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Abstract. Systems that use Machine Learning (ML) have become com-
monplace for companies that want to improve their products and pro-
cesses. Literature suggests that Requirements Engineering (RE) can help
address many problems when engineering ML-enabled systems. However,
the state of empirical evidence on how RE is applied in practice in the con-
text of ML-enabled systems is mainly dominated by isolated case stud-
ies with limited generalizability. We conducted an international survey
to gather practitioner insights into the status quo and problems of RE
in ML-enabled systems. We gathered 188 complete responses from 25
countries. We conducted quantitative statistical analyses on contempo-
rary practices using bootstrapping with confidence intervals and qualita-
tive analyses on the reported problems involving open and axial coding
procedures. We found significant differences in RE practices within ML
projects. For instance, (i) RE-related activities are mostly conducted by
project leaders and data scientists, (ii) the prevalent requirements doc-
umentation format concerns interactive Notebooks, (iii) the main focus
of non-functional requirements includes data quality, model reliability,
and model explainability, and (iv) main challenges include managing cus-
tomer expectations and aligning requirements with data. The qualitative
analyses revealed that practitioners face problems related to lack of busi-
ness domain understanding, unclear goals and requirements, low customer
engagement, and communication issues. These results help to provide a
better understanding of the adopted practices and of which problems exist
in practical environments. We put forward the need to adapt further and
disseminate RE-related practices for engineering ML-enabled systems.
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1 Introduction

Companies from different sectors are increasingly incorporating Machine Learn-
ing (ML) components into their software systems. We refer to these software
systems, where an ML component is part of a larger system, as ML-enabled sys-
tems. The shift from engineering conventional software systems to ML-enabled
systems comes with challenges related to the idiosyncrasies of such systems, such
as addressing additional qualities properties (e.g., fairness and explainability),
dealing with a high degree of iterative experimentation, and facing unrealistic
assumptions [21,25]. Furthermore, the non-deterministic nature of ML-enabled
systems poses challenges from the viewpoint of software engineering [7].

Literature suggests that Requirements Engineering (RE) can help to
address problems related to engineering ML-enabled systems [1,25,28]. How-
ever, research on this intersection mainly focuses on using ML techniques to
support RE activities rather than exploring how RE can improve the develop-
ment of ML-enabled systems [4]. The state of empirical evidence on how RE
is applied in practice in the context of ML-enabled systems is still weak and
dominated by isolated studies.

In order to help addressing these issues, we conducted an international sur-
vey with the aim to understand the current industrial RE practices and prob-
lems that practitioners face when developing ML-enabled systems. In total, 188
practitioners from 25 countries completely answered the survey. Based on prac-
titioners’ responses, we conducted quantitative and qualitative analyses, provid-
ing insights into (i) what role is typically in charge of requirements, (ii) how
requirements are typically elicited and documented, (iii) which non-functional
requirements typically play a major role, (iv) which RE activities are perceived
as most difficult, and (v) what RE-related problems do ML practitioners face.
We share our findings on the state of practice and problems of RE for ML with
the community to help steer future research on the topic.

The remainder of this paper is organized as follows. Section 2 provides the
background and related work. Section 3 describes the research method. Section 4
presents the results. Sections 5 and 6 discuss the results and threats to validity.
Finally, Sect. 7 presents our concluding remarks.

2 Background and Related Work

ML involves algorithms that analyze data to create models capable of making
predictions on new, unseen data [20]. Unlike traditional systems, ML-enabled
systems learn from data instead of being programmed with predefined rules.
However, poor-quality data can lead to inaccurate results. This supposes a
change in the way of designing and developing this type of system. On the other
hand, RE constitutes approaches to address challenges that are amplified by
the use of ML, e.g., understanding the problem space, aligning interdisciplinary
teams, and dealing with stakeholder expectations.
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RE and ML have a special connection. According to Kästner [10], an ML
model can be seen as a requirements specification based on training data since
the data can be seen as a learned description of how the ML model shall behave.
In this manner, when developing ML models, we need to identify relevant and
representative data, validate models, and balance model-related user expecta-
tions (e.g., accuracy versus inference time); just as in RE for traditional systems
where we need to identify representative stakeholders, validate specifications
with customers, and address conflicting requirements.

