
Model-Based Testing Approach
for EIP-1559 Ethereum Smart Contracts

Mohamed Amin Hammami and Mariam Lahami(B)

ReDCAD Laboratory, National School of Engineering of Sfax, University of Sfax,
Sokra Road km 4, 1173 Sfax, Tunisia

mariam.lahami@redcad.org

Abstract. Smart contracts are computer programs that are deployed
and executed on the blockchain without the need of third parties. They
are characterized by their immutability because once deployed, they can-
not be modified. Thus, it is highly demanded to verify and validate them
at development phase before their deployment. This work introduces a
Model-Based Testing (MBT) approach for checking functional and exe-
cution related properties of Ethereum smart contracts. Our MBT solu-
tion supports the transaction pricing mechanism set by the Ethereum
Improvement Proposal EIP-1559. It consists of four steps: (1) modelling
the smart contract and its blockchain environment as UPPAAL Timed
Automata while defining the contract gas usage regarding the EIP-1559
proposal, (2) generating abstract test cases, (3) executing dynamically
the obtained tests, and at the end (4) analyzing and reporting the
obtained test results. To illustrate the feasibility of our MBT approach,
tests for the smart banking case study are generated and executed.

1 Introduction

Blockchain technology has gained a lot of attention during the last decade from
academic researchers and several industries [1], including supply chain manage-
ment, intelligent transportation, e-health, etc. As a decentralized system archi-
tecture initially introduced by Satochi Nakamoto [2], it is characterized with
a linked chain of blocks in which transactions are securely stored. The most
important features which have boosted the interest in this technology are secu-
rity, decentralization and immutability. For example, the immutability feature
is supplied by sharing identical copies of the ledger among several peer-to-peer
nodes, while security is ensured through the use of cryptographic algorithms.

Recently, the emergence of smart contracts has extended these features. In
fact, Ethereum platform is growing rapidly and according to the Ethereum stat-
ics1, the total number of created smart contracts in 2022 have reached 1.45
million. A smart contract is defined as an immutable software program which is
deployed and executed on the blockchain infrastructure. Nevertheless, multiple
functional and security issues may occur during the design and the development
1 https://www.alchemy.com/overviews/ethereum-statistics.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Mosbah et al. (Eds.): MEDI 2023, LNCS 14396, pp. 44–57, 2024.
https://doi.org/10.1007/978-3-031-49333-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49333-1_4&domain=pdf
https://www.alchemy.com/overviews/ethereum-statistics
https://doi.org/10.1007/978-3-031-49333-1_4

MBT for EIP-1559 Smart Contracts 45

of these smart contracts. For instance, 3.6 million of Ether, around 50 million
dollars, were lost in the well-known “DAO attack”, due to the famous reentrancy
vulnerability [3]. To avoid such attacks and the potential loss of funds due to
smart contract failures, it highly required to verify and check their correctness.

For this reason, a recent branch of work has adopted Verification and Val-
idation (V&V) techniques to ensure the trustworthiness and the correctness of
Blockchain oriented Software (BoS) [4,5]. The most used V&V techniques in
this context are model checking [6–8], theorem proving [9,10] and software test-
ing [11–14]. However, proposing Model-based Testing (MBT) approaches for BoS
that automate the generation of abstract test suites from abstract models and
also perform test execution and test reporting has been rarely addressed [15,16]
and without taking into consideration the modelling of the gas mechanism fol-
lowing the EIP-1559.

To overcome this limitation, we introduce an extension of our previous model-
based testing approach for BoS, called MBT4BoS, that tests Ethereum smart
contracts for detecting functional bugs [16]. The novelty in this paper is that
we take into account the EIP-1559 standard while modeling transactions and
gas related properties. To do so, we make use of UPPAAL model checker and
its timed automata formalism to model smart contracts and their blockchain
environment. Furthermore, we exploit especially its model-based testing mod-
ule (UPPAAL Yggdrasil) [17] to generate test cases since the UPPAAL Co

√
er

tool used in our previous work has not been updated anymore. The major con-
tribution here is that obtained tests check functional aspects and also the gas
related properties of ethereum transactions following the EIP-1559 standard.
Thus, transaction modelling is enhanced to support such improvement protocol.

