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Abstract. Static type checking helps catch errors in manipulating vari-
ables values early on, and most specification languages, like Event-B,
are strongly typed. However, the type system of Event-B language is
relatively simple and provides only a way to specify discrete behaviour
using Integer type. There is no possibility to model continuous behaviour,
which would have helped analyse hybrid systems. More precisely, the
Event-B language doesn’t consider in its type-checking system the pos-
sibility of defining such behaviours and checking the correctness of the
values of the continuous variables within the Event-B models. In this
article, we propose to extend the type-checking system of Event-B to
include Float variables by specifying a floating point numbers theory
using the theory plugin.

Keywords: Hybrid systems · Event-B · Type checking ·
Floating-point numbers

1 Introduction

Since its invention, the use of the Event-B formal method [2] has continued to
increase, and it has been applied to various applications and domains [6]. The
Event-B method is practical and adapted to analyse discrete systems, and its
type system offers the possibility of modelling discrete behaviours. Today, with
the need to model and analyse hybrid systems to include different types of com-
plex and cyber-physical systems, extending the Event-B type-checking systems
becomes necessary to specify and analyse continuous behaviours or represent
numerical algorithms in Event-B. This need involves considering the definition
of real numbers, more concretely, floating-point numbers.

The interest and motivation for using the floating-point arithmetic in the
case of the classical B method [1] was discussed in [12]. Today, with classical B
language, it is possible to specify a treatment with real numbers and to ensure
that its floating point implementation is “close” to its specification. In the case
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of the Event-B method, we can use discretisation like in [5] and other works
cited in the same paper to formalise continuous behaviours. Another known tool
around the classical B and Event-B methods is the ProB model-checker [13].
Currently, Leuschel et al. work on integrating the floating-point arithmetic in
ProB [14].

The Rodin platform [3] is the most used développement environment in the
Event-B ecosystem. Since it is an Eclipse product, it can be extended by adding
plugins. Among all the plugins developed for the Rodin platform, the theory
plugin [7,10] is mainly used to extend the Event-B modelling possibilities by
defining theories. The theory plugin provides the facility to define mathematical
and prover extensions. Mathematical extensions are new operator definitions and
new datatype definitions, and axiomatic definitions. In this article, we propose
to develop a floating-point numbers theory using the theory plugin to extend
the Event-B type-checking system with the possibility of handling floating-point
numbers. We note that there is a theory for reals in the “Standard Library” of
theories1.

This paper is organized as follows: Sect. 2 presents the main concepts of the
Event-B method. Section 3 gives an example to illustrate why there is a need
to use floating-point arithmetic. Section 4 details the proposed approach, and
Sect. 5 shows how the proposed theories improve the motivating example. The
paper concludes with a summary and outlook in Sect. 6.

2 The Event-B Method

The Event-B method [2] is an evolution of the classical B method [1]. This
method is based on the notions of pre-conditions and post-conditions [11], weak-
est pre-condition [9], and the calculus of substitution [1]. It is a formal method
based on first-order logic and set theory.

2.1 The Event-B Model

An Event-B model is made of several components of two kinds: machines and
contexts. The machines contain a model’s dynamic parts (states and transitions),
whereas the contexts contain the static parts (axiomatization and theories). A
machine can be refined by another machine, and a context can be extended by
another. Moreover, a machine can see one or several contexts (see Listings 1.1
and 1.2).

A context is defined by a set of clauses (see Listing 1.1) as follows:

– SETS describes a set of abstract and enumerated types.
– CONSTANTS represents the constants used by a model.
– AXIOMS describes, in first-order logic expressions, the properties of the

attributes defined in the CONSTANTS clause. Types and constraints are
described in this clause as well.

1 https://sourceforge.net/projects/rodin-b-sharp/files/Theory StdLib/.

https://sourceforge.net/projects/rodin-b-sharp/files/Theory_StdLib/


32 I. Ait-Sadoune

– THEOREMS are logical expressions that can be deduced from the axioms.