Current theoretical SE research has identified many challenges with RE for ML
[3,18,19]. Some studies have proposed new methods or adapted existing ones to
handle requirements on such systems [9,26,27]. While these research contributions
are valuable, gathering empirical evidence from the industry is essential to bridge
the gap between theory and practice. Collecting practitioners’ insights becomes
imperative to identify real-world challenges and current practices accurately. Such
studies can provide a better understanding of the practical problems that can guide
the advancement of new RE for ML techniques and their effective implementa-
tion in real-world scenarios. In the following, we present studies conducted within
industry settings involving practitioners to understand RE for ML.

Vogelsang and Borg [28] conducted interviews with four data scientists to
find out the current practices and what should be done to handle and surpass
the challenges regarding requirements. They suggest the need for new RE for
ML solutions or at least the adaptation of existing ones. Habibullah et al. [8]
conducted interviews and a survey to understand how Non-Functional Require-
ments (NFRs) are perceived among ML practitioners. They identified the degree
of importance practitioners place on different NFRs, explored how NFRs are
defined and measured, and identified associated challenges.

Recently, Nahar et al. [21] identified challenges in building ML-enabled sys-
tems through a systematic literature survey aggregating existing studies involv-
ing interviews or surveys with practitioners of multiple projects. With respect to
RE, they reported challenges related to unrealistic expectations from stakehold-
ers, vagueness in ML problem specifications, and additional requirements such
as regulatory constraints. Scharinger et al. [22] revealed the worries at Siemens
regarding problems that any ML project is susceptible, listing ML Pitfalls, such
as lack of decision quality baselines and underestimating costs. They believe that
RE is the key to avoid this pitfalls and to ripen ML development.

We complement the valuable research discussed above with additional empir-
ical evidence on current practices and problems regarding RE for ML-enabled
systems, obtained from an industrial survey on ML-enabled systems.

3 Research Method

3.1 Goal and Research Questions

The goal of this paper is to characterize the current practices and problems
experienced by practitioners in the requirements life cycle stage of ML-enabled
system projects. From this goal, we established the following research questions:
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– RQ1. What are the contemporary practices of RE for ML-enabled
systems? This question aims at revealing how practitioners are currently
approaching RE for ML, identifying trends, prevalent methods, and the extent
to which the industry aligns with established practices. We refined RQ1 into
more detailed questions as follows:
• RQ1.1 Who is addressing the requirements of ML-enabled system

projects?
• RQ1.2 How are requirements typically elicited in ML-enabled system

projects?
• RQ1.3 How are requirements typically documented in ML-enabled system

projects?
• RQ1.4 Which NFRs do typically play a major role in ML-enabled system

projects?
• RQ1.5 Which activities are considered to be most difficult when defining

requirements for ML-enabled system projects?
– RQ2. What are the main RE-related problems faced by practi-

tioners in ML-enabled system projects? Identifying these challenges is
crucial as it informs the development of strategies to mitigate difficulties, help-
ing to steer future research on the topic in a problem-driven manner. For this
research question, we applied open and axial coding procedures to allow the
problems to emerge from open-text responses provided by the practitioners.

3.2 Survey Design

We designed our survey based on best practices of survey research [30], carefully
conducting the following steps:

– Step 1. Initial Survey Design. We conducted a literature review on RE
for ML [25] and combined our findings with previous results on RE problems
[6] and the RE status quo [29] to provide the theoretical foundations for
questions and answer options. Therefrom, the initial survey was drafted by
software engineering and machine learning researchers of PUC-Rio (Brazil)
with experience in R&D projects involving ML-enabled systems.

