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Brain-Computer Interface Research: 
A State-of-the-Art Summary 11 

Christoph Guger, Nuri Firat Ince, Milena Korostenskaja, 
and Brendan Z. Allison 

Abstract With brain-computer interfaces (BCIs), people can send information 
directly from their brains to computers. People can use BCIs to send messages or 
commands without moving. In 2010, we launched the Annual BCI Research 
Awards. People submit their projects to a jury that scores each project on many 
criteria and then selects the best projects from that year. This book contains project 
summaries written by most of the teams that were nominated for a BCI Research 
Award in 2022. Each annual book also contains introduction and discussion chapters 
written primarily by author BZA. This introduction chapter briefly overviews BCIs, 
the process and scoring criteria we use for each annual award, this year’s jury, and 
the 12 projects that the jury nominated for an award. 

Keywords Brain-computer interface · EEG · ECoG · BCI research awards · BCI 
foundation 

1 Introduction 

Brain-computer interface (BCI) systems are tools that allow people to send infor-
mation just by thinking—without moving. Early BCIs were devoted to helping 
people with severe movement disabilities, but more recently, we’ve seen a lot of 
attention to mainstream BCIs from big companies like Neuralink and Facebook. As
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BCIs become more powerful, flexible, inexpensive, and practical, the future should 
see even more BCI research and BCI devices.

2 C. Guger et al.

We’ve been organizing the Annual BCI Research Award every year since 2010 
for a few reasons. Mainly, we want to recognize and reward the best BCI projects. 
The annual awards and book series provide tools that students and others can use to 
learn about different BCIs. We also want to publicize these projects and BCI 
research through the annual awards ceremony positive publicity, writing a book 
series that includes chapters about the nominated BCI projects, and other activities 
like our website.1 

This book has a format similar to our prior books about each year’s BCI Research 
Awards. The first chapter briefly describes BCIs and the procedures for each year’s 
awards. Next, we present chapters written by the people responsible for the BCI 
projects that were nominated for a BCI Research Award in 2022. These chapters 
present background issues and challenges, their methods and results, and discussion. 

2 What Is a BCI? 

“A BCI is a communication system in which messages or commands that an 
individual sends to the external world do not pass through the brain’s normal output 
pathways of peripheral nerves and muscles [1].” Instead, people perform mental 
activities like imagining movements or words while a system detects the brain 
signals associated with these mental activities. The BCI then translates these signals 
into commands for a speller, mobile robot, exoskeleton, or other device. Most BCIs 
help people with severe movement disability by replacing or restoring lost 
movements. 

The “replace” function includes BCIs for control of prosthetic limbs or spelling 
systems [2–4]. Thus, people who are no longer able to perform different movements 
can replace some lost functions by using their brains to directly communicate and 
control devices. Early BCIs focused primarily on replacing functions that people lost 
due to Lou Gehrig’s Disease, brainstem stroke, or other causes. Many such systems 
allowed users to slowly select letters by counting flashes or imagining movement. 
Newer work, such as the chapter from Metzger and colleagues, shows how BCIs can 
detect imagined letters or words, allowing them to literally “think and spell.” [5, 6]. 

Other BCIs help restore lost movements, such as helping to restore movements 
lost due to a stroke [7–9]. These BCIs help people regain the ability to move, such as 
regaining the ability to grasp or walk. In this approach, patients typically participate 
in therapy with a licensed therapist for 2–3 sessions per week for about 10 weeks. 
This book includes chapters with new directions in BCIs for movement 
restoration [10].

1 https://www.bci-award.com 

https://www.bci-award.com
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BCIs are becoming better and better known for applications beyond helping 
patients, such as gaming or relaxation for mainstream users. High-profile BCI 
activities from Neuralink and Facebook have gained attention, and dozens of 
companies now sell consumer BCIs. During COVID, online schools and 
web-based training resources became more prominent. With the decline of COVID 
concerns, in-person activities like university classes about BCIs, BCI hackathons, 
and BCI conferences have returned.2 The chapters in this book present several 
different types of BCIs that should interest students, teachers, makers, futurists, 
manufacturers, business experts and others. 

3 The Annual BCI Research Award 

The BCI Award Foundation organizes the Annual BCI Research Award. Drs. 
Christoph Guger and Dean Krusienski are both presidents of the BCI Award 
Foundation, which was founded in 2017. Figure 1 shows the two presidents and 
the other Board Members of the BCI Award Foundation. The BCI Research Award 
is open to researchers or teams (excluding members of the jury) around the world. 
Different projects have involved various combinations of hardware, software, algo-
rithms, methods, and other components. The prizes were provided by the Austrian 
company g.tec medical engineering (author CG is the CEO) and IEEE Brain. 

The awards procedure this year followed a procedure like prior years: 

1. The BCI Award Foundation selects a Chairperson of the Jury from a top BCI 
research institute. 

2. The Chairperson selects a jury of international BCI experts to evaluate all projects 
submitted for the Award. 

3. The Award website3 announces instructions, scoring criteria, and the submission 
deadline for projects. 

4. After the deadline, the jury members judge each submitted project. 
5. The jury chooses the nominees and the first, second, and third place winners. 
6. The Award website announces the nominees, and we invite them to that year’s 

Awards Ceremony within a major BCI conference. 
7. At the Awards Ceremony, we announce the winners, provide prizes, and thank 

the jury and the conference organizers. 

For the first several years of the BCI Research Award, each submission was a project 
description of up to two pages. We added another requirement to the submissions in 
2018: a video with a 2-min project overview.

2 https://bcisociety.org/bci-meeting/ 
3 https://www.bci-award.com 

https://bcisociety.org/bci-meeting/
https://www.bci-award.com
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Fig. 1 The BCI Award Foundation has eight board members. All of the board members have been 
active in BCI research for at least 15 years 

The 2022 jury was chaired by Professor Nuri Firat Ince from University of 
Houston. The 2022 jury included Nicolas Opie, who won the 2021 BCI Research 
Award. The complete 2022 jury was (Fig. 2): 

The scoring criteria that the jury used to select the nominees and winners were the 
same as all previous BCI Research Awards:

• Does the project include a novel application of the BCI?
• Is there any new methodological approach used compared to earlier projects?
• Is there any new benefit for potential users of a BCI?
• Is there any improvement in terms of speed of the system (e.g. bit/min)?
• Is there any improvement in terms of accuracy of the system?
• Does the project include any results obtained from real patients or other potential 

users?
• Is the used approach working online/in real-time?
• Is there any improvement in terms of usability?
• Does the project include any novel hardware or software developments? 

After all of the jury members have scored all of the projects, the 12 projects with the 
highest scores are nominated for an award. These nominations are announced



through the BCI Award website and other means, and we invite the nominees to the 
Awards Ceremony. 
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Nuri Firat Ince 

Dora Hermes 
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University of Houston, USA 
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Fig. 2 The jury for the 2022 BCI Research Award 

Last year, the Awards Ceremony occurred online as part of the virtual IEEE 
Systems, Man, and Cybernetics conference on October 11, 2022 in Prague. We 
began hosting these ceremonies online with IEEE conferences in 2020 due to 
COVID. Before then, the ceremonies occurred in person, usually attached to a 
BCI Meeting or BCI conference with author BZA as the main emcee. The 2022 
Ceremony included a friendly introduction by Dr. Guger, announcement of the 
nominees and winner, and videos or statements from some nominees (including 
brief interviews). 

The 2020 Award Ceremony occurred online as part of the virtual IEEE Systems, 
Man, and Cybernetics conference organized in Toronto, Canada from October 
11–14, 2020. The 2021 Award Ceremony was held along with the IEEE SMC 
2021 in Melbourne, Australia from October 17–20, 2021. These conferences, like 
the 2022 IEEE SMC conference, had a lot of other BCI-related activities. including 
several BMI sessions and BR41N.IO hackathon. 

The jury was asked to choose winners for first, second, and third place. We 
announced that these winners would receive $3000, $2000, and $1000, respectively, 
in addition to a certificate and other prizes. The authors of the winning project were 
also asked to contribute to this book by writing a chapter, and/or joining us for an 
interview, about their project and related work.
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We recently added a new opportunity. We invited all nominees for a podcast 
interview by the Institute of Neuroapproaches.4 This organization, managed by jury 
member Dr. Milena Korostenskaja, conducts podcasts along with education and 
consulting. Drs. Guger, Krusienski, and Allison from the BCI Foundation and 
former BCI Research Award winner Tomasz Rutkowski contributed to a podcast 
about the BCI Research Awards earlier this year.5 

4 The BCI Research Award Book Series 

The following section includes the timeline for the annual Award that ends with the 
announcement of the winners at the Awards Ceremony. That’s when the work on 
these books begins: 

1. We tell the nominees what we need in each chapter. We encourage images, 
reports about their newest research future directions, and discussion in addition 
to project details. 

2. Read the project summary chapters when the authors submit them to us. 
3. Edit the chapters as needed. Aside from fixing mistakes, we want chapters to be 

informative and clear. 
4. Correspond with the authors to ask for clarification or new text, check on 

changes, get new references or figures, check copyright issues, and other details. 
5. Develop the introduction and conclusion chapters. 
6. Submit all chapters to the publisher. 
7. The publisher then reviews the chapters and sends them to a typesetter. 
8. A few months later, the typesetter sends us the proofs, which we share with the 

chapter authors. 
9. Submit any corrections to the proofs and ask the publisher to finalize the book. 

The book is always edited by a couple of people: Drs. Guger and Allison from the 
BCI Award Foundation, and the chair of the jury from that year. This year, our jury 
chair and co-author is Prof. Nuri Firat Ince from the University of Houston. 
Additionally, we invited Milena Korostenskaja, our podcast host, to edit the book 
with us. These four people are also responsible for the introduction and discussion 
chapters.

4 https://www.neuroapproaches.org/ 
5 https://www.neuroapproaches.org/podcast/episode/2810e9a1/bci-award-tips-and-tricks-from-the-
pros-drs-guger-krusienski-rutkowski-and-allison 

https://www.neuroapproaches.org/
https://www.neuroapproaches.org/podcast/episode/2810e9a1/bci-award-tips-and-tricks-from-the-pros-drs-guger-krusienski-rutkowski-and-allison
https://www.neuroapproaches.org/podcast/episode/2810e9a1/bci-award-tips-and-tricks-from-the-pros-drs-guger-krusienski-rutkowski-and-allison
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5 Projects Nominated for the BCI Award 2022 

Twelve submissions with the highest scores were nominated for the BCI Research 
Award 2022. These 12 projects, followed by authors and affiliations, were: 

A High-Performance Intracortical Speech BCI 
Francis R. Willett1,2 , Chaofei Fan1 , Erin Kunz1 , Donald T. Avansino1 , Foram 

Kamdar1 , Leigh R. Hochberg3 , Krishna V. Shenoy1,2 , Jaimie M. Henderson1 

1 Stanford University, USA 
2 Howard Hughes Medical Institute, USA 
3 Brown University, Harvard Medical School, Massachusetts General Hospital, 

Providence VA Medical Center, USA 

Digital Bridge To Restore Voluntary Control Of Leg Movements After 
Paralysis 
Andrea Galvez 1,2,3 , Guillaume Charvet4 , Jocelyne Bloch1,2,3 , Grégoire 

Courtine1,2,3 , Henri Lorach1,2,3 

1 NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de 
Lausanne (EPFL), Geneve, Switzerland 

2 Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and 
University of Lausanne (UNIL), Lausanne, Switzerland 

3 NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/ 
UNIL, Lausanne, Switzerland 

4 University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France 

Highly Generalizable Spelling Using a Silent-Speech BCI in a Person With 
Severe Anarthria 
Sean L. Metzger1,2,3 , Jessie R. Liu1,2,3 , David A. Moses1,2 , Maximilian 

E. Dougherty1 , Margaret P. Seaton1 , Kaylo T. Littlejohn1,2,4 , Josh Chartier1,2 , 
Gopala K. Anumanchipalli1,2,4 , Adelyn Tu-Chan5 , Karunesh Ganguly2,5 , Edward 
F. Chang1,2,3 

1 Department. of Neurological Surgery University of California, San Francisco 
(UCSF), USA 

2 Weill Institute for Neurosciences UCSF, USA 
3 University of California, Berkeley-UCSF Grad. Program in Bioengineering, USA 
4 Department. of Electrical Engr. and C.S., University of California, Berkeley, USA 
5 Department of Neurology, UCSF, USA 

Fast, Accurate, Unsupervised, and Time-Adaptive EEG-Based Auditory Atten-
tion Decoding For Neuro-Steered Hearing Devices 
Simon Geirnaert1,2,3 , Rob Zink1,3 , Tom Francart2,3 , Alexander Bertrand1,3 

1 STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, 
Department of Electrical Engineering (ESAT), KU Leuven, Belgium 

2 ExpORL, Department of Neurosciences, KU Leuven, Belgium 
3 Leuven.AI - KU Leuven institute for AI, Leuven, Belgium
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Remediating Phonological Deficits in Dyslexia With Brain-Computer 
Interfaces 
João Araújo1 , Benjamin D. Simons2 , Usha Goswami1 

1 Centre for Neuroscience in Education, Department of Psychology, University of 
Cambridge, Cambridge, United Kingdom 

2 Department of Applied Mathematics and Theoretical Physics, University of 
Cambridge, Cambridge, United Kingdom 

Brain-Body Interfaces To Assist and Restore Motor Functions In People With 
Paralysis 
Elena Losanno1 , Marion Badi2 , Evgenia Roussinova2 , Andrew Bogaard3 , Maude 

Delacombaz3 , Solaiman Shokur2 , Silvestro Micera1,2 

1 The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola 
Superiore Sant’Anna, 56025 Pisa, Italy 

2 Bertarelli Foundation Chair in Translational Neuroengineering, Center for 
Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale 
de Lausanne (EPFL), 1015 Lausanne, Switzerland 

3 Department of Neuroscience and Movement Sciences, Platform of Translational 
Neurosciences, Section of Medicine, Faculty of Sciences and Medicine, Univer-
sity of Fribourg, 1700 Fribourg, Switzerland 

Real-time Decoding of Leg Motor Function and Dysfunction From 
the Subthalamic Nucleus in Parkinson’s Patients 
Kyuhwa Lee3 , Yohann Thenaisie1,2 , Charlotte Moerman1,2 , Stefano Scafa1,2,4 , 

Andrea Gálvez2,5 , Elvira Pirondini1,6,7 , Morgane Burri2,5 , Jimmy Ravier2,5 , 
Alessandro Puiatti4 , Ettore Accolla8 , Benoit Wicki9 , André Zacharia10,11,12 , 
Mayte Castro Jiménez11 , Julien F. Bally11 , Grégoire Courtine1,2,5,13 , Jocelyne 
Bloch1,2,5,13 , Eduardo Martin Moraud1,2 

1 Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) 
and University of Lausanne (UNIL), Lausanne CH-1011, Switzerland 

2 NeuroRestore, Defitech Centre for Interventional Neurotherapies, CHUV, UNIL, 
and Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1011, 
Switzerland 

3 Wyss Center for Bio and Neuroengineering, Geneva CH-1202, Switzerland 
4 Institute of Digital Technologies for Personalized Healthcare (MeDiTech), Uni-

versity of Southern Switzerland (SUPSI), Lugano-Viganello CH-6962 
Switzerland 

5 Faculty of Life Sciences, EPFL, NeuroX Institute, Lausanne CH-1015, Switzerland 
6 Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 

Pittsburgh 15213, PA, USA 
7 Rehabilitation and Neural Engineering Labs, University of Pittsburgh, Pittsburgh 

15213, PA, USA 
8 Department of Neurology, Hôpital Fribourgeois, Fribourg University, Fribourg 

CH-1708, Switzerland 
9 Department of Neurology, Hôpital du Valais, Sion CH-1951, Switzerland
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10 Clinique Bernoise, Crans-Montana CH-3963, Switzerland 
11 Department of Neurology, Lausanne University Hospital (CHUV) and University 

of Lausanne, Lausanne CH-1011, Switzerland 
12 Department of Medicine, University of Geneva, Geneva CH-1201, Switzerland 
13 Department of Neurosurgery, Lausanne University Hospital (CHUV) and Uni-

versity of Lausanne, Lausanne CH-1011, Switzerland 

Real-Time Intraoperative Sensorimotor Cortex Localization 
and Consciousness Assessment With the Spatial and Spectral Profile Of 
the Median Nerve Somatosensory Evoked Potentials 
Priscella Asman1 , Giuseppe Pellizzer2 , Sujit Prabhu3 , Sudhakar Tummala3 , Shreyas 

Bhavsar4 , Israt Tasnim1 , Matthew J. Hall1 , Nuri F. Ince 
1 Clinical Neural Engineering Lab, Biomedical Engineering Department, Univer-

sity of Houston, Houston, TX, USA 
2 Research Service, Minneapolis VA Health Care System, Departments of Neurol-

ogy and Neuroscience, University of Minnesota, Minnesota, MN, USA 
3 Department of Neurosurgery, University of Texas MD Anderson Cancer Center, 

Houston, TX, USA 
4 Department of Anesthesiology, University of Texas MD Anderson Cancer Center, 

Houston, TX, USA 

Closed-loop control of images based on electrocorticogram decoding in visual 
semantic space 
Ryohei Fukuma1,2,3 , Takufumi Yanagisawa1,2,3,4 , Shinji Nishimoto5,6 , Hidenori 

Sugano7 , Kentaro Tamura8 , Shota Yamamoto1 , Yasushi Iimura7 , Yuya Fujita1 , 
Satoru Oshino1 , Naoki Tani1 , Naoko Koide–Majima5,6 , Yukiyasu Kamitani2,9 , 
Haruhiko Kishima1,4 

1 Department of Neurosurgery, Graduate School of Medicine, Osaka University, 
Suita, Japan 

2 ATR Computational Neuroscience Laboratories, Seika-cho, Japan 
3 Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan 
4 Osaka University Hospital Epilepsy Center, Suita, Japan 
5 Center for Information and Neural Networks (CiNet), National Institute of Infor-

mation and Communications Technology (NICT), Suita, Japan 
6 Graduate School of Frontier Biosciences, Osaka University, Suita, Japan 
7 Department of Neurosurgery, Juntendo University, Tokyo, Japan 
8 Department of Neurosurgery, Nara Medical University, Kashihara, Japan 
9 Graduate School of Informatics, Kyoto University, Kyoto, Japan 

Designing Touch: Intracortical Neurohaptic Feedback in Virtual Reality 
Courtnie J. Paschall1 , Jason S. Hauptman2 , Rajesh P.N. Rao3 , Jeffrey G. Ojemann2,4 , 

Jeffrey Herron4 

1 University of Washington, Dept. of Bioengineering, USA 
2 Seattle Children’s Hospital, Neurological Surgery, USA
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3 University of Washington, Paul G. Allen School of Computer Science, USA 
4 University of Washington, Dept. of Neurological Surgery, USA 

A Multimodal Brain-Computer Interface Approach Using Muscle Responses 
to Transcranial Magnetic Stimulation Of the Brain 
Kathy Ruddy, Colin Simon 
Trinity College Institute of Neuroscience, Dublin, Ireland 

May the Force Be With You: Biomimetic Grasp Force Decoding For Brain 
Controlled Bionic Hands 
Elizaveta V. Okorokova1 , Anton R. Sobinov2 , John E. Downey2 , Qinpu He1 , Ashley 

van Driesche2 , David Satzer4 , Peter C. Warnke3,4 , Nicholas G. Hatsopoulos1,2,3 , 
Sliman J. Bensmaia1,2,3 

1 Committee on Computational Neuroscience, University of Chicago, Chicago, IL, 
USA 

2 Department of Organismal Biology and Anatomy, University of Chicago, Chi-
cago, IL, USA 

3 Neuroscience Institute, University of Chicago, Chicago, IL, USA 
4 Department of Neurological Surgery, University of Chicago, Chicago, IL, USA 

In addition, we posted videos from some of the nominated projects on the BCI 
Award website. Each video was developed by the team behind the project submis-
sion. Aside from learning more about the projects, you can also see and hear some of 
the people behind each project and get a sense of what different BCI research labs 
look like. Most videos last about 2 min and include:

• Clips of the BCI system in operation;
• Graphics, animations, and text to illustrate system components, procedures, and 

project results;
• Commentary from patients and project developers;
• Logos from the institutes where projects were executed; and/or
• Supporting references. 

6 Summary 

This book is about the 2022 Annual BCI Research Award. The next several chapters 
feature project descriptions based on the projects that were nominated for the BCI 
Research Award this year. Each chapter addresses how the system measures infor-
mation from the brain, including different types of implanted and non-implanted 
approaches, such as EEG, ECoG, or MEG. Each project also describes the signal 
translation and outputs, such as a speller on a monitor, prosthetic limb, or exoskel-
eton. Most chapters report BCIs for patient applications, including BCI systems that 
could restore touch, movement, communication, or freedom from epilepsy. The 
concluding chapter presents the winners of the 2022 BCI Research Awards, shares



some information about next year’s awards, and features some discussion. Next 
year’s awards will feature some changes in sponsors and other minor details, along 
with the new jury. However, we will not change the submission procedure, award 
criteria, or number of nominees and winners in the 2023 BCI Research Award. 
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Remediating Phonological Deficits 
in Dyslexia with Brain-Computer Interfaces 

João Araújo, Benjamin D. Simons, and Usha Goswami 

Abstract BCIs offer science-based interfaces for human enhancement, enabling 
people to improve cognitive skills that may be difficult for them to learn. Here, we 
design a non-invasive EEG-BCI relying on auditory inputs and visual feedback to 
optimise brain patterns related to phonology (speech-sound) and reading deficits in 
children with dyslexia. Drawing from a decade of dyslexia neuroscience research on 
perceptive ‘temporal sampling’ along with computational modelling of EEG col-
lected from over 100 children, we engineered a decoder for online BCI control. We 
designed an engaging interface aimed at teaching children how to self-regulate 
neural oscillatory patterns related to phonological difficulties in dyslexia, using a 
range of ideas derived from competition-winning motor imagery paradigms to BCIs 
for aircraft control. 

Keywords EEG · BCI · Dyslexia · Phonology · Operant-learning 

1 Introduction 

Non-invasive BCIs—based on EEG—have seen their usage rise in the last decade 
with applications ranging from flight control of drones [1] to the control of robotic 
arm prosthetics [2], previously assumed to be achievable only by using invasive 
neuroimaging techniques. Non-invasive BCIs have also been used in the rehabilita-
tion of stroke and traumatic brain injury patients, showing promising results in 
restoring cognitive skills. Non-invasive BCIs have, however, rarely been used in 
the context of neurodevelopmental disorders such as dyslexia. Developmental 
dyslexia effects between 3% and 7% of the population and is primarily characterised
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by difficulties in reading and spelling, related to phonological (speech-sound) 
difficulties present from birth [3]. Previous intervention studies [4] found that 
neurofeedback protocols aiming to increase channel coherence for the alpha band 
were successfully learned by dyslexic children and were linked to improvement of 
spelling. Other studies have used different band ratios and at least one clinical trial 
has been registered to tackle hemispheric imbalances seen in dyslexic children in 
certain frequency bands [5]. Neurofeedback paradigms and tools have also been 
proposed [6], tackling speech-brain entrainment—a neural mechanism atypical in 
dyslexia and related to phonological impairments.

14 J. Araújo et al.

While this growing body of work is certainly encouraging, there are some 
limitations in the literature that can make it difficult to assess how effective 
BCI-based interventions are in remediating the atypical cognitive profiles of dys-
lexia. These limitations include very low EEG channel counts (e.g., two channels), 
small sample size and heterogeneity of participant inclusion criteria across studies. 
In our view, greater success is likely if a theory- and data-driven decoder could be 
developed, utilising a simple paradigm that is easy to learn across multiple sessions. 
With this in mind, we designed a novel intervention that aims to leverage concepts 
from both auditory and phonological theories of dyslexia [3], as well as from the 
most recent advances in BCI research. 

2 Operant Learning BCI for Dyslexia 

2.1 Overview 

If there is an association between oscillatory brain patterns and reading/phonology 
difficulties, being able to change the characteristics of these oscillations might 
ameliorate the typical cognitive symptoms in dyslexia. Therefore, we created a 
non-invasive BCI targeting the self-regulation of these oscillations. We drew inspi-
ration from BCIs developed for prosthetic limb control, drone flight and silent 
speech decoding—creating a closed-loop operant learning BCI for dyslexia. For 
the decoder, we relied on a body of experimental and theoretical work based on the 
Temporal Sampling theory (see below). Figure 1 shows an illustration of the BCI 
setup. 

For the participant, the goal is to learn the BCI control of a spaceship shown on 
the screen—making it ascend as far as possible on the gaming window in each 
session. Participants receive a stronger visual reinforcement (green glow) the higher 
they make the spaceship go. No reinforcement is given if the spaceship’s position is 
below a threshold line located across the middle of the game window. Listening to 
the audio signal of a story as input, the participant is encouraged to use cognitive 
strategies focused on auditory processing to modulate their oscillatory patterns that 
will control the spaceship. The spaceship’s position is estimated via real-time 
classification of time-series EEG data using a pre-trained signal processing and



machine learning model. This feedforward model shows minimal computational 
overhead, allowing for smooth online control of the BCI with minimal lags. 
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Reinforcement 

No Reinforcement 

Fig. 1 Illustration of the new Operant-Learning BCI setup for dyslexia: The participant controls a 
spaceship cursor with their oscillations. An audio stream of a story is presented throughout the 
session to allow for top-down cognitive strategies focused on auditory processing. A visual green 
glow is also shown as a reinforcement whenever the participant is able to “lift” the ship above a 
threshold line (bottom left) 

2.2 Decoder Design Based on the Temporal Sampling Theory 

Dyslexia is primarily diagnosed on the basis of difficulties in reading and spelling 
once schooling begins. However, at-risk children show atypical processing of 
phonology (the sound structure of speech) from infancy. Across languages, children 
with dyslexia show impairments in processing the speech amplitude envelope (i.e., 
lower-frequency amplitude modulations) [7] and rise times (i.e., speech “edges”), 
with associated difficulties in processing speech rhythm [8]. It has been hypothe-
sized that these difficulties are related to atypical neural oscillatory responses to the 
speech envelope for children: Temporal Sampling theory [9–11]. Subsequent EEG 
studies with dyslexic children have shown a relationship between accurate neural 
encoding of the speech envelope and prosodic awareness [12], as well as differences 
in neural entrainment (i.e., brain-stimulus synchronisation) to rhythmic audio-visual 
inputs [13]. Recent modelling of EEG collected during passive listening tasks from 
113 British and Australian children found distinctive differences in dynamic cortical 
representations of speech input in children with dyslexia for the delta and theta 
frequency bands, using different speech perception tasks [14]. 

Here we use this previous body of research to create a biologically-relevant and 
theory-driven decoder for our BCI. To achieve this, we aimed to derive a single-trial 
metric that could effectively distinguish neurotypical and dyslexic EEG patterns and 
could be estimated in close-to real-time. Previous approaches to single-trial EEG 
classification of dyslexia have also drawn inspiration from temporal sampling



ð Þ þ ð Þ½ ]ð Þ

theory. These approaches try to model EEG features using auto-encoders for anom-
aly detection [15], CNNs [16] and SVMs [17], with different degrees of success 
(0.6–0.9 AUC). Some of these models show good accuracies and most of them 
would add a relatively small delay to a BCI system if they were doing real-time 
feedforward prediction of an EEG segment. The problem, however, is that most of 
these models work with features that can potentially take a long time to engineer 
(such as graph-based connectivity features) and/or are not straightforward to inter-
pret, despite deriving originally from bandpass-filtered signals (like fractal-based 
features). While these models can work well for offline classification, it is not yet 
known whether a decoder based on these complex EEG features could be learned 
easily by a human participant. Accordingly, our decoder is based on a linear SVM 
applied to an EEG signal that is both spatially- and temporally-filtered—in accor-
dance with the classifier we recently built [14], which showed 80% accuracy and 
0.77 AUC. Specifically, we choose a bandpass filter to isolate the delta band 
(Butterworth filter of order 4, 1–4 Hz) and we estimate the best spatial weights of 
our channels using Common Spatial Patterns—CSP; a technique frequently used in 
the motor imagery literature (see [18] for an overview). Both the SVM weights and 
CSP filters used in our BCI are also previously estimated from [14], enabling us to 
leverage previously-collected EEG datasets featuring children with dyslexia to 
create the decoder. Since these model weights and features were estimated for a 
dataset where the participants were watching a cartoon, we kept the audiovisual 
nature of the task intact on our BCI design. 
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2.3 From Signal Classification to Feedback 

Although our decoder is based on a classifier, its main output for this BCI should not 
be binary per se. Instead, we want to provide an easily-accessible quantitative 
feedback on how close participants are to the goal at each point in time to maximize 
the outcome of the BCI learning process. To achieve this goal, we created a 
controller that allows a spaceship to travel continuously on the screen (rather than 
in a binary way or in a stepwise fashion). To achieve this, we revised our original 
EEG single-trial CSP-SVM classifier: 

classification xð Þ= sign WT var ST x þ b 

to the following: 

position xð  Þ= σ WT var ST x þ b 
σ z = 1= 1 exp - λ1 z- λ2 

Here x represents a bandpass-filtered window of EEG data at some timepoint 
t, W and b represent the pre-trained weights and bias units, respectively, of the linear



SVM model, and S denotes the matrix of pre-trained spatial filters on which to 
project the EEG data. We apply a logistic activation function instead of sign to 
generate a continuous position on the screen, so that the spaceship would be placed 
at the bottom or top of the gaming window if the position is closer to 1 or 
0 respectively. Conveniently, if at a certain timepoint our EEG classification lies 
close to the classification hyperplane (i.e., WT var (ST x) +  b ≈ 0), this results in a 
position estimation around the center of the screen (i.e., ≈0.5). This means that the 
threshold line drawn in the middle of the gaming window is also a low-dimensional 
representation of the SVM classification hyperplane. 
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To implement the decoder, we further need to take into account the fact that 
different participants may show patterns with higher or lower positional variances 
around the classification hyperplane. Some of our participants might not be able to 
reach high-confidence non-dyslexic EEG patterns while others may find their brain 
patterns are always very confidently classified as non-dyslexic. To account for these 
potential issues, we add two corrective parameters: λ1 changes the slope of the 
sigmoid function, which in practice defines how much the position will change on 
the screen given some change in the distance between the EEG window feature 
space and the classification hyperplane. This correction is particularly useful, as it 
does not change the classification (i.e., the sign of the classification is unaltered) and 
can be extremely helpful to improve the user experience for participants with very 
low or very high variances on their SVM output. The second parameter, λ2, allows 
for a potential bias regarding the participant’s ability to reach the different sides of 
the hyperplane, i.e., where they cannot reach either a “dyslexic” or “non-dyslexic” 
classification—to avoid ceiling/floor effects on the BCI. This parameter does require 
an obvious trade-off between the BCI experience and classification accuracy. How-
ever, in the case of a participant with a strong pattern of dyslexia classification, this 
parameter can be progressively set to a lower value as the participant gets better at 
the task. Figure 2 illustrates how these two λ parameters change the spaceship 
position estimation. 