The rest of this paper is organized as follows. Section 2 provides background
materials on blockchain technology, the gas mechanism and the EIP-1559 stan-
dard. Subsequently, the proposed approach is outlined in Sect. 3. Afterward, its
application to a small banking system is highlighted in Sect. 4. At the end, Sect. 5
concludes the paper while giving a summary about our main contributions, and
identifying possible areas of future research.

2 Theoretical Background and Definitions

To properly comprehend our contribution in the next sections, it is crucial to
provide briefly some theoretical key concepts related to Blockchain (BC), Smart
Contracts (SCs), the gas mechanism of Ethereum and EIP-1559 standard.

2.1 Blockchain and Smart Contracts

The Blockchain. It is a distributed and decentralized register of transactions.
It is stored and updated simultaneously on a peer-to-peer network, each node
keeping in permanently the most recent version of the register. It offers the
possibility of recording, simultaneously for each user, an operation, transaction
or event without the need of third parties. These irreversible transactions are

46 M. A. Hammami and M. Lahami

ordered and grouped into blocks. For each transaction, the blockchain records
the address of the sender, the address of the recipient and the data transferred
to the whole network. The blockchain stores one or more transactions in a block
and encrypts the contents of the block by the use of cryptographic functions into
a single value called a hash. This hash can be viewed at any time by anyone on
the blockchain. The executed transactions cannot be modified or deleted from
the distributed ledger.

Smart Contracts. The concept of smart contract (SC) first appeared in 1997
by the American computer scientist Nick Szabo [18]. It has gained more and
more attention thanks to the emergence of public blockchains, such as Ethereum.
SC is a computer program executed by a network of peer-to-peer nodes, guar-
anteed not by a central authority, but by cryptography and blockchain tech-
nology. It provides a coordination and enforcement framework for agreements
between network participants, without the need for traditional legal contracts.
In blockchain, smart contracts are deployed and executed by specific types of
transactions and can be used to transfer digital currency, record information
and also interact to other systems. In Ethereum, smart contracts are commonly
written in the Solidity language and then they are compiled to the Ethereum
Virtual Machine (EVM) bytecode. A SC is publicly accessible, transparent, and
immutable. Therefore, the immutability feature makes its code tamper-proof. It
is extremely expensive to fix an issue once it has been deployed on the blockchain
since a new smart contract needs to be created. Thus, it is essential to validate
smart contract reliability and safety before deploying it on the blockchain infras-
tructure.

2.2 The Gas Mechanism

In Ethereum, a single cryptographically signed instruction created by an exter-
nally owned account is referred to as a transaction. This transaction object
includes mainly two fields: a gasLimit and a gasPrice. The gasPrice displays the
unit’s current market price in Wei. In fact, a gas is a unit that describes basic
computing operations. The execution of one atomic instruction, or bytecode,
equals one unit of gas. For instance, obtaining the balance of a specific account
takes 400 gas but multiplying is a simple operation that only needs a small num-
ber of processing units (5 gas). The gasLimit is the maximum amount of gas that
may be burned in order to complete the transaction. The total amount of gas
required for the execution of a given smart contract relies on the number of
instructions run by the EVM and also their types. Prior to the London upgrade,
the total transaction fee is calculated as follows:

txFee = Gas unit(limits) ∗ gasPrice per unit. (1)

This gas mechanism proposed by Ethereum accomplishes two main goals:
it controls resource usage and pays miners for their labor. The creator of a
transaction has to pay this fee to the miner that validates and commits the

MBT for EIP-1559 Smart Contracts 47

transaction and includes it into a block [19]. After the London hard fork update,
EIP-1559 has been proposed in order to make transactions fees less volatile and
more predictable.

