®

Check for
updates

Comparative Analysis of UprPAAL SMC,
ns-3 and MATLAB/Simulink

Muhammad Naeem® | Michele Albano, Kim Guldstrand Larsen,
and Brian Nielsen

Department of Computer Science, Aalborg University, Aalborg, Denmark
{mnaeem,mialb,kgl,bnielsen}@cs.aau.dk

Abstract. IoT networks connect everyday devices to the internet to
communicate with one another and humans. It is more cost-effective
to analyse and verify the performance of the designed prototype before
deploying these complex networks. Network Simulator 3 (ns-3), MAT-
LAB/Simulink, and UppAAL SMC are three industry-leading tools that
simulate communicating models, each with strengths and weaknesses.
NS3 is suitable for large-scale network simulations, MATLAB/Simulink
is suitable for complex models and data analysis, and UpPAAL SMC is
efficient for real-time probabilistic systems with complex timing require-
ments, This paper presents a comparative analysis of NS3 and MAT-
LAB/Simulink and UppaAL SMC, based on a Sigfox-based case study,
focusing on the behaviour of a single Sigfox node. The comparison is
drawn on ease of use, flexibility, and scalability. The results can help
researchers make informed decisions when designing and evaluating sim-
ulation experiments. They demonstrate that the choice of tool depends
on the specific requirements of the simulation project and requires careful
consideration of the strengths and weaknesses of each tool.

Keywords: WSN - Network Simulators - Sigfox + Energy Model -
Network Modelling - IoT

1 Introduction

The Internet of Things (IoT) has seen significant growth in recent years, leading
to the development of intelligent environments in areas like smart homes, energy,
and industry [8]. As IoT devices are often used in sensitive areas to collect
information and control the environment, designing an efficient model to reduce
the error risk and ensure system security is crucial. Simulating the prototype’s
model during the design process is essential to analyse its performance, identify
flaws, and overcome potential vulnerabilities. Several network simulation tools
are available, but selecting the most suitable one can be difficult.

This paper presents a comparative analysis of three simulation tools: Network
Simulator 3 (ns-3), UPPAAL Statistical Model Checker (SMC) [3], and MAT-
LAB/Simulink [6], based on the simulation of an industrial case study aiming

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofron et al. (Eds.): ECBS 2023, LNCS 14390, pp. 153-169, 2024.
https://doi.org/10.1007/978-3-031-49252-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-49252-5_12

154 M. Naeem et al.

to develop an energy-efficient wireless network for monitoring water levels in
drainage lines.

The choice to compare these three tools is driven by their distinct network
simulation and analysis capabilities. ns-3 excels in scalability and efficiency, mak-
ing it ideal for large-scale wireless network simulations. UPPAAL SMC'’s statis-
tical model checking offers valuable formal verification capabilities, while MAT-
LAB/Simulink’s versatility in handling continuous and deterministic simulations
adds another dimension to the comparison. This study aims to provide valuable
insights into their performance and applicability for simulating energy-efficient
wireless networks. The findings will help researchers and network administrators
select the most suitable tool for their simulation needs.

The analysis involves the utilisation of these different tools to explore multi-
ple aspects, including modelling complexity, simulation time, memory utilisation,
and validation of the energy-efficient wireless network. The objective is to inves-
tigate the strengths and weaknesses of each tool and identify key considerations
in selecting the most suitable tool for applications of this nature.

The rest of this paper is structured in the following manner: Sect. 2 provides
an overview of the Related Work. Section 3 presents the tools overview used in
this study. Section 4 presents the case study, focusing on the Sigfox sensor node.
Subsequently, Sect. 5 describes the case study’s modelling in ns-3, UPPAAL SMC,
and MATLAB/Simulink. Section 6 presents a comprehensive comparative anal-
ysis of the tools. Finally, in Sect. 7, we conclude the paper and propose avenues
for future research.

2 Related Work

In recent years, the availability of various network simulation tools has provided
researchers and network administrators with numerous options to choose from.
However, the diversity of tools can complicate selecting the most suitable one
for specific applications [12].

Nayyar and Singh [12] provided a comprehensive review of 31 simulators,
aiming to clarify the features and limitations of each simulator to help new
researchers in selecting the most appropriate simulation tool for their applica-
tions. The authors discussed the architecture of WSN simulators and proposed
evaluation criteria, including the type of simulator, license, platform, ease of
coding, tracing, debugging, popularity, and graphical support. The simulators
were classified into three categories: generic simulators, code-level simulators,
and firmware-level simulators. Generic simulators use high-level programming
languages to simulate networking models but are considered less reliable com-
pared to code-level and firmware-level simulators.

Xian et al. [17] compared OMNet++ simulators against other simulators such
as OPNET and ns-2. The study demonstrated that OMNet++ outperformed
both OPNET and ns-2 in terms of functionalities, including debugging, tracing,
hierarchical modelling, and a powerful simulation library. The authors evaluated
the performance of the simulators by implementing a well-known WSN protocol
called directed diffusion and measuring performance metrics like total run time,

Comparative Analysis of UPPAAL SMC, ns-3 and MATLAB/Simulink 155

delivery rate, and memory requirement. The results showed that OMNet++ was
the most powerful and efficient simulator.

In a study by Gnanaselvi [5], a survey was conducted to gain a better under-
standing of the current network simulation tools available and their features.
Bakni et al. [1] presented a methodology for evaluating WSN simulators focus-
ing on energy conservation. Kochhar and Kaur [7] proposed an approach to guide
beginners in choosing an efficient simulator for designing a simulation environ-
ment based on their application area.

