
23

A Cooperative Game Approach 
for Solving Water Resources 
Allocation Problem

Assem Tharwat, Marwa Mostafa Sabry and Ihab El-Khodary

Abstract

In water resources allocation problem, different stake-
holders are faced with conflicting objectives and an 
optimal allocation of shared water resources in water 
transfer projects became an important task, taking into 
account the utilities of the different stakeholders. In 
Iran, there is unevenly distribution of water resources as 
well as increasing water demands, which have brought 
a need to transfer water from the Karoon river basin to 
the Rafsanjan basin in central Iran. Therefore, coopera-
tive game theory can be used to analyze these problems, 
taking the advantage of cooperative games in maximiz-
ing the total net benefit of the shared stakeholders as 
well as increasing the individual shares of the allocated 
water to each stakeholder. In this paper, two cooperative 
game models are developed for modeling efficient water 
allocation among water stakeholders in water allocation 
problems in southern Iran. The main objective is to real-
locate the water resources to achieve an equitable way of 
distributing these benefits among the water stakeholders 
to let them have the economic incentives for cooperation. 
Depending on the type of cooperation and the nature of 
the payoffs values, a fuzzy and a stochastic cooperative 
models are presented. The results showed that the mod-
els are appropriate in modeling real-world uncertain 
problems and efficient in allocating benefits specifically 
when considering the stochastic nature for payoffs.
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1  Introduction

In water allocation problems, there are usually several 
stakeholders with different and conflicting objectives. These 
conflicts arise when several water users compete for a lim-
ited amount of water supply. To achieve equitable and effi-
cient water allocation, this requires the cooperation of all 
stakeholders in sharing water resources. Thus, water alloca-
tion methodologies need to be established to maintain equi-
table and efficient water allocations at river basins level. 
Cooperative game theory was used to model this scenario of 
water resource allocation, taking the advantage of coopera-
tive games in maximizing the total net benefit of the shared 
stakeholders as well as increasing the individual shares of 
the allocated water to each stakeholder.

The aim of this paper is developing two cooperative 
game models for water resources reallocation to achieve an 
equitable way of distributing these benefits among the water 
stakeholders to let them have the economic incentives for 
cooperation. Depending on the type of cooperation and the 
nature of the payoffs values, a fuzzy and a stochastic coop-
erative models are presented. These models are used to 
solve a case study of water allocation problem in Southern 
Iran, showing the higher benefits achieved from the coop-
eration of the water stakeholders.

The organization of this paper is as follows: Sect. 2 pre-
sents the related work for solving water resources allocation 
problems. Section 3 presents the fuzzy and stochastic coop-
erative models, respectively and the framework for these 
models. Implementation for these models on a real case 
study in Iran is carried out in Sect. 4. Sections 5 gives the 
main concluding remarks.
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3.1  A Fuzzy Cooperative Game Model

In the fuzzy game model, water users could participate in 
forming the fuzzy grand coalition with a different participa-
tion rates, and therefore, they need not to use all of their ini-
tial water shares in the grand coalition. Also, handling the 
nature of the payoffs values as fuzzy numbers with known 
membership functions. A closed form formula in this model 
is developed that optimally allocates the payoffs among the 
cooperating players.

Taking imprecision of information in decision-making 
problems into account, a fuzzy characteristic function (i.e., 
fuzzy coalition value) can be incorporated into a coopera-
tive game, represented by fuzzy numbers ω. Therefore, the 
characteristic function of such a game associates a crisp 
coalition with a fuzzy number ω(S). Assessing such fuzzy 
numbers for any crisp coalition S, a cooperative game with 
crisp coalitions and fuzzy characteristic function is defined 
by a pair (N, ω), where the fuzzy characteristic function ω: 
P(N) → R+ = {r̃ ∈ R|r̃ ≥ 0} is such that ω(ϕ) = 0, (where 
R is the fuzzy real line).

A fuzzy cooperative game (FCGame), i.e., with fuzzy 
coalitions and fuzzy characteristic function, is a pair (N, 

∼
ω

) where N is the set of players with i ϵ N = {1, …, n} and 
the fuzzy characteristic function 

∼
ω: U → R for all U ⊆ N, 

such that ω(ϕ) = 0. A fuzzy coalition U is a fuzzy subset 
of N, which is a vector U = {U (1),…, U (n)} with coordi-
nates U (i) contained in the interval [0,1]. The number U (i) 
indicates the membership grade of i in U. The class of all 
fuzzy subsets of U is denoted by F(N). For a fuzzy subset U, 
, the α–level set is defined as: [U]

α
 = {i ϵ N | U (i) ≥ α}, and 

the support set is denoted by supp(U) = {i ϵ N | U (i) > 0} 
(Borkotokey 2008).