2.3 EIP-1559

The major problem with the historical gas mechanism is that prices can fluctuate
very wildly based on sudden spikes in demand for Ethereum’s limited free block
space. Users are always uncertain about the right price level when they submit
a transaction and often have to overpay to be sure that it will be included in the
next block. To address these problems, a novel gas fee mechanism was introduced
and implemented as an Ethereum improvement called EIP-1559.

With this new mechanism, variable-sized blocks are now required instead of
fixed-sized blocks. Consequently, it proposes a new transaction fee calculation
as given in the following equation:

txFee = Gas units(limit) ∗ (Basefee + tip) (2)

where;

– The Base fee: it is the block’s network fee per gas determined by the network
itself and it will be burnt. The base fee per gas increases when blocks are above
the gas target (i.e., block gas limit divided by a given elasticity multiplier),
it decreases when blocks are below the gas target. In other words, the base
fee is sensitive to the size of the previous block [20].

– The max priority fee (tip): is specified by the creator of the transaction to
be paid to the miner of the block that includes the transaction. Although the
tip is optional, it is included to speed up transactions.

– The max fee per gas: is the maximum fee per gas unit that users specify and
they are willing to pay in order to get their transactions included into a block.
A given transaction will be included in a block only if the max fee per gas is
greater than or equal to the base fee [20,21].

In our work, we make use of this novel standard to model transactions in
Ethereum blockchain and its gas fee mechanism.

3 MBT Approach for Ethereum Smart Contracts

Model-based Testing (MBT) is an automated approach which consists on gen-
erating abstract test cases on the basis of abstract model of the System Under
Test (SUT). The primary justification for choosing model-based testing is that
its main goal is to automate manual processes by decreasing the cost of produc-
ing models for coverage and minimizing the time and effort required to create
and build test cases. Therefore, we apply this black-box testing technique in
the context of Ethereum smart contracts to speed up and automate the testing
activities.

48 M. A. Hammami and M. Lahami

The proposed approach is highlighted in Fig. 1 that outlines an overview of its
different constituents. The first module is used to model the system under test,
from the functional requirements or from a specification file of the system under
test. In our case, we adopt UPPAAL’s timed automata to formally model smart
contracts. The second module consists in generating test cases from the smart
contract model we have designed. Then, the third module is used to translate
the generated abstract test cases into concrete and executable tests. The last one
focuses on the generation of the test report containing the test results. Deeper
discussion of these modules is provided in the next subsections.

Fig. 1. Model-based Testing Approach for BoS.

3.1 Smart Contract and Blockchain Modelling

First of all, we conceive a formal test model that specifies the expected SUT
behaviours with reference to its requirements. To that aim, we make use of
the most popular and widespread formalism for specifying real-time and critical
systems, named Timed Automata (TA). Indeed, we adopt the UPPAAL’s timed

MBT for EIP-1559 Smart Contracts 49

automata formalism to model not only the smart contract but also its blockchain
environment by producing a network of timed automata.

Regarding the smart contract model, a timed automata is defined by the
tuple

(S, s0,Act, C,V, T), where:

– S: a finite set of states.
– s0 ∈ S: the initial state and i0 ∈ I indicates the initial input action corre-

sponding to the smart contract’s constructor.
– Act: a finite set of Input and Output actions. The Input actions are related

to smart contract function calls.
– C: a finite set of clocks defined to model temporal constraints.
– V: the collection of state variables. Each variable x ∈ V is seen as a global

variable that may be accessed at any state s ∈ S.
– T : a finite set of transitions, where e = 〈l, g, r, a, l′〉 ∈ T corresponds to the

transition from l to l’, g is the guard associated to e, r is the set of clock to
be reset and a is a label of e. We note l

g,r,a−−−→ l′.

