
AutomaTutor: An Educational Mobile
App for Teaching Automata Theory

Steven Jordaan, Nils Timm(B), and Linda Marshall

Department of Computer Science, University of Pretoria, Pretoria, South Africa
{sj.jordaan,nils.timm,linda.marshall}@up.ac.za

Abstract. Automata theory is one of the core theories in computer sci-
ence because it allows scientists and practitioners to understand the com-
plexity of computational problems, and thus, to develop efficient solu-
tions to them. Several formal methods such as model checking are based
on automata theory. Automata theory has traditionally been taught
on a theoretical level. Students learned to define abstract machines via
pen and paper without the possibility to actually run these machines.
Over the years several automata simulators have been introduced and
employed in teaching automata theory. These tools offer rich features for
designing and manipulating automata, but do not provide pedagogical
guidance to the user. In this paper we present the AutomaTutor, an edu-
cational tool on automata theory that particularly targets learners with-
out prior knowledge of theoretical computer science. The tool is a mobile
application that offers guided learning by solving interactive exercises.
Exercises can be randomly generated or customised by an educator. The
user-friendly touch interface allows learners to solve exercises by con-
structing finite automata or regular expressions that match with given
languages. Learners receive immediate feedback. The application’s focus
on user experience and visualisation aims to make it accessible regardless
of the technological background of the user. Our target is that the tool
stimulates the students in their learning activities, and thus, leads to an
improved understanding of automata theory and an increased interest in
formal and theoretical aspects of computer science.

1 Introduction

Automata theory is the study of abstract machines and problems that can be
solved by them. It is one of the core theories in computer science because it
allows scientists and practitioners to understand the complexity of computational
problems, and thus, to develop efficient hardware or software solutions to them.
Several formal methods such as model checking are based on automata theory.

An integral part of teaching practical computer science is to make use of
technology such as software development kits and tools for the visualisation of
software components. Automata theory has traditionally been taught on a the-
oretical level. Students learned to define abstract machines via pen and paper
without the possibility to actually run these machines. Over the years several
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Barbosa and Y. Zohar (Eds.): SBMF 2023, LNCS 14414, pp. 131–140, 2024.
https://doi.org/10.1007/978-3-031-49342-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49342-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-49342-3_8


132 S. Jordaan et al.

automata simulators have been introduced and employed in teaching automata
theory [15,18,19,21]. These tools offer rich features for designing and manipu-
lating automata, but do not provide pedagogical guidance to the user. This may
overwhelm novice learners and discourage them from using the tools in their
learning activities.

In this paper we present the AutomaTutor, an educational tool on automata
theory that particularly targets learners without prior knowledge of theoretical
computer science. The tool is a mobile application that offers guided learning
by solving interactive exercises. It brings abstract automata to life and allows
students to get a practical experience of theoretical computer science. The appli-
cation’s focus on user experience and visualisation aims to make it accessible
regardless of the technological background of the user. The tool is split into two
major components: the tutorial and the sandbox.

The tutorial offers interactive exercises on finite automata and regular lan-
guages on different levels of difficulty. Exercises can be randomly generated or
customised by an educator. The user-friendly touch interface allows learners
to solve exercises by constructing automata or regular expressions that match
with given languages. Learners receive immediate feedback on each exercise. For
incorrect solutions feedback is provided in the sense of counterexample strings
that are incorrectly accepted or rejected. The tool generates such counterexam-
ples automatically. The tutorial also offers hints during exercises, providing users
with additional guidance without revealing the full solution.

The sandbox provides similar functionalities as existing automata editors.
While being less feature-rich than existing editors, the sandbox was designed
with a focus on simplicity and user-friendliness. The purpose of the sandbox is
to also offer a platform for experimental learning of automata theory. Learners
can create their own finite automata in an easy touch-based manner and they
can simulate runs of the automata for input strings. The sandbox visualises
simulation runs by highlighting the taken transitions and indicating whether the
run is accepting or rejecting.

