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Abstract. The electroencephalography (EEG) technique has the capability of
identifying individual traits. Previous work has already used functional connec-
tivity (FC) features obtained from EEG data for biometric purposes. In this work,
we explored two FC methods not yet used in this context: motifs synchronization
and space-time recurrences. Fifty subjects with two resting-state EEG acquisitions
(one with eyes open and another with eyes closed) were included in the study. FC
matrices for 1 s and 5 s epochs were computed for each acquisition. Subject’s
identification was sought by comparing the FC matrices from both acquisitions
using the Pearson correlation coefficient. The motifs method achieved 48% accu-
racy for both epoch sizes, and the space-time recurrences achieved 36% and 38%
accuracies for 1 s and 1 s epochs respectively. Although the accuracies were low,
they were well above the 2% chance level. Also, unlike other similar studies, the
comparison was made between signals acquired in different conditions. In gen-
eral, the obtained low accuracies illustrate the challenging problem of performing
biometry from EEG and the need for further adjustments in the feature extraction
and classification stages.

Keywords: Biometry · EEG · motifs synchronization · recurrence
quantification · functional connectivity

1 Introduction

The Electroencephalography (EEG) technique has been used for several clinical appli-
cations, particularly for diagnosis of some neurological diseases such as epilepsy [1]
and sleep disorders [2]. Former studies have also shown that this technique provides
information about differences between individuals related to anatomical and functional
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brain traits [3, 4]. More recently, the idea of using EEG signals to distinguish between
different individuals aiming to implement a biometrical system [5, 6] has been explored
in greater depth in several works [7–9], usually considering resting state acquisitions
[10–12]. Indeed, the resting state paradigm has the benefit of enabling the use of data
ac-quired from any individual, including those with restricted mobility, as well as dimin-
ishing the problem of movement artifacts, since the person must be still during the EEG
evaluation.

Among the studies that aim to obtain biometric information from EEG signals are
those that have used characteristics extracted from specific electrodes, and those that
have explored the relationships between EEG signals obtained by different electrodes, a
method known as brain connectivity. Connectivity-based approaches assume that many
brain functions are executed under a specific engagement of different brain regions [13]
or networks. Thus, the understanding of how these interactions take place may play a
key role in providing additional information regarding the individual.

Functional connectivity (FC) is a data-driven, exploratory method, which seeks to
find similarities between the dynamics of different brain regions. Thismethod establishes
relationships between the regions, which can be analyzed through graph theory [14]. For
that, the graph nodes and a measure of similarity to provide the links between the nodes
must be defined. For EEG data, the nodes are usually chosen to be the electrodes. In the
context of using FC obtained from EEG to identify individuals, some similarity mea-
sures have already been explored, such as spectral coherence [9, 15, 16], the Spearman
correlation applied to the Hilbert transform of the time series [17], the phase-locking
value [17, 18], the imaginary part of the phase-locking value [19], the phase lag index
or phase lag index [15], and mutual information applied to ordinal patterns [20], among
others.

This work aims to analyze resting-state EEG under the perspective of graph-based
measures to identify individuals. Two different FC similarity measures are used here:
spatial-temporal recurrences [21] and motifs synchronization [22] based on ordinal pat-
terns [23, 24]. It is important to stress that, to the best of our knowledge, neither type of
similarity measure has yet been used in this context.

This article is divided as follows: Sect. 2 presents the EEG database used, the prepro-
cessing steps and the two similarity methods used to evaluate the FC; Sect. 3 presents the
identification results; and Sect. 4 presents a discussion about these and a brief conclusion
of the work.

2 Materials and Methods

Figure 1 shows a flowchart summarizing the signal processing pipeline adopted in this
work, including the chosen database, the preprocessing steps, the feature extraction
approach, and the methodological analysis. All these steps are described in more detail
in the following sections.

2.1 Database and Preprocessing

The EEG data used was from the Physionet database [25, 26], in which data from
109 subjects were recorded using a 64-channel EEG BCI2000 system, with electrodes
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Fig. 1. Signal processing pipeline. The database consisted of 50 subjects with two EEG acqui-
sitions each (R1 and R2). These were preprocessed and 1 s or 5 s epochs were extracted from
the time series (four epochs from R1 and one epoch from R2). FC matrices were calculated from
these epochs, using the motifs synchronization and space-time recurrences methods. A mean FC
matrix from R1 was used as reference and the FC matrix from R2 was used as test. These were
compared among all subjects using Pearson’s correlation coefficient.

positioned following the 10–10 system (Fig. 2). The subjects performed 14 experimental
runs. The first two runs were acquired in resting state, during one minute each, with eyes
open (R1 – condition) and closed (R2 - condition), respectively. These runs were used
in the analysis performed here.

After downloading the data in EDF format, the preprocessing was performed
using EEGLAB [27], and consisted of four steps: first, removal of artifacts by simple
inspection; second, decomposition of the data using Independent Component Analysis
(ICA) and removal of undesired components; third, removal of alpha and power grid
frequencies; fourth, Common Average Referencing (CAR) of the data [28].

