
Jan Kofroň
Tiziana Margaria
Cristina Seceleanu (Eds.)

LN
CS

 1
43

90

8th International Conference, ECBS 2023
Västerås, Sweden, October 16–18, 2023
Proceedings

Engineering
of Computer-Based
Systems

Lecture Notes in Computer Science 14390
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Jan Kofroň · Tiziana Margaria ·
Cristina Seceleanu
Editors

Engineering
of Computer-Based
Systems
8th International Conference, ECBS 2023
Västerås, Sweden, October 16–18, 2023
Proceedings

Editors
Jan Kofroň
Charles University
Praha, Czech Republic

Cristina Seceleanu
Mälardalen University
Västerås, Sweden

Tiziana Margaria
University of Limerick
Limerick, Ireland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-49251-8 ISBN 978-3-031-49252-5 (eBook)
https://doi.org/10.1007/978-3-031-49252-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-0391-4812
https://orcid.org/0000-0003-2870-2680
https://orcid.org/0000-0002-5547-9739
https://doi.org/10.1007/978-3-031-49252-5

Preface

As General and Program Chairs, we would like to welcome you to the proceedings
of ECBS 2023, the 8th International Conference on Engineering of Computer-Based
Systems, which took place in Västerås (Sweden) on October 16th–18th, hosted by
Mälardalen University in cooperation with ACM SIGSOFT.

The special theme of this year was “Engineering for Responsible AI”, which
permeates many of its keynotes and technical contributions.

ECBS 2023 was an in-person event that integrated software, hardware, and commu-
nication perspectives of systems engineering through its many facets that include system
modelling, artificial intelligence, requirements specification, simulation, architectures,
safety, security, reliability, system integration, verification and validation, and project
management. As such, the conference provided a bridge between industry and academia,
blending academic research and industrial development. It provided an interdisciplinary
forum for discussing the impact of the recent AI developments on research and industrial
systems’ development, but also education, and society.

The program of ECBS 2023 comprised:

– three keynotes:

– How To Be An Ethical Technologist, by Moshe Vardi, Rice University, USA, on
Oct 16th

– Dynamic Logics for Computer-Based Systems, by Wolfgang Ahrendt, Chalmers
University of Technology, Sweden, on Oct 17th

– Toward Responsible Artificial Intelligent Systems: Safety and Trust-worthiness,
by Francisco Herrera, University of Granada, Spain, on Oct 18th

– presentation of 11 regular papers, 7 short papers, and 6 posters in eight sessions over
the three days.

ECBS 2023 received 26 submissions from 10 countries (Romania, Germany, UK,
Denmark, Ireland, Serbia, Sweden, Israel, China, USA), and we accepted 24 papers
(regular, short, and poster papers). Each paper was reviewed by 3–4 program committee
members; a single-blind review process was used. We sincerely thank the three distin-
guished keynote speakers, Prof. Moshe Vardi, Prof. Wolfgang Ahrendt, Prof. Francisco
Herrera, all the authors, speakers, and session chairs for their excellent scientific contri-
butions to the conference, themembers of the program committee and external reviewers
for their time and thoroughness in selecting the papers to be presented, and the local
Organization Chair, Susanne Fronnå, and local organization team, Leo Hatvani, Peter
Backeman, Rong Gu, Eduard Paul Enoiu, Mikael Salari, Hawa Diouf for their contin-
uous precious support during the entire period preceding the event. We thank Springer
Nature for being, as usual, a very reliable partner for the proceedings production. We are
also grateful to the Steering Committee of ECBS whose support has been invaluable.

vi Preface

Special thanks are due toMälardalen University for sponsoring and hosting the event
in the R building on the Västerås Campus.

We wish all the ECBS 2023 participants lively scientific discussions, ideally leading
to new cooperation and ideas to be presented at future ECBS instances.

October 2023 Jan Kofroň
Tiziana Margaria

ECBS 2023 PC Chairs

Cristina Seceleanu
ECBS 2023 General Chair

Organization

Program Committee

Bernhard Aichernig TU Graz, Austria
Marija Antić University of Novi Sad, Serbia
Peter Backeman Mälardalen University, Sweden
Ilija Bašičević University of Novi Sad, Serbia
Constanta Nicoleta Bodea Bucharest Academy of Economic Studies,

Romania
Costas Busch Augusta University, USA
Mihai Carabas Universitatea Politehnica din Bucureşti, Romania
Maria-Iuliana Dascalu University Politehnica of Bucharest, Romania
Eduard Enoiu Mälardalen University, Sweden
Christian Erfurth EAH Jena, Germany
Predrag Filipovikj Scania Group, Sweden
Mohammad Foughali IRIF/Université Paris Cité, France
Silvia Ghilezan University of Novi Sad, Mathematical Institute

SASA, Serbia
Moshe Goldstein Hebrew University, Israel
Stevan Gostojić University of Novi Sad, Serbia
Rong Gu Mälardalen University, Sweden
Gabor Karsai Vanderbilt University, USA
Ivan Kaštelan University of Novi Sad, Serbia
Jan Kofroň Charles University, Czechia
Tibor Krajčovič STU in Bratislava, Slovakia
Ján Lang Slovak University of Technology in Bratislava,

Slovakia
Tiziana Margaria University of Limerick, Ireland
Elena Navarro University of Castilla-La Mancha, Spain
András Pataricza Budapest University of Technology and

Economics, Hungary
Ivan Polášek Comenius University in Bratislava & Gratex

International, Slovakia
Libor Polčák Brno University of Technology, Czechia
Elvira Popescu University of Craiova, Romania
Miroslav Popović University of Novi Sad, Serbia
Marek Rychlý Brno University of Technology, Czechia
Ondřej Ryšavý Brno University of Technology, Czechia

viii Organization

Johannes Sametinger Johannes Kepler University Linz, Austria
Cristina Seceleanu Mälardalen University, Sweden
Tiberiu Seceleanu Mälardalen University, Sweden
Gokarna Sharma Kent State University, USA
Goran Sladic University of Novi Sad, Serbia
Miroslaw Staron University of Gothenburg, Sweden
Milo Tomasević University of Belgrade, Serbia
Dragos Truscan Åbo Akademi University, Finland
Istvan Vajk Budapest University of Technology and

Economics, Hungary
Valentino Vranić Slovak University of Technology in Bratislava,

Slovakia
Min Zhang East China Normal University, China
Huibiao Zhu East China Normal University, China
Miodrag Ðukić University of Novi Sad, Serbia
Jiří Šafařík University of West Bohemia, Czechia

Additional Reviewers

Tanwir Ahmad
Pavle Dakic
Imre Kocsis
Peter Lacko
Lukas Radosky
Bernhard Steffen

Contents

How to Be An Ethical Technologist . 1
Moshe Y. Vardi

Toward Responsible Artificial Intelligence Systems: Safety
and Trustworthiness . 7

Francisco Herrera

Ambient Temperature Prediction for Embedded Systems Using Machine
Learning . 12

Selma Rahman, Mattias Olausson, Carlo Vitucci, and Ioannis Avgouleas

A Federated Learning Algorithms Development Paradigm 26
Miroslav Popovic, Marko Popovic, Ivan Kastelan, Miodrag Djukic,
and Ilija Basicevic

Machine Learning Data Suitability and Performance Testing Using Fault
Injection Testing Framework . 42

Manal Rahal, Bestoun S. Ahmed, and Jörgen Samuelsson

IDPP: Imbalanced Datasets Pipelines in Pyrus . 60
Amandeep Singh and Olga Minguett

Learning in Uppaal for Test Case Generation for Cyber-Physical Systems 70
Rong Gu

A Literature Survey of Assertions in Software Testing . 75
Masoumeh Taromirad and Per Runeson

FPGA-Based Encryption for Peer-to-Peer Industrial Network Links 97
Florian Sprang and Tiberiu Seceleanu

Formalization and Verification of MQTT-SN Communication Using CSP 115
Wei Lin, Sini Chen, and Huibiao Zhu

Detecting Road Tunnel-Like Environments Using Acoustic Classification
for Sensor Fusion with Radar Systems . 133

Nikola Stojkov, Filip Tirnanić, and Aleksa Luković

x Contents

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 153
Muhammad Naeem, Michele Albano, Kim Guldstrand Larsen,
and Brian Nielsen

Using Automata Learning for Compliance Evaluation of Communication
Protocols on an NFC Handshake Example . 170

Stefan Marksteiner, Marjan Sirjani, and Mikael Sjödin

Towards LLM-Based System Migration in Language-Driven Engineering 191
Daniel Busch, Alexander Bainczyk, and Bernhard Steffen

Synthesizing Understandable Strategies . 201
Peter Backeman

ReProInspect: Framework for Reproducible Defect Datasets for Improved
AOI of PCBAs . 205

Ahmad Rezaei, Johannes Nau, Detlef Streitferdt, Jörg Schambach,
and Todor Vangelov

Cyber-Physical Ecosystems: Modelling and Verification . 215
Manuela L. Bujorianu

Integrating IoT Infrastructures in Industrie 4.0 Scenarios with the Asset
Administration Shell . 231

Sven Erik Jeroschewski, Johannes Kristan, Milena Jäntgen,
and Max Grzanna

A Software Package (in progress) that Implements the Hammock-EFL
Methodology . 235

Moshe Goldstein and Oren Eliezer

Dynamic Priority Scheduling for Periodic Systems Using ROS 2 239
Lukas Dust and Saad Mubeen

Continuous Integration of Neural Networks in Autonomous Systems 244
Bruno Steffen, Jonas Zohren, Utku Pazarci, Fiona Kullmann,
and Hendrik Weißenfels

Building a Digital Twin Framework for Dynamic and Robust Distributed
Systems . 254

Tiberiu Seceleanu, Ning Xiong, Eduard Paul Enoiu,
and Cristina Seceleanu

Contents xi

A Simple End-to-End Computer-Aided Detection Pipeline for Trained
Deep Learning Models . 259

Ali Teymur Kahraman, Tomas Fröding, Dimitrios Toumpanakis,
Mikael Fridenfalk, Christian Jamtheim Gustafsson, and Tobias Sjöblom

Astrocyte-Integrated Dynamic Function Exchange in Spiking Neural
Networks . 263

Murat Isik and Kayode Inadagbo

Correct Orchestration of Federated Learning Generic Algorithms:
Formalisation and Verification in CSP . 274

Ivan Prokić, Silvia Ghilezan, Simona Kašterović, Miroslav Popovic,
Marko Popovic, and Ivan Kaštelan

CareProfSys - Combining Machine Learning and Virtual Reality to Build
an Attractive Job Recommender System for Youth: Technical Details
and Experimental Data . 289

Maria-Iuliana Dascalu, Andrei-Sergiu Bumbacea,
Ioan-Alexandru Bratosin, Iulia-Cristina Stanica,
and Constanta-Nicoleta Bodea

Author Index . 299

How to Be An Ethical Technologist

Moshe Y. Vardi(B)

Rice University, Houston, TX, USA
vardi@rice.edu

Abstract. Many of us got involved in computing because programming was fun.
The advantages of computing seemed intuitive to us. We truly believed that com-
puting yields tremendous societal benefits; for example, the life-saving potential
of driverless cars is enormous! Recently, however, computer scientists realized
that computing is not a game–it is real–and it brings with it not only societal ben-
efits, but also significant societal costs, such as labor polarization, disinformation,
and smart-phone addiction.

A common reaction to this crisis is to label it as an “ethics crisis” and
talk about “corporate responsibility” and “machine ethics”. But corporations are
driven by profits, not ethics, and machines are built by people. We should not
expect corporations or machines to act ethically; we should expect people to act
ethically. In this talk the speaker will discuss how technologists act ethically.

1 Social Responsibility

I think often of Ender’s Game these days. In this award-winning 1985 science-fiction
novel by Orson Scott Card (based on a 1977 short story with the same title), Ender
is being trained at Battle School, an institution designed to make young children into
military commanders against an unspecified enemy Ender’s team engages in a series
of computer-simulated battles, eventually destroying the enemy’s planet, only to learn
then that the battles were very real and a real planet has been destroyed.

I got involved in computing at age 16 because programming was fun. Later I dis-
covered that developing algorithms was even more enjoyable. I found the combination
of mathematical rigor and real-world applicability to be highly stimulating intellectu-
ally. The benefits of computing seemed intuitive to me then and now. I truly believe that
computing yields tremendous societal benefits; for example, the life-saving potential of
driverless cars is enormous!

Like Ender, however, I realized recently that computing is not a game—it is real—
and it brings with it not only societal benefits, but also significant societal costs. Let me
mention three examples. I have written on the automation’s adverse impact on working-
class people—an impact that has already had profound political consequences—with
further such impact expected as driving gets automated1. It has also become clear that
“friction-less sharing” on social media has given rise to the fake-news phenomenon.
It is now widely accepted that this had serious impact on both the 2016 U.K. Brexit
referendum and the 2016 U.S. Presidential election. Finally, a 2017 paper in Clinical

1 (http://bit.ly/2AdEv8A.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 1–6, 2024.
https://doi.org/10.1007/978-3-031-49252-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_1&domain=pdf
http://bit.ly/2AdEv8A
https://doi.org/10.1007/978-3-031-49252-5_1

2 M. Y. Vardi

Psychological Science attributes the recent rise in teen depression, suicide, and suicide
attempts to the ascendance of the smartphone2.

A dramatic drop in the public view of Tech, a term that I use to refer both to com-
puting technology and the community that generates that technology, has accompanied
the recent recognition of the adverse societal consequences of computing. This decline
was well exemplified by Peggy Noonan, a Wall Street Journal columnist who wrote a
few years ago about trying to explain (dubiously, IMHO) why Americans own so many
guns: “Because all of their personal and financial information got hacked in the latest
breach, because our country’s real overlords are in Silicon Valley and appear to be moral
Martians who operate on some weird new postmodern ethical wavelength. And they’ll
be the ones programming the robots that’ll soon take all the jobs!”3

The question I’d like to pose to us in Tech is as follows: We have created this
technology; What is our social responsibility? Of course, not all of us sit in Silicon
Valley, and not all of us make product-deployment decisions. But much of the technol-
ogy developed by high-tech corporations is based on academic research, by students
educated in academic institutions. Whether you like it or not, if you are a computing
professional, you are part of Tech!

Computer Professionals for Social Responsibility (CPSR), founded in the early
1980 s, was an organization promoting the responsible use of computer technology.
The triggering event was the Strategic Defense Initiative (SDI), a proposed missile-
defense system intended to protect the U.S. from attack by ballistic strategic nuclear
weapons. CPSR argued that we lack the technology to develop software that would be
reliable enough for the purpose of SDI. Later, CPSR expanded its scope to other tech-
related issues. The organization was dissolved in 20134. With the benefit of hindsight,
the issues that CPSR pursued in 1980 s appear remarkably prescient today.

One could argue that CPSR is not needed any more; there are now numerous orga-
nizations and movements that are focused on various aspects of responsible use of tech-
nology. But our society is facing a plethora of new issues related to societal impact of
technology, and we, the people who are creating the technology, lack a coherent voice.
The Association for Computing Machinery (ACM), the leading professional society in
computing, is involved in many of these organizations and movements, by itself or with
others, for example, ACM U.S. Public Policy Council, ACM Europe Policy Commit-
tee, the ACM Code of Professional Ethics, the Partnership on AI, and more. Yet, these
efforts are dispersed and lack coordination.

I believe ACM must be more active in addressing social responsibility issues raised
by computing technology. An effort that serves as a central organizing and leadership
force within ACM would bring coherence to ACM’s various activities in this sphere,
and would establish ACM as a leading voice on this important topic. With great power
comes great responsibility. Technology is now one of the most powerful forces shaping
society, and we are responsible for it!

2 http://bit.ly/2zianG5.
3 https://www.wsj.com/articles/the-culture-of-deathand-of-disdain-1507244198.
4 http://bit.ly/2zvZsZb.

http://bit.ly/2zianG5
https://www.wsj.com/articles/the-culture-of-deathand-of-disdain-1507244198
http://bit.ly/2zvZsZb

How to Be An Ethical Technologist 3

2 Technology and Democracy

The past decade has been a decade of ACM milestones. In 2012, ACM celebrated
the Turing Centenary.5 In 2017, ACM celebrated 50 Years of the ACM A.M. Turing
Award.6 On June 10 of this year, ACM celebrated ACM’s 75th Anniversary (ACM75).7

But the differences in tone were palpable. The 2012 and 2017 events celebrated the
achievements of computing and its remarkable ascendance as a technology. While the
2017 event did end with a panel on “Challenges in Ethics and Computing,” such chal-
lenges were a major focus in 2022, and a participant found “the whole thing a little . . .
depressing.”

The somber tone of ACM75 cannot be separated from concurrent events. On June 9,
2023, a U.S. House of Representatives select committee opened public, televised hear-
ings investigating the Jan. 6, 2021 attack on the U.S. Capitol, laying out evidence of
an attack on U.S. democracy orchestrated at the highest level of U.S. government. The
school shooting in Uvalde, TX, on May 24, 2022, was also on many minds, remember-
ing that an 18-year-old gunman fatally shot 19 students and two teachers and wounded
17 others. Brian Bennett wrote in Time magazine, “Even as America’s firearm mas-
sacres provoke profound shock, change seems out of reach.”8

U.S. society is in the throes of deep polarization that not only leads to political paral-
ysis, but also threatens the very foundations of democracy. The phrase “The Disunited
States of America” (tracing back to Harry Turtledove’s 2011 novel with this title) is
often mentioned. “The U.S. is heading into its greatest political and constitutional crisis
since the Civil War,” wrote Robert Kagan in the Washington Post,9 raising the specter
of mass violence. How did we get here? What went wrong? Historians will probably
spend the next 50 years trying to answer such questions, but the crisis is upon us. We
need some answers now!

The last 40 years have launched a tsunami of technology on the world. The IBM
Personal Computer – Model 5150, commonly known as the IBM PC, was released on
Aug. 12, 1981, and quickly became a smashing success. For its Jan. 3, 1983 issue, Time
magazine replaced its customary person-of-the-year cover with a graphical depiction of
the IBM PC – “Machine of the Year.” A computer on every work desk became reality
for knowledge workers within a few years. These knowledge workers soon also had
a computer at home. With the introduction of the World Wide Web in 1989, many
millions could access the Web. The commercialization of the Internet in 1995, and the
introduction of the iPhone in 2007, extended access to billions.

The socioeconomic-political context of this technology tsunami is significant. There
was a resurgence of neoliberalismmarked by the election ofMargaret Thatcher as Prime
Minister of the U.K. in 1979, and of Ronald Reagan as President of the U.S. in 1980.
Neoliberalism is free-market capitalism generally associated with policies of economic
liberalization, privatization, deregulation, globalization, free trade, monetarism, auster-
ity, and reductions in government spending. Neoliberalism increases the role of the
5 https://turing100.acm.org/index.cfm?p=home.
6 https://www.acm.org/turing-award-50/conference.
7 https://www.acm.org/75-celebration-event.
8 https://time.com/6182996/biden-uvalde-guns-new-zealand/.
9 https://www.washingtonpost.com/opinions/2021/09/23/robert-kagan-constitutional-crisis/.

https://turing100.acm.org/index.cfm?p=home
https://www.acm.org/turing-award-50/conference
https://www.acm.org/75-celebration-event
https://time.com/6182996/biden-uvalde-guns-new-zealand/
https://www.washingtonpost.com/opinions/2021/09/23/robert-kagan-constitutional-crisis/

4 M. Y. Vardi

private sector in the economy and society and diminishes the role of government. These
trends have exerted significant competitive pressure on the economies of the developed
world. To stay competitive, the manufacturing sector automated extensively, with the
nascent distributed-computing technology playing a significant role. The implications
are still with us.

A 2014 paper by MIT economist David Autor provided evidence that information
technology was destroying wide swaths of routine office and manufacturing jobs, while
creating new high-skill jobs.10 The result of this labor polarization is a shrinking middle
class. Autor’s data showed that this pattern of shrinkage in the middle and growth at
the high and low end of the labor-skill spectrum occurred in the US as well as in 16
European Union countries. The immediate outcome of this economic polarization is
growing income and wealth disparities.

On top of this, information technology is flooding Internet users with more informa-
tion than they can digest, so tech companies engage in mass personalization, and now
we mostly read information that confirms our preconceived opinions. This exacerbated
further the “filter bubbles” that were created earlier in the broadcast media, following
the abolition, in 1987, by the U.S. Federal Communications Commission under Presi-
dent Reagan, of the “Fairness Doctrine,” which required holders of broadcast licenses
both to present controversial issues of public importance and to do so in a manner that
reflected differing viewpoints fairly. Economic polarization was thus followed by cog-
nitive polarization, creating political polarization.

Computing has become highly important in everyday life during the past 75 years.
In addition to its numerous benefits, however, it has also played a major role in driving
societal polarization. The somber tone of ACM75 appropriately recognized this.

3 Ethics and Corporate Behavior

Everyone in computing is promoting ethics these days. The Vatican has issued the Rome
Call for AI Ethics, which has been endorsed by many organizations, including tech com-
panies. Facebook (now Meta) has donated millions of U.S. dollars to establish a new
Institute for Ethics in Artificial Intelligence at the Technical University of Munich, since
“ensuring the responsible and thoughtful use of AI is foundational to everything we
do”11. Google announced it “is committed to making progress in the responsible devel-
opment of AI”12. And last, but not least, ACM now requires nominators and endorsers
of ACM award candidates attest that “To the best of my knowledge, the candidate ...
has not committed any action that violates the ACM Code of Ethics and ACM’s Core
Values.”

But AI technology is the fundamental technology that underlies “Surveillance Cap-
italism,” defined as an economic system centered on the commodification of personal
data with the core purpose of profit-making. Under the mantra of “Information wants
to be free,” several tech companies have turned themselves into advertising companies.
They have also perfected the technology of micro-targeted advertising, which matches

10 https://www.nber.org/papers/w20485.
11 https://about.fb.com/news/2019/01/tum-institute-for-ethics-in-ai/.
12 https://ai.google/responsibilities/responsible-ai-practices/.

https://www.nber.org/papers/w20485
https://about.fb.com/news/2019/01/tum-institute-for-ethics-in-ai/
https://ai.google/responsibilities/responsible-ai-practices/

How to Be An Ethical Technologist 5

ads with individual preferences. In Silicon Valley lingo, this business model is described
as, “If you’re not paying for it, you’re the product.” Shoshana Zuboff argued13 elo-
quently about the societal risk posed by surveillance capitalism. “We can have democ-
racy,” she wrote, “or we can have a surveillance society, but we cannot have both.”
Internet companies have mastered the art of harvesting the grains of information we
share with them, using them to construct heaps of information about us. And just as the
grains of information are turned into a heap of information about us, the grains of influ-
ence that Internet companies give us result in a heap of influence we are not aware of,
as we learned from the Cambridge Analytica scandal. All of this is enabled by machine
learning that maps user profiles to advertisements. AI is also used to moderate con-
tent for social-media users with a primary goal of maximizing user engagement, and,
as a consequence, advertising revenues.Surveillance capitalism is perfectly legal, and
enormously profitable, but it is unethical, many people believe14, including me.

The tension between an unethical business model and a façade of ethical behav-
ior creates unsustainable tension inside some of these companies. In December 2020,
Timnit Gebru, a computer scientist who works on algorithmic bias, was the center of a
public controversy stemming from her abrupt and contentious departure from Google as
technical co-lead of the Ethical Artificial Intelligence Team, after higher management
requested she withdraw an as-yet-unpublished paper, which detailed multiple risks and
biases of large language models, or remove the names of all Google co-authors. This
management request was described by many Googlers as “an unprecedented research
censorship”15. In the aftermath of Gebru’s dismissal, Google fired Margaret Mitchell,
another top researcher on its AI ethics team. In response to these firings, the ACM Con-
ference for Fairness, Accountability, and Transparency (FAccT) decided to suspend its
sponsorship relationship with Google, stating briefly that “having Google as a sponsor
for the 2021 conference would not be in the best interests of the community.”