Let x(U) = (x1(U), …, xn(U)) be the payoff vector, such 
that xi(U) is the payoff of player i of the fuzzy coalition 
U ϵ F(N). Since all players of coalition U cooperate together 
to maximize their profit, a linear multi-objective program-
ming model can be formulated for any fuzzy coalition 
U ϵ F(N) as follows (Tharwat et al. 2011):

Max (w1x1(U), w2x2(U), …, wnxn(U))
Subject to

where wi =

[

∼
ω (U)−

∼
ω (U− {i})

]

/
∼
ω (U).

From the above formulated model, a closed form for-
mula is derived which directly solves fuzzy cooperative 
games as follows (Sabry et al. 2017):

(1)

∑

i∈Supp(U)

xi(U) = ω̃(U), i = 1, . . . , n

xi(U) ≥ [U(i) · ω̃({i})], ∀i ∈ supp(U)

xi(U) = 0, ∀i /∈ supp(U)

2  Related Work

“Several attempts in the literature have been done for study-
ing water resources allocation problem. Kucukmehmetoglu 
(2009) established a methodology to measure the rational 
economic and political impacts of extensive reservoir projects 
throughout a basin, using both linear programming for calcu-
lating benefits of coalitions, and game theory concepts (core 
and Shapley value) for evaluating the impacts of reservoirs. 
Sadegh et al. (2010) and Sadegh and Kerachian (2011) devel-
oped a methodology based on crisp and fuzzy Shapley games 
for optimal allocation of interbasin water resources. In their 
methodology, some fuzzy coalitions were constituted, and the 
total net benefit of the system was reallocated to water users 
using fuzzy Shapley value game with crisp payoffs.

Mahjouri and Ardestani (2010) developed a new game 
theoretic methodology for interbasin water transfer man-
agement to supply the competing users in a fair way, while 
the efficiency and environmental sustainability criteria were 
satisfied and the utilities of water users were incorporated. 
Mahjouri and Ardestani (2011) developed two cooperative 
and non-cooperative methodologies for a large-scale water 
allocation problem in Southern Iran. The water shares of the 
water users and their net benefits were determined using opti-
mization models having economic objectives with respect to 
the physical and environmental constraints of the system.

Sadegh and Kerachian (2011) developed two new solu-
tion concepts for fuzzy cooperative games with crisp charac-
teristic functions, namely Fuzzy Least Core and Fuzzy Weak 
Least Core. They aimed for optimal allocation of available 
water resources and associated benefits to water users in a 
river basin. Review of the previous works shows that the 
applicability and efficiency of cooperative games with fuzzy 
characteristic functions and fuzzy coalitions in modeling 
water resource allocation problems have not been yet inves-
tigated. Nikoo et al. (2012) developed a new methodology 
based on interval optimization and game theory for optimal 
operation of an interbasin water transfer system considering 
efficiency, equity and sustainability criteria. They proposed 
a linear version of the agricultural water production function 
and used it for incorporating deficit irrigation.”

3  Proposed Models

In this section, two game models are proposed. Depending 
on the type of cooperation between water stakeholders 
whether partial or full cooperation, and the type of pay-
offs values whether fuzzy or stochastic random variables, a 
fuzzy or stochastic cooperative game models is determined. 
In the following, the details of developing both models are 
explained.
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where EVU =
EU
1 +EU

2

2
 is the expected value for the fuzzy 

worth 
∼
ω(U).

The developed closed form formula efficiently calculates 
the payoff distribution among the coalition players through 
transforming the payoff value of player i and the expected 
value of the fuzzy worth.

Proposition 1 The payoffs of players obtained by solv-
ing the derived formula satisfy both the individual and the 
group rationality.

Proposition 2 Zero player (Null player) receives zero gain.

3.2  A Stochastic Cooperative Game Model

In stochastic cooperative games, the payoff values are often 
estimations or approximations of reality. Under a stochas-
tic environment, the value of the grand coalition, i.e., the 
total profit (or cost) is not given explicitly; rather it is rep-
resented as random variable knowing only its probability 
distribution.

