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Preface

The IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian
Congress on Biomedical Engineering (CLAIB&CBEB 2022) took place simultaneously
onOctober 24–28, 2022, in Florianópolis-SC, Brazil, andwere organised by the Institute
of Biomedical Engineering of The Federal University of Santa Catarina (IEB-UFSC),
the Regional Council of Biomedical Engineering for Latin America (CORAL) and the
Brazilian Biomedical Engineering Society (SBEB). These events were held remotely
for the most part, with a small set of conferences taking place in person on the premises
of IEB-UFSC (Florianópolis, Brazil). They included 11 hands-on technical workshops
for students, 26 keynote speakers and symposia, and 40 oral and poster presentation
sessions attended by about a thousand participants, including undergraduate and graduate
students, academic researchers, and public and private sector agents.

We are proud to present in this book a selection of papers presented at this event by
researchers from all over the world, reporting recent and innovative findings and techno-
logical outcomes in the many areas of interest of biomedical engineering. These papers
represent nearly 50% of those original contributions presented at the CLAIB&CBEB
2022. Their academic quality has been warranted by careful peer review coordinated by
an expert scientific committee of leading Latin American senior researchers in biomedi-
cal engineering. The content is organised into four volumes and eleven chapters, covering
the most relevant areas of scientific and technological developments within the broad
spectrum of biomedical engineering interests. We are sure that the contributions pre-
sented in this book give a deep overview of the leading edge in your expertise and other
areas.

On behalf of Scientific and Organising Committees, we thank authors, academic
reviewers and sponsoring societies such as CORAL, SBEB, UFSC, FAPESC and IEB-
UFSC for their contributions. Moreover, we encourage readers to enjoy this amazing
piece of scientific literature as a breadth of knowledge in the biomedical engineering
field.



Organisation

CLAIB&CBEB2022was organised by theRegional Council of Biomedical Engineering
for Latin America (CORAL) and the Brazilian Biomedical Engineering Society (SBEB)
in cooperation with the International Federation forMedical and Biological Engineering
(IFMBE).

Committees

The Organising Committee of the IX Latin American Congress of Biomedical Engi-
neering (CLAIB 2022) and the XXVIII Brazilian Congress of Biomedical Engineering
(CBEB 2022) was composed of the following members:

Organising Committee

Renato Garcia Ojeda (President)
Jefferson Luiz Brum Marques (Vice-President)

Scientific Committee

Jefferson Luiz Brum Marques

Programme Committee

José Marino-Neto

Special Events Committee

Cesar Ramos Rodrigues

Finance and Disclosure Committee

Daniela Ota Hisaysu Suzuki
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Follow-up Committee

Helio Schechtman—President of the Brazilian Society of Biomedical Engineering
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Shankar Krishnan—Presidente International Federation of Medical and Biological
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Estimation of Heart Inclination Angle
Using Posteroanterior Chest Radiograph

and Comparison with Cardiac Axis
Obtained from Synthesized

Vectorcardiogram

Edison Silva Filho1(B) , Lucas José da Costa2 , Felipe Akio Matsuoka2 ,
Alembert Eistein Lino Alvarado1 , Vinicius Ruiz Uemoto2 ,

Renato de Aguiar Hortegal2 , Renata Valeri de Freitas2 ,
and Henrique Takachi Moriya1

1 Biomedical Engineering Laboratory, University of São Paulo, São Paulo, Brazil
edison.silva2@usp.br

2 Dante Pazzanese Institute of Cardiology, São Paulo, Brazil

Abstract. In medical practice, it is common to perform electrocardiog-
raphy exams and by mathematical transformations to obtain the vector-
cardiogram. The vectorcardiogram provides important information for
medical diagnosis, such as the angle of inclination of the heart. This
article aims to present a methodology for estimating the QRS vector-
related angle of the heart using a posteroanterior chest radiograph image.
We used an open source image processing software (Icy software version
2.3.0.0, Institut Pasteur, France, 2021) to perform a manual measure-
ment of the target angle by analyzing relevant morphological structures
from the x-ray images and using some functions to help the user to mea-
sure it. 18 radiographic images were selected to measure the angle of the
heart by two independent individuals. The measured angles were com-
pared using the mean absolute error (MAE). We then computed the QRS
peak elevation angles of the vectorcardiogram (VCG) of the 57 patients
collected at Dante Pazzanese Institute of Cardiology. In addition, an
individual was randomly selected to measure a set of 57 radiographic
images of these same patients. We performed the statistical treatments
and the results suggested that the proposed manual method may be an
alternative, viable and fast approach to estimating the anatomical heart
axis for the purpose of aiding in medical diagnosis. However, further
comparisons with more data and information are needed to determine
its validity and possible method improvements.

Keywords: Heart angle · vectorcardiogram · chest x-ray image
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1 Introduction

Commonly, at the Dante Pazzanese Institute of Cardiology, patients are submit-
ted to routine tests such as electrocardiogram (ECG) and posteroanterior chest
radiography. These exams are performed mainly due to their low cost, relative
ease of execution and the delivery of information to support medical diagnosis.

The electrocardiogram (ECG) records in waveforms the electrical potentials
on the surface of the body generated by the electrical activity of the heart. Any
variation in cardiac impulse transmission can cause abnormal electrical poten-
tials and change the waveforms on the electrocardiogram. These abnormal elec-
trical potentials can be related to structural changes in the heart that affect its
activity or simply electrical abnormalities. For this reason, an ECG is important
in diagnosing serious heart muscle abnormalities [1,2].

Another way to analyze the electrical activity of the heart is through the
vectorcardiogram (VCG). The VCG is the vector representation of the electri-
cal activities of the heart considering three mutually orthogonal axes (vertical,
transversal, and sagittal). In the VCG, the electrical activity of the heart is
described by three loops that represent the P wave, the QRS complex, and the
T wave. The loop of the QRS complex is oval and faces the same direction as the
cardiac axis of the heart. In the normal heart, the direction of the mean QRS
vector is approximately 59◦ [1,3,4].

A way to get the VCG is through the mathematical transformation of the
electrocardiogram. There are several different transformation methods, such as
the quasi-orthogonal transform, the Inverse Dower Transform (IDT), P Least
Square Value (PLSV) and Q Least Square Value (QLSV) Transformations,
Mason-Likar (ML) and the Kors regression transform, the latter with relative
better results than the others. The Kors regression method is a technique for
constructing the cardiogram vector from the ECG, using a linear combination
of eight conventional ECG leads [3,4]. Figure 1 shows the Kors transformation
matrix derived by regression technique in order to minimize the mean error
between the measured VCG and the transformed VCG [5].

Fig. 1. Transformation coefficients of Kors regression method [5]

The joint use of the ECG and the VCG increases the precision in the diag-
noses, but due to the difficulty in relation to the number of electrodes and their
positioning, most of the time ECG is performed. However, VCG tests are more
sensitive for detecting hypertrophy and ischemic heart disease. But the advent
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of mathematical transformation mitigated the difficulty of joint analysis of the
two methods [4,6].

In the posteroanterior chest X-ray, the heart is located close to the frame,
decreasing the cardiac magnification that can cause a false impression of
increased heart volume. The chest X-ray is important in helping to diagnose
cardiac diseases. With it, it is possible to identify structures and morphological
changes, as occurs, for example, in the left ventricular aneurysm by identifying
the aneurysmal dilatation resulting from a myocardial infarction [7].

Through X-ray it is possible to estimate the inclination of the anatomical
axis of the heart and compare it with the electrical axis. Many times there is a
strong correlation, especially in the anteroposterior and longitudinal axes (refer
to the article), but some diseases can affect the heart’s inclination and having
different methodologies at hand can help in the medical diagnosis [8].

This article aims to present a methodology for estimating the QRS vector-
related angle of the heart using a posteroanterior chest radiograph image. The
measurement of heart inclination angle by the method proposed here is relevant
as an additional source of information that complements traditional ECG/VCG
exams for medical decision. We also computed the QRS peak elevation angles
of the same patients’ VCG and compared both angles. We emphasize that we
did not find studies in the literature for estimating the inclination of the angle
of the heart with a methodology similar to that proposed by this article.

2 Materials and Methods

Data were collected as part of a study by the Dante Pazzanese Institute of
Cardiology, and this project was approved according to the Certificado de Apre-
sentação de Apreciação Ética 76085317.5.3001.5185.

2.1 Manual Measurement of the Heart Angle

A set of posteroanterior X-ray images of patients from Dante Pazzanese Institute
of Cardiology was used to measure the approximated angle of the QRS vector
of the heart. An open-source image processing software (Icy software version
2.3.0.0, Institute Pasteur, France, 2021) was employed to manually calculate the
angle.

The methodology to estimate the angle of the heart took into account the
anatomy of the heart and its location inside the rib cage. In this study, the
anatomy of the heart was important to recognize structural regions inside chest
x-ray images to allow the definition of two points of interest, and be able to trace
the reference line to estimate the angle of inclination of the heart. According to
Fig. 2, the estimated points of interest for plotting the reference line were the
ones located in the apex of the heart, and amides the superior vena cava (SVC)
and the right atrium (RA).

To draw the reference line, we used some features of the image processing
software to facilitate the identification of regions of interest. First, the contour
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of the heart was found using a block of contour detection [9]. Second, a vertical
line along the spine was drawn by defining two points with sharing the same
abscissa. Then, we utilized a tool to draw an inclined line that approximately
passed through the two previously defined points.

Fig. 2. Reference points for plotting the heart slope straight line. Points located at
the apex of the heart and between the superior vena cava (SVC) and the right atrium
(RA). [10]. Adapted by the author.

Finally, we measured the angle formed by the vertical and reference line
with the Angle Helper tool, and calculated the angle of the heart by finding the
supplement of the previously measured angle. This angle was considered as the
manual measurement of the angle corresponding to the QRS vector of the heart
by means of a posteroanterior chest x-ray image. Figure 3 shows the application
of the method described in a chest x-ray image.

To validate the proposed method, two independent people performed mea-
surements on a subset of 18 chest X-ray images. In both cases, images took an
average time of 15 min to be analyzed.

2.2 Automatic Measurement

To estimate the heart angle in an automatic way, we implemented an algorithm in
a mathematical programming environment (MATLAB, The MathWorks, USA)
capable of processing electrocardiograms and returning quantitative parameters
of global electrical heterogeneity (GEH), such as sum absolute QRST integral,
spatial QRST angle, spatial ventricular gradient (SVG) magnitude, SVG eleva-
tion, SVG azimuth including the peak QRS elevation angle [11].
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Fig. 3. Application of the Icy program on the chest x-ray image to estimate the angle
of inclination of the heart.

We acquired a set of 57 standard 12-lead electrode ECGs using a digital elec-
trocardiograph (C30+, TEB, Brazil). Then, the VCGs were synthesized from the
12-lead ECGs using the Kors matrix. The coefficients that we present in Fig. 1
allow the ECG to be transformed into a synthesized VCG with relevant informa-
tion, such as the elevation angle of the QRS peak that we want to find. Figure 4
illustrates the use of the Kors regression matrix in ECG for the construction of
the VCG.

Fig. 4. Kors regression matrix in ECG for the construction of the VCG.

2.3 Method Comparison

After measuring and calculating the angle values for each subject using both
methods, we calculated the mean absolute error (MAE) according to Eq. 1 for
the 18 angles measured by the two different trained subjects. [12].

MAE = N−1
n∑

i=1

|Oi − Pi| (1)

where:
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– N is the number of samples
– Pi and Oi are measured angles by different persons or methods.

The mean and standard deviation were calculated for each method separately
for later comparison of the results. Additionally, we calculated the coefficient of
variation for the automatic method and for each trained subject.

3 Results

When applying Eq. 1 to the measurements of heart angles obtained by two
trained individuals using the manual method in 18 chest x-ray images, a MAE of
2.4◦ was calculated. In Fig. 5, the relative frequency distribution of angle errors
when compared two trained individuals are presented. We observe that most of
the results have relatively low error. Only in the first column that has errors
in the range from zero to two degrees are eight of the eighteen measurements
obtained by the two trained individuals, which is equivalent to 44.4% of the
data. On the other hand, the last column that has errors in the range of six to
eight degrees are only two of the 18 measurements, which is equivalent to 11.1%
of the data.

Fig. 5. Relative frequency distribution of measured angle errors between two trained
subjects showing that most measurements have relatively low errors.

Table 1 presents a summary of the results of the calculations of means,
expanded uncertainties and coefficients of variation for different subjects and
methods

The first subject estimated, within the set of 18 chest radiographs, a mean
angle of 50.3◦ with a standard deviation of 3.9◦, coefficient of variation of 7.75%
and an expanded uncertainty of 2.7◦. However, the second subject with the same
set of images obtained a mean angle of 47.9◦ with a standard deviation of 5.1◦,
coefficient of variation of 10.65% and an expanded uncertainty of 3.1◦. Both
results are presented with a confidence level of approximately 95%.
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Table 1. Presentation of the calculated values for the automatic method and for the
manual method by two different subjects.

Result Coefficient of Variation

Subject 1 (50.3± 2.7)◦ 7.75%

Subject 2 (47.9± 3.1)◦ 10.65%

Automatic method (57.2± 7.5)◦ 48.43%

When considering the measurements obtained from the 136 chest x-ray
images, an average angle of 52.1◦ with a standard deviation of 6.2◦ and an
expanded uncertainty of 2.3◦ with approximately 95% confidence level was esti-
mated.

In the automatic method on a set of 57 synthesized VCGs available, an aver-
age angle of 57.2◦ with a standard deviation of 27.7◦, coefficient of variation of
48.43% and an expanded uncertainty of 7.5◦ was estimated. This same dataset
we also analyzed and arrived at an average angle of 51.3◦ with a standard devi-
ation of 5.2◦ and an expanded uncertainty of 2.4◦. Both results are presented
with a confidence level of approximately 95%.

4 Discussion

Vector analysis of electrocardiograms is a consolidated and widely used method
to calculate, among other factors, the QRS vector angle. Based on our results,
the proposed manual method proved to be a viable alternative to estimate the
heart angle. The differentiation between the coefficients of variation of the two
trained subjects may have its cause during the determination of the points of
interest to trace the slope line.

Sometimes the anatomical axis is not intrinsically the same electrical axis
that we find in VCGs. Some factors, such as existing diseases, can interfere
with the results obtained and having the patient’s anamnesis can help in the
interpretation of the results.

The manual method with chest radiography appeared as an alternative option
due to the low MAE between the measured angles of the two trained subjects.
Further comparisons may help to determine the reproducibility of this method.

Currently, the manual method requires the individual to have knowledge of
how the Icy software works and to recognize structural regions within chest
radiography images. A trained individual takes approximately 15 min to analyze
an image. However, in the future, the method of measuring the angle of inclina-
tion of the heart by x-ray imaging can be optimized using artificial intelligence
and be subject to comparison with other studies.

In the literature we did not find a similar method for comparison. We were
restricted to comparing the method between independent individuals and with
the synthesized vectorcardiogram.
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5 Conclusion

Although the proposed method to measure the angle of the heart by means of
chest X-ray is performed completely manually, it has proved to be an interesting
technique that delivers good results that, together with other exams, can help
the medical team in decision making. However, despite the promising results of
the methodology proposed in this article, it still lacks a broader evaluation with
a larger set of images and qualitative and quantitative data from patients.
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Abstract. Motor imagery is a mental stimulation that triggers oscilla-
tory events in sensorimotor rhythms often used in brain-computer inter-
face applications, as well as a stimulus used to understand brain activity
and improve the rehabilitation process of spinal cord injury people. Using
the data extracted from an electronic game designed for a rehabilitation
purpose, this paper describes the steps to extract the EEG synchroniza-
tion patterns during the Hand Laterality Judgment Task that stimu-
lates motor imagery processes, i.e., implicit motor imagery. As result,
we obtained the curves of synchronization, in dB values, that showed
different levels of synchronization between alpha and beta bands and an
activity mostly distributed over centro-parietal and parietal regions.

Keywords: Mental Rotation · Hand Laterality · ERD/ERS

1 Introduction

The decrease and increase in synchronization of the sensorimotor rhythms (SMR)
are called event-related desynchronization (ERD) and event-related synchroniza-
tion (ERS), respectively [1]. ERD/ERS phenomena are also known as an event-
related spectral perturbation (ERSP) and it occurs during the motor imagery
(MI) process, in which the subject imagines the movements of their body parts,
commonly the hands, but also involving the foot and tongue, performed in repet-
itive trials. In the hand actual or motor imagery activity, the ERD patterns are,
preponderantly, contralateral in the function of the hand imagined whilst the
ERS are ipsilateral [2].

Electroencephalography (EEG) is an important tool to investigate brain
activities, due to it is a noninvasive technique, relatively low-cost, and high tem-
poral resolution [3]. Therefore, works using EEG data to estimate ERD/ERS
patterns have been documented in the literature, focusing on classification prob-
lems, which is a fundamental step to the Brain-Computer Interface (BCI) sys-
tems application [4,5]. For MI, the time-frequency analysis has key-role in the
detection and estimating of the ERD/ERS values [3], since the motor imagery
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task induces events that modulate the ongoing alpha (8−12 Hz) and beta (13−30
Hz) activities [2], frequencies that compound the SMR. The modulation of the
alpha and beta bands can be express, for instance, in relative change (unit in
%), power ration (unit in dB), and subtraction (unit in μV 2/Hz) [3].

The methods for ERD/ERS estimation have importance to BCIs based on
motor imagery also called MI-BCI. MI is extensively used in BCI systems due to
discriminative stimulus proprieties, translated into EEG synchronization values,
and also to involve a not expensive signal acquisition [6]. The experimental
paradigm for motor imagery stimulated with a cue, in repetitive trials for each
class, has been reported in research, with the goal to enhance MI-BCI systems
accuracy [7,8]. When the motor imagery is stimulated in an indirect way, we
have implicit motor imagery. For instance, the hand mental rotation engages
motor imagery processes, because the subject imagines their hand rotating for a
position. This protocol is often used when the goal is to identify hand laterality
presented on a screen, that can be called Hand Laterality Judment Task (HLJT)
[9]. Osuagwu et al. (2017) reported a classification performance of 83 ± 3% for
implicit motor imagery of the left and right hand, whilst for explicitly stimulated
motor imagery the performance was 81± 8% [10], showing the possibility to use
implicit motor imagery for BCI application, until little described in the literature.

In the present study, a method to extract ERD/ERS values during HLJT was
implemented. The research investigated how the task influence the oscillatory
activity in SMR of the subjects performing a rehabilitation electronic game,
described in the pioneer work [11], and called Alice in Land of the Hand, or only
ALICE game.

2 Methodology

2.1 Participants

To perform ALICE game, twenty-three subjects participated (age: 25.65 ± 3.88
years), 10 men and 10 women, identified as S1, S2, ..., S23. According to Edin-
burgh Lateral Dominance Inventory, 95% of the subjects were right-handed. One
of the participants declared mixed preference. According to Mini-Mental State
Examination (MMSE) all participants had no cognitive impairment. Further-
more, all subjects had no medical or neurological disorders and they hand-signed
the Free and Informed Consent to participate of the experiment. The project
was approved by the Ethics Committee of the University Hospital Onofre Lopes
(HUOL/UFRN), released with CAAE number (Brazil Platform): 34478214.0.000
0.5292 and appreciation number: 821294. We prejudged the subject’s perfor-
mance and in this step, the data from the S5, S17, and S20 subjects were elimi-
nated. S5 closed their eyes as a technique to response, increasing the amplitude
of the alpha band. S17 was eliminated due to be left-handed and, in the research
context, the hemisphere dominance difference is not a desirable feature. S20 failed
in 104 trials of the 288 trials. Thus, the data from 20 subjects were used in the
present work.
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2.2 Experimental Paradigm

The game was development in collaboration between Brain Institute and the
Department of Informatic and Applied Mathematics (DIMAP), both of the Fed-
eral University of Rio Grande do Norte (UFRN) [11], and the game was pro-
grammed in C language with the XNA Microsoft framework.

In the game world, a robot from the ALICE family disputes with an enemy
robot on an electronic board game setting, and to take advantage over it, the
participants should answer correctly the hand laterality that appears above the
ALICE robot, inside circles. To perform the game, the subjects were seated on a
comfortable chair, located 50 cm away from a monitor (Fig. 1). Then, they were
asked to analyze and judge if the hand presented on the screen was left or right
(HLJT) and then, press down the respective pedal (left or right) using their
respective foot (left or right). The final score for each trial was based on reaction
time (RT), i.e., the time from the stimulus shown on screen until the subject
pressed down the pedal. The main goal was to be accurate with the shortest RT.

Fig. 1. Environment setting to perform ALICE game.

The hand presented have four features: laterality (left and right), orientation
(0◦, 60◦, 120◦, 180◦, 240◦, 300◦), view (back-view and palm-view), and posture
(extension and flexion), in which the flexion posture was presented in three dif-
ferent conditions. These features are shown in Fig. 2 (A). So, there were 96 types
of stimuli: left/right (2) × view (4) × orientation (6) × posture (2), but in this
work, only trials with hand in back and palm-view were selected. The orien-
tations 0◦, 60◦, 120◦ are classified as comfortable, due to being biomechanically
easy to execute, and the orientations 180◦, 240◦, 300◦ are labeled as uncomfort-
able, being difficult to perform [12]. In total, 288 trials were performed by the
participants, divided into three blocks. As seen in Fig. 2(B), the trial begins with
a cross on the screen. 1500 ms later, the image of the hand is shown and stays
on the monitor until the subject responds. Next, the robot gives the feedback



14 S. Ferreira et al.

with a score based on RT. This feedback remains for 1000 ms and it is the final
part of the trial.

Fig. 2. A. Features of the stimulus. B. The experimental design of the game, involving
the HLJT.

2.3 EEG Signal Acquisition and Preprocessing

The EEG signals were recorded at a sample rate of 1000 Hz with 64-channel
ActiCapTM (Brain Products GmbH, Munich, Germany) and using the Vision
Recorder (Version 1.20.0506, Brain Products GmbH, Munich, Germany). All
electrodes were referenced to FCz, with impedance less than 10kΩ and after
EEG recording, the signals were re-referenced to the average of the left (TP9)
and right (TP10) mastoids. Ocular artifacts were removed using the automated
correction method of EOG based on regression analysis, using the BIOSIG tool-
box [13], and three electrooculogram (EOG) electrodes were placed. The EEG
data were digitally filtered with a 0.5–40 Hz band-pass FIR (Finite Impulse
Response) filter and signal amplitude values exceeding ±100μ V were automat-
ically detected and rejected. The preprocessed EEG data were segmented into
epochs defined in [−500 ms,1500 ms], i.e., 500 ms pre-stimulus and 1500 ms after
the visual stimulus, that is the average of the RT for all subjects. The 500 ms
pre-stimulus, of each trial, was used as baseline period, to compare the power
changes after the visual stimulus.

2.4 ERD/ERS Estimation

To quantify the synchronization levels in alpha and beta bands, in decibel (dB),
the following equation was used in each trial:
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ERD/ERS = 10 × log10

(
|F (f, t)|2∣∣F̄ (f, t)baseline

∣∣2)
)

(1)

where |F (f, t)|2 is the power extracted after the visual stimulus and immediately
before the act of press down on the response pedal, and

∣∣F̄ (f, t)baseline
∣∣2 is the

power during the rest interval (baseline period) [3]. The Welch’s method [14] was
used to estimate the periodogram, i.e., the power spectral density (PSD) [3].

To implement the method, the epoch [−500ms, 1500ms] was segmented
using a rectangular window with length of N = 500 samples and step of
250 samples. The segment of N samples was divided in L = 250 parts, with
D = 125 overlapping samples, following the Welch’s method, and resulting in
xk (l) = x (l + (K − 1) D), where l = 0, 1, ..., L − 1. So, we have k = 1, 2, ...,K
segments, i.e., x1(l), x2(l), ..., xK (l). For each k = 1, 2, ...,K segment, the Fast
Fourier Transform (FFT) Ak (n) was extracted, with the signal windowed by
Hanning function [15,16]. Then, the modified periodogram given by:

Ik (fn) =
L

U
|Ak (n)|2 (2)

is estimated for each segment, where fn = n/L and U is the window normaliza-
tion factor, given by

U =
1
L

L−1∑
l=0

w2 (l) (3)

where w(l) is the Hanning window. As result, we have K modified periodograms
Ik (fn). Thus, a mean is calculated among these periodograms, resulting in

P̂k (fn) =
1
K

K∑
k=1

Ik (fn) (4)

i.e., the mean modified periodogram.
Trials with incorrect response, with hand movement detection during the RT

[17,18], without markers, with RT greater than 3500 ms or smaller than 500 ms
[19], or EEG signal amplitude saturation (±100μV ) were automatically removed.

2.5 Region of Interest

The ERD/ERS patterns were analyzed in nine different regions: Full-montage,
Reduced-montage, Simplified-areas, Frontal, Fronto-central, Central, Centro-
pari et al, Parietal and Occipital (see Board 1 and Fig. 3). The goal was to
investigate the activity of each brain region during the HLJT and the synchro-
nization pattern.
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Fig. 3. Regions of Interest.

2.6 Statistical Analysis

Two statistic steps were performed, in order to confirm the main region(s)
involved during the HLJT. In the first step, the main factors were HEMISPHERE
(Left and Right), REGION (Frontal, Fronto-central, Central, Centro-parietal,
Parietal, and Occipital), and FREQUENCY (alpha and beta), with the depen-
dent variable being the mean ERSP. After the first step and following the results,
the second analysis was performed including the hand features (LATERALITY,
VIEW, ORIENTATION, POSTURE) and the average values of the ERSP, in
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order to analyze the influence of the features on ERD/ERS values. To per-
form the statistic, the Generalized Estimating Equation (GEE) method was
used [20,21] and the significance level is p = 0.05.

3 Results

The ERD/ERS resulty curves, in dB, are shown in Fig. 4, for alpha and beta
bands, respectively, including the features of the stimuli (orientation, view and
posture), for each region of analysis (Board 1). The synchronization changes
are more evident in alpha frequency than in beta frequency. An increase in
alpha band is detected during the first 500 ms after the visual stimulus (see
Fig. 5), following by an accentuated desynchronization, more evident in the alpha
band and in parietal and occipital lobes, that include the central, parietal, and
occipital regions, but also in frontal region. The ERD/ERS distribution during
the HLJT, differently in explicit motor imagery, has a distributuion more uniform
over the cortex, mainly over parietal and occipital lobes. Also, we can see in Fig. 5
that the desynchronization is present in both bands.

Fig. 4. Average of the alpha and beta synchronization patterns over trials and subject
means, for each region of analysis and features of the stimulus.
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Fig. 5. ERD/ERS topography characteristic during the first 500ms after the stim-
ulus of each hand that appears on the screen, in the alpha and beta bands; and the
topography during the whole reaction time, for each hand laterality and frequency
range.

The first statistical analysis showed significant main effect of REGION
(χ2 (5) = 562.497; p < 0.001), with the Centro-parietal and Parietal regions
obtaining the largest mean ERD: −1.80 dB and 1.78 dB, respectively. These
regions did not show any significant differences between them. The interaction
HEMISPHERE × REGION and REGION × FREQUENCY were significant,
but without differences of hemisphere and frequency to the same region. So, the
factors HEMISPHERE and FREQUENCY were considered for the step.

In the second statistical analysis, there were no significant main effects on
the HEMISPHERE, FREQUENCY, LATERALITY, VIEW, POSTURE, and
ORIENTATION factors. But, there was significant main effect of HEMISPHERE
× LATERALITY (χ2 (3) = 7.501; p = 0.05) interaction, in which the right-hand
judgment generated a higher ERD in the left hemisphere (mean −2.02 dB) than
in the right hemisphere (mean −1.72 dB).

4 Discussion

In the present work, we implemented a method to extract ERD/ERS patterns
during the Hand Laterality Judgment Task - HLJT, that engages motor imagery
processes [9]. The EEG data from 20 subjects was used. The results showed
largest changes in the alpha band than in the beta band, as also reported by Chen
et al. (2013). The increase in alpha rhythm during the first 500ms of the reaction
time is due to the visual stimulation, that enhances the activity over the posterior
cortex. Also, the hand mental rotation is able to generate an activation over the
post-central gyros (M1 region), superior and inferior parietal lobes, and in the
primary visual cortex (occipital lobe) [22]. The synchronization of the frontal
cortex is related to the attention so requested during the game performance
[23]. Furthermore, during the implicit motor imagery, the distribution of the
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ERD over the cortex is lower lateralized than in explicit motor imagery [2] and
besides, is more uniformly distributed over the parietal and occipital regions.
The Hand Laterality Judgment Task it is not an easy activity to perform, due
to be a multifaceted task, due to involves skills as visual codification, mental
rotate capability, judge and also the attention [24].

5 Conclusion

This paper implemented a method to extract the ERD/ERS patterns during the
Hand Laterality Judgment Task, used by a rehabilitation gaming system. This
task engages motor imagery processes in an implicit way since the stimulus is part
of the body. The method proposed includes Welch’s method using the Hanning
window with a sliding approach. The results showed the synchronization levels
in SMR, predominantly in the alpha band, and uniform distribution over the
left and right hemispheres, in the centro-parietal and parietal brain regions. The
method used to extract ERD/ERS and the experimental design can be used for
BCI system.
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Abstract. Ultrasound imaging is widely used in medical diagnos-
tics. One of its critical processing algorithms is scan conversion (SC).
Although there is extensive research on ultrasound imaging, novel
schemes for SC using System on Chips (SoCs) and Field Programmable
Gate Arrays (FPGAs) are expected to improve image quality. This arti-
cle aims to assess the SC image processing technique on a Xilinx Zed-
Board development kit. This board has a Zynq-7000 All Programmable
SoCs, which was used to execute the proposed SC algorithm with real
ultrasound data from a multipurpose phantom. The results of the experi-
mental data investigations are quantitatively and qualitatively compared
with the results of a Matlab simulation. The image output is displayed
on a monitor screen through the VGA port of the board. A significant
agreement between the simulated and practical images was observed,
with CR and CNR errors of 2.63% and 3.38%, respectively, and with
minor artifacts caused by precision and interpolation differences. In con-
clusion, the proposed SC scheme was satisfactorily implemented on the
ZedBoard, and future studies may explore other processing steps on this
platform.

Keywords: Ultrasound · scan-conversion · FPGA · SoCs · image
processing

1 Introduction

The scan conversion (SC) is one of the most important image processing steps
to form ultrasound B-mode images, and it is necessary for compatibility with
monitors when using convex array transducers. The technique is responsible for
converting the coordinates of the acquired image from polar two-dimensional
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(2D) datasets, in a sector of reference, to Cartesian coordinates of the target
display. This conversion can be done through image processing algorithms run-
ning on computers or other processing platforms. The context of revisiting this
and other well-known image processing techniques is to explore their perfor-
mance and suitability to new hardware-based open platforms, that are idealized
to allow implementation of new imaging algorithms and comply with attributes
of easy reconfiguration, compact size, and realtime requirements to facilitate
research purposes [5]. An example of a commercial convex array transducer used
in biomedical applications is presented in Fig. 1 [6]. Its geometry allows a larger
area to be scanned due to the elements placed on the convex surface.

Fig. 1. Commercial convex array transducer AT3C52B (Broadsound Corp.,Taiwan)
[6].

The coordinate conversion process is illustrated in Fig. 2, which shows a rect-
angular matrix composed of scanlines and samples transformed into a conical-
shaped image. The scanline index is associated with an aperture angle for each
transducer array element, and data samples are associated with the distance
traveled by the echo. The process of SC resamples the polar-sample image into
Cartesian format representing the path the waves have traveled, forming an
undistorted image.

Implementation of SC uses a mathematical conversion of coordinates and
interpolation to prevent discontinuities in the image on the cartesian points not
covered by the original data. The principle of conversion is based on Equations
(1) and (2), where r and theta (θ) are the polar coordinates. The first is the radial
direction distance of the transducer, and the other is the angle between the center
of the radial axis. The parameters x and y are the Cartesian coordinates [12,14].

r =
√

x2 + y2, (1)

θ = tan−1 x

y
, (2)
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Fig. 2. Illustration of the SC processing for polar to Cartesian coordinates.

Various types of interpolation or image processing can fill the missing data
on the cartesian coordinate system, and the most suitable will depend on the
selected processing unit constraints [7,10]. Several authors have explored imple-
mentations of ultrasound image and signal processing techniques in various plat-
forms [2,9,17]. For the cases where requirements of versatility and flexibility are
necessary to test new algorithms, Field Programmable Gate Array (FPGA) or
System on Chips (SoCs) are reliable choices [5,10,11]. One alternative is to use
a ZedBoard Xilinx platform. The ZedBoard is a low-cost development board
designed with an Artix-7 FPGA and a dual-core ARM Cortex-A9 processor
that has been used to perform other ultrasound processing steps, such as beam-
forming [3,18].

In this paper, we present the initial results of an SC algorithm implemented
on a Xilinx ZedBoard. The design was implemented using Xilinx Intellectual
Property (IP) blocks and C to be synthesized and programmed in the Vivado
integrated platform and evaluated by comparing the output image with a Matlab
simulation using cost function metrics.

2 Methodology

The validation study was performed by acquiring data from a tissue-mimicking
phantom (model 84-317, Fluke Biomedical) and a 3.2 MHz 128-element convex
array transducer (AT3C52B, Broadsound Corporation, Taiwan), as in [1,15].
Two B-mode ultrasound images were generated and evaluated using the same
data set. The first is the reference image, generated by a Matlab script developed
by our research group. The second image was implemented on the ZedBoard,
and the processing ran in its Cortex-A9 processor.

2.1 MATLAB Simulation

The Matlab native functions are used to perform the SC of the input data. At
first, two vectors corresponding to polar coordinates are calculated using the
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transducer physical parameters, which are the convex angle between scanlines,
and the distance in the axial direction estimated according to the medium char-
acteristics. These vectors are used to create a tridimensional profile with the
function meshgrid. Next, the function pol2cart is used to convert these vectors
to cartesian coordinates. Finally, the function surf is used to plot a tridimen-
sional surface that associates the calculated profile with the brightness values
of the empirical polar input matrix. The result shows the scan-converted image
when projected in a two-dimensional perspective.

2.2 Implementation on ZedBoard

ZedBoard is used to process and display an image and send its data to a com-
puter for further analysis. The SoC is implemented using IP hardware blocks
of the software Vivado 2020.2. In addition, the software is written in C with
the program Vitis 2020.2 to perform the SC and control the peripherals. Data
processing in ZedBoard begins with a lookup table (LUT) calculation to store
cartesian coordinates that already express a conic form and yield the final posi-
tioning at the image matrix. Next, the values of echo are plotted in the image
matrix addressed by the LUT coordinates, and at the same time, pixel values are
determined using the nearest neighbor interpolation. These steps are processed
in a microcontroller inside the SoC, and results are available through peripher-
als. The overall hardware architecture of the proposed system is shown in Fig. 3
and presents the SoC and the peripherals used.

The SoC is divided into the programmable logic (PL) and the processing
system (PS). The PS controls the UART, GPIO, and memories and is responsible
for processing and transferring the image from the DDR memory to the PL,
with the aid of the direct memory access controller (DMA) and its version for
video purposes, VDMA. It moves data from the memory to the processor and
from this to the VDMA controller using the AXI4 bus. Both receive commands
through the AXI4-Lite interface and are configured by the programmer using
libraries given by Xilinx. The PL generates the signals needed to operate the 4-
bit VGA interface available in ZedBoard. It comprises a video timing controller
that operates at 25.2MHz to generate the required synchronization signals for a
480p resolution image and a stream to video IP used to adequate the data stream
received from the PS. This stream, present in the AXI4 bus, is transformed into
a vector ready to be sent to the VGA digital-to-analog converter (DAC).

The PS programs run in the Cortex-A9 bare metal, with a clock frequency
of 669 MHz, and are programmed in C. It performs the SC and the nearest-
neighbor interpolation with the beamformed data, saved in its DDR memory as
a string of unsigned characters, displays the results as a 480p VGA image, and
sends the processed data to a computer through the UART interface at a baud
rate of 115200 bps. This resulting image has a resolution of 500× 320 pixels,
expressed in 160.000 bytes.



26 M. J. S. Ruzyk et al.

Fig. 3. System architecture implemented on ZedBoard.

2.3 Cost Functions to Evaluate Resulting Images

This work uses two cost functions: the contrast-to-noise ratio (CNR) and contrast
resolution (CR). They are defined by Equations (3) and (4), respectively, where
μt and μb represent the mean intensity regions of the image in dB grayscale,
first at a point of interest and the other at the background. The other variable,
denoted by σb, is the background intensity standard deviation

CR = 1 − μt

μb
, (3)

CNR =
|μt − μb|

σb
, (4)

3 Results

Radiofrequency (RF) data acquired by the ULTRA-ORS platform, which means
Ultrasound Open Research System, and beamformed in Simulink, both explained
in detail in previous works [1,15], are used to evaluate the proposed hardware-
based SC. The data acquisition parameters are summarized in Table 1.

The overall experimental setup is described in the diagram of Fig. 4, which
denotes that the acquisition and beamforming steps were done previously, pro-
viding a matrix of 121 channels by 2046 samples to be scan-converted both on
ZedBoard and Matlab. The first uses a data precision of eight bits, and the other
double for data processing. The VGA is limited to a 4-bit precision for each pixel
in this board.
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Table 1. Parameters used to acquire de RF data.

Item Notation Value Units

Speed of sound c 1540 m/s

Sampling frequency fs 40 MHz

Number of samples per channel N 2046 -

Number of transducer elements Ne 128 -

Aperture n 8 -

Kerf kerf 115 µm

Element width D 0,41 mm

Radius of curvature Rconvex 40 mm

After beamforming, the RF data supplied to ZedBoard can be first displayed
but still not in its final form. The data presented in polar coordinates is shown
in Fig. 5, with a dynamic range of -40 dB. Next, the data is processed both in
a ZedBoard setup and in a computer running the Matlab script, with results
presented in the following sub-sections.

3.1 ZedBoard Setup

The scan-converted image is satisfactorily exhibited on a VGA display connected
to the ZedBoard, as presented in Fig. 6. Although a brightness span degradation
happens due to the mentioned VGA low resolution of the platform, the main
details of the image are visible, and it complies with the expected conical shape.
In addition, the 8-bit resolution data processed is sent successfully by USB in
the same size packages to the host computer. Small data packages prevented
data losses due to buffer congestions on the USB-emulated serial port.

Table 2 presents the utilization of the resources of the FPGA to implement
the VGA controller and peripheral controls.

Table 2. Resource utilization of implemented scan converter on Zynq-7000 SoC.

Resource LUT LUT RAM FF BRAM MMCM DSPs

Utilization 1711 133 2506 3.5 1 0

% 3.22 0.76 2.36 2.5 25 0

3.2 Comparison of Results Between Matlab and ZedBoard

The scan-converted results of the Matlab processing and ZedBoard are presented
in Fig. 7a and Fig. 7b, respectively. The two resulting images are similar in shape
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Fig. 4. Experimental setup showing the data transfer between modules.

and over the most prominent characteristics. However, there is an expected diver-
gence due to the precision differences between the two platforms, making Matlab
the more efficient and, therefore, the golden standard. In addition, another fac-
tor that influences the results is that Matlab uses a linear interpolation form
through the function surf. In contrast, in ZedBoard, a simpler but less effective
method, the nearest neighbor interpolation, is used, resulting in an increased
granularity in higher depths.

In addition to the qualitative analysis, Table 3 compares the two result-
ing images using CR and CNR metrics in the regions defined in Fig. 7. The
obtained simulation and experimental results are in excellent agreement, with
errors smaller than 4% for both CR and CNR metrics.

Table 3. Image evaluation metrics.

Metric MATLAB ZedBoard Error (%)

CR 0.0924 0.0900 2.6295

CNR 1.9777 1.9108 3.3812
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Fig. 5. Beamformed data in polar coordinates.

Fig. 6. Scan conversion result displayed by the ZedBoard through a VGA display. The
data results are sent through a USB interface to the host computer.
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Fig. 7. Scan conversion results. (a) Matlab simulation and (b) ZedBoard hardware-
based implementation. Both images have yellow dashed circle regions assigned for met-
rics calculation.

4 Discussion

The scan conversion is successfully implemented in the ZedBoard, using its
processor to execute the algorithm and command both peripherals and pro-
grammable logic. It is part of the effort to test image processing techniques in a
modular way to explore new back-end processing platforms [5,13]. The achieved
results show that the platform can produce images with a quality close to a
high-end processing environment, and, in addition, this is proven by quantita-
tive analysis. Other works explore ZedBoard as a platform for general control of
front-end ultrasound modules as well as a back-end processing module and test
SC approaches. These works have processed the SC using the LUT approach for
coordinate transformation and bilinear interpolation to fill scan line gaps [3]. In
another work that aimed at portability in a point of care design, the authors [4]
did the SC using another approach, through the CORDIC algorithm, that is part
of Xilinx’s IP resources in Vivado, with 2× 2 linear interpolation, achieving the
proposed qualitative result. In comparison, the implementation done in this arti-
cle has used the ZYNQ processing system to perform all the needed calculations
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of the SC and added steps such as the image display directly from ZedBoard to
the screen through VGA and also showed an additional quantitative comparison,
even though a simpler interpolation technique was used here.

In future research, results can be compared with other implementations, such
as the SC in hardware, as proposed by [10], and include other processing steps
of digital beamforming. Furthermore, the use of the ZYNQ7000 allows a com-
parison between softcore processors, the in-built ARM Cortex A9 and FPGA
implementations, which can give insights on how to best allocate resources when
using this as a US central processing platform [8]. Finally, timing comparisons
of algorithms performance in ZYNQ and other platforms can also be done with
SC and other techniques to evaluate the timing requirements for US real-time
imaging [16].

5 Conclusion

Scan conversion is fundamental for displaying ultrasound images acquired with
convex transducers in a correct geometry. In this work, two implementations of
SC were compared, one in Matlab and the other in the ZedBoard. The results
show that the image generated in the platform is similar to the golden standard
of Matlab, with CR and CNR errors of 2.63% and 3.38%, respectively, although
expected minor deviations occur due to precision differences between the systems
and the use of different interpolation approaches. Future works may explore
other image display methods, such as HDMI, and execute the SC calculations
on FPGA instead of using the SoC embedded processor to pursue real-time
imaging.
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Abstract. The electroencephalography (EEG) technique has the capability of
identifying individual traits. Previous work has already used functional connec-
tivity (FC) features obtained from EEG data for biometric purposes. In this work,
we explored two FC methods not yet used in this context: motifs synchronization
and space-time recurrences. Fifty subjects with two resting-state EEG acquisitions
(one with eyes open and another with eyes closed) were included in the study. FC
matrices for 1 s and 5 s epochs were computed for each acquisition. Subject’s
identification was sought by comparing the FC matrices from both acquisitions
using the Pearson correlation coefficient. The motifs method achieved 48% accu-
racy for both epoch sizes, and the space-time recurrences achieved 36% and 38%
accuracies for 1 s and 1 s epochs respectively. Although the accuracies were low,
they were well above the 2% chance level. Also, unlike other similar studies, the
comparison was made between signals acquired in different conditions. In gen-
eral, the obtained low accuracies illustrate the challenging problem of performing
biometry from EEG and the need for further adjustments in the feature extraction
and classification stages.

Keywords: Biometry · EEG · motifs synchronization · recurrence
quantification · functional connectivity

1 Introduction

The Electroencephalography (EEG) technique has been used for several clinical appli-
cations, particularly for diagnosis of some neurological diseases such as epilepsy [1]
and sleep disorders [2]. Former studies have also shown that this technique provides
information about differences between individuals related to anatomical and functional
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brain traits [3, 4]. More recently, the idea of using EEG signals to distinguish between
different individuals aiming to implement a biometrical system [5, 6] has been explored
in greater depth in several works [7–9], usually considering resting state acquisitions
[10–12]. Indeed, the resting state paradigm has the benefit of enabling the use of data
ac-quired from any individual, including those with restricted mobility, as well as dimin-
ishing the problem of movement artifacts, since the person must be still during the EEG
evaluation.

Among the studies that aim to obtain biometric information from EEG signals are
those that have used characteristics extracted from specific electrodes, and those that
have explored the relationships between EEG signals obtained by different electrodes, a
method known as brain connectivity. Connectivity-based approaches assume that many
brain functions are executed under a specific engagement of different brain regions [13]
or networks. Thus, the understanding of how these interactions take place may play a
key role in providing additional information regarding the individual.

Functional connectivity (FC) is a data-driven, exploratory method, which seeks to
find similarities between the dynamics of different brain regions. Thismethod establishes
relationships between the regions, which can be analyzed through graph theory [14]. For
that, the graph nodes and a measure of similarity to provide the links between the nodes
must be defined. For EEG data, the nodes are usually chosen to be the electrodes. In the
context of using FC obtained from EEG to identify individuals, some similarity mea-
sures have already been explored, such as spectral coherence [9, 15, 16], the Spearman
correlation applied to the Hilbert transform of the time series [17], the phase-locking
value [17, 18], the imaginary part of the phase-locking value [19], the phase lag index
or phase lag index [15], and mutual information applied to ordinal patterns [20], among
others.

This work aims to analyze resting-state EEG under the perspective of graph-based
measures to identify individuals. Two different FC similarity measures are used here:
spatial-temporal recurrences [21] and motifs synchronization [22] based on ordinal pat-
terns [23, 24]. It is important to stress that, to the best of our knowledge, neither type of
similarity measure has yet been used in this context.

This article is divided as follows: Sect. 2 presents the EEG database used, the prepro-
cessing steps and the two similarity methods used to evaluate the FC; Sect. 3 presents the
identification results; and Sect. 4 presents a discussion about these and a brief conclusion
of the work.

2 Materials and Methods

Figure 1 shows a flowchart summarizing the signal processing pipeline adopted in this
work, including the chosen database, the preprocessing steps, the feature extraction
approach, and the methodological analysis. All these steps are described in more detail
in the following sections.

2.1 Database and Preprocessing

The EEG data used was from the Physionet database [25, 26], in which data from
109 subjects were recorded using a 64-channel EEG BCI2000 system, with electrodes
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Fig. 1. Signal processing pipeline. The database consisted of 50 subjects with two EEG acqui-
sitions each (R1 and R2). These were preprocessed and 1 s or 5 s epochs were extracted from
the time series (four epochs from R1 and one epoch from R2). FC matrices were calculated from
these epochs, using the motifs synchronization and space-time recurrences methods. A mean FC
matrix from R1 was used as reference and the FC matrix from R2 was used as test. These were
compared among all subjects using Pearson’s correlation coefficient.

positioned following the 10–10 system (Fig. 2). The subjects performed 14 experimental
runs. The first two runs were acquired in resting state, during one minute each, with eyes
open (R1 – condition) and closed (R2 - condition), respectively. These runs were used
in the analysis performed here.

After downloading the data in EDF format, the preprocessing was performed
using EEGLAB [27], and consisted of four steps: first, removal of artifacts by simple
inspection; second, decomposition of the data using Independent Component Analysis
(ICA) and removal of undesired components; third, removal of alpha and power grid
frequencies; fourth, Common Average Referencing (CAR) of the data [28].

In order to remove more blatant artifacts, the “Inspect/Reject data by eye” tool was
used, in which sections of the signals could be marked for removal. Sections that had
greater (at least five-fold) amplitude than the rest of the signal were removed.

Then, the signal was decomposed into independent components (ICA), using the
tool “Decompose Data by ICA”. This tool displays the obtained independent compo-
nents through scalp map projections of the EEG activity. Components related to muscle
movements, eye blinks and other eye movements can be easily recognized, and were
thus removed.

Next, the alpha band was removed, using a stop band filter (with the “Basic FIR
Filter” tool of EEGlab, considering an interval of 7 Hz to 13 Hz, and selecting the
option “Notch filter the data instead of pass band”). This was done because we wanted
to compare signals obtained from eyes closed and eyes open paradigms, and this band
is known to be strikingly different between opened and closed eyes signals. Finally,
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the signal was bandpass filtered (again with the same tool, but without selecting the
option “Notch filter the data instead of pass band”) between 4 and 50 Hz, to eliminate
low-frequency artifacts and high-frequency noise.

Fig. 2. 10–10 electrode positioning system. Obtained from https://upload.wikimedia.org/wikipe
dia/commons/3/38/International_10-20_system_for_EEG-MCN.png. Author: Brylie Christopher
Oxley.

The final preprocessing step implied in a spatial filter for re-referencing the sig-
nals using CAR [28]. This method consists in calculating the mean of the signals over
electrodes and then subtracting this value from each electrode signal.

2.2 Functional Connectivity Matrices

All the database was preprocessed using the four steps aforementioned, however, only
data from 50 subjects were used in this work. These subjects were selected considering
the duration of the acquisitions after preprocessing. Sub-jects with acquisitions with less
than 45 s were discarded.

From the R1 acquisition, four epochs were extracted, starting at seconds 10, 20, 30
and 40. From the R2 acquisition, only one epoch was extracted, starting at second 30.
Lengths of 1 s and 5 s were tested for these epochs. Then, FC matrices were computed
for both R1 and R2 epochs for all subjects, to be used as features in the identification
problem. A template matching approachwas used, in which the R1matrices were further
averaged to give one reference FC matrix per subject, while the R2 matrix was used as
a test sample.

Two different similarity methods were used to compute the FC matrices: motifs
synchronization [22] and space-time recurrences [21]. Both methods were implemented
in MATLAB (2018, Natick, Massachusetts: The MathWorks Inc). These methods are
detailed in the following.

https://upload.wikimedia.org/wikipedia/commons/3/38/International_10-20_system_for_EEG-MCN.png
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Motifs Synchronization. A motif series is basically a series of behavior patterns in
the EEG signal. In this work, motifs with three points were used, as in Fig. 3. Thus, a
temporal series of an EEG electrode can be “translated” into a motif series, according
to the types of motifs in the signal.

Fig. 3. Three-point motifs used in this work.

The motif series of two electrodes can be used to evaluate the similarity between
signals considering different lag values. In this work, a lag t = 0 was used. Mathemati-
cally, the similarity between the motif series of electrodes i and j can be calculated using
the coefficient cij, defined as follows [22]:

cij =
LM∑

k=1

Jk (1)

where LM is the motif series length, Jk = 1 if the motif at position k is the same in both
series, and Jk = 0 otherwise.

Then, the degree of synchronization between electrodes i and j is calculated:

Qij = cij
LM

(2)

which varies from 0 to 1.
With that, an N × N connectivity matrix is obtained, where N is the number of

electrodes used for the acquisition (in this work,N = 64), and each element of thematrix
is the degree of synchronization between the row electrode and the column electrode.

Space-TimeRecurrences. Space-time recurrences is amethod used to identifywhether
a system has returned to a previous configuration during a given time period [29].

The space-time recurrence between two time series xi and xj is defined as:

STRi,j(ε, n) = Θ
[
ε − ∣∣xi(n) − xj(n)

∣∣] (3)

The structure STR is called the space time recurrence matrix: a tridimensional data
structure ofN×N×Ns, withN being the number of channels (or electrodes; in this case,
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N = 64); and Ns the total number of samples in the chosen time frame (e.g. Ns = 160
for 1 s frames or Ns = 800 for 5 s frames, since the sampling rate was 160 Hz). Θ is the
Heaviside function, therefore: Θ(x) = 0 if x < 0 and Θ(x) = 1 if x ≥ 0. Finally, ε is an
arbitrary distance threshold. In the present work, we chose ε = 50% of the maximum
distance (|xi(n) − xj(n)|) between electrode time series.

From the STR it is possible to calculate the connectivity matrix, which consists in
normalizing the sum of the values of each electrode pair in the STRi,j structure:

Ai,j = 1

N

N∑

n=1

STRi,j(ε, n) (4)

Thus, it is possible to reduce the dimension of the problem, since Ai,j is a two
dimensional N ×N matrix. Each element of the matrix describes the similarity between
two temporal series of EEG.

2.3 Comparison by Pearson Correlation Coefficient

Toevaluate the similarity among the signals, and thus identify a given subject, thePearson
correlation coefficient was calculated between the mean R1 (eyes open) matrix and the
R2 (eyes closed) matrix of all subjects.

If the highest correlation value was for R1 and R2 of the same individual, it was
possible to identify the person, because it indicated greater similarity between different
acquisitions of the same person. If not, it was not possible to identify the person.

Finally, the methods were compared in terms of their hit rate, or accuracy (i.e.,
percentage of correctly classified individuals).

3 Results

Table 1 shows the accuracy values obtained for subject identification, for each FCmethod
and epoch length.

Table 1. Subject identification accuracies for all combinations of functional connectivitymethods
and epoch lengths.

Epoch length Motifs synchronization Space-time recurrences

1 s 48% 36%

5 s 48% 38%

Using motif synchronization, for both epoch lengths (1 s and 5 s), 24 individuals
were correctly identified among 50 analyzed, which corresponds to 48% of accuracy in
both cases. Interestingly, the epoch length did not seem to influence the performance of
this method.



40 M. V. A. Davanço et al.

The space-time recurrences method was able to correctly identify 18 out of 50 indi-
viduals for FC matrices computed using 1 s data, which corresponds to 36% accuracy,
and for 5 s matrices it could identify 19 individuals among 50, which corresponds to a
38% accuracy. Therefore, the results using 5 s epochs to compute the FC matrices were
slightly better.

4 Discussion

Regarding a comparison between methods, the motifs method achieved better accu-
racy than the space-time recurrences method, for all epoch lengths. This indicates
that the motifs method was more capable than the recurrences method of extract-
ing relevant information from the EEG signals regarding individual traits. The motifs
method has been shown to be more efficient than other usual EEG FC methods, such as
mean squared coherence and imaginary coherence, for extracting relevant information
regarding interictal epileptiform discharges [30].

Nevertheless, the accuracies obtained with both methods used here, for all epoch
lengths, were too low for practical purposes. Indeed, in [9], La Rocca and colleagues
achieved up to 100% recognition rates with this same database, using features obtained
both from power spectral density (PSD) and from coherence-based connectivity. They
looked at individual electrodePSDfeatures and individual channel (electrode pair) coher-
ence features, and then combined the features from a given region (e.g., central, parietal
or frontal) and fed them to a classifier based on the Mahalanobis distance. However, it is
important to note that they only compared epochs within a given acquisition (eyes open
or eyes closed); they did not attempt to use one acquisition to predict the other, as done
here.

This work has several limitations. The number of subjects was low for the type of
application (biometry). Notwithstanding, it is important to note that when the number of
subjects is increased, the rate of accuracy decreases, since more comparisons are being
made and the chance that there will be a correlation coefficient smaller than that of the
right person increases. We previously tested the method with a sample of 11 subjects
and the accuracies were indeed much better (64% for both methods).

The number of acquisitions per subject was also low, and additionally, the two acqui-
sitions used did not follow exactly the same conditions, since despite both being in
resting-state, one was acquired with eyes open and the other with eyes closed. Closing
one’s eyes is known to increase the amplitude of alpha band oscillations in EEG signals.
In a first analysis (not reported here) we attempted to use these different signals without
subtracting the alpha band, but the results were worse than the ones reported here.

Also, the first preprocessing step (artifact removal by visual inspection) is somewhat
subjective and may not have been exactly the same for all signals. Additionally, the
STR requires adjusting the recurrence threshold for optimum FC evaluation [22] and a
further detailed analysis considering a specific dataset for hyperparameter tuning outlines
a natural perspective.

Nevertheless, it is important to highlight that the method presented may be taken
further by exploring different options in each step of the methodology. Preprocessing
could benefit from an automatic artifact removal algorithm such as SOUND [31], which
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would take away the subjectivity of removing signal stretches and ICA components by
simple inspection. Also, other types of referencing methods, such as REST [32], could
be tried instead of CAR. In the feature extraction step, graph parameters computed from
the FC matrices could be explored. The motifs method could be improved by looking
at delays other than zero, as in [22], while STR can be improved by means of threshold
adaptations. Finally, in the classification step, a very simple classification method was
used, namely, the Pearson correlation coefficient, but comparatively more sophisticated
classification approaches could be investigated, such as Linear Discriminant Analysis
(LDA), Support Vector Machine (SVM) or even deep neural networks.

In conclusion, both methods of FC calculation, motif synchronization and space-
time recurrences, produced results that remained below what would be considered an
accurate pattern of subject identification. That said, these results were highly above the
chance level (which, for 50 subjects, would have been 2%), showing that the methods
have potential for this application. Also, our results were obtained attempting to match
two signals acquired in different moments, while other works in the literature using
similar approaches have compared only signal epochs within the same acquisition (and
condition). Finally, this was a pilot study, which aimed to explore the use of two FC
measures that, to the best of our knowledge, had not yet been applied to biometry
studies based on EEG data.
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Abstract. The Steady-State Visually Evoked Potential (SSVEP) is one
of the most popular paradigms for Brain-Computer Interface (BCI)
applications. In this study, we address two challenges in designing
SSVEP-based BCI. Firstly, our BCI system must be able to discrimi-
nate among the 40 available visual stimuli. In addition to the complexity
brought by the high number of classes, visual stimuli flicker at close
frequencies, only 0.2 Hz apart in the range of 8 to 15.8 Hz. The second
challenge we addressed was the attempt to eliminate individualized sys-
tem tuning. Our SSVEP-based BCI was designed using only data from
subjects other than the user, that is, with cross-subject training. In the
treatment of these two challenges, we extracted features with frequency
and phase information for each of the 40 visual stimuli and applied them
to a Linear Discriminant Analysis. The database has data from 35 sub-
jects, so we trained with 34 subjects and tested with the remaining ones.
We applied three different time windows of 1, 2 and 3 s to segment brain
data and analyze the effect on classification accuracy. Our results reached
an average classification, considering 40 classes, of 28.14%, 56.85% and
71.45% for a time window of 1, 2 and 3 s, respectively.

Keywords: Brain-Computer Interfaces · Steady-State Visually
Evoked Potentials · spectrum features · Linear Discriminant Analysis

1 Introduction

A Brain-Computer Interface (BCI) is a technology that translates human brain
activity into commands to control machines [1]. The brain signals can be recorded
using different brain scan techniques, such as electroencephalography (EEG) and
magnetic resonance imaging (MRI). Then, these brain signals are the input to a
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BCI, which translates them using a classifier developed for a specific application.
The EEG signals are usually employed in many applications due to their non-
invasive character and low cost compared to other techniques [2].

People with motor or neurodegenerative disabilities, such as paraplegia,
stroke, or amyotrophic lateral sclerosis, are potential users of BCI technol-
ogy since it can provide alternative means to interact with their surroundings,
improving their lifestyle [3].

EEG signals can capture information about different mental activities per-
formed by a subject, such as Motor Imagery (MI), Steady-State Evoked Potential
(SSVEP) and Event-Related Potential (ERP) [4,5]. The SSVEP is considered
the most suitable paradigm of BCI, since it manages to guarantee a high Infor-
mation Transfer Rate (ITR), without needing conditioning and preparation of
the subjects [6]. The SSVEP is a brain potential that occurs in response to the
observation of a constant oscillating visual stimulus, even if the subject is not
paying full conscious attention to it [7]. These brain signals can be used to build
a BCI to command different devices by showing patterns flickering in specific
frequencies on a computer monitor, for example. The EEG signal can capture
brain activity oscillations of SSVEP, which appear in the same frequencies and
their harmonics engendered by visual stimulation [8].

The authors in [9] developed a framework for detecting SSVEP signals in
an inter-subject classification experiment of 35 subjects using a Convolutional
Neural Network (CNN) and two visual stimuli. Their results reached 82.2% mean
test classification accuracy.

Furthermore, a Convolutional Neural Network on two types of features: Mag-
nitude spectrum features (M-CNN) and Complex spectrum features (C-CNN)
approaches were proposed in [10] to classify SSVEP. Two training scenarios
were also compared: User-Independent (UI) training and User-Dependent (UD)
training. The proposed C-CNN method is suitable for SSVEP and improves the
performance of both UD and UI training scenarios. The classification results
reported a maximum accuracy of 98.16% ± 12.3%, and 99.25% ± 5% for UI-C-
CNN and UD-C-CNN, respectively.

On the other hand, Canonical Correlation Analysis (CCA) and its different
variations, such as Filter Bank Canonical Correlation Analysis (FBCCA), were
used to analyze SSVEP to discover the input target. In [11], the authors pro-
posed the FBCCA to enhance the CCA performance, incorporating fundamental
and harmonics components in the target identification. Their results stated that
FBCCA outperformed the CCA method. In [12], the authors consider a cross-
subject classification of 35 subjects, selecting two and five subjects with the
highest recognition accuracy as a template reference for a transfer learning pro-
cess. Their classification accuracy reported roughly 51% for a window length
of 1 s.

Regarding robotics applied to SSVEP-based BCI, the authors [13] proposed a
robotic arm for performing pick and place tasks, in combination with computer
vision based on object recognition. The system was tested with ten healthy
subjects obtaining a maximum classification accuracy of 97.75%.
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In this paper, we designed an SSVEP-based BCI and addressed two major
challenges still, open in the literature:

– A machine learning algorithm for BCI is frequently designed for one subject,
in the context of what is called intra-subject classification. One disadvantage
of this design is that we need to recalibrate the machine learning algorithm
for a new subject. One solution is to develop BCI systems capable of suiting
any subject, in what is termed inter-subject classification. Our SSVEP-based
BCI was trained with data from 34 subjects and evaluated with data from
the remaining subject.

– The BCIs are frequently designed to command electronic devices with few
options. However, building multiclass BCI is more challenging, because the
machine learning algorithm needs to operate with more choices and error
possibilities. In this study, we designed a multiclass SSVEP-based BCI able
to distinguish the 40 visual stimuli. This is a challenging problem since the
frequencies of visual stimuli are spaced from only 0.2 Hz in the range of 8 to
15.8 Hz. In our solution, we used as features the spectral magnitude of the
40 evoked frequencies and phase data of visual stimulation, this information
served as input for a Linear Discriminant Analysis (LDA).

The remainder of this paper is organized as follows: Sect. 2 describes the
dataset and the techniques employed during pre-processing, feature extraction
and classification. In Sect. 3, the results are analyzed and compared. Conclusions
and future works are presented in Sect. 4

2 Materials and Methods

In this section, we present the database and the techniques employed in pre-
processing, feature extraction and classification to build an SSVEP-based BCI.

2.1 Dataset

The database used in this work contains EEG signals acquired under the SSVEP
paradigm. A virtual keyboard displayed 40 letters on a monitor, each of which
flickered with a specific frequency and phase. The stimulation frequencies were
distant from each other at 0.2 Hz, and they were in the range of 8.0 to 15.8 Hz.
Adjacent frequencies had a phase difference of 0.5π radians. The brain data
were acquired from 35 healthy subjects, of which 8 are experienced in using
BCI, and 27 subjects did not have any prior experience in using BCI. Each
subject observed each stimulus in six trials. The data matrix consists of 240
samples (40 targets x 6 trials) per subject. In each trial, signals were collected
using 64 bipolar dry-electrodes for 6 s, with a sample rate of 250 Hz, resulting in
1500 points (6 s x 250 Hz). Therefore, the data length of six seconds includes 0.5 s
before stimulus onset, 5 s for visual stimulation and 0.5 s after stimulus offset.
More details about this dataset can be found in [14].
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Fig. 1. Framework to depict the construction matrix features X for each subject. (i)
Columns construction: calculated over each segment Nseg, so features of magnitude and
phase Nfeat are computed. This process is repeated for each electrode Nelec and for all
flicker patterns Nfli−pat. (ii) Rows construction: columns construction is repeated for
all segments Nseg calculates over all trials Ntrial and for each flickers classes Nfli−cla.

2.2 Signal Pre-processing

Although the database provides EEG data from 64 electrodes, this study used
only the signals from the electrodes placed at POz, PO7, PO8, PO3, PO4, CB1,
O1 and Oz. These signals were chosen because they are in the occipital lobe or
close to the visual cortex region. These data were already filtered by a notch
filter at 50 Hz in the data recording, to remove common powerline noise. Thus,
the preprocessing of the data consisted of:

1. The first 0.5 s and the last 0.5 s of each sample were eliminated, to analyze
only the 5 s interval where visual stimulation actually occurred.

2. The spatial filter common average reference (CAR) was applied according to
Eq. 5.

xCAR
i (n) = xi(n) − 1

L

L∑

i=1

xj(n) (1)

3. The EEG signals were filtered by a seven-order elliptic filter passband, with
cutoff frequencies at 2 and 30 Hz.

4. Each 5 s data sample was windowed at 1 s (250 points), 2 s (500 points) and
3 s (750 points), to allow the analysis in the three temporal scenarios.

2.3 Feature Extraction

The features were extracted from pre-processed EEG data. Firstly, the segments
of 250, 500, or 750 points were filled with zeros up to 4098 points. We get a
frequency resolution of 0.0610, so this procedure aims to guarantee precision in
the calculation of the frequencies of the stimuli since the evoked frequencies have
a spacing of only 0.2 Hz. Then, the Fast Fourier Transform (FFT) algorithm was
applied and three magnitude and three angle points were extracted, the point
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corresponding to the stimulus frequency or flicker pattern, the point before and
after it.

All samples from the database were submitted to this feature extraction
procedure, keeping correspondence with the evoked stimulus label. In this way,
a feature matrix X was generated for each subject, containing the multipli-
cation of segments (i.e., 1, 2, or 3 s), trials (6), flicker classes (40) which set
up the rows and the multiplication of complex features (6), electrodes chan-
nels (8) and flicker patterns (40) which set up the 1920 columns i.e., X ∈
C

(Nseg.Ntrial.Nfli−cla)×(Nfeat.Nelec.Nfli−pat), where:
Nseg: number of segments generated with windows of 1, 2 or 3 s per trial yielding
5, 3 and 1 segments, respectively.
Ntrial: number of trials.
Nfli−cla: number of flickers classes.
Nfeat: number of extracted features of magnitude and phase.
Nelec: number of electrodes.
Nfli−pat: number of flickers patterns.

Figure 1 describes a framework to build a matrix X.

2.4 Classification

Multiclass LDA was designed using data from 34 subjects and validated with
data from the remaining subject, in a scheme of leave-one-subject-out-cross-
validation. The classifier should be able to identify which of the 40 stimuli
(classes) the subject was focusing his/her gaze on each instant.

A multiclass LDA classifier is based on the analysis of scattering matrices
within-class scattering matrix and between-class scatter matrix. Given a set
of samples x1,x2,..,xn and their classes targets y1,y2,..,yn. The definition of a
within-class scatter matrix is:

Sw =
n∑

i=1

(xj − μyj
)(xi − μyj

)T (2)

And, the definition of the between-class scatter matrix is:

Sb =
m∑

i=1

ηk(μk − μ)(μk − μ)T (3)

where, μk is the sample mean of the k-th class. Therefore, m is the number of
classes, μ is the overall sample mean, and ηk is the number of samples in the
k-th class.

Moreover, multiclass LDA is formulated as an optimization problem to find
a set of linear combinations with coefficients w maximizing the ratio of the
between-class scattering to the within-class scattering, as

ŵ = arg max
θ

wT Sbw
wT Sww

(4)



Forty-Class SSVEP-Based Brain-Computer Interface 49

The generalized eigenvalue problem computed the solution:

Sbw = λSww (5)

Fig. 2. Classification accuracy for each subject using leave-one-subject-out-cross-
validation and for each time window of 1, 2 and 3 s.

3 Results and Discussion

We analyzed the classification accuracy using Linear Discriminant Analysis and
the leave-one-subject-out cross-validation was performed for inter-subject clas-
sification. Hence, the samples of one subject were used for the testing stage and
the samples of the rest of the subjects were used for the training stage.

Figure 2 shows the classification accuracy for each subject. The great vari-
ability of accuracy between subjects is noticed, and it is maintained for the
three-time windows adopted. Subject 32 achieved the best accuracy with 51.33%,
88.13% and 97.50% for time windows of 1, 2 and 3 s, respectively. On the other
hand, Subject 33 reported the worst performance, with a poor accuracy of only
6.58%, 15.00% and 15.00% for time windows of 1, 2 and 3 s, respectively. This
variability is associated with the intrinsic characteristics of each subject [15].
There is a lot of variability around the mean value, for the three windows con-
sidered.

Figure 3 allows analyzing this widespread classification accuracy for each time
window through a boxplot. LDA classifier reported mean classification accuracies
of 28.14%, 56.85%, and 71.45% for time windows of 1, 2 and 3 s, respectively.

All subjects for Inter-Subject classification reported better classification
accuracy for time windows of 3 s. Therefore, classification accuracy performance
is enhanced by increasing the time window length. This is expected since larger
windows have better spectral resolution and a higher signal-to-noise ratio. How-
ever, given the challenge of differentiating 40 visual stimuli with frequencies so
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Fig. 3. Box plot for all subjects and for each time window of 1, 2 and 3 s.

close (0.2 Hz), the results of the SSVEP-based BCI system, considering a cross-
subject model training, is interesting, being much superior to randomness (1/40),
even in the most challenging scenario considered (with windowing of 1 s).

In the literature, we found some related studies that address the multiclass
issue in SSVEP-based BCI, such as [11,13,15,16]. However, these papers con-
sider an intra-subject classification. The study [10] deals with the cross-subject
approach using a CNN, but they employ a maximum of 12 visual stimuli. While
in [12], the authors reported accuracy of roughly 51% for a window length of 1 s
using some subjects as a template reference. The selection of subjects a priori to
train the system must be taken with caution concerning the representativeness
of potential users of the conceived SSVEP-based BCI.

Thus, it is interesting to consider that our proposed challenges can be con-
sidered satisfied. In future works, we intend to address the transfer learning
approach. Also, we will focus on more robust signal filtering techniques, feature
extraction, and classifiers with deep learning, in order to improve the perfor-
mance of the BCI system and mitigate the wide variability.

4 Conclusions

In this study, we employed the magnitude and phase of spectrum frequency of 40
flickers to classify SSVEP corresponding to a range from 8 Hz to 15.8 Hz, with an
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interval of 0.2 Hz. Moreover, we design an inter-subject classification experiment
for 35 subjects to address the BCI challenge of re-calibrating the system for
any new subjects. Our SSVEP-based BCI presented an average performance of
28.14%, 56.85%, and 71.45%, for windows of 1, 2 and 3 s, respectively. This result
is very promising, considering the two difficulties considered, 40 nearby visual
stimuli and cross-subject training. It is interesting to observe that 8 subjects
achieved a hit rate above 85% in the differentiation of the 40 stimuli, with a time
window of 3 s. The high variability of classification accuracy for each subject, in
part, due to the neurophysiological particularities of the subject himself, and in
part, due to the developed BCI system. This last installment can be enhanced
in future works using other machine learning techniques.
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Abstract. This research studied the effect of the acoustic intensity level of four
Spanish words on the multichannel Auditory Cortical Evoked Potential (CAEP);
the amplitude of the characteristic peaks of this potential (P1, N1, and P2) will
depend on the intensity of the stimulus used to elicit it. Eight young adults (four
females and four males), within an age range of 18 and 29, with normal hearing,
participated in this study. Four disyllabic words (/bota/, /papa/, /lobo/, and /sabor/)
and three acoustic intensity levels (20, 40, and 60 dBHL) were used to evoke the
CAEP.The amplitudes of theN1 andP2peaks andN1-P2 inter-peakwere analyzed
as a function of the acoustic intensity of the stimuli for eachword. The significance
differences between the mentioned amplitudes and the different intensities were
determined using an ANOVA analysis. Linear Regression was used to determine
which recording electrodes better reflected the relationship between the amplitudes
of the peaks and the stimuli’ acoustic intensity.

Keywords: Cortical Auditory Evoked Potential · Spanish · disyllabic words ·
Acoustic intensity

1 Introduction

Different studies have used Cortical Auditory Evoked Potentials (CAEP) to evaluate the
changes in stimuli perception due to synchronized neural activity underlying auditory
processing. If theCAEPcanbe recorded for determinate acoustics stimuli characteristics,
it is assumed the stimuli are audible for the subject [1].

Garinis and Cone (2007) were pioneers in assessing the effect of stimulus levels
on CAEP. The authors used the syllables /ta/, /da/, and /sa/ to elicit the response in 15
normal-hearing adults; the acoustic intensity levels used were 0, 20, and 40 dBSL over
the lowest level at which syllables were discriminated with more than 95% accuracy.
Finally, the authors determined that the amplitude of the characteristics P1, N1, and
P2 response peaks increased as the level increased, while the latency of those peaks
decreased as the stimulus increased [2].
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Another important group studying the effects of acoustic intensity levels on the
speech-evoked CAEP is the one led by Purdy et al. (2013). This group selected low
and high frequency speech sounds (/m/ and /t/ respectively) and three acoustic intensity
levels (30, 50, and 70 dBSPL or 40, 60, and 80 dBSPL) to evaluate a group of 16 infants.
They found different behaviors in the amplitude and latency of the P1 peak using the
two speech sounds at different acoustic intensity levels. The authors mention that their
results in infants are different from those reported in adults, which could be attributed to
developmental effects on acoustic intensity coding by the auditory cortex. Finally, they
recommend that the effects of stimulus characteristics (temporal, spectral, and level)
on CAEPs should be considered when using this response for hearing aid or cochlear
implant evaluation in infants [3].

Other authors have proposed to study the Latency-Acoustic intensity function of the
Auditory Late Latency Response in normal-hearing subjects using speech stimuli; the
syllable /ta/ with an acoustic intensity of 30, 50, 70, and 90 dBSPL. They found that
the acoustic intensity influences P1 and N1 latencies nonlinearly while their amplitude
decreases with a reduction in acoustic intensity, although there is no significance [4].

More recently, Barry et al. (2022) examined the CAEP peaks and Principal Compo-
nents as a function of tone acoustic intensity: 1000 Hz at 50 (soft) and 80 (loud) dB SPL.
They report an increase in the amplitude of some 70% from soft to loud components.
Additionally, the authors include a table with an extensive review of studies that reported
relationships between CAEP peak amplitudes and stimulus acoustic intensity [5]. One
year before, Soleimani et al. (2021) published a review article that includes different
researches that have demonstrated the utility of CAEP as an objective method in the
management of deaf children [6]. Additionally, CAEPs have been proposed to estimate
hearing thresholds in children and adults with normal hearing or users of hearing aids
or cochlear implants [7, 8].

A common element among those researchers is that they use tones or consonant-
vowel contrast stimuli to elicit the auditory response. The novelty of our study was to
investigate the effect of the acoustic intensity level in the CAEP but using disyllabic
Spanish words.

2 Material and Methods

2.1 Subjects

Our study included eight normal-hearing voluntary young adults between 18 and29years
old (23.67 ± 3.57); four females and four males. All were neurologically normal, with
lower than 25 dBHL hearing thresholds at 250 Hz to 8 kHz. The participants remained
seated in a recliner in an anechoic chamber during a test session of approximately one
hour. They were asked to stay on alert, trying to identify which words they were hearing.

2.2 Stimuli

We used four disyllabic Spanish words as stimuli (/bota/, /papa/, /lobo/, and /sabor/).
Previous research determined the temporal characteristics and topographical distribution
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of P1-N1-P2 peaks elicited by these words at 75 dBHL acoustic intensity and the dif-
ference between the words’ amplitude [9]. We use three different intensities 20, 40, and
60 dBHL. The words were presented randomly via TDH-49 headphones and repeated
each approximately 100 times.

2.3 EEG Recording

The EEG was recorded on 20 electrodes (FP1–2, F3–4, C3- 4, P3–4, O1–2, F7–8, T3–
4, T5–6, Cz, Pz, Fz, and AFz) using NeuroScan™ equipment, the impedance of the
electrodes was kept below 5 kHz. FPz was the ground electrode, and the linked mastoids
were the reference. EEG acquisition sampling rate of 1000 Hz, with a gain of 12,500
for accuracy of 0.007 µV/LSB. Low pass filter of 200 Hz and High pass filter of 1.0 Hz,
12 dB/oct. Notch filter On. Artifact rejection of ±70 µV. Groups of four randomized
words, probability of 0.25 each, were presented to the subject up to 150 times for each
word and intensity test. The amplitude of every.SND file was equalized to not exceed,
on average, the 0 dB mark on the VU meter of the audiometer at the time of the test.
The study complied with all applicable research and ethical standards and laws followed
by the Declaration of Helsinki principles. The recording consisted of 150 epochs in a
time window of 100 ms before the stimulus and 900 ms after the stimulation. Offline
processing of the recordings was carried out before their analysis, which consisted of
1) Digital filtering between 1 and 30 Hz, 2) original sampling frequency reduction to
500 Hz, 3) epochs extraction in an analysis window of 700 ms (100 to 600 ms), 4)
elimination of epochs whose amplitude exceeded ±50 µV, 5) remotion of the baseline
across epochs, and 6) elimination of EEG artifacts (blinks, eye movements, and line
noise) by Independent Component Analysis. Finally, we averaged 90 epochs with 350
points for each word and intensity.

2.4 Statistical Analysis

After carrying out the shapiro-wilk test (P > 0.05) we determined the no normality of
our data; an anova test was used to determine the significant differences between the
amplitudes of the CAEP peaks and the acoustic intensity for each word. After determin-
ing whether there were significance differences between the amplitudes and acoustic
intensities, a post hoc range test was used to determine which responses presented the
differences. The peak and inter-peak amplitudes of the four words and the three stim-
uli acoustic intensity were compared using a t-test. Finally, a linear regression was
used to determine which electrodes better fit the relationship between the CAEP peaks’
amplitudes and the stimuli’ acoustic intensity.

3 Results

Figure 1 shows the grand average for each word (columns) and each acoustic intensity
level (rows) of theCAEP for all the subjects (electrodeCz). Itwas impossible to recognize
the P1 peak in any of these recordings. P2 was the most positive peak within the latency
range of 250 and 450 ms at an acoustic intensity level of 60 dBHL, and N1 was the most
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negative before P2; with these marks, the peaks at 40 y 20 dBHL were located. The N1
and P2 amplitudes are sensitive to acoustic intensity changes, which we observe in all
the words. On the other hand, a clear relationship between the latencies of this peak and
the acoustic intensity level is not observed.

Fig. 1. The grand average (n= 8) for each word (column) and each acoustic intensity level (row)
taken across all subjects. Marks indicate N1 and P2 peaks at Cz

3.1 Statistical Analysis

To determinewhich electrodes reflexed the acoustic intensity changes, we plot the ampli-
tude of the mentioned peak to 20 and 60 dBHL. Figure 2 shows an example of the
dispersion plot corresponding to P2 amplitudes (means across the selected electrodes).
The regression line fits Cz, C3–4, AFz, Fz, FP1–2, and F3; better than F4, F7–8, Pz, and
P4 with a greater deviant.

Average CAEP (n = 8) N1, P2, and N1-P2 amplitudes for 20, 40, and 60 dBHL
intensities were analyzed for each one of the following electrodes: FP1–2, F3–4, F7–
8, C3–4, AFz, Cz, Fz, Pz. And P4; we select these sites because corresponded to the
topographical distribution of the peaks observed in our previous research [9]; see Fig. 3.

The ANOVA test showed that for the word /bota/, there are significance differences
between the amplitudes of thepeaksN1,P2, and the interpeakN1-P2and the intensities (p
= 5.78× 10–6, p= 2.44× 10–7 and p= 5.75× 10–7, respectively). Post hoc comparison
indicated significance differences between N1 amplitude at 20 and 40 dBHL (p = 4.11
× 10–4) and 20 and 60 dBHL (p = 7.76 × 10–7), for P2 only between 20 and 60 dBHL
(p = 2.97 × 10–6) and for N1-P2 in 20 and 40 dBHL (p = 1.22 × 10–4) and 20 and 60
dBHL (p = 9.87 × 10–7).

In /papa/, ANOVA showed significance differences in N1 (p = 1.99 × 10–8) and
N1-P2 (p = 7.04 × 10–5). There are no significance differences between the amplitude
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Fig. 2. A Scatter plot shows the relation between P2 amplitude at 20 and 60 dBHL; a linear
regression line was fit to determine the electrodes closer to this behavior.

of P2 (p > 0.005) and intensities. The t-test indicated that in both N1 and N1-P2, there
are significance differences between 20 and 40 dBHL (p = 2.71 × 10–6 and p = 5.86
× 10–5, respectively). For the word /lobo/ ANOVA determined significance differences
between N1, P2 and N1-P2 and the intensities (p= 5.73× 10–7, p= 14.00× 10–4 and p
= 1.31× 10–5, respectively), the post hoc comparison indicated significance differences
only between the acoustic intensity of 20 and 60 dBHL (N1 p= 21× 10–4, P2 p= 1.75×
10–5 and N1-P2 p = 6.72× 10–6). Finally, for the word /sabor/ significance differences
were found for the amplitudes N1 (p= 3.47× 10–7), P2 (p= 219× 10–4) and N1-P2 (p
= 4.87 × 10–5). The subsequent comparison showed significance differences between
the amplitudes of N1 at 20 and 40 dBHL (p = 1.23 × 10–5) and 20 and 60 dBHL (p =
6.01x10–8), for P2 only between 20 and 60 dBHL (p = 20.00 × 10–4) and for N1-P2
between 20 and 40 dBHL (p = 3.69 × 10–4) and 20 and 60 dBHL (p = 9.45 × 10–7).
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Fig. 3. Boxplots of the amplitudes for N1, P2, and N1-P2 for three intensities; values correspond
to the average data for 13 electrodes position. The asterisk (*) represents the level of significance
(p < 0.05).

4 Discussion

The amplitudes of N1. P2 and N1-P2 in words/bota/, /lobo/, and /sabor/ increased as
the acoustic intensity of the stimulus increased (for the 13 electrodes analyzed), the
expected behavior in this range of stimuli intensities. The above is under the findings
of other authors who suggest that these are mandatory markers of sensory processing,
leading to a stimulus-classification stage of processing [1]. The above did not happen
in the case of the words /papa/. Since CAEP is a response to the characteristics of
the stimulus, this could be explained by the fact that in this word, there are two equal
syllables, less contrast than in the other three words [10].
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N1 seems the most sensitive peak to acoustic intensity changes, with significance
differences between 20 and 40 dBHL and between 20 and 60 dBHL. On the other hand,
P2 only shows significance differences in amplitude when there is an acoustic intensity
change from 20 to 60 dBHL. The above could be helpful if you want to use the procedure
followed in this work to determine the detection threshold with N1 (liminal test) and the
discrimination threshold with P2 (supraliminal test) [8].

Finally, the electrodes that showed the expected behavior of the increase in amplitude
with increasing acoustic intensity were Cz, C3–4, AFz, Fz, FP1–2, and F3.

5 Conclusion

In this study, we analyze the effect of the stimuli acoustic intensity on the characteristic
peaks of the CAEP. The objective was to determine the changes in amplitude of the P1,
N1, P2, and N1-P2 peaks to three acoustic intensity levels (20. 40 and 60 dBHL). We
use four disyllabic Spanish words (/bota/, /papa/, /lobo/ y /sabor/) as stimuli. P1 was not
observed in the recordings using these acoustic intensity levels. Although we observed
a relation between the N1 and P2 amplitudes with the acoustic intensity changes, there
were no significance differences for all the words and intensities. Two words showed
significance differences in amplitude peaks and acoustic intensity levels, /bota/ and
/sabor/. Although it is necessary to repeat this protocol in other populations, for exam-
ple, in normal-hearing children and hearing aid or cochlear implant users, our protocol
could be used to determine the perception and discrimination word threshold in Spanish
objectively. Finally, the electrodes that showed the expected behavior of the increase in
amplitude with increasing acoustic intensity were Cz, C3–4, AFz, Fz, FP1–2, and F3.
Knowing this could reduce the time of electrode placement and the test, which is very
suitable in registries with children. This study provides the bases to develop procedures
for the objective fit of a Hearing Aid or a Cochlear Implant using Spanish words.
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Abstract. This paper presents a study of hyperparameters tuning for
two different image deep learning semantic segmentation architectures
applied to COVID-19 Computerized Tomography images, UNet and
UNet++, using as encoder layer the feature extractors of five differ-
ent Convolutional Neural Networks - ResNeXt, Xception, MobileNet,
VGG13 with Batch Normalization and DenseNet121. The hyperparam-
eters considered are the learning rate, number of epochs for training,
batch size and the optimizer algorithm. In order to find the optimal set,
instead of merely combining each possible set o hyperparameters which
results in a high computational cost, it employs a Bayesian search algo-
rithm with early stopping, leading to faster analysis and provides not
only the hyperparameters optimal values but also the impact of each
one of them over the resulting mean of Intersection over Union - metric
chosen to evaluate the models performance - as well as the segmentation
results. All images are available as a public anonymized datasets.

Keywords: COVID-19 · Hyperparameter Optimization · Image
Segmentation · Deep Learning · Computerized Tomography

1 Introduction

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 virus, has sur-
passed 200 million confirmed cases and caused more than 4 million deaths world-
wide as of August 2021, according to the Organization World Health. Because
this virus mainly causes respiratory problems, Computerized Tomography (CT)
of the chest is one of the most applied imaging methods for the detection and
follow-up of the treatment of patients with COVID-19. With a high sensitivity
for diagnosing the disease, CT chest scans allows the verification of certain pat-
terns that reveal lesions associated with SARS-CoV-2, such as the appearance
of ground-glass opacity, reticulation and consolidation, according to variations
in texture, size and position in the images.
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The demand for applications of Artificial Intelligence (AI) in medical field is
increasing due to the large number of imaging tests produced, as a result of the
development of advanced techniques to obtain this type of analysis [18]. Thus, in
order to have a better interpretation of these images in a shorter period of time,
Deep Learning (DL), a subarea of AI, is the most commonly used technique for
this application, capable of effectively performing data classification, detection
and semantic segmentation of objects given an image dataset with large amounts
of data [19].

Segmentation of medical images is already of vital importance in many
biomedical applications, such as computer-assisted diagnosis, treatment and
monitoring of many diseases. Typical processes of medical image segmentation
include brain, tumor, cardiac, pulmonary segmentation, among others [11]. By
identifying the pixels that define organs and lesions in exams such as CT and
MRI, segmentation becomes a tool that allows obtaining fundamental informa-
tion about the shapes and volumes of anatomical and pathological structures,
allowing physicians to analyze only the significant parts of biomedical imaging
[6].

UNet [13] is a DL architecture specialized in object segmentation and uses a
two-step procedure: (i) image encoding, which extracts the image features and
(ii) image decoder, which creates a mask for the segmented regions. The encoder
itself can be any Convolutional Network architecture such as VGG or ResNet,
and can be thought as one of the hyperparameters used in the model training.
Figure 1 presents the basic structure of a UNet model.

Fig. 1. UNet basic structure.

Aslan et al. [2] present a study using Chest X-Ray images images (CRX) using
CNN’s models for feature extraction and Machine Learning algorithms such as
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Support Vector Machines (SVM) and Decision Trees (DT) in substitution of the
conventional fully connected layers along Bayesian search for hyperparameters
optimization pointing out that there are few studies that provide such informa-
tion.

Since finding the optimal set of hyperparameters represents a crucial step
in improving the performance of a DL model, this paper presents a study of
hyperparameters tuning - learning rate, number of epochs, batch size and opti-
mizer - considering UNet and its variation, UNet++ [20], and five different
CNN’s architectures as encoders: ResNeXt [17], Xception [4], MobileNet [7],
VGG13 with Batch Normalization [16] and DenseNet121 [8] applied to COVID-
19 image segmentation. A Bayesian search is used in order to determine the
optimal hyperparameter sets that are presented for each one of the ten different
combination of segmentation architecture and encoder. The results also presents
the hyperparameters that posses the highest influence in the metric analysed (the
mean Intersection over Union for the test dataset), meaning that their variation
impacts over 60% of the metric analysed.

2 Methodology

2.1 COVID-19 Image Database and Data Augmentation

All images used are anonymized and available as public dataset1 and consists
of 349 Computerized Tomography (CT) of COVID-19 positive images splited
in 70% - 30% training-test ratio, since the goal of this paper is not provide a
full segmentation model, but a study on how the most common deep learning
hyperparameters can affect the training and testing procedures of a segmentation
model. The segmentation was performed by an specialist using ImageJ2 and
observing the ground glass opacity (GGO) as an indicative of COVID-19 lesions.

In order to increase the generality of the network and decrease overfitting
during the training procedure, Data Augmentation was used via Albumentation
[3] Python API and the image transformations considered are listed below:

– Image Rotation with maximum rotation angle of θmax = 40o and 50% prob-
ability of occurrence;

– Horizontal flipping with 50% probability of occurrence;
– Vertical Flipping with 50% probability of occurrence;
– Random size crop with maximum height and width of 100 × 100 pixels with

50% probability of occurrence;

It is important to mention that before any of those transformations are
applied, the training dataset goes under a minimum-maximum normalization,
resulting in pixel value range limited to (0, 1), followed by standard scaling3

1 https://www.kaggle.com/datasets/luisblanche/covidct?select=CT COVID.
2 https://imagej.nih.gov/ij/.
3 The mean and standard deviation values were evaluated according to the training

dataset.

https://www.kaggle.com/datasets/luisblanche/covidct?select=CT_COVID
https://imagej.nih.gov/ij/
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with mean and standard deviation of μ = 0.6255 and σ = 0.3183 and image
resizing to 128 × 128 pixels. For the testing procedure no Data Augmentation
was applied, only pixel normalization, standard scaling and image resizing are
applied.

2.2 Deep Learning Segmentation Models

The segmentation architectures chosen for the proposed work are UNet and
UNet++, both consists of two-step model: an encoder, responsible for extracting
features from the image dataset and a decoder which takes the image features
from the first step and aims to reconstruct a segmentation map for the desired
image classes. UNet++ posses a more complex decoder than UNet and both of
them can use other CNN’s such as VGG13 and Xception as encoders. The loss
function used to update the model parameters is the “Binary Cross Entropy
Loss” in Eq. 1, where Nc is the number of classes, yi is the predicted value for
the i-eth class and ȳi its true label.

H(y, ȳ) = − 1
Nc

Nc∑

i=1

[yi log(ȳi) + (1 − yi) log(1 − ȳi)] (1)

All architectures were implemented using Python 3.9 Anaconda distribu-
tion and PyTorch4 Application Programming Interface (API). Concerning the
hardware, an Intel i7 Core, 16 Gb of RAM and a Tesla K80 Nvidia Graphics
Processing Unit (GPU) with 24 Gb of RAM running Linux Ubuntu 22.04 LTS
was used.

The CNN architectures used as encoders for UNet and UNet++ were cho-
sen based on algorithm structure and the number of trainable parameters are
presented in Table 1. It is important to emphasize that only the feature extrac-
tion layer of each CNN presented were used, i.e., the classification layer was
completely discarded and no transfer learning applied.

Table 1. CNN architectures used as encoders with corresponding number of trainable
parameters.

Encoder Trainable parameters

DenseNet 121 6 × 106

Xception 22 × 106

VGG13 BN 9 × 106

MobileNet V3 Small Minimal 100 0.43 × 106

ResNeXt 50 22 × 106

The metric used to evaluate the performance of each model is the “mean
Intersection over Union” (IoU) [12], given by Eq. 2, where N is the number of
4 https://pytorch.org/.

https://pytorch.org/
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images being segmented, Mpred the mask predicted by the segmentation model
and Mref the mask of reference.

IoU =
1
N

N∑

i=1

M i
pred ∩ M i

ref

M i
pred ∪ M i

ref

(2)

2.3 Hyperparameters Optmization

In order to perform the hyperparameter optmization, several algorithms are
available such as grid search from Scikit-Learn [15] library, which performs a time
expensive brute force search over the entire hyperparameter space, or random
grid search, also from Scikit-Learn, which may never lead to an optimal solution.
Akiba et al. [1] presents a model based on Baeysian search in order to provide the
optimal hyperparameters values and this strategy is employed in this work and
the set of hyperparameters considered along their respective ranges are presented
in Table 2:

Table 2. Hyperparameter range.

Hyperparameter Range

Epochs [100, 250]

Batch Size [10, 50]

Learning Rate [10−6, 10−1]

Optimizer [Adam [9], SGD [14]]

The API devoloped by Akiba et. al. also allows that unpromising tries be
suspended (pruned) before their conclusion by monitoring the evaluation of a
chosen metric over a pre-determined number of epochs. If the metric does not
improve, the execution is halted and the computational resources are freed to
another set of hyperparameters.

For the purpose of model analysis, Eq. 2 was evaluated over the test dataset
and all combinations of segmentation architectures and encoders were evaluated
over 200 tries.

3 Results

3.1 Optimal Hyperparameters

After evaluating each combination of segmentation architecture (SA) and
encoders, Table 3 presents the highest IoU for each architecture.

The optimal hyperparameters are presented in Tables 4 and 5 for UNet and
UNet++ respectively.

Tables 6 and 7 presents the two most relevant hyperparameters, i.e., changing
their values impacts over 60% of the IoU for each pair architecture/encoder.
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Table 3. Segmentation architecture, encoder and highest IoU .

S.A. Encoder IoUmax

UNet DenseNet 121 0.8223

Xception 0.8285

VGG13 BN 0.8367

MobileNet V3 0.8132

ResNeXt 50 0.8282

UNet++ DenseNet 121 0.8275

Xception 0.8377

VGG13 BN 0.8309

MobileNet V3 0.8201

ResNeXt 50 0.8309

Table 4. UNet optimal parameters.

Encoder LR Epochs BS Optimizer

DenseNet 121 2.9 × 10−4 217 12 Adam

Xception 4.7 × 10−4 115 12 Adam

VGG13 BN 5.0 × 10−4 190 11 Adam

MobileNet V3 3.7 × 10−3 186 20 Adam

ResNeXt 50 1.8 × 10−4 123 20 Adam

3.2 Segmentation Results

Each pair architecture/encoder was trained using the optimal parameters pre-
sented in Tables 4 and 5. The final loss function value (H�(y, ȳ)) and training
time are presented in Tables 8 and 9 along the resulting IoU of each model
applied to a image sample extracted from the test dataset. For illustration pur-
poses, Fig. 2a and 2b present the image sample and respective segmentation
mask used to evaluate the IoU value for Tables 8 and 9 while Figs. 3a to 3b the
predicted segmentation mask for UNet/VGG13 and UNet++/MobileNet respec-
tively with their corresponding difference from the ground truth in Figs. 3c and
3d.

Table 5. UNet++ optimal parameters.

Encoder LR Epochs BS Optimizer

DenseNet 121 9.7 × 10−4 241 21 Adam

Xception 4.6 × 10−4 217 12 Adam

VGG13 BN 3.0 × 10−4 108 19 Adam

MobileNet V3 1.3 × 10−3 164 12 Adam

ResNeXt 50 9.0 × 10−4 116 37 Adam
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Table 6. Hyperparameter relevance over IoU : UNet.

Encoder Hyperparameter 1 Hyperparameter 2

DenseNet 121 LR (70%) Optimizer (24%)

Xception Optimizer (63%) Batch size (17%)

VGG13 BN Batch size (54%) Optimizer (21%)

MobileNet V3 LR (56%) Batch size (25%)

ResNeXt 50 LR (51%) Batch size (33%)

Table 7. Hyperparameter relevance over IoU : UNet++.

Encoder Hyperparameter 1 Hyperparameter 2

DenseNet 121 Epochs (36%) Optimizer (35%)

Xception Optimizer (57%) LR (34%)

VGG13 BN Optimizer (37%) LR/ Batch size (24%)

MobileNet V3 Optimizer (73%) LR (15%)

ResNeXt 50 Optimizer (38%) Batch size (31%)

Table 8. IoU , H�(y, ȳ) and training time for UNet.

SA IoU H�(y, ȳ) Training time (min)

DenseNet 121 0.6412 0.2320 14.73

Xception 0.8055 0.0192 20.64

VGG13 BN 0.8233 0.0345 18.33

MobileNet V3 0.7827 0.0313 13.25

ResNeXt 50 0.8123 0.0345 19.52

Table 9. IoU , H�(y, ȳ) and training time for UNet++.

SA IoU H�(y, ȳ) Training time (min)

DenseNet 121 0.7248 0.0275 25.87

Xception 0.7781 0.0215 22.29

VGG13 BN 0.8035 0.0346 14.57

MobileNet V3 0.8296 0.0270 13.76

ResNeXt 50 0.7919 0.0284 15.78

4 Discussion

The results presented in this paper show that, considering the IoU , there is
no relevant variation considering the segmentation architecture and the encoder
used given the optimal hyperparameters set. This conclusion can also be observed
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Fig. 2. Image sample extracted from the test dataset: a) CT image; b) Corresponding
segmentation mask.

in Tables 8 and 9. Although, it is important to mention that the training time
is considerably different from each architecture, with the shortest time of 13.25
minutes for UNet/MobileNet. This can be explained not only by the higher
learning rate value among all other models, which directly impacts over the
learning speed of the model, but also due to the fact that CNN posses less
trainable parameters compared to others (Table 1). If considered the highest
IoU in Tables 8 and 9, the pair UNet++/MobileNet also presented the second
shortest training time with 13.76 min.

Another important observation that can be made by observing Tables 4 and
5 is that the choice of the proper optimizer, learning rate and batch size are
crucial in achieving the optimal values for the IoU , being the optimizer the
most relevant hyperparamter in 80% of the models tested while the learning
rate and batch size in 60%.

Although Monshi et al. [10] and Hamida et al. [5] present studies concerning
hyperparameters optimization for COVID-19 detection using standard CNN’s
models and other ML algorithms, no study using segmentation DL models and
CT was found to provide a comparison of results, which emphasizes the original
aspect of the present work.
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Fig. 3. Results of the evaluation of two segmentation models: a) UNet/VGG13; b)
UNet++/MobileNet; c) Difference between the ground truth and UNet/VGG13 seg-
mentation; f) Difference between the ground truth and UNet++/MobileNet segmen-
tation.

5 Conclusion

This paper presented a study of hyperparameters tuning for segmentation
architectures considering several CNN’s as encoders. It was observed that
given the optimal hyperparameter set, all combinations segmentation architec-
ture/encoder did not present any relevant difference considering the IoU , being
a decisive factor the training time and the encoder number of trainable param-
eters. The three most relevant hyperparameters are the optimizer, learning rate
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and batch size, while the number of epochs did not presented any significant
change in most of the experiments. Is valid to notice that COVID-19 lung dam-
age is still an area of lots of questions withe the need of more data and this study
intended to help fill this gap.
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Abstract. The ventricular tachyarrhythmia is an important cause of sudden car-
diac death, impacting economic, social, and health systems. Microvolt T-wave
alternans (MTWA) represent transmural gradient alternation in phase-3 ventric-
ular action potential duration, leading to T-wave amplitude shortening in every
other beat. The T-peak T-end interval (TpTe) represents the terminal ventricular
repolarization duration and is explained by differences in phase-3 repolarization
times from ventricular epicardial to endocardial fibers. Whether TpTe alternation
occurs in patients withMTWA is unknown. This work investigated whether termi-
nal ventricular repolarization duration alternation is present in MTWA patients.
Seven 12-lead ECG records from Physionet T-wave Alternans Database were
analyzed. The TpTe alternans was assessed in even and odds beats, in a series
of 128 consecutive beats. In even and odd beats, TpTe intervals were ensembled
and averaged, and the magnitude of TpTe alternans was defined as the difference
between averages (�TpTe). TheMTWAwas quantified by the difference between
the average peak of the T-wave in even and odd beats. �TpTe and MTWA were
compared by Pearson’s coefficient. Even and odd beats on TpTe alternans and
MTWA were compared with non-paired Student t-tests. �TpTe positively corre-
lated with MTWA (r= 0.5; p< 0.05). In TpTe anal-ysis, averaged oddly and even
beats showed significant differences (p< 0.05). Also, MTWA showed differences
in T-wave peaks by comparing average even and odd beats. The present study
provides evidence that beat-to-beat TpTe alternation is present among subjects
with MTWA and is a potential marker for life-threatening ventricular arrhythmia.

Keywords: MTWA · T-peak T-end · Alternans · Sudden Cardiac Death

1 Introduction

Sudden cardiac death (SCD) is well defined as the death that occurs within one hour of
onset of symptoms in witnessed cases and within 24 h of last being seen alive when it
is unwitnessed [1, 2]. In 2018, SCD and unexpected cardiac death was the most com-
mon cause of death worldwide, accounting for 25% of all deaths [1], with impacts on
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economic, social, and health systems. Overall, the most observed underlying mecha-
nism related to SCD is ventricular fibrillation [3–5]. This scenario fosters the search for
improved risk stratification tools and effective preventative strategies.

Microvolt T-wave alternans (MTWA) is a promising SCD risk stratification tool
[6]. MTWA is thought to reflect the alternation of ventricular action potential phase-
3 duration transmurally [7] and, thus, is a marker of transmural ventricular repolar-
ization heterogeneity. MTWA is defined as a beat-to-beat alternation in the ampli-
tude of the T-wave [7]. Several studies have shown the potential of MTWA to predict
implantable cardioverter-defibrillator shocks and ventricular tachyarrhythmia events in
diverse patient populations [8–11].

Prolongation ofTpeak-Tend interval (TpTe) is also considered amarker of transmural
ventricular repolarization heterogeneity [12, 13]. It has been associatedwith an increased
risk ofmortality in congenital and acquired long-QT syndromes [10, 14], in hypertrophic
cardiomyopathy with troponin I mutations [10, 13, 15], and in patients undergoing
primary percutaneous coronary intervention for myocardial infarction [10]. TpTe is
defined as the interval between the peak and the end of the T-wave and may be explained
by differences in phase-3 repolarization times from ventricular epicardial to endocardial
layers.

Thus, TpTe interval andMTWA represent different approaches to assessing the same
physiological mechanism, phase-3 transmurally ventricular action potential duration,
and both have shown potential to be used as a tool in SCD risk stratification. Nonethe-
less, it is unclear whether patients with MTWA also present alternations in TpTe and,
furthermore, if they are correlated to each other. This work investigated if a terminal ven-
tricular repolarization duration alternation, as represented by TpTe alternans is present
in patients with T-wave amplitude alternation.

2 Materials and Methods

2.1 Database

The present study analyzed seven 12-lead ECG records fromT-waveAlternans Database
[16], sampled at 500Hz,with 16-bit resolution at±32mVrange.Overall, 77ECGsignals
with different duration were analyzed. Considering a uniform analysis, signals used had
128 consecutive sinus beats (MTWA criteria).

2.2 Pre-Processing

To standardize and make ECG signal quality uniform across the analyzed databank
signals, data pre-processing was carried out in all signals. Butterworth second-order
zero-phase low-pass filtering at 30 Hz was applied to reduce electrical interference and
muscle noises. The absolute first-order method [17] was employed to detect R-waves,
and baseline drifting correction was accomplished by adjusting a spline function to the
midpoint of two seven-point windows on the T-P segment, with windows duration set
proportionally to the duration of the immediately preceding RR interval. This proce-
dure was repeated throughout the whole filtered ECG, and the resulting function was
subtracted.
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2.3 Alternans Assessment

MTWA. Microvolt T-wave alternans (MTWA) was quantified by detecting T-wave
peaks in 128 consecutive sinus beats. For monophasic T-waves, the T-wave peak was
assessed as the absolute maximum within a search window, starting at 100 ms after
R-wave and ending at the point representing 55% of the previous R-R interval duration
(Fig. 1(a)). MTWA alternans was quantified by the difference between the average peak
of the T-wave in even and odd beats (Fig. 1(b)).

TpTe Alternans. The TpTe is a well know interval in ECG, defined as the distance
between the T-wave peak (maximum of T-wave search window) and the endpoint
(detected the TpTe interval was calculated in the same 128 consecutive beats employed
for MTWA. In even and odd beats, respectively, TpTe intervals were averaged. The
magnitude of TpTe alternans was defined as the difference between even and odd TpTe
averages (�TpTe) (Fig. 1 (c)).

Fig. 1. Alternans Assessment for both methods. A six-beat strip of a TWA36 in lead V3, in green
line. (a) Result of proper T-wave assessment in T-wave search window (starting at 100 ms after
R-wave and ending at the point representing 55% of the previous R-R interval duration) in dashed
gray. (b) T-wave peaks were taken as the maximum of the T-wave search window. In red the odd
peaks and in blue the even peaks that were further averaged for MTWA quantification. (c) Result
of TpTe assessment. In red the odd TpTe and in blue the even TpTe that were further averaged for
�TpTe quantification.
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2.4 Statistical Analysis

Data were presented as mean ± standard deviation. MTWA and �TpTe were com-
pared by Pearson’s coefficient. Even and odd beats on TpTe alternans and MTWA were
compared with non-paired Student t-test. The alpha error level was 0.05.

3 Results

ECG signals were successfully pre-processed in all leads, and movement artifacts and
electromyogram interference in baseline were removed. Baseline drifting significantly
removed the baseline oscillations, allowing an adequate signal for MTWA and �TpTe
assessment.

TheMTWAquantificationwas successfully performed, all T-waves peakswere found
and quantified and the difference between the averaged oddly and even beats were
assessed to all signals. TpTe alternans also performed successfully. Averaged TpTe was
strongly correlated with heart rate (HR) in Fig. 2. Averaged even and odd beats were
compared for bothmethods (Tables 1 and 2). Noteworthy, in even and odds beats, average

Fig. 2. Association of TpTe and HR. (a) Result of all beats. It is possible to notice that larger
TpTe were associated with lower HR and there is a high correlation between HR and TpTe (R2 =
0.98). (b) Results for even and odd groups. The same behaviour is observed and the TpTe of the
odd group is slightly lower than the even group.
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TpTe was significantly different across all leads. Regarding T-wave peak, in only V3, V4
and V5 even and odds beats showed significant T-wave amplitude differences �TpTe
vs. MTWA Pearson coefficient was 0.50 (p < 0.05).

Table 1. TpTe of averaged even and odd beats.

Averaged Even Averaged Odd p-value

All 49.89 ± 4.17 49.12 ± 4.11 p < 0.05

D1 49.97 ± 4.87 49.20 ± 4.80 p < 0.05

D2 50.27 ± 4.63 49.50 ± 4.56 p < 0.05

D3 49.72 ± 4.48 48.96 ± 4.42 p < 0.05

aVR 49.72 ± 4.48 48.95 ± 4.42 p < 0.05

aVL 49.11 ± 4.58 48.35 ± 4.52 p < 0.05

aVF 49.72 ± 4.48 48.95 ± 4.41 p < 0.05

V1 49.72 ± 4.49 48.95 ± 4.43 p < 0.05

V2 51.05 ± 3.04 50.26 ± 3.00 p < 0.05

V3 49.74 ± 4.48 48.97 ± 4.42 p < 0.05

V4 49.74 ± 4.49 48.97 ± 4.42 p < 0.05

V5 50.28 ± 4.64 49.50 ± 4.57 p < 0.05

V6 49.72 ± 4.95 49.50 ± 4.88 p < 0.05

Table 2. T-wave peak (µV) of averaged even and odd beats.

Averaged Even Averaged Odd p-value

All 270.8 ± 169.3 270.3 ± 168.6 p < 0.05

D1 259.3 ± 51.3 258.6 ± 51.3 p = 0.45

D2 267.2 ± 129.5 267.7 ± 127.9 p = 0.70

D3 268.4 ± 131.1 268.3 ± 131.2 p = 0.93

aVR 187.1 ± 91.7 187.1 ± 91.0 p = 0.99

aVL 231.3 ± 111.1 230.6 ± 111.2 p = 0.32

aVF 234.0 ± 99.7 234.4 ± 98.6 p = 0.68

V1 144.1 ± 88.0 143.5 ± 86.5 p = 0.54

(continued)
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Table 2. (continued)

Averaged Even Averaged Odd p-value

V2 450.7 ± 243.2 450.5 ± 241.8 p = 0.75

V3 437.4 ± 277.8 435.5 ± 277.1 p < 0.05

V4 322.1 ± 194.6 320.7 ± 193.7 p < 0.05

V5 222.2 ± 145.6 221.1 ± 145.4 p < 0.05

V6 222.9 ± 115.7 222.9 ± 116.3 p = 0.96

4 Discussion

In patients with documented MTWA, the occurrence of TpTe alternans was observed,
and both MTWA and TpTe alternans bear a significant correlation.

The decision to use Physionet’s T-wave Alternans Data-base database choice aimed
at a well-characterized dataset for MTWA information, although it was developed to
setup part of requirements of a worldwide competition in the field [16].

In this study, the difference between averaged even andoddbeatswas chosen to assess
MTWAbecause it conceptually best represents the idea of alternation (alternating beats).
The concept of T-wave amplitude alternation was deemed an equivalent of alternation
in the time duration of the phase-3 ventricular action potential. Thus, considering that
TpTe conceptually represents ventricular transmural phase-3 gradient as well, it seemed
rational to compare TpTe between consecutive alternating beats, and correlate TpTe
duration alternation with MTWA.

The TpTe was associated with variations in heart rate (Fig. 2(a)) and larger TpTe was
related with lower HR, as described in the literature [12, 18]. Also, in even and odd beats
this phenomenon is still observed, as demonstrated in Fig. 2 (b). This is an indicator that
the TpTe was properly assessed.

By comparing all TpTe in averaged even and odd beats, it was possible to compare
two distinct groups of beats. Interestingly, it was found that even beats were larger than
odd beats (on average, 0.79 ms). It indicates that there was a ventricular repolarization
duration alternans in this dataset. Also, in all individual leads, significant differences
between TpTe in even and odd beats were observed (p < 0.05).

Comparing MTWA in averaged beats showed that the T-wave amplitudes of even
beats also differ from odd beats (p < 0.05). By comparing lead, individually, V3, V4,
andV5 demonstrated significant differences between even and odd beats, suggesting that
MTWAwas lead-dependent. The lead V3, V4, andV5 leads are the ones that represented
the larger amplitude of the ventricular repolarization vector amplitude; thus, it showed
the larger amount of MTWA.

In subjects at high risk for SCD, T-wave amplitude alter-nation positively correlated
with the magnitude of beat-to-beat alternation of the terminal ventricular repolarization
duration (0.50; p < 0.05). As far as we know, this is the first time this association has
been observed.
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In conclusion, using different methods to assess phase-3 ventricular action potential
duration, this study showed that a terminal ventricular repolarization duration alterna-
tion represented by TpTe alternans is present and correlated with micro T-wave ampli-
tude alternation, in high-risk patients. Further studies are needed to investigate this
phenomenon in other datasets.
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Abstract. The implementation of a Brain-Computer Interface (BCI)
system requires electroencephalography (EEG) signal processing that
includes filtering, feature extraction, and classification algorithms. As
such, the present work proposes to use the PocketBeagle embedded sys-
tem to run algorithms for BCI using the Python language. This work
aimed to explore some features of the embedded system to optimize
performance and resource consumption, as well as the training time of
the implemented algorithms, which used Linear Discriminant Analysis
(LDA) and Support Vector Machine (SVM) classifiers, both with Com-
mon Spatial Patterns (CSP) filter. When comparing previous research
results with the developed algorithms of this work embedded in the Pock-
etBeagle, the training time increased by 42.98 s for LDA and 42.66 s for
SVM. When analyzing the memory consumption of the implementations
in the embedded system, the codes consumed less than half of the mem-
ory available in the 512 MB PocketBeagle. The consumption of the LDA
classifier was 167 MB at its peak, and the SVM was 177 MB at the peak
of its execution. Using the metrics resulting from the confusion matrix, it
is clear that the SVM classifier had a better performance than the LDA
since its accuracy is 83.14 % and its f-score is 0.8111, while for the LDA
classifier, they are 66.29 % and 0.6940, respectively.

Keywords: Brain-Computer Interface · Embedded Systems ·
PocketBeagle · Python · System On Chip

1 Introduction

Motor imagery (MI) is the mental execution of a movement without any exter-
nal physical action actually being performed. Several studies have shown that
performing MI can result in the same brain areas being activated as performing
the physical movement [10]. As such, brain-computer interfaces (BCI) can use
brain activity associated with MI to transform those neurophysiological signals
into commands for an external device [7]. These interfaces allow subjects with
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motor disorders to control devices that assist them in carrying out activities,
like robotic prostheses and wheelchairs.

However, the development of BCI is no longer restricted to people with dis-
eases or undergoing treatment, for there is a shift to focus on healthy people as
well. Especially the entertainment industry which is becoming a favorable mar-
ket as users would likely adapt quickly to using EEG as a new modality [15]. By
taking BCI to the entertainment market, the motivation to make the available
systems easier to use, faster, and cheaper will take a higher priority, as current
systems do not meet such standards.

The main motivation of this work is to explore the resources of the Pock-
etBeagle embedded platform in the implementation of an interface, aiming at
the use of some of the most important characteristics of this platform such as
flexibility, ease of development, computational efficiency, reduced cost, and low
energy consumption. In this perspective, the present work aims to develop train-
ing algorithms using Linear Discriminant Analysis (LDA) and Support Vector
Machine (SVM) for execution on PocketBeagle. It seeks to understand the gains
and losses related to training time, algorithm accuracy, memory consumption,
and energy consumption, in order to verify the feasibility of implementing a BCI
in this embedded system.

It is worth noting that this article is an excerpt from the final work for the
Electronic Engineering Program at the University of Braśılia, which seeks to
disseminate the results of the study carried out [12].

2 Materials and Methods

The project is divided into four interacting parts: Embedded System, Data Set,
Algorithm, and Results Validation.

2.1 Embedded System

PocketBeagle is an open-source, pocket-size, community-supported embedded
Linux operational system. It also features a low-cost easy-to-use design, making
it an ideal development board for beginners and professionals with a development
environment directly in the web browser [2]. The availability of open-source
software drivers also allows devices to interface with the platform.

The platform is formed by the integration of a high-performance micropro-
cessor on a printed circuit board (PCB) and an extensive software ecosystem.
Despite the impressive capabilities of this board, it does not fully expose all the
features and interfaces of the ARM Sitara AM335x Cortex A8 microprocessor
that it possesses. [8]. This processor at 1000 MHz executes 2000 million instruc-
tions per second. Despite not having built-in wireless connectivity, it is possible
to add external modules to increase this functionality. Using PocketBeagle in a
project is convenient when budget and small dimensions are considered impor-
tant.
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2.2 Data Set

For the tests and validations of this project, the Data Set IVa of the Berlin BCI
Competition III was used [1]. We chose this Data Set because it is the same one
used in Lotte and Guan’s research [6], whose developed algorithms and results
will be used as a basis for this article.

The Data Set’s EEG signals files were divided based on the experiment’s
steps: the training and the testing of the subjects [3]. The Data Set only provides
the visual cues right and foot from the subjects’ training sessions. The Data Set
format provides samples of continuous signals from 118 EEG channels rate (0.05–
200 Hz) and markers that indicate the time points of 280 trials for each of the 5
subjects: A1, A2, A3, A4, and A5 [4].

2.3 Algorithm

EEG signal processing for BCI design seeks to translate the raw EEG signals
into an estimation of the mental state of the user [5]. This translation is usually
achieved by using a pattern recognition approach that is composed of two main
steps. The first step is to extract the features in the EEG signals that are relevant
to finding the desired mental state. After the extraction is done, the classification
step begins where depending on the type of mental state identified a class is
assigned to a set of characteristics extracted from the signals.

The initial processing of the EEG signal should remove noise and irrelevant
information. As the Data Set was generated from IM, the Mu and Beta bands
were taken into account to filter the brain waves recorded in the somatosensory
and motor cortices. Thus, the passband between 7 Hz and 30 Hz was used in the
first filter. The spatial filtering process must also be taken into account since for
multichannel EEG signals, spatial filters are extremely useful for the analysis of
a windowed assay and for improving the signal-to-noise ratio.

Two algorithms were implemented in Python that perform the filtering and
classification of the EEG signal from the Data Set. The first algorithm used
the LDA classifier and the second the SVM classifier. Both were executed on a
personal computer, and then later on the PocketBeagle platform to acquire the
relevant data for this work.

2.4 Results Validation

The first step to validate the results of this work was to reproduce the results
found by Lotte and Guan [6] with the algorithm implemented by them and
define the algorithm training time, establishing a basis for comparison. The
main challenge when carrying out this testing phase was to obtain accurate and
reproducible results.

The confusion matrix is a visualization tool commonly used to present the
results obtained by a classifier. Each column of the matrix represents instances
in a predicted class, while each row represents instances in an actual class. These
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performance measures will be used between the two classifiers to validate the
platform as a possible system for BCI implementations.

With only two classes, the choices are structured to predict the occurrence
of a single event. In this case, the two possible errors are called false positive
(FP) and false negative (FN). The number of correctly classified examples of one
class is called true positive (TP) and for the other class is called true negative
(TN). A benefit of the confusion matrix is that it’s easier to check whether the
classifier is mixing two classes by labeling one as the other.

Measures can be derived from the confusion matrix such as accuracy, preci-
sion, and sensitivity, also known as recall [9]. The most direct way to measure
the performance of a classifier is to calculate its accuracy, which is defined in
Eq. 1.

accuracy =
TP + TN

TP + FP + TN + FN
(1)

However, in case of unbalanced data, observing only the accuracy measure-
ment can lead to a wrong conclusion regarding the performance of the classifier
used since the majority class can cover the low performance of the minority class
[13]. By measuring the quality of an information retrieval process using recall
and precision, one can have a better analysis of the performance of the classifier
[11]. The recall describes the integrity of the retrieval, being defined as the share
of positive examples achieved by the process versus the total number of existing
positive examples as shown in Eq. 2. The precision is defined as the part of pos-
itive examples that exist in the total number of examples retrieved as shown in
Eq. 3.

recall =
TP

TP + FN
(2)

precision =
TP

TP + FP
(3)

With these two equations, it is possible to calculate the measure called f-score
which is a weighted average between precision and recall as shown in Eq. 4. When
analyzing this measure, a result closer to 1 indicates a better performance of the
classifier [13].

f − score =
2 × precision× recall

precision + recall
(4)

Therefore, for this work, accuracy and f-score measures will be used to vali-
date the developed classifiers.

3 Results and Discussion

3.1 Reproduction of the Algorithm in Octave

Lotte and Guan’s article [6] presents the classification of EEG signals by an
LDA algorithm. To execute the algorithm in Octave, a DELL laptop was used
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with an Intel Core i7-8550U CPU 4.0 GHz, 250 GB SSD, 8 GB of RAM, NVIDIA
GeForce MX150 video card, and Windows 10 operating system.

Each type of BCI needs a calibration phase in terms of spatial or temporal
filters and classifiers. This phase is fundamental for the functioning of the inter-
face, as it is where the system defines the parameters to extract the relevant
information from the EEG signal. However, as it usually demands a lot of user
time, this is considered one of the diffusion limitations of the BCI system in real
applications [14].