From 2024 on the AutomaTutor will be officially used in teaching the under-
graduate module “Theoretical Computer Science” at the University of Pretoria.
The set of tutorial exercises will be further populated and aligned with the lec-
ture content. By using the application, students will have the opportunity to
enhance their understanding of automata theory without additional guidance
by an instructor. Our target is that the AutomaTutor stimulates the students
in their learning activities, and thus, leads to an improved understanding of
automata theory and an increased interest in formal and theoretical aspects of
computer science.

2 Related Work

The development of automata simulation tools started in the early 1960s [4]. A
review of tools that have been developed since then can be found in [2]. Simu-
lators can be classified into language-, table- and canvas-based tools. Language-
based tools [1,9,11] present automata as programs of a programming language.



AutomaTutor: An Educational Mobile App for Teaching Automata Theory 133

In table-based tools [7,8] automata can be constructed by means of a transi-
tion table. While these two kinds of tools lack visual features, the technological
advances in the 1990s allowed to introduce canvas-based simulators [5,12,14]
where users can draw automata as state-transition diagrams. Today canvas-based
tools are still the most popular ones with prominent examples such as JFLAP
[15] and JFAST [21]. Most simulators are desktop applications where user input
is performed via mouse and keyboard. In recent years, a number of mobile appli-
cations for automata simulation has been introduced. CMSimulator [3], FLApp
[13] and Automata Simulator [18] are mobile applications that allow a touch-
based construction and simulation of automata. Each of the above-mentioned
tools comes with a particular range of supported automata types, such as finite
automata, pushdown automata, Turing machines and transducers. Educators
have reported on successfully using simulation tools in teaching automata theory
at university level [16]. Using the tools required an instructor-guided approach
where the instructor had to manually create exercises to be solved with the tool.
In contrast, our AutomaTutor offers guidance by the tool itself. The exercises
are already integrated into the tool. They can be automatically generated and
graded, and the learner receives immediate feedback. Currently, our AutomaTu-
tor is limited to finite automata and regular expressions, and thus, does not offer
as rich features as alternative tools. During the development of the AutomaTu-
tor particular emphasis was put on following usability guidelines [6,10] in order
to make the application as user-friendly as possible, which is an aspect that is
typically not addressed in related work. Our work is loosely related to game-
based approaches to learn automata theory [17,20]. The approaches integrated
automata aspects into classical games such as Mastermind and Tower Defence.
In the proposed games the focus is more on the fun aspect than on comprehensive
learning.

3 The AutomaTutor

In this section we present the AutomaTutor, a mobile application for teaching
and learning automata theory. The application was designed with the purpose
to provide computer science students a guided and engaging learning experi-
ence. In the design of the application particular emphasis was put on usabil-
ity and feedback features. Moreover, generation features were integrated into
the application which include the automatic generation of random exercises.
After a brief tool overview we discuss the features of these types in separate
subsections. The AutomaTutor can be accessed via the following link: https://
sj-jordaan.github.io/masters-tool/. We recommend to use the application on a
mobile phone. The source code of the AutomaTutor is available under https://
github.com/SJ-Jordaan/masters-tool.

3.1 Overview

Upon first accessing the application, users are presented with a landing page
(Fig. 1a) that emphasises the tool’s experimental status and conveys appreciation

https://sj-jordaan.github.io/masters-tool/
https://sj-jordaan.github.io/masters-tool/
https://github.com/SJ-Jordaan/masters-tool
https://github.com/SJ-Jordaan/masters-tool


134 S. Jordaan et al.

for their engagement. They are then guided to a profile customisation inter-
face (Fig. 1b), which hints at forthcoming personalisation enhancements. Subse-
quently, users are ushered into the Tutor segment, where they receive a descriptive
overview of the ‘Experiment’ category (Fig. 1c). From here, they have the option to
transition to the ‘Exercises’ tab (Fig. 2a) to select their desired level. Upon select-
ing their avatar located at the top right corner, users are directed to their profile
page (Fig. 2b). From this interface, they have the option to either revert to the
Tutor segment or proceed to the Sandbox environment (Fig. 2c). As users delve
deeper into the application, they encounter one of its most essential features:

Fig. 1. Initial Application Journey.

