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Abstract. Epilepsy is a neurological disorder characterized by recur-
rent seizures due to abnormal discharges in cortical networks of the
brain. A seizure prediction method with a low false-positive rate in a
high confidence interval and without side effects may improve patients’
quality of life. Heart rate variability (HRV) analysis is among the most
promising approaches for seizure prediction. This method indirectly
assesses the behavior of the autonomic nervous system (ANS) through
cardiac rhythm activity. Artificial intelligence (AI) classifiers may pre-
dict seizures and distinguish the different phases in ECG signals. This
work evaluated several classifiers for seizure prediction and studied them
in terms of computational cost for training, sensitivity, accuracy, false-
positive rate (FPR), and their suitability for wearable applications using
the HRV approach. Relied on the results, the Support Vector Classi-
fier (SVC) obtained the best set of scores, including the highest accu-
racy, 97.57%, as well as the second-highest Sen, Spe, and NPV scores,
97.70%, 97.51%, and 98.83%, respectively for preictal periods, consider-
ing an evaluation of 14.08 h from six patients’ ECG data.
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1 Introduction

Epilepsy is one of the most common chronic neurological disorders, affecting
approximately 50 million people worldwide [1]. This abnormal brain behavior
can cause some clinical manifestations in the patients that include involuntary
movements, distorted perceptions, loss of consciousness, permanent brain dam-
age, and in the most severe cases, sudden unexpected death (SUDEP) [2–4].
Despite anti-epileptic drugs controlling many cases of epilepsy, 30% of patients
still suffer from uncontrolled seizures [4]. Other alternatives to epilepsy treat-
ment include surgical intervention and neurostimulation, but some patients are
not eligible for these [5].
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Epileptic seizures prediction methods are based on two signal approaches,
the electroencephalogram (EEG) and the electrocardiogram (ECG) [2,5,6]. The
most common methods based on EEG signals involve coupling electrodes to the
patient’s scalp [7], which is impractical for wearable device applications. Other
methods rely on surgical procedures to map the epileptic focus, and the potential
treatments carry the risk of brain damage and infection [5].

Given the highlighted limitations and drawbacks of the EEG-based method
and with the aim of the feasibility for portable devices available to patients, the
methodology of HRV analysis emerges as a promising alternative [8]. The choice
of ECG signal is immediate because it offers many advantages, such as eas-
ier acquisition, processing, and lower cost, making it suitable for detection and
prediction systems and patient comfort. Further, according to the results of a
recent study [9], based on an analysis that included preictal periods, there was no
evidence for significant differences in HRV metrics according to epilepsy type.
Therefore, this fact makes this method particularly useful when compared to
EEG approaches. Figure 1 depicts the concept of a wearable device split into two
parts. The first part includes a dedicated circuit designed for signal condition-
ing, summarized here as an analog front-end (AFE), and a heartbeat detector.
Then, identified heartbeats are sent to a microcontroller such as ESP32�, which
contains the second part performed by the AI algorithms for seizure prediction.

Fig. 1. Application.

The state-of-art related EEG approach is replete with research on AI compar-
ison to find the best algorithm for seizure prediction, and examples include [6,10–
13]. To the best of the authors’ knowledge, although there are several EEG
studies using machine learning models, there is still a lack of comprehensive
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evaluation of AI models for seizure prediction based on ECG. Among the best
examples in this area are [5,14], both studies with Support Vector Machine clas-
sifiers (SVC), and that do not consider the characteristics required for real-time
operation.

This work is the sequence of the former which consisted of the design and
fabrication of the integrated circuit for ECG acquisition and extraction of heart-
beats for HRV applications in [15]. The main objective of this study is to show
the comparison and selection of the best trained and validated classifier model
suited for wearable applications relying on HRV for seizure prediction.

2 Material and Methods

Although research on EEG-based prediction is extensive, there is no consensus
on the duration of the prediction phase. Figure 2 shows the classification of ECG
recordings into four main intervals, as done in [16]: interictal - the signal baseline
and at least 30 min before seizure onset; preictal - periods from 5–15 min before
seizure onset; ictal - identified seizure onset in the dataset; and the postictal
- period immediately after the seizure ends. As with EEG-based approaches,
seizure prediction with ECG is based on signal phase discrimination. Thus, true
alarms are the preictal periods detected within a predetermined interval [17].