Thus, solutions must be sought with the shortest possible user calibration
time, even if at some level it compromises the accuracy of the interface. For
this purpose, the Common Spatial Patterns (CSP) filter was chosen as the basis
for the implementation of the algorithms in Python, as it presents the shortest
training time in the reproduction in Octave.

The accuracy and training time for each subject during the reproduction of
the algorithm in Octave can be seen in Table 1. The accuracy results found in
this execution were the same as those found by Lotte and Guan [6], validating
the reproduction of the algorithm. The loading time of the Data Set files to
memory was not taken into account in calculating the results, only the training
time of the algorithm and the training of the classifier.

Table 1. Accuracy and training time of the reproduced CSP algorithm

Subjects Accuracy Training Time (ms)

A1 66.07 % 215.36

A2 96.43 % 263.13

A3 47.45 % 117.96

A4 71.87 % 95.59

A5 49.60 % 74.49

Mean 66.28 % 153.33

3.2 Algorithm with LDA Classifier

The researchers performed the Python code execution on the same machine and
on the same operating system, as any divergence could lead to distorted values.
As seen in Tables 2, 3, 4 5 and 6, the implementation of the algorithm with CSP
and LDA generated the confusion matrices of each subject. The right and foot
classes correspond to Class 0 and Class 1, respectively.

From the confusion matrices of the LDA classifier, the researchers calculated
values of accuracy, precision, recall, and f-score of each subject. With these values
and the training times of each subject, we calculated the averages and organized
the Table 7.
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Table 2. Subject A1’s confusion matrice for the LDA algorithm

Actual Values Predicted Values

Class 0 Class 1

Class 0 35 13

Class 1 25 39

Table 3. Subject A2’s confusion matrice for the LDA algorithm

Actual Values Predicted Values

Class 0 Class 1

Class 0 28 2

Class 1 0 26

Table 4. Subject A3’s confusion matrice for the LDA algorithm

Actual Values Predicted Values

Class 0 Class 1

Class 0 75 80

Class 1 23 18

Table 5. Subject A4’s confusion matrice for the LDA algorithm

Actual Values Predicted Values

Class 0 Class 1

Class 0 53 6

Class 1 57 108

Table 6. Subject A5’s confusion matrice for the LDA algorithm

Actual Values Predicted Values

Class 0 Class 1

Class 0 111 116

Class 1 11 14
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Table 7. LDA algorithm performance measures

Subjects Accuracy Precision Recall f-score Training Time (ms)

A1 66.07 % 72.92 % 58.33 % 0.6481 1099.39

A2 96.43 % 93.33 % 100 % 0.9655 2419.87

A3 47.45 % 48.39 % 76.53 % 0.5929 442.81

A4 71.88 % 89.83 % 48.18 % 0.6272 325.09

A5 49.60 % 48.90 % 90.98 % 0.6361 143.61

Mean 66.29 % 70.67 % 74.81 % 0.6940 886.15

The values found for accuracy were very close when comparing the results
obtained in Python with the results of the reproduction in Octave. In Octave,
there was an average of 66.28 %, and in Python of 66.29 %. Regarding the
training time, it can be noted that the Octave program had a better performance
compared to the Python program.

We performed a code profiler to identify which functions consume the most
execution time. This means measuring the time spent on each function to provide
data on where the program is spending the most time running and which area
is worth optimizing.

The function with the longest accumulated time in the execution of the code is
responsible for extracting the CSP matrix of the subjects from the training data
and it corresponds to 52.4 % of the execution time of the program. The second
largest execution time consumption is the function responsible for filtering EEG
signals to remove noise and it corresponds to 31.2 % of the execution time.

3.3 Algorithm with SVM Classifier

For the implementation of the code with the SVM classifier, the same code
elaborated with the LDA classifier was the basis. The researchers removed the
discriminant analysis functions, inserting the support vector machine functions.
However, the code structure remained similar. After elaborating the algorithm in
Python, we executed it on the computer previously mentioned. Thus, Tables 8,
9, 10, 11 and 12 show the confusion matrices of each subject generated by the
implementation of the algorithm with CSP and SVM.

Table 8. Subject A1’s confusion matrice for the SVM algorithm

Actual Values Predicted Values

Class 0 Class 1

Class 0 60 0

Class 1 2 50
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Table 9. Subject A2’s confusion matrice for the SVM algorithm

Actual Values Predicted Values

Class 0 Class 1

Class 0 28 0

Class 1 0 28

Table 10. Subject A3’s confusion matrice for the SVM algorithm

Actual Values Predicted Values

Class 0 Class 1

Class 0 67 31

Class 1 13 85

Table 11. Subject A4’s confusion matrice for the SVM algorithm

Actual Values Predicted Values

p1.2cmClass 0 Class 1

Class 0 83 27

Class 1 16 98

Table 12. Subject A5’s confusion matrice for the SVM algorithm

Actual Values Predicted Values

Class 0 Class 1

Class 0 105 17

Class 1 86 44

From the confusion matrices of the SVM classifier, Table 13 was structured,
which presents the data in relation to the performance measures of this classifier
for each subject and the average between them.

When comparing LDA’s training time with SVM’s, we noticed a reduction
of 1.08 % in relation to the training time with this second classifier. A high
performance appeared for most of the Data Set subjects when analyzing the
measures of the SVM classifier, which indicates an average accuracy of 83.14 %
and an average f-score of 0.8111. When comparing the f-scores of both classifiers,
it can be seen that the SVM performed better in the classification than the LDA,
a difference of 14.44 %.

We made a code profiler to identify which functions consumed the most exe-
cution time in the SVM algorithm. As in the LDA’s algorithm, the two functions
that consumed the most execution time were the same as before: the function
that calculates the CSP matrix and the function responsible for filtering the
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Table 13. SVM algorithm performance measures

Subjects Accuracy Precision Recall f-score Training Time (ms)

A1 98.21 % 100 % 96.15 % 0.9804 1078.48

A2 100 % 100% 100% 1.0000 2385.79

A3 77.55 % 73.28 % 86.73 % 0.7944 438.83

A4 80.80 % 78.40 % 85.96 % 0.8201 337.05

A5 59.13 % 72.13 % 33.85 % 0.4607 142.57

Mean 83.14 % 84.76 % 80.94 % 0.8111 876.54

EEG signals to remove noise. The percentage of the execution time was 57.5%
and 29.5 %, respectively.

However, when analyzing the classifier functions of each algorithm, the SVM
functions consumed a total of 14.23 ms and the LDA functions 27.34 ms. This
difference shows that it is faster to sort with SVM than with LDA on a personal
computer.

3.4 Results of Running on PocketBeagle

After running the codes on the personal computer, they were executed on the
PocketBeagle to verify memory consumption, training time, and code execution
time. The PocketBeagle accuracy and f-score values remained the same as those
when running on the personal computer. Comparing the algorithms, SVM had a
25.42 % increase in average accuracy compared to LDA. Regarding the average
f-score, the SVM classifier had an increase of 16.87 % in relation to the LDA.

The execution time of the algorithms in PocketBeagle had very similar values:
the execution of the LDA algorithm lasted 288.5 s and the SVM lasted 290.6 s.
Given that the personal computer has greater computational capacity than the
embedded system, this increase in execution time was expected. The average
training time for the LDA algorithm was 42.98 s and for the SVM algorithm, it
was 42.66 s.

Regarding PocketBeagle memory consumption, the LDA algorithm generated
the graph shown in Fig. 1 and the SVM algorithm produced the graph shown in
Fig. 2. In the embedded system, the LDA algorithm reached a peak of 175 MB
of memory consumption while the SVM reached 185 MB.

To verify the PocketBeagle’s power consumption, we used a USB tester to
quantify the voltage and current consumed by the devices connected to it. The
USB tester can measure a voltage from 4 V to 20 V with a resolution of 10 mV
and a current from 0 to 3 A with a resolution of 10 mA. The voltage error range
is ± 1 % and the current is ± 2 %. Using this information, we calculated the
power of the embedded system at three different times: in an idle state, executing
the LDA algorithm, and executing the SVM algorithm. The values found are in
Table 14.
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Fig. 1. Memory consumption as a function of time of the LDA algorithm on Pocket-
Beagle

Fig. 2. Memory consumption as a function of time of the SVM algorithm on Pocket-
Beagle

Table 14. PocketBeagle Power Consumption

Measures Idle State LDA SVM

Voltage 4.82V 4.81V 4.84V

Current 3.11 mA 4.60 mA 4.60 mA

Power 15.0 mW 22.1 mW 22.3 mW

By subtracting the PocketBeagle energy consumption while executing the
algorithms with the idle state consumption, we verified that the LDA classifier
in its execution used 7.1 mW and the SVM classifier used 7.3 mW. With these
data, the algorithms had a power consumption very close to each other, and the
LDA had a slightly better consumption.

4 Conclusion

As shown, this work is a study of the implementation of training algorithms for
the LDA classifier and the SVM classifier in an embedded system. We compared



Study of Algorithms for Implementation of BCI 89

the results obtained using different program languages to establish a data basis
for the executions in the PocketBeagle.

One of the goals was to obtain a training time in the Python implementa-
tion close to or less than in the Octave implementation. However, in relation to
training time, the results presented show that on average the Python implemen-
tation was almost 6 times slower than the Octave. When embedding the Python
implementations on PocketBeagle, this training time increased to an average of
42.98 s with the LDA classifier and 42.66 s with the SVM classifier. Comparing
the results of running on an embedded system with running on a personal com-
puter, the training time of the LDA classifier increased by 48.50 times and that
of the SVM classifier by 48.14 times.

Due to this increase in PocketBeagle training time, it would not be recom-
mended to execute in real-time applications the training part of the algorithms
developed for this work. However, it might be possible to train a model with
these algorithms beforehand and use the model already trained in real-time
applications on the embedded system.

Another goal of this study was to analyze the memory consumption during
the execution of the algorithms in the embedded system. The results show that
the implemented interfaces consumed less than half of the available memory of
512 MB on the PocketBeagle. The consumption of the LDA classifier was 175
MB at its peak and the SVM was 185 MB.

We evaluated the performance of these algorithms using metrics derived from
the confusion matrix. This method records the errors and hits in its rows and
columns and generates measures such as accuracy, precision, recall, and f-score
as validation metrics. It is clear when using the same Data Set that the SVM
classifier has a better performance than the LDA since its accuracy is 83.14 %
and its f-score is 0.8111, while for the LDA classifier, there were an accuracy of
66.29 % and f-score of 0.6940.

Observing the energy consumption of the algorithms, it is noteworthy that
both have similar numbers, the LDA classifier consumed 7.1 mW and the SVM
7.3 mW. When compared to idle state power consumption, LDA and SVM
increased by 47.33 %.
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Abstract. Attention-deficit hyperactivity disorder (ADHD) affects at least 5% of
the world population. ADHD typically starts in childhood and can affect normal
development that can cause serious consequences during adulthood. Moreover,
there are three subtypes of ADHD, each with its symptomatic differences that
require particular treatment. The development of tools capable of detecting the
brain differences between each subtype and a control group can help in directing
future neuropsychological studies and guide treatments. Here we investigate the
hypothesis of using Convolutional Neural Networks (CNN) as a tool to detect
ADHD in connectivity networks of the brain. This research used the Yeo brain
parcellation maps from 28 healthy volunteers, 36 combined subtype ADHD, and
26 inattentive type ADHD. The CNN achieved a 64.71% accuracy at detecting
the multi-class diagnosis (Control, ADHD combined, or ADHD inattentive) when
using the complete connectivity network matrix, surpassing the individual accu-
racies achieved when using only the within network connectivity measures. How-
ever, the separate analysis of each network showed that the Dorsal, Default and
Frontoparietal networks have better accuracy of performing the classification com-
pared to using other within brain connectivity measures. The Default Network has
shown greater accuracy at identifying ADHD-I than the other within networks
or whole brain connectivity measures. These results suggest that the neurologi-
cal differences of the presence of ADHD and its subtypes may be present and,
therefore, affect more than one connectivity network functionality.

Keywords: ADHD subtypes · Convolutional Neural networks · fMRI

1 Introduction

1.1 A Subsection Sample

Attention-deficit hyperactivity disorder (ADHD) affects about 51.1 million people
worldwide [1]. This disease is typically first identified in children and affects between 5
and 7% according to DSM-IV [2]. Between 3 and 5% of adults have ADHD [3]. ADHD
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is a perturbation of neurologic development characterized by a lack of attention, impul-
sivity, and hyperactivity [2]. However, each case of this disorder may affect patients
with different symptom levels that limit their abilities to focus on details, hold attention,
organize themselves, complete tedious or time-consuming tasks, and realize structured
tasks [2]. Patients have a tendency to lose objects, pay less attention time than average,
are easily distracted, and act on impulse [2]. Beyond disturbing the academic and work-
ing life of the afflicted individual, this disorder also elevates risks, such as suicide [4],
traffic accidents [5], disease infection [6], substance abuse [7], or crime involvement
[6]. Consequently, individuals with ADHD have a shorter life expectancy than healthy
controls [8]. Therefore, it is fundamental for the ADHD population to get a diagnosis
and adequate treatment.

ADHD is a disorder with three subtypes: the Inattentive (ADHD-I) presents symp-
toms linked to the lack of attention; the rarer hyperactive (ADHD-H) presents only the
hyperactivity and lack of control over impulses; and, most commonly observed, the com-
bined subtype (ADHD-C) [9]. The three have their particularities not only in symptoms
but also in comorbidities [10, 11]. The study of Salvi et al. [11] shows that patients do
not transit between subtypes. The treatments may differ between the subtypes since they
have distinct brain alterations [12]. Therefore, identifying correctly the occurrence of
the disorder is fundamental. Functional magnetic resonance image (fMRI) [13] can be
an important tool not only to help in the diagnosis, but also to better identify the brain
differences that characterize each subtype. This will help future studies to find more
adequate treatments and pharmacological interventions for each subtype.

fMRI is modulated by the fluctuation of the oxygen levels in the blood (blood-
oxygen-level dependent - BOLD) [13] within each brain region. The areas with an
increase in the oxygen carried by the blood correspond to the areas of the brain where
there is a greater neuronal activity [13]. Thus, measuring fMRI of the brain is a form of
indirect measuring the functioning of the brain.

In 2011, the international neuroimaging data sharing initiative promotedADHD-200,
a competition with data from 700 participants, for which researchers were encouraged
to create ADHD classifiers. The accuracies reported by the teams were within the range
of 55 to 78% for the binary distinction between ADHD and control groups, though in an
external hold-out testing none of these classifiers achieved more than a 61.54% accuracy
[15, 18].

The research of Mao et al. [14] used fMRI data from 439 controls and 359 ADHD
patients, binary classified by a space-time Convolutional Neural Network (CNN) with
71.30% of accuracy to detect dynamical differences in the brain behavior of ADHD
patients. The work of Zou et al. [15] used CNN to binary classify 491 controls and
285 ADHD achieving an accuracy of 69.15%. Though, both of these works have not
considered ADHD subtypes. Subtype classification has been accomplished by Qureshi
et al. [9], which used data from 53 subjects of each class they worked with, namely
ADHD-C, ADHD-I, and control groups from the ADHD-200 dataset. They achieved a
hit rate of 76.19% at multiclass classification maximum accuracy (they did not report
their average accuracy) using data from both structural MRI and fMRI using an Extreme
Learning Machine. This work also analyzed the effects of age on the brain connectivity
networks comparing adults and children. While previous ADHD classification studies
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mostly used the ADHD-200 dataset, the present study uses the Healthy Brain Network
(HBN) dataset currently being collected by Child Mind Institute, which will be further
described in Sect. 2.

Section 2 also presents the preprocessingmethods and classification techniques used.
Sect. 3 presents the results from the application of the preprocessing and classification
methodology in the dataset used and the analysis of these results. Section 4 presents the
conclusions and discusses possibilities of future work.

2 Material and Methods

2.1 Healthy Brain Network Dataset

Researchers of the HBN [16] are currently collecting data for a very large database that
includes MRIs EEG recordings, and medical assessments of 10,000 participants, aged
between 5–21 years. Participants with other diagnostics, aside from ADHD subtypes
and healthy volunteers have been excluded from the set used in this research. We have
chosen to use just a subset of the HBN database to guarantee a balanced set since ANNs
tend to give better results when their inputs have classification groups of similar sizes
for preliminary tests.

Frequent head movement of the patients provokes distortions that greatly impairs the
data. These impairments augment progressively as the patient moves more often his/her
brain. The FrameWise Displacement Jenkinson is a commonly used index that measures
the head movement of the subject along the exam. Individuals with an indexed Frame-
Wise Displacement Jenkinson superior than 0.5 were excluded from the classification
experiments. After the necessary exclusions, the present study used the fMRI data from
36 ADHD-C patients, 26 ADHD-I patients and 28 healthy volunteers from a subset of
the HBN dataset acquired while each subject was watching predetermined two segments
of children movies. Since the measures have been split by the database team in those
two segments, the stages are treated as two different samples.

The HBN database divides the voxels measured through electromagnetic resonance
according to the [17] 200-atlas, in 200 regions of interest (ROI) each with measures
averaged from about 300 voxels.

2.2 Feature Extraction and Pre-processing

FMRI data was preprocessed using the C-PAC toolbox with its recommended settings
[18]. Next a matrix reorganizing the 200 ROI using the Craddock 200 parcellation atlas
[17]. These ROIs were reorganized according to the 7-segment version of the Yeo map
[19]. The Yeo map divides the brain in 7 brain networks: Frontoparietal, Somatomotor,
Dorsal Attention, Ventral Attention, Limbic, Default and Visual, as shown Fig. 1.
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Fig. 1. Connectivity networks of the brain according to the Yeo 7-network cortical parcellation.
SOURCE: Adapted from [19].

Next, we calculated the correlation between each ROI with and all other ROI, result-
ing in a 200 × 200 matrix for each subject, which corresponds to 40 thousand features.
Figure 2 presents an example of these correlation matrices, whereas the squares along
the main diagonal represent the correlation between the ROIs within each network, rep-
resented in the figure by R1 to R7. The correlation levels are represented in gray scale
where the lighter cells represent highly positive correlations and the black cells represent
no correlation. The negative correlation is not shown on this image. Whenever the value
is less than zero, it is zero-clamped. However, the image is for illustrative purposes only.
The negative values remain in the matrices evaluated by the classifier. The remaining
rectangles show the correlation between the ROIs of one vertically adjacent network
to the ROIs of a horizontal adjacent network. The eighth square in correlation matrix
represented by R8 corresponds to the remaining voxels from the Craddock 200-atlas that
do not belong to a defined network of the 7-segment Yeo map.

Each matrix was normalized according to (1)

X = X − X

σ(X )
(1)

where X represents each correlation value, X is the average value of all correlations
within the correlation matrix and σ(X ) is its standard deviation. The normalization
helps in standardizing the values of the matrices for further comparison and transforms
its values to a range where neural networks are known to perform better without losing
its significance.

Due to some of the participants having a field of view of the MRI that misses the
cerebellar areas of thebrain, some regions of theCC200needed tobe removed.Therefore,
10 rows and columns from each matrix were excluded from the dataset, resulting in 190
× 190 matrices.

Next, since the correlation matrices can be divided by the main diagonal in two
triangles that equally mirror each other, then sending redundant the data from both trian-
gles to the Convolutional Neural Network (CNN), which could impair its generalization
potential, besides diminishing its computational efficiency. Therefore, we zeroed the
upper triangle. It is noteworthy, that once the localization of each correlation value in
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Fig. 2. Example of a correlation matrix in the form of an image with R1–7 denoting the Visual,
Somatomotor, Dorsal Attention, Ventral Attention, Limbic, Frontoparietal and Default Networks
respectively, while R8 corresponds to the remaining voxels areas (that are not characterized as
part of the connectivity networks) from the Yeo 7-network cortical parcellation.

Fig. 3. Flowchart showing the feature extraction procedures used on preprocessed ROI timeseries
prior to their use for ADHD subtype classification.
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the matrix is a feature itself, reshaping the matrices into squares could reduce their rele-
vant information. The workflow on Fig. 3 summarizes the preprocessing steps and their
execution order. Therefore, the resulting matrices have 17.955 features that need to be
analyzed by the classification model.

In the experiment where we consider the analysis of each connectivity network
separately, there is an additional preprocessing step for this separation. As Figs. 1 and
2 show, each connectivity network has a different size that is proportional to the size
it occupies in a correlation matrix, thus it will have a distinctly sized correspondent
separated matrix. R1 through R8 are represented by matrices with 38× 38, 21× 21, 19
× 19, 23 × 23, 15 × 15, 20 × 20, 43 × 43 and 21 × 21 dimensions respectively.

2.3 Convolutional Neural Network

In this work, the preprocessed matrixes of each patient or volunteer are sent to a CNN
that learns the patterns to identify and classify from which subtype the belongs.

Many CNN architectures were empirically tested for this purpose. The one that
achieved the best results is detailed here and presented on Fig. 4(a). It starts with a
pointwise convolutional layer [20] with ReLU activation, followed by a pooling layer
with a 3 × 3 window. Next, a second convolution is applied to the data with a huge
convolutional window of 50 × 50 with hyperbolic tangent activation (tanh) function,
followed by a batch normalization and another pooling layer of 10 × 10. These steps
have the purpose of extracting the most important information from the feature matrix
and, consequently, establishing new relations between the features. These new relations
matrices are then flattened. The deep neural network has two dense layers with 512
and 256 neurons and uses a dropout of 0.5 to avoid overfitting and exploding gradient
problems. Finally, the processed data is sent to the output layer that defines which class
the subject belongs to with 3 neurons and SoftMax function. Figure 4(b) presents the
whole flowchart of the CNN.

All the results were averaged from 10 applications of the CNNs to subjects randomly
sorted and divided in training (80%) and test (20%) sets.

To evaluate the activation function {sigmoid, ReLU, eLU and tanh}, batch size {2,
5, 7,10, 20, 30} and optimizer {Stochastic Gradient Descent (SGD), Adam, Adadelta,
Adamax} that would produce the greatest accuracy in 10k epochs for the testing set
classification, the CNN was tested with each combination through a grid search exper-
iment. Figure 5 shows that the accuracy achieved by the CNN greatly varies, changing
the optimizer and maintaining ReLU and a batch size of 7, which were the best param-
eters for the activation function and batch size respectively. The optimizer Adadelta
surpassed the others in the majority of tests involving activation function and batch size
variations. However, the use of Adamax and SGD had not always produced results as
inferior as Fig. 5 might suggest and surpassed Adadelta for batch sizes of 5 and 30.
ReLU and sigmoid showed better accuracy than the other activation functions, with sig-
moid having less oscillation in the learning rate and ReLU providing faster learning for
the CNN. A batch size = 7 provided greatest average classifying accuracy compared to
other investigated sizes.

In order to evaluate the within networks connectivity classification, it was necessary
to design another CNN topology, since the second layer of that CNN used filters that
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Fig. 4. (a) CNN Architecture (b) flowchart from the same CNN architecture showing configura-
tion of each layer.

were bigger than the connectivity networks matrixes. Also, for a CNN to work properly
its convolutional filters must be smaller than the convolved matrix. Thus, this new archi-
tecture is similar to the one described previously but has 3 × 3 convolutional windows
in both convolutional layers and in its only pooling layer. It has two dense layers, first
with 512 and second with 256 neurons, plus an output layer with 3 neurons, one for each
class, and softmax activation. All remaining activations functions used in this CNN are
ReLU aside from the one preceding the batch normalization that is a hyperbolic tangent.
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Fig. 5. Learning rate curve of ADHD subtype classification total accuracy at validation set
achieved by the evaluation of the entire correlation matrix by the CNN with the jointly con-
nectivity networks from Yeo 7-network cortical parcellation. Batch size= 7 and ReLU activation
function.

3 Results and Discussion

CNN’s first architecture, presented in Fig. 4, achieved 64.71% of average accuracy and
70% of maximum accuracy in classifying the validation samples. Figure 6 shows the
confusion matrix of the average results achieved by the first CNN architecture at the
task of classifying the complete correlation matrix. The confusion matrix shows that
the CNN has 71.21%, 76.92%, and 41.67% of average accuracy at classifying control,
ADHD-C, and ADHD-I groups. This difference between the classification accuracies
is due to the unbalancing of the groups. The CNN classifies some ADHD-I samples as
control, which infers a greater group similarity.MostADHD-Cmisclassified samples are
placed in the ADHD-I group, pointing to greater similarity of ADHD-C with ADHD-I
than with control.

Figure 7 shows the confusion matrices achieved by evaluating the CNN with ROIs
within a connectivity network. The CNN presented a better average classification accu-
racy forADHD-Cwhen using theDorsalAttentionNetwork (78.46%),while the greatest
average accuracy for the control group was attained by the CNN classifying the Ven-
tral Attention Network (60.91%). The Frontoparietal network also led to a considerable
average accuracy in predicting ADHD-C (74.72%). Using the Default Network, CNN
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0 – Control 

1 – ADHD-C

2 – ADHD-I

Fig. 6. Average of 10 confusionmatrices achieved by the use of the complete correlation matrices
for ADHD subtype classification with data of every connectivity network from Yeo 7-network
cortical parcellation with the CNN architecture presented in Fig. 4 on the validation set.

obtained almost as good accuracy for the control group (60%) andgreater accuracy for the
ADHD-I group (48.45%). Considering there are three classes, an accuracy of 48.45%
is higher than the average accuracy a classifier that randomly distributes the samples
would get (33.33%). There is less confusion between ADHD-I and control groups when
the CNN analyses the Default Network, which can indicate that this network is used
differently in these groups.

The Somatomotor region has been shown to be useful for detecting controls. When
CNN is wrong about predicting ADHD-C in Somatomotor Network, it classifies the
sample as control. But when the CNN is using other regions, it tends to misclassify
the sample as ADHD-I, thus, in the Somatomotor network ADHD-C is more similar
to controls, but in the other regions ADHD-C is more like ADHD-I. The total average
accuracy using the Limbic Network is the lowest, indicating less relation to the sub-
types identification. Since the Dorsal, Ventral, and Frontoparietal Networks are linked
to the processing of the spatial attention, reorientation of the attention upon receiving
rare stimulus and sustained attention respectively, it is reasonable that the patterns of
connectivity in these networks are different in ADHD and its subtypes.

Therefore, these results corroborate that the Dorsal and Ventral Attention networks
are linked to ADHD occurrence as well as the subtype distinction, as reported in [9].
The results also add that the Default and Frontoparietal Networks are also important.
CNN achieves its greatest accuracy using the complete matrix with the combination
of all connectivity networks, rather than just one, reinforcing that multiple networks
contribute to the diagnosis.
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Fig. 7. Averages of 10 confusion matrices of the classification of ADHD subtypes based on each
of the 7 connectivity networks by the second architecture of the CNN (last paragraph of Materials
and Methods chapter). Legend: 0 – Control; 1 – ADHD-C; 2 – ADHD-I.

4 Conclusions

This manuscript has presented two approaches to classifying ADHD subtypes, namely
combined and inattentive. One of the methods uses a CNN to distinguish correlation
matrices of each subject’s fMRI data. The other approach evaluates each connectivity
network separately by a second CNN topology. The results of these analyses have shown
that using Dorsal and Frontoparietal Networks has the greatest potential for identifying
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the combined ADHD subtype. Using the Default Network granted the greatest average
accuracy for identifying ADHD-I. Although the combination of the use of all networks
simultaneously surpassed the other networks separate use in achieving average accuracy,
the use of the separated connectivity networks shows the importance each network has
for the diagnoses and which subtypes are more similar in which networks. That may
help future studies to design more effective treatments for each ADHD subtype.

Although these results point out that the entirety of the connectivity networks may
be linked to the ADHD subtyping distinction, further experiments increasing the num-
ber of samples used from the dataset are required to confirm the results. Future work
may address the possibility of initial diagnosis errors, achievable through unsupervised
methods.
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Abstract. Electrical Impedance Tomography (EIT) is an imaging modal-
ity that allows the visualization of internal resistivities of a region of
interest from electrical measurements external to the same region. In this
work, we reconstruct 3D static images using two regularization terms,
an anatomical atlas with �1-norm and a total variation (TV) term. We
chose the iteratively reweighted least squares (IRLS) algorithm to approx-
imate the �1-norms by quadratic terms and the Gauss-Newton algorithm
to perform the optimization of the resulting functional. Together with the
anatomical atlas, using a traditional �2-norm and a high-pass filter as the
regularizer tends to reconstruct the target on the mesh elements near the
region boundary. In comparison, the reconstructed targets with the pro-
posed method are better located, especially when reconstructing multi-
ple targets, in addition to detecting a higher resistivity variation with the
same number of iterations.

Keywords: electrical impedance tomography · regularization · total
variation · sample-based density · subspace prior

1 Introduction
Electrical impedance tomography (EIT) is an imaging technique that aims to
reconstruct resistivity values ρ in a region of interest (ROI) from electrical
potential measurements vm on the surface of the same region. EIT clinical appli-
cations include head, breast, lung, and stomach imaging [1]. Specifically, obtain-
ing brain images is relevant for ischemic and hemorrhagic stroke classification,
leading to fast and specific patient care [2].

Methods for the reconstruction of the ρ values from a single set of measure-
ments are classified as absolute or static imaging, and the resulting forward
operator is nonlinear with respect to ρ. Solving the forward problem results
in simulated electrical potentials vc(ρ). Furthermore, the EIT inverse problem
is severely ill-posed and we need to incorporate prior information about the
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parameters to regularize it. The inverse problem solution can be written as a
minimization problem given by

arg min
ρ

[L (vc(ρ),vm) + λ1R1 (ρ) + λ2R2 (ρ)] , (1)

where L is a loss function (or data misfit term), both R1 and R2 are regularizers
and λ1 and λ2 are regularization parameters.

Consider a generalized Tikhonov regularizer given by

R (ρ) = ||L(ρ − ρ)||22, (2)

where L is a regularization matrix and ρ is a reference value. A possible prior
in this form is the anatomical atlas, which considers that the expected distri-
bution of parameters in the human body is approximately known [3, pp. 6–7].
The so-called anatomical atlas [4, p. 70] is an example of sample-based den-
sity that can be calculated from images of Computed Tomography or Magnetic
Resonance Imaging, and the values are converted to the magnitude of interest,
which, in the case of EIT, is the resistivity. The anatomical atlas defines a gen-
eralized Tikhonov regularization term R by its covariance matrix Γ and mean
vector ρ [5] in the form of

R (ρ) = (ρ − ρ)TΓ−1(ρ − ρ). (3)

When it is possible to decompose the covariance matrix as LTL = Γ−1, we write
(3) in the form of (2).

If the samples used to calculate the anatomical atlas are similar to each other,
Γ is ill-conditioned, or singular from a practical point of view [4, p. 70]. When
this is the case, an alternative is to add an identity matrix I to Γ to guarantee
the positive definiteness of (Γ + cI) [3, p. 8]. In a Maximum A Posteriori (MAP)
interpretation, this is equivalent to adding Gaussian white noise to the original
distribution [4, p. 79]. If we consider that Γ is a linear span of a subspace, adding
I implies giving weight to all vectors of the basis, including the uninformative
ones (whose eigenvalues are null).

In the literature, the authors in [6] developed an anatomical atlas of the tho-
rax and in [7] of the head to solve the respective inverse problems. Regarding
(1), the authors in both works chose the following component:

– L (vc(ρ),vm) = ||vc(ρ) − vm||22, a quadratic loss function;
– R1 (ρ) = (ρ − ρ)T (Γ + cI)−1 (ρ − ρ) is the anatomical atlas, where c is a

constant and I is an identity matrix;
– R2 (ρ) = ||LHPF (ρ − ρ) ||22, a generalized Tikhonov regularization term with

regularization matrix LHPF calculated from a high-pass filter (HPF) [8, p.
115].

Solutions obtained with the HPF and �2-norm in every term of (1) are
smoothed and abrupt transitions can be lost. On the other hand, �1-norm pro-
motes the sparseness of the solution. Hypothetically, if the changes in the ROI
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caused by the pathology are small relative to the whole region, approximately
sparse in that sense, the �1-norm is an adequate option to regularize the prob-
lem [4, pp. 62–3]. In this work, we propose the following modifications to recon-
struct static images of the brain using EIT:

– We use a new anatomical atlas of upper brain resistivity developed in [5]
for EIT imaging. This is a high-resolution atlas that includes spatial infor-
mation in three dimensions and dynamic information on how blood flow
variations change resistivities over time. Instead of inverting its covariance
matrix explicitly, we use a subspace prior [4,9,10, p. 71]. To this end, con-
sider that Γ can be represented in terms of its eigenvalues and eigenvectors
as

Γ = QΛQ−1, (4)

where Q is an orthogonal square matrix, in which its columns are the eigen-
vectors of Γ, and Λ is a diagonal matrix, where the non-zero elements are the
eigenvalues of Γ. When Γ is singular or ill-conditioned, some eigenvalues
are null or close to zero, being possible to truncate them. Thus, the subspace
prior is calculated as

R (ρ) = ||(I− QMQT
M)(ρ − ρ)||22, (5)

in the form of (2) when LΓ = I − QMQT
M, where the columns of QM are the

eigenvectors of Γ associated to positive eigenvalues higher than machine
precision.

– We define the regularizers of (1) with the �1-norm, instead of using the �2-
norm, and approximate them by using the Iteratively Reweighted Least
Squares (IRLS) algorithm. Using IRLS with nonlinear inverse problems to
approximate the �1 norm was already proposed in [11, pp. 219–20]. It brings
the possibility of using the anatomical atlas together with the total varia-
tion (TV) regularizer, defined as ||Ld (ρ − ρ) ||1, where Ld is a matrix of first
derivative [12, pp. 195–196]. In [13], the authors used the IRLS to obtain
the TV regularizer, optimizing the resulting functional with the Newton-
Raphson algorithm. In the present work, we use Gauss-Newton iterations.

2 Materials and Methods
No experimental data were collected in this work. We used the anatomical atlas
calculated in [5] and MRI images from [14]. All simulations were performed
using Python v3.7.

2.1 Forward Problem Solution and Data Simulation

We solved the forward problem using the finite element method (FEM). Two
different models are used to generate the electric potentials, based on two dif-
ferent meshes of the human head. Both meshes were created after a segmented
head model available online1. The first model was used to generate vm[V],

1 https://www.pedeheadmod.net/pediatric-head-atlases/.

https://www.pedeheadmod.net/pediatric-head-atlases/
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which are accurate (simulated) electrical potential measurements to replace
experimental data. A second model is then used to produce vc(ρ) [V], with a
different discretization level, thus avoiding the inverse crime [4]. We added the
electrodes positioned around the ROI using blender2. We generated the meshes
by discretizing the domain in tetrahedral elements using gmsh3.

Table 1 shows the characteristics of the two meshes. The anatomical atlas in
[5] was calculated for different current injection frequencies and we chose the
frequency of 1000[Hz] to define all resistivities.

Table 1. General mesh information

Mesh used to simulate vm vc(ρ)

Total elements 119792 24835
nodes 23994 6204

Scalp elements 54459 14540
ρ[Ωm] 3.11 3.11

Skull elements 51401 6165
ρ[Ωm] 30.84 30.84

Brain elements 12786 2984
ρ[Ωm] Single subject Atlas

Electrodes elements 1146 1146
ρt[Ωm2] 0.02 0.02

Concerning the brain resistivities, the atlas provided in [5] was calculated
using all the 109 MRI images from the original dataset in [14]. In this case, we
chose a single subject from the same dataset to simulate vm in the finer mesh,
which would mean that there was a previous MRI exam available from that
subject before the pathology. To solve the forward problem and calculate vc(ρ),
we projected the mean brain resistivities vector from the anatomical atlas avail-
able at [5] in the coarser mesh. In both forward and inverse problems, we set the
same resistivities for the scalp and the skull, as well as the same electrode posi-
tions. We obtained the resistivities of the subject’s brain tissues from a Gaus-
sian distribution with the mean and standard deviation as defined in [5]. The
obtained values were 10.20[Ωm], 14.25[Ωm], and 0.55[Ωm] for the grey matter,
white matter, and CSF, respectively.

We calculated the local conductivity matrices of the domain and the elec-
trodes according to [15, Appendix A] and the global stiffness matrix according
to [8, p. 222]. We considered a skip-16 current injection pattern, with the current
value set to 10−3[A].

To simulate the pathologies, we used spherical targets, with radii equal to
2[cm] or 1.5[cm], in different positions within the ROI, but always at the height

2 https://www.blender.org/.
3 https://gmsh.info/.

https://www.blender.org/
https://gmsh.info/
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of the electrodes. Their resistivities were lower than that of the brain (1.43[Ωm])
to simulate hemorrhagic stroke or higher than that of the brain (18.52[Ωm])
as an ischemic stroke. We also considered both simultaneously, with opposite
resistivity variation. Figure 1a-d) presents all these cases, where we projected
the resistivities from the vm simulation mesh to the coarser mesh. Also, Fig. 1e)
presents the initial atlas resistivity. It is possible to see that there are differences
in their resistivities beyond the targets themselves. In all cases, we added a
white Gaussian noise ε ∼ N(0, σ2I) to vm, where σ = 0.001[V] is the standard
deviation.

2.2 Approximating �1-Norms Using the IRLS

Let r = L (ρ − ρ) be a residual vector. We restrict ourselves to the case of using
the IRLS algorithm to approximate the �1-norm in the regularizers. This is done
iteratively from a quadratic term [16, p. 193], [12, pp. 195–196]

||r||1 ≈ ||
√
Wr||22, (6)

where W is a diagonal reweighting matrix calculated by

Wk
i,i =

{
1\|rki |, for |rki | ≥ ε

1\ε, for |rki | < ε,
(7)

where Wi,i is a value from W, k is the iteration number (not an exponent), and
ε is a tolerance we set to 10e − 5. Note that the matrix W depends on ρ, so both
W and ρ need to be updated in each iteration.

2.3 Total Variation Regularization Using the IRLS

Total variation regularization is edge-preserving, hence suitable to reconstruct
abrupt transitions. TV is defined by using �1-norm in the regularizer together
with a first derivative regularization matrix L = Ld [12, pp. 195–196]. It is pos-
sible to implement the TV regularizer using the IRLS [13]. In the case of 3D
EIT using the FEM, we calculated the regularization matrix representing the
discretization of the differential operators as the 3D analogous to [17, p. 3].

2.4 Gauss-Newton Iterations with the IRLS

Table 2 shows the two cases we consider in this study.

Table 2. Reconstruction functional terms with L (vc(ρ),vm) = ||vc(ρ) − vm||22.

Method R1(ρ) R2(ρ)

Tikhonov∗ ||LHPF (ρ − ρ) ||22 ||(I− QMQT
M) (ρ − ρ) ||22

Proposed ||Ld (ρ − ρ) ||1 ||(I− QMQT
M) (ρ − ρ) ||1

∗Based on [6,7], but using the subspace prior.

Iterative algorithms are necessary to reconstruct static EIT images. To mini-
mize them, we use Gauss-Newton iterations [18, p. 36] and the IRLS algorithm
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Fig. 1. a-d) Resistivities ρ of the brain, used to simulate vm. Here, they were projected
to the coarser mesh as a ground truth reference to the reconstruction. e) Atlas resistiv-
ities ρ of the brain, used as the initial values in the iterative algorithm and as ρ in the
regularizers.
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to approximate the �1-norm when necessary. The first step in static imaging is
to linearize the forward operator around an initial resistivity ρ0 from the first-
order Taylor series expansion [18, 2.49] as

vc(ρ) ≈ v(ρ0) + J(ρ0) (ρ − ρ0) , (8)

where J(ρ0) is the Jacobian of the forward problem calculated with respect to
the initial resistivity ρ0 [8, p. 55]. From now on, we denote J(ρ0) by J only. Then,
we approximate the data misfit as

||vc(ρ) − vm||22 ≈ ||v′
m − Jρ||22, (9)

where v′
m = vm − vc(ρ0) + Jρ0. It is necessary to perform a linearization step

with each iteration of the algorithm, that is, the Jacobian is always recalculated
for the ρ of the previous iteration.

The second step is to perform Gauss-Newton iterations. To use the IRLS in
this framework, we must include the reweighting matrix for each term: WΓ is
related to the anatomical atlas and Wd to the TV regularizer. From (1), (6) and
Table 2, the functional can be rewritten to include all cases as

arg min
ρ

∣∣∣∣∣∣
∣∣∣∣∣∣
⎛
⎝ v′

m
λ1Ld

√
Wdρ

λ2LΓ
√
WΓρ

⎞
⎠ −

⎛
⎝ J

λ1Ld
√
Wd

λ2LΓ
√
WΓ

⎞
⎠ ρ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

, (10)

where we truncated the Γ eigendecomposition at 412 eigenvectors to obtain
LΓ = I− QMQT

M.
Let k be the iteration number. Using Gauss-Newton iterations to solve (10)

results in
Hk = (Jk)TJk + λ2

1L
T
dW

k
dLd + λ2

2L
T
ΓW

k
ΓLΓ

Uk = (Jk)T(vm − vc(ρk))
Sk

1 = λ2
1L

T
dW

k
dLd(ρk − ρ)

Sk
2 = λ2

2L
T
ΓW

k
ΓLΓ(ρk − ρ)

Δρk = (Hk)−1
(
Uk − Sk

1 − Sk
2

)
ρk+1 = ρk + αΔρk,

(11)

similar to the solution found in [18, p. 36], but now the algorithm includes Wk
L

and Wk
Γ that are also updated with each iteration. We set the maximum number

of iterations to 10 in all cases. To choose λ1 and λ2, we varied them from 1 to
1e − 7 in powers of ten, evaluating the results and choosing the adequate ones.

3 Results
Let ρ̂ be the reconstructed resistivity obtained after the last Gauss-Newton iter-
ation. For better visualization, all figures in this section present the difference
between ρ̂ to those in the initial iteration given by the anatomical atlas, that is,
ρ̂ − ρ[Ωm].

Although not shown here, it was not possible to solve the inverse problem
with the anatomical atlas as the only regularizer. In this case, we compared
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the regularization with and without the anatomical atlas to see its contribution.
Figure 2 shows the results from the Tikhonov and the proposed methods, from
Table 2, in Case 1, with just one target in the domain. It is possible to see that
including the atlas results in more well-behaved reconstructions, with fewer
artifacts.

Figure 3 shows the reconstructions when there were two targets in the brain.
The left column refers to the Tikhonov method. We were able to identify the
targets, but these mesh elements with the altered values are in the region of
the border of the domain (the brain), although we see in Fig. 1 that the anterior
targets (cases 2 and 4) are not in the border. Using the TV regularizer (right
column) these changes, as we can see in the reconstructed anterior targets.

Also, ρ̂ − ρ values are lower with the Tikhonov method, a smoother solu-
tion. Using the proposed method, the variations ρ̂ − ρ are higher, with abrupt
transitions. For example, in Fig. 3c), the minimum value was approximately
−5.6[Ωm], while in Fig. 3d) the minimum value was approximately −8.1[Ωm].

4 Discussion
When the inverse problem is linear, such as the dynamic (or difference) EIT
imaging, there are one-step solutions, such as the generalized Tikhonov regu-
larization, that are appropriate for real-time applications. In this case, the iter-
ative character of the IRLS can be seen as a negative side. Still, using the IRLS
with Gauss-Newton iterations to reconstruct EIT static images makes it possi-
ble to consider both the nonlinear characteristic of the forward operator and the
presence of the norm �1 in the same iterative algorithm. With each iteration, the
forward operator is linearized and all reweighting matrices W are calculated.

The results from the proposed and the Tikhonov methods from Table 2
yields different solutions, but the final results are similar to a degree since both
include the anatomical atlas. While we observed an expected resistivity varia-
tion ρ̂ − ρ in the targets region, regions that are far from the electrodes, such as
the base of the brain, also presents a high ρ̂ − ρ. Because of this, we adjusted the
scale range in each plot. Also, we observed more artifacts in the solution using
further iterations, in addition to eventually reconstructing negative ρ values.
For this reason, we fixed the iteration numbers to 10, resulting in an image
reconstruction per 30 s with the Tikhonov method and an image per 2 min with
the proposed method, both using our personal notebooks (Windows 10, Intel
i7-8550U, 16Gb RAM).

Concerning the anatomical atlas, we needed it in the form of (2) because
of the IRLS framework. Considering R(ρ) = (ρ − ρ)T (Γ + cI)−1 (ρ − ρ), it
would be necessary to use a matrix decomposition, such as the Cholesky
decomposition, to obtain a regularization matrix LΓ that ||LΓ (ρ − ρ) ||22, where
LT

ΓLΓ = (Γ + cI)−1. Although this is a possible option, using the subspace prior
is more straightforward, because it is easier to truncate the zero eigenvalues of
Γ than choosing the constant c to invert (Γ + cI)−1. We tested them both, but we
followed with the subspace prior since we did not notice significant differences
between them.



Reconstructing EIT 3D Brain Images with Anatomical Atlas and TV 111

Fig. 2. Case 1 reconstructions to observe the influence of the anatomical atlas. a-b)
Tikhonov reconstructions with HPF. c-d) Proposed reconstructions with TV.

Using �1-norm promotes sparsity and �2-norm in a Tikhonov framework
results in smoother solutions. It is worth noting that both priors (TV and HPF)
are limited in the sense that the brain is a complex structure, with smoother
regions of resistivities, as well as non-smooth regions. On the other hand, both
methods include the same anatomical atlas (with the difference in the norm),
so it was expected that the solutions would have a degree of similarity.
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Fig. 3. Left column: Reconstructions with the Tikhonov method. Right column: Recon-
structions with the proposed method.
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5 Conclusion
In this work, we reconstructed brain images with EIT using an anatomical
atlas together with a total variation regularizer, both with �1-norm, leading to
better-located targets and higher resistivity changes detection than the conven-
tional HPF regularizer with the �2-norm.

Future works include using the total generalized variation [19], a variation
of TV that considers higher-order derivatives of the parameters, without pre-
senting the staircasing effect of TV; using the IRLS to also approximate the �1-
norm in the data misfit term; using other algorithms to implement the �1-norm;
and using the method with experimental EIT data, such as those available at
[2].
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Abstract. Our objective in this work was to develop an intelligent system able
to perform an automated detection of chronic stress, based on biological signals
processing and features extraction, confronted with Hans Selye clinical model
of stress phase’s assessment. We recorded biological signals of blood pressure,
skin surface temperature, galvanic skin resistance and heart rate of 120 health
adult volunteers. Also the heart rate variability parameters were extracted for the
time-domain and frequency-domain analysis. AMulti-Layer Perceptron Artificial
Neural Network with a supervised learning approach was applied to generate the
mathematical model. The system classification produced a precision index of 89%
for identifying the stressed class, when applying the skin temperature and the heart
rate variability parameters as input of the neural network, providing a satisfactory
initial performance in the discrimination of stressed individuals. A worth training
set with more examples mighty potentially increases the precision for identifying
the stressed individuals. Despite study limitations, we consider that the use of
intelligent systems to classify biological signals and identify the long term stress
presence in human organism could contribute to a more objective analysis of such
physiologic characteristics associated to the chronic stress and its implications in
human health and performance. Future works should include different settle of
physiological parameters and different machine learning techniques for analysis
and classification of signals.

Keywords: Chronic Stress · Biological Signal · Automated Detection of Stress ·
Intelligent System · Psychophysiological Assessment

1 Introduction

Stress has been considered the health epidemic of the 21st Century by the World Health
Organization (WHO), which defines stress as the body’s response to any type of change
that causes physical, emotional or psychological strain. Informed by evidence and field
testing, the WHO provides information and practical skills to help people cope with
stress, especially in this COVID-19 pandemic era [1]. Hans Selye (1907–1982), a physi-
cian and researcher, established the concept of stress in biology andmedicine as aGeneral

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. L. B. Marques et al. (Eds.): CLAIB 2022/CBEB 2022, IFMBE Proceedings 99, pp. 115–126, 2024.
https://doi.org/10.1007/978-3-031-49404-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49404-8_12&domain=pdf
http://orcid.org/0000-0002-4327-4680
http://orcid.org/0009-0004-6691-3627
https://doi.org/10.1007/978-3-031-49404-8_12


116 L. Junqueira and M. Pina

Adaptation Syndrome [2], the body’s resistance to maintain homeostasis. He developed
a clinical model for stress evaluation in human organism [3]. This model distributes the
stress presence in three phases: Alert, Resistance and Exhaustion. The Alert phase is
related to the short-term stress, while Resistance and Exhaustion phases are related to
an extended presence of stress. The assessment of stress presence is generally based
on an inventory of symptoms, fulfilled by the individual. The Lipp Inventory of Stress
Symptoms for Adults (ISSL) is an inventory for stress assessment based on the clini-
cal model of stress phases by Hans Selye and covers both physical and psychological
symptoms. A phase of Quasi-Exhaustion, between Resistance and Exhaustion phases,
is also considered by ISSL, a quadriphasic classification instrument. It is available in
English, Spanish, and Portuguese languages and has been used in clinical practice and
stress research [4–9].

Chronic stress is characterized by some symptoms that individuals experience
throughout their usual lives, during a more extensive period of time, which causes
decreasing of their physical resistance and intellectual performance [10]. If extreme
enough, chronic stress can result in the immune system impairment and psychological
disorders [2]. The chronic stress is related to Resistance, Quasi-Exhaustion and Exhaus-
tion phases and can be identified by ISSL [9]. However, the results have a component of
subjectivity, since the diagnosis is based only on the answers provided, which depend
on the individual’s perception of their symptoms at the time of filling out the inventory
[4]. Physiologically, it is possible to measure the concentration of the hormone cortisol
in blood samples to determine cortisol levels over time [2]. Higher cortisol levels are
related to chronically stressed individuals [9]. Alternatively, it is possible to use biolog-
ical signals as indicators of stress presence [11–13], due to the physiological changes
produced by the autonomic nervous system in this condition [2]. Some of the biological
signals commonly used are skin temperature, galvanic skin response, blood pressure,
respiration rate, heart rate, and the heart rate variability [14]. This method has the advan-
tage of being non-invasive and low cost when compared to cortisol method, and the use
of computerized systems for acquiring biological signals has extended the possibilities
for the physiological variables analysis aimed to stress detection [15].

Nevertheless, the usual studies has been pointing only to identification of acute stress,
by applying a physical or psychological stimulus to elicit a short-term peak of stress,
that are not useful to detect the long term presence of stress, representing a challenge
to establish mathematical models for analysis of physiological parameters associated
to chronic stress [15]. The objective of this work was to develop an intelligent system
able to perform an automated detection of chronic stress, based on biological signals
processing and features extraction, confronted with Hans Selye clinical model of stress
phase’s assessment.

2 Materials and Methods

2.1 Ethics and Subjects

This research was approved by the ethics committee (CAAE-28201014.2.0000.5497)
and adhered to the Declaration of Helsinki. We recruited 120 health adult volunteers for
the study (average age 24 ± 6 yrs.). A consent form was assigned by the participants.
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2.2 Psychophysiological Assessment

Thepsychophysiological stress assessmentwasmadeby application of ISSL.This instru-
ment allows identifying the presence or absence of stress and, in case of stress presence,
classifying it in four different phases. Additionally, ISSL presents the results in percent-
age terms of the individual’s stress level, which can vary from 0 to 100%, depending on
the presence of physiological and psychological symptoms in each phase. The use of
the inventory was supervised by a psychologist. Volunteers were received in a calm and
comfortable environment. The research objectives were informed and a consent form
was read and signed. Subsequently, the ISSL was completed by the individuals and an
additional period of five minutes was provided for relaxation and stabilization of their
physiological signals.

2.3 Biological Signals Acquisition

After taking the measurement of systolic (SIST) and diastolic (DIAS) blood pressure
of each volunteer, respecting the directives of the Brazilian Society of Cardiology [16],
the biological signals relating to skin surface temperature (ST), galvanic skin resistance
(GSR), and heart rate (HR) were simultaneously recorded during 6 min.

The first 30 s and the last 30 s were excluded, providing a useful 5 min short-term
dataset accordant to standards of measurement for short-term recording procedures [17].
All biological signals were recorded using only non-invasive sensors.

2.4 Signal Processing
The block diagram for the biological signals processing is presented in Fig. 1.

Human

Signal Recording

Feature Extraction

Normalization

Feature Selection

Data Set

Training Set Test Set

Physiological Status

Biological Signals

Physiological Parameters

Normalized Parameters

Selected Parameters

Fig. 1. Biological signals processing.
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The current physiological status of each volunteer is captured by the sensors and
the respective biological signals are recorded. The feature extraction produces the phys-
iological parameters of interest and the normalization step produces the normalized
parameters for selection and data set composition. The total data set is divided in two
parts, providing the training set and the test set with a proportional number of stressed
and non-stressed individuals in each set.

2.5 Data Normalization

A global normalization produces a linear transformation [18], by applying the Eqs. (1)
to (3).

xi = 1

N

N∑

n=1

xni (1)

σi =
√√√√ 1

N − 1

N∑

n=1

(xni − xi)2 (2)

zni = xni − xi
σi

(3)

where n= 1 to N labels the patterns. Each variable is designed by xi, and each re-scaled
variable is designed by zi.

2.6 Feature Extraction

The feature extraction was applied to heart rate signals and produced the parameters of
the heart rate variability (HRV) for the time-domain (Table 1) and frequency-domain
analysis (Table 2).

Table 1. Parameters of HRV for the time-domain analysis.

Parameter Description

mHR Mean of HR

SDHR Standard Deviation of HR

mRR Mean of RR Intervals

SDNN Standard deviation of all NN intervals

rMSSD The square root of the mean of the sum of the squares of differences between
adjacent NN intervals

NN50 Number of pairs of adjacent NN intervals differing by more than 50 ms

pNN50 NN50 count divided by the total number of all NN intervals
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Table 2. Parameters of HRV for the frequency-domain analysis.

Parameter Description

VLF Power in Very Low Frequency range

LF Power in Low Frequency range

HF Power in High Frequency range

PWR Total Spectral Power

LFnu Low Frequency in normalized units

HFnu High Frequency in normalized units

VLFp Very Low Frequency relative percent

LFp Low Frequency relative percent

HFp High Frequency relative percent

LF/HF Low per High Frequency Ratio

A treatment of artifacts (corrupted intervals) and ectopic beatswas performed, includ-
ing the identification, removal and interpolation of signals by the Cubic Spline interpo-
lation method. Frequency domain analysis was performed using the Fast Fourier Trans-
form technique (FFT) to estimate the Power Spectrum Density (PSD). The frequency
bands adopted for the power spectrum include the ranges of VLF (0–0.04 Hz), LF
(0.04–0.15 Hz) and HF (0.15–0.40 Hz), attending to standards for measurement and
physiological interpretation of these parameters [17].

2.7 Artificial Neural Network

The Artificial Neural Network (ANN) applied to build both the training and classifier
modules is aMulti-Layer Perceptron (MLP) with backpropagation algorithm and a three
layers architecture [19–21], as showed in the Fig. 2.

Fig. 2. MLP ANN with three layers.

Each input neuron corresponds to a physiological parameter extracted from the
selected biological signals. The number of hidden neurons is determined by experiment
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and the best results were achieved with half of input neurons number in our case. The
output neuron is responsible to identify the presence or absence of stress. The nonlinear
model of the ANN processing functions is presented in the Fig. 3.

Fig. 3. Nonlinear model of the ANN processing functions.

The variables from x1 to xn represent the input signals; the variables from w1 to wn
represent the synaptic weights associated to each input signal; the variable θ represents
the bias; the represents the transference function, given by Eq. (4); the λ repre-
sents the gain, and the ϕ represents the sigmoid activation function, given by Eq. (5);
and y represents the output. The computation of the mean square error (MSE), used as a
stopping criterion for the ANN training, is given by Eq. (6), where ti is the desired target
vector, oi is the attained output, and n is the number of training examples presented to
network.

υ(x,w) =
n∑

i=1

xi.wi = (x1.w1 + x2.w2 · · · + xn.wn) (4)

ϕ(υ) = 1

1+ eλ.υ
(5)

MSE = 1

n

n−1∑

i=0

(ti − oi)
2 (6)

A learning rate (η) controls the percentage of weight update (amount of change)
and the momentum (α) indicates the percentage of the previous weight that will remain
(amount of inertia) for the next step of adjustments performed by backpropagation algo-
rithm. Considering x the number of input neurons and z the number of hidden neurons,
the final ANN training module configuration was given by z = x/2, λ = 1, η = 0.7 and
α = 0.3. The output (y) provides one of two classes: normal or chronically stressed.

2.8 Automated Stress Detection

A block diagram for the automated stress detection system is showed in the Fig. 4.
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Fig. 4. Block diagram for automated stress detection.

The ANN in the training module is responsible for establishing the mathematical
model that relates the stress presence with the physiological parameters. After training
the ANN with a training data set, we applied a test data set for classification of stressed
person with the classifier module.

2.9 Performance Evaluation

We chose the metrics for evaluating classifier performance according to precision index,
sensitivity index, accuracy index, specificity index and ROC (Receiver Operating Char-
acteristic) curves [22]. Given the True Positives (TP), the True Negatives (TN), the False
Positives (FP), the Positives (P) and the Negatives (N), we can find the precision index by
Eq. (7), the sensitivity index by Eq. (8), the accuracy index by Eq. (9) and the specificity
index by Eq. (10).

precision = TP

(TP + FP)
(7)

sensitivity = TP

P
(8)

accuracy = (TP + TN )

(P + N )
(9)

specificity = TN

N
(10)
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3 Results

3.1 Stress Presence According to ISSL

The stress presence distribution according to ISSL can be seen in Table 3. No individuals
were classified in Exhaustion phase.

Table 3. Frequency and stress level in each stress phase.

ISSL Phase Frequency % Stress Level %

Absence 30.83 0.00

Alert 1.67 11.11

Resistance 55.83 28.11

Quasi-Exhaustion 11.67 67.26

3.2 Biological Signals Statistics

According to D’Agostino-Pearson test we verified that DIAS (p = 0.2559), ST (p =
0.0559) and HR (p = 0.4096) have normal distribution, while GSR (p < 0.0001) and
SIST (p < 0.0001) don’t have. The mean values for blood pressure in each stress class
can be seen in Table 4.

Table 4. The mean values of SIST and DIAS for each phase.

ISSL Phase SIST (mmHg) DIAS (mmHg)

Absence 120.16 71.30

Alert 115.50 73.50

Resistance 118.06 73.61

Quasi-Exhaustion 121.36 77.07

We applied Pearson’s linear correlation test and found a correlation between diastolic
pressure and stress level (r= 0.9671, p < 0.05). We found that diastolic pressure values
tend to increase with the phase and level of stress in which the individual is.
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The mean values for ST, GSR and HR in each stress class can be seen in Table 5.

Table 5. The mean values of ST, GSR and HR for each phase.

ISSL Phase ST (oC) GSR (K�) HR (bpm)

Absence 24.48 459.84 80.62

Alert 24.30 799.23 89.23

Resistance 24.12 448.56 82.63

Quasi-Exhaustion 23.96 515.62 78.81

Applying Pearson’s linear correlation test between skin temperature values and stress
levels by phase, we obtained the results of r = −0.9554 and p = 0.0446 (p < 0.05),
verifying the existence of a negative and statistically significant correlation between the
variables. It is possible to observe a decrease in temperature as the stress phase in which
the individual is found increases.

3.3 Stress Identification by the Intelligent System

The stress presence class adopted here is related specifically to chronic stress and was
arranged by the set of individuals classified inResistance and inQuasi-Exhaustion phases
of ISSL. Individuals classified in Alert phase were excluded since this phase is usually
related to short-term stress. No individuals were classified in Exhaustion phase.

We preferably selected the physiological parameters regarding ST, HR and blood
pressure since the associated biological signals presented normal distribution.

For the first experiment (A) of system classification we utilized all the parameters
of HRV in time-domain and frequency-domain (Tables 1 and 2), more ST and blood
pressure values, including DIAS and SIST.

For the second experiment (B) we excluded the blood pressure values (both DIAS
and SIST). The results are show in the Table 6.

Table 6. Performance of ANN classification for each experiment A and B.

Index A B

Precision 80% 89%

Sensitivity 80% 85%

Accuracy 72% 83%

Specificity 56% 78%

The ROC curves for the system performance analysis are showed in Fig. 5.
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Fig. 5. ROC curves for each experiment A and B, where vertical axis represents the true positive
ratio and the horizontal axis represents the false positive ratio.

4 Discussion

The results of stress assessment with ISSL in our sample are consistent with findings in
the literature for lager datasets [4]. Performing the biological signals processing, features
extraction and physiological parameters classification by the automated stress detection
system we could find a set of synaptic weights for the ANN that was capable to produce
a precision index of 89%, when applying ST and HRV parameters as input signals. In
the ROC graphic the vertical axis represents the true positive ratio (sensitivity) and the
horizontal axis represents the false positive ratio (1 - specificity). The line “d” represents
the best performance, closer of the gold standard, i.e. true positive ratio = 1 and false
positive ratio = 0. The best result is for the experiment B, with distance = 0.27 and the
area = 0.815, confronted with the experiment A, with distance = 0.48 and the area =
0.680. The inclusion of blood pressure parameters decreased the system performance.

The study presents some considerations such as the limitation of sample size, the
physiological parameters specificity in the input layer of the ANN and the fact that only
the ISSL assessment was applied to identify chronically stressed individuals. Comple-
mentary applying of the cortisol levels method could be considered for future works
as well a larger sample size for better discrimination between classes. A worth train-
ing set with more examples mighty potentially increases the precision for identifying
chronically stressed individuals.
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5 Conclusions

As far as our knowledge is concerned, no other study has attempted to relate biological
signals to the presence of chronic stress in individuals, applying no stimuli, confronted
withHansSelye clinicalmodel of stress phase’s assessment by aquadriphasic instrument.
The use of statistical analysis of physiological variables to identify stress presence in
the quadriphasic classification presented difficulties to attain a predictable mathematical
model.

We developed an intelligent system, based on features extraction and signals classi-
fication, by applying the supervised learning approach of an ANN, getting an initially
satisfactory discrimination of stressed individuals in the group of volunteers. Results
indicated the possibility to establish a mathematical relation, represented by the set
of synaptic weights got by the ANN training, between Hans Selye clinical model and
physiological parameters. Despite study limitations, we consider that the use of intel-
ligent systems to classify biological signals and identify the long term stress presence
in human organism could contribute to a more objective analysis of such physiologic
characteristics associated to the chronic stress and its implications in human health and
performance. Future works should include different settle of physiological parameters
and different machine learning techniques for the biological signals processing, analysis
and classification.

Acknowledgments. The authors thank CAPES (Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior) for the financial support and the Institutional Psychology Clinic of UMC
(University of Mogi das Cruzes) for the specialized support.

Conflict of Interest. The authors declare that they have no conflict of interest.

References

1. WHO: Doing what matters in times of stress. World Health Organization, Geneva (2020)
2. Fink, G.: Stress: Concepts, Cognition, Emotion, and Behavior. Elsevier, London (2017)
3. Selye, H.: Stress and the general adaptation syndrome. Br.Med. J. 1(4667), 1383–1392 (1950)
4. Lipp, M.: The Lipp Inventory of Stress Symptoms for Adults (ISSL). Casa do Psicólogo, São

Paulo (2005)
5. Cavalcante, M., et al.: Assessment of sleep and stress level in individuals with chronic pain.

Sleep Sci. 15(2), 210–215 (2022)
6. Cardozo, A., et al.: Degree of stress in nursing residents in the pandemic. Rev. Recien 12(38),

229–237 (2022)
7. Mazariolli, A., et al.: Stress and impact on the mental health of military police workers. Rev.

Rebesp 15(1), 165–189 (2022)
8. Wottrich, S., et al.: Gender and the manifestation of stress in hypertensive patients. Est. Psi.

28(1), 27–34 (2011)
9. Teixeira, R., et al.: Chronic stress induces a hyporeactivity of the autonomic nervous system in

response to acute mental stressor and impairs cognitive performance in business executives.
PLoS ONE 10(3), e0119025, 1–14 (2015)



126 L. Junqueira and M. Pina

10. Selye, H.: The Stress of Life. Rev McGraw-Hill, New York (1978)
11. Sierra, A., et al.: A stress detection system based on physiological signals and fuzzy logic.

IEEE Trans. Ind. Electron. 58(10), 4857–4865 (2011)
12. Karthikeyan, P., et al.: Detection of human stress using short-term ECG and HRV signals. J.

Mech. Med. Biol. 13(3), 1–29 (2013)
13. Singh, R., et al.: A comparative evaluation of neural network classifiers for stress level analysis

of automotive drivers using physiological signals.Biomed. Signal Process.Control 8, 740–754
(2013)

14. Giannakakis, G., et al.: Review on psychological stress detection using biosignals. IEEE
Trans. Affect. Comput. 13(1), 440–460 (2022)

15. Sharma, N., Gedeon, T.: Objective measures, sensors and computational techniques for stress
recognition and classification: a survey. Comput.Methods ProgramsBiomed. 108, 1287–1301
(2012)

16. SBC: Brazilian guidelines of hypertension. Brazilian society of cardiology. ABC Cardiol.
95(1), 1–51 (2010)

17. Malik,M., et al.: Heart rate variability: standards ofmeasurement, physiological interpretation
and clinical use. Task force of the European society of cardiology. Eur. Heart J. 17, 354–381
(1996)

18. Bishop, C.: Input normalization and encoding. In: Neural Networks for Pattern Recognition.
Oxford University Press, New York (1995)

19. Samarasinghe, S.: Neural Networks for Applied Sciences: From Fundamentals to Complex
Pattern Recognition. Auerbach Publications, Boca Raton (2007)

20. Zaknich, A.: Neural Networks for Intelligent Signal Processing.World Scientific, New Jersey
(2003)

21. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing,
New York (1994)

22. Han, J., Kamber, M., Pei, J.: Metrics for evaluating classifier performance. In: Data Mining:
Concepts and Techniques, 3rd edn. Morgan Kaufmann Publishers, San Francisco (2012)



An Exploratory Study on Powell
Optimization Method for Block Matching

Evaluation on Ultrasound Images
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Abstract. This paper presents the application of an elastography model
based on block matching using ultrasound mathematical phantoms. Elas-
tography can be defined as the visualization of differences in the biome-
chanical properties of healthy and diseased tissues. The differences are
seen and measured from comparisons of the tissue examined in two states:
equilibrium and after an applied perturbation. Therefore, an algorithm
was developed for application in two ultrasound images, one with defor-
mation and a non-deformed one. The proposed algorithm uses the Pow-
ell optimization method to evaluate the displacements between the two
images. It also uses cubic-spline interpolation to evaluate sub-pixel dis-
placements. As this research has an exploratory bias, only a part of the
image was selected for a first analysis of the results. The results proved
promising, showing opportunities for future optimizations and applica-
tions of the proposed model presenting root-mean-squared errors and
absolute errors of order 10−3 and relative errors of 4%, but still need
improvements on the computational time.

Keywords: Elastography · Ultrasound · Block Matching ·
Optimization

1 Introduction

Elastography is an image-based technique which employs cross-correlation algo-
rithms and it is mainly applied to medical ultrasound exams, for example, in
breast, thyroid and liver exams [4,5]. It aims to visualize the differences between
healthy and injured tissues given a Region of Interest (RoI) in two different
stages: before and after an external disturbance.

Doyley & Parker [2] describe the Elastography in three steps: (i) application
of a disturbance to a tissue using a quasi-static, harmonic, or transient external
mechanical excitation source; (ii) measurement of response in terms of displace-
ments, deformations, or phase and amplitude of vibrations; (iii) estimation of
the mechanical properties of the imaged tissues. Shiina et al. [6] describe the
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Elastography as a technique based on the change in the elasticity of soft tis-
sues, as in the detection of differences in mechanical properties between healthy
tissues and solid tumors.

As mentioned before, one of the main steps for the elastographic study is to
estimate the displacements and their gradients so a strain profile can be obtained,
and Block Matching algorithms can be used to perform this task. Liu et al. [3]
present this concept in a study that uses as input data, not the ultrasound
images, but the Radio Frequency (RF) signal.

This paper presents an exploratory study based on the paper published by Liu
et al. using images of ultrasound mathematical phantoms, since images are more
commonly available than RF signals. The algorithm proposed aims to minimize
the mean Sum of Squared Differences (SSD) using optimization algorithms and,
in this paper, Powell Method was the algorithm of choice since it does not need
the derivative of the objective function, performing successive one-dimensional
searches in each dimension of the problem. In order to evaluate the inter-pixel
values and improve the accuracy of the results, the reference non-deformed image
was interpolated using cubic splines.

Since the interpolation is an expensive computational procedure, and the
main goal of this paper is to evaluate and provide a better understanding of
the application of the algorithm proposed by Liu et al. on ultrasound images, a
portion of the considered images were chosen and compared to a Finite Element
simulation of the same model. The metrics considered are the relative error map
(ε%), the mean squared error (εRMS), the absolute error map (εABS), and the
computational time of the proposed algorithm, so it can be optimized in future
studies.

2 Methodology

2.1 Block Matching

In order to perform the block matching, two ultrasound images are used: the
non-deformed one, taken as a reference, and a deformed image, taken after the
application of a pressure field. Since the procedure to generate an ultrasound
image implies in signal degradation [7], a cubic spline interpolation was used in
order to fill the inter pixel values and improve the searching algorithm.

The first step in the proposed method is to perform a cropping in both images
Iref and I, resulting in sub-images Ĩref and Ĩ, the first with size M × M and
the latter with size N × N with M < N . Ĩref is interpolated and along Ĩ used
as input for the algorithm.

The block matching model consists in minimizing the cost function in Eq. 1,
where x̄ and ȳ are the Taylor expansion of x and y given by Eqs. 2 and 3 and
the summation is evaluated over Ψ = M − N + 1 pixels. Considering a fixed
coordinate (x, y) taken at the center of the deformed image, the variables are
the rigid displacements u and v in X and Y directions respectively and their
derivatives ux, uy, vx, vy. The optimization algorithm chosen to perform this
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task is the Powell Method [1] which does not requires the derivative of the cost
function, performing a line search across all the variables.

C =
N∑

k=1

N∑

l=1

[Ĩref (x̄k, ȳl) − Ĩ(xk, yl)]2 (1)

x̄ = x + u + xux + xvx (2)

ȳ = y + v + yvy + yuy (3)

The proposed algorithm was implemented in Python 3.9 Anaconda distribu-
tion and interp2d and fmin powell functions from the Scipy library were used.

The interpolation is performed only once due to the fact that it is a compu-
tationally expensive process, being responsible for almost 90% of the execution
time. Thus, this algorithm also looks for an ideal window size looking for a less
expensive process of cubic-spline interpolation.

2.2 Finite Elements and Mathematical Phantom

In order to provide a gold standard for the block matching model, a finite element
model was implemented in Python 3.9. For this simulation, a mesh consisting of
9728 linear triangular elements and 4929 nodes was used to describe both the
geometry and the field variables. The material properties are listed below:

– Background:
• Elastic modulus: 200.0 kPa;
• Poisson coefficient: 0.495;

– Lesion:
• Elastic modulus: 1.80 MPa;
• Poisson coefficient: 0.495;

An ultrasound B-mode mathematical phantom was evaluated using FieldII
package and the deformed image was obtained by applying the Finite Element
Model with the same parameters described.

The resulting image is a 400× 400 pixel image with two circular hyperechoic
lesions located at (x, y) = (200, 70) and (x, y) = (200, 330) with radius 15 pixels.
The parameters used for the ultrasound simulation are listed below:
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– Speed of sound: 1,540 m/s;
– Attenuation: 0.0 dB;
– Number of scatters: 1000 mm−2;
– Background scatter amplitude: 1.0;
– Lesion scatter amplitude: 1.7 (hyperechoic);
– Central frequency: 3.5 MHz;
– Sampling frequency: 100 MHz;
– Phantom dimension: 100 × 100 (mm × mm);

For the present study, a constant pressure field p = 2.0kPa applied in the
-Y direction resulting in a vertical strain of 0.1%. Figure 1a presents the phys-
ical model and its boundary conditions, and Fig. 1b presents the mathematical
phantom with a red region used to evaluate the Block Matching model, consist-
ing of the background plus lesion, allowing the verification of the model when a
discontinuity of tissue is present.

2.3 Model Evaluation

In order to proceed with the analysis, Ĩref was chosen with a fixed squared
window size of length M = 120 pixels, while the window size for Ĩ, N = 61 pixels,
resulting in a total of 60× 60 displacement map for uBM and vBM , respectively,
the displacements according X and Y evaluated using Block Matching (BM).

Equation 4 to 6 presents the chosen metrics used to evaluate the Block Match-
ing algorithm, where β represents the displacements u and v in X and Y axis
respectively and Ψ = M − N + 1. In order to provide a coherent comparison,
Finite Element (FEM) results were converted to pixels.

εABS = |βBM − βFEM | (4)

ε(%) = 100
|βBM − βFEM |
(βFEM + 10−10)

(5)

εRMS =

√√√√ 1
Ψ2

Ψ2∑

n=1

(βn
BM − βn

FEM )2 (6)

3 Results

Considering a window of N = 61 pixels, Figs. 2a to 2d and Figs. 3a to 3d present
the Finite Element simulation and Block Matching results for X and Y axis along
their respective results for absolute error (εABS) and relative error (ε%).

Table 1 presents, for uBM and vBM , the Root Mean Squared Error (εRMS),
Mean Absolute Error (ε̄ABS) and its Standard Deviation (σε̄ABS

) (all in mm),
the Mean Relative Error (ε̄%) and its Standard Deviation (σε̄%).

The approximate time spent for the model simulation was 27.2 minutes, with
24.0 minutes used to interpolate Ĩref .
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Fig. 1. a) Physical model; b) Mathematical phantom used.
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Fig. 2. Results for X displacements. a) Finite element displacement (in mm); b) Block
matching displacement (in mm); c) εABS (in mm); d) ε(%).
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Fig. 3. Results for Y displacements. a) Finite element displacement (in mm); b) Block
matching displacement (in mm); c) εABS (in mm); d) ε(%).
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Table 1. Comparison between Block Matching and Finite Element simulation.

εRMS ε̄ABS σεABS ε̄% σε%

uBM 1.912 20.790 × 10−3 9.953 × 10−3 4.214 2.002

vBM 1.097 14.540 × 10−3 9.670 × 10−3 6.426 4.549

4 Discussion

As quantitative results, Table 1 it is possible to note that the results obtained by
Block Matching correspond to the same order of displacements as those evaluated
using the Finite Element Method. The mean relative error is less than 10% while
the absolute error is smaller than the 1mm. On the other hand, the qualitative
results presented in Fig. 2b and 3b do not allow the identification of the lesion.
Observing the error maps in Figs. 2c, 3c, 2d, and 3d it is possible to note an
increase in error values in the discontinuity between the two tissues. A possible
solution for this issue is decrease the value of M and N .

The presented results suggest that the applied model obtained satisfactory
quantitative results concerning the error metrics used. Two major issues encoun-
tered during the experiments were the computational cost of the interpola-
tion algorithm and the qualitative results, observed when comparing the Block
Matching and Finite Element Method displacements maps. Also, the results
presented by Liu et al [3] presented a smoother displacement map that can be
justified by the fact that US images were used instead of RF signals, which are
richer in information.

The next step in this research is to investigate and improve the qualitative
results in order to allow the identification of the lesion in the ultrasound phantom
and explore new ways to interpolate and evaluate inter-pixel displacements.

5 Conclusion

This paper presented an exploratory study of the implementation of a Block
Matching model based on ultrasound images using Powell Method as an opti-
mization algorithm. The results shows potential of the method, however, as
presented in the Results, it is necessary to improve the computational cost of
the interpolation algorithm and the qualitative results.
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Abstract. About 2.8 million people worldwide have multiple sclerosis, and
around 250,000 new cases are diagnosed annually. This disease damages the
myelin sheath of neurons, injuring electrical signal conduction, and causing
impairment and loss of senses, movement, and other neurological functions.
Although the disease has no cure, early diagnosis is essential for the initiation
of adequate treatment, controlling eventual outbreaks, delaying the advance, and
improving the quality of life of patients. Neuroaxis magnetic resonance imaging
is used to investigate this disease, identifying and following up lesions in the brain
and spinal cord tissues; however, the diagnosis only through the visual evaluation
of these exams may lack information for a quick and accurate analysis. Recent
studies present computational methods based on artificial intelligence that allow
the identification of lesions caused by the disease, aiming to overcome these visual
limitations, but still have limitations in terms of accuracy and scope. The objective
of this work was to evaluate the potential of classifiers based on machine learn-
ing algorithms in the identification of multiple sclerosis lesions in brain tissue.
Axial FLAIR MRI brain exams were used from two databases combining filter-
ing, normalization, and enhancement image pre-processing methods to extract the
exam attributes. The algorithms evaluated were Decision Tree, Random Forest,
K-Nearest Neighbors, Support Vector Machine and Logistic Regression, through
training with attributes extracted from 3 pre-trained neural models: SqueezeNet,
Inception V3 and VGG-19. The classifiers were evaluated by the classification of
images from the studies as “with lesion” and “without lesion”, and the SVM clas-
sifier trained with attributes extracted from the pre-trained neural model Inception
V3 provided the best result, obtaining AUC= 0.988, accuracy= 0.980, sensitivity
= 0.990 and F1-Score = 0.979.

Keywords: Multiple Sclerosis · Cerebral Magnetic Resonance · Computer
Vision · Machine Learning · Deep Learning
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1 Introduction

Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system (CNS),
being themajor cause of nontraumatic neurological disability in young adults, that affects
2.8 million people worldwide, with around 250 thousand new cases annually [1]. MS is
a chronic inflammatory disease of the CNS of presumed autoimmune etiology, in which
inflammatory demyelination of axons causes damage to the myelin sheath of neurons
and focal lesions in CNS White Matter (WM) [2, 3]. Although the cause of MS is
still unknown due to the complexity of the disease, the studies indicate that many genes
increase disease susceptibility, in addition to several environmental, immunological, and
conditionals factors [3].

Magnetic Resonance Imaging (MRI) is the most used imaging technique to assist
diagnosis and support of medical treatment of MS because of the high sensitivity to
showing lesions in WM [2]. The sequence of MRI FLAIR (Fluid-Attenuated Inversion
Recovery) is one of the most used to visualize these lesions, appearing hyperintense,
discriminating lesions from the rest of the tissue [4]. The detection and evaluation of the
evolution ofMS lesions usingMRI has been fundamental for clinical trials, used to detect
the onset of the disease and track its progression [5]. However, the exam per se, without
any processing, may lack information for accurate analysis and lesion identification,
which may lead to subjective diagnosis and thus, poor pathological discrimination due
to the high variation of lesions in terms of size, shape, intensity, and location.

The early identification of MS lesions allows the initiation of appropriate treatment,
controlling eventual outbreaks, delaying the advance, and improving the quality of life of
patients [5]. Recently, researchers tend to use computer vision with artificial intelligence
to support radiologists in the diagnosis and segmentation of MS lesions with semi-
automatic and automatic tools. Although these studies have shown results that add value
to the clinical follow-up routine, they still have limitations, since MS diagnosis may be
confused with other white matter diseases, there is a risk of clinical misinterpretation
[4]. Despite being important ideas for monitoring the evolution of the disease, primary
detection is the crucial factor in the treatment, and it supports professionals in selecting
and reading possible urgent series of exams. Thus, the development of algorithms to
automate the identification theMS lesions based onMRI data, before individual analysis
and segmentation, would make a valuable contribution in this regard.

The state of the art presents different identification methods based on Convolutional
Neural Networks (CNN) and machine learning classifiers with pre-processing methods
of Data Augmentation, Histogram Stretching and Patch Extraction. In Zhang et al. [6],
they compared classifiermethods for stationarywavelet entropy-basedmultiple sclerosis
detection with a decision tree, k-nearest neighbors, and support vector machine. In the
work of Wang et al. [7], authors performed lesion identification in brain MRI exams, it
was based on combining 14-layerCNNwith batch normalization, dropout, and stochastic
pooling. Already, in Zhang et al. [8] was used a 3D CNN with dropout and parametric
ReLU for identification. Also, in the work by Siar and Teshnehlab [9] make use of CNN
with Data Augmentation to diagnose and classify tumors and MS Simultaneously in
brain MRI.

These works present refined solutions in which accuracy, precision and practicability
have gradually evolved with each work, and may be useful in the diagnostic routine.
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Although, some limitations such as lack of robustness with the evaluation in different
equipment from distinct institutions and the high computational cost for improving
accuracy could be found. The lack of identification of some MS lesions can be critical,
especially the smaller ones in the onset of the disease, and in the emergence of new
lesions, indicating the evolution and follow-up of the treatment. Thus, the objective of
this work is to present an evaluation of different solutions for the identification of MS
lesions in brain MRI scans from machine learning classifiers to overcome the limits of
effectiveness and robustness of current methods.

2 Materials and Methods

The objective of this work is to present and evaluate the potential of machine learning
classifiers in the identification of demyelinating lesions proved by multiple sclerosis in
brain MRI scans.

The material used consists of FLAIR sequence brain MRI images obtained in the
axial plane from two different databases described below. The training and evaluation
algorithms of the classifiers were developed in Python programming language, using two
computers. A notebook with an Intel® CORE i7 processor and 2.2 GHzmicroprocessor,
16 GB of RAM, and a 4 GB NVIDIA® GeForce GTX™ 1650 GPU. And a workstation
with Intel® CORE i7 processor and 4.9 GHz microprocessor, 128 GB of RAM, and
8 GB Pci-express Geforce RTX 2070 Galax GPU.

MICCAI 2016 Database
The 2016 Medical Image Computing and Computer Assisted Intervention (MICCAI)
challenge dataset includes brain MRI images of 53 MS patients [10]. The images in
this dataset were obtained from two different centers in France with four different MR
scanners [10]. This dataset contains exams from 53 MS patients, where the MR images
were alsomanually segmented by seven specialists, with the respective consensus masks
[10]. The exams were obtained in 3D FLAIR sequences and are available for research
and education purposes.

Department of Diagnostic Imaging (UNIFESP) Database
The database referring to the Department of Diagnostic Imaging (DDI) of the Federal
University of São Paulo (UNIFESP) refers to a set of retroactive brain MRI exams
performed and made available by the institution. The dataset contains exams of 110
patients, aged between 25 and 60 years, diagnosedwithMS, ofwhich 23 patients had two
MRI exams performed at two different points in time with intervals of 12 to 36 months,
totaling 133 studies. The exams were obtained in two MRI scans of the institution.
The use of the retroactive test set was approved by the ethics committee under protocol
number 03830718.9.0000.5505, and the segmentation of MS lesions was performed
manually by 3 specialists.

The methodology is divided into 4 steps: Pre-processing, Attribute Extraction, Clas-
sifier Training and Evaluation (Fig. 1). In the Pre-processing step (Fig. 1 in yellow),
the original axial FLAIRMRI (IO) went through normalization processing, followed by
filtering combining a Gaussian filter and edge sharpening to increase the discrimination
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of MS lesions. Subsequently, in the Attribute Extraction step (Fig. 1 in blue) the normal-
ized and filtered images (IF) are vectorized using three pre-trained deep learning neural
networks, Inception V3 [11], SqueezeNet [12] and VGG-19 [13], obtaining vectors with
characteristics that will be used in the next step. Then, in the Classifier Training step
(Fig. 1 in green) the MRI FLAIR studies used from the available databases were divided
into training, validation, and test sets, separating the attribute vectors obtained in the
previous step, and were used in the training of 5 classifiers based on machine learning
algorithms, Decision Tree [14], Random Forest [15], Knn (K-Nearest Neighbors) [16],
SVM (Support Vector Machines) [17], Logistic Regression [18], with the vectors of
each of the three pre-trained neural models used. Finally, in the Evaluation step, each
of the classifiers developed is performed regarding the ability to classify the images of
the brain FLAIR MR series regarding the presence or absence of MS lesions (Fig. 1 in
gray).

Fig. 1. Proposed Methodology for the training and evaluation of machine learning classifiers
regarding the identification of MS lesions in axial FLAIR MRI exams.

Pre-processing
In thefirst step of themethodology, pre-processing operationswere performed to increase
the enhancement and discrimination of demyelinating lesions. The first operation of this
stage was the normalization of the exams according to the histogram adjustment method
by the Histogram Stretching (HS) method defined in Eq. 1 [7].

ϕ(x,y) = μ(x,y) − μmin

μmax − μmin
(1)
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where μ is the original image, ϕ is the normalized image, (x,y) represents each pixel
coordinate of the images, and μmin and μmax represent the minimum and maximum
intensity values of the original brain image μ. This method increases the contrast of
images by stretching the range of intensity values from different sources into a single
range [7]. This stage was carried out because the exams used are from two databases
from different institutions, with images obtained from 6 different MRI scans. Adopting
this normalization in all exams, they can be combined into a single dataset for the
development of classifiers. Thus, each of the original axial FLAIR MRI (IO) (Fig. 2
(a)) was passed by HS normalization (Fig. 2 (b)), obtaining images on a scale of 0 to 1
normalized (IN) (Fig. 2 (c)).

Fig. 2. Pre-processing methodology classification of exams for the presence of lesions. (a) Orig-
inal Image (IO). (b) Image normalization. (c) Normalized image (IN). (d) 5 × 5 Gaussian Filter.
(e) Filtered Image (IG) (f) Edge sharpening. (g) Enhanced Image (IF).

Subsequently, the IN were filtered using a Gaussian filter followed by an edge sharp-
ening procedure. The Gaussian filter is a 2D convolution filtering method that is used
to smooth images and remove high-frequency noise, which can make the image a little
blurry [19]. And edge sharpening is a methodology that increases the prominence of the
inner edges of the image by adding the original image to its discriminated edges [20].
In this way, the image obtained presents the initial characteristics, but with an enhance-
ment of the edges of the objects. MRI can present speckle noise in their formation,
and the filtering by the Gaussian filter is ideal to remove it. And when combined with
edge sharpening, it enhances the tissue contour, resulting in sharper images and better
visualization of MS lesions. Thus, the IN were filtered by a 5 × 5 Gaussian filter (Fig. 2
(d)), resulting in filtered images (IG) (Fig. 2 (e)). And IF was passed by edge sharpening
procedure (Fig. 2 (f)) resulting in the filtered and enhanced image (IF) (Fig. 2 (g)) that
will be used in the next steps.

Attribute Extraction
In the attribute extraction step, methods were designed to extract features from axial
FLAIR MRI to classify the presence or absence of MS lesions for the development of
classifiers in the next step. As the specific objective of this proposed project was to indi-
vidually classify each of the images of the FLAIRMRI sequences into two classes, “with
lesion” and “without lesion”, it was identified the need to evaluate analytical models that
would allow identifying the class belonging of each slice of the exams. And the method
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selected for the extraction of these attributes was the use of pre-trained CNN (convolu-
tional neural network) classification models to vectorize the pre-processed images, IF,
from the previous step, obtaining feature vectors at the end of their convolutional layers,
which will be used in the training of classifiers in the next step.

The use of pre-trained neuralmodels aims to obtain, in a differentiatedway, attributes
obtained and identified in convolutional neural networks already proposed in the litera-
ture, and which have had efficient results in the area of action of the proposed objectives
[21]. The use of this mechanism optimizes the feature extraction process, allowing the
acquisition of a series of image descriptors, without the need to extract each one of them
individually. In addition, these proposed method results in a reduction in computational
cost, without the need to perform the training and optimization of filters and parame-
ters of the convolutional layers, which have already been evaluated with thousands of
images in the architectures presented by the literature [21]. In this context, once the fea-
ture vectors are already extracted, it is possible to focus on evaluating the best classifier
to weight the weights of these attributes, similar to focusing specifically on the FCL
(Fully Connected Layer) of deep learning models [21]. Thus, 3 pre-trained networks
were used, Inception V3 [11], SqueezeNet [12] and VGG-19 [13] (Fig. 1 in blue), so
that they could be compared regarding the potential for classifying the presence of EM in
the FLAIRMRI exams. Inception V3 returns for each of the transformed images a vector
with 2048 features. SqueezeNet returns a vector with 1000 features. And the VGG-19
network returns vectorswith 4,096 descriptors for each image processed. The pre-trained
models were imported from the Python Tensorflow computer language library version
2.7. These vectors with attributes will be the input of the machine learning algorithms
developed in the next step, where they were evaluated for the potential of identifying
the images in the 2 classes indicated.

Classifier Training
In the classifier training stage, 5 analytical classification methods based on machine
learning algorithms were evaluated: Decision Tree [14], Random Forest [15], Knn [16],
SVM [17] and Logistic Regression [18] (Fig. 1 in green). These classifiers were trained
and evaluated from the feature vectors extracted from each of the 3 pre-trained neural
networks obtained in the previous step. For the proposed work, the axial FLAIR MRI
exams were divided into sets for training, validation, and testing, in the proportion of
80%,10%, and10%, respectively,with each set separated into 2 classes, “with lesion” and
“without lesion”. The exams were randomly separated between the three sets, respecting
three previous rules:

• All images from the same FLAIR MRI series were placed in the same set;
• The 23 patients from DDI-UNIFESP database who have 2 MRI exams obtained at

different moments in time, had both exams allocated to the same set;
• The proportion of exams between sets was followed in the distribution of exams by

equipment.

Table 1 describes how many exams of each equipment were distributed in each of
the sets. The number of images in each sequence of exams is different, and there is no
homogeneity between the studies. But the proportion in each set was close to the division
performed between the exams as shown in Table 2.
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Table 1. Distribution of the number of FLAIRMRI exams in the training, validation and test sets,
broken down by database and resonance scan.

Database Scan Set

Train Val Test

MICCAI 2016 GE Discovery 3T 6 2 2

Philips Ingenia 3T 12 2 1

Siemens Aera 1.5T 12 1 2

Siemens Verio 3T 13 1 2

DDI-UNIFESP Philips Achieva 3T 69 9 9

Siemens Skyra 3T 36 5 5

Table 2. Distribution of the number of axial FLAIR MRI images in the training, validation and
test sets in the “with lesion” and “without lesion”. classes.

Train Val Test

Images with lesions 14,129 1,724 1,827

Images without lesions 16,170 1,959 2,074

The division of the axial FLAIRMRI exams and images was performed between the
sets as described in Tables 1 and 2, using the respective feature vectors obtained in the
previous step of each of the images. Training and validation data were used in the opti-
mization of each of the 5 machine learning classifiers employed. The hyperparameters
of the classifiers that resulted in higher performance were evaluated using a grid search
with the training and validation data for each of the evaluated algorithms, from each of
the three pre-trained neural networks from which the feature vectors were obtained.

Evaluation
The last step of the classification methodology of FLAIR MRI images regarding the
presence of MS lesions was the evaluation of the classifieds trained in the previous step
(Fig. 1 in gray). In this step, the 15 optimized classifiers developedwere analyzed, 5 from
each of the implemented machine learning algorithms, for each of the three pre-trained
neural models from which the attribute vectors were extracted. The comparison metrics
used were accuracy, area under the classification curve (AUC), sensibility, specificity,
precision, and F1-score.

Accuracy is the most used metric in the evaluation of a classifier, it is defined as the
ratio between the number of samples correctly classified and the total number of samples.
And considering a binary classification problem (“with lesion” and “without lesion” as
in the proposed objective), the evaluation also measured and analyze parameters such as:
true positive (TP) that represents the number of samples of the positive class correctly
classified; false negative (FN), or the number of samples of the positive class incorrectly
classified; true negative (TN), which represents the number of samples of the negative
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class correctly classified; and false positive (FP), or the number of samples of the negative
class classified incorrectly. Sensibility (Eq. 2) is used to assess the number of positive
class predictions that are actually positive. Specificity (Eq. 3) is used to assess the number
of samples of the negative class that were correctly classified. Precision (Eq. 4) assesses
the number of samples classified as positive that is actually positive. The F1-Score (Eq. 5)
is a harmonic mean between precision and sensitivity. And the AUC is a metric related
to the power of the classifier to separate two classes, related to the ROC curve (Receiver
Operating Characteristics), which is a graph that allows the analysis of the sensitivity
and specificity of a binary classification.

Sensibility = TP

TP + FN
(2)

Specificity = TN

TN + FP
(3)

Precision = TP

TP + FP
(4)

F1 − Score = 2 ∗ Precision ∗ Sensibility

Precision + Sensibility
(5)

3 Results and Discussions

As provided in the methodology, the present objective was the elaboration and evalu-
ation of classifiers based on machine learning algorithms trained from the characteris-
tics extracted from pre-trained CNNs. Three pre-trained neural models were evaluated:
Inception V3, SqueezeNet and VGG-19, and 5 analytical models, decision tree, random
forest, Knn, SVM, and logistic regression, for the classification of FLAIR MRI images
in “with lesion” and “without lesion”. Lesion”. The classifiers were optimized through
the variation of the specific hyperparameters in a grid with the training and validation
sets according to Tables 1 and 2. Tables 3, 4, and 5 present respectively the AUC and
Accuracy values of each of the 5 classification models trained with the characteristics
extracted by the pre-trained Inception V3, SqueezeNet and VGG-19 networks, respec-
tively. In the tables, the values of the metrics are presented both for the best performance
of the validation data, as the numbers obtained by the optimized classifiers with the data
of the test set.

The results presented in Tables 3, 4 and 5 show that the best classifiers for the
characteristics extracted from the 3 pre-trained neural models were SVM and Logistic
Regression (LR), presenting higher AUC and accuracy values. Table 6 presents the
sensibility, specificity, precision and F1-score values obtained by these 6 best classifiers
using data from the Test set.

Seeing Tables 3, 4, 5 and 6, the most sensitive classifier for the classification of
axial FLAIR RM images was the SVM with attributes of Inception V3, which obtained
accuracy of 0.980, sensibility of 0.990, and F1-Score of 0.979. And the most specific
classifier was the Logistic Regression with Inception V3 attributes, obtained specificity
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Table 3. AUC and accuracy results of the validation and test sets of the classifiers trained with
the attribute from pre-trained Inception V3 model.

AUC Accuracy

Val Test Val Test

Decision tree 0.880 0.863 0.921 0.903

Random forest 0.972 0.963 0.953 0.944

Knn 0.936 0.921 0.936 0.928

SVM 0.997 0.988 0.986 0.980

Logistic regression 0.998 0.991 0.988 0.974

Table 4. AUC and accuracy results of the validation and test sets of the classifiers trained with
the attribute from pre-trained SqueezeNet model.

AUC Accuracy

Val Test Val Test

Decision tree 0.833 0.829 0.892 0.887

Random forest 0.960 0.952 0.936 0.932

Knn 0.699 0.682 0.614 0.597

SVM 0.988 0.982 0.961 0.951

Logistic regression 0.993 0.984 0.973 0.962

Table 5. AUC and accuracy results of the validation and test sets of the classifiers trained with
the attribute from pre-trained VGG-19 model.

AUC Accuracy

Val Test Val Test

Decision tree 0.849 0.839 0.903 0.897

Random forest 0.972 0.965 0.954 0.947

Knn 0.796 0.779 0.703 0.693

SVM 0.995 0.983 0.978 0.971

Logistic regression 0.993 0.985 0.977 0.965

values of 0.978 and precision of 0.975. These results demonstrate that the combination
of these models, with the pre-processing step, resulted in classifiers with high precision
and robustness for the classification of axial FLAIR MR images regarding the presence
or absence of demyelinating lesions caused by EM.When compared to the best values in
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Table 6. Sensibility, specificity, precision and F1-Score of the classification of the images from
Test set regarding the presence of MS lesions from the SVM and Logistic regression classifiers.

Sens Spec Prec F1

Inception V3 SVM 0.990 0.971 0.968 0,979

LR 0.969 0.978 0.975 0.972

SqueezeNet SVM 0.969 0.946 0.940 0.954

LR 0.968 0.957 0.952 0.960

VGG-19 SVM 0.981 0,962 0.958 0.969

LR 0.962 0.967 0.963 0.962

the literature, Siar and Teshnehlab [9] obtained accuracy and sensibility of 0.968, Zhang
et al. [8] obtained 0.982 for the same metrics, and Wang et al. [7] obtained 98.7.

4 Conclusions

In Conclusion, the proposed approach presented significant values regarding accuracy
and sensibility for an automatic Axial MRI brainsMS lesion identification. The method-
ology of the proposed approach is based on the combination of attribute extraction by
pre-trained neural models for the elaboration of the classifiers. As well as the outcome,
this methodology presented that the SVM classifiers presented greater potential in the
proposed classification, with the Inception V3 as the pre-trained neural model being the
most efficient for the extraction of attributes. The classifier presented similar or supe-
rior results to the literature, with the advantage that it was developed with exams from
two datasets from different institutions with six different MRI scans. Finally, for future
works, we will seek new collaborators to increase our database to expand the analyses
of the potential applications.
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Abstract. Thyroid Cancer is a disease in which abnormal cells
grow uncontrollably in the gland with the potential to invade other
organs. Every year, almost 44,000 new cases are diagnosed worldwide.
Histopathological diagnosis of fine-needle aspiration biopsies of thyroid
nodules is the most precise exam to confirm the diagnosis and estimate
the stages of the disease. The diagnostic process in such an exam involves
detecting atypical signs, such as the presence of cell proliferation with
irregular shape and texture. This task could be even harder once you
consider that most thyroid biopsies might present multiple pathological
states, such as inflammatory diseases and hyperplasia. Therefore, this
paper addresses the development of a Computer Vision method to assist
the histopathological diagnosis of normal, thyroid papillary carcinoma
and goiter. The proposed method model and implement a Convolutional
Neural Network to detect visual patterns to differentiate the three patho-
logical states. Experiments following the Holdout Cross-Validation proto-
col reached an accuracy of 88.73% for the multiclass approach and 95.74%
accuracy for the binary assessment. The results confirm the potential of
the proposed method to assist pathologists in prescribing a more precise
diagnosis.

Keywords: convolutional neural network · deep learning ·
histopathological analysis · thyroid cancer

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. L. B. Marques et al. (Eds.): CLAIB 2022/CBEB 2022, IFMBE Proceedings 99, pp. 147–158, 2024.
https://doi.org/10.1007/978-3-031-49404-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49404-8_15&domain=pdf
http://orcid.org/0000-0003-0335-7358
http://orcid.org/0000-0001-6622-251X
http://orcid.org/0009-0007-1101-5354
http://orcid.org/0000-0001-7404-9606
http://orcid.org/0000-0001-7295-3415
http://orcid.org/0000-0001-9961-5686
http://orcid.org/0000-0002-3411-3551
https://doi.org/10.1007/978-3-031-49404-8_15


148 M. de Freitas Oliveira Baffa et al.

1 Introduction

Thyroid Cancer is a type of malignant tumor that affects the thyroid gland caus-
ing difficulty in swallowing, a sore throat that does not get better, hoarseness,
and swollen glands in the neck. This is a rare type of cancer that affects mainly
people in their 30s, with the majority of cases registered in women, up to 3 times
more frequently compared to men [1].

The process of diagnosis involves physical exams, imaging exams such as
Ultrasound and CT scan, and biopsy. The fine-needle aspiration biopsy removes
several tissue samples from the thyroid to better detect the type of cancer, the
stage and to follow up with the treatment, to confirm whether the cancer was
completely removed and the patient’s general health [2]. A study conducted
by Alves et al. [3] with 110 patients showed that among the tests for detecting
cancers, the histological method is the best method for detecting thyroid tumors.

The tumors can be categorized as either being differentiated thyroid cancers,
such as Papillary and Follicular Carcinoma (well-differentiated tumors), and
Medullary thyroid cancer, which is a neuroendocrine tumor [2]. Another thyroid
pathological condition involves inflammatory and autoimmune conditions such
as Goiter, Thyroiditis, Graves’ and Hashimoto’s Disease [4]. The detection of the
thyroid cancer type, as well as the inflammatory diseases, can be a very hard
task that requires a very experienced and specialized pathologist. Hence there is
a need for developing a method that does not require such a highly specialized
professional and can assist the less experienced one.

Recent advances in Computer Vision have been proposed in the medical liter-
ature to assist pathologists to prescribe a better diagnosis. In 2017, for example,
Araújo et al. [5] developed a computational method to assist in breast can-
cer diagnosis using histology images. Similarly, Siqueira et al. [6] proposed a
method for automatic prostate cancer classification. Computer Vision methods
are described as a three stages techniques. First, it is necessary to preprocess the
data in order to highlight features and to set the region of interest for the anal-
ysis. Then, feature extraction methods are used to describe image content into
a numerical vector. Finally, a Machine Learning algorithm is used to recognize
patterns and to create a classification model for further analysis [7]. Such meth-
ods may assist doctors to detect abnormal signs related to different pathological
conditions in a highly efficient way.

Therefore, the object of the present study was to develop a Computer Vision
method to assist the pathologist in diagnosing Goiter, Thyroid Cancer e Nor-
mal tissues. A binary assessment is also provided to measure the efficiency of
the proposed method to differentiate Normal and Tumor tissues. The proposed
method is based on Convolutional Neural Networks (CNN), to extract patterns
over a preprocessed sample of thyroid tissue and to create a classification model
for further applications. The results obtained are the main contributions to the
field, along with the interpretable results and the development of a custom CNN
architecture for both multiclass and binary assessments of thyroid histopatho-
logical image classification.
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The contents of this paper are developed as follows. First, related studies in
the area are introduced to analyze how researchers have approached the thy-
roid classification problem. Then, the database composition and preprocessing
are presented along with the classification methodology proposed. Finally, the
experiments and results are discussed in detail.

2 Related Studies

Over the last years, the thyroid tissue classification problem has been addressed
in the literature in many different ways. Most of them deal with binary classifi-
cations between healthy and tumor tissues, and the extraction of representative
features for further pattern recognition stages. This section introduces some of
the recent approaches available in the literature.

Guan et al. [8] developed a Computer Vision method based on Visual Geo-
metric Group (VGG-16), a Very Deep Convolutional Neural Network architec-
ture, to identify papillary thyroid carcinoma in cytological images. The authors
used cytological-level images which present a small number of loose cells, with-
out tissue organization. In total, the authors worked with 279 cytological images
of thyroid nodules. The VGG-16 algorithm achieved an accuracy of 97.66% in
differentiating benign nodules and papillary tumor cells.

Later, Halicek et al. [9] developed a Computer Vision method to assist pathol-
ogists in detecting head and neck tumors among whole-slide pathology images.
In total, his image dataset had 381 samples acquired from 156 patients and was
used to train a modified version of Inception-v4 Network, with around 141 con-
volutional layers. The authors reached an accuracy of 89.40%, a sensitivity of
89.60% and a specificity of 89.10% for thyroid cancer detection.

In 2020, Chen et al. [10] proposed a whole-slide analysis for thyroid cancer
diagnosis but using a feature extraction approach. The authors used a dataset
with 345 samples and extracted features using a Convolutional Neural Network
for further evaluation using traditional Machine Learning methods, such as Deci-
sion Tree, Support Vector Machine (SVM), Random Forest, and Multilayer Per-
ceptron (MLP). The combination of ResNet-50 features and an MLP reached
the highest results, with an accuracy of 96.10%, a precision of 96.62%, and a
recall of 98.40%.

Han et al. [11] proposed an automatic classification method for thyroid patho-
logical images as well. The authors used a dataset of digitalized images of 16,500
thyroid samples, of which 7,928 are normal tissues and 8,572 are papillary thy-
roid carcinomas, collected on multiple regions of the sample from 55 patients.
The samples are pre-selected using a similarity-based method and the most rep-
resentative samples are used to train a VGG network. The authors report a
precision of 95.70% and a sensitivity of 95.8%.

Duc et al. [12] proposed a Deep Learning ensemble method to automatically
predict papillary thyroid cancer using fine-needle aspiration cytology images.
The authors used a dataset with 367 images, of which 222 cases are papillary
thyroid tumors and 145 are benign lesions. They evaluated several Very Deep



150 M. de Freitas Oliveira Baffa et al.

CNN models, such as ResNet-50, DenseNet, and Inception-v3, all pre-trained
with ImageNet dataset. The DenseNet algorithm reached the highest results,
with an average accuracy of 95.56%, a sensitivity of 97.34%, and a specificity of
94.05%.

Unlike the studies mentioned above, this work proposes a custom CNN archi-
tecture for thyroid histopathological classification, which reduces the network
complexity and helps build a more reliable classification model. Also, we evalu-
ate the thyroid tissue classification into a multiclass (normal, goiter, and cancer)
and a binary (normal and cancer) approaches, providing a visualization of the
inner patterns explaining how the CNN classified the samples.

3 Materials and Methods

According to the traditional Computer Vision approach for image classification,
the proposed method can be described as a three-step process. First, a digitalized
version of the sample is generated. After that, since our samples are not strongly
stained, an image processing step is required in order to improve the image color
distribution. Finally, a custom CNN is implemented in order to extract features,
recognize patterns and create a classification model for further applications. An
overview of the proposed method is shown in Fig. 1.

Fig. 1. Method Overview.

3.1 Data Acquisition and Preprocessing

To develop this work, the biological material was acquired from Biomax Inc.,
by researchers at the Brazilian Institute of Energetic and Nuclear Research
(IPEN). Biomax Inc. focuses on sales, histochemical analysis, and other ser-
vices using histological tissue. Three micro-array slides were acquired containing
tissues of Normal, Goiter (Hyperplastic Goiter, Nodular Goiter, Hashimoto’s
disease, and Subacute Thyroiditis), and Papillary Thyroid Carcinoma, each one
with 80 cases/cores, 240 in total. These micro-arrays are stained with Hema-
toxylin and Eosin (H&E) chemical compounds to enable further pathological
studies.
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After acquiring the micro-arrays, a digitalized image of each core is generated
using a microscope Scan Scope Olympus BX61VS, under 40x magnification. The
scan process considers a focus point on each core in order to obtain detailed and
high-definition images.

All tissue slides are pre-labeled by two specialists from Biomax Inc. but in
order to confirm the diagnosis, two pathologists specialized in thyroid tissue from
the Pathology Service of the Clinical Hospital of Ribeirão Preto Medical School
(FMRP-USP) analyzed the digital images to improve the diagnostic label before
further feature extraction and pattern recognition stages.

Since each core may present more than one diagnosis, e.g., cores with normal
cells and a small region of hyperplastic goiter, a small inner region of interest is
manually selected in order to improve the representative of that core. This is an
important step to ensure that the supervised Machine Learning method will find
patterns over the correct labels and remove unwanted information, such as blood
cells and colloids. Each inner region is selected with a window size of 1500× 950
in pixel size. Only one region per core is selected to avoid multiple images per
patient. The process of acquiring the image from the microscope and selecting the
inner region were performed using the software QuPath - Quantitative Pathology
& Bioimage Analysis v0.3.2. Figure 2 shows a digitalized core, the region of
interest manually selected, and the resulting image.

Fig. 2. Region of interest selection over the whole core.

After the acquisition process, some samples presented very poor staining,
which turns the diagnosis a hard task. Therefore, to deal with such a problem,
a preprocessing stage is proposed to improve the image quality and as well
highlight the sample’s color.

In this stage, the image is loaded using RGB color space. Then, each channel
is split in order to be equalized and enhanced separately. The Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE) technique is used to equalize
each channel. This method is better than the traditional histogram equalization
because we can manually limit the contrast intensity, enhancing the color dis-
tribution without adding noise or artifacts to the sample. Figure 3 contains an
example of poorly stained samples and their respective preprocessed image.

Finally, to improve the model efficiency and generalization, a data augmen-
tation step is utilized. In this stage, seven operations are applied for each image
increasing the sample variability. The seven operations are: (i) rescale, (ii) shear,
(iii) zoom, (iv) horizontal flip, (v) width shift, (vi) height shift, (vii) rotation.
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Fig. 3. H&E staining enhancement using Contrast Limited Adaptive Histogram Equal-
ization. In (a) the original image and (b) the color enhanced version.

3.2 Classification Methodology

Convolutional Neural Network is a specialized type of Deep Neural Network for
processing data in a grid-shape topology, such as images and videos. This type of
network is capable of extracting feature maps through convolutional operations
and developing a classification model based on such features [13]. CNN has
successfully been applied to many Computer Vision problems which motivates
its evaluation for thyroid histopathological image classification as well.

Many related studies use very deep architectures, such as Inception, ResNet,
and VGG. The problem with such an approach is that they require a large
amount of data for a better generalization and to avoid overfitting the model.
On the other side, very short architectures, such as LeNet-5, aren’t capable of
finding enough patterns for the proposed problem. Therefore, a custom CNN
architecture is developed in order to extract a relatively high amount of feature
maps, without compromising the performance and the generalization.

The proposed CNN has 10 layers, of which one is the input layer, six are
convolutional layers, followed by two dense layers and one output layer. The
input layer receives the image with 64× 64 in pixel size, with three color chan-
nels. The convolutional layers are organized in pairs interspersing the padding
between “valid” and “same” options. They extract 16, 32, and 64 filters, respec-
tively, with the size of 3× 3. For every two convolutional layers, a MaxPooling
operation is used to reduce the sample space by 2× 2 window size. After the
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convolutional layers, a flattening operation is used to reshape the data for the
pattern recognition task using the dense layers. Each dense layer has 512 neu-
rons and is followed by a dropout operation, which randomly turns off 20% of
the neurons in the dense layer. Both convolutional and dense layers use the
Rectifier Linear Unit (ReLU) activation function. Finally, the output layer has
three neurons, representing the three classes dealt in this work (goiter, cancer
and normal), and uses the Softmax activation function. The other parameters
used in the neural network are set as follows. The Adam algorithm was used
to optimize the network, along with the Categorical Cross-entropy as the loss
function. We used a batch size of 64 and ran the algorithm for 1000 epochs.
Figure 4 summarizes the proposed CNN custom architecture.

Fig. 4. Custom CNN architecture for thyroid histopathological classification.

An assessment for binary classification, between normal and cancer tissue
is also provided. The same architecture is utilized except for some parameters
adjusted for binary classification, such as the output activation function, which
was the Sigmoid function, the number of neurons in the output layer was one,
and the loss function was set to binary cross-entropy.

4 Experiments and Results

To develop this work, we used a Linux Workstation, with an Intel Xeon Silver
CPU, 64 GB of RAM, and two NVIDIA RTX A4000 GPU. We used Python
programming language to code the scripts, along with Tensorflow 2.7.0, OpenCV
4.5.5, and Scikit-Learn 1.1.1.

The experiment followed the Holdout Cross-Validation Protocol. The dataset
was randomly split into two parts, in which 70% of the images were used to train
the CNN and 30% to test. No data or patients were repeated in between the
subsets.

This experiment was also validated quantitatively using four evaluation met-
rics: Accuracy, Precision, Recall (Sensitivity) and Area Under the ROC Curve
(AUC). These metrics are calculated accordingly to the number of True Posi-
tives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN)
classifications. For the multiclass approach, we considered these metrics using
the micro-average strategy, along with the One-Versus-Rest (OVR) for the AUC
calculation.



154 M. de Freitas Oliveira Baffa et al.

The multiclass assessment, in which we classified normal, goiter, and cancer
thyroid tissues, the proposed CNN architecture achieved a validation accuracy
of 88.73%. This is a relatively high accuracy considering the complexity of find-
ing enough visual patterns to differentiate goiter and normal tissue. These two
pathological states have very similar structures which make the diagnosis diffi-
cult. Figure 5 displays the training and validation curve for the accuracy value
over the epochs. The shape of the curve is very characteristic of a good fit Deep
Learning model, which demonstrates that the model doesn’t overfitted and that
the testing data was large enough.

Fig. 5. Training and validation curve for accuracy over the epochs.

The recall, often referred to as sensitivity, achieved 88.73% which is also
a very satisfactory and important result for medical imaging analysis, once it
measures the proportion of actual positives was correctly identified among the
classes. In Fig. 6 we display the training and validation curve for the recall values
over the epochs. This curve is also well fit for the proposed problem. The method
also achieved a precision of 88.73% and an AUC of 94.41% related to the overall
efficiency of the method.

The structure of the CNN was developed empirically in order to maximize the
accuracy and the recall. As mentioned before, we tested simpler architectures,
such as LeNet-5, and very deep architectures, such as VGG, Inception, Xception,
ResNet, and EfficientNet. The smaller architectures didn’t have enough depth
to create complex patterns capable of differentiating the three proposed classes,
while the deep architectures didn’t have enough data to generalize the model.
Also, because these deep architectures are pre-trained on the ImageNet dataset,
we were not able to modify it to add structures to avoid overfitting such as
regularization and dropout.

The image preprocessing was also important to improve the overall efficiency
of the method. We tested the original images, among with the poorly stained
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Fig. 6. Training and validation curve for recall over the epochs.

cores, and their respective grayscale images, but the color in the custom CNN
showed as an extremely important feature to differentiate the three classes.

By analyzing our results, we observed the complexity to differentiate normal
and goiter tissues. Inflammatory tissue may be very similar to normal tissue,
but with subtle changes, e.g., the hyperplastic goiter, which appears as a dense
cluster of nuclei. Since most of the thyroid literature doesn’t cover inflammatory
diseases in a multiclass approach, a second experiment was proposed with only
cancer and normal tissues to measure the impact of this difficulty.

The binary assessment, without the goiter images, used the same CNN cus-
tom architecture but adjusted the multiclass parameters to binary. Compared
to the multiclass performance, as expected, the binary assessment had a slightly
higher result, achieving an accuracy of 95.74%, with a precision of 100.0%, a
recall of 91.30%, and an AUC of 97.55%. This second experiment shows an
increase in accuracy of 7% when the goiter class isn’t considered. This illus-
trates the difficulty in separating the three classes indicating that there’s a need
for further investigations to improve their representation. Table 1 summarizes
the multiclass and the binary assessments using the processed dataset and the
custom CNN.

Table 1. Quantitative Results Summary.

Accuracy Precision Recall AUC

Multiclass 88.73% 88.73% 88.73% 94.41%

Binary 95.74% 100.0% 91.30% 97.55%

Using the Grad-CAM algorithm [14], we were able to plot heatmaps illustrat-
ing the pattern found in the CNN. Our goal was to check how the multiclass CNN
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was interpreting the image and to visualize the normal and cancer patterns in a
human-understanding way. To do so, Grad-CAM utilizes feature maps (filters)
found in the very last convolutional layer and the classification model to infer
the image class and point out as heat regions, the location the patterns were
found. Figure 7 shows four sequences of images, each containing the heatmap
illustrating the pattern detected on normal and cancer samples, its respective
H&E sample, and the overlap between the heatmap and the sample. In normal
samples, the heated area tends to be in a well-shaped region, clustered together
while the cancer tissue presents in a scattered form, without a specific structure.

Fig. 7. CNN patterns found over four different thyroid histological samples. In (a) the
pattern over normal thyroid tissue and (b) the pattern over thyroid cancer tissue.
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5 Conclusion

Thyroid Cancer is the uncontrollable growth of abnormal cells in the gland,
capable of evading other tissues. Fine-needle aspiration biopsies of thyroid nod-
ules are the best screening technique to confirm the diagnosis and determine
its group type and the stage of the disease. In this work, we proposed a Com-
puter Vision-based method to assist pathologists with thyroid histopathological
analysis in order to improve the diagnosis precision and efficiency. The proposed
method based on a custom CNN architecture achieved an excellent result for
such a complex task in differentiating the three classes. For future works, we
intend to investigate new possibilities to represent the data in order to improve
the differentiability between the normal and goiter classes.
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Abstract. Computer Vision (CV) application benefits the health area, notably in
its applications for assistive technologies and objective and in-depth analysis of
biomedical images. However, there are currently no CV resources that innovate
by collecting patients’ vital signs directly from the ICU (Intensive Care Unit)
medical equipment panel. Thus, the present work goal was to extract the electro-
cardiogram (ECG) signal from ICU monitors. The approach consisted of trans-
forming ECGmonitor signals into one-dimensional digital signals by segmenting
them into frames, then extracting the segmentation’s upper contour. We used nine
heart monitor screen recordings (videos) available on YouTube as a database.
The segmentation results validate using the Dice coefficient. Two frames of every
recording were validated, generating 18 validations and an average Dice of 90.02
± 5.74. We concluded that the approach proposed can extract ECG images from
videos of Intensive Care Unit monitors and transform them into a signal in the time
domain. It can help future ECG assessments, via computation vision, regarding
the changes in heart rhythm (arrhythmias). It can also help circumvent limitations
to access the ECG in Intensive Care Units by using, for example, a simple video
camera, such as those of cell phones, close to the monitor. Such an innovative app-
roach, in turn, would allow obtaining and transmitting the signals to the computer
that will be responsible for its analysis.

Keywords: ECG Signal · Segmentation · Intensive Care Unit Monitor

1 Introduction

Computer vision (CV) is a technology that seeks to emulate human vision to automate
image analysis, obtain high precision in this process and save time [1]. CV application
benefits the health area, notably in its applications for assistive technologies and objective
and in-depth analysis of biomedical images [2]. CV is also applicable to intensive care
units [3], Homecare, and telemedicine [4], avoiding using storage devices, such as hard
disks or memory cards.

Some of these demands may involve programming with a high level of complexity
and high technology for the use of CV, which makes its implementation in the daily
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routine of a hospital or clinic unfeasible. Developing systems that demand processing
in personal computers is highly indicated for these cases.

Currently, no CV resources innovate by allowing, for example, the visual inspection,
reading, and interpretation of the patient’s vital signs from the medical equipment panel
itself. That would help, for example, collect information from the electrocardiogram
(ECG), the pressure curve, and the oxygen saturation value of patients on Intensive Care
Unit (ICU) monitors.

Concerning precisely the ECG signal, the first challenge in seeking its interpretation
is to be able to extract it correctly from the ICU monitor screen. That is precisely the
objective of this work. Specifically, as a first step in using CV for ECG analysis in
medical equipment panels, this work intends to develop a computational tool based on
the segmentation technique that extracts the ECG image and its amplitude and time scale
from videos recorded from ICU monitor screens.

2 Methods

The general goal is to extract ECG images from ICU monitors to be turned into a signal
(over time). The idea is that the turned ECG could be understood and treated as the ECG
signal itself.

The database used contains nine heart monitor screen recordings available on
YouTube. The following criteria were applied to choose the videos with the help of
a physician:

1) The ECG signal should be shown in green color (ICU’s monitors normally use this
color to show the ECG signal);

2) The ECG signal should not contain grids, that is, vertical and horizontal reference
marks;

3) The camera used for filming should remain practically static or move little during
recording;

4) The camera used for filming should be close to themonitor to allow clear visualization
of the ECG signal, but at least 1 m away to avoid electromagnetic interference [5].

Figure 1 presents some examples of videos rejected for this project as they did not
meet at least one of those criteria.