Finite Automata Editor. The Finite Automata Editor is a pivotal feature of
the mobile application, meticulously designed to provide an intuitive and efficient
interface for users to interact with finite automata. The editor is implemented
in two distinct contexts within the application: the exercise interface and the
sandbox interface. Each interface encapsulates a range of functionalities, each
contributing to the overall usability of the application.

Exercises. Exercises are a crucial component of the tool, providing users with
opportunities to apply their knowledge and understanding of finite automata and



AutomaTutor: An Educational Mobile App for Teaching Automata Theory 135

Fig. 2. Navigating to Sandbox.

regular expressions. The exercises are designed to be diverse and challenging,
offering a range of question types that cater to different learning styles and
objectives. The tool supports exercises that involve providing a regular language,
either textually, as a regular expression, or as an automaton, and asking the
user to construct a corresponding regular expression, automaton, or perform a
conversion between the two. Another variant of the exercise requires the user to
provide a string that is contained within the given language. These exercises are
designed to test the user’s understanding of the core concepts and their ability
to apply this knowledge in practical scenarios.

3.2 Usability

Prioritising user experience, the application combines intuitive design with effi-
ciency. This section highlights features that enhance interaction with finite
automata and foster a conducive learning environment.

Adding, Removing, and Modifying Components. Both the exercise and
sandbox interfaces facilitate users to seamlessly add and modify transitions of
an automaton. In the exercise interface, the states, including initial and accept-
ing states, are predefined, and users can add or modify transitions between these
states by labeling them with appropriate symbols. In contrast, the sandbox inter-
face allows users to add, alter, and delete states and transitions using a context



136 S. Jordaan et al.

menu, providing a more flexible and advanced environment for creating and
modifying finite automata. Both interfaces provide adequately sized touch tar-
gets for the components of the automaton, ensuring sufficient spacing between
touch targets to minimise the risk of accidental inputs.

Re-Arranging Components. Both interfaces employ an automatic arrange-
ment algorithm for states and transitions within the editor to create a visually
appealing and organised layout for the automaton. When a state is repositioned,
the transitions connected to it automatically adjust their paths to maintain a
clear and uncluttered representation of the automaton. The sandbox interface
further enhances this feature by allowing users to lock the layout once they are
satisfied with the arrangement, providing a balance between automatic layout
optimisation and user control.

Zooming and Panning. Both interfaces automatically adjust the zoom level
and position of the automaton diagram to ensure that it fits nicely and is leg-
ible on the screen. The sandbox interface supports gesture-based zooming and
panning, which is a standard feature in modern mobile applications. It also auto-
matically adjusts the zoom level to fit all elements on the screen when states
are moved out of the interface’s bounds, enhancing the usability of the interface,
especially when working with larger automata.

Progress Tracking: The tool implements a progress tracking feature which
includes a timeline at the top of the exercise interface that shows users how
far they have progressed and how many questions they have answered correctly.
This feature allows users to gauge their progress, manage their time effectively,
and stay motivated.

3.3 Feedback

Feedback in this application serves as more than just a response, it is a proactive
tool that guides and informs the user’s learning journey. This section details the
feedback modalities, each designed to offer timely and constructive insights.

Hints. Hints, designed to scaffold problem-solving skills and alleviate user frus-
tration, play a crucial role within the application. The application presents hints
as textual prompts via a pop-up interface as seen in Figs. 3a. These hints, drawn
from a manually curated pool, offer users a variety of suggestions to guide their
problem-solving process.

Simulation. The Simulation (Fig. 3c) feature in the application is primarily
integrated within the sandbox. This allows users to construct automata and
simulate string inputs against them, fostering an active learning experience. The



AutomaTutor: An Educational Mobile App for Teaching Automata Theory 137

Fig. 3. Examples of Feedback.

automata simulation in the application utilises colour highlighting to indicate the
active state and transitions during the simulation. The application also incor-
porates an animation that signifies the reading of the next input symbol. An
accepted or rejected input is highlighted in green or red, respectively, providing
clear feedback to the user.

