
Haniel Barbosa
Yoni Zohar (Eds.)

LN
CS

 1
44

14

26th Brazilian Symposium, SBMF 2023
Manaus, Brazil, December 4–8, 2023
Proceedings

Formal Methods:
Foundations
and Applications

Lecture Notes in Computer Science 14414

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

Founding Editors
Gerhard Goos
Juris Hartmanis

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series counts many renowned academics among its volume editors and paper authors,
and collaborateswith prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
and workshop proceedings and postproceedings. LNCS commenced publication in 1973.

Haniel Barbosa • Yoni Zohar
Editors

Formal Methods:
Foundations
and Applications
26th Brazilian Symposium, SBMF 2023
Manaus, Brazil, December 4–8, 2023
Proceedings

123

Editors
Haniel Barbosa
Universidade Federal de Minas Gerais
Belo Horizonte, Brazil

Yoni Zohar
Bar-Ilan University
Ramat Gan, Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-49341-6 ISBN 978-3-031-49342-3 (eBook)
https://doi.org/10.1007/978-3-031-49342-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-0188-2300
https://orcid.org/0000-0002-2972-6695
https://doi.org/10.1007/978-3-031-49342-3

Preface

This volume contains the papers presented at SBMF 2023: the 26th Brazilian Sym-
posium on Formal Methods. After three consecutive virtual events due to the COVID-
19 pandemic, we were happy to have SBMF again as an in-person event, held at
Manaus, Brazil, from December 6 to December 8, 2023, with satellite events on
December 4 and December 5, 2023.

The Brazilian Symposium on Formal Methods (SBMF) is an event devoted to the
development, dissemination, and use of formal methods for the construction of high-
quality computational systems, aiming to promote opportunities for researchers and
practitioners with an interest in formal methods to discuss the recent advances in this
area. SBMF is a consolidated scientific-technical event in the software area. Its first
edition took place in 1998, and it reached the jubilee 25th edition in 2022. The pro-
ceedings of recent editions have been published mostly in Springer’s Lecture Notes in
Computer Science series as volumes 5902 (2009), 6527 (2010), 7021 (2011), 7498
(2012), 8195 (2013), 8941 (2014), 9526 (2015), 10090 (2016), 10623 (2017), 11254
(2018), 12475 (2020), 13130 (2021), and 13768 (2022).

The conference included four invited talks, given by Artur d’Avila Garcez (City,
University of London, UK), Stéphane Graham-Lengrand (SRI International, USA),
Chantal Keller (Université Paris-Saclay, France), and Vince Molnár (BME-FTSRG,
Hungary). A total of 9 papers were presented at the conference and are included in this
volume, with 7 of them as regular papers and 2 of them as short papers. They were
selected from 16 submissions (12 regular, 4 short) that came from 7 different countries:
Brazil, Spain, the UK, France, the USA, South Africa, and Argentina. The Program
Committee comprised 36 members from the national and international community of
formal methods. Each submission was reviewed by three Program Committee members
(single-blind review). Submissions, reviews, deliberations, and decisions were handled
via EasyChair, which provided good support throughout this process.

We are grateful to the Program Committee for their hard work in evaluating sub-
missions and suggesting improvements. We are very thankful to the general chair of
SBMF 2023, Edjard Mota (Universidade Federal do Amazonas, Brazil), who made
everything possible for the conference to run smoothly. SBMF 2023 was organized by
the Universidade Federal do Amazonas (UFAM), and promoted by the Brazilian
Computer Society (SBC). We would further like to thank SBC for their sponsorship,
and Springer for agreeing to publish the proceedings as a volume of Lecture Notes in
Computer Science.

December 2023 Haniel Barbosa
Yoni Zohar

Organization

General Chair

Edjard Mota Universidade Federal do Amazonas, Brazil

Program Committee Chairs

Haniel Barbosa Universidade Federal de Minas Gerais, Brazil
Yoni Zohar Bar-Ilan University, Israel

Steering Committee

Gustavo Carvalho Universidade Federal de Pernambuco, Brazil
Volker Stolz Western Norway University of Applied Sciences,

Norway
Sérgio Campos Universidade Federal de Minas Gerais, Brazil
Marius Minea University of Massachusetts Amherst, USA
Vince Molnár Budapest University of Technology and Economics,

Hungary
Lucas Lima Universidade Federal Rural de Pernambuco, Brazil

Program Committee

Yoni Zohar Bar-Ilan University, Israel
Haniel Barbosa Universidade Federal de Minas Gerais, Brazil
Katalin Fazekas TU Wien, Austria
Mathias Preiner Stanford University, USA
Daniela Kaufmann TU Wien, Austria
Edjard Mota Universidade Federal do Amazonas, Brazil
Maurice ter Beek ISTI-CNR, Italy
Vince Molnár Budapest University of Technology and Economics,

Hungary
Mathias Fleury University of Freiburg, Germany
Leila Ribeiro Universidade Federal do Rio Grande do Sul, Brazil
Luís Soares Barbosa University of Minho, Portugal
Volker Stolz Høgskulen på Vestlandet, Norway
Nils Timm University of Pretoria, South Africa
Thierry Lecomte ClearSy System Engineering, France
Lucas Lima Universidade Federal Rural de Pernambuco, Brazil
Marcel Oliveira Universidade Federal do Rio Grande do Norte, Brazil
Gustavo Carvalho Universidade Federal de Pernambuco, Brazil
Márcio Cornélio Universidade Federal de Pernambuco, Brazil

Clark Barrett Stanford University, USA
Juliano Iyoda Universidade Federal de Pernambuco, Brazil
Sergio Campos Universidade Federal de Minas Gerais, Brazil
Adenilso Simao University of São Paulo, Brazil
Ahmed Irfan SRI International, USA
Leopoldo Teixeira Universidade Federal de Pernambuco, Brazil
David Déharbe ClearSy System Engineering, France
Michael Leuschel University of Düsseldorf, Germany
Giselle Reis Carnegie Mellon University-Qatar, Qatar
Rohit Gheyi Universidade Federal de Campina Grande, Brazil
Augusto Sampaio Universidade Federal de Pernambuco, Brazil
Armin Biere University of Freiburg, Germany
Sophie Tourret INRIA and MPI for Informatics, France
Natarajan Shankar SRI International, USA
Sidney C. Nogueira Universidade Federal Rural de Pernambuco, Brazil
Cesare Tinelli University of Iowa, USA
Lucas Cordeiro University of Manchester, UK
Clare Dixon University of Manchester, UK

Additional Reviewers

Levente Bajczi
Laura Bussi
Bence Graics
Lars Michael Kristensen

viii Organization

Invited Talks and Tutorial

Neurosymbolic AI to Achieve Trustworthy AI

Artur d’Avila Garcez

City, University of London, UK

Abstract. Current advances in Artificial Intelligence (AI) and Machine Learning
(ML) have achieved unprecedented impact across research communities and
industry. Nevertheless, concerns around trust, safety, interpretability and
accountability of AI were raised by influential thinkers. Many identified the need
for well-founded knowledge representation and reasoning to be integrated with
Deep Learning (DL). Neurosymbolic AI has been an active area of research for
many years seeking to do just that, bringing together robust learning in neural
networks with reasoning and explainability via symbolic representations. Our
focus is on research that integrates in a principled way neural-network learning
with symbolic AI. In this keynote I will review the research in neurosymbolic AI
and computation, and how it can help shed new light onto the increasingly
prominent role of safety, trust, interpretability and accountability of AI. We also
identify promising directions and challenges for the next decade of AI research
from the perspective of neurosymbolic computation. Over the past decade, AI
and in particular DL has attracted media attention, has become the focus of
increasingly large research endeavours and has changed businesses. This led to
influential debates on the impact of AI in academia and industry. It has been
argued that the building of a rich AI system, semantically sound, explainable
and ultimately trustworthy, will require a sound reasoning layer in combination
with deep learning. Parallels have been drawn between Daniel Kahneman’s
research on human reasoning and decision making, and so-called “AI systems 1
and 2” which would in principle be modelled by deep learning and symbolic
reasoning, respectively.
We seek to place 20 years of research in the area of neurosymbolic AI, known

as neural-symbolic integration, in the context of the recent explosion of interest
and excitement around the combination of deep learning and symbolic rea-
soning. We revisit early theoretical results of fundamental relevance to shaping
the latest research, such as the proof that recurrent neural networks compute the
semantics of logic programming, and we identify bottlenecks and the most
promising technical directions for the sound representation of learning and
reasoning in neural networks. As well as pointing to the various related and
promising techniques, we aim to help organise some of the terminology com-
monly used around AI, ML and DL. This is important at this exciting time when
AI becomes popularized among researchers and practitioners from other areas of
Computer Science and from other fields altogether, psychology, cognitive sci-
ence, economics, medicine, engineering and neuroscience.
I will survey some of the prominent forms of neural-symbolic integration. We

address neural-symbolic integration from the perspectives of distributed and
localist forms of representation, and argue for a focus on logical representation
based on the assumption that representation precedes learning and reasoning.

We delve into the fundamentals of current neurosymbolic AI methods and
systems and identify promising aspects of neurosymbolic AI to address exciting
challenges for learning, reasoning, validation and explainability. Finally, based
on all of the above, we propose a list of ingredients for neurosymbolic AI and
discuss promising directions for future research to address the challenges of AI.

xii A. d’Avila Garcez

Collaborating Reasoners: Theory Combination
Beyond Nelson-Oppen

Stéphane Graham-Lengrand

SRI International, USA

Abstract. The Nelson-Oppen scheme constitutes a cornerstone of SMT-solving
by providing a systematic recipe for interfacing theory-specific reasoners. In this
scheme, the reasoners can simply be black boxes whose only requirements are to
be decision procedures for (quantifier-free) satisfiability in their respective
theories. To make them collaborate, extra properties are required of the theories
to be combined, rather than of the reasoners; for instance, the theories should be
disjoint in that they only share the equality symbol.
In this talk, we will range over the design and the benefits of several alter-

native schemes where reasoners collaborate by answering more complex queries
than pure satisfiability queries and/or by satisfying stronger requirements than
simply being decision procedures for their underlying theories. Among such
designs are the CDSAT scheme where completeness and termination of rea-
soners are stated in a combination-aware form, as well as several schemes, like
QSMA, that rely on the reasoners’ ability to produce over-and under-approx-
imations of the input formula. The benefits include the support of non-disjoint
theory combinations, additional freedom in the lemmas to be learned, new
techniques for interpolation, and new techniques for supporting quantifiers.

Sniper: Automated Reasoning for Type
Theory

Chantal Keller

Université Paris-Saclay, France

Abstract. For formal proofs to become mainstream in software and hardware
development, as well as mathematical formalization, automation plays an
essential role. Many systems already enjoy a high degree of automation, such as
deductive verification tools for proof of programs. In the case of interactive
theorem proving, provers based on Higher Order Logic now often provide
hammers, which are very powerful tools that call many external automated
provers in parallel and propose a meaningful proof script if possible.
For interactive provers based on Type theory, though, attempts to build

hammers have given good results, but appear to be less powerful and hardly
predictable than for Higher Order Logic. More generally, in such systems, a
variety of automatic tactics are available, but expertise is still required to use
them: one needs to know when they apply, how to combine them, and appar-
ently small changes in a goal can completely break a tactic. We give non-
exhaustive examples in the Coq proof assistant:

– the Micromega plugin provides various tactics to reason about integer
linear arithmetic, but it is non trivial to apply them when integers live in
types out of Coq’s standard library, and by design it cannot be applied
modulo congruence;

– the CoqHammer plugin provides tactics to call various first-order provers,
as well as to reconstruct their proofs, but it lacks theory reasoning such as
integer arithmetic, and it is very hard to predict when the provers or proof
reconstruction will succeed;

– the SMTCoq plugin provides tactics to call various SMT solvers and
reconstruct their proofs, but it is limited to goals expressed in Boolean logic
and with a very specific shape;

– . . .

We analyze these difficulties in this way.

– Tactics for general automation (such as CoqHammer) are very hard to
predict because there is a gap between Type theory and first-order logic that
prevents anticipating if solvers and proof reconstruction will succeed.

– Tactics for more specific automation (such as Micromega and SMTCoq)
are easier to predict, but apply to very specific goals, and expertise is needed
to obtain or recognize such goals.

Sniper: Compositional Pre-processing

To reconcile the two methods, we propose a new approach that makes use of existing
tactics for specific automation and tries to combine them to obtain predictive and
extensible general automation. This approach is being implemented in the Coq plugin
Sniper1, whose development is under progress.

It is based on the following architecture:

Sniper pre-processes goals before calling an automatic tactic dedicated to
specific automation (called backend in the figure) such as SMTCoq or Micromega.
The key idea is that pre-processing is not a monolithic transformation, but it is a
dynamic composition of fine-grained transformations (called T1 to T5 in the figure) that
can be taken from a pool; the backend can also be any tactic that (partially) solves a
given class of problems. By dynamic, we mean that the transformations that are used,
the order in which they are applied, and the chosen backend are not fixed, but depend
on the original goal.

The advantages of this approach are the following.

– It is adaptive, and can thus apply to a variety of goals.
– It should be quite predictive from the pools of transformations and backends.
– It is compositional, and contributors can easily add new transformations or back-

ends to extend the tactic. Note that more powerful backends such as CoqHammer
can also be used, as they become more predictive if goals are pre-processed into
specific classes of problems.

– Fine-grained transformations tackle one aspect of Coq logic at a time, which make
them easy to produce partial proofs (such as Coq tactics do); and partially preserve
goal’s structure, making some automatic backends such as SMTCoq more likely to
succeed.

As of writing, the implementation of Sniper already provides a library of around
fifteen certifying transformations designed for this architecture, and a prototype tactic
snipe. Work in progress consists in making Sniper dynamic (as explained above)
and designing an API for contributors to easily add new transformations and backends.

1 https://github.com/smtcoq/sniper.

xvi C. Keller

https://github.com/smtcoq/sniper

Acknowledgments. Sniper is common work with Louise Dubois de Prisque, Pierre
Vial and Valentin Blot. It relies on SMTCoq, which is the work of many smart people,
who are listed here: https://github.com/smtcoq/smtcoq/blob/coq-8.13/AUTHORS. We
also thank Enzo Crance, Denis Cousineau, Assia Mahboubi and Kazuhiko Sakaguchi
for fruitful discussions on this work.

References

1. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT aolvers to Coq through proof witnesses. In: Jouannaud,
J.P., Shao, Z. (eds.) Certified Programs and Proofs. CPP 2011. LNCS, vol. 7086,
pp. 135–150. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-25379-9_
12

2. Besson, F.: Fast reflexive arithmetic tactics the linear case and beyond. In: Alten-
kirch, T., McBride, C. (eds.) Types for Proofs and Programs. TYPES 2006. LNCS,
vol. 4502, pp. 48–62. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-
74464-1_4

3. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.:Hammering towards QED.
J. Formalized Reasoning 9(1),101–148 (2016). https://doi.org/10.6092/issn.1972-
5787/4593

4. Blot, V., et al.: Compositional pre-processing for automatedreasoning in dependent
type theory. In: Krebbers, R., Traytel, D.,Pientka, B., Zdancewic, S. (eds.) Pro-
ceedings of the 12th ACM SIGPLANInternational Conference on Certified Pro-
grams and Proofs,CPP 2023, Boston, MA, USA, January 16–17, 2023, pp. 63–77.
ACM(2023). https://doi.org/10.1145/3573105.3575676

5. Czajka, L., Kaliszyk, C.: Hammer for Coq: automation for dependenttype theory.
J. Autom. Reason. 61(1–4), 423–453 (2018).https://doi.org/10.1007/s10817-018-
9458-4

6. Desharnais, M., Vukmirovic, P., Blanchette, J., Wenzel, M.: Seventeenprovers
under the hammer. In: Andronick, J., de Moura,L. (eds.) 13th International Con-
ference on Interactive TheoremProving, ITP 2022, August 7–10, 2022, Haifa,
Israel.LIPIcs, vol. 237, pp. 8:1–8:18. Schloss Dagstuhl - Leibniz-Zentrumfür
Informatik (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.8,https://www.
dagstuhl.de/dagpub/978-3-95977-252-5

7. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Programming Languages and Systems. ESOP 2013. LNCS,
vol. 7792, pp. 125–128. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-
37036-6_8

8. Sakaguchi, K.: Micromega tactics for mathematical components(2019–2022),
https://github.com/math-comp/mczify

9. Swamy, N., et al.: Dependent types and multimonadiceffects in F. In: Symposium
on Principles of ProgrammingLanguages (POPL)

Sniper: Automated Reasoning for Type Theory xvii

https://github.com/smtcoq/smtcoq/blob/coq-8.13/AUTHORS
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-540-74464-1_4
https://doi.org/10.1007/978-3-540-74464-1_4
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1145/3573105.3575676
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.4230/LIPIcs.ITP.2022.8
https://www.dagstuhl.de/dagpub/978-3-95977-252-5
https://www.dagstuhl.de/dagpub/978-3-95977-252-5
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://github.com/math-comp/mczify

Formal Methods in Systems Engineering -
Verifying SysML v2 Models

Vince Molnár

BME-FTSRG, Hungary

Abstract. Formal methods have been successfully applied to several fields in
engineering, including software, hardware, and communication protocols. Sys-
tems engineering is an interdisciplinary field that focuses on how to design,
integrate, and manage complex systems over their lifecycles. Models in systems
engineering may capture the specification of both software and hardware
components, but also processes, physical aspects, and even expected user
behavior, as well as abstract descriptions of scenarios in which the system is
expected to operate. Due to the integration aspect, there is a heavy emphasis on
the interplay between these various viewpoints. Even though there would be
plenty of use cases to apply formal methods, V&V in systems engineering is still
typically performed in the form of manual reviews, and only smaller compo-
nents and their implementations are analyzed with automated formal verification
tools.
The Systems Modeling Language (SysML) is the de facto standard modeling

language for designing and developing complex systems. The second version of
SysML is a complete redesign, including changes like moving away from UML,
adding an expression language, and adopting a 4D ontology-like semantics
based on classification and logic. Many of these changes make SysML v2 more
suitable for formal analysis than its predecessor. At the same time, the ever-
increasing complexity and the increasingly popular notion of executable mod-
eling are creating demand to automate analysis tasks. Automation is expected to
save time and resources for engineers and reduce manual errors, especially in the
engineering of critical systems.
In this tutorial, we provide an overview of use cases of formal methods in

systems engineering, then introduce the fundamentals of the SysML v2 lan-
guage, focusing on its declarative 4D semantics and how it handles temporal
aspects. We take a look at formal verification approaches from the perspective
of the new language, including new techniques devised for parallel programs, as
well as model generation. Model execution is a central topic in the community
around the new standard, so we dedicate some time to present the ongoing
efforts related to execution, semantics, and formal methods. Finally, we present
an early prototype for model checking SysML v2 models and discuss the
challenges and open problems in the field.

Contents

Specification and Modeling Languages

A Formal Model for Startups Financial Transactions 3
Rodrigo Stevaux and Ana C. V. de Melo

A Haskell-Embedded DSL for Secure Information-Flow 20
Cecilia Manzino and Gonzalo de Latorre

CSP Specification and Verification of a Relay-Based Railway
Interlocking System. 36

P. E. R. Bezerra, M. V. M. Oliveira, Thierry Lecomte,
and D.I. de Almeida Pereira

ULKB Logic: A HOL-Based Framework for Reasoning over
Knowledge Graphs . 55

Guilherme Lima, Alexandre Rademaker, and Rosario Uceda-Sosa

Testing

Language-Based Testing for Pushdown Reactive Systems 75
Adilson Luiz Bonifacio

Sound Test Case Generation for Concurrent Mobile Features 92
Rafaela Almeida, Sidney Nogueira, and Augusto Sampaio

Verification and Validation

Automated Code Generation for DES Controllers Modeled as Finite
State Machines . 113

Tiago Possato, João H. Valentini, Luiz F. P. Southier,
and Marcelo Teixeira

AutomaTutor: An Educational Mobile App for Teaching Automata Theory . . . 131
Steven Jordaan, Nils Timm, and Linda Marshall

ESBMC v7.3: Model Checking C++ Programs Using Clang AST 141
Kunjian Song, Mikhail R. Gadelha, Franz Brauße, Rafael S. Menezes,
and Lucas C. Cordeiro

Author Index . 153

xxii Contents

Specification and Modeling Languages

A Formal Model for Startups Financial
Transactions

Rodrigo Stevaux(B) and Ana C. V. de Melo(B)

Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
{roehst,acvm}@ime.usp.br

Abstract. This paper proposes a formal model for a subset of the
startup finance transaction space. The initial version of the provided
domain is the result of an industry coalition effort to make the data
model standard.

The data definition explains how this domain can be modeled syn-
tactically. We refined this first model with semantics on transactions by
using the Alloy formal modeling language and analyzer, aiming for a
more expressive and correct model by capturing domain invariants. As a
result, the new model is machine-checkable for important safety integrity
criteria.

This research contributes to the field of formal methods by demon-
strating how to progress from a semi-formal specification to a formal
one, evaluating the results, and providing a case study of a real-world
domain.

Keywords: Formal methods · Financial modeling · Alloy

1 Introduction

Capitalization tables are essential documents required for conducting
venture capital investments in startup companies. A capitalization table
depicts the ownership structure of a company, and this structure is subject to
change over time due to new investments, transfers, and acquisitions. The cost
and risk associated with validating capitalization tables have a significant
effect on the business market. According to the accounting firm KPMG [3],
38,644 venture capital transactions were closed in 2021, with each transaction
requiring tens of hours of attorneys and accountants.

Errors in capitalization tables can be costly and may lead to potential
legal disputes. Capitalization tables are typically maintained in spreadsheets,
a method that is error-prone and difficult to audit. Spreadsheets do not adhere
to a standard format, requiring all parties involved in a transaction to agree on a
uniform format before exchanging data (or lose time disambiguating the data).
Validating the transactions that led to the current capitalization table is
the only method to assure that a capitalization table accurately reflects the
correct stakes of each stakeholder.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Barbosa and Y. Zohar (Eds.): SBMF 2023, LNCS 14414, pp. 3–19, 2024.
https://doi.org/10.1007/978-3-031-49342-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49342-3_1&domain=pdf
http://orcid.org/0009-0001-6127-4115
http://orcid.org/0000-0003-3839-8141
https://doi.org/10.1007/978-3-031-49342-3_1

4 R. Stevaux and A. C. V. de Melo

Due to the inherent difficulties associated with maintaining capitalization
tables in spreadsheets, a number of companies now provide capitalization
table management as a service. These companies offer a web-based interface for
managing capitalization tables in an attempt to streamline the process and
reduce errors. However, the underlying data models are proprietary, and the
criteria for updating the capitalization tables are often not explicitly defined.

The Open Cap Table Coalition [1], comprised of industry members such as
venture capital funds, law and accounting firms and cap table management ser-
vice providers is currently working on a standard for capitalization tables to
address these issues, called Open Cap Table Format (OCF). The standard is
based on a publicly available data model that can be used to develop software
systems that handle the capitalization tables’ data structure. Nevertheless,
the data model still lacks a formal specification of the criteria for updating
the capitalization tables. We can see that many users ask questions on how
exactly to interpret the rules. In the discussion forum in the Open Cap Table
Format’s GitHub repository, multiple questions have been asked seeking for clar-
ification on how to interpret the data in the original format, as well as how to
model different real world scenarios in the format.

The proposed standard models securities as entities and transactions as
events. This is a pattern commonly known as event sourcing [6]. The current state
of any capitalization table must be computed by replaying all events on an
initial state, but the standard provides no clear guidance on the semantics of each
type of transaction. This is an unfortunate consequence of the syntax-focused
semantics of the selected technology, JSON Schema, which cannot accommodate
the specification of transaction rules.

Very importantly, we found no previous work that specifically addresses
the problem of specifying the semantics of capitalization tables transactions,
although there is related work on financial modeling, legal modeling and smart
contract verification.

There is related work on the formal specification of financial derivatives such
as Simon Peyton Jones’ work on the specification of financial contracts [13].
However, this work is focused on the specification of derivative contracts, not
equity transactions. Catala [11] is a language for writing legal texts in a source
code based on a logic language with semantics for resolving conflicts between
clauses. However, Catala is not focused on the specification of financial transac-
tions. In the field of smart contracts, verification of contracts is an active area
of research, including the use of dependent types.

But we are very interested in modeling the global correctness of the system,
and not only individual contracts. We found no work that focuses on the seman-
tics that are specific to capitalization tables as a whole and the transactions that
affect them. In this sense, TLA+ [10] is a specification language that allows the
specification of systems as a whole but is considerably more complex than Alloy.

A Formal Model for Startups Financial Transactions 5

Based on the Open Cap Table Format, the current work proposes using
Alloy [7] to provide formal semantics for transactions to maintain the con-
sistency of capitalization tables over time. Our work does characterize the
capitalization table as whole, and provides rules for validating individual
transactions, and is machine checkable.

2 Capitalization Tables and the Need for Specifications

A capitalization table is a table that shows a company’s ownership stakes. The
ownership stakes of a fictitious company’s founders, angel investors, funds, and
employees are illustrated bellow. Additionally, the table displays the number of
shares issued, the type of security, the price per share, and the date of issuance.
The capitalization table is used to calculate the ownership of each shareholder.

Stakeholders have interests in different asset classes, resulting in some
shares and % ownership at a given cost. The cost might be different for dif-
ferent investors as they invest at different times, as a company’s value might
fluctuate.

Asset class Stakeholder Shares Cost % Ownership

Common stock Founders 700 0 70%

Preferred stock Angel investors 50 80 5%

Preferred stock Funds 150 300 15%

Options Employees 100 0 10%

Total 1000 350 100%

A typical use of capitalization tables is to follow investments in a company
over time. In startup companies, for example, investments appear in stages:
each stage requiring the achievement of certain objectives and milestones. The
amount of investment can vary depending on the stage [12]: Seed/Startup financ-
ing, Early-stage financing, Mid-stage financing and Later-stage financing. From
a computer science perspective, a capitalization table is the state of a
system, and financing operations are transitions of that state.

Each round of staged financing is defined in contracts that define busi-
ness rules. It is common for the investors of each round to have different rights
and obligations. Conversions, transfers, vesting, and other events can only occur
under specific conditions, and those conditions must always be validated to pre-
vent the company’s ownership structure be misrepresented. All these business
rules and conditions are potentially complex to validate.

6 R. Stevaux and A. C. V. de Melo

2.1 The Open Cap Table Format (OCF)

JSON Schema is a specification for JavaScript Object Notation (JSON) data
that defines the structure and constraints of JSON data. JSON is a lightweight
data interchange format that is widely used in web applications and APIs due
to its simplicity and readability. JSON Schema (RFC8259 [2]) enables develop-
ers to specify the structure and constraints of JSON data. Taking into account
these characteristics, the Open Cap Table Coalition [1] employs JSON Schema
to provide the Open Cap table Format (OCF), which incorporates data commu-
nication standards and concepts. Our work is based on the following commit:

git clone https://github.com/Open-Cap-Table-Coalition/Open-Cap-Format-OCF

git checkout 20f3ede62d1f5bdbef16ae1edfa98c34fbda2610

The Open Cap Table format defines a package, or set, of JSON files, for
storing data on transactions and business entities. Adopting the format means
being able to export the capitalization table data according to the format. The
Manifest file contains metadata about the other files, which contain data. The
data files either contain immutable entities which participate in transactions
or the transactions themselves, which are the events that change the state of
the entities. The data files are: Issuers, Stakeholders, Stock classes, Stock legend
templates, Stock option plans, Vesting terms and Transactions.

Although the OCF specifies a set of files by defining its contents as JSON
documents with associated JSON Schema, it is built on top of a conceptual model
that underlies the data. The schemas are organized according to two principles:

– Technical building blocks: enums, types and objects
– Conceptual blocks: entities, transactions, conversion mechanisms, rights

and triggers, and vestings

Technically, types (in OCF terminology) define structures (expected keys and
associated validation) that are reused in primitive objects (in the sense of JSON
objects and documents) and in Enum (enumerations of constant values).

The OCF has three key logical components:

Transaction & tracing Transactions that are linked by security identifiers
(i.e., the issuance and cancellation of a security
refer to a common security identifier)

Vesting Composable rules for both schedule-based and
event-based vesting

Convertible securities Composable rules for converting securities, typically
applied in the case of debt that can be converted to
stock shares

A Formal Model for Startups Financial Transactions 7

In the current research, these three logical components are defined. For the
lack of space, this paper focus on the presentation of the Transaction & trac-
ing component and its related properties.

Transaction Tracing System. Since a capitalization table is a snapshot
taken after a collection of transactions have been accumulated, one component
of the OCF is the support for traceable transactions. Transactions are objects
recorded in the transactions file which refer to securities. A security is a finan-
cial asset that can be bought and sold. Stocks, options, and debt notes are all a
kind of security. The key ideas behind the transaction tracing systems are:

– Securities have an initial and a terminal transaction.
– Issuances (including re-issuances) and exercises are initial transactions.
– Cancellations, retractions, repurchases are terminal transactions.
– Transfers are both initial and terminal transactions, as they extinguish the

initial security and create a new security (the result security).
– Partial cancellations are possible by extinguishing the original security and

generating a new security with the remaining balance.
– Partial transfers are possible by extinguishing the original security and gen-

erating a new security with the remaining balance

To compute the state of a security, it is necessary to trace all transactions
associated with it. The state of a security is equal to the sum of all issuances sub-
tracted by the sum of all cancellations, repurchases, and transfers. This sequence
of transactions makes the financial system auditable and traceable.

Advantages and Limitations of the OCF. The choice of designing patterns in
OCF results in a data model that can fulfill the requirements of auditability (in
special regarding transaction tracing) and flexibility. JSON Schema can syntacti-
cally validate data, which is sufficient for a file or data exchange format. However,
JSON Schema lacks expressiveness in terms of sets, relations, and logic. It can-
not reason about relational properties of instances or even distinguish between
incorrect and correct transaction traces. All these validations are not included
in the original OCF model.

By employing a more robust modeling framework, such as Alloy with the
Alloy Analyzer, we can improve the OCF’s validation and expressiveness. This
should preserve the available business knowledge and data structure in the OCF
while adding knowledge about the constraints on financial transactions.

3 Consistency of Capitalization Tables - Alloy Model

We developed an Alloy model based on the OCF that encompasses the OCF
structure and the semantics of transactions permitted in financial systems. In this
section, we explore the portion of the Alloy model that ensures the consistency
of transactions that affect capitalization tables.

8 R. Stevaux and A. C. V. de Melo

The main factors considered in selecting Alloy as the appropriate formal
approach were simplicity, suitability for high-level design, and accessibility to
business experts.

We considered languages with dependent types and other specification lan-
guages. Languages with dependent types such as Agda [15] are less accessible to
programmers and out of reach for business experts. The TLA+ model checker [10]
has a can reason about ordering of operations, but we discovered that it has a
much more complicated language and tooling than Alloy, which means that
learning curve is higher. Conversely, these other options would have provided
stronger assistance for arithmetic.

Alloy is a lightweight formal method, comprised of a language, a small stan-
dard library and a very practical graphical interface.

Alloy excels at enabling high-level design, and the Alloy Analyzer is user-
friendly, capable of providing quick feedback to the user, and all features are
easily discoverable and accessible. Especially when sharing our findings and
concepts with stakeholders who might not have a strong background in formal
methodologies, its visualization skills are invaluable.

A sample of Alloy’s syntax is given in the listing below. The listing shows a
very basic model requiring that a security is owned by a single investor (portfolios
do not overlap).

sig Company { securities : set Security }

sig Investor { portfolio : set Security }

sig Security { owner : Investor, issued : one Company }

pred isInvestor[inv : Investor, co : Company] {

some inv.portfolio & co.securities

}

fact { no inv1, inv2 : Investor | some inv1.portfolio & inv2.portfolio }

3.1 The Model Overview

A capitalization table tracks the ownership stakes and capital structure of
a company. The transactions that typically affect a capitalization table
include issuances, cancellations, and transfers of securities (see model
overview in Fig. 1).

A capitalization table is built as new transactions are recorded. The
Open Cap Table format proposes a “transaction tracing model” in which
securities are identified with unique identifiers and transactions refer to those
identifiers when issuing, canceling, or transferring securities.

The purpose of the transaction tracing model is to provide auditable
securities traceability. The Alloy model then needs to conform to the require-
ments for a consistent model for capitalization tables and enforce certain prop-
erties.

A Formal Model for Startups Financial Transactions 9

Fig. 1. Transaction tracing metamodel. The extends relation corresponds to inheri-
tance. Other relations are fields of the signatures.

3.2 Expected Properties

A correct model is can only be considered correct if characterized with respect to
a set of properties. In our case, we use two sets of properties: structural properties
and accounting properties. The properties cannot be expressed in JSON Schema,
but are expected for a consistent model of capitalization tables. The Alloy model
must ensure that these properties hold, as checked by the Alloy Analyzer.

Structural properties

P1 All securities can be traced back to an Issuance

P2 All transactions can be traced back to an Issuance

P3 There can be no cycles in the security hierarchy. This
guarantees that every security can be traced back to a
root security

P4 There can be no cycles in the transaction hierarchy. This
guarantees that every transaction can be traced back to a
root transaction

Accounting properties

P5 The number of shares in circulation should be less than or
equal to the number of shares issued

P6 No securities can have a negative number of shares

P7 The sum of shares in all portfolios should be equal to the
number of shares issued minus the number of shares
canceled

10 R. Stevaux and A. C. V. de Melo

3.3 The Alloy Model

This section presents the main elements of the model, illustrating each signature,
predicate, and fact with a code excerpt.

Securities and Transactions. The first elements consist of signatures for
securities and transactions, together with the opening of the ordering and
graph modules for both signatures, as they will form a complex structure that can
be traced back to issuances. The restriction in the Security signature implies
that property P6 holds.

open util/ordering[Security]

open util/ordering[Transaction]

open util/graph[Security]

open util/graph[Transaction]

sig Security {

shares : Int,

source : one Transaction,

use : lone Transaction,

parent : lone Security,

owner : Stakeholder

} {

nonneg[shares]

}

abstract sig Transaction {

shares : Int,

input : lone Security,

output : lone Security,

balance : lone Security,

parent : lone Transaction

} {

pos[shares]

}

fact {

use = ~input

}

fact {

source = ~(output + balance)

}

The Transaction signature is given abstract because a Transaction is never
instantiated directly; they may have different types of transactions, such as
issuances, cancellations, and transfers. Those types of transactions are defined
afterwards.

Two constraints are stated as facts to relate the use and source fields of
securities to the input and output fields of transactions. The use field of a
security is the transaction that uses the security as input. The source field of
a security is the transaction that uses the security as output. The ~ operator
to invert the binary relations is used for input and output because they denote
the same relation with the opposite direction.

Transaction Types. We consider three types of transaction in the model
because they subsume all other more specific types of transaction. Any trans-
action is a composition of creation and destruction of securities. Transfers, in
particular, are a combination of an issuance and a cancellation.

A Formal Model for Startups Financial Transactions 11

All transactions have parent, input, output, and balance fields, but each
transaction uses only a subset of them. Additional fields, appearing after the
signature, constraint the transactions. For instance, the Issuance transaction
has a to field stating who will own the issued security, while the Transfer
transaction has from and to fields stating who will transfer the security from
and to.

Issuance Constraints. The behavior of the Issuance is encoded in a single
fact. The first line equates the number of shares of the newly issued security
to the number of the shares in the issuance, while the following lines bind other
specific fields to their appropriate values.

Cancellation Constraints. The case for a cancellation is more complex
because it must distinguish between partial and complete cancellations. This
is done by comparing the number of shares in the cancellation and in the can-
celled security, and giving different constraints for each case. It is encoded in a
single fact.

fact {

all can : Cancellation {

lt[can.shares, can.input.shares] implies {

// In this case, the transaction is partial.

can.input.use = can

can.balance.source = can

eq[can.balance.shares, sub[can.input.shares, can.shares]]

lt[can.input, can.balance]

can.balance.owner = can.input.owner

can.balance in can.input.owner.portfolio

can.balance.parent = can.input

can.parent = can.input.source

} else {

12 R. Stevaux and A. C. V. de Melo

can.input.use = can

eq[can.input.shares, can.shares]

can.parent = can.input.source

no can.balance

}

}

}

The constraints are now more detailed to ensure the balancing of shares, and
the fields used to relate securities and transactions in a graph.

Transfer Constraints. Here, no new logic needs to be introduced, but we
now use all three fields (input, output, and balance) if a partial transfer is
performed.

fact {

all xfer : Transfer {

lt[xfer.shares, xfer.input.shares] implies {

// In this case, the transaction is partial.

xfer.input.use = xfer

xfer.output.source = xfer

xfer.balance.source = xfer

eq[xfer.output.shares, xfer.shares]

eq[xfer.balance.shares, sub[xfer.input.shares, xfer.shares]]

lt[xfer.input, xfer.output]

lt[xfer.input, xfer.balance]

xfer.output.owner = xfer.to

xfer.input.owner = xfer.from

xfer.balance.owner = xfer.from

xfer.from.portfolio = xfer.from.portfolio + xfer.balance

xfer.to.portfolio = xfer.to.portfolio + xfer.output

xfer.output.parent = xfer.input

xfer.balance.parent = xfer.input

} else {

xfer.input.use = xfer

xfer.output.source = xfer

eq[xfer.output.shares, xfer.shares]

eq[xfer.shares, xfer.input.shares]

lt[xfer.input, xfer.output]

xfer.output.owner = xfer.to

xfer.input.owner = xfer.from

xfer.to.portfolio = xfer.to.portfolio + xfer.output

xfer.output.parent = xfer.input

no xfer.balance

}

}

}

A Formal Model for Startups Financial Transactions 13

The required bookkeeping in a structural Alloy model can become complex.
As we add more constraints to our model, we can rely on the Alloy Analyzer to
ensure that it remains consistent.

3.4 Model Properties

The hypothesis for proving the properties of the system will be based on the
ordering provided by the ordering module for transactions and securities.
In the ordering, there is a consistent pattern for parents to always come before
their children.

Properties. The properties described in this section are the expected features
that are required to provide consistency in cap tables during transaction updates,
as previously defined in Sect. 3.2.

To support the main features of the model, a set of functions to query the
number of shares in different contexts and also to trace the lineage of securities
need to be defined.

fun lineage[sec : Security] : set Security { sec.*(Security <: parent) }

fun depth[sec : Security] : Int { #lineage[sec] }

fun aliveSecurities : set Security { { sec : Security | no sec.use } }

fun deadSecurities : set Security { { sec : Security | some sec.use } }

fun issuedShares : Int { sum iss : Issuance | iss.shares }

fun cancelledShares : Int { sum can : Cancellation | can.shares}

fun transferredShares : Int { sum xfer : Transfer | xfer.shares }

fun aliveShares : Int { sum sec : aliveSecurities | sec.shares }

fun deadShares : Int { sum sec : deadSecurities | sec.shares }

The lineage of securities is defined using the * transitive closure opera-
tor, showing a succinct definition embedded in Alloy. This relationship has no
possible equivalent in JSON Schema. The # operator returns the number of ele-
ments of a relationship. The other expressions are based on “set” comprehension
expressions. Another group of functions supports accounting identities (related
to the number of shares).

The first property of the model states that if the securities are ordered, then
the graph of securities forms a forest. A forest is a collection of trees, which
is a stronger condition than merely being a directed acyclic graph. Similarly, a
property for transactions is defined. Requiring the graph to be a forest implies
it is acyclic, as required by properties P3 and P4.

14 R. Stevaux and A. C. V. de Melo

check { orderingOfSecurities => forest[~(Security <: parent)] }

check { orderingOfTransactions => forest[~(Transaction <: parent)] }

These properties cannot be modelled in JSON Schema, since we need to
compare values in two different documents (in JSON Schema parlance). But
they can be clearly expressed in Alloy.

The number of shares in circulation can only increase as new shares are
issued, since cancellations always decrease the number of shares in circulation.
Transfers have no effect on the number of shares in circulation, since they only
change the ownership of the shares. We reflect this in the Alloy model by defining
the issuedShares, cancelledShares, and aliveShares functions. The specifi-
cation and implementation of the accounting identities is straightforward. It is
also critical. Any design that can in principle violate these identities is an invalid
design. Accounting checks satisfy properties P5 and P7.

cancelledSharesAlwaysLessThanIssued : check { lte[cancelledShares,

issuedShares] }↪→

nonNegativityOfIssuedShares : check { nonneg[issuedShares] }

nonNegativityOfCancelledShares : check { nonneg[cancelledShares] }

aliveLessThanIssued : check { lte[aliveShares, issuedShares] }

Another important property for all those financial systems regards investor
portfolios: they must all be disjoint.

check {

all o1, o2 : Stakeholder {

some o1.portfolio & o2.portfolio implies o1 = o2

}

}

Another property that we check is that all floating shares are owned. This
property rules out the possibility that the system issues shares without assigning
them to an owner. This sort of mistake can happen because companies have both
the concept of an authorized quantity of shares and the number of shares that
the company actually issued.

fun portfolioShares[stakeholder : Stakeholder] : Int {

sum sec : stakeholder.portfolio |

(sec in aliveSecurities implies sec.shares else 0)

}

fun portfolioSharesAll : Int {

sum stakeholder : Stakeholder | portfolioShares[stakeholder]

}

check { eq[aliveShares, portfolioSharesAll] }

A Formal Model for Startups Financial Transactions 15

The following check shows that properties P1 and P2 hold. Why is that? The
lineage contains every transaction that affected a security, but our predicate only
requires that one of those transaction is an issuance. But since the check must
pass for each and every security, it works inductively from instances of size 1
and up.

securityOriginIsIssuance : check {

all s : Security | some i : Issuance | i in lineage[s]

}

4 An Example with a Long Chain of Transactions

In this example, we demonstrate the system’s behavior when multiple transac-
tions and securities interact. We utilize the Alloy Analyzer’s feature to create a
scenario with a chain of transactions at a depth of 3. This is achieved by defining
a predicate that generates this specific instance, showcasing the capabilities of
the tool.

Fig. 2. A chain of transactions arising from a single issuance. Blue lines show the
tree of securities, while orange lines show the tree of transactions.

16 R. Stevaux and A. C. V. de Melo

run { some sec : Security | depth[sec] > 3 } for 5

The depth function is used to find the depth of a security in the graph
of securities. The transitive closure operator ^ when applied to the parent
relationship gives the lineage of any security, starting from an issuance. The
depth is the size of the transitive closure of any security.

We reap the benefits of having a visualization from Alloy. Figure 2 shows the
graph derived from the model. This is very useful for communicating the design
to business people.

5 Conclusion

Alloy has been used in a wide range of applications in software engineering,
database design, security analysis [4,5], multiagent negotiations [14]. It has
also been applied to modeling beyond computer science, such as a model for
central bank policy [8]. A model of the same-origin-policy used in web browsers
can be found in the 500 Lines or Less open-source book [9]. There is a lack
of existing models of capitalization tables in Alloy, as well as an absence of
semantic models for this particular domain.