Both corrective parameters are estimated on a participant-by-participant basis 
using their data from short baseline runs. The full signal processing pipeline is 
shown below on Fig. 3. 

2.4 Pilot Data and Validation 

Currently, the BCI software has already been coded and we are running some pilot 
usability tests with adult participants before testing children. These pilot studies will 
also help to optimize the final interface and to decide the best way to estimate the 
control parameters for the decoder. The eventual target participants are children aged 
8–12 years old—children with dyslexia (experimental group) and without dyslexia 
(control group). Each pilot participant will perform 10 sessions of this protocol 
(1 session/day across 2 weeks, excluding weekends). To assess the cognitive 
effectiveness of this paradigm, we plan to compare phonology and reading metrics



taken before the first BCI session and after the last BCI session. As the cortical 
dynamics being targeted should only improve phonology and reading, we will also 
test arithmetic reasoning at the start and end of the protocol as a control. If the 
intervention is successful, a relationship between BCI performance and phonology/ 
reading performance is expected. 
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Fig. 2 Influence of the λ parameters on the spaceship position estimation: On the left, we have an 
example of a participant with a high variance of the SVM output (but no classification bias), leading 
most of its estimated spaceship positions to be very close to both the lower and upper corner of the 
screen (black dots). However, if we apply a positive λ1 correction term to the classifier (<1 in the 
case of high variance and >1 in the case of low variance), we can control the slope of this position, 
leading to a better BCI experience. Similarly, when we have a participant who is consistently 
classified as dyslexic or control, we can apply the λ2 correction term that allows for a more balanced 
distribution of the spaceship position. On both figures, the dashed red line refers to the threshold of 
the desirable (i.e., non dyslexic classification) spaceship position 

Fig. 3 Signal processing pipeline to estimate the spaceship’s position in real-time: The bandpass-
filtered EEG signal is projected in a few pre-trained CSP spatial filters and its variance becomes the 
classifier’s feature space. Once the pre-trained model is applied to these features, the distance from 
these projected features and the classification hyperplane is “squashed” into a sigmoid—defining 
the final position of the spaceship 
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Anarthria 

Sean L. Metzger, Jessie R. Liu, David A. Moses, Maximilian E. Dougherty, 
Margaret P. Seaton, Kaylo T. Littlejohn, Josh Chartier, 
Gopala K. Anumanchipalli, Adelyn Tu-Chan, Karunesh Ganguly, 
and Edward F. Chang 

Abstract Speech is one of the most natural and efficient ways to communicate and 
is a fundamental aspect of daily life. Assistive brain-computer interface (BCI)
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technology has the potential to restore communication to people who cannot speak 
or type due to paralysis. Recent advances have enabled users to communicate by 
attempting to speak, type, or handwrite intended messages. Another approach may 
be to spell out intended words and sentences with a BCI that is controlled by natural 
attempts to speak. As part of an ongoing clinical trial we recorded low- and high-
frequency electrocorticography (ECoG) signals from a 128-channel high-density 
array implanted over the sensorimotor cortex of a brainstem-stroke survivor with 
severe anarthria (the inability to articulate speech) and quadriparesis while he 
silently attempted to spell out words and sentences using the NATO phonetic 
alphabet.

22 S. L. Metzger et al.
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1 Introduction 

Devastating neurological conditions such as amyotrophic lateral sclerosis (ALS) and 
stroke can lead to anarthria, the loss of ability to articulate speech [1]. Anarthria 
patients can have intact language skills and cognition, but paralysis may inhibit their 
ability to operate assistive communication devices, severely limiting communication 
with family, friends, and caregivers and lowering self-reported quality of life [2]. 

Brain-computer interfaces (BCIs) have the potential to restore communication to 
such patients by decoding neural activity into intended messages [3]. Existing BCIs 
for communication traditionally rely on decoding imagined arm and hand move-
ments into letters to enable the user to spell out sentences [4, 5]. Although 
implementations of this approach have exhibited promising results, natural attempts 
to speak may offer faster and more natural control for a communication BCI. 

To assess this, we recently developed a speech neuroprosthesis to directly decode 
full words in real time from the cortical activity of a person with anarthria and 
paralysis as he attempted to speak [6]. This approach exhibited promising decoding 
accuracy and speed, but as an initial study focused on a preliminary 50-word 
vocabulary. While direct word decoding with a limited vocabulary has immediate 
practical benefit, expanding access to a larger vocabulary of at least 1000 words 
would cover over 85% of the content in natural English sentences [7] and enable 
effective day-to-day use of assistive-communication technology [8]. Hence, a pow-
erful complementary technology could expand current speech-decoding approaches 
to enable users to spell out intended messages from a large and generalizable 
vocabulary while still allowing fast, direct word decoding to express frequent and 
commonly used words. Separately, in this prior work the participant was controlling 
the neuroprosthesis by attempting to speak aloud, making it unclear if the approach 
would be viable for potential users who cannot produce any vocal output 
whatsoever.
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Here, we demonstrate that real-time decoding of silent attempts to say 26 alpha-
betic code words from the NATO phonetic alphabet can enable highly accurate and 
rapid spelling in a clinical-trial participant (ClinicalTrials.gov; NCT03698149) with 
paralysis and anarthria. 

2 Methods 

We designed a sentence-spelling system to enable real-time BCI spelling using silent 
speech attempts (Fig. 1). We first trained models using data collected as the 
participant said individual NATO code words (“Alpha”, “Bravo”, etc.) in isolation. 
Then, during testing, when the participant was ready to begin spelling a sentence, he 
attempted to silently say an arbitrary word. A speech-detection model processed 
each time point of data to detect this initial silent-speech attempt (Fig. 1a–c). Once an 
attempt to speak was detected, a paced spelling procedure began, where every 2.5 s, 
the participant was visually cued to silently attempt to say the NATO code word 
associated with a letter (Fig. 1d, e). He would silently attempt to say the code word 
corresponding to each letter in the sentence he was trying to create, in order and in 
time with these cues. A deep-neural-network classifier processed each 2.5-s window 
of neural activity after each visual cue and was trained to predict the probability of 
each of the 26 alphabetic code words as well as a hand-motor command the 
participant used to turn off the system (Fig. 1f). In real time, we used a beam-
search algorithm to process the predictions. The beam-search algorithm automati-
cally inserted spaces and predicted the most likely sentence, which was continuously 
displayed to the participant. We found that restricting words within a 1152-word 
vocabulary and using a language model to prioritize linguistically probable 
sentences significantly improved decoding. Once the participant had attempted to 
spell out the entire sentence, he attempted to squeeze his right hand to turn off the 
spelling procedure (Fig. 1g, h). If the neural classifier predicted this motor movement 
with a probability of greater than 80%, the procedure was stopped and the most 
likely sentence was finalized (Fig. 1i). 

We evaluated the performance of the system in real time as the participant 
attempted to spell out 150 sentences (two repetitions each of 75 unique sentences) 
during a copy-typing task. We measured performance using character and word error 
rates. For characters and words, the error rate is defined as the edit distance, which is 
the minimum number of character or word deletions, insertions, and substitutions 
required to convert the predicted sentence to the target sentence that was displayed to 
the participant, divided by the total number of characters or words in the target 
sentence, respectively. These metrics are commonly used to assess the decoding 
performance of automatic speech recognition and BCI systems. With a vocabulary 
of 1152 words, we observed a median character error rate (CER) of 6.13% and 
median word error rate (WER) of 10.53 across the real-time test blocks (Fig. 2a, b), 
with significant improvements attributed to enforcement of this vocabulary (removal 
of out-of-vocabulary words) and inclusion of a language model that prioritized

http://clinicaltrials.gov
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Fig. 1 Overview of the real-time spelling system. (a) At the start of a sentence-spelling trial, the 
participant attempts to silently say a word to volitionally activate the speller. (b) Neural features 
(high-gamma activity and low-frequency signals) are extracted in real time from the recorded 
cortical data throughout the task. The features from a single electrode are depicted. For visualiza-
tion, the traces were smoothed with a Gaussian kernel with a standard deviation of 150 ms. The 
microphone signal shows that there is no vocal output during the task. (c) The speech-detection 
model, consisting of a recurrent neural network (RNN) and thresholding operations, processes the 
neural features to detect a silent-speech attempt. Once an attempt is detected, the spelling procedure 
begins. (d) During the spelling procedure, the participant spells out the intended message through-
out letter-decoding cycles that occur every 2.5 s. Each cycle, the participant is visually presented 
with a countdown and eventually a go cue. At the go cue, the participant attempts to silently say the 
code word representing the desired letter. (e) High-gamma activity and low-frequency signals are 
computed throughout the spelling procedure for all electrode channels and parceled into 2.5-s



linguistically probable sentences. 70% of sentences were decoded without error, and 
92% of the unique sentences were decoded perfectly at least one of the two times 
they were attempted. We also observed median typing rates of 29.4 characters per 
minute (CPM) and 6.86 words per minute (WPM) across test blocks (Fig. 2c, d). 
These rates are higher than the median rates of 17.37 CPM and 4.16 WPM observed 
with the participant as he used his commercially available Tobii Dynavox assistive-
typing device (as measured in our previous work [9]).
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In offline experiments, we simulated the copy-typing spelling results using three 
larger vocabularies composed of 3303, 5249, and 9170 words that we selected based 
on their words’ frequencies in large-scale English corpora. We observed that the

Fig. 2 Character error rates (CERs) observed during real-time sentence spelling with a language 
model (LM), denoted as ‘+LM (Real-time results)’, and offline simulations in which portions of the 
system were omitted. In the ‘Chance’ condition, sentences were created by replacing the outputs 
from the neural classifier with randomly generated letter probabilities without altering the remainder 
of the pipeline. In the ‘Only neural decoding’ condition, sentences were created by concatenating 
together the most likely character from each of the classifier’s predictions during a sentence trial 
(no whitespace characters were included). In the ‘+Vocab. constraints’ condition, the predicted 
letter probabilities from the neural classifier were used with a beam search that constrained the 
predicted character sequences to form words within the 1152-word vocabulary. The final condition 
‘+ LM (Real-time results)’ incorporates language modeling. (***P < 0.0001). (b) Word error rates 
(WERs) for real-time results and corresponding offline omission simulations from (a). (c) The 
decoded characters per minute during real-time testing. (d) The decoded words per minute during 
real-time testing. In (a)–(d), the distribution depicted in each boxplot was computed across n = 34 
real-time blocks (in each block, the participant attempted to spell between two and five sentences) 

⁄�

Fig. 1 (continued) non-overlapping time windows. (f) An RNN-based letter-classification model 
processes each of these neural time windows to predict the probability that the participant was 
attempting to silently say each of the 26 possible code words or attempting to perform a hand-motor 
command. Prediction of the hand-motor command with at least 80% probability ends the spelling 
procedure. (i) Otherwise, the predicted letter probabilities are processed by a beam-search algorithm 
in real time and the most likely sentence is displayed to the participant. (g) After the participant 
spells out his intended message, he attempts to squeeze his right hand to end the spelling procedure 
and finalize the sentence. (h) The neural time window associated with the hand-motor command is 
passed to the classification model. (i) If the classifier confirms that the participant attempted the 
hand-motor command, a neural network-based language model (DistilGPT-2) rescores valid 
sentences. The most likely sentence after rescoring is used as the final prediction



system was able to readily generalize to using these larger vocabularies without a 
significant increase in error rates, with a median CER of 8.23% and median WER of 
13.3% (Fig. 3a, b) across test trials using the 9170 word vocabulary.
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Fig. 3 (a) Simulated character error rates from the copy-typing task (from Fig. 1) with different 
vocabularies, including the original vocabulary used during real-time decoding. (b) Word error 
rates from the corresponding simulations in (a). (c) CERs and WERs across the volitionally chosen 
responses and messages decoded in real time during the conversational task condition. Each boxplot 
corresponds to n = 9 blocks (in each of these blocks, the participant attempted to spell between two 
and four conversational responses). (d) Examples of presented questions from trials of the conver-
sational task condition (left) along with corresponding responses decoded from the participant’s 
brain activity (right). In the final example, the participant spelled out his intended message without 
being prompted with a question 

Finally, the participant attempted to use the system to freely respond to questions 
and volitionally produce sentences, resulting in a median CER of 14.8% and WER of 
16.7% across 28 real-time trials (Fig. 3c, d). These results demonstrate that our 
spelling approach can enable a user to generate freeform responses to questions as 
well as unprompted, volitionally chosen messages. 

3 Discussion 

Here, we demonstrated that a paralyzed clinical-trial participant (ClinicalTrials.gov; 
NCT03698149) with anarthria could control a neuroprosthesis to spell out intended 
messages in real time using attempts to silently speak. With phonetically rich code 
words to represent individual letters and an attempted hand movement to indicate an 
end-of-sentence command, we used deep-learning and language-modeling tech-
niques to decode sentences from electrocorticographic (ECoG) signals. These results 
significantly expand our previous word-decoding findings with the same participant 
by facilitating large-vocabulary sentence decoding through spelling. 

Previous implementations of spelling brain-computer interfaces (BCIs) have 
demonstrated that users can type out intended messages by visually attending to 
letters on a screen [10, 11], by using motor imagery to control a two-dimensional 
computer cursor [4, 12], or by attempting to handwrite letters [5]. BCI performance 
using penetrating microelectrode arrays in hand-motor cortex has steadily improved 
over the past 20 years, recently achieving spelling rates as high as 90 characters per

http://clinicaltrials.gov


minute with a single participant, although this participant was able to speak normally 
[5]. Our results extend the list of immediately practical and clinically viable control 
modalities for spelling-BCI applications to include silently attempted speech with an 
implanted ECoG array, which may be preferred for daily use by some patients due to 
the relative naturalness of speech and may be more chronically robust across patients 
through the use of less invasive, non-penetrating electrode arrays with broader 
cortical coverage. 

Highly Generalizable Spelling Using a Silent-Speech BCI in a Person. . . 27

Overall, these results further validate silently attempted speech as an effective 
alternative behavioral strategy to imagined speech and expand findings from our 
previous work involving the decoding of overt-speech attempts with the same 
participant [9], indicating that the production of residual vocalizations during speech 
attempts is not necessary to control a speech neuroprosthesis. These findings illus-
trate the viability of attempted-speech control for individuals with complete vocal-
tract paralysis (such as those with locked-in syndrome), although future studies with 
these individuals are required to further our understanding of the neural differences 
between overt-speech attempts, silent-speech attempts, and purely imagined speech 
as well as how specific medical conditions might affect these differences. In future 
communication neuroprostheses, it may be possible to use a combined approach that 
enables rapid decoding of full words or phrases from a limited, frequently used 
vocabulary as well as slower, generalizable spelling for out-of-vocabulary items. 

Author note Words and figures in this chapter draw from our recent article on these 
results in Nature Communications [13]. The article contains further analyses that 
may be of interest to the reader. 
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Fast, Accurate, Unsupervised, 
and Time-Adaptive EEG-Based Auditory 
Attention Decoding for Neuro-steered 
Hearing Devices 

Simon Geirnaert, Rob Zink, Tom Francart, and Alexander Bertrand 

Abstract More than 5% of the world’s population suffers from disabling hearing 
loss. Hearing aids and cochlear implants are crucial for improving their quality of 
life. However, current hearing technology does not work well in cocktail party 
scenarios, where several people talk simultaneously. This is mainly because the 
hearing device does not know which speaker the user is attending to, and so which 
speaker should be amplified relative to the background noise. In this project, we have 
developed novel signal processing algorithms for electroencephalography (EEG)-
based auditory attention decoding to steer the hearing device towards the attended 
speaker based on the user’s attention. We propose algorithms that are fast, accurate, 
and able to adapt automatically to (changes in) the EEG data of individual users. 
These are crucial ingredients towards the realization of practically viable neuro-
steered hearing devices. 
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1 Introduction 

1.1 The Auditory Attention Decoding Problem 

The World Health Organization estimates that more than 5% of the world’s popu-
lation, or 430 million people, suffers from disabling hearing loss and requires 
rehabilitation. This group is expected to grow to more than 7% by 2050 [1]. As 
hearing loss tremendously impacts society both on an economic and individual level 
(e.g., social isolation, loneliness), effective assistive hearing devices such as hearing 
aids and cochlear implants are required to restore communication by improving 
speech intelligibility. 

While newly developed hearing devices more and more contain advanced speech 
enhancement and noise suppression algorithms, they still underperform in so-called 
‘cocktail party’ scenarios, where multiple persons are talking simultaneously. In 
these situations, hearing devices lack a fundamental piece of knowledge: They do 
not know which speaker the hearing device user wants to attend to. Correspondingly, 
they have no information about which speech signal to enhance (i.e., the attended 
speaker) and which others to consider as noise and thus suppress (i.e., the unattended 
speaker(s)). We refer to this problem as the auditory attention decoding (AAD) 
problem. 

While the AAD problem can be tackled using heuristics such as eye gaze 
direction or by simply selecting the loudest speaker, they fail in several practical 
scenarios, for example, when listening to a public address system, eavesdropping, or 
when driving a car. Selecting and thereby amplifying the wrong (unattended) 
speaker can be avoided by pursuing a more ideal strategy: decoding the auditory 
attention from where it originates, i.e., the brain. As shown by Mesgarani and Chang 
[2], certain characteristics (such as the speech envelope) of the attended speech 
signal are better encoded in the brain than those of the unattended speech signal(s), 
which, in turn, opens the possibility to develop algorithms to decode the auditory 
attention from brain signals. Incorporating such AAD algorithms in a hearing device 
could then lead to a new type of brain-computer interface (BCI) technology to assist 
hearing-impaired people: a neuro-steered hearing device (Fig. 1). There exist other 
use cases of AAD in BCIs as well, such as in consumer earphones and other 
hearables [4]. 

1.2 Neuro-steered Hearing Devices 

Figure 1 shows a conceptual overview of a neuro-steered hearing device with its 
main ingredients: a speaker separation and enhancement block, an AAD block to 
determine the attended speaker based on the brain signals of the listener, and a



mixing block that mixes the separated speech signals based on the retrieved infor-
mation about the attended speaker. 
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noise 

Denoising and 
speaker separation MIX 

Auditory Attention 
Decoding (AAD) EEG 

Audio 

targeted speaker 

Fig. 1 In a neuro-steered hearing device, the AAD algorithm informs the hearing device about 
which speaker needs to be amplified based on the EEG signals. Based on Figure 1 in [3] 

We use electroencephalography (EEG) as a neurorecording modality because it is 
non-invasive, wearable, and relatively cheap. These are all crucial features for the 
widespread usage of neuro-steered hearing devices during daily-life activities. Fur-
thermore, EEG has an excellent temporal resolution, which is critical for tracking 
fast modulations in speech and for low-latency processing in BCIs in general. 

One of the most common paradigms for AAD—stimulus reconstruction (SR)—is 
based on the principle of neural tracking of speech signals, i.e., the auditory cortex 
tracks time-varying characteristics of the attended speech stimulus [5]. Correspond-
ingly, it has been shown that in a cocktail party scenario with two competing 
speakers, it is possible to reconstruct from the neural signals a spectrogram [2]  or  
envelope [6] that better reflects the spectrogram or speech envelope of the attended 
speech signal than the unattended one. The SR algorithm then exploits this stronger 
neural tracking of the attended speech signal for AAD by reconstructing an envelope 
from the EEG signals of the listener using a neural decoder and correlating this 
reconstructed envelope with the individual speech envelopes of the competing 
speakers [7]. The speech envelope of the speaker that exhibits the highest correlation 
is then identified as the attended speaker (Fig. 2a). This neural decoder can be 
modeled and trained in various ways. In [3], we provide an extensive review of 
the different ways to train the neural decoder, as well as other AAD algorithms 
beyond SR.
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Fig. 2 (a) In the SR algorithm, a neural stimulus decoder is applied on the EEG to reconstruct the 
attended speech envelope. Based on Figure 3a in [3]. (b) In the CSP algorithm, the attended spatial 
direction is directly decoded from the EEG lateralization patterns 

1.3 Two Fundamental Problems with Stimulus 
Reconstruction 

The SR algorithm suffers from two critical limitations that are dealt with in this 
chapter: 

1. The neural stimulus decoder is traditionally trained in a supervised manner and 
remains fixed over time [7]. To be able to train this neural decoder to reconstruct 
the attended speech envelope from the EEG in a data-driven way, the attended 
speaker needs to be known at training time. The necessity for attention labels 
during training requires a cumbersome calibration session for each new user, in 
which the user is instructed to attend to a particular speaker. Furthermore, this 
also prevents adapting the neural decoder to changes in the EEG signal charac-
teristics, making it suboptimal. 

2. The SR algorithm suffers from quickly decreasing accuracy when reducing the 
number of EEG/speech envelope samples to make a decision (the decision 
window length) (see Fig. 4a). This is an effect of the notoriously low signal-to-
noise ratio of the stimulus-following neural response in the EEG, making the 
estimation of the correlation coefficients highly susceptible to interference from 
other neural processes when reducing the decision window length [3]. As a result, 
the SR algorithm is too slow in detecting switches in auditory attention, resulting
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Fig. 3 (a) The neural stimulus decoder is traditionally trained in a supervised manner, i.e., the 
ground-truth attention labels are required to select the attended speech envelope. (b) In [8], we 
propose an unsupervised training procedure where the ground-truth attention labels are replaced by 
the predicted labels when applying the learned decoder 

in too large delays in changing the relative gain between the competing speakers 
in the hearing device [10]. 

Therefore, we have developed novel AAD signal processing algorithms to overcome 
both challenges, i.e., by designing an unsupervised and time-adaptive SR algorithm 
(Sect. 2) and exploiting an alternative AAD paradigm: decoding the spatial focus of 
auditory attention (Sect. 3). 

2 Unsupervised and Time-Adaptive Stimulus 
Reconstruction 

2.1 Supervised Training of the Neural Stimulus Decoder 

Traditionally, the neural stimulus decoder in the SR algorithm (Fig. 2a) is a linear 
spatio-temporal filter, integrating EEG channels and post-stimulus time lags to 
reconstruct a sample of the attended speech envelope [7, 10]. Given a training set 
of EEG data and speech envelopes of the competing speakers, the filter weights of 
this neural decoder can be found by minimizing the mean squared error (MMSE) 
between the reconstructed envelope from the EEG and the attended speech enve-
lope.1 This training procedure is conceptually summarized in Fig. 3a. A crucial 
feature of this training procedure is that it is supervised, i.e., it requires the ground-
truth attention labels to select the correct speech envelope as the target during 
training. 

Depending on the training data used in this supervised training procedure, two 
versions of the neural stimulus decoder exist: a user-specific or user-independent 
decoder [7, 8]. The former is trained with data from the end user, while the latter is 
trained with data from other users. As expected, the user-specific decoder leads to

1 An extensive mathematical explanation can be found in, e.g., [8].



higher AAD performances (see Fig. 4a), as it is tailored towards the brain of the 
specific end user [7, 8]. However, it lacks the plug-and-play characteristic of the 
user-independent decoder that can be pre-implemented on a hearing device, whereas 
the user-specific decoder requires a cumbersome training session for each new end 
user [8]. In this training session, the user then needs to be instructed to listen to one 
of multiple competing speech signals to be able to generate the required ground-truth 
labels.
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Fig. 4 (a) Different versions of the linear SR algorithm, all showing a degrading accuracy for short 
decision window lengths. Based on Figure 5a from [8]. (b) Decoding the spatial focus of auditory 
attention with CSPs or RGCs gives a substantial improvement for the shorter decision window 
lengths. Based on Figure 1 from [9] 

In [8], we proposed an unsupervised but user-specific stimulus decoder to 
combine the best of both worlds. As it is unsupervised, i.e., it does not require 
ground-truth attention labels, it retains part of the plug-and-play characteristic of the 
user-independent decoder, while it can achieve higher performances because it still 
uses user-specific data. In Sect. 2.2, we explain how this unsupervised training 
procedure works using a batch of EEG/speech envelope training data but without 
ground-truth attention labels, while its extension to a time-adaptive updating proce-
dure is explained in Sect. 2.3. 

2.2 Unsupervised Training of the Neural Stimulus Decoder 

Again assume the availability of a batch of EEG/speech envelope training data, 
however, now without knowing which of the two competing speakers corresponds to 
the attended speaker at each point in time. Correspondingly, the training scheme as 
proposed in Fig. 3a has become unfeasible due to the unavailability of the ground-
truth attention labels. Therefore, in [8], we proposed an alternative unsupervised 
training scheme that replaces the ground-truth attention labels with the predicted 
labels on the training data using a previously trained decoder, as conceptually shown



in Fig. 3b. The key idea is that this creates a closed-loop, iterative predict-and-update 
procedure, where 
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1. the trained decoder is used to (re)predict attention labels on the training data 
using SR, 

2. the (re)predicted attention labels are used to (re)select the attended speech 
envelope such that the neural stimulus decoder can be retrained. Step 1 can 
then be repeated. 

When using an MMSE-based linear spatio-temporal filter as stimulus decoder, we 
have shown that this procedure converges after a few iterations (under some mild 
conditions) and that it can be interpreted as a fixed-point iteration algorithm. This 
interpretation explains the self-leveraging effect in the iterative updating procedure, 
i.e., it leverages its own predicted labels to converge to a better decoder, even when 
starting from a random decoder. Furthermore, in the spirit of transfer learning, we 
have developed a version that allows incorporating labeled data from users other 
than the end user (as in the user-independent decoder) in the updating procedure. 

Figure 4a shows the AAD accuracy (number of correct decisions) versus 
the decision window length (number of time samples used to make a decision) for 
the supervised user-specific decoder, the supervised user-independent decoder, the 
unsupervised user-specific decoder when starting from a random decoder, and the 
unsupervised user-specific decoder with user-independent side-information.2 The 
unsupervised but user-specific decoder substantially outperforms the user-
independent decoder while retaining the ‘plug-and-play’ characteristic, not requiring 
ground-truth attention labels. Adding labeled user-independent side information in 
the unsupervised updating procedure even enables accuracies close to the optimal 
supervised user-specific decoder. 

This unsupervised training procedure opens the possibility for a fully automati-
cally updating decoder over time, as explained in the following section. 

2.3 Time-Adaptive Unsupervised Updating of the Neural 
Stimulus Decoder 

While the unsupervised training procedure for the neural stimulus decoder in Sect. 
2.2 removes the necessity of having access to ground-truth attention labels during 
training, it still assumes the availability of a batch of EEG/speech envelope data. 
Furthermore, it results in a decoder that remains fixed during operation, not adapting 
to the long-term signal changes that are characteristic of EEG. These 
non-stationarities in the EEG originate, for example, from the inherent 
non-stationarity of neural signals, changing electrode-skin contact impedances, 
and shifting or loosening electrodes. Modifying the unsupervised training algorithm

2 All details about the data and experiments can be found in [8].



from Sect. 2.2 to be time-adaptive is therefore crucial to adapt to these 
non-stationarities to obtain higher performances. Furthermore, it also alleviates the 
need for a dedicated training session for each new end user, fully realizing the plug-
and-play potential of the unsupervised decoder.

36 S. Geirnaert et al.

Accuracy [%] 

a b
Accuracy [%] 

80 
–4.5% 

70 

60 

50 
0 8 16  

Number of electrodess disconnected 

adaptive unsupervised 
adaptive unsupervised – 80.2% 

adaptive unsupervised – 83.0% 

fixed supervised – 80.2% 

fixed supervised – 78.5% 

Time [min] 

+13.9% 

fixed supervised 

24 32 

100 

80 

60 
S1 

40 

20 

0 
100 

80 

60 
S2 

40 

20 

0 

0 24  48 72 96 120 144 168 192 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

 

Fig. 5 (a) When electrodes are disconnected from a 64-channel BioSemi EEG system during an 
AAD experiment, the pre-trained fixed supervised decoder shows degrading performances, while 
the time-adaptive unsupervised decoder can find alternative ways of reconstructing the attended 
speech envelope that are as effective. (b) The time-adaptive unsupervised decoder performs at least 
as well as the fixed supervised decoder in an AAD experiment across multiple recording days (two 
participants). Based on Figure 7a and 8b in [11] 

Consider now the practical use case where EEG data and speech envelopes of the 
competing speakers are continuously being recorded. In [11], we proposed a single-
shot predict-and-update scheme based on a recursive implementation of the linear 
neural stimulus decoder. The key idea is to predict the attention label using the 
previous decoder on the new incoming data window and to use this predicted label to 
update the parameters of the decoder using exponential weighting. This exponential 
weighting hyperparameter then determines the tradeoff between the speed of adap-
tation to non-stationarities and the accuracy of the resulting decoder. From our 
experiments, a good choice for this hyperparameter led to an adaptation time of 
20 min to adapt the decoder to a new end user, starting from a random decoder. 

Figure 5a compares the pretrained fixed supervised decoder with the proposed 
time-adaptive unsupervised decoder when simulating disconnecting EEG electrodes 
during an AAD experiment (on a 64-channel BioSemi EEG system).3 After 
disconnecting EEG electrodes, the time-adaptive unsupervised decoder finds alter-
native ways of reconstructing the attended speech envelope that are clearly as 
effective as before. The pretrained fixed supervised decoder cannot take these 
disconnections into account and, therefore, shows decreasing performance. From 
the moment that more than three electrodes are disconnected, it is outperformed by 
the time-adaptive decoder, which requires no pretraining and updates fully

3 All details about the data and experiments can be found in [11].



automatically. Furthermore, as shown in Fig. 5b, the time-adaptive unsupervised 
decoder performs at least as well as the fixed supervised decoder in an AAD 
experiment that reflects the practical use-case of a neuro-steered hearing device in 
which data is collected across multiple recording days. The time-adaptive decoder 
then adapts to the changes in, for example, EEG setup, electrode impedances, 
conditions, and state of mind of the user, without any external intervention or 
supervision.
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These various results show the added value of the developed time-adaptive 
unsupervised SR algorithm that allows adaptation to the EEG signal changes and 
to a specific end-user. As such, it is a crucial enabler towards the online application 
of AAD in practical neuro-steered hearing devices. 