Performance Feedback: Upon completing an exercise, users are presented
with a summary of their performance. This feedback includes basic metrics such
as the number of submission attempts, time taken, and percentage correct (in
case some questions were left incorrect or unanswered). This information helps
users identify areas where they excelled and those where improvement is needed,
guiding their future learning efforts.

3.4 Generation

The generation features of the application encompass the creation of exercises
and the generation of counterexamples.

Random Exercise Generation. The tool employs algorithms to generate
random yet solvable exercises, ensuring a diverse range of tasks and providing
users with new challenges each time they engage with the exercises. Users have



138 S. Jordaan et al.

the option to select the difficulty scale and the number of questions, as well
as the types of questions to generate, allowing for a personalised and targeted
learning experience.

Counterexample Generation. The counterexample generation feature is a
critical component of the application, providing users with immediate, construc-
tive feedback upon the submission of their solutions. By comparing the user’s
solution to the memorandum solution, the application can generate counterex-
amples that highlight discrepancies in the user’s understanding of the problem.
This feedback is presented to the user in a clear, concise manner, accompanied by
audio-visual cues to indicate an incorrect solution. The application generates two
types of counterexamples: strings incorrectly accepted by the user’s solution and
strings incorrectly rejected by the user’s solution. A generated counterexample
is shown as a pop-up at the bottom of Fig. 3b.

4 Conclusion and Future Work

We presented a mobile application that can be used to construct and simulate
finite automata as well as to solve interactive exercises on automata theory and
regular expressions. In the design of the AutomaTutor emphasis was put on
usability and feedback features. The application guides users in their learning
activities without the need for additional intervention by an instructor. The ques-
tion pool of the AutomaTutor is currently small but the implemented generation
features allow to automatically generate random questions of several types. In
preliminary user experiments we asked computer science students at the Uni-
versity of Pretoria to solve automata theory exercises via pen and paper, via
the classical simulators as well as by using the AutomaTutor and to report on
their experiences and preferences. The majority of students favoured the guided
learning approach offered by the AutomaTutor. A more extensive experimen-
tal evaluation of the tool is in progress. From 2024 on the AutomaTutor will
be officially used in teaching the undergraduate module “Theoretical Computer
Science”. Our conjecture is that the use of the tool will allow students gain
a better understanding of the abstract topics of theoretical computer science.
Although automata theory is not a formal method on its own, it it one of the
core theories that is employed in several formal methods. Thus, with introduc-
ing our app we also intend to motivate and prepare students to study formal
methods at postgraduate level.

In its current version the AutomaTutor only includes exercises on finite
automata and regular expressions. As future work we are planning to extend
the application such that further types of automata such as pushdown automata
and Turing machines are supported. It is also planned to include Kripke struc-
tures and Büchi automata such that model checking subjects can be taught
via the tool. Moreover, based on student feedback the usability, feedback and
generation features of the AutomaTutor will be further improved.



AutomaTutor: An Educational Mobile App for Teaching Automata Theory 139

References

1. Chakraborty, P.: A language for easy and efficient modeling of Turing machines.
Prog. Nat. Sci. 17(7), 867–871 (2007)

2. Chakraborty, P., Saxena, P.C., Katti, C.P.: Fifty years of automata simulation: a
review. ACM Inroads 2(4), 59–70 (2011)

3. Chuda, D., Trizna, J., Kratky, P.: Android automata simulator. In: Proceedings of
the International Conference on e-Learning, pp. 80–4 (2015)

4. Coffin, R.W., Goheen, H.E., Stahl, W.R.: Simulation of a Turing machine on a dig-
ital computer. In: Proceedings of the November 12–14, 1963, Fall Joint Computer
Conference, pp. 35–43 (1963)

5. Cogliati, J.J., Goosey, F.W., Grinder, M.T., Pascoe, B.A., Ross, R.J., Williams,
C.J.: Realizing the promise of visualization in the theory of computing. J. Educ.
Resour. Comput. (JERIC) 5(2), 5–es (2005)

6. Google LLC.: Material design guidelines (2023). https://m3.material.io/
7. Hamada, M.: Supporting materials for active e-learning in computational models.