By using Alloy, we have been able to model the capitalization table of a
company, and to show how a long chain of transactions could be rigorously
modeled in a verifiable, auditable manner, in a way that was not possible within
the original JSON Schema implementation. We started with a data specification
and worked towards a domain specification. The syntactical nature of the original
data model was enriched with a semantic nature of the domain behavior, taking
into account the relationships between various types of entities and expected
invariants (based on domain knowledge).

As a result, our model features a transaction tracing system that can be used
to track the lineage of securities and transactions in a company’s capitaliza-
tion table. We also showed how the model can be used to verify the consistency
of the capitalization table, and to check that the accounting identities hold.

What do we achieve by formalizing a model for the transactions that make
up a company’s capitalization table?

Achievements. First, we get a clear graphical view of the transactions. This
allows one to analyze any sequence of transactions quickly, which is useful in
auditing, for example. The graphical view also helps to communicate the busi-
ness rules itself. Second, a system built upon our model would respect important
conceptual, structural, and accounting considerations that are required in a cor-
rect design. Third, we know that the instances we presented as examples are
consistent because if they weren’t Alloy would respond with a failure to find any
model. Fourth, the approach we took for modeling securities and transactions in
Alloy can be extended to support more transactions.

The current investigation illustrates the utilization of the Alloy development
environment as a means of facilitating communication with business specialists1.
1 The author holds a position in a private company and uses Alloy daily to sketch

specifications.

A Formal Model for Startups Financial Transactions 17

Business professionals have the skills of comprehending Alloy models, although
they may not always be able to compose them. This readability serves as a means
to reconcile the disparity between technical modeling and comprehension within
the commercial context.

Limitations. While Alloy offers numerous advantages for modeling and verifica-
tion, it’s important to also consider its limitations, especially when making an
informed choice of tool for a specific problem domain.

Alloy’s approach to problem-solving relies on bit blasting to transform prob-
lems into satisfiability (SAT) instances. This method inherently limits its sup-
port for integers. The intricacies of integer arithmetic can sometimes be lost
or inadequately represented during this transformation. Another notable limi-
tation is the performance of Alloy for larger scopes. As the instance size grows,
the running times for checks increase significantly. These limitations, however,
don’t overshadow Alloy’s strengths but provide a comprehensive understanding
of where the tool excels and where it might require additional considerations.

The model we have developed also has inherent limitations. In our model,
Alloy version 5 was used. Alloy has incorporated Electrum, an extension that
encompasses linear temporal logic (LTL), starting from version 6. It is very likely
that Linear Temporal Logic (LTL) can more effectively articulate our under-
standing of events and states, while also capturing a greater number of domain
features. Furthermore, given the current framework, it is necessary to conduct all
checks on the complete model synchronously. This phenomenon has an impor-
tant impact on the overall performance. Implementing verification mechanisms
on local components would result in improved productivity. Currently, a novel
model incorporating these features is being developed.

Future Work. The comprehensive clarification of the semantic aspects of the
principles we have formulated can be confirmed by examining legal documents.
The model that is being offered is a first step toward a more thorough and expan-
sive formalization of business contract laws. The purpose of this formalization
is to make it easier to reason logically about the regulations and to make sure
software systems accurately apply them. The aforementioned procedure holds
substantial significance within the context of advancing secure smart contracts.
The creation of a software tool that enables the production of legal contracts
using pre-existing formal templates will effectively bridge the gap between soft-
ware developers and lawyers responsible for preparing contracts for businesses.

Glossary

asset An asset is something that can eventually generate cashflows. Because not
all future cashflows are known with certainty, the value of an asset must be
discounted to reflect the risk that those cashflows do not meet expectations.

asset class An asset class is a group of securities that have similar characteris-
tics. Stocks, bonds, and real estate are all asset classes.

18 R. Stevaux and A. C. V. de Melo

capitalization table A capitalization table is a table that lists all the securities
issued by a company. The capitalization table lists the number of shares
issued, the type of security, the price per share, and the date of issuance. The
capitalization table is used to calculate the ownership of each shareholder.

debt Debt is a loan that must be repaid. Companies might raise funds via equity
issuances or debt issuances. Debt is issued as security in terms of the amount
that was loaned, the interest rate, and the maturity date. Debt is safer than
equity, and must be repaid before equity holders can receive any cashflows.

exercise Stock options are exercised and become stocks. The strike price is the
price at which the stock options can be converted to equity. They can only
be exercised after they have been vested.

issuance An issuance is the creation of a new security

security A security is a financial asset that can be bought and sold. Stocks,
options and debt notes are all securities. Every security has an Issuer. A loan
from a bank is not a security, because the bank can not generally sell the loan
to another bank.

staged financing Staged financing is a financing strategy in which a company
raises funds in stages. The first stage is typically called the seed round, with
subsequent stages receiving a latin alphabet letter (such as Series A, Series
B, etc.). Staged financing allows investors to reduce their risk by investing in
stages, and allows the company to raise funds as it grows.

stakeholder A stakeholder is any person, legal or natural, with an economic
interest in a company, including all debt, option and stock holders.

startup company A startup company is a new company that is searching
for a business model as it grows. Startup companies are typically funded in
stages and by specialized venture capital investors such as individual (angel)
investors and funds. Startup companies usually aim for high growth and high
returns, by choosing projects with higher risk.

transaction A transaction refers to the issuance, change, transfer and cancel-
lation of securities. A transaction is typically initiated by a stakeholder, and
must be approved by the company. Most transactions involve a cost, with
money changing hands in the opposite direction of the securities.

venture capital Venture capital is a form of private equity financing that is
provided by venture capital firms to startups and early-stage companies that
have been deemed to have high growth potential or which have demonstrated
high growth

A Formal Model for Startups Financial Transactions 19

References

1. Open Cap Table Coalition (OCT) – opencaptablecoalition.com. https://www.
opencaptablecoalition.com/. Accessed 27 May 2023

2. Bray, T.: The JavaScript object notation (JSON) data interchange format. RFC
8259, IETF (2017). http://tools.ietf.org/rfc/rfc8259.txt

3. Caines, D.: Global venture capital investment shatters records. kpmg.com.
https://kpmg.com/xx/en/home/media/press-releases/2022/01/global-venture-
capital-annual-investment-shatters-records-following-another-healthy-quarter.
html. Accessed 10 June 2023

4. Carpio, R., Alsmadi, I.: Websites security policies implementation using alloy ana-
lyzer. SSRN Electron. J. (2021). https://doi.org/10.2139/ssrn.3939856

5. Chen, C., Grisham, P., Khurshid, S., Perry, D.: Design and validation of a general
security model with the alloy analyzer. In: First Alloy Workshop 2006, Portland,
Oregon, USA (2006)

6. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley (2004)

7. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002). https://doi.org/10.1145/505145.505149

8. Johnson, J., Alsmadi, I.: Formal modeling of banking policies using alloy analyzer.
SSRN Electron. J. (2021). https://doi.org/10.2139/ssrn.3939880

9. Kang, E., Perez De Rosso, S., Jackson, D.: 500 lines or less - the same-origin pol-
icy. https://aosabook.org/en/500L/the-same-origin-policy.html. Accessed 23 May
2023

10. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

11. Merigoux, D., et al.: Catala. INRIA, ENS, OCamlPro, ENS, Lyon (2022). https://
catala-lang.org/

12. Metrick, A.: Venture Capital and the Finance of Innovation, 3rd edn. John,
Nashville (2021)

13. Peyton Jones, S., Eber, J.M., Seward, J.: Composing contracts: an adventure in
financial engineering (functional pearl). In: Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2000, pp. 280–
292. Association for Computing Machinery, New York (2000). https://doi.org/10.
1145/351240.351267

14. Podorozhny, R., Khurshid, S., Perry, D., Zhang, X.: Verification of multi-agent
negotiations using the alloy analyzer. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 501–517. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73210-5 26

15. Wadler, P.: Programming language foundations in Agda. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 56–73. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5 5

https://www.opencaptablecoalition.com/
https://www.opencaptablecoalition.com/
http://tools.ietf.org/rfc/rfc8259.txt
https://kpmg.com/xx/en/home/media/press-releases/2022/01/global-venture-capital-annual-investment-shatters-records-following-another-healthy-quarter.html
https://kpmg.com/xx/en/home/media/press-releases/2022/01/global-venture-capital-annual-investment-shatters-records-following-another-healthy-quarter.html
https://kpmg.com/xx/en/home/media/press-releases/2022/01/global-venture-capital-annual-investment-shatters-records-following-another-healthy-quarter.html
https://doi.org/10.2139/ssrn.3939856
https://doi.org/10.1145/505145.505149
https://doi.org/10.2139/ssrn.3939880
https://aosabook.org/en/500L/the-same-origin-policy.html
https://catala-lang.org/
https://catala-lang.org/
https://doi.org/10.1145/351240.351267
https://doi.org/10.1145/351240.351267
https://doi.org/10.1007/978-3-540-73210-5_26
https://doi.org/10.1007/978-3-540-73210-5_26
https://doi.org/10.1007/978-3-030-03044-5_5

A Haskell-Embedded DSL for Secure
Information-Flow

Cecilia Manzino(B) and Gonzalo de Latorre

Departamento de Ciencias de la Computación, Universidad Nacional de Rosario,
Rosario, Argentina

ceciliam@fceia.unr.edu.ar

Abstract. This paper presents a domain specific language, embedded
in Haskell (EDSL), for enforcing the information flow policy Delimited
Release. To build this language we use Haskell extensions that will allow
some kind of dependently-typed programming.

Considering the effort it takes to build a language from scratch, we
decided to provide an information-flow security language as an EDSL,
using the infrastructure of the host language to support it.

The decision of using Haskell as the implementation language is
because it has a powerful type system that makes it possible to encode
the security type systems of the embedded language at the type level
and also because it is a general purpose language.

The implementation follows an approach where the type of the
abstract syntax of the embedded language was decorated with security
type information. This way, typed programs will correspond to secure
programs, and the verification of the security invariants of programs will
be reduced to type-checking.

The embedded security language is designed in a way that is easy to
use. We illustrate its use through two examples: an electronic purchase
and a secure reading of database information.

Keywords: dependently-typed programming · Haskell · information
flow type systems · declassification

1 Introduction

Ensuring the confidentiality of information manipulated by computing systems
has become of significant importance in recent years [2]. Traditional security
mechanisms such as access control [1] or cryptography do not provide end-to-end
protection of data. To complement these security mechanisms, techniques that
examine information flows between inputs and outputs of systems have become
a subject of study. In this context security polices arise for guaranteeing that
confidential information cannot be released to public data. Non-interference [3]
is an example of an information flow policy. A program satisfies this property
when the final value of any public variable is not influenced by a variation of
confidential inputs during its execution.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Barbosa and Y. Zohar (Eds.): SBMF 2023, LNCS 14414, pp. 20–35, 2024.
https://doi.org/10.1007/978-3-031-49342-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49342-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-49342-3_2

A Haskell-Embedded DSL for Secure Information-Flow 21

A remarkable feature of this property is that it can be enforced statically by
the definition of an information flow type system ([4,7]).

However, some realistic applications must allow intentional information
release as part of its intended behavior and non-interference is very restrictive
for this. To make security languages practical, mechanisms for declassifying or
releasing information in a controlled manner have been studied ([6,8,11]).

The critical part of these mechanisms is to ensure that declassification is used
safely.

An information flow policy, named Delimited Release was introduced by
Sabelfeld and Myers [6] to guarantee that the intentional release of informa-
tion, marked in programs under expressions declassify , cannot be used to infer
more information than it should. They also define a type system that enforces
this security property on typed programs.

The results about information flow security are mostly theoretical. Two lan-
guages based on information flow were implemented: Jif [5] (a variant of Java)
and Flow Caml (based on Ocaml).

Other works investigate the way of expressing restrictions on information-flow
providing control-flow primitives as a library, avoiding the work of producing a
new language from scratch. In this line, Li and Zdancewic [12] implemented an
embedded security sublanguage which provides a security property, in Haskell.
Informally, the security property can be stated as: “code running at privilege lp
cannot observe information of label l if (l � lp)”. Their implementation is based
on arrows. Whereas Russo, Claessen and Hughes [10] provide information-flow
security also as a library in Haskell but their implementation is based on monads.
The intention of the authors is to show that the same goals can be achieved with
monads instead of arrows.

In this work, we propose an EDSL in Haskell for providing information-flow
security. To achieve our goal, we follow a different approach than the one used by
the forementioned authors. Our implementation is based on the use of generalized
algebraic data types (GADTs), for representing the terms of the embedded lan-
guage together with the typing rules that guarantee the security property. Then,
programs constructed with this data type are secure by-construction. Since the
constructors of the GADT are a direct implementation of the typing rules, the
type system must be syntax-directed. We give a syntax-directed formulation of
the type system that guarantee Delimited Release to make this implementation
possible.

The rest of the paper is organized as follows. Section 2 presents the syntax,
semantic and security type system of the embedded language. Section 3 presents
the implementation of the EDSL, while Sect. 4 gives some example programs that
illustrate its use. Section 5 presents some related works. Section 6 concludes.

The complete Haskell code of the EDSL is available in a GitHub repository1.

1 https://github.com/ceciliamanzino/EDSL-DR-.

https://github.com/ceciliamanzino/EDSL-DR-

22 C. Manzino and G. de Latorre

2 A Security Language

In this section we will describe the syntax, semantics and type system of the
language implemented as an EDSL. The language is a standard while language
extended with the construct declassify which declassifies the security level of
an expression. The type system enforces a security property named delimited
release. This security property together with type system that enforces it were
defined in [6], here we present a syntax directed version of the type system.

2.1 Syntax

The expressions and statements of the language are defined by the following
abstract syntax:

e ::= val | x | e1 op e2 | declassify(e, l)
s ::= x:=e | skip | s1; s2 | if e then s1 else s2 | while e do S

where e ∈ Exp (expressions), s ∈ Stm (statements), x ∈ Var (variables),
val ∈ Num ∪ {true, false} (integer and boolean literals), l ∈ L (security
lattice) and op ranges over arithmetic and boolean operations on expressions.

The semantics of this language is completely standard. The unique expres-
sion that is not standard is declassify(e, l), which is used for declassifying the
security level of the expression e to l. At the semantic level declassify(e, l) is
equivalent to e.

The meaning of expressions and statements is given relative to a memory
s ∈ M = Var → Num∪ {true, false}, which contains the current value of each
variable. We assume that the semantics for expressions is given by an evaluation
function denoted by 〈M, e〉 ⇓ val. For statements, we define a big-step semantics
whose transition relation is written as 〈M, s〉 ⇓ M ′, meaning that the evaluation
of a statement s in an initial memory M terminates with a final memory M ′.

2.2 Non-interference

We assume that each variable has associated a security level, which states the
degree of confidentiality of the value it stores. A type environment Γ : Var → L
maps each variable to a security type, where (L,�), is a bounded lattice of
security levels with meet () and join (
) operations, and top (�) and bottom
(⊥) values. The bottom value represents the least security level (public data)
whereas the top value represents the highest security level (private data).

Non-interference [3] is a security property that guarantees the absence of
illicit information flows during execution of a program. A program satisfies this
security property when final values of low level security variables are not influ-
enced by a variation of the initial values of the high level security variables. This
property can be formulated in terms of program semantics.

Two memories M1 and M2 are l-equivalent, written M1 ≈l M2, when they
coincide in the variables with lower security level than l. While, two program

A Haskell-Embedded DSL for Secure Information-Flow 23

configurations 〈M1, s1〉 and 〈M2, s2〉 are indistinguishable at level l, written
〈M1, s1〉 ≈l 〈M2, s2〉, if whenever 〈M1, s1〉 ⇓ M ′

1 and 〈M2, s2〉 ⇓ M ′
2 for some

M ′
1 and M ′

2 we have that M ′
1 ≈l M ′

2. Two expression configurations 〈M1, e1〉
and 〈M2, e2〉 are indistinguishable, written 〈M1, e1〉 ≈ 〈M2, e2〉, if 〈M1, e1〉 ⇓ val
and 〈M2, e2〉 ⇓ val for some val.

Now, the security property can be formalized as follows:

Definition 1. (Non-interference) A statement s satisfies non-interference if,
for all level l, we have:

∀M1 M2 .M1 ≈l M2 ⇒ 〈M1, s〉 ≈l 〈M2, s〉

A positive feature of non-interference is that it can be enforced statically by
the definition of an information-flow type system ([4,7]). But its use in some com-
puting systems could be too restrictive. For example, if we consider a password
checking program, on every attempt to login there is a release of information
about the user’s password, or if we want to send encrypted secret information
to a public place there is also an information leakage.

Even though it is necessary to relax the notion of non-interference and have
mechanisms that are able to release information in a controlled manner, ques-
tions about how to prevent attacks arise. For example, an attacker could take
advantage of these mechanisms for releasing data to extract more information
than intended.

Sabelfeld and Myers [6] introduce a new security property, named Delimited
Release that guarantees that the realease of information (marked in programs
via expressions declassify) cannot be used to construct attacks. They also
presented a security type system that enforces this property.

2.3 Delimited Release

The intention behind this property, is to express that only explicitly declassified
information is released and no other information. More specifically, the prop-
erty establishes that a program is secure if updates to variables that are latter
declassified, occur in a manner that an attacker cannot use them to infer more
information than the data that has already been released by declassification.

The security property is formalized as follows:

Definition 2. (Delimited Release) Suppose the statement s contains within
it exactly n declassify expressions declassify(e1, l1) . . . , declassify(en, ln).
Statement s is secure if for all security levels l we have:

∀M1,M2.(M1 ≈l M2 ∧ ∀i ∈ {i | li � l}.〈M1, ei〉 ≈ 〈M2, ei〉) ⇒ 〈M1, s〉 ≈l 〈M2, s〉

24 C. Manzino and G. de Latorre

Expressions

Γ � val : l, ∅ (VAL)

Γ � v : Γ (v), ∅ (VAR)

Γ � e1 : l1, D1 Γ � e2 : l2, D2

Γ � e1 op e2 : l1 � l2, D1 ∪ D2

(OP)

Γ � e : l, D

Γ � declassify(e, l1) : l1, V ars(e)
(DEC)

Statements

Γ, pc � skip : ∅, ∅ (SKIP) Γ � e : l, D l � pc � Γ (x)
Γ, pc � x := e : {x}, D

(ASS)

Γ, pc1 � s1 : U1, D1 Γ, pc2 � s2 : U2, D2 U1 ∩ D2 = ∅

Γ, pc1 � pc2 � s1; s2 : U1 ∪ U2, D1 ∪ D2

(SEQ)

Γ � e : l, D Γ, pc1 � s1 : U1, D1 Γ, pc2 � s2 : U2, D2 l � pc1 � pc2

Γ, pc1 � pc2 � if e then s1 else s2 : U1 ∪ U2, D ∪ D1 ∪ D2

(IF)

Γ � e : l, D Γ, pc � s : U, D1 l � pc U ∩ (D ∪ D1) = ∅

Γ, pc � while e do s : U, D ∪ D1

(WHILE)

Fig. 1. Syntax-directed Security Type System For Delimited Release.

2.4 Security Type System for Delimited Release

This section presents a type system that enforces Delimited Release. This version
of the type system is based on the one given in [6] with the characteristic of being
syntax-directed. The typing rules are shown in Fig. 1.

In this system, the typing judgement for expressions has the form Γ � e :
l,D, meaning that the expression e is typed in the security environment Γ ,
has security level l and effect D. The type system collects the variables that
are declassified in e, in set D. Typing judgement for statements has the form
Γ, pc � s : U,D which means that statement s is typable in a program counter
pc, under security environment Γ and effects U and D. The program counter
is the lower level of the variables assigned in s. The type system collects the
variables that are declassified in s in the effect D and the updated variables in
U .

The goal of the typing rules is to prevent improper information flows during
program execution and to control the information that is declassified.

If a program doesn’t contain the expression declassify and is typed in the
security type system for Delimited Release, then it satisfies non-interference [3].

A Haskell-Embedded DSL for Secure Information-Flow 25

2.5 Safe Programs Examples

This section will show two short examples, that are common in the literature
and that have already been introduced in [6]. These simple programs will help
us understand the security property. In the next section we will implement these
examples in our EDSL in Haskell.

Example 1. (Average salary)
Consider a simple program to calculate the average salary of n employees.
Suppose that variables h1, . . . , hn store the salaries of the employees. We can

store the result of the average of these private variables in a public variable named
avg by declassifying the information of this result but not other information (like
the salary of one employee):

avg:=declassify((h1 + · · · + hn)/n, low)

If we consider a lattice of two levels L = {low , high}, where ⊥ = low and
� = high and an environment Γ , such Γ (hi) = high for i ∈ {1, . . . , n}, and
Γ (avg) = low we can easily check that the program is typable in the type
system for Delimited Release.

Now, we consider a malicious use of this program for leaking information of
variable h1 to avg:

h2:=h1;
. . .
hn:=h1;
avg:=declassify((h1 + · · · + hn)/n, low)
This program is rejected by the type system, since the variables h2, . . . , hn

which are under declassification in the last line were updated before.

Example 2. (Electronic wallet)
In this example we have a scenario where if a customer has enough money

in their electronic wallet then a purchase is carried out.
Suppose that a private variable h stores the amount of money in a customer’s

wallet, a public variable l stores the amount of money spent in the session and
a public variable k stores the cost of the purchase. The following code checks if
h ≥ k, for modifying the values of the variables l and h:

if declassify(h ≥ k, low) then (h:=h − k; l:=l + k) else skip

This program doesn’t satisfy the non-interference property, since an assign-
ment of the public variable l occurs under a high condition, but it is typable
with type system for Delimited Release.

Now, we show a program that uses this code for leaking bit-by-bit the value
of the secret variable k to l:

26 C. Manzino and G. de Latorre

l:=0;
while (n ≥ 0)

k:=2(n−1);
if declassify(h ≥ k, low)
then (h:=h − k; l:=l + k)
else skip;
n:=n − 1

This program is rejected by the type system for Delimited Release.

3 Implementation

In this section we will present the implementation of our EDSL.
In the following we will accompany the implementation of the embedded

language together with concepts introduced by some Haskell extensions, like
promoted data types [13], singleton types [14], type families [9] and GADTs. These
extensions will enable us to program in Haskell in a similar way as we will do in
a dependently typed language.

3.1 Security Types and Variables

For simplicity we consider just two security levels, but the implementation can
be easily generalized to a lattice of security levels ordered by their degree of
confidentiality. In such generalization we can use Haskell’s type class mechanism
for defining security lattices.

The security types low and high are represented by the following definition:

data SType = Low | High

This defines datatype SType with two values (or constructors): Low and High.
In a dependently typed language, we could use the values Low and High in a
GADT definition, but in Haskell, we must lift them to the type level. With the
extension promoted datatypes, we can use them one level up. So we can use the
type SType as a kind and the values High and Low as types. To distinguish the
types from the values we must use a quote.

Then, the types ’Low and ’High have kind SType and there are only two
types of kind SType.

However, later we will need a copy of these types as value level, so we will
use a singleton type definition of SType.

data SeType (s :: SType) where
L :: SeType ’Low
H :: SeType ’High

The idea of singleton types is that we can use pattern matching on values
to know at run time the type of the value, since each type in the definition has
exactly one value of that type.

A Haskell-Embedded DSL for Secure Information-Flow 27

For example, the values Low and High have the same type SType, but L and H
(which represent the same values as Low and High) have different types SeType
’Low and SeType ’High, respectively.

In this implementation, we will use both definitions to represent security lev-
els. In a dependently typed language, such as Agda, we need just one definition.

The order of the security types is given by the following non-method class
with instances:

class LEq (a :: SType) (b :: SType)
instance LEq ’Low x
instance LEq ’High ’High

Haskell’s type system will choose the appropriate instance for a pair of types
st and st’ that satisfies st ≤ st’. If we see each instance of this class as a
pair of a relation, we can observe that these pairs form an order relation. This
implementation can be generalized to a lattice of security levels by defining a
class with methods for meet and join operations, the order relation (≤), and the
bottom and top values.

In the same way we define natural numbers as types:

data Nat = Zero | Succ Nat

data SNat (n :: Nat) where
SZero :: SNat ’Zero
SSucc :: SNat n → SNat (’Succ n)

For example,

two :: SNat (’Succ (’Succ ’Zero))
two = SSucc (SSucc SZero)

Similarly we can define any natural number, and all of them will have different
types.

We will use natural numbers to represent variables of the language and lists
of pairs of security types together with naturals to represent type environments.

A type family is essentially a function on types or it can also be seen as
parametric types. They provide a functional style for programming at type-level
in Haskell.

For looking up the security type associated to a variable in a given environ-
ment we will use the type family Lookup:

type family Lookup (env :: [(k,st)]) (n :: k) :: a where
Lookup (’(n, st) ’: env) n = st
Lookup (’(m, st) ’: env) n = Lookup env n

The first line introduce the signature of the type family. The word family
distinguishes this definition from a standard type definition.

In this definition we use the constructor for pairs promoted to type ’(,) and
the constructor for list ’: which is also promoted.

28 C. Manzino and G. de Latorre

3.2 The Language

Generalized algebraic data types (GADTs) are a generalization of ordinary alge-
braic data types. This generalization is over the return type of the constructors
for the data type, that must be an application of the data type being defined,
as in any data type definition, but this application can be on an arbitrary type.
This feature make GADTs useful for expressing invariants at the type level.

As example, consider the following GADT definition for terms of a small
language for arithmetic and boolean expresions:

data Term a where
T :: Term Bool
F :: Term Bool
Lit :: Int → Term Int
Add :: Term Int → Term Int → Term Int
IsZero :: Term Int → Term Bool
If :: Term Bool → Term a → Term a → Term a

We use GADTs for representing expresions and terms of the security lan-
guage.

The encoding is such that, the judgement env � e : st, d in our formal type
system corresponds to the typing judgement e :: Exp env st d d’ in Haskell.
The parameter d’ doesn’t have its correspondence in the type system since it
was added in the implementation for collecting the occurrences of variables in
the expression. Each constructor of the GADT encode a typing rule.

data Exp :: [(Nat, SType)] → SType → [Nat] → [Nat] → ∗ where
Var :: SNat (n :: Nat) → Exp env (Lookup env n) ’[] ’[n]
IntLit :: Int → Exp env ’Low ’[] ’[]
BoolLit :: Bool → Exp env ’Low ’[] ’[]
Ope :: Op →

Exp env st d var1 →
Exp env st’ d’ var2 →
Exp env (Join st st’) (Union d d’) (Union var1 var2)

Declassify :: Exp env l’ d vars →
SeType l →
Exp env l vars vars

the type Op represents integer and boolean operations for expresions:

data Op = Plus | Minus | Mult | Div | Exp | Mod | And | Or | Gt |
GtE | Lt | LtE | Eq | Not Eq

The datatype Exp is parametrized by the type environment (which is of kind
[(Nat , SType)]), the security type of the expression (of kind SType), the list
of variables that were used under declassification and the list of variables used
in the expression (both of kind [Nat]).

In the encoding, the maximum between two security types is computed by
a type family Join and the append of two list is computed by a type family
Union. Both definitions are available in the github repository.

A Haskell-Embedded DSL for Secure Information-Flow 29

To model statements we define the following GADT that is parametrized by
the type environment, the program counter (represented as a security type) and
two lists that represents the set of variables that were updated and the set of
variables that were used under declassification.

Now the typing judgement env, pc � stm : u, d in our formal type system
corresponds to the typing judgement e :: Exp env st d d’ in Haskell. Each
constructor of the data type definition corresponds to a rule of the type system
shown in Fig. 1. This representation is possible because the type system is syntax-
directed.

Since the type Stm env pc u d encodes the security typing rules, it is only
possible to write terms that corresponds to secure programs.

data Stm :: [(Nat, SType)] → SType → [Nat] → [Nat] → ∗ where
Skip :: Stm env ’High ’[] ’[]

Ass :: LEq st (Lookup env n) ⇒
SNat (n :: Nat) →
Exp env st d var →
Stm env (Lookup env n) ’[n] d

Seq :: Intersection u1 d2 ~ ’[] ⇒
Stm env pc u1 d1 →
Stm env pc’ u2 d2 →
Stm env (Meet pc pc’)(Union u1 u2)(Union d1 d2)

If :: LEq st (Meet pc pc’) ⇒
Exp env st d vars →
Stm env pc u1 d1 →
Stm env pc’ u2 d2 →
Stm env (Meet pc pc’)(Union u1 u2)(Union d(Union d1 d2))

While :: (Intersection u1 (Union d d1) ~ ’[], LEq st pc) ⇒
Exp env st d vars →
Stm env pc u1 d1 →
Stm env pc u1 (Union d d1)

The minimum between two security types is computed by the type fam-
ily Meet, while the intersection of two sets is computed by the type family
Intersection.

In the constructors While and Seq we use type equality constraints of the
form a ~ b in their type context, which means that types a and b must be the
same. The restriction U ∩ (D ∪ D1) = ∅ in the WHILE rule of the type system
corresponds to the constraints (Intersection u1 (Union d d1) ~ ’[] in the
constructor While, and the restriction U1 ∩ D2 = ∅ of SEQ rule corresponds to
the constraint Intersection u1 d2 ~ ’[]. These restrictions are necessary to
ensure that variables that are used under declassification may not be updated
before being declassified.

30 C. Manzino and G. de Latorre

Some rules of the type system have restrictions of the form l ≤ l′. In these
cases these restrictions correspond to a constraint of the form LEq l l’ in the
implementation, and are used in order to prevent improper information flows.

3.3 Constructors

Programming directly with the constructors of the GADT can be cumbersome,
so we define the constructors of our EDSL using the definition of Stm.

In order to construct programs with these constructors, we need to provide
a form to construct an environment of security variables. Then, we need type-
level lists of types of kind (Nat , SType). We represent environments with the
following definition:

data HList :: [(Nat , SType)] → ∗ where
Nil :: HList ’[]
(:-:) :: (SNat n , SeType s) →

HList xs →
HList (’(n , s) ’: xs)

We use this data type to have a copy of the environment at value level.
For example, we define an environment with three variables, variable zero

has security level Low and variables one and two have security level High.

zero = SZero
one = SSucc zero
two = SSucc one

env = (zero, L) :-: (one, H) :-: (two, H) :-: Nil

The constructor var is used to declare a variable in a given context. The first
argument is the type environment that will be used throughout the program,
while the second is a natural number associated to the variable. The expression
is only typable if the natural number belongs to the environment:

var :: HList env →
SNat (n :: Nat) →
Exp env (Lookup env n) ’[] (n ’: ’[])

var en n = Var n

As example we define a low variable l that belongs to environment env:

l = var env zero

The constructors int and bool are used for literal integer and boolean values:

int :: Int → Exp env ’Low ’[] ’[]
int = IntLit

bool :: Bool → Exp env ’Low ’[] ’[]
bool = BoolLit

A Haskell-Embedded DSL for Secure Information-Flow 31

For example, the expressions int 3 and bool True represents the values 3
and True respectively.

The constructor for writing assignments is the following:

(=:) n exp = Ass n exp

Now, we can write a program which assigns the value 3 to the public variable
zero:

Program1 = zero =: int 3

The other constructors of the language are defined as follows:

skip = Skip

iff s e1 e2 = If s e1 e2

while s e1 = While s e1

declassify :: Exp Env l’ d vars →
SeType l →
Exp Env l vars vars

declassify e l = Declassify e l

(>>>) :: (Intersection u1 d2 ~ ’[]) ⇒
Stm Env pc u1 d1 →
Stm Env pc’ u2 d2 →
Stm Env (Meet pc pc’) (Union u1 u2) (Union d1 d2)

(>>>) s1 s2 = Seq s1 s2

To make programs look more concise, the list of operations was simplified:

plus = Ope Plus
minus = Ope Minus
mult = Ope Mult
gt = Ope Gt
gte = Ope GtE
lt = Ope Lt
lte = Ope LtE
eq = Ope Eq
neq = Ope Not Eq
(/.) = Ope Div
(&.) = Ope And
(|.) = Ope Or

32 C. Manzino and G. de Latorre

4 Implementation of Examples

In this section we illustrate the practicality of the EDSL through the examples
presented in Sect. 2.5. A larger example that implements a secure program for
password checking can be found in the repository.

Example 3. Average salary
For writing this program we need an environment with four variables, 3 of

them must be high since they will be used for storing the salaries of 3 employees,
and the other must be low since it will store the average of the salaries.

env = (zero, L) :-: (one, H) :-: (two, H) :-: (three, H) :-: Nil

Then we can write the example as follows:

h1 = var env one
h2 = var env two
h3 = var env three
avgSalaries = zero =: declassify ((h1 +. h2 +. h3)

/. int 3) L

Now, if we try to define a program in our EDSL that is considered a laun-
dering attack (since leaks information about the salary of one employee to the
variable zero) as follows:

avgAttack = one =: h2 >>>
three =: h2 >>>
avgSalaries

we found that the program is rejected by Haskell’s type system.

Example 4. Electronic wallet
To write this example we define an environment with three variables, the

secret variable will be used to store the amount of money of the customer’s
electronic wallet, and the public variable will store the amount of money spent
by the customer and the cost of the purchase.

env = (zero, H) :-: (one, L) :-: (two, L) :-: Nil

The secure program is written as follows:

h = var env zero
l = var env one
k = var env two
walletSecure = iff (declassify (h >. k) L)

(zero =: h -. k >>> one =: l +. k)
skip

A Haskell-Embedded DSL for Secure Information-Flow 33

While, the following attack is rejected by ghc:

walletAttack = one =: int 0 >>>
(while (n >. int 0)

(two =: int 2 ^. n -. int 1) >>>
(iff (declassify (h ≥ . k) L)

(zero =: h -. k >>> one =: l +. k)
skip) >>>

three =: n -. int 1)

This program leaks information bit-by-bit of the private variable h to l. It is
rejected since the variable h (zero) that occurs under declassification is updated
in the body of the loop.

5 Related Work

Security-typed programming languages have been studied in the last years to
guarantee that confidential information cannot be released to public data. Jif [5]
is a secure language that extends Java with support for information flow con-
trol and access control. While Flowcaml is a prototype implementation of an
information flow analyzer for OCaml.

Rather than producing a new language, Li and Zdancewic [12] presented a
library for information-flow security programming in Haskell based on arrows
combinators and type classes. They use arrows for providing an interface that
support programming constructs like sequential compositions, conditionals and
loops. The library provides some information-flow control mechanisms likes
dynamic security lattices and declassification.

Russo, Claessen and Hughes [10] showed that the same goals can be achieved
using monads instead of arrows, which is a less general notion and most used by
Haskell programmers. The monadic library guarantees that well-typed programs
are non-interferent and also allows to specify declassification polices, which are
enforced dynamically at run-time. These polices can be expressed using different
combinators related to what, when, and by whom information is released.

Even if the arrow notation was eliminated in this library we found that
the declassification combinators for generating escape hatches for downgrading
information are difficult to use.

In this paper we provide information-flow security as a sublanguage in
Haskell. A difference from the works mentioned above is that in this work the
sublanguage provided is an imperative language, while in the others, information
flow control is applied to programs of the host language. The approach we follow
to achieve this is also different, in this work we attach security type information
to the datatypes representing the abstract syntax of the sublanguage in such a
way that we only deal with well-typed terms. To make it we use some exten-
sions of Haskell that gives us the possibility to perform some kind of type-level
programming.

34 C. Manzino and G. de Latorre

6 Conclusion and Future Work

We presented an EDSL in Haskell for writting applications that require to enforce
a security property that guarantee confidentiality of the information.

In the implementation we follow an approach for representing the security
language using GADT to represent terms, where each constructor of the GADT
is a direct implementation of a typing rule. This encoding guarantees that we
can only write terms that corresponds to secure programs and the verification
of that reduce to type checking.

Although type-level programming in Haskell is a bit tedious, we were able to
encode the typing rules in the term’s type of the embedded language in a not
so difficult way. The user of the EDSL does not have to program at type-level,
using the constructors provided, the implementation of the given examples could
be written easily. We conclude that the EDSL is suitable for writing applications
where the confidentiality of information must be required.

The decision of using Haskell instead of a dependently programming language
like Adga or Idris is because Haskell is a general purpose language, and the user
of the EDSL will not have to program at type-level for writing applications.

As future work we plan to add a constructor to the language for adding
variables to the environment. We started working in this direction by defining a
constructor:

newVar :: HList env → -- actual environment
SNat (n :: Nat) → -- new variable
SeType (st :: SType) → -- security level
Stm (’(n , st) ’: env) ’High ’[] ’[]

newVar en n st = Skip

This constructor changes the information about the security environment at
type level. To use it we must find a way to have an unfixed environment in some
of the constructors of the datatype Stm, like Seq.

Another future work is to address the formalization of other security poli-
cies. The property delimited release can capture what information is released,
other security properties capture who releases information, where in the system
information is released, and when information can be released [11]. The security
property robust declassification [8], is a good candidate since it is orthogonal to
delimited release (in the sence that control when information is declassified) and
can be combining with this.

References

1. Lampson, B. W.: Protection. In: Proceedings of the 5th Princeton Conference on
Information Sciences and Systems, Princeton (1971). Reprinted in ACM Operating
Systems Review, vol. 8, no. 1, pp 18–24 (1974)

2. Denning, D.E.: A lattice model of secure information flow. ACM 19(5), 236–243
(1976)

A Haskell-Embedded DSL for Secure Information-Flow 35

3. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
of the IEEE Symposium on Security and Privacy, pp. 11–20 (1982)

4. Volpano, D., Smith, G.: A type-based approach to program security. In: Bidoit,
M., Dauchet, M. (eds.) CAAP 1997. LNCS, vol. 1214, pp. 607–621. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0030629

5. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: java informa-
tion flow. Software release (2001). http://www.cs.cornell.edu/jif

6. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Futatsugi,
K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 174–191.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-37621-7 9

7. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J.
Select. Areas Commun. 21(1), 5–19 (2003)

8. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification. In:
Proceedings of the IEEE Computer Security Foundations Workshop (2004)

9. Chakravarty, M.M., Keller, G., Jones, S.P., Marlow, S.: Associated types with class.
In: POPL (2005)

10. Russo, A., Claessen, K., Hughes, J.: A library for light-weight information-flow
security in Haskell. ACM Sigplan Not. 44(2), 13–24 (2008)

11. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17, 517–548 (2009)

12. Li, P., Zdancewic, S.: Arrows for secure information flow. TCS 411, 1974–1994
(2010)

13. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães,
J.P.: Giving Haskell a promotion. In: TLDI (2012)

14. Eisenberg, R.A., Weirich, S.: Dependently typed programming with singletons.
ACM SIGPLAN Not. 47(12), 117–130 (2012)

15. Löh, A.: Applying type-level and generic programming in Haskell (2015)
16. Manzino, C., Pardo, A.: Agda formalization of a security-preserving translation

from flow-sensitive to flow-insensitive security types. Electron. Notes Theoret.
Comput. Sci. 351, 75–94 (2020)

17. De Latorre, G.: EDSL en Haskell para la programación segura respecto a la
propiedad Delimited Release. Final year project. National University of Rosario,
Argentina (2022)

https://doi.org/10.1007/BFb0030629
http://www.cs.cornell.edu/jif
https://doi.org/10.1007/978-3-540-37621-7_9

CSP Specification and Verification
of a Relay-Based Railway Interlocking

System

P. E. R. Bezerra1(B), M.V.M. Oliveira1(B), Thierry Lecomte2(B),
and D.I. de Almeida Pereira2(B)

1 DIMAp - Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
paulo.rolim.074@ufrn.edu.br, marcel@dimap.ufrn.br

2 CLEARSY, Aix-en-Provence, France
{thierry.lecomte,dalay.almeida}@clearsy.com

Abstract. In previous work, we have presented a methodology for the
specification and verification of relay-based Railway Interlocking Systems
(RIS) based on their transient states. By using CSP as formal support,
it is possible to use a model checker in order to analyse the safety of
such critical systems as a way to improve their safety. However, this
type of verification tends to consume a lot of computational resources,
which hinders the use of this methodology for industrial systems. This
work presents a proposal for a new methodology for the specification of
RIS. In this work we rebuild the whole model by changing the notion
of components, integrating them in the core of the model while keeping
their interface visible to the end-user. In this context, it is possible to
maintain the concepts of instantiating and combining components at
the same time we reduce the number of components and states as a
way to alleviate the time spent on model checking. Besides, we propose
a new methodology of verification based on the decomposition of the
model. Our new proposed approach supports the analysis of a bigger set
of properties of these systems, like the analysis of the Ringbell Effect,
short circuits, deadlocks, divergences, and components that cannot be
activated at the same time. In order to evaluate our approach, a new
industrial case study is modelled and analysed.

Keywords: CSP · Model-Checking · Railway Interlocking Systems

1 Introduction

A Railway Interlocking System (RIS) is a vital part of a railway signalling system
that is responsible for detecting and controlling track-side equipment in a safe
manner. Even though computer-controlled RISs are available [11], relay-based

M.V.M. Oliveira—This work is partially supported by INES (National Institute of
Software Engineering), CNPq grant 465614/2014-0, CAPES grant 88887.136410/2017-
00, and FACEPE grants APQ-0399-1.03/17 and PRONEX APQ/0388-1.03/14.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Barbosa and Y. Zohar (Eds.): SBMF 2023, LNCS 14414, pp. 36–54, 2024.
https://doi.org/10.1007/978-3-031-49342-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49342-3_3&domain=pdf
http://orcid.org/0000-0001-9698-5569
https://doi.org/10.1007/978-3-031-49342-3_3

CSP Specification and Verification of a Relay-Based RIS 37

RIS are still used in the majority of the installations [28]. It can be argued that
this choice is a result of the historical success of this technology as well as its lower
complexity and clear definition of fault modes [19]. Due to the potential dangers
associated with the failure of these systems, they are classified as safety-critical
systems. Thus, RISs must be safety-proved before their implementation and use;
“Railway accident reports from recent incidents suggest that current signalling
systems have design defects due to the commonly employed architecture” [31],
highlights the need for formally proving the application logic correctness [10].

There is a strong recommendation in railway norms that formal methods
should be utilised when developing railway systems [9]. These methods offer rig-
orous mathematical foundations for formal analysis and proofs. In this context,
logical verification can be used to analyse the system safety based on unique
combinations of electrical component states for every input configuration [3],
hence, it is important that the system always reaches a stable state. However,
transient states during system stabilisation pose potential safety concerns. The
states between the input and the reaction of the components must be considered
in order to truly guarantee the safety of the system. Besides, some specific elec-
tric circuit configurations can prevent the system from achieving a stable state,
which impedes logical verification as the system is no longer considered reliable.

