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Abstract. Behavioral recordings made by human observers (HOs) are
central to animal pre-clinical behavioral models (ABM) of neurobiolog-
ical diseases, where behaviors (e.g., swimming or immobility) are tran-
scripted from video recordings of experi-ments by HOs. These models
face criticism due to their vulnerability to reproductibility issues; evalu-
ation of HO’s reliability during training can help to control this source
of error. Here, we propose and test algorithms for estimation of Co-hen’s
Kappa (K) index and accessory measures (maximum K, prevalence, bias)
associated with bootstrapping (BS) of behavioral ratings produced dur-
ing a real experiment using the rat’s Forced Swimming Test (FST), to
evaluate intra-Hos reliability for the recorded categories. Present results
indicate that the use of repli-cas after BS faithfully mirrors most of the
concordance attributes of the original transcripts while allowing a statis-
tical evaluation of intra-HO’s reliability, and their differences concerning
the maximum agreement (Kmax), and the probabili-ties of under-or over-
estimation of K (bias and prevalence). The use of these tools can inform
and optimize the performance of HOs in the use of ABM, without re-
quiring time-intensive re-testing, favoring the reproducibility of the data
obtained by these procedures.

Keywords: Intra-observer reliability tests · Behavioral models ·
Bootstrap · Confidence intervals · Cohen’s K

1 Introduction

Behavioral recordings by human raters are central to preclinical animal behav-
ioral models of neuro-biological diseases, such as anxiety and depression, as
well as to the study of drugs potentially useful to treat these conditions ([19]).
In these models, behavioral categories (like swimming or eating) are recorded
(transcripted from video recordings) by human observers (HOs). These models
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are facing considerable criticism regarding their vulnerability to reproducibility
issues (e.g., [17]), arising from multiple methodological causes (e.g., [16]). These
causes may include failure to assess and control for intra- or inter-observer relia-
bility (e.g., using analyses such as Cohen’s Kappa(K) analyses and its associated
indexes; [2,6]). As suggested by a recent systematic review on the use and report
of reliability assessment on the Forced Swimming Test literature (FST, a rele-
vant model in behavioral pharmacology for the study of antidepressant drugs),
these tests are rarely employed [10]. Despite their relevance for quality of data
collection and long-standing literature, there is a lack of accessible, open-source
tools to estimate intra- and inter-rater reliability, available to neurobehavioral
researchers.

Here, we propose and test algorithms for the calculation of K and associated
measures (Maximum K achievable, or Kmax, Prevalence (or P), and Bias (or B;
[15]) of behavioral ratings produced during a real experiment using the rat’s FST
Test, aimed to estimate and evaluate inter-and intra-HO reliability for all and
each of the recorded behavioral categories. Estimation and assessment of these
indexes are laborious, time-consuming, and demand repeated ratings of multiple
samples by multiple researchers. To improve the suitability of these tests without
sacrificing their meaning and precision, we also propose and test an approach to
infer the population’s K, Kmax and Cohen’s “d” using bootstrapping of pairs of
real observations This method is preferred to estimate confidence intervals (CI) of
reliability indexes like K because its results tolerate non-Gaussian distributions of
data [8,20]. The algorithms presented here were coded in a freely available open-
source stand-alone application and library, (https://github.com/EthoWatcher/
Reliability).