In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008.
LNCS, vol. 5102, pp. 678–686. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-69387-1 79

8. Hannay, D.G.: Interactive tools for computation theory. ACM SIGCSE Bull. 34(4),
68–70 (2002)

9. Harris, J.: Programming non-deterministically using automata simulators. J. Com-
put. Sci. Coll. 18(2), 237–245 (2002)

10. Inc., A.: Human interface guidelines (2023). https://developer.apple.com/design/
human-interface-guidelines/

11. Knuth, D.E., Bigelow, R.H.: Programming language for automata. J. ACM
(JACM) 14(4), 615–635 (1967)

12. LoSacco, M., Rodger, S.: FLAP: a tool for drawing and simulating automata.
Media 93, 310–317 (1993)

13. Pereira, C.H., Terra, R.: A mobile app for teaching formal languages and automata.
Comput. Appl. Eng. Educ. 26(5), 1742–1752 (2018)

14. Robinson, M.B., Hamshar, J.A., Novillo, J.E., Duchowski, A.T.: A java-based tool
for reasoning about models of computation through simulating finite automata and
turing machines. In: The Proceedings of the Thirtieth SIGCSE Technical Sympo-
sium on Computer Science Education, pp. 105–109 (1999)

15. Rodger, S.H., Finley, T.W.: JFLAP: An Interactive Formal Languages and
Automata Package. Jones & Bartlett Learning, Burlington (2006)

16. Rodger, S.H., Wiebe, E., Lee, K.M., Morgan, C., Omar, K., Su, J.: Increasing
engagement in automata theory with JFLAP. In: Proceedings of the 40th ACM
Technical Symposium on Computer Science Education, pp. 403–407 (2009)

17. Silva, R.C., Binsfeld, R.L., Carelli, I.M., Watanabe, R.: Automata defense 2.0:
reediçao de um jogo educacional para apoio em linguagens formais e autômatos.
In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de
Informática na Educaçao-SBIE), vol. 1 (2010)

18. Singh, T., Afreen, S., Chakraborty, P., Raj, R., Yadav, S., Jain, D.: Automata
simulator: a mobile app to teach theory of computation. Comput. Appl. Eng.
Educ. 27(5), 1064–1072 (2019)

19. Traoré, M.K.: SimStudio: a next generation modeling and simulation framework.
In: 1st International ICST Conference on Simulation Tools and Techniques for
Communications, Networks and Systems (2010)

https://m3.material.io/
https://doi.org/10.1007/978-3-540-69387-1_79
https://doi.org/10.1007/978-3-540-69387-1_79
https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/design/human-interface-guidelines/


140 S. Jordaan et al.

20. Vieira, M., Sarinho, V.: Automatamind: a serious game proposal for the automata
theory learning. In: van der Spek, E., Göbel, S., Do, E.Y.-L., Clua, E., Baalsrud
Hauge, J. (eds.) ICEC-JCSG 2019. LNCS, vol. 11863, pp. 452–455. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34644-7 45

21. White, T.M., Way, T.P.: JFAST: a java finite automata simulator. In: Proceedings
of the 37th SIGCSE Technical Symposium on Computer Science Education, pp.
384–388 (2006)

https://doi.org/10.1007/978-3-030-34644-7_45

	AutomaTutor: An Educational Mobile App for Teaching Automata Theory
	1 Introduction
	2 Related Work
	3 The AutomaTutor
	3.1 Overview
	3.2 Usability
	3.3 Feedback
	3.4 Generation

	4 Conclusion and Future Work
	References