The biggest problem that computing faces today is not that AI technology is un-
ethical—though machine bias is a serious issue—but that AI technology is used by
large and powerful corporations to support a business model that is, arguably, uneth-
ical. Yet, with the exception of FAccT, I have seen practically no serious discussion
in the ACM community of its relationship with surveillance-capitalism corporations.
For example, the ACM Turing Award, ACM’s highest award, is now accompanied by a
prize of US$1 million, supported by Google.

Furthermore, the issue is not just ACM’s relationship with tech companies. We must
also consider how we view officers and technical leaders in these companies. Seriously
holding members of our community accountable for the decisions of the institutions
they lead raises important questions. How do we apply the standard of “have not com-
mitted any action that violates the ACM Code of Ethics and ACM’s Core Values” to
such people? It is time for us to have difficult and nuanced conversations on responsible
computing, ethics, corporate behavior, and professional responsibility.

13 https://nyti.ms/3u8IT4I.
14 https://bit.ly/3g4rD8v.
15 https://n.pr/3INYw5A.

https://nyti.ms/3u8IT4I
https://bit.ly/3g4rD8v
https://n.pr/3INYw5A

6 M. Y. Vardi

4 In Conclusion

The ACM Code of Professional Ethics16 starts with “Computing professionals’ actions
change the world. To act responsibly, they should reflect upon the wider impacts of
their work, consistently supporting the public good.” So how should one be an ethical
technologist? One should reflect upon the wider impacts of one’s work, consistently
supporting the public good.

16 https://www.acm.org/code-of-ethics.

https://www.acm.org/code-of-ethics

Toward Responsible Artificial Intelligence
Systems: Safety and Trustworthiness

Francisco Herrera(B)

Department Computer Sciences and Artificial Intelligence, Andalusian Research
Institute on Data Science and Computational Intelligence, University of Granada,

Granada, Spain

herrera@decsai.ugr.es

Abstract. This short paper associated to the invited lectures intro-
duces two key concepts essential to artificial intelligence (AI), the area of
trustworthy AI and the concept of responsible AI systems, fundamental
to understand the technological, ethical and legal context of the current
framework of debate and regulation of AI. The aim is to understand their
dimension and their interrelation with the rest of the elements involved
in the regulation and auditability of AI algorithms in order to achieve
safe and trusted AI. We highlight concepts in bold in order to fix the
moment when they are described in context.

Keywords: Responsible AI · Trustworthy AI · AI safety

1 Keynote Talk: Extended Abstract

Artificial Intelligence (AI) has matured as a technology, AI has quietly entered
our lives, and it has taken a giant leap in the last year. Image generative AI
models such as Stable Diffusion, Midjourney or Dall-E 2, or the latest evolutions
of large language models such as GPT-4 or Bart, have meant that AI has gone,
in just a few months, practically from science fiction to being an essential part
of the daily lives of hundreds of millions of people around the world.

This emergence goes hand in hand with a growing global debate on the ethical
dimension of AI. Concerns arise about its impact on data privacy, fundamental
rights and protection against discrimination in automated decisions, or the con-
tinued presence of fake videos and images. While some risks of AI, such as the
potential for automated decisions harmful to certain vulnerable groups, are rel-
atively well known, there are other less obvious risks, such as hidden biases that
may arise from the data used in its training or the vulnerability of AI systems
to adversarial attacks.

This whole scenario raises the need to establish responsible, fair, inclusive,
trustworthy, safe and transparent frameworks. Before defining precisely these
concepts, let’s delve into the current state of the AI regulation.

The AI Act draft proposal for a Regulation of the European Parliament and
of the Council laying down harmonized rules on AI [2] is the first attempt to enact
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 7–11, 2024.
https://doi.org/10.1007/978-3-031-49252-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-49252-5_2

8 F. Herrera

a horizontal AI regulation. The proposed legal framework focuses on the specific
use of AI systems. The European Commission proposes to establish a technology-
neutral definition of AI systems in EU legislation and defines a classification for
AI systems with different requirements and obligations tailored to a “risk-based
approach”, where the obligations for an AI system are proportionate to the level
of risk that it poses.

In this context, a technical approach to AI emerges, called trustworthy AI
[3]. It is a systemic approach that acts as prerequisite for people and societies
to develop, deploy and use AI systems. It is composed of three pillars and seven
requirements: the legal, ethical, and robustness pillars; and the following techni-
cal requirements: human agency and oversight; technical robustness and safety;
privacy and data governance; transparency; diversity, non-discrimination and
fairness; societal and environmental wellbeing; and accountability.

On top of this, it is necessary to consider a holistic view of trustworthy IA,
as outlined in [3], by bridging the gap between theory and practice. This holistic
view offered aims to ultimately highlight the importance of all these elements in
the development and integration of human-centered AI-based systems into the
everyday life of humans, in a natural and sustainable way. We introduce shortly
the two fundamental sides, theory and practice:

– Theory: ethical principles, philosophical approach to AI ethics, and key tech-
nical requirements (explainability, privacy-based algorithms such as feder-
ated learning with multiple private information sources, algorithmic fairness,
among others),

– Practice: that revolves around regulation based on risk levels, and the design
of intelligent systems that follow this regulation from a legal and ethical point
of view. These systems are called “responsible AI systems”, and we focus our
attention on them in this reading.

It should be noted that the adoption of trustworthy AI [7,8] in the form of
practical frameworks is not yet a reality. Trustworthy AI is still very underdevel-
oped and conceptual. Moreover, models to materialize this concept are just being
born, and are far from common practice (see, for example, the TAII framework
[1] and Wasabi conceptual model [9]).

The term responsible AI has been widely used quite as a synonym of trust-
worthy AI. However, it is necessary to make an explicit statement on the similari-
ties and differences that can be established between trustworthy and responsible
AI. The main aspects that make such concepts differ from each other is that
responsible AI emphasizes the ethical and legal use of an AI-based system, its
auditability, accountability, and liability, whereas trustworthy IA also consider
technological requirements such as explainability, robustness, algorithmic fair-
ness...

To fix the concepts, when referring to responsibility over a certain task, the
person in charge of the task assumes the consequences of their actions/decisions
to undertake the task, whether they result to be eventually right or wrong. When
translating this concept of responsibility to AI-based systems, decisions issued
by the system in question must be accountable, legally compliant, and ethical.

Toward Responsible Artificial Intelligence Systems 9

Responsible AI is an area of AI governance, developing AI from both an
ethical and legal point of view. The key element in this context is the concept
of “Responsible AI system”:

“It is an AI systems that requires ensuring auditability and accountability
during its design, development and use, according to specifications and the
applicable regulation of the domain of practice in which the AI system is
to be used [3].”

The implementation of responsible AI can help reduce AI bias, create more
transparent AI systems and increase end-user trust in those systems. We intro-
duce shortly the two fundamental features:

– Auditability is becoming increasingly important when standards are being
materialized regarding all trustworthy AI technical requirements. In terms of
particular tools for auditing, especially when the AI system interacts with
the user, grading schemes adapted to the use case are needed to validate an
intelligent system.

– Accountability establishes the liability of decisions derived from the AI sys-
tem’s output, once its compliance with the regulations, guidelines and specifi-
cations imposed by the application for which it is designed has been audited.
Again, accountability may comprise different levels of compliance with the
requirements for trustworthy AI defined previously.

It is important to pay attention to auditability (ex-ante) versus accountabil-
ity (post-hoc) in intelligent systems analysis. The challenge is in the design of
auditability methodologies and metrics and accountability monitoring method-
ologies.

In parallel to the technical requirements, we have to pay attention to the reg-
ulation, with an approach based on levels of risk. In Europe, regulatory require-
ments in force for the deployment of AI systems are prescribed based on the risk
of such systems to cause harm. Indeed, the AI Act agreed by the European Par-
liament, the Council of the European Union, and the European Commission, is
foreseen to set a landmark piece of legislation governing the use of AI in Europe
and regulating this technology based on the definition of different levels of risks:
minimal, limited, high-risk and unacceptable risk. In these categories different
requirements for trustworthy AI and levels of compliance are established [3].

It is important to note that auditability refers to a property sought for the
AI-based system, which may require transparency (e.g. explainability methods,
traceability), measures to guarantee technical robustness, etc. Note that the
auditability of a responsible AI system may not necessarily cover all requirements
for trustworthy AI, but rather those foretold by ethics, regulation, specifications
and protocol testing adapted to the application sector (i.e., vertical regulation).

We talk about risk levels, and we must also talk about high-risk scenarios.
The AI Act introduces the High-risk AI systems (HRAIs) as similar concept of
responsible AI systems for high-risk scenarios, as systems that can have a signif-
icant impact on the life chances of a user (Art. 6); they create an adverse impact

10 F. Herrera

on people’s safety or their fundamental rights. Eight types of systems fall into
this category (that is, eight high-risk scenarios). These are subject to stringent
obligations and must undergo conformity assessments before being put on the
European market, e.g. systems for eligibility for public benefits or assistance,
or law enforcement or access to education. They will always be high-risk when
subject to third-party conformity assessment under that sectorial legislation.

A complete discussion on Responsible AI systems for a high-risk scenario
leads us to stablish a set of auditability requirements and metrics to design
the mentioned methodologies. Key attributes such as robustness, explainability,
transparency and traceability, sustainability, fairness are essential among others.
See [4,5] for an initial analysis in two different contexts, financial services and
autonomous driving domain respectively. This is an area that requires a great
deal of attention and is a great challenge to establish compliance requirements
and metrics, and tailored to each high-risk scenario.

We should delve into another essential aspect for responsible AI systems, safe
AI. AI safety is an interdisciplinary field concerned with preventing accidents,
misuse, or other harmful consequences that could result from AI systems. It
encompasses machine ethics and AI alignment, which aim to make AI systems
moral and beneficial, and robustness technical problems, including monitoring
systems, adversarial robustness, detecting malicious use, attacks and backdoors,
. . . Beyond AI research, it involves developing norms and policies that promote
safety [6].

Last but not least in the holistic view, any analysis must be accompanied by
another critical aspect dedicated to ethics and all its social implications. It is nec-
essary to consider the social acceptance or economic and legal implications, thus
analysing the ELSEC aspects of AI-based systems (ethical, legal, socioeconomic
and cultural).

Finally, we would like to conclude by stressing that safe and trustworthy AI is
a critical area to meet upcoming regulations, the necessary auditability metrics
for their analysis and compliance, address ethical issues, manage risk analysis in
human-AI system interaction, and ensure the technical soundness of responsible
AI systems.

This is the beginning of a fascinating path that enables the development
of technology for the development of responsible AI systems. The goal of a
responsible AI system is to employ AI in a safe, reliable and ethical manner. The
journey is just beginning and in the next few years we will have auditable AI
systems and auditability methodologies in all the necessary high-risk scenarios.

Acknowledgement. I would like to thank the co-authors of the paper [3] and the
members of the Spanish STAIRS (Safe and trustworthy AI) network proposal for the
enriching discussions. These have allowed me to come up with the present lecture and
a global view of the topic.

Toward Responsible Artificial Intelligence Systems 11

References

1. Baker-Brunnbauer, J.: TAII framework for trustworthy AI systems. ROBO-
NOMICS: J. Autom. Econ. 2, 17 (2021)

2. Commission, E.: Artificial intelligence act (laying down harmonised rules on arti-
ficial intelligence and amending certain union legislative acts) (2021). https://
artificialintelligenceact.eu/the-act/

3. Dı́az-Rodŕıguez, N., Del Ser, J., Coeckelbergh, M., de Prado, M.L., Herrera-Viedma,
E., Herrera, F.: Connecting the dots in trustworthy artificial intelligence: from AI
principles, ethics, and key requirements to responsible AI systems and regulation.
Inf. Fusion 99, 101896 (2023)

4. Fernandez-Llorca, D., Gómez, E.: Trustworthy artificial intelligence requirements in
the autonomous driving domain. Computer 56(2), 29–39 (2023)

5. Giudici, P., Centurelli, M., Turchetta, S.: Artificial intelligence risk measurement.
Expert Syst. Appl. 235, 121220 (2024)

6. Hendrycks, D., Carlini, N., Schulman, J., Steinhardt, J.: Unsolved problems in ml
safety. arXiv preprint arXiv:2109.13916 (2021)

7. Kaur, D., Uslu, S., Rittichier, K.J., Durresi, A.: Trustworthy artificial intelligence:
a review. ACM Comput. Surv. (CSUR) 55(2), 1–38 (2022)

8. Li, B., et al.: Trustworthy AI: from principles to practices. ACM Comput. Surv.
55(9), 1–46 (2023)

9. Singh, A.M., Singh, M.P.: Wasabi: a conceptual model for trustworthy artificial
intelligence. Computer 56(2), 20–28 (2023)

https://artificialintelligenceact.eu/the-act/
https://artificialintelligenceact.eu/the-act/
http://arxiv.org/abs/2109.13916

Ambient Temperature Prediction
for Embedded Systems Using Machine

Learning

Selma Rahman1 , Mattias Olausson1 , Carlo Vitucci1,2(B) ,
and Ioannis Avgouleas1

1 Ericsson AB, Stockholm, Sweden
{selma.rahman,mattias.olausson,carlo.vitucci,

ioannis.avgouleas}@ericsson.com
2 Mälardalens Univeristy, Västerås, Sweden

carlo.vitucci@mdu.se

Abstract. In this work, we use two well-established machine learning
algorithms i.e., Random Forest (RF) and XGBoost, to predict ambient
temperature for a baseband’s board. After providing an overview of the
related work, we describe how we train the two ML models and identify the
optimal training and test datasets to avoid the problems of data under- and
over-fitting. Given this train/test split, the trained RF and XGBoost mod-
els provide temperature predictionswith anaccuracy lower thanonedegree
Celsius, i.e., far better than any other approach that we used in the past.
Our feature importance assessments reveal that the temperature sensors
contribute significantly more towards predicting the ambient temperature
compared to the power and voltage readings. Furthermore, the RF model
appears less volatile than XGBoost using our training data. As the results
demonstrate, ourpredictive temperaturemodels allow for anaccurate error
prediction as a function of baseband board sensors.

Keywords: Predictive Maintenance · Temperature prediction · Radio
Access Network

1 Introduction

The development of fifth-generation telecommunications, the so-called 5G, was
not driven by technological evolution but by a commercial necessity. In fact, with
the advent of smartphones, the value of the network has progressively shifted
from connectivity to the data. 5G represents the opportunity for the operators
to enter the rich market of services, making their business model and investment
in network infrastructure sustainable. The core business shifts from connectivity
to service deployment, and operators can generate profits by hosting a broad set
of services in their infrastructure, close to the end user. However, 5G has led to
increased infrastructure complexity due to:

– increased throughput and delay requirements [1],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 12–25, 2024.
https://doi.org/10.1007/978-3-031-49252-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_3&domain=pdf
http://orcid.org/0009-0008-9870-348X
http://orcid.org/0009-0000-6964-2253
http://orcid.org/0000-0003-2598-6796
http://orcid.org/0000-0001-8960-0544
https://doi.org/10.1007/978-3-031-49252-5_3

Ambient Temperature Prediction 13

– widespread computing capacity deployment (especially for dense urban
areas) [9], and

– intelligent self-monitoring and easily-maintained configuration system to
decrease CAPEX and OPEX [2].

Consequently, the need for a fault management framework that is strongly
oriented towards the centrality of the recovery action has also grown in tandem
with the complexity of the infrastructure [24]. Fault prediction [8,11] and pre-
dictive maintenance [12] derive from the need of increasing the infrastructure
sustainability.

1.1 Context Description

Our research focuses on the ability to do predictive maintenance for products in the
RadioAccessNetwork (RAN)domain.The “cloudification” of the network suggests
a technological convergence with data center hardware products, but the environ-
mental conditions are very different. A RAN solution, for example, must rely on
something other than the cooling systems available for data centers due to cost,
space, and noise constraints. Furthermore, RAN products should work under very
different circumstances, e.g., their operating temperature spans a more demanding
range than the typical for data center products.The above scenario exemplifies how
research results that investigate the correlationbetween environmental parameters
and system reliability depend on the domain of interest. Another characteristic of
RAN products is that they poorly tolerate disturbances and interruptions. The
data acquisition process must be unique regarding environmental and work param-
eters, i.e., the use of system resources. Furthermore, data collection is crucial for
network access systems since they are often called for hosting soft real-time sys-
tems. The latter exhibit stringent requirements in terms of the reaction time and
execution of a particular task such as the reception and decoding of traffic packets.
The collection of data must therefore be as least intrusive as possible so as not to
compromise the functionality of the node and the availability of bandwidth when
transmitting the collected data.

1.2 Problem Statement

The more distributed computing and high data traffic capacity also involve a
considerable workload. The evolution of hardware design on the nanoscale has
been the response to this growth in data processing for both the latest genera-
tion processors and memory devices (DDR5). The reliability of hardware com-
ponents has indeed increased in recent years [21], but it is equally valid that the
complexity of the design has also increased. And, with the nanoscale hardware
design, the probability of temporary or permanent fault conditions is higher due
to power fluctuations, excessive operating temperatures, or cosmic radiation.
Eventually, the hardware will end its life due to aging issues, and the system
reliability will enter a critical phase where the failure rate will increase expo-
nentially. The hardware repair process is costly: maintenance activities on-site,

14 S. Rahman et al.

packaging, transportation, board troubleshooting, and test to confirm the fail-
ure condition diagnosis for the component, and faulty hardware replacement, if
applicable. In telecommunication networks, multi-chip packages, robotics, auto-
motive, and, more generally speaking, in an increasingly widespread distributed
system, the hardware devices must work and inter-work properly, react to exter-
nal disturbances promptly, and operate as long as possible. However, it must
use an appropriate error prediction action by analyzing the data available from
the system. Without this fundamental prediction action, the maintenance costs
could be relatively high. Thus, it is essential to know how to identify a possi-
ble failure condition before it happens. Understanding how the state and use of
resources affect their life cycle allows planning appropriate recovery actions in
time, whether an actual replacement of the component or preventive isolation
to enable an operational state in full or degraded function mode. Predicting the
hardware fault is, therefore, fundamental for the sustainability of the future net-
work. Without it, the unsustainable maintenance cost would compromise devel-
oping innovative services for industry 5.0 [10]. Machine learning and Artificial
Intelligence can be the technology enabler for a fault prediction based on system
data [5].

1.3 Research Objective

The paper assumption is that the likelihood of a system error depends on the
environmental parameters, like temperature and humidity. Those environment
parameters drive the entire life cycle of the hardware devices: board working
continuously under stressful environment condition will have a shorter lifetime.
Our research objective is to devise a model capable of predicting the ambient
temperature of the board, i.e., the temperature of the immediate surroundings of
the board. The latter has a direct impact on the board’s operating temperature
so an accurate ambient temperature model will allow for:

– implementing operations e.g., thermal throttling, that maintain the temper-
ature of the device below a critical threshold, and

– forecasting the component’s life cycle according to the ambient temperature
for optimal maintenance planning.

1.4 Research Methodology

The paper is a quantitative engineering study [14] that aims to examine the rela-
tionships between environment parameters and resource usage using machine
learning approach. For the evaluation of temperature prediction algorithms, the
research used two types of data: environmental (i.e.: temperature and humid-
ity) and resource use (number of cores used and their load). The data refer
exclusively to industrial baseband boards, and this paper used them in respect
of a confidential agreement. We have also used a thermal chamber to simulate
different temperature working environments. We have verified the temperature
prediction algorithms’ validity by comparing them with other solutions proposed

Ambient Temperature Prediction 15

in the literature. Baseband board designers have reviewed the research outcomes
and evaluated implementation feasibility and sustainability in the radio access
network domain. With this approach, the advantage for the industrial partner
is the possibility of reducing OPEX and the maintenance cost in the next gen-
eration of telecommunications systems.

2 Related Works

The ability to have a thermal model for any system is a well-known need because
it is clear that, as the operating temperature increases, the reliability of the
CMOS-based ICs decreases exponentially [23]. Yang et al. [27], for example,
provides an interesting analysis of all those factors that negatively influence
both the aging and the reliability of electronic components, such as the effects
of voltage (Hot carrier injection) and temperature (Bias Temperature instabil-
ity). Even considering the system as a non-divisible entity, the system’s fail-
ure rate doubles for every ten Celsius degrees increase above twenty-one Celsius
degrees [18]. Research on the thermal model mainly focuses on two types of algo-
rithms [25]: those based on the thermodynamic laws and the physical character-
istics of the components to find a thermodynamic model of the device [16,19,26]
and those which, recognizing the limited capacity of a thermodynamic physi-
cal model to be representative for different types of installations, prefer algo-
rithms that have data-driven solutions [15,22]. The latter has received more
attention from researchers recently, especially concerning the progress of AI/ML
as a mechanism for evaluating predictive models. AI/ML methods have stood
the test of time concerning temperature prediction by providing very accurate
models for applications such as weather forecasting and temperature control in
industrial environments, among others. For example, Ma et al. study demon-
strates a spatiotemporal correlation for fault prediction algorithms using graph
convolutional recurrent neural networks (GCRNN), which seems promising to
replicate beyond the meteorological domain. In the networking domain, only a
few researchers have dealt with temperature prediction in the RAN domain. On
the contrary, most research works considered temperature prediction in data
centers and High-Performance Computers (HPC). Therein, temperature predic-
tion allows the intelligent implementation of energy saving utilizing workload
management [17,28], effective heat dissipation [13], and improved cooling effi-
ciency [20]. Previous works considered the operational data of the board, such
as the number of cycles per CPU or the cache metrics, and the physical char-
acteristics of the system, such as the number of CPUs, the size and type of
memory or traffic devices [15,29]. One of the used algorithms is the long short-
term memory-based temperature prediction (LSTM), an improved version of the
more traditional recurrent neural network (RNN), more suitable for solving time
series prediction problems. In the most significant works that have used LSTM,
we point out the work of Cheng et al. [7] in the multicore and Network on
Chip (NoC) domain. Neural networks are computationally demanding, and our
research focuses on temperature prediction through less complex algorithms and

16 S. Rahman et al.

less costly solutions to meet the requirements described in the context description
section. There is an inevitable divergence in the research results we have con-
sidered. XGBoost is the algorithm frequently used in applied machine learning
for structured data due to its fast speed compared with other gradient-boosting
implementations [6].

3 Temperature Prediction Process

3.1 Design Description

This chapter presents the design description of a machine-learning model that
predicts ambient temperature, i.e., the target value based on lab measurements.
We train the model using board temperature, rail, and board power sensors as
independent variables while controlling computing load, environment humidity,
and fan speed to simulate different board operating conditions. We evaluated
XGBoost Regressor (XGB) [6] and Random Forest Regressor (RF) [4] (with
and without cross-validation [3]) models to determine the most suitable for the
RAN domain. We performed hyperparameter optimization for both the tree-
based models to fine-tune their performance and promote better generalization.
By searching for the optimal hyperparameter values, our approach is to effec-
tively regularize the models to mitigate the risk of overfitting and enhance their
ability to generalize to unseen data. We placed the radio access network boards
inside a climate chamber in the lab. The climate chamber allows the simulation
of all possible humidities and temperature levels that the baseband is likely to
encounter in the field. We collected data for different computing loads by simu-
lating no network traffic, minimal activity, or peak traffic conditions. Since the
baseband board is a multiprocessor system, we have modified the active process-
ing units’ number and computing load to simulate different working conditions.
Additionally, to simulate the environmental conditions of the installation site on
the baseband board, we varied the fan speed of the cooling system. Following
the well-established ML principles, we split the data into two distinct data sets:

1) the training set that is used to train the ML model. The input features
include temperature sensors, watts and power levels measured at different
points of the baseband board, the relative humidity and the ambient temper-
ature of the climate chamber, among others, and

2) the test set that is used to assess the model’s performance.
The training set is assigned a splitting ratio of 80%, while the test set receives
20%. Consequently, the collected data sets encompass the distinctive patterns
that characterize the baseband board in various environmental and radio traf-
fic conditions. We trained the ML model using the training data set to create
an accurate and scalable model, making it possible to use the model for future
versions of RAN boards without compromising its validity. Our evaluation
metric regarding which ML model to use for environmental temperature pre-
diction is based on the mean absolute error (MAE) i.e., the absolute value of
the difference between the predictions and the targets, and R-squared (R2).