– Step 2. Survey Design Review. The survey was reviewed and adjusted
based on online discussions and annotated feedback from software engineering
and machine learning researchers of BTH (Sweden). Thereafter, the survey
was also reviewed by the other co-authors.

– Step 3. Pilot Face Validity Evaluation. This evaluation involves a
lightweight review by randomly chosen respondents. It was conducted with 18
Ph.D. students taking a Survey Research Methods course at UCLM (Spain)
(taught by the second author). They were asked to provide feedback on the
clearness of the questions and to record their response time. This phase
resulted in minor adjustments related to usability aspects and unclear word-
ing. The answers were discarded before launching the survey.
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– Step 4. Pilot Content Validity Evaluation. This evaluation involves
subject experts from the target population. Therefore, we selected five expe-
rienced data scientists developing ML-enabled systems, asked them to answer
the survey, and gathered their feedback. The participants had no difficulties
in answering the survey and it took an average of 20 min. After this step, the
survey was considered ready to be launched.

The final survey started with a consent form describing the purpose of the
study and stating that it is conducted anonymously. The remainder was divided
into 15 demographic questions (D1 to D15) followed by three specific parts with
17 substantive questions (Q1 to Q17): 7 on the ML life cycle and problems, five on
requirements, and five on deployment and monitoring. This paper focuses on the
demographics, the ML life cycle problems related to problem understanding and
requirements, and the specific questions regarding requirements. The excerpts of
the substantive questions related to this paper are shown in Table 1. The survey
was implemented using the Unipark Enterprise Feedback Suite.

Table 1. Research questions and survey questions

RQ Survey No Description Type

- ... ... ...

RQ2 Q4 According to your personal experience, please outline the
main problems or difficulties (up to three) faced during the
Problem Understanding and Requirements ML life cycle
stage.

Open

- ... ... ...

RQ1.1 Q8 Who is actively addressing the requirements of ML-enabled
system projects in your organization?

Closed (MC)

RQ1.2 Q9 How were requirements typically elicited in the ML-enabled
system projects you participated in?

Closed (MC)

RQ1.3 Q10 How were requirements typically documented in the
ML-enabled system projects you participated in?

Closed (MC)

RQ1.4 Q11 Which Non-Functional Requirements (NFRs) typically play a
major role in terms of criticality in the ML-enabled system
projects you participated in?

Closed (MC)

RQ1.5 Q12 Based on your experience, what activities do you consider
most difficult when defining requirements for ML-enabled
systems?

Closed (MC)

-

3.3 Data Collection

Our target population concerns professionals involved in building ML-enabled
systems, including different activities, such as management, design, and devel-
opment. Therefore, it includes practitioners in positions such as project leaders,
requirements engineers, data scientists, and developers. We used convenience
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sampling, sending the survey link to professionals active in our partner compa-
nies, and also distributed it openly on social media. We excluded participants
that informed having no experience with ML-enabled system projects. Data col-
lection was open from January 2022 to April 2022. In total, we received responses
from 276 professionals, out of which 188 completed all four survey sections. The
average time to complete the survey was of 20 min. We conservatively considered
only the 188 fully completed survey responses.

3.4 Data Analysis Procedures

For data analysis purposes, given that all questions were optional, the number
of responses varies across the survey questions. Therefore, we explicitly indicate
the number of responses when analyzing each question.

Research questions RQ1.1 - RQ1.5 concern closed questions, so we decided
to use inferential statistics to analyze them. Our population has an unknown
theoretical distribution (i.e., the distribution of ML-enabled system profession-
als is unknown). In such cases, resampling methods like bootstrapping, have
been reported to be more reliable and accurate than inference statistics from
samples [17,30]. Hence, we use bootstrapping to calculate confidence intervals
for our results, similar as done in [29]. In short, bootstrapping involves repeat-
edly taking samples with replacements and then calculating the statistics based
on these samples. For each question, we take the sample of n responses for that
question and bootstrap S resamples (with replacements) of the same size n. We
assume n as the total valid answers of each question [5], and we set 1000 for S,
which is a value that is reported to allow meaningful statistics [15].