One example of such a configuration is the Ringbell Effect [4], where two
relays activate and deactivate each other in a permanent cycle of events for a
specific set of inputs. The continuous relay activation and deactivation cycle can
lead to overheating and premature failure. This compromises system reliability
and invalidates logical analysis, as stable states are not achieved. Considering
intermediate states is crucial for ensuring safety and reliability in RISs.

Traditionally, relay-based RISs are verified by manual inspection, which is
insufficient in a critical situation [13]. Some works in the literature have presented
methodologies for the formal specification and verification of electrical circuits. In
general, these studies are based on a logical analysis of the relationships between
the electrical component states, allowing analysis of the outputs based on the
inputs of the system [1,2,12,15,30]. It is therefore imperative that the system
is reliable, i.e., every input set will result in a unique combination of electrical
component states, during the execution of the system. To analyse transient states
and cyclic behaviours, new modelling approaches are required for relay-based
RISs verification. Process-based specification and verification using CSP enable
the specification of component behaviours based on sequential events, facilitating
the analysis of system transient states. An automated process-based verification
has the potential to prevent safety, reliability, and implementation issues in RISs.

This work presents a new formal modelling approach for relay-based RISs
using the process algebra CSP [14], since it has a strong support for the specifi-
cation of the behaviour of components as well as their instantiation and compo-
sition. Besides, its support for concurrency specification and model-checking is
essential in our project. All these benefits were successfully used in our previous
works [5,18]. The models detailed in this work are based on the models pre-
sented in [4], where we discuss a first approach for using CSP to specify RISs. In
this work, this idea is completely rebuilt in order to alleviate the analysis of the

38 P. E. R. Bezerra et al.

models by the model checker by integrating the components in the core of the
model while keeping their interface visible to the end-user. In this context, the
whole specification has been improved in order to support a more efficient analy-
sis. Besides, new assertions are used in order to provide a more complete analysis
of the system and a new verification approach based on the decomposition of
the model is used, decreasing the time spent on verification. The evaluation of
the model is made based on a new industrial case study.

The remainder of this paper is organised as follows. Section 2 focuses on
the theoretical reference of this work, presenting some important information
about relay-based Railway Interlocking Systems and CSP. Section 3 discusses
related work and then our approach for the formal specification and analysis of
RISs using CSP is detailed in Sect. 4. Our proposed verification strategy and the
evaluation of our modelling approach are presented in Sects. 5 and 6, respectively.
Section 7 presents an optimization designed to handle larger systems. Section 8
is then devoted to some conclusions and perspectives.

2 Theoretical Reference

2.1 Relay-Based RISs

Relay-based RISs are the implementation of the interlocking system logic using
electrical circuits [27]. Signals and turnouts are controlled based on how electri-
cal components respond to their electrification caused by the system’s inputs.
In these systems, the electrical current flux is controlled by relays, which are
electromagnetic components composed of an electromagnet coil and a movable
armature containing electrical contacts. When electrified, the relay coil produces
a magnetic field that attracts the armature, changing the position of the con-
tacts, which open or close circuits according to their initial positions.

Relay diagrams are generally used by railway infrastructure managers for
describing the relay-based RIS. These models detail the system’s physical struc-
ture, modelling the electrical connection between the components. A small exam-
ple of a diagram is depicted in Fig. 1. Table 1 presents how some components
used in relay-based RISs are depicted in relay diagrams. More details about
these components are presented in [7] and in Sect. 4.

Table 1. Electrical Components of Relay-Based Diagrams.

Monostable relay and contat, respectively.

Energy sources.

A junction, a capacitor and a button, respectively.

Blocks for timed activation and deactivation, respectively.

CSP Specification and Verification of a Relay-Based RIS 39

In the example depicted in Fig. 1, we consider that the electric energy flow
departs from the positive energy sources P1 and P2, and arrives at the negative
energy sources N1 and N2. Thereby it is possible to observe how a button (B1)
can cause the electrification of another component (R2) when pressed down.
Besides, one may also observe how components (relays, in this example) can be
electrified based on the states of other components (contacts and buttons). The
relays R1 and R2 control the positions of the contacts C1 and C2, respectively.
When electrified, the relays raise the contacts, closing (C2) or opening (C1) them.

Fig. 1. The Ringbell Effect Example.

A Ringbell Effect occurs when two components activate and deactivate each
other indefinitely in an infinite cycle of events. In Fig. 1, for instance, R2 closes C2
when activated, which activates R1. As a consequence, R1 opens C1, deactivating
R2. The cycle begins again when C2 opens, deactivating R1 and closing C1. This
is a dangerous behaviour as the constant movement of the contacts may cause
the system to overheat and break.

Each company uses a different format of relay diagram with different informa-
tion [1]. This work focuses on the models used by SNCF (Société Nationale des
Chemins de fer Français), the French National Railway Company. More details
about the French relay-based RISs modelling and implementation can be found
in [20]. In the SNCF models, the behavioural safety properties differ from model
to model and they are generally related to the way components be electrified
together [1]. Thus, each electrical circuit model has specific safety properties
that the system must meet and which were defined during model conception.

Nonetheless, the analysis of these systems regarding safety is generally made
by manual inspection of the relay diagrams, which is not satisfactory in such a
critical context. In order to analyse these systems, formal methods may be used.

2.2 Communicating Sequential Processes

The CSP language has a rich syntax that allows us to make a well-detailed
specification of the RIS behaviour. The most basic constructors are processes
and channels. For instance, one of the most basic processes is STOP , which
represents a system break or a deadlock. Channels can have specific types, like
integer, boolean, or even a set of proper definitions, called datatype. Processes
can communicate through channels and this communication may have a value.

40 P. E. R. Bezerra et al.

Processes are defined using the events that constitute them. An event is
an atomic single action that a process may engage in. Every event consists of
a communication channel and the information that it can transmit. In CSP,
the declaration of a channel c is made by: “channel c: T1.T2...Tn”, where c
indicates the name of the channel and T1, T2, and Tn are the channel types.

Given an event a in the interface of a process P, the prefixing a -> P is
initially able to perform a, after which it will behave like P. CSP also provides
notations to describe different paths of behaviour. The external choice P [] Q
initially offers the initial events of both processes, P and Q. The environment
makes the choice of synchronisation.In P [| cs |] Q, the processes P and Q are
executed concurrently and synchronise on the events in cs.

CSP also disposes of a number of semantic models that define different mean-
ings for CSP expressions. One example of these models is the Traces Model,
where each process is defined by a set of traces, i.e., the sequences of events
that can be observed at the process interface. Thus, it is possible to infer that a
process P is a trace refinement of a process Q (written as Q [T= P) if, and only
if, every trace of P is a trace of Q.

CSP disposes of many tools that facilitate its use. For instance, the model
checker FDR4 [29] is a tool that allows users to verify properties of the processes
written in CSP based on the existing semantic models.

FDR4 uses an ASCII version of CSP as input: CSPM [22]. More details about
FDR and the CSP syntax and semantics can be found in [21,23].

In order to make verifications in FDR4, the user must write assertions
about the processes and their properties. Then, the tool explores every pos-
sible behaviour of the process in order to check if the assertion is true. If the
tool finds a counter-example to the assertion, it indicates the invalidity of the
assertion and provides the counter-example. For instance, one may verify that a
process P is deadlock-free using the assertion assert P :[deadlock free].

3 Related Work

The literature contains many examples of methodologies for the formal specifi-
cation and analysis of RISs, like [6,8,10,17,25]. However, despite the importance
of analysing relay-based RISs, the literature regarding the formal specification
of such systems is still scarce. This section presents some of the most impor-
tant works in this field and how they compare with our work. Nonetheless, for a
more complete literature review, a more curious reader may consult one of our
previous publications: [1–4,7].

Although formal methodologies are the focus of this work, there are some
informal models of interlocking systems that are worth citing. In [25,33]
component-based models and graphs are used to represent the connection
between components. This strategy is also used in our work. Nonetheless, formal
specification and verification are still essential in such a safety-critical context.
Regarding formal methodologies, the works presented in [1,2,12,26,30,32] use
a more logical state-based approach to specify and analyse RISs. However, as

CSP Specification and Verification of a Relay-Based RIS 41

transient states are not considered, they lack some important analysis of the
properties of these systems.

The works that are closer to our proposal are the ones presented in [32]
and [8]. While the former uses CSP for the RIS specification and analysis, the
latter uses an approach that considers transient states. The work presented in [32]
provides an important discussion about the use of CSP in this context and pro-
poses some solutions to reduce the number of states when model-checking the
systems. Nonetheless, its approach is based on control tables, which are at a dif-
ferent abstraction level compared to our relay-based modelling. Similarly, in [8],
the model is at another abstraction level, focusing on the electrical properties of
the system, requiring information like voltage and amperage, which are gener-
ally presented in the Italian relay diagrams. Our work focuses on the interlocking
logic, ignoring the electrical properties of the system.

4 CSP Specification of Relay-Based RISs

When modelling a relay-based RIS, it is necessary to take into account the system
structure and behaviour. The former defines how the electrical components are
physically connected by wires. The latter defines the rules for the components
electrification based on the system structure and on each component-specific
behaviour. A system structure is essential for determining the behaviour of the
system in this context, as each type of electrical component behaves in an invari-
able manner regardless of its position within the system. This formalisation of
relay-based RISs is grounded on the relay-diagrams provided by SNCF and the
concepts about their functioning as described in [1,20,24].

Our specification is divided into four parts: the “general.csp” script is where
all the functions responsible for the behaviour of each component are located;
the “problem.csp” script is where the components are listed, instantiated and
composed to build the system to be modelled; the “functions.csp” script con-
tains some auxiliary functions essential for the behavioural specification; and
finally, the “assertions.csp” script lists the assertions defined to verify safety and
reliability of the installed system in addition to standard “FRD4” assertions
that verify the existence of deadlock, livelock and nondeterminism. The auxil-
iary functions and other details are not discussed in this paper due to space
limitations. Nonetheless, the complete specification is provided elsewhere1.

4.1 The Model Interface

Although the way we formalise the system behaviour has been completely trans-
formed compared to its last version [4], the interface of the model remains almost
the same. In the file “problem.csp”, one may list the components that are used
in the model and compose them in order to describe the system structure. As the
behaviour of each component is invariable, the end-user of our model may only

1 https://www.dimap.ufrn.br/∼marcel/research/RIS/SBMF2023.

https://www.dimap.ufrn.br/~{}marcel/research/RIS/SBMF2023

42 P. E. R. Bezerra et al.

concern with describing the system structure. Nonetheless, the system behaviour
remains transparent and available in the “general.csp” file for the more curious
users. This latter part of the specification is detailed in the next section.

The components used in a case study may then be listed inside a datatype
following the format: datatype IDS = C1 id | C2 id |...| Cn id, listing all
the components Cx id used in the system. Then, one must group these compo-
nents inside separate sets. For instance, inside the set of positive energy sources,
one may add the components P1 id and P2 id: POSITIVE IDS = P1 id, P2 id.
As part of modelling the system structure, one must also model the relation
between the components as presented in the relay diagram. In this context,
the connection between components is defined in a function CONNECTIONS that
relates pairs of components that are connected by wires; and other relations are
defined by simple functions supported by CSPM , as presented below.

CONNECTIONS = { {P1_id,R1_id},{R1_id,C2_id},

{C2_id,C2_ENDPOINT_id},{C2_ENDPOINT_id,N1_id} }

RELAY_OF(C2_ENDPOINT_id) = R2_id

In this example that represents part of diagram in Fig. 1, the components
P1 id, R1 id, C2 id and N1 id are connected by wires according to the cou-
ples presented inside the CONNECTIONS function, and then the contact C2 id
is related to the relay R2 id according to the simple function RELAY OF. This
strategy is also used to define other information like the blocks connections, the
activation and deactivation time, the contacts connections at each position and
other important structural information presented inside the relay diagrams.

Another important information presented in the “problem.csp” file is the
initial state of the system. For instance, the variable INITIAL OPEN COMPONENTS
defines a set of component (“ids”) whose initial states represent disconnections
in the system. The behavioural specification utilises this set to determine the
initial state of the system. As the other control functions are executed, this
set is dynamically updated at each new intermediate system state. Its initial
instantiation is depicted below, that represents the initial state of Fig. 1:

INITIAL_OPEN_COMPONENTS = {B1_id, C2_ENDPOINT_id}

Other structural functions and sets defined in this part of the specification
and used in the model are discussed in the next section, which presents the
behaviour of the system based on its structure. For a complete list of the required
structural information, we advise consulting the provided commented case study
specification, which is discussed later in this paper.

4.2 The Path Master Process

In a previous version of this model, each component had a separate behaviour
that could be composed to form the complete system. In this new version, every
component behaviour is integrated into a unique process: the PATH MASTER. This

CSP Specification and Verification of a Relay-Based RIS 43

process is the most important part of our specification, through it, we may moni-
tor the system connections and keep track of the paths of electrified components.

The information described in the “problem.csp” is used in the PATH MASTER
as the basis for the description of the system behaviour. As a common CSP
strategy, the PATH MASTER process calls the auxiliary process PATH MASTER AUX
with a list of constant inputs. These inputs are, in this context, the initial
state of the system as defined by the user in the system interface in the form
of sets: INITIAL OPEN COMPONENTS, INITIAL POSITIVES, INITIAL NEGATIVES,
CAPACITOR IDS, INITIAL CHARGES, TIME DEACTIVATION SETTING and TIME
ACTIVATION SETTING. These sets contain the components that are initially open,
the positive and the negative energy sources, the “id” of capacitors, their charges
and the deactivation and activation settings of blocks, respectively.

PATH_MASTER = PATH_MASTER_AUX(INITIAL_OPEN_COMPONENTS, INITIAL_POSITIVES,

INITIAL_NEGATIVES, CAPACITOR_IDS, INITIAL_CHARGES,

TIME_DEACTIVATION_SETTING, TIME_ACTIVATION_SETTING)

As the core of the specification, the PATH MASTER has the role of control-
ling the system execution by allowing the components states to evolve. In this
context, this process contains a choice between updating the system inputs or
evolving the time or the states of the components. Based on this choice, the
PATH MASTER executes sub-processes and functions responsible for the execu-
tion of the system behaviour. As a recursive process, after executing the chosen
events, the process calls itself with the parameters updated. For instance, in
order to update the system inputs, the PATH MASTER AUX calls the INPUTS()
process, which has the function of receiving all inputs from the environment and
updating each input component state. Then this process calls PATH MASTER AUX
again with the list of open components updated.

A button is one example of input, it may close and open a connection.
In the INPUTS() process, a channel press communicates with the environ-
ment through the event press?id?ns, receiving a button id and its status ns.
Then, this process calls the function update buttons(open components, id,
ns) with the set of open components, the button and its state as parameters in
order to update the set of open components. This function is presented below.

update_buttons(open_components, b_id, b_status) =

if not(b_status) then union(open_components, {b_id})

else diff(open_components, {b_id})

The behaviour of the other electrical components, however, is related to
receiving energy from a wire and then sending it through another wire. A monos-
table relay, for instance, connected to the left and right wires, may receive
energy from one of these wires and then pass it to the other. The monostable
relay activation impacts their related contact states as its magnetic coil may
change their positions. In this context, it is important to constantly check if the
monostable relay is electrified or not. Evolving the relays and their respective
contacts is one of the choices available in the PATH MASTER process.

44 P. E. R. Bezerra et al.

The function is relay active() identifies whether a relay id is electrified
by searching whether there is a valid path between id to one of the members of
the sets POSITIVES IDS or NEGATIVES IDS.

In this context, a path is electrified if it connects two energy sources with
different poles. This function returns true if this path exists and false otherwise.

In our model, the function update contacts is responsible for updating the
list of open components every time a relay state is updated. A contact identified
by an id is connected to neighbouring components on the left and right, and
can allow or prevent the flow of electrical energy when its respective ENDPOINT
is inserted or removed from the set OPEN COMPONENTS. The synchronisation of
its behaviour is due to the fact that the set OPEN COMPONENTS is one of the
parameters of the recursive PATH MASTER process. In this context, the list of
open components is updated in the process recursive call.

Electrical components physically require some time to reach their operating
states. Thus the system safety check must be safeguarded by the specific time
period for the exchange of signals on a luminous panel. In this context, one may
use more complex structures in order to control the electricity flow in a timely
manner: blocks. A block represents a complex structure that allows delaying the
other components activation or deactivation. In this context, a block may be
represented as a box with a thicker line on the top or bottom, for delaying the
components activation and deactivation, respectively.

A block have five or six connections: two direct connections to the energy
sources, two dependent connections and one or two independent connections.
A block is activated when its independent connections are connected one to
another, or when one of its independent connections is connected to an energy
source. An activated block may provide energy to its dependent connections
according to its timed behaviour: a timed activation block provides energy after
a certain time of its activation, while a timed deactivation block provides energy
right after its activation. However, this latter block remains providing energy
after a certain time when it is no longer activated.

In this context, the EVOLVE TIME() process in our approach has the func-
tion of uniformly synchronising the passage of time for components that need
a certain period to be activated or deactivated. It is responsible for updating
the state of every timed component at once. This process is invoked right after
PATH MASTER performs a tick event (that represents time passage) and it receives
a list of components with timed behaviour as a parameter. Then, it updates the
state of these timed components at the same time, providing a time synchronisa-
tion between all these components. For that, the EVOLVE TIME() process updates
the list of energy sources (as these components may also provide energy) and
the time spent on each component state.

In addition to blocks, the other timed component is the capacitor. This com-
ponent is special as it may charge when it is connected to the energy sources
for a certain time and, once charged, it may provide energy to the system for
another certain time. A capacitor has a dual timed behaviour and may act as an
energy source. The state of this component is also updated in the EVOLVE TIME()

CSP Specification and Verification of a Relay-Based RIS 45

process by updating the list of energy sources, the charges assumed by each side
of the capacitor (positive or negative) and the time spent in the components
states.

The last components that may be described are the outputs. The channel
output status executes the events related to outputs behaviour. Outputs are
activated once they are electrified and deactivated when they are no longer elec-
trified. Following the same logic applied to the other components, the function
is output active() checks at all times whether the output is electrified, and if
the hypothesis is confirmed it returns true, otherwise it returns false.

By using the model presented in this section, one may analyse many different
properties of these systems. The next section is devoted to detailing some of
these verifications. Nonetheless, in order to guarantee the correct definition of
the system structure and behaviour, we embedded a short circuit analysis into
the model. When there is a path between a positive and a negative energy source
without any other component that consumes power, the system may overheat
and break. So, we created an event short circuit that is executed every time
this configuration exists. Then, it is possible to create an assertion based on
traces refinement to verify if this event is executed:

assert RUN(ALPHA_PATH_MASTER) [T= SYSTEM

The alphabet of a system without a short circuit is represented in
ALPHA PATH MASTER. The FDR4 special function RUN() offers all the alphabet
elements of PATH MASTER recursively with the exception of the short circuit
event. However, when the system performs an event that is not part of this alpha-
bet, the assertion fails because, in order to achieve the refinement in traces, the
analysed processes need to be equivalent in the events performed.

5 Verification of Relay-Based RISs

It is important to note that, in the context of safety-critical systems, any unstable
configuration can cause unwanted behaviour, or even, overheating and hardware
failure due to the constant movements of the contacts, for example. The system
safety proof presented by logical models can be invalidated if the system contains
unstable states as the instability prevents the system to reach a reliable state (one
single set of responses for a set of inputs). Thus, the verification of relay-based
RISs regarding the Ringbell Effect is important in order to guarantee the system
structural integrity, safety, availability, and reliability. We also specified other
assertions to analyse some important safety properties of these systems. Besides,
it is also possible to analyse the RISs regarding some standard properties of
concurrent systems. For instance, it is possible to analyse their deadlock and
livelock freedom as well as their determinism:

SYSTEM = PATH_MASTER

assert SYSTEM:[deadlock free]

assert SYSTEM:[divergence free]

assert SYSTEM:[deterministic[FD]]

46 P. E. R. Bezerra et al.

These verifications are important to guarantee the system reliability and
availability. The analysis proposed in this work can be extended. A more expe-
rienced user may define new assertions according to his needs.

5.1 Contacts Status Verification

The verification of safety of relay-based RISs is generally related to guaranteeing
the absence of certain combinations of component states. For instance, one must
logically prove that two green signals will never be activated at the same time
in order to avoid two trains occupying the same track portion.

In CSP, we compose the original system with a monitor process, which mon-
itors the states of the desired contacts related to the relays. When these com-
ponents reach a certain combination of states, the monitoring process executes
an error event, which is a special event that is not part of the alphabet of the
original system. Then, using CSP’s traces refinement, it is possible to verify if
the modelled system combined with the monitor process will execute this error
event. In a case where this event is detected, the refinement fails.

The monitor of contacts status receives as input a map of endpoints that
must be tested. Each of these endpoints is associated with a Boolean value and
the test consists of checking whether the state represented in this map can be
reached in the instantiated system. For instance, it is possible to verify if, in the
example enclosed in Fig. 1, the contacts "C1" and "C2" may be activated at the
same time by using the following assertion:

assert STOP [T= SYSTEM_CONTACTS_STATUS((|C1_ENDPOINT_id => true,

C2_ENDPOINT_id => true|))

5.2 Ringbell Effect Verification

The CSP specification supports capturing system states that are not considered
by related works. The Ringbell Effect seen in Fig. 1, for instance, a logical veri-
fication would consider that the precondition for the activation of R1 is that R2
is activated, which, in turn, requires R1 to be deactivated. A logical verification
cannot detect this problem as the precondition for a component activation can-
not be its own deactivation, so this state is generally not valid. Nevertheless, this
is a dangerous configuration of a relay-based system, as one relay may activate
and deactivate each other successfully, making the system overheat and break.

The analysis of the existence of such cycles of events can be made by examin-
ing if a component ever reaches a stable state given a set of inputs. In this context,
it is possible to specify a monitor (MONITORED SYSTEM UNSTABLE CONTACT) that
produces another special event, switch, every time the monitored component
state changes. Using this information, it is possible to identify the potential for
this component to continue indefinitely unstable using the following assertion:

assert not MONITORED_SYSTEM_UNSTABLE_CONTACT(C1_ENDPOINT_id,

(| B1_id => true |))

[T= RUN({switch})

CSP Specification and Verification of a Relay-Based RIS 47

Using the FDR4 trace refinement assertion to analyse the example presented
in Fig. 1, for instance, it is possible to check if the endpoint of the contact C1,
C1 ENDPOINT id, stabilises when the button B1 is continuously pressed (set to
true) in the monitored system. If this process refines the continuous execution
of the switch event, it is possible to conclude that it does not stabilise. Thus,
the negation at the beginning of the assertion makes it to return true if the
refinement does not occur, indicating the absence of the Ringbell Effect.

5.3 Concomitant Active Lights Verification

In the context of safety-critical systems, any unstable configuration can poten-
tially lead to undesirable outcomes. For instance, it is imperative to guarantee
that the simultaneous activation of two light signals will never occur, as it could
result in confusion and compromise the comprehension of crucial commands,
such as a stop command.

Fig. 2. Verification of Active Lamps Problem.

In the problem depicted in Fig. 2, only one light may be activated at each
position of the relay contact. The verification consists of a parallel composition
of the system to be checked with a monitor process SYSTEM LAMPS STATUS(),
which monitors the states of the selected lamps. When these components reach
a certain combination of states sent as a function parameter, the monitoring
process executes an error event, which is a special event that is not part of the
alphabet of the original system.

By employing CSP’s traces refinement, it is possible to verify if the modelled
system combined with the monitoring process executes the error event. In a case
where this event is detected, the refinement fails, indicating that the system
is not safe. The monitor of lamp status takes a map of lamp IDs as input,
and each output lamp is associated with a Boolean value (l status). The test
involves verifying whether the state represented in this map can be reached in
the instantiated System.

For instance, it is possible to verify if, in the example enclosed in Fig. 2, the
lamps "LAMP 1" and "LAMP 2" may be activated at the same time, using the
following assertion:

assert STOP [T= SYSTEM_LAMPS_STATUS((| LAMP_1_id => true,

LAMP_2_id => true|),

{B1_id, C1_ENDPOINT_UP_id})

48 P. E. R. Bezerra et al.

The first parameter of the assertion is the map containing the combination of
states whose existence is desired to be verified, and the second parameter is the
set of open components. The logic behind this verification is to check if dangerous
or undesirable combinations of lamps (associated with a specific combination of
open components) occur in the instantiated system.

5.4 Runtime Measurements

Comparing the previous [4] version of the specification and the current version
presented in this work, we noticed a subtle difference in the execution time of
each assertion. Therefore, the time spent on each assertion was measured three
times and the average was calculated and organised in Table 2.

Table 2. Runtime metrics comparison of diagram in Fig. 1.

Verification Previous (secs) Current (secs)

Deadlock 0.14 0.13

Divergence 0.15 0.11

Determinism 0.15 0.10

Ringbell Effect 0.13 0.13

Contact Status 0.13 0.16

Short Circuits 0.14 0.11

The verifications were performed using a Powershell in a computer with CPU
AMD Ryzen 5600 six core and twelve threads, clock base 3.5 GHz cache L3 32mb,
16 GB RAM DDR4 3200 MHz (2× 8 GB), and storage 1× 1Tb NVMe SSD. As
the previous version of our model could only handle small examples, the results
presented in this paper demonstrate a considerable improvement.

6 Case Study

In order to evaluate our model, an industrial case study is used: an adaptation of
a railway traffic light, as depicted in Fig. 3. The adaptation consisted in removing
alternating current electrical circuits and AC/DC transformers. The diagram
presented in this work is a simplified version of a scheme used by the SNCF,
the French National Railway Company. A similar version of this diagram has
already been published in an industrial work presented in [16]. In this section,
we explain the case study as well as the functioning of a railway traffic light as
detailed in [20].

In France, light signaling may by used in the railway context. In the sig-
nal panels, a green light (VL) indicates that normal traffic is allowed, in the
absence of any restrictive signs. The red light (S) indicates “path closed”.

CSP Specification and Verification of a Relay-Based RIS 49

Fig. 3. Example of Luminous Panel used by SNCF.

A yellow light (A) sends an alert message, through which the train operator is
alerted to stop before the next announced stop sign. A pair of yellow lights (R)
indicates a speed limit of the respective part of the tracks, recommending a max-
imum speed equal to 30 km/h. In order to control a traffic light, an electrical
circuit is used according to a relay-based logic. Our case study is an example of
how a set of components receive the system inputs and work together in order to
control a traffic light in a safe manner. In a relay diagram, the system inputs are
generally represented as a sequence of lines containing relays. The electrification
of these wires is controlled by a control panel or another system. The relays
depicted in these lines control the position of contacts in our model.

To understand the behaviour of our case study model, it is possible to analyse
the preconditions for each light to be activated (Fig. 3). The lights VL and A, for
instance, are activated when they are connected to a positive energy source and
the independent connection of a block (BKF1). Regarding VL, the precondition
for its activation is that the relays RPCS, RPA, CR and C(A) are electrified so
the contacts between this light and its energy sources are all closed. Similarly,
the activation of A is also controlled by the states of RPCS and RPA, however,
in this case, the activation of this light occurs when the former is electrified while
the latter is not. This is an interesting behaviour as it indicates that VL (the
green light) and A (the yellow light) are never activated at the same time. In
this context, in order to guarantee that two lights will not be activated at the
same time, some components states allow one light to be on while blocking
the activation of other lights. For instance, RPA guarantees that A and R will
never be activated at the same time and CR guarantees that same behaviour
for VL and R. To conclude the lights studied in our case study, the light S (red)
is activated when the relay RPCS is not electrified, being the only light that
activates when RPCS is not electrified.

Furthermore, there are other components whose behaviours must be taken
into consideration. The blocks BKF1 and BKF2 are responsible for delaying the
deactivation of the relays EX1 and EX2. These relays are responsible for activat-
ing an emergency light when the blocks lose energy for a long time, guaranteeing

50 P. E. R. Bezerra et al.

the system safety when the lights are not working properly. Other important
components are the capacitors. In this case study, these components are used to
support other components’ activation by providing energy to a relay for some
seconds. This time is enough for this relay to close a contact connection that
maintains the relay active after the capacitor discharge.

As an industrial case study, there is a concern about the scalability of the
example when analysed by a model checker. This concern is due to the number
of components and, as a consequence, the number of states and state transitions,
which can make it impossible to verify the whole circuit of the case study. For
instance, this occurred in the previous approach because of the strong use of
parallel composition between individual processes for each component and each
wire. Likewise, it also became impossible to model the flow of electrical current in
both directions, a factor that prevented the specification of capacitors’ behaviour.
In order to diminish this problem, an optimisation strategy was implemented to
enable the checking of larger diagrams: a trade-off was performed regarding the
compositionality of the provided semantics versus the analysis effort, keeping
parallelism only at the verification level.

7 Optimisation

In this work, we take advantage of the component-based nature of the system in
order to provide faster verification. The strategy consists of verifying different
parts of the specification separately instead of analysing the whole system at
once. As the time spent on model checking such relay-based RISs grows expo-
nentially as we add more components into the model, this proposed solution has
the potential of reducing the time spent on verification as we reduce the number
of components used in each analysis.

Given the circumstances, it is important to consider that this strategy is
viable for our model as each component can be treated as an input or output
of the system, allowing the communication/composition between different dia-
grams. For instance, as we divide a relay diagram, we may separate a relay from
its related contacts. Nonetheless, the link between these components does not
disappear. The relay can now be considered as an output in its sub-diagram,
while its related contact can be treated as an input.

In our case study, we divide the model according to the four different circuits,
of Fig. 3, that it contains: (1) the system inputs; (2) the circuit containing the
first capacitor; (3) the circuit containing the second capacitor; and (4) the circuit
containing the blocks and lamps. Then, we were able to perform the deadlock-
freedom, divergence-freedom, deterministic and short circuit verification, as well
as the Ringbell Effect Verification, the Contacts Status Verification and the
Active Lights Verification in order to guarantee the stability of the model and
certain configurations of components states are not achieved (red and green lights
on at the same time, for instance).

CSP Specification and Verification of a Relay-Based RIS 51

The Ringbell Effect Verification of each part of the diagram is done in two
steps. In the first step, for each part (1 to 4), we consider all possible statuses
of relays of other sub-diagrams (external relays) that have influence in the sub-
diagram under analysis. If the verification fails, we have the possibility of a
contact in the sub-diagram under analysis not reaching a stable state. In these
cases, we proceed to a second step of verification, considering the statuses of the
external relays under which the verification failed. The intention of the second
step of the verification is to confirm that this combination of statuses of the
external relays is possible in the whole diagram. If this is the case, the Ringbell
Effect is confirmed; otherwise, the Ringbell Effect found in the partitioned model
is a false positive because the combination of statuses of the external relays that
caused the problem is unachievable.

The verification of the sub-diagrams (1), (2), (3) and (4) took, on average,
63.57 s, 4.43 s, 4.40 s and 564.09 s, respectively. The runtime of all assertions in
each sub-diagram was measured three times. The measurement was made in the
same computational environment described in Sect. 5.4.

It is important to highlight that this optimisation methodology works for the
case study because three fractions of the system behave as input and one of them
behaves as output. There is no cycle of dependency where one part of the system
is fully functioning only according to the output of another part of the circuit.
In addition, it is necessary to develop a different approach to perform deadlock,
livelock and determinism analysis as a problem regarding these properties may
still arise when the model fragments are composed. We aim to address this
problem in future work.

8 Conclusion

This work proposes a formal methodology using CSP for analysing relay-based
Railway Interlocking Systems. CSP allows analysis of system state transition and
transient states between input and reaction, crucial for electrical RIS analysis.
In our approach, the behaviour of each component is invariable. This allows easy
system modelling through component instantiation and composition, simplifying
the process without compromising transparency for end-users.

The system specification is based on a single process for the system state
evolution, using sub-processes and functions for each component. The work pro-
poses assertions to analyse properties like deadlock-freedom, Ringbell Effect, and
safety issues. The model allows further verification with user-defined assertions.

Our model is evaluated using an industrial case study: a signal control logic
example. The details of the study and proposed specification are presented. An
analysis optimisation methodology is discussed, leveraging the component-based
division of the model into smaller parts for efficiency in the model checker.
The model is validated based on the specification of several different examples2,
modelling all possible components. These examples were all analysed through
model checking and animations.
2 https://www.dimap.ufrn.br/∼marcel/research/RIS/SBMF2023.

https://www.dimap.ufrn.br/~{}marcel/research/RIS/SBMF2023

52 P. E. R. Bezerra et al.

Future work includes extending the model for alternate current use, accom-
modating special components like lamp bulbs. This requires modelling new
energy sources, block adaptation, and adding components. Sequencing system
inputs and outputs aims to reduce state count and analysis time for systems with
numerous components. Additionally, we aim at providing a tool that automates
the generation of the model, integrates with the FDR4 API to accomplish the
model verification and returns to the end-user the results on a friendly inter-
face. Such transparency fosters the use of the approach as end-users will need
no knowledge on Formal Methods (CSP).

References

1. de Almeida Pereira, D.I.: Analysis and formal specification of relay-based railway
interlocking systems. Ph.D. thesis, Centrale Lille Institut (2020)

2. de Almeida Pereira, D.I., Debbech, S., Perin, M., Bon, P., Collart-Dutilleul, S.: For-
mal specification of environmental aspects of a railway interlocking system based
on a conceptual model. In: International Conference on Conceptual Modeling. pp.
338–351. Springer (2019)

3. de Almeida Pereira, D.I., Deharbe, D., Perin, M., Bon, P.: B-specification of relay-
based railway interlocking systems based on the propositional logic of the system
state evolution. In: International Conference on Reliability, Safety, and Security of
Railway Systems. pp. 242–258. Springer (2019)

4. de Almeida Pereira, D.I., Oliveira, M.V.M., Bezerra, P.E.R., Bon, P., Collart-
Dutilleul, S.: Csp specification and verification of relay-based railway interlocking
systems. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Com-
puting. pp. 97–106 (2022)

5. de Almeida Pereira, D.I., Oliveira, M.V.M., Conserva Filho, M.S., Da Rocha Silva,
S.R.: Bts: A tool for formal component-based development. In: International Con-
ference on Integrated Formal Methods. pp. 211–226. Springer (2017)

6. Amendola, A., et al.: NORMA: a tool for the analysis of relay-based railway inter-
locking systems. In: TACAS 2022. LNCS, vol. 13243, pp. 125–142. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99524-9 7

7. Bezerra, P.E.R.: CSP Specification and Verification of a Relay-Based Rail Inter-
locking System. Master’s thesis, Universidade Federal do Rio Grande do Norte
(2023)

8. Cavada, R., Cimatti, A., Mover, S., Sessa, M., Cadavero, G., Scaglione, G.: Anal-
ysis of relay interlocking systems via smt-based model checking of switched multi-
domain kirchhoff networks. In: 2018 Formal Methods in Computer Aided Design
(FMCAD). pp. 1–9. IEEE (2018)

9. Cenelec, E.: 50128-railway applications-communication, signalling and processing
systems-software for railway control and protection systems. Book EN 50128 (2012)

10. Ghosh, S., Das, A., Basak, N., Dasgupta, P., Katiyar, A.: Formal methods for
validation and test point prioritization in railway signaling logic. IEEE Trans.
Intell. Transp. Syst. 18(3), 678–689 (2016)

11. Hansen, K.M.: Formalising railway interlocking systems. In: Nordic Seminar on
Dependable Computing Systems. pp. 83–94. Citeseer (1998)

https://doi.org/10.1007/978-3-030-99524-9_7

CSP Specification and Verification of a Relay-Based RIS 53

12. Haxthausen, A.E., Kjær, A.A., Le Bliguet, M.: Formal development of a tool for
automated modelling and verification of relay interlocking systems. In: FM 2011:
Formal Methods: 17th International Symposium on Formal Methods, Limerick,
Ireland, June 20–24, 2011. Proceedings 17. pp. 118–132. Springer (2011)

13. Haxthausen, A.E., Le Bliguet, M., Kjær, A.A.: Modelling and verification of relay
interlocking systems. In: Monterey Workshop. pp. 141–153. Springer (2008)

14. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

15. James, P., et al.: Verification of solid state interlocking programs. In: Counsell,
S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 253–268. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-05032-4 19

16. Lecomte, T., et al.: Low cost high integrity platform. arXiv preprint:
arXiv:2005.07191 (2020)

17. Mirabadi, A., Yazdi, M.: Automatic generation and verification of railway inter-
locking control tables using fsm and nusmv. Transport Problems 4, 103–110 (2009)

18. Oliveira, M.V.M., Sampaio, A.C.A., Antonino, P.R.G., Ramos, R.T., Cavancalti,
A.L.C., Woodcock, J.C.P.: Compositional Analysis and Design of CML Models.
Tech. Rep. D24.1, COMPASS Deliverable (2013), http://www.compass-research.
eu/

19. Pasquale, T., Rosaria, E., Pietro, M., Antonio, O., Ferroviario, A.S.: Hazard anal-
ysis of complex distributed railway systems. In: 22nd International Symposium on
Reliable Distributed Systems, 2003. Proceedings. pp. 283–292. IEEE (2003)

20. Rétiveau, R.: La signalisation ferroviaire. Presse de l’école nationale des Ponts et
Chaussées (1987)

21. Roscoe, A.W.: Understanding concurrent systems. Springer Science & Business
Media (2010)

22. Scattergood, B., Armstrong, P.: Cspm: A reference manual. Tech, Rep (2011)
23. Schneider, S.: Concurrent and Real Time Systems: the CSP approach, vol. 1. Wiley-

Interscience (1999)
24. Schon, W., Larraufie, G., Moens, G., Pore, J.: Railway signalling and automation

volume 3 (2014)
25. She, X., Sha, Y., Chen, Q., Yang, J.: The application of graphic theory on railway

yard interlocking control system. In: 2007 IEEE Intelligent Vehicles Symposium.
pp. 883–887. IEEE (2007)

26. Sun, P., Collart-Dutilleul, S., Bon, P.: A model pattern of railway interlocking
system by petri nets. In: 2015 International Conference on Models and Technologies
for Intelligent Transportation Systems (MT-ITS). pp. 442–449. IEEE (2015)

27. Theeg, G.: Railway signalling & interlocking international compendium. PMC
Media House GmbH, BingenHamburg (2017)

28. Theeg, G., Vlasenko, S.: Railway signalling & interlocking. In: International Com-
pendium, vol. 448. Eurail-press Publ Hamburg (2009)

29. Thomas Gibson-Robinson, Philip Armstrong, A.R.: Failures Divergences Refine-
ment (FDR) Version 3 (2013), https://www.cs.ox.ac.uk/projects/fdr/

30. Van Eijk, P.: Verifying relay circuits using state machines. Logic Group Preprint
Series 173 (1997)

31. Wang, J., Wang, J., Roberts, C., Chen, L.: Parallel monitoring for the next gen-
eration of train control systems. IEEE Trans. Intell. Transp. Syst. 16(1), 330–338
(2014)

https://doi.org/10.1007/978-3-319-05032-4_19
http://arxiv.org/abs/2005.07191
http://www.compass-research.eu/
http://www.compass-research.eu/
https://www.cs.ox.ac.uk/projects/fdr/

54 P. E. R. Bezerra et al.

32. Winter, K.: Model checking railway interlocking systems. Australian Computer
Science Communications 24(1), 303–310 (2002)

33. Xiangxian, C., Yulin, H., et al.: A component-based topology model for railway
interlocking systems. Mathematics and Computers in Simulation 81(9), 1892–1900
(2011)

ULKB Logic: A HOL-Based Framework
for Reasoning over Knowledge Graphs

Guilherme Lima1(B), Alexandre Rademaker1,2, and Rosario Uceda-Sosa3

1 IBM Research Brazil, Rio de Janeiro, Brazil
guilherme.lima@ibm.com, alexrad@br.ibm.com

2 Getulio Vargas Foundation, School of Applied Mathematics, Rio de Janeiro, Brazil
3 IBM TJ Watson Research Center, Yorktown Heights, NY, USA

rosariou@us.ibm.com

Abstract. ULKB Logic is an open-source framework written in Python
for reasoning over knowledge graphs. It provides an interactive theorem
prover-like environment equipped with a higher-order language similar
to the one used by HOL Light. The main goal of ULKB Logic is to
ease the construction of applications that combine state-of-the-art com-
putational logic tools with the knowledge available in knowledge graphs,
such as Wikidata. To this end, the framework provides APIs for fetching
statements from SPARQL endpoints and operating over the constructed
theories using automated theorem provers and SMT solvers (such as the
E prover and Z3). In this paper, we describe the design and implemen-
tation of ULKB Logic, its interfaces for querying knowledge graphs and
calling external provers, and plans for further development.

Keywords: HOL · Python · SPARQL · Wikidata

1 Introduction

ULKB Logic is a higher-order logic-based framework for reasoning over knowl-
edge graphs. It is written in Python and released under the open-source Apache
2.0 license.1 ULKB Logic is a component of a larger system called ULKB (short
for Universal Logic Knowledge Base). Another component of the ULKB sys-
tem is the ULKB Graph, a core knowledge graph augmented by a federation of
commonsense and linguistic knowledge bases consolidated from Wikidata [30],
ConceptNet [26], VerbNet [24], and WordNet [18].

In this paper, we present the logical foundations and implementation of
ULKB Logic, and also its interfaces for fetching statements from knowledge
graphs and calling external provers. These interfaces are key for achieving ULKB
Logic’s main goal, which is twofold:

(i) provide a common language and interactive theorem prover-like environment
for representing commonsense and linguistic knowledge; and

1 https://github.com/IBM/ULKB.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Barbosa and Y. Zohar (Eds.): SBMF 2023, LNCS 14414, pp. 55–71, 2024.
https://doi.org/10.1007/978-3-031-49342-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49342-3_4&domain=pdf
https://github.com/IBM/ULKB
https://doi.org/10.1007/978-3-031-49342-3_4

56 G. Lima et al.

(ii) ease the use of state-of-the-art computational logic tools to reason over the
knowledge available in knowledge graphs.

ULKB Logic achieves (i) by adopting a dialect of higher-order logic similar
to that used by the HOL family [9] of provers, especially the HOL Light [12]
prover. We argue that this language (hereinafter referred to simply as HOL) is
expressive and practical enough to be used in domains other than the formal-
ization of mathematics and software verification. ULKB Logic can be seen as
an attempt to use HOL as a lingua franca for representing commonsense and
linguistic knowledge.

This brings us to (ii). Large quantities of commonsense and linguistic knowl-
edge are available in public knowledge graphs like Wikidata [30] and Word-
Net [18].2 It is unrealistic to expect that all this knowledge put together
could form a consistent, workable logical theory. But it is reasonable to think
that selected parts of Wikidata and WordNet could be used in a particular
application. Enabling this kind of application is the motivation behind ULKB
Logic’s interface for querying knowledge graphs. This interface is built on top
of SPARQL [32], the standard query language of the Semantic Web, and allows
logic formulas to be used as queries.