This section presents a stochastic multi-objective optimi-
zation model that is developed to deal with stochastic coop-
erative games. Our research work handled the uncertainties 
through stochastic payoff functions through the presence of 
some random variables 

∼
ν (s) with known distribution func-

tions, Fṽ(s)(x) = P

{

∼
ν (s) ≤ x

}

. Under stochastic coopera-
tive game (SCG), a pair of sets SCG = (I, 

∼
ν) is used, where 

I = {1…n}: the set of players; 
∼
ν(S): incomes (worth) of coa-

litions S ⊂ I, that are random variables with determined den-
sity functions  Pṽ(s)(x) (Suijs et al. 1999; Ma et al. 2008). 
Thus, a multi-objective chance constrained programming 
model can be formulated for any coalition with stochastic 
worth as follows (Tharwat et al. 2019):

(2)

xi = U(i)EVi +
EV ′

U [EV
′
U − EV ′

U−i]
∑N

i=1[EV
′
U − EV ′

U−i]

= U(i)EVi +
[EV ′

U − EV ′
U−i]

2EV ′
U

∑N

i=1 EV
′
U−i

where E
[

ṽ(i)
]

, σ
[

ṽ(i)
]

 and E
[

ṽ(I)
]

, σ
[

ṽ(I)
]

 are the mean and 
standard deviation of the normal random variables ṽ(i) and 
ṽ(I), respectively. Bi and δ are the inverse cumulative distri-
bution function of the standard normal random variable ṽ(i) 
at yi and ṽ(I) at z, respectively.

Proposition 1 Efficiency: The payoff vector of the model 
provides efficiency as the total payoff of the grand coalition 
is distributed to all cooperating players.

Proposition 2 Fairness: The payoff vector provides fair-
ness among all cooperating players as it allocates higher 
share to the player whose individual contribution is higher 
than another.

Proposition 3 Existence and Uniqueness: The solution of 
the developed stochastic multi-objective optimization model 
always exists as the model is converged to the optimal solu-
tion based on the derived convergence constraints and pro-
vide unique allocation vector.

Proposition 4 Complexity: The number of constraints 
increases linearly with the number of cooperating players 
and not exponentially like Shapley value.

(3)

Max x1(α), x2(α), . . . , xn(α)

Subject to

3Bi

3− B2
i

e−B2
i/2 ≥

√

π

2
(2yi + 1), i = 1, . . . , I

3δ

3− δ2
e−

δ2

2 ≥

√

π

2
(2z + 1)

xi(α)− Biσ
[

ṽ(i)
]

≥ E
[

ṽ(i)
]

, i = 1, . . . , I

I
∑

i=1

xi(α)− δσ
[

ṽ(I)
]

≤ E
[

ṽ(I)
]

yi ≥ 1− α, i = 1, . . . , I

z ≤ α

xi(α) ≥ 0, i = 1, . . . , I

Bi, δ are unrestricted in sign

0 ≤ yi, z ≤ 1



26 A. Tharwat et al.

According to Mahab-Ghods Consulting Engineers 
(2004), the total water demand and need of the Karoon 
river basin is 24.9 billion cubic meters while the total 
discharge (supply) of the great Karoon river is 20.4 bil-
lion cubic meters. This statement showed that Karoon 
river basin had major problems in supplying its own 
water demands in some months of the year particu-
larly in dry years. One of the most important streams 
of the great Karoon river is the Solegan river. Its average 
flow is 26 m3/s. The Iran Water Resources Management 
Company (IWRMC) had planned to construct Solegan res-
ervoir (dam) on this river to make the opportunity to allo-
cate water to the Rafsanjan plain area in central Iran. The 
Rafsanjan basin has an annual average precipitation rate 
of 170 mm, where groundwater resources are the only 
dependable water resources in this basin, as its rivers are 
seasonal and their annual discharge are insignificant (short-
age is about one million cubic meters) (Fig. 2).

Therefore, IWRMC had decided to supply the water 
demands of this basin by transferring 250 million cubic 
meters of water from the Solegan river annually. This 

3.3  Framework of the Model

In this section, a general flowchart of the proposed models 
is illustrated in Fig. 1.

4  Case Study

In Iran, there is unevenly distribution of water resources 
due to precipitation. In central Iran, there is low rate of pre-
cipitation and increasing water demands, which have led 
to high usage on the groundwater resources, which are the 
only dependable water resources in this region. As such, 
recently, there is a need to transfer water from the Karoon 
river basin in southwestern Iran to the Rafsanjan basin in 
central Iran. Two important rivers are the main branches to 
the Karoon river basin, the Karoon and Dez. These two riv-
ers connect together and form the huge Karoon river that 
ends in the Persian Gulf. The Karoon and Dez rivers repre-
sent the main sources of water for supplying the agricultural 
and agro-industrial users.