Regarding the blockchain modelling, our approach is specific to Ethereum
Blockchain and we consider only accounts, transactions and gas mechanism fol-
lowing the EIP-1559 improvement. Modelling blocks, consensus algorithms and
mining process are out the scope of this work. As presented in the Ethereum
Yellow paper [22], a smart contract account or an externally owned account are
both possible types of Ethereum accounts. Both of them have a unique identifier
named address as well as other fields like a balance which indicates how many
Wei belong to this address, a codeHash, an EVM code of this account and a stor-
ageRoot which represents the root node of a Merkle Patricia tree that encodes
the account’s storage contents.

We assume that an ethereum transaction has four2 states created, confirmed,
reverted and rejected. Moreover, the transaction fee (txFee) is calculated follow-
ing the EIP-1559 as shown in the Eq. (2) introduced in Sect. 2.3:

– A given transaction is created when the constructor of the smart contract
is called and the creator has enough ether in his account to execute such
deployment transaction: Balance >= txFee.

– It is confirmed when the sender of the transaction has enough ether in his
account to perform it and this requirement is met: maxFee >= txFee.

– It can be rejected if transaction fee exceeds the maximum fee: maxFee <
txFee.

– It can be reverted if the user’s account balance is insufficient to cover the
transaction fee: Balance < txFee.

2 Note that the pending state in which transaction in the pool waiting for minor
validation is out the scope of this paper.

50 M. A. Hammami and M. Lahami

3.2 Test Case Generation

In our work, the test generation process is fully automated since we are based
on a model-based testing approach that generates the required number of test
cases from the abstract test model. Each produced abstract test case generally
consists of a sequence of high-level SUT actions, each of which has associated
input parameters and expected results.

In our case, the test suites were generated from the model using the UPPAAL
Test Generator (Yggdrasil) [17]. The Yggdrasil tab includes an offline test-case
generating tool with the aim of enhancing edge coverage in order to produce
test cases. It generates traces from the test model, and translates them into test
cases based on test code entered into the model on edges and locations.

3.3 Test Case Execution

To execute the generated tests, we have implemented a test tool named BC
Test Runner which makes it possible to automate test execution by stimulating
the smart contracts deployed locally on the Ganache blockchain, as well as the
generation of test reports. As shown in Fig. 2, this test tool is composed of two
parts including a front-end and a server-side backend. The front-end, allows
testers to put two inputs as follows: a set of test cases generated from the test
model given by UPPAAL Test Generator (Yggdrasil) and after compiling the
smart contract, we obtain smart contract artefact as a Json file. This file contains
all the specifications of the smart contract. The back-end has many modules:
such as Test Executor, Test result analyzer and Report generator. Through the
Web3.js library, we can communicate within the deployed smart contract.

Fig. 2. Architecture of BC Test Runner tool.

The Test Executor module serves the purpose of executing test cases and
interacting with the smart contract. It retrieves essential information, such as
the contract’s address and ABI (Application Binary Interface), from the Json
file. The ABI provides a detailed description of the smart contract’s functions,
including their names, parameters, return types, and other relevant specifica-
tions. Using the test cases stored in a separate Text file, where each test case

MBT for EIP-1559 Smart Contracts 51

consists of input values and expected results separated by (/), the Test Executor
module sends the input values to the deployed smart contract. Then, it captures
the generated results and compares them against the expected results.

Based on this comparison, this module generates a verdict for each test case,
indicating whether it has passed or failed. This crucial assessment ensures that
the smart contract performs as intended and produces the expected outcomes,
allowing for effective testing and validation of its functionality.

3.4 Test Analysis and Test Report Generation

This process involves the examination of the obtained test results, which are
recorded into log files during the test execution, and the generation of test
reports. To do such task, BC Test Runner tool incorporates the module Test
Result Analyzer that calculates the percentage of Pass verdicts and Fail ver-
dicts. Subsequently, the Report Generator module generates test reports in the
form of trace text files.

4 Prototype Implementation

Before showing the feasibility of our approach and its fault detection capability,
we introduce the prototype implementation details.

4.1 Development Tools

In this subsection, we present the development tools, that we used for the imple-
mentation of our test tool.