Ambient Temperature Prediction 17

Residual analysis between the predicted and the measured ambient temper-
atures is considered as well.

3.2 Execution

Table 1. The distribution of the dataset, for each setting of the controlled variables.

Variable Value Distribution [X/Total]

DSP Low 9/18

Mid 7/18

High 2/18

CPU load [%] 0 1/18

20 1/18

30 8/18

100 8/18

Fan speed [%] 30 2/18

40 1/18

50 1/18

70 4/18

100 10/18

Relative Humidity [%] 0 8/18

20-80 2/18

30-80 8/18

Temperature Ranges [◦C] 0-35 8/18

20-55 8/18

50-60 2/18

As described in the previous section, we continuously test the baseband in
the climate chamber. Thus, the training runs with a new data set after each
successful run. The current training for the ML models contains 18 datasets,
each collected from their respective laboratory tests. Table 1 shows the data
distribution of the various combinations of the controlled variables (DSP, fan
speed, CPU load, relative humidity, and ambient temperature). For example,
out of eighteen datasets, nine have DSP set to “Low”, seven have DSP set to
“Mid”, and two have DSP set to “High”, etc. The data collected is then explored
and handled appropriately for the models to process. We also analyzed how to
impute missing values and decided to use linear interpolation after investigating
a few other methods, such as rolling mean or dropping entire rows containing at
least one missing value. For the training of the models, we randomly divided the
whole dataset into a training and testing set using the train-test split-function

18 S. Rahman et al.

in Python (train_test_split()1 by specifying the splitting ratio to be 80− 20%
respectively. The purpose of the testing set is to assess and evaluate the per-
formance of the trained model by comparing the model’s predictions with the
actual values from the testing set. The performance evaluation described above
allows us to measure metrics such as accuracy and residuals, which provide
insights into how well the model generalizes to unseen data and, thus, performs
in real-world scenarios. For the sake of presentation and to provide an efficient
way to compare the predicted with the measured ambient temperature values
side by side, we decided to introduce a data set referred to as unseen data. The
unseen dataset contains a continuous baseband run in the climate chamber i.e.
with the temperatures increasing with every measurement and it is completely
excluded from the training and testing phase of the ML models. The data from
the features (all variables except the target variable) is then used as an input to
the models to acquire their predictions. This allows us to further evaluate the
models’ predictive ability of new and unseen data.

3.3 Results

We set the CPU and the fan speed maximum value (100%) as the test set of the
baseband unit under evaluation. The prediction outcomes of this unseen data
can be observed in Fig. 1a and Fig. 1b for both the Random Forest Regressor
(with and without cross-validation) and the XGBoost Regressor, respectively.
The reason to why cross-validation was not applied for the XGBoost regres-
sor was because XGBoost generally performs well with smaller datasets where
on the contrary Random Forest would benefit from cross-validation. The blue
graph in both Fig. 1a and Fig. 1b shows the measured ambient temperature val-
ues obtained from an ambient temperature sensor during laboratory tests. It
is the target value we want to predict successfully. The primary objective of
the models is to predict this value accurately. Note that the Random Forest
regressor with and without cross-validation overlays each other i.e., it did not
matter whether we performed cross-validation on the training set or not. A
well-performing model should exhibit residuals, i.e., the difference between the
measured (actual) value and the predicted value, scattered randomly around
the horizontal line at zero on the y-axis, with no apparent patterns or trends.
The absence of patterns or trends indicate that the model effectively captures
the relationship between the features and the target variable and that there is
no further information that it could employ to enhance its predictions. On the
other hand, if the residual plot displays patterns or trends, such as a U-shape
or a curve, the model fails to satisfactorily capture the underlying relationships
between the features and the target variable.

Including additional information could improve the models’ predictions
avoiding underfitting or overfitting. Underfitting occurs when a model or algo-

1 sklearn.model_selection.train_test_split,
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_
test_split.html).

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

Ambient Temperature Prediction 19

Fig. 1. Ambient Temperature Predictions, CPU = 100% and fan = 100%

rithm fails to capture the underlying trend of the data, resulting in poor per-
formance on training and testing data. Underfitting occurs when the training
dataset is too small, the model needs to be more complex, or the data needs to
be more precise. Overfitting happens when a model is too complex and learns
from noise or inaccurate data entries in the training set, leading to poor per-
formance on testing data. An over-fitted model indicates the need to explore
the reduction of the model complexity, use early stopping during training, or
implement regularization, among others. Upon observing the graphs in Fig. 2a
and Fig. 2b along with the graphs in Fig. 1a and Fig. 1b, it is evident that the
Random Forest and XGBoost regressors are capable of making predictions with
a high degree of accuracy, without under- or overfitting and exhibiting errors
between the range of ±1 ◦C.

Fig. 2. Scatter plot of residuals between predictions and the measured value for a
baseband with CPU=100%, fan=100%, and ±1 ◦C threshold displayed

To further evaluate the accuracy of the predictions, we calculated and com-
pared the mean absolute error (MAE) and R-squared (R2) between the model’s

20 S. Rahman et al.

prediction and the measured ambient temperature of either the testing or the
unseen set. These metrics provide insight into how well the model is perform-
ing and how much of the variation in the data can be explained by the model.
For instance, a low MAE suggests that the average difference between the pre-
dicted and actual values is small. In contrast, a high R2 value indicates that the
model explains a large proportion of the variance in the target variable - and
vice versa. Table 2 shows the result. The models are trained successfully with
relatively low error and high accuracy based on the metrics’ values for the test-
ing data, suggesting that the model fits the test data well and can make reliable
predictions. Moving on to the metrics for the unseen data, it suggests that the
model can generalize well and make accurate predictions on data that it has not
seen before. The fact that the MAE value is lower for the unseen data than the
testing data suggests that the model has not overfitted to the testing data and
is not capturing noise or irrelevant information. Overall, these metrics indicate
that the model has high accuracy and can be considered a reliable model for
predicting ambient temperature.

Table 2. MAE and R2 values for different models when predicting baseband ambient
temperature at CPU=100% and fan=100%

Metric Random Forest Random Forest XGBoost
(CROSS-VAL) (w/o CROSS-VAL)

Test MAE 0.795 0.791 0.613
Test R2 0.984 0.984 0.987
Unseen MAE 0.654 0.687 0.595
Unseen R2 0.987 0.988 0.994

Fig. 3. Top and bottom 10 features based on permutation importance, predicting base-
band ambient temperature at CPU=100% and fan=100%.

The results available in our paper show temperature prediction using base-
band temperature sensors and the controlled variables as features, excluding

Ambient Temperature Prediction 21

Fig. 4. Top and bottom 10 features based on importance, predicting baseband ambient
temperature at CPU=100% and fan=100%.

temperature as it is the target variable. The permutation (Figs. 3a and 3b) and
feature importance (Figs. 4a and 4b) indicate that our features’ choice is cor-
rect. Permutation importance is a technique for evaluating feature importance
based on a model’s performance decrease during the permutation of a feature.
It measures how much each feature contributes to the model’s accuracy on the
training set. On the other hand, feature importance is a metric that ranks fea-
tures according to their importance for making predictions on new, unseen data.
Figures 3a, 3b, 4a, and 4b indicate that it is the temperature sensors that pri-
marily contribute to the model’s performance and, hence predictions’ accuracy.
Moreover, they show that power and voltage readings can be excluded without
any loss of prediction accuracy.

3.4 Predictions on Under-Represented Training Data

To assess the performance of our trained model on data that is under-represented
we tested our models’ predictions on a dataset for which the unseen data are:
CPU load = 30%, fan speed = 70%, DSP = Low, ambient temperature range
= 0 − 35◦C and relative humidity range = 0%. The predictions can be seen in
Figs. 5a and 5b. Insufficient dataset refers to a situation where the prediction
test case lacks adequate representation in the training dataset concerning the
parameter settings. Note that the increased number of “triangles” in the Figures
only indicates consecutive test execution at the same temperature. Figures 5a
and 5b clearly show a case of overfitting. Possible reasons for overfitting could
be:

– Insufficient training data: When the training dataset is small, the model may
learn the noise or specific patterns present in the limited data. Increasing the
amount of training data can help alleviate this issue.

– Feature overfitting: When the model has access to irrelevant or noisy features
with no predictive power for the target variable, it may overfit by learning
patterns specific to the training data. Feature selection or dimensionality
reduction techniques can help address this issue.

22 S. Rahman et al.

Fig. 5. Ambient Temperature Predictions, CPU=30% and Fan=70%

– Complex model architecture: Models with high complexity, such as those with
a large number of parameters, have a higher tendency to overfit. Simplifying
the model architecture, reducing the number of parameters, or using regular-
ization techniques can mitigate overfitting.

Table 3 shows how the value of MAE in the case of prediction based on
an insufficient training dataset is higher than that obtained with an adequate
number of variables in the training dataset (compare with Table 2) for both
test and unseen data. An MAE greater than two indicates that, on average,
the model’s predictions deviate from the actual temperature by more than two
degrees Celsius. This level is unacceptable; the goal is to keep the error below
one degree Celsius. An R2 of 0.94 indicates that the model is still explaining
94% of the variance in the data, which is still relatively high, but not as high as
the previous value of 0.98.

Table 3. MAE and R2 values for different models when predicting baseband ambient
temperature at CPU=30% and Fan=70%

Metric Random Forest Random Forest XGBoost
(CROSS-VAL) (w/o CROSS-VAL)

Test MAE 0.919 0.897 0.633
Test R2 0.985 0.985 0.986
Unseen MAE 2.252 2.144 1.524
Unseen R2 0.942 0.947 0.959

4 Conclusion and Future Works

In this paper, we use two well-established machine learning algorithms to pre-
dict the ambient temperature of a baseband board; Random Forest and XGBoost

Ambient Temperature Prediction 23

Regressors. The hypothesis is that we can achieve accurate ambient temperature
prediction for baseband boards without using neural-network-based solutions. In
fact, tree-based models are considered more suitable for regression tasks involv-
ing the prediction of continuous numerical values, and produces accurate result
for the baseband domain described in 1.1. These models capture the relationships
and patterns within the data to make accurate temperature predictions. Both
tree-based models were hyperparameter optimized. Additionally, we performed
cross-validation for the Random Forest regressor to evaluate its performance.
The trained Random Forest and XGBoost models provide temperature predic-
tions with an accuracy lower than one degree Celsius, i.e., far better than any
other approach we used in the past. We observe MAE of at least 0.59 and R2

values of around 0.99 on completely unseen data. The evaluation of our metrics
(see Tables 2 and 3) indicate accurate predictions. Based on the generated per-
mutation and feature importance measurements, we can further conclude that
the temperature sensors are the most critical contributors to the model’s perfor-
mance. At the same time, the power and voltage readings don’t contribute signif-
icantly, and the prediction can safely ignore them. When evaluating the models
on unseen data where the test case is not well-represented, the MAE increases
to approximately 2, and the R2 decreases to around 0.95. The robustness of the
models is underscored by the enhanced value for MAE and R2, indicating their
high confidence levels. This signifies that the models have successfully captured
the intricacies of the data and minimized the potential for overfitting. Moreover,
the comprehensive examination of the prediction graphs will not only yield fur-
ther valuable insights but also solidify the overall findings of the study. Finally,
predicting the ambient temperature is the first step to putting into practice those
thermal throttling and preventive maintenance policies that we have indicated
as the primary objective of our research (compare with Sect. 1.3). Pursuing the
research’s goals requires future study in two different but parallel domains:

– Use the ambient temperature prediction along with system resources (com-
puter, networking, and memory) to obtain a hardware fault prediction.

– Use the prediction of ambient temperature as a critical variable in the runtime
product’s life cycle evaluation as a function of the environmental parameters.

References

1. 3GPP: TS 22 261–v19.1.0 - 3rd generation partnership project; technical specifi-
cation group services and system aspects; service requirements for the 5G system;
stage 1 (release 19) (2022)

2. Al-Dulaimi, A., Wang, X., Chih-Lin, I.: 5G networks: Fundamental requirements,
enabling technologies, and operations management (2018). https://doi.org/10.
1002/9781119333142

3. Bates, S., Hastie, T., Tibshirani, R.: Cross-validation: what does it estimate and
how well does it do it? (2022). https://doi.org/10.48550/arXiv.2104.00673

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

https://doi.org/10.1002/9781119333142
https://doi.org/10.1002/9781119333142
https://doi.org/10.48550/arXiv.2104.00673
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324

24 S. Rahman et al.

5. Camps-Mur, D., et al.: AI and ML - enablers for beyond 5G networks (2021).
https://doi.org/10.5281/zenodo.4299895

6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794 (2016). https://doi.org/10.1145/2939672.2939785

7. Cheng, T., Du, H., Li, L., Fu, Y.: LSTM-based temperature prediction and hotspot
tracking for thermal-aware 3D NoC system. In: 2021 18th International SoC Design
Conference (ISOCC), pp. 286–287 (2021)

8. Chigurupati, A., Thibaux, R., Lassar, N.: Predicting hardware failure using
machine learning. In: 2016 Annual Reliability and Maintainability Symposium
(RAMS), pp. 1–6 (2016). https://doi.org/10.1109/RAMS.2016.7448033

9. Chih-Lin, I., Kukliński, S., Chen, T., Ladid, L.L.: A perspective of O-RAN inte-
gration with MEC, SON, and network slicing in the 5G era. IEEE Netw. 34, 3–4
(2020). https://doi.org/10.1109/MNET.2020.9277891

10. Cotta, J., Breque, M., Nul, L.D., Petridis, A.: Industry 5.0 towards a sus-
tainable, human-centric and resilient European industry. European Commission
Research and Innovation (R&I) Series Policy Brief (2021). https://doi.org/10.
2777/308407,https://ec.europa.eu/eurostat/statistics-

11. Das, A., Mueller, F., Rountree, B.: Aarohi: making real-time node failure prediction
feasible. In: 2020 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 1092–1101 (2020). https://doi.org/10.1109/IPDPS47924.2020.
00115

12. Das, M.K., Rangarajan, K.: Performance monitoring and failure prediction of
industrial equipments using artificial intelligence and machine learning methods: a
survey. In: Proceedings of the 4th International Conference on Computing Method-
ologies and Communication, ICCMC 2020, pp. 595–602 (2020). https://doi.org/
10.1109/ICCMC48092.2020.ICCMC-0000111

13. Durgam, S., Bhosale, A., Bhosale, V., Deshpande, R., Sutar, P., Kamble, S.: Ensem-
ble learning for predicting temperature of heat sources for minimizing electronic
failures (2021). https://doi.org/10.1109/ICNTE51185.2021.9487663

14. Escudero-Mancebo, D., Fernández-Villalobos, N., Óscar Martín-Llorente,
Martínez-Monés, A.: Research methods in engineering design: a synthesis of recent
studies using a systematic literature review. Res. Eng. Design 34, 221–256 (2023).
https://doi.org/10.1007/s00163-022-00406-y

15. Ilager, S., Ramamohanarao, K., Buyya, R.: Thermal prediction for efficient energy
management of clouds using machine learning. IEEE Trans. Parallel Distrib. Syst.
32(5), 1044–1056 (2021). https://doi.org/10.1109/TPDS.2020.3040800

16. Lyu, N., Jin, Y., Xiong, R., Miao, S., Gao, J.: Real-time overcharge warning and
early thermal runaway prediction of li-ion battery by online impedance measure-
ment. IEEE Trans. Industr. Electron. (2021). https://doi.org/10.1109/TIE.2021.
3062267

17. Nisce, I., Jiang, X., Vishnu, S.P.: Machine learning based thermal prediction for
energy-efficient cloud computing (2023). https://doi.org/10.1109/ccnc51644.2023.
10060079

18. O’connor, P.D.: Arrhenius and electronics reliability. Qual. Reliab. Eng. Int. 5, 255
(1989). https://doi.org/10.1002/qre.4680050402

19. Ozceylan, B., Haverkort, B.R., Graaf, M.D., Gerards, M.E.: Improving temperature
prediction accuracy using Kalman and particle filtering methods (2020). https://
doi.org/10.1109/THERMINIC49743.2020.9420535

20. Peng, Y.H., Lee, C.M., Tung, K.Y., Chen, R.: Rack inlet temperature prediction
based on deep learning (2022). https://doi.org/10.1109/ICMT56556.2022.9997747

https://doi.org/10.5281/zenodo.4299895
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/RAMS.2016.7448033
https://doi.org/10.1109/MNET.2020.9277891
https://doi.org/10.2777/308407
https://doi.org/10.2777/308407
https://ec.europa.eu/eurostat/statistics-
https://doi.org/10.1109/IPDPS47924.2020.00115
https://doi.org/10.1109/IPDPS47924.2020.00115
https://doi.org/10.1109/ICCMC48092.2020.ICCMC-0000111
https://doi.org/10.1109/ICCMC48092.2020.ICCMC-0000111
https://doi.org/10.1109/ICNTE51185.2021.9487663
https://doi.org/10.1007/s00163-022-00406-y
https://doi.org/10.1109/TPDS.2020.3040800
https://doi.org/10.1109/TIE.2021.3062267
https://doi.org/10.1109/TIE.2021.3062267
https://doi.org/10.1109/ccnc51644.2023.10060079
https://doi.org/10.1109/ccnc51644.2023.10060079
https://doi.org/10.1002/qre.4680050402
https://doi.org/10.1109/THERMINIC49743.2020.9420535
https://doi.org/10.1109/THERMINIC49743.2020.9420535
https://doi.org/10.1109/ICMT56556.2022.9997747

Ambient Temperature Prediction 25

21. Phuyal, S., Bista, D., Bista, R.: Challenges, opportunities and future directions
of smart manufacturing: a state of art review. Sustain. Futures 2, 100023 (2020).
https://doi.org/10.1016/J.SFTR.2020.100023

22. Prisacaru, A., Gromala, P.J., Han, B., Zhang, G.Q.: Degradation estimation and
prediction of electronic packages using data-driven approach. IEEE Trans. Ind.
Electron. 69(3), 2996–3006 (2022). https://doi.org/10.1109/TIE.2021.3068681

23. Spory, E.M.: Increased high-temperature IC packaging reliability using die extrac-
tion and additive manufacturing assembly (2016). https://doi.org/10.4071/2016-
hitec-18

24. Vitucci, C., Sundmark, D., Jägemar, M., Danielsson, J., Larsson, A., Nolte, T.:
Fault management framework and multi-layer recovery methodology for resilient
system. In: Proceeding IEEE 6th International Conference on System Reliability
and Safety (ICSRS), pp. 32–39 (2022)

25. Wang, N., Li, J.Y.: Efficient multi-channel thermal monitoring and temperature
prediction based on improved linear regression. IEEE Trans. Instrum. Measur. 71,
1–9 (2022). https://doi.org/10.1109/TIM.2021.3139659

26. Wang, N., et al.: An enhanced thermoelectric collaborative cooling system with
thermoelectric generator serving as a supplementary power source. IEEE Trans.
Electron Devices 68(4), 1847–1854 (2021). https://doi.org/10.1109/TED.2021.
3059183

27. Yang, X., Sang, Q., Wang, C., Yu, M., Zhao, Y.: Development and challenges of
reliability modeling from transistors to circuits. IEEE J. Electron Devices Soc.
(2023). https://doi.org/10.1109/JEDS.2023.3253081

28. Yao, X., Omori, M., Nishi, H.: Load balancing method using server tempera-
ture prediction considering multiple internal heat sources in data centers (2021).
https://doi.org/10.1109/ICM46511.2021.9385604

29. Zhang, K., Ogrenci-Memik, S., Memik, G., Yoshii, K., Sankaran, R., Beckman, P.:
Minimizing thermal variation across system components (2015). https://doi.org/
10.1109/IPDPS.2015.37

https://doi.org/10.1016/J.SFTR.2020.100023
https://doi.org/10.1109/TIE.2021.3068681
https://doi.org/10.4071/2016-hitec-18
https://doi.org/10.4071/2016-hitec-18
https://doi.org/10.1109/TIM.2021.3139659
https://doi.org/10.1109/TED.2021.3059183
https://doi.org/10.1109/TED.2021.3059183
https://doi.org/10.1109/JEDS.2023.3253081
https://doi.org/10.1109/ICM46511.2021.9385604
https://doi.org/10.1109/IPDPS.2015.37
https://doi.org/10.1109/IPDPS.2015.37

A Federated Learning Algorithms Development
Paradigm

Miroslav Popovic1(B) , Marko Popovic2 , Ivan Kastelan1 , Miodrag Djukic1 ,
and Ilija Basicevic1

1 Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, Novi Sad,
Serbia

{miroslav.popovic,miodrag.djukic,
ilija.basicevic}@rt-rk.uns.ac.rs, miroslav.popovic@rt-rk.com,

ivan.kastelan@uns.ac.rs
2 RT-RK Institute for Computer Based Systems, Narodnog Fronta 23a, Novi Sad, Serbia

marko.popovic@rt-rk.com

Abstract. At present many distributed and decentralized frameworks for feder-
ated learning algorithms are already available. However, development of such a
framework targeting smart Internet of Things in edge systems is still an open chal-
lenge. A solution to that challenge named Python Testbed for Federated Learn-
ing Algorithms (PTB-FLA) appeared recently. This solution is written in pure
Python, it supports both centralized and decentralized algorithms, and its usage
was validated and illustrated by three simple algorithm examples. In this paper, we
present the federated learning algorithms development paradigm based on PTB-
FLA. The paradigm comprises the four phases named by the code they produce:
(1) the sequential code, (2) the federated sequential code, (3) the federated sequen-
tial code with callbacks, and (4) the PTB-FLA code. The development paradigm
is validated and illustrated in the case study on logistic regression, where both
centralized and decentralized algorithms are developed.

Keywords: Distributed Systems · Edge Computing · Decentralized
Intelligence · Federated Learning · Python

1 Introduction

McMahanet al. [1] introducedFederatedLearning (FL) as a decentralizedmodel learning
approach that leaves the training data distributed on the mobile devices and learns a
sharedmodel by aggregating locally computed updates. From the very beginning,Google
provided TensorFlow Federated (TFF) [2, 3] as a framework for developing federated
learning applications.Many researchers and companies embraced this approach and soon
after federated learning became a de facto standard for decentralized model learning in
the cloud-edge continuum.

At present many distributed and decentralized frameworks for federated learning
algorithms are already available (a short overview is given in Sect. 1.1). However, accord-
ing to a comparative review and analysis of open-source federated learning frameworks

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 26–41, 2024.
https://doi.org/10.1007/978-3-031-49252-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_4&domain=pdf
http://orcid.org/0000-0001-8385-149X
http://orcid.org/0000-0002-1957-0092
http://orcid.org/0000-0003-3417-7237
http://orcid.org/0000-0001-7563-3820
http://orcid.org/0000-0001-8824-5560
https://doi.org/10.1007/978-3-031-49252-5_4

A Federated Learning Algorithms Development Paradigm 27

for Internet of Things (IoTs), made by Kholod et al. [4], the application of these frame-
works in the IoTs environment is almost impossible. Besides, these frameworks typically
have many dependencies, which makes their installation far from trivial, and they are
not supported on all the platforms (e.g., TFF and BlueFog are not supported on OS
Windows). Therefore, to the best of our knowledge, development of such frameworks
is still an open challenge.