Our work presents the first comparative analysis of the network simula-
tion tool ns-3 and MATLAB/Simulink with UppAAL SMC. None of the prior
research considers the use of the model checker, which is a distinct feature in
UppPAAL SMC. The comparison is based on applying the three tools in an indus-
trial case study.

3 Tools Overview

This section presents an overview of ns-3, UppAAL SMC and MAT-
LAB/Simulink.

3.1 ns-3

ns-3 is an open-source Discrete Event Simulator (DES) released in 2008 [13].
It offers C++ simulation language with optional Python bindings, making it
highly adaptable. It includes models for wired technologies, such as Ethernet
networks with CSMA /CD protocols, and wireless technologies, like 802.11 MAC-
level and 802.11a physical layer models. Its simulation library focuses on realism
and reusability, allowing researchers to create complex network scenarios. ns-3
also supports NetAnim software, allowing for real-time experiments via emu-
lation. ns-3 is a comprehensive and widely used network protocol design and
evaluation platform because it integrates various simulation tools. The ns-3 sim-
ulator’s basic architecture is depicted in Fig. 1 [15]. The figure shows that users
create simulation programs that define network behaviour, utilising a simulation
library with built-in models for nodes, links, channels, and protocols (ns-3 core).
The engine executes these scripts to simulate the network. Data analysis mod-
ules offer statistics and performance metrics. Simulation outcomes are generated
in a text file that can be analysed using the external graphing tool.

3.2 UprrAAL SMC

Statistical model checking (SMC) advances the classic model checking technique
[14]. SMC avoids the state-space exploration problem of the classic model check-
ing, and it also comparatively consumes less time and memory in simulation.
It simulates a model a number of times and uses statistical hypothesis test-
ing for model checking. SMC technique can also estimate probabilistic systems’
quantitative and qualitative properties.

156 M. Naeem et al.

Simulation

- - I Outcomes Graphical Hypothesis Probability
Simulation traces Interface testing Evaluation
files(C++ bindings) I Analysis Script

Execution

Data

) ns-3 Core Tools, etc. Engine
Signal . Processing
Forwarding Engine
User Collection k] Experimental Verifier
Simulation Control Plot Probability Simulation
Program Trace calls Composer Comparison Engine
) 7S S . S
Fig.1. Framework of NS-3 architec- Fig. 2. Architecture of UppaAL SMC
ture [15] [4]

UppaAL SMC is an extension of UPPAAL [3], and it models a system using
priced timed automata. UPPAAL SMC’s model is based on stochastic and non-
linear dynamic behavioural properties. Figure2 depicts the UppAaAL SMC'’s
architecture [4]. The tool’s interface allows users to create automata models in
the editor and run simulations for the system’s verification, validation and quan-
titative analysis. It supports visualising results as plots. The UPPAAL SMC exe-
cution engine exploits the stochastic semantics of interacting stochastic hybrid
automata to evaluate the performance queries.

3.3 MATLAB/Simulink

MATLAB/Simulink is a robust simulation methodology, combining MATLAB
for matrix-based computation and Simulink for dynamic system design and sim-
ulation [6]. It offers a graphical programming language, visualisation tools, and
extensibility through MATLAB integration, enabling efficient modelling, simu-
lation, and analysis of diverse systems.

This integration offers researchers and developers in the embedded systems
domain an efficient platform to model, simulate, and analyse complex embedded
systems scenarios. With a graphical programming language and visualisation
tools, MATLAB/Simulink enables the creation of intricate embedded systems
models, including various network topologies and sensor node behaviours.

4 Case Study

The aim of the Distributed ONline monitoring of the Urban waTer cycle
(DONUT) project is to develop a cost and energy-efficient ToT-based network to
monitor the water cycle (See Fig.3). The Montem Company (a project partner
of the DONUT project) has developed a prototype of a digital wireless sen-
sor network based on the Sigfox transceiver. The prototype includes a Sigfox
transceiver, Atmega controller, ultrasonic sensor, Digital accelerometer, EEP-
ROM, Regulator, and Battery (10,000 mAh). The controller uses the ultrasonic
sensor to measure the water height and then analyses the data to determine
the water height for a cycle. The processed value is stored in the EEPROM

Comparative Analysis of UPPAAL SMC, ns-3 and MATLAB/Simulink 157

before being transmitted to the base station through the Sigfox transmitter.
The accelerometer is used to ensure the sensor node’s position. Our project is
focused on modelling the designed prototype’s behaviour using a simulation tool
to analyse the battery lifetime and investigate different transmission strategies
to improve the overall node’s lifetime.

/O Rural Drainage system

(@7) Water supplerrenttostream \ <
£ R . ain gauge
A e — : [SIPAS -
4‘*’""" fio=e= Wastouter S e @ o BRbEE - SN
(IR = P N

\
fl

S Weather §

=
Al
Watersupp

Residences With local

[

e

iy A by
%
4

Treated

wastewater

discharge
>

N %

Bys, Sesfood ? i1
i

Groundwate]

S
extraction protection

Stormwater Storage
and.inf tration system

Residence
With stromwater
Storage and
separate
Sewer system

Monitoring

@ Water level

@ Setting

© Flow [Drinking water
Pressure Sewage

<@ Temperature - Stomwater

Stomwater
discharge
2

Fig. 3. DONUT-project’s low cast sensor network provides holistic urban water system
insights for better decisions. 200+ sensors monitor the water cycle, from groundwater
to stormwater.