Ganache3 is a local blockchain that allows developers to develop, deploy and
test their distributed applications in a safe and deterministic environment. This
tool is mainly used to test Ethereum contracts locally. It creates a simulation of
a blockchain that allows anyone to use multiple accounts.

Truffle4 is a very familiar tool for developers to create a smart contract
project. It provides us with a project structure, files and folders that facilitate
deployment and testing of Ethereum smart contract.

web3.js5 is a library that allows users to interact with the blockchain. Addi-
tionally, web3.js is a collection of libraries for performing actions like sending
Ether from one account to another, and reading and writing data from smart
contracts.

3 https://trufflesuite.com/ganache/.
4 https://trufflesuite.com/.
5 https://web3js.readthedocs.io/en/v1.10.0/.

https://trufflesuite.com/ganache/
https://trufflesuite.com/
https://web3js.readthedocs.io/en/v1.10.0/

52 M. A. Hammami and M. Lahami

4.2 Test Tool Implementation

This section provides an introduction to BC Test Runner, our testing tool devel-
oped using JavaScript and HTML. BC Test Runner is designed to seamlessly con-
nect with the local blockchain, specifically Ganache, utilizing the Web3.js library.
By leveraging this tool, testers can easily invoke smart contracts deployed on the
local blockchain by providing their specifications, such as address and ABI. It
features a user interface that encompasses three sub-interfaces, as illustrated in
Fig. 3.

In the first sub-interface (1) of BC Test Runner, testers are given the ability
to select the smart contract specification file (.json) and the test cases file (.txt).
They can then initiate the test process by clicking on the Start Test button or
generate test reports using the Generate Report button. The second sub-interface
(2) provides a comprehensive display of important metrics, including the number
of executed test cases, their respective verdicts, and the duration of each test.
The third sub-interface (3) presents the test results visually, utilizing a pie chart
format. This graphical representation effectively highlights the outcomes of the
tests, providing a concise overview for analysis and evaluation.

Fig. 3. The user interface of BC Test Runner.

5 Illustration

This section presents the case study that we utilized to demonstrate the appli-
cation of our MBT approach in the context of EIP-1559 smart contracts.

5.1 Case Study Description

Today, blockchain technology is widely used in various sectors of the global
economy, and one of its most popular applications is in the banking sector.
This is primarily because blockchain has the capability to reduce costs, expedite

MBT for EIP-1559 Smart Contracts 53

money transfers, improve workflow efficiency, and protect confidential bank and
customer data. Our idea is to create a smart contract that empowers users to
create individual bank accounts and initiate fund transfers directly from their
accounts. A smart contract, called SmallBank, is highlighted in the Listing 1.1.

pragma solidity ^0.5.3;
contract SmallBank{
address[] users;
function addUsers(address newUser) public {
users.push(newUser);
}
function addInterest(uint interest) public {
//Heavy code to compute interest per user
for(uint i = 0; i < users.length; i++){
users[i].call.value(interest)();
} }}

Listing 1.1. Code snippet of The Small Bank smart contract.

5.2 Modelling the Small Bank System

The subsequent section provides the timed automaton specification of the Small
Bank smart contract, which will be utilized as a reference in our approach.

The Small Bank Smart Contract Automaton. The Small Bank smart
contract automaton described in Fig. 4 comprises three states. The initial state,
labeled as A1 and represented by a double circle, serves as the starting point.
The model evolves based on the received requests, resulting in transitions
that lead either to state A3 or state A2. For example, the enabled transition
Tx addUsers[i]? allows the model to transition to state A2. Ultimately, the
model returns to its initial state A1 via the transition user added[i]!.

Fig. 4. Small Bank smart contract automaton.

Transaction Automaton. As depicted in Fig. 5, the Transaction Automaton
consists of three states: T0, T1, and T2. The initial state T0, serves as the
starting point for the model. Depending on the received request, the model can
evolve either to state T1 or state T2 from the initial state. For instance, the
transition addUsers[i]? enables the model to move to state T1.

54 M. A. Hammami and M. Lahami

Fig. 5. Transaction automaton.