3 Decoding the Spatial Focus of Auditory Attention 

While the availability of a time-adaptive unsupervised SR algorithm represents an 
essential step towards practical AAD, it is still based on the SR algorithm that is too 
slow to adequately detect switches in auditory attention (see Sect. 1.3 and [10]). 
Therefore, there has been an increasing interest in decoding auditory attention by 
tapping into other characteristics of the neural activity, i.e., other than neural tracking 
of the speech envelope. One of these characteristics is based on the hypothesis that 
the neural signals change depending on the direction of spatial attention to the 
attended speaker. For example, it has been shown that there exist alpha-power 
lateralization patterns depending on the attended spatial location in a competing-
stimuli experiment [12, 13]. Bednar and Lalor [14] tried reconstructing the attended 
sound source trajectory from the EEG in a moving competing speaker scenario. 
Specifically for AAD, Vandecappelle et al. [15] proposed to use a convolutional 
neural network to discriminate between left and right attended solely based on the 
EEG. Using such an AAD algorithm also impacts the conceptual overview of a 
neuro-steered hearing device (Fig. 1), as it does not require the individual speech 
signals anymore for AAD itself. Furthermore, the attended spatial direction is a 
different piece of information that now comes out of the AAD block, which can be 
used, for example, to steer a beamformer towards the correct location. 

In [16], we proposed an alternative algorithm to decode the spatial focus of 
auditory attention based on the popular common spatial patterns (CSP) filtering 
algorithm in BCI literature [17]. The idea is to apply a neural CSP decoder on the 
EEG signals to perform a smart dimensionality reduction that amplifies the discrim-
inative patterns between, for example, left/right attended. The attended direction can 
be classified by computing features based on the energy of the output signals in a 
particular decision window (Fig. 2b). Figure 4b shows that exploiting this alternative 
paradigm with the CSP algorithm substantially improves accuracy on the very short 
decision windows, which is paramount to detecting switches in auditory attention. 
Furthermore, we have shown that this also works in a three-class scenario with 
multiple directions of attention and background babble noise, with a reduced number



of EEG channels around the ear, and in a user-independent context [16]. Lastly, in 
[18], we employed a nonlinear extension based on Riemannian geometry-based 
classification (RGC) [9] to obtain even higher performances (Fig. 4b), especially 
in the multi-class scenario [19]. 
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The high AAD accuracy at short decision windows of these algorithms that 
decode the spatial focus of auditory attention makes them excellent candidates as 
fast and accurate decision-making AAD algorithms. However, these algorithms do 
not seem to work well in every scenario, and it is currently unclear what boundary 
conditions are required to make them work. Furthermore, there seems to be a 
considerable time dependency in the CSP decoding, in the sense that decoding 
performance drops or sometimes completely fails for test segments that are recorded 
(much) later in time than the segments used to train the decoder [19]. Further 
research towards these boundary conditions, the underlying neural processes that 
drive the CSP decoding, and the time dependency is required to realize the potential 
that these algorithms hold. 

4 Conclusion and Future Challenges 

In this project, we have contributed several key components towards the practical 
application of AAD in neuro-steered hearing devices. The time-adaptive 
unsupervised AAD algorithm is a crucial enabler towards the online application of 
AAD, being able to automatically adapt to the end-user and the non-stationarities in 
the EEG data. Furthermore, a faster and more accurate AAD algorithm could be 
obtained by exploiting the varying EEG lateralization patterns based on the attended 
spatial direction. These innovations lead to several follow-up challenges, such as 
evaluating the CSP and RGC algorithms in various listening scenarios to identify 
their boundary conditions, resolving the time-dependency that exists in the CSP 
algorithm between training and testing data, and building a time-adaptive 
unsupervised CSP/RGC algorithm, for example, by combining it with the time-
adaptive unsupervised SR algorithm. 

More generally, the main signal processing-related challenges to realize practical 
neuro-steered hearing devices are mainly situated in integrating all the different 
building blocks (see Fig. 1). Firstly, while several papers investigate the combination 
of speech enhancement algorithms with SR [20–23], a similar integration between 
beamforming algorithms and algorithms that decode the spatial focus of attention 
would be interesting to research. An exciting alternative approach is combining 
speech enhancement and AAD in an all-in-one algorithm [24, 25]. Secondly, an 
adaptive gain control system should be installed based on the AAD decisions that 
takes the tradeoff between speed and accuracy [10] and subjective listening param-
eters into account. Thirdly, a practical neuro-steered hearing device requires a 
wearable and concealable EEG recording system using miniaturized EEG sensors, 
such as in-ear [26] or around-the-ear [27] EEG. While AAD has been tested with 
channel selection algorithms [28] and wearable EEG systems [29], there is not yet a
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practically viable solution. Finally, the human in the loop needs to be considered as 
well. It is therefore paramount to investigate neurofeedback effects on AAD in a 
closed-loop system in real-life scenarios [30]. Using the time-adaptive SR algorithm, 
such a closed-loop system could tap into the concept of co-adaptive learning, in 
which both the human and algorithm learn over time, hopefully resulting in 
improved performance. 
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Abstract Neural representations of visual perception are intentionally modulated 
by mental imagery and attention. In the present study, we hypothesized that visual 
images decoded from electrocorticograms (ECoGs) could be controlled to represent 
intentional meaning in a closed-loop condition. ECoGs were recorded while subjects 
watched videos containing natural scenes, while the annotations of the scenes in the 
videos were converted into vectors in the visual semantic space using a word-
embedding model; decoders were trained to infer the semantic vector from the 
ECoG. By presenting images based on the inferred vectors in real time, four subjects 
successfully controlled the images to show an orally instructed meaning. Closed-
loop control of inferred images revealed a novel interaction between visual percep-
tion and imagery. 

Keywords Electrocorticogram · Visual imagery · Brain-computer interface · 
Neurofeedback 

1 Introduction 

Neural activities in the visual cortex are not only evoked by externally driven 
“bottom-up” sensory information but also modulated by internally generated “top-
down” signals such as mental imagery [1, 2] and attention [3]. Neural representation 
of the visual cortex has been investigated by using neural decoding; prior studies 
using functional magnetic resonance imaging (fMRI) have demonstrated that per-
ceived images can be inferred as semantic attributes of images [4, 5] or reconstructed 
images [6–8]. Interestingly, recent studies have shown that a trained decoder with 
neural activities during visual perception successfully inferred mental image content 
[7, 9], revealing common neural representations between visual perception and 
imagery in the visual cortex [7, 9–11]. Furthermore, the neural representation of 
visual perception was shown to be modulated by attention in searching for an object 
of an instructed category [12]. Therefore, both externally provided bottom-up 
sensory information and internally generated top-down signals of mental imagery 
and attention affect neural representation in the visual cortex. 

Although brain activities can be modulated intentionally by attention and mental 
imagery, it is unknown whether people can intentionally control the various images 
decoded from their brain activity. A previous study demonstrated that people can 
intentionally control the superposition of two images of familiar individuals based 
on hippocampal signals in a closed-loop condition [13]. Image selection might be 
controlled by mental imagery, thoughts, and attention. In addition, some recent 
studies using fMRI demonstrated that people can control the output of a decoder 
that infers some visual perception features (e.g., orientation and colour) based on 
cortical activity in the visual cortex in a closed-loop condition, although the subjects 
were not aware of the decoded visual feature during the control [14]. People might be 
able to intentionally control the images of various semantic attributes decoded from 
the visual cortex in a closed-loop condition.
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The high temporal resolution and wide cortical area coverage of electrocortico-
grams (ECoGs) [15] make them suitable for evaluating visual information that is 
sparsely represented in the visual cortex [4]. Furthermore, it has been shown that 
ECoGs can not only infer several semantic categories of perceived images [16, 17] 
but also some novel objects that were not included in the training dataset by 
decoding in a semantic space [18]. Hence, ECoG can be decoded to precisely infer 
the semantic information of natural visual stimuli in real time, which is important for 
closed-loop control. Here, we hypothesize that subjects can control images decoded 
from ECoGs of the visual cortex by intending to show images with specific semantic 
attributes. 

2 Materials and Methods 

2.1 Subjects 

Four subjects with drug-resistant epilepsy (# of males: 3; age: 28.0 ± 11.2, mean 
± standard deviation [SD]) who were implanted with subdural electrodes around the 
visual cortex were included in this study. The study adhered to the Declaration of 
Helsinki and was performed in accordance with the experimental protocol approved 
by the ethics committee of each hospital (Osaka University Medical Hospital: 
Approval No. 14353, UMIN000017900; Juntendo University Hospital: Approval 
No. 18-164; Nara Medical University Hospital: Approval No. 2098). 

2.2 ECoG Recordings 

The experiment was carried out with subjects either seated on their bed or seated on 
chairs. During the experiment, ECoGs were recorded at 10 kHz by EEG-1200 
(Nihon Koden, Tokyo, Japan). Visual stimuli (video stimuli, or real-time feedback 
image) were presented to the subjects on a computer screen placed in front of them; 
the timing of the visual stimuli was monitored by DATAPixx3 (VPixx Technolo-
gies, Quebec, Canada) to record simultaneously with ECoGs. 

2.3 Experimental Procedures 

In the video stimuli task, six 10-min videos were presented to the subjects. The six 
videos were constructed by sequentially concatenating short scenes from trailers or 
behind-the-scenes features of cinema and animation downloaded from Vimeo. The 
videos contained objects with various types of semantic meanings, such as humans, 
animals, landscapes, and words. There were no duplicated scenes in the videos. To



minimize subject fatigue, there were intervals between the presentations of the six 
videos, resulting in the entire video stimuli task being completed in 1–3 days. 
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Fig. 1 Experimental setting 
during the real-time 
feedback task: The subjects 
were instructed to control 
the feedback image by 
visual imagery so that the 
feedback images kept 
showing the instructed 
meaning (“word”, 
“landscape”, or  “human 
face”) 

Following the video stimuli task, the subjects participated in a real-time feedback 
task; in the task, the subjects were shown feedback images in the closed-loop 
condition (Fig. 1). The feedback images were determined by a decoder trained 
with ECoGs recorded during the video stimuli task. Each trial of the real-time 
feedback task started with a 4.5-s blank screen, during which one of the three 
instructions (“word”, “landscape”,  or  “human face”) was given orally; following 
the blank screen, 32 frames of feedback images were presented sequentially with an 
interval of 250 ms. The subjects were instructed to control the feedback images by 
visual imagery so that the feedback images kept showing the instructed semantic 
meaning. The feedback images were selected based on the highest Pearson’s corre-
lation coefficient between the semantic vector (see Sect. 2.4) decoded in real time 
from the latest 1-s ECoGs and the semantic vectors of the candidate scenes from the 
annotated images of the video stimuli. The trials were repeated 120 times (40 trials 
for each instruction) with a randomized instruction order.
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2.4 Construction of the Semantic Vector 

From the stimuli videos, 1000-dimensional semantic vectors representing the seman-
tic information of each scene were created. A still image was cropped from the 
videos every second for annotation by five annotators; from the annotations, nouns, 
verbs, and adjectives were extracted, lemmatized, and converted to 1000-
dimensional vectors using a skip-gram model [19] trained with a Japanese Wikipedia 
dump. The vectors were averaged within each image to form a semantic vector of the 
corresponding 1-s scene. 

2.5 Decoder for the Real-Time Feedback Task 

The decoder used in the real-time feedback task was a ridge regression model trained 
from the 1000-dimensional semantic vectors of the video stimuli and high-γ power 
(80–150 Hz) of the corresponding 1-s ECoGs. To train the decoder, cross-validation 
was used to determine the best λ. 

2.6 Evaluation for the Real-Time Feedback Task 

For each feedback frame of the trials in the real-time feedback task, control accuracy 
was evaluated in a three-choice classification manner. First, the semantic vector 
inferred to select the feedback image for a frame was calculated for its Pearson’s 
correlation coefficients against three semantic vectors each corresponding to the 
three instructions (“word”, “landscape”, or  “human face”); when the correlation 
coefficient with the given instruction for the trial was the highest among the three 
correlation coefficients, the prediction was considered correct. In a similar three-
choice manner, success or failure of control for each trial was evaluated using three 
correlation coefficients against the three instructions averaged among the 32 frames. 

3 Results 

Representative feedback images of a trial with “landscape” instruction are shown in 
Fig. 2a; during this trial, Subject E01 could successfully control the feedback images 
closer to the meaning of “landscape” (shown with red underline). Among the 
120 trials of the real-time feedback task, the three-choice classification accuracy 
peaked in the middle of the trial with an accuracy of 52.5% (Fig. 2b). The overall 
three-choice classification accuracy for the same subject was 45.83%, which was 
significantly higher than chance level (P = 0.0021, one-sided permutation test). The



other three subjects also showed significant accuracies (E02: 50.00%, P < 0.0001; 
E03: 41.67%, P = 0.031; E04: 41.67%, P = 0.0065). Therefore, all four subjects 
who participated in the real-time feedback task succeeded in controlling the feed-
back image towards the instructed semantic meaning. 
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Fig. 2 Performance for real-time control of the feedback image by E01: (a) Representative 
feedback images during the real-time feedback task of E01 are shown for one trial with “landscape” 
instruction. Images underlined in red are the correct decoding, considered as a three-choice 
classification in each frame. (b) For each frame of the feedback image, the three-choice accuracy 
of Subject E01 is shown. The dotted line denotes the chance level, whereas the dashed line denotes 
the significance level of FDR-corrected P = 0.05 estimated by a one-sided permutation test 

4 Discussion 

Our results demonstrate that ECoGs can be used to infer the semantic vectors of 
natural scenes represented in the visual semantic space. By combining decoding in 
visual semantic space with real-time visual feedback, all subjects successfully 
controlled the inferred vector to be closer to one of the three instructed meanings. 
In other words, the feedback was controlled by the interaction between the intention 
to control the feedback and the visual feedback decoded in a representational space; 
here, we call this intentional control of the feedback representational brain-computer 
interaction (rBCI). 

There are several possible strategies for controlling feedback images in real-time 
feedback tasks. Neural activity in the visual cortex is affected by various top-down 
factors, such as imagery [1, 2] and attention [3]. According to interviews after the 
real-time feedback task, some subjects reported that they focused on part of the 
feedback image that had closer meaning to the instruction (e.g., subtitles in the image 
during trials with “word” instruction), even though they were instructed to control 
the feedback image by visual imagery. However, it is difficult to explain the 
successful control of the feedback images only by attention. In the candidate images 
of the feedback, many images contained “human face” attributes, and 98.8% of the 
images had a higher correlation coefficient between the semantic vector of the image 
and the “human face” vector than between the semantic vector and the “landscape”



or “word” vector; nonetheless, it was difficult to show images containing “human 
face” attributes during the “human face” trials. Therefore, it is suggested that the 
feedback images were at least controlled by top-down signals of both mental 
imagery and attention. Because the rBCI is a novel experience for humans, in 
which the external stimuli causing bottom-up information are directly affected by 
top-down signals, it will reveal the novel properties of the relationship between them 
[20]. Further studies are necessary to reveal how the bottom-up information 
represented by cortical activities is modulated by top-down signals. 
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of Leg Movements After Paralysis 
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Abstract Spinal cord injury disrupts the connection between the brain and the 
regions of the spinal cord located below the lesion. This disruption impairs or 
even suppresses voluntary control of muscles, leading to permanent paralysis. Yet, 
the motor cortex remains able to generate meaningful neuronal activity during 
attempts to move the paralyzed limbs. This activity can be detected as electrical 
potential recorded at the surface of the brain. Similarly, the regions of the spinal cord 
involved in the control of leg muscles are generally intact, and can be reactivated 
using epidural electrical stimulation. Here, we designed a digital bridge between the 
motor cortex and the regions of the spinal cord involved in the control of leg 
movements, with the aim to restore voluntary control of leg muscles in a participant 
with paralysis due to a chronic spinal cord injury. We built this implantable digital 
bridge by linking an epidural electrocorticographic recording system to an implanted 
epidural spinal cord stimulation system. We initiated a clinical study to test the safety 
and efficacy of this Brain Spine Interface (BSI) in restoring voluntary control of leg 
muscles to stand and walk after spinal cord injury. 
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1 Introduction 

The brain sends commands to neurons located in the lumbosacral spinal cord to 
control standing and walking. The vast majority of spinal cord injuries do not alter 
these neurons directly. However, the interruption of the information flow from the 
brain deprives these neurons of essential sources of excitation and control, resulting 
in permanent paralysis. 

Our group and others have investigated the mechanisms by which epidural 
electrical stimulation of the spinal cord can reactivate those neurons [1–6]. It was 
found that the stimulation modulates the activity of specific neuronal populations 
including motoneurons by targeting the large diameter afferents where they enter the 
spinal cord through the dorsal root entry zones. Preprogrammed stimulation 
sequences targeting the individual dorsal root entry zones enabled standing and 
basic walking in people with paralysis due to a spinal cord injury. These sequences 
must be synchronized with the intended leg movements. For this purpose, the 
participants wore motion sensors that enabled the detection of residual movements 
in order to trigger the pre-programmed stimulation sequences. This strategy pro-
vided some degree of voluntary control over leg movements, but this control was 
limited and relied on compensatory strategies. Consequently, the control of walking 
was not perceived as natural and the patients showed limited ability to adapt leg 
movements to changing terrains and volitional demands, which are critical features 
for daily life activities. 

In parallel, brain-computer interface (BCI) technologies were developed to pre-
dict motor intentions from cortical activity. In particular, during walking, pro-
nounced modulations in the beta and gamma frequency bands are correlated to 
gait phases [7–10] and could be used as inputs to drive a prosthetic approach. 
Clinical evidence using electroencephalography (EEG) to control functional electri-
cal stimulation (FES) showed the potential benefits of brain-controlled stimulation in 
stroke participants [11–13] as well as in paraplegic patients [14]. However, the 
cumbersomeness and sensitivity to motion artefacts make this method unrealistic 
for a widespread mobile and home-use application. On the other side of the spec-
trum, highly invasive intracortical recording electrodes are used in participants with 
tetraplegia to operate robotic arms [15], restore communication [16] or control FES 
of the upper limb [17]. Such intracortical arrays require a transcutaneous connector 
and a computational platform that is not suited to mobile applications. An interme-
diate modality between EEG and intracortical recordings captures the local field 
potentials at the surface of the brain or the dura mater using electrocorticography 
(ECoG). This modality provides robust signals with limited amount of noise and 
high stability over time while being fully implantable [18–22].
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2 Design of the Fully Implantable Brain Spine Interface 

Following a proof of concept in a nonhuman primate model of spinal cord injury 
[23], we designed a digital bridge between the brain and spinal cord to restore 
volitional control of muscle activity in humans. This design aimed at restoring a 
more natural and adaptive control of walking in humans with paralysis due to a 
spinal cord injury [24]. To establish this digital bridge, we integrated two fully-
implanted systems that enable recording of cortical activity and stimulation of the 
lumbosacral spinal cord wirelessly and in real-time (Fig. 1). We leveraged the 
WIMAGINE® technology consisting of an 8-by-8 grid of 64 electrodes 
(4 mm × 4.5 mm pitch in antero-posterior and medio-lateral axes respectively) and 
recording electronics that are embedded within a 50-mm diameter circular-shaped 
titanium case presenting the same thickness as the skull (C. S. [18, 25]). ECoG 
signals are sampled at 586 Hz and streamed wirelessly through an ultrahigh fre-
quency antenna (UHF, 402–405 MHz). 

The ECoG signals are transferred to a portable decoding environment that 
extracts temporal, spectral and spatial features in real time and correlates those 
features to the intention to move the leg. More specifically, the features are fed 
into a decoding algorithm that predicts the attempts to move the lower limbs based

Fig. 1 Design of the brain spine interface (Photos: ©Jimmy Ravier)



on a recursive exponentially weighted Markov-switching multi-linear model algo-
rithm [26]. This algorithm is a mixture of multilinear experts’ algorithms integrating 
a Hidden Markov Model (HMM) classifier, called gating, and a set of independent 
regression models, called experts. The gating classifier predicts which joint is 
intended to be mobilized, while each expert is dedicated to predicting the direction 
and relative amplitude of the intended movement. The outputs of the model are 
encoded into continuous modulations of joint-specific stimulation programs within 
pre-established functional ranges of amplitudes. The algorithm can be recalibrated 
iteratively, which supports online calibration within a few minutes. Concretely, the 
participant receives visual and/or auditory cues to perform specific movements 
(e.g. “Right Hip Flexion”, “Rest”). The data are labelled by the cue and the requested 
amplitude of movement. Every 15 s, the algorithm updates the coefficients of the 
model and provides updated stimulation commands.
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These commands are continuously relayed to the spinal cord through an implant-
able pulse generator (ACTIVA RC®, Medtronic). We modified the firmware of the 
generator, which is commonly used for deep brain stimulation, to enable real-time 
control over stimulation parameters with a latency as low as 100 ms. Electrical 
pulses are delivered using an implantable paddle lead (Specify 5-6-5®, Medtronic) 
positioned over the epidural space to target the dorsal root entry zones of the 
lumbosacral spinal segments. Each stimulation configuration modulates specific 
ensembles of motor pools through the recruitment of the dorsal root entry zones 
projecting to the spinal cord regions wherein these motor pools reside [5, 27]. This 
physiological principle enables the regulation of extension and flexion movements 
from each joint. We leveraged this principle to configure a library of targeted 
epidural electrical stimulation programs that mobilized the hip, knee and ankle joints 
from both sides. Practically, we can configure combinations of anodes and cathodes, 
stimulation frequencies and amplitudes to steer electrical currents in order to achieve 
gradual control over the activity of the targeted muscle groups. 

This integrated chain of hardware and software establishes a wireless digital 
bridge between the brain and spinal cord–a digital bridge that converts cortical 
activity into the analog modulation of epidural electrical stimulation programs to 
tune leg muscle activation, and thus regain standing and walking after paralysis due 
to a spinal cord injury. 

3 Design of Stimo-BSI Clinical Trial (NCT04632290) 

We designed the clinical study to test the safety and preliminary efficacy of this BSI 
to restore voluntary motor control of the lower limbs and promote neurological 
recovery. In order to assess the specific contribution of brain inputs to drive the 
stimulation compared to preprogrammed stimulation patterns, we opened the study 
to three participants who completed the main phase of the STIMO clinical trial 
(NCT02936453). This previous study involved a 5-month neurorehabilitation pro-
gram supported by targeted epidural electrical stimulation of the spinal cord



[5, 6]. The STIMO-BSI follow-up trial involves the implantation of the two cortical 
WIMAGINE® recording systems, followed by a 1-month period of calibration and a 
50-session rehabilitation phase. Pre-implantation, post-implantation and post-
rehabilitation measures are performed including neurological evaluations (ASIA 
score) and functional evaluations (10-m walking test, 6-min walking test, Time Up 
and Go, Berg Balance Scale, quantitative gait analysis). 
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Fig. 2 Restoration of voluntary hip flexion using the BSI (Photos: ©Jimmy Ravier) 

Pre-operativelly, we use anatomical and functional mapping to locate the optimal 
placements for the cortical and spinal implants. In particular, magnetoencephalog-
raphy during lower limb motor attempts is used to validate the capacity of the 
participant to elicit detectable cortical signals in the leg sensorimotor area 
[28]. Implantation of the stimulation lead over the dorsal epidural space of the spinal 
cord is performed using high resolution MRI to locate the trajectory of the roots and 
predict the optimal location to cover most efficiently the lower limb motor pools [5]. 

After surgical implantation of the system, the digital bridge is calibrated for single 
joint movements before combining different movements together. The system is 
designed to control up to six independent muscle groups simultaneously with a 
latency close to 1 s. The same paradigm can be then used in a mobile environment to 
trigger leg movements associated with standing and walking (Fig. 2). 

In this context, we implanted a 38-year-old male who had sustained an incom-
plete cervical (C5/C6) spinal cord injury during a biking accident 10 years prior to 
his enrollment. The STIMO program had allowed him to regain the ability to step 
with the help of a front-wheel walker. Despite continued use of the stimulation at 
home for approximately 3 years, he had reached a neurological recovery plateau that 
motivated him to enroll in STIMO-BSI. This study was approved by the Swiss 
authorities (EUDAMED CIV-20-07-034126) and was conducted in accordance with 
the Declaration of Helsinki.
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For this participant, the digital bridge restored continuous, intuitive and robust 
control of walking with a front-wheel walker as well as with crutches. When the 
digital bridge was turned off, the participant instantly lost the ability to perform any 
step despite detected attempts to walk from the modulation of cortical activity. 
Walking could resume as soon as the digital bridge was turned back on. The 
participant reported experiencing a natural and precise control over his movements, 
allowing him to adapt and walk through different terrains. In contrast, walking with 
external sensors and preprogrammed stimulation sequences required compensatory 
strategies. When standing or walking with the digital bridge the control “feels more 
natural” and gives him a “freedom that [he] didn’t have before”. 

The participant completed the rehabilitation phase that involved walking with the 
digital bridge, performing single-joint movements with the digital bridge, balance 
with the digital bridge, and standard physiotherapy. This neurorehabilitation pro-
gram mediated pronounced neurological and functional improvements. In particular, 
this recovery correlated with gains in motor scores, and enhanced standing and 
walking capacities that were captured in an increase in WISCI II scores. Specifically, 
the participant exhibited improvements in all the conventional clinical assessments 
such as the 6-min walk test, weight-bearing capacities, timed up and go, Berg 
Balance Scale, and walking quality. 

Finally, we designed a system that could be operated by the participant without 
any assistance. This system includes a front-wheel walker equipped with an inte-
grated case that embeds all the components of the digital bridge. A tactile-based 
interface allows the participant to interact with the tailored software in order to 
launch an activity, verify the placement of the headset, and adjust the minimum and 
maximum amplitudes of stimulation programs. The configuration of the hardware 
and software is completed with minimal user inputs within less than 5 min, after 
which the participant can leverage the digital bridge for neurorehabilitation or to 
support activities of daily living. 

4 Discussion 

Our technological and clinical design establishes the first-in-human proof of concept 
of a continuous link between the brain and the region of the spinal cord that controls 
muscle activity. This digital bridge restores voluntary control over previously 
paralyzed muscles in a natural and intuitive way in a participant with spinal cord 
injury. We are continuously improving the capacity of the system in terms of 
usability, latency and degrees of freedom. Miniaturization of the acquisition and 
computing system into an embedded platform will further increase patient accept-
ability and prepare the dissemination of this therapy. Finally, while we found that 
decoders could remain stable over several weeks, recent advances in self-supervised 
learning could enable automatic recalibration of the system without need of explicit 
labelling of the data. These developments require time and resources, but we do not 
anticipate technical hurdles to realize this transition.
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Expanding the concept of a digital bridge to the cervical spinal cord may also 
support the restoration of arm and hand movements after spinal cord injury or stroke, 
auguring a new era in the treatment of motor deficits due to neurological disorders. 

Acknowledgement We thank our test pilot for his commitment and trust. Supported by Defitech 
Foundation, Rolex Award for Enterprise, International Foundation for Research in Paraplegia, 
Translational Medical Research Award 2021 from the Leenaards Foundation, Pictet Group Char-
itable Foundation, ONWARD Medical, Medtronic, the Swiss National Science Foundation through 
the National Centre of Competence in Research in Robotics (51NF40-185543), Sinergia (CRSII5-
183519), and the Lead Agency Program with the French National Research Agency 
(Think2Move—SNF-32003BE-205563, ANR-21-CE19-0038), A F Harvey Prize award, Swiss 
Innovation Agency InnoSuisse (CTI-41871.1 IP-LS Bridge), Eurostars (E!12743 Confirm and E! 
113969 Prep2Go), the European Commission (ERC-2019-PoC Braingait 875660, EIC 2021-
TransitionChallenges-01-01 ReverseParalysis 101057450, EIC 2021-PathfinderChallenges-01-02 
NEMO-BMI 101070891), Fonds de Dotation Clinatec (WIMAGINE implant development), 
Institut Carnot Leti. 