Sigfox is a low-power wide-area network (LPWAN) developed and operated
by Sigfox, a company based in France. The basic structure of the Sigfox network
is shown in Fig.4. Sensor nodes use binary phase-shift keying modulation to
communicate with the base station in a star topology. A Sigfox node broadcasts
its message, which nearby base stations can receive, and these messages are
then transferred to the Sigfox cloud. From there, they can be accessed by any
IoT platform [16]. Sigfox specifications may vary depending on the region. The
European part is the focus of this case study [16]. Sigfox restricts the messages
a node can transmit to 6 per hour (144 per day) with a maximum payload of
12 bytes to reduce energy consumption. Additionally, nodes can receive up to 4
downlink messages per day.

5 Modelling the Case Study

In this section, we present the modelling of the DONUT case study utilising
different tools, enabling us to conduct a comprehensive comparative analysis.

158 M. Naeem et al.

Sigfox Base Stations

Sigfox Nodes @
= &
®
= E] E] g @ loT Platforms
= Sigfox Cloud
Radio Communication in
Star Topology IP Based Network

Fig. 4. Sigfox network Architecture

5.1 Implementation in ns-3

In [11], we have presented a Sigfox module for ns-3, and we also investigate the
DONUT case study. The model is parametric concerning the hardware properties
of the IoT device under research and includes all major energy-consuming states
and actions of a Sigfox node. We built the energy model for the device based on
data from the Sigfox radio specifications and power characteristics. We also used
a novel battery model that considers the self-discharge current. Figure 5 depicts
the class diagram of the C+-+-based designed Sigfox module, which includes the
classes and functions that implement the core functionalities.

strategies:
- Greedy

- Optimized Listening

Sender control communication ’

[NS3: channel | D! sigfox-channel | ! Sigfox Energy Application ! - Weather-driven
L | i | L 1 - Data C i
Uses B T |
sigfox-radio-energy-model sigfox-phy 0.*
| + Changestate(newstate - int - void [T [+ Getstate(: void Q’—M’—F& "+ SendPacket(- void
T_energy| + C) : void L 11 1 [11 1
- v + GetOnAirTime(Ptr : packet) : Time |m_phy assiccportmOFIvol]
simple-end-point-sigfox-phy llx
ateway-sigfox-ph znet-device igf
+ Send(ptr : packed) : void ! g AL ! ! ! ! = - !
+ StartReceive(ptr : packe?) : void L 1 I 10 | T
+ EndReceive(ptr : packet) : void = =
" " + Receive(Ptr : packet) : void
] end-point-sigfox-phy | simple-gateway-sigfox-phy + SendTDl(’hy(Pt': pa()kel) void
e R S ——

Fig. 5. Class Diagram of Sigfox Module in ns-3 [11]

Sigfox-phy: The sigfox module implementation features a PHY layer abstrac-
tion that models the interference between multiple colliding Sigfox trans-
missions to ensure appropriate behaviour when the simulation features large
deployments. It also computes energy consumed by each state using subclass
sigfox-radio-energy-model (See Fig.5).

Sigfox-mac: The MAC protocol operates on top of the physical layer. As
shown in Fig.5, the implementation of this layer is divided into two classes,
EndPointSigfoxMac and GatewaySigfoxMac, which model the MAC protocol
for end node and Gateway separately. The behaviour of a node’s MAC layer

159

Comparative Analysis of UPPAAL SMC, ns-3 and MATLAB/Simulink

~

01 => [piJAianeq
0=1'0 = [plAsaneq

0=1"0 = [PAaneq
0T => [p1]Aianeq|
0==2WIL puelS BP 0==WILS
7 0==2W11"d33|S BB 0==WILW

0==

,2W117dI3|S B 0==,3WIL Y BP 0==,2WIL"S
P 0==3WI1" ¥ 0 =< [pJA1aneq By § =>>
B UOL == J BB VUW,E - == [pllAsoneq

YWy p=| ‘++udasiu
‘0=3'0=1'0=2
‘6T« +UIS[3 =Uis| 3
[P1IBSWINDI B

5467 == DR [p1]isaw

BB 0==2WIL Y BF 0== 4 BB 0==,
% 0 == ,2Wndyl B3 0 == [pilAianeq

0=1‘0 = —U:Ewﬂms ﬁUuu_an_ Ly +PpUdsT3 = puas 3 ‘++1
o 0 =< [pi]Asoneq B9 y1 =>> %
01 => [pi]Asaneq == pwi puels [ptJapowr > | o1 == 1 99 Y, £'p- == ,[plAeneq | 1PV
—@ B9 0== 2Ly BB 0mm B ((pazIsny ==
VW,2p=1'0=2 | B 0==2WI1 N B% 0 =< seaydas puas o1 adl YL =1 0=
. o T — R pasinbai yi ‘€'pxd + AqpueisT3 = AqpurisT3
0=1'0 = [P1]A13n1eq €'px0 + AqpuelsT3 = Aqpueis3 9 ([p]azispy => > P uol ==, 18WN AAI2291 1IELS, paainbai Ji swp) y1 ==
0T => [pi]Asaneq | == w3 [quas 1ded| | LaAadal ues ‘auoq -
) 0==,3wi]puels

n_n_.