An Event-B machine is defined by a set of variables, described in the
VARIABLES clause, that evolves thanks to events depicted in the EVENTS clause.
It encodes a state transition system where the variables represent the state, and
the events represent the transitions from one state to another.

Listing 1.1. The Event-B context

CONTEXT ctx1

EXTENDS ctx2

SETS s
CONSTANTS c
AXIOMS

A(s, c)
THEOREMS

T (s, c)
END

Listing 1.2. The Event-B machine

MACHINE mch1

REFINES mch2

SEES ctxi

VARIABLES v
INVARIANTS

I(s, c, v)
THEOREMS

T (s, c, v)
EVENTS

< events list >

Similarly to contexts, a machine is defined by a set of clauses (see Listing 1.2).
Briefly, the clauses mean.

– VARIABLES represents the state variables of the specification model.
– INVARIANTS describes, by first-order logic expressions, the properties of the

variables defined in the VARIABLES clause. Typing information and functional
and safety properties are usually expressed in this clause. These properties
need to be preserved by events.

– THEOREMS defines a set of logical expressions that can be deduced from the
invariants.

– EVENTS defines all the events that occur in a given model. Each event is
characterized by its guard and the actions performed when the guard is true.
Each machine must contain an “Initialisation” event.

The refinement operation offered by Event-B encodes model decomposition.
A transition system is decomposed into another transition system with more
and more design decisions while moving from an abstract level to a less abstract
one. A refined machine is defined by adding new events, new state variables and
a glueing invariant. Each event of the abstract model is refined in the concrete
model by adding new information expressing how the new set of variables and
the new events evolve.

2.2 The Proof Obligations (PO)

Proof obligations (PO) are associated with any Event-B model. They define the
formal semantics associated with each Event-B component. PO are automatically
generated, and the PO generator plugin in the Rodin platform [3] is in charge
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of generating them. These PO need to be proved to ensure the correctness of
developments and refinements. The obtained PO can be proved automatically
or interactively by the prover plugin in the Rodin platform.

The rules for generating PO follow the substitutions calculus [1] close to the
weakest precondition calculus [9]. To define some PO rules, we use the notations
defined in Listings 1.1 and 1.2 where s denotes the seen sets, c the seen con-
stants, and v the variables. Seen axioms are represented by A(s, c) and theorems
by T (s, c), whereas invariants are denoted by I(s, c, v) and local theorems by
T (s, c, v). For an event, the guard is denoted by G(s, c, v, x) and the action is
represented by the before-after predicate BA(s, c, v, x, v′) (a predicate express-
ing the relationship between the variable contents before and after an event
triggering). Here we give a list of the most used/generated PO rules :

- The theorem PO rule: ensures that proposed theorems of a context or
machine are provable.

A(s, c) ⇒ T (s, c)

A(s, c) ∧ I(s, c, v) ⇒ T (s, c, v)

- Invariant preservation PO rule: ensures that each event preserves each
invariant in a machine.

A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ∧ BA(s, c, v, x, v′) ⇒ I(s, c, v′)

- Feasibility PO rule: ensures that a non-deterministic action is feasible.

A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ⇒ ∃v′.BA(s, c, v, x, v′)

There are other rules for generating PO to prove the correctness of variables
construction and using operators (Well definedness - WD) and refinement listed
in [2].

2.3 The Theory Plugin

To extend the Event-B modelling possibilities with new mathematical objects,
the theory plugin [7,10] extends the Rodin platform by providing a new syntax to
define mathematical and prover extensions with the theory component. A theory
can contain new datatype definitions, new polymorphic operator definitions,
axiomatic definitions, theorems and associated rewrite and inference rules. The
installation for the theory plug-in is available under the main Rodin Update site2

under the category “Modelling Extensions”. If you have never used the theory
plugin, consult the user manual available in this link3.