Recently, Python Testbed for Federated Learning Algorithms (PTB-FLA) [5] was
offered as a a framework for developing federated learning algorithms (FLAs) i.e., as a
runtime environment for FLAs under development, on a single computer (and on edge
systems in the future). PTB-FLAwaswritten in pure Python to keep application footprint
small (to fit to IoTs) and to keep its installation simple (with no external dependencies).

PTB-FLA programming model is a restricted programming model, which imposes
the following two restrictions: (1) using the Single Program Multiple Data (SPMD)
pattern, and (2) specifying code for server and client roles in form of callback func-
tions. Enforced by these restrictions, a developer writes a single application program,
which is instantiated and launched by the PTB-FLA launcher as a set of independent
processes whose behaviour depends on the process id. During processes execution, the
callback functions are called by the generic federated learning algorithms hidden inside
PTB-FLA. PTB-FLA supports both centralized and decentralized federated learning
algorithms, and its usage was validated and illustrated in [5] by three simple algorithm
examples.

The main limitations of the paper [5] are that it falls short on providing: (1) a more
systematic approach to development of FLAs and (2) an example of a commonly used
ML algorithm. This paper is a follow up paper on [5], which is motivated by the desire
to overcome the previously mentioned limitations.

At this point, a short digression on exemplification of the utilization of thewhole plat-
form could help to understand, in a more specific way, the motivation and the achieved
results of this paper. PTB-FLA is being developed within the ongoing EU Horizon 2020
project TaRDIS, which aims to create a toolbox for easy programming of innovative
applications, such as: (1) multi-level smart electrical vehicles charging, (2) privacy-
preserving learning through decentralised training in smart homes, (3) distributed nav-
igation concepts for LEO satellite constellations, and (4) highly resilient factory shop
floor digitalization to be implemented in a real factory comprising several production
lines, a warehouse, an intralogistics fleet of robots, etc. These systems must use some
ML/AI algorithms and be trustworthy and responsible.

We are living in a world where there are a lot of open-source software implementa-
tions of various ML/AI learning algorithms are freely available in various online repos-
itories, such as Microsoft GitHub, Google Colab, etc. But how can software developers
reuse this software to develop FLAs for the applications mentioned above? The ad hoc
approach may work well for simple algorithms like the three examples in [5], but for
more complex algorithms some development paradigm is needed.

In this paper, we present the federated learning algorithms development paradigm
based on PTB-FLA, which is used by software developers as a systematic guideline to
transform a given sequential source code into the semantically equivalent target PTB-
FLA code. Here semantically equivalent means that the codes produce the same output

28 M. Popovic et al.

data (also called the results). We define the target code to be correct if it is semantically
equivalent to the source code. We define the target code to be correct by construction
if the way how it was constructed (here the way is by using the paradigm) guarantees
that it is correct. Finally, we define development easier than ad hoc development, or
just easier, if it is governed by some paradigm (or methodology, etc.) that provides
developers’ instructions, typically as a series of steps in a natural language.

The main goals of PTB-FLA development paradigm are: (1) to aid the development
of FLAs that are correct by construction and (2) tomake the development of FLAs easier.
In the next three paragraphs we argue that we achieved these two goals.

To achieve both goals mentioned above, PTB-FLA development paradigm is devised
as a series of program code transformation phases where each transformation phase
consumes its input code and produces the semantically equivalent code that is closer to
the target PTB-FLA code. By convention, the phases are named according to their output
codes. Altogether, the PTB-FLA development paradigm comprises the four phases: (1)
the sequential code, (2) the federated sequential code, (3) the federated sequential code
with callbacks, and (4) the PTB-FLA code.

The first goal (correct by construction) is achieved because each phase produces cor-
rect output code (according to the above-mentioned definition of correctness), therefore
the whole pipeline of the four phases produces the correct PTB-FLA code by the way
how this code was constructed through the four phases.

The second goal (easier development) is achieved because the PTB-FLA develop-
ment paradigm (see Sect. 2) is defined as a series of phases, and phases as series of steps,
which are explained in English language.

The PTB-FLA development paradigm is validated and illustrated in the case study on
logistic regression, which is one of the simplest and at the same time one of themost used
Machine Learning (ML) algorithms. In this case study, we train the logistic regression
model that can make predictions on clients’ orders based on their profiles. In the case
study, we apply the PTB-FLA development paradigm to construct both centralized and
decentralized logistic regression FLAs.

In summary, the main contributions of this paper are: (1) the PTB-FLA development
paradigm, (2) the case study on logistic regression, and (3) the developed centralized
and decentralized logistic regression FLAs.

The rest of the paper is organized as follows. The Sect. 1.1 presents related work,
the Sect. 2 presents the PTB-FLA development paradigm, the Sect. 3 presents the case
study on logistic regression, and the Sect. 4 presents the paper conclusions.

1.1 Related Work

This section presents a brief overview of the most closely related research that was
conducted before this paper.

Back in 2017, federated learning was introduced by McMahan et al. [1] as a decen-
tralized approach tomodel learning that leaves the training data distributed on themobile
devices and learns a shared model by aggregating locally computed updates. They pre-
sented FedAvg, a practical method for the federated learning of deep networks based on
iterative model averaging (see algorithm FederatedAveraging in [1]). The main advan-
tages of federated learning are: (1) it preserves local data privacy, (2) it is robust to

A Federated Learning Algorithms Development Paradigm 29

the unbalanced and non-independent and identically distributed (non-IID) data distri-
butions, and (3) it reduces required communication rounds by 10–100x as compared to
synchronized stochastic gradient descent (FedSgd).

Immediately after the McMahan’s seminal paper [1], federated learning got its trac-
tion. Widespread research in both industry and academia resulted in many researchers’
papers, and in this limited spacewemention just fewof them.Not long after [1],Bonawitz
et al. [6] introduced an efficient secure aggregation protocol for federated learning, and
Konecny et al. [7] presented algorithms for further decreasing communication costs.
More recent papers are more focused on data privacy [8, 9].

TensorFlow Federated (TFF) [2, 3] is Google’s framework supporting the approach
introduced in [1], which provides a rich API and many examples that work well in Colab
notebooks. However, TFF is a framework for applications in the cloud-edge continuum,
with a heavyweight server executing in the cloud, and therefore not deployable to edge
only. Besides, TFF is not supported on OSWindows, which is used bymany researchers,
and TFF has numerous dependencies that make its installation far from trivial.

BlueFog [10, 11] is another federated learning framework with the same limitations
as TFF: (1) BlueFog is cloud dependant because BlueFog authors consider deep training
within high-performance data-centre clusters, see note on page 5 in [11] and (2) BuleFog
has many dependencies on external software packages and is not supported on OS
Windows.

Recently, Kholod et al. [4] made a comparative review and analysis of open-source
federated learning frameworks for IoT, including TensorFlow Federated (TFF) from
Google Inc [6], Federated AI Technology Enabler (FATE) from Webank’s AI depart-
ment [12], Paddle Federated Learning (PFL) from Baidu [13], PySyft from the open
communityOpenMined [14], and Federated Learning andDifferential Privacy (FL&DP)
framework from Sherpa.AI [15]. They concluded that based on the results of their anal-
ysis, currently the application of these frameworks on the Internet of Things (IoTs) envi-
ronment is almost impossible. In summary, at present, developing a federated learning
framework targeting smart IoTs in edge systems is still an open challenge.

TensorFlow Lite [16] is a lightweight solution for mobile and embedded devices,
which enables both on-device training and low-latency inference of on-device machine
learning models with a small binary size and fast performance supporting hardware
acceleration [17]. So, TensorFlow Lite is not a federated learning framework, but it is an
orthogonal AI framework for mobile devices, whichmight be combined with a federated
learning framework such as PTB-FLA and this is one of the possible directions of our
future work.

PyTorch Mobile [18] (formerly PyTorch Lite) is another AI framework very similar
to TensorFlow Lite, which provides an end-to-end workflow, from training a model on
a powerful server to deploying it on a mobile device, while staying entirely within the
PyTorch [19] ecosystem. This simplifies the research to production and paves the way
for federated learning techniques. Luo et al. [20] made a comprehensive comparison and
benchmarking of AI models and AI frameworks (PyTorch Mobile, Caffe2 which is now
part of PyTorch Mobile, and TensorFlow Lite) on mobile devices, and concluded that
there is no one-size-fits-all solution for AI frameworks on mobile devices (see remark

30 M. Popovic et al.

2 on page 8 in [20]), because TensorFlow Lite performs better for some AI models or
devices whereas PyTorch Mobile performs better for other AI models or devices.

Finally, wewould like to clarifywhat PTB-FLA is not andwhy it is called a “testbed”.
PTB-FLA is neither a complete system such as CoLearn [21] and FedIoT [22] nor a
system testbed such as the one that was used for testing the system based on PySyft in
[23]. By contrast, PTB-FLA is just a FL framework, which is seen byML&AI developers
in our project as an “algorithmic” testbed where they can plugin and test their FLAs.

The PTB-FLA programming model is based on the SPMD pattern [24] like other
well-known programming models: MapReduce, MPI, OpenMP, and OpenCL. For those
who know the MapReduce programming model it doesn’t take long to realize that the
PTB-FLA and MapReduce are rather similar – the client callback function in PTB-FLA
is like the map callback function in MapReduce, whereas the server callback function
in PTB-FLA is like the reduce callback function in MapReduce.

Logistic regression is an important ML technique for analyzing and predicting data
with categorical attributes, and in our case study (see Sect. 4) we took the simple imple-
mentation of the logistic regression at [25] as the source for our referent sequential code.
In our future work, we plan to consider more advanced models, such as the generalized
linear model, see [26].

2 Development Paradigm

In this sectionwepresent thePTB-FLAdevelopment paradigm.Thenext two subsections
present the general concept and the development phases, respectively.

2.1 Concept

The PTB-FLA development paradigm is primarily intended to serve as a FLA developer
guide through the process of developing a target FLA using PTB-FLA, which we call the
FLA development process. The input to this process is the Python sequential program
code of target AI/ML algorithm, whereas the output from this process is the PTB-FLA
code with the same semantics, which means that for given input data it produces the
same output data with some tolerance e. The tolerance e is typically some small error
value (ideally zero).

Of course, the output PTB-FLA code must be compliant with the PTB-FLA pro-
gramming model which is a restricted programming model that imposes the following
two restrictions: (1) using the Single Program Multiple Data (SPMD) pattern, and (2)
specifying code for server and client roles in form of callback functions. Obviously, there
are many ways to define such a development process. Our intention was to prescribe it
as a paradigm which is much more disciplined than ad hoc development, but also not
too rigid to keep it attractive and creative.

The main idea of the PTB-FLA development paradigmwas to follow the principle of
correct-by-construction, which when applied in this context meant to define the devel-
opment process that would for a given referent code yield the output PTB-FLA code
with the equivalent semantics. Following the approach used by program compilers, we

A Federated Learning Algorithms Development Paradigm 31

devised the PTB-FLA development paradigm as the series of program code transforma-
tion phases where each transformation phase consumes its input code and produces the
semantically equivalent code that is closer to the target PTB-FLA code.

2.2 Development Phases

There are altogether four development phases, called phase 1, phase 2, phase 3, and
phase 4, which are by the convention named by their output code i.e., (1) the referent
sequential code, (2) the federated sequential code, (3) the federated sequential code with
callbacks, and (4) the PTB-FLA code, respectively.

The input to phase 1 is the row sequential code and the output is the referent sequen-
tial code. The input row sequential code may come from various sources and may have
various forms. Nowadays, many AI/ML algorithm solutions in Python are available
online in Colab notebooks, where snippets of textual mathematical explanations, code
snippets, and graphs plots dynamically created by code play (i.e., execution) are inter-
leaved. Typically, these solutions are primarily intended for learning/understanding the
solutions through interactive experimentation, where readers are even encouraged to
tweak the code and play with it.

To make the output referent sequential code, a PTB-FLA developer essentially must
select only the necessary code snippets (leaving out the alternative or redundant snippets),
to tweak them if needed, and to integrate them into a standalone Python module(s) that
they could preferably run on their PC (localhost), typically in a terminal of some IDE.
The important requirement for the referent sequential code is that for a given input
dataset it must deterministically produce some output data e.g., learned (trained) model
coefficients and/or some quality indicators like accuracy, because this output data is used
as the referent data by the next development phases, which theymust produce (with some
small error) to be semantically equivalent. To that end, a PTB-FLA developer should
use asserts that automatically compare whether the output data is (approximately) equal
to the referent data, and if not, report the corresponding assertion error.

In phase 2, a PTB-FLA developer makes the federated sequential code by the fol-
lowing three steps: (1) partition the input dataset into partitions (that could be distributed
across clients), (2) split the monolithic computing of the complete input dataset into a
series of computing on individual partitions (that could be collocatedwith corresponding
partitions) such that they produce the set of partition models, and (3) add the computing
for aggregating the set of partition models into the final model and for computing qual-
ity indicators (that could be located on a server), as well as for comparing output and
referent data. For example, a single function call (calling the function f) to process the
complete dataset could be split into a series of function calls (calling the same function
f with different arguments) to process individual dataset partitions. Note that this is still
one sequential program that runs on a single machine (developer’s PC).

In phase 3, a PTB-FLAdevelopermakes the federated sequential codewith callbacks
by the following four steps: (1) copy (and tweak) the computing on an individual partition
(say a partition number i) into the client callback function, (2) replace the series of
computing on individual partitions with the series of client callback function calls (with
the arguments corresponding to the partition j in the call number j), (3) copy (and tweak)
the computing for aggregating the set of partition models to the final model into the

32 M. Popovic et al.

server callback function, and (4) replace the former computing with the server callback
function call (the code for computing quality indicators should remain in its place).
In the running example, the series of function calls (calling the same function f with
different arguments) to process individual dataset partitions should be replaced with the
corresponding series of client callback function calls, which lead to indirect calls to the
function f (each call to the client callback function maps to the corresponding call of
the function f).

In phase 4, a PTBdevelopermakes the PTB-FLAcode by the following two steps: (1)
add the code for creating the instance ptb of the class PtbFla and for preparing local and
private data for all the instances, and (2) replace the code for calling callback functions
(both the series of client callback function calls and the server callback function call) with
the call to the function fl_centralized (in case of a centralized FLA) or fl_decentralized
(in case of a decentralized FLA) on the object ptb.

Generally, a PTB-FLA developer should first develop the centralized FLA and then
develop the decentralized FLA, because the centralized FLA is simpler and easier to
comprehend. As the next case study shows, when developing the decentralized FLA
after the centralized one, a PTB-FLA developer may reuse the code from the first three
phases, and then just tweak the server callback function for the last phase if needed – for
example, to get the same output data (i.e., results) by both centralized and decentralized
FLAs.

3 Case Study: Logistic Regression

In this section we validate and illustrate the PTB-FLA development paradigm by the
case study on logistic regression. The input code for phase 1 was the Colab notebook by
Adarsh Menon [25], which uses the Social Network Ads (SNA) dataset. SNA dataset
comprises 400 samples (or rows) corresponding to user profiles and each record com-
prises the following features (or columns): (1)User ID, (2)Gender, (3)Age, (4)Estimated
(yearly income), and (5) Purchased. Note that in the case study only features Age and
Purchased are used.

The main steps in the input code for phase 1 are: (1) split SNA dataset into training
and test datasets (320 and 80 samples, respectively), (2) train the linear logistic regression
model comprising two coefficients, namely b0 and b1, (3) using the trained model, make
predictions whether users in the test dataset would make purchase or not (i.e., whether
the predicted probability p per user is above the threshold 0.5 or not), and (4) calculate
the prediction accuracy as the ratio of test users for whom the predictions were correct.

In the next two subsections we apply the PTB-FLA development paradigm to first
develop the Centralized Logistic Regression FLA (CLR-FLA, see Sect. 3.1) and then
to develop the Decentralized Logistic Regression FLA (DLR-FLA, see Sect. 3.2). Note
that algorithms in the following tables are given in a Pythonic pseudocode.

3.1 Centralized Logistic Regression

In the next four subsections we describe the four phases of the PTB-FLA development
process that we conducted to develop the centralized logistic regression FLA.

A Federated Learning Algorithms Development Paradigm 33

Phase 1. As already mentioned, the input code for phase 1 is taken from [25]. The
output code for phase 1 (called the referent sequential code) comprises the main function
seq_base_case and two supplementary functions: logistic regression and evaluate, see
Table 1 (note: the supplementary functions normalize and predict were not changed and
therefore are not included to save space).

Table 1. CLR-FLA phase 1 output code

// pd is representing the Pandas library
01: seq_base_case()
02: data = pd.read_csv("Social_Network_Ads.csv")
03: X_train, X_test, y_train, y_test = train_test_split(data['Age'],

data['Purchased'], test_size=0.20, random_state=42)
04: b0, b1 = logistic_regression(X_train, y_train)
05: y_pred, accuracy = evaluate(X_test, y_test, b0, b1)
// The supplementary function logistic_regression
06: logistic_regression(X, Y, b0=0., b1=0., L=0.001, epochs=300)
07: X = normalize(X)
08: for epoch in range(epochs)
09: y_pred = predict(X, b0, b1)
10: D_b0 = -2 * sum((Y - y_pred) * y_pred * (1 - y_pred))
11: D_b1 = -2 * sum(X * (Y - y_pred) * y_pred * (1 - y_pred))
12: b0 = b0 - L * D_b0
13: b1 = b1 - L * D_b1
14: return b0, b1
// The supplementary function evaluate
15: evaluate(X_test, y_test, b0, b1)
16: X_test_norm = normalize(X_test)
17: y_pred = predict(X_test_norm, b0, b1)
18: y_pred = [1 if p >= 0.5 else 0 for p in y_pred]
19: accuracy = 0.
20: for i in range(len(y_pred)):
21: if y_pred[i] == y_test.iloc[i]:
22: accuracy += 1.
23: accuracy = accuracy / len(y_pred)
24: return y_pred, accuracy

The main function seq_base_case (lines 1–5) takes the following four steps. Step
1 (line 2): load the dataset SNA into the variable data of the type Pandas DataFrame.
Step 2 (line 3): split the dataset from the variable data into the variables X_train, X_test,
y_train, and y_test of the type Pandas Series, such that test size is 0.2 (or 20%) of the
complete dataset (i.e., 80 test samples and 320 training samples), and random splitting
always start from the random state 42 (to provide reproducibility of the splitting result
and to enable comparing the output data in the next phases with the referent data). Step
3 (line 4): train the model by calling the function logistic_regression on the training data
pair (X_train, y_train) – the return values are the resulting model coefficients: (b0, b1).
Step 4 (line 5): evaluate the model (b0, b1) on the test data pair (X_test, y_test) by calling
the function evaluate – the return values are the predictions y_pred made on X_test and
the achieved accuracy.

34 M. Popovic et al.

The function logistic_regression (lines 6–14) has four default arguments: b0 = 0.,
b1 = 0., L = 0.001, epochs = 300. The default arguments (b0, b1) were introduced to
enable the so-called incremental training in case when the initial model is given, say by
the server; otherwise, the function starts from the default initialmodel (0., 0.). The default
arguments (L, epochs) are the learning rate and the number of epochs, respectively. The
function takes three steps: (1) normalize X i.e., X_train (line 7), (2) train the model for
given number of epochs (lines 8–13), and (3) return the trained model (line 14). The
for loop (lines 8–13) comprises three steps: (1) make predictions (line 9), (2) calculate
the gradient (D_b0, D_B1) (lines 10–11), and (3) update the model coefficients (b0, b1)
(lines 12–13).

The function evaluate (lines 15–24) takes four steps: (1) normalize X_test (line 16),
(2) make predictions (lines 17–18), (3) calculate accuracy (lines 19–23), and (4) return
the predications and the accuracy (line 24).

The correctness of the output code for phase 1 was manually tested by comparing
the results (b0 and b1) of the output code with the results of the input code.

Phase 2. The output code for phase 2 (called the federated sequential code) comprises
the main function seq_horizontal_federated (see Table 2) and the supplementary func-
tions from phase 1, and it targets the system with three instances (two clients and one
server). We constructed the federated sequential code by following the three general
steps for phase 2 in Sect. 2.2, which when applied to the case at hand became: (1)
split the training data horizontally (i.e., sample/row-wise) into two partitions with 160
samples each, (2) split a single function call to the function logistic regression into two
function per-client function calls, and (3) add the server code for aggregating the two
client trained models.

Table 2. CLR-FLA phase 2 output code

01: seq_horizontal_federated()
02: data = pd.read_csv("Social_Network_Ads.csv")
03: X_train, X_test, y_train, y_test = train_test_split(data['Age'],

data['Purchased'], test_size=0.20, random_state=42)
04: X_train_0 = X_train.iloc[:160]
05: X_train_1 = X_train.iloc[160:]
06: y_train_0 = y_train[:160]
07: y_train_1 = y_train[160:]
08: b00, b01 = logistic_regression(X_train_0, y_train_0)
09: b10, b11 = logistic_regression(X_train_1, y_train_1)
10: b0 = (b00 + b10)/2.
11: b1 = (b01 + b11)/2.
12: y_pred, accuracy = evaluate(X_test, y_test, b0, b1)
13: return [b0, b1]

The function seq_horizontal_federated takes six steps. The first two are the same
as in the function seq_base_case (lines 2–3). Next steps follow. Step 3 (lines 4–7):
split training data into two partitions, more precisely, split X_train into X_train_0 and
X_train_1 (lines 4–5) and y_train into y_train_0 and y_train_1 (lines 6–7)where suffixes

A Federated Learning Algorithms Development Paradigm 35

0 and 1 are indices of client 1 and 2, respectively. Step 4 (lines 8–9): train client models
by calling the function logistic_regression on the corresponding training data partitions
i.e., (X_train_0, y_train_0) and (X_train_1, y_train_1), respectively – the return values
are the corresponding model coefficients i.e., (b00, b01) and (b10, b11), respectively,
where the first index is the model coefficient index and the second index is the client
index. Step 5 (lines 10–11): calculate the aggregated model coefficients (b0, b1). Step 6
(line 12): evaluate the aggregated model by calling the function evaluate on the test data
(X_test, y_test) and the aggregated model coefficients (b0, b1) – the return values are the
predictions y_pred made on X_test and the achieved accuracy. Finally, return the result
[b0, b1] (line 13), which is used by the asserts in the output codes for phases 3 and 4.

The correctness of the output code for phase 2 was manually tested by comparing
the results (b0 and b1) of the output code with the results of the input code.

For both phase 1 and 2, the achieved accuracy is the same and is equal to 0.9, but the
values for the coefficients (b0, b1) are not equal. Here we use the relative error (absolute
value of the difference divided by the true value) as the metric for the quality of the
phase 2 output data. The relative error for the phase 2 model coefficients b0 and b1
is 8.89%, and 3.75%, respectively. Since the output model accuracy is the same (0.9),
these relative errors are acceptable, and therefore we adopted the phase 2 output data
(the model coefficients) as the new referent data for the next two phases i.e., phase 3 and
phase 4.

Phase 3. The output code for phase 3 (called the federated sequential code with
callbacks) comprises the main function seq_horizontal_federated_with_callbacks (see
Table 3) and the supplementary functions from phase 1. We constructed the federated
sequential codewith callbacks by following the four general steps for phase 3 in Sect. 2.2,
which when applied to the case at hand became: (1) copy one of the logistic_regression
function calls that operate on an individual training data partition into the client callback
function, (2) replace the series of logistic_regression function calls with the correspond-
ing series of client callback function calls, (3) copy the computing for aggregating the set
of partition models to the final model into the server callback function, and (4) replace
the former computing with the server callback function call (the evaluate function call
should remain in its place).