For research question RQ2, which seeks to identify the main problems faced
by practitioners involved in engineering ML-enabled systems related to problem
understanding and requirements, the corresponding survey question is designed
to be open text. We conducted a qualitative analysis using open and axial coding
procedures from grounded theory [24] to allow the problems to emerge from the
open-text responses reflecting the experience of the practitioners. The qualitative
coding procedures were conducted by one PhD student and reviewed by her
advisor at one site (Brazil) and reviewed independently by three researchers
from two additional sites (two from Sweden and one from Turkey).

The questionnaire, the collected data, and the quantitative and qualitative
data analysis artifacts, including Python scripts for the bootstrapping statistics
and graphs and the peer-reviewed qualitative coding spreadsheets, are available
in our open science repository1.

4 Results

4.1 Study Population

Fig. 1 summarizes demographic information on the survey participants’ coun-
tries, roles, and experience with ML-enabled system projects in years. It is
1 https://doi.org/10.5281/zenodo.8248332.

https://doi.org/10.5281/zenodo.8248332
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possible to observe that the participants came from different parts of the world,
representing various roles and experiences. While the figure shows only the ten
countries with the most responses, we had respondents from 25 countries. As
expected, our convenience sampling strategy influenced the countries, with most
responses being from the authors’ countries (Brazil, Turkey, Austria, Germany,
Italy, and Sweden).

Fig. 1. Demographics: countries, roles, and years of experience.

Regarding employment, 45% of the participants are employed in large com-
panies (2000+ employees), while 55% work in smaller ones of different sizes. It
is possible to observe that they are mainly data scientists, followed by project
leaders, developers, and solution architects. It is noteworthy that only two par-
ticipants identified themselves as requirements engineers. Regarding their expe-
rience with ML-enabled systems, most of the participants reported having 1
to 2 years of experience. Following closely, another substantial group of partic-
ipants indicated a higher experience bracket of 3 to 6 years. This distribution
highlights a balanced representation of novice and experienced practitioners.
Regarding the participants’ educational background, 81.38% mentioned having
a bachelor’s degree in computer science, electrical engineering, information sys-
tems, mathematics, or statistics. Moreover, 53.72% held master’s degrees, and
22.87% completed Ph.D. programs.

4.2 Problem Understanding and Requirements ML Life Cycle Stage

In the survey, based on the nine ML life cycle stages presented by Amershi et
al. [2] and the CRISP-DM industry-independent process model phases [23], we
abstracted seven generic life cycle stages and asked about their perceived rele-
vance and difficulty. The answers, presented in Fig. 2, revealed that ML practi-
tioners are extremely worried about requirements. The Problem Understanding
and Requirements stage is clearly perceived as the most relevant and most com-
plex life cycle stage.
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Fig. 2. Perceived relevance and complexity of each ML life cycle stage

4.3 Contemporary RE Practices for ML-Enabled Systems

[RQ1.1] Who is Addressing the Requirements of ML-Enabled System
Projects? The proportion of roles reported to address the requirements of
ML-enabled system projects within the bootstrapped samples is shown in Fig. 3
together with the 95% confidence interval. The N in each figure caption is the
number of participants that answered this question. We report the proportion P
of the participants that checked the corresponding answer and its 95% confidence
interval in square brackets.

It is possible to observe that the project lead and data scientists were most
associated with requirements in ML-enabled systems with P = 56.439 [56.17,
56.709] and P = 54.71 [54.484, 54.936], while Business Analysts (P =
29.518 [29.288, 29.749]) and Requirements Engineers (P = 11.202 [11.061,
11.342]) had a much lower proportion. Several isolated options were mentioned
in the “Others” field (e.g., Product Owner, Machine Learning Engineer, and
Tech Lead), altogether summing up 11% and not significantly influencing the
overall distribution (P = 11.021 [10.865, 11.177]).