References 

1. Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, Ferreira CK, Harkema SJ 
(2018) Recovery of over-ground walking after chronic motor complete spinal cord injury. N 
Engl J Med 379(13):1244–1250. https://doi.org/10.1056/NEJMoa1803588 

2. Schirmer CM, Shils JL, Arle JE, Rees Cosgrove G, Dempsey PK, Tarlov E, Kim S et al (2011) 
Heuristic map of myotomal innervation in humans using direct intraoperative nerve root 
stimulation. J Neurosurg Spine SPI 15(1):64–70. https://doi.org/10.3171/2011.2.SPINE1068 

3. Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, Beck LA et al (2018) 
Neuromodulation of lumbosacral spinal networks enables independent stepping after complete 
paraplegia. Nat Med 24(11):1677–1682. https://doi.org/10.1038/s41591-018-0175-7 

4. Mesbah S, Herrity A, Ugiliweneza B, Angeli C, Gerasimenko Y, Boakye M, Harkema S (2023) 
Neuroanatomical mapping of the lumbosacral spinal cord in individuals with chronic spinal 
cord injury. Brain Commun 5(1):fcac330. https://doi.org/10.1093/braincomms/fcac330 

5. Rowald A, Komi S, Demesmaeker R, Baaklini E, Hernandez-Charpak SD, Paoles E, Montanaro 
H et al (2022) Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg 
motor functions after complete paralysis. Nat Med 28(2):260–271. https://doi.org/10.1038/ 
s41591-021-01663-5 

6. Wagner FB, Mignardot J-B, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, 
Rowald A et al (2018) Targeted neurotechnology restores walking in humans with spinal cord 
injury. Nature 563(7729):65–71. https://doi.org/10.1038/s41586-018-0649-2 

7. McCrimmon CM, Wang PT, Heydari P, Nguyen A, Shaw SJ, Gong H, Chui LA, Liu CY, 
Nenadic Z, Do AH (2017) Electrocorticographic encoding of human gait in the leg primary 
motor cortex. Cereb Cortex 28(8):2752–2762. https://doi.org/10.1093/cercor/bhx155 

8. Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR (2014) EEG beta suppres-
sion and low gamma modulation are different elements of human upright walking. Front Hum 
Neurosci 8(July):485–485. https://doi.org/10.3389/fnhum.2014.00485 

9. Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR (2015) High and low 
gamma EEG oscillations in central sensorimotor areas are conversely modulated during the 
human gait cycle. NeuroImage 112(May):318–326. https://doi.org/10.1016/j.neuroimage.2015. 
03.045 

10. Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Müller-Putz G, Scherer R (2012) Level of 
participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG

https://doi.org/10.1056/NEJMoa1803588
https://doi.org/10.3171/2011.2.SPINE1068
https://doi.org/10.1038/s41591-018-0175-7
https://doi.org/10.1093/braincomms/fcac330
https://doi.org/10.1038/s41591-021-01663-5
https://doi.org/10.1038/s41591-021-01663-5
https://doi.org/10.1038/s41586-018-0649-2
https://doi.org/10.1093/cercor/bhx155
https://doi.org/10.3389/fnhum.2014.00485
https://doi.org/10.1016/j.neuroimage.2015.03.045
https://doi.org/10.1016/j.neuroimage.2015.03.045


56 A. Galvez et al.

rhythms in able-bodied subjects. NeuroImage 63(3):1203–1211. https://doi.org/10.1016/j. 
neuroimage.2012.08.019 

11. Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Khodairy A, Corbet T, Schnider A et al (2018) 
Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. 
Nat Commun 9(1):2421. https://doi.org/10.1038/s41467-018-04673-z 

12. Jovanovic LI, Kapadia N, Lo L, Zivanovic V, Popovic MR, Marquez-Chin C (2019) Restora-
tion of upper-limb function after chronic severe hemiplegia: a case report on the feasibility of a 
brain-computer interface controlled functional electrical stimulation therapy. Am J Phys Med 
Rehabil. Publish Ahead of Print. https://journals.lww.com/ajpmr/Fulltext/publishahead/ 
Restoration_of_upper_limb_function_after_chronic.98294.aspx 

13. McCrimmon CM, King CE, Wang PT, Cramer SC, Nenadic Z, An HD (2014) Brain-controlled 
functional electrical stimulation for lower-limb motor recovery in stroke survivors. Annu Int 
Conf IEEE Eng Med Biol Soc 2014:1247–1250. https://doi.org/10.1109/EMBC.2014.6943823 

14. Selfslagh A, Shokur S, Campos DSF, Donati ARC, Almeida S, Yamauti SY, Coelho DB, 
Bouri M, Nicolelis MAL (2019) Non-invasive, brain-controlled functional electrical stimulation 
for locomotion rehabilitation in individuals with paraplegia. Sci Rep 9(1):6782. https://doi.org/ 
10.1038/s41598-019-43041-9 

15. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S et al 
(2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. 
Nature 485(May):372 

16. Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV (2021) High-performance 
brain-to-text communication via handwriting. Nature 593(7858):249–254. https://doi.org/10. 
1038/s41586-021-03506-2 

17. Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, Miller JP, Walter BL et al 
(2017) Restoration of reaching and grasping movements through brain-controlled muscle 
stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 
389(10081):1821–1830. https://doi.org/10.1016/S0140-6736(17)30601-3 

18. Benabid AL, Costecalde T, Eliseyev A, Charvet G, Verney A, Karakas S, Foerster M et al 
(2019) An exoskeleton controlled by an epidural wireless brain–machine interface in a 
tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. https://doi.org/10.1016/ 
S1474-4422(19)30321-7 

19. Larzabal C, Bonnet S, Costecalde T, Auboiroux V, Charvet G, Chabardes S, Aksenova T, 
Sauter-Starace F (2021) Long-term stability of the chronic epidural wireless recorder 
WIMAGINE in tetraplegic patients. J Neural Eng 18(5):056026. https://doi.org/10.1088/ 
1741-2552/ac2003 

20. Moses DA, Metzger SL, Liu JR, Anumanchipalli GK, Makin JG, Sun PF, Chartier J et al (2021) 
Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N Engl J Med 
385(3):217–227. https://doi.org/10.1056/NEJMoa2027540 

21. Pels EGM, Aarnoutse EJ, Leinders S, Freudenburg ZV, Branco MP, van der Vijgh BH, Snijders 
TJ, Denison T, Vansteensel MJ, Ramsey NF (2019) Stability of a chronic implanted brain-
computer interface in late-stage amyotrophic lateral sclerosis. Clin Neurophysiol 130(10): 
1798–1803. https://doi.org/10.1016/j.clinph.2019.07.020 

22. Vansteensel MJ, Pels EGM, Bleichner MG, Branco MP, Denison T, Freudenburg ZV, 
Gosselaar P et al (2016) Fully implanted brain–computer interface in a locked-in patient with 
ALS. N Engl J Med 375(21):2060–2066. https://doi.org/10.1056/NEJMoa1608085 

23. Capogrosso M, Milekovic T, Borton D, Wagner F, Moraud EM, Mignardot J-B, Buse N et al 
(2016) A brain–spine interface alleviating gait deficits after spinal cord injury in primates. 
Nature 539(November):284 

24. Lorach H, Charvet G, Bloch J, Courtine G (2022) Brain-spine interfaces to reverse paralysis. 
Natl Sci Rev January:nwac009. https://doi.org/10.1093/nsr/nwac009 

25. Mestais CS, Charvet G, Sauter-Starace F, Foerster M, Ratel D, Benabid AL (2015) 
WIMAGINE: Wireless 64-channel ECoG recording implant for long term clinical applications.

https://doi.org/10.1016/j.neuroimage.2012.08.019
https://doi.org/10.1016/j.neuroimage.2012.08.019
https://doi.org/10.1038/s41467-018-04673-z
https://journals.lww.com/ajpmr/Fulltext/publishahead/Restoration_of_upper_limb_function_after_chronic.98294.aspx
https://journals.lww.com/ajpmr/Fulltext/publishahead/Restoration_of_upper_limb_function_after_chronic.98294.aspx
https://doi.org/10.1109/EMBC.2014.6943823
https://doi.org/10.1038/s41598-019-43041-9
https://doi.org/10.1038/s41598-019-43041-9
https://doi.org/10.1038/s41586-021-03506-2
https://doi.org/10.1038/s41586-021-03506-2
https://doi.org/10.1016/S0140-6736(17)30601-3
https://doi.org/10.1016/S1474-4422(19)30321-7
https://doi.org/10.1016/S1474-4422(19)30321-7
https://doi.org/10.1088/1741-2552/ac2003
https://doi.org/10.1088/1741-2552/ac2003
https://doi.org/10.1056/NEJMoa2027540
https://doi.org/10.1016/j.clinph.2019.07.020
https://doi.org/10.1056/NEJMoa1608085
https://doi.org/10.1093/nsr/nwac009


Digital Bridge to Restore Voluntary Control of Leg Movements After Paralysis 57

IEEE Trans Neural Syst Rehabil Eng 23(1):10–21. https://doi.org/10.1109/TNSRE.2014. 
2333541 

26. Moly A, Costecalde T, Martel F, Martin M, Larzabal C, Karakas S, Verney A et al (2022) An 
adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskel-
eton by a tetraplegic. J Neural Eng 19(2):026021. https://doi.org/10.1088/1741-2552/ac59a0 

27. Capogrosso M, Wenger N, Raspopovic S, Musienko P, Beauparlant J, Luciani LB, Courtine G, 
Micera S (2013) A computational model for epidural electrical stimulation of spinal sensori-
motor circuits. J Neurosci 33(49):19326–19340. https://doi.org/10.1523/JNEUROSCI. 
1688-13.2013 

28. Auboiroux V, Larzabal C, Langar L, Rohu V, Mishchenko A, Arizumi N, Labyt E, Benabid 
A-L, Aksenova T (2020) Space–time–frequency multi-sensor analysis for motor cortex local-
ization using magnetoencephalography. Sensors 20(9). https://doi.org/10.3390/s20092706

https://doi.org/10.1109/TNSRE.2014.2333541
https://doi.org/10.1109/TNSRE.2014.2333541
https://doi.org/10.1088/1741-2552/ac59a0
https://doi.org/10.1523/JNEUROSCI.1688-13.2013
https://doi.org/10.1523/JNEUROSCI.1688-13.2013
https://doi.org/10.3390/s20092706


Brain-Body Interfaces to Assist and Restore 
Motor Functions in People with Paralysis 

Elena Losanno, Marion Badi, Evgenia Roussinova, Andrew Bogaard, 
Maude Delacombaz, Solaiman Shokur, and Silvestro Micera 

Abstract Brain-Body Interfaces (BBIs) restore the connection between brain motor 
commands and body movements actuated via electrical stimulation. BBIs have 
emerged as a solution to achieve two complementary rehabilitation objectives in 
people with motor deficits: induce long-lasting neurological recovery and assist 
motor functions during daily activities. Here, we describe representative promising 
implementations for both applications and future steps toward their diffusion into 
clinical practice. We also present our assistive BBI approach to restore hand 
functions based on intrafascicular stimulation of arm nerves and decoding of neural 
manifold dynamics in the primary motor cortex. Preclinical tests demonstrate that 
our solution is promising for providing motor dexterity and decoding stability. 
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1 Introduction 

Far from being yet one more ‘Brain-X-interface’ in a field that already has consid-
erable nomenclature, Brain-Body Interfaces (BBIs) describe neuroprostheses that 
allow users to voluntarily control the movement of their bodies. Brain activity 
recorded from cortical sensorimotor areas using invasive or non-invasive interfaces 
is translated into motion commands to actuate limbs via electrical stimulation of 
neuromuscular structures. This requires tackling two neurotechnological modules— 
one for motor decoding and one for movement restoration—and their interaction 
[1]. The BBI concept is very interesting for at least two reasons. First, the control of 
the ‘own’ body—as opposed to an external actuator—might be the preferred assis-
tive solution for patients with motor deficits [2]. Second, BBIs allow the contingent 
link between brain activity and body mobilization, creating the conditions for 
Hebbian-like plasticity close to the injured tissue [3]. Building on this hypothesis, 
studies have shown that BBIs can promote neurological recovery, particularly in 
stroke survivors and patients with motor-complete spinal cord injury (SCI), as we 
will describe here. 

In this section, we will show representative studies of both aspects, but instead of 
a detailed list of implementations, we will concentrate on two examples of applica-
tions that have, in our view, great potential to evolve in the future into clinical 
practice: (1) fully non-invasive and minimally invasive BBIs aiming to induce long-
lasting neurological recovery; and (2) BBIs based on implantable components to 
assist motor functions. 

2 BBI for Neurological Recovery 

Until recently, the chances of achieving significant long-lasting neurological and 
functional recovery in individuals with the most severe cases of sensory-motor 
deficiencies due to SCI or stroke were considered negligible. While a considerable 
amount of spontaneous neurological recovery is observed at the acute phase for both 
SCI [4, 5] and stroke patients [6], it is absent during the chronic phase. During the 
early stage, the recovery is a combination of restitution (spontaneous restoring of the 
functionality of damaged neural tissue), substitution (reorganization of partly-spared 
neural pathways to relearn lost functions), and compensatory mechanisms [6]. 

At the chronic phase, the neurorehabilitation for stroke patients aims to promote 
adaptive plasticity of structure and function in the undamaged brain toward



recovery, driven by motor training. Protocols such as constraint-induced motor 
therapy, where the subject is forced to use the paralyzed limb [7], have shown 
significant results in stroke patients who have residual motor functions at the onset of 
the protocol. For stroke survivors with severe motor loss, BBIs to actuate the paretic 
limb based on the decoded motor intention have been proposed as an alternative to 
induce activity-based plasticity [8]. These strategies were successfully tested for 
both upper-limb [9–12] and lower-limb motor neurorehabilitation [13, 14], leading 
to substantial motor improvements and brain plasticity. In these protocols, patients’ 
motor intentions are generally recorded via electroencephalography (EEG) and 
decoded in real-time to control surface functional electrical stimulation (sFES) to 
trigger muscle contractions in the subject’s paretic limb (Fig. 1a). A central role for 
neural recovery is played by the simultaneous engagement of descending and 
ascending neural pathways, which induces Hebbian-like plasticity [3]. 
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Fig. 1 Examples of therapeutic BBIs. (a) EEG activity is used to trigger the wrist flexion/extension 
via sFES as part of a neurorehabilitation protocol for stroke patients (www.recoverix.at/). (b) A BBI 
based on EEG decoding and lower-limb sFES was used in a 5-month long intervention in two 
patients with chronic SCI, leading to a marked motor recovery in one of the two patients [15] 

Recent studies have also shown that BBIs could induce some neural recovery in 
people with SCI [15, 16]. The integration of EEG-based decoding and lower-limb 
sFES in a 5-month long protocol showed a marked motor recovery below the lesion 
in one out of the two patients who followed the training [15] (Fig. 1b). The 
hypothesis for such partial recovery comes from the observation that the majority 
of patients diagnosed as motor-complete SCI using the ASIA scale have preserved 
fibers at the lesion level [17, 18]. In other words, by involving the SCI subject in 
training that targets both cortical and spinal plasticity, it is possible to engage the 
remaining fibers to recover functions below the lesion. This hypothesis was con-
firmed in the rat SCI model. A study with motor-complete rats showed that training 
integrating commands via intracortical signals and epidural spinal cord stimulation 
(SCS) enhanced neurological recovery compared to epidural SCS training 
alone [16].

http://www.recoverix.at/
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2.1 Future Perspectives 

The key element in BBIs for neurological recovery is the synchronization between 
the efferent and afferent signals [3] rather than very precise multi-DoF decoding. 
Also, the intervention is temporary and the optimal recording/stimulation sites may 
change over time following recovery. For all of these reasons, most of the 
implementations are based on non-invasive or minimally invasive motor decoding 
and movement restoration modules. In the following, we will describe some of the 
directions in which the two modules are currently evolving and highlight the 
importance of including somatosensory feedback. 

2.1.1 Motor Decoding 

As mentioned earlier, in therapeutic BBIs, motor decoding is generally based on 
EEG. EEG is the most widely used brain signal acquisition method because it is 
non-invasive thus practical, and offers a high temporal resolution. However, EEG 
has some limitations that can affect the efficacy of the intervention: it requires skill 
and time to place and calibrate the system, has a low spatial resolution, and is 
susceptible to external noise. These limitations can lead to low decoding accuracy, 
in particular when classifying fine movements, and make the therapy unreliable or 
suboptimal. To increase spatial resolution and thus control performance in a wider 
range of tasks, some groups are exploring high-density EEG systems [19, 20]. Usu-
ally these systems include between 160 and 256 electrodes, but denser layouts with 
up to 1024 electrodes also exist. A recent study demonstrated the possibility of 
decoding individual finger movements with ultra-high-density EEG with quite good 
accuracy [21], paving the way for targeted interventions for hand rehabilitation. 

Other groups are working to improve the decoding accuracy of BBIs for post-
stroke upper-limb rehabilitation using hybrid control solutions based on the combi-
nation of EEG and EMG signals [22–24]. Another advantage of integrating the 
central with the peripheral motor intention in stroke survivors is that the cortical 
compensation (i.e., the increased motor control by the disinhibited contralesional 
hemisphere) can be better suppressed, thereby reinforcing the desired projection of 
motor commands to target muscles and the efficacy of the intervention [23]. Hybrid 
control strategies make use of features expressing the cortico-muscular coupling, 
i.e., the synchrony between EEG and EMG activity, for movement classification. 

Alternatives to EEG are also being investigated. While invasive technologies 
such as electrocorticography (ECoG) or intracortical electrodes may not provide a 
large enough benefit-risk ratio for a therapeutic system at their current stage, 
electrode grids implanted in the subgaleal space (i.e., the intermediate space between 
the skin on the scalp and the skull) offer a minimally invasive option to avoid 
repeated placement of the electrodes and improve signal quality compared to EEG 
[25, 26]. Studies on motor decoding based on subgaleal signals are currently 
missing. However, it has been promisingly shown that meaningful high gamma



activity (which is thought to concur with the activity of single neurons [27] and is 
informative for motor decoding) can be recorded using subgaleal electrodes simi-
larly to ECoG [28]. 
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2.1.2 Movement Restoration 

sFES is the most commonly used technique for neurorehabilitation. In the field of 
therapeutic sFES, there has been recent increased interest in multi-pad electrodes 
(see [29] for a review) and textile-based devices [30]. Multi-pad electrodes can more 
flexibly shape the electric field, thus increasing selectivity, and temporally distribute 
stimuli over different muscle areas, thus delaying the onset of fatigue. In this way, 
more targeted and effective interventions can be developed. Another advantage of 
multi-pad electrodes for rehabilitative use is their flexibility in personalizing the 
intervention. With multiple independent stimulation channels the stimulation para-
digm can not only be tailored to each patient’s anatomy and clinical condition, but 
also optimized over time based on the patient’s response to treatment. On the other 
hand, textile-based systems improve comfort and wearability which are particularly 
important for extension to home treatment. 

Besides sFES, epidural SCS has shown remarkable therapeutic effect in the SCI 
population, likely because residual supraspinal commands spatiotemporally con-
verge with the activation of spinal circuits with this technique, favoring functional 
neuroplasticity [31–33]. But non-invasive alternatives to epidural SCS are also being 
tested and show promising results [34–36]. An 18 week intervention combining 
administration of monoaminergic solution and transcutaneous SCS at the lumbosa-
cral segments with five motor-complete SCI patients showed the generation of 
stepping-like movement in a gravity-neutral position [34]. Importantly, following 
the training, the patients were able to generate lower-limb movements even in the 
absence of stimulation. Further analysis provided electrophysiological evidence of 
the reestablishment of functional connectivity between the brain and the spinal cord. 

2.1.3 Sensory Feedback 

Most people who suffer a SCI or stroke end up having not only motor, but also 
sensory deficits. Because sensation plays a crucial role in motor control, providing 
somatosensory input congruent with the evoked movement may facilitate neural 
plasticity and increase the effectiveness of therapeutic interventions in these patients. 
A recent study has shown that a sFES approach that simultaneously provides 
muscular and cutaneous activation leads to greater sensorimotor improvements 
than motor-only treatments in chronic stroke patients [37].
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3 BBIs for Assistance 

Assistive BBIs should provide the user with good dexterity and guarantee stability, 
allowing patients to recover a certain degree of independence. Thus, we identify the 
following key technical challenges to overcome: the motor decoding strategy should 
ideally be easy to learn, accurate, and stable over time; the movement restoration 
module should provide good selectivity and not be prone to rapid fatigue. 

Early examples of assistive BBIs include intracortical control of hand functions 
via sFES or implanted muscle stimulation (also known as implanted FES) in 
monkeys [38–40]. In the past 5 years, there have been also demonstrations of 
assistive BBIs for hand control in people with tetraplegia [41–43]. One of the first 
studies was performed at Case Western University [42]. The participant was 
implanted with an intracortical array in the primary motor cortex (M1) and stimu-
lating electrodes in forearm muscles (Fig. 2a). Intended hand movements were 
decoded from intracortical signals based on a linear decoder and used to drive 
implanted FES for grasping and an arm support for reaching. Using the BBI, the 
participant could perform simple, functional tasks such as drinking and self-feeding. 
The same group is now conducting a clinical trial to test a BBI based on epineural 
stimulation integrating sensory feedback in patients with high tetraplegia [46]. Nerve 
cuff electrodes called C-FINEs are implanted around nerve branches of the upper 
limb to reactivate shoulder, arm, and hand movements based on the subject’s motor 
intention, as decoded from M1 recordings. Motor control is coupled with stimulation 
of the somatosensory cortex to restore sensation. 

Recently, we have validated an assistive BBI solution for grasping in a monkey 
based on decoding of neural manifold (i.e., low-dimensional space in which neural 
population activity is constrained [45]) dynamics and intrafascicular stimulation 
(Fig. 2b) [44]. Brain signals were recorded via an intracortical array in the hand 
area of M1, while hand opening and closing were evoked by electrical stimuli 
delivered via intrafascicular electrodes called TIMEs implanted in the animal’s 
radial and median nerves. Neural manifold dynamics were linearly mapped to both 
the amplitude of intrafascicular stimulation and the position of a cursor to provide 
visual feedback and instructions to the animal. We instructed the monkey to move 
the cursor towards vertical and horizontal targets by modulating her cortical activity, 
thereby enabling the voluntary control of smooth hand opening and closing. 

3.1 Future Perspectives 

As emerged from the examples described above, research groups working on 
assistive BBIs went towards the use of systems with implantable components. 
Besides proving higher dexterity and thus independence in a wider range of activ-
ities, implantable devices increase comfort for daily use, reducing time and need for 
assistance in the setting up process and improving aesthetics. Some clinical
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Fig. 2 Examples of assistive BBIs. (a) An invasive BBI to restore reaching and grasping was tested 
in a patient with high cervical SCI [42]: neural activity was recorded with intracortical electrodes 
and used to drive implanted FES for grasping and an arm support for reaching, based on a linear



demonstrations of these implantable technologies have been performed, but different 
scientific and technological challenges remain to be addressed for their effective 
translation to clinical practice. In the following, we will describe some features that 
could promote the clinical use of assistive BBIs.
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3.1.1 Motor Decoding 

Most of the animal studies on assistive BBIs have used intracortical electrodes, and 
in particular Utah arrays [47], to record brain signals. In the last 5 years, Utah arrays 
have been also employed in human BBI studies. Intracortical interfaces have the 
highest recording resolution and thus give the highest control accuracy and dimen-
sionality. For example, they have been used for continuous 10-DoF prosthetic arm 
control [48] and to decode kinematics of multiple finger groups online [49]. How-
ever, intracortical electrodes cause considerable scarring in their proximity [50, 51] 
leading to low stability of the signal and affecting decoding performance over time. 
This is a crucial issue for clinical applications. To preserve performance of standard 
decoding algorithms without frequently collecting calibration data, efforts have been 
made to implement automatic, unsupervised recalibration methods [52, 53]. 

Another promising solution to get stable performance is represented by decoders 
that exploit neural plasticity to compensate for recording instabilities [54]. In this 
framework, we have shown that a monkey could intuitively learn to modulate these 
dynamics and adapt modulation to long-term recording changes using a motor 
decoding strategy based on the direct mapping between intrinsic neural ensemble 
dynamics and output variables [44]. In more detail, we computed a neural manifold 
[45] associated with a hand motor task once, then used neural dynamics along the 
manifold axes to drive the position of a cursor in real-time. We tested this paradigm 
in a point-to-point cursor control task over a 16-week incremental training protocol: 
the monkey showed rapid learning of new tasks and a stable success rate of ~90% 
until the end of the protocol, without recalibration of the control space. Further 
studies in animals and patients with paralysis are necessary to validate the use of 
manifold-based direct control as an easy-to-learn and stable motor decoding strategy 
for future BBIs. 

At the same time, several groups are working to increase stability of intracortical 
implants by improving electronics. Examples include development of subcellular 
electrodes that induce little foreign body response [55, 56], or “neural dust”, i.e., 
miniaturized electronic implants covering large cortical areas that wirelessly transmit 
neural data [57, 58]. 

⁄�

Fig. 2 (continued) decoder. (b) Our BBI solution to restore grasping was tested in a chronically 
implanted monkey [44]: intracortical activity projected along the axes of a motor neural manifold 
[45] was used to drive both intrafascicular stimulation of the median and radial nerves and the 
position of a cursor to give visual feedback and instructions to the animal
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ECoG represents a less invasive alternative to intracortical interfaces that is 
thought to be less susceptible to long-term instabilities [59]. After the first offline 
demonstrations of motor decoding using ECoG activity recorded in epileptic patients 
[60–64], ECoG systems have become popular for online control of exoskeletons 
[65] or robotic limbs [66, 67] in people with paralysis. Moreover, wireless portable 
ECoG systems are now under preclinical [68] or clinical [65, 69] testing. It is 
however yet unknown if the ECoG recording resolution will be sufficient for 
decoding fine movements, such as those of the hand. 

3.1.2 Movement Restoration 

To promote clinical usage of assistive BBIs, the movement restoration module 
should be designed to approach the true dexterity of the limb to reanimate while 
minimizing complexity of the surgery and its associated risks. Thus, the level of the 
neuromuscular system to target with stimulation should be chosen depending on the 
application. For example, epidural SCS, whose surgery is well-established, has been 
demonstrated as an effective approach to restore coarse movements, such as walking 
[33, 70] and reaching [71]. However, more selectivity and thus a more distal 
stimulation target is necessary to restore fine movements, such as those of the 
hand. Implanted FES has been traditionally used to evoke hand functions [72], but 
it relies on the implantation of multiple distributed electrodes, making the surgical 
intervention long and extensive. Targeting the motor fibers of the peripheral nervous 
system via intrafascicular electrodes offers an option to provide similar dexterity to 
implanted FES with a lower number of implants. A study with monkeys done by our 
group [73] showed that intrafascicular stimulation via TIMEs can evoke multiple 
selective grasps and hand extension movements with only two implants in the 
median and radial nerves. Moreover, it was possible to produce functional levels 
of force that could be sustained over prolonged periods of time with limited muscle 
fatigue. While the validation in patients with paralysis is currently missing, 
intrafascicular stimulation seems a very promising solution for clinical BBIs to 
restore fine movements. 

Another challenge in developing effective clinical BBIs is that motor responses to 
electrical stimulation can change due to the emergence of fatigue or perturbations 
such as spinal reflexes in SCI patients. A robust and reliable movement restoration 
module should automatically compensate for these changes. A possibility for that 
would be to use closed-loop controllers that modify the stimulation parameters in 
real-time to maintain a target motor response [74]. Some demonstrations of closed-
loop neuroprostheses have been performed in which the amplitude or frequency of 
stimulation was modulated by feedback controllers to maintain a target grasp force 
or step height [75–77], leading to accurate motor outputs. 

More generally, we believe that the efficacy and safety of assistive BBIs is 
improved if the movement restoration module has some level of autonomy and 
shares control with the motor decoding module [78]. Shared control could be 
implemented by providing information about the body interaction with objects to



the stimulation controller, which would consequently perform low-level actions, 
such as obstacle avoidance or “economic” object securing (i.e., securing an object 
with the minimum force that does not cause slippage to avoid undue muscle fatigue). 
This would reduce the burden of user input, optimize neuroprosthesis use, and 
increase safety. Interaction with objects could be detected using electronic skins 
(see [79] for a review) or recordings from the body’s own sensory stream [80], such 
as sensory nerves [81] or the somatosensory cortex [82]. 
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3.1.3 Sensory Feedback 

The integration of sensory feedback would also add great value to assistive BBIs in 
terms of performance and safety. In a recent study, a BBI for grasping was combined 
with an arm vibrotactile array to provide touch information, leading to greater 
functionality than a pure motor BBI [82]. This approach is an example of sensory 
substitution, where sensation is provided by the electrical or mechanical stimulation 
of a substitutive district [83]. Alternatively, sensation could be restored using 
biomimetic sensory feedback by electrically stimulating an intact region of the 
natural sensory pathway [83]. An example region is the somatosensory cortex 
targeted by the group of Case Western University for their current clinical trial [46]. 

4 Conclusion 

In summary, we foresee the development of BBIs in two complementary directions: 
non-invasive or minimally-invasive BBIs for temporary neurorehabilitation and 
implantable BBIs for long-term assistive use. For an assistive BBI to restore hand 
movements, a particularly interesting solution to have a good trade-off between 
dexterity and number of implants might be the use of intrafascicular stimulation of 
the peripheral nerves. Decoding stability could be instead provided by the manifold-
based direct control strategy. 

Eventually, when the burden of surgical and technological costs is lower, one 
could imagine that the two approaches of therapeutic and assistive BBIs converge to 
one. Hybrid systems based on an invasive motor decoding module and a 
non-invasive movement restoration module (e.g., ECoG-based control of a multi-
pad sFES system) could also be viable solutions in the short term. 
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Keeping Our Eyes on the Prize; Are We 
Losing Sight of the ‘Why’ in BCI 
for Neurorehabilitation? 

Colin Simon and Kathy Ruddy 

Technology is the answer. But what was the question? 
Cedric Price (1966) 

Abstract Studies using BCIs based upon non-invasive, scalp recorded electroen-
cephalography (EEG) have consistently demonstrated utility, both as scientific tools 
for neuromodulation and for clinical neurorehabilitation purposes. They are partic-
ularly appealing in clinical contexts where physical movement is impaired, for 
instance following stroke. The intrinsic advantage of Brain-Computer Interfaces 
(BCIs) over alternate rehabilitation strategies is that they work even when output 
at the behavioural level is non-existent. Patients exhibiting minimal or no residual 
limb movement after a stroke cannot partake in gold standard physiotherapy, but 
might still demonstrate brain activity patterns when attempting to move the impaired 
limb. These patterns can be targeted to enhance recovery. However, the role of BCI 
should evolve once behavioural output is available. We must not be seduced by the 
allure of cutting-edge technology at the expense of targeting the specific neurophys-
iological features that are most likely to drive recovery. At the most basic mecha-
nistic level, the majority of BCIs are driven by neural signals generated by 
imagination of movement. We need to revisit the question—could motor imagery 
alone could achieve the same outcomes, or what is the added clinical benefit of  
the BCI? Accordingly, what is the minimum required intervention using BCI 
(in terms of time and hardware) to establish a habit of good quality motor imagery 
that could then sustain rehabilitation without the technology? Motor imagery is free,
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available to every person and at any time. Using technology to harness its virtues 
while not compromising its simplicity is the ultimate challenge for the field.
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Studies using BCIs based upon non-invasive, scalp recorded electroencephalogra-
phy (EEG) have consistently demonstrated utility, both as scientific tools for 
neuromodulation and for clinical neurorehabilitation purposes. They are particularly 
appealing in clinical contexts where physical movement is impaired, for instance 
following stroke. Using a BCI where on-screen avatars are driven by neural activa-
tion in motor regions encourages the patient to engage in imagined or attempted 
movements. By providing tangible visual feedback and rewarding desirable neural 
features, activity in motor pathways is maintained. This may promote use-dependent 
plasticity and rewiring for recovery of function. However, clinical adoption of the 
approach has been limited. This is due mainly to difficulties with implementation in 
non-research settings, as training to achieve neural control of the BCI requires 
lengthy sessions over multiple days or weeks [1]. Human participants typically use 
imagined movements or scenarios to achieve BCI control that are associated with 
distinct scalp-detectable patterns of neural activity. The lack of spatial sensitivity of 
EEG to distinguish between different imagined (or even executed) movements from 
different muscles makes decoding and classifying the neural activity challenging, 
especially in the early days of training. 

TMS-NF is a novel approach to provide richer, more muscle-specific feedback in 
a BCI [2]. In this closed loop system, the size of Motor Evoked Potentials (MEPs) in 
response to Transcranial Magnetic Stimulation (TMS) are incorporated into the NF 
signal, such that users can learn how to facilitate or inhibit their brain-muscle 
pathways by engaging mental strategies to make the MEP larger or smaller 
(Fig. 1). This typically results in a much faster (i.e. within one training session) 
grasp of how to execute distinct mental strategies in order to control the game, 
compared to those reported for EEG BCI. This also produces more spatially distinct 
and temporally stable neural signatures when the same mental strategies are later 
executed during simultaneous EEG recording [3]. TMS-NF would not be a practical 
long-term approach for neurorehabilitation due to the expense and size of the 
required apparatus, but if it could be used in the early phase of training while still 
in hospital, the learned strategies may transfer well to an EEG BCI that could be used 
by patients in their own homes (e.g. see Simon and Ruddy [4], and Fig. 1). 

