 CIU by Främling Initially 1996 [9]

The third model-agnostic algorithm is based on Decision Theory, more specif-
ically on the sub-domain of Multiple Criteria Decision Making (MCDM). In
contrast to LIME and SHAP, this approach distinguishes between the measured
importance and the utility of an attribute. On the premise of the feature rele-
vance, the focus lies on the contextual importance. This is described in [9,11]:

CIj(�C, {i}) =
Cmaxj

(�C, {i}) − Cminj
(�C, {i})

absmaxj − absminj
(3)

The explanation model CIU calculates with the function CIj the importance
of feature i in the feature vector �C for an output label (value) j. The function
Cmaxj

determines the maximum output of the prediction j for a certain feature
i. The Cminj

calculation follows a similar approach. The functions absmaxj and
absminj determine the highest and lowest prediction from the given data set.
More details are provided in the paper by Kary Främling [9–11].

3.4 IG by Sundararajan et al. 2017 [22]

Integrated Gradients is a model-specific approach that differs from the other
XAI methods and serves as a verification method. Basic axioms are defined that
the XAI approach must fulfil. The most important of these are “Sensitivity”,
“Implementation Invariance” and “Completeness”. The details can be found in
the paper, the following describes the parts of the function [22]:

IntegradGradsi(x) = (xi − x′
i) ×

∫ 1

α=0

∂F (x′ + α × (x − x′))
∂xi

dα (4)

In Eq. 4, F represents the predictor model, x is the input instance, and x′ is the
baseline input instance, which stands for a neutral prediction, such as a black
image. The feature of the input instance is selected by choosing the dimension
(feature) of i. ∂F (x)

∂xi
is the gradient along the predictor of the i-th dimension.

Integrated Gradients takes into account the difference between a feature of the
input instance and the baseline instance, which is then multiplied by the inte-
grated gradients value of that particular feature.

4 Methodology

According to Bruckert et al. [5], the combination of global and local XAI algo-
rithms is key to ensure the confidence and performance of future ML models.



Evaluation of XAI Methods in a FinTech Context 147

Building upon this idea, a framework is proposed that utilizes a combination
of model-agnostic methods, contrasting and comparing it with a model-specific
approach. The main goal is hereby to further analyse the quality of certain XAI
explanations by conducting tests with very similar data samples.

Considering the complexity in evaluating a unsupervised model, an approach
was developed to get quality insights by conducting changes in the test dataset.
The underlying assumption is hereby that minimal changes in the test data,
should result in similar explanations. That means, several data sample pairs are
generated, which differ in one feature by around 1%. The XAI algorithm is then
measured based on the similarity of the resulting explanations. A high variation
leads to poor results and less trust. On the other hand, the smaller the variation
of the feature importance value (FIV) among the data sample pairs are, the
better and more trustworthy is the XAI algorithm.

Similarity =
FIVoriginal · 100%

FIVperturbated
(5)

The Eq. 5 shows the formula used to compute the degree of similarity among
the data sample pairs. A 100% similarity means hereby that the explanations
are identical and that the feature change had no impact on the explanation.
In contrast, a value bigger or smaller 100% means that the importance value
for a certain feature changed. Besides the similarity computation, the Spearman
rank correlation coefficient was applied for the results in RQ2 due to the sake of
illustration. The value ranges hereby from -1 to 1 and represents the monotonic
relationship of the data. A value of 1 means that by increasing the first part
of the data, the second part increases too. In contrast, -1 indicates that while
increasing the first part of the data, the second one decreases.

The credit approval task was chosen in the context of AI for critical domains.
The “Credit Approval Data Set” from [8] was used for training and testing, but
the original dataset only contained acronyms in the column headers for privacy
reasons, making it difficult to interpret. To address this, we obtained a cleaned
version of the data from Kaggle [6] and used the column headers provided there.
For the predictor, a simple neural network was implemented using TensorFlow
with two layers, each consisting of 32 neurons, and trained using the Adam
optimizer. The output of the model was generated using a softmax function. To
interpret the prediction using IG, the same network architecture was used and
trained with a sigmoid function in the output layer.

For the use case of the credit approval system that requires explainable AI,
a suitable XAI approach must be selected. The approach should be easy to inte-
grate into the existing system (Req. 1), provide explanations of the predictor’s
behavior (Req. 2), and allow examination of individual features (Req. 3). Post-
Hoc models fulfill the first requirement since they do not require changes to
the predictor or data. They produce Feature Importance Values for explaining
the impact of single features or interdependence between features, meeting the
Req. 2.
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Table 1. Comparison of the requirements for XAI methods.

Method LIME SHAP CIU IG

Requirement 1–3 Fulfills Fulfills Fulfills Fulfills

Model Access No No No Yes

Scope Local Local/Global Local Local

Approach Functional Game Theory Decision Theory Functional

As shown in Table 1, each introduced algorithm could be used for evaluating
the FIV. The only distinction among the algorithms is whether the predictor is
accessible or not. In most cases where a service is used, the predictor may not
be accessible, and so LIME, SHAP, and CIU could be chosen. If access to the
ML model is granted, then IG is also an option.