The model also has transitions that allow it to return to the initial state,
T0, under certain conditions. If the transaction fee (txFee) exceeds the maxi-
mum fee (maxFee), the model follows the transition Tx rejected[i]!, indicating
a rejected transaction, and returns to state T0. Similarly, if the user’s account
balance is insufficient to cover the transaction fee, the model follows the tran-
sition Tx reverted[i]!, representing a reverted transaction, and returns to state
T0. Alternatively, if the transaction fee is less than the maximum fee, the model
enables the transition Tx addUsers[i]!, signifying the invocation of the addUsers
function of the smart contract. In this case, the transaction cost is deducted from
the user’s balance, and the model progresses accordingly.

Overall, the model demonstrates the flow of transactions and the conditions
that determine the state transitions, allowing for proper handling of rejected,
reverted, and confirmed transactions.

5.3 Test Case Generation

After modeling and compiling our test model, we were able to generate the test
cases as a text file, as shown in Fig. 6. Each test case is composed by the function
name of the smart contract that the sender invoked, the input parameters of the
invoked function, the expected output values, and the sender’s address.

Fig. 6. Test cases.

6 Related Work

Most of the existing testing approaches and tools focus on the security of smart
contracts and make use of black-box, White-box and grey-box testing techniques
to detect functional and security issues [4]. Since our concern in this work is to

MBT for EIP-1559 Smart Contracts 55

propose a black-box and model based testing approach for BoS, we address all
works similar to ours dealing with black-box fuzzing, MBT approaches, etc.

In fact, Black-box fuzzing is a fundamental technique that generates ran-
dom test data based on a distribution for various inputs [23]. This technique
shows its efficiency in detecting essentially security problems in smart contracts.
For instance, the ContractFuzzer [15] detects well-known security vulnerabili-
ties in Ethereum smart contracts. For this purpose, it takes as input the ABI6

specification of the smart contract under test and proceeds to the generation
of test inputs. After that, it proposes test oracles for increasing the vulnera-
bility detection capabilities. Similar to ContractFuzzer, Pan et al. [24] adopt a
black-box fuzzer engine to generate inputs in order to detect reentrancy vulnera-
bility. Called ReDefender, the proposed framework would send transactions while
gathering runtime data through fuzzing input. Then, ReDefender can detect the
reentrancy issue and track the vulnerable functions by looking at the execu-
tion log. It demonstrates its ability to detect efficiently reentrancy bugs in real
world smart contracts. However, we notice that functional correctness of smart
contracts are not taken in to consideration as well as gas related issues.

Another interesting study was introduced in [11], called SolAnalyser, it offers
a vulnerability detection tool with a three-phase process. In the first phase, Sol-
Analyser analyzes statically Solidity source code of smart contracts under test
with the purpose of assessing locations prone to vulnerabilities and then instru-
menting it with assertions. In the second step, an inputGenerator module has
been implemented to automatically generate inputs for all transactions and func-
tions in the instrumented contract. At the last phase, vulnerabilities are detected
when the property checks are violated while executing smart contracts on the
Ethereum Virtual Machine (EVM). Similarly, Grieco et al. in [25] introduce an
open-source and black-box fuzzer for smart contracts that automatically gen-
erates tests to detect assertion violations and some custom properties. Called
Echidna, this tool creates test inputs depending on user-supplied predicates or
test functions. However, the major problem within it is that it may need a great
knowledge to define the predicates and test methods.

The closest approach to our work is ModCon [26]. Indeed, ModCon is an MBT
solution that enables the generation of test cases for enterprise smart contracts
and it supports both permissioned and consortium blockchains. To do so, it
makes use of an explicit abstract model of the target smart contract and allows
users to define test oracles, and customize the testing process by choosing from
different coverage strategies and test prioritization options. Compared to our
solution, ModCon did not model blockchain environment and gas related issues,
it focused only on modelling and testing functional aspects of smart contracts.