Stroke is one of the leading causes of death and disability worldwide, and 
incidence is rising at an alarming rate [5]. There have been substantial improvements 
to emergency stroke care, with advances in thrombolytic therapy leading to a 25% 
reduction in stroke related deaths. While this is undoubtedly a positive advance, the 
more worrying implication is that there is now an increasing number of survivors left 
with significant disabilities as a result of the brain damage, preventing them from 
leading independent lives. A major unsolved problem is getting the paralysed upper 
limb functional again. This is one of the key obstacles preventing independence in



stroke survivors, as without the use of one limb, they are unable to perform the most 
basic activities of daily living, such as dressing, preparing food, and personal care. 
As the brain-muscle pathways that previously controlled the upper limb are perma-
nently damaged, recovery of function may only occur due to growth and develop-
ment of new neural connections. In this field of research, novel, theory driven, 
innovative methods to promote this re-wiring of neural pathways are urgently 
needed. 
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Fig. 1 TMS Neurofeedback protocol used in Ruddy et al. [2]. The peak-peak amplitude of the 
motor evoked potential (MEP) following TMS is calculated in real-time and displayed to the 
participant. The height of the rectangle on the screen represents the amplitude of the participant’s 
MEP. In UP training, participants are rewarded for exceeding their baseline amplitude (white 
horizontal line). In DOWN trials, they are rewarded for keeping amplitudes small, below the 
baseline. In a successful trial, when the baseline is exceeded, the bar turns green and a positive 
soundbite is played. In an unsuccessful trial, the bar turns red and a discouraging soundbite is played 

BCIs take a wide range of different formats, providing user feedback from a 
variety of different neural signals. Some constitute assistive technology, 
circumventing the damaged nervous system to translate an intention to move into 
remote control of an external device. Others work upon harnessing the power of 
motor imagery to activate brain circuits involved in movement in order to promote 
an optimal neurochemical environment for neuroplastic processes to occur, and 
prevent further deterioration of unused pathways. The aforementioned are two 
very different approaches—one with a focus on compensation, finding a new way 
to achieve the desired task, and the other with a focus on restitution—regaining the 
capacity for the brain to control the appropriate muscles by reliance on rewiring and 
forming new neural connections to take on the function of the damaged neurons. 
Here we aim to more specifically demarcate the clinical instances in which the 
benefits of BCI are likely to supersede those of other approaches, with a view 
towards equipping researchers (and ultimately clinicians) with tools to choose the 
right BCI approach at the right time for the right patients. 

First and foremost, we need to develop a clearer understanding of the underlying 
mechanisms—the neural elements that are being altered by the BCI—in order to 
provide clear medical justification, and a more standardised, scalable application of



brain-based physiotherapy. There is a wide heterogeneity in BCI design, slowing its 
clinical deployment [6]. Yet, a more pressing challenge is our limited understanding 
of the mechanisms that drive BCI control and BCI initiated recovery processes [1]. 
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The myriad of proteins, cells, synapses, structural and functional networks that 
make up the brain, and the way they interact to produce measurable signals at the 
scalp, are yet to be consolidated into a comprehensive framework of brain health [7– 
9]. Instead of resorting to increasingly complex and expensive technology [10], it is 
crucial to devise innovative but minimalist ways to interact with the injured brain. 

1 Identification of Appropriate Target Neural Signal 

Any form of brain signal, ranging from protein-level fluctuations to network activ-
ities and oscillations, can be utilized for BCI. It is also valuable to consider the 
potential applications where brain-derived signals, such as motor evoked potentials 
from electromyography [2, 3], can be leveraged as inputs to inform a BCI 
[11, 12]. Here, we will focus predominantly on Electroencephalography (EEG) 
BCI, as the majority of BCIs capture brain activity through EEG [13]. 

For a BCI with a goal involving neurorehabilitation, the primary objective is to 
restore functional movement in the user. This distinguishes it from efforts to achieve 
the best possible control over the avatars/actuators in the BCI, which is often the 
focus from a bioengineering perspective. Rehabilitative BCI can target at least three 
separate dimensions for brain signal analysis: The signal will originate from a 
specific location, it will exhibit a distinct temporal development, and it will propa-
gate itself spatiotemporally with an oscillation [14]. Researchers have successfully 
targeted all three dimensions for controlling BCI [10, 13, 15, 16]. In the spatial 
dimension, post-stroke BCI for rehabilitation may bring about functional change by 
enhancing activity dependant plasticity in motor regions [17, 18]. In the temporal 
dimension, the aim may be to augment conduction speed between the brain’s motor 
areas [19, 20]. From a neural oscillations perspective, a target mechanism may be to 
bias neural oscillatory behaviour towards more ‘normal’ patterns than those typically 
detected from the post-stroke brain [21]. 

Rehabilitation contexts introduce issues that do not exist when testing with 
healthy controls: Firstly, signals recorded from the injured brain are often complex 
and idiosyncratic, and secondly, the chosen brain signal can be anticipated to evolve 
as the patient recovers. To deal with these complexities, we suggest a multi-phase 
BCI approach. Akin to physiotherapy, a multi-phase BCI may start targeting a 
specific brain signal during the acute phase of a brain injury, and progressively 
address patient needs until another BCI phase begins that may target another brain 
signal during the chronic phase of a brain injury. Ultimately, the best method to 
accomplish this depends on the specific rehabilitative objectives pursued.
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2 Identifying Therapeutic Goals 

The intrinsic advantage of Brain-Computer Interfaces (BCIs) over alternate rehabil-
itation strategies is that they work even when output at the behavioral level is 
non-existent. Patients exhibiting minimal or no residual limb movement after a 
stroke cannot partake in gold standard physiotherapy [22], but might still demon-
strate brain activity patterns when attempting to move the impaired limb. These 
patterns can be targeted to enhance recovery [1]. However, the role of BCIs should 
evolve once behavioral output is available. Uncertainty about how BCI can engage 
neural recovery mechanisms in the brain means that standalone BCI therapy is 
unlikely to produce better results than conventional physiotherapy in cases where 
behavioural output is available. In this context, the role of the BCI may transition 
from being the primary feedback and training mechanism for a patient to take on a 
more complementary role in the recovery process. 

3 Identifying the Most Appropriate Technology to Improve 
Function 

In BCI research for neurorehabilitation, the primary objective is to facilitate neural 
recovery. Achieving accurate BCI control is secondary. As such, rehabilitative BCI 
is not so much a competition to employ the most cutting-edge methods for the best 
possible BCI control, but rather a race to identify the most clinically relevant aspects 
of healthy or injured brains. 

So-called black box machine learning methods, where the result is uninterpretable 
to humans, are not recommended as BCI components [23]. While they may have 
advantages over more traditional methods, many require large datasets, which are 
generally unsustainable in both the academic and medical fields. Furthermore, since 
researchers or clinicians are not able to oversee the results, these methods carry risks 
such as overfitting and negative adaptation, rendering them ethically questionable as 
well as impractical [24, 25]. As a result, theory-led methods are preferable. 

In situations where there are few or no constraints imposed on the data by the 
chosen brain signal or the rehabilitative objective, unbiased data processing methods 
can provide benefits. Unbiased methods take all available data and determine for 
themselves what is important and what is not, without referring to predetermined 
goals. They can offer greater flexibility in identifying optimal solutions for BCI 
control, including adaptations to signal changes over time, adaptations to patient 
idiosyncrasies, and the exploration of potential solutions not previously considered 
by researchers. However, unbiased processes may lack the necessary methodolog-
ical power to validate BCI mechanisms and are potentially more susceptible to noise. 

Based on the qualities of the brain signal and the requirements dictated by the 
rehabilitative objective, most BCI designs will gravitate towards a specific techno-
logical solution. If these qualities or the rehabilitation objective change during the



rehabilitation process, the technology employed should adapt correspondingly. 
While this multimodal approach may initially appear more complex, it is likely to 
yield superior results and more standardized protocols. 
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4 Thinking Outside the (Black) Box 

The presented steps are intended to help BCI design by encouraging innovative 
solutions. For example, multimodal and multiphasic BCIs may also incorporate 
phases or modes where the brain is not the signal generator but rather a signal 
processor. The brain could be the receiver of a stimulus such as transcranial magnetic 
stimulation or a sensory stimulus. This could enhance the specificity of the generated 
brain signal along various dimensions, making it easier to design a rehabilitative 
objective around it. 

For this purpose, we have developed a multimodal and multiphasic BCI using a 
TMS-BCI in the initial phase and an EEG-BCI in the subsequent phase. Preliminary 
results suggest that the multimodal approach was successful in facilitating BCI 
control compared to a unimodal, single-phase group (2-Phase BCI). 

Alternatively, the brain signal could be augmented with additional behavioural 
data. For example, wearable devices could provide a BCI with an additional signal 
dimension, enabling the BCI to make more complex decisions. Such multimodal and 
multiphasic approaches may allow for the targeting of different aspects of rehabil-
itation during the same treatment or the application of different BCI strengths 
simultaneously. 

A multiphasic approach to rehabilitative BCI could also contribute to its success. 
To achieve success, BCIs must not only be mechanistically sound and effective but 
also scalable on a grand scale, ideally allowing patients to use them with minimal 
clinical supervision. This has yet to be fully realized as researchers continue to strive 
to find simple and effective solutions. However, a multiphasic approach may help 
BCIs have a short, intensive acute care phase, followed by a long-term easy solution 
for at-home use. 

In an experiment we designed [4], we developed a clinically relevant but minimal 
BCI setup. This setup was dispatched to participants’ homes, and they were 
instructed to set it up and train using online guidance. The results affirmed the 
feasibility of this approach. 

5 Conclusion 

Brain-Computer Interfaces (BCIs) continue to gain momentum as an appealing 
method for restoring motor function in a neurorehabilitation context. However, we 
must not be seduced by the allure of cutting edge technology at the expense of 
targeting the specific neurophysiological features that are most likely to drive



recovery. At the most basic mechanistic level, the majority of BCIs are driven by 
neural signals generated by imagination of movement. We need to revisit the 
question—could motor imagery alone could achieve the same outcomes, or what 
is the added clinical benefit of the BCI? Accordingly, what is the minimum required 
intervention using BCI (in terms of time and hardware) to establish a habit of good 
quality motor imagery that could then sustain rehabilitation without the technology? 
Motor imagery is free, available to every person and at any time. Using technology 
to harness its virtues while not compromising its simplicity is the ultimate challenge 
for the field. 
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Abstract We developed a real-time decoding framework that can accurately predict 
leg motor functions, as well as key aspects of walking, from local field potentials 
(LFP) recorded from the subthalamic nucleus of patients with Parkinson’s disease.
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Concretely, we designed decoders that can predict locomotor states, gait events, 
modulations in force during obstacle avoidance, and freezing of gait episodes while 
participants walked freely in unconstrained conditions. Our algorithms employed the 
full spectrum of LFP recorded bilaterally, either through externalized deep brain 
stimulation (DBS) leads connected to an external, high-resolution amplifier (six 
bipolar channels, Fs = 8 kHz), or wirelessly using a last-generation implantable 
stimulator with sensing capabilities (Percept PC, Medtronic, two bipolar channels, 
Fs = 250 Hz). These results represent the first neural decoding of leg motor function 
operating in real-time from therapeutically implanted DBS electrodes. Considering 
the large number of patients treated worldwide with DBS implants, as well as the 
capabilities of newest commercial stimulators, our results pave the way for the 
design and widespread deployment of closed-loop neuromodulation therapies that 
address gait deficits with new closed-loop approaches.
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1 Introduction 

Every year, more than 10,000 patients with Parkinson’s disease undergo surgical 
implantation of electrodes in the Subthalamic Nucleus (STN) [1]. These electrodes 
not only enable the delivery of deep brain stimulation to treat motor symptoms, but 
also allow recording of neuronal activity to study the encoding of functional and 
dysfunctional movements [2, 3]. Despite impressive therapeutic advances, gait and 
balance deficits remain little understood and hard to treat. Biomarkers of leg motor 
dysfunction are critically missing to guide the development of novel therapies that 
specifically target locomotor impairments. Furthermore, pharmacotherapies and 
deep brain stimulation (DBS) interventions have limited efficacy in the current 
form for late-stage Parkinson’s disease patients suffering from gait and balance 
deficits, when compared to patients suffering from upper limb movement deficits [4]. 

To address these issues, we conceived a neurorobotic platform that allowed us to 
deconstruct and isolate key components of walking while patients were sitting. This 
deconstruction of movements made it possible to study the encoding of leg motor 
function in the STN under well-controlled conditions. These experiments exposed 
direct links between STN modulations and the amplitude of leg muscle activation 
and force, which opened the intriguing possibility to predict modulations in leg force 
production from STN dynamics. 

We leveraged this platform to elucidate the principles that determine the encoding 
of leg muscle activations during active and passive movements. These conditions 
revealed that the STN encodes sensory feedback as well as the initiation, termina-
tion, and amplitude of leg muscle activation during isometric force production and 
single joint movements. We observed that the same principles apply to the encoding 
of bilateral leg muscle synergies during walking. These observations suggested that 
the activity of the STN is linked to the vigor of walking. To confirm this principle, 
we designed paradigms that required sudden or sustained increase in muscle synergy 
activation, such as avoiding obstacles and stair climbing. We identified robust links 
between STN activity and the modulation of muscle synergies during the perfor-
mance of these paradigms. We translated this understanding into machine learning 
decoders that detected functional and dysfunctional features of gait in real-time 
across activities of daily living in individuals with PD. 

2 Method 

2.1 Study Design 

The study was designed to uncover how the STN correlates with locomotor func-
tions and develop decoders to predict different locomotor states of humans. Exper-
iments were approved by the Ethical Committee of the Canton de Vaud, Switzerland 
(no. PB_2017-00064). All 18 participants received bilateral Medtronic 3389 DBS



leads and were recorded within the 5 days after the surgery. Local field potentials 
(LFP) were recorded from eight externalized patients (six channels, 8192 Hz sam-
pling frequency, downsampled to 2048 Hz), and ten patients with Percept PC (two 
channels, 250 Hz sampling frequency) [5]. For both groups of patients, signals were 
50-Hz notch filtered. The spatial locations of DBS leads were confirmed using 
tridimensional anatomical reconstructions [6]. 
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2.2 Leg Force and Locomotor State Classifications 

The isolated conditions of experiments performed while seated allowed us to expose 
a link between STN modulations and the amplitude of sustained leg muscle activa-
tion. This opened the intriguing possibility of predicting the intensity of leg force 
production from STN dynamics. To decode the leg force levels in real time, we used 
a non-linear machine-learning framework based on Random Forests classification 
algorithms using spectral features, as implemented in [7, 8]. Algorithms were trained 
to predict one of three classes: “strong force”, “weak force” or “rest” (66%, 33%, or 
0% of maximal voluntary contraction respectively, for each patient, N = 16 
patients). Our decoders used the entire power spectrum of bilateral LFP modulations 
(range: 5–120 Hz), and automatically extracted patient-specific spectral features that 
contributed to the encoding of muscle activation. The decoder ran at approximately 
30 classifications per second including feature computation time. Figure 1a shows 
the overall setup of the leg force classification experiment. 

We then applied the same decoding framework to discriminate gait states directly 
from STN LFP. We defined the three gait states (“standing”, “walking”, “initiation/ 
termination” of gait, N = 12 patients, Fig. 2), and trained using the same machine 
learning algorithms as used in the leg force classification condition. Participants 
were instructed to stand for 3 s before initiating a sustained walking bout, after which 
they had to stand for another 3 s. 

2.3 Leg Force Regression 

We then asked ourselves whether we can predict the continuous levels of force 
instead of discrete levels of force from the STN. To facilitate the analysis, we 
grouped the complex patterns of muscle activity during walking into muscle syner-
gies. These synergies captured the concurrent activation of multiple muscles that are 
functionally linked [9]. We computed synergies across all the recorded muscles from 
the left and right leg [10]. We restricted the number of synergy components to four, 
which sufficiently captured muscle activations (~90% of explained variance). Then, 
we used these four-dimensional time-series synergy values as target values of our 
regression model.
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Fig. 1 Real-time decoding of leg force modulation 

For this purpose, we designed a convolutional neural network (CNN) to model 
the continuous amplitude modulations of leg muscle synergies from STN LFP 
(Fig. 3a). Bilateral raw LFP are pre-processed and used to compute a spectrogram 
for each contact pair using multitaper spectral analysis. For each time point (10 ms 
resolution), a sliding window (500 ms) is isolated and fed into a convolutional neural 
network (CNN) that processes their image properties. The CNN is composed of three 
consecutive convolutional layers with increasing receptive fields. Each layer iden-
tifies the spectro-temporal features that best predict the output at their specific 
resolution and pass them on to the next layer. The final layer (fully connected neural 
network) combines all features to predict synergy activations (one or four synergies). 
The idea behind this design is that there is unknown latency between the 
neuromodulation patterns (LFP) and synergy responses of EMGs, and we let the



CNN learn the mapping between the LFP and synergy responses by searching for 
relevant dynamical features within this short time window. 
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Fig. 2 Real-time decoding of locomotor states from STN LFP 

Training and testing of the CNN are performed using leave-one-out cross-
validation on all short and long walking sequences combined. We compared the 
performance when predicting an individual synergy (unilateral) versus predicting the 
sum of all four synergies (bilateral). 

3 Results 

3.1 Leg Force and Locomotor State Classifications 

Decoder performance during the first force task (Externalized participant E4) can be 
seen in Fig. 1b. Probability (median ± SEM) for each class over time and confusion 
matrix (accuracy = 0.81, F-score = 0.79) are also shown in the lower row. Feature 
contribution traces display the frequencies that are automatically identified as being 
more relevant for the decoder, showing low- and high-beta range to be predomi-
nantly informative for this patient (shaded box). The feature importance distribution 
closely matched the relevant frequency bands modulated during movement for each 
participant (Fig. 1b, Feature Importance). 

Figure 1c shows the performance of all patients who performed this task 
(one-way ANOVA with Bonferroni correction, n = 16, *p < 0.05, ***p < 0.001). 
It can be seen that strong force epochs were more distinguishable from the rest 
epochs. Figure 1d shows an illustrative example of real-time recording during the 
second task, which involves switching between two levels of force. Average per-
formance traces (EMG envelope, top, and probability traces, bottom) and confusion
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Fig. 3 Prediction of muscle synergy activation during walking using a deep learning model



matrices for both cases can be seen in Fig. 1e. Finally, Fig. 1f shows the cross-patient 
performance achieved for the three patients who were tested in real-time.
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For the locomotor state classification, we ran the decoder offline, but the data 
were replayed in real time to mimic the online performance. Figure 2b shows the 
average probability traces of each class (“standing”, “walking” and “start/stop” 
transitions) over time, and confusion matrix of one example patient. The cross-
patient performance (N = 12, *p < 0.05 ANOVA with Bonferroni post-hoc correc-
tion) is shown in Fig. 2c. Importantly, comparable decoding performances were 
achieved regardless of whether data were recorded through DBS leads that were 
externalized and connected to high-resolution amplifiers (operating at 8 kHz, six 
bipolar channels) or wirelessly through implantable systems endowed with telemetry 
capabilities (250 Hz, two channels only), further emphasizing the flexibility and 
robustness of our approach. 

3.2 Leg Force Regression 

The regression performance was computed using the r2 score and cross-correlation. 
Figure 3b shows illustrative examples of target versus predicted synergy traces of six 
walking sequences (three sequences of small steps and three sequences of big steps) 
for an externalized participant E2. Figure 3c shows the quantification of performance 
for predicting the amplitude and timing (cross-correlation between target and pre-
diction) of synergy profiles for each walking sequence (same patient). The boxplots 
show the cross-participant accuracy when modelling the sum of all (four, bilateral) 
synergy profiles vs predicting a single synergy (*p < 0.05). The model predicted the 
amplitude (average r2 score = 0.51) and timing (average cross-correlation = 0.30) of 
synergy values of all participants (Fig. 3d). Training the model to predict only one 
synergy led to lower accuracy, both in amplitude (average r2 score = 0.21) and 
timing (average cross-correlation = 0.24), compared to the prediction of all four 
synergies combined. 

4 Discussion 

We conceived a neurorobotic platform that allowed us to uncover fundamental 
principles of leg movement encoding in the STN. We translated this understanding 
into machine learning algorithms that predicted leg force levels, locomotor states, 
and the vigor of walking from STN LFP. We used all frequency components (in the 
ranges of 10–120 Hz) from all recorded contact pairs to predict walking states, gait 
events and muscle synergies with accuracy. Interestingly, the feature importance 
distribution closely matched the relevant frequency bands modulated during move-
ment for each participant, which coincides with the literature [11, 12]. While each 
algorithm was trained and tested separately on individually defined classes, they



could easily operate in parallel as part of an integrative platform for real-life 
applications. 
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The decoding results confirm that human STN LFP signals may be leveraged to 
predict the initiation, termination and amplitude of leg muscle activation and loco-
motor functions in real-time, which holds promises to regulate neuromodulation 
therapies in closed-loop to specifically address gait deficits in PD. However, these 
results also document the limitations in the robustness of gait features that may be 
decoded from STN LFP to control closed-loop therapies. For example, spatiotem-
poral stimulation of the lumbar spinal cord [13] has the potential to alleviate gait 
deficits in people with PD. This intervention requires real-time control of stimulation 
bursts targeting specific joint movements. Our results suggest that this spatial 
resolution is not accessible from STN LFP. Other brain regions may complement 
STN decoders for applications that require muscle- or joint-specificity. Increasing 
the resolution of STN recordings may resolve this issue. For instance, single-cell 
recordings reported preferential firing of STN neurons with different joystick direc-
tions in intra-operative conditions [14], as well as with detailed kinematics in animal 
models [15]. 

We implemented a comprehensive set of tasks to assert the robustness of our 
observations and of our decoding framework across conditions of daily life. How-
ever, not all patients were able to perform all the described tasks, which restricted the 
conclusions that could be drawn for some conditions. Reproducing our results on a 
wider population may allow further identification of differences in the frequency 
bands, force levels or temporal phases reported in this work. Similarly, decoding 
accuracy may be improved by explicitly accounting for long-term temporal depen-
dencies or prior knowledge of state sequences, which would better capture the 
dynamics that intrinsically underlie walking. Decoder behavior will also need to 
be validated once integrated within a closed-loop stimulation framework. 

More details of the results, including a force regression model based on 
convolutional neural networks, can be found in [16]. Our open-source decoding 
framework can be found in [17]. 
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Designing Touch: Intracortical Neurohaptic 
Feedback in Virtual Reality 

Courtnie J. Paschall, Jason S. Hauptman, Rajesh P. N. Rao, 
Jeffrey G. Ojemann, and Jeffrey Herron 

Abstract Touch sensation offers complex and innate biological feedback that 
underlies dexterous interactions with our environments, making the restoration of 
touch an important component of functional brain computer interface (BCI). To 
advance synthetic touch research, I developed a virtual reality (VR) platform for use 
with human patients receiving intracranial neural implants for epilepsy evaluation 
(Fig. 1) [Paschall et al. (An immersive virtual reality platform integrating human 
ECOG & sEEG: implementation & noise analysis, 2022]. Following validation, 
noise, and user studies with this VR research platform, I designed a BCI experiment 
in which tactile information about contact with a virtual object was delivered to the 
brain through direct cortical stimulation (DCS). I recoined the term neurohaptics to 
describe this use of DCS for haptic feedback [Paschall et al. (2022 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2022)]. I also 
developed a new way to deliver neurohaptic feedback using amplitude modulated 
DCS to evoke distinct and discriminable sensory percepts that better mimicked 
natural touch sensation [Paschall et al. (2022 IEEE International Conference on 
Systems, Man, and Cybernetics (SMC). IEEE, 2022)]. This work demonstrates the 
intrinsic interpretability of dynamic temporal structure in DCS and its utility in the 
restoration of touch sensation. It paves the way for further first-person VR-BCI
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neurohaptic design and brings a novel bidirectional BCI and cognitive neuroscience 
platform into the clinic for work with implanted neural devices in patient 
populations.
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Touch sensation offers complex and innate biological feedback that underlies 
dexterous interactions with our environments, making the restoration of touch an 
important component of functional brain computer interface (BCI) [1, 2]. To 
advance synthetic touch research, I developed a virtual reality (VR) platform for 
use with human patients receiving intracranial neural implants for epilepsy evalua-
tion (Fig. 1) [3]. Following validation, noise, and user studies with this VR research 
platform, I then designed a BCI experiment in which tactile information about 
contact with a virtual object was delivered to the brain through direct cortical 
stimulation (DCS). I recoined the term neurohaptics to describe this use of DCS 
for haptic feedback [4]. I also developed a new way to deliver neurohaptic feedback 
by using amplitude-modulated DCS to evoke sensory percepts with distinct and 
discriminable temporal structure that better mimicked natural touch sensation 
[4]. This work demonstrated the innate interpretability of dynamic temporal structure 
in DCS and its utility in the restoration of touch sensation. It paves the way for first-
person VR-BCI development and neurohaptic design and unlocks access to the

Fig. 1 In vivo virtual reality experimentation. A clinical neural recording patient completes an 
immersive virtual reality (VR) task, reaching out beyond the confines of the hospital bed to grasp a 
virtual object. VR offers a robust platform for human behavioral neuroscience, granting experi-
mental control over every aspect of an immersive visual environment. This enables novel research 
in neuroscience, neurohaptic engineering, and brain computer interface (BCI)



in-patient neural implant population for functional BCI development and new 
approaches to cognitive neuroscience research.
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1 Introduction 

Neuroprosthetics controlled by brain computer interface (BCI) hold tremendous 
promise to restore independence and quality of life to the more than 5 million people 
in the United States with paralysis and sensorimotor deficit due to neurological 
disease disorder, and injury [5–10]. BCI refers to any device that enables direct 
communication with the brain: either decoding neural activity into control signals 
over a neuroprosthetic robot or a virtual avatar, or encoding information directly to 
the brain in the form of direct electrical stimulation of neural tissue. Touch sensation 
may be restored by direct cortical stimulation (DCS) of the somatosensory cortex 
and is a key feature of functional BCI development. Neurohaptics refers to the 
design of this synthetic touch using DCS [1, 2, 4]. 

While multiple technologies promising touch sensory restoration exist, only 
direct cortical stimulation (DCS) is able to elicit artificial touch sensations indepen-
dent of peripheral sensory channels [10–16]. This technique uses small pulses of 
electrical current (Fig. 2) to evoke touch sensations, or percepts, at locations that 
correspond with the somatic representation of the sensory (S1) cortex being stimu-
lated [16]. If DCS is applied to the part of the cortex that represents touch sensation 
along the right thumb, hand, or arm, for example, a reliable percept can be felt in that 
right thumb, hand, or arm, respectively. 

Traditionally, DCS in humans has been delivered as a train of constant-amplitude, 
biphasic, charge-matched, square-wave pulses (Fig. 2). Although the resultant 
percepts have been shown to be reliably localizable [14, 16], they are most often 
described as artificial, strange, and unfamiliar—essentially, traditional DCS evokes

Fig. 2 In classic DCS, biphasic square-wave pulses (a single pulse is highlighted in bright blue) are 
delivered with constant amplitude (green) and pulse width (purple), at a particular pulse frequency 
(blue) for a burst of a given number of pulses (e.g., n = 3) at a set burst frequency (black)



precepts that you can point to but that feel distinctly unnatural [14, 17]. Nonetheless, 
DCS percepts have been useful as feedback because of this reliable localization and 
some innate discriminability [1, 14, 15, 17, 18]. Specifically, the intensity of a DCS 
percept has been shown to modulate with changes to pulse-width, frequency, or 
amplitude in humans [15–17, 19, 20] and burst frequency (i.e., the time between 
groups of stimulation pulses) in monkeys [11]. In humans, the ability to discriminate 
between different S1-DCS parameter levels by intensity has been exploited as 
graded neurohaptic feedback to guide movement behavior [1]. DCS percepts have 
also been shown to be distinguishable from concurrent natural touch at the same 
location [21, 22].
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Research has continued to search for ways to enhance the utility of DCS feedback 
by evoking more natural, sensorimimetic percepts [23] and by defining ways to 
improve discriminability. It has been suggested that DCS which replicates the 
oscillatory structure of neural signals during natural touch may evoke more natural 
percepts. Moreover, it has been demonstrated in monkeys [11] that simple temporal 
structure in DCS is interpretable and could provide a new axis for discriminable DCS 
design. My research implemented and evaluated the interpretability of a continuous 
amplitude-modulation approach to dynamic DCS in humans. 

Additionally, human DCS studies have historically relied on “passive” stimula-
tion protocols, meaning that the DCS was supplied to the patient independent of any 
actions taken by the patient. This has prevented self-administration, expectation and 
neural preparation for DCS, and integration of sensory DCS with naturalistic 
behaviors. The lack of “active” stimulation protocols is largely due to the difficulty 
of real-world experimental setups that both enable object interaction and suppress or 
disentangle natural touch as a confound. To overcome this, pioneering studies in 
non-human primates have integrated DCS with natural object exploration within 2D 
virtual object interactions [11, 13, 24], and a recent study in humans delivered DCS 
sensory feedback based on the interaction of a third-person robotic arm and target 
object [2]. Modern VR systems overcome the limitations of real-world experimental 
design. 

Using binocular visual displays and camera- and sensor-based tracking of real-
world objects, VR creates immersive three-dimensional alternate realities with 
which humans can naturally interact and over which experimenters have near 
complete control (Fig. 1). While VR technology has been quickly leveraged by 
research teams using non-invasive neural recording modalities such as electroen-
cephalography (EEG) and functional MRI (fMRI) [25, 26], it had been limitedly 
integrated with out-patient intracranial recording [26, 27] and not incorporated at all 
with in-patient intracranial recording. The work acknowledged by the BCI Award 
committee presented the first VR integration solution with in-patient subjects, 
developed during my PhD. 

While the in-patient clinical setting presented unique challenges, it also granted 
unique access to the broad cortical and subcortical coverage with 
electrocorticography (ECoG) and stereo-electroencephalography (sEEG) electrodes 
(Fig. 3) that are implanted in children and adults for medical evaluation of refractory 
epilepsy. For a week to 2 weeks, these patients undergo continuous clinical



monitoring and invasive neural recording to precisely characterize and map seizure 
activity. This presents a chronic neural recording research opportunity with dozens 
of subjects a year, per site. Additionally, ECoG and sEEG offer significant improve-
ments in spatiotemporal resolution of neural signals over non-invasive recording 
modalities, and also permit direct electrical stimulation of the human brain—requi-
site for both pre-surgical mapping of eloquent cortex, and BCI and neurohaptic DCS 
research [28]. 
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Fig. 3 Intracranial arrays. Electrocorticography (ECoG) are strips or grids of flat, circular elec-
trodes [8, 11] implanted subdurally or epidurally to record directly from the cortex. Stereo-EEG 
(sEEG) are vertical probes of cylindrical electrodes [11] stereotactically implanted to deeper, 
subcortical structures. Superficial sEEG contacts may also record from the cortex, and both arrays 
can deliver DCS for clinical mapping of eloquent neural tissue or for research purposes, to excite or 
inhibit neural activity [12] 

The remaining pages of this chapter outline the design and validation of this first 
in-patient, intracranial VR experimental platform [3] and the methods and results 
from the first VR-BCI neurohaptic study [4]. The goal of this chapter is to outline the 
VR system and clinical approaches useful to immersive VR research, to present 
advances in neurohaptic DCS design, and to encourage VR adoption for advanced 
neuroscience and BCI research with in-clinic patient populations. 