Another observation related to (ii) concerns the form of the statements stored
in popular commonsense and linguistic knowledge graphs. These are usually flat,
first-order statements which may involve numbers but rarely involve complex
data structures or even function applications. The restricted form of statements
means that robust computational logic tools, like the E prover [25] and the
Z3 SMT solver [19], can be readily used to reason over theories constructed
from these graphs. Enabling the use of such tools within an interactive HOL
environment is the motivation behind ULKB Logic’s external prover interface.

The rest of the paper is organized as follows. Section 2 presents the logi-
cal foundations and implementation of ULKB Logic. Section 3 describes ULKB
Logic’s interfaces for querying knowledge graphs and calling external provers.
Section 4 discusses some related work. Section 5 presents our conclusions and
future work.

2 Logical Foundations and Implementation

ULKB Logic is in essence a Python library, called ulkb, for constructing expres-
sions in typed, (classical) higher-order logic (HOL). This logic is the same vari-
ant of simple type theory [1,7] with polymorphic type variables used by HOL
Light [12,13]. In HOL, the logical connectives and quantifiers are defined in
terms of a more basic core language which we describe next.

2 Wikidata is a sister project of Wikipedia and one of the largest publicly available
knowledge graphs. WordNet is a comprehensive semantic lexicon for the English
language.

A HOL-Based Framework for Reasoning over Knowledge Graphs 57

2.1 Types

The types of ULKB Logic’s core language are defined as follows (the correspond-
ing Python functions are shown on the right):

τ ::= α TypeVariable(α)

| bool BoolType()

| (τ1 -> τ2) FunctionType(τ1, τ2)

| (κ τ1 τ2 . . . τn) TypeApplication(κ, τ1, τ2, . . ., τn)

A type τ is either a type variable α ranging over types; the boolean type bool
of logical propositions; a function type (τ1 -> τ2) of functions from τ1 to τ2; or
a type application (κ τ1 . . . τn) where κ is an n-ary type constructor.

Type constructors are the basic building blocks of types. They are created in
Python by the function TypeConstructor(κ, n) where κ is a name identifying
the type constructor and n is its arity. A type application builds a type by
applying a given type constructor to the required number of arguments (other
types). For example, the type int of integers can be defined as the type obtained
by applying the 0-ary type constructor int to zero arguments (line 3 below):3

1 >>> from ulkb import * # import ULKB Logic namespace

2 >>> int_tc = TypeConstructor('int', 0) # create the int type constr.

3 >>> int_ty = TypeApplication(int_tc) # create the int type

4 >>> print(int_ty) # ": *" means "is a type"

5 int : *

As another example, the type of lists of integers (list int) can be defined as
the type obtained by applying the unary type constructor list to the previously
constructed type int:

1 >>> list_tc = TypeConstructor('list', 1) # create the list type constr.

2 >>> list_int_ty = list_tc(int_ty) # create the (list int) type

3 >>> print(list_int_ty)

4 list int : *

At line 2, list_tc(int_ty) is a more compact way of writing the type applica-
tion TypeApplication(list_tc, int_ty).

Internally, the boolean type bool and the function type (τ1 -> τ2) are
defined as type applications of the builtin type constructors bool and fun whose
arities are zero and two, respectively. The syntax of type expressions is thus
reduced to two syntactic categories: type variables and type applications.

3 Type int is actually part of ULKB Logic’s standard prelude, which also includes
real and str.

58 G. Lima et al.

2.2 Terms

There are four different kinds of terms in ULKB Logic’s core language:

t ::= x Variable(x, τ)

| c Constant(c, τ)

| (t1 t2) Application(t1, t2)

| (fun x => t1) Abstraction(x, t1)

A term t is either a variable x, a constant c, the application of a term t1 to a
term t2, or the abstraction of a variable x over a term t1.

Constants and variables are simply names with associated types. What dis-
tinguishes them is that only variables can be bound by (λ-)abstractions. An
application (t1 t2) stands for the application of function t1 to argument t2. An
abstraction (fun x => t) stands for the anonymous function mapping x (the
function argument) to expression t (the function body).

Every term is associated with a single type, but a constant of a polymorphic
type gives rise to an infinite family of constant terms.4 We write “t : τ” to
mean that term t has type τ . The usual typing rules govern the association of
terms to types:

t1 : τ1 -> τ2 t2 : τ1
app

(t1 t2) : τ2

t : τ2
abs

(fun x : τ1 => t) : τ1 -> τ2

These rules are applied automatically by ULKB Logic at term construction time.
For example:

1 >>> a = TypeVariable('a') # create the type (a : *)

2 >>> k = Constant('k', a) # create the term (k : a)

3 >>> x = Variable('x', a) # create the term (x : a)

4 >>> id_ = Abstraction(x, x) # create the identity function

5 >>> print(id_)

6 (fun x => x) : a -> a

7 >>> print(Application(id_, k)) # create the app. of id_ to k

8 (fun x => x) k : a

At line 7, the application of the identity function (fun x => x) of type (a -> a)
to the constant (k : a) produces the term ((fun x => x) k) of type a.

There is a more compact way of writing abstractions and applications
in ULKB Logic. For example, instead of Abstraction(x, x) we can write:

4 The support for type variables distinguishes the variant of simple type theory
adopted here from Church’s original formulation [7]. The idea of type variables can
be traced back to LCF [10] and provides, within the object language, some of the
informal meta-theoretic notations used by Church.

A HOL-Based Framework for Reasoning over Knowledge Graphs 59

>>> id_ = (x >> x)

>>> print(id_)

(fun x => x) : a -> a

This works because ULKB Logic overrides Python’s right shift operator
(x >> t) to mean Abstraction(x, t) when x is a variable and t is a term.
Moreover, instead of writing Application(id_, k) for the application of id_
to k, we can apply id_ directly to k, as if it were a Python function:

>>> print(id_(k))

(fun x => x) k : a

2.3 Deductive System

The term obtained at the end of the last section ((fun x => x) k) is a redex,
i.e., a term that can be simplified by the β-reduction rule of the λ-calculus. In
ULKB Logic, β-reduction is embodied by the following inference rule:

BetaConv� ((fun x => t1) t2) = t1[x := t2]

where t1[x := t2] stands for the term obtained by substituting the free occurrences
of variable x in t1 by the term t2.

If we apply rule BetaConv to the redex ((fun x => x) k) we get:

>>> print(BetaConv(id_(k)))

|- (fun x => x) k = k

The resulting object is a sequent, i.e., a theorem of the logic. This particular
theorem asserts that the application ((fun x => x) k) is equal “=” to the con-
stant k, which is the result of substituting the free occurrences of x by k in the
body of (fun x => x).

In HOL-based provers, an inference rule is a function (in the metalanguage)
that builds a theorem from a given input. (BetaConv above takes a redex as
input and constructs a theorem stating that this redex equals the term obtained
by β-reducing it.) Soundness is enforced by adopting the so-called “LCF app-
roach” [10]: the privilege of creating theorems is reserved to a small set of primi-
tive rules which form the logical kernel of the system—everything else is defined
in terms of this kernel. As it happens, BetaConv is not a primitive rule of ULKB
Logic, but it is derived from them.

The primitive rules of ULKB Logic are shown in Fig. 1. These are essentially
the same primitive rules adopted by HOL Light [12], and are similar to those
for the internal logic of a topos [16]. These ten rules govern the deducibility of
sequents of the form Γ � p where p is a term of type bool and Γ is a (possibly
empty) set of terms of type bool.

60 G. Lima et al.

Fig. 1. Deductive system of ULKB Logic. In RuleAbs, x must not occur free in Γ.

One difference between ULKB Logic and HOL Light is that, in ULKB Logic,
α-conversion (renaming of bound variables) coincides with syntactical equality.
This is because ULKB Logic uses a locally nameless representation of terms [4,
17], i.e., one in which bound variables are represented by de Bruijn indices and
free variables are represented by names. As a consequence, in the metalanguage,
α-convertible terms are equal (no explicit conversion is needed):

>>> x, y = Variables('x', 'y', a)

>>> print((x >> x) == (y >> y))

True

2.4 Logical Constants

We now present the logical constants of ULKB Logic. We start with equality,
which occurs in most of the rules of Fig. 1. Equality is represented by the primi-
tive (undefined) constant (equal : α -> α -> bool), which is associated with
the infix notation “=”.5 Type variable α in the type of equal is instantiated by
ULKB Logic at the moment the constant is applied to some argument:

>>> print(equal(id_))

equal (fun x => x) : (a -> a) -> bool

5 The type of equal is actually (α -> (α -> bool)). ULKB Logic follows the stan-
dard practice of assuming “->” associates to the right and omits redundant paren-
theses accordingly. Similarly, application is assumed to associate to the left, i.e.,
(t1 t2 t3) means ((t1 t2) t3).

A HOL-Based Framework for Reasoning over Knowledge Graphs 61

That is, when we apply (equal : α -> α -> bool) to the identity function
(fun x => x : a -> a), the occurrences of α in the type of equal are instan-
tiated as (a -> a) and we get as a result of the application a term of type
(a -> a) -> bool. This term is the unary predicate that expects a function
from a to a as argument and asserts that it is equal to (fun x => x).

The next logical constant is (true : bool) which represents the true propo-
sition. Different from equal, the constant true is not a primitive one. It is
introduced by the following definition:

>>> show_definitions(offset=0, id='true')

4 definition (true : bool) := (fun p => p) = (fun p => p)

The call to show_definitions() lists the definitions installed in the current
theory matching the given criteria. The definition listed above introduces two
things: a new constant true of type bool and a new (non-creative) axiom

� true = ((fun p => p) = (fun p => p))

which allows us to eliminate the constant true. No less important is the fact
that this definition works, i.e., we can use it to prove true:

>>> def_true = lookup_definition('true')

>>> print(def_true)

|- true <-> (fun p => p) = (fun p => p)

>>> x = Variable('x', BoolType())

>>> print(RuleEqMP(RuleSym(def_true), RuleRefl(x >> x)))

|- true

(RuleSym is a derived rule that infers Γ � t2 = t1 from Γ � t1 = t2.)
The remaining logical connectives are introduced by similar definitions

accompanied by corresponding introduction and elimination theorems. We won’t
show the definitions here, but Table 1 gives an overview of the constants they
introduce.

The last column of Table 1 (Macro) lists Python functions that make the
application of the logical constants more convenient. Using these functions, for
example, instead of writing:

>>> x, y = Variables('x', 'y', a)

>>> print(forall(Abstraction(x, forall(Abstraction(y, equal(x, y))))))

(forall x y, x = y) : bool

We can write:

>>> x, y = Variables('x', 'y', a)

>>> print(Forall(x, y, Equal(x, y)))

(forall x y, x = y) : bool

62 G. Lima et al.

Table 1. Logical constants of ULKB Logic.

Notation Constant Macro

Equality t1 = t2 (equal : a -> a -> bool) Equal(t1, t2)

Truth true (true : bool) Truth()

Falsity false (false : bool) Falsity()

Negation not t (not : bool -> bool) Not(t)

Conjunction t1 and t2 (and : bool -> bool -> bool) And(t1, t2)

Disjunction t1 or t2 (or : bool -> bool -> bool) Or(t1, t2)

Implication t1 -> t2 (implies : bool -> bool -> bool) Implies(t1, t2)

Equivalence t1 <-> t2 (equal : bool -> bool -> bool) Iff(t1, t2)

Existential exists x, t (exists : (a -> bool) -> bool) Exists(x, t)

Unique exists1 x, t (exists1 : (a -> bool) -> bool) Exists1(x, t)

Universal forall x, t (forall : (a -> bool) -> bool) Forall(x, t)

2.5 Theories

In ULKB Logic, constant declarations, definitions, axioms, theorems, etc., are
kept in an object called theory. Multiple theories can coexist but at any given
time only one of them, called top, is active. By default, commands such as
show_definitions() and lookup_definition(), whose usage was illustrated
in the previous section, operate on the top theory.

Internally, a theory keeps a list of extensions, which can be of three kinds:

1. Assumptions, introducing new type constructors, constants, or axioms.
2. Assertions, introducing new definitions or theorems.
3. Notations, introducing new notations.

There are Python functions to install extensions of each kind into the
top theory. For example, new_constant() installs an undefined constant;
new_definition() installs a definition; new_axiom() installs an unproven the-
orem; new_theorem() install a (proven) theorem; etc.

A theory file is any Python script that modifies the top theory. By default, the
ulkb library loads a theory file containing the standard prelude, which installs
several basic extensions, such as the declarations of bool, fun, and equal, the
definitions of the logical constants, etc. The list of all extensions of the top theory
can be displayed using show_extensions().

3 Graph API and External Provers

ULKB Logic comes with a Graph API for querying knowledge graphs using logic
formulas. This API is implemented by the graph module of the ulkb library. In
this section, we use the Wikidata [30] knowledge graph to build an example
illustrating some of the functions of the graph module. Later, we expand the
example to illustrate ULKB Logic’s support for calling external provers.

A HOL-Based Framework for Reasoning over Knowledge Graphs 63

3.1 Graph API

The interface of ULKB Logic’s graph module consists of four main functions:

1. graph.ask(q), evaluates an ask query.
2. graph.select(q), evaluates a select query.
3. graph.construct(p, q), evaluates a construct query.
4. graph.paths(c1, c2), evaluates a path query.

In (1), (2), and (3), the parameters p and q are formulas (terms of type bool)
usually containing free variables. An ask query tests whether some instantia-
tion of q occurs in the knowledge graph, while a select query retrieves all such
instantiations. A construct query is similar to a select query but takes an extra
formula p as an argument. This formula p functions as a template to construct a
new formula for each instantiation of q occurring in the graph. (We will illustrate
the use of construct queries and discuss syntactical restrictions for p and q in a
moment.) Finally, a path query searches for paths in the graph connecting the
constants c1 and c2.

Moving to our example, we start by configuring the graph module to use
Wikidata’s public SPARQL endpoint:

>>> settings.graph.uri = 'https://query.wikidata.org/sparql'

>>> settings.graph.namespaces = { # Wikidata SPARQL prefixes

... 'wd': 'http://www.wikidata.org/entity/',

... 'wdt': 'http://www.wikidata.org/prop/direct/'}

Variable settings.graph.uri holds the address of the endpoint and variable
settings.graph.namespaces holds the prefix table which is used by graph
module to expand prefixes such as “wd:” and “wdt:” into full URLs.

We next declare our nonlogical vocabulary:

>>> # individuals (nodes)

>>> a = TypeVariable('a') # a : *

>>> actor = new_constant('wd:Q33999', a, label='actor')

>>> blond_hair = new_constant('wd:Q202466', a, label='blond hair')

>>> female = new_constant('wd:Q6581072', a, label='female')

>>> Porto_Alegre = new_constant('wd:Q40269', a, label='Porto Alegre')

>>> singer = new_constant('wd:Q177220', a, label='singer')

>>> # binary relations (edges)

>>> aab = FunctionType(a, a, BoolType()) # a -> a -> bool : *

>>> date_of_death = new_constant('wdt:P570', aab, label='date of death')

>>> gender = new_constant('wdt:P21', aab, label='gender')

>>> hair_color = new_constant('wdt:P1884', aab, label='hair color')

>>> occupation = new_constant('wdt:P106', aab, label='occupation')

>>> place_of_birth= new_constant('wdt:P19', aab, label='place of birth')

Each new_constant() call installs into the top theory a new constant with the
given type. Here constants of type a represent individuals (nodes), while those of

64 G. Lima et al.

type (a -> a -> bool) represent binary relations (edges) on individuals. The
label argument specifies a label to be used when displaying the constant.

With the vocabulary defined, we can now write a query as a logic formula:

1 >>> x, y = Variables('x', 'y', a)

2 >>> q = And(gender(x, female), place_of_birth(x, Porto_Alegre), # (i)

3 ... Or(occupation(x, singer), occupation(x, actor)), # (ii)

4 ... Not(hair_color(x, blond_hair)), # (iii)

5 ... Exists(y, date_of_death(x, y))) # (iv)

6 >>> print(q)

7 <gender> x <female> and <place of birth> x <Porto Alegre> and

(<occupation> x <singer> or <occupation> x <actor>) and not <hair

color> x <blond hair> and (exists y, <date of death> x y) : bool

↪→

↪→

This query matches the x’s such that (i) x is a female born in Porto Alegre (ii)
who is a singer or actress, (iii) has non-blond hair, and (iv) is no longer alive.
The “<” and “>” in the output (line 7) indicate that the constants’ labels are
being displayed (not their ids).

The code below uses graph.construct() to find ten instances of query q in
Wikidata and installs them into the theory as new axioms:

>>> for f in graph.construct(q, q, limit=10):

... new_axiom(f)

The call graph.construct() selects entities in the graph that satisfy the free
variables in its second argument (q) and substitutes these entities for the cor-
responding free variables in its first argument (here also q). The result is an
iterator of (grounded) formulas which is consumed by the for-loop.

Internally, graph.construct() translates the formula q into a SPARQL
CONSTRUCT [32] query, sends it to the SPARQL endpoint, and translates each
resulting graph back to a ULKB Logic formula, possibly creating new constants
in the process. At its core, SPARQL has the same expressive power as non-
recursive safe Datalog with negation [2]. ULKB Logic’s translation algorithm
borrows some ideas from Polleres and Wallner’s [21] and currently supports a
subset of the AND-UNION-OPT-FILTER fragment of SPARQL [22].

Back to our example, after running the for-loop, if we ask ULKB Logic to
list the axioms in the top theory:

>>> show_axioms()

one of the many axioms it outputs is the following:

32 axiom <gender> <Elis Regina> <female> and <place of birth> <Elis

Regina> <Porto Alegre> and (<occupation> <Elis Regina> <singer> or

<occupation> <Elis Regina> <actor>) and not <hair color> <Elis

Regina> <blond hair> and (exists y, <date of death> <Elis Regina> y)

↪→

↪→

↪→

A HOL-Based Framework for Reasoning over Knowledge Graphs 65

There are a couple of things to note here. First, because we didn’t pass a name
to the new_axiom() call in the for-loop, ULKB Logic creates an anonymous
axiom—internally, a new unique name (derived from the formula) is generated
for the axiom. Second, the Graph API automatically fetched and set the label
“Elis Regina” to the constant introduced by the instantiated query. It does so
by searching for standard labeling predicates, such as rdfs:label.6

3.2 External Provers

So far, we have used the Graph API to build a “theory” about female singers and
actresses of the past. We will now use external provers to derive theorems from
this theory. Note that external provers are not necessarily required for this task:
we could use ULKB Logic’s deductive system directly. For example, we could
apply the and-elimination rule to the axiom shown at the end of the previous
section to obtain a theorem stating that “Elis Regina’s place of birth is Porto
Alegre”. But our goal here is to illustrate the use of external provers.

The code below shows how we can use the Z3 SMT solver [19] to derive the
same fact:

>>> Elis_Regina = Constant('wd:Q465877', a, label='Elis Regina')

>>> print(RuleZ3(place_of_birth(Elis_Regina, Porto_Alegre)))

|- <place of birth> <Elis Regina> <Porto Alegre>

RuleZ3 is a special kind of inference rule. It takes as input a first-order formula p
and tries to use Z3 to prove the sequent Γ � p where Γ is the set of all (first-
order) axioms and theorems in the top theory. If Z3 is successful, as in the case
above, RuleZ3 returns a new theorem � p. Otherwise, if Z3 fails to prove Γ � p,
RuleZ3 raises an exception.

Here is what happens when we try to prove that Elis Regina was born in
Brazil (the country in which the city of Porto Alegre is located):

>>> Brazil = Constant('wd:Q155', a, label='Brazil')

>>> try:

... print(RuleZ3(place_of_birth(Elis_Regina, Brazil)))

... except RuleError as err:

... print(err)

RuleZ3: failed to prove '<place of birth> <Elis Regina> <Brazil> : bool'

RuleZ3 fails because there is no axiom linking the city of Porto Alegre to Brazil
in the top theory.

6 Predicate rdfs:label is part of the RDF Schema vocabulary (https://www.w3.org/
TR/rdf12-schema/); it is used to provide a human-readable name for a resource.

https://www.w3.org/TR/rdf12-schema/
https://www.w3.org/TR/rdf12-schema/

66 G. Lima et al.

One way to obtain the missing link between Porto Alegre and Brazil is by
loading statements about Porto Alegre from Wikidata:

>>> for f in graph.paths(Porto_Alegre, x, length=1, limit=200):

... new_axiom(f)

The call to graph.paths() selects at most 200 paths of length 1 connecting the
entity Porto_Alegre to some other entity (represented by the variable x). These
are some of the axioms we obtain (the 165th axiom is the one we are after):

>>> show_axioms(offset=163, limit=3)

163 axiom <shares border with> <Porto Alegre> <Viamo>

164 axiom <instance of> <Porto Alegre> <million city>

165 axiom <country> <Porto Alegre> <Brazil>

Let us now install an axiom relating the predicates place_of_birth and
country:

>>> country = Constant('wdt:P17', aab, label='country')

>>> x, y, z = Variables('x', 'y', 'z', a)

>>> ax = new_axiom(Forall(x, y, z, Implies(

... place_of_birth(x, y), country(y, z), place_of_birth(x, z))))

>>> print(ax)

|- forall x y z, <place of birth> x y -> <country> y z -> <place of

birth> x z↪→

This axiom states that if x was born in y and y’s country is z, then x was born
in z. Using this axiom and the 165th one shown in the previous block, RuleZ3
is now able to prove that Elis Regina was born in Brazil:

>>> thm = RuleZ3(place_of_birth(Elis_Regina, Brazil))

>>> print(new_theorem(thm))

|- <place of birth> <Elis Regina> <Brazil>

We use the new_theorem() call above to install the theorem produced by RuleZ3
into the top theory. This way, subsequent calls to RuleZ3 can reuse this fact,
instead of having to prove it again from scratch:

>>> show_theorems()

216 theorem <place of birth> <Elis Regina> <Brazil>

Besides RuleZ3, ULKB Logic also provides a RuleE which tries to use the
automated theorem prover E [25] to prove a given first-order formula from the top
theory. Currently, both RuleZ3 and RuleE are unsafe in the sense that they are
implemented as privileged rules which create theorems directly. We are working
on re-implementing these rules as derived rules which use Z3 and E as “hammers”
to guide proof construction using ULKB Logic’s deductive system.

A HOL-Based Framework for Reasoning over Knowledge Graphs 67

3.3 Encoders and Decoders

We conclude this section with a brief discussion of ULKB Logic’s codec sub-
system, which is used by both the Graph API and the subsystem responsible
for calling external provers. In ULKB Logic, the objects that comprise a logical
theory (types, terms, definitions, axioms, theorems, etc.), including the theory
itself, are instances of a Python class called syntactical object. The codec sub-
system implements a plugin architecture that deals with encoding and decoding
syntactical objects, i.e., converting them to and from various logical formats.

Table 2 shows the main formats currently supported by ULKB Logic. The
Graph API uses the sparql codec to convert formulas (terms of type bool) to
SPARQL queries; RuleZ3 uses the z3 codec to interface with the Z3 prover; and
RuleE uses the TPTP [27] codec to interface with the E prover. TPTP, short for
Thousands of Problems for Theorem Provers, is a popular library of problems
written in a well-defined family of logical languages. This family of languages is
supported by many automated theorem proving systems, including E [25] and
Vampire [23].

Table 2. Codecs currently available in ULKB Logic.

Format Encoder Decoder Description

ast obj.to_ast() cls.from_ast(data) abstract syntax tree

json obj.to_json() cls.from_json(data) JSON

ofn - cls.from_ofn(data) OWL functional notation

sparql obj.to_sparql() cls.from_sparql(data) SPARQL query

tptp obj.to_tptp() - TPTP theory

z3 obj.to_z3() cls.from_z3(data) Z3 Python object

4 Related Work

There are three classes of work related to ULKB Logic. First, there are general-
purpose, interactive theorem provers based on HOL. The most successful of
these in modern times are Isabelle/HOL [20] and HOL Light [12]. Both are
industrial-grade tools which have been used extensively for software verification
and formalization of mathematics. For instance, a combination of Isabelle/HOL
and HOL Light was used by Thomas Hales to formalize the proof of the Kepler
conjecture [11].

Isabelle/HOL and HOL Light are obviously in a different league than ULKB
Logic, but their success indicates we are building on solid ground. More modest
implementations of HOL are HolPy [33] (Python) and HaskHOL [3] (Haskell).
These are general purpose clones of HOL Light—the former comes with a library
of mathematics which is something ULKB Logic currently lacks.

The second class of work related to ULKB Logic consists of applications of
logic to knowledge graphs. The vast majority of these are automated reasoners

68 G. Lima et al.

for Semantic Web technologies. For example, description logics-based reasoners
for OWL [31] and Prolog-like engines for rule languages like SWRL [14]. As we
discussed at the end of the last section (in Table 2), ULKB Logic has support
for importing OWL documents—it does so by using a first-order translation
of OWL. We have plans to extend this support to SWRL documents and to
integrate rule engines as external reasoners.

The third class of related work is the smallest one. It concerns those works
that, like ULKB Logic, try to combine the world of higher order logic-based
interactive theorem provers and the world of knowledge graphs. There are very
few such works. For example, Tang et al. [28] discuss is an early attempt to
use Isabelle/HOL to formalize an ontology (DAML+OIL). And Dapoigny and
Barlatier [8] and Lai et al. [15] discuss the use of the Coq [29] proof assistant
to represent and query (dependently typed) knowledge graphs. None of these
works try to interface with actual knowledge graphs.

When we set out to implement the ULKB Logic, back in 2022, instead of
building a Python-based HOL prover from scratch, we considered the possibility
of reusing HOL Light or its Python clone HolPy. Some reasons led us to give
up on the idea though. Regarding HOL Light, although it has a simple code
base compared to other industrial-grade provers it is still pretty complex and,
more importantly, was designed with interactive proving and formalization of
mathematics in mind. There is no easy way to call or reuse the result of exter-
nal provers, let alone to query external knowledge graphs. Implementing such
functionalities directly in OCaml, the language in which HOL Light is written,
would be no simple task.

Regarding HolPy, at the time we considered using it, its code base did not
seem mature enough. There is still not much documentation about it (besides a
short report on arXiv.org [33]) and the project does not seem to be very active
(the last commit was on February 2023). Also, although HolPy is similar to
HOL Light, it adopts a different set of primitive rules and a slightly different
grammar for type expressions. It is unclear how these differences would impact
an eventual integration with HOL Light, which is in our plans. (One possibility
for such integration is to call OCaml directly from Python or to establish some
form of communication between the two sides, along the lines of [6].)

5 Conclusion

This paper presented ULKB Logic, an open-source HOL-based framework for
reasoning over knowledge graphs. We stated at the beginning that the goal of
ULKB Logic was to provide a common language and environment to enable
the use of state-of-the-art computational logic tools to reason over knowledge
graphs. Ultimately, we envision a system that combines the power and robustness
of modern higher-order logic-based proof assistants with the comprehensiveness
and flexibility of knowledge graphs, creating thus opportunities for advancements
in various domains, such as artificial intelligence, natural language processing,
and formal verification.

A HOL-Based Framework for Reasoning over Knowledge Graphs 69

Before we get there, however, there is plenty of work to be done. For example,
many derived rules which are common in HOL systems are still not implemented
in ULKB Logic. (So far, we have been focused on interfacing with knowledge
graphs and external reasoners.) Another thing we need to improve is ULKB
Logic’s support for Semantic Web technologies. As mentioned in Sect. 4, we
intend to add support for importing SWRL [14] documents and for interfacing
with rule- and description logics-based reasoners [5].

Related to that, we are currently working on enhancing the interaction
between ULKB Logic and provers that accept TPTP [27] as input. In particu-
lar, we are adding support for TPTP THF which will enable the integration of
automated provers which deal with HOL natively. We are also investigating the
possibility of interfacing directly with HOL Light, along the lines of [6].

Finally, improving ULKB Logic’s ability to deal with large theories is also on
our roadmap. One possibility is using a database or some other kind of specialized
storage system to maintain the extensions of a theory.

References

1. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof, 2nd edn. Kluwer, Dordrecht (2002). https://doi.org/10.1007/978-
94-015-9934-4

2. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A., et al.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88564-1 8

3. Austin, E.C.: HaskHOL: a Haskell hosted domain specific language for higher-
order logic theorem proving. Master’s thesis, Electrical Engineering and Computer
Science Faculty, University of Kansas (2011)

4. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineer-
ing formal metatheory. In: Proceedings of 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’08, pp. 3–15. ACM,
New York (2008). https://doi.org/10.1145/1328438.1328443

5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

6. Bansal, K., Loos, S., Rabe, M., Szegedy, C., Wilcox, S.: HOList: an environment for
machine learning of higher-order theorem proving. In: Proceedings of 36th Inter-
national Conference on Machine Learning, Long Beach, California, USA. PMLR
(2019)

7. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2),
56–68 (1940). https://doi.org/10.2307/2266170

8. Dapoigny, R., Barlatier, P.: Modeling ontological structures with type classes in
Coq. In: Pfeiffer, H.D., Ignatov, D.I., Poelmans, J., Gadiraju, N. (eds.) ICCS-
ConceptStruct 2013. LNCS (LNAI), vol. 7735, pp. 135–152. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35786-2 11

9. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Prov-
ing Environment for Higher Order Logic. Cambridge University Press, Cambridge
(1993)

https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1007/978-3-540-88564-1_8
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.2307/2266170
https://doi.org/10.1007/978-3-642-35786-2_11

70 G. Lima et al.

10. Gordon, M.J.C., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: A Mechanised
Logic of Computation. Springer, Berlin (1979). https://doi.org/10.1007/3-540-
09724-4

11. Hales, T., et al.: A formal proof of the Kepler conjecture. Forum Math. Pi 5, 1–29
(2017). https://doi.org/10.1017/fmp.2017.1

12. Harrison, J.: HOL Light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03359-9 4

13. Harrison, J.: HOL Light tutorial (2017). https://www.cl.cam.ac.uk/∼jrh13/hol-
light/tutorial.pdf

14. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: a semantic web rule language combining OWL and RuleML. W3C member
submission, W3C, May 2004. https://www.w3.org/Submission/SWRL/

15. Lai, Z., Ng, A.B., Wong, L.Z., See, S., Lin, S.: Dependently typed knowledge
graphs. Technical report. arXiv:2003.03785, arXiv.org (2020)

16. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cam-
bridge University Press, Cambridge (1986)

17. McBride, C., McKinna, J.: Functional pearl: I am not a number-I am a free variable.
In: Proceedings of 2004 ACM SIGPLAN Workshop on Haskell. Haskell ’04, pp. 1–9.
ACM, New York (2004). https://doi.org/10.1145/1017472.1017477

18. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995). https://doi.org/10.1145/219717.219748

19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45949-9

21. Polleres, A., Wallner, J.P.: On the relation between SPARQL 1.1 and answer set
programming. J. Appl. Non-Classical Logics 23(1–2), 159–212 (2013). https://doi.
org/10.1080/11663081.2013.798992

22. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009). https://doi.org/10.1145/1567274.
1567278

23. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI
Commun. 15(2–3), 91–110 (2002)

24. Schuler, K.K.: VerbNet: a broad-coverage, comprehensive verb lexicon. Ph.D. the-
sis, University of Pennsylvania, Philadelphia, PA, USA (2005)

25. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6 29

26. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of gen-
eral knowledge. In: Proceedings of 31st AAAI Conference on Artificial Intelligence
(AAAI-17), San Francisco, California, USA, 4–9 February 2017, pp. 4444–4451.
AAAI (2017)

27. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Automat.
Reason. 59(4), 483–502 (2017). https://doi.org/10.1007/s10817-017-9407-7

28. Tang, Y., Sun, J., Dong, J.S., Mahony, B.: Reasoning about semantic web in
Isabelle/HOL. In: Proceedings of 11th Asia-Pacific Software Engineering Confer-
ence, pp. 46–53 (2004). https://doi.org/10.1109/APSEC.2004.82

https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1017/fmp.2017.1
https://doi.org/10.1007/978-3-642-03359-9_4
https://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf
https://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf
https://www.w3.org/Submission/SWRL/
http://arxiv.org/abs/2003.03785
http://arxiv.org/abs/org
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1145/219717.219748
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1080/11663081.2013.798992
https://doi.org/10.1080/11663081.2013.798992
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1109/APSEC.2004.82

A HOL-Based Framework for Reasoning over Knowledge Graphs 71

29. The Coq Development Team: The Coq Reference Manual: Release 8.14.0, October
2021

30. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489

31. W3C-OWL-WG-2012: OWL 2 web ontology language document overview (second
edition). W3C recommendation, W3C, December 2012. http://www.w3.org/TR/
2012/REC-owl2-overview-20121211/

32. W3C SPARQL Working Group: SPARQL 1.1 overview. W3C recommendation,
W3C (2013). http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

33. Zhan, B.: HolPy: interactive theorem proving in Python. Technical report.
arXiv:1905.05970, arXiv.org (2020)

https://doi.org/10.1145/2629489
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://arxiv.org/abs/1905.05970
http://arxiv.org/abs/org

Testing

Language-Based Testing for Pushdown
Reactive Systems

Adilson Luiz Bonifacio(B)

Computing Department, University of Londrina, Londrina, Brazil
bonifacio@uel.br

Abstract. Testing reactive systems is important to guarantee a precise
and robust software development process. Pushdown reactive systems
are complex applications where the interaction with the environment is
regulated by a pushdown memory and, in general, can be specified by the
formalism of Input/Output Visibly Pushdown Labeled Transition Sys-
tem (IOVPTS). A conformance checking can then be applied to verify
whether an implementation is in compliance to a specification using an
appropriate conformance relation. In this work, we establish a confor-
mance relation based on Visibly Pushdown Languages (VPLs) to model
sets of desirable and undesirable behaviors of systems. Further, we show
that test suites with a complete fault coverage can be generated using
this new conformance relation for pushdown reactive systems.

Keywords: Pushdown reactive systems · Visibly Pushdown
Languages · Visual conformance checking

1 Introduction

Real-world systems, such as communication protocols, vehicle and aircraft con-
trol systems, and most of industrial control systems, are indeed reactive systems,
where the behavior is dictated by the interaction with the environment [9]. Reac-
tive hardware and software systems, in general, are critical applications that
require a precise and robust development process, particularly in the testing
activity, where high costs are associated to maintenance when the testing step
is poorly conducted during the system development process [12]. Model-based
testing [5,11] meets such requirement relying on formal methods, supporting
several models and testing approaches for reactive systems.

Reactive behaviors can be properly specified by the formalism of
Input/Output Labeled Transition Systems (IOLTSs) [8], and so a conformance
checking can be applied to verify whether an implementation is in compliance to
its respective specification [3,14]. In a more general setting, pushdown reactive
systems are complex applications where the interaction with the environment is
regulated by a pushdown memory through the communication channel. There-
fore aspects of conformance testing and test suite generation have been studied
using more expressive formalisms [6,7]. A more recent work has proposed a new
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Barbosa and Y. Zohar (Eds.): SBMF 2023, LNCS 14414, pp. 75–91, 2024.
https://doi.org/10.1007/978-3-031-49342-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49342-3_5&domain=pdf
http://orcid.org/0000-0002-7348-8508
https://doi.org/10.1007/978-3-031-49342-3_5

76 A. L. Bonifacio

conformance relation [4] for the Input/Output Visibly Pushdown Labeled Tran-
sition Systems (IOVPTSs), an extension of the IOLTS models, in the same spirit
of the classical ioco relation [13]. It is easy to see that these approaches can deal
with a more wide range of systems, where a stack memory is present.

However, conformance relations are specifically designed to capture faulty
behaviors when checking implementations against their respective specifications.
In this work we go further and address this problem using formal languages,
where particular sets of desirable and undesirable behaviors can be specified by
Visibly Pushdown Languages (VPLs) [1]. Hence, besides the classical confor-
mance testing, we can now test whether or not specific behaviors and properties
are present in the systems. Notice that such behaviors or properties are not
necessarily detected by using conformance ioco-like relations. Also, note that
the class of VPLs is strictly more powerful than the classical regular languages
treated by ioco relation and some extensions. Therefore we gain a wider range
of possibilities when specifying and testing pushdown reactive systems.

We then propose and prove the correctness of an efficient process that can
check conformance on a white-box testing scenario, where the tester previously
knows the structure of implementations under test (IUTs), and the participat-
ing models have an auxiliary stack memory, using a language-based approach,
instead of a specific conformance relation. That is we give a more general con-
formance relation based on VPLs, extending the previous approach [4], where
test suites with a complete fault coverage can be generated using a visual confor-
mance relation that can specify desirable and undesirable behaviors of pushdown
reactive systems.

The remainder of this paper is organized as follows. Section 2 presents VPTS
and IOVPTS models, the useful notion of contracted VPTSs, and their relation-
ship to VPAs. In Sect. 3 we define a visual conformance relation, give a fault
model over VPLs, and show how to obtain complete test suites, of polynomial
complexity, for checking this class of models. Section 4 gives concluding remarks.

2 Reactive Pushdown Models

In this section we introduce the formalism of Visibly Pushdown Labeled Transi-
tion System (VPTS), and its variation Input/Output VPTS, both models that
can properly specify pushdown reactive systems. We also discuss the notion of
contracted VPTSs, an important property that allows the model-based testing
process in this setting. But first, we start with some notation to ease the reference
when testing complex reactive systems.

2.1 Notation

Here we establish some basic notation. Let X and Y be sets we indicate by
X − Y = {z | z ∈ X and z �∈ Y } the set difference. Also, we assume that XY =
X ∪ Y and when Y = {y} is a singleton we may write Xy for X{y}. If X is a
finite set, the size of X will be indicated by |X|.

Language-Based Testing for Pushdown Reactive Systems 77

An alphabet is any non-empty set of symbols. Let A be an alphabet, a word
over A is any finite sequence σ = x1 . . . xn of symbols in A, that is, n ≥ 0
and xi ∈ A, for all i = 1, 2, . . . , n. When n = 0, σ is the empty sequence, also
indicated by ε. The set of all finite sequences, or words, over A is denoted by
A�, and the set of all nonempty finite words over A is indicated by A+. When
we write x1x2 . . . xn ∈ A�, it is implicitly assumed that n ≥ 0 and that xi ∈ A,
1 ≤ i ≤ n, unless explicitly noted otherwise. The length of a word α over A is
indicated by |α|. Hence, |ε| = 0.

Further, let σ = σ1 . . . σn and ρ = ρ1 . . . ρm be two words over A. The
concatenation of σ and ρ, indicated by σρ, is the word σ1 . . . σnρ1 . . . ρm. Clearly,
|σρ| = |σ| + |ρ|. A language G over A is any set G ⊆ A� of words over A. Also
let G1, G2 ⊆ A� be languages over A. The product of G1 and G2, indicated by
G1G2, is the language {σρ |σ ∈ G1, ρ ∈ G2}. If G ⊆ A� is a language over A,
then its complement is the language G = A� − G.

We also use the notion of morphism to treat alphabets. So let A, B be
alphabets. A homomorphism, or just a morphism, from A to B is any function
h : A → B�. A morphism h : A → B� can be extended in a natural way to a
function ̂h : A� → B�, thus either ̂h(σ) = ε if σ = ε or ̂h(σ) = h(a)̂h(ρ) if σ = aρ
with a ∈ A. In order to avoid cluttering the notation, we may write h instead
of ̂h, when no confusion can arise. When a ∈ A, we define the simple morphism
ha : A → A−{a} by letting ha(a) = ε, and ha(x) = x when x �= a. Hence, ha(σ)
erases all occurrences of a in the word σ.

2.2 The Formalism of VPTS

Visibly Pushdown Labeled Transition System (VPTS) is an appropriate for-
malism with a potentially infinite memory that allow us to model pushdown
reactive systems. VPTS models can specify the asynchronous exchange of mes-
sages between a system and the environment, where the outputs do not have to
occur synchronously with inputs, i.e., output messages are generated as sepa-
rated events. Next we formally define VPTS models.

Definition 1. A Visibly Pushdown Labeled Transition System (VPTS) over an
input alphabet L is a tuple S = 〈S, Sin, L, Γ, T 〉, where:

– S is a finite set of states or locations;
– Sin ⊆ S is the set of initial states;
– There is a special symbol ς /∈ L, the internal action symbol;
– Γ is a set of stack symbols. There is a special symbol ⊥ �∈ Γ , the bottom-of-

stack symbol;
– T = Tc ∪ Tr ∪ Ti, where Tc ⊆ S × Lc × Γ × S, Tr ⊆ S × Lr × Γ⊥ × S, and

Ti ⊆ S × (Li ∪ {ς}) × {�} × S, where � �∈ Γ⊥ is a place-holder symbol.

Assume that t = (p, x, Z, q) is a transition of T . We call by push-transition
when t ∈ Tc and the meaning is reading an input x when moving from the state p
to q in S, and pushes Z onto the stack. We also call pop-transition if t ∈ Tr, and
in this case, the intended meaning is that, changing S from p to q, x ∈ Lr is read

78 A. L. Bonifacio

in S, and pops Z from the stack. Notice that a pop move can be taken when the
stack is empty, leaving the stack unchanged, if the pop symbol is ⊥. Finally, we
call by a simple-transition when t ∈ Ti and x ∈ Li, and by an internal-transition
when t ∈ Ti and x = ς. A simple-transition t that reads x when moving from p
to q does not change the stack. Likewise an internal-transition does not change
the stack, but further does not read any symbol from the input.

Next we give the notion of configurations and precisely define elementary
moves in VPTS models.

Definition 2. Let S = 〈S, Sin, L, Γ, T 〉 be a VPTS. A configuration of S is a
pair (p, α) ∈ S × (Γ �{⊥}). When p ∈ Sin and α = ⊥, we say that (p, α) is
an initial configuration of S. The set of all configurations of S is indicated by
CS. Let (q, α) ∈ CS, and let 	 ∈ Lς . Then we write (p, α) �→ (q, β) if there is a
transition (p, 	, Z, q) ∈ T , and either:

1. 	 ∈ Lc, and β = Zα;
2. 	 ∈ Lr, and either (i) Z �= ⊥ and α = Zβ, or (ii) Z = α = β = ⊥;
3. 	 ∈ Li ∪ {ς} and α = β.

Then an elementary move of S is represented by (p, α) �→ (q, β) when the
transition (p, 	, Z, q) ∈ T is used in this move. Further, after any elementary
move (p, α) �→ (q, β), (q, β) ∈ CS is also a configuration of S.

From now on, when graphically depicting VPTSs, we will represent a push-
transition (s, x, Z, q) by x/Z+ next to the corresponding arc from s to q in the
figure. Similarly, a pop-transition (s, x, Z, q) will be indicated by the label x/Z−
next to the arc from s to q. Simple- or internal-transitions over (s, x, �, q) will be
indicated by the label x next to the corresponding arc.