The function seq_horizontal_federated_with_callbacks (lines 1–18) takes 8 steps.
The first three are the same as in the function seq_horizontal_federated (lines 2–7).
Next steps follow. Step 4 (lines 8–9): prepare the arguments localData and msgsrv
for the following client callback function calls – the former is the client initial model
whereas the latter is the message from the server carrying the server initial model.
Step 5 (lines 10–11): make the series of two client callback function calls (which
replaced the original logistic_regression function calls in lines 8–9 in the phase 2 func-
tion seq_horizontal_federated). Note that training data partition is passed through the
client callback function argument privateData (see line 19). The return valuesmsg0 and
msg1 are the messages from the clients to the server that carry client updated models
that were trained on the client private data. Step 6 (line 12): prepare the argument msgs
for the following server callback function call – this is the list of messages received from
clients carrying their respective updated models (or more briefly called updates). Step
7 (line 13): the server callback function call (which replaced lines 10–11 in the phase 2

36 M. Popovic et al.

Table 3. CLR-FLA phase 3 output code

01: seq_horizontal_federated_with_callbacks()
02: data = pd.read_csv("Social_Network_Ads.csv")
03: X_train, X_test, y_train, y_test = train_test_split(data['Age'],

data['Purchased'], test_size=0.20, random_state=42)
04: X_train_0 = X_train.iloc[:160]
05: X_train_1 = X_train.iloc[160:]
06: y_train_0 = y_train[:160]
07: y_train_1 = y_train[160:]
08: localData = [0., 0.]
09: msgsrv = [0., 0.]
10: msg0 = fl_cent_client_processing(localData, [X_train_0, y_train_0], msgsrv)
11: msg1 = fl_cent_client_processing(localData, [X_train_1, y_train_1], msgsrv)
12: msgs = [msg0, msg1]
13: avg_model = fl_cent_server_processing(None, msgs)
14: b0 = avg_model[0]
15: b1 = avg_model[1]
16: y_pred, accuracy = evaluate(X_test, y_test, b0, b1)
17: refbs = seq_horizontal_federated()
18: assert refbs[0] == b0 and refbs[1] == b1
19: fl_cent_client_processing(localData, privateData, msg)
20: X_train = privateData[0]
21: y_train = privateData[1]
22: b0 = msg[0]
23: b1 = msg[1]
24: b0, b1 = logistic_regression(X_train, y_train, b0, b1)
25: return [b0, b1]
26: fl_cent_server_processing(privateData, msgs)
27: b0 = 0.; b1 = 0.
28: for lst in msgs:
29: b0 = b0 + lst[0]
30: b1 = b1 + lst[1]
31: b0 = b0 / len(msgs)
32: b1 = b1 / len(msgs)
33: return [b0, b1]

function seq_horizontal_federated) – return value avg_model is the aggregated model.
Step 8 (lines 14–18): unpack the model coefficients b0 and b1, call the function evaluate
(line 16), call the function seq_horizontal_federated (line 17), and assert that the result
is the same as the result of the phase 2 output code (line 18).

The function fl_cent_client_processing (lines 19–25) takes 3 steps. Step 1 (lines 20–
23): unpack the arguments privateData andmsg into the local variables X_train, y_train,
b0, and b1, which are needed for the following logistic_regression function call. Step 2
(line 24): make the logistic_regression function call (which is a copy-tweak of the line
8 in the phase 2 function seq_horizontal_federated). Step 3 (line 25): return the client
updated model trained on its private data i.e., the client update.

The function fl_cent_server_processing (lines 26–33) takes 2 steps. Step 1 (lines
27–32): aggregate the client models from the list msgs (carrying the models from the

A Federated Learning Algorithms Development Paradigm 37

clients) – the result is the server aggregated model coefficients b0 and b1. Step 2 (line
33): return the final server aggregated model as the list [b0, b1].

The correctness of the output code for phase 3 was automatically tested at runtime
by the assert in line 18, which compares the results (b0, and b1) of the phase 3 output
code with the results of the phase 2 output code.

Phase 4. The output code for phase 4 (called the PTB-FLA code) comprises the main
function ptb_fla_code_centralized (seeTable 4), the supplementary functions fromphase
1, and the main and the callback functions from phase 3. We constructed the PTB-FLA
code by following the two general steps for phase 4 in Sect. 2.2, which when applied
to the case at hand became: (1) add the code for creating the instance ptb of the class
PtbFla and for preparing local and private data for all the instances, and (2) replace the
code for calling callback functions with the call to the function fl_centralized on the
object ptb.

Table 4. CLR-FLA phase 4 output code

01: ptb_fla_code_centralized(noNodes, nodeId, flSrvId)
02: data = pd.read_csv("Social_Network_Ads.csv")
03: X_train, X_test, y_train, y_test = train_test_split(data['Age'],

data['Purchased'], test_size=0.20, random_state=42)
04: X_train_0 = X_train.iloc[:160]
05: X_train_1 = X_train.iloc[160:]
06: y_train_0 = y_train[:160]
07: y_train_1 = y_train[160:]
08: ptb = PtbFla(noNodes, nodeId, flSrvId)
09: lData = [0., 0.]
10: if nodeId == 0
11: pData = [X_train_0, y_train_0]
12: else if nodeId == 1
13: pData = [X_train_1, y_train_1]
14: else
15: pData = None
16: ret = ptb.fl_centralized(fl_cent_server_processing,

fl_cent_client_processing, lData, pData, 1)
17: b0 = ret[0]; b1 = ret[1]
18: y_pred, accuracy = evaluate(X_test, y_test, b0, b1)
19: if nodeId == flSrvId:
20: refbs = seq_horizontal_federated()
21: assert refbs[0] == b0 and refbs[1] == b1
22: del ptb

The function ptb_fla_code_centralized (lines 1–22) takes 8 steps. The first three are
the same as in the function seq_horizontal_federated_with_callbacks (lines 2–7). Next
steps follow. Step 4 (8–15): create the object ptb (line 8) i.e., start-up the system, and
prepare the local data (line 9) and the private data (lines 10–15) for all the instances. Step
5 (line 16): call the API function fl_centralized on the object ptb – the arguments are the
callback functions, the local and private data, and the number of iterations (here set to
1 i.e., one-shot execution), whereas the return value is the updated model (client model

38 M. Popovic et al.

for client instances and aggregated model for the server instance). Step 6 (lines 17–18):
unpack the model coefficients b0 and b1, and call the function evaluate – the return
values are the predictions y_pred and the achieved accuracy. Step 7 (lines 19–21): if the
instance is the server, call the function main phase 3 function seq_horizontal_federated
to get the referent output values, and assert that they are equal with the output values
produced by this PTB-FLA code. Step 8 (line 22): destroy the object ptb i.e., shutdown
the system.

The correctness of the output code for phase 4 was automatically tested at runtime
by the assert in line 21, which compares the results (b0, and b1) of the phase 4 output
code with the results of the phase 2 output code.

This concludes the development of the centralized logistic regression FLA.

3.2 Decentralized Logistic Regression

Once we developed a centralized FLA for the system with n instances (where n > 2),
developing its decentralized counterpart for the system with (n – 1) instances (note that
the server is excluded because it’s not needed anymore), which has the same semantics
(i.e., it is producing the same output data), is rather straightforward. Obviously, since in
the decentralized system, the server is excluded, the remaining peers need to do some
extra work to get the same result that the missing server was producing. What is the
missing part?

To see the answer, let’s focus on the third phase of the generic decentralized FLA,
where each peer receives (n – 2) updated models from its clients. When compared with
the third phase of the generic centralized FLA, where the server receives (n – 1) updated
models from its clients, we realize that one updated model is missing, and that is the
updated model of the peer (in the role of a server) itself. Therefore, the server callback
function first must update its local model by training it on its private data (here we can
reuse the centralized client callback function), add it at the end of the received list of
client models, and then aggregate all the client models, including its own (here we can
reuse the centralized server callback function).

This means that we can simply reuse the first three phase of the development process
we conducted for the decentralized logistic regression FLA, and then in the fourth phase
weneed towrite the newserver callback function and adapt themain function accordingly
(see the next subsection on phase 4).

Phase 4. The output code for phase 4 (i.e., PTB-FLA code) comprises the
main function ptb_fla_code_decentralized and the new server callback function
fl_decent_server_processing (see Table 5), as well as the supplementary functions from
phase 1 (in Sect. 3.1) and the callback functions from phase 3 (in Sect. 3.1) of the
previous CLR-FLA development.

The main function ptb_fla_code_decentralized was constructed from the function
ptb_fla_code_centralized (Sect. 3.1) by the following four changes: (1) the argument
flSrvId is deleted (see lines 1 and 8), (2) the preparation of private data is reduced to
preparation for two instances (lines 10–13), (3) the server callback function is changed to
fl_decent_server_processing (line 14), and in contrast to the centralized FLA the assert
must be satisfied for both instances (line 18).

A Federated Learning Algorithms Development Paradigm 39

Table 5. DLR-FLA phase 4 output code

01: ptb_fla_code_decentralized(noNodes, nodeId)
02: data = pd.read_csv("Social_Network_Ads.csv")
03: X_train, X_test, y_train, y_test = train_test_split(data['Age'],

data['Purchased'], test_size=0.20, random_state=42)
04: X_train_0 = X_train.iloc[:160]
05: X_train_1 = X_train.iloc[160:]
06: y_train_0 = y_train[:160]
07: y_train_1 = y_train[160:]
08: ptb = PtbFla(noNodes, nodeId)
09: lData = [0., 0.]
10: if nodeId == 0
11: pData = [X_train_0, y_train_0]
12: else
13: pData = [X_train_1, y_train_1]
14: ret = ptb.fl_decentralized(fl_decent_server_processing,

fl_cent_client_processing, lData, pData, 1)
15: b0 = ret[0]; b1 = ret[1]
16: y_pred, accuracy = evaluate(X_test, y_test, b0, b1)
17: refbs = seq_horizontal_federated()
18: assert refbs[0] == b0 and refbs[1] == b1
19: del ptb
20: fl_decent_server_processing(privateData, msgs)
21: myData = fl_cent_client_processing(None, privateData, [0., 0.])
22: msgs2 = msgs + [myData]
23: myData2 = fl_cent_server_processing(None, msgs2)
24: return myData2

The function fl_decent_server_processing takes the following three steps: (1) call
the centralized client callback function fl_cent_client_processing – the return value is
the local model that was updated by training on the private data (line 21), (2) add the
updated local model at the end of the list of all client models (line 22), (3) call the
centralized server callback function fl_cent_server_processing – the return value is the
aggregated model (line 23), and (4) return the aggregated model (line 24).

The correctness of the output code for phase 4 was automatically tested at runtime
by the assert in line 18, which compares the results (b0, and b1) of the phase 4 output
code with the results of the phase 2 output code.

4 Conclusions

In this paper, we present the PTB-FLA development paradigm. The paradigm comprises
the four phases dubbedby the code they produce: (1) the sequential code, (2) the federated
sequential code, (3) the federated sequential code with callbacks, and (4) the PTB-
FLA code. The PTB-FLA development paradigm is validated and illustrated in the case
study on logistic regression, where both centralized and decentralized algorithms are
developed.

40 M. Popovic et al.

The main original contributions of this paper are: (1) the PTB-FLA development
paradigm, (2) the case study on logistic regression, and (3) the developed centralized
and decentralized logistic regression FLAs.

The main advantages of PTB-FLA development paradigm are: (1) it aids the devel-
opment of FLAs that are correct by construction and (2) it makes the development of
FLAs easier. These advantages are achieved by devising the PTB-FLA development
paradigm as a series of four program code transformation phases, where each phase pro-
duces code semantically equivalent to its input code, and for each development phase
its main steps are clearly described.

The potential limitations of the PTB-FLA development paradigm may depend on
developers’ subjective development experience: (1) for some developers it may be too
restrictive, whereas (2) for some other developers it may be too informal. This is because
we tried to create a paradigm that is more disciplined than the pure ad hoc approach but
not too rigid to let it be attractive and creative. Yet another limitation of the PTB-FLA
development paradigm is that it is still in its infancy, so it still has not been tested during
the development of a real application.

The main directions of future work are: (1) use the PTB-FLA development paradigm
to develop other more complex FLAs and real applications, (2) continue improving the
PTB-FLA development paradigm based on the feedback from developingmore complex
FLAs and real applications, and (3) research adapting and specifying the PTB-FLA
development paradigm for AI tools, such as GPT-4, ChatGPT, and alike.

Acknowledgements. Fundedby theEuropeanUnion (TaRDIS, 101093006).Views andopin-
ions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union. Neither the European Union nor the granting authority can be held responsible
for them.

References

1. McMahan,H.B.,Moore, E., Ramage,D.,Hampson, S., Arcas, B.A.: Communication-efficient
learning of deep networks from decentralized data. In 20th International Conference on
Artificial Intelligence and Statistics, vol. 54, pp. 1273–1282. PMLR (2017)

2. TensorFlow Federated: Machine Learning on Decentralized Data. https://www.tensorflow.
org/federated. Accessed 01 Sept 2023

3. Federated Learning from Research to Practice. https://www.pdl.cmu.edu/SDI/2019/slides/
2019-09-05Federated%20Learning.pdf. Accessed 01 Sept 2023

4. Kholod, I., et al.: Open-source federated learning frameworks for IoT: a comparative review
and analysis. Sensors 21(167), 1–22 (2021). https://doi.org/10.3390/s21010167

5. Popovic, M., Popovic, M., Kastelan, I., Djukic, M., Ghilezan, S.: A simple Python testbed
for federated learning algorithms. In: 2023 Zooming Innovation in Consumer Technologies
Conference, Piscataway, New Jersey, USA, pp. 148–153. IEEE Xplore (2023). https://doi.
org/10.1109/ZINC58345.2023.10173859

6. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In:
2017ACMSIGSACConference onComputer andCommunications Security, pp. 1175–1191.
ACM, New York (2017). https://doi.org/10.1145/3133956.3133982

https://www.tensorflow.org/federated
https://www.pdl.cmu.edu/SDI/2019/slides/2019-09-05Federated%20Learning.pdf
https://doi.org/10.3390/s21010167
https://doi.org/10.1109/ZINC58345.2023.10173859
https://doi.org/10.1145/3133956.3133982

A Federated Learning Algorithms Development Paradigm 41

7. Konecny, J., McMahan, H.B., Yu, F.X., Suresh, A.T., Bacon, D., Richtarik, P.: Federated
Learning: strategies for improving communication efficiency. arXiv, Cornell University
(2017). https://arxiv.org/abs/1610.05492

8. Bonawitz, K., Kairouz, P., McMahan, B., Ramage, D.: Federated learning and privacy.
Commun. ACM 65(4), 90–97 (2022). https://doi.org/10.1145/3500240

9. Perino, D., Katevas, K., Lutu, A., Marin, E., Kourtellis, N.: Privacy-preserving AI for future
networks. Commun. ACM 65(4), 52–53 (2022). https://doi.org/10.1145/3512343

10. Ying, B., Yuan, K., Hu, H., Chen, Y., Yin, W.: BlueFog: make decentralized algorithms
practical for optimization and deep learning. arXiv, Cornell University (2021). https://arxiv.
org/abs/2111.04287

11. Ying, B., Yuan, K., Chen, Y., Hu, H., Pan, P., Yin, W.: Exponential graph is provably efficient
for decentralized deep training. arXiv, Cornell University (2021). https://arxiv.org/abs/2110.
13363

12. An Industrial Grade Federated Learning Framework. https://fate.fedai.org/. Accessed 01 Sept
2023

13. An Open-Source Deep Learning Platform Originated from Industrial Practice. https://www.
paddlepaddle.org.cn/en. Accessed 01 Sept 2023

14. A world where every good question is answered. https://www.openmined.org. Accessed 01
Sept 2023

15. Privacy-Preserving Artificial Intelligence to advance humanity. https://sherpa.ai. Accessed 01
Sept 2023

16. Deploy machine learning models on mobile and edge devices. https://www.tensorflow.org/
lite. Accessed 01 Sept 2023

17. David, R., et al.: TensorFlow lite micro: embedded machine learning on TinyML systems.
arXiv, Cornell University (2021). https://arxiv.org/abs/2010.08678

18. PyTorch Mobile. End-to-end workflow from Training to Deployment for iOS and Android
mobile devices. https://pytorch.org/mobile/home/. Accessed 01 Sept 2023

19. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library.
In: 33rd International Conference on Neural Information Processing Systems, Article 721,
pp. 8026–8037. ACM, New York (2019). https://doi.org/10.5555/3454287.3455008

20. Luo, C., He, X., Zhan, J., Wang, L., Gao, W., Dai, J.: Comparison and benchmarking of AI
models and frameworks on mobile devices. arXiv, Cornell University (2020). https://arxiv.
org/abs/2005.05085

21. Feraudo, A., et al.: CoLearn: enabling federated learning in MUD-compliant IoT Edge
Networks. In: 3rd International Workshop on Edge Systems, Analytics and Networking,
pp. 25–30. ACM, New York (2020). https://doi.org/10.1145/3378679.3394528

22. Zhang, T., He, C., Ma, T., Gao, L., Ma, M., Avestimehr, S.: Federated learning for Internet of
Things. In: 19th ACM Conference on Embedded Networked Sensor Systems, pp. 413–419.
ACM, New York (2021). https://doi.org/10.1145/3485730.3493444

23. Shen, C., Xue, W.: An experiment study on federated learning testbed. In: Zhang, Y.D.,
Senjyu, T., So-In, C., Joshi, A. (eds.) Smart Trends in Computing and Communications.
LNNS, vol. 286, pp. 209–217. Springer, Singapore (2022). https://doi.org/10.1007/978-981-
16-4016-2_20

24. Mattson, T.G., Sanders, B., Massingill, B.: Patterns for Parallel Programming. Addison-
Wesley, Massachusetts, USA (2008)

25. Logistic Regression. https://colab.research.google.com/drive/1qmdfU8tzZ08D3O84qaD1
1Ffl9YuNUvlD. Accessed 01 Sept 2023

26. Cellamare, M., van Gestel, A.J., Alradhi, H., Martin, F., Moncada-Torres, A.: A federated
generalized linear model for privacy-preserving analysis. Algorithms 15(243), 1–12 (2022).
https://doi.org/10.3390/a15070243

https://arxiv.org/abs/1610.05492
https://doi.org/10.1145/3500240
https://doi.org/10.1145/3512343
https://arxiv.org/abs/2111.04287
https://arxiv.org/abs/2110.13363
https://fate.fedai.org/
https://www.paddlepaddle.org.cn/en
https://www.openmined.org
https://sherpa.ai
https://www.tensorflow.org/lite
https://arxiv.org/abs/2010.08678
https://pytorch.org/mobile/home/
https://doi.org/10.5555/3454287.3455008
https://arxiv.org/abs/2005.05085
https://doi.org/10.1145/3378679.3394528
https://doi.org/10.1145/3485730.3493444
https://doi.org/10.1007/978-981-16-4016-2_20
https://colab.research.google.com/drive/1qmdfU8tzZ08D3O84qaD11Ffl9YuNUvlD
https://doi.org/10.3390/a15070243

Machine Learning Data Suitability
and Performance Testing Using Fault

Injection Testing Framework

Manal Rahal1 , Bestoun S. Ahmed1,2(B) , and Jörgen Samuelsson3

1 Department of Mathematics and Computer Science, Karlstad University, Karlstad,
Sweden

manal.rahal@kau.se
2 Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague, 16627 Prague, Czech Republic

bestoun@kau.se
3 Department of Engineering and Chemical Sciences, Karlstad University,

Karlstad, Sweden
jorgen.samuelsson@kau.se

Abstract. Creating resilient machine learning (ML) systems has
become necessary to ensure production-ready ML systems that acquire
user confidence seamlessly. The quality of the input data and the model
highly influence the successful end-to-end testing in data-sensitive sys-
tems. However, the testing approaches of input data are not as system-
atic and are few compared to model testing. To address this gap, this
paper presents the Fault Injection for Undesirable Learning in input Data
(FIUL-Data) testing framework that tests the resilience of ML models to
multiple intentionally-triggered data faults. Data mutators explore vul-
nerabilities of ML systems against the effects of different fault injections.
The proposed framework is designed based on three main ideas: The
mutators are not random; one data mutator is applied at an instance
of time, and the selected ML models are optimized beforehand. This
paper evaluates the FIUL-Data framework using data from analytical
chemistry, comprising retention time measurements of anti-sense oligonu-
cleotide. Empirical evaluation is carried out in a two-step process in
which the responses of selected ML models to data mutation are analyzed
individually and then compared with each other. The results show that
the FIUL-Data framework allows the evaluation of the resilience of ML
models. In most experiments cases, ML models show higher resilience at
larger training datasets, where gradient boost performed better than sup-
port vector regression in smaller training sets. Overall, the mean squared
error metric is useful in evaluating the resilience of models due to its
higher sensitivity to data mutation.

Keywords: Mutation testing · Data mutation · Fault injection ·
Machine Learning Testing · Responsible AI · Chromatography data

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 42–59, 2024.
https://doi.org/10.1007/978-3-031-49252-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_5&domain=pdf
http://orcid.org/0009-0006-7733-8298
http://orcid.org/0000-0001-9051-7609
http://orcid.org/0000-0003-1819-1709
https://doi.org/10.1007/978-3-031-49252-5_5

Machine Learning Performance Testing Framework 43

1 Introduction

The world is experiencing rapid evolution in using artificial intelligence and
machine learning (ML) in almost every domain. This trend has raised questions
about the resilience of ML systems to data faults, most importantly in safety-
critical applications such as autonomous driving, cyber security, and healthcare
[30]. In light of these concerns and the serious consequences of failure in ML
systems, testing methods have gained much attention in the research community
and industry [18]. Furthermore, the resilience of ML systems has become an
important requirement to gain users’ trust [9]. Given its unpredictable behavior,
testing ML systems is more complex than classical software since inspecting the
ML algorithm alone is not sufficient [2,20]. The behavior of the ML system does
not depend solely on the algorithm but also on the training and testing data,
the choice of hyperparameters, and the optimizer. All these factors impact the
performance of the system [23]. The influence of data on the performance of
the ML system is not negotiable. Therefore, performing tests to evaluate the
suitability of the data is equally critical to achieving a production-ready ML
system.

In the literature, various systematic testing methods are effective in testing
the ML model, such as mutation testing (MT) and black-box testing tools [19].
However, not as many systematic methods were investigated to evaluate the
training data as stated by Narayanan et al. [19]. Having an important impact on
the performance of the ML, major faults in the input data could lead to incorrect
outcomes by the system. In some cases, not faults, but drifts in the real-time
data lead to undesirable outcomes. Fault injection is one of these few available
methods that aim to intentionally inject faults into the data, as described by
[23] as data sensitive faults, in an attempt to change the behavior of the system
[6]. The more an ML system is resilient to data-sensitive faults, the better a
system can learn from incomplete data and unexpected observations. Therefore,
models that have high resilience generally generalize better to far-from-perfect
real-world data.

ML systems based on supervised learning algorithms often assume the input
data is static. However, this assumption does not necessarily hold when the sys-
tem is deployed in the real world [11]. Therefore, unexpected events are likely to
occur and can cause risks to the performance of the ML system. But a resilient
ML system, as described in [28], has the capacity to absorb data fluctuations
without performance degradation. According to [28], a resilient system can mon-
itor, learn, anticipate, and respond to adversity. This means that the system
should be able to maintain good performance when the input data are dis-
rupted, to a certain extent. The sources of data disruption are many and could
be classified as natural, system-related, or human errors, and can also include
external factors [28]. The diversity in the types of faults raises questions such as
are some ML models more resilient to data faults than others and which faults
have the biggest influence?