‘([p1]aoad || uoa) = uol ‘Yw/p=|‘0 =2

3s|ej = [piJadai
Buiaidal auo(|

Y

as[ey = [pi]puas
0=1'0 = [p1]Asanieq ‘WL Zp=I'T=1'0=2
0T => [pI]A1oneq ‘€ 4,3 + Aqpueis™3 = Aqpueis 3
uoyj
99 [prlisawi 9 [pi]puas
0==,2WIL pueIs B 0==,WILS
9 0==,3W11"da3|S B 0==,2WI1 W[| @AI2Da1 01 BUNIEM 10U JI U
919 0 =< [p1]Aianeq 99 s,GZ => d_1as 10u be|y isaLu Ji ‘erep puay
BB VUL6T- == ,[PlJA1oneq
(VWET wsued |) YW,6T=| ‘®S|ej = uol ‘0 =2
~buiuaisr| b ‘€43 + Aqpuers 3 = Aqpuers 3
5:02 =<1

21517

Buipuas
0=3"

(YW/{ :Nwsued]) “(p1

~Buipeojdn

0==,2W117d3|§ 3P 0==,WILY BP 0==,WIL"S
9 0==WIL" N ®P 0 =< [pilA1aneq B3 0 =>>

7% (Uodi|[[p!
L)

‘0 = puasTISaW U ‘++[pI]Ajlep puasTu

ann = [pi]s eiep

++PUIS U 'YW, p=] ‘s|ey = [pI]adal
Ad91 || uol) = uol ‘IIHNIS = [pllopow
‘0=3'0=1"/yxd +puas™3 = puas’3
[pilopow ==1

B ([pilazisy =< >

Jpuas || [pil4saw) == > 99 S,0Z =>4
uol == B3 VuW,E'p- == [pilAianeq

BB 0==2WIL "y B 0==2wiL dad]§
B® 0==2WI LW 3% 0 =< [pI]Asaneq

YWy € p=] ‘++Us1s|

u YWy /Z0'0=] ‘++Uuasi"u

0=10=> ‘0=30=4'0=2
‘T2 +UIS| I =wWs| 3 ‘6T +UiS| 3 =uls| "3
[P11BSWIND [PI1BSW DI
BWSxGT == B S.5T ==
7 [pilasauw;

0==23WI1"d393|S P 0==,2WIL Y BF
0==3WIL"S BB 0==3WIL"W 3%

®P 9 =>D QP U0l ==,

BB YW,/ p- == [pllAsaneq 0=3 'VWx/220°0=1"0=3

0=3'VWxEH=1'0=2 [NDPUS [‘Zt:> +puas™3 = puas'3
‘LPxd +puUss 3 = puss 3 [p1]asawi
[pijasaw pp BRH'9=<>

r9=<>

B9 0==,23WIL"S B 0==WIL W

B3 0 =< [piJlaneq B 0 => > 3P
([pr]pusas || [pilsaw) == 2> BR 5,07 => 1
P UOs == 197 £20°0- == ,[pI/A1aneq

Agpueis

)
T

D31 1ie1S|

1 = pienbAyney
‘as|ey = [pilasaw
' YW.85°9=] ‘0 =2

UOISSIWSUR] JO pug) o1e1s pais|dag . ‘e'yx3 + AqpuelsT3 = AqpuelsT3
5x07 > 1 3% [pilisaw

31815 BUTISTST O

97835 BUNNSEapy .

9AI9D24 0) ApeaJiou Ji
[Juswainsesw e el

0==,3w1]"da3|s B 0==,3w1] pueis
3R 0==2WLIY ¥R 0==WIL"S
§® 0 =< [pJA1aneq B9 S.6'% => O

S1815 buipuss .

B UOL == 1 9P YW,859- == [pi]Aianeq 0=> ‘Agpueis 01 ob ‘auog
2INSedy ‘8679, + ASWTI = Jsw 3
Sx6% =<2
—-psenb-Ayney | ani
‘++Aneyisswu |

91eI5 Aqpuels .

pienb Aine),T

0=3 ‘++puss isaw u

‘YW, Ep=| ‘++ainseaw u
((s0Z > 1@ uol) || uoj)

9AI2231 01 Apeaiiou Ji

! ++puasTIsaW U ‘ds[ey = uol
‘YW,6T=| ‘++ainseaw u

rw:o Jayioue ey ‘Ainefsem a|dweg|

5,02 =< 4 9% uol

aA12221 01 Apeas auoq]| J

BUNCED .

0=3 VW,Ey=1 0=>
£20°0,3 + da9|s™3 = dod|s 3

$:02 == 411 [PpUss || [PI4SAUL\ o0 0y

‘€'7+3 + AqpuersT3 = AqpueisT3
uol; B [pilsawi 7 [pI]puas
0 = uls| 3’ 0=puds I Q=AsW 3 ‘g=>awi] da3|S
‘0=>3wi| TpuelS ‘0=aw1] Y ‘0=awI| S ‘=3I N
‘0=3 ‘ana1 =[p1]BSWA1D ‘Os|ey = [p1]Adad

‘os[ey = [pi]puss ‘as|ey = [pi]isaw

‘9s[ey = U0l ‘0 =1'VW,/20'0=1'0=1'0=>
.mehm;uf Aisneg|;uibaq

0 == dwnayl|

B9 YV Wy (LINI/TTVIS/01) == ,[plJAsaneq
(1e]dwWwa) Nu| 33

| Juaneq ayp abieyday abieyday g

Fig. 6. Basic structure of the designed model in UpPAAL SMC [9]

160 M. Naeem et al.

implements the communication procedures (Uni-directional and Bi-directional),
and it controls transmission strategies using subclass sender (See Fig. 5).

5.2 Implementation in UppAaaL SMC

In articles [9,10], we have presented the energy-aware analysis of this case study
by designing and simulating its model in UPPAAL SMC. In the developed model,
we only include the sensor node’s behaviour, as the node’s battery lifetime is
unaffected by the remaining network elements following the Sigfox protocol.
Unlike ns-3, we don’t need to develop a complete network to simulate a node’s
behaviour but only a more abstract model capturing the system’s behaviour.