2 Virtual Reality Experimental Platform 

2.1 Hardware and Software 

An HTC Vive Pro Eye Virtual Reality system was selected for immersion and 
interaction within virtual environments. These “scenes” were designed with the



Unity game engine and hosted by an Alienware m15 R4 (32GB RAM NVIDIA 
GeForce RTX 3070 8GB) gaming laptop (Fig. 4). 
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Fig. 4 System diagram: hardware connectivity and synchronization. An HTC VIVE Pro Eye 
virtual reality system links to a Tucker Davis Technologies (TDT) neural recording and stimulation 
suite and a Natus Quantum clinical recording suite. Data synchronization between neural recording 
hardware and the VR hosting laptop was completed by UDP (dashed green) or audio inputs (solid 
blue) 

Audio cues were used to align VR task data with the neural signals recorded by a 
clinical Natus Quantum biosignal recording system (at 1024 or 2048 Hz). An 
additional neural recording system, the Tucker Davis Technologies (TDT) neuro-
physiology suite, was used to both record neural signals at a higher sampling rate 
(up to 12 kHz) and deliver direct cortical stimulation (DCS). UDP packets were used 
to synchronize experimental VR data and trigger neurohaptic DCS. 

Custom control circuits were built in Synapse, proprietary TDT software, to 
manage near simultaneous neural recording and precise neural stimulation (circuits 
available on request). An independent Synapse-Unity API was also developed in the 
course of this work and is available on Github [29]. All data were collected in 
accordance with protocols approved by the University of Washington Institutional 
Review Board (IRB) and included neural signals, in-room sound and video, kine-
matic tracking variables and object interaction flags, ocular tracking, and subjective 
descriptions of experimental events acquired by both questionnaire and free 
response. Direct electrical stimulation of neural tissue was conducted within 
known standards of charge density safety [30] and at electrical current magnitudes 
below 15 mA, the maximum used by clinical stimulators.
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2.2 Validation Studies 

A benchtop validation study [29] of the VR experimental platform was conducted, 
using function generators and clinical electrode arrays in a saline tank. With this 
setup, the time delay between the occurrence of a tracked event in VR (e.g. object 
collision) and the onset of S1-DCS delivered by the TDT was shown to be 6.8 ms 
± 1.7 ms across 217 collision-stimulation trials, with a maximum delay of 16.8 ms. 
These results place the delay between a touch event registered in VR and the delivery 
of neurohaptic DCS at well below the 45 ms for a detectable visuohaptic separation 
[31], though potential cognitive delays in processing DCS as touch [21, 22] will need 
to be evaluated in future VR-based neurohaptic studies. 

Following benchtop validation, a human subject noise and feasibility study was 
conducted [3]. To evaluate signal quality during a VR study, neural signals were 
evaluated during unstructured activity in VR (with headset on) and unstructured 
activity with the headset off, over more than 20 min in two subjects, and across both 
ECOG and sEEG electrodes, analyzed independently. Results from this study 
revealed an increase in line noise power (57–63 Hz) with the VR headset on but 
no significant change in the noise floor band power (125–240 Hz). Following simple 
common average referencing (CAR), no significant difference in line noise or 
broadband noise floor existed between the headset on and off conditions 
[3]. These results confirm preserved neural signal integrity recorded by both 
ECOG and sEEG electrode configurations during the use of a VR headset for 
immersive task presentation. This contrasts previous studies which demonstrated 
significant signal perturbation from VR hardware when using noninvasive, electro-
encephalography (EEG) electrodes [25]. 

I also published guidelines for VR task design and patient protocols to don and 
doff the VR headset, introduce VR hardware, and facilitate comfortable VR immer-
sion [3]. Summarized: use high-end VR hardware and design scenes with distant 
horizons, simple backgrounds, and low visual complexity to reduce the chance of 
virtual reality sickness (VRS). Also, limit head movement and avoid camera trans-
lation within the VR scene (“Don’t walk when you can teleport”). To improve 
immersion and professional design esthetic, always add a skybox and use visually 
comfortable lighting intensity and angles. While I describe specific protocols in the 
paper, my general advice is to incorporate the subject in all forms of headset 
positioning and have the subject tighten and adjust the fit of the headset themselves. 
Subjects will tighten the headset more snugly than the researchers, and a good fit  is  
paramount for comfort. In total, we have completed VR studies in nearly a dozen 
intracranial neural recording patients and have not had a subject experience VRS or 
related symptoms, nor express discomfort with the headset that precluded experi-
ment completion, nor decline additional sessions and days of VR tasks due to 
discomfort with VR immersion or headset fit. If anything, the opposite was found: 
we witnessed unexpectedly strong task engagement and performance, willingness to 
remain in VR for extended periods of time to explore commercial VR gameplay, and



eagerness for additional sessions and days of VR experience. VR is a powerful 
platform for researchers, and, in our experience, a very enjoyable way to pass the 
time for our intracranial subjects. 

100 C. J. Paschall et al.

3 Neurohaptic Design 

3.1 Virtual Object Discrimination Tasks 

Two object discrimination tasks were designed with a throw-to-target game 
mechanic. Subjects were instructed to throw an object delivering any DCS 
neurohaptic feedback towards a target in the binary HapticSort task, and to throw 
different objects delivering unique DCS neurohaptic feedback towards the correct 
target in the ternary HapticSort_ABØ task (Fig. 5). Neurohaptic DCS was only 
delivered while a neurohaptic object was grasped, and ended when the object was 
released. In these tasks, a subject was able to interact with a virtual object using 
natural exploration behavior to determine (1) whether neurohaptic feedback was 
occurring (binary discrimination) and then (2) which neurohaptic sensation was 
being felt (ternary discrimination). Each subject first completed the binary 
HapticSort task with controller-based vibrotactile haptic feedback prior to complet-
ing the task with DCS to ensure task comprehension and to serve as a baseline of 
discrimination performance [4]. 

Within each discrimination task, distinct training and testing scenes were created 
(Fig. 5). In training scenes, objects delivering neurohaptic feedback were visually-
encoded—meaning, the object was visually identifiable as either a neurohaptic or a 
“null” object. In the testing scenes, objects were visually identical. This was done to 
allow the subject to organically “train themselves” to identify distinct neural stim-
ulation patterns in the training scene, and then test object discrimination in the testing 
scene. 

In the binary task (Fig. 5, top), the training scene was limited to 13 trials, from 
6 nonhaptic and 7 neurohaptic objects. In the ternary task, however (Fig. 5, bottom), 
subjects were free to complete any desired number of training trials, in which objects 
were visually encoded to indicate neurohaptic feedback. In both the binary and 
ternary testing scenes, pushing down on a simple, brown button would generate a 
visually non-descript object. All objects in the testing scene were visually identical 
and could only be discriminated by neurohaptic profile. Subjects were asked to 
complete at least 15 testing trials but encouraged to complete as many as they were 
willing to do. Additionally, after training in the ternary task, subjects were asked to 
select a single word to describe the neurohaptic profile that corresponded to each 
target. This word was added to the corresponding target during testing (Fig. 5, 
bottom) to remove a memory confound in target selection. This was done after the 
first subject stated that remembering which object went to which target was a 
significant factor in the accuracy of their object sorting. Additionally, while the



throw-to-target game mechanic provided an entertaining and kinematically dynamic 
task, the accuracy of neurohaptic discrimination was determined based on target 
intent. Meaning, that regardless of whether the subject hit the target they intended to 
hit, the “trial” would be counted as accurate if an object was thrown towards the 
correct target. 
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Fig. 5 Virtual object discrimination scenes. Neurohaptic objects are thrown towards a bullseye 
target. During binary HapticSort training (top left), six visually encoded objects deliver no feedback 
when grasped (matte white) and seven deliver neurohaptic feedback (metallic orange). In the testing 
scene, a button is depressed to generate a visually identical cube for neurohaptic discrimination (top 
right). During ternary HapticSort_ABØ training (middle panel), two neurohaptic cubes and one 
non-haptic cube are visually encoded and must be thrown to own bullseye target. During testing 
(bottom panel), the button again generates an identical object for ternary neurohaptic discrimina-
tion. To mitigate the confound of “remembering” which percept belongs to which target, targets 
were labelled with subject-determined single descriptors
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3.2 Electrode Localization for DCS Candidates 

Electrode localization by published methods [4] was used to identify candidate 
stimulation electrodes and their likely somatic coverage along the somatosensory 
(S1) cortex. The presence, strength, location, and character of any evoked percept 
was determined by subjective report. Stimulation between 1 mA and 6.5 mA with 
pulse counts of 1, 5 or 20 pulses at 30 Hz were evaluated. DCS perception and 
required stimulation thresholds were assessed for each subject prior to each day’s 
first neurohaptic task (Fig. 6). 

3.3 Complex Stimulation Design 

Neurohaptic feedback by DCS was delivered as biphasic square wave pulses of 
200 μs pulse width at a 50 Hz maximum pulse frequency during grasp of neurohaptic 
objects. Stimulation was continuous during object grasp and ceased as soon as the 
object was released. Novel, DCS sequences were constructed to create distinct 
amplitude-modulated stimulation patterns (Fig. 7) which were evaluated for subjec-
tive description and discriminability. 

Fig. 6 Electrode localization. (Left) In Subject 1, S1-DCS at left somatosensory hand electrodes 
(yellow box) elicited a percept in the right thumb and index filter. (Right) In Subject 2, Surface 
sEEG electrodes in the right somatosensory hand (M4:6) (yellow box) induced a sensorimotor 
percept of clenching despite pre-existing paralysis in that hand and no actual movement
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Fig. 7 Amplitude-modulated sequences. Five distinct templates of amplitude-modulated DCS 
were designed. Templates were built as sequences of indices (1:15) that were sent by Unity to the 
TDT neural stimulation hardware. By sending indices to ensure DCS safety, the VR task triggered 
complex DCS during object interaction across a subject-specific range of amplitudes that were 
tuned to the percept thresholds of each subject before each new day of neurohaptic stimulation [4] 

4 Behavioral Results 

4.1 Subjective Descriptions 

Subject 1 described the evoked percept from constant amplitude DES in the hand 
areas of the left somatosensory cortex as “maybe buzzing.” This response may have 
been influenced by both the preceding controller-based vibrational haptics and the 
use of the word “buzz” in the task description. The Sawtooth amplitude-modulated 
S1-DCS pattern was described as having a “pulsing effect” with a quick, ~2 Hz 
rhythm. The LongSawtooth and LongZiggurat sequences were both described as 
“bumpy” with “different bumpiness”—specifically that the bumps of the 
LongSawtooth sequence were “sharper.” The Random sequence was described as 
“smoother” in comparison to the LongSawtooth pattern. After the amplitude-
modulated sequences, constant amplitude stimulation was described as “flatter.” In 
a direct comparison, the LongSawtooth pattern was described as “slow” and the 
Sawtooth pattern as “fast.” Multiple days later, LongSawtooth was again described 
as “bumpy” compared to constant amplitude stimulation described as “smooth, no 
bumps.” 

In Subject 2, a short 20-pulse burst of S1-DCS over the hand area of the right 
somatosensory cortex evoked a phantom motor sensation without actual muscle 
activation in a paralyzed left hand (motor deficit, sensation intact): “I felt like I was 
clenching,” Subject 2 said while demonstrating a gripping gesture with the right 
hand, opening and closing in a regular rhythm. Perhaps this reflects the induction of 
a motor intention through S1-DCS or a unique interaction with neural tissue that may 
have undergone some level of cortical remapping following functional paralysis of 
the left hand. The Sawtooth sequence was described as having an irregular “pulsing” 
rhythm, with the LongSawtooth was clearly (and unexpectedly) felt as “a little
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faster.” The Random pattern evoked a lingering perceptual effect that seemed to 
persist with decaying intensity for more than 3 s. This was initially concerning as 
evidence of potential after-discharge activity, but the clinical team confirmed no 
irregular or epileptiform neural activity. Later, the LongZiggurat sequence was 
barely perceptible with no distinct character, but the Ziggurat sequence was per-
ceived as a regular “bump, bump, bump, bump” percept. In comparison, the 
Sawtooth felt “faster” and the LongSawtooth was “pulsing” but was “not clearly 
different” from Sawtooth. The Random sequence, cautiously evaluated, was per-
ceived as “just fast pulsing” with no lingering percept. 
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4.2 Discrimination Accuracy 

Task accuracy was evaluated as: (1) binary stimulation accuracy (AB-Ø), the 
accuracy of neurohaptic vs. nonhaptic discrimination; (2) ternary percept accuracy 
(A-B-Ø), the overall accuracy of discriminating between one nonhaptic and two 
distinct neurohaptic sequences of feedback; and (3) binary percept accuracy (A-B), 
the accuracy of discriminating between the two neurohaptic sequences. 

a Training scene: visual encoding of objects 
b Testing scene: no visual encoding 
Subject 1 completed three non-consecutive days of neurohaptic VR experiments 

with binary and ternary HapticSort accuracies shown in Table 1. Results from first 
round of HapticSort_ABØ Testing (Table 1, row 7) demonstrate the confounding

Table 1 Percent accuracy (%) of HapticSort trials 

Stim 
binary 

Percept 
ternary 

Percept 
binary 

AB - A - B - A - B 

Subject 1 

13 trials, 200 μs, 3 mAa 88.1 –  

28 trials, 200 μs, 3 mAb 92.9 –  

3 trials, 200 μs, 2 mAb 0 –  

48 trials, 150 μs, 3 mAb 95.8 –  

52 trials, 400 μs, 4–6.1 mAb LongSawtooth 100 –  

32 trials, 400 μs, 4–6.1 mAa Sawtooth— 
LongSawtooth 

86.2 84.4 87 of 23 

20, 400 μs, 4–6.1 mAb Sawtooth—LongSawtooth 90 50 57.1 of 14 

46 trials, 400 μs, 4–6.1 mAb LongSawtooth— 
3.85 mA 

86.9 73.9 77.8 of 27 

Subject 2 

6 trials, 400 μs, 2–3.4 mAa Sawtooth—Ziggurat 100 100 100 of 5 

16 trials, 400 μs, 2–3.4 mAb Sawtooth—Ziggurat 81.3 68.8 80 of 10 

29 trials, 400 μs, 2–3.4 mAb Sawtooth—Ziggurat 89.7 72.4 79.2 of 24 

50 trials, 400 μs, 2–3.4 mAb Sawtooth—2 Hz Burst 98 82 79.5 of 39



impact of memory in the first implementation of this task: while A-B-Ø and A-B 
were both quite low (50% and 57.1%, respectively), simple AB-Ø was quite high, at 
90%. In this round, multiple discrimination mistakes were made not because A and 
B were indistinguishable, but because recalling the target assignment of A verses B 
was difficult. Learning from this task implementation error, the targets in subsequent 
HapticSort_ABØ testing scenes were labelled with the subjective description of the 
associated stimulation sequence, as described earlier and shown in Fig. 5.
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Subject 2 also completed 3 days of neurohaptic VR experiments, with results 
shown in the bottom section of Table 1. In the final round of the ternary 
HapticSort_ABØ task (Table 1, last row), the Ziggurat sequence was contrasted 
with a new 2 Hz burst frequency stimulation condition that more closely replicated a 
published approach used in a non-human primate object discrimination task 
[11]. Specifically, a 5-pulse burst of stimulation at 50 Hz was repeated at a 2 Hz 
burst frequency. The A-B-Ø of 82% over 50 trials reveals improved performance 
compared to previous rounds, with stim binary AB-Ø of 98% and percept binary 
A-B at 79.5% across 39 detected stimulation trials (Table 1, last row). 

5 Discussion 

The VR experimental platform presented here enables advanced BCI development 
and cognitive neuroscience in a unique, important, and previously challenging-to-
access clinical in-patient research population [3]. The validation and noise analysis 
studies demonstrated maintained signal integrity and strong participant enjoyment, 
and can facilitate the broader adoption of VR for research with this intracranial 
research population. The subsequent integration of DES with naturalistic motor 
behavior during object exploration, termed neurohaptics, demonstrated robust 
binary and ternary discrimination. This suggests the innate interpretability of tem-
porally dynamic DCS stimuli in the brain. Additionally, the HapticSort task was the 
first demonstration of DCS during active object manipulation in humans and enabled 
the first first-person, self-directed, and spontaneously natural human interaction with 
“tangible” virtual objects—the first to enable a human to “feel” a virtual reality 
through an implanted, neurohaptic BCI. Finally, this work expands upon existing 
DCS approaches by exploring novel stimulation protocols with amplitude modu-
lated pulse-train shape. Across subjects, amplitude modulated DCS was shown to be 
more reliably discernable than constant amplitude stimulation. It was also able to 
elicit stable, distinct, and discriminable percepts in two subjects. The subjective 
descriptions of amplitude-modulated S1-DES include rhythms with variable “bump-
iness”. While I would not suggest these percepts are yet “natural” feeling, they were 
described with more natural sensorimimetic language and interpretable as dynamic 
sensation. 

Understanding how the brain interprets and integrates DCS with behavior will 
continue to refine the naturalness and utility of DCS neurohaptic feedback. This 
work encourages a virtual route forward for neurohaptics design with implications



for BCI and neuroprosthetics. Future research directions include the identification of 
the neural features of the sensory expectation of DCS, the neural dynamics of DCS 
processing, and the neural state that may predict successful DCS identification. 
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May the Force Be with You: Biomimetic 
Grasp Force Decoding for Brain Controlled 
Bionic Hands 

Elizaveta V. Okorokova, Anton R. Sobinov, John E. Downey, Qinpu He, 
Ashley van Driesche, David Satzer, Peter C. Warnke, 
Nicholas G. Hatsopoulos, and Sliman J. Bensmaia 

Abstract Intracortical brain-computer interfaces (iBCIs) have achieved remarkable 
progress in restoring arm and hand movement by inferring motor intent from neural 
signals in primary motor cortex (M1) and realizing the intended movements in a 
bionic limb. However, manual interactions with objects require not only restoration 
of movement but also the precise application of forces on objects, which implies a 
different mode of limb control that has been largely overlooked. One of the major 
obstacles in incorporating force control is the lack of understanding of how manual 
forces are encoded in M1 during object interactions. To fill this gap, we recorded the 
neural activity in M1 as monkeys grasped sensorized objects with varying levels of 
force. We found that static decoders could not reliably extract force information from 
M1 activity, suggesting a dynamic relationship between force and neural activity. 
Consistent with this hypothesis, a recurrent neural network could exploit these 
dynamics to accurately decode time-varying forces. Next, we applied the insights 
gleaned from our experiments with able-bodied macaques to build decoders of 
manual force in a human participant with tetraplegia. First, we found that the patterns
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of responses in human M1 during imagined force application were similar to those in 
monkey M1 during physical force application. We then applied recurrent neural 
networks to decode force from M1 activity and showed that these allow the partic-
ipants to accurately exert forces with a (brain-controlled) virtual hand.
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Keywords Intracortical brain-computer interface (iBCI) · Primary motor cortex · 
Bionic hand · Recurrent neural network · Force decoding 

1 Sliman Bensmaia: A Tribute to an Exceptional Scientist 
and Mentor 

With heavy hearts, we begin this paper by acknowledging the recent and unexpected 
passing of our senior author, Sliman Bensmaia. Sliman was a brilliant scientist and 
mentor whose expertise in somatosensation and brain-computer interfaces 
transformed our understanding of sensory perception and its underlying mecha-
nisms, bringing hope to patients who have suffered amputations or spinal cord 
injuries. Sliman left a deep impact on his colleagues, the broader scientific commu-
nity, and most notably, on his mentees, profoundly shaping their training, careers, 
and personal development. We are dedicating this paper to Sliman’s memory, 
honoring his remarkable contributions to science and our lives. 

2 Introduction 

Intracortical brain-computer interfaces (iBCI) show great promise for restoring hand 
function in patients with tetraplegia through the use of bionic hands [1–5]. Current 
approaches to restoring hand and arm function are restricted to decoding kinematics, 
enabling users to control the position or speed of the arm and hand [3–5]. A hallmark 
of manual behavior, however, is interactions with objects that require precise 
regulation of forces exerted on them [6]. While motor cortical (M1) activity related 
to force has been identified in studies with non-human primates [7–15] and humans 
[16–19], the precise relationship between neuronal activity and force is still poorly 
understood. Accordingly, harnessing these signals to decode grasp force in iBCI has 
proven challenging. To date, M1 signals were used to decode one or a few discrete 
force levels [18–21], but not the online control of graded forces, critical for achiev-
ing seamless object manipulation. To fill this gap, we conducted two experiments. 
First, we recorded the neural activity in M1 as monkeys grasped sensorized objects, 
characterized the force signal in this population, and tested various force decoders. 
We found that, while static linear or non-linear decoders yielded poor force decoding 
performance, a recurrent neural network could accurately reconstruct the forces 
exerted by monkeys. Second, we investigated the degree to which we could leverage 
insights gleaned from the monkey experiments to enable force control in a real-time



iBCI. We found that the M1 activity associated with attempted force exertion in 
tetraplegic humans resembles that associated with actual force exertion in able-
bodied monkeys. We then show that a recurrent neural network, which supports 
high-performance force decoding in monkeys, enables highly accurate force exertion 
with a brain-controlled virtual hand. 
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3 Results 

3.1 Non-human Primate Grasp Force Task 

On each trial, a manipulandum—consisting of two thin metal plates, covered with 
high-resolution sensor sheets (Tekscan) that enabled real-time monitoring of grasp 
force—was placed in the monkey’s workspace by a motorized stage. The monkey’s 
task was to reach to and squeeze the manipulandum at a force level cued by an LED 
to obtain a water reward (Fig. 1a). On each trial, an auditory tone cued the monkey to 
reach for and grasp the manipulandum. Another LED provided the animal with 
online feedback of the force exerted on the manipulandum (the summed output of all 
the force sensors, Fig. 1a). Monkeys received a juice reward for maintaining force 
within a range of forces for a specified duration (0.8–1 s). Monkeys exerted a variety 
of force profiles for each target condition (Fig. 1b). Neural activity was recorded 
with Utah electrode arrays (Blackrock Neurotech) implanted in the hand represen-
tation of M1. 

3.1.1 Force Representation in Monkey Motor Cortex 

First, we examined the dependence of M1 activity on force level by plotting the peri-
stimulus time histograms (PSTH) in each recorded unit for each grasp force level, 
aligned to grasp onset and reward. Most recorded units (81%, Wilcoxon sign rank 
test, p < 0.01) were modulated by the task and showed a variety of response profiles. 
The most common pattern included a large response transient at contact with the 
manipulandum, followed by a weak sustained response (example unit 3 in Fig. 1c), 
sometimes followed by a transient at the release of the object (example unit 32 in 
Fig. 1c). Surprisingly, few units exhibited responses that were significantly modu-
lated by force level (25% of recorded units, ANOVA, p < 0.01), with some 
responses enhanced at higher force levels (example unit 65 in Fig. 1c) and others 
suppressed (example unit 48 in Fig. 1c). 

3.1.2 Force Can Be Decoded from Neural Population Responses 

Next, we assessed the degree to which we could decode time-varying force from the 
response of the M1 population on individual trials. To this end, we implemented



three types of decoders of increasing complexity. The first was a linear decoder 
(linear regression), which assumes an instantaneous linear relationship between 
neural response and force. The second was a non-linear decoder with static 
non-linearity (ANN—artificial neural network), which assumes an instantaneous 
non-linear relationship between neural response and force. The third model was a 
non-linear decoder with recurrence (LSTM—long short-term memory model) that 
could accommodate a dynamical non-linear relationship between neural activity and 
force. 
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Fig. 1 Non-human primate grasp force task. (a) Two monkeys were trained to reach for and grasp 
an object with an instructed amount of force. (b) Single trial force profiles shaded by force target. (c) 
Average neural responses (peristimulus time histograms) of four example neurons to each of the 
three force targets, shaded like panel (b). (d) Comparison of force decoder performance for the three 
classes of models: linear, non-linear, and dynamic. Each point is coefficient of determination (R2 ) 
between actual and predicted force in one session. Horizontal bars indicate median performance of 
all sessions. ***Significant at alpha of 0.001, n.s. not significant 

We found that the linear decoder could capture coarse force fluctuations, but often 
failed to account for force adjustments throughout the hold period (median



R2 = 0.55, Fig. 1d, blue). Decoder performance did not improve with the addition of 
static nonlinearity (median R2 = 0.53, Fig. 1d, green), suggesting that the relation-
ship between neural activity and force is dynamic. Consistent with this interpreta-
tion, a recurrent neural network (Long Short-Term Memory network or LSTM), 
which can accommodate a non-linear and dynamic relationship between input and 
output, substantially outperformed all other decoders (median R2 = 0.66, Wilcoxon 
signed rank test p < 0.01, Fig. 1d, red). Our results are consistent with the hypothesis 
that force signals are encoded in non-linear dynamical patterns of activity in M1 and 
can only be harnessed by decoders that can accommodate or exploit those dynamics. 
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3.2 Human iBCI Grasp Force Task 

Having discovered force signals in the motor cortex of able-bodied monkeys, we 
assessed whether the same signals were present in a human participant with a 
C4-level spinal cord injury that affected his ability to control his right hand. The 
participant was implanted with two Utah electrode arrays (Blackrock Neurotech) in 
the hand representation of the motor cortex (M1) (Fig. 2a). The participant controlled 
a limb avatar in a physics engine platform (MuJoCo, [22]) (Fig. 2b), which he 
experienced through a virtual reality headset (Valve Index). He used the virtual limb 
to grasp virtual objects at one of four force levels, cued by the color of the object and 
verbal instruction (Fig. 2c). Initially, virtual limb movements and force feedback 
were under computer control and the participant observed and attempted to perform 
the actions of the virtual limb. The neural activity during this observation phase was 
used to construct decoders—linear, static non-linear, or dynamic—of hand closing 
velocity and grasp force. The participant then used these decoders to perform the 
task in virtual reality. 

3.2.1 Force Representation in Human Motor Cortex 

First, we assessed the degree to which signals in human M1 were modulated by the 
task. To this end, we compared each neuron’s firing rate during attempted movement 
(from data used for decoder training) before and after cue onset. We found that the 
firing rates changed significantly at cue onset on 61% of the active motor channels 
(Wilcoxon sign rank test, p < 0.01). Many M1 channels exhibited a strong transient 
at the onset of grasp (Fig. 2d) and a weaker transient upon object release. A few 
channels were also visibly modulated by force, exhibiting either increases (Fig. 2d, 
middle plot) or decreases in response at higher forces (Fig. 2d, right plot). Of all 
active motor channels, only 26% produced responses that were significantly modu-
lated by force (ANOVA, p < 0.01). Overall, the force signal in human M1 resembles 
its counterpart in monkey M1.
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Fig. 2 Human iBCI grasp force task. (a) Array (blue rectangles) placement. M1—motor cortex, 
S1—sensory cortex. (b) MuJoCo virtual environment. The participant controlled an avatar limb that 
grasped a virtual cylindrical object. (c) Example of force command sequence with four force levels. 
Force target was indicated by a verbal cue and a color of an object. (d) Mean response profiles 
(peristimulus time histograms) to four levels of grasp force on three motor channels, shaded by 
force target. (e) Example reconstructed force traces with linear (top, blue) and dynamic (bottom, 
red) decoders. Shaded grey areas indicate the acceptance boundary for each target force. Several 
trials are superimposed and aligned to first contact. (f) Proportion of successful trials performed 
using linear, non-linear, or dynamic decoders online 

3.2.2 Dynamic Decoder Allows Accurate Force Decoding 

Having established that a subpopulation of M1 neurons was modulated by attempted 
force, we gauged the degree to which time-varying force could be decoded from M1 
responses. We tested the same decoders as with the monkeys: a standard linear 
decoder often used for real-time prosthetic control (linear regression), a decoder with



a static non-linearity (ANN), and a dynamic decoder (recurrent neural network— 
LSTM). For all sessions, the dynamic decoder significantly outperformed both linear 
and non-linear methods offline (median R2 = 0.58, 0.59, and 0.73, for linear, 
non-linear, and dynamic models, respectively), suggesting that there is a 
non-linear dynamic relationship between target force and neural responses in 
motor cortex. 
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While the dynamic decoder outperformed other decoders offline, good offline 
performance does not always translate into improved online performance 
[23, 24]. With this in mind, we assessed the participant’s ability to perform the 
force task with the dynamic decoder. As in the offline case, the participant was cued 
to exert one of four levels of force on the virtual object. Both the hand closure and the 
level of force were decoded from M1 signals with decoders, trained on the obser-
vation data as described above. We found that the dynamic decoder enabled out-
standing performance on the task, yielding an average performance of 87.5%, far 
surpassing the performance of the other two decoders (32.5% and 31.3% for linear 
and non-linear, respectively), mirroring the results of the offline decoding analysis 
(Fig. 2e, f). Thus, a recurrent neural network is well suited to extract force signals 
from the M1 population response, presumably because it can accommodate the 
dynamic representation of force in M1, while the other decoder types cannot. 

4 Conclusions 

We showed that the force signals in the motor cortex of able-bodied monkeys 
squeezing an object are comparable to those found in the motor cortex of a human 
with spinal cord injury attempting to squeeze an object. In particular, force signals in 
M1 peak around grasp onset, and then decay rapidly, with a second burst at grasp 
offset. The mapping between the M1 response and force is thus highly dynamic 
throughout the grasp and cannot be captured with a linear model in contrast to 
relationship between M1 response and kinematics, which can be well captured using 
a linear model [3–5, 25, 26]. While models with a static non-linearity can account for 
the relationship between time-averaged M1 responses and force [11], these models 
cannot capture the dynamics of the M1 force signal. We show that recurrent neural 
networks, which can accommodate a dynamical mapping between input and output, 
can accurately decode intended force from the M1 response in both offline and 
online settings, implying a different approach for force decoding than is typically 
employed for kinematics decoding.



116 E. V. Okorokova et al.

5 Methods 

5.1 Non-human Primate Experiment 

5.1.1 Animals and Surgery 

Neural recordings were collected from two male rhesus macaques (M and P, ages 
11 and 9 years at the time of surgery). They were each chronically implanted with a 
single Utah electrode array in the right primary motor cortex (Brodmann area 4, M1). 
The electrode lengths were 1.5 mm, with uniform spacing of 400 μm aligned on a 
10 by 10 grid. Arrays were placed in the arm and hand representation of the motor 
cortex, as confirmed by electrically stimulating the cortex during surgery with 
surface electrodes and observing corresponding muscle twitches before array 
implantation. Surgical procedures consisted of the implantation of a head-fixing 
post onto the skull, craniotomy, intraoperative electrical stimulation of the brain 
surface, and implantation of the array. All procedures were performed under aseptic 
conditions and anesthesia induced with ketamine HCl (20 mg kg–1 , IM) and 
maintained with isoflurane (10–25 mg kg–1 h–1 , inhaled). Handling of animals was 
performed in accordance with the rules and regulations of the University of Chicago 
Animal Care and Use Committee. Monkeys received care from a full-time hus-
bandry staff, and a full-time veterinary staff monitored the animals’ health. 