In this work, we use the theory Plugin to define the power operator (with
its axiomatic definitions, theorems and inference rules) and the floating-point
numbers data type (with all its operators, theorems and associated rewrite and
inference rules). The justification of why we need these two theories will be given
in the following sections.
2 http://rodin-b-sharp.sourceforge.net/updates.
3 https://wiki.event-b.org/images/Theory Plugin.pdf.

http://rodin-b-sharp.sourceforge.net/updates
https://wiki.event-b.org/images/Theory_Plugin.pdf
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3 The Motivating Example

To illustrate our approach for extending the Event-B core with the floating-point
numbers data type, we propose to model a system that continuously calculates
a moving object’s speed (cf. listing 1.3). The main objective of this example is to
show some modelling and validation problems that we can face when we analyse
physical phenomena, mainly when we use integer variables to handle small values
and expressions that come from the laws of physics. For simplicity reasons, we
ignore in this study all the problems related to the units of measurement and
which will be treated in our future work.

Listing 1.3. An Event-B model calculating a moving object’s speed.

MACHINE mch_integer_version

...

INVARIANTS

@inv1: traveled_distance ∈ N

@inv2: measured_time ∈ N1

@inv3: speed ∈ N

@inv4: starting_position ∈ N

@inv5: starting_time ∈ N

@inv6: speed = travelled_distance ÷ measured_time

@inv7: traveled_distance > 0 ⇒ speed > 0

EVENTS

...

get_speed =̂

any v t

where

@grd1: v ∈ N1 ∧ v > starting_position

@grd2: t ∈ N1 ∧ t > starting_time

then

@act1: travelled_distance := v - starting_position

@act2: measured_time := t - starting_time

@act3: speed := (v - starting_position) ÷ (t - starting_time)

end

END

The proposed Event-B model formalises two functional properties:
PROP 1 - the speed of the moving object is equal to the travelled distance
divided by the measured time (v = d/t), and PROP 2 - when the
travelled distance is strictly positive, the speed of the moving object must also
be strictly positive (the object moves when its speed is different from zero). These
two properties are formalised by the invariants @inv6 and @inv7 of listing 1.3.

The main event of the proposed Event-B model is called get speed. It cap-
tures the new position of the moving object and calculates the new values of
the measured time, travelled distance, and speed variables. These new values
depend on the initial position stored in the starting time and starting position
variables captured by another event that doesn’t interest us in this study.
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Fig. 1. The summary of the gen-
erated and proven (or not) proof
obligations.

From the model validation point of view,
we encountered a problem with the invari-
ant preservation proof obligation of the @inv7
invariant generated for the get speed event
(cf. Fig. 1, all the OPs are green except the
one maintaining the @inv7 invariant by the
get speed event). For recall, this invariant for-
malises the PROP 2 - property of our sys-
tem (if the value of the travelled distance
variable is strictly positive, the speed variable
must also be strictly positive). However, in the
get speed event, the value of the expression
“v−starting position” can be less than that of
“t−starting time”. In this case, the new value
of the speed variable becomes equal to zero
while the one of the travelled distance vari-
able is not because all variables of our model
are integer variables, and the “÷” Event-B
operator makes an integer division. For these
reasons, the get speed/inv7/INV PO cannot
be proved. Conceptually, our model correctly
specifies our requirements; on the other hand,
the basic types and operators of the Event-B language are not adapted to our
needs and do not allow us to validate continuous behaviours requirements and
manipulate small and big values simultaneously.

For these reasons and those discussed in [12], we propose to develop a
floating-point numbers theory using the theory plugin to extend the Event-B
type-checking system with the possibility of handling floating-point numbers.

4 The Proposed Approach

As known, the floating point is the most used method for representing and
approximating real numbers in computer-based arithmetic. Therefore, we pro-
pose to represent real numbers by using floating-point arithmetic. This approach
represents floating-point numbers using an integer called the significand, scaled
by an integer exponent of a fixed base. We have chosen that the base always
equals ten in our models (see the following example).

x = 3.14159265359 = 314159265359
︸ ︷︷ ︸

significand

× 10
︸︷︷︸

base

exponent
︷︸︸︷

−11

To allow the Event-B language to embed this floating-point representation,
we need to define two theories: the first one formalises the power operator that
isn’t included in the Event-B language (the “ˆ” caret Event-B operator is not
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implemented in the automated proofs supported by the Rodin platform, besides
power 0 and 1), and the second one formalises floating-point numbers by specify-
ing the corresponding data type, the supported arithmetic operators, and some
axioms and theorems that characterise the proposed modelling. The Event-B
project containing these theories can be downloaded from this link4.