Fig. 2. Periods in an epilepsy ECG recording. In the interictal period, an alarm trig-
gered is considered a false alarm, whereas, in the preictal period, it is considered a true
alarm.

To evaluate the performance of the supervised machine learning models for
seizure prediction, each one it is have been analyzed in terms of its accuracy
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(ACC), sensitivity (Se), specificity (Spe), positive predictive value (PPV), neg-
ative predictive value (NPV), and false-positive rates (FPRs). For timing com-
puting, it was used the 20-run average time for training and validation with
the randomized search cross-validation technique using twenty iterations and
five folds. In addition, for the sake of simplicity and since the postictal phases
are not significantly different from the interictal phases, we only consider the
interictal, preictal, and ictal phases in this work.

2.1 ECG Databases

The AI algorithms were evaluated with PhysioNet databases [18]. The first
dataset consists of seven ECG recordings with ten identified seizures. Signals
come from a heterogeneous group of patients with partial epilepsy who exhibited
postictal heart rate oscillations. These recordings, sampled at 200 Hz, contained
remarkable low-frequency transient signals in the 10–100 mHz. The second data
set included recordings from fourteen patients admitted to the Department of
Neurology and Neurophysiology at the College of Siena [19]. The patients, nine
men (age 25–71) and five women (age 20–58), were monitored with video-EEG
containing recordings of 1 or 2 ECG channels with a sampling rate of 512 Hz.

2.2 HRV Features

For predictions based on the HRV approach, several metrics have been extracted
and supported by the state of the art. They can be divided into two groups: lin-
ear and non-linear. The main linear metrics derived from beat-to-beat intervals
(a.k.a. RR-intervals) are the average of NN intervals, the root means squared
difference between consecutive normal heartbeats (RMSSD), and the standard
deviation of NN intervals (SDNN). Based on the Poincare plot, nonlinear met-
rics can be derived to quantify self-similarity in a time series, such as the NN
intervals formed from identified beats. Cardiac-Sympathetic Index (CSI), Car-
diac Vagal Index (CVI), modified CSI [2], and the ratio of CSI/CVI are the most
commonly used nonlinear metrics. Besides the aforementioned nonlinear metrics,
it was examined one of the Hjorth parameters commonly used to analyze EEG
signals, the Hjorth activity (AT) [20], which reflects a time function’s variance.

2.3 Hypothesis

Following the EEG approaches to seizure prediction, the basic assumption is
that the seizure does not occur suddenly, i.e., the process begins several minutes
to hours before clinical manifestations (i.e., preictal phase) [12]. Based on this
assumption, previous research [11,12,16,17] has extracted various features from
brain-behavior analysis to understand the significant and useful preictal changes
in EEG signals [17]. The same approach is possible for HRV-based techniques [5,
21] by extracting the relevant metrics for seizure prediction, as addressed in the
following.
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– Linear metrics: In analyzing the linear metric, we made the following
assumptions based on [22]: As the frequency of heartbeats increases, both
NN intervals and HRV decrease in absolute value (shorter intervals). During
ictal periods, heart rate increases, indicating a decrease in HRV in relation
to the interictal phase (baseline), and also a dominance of the sympathetic
branch (which is activated under stress conditions) relative to vagal activity
(which is activated under rest conditions).

– Nonlinear metrics: Lower variability in ANS indicates a dominant role for
the sympathetic nervous system (higher heart rate) over the parasympathetic
nervous system [22]. It is reasonable to assume that CVI metrics are not
significantly altered by parasympathetic activity during the preictal and ictal
phases. On the other hand, CSI and modified CSI will increase dramatically
at the onset of the seizure (preictal) and during the seizure (ictal) compared
with baseline (interictal phase). It is expected that the Hjorth parameter
will show a tendency toward the unbalancing between the sympathetic and
parasympathetic branches, i.e., as the seizure onset approaches, the value of
AT compared with the baseline increases.

3 Supervised Machine Learning Classifiers

To balance the estimator training step, it was used the stratification technique,
which keeps the same percentage of samples for each labeled period [23]. Fol-
lowing the flow shown in Fig. 3, the first step begins with the acquisition of RR
intervals from a low-power analog front-end (see Fig. 1), then the RR intervals
are evaluated to remove ectopics and outliers beats, and then HRV features are
extracted and segmented. Following the sequence of steps, the segmented fea-
ture is individually scaled based on its minimum and maximum values into zero
to one range. In the last step, the models are trained/validated and tested with
totally new data, and the best model in terms of computational costs, sensitivity,
and false-positive rate is embedded into a low-power microcontroller.