2 Materials and Methods

The tests and algorithms described below were coded using C++ 11, the result-
ing images were developed in Python 3.6.13, run in Windows 10, and are available
on a Github repository (https://github.com/EthoWatcher/Reliability). These
tests were carried out using transcriptions of a video taken from a real rat FST
experiment (one adult male rat, recorded for 4 min), performed by a single HO
in 2 sessions 15 days apart (as part of a study approved by the Ethics Committee
of the Federal University of Santa Catarina; CEUA-UFSC, PP00764). HO was
trained to use the transcription tool ([11,12], https://github.com/EthoWatcher/
ethowatcher) and a catalog of 6 categories usual for FST studies [4,9]. Each tran-
scription resulted in a sequence of 7200 annotations (one for every frame in the
video, Fig 1). For the bootstrapping (BS) tests, these 2 samples were paired
and resampled 1667 times by a BS algorithm developed and coded after [13,18].
Original or resampled (post-BS procedures) pairs of transcriptions were used to
build intra-HO catalog agreement matrices (CAM; Table 1A) and catalog maxi-
mum agreement matrices (CAMmax; Table 1B), that were developed according
to an adaptation of the AMmax of Sim and Wright (2005). Categorical agree-
ment matrices (CTAM, Table 1C) and categorical maximum agreement matrices
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(CTAMax) for each behavioral category in the catalog were also built. K and
related indexes (Kmax, B, P and Cohen’s “d”, see below) were estimated from
CAM, CTAM, CAMmax and CTAMax, to determine the intra-HO’s reliability
in using the entire catalog, as well as HO’s performance for each category.

Fig. 1. A. Video frames of an experimental FST in rats. B. Resulting transcription of
corresponding frame pairs side-by-side; behaviors in green are agreements, and in red
indicates disagreements between transcriptions 1 and 2 of the same video sample taken
by the same HO 15 days apart.

The first step was to transform CAM (Table 1A, N x N, for N behaviors) into
a CTAM (Table 1C) for each behavior. The algorithm arranges the CAM so that
the selected behavior is positioned in its 1st row and its 1st column of CTAM.
Using the notation indicated in Table 1A, the CAM cell a indicates the frequency
of intra-HO agreements on “Swimming” (S) occurrence in the 2 transcriptions;
the agreement on Not-S occurrence in both transcriptions is the average between
cells e and i; 3) In the CTAM, disagreements (cells b and c, Table 1C) are the
average of cells b and c, and of the cells d and g respectively of the Table 1A.
From the CTAM, reliability indexes for the HO for each behavior can be then
estimated (see below).

In addition to the CTAM and the CAM, a CTAMmax and a CAMmax were
obtained by changing the main diagonal cells so that they contain the high-
est possible values of agreement frequencies while keeping the marginal values
(Kmax; [15]). K max can be compared with K to estimate if there is (or not)
room for performance improvement [15]. The higher the difference between the
K and the corresponding Kmax, the higher the chance of improving the HO’s
performance (e.g., by increasing training or refining the catalog).
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The second step is to find the CAMmax and CTAMax for each behavior
in the catalog. CTAMmax was determined by a modification of the methodol-
ogy described by Sim and Wright (2005), to allow finding the CAMmax. This
modification establishes the agreement diagonal as the minimum value between
the marginals of the respective lines and columns [15]. Then a backtracking
algorithm [14] is used to find the values of the other cells and to calculate the
marginals. The backtracking algorithm selects a value for the cell and tests if
it is valid. Validity occurs when a) the value of the sum of the column or row
cells must result exactly in the marginal values (if the number is in the last
cell of the row and/or column) or when b) the value is any number that, when
added to the other values selected of the row or column, is lower than or equal
to the values of the marginal of the corresponding column or row (if there are
remaining cells to be determined). When the selected number is valid by these
criteria, the algorithm repeats these procedures for the next cell, and so on.

After determining the CAM, CAMmax, CTAM, and CTAMmax we calculate
the K, for each matrix, using formula (1).

K =
Po− Pc

Pc− 1
(1)

where Po = proportion of observed agreements, Pc = proportion of agreements
expected by chance. Using Table 1A, the Po can be calculated using formula (2)
and Pc using formula (3).

Po =
a + e + i

n
(2)

where a, e, and i are cells located in the main diagonal and n = number of paired
rating

Pc =
q c∑

n=1

PiPj

n
(3)

where q c = number of behavioral categories, Pj indicates the marginals of
transcription 2 and Pi is the marginals of transcription 1.