4.1 The Power Operator

To have the possibility of comparing two floating point numbers, we need to
define a left-shift operator that uses multiplication by powers of ten. In our case,
for this reason, and for reasons we explain later, we define a power operator that
uses only natural exponents. The power operation with natural exponents may be
defined directly from multiplication operations. The definition of exponentiation
as an iterated multiplication can be formalized using induction. The base case is
x0 = 1 and the recurrence is xn = x × xn−1 (cf. Listing 1.4). For the case 00, in
contexts where only natural powers are considered, 0 to the power 0 is undefined
(see the wd condition defined for the pow operator in the Listing 1.4).

Listing 1.4. The theory defining the power operator

THEORY thy_power_operator

AXIOMATIC DEFINITIONS

operators

pow(x ∈ Z, n ∈ N) : Z INFIX

wd condition : ¬ (x = 0 ∧ n = 0)

axioms

@axm1: ∀ n. n ∈ N1 ⇒ 0 pow n = 0

@axm2: ∀ x. x ∈ Z ∧ x �=0 ⇒ x pow 0 = 1

@axm3: ∀ x,n. x ∈ Z ∧ x �=0 ∧ n ∈ N1 ⇒ x pow n = x × (x pow (n-1))

...

THEOREMS

@thm1: ∀ x,n,m. ... ⇒ (x pow n) × (x pow m) = x pow (n+m)

@thm2: ∀ x,n,m. ... ⇒ (x pow n) pow m = x pow (n×m)

@thm3: ∀ x,y,n. ... ⇒ (x×y) pow n = (x pow n)×(y pow n)

...

END

The proposed theory also contains some proven theorems formalising some
exponent rules (the product rule, the power rule, the multiplying exponents
rule, ...). The proofs of all these theorems were made by induction following the
rules defined in [8]. Notice that we have chosen to define the pow operator in a
single theory to offer the possibility of reusing this operator in other Event-B
components (theories, machines, or contexts) using the theory path mechanism
available in the theory plugin [7,10].

4.2 The Floating-Point Numbers Theory

The proposed theory formalizes a floating-point number by defining a new data
type called FLOAT Type. This new data type provides the NEW FLOAT constructor
4 https://www.idiraitsadoune.com/recherche/modeles/eventb.theories.zip.

https://www.idiraitsadoune.com/recherche/modeles/eventb.theories.zip
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that allows creating a floating-point number by following the definition x =
s× 10e (with s representing the significand part and e the exponent part). This
way, it is possible to create constants like 0 and 1 (F0 = 0 × 100 or F1 =
1 × 100) (cf. Listing 1.5). The proposed theory does not model limited precision
floating point numbers. This implies that the operators defined in the theory
involve no precision loss. This choice is made in order to allow the user to refine
the proposed theory towards any implementation, the IEEE Standard 754, for
example. This also allows us to remain compliant with the definition of the
Event-B integer type, which is independent of any implementation. This theory
provides an operator (FLOAT) to convert any Event-B integer to FLOAT Type.
We consider that the abstract numbers are those defined in the Event-B theory,
and the concrete ones are those described by the IEEE Standard.

Listing 1.5. The theory defining the floating-point numbers (part 1)

THEORY thy_floating_point_numbers

DATATYPES

FLOAT_Type =̂ NEW_FLOAT(s ∈ Z, e ∈ Z)

OPERATORS

F0 =̂ NEW_FLOAT (0,0)

F1 =̂ NEW_FLOAT (1,0)