Regarding our previous work [16], it introduces model-based testing approach
to automate the generation and the execution of test cases for blockchain oriented
software. Similar to this paper, it ensures the modelling of both smart contracts
and the blockchain environment through the use of UPPAAL time automata but
without taking into consideration the novel gas mechanism. Moreover, the major
problem within the older version is that it makes use of an obsolete test case

6 Application Binary Interface.

56 M. A. Hammami and M. Lahami

generator called UPPAAL CO
√

ER, an old extension of the UPPAAL model
checker which is no longer updated.

7 Conclusion

This paper proposed a model-based testing approach for EIP-1559 Ethereum
Smart contracts. Our approach ensured the modelling both of smart contracts
and the blockchain environment while considering essentially Ethereum gas
mechanism according to the new Ethereum Improvement Proposal, EIP-1559.
To do so, UPPAAL Timed Automata were used to elaborate test models. After-
wards, new abstract test cases were generated by using the UPPAAL Test Gen-
erator (Yggdrasil). We also reused our tool BC Test Runner to execute tests,
analyze test results and generate test reports. As a proof of concept, our work
was illustrated through the Small Bank smart contract.

As future work, we aim to extend our MBT approach to support security
testing and to detect several vulnerability issues in the case of Ethereum smart
contracts. The key idea here is to study firstly security properties like confiden-
tiality, integrity, authentication, authorization, availability, and non-repudiation.
Secondly, we investigate security modelling and the automatic security test cases
and test suites generation.

References

1. Krichen, M., Ammi, M., Mihoub, A., Almutiq, M.: Blockchain for modern appli-
cations: a survey. Sensors 22(14), 5274 (2022)

2. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)
3. Finley, K.: A $50 million hack just showed that the DAO was all too human (2016)
4. Lahami, M., Maâlej, A.J., Krichen, M., Hammami, M.A.: A comprehensive review

of testing blockchain oriented software. In: Proceedings of the 17th International
Conference on Evaluation of Novel Approaches to Software Engineering, ENASE
2022, Online Streaming, 25–26 April 2022, pp. 355–362. SCITEPRESS (2022)

5. Krichen, M., Lahami, M., Al-Haija, Q.A.: Formal methods for the verification of
smart contracts: a review. In: 15th International Conference on Security of Infor-
mation and Networks, SIN 2022, pp. 1–8. IEEE (2022)

6. Nelaturu, K., Mavridou, A., Veneris, A., Laszka, A.: Verified development and
deployment of multiple interacting smart contracts with VeriSolid. In: Proceed-
ings of the 2nd IEEE International Conference on Blockchain and Cryptocurrency
(ICBC) (2020)

7. Ben Fekih, R., Lahami, M., Jmaiel, M., Ben Ali, A., Genestier, P.: Towards model
checking approach for smart contract validation in the EIP-1559 Ethereum. In:
Proceeding of the 46th IEEE Annual Computers, Software, and Applications Con-
ference, (COMPSAC), pp. 83–88 (2022)

8. Ben Fekih, R., Lahami, M., Jmaiel, M., Bradai, S.: Formal modeling and verifi-
cation of ERC smart contracts: application to NFT. In: The proceeding of IEEE
Symposium on Computers and Communications (ISCC). IEEE (2023)

9. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying Ethereum smart
contract bytecode in Isabelle/HOL. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pp. 66–77 (2018)

MBT for EIP-1559 Smart Contracts 57

10. Annenkov, D., Milo, M., Nielsen, J.B., Spitters, B.: Extracting smart contracts
tested and verified in Coq. In: Proceedings of the 10th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, pp. 105–121 (2021)

11. Akca, S., Rajan, A., Peng, C.: SolAnalyser: a framework for analysing and test-
ing smart contracts. In: Proceeding of the 26th Asia-Pacific Software Engineering
Conference (APSEC), pp. 482–489 (2019)