K ranges from −1 (total disagreement) to 1 (complete agreement), while
K = 0 indicates random agreement. The benchmark for Cohen’s K interpretation
proposed by Landis and Koch (1977), determined that K < 0 corresponds to a
poor agreement, while K ranging 0.01–0.2 = slight agreement; 0.21–0.04 = fair
agreement; 0.41–0.6 = moderate agreement; 0.61–0.80 = substantial agreement;
0.81–1 = almost perfect agreement [7]. The Prevalence index (P) indicates the
homogeneity of the frequencies of the categories on which the transcriptions
agree, and using the notation in Table 1C, can be calculated by the formula (4).

Prevalence =
abs(a− d)

n
(4)

where abs(a − d) = absolute value of the difference between the frequencies of
these cells and n = number of paired ratings. The higher the P-value, the more
the measured K can be undervalued in the performance of the observer. As an
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Table 1. An example of an intra-observer (A) catalog agreement matrix (CAM), (B)
catalog maximum agreement matrix (CAMax); and (C) categorical agreement matrix
(CTAM). Numbers refer to the frequency of agreements for each category. Note that
the superscript right letters in the upper right-hand corners of the cells indicate the
notation used in respective agreement formulas

A (CAM)
Trasncription 2 Total

Swimming Climbing Immobility

Transcription 1

Swimming 2a 4b 0c 6

Climbing 2d 1e 2f 5

Immobility 0g 0h 3i 3

Total 4 5 5 14n

B (CAMmax)
Trasncription 2 Total

Swimming Climbing Immobility

Transcription 1

Swimming 4a 0b 2c 6

Climbing 0d 5e 0f 5

Immobility 0g 0h 3i 3

Total 4 5 5 14n

C (CTAM)
Trasncription 2

Swimming Not Swimming

Transcription 1

Swimming 2a 2b

Not Swimming 1c 2d
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example, a “slight” K value associated with a high P suggests that the observer
can be better than the K indicates. P values near zero suggest that the estimated
K is accurately indicating the observer’s (bad or good) performance. So, the more
the P approaches zero, the more reliable is the K values in estimating agreement.

Bias (B) indicates the homogeneity of frequencies at which transcriptions
disagree. Using the notation in Table 1C. B can be calculated by the formula
(5).

Bias =
abs(b− c)

n
(5)

where abs(a − c) = absolute value of the difference between the frequencies of
these cells and the n = number of paired ratings. In contrast to P, the higher
the B, the more the observed K value overestimates the real agreement between
the transcriptions. B values near zero suggest that the estimated K is accurately
indicating the observer’s (bad or good) performance [15].

B and P are calculated for CAM and CAMmax, using an approach modified
here from that was proposed [15] to allow for calculations for N x N matrices, for
N >2 (N = number of categories in the catalog). This was achieved by (1) selected
the cells located on the central diagonal, for the calculation of the prevalence, or
cells located outside the central diagonal, to calculate the bias; (2) constructed
for each selected cell a vector with origin at (0, 0), directed along the X-axis,
and with intensity determined by its value, Fig. 2A; (3) applied to each of the
vectors a linear transformation that rotated them so that the angular difference
between the vectors was uniform, Fig. 2B; (4) summing the positioned vectors,
and with the module of this vector divided by the n=number of paired ratings,
prevalence or bias was calculated. We repeat this operation for every possible
combination of vectors and extract the largest value.