FLOAT(x ∈ Z) =̂ NEW_FLOAT(x,0)

l_shift(x ∈ FLOAT_Type , offset ∈ N) =̂
NEW_FLOAT(s(x) × (10 pow offset), e(x)-offset)

eq(x ∈ FLOAT_Type , y ∈ FLOAT_Type) INFIX =̂
s(l_shift(x, e(x)-min({e(x),e(y)}))) =

s(l_shift(y, e(y)-min({e(x),e(y)})))

gt(x ∈ FLOAT_Type , y ∈ FLOAT_Type) INFIX =̂
s(l_shift(x, e(x)-min({e(x),e(y)}))) >
s(l_shift(y, e(y)-min({e(x),e(y)})))

geq(x ∈ FLOAT_Type , y ∈ FLOAT_Type) INFIX =̂
x eq y ∨ x gt y

lt(x ∈ FLOAT_Type , y ∈ FLOAT_Type) INFIX =̂
¬(x geq y)

leq(x ∈ FLOAT_Type , y ∈ FLOAT_Type) INFIX =̂
¬(x gt y)

...
END

The floating-point theory redefines all essential numeric operators (compari-
son and calculation operators), and the operator we have to define to overload all
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the numeric operators is the left shift operator (l shift operator). This operator
uses a positive offset to perform a left shift by multiplying the significand part
by powers of ten5. To compare two numbers, we left-shift the number containing
the biggest exponent to have the same exponent as the other number. Then,
when two numbers have the same exponents, it’s possible to compare them by
comparing their significand parts. In this way, we have defined the operators eq,
gt, geq, lt, and leq (=, >, ≥, <, ≤) comparing two floating-point numbers (cf.
Listing 1.5).

Listing 1.6. The theory defining the floating-point numbers (part 2)

THEORY thy_floating_point_numbers

...

OPERATORS

...
plus(x ∈ FLOAT_Type , y ∈ FLOAT_Type) INFIX =̂

NEW_FLOAT(s(l_shift(x, e(x)-min({e(x),e(y)}))) +

s(l_shift(y, e(y)-min({e(x),e(y)}))) , min({e(x),e(y)}))

neg(x ∈ FLOAT_Type) =̂
NEW_FLOAT(−1 × s(x), e(x))

minus(x ∈ FLOAT_Type , y ∈ FLOAT_Type) INFIX =̂

x plus neg(y)

mult(x ∈ FLOAT_Type , y ∈ FLOAT_Type) INFIX =̂
NEW_FLOAT(s(x) × s(y) , e(x) + e(y))

f_pow(x ∈ FLOAT_Type , n ∈ N) INFIX =̂
NEW_FLOAT(s(x) pow n, n × e(x))

...
END

Using the same reasoning for the comparison, we have generalized the idea to
the addition and subtraction operators. A left-shift of one of the two operands is
necessary to perform the addition and subtraction operations (cf. Listing 1.6).
However, the multiplication operation is performed by multiplying the signifi-
cand parts of the two operands, and the resulting exponent is obtained by adding
the exponent parts of the two operands (cf. Listing 1.6). The f pow operator gen-
eralises the pow operator for the floating-point numbers.

While the proposed theory involves no precision loss for multiplication and
addition, division sometimes induces a precision loss. For example, we cannot
precisely represent the result of 1/3 or 2/3. That is why, for the case of the
division and inverse operators, we have firstly defined the well-defined conditions
(by the inv WD and div WD operators in listing 1.7). To calculate the inverse of
x, we must find a z, which we multiply by the significand part of x to obtain a
power of ten (The value of z corresponds to the significand part of the result of
the inverse of x) . For example, to calculate the inverse of 2, 5 corresponds to

5 This is why we have defined a power operator with only natural exponents.
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z in our case, which does not exist for the inverse of 3. The same reasoning is
done for the division operator.