The reference implementations of LIME and SHAP from [20] and [16] were
used respectively. The CIU implementation presented in [2] and the implementa-
tion from the Alibi collection [14] were used as the reference implementations of
CIU and Integrated Gradients. For the experiments, the standard arguments of
the XAI algorithms, which are listed in Table 2, were used. The library versions
used in the experiments are also listed.

Table 2. Overview of parameters for XAI approaches.

Used explainer
(data specific)

Input data
(type of data)

Model
(required)

Optional parameters Lib. version

LimeTabular
Explainer (Yes)

data point,
(tabular)

Yes Top labels: 1
Samples: 5000
Features: 34

0.2.0.1

SHAP Explainer
(No)

data point,
(tabular)

Yes – 0.41.0

determine ciu (No) data point,
(tabular)

Yes List of
min. and
max. values

0.0.3

IntegratedGradients
(No)

data point,
(tabular)

Yes n steps: 50
method: gausslegendre
baselines: None

0.9.1

Since the credit approval dataset contains nominal variables (such as “Indus-
try” and “Ethnicity”), a one-hot encoding was applied, resulting in a dataset
with 690 samples and 34 features each. To train and test the deep neural net-
work, the data was splitted (80/20) and transformed along the columns using
the StandardScaler from scikit-learn, resulting in an average of 0 and a standard
deviation of 1. The same preprocessing was applied to the test data used for the
XAI algorithms. RQ1: To analyze the similarity of explanations for almost identi-
cal data sample pairs, 100 data samples were selected and further processed. Four
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copies of each sample were created, with each copy having one column changed
by +1%. The columns “Age”, “Debt”, “YearsEmployed”, and “Income” were
chosen for this purpose, as they contain continuous numerical data. The data of
these features is in decimal form and therefore possible to change by around 1%.
After the feature changes, the data was merged into a dataset with a total of
500 rows and 34 columns. RQ2: In contrast to RQ1, RQ2 conducts changes on
just one column and 10 data samples. These have six copies each, representing a
feature change of +1%, +5%, +10%, −1%, −5%, and −10%. The objective is to
analyze the relationship between the feature change and the similarity changes of
the explanations. The merged dataset has 70 rows, where rows 10–70 represent
the changed data samples. As only one feature-column is changed, the other 33
remain the same throughout the copies. The “Age” and “Income” columns are
changed, resulting in two datasets, each with a shape of (70,34). After obtaining
the explanations from the XAI models, the data was shifted on a positive scale.
To avoid any problems for the following similarity calculation of the data pairs,
a minimum value of 1 · 10−12 was chosen. A data pair refers to a data sample
that was created through minimal changes in one column. For RQ1, we have 100
original data samples, each of which has four pairs (total 400 pairs). In contrast,
the dataset in RQ2 originated based on 10 data samples, each of which has six
pairs (total 60 pairs/dataset).

5 Results

As mentioned in Sect. 4, the explanation similarity analysis for RQ1 is based on
the feature changes in the column “Age”, “Debt”, “YearsEmployed” as well as
“Income”. The result is hereby a similarity matrix of 400 × 34, which represents
the degree of similarity for all data pairs and their feature values.

Due to the size of the result set (for each algorithm 400×34), the explanation
similarities of the “Income” column are presented in Fig. 2. The figure illustrates
the distribution of the similarities for each XAI algorithm, where it can be clearly
seen that most of the explanation pairs have a similarity of 99 to 101%. That
means, a feature change of around 1% resulted in a explanation similarity of
mostly 99 to 101% for the “Income” column. By comparing the results of the
algorithms which each other, it can be said that especially SHAP has great
results.

The same applies for CIU, which performs slightly worse then SHAP. Most
of the samples lie in a similarity range of 99–101%, while the amount of sam-
ples lower or higher then that is very small. Even though Integrated Gradients
achieved comparable results, a higher data dispersion as well as a few outliers
could be observed. In contrast to the results of CIU, SHAP as well as Inte-
grated Gradients, the results of LIME are highly distributed and less centered.
As illustrated in Fig. 2, small changes in the features can lead to big differences
in terms of the explanations. According to the quality approach mentioned in
Sect. 4, this makes it unreliable and less trustworthy. On the other side, CIU,
Integrated Gradients and especially SHAP deliver good results.
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Fig. 2. Algorithm Comparison about the similarity of the explanations for the feature
“Income” - representation of the feature importance similarities for the data pairs.
The similarity measures the percentage match between the explanation of the original
data sample as well as the one with a feature change of around 1%. The results of
“Integrated Gradients”, “SHAP”, “LIME” and “CIU” are compared.

However, these conclusions relate to the column “Income” and can change
among the different features. For instance in Fig. 3, it can be seen that the
explanation similarity analysis for the column “Age” leads to slightly different
results. The dispersion of the data got larger, especially for the results of LIME
and IG.