Like any ML system, multiple fault sources can influence the data collected
from a chromatography system. Consistent records of data could be attributed to

44 M. Rahal et al.

the performance of the chromatographic instruments, experimental conditions,
and other external factors. Such variations and errors are common in any real-
world application and lead to degradation in the performance of the ML system.
Therefore, there is a need for ML models that can predict under complicated
uncertainty, yet perform efficiently when used in decision-making [16]. To address
this gap, we present the Fault Injection for Undesirable Learning in input Data
(FIUL-Data) testing framework to evaluate the resilience of an ML system to
common faults. The design intends to introduce likely-occurring faults through
artificial mutators before applying the ML model. The proposed framework is
generalizable, explainable, feasible on a scale, and applicable in multiple domains.
The main ideas behind designing the FIUL-data framework are (1) the mutators
are not random; they are formulated based on previous knowledge about the
data, (2) it is a single fault application; so that at any instance of time only one
fault is applied, and (3) the ML models used in the evaluation phase are selected
based on their suitability to the dataset. FIUL-Data empirically validates the
resilience of ML systems by introducing data faults to the ML input data in
scenarios that might otherwise be rarely considered. FIUL-Data framework is
evaluated on a case study from the analytical chemistry domain. The data set
includes antisense oligonucleotide sequences (ASOs) and their experimentally
observed retention time (tR). These text-coded sequences are transformed into
numeric features before applying any ML system [31]. The data set is collected
through a sequence of chromatography experiments from the Chemistry Depart-
ment of Karlstad University. The evaluation of FIUL-Data consists of two steps;
first, each ML model is evaluated individually. In the second step, the models
are compared with each other to have a comparative view of the vulnerabilities
of each model against the different fault injections. We are mainly considering
supervised ML models in our case study. However, the proposed framework could
apply to other types of ML systems.

In this paper, we propose and evaluate the FIUL-Data framework usable in
multiple domains against likely occurring data faults. As a result, this paper
makes the following contributions:

– Propose FIUL-Data as a data-mutation-based framework integrated with ML
to evaluate the resilience of ML systems to data faults.

– Design and implement two data-level mutators applied to introduce likely-
occurring faults to ML input data.

– The proposed FIUL-Data framework is evaluated on a dataset from the ana-
lytical chemistry field to demonstrate the usefulness of the framework in a
real-world application.

– Propose and perform a multi-metric evaluation of the FIUL-Data framework
to enable quantitative evaluation of the metrics and generation of insights.

The remainder of this paper is structured as follows: Sect. 2 summarizes the
relevant background concepts and lays out the necessary terminologies to under-
stand the paper. Section 3 details the research questions and the experimental
setup to apply and evaluate the proposed framework. The evaluation results

Machine Learning Performance Testing Framework 45

from the use case and the answers to the research questions are presented in
Sect. 4. Finally, Sect. 5 concludes the paper with a summary of the findings.

2 Background

This section provides a selected overview of relevant MT definitions and appli-
cations in the literature.

2.1 ML in Chromatography Applications

Chromatography is an important separation method that is used in all chemistry
fields [5]. Chromatography is considered powerful in separating mixtures of com-
pounds even with similar physical properties due to the large number of parti-
tioning steps involved [5]. The output of the separation is gaussian-shaped peaks
for each eluted compound in the mixture. ML is commonly used in chromato-
graphic separation applications to predict experiments before they are conducted
in the laboratory. This is possible by predicting important parameters, such as
tR, which is the time a compound spends in the system from injection to elution.
One of the most important goals in chromatographic separation is to achieve a
sufficiently high resolution between the eluted peaks within a reasonable experi-
mental time and resources [13]. Therefore, optimizing the experiment conditions
to achieve this goal requires much effort. However, the optimization task can be
complicated and time-consuming, given the large space of experimental variables
and the possibilities of interaction among them [29]. The accurate performance
of ML predictive models allows analytical chemists to reduce the costly and time-
consuming experiments needed to achieve optimal separation conditions. In such
cases, peak resolutions or tR could be predicted as the output. Once the space
of chemical conditions is controlled, more efficient separation experiments can
be conducted in the laboratory. In the literature, various ML models have been
tested in this context, including artificial neural networks (ANN) and traditional
models such as in [4,12,25], which have shown promising results.

Another important application of ML in chromatography is to use it to ana-
lyze the chromatographic data that result from the experiments. Regardless of
the type of chromatography system, data analysis is time-consuming and often
requires manual human intervention [24]. Therefore, researchers actively investi-
gate the potential of ML to reduce human-dependent steps in the analysis stage
using mainly ANN, as in [3,22,24,27]. For example, [24] tested an approach based
on convolutional neural networks to automatically evaluate the modeled elution
profiles of the gas-chromatographic data. In [3], a multilayer neural network (NN)
was applied to predict the retention behavior of amino acids in reversed-phase
liquid chromatography. The authors concluded that NNs are powerful in model-
ing the influence of various gradient elution modes. ML offers great potential to
advance the separation tasks toward more efficient handling of chromatographic
data from collection to analysis. In this paper, we provide another example of
the usefulness of ML with a focus on building more resilient separation pipelines
in chromatography.

46 M. Rahal et al.

2.2 Common Faults in Chromatography Data

The reliability of the data generated by chromatography experiments has been
investigated greatly in the literature. Although modern instruments used in lab-
oratories have user-friendly interfaces, some types of variation and errors are
inevitable [15]. Multiple approaches have been proposed to classify and quantify
the errors in an attempt to understand their influence on the certainty of the
measurements. In general, variations can be seen as person or system caused.
Guiochon et al. [1] discuss the different sources of errors and their influence
on chromatographic measurements. Kuselman et al. [14] identify nine human-
related errors while performing experiments. The most common sources of com-
mon systematic errors in chromatography were also investigated in [10]. The
causes of systematic errors ranged from errors in sample handling to wrong
evaluation and interpretation of results. In the case of ASO chromatography
experiments, errors are reflected in the output data in the form of skewness in
the detected peaks, low signal-to-noise ratio, and high variation of the outcome
across replicates of the sample. The inevitability and recurrence of errors in chro-
matography, demand handling before data are used for analysis or ML purposes
[8]. MT methods integrated with ML are one of the approaches used to simu-
late likely-to-happen errors and study their influence on the performance of the
models.

2.3 Data Mutation

To ensure the systems work as intended in real but uncertain conditions, we must
understand and consider the faults in our input data [20]. There is no doubt that
different types of faults would have a different influence on the performance of the
ML system. Many approaches deal with the different faults, such as changing the
input data, changing the model, or building a resilient system to faults [20]. One
of the approaches to understand the influence of certain errors is the application
of designed artificial mutations to the input data.

Originally, MT is a popular software engineering (SE) technique widely used
in academia and industry [21]. The concept of MT is based on using artificial
faults for system testing purposes. In other words, MT for evaluation is used
to measure the effectiveness of a system in finding faults [32]. Traditionally,
MT application involved inserting individual faults into the software, but later
approaches tested higher-order mutations in which multiple faults are injected at
once, which was shown to be expensive [7]. Although MT is a proven technique
in SE, it recently started gaining attention in the field of ML, specifically in the
subfield of deep learning (DL) [26]. However, MT for ML systems is still consid-
ered to be in the early stages [17]. The interest in adopting established methods
such as MT is triggered by the willingness to improve the trustworthiness of DL
systems [26]. It should be noted that by concept, MT has been most commonly
used to test models, but rarely at the data level, which is our paper’s focus.

Machine Learning Performance Testing Framework 47

Motivated by the success of MT in classical software systems and recently
in DL models, the FIUL-Data framework applies mutation at the data level.
In the literature, the tools used to evaluate the input data for ML are limited
[19]. To address this gap, we propose the FIUL-Data framework to assess the
responsiveness of multiple ML models to input data mutations. The framework
is applied to ASO chromatographic data where the designed data mutations
represent common faults in the field.

3 Methodology

In this section, we describe the systematic approach followed to study the
resilience of ML models to data faults, including the specific research questions
that guided the experiments. The dataset used to evaluate the FIUL-Data frame-
work and the methods used for the evaluation are also described in detail.

3.1 Research Questions

This paper aims to answer the following research questions (RQs):

– RQ1: How does the reduction in training data influence the
resilience of the ML model?

– RQ2: How does the selection of the size of a certain class of data
influence the resilience of the ML model?

– RQ3: How to evaluate the resilience of different ML models in
response to different data mutators?

3.2 Use Case Dataset

The data used in our use case are obtained by means of a chromatography exper-
iment aimed at separating impurities from an ASO compound. The experiments
were carried out under two different chemical conditions, therefore resulting in
two different datasets G1 and G3. During the separation process, an aqueous-
organic mixture is continuously pumped into the chromatography column, where
the amount of organic solvent in the mixture increases over time (gradient time);
this is called the gradient. The first dataset (G1) is collected from experiments
in which the gradient equals 11min. The second dataset (G3) is collected at a
gradient of 44min. The change in gradient results in a new tR for each unique
compound entering the chromatography system. At higher gradients, ASO com-
pounds are retained longer in the system. Therefore, data collected at higher
gradients are considered more sensitive to slight changes in experimental condi-
tions.

In chemistry, the ASO compound is represented in a combination of four
different nucleotide bases, adenine (A), thymine (T), cytosine (C), and guanine
(G), forming a sequence. In this case study, non-phosphorothioated known as
native and phosphorothioated ASO sequences are collected in a dataset with

48 M. Rahal et al.

their respective tR as the target variable. The tR is always recorded as the
separated compounds individually exit the system.

After pre-processing the datasets and removing the incomplete records, the
clean G1 dataset included 876 data points and G3 dataset had 870 data points.
Both datasets have compounds that do not include sulfur (non- phosphoroth-
ioated), partially phosphorothioated compounds, and others fully phosphoroth-
ioated. Both datasets have more than 79% of the compounds partially or fully
phosphorothioated. As part of the data preparation methods before applying
ML, the nucleotide sequences are encoded into numeric values, referred to as
features, such as the frequency of each nucleotide and di-nucleotide (ordered
and unordered) in a sequence, the total length, and the number of sulfur atoms
present. Figure 1 shows the frequency range for the encoded features in the G3
training dataset. The same encoding system is applied to the testing data. As
seen in Fig. 1, the ASO sequence can reach 20 nucleotides long, whereas, the
number of sulfur atoms in the sequences varies between 0 and 19 atoms. The
occurrence of A, C, T, and G nucleotide bases is relatively similar, while, in
di-nucleotide occurrence, TT and CC are the most frequent.

Fig. 1. Frequency of features in G3 training data. The features representing unordered
di-nucleotides were removed for visualization purposes.

3.3 The FIUL-Data Framework

The FIUL-Data framework is built on four key phases, as illustrated in Fig. 2. In
the first phase, the data mutators are designed and coded. The operation of the
data mutators is application-specific and relies on the common faults encoun-
tered during implementation. The execution of data mutators comes next, where
pre-trained ML models and the programmed data mutators are imported and
performed on clean data. Once the mutated data are ready, the ML cycle starts,

Machine Learning Performance Testing Framework 49

including typical training and evaluation of the models based on consciously
selected metrics. The results are integrated into useful visualizations in the last
phase, and insights are concluded. In our case study, Python language is selected
to implement the data mutators’ functions and run the experiments.

Fig. 2. Conceptual illustration of the FIUL-Data framework

The application of FIUL-Data framework consists of two general-purpose
data mutators, the reduce_data_mutator and the select_data_mutator. The
operation of both data mutators is described in detail in the following section.
We note that the same data mutators are expected to behave differently in
different applications. In this application, 10% of the data is repeatedly removed
in every iteration until only 10% of the original data is left. The selected step-
size induces small changes in the data that allows to record results and visualize
behavioral trends from 10 data mutation iterations. In other words, the 10%
iterative variation ensures that we have a sufficient number of instances from
small yet sensitive changes that allows to monitor the behavior of the models.
We note that the records in the dataset are randomly shuffled before applying the
FIUL-Data framework. This is an important step, as compounds and impurities
could share similar characteristics in the case of chromatography data. Data
shuffling ensures representative distribution of the different compounds in the
partitions of the training and testing sets.

– Reduce_data_mutator The reduce_data_mutator reduces the training
data by 10% in each iteration. In some applications, where collecting data
for ML is expensive and time-consuming, it is critical to know the size of
training data that is sufficient for a good-performing model. Large data are
a relative term and depend on the application being studied. In the case of
chromatography data, laboratory experiments are expensive, the products
used to perform the experiments are costly, and the experiments run for a
long time. Therefore, collecting sufficient data could significantly reduce time
and cost burdens. In our experiment, the data is first split into train and test
datasets, 80% and 20%, respectively. The testing data remains unchanged,
while the training data is reduced iteratively by 10%. For every iteration, the

50 M. Rahal et al.

model is fitted to the training data and tR is predicted on the unseen data. At
the end of each iteration, the coefficient of determination (R2) train, R2 test,
and the mean squared error (MSE) are recorded. The design and operation
of reduce_data_mutator is illustrated in Fig. 3.

– Select_data_mutator The select_data_mutator iteratively reduces a cer-
tain class in the data. In this case, the records of the compounds that lost
one or more sulfur atoms from their sequence are removed at a rate of 10%
per iteration, while the other class (native compounds) remains unchanged.
However, the percentage of the target class in the training and testing data
after splitting is controlled for consistency purposes. The sulfur atom(s) loss
is denoted by “-P=O” at the end of an ASO sequence. The models are then fit-
ted to the new version of the training data and evaluated on the testing data.
The operation of select_data_mutator is illustrated in Fig. 4. This mutator
aims to reveal the influence of a certain class of data on the performance of
the ML system. In this case study, the class of sequences having a -P=O suffix
is subject to data mutation.

Fig. 3. The operation of reduce_data_mutator

4 Results and Analysis

After implementing the reduce_data_mutator and the select_data_mutator
functions in a Python (3.9) supported framework, the G1 and G3 datasets along

Machine Learning Performance Testing Framework 51

Fig. 4. The operation of select_data_mutator

with the corresponding pre-trained and hypertuned ML models, were imported.
Then, the FIUL-Data framework was applied to both datasets, where the perfor-
mances of the Gradient boost(GB) and support vector regression (SVR) models
in response to the type of fault injected were compared. The evaluation metrics
used in monitoring the performance of individual models and when comparing
models to each other were the MSE, the R2 train, and the R2 test. The MSE
is chosen to observe the variation in the average squared difference between the
predicted values and the observed values of tR.

4.1 Effect on G1 Dataset

In Fig. 5, the reduce_data_mutator is applied to the G1 dataset at a decreasing
rate of 10% in each iteration. For each of the mutation iterations, the accuracy
of the train and the test are recorded in addition to the MSE values. The perfor-
mance of the SVR and GB models on G1 data yields relatively good results. The
accuracy on unseen data for the GB model ranges from 0.80 to 0.82, showing
relatively stable performance against reducing the size of the training data. For
the SVR model, the R2 test remained relatively stable until 60% of the training
data were removed, and the performance began to degrade, reaching a minimum
R2 test of 0.74. Both models were shown to generalize reasonably well to unseen
testing data when the training data is relatively large; however, GB performed
better with a smaller training datasets. The same trend applies to MSE, which
increased significantly for the SVR model with decreasing training data.

52 M. Rahal et al.

Fig. 5. The application of reduce_data_mutator in G1 dataset using SVR and GB
models. Maximum and Minimum values are annotated.

The results of the application of select_data_mutator to input data are
shown in Fig. 6. For the GB model, we can observe that the highest R2 test is
achieved with a 30% (0.98) subset size of the -P=O class. The R2 test ranges
from 0.86 to 0.98 and the graph shows a trend of increasing R2 test with a
decrease in the subset size of the -P=O data class. The GB and SVR mod-
els performed relatively similarly, with GB showing slightly better performance
across iterations. However, high fluctuations are observed in the performance of
both models in the case of select_data_mutator. The same trends are observed
in the MSE values, ranging from 0.017 to 0.203 in GB and 0.018 to 0.029 in
SVR. MSE is a measurement of error, so the lower the MSE value, the better
the performance of the model. Both models achieved the lowest performance at
the sizes of the subsets 90% and 30% of the -P=O class.

Fig. 6. The application of select_data_mutator in G1 dataset using SVR and GB
models. Maximum and Minimum values are annotated.

Machine Learning Performance Testing Framework 53

4.2 Effect on G3 Dataset

Across both mutation applications and in almost all iterations, GB outperformed
SVR as shown in the MSE trend line in Figs. 7 and 8. Starting with the results of
reduce_data_mutator, both GB and SVR models showed relatively high perfor-
mance on unseen data, with the R2 test reaching a maximum value of 0.92 and
0.91 respectively. The R2 train for both models is consistently high, indicating
effective learning during the training process. After 60% of the training data
is reduced, both models start to show over-fitting behavior where the training
performance is exceptionally high, unlike the degrading R2 test values. The R2

test in both models remains stable until 70% of the training data is removed,
where the R2 test begins to show a downward trend. This trend is also reflected
in the behavior of MSE, where it first shows a consistent trend, then a significant
increase is observed after the 7th iteration of the data mutation.

Fig. 7. The application of reduce_data_mutator in G3 dataset using SVR and GB
models. Maximum and Minimum values are annotated.

Fig. 8. The application of select_data_mutator in G3 dataset using SVR and GB
models. Maximum and Minimum values are annotated.

54 M. Rahal et al.

Figure 8 illustrates the results of the application of the select_data_mutator
in G3 dataset. The values of R2 train and R2 test in the GB and SVR models
are relatively similar and show stable behavior. However, a significant decrease
in MSE is observed after the 2nd iteration, reaching 1.31 and 0.9 in SVR and
GB, respectively. Another steep decline is observed after the 6th iteration where
the error value decreases by 79.7% and 73.7% in SVR and GB, respectively.

4.3 Effect Analysis

For a coherent comparison of the results among data mutators and models, the
fluctuation trends in the R2 test and the MSE values are visualized in Figs. 9,
10. Section 4.3 is structured to answer the RQs 1–3 presented in Sect. 3.1

Fig. 9. Reduce_data_mutator comparison results in G1 and G3 datasets. Iterations
of data mutation is on x-axis, and relative change in values of R2 test and MSE on
y-axis.

RQ1: How does the reduction in training data influence the resilience
of the ML model?

Despite some similarities in the behavior of GB and SVR, in both datasets G1
and G3, GB performed better and showed greater resilience to the reduction in
the mutation of the training data. The highest R2 test and lowest MSE were
attained at the 6th iteration indicating that, for ASOs data, collecting a large
training dataset does not necessarily improve the performance of the ML model.
In this case, 30% of the available data were sufficient to achieve the best perfor-
mance.

In the case of G3 dataset, which is a more noisy and volatile dataset, the
GB model showed high resilience in the predicted R2 test; however, after the 5th

iteration, the MSE fluctuations recorded slightly higher changes. Both models
performed closely until the 5th iteration, where 50% of the training data was
removed. In subsequent iterations, the models showed an increase in MSE and
a spiking pattern in the case of the SVR model, as shown in 9. The obtained
results are expected since the ML model needs more data to be able to sustain
good performance in noisy data and generalize without fitting the noise.

Machine Learning Performance Testing Framework 55

RQ2: How does the selection of the size of a certain class of data
influence the resilience of the ML model?

In response to the select_data_mutator both models seem to have identical
fluctuating behavior in the MSE values. The change in the R2 test values is nearly
negligible. As a result, in the G1 dataset, both models show similar unpredictable
performance in response to the decrease in one class of the data.

Despite the fluctuating performance in response to the reduction of a specific
class from the ASOs data, GB model showed slightly better resilience corre-
sponding to the MSE pattern across iterations in G3 data. The resilience of the
models during the first four iterations shows relatively stable behavior, contrary
to smaller datasets.

RQ3: How to evaluate the resilience of different ML models in
response to different data mutators?

The fluctuations in MSE values in response to the reduce_ and select_data_
mutators were more significant than that of the R2 test as shown in Figs. 9 and
10. Therefore, MSE shows higher sensitivity to data mutation changes compared
to other investigated metrics.

Fig. 10. Select_data_mutator comparison results in G1 and G3 datasets. Iterations
of data mutation is on x-axis, and relative change in values of R2 test and MSE on
y-axis.

5 Conclusion

To test the resilience of ML models to multiple intentionally triggered faults,
we present a Fault Injection for Undesirable Learning in the input data (FIUL-
Data) testing framework. The proposed framework is evaluated on a case study
of ASOs data where the performance of GB and SVR models is compared for
each data mutator. In response to reduce_data_mutator, both models show rela-
tively high resilience in larger datasets with GB outperforming SVR. We observe
that 30% of the available data were sufficient to achieve the best performance.

56 M. Rahal et al.

Regarding the second type of mutation, the models show greater resilience in
the G3 dataset with a decreasing trend of MSE compared to G1, which had
unpredictable performance. This shows that when the size of the -P=O data is
smaller, an ML model performs better. The highest R2 test and lowest MSE were
achieved at the sixth iteration of the reduced data mutation. Thus in the case
of ASOs data, collecting a large training dataset does not necessarily improve
the performance of the ML model. Regarding the evaluation metrics, MSE is
considered as a sensitive metric since small data mutation significantly changed
the MSE behavior. Therefore, we recommend monitoring the MSE metric when
testing the resilience of ML models to data mutations.

For generalization purposes, the FIUL-Data framework could apply to any
ML system where the researcher has pre-trained models and can define data
mutators. The flexibility of the proposed framework comes from the ability to
customize multiple steps depending on the application under study. The FIUL-
Data framework can be used in many interesting applications, such as studying
how a trained model responds to different kinds of data faults, quantifying and
evaluating the trade-off between model resilience and prediction accuracy, and
investigating tuning models based on the type of fault in the data.

6 Threats to Validity

External Validity

In any research, generalization of results is important to contribute to the field
of study. Despite the application of FIUL-Data on a use case from the analytical
chemistry field, the general and flexible design of the proposed framework allows
its application in many domains. At every stage of the framework, the user
could customize the steps to suit the use case. For example, the data mutators
designed in this paper could be modified as the user sees convenient. The ML
models applied were trained and optimized for these ASOs datasets; in other
applications, other ML models could be studied and compared.

Reproducibility of Results

To ensure the reproducibility of the results, we provide a detailed description
of the methodology and the experimental setup. The controlled random split of
the train and test sets supports reproducibility.

Selection of Datasets

The evaluation results of the FIUL-Data framework depend on the datasets
used. The datasets are generated based on specific and controlled experiments
conducted in the Chemistry Department of Karlstad University. Therefore, the
ASO compounds are limited to the sequences purchased for the purpose of the
experiment. This kind of data has a special characteristic: up to 3 compounds

Machine Learning Performance Testing Framework 57

could be derivatives from the same original compound sequence. Therefore, an
ASO compound and the derivative compounds resulting from the separation pro-
cess share similar characteristics, such as phosphorothioation and the frequency
of nucleotide bases in the sequence. Since these characteristics are transformed
into features, the underlying similarity could impact the models’ performance
during the mutation process despite the data’s shuffling and random split before
the ML application.

Acknowledgements. This work has been funded by the Knowledge Foundation of
Sweden (KKS) through the Synergy project - Improved Methods for Process and
Quality Controls using Digital Tools (IMPAQCDT) grant number (20210021). In this
project, we acknowledge Gergely Szabados, Jakob Häggström, and Patrik Forssén from
the Department of Engineering and Chemical Sciences/Chemistry at Karlstad Univer-
sity for their contribution to the acquisition and preprocessing of data.