Of the trained/validated and tested models, this work considered as criteria
only those that have achieved reasonable sensitivity, i.e., the overall summed
average of the three ECG periods, above 85%. This consideration allows the
model to be used in real-time applications with reliably estimated reach. The
AI models used in this work include Decision Tree (DT), Extra Tree (ET), Ran-
dom Forest (RF), k-nearest neighbors (KNN), Adaptive Boost (ADA), Support
Vector Machine (SVC), and the Artificial Neural Network (ANN).
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Fig. 3. Flowchart.

4 Results and Discussion

The time evolution of a patient’s CSI and CVI metrics, who had a seizure at
8.13 min after the start of recording, is depicted in Fig. 4. In Fig. 4-a), the contri-
bution of parasympathetic branch activity to cardiac regulation is higher than
sympathetic branch activity around 5 min before seizure onset. From this period,
it can be seen in Fig. 4-b) that there is a trend toward sympathetic predominance,
which can be useful for prediction alarm systems.

Using principal component analysis (PCA) [24], it reduced the dimensionality
of seventeen features to three: the average of RR-intervals, Hjorth activity (AT),
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and the modified CSI. The features extracted from an ECG signal from the Siena
dataset corresponding to a 27-year-old female with three focal onsets of impaired
awareness (IAS) are shown in Fig. 5.

The following measurements were collected by the preprocessing algorithm
over a 5-min acquisition window with a sliding step of 1 s. According to the find-
ings, as the seizure onset approaches, the heartbeat frequency tends to increase,
resulting in a decrease in HRV and, as a result, RR intervals. Hjorth activity
(AT) and altered cardio-sympathetic parameters, on the other hand, significantly
increase as shown by the green-highlighted markers. Besides, it is possible to
observe that Fig. 5-b) presents two red-highlighted markers that correspond to
the modified CSI parameter non-changing, which means miss-classification by
the models or to the false-positive detections.

Fig. 4. CVI and CSI time evolution in two cases: a) instants before seizure onset,
and b) when the seizure onset. In the first case, the sympathetic activity amplitude is
lower than the parasympathetic; in the second case, the sympathetic branch becomes
dominant 5 min before the seizure onset.

Postictal and Siena datasets containing interictal, preictal, and ictal ECG
phases were used in training and validation, totaling 97.47 h. Besides, a total of
14.08 h of new data from six patients were used to test the models. In the last
test evaluation, false-positive rates were calculated using 31.17 h of interictal
data from the MIT/BIH ECG dataset. Using Python Scikit Learn library [23],
the following model configurations were used to achieve the results shown in
Table 1.

– Decision Tree (DT): class weight: “balanced”, criterion: “entropy”, maxi-
mum depth: 64, minimum samples leaf: 4, minimum samples split: 16;

– Extra Tree (ET): criterion: “entropy”, maximum depth: 30, minimum sam-
ples leaf: 2, minimum samples split: 16;

– Random Forest (RF): bootstrap: “false”, maximum depth: 20, minimum
samples leaf: 2;

– K-Nearest Neighbours (KNN): algorithm: “kd tree”, leaf size: 40;
– Adaptive Boost (ADA): learning rate: 0.8, number of estimators: 32, base

estimator: Decision Tree;
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– Support Vector Machine Classifier (SVC): C: 100, class weight: “bal-
anced”, coef0: 1, decision function shape: “ovo”, degree: 10, kernel: “poly”;

– Artificial Neural Network: weight constraint: 5, loss: “categori-
cal crossentropy”, epochs: 200, dropout rate: 0.0, batch size: 100, activation:
“softmax”. Built with two hidden layers of 128, and 64 perceptrons by using
“relu” activation function.

Fig. 5. Normalized features extracted from a patient with two IAS. a) RR-intervals
average, b) Modified CSI, and c) Hjorth activity (AT).