12. Sánchez-Gómez, N., Torres-Valderrama, J., Garćıa-Garćıa, J.A., Gutiérrez, J.J.,
Escalona, M.J.: Model-based software design and testing in blockchain smart con-
tracts: a systematic literature review. IEEE Access 8, 164556–164569 (2020)

13. Andesta, E., Faghih, F., Fooladgar, M.: Testing smart contracts gets smarter. In:
Proceeding of the 10th International Conference on Computer and Knowledge
Engineering (ICCKE 2020), pp. 405–412 (2020)

14. Wang, H., Li, Y., Lin, S.W., Artho, C., Ma, L., Liu, Y.: Oracle-supported dynamic
exploit generation for smart contracts (2019)

15. Jiang, B., Liu, Y., Chan, W.K.: ContractFuzzer: fuzzing smart contracts for vulner-
ability detection. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp. 259–269 (2018)

16. Hammami, M.A., Lahami, M., Maâlej, A.J.: Towards a dynamic testing approach
for checking the correctness of Ethereum smart contracts. In: 17th International
Conference of Risks and Security of Internet and Systems, (CRiSIS) (2022)

17. Kim, J.H., Larsen, K.G., Nielsen, B., Mikučionis, M., Olsen, P.: Formal analysis
and testing of real-time automotive systems using UPPAAL tools. In: Núñez, M.,
Güdemann, M. (eds.) FMICS 2015. LNCS, vol. 9128, pp. 47–61. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19458-5 4

18. Szabo, N.: Formalizing and securing relationships on public networks. 2(9) (1997)
19. Liu, Y., Lu, Y., Nayak, K., Zhang, F., Zhang, L., Zhao, Y.: Empirical analysis

of EIP-1559: transaction fees, waiting time, and consensus security. In: CCS ’22:
2022 ACM SIGSAC Conference on Computer and Communications Security Los
Angeles CA USA 7–11 November 2022, pp. 2099–2113. IEEE (2022)

20. Buterin, V., Conner, E., Dudley, R., Slipper, M., Norden, I., Bakhta, A.: EIP-
1559: Fee market change for eth 1.0 chain. https://eips.ethereum.org/eips/eip-
1559. Accessed May 2023

21. Azouvi, S., Goren, G., Heimbach, L., Hicks, A.: Base fee manipulation in ethereum’s
EIP-1559 transaction fee mechanism (2023)

22. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Paper 151(2014), 1–32 (2014)

23. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.:
Chapter one - security testing: a survey. Adv. Comput. 101, 1–51 (2016)

24. Pan, Z., Hu, T., Qian, C., Li, B.: ReDefender: a tool for detecting reentrancy
vulnerabilities in smart contracts effectively. In: Proceedings of the IEEE 21st
International Conference on Software Quality, Reliability and Security (QRS), pp.
915–925 (2021)

25. Grieco, G., Song, W., Cygan, A., Feist, J., Groce, A.: Echidna: effective, usable,
and fast fuzzing for smart contracts. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 557–560 (2020)

26. Liu, Y., Li, Y., Lin, S.W., Yan, Q.: ModCon: a model-based testing platform for
smart contracts. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 1601–1605 (2020)

https://doi.org/10.1007/978-3-319-19458-5_4
https://eips.ethereum.org/eips/eip-1559
https://eips.ethereum.org/eips/eip-1559

	Model-Based Testing Approach for EIP-1559 Ethereum Smart Contracts
	1 Introduction
	2 Theoretical Background and Definitions
	2.1 Blockchain and Smart Contracts
	2.2 The Gas Mechanism
	2.3 EIP-1559

	3 MBT Approach for Ethereum Smart Contracts
	3.1 Smart Contract and Blockchain Modelling
	3.2 Test Case Generation
	3.3 Test Case Execution
	3.4 Test Analysis and Test Report Generation

	4 Prototype Implementation
	4.1 Development Tools
	4.2 Test Tool Implementation

	5 Illustration
	5.1 Case Study Description
	5.2 Modelling the Small Bank System
	5.3 Test Case Generation

	6 Related Work
	7 Conclusion
	References

