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Technology is the answer. But what was the question? 
Cedric Price (1966) 

Abstract Studies using BCIs based upon non-invasive, scalp recorded electroen-
cephalography (EEG) have consistently demonstrated utility, both as scientific tools 
for neuromodulation and for clinical neurorehabilitation purposes. They are partic-
ularly appealing in clinical contexts where physical movement is impaired, for 
instance following stroke. The intrinsic advantage of Brain-Computer Interfaces 
(BCIs) over alternate rehabilitation strategies is that they work even when output 
at the behavioural level is non-existent. Patients exhibiting minimal or no residual 
limb movement after a stroke cannot partake in gold standard physiotherapy, but 
might still demonstrate brain activity patterns when attempting to move the impaired 
limb. These patterns can be targeted to enhance recovery. However, the role of BCI 
should evolve once behavioural output is available. We must not be seduced by the 
allure of cutting-edge technology at the expense of targeting the specific neurophys-
iological features that are most likely to drive recovery. At the most basic mecha-
nistic level, the majority of BCIs are driven by neural signals generated by 
imagination of movement. We need to revisit the question—could motor imagery 
alone could achieve the same outcomes, or what is the added clinical benefit of  
the BCI? Accordingly, what is the minimum required intervention using BCI 
(in terms of time and hardware) to establish a habit of good quality motor imagery 
that could then sustain rehabilitation without the technology? Motor imagery is free,
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available to every person and at any time. Using technology to harness its virtues 
while not compromising its simplicity is the ultimate challenge for the field.
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Studies using BCIs based upon non-invasive, scalp recorded electroencephalogra-
phy (EEG) have consistently demonstrated utility, both as scientific tools for 
neuromodulation and for clinical neurorehabilitation purposes. They are particularly 
appealing in clinical contexts where physical movement is impaired, for instance 
following stroke. Using a BCI where on-screen avatars are driven by neural activa-
tion in motor regions encourages the patient to engage in imagined or attempted 
movements. By providing tangible visual feedback and rewarding desirable neural 
features, activity in motor pathways is maintained. This may promote use-dependent 
plasticity and rewiring for recovery of function. However, clinical adoption of the 
approach has been limited. This is due mainly to difficulties with implementation in 
non-research settings, as training to achieve neural control of the BCI requires 
lengthy sessions over multiple days or weeks [1]. Human participants typically use 
imagined movements or scenarios to achieve BCI control that are associated with 
distinct scalp-detectable patterns of neural activity. The lack of spatial sensitivity of 
EEG to distinguish between different imagined (or even executed) movements from 
different muscles makes decoding and classifying the neural activity challenging, 
especially in the early days of training. 

TMS-NF is a novel approach to provide richer, more muscle-specific feedback in 
a BCI [2]. In this closed loop system, the size of Motor Evoked Potentials (MEPs) in 
response to Transcranial Magnetic Stimulation (TMS) are incorporated into the NF 
signal, such that users can learn how to facilitate or inhibit their brain-muscle 
pathways by engaging mental strategies to make the MEP larger or smaller 
(Fig. 1). This typically results in a much faster (i.e. within one training session) 
grasp of how to execute distinct mental strategies in order to control the game, 
compared to those reported for EEG BCI. This also produces more spatially distinct 
and temporally stable neural signatures when the same mental strategies are later 
executed during simultaneous EEG recording [3]. TMS-NF would not be a practical 
long-term approach for neurorehabilitation due to the expense and size of the 
required apparatus, but if it could be used in the early phase of training while still 
in hospital, the learned strategies may transfer well to an EEG BCI that could be used 
by patients in their own homes (e.g. see Simon and Ruddy [4], and Fig. 1). 

Stroke is one of the leading causes of death and disability worldwide, and 
incidence is rising at an alarming rate [5]. There have been substantial improvements 
to emergency stroke care, with advances in thrombolytic therapy leading to a 25% 
reduction in stroke related deaths. While this is undoubtedly a positive advance, the 
more worrying implication is that there is now an increasing number of survivors left 
with significant disabilities as a result of the brain damage, preventing them from 
leading independent lives. A major unsolved problem is getting the paralysed upper 
limb functional again. This is one of the key obstacles preventing independence in



stroke survivors, as without the use of one limb, they are unable to perform the most 
basic activities of daily living, such as dressing, preparing food, and personal care. 
As the brain-muscle pathways that previously controlled the upper limb are perma-
nently damaged, recovery of function may only occur due to growth and develop-
ment of new neural connections. In this field of research, novel, theory driven, 
innovative methods to promote this re-wiring of neural pathways are urgently 
needed. 
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Fig. 1 TMS Neurofeedback protocol used in Ruddy et al. [2]. The peak-peak amplitude of the 
motor evoked potential (MEP) following TMS is calculated in real-time and displayed to the 
participant. The height of the rectangle on the screen represents the amplitude of the participant’s 
MEP. In UP training, participants are rewarded for exceeding their baseline amplitude (white 
horizontal line). In DOWN trials, they are rewarded for keeping amplitudes small, below the 
baseline. In a successful trial, when the baseline is exceeded, the bar turns green and a positive 
soundbite is played. In an unsuccessful trial, the bar turns red and a discouraging soundbite is played 