The system’s model includes four sub-process automaton models (Initial,
SensorNode, Self-Discharge, and Scheduler), interconnected through shared
variables and synchronisation channels to model the sensor node’s energy
behaviour effectively. Initial enables all other processes to an active state
using a synchronisation channel, and the Self-Discharge model represents the
battery’s self-discharge behavior. The SensorNode automaton (shown in Fig.6)
models the behaviour of the Sigfox sensor node, and the Scheduler controls the
actions of the SensorNode. The complete model is presented in paper [9].

The studies also investigate the different transmission strategies to optimise
the battery lifetime. In UPPAAL SMC, as depicted in Fig. 6, users need to have
proficiency in automaton modelling and a basic knowledge of the C language.

5.3 Implementation in MATLAB/Simulink

Figure 7 illustrates the behavioural model of the case study implemented in
Simulink. We use the C Function block from the Simulink Library to build
the Simulink model for the case study. It supports C programming to define the
desired algorithm or functionality.

—_— |
. flag_out flag
Clk flag_in .
- 4
flag ck EnergyModel ug Battery
Battery|

M 4 |
Digital_Accelerometer
MDA 4‘—’ M 1

ultrasonic_sensor

—0]
]

Listen Listen 4D I E
igfox_Ti i :
Standby Standby Sigfox_Transceiver 12:34

Fig. 7. Sigfox Sensor Node Energy Model in Simulink

++ +

MUs

Send Send Battery

Controller

The model comprises five main components: Controller, Sigfox_transceiver,
Ultrasonic_sensor, Digital_Accelerometer, and EnergyModel. The Controller is

Comparative Analysis of UPPAAL SMC, ns-3 and MATLAB/Simulink 161

responsible for managing the operations of the active components. A sum block
adds the current consumption by the Sigfox_transceiver, Ultrasonic_sensor, and
Digital_Accelerometer. The EnergyModel utilises the combined system’s current
to update the battery level for every time unit and manage the self-discharge
mechanism. By using a scope block, we can observe the behaviour of combined
current and battery discharge.

6 Comparative Analysis of UPPAAL and ns-3

This section presents the comparative analysis of ns-3, UPPAAL SMC, and MAT-
LAB/Simulink, considering tool performance, simulation, validation, and usabil-
ity. The research is based on the DONUT case study.

6.1 Classification of Network Simulation

Article [15] categorises simulations into different classes based on their applica-
tion areas.

Continuous simulation: Continuous simulation is employed for models with
dynamic state variables or parameters that change frequently over time. This
type of simulation finds utility in diverse areas, such as military applications
(e.g., simulating missile trajectories in WSN deployment).

DES: Discrete-event simulation is applied to systems with events occurring at
discrete time intervals. Each change represents an event, with no expected
changes between events.

Stochastic simulation: Stochastic simulation involves modelling probabilistic
systems, such as evaluating telecommunication system latency, traffic flow in
communication networks, and studying climatic changes. Monte Carlo simu-
lation is a specific type of stochastic simulation.

Deterministic simulation: Deterministic simulation is employed in systems
characterised by a lack of randomness. These systems possess pre-known
inputs and yield unique sets of outputs.

UprpAAL SMC: UprpaAL SMC is a powerful tool that supports various simula-
tions, including continuous, discrete, stochastic, and deterministic simulations
[3]. It uses timed automata to model systems with precise timing and discrete
events, allowing for continuous and discrete behaviour representation. With its
support for continuous simulation, researchers can define clock variables to con-
trol the timing and duration of events. For stochastic simulation, UpPAAL SMC
introduces random variables and probability distributions, making it suitable
for modelling systems with uncertainty and probabilistic outcomes. Addition-
ally, UPPAAL SMC can perform deterministic simulation, enabling researchers
to precisely control the timing of events and verify the deterministic properties
of real-time systems.

162 M. Naeem et al.

Sending L ____
battery[id] = battery[id] -Tx_I*TD ; 1*faulty_guard
O p— ! faulty_guard-- i
battery[id]' == 0 && data_ml[id] = true
(@ TEEME TR @<t o< é
c<=TD ©<-3 - c>=49%
. MeasureDone® = Measure
Sending
O c>=TD O battery[id]' == -6.58*mA &&
c<=4.9%s &&
battery[id]' == -Tx_| &&
(b) (c)

c<=TD

Fig. 8. Discrete and continuous behaviour (a,b) and Probabilistic choice (c) in
UppAAL SMC

Figure 8 depicts a segment of our UpPAAL SMC model. Figures 8(a,b) show-
case discrete and continuous behaviours modelling. We update environment vari-
ables (Battery clock) after task completion to simulate discrete behaviour, con-
sidering the time spent at that location. UpPAAL SMC supports ordinary differ-
ential equations to model continuous variable evolution while staying at a specific
location. Figure 8(c) illustrates the implementation of a probabilistic choice for
stochastic simulation in UpPAAL SMC. The dotted line represents a probabilis-
tic choice, where the model selects the next action based on probability. In our
model, there is a 1% likelihood that the system measurement might be inaccu-
rate. In this scenario, the model reverts to the measuring location. Otherwise, it
will proceed to the following location.

Overall, UpPAAL SMC is a versatile tool that provides comprehensive capa-
bilities for analysing a wide range of real-time systems with different behaviours
and uncertainties. One limitation of UPPAAL SMC is that its continuous simu-
lation is not as comprehensive as specialised tools like MATLAB/Simulink.

ns-3: ns-3 is a flexible and versatile network simulator that supports various
types of simulation [13]. It can perform continuous simulation through event-
based modelling, approximating continuous behaviour using small time steps.
As a discrete-event simulator, ns-3 follows strict event scheduling for discrete
simulation, making it suitable for modelling systems with specific time intervals
for events.

