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Abstract. Chaotic systems are complex and challenging to predict due
to their sensitive dependence on initial conditions and the complexity of
their dynamics. This paper improves the prediction accuracy of chaotic
systems using Echo State Networks (ESNs) by considering a complex
graph adjacency matrix as the recurrent layer. This helps ESNs better
capture the nonlinear dynamics of chaotic systems. ESNs are a type of
recurrent neural network with a fixed, randomly generated hidden layer,
making them computationally efficient and able to handle large, high-
dimensional datasets. This study applies ESNs to the Lorenz, Mackey-
Glass, and Kuramoto-Sivashinsky models, which are well-studied exam-
ples of chaotic systems. Our results demonstrate that ESNs can effec-
tively capture the dynamics of these systems and outperform existing
prediction methods made with ESNs.
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1 Introduction

Chaotic systems are ubiquitous in various fields, such as physics, biology, and
economics. Understanding and predicting the behaviour of these systems is cru-
cial for many applications, including weather forecasting, speech recognition and
stock market prediction [4,8,17]. However, chaotic systems are notoriously dif-
ficult to predict due to their sensitive dependence on initial conditions and the
complexity of their dynamics.

Recent advances in machine learning have shown promise in predicting
chaotic systems, with Echo State Networks (ESNs) being one of the most suc-
cessful approaches. ESNs are a type of recurrent neural network with a fixed,
randomly generated internal state, making them computationally efficient and
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able to handle large, high-dimensional datasets. This study applies ESNs to
the Lorenz, Mackey-Glass, and Kuramoto-Sivashinsky models, which are well-
studied examples of chaotic systems [7,10,13].

In this paper, we present an improvement in the prediction accuracy of
chaotic attractors on these models using ESNs, considering its internal hidden
layer as the adjacency matrix of a Watts-Strogatz graph. Our results demon-
strate that with this consideration ESNs can effectively capture the dynamics of
these systems and outperform existing reported prediction accuracy [14,15].

2 Echo State Networks

Reservoir computing is a neurocomputing paradigm that employs a reservoir
of dynamical nodes to compute temporal features internally, requiring only a
linear readout layer to map the reservoir state to the desired output. There are
two main paradigms: liquid state machines (LSM) [12] and echo state networks
(ESN) [6].

Echo State Networks (ESNs) are recurrent neural networks successfully
applied to various applications, including time-series prediction, speech recog-
nition, and control problems [16]. Herbert Jaeger introduced them in 2001 to
simplify the training of recurrent neural networks [6].

Mathematically, an ESN can be defined as follows: Let h(t) denote the state
vector of the network at time t, x(t) be the input vector, and y(t) be the output
vector. The dynamics of the ESN can be written as follows:

h(t + 1) = f(Winx(t) + Wrh(t) + Wfbacky(t)) (1)

where Win is the input weight matrix, Wr is the randomly initialized recurrent
weight matrix, Wfback is a feedback weight matrix from the outputs y(t) to the
internal state h(t), and f(·) is a non-linear activation function, tipically tanh or
some other sigmoid function. The output of the ESN is then given by:

y(t + 1) = Wouth(t + 1) (2)

where Wout is the output weight matrix learned during training.
The critical feature of ESNs is the echo state property (ESP) [5], which allows

the network to store and process information in its recurrent connections without
complex training algorithms. The ESP refers to the ability of a recurrent neural
network with a dynamic recurrent layer to process input information effectively
and stably. ESP is achieved by randomly initializing the recurrent connections
of the network and fixing them during training. The recurrent connections then
act as a “reservoir” of information that can be used to process input data.
Jaeger argues that a neural network complies with ESP if its recurrent layer can
gradually forget irrelevant information and retain only the crucial features from
the input signal.

To ensure the echo state property in an ESN, it is important for the spectral
radius of the recurrent weight matrix Wr to be less than 1. The spectral radius
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can be controlled by scaling the weights of the recurrent matrix. This guarantees
that the dynamics of the network converge over time and that the network does
not amplify small perturbations in the input. Although this condition is very
restrictive, other criteria that may also be applied to ensure the achievement of
the ESP [19] have been developed.