After choosing the videos to compose the database, the frame processing to extract
the ECG signal started. All processing performs in MATLAB version 2018a. The first
step consisted of transforming each video into a set of images to separate their frames.
In the first frame of each video, a window containing only the ECG signal is selected
manually, as shown in Fig. 2.

The selected windowwas applied to cut all video frames, as the processing is applied
considering only the select region in all the videos. Therefore, just the ECG signal is
segmented. The processing consisted of segmenting the image recorded on the ECG
monitor to transform it into an ECG signal (time-domain). As for considering the RGB
system color, all frames were split into R (red), G (green), and B (blue) components,
and just the G component was used in the processing, as the ECG depicts in green
color in all videos used. Thus, the green component pixels were selected in the range
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100–255, generating a binary mask, where pixels in this range are white, and the others
are black. The next step was to fill small holes that remained at the segmentation using
a morphological closing operation with a circular structuring element of radius 1. The
result of this process is approximately the ECG signal image segmented. To obtain the
ECG signal amplitude, we extracted the upper contour of the segmentation. All columns
of the segmented image were scanned from top to bottom, and the first white pixel found
was selected. The result is the ECG signal, as exemplified in Fig. 3.

Fig. 1. Examples of videos rejected for the study. (a) The screen contains grids; (b) and (c) the
monitor is far from the camera.

The ECG amplitude scale (1 mV) stands directly in a vertical bar on the screen,
and the ECG horizontal length conventionally represents 6 s (Fig. 4). Accordingly, the
number of pixels of those elements determines the ECG scale in millivolts and seconds.
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Fig. 2. Example of window selection (red outline) containing only the ECG signal at the first
frame of each video. (Color figure online)

Fig. 3. ECG signal extracted from the segmented image.

Fig. 4. Elements in the ECG image used to determine the amplitude and time scale of the signal.

The validation considered the ECG signal segmentation results. For this, we use the
Dice coefficient, which compares them to Gold Standards by Eq. 1.

Dice(A,B) = 2 ∗ |A ∩ B|
|A| + |B| (1)

The dice express the similarity between two regions (A and B). It varies from 0 to 1,
with values close to 1 indicating the highest similarity between the regions. This work
presented the Dice results on a scale from 0 to 100. Two Gold Standards were generated
for each video, referring to the first and last frames. Thus, 18 images were validated.
The Gold Standards were generated using the Gimp software by manually contouring
the ECG signal by an ECG specialist, as shown in Fig. 5.
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Fig. 5. Example of frame and Gold Standard manually generated for segmentation validation.

3 Results and Discussion

In this work, the approach chosen to transform ECG signals displayed on ICU moni-
tors into one-dimensional digital signals consisted of segmenting them into frames and
extracting the segmentation’s upper contour. Such an approach helps provide a remote
ECG assessment via computer vision.

After segmenting the ECG signals, the results were validated using the Dice coef-
ficient. The database contained nine videos, and two frames of each recording were
validated, generating 18 validations and an average Dice of 90.02 ± 5.74. The Dice
results appear in the boxplot of Fig. 6.

The average Dice coefficient of 90.02 reveals high similarity between the segmented
region and Gold Standard and good performance of the proposed method in segmenting
ECG signals depicted on cardiac monitor screens. The minimum Dice obtained was
76.27, but the segmentation result was excellent, as shown in Fig. 7.

As shown in Fig. 7, the segmented region was thinner than the Gold Standard, which
impacted the Dice result. However, it is possible to verify that the ECG segmentation
was correct. As the Gold Standards were drawn manually over the frames, they may be
slightly different from the signals shown on the monitor, which introduces an error in
the quantitative validation. That is a physical limitation of the professional who carried
out the tracing; thus, it cannot be circumvented. Visual inspection confirms that the
segmentation was correct despite of a smaller Dice.

After finishing the segmentations, the one-dimensional digital signal was gener-
ated by extracting the upper contour of the segmented ECG. That was mirrored on the
horizontal axis. The results were plotted on the original frame for visual inspection,
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as exemplified in Fig. 8. It is possible to verify that the proposed method accurately
extracts the ECG signal from the frames. Therefore, that result indicates that computer
vision can apply to transforming ECG signals displayed on the ICU monitor screen into
one-dimensional digital signals (time-domain).

Fig. 6. Boxplot Dice coefficients result from the validation of the ECG signal segmentation.

Fig. 7. Gold Standard (white) and segmented signal (red). Scale not shown. (Color figure online)

TheECG temporal signals resulted fromdigital signal processing as the signal ampli-
tude could convert from pixels to millivolts and the time scale convert from pixels to
seconds. Additionally, the validation of the ECG signal relied on the Dice test and visual
inspection.

One limitation of the method proposed in this work is that the segmentation of the
ECG signal is impaired if there are other elements beyond the ECG in the selected
window, such as grids, signal markings, and written warnings, as shown in Fig. 9. Thus,
the window chosen must contain only the ECG signal. The green tones of the ECG
signals can vary greatly depending on various factors, such as the heart monitor settings,
quality of the device used to perform the recording, reflections on the monitor screen,
and the ambient illumination where the monitor poses. Thus, to ensure adequate ECG
signal segmentation from different videos, the method proposed in this work selects a
wide range of colors in the G component (green). Due to that feature of the method,
other elements in the window that are not green can be selected incorrectly, interfering
with the final result.
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Fig. 8. ECG signals from cardiac monitors (green) and one-dimensional digital signals resulting
from processing (red). Scale not shown. (Color figure online)

Fig. 9. Elements (green or not) present in the selected window (highlighted in red) that impair
the ECG signal’s segmentation. (Color figure online)

Even though the tool still needs improvements, it may help ECGmonitoring in ICUs
as patients’ signals can be visually monitored and sent as an ECG signal to a single
computer to be processed. Thus, if an intercurrence detects in a patient, help can be
much faster, as the program would warn out any possible abnormalities.

Monitoring and assessing ICU patients’ vital signals, such as ECG, is crucial as it
can provide continuous and noninvasive follow-up [6, 7]. As one would expect, many
authors have proposed diversified approaches for it [8–10].

However, to the best of our knowledge, using ICU monitor videos as a direct source
of ECG signal is first described in the present work.

Other authors proposed extracting ECG signals from images [11, 12]. However, they
proposed extracting ECG signals fromECG recordings’ images on paper. Therefore, that
approach is not applicable in ICU monitor videos, as proposed in the present work.
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4 Conclusions

The present tool can extract ECG from videos of Intensive Care Unit (ICU) monitors
and transform it into a time-domain ECG signal. It can help future ECG assessments, via
computation vision, regarding pathological changes in the heart rhythm (arrhythmias).

It can also help circumvent limitations to access the ECG in ICU by using, for
example, a simple video camera close to the monitor, such as those of cell phones. That
approach, in turn, would allow obtaining and transmitting the signals to the computer
responsible for ECG analysis.
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Abstract. In this work, we evaluated unsupervised clustering meth-
ods in segmenting the electrical impedance tomography image during
the assessment of pulmonary perfusion by injection of hypertonic saline
solution. In clustering the image pixels, we assume the existence of
purely lung pixels (solely due to lung perfusion without effects from
other organs) and hybrid pixels (which contain heart and lung effects
together). We used data from 5 pigs to generate truth masks and assess
the quality of clustering. Among the methods tested, the k-means with
the cosine metric proved to be the best, as it obtained the 95% sensitiv-
ity median and the 90% specificity median. We prioritized minimizing
the false negative cases and false positive cases, as it would overestimate
regional pulmonary perfusion.

Keywords: electrical impedance tomography · lung perfusion ·
clustering · k-means · hierarchical clustering

1 Introduction

Electrical impedance tomography (EIT) is a non-invasive, non-ionizing, and
functional imaging modality. The EIT machine generates images by mapping
biological tissues’ electrical characteristics. The technique is primarily used to
continuously monitor lung ventilation and perfusion in mechanically ventilated
patients [1–3]. For patients with different ventilation conditions (undergoing sur-
gical procedures or lung diseases), EIT allows adjusting the ventilator settings
based on the individual needs [4,5].

The protocol to estimate lung perfusion begins with injecting a hypertonic
saline solution into the right atrium that takes the blood to the lungs. This
procedure modifies and decreases the regional impedance [6]. Usually, 16 or
32 electrodes are positioned around the thorax, and a high frequency and low
amplitude electrical current is applied for tissue excitation. The electrical poten-
tials are measured and used to calculate the thorax impedance distribution. A
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reconstruction algorithm uses this data to create the lung perfusion distribution
map [7].

The EIT has been verified and validated as a useful method in clinical prac-
tice [8,9], mainly in monitoring lung ventilation. The perfusion estimation using
EIT has a hindrance caused by the problem of signal interference between lungs
and heart where a given voxel captures partial behaviors of the contrast passage
through the right heart, the lungs, and returning to the left heart [7,10]. Some
approaches were developed trying to segment the lung and heart regions. These
methods include comparing functional EIT images with anatomic images from
a computed tomography (CT) slice in the plane of the electrodes. Often, the
approaches use unsupervised methods combining statistical and spectral analy-
sis with an image processing algorithm to define the heart and lung regions of
interest (ROI) [10].

Another study evaluated whether the EIT could determine the redistribu-
tion of lung perfusion elicited by one-lung ventilation. To find the lung and
heart ROIs, they applied a Fourier transform to the pixels’ time courses of rel-
ative impedance change to examine the frequency components of the EIT data.
The heart ROI (negative slope) and lung ROI (positive slope) were acquired
by calculating the slope of the linear regression fit between the local pixel and
global EIT data [11].

This paper proposes a method to segment the EIT image during a hypertonic
saline injection to evaluate lung perfusion by clustering the pixels with only lung
behavior (solely lung) and pixels with hybrid behavior (heart and lung at the
same time). The approaches rely on clustering tools to detect hybrid and lung
pixels in the time-series data of five pigs.

2 Methods

2.1 Animal Experiment

The study relies on landrace swine’s experimental data without previous or
induced lung injury. The project was approved by the Ethics Committee on the
Use of Animals (CEUA) of the Faculty of Medicine of the University of São Paulo
(FMUSP) under number 1242/2019. The study was carried out in the animal
ICU of the Laboratory of Medical Investigation in Experimental Pulmonology
(LIM-09), located on the 4th floor of the FMUSP, and in the Tomography room
of the Department of Pathology, located in the basement of the same building.

A belt containing 32 EIT electrodes was positioned in the plane corresponding
to the 4th-5th intercostal space on the previously shaved skin. We used the
EIT device (Enlight-1800, Timpel, São Paulo, Brazil). For evaluating perfusion
by EIT, data were acquired during an apnea period of 30 s: 10 s pre-injection,
followed by a rapid injection of 10 mL of 7.5% NaCl through a central catheter
located in the right atrium of the animal. The images obtained by EIT have a
sampling rate of 50 Hz and spatial resolution of 32-by-32 pixels in just one slice,
representing about 15–20 cm of the lung.



Unsupervised Clustering Methods for Lung Perfusion 169

2.2 Clustering Algorithms

We have evaluated two clustering algorithms: k-means and hierarchical cluster-
ing. We used the complete dataset to test and assess both methods.

The k-means is an iterative, data-partitioning algorithm that assigns n obser-
vations to precisely one of the k clusters. Where k is chosen before the algorithm
starts. K-means treats each observation in the data as an object with a space
location. The method finds a partition in which objects within each cluster,
using a metric distance, are as close to each other as possible. Our experiment
used two (k = 2) clusters: hybrid and lung pixels. We chose the correlation and
cosine metric distance based on the pig data signal. An assessment with a metric
distance from an origin (cosine and correlation) gives a clustering considering
the phase and magnitude between two time series, it is more useful than use the
Euclidean metric distance that only find the shortest distance between two time
series.

The cosine metric, also called cosine similarity, calculates the cosine of the
angle between two points (treated as vectors). The cosine metric distance is
shown in Eq. 1,

dcos(a, b) = 1 −
∑n

i=1 aibi√∑n
i=1 a

2
i

√∑n
i=1 b

2
i

(1)

where ai and bi are the samples of vectors a and b, respectively, n is the number
of samples, with the dcos(a, b) as the cosine metric distance between a and b.
The cosine metric distance is one minus the cosine similarity and has a range of
values between 0 and 2.

The correlation metric distance is shown according to Eqs. 2, 3 and 4,

dcorr(a, b) = 1 −
∑n

i=1(ai − ā)(bi − b̄)
√∑n

i=1(ai − ā)2
√∑n

i=1(bi − b̄)2
(2)

ā =
∑n

i=1 ai
n

(3)

b̄ =
∑n

i=1 bi
n

(4)

where ai and bi are samples of a and b respectively, n is the number of samples,
with dcorr(a, b) as the correlation metric distance between a and b. The correla-
tion metric distance is one minus the correlation and take a range of values from
0 to 2.

The hierarchical clustering method includes grouping data over various scales
by creating a cluster tree or dendrogram. The tree is not a single set of clusters
but a multilevel hierarchy, where clusters at one level are joined as clusters at
the next level. To perform the clustering, the purpose is to find the similarity
or dissimilarity between every pair of objects in the data set, calculating the
distance between objects. We also used two clusters (hybrid and lung pixels).
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Based on the pig data signal and to compare k-means and the hierarchical clus-
tering methods, we used the correlation and cosine metric distance in clustering
routines [12].

2.3 Implementation

The dataset consists of each pixel’s impedance waveforms per time (samples).
The waveforms are shown in Fig. 1(a) and correspond to those pixels that varied
during the acquisition. The silent pixels were excluded from the analysis.

During a hypertonic saline injection, the time series of the impedance per
time (samples) can be associated with the blood volume, while the time deriva-
tive of the impedance per time (samples) is associated with the blood flow.
The blood volume does not give quantitative information about how much and
what conditions (slow or fast flow) the blood is reaching the lung. Therefore, we
decided to analyze only the time derivative waveforms (Fig. 1(b)).

Fig. 1. Time series (a) and derivative (b) for the electrical impedance signal of each
pixel.

The derivative signals are clustered using k-means and hierarchical clustering
with the correlation and cosine metrics. After finishing the clustering step, we
reorganized the data in hybrid masks with 32× 32 pixels for each derivative
result and we apply a morphological operation to dilate and expands the hybrid
region. The kernel shape used was “square” with size “2” to increase the true
positive pixels and reduce the pixels incorrectly classified.
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Fig. 2. Actual contrast passage (a) used to create the truth mask (b) with binary colors
representing the hybrid and lung regions manually segmented.

The result masks were compared with the truth masks (manually created).
The method to create the truth masks was observing the EIT derivative signal
(32× 32 pixels) in time (samples) looking frame by frame and deciding to use
the frame that do not presented lung perfusion pixels. The derivative perfusion
signal was set with a sequential color scale as shown in Fig. 2(a). The pixels with
higher impedance/time present a lighter color. Thus, we selected only the pixels
with color ≥ 25% of the chosen scale to the hybrid region (hybrid pixels with
considerable signal amplitude), and the others were considered as lung region of
the truth mask. The results of the truth masks are visualized in Fig. 2(b).

All hybrid masks comparison results are evaluated quantitatively using the
following parameters:

– True Positive (hybrid pixels considered as hybrid pixels);
– True Negative (lung pixels considered as lung pixels);
– False Positive (lung pixels considered as hybrid pixels);
– False Negative (hybrid pixels considered as lung pixels).

The parameters were used to calculate the sensitivity, specificity, and accu-
racy of each clustering algorithms method.

3 Results

The analysis focus was on the masks comparisons. Each mask was compared
with the truth mask (Fig. 2(b)). The k-means and hierarchical clustering results
using the cosine metric are visualized in Tables 1 and 2 respectively. The results
using the correlation metric are shown in Tables 3 and 4, respectively.
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Fig. 3. Time series k-means clustering (Cosine) electrical impedance per samples by
each pixel and its Hybrid Mask with K-means Clustering (Cosine); (a) Time series K
- means Clustering (Cosine); (b) Hybrid Mask - K - means Clustering (Cosine).

Table 1. k-means clustering (cosine metric). Sensitivity (TPR) stands for true positive
rate; Accuracy (ACC) stands for the accuracy of the method; and Specificity (TNR)
stands for true negative rate. All values are in percentage.

Pigs Sensitivity % Specificity % Accuracy %

1 95 90 91

2 83 92 90

3 93 85 87

4 96 90 91

5 98 88 90

Median 95 90 90

The tables were used to evaluate which method using each metric quantita-
tively has shown the best performance. The objective was to examine the higher
sensitivity percentage median. The high sensitivity median represents that the
method found the higher number of true positive cases (hybrid pixels as actual
hybrid pixels) with the lower number of false negative cases (hybrid pixels con-
sidered as lung pixels). Evaluating the false negative instead of the false positive
is damage control. For the proposed problem, taking a lung pixel as a hybrid
pixel is less troublesome than taking a hybrid pixel as a lung pixel.
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Table 2. Hierarchical clustering (cosine metric). Sensitivity (TPR) stands for true
positive rate; Accuracy (ACC) stands for the accuracy of the method; and Specificity
(TNR) stands for true negative rate. All values are in percentage.

Pigs Sensitivity % Specificity % Accuracy %

1 92 91 91

2 73 95 89

3 89 90 90

4 95 94 94

5 98 89 91

Median 92 91 91

Table 3. k-means clustering (correlation metric). Sensitivity (TPR) stands for true
positive rate; Accuracy (ACC) stands for the accuracy of the method; and Specificity
(TNR) stands for true negative rate. All values are in percentage.

Pigs Sensitivity % Specificity % Accuracy %

1 94 89 90

2 73 93 88

3 82 93 90

4 96 89 91

5 98 90 92

Median 94 90 90

Table 4. Hierarchical clustering (correlation metric). Sensitivity (TPR) stands for true
positive rate; Accuracy (ACC) stands for the accuracy of the method; and Specificity
(TNR) stands for true negative rate. All values are in percentage.

Pigs Sensitivity % Specificity % Accuracy %

1 91 92 92

2 76 94 90

3 88 90 89

4 96 91 92

5 92 94 94

Median 91 92 92

Searching for a method with the higher sensitivity median, we found that
the best method was the k-means clustering using the cosine metric, as shown
in Table 1. This method presents its clustered time series and masks shown
in Fig. 3(a) and 3(b), respectively. Furthermore, the comparison between the
method masks and the truth masks is shown in Fig. 4.
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Fig. 4. Comparisons among the truth masks versus k-means clustering (cosine metric)
masks.

4 Discussions

The k-means clustering (cosine metric) has gotten a 95% of sensitivity and 90%
of specificity, representing a considerable probability of detection and a high
selectivity of the method.

The understanding of the false pixels cases are that the FN (yellow pixels)
means that the hybrid pixels in hybrid mask, has true positive almost all hybrid
pixels of the truth mask. However, the FP (pink pixels) reveals some hybrid
pixels in hybrid masks should be classified as lung pixels. This implies that the
k-means clustering (cosine) finds the true positive with the truth masks hybrid
pixels, but it needs to be investigated why some lung pixels are classified as
hybrid pixels. Reduce the FP cases is the best way to increases the specificity
median.

One approach to investigate what could be interfering in false pixels cases was
to plot the clustered time series of this method (Fig. 3(a)), with the waveforms
of FP and FN parameters taken in Fig. 4. We show such a plot for this method
in Fig. 5.

Figure 5 shows essential information about the main errors in our method.
We verify that the hybrid pixels and the lung pixels have very different and
defined waveforms for each one. Comparing the hybrid and lung pixels peak
to the peak of incorrectly classified pixels - FN (yellow pixels) and FP (pink
pixels). We observed that the yellow and pink pixels are in an intermediary
peak. This information suggests that the intermediary peak influences a wrong
hybrid classification by the k-means clustering (cosine).

Furthermore, comparing the pink and yellow waveforms with the lung wave-
forms, we notice that the similarity (phase and magnitude) between then are
higher than the hybrid waveforms. The hybrid waveforms have defined negative
region, while the pixels incorrectly classified have not. This information sug-
gests that the cosine metric distance used to create the hybrid masks, has some
problems when the waveforms presents a lower similarity.

In synthesis, the method using the k-means clustering (cosine) to create the
hybrid masks was the best approach giving a high probability of detection and
selectivity, and promising results to be a useful segmentation method to find the
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hybrid and lung region in a perfusion data set. The main problem is the wrong
classification of the lung pixels as hybrid pixels (pink pixels) and to understand
the errors, more tests need to be performed.

Fig. 5. Time series of k-means clustering (cosine metric) with pixels incorrectly classi-
fied (false negative and false positive waveforms) from the comparisons of Fig. 4.

5 Conclusion

This work has shown and compared different methods for waveform clustering
in EIT data during lung perfusion assessment. The approaches included using
k-means and hierarchical clustering methods using the cosine and correlation
metrics. The best result was using the time-derivative dataset waveforms with
k-means clustering (cosine metric).

This method presents a 95% sensitivity median with a 90% specificity median,
highest within the compared methods. The considerable accuracy represents
promising results, but more work should be performed to understand the errors
between the clustering method and the truth masks.
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Abstract. Imaging exams are fundamental in the treatment of various diseases.
Through them, it is possible to obtain faster, more accurate and safer diagnoses.
Infrared spectroscopy exams help to differentiate healthy tissue from pathological
tissue, identifying their characteristics, but this generates a large amount of data
that requires a lot of time and computational capacity to process. Thus, this work
intends to optimize the pre-processing ofmicro-FTIR images for cancer diagnosis,
using k-means clustering and Principal Component Analysis (PCA).
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1 Introduction

According to the world health organization, cancer is a leading cause of death in the
world and represents around 10 million deaths only in 2020 [1]. Cancer is a generic
term that describes more than 50 diseases and is characterized by uncontrolled growth
of cells that can be spread over the body in a process named as metastasis.

There are several treatments for cancer that can be divided into 3 subtypes: surgery,
radiotherapy, and Chemotherapy [2]. Therefore, the corrected diagnosis at the early
stages is necessary for a better prognosis and survival rate [3]. In this way, several
methods have been applied for diagnoses and the histopathology exam is one of the
most important for correct classification as well as cancer staging. However, this exam
has several limitations, mainly, due to cancer detection at early stages [4].

To overcome this situation, one of the possibilities is to collect biochemical markers
from the suspicious biopsy. Several studies [4–6] in the literature reveal that infrared
spectroscopy imaging (ISI) can be used to extract biochemical information on biopsy
slides. The spectroscopy technique is label-free and demands simple sample preparation
[7, 8].
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The ISI collects a big amount of chemical information that comes from the tissue
by analyzing the interaction between infrared light and molecules. Therefore the signal
that comes from the samples can be related to the tissue as well as unwanted contam-
inants such as water vapor and paraffin [9–11]. The paraffin is used during the sample
preparation for biopsy preservation [9].

Therefore, it is necessary to use appropriate image processing techniques to remove
the chemical information from contaminants and access the biochemical markers cor-
rectly [11]. The image processing is divided into 2 steps the first is named pre-processing.
The main goal of this step is to remove the artifacts related to contaminants and light
scattering [10].

The second step is related to image segmentation. The main method used in the ISI
for image segmentation is k-means clustering. This method is well established in the
FTIR literature [12–15], and it can segment the histological structures into ISI images.
However, the step is time-consuming and increases exponentially with image size. The
main reason is related to the number of features (wavenumbers points) in each pixel
which can be up to 1000 [12].

Another important point in data processing is to improve the signal to noise (RSN)
by mathematical steps. The main method used to improve the RSN is the reconstruction
of the spectrum using only first n PCs obtained from a PCA transform [16–18]. The
methodology is well established in the FTIR literature [7, 19, 20].

The time-consuming processing to access the segmentations is still a bottleneck that
has not been overcome by literature. There are no articles in the literature showing this
strategy for optimizing the time in micro FTIR images.

Therefore, the authors in the present study focus on overcoming this problem by
performing PC transformation before k-means clustering. Accordingly, it is necessary to
develop new strategies to perform this step faster. There are several statistical approaches
to reduce the number of features to preserve almost all information in the IR spectrum.
One of the most common is the principal component analysis (PCA).

The goal of the present study is to evaluate the performance of the use of PCA
transform before the segmentation step by k means clustering.

2 Materials and Methods

2.1 Samples

The samples used in the present studies came from Clinics Hospital of Ribeirão Preto.
The hospital ethics committee approved the use of the sample for this study. The ethics
committee number are 3285/2002, 1902/2002.

2.2 Data Collection

All colon biopsies were preserved in paraffin blocks. Two consecutive cuts of 5 mm
thickness were performed. The first cut was deposited on CaF2 windows that were
transparent to Infrared radiation. The second slide was deposited on a glass slide and
stained with hematoxylin and eosin (H&E). Both cuts were not de-waxed chemically
data collection.
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We collected 71 hyperspectral images from 55 human colon tissues. The images
were collected using a spotlight 400 FTIR (PerkinElmer, Massachusetts, USA). The
hyperspectral images were recorded in transmission mode with 6.25 µm pixel resolu-
tion and each spectrum was obtained by coaddition of 16 interferograms. Before each
collection, an appropriate background spectrum was collected in the clean region of the
caf2 window.

The images were collected using microscope, in transmission mode, with an abroad
IR source that shedding light on the samplewithwavelengths ranges from1, 3 (750 cm−1)
to 0,25 µm (4000 cm−1). This region is used by the literature to classify histological
structures because there are several biomolecules such as proteins, collagen, and nucleic
acids that absorb light in these wavelength regions.

2.3 Pre-processing

The images collected were processed in google Colab using a toolbox written in python
3 and developed by the authors. After the dataset was imported, an area containing only
paraffinwas selected for the builtmodel for removing the variance related to paraffin. The
model used was linear and named Extended multiplicative signal correction (EMSC).
The EMSC model was constructed using the first’s 5 principal components (PCs) of
the paraffin dataset and a 4th polynomial order was used to remove the differences in
the baselines among the spectra of the image. The parameters used in the EMSC in the
present study were optimized and published in the previous study [9].

After applying the EMSC, improvements were performed in each spectrum of
the image, and the spectra with poor signal-to-noise ratio and/or without tissue were
removed.

The processed image was transformed into 4 distinct images: the original images
where each pixel has a spectrum between 900–1800 cm−1 (SPC-image). The other three
images were created by PC analysis. In these 3 images, each pixel has the n first PCs
that represent 99% (PC99-image), 95% (PC95-image) and 90% (PC90-image) of the
accumulated variance from the dataset.

2.4 K-Means Segmentation

The k-means clustering is a common method used for FTIR image segmentation. The k-
means algorithm splits the pixel into the k group. Each group is represented by a centroid
that is the mean of all n spectra labeled by the algorithm. The algorithm initialization
starts to select k centroids (pixels) randomly. The Euclidian distance (ed) between all
pixels of the image (spectra) and each k centroid are calculated and all pixels in the image
are labeled according to minima ed. At the end of this step a new centroid is calculated
by mean n labeled spectra. This process is repeated until some stop criteria are reached.

The 4 images (SPC, PC99, PC95, PC90) from each sample were submitted to k-
means clustering, using as a similarity measure the Euclidean distance. The k-means on
each image were performed 15 times to avoid problems related to cluster initialization
[9]. This is because the results obtained from the k-means clustering method depend on
the initialization points that are selected randomly. Therefore, the results from k-means
are not always connected to the best clustering. One of the methods to overcome this



180 B. A. Augusto et al.

situation is to perform the k-means several times and choose the results that minimize
the variance inside of a group and maximize the variance inter-group. The variance is
calculated based on the similarity metric.

3 Results and Discussions

3.1 Time and Quantity of Components

One of the ways to measure the advantages of the PCA technique, in the segmentation
step, is by observing the processing time. Table 1 shows the average number of com-
ponents used in each situation and the mean of processing time required to k-means
segmentation of all images considering the time spent in the PCA (when used). The
number of features is defined as the number of absorbance point when considering the
SPC-image and PCs-image the features is the number of PC variables that describes 99,
95 or 90% of the accumulate variance.

Table 1. Time and quantity of components

Data Features (n) Time (s)

SPC-image 451 135.9

PC99-image 68 26.7

PC95-image 33 17.7

PC90-image 21 14.11

We can observe that there is a big difference in the number of components analyzed
in each situation. When we applied only k-means clustering, the software used all the
451 points of the spectrum (SPC-Images). In the following situations, with 99% (PC99-
image), 95% (PC95-image), and 90%(PC90-image) of accumulated variance, even using
the same number of spectra, the average value is, respectively, 68, 33, and 21 features
(PCs).

We could also notice a big difference between the processing time of the original
data and the time of the data treated with PCA. The k-means segmentation time with
PC99-images took only 17% compared to SPC-images, and the analysis with PC90-
images took only 10.9% of the time. It represents a very significant time reduction,
mainly taking into account that several works in the literature report that one of the
biggest obstacles [13, 14] to the large-scale use of the FTIR imaging technique within
the area of histopathology is due to the long time taken to acquire the images.
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3.2 Similarity Between the Images

To measure how similar the images obtained by the k-means clustering method are, the
coefficients of mutual information between the images were calculated [15].

The results of this analysis can be seen in Table 2, in which the average coefficients
of mutual information between all 71 images obtained from the segmentations of the
SPC-images and the PC95-image and PC90-image are shown, compared to the values
of the PC99-image, of each number of clusters.

Note that this value varies between 0 (totally different images) and 1 (images that
carry the same information).

Table 2. Mutual information between the images.

Clusters SPC-img vs PC99-img PC95-img vs PC99-img PC90-img vs PC99-img

2 1 1 1

3 1 1 1

4 0.49 0.99 0.97

5 0.49 0.99 0.97

6 0.53 0.98 0.96

7 0.52 0.98 0.96

8 0.54 0.97 0.94

9 0.52 0.97 0.94

10 0.52 0.95 0.93

As we can see when the process divides the images into 2 or 3 clusters, the images
are practically identical regardless of whether we are comparing the images with or
without PCA. After 4 clusters, a significant difference begins to exist between the SPC-
image and its PCs-images. However, among the PCA images, their mutual information
from all images is relatively high, always above 0.9, this raised the hypothesis that this
difference with the SPC image is the removal of errors, so we opted for more punctual
and qualitative images concerning their respective H&E image.

One of the advantages of the k-means technique over others for segmentation in ISI
images is related to the fact that it is very sensitive to differences in the dataset [16],
especially in images with a high number of clusters, so the biochemical differences in
the tissue are well defined, and even with very different colors, the images obtained are
very similar to the H&E, as can be seen in the comparison of Figs. 1, 2, 3, 4 and 5.
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Fig. 1. H&E image from a normal colon tissue

Fig. 2. The 10 clusters k-means SPC-image.

We can also notice that, in agreement with the table of Fig. 2, the images obtained
through the PCA, Figs. 3, 4 and 5, are very similar, and it is even quite difficult to find
differences without a very detailed analysis, while all of them have a great difference
concerning image obtained only with k-means, Fig. 2.

So for a better understanding of these small differences, Figs. 6, 7, 8, 9 and 10 show
a specific part of the tissue where only PC-images can segment the regions with a high
amount of cells ( purple cluster) from regions with stroma ( red cluster).

Now with the more detailed images, we can see the small differences between the
PCA images, Figs. 8, 9 and 10. We can also compare that the presence of purple sub-
divisions makes the PCA images closer to the morphological division of H&E, which
contain several subdivisions in the tissue that are not shown by the image obtained with
k-means only.
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Fig. 3. The 10-cluster k-means from a PC99-image

Fig. 4. The 10 cluster k-means from a PC95-image

This difference in image segmentation may be due to the interaction of PCA used to
exclude less relevant data for segmentation, with the low signal-to-noise ratio of hyper-
spectral images, thus causing better noise removal and rendering the images obtained
more faithful to the delimitation of the structures.

The quality of k-means segmentation using PC variables over spectral data is related
to the fact that this segmentation method is highly sensitive to differences among the
data. These differences can be related to contaminants not related to biochemical of the
sample but vibrational contribution of water vapor, paraffin and/or noise. When we used
only firsts k PCs, we also performing a noise removal [16].
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Fig. 5. 10 cluster k-means from a PC90-image.

Fig. 6. Small part of Fig. 1

Fig. 7. Small part of Fig. 4 (yellow rectangle).
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Fig. 8. Small part of Fig. 3 (yellow rectangle).

Fig. 9. Small part of Fig. 4 (yellow rectangle).

Fig. 10. Small part of Fig. 5 (yellow rectangle).
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4 Conclusion

This work allowed us to evaluate the efficiency of the PCA technique in the pre-
processing of hyperspectral images, analyzing the differences in the amount of data,
the time to process them and between the images obtained.

The results showed that images involving PCA have a more defined segmentation
process compared to traditional k-means. In addition, the technique allows a clearer
delineation of small internal structures and promotes an improvement in the signal-to-
noise ratio.Direct comparison between results obtained in the present study and literature
is not possible so far, by not having same dataset. Nonetheless, future works may focus
on implementing works from literature or share datasets to allow direct comparisons.
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Abstract. Brain tumor is of the main diseases that affect the brain, meningioma
being the most common among all types of brain tumors. This pathology has a
benign character in most situations. In order to aid in a rapid and non-invasive
prognosis, magnetic resonance imaging is used as the means of diagnosis. There-
fore, with the objective of developing a tool to assist in the analysis of the lesion
and medical decisions, an algorithmic strategy of automatic segmentation was
developed for magnetic resonance images of meningiomas, in order to delimit the
tumor region from the application of processing techniques digital images. The
results obtained in this analysis corresponded to about 66% of correct answers in
the segmentation of the region of interest.

Keywords: Brain tumor · meningioma · digital image processing

1 Introduction

Brain tumor is a disease that affects the nervous system and can be classified into two
types: primary and secondary. Primary brain tumors are those that originate in the central
nervous system itself, while secondary tumors originate from another region of the body
and reach the brain through metastases [1].

Among the most frequent primary brain tumors is the meningioma, characterized by
its common location in the meninges region and classified as a benign type of tumor for
most cases, it also presents slow growth, with exposure to ionizing radiation as one of
the main risk factors [1].

The World Health Organization has specified a classification that encompasses four
grades of lesions to determine the severity of each tumor, subdivided into two categories:
low grade (types I and II) and high grade (types III and IV). In relation to meningiomas,
this classification is characterized by only three levels: grade I – lesions with low infiltra-
tion potential, considered typical; grade II – lesionswith high infiltration potential, called
atypical; grade III – less common type, but with anaplastic or malignant characteristics
[2].
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The diagnostic process of this pathology includes the analysis of neuroimages as
a crucial step, the most common exams being: computed tomography and magnetic
resonance imaging.

Magnetic resonance imaging is an image acquisition process based on nuclear spins
and their interactions with the magnetic field generated by the equipment. These inter-
actions are more intense in the hydrogen atom, since its nucleus has only one proton, so
it presents angular momentum when subjected to the magnetic field. Therefore, as there
is a diversity in the amount of hydrogen present in the tissues, for each sequence of elec-
tromagnetic pulses the tissues will present a different recovery time, which translated
into the final image, represents a different intensity for each type of tissue [3].

Although this type of image is excellent for identifying the existence of the tumor
and delimiting its region, there are some points that cannot be met by this modality, such
as: definition of the type, degree of malignancy and approximation of the impregnation
margins. However, the limitations mentioned above can already be overcome from the
association of magnetic resonance images with more recent techniques [4].

The evaluation of imaging tests to identify tumor regions still takes place manually
by specialist physicians, which requires a great deal of professional experience and a
well-trained eye to identify these pathologies. This specificity can influence the final
segmentation area, since this procedure is subject to natural human errors and is difficult
to visualize, due to the nature of the image that has many similar levels of intensity [5].
Therefore, the computer-aided diagnosis system – CAD shows itself as an important
alternative to aid in the detection and segmentation of brain tumors. In addition to
contributing to an early diagnosis, which is a crucial factor in the efficiency of the
treatment response and consequently in the patient’s chances of recovery.

According to data from Brazilian National Cancer Institute – INCA (2022), among
the total percentage of malignant tumors, cancer of the central nervous system cor-
responds to 1.8%. In addition, as estimate carried out in the year 2020 points to the
emergence of 11.090 new cases, with a mortality rate that can reach the amount of 9.355
of the total cases [6].

Based on this problem and the data presented in the previous paragraph, the objective
of this work is to develop a computational algorithm that, applied to magnetic resonance
images, is able to identify and segment the region referring to meningioma-type brain
tumors, through the application of digital image processing techniques.

2 Materials and Methods

2.1 Database

The database was produced and made available by Nanfang General Hospital and Tian-
jing Medical University General Hospital, both in China, and is publicly available for
research use. The data are composed of T1-weightedMRI images of the brain region and
have three distinct types of brain tumors: meningiomas, gliomas and pituitary tumors.
The dataset refers to 233 patients, totaling 3.064 slices, of which 708 are meningiomas
[7].

In a very generic way, we can explain that during an MRI exam, the images are
generated through a kind of scan, that is, at the end of the analysis there are several
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slices of the region of interest of a patient, better known as slices. Therefore, the same
individual may contain more than one image referring to their lesion.

In this database, the information of each slice is distributed within a struct with the
extension.mat, and includes the identification of the tumor type, the patient’s identity
code, the original image (see Fig. 1), a vector of coordinates and a tumor mask [7].

Fig. 1. Original image extracted from.mat file.

In addition to the original images of each patient, the author has a binary mask of the
tumor region (see Fig. 2), which was segmented by three experienced professionals in
the neurological area. From the analysis of these images in comparison to the originals,
we noticed a discrepancy in the information, since the manual segmentation brought
a visually larger region than the original. Therefore, for the purpose of evaluating the
results, this study did not use these images as a parameter for comparison.

Fig. 2. Specialist segmented tumor mask, extracted from .mat file.



190 B. V. de Oliveira et al.

2.2 Digital Image Processing

For the development of the algorithm we used a sequence of digital image processing
strategies, as described in Fig. 3, with the objective of segmenting the characteristic
region of the tumor from the magnetic resonance image.

Fig. 3. Block diagram with the techniques applied in the system.

Executing the first step of the algorithm, reading the image, it was necessary to
extract the original image that was inside a struct and consequent conversion of this
figure to the.png format. In this way, we were able to work in the other stages with the
original image.

We have divided the processes into three main phases: pre-processing, segmentation
and post-processing. In the pre-processing, we followed the strategy of removing the
cranial contour through mathematical morphology. To perform the segmentation we
adopted the k-means method. In post-processing, we reverted to using morphology to
recover tumor edge features that might have been lost during the segmentation process.
Finally, we compared the results obtained visually by superimposing the mask obtained
on the original image, thus providing the verification of the tumor region in the two
images.

Removal of the Cranial Region
When analyzing the original images, we noticed that the intensity of the pixels in the
skull region are very similar to the corresponding pixels of the tumor. Therefore, this
information interferes in the tumor segmentation process, as the algorithm identifies
these two intensities as being the same object. Thus, for the step of removing the skull
region, Fig. 4, we use the artifice of mathematical morphology as a technique to remove
the interference region, applying the morphological erosion operation.
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Fig. 4. Image after removal of the cranial region.

Segmentation by K-Means
Segmentation is one of the most complex processes in digital image processing, becom-
ing the determining factor for the success of the final system. This tool aims to separate
image regions that have similar characteristics, by grouping pixels based on the analysis
of basic image attributes. We can delimit this technique into two subdivisions, automatic
or semi-automatic segmentations. For this work, we will use automatic segmentation
techniques, that is, without external interference in the determination of the regions of
interest [8].

The process used for segmentation was k-means, a clustering technique well known
for its easy implementation. The selection of objects is based on metrics that analyze
each pixel in relation to the distance from a centroid, which in turn are recalculated at
each iteration until reaching the convergence criterion. Thus, at the end of the execution
we will have the definition of subgroups of the original image, Fig. 5 [9].

Fig. 5. Clusters obtained from the segmentation by k-means.
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Morphological Operation
Morphological operations can be used in several context within image processing: both
as information extraction tools to describe a given region, and applied in the pre- and
post-processing stages, as is the case with our approach.

In the pre-processing, we use erosion, amorphological filtering technique that results
in the reduction or thinning of objects based on the predetermined structuring element,
in this case, we take a 30 radius disk [10] as the structuring element.

In post-processing, we apply the closure, Fig. 6. This method tends to smooth the
image by filling the discontinuities, consequently closing the holes present in the seg-
mentation result. As a structuring element, a disk with radius 5 was used so that the
corrections were as minimal as possible, without adding information on the tumor and
changing the correct dimensions of the tumor region [10].

Fig. 6. Mask of the segmented image after morphological closing operation.

Results Comparison Process
After applying the morphological corrections to the mask of the segmented image, we
performed the superposition of this region with the original image, obtaining the result
shown in Fig. 7.

Fig. 7. Final result: superposition of the segmented tumor region over the original image.
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3 Results

To evaluate the results, 300 images were analyzed out of a total of 708 that presented
a meningioma-type tumor. We then classified the results into three subgroups: seg-
mentation of the correct region with a complete and well-defined tumor (see Fig. 8);
segmentation of the correct region, but with some artifact or lack of information at the
end of the tumor (see Fig. 9); and segmentation of the incorrect region (see Fig. 10).

For completely correct results, the responses characterized the entire tumor and
presented well-defined borders.

Fig. 8. (a) Original images; (b) Segmentation of the correct region, with a complete and well-
defined tumor.

In some results, we get a partially correct segmentation. In these cases, the correct
region was included in the response, but this region was bypassed, usually to an adjacent
cranial region that was not completely removed in the process of removing the cranial
part.

Fig. 9. (a) Original image; (b) Segmentation of the correct region, but with the presence of an
artifact.

In some situations, the results were wrong, targeting a region different from the one
of interest. This problem happened in most cases for slices that were in the eye region.
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Fig. 10. (a) Original image; (b) Incorrect segmentation.

The results obtained numerically, Table 1, indicate that 66% of the images were
segmented in the characteristic region of the tumor, with 49.67% referring to the com-
plete and well-defined tumor, while 16.33% with the presence of artifacts or missing
information on the tumor ends. Consequently, only 34% of the images presented errors
in the segmentation region, that is, they did not correspond to the exact location of the
pathology.

Table 1. Analysis of algorithm results in magnetic resonance imaging of meningiomas.

Segmentation results Amount Percentage

Correct region 149 49.67%

Correct region, but with some kind of flaw 49 16.33%

Incorrect region 102 34%

Total 300 100%

4 Discussion

Analyzing the results obtained, it was observed that the algorithmic strategy developed
presented important results for the two types of anatomical cuts present in the image
exams in the database. However, the responses were more satisfactory for the transverse
sectionswhen compared to the coronal ones, thismaybedue to the amount of information
from the two images, since the coronal section presents many artifacts related to the neck
region and cranial base.

Other conclusions associated with our tests are precisely in the evaluation of slices
that are located very close to the eye region or that have a very thick braincase, that is,
those that the first stage of skull removal were not as effective due to their thickness.
These flaws must be circumvented, since both additional information and the lack of
precision in the size of the lesion can lead to false diagnoses and impair the patient’s
treatment.
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In the cases analyzed by the authors in [11] and [12] with a similar strategy, the
techniques of filtering, k-means, thresholding and CNN were used, which obtained the
correct percentages of 89.23% and 90.03%, respectively. In the work developed in [5]
for computed tomography images, the authors used the techniques of edge recognition
filters, morphological operations and segmentation, reaching an accuracy of 94.23%.

In the previous situations,when comparing the results of each algorithmwith the 66%
obtained in this work, they seem to be significantly better results, however, we must con-
sider the difference between the processing techniques and the amount of images applied
for testing. Another important factor to be evaluated was the diversity of slice planes for
the resonance images used in this study, which directly interfered with our results and
suggest future improvements in the implemented algorithm, in order to encompass the
greatest variability of possible cases.

However, in general, the results were interesting, since the algorithm was able to
accurately pinpoint the location of the tumor in more than half of the images, needing
only a few adjustments to completely hit the 16.33% that included some artifact or
ignored some pixels from the edge of the tumor.

5 Conclusion

The results obtained demonstrate that the system presents satisfactory results in the
diversity of images to which it is submitted, correctly segmenting the region of interest
and with a well-defined delimitation of the ends for most cases.

However, in situations with great diversity of information, mainly in the region of
the eyes and cuts that cover the neck and cranial base, the system does not present a good
performance. In these cases, the segmentation occurs in the correct positions, however,
they suffer interference with the addition of artifacts or loss of pixels referring to the
edges of the tumor. In these circumstances, the system needs to undergo a review to
refine the segmentation, due to the need for precision in the results in order to avoid
errors in the diagnosis or inconsistency in the regions presented.

As future work, the algorithm can be improved in order to improve accuracy and
reduce error cases. Use of the deep learning technique, as well as the qualitative
evaluation of the results by experts in the area.
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Abstract. It is challenging to assess hemifacial spasm (HFS) patients as they
exhibit high-frequency and heterogeneous anomalous eyelid movements. This
study aimed to develop an application for a smartphone to objectively determine
eyelid movements frequency so that treatment responses in these patients can
be assessed accurately. The smartphone application was developed mainly using
Python, a prominent and broadly used programming language focused onmachine
learning and data science tasks. The application can precisely predict the move-
ment of the patient’s eyes using an SVM regressor and classifier. The results are
plotted for better visual inspection by using data visualization techniques. Thus,
the application enables a continuous study of each patient using an integrated
database in Google spreadsheets, which could better track the results of each
treatment response. The application showed to be an efficient method to identify
and represent eyelid movement occurrences in patients, objectively measuring
the eyelid movement frequency and, thus, assessing the treatment response in
patients with hemifacial spasms. This system could enable customized and fine
adjustments to botulinum toxin doses based on each patient’s needs.

Keywords: Machine Learning · Eye Aspect Ratio · Hemifacial Spasm

1 Introduction

Hemifacial spasm (HFS) is a neurological condition characterized by involuntary, tonic,
and clonic spasms of themuscles innervated by the ipsilateral facial nerve. This condition
is usually secondary to facial nerve compression at the root exit zone caused by an
aberrant artery [1, 2]. Spasms usually originate in the periocular region (orbicularis
oculi muscle) before affecting the midface and lower third of the face over months to
years. Most cases present with an affected and a non-affected side in this condition
[1]. Botulinum toxin-A (BTX-A) injections in the affected muscles are considered the
treatment of choice for this condition [1–4], reducing facial spasms. The efficacy of
botulinum toxin administration is generally assessed using clinical rating scales, such
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as the Jankovic rating scale [3, 4] Although grading systems facilitate the classification
of clinical symptoms, these tools are not accurate in assessing treatment response [5].
Furthermore, inHFS, it is challenging to impartially assess the eyelid spasms due to high-
frequency anomalous eyelid movements [6]. Previously employed objective approaches
to assess this condition relied on less accurate systems based on manually reviewing
videotapes or other indirect approaches [7, 8]. An accurate system has been described to
assess this condition’s eyelid movements fairly (spontaneous blink + anomalous eyelid
spasms) [5]. However, that system is complex and cannot apply in clinical practice.

This study aimed to develop an application for a smartphone to objectively determine
the eyelid movements frequency so that the therapeutic effect of botulinum toxin can be
practically assessed in patients with HFS. The app improves existing methods as it will
be handy for evaluating these patients’ response rates to treatment. To the best of our
knowledge, no previous smartphone application has been reported for this purpose.

2 Materials and Methods

2.1 Libraries and Data Sources

The data was collected in 2-min videos from subjects who agreed to participate in the
study. Patients with HFS and normal subjects from the Division of Ophthalmic Plastic
Surgery, Department of Ophthalmology and Visual Sciences, Federal University of Sâo
Paulo, were recruited to participate. Python manipulated and extracted information from
the videos. It is a commonly used programming language for machine learning and data
science in general [9]. Python contains some libraries used to build the application:
OpenCV, Imutils, Dlib, Matplotlib, Scipy, Streamlit, gspread, secrets, datetime, Pillow
and Seaborn. Each library had a different use. OpenCV was responsible for interacting
between the webcam and the script. It also applied to image transformation (thresholds
and resizing) and frame manipulation. Imutils applied for manipulating the data points
that corresponded to the landmarks. Dlib contained themodel that detected the eye points
based on the 68 landmarks (with HOG [10] and SVM [11]). Using Scipy, we calculated
the area within the eye, and with Matplotlib the data was plotted to visualize the results
of the tests.

The model was trained on the public online database Ibug 300W ICCV 2013 [12],
which was part of a face identification challenge. It contains four different datasets:
Helen, LFPW, AFW, and IBUG, corresponding to more than 11.500 images and their
labels. These datasets were also manipulated to reduce the size of the XML files. It
reduced from 68 to 12 points of data for each image (only the eye points were preserved).
Using Streamlit library, we developed the web application that contains the machine
learningmodel. That allows anyperson to use the applicationwith a smartphone.Gspread
library established a connection between the app and Google Sheets, where all the data
collected was stored, as is an easy access platform enabled by Google to create tables
that attend to the needs of this task. Secrets is a built-in library from Python used to create
a unique ID for each patient to relate the registration database with the data collection
database. Datetime library allowed to retrieve the day the data was collected. Pillow was
used to opening the main image. Finally, Seaborn was used alongside Matplotlib to plot
the line charts that describe the variation of the eye’s area over time.
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2.2 Machine Learning Script Structure

The script, built-in Python, is based on the algorithm of Rosebrock [13]. In his work, he
utilizes a machine learning model which relies on the Histogram of Oriented Gradients
(HOG). HOG is a descriptor that extracts features from an image based on a convolu-
tional operation between kernels and the image. It models the resulting data in a con-
catenated vector of components of the normalized cell histograms from all the captured
block regions. Such extractor is commonly used with Support Vector Machine (SVM),
a supervised learning model that classifies and makes predictions based on regression
analysis. Thus, the data points are located in the image after finding the features that
result from the HOG extractor. The face detector is available by the Dlib library and is
used to identify the 68 landmarks in videos or the webcam.

Based on that, the model was adapted to segment only the eye as a region of interest.
As previously said, the XML data was manipulated so that only the 12 eye points were
focused. Therefore, the data is collected in the form of lists, so it is reproducible as line
plots to identify the patient eye aspect ratio over time.

This script structure is the main part of the developed app. It provides a friendly
user interface, as it can be used on mobile and desktop devices without accessing any
background code.

2.3 Eye Aspect Ratio Function and Measurement

The eye aspect ratio calculus was inspired by an article that focuses on the results of the
SVM model in predicting facial landmarks [14]. It uses the Euclidean distance of the
height and width of the eye to calculate its area, as shown in Eq. 1. This Eq. Refers to
the points of the eyes from p1 to p6 in Fig. 1.

EAR = ||p2 − p6|| + ||p3 − p5||
2 ∗ ||p1 − p4|| (1)

The results are primarily constant with slight variations when the eyes are open.
That is a very accurate method to classify between open and closed eyes, as the SVM
model had an excellent performance in classifying the landmarks in many situations.
This calculus is performed for both eyes as all types of blepharospasm disease can be
measured.

The resulting values accumulate in a Python list so that it can be plotted into a line
chart containing, for each eye, the eye aspect ratio over time. Figure 2 is an example of
how the results are shown.

A threshold was based on the average size of the person’s eye to measure the EAR
as an eye blink. For most cases, EAR rounds about 0.25, or 0.3. However, it depends
on the eye size; thus, it needs to be fine-tuned. As for the fine-tuning, it was defined
a function that retrieves a modified EAR to keep track of each patient threshold. The
modified EAR, based mainly on the actual size of the eye [14], is calculated as the sum
between the open eye size and the closed eye size, as can be seen in Eqs. 2 to 4.

EARclosed = ||p2 − p6||min + ||p3 − p5||min
2 ∗ ||p1 − p4||max (2)
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Fig. 1. Points of the eye used in Eq. 1.

Fig. 2. Example of a line chart of an eye aspect ratio (EAR) over time.

EARopen = ||p2 − p6||max + ||p3 − p5||max
2 ∗ ||p1 − p4||min (3)

ModifiedEARThresh = (EAROpen + EARClosed )/2 (4)

Byusing those equations,weobtain the properEARof the patient,which is calculated
before each further analysis. After that, another counter starts after the value of the EAR
is below the threshold. If the EAR does not rise for one frame, it is considered only one
short blink and is not counted. Therefore, it avoids the risks of getting false negative
values.

2.4 Streamlit Application

The app was based on the Streamlit, a recently released library containing features to
develop online web applications for mobile and desktop services. A user interface was
created and divided into three sections: the home page, the analysis/login page, and the
sign-up page. The opening page summarizes the project and how to use the application.
Figure 3 illustrates the app’s initial page.

The analysis/login page (Fig. 4) leads to the app’s main functionality, which is the
eye recognition and evaluation using the Dlib facial landmarks detector. It contains a
separator between pre and post-treatment evaluation and a history section. In that section,
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Fig. 3. The app interface.

it is possible to visualize the patient’s records as a data frame. In the Charts section, the
patient or physician can select and visualize specific patient records plots. Finally, the
sign-up page is where the user, a patient, or a doctor can register in the app to use its
resources and features.

2.5 Google Sheets Database

As the app relies on retrieving patients’ data for further evaluation of the symptoms and
severity of spasms, it is inherent to store and relate this data to each patient who uses
its services. Therefore, a simple and efficient solution was to create a Python automated
Google Sheet that is updated whenever the user wants to store his data records. The
library Gspread was used to access the Sheet called ‘Person’, which contains the main
working sheet called ‘Registration’ and the ID-related sheets, which will be explained
later. The ‘Registration’ working sheet contains the personal data, including login name,
surname, city of residence, age, password, and ID. The user defines the login name and
the password in the sign-up steps. The ID is an automatically generated random unique
key. When the patient registers an account, the script also generates a new working sheet
related to the user’s ID (its name is the user’s ID), which is exclusive to every new
user who registers. It contains information about the date that the data was collected,
the eye aspect ratio collected from the video from each eye (left and right eyes), the
number of blinks that the person had during the analysis, the stage of the analysis (pre or
post-treatment) and the threshold that indicates whether the patient has blinked or not.
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Fig. 4. The analysis page.

3 Validation

To validate the efficiency of the application in recognizing blinks, the control group had
their total number of blinks annotated for 2 min. After this, the results were stored in a
Google spreadsheet and compared to the application results using the root mean squared
error (RMSE), as the results are integers derived from a regression task. The results
were normalized using the functions StandardScaler, and the evaluation metric used was
‘mean_squared_error’ [15], both from Scikit-Learn [11]. The results are between 0.0
and 1.0. If the RMSE results are closer to 0.0, the model predicts effectively.

RMSE =
√
1

n

∑n

i=0
(y − ŷ)2 (5)

where ŷ is a vector with the predicted values, and y is the ground truth value for each
value analyzed. The result is the root of the difference between the predicted and the
ground truth values divided by the number of values (value represented by n).

4 Results and Discussion

Figure 5 illustrates a frame of a patient video and the predictions computed by the
developed app. Figures 6 and 7 show the charts plotted inside the app concerning the
same patient’s eye aspect ratio to her pretreatment and post-treatment.
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Fig. 5. A patient video frame used in the app. The red and blue lines around the eyes are the
predictions being computed in real-time.

Fig. 6. Line plot of the EAR (Eye Aspect Ratio) over time and the threshold of a pretreatment
patient’s right eye (patient is depicted in Fig. 5).

Fig. 7. Line plot of the EAR (Eye Aspect Ratio) over time of post-treatment patient’s right eye
(patient depicted in Fig. 5).
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The results were compared to the control group’s ground truth annotations (made by
physicians). The results (Table 1) show that the mean RMSE of the normalized predic-
tions compared to the normalized gold standard was, on an average, 0.0995. Concerning
this mean RMSE outcome, it is possible to realize that the model succeeded in predicting
the blinks of the control subjects.

Table 1. Annotations and Result

Control Patient Annotated Blinks (Dr. M. H.
Osaki)

Annotated Blinks (Dr. T. H.
Osaki)

Predicted Blinks

1 129 127 127

2 58 58 58

3 18 18 14

4 97 97 97

5 69 68 70

6 39 40 36

7 69 70 65

8 65 63 56

9 58 58 58

10 33 32 23

The app can predict most blinks, although the EAR threshold is hard to define in
every situation, considering that some patients had semi-blinks, which can configure
as blinks in medical terms. However, it is not accounted for by the calculation, as it
mainly measures the fully closed eyes. Nevertheless, that is not a problem, as the eyelid
movement is accounted for in the chart, being possible to observe the half-blinks (see
control patient number 10 in Table 1). Another advantage of the app developed in the
present study is its high accuracy in detecting movement. This advantage is not possible
with conventional human-based video review assessment. This app could enable more
accurate and customized dose adjustments for each patient due to its accuracy in detecting
eyelid movement. The drug duration is another outcome used to assess the effect of
botulinum toxins. The objective duration associated with BTX-A treatment has been
assessed indirectly in previous studies that analyzed changes in eyelid morphometric
patterns in HFS patients over four months [8]. Patients were evaluated at baseline and
at the 15-day and 2-, 3-, and 4-month time points. The return of the parameters to their
pretreatment status at the 4-month time point implies that the studied period duringwhich
these changes took place represents the BTX-A duration. Similarly, the smartphone
app presented herein could indirectly facilitate the unbiased assessment of the BTX-A
duration by evaluating the time required for the eyelid movement frequency to return to
its baseline levels.
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5 Compliance with Ethical Requirements

Federal University of São Paulo Review Board approved this
study (CAAE89528618.4.0000.5505), and all patients were treated according to the
Declaration of Helsinki.

6 Conclusions

The app presented in this work is an efficient resource for identifying and representing
eyelid movement occurrences in patients. The easy access and facilitated usability plat-
form improve the physicians’ visualization and control of hemifacial spasmdisease. That
allows objectively assessing treatment response, as it delivers high accuracy metrics and
charts based on the uploaded videos. It also contributes to accurately monitoring patients
over time as it allows doctors to observe the disease patterns more easily (currently, there
is no practical method for this purpose). This system could enable customized and fine
adjustments to botulinum toxin doses based on each patient’s needs.

Conflict of Interest. The authors declare that they have no conflict of interest.
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Abstract. Dentofacial anomalies, also known as malocclusions, are
alterations with a congenital, traumatic, or growth origin. These anoma-
lies can generate functional and aesthetic problems in those who suffer
from them and have been reported by the World Health Organization as
the third most prevalent oral disease. The most commonly used meth-
ods for correcting these anomalies are orthodontics and orthognathic
surgery. The diagnosis, and the correct selection of the treatment to
be carried out, are part of an extensive process that involves collecting
different cephalometric and clinical data, and depend on the clinician’s
experience. Therefore, no standardized process allows the classification or
diagnosis among patients who achieve the best result with orthodontics,
that is, non-surgical procedures or if surgical intervention is necessary.
This study aims to propose a digital tool based on machine learning algo-
rithms that may help the clinician to select an orthodontics or surgical
treatment for patients who are about to start their treatment.

Keywords: Orthodontic · Machine learning · Malocclusion ·
Surgical · Cephalometric · Classification

1 Introduction

Malocclusion is an anomaly that is characterized by the alteration of craniofacial
growth, or the presence of a poor relationship or misalignment between the upper
and lower dental arches concerning the transverse or vertical antero-posterior
planes [1], which can generate functional problems, aesthetic and psychosocial,
and affect social development or emotional wellbeing in both children and adults
[2]

Currently, the most widely used methods for correcting malocclusions are
orthodontic treatments, sometimes combined with orthognathic surgery [3],
depending on the severity of the malocclusion and its classification. Edward
Angle proposed a classification of malocclusions based on the anteroposterior
relationship of the upper and lower buccal segments [4]:
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– Class I: A normal anteroposterior relationship prevails.
– Class II: characterized by mandibular retrognathism and maxillary prog-

nathism. This classification has two subdivisions:
• Excessive distance (overjet) between the upper and lower incisors.
• Existence of retroclination of maxillary central incisors.

– Class III: Characterized by prognathism of the mandibular segment.

Since 1989 [5], the World Health Organization (WHO) has reported maloc-
clusions as the third most prevalent oral disease, after caries and periodontal
disease [6]; likewise, it affects about 50% of the world population [7]. Recent
studies reported the global prevalence of malocclusion in permanent dentition
in class I at 74.7%, class II at 19.56%, class III at 5.93%, deep bite at 21.98%,
open bite at 3.97% and posterior crossbite at 9.39% [8]. In Latin America, the
Pan American Health Organization reported a prevalence and incidence of mal-
occlusions greater than 85% in the population [9].

Diagnosis or problem definition and treatment planning are the most impor-
tant steps in the correction of malocclusions. Unfortunately, bite correction does
not always lead to correction of facial esthetics, and sometimes, facial imbal-
ances occur in the desire to correct the bite [10,11]. For this reason, if not done
correctly, it can end up in extensive treatments that can generate repercussions
such as root resorption and increased sensitivity to pain, in addition to affecting
esthetics. Therefore, if the diagnostic results indicate that the patient’s desired
results are not achievable with orthodontic treatment alone, orthognathic surgery
or a combination of both should be considered as a therapeutic method [12], as
is the case in borderline patients for whom orthodontic treatment is chosen due
to cultural, esthetic and financial conditions, even if they are surgical cases [13].

Decision making, or classification of patients according to the required treat-
ment, is an exhaustive process that requires the organization of different diag-
nostic data, prior knowledge, and experience of the clinician. Therefore, there
is no standardized way of doing it. If we could have a tool based on artificial
intelligence that helps decision making, it could help the workflow of orthodon-
tists with a high casuistry, as well as help those who still do not have a lot of
experience. Currently, some expert algorithms have been developed, capable of
reproducing an expert’s classification or decision making capacity [12,14] with
an accuracy of 96% [12]. In another study to create a layered system for clas-
sifying malocclusions, according to Angle’s classification, authors used logistic
regression, K-nearest neighbors, random forests, and Bayesian classifiers, and
attained accuracies of 88.89%, 83.33%, 88.89%, and 55.66%, respectively [15].
However, no previous study currently allows the classification between surgical
and non-surgical patients in the Colombian population.

This study evaluates the feasibility of obtaining the classification of sur-
gical and non-surgical patients with a sample of Colombian patients who are
in the process of diagnosis or undergoing orthodontic treatment. In addition,
machine learning algorithms focused on binary classification are proposed. First,
we present the methodology for acquiring and classifying patients. Second, the
process of cleaning and analyzing the data used to train the machine learning



Classification of Surgical Patients in Orthodontics 209

algorithms used in the study is presented. Finally, we discuss the results and
present some conclusions about the work.

2 Materials and Methods

2.1 A. Data Acquisition

The cephalometric data necessary for this study were obtained from 104
cephalometries taken sequentially and chronologically in a dental office in Cali,
Colombia. The location of the craniometric and cephalometric points was done
manually in the NTN viewer software. These are calculated according to the
bony structures of the skull of the patients. This procedure was performed with
the help of 2 experienced orthodontists and the process was verified again 4
days later with the same operators until an adequate Cohen’s Kappa coefficient
was obtained, in this process the patients for whom there were discrepancies
between the two specialists were eliminated, therefore the final sample was 86
patients. The cephalometric measurements consisted of 8 angular and 8 linear
for a total of 16 measurements that provide sufficient information to determine
the dental and skeletal characteristics that are the object of this study (Fig. 1).
The measurements used for the characterization of the radiographs are described
below.

– Linear
• Overbite: Vertical overlap of teeth, measured between the upper and lower

incisal edges.
• Overjet: Horizontal overlapping of the teeth, measured from the incisal

edge of the upper incisor to the buccal surface of the lower incisor.
• Spee curve (depth): Occlusal curvature was observed in the sagittal view

of the lower arch; for this study, the depth was measured with respect to
the occlusal plane.

• U1-NA: Relationship of the maxillary central incisor with the reference
line N-A. Distance from the labial surface of the incisor anterior to the
N-A line.

• L1-NB: Relationship of the mandibular central incisor with the reference
line N-B. Distance from the labial surface of the incisor anterior to the
N-B line.

• UL-EP: Distance from the upper lip to the E line traced between the E
and pogonion (Pg) points of soft tissues.

• LL-EP: Distance from the lower lip to the E line drawn between the E
points and the soft tissue pogonion.

• L1-APg: Relationship of the mandibular incisor concerning the line
between point A and pogonion.

– Angular:
• IMPA: Angle formed between the lower incisor and the mandibular plane.
• Upper incisor to palatal plane (UIPP)
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• FMIA: Frankfort to lower incisor.
• FMA: Angle formed between the Frankfort plane and the mandibular

plane.
• SNA: Angle formed between the saddle-nasion points (N) and point A,

which refers to the maxilla’s horizontal position with respect to the skull’s
base.

• SNB: Angle formed between the saddle-nasion points and point B, which
refers to the mandible’s horizontal position with respect to the skull’s
base.

• U1-NA: Relationship of the maxillary central incisor with the reference
line N-A. The inclination of the axis of the maxillary incisor.

• L1-NB: Relationship of the mandibular central incisor with the reference
line N-B. Mandibular incisor axis inclination.

These samples went through an anonymization process where personal data
was eliminated. Later, they were classified with the help of an orthodontist with
more than ten years of experience, who labeled them as surgical and non-surgical,
distributed in 49 samples for surgical and 37 for non-surgical.

Fig. 1. Location of cephalometric marks.

2.2 Data Preprocessing

Once the data set was collected and labeled, it was analyzed. It was observed
that there were missing data for some angular and linear measurements. We also
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found an imbalance in the classes. Because it is a small database, eliminating
the samples with missing data is not recommended since this may sacrifice the
representativeness of the available data. Therefore, a data imputation process
was carried out using the KNNImputter model from the sklearn library, which
allows imputation to complete the missing values using a K-nearest neighbors-
based methodology, avoiding altering the normal distribution of the data. For
this step, it was necessary to divide the database into a training set (80%) used
to train and validate using a 5-fold cross-validation, and a testing set (20%),
using the train test split function of the sklearn library to prevent the model
from knowing all the data during the test. It was identified that much of the
missing data belonged to the surgical class, and there were only two samples
of the non-surgical class with missing data in the characteristic overbite. The
missing data were located in the characteristics UIPP, Overbite, Overjet, Spee
curve, and L1-APG, all with 27 missing data except for overbite, which presented
29 missing data. Once the data samples were imputed, the first training set was
generated.

The training dataset distribution presented and imbalance between surgical
(n = 38) and non-surgical (n = 30), which could affect the training of machine
learning algorithms. To balance the training set, and because it is a small training
set, it was decided to carry out an oversampling, using two techniques applied to
copies of the original set, from which two training test datasets were obtained:

– Dataset with random oversampling: this dataset was built using random over-
sampling by resampling, which is based on the random selection of examples
of the minority class, to which it makes a smooth replacement and adds them
to the training set.

– Synthetic Random Minority Oversampling (SMOTE) dataset: This was
obtained using a model that works by selecting a random point from the
minority class and calculating the K nearest neighbors for the selected point.
The newly added data is selected between the selected point and its neighbors.

Once this process was finished, three training sets were obtained, which were
used to train and evaluate the different classifier machine learning algorithms.

2.3 Classification Models

In order to perform the classification task, different classifier algorithms were
used, such as K-Nearest Neighbors (KNN), Support Vector Classifiers (SVC),
Logistic Regression (LR), Decision Trees (DT), Random Forests with and with-
out pre pruning (RF), Bayesian classifiers (NB), gradient boosting for classifica-
tion (GB), and multilayer perceptron (MLP).

For the selection of features, we used the SelectPercentile and f classif func-
tion of the sklearn library. This method uses a univariate statistical test to select
the best features according to the requested percentile. The percentiles 5, 25, 50,
75 and 95, were tested for the different models and trained using the pipeline
function and GridSearchCV to obtain the features that allowed the best perfor-
mance for each independent model.
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Because the samples of both classes present a high dispersion, the application
of scaling was tested using the StandardScaler function, Robust scaler function
and the MaxAbsScaler function. This process was configured within a pipeline
in the input data processing stage, where the GridserachCV function selects the
scaling that gives the best performance for the evaluated model.

For the construction of the models, a group of hyperparameters was tested
(Table 1), using GridserchCV to find the values that would achieve the best
performance for each model in accuracy, sensitivity, and f1 score metrics.

Table 1. Models and hyperparameters

Model Algorithm Hyperparameters

KNN KNeighbors
Classifier

N neighbors, weights

SVM SVC Kernel, gamma, C

LG Logistic Regression C, penalty, max iter, solver

RF with prepruning RandomForest
Classifier

N stimators, max features,
max depth, criterion

RF Random Forest
Classifier

N stimators, max features,
criterion

NB GaussianNB Var smoothing

DT with prepruning Decision Tree
Classifier

Criterion, Max depth

DT Decision Tree
Classifier

Criterion, min samples-leaf

GB Gradient Boosting
Classifier

N stimators, max features,
max depth, criterion

MLP MLP Classifier Max iter, activation,
hidden layer size, solver

2.4 Model Testing

To test the models, the metrics precision, recall, f1 score, and accuracy were
used since they are widely common measures to evaluate the performance of
binary classifiers [16] in supervised machine learning algorithms. In addition,
the metric AUC allows us to evaluate the quality of the classification models
and thus choose the best model to use [17].
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3 Results

Eight classification models were trained with the three different training datasets,
one of which is affected by class imbalance, another balanced using random
oversampling, and finally, a balanced dataset using SMOTE oversampling. These
datasets provide the best combination of the most important characteristics, the
need for scaling or not of the data, and the selection of the best combination of
hyperparameters for each model.

The test of these models showed that 75% of them presented better perfor-
mance with the 16 initial features, which were SVM, LG, RF, DT, NB, and GB
25% used all except the linear measure U1-NA (Table 2).

Several of the algorithms provided acceptable performance (Table 3). How-
ever, those with the best performance were the decision trees and gradient boost-
ing for classification, which correctly classified all 10 samples out of 11 belonging
to the surgical class in the test set. However, in the case of the non-surgical class,
all 7 samples were correctly classified (Table 4).

The other algorithms that presented performance of interest were RF, SVM,
and MLP, which presented interesting results in most of the metrics, with a
greater focus on the AUC metric.

Fig. 2. Distribution of UL-EP measurement among classes
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Table 2. Features and hyperparameters selected

Model Best hyperparameters Percentile features Features selected Scaler Train set

KNN n neighbors = 1, weights =
‘uniform’

95 All, except lineal
measurement U1-NA

Robust Scaler Random oversampling

SVM C=10, gamma = “Scale” All features All features Robust Scaler Random oversampling

LG max iter = 10000, penalty = ‘l2’,
solver = ‘lbfgs’, C = 1.0

All features All features None Random oversampling

RF max depth = 5, max features =
‘None’, n estimators = 250,
criterion: ‘gini’

All features All features None Random oversampling

NB var smoothing = 0.001232846 All features All features MaxAbs Scaler Random oversampling

DT max depth = 50, criterion = ‘gini’ All features All features None Random oversampling

GB criterion = ‘friedman mse’,
max depth = 10, max features =
‘auto’, n estimators = 10

All features All features None Random oversampling

MLP hidden layer sizes = (75,),
max iter = 3000, activation =
‘tanh’, solver = ‘adam’

95 All, except lineal
measurement U1-NA

None Random oversampling

Table 3. Scores of the metrics of qualification for each model in the test set

Model Accuracy (%) Recall (%) F1 score (%) Precision (%) AUC

KNN 66.7 85.7 66.7 54.5 0.72

SVM 88.9 85.7 85.7 85.7 0.97

LG 66.7 85.7 66.7 54.5 0.69

RF 88.9 100 87.5 77.8 0.94

NB 55.6 57.1 50 44.4 0.7

DT 94.4 100 93.3 87.5 0.955

GB 94.4 100 93.3 87.5 0.955

MLP 83.3 100 82.4 0.7 0.92

Table 4. Scores for DT qualification metrics

Precision Recall f1 score Support

Surgical 1 0.91 0.95 11

Non-surgical 0.88 1 0.93 7

Accuracy 0.94 18

Macro avg 0.94 0.95 0.94 18

Weighted avg 0.95 0.94 0.94 18

4 Discussion

Although there is currently a system that handles the classification of orthodon-
tic surgical patients with an accuracy of 96% [12], this study had samples
obtained from 316 patients of Korean nationality, and with exclusion criteria for
missing teeth, malformed teeth, history of orthodontic treatment, skeletal asym-
metries and maxillofacial deformities, which benefits the quality of the data.
They also used 12 cephalometric measurements, in addition to six other clinical
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indices. Our study was performed based on cephalometric measurements taken
from Colombian patients, in which there is a wide racial variety [18] which are
represented in variations in dental and bone relationships [19,20], which rep-
resented a great variation in the cephalometric measurements [21,22], despite,
some of the algorithms presented good accuracy and sensitivity (Accu = 94.4%
and Recall = 100%) when classifying the test samples. It was possible to observe
the importance of measures that relate to the state of the soft tissues, such as
the measurement of the upper lip with Ricketts’ E-line (UL-EP), where a certain
increase in the projection of the upper lip can be glimpsed in surgical patients,
that is, the upper lip extends beyond the margin of the E-line, resulting in neg-
ative measurements (Fig. 2). To better characterize both classes, it is necessary
to acquire a larger data set that allows a better representation of the problem,
and in addition to this, the use of more cephalometric measurements that are
indicative of the patient’s soft tissue status. In future experiments, we plan to
collect more samples, apply more complex algorithms, extract more important
data in the diagnostic process and even explore the use of methods based on
convolutional neural networks [18,21].

5 Conclusions

This study evaluated the possibility of generating a system that helps orthodon-
tic clinicians to select a treatment among orthodontics or orthognathic surgery,
using cephalometric measurements and a sample of patients of Colombian
nationality. The results show good performance of the selected algorithms since
they showed an acceptable sensitivity and generalization in the classification,
which can be very useful for clinicians in their decision making.

The acquisition of a greater amount and type of data could open the way to
use other types of more complex algorithms such as convolutional networks for
the extraction of the features embedded in the data.
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Abstract. Innovative coded excitation techniques have been proposed
to increase the signal-to-noise ratio (SNR) of ultrasound signals, which
are significantly attenuated by scattering and absorption. Among the
methods applied, the linear-frequency modulation signal, commonly
defined as chirp signal, has been studied to provide images with greater
depth, even in high attenuation media, maintaining the spatial resolution
found in conventional excitation systems. This article presents a graph-
ical user interface (GUI) based on Matlab to simulate short-duration
conventional excitation (CE) pulses and long-duration chirp-coded exci-
tation (CCE) pulses. The GUI allows the selection of apodization win-
dow, center frequency, and pulse duration parameters. In addition, it is
possible to configure the bandwidth of the chirp signal. Pulse evaluations
were performed with a central frequency of 1.6 MHz, using three cycles
for CE and a duration of 5, 10, and 20 µs for CCE with a bandwidth
of ±200 kHz, ±400 kHz, and ±1 MHz in a phantom simulated with ten
targets. The echo signals for the CCE were processed using a matched fil-
ter to evaluate the spatial resolution and attenuation. Simulation results
demonstrate the flexibility and performance of the proposed GUI for
ultrasound excitation studies. The evaluation of CCE with a frequency
of 1.6 MHz ± 1 MHz and matched filter improved spatial resolution by
86%. In contrast, a maximum increase in attenuation of the processed
signal of 33% was observed.
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1 Introduction

Ultrasound imaging is one of the most widespread modalities in various appli-
cations and clinical examinations in the medical field. Among the advantages of
ultrasound, it can be underlined the ability to generate images in real-time, its
non-ionizing nature, being a non-invasive method, and having a relatively low
cost compared to other medical imaging diagnoses [3,13,15].

The spatial resolution and penetration depth are the main parameters to
determine the quality of the ultrasound image [4]. There is an improvement in
the spatial resolution due to the high frequencies of ultrasonic emission with
conventional excitation (CE) of short duration and Gaussian profile, typically
up to 20 MHz. However, the attenuation is strongly frequency-dependent and,
consequently, imposes limitations on the penetration capacity of the acoustic
wave [14]. An alternative to overcome this obstacle is to increase the power of
acoustic emission, increasing the amplitude or duration of the excitation pulse.
However, increasing the excitation signal amplitude increases the instantaneous
acoustic power, a parameter that is limited to pre-established values by regu-
latory agencies [9]. An ultrasound-encoded excitation method, which causes an
increase in the transmitted pulse, was proposed by O’Donnell to overcome that
limitation in 1992 [10].

The use of coded excitation techniques makes it possible to lengthen the
transmitted pulse with modulations temporarily, subsequently compressing the
output (reception), usually through a matched or mismatched filter. Coded chirp
excitation (CCE) ultrasound signals are used for this function. The advantages
of using coded signals are an increase in penetration depth and an increase in the
signal-to-noise ratio (SNR). A higher SNR allows images of structures located
deeper within the human body to be captured with better resolution [7,8].

For the development and evaluation of innovative transmission techniques,
it is necessary to have access to excitation control parameters that, usually, are
not fully available in commercial ultrasound equipment. Thus, the development
of computational simulation tools, and open and flexible ultrasound platforms
for research, with the ability to generate coded ultrasound pulses, have been
proposed [5,7,8,11,12]. As an example, Medeiros et al. [6] presented a flexible
Matlab-based interface to simulate complex analog waveforms with fixed pulse
duration.

This article presents a new graphical user interface (GUI) with the App
Designer program, which is part of Matlab, to simulate CE and CCE pulses
of short and long duration. The methods and results of generated signals in a
simulated phantom are presented. In the case of CCE, applying a matched filter
for signal optimization was evaluated.
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2 Materials and Methods

The computational tool used in this work to develop the GUI was the soft-
ware Matlab � Release 2022a (MathWorks Inc, USA). Figure 1 shows the inter-
face developed for simulating CE and CCE pulses. Pulses’ interaction with the
medium - in this case, a computational phantom - was also evaluated using the
GUI.

Fig. 1. Graphical user interface proposed for ultrasonic excitation research

For CE evaluation, it is possible to configure the central frequency (fc), the
number of cycles, and the apodization window. The CCE configuration has the
parameters for bandwidth and pulse duration. The linear frequency chirp is
calculated by using (1), where f0 and φ0 are the starting frequency and the
initial phase, respectively, at time t = 0, f1 is the final frequency, and T is the
time it takes to sweep from f0 to f1.

x(t) = sin

[
φ0 + 2π

(
f1 − f0

2T
· t2 + f0t

)]
(1)
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BW rel =
BW abs

fc
· 100 (2)

The spectrum’s absolute (BW abs) and relative (BW rel) bandwidths in the
generated signal frequency are calculated in both cases. The BW abs is obtained
through the Fast Fourier Transform (FFT) at −6 dB, and the BW rel is calcu-
lated according to (2).

Fig. 2. Windowing options for (a) CE and (b) CCE

For pulse shape definition, windowing functions were included for both exci-
tation modes. Figure 2a and Fig. 2b show the window options implemented in the
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GUI for CE and CCE, respectively. The x-scale indicates the number of samples
used in both simulations for illustrative purposes. This number depends on the
parameters selected in the GUI.

The available parameter configuration options are shown in Table 1. However,
other options can be easily implemented.

Table 1. GUI Configuration Parameters

Item Options

Speed of sound [m/s] 1500 and 1540

Sampling frequency [MHz] 80 and 160

Central frequency [MHz] 0.5, 1.6 and 5.0

Chirp signal bandwidth [MHz] ±0.2, ±0.4, ±1.0 and ±2.0

Chirp pulse duration [µs] 5, 10 and 20

Number of cycles Between 3 and 10
∗Phantom selection for simulation Pre-computed phantoms

Gaussian white noise [dB] 0 (max.) to 30 (min.)

Medium attenuation coefficient 0.1 to 2.0 dB/MHz.cm
∗The phantom must be generated by script before the simulation.

After configuring all the excitation parameters, the simulation is performed
by clicking the Simulate button. Then, the impulse response, its frequency
response, the convolution of the signal with the simulated phantom, and the
logarithmic compression of the final signal, presented in the next section, are gen-
erated. The phantom shown in Fig. 3 was modeled in a one-dimensional structure
with ten scatters (A1 to A10) spaced 10 mm apart, as described in [2].

For evaluation of the GUI, CE tests were performed with a central frequency
of 1.6 MHz, duration of 3 pulses, and Hanning windowing. The CCE was evalu-
ated with a central frequency of 1.6 MHz, durations of 5, 10, and 20 µs, band-
width of ±200 kHz, ±400 kHz, and ±1 MHz, and Tukey windowing (25%). The
sampling frequency was set at 160 MHz, and the sound propagation speed was
set at 1500 m/s.

This work results in a quality optimization of the ultrasound signal with
the CCE. Waveforms were processed using a matched filter. This compression
technique allows maximizing the SNR in the presence of white Gaussian noise
to improve the quality of the ultrasonic image. After acquiring the radiofre-
quency (RF) echo, the time inversion of the impulse response of the CCE pulse
is performed to generate the matched filter. This signal is convolved with the
backscattered signal to generate the compressed signal. White noise with atten-
uation of 10 dB was added to the convolved signal to verify the attenuation and
axial resolution behavior.
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Fig. 3. Computer phantom with ten targets

3 Results

This section evaluates excitation/compression mechanisms’ effects on ultrasonic
signals. Furthermore, a comparison of the magnitude of the main lobes and
axial resolution of the ten targets at −6 dB of the generated signals by CE and
CCE with matched filter is presented. The tests were performed considering the
attenuation of the medium of 0.2 dB/MHz.cm.

3.1 Conventional Excitation

The CE pulse is shown in Fig. 4a. For this signal, the BW abs and the BW rel

were equal to 1.055 MHz and 65.92%, respectively, obtained through the fre-
quency spectrum shown in Fig. 4b. Figure 4c shows the result of the convolution
of the CE pulse with the computational phantom to simulate the backscattered
signals. In addition to the resulting echo, the red dashed curve is the signal
envelope obtained by the absolute value of the Hilbert Transform [1]. Logarith-
mic compression is applied to the envelope to better visualize the signal with
a dynamic range of −60 dB, as shown in Fig. 4d. This signal has a significant
amount of noise that prevents the definition of the deepest targets, precisely, A9
and A10.

3.2 Coded Chirp Excitation

Figure 5a shows the CCE signal with a frequency of 1.6 MHz ± 1 MHz and a
duration of 10 µs due to the applied windowing. BW abs and BW rel, equal to
2.5 MHz and 156.3%, respectively, were obtained from the frequency spectrum
of the chirp signal in Fig. 5b. Figure 5c shows the result of the convolution of
the CCE pulse with the computational phantom and the respective envelope.
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Fig. 4. (a) CE pulse. (b)
Pulse frequency spectrum.
(c) Simulation of backscat-
tered signals. (d) Logarith-
mic compression of the echo
signal

Fig. 5. (a) CCE pulse. (b)
Pulse frequency spectrum.
(c) Simulation of backscat-
tered signals. (d) Logarith-
mic compression of the echo
signal

Fig. 6. (a) Matched filter.
(b) Filter frequency spec-
trum. (c) CCE pulse com-
pressed by the matched fil-
ter. (d) Logarithmic com-
pression of the resulting sig-
nal
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Figure 5d shows the sign after logarithmic compression. In this case, the target
axial resolution is compromised as a function of the width of the long-duration
CCE pulses.

3.3 Coded Chirp Excitation with Pulse Compression

The time inversion of the CCE impulse response, corresponding to the matched
filter, and its frequency spectrum are shown in Fig. 6a and Fig. 6b, respectively.
The convolution result with the backscattered signal shown in Fig. 5c with the
matched filter of Fig. 6a is shown in 6c. Compared to Fig. 4d and Fig. 6d, apply-
ing the matched filter improves the SNR and axial resolution of the ten targets.
However, that compression caused secondary lobes that could indicate false arti-
facts. These lobes can be minimized in future works by applying mismatched
filters [7,8].

Fig. 7. Comparison of the axial resolution of CE and CCE signals in the phantom

In order to quantitatively compare CE and CCE with matched filter, Fig. 7
shows the results of the evaluation of the axial resolution in the phantom. As
expected, the axial resolution of the CE gets worse with depth, especially on the
A9 and A10 targets. This behavior did not occur in the CCE, which remained
stable. The mean value of the axial resolution of the CCE for the frequency
of 1.6 MHz and bandwidths of ±200 kHz, ±400 kHz, and ±1 MHz was equal
to 1.842, 0.900, and 0.361 mm, respectively, with zero standard deviation in all
the cases. Considering targets A9 and A10, the best axial resolution of CCE
with matched filter occurred with ±1 MHz band and was equal to 85 and 86%,
respectively.

Figure 8 presents the evaluation of the signal attenuation, and the target A1
has an attenuation of 0 dB. CE presented better results for all targets, with a
maximum difference of 33% in target A10. On the other hand, the attenuation of
the CCE was the same for each target in the different bandwidths. Thus, there
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Fig. 8. Comparison of CE and CCE signal attenuation in the phantom

is a cost-benefit relationship between the application of the techniques since
processing the encoded chirp signal requires a more significant computational
effort.

4 Conclusion

This work presented a flexible GUI for simulating short and long excitation
pulses. This computational tool can be used in the research of new techniques
for optimizing the quality of images generated by ultrasound using CE and
CCE. The GUI is easy to use, and customizations can be performed according
to scientific research needs. The presented study shows that the optimization of
excitation parameters plays a relevant role in improving the SNR using chirp-
coded pulses in deeper regions. This work is a continuation of the research started
in [6], in which the GUIDE tool from Matlab was used. In this work, the APP
Designer software enabled a better use of new layout applications and integration
with digital signal processing tools that will be evaluated in future research.
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Abstract. Epilepsy is a neurological disorder characterized by recur-
rent seizures due to abnormal discharges in cortical networks of the
brain. A seizure prediction method with a low false-positive rate in a
high confidence interval and without side effects may improve patients’
quality of life. Heart rate variability (HRV) analysis is among the most
promising approaches for seizure prediction. This method indirectly
assesses the behavior of the autonomic nervous system (ANS) through
cardiac rhythm activity. Artificial intelligence (AI) classifiers may pre-
dict seizures and distinguish the different phases in ECG signals. This
work evaluated several classifiers for seizure prediction and studied them
in terms of computational cost for training, sensitivity, accuracy, false-
positive rate (FPR), and their suitability for wearable applications using
the HRV approach. Relied on the results, the Support Vector Classi-
fier (SVC) obtained the best set of scores, including the highest accu-
racy, 97.57%, as well as the second-highest Sen, Spe, and NPV scores,
97.70%, 97.51%, and 98.83%, respectively for preictal periods, consider-
ing an evaluation of 14.08 h from six patients’ ECG data.

Keywords: Epilepsy · HRV · Seizure Prediction · Machine Learning

1 Introduction

Epilepsy is one of the most common chronic neurological disorders, affecting
approximately 50 million people worldwide [1]. This abnormal brain behavior
can cause some clinical manifestations in the patients that include involuntary
movements, distorted perceptions, loss of consciousness, permanent brain dam-
age, and in the most severe cases, sudden unexpected death (SUDEP) [2–4].
Despite anti-epileptic drugs controlling many cases of epilepsy, 30% of patients
still suffer from uncontrolled seizures [4]. Other alternatives to epilepsy treat-
ment include surgical intervention and neurostimulation, but some patients are
not eligible for these [5].
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Epileptic seizures prediction methods are based on two signal approaches,
the electroencephalogram (EEG) and the electrocardiogram (ECG) [2,5,6]. The
most common methods based on EEG signals involve coupling electrodes to the
patient’s scalp [7], which is impractical for wearable device applications. Other
methods rely on surgical procedures to map the epileptic focus, and the potential
treatments carry the risk of brain damage and infection [5].

Given the highlighted limitations and drawbacks of the EEG-based method
and with the aim of the feasibility for portable devices available to patients, the
methodology of HRV analysis emerges as a promising alternative [8]. The choice
of ECG signal is immediate because it offers many advantages, such as eas-
ier acquisition, processing, and lower cost, making it suitable for detection and
prediction systems and patient comfort. Further, according to the results of a
recent study [9], based on an analysis that included preictal periods, there was no
evidence for significant differences in HRV metrics according to epilepsy type.
Therefore, this fact makes this method particularly useful when compared to
EEG approaches. Figure 1 depicts the concept of a wearable device split into two
parts. The first part includes a dedicated circuit designed for signal condition-
ing, summarized here as an analog front-end (AFE), and a heartbeat detector.
Then, identified heartbeats are sent to a microcontroller such as ESP32�, which
contains the second part performed by the AI algorithms for seizure prediction.

Fig. 1. Application.

The state-of-art related EEG approach is replete with research on AI compar-
ison to find the best algorithm for seizure prediction, and examples include [6,10–
13]. To the best of the authors’ knowledge, although there are several EEG
studies using machine learning models, there is still a lack of comprehensive
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evaluation of AI models for seizure prediction based on ECG. Among the best
examples in this area are [5,14], both studies with Support Vector Machine clas-
sifiers (SVC), and that do not consider the characteristics required for real-time
operation.

This work is the sequence of the former which consisted of the design and
fabrication of the integrated circuit for ECG acquisition and extraction of heart-
beats for HRV applications in [15]. The main objective of this study is to show
the comparison and selection of the best trained and validated classifier model
suited for wearable applications relying on HRV for seizure prediction.

2 Material and Methods

Although research on EEG-based prediction is extensive, there is no consensus
on the duration of the prediction phase. Figure 2 shows the classification of ECG
recordings into four main intervals, as done in [16]: interictal - the signal baseline
and at least 30 min before seizure onset; preictal - periods from 5–15 min before
seizure onset; ictal - identified seizure onset in the dataset; and the postictal
- period immediately after the seizure ends. As with EEG-based approaches,
seizure prediction with ECG is based on signal phase discrimination. Thus, true
alarms are the preictal periods detected within a predetermined interval [17].

Fig. 2. Periods in an epilepsy ECG recording. In the interictal period, an alarm trig-
gered is considered a false alarm, whereas, in the preictal period, it is considered a true
alarm.

To evaluate the performance of the supervised machine learning models for
seizure prediction, each one it is have been analyzed in terms of its accuracy
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(ACC), sensitivity (Se), specificity (Spe), positive predictive value (PPV), neg-
ative predictive value (NPV), and false-positive rates (FPRs). For timing com-
puting, it was used the 20-run average time for training and validation with
the randomized search cross-validation technique using twenty iterations and
five folds. In addition, for the sake of simplicity and since the postictal phases
are not significantly different from the interictal phases, we only consider the
interictal, preictal, and ictal phases in this work.

2.1 ECG Databases

The AI algorithms were evaluated with PhysioNet databases [18]. The first
dataset consists of seven ECG recordings with ten identified seizures. Signals
come from a heterogeneous group of patients with partial epilepsy who exhibited
postictal heart rate oscillations. These recordings, sampled at 200 Hz, contained
remarkable low-frequency transient signals in the 10–100 mHz. The second data
set included recordings from fourteen patients admitted to the Department of
Neurology and Neurophysiology at the College of Siena [19]. The patients, nine
men (age 25–71) and five women (age 20–58), were monitored with video-EEG
containing recordings of 1 or 2 ECG channels with a sampling rate of 512 Hz.

2.2 HRV Features

For predictions based on the HRV approach, several metrics have been extracted
and supported by the state of the art. They can be divided into two groups: lin-
ear and non-linear. The main linear metrics derived from beat-to-beat intervals
(a.k.a. RR-intervals) are the average of NN intervals, the root means squared
difference between consecutive normal heartbeats (RMSSD), and the standard
deviation of NN intervals (SDNN). Based on the Poincare plot, nonlinear met-
rics can be derived to quantify self-similarity in a time series, such as the NN
intervals formed from identified beats. Cardiac-Sympathetic Index (CSI), Car-
diac Vagal Index (CVI), modified CSI [2], and the ratio of CSI/CVI are the most
commonly used nonlinear metrics. Besides the aforementioned nonlinear metrics,
it was examined one of the Hjorth parameters commonly used to analyze EEG
signals, the Hjorth activity (AT) [20], which reflects a time function’s variance.

2.3 Hypothesis

Following the EEG approaches to seizure prediction, the basic assumption is
that the seizure does not occur suddenly, i.e., the process begins several minutes
to hours before clinical manifestations (i.e., preictal phase) [12]. Based on this
assumption, previous research [11,12,16,17] has extracted various features from
brain-behavior analysis to understand the significant and useful preictal changes
in EEG signals [17]. The same approach is possible for HRV-based techniques [5,
21] by extracting the relevant metrics for seizure prediction, as addressed in the
following.
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– Linear metrics: In analyzing the linear metric, we made the following
assumptions based on [22]: As the frequency of heartbeats increases, both
NN intervals and HRV decrease in absolute value (shorter intervals). During
ictal periods, heart rate increases, indicating a decrease in HRV in relation
to the interictal phase (baseline), and also a dominance of the sympathetic
branch (which is activated under stress conditions) relative to vagal activity
(which is activated under rest conditions).

– Nonlinear metrics: Lower variability in ANS indicates a dominant role for
the sympathetic nervous system (higher heart rate) over the parasympathetic
nervous system [22]. It is reasonable to assume that CVI metrics are not
significantly altered by parasympathetic activity during the preictal and ictal
phases. On the other hand, CSI and modified CSI will increase dramatically
at the onset of the seizure (preictal) and during the seizure (ictal) compared
with baseline (interictal phase). It is expected that the Hjorth parameter
will show a tendency toward the unbalancing between the sympathetic and
parasympathetic branches, i.e., as the seizure onset approaches, the value of
AT compared with the baseline increases.

3 Supervised Machine Learning Classifiers

To balance the estimator training step, it was used the stratification technique,
which keeps the same percentage of samples for each labeled period [23]. Fol-
lowing the flow shown in Fig. 3, the first step begins with the acquisition of RR
intervals from a low-power analog front-end (see Fig. 1), then the RR intervals
are evaluated to remove ectopics and outliers beats, and then HRV features are
extracted and segmented. Following the sequence of steps, the segmented fea-
ture is individually scaled based on its minimum and maximum values into zero
to one range. In the last step, the models are trained/validated and tested with
totally new data, and the best model in terms of computational costs, sensitivity,
and false-positive rate is embedded into a low-power microcontroller.

Of the trained/validated and tested models, this work considered as criteria
only those that have achieved reasonable sensitivity, i.e., the overall summed
average of the three ECG periods, above 85%. This consideration allows the
model to be used in real-time applications with reliably estimated reach. The
AI models used in this work include Decision Tree (DT), Extra Tree (ET), Ran-
dom Forest (RF), k-nearest neighbors (KNN), Adaptive Boost (ADA), Support
Vector Machine (SVC), and the Artificial Neural Network (ANN).
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Fig. 3. Flowchart.

4 Results and Discussion

The time evolution of a patient’s CSI and CVI metrics, who had a seizure at
8.13 min after the start of recording, is depicted in Fig. 4. In Fig. 4-a), the contri-
bution of parasympathetic branch activity to cardiac regulation is higher than
sympathetic branch activity around 5 min before seizure onset. From this period,
it can be seen in Fig. 4-b) that there is a trend toward sympathetic predominance,
which can be useful for prediction alarm systems.

Using principal component analysis (PCA) [24], it reduced the dimensionality
of seventeen features to three: the average of RR-intervals, Hjorth activity (AT),
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and the modified CSI. The features extracted from an ECG signal from the Siena
dataset corresponding to a 27-year-old female with three focal onsets of impaired
awareness (IAS) are shown in Fig. 5.

The following measurements were collected by the preprocessing algorithm
over a 5-min acquisition window with a sliding step of 1 s. According to the find-
ings, as the seizure onset approaches, the heartbeat frequency tends to increase,
resulting in a decrease in HRV and, as a result, RR intervals. Hjorth activity
(AT) and altered cardio-sympathetic parameters, on the other hand, significantly
increase as shown by the green-highlighted markers. Besides, it is possible to
observe that Fig. 5-b) presents two red-highlighted markers that correspond to
the modified CSI parameter non-changing, which means miss-classification by
the models or to the false-positive detections.

Fig. 4. CVI and CSI time evolution in two cases: a) instants before seizure onset,
and b) when the seizure onset. In the first case, the sympathetic activity amplitude is
lower than the parasympathetic; in the second case, the sympathetic branch becomes
dominant 5 min before the seizure onset.

Postictal and Siena datasets containing interictal, preictal, and ictal ECG
phases were used in training and validation, totaling 97.47 h. Besides, a total of
14.08 h of new data from six patients were used to test the models. In the last
test evaluation, false-positive rates were calculated using 31.17 h of interictal
data from the MIT/BIH ECG dataset. Using Python Scikit Learn library [23],
the following model configurations were used to achieve the results shown in
Table 1.

– Decision Tree (DT): class weight: “balanced”, criterion: “entropy”, maxi-
mum depth: 64, minimum samples leaf: 4, minimum samples split: 16;

– Extra Tree (ET): criterion: “entropy”, maximum depth: 30, minimum sam-
ples leaf: 2, minimum samples split: 16;

– Random Forest (RF): bootstrap: “false”, maximum depth: 20, minimum
samples leaf: 2;

– K-Nearest Neighbours (KNN): algorithm: “kd tree”, leaf size: 40;
– Adaptive Boost (ADA): learning rate: 0.8, number of estimators: 32, base

estimator: Decision Tree;
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– Support Vector Machine Classifier (SVC): C: 100, class weight: “bal-
anced”, coef0: 1, decision function shape: “ovo”, degree: 10, kernel: “poly”;

– Artificial Neural Network: weight constraint: 5, loss: “categori-
cal crossentropy”, epochs: 200, dropout rate: 0.0, batch size: 100, activation:
“softmax”. Built with two hidden layers of 128, and 64 perceptrons by using
“relu” activation function.

Fig. 5. Normalized features extracted from a patient with two IAS. a) RR-intervals
average, b) Modified CSI, and c) Hjorth activity (AT).

According to Table 1, it is possible to draw the following conclusions: ANN
was the most accurate classifier able to recognize preictal periods with 100% sen-
sitivity, as well as negative predictive value (NPV), which means the likelihood
of 100% of a patient not being in the preictal period. These results are especially
interesting since can be applied to wearable alarm systems, which may alert the
patient in the event of a predicted seizure. Otherwise, i.e., if no alarm arises, the
patient can keep living normally.

In terms of specificity, i.e., the proportion of data classified as non-preictal
among those which are not, the best model was ADA with 98.66%. ADA also
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achieved the lowest FPR, just 0.013, and the highest positive predictive value
(PPV) 97.06% for preictal periods among all models when considering both
datasets. Despite the interesting results, ADA has missed nearly 11.6% of the
preictal periods compared to ANN which may be a problem for patients who
has several seizures in short periods. Still analyzing the results, the SVC model
reached the best accuracy of 97.57% for preictal period identification. Despite
the second-worst time cost, SVC achieved the second-highest Sen, Spe, and NPV
scores, 97.70%, 97.51%, and 98.83%, respectively.

Table 1. Validation results for different predictor AI models.

Model Data ACC (%) Sen (%) Spe (%) PPV (%) NPV (%) aFPR bFPR

DT Interictal 97.70 100.0 96.55 93.55 100.0 0.03448 –

Preictal 84.29 93.10 79.89 69.83 95.86 0.20115 0.03568

Ictal 86.59 59.77 100.0 100.0 83.25 0.00000 0.01001

ET Interictal 92.59 100.0 88.89 81.82 100.0 0.11111 –

Preictal 89.27 77.39 95.21 88.99 89.39 0.04789 0.02913

Ictal 96.68 90.42 99.81 99.58 95.42 0.00192 0.00860

RF Interictal 95.27 100.0 92.91 87.58 100.0 0.07088 –

Preictal 89.78 85.82 91.76 83.90 92.83 0.08238 0.03311

Ictal 94.51 83.52 100.0 100.0 92.39 0.00000 0.00862

KNN Interictal 89.40 100.0 84.10 75.87 100.0 0.15900 –

Preictal 83.14 73.18 88.12 75.49 86.79 0.11877 0.02933

Ictal 89.91 70.50 99.62 98.92 87.10 0.00383 0.00950

ADA Interictal 96.17 100.0 94.25 89.69 100.0 0.05747 –

Preictal 95.27 88.51 98.66 97.06 94.50 0.01341 0.03810

Ictal 99.11 97.32 100.0 100.0 98.68 0.00000 0.00816

SVC Interictal 96.93 100.0 95.40 91.58 100.0 0.04598 –

Preictal 97.57 97.70 97.51 95.15 98.83 0.02490 0.04245

Ictal 94.76 86.21 99.04 97.83 93.49 0.00958 0.01835

ANN Interictal 94.13 84.67 98.85 97.36 92.81 0.01149 –

Preictal 94.25 100.0 91.38 85.29 100.0 0.08621 0.03100

Ictal 91.19 84.67 94.44 88.40 92.50 0.05556 0.00907
aFalse-positive rate from postictal and Siena databases which contains 31.17 h of interic-
tal, preictal, and ictal phases; bFalse-positive rate (FPR) from 14.07 h of interictal data
(MIT-BIH). Average time cost of 20 runs for training/validating of models. Setup: 8 GB
memory, CPU i5-1.8 GHz. Average time: DT - 3.24 min; ET - 17.3 min; RF - 121.23 min;
KNN - 155.26 min; ADA - 159.32 min; SVC - 1538.4 min; ANN - 6306.31 min.

This set of features turns the SVC into the best classifier for seizure prediction
considering the datasets used. Further, in wearable applications, the SCV model
can be trained in off-line mode or with cloud computing and then embedded into
a microcontroller, thereby mitigating the problem of time costs.
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5 Conclusion

This study compared supervised machine learning algorithms for predicting
epileptic seizures. Three metrics extracted from ECG were used to train-validate,
and test several models. Also, three databases were investigated for this purpose,
yielding more than 100 h of data. According to the results, by considering only
preictal periods, the best model was SVC which obtained the highest accuracy,
97.57%, the second-highest Sen, Spe, and NPV scores, 97.70%, 97.51%, and
98.83%, respectively. Based on the shown results, refractory patients to the con-
ventional treatments may benefit, increasing their life’s quality through wearable
devices with embedded trained SVC models to predict seizures.
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Abstract. The assessment of corticomuscular connectivity allows the
study of brain and muscle connections that exist in a motor movement
when an action is executed. In addition, the incorporation of connec-
tivity in the implementation of rehabilitation systems for people suffer-
ing from any disability entails performance-related advantages compared
to conventional rehabilitation systems. Accordingly, this study aims to
quantify the connectivity between the motor cortex through EEG (Elec-
troencephalography) and muscle activation through sEMG (surface Elec-
tromyography) during different movements involved in the manipulation
of an object (Rest, Reach, Grasp, Lift, Hold, Release, and Replace). For
this, a public database (WAY-EEG-GAL) was used to simultaneously
record the EEG and sEMG signals of twelve subjects during the manip-
ulation of an object. Connectivity was quantified using wavelet coher-
ence between 2 EEG channels (C3 and C4) and 5 muscles located on
the right upper limb. The results show significant differences (p < 0.05)
between Rest, Reach, Lift and Replace movements when the subject uses
a 0.330 kg weight and sandpaper grip surface. The results of this study
allow us to quantify the phases of movement in which there is discrimina-
tive corticomuscular coherence, which, applied to rehabilitation systems
in real conditions, can bring an increase in the detection of individual
intention, a greater number of commands, and a better data transfer
rate.

Keywords: Time-Frequency Coherence · Corticomuscular Analysis ·
Upper Limb Tasks · Connectivity · Hybrid Brain-Computer Interface
(hBCI)

1 Introduction

The movement rehabilitation involved mainly in Activities of Daily Living
(ADLs) that require a timed and synchronized activation between the brain
and muscles, as in the manipulation of an object, is of essential importance in
the rehabilitation of people who have suffered some motor impairment in their
upper limbs. One of the common activities that are performed in ADLs is object
manipulation, as they are found in activities such as lifting, moving, eating,
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among others, which require different phases of movements to execute it [1,2].
These include reaching, grasping, lifting, holding, releasing, and replacing the
limb [1].

The identification and prediction of continuous motor tasks, such as those
encountered in the manipulation of an object, increase the usability, comfort, and
controllability of rehabilitation devices, such as neuroprostheses [3]. In addition,
proper identification of the different stages of movements allows for lower latency
in the response of rehabilitation systems. However, currently, rehabilitation sys-
tems such as Brain-Computer Interface (BCI) systems present several challenges
in the identification of mental tasks because a single signal modality presents a
limited percentage of effectiveness in identifying the user’s intent [4,5]. For this
reason, the literature has proposed the use of multimodal rehabilitation systems,
such as hybrid Brain-Computer Interface (hBCI) systems due to these systems
use more than one acquisition mode to identify the intention of movement, gen-
erating advantages related to increased performance [4,6].

One way to implement hBCI systems is by estimating the corticomuscular
connectivity found between the electrical brain activation information regularly
recorded by EEG and the electrical muscle activation recorded by sEMG [7,8].
Cortico-muscular coherence reflects the levels of connection through the auto-
spectrum and cross-spectrum of EEG-sEMG signal, allowing to determine the
intention of the subjects using the brain-muscle connection [8]. In the litera-
ture, studies have quantified connectivity in the manipulation of an object at
two different weights [7]. Additionally, cortico-muscular connectivity has been
reported during sustained motor contraction tasks [8,9], and continuous move-
ments [9,10]. Other studies have studied corticomuscular connectivity in finger
movement and holding movements with different forces [5,11].

To our knowledge, the differences between EEG-sEMG connectivity in each
of the movements that occur individually in the development of a multi-articular
activity that requires continuous and synchronized activations such as the manip-
ulation of an object involving tasks of resting, reaching, grasping, lifting, hold-
ing, releasing, and replacing have not currently been quantified. Therefore, this
work focuses on quantifying EEG-sEMG connectivity in each of the movements
that are present in the manipulation of an object using wavelet coherence for
time-frequency domain representations. These temporal and spectral represen-
tations are important in the scientific community because significant results in
movement identification have been obtained by segmentation in these domains
[12]. Additionally, determining the differences between the phases that occur in
a movement, such as manipulation of an object, helps the implementation of
rehabilitation systems in real conditions, as well as the decreased latency in the
response of these systems. For this, a public database was used, which records
the EEG-sEMG signals in the movement of the manipulation of an object. In
addition, wavelet coherence was implemented, which estimates the connectivity
between the two signals by making use of the wavelet auto-spectra and cross-
spectra of the signal in time-frequency domain. As a result, a characterization of
the coherence is obtained, where significant differences were found between the
phases of the manipulation of an object (p < 0.05).
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Fig. 1. Methodology implemented for the estimation of corticomuscular connectivity
between EEG and sEMG signals.

2 Materials and Methods

2.1 Object Manipulation Dataset

WAY-EEG-GAL is a free and open dataset consisting of EEG and sEMG record-
ings as well as 3D hand and object position measurements [2]. The dataset
records twelve healthy right-handed subjects (8 females and 4 males, aged 19–
35 years) using 32 EEG channels located superficially on the cerebral cortex
according to the 10–20 international system, and five sEMG channels in the
following muscles: Anterior Deltoid (AD), Brachioradialis (B), Flexor Figito-
rum (FD), Common Extensor Digitorum (CED), and First Dorsal Interosseous
(FDI). sEMG signals were recorded with five surface sensors at a sampling rate
of 4 kHz, and EEG signals were recorded using the ActiCap device at a sam-
pling rate of 500 Hz. Subjects in the experiment performed manipulation of an
object, varying randomly in 3 different weights (0.165, 0.330, and 0.660 kg) and
on three different contact surfaces (sandpaper, chamois, silk). Initially, subject
remained seated with the right arm resting on a table. After 2 s, a visual cue was
presented by an LED for subjects to start performing the movement. In this, the
subjects performed a reaching movement, then the grasping of the object with
the index and thumb fingers, and then the lifting and holding for 2 s at a height
of 5 cm. After 2 s, the subject released the object and replaced the arm to its
initial position. Finally, 10 series of approximately 32 trials were recorded, for a
total of 328 trials per subject.

Five series of weights were used for this study, where each series included
11 trials, for a total of 55 trials per participant. Taking into account the lobe
where most of the changes produced by upper limb motor tasks are recorded,
EEG channels C3 and C4 were used together with 5 sEMG channels, because the
multi-joint nature of the task generates changes in the variation of muscle activity
according to each phase of the movement. For this reason, it is necessary to study
the largest number of muscles available. Finally, the information recorded during
the manipulation of the object at the weight of 0.330 kg while maintaining the
contact surface on the sandpaper was used.
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2.2 Methodology Overview

The methodology for connectivity estimation using wavelet coherence is pre-
sented in Fig. 1. First, each of the movements involved in the object manipulation
is segmented, then, artifact detection is performed, and channels and subjects
are selected. Subsequently, signal preprocessing is implemented, and by means
of wavelet coherence, corticomuscular connectivity is estimated and significant
values are evaluated. Finally, a statistical study is performed to evaluate the
differences in connectivity between movements.

2.3 Pre-processing

To estimate corticomuscular connectivity, artifact detection was performed using
threshold evaluation criteria. For this purpose, only the EEG signal in channels
C3 and C4 was taken into account, where it was evaluated that at each time
instant for each trial and subject the signal did not exceed the threshold of ±
350 uV [13]. If the signal exceeded this threshold, the trial in the two EEG-sEMG
signals was rejected to maintain synchronization in the connectivity study, i.e.,
if a trial was rejected for channel C3, it was also rejected for channel C4 and
the sEMG channels. For the selection of subjects, the percentage of eliminated
trials was taken into account, i.e., if in each subject the total of eliminated trials
exceeds 10%, the subject is rejected [7]. In this study, no subject was eliminated.

Subsequently, an 8th order Butterworth band-pass filter was applied between
the frequency range 6–50 Hz to perform the analysis considering the brain fre-
quency bands alpha (α, 8–13 Hz), beta (β, 14–32 Hz), and gamma (γ, 33–50 Hz)
in the two EEG-sEMG signals, in each trial and subject. Additionally, a Com-
mon Average Reference (CAR) filter was applied to the EEG signal to eliminate
the related noise in all electrodes located on the motor cortex. Then, a resam-
pling was implemented on the EEG signal at 4 kHz to make the samples between
the EEG-sEMG signals similar [14]. In this study, all movements involved in the
manipulation of an object (Rest, Reach, Grasp, Lift, Hold, Release and Replace)
were selected. The segmentation of these movements took into account the infor-
mation provided by the database of the positions of the hand and the object, as
well as the times in which the LED was turned on and off.

2.4 Wavelet Coherence

Coherence is a measure of frequency correlation between two signals, which is
used to determine the strength of the connection between brain and muscle
activity in the execution of a movement by generating correlation values in the
range of 0–1 [8]. In this study, the connectivity estimation is performed using
wavelet coherence, which uses the calculation of the wavelet auto-spectrum and
cross-spectrum of EEG-sEMG signals. For this purpose, the wavelet transform
is used, which allows extending the connectivity analysis thanks to the represen-
tation of the signal components in the time-frequency domain. Several studies



244 C. D. Guerrero-Mendez et al.

have introduced the wavelet transform and its use in connectivity estimation
[14–16]. The calculation of the wavelet coherence is presented in Eq. 1.

WCohx,y(t, f) =
|SWx,y(t, f)|2

SWx,x(t, f) · SWy,y(t, f)
(1)

where SWx,x(t, f), and SWy,y(t, f) are the wavelet auto-spectrum of the EEG
signal (x) and the sEMG signal (y) taking into account time (t) and frequency
(f), respectively. On the other hand, SWx,y(t, f) is the cross-spectrum between
the EEG-sEMG signals. The wavelet spectrum is calculated according to Eq. 2.

SWx,y(t, f) =
∫ t+δ/2

t−δ/2

MWx(a, b)MWy(a, b)da (2)

where MWx(a, b) and MWy(a, b) are the wavelet Morlet Transforms of the EEG
(x) and sEMG (y) signals calculated by means of the Eqs. 3 and 4, respectively.
δ is the size of the integration window, which is dependent on the frequency
calculated, according to [16].

MWx(a, b) =
1√
a

∫ ∞

−∞
x(t)ψ∗

(
t − b

a

)
dt (3)

MWy(a, b) =
1√
a

∫ ∞

−∞
y(t)ψ∗

(
t − b

a

)
dt (4)

where a denotes the wavelet scale that is inversely proportional to the frequency,
b is the smoothing parameter, t is the local time origin of the wavelet analysis,
∗ is the conjugate, and ψ( t−b

a ) represents the wavelet basis function [14].
In this study, the frequency spectrum used is from 6 to 50 Hz with a fre-

quency bin resolution of 2 Hz. Signals were used from 0.5 s to the end of the task
execution, approximately 9.5 s, with sliding Hanning time windows with time
steps of 200 ms. Finally, 3 cycles were used for the wavelet estimation, according
to [16].

Coherence Threshold Estimation. To extract significant coherence values,
a significance threshold was calculated using Eq. 5, where ε corresponds to the
95% confidence level and L to the number of time windows. The evaluation of
significant coherence is an important parameter because it determines from what
level of connectivity there really is a strong connection between the brain and
muscles [7,14].

Confidence Limit = 1 − (1 − ε)
1

L−1 (5)

Therefore, if the coherence values are above the threshold, the coherence
between EEG-sEMG signals is considered significant.
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2.5 Statistical Significance Analysis

A statistical-significance study was performed to determine differences between
the movements involved in the manipulation of an object in the estimation of
connectivity using EEG-sEMG channels. For this, first the distribution and
homogeneity of the connectivity data were evaluated using the Shapiro-Wilk
and Levene tests. Then, the two-sample t-test were applied with a p − value of
0.05 to compare the different phases of movement. The alternative hypothesis is
that there are different phases of movement that have greater connectivity with
respect to others and the null hypothesis is that there are not differences.

Fig. 2. Corticomuscular connectivity in all subjects and trials according to the 2 EEG
channels (C3 (red color), C4 (blue color)), and 5 muscles recorded, segmenting the
movements involved in manipulating an object; Rest (M1), Reach (M2), Grasp (M3),
Lift (M4), Hold (M5), Release (M6), and Replace (M7). The green line corresponds to
the threshold of significant connectivity. (Color figure online)

3 Results

The wavelet coherence estimation is presented in Fig. 2. For this, the 7 move-
ments involved in object manipulation, which are Rest (M1), Reach (M2), Grasp
(M3), Lift (M4), Hold (M5), Release (M6), and Replace (M7), were segmented
taking into account that in this type of tasks the movements are executed con-
tinuously. In addition, the estimated connectivity of each EEG channel, C3 (red)
and C4 (blue), in the 5 recorded muscles is presented, as well as the connectivity
of each EEG channel averaged over the 5 sEMG channels for the 7 movements.
Additionally, according to the evaluation of significant coherence, the threshold
calculated for the average of trials and subjects is presented in green color.



246 C. D. Guerrero-Mendez et al.

Time-frequency representations of the estimated connectivity by wavelet
coherence are presented in Fig. 3. In this figure, the distribution of the esti-
mated connectivity for a subject in the connection of C3 and C4 with each of
the recorded muscles is presented. In the figures, the α, β, and γ frequency
bands are segmented into white lines, as well as the time at which each move-
ment involved in the manipulation of the object starts or ends. For this, the line
between 0.5 and 2 s represents the Rest, the line between 2 and 2.85 s represents
the Reach, between 2.85 and 3.85 s is the Grip, between 3.85 and 4.35 s is the
Lift, between 4.35 and 6.90 s the Hold, between 6.90 and 7.85 s the Release, and
between 7.85 and 9.5 s the Replace of the limb. It is important to mention that
these execution times change between subjects. Additionally, the times taken by
the subject in the execution of each phase of the manipulation movement of an
object are presented.

Fig. 3. Time-frequency representation of wavelet coherence for a single subject in the
2 EEG channels (C3, C4) and the 5 recorded muscles. Connectivity level from 0 to
0.3. White horizontal lines correspond to segmentation into (α), (β), and (γ) frequency
bands. Black vertical lines correspond to the beginning and end of each movement.

The results of the statistical analysis performed to determine significant
differences in connectivity between movements are presented in Table 1. This
table shows the movements where significant differences were found as well as in
which connectivity estimation channels this difference was present with a value
of p < 0.05.
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Table 1. Combination of movements and connectivity channels where statistically
significant differences were found with p < 0.05.

Movements Connectivity

M1-M2 C4-FDI

M1-M4 C3-AD, C4-AD

M1-M7 C4-B

M2-M4 C3-AD, C4-AD

M2-M7 C4-AD, C4-FDI

M4-M5 C3-AD, C4-AD

M4-M7 C3-AD

4 Discussion

The wavelet coherence results shown in Fig. 2 present the variability between
trials and subjects quantified for the 7 movements involved in the manipulation
of an object. Accordingly, it can be determined that the highest coherence with
respect to each EEG channel is found with the AD muscle in M6 (Release), and
for the B, FD, CED, and FDI muscles in M4 (Lift). Additionally, by averaging
across muscles in each EEG channel, it is found that the highest coherence is
present in the Lift movement (M4). Furthermore, according to the significance
level, all corticomuscular connectivity values are found to be significant, i.e.,
brain and muscle connections do not come from random dependence. On the
other hand, a comparison between the movements is presented in Table 1 in
order to determine if there are significant differences between the quantified
connectivity for each movement with a significance level of 0.05, where the main
movements in which these differences are found are M1, M2, M4, and M7 in AD,
B, and FDI muscles.

According to the time-frequency representations presented in Fig. 3, it is
possible to determine the transition of the connectivity that occurs in the con-
tinuous movement, as well as the frequency bands where this connectivity is
most prominent. Taking into account the variability between subjects, as well
as the independence in that each subject takes different times for execution of
these tasks, only the results for a single subject are presented. Nevertheless, it
is determined that the β and γ bands present greater coherence depending on
the movements and connectivity channels established. On the other hand, it
is important to mention that each movement involved in the manipulation of
an object takes different execution times, as can be seen in Fig. 3, where the
M5 movement presents the longest execution time with approximately 2 s. The
coherence between EEG-sEMG signals may vary with increases or decreases in
connectivity when presented with tasks that require a longer execution time as
presented in M5. On the contrary, in tasks where the execution time is shorter,
such as lifting, high coherence contents can be found, which depend on factors
such as the connection between channels, frequency bands and subjects.
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The results of this study are aligned with works reported in the literature
that estimate connectivity in the variation of different weights. The study [7]
concludes that connectivity is higher in the beta frequency band and when
manipulating objects with a lower weight (0.165 kg) compared to a higher weight
(0.660 kg). Additionally, it has been reported that higher levels of connectivity
are present in the beta band in motor contraction tasks, and in the gamma band
in continuous movements considering increments of muscle contraction [8–10].