In ns-3, we use Random Number Generator (RNG) (a built-in class) to model
the probabilistic choice. It supports stochastic simulation by allowing researchers
to introduce random variables and probability distributions. Additionally, ns-3
can perform deterministic simulation, where researchers can control the sequence
of events and verify the deterministic properties of communication networks
and protocols. It offers different algorithms to generate deterministic random
variables.

While ns-3 offers a wide range of capabilities, it is important to note that
continuous simulation in ns-3 is less comprehensive than in specialised contin-
uous simulation tools, and stochastic simulation might require more manual
intervention and configuration.

Comparative Analysis of UPPAAL SMC, ns-3 and MATLAB/Simulink 163

MATLAB/Simulink: Simulink is a robust simulation and modelling envi-
ronment that extends the capabilities of MATLAB to support continuous, dis-
crete, stochastic, and deterministic simulation [6]. It excels in continuous sim-
ulation by providing a graphical interface to model and simulate dynamic sys-
tems described by differential equations. Simulink’s solvers can numerically solve
these equations, allowing for the simulation of continuous behaviour over time.
Additionally, researchers can use it to perform discrete simulations by speci-
fying the sample time of blocks in the block diagram, enabling the simulation
of systems with specific time intervals for events. It also supports stochastic
simulation by allowing the introduction of random variables and probability dis-
tributions, and it can perform a deterministic simulation with precise control
over the sequence of events. In this project, we use discrete modelling using an
integer clock and schedule all events based on that, and we use a random variable
to model stochastic behaviour. MATLAB/Simulink model is more abstract and
simple in our case; however, the author [6] claims that building complex models
in MATLAB/Simulink might require more time and effort than programming-
based approaches.

6.2 Simulation Terms (Memory Consumption and Simulation
Time)

The same model’s memory consumption and simulation time can vary depending
on the tool used. Figure9 compares the tools regarding memory consumption
and execution time while simulating the case study. ns-3 has less memory con-
sumption, while UPPAAL SMC has the shortest execution time. MATLAB has
the lowest memory consumption but the longest execution time.

B Memory Consumption Execution Time
o
=80 100
5 3
= 60 80 &
E (]
340 °0 E
C
8 40 §
> 5
5 20 20 §
§ s
=0 0

UPPAALSMC MATLAB

Fig. 9. Memory Consumption and Simulation time

System Configuration Details: The simulations for all models were con-
ducted on a local machine with the following specifications: a MacBook Pro

164 M. Naeem et al.

(2019) workstation equipped with 16 GB 2133 MHz LPDDR3 memory and a
2.4 GHz Quad-Core Intel Core i5 processor. The machine ran macOS Monterey
(Version 12.3.1) as the operating system.

6.3 General Comparison

This section provide a comprehensive comparison of the tools, with an abstract
visual representation in Fig. 10 and a tabulated summary in Table 1. The Table
presents how we categorise the different aspects of modelling a system in the
tools focused on in this study; we’ve given them scores ranging from 0 to 10
(where 0 means challenging to use, and 10 means most accessible to use).

Expertise Required to Model: UprpPaAL SMC focuses on formal modelling
and verification, making it suitable for researchers with a strong background in
formal methods and automata theory. It also required a basic level of C++ to
model actions behaviour. On the other hand, ns-3 demands a higher level of
programming expertise in C++ and the core architecture of the network and
protocols for developing network simulations. MATLAB/Simulink, in contrast,
provides a higher level of abstraction and requires less programming expertise.

Other Expertise: Modelling in ns-3 only requires only good programming
expertise. UPPAAL SMC needs a good knowledge of automata models with
the basic concept of programming to design a system model, and MAT-
LAB/Simulink requires familiarity with Simulink’s interface and its blocks.

Graphical User Interface (GUI) Support: UppaAL SMC provides a user-
friendly GUI that simplifies formal modelling and verification tasks, allowing
users to design and visualise timed automata models. In contrast, ns-3 does not
have a built-in GUI, and users must write network simulations using C++ or
Python, which requires advanced programming expertise. MATLAB/Simulink
provides a complete GUI environment allowing users to visually represent com-
plex system models using blocks and connections. This user-friendly interface
benefits researchers with an engineering or numerical analysis background.

Availability of Good Online Documentation: Online network analysis and
simulation documentation for ns-3 and MATLAB/Simulink is more detailed and
readily available than for UPPAAL SMC. The dedicated networking focus and
their active community provide comprehensive tutorials and user guides. Many
built-in libraries and baseline examples are also available to build the basic
structure of the network and standard communication protocols. The specialised
focus of UpPAAL SMC on formal modelling and verification may result in limited
specific documentation for network analysis and simulation tasks. But it provides
a good user guide and online support group for efficient model design.

Comparative Analysis of UPPAAL SMC, ns-3 and MATLAB/Simulink

165

Table 1. Comparison of UpPAAL SMC (U/S), ns-3(N) and MATLAB/Simulink(M/S)

|u/s

‘ ns-3

|M/s

Programming Expertise

No

10

Basic (Conditions, loops, function)

Ezpert (Classes and structures, Pointers, Memory Management)

W

Other Expertise

Only programming skill required

10

Multiple languages required

Other modelling technique

10

GUI Support

Advanced

10

10

Moderate

No

10

Availability of good online documentation

BaseLine Examples

Built-in libraries

Strong Literature Review

Week Literature Review

Online Support Group

User Guide

No Help

10

10

Scalability

Allowed large scale network simulations

Allowed but simulation time increase more frequently

Partiacialy allowed

Not allowed

10

Limitations in model Design

Allowed most of the operation in networks

10

Limited tool set

Not allowed

10

10

Result Visualisation

Optimisation of graphs

10

Graphical Representation & Text Data output

Text Data

10

Model Verification

Rich proper language

Automatic analysis

Model Validation for function requirements

Ad Hoc Test Cases as Script

10

Verbose output log enabling extend analysis

Documentation of model / Representation of model

Graphical representation

10

Document in the form of blocks or class diagram

Code based representation

10

166 M. Naeem et al.

Programming Expertise

Documentation of model

/ Representation of mode)/=—

\.
\.