Listing 1.7. The theory defining the floating-point numbers (part 3)

THEORY thy_floating_point_numbers

...
OPERATORS

...
inv_WD(a ∈ FLOAT1_Type) =̂

∃ n,z. n ∈ N ∧ z ∈ Z ∧ 10 pow n = s(a) × z

div_WD(a ∈ FLOAT_Type , b ∈ FLOAT1_Type) =̂
∃ n,z. n ∈ N ∧ z ∈ Z ∧ s(a) × (10 pow n) = s(b) × z

AXIOMATIC DEFINITIONS

operators

inv(x ∈ FLOAT_Type) : FLOAT1_Type

wd condition : inv_WD(x)

axioms

@inv_1: ∀ x,y.(... ⇒ ((x mult y) = F1 ⇔ inv(x) = y))

@inv_2: ∀ x,y.(... ⇒ ((x mult y) eq F1 ⇔ inv(x) eq y))

operators

div(x ∈ FLOAT_Type , y ∈ FLOAT_Type) : FLOAT_Type INFIX

wd condition : div_WD(x,y)

axioms

@div_1: ∀ x,y,z.(... ⇒ ((y mult z) = x ⇔ (x div y) = z))

@div_2: ∀ x,y,z.(... ⇒ ((y mult z) eq x ⇔ (x div y) eq z))

@div_3: ∀ x,y.(... ⇒ x mult inv(y) = x div y)

...
END

The last basic arithmetic operations, inverse and division, are formalized by
axiomatic definitions, and both are invocable if their well-defined conditions are
true (defined in the wd condition clause). The inverse of x is y if and only if y
is the number we multiply by x to obtain F1, and the result of dividing x by y
is z, if and only if z is the number we multiply by y to obtain x (cf. Listing 1.7).
We must prove the WD PO generated from the wd condition for both operators.
The axiom @div 3 gives the relationship between the inverse operator and the
division operator.

Finally, the floating-point data type is often used in laws of physics and
scientific calculations. Functions calculating the integer part, the fractional part,
the floor function and the ceiling function are very useful. This theory provides
all these operators, and due to the page number limitations, these operators are
not presented in this article. The reader may consult them by downloading this
theory from this link6.

The last part of the proposed theory contains a set of theorems that we have
proved, and that correspond to laws defining properties of arithmetic operators

6 https://www.idiraitsadoune.com/recherche/modeles/eventb.theories.zip.

https://www.idiraitsadoune.com/recherche/modeles/eventb.theories.zip
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(equality, addition, and multiplication are commutative, the order is total, reflex-
ive, anti-symmetric and transitive, addition and multiplication have an inverse,
...) and others theorems combining the comparison operators and the arithmetic
operators (cf. Listing 1.8).

Listing 1.8. The theory defining the floating-point numbers (part 4)

THEORY thy_floating_point_numbers

...
THEOREMS

@thm1: ∀ x,y.(... ⇒ x eq y ⇔ y eq x)

@thm2: ∀ x.(... ⇒ x geq x ∧ x leq x)

@thm3: ∀ x,y.(... x leq y ∧ y leq x ⇒ x eq y)

@thm4: ∀ x,y.(... ⇒ x leq y ∨ y leq x)

@thm5: ∀ x,y,z.(... x leq y ∧ y leq z ⇒ x leq z)

@thm6: ∀ x,y,z.(... x leq y ⇒ (x plus z) leq (y plus z))

@thm7: ∀ x,y,z.(... x leq y ⇒ (x mult z) leq (y mult z))

@thm8: ∀ x.(... ⇒ x plus F0 eq x)

@thm9: ∀ x,y.(... ⇒ x plus y = y plus x)

@thm10: ∀ x,y.(... ⇒ x plus neg(y) = y minus x)

@thm11: ∀ x.(... ⇒ x minus F0 eq x)

@thm12: ∀ x.(... ⇒ x minus x eq F0)

@thm13: ∀ x.(... ⇒ x mult F0 eq F0)

@thm14: ∀ x.(... ⇒ x mult F1 = x)

@thm15: ∀ x,y.(... ⇒ x mult y = y mult x)

@thm16: ∀ x.(... ⇒ inv(x) = F1 div x)

@thm17: ∀ x.(... ⇒ x div F1 = x)

@thm18: ∀ x.(... ⇒ x div x = F1)

@thm19: ∀ x.(... ⇒ x mult inv(x) = F1)

...
END

Due to our choice to formalise unlimited precision floating-point numbers
(the operators defined in the proposed theory involve no precision loss), we can
deduce some properties that are not true in the floating-point numbers world
(the associativity of addition and multiplication, for example). When this theory
is refined towards any implementation (the IEEE Standard 754, for example),
the developer must pay attention to this point.