In order to remove more blatant artifacts, the “Inspect/Reject data by eye” tool was
used, in which sections of the signals could be marked for removal. Sections that had
greater (at least five-fold) amplitude than the rest of the signal were removed.

Then, the signal was decomposed into independent components (ICA), using the
tool “Decompose Data by ICA”. This tool displays the obtained independent compo-
nents through scalp map projections of the EEG activity. Components related to muscle
movements, eye blinks and other eye movements can be easily recognized, and were
thus removed.

Next, the alpha band was removed, using a stop band filter (with the “Basic FIR
Filter” tool of EEGlab, considering an interval of 7 Hz to 13 Hz, and selecting the
option “Notch filter the data instead of pass band”). This was done because we wanted
to compare signals obtained from eyes closed and eyes open paradigms, and this band
is known to be strikingly different between opened and closed eyes signals. Finally,



Motif Synchronization and Space-Time Recurrences for Biometry 37

the signal was bandpass filtered (again with the same tool, but without selecting the
option “Notch filter the data instead of pass band”) between 4 and 50 Hz, to eliminate
low-frequency artifacts and high-frequency noise.

Fig. 2. 10–10 electrode positioning system. Obtained from https://upload.wikimedia.org/wikipe
dia/commons/3/38/International_10-20_system_for_EEG-MCN.png. Author: Brylie Christopher
Oxley.

The final preprocessing step implied in a spatial filter for re-referencing the sig-
nals using CAR [28]. This method consists in calculating the mean of the signals over
electrodes and then subtracting this value from each electrode signal.

2.2 Functional Connectivity Matrices

All the database was preprocessed using the four steps aforementioned, however, only
data from 50 subjects were used in this work. These subjects were selected considering
the duration of the acquisitions after preprocessing. Sub-jects with acquisitions with less
than 45 s were discarded.

From the R1 acquisition, four epochs were extracted, starting at seconds 10, 20, 30
and 40. From the R2 acquisition, only one epoch was extracted, starting at second 30.
Lengths of 1 s and 5 s were tested for these epochs. Then, FC matrices were computed
for both R1 and R2 epochs for all subjects, to be used as features in the identification
problem. A template matching approachwas used, in which the R1matrices were further
averaged to give one reference FC matrix per subject, while the R2 matrix was used as
a test sample.

Two different similarity methods were used to compute the FC matrices: motifs
synchronization [22] and space-time recurrences [21]. Both methods were implemented
in MATLAB (2018, Natick, Massachusetts: The MathWorks Inc). These methods are
detailed in the following.

https://upload.wikimedia.org/wikipedia/commons/3/38/International_10-20_system_for_EEG-MCN.png
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Motifs Synchronization. A motif series is basically a series of behavior patterns in
the EEG signal. In this work, motifs with three points were used, as in Fig. 3. Thus, a
temporal series of an EEG electrode can be “translated” into a motif series, according
to the types of motifs in the signal.

Fig. 3. Three-point motifs used in this work.

The motif series of two electrodes can be used to evaluate the similarity between
signals considering different lag values. In this work, a lag t = 0 was used. Mathemati-
cally, the similarity between the motif series of electrodes i and j can be calculated using
the coefficient cij, defined as follows [22]:

cij =
LM∑

k=1

Jk (1)

where LM is the motif series length, Jk = 1 if the motif at position k is the same in both
series, and Jk = 0 otherwise.

Then, the degree of synchronization between electrodes i and j is calculated:

Qij = cij
LM

(2)

which varies from 0 to 1.
With that, an N × N connectivity matrix is obtained, where N is the number of

electrodes used for the acquisition (in this work,N = 64), and each element of thematrix
is the degree of synchronization between the row electrode and the column electrode.

Space-TimeRecurrences. Space-time recurrences is amethod used to identifywhether
a system has returned to a previous configuration during a given time period [29].

The space-time recurrence between two time series xi and xj is defined as:

STRi,j(ε, n) = Θ
[
ε − ∣∣xi(n) − xj(n)

∣∣] (3)

The structure STR is called the space time recurrence matrix: a tridimensional data
structure ofN×N×Ns, withN being the number of channels (or electrodes; in this case,
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N = 64); and Ns the total number of samples in the chosen time frame (e.g. Ns = 160
for 1 s frames or Ns = 800 for 5 s frames, since the sampling rate was 160 Hz). Θ is the
Heaviside function, therefore: Θ(x) = 0 if x < 0 and Θ(x) = 1 if x ≥ 0. Finally, ε is an
arbitrary distance threshold. In the present work, we chose ε = 50% of the maximum
distance (|xi(n) − xj(n)|) between electrode time series.

From the STR it is possible to calculate the connectivity matrix, which consists in
normalizing the sum of the values of each electrode pair in the STRi,j structure:

Ai,j = 1

N

N∑

n=1

STRi,j(ε, n) (4)

Thus, it is possible to reduce the dimension of the problem, since Ai,j is a two
dimensional N ×N matrix. Each element of the matrix describes the similarity between
two temporal series of EEG.