5.1.2 Behavioral Task 

We trained two monkeys (M and P) to perform a visually guided grasping task, in 
which they were required to grasp an object with a visually cued amount of force to 
receive a juice reward. Each trial was initiated when an LED display came on to 
indicate the target force level to the animal. The animal then reached for the object, 
and, upon contact, another LED display tracked the total forces exerted on the plates 
in real-time. Monkeys received a juice reward when the target force was maintained 
for 0.8–1 consecutive seconds. Monkeys performed at least 150 trials on each 
session. In this paper we report data from 10 sessions: 8 performed by monkey M 
and 2 performed by monkey P. 

5.1.3 Forces 

Grasp force was monitored continuously using two dense sensor sheets mounted on 
the outer surface of the object. Each sensor sheet (Tekscan, Sensor 5076, Tekscan, 
Boston, MA) consists of 1936 ‘sensels’ arranged in a square grid of size (83.8 mm2 ). 
We recorded force values from each ‘sensel’ on the two sensor sheets at 300 Hz. We 
used total force, computed as a sum of all sensel values from both plates for 
continuous feedback to the monkey throughout the experiment. For offline analyses,



we first denoised each sensel value by first subtracting its baseline activity (no touch 
condition). We then summed all ‘sensel’ values to get total force. Finally, we 
low-pass filtered the total force with third order Butterworth filter with a cutoff of 
10 Hz. 
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5.1.4 Electrophysiology and Neural Data Preprocessing 

Neural data was collected with a CerePlex Direct data acquisition system coupled 
with CerePlex E digital headstage (Blackrock Microsystems). For each channel, we 
bandpass filtered neural signals from 250 Hz to 3 kHz and extracted threshold 
crossing events at a -4.5 RMS value. We then used offline spike sorting (Offline 
Sorter, Plexon, Dallas, TX) to remove non-spike threshold crossings and isolate 
individual units. 

5.2 Human BCI Experiment 

5.2.1 Participant 

The study involved one participant who provided informed consent as part of a 
multi-site clinical trial (NCT01894802). The participant was a 57-year-old male at 
the time of the implant who had a C4-level ASIA D spinal cord injury (SCI) 35 years 
prior. He had no control over the intrinsic or extrinsic muscles of his right hand but 
could move his arm with some weakness in upper limb muscles. 

5.2.2 Array Implantation 

We surgically implanted four Neuroport microelectrode arrays (Blackrock 
Neurotech, Salt Lake City, UT, USA) in the left hemisphere of the participant. In 
somatosensory cortex (S1), two arrays, measuring 2.4 mm × 4 mm, each had sixty 
1.5-mm electrode shanks wired in a checkerboard pattern, allowing for 32 electrodes 
to be stimulated (not used in this study). In motor cortex (M1), the other two arrays 
measured 4 mm × 4 mm and had one hundred 1.5-mm electrode shanks, with ninety 
six wired (active), and four inactive shanks located at the corners of all arrays. All 
electrodes were coated with sputtered iridium oxide. The participant had two 
percutaneous connectors placed on his skull, with each connected to one sensory 
and one motor array. We used functional neuroimaging of the participant attempting 
to make movements of the hand and arm, and imagining feeling sensations on their 
fingertips during surgery, to target array placement within the constraints of ana-
tomical features such as blood vessels and cortical topography.
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5.2.3 Neural Recordings 

Only data from M1 arrays were analyzed in this study. Neural signals were recorded 
at 30 kHz using the NeuroPort system (Blackrock Neurotech, Salt Lake City, UT, 
USA). The data were high-pass filtered with a third order Butterworth filter above 
350 Hz. Whenever the signal crossed a threshold (-4.5 RMS, set at the start of each 
recording session), a spiking event was recorded, and a snippet of the waveform was 
saved. Spikes were binned in 20-ms bins for offline analyses and decoding. Only 
channels with firing rate above 0.5 Hz were used (active channels). 

5.2.4 Virtual Environment Task 

We used a physics engine platform (MuJoCo, DeepMind Technologies, London, 
UK) to simulate a virtual environment with an avatar hand and a rigid cylindrical 
object. The participants observed a virtual room through a VR headset (Valve Index, 
Valve Corporation, Bellevue, WA). Each trial began with the hand in a neutral open 
position next to a gray-colored cylindrical object. A verbal command was given to 
the participants indicating a number from 1 to 4, which corresponded to a specific 
amount of force to be applied when grasping the object. The color of the object 
changed based on the given target force. Participants then attempted to grasp the 
object with the instructed amount of force as they observed the virtual hand closing 
around the object. They were required to maintain the grasp for 1 s, before releasing 
it upon another verbal command. Force targets were randomized. 

5.2.5 Online Decoder Training and Control 

The experiment was conducted in two stages: observation and full brain control. 
During the observation stage, the physics engine controlled the movement of the 
hand and the force exerted on the object. The participant was required to attempt the 
task as he watched it being performed. In the control stage, an online decoder, trained 
on data collected during the observation stage, was employed to direct the hand’s 
movement and the force applied to the object. In each session, the participant 
performed 40–80 trials of observation, followed by 20–60 trials of using the decoder. 
The three types of decoders (linear, non-linear, or dynamic) used in this study were 
trained on the same observation data, and tested online in random order, keeping the 
subject blinded to the type of decoder he was using. The trial was considered 
successful if the subject could maintain grasp force within the target zone for 1 s. 
No visual, auditory, or tactile feedback was given to the subject. In this paper, we 
report data from 10 sessions.
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5.3 Data Analysis 

5.3.1 Alignment and PSTHs 

Since trial duration varied, especially in the non-human primate dataset, we used 
multiple alignment events when averaging data for illustration purposes. For 
non-human primate data, we used three alignment events labeled as ‘grasp’, 
‘reward’, and ‘release’. ‘Grasp’ and ‘release’ were defined based on the total force 
profile as the first and last time point when total force exceeded 0.5 N, respectively. 
‘Reward’ was the time point when the monkey received a juice reward for 
maintaining the force for the instructed amount of time. For human data, we aligned 
the neural responses to first and last contact of an avatar limb with the virtual object, 
labelled ‘grasp’ and ‘release’, respectively. For peristimulus time histogram (PSTH) 
plots, we found trials that belong to the same force target and took median-smoothed 
neural responses around the three alignment events. 

5.3.2 Task and Force Modulation 

We evaluated task modulation in each channel by computing a paired sample 
Wilcoxon signed rank test on the mean neural responses in two windows. For the 
non-human primate data, we compared a window of 1 s prior to object presentations, 
to a window of 2 s centered on the hand contact with an object. In human iBCI data 
we compared 2 s prior to cue presentation and 4 s after cue presentation. We assumed 
the channel was task modulated if p-value of the test was below 0.01. We also 
selected force-modulated channels using ANOVA test grouped by target force in a 
window of 2 s following first contact with an object. Channels with a p-value below 
0.01 were deemed force-dependent. 

5.3.3 Decoding Models 

We used three models to decode continuous grasp force: linear regression (referred 
to as linear model), a feedforward artificial neural network (non-linear model), and a 
recurrent neural network (dynamic model). All decoders were restricted to be causal 
to accommodate the online regime, in which we only used neural data no later than 
20 ms prior to the current time stamp, and spikes were smoothed with a 440-ms long 
exponential kernel. 

Linear model assumes that a force signal can be represented as a weighted sum of 
neural inputs. The coefficients of the model were inferred using ordinary least 
squares estimation. The non-linear model was constructed as a feedforward neural 
network with one fully connected layer of 150 units. The dynamic model consisted 
of a layer of 150 LSTM nodes. Hyperparameters of both networks were optimized to 
achieve the best cross-validation fit.
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We used a fivefold cross-validation procedure in which we split the observation 
data pseudo-randomly (keeping the number of trials in each condition balanced) into 
five testing sets. For each test set, we trained the model on the remaining 80% of the 
data. We used the coefficient of determination (R2 ) to assess decoder performance in 
the test set. 
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Real-Time Intraoperative Sensorimotor 
Cortex Localization and Consciousness 
Assessment with the Spatial and Spectral 
Profile of the Median Nerve Somatosensory 
Evoked Potentials 

Priscella Asman, Giuseppe Pellizzer, Sujit Prabhu, Sudhakar Tummala, 
Shreyas Bhavsar, Israt Tasnim, Matthew J. Hall, and Nuri F. Ince 

Abstract Mapping the sensorimotor cortex is a critical first step in various appli-
cations, including awake craniotomies and invasive brain-computer interface sys-
tems. Usually, during surgery, the sensorimotor area is defined using the 
conventional phase reversal of the somatosensory evoked potentials (SSEPs) orig-
inating from median nerve stimulation. The approach relies on the subjective 
interpretation of the phase reversal amplitude captured with a strip electrode. How-
ever, the localized nature of the SSEP around the hand area, location, size of the 
craniotomy, and changes in brain activity due to tumor invasion or lesion can cause 
misconstrued interpretation of the phase reversal. In this study, using a high-density 
grid, we recorded electrocorticogram (ECoG) from the sensorimotor cortex of 
patients in the anesthetized and awake states. We used the spatial distributions of 
SSEPs in the temporal and spectral domain and employed an unsupervised machine 
learning approach to delineate the central sulcus in real time. In Simulink/Matlab, we 
visualized instantaneous signal amplitude and power modulations in the gamma 
band over the 3D cortical surface rendered from individual patient MRIs. Further-
more, we showed that the temporal and spectral features of the SSEPs can serve as a
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valuable tool for assessing consciousness. Specifically, using the long latency 
gamma modulations in the SSEP trace and the cortical interpeak latency, we show 
that we can differentiate between the anesthetized and awake states. Our findings 
have various potential implications ranging from intraoperative surgical planning to 
assessing the consciousness status of patients with disorders of consciousness.
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Keywords Somatosensory evoked potentials · Real-time cortical mapping · ECoG · 
Gamma activity · Cortical interpeak latency 

1 Introduction 

Cortical mapping during awake craniotomies for gliomas located within or adjacent 
to the Rolandic cortex provides the necessary guidance for minimizing the risk of 
transient or permanent neurologic compromise [1–3]. In addition, cortical mapping 
is essential for various brain-computer interface (BCI) applications, such as for 
sensorimotor rehabilitation or control of prosthetics [4–6]. 

Clinical practice for sensorimotor cortex mapping generally relies on the rapid 
subjective interpretation of median nerve-induced short-latency somatosensory 
evoked potentials (SSEPs), such as the conventional N20 (posterior) and P20 
(anterior) components, to delineate the central sulcus (CS) [7, 8]. However, common 
factors such as the complexity of the exposed brain during surgery and the potential 
distortion of normal anatomy and function caused by the tumor or tumor-related 
edema can lead to misinterpreted results, requiring multiple electrode placements or 
relocation to confirm the CS delineation [9, 10]. When there is unsolvable doubt, 
direct cortical electrical stimulation is employed, which is time-consuming and can 
trigger seizures [11, 12]. Studies have shown that the SSEPs’ spatial distributions in 
the temporal (N20/P20) and spectral (60–200 Hz) domains can define the primary 
sensorimotor areas [13–16]. Fusing the activation profiles of these features with the 
brain anatomy of individual subjects as a heat map might provide an unambiguous 
view of the CS in a short time and can be strategically used as a feedback signal 
intraoperatively to guide the surgery. 

Intraoperative assessment of neural activity is also widely used to monitor the 
consciousness of patients by investigating the cortical background activity [1]. Ear-
lier studies have shown the use of SSEPs peak amplitudes to assess the effects of 
anesthesia, but with contradicting results. While some studies have observed signif-
icant alterations in N20 amplitude between anesthetized and awake states [17, 18], 
other studies did not find any significant differences in N20 amplitude [19–21]. This 
study demonstrates that the temporal and spectral features of the SSEPs can serve as 
a valuable tool for assessing consciousness in the operating room (OR). We 
established an intraoperative visualization system that converts the SSEPs’ spatial-
temporal and spectral features into heat maps [22]. It also clusters the regional 
channels of the grid with unsupervised machine learning [14]. We further assessed 
the feasibility of using the induced temporal and spectral modulations to assess 
consciousness.
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Intraoperatively, we provided a clear view of the CS by visualizing the spatial-
temporal features of the SSEPs at N20 and spatial-spectral response in the gamma 
range up to 250 ms post median nerve stimulation as a heat map on a 2D grid. We 
projected these images on the OR screen for subjective interpretation by the neuro-
surgeon. We also grouped the anterior and posterior channels in an automated 
fashion using the entire SSEP trace rather than depending on individual time points. 
Consistently in all subjects, we observed late gamma power increase starting 50 ms 
after the stimulation onset in the awake/conscious state. In conjunction, we noted a 
difference in peak latency in the primary somatosensory area (S1) between states. 
Our findings could increase information for intraoperative surgical planning and 
assess the consciousness of patients from awake to comatose states. 

2 Methods 

2.1 Subject Recruitments 

We recruited eight patients (four males and four females, ages 25–68 years) who 
were diagnosed with a brain tumor and scheduled for resection surgeries requiring an 
awake craniotomy. The protocol included high-density ECoG recording for real-
time cortical mapping and CS delineation by assessing the median nerve SSEPs 
during the anesthetized and awake states. The Institutional Review Boards (IRB) of 
the University of Texas MD Anderson Cancer Center and the University of Houston 
reviewed and approved the study protocol. Each patient was made aware of the 
characteristic thumb twitching they would experience from the median nerve stim-
ulation a day before their surgery. They consented to undergo the cortical mapping 
and participate in this study per the Declaration of Helsinki. 

2.2 3D Cortical Rendering 

We obtained pre-operative thin slice MRI scans of each patient based on a Fluid 
Attenuated Inversion Recovery (FLAIR) sequence (repetition time of 6.8 s, echo 
time of 101.6 ms, slice thickness of 1 mm with 262,144 pixels) to create a 3D cortical 
rendering of the brain surface in MATLAB (MathWorks, Natick, MA, USA) 
[23]. Incorporating a pipeline from our previous study [22, 24], we generated the 
segmented gray matter and white matter with Statistical Parametric Mapping 
(SPM12) [25]. After surface extraction from SPM, additional artifact removal and 
object conversion was done using Surf-Ice [26].
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2.3 Anesthesia Administration and Surgical Procedure 

The anesthetic management based on the asleep-awake-asleep technique [27] started 
with administering general anesthesia. The neurosurgeon opened the dura and 
marked the presumed location of the somatosensory and motor area based on the 
standard phase reversal technique with a 2×4 clinical subdural electrode grid (10 mm 
spacing), crossing the presumed location of the CS and hand knob. The 2×4 grid was 
then flipped and placed under the dura, serving as the reference and ground for the 
high-density grid (Fig. 1a). We stimulated the median nerve (Fig. 1b) to record the 
ECoG SSEPs with the high density grid and electromyogram (EMG) data (Fig. 1c) 
and conducted cortical mapping with the visualization system. 

Fig. 1 Pipeline of analysis. (a) The 3D cortical rendering from the preoperative MRI shows the 
location of the central sulcus (CS) (a gray line) with the overlapped image of the craniotomy and the 
high-density ECoG grid. (P) Posterior, (A) anterior, (M) medial, (L) lateral. (b) (Left) The electrical 
stimulus pathway from the periphery. (Right) The electrical stimulation at a low frequency applied 
to the median nerve. (c) (Left) Recording system setup used in the operating room. (Right) ECoG 
from selected channels and recorded EMG from flexor and extensor muscles, showing the stimu-
lation onset as spike artifact (S). (d) Real time signal processing in MATLAB Simulink. The 
patient’s consciousness is assessed with time frequency analysis. (e) Visualization by the neuro-
surgeon. (Left) The generated overlapping plot of the SSEP trace and the spatial temporal behavior 
as a heat map at 20 ms. The CS is represented with a gray dotted line. (Middle) The unsupervised 
clustering of the SSEP trace applied to the second smallest eigenvector of the normalized Laplacian 
derived from the adjacency matrix (W). The clustering results are visualized on the 2D grid by 
marking each contact with a color representing its membership (deep blue is anterior, light blue is 
posterior and orange is a misclassified channel). (Right) The generated overlapping plot of the 
temporal gamma power (60–250 Hz). The spatial spectral activity of the gamma power is shown as 
a heat map on the 2D grid at 100 ms
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Each patient emerged from the general anesthesia by discontinuing all the 
anesthesia agents. After the patient was deemed ready to begin neurological testing 
by the anesthesiologist, we repeated the real-time mapping with the visualization 
system. Once we evaluated the SSEPs in the anesthetized and awake state and tumor 
resection was complete, the patient was then administered general anesthesia again 
until the completion of surgery. 

2.4 Hardware Interface Module 

For patients 1–3, we used a 32-64 channel high-density grid with 5 mm spacing and 
2.3 mm contact exposure, Fig. 1a. For patients 4–8, we used a 25-53 channel hybrid 
grid (Cortec-Hybrid grid) with 10 mm spacing and 1–2.7 mm contact exposure. Two 
disposable conductive solid-gel electrodes were attached to the contralateral median 
nerve at the wrist in the OR (Fig. 1b). Using the clinical 2 or 4-channel EMG/EP 
Measuring System (Neuropack S1 MEB-9400), we stimulated with a frequency of 
0.6 Hz, a square wave electric pulse of 200 μs, and a current intensity adjusted 
between 5 and 15 mA. The stimulation caused small twitches of their thumb 
abductor pollicis brevis, as stated in the standard protocol (American Clinical 
Neurophysiology Society (ACNS), 2015). We recorded the neural data from the 
ECoG grids and bipolar surface EMG from the forearm with a multichannel bio 
amplifier (gHIamp: 256 channels, g.tec medical engineering GmbH, Graz Austria) at 
a sampling frequency of 2.4 KHz with a 24 bit A/D resolution. We used recorded 
bipolar EMG to capture the stimulation onset as spikes (S) (Fig. 1c). We also 
re-referenced the ECoG data with common averaging (Fig. 2a, left). All the acquired 
data was synchronized, processed, and visualized in real-time intraoperatively using 
Simulink/Matlab, Fig. 1d, and gHIsys block sets (g.tec medical engineering GmbH, 
Graz Austria). 

2.5 Online Spatial-Temporal and Spectral Analysis of SSEPs 

2.5.1 Real-Time Preprocessing 

The raw neural data was streamed through the universal serial bus (USB) into the 
Simulink/MATLAB environment (MathWorks 2022b, Inc. USA) and recorded. 
Simulink is a graphical programming environment comprising a rich set of signal 
processing and visualization libraries for modeling, simulating, and analyzing 
dynamic systems. We removed the power line noise at 60 Hz with a second-order 
infinite impulse response (IIR) notch filter (Fig. 2a). The ECoG data was then 
observed online with ‘g.Scope’ (gHIamp driver block of gHIsys library, gTec, 
Graz, Austria) to assess the data clarity and exclude corrupted channels (channels



F
ig
.2

R
ea
lt
im

e
de
lin

ea
tio

n
of

th
e
C
S
.(
a)

M
A
T
L
A
B
S
im

ul
in
k
m
od

el
of

re
al
-t
im

e
co
rt
ic
al
m
ap
pi
ng

fo
r
S
S
E
P
am

pl
itu

de
he
at
m
ap

an
d
la
te
ga
m
m
a
po

w
er

he
at

m
ap
.T

he
E
C
oG

da
ta
is
tr
an
sp
os
ed
,a
nd

th
e
te
m
po

ra
la
nd

sp
ec
tr
al
fe
at
ur
es

ar
e
es
tim

at
ed
.E

ac
h
fe
at
ur
e
is
en
ab
le
d
w
ith

a
sw

itc
h,

w
he
re

it
is
do

w
n
sa
m
pl
ed

an
d

co
nv

er
te
d
to

a
he
at
m
ap

w
ith

th
e
S
-f
un

ct
io
n.

T
he

m
od

el
is
co
nt
ro
lle
d
w
ith

a
gr
ap
hi
ca
l
us
er

in
te
rf
ac
e.
(b
)
S
S
E
P
te
m
po

ra
l
pr
ofi

le
(l
ef
t)
an
d
he
at
m
ap

on
th
e
2D

(m
id
dl
e)

an
d
3D

su
rf
ac
e
(b
ot
to
m
)
at
th
e
N
20

tim
e
po

in
t.
T
he

en
ab
le
d
sp
ec
tr
al
cl
us
te
ri
ng

fi
lls

th
e
co
nt
ac
ts
w
ith

co
nt
ra
st
in
g
co
lo
rs
to

cl
us
te
r
th
e
an
te
ri
or

(o
ra
ng

e)

128 P. Asman et al.



with high variances and distortions) during the spatial visualization (Figs. 1d and 2a, 
left). 
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2.5.2 Spatial-Temporal and Spatial-Spectral Heat Map 

The real-time mapping of the sensorimotor area with the spatial features of SSEP is 
described in detail by Asman et al. [14]. 

Using the gHIsys library and digital signal processing (DSP) toolboxes in 
MATLAB/Simulink, we computed the overlapping plot of the average SSEP trace 
and gamma power trace in Fig. 1e (top-left and top-right). We high-pass filtered the 
incoming data at a cut-off frequency of 30 Hz using a second-order Butterworth 
filter. We further band-pass filtered the ECoG between 60 and 250 Hz and computed 
the gamma power as another data stream. We used a “Trigger” block that receives 
the incoming ECoG data and trigger onset (S) from the EMG channel to create an 
epoch of the data up to 500 ms, with 150 ms as the baseline. Then the epoch was 
transmitted to an “Averaging” block to calculate the average SSEPs or gamma 
power, thus creating the SSEPs or gamma power waveform (g.tec Simulink 
Highspeed Library user manual v3.16.01) (Fig. 2a, middle). We investigated the 
SSEPs up to 50 ms and the gamma power up to 250 ms following the stim onset. A 
MATLAB Level-II S function was programmed to pick up the SSEPs/Gamma 
power from the online averaging block. Using the S-function, at a particular time 
point along the SSEP/Gamma power trace, we projected the waveform’s instanta-
neous amplitude onto a 2D grid as a heat map (Fig. 1e, middle). We also simulta-
neously animated the heat map on the cortical surface rendered from each patient’s 
preoperative MRI using the ‘Interpolation Scope’ available through g.tec Suite 2020 
(g.tec Suite 2020, g.tec, Graz, Austria). The block allowed a rapid electrode 
co-registration based on the neurosurgeon’s confirmed CS delineation by the 
heatmap in the OR (Fig. 2a, right). 

2.5.3 Unsupervised Identification of Central Sulcus 

We further employed spectral clustering, an unsupervised machine-learning tech-
nique, to group the channels of the ECoG grid, which are anterior and posterior to the 
CS [22]. First, we applied a Savitzky-Golay filter with a polynomial degree of 3 to 
smooth the SSEP trace without distorting it and estimated its derivative [28]. We 
then smoothed the derivative trace and normalized it to retain the waveform mor-
phology. We applied a Gaussian similarity function (1) to create the adjacency

and posterior (blue) channels (right). (c) Confusion matrix for all eight patients showing the 
clustering accuracy. A anterior, P posterior. (d) Gamma power after common averaging showing 
the suppression after 0.6 ms in the anesthetized state and enhancement in the awake state. The heat 
map of the average power from 1 to 1.5 ms is projected on the 3D surface. Results shown here for 
P10



matrix, Wij (Fig. 1e, middle), whose entries represented the connectivity network 
between the different ECoG channels. We then derived the Laplacian matrix (L) (2) 
from the adjacency matrix based on the random walk method. We applied k-means 
to the second smallest eigenvector of the normalized Laplacian matrix to group 
anterior and posterior channels (Fig. 1e, bottom).
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Wij = e- xi - xjj j2 =2σ2 ð1Þ 

L= I-
j 
Wij

- 1 
Wij ð2Þ 

2.6 Offline Spectral and Temporal Analysis of SSEPs 

We visually examined the ECoG recordings to remove corrupted channels and 
artifacts. We removed the power line noise and high-pass filtered the recording at 
a cut-off frequency of 30 Hz using a second-order Butterworth filter. 

2.6.1 Electrode Coregistration 

Two neurosurgeons, blinded to electrophysiology, defined the CS and sensorimotor 
borders on the 3D-rendered cortical surface. We used all the electrode channels 
anterior and posterior to the CS as the ground truth for accessing the clustering 
accuracy. We co-registered the electrodes on the rendered surface. We used the 
image of the craniotomy with electrode placements taken in the OR as a reference 
(Fig. 1a). The electrodes within the primary somatosensory (S1) and motor area 
(M1) borders were labeled accordingly and selected for further analysis. 

2.6.2 Time-Frequency Maps and Spectral and Temporal Power 

We extracted data segments around the median nerve stimulation onset (-150 ms to 
250 ms) and applied time-frequency (TF) analysis at each channel using Stockwell 
transform. We averaged the spectrogram across trials and then normalized it using 
the same baseline power -150 ms before the stimulation onset to obtain the smooth 
spectrograms. We then transformed the averaged spectrograms into a decibel 
(dB) scale to yield the centered spectrograms. The TF maps were visible for 
frequencies up to 900 Hz. We averaged the time-frequency maps across S1 and 
M1 channels separately in the anesthetized and awake states to assess the average 
spectral modulations in each cortical region and state. 

To assess the temporal power modulations in the gamma range (60–250 Hz) for 
each patient in each state, we filtered the epochs using a second-order Butterworth



IIR zero-phase filter (forward and backward). We then squared the filtered signals to 
compute the temporal power trace and normalized it against the baseline preceding 
the stimulation onset. 
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2.7 Interpeak Latencies 

To estimate the SSEP temporal profile in each state, we aligned the ECoG traces 
concerning the stimulation pulse onset (S) and then averaged them across trials in 
individual channels. We computed the average SSEP trace for each patient for the 
M1 and S1 separately. The averaged SSEP trace revealed the posterior negative 
deflection (N20) and anterior positive peak (P22), defined between +17 and +25 ms, 
followed by a posterior large positive deflection (P30) and anterior negative bend 
(N35) between +27 and +40 ms. We extracted the peak latencies from these 
averaged SSEP waveforms and estimated the peak latencies at the posterior 
N20-P30 and anterior P25-N35. We defined the interpeak latencies (IPL) as the 
latency difference between peaks at 20 ms (N20, P20) and 30 ms (P30, N35) after 
stimulation onset. 

2.8 Statistical Analysis 

We used the area under the curve (AUC) of the receiver operating characteristic 
(ROC) curve to determine the accuracy in distinguishing the anterior and posterior 
channels based on the peak amplitude at N20 and gamma power from 50 to 250 ms. 
We evaluated the spectral clustering performance from the confusion matrix based 
on the ground truth. We applied paired t-tests to compare the gamma oscillations and 
interpeak latencies between the anesthetized and awake states. 

3 Results 

3.1 Real-Time Delineation of the Central Sulcus 

In each patient, we recorded SSEPs in the anesthetized state and then in the awake 
state. We delivered about 100 ± 20 trials of electrical stimulation to the median 
nerve. Using the real-time visualization system in Simulink, we generated the 2D 
heat map and projected it onto the OR screen during the surgery. We could also 
generate the heatmaps on the 3D rendering of each patient in real-time. We designed 
a MATLAB graphic user interface (GUI) to control the Simulink model for variables 
like running and stopping the model, excluding corrupted channels, adjusting the 
heat map amplitude, and the time point where the most negative peak is noted (N20).



The GUI also allowed us to choose which feature of the SSEP to view as a heat map 
and whether to enable spectral clustering. 
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3.1.1 Spatial-Temporal Feature 

As we recorded the neural data, we generated the SSEP waveform in the OR. We 
computed the heat map of the spatial profile at the 20 ms timepoint along the SSEP 
trace for each channel on the 2D grid, Fig. 2b. A color map was then applied to 
visualize the amplitude, and interpolated values allowed continuous color through-
out the grid map. The red patches showed the P20, and the blue patches showed the 
N20. The neurosurgeon confirmed which channels were in the anterior and posterior 
regions by comparing them to the anterior and posterior channels estimated by the 
standard phase reversal technique with the 2×4 grid. We created a montage with the 
verified grid placement using gtec’s iEEG Montage Creator [g.tec medical engineer-
ing GmbH, Graz Austria] and the cortical surface. We observed the heatmap on the 
3D cortical surface, as shown in Fig. 2b (bottom). The color contrast revealed the 
delineated CS, correlating with the sulcus in the 3D rendering. Using the amplitude 
of the heatmap at the N20, we noted a consistently high separation accuracy of 
93.6 ± 14.9% in the anesthetized and 89.9 ± 14.4% in awake states across all 
patients, estimated offline. 

3.1.2 Spectral Clustering 

Using a cluster assignment of 2 [22], we applied spectral clustering for an 
unsupervised delineation of the CS (Fig. 2b, right). The k-means clustering applied 
to the second smallest eigenvector provided a color-coded classification. We 
assigned the anterior and posterior channels with two contrasting colors on the 2D 
electrode grid on the OR screen. We assessed the clustering accuracy in the anes-
thetized state and observed an average overall accuracy of 89.96 ± 17%, estimated 
offline (Fig. 2c). 

3.1.3 Spatial-Spectral Feature 

We generated the gamma power waveform (60–250 Hz) in real-time. Using the 
S-function, we projected the spatial-spectral profile of the SSEPs on the 2D grid and 
3D rendering on the OR screen (Fig. 2d). The yellow to deep orange-red regions 
represented the primary somatosensory area (S1). Within the time points between 
+10 to +50 ms, we could define S1 in both the anesthetized and awake states. We 
observed a delineation accuracy of 91 ± 10.3% in the anesthetized and 91 ± 13.4% 
in the awake state estimated offline. Within the +60 to +200 ms time points, we 
observed enhanced late gamma activity in S1 after the subjects were awake, which 
was previously suppressed in the anesthetized state (Fig. 2d). The spatial-spectral



map revealed late gamma activity (red patches) for all patients in the awake state, 
mainly predominant on channels near the CS and S1. In contrast, we saw late gamma 
suppression (blue patches) in the anesthetized state in S1. 