Example 3. Figure 1 represents a VPTS S1 where the set of states is S =
{s0, s1}, Sin = {s0}. Also, we have Lc = {b}, Lr = {c, t}, Li = {}, and Γ =
{Z}. We have a push-transition (s0, b, Z, s0), the pop-transitions (s0, c, Z, s1),
(s0, t, Z, s1), (s1, c, Z, s1), (s1, t, Z, s1), and the internal-transition (s1, ς, �, s0).
Intuitively, the behavior of S says that we can have the symbol b as many as we
want, while pushing the symbol Z on the stack. Next at least one correspond-
ing c or t must occur, and then one symbol Z must be popped from the stack,

s0 s1
c/Z−
t/Z−

b/Z+ c/Z−, t/Z−

ς

Fig. 1. A VPTS S1, with Lc = {b}, Lr = {c, t}, Li = ∅.

Language-Based Testing for Pushdown Reactive Systems 79

or several symbols c and t can occur while the stack memory is not empty. After
that, this process can be restarted moving S back to state s0, over the internal
label ς.

When a sequence of events is induced over a VPTS model we can observe
its behavior. That is, we can obtain the semantics of a VPTS by its traces, or
behaviors.

Definition 4. Let S = 〈S, Sin, L, Γ, T 〉 be a VPTS and let (p, α), (q, β) ∈ CS .

1. Let σ = l1, . . . , ln be a word in L�
ς . We say that σ is a trace from (p, α)

to (q, β) if there are configurations (ri, αi) ∈ CS , 0 ≤ i ≤ n, such that
(ri−1, αi−1)

li→ (ri, αi), 1 ≤ i ≤ n, with (r0, α0) = (p, α) and (rn, αn) = (q, β).
2. Let σ ∈ L�. We say that σ is an observable trace from (p, α) to (q, β) in S if

there is a trace μ from (p, α) to (q, β) in S such that σ = hς(μ).

In both cases we also say that the trace starts at (p, α) and ends at (q, β),
and we say that the configuration (q, β) is reachable from (p, α). We also say
that (q, β) is reachable in S if it is reachable from an initial configuration of S.

Note that moves with internal symbol ς can occur in a trace, but when ς-
labels are removed we just say that it is an observable trace. If σ is a trace from
(p, α) to (q, β), we can also write (p, α) σ→ (q, β). We may also write (p, α) σ→,
(p, α) → (q, β), and (p, α) → when (q, β) ∈ CS, σ ∈ L∗

ς , or both, respectively, are
not important. Also we write (p, α) σ→

S
(q, β) to emphasize that the underlying

VPTS is S. If σ is an observable trace from (p, α) to (q, β), we may also write
(p, α) σ⇒ (q, β), with similar shorthand notation also carrying over to the ⇒
relation.

We call the traces of (p, α), or the traces starting at (p, α), for all traces
starting at a given configuration (p, α). Now we can define the semantics of a
VPTS by all traces starting at an initial configuration.

Definition 5. Let S = 〈S, Sin, L, Γ, T 〉 be a VPTS and let (p, α) ∈ CS.

1. The set of traces of (p, α) is tr(p, α) = {σ | (p, α) σ→}. The set of observable
traces of (p, α) is otr(p, α) = {σ | (p, α) σ⇒}.

2. The semantics of S is
⋃

q∈Sin

tr(q,⊥), and the observable semantics of S is
⋃

q∈Sin

otr(q,⊥).

We will also indicate the semantics and, respectively, the observable seman-
tics, of S by tr(S) and otr(S). If (s, α) ⇒ (p, β) then we also have (s, α) → (p, β)
in S, for all (s, α), (p, β) ∈ CS. Moreover, otr(S) = hς(tr(S)) and when S has no
internal transitions we already have otr(S) = tr(S).

We also note that ς-labeled self-loops can also be eliminated in a VPTS since
they play no role when considering any system behaviors. So given a VPTS
S = 〈S, Sin, L, Γ, T 〉, for any s ∈ S we postulate that (s0,⊥) σ→ (s, α⊥), for some

80 A. L. Bonifacio

α ∈ Γ �, σ ∈ L�
ς , and s0 ∈ Sin. Further, if (s, ς, �, q) ∈ T then s �= q. In general, ς-

moves indicate that a VPTS can autonomously move along ς-transitions, without
consuming any input symbol. But in some cases such moves may be undesirable,
or simply we might want no observable behavior leading to two distinct states.
Then we need the notion of determinism in VPTS models.

Definition 6. Let S = 〈S, Sin, L, Γ, T 〉 be a VPTS. We say that S is determin-
istic if, for all s, p ∈ Sin, s1, s2 ∈ S, β1, β2 ∈ Γ �, and σ ∈ L�, we have that
(s,⊥) σ⇒ (s1, β1⊥) and (p,⊥) σ⇒ (s2, β2⊥) imply s1 = s2 and β1 = β2.

2.3 Contracted VPTSs

The syntactic description of VPTSs can also be reduced, without losing any
semantic capability, by removing states that are not reachable from any initial
state. Moreover, we can remove transitions in a VPTS model that cannot be
exercised by some trace. Since every transition, except possibly for pop transi-
tions, can always be taken, we concentrate on the pop transitions.

Definition 7. We say that a VPTS S = 〈S, Sin, L, Γ, T 〉 is contracted if for
every transition (p, b, Z, r) ∈ T with b ∈ Lr, there are some s0 ∈ Sin, α ∈ Γ �

and σ ∈ L� such that (s0,⊥) σ⇒ (p, α⊥), where either (i) α = Zβ for some
β ∈ Γ �, or (ii) α = ε and Z = ⊥.

Given a VPTS, Proposition 8 can then obtain a contracted VPTS. The idea
is to construct a context free grammar (CFG) based on the given VPTS, in
such a way that the CFG generates strings where terminals represent VPTS
transitions. The productions of the CFG will indicate the set of transitions that
can be effectively used in a trace over the VPTS.

Proposition 8. Let S = 〈S, Sin, L, Γ, T 〉 be a VPTS. We can effectively con-
struct a contracted VPTS Q = 〈Q,Qin, L, Γ,R〉 with |Q| ≤ |S|, and such that
tr(S) = tr(Q). Moreover, if S is deterministic, then Q is also deterministic.

Proof. First we construct a context-free grammar G whose terminals represent
transitions of S. Non-terminals are of the form [s, Z, p] where s, p ∈ S are states
of S and Z ∈ Γ⊥ is a stack symbol. The main idea can be grasped as follows.
Let ti = [si, ai, Zi, pi], 1 ≤ i ≤ n be transitions of S and let σ = a1a2 · · · an

be an input string. If G has a leftmost derivation it must be the case that
S, starting at the initial configuration (s0,⊥), can move along the transitions
t1, . . . , tn., in that order, to reach the configuration (r1,W1W2 · · · Wm⊥). That
is, (s0,⊥) σ→ (r1,W1W2 · · · Wm⊥), where σ = a1a2 · · · an. And vice-versa. We
then show that leftmost derivations of G faithfully simulate traces of S and,
conversely, that any trace of S can be simulated by a leftmost derivation of
G. That done, we can easily extract from G a contracted VPTS Q. A simple
argument then proves that L(Q) = tr(S).

[s0,⊥,−]
�

↪→ t1 · · · tn[r1,W1, r2][r2,W2, r3] · · · [rm,Wm, rm+1][rm+1,⊥,−]

The complete construction and the detailed proof can be found in [2].

Language-Based Testing for Pushdown Reactive Systems 81

2.4 Relating VPTS and VPA Models

Our testing approach is defined for VPTS models, but using their associated
VPAs. A Visibly Pushdown Automaton (VPA) [1] is, basically, a Pushdown
Automaton (PDA) [10], with a transition relation over an alphabet and a push-
down stack (or just a stack, for short) associated to it. Any alphabet L is always
partitioned into three disjoint subsets L = Lc∪Lr∪Li. Elements in the set Lc are
“call symbols”, or “push symbols”, and specify push actions on the stack. Ele-
ments in Lr are “return symbols”, or “pop symbols”, and indicate pop actions,
and in Li we find “simple symbols”, that do not change the stack.

The next definition is a slight extension of the similar notion appearing in [1].

Definition 9. A Visibly Pushdown Automaton (VPA) [1] over a finite input
alphabet A is a tuple A = 〈S, Sin, A, Γ, ρ, F 〉, where:

– A = Ac ∪ Ar ∪ Ai and Ac, Ar, Ai are pairwise disjoint;
– S is a finite set of states;
– Sin ⊆ S is set of initial states;
– Γ is a finite stack alphabet, with ⊥ �∈ Γ the initial stack symbol;
– The transition relation is ρ = ρc ∪ ρr ∪ ρi, where ρc ⊆ S × Ac × Γ × S,

ρr ⊆ S × Ar × Γ⊥ × S, and ρi ⊆ S × (Ai ∪ {ε}) × {�} × S, where � �∈ Γ⊥ is a
place-holder symbol;

– F ⊆ S is the set of final states.

A transition (p, ε, �, q) ∈ ρi is called an ε-move of A. A configuration of A is
any triple (p, σ, α) ∈ S × A� × (Γ �{⊥}), and the set of all configurations of A it
is indicated by CA.

The semantics of a VPA is the language comprised by all input strings it
accepts, and such language is said to be a Visibly Pushdown Language (VPL) [2].
That is, let A be an alphabet and let G ⊆ A� be a language over A, then G is a
Visibly Pushdown Language if there is a VPA A such that L(A) = G.

In the context of this work, we need the notion of non-blocking VPAs and
also the notion of determinism for VPAs. Similarly to VPTS models, we say
that a VPA is deterministic if there is at most one computation for a given
input string [1,2]. Further, a non-blocking VPA can always read any string of
input symbols when started at any state and with any stack configuration.

Next we show that any VPTS S gives rise to an associated VPA SA in a
natural way. We convert any ς-transition of S into a ε-transition of SA. The
set of final states of SA is just the set of all locations of S. Conversely, we can
associate a VPA to any given VPTS, provided that all states in the given VPA
are final states.

Definition 10. We have the following two associations:

1. Let S = 〈S, Sin, L, Γ, T 〉 be a VPTS. The VPA induced by S is AS =
〈S, Sin, L, Γ, ρ, S〉 where, for all p, q ∈ S, Z ∈ Γ , 	 ∈ L, we have:
(a) (p, 	, Z, q) ∈ ρ if and only if (p, 	, Z, q) ∈ T ;
(b) (p, ε, �, q) ∈ ρ if and only if (p, ς, �, q) ∈ T .

82 A. L. Bonifacio

2. Let A = 〈S, Sin, L, Γ, ρ, S〉 be a VPA. The VPTS induced by A is SA =
〈S, Sin, L, Γ, T 〉 where:
(a) (p, 	, Z, q) ∈ T if and only if (p, 	, Z, q) ∈ ρ;
(b) (p, ς, �, q) ∈ T if and only if (p, ε, �, q) ∈ ρ.

The relationship of a VPTS and its associated VPA is precisely given in [2].
Proposition 11 then establishes that the observable semantics of a VPTS S

is just the language accepted by its associated VPA AS . Further, it also says
that otr(S) is a visibly pushdown language, and that for any given VPTS S, we
can easily construct a VPA A with L(A) = otr(S).

Proposition 11. Let S be a VPTS and AS the VPA induced by S. Then
otr(S) = L(AS) and, further, if S is deterministic and contracted then AS is
also deterministic. Conversely, let A be a VPA and SA the VPTS induced by A.
Then L(A) = otr(SA) and, also, if A is deterministic and has no ε-moves, then
SA is deterministic.

Proof. The detailed proof can be found in [2].

Now we look at some closure properties involving VPLs [1,2]. The next propo-
sition establishes these properties.

Proposition 12 ([2]). Let S and Q be two VPAs over an alphabet A, with n
and m states, respectively, then we can construct

1. a VPA P over A with mn states that can accept L(P) = L(S)∩L(Q). Moreover,
if S and Q are deterministic, then P is also deterministic.

2. a non-blocking VPA P over A with at most (n + 1)(m + 1) states and such
that L(P) = L(S) ∪ L(Q). Moreover, if S and Q are deterministic, then P is
also deterministic and has no ε-moves.

3. a non-blocking and deterministic VPA P over A with no ε-moves, with n + 1
states, and such that L(P) = L(S) = Σ� − L(S).

Proof. All constructions and detailed proofs can be found in [2].

2.5 Input/Output VPTSs

The VPTS formalism can be used to model systems with a potentially infinite
memory and with a capacity to interact asynchronously with an external envi-
ronment. In such situations, we may want to treat some action labels as symbols
that the VPTS “receives” from the environment and some other action labels
as symbols that the VPTS “sends back” to the environment. The next VPTS
variation differentiates between input action symbols and output action symbols.

Definition 13. An Input/Output Visibly Pushdown Transition System
(IOVPTS) over an alphabet L is a tuple I = 〈S, Sin, LI , LU , Γ, T 〉, where

– LI is a finite set of input actions, or input labels;
– LU is a finite set of output actions, or output labels;

Language-Based Testing for Pushdown Reactive Systems 83

– LI ∩ LU = ∅, and L = LI ∪ LU is the set of actions or labels; and
– 〈S, Sin, L, Γ, T 〉 is an underlying VPTS over L, which is associated to I.

We denote the class of all IOVPTSs with input alphabet LI and output
alphabet LU by IOVP(LI , LU). Notice that in any reference to an IOVPTS
model we can substitute it by its underlying VPTS. So if S is an IOVPTS with
Q as its underlying VPTS, then the VPA induced by S is the VPA induced by Q,
according to Definition 10. Likewise for any formal assertion involving IOVPTSs.

Next we define the semantics of an IOVPTS as the set of its observable traces,
that is, observable traces of its underlying VPTS.

Definition 14. Let I = 〈S, Sin, LI , LU , Γ, T 〉 be an IOVPTS. The semantics of
I is the set otr(I) = otr(SI), where SI is the underlying VPTS associated to I.

Also, when referring an IOVPTS I, the notation →
I

and ⇒
I

are to be understood

as →
S

and ⇒
S

, respectively, where S is the underlying VPTS associated to I.

Example 15. Recall Example 3. Now, Fig. 1 represents an IOVPTS that des-
cribes a machine that dispenses drinks. Again we have Lc = {b}, Lr = {c, t} and
Li = ∅, with the initial state s0, but here we also have LI = {b} and LU = {c, t}.
In this context, symbol b stands for a button where an user can press when asking
for a drink, a cup of coffee or a cup of tea, represented by the labels c and t,
respectively. The user can hit the b button while the machine stays at state s0.
Each time the b button is activated, the machine pushes a symbol Z on the stack,
so that the stack is used to count how many times the b button was hit by the
user.

At any instant, after the user has activated the b button at least once, the
machine moves to state s1 and starts dispensing either coffee or tea, indicated
by the c and t labels. It decrements the stack each time a drink is dispensed, so
that it will never deliver more drinks than the user asked for.

A move back to state s0, over the internal label ς, may interrupt the delivery of
drinks, so that the user can, possibly, receive less drinks than originally asked for.
In this case, when the next user will operate the machine with residual number
of Z symbols in the stack he could, eventually collect more drinks than asked
for. But the machine will never dispense more drinks than the total number of
solicitations. An alternative could be to use one more state s2 to interrupt the
transition from s1 to s0 and install a self-loop at s2 that empties the stack.

3 Visibly Pushdown Conformance Checking

In this section we define a more general conformance relation based on Visibly
Pushdown Languages [1], a proper subset of the more general class of context-
free languages [10], but a proper superset of the regular languages. Here we define
fault models for VPTSs using this more general relation and study the notion of
test suite completeness under this setting. In sequel we give a method to check
conformance between an IUT and its specification, both given by VPTS models,
and using the more general conformance relation over VPLs.

84 A. L. Bonifacio

3.1 A General Conformance Relation for VPTS Models

The more general conformance relation is defined on subsets of words specified
by a tester. Informally, consider a language D, the set of “desirable” behaviors,
and a language F , the set of “forbidden” behaviors, of a system. If we have a
specification VPTS S and an implementation VPTS I we want to say that I con-
forms to S according to (D,F) if no undesired behavior in F that is observable
in I is specified in S, and all desired behaviors in D that are observable in I are
specified in S. This leads to the following definition.

Definition 16. Let L be an alphabet, and let D,F ⊆ L�. Let S and I be VPTSs
over L. We say that I (D,F)-visibly conforms to S, written IvconfD,F S, if and
only if

1. σ ∈ otr(I) ∩ F , then σ �∈ otr(S);
2. σ ∈ otr(I) ∩ D, then σ ∈ otr(S).

Notice that this notion of conformance relation is more general in the sense
that it includes classical conformance relations such as ioco [3,14] and ioco-
like [4,6,7] relations. Suppose an IUT, for instance, that ioco(-like) conforms
to its specification following the classical relations. When we set the sets D and
F , even if the IUT conforms to the specification according to a specific relation,
we can still detect a fault behavior specified in F , or we can confirm if a desirable
behavior given by D is present in the IUT.

We note an equivalent way of expressing these conditions that may also be
useful. Recall that the complement of otr(S) is otr(S) = L� − otr(S).

Proposition 17. Let S and I be VPTSs over L and let D,F ⊆ L�. Then
IvconfD,F S if and only if otr(I) ∩ [

(D ∩ otr(S)) ∪ (F ∩ otr(S))
]

= ∅.
Proof. From Definition 16 we readily get IvconfD,F S if and only if otr(I)∩F ∩
otr(S) = ∅ and otr(I) ∩ D ∩ otr(S) = ∅. And this holds if and only if

∅ =
[
otr(I)∩F ∩ otr(S)

]∪ [
otr(I)∩D∩ otr(S)

]
= otr(I)∩ [

(D∩ otr(S))∪ (F ∩ otr(S))
]
,

as desired.

Example 18. Let S be an IOVPTS specification depicted in Fig. 2a, where LI =
{a, b}, LU = {x}, Lc = {a}, Lr = {b, x} and Li = ∅. Also, Sin = {s0} and
Γ = {A}.

Take the languages D = {anbnx : n ≥ 1} and F = {anbn+1 : n ≥ 0}. This
says that any behavior consisting of a block of as followed by an equal length
block of bs and terminating by an x, is a desirable behavior. Any block of as
followed by a lengthier block of bs is undesirable. We want to check whether
the implementation I conforms to the specification S with respect to the sets of
behaviors described by D and F . That is, we want to check whether IvconfD,F S.

First, we obtain the VPA S depicted in Fig. 3a. Since S is deterministic and
all its states are final according to Definition 10, we just add a new state err

Language-Based Testing for Pushdown Reactive Systems 85

Fig. 2. IOVPTS models S and I.

Fig. 3. VPA models S and D.

to S, and for any missing transitions in S we add corresponding transitions
ending at err in S. It is not hard to see that the language accepted by S is
otr(S). Again, it is easy to see from Fig. 2a that anbn+1 �∈ otr(S), for all n ≥ 0.
So, F ∩ otr(S) = ∅. Also we see that the VPA D, depicted at Fig. 3b, accepts
the language D and that D ⊆ otr(S). Then the VPA D accepts the language
T = D ∩ otr(S) = (D ∩ otr(S)) ∪ (F ∩ otr(S)).

Now let I be the implementation depicted in Fig. 2b. A simple inspection
also shows that aabbx is accepted by I, and we also have aabbx ∈ D. Hence,
otr(I)∩D∩otr(S) = otr(I)∩T �= ∅, and Proposition 17 implies that IvconfD,F S

does not hold.
On the other hand, if we assume an implementation I that is isomorphic to

S, I would not have the transition q2
x/⊥→ q1 and then aabbx would not be an

observable behavior of I. Actually, in this case, otr(I) ∩ D ∩ otr(S) = ∅. So that

86 A. L. Bonifacio

now otr(I) ∩ [

(D ∩ otr(S)) ∪ (F ∩ otr(S))
]

= ∅, and therefore IvconfD,F S, as
expected.

3.2 Fault Model Over Visibly Pushdown Languages

When testing pushdown reactive systems we have noticed that not only their
natural reactive behavior with the environment must be considered but also we
need to deal with a potentially infinite memory. A fault model for systems of
this nature must then be able to find faults in IUTs according to their corre-
sponding specification modeled by VPTSs, i.e., the fault model must provide
a fault detection in the testing process. A sequence of symbols that can detect
faults in VPTS models is called a test case, and a set of test cases gives the
notion of a test suite. So, a test suite T over an alphabet L is a language over
L, i.e. T ⊆ L�, should be engineered to detect faulty observable behavior of any
given IUT, when compared to what has been determined by a specification. In
this case, T can be seen as specifying a fault model, in the sense that test cases
in T represent faulty observable behaviors. In particular, if T is a VPL, then it
can be specified by a VPA A. Alternatively, we could specify T by a finite set
of VPAs, so that the union of all the undesirable behaviors specified by these
VPAs comprise the fault model.

Next we say that an implementation I passes a test suite T if no observable
behavior of I is a harmful behavior present in T .

Definition 19. Let T be a test suite over an alphabet L. A VPTS Q over L
passes to T if σ �∈ T for all σ ∈ otr(Q). Further, an IOVPTS I over L passes to
T if its underlying VPTS passes to T .

In a testing process we also desire test suites to be sound, i.e., when I passes
a test suite T we always have that I-visibly conforms to S. The opposite direction
is also desirable, that is, if I-visibly conforms to S then I passes the test suite T .

Definition 20. Let L be an alphabet and let T be a test suite over L. Also let
S be a specification VPTS over L, and let D,F ⊆ L� be languages over L. Then

1. T is sound for S and (D,F) if I passes to T implies IvconfD,F S, for all
VPTS I over L.

2. T is exhaustive for S and (D,F) if IvconfD,F S implies that I passes to T ,
for all VPTS I over L.

3. T is complete for S and (D,F) if it is both sound and exhaustive for S and
(D,F).

Notice that an IUT I passes to a test suite T when otr(I) ∩ T = ∅.
Now we can show that the Proposition 17 can construct a test suite which is

always complete, and also unique, for a given specification S.

Lemma 21. Let S be a specification VPTS over L, and let D, F ⊆ L� be a
pair of languages over L. Then, the set

[

(D ∩ otr(S)) ∪ (F ∩ otr(S))
]

is the only
complete test suite for S and (D,F).

Language-Based Testing for Pushdown Reactive Systems 87

Proof. Write T =
[

(D ∩otr(S))∪ (F ∩otr(S))
]

, and let I be any implementation
VPTS over L. From Definition 19, we know that I passes to T if and only if
otr(I) ∩ T = ∅. From Proposition 17 we get that IvconfD,F S if and only if
otr(I) ∩ T = ∅. Hence, I passes to T if and only if IvconfD,F S. Since I was
arbitrary, from Definition 20 we conclude that T is a complete test suite for S

and (D,F).
Now, take another test suite Z ⊆ L�, with Z �= T . For the sake of contra-

diction, assume that Z is also complete for S and (D,F). Fix any implementa-
tion I. Since Z is complete, Definition 20 says that I passes to Z if and only
if IvconfD,F S. Using Proposition 17 we know that IvconfD,F S if and only
if otr(I) ∩ T = ∅. Hence, I passes to Z if and only if otr(I) ∩ T = ∅. From
Definition 19 we know that I passes to Z if and only if otr(I) ∩ Z = ∅. We
conclude that otr(I) ∩ Z = ∅ if and only if otr(I) ∩ T = ∅. But Z �= T gives
some σ ∈ L� such that σ ∈ T and σ �∈ Z. The case σ �∈ T and σ ∈ Z is entirely
analogous. We now have σ ∈ T ∩ Z. If we can construct an implementation
VPTS Q over L with σ ∈ otr(Q), then we have reached a contradiction because
we would have σ ∈ otr(Q) ∩ T and σ �∈ otr(Q) ∩ Z. But that is simple. Let
σ = x1x2 . . . xk, with k ≥ 0 and xi ∈ L (1 ≤ i ≤ k). Define Lc = Lr = ∅
and Li = L, and let Q = 〈Q, {q0}, L, ∅, R〉, where Q = {qi | 0 ≤ i ≤ k}, and
R = {(qi−1, xi, �, qi) | 1 ≤ i ≤ k}. Clearly, σ ∈ otr(Q), concluding the proof.

Lemma 21 says that the test suite T =
[

(D ∩ otr(S)) ∪ (F ∩ otr(S))
]

is
complete for the specification S and the pair of languages (D,F). So, given
an implementation I, checking if it (D,F)-visibly conforms to S is equivalent
to checking if I passes to T and, by Definition 19, the latter is equivalent to
checking that we have otr(I) ∩ T = ∅.

3.3 Visual Conformance Checking for VPTS Models

When checking conformance one important issue is the size of test suites, rela-
tively to the size of the given specification. Let S = 〈S, Sin, L, Γ, T 〉 be a VPTS.
A reasonable measure of the size of S would be the number of symbols required
to write down a complete syntactic description of S. Assume that S has m = |T |
transitions, n = |S| states, 	 = |L| action symbols, and p = |Γ | stack symbols.
Since any transition can be written using O(ln(n	p)) symbols, the size of S is
O(m ln(n	p)). We also see that n is O(m) and, clearly, so are 	 and p. Thus,
the size of S is bounded by O(m ln m). If we fix the stack and action alphabets,
then the size of the VPTS will be bounded by O(m). In what follows, and with
almost no prejudice, we will ignore the small logarithmic factor.1

Given a specification S and visibly pushdown languages, D and F , over L,
Lemma 21 says that the fault model T is complete for S and (D,F), where
T =

[

(D∩otr(S))∪(F∩otr(S))
]

. Assume that AD and AF are deterministic VPAs
with nD and nF states, respectively, such that L(AD) = D and L(AF) = F . Also,

1 It is also customary to write O(m lnm) as Õ(m). In the sequel, we can always replace

O(·) by Õ(·).

88 A. L. Bonifacio

assume that S is deterministic with nS states. Proposition 8 says that we may as
well take S as a contracted and deterministic VPTS. Then Proposition 11 gives
a deterministic VPA A1 with nS states and such that L(A1) = otr(S). Using
Proposition 12(3), we can construct a deterministic VPA B1 with nS + 1 states
and such that L(B1) = L(A1) = otr(S). Using Proposition 12(1) we can obtain
a deterministic VPA A2 with at most nSnF states such that L(A2) = L(AF) ∩
L(A1) = F ∩otr(S), and also can obtain a deterministic VPA B2 with (nS +1)nD

states such that L(B2) = L(AD) ∩ L(B1) = D ∩ otr(S). Proposition 12(2) then
gives a deterministic VPA T with (nSnF +1)(nSnD+nD+1) states and such that
L(T) = L(A2) ∪ L(B2) = T . Proposition 12(2) also says that T is non-blocking
and has no ε-moves. Further, Lemma 21 says that L(T) is a complete test suite
for S and (D,F). Next proposition establishes the construction of a complete
test suite for a given specification S relatively to a pair of visibly pushdown
languages (D,F).

Proposition 22. Let S be a deterministic IOVPTS over L with nS states. Also
let AD and AF be deterministic VPAs over L with nD and nF states, respectively,
such that L(AD) = D and L(AF) = F . Then, we can construct a deterministic,
non-blocking VPA T with at most (nSnF + 1)(nSnD + nD + 1) states and no
ε-moves, and such that L(T) is a complete test suite for S and (D,F).

Proof. The preceding discussion gives a deterministic and non-blocking VPA T

with at most nT = (nSnF +1)(nSnD +nD +1) states and no ε-moves, and such
that L(T) = T =

[

(D ∩ otr(S)) ∪ (F ∩ otr(S))
]

.

Once we have a fault model at hand, which is complete for a given specifica-
tion using visibly pushdown languages, then we can test whether IUTs conform
to that specification under desirable and undesirable behaviors in a more gen-
eral setting. In order to do so we will also need the notion of a balanced run [4].
Given a VPTS V, and p, q two states of V we say that a string σ ∈ L� induces a
balanced run [4] from p to q in V if we have (p,⊥) σ→

V
(q,⊥).

Therefore we can state the next theorem to test for visual conformance.

Theorem 23. Let S = 〈SS, {s0}, LI , LU ,ΔS, TS〉 ∈ IOVP(LI , LU) be a deter-
ministic specification, and let I = 〈SI, Iin, LI , LU ,ΔI, TI〉 ∈ IOVP(LI , LU) be a
deterministic IUT. Also let D,F be VPLs with their corresponding determin-
istic VPAs AD and AF such that L(AD) = D and L(AF) = F . Then we can
effectively decide whether IvconfD,F S holds. Further, if IvconfD,F S does not
hold then we can find σ ∈ L� that verify this condition (See Definition 16), i.e.,
σ ∈ otr(I) ∩ T showing that otr(I) ∩ T �= ∅.
Proof. First let L = LI ∪ LU . The proof of Lemma 21 shows that T is the
only complete test suite for S and (D,F). From Proposition 22 we can obtain
a deterministic non-blocking fault model T = 〈ST, Tin, LU , LI ,ΔT , TT〉 with at
most (nSnF + 1)(nSnD + nD + 1) states and no ε-moves, and such that L(T).

Since I is deterministic, and using Propositions 8 and 11, we can obtain a
deterministic VPA A with at most nI states, and such that otr(I) = L(A). Then

Language-Based Testing for Pushdown Reactive Systems 89

we can construct a deterministic VPA B with at most nInT states, and such that
L(B) = L(A) ∩ L(T) = otr(I) ∩ T since VPLs are closed under intersection [2].
From Definition 19 we know that to check whether IvconfD,F S is equivalent
to checking if L(B) = ∅. That is, IvconfD,F S does not hold if and only if
(b0,⊥) σ⇒

B
(f, α⊥) for some σ ∈ L�, where b0 is an initial state and f is a final

state of B, i.e., σ ∈ L(B). Then we also see that in order to check whether
IvconfD,F S does not hold, it suffices to check whether a configuration (f, α⊥)
is reachable from some initial configuration (b0,⊥) of B.

At this point we can apply Algorithm 1 of [4], following the same steps to
modify B in order to guarantee that the stack is empty after reaching a final
state f in B, and also that any pop move on an empty stack is eliminated from
B. Similarly, the problem is then reduced to find a balanced run σ from b0 to
f in B if and only if (b0,⊥) σ⇒

B
(f,⊥). That is, we have reduced the vconf test

to the problem of finding a string σ that induces a balanced run from b0 to f ,
where b0 is the initial state of the VPA B and f is a final state of it, or indicate
that such a string does not exist.

Example 24. Recall Example 18. Again, let S be a specification depicted in
Fig. 2a, and D = {anbnx : n ≥ 1} be the desirable language, where the VPA
D, depicted at Fig. 3b, accepts the language D. We also recall that the VPA S

depicted in Fig. 3a accepts the language otr(S). Since D ⊆ otr(S) then the VPA
D accepts the language D ∩ otr(S).

f0 f1
x/A−

a/A+

Fig. 4. The VPA F accepting F = {a+x}.

Now assume a faulty language F �= ∅ such that F = {a+x}, in this case.
This says that any behavior consisting of a block of as (at least one) terminating
by an x, is an undesirable behavior. So the VPA F, depicted at Fig. 4, accepts
the language F and that F ⊆ otr(S). Then the VPA F accepts the language
F ∩ otr(S). Since the VPA D accepts the language D ∩ otr(S) and the VPA F

accepts the language F ∩ otr(S), then the language T = (D ∩ otr(S)) ∪ (F ∩
otr(S)) = L(D) ∪ L(F).

Similarly, we want to check whether an implementation I conforms to the
specification S with respect to the sets of behaviors described by D and F . That
is, we want to check whether IvconfD,F S.

Here also assume an implementation I that is isomorphic to S. So I does not

have the transition q2
x/⊥→ q1 and then the word aabbx would not be an observable

behavior of I. In this scenario, aabbx /∈ otr(I) and so otr(I)∩[

(D∩otr(S))
]

= ∅.
The verdict means that any desirable behavior of D that is present in S must

90 A. L. Bonifacio

be a behavior of I. In other way around if the desirable behavior of D is not in
otr(S) so such desirable behavior must not be in otr(I).

Now take the word aax. We see that aax is an observable behavior of
S and, clearly, it is also an observable behavior of I. It is easy to see that
aax /∈ D, i.e., it is not a desirable behavior. However, aax ∈ F which
means that this word represents an undesirable behavior. Hence, in this case,
otr(I) ∩ [

(D ∩ otr(S)) ∪ (F ∩ otr(S))
]

= otr(I) ∩ (D ∪ F) = otr(I) ∩ T �= ∅, and
Proposition 17 implies that IvconfD,F S does not hold, as expected. Noted that,
in this case, the implementation does not conform to the specification, even if
they are isomorphic, since an observable fault behavior is present in the specifi-
cation, and consequently, in the implementation I.

4 Concluding Remarks

Pushdown reactive systems are more complex than traditional reactive systems
because their behaviors are given by phrase structure rules in addition to their
asynchronous interactions with the environment. Therefore testing activities are
also more intricate when applied to systems of this nature. Several methods have
been designed to treat the problem of conformance checking and test suite gen-
eration for regular reactive systems that can be specified by memoryless formal
models. Few other previous approaches have addressed these same problems for
pushdown reactive systems that have access to an infinite stack memory.

Here we also study the latter class of reactive systems that can make use of
potentially infinite memory, but we deviated from previous works in the sense
that we allow for a more wide range of possibilities to define a fault model.
In this case, we make use of visibly pushdown languages to define desirable
and undesirable behaviors to be checked over an implementation against its
corresponding specification. That is, we treated the problem of conformance
checking for asynchronous systems with a stack memory using the formalism of
IOVPTS and defined a more general conformance relation for systems of this
nature. So we gave a method to generate test suites that can verify whether this
more general conformance relation holds between a specification and a given
IUT. We have also shown that these test suites are complete, always giving a
conclusive verdict, and also can be generated in polynomial time complexity.

Our approach was proved correct and reduced from the previous work [4]
using an algorithm to find balanced runs to obtain verdicts of conformance.
Therefore our approach exhibits an asymptotic worst case time complexity that
can be bounded by O(n3 + m2), where n and m are proportional to the number
of states and transitions from the product between implementations and speci-
fication models, respectively. We are currently working on an implementation of
a prototype of the theoretical ideas developed in this work, and also intend to
test the prototype with models that represent more practical applications.

Language-Based Testing for Pushdown Reactive Systems 91

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
Thirty sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp.
202–211. ACM, New York (2004). https://doi.org/10.1145/1007352.1007390

2. Bonifacio, A.L.: Conformance checking for pushdown reactive systems based on
visibly pushdown languages (2023). http://arxiv.org/abs/2308.07177

3. Bonifacio, A.L., Moura, A.V.: Testing asynchronous reactive systems: beyond the
ioco framework. CLEI Electron. J. 24(10) (2021). https://doi.org/10.19153/cleiej.
24.1.10

4. Bonifacio, A.L., Moura, A.V.: Conformance checking and pushdown reactive sys-
tems. CLEI Electron. J. 25(3) (2022). https://doi.org/10.19153/cleiej.25.3.2

5. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005).
https://doi.org/10.1007/b137241

6. Chédor, S., Jéron, T., Morvan, C.: Test generation from recursive tiles systems. In:
Brucker, A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 99–114. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30473-6 9

7. Constant, C., Jeannet, B., Jéron, T.: Automatic test generation from interproce-
dural specifications. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W.
(eds.) FATES/TestCom -2007. LNCS, vol. 4581, pp. 41–57. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73066-8 4

8. Gorrieri, R.: Labeled transition systems. In: Process Algebras for Petri Nets.
MTCSAES, pp. 15–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-55559-1 2

9. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.)
Logics and Models of Concurrent Systems, vol. 13, pp. 477–498. Springer, Heidel-
berg (1985). https://doi.org/10.1007/978-3-642-82453-1 17

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison Wesley, Bostpn (1979)

11. Müllerburg, M., Holenderski, L., Maffeis, O., Merceron, A., Morley, M.: Systematic
testing and formal verification to validate reactive programs. Softw. Qual. J. 4(4),
287–307 (1995). https://doi.org/10.1007/BF00402649

12. Peleska, J.: Test automation for safety-critical systems: industrial application and
future developments. In: Gaudel, M.-C., Woodcock, J. (eds.) FME 1996. LNCS,
vol. 1051, pp. 39–59. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
60973-3 79

13. Tretmans, G.J.: Test generation with inputs, outputs and repetitive quiescence.
Technical Report TR-CTIT-96-26, Centre for Telematics and Information Tech-
nology University of Twente, Enschede (1996)

14. Tretmans, J.: Model based testing with labelled transition systems. In: Formal
Methods and Testing, pp. 1–38 (2008)

https://doi.org/10.1145/1007352.1007390
http://arxiv.org/abs/2308.07177
https://doi.org/10.19153/cleiej.24.1.10
https://doi.org/10.19153/cleiej.24.1.10
https://doi.org/10.19153/cleiej.25.3.2
https://doi.org/10.1007/b137241
https://doi.org/10.1007/978-3-642-30473-6_9
https://doi.org/10.1007/978-3-540-73066-8_4
https://doi.org/10.1007/978-3-319-55559-1_2
https://doi.org/10.1007/978-3-319-55559-1_2
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/BF00402649
https://doi.org/10.1007/3-540-60973-3_79
https://doi.org/10.1007/3-540-60973-3_79

Sound Test Case Generation
for Concurrent Mobile Features

Rafaela Almeida1(B) , Sidney Nogueira2 , and Augusto Sampaio1

1 Centro de Informática (CIn/UFPE), Recife, PE 50740-560, Brazil
rga@cin.ufpe.br

2 Departamento de Computação (UFRPE), Recife, PE 52171-900, Brazil

Abstract. It is well-recognised that testing concurrent systems poses
challenges due to their complex interactions and behaviours, as well as
the difficulty to reproduce failures. We propose a sound strategy for test-
ing concurrent mobile applications by first extracting use cases that cap-
ture interleavings of behaviours of existing test cases for individual fea-
tures. From these use cases, we generate test cases that are still sequential
but exercise the execution of concurrent features. Our approach incor-
porates a dependency analysis to ensure a consistent execution order of
test steps, avoiding incoherent sequences, like sending a message with-
out establishing an internet connection. We introduce a conformance
relation, cspioq, based on cspio, but extended to consider quiescent
behaviour (output absence) as in ioco, a widely recognised conformance
relation for formal software testing. We then optimise the strategy, which
involves permuting test steps without the need to generate use cases but
preserving soundness. We discuss tool support and conduct an empirical
evaluation to assess the effectiveness of the overall strategy in terms of
test coverage and bug detection. The results indicate that our approach
yields higher coverage and potential bug detection compared to the set
of tests generated by Motorola engineers.

Keywords: Concurrent Features · Software Testing · CSP ·
Quiescence

1 Introduction

The complexity of modern software systems, especially reactive and concurrent
ones like smartphones, presents challenges in testing due to their intensive and
(possibly) unpredictable interactions. Moreover, manual testing is acknowledged
as being time-consuming and prone to errors. Thus, automation has been increas-
ingly adopted to balance speed and quality in software releases.

Model-Based Testing (MBT) is a software testing technique that relies on
models to represent the behaviour of the system under test. These models can
be used to automate the generation and execution of test cases on both sequential
and concurrent systems [1]. However, relying on MBT can be a barrier because
formal models are the main input for test generation. Formal notations contrast
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Barbosa and Y. Zohar (Eds.): SBMF 2023, LNCS 14414, pp. 92–109, 2024.
https://doi.org/10.1007/978-3-031-49342-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49342-3_6&domain=pdf
http://orcid.org/0000-0001-8806-3337
http://orcid.org/0000-0002-8817-5029
http://orcid.org/0000-0001-6593-577X
https://doi.org/10.1007/978-3-031-49342-3_6

Sound Test Case Generation for Concurrent Mobile Features 93

with the ones adopted by traditional software engineering approaches, such as
use case models. To facilitate the adoption of MBT and make it more accessible,
researchers have proposed various approaches [2–4] that use controlled natural
language notations to specify input models.

In the case of concurrent systems, however, it is far from simple to cap-
ture their behaviour using natural language models, since concurrency typically
involves the simultaneous interaction of multiple entities that can lead to race
conditions and synchronisation issues, which is difficult to describe in natural
language and processed by traditional test case generation methods.

Another challenge for testing concurrent systems is the treatment of inputs
and outputs. Concurrent systems often involve multiple processes or threads that
interact, culminating in more complex behaviours involving multiple sequential
inputs or outputs. Regarding outputs, quiescence occurs in system states that do
not generate any output response unless a new input stimulus is provided. Some
inputs or states may logically result in no immediate output, which is accept-
able. Conversely, lacking expected outputs in specific scenarios could indicate a
potential problem.

In this paper, we propose a strategy for the automatic generation of functional
test cases for concurrent features of mobile device applications. The generated
test cases are sequential and exercise the GUI of concurrency applications. It
is not in our scope to test classical concurrent properties like deadlock, livelock
and determinism. This approach is inspired by the works in [4,5,11]. In [4], a
test case generation strategy inputs use cases written in a controlled natural
language, generates a (hidden) formal model in CSP [7], and then outputs test
cases also in natural language. In [11] a natural language notation is proposed
to express the composition of sequential and concurrent behaviour. Then, the
work in [5] uses this framework but from a reverse engineering perspective: it
generates a use case model from existing test cases, and then uses the approach
in [4] to generate new test cases.

Here, we significantly extend both approaches to address concurrent
behaviour, possibly involving quiescence and a dependent analysis mechanism
that enforces a meaningful and consistent execution order of test steps; this
mechanism ensures that the execution of each step is preceded by all the nec-
essary setup for the step execution, like establishing an internet connection and
opening an e-mail application before sending a message. Furthermore, we address
soundness through the introduction of a new conformance relation, denoted as
cspioq. This relation is based on cspio [4] (which is itself inspired by ioco [8])
but does not take quiescence behaviour into account, and imposes a very strong
restriction that, for each input event, the system must react with a correspond-
ing output event. Therefore, sequences of inputs or outputs are not allowed. In
cspioq, we relax this restriction and tackle the absence of outputs (quiescence),
aiming to ensure that the system can adequately handle scenarios where no fur-
ther outputs or events are expected, which is common in a concurrent scenario.

Additionally, we propose an optimised test generation strategy that involves
the permutation of test steps, which we denote as atoms, and simplifies the pro-
cess by directly permuting the atoms, thus avoiding the need for complex reverse

94 R. Almeida et al.

engineering use cases from existing test cases. We establish a link between the
extended and the optimised approaches and discuss the preservation of sound-
ness by the optimised approach. Another distinguishing feature of the strategy
we propose here is its focus on automated test cases, rather than on manual test
cases as considered in [4,5].

We provide tool support for most steps of the proposed approach and present
the results of an empirical evaluation that analyses its effectiveness concerning
code coverage and the number of uncovered bugs, compared with those result-
ing from the execution of test cases created by our industrial partner (Motorola
Mobility) engineers, for the same features. The results reveal that the test suite
produced by our approach exhibits significantly higher coverage and can poten-
tially uncover more bugs than the suite created by Motorola engineers.