Fig. 2. Example of calculation of P of CAM from Table 1A. A) the first step of the
algorithm that positions the cells values on the cartesian plane; B) the second step
of the algorithm that rotates the vector in a way that all have evenly angles, The
length of blue bars represents the ‘e’ cell value, red bars represent the ‘a’ cell value and
green bars represent ‘i’ cell value from CAM matrix of Table 1A. The black solid lines
represent the angle among vectors.
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After calculating the K, P, and B of the CAM, CAMmax, CTAM and CTAM-
max constructed for the original pair of transcriptions from the FST video, a
set of new agreement matrices were built from those 1667 pairs of transcriptions
obtained after the BS procedures. To build these new transcriptions and their
corresponding agreement matrices, a list of random numbers with replacement
(ranging from 1 to 7200, the total number of frames in each transcription) was
generated and associated with each frame of the paired original transcription
(according to [13,18]). With each bootstrap replica was calculated the K, P, and
B from the CAM, CAMmax, CTAM and CTAMmax, in a way that was possible
to generate a frequency distribution for each agreement descriptor.

The frequency distributions of K and Kmax were used to calculate the dis-
tance (Cohen’s d) between these descriptors using the formula (6) [5].

K =
Mmax −Mo

Pooled sample SD
N − 3

N − 2.25

√
N − 2
N

(6)

where Mmax = average of Kmax from the bootstrap replicas, Mo = average of
K from the bootstrap replicas, N = number of bootstrap replicas. The standard
deviation (SD) pooled for all the BS replicas was estimated by formula (7).

Pooled sample SD =

√
SDmax2 + SD2

o

2
(7)

where SDmax = standard deviation of Kmax for the BS replicas and SDo stan-
dard deviation of K from the BS replicas. Cohen’s d between the K and Kmax
allows an estimate of the distance between the means of the distributions in SD
(e.g. d = 2 indicates that there is a distance of 2 SD between K and Kmax
distributions). The higher the d value, the higher the possibility of improvement
in the HO’s performance (e.g., through more training). Furthermore, a 95% CI
was calculated using the percentile interval technique ([18]) for the frequency
distribution of each agreement descriptor, which is useful to estimate the range
of possible values for each descriptor. The 95% CI of K and Kmax can be used
to test for significant distances between them: if they don’t overlap, it is possible
to affirm that they are significantly different, assuming a 5% error of type I in
this conclusion [1,3]. Thus, by observing the d value between K and Kmax 95%
CIs it is possible to assess which categories can be refined, or better trained.

3 Results and Discussion

The frequency distribution of K and Kmax values generated from 1667 boot-
strapped replicas from each category of the catalog and for the overall catalog is
compared to the same values estimated for the original pair of transcriptions as
shown in Fig. 3. K values (Fig. 3A–E) indicate that the HO’s reliability in the
FST video was 0.77 (a K value indicative of “substantial” intra-observer agree-
ment, according to [7]). That contrasts with the almost perfect agreement (by
the same benchmark) shown when recording some behaviors (e.g., swimming or
immobility) or just a fair performance when rating headshaking.
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BS procedures preserved the mean K values essentially similar to those
observed for the original pair of transcriptions (as indicated by the K deltas);
their narrow frequency distributions and C.I. values are confined to the same
benchmark “diagnoses” found for original transcriptions. Interestingly, BS pro-
cedures overestimated the K values for the poorest performances (those showing
the widest distributions: diving and headshaking). Kmax values and distributions
(Figs. 3 and 4) can further refine the reliability analysis: significant differences
between BS replicas average K and the average Kmax suggest that performance
in the overall catalog can be improved (by training or better defining the cat-
egories) from 0.77 (substantial) to 0.99 (nearly perfect, the same is valid for
swimming or immobility).

Fig. 3. Frequency distribution (n = 1667 bootstrap replicas) of K and Kmax for the
overall catalog and of each behavioral category. Red lines represent K (left column
of figures) or Kmax (right column of graphs) observed for the original pair of tran-
scriptions, while black lines represent the average of the bootstrapped replicas. Kδ and
Kmax δ are the differences between the K and Kmax values of the original pair of
transcriptions and the mean value obtained for the bootstrapped replicas

The substantial K obtained for diving is too close to its maximum achievable
(Fig. 4D), suggesting that there is no room for further improvement in the perfor-
mance of the observer regarding this behavior. This analysis also indicates that
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while headshaking reliability can increase, the maximum K achievable remains
at the “moderate” levels.