2.3 Comparison by Pearson Correlation Coefficient

Toevaluate the similarity among the signals, and thus identify a given subject, thePearson
correlation coefficient was calculated between the mean R1 (eyes open) matrix and the
R2 (eyes closed) matrix of all subjects.

If the highest correlation value was for R1 and R2 of the same individual, it was
possible to identify the person, because it indicated greater similarity between different
acquisitions of the same person. If not, it was not possible to identify the person.

Finally, the methods were compared in terms of their hit rate, or accuracy (i.e.,
percentage of correctly classified individuals).

3 Results

Table 1 shows the accuracy values obtained for subject identification, for each FCmethod
and epoch length.

Table 1. Subject identification accuracies for all combinations of functional connectivitymethods
and epoch lengths.

Epoch length Motifs synchronization Space-time recurrences

1 s 48% 36%

5 s 48% 38%

Using motif synchronization, for both epoch lengths (1 s and 5 s), 24 individuals
were correctly identified among 50 analyzed, which corresponds to 48% of accuracy in
both cases. Interestingly, the epoch length did not seem to influence the performance of
this method.
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The space-time recurrences method was able to correctly identify 18 out of 50 indi-
viduals for FC matrices computed using 1 s data, which corresponds to 36% accuracy,
and for 5 s matrices it could identify 19 individuals among 50, which corresponds to a
38% accuracy. Therefore, the results using 5 s epochs to compute the FC matrices were
slightly better.

4 Discussion

Regarding a comparison between methods, the motifs method achieved better accu-
racy than the space-time recurrences method, for all epoch lengths. This indicates
that the motifs method was more capable than the recurrences method of extract-
ing relevant information from the EEG signals regarding individual traits. The motifs
method has been shown to be more efficient than other usual EEG FC methods, such as
mean squared coherence and imaginary coherence, for extracting relevant information
regarding interictal epileptiform discharges [30].

Nevertheless, the accuracies obtained with both methods used here, for all epoch
lengths, were too low for practical purposes. Indeed, in [9], La Rocca and colleagues
achieved up to 100% recognition rates with this same database, using features obtained
both from power spectral density (PSD) and from coherence-based connectivity. They
looked at individual electrodePSDfeatures and individual channel (electrode pair) coher-
ence features, and then combined the features from a given region (e.g., central, parietal
or frontal) and fed them to a classifier based on the Mahalanobis distance. However, it is
important to note that they only compared epochs within a given acquisition (eyes open
or eyes closed); they did not attempt to use one acquisition to predict the other, as done
here.

This work has several limitations. The number of subjects was low for the type of
application (biometry). Notwithstanding, it is important to note that when the number of
subjects is increased, the rate of accuracy decreases, since more comparisons are being
made and the chance that there will be a correlation coefficient smaller than that of the
right person increases. We previously tested the method with a sample of 11 subjects
and the accuracies were indeed much better (64% for both methods).

The number of acquisitions per subject was also low, and additionally, the two acqui-
sitions used did not follow exactly the same conditions, since despite both being in
resting-state, one was acquired with eyes open and the other with eyes closed. Closing
one’s eyes is known to increase the amplitude of alpha band oscillations in EEG signals.
In a first analysis (not reported here) we attempted to use these different signals without
subtracting the alpha band, but the results were worse than the ones reported here.

Also, the first preprocessing step (artifact removal by visual inspection) is somewhat
subjective and may not have been exactly the same for all signals. Additionally, the
STR requires adjusting the recurrence threshold for optimum FC evaluation [22] and a
further detailed analysis considering a specific dataset for hyperparameter tuning outlines
a natural perspective.

Nevertheless, it is important to highlight that the method presented may be taken
further by exploring different options in each step of the methodology. Preprocessing
could benefit from an automatic artifact removal algorithm such as SOUND [31], which
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would take away the subjectivity of removing signal stretches and ICA components by
simple inspection. Also, other types of referencing methods, such as REST [32], could
be tried instead of CAR. In the feature extraction step, graph parameters computed from
the FC matrices could be explored. The motifs method could be improved by looking
at delays other than zero, as in [22], while STR can be improved by means of threshold
adaptations. Finally, in the classification step, a very simple classification method was
used, namely, the Pearson correlation coefficient, but comparatively more sophisticated
classification approaches could be investigated, such as Linear Discriminant Analysis
(LDA), Support Vector Machine (SVM) or even deep neural networks.

In conclusion, both methods of FC calculation, motif synchronization and space-
time recurrences, produced results that remained below what would be considered an
accurate pattern of subject identification. That said, these results were highly above the
chance level (which, for 50 subjects, would have been 2%), showing that the methods
have potential for this application. Also, our results were obtained attempting to match
two signals acquired in different moments, while other works in the literature using
similar approaches have compared only signal epochs within the same acquisition (and
condition). Finally, this was a pilot study, which aimed to explore the use of two FC
measures that, to the best of our knowledge, had not yet been applied to biometry
studies based on EEG data.
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