In contrast to RQ1, RQ2 focuses on a relation between an increasing feature
change as well as the similarity in the explanations. That means, if increasing or
decreasing the value of a feature, has the same impact on the feature importance
values. Table 3 compares hereby the similarity of the explanations. If the simi-
larity is above 100%, it means the feature importance shrinked and vice versa.
Except for the results of CIU, no clear relation of the changes in the feature
values and their resulting feature importance values could be observed. For the
values of CIU however, a monotonic relationship could be analysed. That means
for instance, the change of the “Income” feature values caused a similar feature
importance movement in “Age” for the CIU algorithm. By considering that every
decision is based on 34 features, the change of the feature importance value can
be considered as big. This is crucial by comparing the results with each other,
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Fig. 3. Algorithm Comparison about the similarity of the explanations for the feature
“Age” - representation of the feature importance similarities for the data pairs. The
similarity measures the percentage match between the explanation of the original data
sample as well as the one with a feature change of around 1%. The results of “Integrated
Gradients”, “SHAP”, “LIME” and “CIU” are compared.

Table 3. Feature Changes for “Income” - Analysis of the relation between the varying
values of feature “Income” and the changing explanation similarities of the feature
“Age”.

Feature Change Changes in Income Column

+1% +5% +10% −1% −5% −10%

Age LIME 81,87 93,60 95,25 193,12 157,12 105,29

SHAP 99,98 100,05 100,02 99,96 99,82 99,87

CIU 100,70 102,23 105,38 99,64 97,79 95,83

Integrated Gradients 94,93 93,74 92,50 102,56 99,04 99,06

since a lot of times when similar movements occur, the similarity changes are
not significant.

This can be seen in Table 4, which further processes the data by comput-
ing the Spearman rank correlation coefficient. Details about the exact feature
importance changes are missing in Table 4 and therefore make it hard to dis-
tinguish similar values. As mentioned in Sect. 4, the values range from -1 to 1
and represent the monotonic relationship. In comparison to LIME, SHAP and
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Integrated Gradients, CIU shows a clear monotonic relationship in all of the
columns. Besides positive monotonic relationships, CIU also has some negative
monotonic relationships. That means, a change in the feature value can either
result in feature importance values that change in the same (positive) or opposite
(negative) direction. Besides the results of CIU, LIME and Integrated Gradients
had a monotonic relationship with some of the features.

Table 4. Feature Changes for “Age” and “Income” - analysis of the relation between
varying feature values and their changing explanation similarities. Results are presented
with the computed Spearman rank correlation coefficient.

Feature

Change

Changes in Income Col. Changes in Age Col.

+1%, +5%, + 10 −1%, −5%, −10% +1%, +5%, +10% −1%, −5%, −10%

Age LIME 1.0 1.0 −0.5 −1.0

SHAP 0.5 0.5 −0.5 −1.0

CIU 1.0 1.0 1.0 1.0

Integrated

Gradients

−1.0 0.5 −1.0 −0.5

6 Conclusion

The first aspect of the research was to analyse the similarity of explanations for
slightly different test instances (RQ1), which can be understood as an metric
approach to evaluate the trustworthiness of certain XAI algorithms. For the
investigated algorithms (CIU, Integrated Gradients, LIME, and SHAP), it was
hypothesized that minimal feature deviations would only lead to very small
changes in the feature importance values. SHAP performed consistently well due
to its theoretically well-founded calculation model, which tries many coalitions
to calculate an objective interpretation. Molnar et al. also considers SHAP to
be highly robust in terms of legal traceability [18]. Due to it’s model-specific
procedure, which uses both the I/O behavior of the predictor and the internal
gradients to generate explanations, Integrated Gradients could achieve great
results. However, in contrast to SHAP and CIU, a larger dispersion of the data
as well as more outliers could be observed. The results of LIME were highly
distributed and therefore the least trustworthy model. One possible reason for
this is the local fidelity of LIME and the random generation of neighbor instances
used to train the interpretable proxy model. Based on the similarity metric, CIU,
IG, and SHAP consistently rank high, but also show some noticeable deviations.
Focusing solely on the “High Accuracy Similarity Range” (i.e., 99% to 101%) is
not enough to provide a definitive answer. It is crucial to take into account the
outliers and the quantity of non-centered data. This could potentially form the
foundation for future research. The range and number of outliers with respect to
similarity give a more objective overview. This approach could also be utilized
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as a starting point for creating an enhanced metric that objectively assesses the
efficacy of XAI algorithms.

In RQ2, the aim was to examine the correlation between changing feature
importances and the changed feature values. CIU showed hereby a clear correla-
tion. On the other hand, there was only a partial correlation found for LIME, IG,
and SHAP. Therefore, the initial hypothesis can not be confirmed. One possible
explanation for this could be the interdependencies between the features, which
were not investigated.

Finally, the evaluation of the ML model is beneficial in critical areas such as
finance. The evaluation of these black box predictive models can reveal the inter-
nal processes by explaining the decision path. It has been shown that explanatory
approaches such as CIU, Integrated Gradients and SHAP produce more precise
explanations, according to the presented metric, than LIME.
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