Fig. 3. Roles addressing requirements of ML-enabled systems (N = 170)
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[RQ1.2] How Are Requirements Typically Elicited in ML-Enabled
System Projects? As presented in Fig. 4, respondents reported interviews as
the most commonly used technique (P = 55.795 [55.567, 56.022]), followed
(or complemented) by prototyping (P = 43.953 [43.711, 44.195]), scenarios
(P = 43.065 [42.834, 43.297]), workshops (P = 42.708 [42.483, 42.933]),
and observation P = 36.838 [36.613, 37.063].

Fig. 4. Requirements elicitation techniques of ML-enabled systems (N = 171)

[RQ1.3] How Are Requirements Typically Documented in the ML-
Enabled System Projects? Figure 5 shows Notebooks as the most frequently
used documentation format with P = 37.357 [37.149, 37.564], followed by
User Stories (P = 36.115 [35.875, 36.356]), Requirements Lists (P = 29.712
[29.499, 29.925]), Prototypes (P = 23.957 [23.748, 24.166]), Use Case Mod-
els (P = 21.617 [21.412, 21.822]), and Data Models (P = 19.92 [19.724,
20.117]). Surprisingly, almost 17% mentioned that requirements are not docu-
mented at all with P = 16.955 [16.767, 17.143]. Several isolated options were
mentioned in the “Others” field(e.g., Wiki tools, Google Docs, Jira) with P =
8.877 [8.744, 9.011].

[RQ1.4] Which Non-Functional Requirements (NFRs) Do Typically
Play a Major Role in Terms of Criticality in the ML-Enabled Sys-
tem Projects? Regarding NFRs (Fig. 6), practitioners show a significant con-
cern with some ML-related NFRs, such as data quality (P = 69.846 [69.616,
70.075]), model reliability (P = 42.679 [42.45, 42.907]), and model explain-
ability (P = 37.722 [37.493, 37.952]). Some NFRs regarding the whole sys-
tem were also considered important, such as system performance (P = 40.789
[40.573, 41.006]), and usability (P = 29.589 [29.36, 29.818]). A significant
amount of participants informed that NFRs were not at all considered within
their ML-enabled system projects (P = 10.617 [10.465, 10.768]). Further-
more, in the “Others” field (P = 1.814 [1.745, 1.884]), a few participants also
mentioned that they did not reflect upon NFRs.
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Fig. 5. Requirements documentation of ML-enabled systems (N = 171)

Fig. 6. Critical non-functional requirements of ML-enabled systems (N = 169)

[RQ1.5] Which Activities are Considered Most Difficult When Defin-
ing Requirements for ML-Enabled Systems? We provided answer options
based on the literature on requirements [29] and requirements for machine learn-
ing [25], leaving the “Other” option to allow new activities to be added. As
shown in Fig. 7, respondents considered that managing customer expectations
is the most difficult task (P = 66.804 [66.575, 67.032]), followed by aligning
requirements with data (P = 57.306 [57.066, 57.546]), resolving conflicts (P
= 38.582 [38.341, 38.824]), managing changing requirements (P = 35.62
[35.395, 35.846]), selecting metrics (P = 33.95 [33.723, 34.176]), and elici-
tation and analysis (P = 29.036 [28.824, 29.248]).

4.4 Main RE-Related Problems in ML-Enabled System Projects

Regarding the main problems faced by the participants during the Problem
Understanding and Requirements stage, they emerged from open coding applied
to free text answers. Participants could inform up to three problems related
to each ML life cycle stage. In total, 262 open-text answers were provided for
problems related to problem understanding and requirements.
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Fig. 7. Most difficult RE activities in ML-enabled systems (N = 171)

We incorporated axial coding procedures to provide an easily understand-
able overview, relating the emerging codes to categories. We started with the
sub-categories Input, Method, Organization, People, and Tools, as suggested for
problems in previous work on defect causal analysis [11]. Based on the data, we
merged the Input and People categories, as it was difficult to separate between
the two, given the concise answers provided by the participants. We also renamed
the Tools category into Infrastructure and identified the need to add a new cat-
egory related to Data. It is noteworthy that these categories were identified
considering the overall coding for the seven ML life cycle stages, while in this
paper, we focus on the problem understanding and requirements stage.