10

Other Expertise

./‘

oumwbmm*mm
/

Model Verification \ T, GUlI support:
/ /
Ve /'
/ /
Result Visualization '\ = JHeIp Available online
) \ L~ UPPAAL
. 7~
Limitations in model: = . N>3
Scalablllty — -MATLAB

Design

Fig. 10. General Comparison of UppPAAL SMC, ns-3 and MATLAB/Simulink

The Sigfox module wasn’t available in ns-3 for this case study, so we mod-
ified and customised a LoRaWan module for Sigfox. We built the models for
MATLAB/Simulink and UppAAL SMC from scratch.

Scalability: Scalability was not within the scope of our case study, but in
general, ns-3 is highly scalable and optimised for large-scale network simula-
tions, making it an excellent option for simulations requiring much scalability.
UprPAAL SMC is well-suited for small to medium-sized systems, but its scal-
ability may be limited for large and complex systems. Scalability to the very
large system can be achieved by exploiting the possibility in the newly released
UPPAAL 5.0 of linking to external compiled C-code (this was successfully done
for the simulation of a model of Nothern Jutland of COVID-19 comprising more
than 1 million components) [2]. The scalability of MATLAB/Simulink is gen-
erally good for small to moderate-sized models, but it may have performance
limitations for large-scale simulations involving complex mathematical compu-
tations.

Limitations in Model Design: Both ns-3 and MATLAB/Simulink exhibit
versatility in network analysis, allowing for robust modelling without signifi-
cant design limitations. On the other hand, UPPAAL employs clock variables
in timed automata, which evolve continuously through time derivative rates. It
only supports integer values in clock rates and clock conditional statements.

In this case study, the node takes 4.9 s to gather measurements in the measur-
ing state. However, UPPAAL SMC doesn’t support conditions with floating-point
numbers, so we adjusted the base time clock from seconds to desi-seconds. This

Comparative Analysis of UPPAAL SMC, ns-3 and MATLAB/Simulink 167

conversion allowed us to represent the condition as 49 desi-seconds instead of
4.9s. Simulating the node becomes more complicated when the base clock needs
to be reduced to micro or nanoseconds to avoid floating point numbers, and the
simulation time is in multiple years.

Result Visualisation: UrPPAAL SMC provides result analysis and visualisation
through its built-in plot composer tool. However, it cannot zoom in on specific
sections of the simulation graph for detailed analysis. In comparison, the ns-3
provides simulation results in a text data stream format that requires additional
software like Gnuplot for graphical representations. We use MATLAB to visu-
alise ns-3 simulation results and some simulation results from UPPAAL SMC to
highlight a specific plot section. However, MATLAB/Simulink stands out with its
extensive visualisation functions and exceptional versatility in handling diverse
simulation types, making it highly suitable for a wide range of result analysis
and visualisation tasks.

Model Verification: UppPAAL SMC is a specialised tool designed explicitly for
formal model checking, making it a powerful choice for testing model correctness.
It uses statistical model-checking techniques to verify if the system behaviour
meets predefined requirements. This tool automatically checks for probabilistic
systems’ reachability, safety, and liveness properties, providing valuable insights
into the model’s correctness.

Pr[<=100xdays] (<> Sensors(0).Listening && r>20) (1)

Equation 1 illustrates a query in UPPAAL SMC, verifying the model’s com-
pliance with the requirement that it start listening (to receive a message) 20s
after sending an up-link. In this query, the clock variable r is a timer initiated
upon transmitting the up-link frame. The query executes the model for hundred
days to compute the possibility of reaching the state with the greater value of
r. In this case, the calculated probability is zero, so the model is correct.

In contrast, ns3 and Simulink do not offer statistical model-checking capabil-
ities like UrPPAAL SMC. However, researchers can still create test cases, analyse
simulation results, and validate the system’s behaviour against expected out-
comes.

Documentation of Model/Representation of Model: We need good doc-
umentation of a designed model to present in front of others for many reasons
(Publishing, collaborating or proving). The documentation must be graphical
and more generic to make it more understandable for people from all domains.

Comparatively, the model in UpPAAL SMC and MATLAB/Simulink has a
graphical representation of the system’s behaviour, and it is easy to convert into
documentation in the form of states and actions.

168 M. Naeem et al.

7 Conclusions and Future Work

UpPAAL SMC is a powerful tool for verifying early-phase design and identify-
ing vulnerabilities in distributed communication systems. Its statistical model-
checking capabilities ensure the correctness and reliability of the model, partic-
ularly benefiting users with expertise in Automaton models. ns-3 stands out for
large-scale network simulations. Its event-driven architecture and visualisation
modules are ideal for extensive network simulations and analysis. It is particu-
larly well-suited for users proficient in C++ programming with a solid under-
standing of communication networks and protocols, enabling them to perform
comprehensive network analyses. MATLAB/Simulink is versatile for simulat-
ing and testing communication networks. It has powerful simulation capabilities
and visualisation functions, making analysis and visualisation of results easy. It’s
flexible for different types of simulations and result analysis. It is more suitable
for users who know basic C code function blocks.