Collect data for water users 
demands 

Do initial water resource allocation 
based on an equity criterion 

First Step 

Start

Is the nature of 
payoffs values 

fuzzy or stochastic? 

Fuzzy Stochastic 

Determine the fuzzy payoffs with the 
participation rates of water users 

Reallocate fuzzy benefits according 
to the developed fuzzy model 

Determine the stochastic payoffs of water 
users 

Reallocate stochastic benefits according 
to the developed stochastic model 

Second Step Second Step 

Fig. 1  Framework of the proposed models
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criterion. These are the monthly shares with respect to the 
legal water supply rights and the reservoir physical and 
environmental constraints. Because the benefits were cal-
culated yearly, the monthly water allocated shares were 
converted to the annual ones to be applicable in the cal-
culations of the characteristic functions (Abed Elmdoust 
and Kerachian 2012). The results of this step were used as 
inputs to the second step.

4.1  Implementing the Developed Models

The closed form formula for fuzzy cooperative games and 
the stochastic model developed earlier in Sect. 3 are imple-
mented in this section on the water allocation problem of 
Southern Iran. A comparison between these implementa-
tions are discussed at the end of this section.

4.1.1  A Fuzzy Scenario for Water Allocation
The fuzzy game model allows water users to participate in 
forming the fuzzy grand coalition with a different partici-
pation rates and therefore; they need not to use all of their 
initial water shares in the grand coalition. In addition, the 
worth for the formed coalitions is uncertain fuzzy values. 
The net benefit coefficients and the capacity of each water 
user, presented in Table 2, are used to calculate the fuzzy 
worth of each possible crisp coalition. These fuzzy worth of 
each of the formed crisp coalitions are shown in Table 3.

Thus, from the calculated fuzzy worth of coalitions and 
the participation rates of each user given in Table 4, the 
total fuzzy worth of the fuzzy grand coalition was deter-
mined using the Choquet integral form function for fuzzy 
games, (Tsurumi et al, 2001) as follows:

transferred amount was used to supply the shortage 
demands and at the same time protected the groundwater 
resources in Rafsanjan basins.”

A secondary data was given over a 5-year plan horizon, 
and the average monthly water demands for the water users 
were estimated. Table 1 shows the main water demands 
(players) which are Rafsanjan agricultural sector in the 
Rafsanjan basin, Khuzestan local agricultural sector in the 
Karoon basin, Khuzestan modern agro-industrial sector and 
finally Khuzestan old agro-industrial sector.

As an initial step, an optimization model was used to 
determine the initial water allocation shares for all users 
(players). These allocations are proportional to the shares 
allocated by the government, which are based on an equity 

Fig. 2  Solegan reservoir and water demand sectors (Nikoo et al. 2012)

Table 1  Main water demands for all users (million m3)

Month Rafsanjan agricultural 
sector

Khuzestan local agricultural 
sector

Khuzestan modern agro-indus-
trial sector

Khuzestan old 
agro-industrial 
sector

April 17 18.8 2.1 2.5

May 39.8 24.8 2.7 3.3

June 49.6 27 3 3.6

July 47 34.2 3.8 4.6

August 45 30.4 3.4 4

September 38 25 2.7 3.3

October 28.2 15.4 1.7 2.1

November 8.8 9 1 1.2

December 0.2 6.2 0.7 0.9

January 0 5.6 0.6 0.8

February 0 6.6 0.7 0.9

March 1.2 13.8 1.5 1.9

Annual Demand 274.8 216.8 24.1 28.9
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4.2  Discussion and Comparison of Results

In the developed closed form fuzzy formula, the profit 
shares for the water stakeholders are distributed in accord-
ance with the product of the participation rates and the 
individual worth for each stakeholder. Figure 3 shows the 
allocation of profit shares for each water user that resulted 
from applying the developed fuzzy formula.