According to Table 1, it is possible to draw the following conclusions: ANN
was the most accurate classifier able to recognize preictal periods with 100% sen-
sitivity, as well as negative predictive value (NPV), which means the likelihood
of 100% of a patient not being in the preictal period. These results are especially
interesting since can be applied to wearable alarm systems, which may alert the
patient in the event of a predicted seizure. Otherwise, i.e., if no alarm arises, the
patient can keep living normally.

In terms of specificity, i.e., the proportion of data classified as non-preictal
among those which are not, the best model was ADA with 98.66%. ADA also
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achieved the lowest FPR, just 0.013, and the highest positive predictive value
(PPV) 97.06% for preictal periods among all models when considering both
datasets. Despite the interesting results, ADA has missed nearly 11.6% of the
preictal periods compared to ANN which may be a problem for patients who
has several seizures in short periods. Still analyzing the results, the SVC model
reached the best accuracy of 97.57% for preictal period identification. Despite
the second-worst time cost, SVC achieved the second-highest Sen, Spe, and NPV
scores, 97.70%, 97.51%, and 98.83%, respectively.

Table 1. Validation results for different predictor AI models.

Model Data ACC (%) Sen (%) Spe (%) PPV (%) NPV (%) aFPR bFPR

DT Interictal 97.70 100.0 96.55 93.55 100.0 0.03448 –

Preictal 84.29 93.10 79.89 69.83 95.86 0.20115 0.03568

Ictal 86.59 59.77 100.0 100.0 83.25 0.00000 0.01001

ET Interictal 92.59 100.0 88.89 81.82 100.0 0.11111 –

Preictal 89.27 77.39 95.21 88.99 89.39 0.04789 0.02913

Ictal 96.68 90.42 99.81 99.58 95.42 0.00192 0.00860

RF Interictal 95.27 100.0 92.91 87.58 100.0 0.07088 –

Preictal 89.78 85.82 91.76 83.90 92.83 0.08238 0.03311

Ictal 94.51 83.52 100.0 100.0 92.39 0.00000 0.00862

KNN Interictal 89.40 100.0 84.10 75.87 100.0 0.15900 –

Preictal 83.14 73.18 88.12 75.49 86.79 0.11877 0.02933

Ictal 89.91 70.50 99.62 98.92 87.10 0.00383 0.00950

ADA Interictal 96.17 100.0 94.25 89.69 100.0 0.05747 –

Preictal 95.27 88.51 98.66 97.06 94.50 0.01341 0.03810

Ictal 99.11 97.32 100.0 100.0 98.68 0.00000 0.00816

SVC Interictal 96.93 100.0 95.40 91.58 100.0 0.04598 –

Preictal 97.57 97.70 97.51 95.15 98.83 0.02490 0.04245

Ictal 94.76 86.21 99.04 97.83 93.49 0.00958 0.01835

ANN Interictal 94.13 84.67 98.85 97.36 92.81 0.01149 –

Preictal 94.25 100.0 91.38 85.29 100.0 0.08621 0.03100

Ictal 91.19 84.67 94.44 88.40 92.50 0.05556 0.00907
aFalse-positive rate from postictal and Siena databases which contains 31.17 h of interic-
tal, preictal, and ictal phases; bFalse-positive rate (FPR) from 14.07 h of interictal data
(MIT-BIH). Average time cost of 20 runs for training/validating of models. Setup: 8 GB
memory, CPU i5-1.8 GHz. Average time: DT - 3.24 min; ET - 17.3 min; RF - 121.23 min;
KNN - 155.26 min; ADA - 159.32 min; SVC - 1538.4 min; ANN - 6306.31 min.

This set of features turns the SVC into the best classifier for seizure prediction
considering the datasets used. Further, in wearable applications, the SCV model
can be trained in off-line mode or with cloud computing and then embedded into
a microcontroller, thereby mitigating the problem of time costs.
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5 Conclusion

This study compared supervised machine learning algorithms for predicting
epileptic seizures. Three metrics extracted from ECG were used to train-validate,
and test several models. Also, three databases were investigated for this purpose,
yielding more than 100 h of data. According to the results, by considering only
preictal periods, the best model was SVC which obtained the highest accuracy,
97.57%, the second-highest Sen, Spe, and NPV scores, 97.70%, 97.51%, and
98.83%, respectively. Based on the shown results, refractory patients to the con-
ventional treatments may benefit, increasing their life’s quality through wearable
devices with embedded trained SVC models to predict seizures.
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