Owing to the dynamics of a reservoir exhibiting the Echo State Property,
the network can operate as a filter solely for the input signal, irrespective of the
internal state’s original conditions. Accordingly, the denomination “Echo State
Network” alludes to the reservoir’s echoing of the input history.

Another way to achieve the echo state property is to use a sparsely connected
recurrent weight matrix, where only a tiny fraction of the connections are non-
zero. It is then natural to consider this sparse matrix to be the adjacency matrix
of a complex graph, as this allows the network to exploit the complex information
propagation dynamics of the graph in its recurrent activity. The connectivity
pattern encoded in the adjacency matrix captures the higher-order structure of
the complex graph, which can influence the emergent computational properties
of the reservoir. For this reason we then used the adjacency matrix of a Watts-
Strogatz model as the recurrent layer of the ESN. This choice of Watts-Strogatz
topology for the reservoir is motivated by the capacity of its small-world networks
to facilitate complex information flow dynamics that we seek to leverage for
computational purposes within the ESN framework.

Another advantage of ESNs is that they can be trained using simple linear
regression techniques, which makes them computationally efficient and easy to
implement. During training, the output weight matrix is learned by minimizing
the mean squared error between the network and target output using ridge
regression [3]. The input and feedback weight matrices can also be optimized
during training to improve further the network’s performance [11].

2.1 Training an ESN

The training process for an ESN has two main stages: internal state harvesting
stage and regression stage.

After initializing the ESN with random weights and achieving ESP, input
data is fed into the network during the harvesting stage. The network processes
this input data, generating an internal state h(t) for each time step t. These
sequence of internal states at each time step are then collected and used to train
the output layer.

During the output regression stage, the collected internal states are used
to train the output matrix Wout. This is done by solving a linear regression
problem of the form Wouth(t) = y(t + 1) for Wout, where Wout represents the
weights that map the internal states to the desired output, and y(t) is the target
output at time step t, in our case the next time step of the time series, i. e.
x(t+1). The weights Wout are typically learned using a regularized least-squares
regression method such as Ridge regression. Ridge regression is a version of linear
regression that adds a penalty term to the least squares objective function to
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prevent overfitting. The objective function for this regression is given by:

ytarget −Wouth + β|Wout|2 (3)

where ytarget is the target output, h is the state vector of the ESN, and β is
a regularization parameter that controls the strength of the penalty term. The
output weight matrix is learned by minimizing this objective function. Other
methods, such as gradient descent or the Moore-Penrose pseudoinverse [1], can
also achieve similar results.

One important consideration in training ESNs is the choice of hyperparame-
ters, such as the spectral radius, input scaling factor, the regularization parame-
ter for ridge regression, and the reservoir size (i.e., the number of neurons in the
ESN). These hyperparameters can significantly impact the performance of the
ESN and are often chosen through trial and error or using more sophisticated
methods such as grid search or Bayesian optimization [2,9,18].

In this work, we will be using a free-running ESN with no input vector x(t);
only the feedback from the network output will be combined with the internal
state, i. e.:

h(t + 1) = f(Wrh(t) + Wfbacky(t)) (4)

The training will consist of feeding the network with the actual signal data
to make the internal state harvesting. Afterwards, Wout is computed by a Ridge
regression and the network loop is closed to make the predictions, Fig. 1.

Fig. 1. Diagram of an Echo State Network. Left: the open loop phase with correct
signal input. Right: prediction phase with network feedback.

In the training phase (open loop), the network will be fed with the actual
data from the time series as if it were the network’s output. Then in a prediction
phase (closed loop), once the output matrix Wout is obtained, the feedback will
be the one provided by the network, Fig. 1.