BCIs take a wide range of different formats, providing user feedback from a 
variety of different neural signals. Some constitute assistive technology, 
circumventing the damaged nervous system to translate an intention to move into 
remote control of an external device. Others work upon harnessing the power of 
motor imagery to activate brain circuits involved in movement in order to promote 
an optimal neurochemical environment for neuroplastic processes to occur, and 
prevent further deterioration of unused pathways. The aforementioned are two 
very different approaches—one with a focus on compensation, finding a new way 
to achieve the desired task, and the other with a focus on restitution—regaining the 
capacity for the brain to control the appropriate muscles by reliance on rewiring and 
forming new neural connections to take on the function of the damaged neurons. 
Here we aim to more specifically demarcate the clinical instances in which the 
benefits of BCI are likely to supersede those of other approaches, with a view 
towards equipping researchers (and ultimately clinicians) with tools to choose the 
right BCI approach at the right time for the right patients. 

First and foremost, we need to develop a clearer understanding of the underlying 
mechanisms—the neural elements that are being altered by the BCI—in order to 
provide clear medical justification, and a more standardised, scalable application of



brain-based physiotherapy. There is a wide heterogeneity in BCI design, slowing its 
clinical deployment [6]. Yet, a more pressing challenge is our limited understanding 
of the mechanisms that drive BCI control and BCI initiated recovery processes [1]. 
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The myriad of proteins, cells, synapses, structural and functional networks that 
make up the brain, and the way they interact to produce measurable signals at the 
scalp, are yet to be consolidated into a comprehensive framework of brain health [7– 
9]. Instead of resorting to increasingly complex and expensive technology [10], it is 
crucial to devise innovative but minimalist ways to interact with the injured brain. 

1 Identification of Appropriate Target Neural Signal 

Any form of brain signal, ranging from protein-level fluctuations to network activ-
ities and oscillations, can be utilized for BCI. It is also valuable to consider the 
potential applications where brain-derived signals, such as motor evoked potentials 
from electromyography [2, 3], can be leveraged as inputs to inform a BCI 
[11, 12]. Here, we will focus predominantly on Electroencephalography (EEG) 
BCI, as the majority of BCIs capture brain activity through EEG [13]. 

For a BCI with a goal involving neurorehabilitation, the primary objective is to 
restore functional movement in the user. This distinguishes it from efforts to achieve 
the best possible control over the avatars/actuators in the BCI, which is often the 
focus from a bioengineering perspective. Rehabilitative BCI can target at least three 
separate dimensions for brain signal analysis: The signal will originate from a 
specific location, it will exhibit a distinct temporal development, and it will propa-
gate itself spatiotemporally with an oscillation [14]. Researchers have successfully 
targeted all three dimensions for controlling BCI [10, 13, 15, 16]. In the spatial 
dimension, post-stroke BCI for rehabilitation may bring about functional change by 
enhancing activity dependant plasticity in motor regions [17, 18]. In the temporal 
dimension, the aim may be to augment conduction speed between the brain’s motor 
areas [19, 20]. From a neural oscillations perspective, a target mechanism may be to 
bias neural oscillatory behaviour towards more ‘normal’ patterns than those typically 
detected from the post-stroke brain [21]. 

Rehabilitation contexts introduce issues that do not exist when testing with 
healthy controls: Firstly, signals recorded from the injured brain are often complex 
and idiosyncratic, and secondly, the chosen brain signal can be anticipated to evolve 
as the patient recovers. To deal with these complexities, we suggest a multi-phase 
BCI approach. Akin to physiotherapy, a multi-phase BCI may start targeting a 
specific brain signal during the acute phase of a brain injury, and progressively 
address patient needs until another BCI phase begins that may target another brain 
signal during the chronic phase of a brain injury. Ultimately, the best method to 
accomplish this depends on the specific rehabilitative objectives pursued.
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2 Identifying Therapeutic Goals 

The intrinsic advantage of Brain-Computer Interfaces (BCIs) over alternate rehabil-
itation strategies is that they work even when output at the behavioral level is 
non-existent. Patients exhibiting minimal or no residual limb movement after a 
stroke cannot partake in gold standard physiotherapy [22], but might still demon-
strate brain activity patterns when attempting to move the impaired limb. These 
patterns can be targeted to enhance recovery [1]. However, the role of BCIs should 
evolve once behavioral output is available. Uncertainty about how BCI can engage 
neural recovery mechanisms in the brain means that standalone BCI therapy is 
unlikely to produce better results than conventional physiotherapy in cases where 
behavioural output is available. In this context, the role of the BCI may transition 
from being the primary feedback and training mechanism for a patient to take on a 
more complementary role in the recovery process. 