Figure 8 presents an overview of the frequencies of the resulting codes using
a probabilistic cause-effect diagram, which was introduced for causal analysis
purposes in previous work [12,13]. While this representation provides a compre-
hensive overview, the percentages are just frequencies of occurrence of the codes
(i.e., the sum of all code frequencies is 100%). Also, the highest frequencies
within each category are organized closer to the middle.

It is possible to observe that most of the reported problems are related to
the Input category, followed by Method and Organization. Within the Input cat-
egory, the main problems concern difficulties in understanding the problem and
the business domain and unclear goals and requirements. In the Method category,
the prevailing reported problems concern difficulties in managing expectations
and establishing effective communication. Finally, in the Organization category,
the lack of customer or domain expert availability and engagement and the lack
of time dedicated to requirements-related activities were mentioned. While we
focus our summary on the most frequently mentioned problems, it is notewor-
thy that the less frequent ones may still be relevant in practice. For instance,
computational constraints or a lack of data quality (or availability) can directly
affect ML-related possibilities and requirements.

5 Discussion

The survey findings reveal an intriguing aspect within ML contexts: the dis-
tribution of roles in RE activities. Contrary to conventional expectations, the
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Fig. 8. Main problems faced during problem understanding and requirements

role of requirements engineers and business analyst appears to be less promi-
nent. Instead, a notable shift is observed, with project leaders and data scien-
tists taking the lead in RE efforts. As the literature suggests that RE can help
address problems related to engineering ML-enabled systems, this could point to
the fact that software engineering practices are not yet well established within
this domain. Nevertheless, the involvement of project leaders and data scientists
as key RE contributors could reflect the nature of ML projects, where domain
expertise and data-driven insights are pivotal. This shift in responsibilities raises
questions about the evolving dynamics of cross-functional collaborations within
ML endeavors and prompts further exploration into how such roles influence the
shaping of ML-enabled systems.

The survey also revealed that practitioners typically use traditional require-
ments elicitation techniques (interviews, prototyping, scenarios, workshops, and
observation). Comparing the results to the elicitation techniques reported for
traditional RE [29], an observable difference is that requirements workshops
are slightly less commonly used in ML contexts. This could be related to the
absence of the requirements engineer, who is typically familiar with conducting
such workshops, or to the lack of specific adaptations on such workshop formats
for ML-enabled systems.

With respect to requirements documentation, notebooks, which are interac-
tive programming environments that can be used to process data and create ML
models, appear as the most used tool for documenting requirements. Again, this
could be a symptom of the absence of a requirements engineer and the lack of
awareness of RE specification practices and tools. Furthermore, a proportion of
almost 17% mentioned that requirements were not documented at all. Given that
in conventional contexts problems related to requirements are common causes
of overall software project failure [6], this apparent lack of RE-related maturity
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may also be causing pain in ML contexts. Traditional artifacts, such as user
stories, requirements lists, prototypes, and use case models, are also used in the
ML context, but significantly less than in the conventional software context [29].
Even specific approaches, such as the ML Canvas, do not relevantly represent a
current practice for documenting the requirements of ML-enabled systems.

Regarding NFRs, practitioners express considerable concerns with specific
ML-related NFRs, such as data quality, model reliability, and model explain-
ability, while also recognizing the significance of overall system-related NFRs.
Nevertheless, more than 10% of practitioners do not even consider NFRs in
their ML-enabled system projects. Again, given the potential negative impacts
of missing NFRs on software-related projects [6], this can be seen as another indi-
cator of the lack of overall awareness of the importance of RE in the industrial
ML-enabled systems engineering context.