3 Results

We applied our ESN model to predict the trajectories of the Lorenz, Mackey-
Glass, and Kuramoto-Sivashinsky systems. We used an adjacency matrix gen-
erated from a Watts Strogatz small-world graph with a rewiring probability of
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0.5 and an average degree of 6 for the recurrent weight matrix. Ridge regression
was used to train the output weights. The reservoir size and spectral radius of
the recurrent matrix for the Lorenz system and the Kuramoto-Sivashinsky, were
the same as reported in [14,15].

3.1 Lorenz System

The Lorenz system describes the dynamics of convective fluid motion [10]. This
system is described by the equations:

ẋ = σ(y − x) (5)
ẏ = x(ρ − z) − y (6)
ż = xy − βz (7)

For the simulations, we will use the classic parameter choice of σ = 10,
ρ = 28, β = 8

3 , where the system exhibits chaotic behaviour; hence it makes it a
good benchmark for the network to compare.

Figure 2 shows a plot of our prediction horizon compared to previous work.
Our model achieved significantly more prolonged and more accurate predictions
of the Lorenz attractor, clearly capturing the folding and stretching dynamics of
the system. We could predict the Lorenz trajectory up to 10 time units in the
future before diverging from the correct trajectory, compared to 5 time units
reported by Ott et al. in [15].

Fig. 2. Prediction horizon of the Lorenz system

Although the predictions eventually diverged from the actual trajectory after
some time steps due to the chaotic nature of the system, it is worth noting that
the ESN was still able to capture the complex internal dynamics of the system.
This is evident from Fig. 3, which shows the Lorenz attractor obtained from the
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ESN predictions. The fact that the ESN produced a similar attractor to the
actual Lorenz attractor indicates that it captured the essential features of the
Lorenz system’s dynamics.

Fig. 3. Lorenz 3d plot. Left: the attractor of the original Lorenz model. Right: the ESN
is running free after training. Both exhibit the same nature of internal dynamics.

Another way to confirm the system dynamics are being captured by the ESN
is by examining the return plot of the system compared to that of the network,
Fig. 4. This shows that the ESN can reproduce the characteristic folding struc-
ture and spread of points in the Lorenz attractor, indicating it has successfully
learned the system’s nonlinear dynamics. Any deviations in the return plot would
suggest that the ESN is not fully capturing the dynamics of the chaotic system.
Return plots are a useful visualization tool to complement other metrics like
prediction error in evaluating the performance of a model on a chaotic system.

Fig. 4. Lorenz return map for the Z dimension, a comparison between the system and
the ESN predictions.
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3.2 Mackey-Glass System

The Mackey-Glass equation models physiological control systems with long delay
times [13]. Physiological systems like blood cell production control involve feed-
back loops where the measurement and regulation happen at different time
scales. This time delay can introduce inestability and chaotic behaviour in the
system dynamics. The Mackey-Glass equation captures this behaviour through
a time-delayed differential equation. The system equations are:

ẋ =
αx(t − τ)

1 + x(t − τ)β
− γx(t) (8)

Here, x(t) represents the state variable, like blood cell concentration. The first
term on the right-hand side represents the production rate, where x(t− τ) is the
delayed state. The second term represents the decay or loss rate. The parameters
α, β, τ , and γ determine the behavior of the system. For certain parameter
ranges, the delayed feedback through x(t−τ) can give rise to chaotic oscillations
in x(t). This simple equation exhibits phenomena like period doubling and route
to chaos, making it useful for studying chaos in dynamic systems. It is typically
used to benchmark the performance of recurrent neural networks due to the
time-delay nature of its dynamics.

The parameter τ represents the delay time, which governs the “memory”
of the system. When τ is small, the system behaves linearly. As τ increases, the
system becomes increasingly chaotic due to the long delay.

Fig. 5. Prediction horizon of the Mackey-Glass system. Comparison between the
numerically calculated simulation and the predictions of the ESN.

For the Mackey-Glass system with α = 0.2, β = 10, γ = 0.1, τ = 17, where
it exhibits chaotic behaviour, our ESN model was able to accurately predict
the behaviour of the system entirely, an undoubted improvement compared with
what has been done in previous ESN studies. Figure 5 shows the longer prediction
horizon achieved by our model.