Comparing these obtained values with those obtained 
using the Hukuhara–Shapley value (Abed Elmdoust and 
Kerachian 2012):

Players (i) 1 2 3 4

Khuzestan 
modern

Khuzestan old Khuzestan 
local Rafsanjan

(×105$) 6.67 4.52 49.57 40.73

Revealed that the developed formula increased the 
percentages of the profit shares for stakeholders whose 
participation rates are higher, which is not the case when 
solving using the Hukuhara–Shapley Value. Figure 4 
shows that the percentages of profit for Khuzestan Local 
and Rafsanjan were increased to 48.5% and 42.3% respec-
tively using the developed formula against Shapley value 
that yielded 48.4% and 41.4%, respectively. For Khuzestan 

Max 0.4x1(α), 0.5x2(α), 3.6x3(α), 3.1x4(α)

Subject to

x1 − 0.7β1 ≥ 5.2

x2 − 0.7β2 ≥ 5.6

x4 − 0.4β4 ≥ 13.5

4
∑

i=1

xi(α)− 8.7δ ≤ 211

3βi

3− β2
i

e−β2
i/2 ≥

√

π

2
(2yi + 1), i = 1, . . . , 4

3δ

3− δ2
e−

δ2

2 ≥

√

π

2
(2z + 1)

yi ≥ 0.95, i = 1, . . . , 4

z ≤ 0.05

0 ≤ yi, z ≤ 1, xi(α) ≥ 0, i = 1, . . . , 4

βi, δ are unrestricted in sign

Solving this fuzzy model with our developed formula for 
fuzzy games:

Step 1: Defuzzifying the total coalitional worth.
EVN = 102.68 × 105$

Step 2: Calculating (EVN−i′) for all sub-coalitions and 
EVN ′

N − i {2,3, 4} {1,3, 4} {1,2, 4} {1,2, 3} {1,2, 3,4}

EV(×105$) 91.7 95.54 23.75 27.6 102.68

EV ′(×105$) 59.59 62.9 12.37 0.08 68.13

Step 3: Finding the individual’s profit shares by applying 
the formula.

Players (i) 1 2 3 4

Khuzestan 
modern

Khuzestan old Khuzestan 
local Rafsanjan

(×105$) 6.2 4.5 50.79 42.39

4.1.2  A Stochastic Scenario for Water Allocation
In the stochastic cooperative game model, water users fully 
cooperate in the grand coalition with all of their resources, 
but the coalitional worth in this case is considered normal 
random variable determined by the net benefit coefficients, 
BC(N), and the capacity of each water user, c(i,m), shown 
in Table 5.

The stochastic worth of each of the formed crisp sub-
coalitions were as follows (× 105$):

Given the four water users will cooperate together shar-
ing all their resources with the stochastic coalitional worth. 
They want be sure that the total worth is enough to allocate 
the profit allocation by at least 95%.

Formulating this scenario as stochastic cooperative 
game, and following our developed model, the obtained 
deterministic programming problem for the multi-objective 
stochastic problem will be:

(4)
tω̃({1, 2, 3, 4}) =

q(K)
∑

m=1

ω̃([K]rm) · (rm − rm−1)

= (102.44, 102.53, 103.23)× 105$
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efficiently than Hukuhara–Shapley value with less com-
putational effort (no need to calculate crisp Shapley val-
ues at the very beginning) and overcoming the Hukuhara 
conditions.

Modern and Khuzestan Old, the formula resulted in 5.4% 
and 3.7% respectively while Shapley value resulted in 6.3 
and 3.9%. Thus, the allocation vector resulted from the 
developed formula reallocated the coalitional worth more 

Table 2  Net benefit coefficient bc(i) and the annual capacity c(i) of users

Players (i) 1 2 3 4

Khuzestan modern Khuzestan old Khuzestan local Rafsanjan

bc(i) ($/m3) 0.31 0.28 0.27 1.07

c(i) (m3) 24.1 × 106 28.9 × 106 216.8 × 106 274.8 × 106

Table 3  Fuzzy worth of each of the formed crisp coalition

Coalitions Fuzzy payoffs Coalitions Fuzzy payoffs Coalitions Fuzzy payoffs

ω({1}) (4.6, 5.1, 5.9) ω({1, 3}) (45.6, 50.7, 58.3) ω({1, 2, 3}) (51.1, 56.8, 65.3)

ω({2}) (5, 5.5, 6.4) ω({1, 4}) (27.9, 31, 35.7) ω({1, 2, 4}) (46.7, 51.9, 59.7)

ω({3}) (34.5, 38.6, 42.8) ω({2, 3}) (42.3, 46.9, 54) ω({1, 3, 4}) (167.9, 186.7, 214.7)

ω({4}) (13.2, 13.5, 13.9) ω({2, 4}) (30.9, 34.4, 39.6) ω({2, 3, 4}) (171, 190, 218.5)

ω({1, 2}) (10.1, 11.2, 12.9) ω({3, 4}) (152.3, 169.2, 194.6) ω({1, 2, 3, 4}) (186.7, 207.5, 238.7)