Real-Time Intraoperative Sensorimotor Cortex Localization. . . 133

3.2 State-Specific Characteristics of Induced Spectral 
Modulations 

We assessed the stimulus-aligned, baseline-normalized group average time-
frequency maps for S1 and M1 channels in the awake and anesthetized states 
(Fig. 3a, top). Figure 3a (bottom) shows the temporal profile power change in the 
gamma (60–250 Hz) band concerning baseline. We noted that the late gamma 
modulation was temporarily isolated, occurring from +50 ms to +250 ms in M1 
and S1, and was the most prominent in S1 in the awake state than in other cases. 
Interestingly, we observed suppressed late gamma activity in the anesthetized state 
in both M1 (independent t-test t (7) =-4.1194, p < 0.01) and S1 (independent t-test 
t (7) = -3.2519, p = 0.0140). While in the awake state, the late gamma power 
increased significantly relative to baseline both in M1 (independent t-test t 
(7) = 4.6057, p < 0.01) and S1 (independent t-test t (7) = 6.0072, p < 0.01; 
Fig. 3a). Furthermore, the difference in late gamma power between the anesthetized 
and the awake state was highly significant for M1 (paired t-test t (7) = -5.8103, 
p < 0.01) and for S1 (paired t-test t (7) = -5.8868, p < 0.01) and consistent across 
all subjects. 

3.3 State-Specific Characteristics of Induced Temporal 
Features 

We averaged the anterior (A) and posterior (P) channels in the anesthetized and 
awake states and marked the anterior P22-N25 and the posterior N20-P30 peaks on 
the average waveform (Fig. 3b). Across all subjects, we noticed a consistent decrease 
in latency from anesthetized to awake state for N20 (group latency difference; 
1.51 ms ± 0.74 ms, independent t-test (7) p < 0.01, t = 5.8000) and P30 (group 
latency difference; 3.33 ms ± 1.11 ms, independent t-test (7) p < 0.01, t = 8.4664). 
The assessment of the interpeak latencies (IPL) between posterior N20 and P30 
showed a significant decrease from the anesthetized to the awake state (IPL 
N20-P30: An: 8.54 ms ± 0.54 ms, Aw: 6.72 ms ± 1.14 ms, paired t-test p < 0.01, 
t = 4.9427) (Fig. 3b, bottom). This decrease in the awake state was consistent in all 
patients. However, we observed no difference in latency between states for anterior 
P22 and N35. The IPL between P22 and N35 also showed no difference between 
states (IPL P22-N35: An: 9.17 ms ± 2.47 ms, Aw: 9.42 ms ± 3.96 ms, paired t-test 
p = 0.7942, t = -0.2710).
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4 Discussion 

This study aims to (i) delineate the CS with the spatial heat maps assessed from the 
temporal and spectral profile of the SSEPs with ECoG grids in real-time, (ii) cluster 
the anterior and posterior channels without manual supervision, and (iii) assess the 
level of consciousness. 

4.1 Clinical Approach to CS Delineation 

The electrical activity originating from the peripheral nerve stimulation measured 
with ECoG grids placed over the sensorimotor cortex reflects the cerebral impulse 
response’s bombardments that generate the complex SSEP waveform [9, 10, 13, 
29]. The routine clinical assessment of SSEPs relies on phase reversal to locate the 
somatosensory and motor area on the cortical surface using electrode strips. How-
ever, the conventional N20/P20 can be ambiguous due to the strip electrode mis-
placement or poor spatial resolution, usually requiring multiple relocations with 
DCS to achieve delineation success [1, 3, 7, 10, 30–34]. Neurosurgeons also use 
intraoperative MRI (iMRI) to define the sensorimotor area in the OR. While 
intraoperative navigation presents real-time intuitive tumor detection, it is time-
consuming and inevitably affected by brain drift [35]. iMRI may be good at 
detecting tumor boundaries and avoiding brain shifts. However, it substantially 
lengthens operation time. 

4.2 CS Delineation with SSEPs Spatial Features 

With a single placement of the ECoG grid, we identified the spatial orientation of the 
sensorimotor area with the spatial heat map in real-time on the 2D grid and 3D 
cortical surface and delineated the CS (Fig. 2b). The SSEPs’ spatial-temporal profile 
at N20 was first implemented in 1989 by Allison et al. and adopted by several 
investigators over time [13, 15, 16, 36]. We, to our knowledge, are the first to apply 
this approach in real-time in the OR (Fig. 2a). We also observed a clear primary 
somatosensory area definition with the evoked gamma activity up to 50 ms post-
stimulation in each state. Studies have shown that early gamma oscillations can 
achieve accurate CS delineation [15, 37–39]. We also saw late-gamma activity 
suppressed in the anesthetized state and enhanced in the awake state after 60 ms in 
real time. Ray et al. found that significant gamma responses (60–150 Hz) occurring

shaded region represents the variance. (Bottom) The scatter plot showing the change in M1 IPL 
P22-N35IPL and S1 -N20-P30 between states . A ** represents a paired t-test, **p < 0.01, NS 
non-significant, An anesthetized, Aw awake



in the somatosensory area at longer latencies (300–800 ms) were enhanced when the 
respective tactile stimuli were attended [40]. We also observed focal enhanced 
gamma activity in the primary somatosensory area (Fig. 2d).
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4.3 Unsupervised Regional Clustering 

We applied spectral clustering to the derivative trace of the SSEPs to separate the 
anterior and posterior channels in a short time (Fig. 2b, right). Spectral clustering 
uses subspace decomposition on high dimensionality to achieve data clustering 
[41]. Some studies adopted spectral clustering to characterize the connectivity 
between cortical areas based on fluctuations in high gamma power [42]. Others 
clustered channels at different seizure stages and determined epileptic focus by 
extracting features in different brain regions based on their functional dependencies. 
[43, 44]. Based on the morphology of SSEPs, we observed a high anterior and 
posterior clustering accuracy in each state in less than 10 stimulations (Fig. 2c). The 
large ECoG grid enabled a better estimation of the connectivity matrix (and the 
Laplacian) that depended on the waveform morphology of different cortical areas. 
Our previous study also assessed the influence of the electrode size on clustering 
accuracy by resampling the channels of the large grid to form 1 × N or 2  × N 
electrodes and observed a systematic increase in accuracy from 1 × N to 2  × N to a  
larger grid (see [14] for more details). 

4.4 State Characteristics of the Spectral Features of SSEPs 

We found two temporally distinct gamma components in response to median nerve 
stimulation (Fig. 3a) in M1 and S1. The early component (15–50 ms) occurred in 
both the anesthetized and awake states. The late component was more temporally 
widespread (50–250 ms), suppressed in the anesthetized state, and enhanced in the 
awake state (Fig. 3a). Studies have reported that a consciously perceived external 
stimulus results in neural responses comprising an early event-related component 
accompanied by a late sustained one [45–47]. MEG studies have also shown that the 
prolonged event-related high gamma (60–90 Hz) power increase in the somatosen-
sory cortex, from 100 ms to 500 ms, was due to tactile attention [48]. In this study, 
we asked each patient to pay attention to their thumb twitching in the awake state. 
We believe that the increase in late gamma activity was associated with the con-
scious processing of the somatosensory sensations induced by median nerve stim-
ulation. We observed a significant late gamma power suppression in the anesthetized 
state both in S1 and M1 (Fig. 3a). Studies have shown that anesthetics block or 
depress the cortical somatosensory responses. This suppression occurs by enhancing 
the inhibitory effect of gamma-aminobutyric acid (GABA) and blocking the excit-
atory effect of glutamate [49–51]. We also believe that the significant late gamma



suppression was due to the impact of the anesthetic on the complex inhibitory 
mechanisms. These mechanisms were mediated by the GABA-modulated connec-
tivity within the sensorimotor cortex, blocking the excitatory effects of glutamatergic 
synapses. 

Real-Time Intraoperative Sensorimotor Cortex Localization. . . 137

4.5 Interpeak Latency 

The interpeak latencies between N20 and P30 and between P22 and N35 represent 
transit times of action potentials from areas 3b to the cortical Broadman area 
1 [52, 53]. We overserved a significant change in IPL N20-P30 from the anesthetized 
to the awake state, consistent in all our patients (Fig. 3b). Numerous studies have 
found that longer latency SSEPs waves, which represent further neural processing of 
somatosensory inputs, are highly sensitive to anesthetic drugs [54–56]. We saw that 
the difference in posterior IPL was due to a significant change in P30 latency. We 
believe that the apparent change in P30 latency conforms with the previous studies, 
and the IPL may provide a good evaluation of wakefulness. 

5 Conclusion 

The spatial distribution of the SSEP’s temporal and spectral features are readily 
detectable in real-time, which can be used in the OR to define the contours of the CS 
and the sensorimotor area in a short time. This high-dimensional data can be 
efficiently processed and visualized with modern, portable computers to assist 
clinical decision-making and surgical planning. The late gamma difference in the 
sensorimotor area and the interpeak latency difference in S1 between the anesthe-
tized and awake states can monitor the state of consciousness in patients undergoing 
awake craniotomy and can help with the assessment of consciousness for subjects 
who have a disorder of consciousness. 
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A Summary of the 2022 BCI Award 
with Discussion of BCI Trends 

Christoph Guger, Sanaz Rezvani, Nuri Firat Ince, Milena Korostenskaja, 
and Brendan Z. Allison 

Abstract The first chapter of this book readers introduced BCIs, the BCI Award 
Foundation and 2022 jury, the procedures and criteria of the awards, and the 
12 nominees in 2022. Most chapters described projects that were nominated for a 
BCI Research Award. This is the last chapter of the book. Here, we provide more 
information about the awards ceremony and the winners. We then present some 
trends reflected in the awards involving BCI input devices and applications. This 
chapter ends with discussion and future directions. While we expected three winners, 
we had a tie for second place in 2022 and thus had four winners this year. 

Keywords Brain-computer interface · EEG · ECoG · BCI research awards · BCI 
foundation 

1 The 2022 Awards Ceremony 

In October 2022, we held the Awards Ceremony in tandem with the virtual IEEE 
Systems, Man, and Cybernetics conference. We reviewed the 12 nominees and gave 
each group a certificate. Next, we announced the first, second, and third place 
winners. These winning teams each earned a Pfurtscheller bread knife and a cash 
prize (first place: $3000; second place: $2000; third place: $1000) along with the 
honor of winning. The main sponsor g.tec medical engineering GmbH, donated most
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of the awards, and we also thank IEEE Brain for donating the cash award for third 
place.
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The BCI Award Foundation1 has organized all of the BCI Research Awards since 
2017, including the 2022 Award. The BCI Award Foundation is a non-profit 
organization whose main purpose is to manage the awards. g.tec medical engineer-
ing GmbH2 is a for-profit company that produces and sells hardware and software to 
record and process biosignals, especially EEG, with a strong emphasis on BCIs. 
IEEE Brain is also a non-profit organization. According to its website,3 its goal “is to 
facilitate cross-disciplinary collaboration and coordination to advance research, 
standardization, and development of engineering and technology to improve under-
standing of the brain in order to treat diseases and improve the human condition.” 

2 The 2022 Winners 

Like all other BCI Awards, the 2022 nominees and winners were decided by a jury. 
In 2022, the head of the jury was Nuri Firat Ince. The other jury members were 
Nicholas Opie (winner 2021), Cynthia Chestek, Dora Hermes, Guiseppe Pellizzer, 
David Moses, and Abdelkader N. Belkacem. We announced the winners in October 
2022, who were: 

First Place Winner: 
Digital Bridge To Restore Voluntary Control Of Leg Movements After 
Paralysis 

Andrea Galvez 1–3 , Guillaume Charvet4 , Jocelyne Bloch1–3 , Grégoire Courtine1–3 , 
Henri Lorach1–3 

1 NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de 
Lausanne (EPFL), Geneve, Switzerland 

2 Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and 
University of Lausanne (UNIL), Lausanne, Switzerland 

3 .NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/ 
UNIL, Lausanne, Switzerland 

4 University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France 

First Second Place Winner: 
A High-Performance Intracortical Speech BCI 

Francis R. Willett1, 2 , Chaofei Fan1 , Erin Kunz1 , Donald T. Avansino1 , Foram 
Kamdar1 , Leigh R. Hochberg3 , Krishna V. Shenoy1, 2 , Jaimie M. Henderson1 

1 https://www.bci-award.com/About 
2 https://www.gtec.at/ 
3 https://brain.ieee.org/about-ieee-brain/

https://www.bci-award.com/About
https://www.gtec.at/
https://brain.ieee.org/about-ieee-brain/
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1 Stanford University, USA 
2 Howard Hughes Medical Institute, USA 
3 Brown University, Harvard Medical School, Massachusetts General Hospital, 

Providence VA Medical Center, USA 

Second Second Place Winner: 
Brain-Body Interfaces To Assist and Restore Motor Functions In People With 
Paralysis 

Elena Losanno1 , Marion Badi2 , Evgenia Roussinova2 , Andrew Bogaard3 , Maude 
Delacombaz3 , Solaiman Shokur2 , Silvestro Micera1, 2 

1 The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola 
Superiore Sant’Anna, 56025 Pisa, Italy 

2 Bertarelli Foundation Chair in Translational Neuroengineering, Center for 
Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale 
de Lausanne (EPFL), 1015 Lausanne, Switzerland 

3 Department of Neuroscience and Movement Sciences, Platform of Translational 
Neurosciences, Section of Medicine, Faculty of Sciences and Medicine, Univer-
sity of Fribourg, 1700 Fribourg, Switzerland 

Third Place Winner: 
Highly Generalizable Spelling Using a Silent-Speech BCI in a Person With 
Severe Anarthria 

Sean L. Metzger1–3 , Jessie R. Liu1–3 , David A. Moses1, 2 , Maximilian 
E. Dougherty1 , Margaret P. Seaton1 , Kaylo T. Littlejohn1, 2, 4 , Josh Chartier1, 2 , 
Gopala K. Anumanchipalli1, 2, 4 , Adelyn Tu-Chan5 , Karunesh Ganguly2, 5 , 
Edward F. Chang1–3 

1 Department. of Neurological Surgery University of California, San Francisco 
(UCSF), USA 

2 Weill Institute for Neurosciences UCSF, USA 
3 University of California, Berkeley-UCSF Grad. Program in Bioengineering, USA 
4 Department. of Electrical Engr. and C.S., University of California, Berkeley, USA 
5 Department of Neurology, UCSF, USA 

The 2022 Awards were slightly unusual because we had a tie for second place. 
Thus, we have four winning teams to congratulate instead of the usual three, along 
with the other nominees. With over 100 submissions to the 2022 BCI Award, getting 
nominated was especially challenging and reflects work that stood out to our jury. 
We are grateful to everyone who submitted a project, as well as our jury and 
sponsors. Across all four of the winning projects, one team member gave a talk at 
the g.tec BCI & Neurotechnology Spring School 2023 in front of over 5000 people, 
followed by discussion and Q&A with the attendees.
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3 Directions and Trends Reflected in the Awards 

The primary goal of the Awards is to recognize and encourage top-quality BCI 
research. The Awards also provide a lens to study BCI research trends. Each 
submission to each annual Award has different characteristics, such as the type of 
brain imaging approach used or the project’s main intended application. Our dis-
cussion chapters have typically entailed review and discussion of what we can learn 
about overall trends in BCI R&D from these characteristics. 

For example, one characteristic that has remained fairly consistent every year is 
that the EEG is the dominant imaging approach. This was even more pronounced in 
2022; 77.6% of all submissions relied on the EEG, which is 5% more than the 
average of prior years. Among other non-invasive techniques, relative to prior years, 
NIRS was more prominent, whereas fewer submissions used MEG and fMRI. ECoG 
remained the most prominent invasive approach with a slight increase over the 
average of prior years. For the first time, stereo EEG was used in submissions. 
Three of the submissions used stereo EEG (which is an invasive technique). We also 
had one submission that relied primarily on spinal cord stimulation as well as other 
methods. 

Another sustained trend since 2010 has been the combination of BCIs with other 
devices. The projects that were nominated in 2022 have combined BCI technology 
with exoskeletons, functional electrical stimulators, head-mounted displays, 
immersive avatars, transcranial magnetic stimulation, and other devices. BCIs may 
be hybridized with other devices even more often in the near future. This combina-
tion creates substantial extra challenges, but can lead to a complete system that is 
much more capable than a BCI by itself. 

Submissions and nominees have usually involved groups from different coun-
tries. This hasn’t changed much over the years, with many contributions involving 
the EU, US, Canada, China, and Japan. Similarly, most projects we saw for the BCI 
Awards came from groups with a range of different disciplines. These international 
and interdisciplinary features are also prominent elsewhere in the BCI community. 
Many of the most influential papers and projects have required extensive collabora-
tion among different types of experts. 

We have developed two tables to review the categories of the projects that were 
submitted. N reflects the number of submissions, and numbers in different cells 
present the percentage of submissions in a certain category. Each table both presents 
the average percentage of the last years’ submissions under a certain category and 
that of the year 2022. 

Table 1 shows that the input signals used for BCIs that were submitted to the BCI 
Research Awards haven’t changed much over the past decade. EEG has remained 
the dominant tool to image the brain. Other non-invasive approaches—fMRI and 
NIRS—are used in some submissions but are much less common. Invasive methods 
like ECoG and Stereo EEG are also used in some submissions. While Stereo EEG is 
new in 2022, ECoG has been used in almost 10% of all submissions. All of these 
trends are also consistent with broader activity in BCI research and development.
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Table 1 Input signals for the BCI system 

Average of last 
years 

BCI Award 2022, % (N = 
103) 

EEG 72.6 77.6 

fMRI 3.2 0.9 

ECoG 9.1 11.6 

NIRS 2.3 4.8 

Stereo EEG – 2.9 

MEG 0.6 0.9 

Neural Control of Spinal Cord 
Stimulation 

– 0.9 

Table 2 presents the outputs and applications submitted to the awards, both in 
2022 and an average of all submissions. Some medical applications are more 
prominent in 2022, as are BCIs for art and creative applications. 2022 was the first 
year that projects were submitted that focused on BCIs for new electrodes/caps, 
neuromodulation, and assistive hearing. On the other hand, 2022 saw a decrease in 
BCIs centered on stroke or multiple sclerosis, with no submissions that centered on 
ethics or mechanical ventilation. 

4 Overview of Other Changes with the Awards 

What has and hasn’t changed since the first BCI Research Award in 2010? We 
switched from one to three winners in 2014, increased the cash awards, and added 
other prizes. In the 2016 awards, we switched from 10 to 12 nominees each year. We 
established the BCI Foundation in 2017 to administer the awards. 

We decided to switch to an online format for the BCI Research Awards ceremo-
nies due to COVID. 

The publisher of these books has been the same every year except the first year. 
InTech Open published the first book devoted to the BCI Research Awards [1], and 
its first chapter from that book is available online at no cost.4 The second and 
subsequent BCI Research Awards were covered in books with Springer Publishing 
in this “A State-of-the-Art Summary” series [2]. 

Early books in this series just had an introduction, discussion, and chapters 
written by the nominees. We’ve tried some different chapter types over the years, 
such as interviews with winners [3]. We’ve also recorded interviews with nominees, 
which can be found on the BCI Award website. 

We introduced some new components in 2022. Nominees from the 2022 Awards 
were invited to discuss their work on a NeuroCareers podcast hosted by author 
MK. This was the first year we did so, since these podcasts are new. The 2022

4 https://www.intechopen.com/chapters/13501

https://www.intechopen.com/chapters/13501


Awards were also first in that we invited all nominees to give a talk at GTEC’s 
annual Spring School. The 2023 Spring School drew over 15,000 attendees from 
over 100 countries. It was thus not only the biggest Spring School but also the 
biggest event in the history of BCIs in terms of the number of attendees. In this 
discussion chapter, we also resumed our discussion of trends that we had in several 
earlier books.
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Table 2 Output systems and applications 

Average of last 
years 

BCI Award 2022, % (N = 
103) 

Platform 
Technology 
Algorithm 

17.9 29.1 

Stroke 
Multiple Sclerosis 

11.4 3.9 

Wheelchairs 
Robots 
Prosthetics 

10.1 8.7 

Spelling 
Speech Decoding 

12.3 8.7 

Game 
Internet Surfing 

4.8 6.8 

Learning 3.2 0.9 

Virtual Reality 4.8 6.8 

Monitoring 
DOC 

4.7 1.9 

Stimulation 2.3 7.8 

Authentication, 
Speech Assessment 

6.3 1.9 

Connectivity 1.9 0.9 

Art (Installation, Dance, Painting, Music) 2.2 13.6 

Designing new electrodes or caps for existing 
BCIs 

– 1.9 

Epilepsy, Parkinson, Tourette‘s, Autism, 
schizophernia 

2.6 10.7 

Depression, Fatigue, ADHD, pain, Substance 
use disorder 

2.8 3.9 

Neuromodulation – 1.9 

Emotion Recognition, 
Stress Management, Neuromarketing 

1.7 7.8 

Ethics 1.4 – 

Attention 4.2 0.9 

Mechanical ventilation 1.6 – 

Assistive hearing device – 0.9 

On the other hand, the BCI Research Award hasn’t changed many core compo-
nents. The overall timing, we follow each year, judging criteria, jury selection 
procedure, and other elements haven’t changed. The juries have always had 5–8



BCI experts with expertise in different facets of BCIs. We also haven’t changed our 
goals with the BCI Research Awards. Since they began, the Awards were meant to 
recognize, publicize, and encourage high-quality BCI research from anywhere in the 
world. 
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Jose M. Azorin 

Surjo R. Soekadar 

Henri Lorach Monzurul Alam 

Ferat SahinKara Presbrey 

Chair 2023 
Miguel Hernández University of Elche, Spain 

Winner 2022 
NeuroX Institute EPFL, Switzerland 

The University of New South Wales, Australia 

Rochester Institute of Technology, USAUniversity of California, USAMedical University of Charité, Germany 

Fig. 1 The jury for the 2023 BCI Research Awards 

5 Next Year’s Award and Conclusion 

As of this writing (August 2022), we have selected the jury for the 2023 BCI 
Research Awards. Figure 1 shows that the 2023 jury has six BCI practitioners, 
most of whom are experienced with BCI Research Awards. 

Like most years, our jury includes a member of the team that won first place the 
preceding year. This time, that team member is Dr. Henri Lorach, who has a chapter 
in this book about his first place award. The chair of the jury, Jose M. Azorin, is a 
professor at the University of Elche in the Alicante region of Spain known for his 
outstanding work using BCIs and exoskeletons for gait rehabilitation with BCIs 
[4, 5]. 

We also announced the key dates for the 2023 awards: 

1. Submission deadline: September 1st 
2. Announcement of nominees: September 14th 
3. Oral presentations from nominees and the BCI Award Ceremony: October 3rd 

We will host the 2023 Award Ceremony online at an IEEE conference, like we did in 
2020–2022. The 2023 conference will be organized through an IEEE Systems, Man, 
and Cybernetics conference. This conference5 will be hosted virtually from Hawaii, 
United States from October 1–4. The conference will also feature numerous work-
shops and other activities involving BCI/BMI. 

5 https://ieeesmc2023.org/

https://ieeesmc2023.org/
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Next year’s BCI Research Award should also feature a new book with next year’s 
projects. As more and more people study BCIs, awards and books like these should 
become more useful to broader audiences. Students, teachers, makers, medical 
experts, futurists, ethicists, and many other groups will want to learn more about 
different approaches to BCIs for new patient groups and applications. 

References 

1. Guger C, Bin G, Gao X, Guo J, Hong B, Liu T (2011) State-of-the-art in BCI research: BCI 
Award 2010. INTECH Open Access Publisher 

2. Guger C, Allison BZ, Edlinger G (2013) Brain-computer interface research: a state-of-the-art 
summary. Springer, Berlin 

3. Guger C, Allison BZ, Miller K (2020) Highlights and interviews with winners. In: Brain– 
computer interface research. Springer, Cham, pp 107–121 

4. He Y, Eguren D, Azorín JM, Grossman RG, Luu TP, Contreras-Vidal JL (2018) Brain–machine 
interfaces for controlling lower-limb powered robotic systems. J Neural Eng 15(2):021004 

5. Ortiz M, Ferrero L, Iáñez E, Azorín JM, Contreras-Vidal JL (2020) Sensory integration in human 
movement: a new brain-machine interface based on gamma band and attention level for control-
ling a lower-limb exoskeleton. Front Bioeng Biotechnol 8:735


	Contents
	Brain-Computer Interface Research: A State-of-the-Art Summary 11
	1 Introduction
	2 What Is a BCI?
	3 The Annual BCI Research Award
	4 The BCI Research Award Book Series
	5 Projects Nominated for the BCI Award 2022
	6 Summary
	References

	Remediating Phonological Deficits in Dyslexia with Brain-Computer Interfaces
	1 Introduction
	2 Operant Learning BCI for Dyslexia
	2.1 Overview
	2.2 Decoder Design Based on the Temporal Sampling Theory
	2.3 From Signal Classification to Feedback
	2.4 Pilot Data and Validation

	References

	Highly Generalizable Spelling Using a Silent-Speech BCI in a Person with Severe Anarthria
	1 Introduction
	2 Methods
	3 Discussion
	References

	Fast, Accurate, Unsupervised, and Time-Adaptive EEG-Based Auditory Attention Decoding for Neuro-steered Hearing Devices
	1 Introduction
	1.1 The Auditory Attention Decoding Problem
	1.2 Neuro-steered Hearing Devices
	1.3 Two Fundamental Problems with Stimulus Reconstruction

	2 Unsupervised and Time-Adaptive Stimulus Reconstruction
	2.1 Supervised Training of the Neural Stimulus Decoder
	2.2 Unsupervised Training of the Neural Stimulus Decoder
	2.3 Time-Adaptive Unsupervised Updating of the Neural Stimulus Decoder

	3 Decoding the Spatial Focus of Auditory Attention
	4 Conclusion and Future Challenges
	References

	Closed-Loop Control of Images Based on Electrocorticogram Decoding in Visual Semantic Space
	1 Introduction
	2 Materials and Methods
	2.1 Subjects
	2.2 ECoG Recordings
	2.3 Experimental Procedures
	2.4 Construction of the Semantic Vector
	2.5 Decoder for the Real-Time Feedback Task
	2.6 Evaluation for the Real-Time Feedback Task

	3 Results
	4 Discussion
	References

	Digital Bridge to Restore Voluntary Control of Leg Movements After Paralysis
	1 Introduction
	2 Design of the Fully Implantable Brain Spine Interface
	3 Design of Stimo-BSI Clinical Trial (NCT04632290)
	4 Discussion
	References

	Brain-Body Interfaces to Assist and Restore Motor Functions in People with Paralysis
	1 Introduction
	2 BBI for Neurological Recovery
	2.1 Future Perspectives
	2.1.1 Motor Decoding
	2.1.2 Movement Restoration
	2.1.3 Sensory Feedback


	3 BBIs for Assistance
	3.1 Future Perspectives
	3.1.1 Motor Decoding
	3.1.2 Movement Restoration
	3.1.3 Sensory Feedback


	4 Conclusion
	References

	Keeping Our Eyes on the Prize; Are We Losing Sight of the `Why´ in BCI for Neurorehabilitation?
	1 Identification of Appropriate Target Neural Signal
	2 Identifying Therapeutic Goals
	3 Identifying the Most Appropriate Technology to Improve Function
	4 Thinking Outside the (Black) Box
	5 Conclusion
	References

	Real-Time Decoding of Leg Motor Function and Dysfunction from the Subthalamic Nucleus in People with Parkinson´s Disease
	1 Introduction
	2 Method
	2.1 Study Design
	2.2 Leg Force and Locomotor State Classifications
	2.3 Leg Force Regression

	3 Results
	3.1 Leg Force and Locomotor State Classifications
	3.2 Leg Force Regression

	4 Discussion
	References

	Designing Touch: Intracortical Neurohaptic Feedback in Virtual Reality
	1 Introduction
	2 Virtual Reality Experimental Platform
	2.1 Hardware and Software
	2.2 Validation Studies

	3 Neurohaptic Design
	3.1 Virtual Object Discrimination Tasks
	3.2 Electrode Localization for DCS Candidates
	3.3 Complex Stimulation Design

	4 Behavioral Results
	4.1 Subjective Descriptions
	4.2 Discrimination Accuracy

	5 Discussion
	References

	May the Force Be with You: Biomimetic Grasp Force Decoding for Brain Controlled Bionic Hands
	1 Sliman Bensmaia: A Tribute to an Exceptional Scientist and Mentor
	2 Introduction
	3 Results
	3.1 Non-human Primate Grasp Force Task
	3.1.1 Force Representation in Monkey Motor Cortex
	3.1.2 Force Can Be Decoded from Neural Population Responses

	3.2 Human iBCI Grasp Force Task
	3.2.1 Force Representation in Human Motor Cortex
	3.2.2 Dynamic Decoder Allows Accurate Force Decoding


	4 Conclusions
	5 Methods
	5.1 Non-human Primate Experiment
	5.1.1 Animals and Surgery
	5.1.2 Behavioral Task
	5.1.3 Forces
	5.1.4 Electrophysiology and Neural Data Preprocessing

	5.2 Human BCI Experiment
	5.2.1 Participant
	5.2.2 Array Implantation
	5.2.3 Neural Recordings
	5.2.4 Virtual Environment Task
	5.2.5 Online Decoder Training and Control

	5.3 Data Analysis
	5.3.1 Alignment and PSTHs
	5.3.2 Task and Force Modulation
	5.3.3 Decoding Models


	References

	Real-Time Intraoperative Sensorimotor Cortex Localization and Consciousness Assessment with the Spatial and Spectral Profile o...
	1 Introduction
	2 Methods
	2.1 Subject Recruitments
	2.2 3D Cortical Rendering
	2.3 Anesthesia Administration and Surgical Procedure
	2.4 Hardware Interface Module
	2.5 Online Spatial-Temporal and Spectral Analysis of SSEPs
	2.5.1 Real-Time Preprocessing
	2.5.2 Spatial-Temporal and Spatial-Spectral Heat Map
	2.5.3 Unsupervised Identification of Central Sulcus

	2.6 Offline Spectral and Temporal Analysis of SSEPs
	2.6.1 Electrode Coregistration
	2.6.2 Time-Frequency Maps and Spectral and Temporal Power

	2.7 Interpeak Latencies
	2.8 Statistical Analysis

	3 Results
	3.1 Real-Time Delineation of the Central Sulcus
	3.1.1 Spatial-Temporal Feature
	3.1.2 Spectral Clustering
	3.1.3 Spatial-Spectral Feature

	3.2 State-Specific Characteristics of Induced Spectral Modulations
	3.3 State-Specific Characteristics of Induced Temporal Features

	4 Discussion
	4.1 Clinical Approach to CS Delineation
	4.2 CS Delineation with SSEPs Spatial Features
	4.3 Unsupervised Regional Clustering
	4.4 State Characteristics of the Spectral Features of SSEPs
	4.5 Interpeak Latency

	5 Conclusion
	References

	A Summary of the 2022 BCI Award with Discussion of BCI Trends
	1 The 2022 Awards Ceremony
	2 The 2022 Winners
	3 Directions and Trends Reflected in the Awards
	4 Overview of Other Changes with the Awards
	5 Next Year´s Award and Conclusion
	References