The performance likely reflects how well our model captured the Mackey-
Glass system’s dynamics. The results demonstrate how important is the topology
of the recurrent layer in ESN for modelling and predicting chaotic time series
with long delay times.
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3.3 Kuramoto Sivashinsky System

The Kuramoto-Sivashinsky model describes the propagation of a flame front in
a premixed gas. The Laplacian and bi-Laplacian terms model heat diffusion and
finite flame thickness, while the nonlinear term models convection due to gas
expansion behind the flame front [7]. The system is described by the equation:

∂u

∂t
+ u

∂u

∂x
+

∂2u

∂x2
+

∂4u

∂x4
= 0 (9)

For this system, our ESN achieved predictions up to 12 Lyapunov times, as
shown in Fig. 6, whereas, in previous studies, this was up to 6 Lyapunov times
[14]. This indicates that our model can capture the complex spatiotemporal
dynamics of the Kuramoto-Sivashinsky system for a more extended period.

Fig. 6. Prediction horizon of the Kuramoto Sivashinsky system. Time is scaled accord-
ing to the Lyapunov times of the system. The upper plot is the Kuramoto-Sivashinsky
model numerical integration. The middle plot is the predictions made by the ESN. The
lower plot exhibits the difference between the other two.

The fact that our model can better learn the system’s underlying patterns
and long-term dependencies coule be explained by a few possible reasons:

1. Complex dynamical systems like Kuramoto Sivashinsky exhibit complex
information propagation, with interactions spanning both short and long
timescales. Using a complex graph as the recurrent layer in our echo state
network allows us to model this complex information flow better, as complex
networks have been shown to capture real-world connectivity patterns more
accurately.

2. The additional long-range connections in complex networks can help propa-
gate information over longer timescales. This is crucial for predicting long-
term behaviour in dynamic systems, which often depends on integrating infor-
mation from both recent and distant history.
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3. The non-locality and small-world properties of complex networks give them
advantages in memory capacity and efficiency compared to an Erdos-Renyi
network. Using the same computational resources, they can learn and store
information from more inputs.

4 Discussion and Conclusions

Our ESN model achieved significantly more prolonged and accurate predictions
for each chaotic system studied: the Lorenz, Mackey-Glass, and Kuramoto-
Sivashinsky models.

For the Lorenz system, our model could predict the trajectory of up to 10
time units in the future compared to 5 time units reported in previous studies.
The Lorenz attractor produced by the ESN closely resembled the actual Lorenz
attractor, indicating that the ESN captured the underlying dynamics well.

Our ESN achieved complete predictions for the Mackey-Glass system. This
suggests that our model captured the Mackey-Glass system dynamics more accu-
rately, likely due to using a small-world network as the recurrent layer.

For the Kuramoto-Sivashinsky system, our model achieved predictions up to
12 Lyapunov times compared to 6 Lyapunov times in previous studies. Again,
this better performance can be attributed to using a small-world network in the
ESN.

The longer prediction horizons achieved by our model can be attributed to the
small-world network structure of the recurrent weights. The short path lengths
and high clustering of the Watts-Strogatz graph allow information to propagate
more efficiently through the reservoir, enabling it to extract and store relevant
temporal patterns from the input data for longer. This shows that the topology
of the recurrent connections can profoundly impact an ESN’s computational
abilities, with small-world graphs conferring significant advantages for chaotic
systems prediction.

In summary, the improved performance of our model demonstrates the ben-
efits of utilizing complex graph structures as recurrent layers for capturing com-
plex spatiotemporal dynamics. The non-trivial topology of complex networks
helps model the non-trivial information propagation in real-world dynamical
systems. This highlights the importance of network structure in designing recur-
rent layers that can better learn long-term dependencies and predict long-horizon
behaviours.
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aknowledge for rewarding discussions.

References

1. Dresden, A.: The fourteenth western meeting of the American mathematical soci-
ety. Bull. Am. Math. Soc. 26(9), 385–396 (1920)
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