5 Conclusion

In this study, it was determined how connectivity varies between the move-
ments involved in the manipulation of an object with a weight of 0.330 kg and
with sandpaper as a contact surface. Differences between movements and EEG-
sEMG connectivity channels are presented, as well as time-frequency represen-
tations of connectivity. The findings of this study have great repercussions in
the implementation of rehabilitation systems based on hBCI or neuroprosthesis
in real conditions, due to the determination of connectivity differences between
motor tasks that are continuous and differentiated, which can generate advan-
tages related to greater controllability, greater precision in the identification of
movements, ease of use, and decreased latency in the response of these systems.

Future studies will focus on the evaluation of other methods for connectiv-
ity estimation in multi-joint tasks, implementation of EEG-sEMG based hBCI
systems, and physiological interpretations of the variations between channels,
frequency bands, and movements involved.
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Abstract. The evaluation of optical properties of biological tissues has been
pointed as an important tool for detection and diagnosis of tissue alterations.
The Spatial Frequency Domain Imaging (SFDI) provides quantitative informa-
tion about light absorption and scattering properties in tissues frommeasurements
of diffuse reflectance. This technique requires the proper correlation between the
measured values of diffuse reflectance of light by the tissue, Rd , at different spatial
frequencies and the corresponding pair of absorption and reduced scattering coef-
ficients µa and µ′s, respectively. In this work, the machine learning technique of
Random Forests was applied to provide a regression model that efficiently com-
putes µa and µ′s from Rd values. The database employed consisted of training
and testing values of Rd at different spatial frequencies for different combina-
tions of µa and µ′s, obtained fromMonte Carlo simulations. Results showed that
the correlation coefficient R2 between predicted and expected values from the test
group were 0.96 and 0.97, forµa andµ′s, respectively. The relative average errors
for each coefficient were, respectively, 1% and 0.004%, with standard deviations
of 11% and 7%. These results point to the good accuracy and precision of the
developed models. These models were applied to an in vivo study, where values
of Rd from the dorsal region of the hand of a volunteer were obtained with SFDI
equipment using light wavelength of 650 nm. The obtained images of µa and
µ′s showed enhanced contrast of blood vessels, pointing to the potential of the
technique to identify vascular tissue alterations.

Keywords: Spatial frequency domain imaging · Machine learning · Random
forests

1 Introduction

Nowadays, cancer is one of major concerns in public health all over the world. Recent
projections estimate a worldwide incidence of 18 million new cases per year [1, 2].
In Brazil, for each year of the triennium 2020–2022, an occurrence of 625 thousand
new cases of cancer is estimated. Of this total, non-melanoma skin cancer is the most
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incident, corresponding to an estimated total of 177,000 new cases per year [2]. Accurate
and early diagnosis of the disease is essential to define the course of treatment, as well as
its effectiveness [3]. Diagnostic techniques are of fundamental importance, for example,
for the appropriate characterization of actinic keratosis-like lesions in cases of non-
melanoma skin cancer, thus contributing to the reduction of mortality from the disease
[4].

The Spatial Frequency Domain Imaging (SFDI) technique has emerged as a promis-
ing technique for the identification of morphological and functional changes in skin
tissues in early stages. This imaging technique allows the evaluation of the properties
of absorption and scattering of light by the tissues in a fast and non-invasive way [5].
Image acquisition in SFDI is performed by illuminating the tissue with an incident light
beam of spatially modulated intensity at different spatial frequencies, and capturing the
reflected beam with a camera. Then, the different obtained images are processed, thus
reconstituting the optical properties of the tissues, which are quantitatively measured by
the absorption and reduced scattering coefficients µa and µ′s, respectively. The eval-
uation of these parameters at different light wavelengths can enhance visualization of
different skin structures, making eventual alterations in the tissue evident [5].

The proper correlation of light diffusion properties of a tissue with its optical proper-
ties is one of themain steps in SFDI imaging processing. Although pre-compiled look-up
tables can be employed to this purpose [6, 7], it has been pointed out that machine learn-
ing techniques could accomplish this task more efficiently [8, 9]. In particular, the use of
different Artificial Neural Network models has been reported in the literature [10–14].
Recently, Panigraphi et al. [9] showed that the random forest method for regression can
also provide optical properties from diffuse reflectance with high accuracy. In particular,
the authors considered diffuse reflectance at two spatial frequencies for the determina-
tion of values of µa and µ′s [9], and the performance of the model was evaluated for
noiseless test data. Alternatively, Zhao et al. [15] recently showed that using more than
two spatial frequencies can improve the performance of the machine learning models
[15] in determining tissue chromophore concentration from noisy diffuse reflectance
data.

In this work, we investigate the use of random forests for pattern recognition in the
SFDI technique, to determine optical properties of tissues from their light reflection
properties. The developed model considered values of diffuse reflectance at three spatial
frequencies as input data, and the performance of the model was evaluated considering
noisy input values.

2 Materials and Methods

2.1 Experimental Set-Up for Image Acquisition in SFDI

Figure 1 shows the schematic representation of the experimental set-up employed for
image acquisition in SFDI [5]. It comprises a digital projector as light source (model
Vivitek® D555WH) a ThorLabs® filter wheel and CCD camera (DCC3240C). A white
light beam is emitted from the source, reaching the sample and being reflected by the
latter. The spatial distribution of the emitted beam is modulated according to a sinusoidal
pattern, at different spatial frequencies f (0.05; 0.2 and 0.4 mm−1) [5]. The reflected
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beam by the sample is filtered to a given wavelength by the filter, and it is then detected
by the camera, which stores the collected signal.

Fig. 1. Experimental set-up employed for image acquisition in SFDI.

The collected images by the camera must be processed since they carry dependence
not only on the sample composition, but also on the emitted beam and camera properties
[6]. To remove these dependencies on the imaging system, the obtained images were
demodulated and calibratedwith a phantom object, following themethodology proposed
byCuccia et al. [6]. The obtained signal therefore represents the diffuse reflectance,Rd , at
the different spatial frequencies employed, which is the physical quantity that expresses
the dependence of the reflected light on the absorption and scattering properties of the
sample [5, 6]. Determination of the sample absorption and reduced scattering coefficients
µa andµ′s from the obtained Rd values was performed using machine learning methods
with random forests, as described in Sects. 2.2 and 2.3.
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2.2 Generating the Database of Diffuse Reflectance Values

Values of Rd as a function of the pair of coefficients µa and µ′s were obtained using
Monte Carlo (MC) simulations for the transport of light photons through matter. A MC
code was developed to simulate the processes of absorption and scattering of light by a
uniformmaterial, according to themethodology proposed by Prahl et al. [16]. Amaterial
medium was characterized by its coefficientsµa andµ′s, and also by its refraction index
and anisotropy factor. A pencil beam impinged perpendicularly on the material surface,
and the spatial distribution of the backscattered photons was obtained as a point spread
function. The values ofRd at different spatial frequencieswere then obtained by applying
a Fourier Transform on this spread function [6]. Different material compositions were
simulated, by varying the values of µa between 0.001 and 1.8 mm−1, and µ′s between
0.3 and 6.3 mm–1 [6]. The values of the refraction index and anisotropy factor were fixed
at 1.4 and 0.71, respectively [6, 17].

Figure 2 illustrates the contour plot of Rd values obtained from the MC simulations,
at a spatial frequency of 0.2 mm−1, for different combinations of µa and µ′s.

2.3 Random Forest Regression Models

The random forest is an assembly method, based on the concept of decision trees, which
can be employed for classification or regression problems [18]. It is a supervisedmachine
learning technique, which combines a large number of decision trees for prediction pur-
poses. For each tree, features and samples are randomly selected from the training data,
with replacement, to determine the splitting of each node, in a process called bagging
(bootstrap aggregation). For regression problems, the predicted output of the model is
computed as the average of the value provided by each tree [19]. The main hyperparam-
eters of a random forest include the number of trees in the forest, the maximum depth
of the trees, the minimum number of samples at leaf and minimum number of samples
at split. A more detailed description about Random Forests, including mathematical
aspects, can be found in the work of Breiman [19].

In this work, the Random Forest technique was employed for regression (RFR),
using Python language with the scikit-learn library [20]. For each sample, input data
consisted of the Rd values at three different spatial frequencies f (0.05; 0.2 e 0.4 mm–1),
obtained from theMC simulations, while the output data were the correspondingµa and
µ′s coefficients, as illustrated in Fig. 3.
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Fig. 2. Contour plot of Rd values for different pair values of µa and µ′s at spatial frequency of
0.2 mm–1.

The dataset consisted of 108.360 samples. The samples were divided into training
and testing data, at the proportions of 67% and 33%, respectively. Besides, for the testing
data, a Gaussian noise of 3% was added, to simulate an experimental uncertainty, and
also to evaluate the generalization capacity of the trained models [15]. Optimization of
the model hyperparameters was performed employing K-fold cross-validation, with 5
subsets and 50 iterations, corresponding to 250 training loops. For theµa coefficient, the
following optimum hyperparameters were obtained: the number of trees in the forest was
200, the maximum depth of the trees was set to 21, the minimum number of samples
at leaf nodes was 4 and the minimum number of samples at split was 2. For the µ′s
coefficient, these values were, respectively, 250, 11, 4 and 2. In both cases, bootstrap
sampling was used to train the decision trees.

2.4 In Vivo Measurements

The experimental set-up for image acquisition, described in Sect. 2.1, and the RFR
machine learning models, described in Sects. 2.2 and 2.3, were applied to an in vivo
measurement of the absorption and scattering coefficients of the dorsal region of the
hand of a volunteer subject (Fig. 4). The rectangular region of interest (ROI) shown
in figure indicates the area imaged. Values of Rd at the different spatial frequencies
investigated were obtained for the ROI shown in Fig. 4, and the trained RFR model was
then employed to compute the corresponding values µa and µ′s at each pixel.

The present study in human beings was approved by the Research Ethics Committee
of the Federal University of Uberlândia (process no. 85363417.9.0000.5152).
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Fig. 3. Schematic representation of the RFR models for the determination of µa or µ′s
coefficients.

Fig. 4. Photography of the dorsal region of the volunteer’s hand. The rectangular ROI indicates
the area analyzed.

3 Results

The results of the application of the trained RFR on the testing data for determination
of µa and µ′s are shown in Fig. 5. The scatter plots represent the predicted values of µa

and µ′s versus the corresponding expected values.
Figure 6a and 6b show the histograms of the distribution of relative percent errors

for the predicted values of µa and µ′s, respectively.
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Fig. 5. Values of (a) µa and (b) µ′s predicted by RFR models, as a function of the true values.
Solid line indicates the expected values.
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Fig. 6. Distribution of relative percent errors for the predicted values of (a) µa and (b) µ′s,
respectively.

Figure 7 shows the results for the in vivo evaluation of µa and µs′ for the back of
the hand, for light wavelength of 650 nm.
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Fig. 7. Images of (a) µa e (b) µ′s for the ROI analized. Values of both coefficients are given in
units of mm−1.

4 Discussion

Evaluation of the performance of the RFR prediction models for µa and µ′s values
was performed through the determination of the R2 correlation coefficient for the lin-
ear regression between expected and predicted values. A high degree of correlation
between these quantities was observed, with values of R2 of 0.96 e 0.97 for µa and µ′s,
respectively.

A Levene’s test was applied on the predicted values of µa and µ′s showed in Fig. 5,
to test for homogeneity of variances. For each coefficient, predicted values were divided
in three subgroups, each one corresponding to a different interval within the whole
range of values. The variances of these subgroups were then compared among each
other. Results showed that, for each coefficient, there were no statistically significant
differences between variances among subgroups, considering the significance level of
0.05. This result indicates that the increase in the errors observed in Fig. 5a and 5b is
actually a graph scale effect, due to differences between the orders of magnitude of the
values of each coefficient, and the performance of the RFR model is independent on the
coefficient values.

From Fig. 6, it can be observed that the error distributions show symmetry around
the null error value, indicating that the obtained models provided unbiased results. The
average percent errors for these distributions were 1% and 0.004%, for µa and µ′s,
respectively, with standard deviations of 11% and 7%. These results indicate that, even
in the presence of noisy input data, the models show good accuracy and precision in the
determination of µa and µ′s.

Compared to the literature, values of average percent errors obtained in this work
were higher than those reported byPanigraphi et al. [9].Nevertheless, it should be pointed
out that the authors did not considered noise in their input test data. By neglecting noise,
our model provides performance comparable to those reported by the authors. Results
were also comparable to those reported by Song et al. [14], who considered a deep
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neural network model for the determination of optical properties, for test data with 2%
Gaussian noise.

Figure 7 shows that the developed models, combined with the SFDI system, are
capable of providing values of µa and µ′s for in vivo measurements. In particular, at
a light wavelength of 650 nm, Fig. 7a shows that values of the absorption coefficient
highlight blood vessels. This effect occurs due to the higher contribution of oxy- and
deoxyhemoglobin to the absorption coefficients at this wavelength [21], and it could be
useful to identify vascular changes associated with melanocytic or nonmelanocytic skin
cancers [22].

5 Conclusions

In this work, the machine learning method of Random Forests for regression (RFR)
was applied to the determination of light absorption and scattering properties of tissues
from values of light diffuse reflectance in the SFDI technique. The developed models
showed good performance in determining µa and µ′s coefficients from Rd values at dif-
ferent spatial frequencies. The average percent errors were 1% and 0.004% for µa e µ′s,
respectively, with standard deviations of 11% and 7%. The RFR models were applied to
an in vivo measurement for the determination of light absorption and scattering coeffi-
cients of the back of a hand. In particular, values of µa obtained for light wavelength of
650 nm provided enhanced contrast of blood vessels. These results point to the potential
of this imaging technique for detection and identification of vascular changes in skin
tissues, which could be related to different types of skin tumors. Future works should
be conducted, e.g. using tissue equivalent materials with known optical coefficients, in
order to compare the estimated coefficients with true tissue values, and thus evaluating
the accuracy of the technique for different skin tissue compositions.
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Abstract. Medical images are representations of tissues and parts of the human
body which play a crucial role in diagnosis assistance and human anatomy exam-
ination. New processing requirements related to problems of classification or seg-
mentation are unceasingly generated. In this context, methods for segmentation
that enables interpretable knowledge discovery can lead to significant contribu-
tions to the study and solution of certain medical problems. In a previous work, we
proposed a data classification method called Type-2 Label-based Fuzzy Predicate
Classification (T2-LFPC)which automatically generates interval-valuedmember-
ship functions and predicates. In the present work, a methodology for interpreting
brain magnetic resonance images in sequences PD, T1, and T2 with different
levels of additive noise is proposed. Three measures on interval-valued member-
ship functions are proposed and analyzed. Both simulated and real images are
considered. The segmentation performance is consistent with the obtained with
the test methods. The major contributions are a) the definition of attributes on
the features and the association of them to each tissue, b) the description of rela-
tionships between attributes and tissues providing linguistic interpretation, c) the
identification, quantification and description of both vagueness associated with
the attributes and spread of intensities of pixels belonging to each tissue. Nev-
ertheless, the knowledge achieved is consistent with what is known in the field
of brain magnetic resonance images, which indicates that the methodology pro-
posed constitutes a sound approach for knowledge discovery. Therefore, it could
be extended to other medical imaging domains, making it a general approach for
understanding medical images.
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1 Introduction

Medical image analysis assists in diagnosis and human anatomy examination, being
the specialist who is able to discover and interpret the information in images contain-
ing representations of tissues and parts of the human body acquired through different
technologies (modalities) [1].

The technological advance of the past decades brought newmodalities and improved
the existing ones, substantially increasing the available information [1, 2]. Because of
this, new processing requirements related to new problems of segmentation are unceas-
ingly generated [3]. The goal of a segmentation method is partitioning images looking
for regions, but it is also a requirement to understand how the algorithm works in order
to discover knowledge both about the problem and the image modality. In this sense,
any method which not only solves the segmentation but, also, allows to discover inter-
pretable knowledge, can lead to significant contributions to the study and solution of
certain medical problems. In this context, interpretable knowledge is that expressed in
a language comprehensible to humans.

Image segmentation can be addressed through pixel classification. In previous works
[4, 5], we proposed a classification method called Type-2 Label-based Fuzzy Predicate
Classification (T2-LFPC) which automatically generates interval-valued membership
functions and fuzzy predicates from labelled data. From the outcome of the T2-LFPC
method, in the present work it is proposed amethodology for interpreting brainMagnetic
Resonance Images (MRI) in sequences PD, T1, and T2 with additive noise. Three mea-
sures on interval-valued membership functions are proposed and analyzed. As a result,
understanding of the membership functions is achieved, allowing to define attributes and
to associate them with tissues. In addition, it is possible to quantify and describe both
vagueness associated with the attributes and spread of intensity of pixels belonging to
each tissue.

2 Material and Methods

2.1 Type-2 Label-Based Fuzzy Predicate Classification (T2-LFPC)

The next definitions are adopted in this paper:

Definition #1: An interval-valued membership function μA on a discourse universe X
is a function μA : X → χ , being A a property (an attribute) and χ the set of all the
closed intervals contained in [0, 1] [6]. For a specific value x ∈ X , μA(x) is an interval
of truth values μA(x) = [ϕ−

μA
(x), ϕ+

μA
(x)] which defines the degree of truth in which

x satisfies the property A. The functions ϕ−
μA

: X → [0, 1] and ϕ+
μA

: X → [0, 1] are
type-1 membership functions respectively called Lower Membership Function (LMF)
and Upper Membership Function (UMF) [6].

Definition #2: The Footprint of Uncertainly (FOU) of an interval-valued membership
function μA is [6, 7]:

FOUμA =
⋃

x∈X

{[
ϕ−

μA
(x), ϕ+

μA
(x)

]}
. (1)



Understanding Brain Magnetic Resonance Images from Automatically 263

The size of the FOU (its area) is related to the vagueness or imprecision around the
attribute described by the interval-valued membership function [6, 8, 9].

The method T2-LFPC consists of four stages: A) random partition of the data, B)
extraction of class prototypes, C) generation of a fuzzy predicates system, and D) opti-
mization. A detailed formalization of themethod can be found in [4, 5]. The stages A and
B are focused in providing prototypes for each label in the Gold-Standard. First, a ran-
dom dataset partition is applied to the dataset (stage A) generating subsets as descriptors,
capturing diversity in the data, and reducing the computational cost of the next stages. At
stage B, prototypes of each label, which play a key role in the discovery of characteristics
about the classification problem, are extracted from an automatic clustering scheme [6,
8] capturing collections of common attributes in the data in each label. The stage C is
focused on generating both membership functions and predicates, relating attributes of
the features with properties observed in the prototypes. At stage D, an optimization of
the parameters is performed.

2.2 Method Proposed for Understanding Brain Magnetic Resonance Images

The outcomes of the method T2-LFPC are interval-valued membership functions and
predicates describing the classes and enabling data classification. It is possible under-
standing them identifying how the attributes are combined to form classes and, more
important, how the data with those attributes are. It is feasible to study the shape, width,
and FOU of the interval-valued membership functions for describing vagueness around
the attributes (spread of the data within the classes). Also, considering the relative posi-
tion of the membership functions in the feature domain, functions can be associated to
attributes like “high”, “medium”, “low”. Based on these considerations, a methodology
for understanding brain MRI is proposed in the next paragraphs.

The next three measures on interval membership functions are proposed:

1. max_MF: Value of the feature for the maximum of UMF, mapping in the scale of
the feature (in the MRI cases it is [0, 255]). It indicates the value of the feature who
better satisfy the attributes of the class.

2. diff_MF: Difference between the values of the feature where the UMF is equal to 0.5.
It is a measure of the width of the membership function associated to the spread of the
values around the attribute. Small, medium, and high width means low, medium, and
high spread respectively (imprecision for describing the values of the feature related
to a label). While this measure could take values in the range of the feature [0, 255],
in real cases it is expected values in [0, 150].

3. area_MF: The area of the FOU. It is a measure of vagueness about the definition of
the attribute. A small area means low vagueness (meaning it is possible to be more
precise when explaining the grade in what the attribute is met by the feature and
its relationship with the label), a medium area means average vagueness (it is quite
difficult to relate that meaning of the attribute), and a large area means high vagueness
(high difficulty to define a meaning). While this measure maps on to R, in real cases
it is expected values in [0, 25].

Typically, when analyzing brain MRI, expert medical doctors’ study gray intensities
of images in sequences PD, T1, and T2 for assigning tissues to pixels. In this context,
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experts’ knowledge is expressed as linguistic descriptions, using attributes for the gray
intensity such as “bright”, “dark”, “gray”, and so on. Based on the previous considera-
tions and the measures defined, the followingmethodology for understanding brainMRI
is proposed:

1. Apply the T2-LFPC to a dataset containing samples of brain MRI in sequences PD,
T1, and T2 and Gold-Standard.

2. Assign attributes relating each tissue with each feature improving interpretability:
it is possible to map generic attributes “high”, “medium”, “low” (defined by visual
inspection of the position of the membership functions) to experts’ domain terminol-
ogy as follow: very low = black, low = dark, slightly low = dark-gray, medium =
gray, slightly high = light-gray, high values = bright, very high = very-bright.

3. Evaluate values of max_MF, diff_MF, and area_MF to quantify and describe levels
of imprecision and vagueness. Perform comparison between values for function of
different classes and features.

2.3 Datasets and Validation Methodology

The analysis was focused on two brain MRI datasets:

• Dataset #1: Simulated brain MRI [10], 4000 pixels randomly selected per class
(12000 data, 3 classes, 3 features). Data were taken without any noise or distortion
and were generated by means of computer simulation.

• Dataset #2: 10000pixels per class randomly selected from real brainMRI (30000data,
3 classes, 3 features). MRI were obtained at the Dementia Clinic of the Institute for
Neurological Research “Raúl Carrea” (Buenos Aires, Argentina) with a 1.5 T system
with the next protocol: coronal 3D T1-weighted gradient echoes orthogonal to the
AC-PC line (TR/TE= 24/5ms, slice thickness= 1.5mm); and coronal proton density
(PD) and T2-weighted fast spin echoes oriented (TR/TE1/TE2 = 3,500/32/96 ms,
echo train length = 8, slice thickness = 3 mm). Pixels were classified using the
software BRAINS [11] optimized by medical experts’ criteria.

Features are intensities in sequences PD, T1, and T2. Independent-zero-mean value-
gaussian-noise were considered (0%, and 10%), being 100% a standard deviation= 256
(images in gray levels).

The methods T1-LFPC (a variant of the T2-LFPC using type-1 membership func-
tions) [4, 5], Probabilistic Neural Networks (PNN) [12],Multi-Layer Perceptrons (MLP)
[13], and k-Nearest Neighbors (KNN) [14] were used for tests. The segmentation per-
formance was estimated using 10-fold cross validation. Statistical tests of significance
were included considering the Wilcoxon signed rank test for paired data [15].

3 Results

Results are presented split in dataset #1 and #2. Error, Tanimoto and Dice measures are
reported as performance measures. The best of the test methods is indicated including
relative difference and value of the test of significance (indicated as P). For dataset #1
(simulated brain MRI), Table 1 summarizes the segmentation results. In Fig. 1, interval-
valued membership functions are shown. Table 2 shows the results of the proposed
measures applied those membership functions.
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Table 1. Results for the segmentation of dataset #1 (simulated brain MRI).

Noise Measure T2-LFPC Best of the test methods Difference

0% Error 0.019 ± 0.003 0.015 ± 0.003 (KNN) 28.492%
P = 0.008

Tanimoto 0.962 ± 0.007 0.970 ± 0.005 (MLP) −0.752%
P = 0.008

Dice 0.981 ± 0.003 0.985 ± 0.003 (MLP) −0.385%
P = 0.012

10% Error 0.086 ± 0.005 0.085 ± 0.009 (T1-LFPC) 0.586%
P = 0.503

Tanimoto 0.844 ± 0.008 0.844 ± 0.009 (MLP) −0.029%
P = 0.751

Dice 0.914 ± 0.005 0.915 ± 0.005 (T1-LFPC) −0.127%
P = 0.916

Table 2. Results of the measures on interval-membership functions proposed considering seg-
mentation of dataset #1 (simulated brain MRI). (CSF= Cerebrospinal fluid, WM=White matter,
GM = Gray matter)

PD Intensity T1 Intensity T2 Intensity

Measure CSF GM WM CSF GM WM CSF GM WM

no
is

e 
0%

max_MF 235.12 216.94 187.65 53.74 108.91 144.89 215.14 107.98 74.15

diff_MF 41.08 15.19 13.27 29.90 24.07 15.53 70.16 43.52 12.04
area_MF 6.98 1.13 1.40 2.53 1.48 1.65 7.48 2.94 1.09

no
is

e 
10

%

max_MF 234.55 216.68 186.62 53.07 109.70 144.26 215.74 106.83 73.00

diff_MF 58.24 65.68 65.47 69.39 66.58 64.92 85.99 78.03 63.03

area_MF 7.21 4.39 5.93 5.84 4.14 6.22 7.74 8.93 6.30

For noise level = 0%, the performance is very close for all the measures, with
small and significant absolute differences. In the case of error, the error of the T2-LFPC
is 1.9% against 1.5% of the best of the test method (KNN). For noise level = 10%,
the performance differences are small and not statistically significant. The method T1-
LFPC (the best the test method for 10% noise) obtained 0.017 ± 0.004 of error for 0%
noise. Comparing performances for 0% and 10% noise, the method T2-LFPC degraded
its performance by 352,63% and T1-LFPC by 400%. The other methods got worse
performance. These results indicate that the method T2-LFPC is less sensitive to noise
than the others.

After visually inspecting the membership functions of Fig. 1 and analyzing the
Table 2, it is possible to conclude the next interpretation for noise level = 0%:
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Fig. 1. Interval-valued membership functions generated from simulated brain MRI (dataset #1)
with the method T2-LFPC for noise levels of 0%, and 10%.

• Cerebrospinal fluid (blue in Fig. 1): For “PD Intensity”, the membership function is
centered in very high values around 235, diff_MF is high (higher than 40) meaning
high imprecision about the attribute and area_MF = 6.98, which is high, meaning
high vagueness (it is not possible to be precise when explaining the grade in which
the attribute is met by the feature). For “T1 Intensity” values are centered around low
values (max_MF = 53.74), diff_MF = 29.90 meaning medium imprecision about
the attribute and area_MF = 2.53 meaning low vagueness about the grade in which
the attribute is met. Finally, for “T2 Intensity” values are centered around 215 (high
values), diff_MF = 70.16 (very high imprecision about the attribute) and area_MF
= 7.48 (high vagueness about the degrees of truth).

• Gray matter (red in Fig. 1): “PD Intensity” centered around high values, low impreci-
sion about the attribute (diff_MF = 15.19), and very low vagueness about the degrees
of truth (area_MF = 1.13). “T1 Intensity” centered around medium values, medium
imprecision about the attribute (diff_MF = 24.07), and very low vagueness about the
degrees of truth (area_MF = 1.48). “T2 Intensity” centered around medium values,
high imprecision about the attribute (diff_MF = 43.52), and low vagueness about the
degrees of truth (area_MF = 2.94).

• White matter (yellow in Fig. 1): “PD Intensity” centered around slightly high values,
very low imprecision about the attribute (diff_MF = 13.27), and very low vagueness
about the degrees of truth (area_MF = 1.40). “T1 Intensity” centered aroundmedium
values, low imprecision about the attribute (diff_MF =15.53), andvery lowvagueness
about the degrees of truth (area_MF = 1.65). “T2 Intensity” centered around low
values, low imprecision about the attribute (diff_MF =12.04), andvery lowvagueness
about the degrees of truth (area_MF = 1.09).
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Considering the previous descriptions about the relative positions of the membership
functions and the mapping of generic to experts’ domain attributes, the next predicates
explaining the tissues are defined for noise level = 0%:

• “The pixel belongs to cerebrospinal fluid” is equivalent to: “the pixel is very-bright
in PD intensity and is dark in T1 intensity and is bright in T2 intensity”.

• “The pixel belongs to gray matter” is equivalent to: “the pixel is bright in PD intensity
and is gray in T1 intensity and is gray in T2 intensity”.

• “The pixel belongs to white matter” is equivalent to: “the pixel is light-gray in PD
intensity and is gray in T1 intensity and is black in T2 intensity”.

For dataset #2 (real brain MRI), Table 3 summarizes the results for noise level of
0% and of 10%. In Fig. 2, the membership functions generated are shown. In Fig. 3,
input images, Gold-Standard, and results obtained for one of theMRI are shown. Table 4
summarizes results of the measures proposed. For noise level = 0%, the T2-LFPC was
worse than the best of the test methods (MLP). The same occurred for noise level= 10%.
However, comparing the degradation of the performance between noise= 0% and noise
= 10%, MLP degraded its performance by 72.22% and T2-LFPC degraded by 51.85%.
Therefore, as reported before for dataset #1, the method T2-LFPC is less sensitive to
noise than the others.

Table 3. Results for the segmentation of dataset #2 (real brain MRI).

Noise Measure T2-LFPC Best of the test methods Difference

0% Error 0.189 ± 0.013 0.162 ± 0.006 (MLP) 16.232%P < 0.001

Tanimoto 0.690 ± 0.017 0.725 ± 0.010 (MLP) −4.862%
P < 0.001

Dice 0.813 ± 0.012 0.838 ± 0.007 (MLP) −2.985%
P < 0.001

10% Error 0.287 ± 0.007 0.279 ± 0.006 (MLP) 2.844%
P = 0.026

Tanimoto 0.565 ± 0.008 0.575 ± 0.007 (MLP) −1.846%
P = 0.008

Dice 0.713 ± 0.008 0.721 ± 0.007 (MLP) −1.194%
P = 0.015

The methodology proposed for understanding brain MRI applied in detail on the
dataset #1 can be also applied here, obtaining compound fuzzy predicates, and descrip-
tions of imprecision about the attributes and vagueness about the degrees of truth. This
is omitted here to avoid overextending the manuscript. However, it is possible to do the
next analysis:

• There are some changes in the positions of the membership functions compared
against dataset #1. This is because simulated MRI are brighter than real ones.
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• The order of the membership functions for each of the tissues and for each feature is
the same than for dataset #1.

Table 4. Results of the three measures on interval-membership functions proposed considering
segmentation of dataset #2 (real brain MRI). (CSF = Cerebrospinal fluid, WM = White matter,
GM = Gray matter)

PD Intensity T1 Intensity T2 Intensity
Measure CSF GM WM CSF GM WM CSF GM WM

no
is

e 
0%

max_MF 187.45 161.47 148.96 38.99 69.74 89.17 174.34 108.04 87.53
diff_MF 46.41 45.16 30.53 36.00 39.39 25.24 87.92 45.49 24.65

area_MF 5.68 9.89 4.96 4.96 6.20 2.98 9.76 4.20 3.37

no
is

e 
10

%

max_MF 187.32 160.69 147.52 39.49 70.54 88.79 175.35 107.69 86.37

diff_MF 76.73 74.76 69.58 71.48 73.60 70.61 110.99 79.69 65.59

area_MF 3.92 5.94 7.22 4.57 7.27 8.44 11.42 10.88 6.87
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Fig. 2. Interval-valued membership functions generated from real brain MRI (dataset #2) with
the method T2-LFPC for noise levels of 0%, and 10%.
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Fig. 3. Input images, Gold-Standard, and results obtained for one of the images of the dataset #2
(real MRI) for noise levels of 0%, and 10%.

4 Discussion

The major contribution of the methodology proposed is to enable understanding brain
MRI, allowing: the definition of attributes on features and their association to each tissue
to provide linguistic descriptions, and the identification, quantification and description
of both vagueness associated with the attributes and spread of intensities of pixels in
each tissue. Considering the results, the next analysis can be done:

• Regarding the positions of the membership functions, for all features and classes,
there are not significant changes, as expected as noise added to the images hasmean-
value = 0. The order is the same, i.e., for “PD Intensity” is White matter-Gray
matter-Cerebrospinal fluid, for “T1 Intensity” is Cerebrospinal fluid-Gray matter-
White matter, for “T2 Intensity” is White matter-Gray matter-Cerebrospinal fluid.
Following the previous reasoning for assigning meaning to the attributes, it is not
required to change them, meaning the attributes are the same.

• Major changes are related to the imprecision and vagueness represented by the
membership functions. While the attributes are the same because the positions did
not change, their descriptions in terms of the membership functions (their mean-
ings), changed as both spread of the values associated to each tissue and impression
increases.
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• Considering imprecision about the attribute (described by diff_MF), it was increased
in all the cases compared to the case without noise, which is consistent with the
increment of the spread of the data due to the addition of noise.

• Regarding the vagueness about the degrees of truth (described by area_MF), there are
significant increases in most of the cases. It is important to note that considering how
the method T2-LFPC works, the area_MF, should increase because of a significant
difference observed between the class prototypes extracted from the subsets generated
in the random partition (Stage A).

5 Conclusions

In this work, it was proposed a methodology for understanding brain MRI from auto-
matically generated interval-valued membership functions from the outcome of our
previously proposed method called T2-LFPC.

The methodology was applied both on simulated and real brain MRI considering
additive noise, showing good segmentation performance compared against test meth-
ods including T1-LFPC (a variant of the T2-LFPC using type-1 membership func-
tions), Probabilistic Neural Networks, Multi-Layer Perceptrons, and k-Nearest Neigh-
bors. Moreover, compared against the best test method, the T2-LFPC method showed
to be less sensitive to the noise.

The measures on the membership-functions proposed allow to quantify and describe
levels of imprecision and vague-ness regarding the attributes and the degrees of truth
of the functions generated through the T2-LFPC. The methodology proposed allows to
define attributes on the features and to associate them to each tissue. It also allows to
describe relationships between attributes and tissues providing linguistic descriptions to
identify, quantify, and describe both vagueness associated with the attributes and spread
of intensities of pixels belonging to each tissue. The knowledge achieved is consistent
with what is known in the field of brain MRI segmentation.

For all said, the methodology constitutes a sound approach for knowledge discovery
which could be extended to othermedical imaging domains,making it a general approach
for interpreting medical images. Several new tests will be run as immediate future work,
considering more datasets and tests to improve the understanding the of membership
functions and, therefore, of medical images.

Acknowledgment. D.S.Comas acknowledges support fromConsejoNacional de Investigaciones
Científicas y Técnicas (CONICET), Argentina.

References

1. Wu, G., Shen, D., Sabuncu, M.R.: Machine Learning and Medical Imaging. Academic Press
is an imprint of Elsevier (2016)

2. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal.
42, 60–88 (2017). https://doi.org/10.1016/J.MEDIA.2017.07.005

3. de Bruijne, M.: Machine learning approaches in medical image analysis: from detection to
diagnosis. Med. Image Anal. 33, 94–97 (2016). https://doi.org/10.1016/j.media.2016.06.032

https://doi.org/10.1016/J.MEDIA.2017.07.005
https://doi.org/10.1016/j.media.2016.06.032


Understanding Brain Magnetic Resonance Images from Automatically 271

4. Comas, D.S., Meschino, G.J., Brun, M., Ballarin, V.L.: Label-based Type-2 Fuzzy Predicate
Classification applied to the design of morphological W-operators for image processing. In:
First Latin American Congress on Computational Intelligence. pp. 55–60. San Carlos de
Bariloche, Argentina (2014)

5. Comas, D.S., Meschino, G.J., Costantino, S., Capiel, C., Ballarin, V.L.: Interval type-2 fuzzy
predicates for brain magnetic resonance image segmentation. Rev. Argentina Bioingeniería.
21, 11–19 (2017)

6. Comas, D.S., Meschino, G.J., Nowé, A., Ballarin, V.L.: Discovering knowledge from data
clustering using automatically-defined interval type-2 fuzzy predicates. Expert Syst. Appl.
68, 136–150. springer (2017). https://doi.org/10.1016/j.eswa.2016.10.018

7. Mendel, J.M.: Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2,
20–29 (2007)

8. Comas, D.S., Pastore, J.I., Bouchet, A., Ballarin, V.L., Meschino, G.J.: Interpretable interval
type-2 fuzzy predicates for data clustering: A new automatic generation method based on
self-organizing maps. Knowl. Based Syst. 133, 234–254 (2017). https://doi.org/10.1016/j.
knosys.2017.07.012

9. Wu, D., Mendel, J.M.: Uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. (Ny) 177,
5378–5393 (2007)

10. Kwan, R.K.-S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-
processing and classification methods. IEEE Trans. Med. Imaging 18, 1085–1097 (1999)

11. Center, I.M.H.C.R.: BRAINS Software Package. http://www.psychiatry.uiowa.edu/mhcrc/
IPLpages/BRAINS.htm

12. Wasserman, P.D.: Advanced Methods in Neural Computing. Van Nostrand Reinhold, New
York (1993)

13. Bishop, C.: Neural Networks for Pattern Recognition. Oxford Press, Oxford (2005)
14. Rajini, N.H., Bhavani, R.: Classification of MRI brain images using k-nearest neighbor and

artificial neural network. In: International Conference on Recent Trends in Information Tech-
nology, ICRTIT 2011, pp. 563–568. IEEE Computer Society (2011). https://doi.org/10.1109/
ICRTIT.2011.5972341

15. Gibbons, J.D., Chakraborti, S.: Nonparametric Statistical Inference. CRC Press, New York
(2003)

https://doi.org/10.1016/j.eswa.2016.10.018
https://doi.org/10.1016/j.knosys.2017.07.012
http://www.psychiatry.uiowa.edu/mhcrc/IPLpages/BRAINS.htm
https://doi.org/10.1109/ICRTIT.2011.5972341


2D Electrical Impedance Tomography
Brain Image Reconstruction Using Deep

Image Prior

Leonardo A. Ferreira1(B) , Roberto G. Beraldo1 , Ricardo Suyama1 ,
Fernando S. Moura2 , and André K. Takahata1
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Abstract. Electrical impedance tomography (EIT) is a medical imaging
modality that has the potential to benefit diagnosing, monitoring, and
understanding several pathological conditions. However, some regions of
the body, such as the brain, are more challenging to reconstruct, demand-
ing improvements before the technique can be used in clinical practice. In
this study, we implemented and evaluated an algorithm for 2D static EIT
image reconstruction based on the Deep Image Prior (DIP) method. The
method was tested in measurements calculated from a computational
human head model, where we included a region representing the occur-
rence of a stroke. The results showed that the DIP-based algorithm had
some advantages compared to a more classical method, such as robust-
ness to noise and independence of an initial solution. Therefore, this
method could be better suited for real-life EIT image reconstructions.

Keywords: electrical impedance tomography · deep image prior ·
ill-posed problems · discrete inverse problems · medical image
processing

1 Introduction

Electrical Impedance Tomography (EIT) is a technique that allows the acqui-
sition of medical images displaying the resistivities (or impeditivities) of the
interior of a body region [1]. It works by surrounding the region of interest with
an electrodes array that is then used to apply electrical currents and measure the
corresponding generated voltages. Repeating this procedure multiple times, each
using different pairs of electrodes to apply the current, results in a set of mea-
surements from which the resistivities image can be reconstructed. The forward
problem associated with this technique consists in calculating the voltages (Ve)
under the electrodes given the resistivities (ρ) of the domain and the applied
currents (C):

Ve = f(ρ,C), (1)
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where f(·) is a nonlinear function. In contrast, reconstructing EIT images (i.e.,
solving the inverse problem) consists in obtaining the resistivities from the volt-
ages and currents values. Determining the absolute values of the resistivities is
known as absolute or static EIT, which is an ill-posed problem in the sense of
Hadamard. Consequently, discrepancies, such as errors in the estimation of the
forward model and noise in the electrodes measurements, lead to poor results
when using a naive algorithm to search for the solution.

A strategy to mitigate these discrepancies is to reconstruct the difference
between the resistivities of different instants of time (known as dynamic or time
difference EIT). However, this method prevents the use of the technique for cases
where we wish to image steady conditions without having measurements from
before its occurrence. Other approaches to improve EIT image reconstruction
algorithms include the incorporation of a priori information about the problem,
which can be done by using Tikhonov regularizers [2], statistical models about
the region [3], or deep learning methods [4], for example.

Compared to other medical imaging modalities, such as computed tomog-
raphy (CT) or magnetic resonance imaging (MRI), EIT has the advantages of
being cheaper, portable, and not presenting any known side effects [1]. These
characteristics could benefit diagnosing, monitoring, and understanding several
pathological conditions. For example, the portability could allow an early diag-
nosis of strokes, thus increasing the chances of a better prognosis for the patient
[5]. However, the brain is a particularly difficult region to image with this method
due to the low conductivity of the skull, which hinders the current flow to the
brain.

Although many advances have been achieved to the goal of using EIT for
brain imaging, there still is a need for improvements before it can be used in
clinical practice. We refer to [6] for a complete review on this matter. Mean-
while, deep learning methods have been yielding state-of-the-art results in many
different areas, including medical image processing [7]. Nonetheless, it can be
challenging to validate this type of approach for EIT due to the lack of large
real datasets and the difficulty in establishing ground truth images.

Recently, a new way of applying the deep learning tools without the need
for training datasets has been proposed, named Deep Image Prior (DIP) [8].
The idea behind it is to take advantage of the regularizing properties of the
convolutional neural network (CNN) structure to generate the desired solution.
It works by using a random noise tensor as input to the CNN and then applying
the forward model of the problem of interest to the corresponding output. The
result is compared to the acquired measurements through a loss function, which
is minimized by the update of the parameters of the CNN through several iter-
ations. The hypothesis is that while the loss function is minimized, the value of
the CNN output gets closer to the desired solution.

This method was shown to be effective in the solution of several low-level
computer vision tasks, as well as in the image reconstruction of CT [9] and
positron emission tomography (PET) [10]. Despite that, we have not found any
studies considering this approach to solve the EIT inverse problem. Therefore,
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our work aimed to implement and evaluate a DIP-based EIT 2D image recon-
struction algorithm. Specifically, we considered the case of static EIT for brain
imaging.

2 Materials and Methods

We implemented the presented algorithms using Python 3.7. In this study, we
only evaluated the proposed method through computational simulations. Both
the reconstruction algorithms and the simulated electrode measurements were
calculated in a discretized domain accordingly to the Finite Element Method
(FEM) [11] and considering the Complete Electrode Model (CEM) [12] to deter-
mine the voltages.

2.1 Mesh Generation

We generated a 2D mesh based on a young adult head model [13], from which
we extracted the contours of the scalp, skull, and brain. The chosen region of
the head corresponded to a transversal slice localized around the middle of the
model forehead. The software GMSH1 was used to create a mesh composed of
triangular elements and containing 32 electrodes surrounding the region. Two
meshes were generated: a more refined version (approximately 11000 elements
and 5500 nodes) to be used in the simulation of the measurements and a coarse
version (approximately 2100 elements and 1100 nodes) to be used in the image
reconstruction. This difference was introduced to avoid the inverse crime through
the representation of the discretization error. The position of the electrodes was
the same in both meshes (i.e., we assumed the exact position is known and used
by the algorithm).

2.2 Simulation of the Measurements

We used the resistivities of 2.50Ωm, 47.94Ωm, and 9.12Ωm for the regions
of the scalp, skull, and brain, respectively. Additionally, a circular area with a
radius of 1.5 cm and resistivity of 1.42Ωm was inserted into the brain region to
represent the occurrence of a hemorrhagic stroke. Three different positions were
chosen for the stroke, following what is presented in Fig. 1. The thickness of both
the domain and the electrodes was considered to be 3 cm, and the electrode-skin
contact impedance was set to 0.02Ωm.

The simulations considered a current of 1mA injected according to the skip-
16 pattern, i.e., the electrode injection pairs had 16 other electrodes separating
them. The voltages were calculated considering single-ended measurements rela-
tive to the electrical ground, which was chosen to be the center of the mesh. For
every current injected, the voltages of all the electrodes (including the injection
pair) were determined. Furthermore, we simulated five different additive Gaus-
sian noise realizations for each stroke position. The distribution that originated
1 https://gmsh.info/.

https://gmsh.info/
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Fig. 1. Three cases of stroke used to generate the electrode measurements. For a better
visualization of the brain, all values equal or above 15 Ωm were represented in the same
color.

the noise had a mean of 0V and a standard deviation of 0.003V, which resulted
in a mean signal-to-noise ratio (SNR) of 31.71dB across the three positions.
We also considered the case without noise for a base of comparison. Therefore,
combining the distinct stroke positions, the different noise realizations, and the
noiseless case, we obtained a total of 18 different sets of simulated voltage mea-
surements.

2.3 DIP-Based EIT

The DIP implementation of our method was based on the default algorithm
presented in [8]. The structure of the CNN consisted of an encoder-decoder
architecture with skip connections between the encoder and decoder parts. Spe-
cific details about the architecture are presented in Table 1. The CNN input was
a uniform noise with intensity values ranging from 0 to 1

10 . Each iteration of
the algorithm used a small variation of this input, determined by adding to it
a Gaussian noise with a mean equal to zero and a standard deviation equal to
0.008. Additionally, we limited the value of the CNN output to 80Ωm to avoid
the convergence of the result to high unrealistic values. Note that the ReLU acti-
vation function in the layers of the CNN also restricts the output to be greater
than or equal to zero. Therefore, given N, the noise tensor that is entered into
the CNN, we have that the resistivities output image is

Rθ = φθ(N), (2)

where φθ(·) is a function that represents the CNN and θ represents the CNN
parameters. To integrate this output, which is provided in pixels, into the forward
problem, which is calculated using the FEM, the first step was to determine the
coordinates of each pixel. For each dimension, the coordinate of a pixel with
index i was calculated as

ci =
mmax − mmin

lp
i + mmin, (3)



276 L. A. Ferreira et al.

where mmax and mmin are the highest and lowest centroid coordinates of the
mesh elements, respectively, and lp is the height or width (in pixels) of the CNN
output. Secondly, the resistivity of the mesh elements was determined by

ρt = Tρθ, (4)

where T is an interpolation matrix and ρθ is Rθ reshaped into a column vector
by concatenating its lines:

ρθ = vec(Rθ). (5)

We used an interpolation matrix defined by a low-pass Gaussian filter, where
each element is determined by

[T]j,k =
1

2πσ exp
(
−d(j,k)2

2σ2

)

∑
j,k

1
2πσ exp

(
−d(j,k)2

2σ2

) , (6)

where d(j, k) is the euclidean distance between the centroid of the mesh element
with index j and the coordinate of the pixel with index k, and σ is the standard
deviation of the filter. In all our simulations, σ was set to 5 × 10−7.

Table 1. Convolutional neural network architecture used for the DIP.

Parameter DIP

Input size 256 × 256 × 32

Output size 256 × 256 × 1

No. of encoder layers 6

No. of decoder layers 6

No. of filters in each encoder layer 128 (all)

No. of filters in each decoder layer 128 (all)

Size of filters in each encoder/decoder layer 3 × 3 (all)

No. of skip layers 6

No. of filters in each skip layer 32

Size of filters in each skip layer 1 × 1

Activation function ReLU

Once the resistivities of the mesh elements were determined, the EIT forward
model was applied to calculate the corresponding voltages Vθ. Therefore, we have
that

Vθ = f(ρt) = f(T vec(φθ(N))), (7)

where f(·) is the forward model. Then, these voltages were compared, using the
mean squared error (MSE), to the simulated electrode measurements. We also
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included a total variation (TV) regularization term [14,15] in the loss function,
thus resulting in

L(θ) = MSE(Vθ,Vm) + wtvTV (θ), (8)

where Vm is the simulated measurements, wtv the TV weight, and TV (·) the TV
regularization term. We chose wtv = 5× 10−8 for all of the simulated cases. The
loss function was minimized by the Adam optimizer through the update of θ with
a learning rate of 5×10−4. A total of 8000 iterations were executed to reconstruct
each image, with the final result being the last CNN output generated. The same
parameters were used for both the cases with and without noise.

2.4 Method for Comparison

We compared the results of the proposed method to a more classical approach to
reconstruct EIT images. This approach was based on the solution of the inverse
problem using the Gauss-Newton method [2] along with a TV regularization
term. The equation to be optimized was

ρ∗
GN = arg min

ρGN

{
||Vm − f(ρGN )||22 + λtvTV (ρGN )

}
, (9)

where λtv is the weight of the TV regularization. We chose λtv = 1 × 10−5 for
all cases simulated with noise and λtv = 1 × 10−7 for the cases without noise.
The �1-norm was approximated through the iteratively reweighted least square
(IRLS) method [16, p. 197].

To initialize the optimization we used the resistivities of 3.0Ωm, 45.0Ωm,
and 9.5Ωm for the regions of the scalp, skull, and brain, respectively. Therefore,
for this method, we considered that the position of the tissues inside the head is
known and that we have a good estimate of their resistivities. The optimization
was executed for 40 iterations with a step size of 0.13 for the cases with noise,
and for 30 iterations with a step size of 0.07 for the cases without noise.

2.5 Quantitative Evaluation

Three metrics were used to evaluate the results. The first one was the intersection
over union (IoU) (also known as Jaccard Index), which is a common metric used
in the evaluation of the similarity between two sets. It is defined as

IoU(Sm,Sg) =
Sm ∩ Sg

Sm ∪ Sg
, (10)

where Sm and Sg are the binary masks of the stroke regions in the output of
the method and the ground truth image, respectively. To determine the stroke
region, the skull was segmented by selecting the pixels with a resistivity value
greater than 14Ωm. Then, the brain mask was determined by taking all the
pixels inside the interior border of the skull. Finally, the minimum resistivity of
the obtained brain region was determined, and the binary mask of the stroke
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consisted of the pixels in this region with resistivities lower than 1.25 times this
value.

The second metric, resistivity difference (RD), had the goal of evaluating
the contrast between the stroke resistivity and the rest of the brain. To achieve
that, we calculated the difference between the mean resistivities of the stroke
region and the remaining area of the brain. These regions were determined with
the same masks defined for the IoU, with the remaining area of the brain being
obtained by the subtraction between the brain and stroke masks.

The last metric we calculated had the goal of detecting the proportion of
high resistivity artifacts (HRA) that could confound the image analysis. First,
we determined the region of the interior of the brain by applying 10 iterations
of the morphological erosion operation to the brain region mask. This step was
included to disregard high values of resistivity that may appear at the border
with the skull. Then, the value of the metric was the percentage of pixels in
the brain interior that were above 1.25 times the mean resistivity of the region
(excluding the stroke area).

3 Results and Discussion

Figure 2 shows the images reconstructed for the noiseless case. As it can be seen,
with the DIP-based reconstruction it was possible to distinguish the region of
the stroke in all of the three simulated positions. The case where the stroke was
near the middle of the brain was the one where the borders of the region were
less defined. This result was expected since the greater distance to the electrodes
makes the measurements less sensible to the values of the center of the brain.

In this noiseless condition, the results of the Gauss-Newton reconstruction
were satisfactory. Apart from a few artifacts in the scalp region, the stroke
was reconstructed with a similar shape and size to what was expected, and
the remaining resistivity of the brain was near to uniform. However, as can be
seen in Fig. 3, the results of the Gauss-Newton method were visibly worse when
additive noise was present in the measurements. The images displayed regions
of high resistivity in the brain with a shape similar to the reconstructed stroke,
which would be confusing for a diagnostic analysis because of the difficulty to
determine if those regions are artifacts or the result of a real condition that
affected the patient.

Meanwhile, the images of the DIP reconstruction in the noisy cases were sim-
ilar to the ones obtained in the noiseless ones, indicating the greater robustness
of this option. Therefore, this method may be better suited for real-life appli-
cations, where the presence of noise is inevitable. Another advantage observed
was that we obtained all the DIP results without changing the hyperparameters,
while for the Gauss-Newton algorithm we needed to change the TV weight, step
size, and number of iterations for the noisy cases to obtain better results (as
described in Subsection II-D). Therefore, the DIP-based reconstruction may be
less sensitive to variations in the characteristics of the noise, thus not requiring
different hyperparameters for each situation.
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Fig. 2. Example of images reconstructed from the noiseless case. For a better visu-
alization of the brain, all values equal or above 15 Ωm were represented in the same
color.

A downside of the DIP-based method was the skull reconstruction, which
was thicker than what was expected. Additionally, it is possible to see a region
of intermediary values between the border of this region and the other tissues,
which indicates the lack of sharpness of the reconstruction. However, EIT images
are already known to have a poor spatial resolution, being more important the
stability and general aspect of the result. For example, the thickness of the skull
was similar in all images, and the strokes were visible even when they were placed
close to the skull border. Therefore, this artifact would not prevent the images
from being used for the application of stroke detection.

It is also worth noting that the DIP-based algorithm was initialized with a
random resistivity, while the Gauss-Newton one received an initialization close
to the desired solution, including the correct localization of the borders of the
tissues. In our experiments, the results of the Gauss-Newton with a random
initialization were far from the ground truth. Therefore, the DIP reconstruction
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Fig. 3. Images reconstructed from data with additive noise. For a better visualization
of the brain, all values equal or above 15 Ωm were represented in the same color.

may be advantageous in real life, where we usually have no information about
the exact anatomy of the patient.

The mean and standard deviation of the metrics, calculated considering five
different additive Gaussian noise realizations for each stroke position, are pre-
sented in Table 2. The metrics corroborate what was observed in the qualitative
analysis, with the DIP-based reconstructions having a higher IoU and less high
resistivity artifacts than the Gauss-Newton ones. The resistivity difference was
higher in the Gauss-Newton reconstructions in two of the stroke positions, how-
ever, this metric was possibly influenced by the high resistivity artifacts present
in the results of this method, which may increase the mean value of the region
outside the stroke. Moreover, the resistivity difference obtained in the DIP recon-
structions may already be sufficient for diagnosing the stroke since it is possible
to identify the abnormal regions in the presented images. By analyzing the stan-
dard deviation of the metrics, it is also possible to note that the DIP results are
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more consistent as they present smaller values when considering different noise
realizations than the results obtained with Gauss-Newton.

Table 2. Intersection over union (IoU), resistivity difference (RD), and high resistivity
artifacts (HRA) calculated for the reconstructions using the DIP and Gauss-Newton
(GN) methods in the three stroke positions using the noisy measurements.

Method Pos. IoU RD (Ωm) HRA (%)

DIP 1 0.46 ± 0.05 2.98 ± 0.14 1.99 ± 1.88

2 0.77 ± 0.03 4.98 ± 0.17 0.84 ± 0.68

3 0.54 ± 0.06 4.51 ± 0.27 2.07 ± 1.84

GN 1 0.36 ± 0.10 2.94 ± 0.40 4.20 ± 3.06

2 0.29 ± 0.06 6.66 ± 0.66 3.78 ± 4.47

3 0.31 ± 0.17 5.82 ± 1.13 2.65 ± 3.10

4 Conclusion

In this study, we implemented and evaluated a DIP-based algorithm for static
EIT image reconstruction of the brain, specifically aiming at the detection of
strokes. The results showed that this method presents improvements when com-
pared to a more classical approach of inversion, presenting characteristics that
are important for a real-life application of the technique, such as robustness to
noise and independence of the initial solution. Future works may include a more
in-depth validation of the method, including, for example, the evaluation of dif-
ferent stroke sizes and head shapes, more detailed anatomic models, and high
resistivity (ischemic) strokes. Furthermore, the method has several points that
could be further explored to improve the results, for instance, different CNN
architectures, alternative regularization terms, other strategies to integrate the
CNN output and the forward model, and the adaptation of the algorithm for
3D images. Therefore, the presented technique has potential to lead to new
directions that could be explored in the search for better EIT reconstruction
techniques.
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Abstract. In this work we present a technique to reduce speckle in ultrasound
images that lead to sharper image when compared to other speckle reducing tech-
niques. To achieve this goal, Cycle Generative Adversarial Networks (CycleGAN)
are used, which map specific characteristics of a set of input images that will later
be used to give origin to transformed images. The discriminator used in this article
tries to differentiate between images with and without speckle by the network and
the set of high-quality images. The images without speckle used in the network
training were obtained from online databases and from a phantom using an Ultra-
sonix platform and later postprocessed to remove the speckle. The quality of the
generated images was evaluated using the metrics Signal to Noise Ratio (SNR)
and Peak Signal to Noise Ratio (PSNR) and compared to the Perona-Malik diffu-
sion filter. The proposed technique had an improvement of 4.9 dB in the SNR and
4.7 dB in the PSNR when compared with Perona-Malik filtering.

Keywords: Ultrasound · Speckle · Filtering · Deep Learning · CycleGAN

1 Introduction

In modern medicine, methods for visualizing the internal structures of an organism
through images are widely used. Technologies for viewing images have evolved con-
siderably and among the most prominent are magnetic resonance imaging, computed
tomography, and ultrasound.

Ultrasonography uses the echo pulse generated by high frequency ultrasonic waves
to visualize the internal structures of the body and has advantages over other methods
such as low cost, fast execution, real-time visualization of the structures and is free from
ionizing radiation. However, the images can be of low quality and with the presence of
artifacts.

One of the difficulties encountered during ultrasound image analysis is the presence
of speckle, whose effect is the granular aspect of the image. Speckle is a characteristic
phenomenon of ultrasound images, caused by interference between coherent waves that,
reflected by the tissue particle surface, arrive out of phase at the transducer.
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Speckle reduction in ultrasound images is necessary to improve image contrast,
which facilitates visual image analysis and image processing tasks such as classification,
segmentation, and edge detection. The speckle reduction cannot be excessive as this
phenomenon is a consequence of tissue characteristics, and could, for example, lead to
a misdiagnosis. Moreover, speckle is considered a deterministic phenomenon, that is,
two images acquired under the same conditions will have the same speckle.

There are two types of methods conventionally used to reduce speckle levels: Spatial
Filtering and Transform Domain Filtering [1]. With the recent evolution of Machine
Learning techniques, specifically Deep Learning [1, 2], they have also started to be used
in denoising and speckle reduction of medical images.

The works described in [3–5] and [6] present deep learning techniques that have
been used in ultrasound image analysis. Basic tasks such as classification, segmentation
or edge detection can be performed with high precision, low computational cost and
high-speed using these techniques. In [7] an architecture proposal is made for speckle
reduction, preserving the characteristic details of the image. This architecture uses deep
learning techniques, based on Generative Adversarial Networks (GANs), among which
is the CycleGAN model [8], which was used in this work.

The algorithms, techniques and metrics are described in section II, while the results
of the speckle reduction processing are presented in section III, and, finally, section IV
presents the conclusions about this work.

2 Methods

2.1 CycleGAN Model

The Generative Adversarial Networks (GANs) are formed by two distinct types of net-
works, each one learns different properties and they compete with each other (Fig. 1).
Therefore, they are called Generative Adversarial Networks. One of the networks (Gen-
erator) generates completely new data (images) from a vector of random values; the
other network, the Discriminator, will learn to discriminate whether the data (image)
generated by the generating network is real or not. In the end, the generating network
manages to generate data (image) with fidelity like the input data of the discriminator
network [9].

Fig. 1. High-level architecture of a GAN-like network

Cycle Generative Adversarial Network is a method that allows capturing the charac-
teristics of an image anddiscoveringhow these characteristics canbe converted to another
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image domain, for which it is not necessary that the same image has a corresponding
image in each domain. This architecture is detailed in [8].

This architecture (CycleGAN) is composed of two generator models: a generator
that generates images for the first domain and a second generator that generates images
for the second domain. Figure 2 shows an example of this technique with ultrasound
images.

Fig. 2. High-level architecture of a GAN-like network

The CycleGAN model uses conditioned adversarial generative networks, that is, the
generated model is conditioned by the input image. The part of the generator model
is implemented by a network type U-NETs (this network is formed by a convolutional
part, in which information is gradually compressed; a de-convolutional part, where it
is decompressed, and a series of skip connections that connect each layer at the same
level).

The generators perform the image conversion, that is, the image generation process is
conditional on an input image from the other domain. Each generator has a corresponding
discriminator model.

The discriminator in turn is also a type of convolutional network. However, instead
of arriving at a result (single value, scalar) that indicates whether the result is a correct or
false image, it returns a portion of the image, in which different patches of the original
image are evaluated, a comparison is made between regions of the original and generated
image. The result generated by the discriminator will allow to know if some regions of
the generated image are similar or not to the original image.

The first discriminator model takes the real images of the first domain and the gener-
ator primer, from which it determines whether the generated image is real or false. The
second discriminator model performs the same tasks, however, taking images from the
other domain. The models, generator and discriminator are trained in the same way as
in GAN-type networks. That is, generators learn to deceive discriminators and discrimi-
nators learn to better detect false images. Together, the models find a balance during the
training process.

Generators not only generate the images in the target domain, but they also cre-
ate versions of images in the source domain from the generated images. This task is
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performed using generated images as input to the corresponding generator model and
comparing the output image with the original images.

A Cycle consists of passing an image through the two generators. Together, each
pair of generator models are trained to best reproduce the original source image. This
process is called cycle consistency (Fig. 3).

Fig. 3. Cycle Consistency Loss

2.2 Speckle Filtering Using CycleGAN

In this work, deep learning algorithms (CycleGANsmodel) were implemented to reduce
speckle in ultrasound images. These algorithms were developed using the NVIDIA
GTX 980 TI GPU and the Python Tensor-Flow and Keras libraries, due to the multiple
advantages they offer, such as: optimization for GPU usage, distributed execution, and
code optimization.

In general, deep learning algorithms require a database to train networks. In this
work, a dataset consisting of six hundred images was used. Part of these images come
from online databases: the contrast-evaluation dataset described in [10] was downloaded
from [11] and reconstructed using the USTB toolbox; the breast database described in
[12] was downloaded from [13] with permission. A dataset with fetal head images was
obtained from [14] and another phantom database was downloaded from [15].

The other part of the training images was generated from data collected in the Cen-
ter for Biomedical Engineering at UNICAMP (CEB/UNICAMP) using the Ultrasonix
platform with a linear transducer and that was later reconstructed in MATLAB® using
the classical B-Mode algorithms (Fig. 4).
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Fig. 4. B-Mode processing flow

Initially, the Image Despeckle Filter and Analysis (IDF) toolbox [16–19] was used to
eliminate speckle from the dataset images.With this, we obtain images in the two desired
domains (with and without speckle). This toolbox is based on Matlab® and provides
different filters for speckle reduction, as well as several metrics for image evaluation.
This toolbox was also used to calculate the quality metrics of the images generated by
the implemented deep learning algorithms (Cycle GANs).

2.3 Metrics for Image Quality Evaluation

Signal to Noise Ratio (SNR): compares the desired signal level with the background
noise level. The higher the SNR ratio, the lower the influence of background noise. The
SNR in decibels is defined according to Eq. 1; where σ 2

g corresponds to the variance of

the noise-free image and σ 2
e corresponds to the error variance (between the original and

noise-free image).

SNR = 10log

(
σ 2
g

σ 2
e

)
(1)

PeakSignal toNoiseRatio (PSNR): is the ratio between themaximumpossible signal
power and the power of the corrupted noise that affects the fidelity of its representation.
The PSNR calculation for 8-bit grayscale images is shown in Eq. 2, where x

∧
is the signal

estimate of x and MSE is the mean square error (MSE).

PSNR
(
x, x

∧) = 10log(
2552

MSE
) (2)

3 Results

Themodel training was performed using the dataset as explained in the previous section.
An example of input and produced output image of an ultrasound phantom are shown
in Fig. 5. Table 1 shows the metrics compared with the Perona-Malik diffusion filter
executed using IDF toolbox.

The outputs generated by the CycleGAN algorithm had better SNR and PSNR, that
matches results reported in [7]. However, the output images have an observable artifact
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Fig. 5. (a) Input image; (b) Filtered image using CycleGAN highlighting the artifacts generated
after training; (c) Filtered image using Perona-Malik

(highlighted in Fig. 5(b)), where a hypoechoic region is added to the output image.
Similar problems have been reported in [20] and are due to the images used for training
that contained large areas of black regions.

Table 1. Metrics of speckle reduction

Algorithm SNR (dB) PSNR (dB)

Perona-Malik diffusion filter – IDF toolbox 21.4 26

CycleGAN 26.3 30.7

4 Conclusions

The use of CycleGAN for filtering speckle in medical ultrasound images is promising,
allowing to achieve better results than with standard techniques. However, our results
also show that artifacts can be generated in the output image, requiring a more adequate
algorithm training.
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Abstract. Computed tomography is widely used for disease detection. On many
occasions, image quality is affected due to the effect of hardening the X-ray beam,
generating artifacts. In the present research, several methods used for the reduction
of metallic artifacts (NMAR, ISMAR and LIMAR) were adapted to the reduc-
tion of artifacts by X-ray beam hardening, evaluating their effectiveness through
quantitative and qualitative metrics of image quality on regions of interest (ROI).
The metrics were: signal-to-noise ratio, image contrast, edge visibility, 10% of the
MTF and the expert evaluation on a 8 points scale. The different methods were
implemented onMatlab. To study its performance, images corruptedwith this type
of artifact from a physical phantom and two from patients were used. The method
that showed the best performance was NMAR, but its computational efficiency for
clinical routine is highly dependent on the hardware used. The methods studied
do not provide satisfactory results in images that present large areas of very dense
tissue.

Keywords: Bean hardening artifact · CT · artifact reduction methods · image
quality

1 Introduction

Artifacts present in computed tomography (CT) images are a serious problem that must
be addressed accurately and exhaustively, due to the high quality deterioration that they
can cause on the images. The term “artifact” is applied to any systematic discrepancy
between the Hounsfield Unit (HU) values in the reconstructed image and the true object
(tissue) attenuation coefficients.

The reconstruction technique assumes that all these measurements are consistent, so
any error will generally be reflected as an error in the reconstructed image [1]. Design
features built into modern CT scanners minimize some types of artifacts, while others
can be partially corrected by scanner software.

The effect of the beam hardening is one of the causes of different problems in CT
images. It causes a significant loss in the quality of these, since it can hide structures or
lesions and lead to a false negative diagnosis. This effect is due to the fact that, as the
X-ray beam penetrates the tissue, the less energetic photons are completely absorbed and
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thus the beam that passes and emerges has only the content of the highest frequencies
of the X-ray spectrum.

Currently, there are several ways implemented to minimize the unwanted effects
caused by the hardening of the X-ray beam, such as: bow-tie filtering, calibration cor-
rection and the use of correction software [2]. In recent years, multiple methods have
been developed with the aim of reducing the negative effects of beam hardening, such
as making corrections in the image domain [3], without requiring information on the
X-ray spectrum, nor on the type of material being scanned, or using beam consistency
conditions [4]. These methods have shown satisfactory results. Another approach is
the deduction of the tissue attenuation coefficient by a small number of measurements,
using a phenomenological model [5]. Furthermore, recent advances in the field of arti-
ficial intelligence have led to several studies involving neural networks [6–8], with very
promising results in terms of effectiveness. In the year 2021, through simulation and
then through tests with phantoms, an efficient solution was proposed [9], based on the
linear combination of two images. It reflects the characteristics of the beam hardening
during the transmission of the X-ray polychromatic beam through the material. In this
solution only the unknown parameter is fitted by linear optimization. New solutions also
appeared in simulations carried out with Monte Carlo [10], as well as other spectral CT
methods that allow the creation of virtual monochromatic images through computational
decomposition methods [11].

On the other hand, Metal Artifact Reduction (MAR) methods act on the projection
space by replacing corrupted projections caused by metallic or very dense structures
(generally implants), with interpolations from neighboring noncorrupted projections.
Variations of these methods have been devel-oped in order to improve their results,
amongwhichwe can find Linear InterpolationMetal Artifacts Reduction (LIMAR) [12],
Normalized Metal Artifact Reduction (NMAR) [13] and Image Smoothing Method for
Artifact Reduction (ISMAR) [14], among others.

The present work focuses on the reduction of the artifacts produced by the phe-
nomenon of beam hardening through the application of some MAR. For three well-
known metal artifact reduction methods, they were reprogrammed to bring them into
the context of beam hardening artifacts in general.

2 Material and Methods

2.1 Algorithms

The chosen methods were originally designed for the reduction of metallic artifacts in
CT images. The idea of adapting it to beam hardening problem comes from the presence
of metallic artifacts is the most extreme possible case of X- ray beam hardening.

In each computational algorithm implementation from eachmethod, it was necessary
to implement a new part of the code for its correct performance when dealing with the
phenomenon of beam hardening by non-metallic materials. It consists of the fact that
after the thresholding process, it was necessary to select the region of dense tissue that
produces the artifacts. This step is omitted in the original algorithms because, in the
case of images with metallic implants, the entire area of the implants is the cause of the
artifacts present in the image. This is not the case that occupies the present research,
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where the artifacts are produced only by some parts of the dense tissue. It is necessary
to clarify that the correct selection of the dense tissue that affects the image has a high
impact on the results of each algorithm.

The LIMAR method is based on a sinogram interpolation technique [12]. The algo-
rithm is based first on the generation of an initial image by reconstruction using FBP
and from this an image is generated that contains only the artifact through a thresholding
process; in the case of this investigation, what is segmented are the denser tissues (such as
bone) in the image. By projecting the image of the artifact (dense tissue) its sinogram is
generated. An artifact replacement sinogram is then generated by interpolating through
the shadow of the artifact on the original sinogram. Finally, using FBP in the artifact
replacement sinogram, a corrected image is obtained to which the previously segmented
artifact image is added. Figure 1 details the algorithm.

Fig. 1. Flowchart of LIMAR

The second method was NMAR [13]. Figure 2 shows a diagram that contains the
different algorithm steps of the NMAR method.

Fig. 2. Flowchart of NMAR

First, an uncorrected image is reconstructed using the raw data from the scanner.
Using a thresholding technique, an image of the artifact is obtained. In that experiment,
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the anterior image is calculated by segmenting soft tissue and bone. The projections
of each of these images produce their respective sinograms. The original sinogram
is normalized by dividing it by the previous image already projected, this division is
carried out by means of a positive value teps close to 0 as a threshold, to ensure that
a division by 0 is not made. Only the values close to the traces of the artifact need to
be normalized and denormalized, since only these contribute to the interpolation. The
normalized projections pnorm are then subjected to a MAR interpolation algorithm M.
Next, the corrected sinogram pcorr is obtained by denormalizing the already interpolated
and normalized sinogram, which is achieved by multiplying it by the values of the
projections pprior , as described in Error! Not a valid bookmark self-reference., where
p also corresponds to the value of the projections and Rf to the Radon transform of the
scanned object f.

pcorr = ppriorMpnorm = ppriorM
p

pprior
= Rf priorM

p

Rf prior
(1)

In this step, the structure information of the previous image is brought back to the
artifact traces. The multiplication and normalization process ensures that there is no
imbalance between the original data and the obtained data. After reconstruction, the
artifact image is inserted back into the corrected image.

The last method implemented was called ISMAR [14], which is based on the NMAR
method, described above, and adds a smoothing method to guarantee final images with
better defined borders of anatomical structures. Figure 3 shows a diagram with the
different steps, which consist of the segmentation of the traces of the artifact; generating
a preview image; the completion of the projection and reconstruction of the images and
the application of the smoothing method to obtain a more consistent final result.

To obtain the sinograms of the original, artifact and previous images, projection with
parallel beam geometry is used. The sinogram of the original image is then normalized
by dividing it pixel by pixel by the sinogram of the previous image. The interpolation
of all the values of the sinogram of the original image that coincide with the traces of
the artifact present in the sinogram of the image, is carried out following the method
described in [14]. This interpolated sinogram is denormalized, obtaining the corrected
sinogram, fromwhich the corrected image is obtained by using FBP, linear interpolation
and a ramp filter. To obtain a high-quality final image, the L0GM filter is used. This
highlights the edges and fine anatomical structures and removes minor artifacts that may
still be present.

2.2 Images

The set of images used comes from two patients (Images taken free from the internet,
which are anonymous) and from a physical phantom. The phantom image was used
to perform image quality calculations based on quantitative metrics. The images from
patients were used only to appreciate how each method performed under real conditions,
so it was subjected to visual inspection by a radiologist expert.

The physical phantom consisted of a 20 cm diameter cylindrical acrylic container.
The CT image used for this investigation corresponds to the container filled with water
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Fig. 3. Flow of ISMAR

(low contrast medium) and the insertion of three cylindrical objects, which simulate
bone regions. The three inserted objects have a diameter of 25 mm and are composed of
hydroxyapatite (HA-200), which is a mineral made up of alkaline calcium phosphate. It
was used because in the human body, this material constitutes 99% of the body’s calcium
and 80% of the total phosphorus. These characteristics allow it to be used to simulate
bone tissue.

The images used have a resolution of 512 × 512 pixels. Figure 4 shows both the
original slice image of the phantom and a real slice image from a patient. Beamhardening
artifacts are evident in both.

The selected methods were implemented in Matlab, and programming in its own M
programming language. The hardware used consists of a DELL Inspiron 3541 laptop
with a quad-core AMDA6 6310 processor, Cores at 1.8 GHz, a card with 8GB of DDR3,
RAM at 1333 MHz and AMD Radeon R4 Graphics video chipset.

Fig. 4. Images

2.3 Image Quality Metrics

Different 3 mm regions of interest (ROI) were selected on the phantom image, both the
original and those processed with each method, for the calculation of objective metrics
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of image quality, in which area ROI stand out on areas of useful information (1) and
areas on the beam hardening artifact (2), background ROI (3), and edge ROI (4) that also
serves to calculate theMTF (where a sudden contrast change is evident in an edge region
of the image). For each type of ROI, the average of the measurements was calculated.

In the selected ROI, several image quality measures were calculated, such as the
signal-to-noise ratio area (SNRA) in ROI 1 and 2, image contrast (Cima) using ROI 1
and 3, edge visibility (V) in the ROI 4 and 10% of theMTF (known as detection limit) in
the characteristic MTF curve, as an estimator of the spatial resolution that is lost when
running each method, (ROI 4) [15].

To assess the performance of the three beam hardening artifact reduction methods
tested in real conditions, a tomographic slice of a patient knee was used. The original
image with artifact and those processed by the three methods were used. These were
shown to an expert observer with more than 10 years of experience in Radiology. He
observed each image for an unlimited time, under the same viewing conditions (envi-
ronmental lighting level of 100 lx, the same monitor and distance to it of 50 cm). The
panel of a DELL Inspiron 3541 laptop was used, with AMD Radeon (TM) R4 Graphics
controller, which has a size of 15.6 inches, a resolution of 1366 x 768 pixels and a
depth of 32 bits. The observer did not know in each case if the image was original or
processed by each of the three methods, but was able to go back and forth to compare
the images as many times as needed. Each image was evaluated on an 8-point scale,
where: 8- No artifacts or distortion. 7- No artifact and slight distortion. 6- No artifact,
but very distorted. 5- With traces of artifacts and slight distortion. 4- With artifacts and
without distortion. 3- With distortion and new artifacts.2- With full artifact and great
distortion.1- Considerable losses of useful information.

Good image quality was defined as that in which, having eliminated or significantly
reduced the beam hardening artifact, the image contrast was maintained or improved
with respect to the original image, there was high visibility of edges, a low noise level
and good spatial resolution in general, coupled with a good subjective assessment of
image quality.

3 Results and Discussion

Table 1 shows the results of image quality metrics on the different ROI selected on the
phantom image.

Firstly, it can be seen that all the methods produce an increase in the SNR in the area
object, due to the fact that in the process of removing artifacts, noise is also removed
from the original image, a highly positive aspect from the point of view of improving
image quality.

The drastic reduction seen in the SNR and image contrast values in the areas affected
by the artifacts is due to the fact that in the original image these areas were covered by
dark bands on the background, and when processed, the methods eliminate the artifact,
leaving a minimal signal on the background. In essence, the trace of the artifact on the
sinogram has been removed, replacing its content with a more uniform one.

From the point of view of the image contrast in the area of the artifact, it is expected
that the method that works best is the one whose value in that area is close to 0, since
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Table 1. Objective metrics for image quality evaluation

Images SNR
Objet

Cima
Objet
(%)

SNR
Artifact

Cima
Artifac
(%)

Edge
Visibility

10% of
MTF

Original 16.031 ± 0.001 70.254
± 0.003

1.095 ± 0.855 18.863 ± 15.788 15.014 ± 4.163 0.61

LIMAR 27.711 ± 0.000 70.393
± 0.000

0.809 ± 0.803 2.424 ± 1.235 17.853 ± 5.576 0.44

ISMAR 28.213 ± 0.000 71.516
± 0.000

0.818 ± 0.079 3.096 ± 0.457 17.203 ± 3.887 0.43

NMAR 28.227 ± 0.000 72.480
± 0.000

0.274 ± 0.112 0.991 ± 0.509 15.746 ± 3.412 0.70

this indicates that when the artifact is removed, the signal that remains is similar to the
background signal. The method that best met this requirement was NMAR, from the
metrics point of view.

The visibility at the edges of the objects had improvement in each method with
respect to the original image, which is deduced from the thresholding process, in which
the image is segmented to define which part of it produces the beam hardening effect. In
this case, it was LIMAR that preserved the edges better, since, by reducing noise less, it
softened the images less.

Figure 5 shows the differentMTF curves for the original image and each one of those
processed by the three methods. Note the detection limit with a red line. In LIMAR and
ISMAR there were some frequencies for which low contrast content was not visible.

Fig. 5. MTFs Original (left up), LIMAR (right up), ISMAR (left down) and NMAR (right down)

In general, taking into account the results obtained by metrics, it can be verified that
the method with the best overall results in this experiment has been NMAR. This method
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provided results slightly superior to ISMAR for some variables and clearly superior to
LIMAR.

Figure 6 shows the original image and the processed ones. All three methods were
successful in removing beam hardening artifacts, with slight differences between each
of them. As a limitation of all, it should be noted that slight line artifacts were generated
on the background by smoothing the texture of the noise.

Fig. 6. Phantom images Original, LIMAR, ISMAR and NMAR.

In the subjective evaluation carried out by the expert radiologist, the original real
images received an evaluation of 4 points, the ones processed with LIMAR received 3
points, and ISMAR and NMAR 5 points.

Figure 7 shows the performance of the three methods on an original image with high
bone content. Beam hardening artifacts are generated on the surrounding muscle tissue.
Multiple artifacts of this type can be seen in the original image (represented by blue
arrows), consisting of dark bands. The observer considered that the original image has
artifacts, but not distortion. LIMAR discreetly softens the noisy texture of the image.
However, this method only reduced some of the original artifacts. On the other hand,
it produced new artifacts (yellow arrows) that are due to the process of thresholding
and subsequent unification of the image. ISMAR left traces of the original artifacts and
introduced some distortion by smoothing out the noise. This aspect must be adjusted by
optimizing the algorithm. However, a set of areas in the image where beam hardening
artifacts originally existed were adequately treated by the method. Red arrows indicate
regions where artifacts were successfully removed. In general, it can be argued that this
method reduced part of both dark and bright artifacts. Like the rest of the algorithms,
it generated line artifacts, but it did not generate any extraneous artifacts that might
mask the useful signal. NMAR regarding the removal of artifacts, had a visual behavior
slightly inferior to ISMAR, presenting the same drawbacks. However, in the opinion
of the expert, it was the one with the best overall performance because it managed to
better maintain the texture of the original background and the smoothing did not lead to
marked distortions.
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Fig. 7. Patient knee images: Original, LIMAR, ISMAR and NMAR

When an image is taken where the dense content is not as scattered as in the Fig. 8,
the results improve even more. Figure 8 shows a CT slice showing artifacts created by
the image of the vena cava on the surrounding organs and tissues. Note the performance
of each method.

Fig. 8. Patient CT slice: Original (left up), LIMAR (right up), ISMAR (left down) and NMAR
(right down)

Table 2 shows the computational cost of each algorithm per CT slice using the
hardware described above.

Table 2. Algortithm’s computational cost

Algorithms Time per image (min)

LIMAR 5

ISMAR 20

NMAR 25
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It can be seen that the implemented methods implied a high computational cost for
the computer and software used. If one takes into account that a complete tomography
can have between 60 and 120 slices, it can be seen that none of the proposed methods
could be executed under efficient clinical routine conditions, with hardware and software
similar to the one used in this research.

As a test, ISMAR has been run from Matlab on an Intel Core i5 computer, with
a 1.80 GHz CPU and 4 GB RAM. A time of 40 s per image was obtained, which
implies about 20 min of processing for a complete CT. Although this cannot yet be said
to be efficient under routine clinical conditions, it is a significant advance. The next
step in making methods efficient would be to pass them into a language like Python.
The justification for doing this is that the biggest problem with these methods is found
during the image reconstruction process, at the time of running the Radon transform
in Matlab, which is not optimal. Python, for example, has libraries focused directly on
image processing,which allow this transformation to be run in parallel for all projections,
significantly reducing computation times.

In the consulted scientific literature, there are methods that reduce the artifacts pro-
duced by the hardening effect of the X-ray beam, which take into account the high
amounts of dense regions that may appear in some CT slices [1–12, 16]. The success
of some of these methods lies in the estimation of the correct polychromatic spectrum
and in the use of novel techniques such as the incorporation of artificial intelligence
applications, simulations or virtual images.

The strategy adopted in this research of taking methods that have been successfully
tested to reduce metallic artifacts, which constitute an extreme example of beam hard-
ening, works well when the content of the dense region that causes the beam hardening
artifact is minor on the image or is concentrated in area. This follows the logic that, in
most cases of metal artifacts, the trace metal content in the images is very low, so the
thresholding and interpolation process is not a major inconvenience. This is not true in
all cases, when the beam hardening artifact is caused by dense tissue on soft tissue.

Some algorithms for reducing beam hardening artifacts are incorporated into the
software of the latest generation scanners, which is an advantage, because the image is
processed during the reconstruction itself, saving time. However, there is generally no
possibility to adjust them for use in different conditions, because the source code is not
free.

For the purposes of this research, the most effective variant found to remove beam
hardening artifacts was NMAR. The method works better the more concentrated in area
the generating zone of the artifact is. The ISMAR method performs as well for these
cases as NMAR in terms of artifact reduction, but smoothest the rest of the background
and useful signal content of the image to a greater extent. The LIMAR method did not
have good results in this investigation.

Future continuation of this work will be aimed at optimizing the NMAR and ISMAR
methods by including an additional thresholding technique, to avoid the loss of valuable
information on low-contrast tissue, as well as migrating the algorithms to a language of
free programming such as Python, which guarantees greater computational performance
and savings in terms of software licenses.
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4 Compliance with Ethical Requirements

The authors declare that they have no conflicts of interest among themselves or with any
institution.

Informed consent does not apply in this case since only an image of a physical
phantom and two public real anonymous and free images on the internet were used.

5 Conclusions

The three implemented methods manage to eliminate beam hardening artifacts.
The method that offers the best overall image quality results both from an objective

and subjective point of view is NMAR, with a similar performance to ISMAR in the
task of reducing artifacts, but superior in the signal-to-noise ratio, image contrast and
spatial resolution.

The methods studied do not provide satisfactory results in images that present large
areas of very dense tissue such as bone, due to the loss of useful information that is
produced by the flattening of the sinogram.
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Abstract. Independent component analysis (ICA) is an important tool
for recovering brain activity sources from electroencephalogram (EEG)
signals. It is a blind technique, hence does not require that reference
signals be available. Most ICA algorithms are considered, to a certain
extent, offline, as they demand parameter adjustment before the actual
filtering step in new data. Online Recursive ICA (ORICA) was proposed
as an adaptive algorithm that can estimate filter parameters in a real-
time manner. The approach has the advantage of being more capable
of tracking changes in brain dynamics and source changes. In this work,
we perform a comparative analysis of six offline ICA algorithms and
ORICA in the context of EEG signal preprocessing for motor imagery-
based brain-computer interfaces (BCIs). The experimental results show
that there was no significant difference between ORICA performance
and the best offline methods, validating the feasibility of its use in motor
imagery BCI.

Keywords: independent component analysis · blind source
separation · electroencephalography · linear discriminant analysis ·
classification · power spectral density

1 Introduction

Electroencephalography (EEG) signals can be used within a variety of setups
and applications. In the context of brain-computer interfaces (BCIs), different
paradigms make use of the brain physiology and behavior under distinct stimuli
[1]. The Motor Imagery (MI) paradigm is typically built around the premise of
a subject imagining movements of limbs or tongue while his/her brain electrical
activity is recorded. This activity is then classified and the motor task labels
are associated with the commands of the focused application [2,3]. Left- and
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right- foot, as well as arm imagery, are some of the most common MI instances
in the literature [4]. It should be noted that a setup of this kind can be used in
a Brain-Computer Interface to control either physical or virtual devices.

The brain patterns that occur when each task is performed are related to
specific brain regions. The MI task is associated with event-related desynchro-
nization or synchronization (ERD and ERS, respectively) in the motor cortex,
predominantly in the mu (8 Hz–13 Hz) and beta (13 Hz–25 Hz) bands. These
bands are defined frequency intervals in which the brain activity is detected,
and the amplitude of the recorded signals is affected by the task at hand. More-
over, since the neuron path is crossed at the medulla, the response of the left and
right-hand imagery can be seen in the contralateral hemispheres of the brain [5].

This physical separation of activities conditioned by the task being performed
can be used to the advantage of the control system in a BCI. This will result in
signals from certain electrodes containing more information about a certain task
than others. However, the electrodes record a combination of different brain
sources, since EEG has a low spatial resolution. Also, many other electrical
physiological processes can affect EEG recording, such as ocular, muscular and
cardiac activity. There are also non-physiological sources that can contaminate
EEG signals, such as line noise and movement artifacts.

Independent Component Analysis (ICA) can be performed via a family of
algorithms that have the goal of separating statistically independent sources
from a set of observed mixtures of them [6], and is recurrently used for MI-BCI
[7–9]. In general, it is assumed that the sources are linearly combined into each
observed signal, which allows separation by finding the inverse of this mixing
linear system. Each ICA algorithm may employ different assumptions about
the characteristics of the sources, and, as a consequence, may yield different
results. In a BCI application, we select the independent components (sources)
that contain more information about the task being performed. However, most
techniques assume stationarity of sources, which is not guaranteed in real EEG
data [10].

Online Recursive ICA (ORICA) is an online algorithm that whitens the
observed signals and finds the inverse of the mixing matrix with a Recursive
Least Squares algorithm [11]. With this approach, changes in source patterns and
non-stationarity can be addressed, since the ICA model is adaptively updated
using the natural gradient of the Infomax ICA rule while the forgetting factor
of the algorithm controls the adaptivity to new data and stationarity changes.

In this work, we evaluate the performance of the ORICA algorithm against
six offline ICA algorithms in two classes of MI-based BCI. Source separation is
used as a preprocessing step for the BCI, followed by feature extraction, fea-
ture selection, and classification by a machine learning method. We compare
these methods in terms of Cohen’s kappa [12], as it is the metric used in the
competition which the dataset is from.
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Fig. 1. Complete MI-based BCI pipeline.

2 Materials

2.1 Dataset

Our analysis were performed using the public database BCI Competition IV 2a
[13], which has open access and is widely used in Motor Imagery benchmarks.
This dataset contains two sessions of a set of motor imagery tasks. Each session
comprises 6 runs, each one with twelve trials of the four classes. This yields
288 trials per session, 72 for each MI task. The tasks are the imagination of
movement of left-hand, right-hand, both feet and tongue. In this work, we use
only the left and right-hand imagination tasks. Each trial begins with a beep
at t = 0 s, to capture the subject’s attention, then at t = 2 s a visual cue is
displayed on a screen display and stays for 1.25 s, which prompts the subject to
perform the movement imagination for 4 s. A diagram of the steps for each trial
is shown in Fig. 2.

The dataset was recorded using the international 10–20 system, with 22
EEG electrodes, with a sampling rate of 250 Hz. The signal is bandpass-filtered
between 0.5 Hz and 100 Hz, and a notch filter at 50 Hz is used to suppress line
noise. In addition, three EOG channels were recorded using the same setting.
Apart from the MI runs, there was also an approximately 5 min session of EOG
data collection that contained three blocks: two minutes with eyes open, one
minute with eyes closed and one minute with eye movements.

In our experiments, this first session was used for adjusting the offline ICA
methods and for warm starting the ORICA algorithm, selecting the best fea-
tures (with the strategy explained in Subsect. 2.5) and training the classifier.
All metrics reported referring to the test set, were not used during the train-
ing stage. The pipeline shown in Fig. 1 is done for each subject individually,
characterizing an intra-subject training protocol. For each subject, each ICA
algorithm is run ten times for the algorithms with stochastic design and one
time for the deterministic methods, so average metrics can be calculated with
confidence intervals.
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Fig. 2. Data acquisition protocol, adapted from [13].

2.2 Independent Component Analysis

Independent Component Analysis (ICA) can be defined as the problem of recov-
ering a number of sources (or independent components), a set of mutually inde-
pendent random variables, from a set of mixtures/observations. In the linear
case, the mixed observed variables x can be expressed as x = As, where s are
sources that have been mixed, A is the mixing matrix of the model, in matrix
notation. Only x is observed, with A also being unknown, and the goal is to
estimate both A and sources s. Generally, the sources and observed variables are
random vectors, and some ICA methods do not explore the time structure of s
and x, while other do.

We compare many offline ICA methods to the online approach. The Info-
max [14] algorithm has the objective of extracting sources that have the least
Mutual Information and has an “extended” variant [15] that was designed to
better separate sub and super-gaussian sources. The Second-Order Blind Iden-
tification (SOBI) method [16] separates the sources with the constraint of the
covariance matrices between sources being similar to the identity matrix (uncor-
related sources). The method called Joint Approximate Diagonalization of Eigen-
matrices (JADE) tries to diagonalize the fourth-order cumulant tensor of the
estimated sources [17] and can be seen as a non-linear decorrelation. Fast ICA
is a fixed-point method that assumes that sources are non-Gaussian and finds
the unmixing matrix that maximizes source non-Gaussianity, represented by the
absolute value of the signal kurtosis. Picard (Preconditioned ICA for Real Data)
[18] approximates the Hessian of the log-likelihood function for preconditioning
the numerical optimization and has the same optimization objective as the Info-
max algorithm. For all ICA methods we assumed that the number of independent
components is the same as the number of channels (represented by N).

Infomax, Extended Infomax, FastICA and Picard are stochastic i.e. they use
random initialization states which makes them yield different results each time
they are used. On the other hand, SOBI, JADE and ORICA do not have this
stochasticity.

2.3 Online Recursive Independent Component Analysis (ORICA)

ORICA is a recursive algorithm for incremental estimation of independent com-
ponents [11], based on the natural gradient of Infomax. An online algorithm has
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the advantage of adapting to source nonstationarity, with a lesser need for prior
parameter adjusting. Hsu et al. [19] proposed a block update rule for the origi-
nal algorithm that can increase processing speed without sacrificing performance
and used it together with a recursive least squares (RLS) whitening algorithm.
This online whitening improves the ICA convergence, and removes the need for
a prewhitening step that generally is needed for ICA.

The recursive whitening method is followed by the recursive source separa-
tion [19]. The sources ŝi are recovered using Eq. 1. In this equation Mi is the
whitening matrix, Wi is the source separation matrix, the i index indicates the
iteration number, and both matrices are iteratively updated. Firstly, the sig-
nal is whitened, so the goal is to find Wi and Mi so that ŝi = Wi · vi, where
vi = Mi · xi, ŝi is the sources estimate (or independent components, ICs) and
xi is the recorded multi-channel EEG.

ŝi = Wi · Mi · xi (1)

The whitening matrix Mi is calculated using an RLS algorithm that decorre-
lates dependent signals [20]. The whitening matrix update rule is shown in Eq. 2.
In this equation μi is the forgetting factor.

Mi+1 = Mi +
μi

1 − μi

[
I − vi · vT

i

1 + μi(vT
i · vi − 1)

]
Mi (2)

The unmixing matrix Wi is iteratively updated using Eq. 3. In this equation
ŝi = Wi ·Mi ·xi, i is the time index, and f is a component-wise nonlinear function
that depends on source assumptions. For separating supergaussian sources, a
typical choice is f+(x) = −2 · tanh(x), and for subgaussian sources, the typical
nonlinearity would be f−(x) = tanh(x)−x [11]. ORICA assumes a fixed number
k of supergaussian sources, and for k independent components (IC) estimates
f− is applied, while f+ is used for the other N − k independent components.

Wi+1 = Wi +
μi

1 − μi

[
I − ŝi · fT (̂si)

1 + μi(fT (̂si) · ŝi − 1)

]
Wi (3)

The block update rule proposed in the literature [19] for the original ORICA
is a modification to Eq. 3, so it can be run in batches of time samples, leading to
an approximate algorithm that has improved speed. This update rule is shown
in Eq. 4.

Wi+L ≈
(

i+L−1∏
l=i

1
1 − μl

)
·
[
I −

i+L−1∑
l=i

ŝl · fT (̂sl)
1−μl

μl
+ fT (̂sl) · ŝl

]
Wi (4)

After each W update, the orthogonal transformation shown in Eq. 5 is applied
to it to guarantee orthogonality. In this equation D is a matrix containing the
eigenvalues of Wi+1W

T
i+1 in its diagonal and E is a matrix containing the eigen-

vectors of Wi+1W
T
i+1.

Wi+1 ← (DE− 1
2 D−1)Wi+1 (5)
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The parameter μi represents the forgetting factor of the algorithm, and it
adjusts the weight that newer samples have in the W matrix update. We used
a cooling heuristic [19] for adjusting this value, as shown in Eq. 6. In this equa-
tion, i is the iteration number, μ0 is a chosen initial value for μi and η is a
cooling factor. Lin et al. [21] applied the ORICA algorithm for separating elec-
troencephalography (EOG) artifacts from EEG, and used η = 0.6, μ0 = 0.995
and L = 8. We used the same values in the training phase since EOG is one
of the main contaminants in EEG signals. For the testing phase, it was set to
μi = 0.001 to simulate a real application scenario and mitigate the problem with
the cooling heuristic in which μi → 0 when i → ∞.

μi =
μ0

iη
(6)

2.4 Feature Extraction

Hand MI produces short-lasting event related desynchronizations (ERD) in the
mu (8–13 Hz) and beta (13–25 Hz) bands in the motor cortex (parietal-lobe).
This activity in these specific bands is important for MI-based BCI systems,
since it can be originated in the sensorimotor cortex [2], and thus can be used
to infer if an imagination event is happening. The activity magnitude in each
band can be estimated using a frequency analysis of the signal, and used for the
motor-imagery paradigm [2]. In this work, we use Welch’s method for spectral
power density estimation over these bands, which can be formulated as in Eq. 7.

Ŝ(ω) =
1

KNHU

K∑
k=1

∣∣∣∣∣
NH∑
n=1

H(n)x(n + kD)e−jωn

∣∣∣∣∣ (7)

In this equation, K is the number of segments of length NH that the signal
x is segmented, each one shifted by D points. H(n) is a window function and
U is defined as in Eq. 8. It can be interpreted as the average spectral density
over smaller windows of the original signal. We used a NH = 1 s window, with
D = 250 ms, windowed with a Hamming window.

U =
1

NH

NH∑
n=1

|H(n)|2 (8)

The power over the mu and beta bands are averaged, yielding two values.
This process is done for every estimated EEG source, yielding a feature vector
of 44 values.

2.5 Feature Selection and Classification

Feature selection is made by using a wrapper [22]. This strategy works by itera-
tively adding features to the selected feature set, in a hill-climbing (greedy) way:
each iteration a feature is added based on some performance metric of a model
that uses this feature, in contrast to one that doesn’t. The general algorithm
works as follows.
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1. Let S = {} be the selected feature set and F = {f1, f2, ..., fNf
} be the complete

feature set.
2. For each feature fi in F, get it’s score by running a classification training task

(using cross-validation) using features S ∪ {fi}.
3. Add the feature with the best score to S and remove it from F.
4. Repeat 2) and 3) until S has the desired cardinality Kmax or the score stops

improving.

Feature’s scores were calculated as the average Cohen’s kappa metric that a
Linear Discriminant Analysis (LDA) classifier achieves when training with S ∪
{fi} in the K-fold scheme, with four-folds.

The selected features are used in another classifier as predictors, to predict the
respective MI task. In our pipeline, the number Kmax of selected features was a
training hyperparameter, which was optimized using a four-fold cross-validation
over the training set. Then the final classifier is retrained in the entire training
set, and evaluated in the test set. We used Linear Discriminant Analysis (with
the singular vector decomposition solution) for both the wrapper and classifier,
since it is one of the most used classification algorithms in BCI systems for their
simplicity and low computational cost [23]. This machine learning technique
consists in finding a hyperplane that best separates a set of n-dimensional points,
by maximizing intra-class variance and minimizing inter-class variance.

3 Results

Figure 3 shows the Cohen’s kappa classification metric for each ICA preprocess-
ing, for each subject of the test database. The height of the bars represents
the average kappa (for the deterministic ICAs, it corresponds directly to the
Cohen’s kappa). The black line above the bars indicates the bootstrapped con-
fidence interval, and the presence of the red asterisk, below each bar, indicates
that the kappa is significantly smaller than the best method for each subject.
The bar labeled “None” indicates that no source separation was performed i.e.
feature extraction was performed over the raw EEG signals, and serves as a base-
line. Method “ORICA (0)” refers to ORICA assuming 0 subgaussian sources and
“ORICA (1)” assumes 1 subgaussian source.

For Subjects 5, 7 and 8, ORICA was the best performing method. For Subject
9, it was the second-best performing method, and for Subject 2, it was statisti-
cally equivalent to the best method. For Subjects 1, 3, 4 and 6, ORICA presented
a performance significantly lower than the best method. Figure 4 shows the sum-
marization of the methods that had the best kappa (indicated in the bars), for
each subject.
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Fig. 3. Kappa for each subject using the eight ICA approaches and the case without
ICA.

Fig. 4. Best performing ICA method for each subject.

Table 1 shows the average and standard deviation of the kappa metric over
all subjects for each method, and the p-value for the paired two-sided Wilcoxon
test with the null hypothesis that the distribution medians are equal, comparing
all algorithms with ORICA (0) (for being the online method that had the highest

Table 1. Average kappa and standard deviation for each ICA method.

Algorithm Mean SD p-value

None 0.290 0.291 <0.001

SOBI 0.290 0.275 <0.001

JADE 0.304 0.210 <0.001

ORICA (1) 0.372 0.316 <0.001

Infomax 0.456 0.279 0.898*

FastICA 0.457 0.293 0.919*

ORICA (0) 0.461 0.253 –

Ext. Infomax 0.462 0.290 0.997*

Picard 0.476 0.279 0.707*



310 P. Viana et al.

average kappa). We conclude that ORICA was statistically equivalent to 4 out
of the 5 top methods (indicated by an asterisk), with no statistical difference to
Picard, the best average-performing ICA in terms of kappa.

4 Conclusion

The algorithm ORICA was shown to be a robust online method for source sepa-
ration when compared to some common offline ICA algorithms. Offline methods
need a reliable set of EEG recordings to estimate the unmixing matrix, which
is kept unaltered during signal filtering. This could lead to errors as time passes
since the brain is not a stationary system and changes in source behaviours
could affect the filter performance. The online method has the advantages of
being adaptive to nonstationarities, changes in EEG statistics and being sub-
ject agnostic, since the same algorithm is applied to every subject. It requires
more computational resources than the offline methods during inference/filtering
phase (since it requires the extra steps of updating both whitening and unmix-
ing matrices), but more performative implementations and dedicated processing
devices could be used. In our experiments we show that feature extraction and
classification modules performances were equivalent to the offline methods, being
the top 3 best average kappa.

Future research paths include an ablation study on how the ORICA hyper-
parameters (number of assumed subgaussian sources and block size) affect the
source separation and the MI-based BCI performance, use of the adaptive for-
getting factor proposed in [10], use of ORICA in MI tasks with a higher number
of classes and electrodes, and analysis if ORICA could applied to different BCI
paradigms.
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Abstract. In computer-aided diagnosis, many solutions based on Deep Learning
were developed, but few were deployed in real environments due to the lack of
transparency from intelligentmodels to humans. Thereafter, ExplainableAI (XAI)
techniques were developed to evaluate image regions with prominent influence
in the decision model. In this paper, we present CAM and Grad-CAM, two XAI
techniques for image classification. Particularly, we have evaluated them for inter-
pretation of COVID-19 classification of CT images using Convolutional Neural
Networks. For the classification task, we have built models with MobileNetV3,
VGG-16, VGG-19, and ResNet50 using transfer learning. CT images from the
Large COVID-19 CT Scan Slice Dataset were used in training and test sets. This
dataset is composed of more than 17,000 CT slices labeled into three classes:
covid, pneumonia and normal. This work contributed by proposing a quantitative
evaluation based on Jaccard Coefficient and a proposed metric of Coverage Ratio.
The metrics aim to compare the XAI regions of interest to the gold standard anno-
tated regions by specialists. We have used another database, the COVID-19 CT
Scans Dataset, for XAI evaluation. This dataset contains the regions of potential
COVID-19 infection, annotated by a specialist committee. For the classification
task, the MobileNetV3 model had accuracy of 97.94% and F1-Score of 98.29%.
We have evaluated both XAI techniques, which yielded up to 0.7164 and 0.3105
of Coverage Ratio and Jaccard Coefficient, respectively, for CAM (MobileNetV3
classifier).Andup to 0.6847 and0.2923ofCoverageRatio and JaccardCoefficient,
respectively, for Grad-CAM (ResNet50 classifier).

Keywords: Explainable AI · COVID-19 · Convolutional Neural Networks

1 Introduction

CoronavirusDisease 2019 (COVID-19) is a severe acute respiratory syndrome caused by
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), whose symptoms
range from respiratory distress to multiple organ failure. Due to the high transmission
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rates, there was an urgent need to create new techniques and tools for prediction, detec-
tion, and accurate and early diagnosis [1]. Computational solutions to support medical
diagnosis are very common, especially in the image processing field. Also according to
[1], Computed Tomography (CT) images analysis has shown relevant features regarding
theCOVID-19 contamination detection task. It indicates a potential for automatic images
classification systems, in which Deep Learning techniques, especially Convolutional
Neural Networks (CNN), represent the state-of-the-art.

The main difficulty in this scenario, which delays the deployment of intelligent
systems in real environments, is the lack of transparency to the specialist regarding
the information processed by the computational model to reach a conclusion. Most
works that approach classification of CT images to support the COVID-19 diagnosis,
as observed in [2], applies the classifier model as a black box, i.e., no information other
than the predicted class is provided. This represents a serious problem regarding the
system’s credibility.

According to [3], a computationalmodel, to supportmedical diagnosis,must be trans-
parent, understandable and explainable to gain the confidence of specialists. Explainable
AI (XAI) has a fundamental role in ensuring safety, ethics and reliability in the use of
Artificial Intelligence based solutions.

According to [3], Class Activation Mapping (CAM) and Gradient-weighted Class
ActivationMapping (Grad-CAM) are two of the most common techniques in XAI appli-
cations of medical imaging. These techniques analyze the behavior of CNNs through
feature maps extracted in the convolutional layers from a given input image. Thus, the
objective of these techniques is to identifywhich featuremaps have the greatest influence
on the network classification.

The main medical imaging modalities used for lung analysis are: X-Ray Projection
Radiography and X-Ray Computed Tomography (CT). CT provides a more complete
representation, as it extracts several axial images (slices) from the lung. [4, 5] presents
the use of CAM and Grad-CAM in the identification of nodules in lungs and to support
the diagnosis of COVID-19 from CT images, respectively.

This work aims to analyze and evaluate the behavior of CT images classifier mod-
els and provide heatmaps for the original images using CAM and Grad-CAM. These
heatmaps represent the main regions analyzed by the model during the inference. A sim-
ilar work is presented in [1], which implements a classifier model based on the canonical
CNN architecture InceptionV3 and applies Grad-CAM to generate the heatmaps.

This paper presents canonical architectures of CNNs using Transfer Learning for
a supervised learning with the CT image classification task. This work contributes by
proposing a quantitative performance evaluation for CAM and Grad-CAM. This pro-
posed evaluation method is based on the comparison between the obtained results from
XAI techniques and the gold standard annotated by specialists using Jaccard Coefficient
and a proposed metric called Coverage Ratio. To the best of our knowledge, there is no
other work that presents a quantitative evaluation for this task.

The remaining of this work is organized as follows. Section 2 presents the related
works. Section 3 describes the materials and the proposed methods. Section 4 presents
the results and discussions. Finally, Sect. 5 concludes the work and presents ideas for
future work.
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2 Related Works

The use of Artificial Intelligence techniques in medicine has achieved promising results,
especially in computer vision tasks, in which Deep Learning approaches have predomi-
nated, as pointed out by [6]. Most studies in the field of computing applied to medicine
involve medical data analysis in attempt to identify patterns and, finally, provide a pre-
diagnosis that has an adequate level of certainty, as occurs in [7–9] for different medical
imagingmodalities. In [3], the authors comment that the main reason for the lack of tools
in production environments is the lack of interpretability of the Artificial Intelligence
based models. The main studies involving interpretability and classification of medical
images identified in [3] present models based on CNNs for the most varied tasks and
medical imaging modalities.

For the identification of lung diseases, it is no different. Reference [5], for example,
presents the development of a 3D-CNN for nodules detection on complete pulmonary
CT images. The interesting thing about this approach is that each CT, i.e., each set of
slices, is treated as a 3D image, and the CNN extracts volumetric characteristics from
the image, which enhances the model in the search for the identification of nodules.
Three canonical models of CNN are presented and the results indicate an improvement
of about 10% compared to the same model in its 2D version. Grad-CAM, besides being
useful in model validation by verifying if the model considers coherent image volumes,
is also used to detect the region where the nodule is located.

In [4], the development of a Deep Learning model for detection of COVID-19 cases
from chest CT images is presented. Themain contribution of their work is in the elabora-
tion of a network architecture with high architectural diversity and selective connectivity,
using a projection-expansion-projection pattern. Thismakes the network reach the repre-
sentation capacity with less effort, without increasing the need for computational power.
The result is a model that is more efficient and at the same time competitive in perfor-
mancewith state-of-the-art models. This result proved to be consistent, achieving similar
results to ResNet50.

Reference [1] presents the development of a classifier based on CNN for classify-
ing CT lung images to verify the existence of contamination by COVID-19. The main
contribution of [1] is the creation of a database, with examples from 13 medical centers
spread across the planet, containing complete CTs of 3,529 different patients who tested
positive for COVID-19. The authors do not go into details regarding the implemented
neural networks, but the results seem to be consistent and competitive for the slices
classification task, which is due to the fact that the database is larger than those found
in other works. Unfortunately, this database has not yet been made publicly available.
An interesting point is that the Grad-CAM technique, in addition to being used for a
subjective evaluation, is also used to evaluate the evolution of patients cases. Thus, CT
images were periodically collected from patients, and the infected areas were compared
using the heatmaps generated by Grad-CAM to evaluate if there was an improvement
or aggravation of the case. Heatmap is a data visualization technique that allows rep-
resenting the importance of regions of an image through color highlighting: regions of
greatest interest are highlighted by warmer colors and those of lesser interest by colder
colors.
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The main disadvantage identified in the cited references is in the subjective form
of evaluation of the XAI techniques. This makes comparison between studies difficult.
After analyzing related works, it is possible that the best performance for the task of
classifying CT images for detection of COVID-19 must come from an intelligent model
that analyzes the image three-dimensionally, as with the task of identifying pulmonary
nodules. However, the slice classification approach (with two-dimensional images) was
chosen for this work due to the lack of public databases with enough examples to
adequately conduct the training of a 3D-CNN.

3 Materials and Methods

3.1 CAM and Grad-CAM

The XAI techniques used in the development of this work were CAM and Grad-CAM.
The CAM performs a weighted arithmetic mean of the feature maps of each core of
the last convolutional layer with the weights that activated the output class [10]. The
result can be represented by a heatmap. The warmest regions indicate the main regions
of the image that influenced the classification of the network. Grad-CAM [11] seeks to
generate a heatmap by calculating the Rectified Linear Unit (ReLU) of the gradients
obtained in the last convolutional layer. Thus, all gradients that do not contribute to the
predicted class are set to zero [11]. As well as in CAM, considering that convolutional
layers preserve the spatial information of the original image, these regions obtained in
the last layer can be extrapolated to the input layer and converted into a heatmap.

3.2 Experimental Data

Two CT image datasets were used to conduct the proposed experiments. The first one is
the Large COVID-19 CT Scan Slice Dataset [12]. This dataset consists of a collection
of 17,104 slices from 1,130 patients, divided into three classes: “COVID” with 7,593
samples; “NORMAL” with 6,893; and “PNEUMONIA” with 2,618. Each slice has
dimension 224x224, where each voxel is quantized into 8 bits. These data were collected
from 13 European and Asian countries. 59% of the images are from male patients; 32%
from female patients; and 9% of the data did not contain gender information. The mean
age is 51.2, 52.8, and 64.3 for COVID-19, Normal, and Pneumonia cases, respectively.

This dataset is appropriate for the classification task, as it already presents the nec-
essary labels for supervised learning. Thus, this dataset was used to create the classifier
model. To ensure the proper conduction of the training of the classifier models, the
Large COVID-19 CT Scan Slice Dataset was further artificially augmented following
Data Augmentation techniques [13]. TheAugmentation operations were: horizontal flip;
20% zoom; and 30° rotation.

For the evaluation of CAM and Grad-CAM techniques, the COVID-19 CT scans
dataset [14, 15] was used. It consists of 20 complete CTs from patients with COVID-19.
Each example contains 301 slices of dimension 512x512, where each voxel is quantized
into 12 bits. The main advantage of using this database to evaluate the XAI techniques is
that all slices of all the examples went through a committee of specialists who performed
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a segmentation on the images, identifying the lungs and the potential regions of infection.
These regions are called Gold Standard Regions of Interest (GSROI ).

Thus, in addition to a subjective evaluation of the XAI techniques performance, it is
possible to perform a quantitative analysis, by comparing the warm area of the heatmap
and the GSROI . For this analysis, the Jaccard Coefficient and Coverage Ratio metrics
were used, as described in Subsect. 3.3.

3.3 Solution Pipeline Description

The machine learning approach consists of a supervised learning with multiclass clas-
sification task into the classes “COVID”, “PNEUMONIA”, and “NORMAL”. For this,
the Large COVID-19 CT scan slice dataset was used. First, the training and test sets
were defined through a 80/20 holdout partition in the database, in which 80% of the data
was used as a training set and 20% as a test set. This partition was applied to the number
of patients, not the number of slices. In this way, it can be guaranteed that images from
a same patient were not used in the training and test phases simultaneously. According
to this partition policy, the training set was composed of 13,550 slices and the test set
by 3,554. Then, the Data Augmentation technique was applied to generate more train-
ing data examples, as explained in Subsect. 3.2. In addition, 20% of training set was
reserved as validation set, which was used at the end of each epoch to fine-tune themodel
hyperparameters and thus avoid bias. Therefore, for each trained model, the training set
was presented along with the labels. So that the model parameters could be fitted, in the
attempt to map the input data to the output data. At the end of training, test data was
submitted to it, and their respective predicted outputs were compared with the desired
outputs. Thus making it possible to evaluate the model performance. The performance
metrics used were: Accuracy; Precision; Recall; and F1-Score.

The implemented classifiermodelswere basedon the canonicalCNNsMobileNetV3,
VGG-16, VGG-19, and ResNet50 using Transfer Learning [16], i.e., the convolutional
layers, responsible for extracting features from the images, were maintained with the
weights obtained from ImageNet training, and only the last convolutional layers and
dense layers, directly responsible for the classification, had their weights fitted. The
hidden dense layer blocks were unified for all models and were composed of 4 dense
layers with ReLU activation function and 1024, 512, 128 and 64 neurons, respectively,
interleaved by dropout layers with 20% rate. The output layer activation function was
Softmax. Models were trained for 100 epochs, with batch size 8 and ADAM optimizer.
Python programming language was used to implement these simulations using Keras
framework with TensorFlow backend. Other implementation details and full code are
available at [17]. Thedevelopment environment specifications are: i7-8750HCPU;16GB
RAM; and NVIDIA GTX 1050 ti GPU.

Figure 1 illustrates the Explainable AI phase. In this phase, the COVID-19 CT Scans
dataset were used. This dataset contains, in addition to the CT images and their labels,
the GSROI . An evaluation of the classifier was done in a similar way to the test phase.
The images were submitted to the classifier and the respective obtained outputs were
compared to the labels by calculating the accuracy. In thisway, it was possible to compare
whether the results remain robust.
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Fig. 1. Block diagram of the model and XAI techniques evaluation.

For each image, the classifier prediction and the gradients generated by the last con-
volutional layer were submitted to the Explainable AI CAM and Grad-CAM algorithms.
Then, CAM and Grad-CAM generated the heatmaps. To compare the obtained results
by the XAI algorithms, a XAI Region of Interest (XAIROI ) was calculated from each
heatmap. For that, the heatmaps were normalized to 0 to 1 range. Then, a binarization
with threshold 0.8 was applied. The resultant region is called XAIROI .

Once all XAIROI were obtained, they were compared to the GSROI of the images
and evaluated with the metrics: Jaccard Coefficient (JC) and Coverage Ratio (CR). JC
is a very common metric for object detection and image segmentation tasks. It relates
the intersection and union of obtained regions (XAIROI , in this case) and target regions
(GSROI , in this case) according to the equation

JC(GSROI ,XAIROI ) = GSROI ∩ XAIROI
GSROI ∪ XAIROI

· (1)

As it is not a segmentation task, but an analysis of the region that influenced a
classification, it is been proposed a metric that calculates the coverage ratio of theGSROI
by the XAIROI , i.e., the proportion of the target region found by the obtained region. This
metric was called Coverage Ratio and is described by the equation

CR(GSROI ,XAIROI ) = GSROI ∩ XAIROI
GSROI

· (2)
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4 Results and Discussions

4.1 Classifier Performance

After the training set was presented to the model, the test set was presented to the model
and the obtained outputs were compared to the desired outputs and the performance
metrics were calculated in order to verify the neural weights fit. The results of this
analysis are presented in Table 1.

Table 1. Test set classification results.

Classifier Accuracy Precision Recall F1-Score

MobileNetV3 0.9794 0.9832 0.9827 0.9829

VGG-16 0.8729 0.8875 0.8747 0.8810

VGG-19 0.9322 0.9621 0.9188 0.9400

ResNet50 0.9660 0.9732 0.9735 0.9733

The neural network based on MobileNetV3 obtained an accuracy of 0.9794 and
more than 0.98 for precision, recall and F1-Score. The F1-Score is the most robust
metric among those chosen, as it is the harmonic mean between recall and precision.
The MobileNetV3 F1-Score value indicates that the generalization power of the models
remained consistent even for data from outside the training set. It characterizes the
training as well conducted. In addition, the accuracy values proved to be similar to state-
of-the-art works presented in Sect. 2. [1] achieved 0.80 of accuracy and [4] presented
results between 0.983 and 0.991 of accuracy. The comparison was made for works with
different datasets. [1] used a private dataset and [4] presented a similar dataset to the one
used in this work. Therefore, this dataset was considered appropriate to this task.

VGG-16 has the simplest architecture among the models, which justifies its inferior
result. The other models present similar results, including VGG-19, which presents an
architectural evolution in relation to the VGG-16. It means that there is a relationship
between the model architecture and the model performance. Finally, it is concluded that
the MobileNetV3 convolutional block was the best feature extractor among the tested
models for this task, as it achieved the best results regarding all metrics.

4.2 XAI Techniques Performance

For XAI techniques performance analysis, Jaccard Coefficient and Coverage Ratio met-
rics were used. Table 2 presents the results achieved by CAMandGrad-CAM techniques
for each classifier. In addition, the classification accuracy for the evaluation dataset was
also calculated, in order to verify the classifiers’ robustness. The obtained accuracy was
0.991 forMobileNetV3; 0.963 for VGG-19; 0.957 for ResNet50; and 0.915 for VGG-16.
These results indicate that the classifiers remained consistent even for examples from
outside the training and test sets.
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Table 2. Results regarding the evaluation metrics obtained by comparing the Regions of Interest
obtained by the heatmaps and segmented regions of the image.

Classifier XAI Technique Jaccard Coefficient Coverage Ratio

MobileNetV3 CAM 0.3105 0.7164

Grad-CAM 0.2852 0.6697

VGG-16 CAM 0.2731 0.5845

Grad-CAM 0.2880 0.6092

VGG-19 CAM 0.2909 0.6679

Grad-CAM 0.2813 0.6517

ResNet50 CAM 0.2994 0.6932

Grad-CAM 0.2923 0.6847

Individually, it is clear that there is not a considerable difference between the CAM
andGrad-CAM techniques, as they presented similar results for eachmodel. The Jaccard
Coefficient presented results between 0.27 and 0.32. This is an expected result, since
the Jaccard Coefficient relates the region of intersection between the GSROI and the
XAIROI with their respective union. Thus, the Jaccard coefficient is sensitive to some
XAIROI construction factors, such as the image resolution. As XAI techniques analyze
the gradients of the last convolutional layer to generate the heatmap, this information
is generated based on a matrix considerably smaller than the original. In this case, the
images were submitted with a dimension of 224 × 224, and the analyzed gradients
had dimension 8x8. It means that the heatmap is generated for an 8x8 image, and then a
dimensional increase is performed and, as the convolutions conserve spatial information,
the heatmap holds information referring to the original images. This way, edge details
are lost, which makes the difference between union and intersection of the GSROI and
the XAIROI increase, causing the Jaccard Coefficient of the models to have low results.
On the other hand, the precision Coverage Ratio is concerned with verifying whether
the GSROI belongs to the XAIROI . By using this metric it is possible to perceive that the
models are strongly influenced by the regions where there are indications of infection in
the lung to perform the classification, which adds greater credibility to the classifiers.

Figure 2 illustrates the heatmap generation process. From the heatmap generated for
the gradients (Fig. 2A) an interpolation with smoothing is applied to obtain the heatmap
for the original image (Fig. 2D). The XAIROI is generated by binarizing the normalized
Fig. 2D with threshold 0.8. From Fig. 2 it is possible to see that the low dimension of the
original heatmap directly influences the definition of XAIROI . Even containing a good
part of the GSROI (Fig. 2C), XAIROI has many false positives, i.e., pixel that belong
to XAIROI , but do not belong to the GSROI . It explains the low values for the Jaccard
Coefficient and high values for the Coverage Ratio.
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Fig. 2. Heatmap generation process. (A) Heatmap generated for 8X8 gradients; (B) Original
image of patient with COVID-19. (C) Infection mask to be used in the comparison; and (D)
CAM-delimited ROI applied to a MobileNet-based model, which will be compared with (C).

Figure 3 presents some heatmaps of correctly classified samples, in which it is
noticed that there is a behavior pattern of the heatmap for each class. Figure 3A shows
the regions of greatest intensity of the heatmap in the periphery of the lung along with
the region that appears to have an infection. This is an expected result, as it is common
for COVID pneumonia to manifest mainly in the peripheral and subpleural regions [18].
Non-COVID pneumonia cases (illustrated by Fig. 3B) present large heatmaps that, in
most cases, cover a large area of the lung. It can be explained by the manifestation of
Non-COVID pneumonia occupy a large region of the lung in the presented data. For
normal cases (Fig. 3C) the regions of greatest intensity appear outside the lung region.
It indicates that the network considers healthy lung cases in which no characteristic in
the lung area makes a strong contribution to the classification.