The following section provides an overview of the notation and the trace
semantics of CSP, which is used for modelling use cases and for automatic test
generation. Section 3 introduces our sound strategy and its optimisation, which
preserves soundness. Section 4 details the preparation, operation and results of an
empirical evaluation conducted in an industrial setting. Finally, Sect. 5 presents
our conclusions and discusses related and future work.

2 Background

In what follows, we provide an overview of the CSP notation, its traces semantic
model, and the conformance relation cspio that is the basis for this work.

The fundamental element of the CSP notation is a process, which repre-
sents an entity capable of exhibiting both sequential and concurrent behaviour.
Processes communicate using events. The set of events that a process can com-
municate forms its alphabet.

The primitive CSP processes are Stop and Skip. The former represents a
canonical deadlock; it does not communicate any event and does not progress.
The Skip process represents successful termination; it communicates the special
event � and then behaves like Stop.

CSP operators are used to model both sequential and concurrent behaviour.
The prefixed process a → P denotes a process that first communicates event a
and then behaves as the process P . CSP allows recursive processes. For instance,
the process P1 = on → off → P1 communicates the sequence of events on and
off indefinitely.

In CSP, a channel represents a collection of events that share a common
prefix. The notation channel c : T is used to declare a channel c that communi-
cates events from the set {c.t | t ∈ T}. Input communication has the form c?t .
When synchronising with a process that communicates the event c.v , the effect
is assigning the value v to the variable t .

Sequential composition has the form P ; Q . It behaves like process P until it
terminates successfully (behaving as Skip), and then the control is taken by Q .
The external choice between processes P and Q is represented by P � Q , which
behaves as P or Q ; the choice is made by the environment.

Sound Test Case Generation for Concurrent Mobile Features 95

The parallel composition P |[X]|Q specifies a concurrent behaviour of pro-
cesses P and Q . The events in the set X are synchronised, meaning they must
occur simultaneously on both sides of the parallel composition. All other events
communicate independently. The expression P ||| Q denotes the interleave of the
processes P and Q , which is a special case of parallel composition with an empty
synchronisation set X . A crucial aspect of parallel composition is that it only
terminates when both processes in the composition have terminated (distributed
termination).

The CSP operator \ is used for hiding process communication. In the process
P \ X , P might communicate all the events in its alphabet, except the events in
the set X . Finally, the process P � Q indicates that the process Q can interrupt
the behaviour of P if an event of Q is communicated.

Traces Semantics for CSP. The simplest semantic model for CSP is its traces
model. The notation αP denotes the alphabet of P : the set of events it can
communicate. The traces of a process P , denoted as T (P), record the sequences
of observable events in which the process can engage: T (P) ⊆ αP∗, where αP∗

denotes all possible (finite) sequences formed of elements of the alphabet of P .
For instance, the traces model of the process P = x → y → Stop is the set
{〈〉, 〈x 〉, 〈x , y〉}.

Our approach for test case generation uses the FDR tool [6] to perform
traces refinement verifications that yield test scenarios. A process Q refines a
process P , namely P � Q , if the traces of Q is a subset of the traces of P . If a
refinement does not hold, FDR yields a counterexample trace of Q that is not
in P . For instance, the process P1 = a → Skip; accept → Stop is refined, in
the traces model, by the process Stop, namely P1 � Stop. The traces of the
former process is {〈〉, 〈a〉, 〈a, accept〉} whereas Stop has a single (empty) trace
represented by the set {〈〉}. Consider the CSP process Q1 = a → Skip. The
refinement Q1 � P1 does not hold because 〈a, accept〉 belongs to the traces of
P1 and does not belong to the traces of Q1, which is the set {〈〉, 〈a〉, 〈a,�〉}.
Thus, 〈a, accept〉 is a counterexample for Q1 � P1. More details about the traces
(and other semantic models of CSP) can be found in [7].

Input-Output Conformance Relation. The conformance relation that is the
basis for this work is named cspio (CSP Input-Output Conformance) [4], which
is itself based on ioco (Input-Output Conformance Testing). Its alphabet is split
into input and output events, and implementation and specification are assumed
to be livelock free. As test hypothesis it is assumed that the implementation
under test (IUT) can be formalised as a CSP process. Complementary, the IUT
and the specification alphabets are also assumed to be compatible. Both the
specification and the implementation are represented as I/O processes: triples
of the form (P ,AI ,AO) where P is a CSP process, AI the input alphabet and
AO the output alphabet.

96 R. Almeida et al.

Definition 1. (Compatible alphabets). Let S = (PS ,AIS ,AOS
) be the speci-

fication and IUT = (PIUT ,AIIUT
,AOIUT

) the implementation models. The alpha-
bets of S and IUT are compatible iff AIS ⊆ AIIUT

and AOS
⊆ AOIUT

.

Another assumption on cspio is that the implementation is able to accept
any input from the alphabet (input-enabled) and always produce some output
(output-enabled). The formalisation for these concepts can be found in [4].

Consider that the function initials(P) = {a | 〈a〉 ∈ T (P)} yields the set of
events offered by the process P. Moreover, let out(M , s) be an auxiliary function
that provides the set of output events of the process component of the I/O
process M , PM , after the trace s. Formally, out(M , s) = if s ∈ T (PM) then
initials(PM /s) ∩ AOM

else ∅. The relation cspio is then formalised as follows.

Definition 2. (CSP input-output conformance). Consider implementation
model IUT = (PIUT ,AIIUT

,AOIUT
) and S = (PS ,AIS ,AOS

) a specification, such
that AIS ⊆ AIIUT

and AOS
⊆ AOIUT

(compatible alphabets). Then

IUT cspio S ≡ ∀ s : T (PS) • out(IUT , s) ⊆ out(S , s)

For an implementation model to conform with its specification, cspio estab-
lishes that any output event observed in an implementation model IUT is also
observed in the specification S , after any trace of S . Hence, IUT cspio S .

3 A Sound Strategy to Generate Test Cases
for Concurrent Features

Due to the possible unavailability of updated testing models to apply MBT
in the industrial context of this research, in a previous work [5], we conceived a
strategy to generate use cases by reverse engineering existing test cases, and then
generate additional test cases from the obtained use cases. As already explained,
the strategy in [5] has some limitations: (i) consistency of test step sequences was
informally and manually addressed; (ii) quiescent behaviour was not considered;
and (iii) generating a use case model from test cases and new test cases from the
use case model, by performing refinement verifications using FDR, is complex
and costly.

The test case generation approach proposed here addresses these three issues,
see Fig. 1. The flow at the top part of the figure extends the approach in [5] by
proposing solutions to issues (i) and (ii). The flow at the bottom part of the
figure is an optimisation that additionally addresses issue (iii). The input to
both strategies is a set of existing test cases for individual mobile features, and
the output is a set of (automated) test cases for concurrent feature execution.

First, we detail the strategy described by the flow at the top of the figure.
This requires use case models that are extracted from the input test cases using
a reverse engineering process. Once the use cases are extracted, the generation
of test cases for concurrent features is performed by the TaRGeT tool [3], which
first converts the use cases into CSP models. These models are then used to

Sound Test Case Generation for Concurrent Mobile Features 97

Fig. 1. Generation process with dependency analysis and optimised approach.

generate tests by running FDR refinements. The refinement verifications produce
test scenarios until a stop criterion is met. Finally, the CSP events in the test
scenarios are translated into natural language to create a test suite. This process
is integrated with a dependency analysis tool called Kaki [12], a solution to issue
(i), as detailed in Sect. 3.1. Soundness is addressed in Sect. 3.2. The optimised
strategy is presented in Sect. 3.3.

3.1 Dependency Analysis Integration

For a test case given as input and, based on the information gathered in a given
Domain Model that characterises the application domain of a mobile feature,
Kaki yields a (possible reordering of the) sequence of test case steps that can be
successfully executed.

We illustrate the dependence analysis using the example in Fig. 2. Consider
the interaction between the features Contacts and Call. We first provide the
information needed to define the Domain Model, along with the associations
of the steps for each test case. Such associations may be expressed by depen-
dencies (relations between actions). For instance, to execute the action “Edit a
contact”, the contact must be added first (“Add a contact”). Finally, the consis-
tency mechanism suggests a valid execution sequence, yielding a consistent test
case in an optimal order. The results of applying this strategy to each test case
are combined into a consistent test suite that can be automated and successfully
executed.

98 R. Almeida et al.

Fig. 2. Dependency Analysis for Call and Contacts Features.

3.2 cspioq: Extending cspio to Deal with Quiescence

The cspioq relation is based on cspio [5] but relaxes a significant restriction
imposed by cspio that requires that the interaction with the IUT strictly alter-
nates inputs and outputs, a property that we have previously defined as output-
enabledness. This restricts the generation of tests for concurrent scenarios where
the interaction of different execution flows between applications can possibly
guide a test case to engage in multiple sequence of inputs without an output
between them, as well as in a sequence of outputs without an input. The obser-
vation of quiescent behaviour allows this desired flexibility. In what follows, we
formalise the relevant concepts to define the cspioq relation.

An I/O process is input enabled when the inputs offered after each of its
traces is the same as its input alphabet.

Definition 3. (Input enabled I/O process). Let M = (PM ,AI ,AO) be an
I/O process. Then, M is input enabled iff ∀ t : T (PM) • AI ⊆ initials(PM /t)

The quiescent behaviour of a process can be inferred and annotated using
the prioritise feature in the FDR refinement checking tool. The notation
prioritise(P , 〈X1, ...,Xn〉) represents the process that defines priority between
events. This process has a similar behaviour to P , but it prevents any event in
Xi (where i > 1) from happening when there is a possibility of an internal event
(τ), (�) termination, or an event in Xj (where j < i). We then define a process
Pqui that captures the quiescence states of a process P as follows.

Definition 4. (Quiescence Annotation) Consider P is a CSP process whose out-
put alphabet is AO , and a special event qui that represents a quiescent behaviour.
The process Pqui denotes the process P annotated with a qui-loop in the states
where no event in AO is offered. Formally,

Pqui =̂ prioritise(P ||| RUN (qui), 〈AO , qui〉)

where the process RUN (s) = � ev : s • ev → RUN (s) is a process that
continuously offers the events from the set s.

Sound Test Case Generation for Concurrent Mobile Features 99

The basic intuition is that quiescence happens only when there is no output
event. If there is an output event, it takes priority over quiescence, and therefore
quiescence is prevented from happening.

The relation cspioq establishes a conformance notion in the context of qui-
escent behaviour. Consider AI and AO the input and output alphabets of an
I/O process, and AOqui = AO ∪ {qui} with qui /∈ (AO ∪ AI).

Definition 5. (cspioq: CSP input-output conformance with quiescence) Con-
sider IUTqui = (PIUTqui ,AIIUT

,AOIUTqui
) an implementation model and a spec-

ification Squi = (PSqui ,AIS ,AOSqui), such that AIS ⊆ AIIUT
and AOS

⊆ AOIUT

(compatible alphabets). Then

IUT cspioq S =̂ ∀ s : T (PSqui) • out(IUTqui , s) ⊆ out(Squi , s)

In this relation, after every trace of the specification model, the output events
observed in an implementation model (including quiescence) are a subset of the
output events allowed by the specification.

Constructing Sound Test Cases. We present the steps to generate sound
test cases for cspioq. Let TC , S and IUT be I /O processes that are models for
the test case, the specification and implementation, respectively. Additionally,
the alphabet of the IUT is assumed to be compatible with the alphabet of the
specification. A test case TC = (PTC ,AITC

,AOTC
∪ VER) generated from S

to test IUT is an I /O process which inputs events from AITC
⊆ AOIUTqui

and
outputs events from AOTC

⊆ AIS ∪VER, with VER = {pass, fail , inc}, such that
VER ∩ (AIIUT

∪ AOIUT
) = ∅.

The parallel composition PIUTqui |[AIIUT
∪ AOIUTqui

]|PTC , say EXECqui ,
captures the execution of a test against an implementation with the observation
of quiescence. Such a composition can result in the communication of a verdict
event that defines the execution result: when a system behaves as expected, it
behaves as PASS = pass → Stop, meaning the test passes in the execution. Oth-
erwise, if the system behaves as FAIL = fail → Stop, the execution fails. Finally,
if the system behaves as INC = inc → Stop, the execution has an inconclusive
verdict.

The refinement below verifies the presence of a verdict event v ∈ VER in
the traces of the CSP model for a test execution EXECqui . On the right-hand
side of the refinement, input and output events are hidden from EXECqui , so
the unique events communicated are verdicts. If the result of the refinement is
successful (the refinement holds), the trace which represents the verdict (v) is
present in the traces of the execution; otherwise, if the refinement does not hold,
the verdict event will not be communicated and thus is not part of the traces of
the test execution.

EXECqui \ (AIIUT
∪ AOIUTqui

) �t v → Stop

A generated test is said to be sound if, and only if, whenever the test fails in its
execution, it is guaranteed that the IUT does not conform to the specification. In

100 R. Almeida et al.

other words, the generated tests do not reject correct implementations. Definition
6 formalises soundness according to the cspioq theory.

Definition 6. (Sound test case). Let IUT be an implementation I/O process,
S the specification, TC a test case I/O process and EXECqui the execution of
TC against IUT with the observation of quiescence. Then TC is a sound test
case if the following holds.

〈fail〉 ∈ T (EXECqui \ (AIIUT
∪ AOIUTqui

) ⇒ ¬ (IUT cspioq S)

The steps to build a process component of a test case TC (PTC) in order to
test the IUT are as follows. First, the output events offered by the specification
after each event of the test case must be known. These outputs are recorded in
an annotated trace (atrace) that is obtained by recording the outputs expected
at the point each event of the test scenario (ts) is offered. The procedure for con-
structing an annotated trace is detailed in [4], so we omit the details. Moreover,
events and outputs are associated as 〈(ev1, outs1), ..., (ev#ts , outs#ts)〉, with evi
from ts and outsi being the outputs after the trace 〈ev1, ..., evi−1〉. If evi ∈ AO ,
then outsi = out(S , 〈ev1, ..., evi−1〉) − evi , else outsi = ∅, for 1 ≤ i ≤ #ts and
〈ev1, ..., evi−1〉 is a prefix of ts.

Next, the function TC BUILDER(atrace) uses the annotated trace (atrace)
as a parameter, which recursively behaves like the process SUBTC for each pair
(ev , outs). If the last element of a trace is reached, TC BUILDER yields the
process PASS . The process SUBTC is responsible for creating the body of a
test and initially offers the event ev to the implementation and then behaves
like Skip to mark the successful termination of the process.

TC BUILDER(〈〉) = PASS
TC BUILDER(〈(ev , outs)〉 � tail) = SUBTC ((ev , outs)); TC BUILDER(tail)

where

SUBTC ((ev , outs)) = ev → Skip �

(ev ∈ AOS
& ANY (outs, INC) � ANY (AOIUTqui

− outs, FAIL))

When ev is a test output (implementation input), it is communicated to the
implementation, and the test fragment terminates successfully. Due to the input-
enabled behaviour, the implementation is always ready to accept inputs. On the
other hand, if ev is a test input (implementation output) and because the test
cannot block implementation outputs, the process must be ready to synchro-
nise with any output response of PIUT . The test reaches an inconclusive verdict
for the cases where an output event is communicated by the implementation
(PIUTqui

) that is not expected by the test scenario (ev) but is an output of the
specification. Otherwise, the test reaches the verdict fail when PIUT communi-
cates an output event not in the specification or presents a quiescent behaviour.

Sound Test Case Generation for Concurrent Mobile Features 101

A test cannot choose between input and output to avoid controllability con-
flicts [9]. The process TC BUILDER does not allow such kind of choice; thus, it
is free of controllability conflicts. A test case yielded by TC BUILDER is sound
according to Theorem 1.

Theorem 1. (TC BUILDER is sound). Let S = (PSqui ,AIS ,AOSqui
) be a speci-

fication, ts a test scenario from S and IUT = (PIUTqui ,AIIUT
,AOIUTqui

) an imple-
mentation model, such that AIS ⊆ AIIUT

and AOS
⊆ AOIUT

. If atrace is an anno-
tated trace obtained from ts, then TC = (TC BUILDER(atrace),AITC

,AOTC
),

with AITC
= AOIUTqui

and AOTC
= AIS , is a sound test case.

Proof. Consider 〈fail〉 ∈ T (EXECqui\(AIIUT
∪ AOIUTqui

), thus, by the defini-
tion of EXECqui , there is a trace t � 〈fail〉 that belongs to the traces of
PIUTqui |[AIIUT

∪ AOIUTqui
]|TC BUILDER(atrace,AITC

,AOTC
). Moreover, from

the definition of the parallel composition operator and the definition of the pro-
cess TC BUILDER, we have that t equals s � 〈o〉, such that s belongs to the
traces of the processes PIUTqui and to the traces of PSqui . Furthermore, the
output o belongs to AOIUTqui

− outs(Squi , s). It implies the implementation pro-

cess PIUTqui produces a trace s � 〈o〉 where s belongs to the traces of PSqui ,
o ∈ AOIUTqui

, and o /∈ outs(Squi , s). Consequently, o represents an output (or a
quiescence) that belongs to out(IUTqui , s) and does not belong to out(Squi , s),
which falsifies IUT cspioq S .

3.3 Optimised Test Generation Strategy

As an alternative to the test generation strategy detailed in the previous sections
(top level flow of Fig. 1), which involves reverse engineering existing test cases to
obtain a use case model, we propose an optimised test generation strategy via
permutation of atoms aiming to simplify the process by directly extracting rele-
vant information without the need for complex reverse engineering, as depicted
in the bottom level flow of Fig. 1.

As illustrated in the highlighted grey area in Fig. 1, firstly, we extract the
necessary information (units) from the original test case by the syntactical iden-
tification of one (or more) actions within a step of a test case. An action, com-
monly expressed using a verb, denotes an act or occurrence of a fact. Some steps
may contain more than one action. Thus, more than one atom may be extracted
from each step. For instance, as exhibited in Fig. 3 from the test case step Add,
edit and remove a contact one can observe the occurrence of three actions: add,
edit and remove. Intuitively, it is possible to associate each verb with an action
and, consequently, we would have three possible testable units referred to as
atoms. The same applies to the Make a call test step, from which we can derive
an atom related to the action call. These atoms are then systematically inter-
leaved to produce test cases for concurrent features (Permutation step), which
are automatically executed.

We claim that, simplifying test generation in this way preserves soundness.

102 R. Almeida et al.

Fig. 3. Extraction and permutation of atoms.

Proposition 1

∀TCs • TC Gen TaRGeT(UC gen(TCs)) = Permu(Atom Extraction(TCs))

The justification is as follows. The use cases generated by UC generation()
captures sequences of the original test steps. These are input to the TaRGeT
tool (function TC Gen TaRGeT()) that explores such sequences to generate test
cases. However, each of such sequences generated by TaRGeT is a permutation
of atoms extracted from these test cases in the optimised approach.

4 Evaluation

This section discusses the outcomes of a hands-on evaluation to assess the effi-
ciency of the suggested approach compared to the conventional test case genera-
tion method used by Motorola’s Mobility Test Team. We focus on two assessment
criteria, namely bug detection and coverage, to substantiate our conclusions.

Concerning bug detection, we applied a Mutation technique to evaluate the
effectiveness of the generated test suites by checking their ability to identify faults
injected in the code (Sect. 4.1). The coverage assessment was supported by the
ATP tool [14], with the goal of evaluating the extent to which an application
source code has been exercised by the test suites generated by the proposed app-
roach compared to the coverage resulting from running the original Motorola’s
test suites (Sect. 4.2). In the final section, we also briefly report on an evaluation
of a real scenario, not involving mutation.

4.1 Number of Uncovered Bugs Using Mutation Testing

As the software attains more excellent stability, uncovering new bugs and assess-
ing the effectiveness of the test suite in detecting potential defects becomes pro-
gressively challenging as the incidence of bugs diminishes over time. In such
cases, mutation testing helps create artificial faults (mutations) in the software,
allowing developers to evaluate the ability of the test suite to identify and isolate
the injected faults. The motivation for using the mutation technique is primarily

Sound Test Case Generation for Concurrent Mobile Features 103

driven by the scarce number of known defects in Motorola’s applications con-
sidering the time frame when this evaluation was conducted (end-of-cycle of the
operational tests for the Android 11 [22], before its commercial release).

The steps undertaken to conduct the mutation testing evaluation encom-
passes five stages: (1) selection of a suitable APK and mutation operators (2)
Unpacking an APK, which involves extracting its contents to analyse or modify
the elements inside the package; (3) generation of mutants using a pre-selected
mutation tool (MutAPK) (introduced in the sequel); (4) digitally sign the APK
with a certificate using an upload key after recompiling the modified resources
to ensures its integrity and authenticity and install it on a smartphone; (5) eval-
uate the effectiveness of the proposed approach in comparison with the original
Motorola test cases in terms of bug uncovering.

To support the generation of mutants, we opted for a public academic muta-
tion testing tool to avoid conflicts of interest with our industrial partner. After
extensively analysing some alternatives, [18–21] we chose to use MutAPK [18].
MutAPK is an open-source tool for mutation testing that allows the use of
Android Application Packages (APKs) as input for this purpose. The tool has a
set of 38 mutation operators that emulate possible defects in Android applica-
tions.

The initial step of the evaluation is the selection of a suitable Motorola soft-
ware application for the purpose of mutant injection. For this validation, we chose
the FM Radio application, influenced by the feedback from Motorola testers who
identified it as a potentially flawed application.

In this particular study WrongStringResource and InvalidLabel were cho-
sen as the mutation operators. When the WrongStringResource operator is
applied, a <string . . . /> entry in /strings.xml file is deleted, and its
string value is mutated. The same goes for the InvalidLabel operator, where
the attribute android:label in the Android Manifest file is replaced with a
random string.

Moreover, by using the APKTool [17], the FM Radio APK was decompiled.
This task is also provided by the MutApk tool, however, due to compilation
errors, we had to perform it manually. Then we used MutApk engine to generate
the mutants based on the selected operators automatically.

Android requires all APKs to be digitally signed with a certificate before
they are installed on a device or updated. Because of the hardware and soft-
ware incompatibilities (protected build) from Motorola devices, we could not
automatically assign the mutated apps using MutAPK’s engine. Instead, we
assigned them manually using the uber-apk-signer [15] software. We also had to
apply changes to the tested device build code to delete the old version of the
APK.

Finally, we tested the effectiveness of the proposed approach by selecting 3
Motorola test cases related to the FM Radio feature. They are designed to verify
the configuration of the radio, manage the radio during phone calls, and ensure
compatibility between the recording function and other audio players. Using
the optimised proposed approach, concurrent tests were generated from the

104 R. Almeida et al.

permutation of the original Motorola tests following the workflow defined in
Sect. 3.3. The permutation-based tests were subjected to automation and exe-
cuted automatically using a proprietary tool developed by Motorola, namely
Force IDE.

As a result, it was possible to identify (kill) one of the mutations by running
the original Motorola test cases. The tool execution log indicated a failure mes-
sage that was directly linked to the modification made to the FM Radio Settings
feature. On the other hand, when executing the permutations generated by the
proposed approach, it was possible to detect not only the same mutant that
Motorola had found but also a new mutation related to the Sleep Timer feature.
This was because the permutation suggested a path different from the one that
Motorola normally follows.

4.2 Coverage Rate

Coverage is assessed with the support of the ATP tool [14], dedicated to calcu-
lating updated components based on release notes. The tool examines the set
of test cases that had been executed and identifies the components that had
been covered. ATP makes use of the Android debugging tool known as LogCat
[16], which is a command-line utility that produces a record of system messages
directly from the device and registers occurrences of application events, such as
stack traces when the device exhibits an error and user-defined messages using
the Log class.

We considered two coverage criteria that could be derived from the execu-
tion logs. The initial criteria pertain to component coverage, which evaluates the
extent to which classes and code line parameters (specific lines of code associated
with the system’s architecture components) are thoroughly covered and exam-
ined. On the other hand, the second criterion is class coverage, which assesses
the coverage of classes exclusively.

To address the aforementioned criteria, we have established a coverage metric.
This metric is evaluated considering two sets OTSe and MTSe , which stand
for the set of components covered by the optimised approach and the manual
execution carried out by a Motorola team, respectively. Hence, the coverage of
OTS is calculated by the formula

#TTSe

#(OTSe∪MTSe)
× 100.

The coverage of MTS is calculated in a similar way. This calculation represents
the relative coverage of a set of elements to the union of all elements observed.
Since we could not access the source code, we needed to use this coverage metric.

For the execution, we selected 15 Motorola test cases (MTSe) and 43 tests
generated by the proposed approach (OTSe). We explored Motorola’s Modem
application, and the reverse engineering approach detailed in our previous work
[5] has been adopted.

Tables 1 and 2 display coverage data for component and class coverage. As
both tables have identical structures, we explain their structures simultaneously.

Sound Test Case Generation for Concurrent Mobile Features 105

The first line of the text represents the sets of elements covered during the
execution of the test suites. The second line indicates the cardinality of the sets,
and the third line shows the relative coverage of the sets. The second to seventh
columns provide information about the sets: the elements covered by the test
suite MTSe , the elements of the test suite OTSe , the union of the elements
of MTSe and OTSe , the elements in the intersection of MTSe and OTSe , the
elements in MTSe that are not in OTSe , and the elements in OTSe that are not
in MTSe .

Table 1. Component Coverage.

Comp. MTSe OTSe MTSe ∪ OTSe MTSe ∩ OTSe MTSe \ OTSe OTSe \ MTSe

Number 988 1436 1748 676 312 760

Coverage 56,52% 82,15% 100% 38,67% 17,84% 43,47%

Table 2. Class Coverage.

Class MTSe OTSe MTSe ∪ OTSe MTSe ∩ OTSe MTSe \ OTSe OTSe \ MTSe

Number 905 921 1155 671 234 250

Coverage 78,35% 79,74% 100% 58,09% 20,25% 21,64%

As evidenced by the data presented in Tables 1 and 2, it is clear that the set
of elements covered by the Motorola team does not encompass all of the elements
covered by the proposed approach, nor does it constitute a subset of them. The
tests conducted by OTSe and MTSe exhibit coverage of numerous shared ele-
ments in addition to distinct elements. However, the tests generated using the
proposed approach encompass more distinct elements than those designed by
Motorola. This discrepancy is particularly pronounced when considering com-
ponent coverage, whereas the disparity is more subtle regarding class coverage.

The use of the execution log is a valuable method for assessing improvements
in coverage. However, it is important to consider the scope and intention of this
method carefully. Merely measuring coverage based on the number of lines tra-
versed provides a quantitative overview of gains but fails to capture a qualitative
analysis of the observed elements.

Hence, we cannot draw definitive conclusions based on this evaluation, but
we can discuss some initial observations. The tests generated by the proposed
approach cover a greater number of distinct elements compared to the tests
used by Motorola. A more detailed analysis of the logs is required to understand
why there are areas covered by the Motorola tests that are not covered by the
proposed approach. One possible explanation is that each tester follows the pro-
cedures differently, with each tester taking different paths to achieve the same
goal. For example, one tester may navigate to the “Settings” menu by scrolling
down the quick settings, while through the launcher in the main view.

106 R. Almeida et al.

Moreover, a significant portion of the recorded log is not directly associated
with actions carried out during the test execution, but rather belongs to concur-
rent background activities. This can result in a considerable amount of unrelated
information, leading to potential misinterpretations of the results.

One possible approach to produce a log containing most relevant information
is to expose tags created by the developers during the coding of the automated
scripts. Implementing this method makes it possible to filter log lines contain-
ing the inserted tag, thereby achieving a more accurate and precise coverage
measurement.

4.3 Additional Evaluation Results

We expanded our evaluation by taking into account Motorola’s actual develop-
ment scenario and applying the optimised approach to several features (Camera,
Home Screen, Themes, Contacts, Wallpaper) and uncovered additional 18 bugs,
such as the contact name not displayed when changing the theme twice (enable
and disable); it is not possible to confirm the wallpaper change after changing the
display size; and, in multi-window, when taking a picture, the photo is inverted
unexpectedly.

5 Conclusion

We have introduced an approach to generating sound test cases for concurrent
features. We have also established its soundness, along with the incorporation of
a dependence analysis tool to tackle any inconsistencies related to the ordering
of test step execution.

To account for quiescent behaviour, we introduced a new relation called
cspioq, building upon the approach described in [4], for generating sound test
cases that may involve quiescence.

Furthermore, we have optimised our test generation strategy to offer a more
efficient alternative that closely aligns with the automation and execution envi-
ronment of our industrial partner.

We conducted an empirical evaluation to gauge the effectiveness of the tests
generated using our proposed approach. The evaluation measured bug and test
coverage, comparing tests generated by Motorola with those from our approach.
The analysis results revealed that the tests generated using our approach not
only successfully identified the same bug that was found by the Motorola test
suite but also uncovered additional previously unknown bugs. Moreover, the
tests produced by the proposed approach provided broader coverage of imple-
mentation components compared to the tests created by Motorola.

The formal notion of conformance allows testers and developers to reason
about the correctness of the generated test cases and the behaviours of the SUT.
Existing theories in the field [4,8,10,13] rely on a well-defined mathematical
relation between the system specification and the IUT .

Sound Test Case Generation for Concurrent Mobile Features 107

The work in [13] presents a denotational semantics for CSP using suspension
traces. This semantics also addresses the distinction between inputs and outputs.
The authors establish healthiness conditions for the suspension-traces model and
propose a characterisation of the conformance relation ioco. Additionally, they
propose a strategy for automating the verification of conformance based on ioco
and suspension-trace refinement. Furthermore, it opens up avenues for exploring
algebraic laws and compositional reasoning techniques based on ioco. Although
we share a common foundation related to the ioco conformance relation, there
are distinctions in the specific semantics we adopt. While the work in [13] relies
on suspension traces, our approach adopts the traces model annotated with a
special event to represent quiescence. This allowed us to reuse the theory and
test case generation strategy for sequential systems [4], in a conservative way.

Various methods have been employed to evaluate concurrent applications. A
testing method outlined in [23] uses a CSP model to capture system behaviour
and identify incorrect event sequences in multi-thread testing. The primary
objective of this method is to identify specific event sequences that represent
incorrect behaviour within a real-world multi-thread testing environment. While
our approach focuses on testing the graphical user interface (GUI) of mobile
applications, the work described in [23] is primarily applied in the domain of
safety-critical systems.

The paper in [24] presents the design of a distributed test system tailored
for testing distributed GUI applications. Unlike our approach, in that paper,
graphical elements and test events (stimulus, response, stimulus/response, test
system) need to be implemented as test scripts for execution on a test execution
framework. Moreover, in contrast to the approach described in [24], ours focuses
on handling concurrency by identifying actions within the textual scope of test
cases that suggest concurrent behaviour and interaction between components.

Increasing the number of tests using the permutation approach leads to higher
coverage. However, the exhaustive permutation generation is computationally
infeasible for large test suites. To improve the scalability of the permutation, we
intend to investigate alternative approaches that can produce valid permutations
on demand.

Although we have addressed the evaluation of the proposed approach to a
significant extent, we plan to extend this evaluation even further considering an
automation context. Additionally, to assess code coverage, we will employ a code
instrumentation technique. Finally, we plan to integrate our test case generation
approach with test execution tools to facilitate the automatic execution of test
cases.

Acknowledgements. We would like to thank the CIn-Motorola Teams for helping
with the experiments. This work was partially founded by CNPq (grant 432198/2018-
0). Rafaela Almeida was partially founded by Motorola Mobility Comércio de Produtos
Eletrônicos Ltda and Fundação de Amparo a Ciência e Tecnologia do Estado de Per-
nambuco (FACEPE) (grant IBPG-0063-1.03/19).

108 R. Almeida et al.

References

1. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005).
https://doi.org/10.1007/b137241

2. Carvalho, G.: NAT2TEST: Generating Test Cases from Natural Language Require-
ments Based on CSP. Federal University of Pernambuco, 2011 (2016)

3. Ferreira, F., Neves, L., Silva, M., Borba, P.: TaRGeT: a model based product line
testing tool. In: Proceedings of CBSoft 2010 - Tools Panel (2010)

4. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Formal Aspects Comput. 26, 441–490 (2014)

5. Almeida, R.: Automatic Test Case Generation for Concurrent Features from Nat-
ural Language Specifications. Federal Rural University of Pernambuco (2019)

6. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 17 a
modern refinement checker for CSP. In: Tools and Algorithms for the Construction
and Analysis of Systems, pp. 187–201 (2014)

7. Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper
Saddle River (1998)

8. Tretmans, J.: Testing concurrent systems: a formal approach. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48320-9 6

9. Jard, C., Jéron, T.: TGV: theory, principles and algorithms: a tool for the auto-
matic synthesis of conformance test cases for non-deterministic reactive systems.
Int. J. Softw. Tools Technol. Transfer 7, 297–315 (2005)

10. Carvalho, G., Sampaio, A., Mota, A.: A CSP timed input-output relation and a
strategy for mechanised conformance verification. In: Groves, L., Sun, J. (eds.)
ICFEM 2013. LNCS, vol. 8144, pp. 148–164. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41202-8 11

11. Almeida, R., Nogueira, S., Sampaio, A.: Automatic test case generation for concur-
rent features from natural language descriptions. In: Massoni, T., Mousavi, M.R.
(eds.) SBMF 2018. LNCS, vol. 11254, pp. 163–179. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03044-5 11

12. Arruda, F.: A Formal Approach to Test Automation Based on Requirements,
Domain Model, and Test Cases Written in Natural Language. Federal University
of Pernambuco (2022)

13. Cavalcanti, A., Hierons, R., Nogueira, S., Sampaio, A.: A suspension-trace seman-
tics for CSP. In: 2016 10th International Symposium on Theoretical Aspects of
Software Engineering (TASE), pp. 3–13 (2016)

14. Perrusi, L.: AutoTestCoverage: Uma Ferramenta para Cobertura de Testes de Inte-
gração no Contexto Android sem Uso de Codigo-Fonte, December 2018

15. Signer uber-apk-signer. https://github.com/patrickfav/uber-apk-signer
16. Www.android.com, L. LogCat—www.android.com. https://www.android.com
17. https://apktool.org/, APKTool—https://apktool.org/. https://apktool.org/
18. Escobar Velasquez, C., Osorio Riano, M., Linares Vasquez, M.: MutAPK source

codeless mutant generation for Android apps. In: 2019 34th IEEE ACM Inter-
national Conference on Automated Software Engineering (ASE), pp. 1090–1093
(2019)

19. Wei, Y.: MuDroid: mutation testing for Android apps. University of College Lon-
don, London, UK, Technical report (2015)

https://doi.org/10.1007/b137241
https://doi.org/10.1007/3-540-48320-9_6
https://doi.org/10.1007/978-3-642-41202-8_11
https://doi.org/10.1007/978-3-642-41202-8_11
https://doi.org/10.1007/978-3-030-03044-5_11
https://doi.org/10.1007/978-3-030-03044-5_11
https://github.com/patrickfav/uber-apk-signer
https://www.android.com
https://apktool.org/

Sound Test Case Generation for Concurrent Mobile Features 109

20. Luna, E., El Ariss, O.: Edroid: a mutation tool for android apps. In: 2018 6th
International Conference in Software Engineering Research and Innovation (CON-
ISOFT), pp. 99–108 (2018)

21. Https://pitest.org/Pitest. https://pitest.org/
22. Android11. https://www.android.com/android-11/
23. Cao, Y., Wang, Y.: Concurrent software testing method based on CSP and PAT.

In: 2018 IEEE/ACIS 17th International Conference on Computer and Information
Science (ICIS), pp. 641–644 (2018)

24. Murthy, P., Ulrich, A.: Distributed GUI test automation. In: 2017 14th IEEE India
Council International Conference (INDICON), pp. 1–6 (2017)

https://pitest.org/
https://www.android.com/android-11/

Verification and Validation

Automated Code Generation for DES
Controllers Modeled as Finite State

Machines

Tiago Possato1,2, João H. Valentini1, Luiz F. P. Southier1,
and Marcelo Teixeira1(B)

1 Federal University of Technology Parana, UTFPR, Pato Branco, Brazil
joaovalentini@alunos.utfpr.edu.br, mtex@utfpr.edu.br

2 Catarinense Federal Institute, IFC, Videira, Brazil
tiago.possato@ifc.edu.br

Abstract. Finite State Machines (FSMs) are the foundation to design
Discrete Event Systems (DESs). A FSM that designs a DES model can
be further processed using Supervisory Control Theory (SCT) to synthe-
size correct-by-construction software. When applied to industrial-scale
DESs, FSMs face limitations in the design, synthesis, and implemen-
tation steps. Supremica is a straightforward tool that facilitates design
and synthesis but does not reach the implementation phase. This requires
additional tools to convert FSM models into code. This paper presents
the tool DEScMaker, which receives as input an FSM model outputting
from Supremica and converts it into implementable C code. Our app-
roach complements Supremica with code generation and allows taking
advantage of its intuitive interface, useful simulator, and safe algorithms
while automating a task that, in practice, consists of complex manual
programming. An example illustrates the tool and quantifies its advan-
tages.

Keywords: Formal modeling · Model conversion · Code generation

1 Introduction

In computer systems engineering, formal methods are the foundation for the
development of automatic solutions that depend, to some extent, on certain lev-
els of quality to operate. In industrial practices, precision medicine, agriculture,
cyber-physical systems, and other science domains, programming a computa-
tional solution requires a solid level of formalism to guarantee that the integra-
tion between technology, people, and the environment occurs safely, within the
expected time, and with the desired synchrony [11,14,15].

This research was supported by the Brazilian National Council of Scientific and Tech-
nological Development (CNPq), under grant number 309946/2020-4, by CAPES (Coor-
dination for the Improvement of Higher Level or Education Personnel), Brazil, finan-
cial code 001, FINEP (Funding Authority for Studies and Projects), Brazil, Araucária
Foundation, Brazil, and IFC (Catarinense Federal Institute).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Barbosa and Y. Zohar (Eds.): SBMF 2023, LNCS 14414, pp. 113–130, 2024.
https://doi.org/10.1007/978-3-031-49342-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49342-3_7&domain=pdf
https://doi.org/10.1007/978-3-031-49342-3_7

114 T. Possato et al.

Discrete Event Systems (DESs) [6] models have contributed fairly to the
mission of making correct-by-construction solutions. A DES defines a class of
systems whose behavior cannot be represented by equations, as it evolves asyn-
chronously on time. In this case, theoretical models such as Finite State Machines
(FSMs) appear as an option that allows identifying, representing, and processing
complex properties of systems, such as concurrency, distribution, and parallelism,
by using intuitive interfaces that abstract solid mathematical background [9,36].

When a system is modeled as an FSM, the objective is to synthesize sequences
of events to be allowed under control. It is assumed that events occur sponta-
neously in the system (also known as plant), and they have to be externally coor-
dinated by a properly programmed dedicated hardware (such as microcontroller
or Programmable Logic Controller (PLC)). A formal approach that automates
the synthesis of controllers from FSMs is the Supervisory Control Theory (SCT)
[29], which defines a mature mathematical method for extracting controllers from
higher-level models [8].

Despite its practical relevance and formal background, the SCT is limited
in converting synthesized controllers into implementable code. This depends
on code generation tools for different synthesis architectures and modeling
resources. There are some tools for code generation, such as DESTool [20], lib-
FAUDES [20], DESLAB [7], CIF [5], Nadzoru [21], UltraDES [2]. However, they
work only in combination with the specific modeling tool that implements it,
which in its turn does not usually gather all the resources needed to guide
the entire controller project, from conception through modeling, simulation,
synthesis, model-checking, code generation, implementation, and monitoring.
Furthermore, existing approaches usually focus on the implementation of PLC
[4,10,12,13,16,18,28,32–35], and do not include outputs for higher-level data
science-oriented languages, such as Python.

A tool that gathers many functionalities for the entire development of a con-
troller is Supremica [1]. This tool provides an intuitive modeling environment
and a complete set of synthesis algorithms either for monolithic, modular, incre-
mental, or variable-based synthesis. Supremica also provides a modular view
of how models are related so that they can be separated accordingly. Model-
checking resources and simulation functions are also available to allow empirical
check of the correctness of models and constraints [8,17,30]. Supremica also
provides some output formats, such as XML, but (at least in its free release)
does not export models in implementable code, such as C, Python, or other
hardware-compatible forms for PLC or microcontrollers, limiting its usefulness.

This paper introduces the DEScMaker tool [22], which is designed to gener-
ate C code from correct-by-construction controllers designed, synthesized, and
checked in Supremica. From the Supremica’s output controller, DEScMaker
reads, interprets, and organizes this file and constructs the equivalent infras-
tructure in C, which can be directly transferred to compatible hardware. The
three-dimensional implementation architecture of [28] is adopted for the con-
version of FSM into C code, where supervisors, event handling, and physical
integration are addressed in a distinct way. The code resulting from DEScMaker

Automated Code Generation for FSM Controllers 115

can be compiled and tested on a computer prior to deployment, serving as a tool
for simulation, validation, and previsualization of the effect of the joint solution.

An analogous tool [23] to generate Python code, with the same functionalities
as DEScMaker, is in the final stages of development and will be omitted for
brevity.

The remainder of the manuscript is organized as follows. Section 2 presents
the background of DESs, FSMs, SCT, and LMC. Section 3 details the proposed
tool, which is illustrated in Sect. 4. Finally, Sect. 5 discusses some conclusions
and perspectives on future research.

2 Foundations of Discrete Event Systems

DESs are systems that evolve according to the unexpected occurrence of discrete
events at irregular, possibly unknown, intervals [6]. They oppose to system whose
evolution depends continuously on time. For example, a discrete event could be
pushing a button, a component arrival, a disturbance or set-point change in a
control system, etc.

Designing a system as DES helps to understand it and find ways to improve
it. In general, DES models are created using the notion of strings formed with
events taken from an alphabet Σ. Σ∗ denotes the set of all finite strings formed
with events in Σ, including the empty string ε. Any subset L ⊆ Σ∗ is called a
language. Two strings s, t ∈ Σ∗ can be concatenated as st and the prefix-closed
L of a language L is the set of all prefixes of L, that is, L = {s ∈ Σ∗ | st ∈
L for some t ∈ Σ∗}.

FSMs are acceptable mechanisms to represent languages. An FSM is a 5-
tuple G = (Σ,Q, q◦, Qm,→), where Σ is the set of events, Q is the set of states,
→⊆ Q × Σ × Q is the transition relation, q◦ is the initial state, and Qm is the
set of marked states that represent tasks completed by the DES modeled by G.

It is usual for FSMs to be exposed graphically. For two any states q1, q2 ∈ Q,
q1

σ→ q2 denotes a transition from the state q1 to q2 with the event σ ∈ Σ. The
same notation can be generalized to strings s ∈ Σ∗, that is, q1

s→ q2 means that
q2 is reached from q1 with s, while G

s→ q means that a string s is possible in G,
from its initial state.