References

1. Chapter 16 quantitative analysis by gas chromatography sources of errors, accu-
racy and precision of chromatographic measurements. In: Guiochon, G., Guillemin,
C.L. (eds.) For Laboratory Analyses and On-Line Process Control, Journal of
Chromatography Library, vol. 42, pp. 661–687. Elsevier (1988). https://doi.org/
10.1016/S0301-4770(08)70088-5

2. Breck, E., Cai, S., Nielsen, E., Salib, M., Sculley, D.: The ml test score: a rubric for
ml production readiness and technical debt reduction. In: 2017 IEEE International
Conference on Big Data (Big Data), pp. 1123–1132 (2017). https://doi.org/10.
1109/BigData.2017.8258038

3. D’Archivio, A.: Artificial neural network prediction of retention of amino acids
in reversed-phase HPLC under application of linear organic modifier gradi-
ents and/or pH gradients. Molecules 24(3), 632 (2019). https://doi.org/10.3390/
molecules24030632, https://www.mdpi.com/1420-3049/24/3/632

4. Enmark, M., Häggström, J., Samuelsson, J., Fornstedt, T.: Building machine-
learning-based models for retention time and resolution predictions in ion pair chro-
matography of oligonucleotides. J. Chromatogr. A 1671, 462999 (2022). https://
doi.org/10.1016/j.chroma.2022.462999

5. Fornstedt, T., Forssén, P., Westerlund, D.: Basic HPLC theory and definitions:
retention, thermodynamics, selectivity, zone spreading, kinetics, and resolution.
Anal. Sep. Sci. 5 Vol. Set 2, 1–22 (2015). https://doi.org/10.1002/9783527678129.
assep001

6. Gangolli, A., Mahmoud, Q.H., Azim, A.: A systematic review of fault injection
attacks on IoT systems. Electronics 11(13), 2023 (2022). https://doi.org/10.3390/
electronics11132023, https://www.mdpi.com/2079-9292/11/13/2023

7. Ghiduk, A.S., Girgis, M.R., Shehata, M.H.: Higher order mutation testing: a sys-
tematic literature review. Comput. Sci. Rev. 25, 29–48 (2017). https://doi.org/10.
1016/j.cosrev.2017.06.001

8. Hellier, E., Edworthy, J., Lee, A.: An analysis of human error in the analytical
measurement task in chemistry. Int. J. Cogn. Ergon. 5(4), 445–458 (2001). https://
doi.org/10.1207/S15327566IJCE0504_5

https://doi.org/10.1016/S0301-4770(08)70088-5
https://doi.org/10.1016/S0301-4770(08)70088-5
https://doi.org/10.1109/BigData.2017.8258038
https://doi.org/10.1109/BigData.2017.8258038
https://doi.org/10.3390/molecules24030632
https://doi.org/10.3390/molecules24030632
https://www.mdpi.com/1420-3049/24/3/632
https://doi.org/10.1016/j.chroma.2022.462999
https://doi.org/10.1016/j.chroma.2022.462999
https://doi.org/10.1002/9783527678129.assep001
https://doi.org/10.1002/9783527678129.assep001
https://doi.org/10.3390/electronics11132023
https://doi.org/10.3390/electronics11132023
https://www.mdpi.com/2079-9292/11/13/2023
https://doi.org/10.1016/j.cosrev.2017.06.001
https://doi.org/10.1016/j.cosrev.2017.06.001
https://doi.org/10.1207/S15327566IJCE0504_5
https://doi.org/10.1207/S15327566IJCE0504_5

58 M. Rahal et al.

9. Jha, S., Banerjee, S.S., Cyriac, J., Kalbarczyk, Z.T., Iyer, R.K.: AVFI: fault injec-
tion for autonomous vehicles. In: 2018 48th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks Workshops (DSN-W), pp. 55–56.
IEEE Computer Society (2018). https://doi.org/10.1109/DSN-W.2018.00027

10. Kaiser, R.E.: Errors in chromatography. Chromatographia 4, 479–490 (1971).
https://doi.org/10.1007/BF02268820

11. Katzir, Z., Elovici, Y.: Quantifying the resilience of machine learning classifiers
used for cyber security. Expert Syst. Appl. 92, 419–429 (2018). https://doi.org/
10.1016/j.eswa.2017.09.053

12. Kohlbacher, O., Quinten, S., Strum, M., Mayr, B.M., Huber, C.G.: Structure-
activity relationships in chromatography: retention prediction of oligonucleotides
with support vector regression. Angew. Chem. Int. Ed. Engl. 45(42), 7009–7012
(2006). https://api.semanticscholar.org/CorpusID:33345638

13. Korany, M.A., Mahgoub, H., Fahmy, O.T., Maher, H.M.: Application of artificial
neural networks for response surface modelling in HPLC method development. J.
Adv. Res. 3(1), 53–63 (2012)

14. Kuselman, I., et al.: House-of-security approach to measurement in analytical
chemistry: quantification of human error using expert judgments. Accred. Qual.
Assur. 18(6), 459–467 (2013). https://doi.org/10.1007/s00769-013-1020-9

15. Kuselman, I., Pennecchi, F., Fajgelj, A., Karpov, Y.: Human errors and reliability
of test results in analytical chemistry. Accred. Qual. Assur. 18, 3–9 (2013). https://
doi.org/10.1007/s00769-012-0934-y

16. Lotfi, R., Gholamrezaei, A., Kadłubek, M., Afshar, M., Ali, S.S., Kheiri, K.: A
robust and resilience machine learning for forecasting agri-food production. Sci.
Rep. 12(1), 21787 (2022). https://doi.org/10.1038/s41598-022-26449-8

17. Lu, Y., Sun, W., Sun, M.: Towards mutation testing of reinforcement learning
systems. J. Syst. Architect. 131, 102701 (2022). https://doi.org/10.1007/978-3-
030-91265-9_8

18. Ma, L., et al.: DeepMutation: mutation testing of deep learning systems. In: 2018
IEEE 29th International Symposium on Software Reliability Engineering (ISSRE),
pp. 100–111. IEEE Computer Society, Los Alamitos, CA, USA (2018). https://doi.
org/10.48550/arXiv.1805.05206

19. Narayanan, N., Pattabiraman, K.: TF-DM: tool for studying ml model resilience to
data faults. In: 2021 IEEE/ACM Third International Workshop on Deep Learning
for Testing and Testing for Deep Learning (DeepTest), pp. 25–28. IEEE Computer
Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/DeepTest52559.
2021.00010

20. Nurminen, J.K., et al.: Software framework for data fault injection to test machine
learning systems. In: 2019 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pp. 294–299 (2019). https://doi.org/10.1109/
ISSREW.2019.00087

21. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Chapter
six - mutation testing advances: an analysis and survey. In: Memon, A.M. (ed.)
Advances in Computers, Advances in Computers, vol. 112, pp. 275–378. Elsevier
(2019). https://doi.org/10.1016/bs.adcom.2018.03.015

22. Petritis, K., et al.: Use of artificial neural networks for the accurate prediction of
peptide liquid chromatography elution times in proteome analyses. Anal. Chem.
75(5), 1039–1048 (2003). https://doi.org/10.1021/ac0205154

23. Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N., Weiss, M., Tonella, P.:
Testing machine learning based systems: a systematic mapping. Empir. Softw.
Eng. 25(6), 5193–5254 (2020). https://doi.org/10.1007/s10664-020-09881-0

https://doi.org/10.1109/DSN-W.2018.00027
https://doi.org/10.1007/BF02268820
https://doi.org/10.1016/j.eswa.2017.09.053
https://doi.org/10.1016/j.eswa.2017.09.053
https://api.semanticscholar.org/CorpusID:33345638
https://doi.org/10.1007/s00769-013-1020-9
https://doi.org/10.1007/s00769-012-0934-y
https://doi.org/10.1007/s00769-012-0934-y
https://doi.org/10.1038/s41598-022-26449-8
https://doi.org/10.1007/978-3-030-91265-9_8
https://doi.org/10.1007/978-3-030-91265-9_8
https://doi.org/10.48550/arXiv.1805.05206
https://doi.org/10.48550/arXiv.1805.05206
https://doi.org/10.1109/DeepTest52559.2021.00010
https://doi.org/10.1109/DeepTest52559.2021.00010
https://doi.org/10.1109/ISSREW.2019.00087
https://doi.org/10.1109/ISSREW.2019.00087
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1021/ac0205154
https://doi.org/10.1007/s10664-020-09881-0

Machine Learning Performance Testing Framework 59

24. Risum, A.B., Bro, R.: Using deep learning to evaluate peaks in chromatographic
data. Talanta 204, 255–260 (2019). https://doi.org/10.1016/j.talanta.2019.05.053

25. Sturm, M., Quinten, S., Huber, C.G., Kohlbacher, O.: A statistical learning app-
roach to the modeling of chromatographic retention of oligonucleotides incorporat-
ing sequence and secondary structure data. Nucleic Acids Res. 35(12), 4195–4202
(2007). https://doi.org/10.1093/nar/gkm338

26. Tambon, F., Khomh, F., Antoniol, G.: A probabilistic framework for mutation test-
ing in deep neural networks. Inf. Softw. Technol. 155(C), 107129 (2023). https://
doi.org/10.1016/j.infsof.2022.107129

27. Tran, A., Hyne, R., Pablo, F., Day, W., Doble, P.: Optimisation of the separation
of herbicides by linear gradient high performance liquid chromatography utilising
artificial neural networks. Talanta 71(3), 1268–1275 (2007). https://doi.org/10.
1016/j.talanta.2006.06.031

28. Vairo, T., Pettinato, M., Reverberi, A.P., Milazzo, M.F., Fabiano, B.: An approach
towards the implementation of a reliable resilience model based on machine learn-
ing. Process Saf. Environ. Prot. 172, 632–641 (2023). https://doi.org/10.1016/j.
psep.2023.02.058

29. Webb, R., Doble, P., Dawson, M.: Optimisation of HPLC gradient separations
using artificial neural networks (ANNs): application to benzodiazepines in post-
mortem samples. J. Chromatogr. B 877(7), 615–620 (2009). https://doi.org/10.
1016/j.jchromb.2009.01.012

30. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, land-
scapes and horizons. IEEE Trans. Software Eng. 48(1), 1–36 (2022). https://doi.
org/10.1109/TSE.2019.2962027

31. Zheng, A., Casari, A.: Feature Engineering for Machine Learning. O’Reilly Media,
Inc. (2018)

32. Zhu, Q., Panichella, A., Zaidman, A.: A systematic literature review of how muta-
tion testing supports quality assurance processes. Softw. Test. Verification and
Reliab. 28(6), e1675 (2018). https://doi.org/10.1002/stvr.1675

https://doi.org/10.1016/j.talanta.2019.05.053
https://doi.org/10.1093/nar/gkm338
https://doi.org/10.1016/j.infsof.2022.107129
https://doi.org/10.1016/j.infsof.2022.107129
https://doi.org/10.1016/j.talanta.2006.06.031
https://doi.org/10.1016/j.talanta.2006.06.031
https://doi.org/10.1016/j.psep.2023.02.058
https://doi.org/10.1016/j.psep.2023.02.058
https://doi.org/10.1016/j.jchromb.2009.01.012
https://doi.org/10.1016/j.jchromb.2009.01.012
https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1002/stvr.1675

IDPP: Imbalanced Datasets Pipelines
in Pyrus

Amandeep Singh1,2(B) and Olga Minguett1,3

1 University of Limerick, Limerick, Ireland
amandeep.singh@ul.ie, olgaminguett@gmail.com

2 Centre for Research Training in Artificial Intelligence (CRT-AI), Dublin, Ireland
3 Optum,Eden Prairie, USA

Abstract. We showcase and demonstrate IDPP, a Pyrus-based tool
that offers a collection of pipelines for the analysis of imbalanced
datasets. Like Pyrus, IDPP is a web-based, low-code/no-code graphi-
cal modelling environment for ML and data analytics applications. On a
case study from the medical domain, we solve the challenge of re-using
AI/ML models that do not address data with imbalanced class by imple-
menting ML algorithms in Python that do the re-balancing. We then
use these algorithms and the original ML models in the IDPP pipelines.
With IDPP, our low-code development approach to balance datasets for
AI/ML applications can be used by non-coders. It simplifies the data-
preprocessing stage of any AI/ML project pipeline, which can potentially
improve the performance of the models. The tool demo will showcase the
low-code implementation and no-code reuse and repurposing of AI-based
systems through end-to end Pyrus pipelines.

Keywords: Low-code · imbalanced medical datasets · data resampling
techniques · Pyrus · AI/ML-systems · Responsible AI

1 Introduction

The combination of Artificial Intelligence (AI), Machine Learning (ML) and
Deep Learning (DL) algorithms has uncovered enormous potential and unprece-
dented problems in the ever-changing environment of software engineering. Soft-
ware engineering principles need to adapt to developing and evolving AI-based
systems. Our work addresses the need of responsible AI engineering and by lever-
aging the strengths of the Pyrus tool. Pyrus [17] is a Python-based, web-based,
graphical modelling environment for ML and data analytics applications.

A particular aspect of fairness and access to advanced AI is to increase its
accessibility to domain experts that are non-coders. This is increasingly impor-
tant in medicine, health and natural science context. Prior work successfully
used low-code/no-code approaches to address workflow in bioinformatics [4,5],
computational science [1] and paired with computational thinking, in educa-
tion [8]. Those approaches share similar abstraction, encapsulation and coordina-
tion mechanisms to ours, however, their underlying tools were desktop or server
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 60–69, 2024.
https://doi.org/10.1007/978-3-031-49252-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_6&domain=pdf
http://orcid.org/0000-0002-6371-0435
http://orcid.org/0000-0002-0224-7619
https://doi.org/10.1007/978-3-031-49252-5_6

IDPP: Imbalanced Datasets Pipelines in Pyrus 61

oriented, the system used Java for the low-code part, and modelling was sin-
gle user. Choosing Pyrus, we now support Python as implementation language,
the system is cloud-based, and it supports distributed collaborative modelling,
three core characteristics for the ease of adoption in modern interdisciplinary
and distributed teams of natural and medical scientists and practitioners.

Tools like Tines1 and H2O.ai ’sHydrogen Torch2 are specifically low-code/no-
code or support ML applications. Tines is a web-based no-code tool that uses
workflows in the domain of cybersecurity. The workflows can be automated using
different no-code snippets of generic components called ‘actions’ within auto-
mated workflows called ‘stories’. Although Tines has a robust and easy to use
interface, it lacks the ability to code specific ‘actions’ required for any complex
data analysis or ML application. H2O.ai Hydrogen Torch is a ML/DL-specific,
web-based, low-code/no-code tool that can be used by non-coders for their big-
data needs. This platform can also be used to deploy ML pipelines and models,
and it has API functionality for remote use. In comparison, Pyrus supports the
features offered by Hydrogen Torch, and it is open source, thus it can be used
without subscription fees. For a business/organisation looking to develop its own
in-house AI models using their own proprietary data, sharing data with a third
party and model training costs are the biggest issues.

From an application point of view, the AI/ML models, workflows and
pipelines need to be explainable and reusable to allow for ease of future develop-
ment and collaboration. The low-code/no-code paradigm helps by presenting the
end user transparent, explainable and reusable ways to implement the AI/ML
models in a reliable and fair way. We demonstrate how IDPP is a good solution to
these problems on a real-world use-case where we show how to deal with the data
imbalance problem for a selection of popular ML models, applied to the medical
domain. To resolve class imbalance, data resampling techniques are used and
all the IDPP modelling pipelines are developed in Pyrus using the low-code/no-
code paradigm. This research extends the M.Sc. thesis of Olga Minguett [12],
who chose the datasets and resampling methods. The new contribution is the
IDPP tool: it concerns the restructuring of the code for the data analytics and
the new model driven approach with ML pipelines in Pyrus3.

In this paper, Sect. 2 describes the IDPP framework used in this research,
Sect. 3 demonstrates the IDPP framework using a case study of imbalanced
datasets from the medical domain, Sect. 4 concludes the paper.

2 Framework Description

Pyrus is a Python-based, web-based, graphical modelling environment for ML
and data analytics applications. Pyrus is also part of the larger CINCO family

1 https://www.tines.com/product.
2 https://h2o.ai/platform/ai-cloud/make/hydrogen-torch/.
3 All code, information on datasets used and the results are published on GitHub at:

https://github.com/singhad/class imbalance pyrus.

https://www.tines.com/product
https://h2o.ai/platform/ai-cloud/make/hydrogen-torch/
https://github.com/singhad/class_imbalance_pyrus

62 A. Singh and O. Minguett

Fig. 1. Pyrus: SIB representation of the encode categorical features() function from the
pre-processing and transformation pipeline

Fig. 2. IDPP and Pyrus: List of SIBs in the Ecore palette

of low-code/no-code development tools [13], and it is integral part of a Dig-
ital Thread solution [9] that enables inter-accessibility and reusability of the
code-base for different applications and objectives. Pyrus models are data-flow
models, they are the no-code graphical equivalent to programming workflows
that orchestrate reusable Python functions. The Python functions are imple-
mented in the renowned programming platform Jupyter4 following the OTA
(One Thing Approach) paradigm [10]. Special signature annotations added to
these functions enable their identification by the Pyrus web-based orchestration
tool. The code generated by Pyrus from the pipelines is also stored and executed
in Jupyter. This separation of the low-code development of functionalities and
no-code orchestration via modelling is based on MDE principles [11].

Figure 3 shows a screenshot of the Pyrus web-based development environ-
ment. Each Python function implemented in Jupyter is represented in Pyrus
as a collection of taxonomically grouped Service Independent Building blocks
(SIBs) in its Ecore section, containing the SIBs palettes. Figure 1 shows the

4 https://jupyter.org.

https://jupyter.org

IDPP: Imbalanced Datasets Pipelines in Pyrus 63

annotated code in Jupyter in Fig. 1b and its representation as a SIB in Pyrus,
see Fig. 1a. A summary of the SIBs available in the Ecore section of IDPP is
shown in Fig. 2.

Fig. 3. Pyrus: View of the web-based development environment

3 Use Case and Demonstration

ML classification algorithms assume that the classes are balanced, but this is
rarely the case in any real-life data. Class imbalance happens when one or more of
the classes/categories in a dataset are not well represented and hence are thought
to be outliers, noise or anomalies by the ML algorithms during their training
process. This is a challenge for the ML algorithms, as the underrepresented
categories will be ignored or misclassified. The problem is exacerbated when
these algorithms are used as applications in real-life settings and produce biased
or wrong results. According to [16], most ML classification algorithms assume
that the classes are balanced and that the cost of miscalculation is the same for
any class. However, for diagnosing conditions, improving prognostics, accurate
patient monitoring and in personalised medicine, the cost of misdiagnosing a
patient is significantly higher. For example, for the classification of tumours as
malignant or not-malignant [2], the cost of miscalculation is very different. To
resolve class imbalance, resampling techniques are used, such as data-resampling
techniques that modify the training dataset in order for the ML models to have
equal representation of the minority class.

3.1 Python Pre-requisites

We chose Python as the programming language. The two central packages used
for the programming tasks are scikit-learn [14], used for data cleaning, modelling

64 A. Singh and O. Minguett

and evaluation, and imbalanced-learn [6], used to apply the different data-driven
resampling techniques on the datasets.

3.2 Datasets

We chose these three datasets for this study:

1. Cerebral Stroke Dataset [7]: This dataset was created to aid in detection of
a stroke using classification algorithms. It has 12 features containing 43.4K
observations out of which 783 observations are labelled to be stroke.

2. Diabetes Dataset [15]: This dataset was extracted from the Behavioral Risk
Factor Surveillance System (BRFSS) 2014 dataset that was published by
the CDC5. The BRFFS 2014 dataset contained survey collected responses
from over 400,000 people on health-related risk behaviours, chronic health
conditions, and the use of preventative services, conducted since 1984. The
extracted Diabetes dataset has 22 features, 254.6K observations with the
target variable having 2 classes - 0 for no diabetes, 1 for diabetes.

3. Sepsis Dataset [3]: This dataset was created in the Computing in Cardiology
Challenge from Physionet 2019 with the goal of early detection of sepsis. The
data was sourced from ICU patients in three separate hospital systems.

3.3 Data Pre-processing and Transformation

To remove missing values and encoding of categorical variables, different
approaches are employed for the three different datasets.

1. Cerebral Stroke dataset: only two features have missing values - BMI and
Smoking Status. For the BMI feature, the missing values are imputed with
the modal value, and for the Smoking Status feature, the missing values are
categorised into a new label named ’Unknown’. The categorical features in
this dataset are encoded using the Pandas package.

2. Diabetes dataset: it has no missing values or categorical features. The dataset
has 253680 rows and 22 columns with an imbalance of target label of 16.19%.
Since the dataset is very large for this study, a subset of the dataset is taken
by keeping the imbalance percentage constant. The subset dataset we use has
41075 rows and 22 columns.

3. Sepsis dataset: the features with more than 70% missing values are deleted.
The remaining missing values in the features are imputed using the median
values. There are no categorical features in this dataset.

The datasets are split into a ratio of 80:20 for training and testing respec-
tively. The stratified splitting method is used. For outliers, the RobustScaler()
transform function is used for feature scaling to remove the median values and
perform scaling of data between the 1st and 3rd quartile.

5 https://www.cdc.gov/brfss/annual data/annual 2014.html.

https://www.cdc.gov/brfss/annual_data/annual_2014.html

IDPP: Imbalanced Datasets Pipelines in Pyrus 65

3.4 Experiments

Five classification algorithms were chosen: 1) Support Vector Machine (SVM),
2) Decision Tree (DT), 3) Gaussian Näıve Bayes (GNB), 4) K-Nearest Neigh-
borhood (KNN), 5) Logistic Regression (LR).

Three types of data-driven resampling techniques were applied on the
datasets: undersampling, oversampling, and hybrid techniques. The following
specific data-driven resampling techniques were selected in the experiments:

1. Oversampling: RandomOverSampler, SMOTE, SMOTENC, BorderlineSMOTE,
SVMSMOTE, KMeansSMOTE, ADASYN

2. Undersampling: RandomUnderSampler, ClusterCentroids, NearMiss, Instance-
HardnessThreshold, TomekLinks, CondensedNearestNeighbour, AllKNN, Edit-
edNearestNeighbours, RepeatedEditedNearestNeighbours, OneSidedSelection,
NeighbourhoodCleaningRule

3. Combined/Hybrid: SMOTEENN, SMOTETomek

3.5 Pyrus Pipelines

The original code was transformed according to the OTA paradigm for modular-
ization and reuse, and each SIB was annotated with special signature comments
for the Pyrus orchestrator to recognise the functions in the pipelines. The code
was then stored and implemented on Jupyter, and GUI-based pipelines were
modelled in Pyrus. The Pyrus pipelines are depicted in Figs. 4, 5 and 6.

The performance of the algorithms on the datasets before and after resam-
pling was evaluated using the metrics accuracy, precision, recall, f1 score, number
of occurrences, predictions count, confusion matrix and area under the curve.
The precision, recall and f1 score metrics were plotted, and the results were
stored as a CSV file for each classification algorithm.

3.6 Results

Experiments were conducted on the three selected datasets. Figure 4 shows the
exploratory data analysis (EDA) pipeline to get the overview and basic statistics
of the datasets. Figure 5 shows the pre-processing and transformation pipeline
used to clean the datasets and segment them into training/testing sets for ML
models. Figure 6 shows the modelling and evaluation pipeline used to apply and
evaluate ML models on the selected datasets.

The highest and lowest scoring results for each of the datasets based on the
f1 score metric are shown in Table 1. The results are summarised as follows:

1. The Cerebral Stroke dataset has the most imbalanced class ratio. The best
results were obtained by the KNN and DT models when undersampling
and oversampling techniques were used. Although overall, oversampling tech-
niques performed better. The worst results were obtained when a set of under-
sampling techniques were used.