Thus, it can be concluded that the networks obtained a good generalization, mainly
for the classification task, however, theywere not able to determine well-defined patterns
in the image as expected, i.e., the XAIROI is much larger than the GSROI , although in
the most of the times XAIROI contain it. This behavior is evidenced by the high values
of the Coverage Ratio. A considerable increase in the training database should improve
the feature extraction by the network and, therefore, improve the results obtained for the
evaluation of XAI techniques.

Fig. 3. Heatmap generated by Grad-CAM technique based on MobileNetV3 model. (A) COVID
sample; (B) Pneumonia sample; and (C) Normal sample.
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5 Conclusion

Thework presented competitive results to the state-of-the-art regarding the classification
task. The canonical networks proved to be powerful and capable to classify CT images
from features extracted by the convolutional layers with static weights resulting from
the ImageNet training. The use of the MobileNet architecture also facilitates the use of
the model in embedded systems such as medical devices, which is an advantage in the
context of automatic classification of medical images. On the other hand, the XAI task
still has a great potential for improvement. Despite a high Coverage Ratio, it presents
many false positives, which can be interpreted by the low Jaccard coefficient achieved.

For future work, some tests should be carried out in order to improve the results
for the XAI task, such as the use of images with higher dimensionality; more robust
architectures; training of all convolutional layers; expansion of the database; etc. These
solution attempts demand greater computational power to be tested, but they must reach
evolution in the presented results. In addition, the contribution of the work regarding
the evaluation methods of XAI tasks allows that future works can be quantitatively
compared, and, thus, document more faithfully the advances in this research field.
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Abstract. This work presents a method for automatic heartbeat classi-
fication based on principal component analysis and a convolutional neu-
ral network on ECG signals. We developed a database holding the first
ten principal components and the relative RR intervals of P-QRS com-
plexes from the MIT-BIH Arrhythmia Database patients. The convolu-
tional neural network was used to obtain a model for classifying heart-
beats based on this database. This model was tested and compared to
other algorithms existing in the literature, and the results evidenced the
relative advantages of the method.

Keywords: heartbeat classification · Principal Component Analysis ·
Convolutional Neural Network · signal processing

1 Introduction

The electrocardiogram (ECG) allows the representation of the heart’s electric
activity, presenting the contraction and the relaxation of normal cardiac muscle
[1]. The ECG is composed of five wave types that repeat successively and rep-
resents the cardiac cycle. These waves are named P, Q, R, S, and T, as shown
in Fig. 1. A normal ECG in rest assumes that the patient is lying down, has
not made any physical effort in the last ten minutes, or smoked in the previous
thirty minutes before the examination. Six electrodes fixed using adhesives to the
patient’s chest (usually with gel between each electrode and the patient’s skin to
improve the electrical detection of the signal) are used, as well as four metallic
clamps placed on the wrists and ankles [2]. Figure 2 presents the distribution of
electrodes and clamps for detecting the ECG signal. Each of these waves has
a standard range of amplitude and duration. The detection of these values is
subject to several interferences, from the placement and fixation of electrodes to
interference from the electrical network.

The ECG can classify heartbeats, providing valuable information for the
arrhythmia risk diagnosis or sudden death. Therefore, methods of automatic
heartbeats classification are relevant and widely used. Some methods based on
artificial intelligence, such as artificial neural networks and deep neural networks,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Fig. 1. P, Q, R, S and, T waves of an ECG signal. Adapted from [3].

Fig. 2. Distribution of electrodes and clamps for detecting the ECG signal. Adapted
from [2].

are very efficient for developing automatic heartbeat classifiers. The architecture
most commonly employed in deep neural networks for classifying and capturing
complex features of an image or signal is the convolutional neural network (CNN)
[4]. The CNN does not require the morphological features of the ECG signal to
be extracted in advance, which is one of its advantages. In addition, some signal
processing techniques, such as principal component analysis (PCA), can reduce
the dimensionality of the ECG signal database, facilitating CNN learning in
recognition of different heartbeats classes.

This paper proposes a methodology for the automatic heartbeat classification
based on the principal components analysis and a neural convolutional network
in ECG signals implemented with the python programming language. For this,
the MIT-BIH Arrhythmia Database was used, and the beats classification was
grouped into the five classes of arrhythmia recommended by the Association
for the Advancement of Medical Instrumentation: normal (N), supraventricular
ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), and unknown
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beat (Q). The obtained results are compared with some algorithms existing
in the literature. As a contribution, implementing this methodology will allow
for an automatic and accurate diagnosis, making possible the use of automatic
monitors with low rates of false alarms.

2 Materials and Methods

2.1 MIT-BIH Arrhythmia Database

The MIT-BIH Arrhythmia Database of ECG signals from Physionet [5] collected
by the arrhythmia laboratory of Beth Israel hospital was used in this study
to train and test the classification models obtained by our methodology. This
database contains 48 ECG records, with 30 min each, sampled at 360 Hz from 47
different patients obtained in two leads. The first lead is modified-lead II (MLII)
contained in the whole records, whereas the second corresponds to V1, V2, V4,
or V5, depending on the record. Only the MLII, which represents the bipolar
chest lead provided by all the registers, was used.

The database was divided into four stratified datasets to represent the differ-
ent heartbeats types adequately (Table 1). In this analysis, was not considered
the patient 207.

Table 1. Stratified datasets and MIT-BIH patients.

Datasets MIT-BIH Patients

Dataset 1 100,101,102,109,116,122,124,200,201,220,221,228

Dataset 2 105,106,117,118,119,121,203,213,207,217,222,234

Dataset 3 104,111,113,115,123,202,208,209,212,215,219,223

Dataset 4 103,107,108,112,114,205,210,214,230,231,232,233

The MIH-BIH database has small data variability for some classes of heart-
beats. Therefore, we chose to use k-fold cross-validation with k = 4. The k-fold
cross-validation used three datasets for training and validation and one for test-
ing. Table 2 presents the training/validation and testing datasets. The training
datasets were divided into two subsets, where 70% of the data was reserved for
training (training dataset) and 30% for validation (validation dataset).

This paper uses the practice recommended by the Association for the
Advancement of Medical Instrumentation (AAMI) [6], in which the 15 rec-
ommended classes for arrhythmia classifies into five superclasses: normal (N),
supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F),
and unknown beat (Q). Table 3 illustrates the 15 classes, their symbols, and the
five superclasses used to implement the heartbeats classification.
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Table 2. Training and testing datasets for k-fold cross-validation.

Training/Validation Testing

Group 1: Dataset 2, Dataset 3, Dataset 4 Dataset 1

Group 2: Dataset 1, Dataset 3, Dataset 4 Dataset 2

Group 3: Dataset 1, Dataset 2, Dataset 4 Dataset 3

Group 4: Dataset 1, Dataset 2, Dataset 3 Dataset 4

Table 3. Principal classes of the MIT-BIH database and AAMI standard classes.

AAMI class Symbol MIT-BIH class

N N Normal beat

L Left bundle branch block beat

R Right bundle branch block beat

e Atrial escape beat

j Nodal (junctional) escape beat

S A Atrial premature beat

a Aberrated atrial premature beat

J Nodal (junctional) premature beat

S Supraventricular premature beat

V V Premature ventricular contraction

E Ventricular escape beat

F F Fusion of ventricular and normal beat

Q p or / Paced beat

f Fusion of paced and normal beat

U Unclassifiable beat

2.2 ECG Signal Preprocessing

The ECG signals in the MIT-BIH Arrhythmia Database contain the noise of
different frequencies, so the first step in signal preprocessing is filtering the ECG
signals. For this, we designed a two-sample moving average filter. In this way, it
was possible to attenuate the high-frequency noises of the signals. We used the
notes made by two Massachusetts Institute of Technology cardiologists available
in the MIT-BIH Arrhythmia Database, which presented the occurrence of each
beat (represented by the R wave of the QRS complex) and also selected 108
samples around each heartbeat.

The MIH-BIH Arrhythmia Database also presents heartbeats classes with
imbalanced data, which is a problem for the beats classification. The typical
classification algorithms assume that the data are uniformly distributed in the
class and that classes are balanced. When these conditions change, the algo-
rithm’s performance measurement can be skewed. For this reason, we resampled
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the data using a random oversampling approach [7]. In random oversampling, the
minority class samples are increased by random sampling replication of minority
class representatives. Furthermore, the principal component analysis was used
to reduce the data dimensionality of the original database signals after filtering
and selecting samples from the ECG signals.

2.3 Principal Component Analysis

The principal component analysis (PCA) applicated to biological signals is based
on interpreting a temporal pattern (sequence of N consecutive samples of the dig-
itized signal) as a single point in an N -dimensional space. In the specific case, the
temporal patterns are constituted by ECG segments composed of isolated QRS
complexes. The digitized signal segments containing N samples corresponding
to a heartbeat interpret a vector in the space of dimension N , with each sample
corresponding to the projection of the vector in a specific axis of this space. This
technique can reduce the dimensionality of a dataset containing many highly cor-
related variables to maximize the representation of the variability of the dataset
[8]. PCA represents a dataset through principal components, linear combinations
of the N random variables that compose the original dataset.

For a dataset of N random variables xi, the principal components form a
new set with N variables that are linear combinations of the initial dataset:

y1 = a11x1 + a12x2 + · · · + a1NxN

y2 = a21x1 + a22x2 + · · · + a2NxN

...
yN = aN1x1 + aN2x2 + .... + aNNxN

where aNN is the vector of eigenvalues and xN is the correlation matrix of x,
such that the first eigenvector y1, or first principal component (CP), is oriented
towards the most significant variance of the original data. The second CP y2 is
orthogonal to the first and maximizes the representation of residual variance, and
so on. With this new set of variables, it is possible to reduce the dimensionality
of the data, retaining k CPs that allow explaining almost all the variance of the
data, with k << n [9]. The value of k is obtained through tests, highlighting the
Broken Stick Test and the Scree Graph [8]:

∑k
j=1 var(yj)

Total V ariance
=

∑k
j=1 λj

∑n
i=1 λi

(1)

where λj corresponds to the eigenvalues of the linear transformation, taken in
decreasing order.

The Broken Stick criterion [8], as described in Eq. (1), was employed to
indicate the number of variables retained in the analysis.

In this study, we selected the first ten CPs computed from the MIH-BIH
Arrhythmia Database, as this CPs quantity could already explain almost all
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Fig. 3. Typical structure of CNN.

the data’s variance. Thus, we created a new database containing these CPs and
the relative RR intervals of P-QRS complexes. This database was employed as
input to train a model for classifying heartbeats based on a convolutional neural
network.

2.4 Convolutional Neural Network

The convolutional neural network (CNN) is the most popular deep neural net-
work widely used to diagnose the ECG heartbeat. In the standard configuration
of CNN, the neurons do not have complete connectivity, except for the last layer,
which is fully connected. It makes the CNN have few parameters for learning
when compared to fully-connected deep neural networks. Figure 3 shows a typical
structure of CNN. Looking at Fig. 3, it is possible to understand how the CNN
receives the inputs in vector form, the hidden layer that presents a convolution
structure, and the pooling connected to the output fully connected (complete
connectivity).

In the CNN’s convolutional layer, each neuron in the first cultured layer will
be connected to a small region of the input neurons, for example, a 1 × 5 region
corresponding to 5 input data. The pooling layer receives each feature map
output from the convolutional layer and prepares a reduced feature map [10]. A
commonly used pooling operation is maximum pooling, which divides the input
into pooling regions and then computes each region’s maximum. Furthermore, a
dropout layer can be inserted right after the convolution layer to help slow down
the learning process, as these layers learn very fastly [10].

In this work, the structure used for CNN has one-dimensional and the fol-
lowing characteristics: two convolutional layers with the size of kernels of 3, the
number of filters of 128, and ReLU activation (rectified linear activation func-
tion), a dropout layer of 0.35, a max-pooling layer with a pooling size of 2, a fully
connected layer, and a softmax layer (responsible for the five different types of the
heartbeats). The final layer of the CNN operates in the same way as a multilayer
perceptron (MLP) neural network. The fully connected and the softmax layers
are used to recognize and predict the classes to which each heartbeat belongs.
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Furthermore, we used the Adam gradient descent stochastic optimizer for the
training based on the adaptive estimation of first and second-order moments,
and the learning rate used was 0.001. According to [11], this method is compu-
tationally efficient, has little memory consumption, and presents good results for
large databases and large numbers of classes. We defined 100 epochs for training
and validation, and in each epoch, the batch size used for the dataset was 32.
We used the 4-fold cross-validation, with all combinations of three datasets for
training and validation and the remaining one for testing, according to Table 2.
The training datasets were divided into two subsets, where 70% of the data
was reserved for training (training dataset) and 30% for validation (validation
dataset). We also specify a stopping criterion for the learning. Thus, the training
is stopped when there is no improvement in the specified minimum error. We
opted for the number of 8 epochs without improvement to stop the training.

3 Results

This section presents the results obtained considering the training and test-
ing datasets studied in this work. Comparisons between the method developed
and others methodologies found in the literature that also use the CNN one-
dimensional are performed. Comparisons between the method developed and
others methods found in the literature with the same purpose are performed.
Some measures, such as accuracy, precision, sensitivity, and specificity, are cal-
culated to evaluate the models and are described in the Eqs. (2), (3), (4), and (5),
where TP is the true positive, TN is the true negative, FP is the false positive,
and FN is the false negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

The evolution of the accuracy and loss during the training and validation
for each testing group of Table 2 are illustrated in Figs. 4 and 5, respectively.
Looking at Figs. 4 and 5, it can be seen that the accuracy increases and the loss
decreases at each epoch for all groups used in the cross-validation. Also, Group
1 executes training during all specified epochs (100 epochs), while Groups 2 and
3 stop training at around 50 epochs, and Group 4 stops at about 25 epochs.

Table 4 shows the precision, sensitivity, specificity, and accuracy obtained in
the cross-validation for each testing dataset considering AAMI standard classes.
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Fig. 4. Accuracy evolution during the training and validation for each testing group.
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Fig. 5. Loss evolution during the training and validation for each testing group.

The same metrics are presented in Table 5 for all testing datasets, i.e., testing
all patients of the MIT-BIH Arrhythmia Database.

The confusion matrix shows the classification results of the proposed CNN
for the five heartbeats classes, exhibiting the quantity of correct and incorrect
predictions (Table 6).
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Table 4. Precision, sensitivity, specificity, and accuracy for each testing dataset con-
sidering AAMI standard classes.

Dataset 1

Class Precision (%) Sensitivity (%) Specificity (%)

N 99.94 99.51 99.99

S 99.60 100.00 99.90

V 99.98 100.00 100.00

F 99.96 100.00 99.99

Q 99.96 99.94 99.99

Accuracy (%) 99.89

Dataset 2

Class Precision (%) Sensitivity (%) Specificity (%)

N 99.92 99.11 99.98

S 99.92 100.00 99.98

V 99.71 99.59 99.93

F 99.20 100.00 99.80

Q 99.96 100.00 99.99

Accuracy (%) 99.74

Dataset 3

Class Precision (%) Sensitivity (%) Specificity (%)

N 99.93 99.40 99.98

S 99.55 100.00 99.89

V 99.98 99.77 100.00

F 99.74 100.00 99.93

Q 99.96 99.98 99.99

Accuracy (%) 99.83

Dataset 4

Class Precision (%) Sensitivity (%) Specificity (%)

N 98.07 99.32 99.51

S 99.52 97.33 99.88

V 98.69 99.31 99.67

F 99.81 100.00 99.95

Q 99.85 99.96 99.96

Accuracy (%) 99.18
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Table 5. Precision, sensitivity, specificity, and accuracy for all patients of the MIT-BIH
Arrhythmia Database considering AAMI standard classes.

Class Precision (%) Sensitivity (%) Specificity (%)

N 99.46 99.34 99.87

S 99.65 99.34 99.91

V 99.60 99.67 99.90

F 99.68 100.00 99.92

Q 99.93 99.97 99.98

Precision (%) Sensitivity (%) Accuracy (%)

99.87 99.79 99.66

Table 6. Confusion matrix of the developed model.

O
u
tp

u
t

cl
a
ss

Class N S V F Q

N 21361 54 36 38 14

S 91 21361 51 0 0

V 18 22 21432 31 0

F 0 0 0 21503 0

Q 6 0 0 0 21497

Target class

Table 7. Comparison of the proposed method and other algorithms published in the
literature.

Paper Class Preprocessing Feature Extraction Accuracy (%)

Li et al. [12] N, L, R, A, V Wavelet combination 1D-CNN 97.50

Pandey et al. [13] N, S, V, F, Q Feature scaling 1D-CNN 98.23

Wu et al. [14] N, L, R, A, V Wavelet transform 1D-CNN + 97.41

average pooling

Mahdhaoui et al. [15] N, L, R, A, V Moving average filter 1D-CNN + 97.80

wavelet transform residual block

Xiaolin et al. [16] N, S, V, F, Q ECG heartbeat 1D-CNN 98.12

segmentation

Apu et al. [17] N, S, V, F, Q Resample + Gaussian 1D-CNN 98.25

Combination

Proposed method N, S, V, F, Q Moving average filter + 1D-CNN 99.66

Resample + PCA

Table 7 summarizes the characteristics of the proposed method and other
published algorithms in the literature. We should point out that the database
separation method used in this article to train, validate and test the imple-
mented heartbeats classifier differs from the methods used in the methodologies
in Table 7. The proposed methodology uses the 4-fold cross-validation presented
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in Sect. 2, which was not used in any of these articles. This technique is more
efficient as it uses all data for testing independently.

4 Discussion

The methodology proposed in this article presented satisfactory results. Analyz-
ing these results, we noticed that both in the training/validation and in the test
of the proposed CNN network, the datasets reached high values for all metrics
considered for all classes studied in this work.

During the training and validation of the network, we observed that Group
1 had slower learning because it used the total number of epochs configured.
The other groups (Groups 2, 3, and 4) had a faster learning process, stopping
training before the number of epochs specified.

For all datasets used in the cross-validation, precision was higher than 98%.
Thus, we can infer that the heartbeats considered false positives found in the
model are not more harmful than false negatives in predicting the heartbeats
classes. The sensitivity and the specificity also showed high percentage values,
above 97% and 99%, respectively. These values mean that the classifier can
correctly identify true positive and true negative heartbeats, i.e., the classifier
can accurately predict whether or not a beat belongs to a particular class.

Regarding accuracy, the proposed model stands out compared to other clas-
sification algorithms in the literature, presenting the best accuracy.

According to Table 5, the global results of the model demonstrate the robust-
ness of the developed automatic heartbeats classifier. Furthermore, it is worth
noting that the stratified division of the datasets and the balancing of the
database contributed to good network performance.

The proposed method has some limitations. For example, the data must be
balanced to make the classification result as satisfactory as possible. Also, there
is a need to generalize the proposed approach for use in any database, which
is simple if the data has previously undergone an exploratory analysis. Another
issue would be the difference in the computational cost. Depending on the equip-
ment on which the proposed algorithm is executed, it can be faster or slower.
Furthermore, the CNN network can present slight differences in performance,
even defining random seeds at all classification stages.

5 Conclusions

This paper presented a method for automatic heartbeat classification based on
principal component analysis and a convolutional neural network on ECG sig-
nals. We created a database containing the first ten principal components and
the relative RR intervals of P-QRS complexes from the MIT-BIH Arrhythmia
Database patients, which were used as input to CNN, allowing us to obtain
a classification model for this database. The method proposed showed 99.66%
overall classification accuracy, 99.87% precision, and 99.79% sensitivity on the
heartbeats classification in the AAMI standard classes (N, S, V, F, and Q). The
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model’s performance proved very satisfactory, demonstrating the advantages of
the proposed method.

For future work, we aim to apply a two-dimensional CNN network to classify
the heartbeats in a more significant number of classes and develop algorithms
to optimize the choice of CNN parameters.
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Abstract. In the present study, we seek to investigate how the sequence of neu-
ronal events that include stimulus identification, motor planning, and movement
execution is implemented in the cortical neural networks, using an experimental
paradigm that segregates between preparation andmotor activation. For this study,
twenty-two right-handed subjects had EEG signals recorded and analyzed. The
subjects were divided into two groups. The imagery group performed real right
or left forearm movements or the imagination of these movements. The control
group performed real movement of the right or left forearm or did not perform
any movement (wait condition). The Event-Related Spectral Perturbation (ERSP)
in each one of the experimental conditions was compared for the time intervals
of preparation, execution, and after-movement end. We observed: (I) mu and beta
desynchronizations (ERD) for movement and imagery and not for the wait condi-
tion, during preparation and execution periods. (II) The movement ERD is greater
than the imagery ERD for both mu and beta bands. (III) Synchronization (ERS)
after the movement is finished. (IV) Greater mu ERD during the execution period
and beta ERS after the movement ends at the contralateral channels in the move-
ment condition. (V) Gamma ERS after the movement ends for the movement
condition, and not for wait. These findings suggest that using signals from the
contralateral region of the movement to be executed might impact the accuracy of
the control of devices in a brain-computer interface paradigm.
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1 Introduction

Brain-computer interfaces (BCIs) allow communication between the human brain and
external devices, such as orthoses or wheelchairs [1]. They are being used by an increas-
ing number of people suffering from diseases that impair the execution of movements,
to improve both the interaction with the external environment and the effectiveness of
the physiotherapy approaches adopted [2].

Motor Imagery (MI) is a widely used physiotherapy strategy for improving motor
control and consequently autonomy gain by patients suffering from diseases that impair
motor control, such as stroke. This technique consists of the imagery of the perfor-
mance of movements, without any muscular activation [3]. Neuroimaging studies have
demonstrated that MI elicits similar neural activation patterns when compared to motor
execution [4].

Some studies suggest that therapies involving MI promote greater autonomy gain
in the daily life activities of stroke patients than conventional therapy, which does not
involve MI [5]. MI also alters the cortical map, increasing the activity of the premotor
area, primary motor cortex, and superior parietal cortex [6]. Furthermore, it was shown
that cortical modifications produced by the MI are similar to those produced by phys-
ical therapy [7] and the combination of MI and movement execution induces greater
improvement in the performance of a sequential motor skill than physical or mental
therapies alone [5].

Studies have shown that controlling BCIs based on theMI of the subjects can become
a realistic option for improving the life quality of patients with severe motor deficits. The
BCI treatment can represent a rehabilitation tool for patients for whom there is no other
therapy available. The translation of electric brain activity into control signals of BCIs
is important to promote increases in the performance of daily life activities and neu-
roplasticity augmentation [8]. Electroencephalography (EEG) is a widely used method
for obtaining cerebral patterns that must be processed and classified for controlling the
devices in a non-invasive approach.

Non-invasive BCIs can be controlled by the Event-Related Spectral Perturbation
(ERSP) signal, which reflects changes in Power Spectral Density along the time in
a specific frequency band of the EEG signal. These changes may consist of Event-
RelatedDesynchronization (ERD) or Event-Related Synchronization (ERS). The former
corresponds to a decrease while the second corresponds to an increase of power in a
specific frequency band.

During the performance of a repetitive and voluntary task, the mu band (8–13 Hz)
presented an ERD initiating 2 s before the movement onset [9]. ERD in the mu and
beta (13–30 Hz) frequency bands was also demonstrated for motor execution and motor
imagery [10, 11]. Some studies attribute to the gamma band the function of coupling the
temporal and spatial processing occurring in different brain areas, in order to produce
a coherent perception [12]. A study found a gamma ERS during the performance and
imagination of movements [13].

However, the question of mu and beta desynchronizations and gamma synchroniza-
tion present contralateral dominance during the preparation and execution of a voluntary
movement remains unclear andmight differ amongdifferent experimental protocols [14].
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In the present study,we compare theERSPobtained froma forearmflexion/extension
task for both movement and imagery conditions. The protocol was designed to separate
and identify signals related to the preparation and execution of the tasks [15]. It is
based on studies that used instructions with a delay period to study the responses of
the pre-motor cortex [15, 16]. In these tasks, an instructional cue provides anticipated
information about the nature of themovement to be executed after a time interval (delay).
The delay allows the subjects to plan the signalized movement, reducing the amount of
information processing necessary to execute the task after the cue.

2 Methodology

2.1 Experimental Paradigm

This studywas conducted in theLaboratoryofCognitivePhysiologyof theCarlosChagas
Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ). The
experiment was approved by the Ethics Committee of UFRJ (Protocol number 851.521).
Every subject filled the Edinburgh Handedness Inventory and gave informed consent for
participating in this research.

The experiment begins with the subject sitting comfortably in an armchair, with their
forearms resting on the armsof the chair.After placing each electrode in its corresponding
position at the cap, the impedance was verified and maintained under 5 k�. For this
experiment, the subjects were divided into two groups: the motor imagery group, in
which the tasks are movement or motor imagery, and the control group in which the
tasks are movement or simply waiting for the next cue.

The cues (arrows) were presented on a monitor, at a distance of 110 cm from the
subject. The direction of the arrows indicates which member should perform the task
(right or left) and the color, black or white, indicates the task to be performed (movement
or imagination of the movement for motor imagery group and movement or wait for the
control group, respectively). The task consists of the flexion of the forearm followed by
the return to the initial position. The subjects were instructed to perform the imagination
from a first-person perspective.

A schematic representation of the experimental protocol is shown in Fig. 1. The trial
begins with a fixed white cross presented over a gray background. After 2 s, the cross is
replaced by one of four possible arrows (Preparation period), which is presented for 2 s
on the screen. The black arrows indicate that the subject should perform the movement,
while the white arrows indicate imagination of the movement for the motor imagery
group, or wait for the next cue, for the control group. After this time period, the fixed
white cross takes over and remains on the screen from seconds 2 to 8 s. The subjects
were instructed to perform the task as soon as the cross replaced the arrow on the screen.

Each experiment has 240 trials, which accounts for 40min of EEG recording. Taking
together the time needed to set the EEGmontage, impedance verification, and recording
time, each experiment takes about 2 h.
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Fig. 1. Schematic representation of the experimental design.

2.2 Electroencephalographic Recordings

A 32-channel Neurosoft EEG system (NEURON-SPECTRUM-5) was used for record-
ing the cerebral signals of 24 right-handed healthy subjects (14 women, average age =
24± 7,6). The sampling rate of this system is 1000 Hz. The channels were analogically
filtered with a bandpass filter set to attenuate frequencies out of the interval 0.1 to 100 Hz
at the moment of signal acquisition.

The electrodes distribution along the scalp was done with a 10–10 International
System EEG cap (Fig. 2 - Fp1, Fpz, Fp2, F3, F4, Fz, F7, F8, FC1, FC2, FC3, FC4, C1,
Cz, C2, C3, C4, C5, C6, CP1, Cpz, CP2, CP5, CP6, P3, P4, Pz, T3, T4, T5, T6, Oz,
A1, A2). The reference for the system was the average activity registered by electrodes
placed at the earlobes of the subjects (A1, A2). Muscular activity was also monitored
by two pairs of electromyography electrodes, one for each bicep brachii muscle of the
subjects, which is important for analyzing if the tasks are being properly executed.
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Fig. 2. Scalp Channel Locations Source: EEGLAB.

2.3 Signal Processing

After the acquisition, the EEG signal is bandpass filtered from 1 to 45 Hz using a second-
order, digital, high, and low-pass Butterworth filters. The filtering is applied in the direct
and reverse directions in order to result in zero-phase shift. A digital notch filter (Q =
15) set to 60, 120, and 180 Hz is also applied to reduce electrical network interference
and harmonics.

Independent Component Analysis (ICA) is applied using the SOBI (Second-Order
Blind Identification) algorithm for removing eye blink artifacts from the signal. After
ICA decomposition is done, we compare the Pearson correlation between each compo-
nent and the average of the Fp1 and Fp2 channels. The component which has the largest
correlation with this averaged channel is removed.

The signal is then segmented into epochs going from−2 to 8 s. Errors of the subjects
are removed after a careful visual inspection of the signal. Artifact removal proceeds in
a semi-automatic manner, in which a segment containing 20 s of the signal without any
artifacts is used for defining two thresholds, a positive and a negative one, consisting of
two times the standard deviation of the segment.

The artifact removal step is done based on three different criteria. 1- Each epoch was
compared with the threshold and it was rejected if the following was true: having a total
of 10% of the samples non-consecutively, or 5% of the samples consecutively outside
of a threshold. 2- The epochs which have any sample with amplitude above 150 μV
are excluded. 3- It is also performed a visual analysis of the signal by an expert and the
epochs that have visual similarities to artifacts are removed.

After artifact rejection, the signals for each subject are downsampled to 600 Hz.
Table 1 shows the total number of epochs after artifact rejection. One of the subjects
had to be removed since the signal was largely contaminated with artifacts (over 50%
of epochs had to be removed).
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Table 1. Number of epochs after artifact rejection for each experimental condition.

Experimental Conditions Control Group (n = 11) Imagery Group (n = 12)

Right Forearm Movement 493 474

Left Forearm Movement 497 472

Right Forearm Imagery 0 441

Left Forearm Imagery 0 451

Wait for the next cue 946 0

Total 1936 1838

2.4 Event-Related Spectral Perturbation (ERSP)

The ERSP measures non-phased-locked event-related perturbations in the EEG ampli-
tude [17]. The EEG signal was filtered with a zero-phased fourth-order Butterworth
bandpass filter with bandpass set according to the frequency bands of interest: mu (8–
13 Hz), beta (13–30 Hz), and gamma (30–45 Hz). Each time-sample was squared to
obtain the energy, and then we averaged the epochs among all the subjects.

For smoothing the data, the average of the time-samples within a sliding window of
500mswith 50% overlap was used (PSW).We then performed a baseline normalization,
according to the equation [10]:

ERSP = (PSW − PBL)

PBL
X 100,

where PBL is the baseline period defined as the average of a time period consisting of
1 s before the stimulus onset (from −2 to −1 s), ERSP represents the percentage of the
PSW normalized by the baseline (reference). For further smoothing the data we also
applied a moving average third-order filter.

2.5 Statistical Analysis

The statistical analysis of ERSP is done using the two-tailed Wilcoxon signed rank
test, with alpha level = 0.05. The signal is divided into three periods: Preparation (0 to
2000 ms), Execution (2000 to 4500 ms), and After movement end (6000 to 7500 ms),
therefore there are twelve-time windows of interest. For each subject we calculated the
average value of ERSP within each time period, using a 500 ms time window, for the
channels C3, C4, F3, F4, P3, and P4. The statistical tests were applied successively
in each of the time windows. Two different analyses were performed. In the first one,
we compared channels of the right and left regions (C3 vs. C4, F3 vs. F4, P3 vs. P4)
for the same experimental conditions, in order to establish whether the contralateral
cerebral activity produces statistical difference in the ERSP recordings of equivalent
channels placed at different scalp hemispheres. For the second analysis, we compared
the same channels for different experimental conditions (C3 MI vs. C3 MV and C3 MV
vs. C3 Wait, for example) to assess if the brain processes the experimental conditions
differentially.
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3 Results

When comparing movement and wait conditions (Fig. 3), the mu band presents signif-
icant differences in both preparation and execution time periods. The mu ERD for the
MV condition is significant during all the execution period at the C3 and P3, but not in
the C4 and P4 channels. The beta band presented significant ERD during the execution
only at the P3 channel, and significant ERS after movement ends at the contralateral
side channels. The gamma band also presented a significant ERS after movement end
in both hemispheres.

Fig. 3. Results of the statistical analysis of right arm movement (blue) vs. wait (orange) in the
left hemisphere channels for the mu, beta, and gamma frequency bands (n = 11). The light gray
areas represent time periods of statistical significance (p < 0.05).

The right arm motor imagery condition also presented an ERD in both preparation
and execution periods, however with less intensity for the execution period compared to
the movement condition (Fig. 4). Different from the movement, MI conditions for both
arms did not present ERS after the execution of the task.

When comparing corresponding channels of different scalp hemispheres for the right
arm movement (Fig. 5), we found a greater mu desynchronization at the contralateral
channels during the execution time period and a greater beta ERS at the contralateral
channels, after movement end. We did not find any difference in the beta band during
the execution time period.

The left arm movement and wait conditions were also compared (data not shown).
We found a significant mu and beta ERD during the execution of the movement and a
significant beta ERS after the movement ended. These differences were equally found
for both ipsi and contralateral channels. We also found a gamma ERS after movement
end, that was greater for the contralateral channels. We did not find a significant mu
ERD during the preparation. We then compared the left and right forearm movement
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Fig. 4. LFCOG results of the statistical analysis for the right arm movement (blue) vs. right arm
imagery (orange) in the left hemisphere channels (n = 12). The light gray areas represent time
periods of statistical significance (p < 0.05).

Fig. 5. Results of the statistical analysis for the right arm movement condition of the control
group subjects, comparing right (blue) and left (orange) hemisphere channels (n = 11). The light
gray areas represent time periods of statistical significance (p < 0.05).

conditions. We found a greater mu ERS for the left arm movement after the movement
ended in the C4 channel. We also found a greater beta rebound in the P3 channel for the
right armmovement condition. The left forearm imagery also elicited mu and beta ERD.
When comparing right and left forearm imagery, we found a greater mu ERD during
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execution in the C3 channel for the right arm imagery and a greater beta ERD during
execution in the C4 channel for the left forearm imagery.

4 Discussion

This work used an experimental paradigm involving instructions with a delay period
for studying the ERSP during the preparation and execution of imagery, movement, and
wait conditions. As shown in previous studies [10, 11], we found that movement and
imagination of the movement are associated with desynchronizations in mu and beta
frequency bands, but the wait condition is not. When comparing movement and wait
conditions, we found differences in the mu band for both preparation and execution
time periods. For the beta band, the statistical differences are in the execution and after
movement end time periods. We also found a beta ERS, known as beta rebound [14],
after the movement ends. This indicates that these changes in the ERSP might represent
motor processes rather than visual stimuli processing.

When comparing channels of the right and left hemispheres for the movement condi-
tion, we found greater mu ERD during the execution period and a greater beta ERS after
the movement ends, both for the channel at the contralateral side from the movement.
This might indicate that mu ERD during the execution and beta ERS after movement
ends are more related to the lateralization of the task than the beta ERD during the
execution.

The increased rhythmic activity (or ERS) of the EEG oscillations allows the syn-
chronization of firing among populations of neurons as the ERD measures to which
extent this synchronization was lost. Therefore, the mu and beta synchronization are
thought to play an inhibitory role and guarantee the timing of cortical processes, while
the desynchronization reflects the gradual liberation of this inhibition and is associated
with activation processes [18, 19].

5 Conclusion

In this study we found mu and beta desynchronizations for movement and imagery
conditions, but not for wait condition. The movement ERD is greater than the imagery
ERD for both mu and beta bands, and we found an ERS after movement end period for
mu and beta bands. These findings suggest that the sequences of neural events elicited by
movement and imagination of the movement are similar, but for the imagery condition,
the ERD is less pronounced due to the lack of muscular activation. The differences in
the ERSP between the right and left forearm movement and imagery can be useful for
BCI systems to differentiate which member should execute the movement.

Acknowledgment. The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico
e Tecnológico) and FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) for
their financial support during the production of this work.



346 A. da Silva Pereira et al.

References

1. McFarland, D., Wolpaw, J.: EEG-based brain–computer interfaces. Curr. Opin. Biomed. Eng.
4, 194–200 (2017). https://doi.org/10.1016/j.cobme.2017.11.004

2. Molinari,M.,Masciullo,M.: Stroke and potential benefits of brain-computer interface.Handb.
Clin. Neurol. 168, 25–32. Elsevier (2020). https://doi.org/10.3390/s21134312

3. Sharma, N., Pomeroy, V.M., Baron, J.-C.: Motor imagery: a backdoor to the motor system
after stroke? Stroke 37, 1941–1952 (2006). https://doi.org/10.1161/01.STR.0000226902.433
57.fc

4. Fernández-Gómez, E., Sánchez-Cabeza, Á.: Imaginería motora: revisión sistemática de su
efectividad en la rehabilitación de la extremidad superior tras un ictus. Rev. Neurol. 66, 137
(2018). https://doi.org/10.33588/rn.6605.2017394

5. Santos-Couto-Paz, C., Teixeira-Salmela, L., Tierra-Criollo, C.: The addition of functional
task-oriented mental practice to conventional physical therapy improves motor skills in daily
functions after stroke. Braz. J. Phys. Ther. 17, 564–571 (2013)

6. Page, S., Szaflarski, J., Eliassen, J., Pan, H., Cramer, S.: Cortical plasticity following motor
skill learning during mental practice in stroke. Neurorehabil. Neural Repair 23, 382–388
(2009). https://doi.org/10.1177/1545968308326427

7. Page, S., Levine, P., Sisto, S., Johnston, M.: A randomized efficacy and feasibility study of
imagery in acute stroke. Clin. Rehabil. 15, 233–240 (2001). https://doi.org/10.1191/026921
501672063235

8. Kansaku, K., Cohen, L., Birbaumer, N.: Clinical Systems Neuroscience. Springer, Tokyo,
Japan (2015). https://doi.org/10.1007/978-4-431-55037-2

9. Pfurtscheller, G., Aranibar, A.: Evaluation of event-related desynchronization (ERD) preced-
ing and following voluntary self-paced movement. Electroencephalogr. Clin. Neurophysiol.
46, 138–146 (1979). https://doi.org/10.1016/0013-4694(79)90063-4

10. Pfurtscheller, G., Lopes da Silva, F.: Event-related EEG/MEG synchronization and desyn-
chronization: basic principles. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol 110,
1842–57 (1999). https://doi.org/10.1016/s1388-2457(99)00141-8

11. Galdo-Alvarez, S., Bonilla, F.,González-Villar,A., Carrillo-de-la-Peña,M.: Functional equiv-
alence of imagined vs. real performance of an inhibitory task: an EEG/ERP study. Front. Hum.
Neurosci. (2016). https://doi.org/10.3389/fnhum.2016.00467

12. Tallon-Baudry, C., et al.: Oscillatory gamma activity in humans and its role in object represen-
tation. Trends Cogn. Sci. 3(4), 151–162 (1999). https://doi.org/10.1016/s1364-6613(99)012
99-1

13. Amo Usanos, C., et al.: Induced Gamma-Band Activity during Actual and Imaginary Move-
ments: EEG Analysis. Sensors (Basel, Switzerland), vol. 20, no 6, (2020). https://doi.org/10.
3390/s20061545

14. Kilavik, B., Zaepffel, M., Brovelli, A., MacKay, W., Riehle, A.: The ups and downs of β

oscillations in sensorimotor cortex. Exp. Neurol. 245, 1526 (2013). https://doi.org/10.1016/
j.expneurol.2012.09.014

15. Weinrich,M.,Wise, S.: The premotor cortex of themonkey. J. Neurosci. 2, 1329–1345 (1982).
https://doi.org/10.1523/JNEUROSCI.02-09-01329.1982

16. Crammond, D., Kalaska, J.: Prior information in motor and premotor cortex: activity during
the delay period and effect on pre-movement activity. J. Neurophysiol. 84, 986–1005 (2000).
https://doi.org/10.1152/jn.2000.84.2.986

17. Makeig, S.: Auditory event-related dynamics of the EEG spectrum and effects of exposure
to tones. Electroencephalogr. Clin. Neurophysiol. 86(4), 283–293 (1993). https://doi.org/10.
1016/0013-4694(93)90110-h

https://doi.org/10.1016/j.cobme.2017.11.004
https://doi.org/10.3390/s21134312
https://doi.org/10.1161/01.STR.0000226902.43357.fc
https://doi.org/10.33588/rn.6605.2017394
https://doi.org/10.1177/1545968308326427
https://doi.org/10.1191/026921501672063235
https://doi.org/10.1007/978-4-431-55037-2
https://doi.org/10.1016/0013-4694(79)90063-4
https://doi.org/10.1016/s1388-2457(99)00141-8
https://doi.org/10.3389/fnhum.2016.00467
https://doi.org/10.1016/s1364-6613(99)01299-1
https://doi.org/10.3390/s20061545
https://doi.org/10.1016/j.expneurol.2012.09.014
https://doi.org/10.1523/JNEUROSCI.02-09-01329.1982
https://doi.org/10.1152/jn.2000.84.2.986
https://doi.org/10.1016/0013-4694(93)90110-h


Differential Event-Related Spectral Perturbation for Left and Right Elbow 347

18. Klimesch, W., Sauseng, P., Hanslmayr, S.: EEG alpha oscillations: the inhibition-timing
hypothesis. Brain Res. Rev. 53, 63–88 (2007). https://doi.org/10.1016/j.brainresrev.2006.
06.003

19. Takemi, M., Masakado, Y., Liu, M., Ushiba, J.: Event-related desynchronization reflects
downregulation of intracortical inhibition in human primary motor cortex. J. Neurophysiol.
110, 1158–1166 (2013). https://doi.org/10.1152/jn.01092.2012

https://doi.org/10.1016/j.brainresrev.2006.06.003
https://doi.org/10.1152/jn.01092.2012


Assessing the Weighted Adaptive Filtering
to Attenuate Eye-Blink Artefact by Means
of Simulation for Brain-Computer Interface

Application

Alice Fontes(B) and Mauricio Cagy

Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941909, Brazil
fontes.alice@poli.ufrj.br

Abstract. In Brain-Computer Interface (BCI) systems, the signal acquisition of
brain’s electrical activity, when non-invasive, is usually made with the electroen-
cephalogram (EEG). EEG signals are naturally contaminated by artefacts which
can significantly distort signals, altering neurological events, therefore compro-
mising BCI control. In order to be applied in BCI systems, the method of artefact
attenuation should be automatic, online, and ideally performed with few EEG
recording channels. A previous work proposed a procedure for eye-blink artefact
reduction based on adaptive filtering when electrooculogram data is not available.
Thismethod satisfies all the essential conditions for application inBCI systems and
also addresses the bidirectional interference issue. In order to apply this technique
in BCI systems, the present work aims to proceed with its assessment through
changes in simulation in order to make the reproduced environment more real-
istic and therefore prove the reliability and effectiveness of the method. Results
show that satisfactory artefact reduction is achieved even when its time occurrence
overlaps the desired ERP (event-related potential). The lowest overall RMS error
was achieved using a 2nd-order filter and adaptation factor set in 10–5. Further-
more, weight thresholds have a slight influence on filter performance when using
plausible values. In conclusion, the proposed approach resulted in a considerable
reduction of the eye-blink artefact, preserving ERPmorphology and allowing easy
component identification, all this in an online and automatic fashion,with fewEEG
recording channels and without the need for the reference channel, hence being a
great choice to attenuate eye-blink artefacts in BCI systems.

Keywords: Artefact Attenuation · Brain-Computer Interface · Adaptive Filter ·
Eye Blink · Electroencephalography

1 Introduction

Information from neuronal activity can be translated into device control actions through
brain-computer interface (BCI) systems [1]. In these systems, the measurement of the
brain’s electrical activity, when non-invasive, is usually performed by the electroen-
cephalogram (EEG) [2]. The EEG is used to analyse the electrical activity of the brain
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[3]. It has several applications, such as diagnosing and monitoring brain conditions and
also the aforementioned BCI systems.

EEG signals have amplitudes in the range of microvolts [4], and therefore they are
naturally contaminated by unwanted signals, known as artefacts [5]. Many different
sources can provoke artefacts, which are present essentially in all EEGs [6]. The relia-
bility of electrophysiological descriptions can be severely compromised by the presence
of artefacts, particularly those from eye blinks [7].

Eye blinks generate a type of ocular artefact seen in almost all EEG exams performed
with open eyes [3]. Ocular artefacts are caused by eye movements and blinks, which
propagate through the scalp and can be recorded by the EEG [8]. The electrical activity
generated by eye movement and eye blinking can be recorded by the electrooculogram
(EOG). On average, the duration of an eye blink is between 100 and 400ms [9], although
this number may be influenced by several conditions, such as the spontaneous eye blink
rate. It is estimated that the normal eye blink rate is between 15 and 20 blinks per minute
[10]. There is usually an interval of 2 to 10 s between eye blinks [11].

Artefacts such as eye blinks can significantly modify the EEG signals, which may
induce erroneous interpretations [12]. Thus, neurological events on the EEG which
control the BCI systems can be easily disguised or mistaken for artefacts. In this way,
artefacts can jeopardize commands and result in an unintentional control of the device
[13]. Thereby, it is of great importance to attenuate EEG artefacts in order to keep only
information of interest.

In this fashion, several artefact removal techniques are available in literature. In
BCI applications, since real-time control of devices is required, this attenuation must be
performed in a very short time, with low computational cost, in order to enable online
signal processing. One should also prefer an automatic method, that is, a method that can
be performed without the need for human intervention. In addition, in these systems, the
possibility of using few channels in EEG recording is usually expected [14]. Therefore,
methods that can be performed on single-channel EEGs are commonly preferred for
this use. Most of the algorithms used for artefact removal have the disadvantage of
demanding considerable processing time, usually enough to make the online operation
unfeasible. When the method has low computational cost, most times it is not automatic
and cannot be applied in single-channel systems.

Another important factor in the artefact removal process must also be taken into
account, especially when removing ocular artefacts: just as the EEG can be corrupted by
the EOG, the EOG can also be contaminated with the EEG. This event is called bidirec-
tional interference. Without due consideration, it may remove relevant EEG information
along with the artefact, hence causing a removal error [15]. This is a risk that a large
parcel of the artefact attenuation techniques suffer.

In previous works [7, 16], a pre-processing framework with a noise reduction pro-
cedure based on LMS adaptive filtering has been proposed. In these studies, a weighted
adaptive filtering technique was used, aiming to attenuate blinking artefacts. The goal
was to facilitate as much as possible the identification of event-related potentials (ERPs),
in order to use it in Stroop-like cognitive tests. The proposed approach resulted in a
considerable eye-blink artefact reduction, allowing an easy identification and marking
of ERP components [16]. This noise reduction technique allows online and automatic
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implementation, can be used in a single-channel EEG, and also deals with bidirectional
interference, hence being a great choice for BCI applications. In this work, with the
aim of applying the technique as a pre-processing step in BCI systems, investigations
on the weighted adaptive filtering method were carried out by means of simulated data.
Changes in simulation were made in order to make the reproduced environment even
more realistic and therefore prove the reliability and effectiveness of the method.

2 Materials and Methods

2.1 Weighted Adaptive Filtering

The weighted adaptive filter inherits properties from the traditional adaptive filter. Its
coefficients are adaptable and can be automatically adjusted by the filter [17]. In this
way, these filters can be adapted to the context defined by the signals [17], detecting any
changes in the environment and accomplishing the adaptation.

Unlike traditional adaptive filters, in the scheme of the weighted adaptive filter the
subtraction of the reference noise signal estimation is not completely performed all the
time. Subtraction is made in a weighted fashion, with a weight fluctuating between 0 (no
subtraction) and 1 (complete subtraction). The lowest weight will be given at moments
when there is no blink, which are moments when the current information in EOG is
only about the signal of interest, the EEG. The highest weight will be given when the
eye blink is detected. Therefore, the system subtracts the noise estimation only at times
when there is evidence of an eye blink occurrence.

The eye blink can be evidenced by an increase of the signal amplitude [15]. Thus,
when the amplitude of the reference channel is small, the weight of the subtraction is
minimised. When the amplitude is greater than expected, the subtraction is done with a
higher weight. The range between 0 and 1 that will be used will depend on the amplitude
and instantaneous RMS value of the signal. Fractional values between 0 and 1 can also
be assigned. This is a method for weighting the subtractive process of adaptive filtering
according to the amplitude of the reference signal with noise pattern.

The block diagram scheme for the proposed weighted adaptive filter for noise reduc-
tion is shown in Fig. 1. In the weighted adaptive filter, as in the traditional adaptive
filter, two signals are needed [17]: the reference signal (r[n]), which carries information
about the noise (should be a signal such as EOG); and the primary input signal (s[n]),
modelled as a combination of pure EEG data (x[n]) and an artefact source (i[n]) (should
be a signal such as EEG).

The filter (with coefficients h[n]) adapts itself, so that the difference between the
collected noisy signal and the filtered reference noise reaches minimal energy. The filter
output (error signal) converges to the noiseless signal estimation after adjusting the filter
coefficients (Fig. 1: ya[n] = e[n]). The effective output, however, is not given by e[n].
The estimation of the signal of interest is taken from another subtracting node where the
filtered noise is weighted by a value between 0 and 1, depending on the instantaneous
RMS value of r[n] (Fig. 1: yb[n]). Thus, it is avoided that a large amount of frontal neural
activity is cancelled alongwith the noise. The filter output (ya[n]) and the effective output
(yb[n]) can be expressed as shown in Eqs. 1 and 2, respectively.
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Calculation of RMS values is implemented prior to the noise reduction procedure
so that a null-phase envelope detector can be implemented. RMS values below a lower
threshold produce a null weight. This weight increases proportionally up to 1, when the
RMS values reach an upper threshold [7].

ya[n] = e[n] = s[n] − y[n] = x[n] + i[n] − y[n] (1)

yb[n] = s[n] − β(ρ).y[n] (2)

Fig. 1. Block diagram of the proposed weighted adaptive filter for noise reduction

2.2 Simulation Procedure

Routines in GNUOctave (version 7.1.0) were implemented in order to simulate the pure
EEG signal, composed by the background EEG and the ERP, and also to simulate the
corrupted EEG signal, composed by the background EEG, the ERP and the eye blink.

Four EEG derivations (Fp1, Fp2, Cz and Oz) were simulated in this work, for sim-
plicity. The simulated signal mimics an EEG recording during auditory stimulation,
where the goal is to perform an evoked potential analysis. A sample rate of 400 Hz and
number of epochs of 240 were used.

The reference noise is usually obtained from EOG data, when available. In this
work, the reference noise was estimated from the average of Fp1 and Fp2 derivations,
mimicking contexts where no EOG derivation was available.

Background EEG, ERP and eye-blink artefact characteristics are reproduced in the
simulated signal. The background EEG signal was simulated as a coloured noise, with
higher power in the alpha band [16]. Four coloured Gaussian noises (r1[n] to r4[n]) were
combined using a mixing matrix as follows:

⎡
⎢⎢⎣

Fp1[n]
Fp2[n]
Cz[n]
Oz[n]

⎤
⎥⎥⎦ =

√√√√√√√√

⎡
⎢⎢⎣

0.5 0.3 0.15 0.05
0.3 0.5 0.15 0.05
0.2 0.2 0.4 0.2
0.2 0.2 0.2 0.4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r1[n]
r2[n]
r3[n]
r4[n]

⎤
⎥⎥⎦ (3)
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Where
√• refers to element-wise square root, and the combined noises were coloured

with different bandwidths, in order to represent the differences among derivations (8–
35 Hz for r1 and r2, 5–25 Hz for r3 and 0.5–12 Hz for r4) [16]. The mixing matrix is
used to represent contamination between the EEG derivations. The values were chosen
heuristically, based on typical situations of real signals.

An experimental ERPwaveformwas used as amodel to represent the evoked activity,
with same latencies but different amplitudes among derivations (0.5 in Fp, 1.0 in Cz and
0.8 in Oz) [16]. This simulates the intensity of ERP occurrence in each channel. The
simulated evoked potential is a middle latency auditory evoked potential (MLAEP),
which has a greater amplitude in Cz than in the other derivations.

The eye-blink artefact was simulated by means of the derivative of a Gaussian curve
weighted by a decreasing exponential, producing a positive peak with higher ampli-
tude than the successive negative valley, and its influence over EEG also varied among
derivations (1.0 in Fp, 0.5 in Cz and 0.25 in Oz) [16].

In addition to these amplitude changes between derivations, different low-pass filters
were also applied to the artefact waveform in Cz and Oz derivations, aiming at slight
changes in the morphologies of the eye blink in these derivations when compared to
the ones in the reference signal. Since the reference signal is obtained with the Fp1
and Fp2 derivations, filters were not applied to these channels. This behaviour reflects
the high frequency attenuation that is expected with the propagation of the eye-blink
artefact along the scalp. In [16], the eye-blink artefact was added to the EEG with
different amplitudes but samemorphology, addressing only the characteristic of different
amplitudes of the artefact among derivations. In the present work, the feature of different
artefact’s morphologies among distinct derivations is also being addressed. The low-pass
filters (2nd-order Butterworth) show cut-off frequency at 5 Hz for Cz and 3 Hz for Oz,
and the resulting artefact waveforms are then added to the signal along with the ERP.

The post-stimuli instant of blinking occurrence varied randomly with a standard
deviation of 250 ms around three mean values: 250 ms, 500 ms and 750 ms. Thus, eye-
blinks occurred randomly, with arbitrary intervals, which mimic our eye blink rhythm.

The adaptive filter order (0 [pure gain] up to 6) and the adaptation factor (10–5, 5 ×
10–6, 10–6) are other parameters that varied in this simulation. Those are values in which
there was convergence, chosen by exploratory analysis. The parameters that yielded the
lowest relative RMS error were fixed. The thresholds for null (Thmin) and full (Thmax)
filteringweight, initially set at 10µVand 60µV, respectively, varied around these levels,
within EEG’s dynamic range.

In order to evaluate noise reduction performance, three levels of the simulated signal
were used to produce average morphologies: background EEG plus ERP (estimation
of the desired signal); background EEG plus ERP and the artefact, without using the
noise reduction procedure; and background EEG plus ERP and the artefact, using the
procedure.

Routines in GNU Octave were implemented in order to perform the attenuation
process of eye-blink artefacts. Several parameter sets were tested for the filter. In order
to evaluate the accuracy of each combination of the parameters, the RMS error was
calculated for each derivation and additionally an average of the errors among derivations
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was performed. In this way, one assessed the smallest RMS error for the average of all
four derivations and also whether a derivation performed better in any scenario.

3 Results

According to the eye blink occurrence, the attenuation of the artefact was evaluated in
three moments: early eye blink (total overlap with the ERP component), intermediate
eye blink (partial overlap), and late eye blink (no overlap). The 6th-order filter with
adaptation factor set in 10–5 yielded the worst RMS errors, hence this configuration was
excluded from the following analysis.

Considering early eye blink, the lowest RMS errors for all derivations were obtained
using orders 0 and 1, with adaptation factor set in 10–6. For intermediate eye blink, Fp
derivations had lowest RMS error using 1st-order filter and adaptation factor of 10–6;
for Cz and Oz derivations, artefact reduction performed better using 2nd- and 3rd-order
filters with the adaptation factor set in 10–5. For late eye blink, low RMS error values
occurred for a wide range of parameter combination: all sets for Fp derivations, and
combining orders 2 up to 5 with adaptation factor of 10–5 for Cz and Oz.

Considering an overall analysis based on the average performance of the three
moments of eye blink occurrence, the best scenario was 2nd-order filter (closely followed
by 3rd-order filter) with adaptation factor set in 10–5. Hence, this parameter combina-
tion was set fixed in order to assess different threshold combinations; the relative RMS
error varied slightly, with the lowest value obtained with Thmin = 10 µV and Thmax =
60µV. In this configuration, the resulting waveforms are shown in Fig. 2. In general, one
can observe that the filtered waveform (continuous black line) approximates the goal
ERP estimation (thick grey line), considerably reducing the influence of the eye-blink
artefact (shown in dotted line). Table 1 shows the RMS errors for each derivation and
moment of eye blink occurrence considering the three parameter combinations with best
performance for each scenario and overall (column-wise ordered by means of the sum
of average errors). The best global performance (first column) coincides with the best
performance for intermediate eye blink. The second column points out the best perfor-
mance for late eye blink and second best global scenario. On its turn, the third column
indicates the best performance for early eye blink.

Therefore, the proposed procedure showed considerable artefact reduction and
allowed the identification of ERP components that are severely deteriorated by eye-blink
artefacts. A small portion of ERP interesting components was removed in frontopolar
waveforms only when time occurrence of eye-blinks overlapped the entire ERP period
(Fig. 2a). In spite of this fact, the waveforms were not completely removed, making their
identification possible since they still remained recognizable in the resulting ERP. The
Cz and Oz filtered waveforms closely follow the ERP pattern despite the presence of the
high-amplitude artefact. As can be observed in Fig. 2, amplitude differences occur in
the frontopolar derivations due to eye blinks and progressively decrease in the posterior
derivations.
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Fig. 2. Comparison of goal waveform (thick grey line) with those after using the developed
filtering (solid black line) and not using it (dotted line). Mean time of eye-blinking is: (a) 250 ms,
(b) 500 ms and (c) 750 ms.
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Table 1. RMS errors for the best scenarios of each moment of eye blink occurrence. The perfor-
mances are ordered based on total RMS error, which is the sum of average errors for each moment
of eye blink occurrence. The best overall result for each derivation and average is presented in
bold.

Eye blink occurrence Derivation 2nd-order
10–5

3rd-order
10–5

1st-order
10–6

Early Fp1 1.8771 1.8759 1.8647

Fp2 1.8572 1.8575 1.8609

Cz 2.5373 2.5713 2.2767

Oz 1.8497 1.8827 1.5093

Average 2.0303 2.0469 1.8779

Intermediate Fp1 0.8848 0.8812 0.8665

Fp2 0.8738 0.8713 0.8658

Cz 1.2382 1.2983 1.6795

Oz 1.3328 1.3495 1.3553

Average 1.0824 1.1001 1.1918

Late Fp1 0.8909 0.8876 0.9312

Fp2 0.8864 0.8821 0.9297

Cz 1.3479 1.3123 1.9444

Oz 1.3900 1.3800 1.5442

Average 1.1288 1.1155 1.3374

Total 4.2415 4.2625 4.4071

4 Discussion

The artefact removal technique should be chosen according to the peculiarities and pur-
poses of each project, since there are several techniques and each one has its particularity,
advantages and disadvantages [14]. In BCI systems, since real-time control of devices is
required, an online method should be chosen. It means that the data should be automati-
cally updated as changes are made and the commands should result in responses in real
time or in a sufficiently short time so that the control is not compromised. Furthermore,
an automated execution is essential, that is, the technique should automatically iden-
tify and eliminate artefact components without the need for manual intervention. This
enables online application and also avoids the insertion of subjectivity in the process
[8]. The developed technique achieved both of these goals, hence being a good choice
for artefact attenuation in BCI systems.

The number of EEG recording channels used is another important factor to be taken
into account. In BCI systems, the possibility of using few channels (few electrodes)
in the EEG acquisition is expected [14]. This implies ease of use and makes the EEG
recording process more user-friendly. Not only are there few available techniques that
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are able to perform the removal of ocular artefacts from single-channel EEG, but also
most of them modify uncontaminated frequency bands of the EEG signal [18].

The adaptive filter, one of the main filtering techniques used to remove EEG artefacts
[8], allows removing noise from a signal in real time [19], automatically, and it can
also operate in a single-channel EEG. Nevertheless, it does not deal with bidirectional
interference. Adaptive filtering requires the existence of a reference signal that has only
information about the eye blink, without any reminiscence of neural activity of interest
and, due to bidirectional interference, this does not occur.Consequently, a part of possibly
important EEG activity might be cancelled along with the artefact.

The weighted adaptive filtering method aiming noise cancellation proposed in this
work combines the possibility of online and automatic performance, which is essential
in applications such as BCI systems, with the fact that it only produces some level of
attenuation in the instants of eye blink, minimising attenuation of important informa-
tion. Under these circumstances, erroneous removals are avoided, hence the impact of
bidirectional interference is minimised.

Moreover, with the developed technique, if the reference channel is not available,
it is possible to estimate it with the frontopolar derivations. In this noise estimation,
usually there is the disadvantage that a large amount of frontal neural activity is also
cancelled. In this work, this is mitigated by the use of weighted adaptive filtering instead
of traditional adaptive filtering, in the same way that the loss of neural activity due to
bidirectional interference is also diminished. Even when an EOG derivation is available,
bidirectional interference may cancel out neural activity of interest, and this technique
mitigates this effect.

In this way, even in the absence of EOG derivations, the developed adaptive filtering
procedure was able to attenuate eye-blink artefacts. Therefore, it showed a balanced
trade-off between artefact reduction and possible suppression of frontal neurological
activity. The results also support that the high-amplitude activity recorded in frontopolar
derivations is a good estimation of the artefact source. Thus, it can be a good alternative
in BCI systems where the reference channel (EOG) is not available.

When no EOG derivation is available, the EOG data can also be estimated from
Independent Component Analysis (ICA) applied to raw EEG [20]. Algorithms based on
ICA are widely used to remove artefacts as well [8], but they have the disadvantage of
demanding a considerable processing time, enough to make online application unattain-
able [14]. In addition, this technique is automatic only when combined with another
technique [14]. Furthermore, it cannot be used in a single channel due to the principle of
blind source separation, which says that more channels will bring better accuracy [14].
In this way, this EOG estimation approach would not be a good fit for a BCI system.

Furthermore, in the present work, the EEG and ERP characteristics found in real
signals were reproduced in the simulated signals. In background EEG’s simulation, both
bandwidth differences and inter-channel correlations were taken into account. The ERP
and artefacts distribution also sought to reflect differences between derivations. The low-
pass filters applied to Cz and Oz derivations mimics the behaviour of high frequency
attenuation with propagation of the eye-blink artefact along the scalp that occurs in real
signals. Hence, the simulated conditions make a good representation of reality.
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Additionally, this noise reduction approach could also be applied in other cases of
high-amplitude artefacts that predominantly affect few derivations, such as temporal
muscle activity.

Further work will be carried out in order to continue the assessment of the perfor-
mance variability and robustness of the method as well as to compare this technique’s
performance with other eye-blink removal procedures, such as ICA.

5 Conclusion

The proposed adaptive filtering approach resulted in a considerable reduction in the
eye-blink artefact. This allowed easy identification of ERP components that are severely
deteriorated by eye-blink artefacts, even when the artefact overlaps the ERP. Therefore,
the application of this technique as a pre-processing step in BCI applications can be of
great importance for the reliability of the commands, hence their proper functioning.
A great virtue of the developed noise reduction technique is that it can be applied in
real time and therefore can be used in BCI systems. Moreover, this technique can also
improve the analysis and description of ERP in different stimulation paradigms.

Future studies will be held aiming at evaluating the performance of the technique
in a more exhaustive way with emphasis on robustness and performance variability,
performing more simulations and applying this algorithm in real signals acquired during
protocols involving brain-computer interface.
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Abstract. Autism Spectrum Disorder (ASD) is a neurodevelopmental
disorder characterized by deficits in communication and social interac-
tion, and presence of repetitive behaviors, and restricted interests. Many
structural and functional brain alterations can be observed in individuals
with ASD. Therefore, functional magnetic resonance imaging (fMRI) has
been used to uncover the neurobiology of this disorder. Numerous stud-
ies have used machine learning models to classify ASD using the Autism
Brain Imaging Data Exchange fMRI dataset. Currently, the state-of-
the-art accuracy is close to 70% when using multi-site samples. Here, we
propose a 3D version of the SqueezeNet resource-efficient architecture.
We used regional homogeneity data available from the preprocessed ver-
sion of the ABIDE I dataset. A 3D-CNN ensemble model was trained
using a 5-fold cross-validation procedure. Our model achieved 68.93%
accuracy and 0.72 Area Under the Receiver Operating Characteristic
Curve (AUC) value. Despite not achieving the highest overall accuracy,
our SqueezeNet-based 3D-CNN can still outperform another 3D-CNN
model based on the same dataset. Using a resource-efficient architecture,
we developed a model capable of processing complex 3D medical imaging
data. Moreover, we achieved comparable state-of-the-art results.

Keywords: Convolutional Neural Networks · fMRI · Machine
Learning

1 Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder character-
ized by deficits in communication and social interaction and by the presence
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of repetitive behaviors and restricted interests and activities [1]. It is currently
estimated that between 1% and 2% of individuals are affected worldwide [2].
There is still no biomarker validated for use in clinical practice, and the diagno-
sis remains based on clinical observations [3]. This poses significant challenges
for healthcare professionals considering the heterogeneous characteristics of this
disorder.

Resting-state functional magnetic resonance imaging (rs-fMRI) is one of the
most used techniques to investigate the human brain functional connectivity [4]
and has been used to study the neurobiological bases of ASD. Individuals with
ASD can present several structural and functional brain alterations, including
increased total brain volume during early childhood [5] and regional homogene-
ity alterations of resting-state brain activity [6]. The International Neuroimag-
ing Data-sharing Initiative created the Autism Brain Imaging Data Exchange
(ABIDE) initiative to aggregate functional and structural brain imaging data
collected from international imaging sites to accelerate ASD neuroimaging stud-
ies [7]. This consortium aggregated a collection (ABIDE I) of mostly unpublished
samples from 17 independent sites and released it in August 2012 [7].

Several machine learning models were developed to classify ASD using the
ABIDE dataset. Heinsfeld et al. (2018) [8] used deep neural networks (DNN) and
feature selection from functional connectivity of ROIs to identify ASD with 70%
of accuracy. This was one of the first results surpassing the prior 60% accuracy
threshold for deep learning [9,10] with a comprehensive dataset that contained
data from samples of several group ages, genders, and sites. More recently, Yang
et al. (2020) [11] and Ingalhadlikar et al. (2021) [12] have achieved, respectively,
75.27% and 71.35% accuracy using similar feature selection procedures and artifi-
cial neural networks. However, significantly higher metrics, such as 95% accuracy,
can be achieved when classification is done on subsets of age groups [13] or con-
strained sample sizes [14]. Aggregating samples from multiple sites, age groups,
and genders to increase sample size can certainly introduce great variation in
the dataset [10]. Nevertheless, an ideal biomarker or predictive model should be
able to represent greater variance between subjects and imaging practices [9].

Convolutional Neural Networks (CNNs) have been shown to perform well
in classification tasks using fMRI data [4,15]. Sherkatghanadet et al. (2020)
[16] used a 2D-CNN to achieve 70.22% of accuracy using the ABIDE dataset
and using functional connectivity of ROIs as features. El-Gazzar et al. (2019)
developed a 3D-CNN to directly use 4D spatio-temporal data without the need
to compute a correlation matrix of functional connectivity ROIs as in previous
studies. However, using data from all sites of the ABIDE dataset, the 3D-CNN
achieved only 58% of accuracy. Recently, Thomas et al. (2020) [17] developed
an ensemble model that uses multiple statistical derivatives as input to a 3D-
CNN, achieving 64% accuracy in classifying individuals with ASD in a combined
ABIDE I and ABIDE II dataset.

3D-CNNs models have the advantage of working directly with 3D rs-fMRI
data while keeping the spatial resolution intact. However, 3D-CNNs can require
significantly more parameters to adjust compared to their 2D counterparts, mak-
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ing them harder to train and prone to overfitting [18]. To overcome this challenge,
one strategy is to design a 3D version of a 2D resource-efficient CNN [18].

Here, we developed a 3D version of the 2D resource-efficient SqueezeNet to
classify Autism Spectrum Disorder (ASD) from regional homogeneity data from
the ABIDE I dataset. With the use of this lightweight architecture, we demon-
strate that it is possible to achieve state-of-the-art results while maintaining the
spatial structure of the input data.

2 Materials and Methods

2.1 Data Description

We used publicly available data from the preprocessed version of the ABIDE I
dataset [19]. ABIDE I is composed of structural, resting-state fMRI, and phe-
notypic data completely anonymized from multiple sites following international
guidelines and approved by local Institutional Review Boards [7].

The preprocessing pipeline was Configurable Pipeline for the Analysis of
Connectomes (CPAC). Preprocessing steps for this version included slice time
and motion correction, intensity normalization (4D Global mean = 1000), nui-
sance signal regression, band-pass filtering (0.01–0.1 Hz), and registration to a
3mm Montreal Neurological Institute (MNI) standard template. The final fMRI
volume dimensions were 61× 73× 61 (height, width, depth).

We chose regional homogeneity (ReHo) values from the statistical derivatives
available in the preprocessed ABIDE I dataset. ReHo is a measurement of the
similarity of the time series of a given voxel to those of its nearest neighbors in
a voxel-wise way, and it is based on the hypothesis that intrinsic brain activity
is manifested by clusters of voxels rather than single voxels [20]. One interesting
aspect of ReHo is that it requires no a priori definition of regions of interest
(ROIs) and can provide information about the local/regional activity of regions
throughout the brain [21]. ReHo analysis has been extensively used to investigate
resting-state function connectivity alterations in many disorders, including ASD
[22]. Furthermore, ReHo indirectly reflects the local encephalic activation of the
region surrounding a given voxel, which may favor feature extraction by a CNN
that maintains the spatial structure of the data.

2.2 Model Architecture

We proposed a 3D SqueezeNet-based model, similar to previously developed by
Köpüklü et al. (2019) [18], and with added alterations to the original SqueezeNet
architecture [23]. The SqueezeNet-based macro architecture (Fig. 1) is composed
of 9 convolution layers, including 8 Fire modules. Here, a 3D version of the Fire
module is responsible for reducing the number of input elements with 1× 1× 1
filters (squeeze layer) and then expanding the elements with a combination of
1× 1× 1 and 3× 3× 3 filters (expand layer). We decreased the original number of
convolutional kernels in the Conv1 layer from 96 to 64. The original architecture



362 G. Bauer-Negrini et al.

increases the number of kernels in every 2 Fire modules in multiples of 128 and
here it was increased in multiples of 64. MaxPooling3D layers are used to reduce
input size while keeping relevant information by merging semantically similar
features into one [24]. The original SqueezeNet replaces the traditional fully
connected layer with a GlobalAveragePooling3D layer to reduce the overfitting
phenomenon, which was observed when using fully connected layers.

The activation layers use the rectified linear unit (ReLU). ReLU inserts non-
linearities in the network to obtain sparse representations and model complex
functions [25]. To reduce model overfitting, one dropout layer (50%) [26] was
used after the layer Fire 8, as in the original, and an extra L1 regularization
penalty of 0.1 was applied to the kernel initializer of the output layer. The
weight initializer used the method proposed by He et al. (2015), as opposed to
the original SqueezeNet choice of Xavier method, due to the good performance
demonstrated in combination with rectifier activation functions [27]. The output
layer has a single neuron with a sigmoid activation function, compatible with
the binary classification task.

Fig. 1. SqueezeNet-based 3D-CNN architecture. Numbers next to arrows indicate the
number of convolution kernels in each layer. In the detail, the architecture of the
FireModule is shown.

2.3 Model Training and Validation

A total of 884 samples (476 TDC and 408 ASD) were obtained from the prepro-
cessed dataset. Samples were initially divided into two main groups following an
80/20 ratio:
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– Train and validation: samples used for 5-fold cross-validation and hyper-
parameter optimization (373 TDC, 334 ASD).

– Test: hold-out samples not used for any of the training or validation and used
only to calculate the final metrics (103 TDC, 74 ASD).

The training procedure is illustrated in Fig. 2. We used k -fold cross-validation
[28] as a model selection strategy. We randomly split the train set into 5-folds,
in which the first segment were used as validation data, and the remaining four
segments were used to train the model. Here, for each fold, 5 models were ini-
tialized with random weights and trained. The validation data (k segment) of
the fold was used to select the best of the 5 models based on the maximum
validation accuracy value. Model weights were saved on every validation accu-
racy improvement. An early stopping criterion was adopted and the training was
stopped if the validation accuracy had not improved in the last 50 epochs. The
maximum number of epochs was fixed as 300.

All models were trained to minimize the value of the binary cross-entropy
cost function. The Adam optimizer algorithm was chosen for training due to its
computational efficiency and performance in problems with many parameters
[29]. The learning rate was determined empirically to maximize the validation
accuracy and was fixed throughout the training as 10−5. The number of training
samples per batch was 64 to avoid exhausting the memory space.

Fig. 2. Model development procedure. A holdout of 20% is selected to evaluate the
model. Then, the remaining data is split into 5 folds and goes through cross-validation
training. The ensemble model averages the predicted probabilities of the 5 models
to calculate the final metrics based on the holdout test set. pi denotes the predicted
probability of a model instance.

In the end, 5 3D-SqueezeNet models (the best selected models generated
in each k fold) were used to compose the final ensemble model. To evaluate
metrics, the hold-out test set was used. The ensemble was of the bagging type,
in which the average of the probability output by the 3D-SqueezeNet instances
is calculated. Bagging equalizes the influence of the involved original estimators
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[30]. It is also shown to decrease estimator variance in most cases, however,
increasing bias (for one class or another) [31].

2.4 Evaluation Metrics

Metrics used to evaluate the model were based on the output probabilities. The
default cut-off probability, i.e. threshold, to perform binary classification of bal-
anced datasets is 0.5. However, the default value does not necessarily preserve
the observed prevalence or result in the highest prediction accuracy [32]. Pre-
vious papers [33–35] calculated the threshold based on the maximum accuracy
achieved. For the present analysis, we analyzed the thresholds that would pro-
vide the highest accuracy for each fold based on the validation samples. This
resulted in the values of, respectively, 0.50, 0.54, 0.41, 0.51, and 0.45. Based on
these thresholds, the default value of 0.5 was considered adequate to analyze the
ensemble model in the test set.

Accuracy (acc), True Positive Rate (TPR, also called Sensitivity or Recall),
False Positive Rate (FPR), Positive Predictive Value (PPV, also called Pre-
cision), True Negative Rate (TNR, also called Specificity) were calculated as
follows:

acc =
TP + TN

TP + TN + FP + FN
(1)

TPR =
TP

TP + FN
(2)

FPR =
FP

FP + TN
(3)

PPV =
TP

TP + FP
(4)

TNR =
TN

TN + FP
(5)

The Area Under the Receiver Operating Characteristic Curve (AUC) was
also employed as an evaluation metric for the results. The Receiver Operating
Characteristic (ROC) curve is the plot of the TPR by the FPR for a range of
classification thresholds. AUC was first proposed by DeLong et al. (1988) [36]
and is the integration of the area below the ROC curve. It varies between 0.5,
for classification models which cannot discriminate between classes, and 1.0, for
perfect models in which the FP and FN classifications are null.

2.5 Computing Environment

Code was written using the Python 3.7 programming language. The model was
built using the Keras (version 2.2.1) framework for TensorFlow (version 2.4.1).
Hardware resources included an Intel Xeon central processing unit (2vCPU, 2.20
GHz), 12 GB of system random access memory (RAM), and one Tesla P100
graphics processing unit (GPU) with 16 GB video RAM.
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3 Results and Discussion

The resulting evaluation metrics, based on the hold-out test sample, are shown in
Table 1. Different folds of the 5-fold cross-validation procedure generated models
that performed better in different metrics. The metric Recall (TPR) varies widely
between the models trained for each fold. Fold 5 achieved 71.62%, however, its
Precision (PPV) is the lowest among all folds. However, Precision was higher on
the fold 4 model, which had a poor outcome on the Recall metric. The Specificity
(TNR) also exhibits significant variance, highlighting the ensemble’s balancing
impact. Accuracy has higher for the fold 3, although the accuracy for the bagged
model was higher. The AUC showed satisfactory values for all folds, and the
ensemble AUC was higher than the folds 1 and 3 AUC by 0.80%. Regarding
the performance of the models for the validation set, the Accuracy values were
65.49% ± 2.13 (mean ± standard deviation) and AUC values were 0.66 ± 0.03
(mean ± standard deviation) across folds.

The ensemble successfully managed to increase the overall metrics of the
model and decrease the variation observed for different folds and models.

Table 1. Resulting metrics for the best model of each k-fold and the final ensem-
ble model. Ensemble metrics were calculated based on the average of the predicted
probabilities for the hold-out test set.

Fold Accuracy Precision Specificity Recall AUC

1 64.41% 58.21% 72.82% 52.70% 0.71

2 65.54% 57.83% 54.37% 64.86% 0.67

3 66.10% 58.97% 80.58% 62.16% 0.71

4 64.97% 61.11% 77.67% 44.59% 0.69

5 63.84% 55.21% 68.93% 71.62% 0.70

Ens. 68.93% 63.77% 75.73% 59.46% 0.72

Figure 3 shows the Receiver Operating Characteristic (ROC) curve for the
resulting ensemble model. The value of AUC = 0.72 shows that the amplitude
of the results of the model is satisfactory and the symmetrical shape of the ROC
curve shows that there is a reasonable balance in the classification of both output
classes. Individual models showed similar AUC values. Still, the ensemble model
achieved the highest value, demonstrating the benefits of this strategy.

The results of the present paper can be discussed in comparison with those
of other authors who used the ABIDE I dataset under similar conditions, i.e.
accounting for samples from multiple sites, gender, and ages (Table 2). The accu-
racy achieved was slightly below the ones obtained by [8,11,12,16], and above
the ones achieved by [37,38]. Precision (PPV), Specificity (TNR), Recall (TPR),
and AUC for the presented model are compatible with those found by previous
authors. Specificity found in the present analysis is higher than in most of the



366 G. Bauer-Negrini et al.

Fig. 3. ROC curve and AUC value for the best model of each k-fold and the final
ensemble model. Curve y = x (AUC = 0.5) shown for reference.

previous papers, indicating that samples indicated as negative by our model have
a high potential to be of a typical developed individual. Unfortunately, not all
metrics were reported by previous authors, therefore limiting the scope of our
comparisons. The only metric present in all studies was accuracy.

Despite not achieving the highest overall accuracy, our SqueezeNet-based
3D-CNN is still able to outperform another 3D-CNN model based on the same
dataset [38], which achieved 58% accuracy. For reference, [17] also used a 3D-
CNN model and achieved an accuracy of 64% for the combined ABIDE I and
ABIDE II dataset. Nevertheless, the metrics from [17] are not comparable to
either [38] or those from the present study because they are based on a different
dataset. Adding ABIDE II data possibly introduces more variability to the test
data. However, it provides a higher number of samples to be trained on, which
was observed to affect CNN models positively. The fact that we use multi-center
samples, and from all age groups and genders available in ABIDE I, may con-
tribute to a better generalization considering other settings. By all means, the
resulting metrics shown are well within the expected range and show that our
model was successfully developed and trained.

The most common strategy for feature selection is to calculate a correla-
tion matrix of functional connectivity of ROIs (Table 2). We used the com-
puted ReHo derivative without the need to select any ROIs. ReHo alterations
are already reported in individuals with ASD [22,39] and our model was able
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to autonomously extract features from a 3D volume of ReHo values to classify
ASD.

Although positive, the results are yet distant from being replicated as diag-
nostic biomarkers. In fact, rs-fMRI-based classifications of ASD are generally
less accurate than classifications based on behavioral observation [40]. However,
the advancement of Machine Learning models may, in the future, complement
the diagnosis or add a vital diagnosis screening layer.

4 Conclusion

We proposed a SqueezeNet-based 3D-CNN ensemble model as an alternative
for ASD classification using fMRI data. Although the metrics calculated for the
results obtained are slightly lower than state-of-the-art studies, our develop-
ment still poses an interesting implementation because of its relative simplicity.
Lightweight network architectures display a good trade-off between accuracy
and the number of parameters in 2D cases. We developed a model capable of
processing complex 3D medical imaging data using this type of resource-efficient
architecture. Moreover, we achieved results comparable to benchmarks and even
surpassed the performance of other 3D-CNN architectures using the ABIDE I
dataset. Lastly, we used ReHo values as input to our network, demonstrating an
alternative measure to autonomously detect ASD and someday potentially aid
in patient screening and diagnosis.

Table 2. Comparison table for automated detection of TDC and ASD classes using
samples from multiple sites, gender, and ages of the ABIDE I dataset.

Ref. Model acc (%) PPV (%) TNR (%) TPR (%) AUC Features

[8] DNN 70.00 63.00 74.00 Functional connec-
tivity of ROIs

[37] SSAE 62.00 71.20 53.30 0.65 Age at testing, sex,
handedness, full-
scale IQ, verbal IQ,
performance IQ

[38] 3D-CNN C-LSTM 58.00 4D Spatio-Temporal
fMRI

[11] DNN 75.27 76.88 74.00 Functional connec-
tivity of ROIs

[16] 2D-CNN 70.22 61.82 77.46 0.70 Functional connec-
tivity of ROIs

[12] ANN 71.35 80.60 59.50 Harmonized func-
tional connectivity
of ROIs

This study 3D-Squeeze-Net CNN 68.93 63.77 75.73 59.46 0.72 Regional homogene-
ity

ANN : artificial neural network, CNN : convolutional neural network, C − LSTM : con-
volutional long short-term memory, DNN : deep neural network, ROIs: regions of
interest, SSAE: stacked sparse auto-encoder based neural network.
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Abstract. This work aims to evaluate the performance of the cepstral
method to estimate, in the presence of noise, the stable optimal solution
of feedforward occlusion cancellation. The estimation is performed using
the feedback structure for occlusion cancellation in a calibration process
that may occur before using the hearing aid or when the user finds it
convenient. Real-world occlusion path, acoustic path, and speech signals
were employed. Simulations showed that the efficiency of the method
reduces when decreasing the signal-to-noise ratio (SNR) at the hearing
aid external microfone. For an analysis window of 2 s, estimates with
mean normalized misalignment (MIS) less than −6, −14 and −22 dB are
obtained for SNRs of 30, 40 and 50 dB, respectively. For a window of
4 s, mean MIS less than −16 and −24 dB are achieved for SNRs of 40
and 50 dB, respectively. The results indicate that the calibration pro-
cess needs to be carried out in an acoustically controlled environment to
maximize the accuracy of the stable solution estimate.

Keywords: Occlusion Effect · Hearing Aid · Cepstral Method ·
Optimal Solution · Ambient Noise

1 Introduction

The occlusion effect in hearing aids occurs when the ventilation opening has
insufficient diameter to provide the necessary dissipation of sound energy con-
ducted to the ear canal through the skull and jaw, when the hearing aid user
speaks [1,2]. This leads to an increased low-frequency sound pressure level,
thereby making the user listen to his own muffled voice [3]. The cause of the
occlusion effect is modeled by the impulse response o(n) in Figs. 1 and 2.

The voice v(n) uttered by the hearing aid user is picked up by the hearing
aid’s external microphone, after traversing the acoustic path represented by the
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Fig. 1. Feedforward structure for occlusion effect cancellation.

Fig. 2. Feedback structure for occlusion effect cancellation.

impulse response a(n), along with the ambient noise r(n), generating the signal
y(n). Disregarding the filter w1(n), the signal of the external microphone, y(n), is
amplified by the compensation system re-presented by the impulse response g(n),
resulting in the signal x(n) to be played back by the hearing aid’s loudspeaker.
The signal z(n), to be picked up by a possible internal microphone of the device,
is in fact the signal to be heard by the hearing aid user and is defined as

z(n) = x(n) + v(n) ∗ o(n)
= [g(n) ∗ a(n) + o(n)] ∗ v(n) + g(n) ∗ r(n),

(1)

where the symbol ∗ denotes the convolution operation. Therefore, the occlusion
effect is characterized by the addition of o(n) ∗ v(n) to the desired value of z(n)
and, thus, can be interpreted from the reverberation point of view.

Fixed and adaptive controllers have been proposed to, at least, attenuate the
occlusion effect. The fixed solutions, proposed in [1,4–7], ensure the system sta-
bility but do not deal with the dynamic changes of the acoustic system, and may
suffer performance losses due to variations in the ear channel or displacement of
the ear mold. On the other hand, the adaptive solutions proposed to date in [4,5]
present slow convergence of the adaptive filter coefficients and require constant
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adaptation since the occlusion effect occurs in short time periods, when sound
signals are produced by the user.

Both solutions can be implemented in feedforward or feedback structures,
which are shown in Figs. 1 and 2 respectively. Note that, in the feedback struc-
ture, the hearing aid has an internal microphone to pick up and utilize the signal
z(n).

Among the mentioned cancellation proposals, the work presented in [7] stands
out for being the only one to estimate the optimal solution for feedforward occlu-
sion cancellation. The estimation is performed using a cepstral method and the
feedback occlusion cancellation structure in a calibration process, when hearing
loss compensation is not necessary and g(n) and w2(n) can be freely chosen,
provided that they do not result in an uncomfortable acoustic environment.
However, the estimation method was evaluated considering only the absence of
ambient noise in the calibration, a situation that may not be found even in
controlled conditions.

This work aims to evaluate the performance of the cepstral method for esti-
mating the stable optimal solution of occlusion cancellation in the presence of
noise. This article is organized as follows: Sect. 2 discusses the optimal solution
wo(n) for feedforward occlusion cancellation; in Sect. 3, the cepstral method for
estimating wo(n) is described; in Sect. 4, the configurations of the performed
simulations are presented; Sect. 5 presents and discusses the results obtained;
and, finally, Sect. 6 concludes the work.

2 Feedforward Occlusion Cancellation System

In the feedforward occlusion cancellation system, illustrated in Fig. 1, the optimal
frequency response, in the sense of totally removing the signal o(n) ∗ v(n) from
z(n), in the absence of ambient noise (r(n) = 0) is given by [7]

Wo(ejω) =
O(ejω)
A(ejω)

, (2)

which in the time domain corresponds to

wo(n) = o(n) ∗ aI(n), (3)

where aI(n) denotes the impulse response of the inverse system to the acoustic
path. Due to the properties of the discrete-time Fourier transform, wo(n) is
absolutely summable and therefore this optimal solution is stable.

As the acoustic path models the propagation delay from the user’s mouth to
the external microphone of the hearing aid, its impulse response can be written
as [7]

a(n) = ã(n) ∗ δ(n − Na), (4)

where δ(n) is the unit impulse function, ã(n) = 0 for n < 0, ã(0) �= 0 and
Na > 0. Consequently, as demonstrated in [7], aI(n) is in general a two-sided
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signal composed of left-side increasing exponentials for n < −Na and right-
side decreasing exponentials for n ≥ −Na. But, since its energy is concentrated
around n = −Na, aI(n) can be considered of finite length with aI(n) �= 0 only
for A1 ≤ n ≤ A2, where A1 < −Na < A2. Note that A1 is always negative.

Combining the above approximation of aI(n) with the fact that o(n) �= 0
only for n = 0, 1, . . . ,M − 1, as shown in Sect. 5, wo(n) �= 0 only for n =
A1, A1 + 1, . . . ,M + A2 − 1 [7]. Hence, the stable optimal solution is non-causal.

3 Cepstral Method to Estimate wo(n)

In the feedback cancellation system represented in Fig. 2, it can be shown that
the discrete-time Fourier transform (DTFT) of the error signal e(n) is given by

E(ejω) =
1 − Wo(ejω)W2(ejω)
1 + G(ejω)W2(ejω)

Y (ejω)

+
Wo(ejω)W2(ejω)

1 + G(ejω)W2(ejω)
R(ejω).

(5)

In the absence of ambient noise, R(ejω) = 0 and (5) becomes

E(ejω) =
1 − Wo(ejω)W2(ejω)
1 + G(ejω)W2(ejω)

Y (ejω). (6)

In this ideal case, if
∣
∣Wo(ejω)W2(ejω)

∣
∣ < 1 and

∣
∣G(ejω)W2(ejω)

∣
∣ < 1, neces-

sary conditions for Taylor series expansions, then the cepstrum of e(n) can be
defined from (6) as [7]

ce(n) = cy(n) −
∞∑

k=1

[wo(n) ∗ w2(n)]∗k

k

−
∞∑

k=1

(−1)k+1 [g(n) ∗ w2(n)]∗k

k
,

(7)

where {·}∗k denotes the kth convolution power.
The cepstral method proposed in [7] explores (7) to estimate wo(n), in a

fashion similar to [8,9] for acoustic feedback cancellation. The estimation is
carried out in a calibration process that occurs before using the hearing aid
or when the user finds it convenient. The signal v(n) must be a voiced sound,
usually a vowel, emitted by the hearing aid user.

The reasoning behind the method comes from speculating that wo(n)∗w2(n),
the impulse response for k = 1 of the first time series in (7), can be extracted
from ce(n) − cy(n) by properly choosing g(n) and w2(n). At the calibration
process, hearing loss compensation is not required and these impulse responses
can be arbitrarily chosen, as long as they do not cause acoustic disturbance to
the hearing aid user.
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The choice of g(n) and w2(n) plays a key role as it serves three purposes [7]:
ensure that the conditions for Taylor series expansions are met and, therefore,
equation (7) is valid; make wo(n) ∗ w2(n) causal; and make the non-zero sam-
ples of wo(n) ∗ w2(n) do not overlap with the non-zero samples of the impulse
responses for k > 1 of the first time series in (7).

The impulse responses of the compensation and the feedback paths are simply
defined as a bandwidth gain and a delay [7], that is,

g(n) = kgδ(n − Ng) (8)

and
w2(n) = kwδ(n − Nw), (9)

where Ng > 0 and Nw > 0.
The conditions for Taylor series expansions are met by choosing kw and kg

such that
|kw| < max

ω

1
|Wo(ejω)| (10)

and
|kg| <

1
|kw| . (11)

Causality and non-overlapping of wo(n)∗w2(n) are achieved by choosing Nw

according to [7]
Nw ≥ M + A2 − 2A1. (12)

Specified the parameters of g(n) and w2(n) according to the above discussion,
the method starts by computing the real cepstra ce(n) and cy(n) from the signals
e(n) and y(n), respectively, through the fast Fourier transform (FFT). Then, the
method gets {w2(n) ∗ [g(n) − wo(n)]}̂, an estimate of w2(n) ∗ [g(n) − wo(n)]
which is the resulting impulse response for k = 1 in (7), by selecting the first
M + A2 + Nw − 1 samples of ce(n) − cy(n).

In the sequel, the method computes {g(n) − wo(n)}̂, an estimate of g(n) −
wo(n), as follows [7]

{g(n) − wo(n)}̂ = {w2(n) ∗ [g(n) − wo(n)]}̂ ∗ wI(n), (13)

where wI(n) = 1/kwδ(n + Nw) represents the impulse response of the inverse
system to w2(n) and is known. Note that convolution with wI(n) consists of a
sliding on the time axis and a multiplication.

Finally, the method computes ŵo(n), an estimate of the stable optimal solu-
tion wo(n) for the feedforward occlusion cancellation, as [7]

ŵo(n) = −{g(n) − wo(n)}̂ + g(n). (14)

4 Simulation Configuration

This section describes the configuration of the experiment carried out in a sim-
ulated environment to evaluate the performance of the cepstral method in esti-
mating wo(n) in the presence of noise.
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4.1 Speech Database

The database consists of 20 recordings (12 male and 8 female) of the sustained
vowel /a/ sampled at a frequency of 22050 Hz. The vowel /a/ was chosen due
to its wide use in the acoustic analysis of voice. It was provided by the Medical
Engineering Research Group of the National Council for Scientific and Techno-
logical Development (GPEM/CNPq). The recordings were performed at the Hos-
pital das Cĺınicas, Faculty of Medicine, University of São Paulo (HC-FMUSP),
approved by the Human Research Ethics Committee of the Federal University
of São Carlos under the protocol number 256/2010.

In this work, the signals were resampled to 16 kHz and their active power
levels were normalized to −26 dBov through the ITU-T Recommendation P.56
algorithm [10]. Longer speech signals were created by concatenating each signal
with itself. Variable length segments of each resulting signal were used as v(n)
in order to evaluate the performance of the cepstral method as a function of the
vowel length uttered by the hearing aid user.

The speech signals were additively contaminated with zero-mean white
noise at the following signal-to-noise ratio levels SNR = {∞, 50, 45, 40, 35, 30,
25, 20} dB.

4.2 System Configuration

Acoustic Path. The acoustic path was represented in two ways. First, as in [4,
7,11], the acoustic path was a time delay defined as

a(n) = δ(n − Na), (15)

where Na = 14. This delay refers to a propagation length of 30.29 cm, assuming
an average length of 15 cm between the glottis and the lips [12] and a distance
of 15.29 cm between the lips and the external microphone of hearing aids [4]. In
this case, the condition (10) becomes |kw| < 0.41.

Closer to a real-world situation, the second acoustic path was modeled by
a room impulse response available in [13]. The sampling frequency was reduced
to 16 kHz and the first 17 samples were discarded to simulate the typical 14-
sample delay from the lips to the hearing aid external microphone. Then it was
truncated for computational cost reasons. The impulse response a(n) and the
frequency response magnitude of the second acoustic path are shown in Fig. 3.
In this situation, the condition (10) becomes |kw| < 0.14.
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Fig. 3. Second acoustic path: (a) a(n); (b) |A(ejω)|.

Fig. 4. Occlusion path: (a) o(n); (b) |O(ejω)|.

Occlusion Path. The occlusion path was modeled by the impulse response
available in [4], which was measured in a volunteer with a custom and non-
ventilated ear mold and digitally recorded at a sampling rate of 16 kHz. The
impulse response o(n) and the frequency response magnitude of the occlusion
path are shown in Fig. 4, where it is noted that M = 150.

Forward Path. As in [4,7,11], the forward path was modelled as

g(n) = δ(n − 1), (16)

that is, Ng = kg = 1. It is emphasized that, as discussed in Sect. 3, the for-
ward path does not need to compensate the hearing aids user’s loss during the
calibration process. And, as discussed in Sect. 4, the optimal stable solution for
feedforward occlusion cancellation is independent of g(n).
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4.3 Misalignment

The estimate of the stable optimal solution obtained by the cepstral method was
evaluated through the normalized misalignment (MIS), which is defined as

MIS =

{
∑

n
[wo(n) − ŵo(n)]2

}1/2

{
∑

n
w2

o(n)
}1/2

. (17)

5 Simulation Results

The performance of the cepstral method was evaluated for several signal-to-
noise ratios (SNR) in the hearing aid external microphone, namely, SNR =
{∞, 50, 45, 40, 35, 30, 25, 20} dB, and for different sizes of the analysis window
that is used to calculate the short-time cepstra. The Hann window was used.

5.1 Scenario 1

The impulse response a(n) of the first acoustic path is defined in (15). Conse-
quently, the impulse responses of its stable inverse system and the stable optimal
solution are defined as aI(n) = δ(n + 14) and wo(n) = o(n + 14), respectively,
where the non-causality of the stable optimal solution is verified.

The cepstral method was configured as follows: A1 = −100, A2 = 100, M =
150, kw = 0,1, Nw = 450, kg = 1 and Ng = 1. The mean MIS obtained for
various speech lengths and various SNRs are shown in Table 1. Examples of
ŵo(n), which have MIS close to the mean value, obtained by the method with
windows of 2 and 4 s and SNRs of 30 and 40 dB are illustrated in Fig. 5.

The results show that the performance of the method improves both with
the increase in the analysis window size and with the increase in the SNR. For a
window of 2 s, a considerably short time for a person to sustain a vowel sound,
SNRs equal to 30, 40 and 50 dB are needed so that, on average, MIS is lower
than −12, −20 and −25 dB, respectively.

As initially demonstrated and discussed in [7], the performance improvement
with window enlargement is due to the increase in the accuracy of the definition
of ce(n) according to (7), caused by the reduction of the truncation effect of
e(n), which theoretically has infinite duration, necessary to compute ce(n). The
performance improvement with the increase in SNR is also due to the increase in
the accuracy of (7), but now caused by the reduction of the effect of the second
term on the right-hand side of (5), which tends to zero as SNR tends to infinity.

5.2 Scenario 2

The impulse response a(n) of the second acoustic path is represented in Fig. 3.
The resulting wo(n) is shown in Fig. 6, where the non-causality of the stable
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Table 1. Mean of the normalized misalignment in the first scenario.

SNR Window length (ms)

500 1000 1500 2000 3000 4000 5000

∞ -10.06 −18.21 −20.69 −25.99 −27.89 −29.51 −35.31

50 −10.00 −17.47 −20.65 −25.23 −27.31 −29.82 −33.89

45 −9.69 −16.38 −20.36 −24.15 −26.61 −29.20 −32.21

40 −8.94 −13.57 −18.96 −21.96 −24.28 −27.04 −29.03

35 −7.24 −10.32 −15.90 −17.54 −18.83 −22.25 −24.01

30 −4.97 −6.71 −11.05 −12.21 −13.45 −16.64 −17.78

25 −3.67 −3.93 −6.99 −7.62 −7.76 −10.48 −11.30

20 −2.23 −2.45 −3.76 −4.32 −4.32 −6.22 −7.06

Fig. 5. Estimates of wo(n) in the first scenario for the following window sizes and
SNRs: (a) 2 s, 30 dB; (b) 2 s, 40 dB; (c) 4 s, 30 dB; (d) 4 s, 40 dB.
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Table 2. Mean of the normalized misalignment in the second scenario.

SNR Window length (ms)

500 1000 1500 2000 3000 4000 5000

∞ −5.90 −16.33 −19.16 −25.42 −26.38 −28.04 −33.96

50 −5.65 −14.07 −17.22 −22.07 −23.59 −24.67 −26.99

45 −5.32 −11.86 −15.67 −18.46 −19.47 −20.36 −20.99

40 −4.89 −9.29 −12.59 −14.08 −15.86 −16.89 −17.02

35 −3.75 −6.70 −9.34 −10.14 −10.80 −11.55 −11.98

30 −2.74 −4.09 −6.04 −6.61 −6.78 −7.83 −8.23

25 −1.84 −2.73 −3.91 −4.20 −4.16 −5.25 −5.70

20 −1.04 −1.58 −2.17 −2.36 −2.39 −3.13 −3.43

optimal solution is evident. It is important to emphasize that, in this scenario,
wo(n) is an infinite impulse response.

The cepstral method was configured as follows: A1 = −300, A2 = 100, M =
150, kw = 0,1, Nw = 850, kg = 1 and Ng = 1. The mean MIS obtained for
various speech lengths and various SNRs are shown in Table 2. Examples of
ŵo(n) obtained by the method for speech signals with durations of 2 and 4 s and
SNRs of 30 and 40 dB are illustrated in Fig. 6.

For the same reasons explained in the first scenario, the method performance
improves with the increase in both the analysis window length and the SNR.
However, it is observed that the average results are lower than those obtained
in the first scenario. This is due to the combination of two factors: the infinite
length of wo(n) inevitably causes overlap of the impulse responses present in
ce(n) − cu(n), thus impairing their estimation [7]; for the same size of the signal
analysis window, the inevitable truncation of e(n) to compute ce(n) can have an
effect on the inaccuracy of (7) greater than in the first scenario since wo(n) is
different.

The results presented in this work show that the performance differences
become more significant with the decrease in SNR. For a window of 2 s, SNRs
equal to 30, 40 and 50 dB are needed so that, on average, MIS is less than −6,
−14 and −22 dB, respectively. In order to obtain mean MIS less than −10 and
−20 dB, SNRs equal to or greater than 35 and 45 dB are required, respectively.
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Fig. 6. Estimates of wo(n) in the second scenario for the following window sizes and
SNRs: (a) 2 s, 30 dB; (b) 2 s, 40 dB; (c) 4 s, 30 dB; (d) 4 s, 40 dB.

6 Conclusions

This work evaluated the performance of the cepstral method to estimate, in
the presence of noise, the stable optimal solution of feedforward occlusion can-
cellation in hearing aids. The estimation is performed in a calibration process
carried out in a controlled environment. The method was originally evaluated
considering the absence of ambient noise.

Simulations showed that the efficiency of the method reduces with the
decrease in SNR at the hearing aid external microphone. For analysis windows
of 2 s, estimates with mean MIS less than −6, −14 and −22 dB are obtained for
SNRs of 30, 40 and 50 dB, respectively. SNRs equal to or greater than 35 and
45 dB are required to obtain mean MIS less than −10 and −20 dB, respectively.
For windows of 4 s, estimates with mean MIS less than −16 and −24 dB are
achieved for SNRs of 40 and 50 dB, respectively.

These results indicate that the calibration process, where the cepstral method
is used, needs to be carried out in an acoustically controlled environment to
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maximize the accuracy of the optimal solution estimate, which can be used in
implementing a controller to reduce the occlusion effect.
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mento de Sinais. Petrópolis, Brazil (2019)

12. Fant, G.: A note on vocal tract size factors and non-uniform f-pattern scalings.
Speech Transm. Lab. Q. Progr. Status Rep. 1, 22–30 (1966)

13. ITU-T G.191: Software tools for speech and audio coding standardization. Inter-
national Telecommunications Union (2016)

https://doi.org/10.1121/1.2908279
https://doi.org/10.1177/108471380400800402
https://doi.org/10.1177/108471380400800402
https://doi.org/10.1097/01.HJ.0000286218.69092.dd
https://doi.org/10.1016/j.compbiomed.2016.10.016
https://doi.org/10.1016/j.compbiomed.2016.10.016
https://doi.org/10.1250/ast.35.318
https://doi.org/10.14209/jcis.2020.12


Evaluating Semantic Segmentation
of Tuberculosis Bacilli in Bright Field

Microscopy Using Different Color Spaces
Components and Mosaic Images

M. K. Serrão , I. M. Saldanha , M. G. F. Costa , and C. F. F. Costa Filho(B)

Federal University of Amazonas/ Center for Research and Development
in Electronic and Information Technology – CETELI, Manaus, Brazil

ccosta@ufam.edu.br

Abstract. Tuberculosis is one of the infectious diseases that causes the most vic-
tims in the world. The early diagnosis of the disease is fundamental for the treat-
ment to be carried out quickly, saving lives and decreasing the number of infected
people. The tuberculosis diagnosis is a time-consuming process that involves the
analysis of up to 100 fields of conventional microscopy, which causes fatigue for
the technician involved in the process. In order to assist the technician in counting
bacilli in tuberculosis bright field microscopy examinations, automatic methods
using deep neural networks are proposed. In this work, we evaluate the use of a
semantic segmentation network for bacilli detection, using as input several color
components from the RGB, HSV, YCbCr, and Lab spaces. The model that pre-
sented the best performance uses only the components of RGB color space as
input to the network, with values of accuracy, precision, sensitivity, specificity,
and f1-score above 99%.

Keywords: Tuberculosis · Convolutional Neural Networks · Bacilli Detection ·
Color Spaces

1 Introduction

Tuberculosis (TB) is caused by the bacteria Mycobacterium tuberculosis and most com-
monly affects the lungs. According to the World Health Organization (WHO), about 9.9
million people got sick with TB in 2020, and before the covid-19 pandemic, TB was the
leading cause of death from a single infectious agent worldwide [1].

For more than 100 years the bright field smear technique has been used in TB
diagnosis and, because of its availability and simplicity, it remains the main technique
in many settings with a high incidence of the disease [2]. In high-income countries,
fluorescence microscopy is more widely used for diagnosing TB, but in middle- and
low-income countries, where most TB cases occur, the standard diagnostic test is bright
field smear microscopy, which uses a conventional microscope [3]. Bright field smear
microscopy consists of preparing smears of sputum samples on slides stained with the
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Ziehl-Neelsen (ZN) or Kinyoun staining methods. This process gives the TB bacilli a
pink coloration and the other elements of the sample a blue coloration. A technical expert
then uses a conventional microscope to view these slides and count the number of bacilli.
The diagnosis is made ac-cording to the number of bacilli counted by the specialist.

Many works have been developed in the field of computer vision to identify bacilli
in bright field sputum smear images. A pattern recognition technique that has been
prominent in recent years for TBbacilli segmentation is the convolutional neural network
(CNN) [4–9].

In [4], the authors used aCNN to identifymalaria-causing pathogens in lung secretion
smear samples, and intestinal parasites in stool samples. The input image of the network,
in the RGB space, was a patch, i.e. a smaller image, with the size determined by the
type of pathogen to be recognized in each case. In [5], the authors also use a CNN for
bacilli segmentation. The input to the network was a 40x40 pixels patch and the network
was evaluated with RGB images, gray-level images, and with the levels corresponding
to R-G values, which corresponds to the difference between the R and G components
of the RGB space, and intensity images, obtained from the RGB im-age. The networks
with RGB and R-G input showed better results in comparison with the intensity image.
Similarly, in [6] the authors used transfer learning, through a pre-trained model with
the CIFAR-10 database, and trained the last dense layers for bacilli recognition. The
network was trained with RGB patches of 32x32 pixels. In [9], the authors used a CNN
to perform the bacilli segmentation task. The input RGB image has 400x400 pixels and
is composed of 100 patches of 40 x 40 pixels, that can be positive or negative. Three
CNN architectures were evaluated.

It can be observed that most of the cited works evaluate CNNs with the components
of the RGB color space as inputs. This work proposes to evaluate a CNN with different
inputs. The goal is to evaluate whether different combinations of the RGB, HSV, Lab,
and YCbCr color spaces can improve the performance of the CNN in the detection of
bacilli in bright field microscopy images.

The RGB color space was used in this work because it is the original space in which
the images are represented, and was used in the other studies published in the literature.
The HSV color space was chosen because it has characteristics similar to the human
visual system, in which intensity information (H) is uncoupled from color information
(S and H). To justify the choice of the YCbCr and Lab spaces, we will use the conclusion
obtained in [5], about the importance of the R-G difference in the detection of bacilli.
In the YCbCr space, the Cb component, where the R component is subtracted from
the G component, would help the bacilli detection, while the Cr component would
help the background detection. The inclusion of the Lab space was done to check the
hypothesis established in [5], through the negation of the same, as in this space the R
and G components are summed in the a component. Therefore, it is expected that this
system does not present a good performance.

The following color space are combined in the CNN input: RGB; RGB and HSV;
RGB, HSV, and Lab; RGB, HSV, and YCbCr; RGB, HSV, YCbCr, and Lab.
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2 Materials and Methods

2.1 Materials

Thedatabase used in thisworkwas providedby thePatternRecognition andOptimization
Research Group of UFAM [10]. This database consists of 8000 mosaic images of 400
× 400 pixels and their corresponding gold standard images. The mosaic images are
formed from the combination of 100 positive and negative 40 × 40 pixels patches.
Positive patches contain a centralized bacillus, and negative patches contain no bacillus.
All these patches were extracted from sputum smear images stained with the Kinyoun
technique and had the classification performed by an expert. Figure 1 shows an example
of an RGB mosaic image and its gold standard image.

Fig. 1. (a) Mosaico image in RGB space and (b) gold standard image.

The database was divided into training, validation, and test sets. For the training
set, 6000 mosaic images were used, of which 3000 are composed of approximately 50%
positive and 50%negative patches, 1500 are composed of approximately 2%positive and
98%negative patches, and1500are composedof onlynegative patches. For thevalidation
set, 1000 mosaic images consisting of approximately 50% positive and 50% negative
patches were used. For the test set, 1000 mosaic images were also used, composed of
approximately 50% positive and 50% negative patches.

2.2 Semantic Segmentation Network Architecture

Convolutional neural networks are primarily used for image processing, performing
both image classification and semantic segmentation tasks. The classification task aims
to classify an image into categories, while semantic segmentation aims to extract regions
of interest from the image. In [11], the authors investigated the ability of a convolutional
neural network pre-trained with nonmedical images to classify pathologies in x-ray
images. The network performs an important screening task by categorizing patients as
healthy or having chest pathology that includes the classes: right pleural effusion, car-
diomegaly, and abnormal mediastinum. In [12], the authors used a convolutional neural
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network, through the U-net architecture, to perform the task of semantic segmentation
of brain tumors in magnetic resonance images.

The main layers of a convolutional network are the convolution layer, which has
the function of extracting features, and the subsampling layer, which aims to re-duce
the dimensionality of the activation planes of the network [13]. The output of classi-
fication networks is a vector whose coordinate values indicate the probability that an
image belongs to a particular class. In semantic image segmentation tasks, the network
classifies each pixel of the image as belonging or not belonging to a region of interest.
For such networks, the output is also an image with the same dimensions as the input
and transposed convolution layers are responsible for recovering an image in the output
with the same dimensions as the input image.

In [9] three different architectures were tested to per-form semantic segmentation
of tuberculosis bacilli in mosaic images. The architecture that achieved the best perfor-
mance was the one that used the largest number of layers. The architecture used in this
work was based on the best-performing architecture presented in [9].

The architecture used in this work, shown in Fig. 2, is composed of an input layer, 4
subsampling stages, a dropout layer, 4 oversampling stages, and the output layers. The
subsampling stages are composed of sequences of convolution layers with a 3x3 fil-
ter, batch normalization layer, ReLU activation function, and max-pooling subsampling
layer with a 2 × 2 filter. The over-sampling steps are composed of transposed convolu-
tion layer sequences with a 4x4 filter, batch normalization layer, and ReLU activation
function. Finally, there is a convolution layer with a 1x1 size kernel, softmax activation
function, and a pixel classification layer, which classifies each pixel as belonging to a
bacillus or to the background.

In order to evaluate the influence of different color space components on the per-
formance of the semantic segmentation network of TB bacilli, input tensors with dif-
ferent color space components were used. Five models with different color spaces were
evaluated to train the network. The list of these models are shown in Fig. 3.

Each evaluated model has an input tensor in the for-mat: rows x columns x channels.
The first model was trained with the components of the RGB color space and has the
input tensor with dimensions 400 × 400 × 3. The second model was trained with a
combination of the coordinates from the RGB and HSV color spaces and has the input
tensor with dimensions 400 × 400 × 6. The third model was formed by a combination
of the coordinates of the RGB, HSV, and Lab color spaces, and has the in-put tensor
with dimensions 400× 400× 9. The fourth model was formed by a combination of the
coordinates from the RGB, HSV, and YCbCr color spaces, and has the input tensor with
dimensions 400 × 400 × 9. The last model was trained was formed by a combination
of the coordinates of the RGB, HSV, YCbCr, and Lab color spaces, and has the input
tensor with dimensions 400 × 400 × 12.

2.3 Training Parameters

The ADAM optimization method was used to train the network. Table 1 shows the
parameters used for training. The training was performed withMATLAB version 2020a,
a 3.2 GHz Intel i7-8700 processor with 16 GB of RAM, and a GeForce GTX 1070 GPU
with 8 GB of RAM.
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Fig. 2. CNN architecture used for semantic segmentation of TB bacilli.

2.4 Bacilli Classification

The CNN performs the classification of each pixel as bacillus or background. A set
of 8-connected pixels, identified as bacilli, forms objects that can be bacilli or not. To
classify these objects as belonging to bacillus or not, a post-processing step is performed
on the binary images obtained from the output of the semantic segmentation network, as
shown in the block diagram in Fig. 4. This figure shows a 40× 40 pixels sliding window
algorithm that runs through the entire image to check for 8-connected objects. Each
iteration of the algorithm checks for 8-connected pixels in a sub-region of the image.
Objects that have an area above the experimentally obtained threshold of 25 pixels are
classified as bacilli. Otherwise, the object is disregarded. This process is carried out until
the output image is fully evaluated.

2.5 Evaluation Metrics

The following metrics were used to evaluate the performance of the models: accuracy,
precision, sensitivity, specificity, and F1- score. These metrics are shown in Eqs. (1) to
(5). A true positive (TP) is when the semantic segmentation network detected a bacillus
in a patch that contain a bacillus. A true negative (TN) is when the semantic segmentation
network did not detect a bacillus in a patch that do not contain a bacillus. A false positive
(FP) result is when the semantic segmentation network detected a bacillus in a patch that
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Models 
Tensor: 

(400, 400, 9)

Input RGB + HSV

Input RGB + HSV 

+ Lab

Input RGB + HSV 

+ YCbCr

Input RGB + HSV 

+ YCbCr + Lab

Input RGB

Tensor: 

(400, 400, 6)

Tensor: 

(400, 400, 3)

Tensor: 

(400, 400, 9)

Tensor: 

(400, 400, 12)

Fig. 3. 5 Inputs with different color spaces were used in the 5 semantic bacilli segmentation
models.

Table 1. Parameters used in training the semantic segmentation network

Parameters Values

Learning rate 0,001

Learning drop factor 0,05

Maximum number of epochs 20

Batch size 10

Stop condition 6000

do not contain a bacillus. A false negative (FN) result is when the semantic segmentation
network did not detect a bacillus in a patch that contain a bacillus.

Accuracy = TP + TN

TP + FP + TN + FN
(1)

Precision = TP

TP + FP
(2)
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Output of the semantic 

segmentation network

Sliding window algo-

rithm 

Checking if there is an 

object in the window 

Checking the object 

area

Objects with an area larger 

than 25 pixels are classified as 

bacilli

Fig. 4. Post-processing applied in binary images obtained in semantic segmentation network
output, for bacilli detection.

Sensitivity = TP

TP + FN
(3)

Specificity = TN

TN + FP
(4)

F1− score = 2× Precision× Sensitivity

Precision+ Sensitivity
(5)

3 Results

Table 2 shows the results of the metrics for each of the models evaluated for the semantic
segmentation of bacilli. From this table, one can conclude that, in general, the color plane
that presented the best performance was the RGB, achieving an accuracy of 99.43%.
This result is 2.53% better than the worst performing model, the one which used the
color space components of RGB+ HSV+ YCbCr+ Lab at inputs. The latter achieved
an accuracy of 96.90%. The precision of the model that used the components of the
color space RGB as inputs was 99.62%. This result is 5.11% better than the model that
used the RGB+HSV+YCbCr+ Lab color space com-ponents as inputs. Considering
the sensitivity, the model with the components of the RGB + HSV + YCbCr + Lab
color spaces as inputs showed a good performance, 99.54%. The specificity and F1-score
values of the model with the components of RGB color space as inputs, were 99.63%
and 99.43%, respectively.

Furthermore, it is possible to identify those combinations of the RGB, HSV, and
YCbCr color spaces, in general, showed good results, with metric values above 99%.

Another observation is related to the Lab color space. In the models where this color
space was used, the network presented a worse performance.

From these results, we conclude that the use ofmore color components at the network
input does not contribute to the improvement of network performance. The model with
the least amount of color components at the input, the one that used the RGB space,
presented a much better performance than the models that used a larger amount of color
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components. Using the components of the RGB color space as inputs of a convolutional
network is sufficient to perform the TBbacilli seg-mentation taskwith high performance.

Figure 5 presents the confusion matrix of the test set for the RGBmodel. This model
correctly predicted 49,631 bacilli, for a total of 50,015 bacilli.

The CNN network takes a few seconds to analyze a mosaic image, which is incom-
parably faster than the time taken by a technician to manually counting bacilli for a diag-
nosis. Thus, using the method proposed in this study greatly speeds up the microscopic
examination of slides.

In [8], using the faster region-based convolutional neural network (RCNN) and the
ZNSM-iDB database for bacilli detection, the authors achieved a recall of 98.4%, a
precision of 85.1% and an F1-score of 91.2%. In [6], using CNN for patch classification
from a database collected from the Department of Pathology, Peking University First
Hospital, the authors achieved a sensitivity of 97.94% and a specificity of 83.65%. In
the present work, using CNN for bacilli detection, an accuracy of 99.43%, a precision
of 99.62%, a sensitivity of 99.23%, a specificity of 99.63% specificity, and an F1-score
of 99.43%.

Table 2. Performance of the 5 models were evaluated for semantic segmentation of bacilli

Models Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

RGB 99.43 99.62 99.23 99.63 99.43

RGB + HSV 99.11 99.12 99.09 99.13 99.10

RGB + HSV
+ Lab

98.79 98.70 98.89 98.70 98.79

RGB + HSV
+ YCbCr

99.30 99.50 99.70 99.51 99.30

RGB + HSV
+ YCbCr +
Lab

96.90 94.51 94.51 94.29 96.96
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Fig. 5. Confusion matrix showing the performance on the test set of the model that uses the RGB
color space components as input.

4 Conclusion

In thiswork, the performance of a convolutional neural networkwas evaluated to perform
the semantic seg-mentation of TB bacilli, using different color spaces at the network
input. The RGB model with input tensor 400× 400× 3, was the one that presented the
best performance for the considered metrics, reaching performance higher than 99% for
all of them, while the model with components of the RGB + HSV + YCbCr + Lab
color spaces as inputs, presented a lower performance compared to the other evaluated
models.

Themain conclusion is that the RGB color space alone is sufficient to perform the TB
bacilli segmentation task with high performance. With a larger number of color space
components in the input, satisfactory results are achieved, but lower than the results
obtained using only the RGB space color. The use of the Lab color space compromises
network performance. We believe that the main reason for this is because in the Lab
color space, the R and G components are grouped into a single component, a.
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Abstract. In this research, classical features of the literature in the time and
frequency domains were compared with the features based on the triangulation
technique, which was applied to the input signals of human movements divided
into categories (walking on a treadmill, running on a treadmill, walking in a circle,
erasing a blackboard, going up and down stairs and hand tremors). Signals are cap-
tured with the internal accelerometer of a smartphone, using embedded software,
which reads 3 orthogonal axes. The comparison was performed only at the highest
percentage value in the rate, and the analysis of statistical significance was not
performed. The triangulation method uses Euclidean concepts and basic statistics
to extract features based on straight lines, angles, areas, perimeter, derivative and
triangle counter in the composition of patterns. The results are promising, in view
of the high accuracy rates in the final classification of the categories of move-
ments object of study, with values similar to those obtained in the classification
of patterns composed by the classic features used in the literature, with the MLP
(Multilayer Perceptron) classifiers and KNN (K-nearest neighbors) for k = 5. The
highest average hit rates obtained for the experiment with 500 points were 99%
with the literature methods, 97.9% for the triangulation method and in the experi-
ment with 1000 points windows, the highest average hit rates were achieved with
the triangulation method 99.3% and 98.7% for the methods found in the literature,
both with the KNN classifier for k = 5.
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1 Introduction

Human movements are objects of study in the medical field in the monitoring of daily
activities with the elderly [1, 2], monitoring of pathological movements such as tremors
in Parkinson’s disease or epilepsy [3–5] in sports to assess the performance of athletes
[6], activity recognition in unstructured environments [7], in robotics [8], among others.

Pattern recognition techniques are used in several studies aimed at the recognition
of human movements, as they allow the automation of procedures [1–7]. The standards
must be composed of representative features to facilitate the classification or separation
between the studied classes. This procedure begins with the extraction of features in the
time and/or frequency domains over input data windows (categories or object classes of
study), for the composition of patterns, which are calculated separately by movements’
class. In the literature, time domain features, such as statistical calculations (average,
sum, minimum, maximum, RMS value, standard deviation, variance, among others) [9,
10] or frequency domain, such as the Fast Fourier Transform (FFT) [4, 11], Wavelet [5,
12], arewidely used in several studies. Subsequently, after completing the pre-processing
or feature extraction phase, from the set of generated patterns, one thirdwill be submitted
to the training or machine learning phase and the other two thirds, that is, those that were
not part of the training, must be submitted to final classification, with the use of classifier
software byneural networksMLP (Multilayer Perceptron),KNN(K-NearestNeighbors),
SVM (Support Vector Machine), decision tree, among others [10].