The language generated by G is denoted by L(G) ⊆ Σ∗ and defined as
L(G) = {s ∈ Σ∗ | G

s→ q ∈ Q}. It represents the set of all strings of events
that can occur in G. Differently, Lm(G) ⊆ L(G) is defined as Lm(G) = {s ∈
Σ∗ | G

s→ q ∈ Qm} and denotes the language marked by G, i.e., its strings that
end up in completed tasks.

As a DES is usually formed by a set J = {1, · · · ,m} of components, it is
convenient to design each of them as an FSM Gj , for j ∈ J , and com-
bine them by synchronous composition (denoted ‖). Given two FSMs, G1 =
(Σ1, Q1, q

◦
1 , Q

m
1 ,→1) and G2 = (Σ2, Q2, q

◦
2 , Q

m
2 ,→2), define G1‖G2 = 〈Σ1 ∪

Σ2, Q1 × Q2, (q1◦, q2◦), Q1
m × Q2

m,→〉, where → is constructed as follows:

– (q1, q2)
σ→ (q1′, q2′) if σ ∈ Σ1 ∩ Σ2, q1

σ→ q1
′, and q2

σ→ q2
′ ;

116 T. Possato et al.

– (q1, q2)
σ→ (q1′, q2) if σ ∈ Σ1 \ Σ2, and q1

σ→ q1
′ ;

– (q1, q2)
σ→ (q1, q2′) if σ ∈ Σ2 \ Σ1, and q2

σ→ q2
′ ;

– undefined, otherwise.

In words, events enabled by both G1 and G2 are merged, while events enabled
by only one FSM and unknown by the other are interleaved in any order. All
other cases are undefined, e.g., an event may be enabled by one FSM, and known
but not enabled by the other case, which implies that the transition is considered
undefined and disabled upon composition. A state is marked in a composition if
the corresponding combination of states is also marked in the source FSMs.

2.1 DES Control

A DES often includes n ≥ 1 components that are expected to work together.
Each component can be modeled by an FSM Gi, and the so-called open-loop
behavior is then given by the composition G = G1‖ . . . ‖Gn, which is called the
plant. In conjunction, the FSMs Gi are expected to interact with each other,
and it is the role of a controller to define how and when they do. An approach
that allows DES controllers to be automatically computed from a set of FSMs
is the SCT [29], as long as control specifications are provided.

Specifications are rules that restrict actions in G, such as imposing priority
on one component over another. Analogously to G, a specification E j can also
be modularly exposed so that E = E1‖ . . . ‖Em, for m ≥ 1, is the general
specification model. It can be joined to Gto form the desired behavior under
control, i.e., a sub-behavior of the open-loop denoted K = G‖E. Observe that,
therefore, E must only restrict Gwithout creating any new behavior.

From K, a controller can be calculated (or synthesized). This operation fur-
ther considers the controllable nature of the events, which is formally expressed
by partitioning the set of events of Ginto Σ = Σc∪̇Σu. Events in Σc can be
inhibited in G, while those in Σu cannot be prevented directly by the controller.

Then, K is said to be controllable with respect to Gif, for all s ∈ Σ∗
G and all

μ ∈ Σu, whenever
K

s→ xK and G
s→ xG

μ→ xG
′,

there exists xK
′ ∈ QK , such that

K
s→ xK

μ→ xK
′.

That is, K is controllable if it allows the uncontrollable events whenever
they are also allowed by the plant. When the model K is not controllable, it
can be reduced iteratively to its largest controllable (supremal) submodel. This
computation is called synthesis in SCT, and supC(K , G) is the usual notation
of the result. In practice, supC(K, G) represents the most permissive behavior
possible to be imposed by control on Gwhile complying with controllability and
the specification. If supC(K, G) is also nonblocking [6], it is said to be optimal.

Automated Code Generation for FSM Controllers 117

Implementing the FSM that models supC(K, G) has advantages compared to
empirical programming because it automates manual tasks by involving modular,
usually simple, design tasks, which tends to increase development and mainte-
nance speed, especially when the control logic changes frequently.

2.2 Modular Synthesis

For many applications, it is reasonable to design the plant model of a DES as a
set of independent components to be coordinated by the controller according to
multiple specifications, also constructed modularly. When these multiple plants
and specifications are synchronized and the result is a single controller, the
solution is said to be monolithic.

In monolithic synthesis, the state-space explosion problem may become a
barrier for SCT to be adopted in the industry. Modularisation [19,27,31] is an
alternative to simplify synthesis by exploiting subsets of a few components, which
hopefully reduces the computational effort necessary to obtain the controller.

The tool presented in this paper supports the generation of code for both
monolithic and Local Modular Controllers (LMC) [27]. In LMC, each specifica-
tion leads to a local controller, which is calculated using only plants affected by
the events of the specification.

Definition 1. Let Ei, for i ∈ I = {1, · · · ,m}, be specifications modeled with
events in ΣEi ; and Gj , for j ∈ J = {1, · · · , n}, be asynchronous plants designed
with events in ΣGj . For i = 1, · · · ,m, the local plants Gloc

i , associated with each
specification Ei, are Gloc

i = ‖j∈Ji
Gj , such that Ji = {j ∈ J | ΣGj ∩ ΣEi �= ∅}.

In words, each local plant is associated only with the plants restricted by
Ei. Upon synthesis, the LMC creates a set of local controllers Sloc

i that are indi-
vidually nonblocking. However, the conjunction of controllers can be blocking,
even when individually nonblocking. In this case, the controllers are said to be
conflicting. In [27] and older results, there are conditions that guarantee the non-
conflict of local controllers, which we hide here for the sake of brevity. When the
non-conflicting condition is achieved, the joint action of local controllers over the
plant is optimal. That is, if the set {Sloc

i , i = 1, · · · ,m} is non-conflicting, then
S = ‖m

i=1S
loc
i , for S modeling supC(K , G).

3 The DEScMaker Implementation

The DEScMaker [22] is a tool programmed in Python that receives a Supremica
file as input and exports a directory with a project in C. The input file must
contain at least one synthesized supervisor, which implies that it also supports
modular projects of control. The directory with the generated code is organized
to allow the quick implementation of the project and the easy replacement of the
supervisor’s files in case of any modeling change. The directory and file structure
generated by DEScMaker can be found in Appendix 1.

118 T. Possato et al.

Figure 1 provides a visual representation of the flow around code generation.
DEScMaker must be called from the command line, indicating the path of the
Supremica file to be processed and the name of the output file. DEScMaker
then scans the file, identifies the supervisors, and builds the output project.
The Supremica’s file is structured in XML format, although it is saved with the
extension ‘.wmod’. This file contains elements and attributes to represent events,
plants and supervisors. Within each supervisor, there are other nested elements
to represent events and transitions. After identify the supervisors, events and
transitions, DEScMaker use the class Template, from Python strings, to make
string substitutions in the templates and save the code. The generated project
can be compiled and executed. Depending on the target platform, moving the
files to a specific structure may be necessary. The user can automate this task
creating a custom script.

Fig. 1. Usage flow of DEScMaker, which analyses the Supremica file, fills in templates
and generates a C project.

The proposed structure for code generation is based on the hierarchy pre-
sented by [28], which is adapted and shown in Fig. 2. The automatically generated
code is separated into two main blocks, the supervisors and the event handler,
which will be discussed later. In the user defined area, the uncontrollable events
are transmitted to the event handler, and the actions associated with the events,
usually controllable events, are defined.

3.1 The Supervisor Structure

Supervisors are represented through linked lists, with structures representing
events, states, and transitions. These structures are linked to allow access and
navigation through the automaton. A library enables operations to be performed
on the supervisors, with functions to add a callback function to each event and
check if an event is enabled, among other functionalities. Each event can have
an associated callback function that is executed whenever the event is executed.
The generated code does not perform dynamic memory allocation. Thus, it is
safer to implement on microcontrollers with limited memory.

Logically, a supervisor is represented by a structure that points to an initial
state, the current state, the last state, and an alphabet. The alphabet is a list

Automated Code Generation for FSM Controllers 119

Fig. 2. Proposed structure for the operation of the generated code. At the top is the
automatically generated code, highlighting the supervisors and the event handler. In
the center is the user area, with functions specific to the target platform.

of all the events of the supervisor. A state has a list of transitions. A transition
has the target state and an associated event. The event has a type (controllable
or uncontrollable) and an associated action callback. Figure 3 illustrates these
relationships.

Fig. 3. Crow’s foot entity relationship diagram for the structures of a supervisor.

120 T. Possato et al.

The structure representing a state has a variable, to indicate whether it is
the initial, and a pointer to a list of transitions. It is from this list of transitions
that the program searches for enabled events. The list of transitions points to
the first transition of the state. The next transitions are associated with the
transition structure itself. In addition, the transition has a pointer to the event
that triggers it and to the target state.

An event, in turn, is represented by a structure with an event type (con-
trollable or uncontrollable), id, name, and a pointer to an action function. This
function is associated with the event in the user area at the start of the pro-
gram. It is important to note that the events are global and not linked directly
to a supervisor. This is why there is only one event structure, even using the
modular approach. Appendix 2 shows some snippets of the generated code, with
the creation, filling and linking of the structures that represent the FSM. The
event handler is proposed to check whether an event is enabled and make the
transitions in the automata accordingly.

3.2 The Event Handler

The event handler manages the events of the controller. For the correct opera-
tion of the proposed code, every event must be submitted to the event handler
through the “trigger event” function. The event handling checks whether the
event is enabled by supervisors. If enabled, it is executed. Executing an event
means making the transitions in the FSM, calling the function associated with
the event action, and managing the controllable events enabled in the plant.
Figure 4 presents a flow chart to explain the operation of the event handler,
including its interaction with plant and supervisors.

The modular control approach is incorporated into the project in the event
handler. It is implemented through the list of supervisors, in “src/supervisors/su-
pervisor list.c”. This allows the event handler to check that the event is enabled
on all supervisors before executing it. If an event is not enabled in a supervisor,
then it is not enabled in the plant, which materializes the idea of event disabling
for the conjunction of modular controllers.

3.3 The User Area

The user area includes the functions for interfacing with the physical plant,
defined specifically for each target platform. In the Interface block, the process
signals are read, converted into uncontrollable events, and transmitted to the
event handler. In the Event actions block, functions are created with the specific
action that should be executed whenever an enabled event is handled. These
functions must be associated with the events. Usually, each controllable event has
an associated action, such as turning on or off a digital output. Section 4 presents
a case study in which inputs and outputs are read and controlled remotely, using
the Modbus TCP protocol.

Automated Code Generation for FSM Controllers 121

Fig. 4. Flowchart for the event handler operation.

4 Case Study

A case study was implemented to illustrate the proposed tool. The experimental
plant, shown in Fig. 5, consists of conveyors, sensors, a control panel, and a
Two-Axis Pick & Place arm. The arm has sensors to indicate if the axes are
moving and if there is a grabbed workpiece. The Factory I/O1 simulator was
used to represent the plant and implement the controller. This tool reproduces
by software the same conditions as a real plant, in terms of devices, hardware,
communication channels and protocols, such as Modbus TCP used here, and
many other resources. Yet, it avoids having to maintain the real infrastructure.
A variety of scenarios can be constructed using the Factory I/O tool within a
short period of time and at low costs, so that this becomes a viable strategy for
control engineering practice and test.

The operation consists of moving the workpieces from one conveyor to
another. When the start (S3) button is pressed, the conveyor 1 (G1) turns on.
When sensor 1 (S1) detects an item, conveyor 01 is turned off. Then the arm
moves down the Z-axis (G3). When the sensors grab (S5) detects the item, it
activates the grab (G5), moves up the Z-axis and moves the item to the other
conveyor via the X-axis (G4). When it reaches the destination, it turns off con-

1 https://factoryio.com.

https://factoryio.com

122 T. Possato et al.

Fig. 5. Experimental plant for demonstration.

veyor 2 (G2), moves the item down to sensor 2 (S2), and releases it. When
released, it turns on conveyor 2 and returns the arm. In parallel, as soon as
the workpiece is grabbed and the Z-axis moves up, it turns on the conveyor 1.
Sensors S6 and S7 indicate whether the Z and X axes are moving.

4.1 Plant Modeling

Figure 6 shows the automata modeling each equipment of the system presented in
Fig. 5. Models GSI , for I = 1, 2, 3, 4, 5, represent the behavior of the respective
sensor SI . The models GSJ , for J = 6, 7, represent the respective sensor SJ ,
which indicates, respectively, whether the Z and X axes are moving and paused.
Finally, each GK , for K = 1, 2, 3, 4, 5, models of the respective actuator or motor
K. Event tI indicates that sensor SI has been triggered; events mJ represents
that the axis is moving, while pJ indicates that the axis is paused; events sK
represent the commands that activate actuators K and events fK represent their
switching off. It has been assumed that Σc = {sK , fK}, while Σu = {tI ,mJ , pJ}.
The composition G = GSI‖GSJ ‖GK is an automaton with 128 states and 1536
transitions.

GSI tI GSJ

mJ

pJ

GK

sK

fK

Fig. 6. Plant models.

4.2 Specification Modeling

The following specifications (see Fig. 7) are considered to coordinate the plant.

Automated Code Generation for FSM Controllers 123

E1: Coordinate the start of conveyor 1 according to the start button.
E2: Turn off conveyor 1 every time an item arrives at sensor 1.
E3: Disable the activation of the Z-axis whenever the X-axis is moving.
E4: Coordinate the Z-axis drive to pick up and drop the workpiece on the

conveyors.
E5: Elevate the Z-axis as the grab picks up or releases a workpiece.
E6: Move the X-axis forward as a workpiece is picked up and the Z-axis rises.
E7: Move the X-axis back as a workpiece is released and the Z-axis rises.
E8: Grab a workpiece whenever the grab sensor detects it.
E9: Release a workpiece whenever sensor 2 detects it.

E10: Turn on conveyor 2 whenever a workpiece is dropped on it.
E11: Turn off conveyor 2 whenever the Z-axis moves down to unload a workpiece.

s1

s2

s2

s2

s2
s3

s3

s3

s3

s3

s3
s4s4

s4

s4

s4

s4

s4

s4

s4

s4

s4

s5

s5

s5

s5

s5

s5 s5s5s5

s5

f1

f2

f3

f4

f4

f4f4

f4
f4

f4

f4

f5

f5

f5

f5

f5f5

f5
f5

f5

p6
p6

p6

p6

p6

p6

p6

p6

p6

p6

m7
m7

p7

p7

p7

p7

p7

p7

p7

t1 t1

t1

t1

t1

t1

t1

t2
t2

t2
t2

t2

t3

t3 t3 t3

t4

t4

t4

t4

t5
t5

E1 E2 E3
E4

E5 E6 E7 E8

E9 E10 E11

Fig. 7. Specification models.

The composition E = ‖11i=1E
i results in an automaton with 37344 states and

447784 transitions.

4.3 Synthesis

For the synthesis of the controller, the input model K = G‖E resulted in 2507796
states and 22774582 transitions. This gives an idea of the computational com-
plexity to compute the controller, as the synthesis algorithm iterates through the
state space searching for controllability and non-blocking violations. Although
this operation is polynomial on the state space of K, the model K itself grows
exponentially with the size of the systems, which justifies LMC as a much simpler
non-exponential strategy.

124 T. Possato et al.

In this example, we first apply the monolithic synthesis over K. It turns out
that, for the example, K reveals to be controllable and non-blocking, so the syn-
thesized supervisor is the K model itself. Due to the high number of states and
transitions, which would complicate the implementation, its maintainability, and
make the hardware solution more expensive, LMC was adopted. This resulted in
11 local supervisors, where the worst-case modular synthesis explored 40 states,
in comparison with 2507796 in the monolithic case. It turns out that the com-
position ‖11i=1S

i returned 2507796 states, therefore the same as in the monolithic
case, which means that the LMC solution is optimal, i.e. ‖11i=1S

i = K.

4.4 Conversion and Control of the Plant

After synthesizing the supervisors, the Supremica file was uploaded to DESc-
Maker for code generation, which was embedded in a PlatformIO2 project for
the ESP323 platform. The routines for connecting to the Wi-Fi network, con-
necting to the Modbus TCP server (Factory I/O), and the functions for reading
the inputs and controlling the outputs have been inserted in the user section.
The user section completes the three-level hierarchy according to Fig. 2. Figure 8
demonstrates the architecture of the case study, showing the connection between
the microcontroller and the simulator.

Fig. 8. Diagram illustrating the case study. The ESP32 and the computer are connected
to the Wi-Fi network, allowing communication between the microcontroller and the
simulator through the Modbus TCP protocol.

The average real time (n = 10) to generate the files, measured with the Linux
’time’ tool, was 373 ms. The ESP32 application’s memory usage consists of: The
supervisor library, which uses 214 bytes of flash, and the event handler, which
occupies 176 bytes of flash and is independent of the size of the FSM. The
events occupy 344 bytes of flash and 344 bytes of RAM. The supervisors, in
total, consume 9964 bytes of flash and 9964 bytes of RAM. Totaling 10698 bytes
of flash and 10308 bytes of RAM.4

2 https://platformio.org.
3 https://espressif.com/en/products/devkits.
4 In order to measure the use of memory, the Inspect functionality of PlataformIO

was used, available at: https://docs.platformio.org/en/stable/home/index.html#
project-inspect.

https://platformio.org
https://espressif.com/en/products/devkits
https://docs.platformio.org/en/stable/home/index.html#project-inspect
https://docs.platformio.org/en/stable/home/index.html#project-inspect

Automated Code Generation for FSM Controllers 125

The complete case study code can be found in [24], which also includes the
Factory I/O simulation file and the file with the supervisor modeled in Suprem-
ica. In “application/src/main.cpp,” it can be seen that there is no control logic,
only the reading of the digital inputs, with the triggering of the respective uncon-
trollable events and the functions to control the outputs associated as “action
function” to the controllable events. A video of the plant operation under control
can be accessed at [25].

This case study illustrates how DEScMaker converts a FSM into functional
code. Additional steps were required for the practical application of the generated
code in the proposed scenario, such as the connection via Modbus TCP to the
simulator and the Wi-Fi connection. This additional effort is necessary since the
code generated is generic and only deals with supervisors and event handling. If
the actuators and sensors were connected directly to the microcontroller board,
other adjustments would be required for implementation.

5 Discussions and Perspectives

This paper presented DEScMaker, a tool for creating C code from controllers
that have been designed, synthesized, and verified in Supremica. It is capable of
generating code for monolithic and LMC controllers. To demonstrate its practi-
cality, a case study was conducted.

Compared to [3], DEScMaker has a more straightforward structure and is
more intuitive to use. It is also easier to integrate with existing projects as it
does not rely on third-party libraries. The design of the project also facilitates the
implementation of hybrid control by allowing the user to control the execution
of the control algorithms in the user area.

The event handler is a good way to interconnect the supervisor and the
physical plant. At the same time, it acts as an interface between these two lay-
ers, which allows replacement, for example, the implementation structure of the
supervisors without the need for user code refactoring. In the case of a decen-
tralized architecture, with the supervisors’ state machines deployed on different
hardware, the event handler is the agent that communicates with these external
devices.

The tool that generates code in Python [23] has the structure of operation
and use similar to DEScMaker. The same use case presented in Sect. 4 was also
implemented in Python [26], and the same results were achieved. The Python
implementation is easier to handle, test, and debug since the code compilation
step is suppressed. Furthermore, it is data science-oriented and can straightfor-
wardly gather cognitive skills for SCT.

Due to the execution nature of the event handler, interleaving is not yet
addressed in this paper and is recommended for future work. The DEScMaker,
as presented, is only designed to deal with ordinary automata. Other concepts,
such as timed automata, FSM delay, or statecharts, are not yet part of the scope
of this work and may be added in the future. Finally, the use of tables instead
of linked lists to represent transitions will be investigated and compared.

126 T. Possato et al.

Appendix 1 Directory Tree of Generated Code

Figure 9 shows the representation of the directory and file structure generated
by DEScMaker.

Fig. 9. Directory tree of generated code.

In this case, the input file has only one supervisor, named “sup”, which
results in the files “sup.c” and “sup.h” under “src/supervisors/”. If the file has
two or more supervisors, as in the modular approach, all code files and headers
are placed in the folder “supervisors”.

Appendix 2 Code Generation Example

Consider the FSM in Fig. 10, corresponding to a supervisor with four states,
seven transitions, and three different events. The Supremica file with this
automaton was submitted to the DEScMaker, which created the code structure
and saved it in “src/supervisors/sup.c”.

Fig. 10. Simple example of FSM for code generation.

Automated Code Generation for FSM Controllers 127

Variables of type Alphabet are declared to create the list of events observed
by the supervisor. This creates a variable with reserved memory space for an
Alphabet structure, but its fields have no values assigned yet. Next, the alphabet
variables are initialized and linked. This creates a list where it is possible to
navigate from the first to the last event in the alphabet. In this example, the
last element of the ‘sup e3 evt2’ variable is NULL because there are no more
elements in the list. This pattern also repeats when creating the other lists. The
listing 1.1 shows the code for declaring, initializing, and linking the alphabet.

Listing 1.1. Alphabet creation and initialization.
#include "../ event_handler/events.h"
#include "sup.h"
// Declares the Alphabet variables
const Alphabet sup_e1_evt0;
const Alphabet sup_e2_evt1;
const Alphabet sup_e3_evt2;
// Initializes and links Alphabet variables .
const Alphabet sup_e1_evt0 = {&e1, &sup_e2_evt1 };
const Alphabet sup_e2_evt1 = {&e2, &sup_e3_evt2 };
const Alphabet sup_e3_evt2 = {&e3, NULL};

Then the variables of type State, for representing the FSM states, are declared
as in Listing 1.2.

Listing 1.2. States creation.
const State sup_q0;
const State sup_q1;
...

Once the alphabet and states are defined, the transition lists can be created
and linked. Listing 1.3 exemplifies the transitions of the states q0 and q1.

Listing 1.3. Creating and linking transitions.
// Transitions for state q0
const Transition sup_q0_t0;
const Transition sup_q0_t1;
const Transition sup_q0_t0 = {&e1, &sup_q1 , &sup_q0_t1 };
const Transition sup_q0_t1 = {&e2, &sup_q2 , NULL};
// Transitions for state q1
const Transition sup_q1_t0;
const Transition sup_q1_t1;
const Transition sup_q1_t0 = {&e1, &sup_q1 , &sup_q1_t1 };
const Transition sup_q1_t1 = {&e2, &sup_q3 , NULL};
...

The states are initialized in Listing 1.4, now filled with all the necessary
information, especially the pointer to the corresponding list of transitions.

Listing 1.4. Filling in the states.
const State sup_q0 = {true , SUP_DEBUG_STR("q0"), &sup_q0_t0 };
const State sup_q1 = {false , SUP_DEBUG_STR("q1"), &sup_q1_t0 };
...

Finally, Listing 1.5 shows the structure of the supervisor, which will compose
the list of supervisors (in the file “src/supervisors/supervisor list.c”) used by the
event handler to query the event status and perform transitions. The variable
of type ’Supervisor’ is declared and initialized with pointers to the initial state,

128 T. Possato et al.

the current state, the last state (NULL because it has not yet been executed),
the first item in the event list, and the supervisor’s name.

Listing 1.5. Creating and linking the supervisor.
Supervisor sup = {&sup_q0 , &sup_q0 , NULL , &sup_e1_evt0 , "sup"};

References

1. Akesson, K., et al.: Supremica (2019). http://www.supremica.org/
2. Alves, L.V., Martins, L.R., Pena, P.N.: UltraDES - a library for modeling, analysis

and control of DES. IFAC-PapersOnLine 50, 5831–5836 (2017). https://doi.org/
10.1016/j.ifacol.2017.08.540

3. Assmann, J.V., Gotz, M., Muller, I., Rettberg, A.: Distributed embedded platform
for controllers following the SCT. In: International Conference on Electrical, Com-
munication, and Computer Engineering, pp. 1–6. IEEE (2021). https://doi.org/10.
1109/ICECCE52056.2021.9514113

4. Basile, F., Chiacchio, P.: On the implementation of supervised control of discrete
event systems. IEEE Trans. Control Syst. Technol. 15, 725–739 (2007). https://
doi.org/10.1109/TCST.2006.890281

5. van Beek, D.A., et al.: CIF 3: model-based engineering of supervisory controllers.
In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 575–580.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 48

6. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 3rd edn.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72274-6

7. Clavijo, L.B., Basilio, J.C., Carvalho, L.K.: DESLAB: a scientific computing pro-
gram for analysis and synthesis of discrete-event systems. IFAC Proc. Vol. 45,
349–355 (2012). https://doi.org/10.3182/20121003-3-MX-4033.00056

8. Fokkink, W., Goorden, M., van de Mortel-Fronczak, J., Reijnen, F., Rooda, J.:
Supervisor synthesis: bridging theory and practice. Computer 55, 48–54 (2022).
https://doi.org/10.1109/MC.2021.3134934

9. Fokkink, W., Goorden, M., van de Mortel-Fronczak, J., Reijnen, F., Rooda, J.:
Supervisor synthesis: bridging theory and practice. Computer 55(10), 48–54 (2022)

10. Gobe, F., Timmermanns, T., Ney, O., Kowalewski, S.: Synthesis tool for automa-
tion controller supervision. In: International Workshop on Discrete Event Systems,
pp. 424–431. IEEE (2016). https://doi.org/10.1109/WODES.2016.7497883

11. Harrison, R., Vera, D., Ahmad, B.: Engineering methods and tools for cyber-
physical automation systems. Proc. IEEE 104(5), 973–985 (2016)

12. Hasdemir, I.T., Kurtulan, S., Goren, L.: An implementation methodology for
supervisory control theory. Int. J. Adv. Manuf. Technol. 36, 373–385 (2008).
https://doi.org/10.1007/s00170-006-0843-5

13. Leal, A.B., da Cruz, D.L.L., da S. Hounsell, M.: Supervisory control implementa-
tion into programmable logic controllers. In: International Conference on Emerging
Technologies and Factory Automation, pp. 1–7. IEEE (2009). https://doi.org/10.
1109/ETFA.2009.5347090

14. Litchfield, S., Formby, D., Rogers, J., Meliopoulos, S., Beyah, R.: Rethinking the
honeypot for cyber-physical systems. IEEE Internet Comput. 20(5), 9–17 (2016)

15. Liu, Y., Peng, Y., Wang, B., Yao, S., Liu, Z.: Review on cyber-physical systems.
IEEE/CAA J. Automatica Sinica 4(1), 27–40 (2017)

http://www.supremica.org/
https://doi.org/10.1016/j.ifacol.2017.08.540
https://doi.org/10.1016/j.ifacol.2017.08.540
https://doi.org/10.1109/ICECCE52056.2021.9514113
https://doi.org/10.1109/ICECCE52056.2021.9514113
https://doi.org/10.1109/TCST.2006.890281
https://doi.org/10.1109/TCST.2006.890281
https://doi.org/10.1007/978-3-642-54862-8_48
https://doi.org/10.1007/978-3-030-72274-6
https://doi.org/10.3182/20121003-3-MX-4033.00056
https://doi.org/10.1109/MC.2021.3134934
https://doi.org/10.1109/WODES.2016.7497883
https://doi.org/10.1007/s00170-006-0843-5
https://doi.org/10.1109/ETFA.2009.5347090
https://doi.org/10.1109/ETFA.2009.5347090

Automated Code Generation for FSM Controllers 129

16. Ljungkrantz, O., Akesson, K., Richardsson, J., Andersson, K.: Implementing a con-
trol system framework for automatic generation of manufacturing cell controllers.
In: Proceedings 2007 IEEE International Conference on Robotics and Automation,
pp. 674–679. IEEE (2007). https://doi.org/10.1109/ROBOT.2007.363064

17. Malik, R., Åkesson, K., Flordal, H., Fabian, M.: Supremica-an efficient tool for
large-scale discrete event systems. IFAC-PapersOnLine 50, 5794–5799 (2017)

18. McCarthy, D., McMorrow, D., O’Dowd, N.P., McCarthy, C.T., Hinchy, E.P.: A
model-based approach to automated validation and generation of plc code for
manufacturing equipment in regulated environments. Appl. Sci. 12, 7506 (2022).
https://doi.org/10.3390/app12157506

19. Mohajerani, S., Malik, R., Fabian, M.: Compositional synthesis of supervisors in
the form of state machines and state maps. Automatica 76, 277–281 (2017)

20. Moor, T., Schmidt, K., Perk, S.: libFAUDES - An open source C++ library for
discrete event systems. In: 2008 9th International Workshop on Discrete Event Sys-
tems, pp. 125–130. IEEE (2008). https://doi.org/10.1109/WODES.2008.4605933

21. Pinheiro, L.P., Lopes, Y.K., Leal, A.B., Junior, R.S.U.R.: Nadzoru: a software tool
for supervisory control of DES. IFAC-PapersOnLine 48, 182–187 (2015). https://
doi.org/10.1016/j.ifacol.2015.06.491

22. Possato, T.: Automated code generator from Supremica to C (2023). bit.ly/3DTs-
CEu

23. Possato, T.: Automated code generator from Supremica to Python (2023). bit.ly/
3saIY99

24. Possato, T.: DEScMaker case study (2023). bit.ly/47w3zoA
25. Possato, T.: DEScMaker case study video (2023). bit.ly/3KFqELY
26. Possato, T.: DESPythonMaker case study (2023). bit.ly/3OD0haF
27. Queiroz, M.H.D., Cury, J.E.R.: Modular multitasking supervisory control of com-

posite discrete-event systems. In: 16th IFAC World Congress (2005)
28. de Queiroz, M., Cury, J.: Synthesis and implementation of local modular super-

visory control for a manufacturing cell. In: International Workshop on Discrete
Event Systems, pp. 377–382. IFAC (2002). https://doi.org/10.1109/WODES.2002.
1167714

29. Ramadge, P., Wonham, W.: The control of discrete event systems. Proc. IEEE
77(1), 81–98 (1989). https://doi.org/10.1109/5.21072

30. Reniers, M., van de Mortel-Fronczak, J.: An engineering perspective on model-
based design of supervisors. IFAC-PapersOnLine 51, 257–264 (2018). https://doi.
org/10.1016/j.ifacol.2018.06.310

31. Rosa, M., Teixeira, M., Malik, R.: Exploiting approximations in supervisory con-
trol with distinguishers. In: International Workshop on Discrete Event Systems.
Sorrento, Italy (2018)

32. Silva, Y.G., de Queiroz, M.H.: Formal synthesis, simulation and automatic code
generation of supervisory control for a manufacturing cell. In: Symposium Series
in Mechatronics, pp. 418–426. ABCM (2010). https://www.abcm.org.br/anais/
cobem/2009/pdf/COB09-1992.pdf

33. Uzam, M.: A general technique for the plc-based implementation of RW supervi-
sors with time delay functions. Int. J. Adv. Manuf. Technol. 62, 687–704 (2012).
https://doi.org/10.1007/s00170-011-3817-1

34. Vieira, A.D., Cury, J.E.R., de Queiroz, M.H.: A model for PLC implementation of
supervisory control of DES. In: International Conference on Emerging Technolo-
gies and Factory Automation, pp. 225–232 (2006). https://doi.org/10.1109/ETFA.
2006.355436

https://doi.org/10.1109/ROBOT.2007.363064
https://doi.org/10.3390/app12157506
https://doi.org/10.1109/WODES.2008.4605933
https://doi.org/10.1016/j.ifacol.2015.06.491
https://doi.org/10.1016/j.ifacol.2015.06.491
https://doi.org/10.1109/WODES.2002.1167714
https://doi.org/10.1109/WODES.2002.1167714
https://doi.org/10.1109/5.21072
https://doi.org/10.1016/j.ifacol.2018.06.310
https://doi.org/10.1016/j.ifacol.2018.06.310
https://www.abcm.org.br/anais/cobem/2009/pdf/COB09-1992.pdf
https://www.abcm.org.br/anais/cobem/2009/pdf/COB09-1992.pdf
https://doi.org/10.1007/s00170-011-3817-1
https://doi.org/10.1109/ETFA.2006.355436
https://doi.org/10.1109/ETFA.2006.355436

130 T. Possato et al.

35. Vieira, A.D., Santos, E.A.P., de Queiroz, M.H., Leal, A.B., de Paula Neto, A.D.,
Cury, J.E.R.: A method for PLC implementation of supervisory control of DES.
IEEE Trans. Control Syst. Technol. 25, 175–191 (2017). https://doi.org/10.1109/
TCST.2016.2544702

36. Yang, J., Tan, K., Feng, L., El-Sherbeeny, A.M., Li, Z.: Reducing the learning
time of reinforcement learning for the supervisory control of discrete event systems.
IEEE Access 1, 1–14 (2023)

https://doi.org/10.1109/TCST.2016.2544702
https://doi.org/10.1109/TCST.2016.2544702

AutomaTutor: An Educational Mobile
App for Teaching Automata Theory

Steven Jordaan, Nils Timm(B), and Linda Marshall

Department of Computer Science, University of Pretoria, Pretoria, South Africa
{sj.jordaan,nils.timm,linda.marshall}@up.ac.za

Abstract. Automata theory is one of the core theories in computer sci-
ence because it allows scientists and practitioners to understand the com-
plexity of computational problems, and thus, to develop efficient solu-
tions to them. Several formal methods such as model checking are based
on automata theory. Automata theory has traditionally been taught
on a theoretical level. Students learned to define abstract machines via
pen and paper without the possibility to actually run these machines.
Over the years several automata simulators have been introduced and
employed in teaching automata theory. These tools offer rich features for
designing and manipulating automata, but do not provide pedagogical
guidance to the user. In this paper we present the AutomaTutor, an edu-
cational tool on automata theory that particularly targets learners with-
out prior knowledge of theoretical computer science. The tool is a mobile
application that offers guided learning by solving interactive exercises.
Exercises can be randomly generated or customised by an educator. The
user-friendly touch interface allows learners to solve exercises by con-
structing finite automata or regular expressions that match with given
languages. Learners receive immediate feedback. The application’s focus
on user experience and visualisation aims to make it accessible regardless
of the technological background of the user. Our target is that the tool
stimulates the students in their learning activities, and thus, leads to an
improved understanding of automata theory and an increased interest in
formal and theoretical aspects of computer science.

1 Introduction

Automata theory is the study of abstract machines and problems that can be
solved by them. It is one of the core theories in computer science because it
allows scientists and practitioners to understand the complexity of computational
problems, and thus, to develop efficient hardware or software solutions to them.
Several formal methods such as model checking are based on automata theory.

An integral part of teaching practical computer science is to make use of
technology such as software development kits and tools for the visualisation of
software components. Automata theory has traditionally been taught on a the-
oretical level. Students learned to define abstract machines via pen and paper
without the possibility to actually run these machines. Over the years several
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Barbosa and Y. Zohar (Eds.): SBMF 2023, LNCS 14414, pp. 131–140, 2024.
https://doi.org/10.1007/978-3-031-49342-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49342-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-49342-3_8

132 S. Jordaan et al.

automata simulators have been introduced and employed in teaching automata
theory [15,18,19,21]. These tools offer rich features for designing and manipu-
lating automata, but do not provide pedagogical guidance to the user. This may
overwhelm novice learners and discourage them from using the tools in their
learning activities.

In this paper we present the AutomaTutor, an educational tool on automata
theory that particularly targets learners without prior knowledge of theoretical
computer science. The tool is a mobile application that offers guided learning
by solving interactive exercises. It brings abstract automata to life and allows
students to get a practical experience of theoretical computer science. The appli-
cation’s focus on user experience and visualisation aims to make it accessible
regardless of the technological background of the user. The tool is split into two
major components: the tutorial and the sandbox.

The tutorial offers interactive exercises on finite automata and regular lan-
guages on different levels of difficulty. Exercises can be randomly generated or
customised by an educator. The user-friendly touch interface allows learners
to solve exercises by constructing automata or regular expressions that match
with given languages. Learners receive immediate feedback on each exercise. For
incorrect solutions feedback is provided in the sense of counterexample strings
that are incorrectly accepted or rejected. The tool generates such counterexam-
ples automatically. The tutorial also offers hints during exercises, providing users
with additional guidance without revealing the full solution.

The sandbox provides similar functionalities as existing automata editors.
While being less feature-rich than existing editors, the sandbox was designed
with a focus on simplicity and user-friendliness. The purpose of the sandbox is
to also offer a platform for experimental learning of automata theory. Learners
can create their own finite automata in an easy touch-based manner and they
can simulate runs of the automata for input strings. The sandbox visualises
simulation runs by highlighting the taken transitions and indicating whether the
run is accepting or rejecting.

From 2024 on the AutomaTutor will be officially used in teaching the under-
graduate module “Theoretical Computer Science” at the University of Pretoria.
The set of tutorial exercises will be further populated and aligned with the lec-
ture content. By using the application, students will have the opportunity to
enhance their understanding of automata theory without additional guidance
by an instructor. Our target is that the AutomaTutor stimulates the students
in their learning activities, and thus, leads to an improved understanding of
automata theory and an increased interest in formal and theoretical aspects of
computer science.

2 Related Work

The development of automata simulation tools started in the early 1960s [4]. A
review of tools that have been developed since then can be found in [2]. Simu-
lators can be classified into language-, table- and canvas-based tools. Language-
based tools [1,9,11] present automata as programs of a programming language.

AutomaTutor: An Educational Mobile App for Teaching Automata Theory 133

In table-based tools [7,8] automata can be constructed by means of a transi-
tion table. While these two kinds of tools lack visual features, the technological
advances in the 1990s allowed to introduce canvas-based simulators [5,12,14]
where users can draw automata as state-transition diagrams. Today canvas-based
tools are still the most popular ones with prominent examples such as JFLAP
[15] and JFAST [21]. Most simulators are desktop applications where user input
is performed via mouse and keyboard. In recent years, a number of mobile appli-
cations for automata simulation has been introduced. CMSimulator [3], FLApp
[13] and Automata Simulator [18] are mobile applications that allow a touch-
based construction and simulation of automata. Each of the above-mentioned
tools comes with a particular range of supported automata types, such as finite
automata, pushdown automata, Turing machines and transducers. Educators
have reported on successfully using simulation tools in teaching automata theory
at university level [16]. Using the tools required an instructor-guided approach
where the instructor had to manually create exercises to be solved with the tool.
In contrast, our AutomaTutor offers guidance by the tool itself. The exercises
are already integrated into the tool. They can be automatically generated and
graded, and the learner receives immediate feedback. Currently, our AutomaTu-
tor is limited to finite automata and regular expressions, and thus, does not offer
as rich features as alternative tools. During the development of the AutomaTu-
tor particular emphasis was put on following usability guidelines [6,10] in order
to make the application as user-friendly as possible, which is an aspect that is
typically not addressed in related work. Our work is loosely related to game-
based approaches to learn automata theory [17,20]. The approaches integrated
automata aspects into classical games such as Mastermind and Tower Defence.
In the proposed games the focus is more on the fun aspect than on comprehensive
learning.

3 The AutomaTutor

In this section we present the AutomaTutor, a mobile application for teaching
and learning automata theory. The application was designed with the purpose
to provide computer science students a guided and engaging learning experi-
ence. In the design of the application particular emphasis was put on usabil-
ity and feedback features. Moreover, generation features were integrated into
the application which include the automatic generation of random exercises.
After a brief tool overview we discuss the features of these types in separate
subsections. The AutomaTutor can be accessed via the following link: https://
sj-jordaan.github.io/masters-tool/. We recommend to use the application on a
mobile phone. The source code of the AutomaTutor is available under https://
github.com/SJ-Jordaan/masters-tool.

3.1 Overview

Upon first accessing the application, users are presented with a landing page
(Fig. 1a) that emphasises the tool’s experimental status and conveys appreciation

https://sj-jordaan.github.io/masters-tool/
https://sj-jordaan.github.io/masters-tool/
https://github.com/SJ-Jordaan/masters-tool
https://github.com/SJ-Jordaan/masters-tool

134 S. Jordaan et al.

for their engagement. They are then guided to a profile customisation inter-
face (Fig. 1b), which hints at forthcoming personalisation enhancements. Subse-
quently, users are ushered into the Tutor segment, where they receive a descriptive
overview of the ‘Experiment’ category (Fig. 1c). From here, they have the option to
transition to the ‘Exercises’ tab (Fig. 2a) to select their desired level. Upon select-
ing their avatar located at the top right corner, users are directed to their profile
page (Fig. 2b). From this interface, they have the option to either revert to the
Tutor segment or proceed to the Sandbox environment (Fig. 2c). As users delve
deeper into the application, they encounter one of its most essential features:

Fig. 1. Initial Application Journey.

Finite Automata Editor. The Finite Automata Editor is a pivotal feature of
the mobile application, meticulously designed to provide an intuitive and efficient
interface for users to interact with finite automata. The editor is implemented
in two distinct contexts within the application: the exercise interface and the
sandbox interface. Each interface encapsulates a range of functionalities, each
contributing to the overall usability of the application.

Exercises. Exercises are a crucial component of the tool, providing users with
opportunities to apply their knowledge and understanding of finite automata and

AutomaTutor: An Educational Mobile App for Teaching Automata Theory 135

Fig. 2. Navigating to Sandbox.

regular expressions. The exercises are designed to be diverse and challenging,
offering a range of question types that cater to different learning styles and
objectives. The tool supports exercises that involve providing a regular language,
either textually, as a regular expression, or as an automaton, and asking the
user to construct a corresponding regular expression, automaton, or perform a
conversion between the two. Another variant of the exercise requires the user to
provide a string that is contained within the given language. These exercises are
designed to test the user’s understanding of the core concepts and their ability
to apply this knowledge in practical scenarios.

3.2 Usability

Prioritising user experience, the application combines intuitive design with effi-
ciency. This section highlights features that enhance interaction with finite
automata and foster a conducive learning environment.

Adding, Removing, and Modifying Components. Both the exercise and
sandbox interfaces facilitate users to seamlessly add and modify transitions of
an automaton. In the exercise interface, the states, including initial and accept-
ing states, are predefined, and users can add or modify transitions between these
states by labeling them with appropriate symbols. In contrast, the sandbox inter-
face allows users to add, alter, and delete states and transitions using a context

136 S. Jordaan et al.

menu, providing a more flexible and advanced environment for creating and
modifying finite automata. Both interfaces provide adequately sized touch tar-
gets for the components of the automaton, ensuring sufficient spacing between
touch targets to minimise the risk of accidental inputs.

Re-Arranging Components. Both interfaces employ an automatic arrange-
ment algorithm for states and transitions within the editor to create a visually
appealing and organised layout for the automaton. When a state is repositioned,
the transitions connected to it automatically adjust their paths to maintain a
clear and uncluttered representation of the automaton. The sandbox interface
further enhances this feature by allowing users to lock the layout once they are
satisfied with the arrangement, providing a balance between automatic layout
optimisation and user control.