5 Revisiting the Motivating Example

The example presented in Sect. 3 is updated to use the floating-point numbers
theory. All NATURAL variables are typed by PFLOAT Type set containing positive
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floating-point numbers (cf. Listing 1.9), and the rest of the model was adapted
using the equivalent operators from the proposed theory. The obtained Event-B
machine contains almost the same invariants and the same events (cf. Listing
1.10). The only difference is the addition of the invariant @inv6 concerning the
well-defined condition of the division operator used to formalise the speed of
the moving object (PROP 1 of the motivating example). Thus, PROP 1 and
PROP 2 of the initial model are formalised by the invariants @inv7 and @inv8
(cf. Listing 1.10).

Listing 1.9. The definition of the positive floating-point numbers

THEORY thy_floating_point_numbers

...
PFLOAT_Type = { x · x ∈ FLOAT_Type ∧ s(x) ≥ 0 | x }

END

Listing 1.10. The new version of the model calculating the speed of a moving object
MACHINE mch_floating_point_version

...

INVARIANTS

@inv1: traveled_distance ∈ PFLOAT_Type

@inv2: measured_time ∈ PFLOAT_Type ∧ s(measured_time) �= 0

@inv3: speed ∈ PFLOAT_Type

@inv4: starting_position ∈ PFLOAT_Type

@inv5: starting_time ∈ PFLOAT_Type

@inv6: div_WD(traveled_distance , measured_time)

@inv7: speed eq traveled_distance div measured_time

@inv8: traveled_distance gt F0 ⇒ speed gt F0

EVENTS

...

get_speed =̂

any v t

where

@grd1: v ∈ PFLOAT_Type ∧ v gt starting_position

@grd2: t ∈ PFLOAT_Type ∧ t gt starting_time

@grd3: div_WD(v minus starting_position , t minus starting_time)

then

@act1: traveled_distance := v minus starting_position

@act2: measured_time := t minus starting_time

@act3: speed := (v minus starting_position) div (t minus starting_time)

end

END
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Fig. 2. The summary of the gen-
erated and proven POs of the new
Event-B machine.

From the model validation point of view,
contrary to the initial model, all generated
proof obligations have been proven. The prob-
lem with the invariant linked to the inte-
ger division operator no longer arises. As
shown in the Fig. 2, the get speed/inv8/INV
PO becomes green, and it has been proven
using the interactive prover of the Rodin
platform. As we have said, the @inv8 for-
malises the following property : if the
value of the travelled distance variable is
strictly positive, the speed variable must
also be strictly positive. Even if in the
get speed event, the value of the expres-
sion “v minus starting position” can be less
than that of “t minus starting time”, the
new value of the speed variable is never
equal to zero because the value of “v minus
starting position” is also never equal to zero
(thanks to the guard @grd1 of the get speed
event). All this is possible thanks to the new
div operator specification, which acts on the
floating-point numbers.

This is one of the reasons that allow us to
conclude that our floating-point numbers the-
ory is more suitable than the basic integers of Event-B in modelling hybrid
systems and continuous behaviours.

6 Conclusion

In this article, we have proposed an approach using the theory plugin to extend
the Event-B type-checking system with the possibility of handling floating-point
numbers. We have developed a floating-point numbers theory that formalises
a floating-point number using an integer called the significand, scaled by an
integer exponent of a fixed base (equals ten in our theory). Our proposition
includes an extension of the Event-B power operator to handle powers of ten
more than 0 and 1. We have proposed an abstract representation of the floating-
point numbers to offer the possibility to refine the proposed theory to any more
concrete implementation (the IEEE standard, for example).

For the next step of our work, we consider the floating-point numbers theory
as the first step before developing a more general theory that will formalise the
standard units of measurement defined by the International System of Units (SI).
Such theories will be helpful in modelling cyber-physical, and these works will
be integrated into our framework [4] for generating the Event-B model from
ontologies that can define concepts in the context of hybrid systems.
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