In this research, the irregular input data in amplitude and frequency, captured with
a smartphone (internal accelerometer), of human movements, were divided into six
categories of daily activities and one simulating a pathological tremor (walking on a
treadmill, running on a treadmill, walking in a circle, erasing a blackboard, going up and
down stairs and hand tremors). One of the advantages of the triangulation method is that
the feature extraction takes place simultaneously in the time and frequency domain, that
is, the calculations are based on sequences of triangles, a reduction of the input data,
where straight lines (sides of triangles) are calculated between themaximum (peaks) and
minimum (valleys) amplitude values, as well as between two minima or two maxima,
depending on the sequence of points at the beginning of an input data window. The main
objective and motivation was the comparison between the features extracted by the
triangulation method and the classic features of the literature in the domain of time and
frequencies. The individual classification indices by movement, as well as the average
indices between the object classes of study, were used as a measure of comparison in
the final classification of the generated patterns (6 classes) [13].

2 Materials and Method

2.1 Materials

A smartphone model M2006C3LG (Android) was used to acquire the data. A program
(software), developed for this research, was used for the acquisition of data in the 3
orthogonal axes (x, y and z) of the internal accelerometer of the smartphone.
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2.2 Method

Tomake the comparisons between the features extracted by the triangulationmethod and
the main methods found in the literature, a methodology was applied, which was divided
into three phases: 1) acquisition of the human movement signal; 2) feature extraction by
triangulation and feature extraction found in the literature in the time domain and in the
frequency domain; and 3) classification and testing [13].

In this study, two algorithms were compared: one applying the triangulation method
and the statistical mean (Algorithm 1) and the other applying the classic features of the
literature in the time domain and frequency domain (Algorithm 2).

2.3 Data Acquisition

In order to carry out the experiments and acquire the data in this research (phase 1), a
project with a detailed description of all the procedures was approved for the permanent
committee of ethics in research involving human beings of the University of Maringá,
State of Paraná, Brazil, protocol number 1717907.Humanmovement datawere collected
from 24 normal volunteers (12 males and 12 females), aged between 18 and 45 years, in
the categories of walking on treadmill, running on treadmill, walking in circle, erasing
blackboard, going up and down stairs, tremors, in the three orthogonal axes (x, y and z)
and recorded in a separate text file.

2.4 Feature Extraction

In this second phase of the research, the features were extracted by the triangulation
method, applying the main methods found in the literature.

Triangulation method: Twelve features were calculated per accelerometer axis (x, y
and z), totaling 36 features. They are based on ascending side, descending side, base side,
area, perimeter, ascending angle, descending angle, base angle, ascending derivative,
descending derivative, base derivative and triangle counter. These featureswere extracted
based on the triangulation technique that applies Euclidean concepts and statistical mean
(other calculations can be applied, such as sum, standard deviation or variance). The
triangulation technique reduces the points of the input data windows, after finding the
peak (maximum) and valley (minimum) points, forming a new signal with sequences of
triangles [13], as shown in Fig. 1.

The triangulation method was compared with the main features of the literature in
the domain of time and frequency:

• Features in the time domain - statistical calculations (mean, maximum, minimum,
area, variance, standard deviation, RMS value) and

• Features in the frequency domain - the calculations were based on the Fast Fourier
Transform (FFT frequency value, FFT frequency vector peak voltage value, total
power, average frequency and average power).

The time domain features were merged with the frequency domain features, forming
12 features per accelerometer axis (x, y and z), totaling 36 features.
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A last processing was performed, merging the 36 features calculated by the trian-
gulation method (Algorithm 1), with the 36 features calculated in the time-frequency
domain (Algorithm 2), forming a set with 72 features.

Fig. 1. A window of input data converted to a new signal generating a sequence of triangles.
Original signal (in brown) with all peak (in red) and valley (in green) points. The calculated
distances between the peak and valley points, generate the lines rs, rd, as well as the distances
from the consecutive peak points rb, from the triangles w (Tr1 to Trw).

3 Results

The third phase of this study corresponds to the final classification of the object of
studymovements. The individual and average classification indices using two classifiers,
Multilayer Perceptron (MLP) and K-Nearest Neighbors for k = 5 (KNN), were used as
a measure of comparison between algorithm 1 (triangulation method) and algorithm 2
(methods found in the literature). The patterns were calculated for the six input activities,
using the two algorithms (algorithm 1 and algorithm 2), varying the size of the input
window by 500 and 1000 points. Table 1 shows the number of discretized points read
per axis of the accelerometer (x, y and z), according to the categories of movements
object of study, as well as the number of patterns generated by applying algorithms 1
and algorithms 2.

Table 2 and Table 3 show the individual and average indices of final classification for
the movements object of study, usingMLP neural network and KNN for k= 5 classifier,
respectively.
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Figure 2 shows the results of the average final classification indexes for algorithm 1,
algorithm 2, and merging of algorithms 1 and 2, using input data windows of 500 and
1000 points, with the MLP and KNN classifiers for k= 5. Considering the best average
indices obtained with the KNN classifier, for windows of 500 points of input data,
calculating the difference (99–97.9 = 1.1), it can be observed that the methods found
in the literature in the time and frequency domains show a small advantage of 1.1%.
Likewise, when merging the features of algorithms 1 and 2, the average hit rate obtained
for windows of 500 points with algorithm 2 increased from 99% to 99.2%, improving
by 0.2%. However, using the same classifier (where the best results were obtained), for
windows of 1000 points, performing the same procedure (choosing the best average
indices of each algorithm), calculating the difference (99.3–98.7 = 0.6), in this case,
a small advantage of 0.6% was obtained for the triangulation method. By merging the
features of algorithms 1 and 2, the average hit rate obtained for windows of 1000 points
with algorithm 2 increased from 98.7% to 99.2%, improving by 0.5%, using the KNN
classifier. When using the merge feature sets of algorithms 1 and 2, the best result was
obtained with the MLP classifier for windows of 500 points, where the average hit rate
of 98.2% obtained with algorithm 2 increased to 99.3%, that is, the set of features that
apply triangulation (algorithm 1) contributed to improving the hit rate by 1.1%.

Fig. 2. Hit rate in the final classification, comparing algorithm 1 (triangulation method) with
algorithm 2 (methods found in the literature).
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Table 1. Categories corresponding to the six movements object of study.

Movements (class) Number of points Number of patterns per window

500 points 1000 points

Walking on treadmill (1) 160000 320 160

Running on treadmill (2) 147000 294 147

Walking in circle (3) 105000 210 105

Erasing blackboard (4) 105000 210 105

Going up and down stairs (5) 105000 210 105

Tremors (6) 120000 240 120

Total 742000 1484 742

Table 2. Hit rates in the final classification using MLP (Multilayer Perceptron) classifier.

Window/ Algorithm Class Avg

1 2 3 4 5 6

500 points

Algo 1 98.4 97.3 92.9 100.0 96.2 100.0 97.5

Algo 2 100.0 98.6 93.8 100.0 96.7 100.0 98.2

Merging
Algo 1 & 2

99.4 99.0 98.1 100.0 99.0 100.0 99.3

1000 points

Algor 1 99.4 99.3 89.5 100.0 97.1 100.0 97.6

Algo 2 100.0 100.0 93.3 100.0 94.3 100.0 97.9

Merging
Algo 1 & 2

99.4 100.0 96.2 100.0 98.1 100.0 99.0

BlandAltman’s statistical analysismakes a comparison between twomethods, that is,
it is a simple way to assess the agreement between two different methods or instruments
that must measure the same quantity. In Fig. 3, the individual indices per movement
(objects of study) were used, for windows of 500 and 1000 points, with MLP and KNN
classifiers for k = 5.
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Table 3. Hit rates in the final classification using KNN (K-Nearest Neighbors) for k= 5 classifier.

Window/ Algorithm Class Avg

1 2 3 4 5 6

500 points

Algo 1 99.7 98.0 97.1 99.0 93.3 100.0 97.9

Algo 2 100.0 98.0 99.5 100.0 96.7 100.0 99.0

Merging
Algo 1 & 2

100.0 98.3 98.6 100.0 98.1 100.0 99.2

1000 points

Algo 1 100.0 99.3 98.1 100.0 98.1 100.0 99.3

Algo 2 100.0 100.0 99.0 100.0 93.3 100.0 98.7

Merging
Algo 1 & 2

100.0 100.0 98.1 100.0 97.1 100.0 99.2

Fig. 3. Comparison between method 1 (triangles) and method 2 (literature).This analysis was
positive, validating the triangulation method (algorithm 1), compared with the method that applies
patterns composed of classic features from the literature extracted in the time and frequencydomain
(algorithm 2), considering that most points were within the bias (23 points or 95.83% agreement)
and a single coordinate point (95.7; 4.8) was outside, that is, between the average differences and
the agreement interval of 95% of the differences calculated between two methods, being eight
coordinate points (100; 0) and two coordinate points (97.7; −0.7), coincident, from a total of 24
analyzed points.
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4 Discussion

Analyzing the movement “walking on a treadmill” for windows of 500 input data points,
a 99.7% hit rate was obtained with the triangulation method (algorithm 1) and 100% hit
with the literature methods (algorithm 2), as well as for the movement “running on a
treadmill”, the same index of 98% was obtained with the two algorithms, triangulation
method (algorithm 1) and methods found in the literature (algorithm 2), using the KNN
classifier for k= 5, that is, in this case, there was a balance between the twomethods. The
same occurred for windows of 1000 input data points, with the movement “walking on a
treadmill”, where the two methods, algorithm 1 (triangles) and algorithm 2 (literature),
reached a 100% success rate with KNN classifier for k = 5. Continuing the analysis for
windows and 1000 points, was reached the hit rate of 100% in the classification of the
movement “Running on the treadmill” for algorithm 2 (literature) and the index of 99.3%
with algorithm 1 (triangles), using KNN classifier for k = 5, with small advantage for
algorithm 2. These results are relevant, as the “walking” and “running” movements are
objects of study in several studies, including the evaluation of athletes [6], in the medical
area, in the monitoring of daily movements with the elderly [1, 2], among others.

As for themovement “erasing blackboard”, both algorithms reached 100%of success
rate, the same happening with the movement “tremors”, both with KNN classifier for k
= 5. It is important to note that in this study simulated hand tremors were used, even
so, the results are relevant, as “tremors” in humans are studied in several studies, more
specifically pathological tremors [3–5].

For themovement “walking in a circle” the best result was obtainedwith themethods
that apply the features found in the literature (time and frequency domain) with 99% of
success rate, while the triangulation method had an index slightly below with 98.1% hit
rate. As for the “going up and down stairs” movement, the highest rate of 98.1% was
obtained with the triangulation method, while the methods in the literature obtained a
hit rate a little below 93.3%, in all cases using the classifier KNN for k = 5.

Making the asymptotic complexity analysis in a simplified way for the two algo-
rithms, algorithm 1 (triangulation method), in the selection of maximum and minimum
points, presents the degree of complexity is O(N2), where N corresponds to the size
of the data windows and O(f(N)) is called asymptotic notation [14]. For the rest of the
code, all calculations are based on straights, perimeter, angles, area, slope of the lines
and statistical average. While for algorithm 2 (literature methods), the time domain fea-
tures are based on statistical calculations such asmean, sum,maximum,minimum, RMS
value, variance, standard deviation and the frequency domain features, all based on in
the FFT, which has a degree of complexity O(N.log2 N). In this case, an advantage for
algorithm 2 (literature) was characterized, as the highest degree of complexity prevails
in this analysis. However, the processing times of algorithm 1 and algorithm 2 were not
measured and compared [14].

5 Conclusions

In this research, the classic features found in the literature in the time and frequency
domains were compared with the features extracted by the triangulation method. The
comparison was performed only at the highest percentage value in the rate, and the



Comparison Between Features Extracted in the Time and Frequency 401

analysis of statistical significance was not performed. One of the advantages of the
triangulation method is that the feature extraction takes place simultaneously in the time
and frequency domain, that is, the calculations are based on sequences of triangles, a
reduction of the input data (data windows), where straight lines (sides of triangles) are
calculated between the maximum (peaks) and minimum (valleys) amplitude values. The
reduction of the signal to generate the minimum and maximum points is a necessary
procedure to generate the triangle sequences, that is, it can be considered a disadvantage
of the triangulation method (this processing time was not evaluated), since the methods
found in the literature extract features directly from the input data windows. Features
were extracted using two algorithms: triangulationmethod (algorithm1)with 36 features
and literature triangulation methods (algorithm 2) with 36 features, with 21 features in
the time domain and 15 features in the frequency domain (merged features in the time and
frequency domains). The discrete input signals captured with the internal accelerometer
of a smartphone, irregular in amplitude and frequency, were used in two experiments,
one with windows of 500 points and the other with windows of 1000 points, for the
composition of patterns divided according to the classes of movements object of study.
In the comparisons, individual and average indices were used in the final classification
of some categories of daily human movements (walking and running on a treadmill,
walking in a circle, erasing a blackboard, going up and down stairs and hand tremors),
using two classifiers, MLP and KNN for k= 5. The results are promising with the use of
the triangulation method, which uses Euclidean concepts and basic statistics to extract
features based on straight lines, angles, areas, perimeter, derivative and triangle counter
in the composition of patterns, in view of the high indices of correct answers in the final
classification of the categories of movements object of study, with values similar to those
obtained in the classification of patterns composed by the classic features used in the
literature, with the MLP (Multilayer Perceptron) and KNN (K-nearest neighbors) for k
= 5. The highest average hit rates obtained for the first experiment with 500 points were
99% with the literature methods, 97.9% for the triangulation method and in the second
experiment with 1000 points windows, the highest average hit rates were achieved with
the triangulation method 99.3% and 98.7% for the methods found in the literature, both
with the KNN classifier for k = 5.

By merging the features of algorithms 1 and 2, the average hit rate obtained for
windows of 1000 points with algorithm 2 increased from 98.7% to 99.2%, improving by
0.5%. When using the merge feature sets of algorithm 1 with algorithm 2, the best result
was obtained with the MLP classifier for windows of 500 points, where the average hit
rate of 98.2% obtained with algorithm 2 increased to 99.3%, that is, the set of features
that apply triangulation (algorithm 1) contributed to improving the hit rate by 1.1%.

As for the proposed triangulation algorithm, in future studies, one should seek to
reduce the degree of complexity in the procedure for obtaining the vector that stores
the minimum and maximum points for the elaboration of sequences of triangles, from
which all the features for the elaboration of the patterns. Likewise, the FFT, an optimized
algorithm, derived from the Fourier Transform, which has been improved over time and
has become one of the most effective algorithms, being used in several areas of science.
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Abstract. Spatial frequency domain imaging is an emerging technology that
enables rapid, wide-field, and non-invasive chromophore mapping. Essentially,
in this technique, a large area of the tissue is illuminated with a spatially mod-
ulated light field. The light beam reflected by the tissue depends on its optical
properties, so that it can provide information about tissue composition through
different chromophore concentrations. In this work, we employed a combina-
tion of Principal Component Analysis and Artificial Neural Networks to directly
determine oxyhemoglobin and deoxyhemoglobin concentrations in skin tissue
from diffuse reflectance values obtained from spatial frequency domain imag-
ing. The database consisted of 850500 samples computed from the Beer’s law
and Monte Carlo simulations, and it was divided into training, validation, and
testing subsets in a 0.7:0.15:0.15 ratio. To reduce overfitting during the network
training, Bayesian regularization, based on the Levenberg-Marquardt optimiza-
tion, was employed. Results showed that the developed model predict values of
oxy and deoxyhemoglobin concentrations with a correlation coefficient of 0.997
and 0.982, respectively. The average errors from the expected values were 0.98%
and 0.99%, for oxy and deoxyhemoglobin, respectively, with most of the samples
showing absolute errors lesser than 4%. The developed model was applied to an
in vivo study to determine hemoglobin concentrations in the hand of a volunteer.
Results indicate that the developed model provides good performance in deter-
mining the oxyhemoglobin and deoxyhemoglobin concentrations, and it can be
easily applied to in vivo measurements, with the potential to aid in the diagnosis
of vascular changes in skin tissue.
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1 Introduction

The ability of light to penetrate biological tissues, interact with them, and carry their
physiological information is the fundamental principle of different medical diagnostic
techniques [1]. The evaluation of the processes of light absorption and scattering could be
used to define chromophore concentrations, yielding valuable information about tissue
health. Hemoglobin is an important protein that transports oxygen throughout the human
body and its concentrationmonitoring can not only predict the success of a flap incision or
a burn wound outcome, but it could also be used to monitor the efficiency of some cancer
treatments [2–4]. During the last years, the technology of Spatial Frequency Domain
Imaging (SFDI) has been considered to effectively create functional chromophoresmaps
in a rapid, non-invasive, and wide-field way.

The principle of SFDI is based on the projection of a spatially modulated light
beam over the tissue, which interacts with it, and then is captured by a CCD camera
[1]. After calibration and demodulation procedures, a set of pixel-by-pixel maps are
created, so that they represent the correspondent diffuse reflectance (Rd) values of the
tissue at the different spatial frequencies employed. Inversion algorithms are then used to
correlate this quantity to the tissue optical properties of absorption and scattering. Finally,
a set of linear equations, based on Beer’s law, are solved to determine chromophore
concentrations [5].

In the last years, machine learning methods have been used to effectively determine
chromophore concentrations in a fast and accurate way [6–8]. In particular, it has been
proposed in literature that Artificial Neural Networks (ANN) could be employed to cor-
relate chromophore concentrations directly from diffuse reflectance measurements in
SFDI, which could lead to less computational time for signal processing and minimiza-
tion of errors [9]. An artificial neural network (ANN) is a machine learning method
that can efficiently find relationships within a dataset. Its power relies on the capacity
to establish non-linear relationships, being largely used for pattern recognition [10].
Overall, an ANN consists of fully connected layers which are divided between an input
layer, an output layer, and hidden layers. Each layer has associated neurons with specific
weights and biases that are adjusted at each iteration, according to the training function.
After successive iterations, the model tends to converge to a more accurate result [11].
Regarding applications in SFDI, Tsui et al. [12] and Wang et al. [13] employed a feed-
forward networkwith two hidden layers to obtain chromophore information from diffuse
reflectance spectroscopy. Zhao et al. [9] employed a deep residual network to directly
mapping chromophore concentration from Rd values. Others ANN architectures were
also employed by different authors in the literature [14, 15].

In this work, we propose a combination of a machine learning model based on
Artificial Neural Networks and Principal Component Analysis, for pattern recognition
that directly outputs oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) concentrations
fromdiffuse reflectance values in a fast and accuratemanner.We also apply the developed
model to an in vivo study, in order to evaluate its feasibility.
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2 Methodology

2.1 Spatial Frequency Domain Imaging

The principle of SFDI is based on measuring the reflected light beam by a wide area of
tissuewhen this latter is illuminatedwith a patterned light field. A simplifiedmodel of the
SFDI equipment is shown in Fig. 1a, and the experimental setup is shown in Fig. 1b. A
white light source (D555WH, Vivitek®) was used to project a spatially modulated light
beam on the tissue. The light beam interacts with the tissue and carries its physiological
information. A filter wheel (CFW6, Thorlabs Inc®) selected a given light wavelength,
and a CCD camera (DCC3240C Digital Camera, Thorlabs Inc®) was used to capture
the signal. In this work, two different wavelengths were employed: 488 and 650 nm,
and five spatial frequencies for the incident beam were evaluated: 0, 0.05, 0.1, 0.2, and
0.4 mm−1, and for each one, three different phases were used (0°, 120°, and 240°).

Fig. 1. a) Schematic representation of the SFDI system. b) Experimental setup of the SFDI system
from the Functional Imaging Lab (Federal University of Uberlandia): A - Projector; B - CCD
camera with a filter wheel attached and C – Target location for positioning the sample.

For each light wavelength value, the image acquisition process consists in obtaining
the diffuse reflectance (Rd) of the tissue at the spatial frequencies and phases considered.
In this work, the determination of Rd values was based on the methodology proposed
by Cuccia et al. [5], which comprises the demodulation and calibration of the images
captured by the camera, using an equivalent material simulator (phantom) [6]. At the
end of this process, a set of five widefield images are created for each light wavelength,
in which each pixel represents a diffuse reflectance value at a given spatial frequency.

2.2 Skin Model

The optical properties of skin tissue are directly related to its composition and can
be defined quantitatively by the absorption and scattering coefficients [11]. These two
parameters characterize the interactions of light photons with the tissue, and thus, they
determine the behavior of the reflected beam [12]. In this work, the skin tissue was
modeled considering oxy and deoxyhemoglobin as the major light absorbers [16]. In
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particular, the absorption coefficient, μa, measures how much the tissue absorbs light
and is normally related to tissue metabolic functions [2]. As proposed by Tabassum et al.
[2], the coefficient μa of the skin at a given light wavelength λ can be computed as:

μa(λ) = ln(10)(Coxiεoxi(λ) + Cdeoxiεdeoxi(λ)) (1)

where εoxi (λ) and εdeoxi (λ) are the extinction coefficients of oxyhemoglobin and deoxy-
hemoglobin, respectively, in units of cm−1/Mol, and Coxi and Cdeoxi are the respective
concentrations of each chromophore, in units of Mol (M). The values of εoxi (λ) and
εdeoxi (λ) employed in this work were obtained from the data compiled by Jacques and
Prahl [17].

To simulate real tissue parameters,we varied both hemoglobin and deoxyhemoglobin
concentrations within a wide physiological range of 1–300 μM [11]. The reduced scat-
tering coefficient, μs′, which is related to the probability of a photon to be scattered,
was also varied within the limits given in the literature for a human tissue, between
0.5–2.0 mm−1 [9, 18]. The samples were organized in a full permutation manner, in
order to model different skin compositions as possible [9].

2.3 Determination of Rd (µa, µ
′
s) Database

The values of diffuse reflectance Rd for different pairs of coefficients (μa, μs′) were
obtained theoretically employing Monte Carlo (MC) simulations for light transport
within the tissue. A MC code was developed, following the methodology proposed
by Wang et al. [19]. The simulation consisted in projecting a light photon shower on
a homogeneous medium characterized by four parameters: the absorption and reduced
scattering coefficients μa and μs′, respectively, the index of refraction n and anisotropy
factor g. The simulation returned the spatial distribution of the reflected beam, which can
be employed for the computation of Rd curves in the spatial frequency domain, through
the application of a Fourier transform [6]. Values of Rd at spatial frequencies of 0, 0.05,
0.1, 0.2 and 0.4 mm-1 were obtained, for different combinations of μa and μs′ values
in the interval 0.001 ≤ μa ≤ 2.0 mm-1 and 0.5 ≤ μs′ ≤ 2.0 mm-1. In all cases, a
value of n = 1.4 and g = 0.7 were considered, since they are representative of biological
tissues [20]. The database generated with the simulations consisted of a total of 850500
samples, each one representing values of Rd at different spatial frequencies at a given
combination of (μa, μs′) values. A surface plot of the values of Rd at a spatial frequency
of 0.1 mm−1 is shown in Fig. 2, for different combinations of μa and μs′.

2.4 Data Preprocessing

Due to the high dimensionality of the dataset, training an artificial neural network could
be challenging and computationally demanding. To address this problem, we employed
Principal Component Analysis (PCA), which is a multivariate statistic method for data
dimensionality reduction [21]. Thismultivariate technique identifies newvariables (prin-
cipal components), which are linear combinations of the original variables, that maxi-
mize the data variance. In this work, each principal component yi at a given wavelength
was computed as the linear combination of the five values of Rd (one for each spatial
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frequency), yielding five principal components. The first two components represented
99.9% of the total database variance, and they were kept in our model. The scores of
each sample at the first two principal components were then obtained, so that the new
database was composed by two components for each wavelength.

Additionally, amin-maxnormalizationwas implemented as a feature scalingmethod,
so that sample values at each yi were rescaled to the interval [0–1], to improve machine
learning accuracy [22, 23].

Fig. 2. Surface plot of Rd values at a spatial frequency of 0.1 mm-1 for different combinations
of optical coefficients μa and μs′.

2.5 Artificial Neural Network Training and Testing

Once the database was created and preprocessed, it was used to train the ANN. Differ-
ent ANN architectures were investigated, by varying the number of hidden layers and
neurons in each layer. The ANN architecture adopted in this work consisted of a feed-
forward artificial neural network with 1 hidden layer and 25 neurons [7]. A model of the
ANN is shown schematically in Fig. 3. The input layer receives four features: the first
and second principal component scores at each wavelength. The output layer returns the
concentrations Coxy and Cdeoxy. Transfer functions of the hidden layer and output layer
were hyperbolic tangent activation function and linear transfer function, respectively.
The database was separated between training, validation, and testing at a 0.7, 0.15, and
0.15 ratio, respectively. To reduce overfitting, Bayesian regularization backpropagation
was employed, which adjusts the weight and bias according to the Levenberg-Marquardt
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optimization, and the error function considered was the mean squared error [24]. Addi-
tionally, for the testing and validation data, a 3%Gaussian noise was applied to the input
values. As stopping criteria, 2000 training epochs or a mean squared error value of 10–6

were adopted to terminate the training process.

Fig. 3. Simplified model of the ANN. The first and second principal components from the PCA
for each wavelength are inputs of the ANN, that directly outputs HbO2 and Hb concentrations.

2.6 In-Vivo Study

In order to investigate the feasibility of the proposed model, an in vivo study was per-
formed. The dorsal side of a volunteer’s male hand was carefully positioned into the
SFDI imaging system, and the ANN was used to directly calculate oxyhemoglobin and
deoxyhemoglobin concentrations from the measured signal. The in vivo study in human
beings has been approved by the Research Ethics Committee of the Federal University
of Uberlândia (process n. 85363417.9.0000.5152).

3 Results

Figure 4 shows a scatter plot that compares the expected oxyhemoglobin concentration
with the values estimated by the ANN. Results refer to the test data. Figure 5 shows the
histogram of the relative percentual errors for the test data.

Figure 6 shows a scatter plot that compares the expected deoxyhemoglobin concen-
tration with the values estimated by the ANN. Results refer to the test data. Figure 7
shows the histogram of error distribution of deoxyhemoglobin concentrations.

Figure 8(a) shows the in vivo study of the dorsal side of a patient hand, where
the red rectangle represents the region of interest (ROI) captured by the CCD camera.
Figure 8(b) shows the corresponding oxyhemoglobin concentrationmap, in units ofμM,
while Fig. 8(c) shows the deoxyhemoglobin concentration in μM.
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Fig. 4. Scatter plot of oxyhemoglobin concentration, comparing the expected values with the
estimated values for the test data. The red line represents the expected values, and the black dots
are the values estimated by the ANN.

Fig. 5. Relative error distribution of oxyhemoglobin concentration for the test data.
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Fig. 6. Scatter plot of deoxyhemoglobin, comparing the expectedvalueswith the estimatedvalues.
The red line represents the expected values, and the black dots are the values estimated by the
ANN.

Fig. 7. Relative error distribution of deoxyhemoglobin concentration for the test data.
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Fig. 8. a) Dorsal side of a patient hand used in the in vivo study. The red rectangle represents
the imaged ROI. b) Oxyhemoglobin concentration map (μM ) of the ROI. c) Deoxyhemoglobin
concentration map (μM ).

4 Discussion

Figures 4 and 6 show that the predicted values of oxyhemoglobin and deoxyhemoglobin
are highly correlated with the expected values. In fact, the computation of R2 factor,
between predicted and expected values, yielded values of 0.997 and 0.982, for oxy- and
deoxyhemoglobin, respectively, indicating a strong correlation between the quantities.
From Fig. 5, it is observed that the average percentual error in predictions of oxyhe-
moglobin concentration was 0.99%, with 90% of samples lying within the error interval
between -2 and 2%. For deoxyhemoglobin, the average error was also 0.98%, with most
predicted values lying in the errormargin interval between -4 and 4%. These results point
to the excellent accuracy and precision of the developed model. They also indicate that
simpler ANN architectures could be successfully employed in SFDI in order to obtain
chromophore concentrations from diffuse reflectance data, in accordance with recent
findings reported by Song et al. [25].

The in vivo study shows that the machine learning model can be applied to the SFDI
technology, in order to determine hemoglobin concentrations from diffuse reflectance
measurements. The concentration maps of oxy and deoxyhemoglobin of the hand of the
volunteer, shown in Fig. 8, represent the vascularization of oxygenated and deoxygenated
blood. The oxyhemoglobin concentration in the blood vessels were in the range [200,
250] μM, while values were approximately constant in the rest of the image, which
lied in the interval [100, 150] μM. A similar behavior is observed in Fig. 8(c), for
the deoxyhemoglobin concentration map, which shows values in the range [200, 300]
μM for the blood vessels and [150, 200] μM in the remaining tissue. It is known that
veins are rich in carbon dioxide and poor in oxygen, due to the conversion of arterial
blood to venous blood in the hematosis process [26]. This can be seen in Fig. 8 as the
blood deoxyhemoglobin concentration is higher than the oxyhemoglobin concentration,
featuring the venous blood. These results points to the potential of the technique to
provide diagnostic information about vascular changes in the skin,which could be related
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tomorphological or physiological tissue alterations, like those observed in different types
of skin tumors [27].

5 Conclusion

In thiswork,wepresented a combination of principal component analysis and an artificial
neural network model for pattern recognition that accurately determines oxyhemoglobin
and deoxyhemoglobin concentrations in skin tissue directly from the diffuse reflectance
values, obtained from the SFDI system. To measure the effectiveness of our model, we
used the R2 correlation factor and a histogram of relative errors. For the oxyhemoglobin,
a value of 0.997 was obtained for R2 and the relative errors were mostly concentrated
between the interval [-2, 2] % with a 0.99% mean. For the deoxyhemoglobin, the R2

factor was 0.982 and the errors were concentrated in the [-4, 4] % range with 0.98%
average. Additionally, we employed the developed model in an in vivo study, showing
its feasibility in acquiring functional images of hemoglobin concentration. The obtained
results indicate the good accuracy and usability of the model, since images are taken
in a wide-field, non-contact, and rapid manner. These results particularly point to the
potential of the technique in supporting physicians in the detection of morphological or
physiological changes in vascularization of the skin, which could be related to different
tissue abnormalities, for example, as those observed in skin cancer.
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Abstract. Brain-Computer Interfaces (BCI) are systems that function
as a communication channel between people and external devices through
brain information. P300 is an Event-Related Potential (ERP) widely
used to decode an individual’s intent in BCI system applications, such
as spellers in communication skill rehabilitation systems. However, the
Signal-to-Noise Ratio (SNR), which quantifies a relation between the
power of the transmitted signal and the power of the noise that corrupts
it, for P300 is low so which makes it difficult to detect the using a single
trial, which reduces the accuracy of the system. Additionally, in real-
time BCI systems, it is necessary to maintain a good ratio of detection
and execution time. In this work, three methods based on mean-based
feature dimensionality reduction (PCA – Principal Component Analysis,
FA – Factor Analysis, and MDS – Multi-Dimensional Scaling) as well as
ELM – Extreme Learning Machine are presented, which allow efficient
detection of a single trial P300 using 65.25% of the features normally
used in the literature. PCA and MDS techniques reach an Area Under
the Received Operation Curve (AUC) maximum of 0.90, and an average
of 0.72, which are significant compared to the standard method based on
the signal mean. Additionally, training times below 0.05 s are obtained,
which are very important for real-time operation. The results allow us
to conclude that the proposed methods are suitable for the detection of
the single-trial P300, which can be used in BCI systems with real-time
speller for rehabilitation engineering.

Keywords: Brain Computer Interfaces (BCI) · Single-trial P300
detection · Principal Component Analysis (PCA) · Multi-Dimensional
Scaling (MDS) · Factor Analysis (FA)

1 Introduction

Nowadays, Brain-Computer Interface (BCI) systems have been widely used in
rehabilitation engineering as they work as a communication channel between
the human brain and the computer. These systems allow the interaction of an
individual with the environment by decoding brain information (e.g. Electroen-
cephalography (EEG)) to recognize intention, and subsequently execute a spe-
cific task [1]. However, to make this possible it is necessary to generate patterns
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in the brain signals of the individual. The literature reports a large number of
paradigms that generate these patterns, such as the Event-Related Potential
(ERP) P300 evoked by the oddball paradigm [2]. The P300 signal consists of a
positive deflection in the parieto-central lobe of the brain, which appears after a
visual or auditory stimulus with a latency of approximately 300 ms. The P300
signal is often used with spellers as it can be adapted for the rehabilitation of
individual’s communication skills [2,3].

However, to this days there are still problems in identifying P300 signals,
since ERPs have a very low SNR [3]. A common method is to synchronously
average many trials, which effectively decreases the random noise, but this is
not an effective method in BCI applications because it is quite slow, reducing
the communication rate to a large extent. Many researchers have tried to solve
this problem by reducing the number of averaged trials or going toward single-
trial detection [4–7]. Nevertheless, the detection of single-trial P300 is still an
open challenge for the scientific community. Another way to improve the use of
the number of trials is to use robust techniques that allow a correct extraction
of features, such as wavelets [4], component analysis [6], nMeans [8], but this
can lead to an increase in the complexity and number of features and channels,
which usually increases the computational cost.

In recent years, the development of new machine learning algorithms, such
as Convolutional Neural Networks (CNN) [9,10] or ELM [11,12] has improved
classification rates in single-trial P300 detection [6,13]. However, increasing the
robustness of a classifier usually brings an increase in training time, which is
not very practical in real-time. Therefore, a pre-classification phase reported
in the literature consists of dimensionality reduction, where PCA is often used
to reduce the size of the feature vector in a CNN or other types of classifiers
[14]. Nevertheless, in ELM, dimensionality reduction techniques have not been
deepened. On the other hand, FA is a mathematical technique commonly used in
P300 for the neuroscience area, however, as a dimensionality reduction technique,
it has not been used [15] as does have MDS [16,17].

It is also important in BCI systems to increase the generalization of the meth-
ods, avoiding overfitting of computational techniques, because the performance
of a BCI system from one subject to another may change due to physical, men-
tal, personal, and other conditions (intersubject variability). For this reason,
the implementation of P300 decoding in large population samples is a major
challenging issue [2,5,7,13,14].

In this paper, the objective is to improve the detection of P300 in a single
trial using PCA, FA, and MDS algorithms to reduce the dimension of the feature
vector nMeans, which not only reduces the calculation time, but also improves
the SNR of the data [14]. Additionally, ELM is used for P300 signal classification.
The methods were evaluated on a public database based on 54 individuals run-
ning the experimental protocol of a P300-based BCI speller system. The AUC
metric was evaluated, obtaining a maximum value of approximately 0.9. PCA
and MDS obtained better overall performance than the standard nMeans method
(p < 0.05), with AUC between 0.69 and 0.70 with 53 features. The results allow
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concluding that PCA and MDS methods allow maximizing the P300 recognition
and, at the same time, a reduction of the initial feature size, obtaining signifi-
cant results with approximately 66.25% of the feature vector, and with training
time lower than 50 ms. These results allow evaluating an extraction, dimension-
ality reduction, and classification configuration that would allow an adequate
recognition in an online BCI speller system based on P300.

2 Materials and Methods

The methodology was segmented into selecting a BCI speller system based on
P300 dataset, signal processing and feature extraction, dimensionality reduc-
tion, classification, and statistical analysis. The summary of the methodology is
represented in Fig. 1.

Fig. 1. Block diagram of the methodology for the identification of P300 using dimen-
sionality reduction and ELM as classifier.

2.1 Dataset

The public database implemented by Lee et al.[8] was used. P300 signals were
recorded from 54 individuals at a sampling rate of 1000 Hz with 62 EEG elec-
trodes placed on the cerebral cortex, according to the 10–20 international sys-
tem. The experimental protocol consisted of two sessions (one training and one
validation), where individuals had to interact with a 6× 6 speller, forming a
sentence of 33 characters in the first session and 36 characters in the second
session, with a stimulation time of 80 ms and inter-stimulus of 135 ms. Each
session was repeated 10 times, generating 1980 (330 target and 1650 non-target
signals) and 2160 trials (360 target and 1800 non-target signals) for the training
and evaluation session, respectively. In this study, the data from the first session
were used to train the models, and those from the second session to validate
them.

2.2 Signal Processing and Feature Extraction

The EEG signals were filtered with a band-pass filter of zero-phase shift based
on both Fast Fourier Transform (FFT) and Inverse FFT (IFFT), which firstly



418 C. F. Blanco-Dı́az et al.

transforms an epoch into the frequency domain, making zero those frequency
components outside the band of interest (0.1 to 30 Hz) by multiplying a rect-
angular bandpass filter function. These were segmented between 0 and 800 ms,
where a time window between –200 ms and 0 was used to remove the base-
line. The channels were reduced of 62 to 8 more used channels in the literature
for P300 (FZ , CZ , PZ , P3, P4, OZ , PO3 and PO4) [13]. The system outputs
correspond to the target signals (P300) identified as positive outputs, and no-
target signals (non-P300) as the negative outputs of the system. To validate the
integration of the data, all the data segmented by target and non-target were
averaged. For feature extraction, the method nMeans was used, which consists
of extracting mean values of the signal at n time-windows between 0 and 800
ms for each channel, and concatenating them together [8]. Considering that by
increasing the number of n a higher number of features is obtained (which cause
overfitting) and with a low number underfitting can occur, a number of n = 10
was considered for obtaining P300 features [8].

2.3 Dimensionality Reduction

For dimensionality reduction, three methods were applied through the open
MATLAB toolbox for dimensionality reduction proposed by Laurens van der
Maaten, available in [17]. The proposed methods were compared with the original
method for feature extraction, which consists of nMeans without dimensionality
reduction.

Principal Component Analysis (PCA). PCA transforms the original data
into a set of linearly independent data vectors in various dimensions through
linear transformation, which can be used to extract the main feature components
of the data. PCA is often used for dimensionality reduction of high-dimensional
data. Summarizing, the PCA method is computed by Eq. 1. More information
on this method is available in [14].

Y = PX, (1)

where X corresponds to the feature vector nMeans, P corresponds to the matrix
that represents the principal components, and generates the new feature vector
Y . In this case, Y has a number of k features where k = 1,2,3...80.

Factor Analysis (FA). Factor analysis is a technique used to reduce a large
number of factors to a smaller number. The technique is based on the extraction
of maximum common variances that explain the correlations between observed
variables in terms of a smaller number of unobserved variables called factors.
Summarizing, the FA method can be computed by Eq. 2. More information on
this method is available in [14].

Y = FX, (2)
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where Y is the new feature vector, with k number of features (k =1,2,3...80), X
is the features vector obtained by the nMeans, and F corresponds to the factor
matrix. It is possible to see that the equation for FA and PCA are very similar,
however, the way of computing F and P matrices is different.

Multi-Dimensional Scaling (MDS). Multi-Dimensional Scaling (MDS)
starts from a notion of distance or affinity K that is computed between each
pair of training examples. The distances are converted to equivalent dot prod-
ucts using the double-centering formula given by the Eq. 3. More information on
this method is available in [16].

M̃ij = −1
2

(
Mij − 1

n
Si − 1

n
Sj +

1
n2

∑
k

Sk

)
, (3)

where M corresponds to the features matrix obtained from nMeans, Si is the
i-th row sum of the affinity matrix M , Sj is the j-th columns sum of the affinity
matrix M , and M̃ corresponds to the final matrix whose eigenvalues are found
to obtain the matrix with reduced features.

2.4 Extreme Learning Machine (ELM)

Extreme Learning Machine (ELM) is a neural network family of Single Hidden
Layer Feedback Neural Networks (SHLFN), which can be used in classification
problems, created by Huang et al. in 2006 [11]. It is composed of a single hidden
layer with its respective activation function, where the objective is to train the
network, modifying the weights of the neurons of the inner layer to such an
extent that it allows the classification of a group of input variables [12]. ELM
has advantages over other types of neural networks, since the training time is
low, which makes it a suitable option for classification in BCI systems. The ELM
output function is given by Eq. 4.

fj =
L∑

i=1

βi�(ωi · xj + bi), (4)

where βi is a column vector of the weights relating the i-th hidden layer neurons
and the output neurons, calculated analytically. � is a matrix denoting the acti-
vation function of each hidden layer neuron (this case is a sigmoid function), W
is the weights vector connecting the i-th hidden layer neuron and the input neu-
ron, calculated randomly, b is the threshold of each i-th hidden layer neuron, xj

is the j-th feature given by the output of the dimensionality reduction methods
after normalization, and f corresponds to the network output, which, for this
case, corresponds to the classification between P300 (positive class) and non-
P300 (negative class). The hidden layer was adjusted to a total of 2*k neurons,
where n equals the number of actual features, according to the dimensionality
reduction method (k=1,2,3...80).
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2.5 Evaluation Metrics

According to the confusion matrices, one of the most commonly used metric
reported in the literature for P300 classification is the Area Under the Curve
(AUC) of the Received Operation Curve (ROC), as it is a metric that relates
the true positive rate to the false positive rate. In this case, being a biased
classification problem, the positive variable (P300) is of interest [5]. The AUC is
defined by Eq. 5.

AUC =
∫

TPR d(FPR), (5)

where TPR and FPR are the true positive rate and the false positive rate,
respectively. Also, the neural network training time was used as a performance
metric, which was estimated in MATLAB (Version 2021b, MathWorks Inc) on
a computer with an 8th generation intel core i5 processor of 64 bits and 8 GB
of RAM memory.

2.6 Statistical Analysis

An one-way ANOVA was implemented using MATLAB to determine significant
differences between the performance of the proposed methods based on dimen-
sionality reduction. ANOVA was applied with a significance p − value of 0.05.
The alternative hypothesis was that dimensionality reduction-based methods
perform significantly better (according the AUC) than the reference nMeans
method, depending on the number of features evaluated (k=1,2,3 ... 80) for the
detection of single trial P300. The null hypothesis is the opposite. Additionally,
according the training time, the alternative hypothesis is that methods based
on dimensionality reduction have a significantly shorter training time than the
reference method.

3 Results

Before performing the feature extraction, a validation of the data integrity was
performed, where through the averaging of the signals it is possible or not to see
the behavior of the P300 signal in the different channels for the 54 individuals.
For this reason, it is possible to see in Fig. 2 the behavior of the EEG signal
averaged between target and non-target for a test individual in the time segment
between 0 and 800 ms. It is possible to notice the positive deflection at about
300 ms after the trigger (P300). Normally, the P300 signal is generated on the
parieto-central cortex of the brain [3], however, stimulation, when visual, can
generate evoked potentials in the occipital lobe of the brain, such as OZ , PO3

or PO4 [2].
On the other hand, Fig. 3 shows the behavior of the average AUC variable of

the 54 subjects for each number of features used after the reduction performed by
PCA, FA, and MDS. Additionally, the behavior of the AUC performance of the
nMeans method with 80 features functions as a reference with the aim of com-
paring the methods applied in this study with what is reported in the literature
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Fig. 2. Behavior of the averaged EEG signal in the CZ , PO3,PO4 and OZ channels
for a test subject when a P300 is being evoked (target) and when it is not evoked
(non-target).

[8]. The performance of the reference method was approximately 0.60±0.19, with
a training time of 0.066±0.02 s, approximately, whereas PCA and MDS methods
performed similarly using 40 features: both with a value close to 0.65±0.09 of
AUC, but with a training time of approximately 0.0194±0.0064 s for PCA, and
0.0203±0.0065 s for MDS. The best average performance obtained by the meth-
ods is using 80 features, with a result of approximately 0.72±0.09, 0.60±0.07,
and 0.72±0.08 of AUC for PCA, FA, and MDS, respectively. To obtain these
values, an average training time of approximately 0.0449±0.015, 0.0448±0.0157,
and 0.0163 s was necessary for PCA, FA, and MDS, respectively. The maximum
P300 detection performance for one individual was AUC of approximately 0.81
with reference method, 0.90 with PCA, 0.77 with FA, and 0.87 with MDS. It
should be noted that these values allow probabilistic determination of the differ-
ence between the P300 signal and the non-P300 signals in BCI systems in real
time, using a single trial. This value can be increased by averaging more trials,
however, this requires more stimulation time and computational cost.

In the evaluation of the statistical analysis for the AUC metric using a for
loop, it is observed, for the number of features k > 1, that the alternative hypoth-
esis is rejected up to the value k = 53, which is where the null hypothesis is
rejected because, in terms of this metric, the PCA and MDS methods obtain a
better performance, which is significant (p < 0.05). With the number of features
k=53, the results 0.69±0.10 and 0.70±0.09 of AUC are obtained for the PCA
and MDS methods. Finally, it is possible to observe that for the network training
time, the times of the dimensionality reduction-based methods are significantly
shorter than the reference method (p < 0.05).
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Fig. 3. Behavior of the evaluation metrics for the three dimensionality reduction meth-
ods evaluated: (a) AUC; (b) Training time, for each number of features evaluated. Ref-
erence line corresponds to the behavior of the nMeans method without dimensionality
reduction.

4 Discussion

The results of the AUC performance metric are shown in Fig. 3a, where it is pos-
sible to observe an increasing performance as the number of features increases,
nevertheless, when using the same number of features as the benchmark method
proposed by Lee et al., based on nMeans with 80 features [8], it is observed
that the performance of the PCA and MDS methods is higher. This perhaps
is because dimensionality reduction methods not only allow the feature vector
size reduction, but also improve the SNR of the data, as stated by Li et al.
in their study of PCA with CNN [14]. On the other hand, the AUC values for
single-trial P300 detection are among the values reported in the literature, where
average AUCs of 0.57, 0.62, and 0.65 have previously been reported using signal
shape-based methods and linear classifiers in a population with 10 individuals
[5].

For ELM, the extraction methods had similar performances where Kong et
al. reported a classification rate of approximately 72% for a 6× 6 speller with two
test individuals for 10 test sequences using signal components as input features
to the neural network [6]. Additionally, Xie et al. reported for 8 test subjects
an average classification rate of 86% for a single trial using 2500 neurons in the
hidden layer of the ELM testing different channels of the parieto-central-occipital
lobe of the brain, and training times between 0.01 and 0.14 s, however, the latter
does not use speller as a paradigm for ERP evocation [13].

Thus, the results allow determining that the methods based on dimensionality
reduction and ELM as classifier improve the detection of the P300 single-trial
both in terms of accuracy and training time. This is because PCA and MDS
methods obtain a maximum average performance of approximately 0.72±0.09
and 0.72±0.08, respectively, although a significant improvement of 0.07 is found
from the use of 53 features, which, compared to the initial nMeans vectors, cor-
responds to approximately 66.25% of the vector. According to the ELM training
time, the methods based on dimensionality reduction propose an improvement
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because the times were less than 0.05 s, which is fully significant compared to
the reference method. For example, if a configuration of PCA and MDS methods
with 53 features is used, it would be possible to obtain an acceptable classifi-
cation of about 70%, with a response time of about 0.02 s. On the other hand,
the FA-based reduction method did not obtain an improvement compared to
the reference method. When comparing the performance of PCA and MDS with
each other, no significant differences are obtained. This may be because both
methods are based on linear configurations, so their behavior in some cases may
be similar [16,17]. Finally, the generalizability of the methods was demonstrated
by evaluating the configurations in a sample of 54 subjects.

5 Conclusion

The results of this study allow concluding that the techniques based on dimen-
sionality reduction using PCA and MDS to reduce the feature vectors based on
average of EEG signals and ELM neural network improved the recognition of
the single-trial P300 in BCI systems based on speller. The principal results were
obtained with an AUC performance of 0.70, which is higher than the standard
method (p<0.05) with 66.25% of the initial feature vector and maximum perfor-
mance of 0.90 for one individual evaluated in a single trial. Additionally, ELM
training times of less than 0.05 s were obtained, which would allow practical
application in real-time BCI systems related with rehabilitation of communica-
tions disabilities. Future studies will focus on the application of the methods in
a real-time BCI speller system, as well as the evaluation of more robust methods
that allow improving the performance metrics and the reduction of computa-
tional cost at the same time.
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Esṕırito Santo (UFES) for the support to this research, and FAPES/I2CA (Resolu-
tion N◦ 285/2021) for the MSc scholarships awarded to the two first authors.

References

1. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan,
T.M.: Brain–computer interfaces for communication and control. Clin. Neuro-
physiol. 113(6), 767–791 (2002). ISSN 1388-2457. https://doi.org/10.1016/S1388-
2457(02)00057-3

2. Farwell, L.A. Donchin, E.: Talking off the top of your head: toward a
mental prosthesis utilizing event-related brain potentials. Electroencephalogr.
Clin. Neurophysiol. 70(6), 510–523 (1988). ISSN 0013-4694. https://doi.org/10.
1016/0013-4694(88)90149-6, https://www.sciencedirect.com/science/article/pii/
0013469488901496

3. Picton, T.: The P300 wave of the human event-related potential. J. Clin. Neuro-
physiol. 9, 456–479 (1992). https://doi.org/10.1097/00004691-199210000-00002

https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1016/0013-4694(88)90149-6
https://doi.org/10.1016/0013-4694(88)90149-6
https://www.sciencedirect.com/science/article/pii/0013469488901496
https://www.sciencedirect.com/science/article/pii/0013469488901496
https://doi.org/10.1097/00004691-199210000-00002


424 C. F. Blanco-Dı́az et al.

4. Farukh Hashmi, M., Kene, J.D., Deepali, M.: An efficient p300 detection algo-
rithm based on kernel principal component analysis-support vector machine. Com-
put. Elect. Eng. 97, 107608 (2022). ISSN 0045-7906. https://doi.org/10.1016/j.
compeleceng.2021.107608

5. Dı́az, C.F.B., Olaya, A.F.R.: A novel method based on regularized logistic regres-
sion and CCA for P300 detection using a reduced number of EEG trials. IEEE Lat.
Am. Trans. 18(12), 2147–2154 (2020). https://doi.org/10.1109/TLA.2020.9400443

6. Kong, W., et al.: Weighted extreme learning machine for p300 detection with
application to brain computer interface. J. Amb. Intell. Human. Comput. 1–11
(2018)

7. Nashed, N.N., Eldawlatly, S., Aly, G.M.: A deep learning approach to single-trial
classification for p300 spellers. In: 2018 IEEE 4th Middle East Conference on
Biomedical Engineering (MECBME), pp. 11–16 (2018). https://doi.org/10.1109/
MECBME.2018.8402397

8. Lee, H., et al.: EEG dataset and OpenBMI toolbox for three BCI paradigms: an
investigation into BCI illiteracy. Giga-Science 8, 1–16 (2019). https://doi.org/10.
1093/gigascience/giz002

9. Kundu, S., Ari, S.: Fusion of convolutional neural networks for p300 based character
recognition. In: 2019 International Conference on Information Technology (ICIT),
pp. 155–159 (2019). https://doi.org/10.1109/ICIT48102.2019.00034

10. Kundu, S., Ari, S.: P300 based character recognition using convolutional neu-
ral network and support vector machine. Biomed. Signal Process. Control.
55, 101645 (2020). ISSN 1746-8094. https://doi.org/10.1016/j.bspc.2019.101645,
https://www.sciencedirect.com/science/article/pii/S1746809419302265

11. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1–3), 489–501 (2006)

12. Henrique, V., Ribeiro, A., Reynoso-Meza, G., Valadares Siqueira, H.: Multi-
objective ensembles of echo state networks and extreme learning machines for
streamflow series forecasting. Eng. Appl. Artif. Intell. 95, 103910 (2020)

13. Xie, S., Wu, Y., Zhang, Y., Zhang, J., Liu, C.: Single channel single trial p300
detection using extreme learning machine: Compared with BPNN and SVM. In:
2014 International Joint Conference on Neural Networks (IJCNN), pp. 544–564
(2014). https://doi.org/10.1109/IJCNN.2014.6889400

14. Li, F., Li, X., Wang, F., Zhang, D., Xia, Y., He, F.: A novel p300 classification
algorithm based on a principal component analysis-convolutional neural network.
Appl. Sci. 10(4), 1546 (2020)

15. Lytaev, S., Vatamaniuk, I.: Physiological and medico-social research trends of the
wave p300 and more late components of visual event-related potentials. Brain Sci.
11(1), 125 (2021)

16. Bengio, Y., Paiement, J., Vincent, P., Delalleau, O., Roux, N., Ouimet, M.: Out-
of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and spectral clustering.
In: Advances in Neural Information Processing Systems, vol. 16 (2003)

17. Van Der Maaten, L., Postma, E., Van den Herik, J., et al.: Dimensionality reduc-
tion: a comparative. J. Mach. Learn. Res. 10(66–71), 13 (2009)

https://doi.org/10.1016/j.compeleceng.2021.107608
https://doi.org/10.1016/j.compeleceng.2021.107608
https://doi.org/10.1109/TLA.2020.9400443
https://doi.org/10.1109/MECBME.2018.8402397
https://doi.org/10.1109/MECBME.2018.8402397
https://doi.org/10.1093/gigascience/giz002
https://doi.org/10.1093/gigascience/giz002
https://doi.org/10.1109/ICIT48102.2019.00034
https://doi.org/10.1016/j.bspc.2019.101645
https://www.sciencedirect.com/science/article/pii/S1746809419302265
https://doi.org/10.1109/IJCNN.2014.6889400


2D Time-Difference Electrical Impedance
Tomography Image Reconstruction

in a Head Model with Regularization
by Denoising

Roberto G. Beraldo1(B) , Leonardo A. Ferreira1 , Fernando S. Moura2 ,
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Abstract. Time-Difference Electrical Impedance Tomography (TDEIT)
is an imaging technique to visualize resistivity changes over time in a
region of interest. Regularization is necessary because TDEIT is an ill-
posed problem. In this work, we use Regularization by Denoising (RED)
with four different denoisers to reconstruct brain images in a simplified 2D
head model. We compared the RED results to two traditional reconstruc-
tion methods, generalized Tikhonov regularization and total variation reg-
ularization. In both the noiseless and the noisy scenarios, we achieved the
best results using RED with non-local means as the denoiser in relation
to figures of merit such as ringing, resolution and shape deformation.

Keywords: ill-posed problems · discrete inverse problems · image
processing · white Gaussian noise

1 Introduction

Electrical Impedance Tomography (EIT) is a method to obtain resistivity values
from a region of interest (ROI) [1]. To do so, electrodes inject electrical current
into the boundary of the ROI. The resulting electrical potentials are measured
in the same boundary and used in image reconstruction.

It is possible to use the finite element method (FEM) to calculate the forward
problem, i.e. to determine all the nodal voltages given the resistivities of the
elements and the nodal electrical current [1]. Let p be the number of mesh nodes
and n the number of mesh elements. Then, the voltage vall ∈ R

p in all the mesh
nodes is given by

vall = Y(ρ)−1c, (1)
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which is a nonlinear function of the resistivities ρ ∈ R
n, where Y(ρ) ∈ R

p×p is
the global conductivity matrix and c ∈ R

p is the nodal electrical current [2, p.
53].

The method is called Time-Difference Electrical Impedance Tomography
(TDEIT) when the objective is to estimate resistivity changes Δρ ∈ R

n given
the voltage changes at the electrodes Δv between two instants of time.

Considering a pair-wise current injection, all the electrodes measure the
resulting voltages, including the ones used for the injection. Let e be the number
of electrodes and Δvi ∈ R

e for i = 1, ..., e be the resulting voltage difference
given the electrical current input from the ith pair of electrodes. After concate-
nating Δvi, for all i, into a single vector Δv ∈ R

m, where m = e2, the linearized
EIT problem [1] is given by

J(ρ0)Δρ = Δv + ε, (2)

where ε ∈ R
m is an additive noise and J(ρ0) ∈ R

m×n is the Jacobian matrix
∂(Y(ρ0)

−1c)
∂ρ

∣
∣
∣
ρ0

resulting from the first-order Taylor expansion of (1) around an

initial resistivity ρ0 and calculated from the voltages of the electrode nodes only.
From now on, we denote J(ρ0) = J.

EIT is a severely ill-posed inverse problem, which means that the discrete lin-
earized problem (2) is ill-conditioned. Thus, regularization is necessary to solve it
[1]. Traditional regularization methods include the Tikhonov Regularization and
the Total Variation (TV) regularization [3]. These methods may be understood
as including prior information to solve the problem [4].

Recently, [5] proposed the Regularization by Denoising (RED), where general
inverse problems, other than denoising, are solved with the prior information that
the solution presents a small noise. Considering an additive white Gaussian noise
ε, the resulting functional is given by

Δρ̂RED = arg min
Δρ

{ 1
2σ2

||Δv − JΔρ||22 + λR(Δρ)
}

, (3)

for
R(Δρ) =

1
2
ΔρT (Δρ − f(Δρ)) , (4)

where Δρ̂RED is the estimated Δρ with RED, σ is the noise variance, λ is a
regularization parameter and f(Δρ) is a denoiser. Note that the additive noise is
present in Δv, but the denoiser is applied in the values of Δρ to be reconstructed.

It is possible to optimize the RED framework functional with different algo-
rithms, such as the steepest descend method, the alternating direction method
of multipliers (ADMM), and fixed-point methods. Applications include deblur-
ring, super-resolution [5], nonlinear traveltime tomography [6], and hyperspectral
anomaly detection [7].

In this work, we use the RED framework to reconstruct TDEIT resistivity
images from simulated data in the region of the head. We compare the recon-
struction performance of different denoisers from both the noiseless and noisy
Δv cases.
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2 Materials and Methods

We performed no tests on animals or volunteers. We simulated Δv and imple-
mented the TDEIT inversion in MATLAB, as described below.

2.1 2D Mesh Generation

Using MATLAB, we obtained the contours of three head tissues (scalp, skull,
and brain) from a cross-section above the eye height of a young adult head
model [8]. We generated the 2D mesh with the software GMSH1 with triangular
elements and added 32 electrodes around it. Table 1 presents the information
about the two meshes, one to simulate Δv (finer mesh) and the other to solve the
inverse problem (coarser mesh). To avoid the inverse crime [4], we used different
meshes and resistivities between them, but the electrode positions are the same.
A circular target represents an alteration in the ROI. The target properties are
the same in all simulations.

Table 1. Δv simulation and inverse model properties.

Δv simulation Brain Skull Scalp All

ρ[Ωm] 9.12 47.94 2.5 -

No of Elements 8067 1459 1086 10708

No of nodes - - - 5420

Inverse problem Brain Skull Scalp All

ρ0[Ωm] 9.5 45 3 -

No of Elements 1222 226 524 2068

No of nodes - - - 1100

Target Rd.[m] Center[m] ρ[Ωm]

Circular 0.015 (0.078, 0.09) 1.42

2.2 Forward Problem Solution (Δv Simulation)

Considering the complete electrode model [9], [2, pp. 207-210], we solved the
forward problem with the finite element method in the finer mesh. Following [10],
the current injection pattern was Skip-16 (a diametral, but with an even skip),
with single-ended voltage measurements in relation to the electrical ground in
the center of the mesh. Table 2 presents the information of the forward problem.

We simulated two scenarios, the noiseless and noisy signals, generating 10
different realizations of white Gaussian noise ε ∼ N(μ, σ2I), where μ = 0[V] is
the mean, σ = 0.003[V] is the standard deviation and I is an identity matrix. To

1 https://gmsh.info/.

https://gmsh.info/
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Table 2. Finite element method equations and parameters.

Domain

Elements type Triangular

Local conductivity matrix Eq. A.17 [2]

h (Thickness) [m] 0.03

Electrode

Elements type Triangular

Model Complete [9]

Local conductivity matrix Eq. A.42 [2]

b (Thickness) [m] 0.03

a (Width) [m] Variable

ρt (Parameter) [Ωm2] 0.02

General

Global conductivity matrix Eq. A.32 [2]

Current value [A] 0.001

Current injection pattern Skip-16, Eq. 2.35 [2]

Jacobian matrix calculation Eq. 2.45 [2]

make each ε repeatable for the different methods, we fixed the random number
seeds2.

Figure 1a) shows the forward problem mesh with the three head layers (brain,
skull, and scalp) and electrodes around the scalp. Figure 1b) shows the target
Δρ. Figure 1c) shows an example of the resulting Δv for the noiseless and noisy
scenarios, with values for three different skip-16 electrode pairs (96 elements out
of 1024) for better visualization.

2.3 Inverse Problem Solution

To solve the inverse problem, it is also necessary to solve the forward problem in
the coarser mesh and then calculate the Jacobian matrix J as explained in [2].
We solved the forward problem considering all three tissues, but only the brain
elements are updated in the inverse problem, making its dimensionality smaller.
Information from Table 2 was also applied for solving the inverse problem.

We considered that the noise variance σ was unknown. We set 1
2σ2

= 1 in
(4), which allows λ to be the only responsible for controlling the bias-variance
trade-off. Then, we visually chose the regularization parameter λ.

An implementation of RED by Choi and Poullet is available online3, under
the Apache License 2.0, and we adapted it to the EIT problem. To solve (3)
when R(Δρ) is given by (4), we chose the fixed-point method [5] with 10 inner

2 In MATLAB, the seeds 1 through 10 in the rng function.
3 https://github.com/google/RED.

https://github.com/google/RED
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Fig. 1. Forward problem. a) Head mesh resistivities. b) Brain mesh with Δρ values,
including the circular target. c) Noiseless and noisy Δv for a single realization of the
white Gaussian noise ε. SNR is the signal-to-noise ratio of ε in relation to the noiseless
signal.

iterations and a zero vector as the initial estimate. The number of outer iterations
depended on the following stopping criterion to evaluate the solution changes in
the last three steps:

Let i be the iteration number. For i > 3, if

1

3

{||Δρi − Δρi−1|| + ||Δρi−1 − Δρi−2|| + ||Δρi−2 − Δρi−3||}

is smaller than a tolerance 5e − 08, the iterations end.

Instead of denoising directly the mesh elements values, we defined all denois-
ers in the image domain by linearly interpolating the reconstructed data into a
regular grid of a 2D image, with 35 × 35 pixels, considering null values outside
the ROI. Thus, the number of pixels was in the same order as the number of the
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brain mesh elements. Then, we applied the denoiser and linearly interpolated
the values back to the mesh.

Each denoiser is a built-in MATLAB function. Table 3 shows the parameters
of all the methods, such as the boundary conditions (BC), the size of the neigh-
borhood (NHood) of the median filter, or the size of the Gaussian kernel, to
name a few. Denoisers from No1 to 3 are edge-preserving denoisers (depending
on the parameters), while method No4 is a smoothing operator.

2.4 Performance Comparison

We compared the RED results with the generalized Tikhonov regularization [1,
Section 1.5] based on the functional given by

Δρ̂Tikh = arg min
Δρ

{

||Δv − JΔρ||22 + λ||LΔρ||22
}

, (5)

with the closed-form solution

Δρ̂Tikh =
(

JT J + λLT L
)−1

JT Δv, (6)

where the regularization matrix L ∈ R
n×n is a Gaussian high-pass filter (HPF)

[2, p. 115]. The filter standard deviation can be associated with prior information
regarding the smoothness of the solution.

We also solved the problem with the isotropic total variation (TV) regulariza-
tion [11,12] to reconstruct stepwise constant images by minimizing the following
functional

Δρ̂TV = arg min
Δρ

{

||Δv − JΔρ||22 + λ||LdΔρ||1
}

, (7)

where the regularization matrix Ld is a discrete first derivative operator [12] and
its size depends on the number of edges between the elements.

We approximated the �1-norm using the iteratively reweighted least squares
(IRLS) method [13, p. 197]. This method also depends on a tolerance value,
denoted tolIRLS to differ from the tolerance of the stopping criterion. Table 3
also shows the relevant parameters of these methods.

2.5 Performance Evaluation

We compared the number of iterations necessary to respect the stopping criterion
in the noiseless and noisy cases.

We also compared the resulting images with the numerical phantom of the
forward problem using figures of merit considering the one-fourth amplitude
set. We calculated the following figures of merit: the position error (PE), which
compares the center of the target to that of the reconstructed image; Ringing
(RNG), which measures the opposite sign (in this case, increasing) resistivity in
the reconstruction around the target; Resolution (RES), that compares the size
of the reconstructed target to the size of the entire ROI; and Shape deformation



2D Time-Difference EIT Image Reconstruction with RED 431

Table 3. Denoiser and reconstruction parameters.

No Regularization Information

1 RED with Median filter [14]

Zero BC

λ = 1e − 6

NHood size: [5x5]

2 RED with Non-local means [15]
λ = 1e − 6

Degree of smoothing: 1

3 RED with Bilateral filter [16]

Replicate BC

λ = 1e − 6

Degree of smoothing: 0.1

Spatial Sigma: 25

NHood size: [11x11]

4 RED with Gaussian filter [14]

Zero BC

λ = 1e − 6

Kernel size: [5x5]

Kernel std. deviation: 1

5 Generalized Tikhonov (One step)

L = High Pass Filter

Filter std. deviation = 5e − 3

λ = 1e − 6 (noiseless)

λ = 1e − 5 (noisy)

6 Total Variation (Iterative)

Ld = First derivative

tolIRLS = 5e − 3

λ = 4e − 3 (noiseless)

λ = 8e − 3 (noisy)

(SD), which compares the original target shape (circular, in this study) to the
target reconstruction shape.

For all figures of merit, a smaller absolute value indicates improved results.
PE, RNG, and SD could result in zero values. RES is a positive value that
depends on the target radius. For further information on calculation and inter-
pretation, we ask the reader to refer to [17]. In the case of the reconstructions
from the 10 different noise realizations, we calculated the mean and the standard
deviation of each figure of merit.

3 Results

Figure 2a–f) shows the reconstructed images in the noiseless case. Table 4
presents their figures of merit. Both TV regularization (No6) and RED with
NLM (No2) present the lowest RES and SD values. RED with NLM (No2) also
presents the lowest RNG, but the number of iterations, regarding the adopted
stopping criterion, is a drawback.
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Fig. 2. Reconstructions Δρ[Ωm] obtained from the noiseless signal Δv.

Figure 3a–f) shows the reconstructed images with the noisy signal. Table 5
presents their figures of merit and the number of iterations that results from
this stopping criterion. It was necessary to use a higher value of λ with methods
No5 and No6, as shown in Table 3, to decrease artifacts. Nevertheless, the noise
seemed to affect more traditionally reconstructed images than the RED images,
as seen by the standard deviation of each figure of merit. RED with NLM (No2)
presented the best PE-x, RNG, RES, and SD results, as the resulting image was
quite similar to that of the noiseless case.
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Fig. 3. Reconstructions Δρ[Ωm] obtained from the noisy signal Δv.

4 Discussion

Different denoiser choices imply assuming different prior information. By visual
inspection of Figs. 1 and 2, varying the methods can yield sharper solutions
(especially No6, as expected) or smoother solutions. To improve the results,
a possibility is to find the optimal denoiser parameters. We can also choose
other denoisers, such as those based on machine learning and deep learning. The
authors in [5] discussed guarantees of convergence when the denoiser presents
properties such as local homogeneity, strong passivity, and differentiability. These
properties must be verified when using other denoisers so that there are theo-
retical guarantees about convergence.
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Table 4. Noiseless signal: Figures of merit and number of iterations.

No PE [mm] RNG RES SD Iter.

Ref. (0, 0) 0 0.21 0 N/A

1 (0.6, 2.7) -0.32 0.44 0.78 83

2 (-0.2, -1.2) -0.035 0.33 0.59 234

3 (1.3, 1.6) -0.20 0.44 0.77 66

4 (1.3, 3.3) -0.48 0.47 0.80 45

5 (1.1, 3.4) -0.50 0.37 0.69 1

6 (-0.8, 2.7) -0.091 0.33 0.59 23

Table 5. Noisy signal: Figures of merit and number of iterations. Values are represented
as mean ± standard deviation.

No PE-x [mm] PE-y [mm] RNG

Ref. 0 0 0

1 2.8 ± 2.1 3.9 ± 2.8 -0.66 ± 0.18

2 -0.1 ± 1.8 -2.6 ± 3.4 -0.22 ± 0.06

3 2.2 ± 1.3 1.9 ± 1.5 -0.58 ± 0.19

4 3.9 ± 2.0 4.5 ± 2.0 -0.86 ± 0.19

5 5.2 ± 3.7 6.0 ± 3.8 -1.03 ± 0.32

6 3.0 ± 3.1 2.6 ± 5.0 -0.76 ± 0.36

No RES SD Iter.

Ref. 0.21 0 N/A

1 0.46 ± 0.03 0.79 ± 0.03 75 ± 7

2 0.33 ± 0.03 0.60 ± 0.04 199 ± 52

3 0.43 ± 0.04 0.77 ± 0.04 93 ± 30

4 0.48 ± 0.03 0.81 ± 0.02 45 ± 5

5 0.50 ± 0.05 0.82 ± 0.03 1

6 0.47 ± 0.06 0.77 ± 0.06 59 ± 16

Regarding Tables 4 and 5, the number of iterations depends on the method,
specifically on the denoiser. All methods achieved better performance with fewer
iterations in the noiseless case. With the noisy signals, the performance of all
methods was worse and the number of iterations tended to be higher, as expected.
In both noise scenarios, while method No2 (RED with NLM) obtained the best
results, it required more iterations to satisfy the stopping criterion than all the
other methods, hindering real-time applications.

Concerning the RED framework, we projected the mesh results to an image
of size 35 × 35 pixels to denoise with known denoisers from image processing,
then projected back the results to the mesh. Other interpolation methods are
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possible, such as the nearest neighbors. Another way is to denoise Δρ directly
in the mesh, without any intermediate interpolation step to an image grid.

Finally, in the context of TDEIT, we assumed the availability of the reference
measure of the healthy patient, necessary to obtain Δρ. If the patient presents
pre-existing conditions by the time the monitoring begins, TDEIT may not be
suitable. Thus, a research direction is to investigate the use of RED to recon-
struct absolute EIT images, that is, to reconstruct ρ directly, using the voltage
measurements from a single instant of time.

5 Conclusion

In this work, we proposed to use the Regularization by Denoising method to
reconstruct TDEIT brain images in a simplified 2D head mesh. By varying the
denoiser and its parameters, it is possible to obtain smooth or sharp target recon-
structions, providing flexibility to the method. In the noiseless case, RED with
non-local means was the best reconstruction method, but both the Tikhonov
and TV regularization were also satisfactory. In the noisy scenario, while the
traditional reconstruction methods were sensitive to noise, RED with non-local
means as the denoiser achieved better results in relation to the figures of merit
we evaluated.

Future works include: solving the three-dimensional TDEIT problem using
RED; denoising directly the mesh elements value, without projecting the problem
to the image domain; automatic denoiser parameters selection; and using deep
learning based denoisers.
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Abstract. In ultrasound research, an important subject is the quality of
image assessment. Despite a myriad of technological solutions, qualitative
and quantitative metrics are critical indicators to measure and compare
the quality of ultrasound images. This paper presents a simulation of a
model that implements step-by-step an image reconstruction based on
delay-and-sum (DAS) method from the Matlab/Simulink environment.
The general objective was to validate this model to compare the qual-
ity metrics of images against the computational one. Model results were
validated using the Field II as gold reference, a program for simulating
ultrasound transducer fields and ultrasound imaging using linear acous-
tics. The model implements DAS beamforming to process 65 scanlines
generated by a 128-element transducer. For quantitative analysis, the
following metrics have been used: contrast resolution (CR), contrast-to-
noise (CNR), signal-to-noise ratio (SNR), normalized root mean square
error (NRMSE), normalized residual sum of squares (NRSS), and full
width at half maximum (FWHM). According to those metrics, the pro-
posed model performance is strongly correlated comparatively to the ref-
erence, showing errors of 1.49%, 1.29%, 0.22%, 2.45%, 7.38% for the CR,
CNR, SNR, FWHM, and NRMSE, respectively. As indicated by met-
rics the Matlab/Simulink model images are similar to the computational
ones.
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1 Introduction

Ultrasound (US) medical images are non-invasive, free of ionizing radiation, and
relatively cost-effective compared with x-ray systems. For these reasons, US tech-
nology has become widely used in diagnosis medicine.

In US research, it is necessary to assess the quality of an image despite of
a myriad of technological solutions. As these various solutions address image
quality comparison problems, studies on qualitative and quantitative metrics
are justified as critical indicators to measure and compare the quality of US
images.

The objective of this work was to validate a simulated model by comparing its
image quality metrics against the computational model. Simulated model results
were validated using the Field II [7] as gold reference, a program for simulating
ultrasound transducer fields and ultrasound imaging using linear acoustics.

First, a computational (Matlab/Field II) model implemented a step-by-step
image reconstruction. Next, a simulated (Simulink) model do the same approach
to be validated. Both implementations were based on delay-and-sum (DAS)
method to reconstruct a US image [6,15]. This technique is considered well-
established. However, to improve the image quality and accuracy of medical
diagnosis, the raw radio-frequency (RF) signal needs to be manipulate directly
[2], customizing the simulation of signal processing in real-time. More than that,
it is necessary to measure the quality of images generated.

The functional block diagram Fig. 1 shows a general overview of the compu-
tational and simulated models. Next, the diagram and the US image processing
steps will be explained briefly.

Fig. 1. Receive beamformer - functional steps to obtain DAS B-mode images

It illustrates the main steps of DAS beamforming signal processing for US
images: filtering, delay/focalization, windowing/apodization, coherent summa-
tion, envelope detection, logarithmic compression, and image composition.
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About that mentioned computational model, to simulate the transmission/re-
ception, the aperture for emission/reception, the impulse response, and the exci-
tation were configured by Field II functions.

Special attention was paid to the backscattered signal obtained by reception
process. So with Matlab code and tools with Field II functions, it was imple-
mented Hanning windowing focalization, filtering, coherent summation, envelope
detection, logarithmic compression and image forming by scanlines juxtaposi-
tion.

2 Methods

Simulations have been done in Field II [7], a program for simulating ultrasound
transducer fields and ultrasound imaging using linear acoustics, to reconstruct
a 20-target axial image with focalization at 50 mm depth. For transmission,
the parameters were set up considering a 128-element linear array transducer
available in our laboratories. Table 1 shows usual units of measurement. The
“un” symbol means quantities of units or elements.

Table 1. Transducer parameters and excitation data

Parameter Values Units

Linear array transducer 128 un

Active elements in the transducer 64 un

Transducer center frequency 3.2 MHz

Scanlines generated 65 un

Sampling frequency 40 MHz

Speed of sound (soft tissue) 1540 m.s−1

Wavelength (λ) 481.25 μm

Width of element 481.25 μm

Height of element 5 mm

Kerf 8 μm

Fixed focal point (x, y, z) [0,0,50] mm

Elements in x-direction 1 un

Elements in y-direction 5 un

Targets simulated with phantom 20 un

Axial target separation 10 mm

Apodization Hanning -

A DAS model to generate the US image was built using Matlab/Simulink,
whose quality was evaluated. There are two major tasks to reach the main goal of
this work: the reconstruction of the B-mode image and the appliance of metrics
to assess the image’s quality.
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2.1 B-Mode Image Reconstruction

A 128-element transducer, with an aperture of 64 elements, has been used to
receive scattered echoes (raw RF signal) to reconstruct US images. The received
signals are processed using a low-pass filter (LP Filter, Fig. 2) and delayers (Z−1,
Fig. 2) to provide a more precise and the correct focalization. The same approach
described in [3] has been used to implement the LPF.

Next, a signal processing windowing technique, the apodization (Apod,
Fig. 2) eliminates distortions caused by the lateral channels of the aperture. Here,
a symmetric aperture was applied using the delay and apodization coefficients
calculated by Field II.

The coherent summation, an adding operation of the 64 resulting signals
x(:, 1) to x(:, 64) was executed recursively to generate the 65 scanlines (128
transducer’s elements - 64 aperture’s elements + 1). Figure 2 illustrates these
steps performed by 64 channels signal processing.

Fig. 2. Ultrasound DAS beamforming method. Block diagram illustrating the 64-
channels of the first steps (acquisition, filtering, delay, apodization, and coherent sum-
ming)

The envelope detector will apply a Hilbert Transform (FIR Filter Hilbert
Transformer, Fig. 3) to perform quadrature demodulation and determine an
envelope curve (E(n), Fig. 3) from an input RF signal (x(n), Fig. 3). This detec-
tion corresponds to a tangent curve that involves each scanline x(n).

As found in [10], envelope detection can be performed by modeling a Hilbert
filter, using finite impulse response (FIR) techniques to obtain the phase I(n) and
quadrature Q(n) components. A block diagram (Fig. 3) illustrates the concept
behind these steps, whose details can be found in [1].
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Fig. 3. Functional block diagram of envelope detector (quadrature demodulation)

Usually, the dynamic range of the signal is restricted, as in [2] and [4], because
of a limitation to viewing grayscale. The dynamic range of human eyes can
distinguish a 30 dB order. The dynamic range used in this work was restricted
from −60 dB to 0 dB and the grayscale gradients from 0 (white) to 128 or 256
(black) with a so-called logarithmic compression. Additionally, this compression
improves the contrast of the US image.

The rest of the process is related to conforming the generated image to the
screen. A juxtapose operation is sufficient for the linear array transducer used
to exhibit a B-mode image.

2.2 The B-Mode Image Assessment

US B-mode images can generated following the steps described in the last section
and illustrated by Fig. 1. For quantitative analysis, following metrics have been
used: contrast resolution (CR), contrast-to-noise (CNR), signal-to-noise ratio
(SNR), normalized root mean square error (NRMSE), normalized residual sum of
squares (NRSS), and full width at half maximum (FWHM). Those metrics were
evaluated after logarithmic compression to assess the overall image processing.
Moreover, the region of interest (ROI) was defined at the target located at 50 mm
and its neighborhood where applicable. Only the central scanline was considered
for metrics dependent on scanlines to calculate the image quality metrics.

A straightforward notion about these quality image quantifiers is described
in the following lines.

Contrast Metrics. Contrast is a measure of the ability to distinguish lumi-
nance between different regions of the displayed images [6]. Logarithmic com-
pression, image memory, dynamic range, and contrast agents are variables that
influence this parameter. In this work, CR (1) was employed as defined in [16],
and CNR (2) as defined in [11]. These two contrast quantifiers were applied like
[1,18] using Eqs. 1 and 2:

CR = |μtgt − μbck| , (1)
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CNR =
|μtgt − μbck|√

σ2
tgt + σ2

bck

, (2)

where μtgt e μbck are mean intensities of target (tgt) and background (bck)
regions, respectively. The σtgt and σbck are standard-deviations of the signal
intensities in tgt and bck regions.

Signal-to-Noise Ratio. The signal-to-noise ratio (SNR) compares the signal
and the noise levels at a determined ROI. Its general goal is to quantify the
image quality through speckle measurement [13]. Speckles are a kind of artifact
(alteration) that accentuates the granular aspect, making the image resultant
not correspond to the target’s actual image.

A well-known approach to measuring SNR is through the mean intensity (μs)
and the standard deviation (σs) of the signal [9,14], defined as:

SNR =
μs

σs
=

1
mn

· ∑m
j=1

∑n
i=1 E(i, j)

√
1

mn − 1
· ∑m

j=1

∑n
i=1

(
E(i, j) − 1

mn
· ∑m

j=1

∑n
i=1 E(i, j)

)2

(3)
where E(i, j) is the intensities of signals, i and j are a row and a column within
an ROI, respectively.

Evaluating the Goodness of Fit. In regression analysis, it is common to mea-
sure the strength of the relationship between data. In our experiments, data are
relative to numerical computation and simulated model one. The normalization
data operation is to guarantee the same proportion.

In this work, the normalized residual sum of squares (NRSS) was used as
a technique that quantifies the amount of error variance in the dataset. So, as
residual summing, the nearer to zero is the NRSS metric, the best fit it is [5].

NRSS =
∑M−1

k=0 |E(k) − ht(k)|2∑M−1
k=0 |ht(k)|2

(4)

The normalized root mean square error (NRMSE) or normalized root mean
square deviation (NRMSD) is the standard deviation of residuals (error predic-
tion) and measures the average squared error between data. Although smaller
NRMSE reflects greater accuracy, it is essential to remark that there is no best
value for it [12]. The comparison of the computational and modeled system, the
NRSS [17], and the NRMSE [8] were employed with algorithms similar to [1],

NRMSE = 100 ·
√√√√

∑M−1
k=0 |E(k) − ht(k)|2

∑M−1
k=0

∣∣ht(k) − ht
∣∣2 (5)
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where ht and ht are the simulated envelope and the average value of it, respec-
tively, E(k) is the golden standard and M is the number of samples.

Geometric Distortion. The quantifier called full width at half maximum
(FWHM) measures the geometric distortion. In this work, the FWHM reports
the width between two points belonging to the central scanline curve, whose line
intercepts half of its maximum value, or better said, at −6 dB from the maxi-
mum of the main lobe [4]. Figure 4 shows the concept of FWHM. Two segment
points are located at half amplitude A/2, in dB, x1 and x2, whose length is
FWHM.

Fig. 4. Standard deviation σ and full width at half maximum FWHM

3 Results and Discussion

The proposed method (modeled system) was implemented to generate the image
through all the steps illustrated in Fig. 1.

This work integrates image quality metrics found in different articles, each
of them assessing some property of US image. Because of that, observations
about this set of metrics were parted by subjects. CR and CNR are employed
according to [11,16], respectively, and their application are according to [1,18].
SNR is widely applied, and the current approach is like [9,14]. The goodness of
fit, NRSS and NRMSE was applied like [1]. Frequently, geometric distortion is
considered. So FWHM was applied following [4] approach.

Considering the qualitative analysis, the envelope and the amplitude plot of
the central scanline (of number 32) at the 50 mm target (Fig. 5a) was evaluated.



444 G. M. Kanashiro et al.

Fig. 5. a Scanline and envelope b Zoomed signal and envelope details of computational
and modeled system showing similarity
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Signals and their envelopes from the computational and modeled system show
an excellent fit adjustment, as seen in Fig. 5b, at the location pointed by an
arrow in Fig. 5a.

Another approach is comparing both generated US images. Here, the similar-
ity of both images is remarkable, as shown in the resulting image of Fig. 6, where
the accuracy of the model is quite evident even if considering the 20-targets. The
squares with yellow (left) and blue (right) borders highlight the target and back-
ground areas, respectively. The target area and neighborhood were zoomed in
for careful qualitative analysis. In Fig. 7, there is an arrow to indicate the slight
difference related to the golden standard.

Fig. 6. Image qualitative evaluation. The model is similar to the computational one
inside the corresponding rectangles
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The proposed method results were compared to the computational Field
II solution. After applying filtering in the raw signal, delays, apodization, and
coherent summation, the envelope curve of the signal was generated.

Fig. 7. Qualitative analysis of accuracy. Detail (arrow) of the model target showing
slight difference

For the qualitative analysis, the goodness of fit was exhibited by Fig. 5a and
5b. This accuracy characteristic can be seen in Fig. 6, whose quality is detailed in
a zoomed Fig. 7. For the quantitative analysis, relative to Table 2, it is noticeable
that CR, CNR, SNR, and FWHM have very similar values between computa-
tional data and the model. The CR and CNR contrast metrics are better in the
model as they are the greatest. The NRMSE shows a low value (less than 8%),
which is considered an excellent approximation, and in particular, the near-zero
NRSS refers to a good fit. Both computational and modeled systems show an
excellent agreement.

Table 2. Image quality evaluation metrics

Metrics Methods

Computational Modeled Error (%)

CR 10.01 dB 10.16 dB 1.49%

CNR 0.77 dB 0.78 dB 1.29%

SNR −6.20 −6.19 0.22%

FWHM 0.55 mm 0.56 mm 2.45%

Goodness of fit metrics Values

NRMSE (Computational versus Modeled) 7.38%

NRSS (Computational versus Modeled) 3.36 × 10−4
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Table 2 summarizes the results to be analyzed. The first column shows the
image quality metrics. The second and third columns show values relative to the
computational simulation and the modeled system from Matlab/Simulink. The
last column shows the error percentage between the assessment percentual values
of the systems. The two last lines show the goodness of fit metrics, calculated
for both systems. Note that Table 2 groups apart NRMSE and NRSS because
these metrics include both computational and modeled system parameters in
their formulation.

4 Conclusion

This work compared two simulations: a computational implemented with Field
II add-on for Matlab and a modeled one made in Matlab/Simulink. A DAS
beamforming model generates US scanlines and images in both systems. Some
image quality metrics were adopted to evaluate the signals and images. For
qualitative and quantitative assessment, the results of the modeled system were
compared to the computational simulation (reference). Both computational and
modeled systems show an excellent agreement.

This fact indicates that the modeling method in Matlab/Simulink could
shorten the image quality assessment. Moreover, it was possible to model an
entire DAS beamforming image with a minimum quality degradation of US
images.
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Abstract. The motor unit (MU) physiology and the neural control of human
movement can be studied via surface electromyogram (sEMG) decomposition
techniques, which estimate the discharge times of MUs during a given contrac-
tion. The recent decomposition methods are based on the blind source separation
(BSS) methods, and some approaches such as independent component analysis
(ICA) can be applied to solve the problem. This study aims to investigate the influ-
ence of several parameters of the fast independent component analysis (FastICA)
algorithm in the decomposition process of high-density sEMG. The extension
factor, the number of iterations, and the method of initialization of the separation
vector were explored for three evaluation metrics, namely, the execution time of
decomposition, the absolute number of unique decomposed MUs, and the ratio of
the number of unique MUs to the total number of extracted MUs. The number of
iterations increased the execution time of decomposition and the absolute number
of unique decomposedMUs. Besides, themethod of initialization of the separation
vector had little influence on the execution time of decomposition, an optimal value
can be achieved for the absolute number of unique decomposed MUs. Moreover,
the repeated convergence of the FastICA algorithm to the same source was mainly
affected by the number of iterations. The study has reinforced the importance of
evaluating the parameter combinations to achieve a better FastICA decomposition
performance based on the chosen evaluation metric.

Keywords: Blind Source Separation (BSS) · Decomposition · Independent
Component Analysis (ICA) · Surface Electromyogram (sEMG)

1 Introduction

The study of the motor unit (MU) physiology and neural control of movement can be
accomplished by recording the electromyogram (EMG), either invasive or non-invasive,
and using decomposition algorithms capable of identifying individual MU spike trains
(MUSTs) [1, 2]. The EMG acquisition technology has evolved from recording sys-
tems with few bipolar channels to modern systems with hundreds of channels, thereby
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enabling the acquisition of high-density EMG signals [3]. Likewise, new decomposition
methods and algorithms have been employed to decompose the high-density EMG into
its constituent MUSTs [4].

The basic concept ofmodern algorithms for decomposing high-density surface EMG
(HD sEMG) signals refers to the blind source separation (BSS) problem [4], which
consists of estimating the signal sources given a set of observations. Several techniques
havebeen employed to solve theBSSproblem, e.g., the so-called independent component
analysis (ICA), which assumes that the sources are statistically independent and aims
to maximize the nongaussianity of the estimated sources during the computation of the
inverse problem [5]. FastICA is themost efficient andwidely used ICAalgorithm [5]. It is
a fixed-point algorithm of fast convergence, which adopts the approximated negentropy
as a measure of nongaussianity using new contrast functions [5].

In the context of HD sEMG decomposition, the FastICA can be applied to estimate
MUSTs. For instance, Chen and Zhou [6] used FastICA associated with the “peel-off”
approach to mitigate the influence of the already identified MU action potential on the
surface EMG signals during the decomposition. The rationale of this approach is to
increase the number of extracted MUs. In [7], another study employing the FastICA,
the optimization criterion measures the sparsity of estimated sources instead of the
nongaussianity as in [5]; however, the same contrast functions employed in the classical
algorithmmay be used due to the intrinsic features of theMUSTs.Nonetheless, in [7], the
algorithm initialization is different than proposed by [5], and after the FastICA a second
procedure based on [4] was suggested to improve the estimated MUSTs by minimizing
the coefficient of variation of the interspike intervals (CoVISI ).

When using algorithms to solve a problem, their performance needs to be evaluated.
For decomposition algorithms, as proposed by [8], some performance metrics can be
considered when varying a set of parameters, such as the computation time and the
number of extractedMUs. Therefore, this study aims to investigate the influence of three
main parameters of the FastICA algorithm (the extension factor, the number of iterations,
and the method of initialization of the separation vector) on three decomposition output
metrics (the execution time, the absolute number of unique MUs, and the ratio of the
number of unique MUs to the total number of extracted MUs).

2 Methods

2.1 High-Density EMG Data

The sEMG signals used in the present study were recorded from a single participant
without known neurological disorders. The study was conducted in accordance with the
Declaration of Helsinki. All procedures were approved by the Ethics Committee of the
Imperial College (no. N 18IC4685).

The HD sEMG signals were acquired using a surface grid of 64 (5 × 13) electrodes
from the first dorsal interosseous muscle. An isometric contraction at 5% of maximum
voluntary contraction (MVC) was performed during a force control task [9]. The sEMG
signals were recorded during 45 s, band-pass filtered (10–500 Hz), and A/D converted
at 2,048 Hz sampling rate and 16-bit resolution. A signal from a single trial was used as
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representative to test the performance of the algorithm by changing its parameters (see
below). For detailed information about the experimental setup and protocol see [9].

2.2 Decomposition Algorithm

The implemented HD sEMG decomposition algorithm is based on [7] and can be sum-
marized in the pseudo-code below. For this study, only the FastICA (steps one to seven)
approach was analyzed. The HD sEMG signals are represented as the observationmatrix
X = [x1, . . . , xm]T , where xi with i = 1, . . . ,m is the observation of the i-th sEMG
signal.

Extend the observation matrix by a factor to obtain 
the extended observation matrix ; 
Subtract the mean from each new extended observation in 
; 

Whiten to obtain ; 
Initialize the separation matrix to empty matrix;
for j=1,…,M do: 
Initialize vectors and randomly or based on the
activity index );
while > Tol or n < 30 do: 

with , where 
is the mathematical expectation;

Orthogonalization: ; 
Normalization: ; 
n←n+1;

end
Add as a column of ; 
Estimate the j-th source ; 
Use peak detection and K-means classification method on

to estimate the and compute the SIL;
if SIL > 0.9 then: 
Store the current iteration number j and the ; 

end
if initialization is based on then: 
Remove the discharge times in from ; 

end
end
Update removing columns that are not equal
to the js stored in step 6;
Remove duplicated stored MUSTs;

The pre-processing procedure is composed of an extension of the observations (EMG
signals) with the removal of themean values andwhitening. The extension is responsible
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to create R delayed versions of each sEMG signal, with delays ranging from 1 to R,

setting up
∼
X with m(R + 1) observation signals. This is commonly done in HD sEMG

decomposition as an attempt to increase the ratio of the number of sEMG signals to the
number of estimatedMUSTs (sources) [7]. The removal of mean values is used to center
the signals at zero as a mean to simplify the computation of ICA. The whitening process
is applied to spatially decorrelate the extended observations, maintaining the original
matrix dimensions [4, 5, 7].

The separation vectors wj;n are responsible for estimating the MU discharge times
from the whitened extended HD sEMG signals, and a suitable initialization of these
vectors provides a fast convergence to the FastICA algorithm. The study by Negro et al.
[7] suggests an initialization approach based on the activity index γ (k) introduced in
[4], as a global indicator of MU discharge activity.

The FastICA is an optimization algorithm that uses the first, g(x), and second, g′(x),
derivatives of a contrast function G(x) that measures the sparsity to find the optimal
separation vector. The convergence criterion is satisfied if the inner product between
two successive estimated vectors (wj;n−1 and wj;n) can differ from one less than a factor
equals to Tol. Also, the maximum number of iterations for FastICA was defined to avoid
an infinite loop. Although the Gram-Schmidt orthogonalization of wj;n tries to reduce
the repeated convergence [5, 7], it is not enough because of the influence of extension
procedure. A method for removing duplicatedMUs is needed at the end of the algorithm
[8].

The peak finding and K-means classification method are applied to the estimated
source to cluster the peaks into two classes. The class with the highest centroid represents
the MU discharge times, and the class with the lowest centroid represents the noise. The
silhouette measure (SIL) is computed using these classified peaks and centroids, and
represents howwell the estimatedMU discharges can be distinguished from the baseline
noise [7]. The SIL was used to classify if an estimated source should be considered
extracted or not.

Another way to mitigate the repeated convergence of FastICA can be based on a
specific part of the method proposed in [4], where the γ (k) becomes null at the time
instants corresponding to the discharge times of the j-th MUST at each iteration. This
method updates the activity index by removing part of the influence of the estimated
MU activity [7].

2.3 Assessing the Performance of the Algorithm

Two parameters and one procedure have been examined, namely the number of decom-
position iterations (M ), the extension factor (R), and the method of initialization of the
separation vector (winit). Table 1 contains the range of values for these parameters and
the initialization approach types. The values chosen for R were based on the number
of observed channels, as proposed in [7], and the values chosen for M were based in
[8]. Moreover, the methods for initialization of separation vectors were defined as: 1)
both, wj;n and wj;n−1, have been initialized with random numbers [5, 8]; 2) wj;n has
been initialized as the column of Z that corresponds to the time instant of the maximum
value of γ (k) [7] and wj;n−1 as the column of Z which corresponds to Rdiv2 samples
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before wj;n, where div is the integer division; and 3) similar to (2) but with the median
of γ (k) used instead of the maximum [4]. All possible combinations between the three
algorithm parameters described above were accomplished providing 27 executions.

Table 1. Algorithm parameters explored in the present study. Number of decomposition iterations
(M ), extension factor (R), and method of initialization of the separation vector (winit).

M R Initialization Method

100; 200; 300 8; 12; 16 random; max
︸︷︷︸

arg

(γ (k)); median
︸ ︷︷ ︸

arg

(γ (k))

As suggested byNegro et al. [7], the Tol parameter was set to 10−4, theG(x) = x3/3,
and the silhouette threshold was 0.90. The rationale for restricting the maximum number
of iterations of FastICA to 30was based on previous decompositions (unpublished) using
the same data, but this value can range from 20 to 80 [8].

The identification and removal of duplicate sources (MUSTs) were semi-automatic.
Initially, the extractedMUSTswere sorted according to the number of spikes in ascending
order. After, the sorted MUSTs were clustered, with each group containing 25% of the
total number of extracted MUSTs. The evaluation of duplicates was carried out using
pairs of MUSTs in the same cluster and a 50% overlap between clusters was considered.
The spikes in both compared clusters was considered. The spikes in both compared
MUSTs were considered the same spike if they occur in an interval of (Rdiv2) × 1 ms.
The MUSTs were considered the same if the ratio of the number of common spikes
(cspikes) to the total number of spikes (nspikes) satisfies cspikes/nspikes ≥ 39;45;53%, for
R = 8;12;16 respectively. These percentages were empirically determined after several
decompositions using the same data. TheMUwith the greatest SILwas chosen as unique
(i.e., not duplicated), but if two MUs with equal SIL were classified as equal, the one
with the smallest CoVISI was chosen at the final step of the algorithm. An expert has
verified the duplicates and was able to confirm or refuse the algorithm result.

The algorithm evaluation was based on some metrics used in [8], such as the decom-
position total time,which corresponds to the execution time duration of the for loop in the
pseudo-code, and the total number of extracted MUs Ntot (with duplicates). All possible
combinations of parameters were analyzed considering, as cost functions, the normal-
ized execution time (Tnorm), the absolute number of unique MUs (Nuni), and the ratio
Nuni : Ntot . The Tnorm computation was based on [8] with Tnorm = texec−min(texec)

max(texec)−min(texec)
,

where texec is the execution time of the parameter combinations.
The best parameter configurations for each cost function was suggested. For Nuni :

Ntot cost function, some MU metrics were analyzed, such as SIL, CoVISI , mean dis-
charge rate (DRmean), skewness (Fisher-Pearson definition) of ISI distribution (SkISI ),
and kurtosis (Fisher’s definition) of ISI distribution (KurtISI ). It was excluded from the
computation of these metrics the MUs which presented ISIs > 250 ms.
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The decomposition algorithm was coded in Python programming language (version
3.10.3). Decomposition and performance analyses were performed on a personal com-
puter with the following specifications: Intel® Core™ i7-8550U processor (64 bits and
from 1.80 to 1.99 GHz), 16 GB RAM, and Windows 10™ Home (version 21H2).

3 Results

Figure 1, panels A to C, shows a direct influence of the number of iterations (M ) and
the normalized execution time (Tnorm), so that increasing the iteration number of the
decomposition algorithm results in a longer execution time irrespective of the extension
factor (R) and the initialization method (winit). Analysing the influence of winit on Tnorm,
we did not notice any impact of this parameter since the execution time did not change
for the different choices of vector initialization (Fig. 1, panels D to F). Conversely, by
increasing the extension factor R the Tnorm increased (Fig. 1, panels G to I). Similar
results were obtained in [8]. The worst scenario (the highest execution time) was for the
maximum initialization approach, R = 16 and M = 300, and the best (i.e., the shortest
execution time) was for the random initialization approach, R = 8, and M = 100.

Fig. 1. Influence of parameters of decomposition algorithm on the normalized execution time
(Tnorm). Maps for all possible combinations of pairs of parameters are shown in colors. Max,
Med, and Rand represent the methods for initialization of the separation vector (winit) based on
the maximum of the activity index, the median of the activity index, and random initialization,
respectively. Combinations for M = 100 (A), 200 (B) and 300 (C); winit = Max (D), Med (E),
and Rand (F); and R = 8 (G), 12 (H) and 16 (I).
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The analysis of the absolute number of unique MUs shows that increasing the iter-
ation number (M ) there was an increased number of unique decomposed MUs (Nuni)
(Fig. 2, panels A to C), as also reported in [8]. In general, a maximum inNuni is achieved
if the initialization method is based on the maximum of the activity index, as compared
to the other methods adopted in the present study (random and median), irrespective of
the other two parameters evaluated here (Fig. 2, panels D to F). The extension factor (R)
influences theNuni depending on the choice ofM andwinit (Fig. 2, panels D to F). For the
maximum initialization method R = 16 provides more unique MUs than R = 8 and 12,
but for the random initialization R = 8 provides more Nuni. Moreover, there were three
occurrences for both, the greatest and the smallest Nuni (26 and 15, respectively). The
choices of the best (the greatest Nuni) and worst case (the smallest Nuni) was maximum
initialization method, R = 16, and M = 200; and random initialization method, M =
200, and R = 16, respectively. The choices were done assuming the execution time as
the second selection criterion.

The Nuni : Ntot ratio decreases (Fig. 3, panels A to C) by increasing the number
of iterations (M ). The method of initialization of the separation vector (winit) and the
extension factor (R) had little influence on the Nuni : Ntot ratio compared to M (Fig. 3,
panels D to I). However, winit presents some dependency on the number of iterations
(Fig. 3, panels D to F). The Nuni : Ntot ratio also represents an implicit proportion

Fig. 2. Influence of parameters of decomposition algorithm on the number of unique decomposed
motor units (Nuni). Maps for all possible combinations of pairs of parameters are shown in colors.
Max, Med, and Rand represent the methods for initialization of the separation vector (winit) based
on the maximum of the activity index, the median of the activity index, and random initialization,
respectively. Combinations for M = 100 (A), 200 (B) and 300 (C); winit = Max (D), Med (E),
and Rand (F); and R = 8 (G), 12 (H) and 16 (I).



456 M. A. S. Castilhos and L. A. Elias

of between the amount of unique MUs to the number of repeated (duplicated) MUs
(Ndup = Ntot − Nuni), and hence if Ndup increases faster than Nuni, the Nuni : Ntot will
decrease for a specific parameter combination. The best parameter combination was for
the maximum initialization method, R = 8, and M = 100, which has extracted 21.28%
unique MUs of Ntot . The worst combination was for the median initialization method,
R = 16, and M = 300, providing 7.04% unique MUs.

For the data used in the present exploratory study, the suggested combination of
parameters ([winit;R;M ]) of the decomposition algorithm based on the FastICA is: 1)
tominimize theTnorm [random; ; 8; 100], 2) tomaximize theNuni , , [maximum; ; 16; 200],
and 3) to maximize the Nuni : Ntot ratio, [maximum; 8; 100]. For this last combination of
parameters, the metrics SIL, CoVISI , DRmean, SkISI and KurtISI of the unique extracted
MUs (ISI < 250 ms) are summarized in Table 2.

Fig. 3. Influence of parameters of decomposition algorithm on the ratio of the number of unique
MUs to the total number of extractedMUs (Nuni : Ntot).Maps for all possible combinations of pairs
of parameters are shown in colors. Max, Med, and Rand represent the methods for initialization
of the separation vector (winit) based on the maximum of the activity index, the median of the
activity index, and random initialization, respectively. Combinations for M = 100 (A), 200 (B)
and 300 (C); winit = Max (D), Med (E), and Rand (F); and R = 8 (G), 12 (H) and 16 (I).

4 Discussion

The results showed that by varying the iteration number (M ) of the decomposition
algorithm, the normalized execution time (Fig. 1) and the number of unique extracted
MUs (Fig. 2) varied in the same direction as observed by [8]. Moreover, by varying M
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Table 2. Metrics from the extracted motor unit spike trains (MUSTs) when the parameters of the
decomposition algorithm was set to [R = 8;M = 100;winit = maximum]. The metrics were:
silhouette (SIL), coefficient of variation of interspike intervals (CoVISI ), mean discharge rate
(DRmean), skewness (SkISI ), and kurtosis (KurtISI ) of the distributions of interspike intervals. For
this set of parameters Nuni = 20 MUs, but seven was excluded from the analysis (ISI > 250 ms).
Measures from single MUs are shown in the rows. Averages and the 95% confidence intervals are
shown at the bottom row.

MU SIL (%) CoVISI (%) DRmean (Hz) SkISI KurtISI

1 95.96 23.52 8.28 2.09 11.77

2 97.41 25.65 9.24 1.50 5.07

3 94.16 23.56 9.38 4.04 27.85

4 94.12 27.58 9.39 1.80 5.80

5 96.33 27.51 10.19 1.54 7.78

6 95.55 20.48 10.65 1.55 9.46

7 95.28 25.14 12.03 1.49 4.80

8 91.82 22.51 12.24 2.59 18.37

9 95.56 19.07 12.40 1.25 5.18

10 95.24 20.65 13.18 1.66 9.40

11 90.60 28.84 13.33 2.51 10.56

12 95.81 18.82 13.82 1.09 4.61

13 94.58 20.25 14.50 1.13 5.07

94.80 ± 1.00 23.35 ± 1.85 11.43 ± 1.10 1.86 ± 0.44 9.67 ± 3.65

the Nuni : Ntot ratio (Fig. 3) changes in the opposite direction. This implies that in our
current data by increasing the value of M , the Ndup increased more than the Nuni.

The extension factor R and the Tnorm presented a direct relationship (Fig. 1) as
observed by [8], but, it had little influence on Nuni : Ntot (Fig. 3), as well as on Nuni

for M = 100 (Fig. 2). However, different from [8], we observed that for the Nuni, the
extension factor is dependent on the other algorithm parameters. Figure 2, panels G to
I, shows that for the maximum initialization approach andM = 200 and 300, in general,
by increasing the extension factor the same occurred to Nuni. Otherwise, considering the
median and random initialization approaches, R = 8 and 12 provide more unique MUs
than R = 16.

The method for the initialization of the separation vector winit caused distinct effects
on the output measures of the decomposition algorithm. By altering this parameter, the
normalized execution time (Fig. 1) was little affected. Conversely, the Nuni (Fig. 2)
changed in the opposite direction tended to reach a maximum considering themaximum
initialization approach. In general thewinit had little influence onNuni : Ntot ratio (Fig. 3),
but considering M = 100 the Nuni : Ntot ratio (Fig. 3, panels D to F) is more affected
than considering the other values of M , resulting in a higher Nuni : Ntot ratio value
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to the maximum initialization approach. This implies that for M = 100, the Ndup is
proportionally lower by choosing the maximum initialization approach than the Ndup by
choosing the other methods. Furthermore, considering the random initialization method
for the separation vectors proposed by [5] as a reference and analyzing the ratio of the
number of unique extracted MUs to the total number of MUs (Fig. 3), it was noticeable
that the maximum [7] and median [4] initialization methods did mitigate the effect of
repeated convergence of FastICA algorithm forM = 100. However, the same result was
not achieved considering the other values of M .

The data for the best parameter combination (maximum initialization method, R= 8,
andM = 100) that maximizes the Nuni : Ntot cost function (Table 2) shows, on average,
that the spikes of the estimated MUSTs are well distinguishable from the baseline noise
with a silhouette score equal to 94.80 ± 1.00, which is compatible with the results
from [7]. The average skewness of the ISI distribution (1.86 ± 0.44) indicates that the
probability distribution of the interspike intervals is asymmetrical, with a right-hand
skew [10]. The kurtosis indicates that the probability distributions of all ISIs are super-
gaussian (values higher than zero), likewise other studies [7]. The mean discharge rate
was ∼12 Hz, as expected for the first dorsal interosseous muscle in a low-intensity
contraction [10, 11]. The ISI CoV were ∼25%, suggesting that the MUs are discharging
near their recruitment thresholds [11].

One should take into consideration that the present studywas conductedusing a single
trial from a single participant in a very specific motor task (seeMethods and [9]). For the
purposes of the present study this was necessary, because we were interested in testing
the changes in the decomposition parameters, and hence including a large dataset would
increase the complexity of our analysis. However, the present study should be expanded
to include a larger dataset to confirm the current interpretations regarding the influences
of M , R, and the initialization method on the HD sEMG decomposition outcomes.
Nonetheless, we do not expect to find a universal parameter set for all sEMG signals.
We consider the experimenters and data analysts should explore the decomposition
parameters to find those that better fit their needs and produce more consistent results
based on physiological constraints.

5 Conclusion

We showed that the parameter choice of the FastICA algorithm would influence the
outcomes of sEMG decomposition into constituent MUSTs. We are aware that a large
dataset is needed to confirm our findings; however, our study suggests that for the first
dorsal interosseousmuscle during an isometric contraction force at 5%MVC, the number
of decomposed MUs may be maximized by setting the initialization of the separation
vector based on themaximumof the activity index.Moreover, a great number ofMUs can
be achieved with minimal increase in the time of execution by preferentially increasing
the extension factor instead of the number of iterations. In addition, by maintaining the
number of iterations equal to 100, not only the execution time is optimized, but also the
ratio of the number of unique MUs to the total number of extracted MUs.
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Abstract. This work aims at presenting a method for heartbeat clas-
sification based on multi-layer perceptron (MLP) and random forest
(RF) techniques applied to the first difference of ECG signals. From
the MIT-BIH Arrhythmia Database, each annotated P-QRS segment
was extracted, low-pass filtered, and the first-order difference was used
as input for the neural networks. The MLP and Random Forest were
used to obtain a model for classifying the heartbeats. The results were
compared with other algorithms existing in the literature, and the model
developed produced good results and noticed improvements when using
the first difference.

Keywords: Heartbeat Classification · Multi Layer Perceptron ·
Random Forest · Signal Processing

1 Introduction

The electrocardiogram (ECG) is being used for the non-invasive assessment of
the bioelectric activity of the heart for more than 100 years. In intensive care
units, it is widely used to continuously monitor the patients, either by the instan-
taneous heart rate or by the automatic detection of life-threatening arrhythmias
[1–5]. The ECG is composed of five wave patterns that repeat beat-to-beat and
represents the cardiac cycle. These waves are named P, Q, R, S, and T (Fig. 1).
Figure 2 presents the distribution of electrodes and clamps for detecting the ECG
signal. Each of these waves has a standard range of amplitude and duration.

Dozens of automatic arrhythmia monitoring algorithms based on ECG are
being proposed in the last fifty years. Although automatic monitors showed to
be helpful to prevent continuous human monitoring and have helped to save
uncountable lives, they are also responsible for preventable noise in ICU, due
to false alarms. Thus, the investigation of more accurate classifiers is still in
progress in a wide number of research groups around the world. To standardize
the classification methods evaluation and inter-algorithm performance compari-
son, an AAMI/ANSI [8] standard was established, which recommends grouping
the MIT-BIH heartbeat classes into five groups: (1) Non-ectopic or Normal beats
(N); (2) Supraventricular ectopic beats (S); (3) Ventricular Ectopic Beats (V);
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Fig. 1. P, Q, R, S and, T waves of an ECG signal. Adapted from [6].

Fig. 2. Distribution of electrodes and clamps for detecting the ECG signal. Adapted
from [7].

(4) Fusion Beats (F); and (5) Unknown Beats (Q). Each group contains one or
more type of heartbeat, as shown in (Table 1).

The first derivative of ECG data is widely used in QRS complex detection
algorithms for improving the signal-to-noise ratio, however, the original data
samples are used for the classification. This study aims to test the applicability
of the first derivative for classification purposes. For this aim, two neural net-
work topologies were employed: Multi-Layer Perceptron (MLP) due to its wide
application in pattern selection and classification and Random Forest (RF) to
verify the benefits of flexibility, reduction of overfitting, and its applicability in
the classification of heartbeats.

2 Materials and Methods

2.1 MIT-BIH Arrhythmia Database

This database [9] is formed by 48 30-min records of ambulatorial ECG from 47
different patients, taken in two leads and digitally stored in 360 samples per sec-
ond. Only the first lead (thoracic modified DII lead) was analyzed. The data files
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Table 1. Principal classes of the MIT-BIH database and AAMI standard classes

AAMI class Symbol MIT-BIH class

N N Normal beat

L Left bundle branch block beat

R Right bundle branch block
beat

e Atrial escape beat

j Nodal (junctional) escape
beat

S A Atrial premature beat

a Aberrated atrial premature
beat

J Nodal (junctional) premature
beat

S Supraventricular premature
beat

V V Premature ventricular con-
traction

E Ventricular escape beat

F F Fusion of ventricular and normal beat

Q p or / Paced beat

f Fusion of paced and normal
beat

U Unclassifiable beat

were organized into four groups (Table 2), for the k-fold cross-validation approach
with k = 4. These files were also grouped as determined by the AAMI Standard
[8], for comparison purposes. The DII derivation was used, representing the tho-
racic bipolar derivation, tantalizing 24 h of ECG registers. Although containing
24 h of ECG data, with more than 107000 heartbeats, the database has a small
number of cases in non-normal classes, requiring the parsimonious use of this
data for classification assessment. Therefore, the use of k-fold cross-validation
was adopted. This approach uses three of four datasets for classification devel-
opment and validation, while the fourth dataset was reserved for independent
testing. Thus, after four different classification training, each one preserving a
different dataset Table 3, the classification performance may be assessed with
the complete database. Each one of the four training datasets was divided into
two sub-sets, where 70% of the data was reserved for training (training dataset)
and 30% for validation (validation dataset), as usually adopted in the literature.
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Table 2. Groups For Train, Test, and Validation

datasets MIT-BIH Patients

dataset 1 100, 101, 102, 109, 116, 122, 124, 200, 201, 220, 221, 228

dataset 2 105, 106, 117, 118, 119, 121, 203, 213, 207, 217, 222, 234

dataset 3 104, 111, 113, 115, 123, 202, 208, 209, 212, 215, 219, 223

dataset 4 103, 107, 108, 112, 114, 205, 210, 214, 230, 231, 232, 233

Table 3. Training and testing datasets for k-fold cross-validation

Training/Validation Testing

Group 1: dataset 2, dataset 3, dataset 4 dataset 1

Group 2: dataset 1, dataset 3, dataset 4 dataset 2

Group 3: dataset 1, dataset 2, dataset 4 dataset 3

Group 4: dataset 1, dataset 2, dataset 3 dataset 4

2.2 ECG Signal Preprocessing

The ECG signals in the MIT-BIH Arrhythmia Database contain the noise of
different frequencies, so the first step in signal preprocessing is filtering the ECG
signals. For this, we designed a two-sample moving average filter. In this way, it
was possible to attenuate the high-frequency noises of the signals. We used the
notes made by two Massachusetts Institute of Technology cardiologists available
in the MIT-BIH Arrhythmia Database, which presented the occurrence of each
beat (represented by the R wave of the QRS complex) and also selected 108
samples around each heartbeat.

The MIH-BIH Arrhythmia Database also presents heartbeats classes with
imbalanced data, which is a problem for the beats classification. The typical clas-
sification algorithms assume that the data are uniformly distributed in the class
and that classes are balanced. When these conditions change, the algorithm’s
performance measurement can be skewed. For this reason, we resampled the
data using a random oversampling approach [10]. In random oversampling, the
minority class samples are increased by random sampling replication of minority
class representatives. Furthermore, the principal component analysis was used
to reduce the data dimensionality of the original database signals after filtering
and selecting samples from the ECG signals.

2.3 ECG Signal Preprocessing

A segment of 110 samples containing the P-wave and the QRS-Complex were
extracted from each annotated heartbeat of the Database, and the first difference
was calculated (Fig. 3). As shown, the first difference attains a prominent wave
in the QRS location, and solve the baseline problem in each ECG signal.
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Fig. 3. Normal ECG and Differentiated Normal ECG. (Author)

After pre-processing, the signal segments were grouped in four different
tables, according to the groups shown in Table 3, one heartbeat per column,
followed by the corresponding class according to Table 1. To ensure the quality
of signals, and reduce noise and artifact effects on signals, it was also applied a
low pass moving average filter to each data segment. After these, the information
of about 300 ms was retained around the R peak, which was represented by 72
samples before the R peak and 37 samples after the R peak. The position of the
R peak was taken from the annotation file of the MIT-BIH database. Due to
the unbalance in the database in the number of beats in each class, which could
affect the classifier training, two different forms of results were verified: one for
the unbalanced database and one for the balanced one. To perform the balanced
database, the data for each beat were up-sampled to 10000 samples in each type.

2.4 Classifiers

Two classifier topologies were tested: MLP and RF. The results of those clas-
sifiers were validated using Accuracy (individual, and macro), Specificity, and
sensibility. In the end, the high accuracy and the best results in the confusion
matrix were used to determine the best classifier. The implemented classifiers,
MLP and RF, followed the above structures: MLP: Randomstate = 1, max iter
= 200, Hiden layer size: 100, Activation: ‘relu’(rectified linear unit function),
Solver = ‘Adam’, Learning rate = constant. RF: max depth = 8, estimators
= 100, Criterion = Gini, Min samples split = 2, Min samples leaf = 1, Max



Heartbeat Classification Using MLP and Random Forest Techniques 465

Table 4. Real Signal VS. Differentiated Signal

features = auto. These hyperparameters were subjectively selected in the search
for better results in the present paper.

3 Results

This section presents the results obtained considering the training and testing
datasets studied in this work. Comparisons between the method developed and
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other methodologies found in the literature that also use the NN’s are performed.
Some measures, such as accuracy, precision, sensitivity, and specificity, are cal-
culated to evaluate the models and are described in Equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

where TP is the true positive, TN is the true negative, FP is the false posi-
tive, and FN is the false negative. Some results for these are shown in Table 4.
As shown, the real signal shapes are widely variable, which could affect the
classifier results. They are also corrupted by the mains noise (50 or 60 Hz), elec-
tromyographic noise from breath muscles, and movement artifacts. As seen in
this figure, there is also a drift in the signal that could be solved easily with the
first difference of the signal. The results for each classifier were conducted in two
forms, first with an unbalanced database and second with a balanced database,
where all beat classes have 10,000 beats, obtained by randomly replication of
beats in the classes with few examples. The results for MLP (Table 5), illus-
trate the effect of data balancing. Although presenting the same accuracy, the
classification with unbalanced samples was not effective to detect the beat class
under-represented (F). The confusion matrix shows the classification results of
the proposed MLP for the five heartbeats classes, exhibiting the quantity of
correct and incorrect predictions (Table 6). The results for RF are presented in
(Table 7) and the confusion matrix in Table 8, shows the classification results of
the proposed RF for the five heartbeats classes, exhibiting the quantity of cor-
rect and incorrect predictions. In this case, the classifier did not detect the class
F with unbalanced data. After balancing data, the overall accuracy reduced, but
all classes were recognized.

4 Discussion

The methodology studied in this article presents satisfactory results, when com-
pared with other in the literature (Table 9), whose algorithms also used methods
of computational intelligence. Both in training/validation and in the test of the
proposed MLP and RF network, the classifiers reach high accuracy values con-
sidering all classes studied. For almost all datasets used in the cross-validation,
precision was higher than 97% in all classes, however, for RF with unbalanced
data a Fusion class was not achieved due to the limited of amount o beats that
present this class, without affecting the classification accuracy. When using RF
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Table 5. Precision, sensitivity, and accuracy for each testing dataset considering AAMI
standard classes. NN: MLP

Unbalanced dataset, Train: 1,2,3; Test: 4

Class Precision (%) Sensitivity (%) Specificity (%)

N 100.00 100.00 97.76

S 97.00 97.00 100.00

V 99.00 98.00 99.42

F 60.00 50.00 98.44

Q 100.00 100.00 99.87

Accuracy (%) 99.00

Balanced dataset, Train: 1,2,4; Test: 3

Class Precision (%) Sensitivity (%) Specificity (%)

N 100.00 100.00 99.99

S 100.00 100.00 100.00

V 97.00 100.00 99.99

F 100.00 95.00 98.67

Q 98.00 100.00 99.97

Accuracy (%) 99.00

Table 6. Confusion matrix of the developed model

MLP with Unbalanced Data

O
u
tp

u
t

cl
a
ss

Class N S V F Q

N 5422 0 0 0 0

S 21 1386 9 0 0

V 0 42 1406 8 0

F 1 1 11 12 3

Q 0 0 0 0 2075

Target class

MLP with Balanced Data

O
u
tp

u
t

cl
a
ss

Class N S V F Q

N 9997 3 0 0 0

S 0 10000 0 0 0

V 0 0 9996 4 0

F 0 0 361 9464 175

Q 0 0 0 12 9988

Target class
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Table 7. Precision, sensitivity, and accuracy for each testing dataset considering AAMI
standard classes. NN: RF

Unbalanced dataset, Train: 1,2,3; Test: 4

Class Precision (%) Sensitivity (%) Specificity (%)

N 98.00 100.00 99.95

S 98.00 93.00 99.05

V 97.00 100.00 99.94

F 00.00 00.00 99.73

Q 100.00 100.00 99.89

Accuracy (%) 88.00

Balanced dataset, Train: 2,3,4; Test: 1

Class Precision (%) Sensitivity (%) Specificity (%)

N 97.00 79.00 94.88

S 98.00 61.00 99.19

V 63.00 99.00 99.58

F 99.00 100.00 100.00

Q 100.00 100.00 100.00

Accuracy (%) 99.00

Table 8. Confusion matrix of the developed model

RF with Unbalanced Data

O
u
tp

u
t

cl
a
ss

Class N S V F Q

N 5420 0 2 0 0

S 86 1312 18 0 0

V 3 2 1451 0 0

F 3 8 17 0 0

Q 0 0 9 0 2066

Target class

RF with Balanced Data

O
u
tp

u
t

cl
a
ss

Class N S V F Q

N 7856 7 2137 0 0

S 256 6089 3587 68 0

V 11 129 9856 4 0

F 0 0 0 10000 0

Q 0 0 0 0 10000

Target class
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with balanced data, this problem was solved, however the precision for S class
decreased, affecting the classification performance. When comparing the MLP
results, all classes were achieved correctly, excepting Fusion class with 60% pre-
cision. In this case, the data balancing allowed obtain the best result. The sen-
sitivity also reached high values, above 97%, excepting for F and S class in RF
classifier. The study reported in this paper is a work in progress, and the results
are the best achieved at the present stage. Various parameters of the algorithm
are to be adjusted prior to the final neural network architectures. In conclusion,
the proposed model stands out compared to other classification algorithms found
in the literature, presenting the best accuracy. The global results of the model
demonstrate the robustness of the developed automatic heartbeats classifier. Fur-
thermore, it is worth noting that the stratified division of the datasets and the
balancing of the database contributed to improving the network performance.