Future work can explore the co-simulation of UPPAAL SMC, ns-3, and MAT-
LAB/Simulink to leverage their strengths and enhance overall simulation capa-
bilities. Integrating these tools can offer a more comprehensive approach to net-
work simulation and analysis, allowing researchers to tackle complex scenarios
more effectively.

References

1. Bakni, M., Chacén, L.M.M., Cardinale, Y., Terrasson, G., Curea, O.: WSN sim-
ulators evaluation: an approach focusing on energy awareness. arXiv preprint
arXiv:2002.06246 (2020)

2. Bilgram, A., et al.: An investigation of safe and near-optimal strategies for pre-
vention of covid-19 exposure using stochastic hybrid models and machine learning.
Decis. Anal. J. 5, 100141 (2022). https://doi.org/10.1016/j.dajour.2022.100141,
https://www.sciencedirect.com/science/article/pii/S2772662222000728

3. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: UPPAAL SMC
tutorial. Int. J. Softw. Tools Technol. Transfer 17(4), 397415 (2015)

4. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards,
S.: Runtime verification of biological systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012. LNCS, vol. 7609, pp. 388-404. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34026-0_29

5. Gnanaselvi, S.: A study on various simulation tools for wireless sensor networks.
Int. J. Eng. Res. Manag. (IJERM) 5, 1-3 (2018)

6. Knight, A.: Basics of MATLAB and Beyond. CRC Press, Boca Raton (2019)

7. Kochhar, A., Kaur, P., Preeti.: Simulation platforms for wireless sensor networks:
how to select?. In: Tuba, M., Akashe, S., Joshi, A. (eds.) Information and Commu-
nication Technology for Sustainable Development. Advances in Intelligent Systems
and Computing, vol. 933, pp. 539-545. Springer, Singapore (2020). https://doi.
org/10.1007/978-981-13-7166-0_54

8. Korala, H., Georgakopoulos, D.; Jayaraman, P.P., Yavari, A.: A survey of tech-
niques for fulfilling the time-bound requirements of time-sensitive IoT applications.
ACM Comput. Surv. 54(11s), 1-36 (2022)

http://arxiv.org/abs/2002.06246
https://doi.org/10.1016/j.dajour.2022.100141
https://www.sciencedirect.com/science/article/pii/S2772662222000728
https://doi.org/10.1007/978-3-642-34026-0_29
https://doi.org/10.1007/978-3-642-34026-0_29
https://doi.org/10.1007/978-981-13-7166-0_54
https://doi.org/10.1007/978-981-13-7166-0_54

10.

11.

12.

13.

14.

15.

16.

17.

Comparative Analysis of UPPAAL SMC, ns-3 and MATLAB/Simulink 169

Naeem, M., Albano, M., Larsen, K.G., Nielsen, B., Hgedholt, A., Laursen, C.Q.:
Modelling and analysis of a sigfox based IoT network using uppaal SMC. IEEE
Sens. J. 23, 10577-10587 (2023)

Naeem, M., Albano, M., Larsen, K.G., Nielsen, B., Hgedholt, A., @stergaard
Laursen, C.: Battery aware analysis of sensor networks in uppaal SMC. In: 2021
10th Mediterranean Conference on Embedded Computing (MECO), pp. 1-6. IEEE
Budva, Montenegro (2021)

Naeem, M., Albano, M., Magrin, D., Nielsen, B., Guldstrand, K.: A sigfox module
for the network simulator 3. In: Proceedings of the WNS3 2022, pp. 81-88 (2022)
Nayyar, A., Singh, R.: A comprehensive review of simulation tools for wireless
sensor networks (WSNS). J. Wirel. Netw. Commun. 5(1), 19-47 (2015)

Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Wehrle, K., Giines,
M., Gross, J. (eds.) Modeling and Tools for Network Simulation, pp. 15-34.
Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12331-3_2

Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202-215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
916

Sharma, R., Vashisht, V., Singh, U.: Modelling and simulation frameworks for
wireless sensor networks: a comparative study. IET Wirel. Sens. Syst. 10(5), 181—
197 (2020)

Sigfox: Sigfox Radio specifications, February 2020. https://storage.googleapis.
com/public-assets-xd-sigfox-production-338901379285 /abaed{62-56de-402e-93c¢3-
3a9c10alcb49.pdf

Xian, X., Shi, W.; Huang, H.: Comparison of Omnet++ and other simulator for
WSN simulation. In: 2008 3rd IEEE Conference on Industrial Electronics and
Applications, pp. 1439-1443. IEEE (2008)

https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://storage.googleapis.com/public-assets-xd-sigfox-production-338901379285/abaedf62-56de-402e-93c3-3a9c10a1cb49.pdf
https://storage.googleapis.com/public-assets-xd-sigfox-production-338901379285/abaedf62-56de-402e-93c3-3a9c10a1cb49.pdf
https://storage.googleapis.com/public-assets-xd-sigfox-production-338901379285/abaedf62-56de-402e-93c3-3a9c10a1cb49.pdf

	Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink
	1 Introduction
	2 Related Work
	3 Tools Overview
	3.1 ns-3
	3.2 Uppaal SMC
	3.3 MATLAB/Simulink

	4 Case Study
	5 Modelling the Case Study
	5.1 Implementation in ns-3
	5.2 Implementation in Uppaal SMC
	5.3 Implementation in MATLAB/Simulink

	6 Comparative Analysis of UPPAAL and ns-3
	6.1 Classification of Network Simulation
	6.2 Simulation Terms (Memory Consumption and Simulation Time)
	6.3 General Comparison

	7 Conclusions and Future Work
	References