Table 5  Stochastic worth for all sub-coalitions of water players

Coalitions Stochastic payoffs Coalitions Stochastic payoffs Coalitions Stochastic payoffs
∼
v({1}) N(5.2,0.7) ṽ({1, 3}) N(51.5,6.4) ṽ({1, 2, 3}) N(57.7,7.1)
∼
v({2}) N(5.6,0.7) ṽ({1, 4}) N(31.5,3.9) ṽ({1, 2, 4}) N(52.7,6.5)
∼
v({3}) N(38.6,4.2) ṽ({2, 3}) N(47.7,5.9) ṽ({1, 3, 4}) N(189.7,23.6)
∼
v({4}) N(13.5,0.4) ṽ({2, 4}) N(34.9,4.4) ṽ({2, 3, 4}) N(193.1,23.9)
∼
v({1, 2}) N(11.4,1.4) ṽ({3, 4}) N(172.03,21.3) ṽ({1, 2, 3, 4}) N(210.9,26.2)

Fig. 3  Percentages of profit 
shares distribution with the 
participation rates using the 
developed formula

Table 4  Participation rate of each water user in the formed fuzzy grand coalition

Players (i) 1 2 3 4

Khuzestan modern Khuzestan old Khuzestan local Rafsanjan

Participation rate 0.53 0.47 0.86 0.63
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Comparisons of results obtained from applying the fuzzy 
and stochastic game models revealed that applying the sto-
chastic environment and considering the water demands of 
the water users as stochastic random variables rather than 
the fuzzy nature for them (as previously considered by 
other researchers; Abed Elmdoust and Kerachian 2012), 
achieved efficient and higher profit shares allocations for 
stakeholders which increased the overall benefit and the 
individual ones. The major economic benefit achieved when 
transferring highest water share to Khuzestan local agricul-
tural sector, which resulted in stabilizing and preserving the 
underground water condition in this area.

5  Conclusions

In this paper, two cooperative game models are developed 
for modeling efficient water allocation among water stake-
holders in water allocation problem. In Southern Iran, there 
is unevenly distribution of water resources that requires 
transfer of water resources from basins to another. A fuzzy 
cooperative game model was developed in which a closed 
form formula was used to reallocate benefits between water 
stakeholders. A second scenario of stochastic cooperative 
game modeling in which the benefits are considered sto-
chastic random variables was used to achieve higher alloca-
tions between water stakeholders. The main objective is to 
reach higher overall net benefit and to achieve an equitable 
way of distributing these benefits among the water stake-
holders that is fair enough to let them have the economic 
incentives to cooperate forming the grand coalition. The 
approach for these models consists of two steps. In the first 
step, an optimization model was used to determine the ini-
tial water allocation shares for all users based on an equity 
criterion. In the second step, water users form coalitions to 
benefit from cooperation and depending on the nature of 
payoff values, either the fuzzy or the stochastic model was 
used to reallocate the benefits in an efficient way. The results 
showed that the developed fuzzy model is more effective 

On the other hand, when solving the water allocation 
problem using the developed stochastic model, the individ-
ual profit shares for the water users will be:

1
Khuzestan 
modern

2
Khuzestan old

3
Khuzestan 
local

4
Rafsanjan

(×105$) 26.47 35.93 96.93 47.36

With total coalitional worth = 206.69 (× 105$)

When solving the same stochastic model using Shapley 
value, the allocated payoffs were:

1
Khuzestan 
modern

2
Khuzestan old

3
Khuzestan 
local

4
Rafsanjan

(×105$) 24.68 31.46 93.68 45.38

With total coalitional worth = 195.2 (× 105$)

Thus, the developed stochastic model allocated 97% of 
the total coalitional worth, which is more acceptable when 
compared with Shapley that allocated 92.5% (Fig. 5). 
Hence, increasing the profit shares for the water users.

Fig. 5  Percentages of profit 
shares using the developed 
stochastic model versus Shapley 
value

Fig. 4  Profit shares using the developed formula versus Hukuhara–
Shapley value
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than Hukuhara–Shapley function overcoming its limita-
tion with less computational effort. In addition, applying the 
developed stochastic model achieved more benefits between 
water stakeholders than the fuzzy scenario to reach an early 
assumption that the stochastic nature for the benefits is 
more realistic than assuming the fuzzy ones. The proposed 
approach allows applying both fuzzy and stochastic scenar-
ios for solving water allocation problems, though real imple-
mentations revealed that considering the stochastic nature for 
stakeholder payoffs are more beneficial than the fuzzy ones.
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