Table 9. Comparison of the proposed method and other algorithms published in the
literature

Paper Class Preprocessing Feature Extract Accuracy (%)

Dalvi et al. [5] N, L, R, PB, With and ANN 96.97/97.41

V, A Without PCA

Rajesh et al. [11] N, S, V, F, Q Mean separation AdaBoost EC 99.1

from noisy ECG,

Moving Average filter

of order five

Sanino & Pietro.[12] DS1, DS2 Denoising, Peak Detection, DNN 99.52

Signal Segmentation

Temporal Feature Extraction

Proposed Method N, S, V, F, Q Moving average filter + MLP / RF 99.0 / 99.0

Resample

5 Conclusions

This paper presented a method for automatic heartbeat classification based on
principal component analysis and a convolutional neural network on ECG sig-
nals. We created a database containing the first ten principal components and
the relative RR intervals of P-QRS complexes from the MIT-BIH Arrhythmia
Database patients, which were used as input to MLP and RF, allowing us to
obtain a classification model for this database. The method proposed showed
overall classification accuracy of 99.00%, on the heartbeats classification in the
AAMI standard classes (N, S, V, F, and Q). The model’s performance proved
very satisfactory, demonstrating the advantages of the proposed method.
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Abstract. The progression of potentially malignant lesions into oral squamous
cell carcinoma (OSCC) is assessed based on the dysplasia grading, inwhich several
cytological and architectural changes drive pathologists to assign a malignization
risk for proper patient management. The present study implemented AlexNet, a
Deep Learning (DL) model based on the binary system for grading oral epithelial
dysplasia (OED), the only prognostic hallmark of oral potentially malignant dis-
orders (OPMD). A TOTAL of 63 digital slides from two institutions were used.
Annotated regions of interest (ROI) were segmented and fragmented into 56,406
smaller patches of 220 × 220 pixels. After data separation into training, valida-
tion, and testing sets (80%, 10%, and 10%), data augmentation was conducted in
training/validation images. After carrying out the test, the trainedAlexNet reached
91.57% accuracy, with 93.55% sensitivity, and 87.57% specificity. F1-score was
0.93857 and AUC was 0.9771. Consequently, showing potential for the proposed
application.

Keywords: Artificial Intelligence · Oral Potentially Malignant Disorders ·
Binary System · Oral Cavity

1 Introduction

Oral squamous cell carcinoma (OSCC) is a disease of great magnitude worldwide with
significant regional variations both in incidence and mortality. The disease has a better
prognosis when diagnosed and treated early, which can be challenging if the patient is
not under surveillance for oral potentially malignant disorders (OPMD).

OPMD can progress within a period of 5 years after the initial diagnosis [1]. The
diagnosis is based on the exclusion of known lesions and further proofed by oral epithelial
dysplasia (OED), one of the most important hallmark of malignization risk in OPMD
[2]. Progression to OSCC can occur in 2.6% to 29.2% of patients depending on the
dysplasia grade, and usually occurs in the dysplastic site [3].
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The World Health Organization [4] acknowledged the binary system for OED grad-
ing initially proposed by Kujan [5] and recommends it despite the high interobserver
disagreement.Attempts to analyze sources of disagreements [6] and reduce interobserver
variability [7] when using the system are frequently under investigation.

The use of digital systems and digital image analysis associatedwith the development
of algorithms for image analysis has motivated the use of Artificial Intelligence (AI) in
the context of histopathological diagnosis. In this particular scenario, Deep Learning
(DL) is employed to aid in the reproducibility of a grading system with a known high
subjectivity.

In previous work,Muthu RamaKrishnan [8] segmented and classified the connective
tissue cell population associated with oral submucosal fibrosis (OSF) using multi-level
thresholding and support vector machine (SVM) as a classifier and reached an accuracy
of 88.69%. In sequence, the authors used Higher Order Spectra, Local Binary Pattern,
and Laws Texture Energy as feature descriptors and tested five classifiers (Decision
Tree, Sugeno Fuzzy, Gaussian Mixture Model, K-Nearest Neighbor, Radial Basis Prob-
abilistic Neural Network) to verify which combination of techniques would culminate
into the best performance to classify OSF between dysplastic and non-dysplastic. The
combination of Higher Order Spectra + Fuzzy achieved an accuracy of 95.7%.

Specifically, the use of previous and classical machine learning methods requires
coherent and tuned feature extraction stages which can be affected by user, technical, or
clinical variations. In this way, the use of convolutional neural networks (CNN) is shown
as an automation alternative since the different convolutional kernels are responsible for
the extraction of attributes. An important recent study used CNNs to grade dysplasia
between mild, moderate and severe were published [9]. However, it was only applied
to samples of small animals; additionally, in our knowledge, only segmentation [10–
12] and classification [13–15] approaches through classical models have been applied
in OPMD cases. Therefore, due to the gap involving binary grading of OPMD using
deep learning algorithms such as CNN, the purpose of this work is to implement, train
and evaluate a DL model for OPMD grading in a realistic pathological context. During
the design of this work, the TRIPOD guidelines were used aiming at good practices in
diagnostic modeling research, and can thus be classified as type 2b [16, 17].

2 Methods

2.1 Clinical Dataset

For CNN training, datasets from two institutions were used (Table 1), comprising a
total of 63 H&E-stained glass slides of OPMD with personal and institutional vari-
ations (Fig. 1A). This study is in accordance with the Declaration of Helsinki and
approved by the Piracicaba Dental Ethical Committee, Registration number CAAE:
42235421.9.0000.5418. Glass slides were scanned using the Aperio Digital Pathology
System (Leica Biosystems, Wetzlar, Germany) with a spatial sampling of 0.47µm per
pixel, with automated focusing and magnification at ×20.
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Table 1. Contribution of institution for build dataset.

Institution Patients (n) WSI (n) Areas LR
(n)

Areas HR
(n)

Patches LR
(n)

Patches HR
(n)

Piracicaba
Dental
School
(Piracicaba,
Brazil)

39 48 100 174 12 344 28 636

Federal
University of
Minas Gerais
(Belo
Horizonte,
Brazil)

8 15 36 57 5 814 9 612

The slideswere classifiedbasedon thebinary system forOEDgrading [4, 5] due to the
system’s prognostic significance and specific cytological and architectural changes. Four
architectural and five cytological changes were considered as cut-offs for malignization
risk and a consensus diagnosis was made when disagreements occurred. The number
of architectural and cytological changes may widely vary along the epithelium causing
some biopsies to have annotations of both high risk (HR) and low risk (LR) of malignant
progression.

2.2 Pre-processing and Data Augmentation

First step of pre-processing is the proper delimitation of representative regions of inter-
est (ROI), which were manually annotated for representative areas of HR and LR by
experienced pathologists (Fig. 1A). The annotated ROI were segmented (Fig. 1B) and
fragmented into small patches (220 × 220 pixels) (Fig. 1C). After this initial step, an
eyeball screeningwas conducted by the biomedical engineer (VMDS) to remove patches
with non-representative features (e.g., black squares and smaller sized patches). Patches
with proper size and any small amount of tissue were maintained, resulting in a dataset
with a total of 56,406 patches (Table 1) (Fig. 1D), which were resized (227× 227 pixels)
to fit the input layer of the DL architecture (Fig. 1E). Data sampling was conducted to
randomly divide number of patches into training, validation and testing sets with 80%,
10% and 10%, respectively (Fig. 1F). To increase the robustness of the model and min-
imize overfitting, the images of the training set were submitted to data augmentation
(rotation, mirroring, horizontal and vertical flipping, zoomming) (Fig. 1F).
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Fig. 1. Methodology
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2.3 Architecture and Implementation

AlexNet [18] was implemented and trained for the classification task. The CNN architec-
ture has a sequential arrangement of five convolutional layers and three fully connected
layers (Fig. 2). Dropout and batch normalization layers were added to the network’
structure after the activation layers. The activation function chosen was ReLu, with the
exception of the last layer FC where softmax was used. The Adam optimizer was cho-
sen to carry out the training, with an initial learning rate lr = 0.001. The algorithm was
implemented using Python 3.6 and several open-source libraries specific to machine
learning and image processing (TensorFlow, Keras, Scikit-Learn, and OpenCV). The
training and validation were carried out for 75 epochs.

CNN training was conducted using an Intel CORE i7 3.50 GHz computer processor
with 16 GB RAM and 1TB Hard Disk, available at the Signal and Image Processing
Laboratory at the Institute of Science and Technology, Federal University of São Paulo
(ICT-Unifesp). After training/validation conclusion, the test was carried out over the
CNN with corresponding data (high risk = 3,821 and low risk = 1,819 patches).

Fig. 2. AlexNet convolutional neural network architecture.

3 Results

AlexNet training performed in 75 epochs resulted in a model that reached a validation
accuracy of 90.32%. The accuracy and loss curves obtained during CNN training are
shown in Fig. 3, showing a close behavior between the training and validation accuracy
curves. As it can be seen, there is a slight instability in the validation loss. Although
there is not a great divergence between the training and validation loss, the irregularities
indicate a need for better hyperparameter adjustments and/or a dataset with a greater
variety of features.

By performing the test, the corresponding confusionmatrix (Fig. 4). ConsideringHR
as True Positive (TP), and LR as True Negative (TN), we obtained the corresponding
ratio of TP(%) = 94.16%, TN(%) = 86.37%, FP(%) = 13.63%, FN(%) = 5.83%.
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Fig. 3. Accuracy and loss curves from training and validation.

Additionally, different metrics were computed through the confusionmatrix; resulting in
a overall accuracy of 91.57%. The correspondent sensitivity and specificity parameters
of the classification achieved 93.55% and 87.57%, respectively. The F1-score metric
achieved a magnitude as high as 0.93857. The ROC curve, shown in Fig. 5, shows a
great differentiation behavior in the classification task evidenced by an AUC of 0.9771.
The model presented satisfactory outcomes; additionally, the higher TP demonstrates
the potential of the model to precisely catch the relevant class.

Fig. 4. Confusion matrix obtained by the test dataset.
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Authors reassessed all 471 misclassified patches to identify possible reasons for
misclassifications; as a result, some patterns were noted: a few reminiscent small-sized
images (not excluded in the screening prior to training), images with keratinization, and
patches with a great amount of black background. Images with artifacts, black gaps in
the middle of the cropped image were also seen.

Fig. 5. Receiver operating characteristic curve.

4 Discussion

The accurate assessment of OED grading allows pathologists to provide targeted infor-
mation on the progression of OPMD, which aids the clinicians to manage and choose
proper interventions according to a low or high malignization risk. Unfortunately, cyto-
logical and architectural criteria on OED grading are subjective leading to high rates
of interobserver disagreement when addressing the binary system. Speight8 reported
that in a group of four observers the level of interobserver agreement can vary from
62% to 79.6%, while in a more recent study, authors indicated an interobserver agree-
ment between 70% and 90%19. Therefore, attempts to provide a support system for
pathologists’ decisions when grading OED should overcome these values. The accu-
racy achieved during test assessment by the proposed DL-based architecture is 91.57%,
which represents a superior ability to classify OED when compared to the divergence
between pathologists.

The present dataset, even with a sufficiently large number of samples, has an imbal-
ance between HR and LR images. This imbalance is not an outlier in clinical practice
since the patient remains in close follow-up and biopsy is only performed when the
lesion displays significant clinical changes, therefore, also presenting more dysplastic
changes corresponding to lesions with higher malignization risk.
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Patches with keratinization layers were very frequent within errors, which can be
explained by the presence of this characteristic in both classes since themajority of leuko-
plakias presents hyperkeratosis. The existence of an intersection between the attributes
that characterize each class may explain the almost equally distribution of FP and FN.

Additionally, patches with a very large area of black background were also common
in both classes due to the characteristic drop-shaped rete ridges. The exclusion of images
with this feature prior to training is not ideal (even inviable) due to the importance in
analyzing the basal layer cells. In the present study, attempts were made to avoid major
artifacts to be included in ROI annotation. The annotations of the LR and HR region’s
limits are not precise and may include transitional areas.

Considering the lack of studies in the literature that seek to apply a similar method
for OED grading using the binary classification system with AI, this study represents
a major innovation in the area, and the accuracy of 91.57% using AlexNet architecture
enlight great possibilities for future projects.

5 Conclusions

We proposed the use of AlexNet as DL-based system for dysplasia grading in OPMD.
The use of DL models aims to eliminate inter-pathologist variability in the analysis of
OED, a known pitfall. The accuracy of 91.57% achieved by the architecture represents
a superior performance compared with the interobserver agreement. We also aim to
approach the ability of CNN to differentiate high and low malignization risk lesions
in clinical images from OPMD with annotations based on the outcome and on the
histopathological correspondent classification.
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histopathology analysis: an AI-based system for multiclass grading of oral squamous cell
carcinoma and segmenting of epithelial and stromal tissue. Cancers (Basel) 13(8), 1784
(2021). https://doi.org/10.3390/cancers13081784

13. Krishnan, M.M.R., Acharya, U.R., Chakraborty, C., Ray, A.K.: Automated diagnosis of oral
cancer using higher order spectra features and local binary pattern: a comparative study.
Technol. Cancer Res. Treat. 10(5), 443–455 (2011). https://doi.org/10.7785/tcrt.2012.500221

14. Krishnan, M.M.R., Venkatraghavan, V., Acharya, U.R., Pal, M., Paul, R.R., Min, L.C.,
et al.: Automated oral cancer identification using histopathological images: a hybrid fea-
ture extraction paradigm. Micron 43(2–3):352–364 (2012). https://doi.org/10.1016/j.micron.
2011.09.016

15. Krishnan, M.M.R., Shah, P., Chakraborty, C., Ray, A.K.: Statistical analysis of textural
features for improved classification of oral histopathological images. J. Med. Syst. 36(2),
865–881 (2012). https://doi.org/10.1007/s10916-010-9550-8

16. Moons,K.G.M., et al.: Transparent reportingof amultivariable predictionmodel for individual
prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann. Intern. Med. 162(1),
W1–73 (2015). https://doi.org/10.7326/M14-0698

https://doi.org/10.1016/j.bjoms.2021.02.019
https://doi.org/10.1016/j.humpath.2017.05.014
https://doi.org/10.1016/j.oraloncology.2005.12.014
https://doi.org/10.1016/j.oraloncology.2006.03.009
https://doi.org/10.1016/j.oooo.2015.05.023
https://doi.org/10.1016/j.compbiomed.2009.09.004
https://repositorio.ufu.br/handle/123456789/34391
https://doi.org/10.1016/j.micron.2011.03.003
https://doi.org/10.1007/978-3-030-00949-6_19
https://doi.org/10.3390/cancers13081784
https://doi.org/10.7785/tcrt.2012.500221
https://doi.org/10.1016/j.micron.2011.09.016
https://doi.org/10.1007/s10916-010-9550-8
https://doi.org/10.7326/M14-0698


480 V. M. Silva et al.

17. Collins, G.S., Dhiman, P., Navarro, C.L.A., et al.: Protocol for development of a reporting
guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic
prediction model studies based on artificial intelligence. BMJ Open. 11(7), e048008 (2021).
https://doi.org/10.1136/bmjopen-2020-048008

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–
1105 (2012)

https://doi.org/10.1136/bmjopen-2020-048008


EEG Synchronization and Desynchronization
Associated with Non-painful Thermal Stimuli

D. C. Santos-Cuevas1(B) , D. D. Collina2 , and C. J. Tierra-Criollo1

1 Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, Brazil
dianasantosc@peb.ufrj.br

2 Federal Center for Technological Education of Minas Gerais,
Belo Horizonte, Minas Gerais 30510-000, Brazil

Abstract. Brain processes associated with non-painful thermal stimulation in the
human brain have been little studied. The electroencephalography (EEG) signal
can be used to evaluate objectively the functionality of small fibers (Aδ and C)
related to thermal stimulation. In the literature there is no agreement on the EEG
signal modulation related to non-painful thermal stimulus. The aim of this work
was to investigate the behavior of different brain rhythms of EEG signal during
non-painful thermalwarming and cooling stimuli. EEGsignalswere acquired from
14 subjects (men). The stimuluswas applied to the right forearmbymeans of a ther-
mode (Peltier), during a period ofwarming (32 °C→ 40 °C) and cooling (32 °C→
24 °C). Event-related synchronization and desynchronization (ERS/ERD) showed
a significant difference (p< 0.05), betweenwarming and cooling, in the delta, theta
and alpha bands, mainly in the ipsilateral temporal region. This finding suggests
that non-painful warm and non-painful cold stimuli modulate the EEG signals
differently.

Keywords: Brain oscillations · non-painful thermic stimulation · EEG

1 Introduction

Small-diameter peripheral neuropathies can occur by injury on myelinated (Aδ) and
unmyelinated (C) thin fibers [1–3]. These types of fibers are related to pain and temper-
ature sensations (warm and cold), and may evoke non-painful or painful sensations in
humans, depending on the variation in the intensity of the stimulus applied. The stimuli
are classified as: i) non-painful thermal stimuluswithin thewarm range of [30 °C – 45 °C]
and for cold in the range [17 °C – 35 °C]; (ii) painful thermal stimuli have temperatures
above 45 °C and below 5 °C for warming and cooling, respectively [4, 5].

Loss of thermal sensitivity can happen in peripheral neuropathies caused, for
example, by diabetes [6] and Hansen’s disease [7].

Diagnosing techniques for thermal sensitivity can be: (i) subjective, thus dependent
on the individual’s response to thermal stimuli (commonly used in clinical assessment),
called psychophysical assessment, where a relationship is established between the inten-
sity of the stimulus and the individual’s perception, e.g. tests that use test tubes filledwith
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warm or cold water and thermal sensitivity quantification tests (QST-T) [8]; (ii) objec-
tive techniques that do not depend on the individual’s response, e.g. functional magnetic
resonance imaging fRMI [9–13], positron emission tomography PET [14, 15], based
on electroencephalography (laser transient evoked potential [16], CHEPs and thermode
steady-state response [17, 18]). Objective techniques can be used with individuals with
cognitive limitations.

Steady-state studies based on EEG signals have focused on analyzing the behavior
of brain rhythms. Changes in the power of these brain rhythms related to a thermal
stimulus (event) have been identified by a decrease in oscillatory activity (event-related
desynchronization - ERD) or by an increase in oscillatory activity (event-related syn-
chronization - ERS). Themost common thermal stimulation procedures are: stimulation,
warm and cold water [19, 20], contact thermode [17, 18] and laser [16].

Studies with EEG signals related to painful stimuli, warm and cold, have been much
more frequent than with non-painful stimuli. The first study with non-painful thermal
warm and cold stimulation was recently reported [19]. The authors stimulated the sub-
jects’ left hand in (warm/cold) water and, found different EEG power spectra for both
thermal stimuli as compared to baseline. They also found a decrease in power in the
delta and alpha bands for both stimuli. In addition, the authors reported a decrease in
theta activity in the contralateral area only for cold.

In another study [20] with EEG signals, two types of stimuli were used (water and
metal thermostat) with different non-painful warm temperatures. The results showed that
the neural responses in the different EEG bands were sensitive to the type of stimulus.
In both stimuli, an increase in the alpha band in all regions of the cortex. An inverse
behavior of power was observed in the theta band, which increased with the thermostat
and a decreased with water. In addition, the power of the beta band increased only for
water-based stimulation, in the bilateral frontal and right temporal regions.

In the study [17], the authors performed non-painful cold thermal stimuli, in the left
hand with a thermode in a temperature range of [35 °C to 30 °C]. An increase in power
was found in the delta, theta and gamma bands and a decrease in power in the alpha and
beta bands. In the study [18] the authors performed thermal stimulation with laser and
thermode, stimulating the subjects’ right forehead with a temperature range of 33 °C to
41 °C. The results showed a decrease in the power in the alpha and beta bands to the
thermode stimulus, while with the laser the changes were inverse.

In the work [21] they reported that they used personalized thermal stimulators. Stim-
ulations were performed with five different temperatures on the right hand: painful cold
(15 °C); painful warm (45 °C); non-painful cold (25 °C); non-painful warm (40 °C) and;
baseline (33 °C). Painful thermal stimuli were found to provoke a greater decrease in
alpha power compared to non-painful stimuli.

Information on brain processing of non-painful thermal stimuli is still under discus-
sion, with little consensus on the behavior of the corresponding brain rhythms in EEG
signals, requiring further investigation.

The aim of the present study was to investigate the behavior of brain rhythms on
the EEG during non-painful thermal warm and cold stimulation applied by means of
thermode (Peltier).
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2 Materials and Methods

2.1 Subjects

EEG data were recorded from 14 healthy subjects, aged 21–50 years old (32.3 ±
11.4 years), all male, right-handed, and none of them had a history of neurologi-
cal disorder, or any drug use that affects nervous system function. This experiment
was approved by the Ethics Committee of the Federal University of Minas Gerais
(CAAE-0450.0.203.000–11). In accordance with the Declaration of Helsinki, consent
was obtained from all subjects before they entered this study.

2.2 Thermal Stimulation

All stimuli considered in this study were generated by a thermal stimulator (Biostimu-
lator – UFMG, [22]), whose main function is temperature control by means of a thermal
stimulating probe (thermode) based on a Peltier module with a flat stimulation surface
of 30 mm x 30 mm, the temperature range is from 0 ºC to 50 ºC, with a resolution of
0.1ºC and the temperature variation rate up to 5 ºC/s (in the present study, 1 ºC/s was
used).

2.3 Design Experiment

The study design consisted of the following consecutive steps: (i) preparation - All
subjects were positioned in an armchair, with the right upper limb resting on the arm
support of the armchair. The thermode was positioned in the proximal third of the inner
region of the right forearm (see Fig. 1a). The subject was instructed to remain relaxed,
with eyes open and with the gaze fixed on a point marked on the wall in front of him and
asked to move as little as possible during the data collection. The experiments took place
in a controlled environment, with a temperature stabilized at 25 °C; (ii) spontaneous EEG
signal acquisition for 3minwithout thermal stimulation; (iii) determination of thresholds
of perception to warm (LPC) and to cold (LPF) - the sensitivity to warm and cold was
evaluated, each individual being instructed to press a button as soon as he perceived the
warming and the cooling starting at a baseline of 32 °C and not exceeding the limits
of 40 °C for warming and 24 °C for cooling; and (iv) Recording of the EEG signal
during thermal stimulation: during five 15 min blocks of stimulation (see Fig. 1b) - with
approximately 28 epochs (see Fig. 1c) each block; and 3 min at baseline between blocks.

Each epoch consisted of 6 stimulation stretches (Tr) with a duration of approximately
5 s eachTr1 ismoderatewarming, in the range of (32 °C→ 40 °C); Tr2 cooling (40 °C→
32 °C); Tr3 baseline (32 °C); Tr4 is moderate cooling, in the range of (32 °C → 24 °C);
Tr5 warming (24 °C → 32 °C); Tr6 baseline. A total of 124 epochs (approximately 1 h
and 40 min of examination).
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Fig. 1. Experiment Design a) Stimulation setup. The thermode was place at the in the proximal
third of the inner region on the subject’s right forearm b) stimulation blocks with approximately
15 s and 28 epochs each; c) representation epoch with 6 stimulation stretches with a duration of
approximately 5 s each

2.4 Acquisition of EEG Signals

The EEG signals were recorded by the BrainNet BNT–36 equipment (EMSA – Rio de
Janeiro), with a high pass filter of 0.1Hz and a low pass of 100 Hz, a sampling frequency
of 600 Hz and a notch filter of 60Hz. The EEG electrodes were located according
to the international 10–20 system using silver/silver chloride electrodes positioned in
a cap. Contact with the scalp and electrode was performed with an electrolytic gel.
The reference was binaural and the ground electrode was placed on the forehead. Eye
movements and eye blinks were recorded using two additional surface electrodes placed
one above and one below the right eye. The impedance was kept at less than 10 k�. The
thermal stimulation instants were synchronized with the EEG recording throughout the
collection.

2.5 EEG Signal Processing

All EEG processing steps were performed using the MATLAB (MathWorks, Natick,
MA, USA). EEG signals were subsampled at 300 Hz. The signals were then passband
filtered from 1 to 45 Hz using a 4th order bidirectional (zero phase) Butterworth filter.

The EEG signal epochs underwent artifact rejection, using the technique of rejection
of 3 times the standard deviation with the following algorithm (a) Compute the standard
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deviation σ of a section of the signal that, visually inspected, is considered non-artifact;
(b) Exclude epochs in which more than 5% of the continuous samples, or a total of more
than 10% of the samples exceeded the threshold of±3 σ [23]. After artifact rejection, 80
epochs were considered artifact-free for all electrodes. Subsequently, the Butterworth
filter (explained above) was applied in the following frequency ranges: delta (1–4 Hz);
theta (4–8 Hz); alpha (8–13 Hz); beta (13–30 Hz) and gamma (30–45 Hz).

2.6 Synchronization and Desynchronization Analysis (ERS/ERD)

Event-related synchronization and desynchronization (ERS/ERD) analysis provides a
measure of relative power in a frequency band (relative to a reference). A decrease
in signal power is defined as desynchronization (ERD) [24]. The opposite is called
event-related synchronization (ERS) [24]. First, bandpass filtering must be performed
depending on the band of interest.

The ERS/ERD is defined as:

Pj,f = 1

L − 1

L∑

i=1

(
xij,f − xj,f

)2 (1)

Rf = 1

k

r0+k∑

j=r0

Pj,f (2)

ERS/ERDj,f = Pj,f − Rf

Rf
× 100% (3)

where L is the total number of epochs; xij,f is the sample j of the epoch i of the signal
already filtered in the band of interest f ; xj,f is the average value of sample j from all
epochs in the band of interest f ; Rf is the average power in the reference window (base
value), which goes from sample r0 to sample ro + k; ERS/ERDj,f is expressed as a
percentage value.

2.7 Interval of EEG Signal of Interest

The ERS/ERD analysis was performed on: (i) warm interval that corresponds to higher
temperatures than LPC (see Fig. 2a) with a reference window of 1 s (black box) before
starting the stimulus; (ii) Cold interval that corresponds to temperatures below the LPF
(see Fig. 2b) with a reference window of 1 s (black box) before starting the cold stimulus.

Once theERS/ERDvalueswere obtained for each subject, the general average (Grand
Average) of the subjects was performed. Topographic maps were constructed with the
average ERS/ERD for each interval.
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Fig. 2. Interval of EEG signal of interest a) Warm interval corresponds to higher temperatures
than LPC; b) Cold interval corresponds to temperatures below the LPF a) Warm Segment; b) Cold
Segment

2.8 Statistical Analysis

The ERS/ERD values for the warm and cold intervals, for each brain rhythm, were
statistically compared (n = 14 subjects) using the paired Wilcoxon test (α = 5%), whit
the null hypothesis of no difference in the ERS/ERD between the non-painful warm and
cold intervals.

3 Results

The average thermal perception threshold (10 repetitions) for each subject was
approximately 36 °C for warm and 30 °C for cold.

Figure 3. Shows the topographic maps of the ERS/ERD grand average of the 14
subjects (see Fig. 3).

In the delta band desynchronization (ERD) was observed in almost all leads (except
Cz, Pz and O2 which showed ERS) for the warm interval in relation to the baseline
(32ºC). In the cold interval there was synchronization (ERS) in most leads (except in
C3, Cz, C4 and P4 which showed ERD).

Significant difference between the warm and cold intervals (p < 0.05) was found
only in leads F3 (p = 0.0295) frontal contralateral to the stimulus and T6 (p = 0.0494)
temporal ipsilateral to the stimulus.

In the theta band, a global ERD was observed in all leads for the warm interval,
while in the cold interval ERS was observed in almost all leads (except in C3, Cz, C4,
P3 and Pz and O2, which presented ERS). No significant difference was found.

In the alpha band, an ERD was identified in all leads for the warm interval, while
for the cold interval there was an ERS in almost all leads (except F3, Fz, F4, F8 and C3
which showed an ERD). A significant difference between the warm and cold intervals
was found in leads P4(p = 0.0295) and T6(p = 0.0085) ipsilateral to the stimulus.
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Fig. 3. Topographic Maps (group-average) ERS/ERD during baseline, warm and cold in delta,
beta, alpha, beta and gamma frequency bands

The beta band showed an ERD for all leads in the warm interval. In the cold interval
an ERS was observed in almost all electrodes (except F7, F8, T4, Pz and T6 which
exhibited an ERS). A significant difference between the warm and cold intervals was
found in lead T6 (p = 0.0107);
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Finally, in the gamma band, an ERDwas observed in all leads, for thewarm t interval.
While for the cold interval it showed an ERS in leads F7, F8, T3, T4, P3, P4 and T6 and
an ERD in leads F3, Fz, F4, C3, Cz, C4, T5, P6, O1 and O2. No statistical difference
was found.

4 Discussion

This study analyzed the behavior of brain rhythms in the EEGduring non-painful thermal
stimulation of warm and cold, applied with a Peltier thermode.

In the non-painful warm interval, all bands (delta, theta, beta, alpha and gamma)
showed ERD as compared to the 32 °C baseline. Similar results were found in other
study [19] with non-painful thermal warm stimulation with immersion of the left hand in
a container with water at temperatures between 40 °C–43ºC, but they did not analyze the
gamma band. Baselinewas obtainedwith EEG signal recorded at an average temperature
between the warm and cold stimulus (12 °C–15ºC). An opposite result was found in
[20] showing an increase in power (ERS) in the bands: alpha (in all leads); and in beta
(contralateral). The authors used two reference baselines of 25 °C and 32 °C. In addition,
stimulation was performed with water and thermostat.

The non-painful cold stimuli in the present study elicited an ERS in the delta, theta,
beta and gamma bands, while an ERD was observed in the alpha band (in the frontal
region and in the contralateral central region). Similar results in delta, alpha and gamma
bands were reported in [17]; in theta and beta bands the findings were the opposite, i.e.,
an ERD.

When statistically comparing the ERS/ERD, between the intervals of warm and
cold, no significant difference was found in any of the bands in another work [19]. In the
present study, a significant difference (p < 0.05) was found between the warm and cold
intervals, in the delta (F3, T6), alpha (P4 and T6), and beta (T6) bands. Note that the
ipsilateral temporal region (T6) is in all these bands. It is important to mention that the
temporal lobe is a region related to memory management, sensory recognition, attention
[25], and homeostatic emotions (temperature, itching and pain) [26].

Each of the temporal lobes border the insula and the limbic system (composed of
the anterior cingulate cortex -ACC, tonsils, hypothalamus, among others). Studies with
fMRI [9–13] and PET [14, 15] have shown that non-painful thermal stimulation mainly
activates the anterior cingulate cortex (aACC), insula and thalamus. One study [13]
showed that most cold-related activations were in the posterior insula, and warm-related
insular activations were found in the anterior insula.

In the present study, the significant difference found in the ipsilateral parietal lobe
between non-painful warm and cold suggests that this region may reflect a different
modulation of the EEG signal for both stimuli. However, further studies should be
performed to gather more evidence on this result.

5 Conclusion

In this study, a different modulation in the EEG signal was observed due to non-painful
thermal stimuli of cold and warm, using ERS/ERD, mainly in the ipsilateral tempo-
ral region. In the literature, there is little consensus on the behavior of different brain
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rhythms to non-painful thermal stimuli. The lack of consistent responses may in part
be a consequence of the different methods used in the application of thermal stimuli,
which do not allow a sufficiently uniform experimental control. Further investigations
would be needed to understand the connections between different brain regions related to
non-painful thermal stimuli of warm and cold. To this end, other EEG signal processing
techniques, in addition to power, can be explored, such as, for example, techniques to
assess the flow of cerebral information and entropy.
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Abstract. The optical coherence tomography (OCT) allows the imaging of soft
and hard tissues at real timewith high resolution. Although studies that useOCT to
evaluate marginal defects of dental restorations are reported, there are no studies
that evaluate the microstructural defects of bulk-fill composite resins. Here, it
is proposed a methodology for qualitative and quantitative analysis of bulk fill
composite resins restorations using OCT. Thirty human molar teeth with class II
cavities were randomly assigned to 6 experimental groups to be restored with six
different bulk-fill composite resins. All restorations were scanned with an OCT
system (930 nm) and images were analyzed using the ImageJ software. It was
measured the marginal gaps, and the presence of bubbles, filler accumulations
and cracks. The qualitative analysis also evaluated the presence of steps, material
excess and defects resulting from the finishing and polishing of the restorations.
Data were statistically analyzed (ANOVA, p < 0.05). Gaps were found in most of
the restorations performed, and some significant differences between the different
resins were found, considering the size of the gaps detected. The Surefil SDR resin
showed the highest number of internal bubbles and defects, while the X-tra Base
resin showed no bubbles or structural defects. Detection of polishing errors, excess
ofmaterial and cracks were also possible with the use of OCT. It was demonstrated
the feasibility of this technique in quality assessment and monitoring of clinical
performance of class II restorations performed with bulk-fill composite resins,
which can predict the longevity of this treatment.

Keywords: Optical coherence tomography · Enamel · Composite resin

1 Introduction

Optical coherence tomography (OCT) is a diagnostic technique that allows obtaining
high-resolution cross-sectional images in in vitro, ex vivo and in vivo analyses, in real
time. Currently, OCT is widely used in ophthalmology, and can be considered a gold
standard exam routine for diagnosing diseases that affect the retina, such as glaucoma
or macular degeneration [1]. Typically, an OCT image reaches a depth of about 2 mm
in scattering tissues such as skin, and up to 2 cm in tissues that are transparent to the
near-infrared wavelengths, such as the human eye [2].
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Recently, OCT has been used for several purposes, expanding its application in areas
such as dermatology, dentistry, and cardiology. New techniques aim to reduce the time
to perform the scans or even extract other information from the backscattered profile,
such as the functionality of the tissue detected by the polarization of the light reflected
by the tissue. Several light sources and combinations with mirrors are also being tested
to increase the resolution and image quality of the technique [3].

The advances in the technology of OCTs are remarkable. In mid-2009 the common
spatial resolution of the technique was around 20 µm. The literature has shown that
the spatial resolution along the axial axis (depth) can reach 7.7 µm or even 4.5 µm
depending on the tissue composition [4]. Today, with the implementation of the OCT
technique in the frequency domain, it is possible to obtain resolution of 3 µm [5].

In dentistry, OCT is a method for the early diagnosis of caries, periodontal disease,
and oral cancer [6]. Due to its excellent spatial resolution, OCT is ahead of interproximal
radiography for detecting pathologies in the early stages [7]. Furthermore, the possibility
of 3D image reconstruction overcomes another limitation of dental radiography. Studies
have also shown that the use of OCT for detecting microfractures and rupture lines is
reliable and even more efficient than techniques such as transillumination, proving to
be efficient in the detection of pathologies such as cracked tooth syndrome [8]. OCT
can also be an efficient tool in the detection of marginal failures of dental restorations,
especially compo-site resin restorations located on the proximal (mesial and distal)
surfaces of the teeth, as well as in monitoring the wear of these restorations. It is also
an advantage considering the limited resolution of the interproximal radiographs or the
absence of direct visualization through conventional clinical examination (performed
with an exploratory probe and clinical mirror). However, there are still no studies that
assess the adaptation and marginal sealing of bulk-fill composite resins (that have low
shrinkage stress) through OCT, which motivated the present study.

In this way, this study aimed to evaluate the marginal integrity and quantify the
defects in bulk-fill composite resin restorations performed in human molar teeth by
OCT technique.

2 Materials and Methods

2.1 Experimental Design

A randomized in vitro study was carried out with 30 human molar teeth with OM
(occlusal-mesial) or OD (occlusal-distal) cavities, which were randomly distributed into
6 different experimental groups of 5 samples each, to be restoredwith 6 types of compos-
ite resin. Afterwards, both restorations of each tooth were evaluated by OCT, in which 8
scans were performed on each restoration, four in the bucco-lingual direction and four in
the cervico-occlusal direction. The images were evaluated using ImageJ software, and
the dimensions of the marginal gaps (tooth-restoration interface) on the buccal, lingual
and cervical walls of the restorations, as well as the presence of irregularities and bub-
bles, were quantified. Statistical analysis was performed using Analysis of Variance and
Tukey’s test, considering the significance level of 5%. Statistical analysis was performed
considering the restorations as an experimental unit, the type of composite resin as a
variation factor and the distance, in micrometers, as the response variable.
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2.2 Samples Preparation

Thirty intact human third molar teeth were provided by the Biobank of Human Teeth
of the School of Dentistry of University of Sao Paulo. This work was carried out in
ac-cordance with the approval of the Research Ethics Council (CEP) of the Federal
University of ABC, under the number CAAE 49461415.1.0000.5594.

After cleaning and removing organic material, two 3x3x1mm cavities (OM andOD)
were made in each of the teeth using high-speed diamond drills. The samples were then
randomly distributed into six experimental groups with 5 teeth each, where each group
was restored with a different composite resin, as shown in Table 1.

Table 1. Characteristics and composition of the composite resins used in this study.

Composite resin Type Matrix Dispersed phase

SonicFill (Kerr) nanohybrid Bis-GMA, TEGDMA,
EBPADMA

SiO2, glasses and
oxides. 83.5% by
weight, 67% by
volume

Surefil SDR
(Dentsply)

Low viscosity for
basis

Modified UDMA,
EBPADMA, TEGDMA

Ba-Al-F-B-Si glass,
St-Al-F-Si glass. 68%
by weight, 44% by
volume

Tetric EvoCeram
(Ivoclar Vivadent)

nanohybrid Bis-GMA, UDMA,
EBPADMA

Ba-Al-Si glass,
prepolymerized
particles, spherical
oxides. 79–81% by
weight, 60–61% by
volume

IPS Empress Direct
(Ivoclar Vivadent)

nanohybrid vitreous matrix Ba-Al-Si glass,
ytterbium trifluoride,
silica dioxide, mixed
oxides. 75–79% by
weight

X-tra Base (Voco) Low viscosity for
basis

MMA, Bis-EMA Inorganic grains,
pyrogenic silicic acid.
75% by weight and
58% by volume

Filtek Bulk Fill (3M) Low viscosity for
basis

Bis-GMA, TEGDMA,
Bis-EMA, EBPADMA

Zirconia, silica,
ytterbium trifluoride.
64.5% by weight,
42.5% by volume

To perform the restorations, all walls were etched with 37% phosphoric acid (FGM
Produtos Odontológicos, Brazil) for 15 s; then, the cavities were washed with water for
10 s and dried with a light jet of air. Afterwards, the adhesive system (Adper Single
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Bond 2, 3M ESPE, USA) was applied with a micro brush, followed by light curing
for 10 s. The composite resins were inserted into the cavities in a single layer using an
anti-adherent spatula and polymerized using a halogen lamp light curing light (Optilight
Plus™/Gnatus, Brazil) for 20 s, following the resin manufacturer’s instructions.

The samples were then stored in distilled water at room temperature for 24 h. Then,
the excess of resinwas removed using fine diamond burs, subsequently finishingwas car-
ried out using a low-speed handpiece with rubber tips and polishing paste with aluminum
oxide grains.

2.3 OCT Evaluation

A commercially available optical coherence tomography system was used (Callisto
930 nm/Thorlabs, USA). This is a spectral domain system, which has a super lumi-
nescent diode as a light source and emits light with a central wavelength of 930 nm. The
spatial resolution of the system is 7 µm, achieving a depth of up to 1.7 mm.

For imaging, the probe was positioned at a right angle to the surface of the restoration
at 30 mm. In each restoration, four vertical scans (cervico-occlusal direction) and four
horizontal scans (bucco-lingual direction) were performed as shown in Fig. 1. In the
cervico-occlusal scans, it was evaluated the cervical wall of the restorations (Fig. 2),
while that, in the bucco-lingual scans, it was evaluated the buccal and lingual walls of
the restorations. A total of 16 images were obtained for each sample.

Fig. 1. Representation of the scans (red arrows) performed in each restoration. A: cervico-
occlusal scans; B: bucco-lingual scans.
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Fig. 2. A: Representation of a cervico-occlusal scan (red arrow); B: Cross-sectional OCT image
evidencing the enamel surface (�) and the resin surface (*). The scale bar refers to the refractive
index n = 1.0.

2.4 Image Analysis

The qualitative and quantitative analysis of OCT images were achieved using the ImageJ
1.51s (National Institutes of Health, USA) software by a blind, trained, and calibrated
examiner. The marginal gap analysis (interfacial adhesive defects) was performed by
the measurement of the distance between the enamel wall and the composite resin. The
measurements were done at a depth of 500 µm from the enamel surface, according to
the Fig. 3. Each gap thickness measurement was performed 3 times, in order to take into
account, the operator’s measurement error.

The structural analysis was performed through the qualification and quantification
of defects such as bubbles, cracks, agglomerates of resin fillers and defects of marginal
adaptation. Finally, still related to the qualitative analyses, the morphological character-
istics of the restorations were evaluated, such as the presence of marginal steps, excess
material on the edges of the restorations and defects resulting from the finishing and
polishing of the restorations.

Fig. 3. Marginal gap measurements from OCT images (yellow lines). A: Standardization of the
500 µm depth; B: gap measurement.
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2.5 Statistical Analysis

The measurements of marginal gaps, on the three faces of each restoration (buccal,
lingual, and cervical) were statistically evaluated, separately for each face, in relation
to the homogeneity and normality of variances, using Shapiro-Wilk and Levene tests.
Thus, the data were analyzed by analysis of variance (ANOVA) and Tukey’s post hoc
test, at a statistical significance level of 5%, using the Biostat 5.0 software.

3 Results and Discussion

3.1 Marginal Gap Analysis

Figure 4 shows the difference in backscattering signal of enamel and resin. In Fig. 4(A)
it is noticed only scarce bright areas at the interface tooth-restoration, indicating a good
seal. In Fig. 4(B) it is evidenced, by the red circle, some bright pixels suggestive of depo-
sition of polishing material on the edge of the restoration. Also, in the area highlighted
by the red rectangle, we can see, from the left side towards the right side, a region of
higher signal intensity, which corresponds to the tooth (dental enamel), fol-lowed by a
region of signal drop, which corresponds to a “void”, or absence of material and, on
the right side, a light-er region, with higher signal intensity, which corresponds to the
interface of the restoration.

Fig. 4. Representative cross-sectional images obtained by OCT of composite resin restorations.
A: absence of gap between the enamel and restoration; B: the red rectangle evidences the presence
of a gap.

This aspect corroborates the literature [9] and suggests that there is a gap between
the tooth and the restoration, which represents a failure in the restorative procedure and
can compromise the longevity of the restoration. The formation of a gap at the tooth-
restoration interface is usually related to polymerization shrinkage, in which forces
related with the contraction tension can break the connection to the cavity walls and
can lead to gaps. This occurrence represents one of the main problems related to the
failure of restorations. Gaps can correspond to 1.67 to 5.68% of the total volume of the
restoration [10]; also, they can allow filling with oral fluids, which contain bacteria that
can cause secondary caries, as well as post-operative hypersensitivity [11].

This aspect was found some restorations, and therefore it was possible tomeasure the
tooth-restoration distance. The results of marginal gap measurements in buccal, lingual,
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and cervical walls of restorations are shown in Figs. 5, 6 and 7, respectively. It is noted
that the spaces found in restorations made of different resins diverged considerably.
Sonic Fill resin presented the lowest tooth-restoration mean distance (50.3 ± 9.5 µm)
on both the buccal and lingual walls, while the X-tra base resin presented the highest
mean value on the buccal (74.5 ± 10.1 µm) and cervical (64.8 ± 18.8 µm) walls. The
Tetric EvoCeram resin presented the higher distance on the lingual wall (79.6 ± 9.0
µm).

In the cervical wall, however, a different behavior was observed, in which the IPS
Empress resin presented the lowest average value of the gaps between the tooth and the
restoration (33.9 ± 15.5 µm), while the other resins presented similar values among
them.

Fig. 5. Mean of the distances between the tooth and the buccal wall of the composite resin
restorations obtained for the different experimental groups. The bars indicate standard deviation.

Fig. 6. Mean of the distances between the tooth and the lingual wall of the composite resin
restorations obtained for the different experimental groups. The bars indicate standard deviation.

OCThas beenused as a valuable technique formeasuringgaps at the tooth-restoration
interface. One of the first works that performed such an evaluation using a time domain
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Fig. 7. Mean of the distances between the tooth and the cervical wall of the composite resin
restorations obtained for the different experimental groups. The bars indicate standard deviation.

optical coherence tomograph (TD-OCT) reported the visualization of gaps as large as
50 µm in size [9]. In this study, we used an SD-OCT (spectral domain) system, which
has higher resolution and faster image acquisition speed. For this reason, it was possible
to measure gaps of up to 30 µm.

It is worth noting that the gaps observed may be related to the presence of air or the
large thickness of the transparent adhesive layer [12]. In any of these hypotheses, the
quality and longevity of the restoration may be compromised, and this fact reinforces
the need for constant clinical evaluation of these restorations.

In the present study, we found gaps of dimensions between 30 and 80µm, larger than
those reported in the literature [13]. It is known that the formation of these gaps is related
to the polymerization contraction which, in turn, can be influenced by different factors,
such as the type of resin, the restorative technique, the shape and size of the cavity, among
others. In this study, bulk-fill resins, which were developed to simplify the restorative
procedure, were evaluated. For that, they have a higher depth of polymerization, which
could eliminate the need for layering. It is for this reason that, in the present study,
the restorations were performed in a single increment. These are resins that use modi-
fied filling technologies that minimize volumetric shrinkage and/or modify viscoelastic
behavior, which, according to manufacturers, can result in improved marginal integrity
[14]. However, the literature shows that the contraction of these resins is not inferior to
conventional composite resins, which justifies the findings of the present study [15].

3.2 Structural Analysis

In addition to the gaps identified in the tooth-restoration interface, some imperfections
can also be observed inside the resin volume.Dark spots on theOCT imagewere detected
(Fig. 8A), which evidenced that no portion of the incident light was backscattered in that
region. For this reason, it is likely that they are the representation of air bubbles formed
inside the resin due to the process of accommodation.

Figure 8B shows some irregularities inside the resin, however they appear as clear
spots in the OCT image. The bright regions indicate a higher backscattering signal and
may represent structures of greater density, such as an accumulation of resin fillers.
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Figure 8C presents flaws inside the resin, resulting in air bubbles (indicated by the
blue arrow).White spots are also observed (red arrow) whichmay indicate accumulation
of resin filler, since a large portion of light was backscattered in this region. In addition,
the interface region has large gaps (yellow arrows), which indicates poor adaptation of
the restoration. Figure 8D shows an image of one of the IPS Empress restorations. It is
easily noticeable a large black region in the bottom of the resin, where practically no
portion of the light is backscattered, but all transmitted. It is possible that the cavity made
in the tooth has not been filled by the composite resin. It is worth noting that the thickness
recommended by the literature for the layer of the adhesive system used in the present
work varies between 4.2 and 6.4 µm (for dentin and enamel, respectively). Thus, it is
observed that the adhesive layer shown in Fig. 8D is much thicker than recommended
(around 150 µm), which represents a risk for the longevity of the restoration.

Fig. 8. Representative cross-sectional images obtained by OCT of composite resin restorations.
A: presence of bubbles; B: presence of filler accumulation; C: presence of higher bubbles and
marginal gaps; D: presence of defects of marginal adaptation.

Table 2 shows the result of the structural analysis of the restorations, with the quan-
tification of bubbles and filler accumulations in each experimental group. It is noted
that some resins showed significantly more filler accumulation than others. All restora-
tions made with Filtek Bulk Fill and Tetric EvoCeram showed filler buildup. In contrast,
restorations made with Sonic Fill, X-tra Base and Surefill SDR resins showed little
evidence of filler buildup, in approximately only half of the restorations. Furthermore,
even in restorations where these accumulations were present, the amounts presented are
considerably smaller when compared to the two resins mentioned above, thus showing
a more homogeneous structure of these materials.

Restorations made with Sonic Fill resin also showed better performance considering
the air bubble formation. The Sonic Fill resin system consists of a handpiece that allows
the sonic adaptation of this resin, and this fact allows better marginal adaptation and
more homogeneity of the material. In the present study, none of the 10 restorations
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Table 2. Quantification of filler and bubbles present in the restorations.

Filtek IPS Empress X-tra base Surefil SDR Sonic Fill Tetric

Number of filler
accumulations

85 63 13 7 16 144

Restorations with
filler
accumulations

10 10 5 4 6 10

Number of
bubbles

2 39 7 2 0 2

Restorations with
bubbles

1 10 3 2 0 1

made with this resin presented bubbles, showing the ability to spread and fill the entire
cavity volume. The other composite resins evaluated are applied in the classic way: their
adaptation through the cavity volume is performed manually using a spatula.

An interesting piece of evidence is that the resin that presented the highest number
of air bubbles, IPS Empress, is the only nanohybrid composite resin used in the present
study. This resin requires its application in increments of a maximum of 2 mm thick,
always followed by light curing. Although small portions of the resin are used in each
increment, which theoretically would allow the resin to be better distributed during
application, this fact was not confirmed in the present study. This result indicates the
superiority of bulk-fill resins, both in terms of their better adaptation and the greater
agility of the tooth restoration process, since they are performed by a unique increment.

3.3 Morphological Analysis

The OCT analysis also enabled the evaluation of the surface morphology of the restora-
tions, as well as the assessment of defects resulting from the finishing and polishing
procedure. In Fig. 9, representative images of the main defects found in the evaluated
restorations can be seen. The main defects were the excess of material (Fig. 9A), which
causes the formation of steps in the margins of the restorations; the formation of surface
cracks in the material (Fig. 9B), which can cause aesthetic and structural failures in
the restoration; the lack of material at the edges of the cavity (Fig. 9C), and the poor
adaptation of the material in relation to the shape of the cavity (Fig. 9D).
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Fig. 9. Representative cross-sectional images obtained by OCT of composite resin restorations.
A: excess of resin (red arrow); B: presence of a crack on the resin surface; C: presence of amarginal
defect due to the polishing procedure; D: presence of excess of resin.

4 Conclusion

The optical coherence tomography technique is useful to evaluate bulk-fill composite
resin restorations, allowing the quantification of defects, bubbles, steps, large load parti-
cles and cracks at the tooth-restoration interface, as well as margin excesses or polishing
failures of the restorations. Also, although bulk-fill composite resins have different opti-
cal behaviors, they behave similarly to a nanohybrid composite resin in relation to their
marginal adaptation.
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Abstract. This study aimed to evaluate and to describe the influence of a com-
mercial chest vest that may have influence on Wistar rodents’ respiratory pattern.
Such wearables can be used under current conditions in sets of remote monitoring
devices in animals with different models of diseases, both in specific terms and in
the context of integrated telehealth and the Internet of Things (IOT). We assessed
the respiratory frequency of the animals with and without the wearable using
unrestricted whole-body plethysmography (WBP) on three consecutive days of
analysis. WBP is a non-invasive technique for measuring lung function that uses
well-defined concepts of lung mechanics and allows serial and prolonged record-
ing parameters, in an environment where the animal can perform daily activities,
such as eating and sleeping. Our results showed that the commercial wearable
altered the respiratory pattern of the animals. It seems that is necessary to develop
a customizedwearable thatwould reduce such influence, in order to improve future
studies using biosensors.

Keywords: wearable technology · barometric plethysmography · breathing
pattern ·Wistar rats

1 Introduction

Wearable Technology (WT) is inserted in the context of remote monitoring of biologi-
cal signals, based on non-invasive and wearable sensors. Wearable devices can monitor
and record real-time information about the physiological condition and body movement
activities. Health monitoring systems based on wearable sensors can comprise different
types of flexible sensors that can be integrated into textile fibers, clothing and elastic
bands or directly attached to the human body. The sensors are capable ofmeasuring phys-
iological signals such as electrocardiogram (ECG), electromyogram (EMG), heart rate
(HR), body temperature (BT), electrodermal activity (EDA), arterial oxygen saturation
(SAO2), blood pressure (BP), and respiratory rate (RR) [1, 2].
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The first step before the development of non-invasive sensors is the selection of the
wearable that will be integrated into their use. The ideal wearable needs to find certain
characteristics that allow its proper use: 1) They must be comfortable and not alter the
user’s behavior; 2) They cannot impair the capture of the desired biological signals or
the data transmission capacity of the sensors. 3) They cannot significantly modify the
expression of the biological signal to be measured [1, 2].

The use of WT for monitoring respiratory health is described in the literature.
Four main areas of interest for respiratory health are described: pulse oximetry, lung
ventilation, activity tracking, and air quality assessment [2].

Lung ventilation is the product of respiratory rate (or number of breaths per minute)
and tidal volume (the volume of air that is inhaled and exhaled with each breath).
Monitoring lung ventilation means monitoring these two fundamental parameters and
all parameters that can be derived since inspiration and expiration are distinct, i.e.,
inspiratory time, expiratory time, lung cycle (i.e., the ratio between the inspiratory time
and the total time of the respiratory cycle), flow inspiratory (that is, the relationship
between inspired volume and inspiratory time) and expiratory flow (i.e., the relationship
between exhaled volume and expiratory time) [3–5].

These parameters are fundamental to assess an animal’s ventilatory function. Respi-
ratory rate, for example, represents a vital sign used tomonitor the progression of various
diseases. An abnormal respiratory rate is a key prognostic factor and an importantmarker
of severe disease [5–7].

However, such studies need to investigate technical aspects related to the use of
wearables in the behavior and breathing pattern of animals. One of the ways to assess
this influence would be through the use of non-invasive devices for measuring lung
mechanics in experimental animals [3, 6–8].

In this context, unrestricted Whole-Body Plethysmography (WBP) uses a non-
invasive pulmonary function measurement technique that assumes the principle of gas
dynamics established by the Boyle-Mariotte Law that allows us to use theWBP as a tool
for measuring respiratory pattern variables and pulmonary mechanics, without the need
to install invasive or contact devices, allowing comfort and longer monitoring [3, 6, 9].

WBP uses a closed system chamber where the animal is positioned in dorsal decu-
bitus, continuously ventilated at constant bias flow. The rodent is placed to be evaluated
without restrictions on body movement. According to Fig. 1, there is a main chamber
(A) where the animal is kept, and a reference chamber balanced with atmospheric pres-
sure (B). Between both chambers A and B there is a differential pressure transducer
(C). The airflow in the main chamber is measured at the top by another sensor called a
pneumotachograph (D). At the side end, an aerosol inlet with a closed valve can be seen,
which allows the administration of gas. The air outlet is positioned on one of the sides
of the chamber (3). In the lower part, there is an inlet orifice for the bias flow (2), which
maintains a continuous flow of gas, allowing oxygenation and preventing hypercapnia
[3–5].

Since it is possible to measure the variation of pressure and flow in the chamber
through the placement of these sensors, it is feasible to correlate such variables with the
pattern and lung mechanics of the animals. Applying the concept of gas dynamics, it is
possible to acquire pressure variables and correlate themwith volume variables [3, 7–9].
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Fig. 1. Scheme of Whole-Body Plethysmography [4], description in the text above

The hypothesis suggested for the study is that the use of wearables in experimental
rats can induce changes in behavior and respiratory dynamics. In addition to behavior
analysis, the proposal is to useWBP to assess the respiratory rate pattern of these animals
on three consecutive days of analysis.

2 Material Methods

This is a descriptive experimental study with association of hypothesis.

A. Description of groups

Five male rats of the Rattus norvegicus species, Wistar breed, were analyzed.
They were young adult animals aged between 6 and 12 weeks (registration number
9956280119 of the Ethics Committee of the Pharmacology Department of the Institute
of Biomedical Sciences of the University of São Paulo). The rodents were kept in the
rat vivarium under controlled conditions of temperature (22ºC) and lighting (light-dark
cycle of 12/12h), with water and food ad libitum.

B. Equipment description

The equipment used was an unrestricted whole-body plethysmograph (PLY4211,
BUXCO, USA). The equipment was calibrated before each experiment. (DSI Buxco
Bias Flow Manual). The data recorded for the experiment was the respiratory rate. The
normal respiratory rate for animals of this species when awake is 110 breaths per minute
(range 100 to 140 per minute) [10].

C. Experiment description

The animals were acclimatized in an acrylic chamber for at least 10 min before
recordings. 5-min time series records were generated for 3 consecutive days (2019–
12-04, 2019–12-05 and 2019–12-06) in the mornings. Each animal was submitted to 2
recording batteries per day: the first without wearable and the second with the wearable.

D. Wearable description

The garment selected was a chest vest whose main material was nylon and a Velcro
closure system (Chest vest, size S, Ferplast Jogging, Brazil) (Fig. 2).

E. Statistical analysis
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Given the small sample size of animals, the dataset of the functional experiments
was expressed through descriptive statistics. Location analyzes were performed by cal-
culating the mean and quartiles, and dispersion measurements by calculating the range
and standard deviation using a commercial software (Graphpad, Prism, USA). Data
visualization was performed using histogram and boxplot graphics.

Fig. 2. Tested commercial chest vest.

3 Results

The first part of the experiment involved placing the rodents without the vest inside the
acrylic chamber. The animals were kept in an unrestricted manner, as shown in Fig. 3.

Fig. 3. Chamber used in experimentation.

The second part of the experiments consisted of placing the commercial wearable
on the rodents, as illustrated in Fig. 4, for later start of the experiment battery inside the
acrylic chamber.

In Table 1 there is a description of the weights of the animals in grams (g) on the 1st

day of the experiment, in addition to their tolerance to the use of the wearable. Of the
animals tested, three had good wearable tolerance.
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Fig. 4. Wistar rat with tested vest

Table 1. Description of animals and experiments

Animal Weight (g) Tolerated
the wearable

1 553 Yes

2 536 No

3 340 No

4 328 Yes

5 330 Yes

Figure 5 shows the summary table of the experiments performed on the three ani-
mals that tolerated the use of the wearable during the three days (rats 1, 2 and 5). The
variable shown in the graphs is the respiratory rate, through the number of respiratory
intercussions per minute (ripm).

4 Discussion

The proposal for the study was that wearables in experimental rats could induce changes
in behavior and respiratory dynamics. For this purpose, a commercial garment was used
in animal testing at WBP [7].

After placing the wearable, two of the five animals (Rat 3 and Rat 4) became
extremely agitated and were unable to remain with it. As a result, the team respon-
sible for the experiments chose to exclude them from the analysis. This is an important
factor to consider when choosing a wearable for use in breath testing. The other 3 ani-
mals, after a process of environmentalization with the wearable, showed good tolerance
to its use, being possible to proceed with experiments.

As for the results that evaluated the respiratory rate pattern measured by the WBP,
two outcomes were evaluated that can translate the influence of the wearable on the
behavior and the ventilatory capacity of the animal. First, dispersion measures such as
range, standard deviation and quartiles were observed. The increase in the variability of
the values reflects a difficulty in adapting the animal to the clothing. On the other hand,
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measures of central tendency, such as median, reflecting the evolution of ventilatory
capacity, since respiratory rate is one of the components of minute volume (MV).

Rat 1 presented median, quartiles and range with a tendency to stability when they
were without a vest. However, when exposed to the wearable, there is a tendency to
hypoventilation andan increase in variability,whichdenotes a possible negative influence
of the wearable on comfort and respiratory capacity.

Rat 2 showed a tendency towards stability in the first two days of the experiment,
however, on the 3rd day, median and dispersion values were very different, which can be
attributed to some failure in the WBP record for the group without vest. When exposed
to the wearable, this animal showed a large increase in dispersion and median values,
which can be attributed to the discomfort generated by the use of clothing.

Fig. 5. Summary table of the experiment in rats that tolerated the use of the wearable. BPM =
breath per minute

Rat 5, following the same trend as Rat 1, evolvedwithmedian stability and dispersion
in the three days when he was without vest. On the other hand, in the phase in which he
was wearing a vest, his data showed a tendency for an increase in the variability of the
dispersion measurements, as well as a large oscillation in the median in the three days,
which can also be attributed to the negative influence of the wearable, both in the sense
of change your behavior as your breathing capacity.
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5 Conclusions

The accomplished experiment showed that the option of the selected commercial wear-
able can influence the behavior and lung mechanics of the animal. In this context, it
would be important to go for the development of a customized wearable that is more
comfortable and has less influence on the behavior and pulmonary ventilation of rats.
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Abstract. This paper presents the micro needle’s fabrication process
with a single-plane beveled needle tip (MNTB1). Sixteen micronee-
dles were measured at four different angles (−45◦,0◦,45◦,90◦) to deter-
mine that and compared with the theoretical design values. This study
shows the pre and post-printing process, where 0◦ was found to be
the best printing angle, achieving dimensions in the geometry of the
microneedle of 45,346◦ in experimental grade (θ), 0,448 mm in length
and 0,248 mm external diameter(α). On the other hand, excess resin is
properly removed in the post-printing process when the microneedles are
exposed to 10 min in 99% isopropyl alcohol. Then the microneedles are
subjected to a curing process at 60◦C for 30 min. Finally, the micronee-
dles are subjected to a drilling process to enhance the 0,100 mm inner
diameter. This fabrication process of a microneedle by 3D printing shows
good results for implementation in a transdermal drug delivery device.

Keywords: Microneedles · Transdermal drug delivery · 3D printing ·
Computer Aided Design

1 Introduction

Transdermal drug delivery (TDD) is an increasingly attractive method because
of its advantages compared to conventional drug delivery methods. This method
allows transporting molecules directly to the dermis in a painless way [1,2],
where microneedles (MN) take a great relevance because they allow transporting
the drug without reaching the nerve endings of the skin [3] due to their small
dimensions.

MNs have lengths from 0,150 mm to 1,500 mm; these lengths are sufficient
to release the drug into the epidermis. The width of the MNs can be between
0,050 mm and 0,250 mm [4].

Among the different TDD devices, the transdermal patch composed of MN
has been studied by other researchers, showing positive results in the efficient
transdermal application of specific drugs such as insulin [5–8].
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Micro-molding techniques are used to fabricate the microneedles found in
TDD devices [3]; these techniques require high-cost tooling. For this reason, other
methods of MN fabrication have been explored; one of them is with the help of 3D
printing technologies, which in recent years have revolutionized different fields,
such as pharmaceutical, industrial, biomedical, and other sciences, because they
have been able to obtain cost-effective and functional prototypes and products
[9].

One of the most widely used techniques in 3D printing is a stereolithog-
raphy laser (SLA) using UV-sensitive liquid resin; this technique has recently
been used for the rapid and cost-effective fabrication of MNs. These use biocom-
patible materials for insulin delivery anticancer drugs, among others [10–14].
However, 3D-printed MN fabrication presents significant challenges. One is that
the print quality can be easily affected due to sensitivity in some manufacturing
parameters, such as print angle, pre-cure, and post-cure of the part.

For this reason, it is necessary to continue investigating more about this
method to fabricate MN and overcome the challenges. In this work, we show the
fabrication process of an MN with a single-plane beveled needle tip (MNTB1)
inspired by a single-bevel hypodermic needle that was mechanically evaluated in
a previous study [15] seeking to answer How does the printing angle and curing
process influence the final quality of the microneedles in a 3D printing process?.
During the last decades, a range of external and internal diameters found with
which an MN can be fabricated to support the insertion process in the skin
mechanically. Also, a safety factor of 4 is used in medical instruments from these
ranges, a value chosen to fabricate the microneedle in this work. The MN was
manufactured with a class 1 biocompatible resin with the SLA method; the effect
of the printing angle and the washing and curing conditions after printing were
examined, and the first two parameters were optimized, ensuring the printing
quality of the MN.

2 Materials and Methods

2.1 Materials

The material used to fabricate the microneedles was Surgical Guide class 1 bio-
compatible resin (Formlabs), and 99% isopropyl alcohol was used to wash the
printed parts. The material used to manufacture the microneedles was Surgi-
cal Guide class 1 biocompatible resin (Formlabs). The resin complies with ISO
10993-1:2018 and is designed for relatively high elongation and ultimate tensile
strength. Its flexural strength is ≥ 70 MPa, and its flexural modulus is ≥ 2000
MPa. The resin requires post-curing to achieve biocompatibility and optimal
mechanical properties.

Also, 99% isopropyl alcohol was used to wash the printed parts, as indicated
by the resin manufacturer’s specifications.
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2.2 Computer-Aided Design (CAD)

The MN was designed in Solidworks software. A one-bevel hypodermic needle
inspired its geometry, with a length of 0,450 mm and an angle (θ) of 45◦. Pre-
viously, a mechanical study was carried out to ensure a safety factor of 4 to
support the insertion load to the skin. With this premise, the external (α) and
internal (β) diameter sizes were 0,232 mm and 0,100 mm, respectively, see Fig. 1.

Also, the microneedle array was designed with a rectan-gular-shaped base
of 8,4 mm×4 mm with eight microneedles; this was done only to evaluate the
dimensions of the different MN impressions and to have some measurements
needed to ensure the values were obtained without wasting material.

2.3 3D Printing

The MN designs were exported from Solidworks to Pre-Form, where supports
were added to the designs with a contact point of 0,350 mm and a layer thickness
of 0,050 mm set.

On the SLA laser technology Form2 printers (Formlabs, GoPrint3D, Ripon,
North Yorkshire, UK); the MNs manufactured. Four printing angles (-45◦, 0◦,
45◦, and 90◦) were set in the MN manufacturing process to evaluate the effect
of this angle on the print quality of the MN.

Fig. 1. Schematic illustration of the MNTB1 design.
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2.4 Post-impression Process

Once the MN were printed, they were immersed in 99% isopropyl alcohol and
placed in a Cole-Parmer 8890 ultrasonic cleaner operating at a frequency of
47khz at different washing times (2 min, 4 min, 6 min, 8 min, 10 min) to observe
which was the appropriate time to clean these MN.

Once the MNs were washed and dried, they were subjected to the curing
process in FormCure. In this process, the parts were exposed to a temperature
of 60◦C for 30 min, given by the manufacturer. These parameters are necessary
to achieve the maximum possible strength and stability, and the curing process
guarantees the incompatibility of the part. Following the curing of the MN, an
inner diameter drilling procedure was performed on a router CNC.

2.5 Measuring Macroscope

The measurement of the dimensions of the 3D-printed MNs in each test was
done with a VR-3000 Measuring Macroscope. To perform the measurements, it
was necessary to make a magnification of 40X and 80X.

2.6 Statistical Methodology

The experiment was based on varying the printing angle to measure the response
variables (bevel angle, height, and external diameter).

In this case, the completely randomized experimental design was selected
because the application of the effect of the angle position was performed on
homogeneous experimental units (the microneedle with the same resin and geom-
etry). Minitab software was used for this procedure.

3 Results

3.1 Optimization of Printing Angle

The microneedles were printed at four angles (−45◦, 0◦, 45◦, 90◦). At the angle
of -45◦, see Fig. 2b; it was observed that the geometry of the MN took an incli-
nation, see Fig. 2f and its structure was different from the designed model of
the microneedle, see Fig. 2a. When the angle was 45◦, see Fig. 2c, the form of
the MN was similar to a triangle, i.e., it did not achieve a close resemblance
to the designed model of the needle, see Fig. 2g. When the angle was 90◦, see
Fig. 2d; the structure appeared far from the theoretical model, as the MN took
on a flattened shape, see Fig. 2h. In comparison, with the printing angle of 0◦,
see Fig. 2e, the appearance of the MN was very similar to that of the theoretical
model, see Fig. 2i.

In addition to a review of the appearance of the printed structures, the height,
angle, and external diameter were measured at 16 MN for each printing test
angle; this number of microneedles corresponds to the sample size taken in the
experiment. This sample size allowed us to obtain measurements with a reliability
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of 95%, a sampling error of 3, and a test power of 83%, showing that the number
of samples was adequate.

Furthermore, an analysis of variance found that adequate control was exer-
cised in the experiment and that the effect of the angle position could explain
the variation in the measurements.

Fig. 2. MN’s fabricated at different printing angles, a) CAD model, b) Printing base
at −45◦, c) Printing base at 45◦, d) Printing base at 90◦, e) Printing base at 0◦, f)
Printing at −45◦, g). Printing at 45◦, h). Printing at 90◦, i). Printing at 0◦.

The mean of the experimental measurements was the value used to compare
the dimensions obtained experimentally with those of the designed model. Where
it was observed that the angle of 0◦ allowed the best printing resolutions and also
the closest measurements to the CAD model, obtaining in this printing angle the
following experimental measurements: an angle of 45,346◦, a length of 0,448 mm
and an external diameter of 0,248 mm, as shown in Table 1, where it can also
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be observed that the angles of −45◦ and 90◦ are the least appropriate for the
microneedle design proposed in this work since these angles generate values of
geometric dimensions farther away from the CAD model.

Table 1. Experimental Values of Outer Diameter, Bevel Angle, and Length of the
microneedle vs printing angle.

Printing angle (◦) Outer diameter (mm) Bevel angle (◦) length (mm)

−45 0,449± 0,020 82,141± 2,306 0,420± 0,016

0 0,248± 0,007 45,346± 0,583 0,448± 0,006

45 0,413± 0,013 41,974± 1,629 0,430± 0,013

90 0,726± 0,021 74,958± 2,745 0,373± 0,008

3.2 Post-printing Process

Before subjecting the MNs to the curing process, the manufactured MNs should
be washed to remove the remaining resin pieces, see Fig. 3a. For this purpose, the
MNs were soaked in 99% alcohol at different time intervals (2 min, 4 min, 6 min,
8 min, 10 min) to observe which time was suitable for this process to optimize
it. For this, the process was repeated three times at different times, where it
was obtained that a 2 min wash exposure was not enough since the MN still had
excess resin, see Fig. 3b.

When the MN was exposed to 4 min of washing, it was observed that the
MN was much cleaner than in the previous case, but excess resin could still be
observed, see Fig. 3c; the same happened when the MN was subjected to alcohol
for 6 min, see Fig. 3d, since ex-cess resin was still observed, especially in all the
inclination. When the MN was exposed to 8 min in alcohol, the piece could be
seen as almost clean, see Fig. 3e; however, small resin residues were appreciated
that did not appear when the MN was exposed to 10 min in alcohol, see Fig. 3f.

The three times the cleaning process was carried out, the same occurred in
each washing time, which allowed us to know that 10 min is the best exposure
time for the washing process.

3.3 Inner Diameter

To obtain the internal angle (β) of 0,100 mm, it was necessary to make a drilling
process after curing the MNs because the printer does not give a good resolution
at such small internal dimensions, i.e., it leaves traces of the inner diameter but
does not reach to perform correctly from side to side. Therefore, a 0,100 mm
microdrill CNC is used to remark and enhance the inner diameter, as seen in
Fig. 4.
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Fig. 3. Post-printing process; remove the remaining resin pieces (a), washed in alcohol
2 min (b), 4 min (c), 6 min (d), 8 min (e) and 10 min (f).

Fig. 4. Microneedle internal diameter drilling - Top view
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4 Discussion

SLA 3D printing is a method that achieves high-resolution prints without the
need for expensive equipment and high manufacture times, such as micro-
molding, electroplating, and in-mold etching. This has made this method attrac-
tive for research in the field of transdermal drug delivery, and especially research
focused on microneedles manufacture that is part of TDD systems. The manufac-
ture of 3D microneedles using SLA-type printers has been performed in several
studies [11,12,16–18]. However, one of the challenges in the previous studies was
to achieve good accuracy in microneedle tip printing and microchannel forma-
tion as in the present study. The high resolution of the microneedle tip is of
great importance because it is essential in the skin penetration process.

In the MN printing process, the printing details can be as small as the diam-
eter of the laser focal spot, which makes it possible to produce small-sized parts.
However, when working with micrometer dimensions even smaller than the laser
focal spot, it is very likely to generate differences in the dimensions and shapes
of the printed model.

In the present study, we printed a microneedle inspired by a single-bevel
hypodermic needle of 0,450 mm in height. The best printing quality of this MN
was obtained at an angle of 0◦ concerning the printing platform, unlike some
studies such as Economidou et al. [3]. In that study, they manufactured three
microneedle shapes with a length of 1,000 mm using class 1 biocompatible resin.
Also, they changed the printing angles (0◦, 90◦, and 45◦) for each of the shapes.
The authors established that 45◦ was the angle at which the MN had the best
sharpness because at this angle enough amount of support structure was printed
before starting to manufacture the MNs. Also, in the Yeung et al. study, they
manufacture an MN with a length of 1,000 mm in 3D printing with LT Clear
Class IIa biocompatible dental resin [19]. In the above study, they also changed
the printing angles (−45◦,0◦,45◦,90◦). The authors concluded that the 45◦ print-
ing angle allowed the best printing quality due to resin flow. However, these two
presented studies do not discuss how this printing angle would influence MN
with lengths much shorter than 1 mm and with another type of geometry.

On the other hand, Xenikakis et al. manufactured MNs of 1 mm in length
and different geometries with Class IIa bio-compatible resin (NextDent Ortho
Rigid) [20]. In that study, they examined different printing angles (0◦, 45◦, -45◦,
90◦). The authors found that printing angles of 0◦, 45◦, and 90◦ cause resin flow
into the microchannel section. For this reason, they opted for a printing angle of
−52, 63◦ so that the inclined surface of the hollow microneedles would be parallel
to the printing platform. Considering the results obtained in this study, it was
evident that inner hole printing is a challenge even in 3D printing and even more
so when they are dimensions such as those proposed in this study.

Finally, another study by Choo et al. manufactured 3D printed microneedles
with Clear resin, where they reported that at a printing angle of 0◦, the MN
prints similar to the input design. However, at an angle of 45◦, they obtain a
sharper microneedle tip [17]. In addition, they varied the microneedle height from
0,600 mm to 2,000 mm, finding that as the input height increased in the input
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design, the accuracy of the MN print increased. That study provides evidence
that the smaller the printing dimensions, the more challenging the print quality
will be. On the other hand, they show that although the 0◦ angle was not the
one that printed the sharpest tip, the print obtained at this angle was very close
to the model designed in CAD.

Although previous studies were able to manufacture 3D-printed microneedles
with a height ≥ 1, 000 mm, these do not show how sensitive the printing is
when the lengths are much less than 1,000 mm. Therefore, in this study, we
manufacture a 0,450 mm MN and show that for this length, the printing angle
that achieves the best print resolution is 0◦.

5 Conclusions

In the present research work, important information is presented for the fabri-
cation process of an MN by 3D printing, analyzing different effects in the pre
and post-printing pro-cesses, finding the right printing angle to allow the closest
fabrication of the MN to that of the CAD model, the right time to remove the
excess resin to the MN. A drilling process was also performed to polish the inner
diameter of the MN.

It was observed that an impression angle of 0◦ provides the best resolution in
the fabrication of the MN, obtaining a very similar appearance and dimensions
of the geometry very close to those of the CAD model, being then the angle
chosen as the most suitable for the application presented in this work.

Also, it was found that when the MN is subjected to isopropyl alcohol in the
cleaning process for 10 min, it is possible to adequately remove the resin residues
that remain in the MN just after printing, thus avoiding the MN being left with
inadequate dimensions, that is, that are close to those of the CAD model which
can affect at the time of being used in a TDD device.

On the other hand, it was found that having dimensions in orders as small as
micrometers, the printer cannot make the inner diameters correctly. Therefore,
it was necessary to make the inner diameter of the MN by drilling on a CNC with
a 0,100 mm drill bit. This drawback obtained with the resolution of printing at
such small dimensions is one of the challenges faced by 3D printing technology,
which is worth further exploring and optimizing.

The good result obtained in manufacturing an MN that is mechanically suit-
able for the skin penetration process shows that this study could be relevant
to the MN manufacturing processes to be used in a transdermal drug delivery
method.

Also, the study shows this fabrication system as a promising option when
using new technologies such as 3D printing that allows better and more efficient
management of resources than conventional methods, contributing more and
more to the applications and challenges that 3D printing brings.

Finally, in future work, the option of exploring the behavior of different print-
ing parameters with different materials and different MN sizes (mechanically
validated) to obtain a more general knowledge of the behavior of microneedle
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fabrication in SLA 3D printing is proposed. The option of validating the func-
tionality of these microneedles experimentally in a skin insertion process is also
considered.
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Abstract. Sonothrombolysis is a technique that uses ultrasound waves with
microbubbles in the bloodstream to reduce thrombi in the coronary arteries of
patients diagnosed with infarction. The energy generated by the cavitation of
microbubbles in the thrombus region is the main cause of their rupture. To gener-
ate cavitation, low frequency (<1 MHz) and high acoustic pressure (>100 kPa)
waves, and, thereafter, specific transducers, are necessary; however, their geome-
try causes strong radial vibrationmodes, which can reduce their useful transmitted
energy. This study aimed to measure the influence of the radial mode on the effec-
tiveness of a rod ceramic transducer designed for a sonothrombolysis device. Five
units of a rodNavy II ceramicwere used toproduce1 element transducer and a four-
element cell, tomeasure their sensitivities, bandwidth, and acoustic pressure levels
using the pulse-echo method, a hydrophone receiver and computing treatment to
raise their frequency spectra and transmitted acoustic fields. Once the diameter-
to-thickness ratio of the ceramic used was only 1.59, the radial vibrational mode
showed to be dominant for a pulse excitation burst, providing, in its resonant fre-
quency, an amplitude response 6 dB higher (1:0, 480) than its thicknessmode. Due
to the geometry of ceramic and to the Poisson effect, the radial mode also produced
a coupled thickness mode in its radial resonant frequency. The results showed that
the typical radial vibration modes, existing in some low-frequency piezoelec-
tric rod ceramics can generate a useful coupled thickness mode, producing the
necessary acoustic pressure to be used in a sonothrombolysis equipment.

Keywords: Sonothrombolysis · cavitation · rod piezoelectric transducer ·
diameter-to-thickness ratio · coupled vibration mode

1 Introduction

Based on data released in 2018 by the World Health Organization, heart disease is still
the leading cause of death in the world [1]. One of the main reasons for this high mor-
tality rate is the lack of a fast intervention, especially in cases of myocardial infarction
diagnosis, in which prolonged lack of blood flow, caused by clots (thrombi), can cause
irremediable heart muscle loss. Considering the high loss of lives, new techniques are
being tested aiming to reduce the fatality rate of these cases. Sonothrombolysis is a med-
ical technique that uses ultrasound waves, together with the application of microbubbles
in the bloodstream and the use of fibrinolytic drugs, to reduce thrombi in the coronary
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arteries, in patients diagnosed with infarction, promoting an increase in the patency of
these arteries. The energy generated by the stable and inertial cavitation of the microbub-
bles in the region of the thrombi, caused by the mechanical waves of the ultrasound, is
the main cause of their rupture.

The use of specific transducers, with frequencies lower than 1MHz, which provide a
lower attenuation and a greater penetration of the mechanic waves in the heart (keeping
the Mechanical Index (MI), within the safety ranges indicated for the use of ultrasound
in diagnostic mode (MI < 1.9), but with a sufficient strength to cause inertial cavitation
[2]), is believed to lead to better results of sonothrombolysis, compared to the results
from using commercial diagnostic ultrasound equipment so far.

For sonothrombolysis application, using a ceramic disk for building the transducers
to achieve the desired safe energy for cavitation, once a low frequency (<1MHz) is also
desired [3], and considering that the ceramic is a half wavelength resonator, there might
be a compromise in the transducers disk diameter-to-thickness (d/t) ratio design choice
to guarantee a reasonable small-sized transducer and the required low frequency and its
related large thickness.

Generally, it is assumed that the ceramicwill present only a piston-type surface vibra-
tion, therefore with a dominant single thickness extensional mode. Although, there is
realistically a large spectrum of other vibrationmodes and such assumption is considered
valid for d/t > 20 [4].

Considering the tradeoffs of our application, a rod 10.15 mm-diameter and 6.4 mm-
thickness Navy II ceramic (d/t ratio equals to 1.59), with an expected 235 kHz thickness
mode resonance frequency, was chosen. Measurements showed [5] that when the d/t
ratio is higher than 0.7 and lower than 2.5, as in our case, it is not valid to assume that
there will be only one vibration mode.

Sections 2 and 3 show the evaluation and measurement of the existent dominant
vibration modes, using a d/t ratio equal to 1.59, and their influence, particularly of the
radial mode, on using a ceramic with such d/t ratio to generate the necessary acoustic
pressure [3], for a transducer array specifically aimed at a sonothrombolysis portable
equipment.

2 Material and Methods

2.1 Material

Five units of a rod Navy II ceramic model 805, from APC, Ltd (www.americanpiezo.
com), with a 10.15mmdiameter and a 6.4mm thickness, were used to produce 1 element
transducer and 1 cell, as shown in Fig. 1, designed as a linear array of 4 elements
(to evaluate possible radial cross-talking effect) to measure their relative pulse-echo
sensitivity, bandwidth, and acoustic pressure levels. A 2.9 mm matching layer, built
with resin and alumina, in a proportion based on the equations of Sayers&Tait [6], was
built with an acoustic impedance of 4.3Mrayl. Once our transducer application was not
related to image, a 3 mm air backing was also added aimed to maximize the transmitted
acoustic energy.

http://www.americanpiezo.com
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Fig. 1. Four-transducer linear array cell.

2.2 Methods

For most applications, the diameter-to-thickness ratio (d/t) is generally a consequence
of the piezoelectric ceramic disc operation frequency and the desired acoustic beam
profile. Many experimental and conceptual studies have shown the existence of different
vibrationmodes in piezoelectric disks and its relationshipwith the d/t ratio. These studies
were usually conducted by evaluating the transmitted signal frequency spectrum [7].

For d/t ratio smaller than 6.6, coupled edge and radial modes, near to the thickness
extensional one, are expected [8]. As the diameter decreases, the radial mode resonance
frequency increases, getting closer to the thickness center frequency of the transducer
[2].

In this study, both pulse-echo and hydrophone receiver methods were used for eval-
uating the general acoustic characteristics of our transducer, based on the E1065/20
standard [9]. For comparison purposes and cross-talking checking, some of the exper-
iments were executed using a single-element transducer and a four-element-transducer
cell.

3 Results

3.1 Experimental Setup

Awater tank (550mmX300mmX150mm)with a 3D servomechanism control system,
a NH4000 Precision Acoustics hydrophone, an Olympus Panametrics ultrasonic square
wave pulser/receiver unit, model 5077PR and a Keysight InfiniiVision MS0X2004A
oscilloscope were used to execute the experiments.

Figure 2 shows the water tank in the hydrophone measurement. During the
experiments, the water was deionized and in ambient temperature (Twater= 20 °C).

3.2 Experimental Results

Firstly, a pulse-echo measurement was made on a single element transducer to evaluate
its thickness response for a negative 200 V shock excitation pulse. The transducer was
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Fig. 2. Hydrophone receiver measurement

placed, along its thickness axis, 10 cm away from a 5 cm-thick reflector. The reflected
pulse is presented in Fig. 3.

Fig. 3. Pulse-echo response:time signal

In Fig. 4, the signal frequency spectrum is presented, showing that a dominant vibra-
tion mode appeared in a peak at 170 kHz frequency and, what would be the native
thickness vibration mode, occurred around the expected frequency of 240 kHz. This
supposed native thickness mode has an amplitude peak response about 6 dB lower than
the dominant mode at 170 kHz. Figure 5 presents some details of the dominant vibration
modes.

Figure 6 shows the detected uncoupled native thickness vibration mode details,
normalized by its peak value, in dB. The figure shows a peak frequency (fp = 236.2 kHz)
and a center frequency (fc = 240.6 kHz), for a 6 dB bandwidth, near to the expected
length (thickness) mode resonance frequency given by the ceramic manufacturer (fr =
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Fig. 4. Pulse-echo response: frequency spectrum

Fig. 5. Dominant vibration modes

234.38 kHz), considering, due to its low diameter-to-thickness ratio, this ceramic much
more a cylinder than properly a disc.

The ceramic electric impedance and phase curves (Fig. 7) were also used to seek
other vibration mode frequencies to evaluate the origin of the unexpected additional
extensional mode in a frequency around 170 kHz.

The curves in the figure above show the main vibrations modes for a rod ceramic
with their first harmonics, and it is also noticeable a radial resonance frequency near to
170 kHz and a thickness resonance frequency near to 240 kHz.

To evaluate the theoretical general form of the pressure amplitude field generated by
our transducer in a given position, we used the expected pressure amplitude in a point
A in a distance r from the center of the transducer, with an angle θ in relation to the
transducer longitudinal axis z.
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Fig. 6. Native thickness vibration mode

Fig. 7. Transducer ceramic electric impedance

For a given point, the normalized pressure amplitude P(θ) will be given by the
equation below [10]:

P(θ) = |2.J 1(k.a.senθ)

k.a.senθ
| (1)

where J1 is the first order Bessel function, k is the wavenumber (spatial frequency of the
wave, given by k = 2π/λ, where λ is the wavelength) and a is the radius of the ceramic
disc. Figure 8 shows the expected normalized radial pressure acoustic field profile, in dB,
for vibration modes using central frequencies of frad = 170 kHz and fthick = 240 kHz,
to be compared with the experimental acoustic field, obtained by pulser excitation and
hydrophone measurements.
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Considering the theorical acoustic pressure profile, and due to the thickness mode
vibration, a main longitudinal axial lobe and two secondary sided ones would be
expected. As seen in Fig. 8, the dominant radial vibration would generate just one lobe.

Fig. 8. Theoretical acoustic pressure profile

Fig. 9. XZ Plan Measured Pressure Acoustic Field

Using a hydrophone, the acoustic pressure field in the longitudinal plan was mea-
sured. Figure 9 shows the measured acoustic field along the XZ Plan for our single
element transducer excited by a 200 V negative pulse. The Z axis was considered the
longitudinal one.
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Considering that the ceramic used had a diameter d= 10.5mm, and, for the thickness
mode, a central frequency around 240 kHz, we would have a far field transition at z
= 4.12 mm. As shown in Fig. 9, with this pulse excitation for a single transducer, it
is possible to reach an acoustic pressure higher than 100 kPa (value expected to be
necessary to produce microbubbles cavitation for sonothrombolysis) [11], up to a 40
mm-distance from the face of the transducer.

Another point observed is the absence of the expected two-sided lobes in the
longitudinal plan.

To verify the possible effects of the dominant radial vibration mode, a 4-cell linear
array was built and, using the hydrophone, the radial plan acoustic field was raised for
the plan 6 mm away from the face of the transducer.

Figures 10 and 11 show the results which allow verifying that, exciting one specific
transducer with the same pulse of 200 V, the radial dominant mode does not affect its
nearby transducers, once the pressure level caused by the excited transducer is less than
20 dB in its closer neighborhood.

Fig. 10. XZ Plan Measured Pressure Acoustic Field

Fig. 11. Measured Pressure Acoustic Field in dB
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4 Discussion

Sonothrombolysis, as a very promising ultrasound technique, is driving many differ-
ent studies related to the application of piezoelectric materials, once the mechanism of
enhancing thrombolysis is directly influenced by the acoustic parameters of the piezo-
electric ultrasound transducers, like its central frequency and peak-to-peak acoustic
pressure, both associated with the MI and cavitation generation [12].

In spite the fact the specific mechanisms of sonothrombolysis have not been com-
pletely elucidated, studies made in vitro models suggest that the process of the clot
rupture is directly linked to the microbubbles cavitation and radiation force caused by
the ultrasound waves [13].

In this context, a study using a canine graft occluded by thrombus, has showed that
peak negative pressures generated by a 1MHz diagnostic ultrasound, with a Mechanical
Index higher than 0.5, but lower than 1.9, used with a continuous microbubble infusion,
were effective at recanalizing acute intravascular thrombi. This study also showed the
importance of cavitation, generated by high MI impulses, for producing thrombolysis
using ultrasound in vivo [14].

Other study, this time using a 120-kHz continuous wave ultrasound with a peak-
to-peak- acoustic pressure amplitude of 440 kPa, has demonstrated an enhancement of
thrombolysis of blood clots in an ex vivo porcine carotid artery model, by using such
ultrasound waves to promote and maximize the microbubbles stable cavitation activity
[15].

From May 2014 to September 2015, at the Heart Institute of the University of Sao
Paulo (InCor), the first human trials demonstrated the positive effect of ultrasound-
guided cavitation of microbubbles during acute ST-segment elevationmyocardial infarc-
tion [16]. This study showed that 1.3 MHz and 1.8 MHz diagnostic ultrasound short
pulses (<5 µs), with a MI about 1.3, were effective at restoring both epicardial and
microvascular flow [17].

All studies and trials above used diagnostic or therapeutic ultrasound equipment
not specifically conceived for sonothrombolysis. As already mentioned, sub-megahertz
frequency range seems to be more suitable for such application, considering its higher
acoustic transmission efficiency [3] aiming at promotingmicrobubbles cavitation. There-
fore, considering its specific use for cardiac sonothrombolysis, it becomes important to
evaluate the dominant transducer vibrational modes, particularly the radial vibration
mode, and its influence on providing the necessary acoustic pressure to generate cavi-
tation when compared to the mentioned successful studies using diagnostic ultrasound
transducers.

In our case, due to the piezo ceramic geometric features, a dominant radial mode,
in a frequency around 170 kHz, appears when the transducer is excited by a pulse.
Considering this frequency, that mode presents a transition far field in x = 1.16 mm;
therefore a very small amount of its energy could be detected either by a reflected signal,
in the pulse-echo measurements, or by the hydrophone placed in the longitudinal plan;
however, a strong signal in this frequency was detected not only from a 100-mm distant
reflector, on the face of the rod, but also by the hydrophone receiver.

This strong signal, at the frequency of the radial mode, is generated by the dis-
placement of the piezoelectric material along the z-axis (within its thickness) due to the



532 W. R. Silva and S. S. Furuie

Poisson effect in the ceramic (ν = −εrad/εlong , where ν is the Poisson’s ratio, ε is the
Strain, defined in elementary form as the change in length divided by the original length
[18]). Therefore, the expansion/contraction in the radial direction is associated with a
contraction/expansion in the ceramic thickness direction, creating a coupled thickness
mode vibration, near to the 170 kHz frequency, stronger than the original native thickness
mode at around 240 kHz.

Such additional coupled vibration generates an extra acoustic pressure, in a frequency
near to the expected thickness mode, which improves the transmitted energy in the
longitudinal axis of our transducer, helping to generate the necessary acoustic pressure
to cause the desired microbubbles cavitation on the cardiac sonothrombolysis, without
creating undesired cross-talking in a 2D-transducer-matrix array designed to generate
the ultrasound waves in the cardiac region.

5 Conclusions

The overall results showed that, in some low frequency piezoelectric ceramics (resonance
frequency lower than 1 MHz), their typical radial vibration modes, rather than being a
problem and due to the Poisson effect, can produce a useful coupled thickness vibration
mode that can improve the effectiveness of the transducer, providing the necessary
acoustic pressure to be used in a cardiac sonothrombolysis equipment.

Additionally, to the exposed measurements, a complete computing simulation, cre-
ating a virtual cardiac region, through k-wave [19] and Matlab [20], using the evaluated
rod transducer in an 8X8 matrix array configuration was executed and showed that the
solution can produce the necessary acoustic pressure in the entire cardiac region.

For future work, an 8X8 matrix array prototype, using the ceramics evaluated in this
study, shall be produced and tests in vitro shall be performed to evaluate its effectiveness
to generate the expected cavitation in microbubbles. Other specific study, with transduc-
ers using ceramics with both different diameter-to-thickness ratio and nominal resonant
frequencies, shall be carried out to compare their efficiency for cardiac sonothrombolysis
use.
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Abstract. Exposure to ultraviolet A (UVA) and ultraviolet B (UVB) radiation
can cause premature aging, sagging skin, hyperchromias and several mutations
in the DNA of cells. When UV radiation reaches the skin, it also produces free
radicals and the cumulative effect of exposure to sunlight can even lead to skin
cancer. Due to these harmful factors, the use of sunscreen is recommended as a
preventive measure. Nowadays, Sun Protection Factor (SPF), determined in vivo,
is a universal indicator of the efficacy of sunscreen products against sunburn. Faced
with the numerous options of brands, it is essential to know if the compositions
described on the packaging labels are really present in the product. Thus, this
study aims to identify the UV filters present in seven SPF 30 sunscreens by Raman
spectroscopy. SomeUVfilters informed in the composition of some samples, could
not be identified, since the characteristic Raman peaks were not found in the
literature, such as: bemotrizinol, diethylamino hydroxybenzoyl hexyl benzoate,
octyltriazone and homosalate. Raman spectroscopy can be an effective technique
to identify UV filters in sunscreens, in addition to being used in quality control.
The lack of identification of someUVfilters occurred due to the absence of Raman
spectra in the literature. This fact suggests the need to continue the study to obtain
theRaman spectra of these and otherUVfilters, in order to contribute to theRaman
spectra database.

Keywords: Sunscreen · UV Filter · SPF · Raman Spectroscopy

1 Introduction

When reaching the skin without protection, UV radiation causes several chemical and
morphological reactions, altering somemolecules present in skin cells. Cumulative expo-
sure to UV radiation can even lead to mutations in the cells’ DNA. UV radiation also
produces free radicals, which cause premature aging and cell death, and can cause more
harmful effects such as skin cancer [1–3]. Due to these factors harmful to the skin, the
use of sunscreen is recommended. Several studies demonstrated that the use of sunscreen
minimizes the effects of radiation on the skin [4, 5].
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The harmful effect of skin exposure to UV radiation is mediated by short-wavelength
(290-320 nm) UVB that reaches and affects the epidermis and long-wavelength (320-
400 nm) UVA that penetrates into the dermis. UVA radiation has subdivisions, classified
as UVA II (320–340 nm) and UVA I (340–400 nm). Excessive acute exposure to UVB
results in sunburn, which causes erythema. Due to the cumulative effect, even the mul-
tiple acute UVB exposure early in life, were associated with basal cell carcinoma and
melanoma [6].

The cases of skin cancer resulting from excessive sun exposure increases every
year. This neoplasm corresponds to about 30% of all malignant neoplasms in Brazil.
Skin tumors are related to some risk factors, especially exposure to sunlight, such as:
prolonged and repeated exposure, especially in childhood and adolescence; people who
work in direct sunlight are more vulnerable to non-melanoma skin cancer; having a low
phototype, with red or blond hair, or being albino; have a familiar history of skin cancer
[7].

Sunscreen is any cosmetic preparation intended to come into contact with the skin
and lips, with the sole or main purpose of protecting it against UVB and UVA radiation
by absorbing, dispersing or reflecting incident radiation [8].

Sunscreens are essential in the practice of photoprotection and may contain physical
filters to reflect and/or chemical filters to absorbUV radiation. In theUSA, sunscreens are
regulated by the Food and Drug Administration (FDA). European countries follow the
guidelines of the European Cosmetics Association (COLIPA). In Brazil and Mercosul
countries, the Agência Nacional de Vigilância Sanitária (ANVISA) regulates sunscreen
production [6, 8].

In a photoprotective formulation there may be several solar filters, but it is impor-
tant to note that some are incompatible and, if combined, will reduce the final SPF of
the product. For instance, the avobenzone is stable and effective when combined with
octocrylene but becomes unstable when combined with cinnamates such as cinoxate.
On the contrary, the combination of another active component can increase the level of
sun protection, improving photostability [9].

To assess the quality and effectiveness of sunscreens, SPF, UVA-PF, and water
resistance must be determined using in vivo methods, following USA and European
regulations [8, 10–14].

Sunscreens are classified according to a Solar Protection Factor (SPF) system, which
measures the protection offered by a particular sunscreen against the appearance of skin
erythema, which is basically caused by UVB radiation [6]. TheMinimum Erythematous
Dose (MED) is the minimum dose of ultraviolet radiation required to produce the first
noticeable erythematous reaction with clearly defined edges, observed between 16 and
24 h after exposure to UV radiation, according to the adopted methodology. The SPF
is primarily an indicator of effectiveness against UVB light. This standardized analysis
requires the application of 2 mg/cm2 of sunscreen in the test area [6].

The SPF is the value obtained by the ratio between the MED in a skin protected by
a sunscreen (MEDp) and the MED in the same skin when unprotected (MEDu) [8, 13]:

SPF = MEDp

MEDu
(1)
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The Minimum Pigmenting Dose (MPD) is the minimum dose of UVA radiation
required to produce a persistent pigment darkening of the skin with clearly defined
edges, observed between 2 and 4 h after exposure to UVA radiation. UVA Protection
Factor (UVA-PF) is the value obtained by the ratio between the MPD in a skin protected
by a sunscreen (MPDp) and the MPD in the same skin, when unprotected (MPDu). The
UVA-PF must correspond to at least 1/3 of the SPF value declared on the labeling [8,
13]:

UVA− PF = MPDp

MPDu
(2)

The effectiveness of a sunscreen depends on the amount applied, as shown in Table 1.
The current FDAstandard for sunscreen application is 2mg/cm2 for the product to deliver
the SPF described on the label. Studies suggest that sunscreen use by consumers is only
25% to 50% of the ideal amount, with an adult applying approximately 1/2 teaspoon
to each arm, face, and neck. About a teaspoon should be applied to each leg, chest and
back [9].

Table 1. SPF variation according to the amount of sunscreen applied [9].

SPF Amount of sunscreen applied to the skin

2.0 mg/cm2 1.5 mg/cm2 1.0 mg/cm2 0.5 mg/cm2

2 2.0 1.7 1.4 1.2

4 4.0 2.8 2.0 1.4

8 8.0 4.8 2.8 1.7

15 15.0 7.6 3.9 2.0

30 30.0 12.8 5.5 2.3

50 50.0 18.8 7.1 2.7

The components of sunscreens differ in their absorption spectra, as shown in Table 2.
Ideally, a sunscreen should provide protection against UV radiation across its full
spectrum [9].

Several studies used Raman spectroscopy to identify photoprotective ingredients,
solvents and other chemical compounds present in sunscreen formulations, especially the
physical and chemical filters of such formulations [15–19]. These studies demonstrated
that Raman spectroscopy can be an alternative for quality control and identification of
UV filters in sunscreens.

Raman spectroscopy consists of obtaining the Raman scattering, discovered in 1928
by C. V. Raman, which depends on the processes of inelastic scattering of a monochro-
matic light beam by the molecule due to the polarization induced by the incident light
beam. The Raman scattering measures the difference between the energy of the scat-
tered photon and that of the incident photon. Such variation allows obtaining information
about the chemical composition of the studied sample [20].
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Table 2. UV absorption limit (nm) of sunscreens [9].

UV Filter Type UV absorption
limits (nm)

Aminobenzoic acid (PABA) Organic or chemical 260–313

Homosalate Organic or chemical 300–310

Cinoxate Organic or chemical 270–328

Octyl methoxycinnamate Organic or chemical 270–328

Octyl salicylate Organic or chemical 300–310

Padimate O Organic or chemical 290–315

Phenylbenzimidazole Sulfonic acid Organic or chemical 290–320

Trolamine salicylate Organic or chemical 260–320

Methyl anthralin Organic or chemical 290–320

Oxybenzone Organic or chemical 270–350

Sulisobenzone Organic or chemical 270–360

Dioxybenzone Organic or chemical 260–380

Avobenzone Organic or chemical 310–400

Titanium dioxide (TiO2) Inorganic, physical or mineral 250–400

Zinc oxide (ZnO) Inorganic, physical or mineral 250–380

Padimate O Organic or chemical 290–315

This study aims to identify the presence of physical and chemical solar filters
described in the composition of six sunscreens and a lip balm, from seven different
brands, all with SPF 30, through Raman spectroscopy analysis. The justification for
the study is the constant need for methods that could be used in quality control of
pharmaceutical products.

2 Materials and Methods

In this study, seven products with SPF 30 from different brands were used as samples,
called P1 to P7 in the experiment, as follows:

P1: body sunscreen;
P2: colored facial sunscreen;
P3: facial and body sunscreen;
P4: lip sunscreen;
P5: body sunscreen;
P6: anti-aging facial sunscreen;
P7: facial sunscreen.
In addition to the seven samples studied, Tinosorb®M, Eusolex® 6300, avobenzone

and TiO2 solar filters were also analyzed for comparison with sunscreen samples and/or
references in the literature.
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The samples were submitted to Raman spectroscopy (model P1, Lambda Solutions
Inc., MA, USA, excitation wavelength: 830 nm, laser power: 450 mW, 4 cm−1 spectral
resolution) under the sameenvironmental conditions and laser power.Despite this, during
the experiment it was necessary to decrease the laser power when analyzing sample P2,
which has a beige color; such pigment was characterized as a chromophore and made
analysis difficult.

All readings were obtained in triplicate. After the experiment, the spectra were
submitted to pre-processing in theMicrosoft Excel software. The spectra were subjected
to baseline removal. Normalization was also performed by the area under the curve
(1-norm) to eliminate the variable intensity. Thus, it was possible to observe that the
characteristic peaks appear with approximate wavelength, but difference in intensity,
most likely due to the concentration being different in each analyzed sample.

The mean spectra obtained in triplicate from P1 to P7 were plotted in a single graph
to identify, through the positions and intensities of the peaks, which sunscreens had the
same composition, and if the concentrations of the compounds were different or the
same in the sunscreens studied.

3 Results and Discussion

The P1 sunscreen has in its composition the active ingredients: avobenzone [15, 16,
LAB*], oxybenzone [16] andoctocrylene [15]. In the obtainedRaman spectrumshown in
Fig. 1, it was possible to observe the presence of characteristic peaks of these compounds
obtained through the published literature (Table 3, which will be seen later [15, 16, 21–
23]). The good resolution of the spectrometer (4 cm−1) allowed getting spectra with
well resolved bands in the fingerprint range.

Fig. 1. Raman spectrum of the sample P1.

Among the UV filters described in P2 sample composition are octisalate [16], octi-
noxate [15, 16, 22] and benzophenone-3 [16]. These compounds identified in the Raman
spectrum shown in Fig. 2. TiO2, which should appear around 440 cm−1 [23], was not
identified. This may be due to the presence of the dye in the formulation, which is
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characterized as a chromophore/fluorophore, which caused absorption and consequent
emission of fluorescence, making it difficult to collect the Raman spectrum. There was
destruction of the sample and, consequently, a lower signal-to-noise ratio in relation
to the other products. The P2 analysis was repeated with lower laser power to obtain
adequate scattering, also improving the signal-to-noise ratio due to fluorescence.

Fig. 2. Raman spectrum of the sample P2.

For the bemotrizinol described in the composition of sample P3, no reference litera-
ture was found, but the other compounds such as avobenzone [15, 16, LAB*], octisalate
[16] and octocrylene [15]were identified from the characteristic peaks indicated in Fig. 3.

Fig. 3. Raman spectrum of the sample P3.

Sample P4 has in its composition two compounds that have no reference spectrum
in the literature, namely Uvinul® A Plus and homosalate. Octinoxate [15, 16, 22] and
TiO2 [23] were possible to be identified in the Raman spectrum, shown in Fig. 4.
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Fig. 4. Raman spectrum of the sample P4.

Sample P5 has in its packaging asmain ingredients TiO2 [23], Tinosorb®M [LAB*],
octisalate [16], octinoxate [15, 16, 22], avobenzone [15, 16, LAB*], Eusolex® 6300
[LAB*] and octocrylene [15], all these compounds were possible to be identified in
the Raman spectra on Fig. 5 according to the characteristic peaks of each ingredient
described in the literature.

Fig. 5. Raman spectrum of the sample P5.

In sample P6, only homosalate and Uvinul® A Plus that are not described in the
literature could not be identified in the spectrum of Fig. 6. Were identified TiO2 [23],
Tinosorb® M [LAB*], octinoxate [15, 16, 22], ODPABA [16], and octocrylene [15].
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Fig. 6. Raman spectrum of the sample P6.

The compounds bemotrizinol and Uvinul® T150 described in the label of sam-
ple P7 have no reference in the literature, making it difficult to identify them in the
spectrum shown in Fig. 7, in which the characteristic Raman peaks of the other pho-
toprotective actives appear, whose wavelengths were confirmed in the literature: TiO2
[23], octocrylene [15], avobenzone [16] and benzoic acid (ODPABA) [16].

Fig. 7. Raman spectrum of the sample P7.

The Tinosorb® M and Eusolex® 6300 solar filters (Fig. 8 and Fig. 9, respectively),
whose characteristic peaks could not be compared to the literature, were identified by the
experiment (LAB)* andmay need confirmation, through dilutions and comparisons with
sunscreens that have the same actives, and/or a new search for references, which would
imply in the continuity of the study. The fact that these samples were analyzed pure
(without dilution) may have made it difficult to read the Raman peaks from ingredients
in low concentrations.
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Fig. 8. Raman spectra of the samples P5, P6 and Tinosorb® M.

Fig. 9. Raman spectra of the sample P5 and of the Eusolex® 6300.

Table 3 shows all UV filters, marked with X, present in the respective sample compo-
sitions and the characteristic Raman peaks, according to the literature and/or experiment
(LAB)*.
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4 Conclusions

In this study, Raman spectroscopy analysis was performed to identify UV chemical
filters in seven SPF 30 products from different brands. Most of the ingredients informed
in the respective compositions were detected and identified through the characteristic
Raman peaks described in the literature and/or obtained by Raman spectra. However, the

Table 3. UV filters present in samples P1 to P7 and characteristic Raman peaks.

UV filters
(INCI name)

USAN** name
/ trademark [21]

UV filters present in samples, according
to manufacturers

Characteristic Raman peaks

P1 P2 P3 P4 P5 P6 P7 Literature / LAB*
(cm−1)

Samples (cm−1)

4-Methylbenzylidene camphor Enzacamene
Eusolex® 6300

X 1611 LAB*
1644 LAB*

P5: 1607/1638

Butylmethoxydibenzoylmethane Avobenzone
BMBM/DBM
Parsol® 1789

X X X X 1280/1601 [16]
1611 [15]
1607 LAB*

P1: 1608; P3: 1609
P5: 1289/1607
P7: 1610

Benzyl salicylate Benzoic acid
(ODPABA)

X X 1183/1277/1607/
1701 [16]

P6: 1606/1713
P7: 1610/1718

Benzophenone-3 Oxybenzone
BP3/BZ3

X X 1228/1305/1602/
1622 [16]

P1: 1305/1608
P2: 1306/1604

Bis-ethylhexyloxyphenol
methoxyphenyl triazine

Bemotrizinol
Tinosorb® S

X X X X Not found in the
literature

________________

Diethylamino hydroxybenzoyl
hexyl benzoate

Uvinul® A Plus X X Not found in the
literature

________________

Ethylhexyl methoxycinnamate or
Octyl methoxycinnamate

Octinoxate
EHMC/OMC
Uvinul® MC 80

X X X X 1170/1604/1634
[16]
1177/1605 [15]
1176/1608/1640
[22]

P2: 1172/1604/1636
P4: 1173/1606/1637
P5: 1173/1607/1638
P6: 1173/1606/1638

Ethylhexyl salicylate or
Octyl salicylate

Octysalate
EHS/OCS
Neo Heliopan®
OS

X X X 1033/1249/1325/
1466/1674 [16]

P2: 1033
P3: 1032/1448
P5: 1033/1311

Ethylhexyl triazone Octyltriazone
Uvinul® T150

X Not found in the
literature

________________

Homosalate Homomenthyl
salicylate
Eusolex® HMS

X X X Not found in the
literature

________________

Methylene bis-benzotriazolyl
tetramethylbutylphenol

Bisoctrizole
Tinosorb® M

X X 882 LAB*
1000 LAB*
1419 LAB*
1445 LAB*

P5: 1000/1423
P6: 884/1002/1422

Octocrylene Octocrylene
Uvinul® N539
T

X X X X X 1560 /1564 [15] P1: 1563 // P3: 1562
P5: 1578 // P6: 1571
P7: 1562

Titanium dioxide CI 77891
Eusolex®
T2000

X X X X X 450 LAB*
600 LAB*
440 [23]

P2: TiO2 wasn’t
found
P4: 452 // P5: 446
P6: 433 // P7: 444

* LAB: Samples or standards, not found in the literature that were submitted to analysis in the
spectrometer to verify the peakswith greater intensity,whichwere considered characteristicRaman
peaks, after comparing the products.
** USAN: United States Adopted Names Council
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characteristic Raman peaks of the actives: bemotrizinol, diethylamino hydroxybenzoyl
hexyl benzoate, octyltriazone and homosalate, reported in the composition of some
samples, were not found in the literature, and therefore could not be confirmed.

Among the UV filters described in the respective compositions and referenced in
the literature, only TiO2 was not identified in sample P2. The aforementioned sample
is a colored sunscreen, in which the dye is characterized as a chromophore/fluorophore,
causing absorption and emission of fluorescence, which made it difficult to collect the
Raman spectrum.

Raman spectroscopy may be considered a tool for identifying active ingredients in
sunscreens, but it would be necessary to continue this preliminary study to confirm the
Raman peaks characteristic of ingredients in which there is still no reference in the
literature.
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Abstract. Balance is an essential skill for human motor functioning that causes
a sense of security and is indispensable for stability during movement. In this
process, the postural orientation provides stimuli responsible for sensations of
movement that help in the environmental orientation. The reduction of balance
can favor the increase of falls providing some type of injury, which inmore serious
conditions lead to the need for care with therapies. Currently, one of the strategies
for maintaining balance is multisensory training, which consists of series of exer-
cises with sensorized equipment with static and dynamic metrics. One of these
equipment is the force platform that measures the fluctuation of the Center of
Mass (COM) and Pressure (COP) with load cells. To provide a balance training
experience for people who need it, a bipedal force platform with biaxial rotation
was used with a virtual environment designed to use the flexibility of chang-ing
the inclination of the force platform along with a game element.

Keywords: Balance board · Games · Responsive system

1 Introduction

Balance is an essential skill for individuals’ motor functionality and can be defined as the
ability to maintain stable posture despite external disturbances [1]. This skill is essential
to provide security and stability during movements [2].

In order for the individual to achieve postural stability, it is necessary to use several
sensory systems, which provide information according to the levels of attention [3].

Postural orientation has three main stimuli, exproprioception, which is responsible
for the sensation of position and movement of a body part relative to the environment,
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represented by the vestibular, auditory, somatosensory and visual systems. Propriocep-
tion, responsible for the sense of position and movement of a part of the body relative to
another, being represented by the somatosensory and visual system. And finally, exte-
roception, which is responsible for locating an object in the environment in relation to
another, represented by the auditory and visual system [4].

Impaired balance can favor an increase in falls, which consequently can increase the
risk of injury [5], in some cases, loss of balance can contribute tomore serious conditions
that require intensive care [6].

One of the strategies formaintaining postural balance ismultisensory training, which
consists of a series of exercises with static and dynamic metrics sensorized equipment,
which can be performed in any environment [7].

Among the studies collected in the systematic review of [8], therewere no games able
to directly control the actions of a dynamic force platform.A game capable of performing
this control could make the virtual environment more immersive and interactive. Such
a system could stimulate the player to continue training, increasing adherence to the
protocol [9].

Therefore, the objective of this study is to develop an immersive balance training
game capable of controlling the slopes of a biaxial dynamic force platform.

2 Material and Methods

2.1 Equipment Used

To assist the immersion and stimulate the individual’s motor training, a bipedal force
platform with biaxial rotation was used (Fig. 1). The equipment is composed of eight
load cells (Fig. 1A) distributed in two metal plates (Fig. 1B), they are coupled to an
axis controlled by four stepper motors (Fig. 1C), which receive command from the
microcontrollers by the speed of 74880 bps (Fig. 1D), which change the slope of the
metal plates of the platform.

Fig. 1. Force platform with biaxial rotation. A) Load cell, A) Load cell, B) Metal plate, C) Stepper
motor, D) Microcontroller.
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2.2 Platform/Game Interactivity

The interactions between the platform and the game occur via scripts by theVisual Studio
coding software, which establishes serial communication with the microcontrollers,
responsible for sending and receiving information from the respective hardware (Fig. 2).

Fig. 2. Platform/Game connection

When passing a checkpoint, the game informs the force platform slope value to the
motors microcontroller.

The gamemoves the avatar based on the value received from the equipment’s sensors.
The posterior sensors are responsible for the frontal movement at the beginning of the
game, the anterior sensors are responsible for the decrease in speed, and the lateral-lateral
sensors are responsible for the avatar’s medio-lateral movements (Fig. 3).

Fig. 3. Player movement



Development of a Responsive System 549

The player’s avatar has aRigidBody (responsible for gravity physics in the character),
a BoxCollider (responsible for collision interactions and platform tilt changes) and a
script (which counts the events during the level). In addition to interpreting the values
received by the microcontroller for movement. Movement is limited to a radius of 180º
(one hundred and eighty degrees) forward.

2.3 Game Development

The game was developed by the Unity Graphics Engine software, and modeled in 3D
by the Blender software.

It consists of a Ski Runner game and aims to go down a snowymountainwith a pair of
skis, it also contains several obstacles that, when reached, the descent speed is reduced,
thus causing an increase in the completion time of the game. To control the avatar, it is
necessary for the volunteer to move his center of pressure (COP) to the right or to the
left, thus generating the medio-lateral movement. The faster the volunteer reaches the
end game objective, the better his performance.

At the beginning of the game, the user is presented to the initial screen (Fig. 4A),
which allows the player to enter his name, connect with the force platform and finally

Fig. 4. Use case diagram. A) Start screen use case diagram. B) Use case diagram of the beginning
of the game. C) Endgame use case diagram.
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start the game. After pressing the start button, the screen switches to the avatar view,
which contains the match time and a representation of the player’s current speed. On
this screen, the player can start the course through an “Impulse” (Fig. 4B). At the end of
the path, the game ends with the non-player characters (NPCs) celebrating the player’s
arrival. Finally, the final screen is presented, with the total starting time and the number
of collisions with obstacles, on this screen there is a button for the game’s initial screen
(Fig. 4C).

The track is composed of a set of random terrain segments (prefabricated objects)
that have BoxCollider and RigidBody for interaction with the avatar. There is also a
script whose function is to randomly spawn objects in a straight line). Obstacles have
BoxCollider to count collisions and a script to slow down the avatar. The side barriers
contain RigidBody that prevent the player from leaving the specified route.

At the beginning of the game, the system generates random challenges, different in
number of obstacles and inclination from one stage to another.

The game has checkpoints (arcs) containing BoxCollider and script that inform the
desired inclination for the motors microcontroller that readjusts the inclination of the
platform (Fig. 5). The player must adjust their center of mass (COM) to match the slope
faced.

Fig. 5. 5 Checkpoint representation. A) Front Checkpoint; B) Checkpoint in three/fourth view.

During the course, the player must dodge obstacles by shifting his center of pressure
accordingly. If the player hits an obstacle, his speed will be reduced, increasing the time
needed to complete the course.

To validate the game’s features, a Black Box test was performed, which consists
of testing each software function, observing the behavior and analyzing each response
received by the command sent.
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The actions of the Home Screen Buttons, the “Impulse” function, the controls
of medio-lateral movements, actions of increase and decrease of speed, the expected
movements of the responsive system and the collisions of obstacles were analyzed.

At the end of each analysis, the answer given by the software is compared with the
programmed answer.

3 Results

The game is a Ski Runner and to implement and increase the player’s immersion in the
game, a realistic scenario was made (Fig. 6), stones (Fig. 7A), trees (Fig. 7B) and logs
(Fig. 7C) were implemented.

Fig. 6. Scenery.

When running the game, the user is directed to the initial screen (Fig. 8), where the
type of control is selected, the player’s name is entered and the game starts.

By pressing the start button the player will be directed to the player view (Fig. 9)
where he can start the game with a “Impulse” button.

The track is formed by side barriers and some type of obstacle, and at the end of
each obstacle sequence a checkpoint area is formed.

The checkpoint change areas (Fig. 10) were made to be visible during the game, thus
encouraging the player that from that moment on, the platform inclination and/or speed
can be changed.

Finally, when reaching the end of the course (Fig. 11) there is a commemoration
that symbolizes the end of the game and presents the information about the occurrence
of the game (Fig. 12). The game’s rewards vary depending on the player’s performance
during the level. The variables analyzed to determine the feedback are the time and the
total of collisions.

To validate the functionality of the software, the black box test was performed. This
test verifies the functions and performancewithout looking at the internal functionality of
the software [10]. The system is segmented into individual actions (seven actions), where
parts of the total functionality were disabled to observe individual behavior, comparing
the system response with the expected response.
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Fig. 7. Scene objects. A) Stones; B) Trees; C) Trunk.

Fig. 8. Game start screen. A) Control selection; B) Start game button; C) Connect to platform;
D) Insertion of name.

The results were organized in the board (Fig. 13) to verify if there is any problem in
the execution of the codes and functionalities.

3.1 Game Timeline

The game starts with the player’s impulse, that is, when leaning forward, the platform’s
front sensors capture the pressure exerted and send it to the game avatar. Upon passing
the first checkpoint, the platform tilts and starts the timer.

With the beginning of the game, the user will be able to perform side-to-side move-
ments thatwill be captured by the sensors tomove the avatar. Forward inclusions increase
the avatar’s speed, conversely, backwards inclusions decrease the avatar’s speed.
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Fig. 9. Player view. A) Speedometer; B) Stopwatch.

Fig. 10. Checkpoint.

Fig. 11. End of game.

The player’s objective is to reach the end of the track in the shortest possible time,
avoiding obstacles. Checkpoints are points that symbolize increase/decrease in the slope
of the track and change the slope of the platform.
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Fig. 12. End of game screen. A) Number of hits occurred; B) Game end/restart button; C) Total
travel time.

Fig. 13. Black Box functionality test.