The survey also revealed the most difficult activities perceived by practition-
ers in defining requirements for ML-enabled systems. The difficulties reported
by practitioners includes managing customer expectations and aligning require-
ments with data, highlight the importance of effective communication, a deep
understanding of customer needs, and domain and technical expertise to bridge
the gap between aspirations and technological feasibility.

Finally, we contributed to the RE-related problems faced by practitioners
in ML-enabled system projects. The main issues relate to difficulties in prob-
lem and business understanding, managing expectations, and low customer or
domain expert availability or engagement. These issues clearly have comparable
counterparts in the conventional RE problems [6]. As comparable problems may
have comparable solutions, adopting established RE practices (or adaptations of
such practices) may help improve ML-enabled system engineering.

6 Threats to Validity

We identified some threats while planning, conducting, and analyzing the survey
results. Hereafter we list these potential threats, organized by the survey validity
types presented in [16].

Face and Content Validity. Face and content validity threats include bad
instrumentation and inadequate explanation of constructs. To mitigate these
threats, we involved several researchers in reviewing and evaluating the ques-
tionnaire with respect to the format and formulation of the questions, piloting it
with 18 Ph.D. students for face validity and with five experienced data scientists
for content validity.

Criterion Validity. Threats to criterion validity include not surveying the
target population. We clarified the target population in the consent form (before
starting the survey). We also considered only complete answers (i.e., answers of
participants that answered all four survey sections) and excluded participants
that informed having no experience with ML-enabled system projects.
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Construct Validity. We ground our survey’s questions and answer options on
theoretical background from previous studies on RE [6,29] and a literature review
on RE for ML [25]. A threat to construct validity is inadequate measurement
procedures and unreliable results. To mitigate this threat we follow recommended
data collection and analysis procedures [30].

Reliability. One aspect of reliability is statistical generalizability. We could not
construct a random sample systematically covering different types of profession-
als involved in developing ML-enabled systems, and there is yet no generalized
knowledge about what such a population looks like. Furthermore, as a conse-
quence of convenience sampling, the majority of answers came from Europe
and South America. Nevertheless, the experience and background profiles of the
subjects are comparable to the profiles of ML teams as shown in Microsoft’s
study [14]. To deal with the random sampling limitation, we used bootstrapping
and only employed confidence intervals, conservatively avoiding null hypothesis
testing. Another reliability aspect concerns inter-observer reliability, which we
improved by including independent peer review in all our qualitative analysis
procedures and making all the data and analyses openly available online.

7 Conclusions

Literature suggests that RE can help to tackle challenges in ML-enabled system
engineering [25]. Recent literature studies (e.g., [1,21,25]) and industrial studies
(e.g., [22,28]) on RE for ML-enabled systems have been important to help to
understand the literature focus and industry needs. However, the studies on
industrial practices and problems are still isolated and not yet representative.

We complement these studies, aiming at strengthening empirical evidence on
current RE practices and problems when engineering ML-enabled systems, with
an industrial survey that collected responses from 188 practitioners involved
in engineering ML-enabled systems. We applied bootstrapping with confidence
intervals for quantitative statistical analysis and open and axial coding for qual-
itative analysis of RE problems. The results confirmed some of the findings
of previous ML-enabled system studies, such as the relevance NFRs related to
data quality, model reliability, and explainability [8,28], and challenges related to
customer expectation management and vagueness of requirements specifications
[21,25]. However, we also shed light on some new and intriguing aspects. For
instance, the survey revealed that project leaders and data scientists are taking
the reins in RE activities for the ML-enabled systems and that interactive Note-
books dominate requirements documentation. With respect to the problems, the
main issues relate to difficulties in problem and business understanding, difficul-
ties in managing expectations, unclear requirements, and lack of domain expert
availability and engagement.

Overall, when comparing RE practices and problems within ML-enabled sys-
tems with conventional RE practices [29] and problems [6], we identified signifi-
cant variations in the practices but comparable underlying problems. As compa-
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rable problems may have comparable solutions, we put forward a need to adapt
and disseminate RE-related practices for engineering ML-enabled systems.
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