Zooming and Panning. Both interfaces automatically adjust the zoom level
and position of the automaton diagram to ensure that it fits nicely and is leg-
ible on the screen. The sandbox interface supports gesture-based zooming and
panning, which is a standard feature in modern mobile applications. It also auto-
matically adjusts the zoom level to fit all elements on the screen when states
are moved out of the interface’s bounds, enhancing the usability of the interface,
especially when working with larger automata.

Progress Tracking: The tool implements a progress tracking feature which
includes a timeline at the top of the exercise interface that shows users how
far they have progressed and how many questions they have answered correctly.
This feature allows users to gauge their progress, manage their time effectively,
and stay motivated.

3.3 Feedback

Feedback in this application serves as more than just a response, it is a proactive
tool that guides and informs the user’s learning journey. This section details the
feedback modalities, each designed to offer timely and constructive insights.

Hints. Hints, designed to scaffold problem-solving skills and alleviate user frus-
tration, play a crucial role within the application. The application presents hints
as textual prompts via a pop-up interface as seen in Figs. 3a. These hints, drawn
from a manually curated pool, offer users a variety of suggestions to guide their
problem-solving process.

Simulation. The Simulation (Fig. 3c) feature in the application is primarily
integrated within the sandbox. This allows users to construct automata and
simulate string inputs against them, fostering an active learning experience. The

AutomaTutor: An Educational Mobile App for Teaching Automata Theory 137

Fig. 3. Examples of Feedback.

automata simulation in the application utilises colour highlighting to indicate the
active state and transitions during the simulation. The application also incor-
porates an animation that signifies the reading of the next input symbol. An
accepted or rejected input is highlighted in green or red, respectively, providing
clear feedback to the user.

Performance Feedback: Upon completing an exercise, users are presented
with a summary of their performance. This feedback includes basic metrics such
as the number of submission attempts, time taken, and percentage correct (in
case some questions were left incorrect or unanswered). This information helps
users identify areas where they excelled and those where improvement is needed,
guiding their future learning efforts.

3.4 Generation

The generation features of the application encompass the creation of exercises
and the generation of counterexamples.

Random Exercise Generation. The tool employs algorithms to generate
random yet solvable exercises, ensuring a diverse range of tasks and providing
users with new challenges each time they engage with the exercises. Users have

138 S. Jordaan et al.

the option to select the difficulty scale and the number of questions, as well
as the types of questions to generate, allowing for a personalised and targeted
learning experience.

Counterexample Generation. The counterexample generation feature is a
critical component of the application, providing users with immediate, construc-
tive feedback upon the submission of their solutions. By comparing the user’s
solution to the memorandum solution, the application can generate counterex-
amples that highlight discrepancies in the user’s understanding of the problem.
This feedback is presented to the user in a clear, concise manner, accompanied by
audio-visual cues to indicate an incorrect solution. The application generates two
types of counterexamples: strings incorrectly accepted by the user’s solution and
strings incorrectly rejected by the user’s solution. A generated counterexample
is shown as a pop-up at the bottom of Fig. 3b.

4 Conclusion and Future Work

We presented a mobile application that can be used to construct and simulate
finite automata as well as to solve interactive exercises on automata theory and
regular expressions. In the design of the AutomaTutor emphasis was put on
usability and feedback features. The application guides users in their learning
activities without the need for additional intervention by an instructor. The ques-
tion pool of the AutomaTutor is currently small but the implemented generation
features allow to automatically generate random questions of several types. In
preliminary user experiments we asked computer science students at the Uni-
versity of Pretoria to solve automata theory exercises via pen and paper, via
the classical simulators as well as by using the AutomaTutor and to report on
their experiences and preferences. The majority of students favoured the guided
learning approach offered by the AutomaTutor. A more extensive experimen-
tal evaluation of the tool is in progress. From 2024 on the AutomaTutor will
be officially used in teaching the undergraduate module “Theoretical Computer
Science”. Our conjecture is that the use of the tool will allow students gain
a better understanding of the abstract topics of theoretical computer science.
Although automata theory is not a formal method on its own, it it one of the
core theories that is employed in several formal methods. Thus, with introduc-
ing our app we also intend to motivate and prepare students to study formal
methods at postgraduate level.

In its current version the AutomaTutor only includes exercises on finite
automata and regular expressions. As future work we are planning to extend
the application such that further types of automata such as pushdown automata
and Turing machines are supported. It is also planned to include Kripke struc-
tures and Büchi automata such that model checking subjects can be taught
via the tool. Moreover, based on student feedback the usability, feedback and
generation features of the AutomaTutor will be further improved.

AutomaTutor: An Educational Mobile App for Teaching Automata Theory 139

References

1. Chakraborty, P.: A language for easy and efficient modeling of Turing machines.
Prog. Nat. Sci. 17(7), 867–871 (2007)

2. Chakraborty, P., Saxena, P.C., Katti, C.P.: Fifty years of automata simulation: a
review. ACM Inroads 2(4), 59–70 (2011)

3. Chuda, D., Trizna, J., Kratky, P.: Android automata simulator. In: Proceedings of
the International Conference on e-Learning, pp. 80–4 (2015)

4. Coffin, R.W., Goheen, H.E., Stahl, W.R.: Simulation of a Turing machine on a dig-
ital computer. In: Proceedings of the November 12–14, 1963, Fall Joint Computer
Conference, pp. 35–43 (1963)

5. Cogliati, J.J., Goosey, F.W., Grinder, M.T., Pascoe, B.A., Ross, R.J., Williams,
C.J.: Realizing the promise of visualization in the theory of computing. J. Educ.
Resour. Comput. (JERIC) 5(2), 5–es (2005)

6. Google LLC.: Material design guidelines (2023). https://m3.material.io/
7. Hamada, M.: Supporting materials for active e-learning in computational models.

In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008.
LNCS, vol. 5102, pp. 678–686. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-69387-1 79

8. Hannay, D.G.: Interactive tools for computation theory. ACM SIGCSE Bull. 34(4),
68–70 (2002)

9. Harris, J.: Programming non-deterministically using automata simulators. J. Com-
put. Sci. Coll. 18(2), 237–245 (2002)

10. Inc., A.: Human interface guidelines (2023). https://developer.apple.com/design/
human-interface-guidelines/

11. Knuth, D.E., Bigelow, R.H.: Programming language for automata. J. ACM
(JACM) 14(4), 615–635 (1967)

12. LoSacco, M., Rodger, S.: FLAP: a tool for drawing and simulating automata.
Media 93, 310–317 (1993)

13. Pereira, C.H., Terra, R.: A mobile app for teaching formal languages and automata.
Comput. Appl. Eng. Educ. 26(5), 1742–1752 (2018)

14. Robinson, M.B., Hamshar, J.A., Novillo, J.E., Duchowski, A.T.: A java-based tool
for reasoning about models of computation through simulating finite automata and
turing machines. In: The Proceedings of the Thirtieth SIGCSE Technical Sympo-
sium on Computer Science Education, pp. 105–109 (1999)

15. Rodger, S.H., Finley, T.W.: JFLAP: An Interactive Formal Languages and
Automata Package. Jones & Bartlett Learning, Burlington (2006)

16. Rodger, S.H., Wiebe, E., Lee, K.M., Morgan, C., Omar, K., Su, J.: Increasing
engagement in automata theory with JFLAP. In: Proceedings of the 40th ACM
Technical Symposium on Computer Science Education, pp. 403–407 (2009)

17. Silva, R.C., Binsfeld, R.L., Carelli, I.M., Watanabe, R.: Automata defense 2.0:
reediçao de um jogo educacional para apoio em linguagens formais e autômatos.
In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de
Informática na Educaçao-SBIE), vol. 1 (2010)

18. Singh, T., Afreen, S., Chakraborty, P., Raj, R., Yadav, S., Jain, D.: Automata
simulator: a mobile app to teach theory of computation. Comput. Appl. Eng.
Educ. 27(5), 1064–1072 (2019)

19. Traoré, M.K.: SimStudio: a next generation modeling and simulation framework.
In: 1st International ICST Conference on Simulation Tools and Techniques for
Communications, Networks and Systems (2010)

https://m3.material.io/
https://doi.org/10.1007/978-3-540-69387-1_79
https://doi.org/10.1007/978-3-540-69387-1_79
https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/design/human-interface-guidelines/

140 S. Jordaan et al.

20. Vieira, M., Sarinho, V.: Automatamind: a serious game proposal for the automata
theory learning. In: van der Spek, E., Göbel, S., Do, E.Y.-L., Clua, E., Baalsrud
Hauge, J. (eds.) ICEC-JCSG 2019. LNCS, vol. 11863, pp. 452–455. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34644-7 45

21. White, T.M., Way, T.P.: JFAST: a java finite automata simulator. In: Proceedings
of the 37th SIGCSE Technical Symposium on Computer Science Education, pp.
384–388 (2006)

https://doi.org/10.1007/978-3-030-34644-7_45

ESBMC v7.3: Model Checking C++
Programs Using Clang AST

Kunjian Song1(B), Mikhail R. Gadelha2(B), Franz Brauße1(B),
Rafael S. Menezes1(B), and Lucas C. Cordeiro1(B)

1 The University of Manchester, Manchester, UK
{kunjian.song,rafael.menezes}@postgrad.manchester.ac.uk,

{franz.brausse,lucas.cordeiro}@manchester.ac.uk
2 Igalia, A Coruña, Spain

mikhail@igalia.com

Abstract. This paper introduces ESBMC v7.3, the latest Efficient
SMT-Based Context-Bounded Model Checker version, which now
incorporates a new Clang-based C++ front-end. While the previous
CPROVER-based front-end served well for handling C++03 programs, it
encountered challenges keeping up with the evolving C++ language. As
new language and library features were added in each C++ version, the
limitations of the old front-end became apparent, leading to difficult-to-
maintain code. Consequently, modern C++ programs were challenging
to verify. To overcome this obstacle, we redeveloped the front-end, opting
for a more robust approach using Clang. The new front-end efficiently
traverses the Abstract Syntax Tree (AST) in-memory using Clang APIs
and transforms each AST node into ESBMC’s Intermediate Representa-
tion. Through extensive experimentation, our results demonstrate that
ESBMC v7.3 with the new front-end significantly reduces parse and con-
version errors, enabling successful verification of a wide range of C++
programs, thereby outperforming previous ESBMC versions.

Keywords: Formal Methods · Model Checking · Software Verification

1 Introduction

C++ is one of the most popular programming languages used to build high-
performance and real-time systems, such as operating systems, banking systems,
communication systems, and embedded systems [1,2]. However, memory safety
issues remain a major source of security vulnerabilities in C++ programs [3].
Fan et al. [4] created a dataset of C/C++ vulnerabilities by mining the Com-
mon Vulnerabilities and Exposures (CVE) database [5] and the associated open-
source projects on GitHub, then curated the issues based on Common Weakness
Enumeration (CWE) [6]. According to their findings, two out of the top three
vulnerabilities are caused by memory safety issues: Improper Restriction of Oper-
ations within the Bounds of a Memory Buffer (CWE-119) and Out-of-bounds
Read (CWE-125) [4].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Barbosa and Y. Zohar (Eds.): SBMF 2023, LNCS 14414, pp. 141–152, 2024.
https://doi.org/10.1007/978-3-031-49342-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49342-3_9&domain=pdf
https://doi.org/10.1007/978-3-031-49342-3_9

142 K. Song et al.

The limitation of software testing resides in the user inputs [7]. Only a limited
number of execution paths may be tested since test cases involve human inputs
in the form of concrete values [8]. Unlike testing, formal verification techniques
can be used more systematically to reason about a program, although they suffer
from the state-space explosion problem [9]. There is an increasing adoption of
formal verification techniques for C programs in the industry, e.g., Amazon has
been using model-checking techniques to prove the correctness of their C-based
systems in Amazon Web Services (AWS); this has positively impacted their code
quality, as evidenced by the increased rate of bugs found and fixed [10].

Formal verification of C++ programs is more challenging than C programs
due to the sophisticated features, such as the STL (Standard Template Libraries)
containers, templates, exception handling, and object-oriented programming
(OOP) paradigm [1]. The existing state-of-the-art verification tools for C++ pro-
grams only have limited feature support [11]. For ESBMC, Ramalho et al. [12]
and Monteiro et al. [11] initiated the support for C++ program verification.
Since then, ESBMC has undergone heavy development.

This research presents a significant improvement to ESBMC’s C++ verifica-
tion capabilities by introducing a new Clang-based front-end. Particularly, the
original contributions of this work are as follows:

– Complete Redesign: ESBMC’s C++ front-end has undergone a complete
overhaul and now relies on Clang [13]. By leveraging Clang’s parsing and
semantic analysis capabilities [14,15], we check the input program’s Abstract
Syntax Tree (AST) using a production-quality compiler. This eliminates the
need for static analysis logic and ensures enhanced accuracy and efficiency.

– Object Models Details: We provide comprehensive insights into the object
models used to achieve seamless conversion of C++ polymorphism code
to ESBMC’s Intermediate Representation (IR). This improvement allows
ESBMC to handle C++ growth and its variants like CUDA [16].

– Simplified Type Checking for Templates: The new Clang-based front-
end greatly simplifies type checking for templates, streamlining ESBMC’s
ability to adapt to C++ advancements. Furthermore, this enhancement facil-
itates the incorporation of C++ variants like CUDA.

By introducing these advancements, our work significantly enhances
ESBMC’s C++ verification capabilities, paving the way for more robust and
efficient verification of C++ programs and their variants.

2 Background

ESBMC’s verification for C++03 programs reaches its maturity in version v2.1,
presented by Monteiro et al. [11]. ESBMC v2.1 provides a first-order logic-based
framework that formalizes a wide range of C++ core languages, verifying the
input C++ programs by encoding them into SMT formulas. Since C++ Stan-
dard Template Libraries (STL) contain optimized assembly code not verifiable
using ESBMC, ESBMC v2.1 tackled this problem using a collection of C++

ESBMC v7.3: Model Checking C++ Programs Using Clang AST 143

operational models (OM) to replace the STL included in the input program. The
OMs are abstract representations mimicking the structure of the STL, adding
pre- and post-conditions to all STL APIs [17]. Combining these approaches,
ESBMC v2.1 outperformed other state-of-the-art tools evaluated over a large
set of benchmarks, comprising 1513 test cases [11]. Nonetheless, ESBMC v2.1
employs a Flex and Bison-based front-end from CBMC [18], which leads to hard-
to-maintain code and can hardly evolve to support modern C++11 features.

Limitations of the Old C++ Front-End. The version of ESBMC in Mon-
teiro et al. [11] uses an outdated CPROVER-based front-end [18] with the fol-
lowing limitations.

1. For the type-checking phase, ESBMC could not provide meaningful warnings
or error messages.

2. It is inefficient at generating a body for default implicit non-trivial methods
in a class, such as C++ copy constructors or copy assignment operators.

3. The parser of the old front-end needs to be manually updated to cover the
essential C++ semantic rules [19], which leads to hard-to-maintain code to
keep up with the C++ evolution.

4. The old front-end contains excessive data structures and procedures auxiliary
to scope resolution and function type checking.

5. The type checker [19] of the old front-end only works with a CPROVER-
based parse tree and supports up to C++03 standard [20]. We find adapting
it to the new C++ language and library features difficult.

6. The old front-end uses a speculative approach to guess the arguments for a
template specialization and a map to associate the template parameters to
their instantiated values, which leads to hard-to-maintain and hard-to-debug
code in the case of recursive templates. Additionally, owing to its limited
static analysis, the old front-end could not provide any early warning when
there is a circular dependency on the templates.

These limitations combine to a point where the old front-end is too labori-
ous to maintain and extend for formal verification of modern C++ programs.
We propose the Clang-based approach to convert an input C++ program to
ESBMC’s IR to overcome these limitations.

3 Model Checking C++ Programs Using Clang AST

Figure 1 illustrates ESBMC’s verification pipeline for C++ programs. The new
Clang-cpp front-end typechecks and converts the input C++ program (along
with the corresponding OMs) into the GOTO program representation [21,22].
Then the GOTO program will be symbolically executed to generate the SSA
form of the program, thus generating a set of logical formulas consisting of the
constraints and properties. An SMT solver is used to check the satisfiability of
the formulas, giving a verdict VERFICATION SUCCESSFUL if no property
violation is found up the bound k or a counterexample in case of property vio-
lation.

144 K. Song et al.

3.1 Polymorphism

The traditional approach for achieving polymorphism makes use of virtual func-
tion tables (also known as vtables) and virtual pointers (known as vptrs). While
the Clang AST, to the best of our knowledge, does not include information about
virtual tables or virtual pointers of a class, it nonetheless provides users with
enough information to enable them to create their vtables and vptrs. In the new
Clang-based C++ front-end, we reimplemented the vtable and vptr construction
mechanism following a similar approach from ESBMC v2.1, but with significant
simplifications based on the information provided in the Clang AST. Figure 2
illustrates an example of C++ polymorphism.

GOTO
Program

Symbolic
Execution

Engine

SMT
Solver

SMT
formula

Verification
Successful

Property
holds

Counterexample

Property
violation

clang-based
C++ frontend

Input C++
programs

Fig. 1. ESBMC architecture for C++ verification. The grey block represents the new
Clang-based C++ front-end integrated into ESBMC v7.3.

Fig. 2. Example of C++ classes with virtual functions.

Figure 3 illustrates the object models for the Bird and Penguin classes. The
new front-end adds one or more vptrs to each class. The vptrs will be initialized

ESBMC v7.3: Model Checking C++ Programs Using Clang AST 145

in the class constructors, which set each vptr pointing to the desired vtable.
The child class contains an additional pointer pointing to a vtable with a thunk
to the overriding function. The thunk redirects the call to the corresponding
overriding function. In the case of multiple inheritances, the child class would
have multiple vtprs “inherited” from multiple base classes. The new front-end
can also manage a virtual inheritance, such as the diamond problem, which
avoids duplicating vptrs, referring to the same virtual table in an inheritance
hierarchy. Line 2–4 in Fig. 4a illustrates the dynamic dispatch is achieved using
the vptr calling the thunk, which in turn calls the desired overriding function in
Fig. 4b Line 9–11. Note that the override specifier is a C++11 extension that
the old front-end could not support.

virtual_table::Bird@Bird

.doit(Bird*)=&tag.Bird::doit(Bird*)

Bird
Bird@Bird: vptr

Penguin
Bird@Penguin: vptr

Penguin@Penguin: vptr

virtual_table::Bird@Penguin

.doit(Bird*)=&thunk::Penguin::doit(Bird*)

virtual_table::Penguin@Penguin

.doit(Penguin*)=&tag.Penguin::doit(Penguin*)

Fig. 3. Object models for Bird and Penguin classes.

Fig. 4. GOTO conversions of the overriding methods and dynamic dispatch.

146 K. Song et al.

3.2 Template

Template is a key feature in C++, allowing type to be passed as a parameter.
The template allows STL containers and generic algorithms to work with dif-
ferent C++ data types [23,24]. The old front-end in ESBMC v2.1 implements
the template specialization based on Siek et al. [11,25]. However, it produces a
“CONVERSION ERROR” for the test case illustrated in Fig. 5a. This bench-
mark is based on the Friend18 example from the GCC test suite [26], which
was added for Bug 10158 on GCC Bugzilla [27]. ESBMC v7.3 successfully veri-
fied this benchmark and found the assertion’s property violation in Fig. 5a. The
verification result is illustrated in Fig. 5b. The example in Fig. 5a contains a
C++20 extension. The foo function is defined in struct X, but gets called using
an unqualified name with explicit template arguments in main. ESBMC v2.1
failed to verify it due to the “CONVERSION ERROR symbol “‘foo’ not found”.
We also tried this example with CBMC 5.88.1 [28], which aborted during type-
checking, and cppcheck v2.11.1 [29], which did not give any verification verdict.

Fig. 5. ESBMC verified the Friend18 example from the GCC test suite [26].

4 Experimental Evaluation

We used some benchmarks from Monteiro et al. [11] to evaluate ESBMC v7.3.
These benchmarks were used to assess ESBMC v2.1 in Monteiro et al. [11].

We did not evaluate the test cases (TCs) that depend on the operational
models (OMs) in each benchmark. We only ran the TCs for core C++ language
features because the OMs for the new Clang-based C++ front-end are still under
development, e.g., exception handling support. Otherwise, running test cases for
sure to fail would be pointless due to a feature still being developed. Hence each

ESBMC v7.3: Model Checking C++ Programs Using Clang AST 147

benchmark is a subset of the original benchmark, which only comprises TCs for
verifying core C++ language features. There are 352 benchmarks in total over 6
sub-benchmarks. The cpp-sub contains example programs from the book C++
How to Program [30]. The inheritance and polymorphism sub-benchmarks are
extracted from [11]. There are three sub-benchmarks for template specialization
- cbmc-sub comes from the CBMC regressions [31]; gcc-template-tests-sub were
extracted from the GCC template test suite [26]; template-sub is also from bench-
marks used in [11]. cpp-sub contains programs with mixed use of various C++
language features combined with inheritance, polymorphism, and templates.

4.1 Objectives and Setup

Our evaluation framework is based on Python’s unittest [32]. For each TC in
the test suite, we check whether the verification verdict reported by each tool
matches the expected outcome. TC passes when the tool reports a verdict of
“VERIFICATION SUCCESSFUL” on a program without any violation of prop-
erties or reports “VERIFICATION FAILED” on an unsafe program that violates
a property. Such properties include arithmetic overflows, array out-of-bounds,
memory issues, or assertion failures. Our evaluation aims to answer the follow-
ing experimental questions:

EQ1 (soundness): Can ESBMC give more correct verification results and a
higher pass rate than its previous versions?

EQ2 (performance): How long does ESBMC v7.3 take to verify C++ pro-
grams?

EQ3 (completeness): Does the tool complete the future work specified by Mon-
teiro et al. [11]?

The experiment was set up in Ubuntu 20.04 with 32GB RAM on an 8-core
Intel CPU. The dataset, scripts, and logs are publicly available in Zenodo [33].
The accumulative verification time represents the CPU time elapsed for each
tool finishing all sub-benchmarks.

4.2 Results

Table 1 shows our experimental results. With a higher pass rate than ESBMC
v2.1 over 5 out of 6 sub-benchmarks, ESBMC v7.3 successfully verified all bench-
marks and passed all test cases, confirming EQ1. As for ESBMC v2.1, the failed
TCs in cpp-sub are due to parsing or conversion errors, meaning the previous
tool version is unable to properly typecheck the input programs, probably due
to the weak parser, as described in Sect. 2. The failed TCs in inheritance and
polymorphism-sub contain a common feature of dynamically casting a pointer of
a child class with a base class containing virtual methods. ESBMC v2.1 could
not handle this type of casting, giving conversion errors.

ESBMC v2.1 has limited support for C++ templates, matching our expecta-
tions as reported by Monteiro et al. [11]. The failed test cases in cbmc-template-
sub are the results of ESBMC v2.1 not able to handle the default template type

148 K. Song et al.

parameter or explicit template specialization combined with C++ typedef spec-
ifier. The low pass rate of ESBMC v2.1 on gcc-template-tests-sub indicates that
the old version cannot verify test cases used by an industrial compiler. EQ3 is
affirmed through the experiment, as none of these problems persist in ESBMC
v7.3. Since one of the test cases in cpp-sub timed out against ESBMC v2.1 after
900 seconds, the actual verification time has been rectified to 149s; otherwise,
the cumulative verification time would be 1049s. As for the performance EQ2,
ESBMC v7.3 could verify all sub-benchmarks in 128s, faster than its previous
version, which affirms EQ2.

Overall, we have enhanced the template support in ESBMC v7.3, which
completed the future work by Monteiro et al. [11]. In comparison to its previous
version, ESBMC v7.3 can provide more accurate results faster.

In addition to the pass rate and verification time in Table 1, we also assessed
each tool’s memory usage. Table 2 shows the cumulative maximum RSS (Resi-
dent Set Size) for each benchmark using each tool under evaluation. Our metrics
collection approach is based on Python’s resource module, subprocess module
and unit test framework [32]. Compared to ESBMC v2.1, ESBMC v7.3 can verify
more test cases and uses less memory. The lower memory usage of v2.1 than v7.3
is due to lower pass rates for the TCs using templates, mainly because of v2.1’s
inadequacy to handle C++ templates. Many TCs failed due to CONVERSION
ERROR in ESBMC v2.1’s front-end and never even reached the solver in the
back-end. As a result, no verification effort was made for those TCs and hence
less memory was used.

Table 1. Experimental results showing the pass rate for each sub-benchmark and
accumulative verification time. This experiment uses ESBMC with Boolector SMT
solver.

Sub-Benchmarks ESBMC-v2.1 pass rate ESBMC-v7.3 pass rate

cpp-sub 91% 100%

inheritance-sub 79% 100%

polymorphism-sub 87% 100%

cbmc-template-sub 92% 100%

gcc-template-tests-sub 39% 100%

template-sub 100% 100%

Total verification Time 149.94 s 128.796 s

ESBMC v7.3: Model Checking C++ Programs Using Clang AST 149

Table 2. Experimental results showing the cumulative maximum RSS (Resident Set
Size) for each sub-benchmarks. This experiment uses ESBMC with Boolector SMT
solver.

Sub-Benchmarks ESBMC-v2.1 ESBMC-v7.3

cpp-sub 31477 MB 19385 MB

inheritance-sub 231 MB 845 MB

polymorphism-sub 722 MB 2373 MB

cbmc-template-sub 650 MB 2295 MB

gcc-template-tests-sub 395 MB 1387 MB

template-sub 207 MB 727 MB

Total memory 33682 MB 27012 MB

4.3 Performance Using Different SMT Solvers

ESBMC supports multiple SMT solvers in the back-end, such as Z3 [34], Bitwu-
zla [35], Boolector [36], MathSAT [37], CVC4 [38], and Yices [39]. We also evalu-
ated ESBMC v7.3 with various solvers over the same set of benchmarks. Table 3
shows the total verification time and memory consumption for ESBMC v7.3
using different solvers.

Table 3. Experimental results showing the total verification time and memory con-
sumption for ESBMC using different solvers.

Sub-Benchmarks Boolector CVC4 MathSAT Yices Z3 Bitwuzla

Time 128.796 s 637.988 s 131.934 s 182.327 s 162.848 s 152.442

Memory 27012 MB 72281 MB 161608 MB 35589 MB 44028 MB 27124 MB

Overall, ESBMC v7.3 with Boolector is the fastest configuration that also
consumes the minimum amount of memory to verify all benchmarks. Among the
other solvers, the memory consumption of ESBMC v7.3 with Bitwuzla comes
near the Boolector configuration.

4.4 Threats to Validity

While developing the new C++ front-end, we found that the Clang AST does
not fully describe the correct order of constructors or destructors to be called in
the most derived class in a complex hierarchical inheritance graph, e.g., crossed
diamond hierarchy. We documented it under an umbrella issue, which is currently
in our backlog [40] on ESBMC GitHub repository [41]. ESBMC v2.1 mimics the
semantics of the APIs of C++ STL libraries using a set of operational models
(OMs). The C++ front-end of ESBMC has been completely rewritten, and the

150 K. Song et al.

back-end has also undergone significant development and evolution since v2.1
was published in [11], therefore it is questionable whether those OMs still work.
Our technical report [42] provides a summary of the pass rates.

5 Conclusion and Future Work

We present a new Clang-based front-end that converts in-memory Clang AST
to ESBMC’s IR. In our evaluation of ESBMC v7.3, we compared it to ESBMC
v2.1, specifically focusing on a subset of benchmarks to cover core C++ language
features. The results demonstrate significant progress with ESBMC v7.3, as it
successfully parses real-world C++ programs, including those from the GCC
test suite. Notably, it significantly reduces the number of conversion and parse
errors compared to the previous version, showcasing improved performance over
the sub-benchmarks for core language features.

While ESBMC effectively mimics the semantics of APIs of the STL libraries
using the OMs from ESBMC v2.1, we recognize the need for continuous improve-
ment. As we endeavor to verify modern C++ programs, these OMs require reg-
ular review and updates to align with the C++ standard used in the input pro-
gram. Accurate OMs are essential, as any approximation may lead to incorrect
encoding and invalidate the verification results. To further enhance our front-end
coverage and reduce the number of OMs we maintain, our future work will focus
on handling more C++ libraries.

Additionally, we aim to integrate various checkers, such as cppcheck [29],
into our testing framework to facilitate future evaluations. Our previous suc-
cess verifying a commercial C++ telecommunication application using ESBMC
v2.1 has inspired further goals [11,43]. With ESBMC v7.3 and beyond, we plan
to verify the C++ interpreter in OpenJDK as part of the Soteria project [44]
and contribute to benchmarks for the International Competition on Software
Verification (SV-COMP) [45].

Acknowledgements. The ESBMC development is currently funded by ARM, Intel,
EPSRC grants EP/T026995/1, EP/V000497/1, EU H2020 ELEGANT 957286, and
Soteria project awarded by the UK Research and Innovation for the Digital Security
by Design (DSbD) Programme.

References

1. Deitel, P.J., Deitel, H.M.: C++ How to Program: Introducing the New C++14
Standard. Prentice Hall (2016)

2. Cordeiro, L.C., de Lima Filho, E.B., de Bessa, I.V.: Survey on automated symbolic
verification and its application for synthesising cyber-physical systems. IET Cyper-
Phys. Syst. Theory Appl. 5(1), 1–24 (2020). https://doi.org/10.1049/iet-cps.2018.
5006

3. Miller, M.: Trends and challenges in the vulnerability mitigation landscape.
USENIX Association (2019)

https://doi.org/10.1049/iet-cps.2018.5006
https://doi.org/10.1049/iet-cps.2018.5006

ESBMC v7.3: Model Checking C++ Programs Using Clang AST 151

4. Fan, J., Li, Y., Wang, S., Nguyen, T.N.: A C/C++ code vulnerability dataset
with code changes and CVE summaries. In: Proceedings of the 17th International
Conference on Mining Software Repositories, pp. 508–512 (2020)

5. Common Vulnerabilities and Exposures database. https://cve.mitre.org/
6. Common Weakness Enumeration. https://cwe.mitre.org/about/index.html
7. Quadri, S., Farooq, S.U.: Software testing-goals, principles and limitations. Int. J.

Comput. Appl. 6(9), 1 (2010)
8. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University

Press, Cambridge (2016)
9. Monteiro, F.R., Garcia, M., Cordeiro, L.C., de Lima Filho, E.B.: Bounded model

checking of C++ programs based on the Qt cross-platform framework. Softw. Test.
Verification Reliab. 27(3), e1632 (2017). https://doi.org/10.1002/stvr.1632

10. Chong, N., et al.: Code-level model checking in the software development work-
flow. In: 2020 IEEE/ACM 42nd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pp. 11–20. IEEE (2020)

11. Monteiro, F.R., Gadelha, M.R., Cordeiro, L.C.: Model checking C++ programs.
Softw. Test. Verification Reliab. 32(1), e1793 (2022)

12. Ramalho, M., Freitas, M., Sousa, F., Marques, H., Cordeiro, L., Fischer, B.: SMT-
based bounded model checking of C++ programs. In: 2013 20th IEEE International
Conference and Workshops on Engineering of Computer Based Systems (ECBS),
pp. 147–156. IEEE (2013)

13. LLVM clang. https://clang.llvm.org/
14. Lopes, B.C., Auler, R.: Getting Started with LLVM Core Libraries. Packt Pub-

lishing Ltd. (2014)
15. Pandey, M., Sarda, S.: LLVM Cookbook. Packt Publishing Ltd. (2015)
16. Pereira, P.A., et al.: SMT-based context-bounded model checking for CUDA pro-

grams. Concurr. Comput. Pract. Exp. 29(22), e3934 (2017). https://doi.org/10.
1002/cpe.3934

17. Dos Reis, G., Garćıa, J.D., Logozzo, F., Fähndrich, M., Lahiri, S.: Simple contracts
for C++(R1) (2015)

18. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

19. ESBMC L312–L359. https://github.com/esbmc/esbmc/blob/master/src/cpp/
cpp typecheck compound type.cpp

20. C++03 standard. https://www.iso.org/standard/38110.html
21. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking

for embedded ANSI-C software. IEEE Trans. Softw. Eng. 38(4), 957–974 (2011)
22. Cordeiro, L.C., Fischer, B.: Verifying multi-threaded software using SMT-based

context-bounded model checking. In: Taylor, R.N., Gall, H.C., Medvidovic, N.
(eds.) Proceedings of the 33rd International Conference on Software Engineering,
ICSE 2011, Waikiki, Honolulu, HI, USA, 21–28 May 2011, pp. 331–340. ACM
(2011). https://doi.org/10.1145/1985793.1985839

23. Prata, S.: C++ Primer Plus. Pearson Education India (2012)
24. Stroustrup, B.: The C++ Programming Language, 4th edn (2013)
25. Siek, J., Taha, W.: A semantic analysis of C++ templates. In: Thomas, D. (ed.)

ECOOP 2006. LNCS, vol. 4067, pp. 304–327. Springer, Heidelberg (2006). https://
doi.org/10.1007/11785477 19

26. GCC test suite. https://gcc.gnu.org/git/?p=gcc.git;a=blob plain;f=gcc/testsuite/
g%2B%2B.dg/template/friend18.C;hb=649fc72d2

https://cve.mitre.org/
https://cwe.mitre.org/about/index.html
https://doi.org/10.1002/stvr.1632
https://clang.llvm.org/
https://doi.org/10.1002/cpe.3934
https://doi.org/10.1002/cpe.3934
https://doi.org/10.1007/978-3-540-24730-2_15
https://github.com/esbmc/esbmc/blob/master/src/cpp/cpp_typecheck_compound_type.cpp
https://github.com/esbmc/esbmc/blob/master/src/cpp/cpp_typecheck_compound_type.cpp
https://www.iso.org/standard/38110.html
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1007/11785477_19
https://doi.org/10.1007/11785477_19
https://gcc.gnu.org/git/?p=gcc.git;a=blob_plain;f=gcc/testsuite/g%2B%2B.dg/template/friend18.C;hb=649fc72d2
https://gcc.gnu.org/git/?p=gcc.git;a=blob_plain;f=gcc/testsuite/g%2B%2B.dg/template/friend18.C;hb=649fc72d2

152 K. Song et al.

27. GCC bugzilla bug 10158. https://gcc.gnu.org/bugzilla/show bug.cgi?id=10158
28. CBMC 5.88.1. https://github.com/diffblue/cbmc/releases/tag/cbmc-5.88.1
29. cppcheck. https://cppcheck.sourceforge.io/
30. Deitel, P.: C++ How To Program, 6th edn. Prentice Hall Press (2007)
31. CBMC regression test suite. https://github.com/diffblue/cbmc/tree/develop/

regression/cbmc-cpp
32. Python unittest. https://docs.python.org/3/library/unittest.html
33. ESBMC v7.3 evaluation archive on Zenodo. https://zenodo.org/record/8233714
34. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

35. Niemetz, A., Preiner, M.: Bitwuzla. In: Enea, C., Lal, A. (eds.) CAV 2023, Part
II. LNCS, vol. 13965, pp. 3–17. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-37703-7 1

36. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-
2 16

37. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-
SAT 4 SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
299–303. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-
1 28

38. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

39. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

40. ESBMC CPP support feature coverage and backlog. https://github.com/esbmc/
esbmc/wiki/ESBMC-Cpp-Support

41. Github: ESBMC issue 940: Umbrella issue for the order of ctors/dtors. https://
github.com/esbmc/esbmc/issues/940

42. Song, K., Gadelha, M.R., Brauße, F., Menezes, R.S., Cordeiro, L.C.: ESBMC v7.3:
model checking C++ programs using clang AST. arXiv preprint arXiv:2308.05649
(2023)

43. Sousa, F.R.M., Cordeiro, L.C., de Lima Filho, E.B.: Bounded model checking of
C++ programs based on the Qt framework. In: IEEE 4th Global Conference on
Consumer Electronics, GCCE 2015, Osaka, Japan, 27–30 October 2015, pp. 179–
180. IEEE (2015). https://doi.org/10.1109/GCCE.2015.7398699

44. UKRI: Sotereia project. https://soteriaresearch.org/
45. Beyer, D.: Competition on software verification and witness validation: SV-COMP

2023. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS, vol.
13994, pp. 495–522. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
30820-8 29

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=10158
https://github.com/diffblue/cbmc/releases/tag/cbmc-5.88.1
https://cppcheck.sourceforge.io/
https://github.com/diffblue/cbmc/tree/develop/regression/cbmc-cpp
https://github.com/diffblue/cbmc/tree/develop/regression/cbmc-cpp
https://docs.python.org/3/library/unittest.html
https://zenodo.org/record/8233714
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://github.com/esbmc/esbmc/wiki/ESBMC-Cpp-Support
https://github.com/esbmc/esbmc/wiki/ESBMC-Cpp-Support
https://github.com/esbmc/esbmc/issues/940
https://github.com/esbmc/esbmc/issues/940
http://arxiv.org/abs/2308.05649
https://doi.org/10.1109/GCCE.2015.7398699
https://soteriaresearch.org/
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29

Author Index

A
Almeida, Rafaela 92

B
Bezerra, P. E. R. 36
Bonifacio, Adilson Luiz 75
Brauße, Franz 141

C
Cordeiro, Lucas C. 141

D
de Almeida Pereira, D.I. 36
de Latorre, Gonzalo 20
de Melo, Ana C. V. 3

G
Gadelha, Mikhail R. 141

J
Jordaan, Steven 131

L
Lecomte, Thierry 36
Lima, Guilherme 55

M
Manzino, Cecilia 20
Marshall, Linda 131
Menezes, Rafael S. 141

N
Nogueira, Sidney 92

O
Oliveira, M. V. M. 36

P
Possato, Tiago 113

R
Rademaker, Alexandre 55

S
Sampaio, Augusto 92
Song, Kunjian 141
Southier, Luiz F. P. 113
Stevaux, Rodrigo 3

T
Teixeira, Marcelo 113
Timm, Nils 131

U
Uceda-Sosa, Rosario 55

V
Valentini, João H. 113

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
H. Barbosa and Y. Zohar (Eds.): SBMF 2023, LNCS 14414, p. 153, 2024.
https://doi.org/10.1007/978-3-031-49342-3

https://doi.org/10.1007/978-3-031-49342-3

	Preface
	Organization
	Invited Talks and Tutorial
	Neurosymbolic AI to Achieve Trustworthy AI
	Collaborating Reasoners: Theory Combination Beyond Nelson-Oppen
	\tt{Sniper}: Automated Reasoning for Type Theory
	Formal Methods in Systems Engineering - Verifying SysML v2 Models
	Contents
	Specification and Modeling Languages
	A Formal Model for Startups Financial Transactions
	1 Introduction
	2 Capitalization Tables and the Need for Specifications
	2.1 The Open Cap Table Format (OCF)

	3 Consistency of Capitalization Tables - Alloy Model
	3.1 The Model Overview
	3.2 Expected Properties
	3.3 The Alloy Model
	3.4 Model Properties

	4 An Example with a Long Chain of Transactions
	5 Conclusion
	References

	A Haskell-Embedded DSL for Secure Information-Flow
	1 Introduction
	2 A Security Language
	2.1 Syntax
	2.2 Non-interference
	2.3 Delimited Release
	2.4 Security Type System for Delimited Release
	2.5 Safe Programs Examples

	3 Implementation
	3.1 Security Types and Variables
	3.2 The Language
	3.3 Constructors

	4 Implementation of Examples
	5 Related Work
	6 Conclusion and Future Work
	References

	CSP Specification and Verification of a Relay-Based Railway Interlocking System
	1 Introduction
	2 Theoretical Reference
	2.1 Relay-Based RISs
	2.2 Communicating Sequential Processes

	3 Related Work
	4 CSP Specification of Relay-Based RISs
	4.1 The Model Interface
	4.2 The Path Master Process

	5 Verification of Relay-Based RISs
	5.1 Contacts Status Verification
	5.2 Ringbell Effect Verification
	5.3 Concomitant Active Lights Verification
	5.4 Runtime Measurements

	6 Case Study
	7 Optimisation
	8 Conclusion
	References

	ULKB Logic: A HOL-Based Framework for Reasoning over Knowledge Graphs
	1 Introduction
	2 Logical Foundations and Implementation
	2.1 Types
	2.2 Terms
	2.3 Deductive System
	2.4 Logical Constants
	2.5 Theories

	3 Graph API and External Provers
	3.1 Graph API
	3.2 External Provers
	3.3 Encoders and Decoders

	4 Related Work
	5 Conclusion
	References

	Testing
	Language-Based Testing for Pushdown Reactive Systems
	1 Introduction
	2 Reactive Pushdown Models
	2.1 Notation
	2.2 The Formalism of VPTS
	2.3 Contracted VPTSs
	2.4 Relating VPTS and VPA Models
	2.5 Input/Output VPTSs

	3 Visibly Pushdown Conformance Checking
	3.1 A General Conformance Relation for VPTS Models
	3.2 Fault Model Over Visibly Pushdown Languages
	3.3 Visual Conformance Checking for VPTS Models

	4 Concluding Remarks
	References

	Sound Test Case Generation for Concurrent Mobile Features
	1 Introduction
	2 Background
	3 A Sound Strategy to Generate Test Cases for Concurrent Features
	3.1 Dependency Analysis Integration
	3.2 cspioq: Extending cspio to Deal with Quiescence
	3.3 Optimised Test Generation Strategy

	4 Evaluation
	4.1 Number of Uncovered Bugs Using Mutation Testing
	4.2 Coverage Rate
	4.3 Additional Evaluation Results

	5 Conclusion
	References

	Verification and Validation
	Automated Code Generation for DES Controllers Modeled as Finite State Machines
	1 Introduction
	2 Foundations of Discrete Event Systems
	2.1 DES Control
	2.2 Modular Synthesis

	3 The DEScMaker Implementation
	3.1 The Supervisor Structure
	3.2 The Event Handler
	3.3 The User Area

	4 Case Study
	4.1 Plant Modeling
	4.2 Specification Modeling
	4.3 Synthesis
	4.4 Conversion and Control of the Plant

	5 Discussions and Perspectives
	Appendix 1 Directory Tree of Generated Code
	Appendix 2 Code Generation Example
	References

	AutomaTutor: An Educational Mobile App for Teaching Automata Theory
	1 Introduction
	2 Related Work
	3 The AutomaTutor
	3.1 Overview
	3.2 Usability
	3.3 Feedback
	3.4 Generation

	4 Conclusion and Future Work
	References

	ESBMC v7.3: Model Checking C++ Programs Using Clang AST
	1 Introduction
	2 Background
	3 Model Checking C++ Programs Using Clang AST
	3.1 Polymorphism
	3.2 Template

	4 Experimental Evaluation
	4.1 Objectives and Setup
	4.2 Results
	4.3 Performance Using Different SMT Solvers
	4.4 Threats to Validity

	5 Conclusion and Future Work
	References

	Author Index