Analysis of B and P values of bootstrapped replicas (Fig. 4A–E) can further
refine the interpretation of the K and Kmax. Because it is possible to evalu-

Fig. 4. A summary of the K, P, B and the K-Kmax distance for the overall catalog
(A) and single behavioral categories (B–E) for the 1667 replicas obtained by the BS
algorithms. The average K values (black vertical bars) and their respective confidence
intervals (black horizontal bars) are represented with the respective Kmax averages
(red vertical lines) and their confidence intervals (red horizontal lines). d = Cohen’s
d between Kmax and K in Standard deviations. (*) indicates that K and K max are
significantly different (p < 0.05; according to [1,3]). The gray rectangles in this graph
indicate the K level according to the benchmark of [7] for K so that P indicates K < 0
(poor agreement), S for K of 0.01–0.2 (slight agreement); F for K of 0.21–0.04 (fair
agreement); M for K of 0.41–0.6 (moderate agreement); S for K of 0.61–0.80 (substantial
agreement); A for K of 0.81–1 (almost perfect agreement). In the B graph, the average
bias (or B) of the BS replicas values (black vertical bars) and their respective confidence
intervals (black horizontal bars) are represented. In the P graph, the average prevalence
(or P) of the BS replicas values (black vertical bars) and their respective confidence
intervals (black horizontal bars) are represented
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ate if the K calculated is unreliable and with the direction they are skewed. B
indicates that none of K calculated from the catalog and for each category are
skewed towards overvaluation. Implying that all K values estimated are at least
conservative. Complementing, the P values indicate if the K calculated are reli-
able or skewed towards undervaluation. Using this as criteria the most unreliable
K value was for Headshaking, implying that the K calculated for this category
is better than shown in Fig. 4E. P informs that every category is skewed toward
undervaluation, meaning that the K values calculated are conservatives.

4 Conclusions

Present results indicate that the use of replicas after BS faithfully mirrors most of
the concordance attributes of the original transcripts while allowing a statistical
evaluation of intra-HO’s reliability, their differences in relation to the maximum
agreement (Kmax), and the probabilities of under-or overestimation of K (bias
and prevalence). The use of these tools can inform and optimize the performance
of HOs in the use of ABM, without requiring time-intensive re-testing, favoring
the reproducibility of the data obtained by these procedures.

References

1. Austin, P.C., Hux, J.E.: A brief note on overlapping confidence intervals. J. Vasc.
Surg. 36(1), 194–195 (2002). PMID: 12096281. https://doi.org/10.1067/mva.2002.
125015

2. Chaturvedi, S.R.B.H., Shweta, R.C.: Evaluation of inter-rater agreement and inter-
rater reliability for observational data: an overview of concepts and methods (2015)

3. Cumming, G.: Inference by eye: reading the overlap of independent confidence
intervals. Stat. Med. 28(2), 205–220 (2009)

4. Domingues, K., Lima, F.B., Linder, A.E., Melleu, F.F., Poli, A., Spezia, I., Lino
de Oliveira, C.: Sexually dimorphic responses of rats to fluoxetine in the forced
swimming test are unrelated to the function of the serotonin transporter in the
brain. Synapse 74(1), e22130 (2020)

5. Durlak, J.A.: How to select, calculate, and interpret effect sizes. J. Pediatr. Psychol.
34(9), 917–928 (2009)

6. Gisev, N., Bell, J.S., Chen, T.F.: Interrater agreement and interrater reliability:
key concepts, approaches, and applications. Res. Social Adm. Pharm. 9(3), 330–3
(2013)

7. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 159–174 (1977)

8. Lee, J., Fung, K.P.: Confidence interval of the kappa coefficient by bootstrap resam-
pling [letter]. Psychiatry Res. 49(97), 98 (1993)

9. Marchesini, G.: MorphoKinematicFST, um banco de dados unificado de dados
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