3 Identifying the Most Appropriate Technology to Improve 
Function 

In BCI research for neurorehabilitation, the primary objective is to facilitate neural 
recovery. Achieving accurate BCI control is secondary. As such, rehabilitative BCI 
is not so much a competition to employ the most cutting-edge methods for the best 
possible BCI control, but rather a race to identify the most clinically relevant aspects 
of healthy or injured brains. 

So-called black box machine learning methods, where the result is uninterpretable 
to humans, are not recommended as BCI components [23]. While they may have 
advantages over more traditional methods, many require large datasets, which are 
generally unsustainable in both the academic and medical fields. Furthermore, since 
researchers or clinicians are not able to oversee the results, these methods carry risks 
such as overfitting and negative adaptation, rendering them ethically questionable as 
well as impractical [24, 25]. As a result, theory-led methods are preferable. 

In situations where there are few or no constraints imposed on the data by the 
chosen brain signal or the rehabilitative objective, unbiased data processing methods 
can provide benefits. Unbiased methods take all available data and determine for 
themselves what is important and what is not, without referring to predetermined 
goals. They can offer greater flexibility in identifying optimal solutions for BCI 
control, including adaptations to signal changes over time, adaptations to patient 
idiosyncrasies, and the exploration of potential solutions not previously considered 
by researchers. However, unbiased processes may lack the necessary methodolog-
ical power to validate BCI mechanisms and are potentially more susceptible to noise. 

Based on the qualities of the brain signal and the requirements dictated by the 
rehabilitative objective, most BCI designs will gravitate towards a specific techno-
logical solution. If these qualities or the rehabilitation objective change during the



rehabilitation process, the technology employed should adapt correspondingly. 
While this multimodal approach may initially appear more complex, it is likely to 
yield superior results and more standardized protocols. 
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4 Thinking Outside the (Black) Box 

The presented steps are intended to help BCI design by encouraging innovative 
solutions. For example, multimodal and multiphasic BCIs may also incorporate 
phases or modes where the brain is not the signal generator but rather a signal 
processor. The brain could be the receiver of a stimulus such as transcranial magnetic 
stimulation or a sensory stimulus. This could enhance the specificity of the generated 
brain signal along various dimensions, making it easier to design a rehabilitative 
objective around it. 

For this purpose, we have developed a multimodal and multiphasic BCI using a 
TMS-BCI in the initial phase and an EEG-BCI in the subsequent phase. Preliminary 
results suggest that the multimodal approach was successful in facilitating BCI 
control compared to a unimodal, single-phase group (2-Phase BCI). 

Alternatively, the brain signal could be augmented with additional behavioural 
data. For example, wearable devices could provide a BCI with an additional signal 
dimension, enabling the BCI to make more complex decisions. Such multimodal and 
multiphasic approaches may allow for the targeting of different aspects of rehabil-
itation during the same treatment or the application of different BCI strengths 
simultaneously. 

A multiphasic approach to rehabilitative BCI could also contribute to its success. 
To achieve success, BCIs must not only be mechanistically sound and effective but 
also scalable on a grand scale, ideally allowing patients to use them with minimal 
clinical supervision. This has yet to be fully realized as researchers continue to strive 
to find simple and effective solutions. However, a multiphasic approach may help 
BCIs have a short, intensive acute care phase, followed by a long-term easy solution 
for at-home use. 

In an experiment we designed [4], we developed a clinically relevant but minimal 
BCI setup. This setup was dispatched to participants’ homes, and they were 
instructed to set it up and train using online guidance. The results affirmed the 
feasibility of this approach. 

5 Conclusion 

Brain-Computer Interfaces (BCIs) continue to gain momentum as an appealing 
method for restoring motor function in a neurorehabilitation context. However, we 
must not be seduced by the allure of cutting edge technology at the expense of 
targeting the specific neurophysiological features that are most likely to drive



recovery. At the most basic mechanistic level, the majority of BCIs are driven by 
neural signals generated by imagination of movement. We need to revisit the 
question—could motor imagery alone could achieve the same outcomes, or what 
is the added clinical benefit of the BCI? Accordingly, what is the minimum required 
intervention using BCI (in terms of time and hardware) to establish a habit of good 
quality motor imagery that could then sustain rehabilitation without the technology? 
Motor imagery is free, available to every person and at any time. Using technology 
to harness its virtues while not compromising its simplicity is the ultimate challenge 
for the field. 
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