At the end of the game, the player celebrates with the NPCs the completion of the
phase, which finally shows the time and the total number of collisions that occurred
during the game.
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4 Conclusions

A virtual environment was produced that can control and interact with a biaxial force
platform. The purpose of this game is to provide stimuli in real time through the inter-
face and to promote the experimentation of a snow skiing environment, consequently
helping in balance training to different audiences (elderly, patients with neurological
pathologies or in the process of motor rehabilitation due to sports or traumatic injuries).
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Abstract. Caries is a globally important public health problem that affect teeth
and may also cause problems for systemic health. High power lasers have been
studied as a adjuvant therapy for caries prevention and remineralization. Further-
more, OCT has been proposed as a diagnostic tool for dental caries due to changes
in the optical properties of enamel after demineralization. The aim of this study
was to evaluate the effects of diode laser irradiation on enamel remineralization.
Bovine enamel blocks were prepared and submitted to caries lesion formation
using an in vitro microbial model. Samples were incubated with Streptococcus
mutans suspended in a medium supplemented with sucrose during 4 days and
were additionally exposed to 10% sucrose 10 times/day. Then, caries lesion were
irradiated with a 808 nm diode laser (1 W, irradiance of 35.7 J/cm2, during 10 s)
and were submitted to remineralization process for 7 days. A commercial Optical
Coherence Tomography system, with wavelength of 930 nm, was used to anal-
yse the samples after caries formation and after remineralization process. OCT
detected enamel mineral loss promoted by caries lesion formation. After induc-
tion of remineralization, samples without treatment did not presented alteration
in reflectivity data suggesting no increase in mineral content. However, irradiated
samples showed a significant decrease in reflectivity results (P < 0.05). Our data
showed that diode laser irradiation successfully induce enamel remineralization.

Keywords: microbial model · dental caries · semiconductor laser · OCT

1 Introduction

Caries is an important public health problem with significant influence on the qual-
ity of life, and implications for systemic health. About 35% of the world population,
approximately 2.4 billion people, are affected by this disease. Untreated caries lesions in
permanent dentition are the most prevalent chronic oral disease observed in the Global
Burden of Disease Study [1, 2]. This disease presents significant numbers in different
age groups, in some countries the prevalence of dental caries varies from 27 to 64% in
children aged 12 years and adults up to 26 years 83% [3, 4].
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Caries development depends on the presence of cariogenic bacteria adhered to teeth
and sugar to cause a progressive loss of the mineral content. When fermentable carbo-
hydrates are ingested, it is metabolized by bacteria resulting in acid production which is
able to demineralize tooth structure. Over time, repeated events of mineral loss leads to
a subsurface lesion formation, and progression may lead to cavitation [4].

High power lasers have been proposed as a adjuvant therapy for caries prevention.
Due to its thermal effect, an increase of the acid resistance of the enamel can be achieved
by denaturation of the organic content, carbonate loss, and alteration of inorganic con-
stituents [5]. Recently, lasers have also been investigated for enamel remineralization
[6]. High power near infrared diode lasers are compact, portable and low cost compared
to other lasers, and have become popular in clinical practice.

Optical coherence tomography (OCT) is a tomographic imaging technique based on
interferometry with low coherence light. It was developed in the 90’s to obtain high-
resolution images of biological tissues in a non-invasive, non-destructive, painless and
real-time manner. The basic principle of the technique is based on the interaction of light
with the tissues. The light coming from an optical source is divided into two beams; one
of them is led to a reference mirror and the other to the sample. During light-tissue
interaction, a part of incident light is backscattered by subsurface layers of the tissue
and detected [7].

In the imagingprocess, theOCTshowsvalues proportional to the amount of backscat-
tered light as a function of depth, i.e., a longitudinal scan of the sample, which is called
A-scan. By shifting the light beam passing through a line, it is possible to obtain a set of
data of a cross section, which is called a B-scan. Near-infrared OCTs are generally used
for biological tissues because the light in this spectral region suffers minimal absorption
and moderate scattering, allowing resolution to a depth of typically 3 mm [7, 8].

The OCT technique has been studied as a diagnostic tool for dental caries due to
changes in the optical properties of enamel after demineralization. Images obtained by
OCTcan be evaluated qualitatively by identifying structures, dimensions and proportions
and quantitatively by analyzing reflectivity or total optical attenuation [8, 9]. UsingOCT,
demineralized enamel has been shown to promote a strong light backscattering [9].

Thus the aim of this study was to evaluate the effects of diode laser irradiation on
enamel remineralization assessed by OCT.

2 Methodology

2.1 Experimental Design

The experimental units were composed of 20 bovine dental enamel fragments divided
into 2 groups (n = 10). The factor under study was laser treatment, and the variable
response was the integrated reflectivity. Caries-like lesions were induced by an in vitro
microbial model. Caries lesions were irradiated with diode laser and submitted to in vitro
remineralization. The samples were evaluated byOCT after the enamel demineralization
and after 7 days of in vitro remineralization.



558 M. R. C. Oliveira et al.

2.2 Sample Preparation

Freshly extracted bovine teeth were kept in a 0.1% thymol solution at 4 °C until exper-
iment. Teeth with stains or enamel cracks were discarded. Then the samples were
randomly distributed into 2 groups: control and laser groups.

All specimens had the buccal surface sequentially abradedwith silicon carbide grind-
ing papers of 150, 250, 400 and 600 grit (Buehler-São Paulo, Brazil) with water in a
polisher. Enamel blocks of 7 x 4 x 4 mm were sectioned of the buccal surface with
diamond discs at low rotation under refrigeration. Half of each enamel block was cov-
ered by an acid resistant nail polish (sound enamel) leaving an area to be exposed to
demineralization process (caries lesion). After preparation, the samples were stored in
relative humidity. Before caries induction, the samples were washed and then sterilized
in an autoclave.

2.3 Formation of Caries Lesion

Caries lesions were formed using an in vitro microbial model using the bacteria Strep-
tococcus mutans (ATCC 25175). Prior to bacteria incubation, teeth samples were
treated with artificial saliva to prepare enamel surface for bacteria adhesion and biofilm
formation [10].

Bacteria was grown in BHI broth for 48 h, at 37 °C, under 5% of CO2. After
this period, enamel samples were incubated in a 24-well plate with 2 ml of S. mutans
suspension (106 CFU/ml) in BHI broth supplemented with 1% sucrose [11].

During 4 days, the blocks were exposed to 10% sucrose solution 10 times a day, for
3 min (09:00, 10:00, 11:00, 12:00, 13:00, 14:00, 15:00, 16:00, 17:00, 18:00 h) [10]. The
media (BHI with 1% sucrose) was replaced every 24 h. After 4 days, the samples were
carefully washed, disinfected in 2% chlorhexidine for 30 min, dried at room temperature
and stored at relative humidity prior to analysis.

2.4 Laser Irradiation

A commercial diode laser (Thera Laser Surgery-DMC-São Carlos-Brasil) with a wave-
length of 808 nm was used. Laser was manually applied by scanning enamel surface
with a 600µmoptical fiber, keeping a distance of 1 cm from fiber tip to sample. Samples
from laser group were irradiated with an output power of 1 W, irradiance of 35.7 J/cm2,
during 10 s.

2.5 Remineralization

In order to induce remineralization, enamel samples were immerse in a reminer-
alizing solution composed of H2O, HCL, KOH, CaCl2, (HOCH2)3CNH2, pH 7
(Fórmula&Ação, São Paulo, Brazil) for 7 days.
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2.6 OCT Analysis

The samples were evaluated by a commercial OCT system (OCT CALLISTO, Thorlabs
Inc., New Jersey, USA), operating in the wavelength of 930 nm, 1.2 kHz. Prior to
scanning, specimens were removed from relative humidity, washed with distilled water
gently dried with absorbent paper to remove excess of water.

OCT imagens were obtained for tested samples (from control and laser groups) and
sound enamel of each enamel block before remineralization, i.e. after caries formation,
and 7 days after remineralization. These images were constituted by a numerical matrix
of 2000 pixels per line and 512 pixels per column. Considering the enamel refraction
index of approximately 1.6 [12], we calculated a pixel resolution of 3.0 µm x 2.5 µm.

In OCT image of each sample, two regions of 150 columns (width) were selected
and a graph of reflectivity intensity as a function of depth (A-scan) was plotted. The first
three pixels correspond to a intense reflection due to the interface between the air and
the sample and were eliminated from the analysis. The reflectivity was integrated from
the surface to a depth of 150 µm. This data presents a correlation with mineral loss [8].

Then, a variation of the integrated reflectivity was calculated for tested groups
(control and laser) using the following equation:

�R = (IRT − IRS)
/
IRS

Where �R is the variation of integrated reflectivity, IRT is the integrated reflectivity of
test samples, and IRS is the integrated reflectivity of sound enamel.

2.7 Statistical Analysis

The data is presented as integrated reflectivity. They were analyzed to verify the assump-
tion of normality using Shapiro–Wilk test. Comparisons between groups were made by
T-test. For all tests, the significance level was set at 5%.

3 Results and Discussion

In OCT analysis, light interacts with matter and photons that were bounced back are
detected to provide an image of the irradiated object. Dental enamel is a cristaline
heterogeneous structure, and a modification of mineral content alters its interaction with
light. For this reason, we examined the ability of OCT to detect changes induced by
demineralization and remineralization of incipient caries-like lesions.

Figure 1 shows a OCT image of one enamel block with a sound and a caries region.
In the sound enamel, a large subsurface zone in light gray indicates less signal coming
from this region. In a carious portion of enamel, there is an increase of reflectivity
below enamel surface, seem as white image, due to mineral loss. The signal suddenly
drops, and assuming that it occurs in the lesion limit, the depth of the carious lesion was
approximately 114 µm.
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Fig. 1. OCT image of sound enamel (left part of the image) and enamel with caries lesion (right
part of the image)(Color Figure Online)

Seven days of immersion in remineralizing solution did not alter the variation of
integrated reflectivity of carious enamel samples from control group (Fig. 2, P > 0.05).
On the other hand, irradiated samples presented a significant decrease of variation of
integrated reflectivity after the remineralization process (P < 0.05) indicating that diode
laser irradiation successfully induce enamel remineralization.

Fig. 2. Variation of integrated reflectivity of caries enamel samples of control and laser group
before and after remineralization

The use of diode laser is very popular in current dentistry, specially for surgical
procedures. A 808 nm diode laser did not present absorption by major enamel con-
stituents, i.e. water and hydroxyapatite, to induce physical modification of enamel struc-
ture in a similar manner of Er, Cr:YSGG and CO2 lasers [5]. Nevertheless, the effect
observed in our study can be related to denaturation of the organic components, which is
achieved at lower temperature compared to alteration of inorganic content [5].Moreover,
infrared diode laser associated to fluoride agents were also reported to enhance enamel
remineralization [6].

Enamel image acquisition by OCT is rapid and non destructive, permitting repeated
analysis of a sample. In the present study, OCT was applied for quantitative analysis of
mineral loss and may be used for monitoring lesion remineralization. We observed that
the high power diode laser successfully induce enamel remineralization. Further studies
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are been conducting to investigate therapies association and longer remineralization
period.

4 Conclusion

Our results indicate that irradiation of enamel caries lesion with 808 nm diode laser
induced remineralization. Analysis of OCT images using integrated reflectivity was
able to quantify enamel mineral changes.

Acknowledgment. The authors would like to thank CNPq (304004/2020-4).

Conflict of Interest. The authors declare that they have no conflict of interest.

References

1. GBD:Disease and Injury Incidence andPrevalenceCollaborators (2016)Global, regional, and
national incidence, prevalence, and years lived with disability for 310 diseases and injuries,
1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet
388(10053), 1545–1602 (2015)

2. Mathur, V.P., Dhillon, J.K.: Dental caries: a disease which needs attention. Indian J. Pediatr.
85(3), 202–206 (2018)

3. Benjamin, R.M.: Oral health: the silent epidemic. Public Health Rep. 125, 158–159 (2010)
4. Peres, M.A., Macpherson, L.M.D., Weyant, R.J., et al.: Oral diseases: a global public health

challenge. Lancet 394, 249–260 (2019)
5. Al-Maliky, M.A., Frentzen, M., Meister, J.: Laser-assisted prevention of enamel caries: a

10-year review of the literature. Lasers Med. Sci. 35(1), 13–30 (2020)
6. Xue, V.W., Yin, I.X., Niu, J.Y., et al.: Combined effects of topical fluorides and semiconductor

lasers on prevention of enamel caries: a systematic review and meta-analysis. Photobiomodul
Photomed. Laser Surg. 40(6), 378–386 (2022)

7. Monteiro, G.Q., Montes, M.A., Gomes, A.S., et al.: Marginal analysis of resin composite
restorative systems using optical coherence tomography. Dent. Mater. 27, 213–223 (2011)

8. Le, M.H., Darling, C.L., Fried, D.: Automated analysis of lesion depth and integrated
reflectivity in PS-OCT scans of tooth demineralization. Lasers Surg. Med. 42(1), 62–68
(2010)

9. Maia, A.M., de Freitas, A.Z., de L Campello S, et al.: Evaluation of dental enamel caries
assessment using quantitative light induced fluorescence and optical coherence tomography.
J. Biophotonics 9(6), 596–602 (2016)

10. Maske, T.T., van de Sande, F.H., Arthur, R.A., et al.: In vitro biofilm models to study dental
caries: a systematic review. Biofouling 33(8), 661–675 (2017)

11. Hayati, F., Okada, A., Kitasako, Y., et al.: An artificial biofilm induced secondary cariesmodel
for in vitro studies. Aust. Dent. J. 56(1), 40–47 (2011)

12. Freitas, A.Z., Zezell, D.M., Vieira, N.D., et al.: Imaging carious human dental tissue with
optical coherence tomography. J. Appl. Phys. 99(2), 024906 (2006)



Acute Effect of Photobiomodulation with LED
in Apparatus on Power in Hip Muscles

in Classical Ballerinas

Mariana A. N. Duque(B) , Bruno H. Godoi , Sergio L. Lemos ,
Elessandro V. Lima , Fernanda M. G. Gonzaga , and Juliana Ferreira-Strixino

Photobiology Applied to Health Lab (PhotoBioS), Research and Development Institute (IP&D),
University of Vale do Paraíba (UNIVAP), São José dos Campos-SP, Brazil

mariana.duque@univap.br

Abstract. Classical Ballet generates mechanical stress on the musculoskeletal
structure, with the hip joint being one of the most requested. This study aimed to
evaluate the acute effect of photobiomodulation on the hip abductor muscles in
classical dancers using a Light Emitting Diode (LED) device at a wavelength of
850 nm (infrared). Twenty-three classical dancers aged 18 and 30 participated in
two days: the control group (CG), without LED irradiation, and the InfraredGroup
(GI), with one week between collections. The participants evaluated the power
in the concentric phase of the abductor and adductor muscles in the Isokinetic
Dynamometer, performing 05 repetitions of abduction and adduction of the hip
with an amplitude of 30 degrees and angular velocity of 120°/s. Data processing
using Matlab software showed significant improvement (p < 0.05) in the power
of the abductor muscles of the right and left lower limbs with Infrared LED
intervention. Most of the literary findings did not recommend a total delivered
energy of 17.5 J and an energy density of 4.46 J/cm2, suggesting the reason why
there was no increase in power also in the hip adductors. However, research has
shown results effective with a density of 5 J/cm2 but in muscle groups with a
smaller area. It was concluded that even with a significant result with infrared
LED on muscle power, further studies are necessary with variation in parameters
for irradiation, such as the area of coverage of the LED apparatus or an increase
in photobiomodulation sessions.

Keywords: Hip lesions · Ballet · Low intensity light therapy ·
Photobiomodulation

1 Introduction

The activities developed in Classical Ballet highly demand the lower limbs, and injuries
to the hip, knee, and ankle affecting cartilage, ligaments, tendons, or bursa can lead
dancers to withdraw from their activities [1].

About 17.2% of injuries in dancers occur in the hip [2] due to the extreme level of
activity to which they are subjected, incorrect injury diagnosis, or incomplete recovery
[3].
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It is necessary to analyze the strength of the hip abductor muscles of dancers, as it
is considered relevant for the prevention and recovery of the hip, knee, or ankle injuries
since Classical Ballet is an activity that requires excellent mechanical effort. In addition,
it suffers an aggravation when considering the use of pointe shoes by the female gender,
which completely alters the distribution of weight and the mechanics of movement and
gait [4].

Intervention with photobiomodulation can help muscle recovery, increase strength
and consequently prevent injuries [5, 6], an essential factor for this public. The Light
Emitting Diode (LED) is a light source with a photobiomodulation action with positive
effects that can enhance muscle function and improve exercise performance.

This preliminary study describes part of the development and validation of the pro-
totype of apparatus for irradiation, which aimed to evaluate the acute effect of photo-
biomodulation on the abductor and adductor muscles of the hip using LED in the region
of 850 nm.

2 Materials and Methods

2.1 Materials

The Biodex Multi-joint System 3 Isokinetic Dynamometer from BIODEX MEDICAL
SYSTEMS INCwas used to collect data on the power and total work of the hip abductor
and adductor muscles. In addition, to confirm the hip’s abduction and adduction angle, a
Goniometer was used, which confirmed the angular amplitude electronically established
by the equipment.

For photobiomodulation intervention, a LED apparatus was developed, with dimen-
sions of 30 cm high by 60 cm long, with a total of 20 LEDs, controlled by a micro-
controller under the registered software BR512021001498-7, which required the use of
protective eyewear for the researcher and participants to reduce eye risks due to infrared
irradiation. Furthermore, the time of application of photobiomodulation was controlled
by the stopwatch of the cell phone (model Samsung S20 Plus).

The apparatus has twomain programs, irradiation with 660 nm LEDs (Red) and irra-
diation with 850 nm (Infrared). The equipment calibration was carried out in partnership
with the company Biopdi-Equipment for Testing Materials, which provided access to
the Equipment Console of the PM100D Energy Meter coupled to the ThorLabs S350C
sensor.

Measurements were obtained from the quantification of LEDs individually. The
fluence was calculated for each LED independently since the irradiation points are
independent, and there is contact with the irradiated location. The parameters of the
Infrared LED used were: power - 3 W; voltage - 1.6 to 2.0 V; current – 700 mA;
wavelength - 850 nm ± 5; Infrared LED number – 10 LED (Table 1).
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Table 1. Properties of the LEDs apparatus

LED Power 3 W

Wavelength 850 nm ± 5

Photobiomodulation Apparatus Power 30 W

Energy Density of Each LED 2 J/cm2

Total Energy 17.5 J

Spot Size of the LED 1 cm2

Irradiation Time 10 s

The Infrared LED was applied for 10 s, delivering 17.5 J of total energy. The choice
to work with an energy density close to 20 J/cm2 is due to literary findings on the
applicability of photobiomodulation to improve muscle performance [7]. On the power
set display, it is possible to set the brightness, which at the same time changes the
delivered power density.

Methods. The study was characterized as a descriptive cross-sectional analysis of the
power of the Hip Abductor Muscles of Classical Ballet practitioners.

This research protocol was submitted for analysis by the Research Ethics Com-
mittee (CEP) by Plataforma Brasil and was approved under the CAAE protocol:
40119520.3.0000.5503, being conducted per resolution nº 466/2012 of the National
Health Council (CNS). All participants were previously informed and oriented about
the procedures to which they would be submitted. After full acceptance, they signed the
Free and Informed Consent Term, being also instructed that they could stop participating
in the research anytime and without any burden.

This research protocol was carried out at the Biodynamics and PhotobiologyApplied
to Health Laboratories (PHOTOBIOS), belonging to the Research and Development
Institute (IP&D) of the University of Vale do Paraíba (Univap).

ClassicalBallerinas aged 18 and30yearswere recruited. The choice of age is justified
by the changes that occur in the body over the years due to the aging process, such as the
reduction in the cross-section of the muscle, with more significant intramuscular fat and
collagen content; decreased muscle strength; loss of mineral salts; among others [8–10].

Twenty-three women from Cia de Dança and ballet academies in São José dos Cam-
pos – SP, Brazil, participated in this study. The research participants were submitted to
two collection moments on two different days, with a one-week interval between them.
One collection was considered a Control Group (CG), with the protocol performed with-
out LED application, and one was considered a Group with Infrared LED Application
(GI).

Procedures. Measurements were performed by the same researcher who instructed the
participants not to practice physical exercise on the day of data collection. A specific
warm-up was performed for the abductor muscles (Fig. 1), consisting of 25 repetitions
of standing abduction with a miniband elastic. The specific warm-up was used with a
comfortable number of repetitions and intensity, and movement and amplitude similar
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Fig. 1. Specific physical warm-up using a mini band

to what would be performed in the test [11], thus not exerting influence on the acquired
results, only fulfilling the objective of preparation for the main exercise, preventing
possible injuries [12].

After warming up, for data recording, they were positioned on the examination table
in lateral decubitus, with the limb to be tested facing up, trunk, and contralateral lower
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limb secured by a belt. The dynamometer’s axis was aligned with the intersection of
two straight lines: one medial to the Greater Trochanter of the Femur and the lever arm
medial to the patella. The limb to be tested was set at 0°, referring to the participant’s
hip-width (Fig. 2) measured with the goniometer. From there, a range of 30° (Fig. 3) of
hip abduction was applied, calculated by the dynamometer. Although initially, the test
was performed on the dominant and contralateral sides to instruct and adapt the patient
to the equipment, the first evaluation may not reflect the individual’s natural capacity,
which is called the learning effect [13]. Thus, the first test was excluded but used as a
specific warm-up.

Fig. 2. Initial angle of hip abduction



Acute Effect of Photobiomodulation with LED in Apparatus on Power 567

Fig. 3. Final angle (30°) of hip abduction

Then, the intervention with LED was performed (Fig. 4) or a 2-min rest in the case
of the session without its application, followed by the test with 05 repetitions at an
angular speed of 120°/s [14]. The repetitions reproduce the hip abduction and adduction
movement, with the limb fixed to the Dynamometer equipment. The Dynamometer
software recorded the concentric phase of hip abduction and adduction movements. The
LED blanket irradiated 10 points distributed over the area of the Abductor, and Adductor
Muscles of the Hip, with an Infrared, LED delivering 17.5 J of total energy for 10 s at a
wavelength of 850 nm.
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The data obtained in the collections with the isokinetic dynamometer in the txt
format were transported in spreadsheets in Microsoft Excel. Later the normalization and
the statistical treatment were carried out with the help of the MATLAB software. The
analyzes for Potency verified the normality of the data by the Shapiro-Wilk test, and
the unpaired one-way ANOVA test was applied to standard data and confirmed by the
Holm-Sidak test. Finally, the p-value was considered for the significance level <0.1.

Fig. 4. Lower member overlapping the LED apparatus

3 Results

The results showed a significant difference (p < 0.1) for the Power in the hip abductors
with the application of infrared LED (GI) when compared to the Control Group (CG),
without the application of LED (Fig. 5), in the execution of the lower limb left side
(PABD-e).

In the comparison of Power in the hip adductors, there was a significant difference (P
> 0.1) between the control group (CG) and the group irradiated with infrared LED (GI),
both in the execution of the lower limb left side and for the right lower limb (PABD-e
and PABD-d).
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Fig. 5. Power analysis between group without irradiation and with Infrared LED irradiation Sub-
title. A - abduction without LED versus with LED on the left side; B - adduction without LED
versus with LED on the left side;C – abduction without LED versus with LED on the right side;D
- adduction without LED versus with LED on the right side; PABD_Max – maximum abduction
power; PADU_Max - maximum adduction power; esi – left without irradiation; eci - left with
irradiation; dsi - right without irradiation; dci - right with irradiation; *Significant Difference p<
0.1.

4 Discussion

Muscular power is the product of strength by speed over time, that is, the ability to
produce strength quickly, being one of the most critical physical valences for sports,
such as Classical Ballet [15, 16].

Studies to verify the influence of photobiomodulation using laser or LED on the per-
formance of the musculoskeletal system, such as muscle power, are frequent. Some
of these studies showed significant results in athletic performance or physiological
responses at the cellular level [17–19]. However, others did not show any benefit in
muscle performance in their results [20–22]. Divergent results may occur due tomanipu-
lating the different methodological variables (type of equipment used, irradiation density
applied, research sample, gender, age group, training level, cell type used).

Irradiated cells absorb light through the respiratory chain, activating the Cytochrome
C Oxidase enzyme in the mitochondria and cytoplasmic membrane, triggering various
effects after light absorption, such as increased concentration of adenosine triphosphate
(ATP). Given the fundamental role of mitochondria in ATP production, one of the effects
is its increase and modulations in the rates of DNA and RNA synthesis, which affect
cell proliferation and gene expression of various cellular pathways (mitosis, apoptosis,
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inflammation, and cell metabolism, mitochondrial energy), which may be related to the
benefits of treatment with photobiomodulation in skeletal muscle during exercise and
also in regenerative actions [5].

The few studies on the effect of photobiomodulation on hip abduction action used
an energy density of 20 J/cm2 for the analyzed area [7], higher than the one used in this
study (4.6 J/cm2, approximately four times lower density energy, or 17.5 J of total area).
Still, a significant difference was found in the study.

According toAlves, Furlan, andMotta [7], the energydensity delivered for irradiation
of the biceps, rectus femoris, and soleus muscle, with significant results, was 5 J/cm2

or 20 J of total energy. These results corroborate those found in this study, with energy
density similar to that applied to the abductor muscles (4.46 J/cm2 for infrared LED).

The significant results in the researchmentioned abovewere obtained through photo-
biomodulation in only one muscle (biceps, rectus femoris, or soleus) since this research
used similar energy density to obtain the same results in 8 muscles in the case of the
abductors (larger area irradiated by the LED blanket). The same authors also cite differ-
ent irradiation densities, such as 60 J of total energy for the biceps muscle, which had a
significant result with 20 J of total energy. Therefore, it seems necessary to recalculate
the energy density variables to higher values to obtain positive torque and total work
results, not analyzed in this work, for the muscles responsible for hip abduction and
significant results for the hip adductors. They were perhaps using higher energy density
since the preliminary results need a statistical treatment and a greater probability of
significance (p-value) to understand the effects of irradiation.

5 Conclusions

The results showed a significant difference in the increase in Muscle Power of the hip
abductors on the left side and the adduction movement on both sides with Infrared LED
irradiation compared to the condition without irradiation. Therefore, further research
should involve the hip joint using different Infrared LED irradiation densities.
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Abstract. For balance training, one of the methods used is gametherapy, which
consists in the use of games for a better motivation of the patients. Thus, the objec-
tive of this work was to develop three games for balance training that explore lat-
erolateral and anteroposterior movements, as well as the combination of both. The
games were developed and tested with a force platform with controlled inclina-
tion, which is used to control the game avatars. To test the platform’s functionality,
weights were placed on the equipment, and the response of the sensors was ver-
ified. The games were evaluated by two distinct groups of professionals: the first
composed of 5 system/game developers, and the second by 5 physiotherapists.
To this end, two questionnaires were developed based on regulatory standards for
software development and quality and on the System Usability Scale (SUS). In
the functionality test, the sensors responded by increasing their values according
to the region of the platform being pressed. The responses obtained in the SUS
questionnaire presented a score of 81 in the evaluation of the physiotherapists and
83 in the evaluation of the system developers. Both values classify the system as
good, according to the SUS scale. Games can be a very useful tool with great
potential for use in balance training and rehabilitation. The developed systemmay
bring a significant improvement in treatments, as well as help the health profes-
sionals by increasing the possibilities of applied techniques, thus reaching a longer
permanence of the patient during treatment, with the motivation to use the games.

Keywords: Balance · Software tests · Gametherapy · Unity

1 Introduction

Postural control can be defined as a complex motor skill arising from the interaction of
multiple sensorimotor processes [1]. The neuromuscular responses aim to ensure that
the body’s center of gravity (CG) is maintained within the support base (area formed by
the lower limbs) [2, 3]. Thus, over time, postural training methods have been developed
aiming at improving orthostatic balance [4]. For balance training, unstable platforms
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such as the wobble board are commonly used [5]. Either by strengthening the lower
limb stabilizing muscles, by improving proprioception, or by improving the muscle
activation capacity [6].

One of the resources to improve balance training is the implementation of virtual
reality. This system is capable of simulating balance training activities, increasingmobil-
ity and reducing the fear of falls [7]. On this way, [8, 9] define that balance training based
on computerized games can improve patient motivation, raising the training capacity.

In the [10] study a wii balance board was used to control the games. However, on
the wii balance board the patient cannot be tested in tilting situations, which is more
indicated [9]. In another study [11] a Kinect controlled gamewas developed along with a
force platform. However, in this work the force platform is only used for data collection
and not for controlling the game. Other authors [9] made a manually tilted platform with
three games. However, the tilt of this platform is manual and limited to angles multiple
of 5.

Therefore, a game system controlled by a force platform with biaxial rotation could
better adapt to the exercises and the needs of each patient. This way, the training can
be done in several angles, generating a personalization with different degrees of diffi-
culty. Thus, the objective of this work was to develop a gametherapy proposal based on
the application of three virtual games, where each one of them allows the training of a
different type of movement, being the first focused on the laterolateral movement, the
second focused on the anteroposterior movement, and the third focused on the combi-
nation of both movements. The games developed have an interaction interface through
the movement of the player on a force platform.

2 Material and Methods

2.1 Equipment

To control the avatars of the developed games, a biaxial force platform with controlled
inclination is used [12]. It has the ability to change its inclination through four step
motors controlled by a microcontroller, allowing its use in various inclinations (Fig. 1a).
This platform has eight load cells fixed on its surface (Fig. 1b). Its sensors allow the
movement or control of the game as soon as they are pressed.

In order to test the functionality of the force platform, we first used two alters with
eight kilograms each. They were placed in the front region of the platform, one between
sensors 1 and 2, and the other between sensors 5 and 6. Then it was observed if these
sensors increased their value read by the microcontroller’s analog ports, in order to test
the avatar’s response, either moving forward or upward depending on the game to be
played. The same was done by placing the loads between sensors 3 and 4, 7 and 8. For
the right side, the loads were placed between the four sensors, being 5, 6, 7 and 8. Finally,
the same test was performed for the left side with the loads between sensors 1, 2, 3 and
4, thus registering their values. By increasing the values of each sensor depending on
the region pressed, it is possible to determine the control of the avatars. Through this,
the patient can be trained by inducing him/her to perform laterolateral or anteroposterior
movements. The following flowchart shows how the avatar control is performed (Fig. 2).
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Fig. 1. a) Biaxial force platform with controlled inclination; b) Positioning of the load cells that
allows the control of the avatars.

Fig. 2. Flowchart showing the difference between the sensors for moving avatars.

2.2 Game Development

For this study, the Unity multiplatform 3D game engine was used. Through this tool,
three games were developed, each responsible for the training of different movements:
Balance Block Breaker (Fig. 3a), for training laterolateral movements; Balance Bird
(Fig. 3b), for training anteroposterior movements; and Balance Maze (Fig. 3c), for
training laterolateral and anteroposterior movements.

2.3 Game 1 – Balance Block Breaker

In Balance BlockBreaker, the objective is to bounce a ball off a series of blocks located at
the top of the screen using a board at the bottom. The board is controlled by a laterolateral
movement on a force platform.
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Fig. 3. Unity game development screens; a) Balance Block Breaker game development screen;
b) Balance Bird game development screen; c) Balance Maze game development screen

2.4 Game 2 – Balance Bird

The goal of Balance Bird is to control a bird that moves at a constant speed, in order
to pass through obstacles located in front of it, the more obstacles it passes, the more
points it receives. The control is done through anteroposterior movement.

2.5 Game 3 – Balance Maze

In the game Balance Maze, an avatar in the ball form is controlled on a 3D plane inside
a maze. The goal of the game is to collect crystals scattered throughout the labyrinth, for
each crystal collected, the player gets one point.When all available crystals are collected,
the game is finished and the score and game time are recorded in the player’s profile. The
movements of the ball are free for all axes, so the player must combine anteroposterior
and laterolateral movements to control the ball and complete the maze.

2.6 Game Validation

According to the literature [13], to test the quality of a computerized system 5 evaluators
are necessary, because about 85% of the errors are listed and after this number the same
problems will tend to be observed. In this sense, to evaluate the quality of the system
proposed in this study, 10 evaluators were invited, divided into 2 groups according to
their backgrounds. Group 1 was composed of 5 physiotherapists, aiming at evaluating
whether the system proposes movements that may contribute to balance improvement.
Group 2 was composed of 5 developers aiming to evaluate the system’s usability. This
multidisciplinary approach aimed to obtain opinions from several angles of the system
application.

This evaluation was done using specific questionnaires based on the training of
the evaluators. Following the NBR ISO/IEC 9126-1 [14] to validate the games, the
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principles of using questionnaires proposed by John Brooke [15], called SUS (System
Usability Scale), were adopted. SUS presents excellent consistency of results for tests
with relatively small sample sizes [16].

However, due to the difficulty of performing the tests in person, we recorded a video
of the system working for each game. For this, four different views of the force platform
were filmed (Fig. 4a). Camera 1 filmed the front view (Fig. 4b), camera 2 filmed the side
view (Fig. 4c), camera 3 filmed the oblique view (Fig. 4d), and camera 4 filmed a rear
view (Fig. 4e). The videos were then edited to present all four views at the same time
and sent to the experts along with the questionnaire.

Fig. 4. Concept map of feature recording. a) Biaxial force platform; b) Frontal camera; c) Side
camera; d) Oblique camera; e) Rear camera.

3 Results

The developed games establish a serial communication with the biaxial force platform.
When starting the game, the platform is tilted to the desired angle, which can be between
0 and 20 degrees. This tilt can be forward, backward, right, or left. Through this, balance
training is conducted with games.

The avatars are controlled according to where the force platform is pressed. The
Table 1 shows the values of the admensional reading of the microcontroller’s analog
ports, obtained in the platform functionality test.

Table 1. Value of the sensors when pressed

1 2 3 4 5 6 7 8

No load 0 0 0 0 0 0 0 0 Avatar standing still

load between 1;2;3;4 2 2 0 0 2 2 0 0 Avatar goes left

load between 5;6;7;8 0 0 2 2 0 0 2 2 Avatar goes to the right

load between 1 and 2; 5 and 6 0 0 0 0 2 2 3 3 Avatar goes up or forward

load between 3 and 4; 7 and 8 2 2 2 4 0 0 0 0 Avatar goes down or goes back

In the game Balance Block Breaker (Fig. 5a), for the control of its avatar, the move-
ment in the X axis is considered, inducing the player’s movement in laterolateral. In the
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Balance Bird game (Fig. 5b), for the control of its avatar, the movement in the Y axis
is considered, inducing the player’s movement in anteroposterior. In the Balance Maze
game (Fig. 5c), to control the avatar, both axes are combined, leaving the player more
free, combining anteroposterior and laterolateral training.

Fig. 5. Developed balance training games. a) Balance Block Breaker; b) Balance Bird; c) Balance
Maze

Due to the pandemic state, the device validation was done through videos (Fig. 6). In
line with the Ministry of Health and in order to avoid contamination with the COVID-19
virus, everyone involved was properly protected.

Through the SUS scale, the following results were obtained and are showed in
Table 2:

The results obtained from the evaluation of the physical therapists reached an average
of 81 points on the SUS scale. And the results obtained by the System Developers
evaluation reached an average of 83 points by the SUS scale. According to the literature
[17], the results of both groups are classified as a B. The literature [18] further states
that the average SUS scale is 70.14 points, and that tests with scores above 70 but below
90 can be considered good. Thus, one can legitimize the evaluation of professionals in
the correlated areas of study.

4 Discussion

In this study, 3 digital games were developed using the Unity game engine [19]. The
games were associated with a force platform, and offer conditions for the individual to
experience obstacles and difficulties of the real world in a safe way. Likewise, the study
[20] used Unity in the development of its game for balance training in the elderly and
the work [21] used a force platform to train balance in the elderly in a controlled and
safe way.
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Fig. 6. Balance Block Breaker game recording

Games can be considered a tool for balance training, helping health professionals
[20]. They can bring more concentration to the individuals who are using them, provid-
ing a playful and more attractive environment when compared to conventional training
methods, also being used for rehabilitation [11].

The present study developed games for balance training, and they were combined
with a force platform with controlled inclination that is used to control the Avatars of the
games. Thus, several protocols can be performed, using the inclined platform at different
angles, inducing the patient to maintain his balance by performing anteroposterior and
laterolateral movements.

Thesemovements canbring results of improvement to the individual, since for this the
sensorial and motor system is trained. One of the factors that influence postural balance
is the stabilization of the ankle joint [21]. Through it, the movement of plantar flexion
and dorsiflexion is performed, and it also influences the anteroposterior and laterolateral.
Somemuscles are also part of this system, such as the medial gastrocnemius and anterior
tibial [22]. All of this can influence postural balance [23].

As the individual needs to move to control the games, this makes them dynamic, and
may also train compensatory postural adjustment and anticipatory postural adjustment.
The fact that the games have a scoring system and a time register allows the evaluation
of the individual’s evolution during the gametherapy sessions.

Each game is designed to suit a specific type of movement, unlike commercial games
that cannot be changed and are inaccessible to some participants [24].

During the SUS evaluation, a combination of specialists in software development and
in physiotherapy brought about a broad evaluation of the system from different points
of view. The results showed that it was simple, userfriendly, easy to use and totally safe,
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Table 2. Average per questions in the SUS assessment questionnaire

SUS assessment results for physiotherapy experts

Item Question Average

1 The movements made in the proposed games areappropriate for balance
training

4,8

2 The games weren’t able to motivate the user’s interest for a use 2,0

3 The games presented in any way may harm or damage the player’s health 1,6

4 Gametherapy is not able to provide an improvement in balance training 1,0

5 They would often use the proposed gametherapy system in their therapies 4,8

6 The use of game therapy is not able to motivate balance training 1,2

7 You were satisfied with the functioning of the proposed gametherapy
system

4,6

8 Wouldn’t need technical help to use the proposed system 3,0

9 You were satisfied with the application of the safety structure to prevent
accidents

4,8

10 You would not subject your patient to training using the proposed system 1,0

SUS assessment results for development experts

Item Question Average

1 The game is able to attract user interest to interact 5,0

2 The game is not able to provide easy operation and control to the user 2,2

3 The game is able to provide the results accurately and effects correctly as
intended

4,0

4 The game lacks the ability to perform functions to accomplish tasks and
goals

1,0

5 The game is able to prevent software or interface malfunctions 3,4

6 The game is not able to recover data if there is a crash while running the
software

2,6

7 The game is easy to collect data 5,0

8 The game is unable to process and respond while performing its basic
functions

1,2

9 The game has stability, due to possible changes in the software 3,8

10 Without the need for other actions, the game does not have adaptability to
different environments

1,8

without the need for great interference in usability. According to the literature [25], the
SUS scale is a robust means of evaluation, being used in a variety of systems and/or
devices.
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5 Conclusions

According to the proposed objectives, the presented project can offer a useful tool to
the health area, especially to the rehabilitation area, helping professionals who deal with
balance in the therapeutic processes.
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Abstract. The cell morphology analysis is applicable to pathophysiology studies
in biological samples. In this work, digital images of Human Umbilical Vascu-
lar Endothelial Cells (HUVEC) were classified according to their morphological
properties, to help the detection of functional and/or structural anomalies for the
study of angiogenesis, a process by which new capillaries are formed from pre-
existing capillaries. The automatic classification was produced by the algorithms:
support vector machine (SVM), k-Nearest Neighbors (k-NN), and decision trees
(DT), with three classes: circular, elongated deformed (elongated), and slightly
elongated deformed (others deformations). The processes of cell migration and
proliferation could be correlated with this classification. The sensitivity values for
all three methods exceed 95%. The highest accuracy value, 98.89%, was reached
by SVM method. Results shows that it is feasible to use these three methods for
the classification of HUVEC.

Keywords: HUVEC · endothelial cell · angiogenesis · classification ·
morphology analysis

1 Introduction

Human Umbilical Vascular Endothelial Cells, known as HUVEC are employed for the
study of angiogenesis, which is the process of forming new capillaries from existing ones
[1]. This process includes events like growth, migration, and differentiation of cells. Its
study is of great importance as it is a process closely related to a large number of
pathological events, including the transition from the harmless vascular growth phase to
the potentially fatal tumor stage [2]. During angiogenesis, cells develop different shapes
depending on the function they will later assume, which can be correlated with the
appearance of tip and stalk cell phenotypes: some take elongated forms and characterize
the vascular growth path, and these are associated with the tip cells; others take forms
close to the circular ones guaranteeing the organization of the lumen in the new vascular
formation, these are stalk cells [3].
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HUVEC sample studies use the microscope, which is a great effort for the specialist,
who must observe, sometimes for hours in the microscope, the visual fields to issue a
criterion. In these cases, fatigue, the position of observation from the specialist, and even
the variability of criteria among specialists affect the quality of the obtained results and
cause the effort to achieve them to be high to guarantee the accuracy of the samples.

In vitro test enables, frommicroscopy images, the study of endothelial cell migration
and proliferation processes, and two-dimensional or three-dimensional organization of
capillary structures, which allows in many cases to identify the set of possible effects
of a type of intervention (proteins, cells, pharmacological agents) or molecular and/or
cellular events in angiogenesis [4–7].

Concerning HUVEC, automatic quantitative analysis is relatively a new topic. Stud-
ies of in vitro angiogenesis have been developed from isolated endothelial cells cultured
in a micro or macrovascular form. So far, these studies focus more on the analysis of
the tubular structures of the cellular networks formed in the cultures, using different
computational platforms [8], so that angiogenic activity can be assessed by quantifying
the tubules, the junctions between them, and other structures of interest, the area, the
length of the tubules, among others.

Wiseman et al. in [9] presented a high-content HUVEC phenotyping platform using
morphology, vascular endothelial cadherin staining, and analysis of NOTCH activa-
tion. The authors collected a total of 47 features e.g. cell and nuclei area, roundness,
width/length ratio together with an array of symmetry, threshold compactness, and axial
or radial features. Other characteristics extracted are analysis of junctions, population
stratification, and quantification of size for clusters of NOTCH positive cells. With
these characteristics it was possible to study the phenotypes of HUVEC under different
experimental conditions.

In [10], the authors presented two algorithms to study the endothelial tube formation
assay (ETFA) and fibrin bead assay (FBA) in HUVEC. Image analysis in both cases
was using a program developed for ImageJ software. This plugin is an extension of the
“Angiogenesis Analyzer” for ImageJ. In FBA, the analysis included sphere detection,
tree detection, and tree structure analysis of junctions and extremities. On other hand,
the analysis in ETFA included meshed detection and isolated elements detection.

In [8] the authors used a combination of machine learning aided image segmentation
with ImageJ software and CellProfiler software, to extract the phenotype of a single EC
(HUVEC, HAoEC, HPMEC) in monolayers. To measure the cell morphology, they used
the area, perimeter, shape descriptors, and cell neighbors.

On the other hand, some authors considered the study of individual cells using the
morphological changes in these samples. In [11], the Angiogenesis Analyzer plugin for
ImageJ performed the cell shape analysis for HUVEC-C3 differentiation, the inhibition
of HUVEC-C3 differentiation with target agents, and the analysis of the Matrigel differ-
entiation assay. The parameters usedwere the form factor (FF), tubular networks, number
of junctions, number of tubules (number of branches plus the number of segments), and
tubules length (total branching lengths).

Escobedo et al. [3] used themathematical functions generalized support, a variant of it
calledweighted integrated generalized support, and theCrofton descriptor, in the analysis
of cell deformations in 2D HUVEC samples. The authors detected cell edges using
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active contour methods and classified them using the k-NN algorithm with a 5x1 cross-
validation process for error estimation. The supervised classification contemplates three
classes: circular cells, elongated deformed (elongated), or slightly elongated deformed
(other deformations).

At early times of the incubation process, endothelial cell differentiation can express
different levels of deformation due to the differential activation of the cell migration and
proliferation processes, and the consequent appearance of the corresponding tip and stalk
phenotypes [3]. Considering these results, and the feasibility of testing the classification
performance of HUVECs using different morphological features and other widely used
classification methods (which have shown excellent results in other types of samples),
this work aims to compare the results obtained with three classifiers: support vector
machine (SVM), k-NN and decision trees (DT), considering the three classes proposed
in [3]: circular, elongated deformed and slightly elongated deformed (other deformation).

The paper is organized as follows. After this introduction, in Sect. 2, it is presented
all the information related to sample preparation and image acquisition, besides the
explanation of the methodology proposed using the three classification methods, and
the experiments performed. The experimental results are described in Sect. 3 and the
discussion in Sect. 4. Finally, concluding remarks and future work are presented in
Sect. 5.

2 Materials and Method

2.1 Sample Preparation and Image Acquisition

Cultures of endothelial cells in the concentration of 2× 104 cells/mlwere placed inRPMI
1640 medium supplemented with fetal bovine serum (FBS) to 10% in 24-well plates, on
glass coverslips of 13 mm diameter, previously sterilized. Each of the wells containing
the samples was added at a concentration equal to 30 μg/ml of β2-glycoprotein. Cells
were stained with May Grunwald – Giemsa [3].

Images were taken using a Point Grey camera (GS3-U3-1455M) with a 3.2 × mag-
nification objective. The images obtained have 114 × 114 pixels and 72 pixels per inch.
Obtaining a total of 360 single images, 120 for each class, Fig. 1.

2.2 Methodology

Figure 2 shows the methodology steps based on the following phases: image segmenta-
tion, feature extraction, and classification.

First, we binarized the original image. Let f (x, y), such that the pixels belonging to
the objects and the background have intensity values grouped in two dominant modes.
The thresholded image g(x, y) is defined as follows [12]:

g(x, y) =
{
1, sif (x, y) ≥ T
0, sif (x, y) < T

(1)

where pixels labeled 1 correspond to the objects, 0 to the background and T is the
threshold value, using Otsu’s threshold. As a result of this process, we obtain an image
with a black background and white objects.
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Fig. 1. Cell images of circular, elongated deformed (elongated), and slightly elongated deformed
(other deformation) class of HUVEC.

SEGMENTATION •Binariza�on with Otsu Thresholding

FEATURE 
EXTRACTION •Geometrical features

CLASSIFICATION
•k-NN
•SVM
•DT

Fig. 2. Images processing steps from HUVEC automatic classification.

For the feature extraction, we selected 11 shape features to facilitate the classification
of the different cell types. Shape features provide measures of the cells based on their
geometrical properties. Table 1 shows the description of each of the characteristics
assessed.

The classification methods used were SVM, k-NN, and DT. The SVMs are linear
classifiers that allow finding the optimal way to classify between classes from the support
vectors. Given these support vectors, the optimal classification is performed by finding
the hyperplane thatmaximizes themargin of separation between classes. This hyperplane
is obtained from the solution of an optimization problem: themaximumdistance between
the hyperplanes containing the support vectors of the classes (maximum margin) [13].
The approximation provided by SVMs is only useful for classifying sets that are linearly
separable and without overlaps between classes. But considering that this situation is
quite frequent in real cases, then, in this case, to be efficient in these environments,
there are two alternatives: a certain number of class overlaps are allowed by relaxing
the margin condition, and on the other hand, the model is extended so that it can work
on sets that are not linearly separable, by transforming the feature space into another of
higher dimension, which is known as kernel trick.

On the other hand, the k-NN algorithm given the set of previously labeled objects
(training set), assigns the analyzed object to the class of the nearest neighbors in the
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Table 1. Morphological measures used for the classification of HUVEC in this work.

Morphological measures Description

Perimeter Distance around the boundary of the region

Area The number of pixels in the region

Eccentricity The eccentricity of the ellipse with the same second-moments as
the region

Equivalent Diameter Diameter of a circle with the same area as the region

Major Axis Length Length (in pixels) of the major axis of the ellipse that has the same
normalized second central moments as the region

Minor Axis Length Length (in pixels) of the minor axis of the ellipse that has the same
normalized second central moments as the region

Solidity The proportion of the pixels in the region that are also in the convex
hull

Extent The ratio of pixels in the region to pixels in the total bounding box

Orientation The angle between the x-axis and the major axis of the ellipse that
has the same second moments as the region

CSF Represents deviation from a circle

ESF Expresses the extent of elongation

training set, corresponding to a similarity measure in the feature space [14]. Generally,
the metric used is Euclidean. This algorithm has the disadvantage that it requires prior
knowledge of the value of k to determine the k nearest neighbors, in addition to the fact
that, with different values of k, different results are also obtained.

In the case of DT, these are sequential models, which logically combine a sequence
of simple tests; each test compares a numeric attribute against a threshold value or a
nominal attribute against a set of possible values [15]. There are two major phases of
the decision tree induction process: the growth phase and the pruning phase.

2.3 Experimental Setup

The tests were carried out on a PC with an AMD A8-6410 APU with AMD Radeon
R5 Graphics at 2.00 GHz and 12 GB of RAM. The implementation of all algorithms
was performed using Matlab®. The experiment considered the supervised classification
of circular (C), elongated deformed (ED), slightly elongated deformed (SED) HUVEC,
using the following settings:

a) SVM:
kernel = medium Gaussian
boxConstraint = 5
kernel scale = 3.3
multiclass method: One-vs-All
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b) k-NN:
k = number of neighbors (3)
distance = city block
rule = nearest

c) DT:
preset: Fine Tree
max_num_Splits=100
split criterion: Gini diversity index
surrogate decision split: find all

The confusion matrix, with the following measures: sensitivity (TPR), specificity
(TNR), precision (P), and F1-score (F1) for each class. As a measure of the performance
of the complete process, accuracy (Acc) was used. These are described below [16]:

TPR = TP

TP+FN
(2)

TNR = TN

FP+TN
(3)

P = TP

TP+FP
(4)

F1 = 2(PTPR)

P+TPR
(5)

Acc = TP+TN

TP+TN+FP+FN
(6)

where:

• TP corresponds to true positives.
• FP corresponds to false positives.
• FN corresponds to false negatives.
• TN corresponds to true negatives.

The classificationvalidation is performedby cross-validation using the k-foldmethod
with k = 5.

3 Results

Figure 3 shows the result of applying themethod of Otsu with Thresholding Binarization
for the image segmentation. Table 2 shows the confusion matrix of the classification of
HUVEC considering the three classes and the classifiers SVM, k-NN, and DT.

The values obtained in relation to the performance measures assessed are also
presented.

Table 3 shows the confidence interval with which the sensitivity to detection of
each of the defined classes is calculated. For this purpose, we work with a conservative
confidence interval for a proportion, which is given by the expression:

p
∧ − h ∗

√
p
∧ ∗ q

∧

n
≤ p ≤ p

∧ − h ∗
√
p
∧ ∗ q

∧

n
(7)

where:
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Fig. 3. Right column original images and left column segmented images: black color represents
the image background and bank color the cells.

Table 2. Performance measures for the classification of HUVEC.

C DE SED TPR P TNR F1 Acc

SVM C 120 0 0 100 99.17 99.58 99.59 98.89

DE 0 119 1 99.17 98.35 99.16 98.76

SED 1 2 117 97.50 99.15 99.58 98.32

k-NN C 120 0 0 100 98.36 99.17 99.17 98.06

DE 0 118 2 98.33 97.52 98.75 97.92

SED 2 3 115 95.83 98.29 99.17 97.04

DT C 120 0 0 100 100 100 100 97.50

DE 0 117 3 97.50 95.12 97.50 96.30

SED 0 6 114 95.00 97.44 98.75 96.20

• p
∧

is the estimated sensitivity of the classifier.
• q

∧

is 1- the classifier sensitivity.
• h = 1 − α

2 is the percentile of N (0, 1), as the reliability level of the 95%, h = 1.96.

4 Discussion

As can be seen in Table 1, the three methods classified all the circular cells were as
belonging to their class, which is the appropriate behavior, because it is the class with
objects that are best differentiated from the rest of the objects in the other two classes.
In the case of elongated cells, only one, two and three cells were classified as slightly
elongated deformed for the SVM, k-NN and DT methods respectively, none was classi-
fied as circular. This behavior was not the same with the slightly deformed cells. There
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Table 3. ICI and ICS correspond with the inferior and superior confidence interval for the
sensitivity.

Methods Class Sensibility ICI (%) ICS (%)

SVM C 100 100 100

DE 99.17 97.54 100

SED 97.50 94.70 100

k-NN C 100 100 100

DE 98.33 96.03 100

SED 95.83 92.25 99.40

DT C 100 100 100

DE 97.50 94.70 100

SED 95.00 91.10 98.89

were cells of this type that were classified as elongated for all methods and in the case
of the SVM and k-NN methods they were also classified as circular cells.

The sensitivity reached values of 100% in the circular class and of more than 97%
in the elongated deformed class. In the specific case of the low elongated deformed
class, which has objects with greater shape variation, the classification showed lower
sensitivities results, although they can be considered good, with above 95% for the
k-NN and DT methods and 97.50% for the SVM method. Nevertheless, the precision
and specificity of this class remain high for all three methods with values above 97%,
which means that, although compared to the circular class, they defined fewer objects
as belonging to this class than the total contained in it; those they defined were indeed
belonging to the class they were classified to be in.

The highest precision values were found for the circular class for all three methods.
The specificity values for the circular class exceeded 99% and for the other two classes,
the values were higher than 97%.With the F-measure, the behavior was not similar in all
methods; the highest results were in the circular class (100% for the DTmethod) and the
most conservative in the slightly elongated deformed class (96.20% for the DTmethod).
The SVM method outperformed the others by achieving an accuracy of 98.89%, but it
should be pointed out that for the k-NN andDTmethods, the accuracy achieved represent
a good result, with a value of 98.06% for k-NN and 97.50% for the DT. To indicate the
computational cost of our algorithm, the time taken for training these methods, under
the experimental conditions defined were the followings:

• SVM: 0.70s
• k-NN: 0.36s
• DT: 0.33s
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The results in Table 3 show the values corresponding to the sensitivity confidence
intervals, presenting the values that these can take, taking into account each class in the
classifiers evaluated. The results obtained in this work can be considered superior to
those obtained in [3], in which images were used under the same conditions, but with a
smaller number, only 300 images. The sensitivities reported in [3] for the best method,
the Crofton descriptor, were 99%, 91%, and 86%, for the circular, elongated deformed,
and slightly elongated deformed classes, with an accuracy of 92.67%.

5 Conclusions

This work presents the results of applying the SVM, k-NN, and DT methods in the
morphological classification of HUVEC considering three classes, which is of great
importance because it could be correlated with the appearance of tip and stalk cell phe-
notypes from the early stages of cell development. The methods were tested considering
360 images of individual cells, 120 for each defined class, and 11 morphological char-
acteristics. The highest accuracy. 98.89%, was reached by SVMmethod. The sensitivity
values in all cases exceed 95% and the class with the lower results in this section was the
slightly elongated deformed class, considering that the shape of HUVECs in this class
was relatively similar to the elongated deformed cell class. To check the confidence
interval with which the sensitivity of the classification in each class was calculated, it
was considered a conservative confidence interval for a proportion.

Further work in perspective, the method will be applied to investigate angiogenesis
in endothelial cell challenging conditions, by analyzing cell morphology in microscopy
images and moving towards clinically interpretable approaches. The evaluation of other
features such as textures, and color, among others, as well as the performance of other
classifiers is also of interest.
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Abstract. It appears that there is widespread difficulty in treating onychomyco-
sis. Fungi are difficult to eradicate and the very dense keratin that participates in
the structure of the nail, and there is still little vascularization, making it difficult
for drugs to penetrate topically or systemically. Conventional treatment methods,
in addition to therapeutic failures, cause undesirable side effects in most patients.
The prolonged time of use reflects in the low adherence to the treatment and in
the resistance of the fungus to the drug. In this sense, Photodynamic Therapy is
a promising alternative for solving most of these problems. However, the tech-
nique is dependent on the photosensitization potential. The Diels Alder reaction
between protoporphyrin IX dimethyl ester and maleimides provides endo adducts
that completely prevent the self-aggregation of chlorins. Fluorescence resonant
light scattering (RLS) and 1H NMR experiments, as well as crystallographic X-
rays have demonstrated this configuration. The arrangement of synthesized chlo-
rins avoids π stacking in the interactions between macrocycles, indicating that it
is a non-aggregating photosensitizer with high quantum yield of singlet oxygen
(��) and fluorescence (�f). Preliminary results demonstrate that this type of
synthetic strategy can provide the lead for a new generation of non-aggregative
chlorine photosensitizers (MCHC-Chlorin) for PDT.

Keywords: Photodynamic Therapy · onychomycosis · non-aggeregative
photosensitizers · chlorines

1 Introduction

Onychomycosis is a fungal infection that affects the nail plate, caused by dermatophytes,
with Trichophyton rubrum or Trichophyton mentagrophytes identified as the most fre-
quent causative pathogens. Yeasts are responsible in 5% of cases and non-dermatophyte
fungi, responsible in 3% of cases. Characterized by making the nails brittle, thick, with
excess or lack of pigmentation, it is considered one of the most frequent dermatoses,
representing around 30% to 50% of all nail infections [1].

Due to its high incidence and prevalence, it is classified as a public health problem
in Brazil. It is a disease multifactorial, a fact that often goes unnoticed and deserves
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attention on several social and health fronts. We can mention as contributing factors for
the development of the pathology the characteristics of our climate, demographic and
social data.

Another problem is those with Acquired Immunodeficiency Syndrome, Diabetes,
peripheral arterial diseases, and the elderly population, which are groups more prone to
the development of the pathology and, mainly, to present severe forms of the disease in
addition to difficulties and restrictions on treatment.Onychomycosis causes considerable
physical and psychological effects to the patient, resulting in several implications and
deficiencies [2–4].

Its treatment is a challenge in clinical practices due to the particularities of the
pathology and the affected region. The slow growth of nails, especially on the feet, and
because it is a non-vascularized region, makes it difficult for drugs to penetrate drug
therapy. Conventional treatments consist of the use of topical or systemic antifungal
agents, depending on the proliferation of the pathology. Systemic treatment can result in
a number of adverse effects, such as: erythema, headache, hypersensitivity, possible drug
interactions and a greater propensity to trigger serious liver diseases due to the extended
period of treatment. In addition to the adverse effects, the long time required and the high
cost of treatment contribute to low patient adherence and therapeutic failures are very
common due to the fungal resistance to the drug used. Because of these implications,
topical antifungals are the most used by patients, but they have low efficacy precisely
because they do not have the ability to completely eliminate the infection. All these
problems show that conventional treatments are increasingly failing, making necessary
new therapeutic modalities that are safe and effective, reducing the disadvantages and
high rate of recurrence of the disease, observed with commonly used antifungals [1, 5].

In turn, photodynamic therapy (PDT) emerges as a promising resource for the treat-
ment and diagnosis of various pathologies. PDT occurs in the presence of 3 basic ele-
ments: photosensitizing drug; light source and molecular oxygen. The infected tissue is
pre-treated with the photosensitizer (Fs) and subsequently irradiated locally with light
of the appropriate wavelength. The interaction of these factors leads Fs to the triplet
excited state interacting with the cells of the diseased tissue, which, in the presence of
circulating cellular oxygen, produce reactive oxygen species (ROS) [5, 6].

Photodynamic therapy has been used in the treatment of onychomycosis with con-
ventional photosensitizers such as methylene blue and protoporphyrin IX. The photody-
namic effect is related to characteristics such as: the biodistribution of photosensitiers,
interactions with specific biomolecules and organelles and with their phototophysical
properties. However, this treatment is limited by aggregation factors. Compounds that
have a high aggregation index present unfavorable photophysics, with low triplet quan-
tum yields (τ) and singlet oxygen (��). Conventional photosensitizers present aro-
matic rings with a large π cloud and extensive flatness, all of which are induced to
self-aggregate. MCHC-Chlorin is a new photosensitizer composed of two orthogonal
macrocycles joined by an sp3 carbon. Such conformation, confers steric impediment and,
consequently, prevents the formation of the aggregate state. Thus, such photosensitizer
presents its photophysics maximized with high singlet oxygen quantum yield (��) 0.78
and fluorescence quantum yield (�f) of 0.16. These results enable MCHC-Chlorin as
an excellent photopharmaceutical for photodynamic therapy and diagnostic treatments.
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Thus, opening a new window for the study of PDT with the first photosensitizer free
of self-aggregation. In this way, this photosensitizer may offer a more effective treat-
ment for onychomycosis [7–9]. In this work, A MCHC-Chlorin was synthesized and
characterized, in order to determine its photodynamic activity in Trichophyton rubrum.

2 Materials and Methods

A. The Synthesis of 1-Phenyl-1H-Pyrrole-2,5-Dione(Phenylmaleimide)
To obtain phenylmaleimide, 300 mg (3.6 mmol) of maleic anhydride in 4.0 ml

of ethyl ether, immersed in an ice bath, were added with 3.6 mmol of aniline. The
precipitate formed, the amic acid, was vacuumfiltered andwashedwith ethyl ether. A
solution of 240mg (2.84mmol) of anhydrous sodium acetate and 3ml of acetic anhy-
dride was prepared and left in an oil bath (≈70 °C) then the amic acid obtained was
added. The reaction was followed, precipitated in ammonia/ice solution, extracted
with chloroform and the solvent was removed by rotary evaporation under reduced
pressure. After complete elimination of the solvent, the product mass determined
and resuspended and purified on column chromatography, using silica gel (230–70
mesh) as support and dichloromethane with 1% methanol as mobile phase. After
chromatography the maleimide was crystallized and characterized by 1H and 13C
NMR and high resolution mass.

B. The MCHC-Chlorin Synthesis
MCHC-Chlorin was synthesized by cycloaddition reaction between phenyl-

maleimide (0.5 mmol) with protoporphyrin IX (0.1 mmol) in toluene. The reaction
system was kept at 120 °C, in an inert atmosphere, for a period of 12 h in a sealed
tube. After this period, the end of the reaction was determined by ultraviolet/visible
spectrum, and by TLC plates.

C. Fungal Strain and Culture Media
To determine the antifungal activity of the photosensitizers, the strain of the

species Trichophyton rubrumATCC (American Type Culture Collection) 28188 was
used.

For cultivation, Sabouraud-Dextrose Agar (ASD) and Soy Triptecase in (TSB)
liquid medium were used.

D. Cultivation of Trichopyton Rubrum
The Trichophyton rubrum strain was cultivated in ASD medium, incubated at

28 °C for seven days, for colonies to grow. The mycelium was removed from this
culture and plated in TSB liquid medium.

E. Preparation of Trichopyton Rubrum for In Vitro Assays
After culturing T. rubrum in TSB medium for 72 h, the medium was centrifuged

(4,000 rpm for 5 min) to wash the fungal cells. The supernatant was discarded and
the precipitated cell material was resuspended in sterilized NaCl solution (0.5%)
and centrifuged again (4,000 rpm for 5 min). This procedure was repeated 5 times
to ensure asepsis of the sample. After the 5th wash, the conidia were resuspended
in a sterile test tube containing 1 mL of saline solution and vortexed for 1 min.
This suspension was diluted in sterile NaCl solution (0.5%) and homogenized by
vortexing.
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F. Fluorescence Microscopy
T. rubrum cultures in TSB medium obtained after 6 hours’ incubation at 28 °C

with MCHC-Chlorin were used for the study. After incubation, the sample was cen-
trifuged (150 rpm) and then aliquots of the suspension were removed and deposited
on glass slides and covered with covers lips for observation under a fluorescence
microscope, (ZEISS AXIOVERT 200), using a 40× objective. The samples were
excited in blue (410 ± 20 nm), and in green (546 ± 12 nm). The emission was
recorded from λ > 515 nm and 590 nm respectively. The images were recorded on
a Canon Power Shot G10 camera.

3 Results

A. Synthesis of 1-Phenyl-1H-pyrrole-2,5-Dione (Phenylmaleimide)
Phenylmaleimide was synthesized with an overall yield of 74%, and unequivo-

cally characterized by 1H and 13C nuclear magnetic resonance.
The reaction scheme is shown in Fig. 1.

Fig. 1. Synthesis of 1-phenyl-1H-pyrrole-2,5-dione

1H NMR spectrum (CDCl3, 500 MHz), δ(ppm): 6.84. (sbr, H-2, H-3 vinyl group)
7.33-7.38(m, H-7, H-8 and H-9)7.45–7.48 (m, H-6 and H-10). 13C NMR (CDCl3,
125.77MHz)(ppm): 126.03(2C, C-6 and C-10); 127.93(C-8); 129.11(2C, C-7 and C-9);
131.17(C-5); 134.16(2C, C-2 and C-3) and 169.47(2C, C-1 and C-4) HPLC-MS,m/zfor
C10H7NO2 calculated 174.0550 was determined to be174.0582. The base peak at
206.0827 refers to the opening of the imide ring, and the addition of methanol during
the analysis process.

The Synthesis of MCHC-Chlorin
It was obtained through the addition cycle (4 + 2) - Diels–Alder reaction - a reaction
already known to obtain chlorins. Phenylchlorin (ring A chlorine) and (B ring chlorine)
were obtained by the process illustrated in Fig. 2, purified by column chromatography
using silica gel as a support. The isomers were separated by preparative TLC. The
technique offers a perfect separation of the chlorins of Ring A and B. In both techniques,
chloroform/ethyl acetate in the propor-tions of 25:1 was used as mobile phase .as shown
in Fig. 2.

Phenylchlorin A was isolated in the lower spot, with an Rf of 0.38. The structural
characterization was unequivocally performed by 1D (1H, 13C and 135 DPET) and 2D
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Fig. 2. Synthesis of phenylchlorin

(COSY, NOESY, HMBC and HSQC) NMR and high resolution mass, HPLC-mass.
The 1H and 13C spectra are shown in Fig. 3a, for unequivocal characterization, the
spectra of gCosy, gnoesy, gHSQC, gHMBC, and DEPT 135 were also determined.
Phenylchlorin B was isolated in the upper spotand shows Rf of 0.54. The structural
characterization was performed in a similar way to phenylchlorin A, by 1D (1H, 13C
and 135 DPET) and 2D (COSY, NOESY, HMBC and HSQC) NMR and high resolution
mass, HPLC-mass. The 1H and 13C spectra are shown in Fig. 3b. The other spectra
gCosy, gnoesy, gHSQC, gHMBC,DEPT135were also determined. For characterization,
the emission spectrum at 1270 nm obtained. Quantification performed with temporal
resolution,and comparison of the are as below the curvature of the reference compound,
phanalenone. The photophysical characterization performed with both isomers, being
confirmed that they present equal quantum yield of singlet oxygen. The biological assays
were performed only with the A isomer.

C. Internalization of the Compound in the Fungal Cell Membrane
Incorporation of MCHC-Chlorin in T. rubrum was ob-served by fluorescence

microscopy, observed in red (≈670 nm), referring to the emission of Chlorine. This
emission was observed in hyphae and conidia, being perfectly differentiated from
natural fluorescence of the species, which emits 450 nmwhen irradiated in ultraviolet.
Figure 4 shows thefluorescence by emission of endogenousfluorophores andMCHC-
Chlorin incorporate in T. rubrum hyphae.
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Fig. 3. CDCl3 NMR spectra for phenylchlorin A a) 1H at 500.13 MHz in CDCl3 and B b) 13C
at 125.77 MHz
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Fig. 4. A - fluorescence of the fungus excited at 340 nm and emission at 450 nm; B fluorescence
through the incorporation of the MCHC-Chlorin photosensitizer, excited at 400 nm, emission at
670 nm. Images with a 100× objective.

4 Discussion

In the last decade, PDT has gone from an investigational method to a reality inderma-
tological therapy. However, there are still some points that need to be improved and
better understood. One of the fundamental lines of research for the improvement and
popularization of PDT is the development of new photosensitizers, since the incorpo-
ration of the photosensitizer in the diseased tissue is as important as the formation of
singlet oxygen. An efficient FS depends on a good interaction with biological systems,
especially membranes. Producing assets that promote this interaction is an important
factor in the development of new, more effective Fs. We still have some more essential
characteristics for a compound to act as a good Fs: 1) Absorption in the phototherapeutic
window (600–800 nm); 2) favorable photophysical characteristics: high quantum yield
of singlet oxygen triplet formation and small suppression constant; 3) Low cytotoxicity
in the dark; 4). Favorable pharmacokinetics and easy elimination by the body, a voiding
prolonged photosensitivity. 5) Defined formulation, allowing to establish the relation
between thestructure and the activity; 6) Solubility in a physiological medium, facili-
tating the application of the drug; 7) Easy to obtain on an industrial scale, with good
reproducibility and reduced costs; 8) Skin permeability and selectivity; higher affin-
ity in diseased skin compared to healthy tissue [5, 8]. One of the ways to solve these
problems is the synthesis of a new class of Fs that are not self-aggregating, since the
interaction with cell membranes can concentrate Fs and shift the monometer/aggregate
balance due to the strong interaction between π systems of polyaromatic macrocycles,
especially in the biological environment, where there is greater difficulty in controlling
such events. Thus, the most effective strategy would be to avoid aggregation directly in
the target skin through the use of molecules whose own molecular structure prevents
aggregation, since their formation deactivates the excited state of the molecules, also
leading to a consequent reduction the ability to generate singlet oxygen, triplet states
and quantum fluorescence yields, compromising the efficiency of the photosensitization
process [8–11].

With this objective, several authors have proposed the use of bulky peripheral groups
in order to reduce and optimize the interaction between solvent and solute.
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The Diels Alder reaction described here, between the dimethyl ester of protopor-
phyrin IX and phenylmaleimides, has been used to induce an endoaddition by sec-
ondary orbital stabilization, with the difference that these photosensitizers have bulkier
substituents and a smaller nucleus, allowing the synthesis of new non-planar chlorine
molecules, which have been shown to have the ability to completely prevent aggrega-
tion, even at high concentrations, and ensure affinity and internalization in the fungal cell
membrane. This fact was confirmed by the high solubility of the compounds in solvents
of different polarities. Preliminary biological assays demonstrate excellent permeability
of MCHC-Chorin in T. rubrum [7, 12–15].

The fluorescence at 670 nm proves the incorporation and internalization of MCHC-
Chorin in T. rubrum photodynamic feasibility of therapy with this new photosensitizing
treatment. Similar processes have already been obtained with other photosensitizers,
however, this new compound has maximized photophysics, with a quantum yield of
singlet oxygen (��) = 0.71, and a quantum yield of fluorescence (�f) = 0.16.

5 Conclusions

Obtaining MCHC-Chlorin, a chlorin-free photosensitizer of self-aggregation, opens a
new window for the development of PDT and Photodiagnostics. The absence of self-
aggregation presents several gains, such as better solubility by maximizing the sol-
vent/solute interaction, maximized photo-physics, with excellent �� and �f. And
excellent permeability in the hyphae of Trichophyton rubrum which was proven by
fluorescence microscopy.
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Abstract. Cholecystectomy is very common in hospitals, being performed by
open (OC) or laparoscopic (LC) procedures. Surgical and postoperative pain may
affect the recovery and its assessment can provide important information about
the patient’s clinical condition, avoiding future complications and public health
costs. This prospective observational study investigated the differences between
OC and LC procedure effects on postoperative pain, by using pain scales and
autonomic parameters. We evaluated the pain level and autonomic parameters in
26 adult patients undergoing cholecystectomy. The pain level was measured using
the visual analog scale (VAS) and the autonomic parameters were assessed by a
10-min continuous record of the heart rate variability and blood pressure. Data was
collected in three moments: before the patient entered the surgery center (M1),
on the arrival at the postanesthetic care unit (M2) and three hours after M2 (M3).
Data from 26 patients were included in the final analysis: LC (N= 19) or OP (N=
7). Our results suggested that LC is not advantageous over OC, considering pain
management. The postoperative pain reported by LC patients was higher at M2,
and they also presented an increased sympathetic activation at M3. Unexpectedly,
higher pain scores, associated with sympathetic activation, were observed after
laparoscopic surgery. Although LC is a minimally invasive procedure, our results
showed lower pain levels in OP patients, probably due to epidural anesthesia. Our
results highlight the need for reassessment of surgical and postoperative analgesic
interventions in LC surgeries for a better recovery and shorter hospitalization of
patients.

Keywords: Pain · Cholecystectomy · Heart Rate Variability · Laparoscopic
Procedure · Laparotomic Procedure
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1 Introduction

Cholecystectomy is the surgical removal of the gallbladder and is largely performed
around the world [1]. Open cholecystectomy (OC), is the classical method, performed by
extensive abdominal incision [2]. Laparoscopic Cholecystectomy (LC) is a minimally
invasive procedure, performed using a video camera [3], requiring a specific training
surgeon [4]. OC is the standard procedure, used in high complexity cases, patient’s own
choice, or when LC does not reach total success, due to technical difficulties or serious
complications [5]. LC allows for lower morbidity and shorter length of hospital stay and
recovery time [6–11]. Therefore, it has often been used in cholecystectomy procedures.
However, a recurrent complaint reported by patients after LC is postoperative pain [12,
13], a relevant factor for delayed recovery [13].

Surgical and postoperative pain leads to increased heart rate and blood pressure,
reduced local tissue blood flow, changes in immune response, hyperglycemia, lipolysis,
increased metabolic activity and oxygen consumption [15] and may have important
implications for adverse cardiovascular outcomes after non-cardiac surgeries [16]. Pain
can also affect the emotional state and physical recovery of hospitalized patients, also
contributing to prolonged hospitalization [17]. The use of postoperative strong injectable
analgesics corroborates the need for improvement in postoperative pain management [1,
18]. Thus, pain assessment can provide important information about a patient’s clinical
condition, to avoid future complications and to reduce public health costs [19].

There are several methods used for pain level assessment, such as scales [20] and
questionnaires [21–23]. However, the gold standard method is still a topic of debate
[24, 25]. Some studies propose a pain index based on the assessment of the auto-
nomic responses to noxious stimuli indicating analgesia/nociception balance [26], such
as pupillometry [27]. In addition, evaluation of heart rate variability (HRV), related to car-
diac autonomic regulation, showed a great correlation to pain level in several situations
[28–31].

In this study, we used a visual analog scale (VAS) and autonomic parameters, to
assess postoperative pain level, after LC or OC. Our primary hypothesis was that we
could observe significant differences regarding pain level and cardiovascular autonomic
control, between OC and LC procedures in the postoperative period, with increased
sympathetic activation in the early period after the surgery, especially in the OC group.
Our secondary hypothesis consisted in finding a possible correlation between the pain
level indicated by using the VAS, and autonomic parameters, including HRV.

2 Methods

The protocol was approved by the Ethics Committees from Federal University
of São Paulo and Dr. José de Carvalho Florence Municipal Hospital (CAAE:
53144021.1.3001.5451) and followed the ethical standards of the responsible committee
on human experimentation, in accordance with the Helsinki Declaration. All patients
signed an informed consent form, prior to entering the surgical area.
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2.1 Sample

Twenty-six patients, between 18 and 60 years old, were enrolled in this study. Recruit-
ment and selection were done at Dr. José de Carvalho Florence Municipal Hospital and
the inclusion criteria were patients submitted to cholecystectomy, both sexes, physical
status ASA I and II, body mass index between 18.5 and 30 kg/m2, and normal renal
function. The exclusion criteria were patients with prevalent hypertension, diabetes, or
neurological disorders. Eventual procedure complications that could interfere with the
results also resulted in exclusion from the study.

Regarding the choice of type of surgery, the study followed the procedure already
adopted by the hospital, which assigns the indication to the doctor in charge, considering
clinical parameters and the consent of the patient. The pharmacological and anesthetic
protocol followed the institutional standard, regardless of research participation. LC
patients received only general anesthesia, while OC patients received both, general and
epidural anesthesia (local anesthetic and morphine), according to the hospital’s current
protocol.

2.2 Protocol

Patients were evaluated in the preoperative room at the surgical unit. Data were collected
in three moments: just before the patient entered the surgery center (M1), on the arrival
at the postanesthetic care unit (M2), and three hours after M2 (M3). Data included pain
level, blood pressure measurement and HRV.

Pain Assessment. Pain level was assessed by VAS, a straight line with equally spaced
marks ranging from 0 to 10. The 0 endpoint defines the extreme limit as “no pain at all”,
whilst the 10 endpoint defines the extreme “the worst pain possible”. The patients were
asked to point their pain intensity on the line, and the indicated number defined pain
level.

Autonomic Control Assessment. Data from systolic blood pressure (SBP) and dias-
tolic blood pressure (DBP) were obtained by a non-invasive blood pressure monitor.
Cardiac autonomic control was obtained by a continuous and non-invasive heart rate
recording signal, collected using a Polar V800 heart rate monitor, during 10 min, in
the supine position. Heart rate time series (tachogram) were obtained by the intervals
between consecutive RR peaks. Stationary sequences, 200–300 consecutive beats, were
selected within the recorded signal, for every three moments [32].

In heart rate variability (HRV) analysis, time-domain indices quantify the successive
beets intervals variability. Heart rate variance (VarHR), standard deviation (StdHR) and
mean (MeanHR) represent the ECG signal features, quantified in beats perminute (bpm).
Root mean square error (RMSE) was calculated to the differences between successive
RR peak intervals.
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Frequency-domain analysis emphasized spectral density and was performed by
autoregressive algorithms. HRV spectrum consists of three bands: very low frequency
(VLF), 0.00–0.04 Hz; low frequency (LF), 0.04–0.15 Hz; and high frequency (HF),
0.15–0.40 Hz. These components were expressed in absolute (abs) and normalized units
(nu). The LF band represents sympathetic modulation, whilst the HF band represents
parasympathetic modulation. LF/HF ratio was used to quantify cardiac sympathovagal
balance [33, 34].

Data were presented as mean ± standard deviation. Statistical analysis was per-
formed using two-way analysis of variance (ANOVA) for repeated measures, followed
byTukey honestly significant difference (HSD)multiple comparison post-hoc test.When
analyzing the data fromLC or OC patients, separately, statistical analysis was performed
using one-way analysis of variance (ANOVA) for repeated measures, followed by Tukey
honestly significant difference (HSD) multiple comparison post-hoc test. Pearson’s cor-
relation was used to assess associations among variables. P < 0.05 was considered
significant. The statistical analysis was performed by SigmaPlot 11.0 software.

3 Results

Results show that during the period of this study, 54 eligible cholecystectomy procedures
were performed at the Dr. José de Carvalho Florence Municipal Hospital in São José
dos Campos. From those, 19 patients were excluded: 10 were older than 60 years; 1
was younger than 18 years; 3 did not show up; 2 were blind, 1 was at the intensive care
unit and 1 presented chronic non-progressive encephalopathy. Recruitment has been
done among the remaining 36 patients, and all patients agreed to participate. Due to
surgery logistics and/or complications, 28 patients were recorded, and data from 2 of
them were excluded from the final analysis due to cardiovascular signal interference.
Therefore, 26 patients, between 19 and 60 years, were enrolled in the study. Statistical
analysis showed no significant differences in autonomic parameters regarding sex or age.
Patientswere allocated into two groups, according to the surgical technique: LC (N= 19)
or OC (N= 7). LC patients received only general anesthesia, while OC patients received
both, general and epidural anesthesia (local anesthetic and morphine), according to the
hospital’s current protocol.

3.1 Pain Assessment

Pain level indicated by LC patients in M2 (p < 0.001) and M3 (p < 0.001) was signif-
icantly higher compared to M1, whilst OC patients reported a significantly higher pain
level only in M3, compared to M1 (p = 0.037) (see Fig. 1).
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Fig. 1. Pain level assessment in OC and LC patients in each of the three moments recorded.
Statistically significant difference compared to moment M1 from the same type of surgery (*).
Statistically significant difference compared to the same moment from the other type of surgery
(&).

3.2 Autonomic Control Assessment

Regarding time-domain analysis, pain level, VarHR, StdHR, SBP and DBP, showed
significant differences among the three moments and the two groups (see Table 1).
Patients from the LC group presented lower SBP (p< 0.001; p< 0.001) and DBP (p=
0.006; p= 0.005) in M2 and M3, as compared to M1. On the other hand, only SBP was
lower in M2 (p = 0.006) and M3 (p = 0.007), as compared with M1, in the OC group
(see Fig. 2). Also, LC patients presented higher StdHR (p = 0.046) in M3 compared to
M1, whilst OC patients presented lower VarHR (p = 0.024; p = 0.010) and StdHR (p
= 0.003; p = 0.005) in M2 and M3 compared to M1 (see Fig. 3).

3.3 Autonomic Control Assessment

Regarding time-domain analysis, pain level, VarHR, StdHR, SBP and DBP, showed
significant differences among the three moments and the two groups (see Table 1).
Patients from the LC group presented lower SBP (p< 0.001; p< 0.001) and DBP (p=
0.006; p= 0.005) in M2 and M3, as compared to M1. On the other hand, only SBP was
lower in M2 (p = 0.006) and M3 (p = 0.007), as compared with M1, in the OC group
(see Fig. 2). Also, LC patients presented higher StdHR (p = 0.046) in M3 compared to
M1, whilst OC patients presented lower VarHR (p = 0.024; p = 0.010) and StdHR (p
= 0.003; p = 0.005) in M2 and M3 compared to M1 (see Fig. 3).

3.4 Comparison Between Cholecystectomy Techniques

In M2, LC patients presented higher pain levels (p = 0.017) and SBP (p = 0.007)
compared to OC patients. In M3, the VarHR (p = 0.018) and StdHR (p = 0.026) were
lower in LC group, whilst SBP (p = 0.003) was higher, compared to OC. In frequency
domain analysis, no significant differences between the techniques were detected.
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Table 1. Autonomic cardiovascular control

LAPAROTOMIC CHOLECYSTECTOMY (OC) LAPAROSCOPIC CHOLECYSTECTOMY (LC)

M1 M2 M3 M1 M2 M3

Pain
Level

1.000 ± 1.915 2.714 ± 3.251 3.571 ± 2.573* 1.000 ± 1.826* 5.316 ± 2.647*& 4.211 ± 2.371

MeanHR
(bpm)

81.167 ± 10.412 10.303 ± 6.477 74.420 ± 5.131 81.865 ± 13.029 80.209 ± 11.527 82.003 ± 16.228

StdHR
(bpm)

3.826 ± 0.626 2.647 ± 1.710 4.090 ± 1.861# 3.881 ± 1.219* 2.748 ± 1.310* 2.694 ± 1.472&

VarHR
(bpm)

14.976 ± 4.964 9.547 ± 11.227 19.991 ± 16.032 16.584 ± 10.151* 9.183 ± 8.221* 9.320 ± 9.193&

SBP
(mmHg)

136.86 ± 11.481 102.57 ± 15.704* 102.14 ± 11.276* 134.16 ± 19.074* 121.37 ± 13.969*& 123.05 ± 13.786&

DBP
(mmHg)

79.571 ± 12.15 63.714 ± 14.139* 61.429 ± 10.784* 77.105 ± 10.806 69.842 ± 14.155 70.316 ± 11.638

LFnu 58.934 ± 15.685 47.079 ± 26.679 57.864 ± 26.236 64.886 ± 14.580 64.241 ± 28.287 57.193 ± 17.939

HFnu 41.066 ± 15.685 52.921 ± 26.679 42.136 ± 26.236 35.114 ± 14.580 35.759 ± 28.827 42.807 ± 17.939

LF/HF 1.769 ± 1.053 1.367 ± 1.194 4.266 ± 6.899 2.376 ± 1.528 5.830 ± 9.984 1.833 ± 1.404

Data presented as mean ± standard deviation. Significant differences were tested by one-Way
ANOVA for repeated measurements, followed by Tukey test. Statistically significant difference
compared to M1 (*) and M2 (#), in the same group. Statistically significant difference comparing
the same moment, between the two groups (&). Statistically significant differences in bold. Heart
rates mean (MeanHR), heart rate standard deviation (StdHR), heart rate variance (VarHR), systolic
blood pressure (SBP), diastolic blood pressure (DBP), low frequency components normalized
values (LF nu), high frequency components normalized values (HF nu) and low and high frequency
components ratio (LF/HF). LC (N = 19) and OC (N = 7)

Fig. 2. Systolic (A) and Diastolic (B) Blood Pressure measures in OC and LC patients in each of
the three moments recorded. Statistically significant difference compared to moment M1 from the
same type of surgery (*). Statistically significant difference compared to the same moment from
the other type of surgery (&).
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Fig. 3. Heart Rate standard deviation (A) and variance (B) measures in OC and LC patients in
each of the three moments recorded. Statistically significant difference compared to moment M1
(*) and M2 (#) from the same type of surgery (*). Statistically significant difference compared to
the same moment from the other type of surgery (&)

Table 2. Autonomic cardiovascular control

ALL OC LC

RMSSD (ms) −0.276 (p = 0.0144) −0.00249 (p = 0.991) −0.349 (p = 0.00776)

StdHR (bpm) −0.269 (p = 0.0174) 0.00646 (p = 0.978) −0.356 (p = 0.0078)

VarHR (bpm) −0.251 (p = 0.0265) 0.032 (p = 0.886) −0.346 (p = 0.0084)

LF abs (mmHg2) −0.270 (p = 0.0168) −0.168 (p = 0.466) −0.399 (p = 0.00992)

HF abs (mmHg2) −0.185 (p = 0.105) 0.0615 (p = 0.791) −0.277 (p = 0.0371)

Pearson’s correlation between HRV and pain level in: all patients (ALL), OC (open cholecys-
tectomy) patients and LC (laparoscopic cholecystectomy) patients. Statistically significant dif-
ferences in bold. Root mean square error of successive difference (RMSE), heart rate standard
deviation (StdHR), heart rate variance (VarHR), absolute values of low frequency components
(LF abs) and absolute values of high frequency components (HF abs).

3.5 Correlation Between Indexes

Pain level was inversely correlated to RMSE (p= 0.00776), VarHR (p= 0.0078), StdHR
(p = 0.0084), LF abs (p = 0.00992) and HF abs (p = 0.0371) in LC group, whilst no
correlation between the variables was detected in OC group (see Table 2).

4 Discussion

Our results suggest that LC is not advantageous over OC concerning pain management,
regarding protocols used in this research. Even though LC is a minimally invasive pro-
cedure, postoperative pain reported by these patients was higher than OC patients report.
This phenomenon was elicited not only by pain data, but also by autonomic parameters
assessment.

In this study, the pain level reported by LC patients in M2 and M3 was significantly
higher than in M1, whilst the OC patients reported a significantly higher pain level only
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in M3 compared to M1. These results confirmed higher pain levels shortly after the LC
procedure, compared to OC, as also reported by other authors [35, 36]. M3 pain was
similar in both groups.

This difference can be attributed to procedure intrinsic factors, such as the visceral
and somatic components present in LC postoperative pain, as well as to epidural anesthe-
sia performed only in the OP group. The neuroendocrine stress response is a major event
during laparoscopy, as tissuemanipulation and pneumoperitoneum result in intense stim-
ulation to the nervous system, leading to corticosteroid and catecholamine release [37].
Some components are related to shoulder pain and diaphragmatic irritation caused by
residual gas that is used to perform pneumo-peritoneum in laparoscopic procedures [38].
In this way, some studies had demonstrated that intraperitoneal application of anesthetic
drugs (such asmorphine, ropivacaine or bupivacaine) duringLC, can significantly reduce
abdominal pain scores in the first postoperative hours, when visceral pain incidence is
higher [39, 40]. However, this option does not completely treat postoperative pain [36].
Besides that, laparoscopic postoperative pain is due to other influences, such as gas
humidity and temperature, residual gas volume and pneumo-peritoneum intraperitoneal
pressure level [41]. So, differences between techniques and their respective postoperative
pain pathophysiological mechanisms, make it difficult to accurately compare them.

Regarding autonomic control, HRV (VarHR and StdHR) was lower at M2 and M3
compared to M1, only in LC patients, and it is related to sympathetic activation [33],
corroborated by higher SBP values. Besides that, sympathetic activation, shown by M3
LC values, was higher compared to M3 OC values.

Studies have shown that painful conditions are related to sympathetic activation. In
fact, our results demonstrated a negative correlation between HRV data analysis and
pain level, only in the LC group. The most important finding in our study was the
higher pain level reported by LC patients, and respective autonomic features, in the
early postoperative hours, indicating sympathetic activation.

We admit as an important limitation of this study, the unevenness regarding sex and
age among the patients. Since the risk factors for developing gallstones include being
female, prior pregnancy, age over 40 years and being overweight [42], the predominance
of patients with these characteristics was already expected. Almost 90% of the patients
were women (N= 23) and more than 60% were over 40 years old (N= 16). In addition,
our analysis could be more consistent if we had a larger sample size. Besides that,
additional studies are needed to evaluate the association between autonomic parameters
and pain in patients with cardiological disorders or under treatments that may interfere
with autonomic responses to surgical stress.

5 Conclusions

This study compared postoperative pain level and autonomic parameters features in
patients submitted to cholecystectomy performed by laparoscopy and open techniques.
Unexpectedly, higher pain scores, associated with sympathetic cardiac activation, were
observed after laparoscopic surgery. Although LC is a minimally invasive procedure,
our results showed lower pain level in OP patients, probably due to epidural anesthesia.
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Data showing beneficial physiological effects, obtained by epidural anesthesia on cardio-
vascular, respiratory and gastrointestinal systems are consistent. Surgical stress patho-
physiology is derived from different factors that impact the recovery process. Regarding
pain and autonomic system management, epidural anesthesia remains a powerful avail-
able tool aiming at reduced postoperative dysfunctions and enhanced rehabilitation. Our
results highlight that perioperative pain management in laparoscopic surgeries needs
reassessment, improving recovery conditions and hospitalization time.

As limitations of this study, we point out the sample size and the imbalance between
the two groups. This difference is due to the priority given to less invasive surgical
methods.
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Abstract. This project developed a functional training system for
patients with lower limb prostheses. The system uses a virtual real-
ity serious game controlled by a self-instrumented recumbent trike, and
a self-designed physiological monitoring module to monitor respiratory
rate, heart rate, and pressure distribution. The data collected is stored in
a database and processed by a central control system using a Raspberry-
Pi, which allows parallel visualization in a web interface. The system
was designed to be used as a diagnostic tool to generate useful data for
future research and for the adaptation period of people with prostheses
to complement rehabilitation. To test the system, a conceptual test was
carried out with 12 volunteers, which involved adjusting the trike for
users, collecting physiological and mechanical variables, collecting user
data, playing the game in tutorial and competitive modes, and evaluat-
ing the usability and immersion of the system. The test revealed that
the system has the characteristics of allowing an adequate and natural
simulation of reality, which makes it easy to learn for different types of
audiences. The system’s use of virtual reality and physiological monitor-
ing allows amputee patients to engage in high-intensity physical activities
and improve performance in daily life and work. This, in turn, increases
adherence to the use of prostheses and helps reduce the risk of heart dis-
ease and other chronic conditions. Overall, the functional training system
has the potential to be a valuable tool in rehabilitation and research for
amputee patients.
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1 Introduction

Lower limb prostheses seek to reduce the radical impact on the lifestyle of a
person with an amputation, helping the users to return to their daily activi-
ties, social reintegration, and avoid health problems due to the load supported
on a single member [1,2]. However, lack of adherence to the use of prostheses
is common [3,4] and its abandonment can cause serious health issues due to
problems such as physical inactivity and obesity [5]. This is one of the reasons
why integral rehabilitation plans where patients learn to use the prosthesis are
created. These plans should contain activities of daily living and work, motiva-
tional and psychosocial interventions [6], and high-intensity physical activities
for physical and cardiopulmonary strengthening since they have been associated
with less athletic and functional restriction, and greater satisfaction with the
rehabilitation process [3,7].

A method used as a rehabilitation tool is the implementation of video games
to reproduce real life experiences in a controlled environment [8], providing moti-
vational benefits and allowing patients to reproduce more repetitions of the exer-
cise before reporting fatigue [9,10].

With the idea of complementing rehabilitation plans to achieve greater inte-
grality and help amputee patients to adhere better to prostheses, the following
question has arisen: How could a system be built to help with prosthetic train-
ing, provide solutions to specialists, and contribute to research on rehabilita-
tion progress? This article shows the design process of a multipurpose virtual
simulation tool that complements physical training during the rehabilitation of
patients with transtibial or transfemoral prostheses through the integration of
several systems.

These systems are composed of a recumbent trike that is statically fixed
to a roller allowing free pedaling without displacement and instrumented with
multiple sensors that capture speed, cadence, steering angle, and braking. It also
has a self-manufactured physiological monitoring subsystem designed to measure
heart rate, respiratory rate, and pressure distribution of the person’s weight on
the seat of the trike. In addition, the system has a central control device that
processes and sends the measured information to a 3D virtual reality video game
allowing the user to navigate within different scenarios, and it has an interface
that allows the remote and wireless visualization of all the variables and the
adjustment of parameters from any device that has access to the same wireless
network. Additionally, a database was designed to store personal user informa-
tion, kinetic and physiological variables gathered during the game, configuration
parameters, and the score recorded.

Finally, a proof of concept with 12 participants was carried out to verify
the operation, usability, and usefulness of the system as a possible tool in a
rehabilitation plan.
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2 Methodology

2.1 Recumbent Trike

A Hangar 99 TM recumbent trike was used for this project because it increases
the user’s safety since it is more stable than a conventional bicycle and might
allow the progressive improvement of functional movements such as getting up
or climbing stairs [11]. It has a 350W electric motor that assists pedaling, a
48.8V lithium-ion battery that is used as the power source of the components
involved in the system, disc brakes, a back tire with 29-inch wheels, two front
tires with 24-inch wheels and an LCD screen that allows the visualization of the
speed and the percentage of battery charge (see Fig. 1). Additionally, a Prodalca
S.A.S R© roller support was installed to fix the trike statically while allowing it
to roll freely.

Fig. 1. Recumbent trike with a 350W electric motor

2.2 Central Control System

A Raspberry-Pi 4 with 4GB of RAM and a quad-core processor at 1.5GHz
speed was chosen as the central control system. It was programmed using Node-
RED to receive data collected by all the physiological and kinetic sensors. The
central control system processes and cleans the signals, exports data to the
virtual video game, hosts a web page for control and visualization, and stores
user’s information and game score inside a dedicated database.

2.3 Database

All the information collected by the central control system is stored in an SQLite
database. This database consists of 3 tables; the first contains the access cre-
dentials, encrypted with the bcrypt protocol, that allows an administrator to
load and store information of the users that perform the tests. The second table
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contains the user’s ID and a column that stores data in JSON format where
personal information data are specified, such as name, type of prosthesis, age,
and other relevant information for specialists. The third table contains a column
with the user’s ID, the date and name of the test, and a JSON type column with
the results of the tests. In this field, all data related to the use of the trike and
game are stored, including the physiological, kinetic, and configuration values.
Multiple tests can be associated with the same user (see Fig. 2).

Fig. 2. Database composition

2.4 Web Page

A web page was designed using Node-RED and hosted inside the Raspberry-Pi.
A user administrator can log in to this web page to create or upload patients and
store new test data. Once the patient is loaded, the administrator will be able
to run a manual or a video-game-controlled test. In the end, the captured data
are stored in the database. All the kinetic and physiological variables collected
by the sensors can be visualized in real-time graphs facilitating the comprehen-
sion of what happens during tests. Furthermore, it has a configuration interface
where the administrator can adjust communication and tuning parameters for
the calculation of system variables. Another option in the interface allows the
user to log in to create or upload patients and store new test data.

2.5 Kinetic Variables

Speed and cadence: Two TCRT 5000 photo-reflector sensors composed of an
infrared LED and a phototransistor were chosen to measure the rotational speed
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of the rear wheel and the pedaling cadence. One was installed on the frame of
the trike very near to the back wheel and another one was attached to the frame
of the trike at the level of the pedals to detect a marker located on the left pedal
crank. It was necessary to use 3D printed coupling systems to fix them. They
were connected to the digital pins of the Raspberry-Pi to compute the speed
and cadence. To find the speed (v) in real-time is calculated the relationship
between the distance (d) of some markers located equidistantly on the rim and
the average of the time (t) that the sensor takes to detect them. The speed is
considered 0 m/s if the time between detections exceeds 500 milliseconds (1). The
calculation of the cadence (c) is done by averaging the time (t) that the sensor
takes to detect an interruption. If the time is greater than 3.5 s, it is considered
a cadence of 0 rpm (2). Those limits can be adjusted from the interface based
on the number of markers.

v[m/s] =

{
d

Δt , t < 0.5 s

0, t ≥ 0.5 s
(1)

c[rpm] =

{
60
Δt , t < 3.5 s

0, t ≥ 3.5 s
(2)

Steering angle: A mechanism consisting of a mobile bar was designed, 3D
printed, and then joined to a precision potentiometer at the pivot of said bar.
The mechanism was fixed to the frame and to the steering rod of the trike to
measure the steering angle. Then, the output of the potentiometer was connected
to an ADS115 16-bit analog-to-digital converter and then to the Raspberry-Pi
using the I2C communication module. The relationship between the voltage
(Vpot) and the angle of the potentiometer (gpot) was completely linear and its
slope (m) and intercept (b) can be adjusted in real time using the interface (3).
However, the relationship found after a calibration process between the angle of
the potentiometer (gpot) and the steering angle of the trike (gbar) was not linear
and followed the behavior shown in (4) (see Fig. 3).

gpot[o] = m · Vpot + b (3)

gbar[o] = 0, 002 · g3pot + 0, 005 · g2pot + 0, 0845 · gpot (4)

Brake: To detect the braking action, a piezoresistive flex sensor was placed
on the right brake lever by making a bridge with the handlebar. It was con-
nected to a 3.3 V source and an 82 kΩ resistor to generate a voltage divider.
The output voltage was digitalized by the ADS1115 analog-to-digital converter
and then connected via I2C to the Raspberry-Pi. The braking action (F ) was
calculated, considering the hysteresis, as a percentage of the ratio between the
voltage obtained in real time (Vr) and the difference between the maximum volt-
age (VM ) when the brake is fully pressed and the minimum voltage (Vm) when
the brake is released (5).
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F [%] =

⎧⎪⎪⎨
⎪⎪⎩

(
Vr−Vm

VM−Vm

)
,Vm ≤ Vr ≤ VM

0,Vr < Vm

100,Vr > VM

(5)

Fig. 3. Sensor’s distributions for kinetic variables

2.6 Physiological Variables

Plethysmographic signal and heart rate: Analog and digital signal conditioning
of the physiological variables as well as the communication to the central control
system was done using a CY8C5888LTI-LP097 PSoC 5 with internal config-
urable analog and digital peripherals. It was implemented a PulseSensor R© from
World Famous Electronics IIc located on the thumb of the patient’s left hand to
obtain the plethysmographic signal. This signal was captured and filtered with
an internal high-pass module with a cutoff frequency of 0.4 Hz and then digitally
converted with a 12-bit SAR ADC module. The digital signal was smoothed
with a complementary digital filter. Also, to calculate the smoothed values (Si),
the raw value (xi) is multiplied by a weight constant (a) found experimentally
and then added to the complementary value (1 − a) multiplied by the previous
raw value (xi−1) as shown in (6). A threshold level (U) was implemented to
calculate the heart rate from the plethysmographic signal. This threshold can be
automatically set by the calculation of an average of (Si) for 3 s (7) or through
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an external comparison value obtained from a potentiometer. Every time event
at which the signal (Si) exceeds this threshold is recorded. This event occurs
only once and is considered the period (p). The average period (Δp) is measured
by means of a moving average window of 10 records achieving better precision.
The heart rate (fh) will be the inverse of this value multiplied by 60 s to report
the magnitude in beats per minute as shown in (8). The smoothed signal (Si)
and the heart rate (fh) are sent to the Raspberry-Pi at 57600 bauds through an
UART connection for visualization in real time. It is important to clarify that
the communication speed is different from the sending frequency which can be
modified from the interface.

Si = a · xi + (1 − a) · xi−1 (6)

U =
∑n

i=0 Si

n
for all t < 3 s (7)

fh =
1

Δp
· 60 (8)

Breathing frequency: A non-invasive method for capturing volumetric chest
changes during breathing was self-designed which consists of a belt placed around
the patient’s chest equipped with another flex sensor, a spring, a preconditioning
circuit, and the PSoC. When the patient breaths, a volumetric signal is generated
and then filtered and smoothed following the same procedure implemented with
the plethysmographic signal as in (6). The threshold is similarly calculated as in
(7) but for 6 s. The breathing frequency (fb) is also calculated as in (8) with a
moving average window but only using 3 periods of the respiratory cycle since
the signal is much slower.

Weight distribution: A flexible mesh of 13× 14 pressure sensors was fabri-
cated following the methodology proposed by Diego A. Valle et al. [12] and was
fixed to the tricycle seat. An ESP32 microcontroller was used for recording and
sending the data due to its high processing speed. In this microcontroller, the
raw values go through an analog to digital conversion of 8 bits to send less infor-
mation but faster. The data collected from all sensors that make up the cushion
are sent to the Raspberry-Pi through an UART communication at 115200 bauds.
The process described above takes around 0.6 s (see Fig. 4).

2.7 Virtual Reality Video Game

The main objective of the designed virtual reality video game was to simulate the
real-life activity of riding a recumbent trike. The use of the VR headset allowed
the immersion of the user in the game but was not mandatory, allowing the user
to continue playing if presented dizziness. The game was developed with Unity
TM, and the minimums requirements for functioning were Windows 10, at least
12 GB of RAM, Intel Core i5-7500 or Ryzen 5 1600 processor, GTX 1060 or RX
580 graphics card with 6 GB of VRAM and an HTC Vive, Oculus Rift or Oculus
Quest virtual reality headset.
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Fig. 4. Sensors for physiological variables

The video game is made up of 3 tests: a tutorial, a free mode for practice, and
the main test, which consists of driving along a track while collecting different
elements. In the latter, the game stores the number of elements obtained, the
distance traveled and the average speed over 3 min, a time suggested by special-
ists, but that can be modified for future experimentation. These data might be
used to analyze its correlation with standard mobility tests such as the Time
Up and Go and the 2-minute walk test and thus determine a way to calculate
an index that could indicate the degree of mobility of a user. All tracks and
environments were acquired from the Unity Package Store under a free license.
The Vehicle Tools package from Unity Technologies was used for the tutorial.
The Lake Race Track by AndreiNi was used in the competitive test and the
Mountain Race Tracks by AndreiNi and Shahbaz were used for the free mode.

An anti-sickness system that is often used in the VR industry was imple-
mented in all game modes, proving its effectiveness experimentally. This consists
of deactivating the visualization in the event of shocks and restarting the posi-
tion of the vehicle deleting the discrepancy between what is seen and felt [13].
From the main menu, it is possible to specify the duration of the test, activate
virtual reality, set the tunning parameters of speed, brake, and turn to improve
the driving experience, and specify communication parameters such as port and
baud rate.

For the interaction with the Raspberry-Pi, an FT232 USB UART commu-
nication module was used (see Fig. 5). Once the game has started, it initiates
the connection and sends a specific message allowing the Raspberry-Pi to start
sending the kinetic data of the trike every 20 milliseconds so that the user can
control the game with the movement of the trike. Once the test is started, the
video game sends a key message to temporarily store data. At the end of the
session another key message is sent, and the user can confirm or decline the
permanent storage. In case of a permanent storage confirmation, the game sends
the test results and a password to the central control system and then the tem-
porarily data and game statistics are permanently saved in the database.
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Fig. 5. Block diagram of the whole designed system

2.8 Concept Test

Once the design of the trike and the virtual reality video game were validated by
specialists from the Mahavir Kmina Corporation to test the performance of the
system, a usability and immersion test was performed on 12 volunteers (4 women
and 8 men) at the corporation located in La Estrella, Antioquia. The age of the
study participants ranged from 19 to 53 years (31±10), 2 volunteers had transtib-
ial lower limb prostheses and the others were considered healthy. For inclusion,
volunteers had to be in good general cardiovascular health. Also, potential par-
ticipants were excluded in case of extremely dizzy feelings or drug abuse. This
study was conducted under the accepted ethical standards for research practice
as described in the Helsinki Declaration of 1975, as revised in 2000 and 2008. The
study protocol underwent review and approval by the Ethics Committee of the
Faculty of Medicine at Universidad de Antioquia. Written informed consent was
obtained from all participants prior to enrolment. The test consisted of the fol-
lowing steps. The user administrator added the volunteer’s personal information
to the database using the website, then, the volunteer was placed on the trike,
and it was adjusted adequately until the user felt comfortable. The physiological
sensors and the virtual reality headset were attached to the volunteer, and the
administrator performed the adjustments of thresholds. The volunteer could now
start the video game tutorial, but if the person got dizzy, then the game was
set to not use VR and the volunteer could repeat the tutorial or quit the test.
Once the tutorial was finished, the videogame test was executed, and the user
had to drive along a track and collect different elements for 3 min. During the
test, the plethysmographic signal, heart rate, breathing frequency, and weight
distribution were recorded and saved in the database for further studies. In the
end, the volunteer was given a usability survey based on the system usability
scale [14] and a presence and immersion questionnaire [15] which allowed to val-
idate that the system was working correctly and the video game complied with
the gameplay and immersion parameters.

3 Results

The resulting integrated system shown in Fig. 6 occupies an area of 2× 3 m2.
The cables and sensors were firmly attached to the frame of the trike so there
were no misalignment problems despite the strong vibration produced during
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pedaling. Finally, a protective box was built for the control center, increasing
the security of the devices, and avoiding involuntary disconnections. For a better
appreciation of the result visit: https://youtu.be/49tSDCCW3Eo

The interface allowed the correct visualization not only of the plethysmo-
graphic and the chest volume signals in real-time, but also the pressure distribu-
tion color map, the heart rate, and respiratory frequency values. However, these
values should not be used in studies that require a level of clinical precision
because the system is not considered a medical device for diagnosis yet.

The sampling frequency used to plot the pressure distribution color map was
not enough to appreciate the behavior of weight distribution over the seat while
pedaling, but it did make it possible to identify the differences in inclination,
which were very evident in the 2 volunteers with prostheses. The concept test
revealed that there is good acceptance of the system by the participants as an
element that they would have at home to exercise and that it is safe to use.
Some volunteers reported difficulty sitting down and that it is not very intuitive
at first, but they easily assimilated the driving experience using the tutorial. All
participants reported feeling the physical exercise and that it can be suitable for
all audiences. Regarding the use of virtual reality, all the participants reported
enjoying the test, experiencing high immersion, quick response to control the
vehicle, and none declared feeling dizzy. Table 1 summarizes the results of the
most relevant questions in the survey, where 5 means a lot and 1 very little.

Fig. 6. Integrated system with web page and game

https://youtu.be/49tSDCCW3Eo
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Table 1. Usability survey results

Topic Question Result

Usability Was it easy to use the game together with the trike during the test? 4.3

Do you think it was quick to learn 4.5

how to use the game with the tricycle?

Can it be useful for all types of audiences? 5.0

Immersion Did you like the virtual environment? 5.0

How connected were your senses to the virtual environment? 4.5

How natural did the mechanism that controls the movement of 3.7

the virtual vehicle feel?

How confused, dizzy, or disoriented did you feel at the end of the 1.7

experimental session?

How quickly did you adapt to the virtual environment experience? 4.1

4 Conclusion

The design and adjustment of the physiological sensors were considered one of
the most delicate stages of the project. Therefore, to replicate a prototype like
this, it is necessary to adapt these sensing systems to their optimal point before
integration. It can be highlighted that the designed system allowed to capture,
visualize and store different physiological and mechanical variables, as well as
personal user information, adequately and simultaneously, while the participants
used the virtual reality game. The fact that no participants reported dizziness
could be attributed to the vibration of the trike providing enough haptic feedback
to experience a real sensation of driving, however, further studies are needed.
In addition, great enthusiasm was generated by the volunteers thanks to the
added value of the video game as suggested by the usability survey. However,
the participation of a larger number of volunteers is necessary to determine if
adjustments must be done so that the system can be adapted to different types
of lower limb amputation. A study on the correlation between video game scores
and mobility tests is suggested as a next step to determine if the system can
also be used as a mobility diagnostic tool for people recovering from trauma
with or without prostheses. It is also suggested to perform a longitudinal study
with patients to evaluate if the system might fulfill its function as an element
for physical training while monitoring physiological responses.
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Abstract. Mastitis is among the most common, impacting and challenging dis-
ease in the dairy industry. Mainly in view of the various disadvantages of conven-
tional therapies, this study aimed to verify the treatment of subclinical mastitis
through photobiomodulation. Lactating cows (n = 10) were used, nine (n = 9)
with positive subclinical mastitis and one (n = 1) negative used as a control. The
photobiomodulation protocol using 5 J/cm2, and occurred on alternate days, total-
ing seven applications of the Ga-Al-As diode laser (685 nm) inside one cow teat.
The milk samples were analyzed before, during and after the treatment to realize
the reductase test, colony count and California Mastitis Test (CMT). No changes
were found in the reductase test, keeping the milk acidity stable in all samples
during and after treatment. In the bacteria isolation and colony count we identified
Staphylococcus aureus, coagulase-negative Staphylococcus and Bacillus cereus, a
better performancewas observed in animals treated by coagulase-negative Staphy-
lococcus, keeping the growth of Staphylococcus aureus stable and increased in
Bacillus cereus. Regarding the CMT, it was positive for subclinical mastitis before
and after treatment, with a decrease in positivity in 60% of the animals 96 h after
the last application. The results suggest the development of future research of
photobiomodulation protocols for bovine subclinical mastitis with others optical
dosimetries, since there were no changes in the milk composition, decreased in the
bacteria count, and without generating residues in milk and dairy product losses.
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1 Introduction

Mastitis is a commonworldwide inflammatory disease of themammary gland that causes
major impacts on dairy animals, affecting animal welfare and causing great economic
losses to the dairy industry through decreased production performance and increased
waste milk disposal [1, 2].

The infection transmission occurs mainly between milking due to hygiene failures,
and is difficult to control, since themain infection agents are disseminated in the environ-
ment where the animals remain [3]. The widespread use of antimicrobials to combat this
cause infection has been a serious public health problem, given the risks of the selection
of antimicrobial-resistant bacteria, and the presence of these compounds in the dairy
products [4], where they must be discarded by the milk-producer [5]. New regulations
on veterinary medicine will substantially influence antimicrobial prescribing and usage
throughout into the near future. These regulations have been informed by a very large
body of work, including the substantial progress towards reduced antimicrobial usage
in food animal production [6].

New treatment proposals for subclinical mastitis using phototherapy or photo-
biomodulation technique as a new “clean” technology for animal healthcare, the envi-
ronment and consequently for human beings, and have been recently proposed in the
works of Moreira et al. [7, 8], Galstyan & Dobrindt [9], recently in sheep by Silva et al.
[10] and in a letter to the editor by Ribeiro and colleagues [11], where they also discuss
the clinical challenges and therapeutic advantages of this promising technique, also too
with the association of photodynamic therapy.

The objective of this study was to evaluate the effect of photobiomodulation in
bovines with subclinical mastitis for the development of preventive protocols for this
infection disease.

2 Materials and Methods

2.1 Animals

This study was approved by the institutional review board (Animal Care and Use
Committee) of the University Camilo Castelo Branco (process #1-00034/2012).

Ten lactating Holstein cows (n = 10) were selected, all raised in the confinement
management and feeding based on corn silage, protein concentrate, brewing industry
residue (barley) and green forage ad libitum, from a commercial farm in Caçapava/SP,
Brazil.

Cowsweremilked using amechanical herringbonemilking parlor (6× 2) three times
a day (4, 12 and 20 h) and per-formed without the calves presence. Routine technical
procedures for milking hygiene consisted of asepsis in the mammary gland with Master
Iodo (Sani Química Ltda, Valinhos, Brazil), upon entering the milking parlor, then the
teatswere driedwith disposable paper towels andmilked, at the end service, the teatswere
also disinfected with the same product, and the animals were released to the pad-docks.
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2.2 Analytical and Clinical Exams

All lactating animals underwent visual veterinary inspection of the mammary gland and
indirect analysis of themilk quality using the CaliforniaMastitis Test (CMT) [12], once a
week, according to the manufacturer’s instructions, before the second milking of the day
(12hp.m.) for the detectionof clinical and/or subclinicalmastitis through120days.Cows
that showed persistent reaction in the CMT exam with three crosses (+++), for a period
of three consecutive months without observation of spontaneous cure of subclinical
mastitis,were separated for the performance of the photobiomodulation treatment.Under
these conditions, the cows (n = 9) were selected using only one mammary quarter of
each animal for the experiment. For control group, we used an animal (n= 1) that was in
the same period of lactation and that also received the same treatment protocol although
it did not have subclinical mastitis.

To the CMT examination the selected cows receives again the mammary gland
asepsis routine, and then the first three jets of milk were used for the CMT exam, and
after this, 70% ethyl alcohol was passed on the teat to milk microbial collect analysis.
The cow teat was cleaned, dried with a paper towel and then collected 20 mL of milk in a
sterile bottle for laboratory test. After this procedure, the routine milking was performed
and the treatment protocol was applied to the selected teat.

The milk samples collected were immediately stored in isothermal boxes and sent to
the laboratory milk analysis. Microbiological identification, colony count and reductase
tests were also performed in the laboratory [13]. Finally, tenmilk samples were collected
from each treated teat, one sample before treatment, seven samples during treatment and
two samples after treatment, 48 and 92 h apart from the last treatment.

2.3 Photobiomodulation Protocol

Animalswere treatedwith a low-powerGallium-Aluminium-Arsenide (Ga-Al-As) diode
laser (Teralaser, MMOptics Ltda, São Carlos, Brazil) with a wavelength in 685 nm,
continuous emission mode, power of 20 mW and an energy density of 5 J/cm2 with
an exposure time of four minutes (240 s). The light dose was checked before each
experiment.

The laser probe was disinfected and inserted internally up to three centimeters into
the cow teat canal as showed in Fig. 1, and at the same time the teat was compressed to
reduce its length, thus facilitating a better irradiation of the light from laser beam inside
the mammary gland. In this sense, after milking the selected cows were treated, consider
the time interval of 48 h (alternate days) between each application, consisting of seven
total applications per selected teat animal. A negative or decreased CMT within 92 h
after the end of treatment was established as a primary objective.
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Fig. 1. Laser application in the bovine teat canal.

3 Results and Discussion

Of the ten treated teats (n = 10) in six teats were isolated Staphylococcus aureus, in
two teats coagulase-negative Staphylococcus, and in other two Bacillus cereus as the
infection agent of subclinical mastitis.

The average of the CFUs (log CFU) from the animals before treatment (0), during
treatment (applications 1 to 7) and after treatment (48 and 92 h) versus the animal control
condition are shown in Fig. 2.

The reductase test was performed on all milk samples, and we detected changes in
four samples before starting treatment, and no changes were observed during and after
treatment in these animals.

Lage and colleagues [14] developed a photobiomodulation LED-based device for the
prevention and treatment of teat hyperkeratosis in dairy cows as a preventive proposal
for mastitis. Moreira et al. [7] developed a treatment protocol for subclinical mastitis
using LEDs associated with a photosensitizer, obtaining good results as an alternative
treatment without leaving drug residues in the animal, without milk discarding. The
same author and other colleagues [8] recently proposed a device based in infrared LEDs
accoupled in an industrial mechanical milking equipment, aiming to prevent subclinical
mastitis, but they are necessary more studies to determine the best dosage.

In subclinical mastitis, although it is not possible to diagnose it visually, there is a
marked increase in polymorphonuclear leukocytes, whichmakes it possible to detect this
condition by indirect methods, such as CMT, which is the most widespread technique by
rural producers because it is easy-to-perform, low-cost and a fast test, for these reasons
was the technique used in our study to compare the condition before, during and after
treatment, so the results are presented in Table 1.
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Fig. 2. Mean Colony Forming Units (log CFU) of cows photobiomodulation treatment to
subclinical mastitis positive microorganisms vs. control.

The CMT increases during treatment was expected, corroborated the studies by
Albertini et al. [15] and Mansouri et al. [16] that reported that low-level laser therapy
induce a reorganization of the inflammatory process, both in cells and in blood vessels;
endothelial cells are transformed into capillaries due to the neoforming light effect, as
their action on the inflammatory process by modulating neovascularization, which as
a consequence reduces the loss of function, increases tissue oxygenation and regional
microcirculation, proliferating blood cells such as leukocytes, lymphocytes, polymor-
phonuclear cells, macrophages and plasma cells, and in this case it was detected in milk
by the CMT during and after treatment, due to the photobiomodulation caused by the
light absorption. CMT tends to become negative after treatment, as it was observed that
60% of the treated animals obtained a CMT below 3 (+++) at 96 h after treatment.
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Table 1. CMT before, during and after photobiomodulation treatment.

Application Control A B C D E F G H I

0 0 3 3 3 3 3 3 3 3 3

1st 0 3 3 3 3 3 3 3 3 3

2nd 1 3 3 3 3 2 3 3 3 3

3rd 2 3 2 3 3 2 3 3 2 3

4th 3 3 2 3 2 3 3 2 2 3

5th 2 3 3 3 3 3 3 2 3 3

6th 1 3 3 3 2 2 3 2 3 2

7th 2 3 3 3 2 3 3 2 3 3

48 h 1 3 3 3 2 2 3 3 3 2

96 h 1 2 2 3 2 2 3 3 3 2

Application: 0 = before application; 1–7 = during application; 48 h = 48 h after application;
96 h = 96 h after application; Control = animal control; A–I (n = 9) = treated animals; 0 =
animal without subclinical mastitis; 1 = (+) animal weakly positive for subclinical mastitis; 2 =
(++) positive animal for subclinical mastitis; 3 = (+++) animal strongly positive for subclinical
mastitis.

Moreira et al. [7] used photodynamic therapy in subclinical mastitis confirmed a
bactericidal effect with the reduction of the microorganisms Streptococcus dysgalactiae
and coagulase-negative Staphylococcus using the laser irradiation at three different spots
inside the mammary gland, using a dosage much higher than in this proposed work. The
in vitro study by Schultz et al. [17] indicated that Pseudomonas aeruginosa, Staphylo-
coccus aureus, and Escherichia coli were eliminated by laser irradiation when the energy
density was greater than only 1.6 J/cm2.

The average CFU of milk samples from treated animals showed the profile of growth
and partial inhibition of isolated microorganisms (Staphylococcus aureus, coagulase-
negative Staphylococcus and Bacillus cereus) at 10–2 dilution at energy density of
5 J/cm2, with time of application of four minutes and applying the laser probe (optical
fiber) inside the channel of the teat, different from the works of Schultz et al. [17] and
Okamoto & Iwave & Morioka [18] that were performed with energy density and appli-
cation time focusing directly on the microorganism in in vitro assays when obtained a
more direct response (partial or total inhibition). Albertini et al. [15] studied the light
effect in rat paw edema focusing on the animal’s skin, and obtained satisfactory results
for the anti-inflammatory effect, as also suggested by Moreira et al. [7] when using
photodynamic therapy with 200 J/cm2 to treat subclinical mastitis.

Sharun et al. [2] in a recent review discuss a need for the development of new tech-
nologies for the effectiveness in mastitis treatment, since the disease presents different
therapeutic responses in antibiotic use, due to microbial resistance to conventional drugs
available on the market and the high number of etiological agents cause-disease. New
“clean” technologies, without waste generation, are essential for the future of dairy
industry in a sustainable way.
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4 Conclusions

This study suggests the development of future research aiming to prevention of bovine
subclinical mastitis applying photobiomodulation technique, based in our results related
to bacteria reduction in the treated teat, improvement in the quality of milk by the CMT,
and without generating residues in milk and dairy product losses.
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