66 A. Singh and O. Minguett

Fig. 4. Pyrus: Exploratory Data Analysis (EDA) Pipeline

Fig. 5. Pyrus: Pre-processing and Transformation Pipeline

2. The Diabetes dataset had a mild class imbalance ratio and here too oversam-
pling techniques performed better overall than undersampling techniques. For
this dataset, the best algorithms were KNN and DT. The worst results were
obtained when a set of undersampling techniques were used.

3. The Sepsis dataset had a moderate class imbalance ratio. Here the undersam-
pling and oversampling techniques performed equally well. For this dataset,
the best algorithm was DT. The worst results were obtained when a set of
undersampling techniques were used.

Across all three datasets, the hybrid techniques had the best overall perfor-
mance, with the least variance in f1 scores for different models. The best model
for hybrid techniques was DT.

Across all datasets, specifically the TomekLinks/OneSidedSelection (under-
sampling), RandomOverSampler/KMeansSMOTE (oversampling) and SMOTE-
Tomek (hybrid) methods performed the best.

IDPP: Imbalanced Datasets Pipelines in Pyrus 67

Fig. 6. Pyrus: Modelling and Evaluation Pipeline

Table 1. Results for all datasets - sorted by f1 Scores

Dataset Technique Model Method f1 Score Accuracy Precision Recall

Cerebral Stroke Dataset Undersampling KNN TomekLinks 0.9906 0.9812 0.9820 0.9992

KNN OneSidedSelection 0.9906 0.9813 0.9820 0.9992

DT NearMiss 0.3702 0.2376 0.9798 0.2282

Oversampling DT RandomOverSampler 0.9831 0.9668 0.9821 0.9842

DT KMeansSMOTE 0.9760 0.9532 0.9832 0.9689

GNB ADASYN 0.8247 0.7057 0.9934 0.7049

Hybrid DT SMOTETomek 0.9736 0.9486 0.9829 0.9645

GNB SMOTEENN 0.8264 0.7082 0.9937 0.7073

Diabetes Dataset Undersampling KNN TomekLinks 0.9111 0.8422 0.8843 0.9596

KNN OneSidedSelection 0.9111 0.8421 0.8844 0.9393

DT ClusterCentroids 0.3769 0.3221 0.9020 0.2382

Oversampling SVC KMeansSMOTE 0.8963 0.8220 0.8992 0.8934

DT RandomOverSampler 0.88 0.7945 0.8737 0.8737

GNB ADASYN 0.7596 0.6567 0.9558 0.6303

Hybrid DT SMOTETomek 0.8768 0.7910 0.8900 0.8639

KNN SMOTEENN 0.7570 0.6526 0.9508 0.6289

Sepsis Dataset Undersampling DT OneSidedSelection 0.9736 0.9510 0.9736 0.9736

DT TomekLinks 0.9730 0.9499 0.9734 0.9725

SVC ClusterCentroids 0.4018 0.2993 0.9634 0.2539

Oversampling DT RandomOverSampler 0.9736 0.9510 0.9727 0.9745

LR ADASYN 0.8549 0.7601 0.9734 0.7620

Hybrid DT SMOTETomek 0.9601 0.9270 0.9736 0.9470

KNN SMOTEENN 0.8399 0.7390 0.9738 0.7384

Overall, hybrid techniques perform the best with the least variance in f1
scores, oversampling techniques ranked second-best: with many higher f1 scores
than hybrid techniques, but with more variance. Undersampling techniques
ranked the lowest of the three types, with some high scores but a lot of vari-
ance in f1 scores. This result is in agreement with the established understanding

68 A. Singh and O. Minguett

that more data points are always better than fewer data points even when the
resulting dataset is completely balanced. By design, undersampling techniques
remove data points, which generally results in loss of information compared to
oversampling/hybrid techniques that append more data points.

4 Conclusions

With IDPP we demonstrate that the low-code/no-code pipelines for imbalanced
datasets in Pyrus serve as an embodiment of ‘Responsible AI’ concerning trans-
parency, fairness, explainability, reliability and reusability of the AI/ML models
and IDPP pipelines themselves. IDPP uses the web-based, low-code/no-code
graphical modelling environment of Pyrus for AI/ML applications. We applied
IDPP to imbalanced datasets, showing on 3 imbalanced medical datasets the
performance of different data-driven resampling techniques in combination with
a selection of ML classification algorithms.

The low-code Pyrus pipelines were easy to create and reuse. The develop-
ment time of the pipelines was greatly reduced by using a web- and GUI-based
tool. Pyrus was used to build the data-flow pipelines using SIBs generated from
annotations in the Python code. With this low-code/no-code approach, future
users can reuse the existing IDPP pipelines and SIBs by simply selecting them
from the Ecore palette section in Pyrus, without the prerequisite of proficiency in
programming. This ensures superior understandability of the logical steps in the
pipeline w.r.t. the code based approach. IDPP’s end-to-end Pyrus pipelines offer
a variety of techniques, models and methods to rectify data imbalance in dif-
ferent scenarios without the need for redeveloping custom pipelines and AI/ML
models from scratch for each use-case.

A challenge faced by IDPP and any low-code/no-code approach is the depen-
dency of Python libraries on the Python kernel version. If the version of Python
required by the libraries does not match the version of Python kernel used by
Jupyter for the IDPP or Pyrus orchestration, the pipeline will not execute. It may
help to re-deploy Pyrus framework using the most recent versions of Python and
other supported packages. Ultimately, software obsolescence is inevitable, and it
is essential to keep pace with newer versions, tools and technology.

Acknowledgments. This research was partially funded by Science Foundation Ireland
(SFI) under Grant Number 18/CRT/6223 - SFI Centre of Research Training in AI.

References

1. Al-Areqi, S., Lamprecht, A.-L., Margaria, T.: Constraints-driven automatic geospa-
tial service composition: workflows for the analysis of sea-level rise impacts. In:
Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 134–150. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-42111-7 12

2. Devarriya, D., Gulati, C., Mansharamani, V., Sakalle, A., Bhardwaj, A.: Unbal-
anced breast cancer data classification using novel fitness functions in genetic
programming. Expert Syst. Appl. 140, 112866 (2020), https://www.sciencedirect.
com/science/article/pii/S0957417419305767

https://doi.org/10.1007/978-3-319-42111-7_12
https://www.sciencedirect.com/science/article/pii/S0957417419305767
https://www.sciencedirect.com/science/article/pii/S0957417419305767

IDPP: Imbalanced Datasets Pipelines in Pyrus 69

3. Kuo, N., Finfer, S., Jorm, L., Barbieri, S.: Synthetic acute hypotension and sep-
sis datasets based on mimic-iii and published as part of the health gym project,
https://physionet.org/content/synthetic-mimic-iii-health-gym/1.0.0/

4. Lamprecht, A.-L., Margaria, T., Steffen, B.: Seven variations of an alignment work-
flow - an illustration of agile process design and management in Bio-jETI. In:
Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds.) ISBRA 2008. LNCS, vol.
4983, pp. 445–456. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-79450-9 42

5. Lamprecht, A.L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich,
R.: Genefisher-p: variations of genefisher as processes in Bio-jETI. BMC Bioinfor-
matics 9(4), 1–15 (2008)

6. Lemâıtre, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res.
18(17), 1–5 (2017), http://jmlr.org/papers/v18/16-365.html

7. Liu, T., Fan, W., Wu, C.: Data for: A hybrid machine learning approach to cerebral
stroke prediction based on imbalanced medical-datasets 1 (2019), https://data.
mendeley.com/datasets/x8ygrw87jw/1

8. Margaria, T.: From Computational Thinking to Constructive Design with Simple
Models. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp.
261–278. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4 16

9. Margaria, T., Schieweck, A.: The Digital Thread in Industry 4.0. In: Ahrendt, W.,
Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 3–24. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34968-4 1

10. Margaria, T., Steffen, B.: Business process modeling in the jABC: the one-thing
approach. In: Handbook of research on business process modeling, pp. 1–26. IGI
Global (2009)

11. Margaria, T., Steffen, B.: Continuous model-driven engineering. Computer 42(10),
106–109 (2009)

12. Minguett Pirela, O.M.: Evaluation of machine learning classification techniques
for handling class imbalance in medical datasets. M.Sc. in Artificial Intelligence,
University of Limerick (2022)

13. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: Cinco: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. Int. J.
Softw. Tools Technol. Transfer 20, 327–354 (2018)

14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, E.A.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

15. Xie, Z.: Building risk prediction models for type 2 diabetes using machine learning
techniques. Prev. Chronic Dis. 16, e130 (2019)

16. Xu, Z., Shen, D., Nie, T., Kou, Y.: A hybrid sampling algorithm combining m-
smote and ENN based on random forest for medical imbalanced data. J. Biomed.
Inf. 107, 103465 (2020)

17. Zweihoff, P., Steffen, B.: Pyrus: an online modeling environment for no-code data-
analytics service composition. In: Margaria, T., Steffen, B. (eds.) ISoLA 2021.
LNCS, vol. 13036, pp. 18–40. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-89159-6 2

https://physionet.org/content/synthetic-mimic-iii-health-gym/1.0.0/
https://doi.org/10.1007/978-3-540-79450-9_42
https://doi.org/10.1007/978-3-540-79450-9_42
http://jmlr.org/papers/v18/16-365.html
https://data.mendeley.com/datasets/x8ygrw87jw/1
https://data.mendeley.com/datasets/x8ygrw87jw/1
https://doi.org/10.1007/978-3-030-03418-4_16
https://doi.org/10.1007/978-3-030-34968-4_1
https://doi.org/10.1007/978-3-030-89159-6_2
https://doi.org/10.1007/978-3-030-89159-6_2

Learning in Uppaal for Test Case
Generation for Cyber-Physical Systems

Rong Gu(B)

Mälardalen University, Väster̊as, Sweden

rong.gu@mdu.se

Abstract. We propose a test-case generation method for testing cyber-
physical systems by using learning and statistical model checking. We
use timed game automata for modelling. Different from other studies, we
construct the model from the environment’s perspective. After building
the model, we synthesize policies for different kinds of environments by
using reinforcement learning in Uppaal and parse the policies for test-
case generation. Statistical model checking enables us to analyse the test
cases for finding the ones that are more likely to detect bugs.

1 Introduction

Cyber-physical systems (CPS) are becoming pervasive in modern society. Such
systems are not pure software or hardware but consist of cyber components (i.e.,
software controllers) and physical components. With the development of artificial
intelligence, autonomous systems, a recent example of CPS, are becoming more
and more realistic. Such systems, e.g., self-driving cars, run autonomously by
perceiving the environment via sensors, making decisions via controlling software
and interacting with the environment, such as moving and carrying goods. CPS
are often designed to accomplish specific tasks that are repetitive and tedious
for humans. On some occasions, CPS have to work alongside humans, such as
on construction sites. In this case, the safety guarantee of CPS are crucial as a
subtle fault in the system can lead to casualties.

Fig. 1. An example of CPS: an autonomous quarry

Figure 1 depicts an exam-
ple of CPS working in an
autonomous quarry. The
quarry contains various
autonomous CPS such as
trucks and wheel loaders. In
this example, the mission
for the CPS are transporting
stones in a quarry, where
wheel loaders dig and load

stones, and trucks transport stones. First, the wheel loaders need to move
to stone piles, dig stones, and load them into trucks. Then, the trucks carry
on to transport the stones to the primary crushers, where stones are crushed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 70–74, 2024.
https://doi.org/10.1007/978-3-031-49252-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_7&domain=pdf
http://orcid.org/0000-0003-0570-6005
https://doi.org/10.1007/978-3-031-49252-5_7

Learning in Uppaal for Test Case Generation for Cyber-Physical Systems 71

into coarse fractions before they are carried to the secondary crushers. When
working in the quarry, the CPS must transport a certain amount of stones
within 24h to keep a high level of productivity. They also must avoid obstacles
such as rocks and other machines and visit the charging point periodically.
To achieve the goal, the CPS must be able to find safe trajectories, track
the trajectories closely to avoid obstacles and be ready to handle unexpected
situations, such as animals suddenly appearing in the field.

When testing such systems, knowing whether the control software is func-
tioning correctly is not enough. For example, when a wheel loader is putting
stones in a truck, even if its controller sends the correct signals to the arm and
bucket, the collaboration may still fail because the truck, which is part of the
environment from the wheel loader’s perspective, may be parking at the wrong
position or turning to a wrong orientation. Therefore, testing must consider not
only the system itself but also its working environment. Additionally, the wheel
loader must be unloading stones preciously at the right moment when the truck’s
position is under its bucket. Hence, the correctness of the system depends on its
own functions, the working environment, and the temporal order and timing of
performing actions.

Another factor that makes the problem even more difficult is that the environ-
ment can be uncertain. In the example of the autonomous quarry, all machines
are collaborating, so we can assume the environment to be friendly, which means
every system is working toward the same goal. However, in some situations, the
environment is neutral or even antagonistic. For example, from a self-driving
car’s perspective, pedestrians and other drivers are hard to predict. Some of
them are friendly but some of them are aggressive, e.g., suddenly turning their
direction without using the indicator. To test CPS working in such an environ-
ment, we need to cover all the possible situations so that the system is ready for
emergencies. However, the environment is hard to model, and some even contain
rare events that are very unlikely to happen but once they appear, accidents
occur. In summary, testing such systems is extremely difficult and we need to
consider not only the system but also the environment.

In this paper, we propose a method that uses reinforcement learning [9] to
train various traffic agents such that the combination of their behaviour can form
different types of environments. Based on the design of the reward function for
reinforcement learning and the primitive behaviours of the environment, we can
train the environment to behave in different ways, and the training is carried out
in Uppaal Stratego1 [4]. The tool enables us to not only perform the training
but also verify the results by using its statistical model checker (SMC) [3]. The
trained environment provides the test cases for the CPS and we use the quanti-
tative answers of verification to evaluate the quality of the generated test cases.
Most importantly, as the modelling, training, and verification are all done by
using formal methods, the unreliable results of reinforcement learning are now
strengthened by the rigour of formal methods, and the automatically generated
test cases can be used for finding sophisticated bugs, like the ones concerning

1 Uppaal Stratego is now integrated into Uppaal 5: uppaal.org.

72 R. Gu

the temporal order of task execution and the timing constraints, which is not
achievable by other automatic testing techniques, such as fuzzing [8].

2 Test-Case Generation by Learning in Uppaal

In this section, we introduce the method for the generation of test cases for cyber-
physical systems. In this method, we use the modelling language timed game
automata to build the model of CPS and environment. Timed game automata
(TG) are special timed automata (TA). The latter is finite-state automata
extended with real-valued variables that increase at the same rate one [1]. TG
further extends TA by partitioning actions into controllable and uncontrollable
ones.

Fig. 2. TG example

Figure 2 depicts an example of TG, in which solid
arrows represent controllable actions of the system and
dotted arrows are uncontrollable actions of the environ-
ment. In Uppaal, circles are called locations and arrows are
called edges, whose formal definitions are in the literature
[4]. However, readers are not required to understand these
concepts for reading this paper. Intuitively, when the TG
example is at location L0, it has three options of control-
lable actions. Two are explicit, that is, going to location L1
and going to location L2. The third option is waiting at L0
until an uncontrollable action takes place, which is implicit

as it is shown in the automaton. In Fig. 2, since there is no uncontrollable action
at location L0, to choose to wait there means to stay at L0 for an unbounded
time. At location L1, the uncontrollable actions may lead the model back to L0
or further to L2, whereas at location L2, there is only one uncontrollable action
getting back to L0. Policy synthesis means calculating a set of state-action pairs
that shows the TG which controllable actions to choose at each of the states
such that the model satisfies some properties, e.g., eventually coming back to
the initial location L0 within two steps or five time units.

TG have been applied in many real-world case studies [5] [2] [7]. In these stud-
ies, CPS are modelled as TG where controllable actions belong to the system and
uncontrollable actions belong to the environment. Then they use reinforcement
learning in Uppaal to synthesize policies for guiding the controllable actions of
the system and analyse the results by using SMC or exhaustive model check-
ing. In this paper, we construct the model in the opposite way. We model the
environment’s behaviour as controllable actions and the system’s behaviour as
uncontrollable actions. Then we use reinforcement learning to synthesize poli-
cies for the environment such that it knows how to win the game. If we switch
the controllable and uncontrollable actions in the TG example and train an
unfriendly environment, the resulting policy could tell the environment to go to
location L2 when the model is at L1, which makes the system lose the game, i.e.,
coming back to L0 within two steps.

Learning in Uppaal for Test Case Generation for Cyber-Physical Systems 73

Fig. 3. The process of test-case generation.
adapted from the literature [6].

We proposed a method for gen-
erating test cases by parsing the
policies learned in Uppaal previ-
ously [6]. In this paper, we leverage
the tool for test-case generation.
Figure 3 shows the process of the
method. First, we randomly sim-
ulate the model for a number of
episodes and gather the runs of the
model. Some of them are good runs
that satisfy our property (i.e., envi-
ronment winning the game) and
some of them are bad runs that are
abandoned for learning. After a cer-
tain amount of learning episodes,

the policy becomes stable and we generate test cases, which represent the envi-
ronment’s behaviour. Further, we can use SMC in Uppaal to analyse those test
cases for finding the ones that are more likely to detect bugs in the CPS.

In summary, our method is able to train different kinds of environments,
which is crucial for testing CPS. Although the training is via reinforcement
learning, because of the formal techniques in our method, we can generate test
cases that are proven to be more likely to detect bugs in the systems, and the
bugs can be sophisticated such as temporal-logic-based ones.

References

1. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990). https://
doi.org/10.1007/BFb0032042

2. Dai, S., Hong, M., Guo, B.: Synthesizing power management strategies for wireless
sensor networks with UPPAAL-STRATEGO. Int. J. Distrib. Sens. Netw. (2017)

3. David, A., et al.: Statistical model checking for stochastic hybrid systems. arXiv
(2012)

4. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–
211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 16

5. Eriksen, A.B., et al.: Uppaal stratego for intelligent traffic lights. In: 12th ITS Euro-
pean Congress (2017)

6. Gu, R., Enoiu, E.: Model-based policy synthesis and test-case generation for
autonomous systems. In: 2023 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE (2023)

7. Gu, R., Seceleanu, C., Enoiu, E., Lundqvist, K.: Model checking collision avoidance
of nonlinear autonomous vehicles. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.)
FM 2021. LNCS, vol. 13047, pp. 676–694. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-90870-6 37

https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-030-90870-6_37
https://doi.org/10.1007/978-3-030-90870-6_37

74 R. Gu

8. Li, J., Zhao, B., Zhang, C.: Fuzzing: a survey. Cybersecurity 1(1), 1–13 (2018).
https://doi.org/10.1186/s42400-018-0002-y

9. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

https://doi.org/10.1186/s42400-018-0002-y

A Literature Survey of Assertions
in Software Testing

Masoumeh Taromirad1,2(B) and Per Runeson1

1 Lund University, 221 00 Lund, Sweden
{masoumeh.taromirad,per.runeson}@cs.lth.se

2 Jönköping University, 551 11 Jönköping, Sweden

Abstract. Assertions are one of the most useful automated techniques
for checking program’s behaviour and hence have been used for different
verification and validation tasks. We provide an overview of the last two
decades of research involving ‘assertions’ in software testing. Based on a
term–based search, we filtered the inclusion of relevant papers and syn-
thesised them w.r.t. the problem addressed, the solution designed, and
the evaluation conducted. The survey rendered 119 papers on assertions
in software testing. After test oracle, the dominant problem focus is test
generation, followed by engineering aspects of assertions. Solutions are
typically embedded in tool prototypes and evaluated throughout lim-
ited number of cases while using large–scale industrial settings is still
a noticeable method. We conclude that assertions would be worth more
attention in future research, particularly regarding the new and emerging
demands (e.g., verification of programs with uncertainty), for effective,
applicable, and domain-specific solutions.

Keywords: assertions · testing · literature survey

1 Introduction

While there is abundance of research regarding the selection of test inputs and
execution conditions, the assessment of expected results is less covered. Research
on the expected results of test cases is often framed as “the oracle problem”,
with Weyuker as an early contributor, observing 1982 that “[a]lthough much of
the testing literature describes methodologies which are predicated on both the
theoretical and practical availability of an oracle, in many cases such an oracle
is pragmatically unattainable” [82].

Barr et al. [6] surveyed the research literature related to oracles and classi-
fied oracles into specified, derived, implicit, and no automatable ones. Among the
concepts identified in their survey are ‘assertions’, defined as “a boolean expres-
sion that is placed at a certain point in a program to check its behaviour at
runtime”. Despite being dated back to Turing and integrated into programming
languages, testing tools and practices of today, they only found a few pieces
of work specifically focused on assertions [16]. As our current research develops
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 75–96, 2024.
https://doi.org/10.1007/978-3-031-49252-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_8&domain=pdf
http://orcid.org/0000-0002-0838-928X
http://orcid.org/0000-0003-2795-4851
https://doi.org/10.1007/978-3-031-49252-5_8

76 M. Taromirad and P. Runeson

around assertions, we decided to survey the existence of assertions, for testing
purposes, in more recent research.

Our research goal is to provide an overview of existing research literature
on assertions in software testing, to provide a basis for further research. As
our research “aims to improve an area of practice”, we choose the design science
paradigm as a lens for this literature survey, as proposed by Engström et al. [25].
We search for literature that uses assertions or addresses problems with asser-
tions in software testing. In line with design science elements, we catalogue the
problems addressed in relation to assertions, the solutions designed to address
the problems with or using assertions, and the types of evaluation, assessing the
strength and relevance of the contributions.

We present existing literature surveys on testing in Sect. 2. Our methodology
is outlined in Sect. 3, followed by the main results – the literature overview
and synthesis in Sect. 4. We discuss our findings in Sect. 5, report limitations in
Sect. 6, and conclude the paper in Sect. 7.

2 Background and Related Work

Assertions are used to check program’s behaviour at runtime: when an assertion
evaluates to true (false), the program’s behaviour is regarded “as intended” (“as
erroneous”) at the point of the assertion. They have gained significant attention
and been used as a measure for code quality. Most dominantly, program asser-
tions are used either to check the behaviour of the program, e.g., Blasi et al. [8],
or to specify and check the contracts within the design by contract development.

Test oracle assertions (test assertions for short) are also used to specify and
check the expected output of test cases [6]. Test assertions differ from program
assertions as they check the expected output for one specific test case, while pro-
gram assertions are typically located in the source code of the program, predicate
on its variables, and return true or false throughout all its executions. Neverthe-
less, in many studies, program assertions and test oracle assertions are considered
very closely or even interchangeably, e.g., Terragni et al. [74].

Specification assertions are also used to document programmers intent [16],
i.e. modules are annotated with pre/post-conditions or invariants, e.g., JML.
Specification assertions are basically non-executable and hence are inherently
different from the other two types of assertions, although they seamlessly can
be exploited at various stages of development for verification [54]. Our study
basically focuses on test oracle assertions, yet designed to be inclusive of other
types of assertions when they relate or contribute to testing.

Assertions (and their application) in software testing have been mostly stud-
ied under surveys on the test oracle problem, e.g., [6,55,61]. Among the 101
secondary studies, identified by Garousi and Mäntylä [32], only one is related
to assertions, namely the one by Barr et al. [6] which reports on the roots of
assertions, and existing support in languages and tools to use them for testing
purposes. Surveys on automatic test generation techniques also consider asser-
tions. Patel and Hierons [59] discuss the effectiveness and usability of assertions –

A Literature Survey of Assertions in Software Testing 77

Fig. 1. Overview of the research method.

among others – in testing non-testable systems. In a mapping study on software
test-code engineering, Garousi et al. [29] identify oracle assertion adequacy as a
criterion of test-code quality assessment. In a survey on software testability [30],
adding assertions is identified as an approach to improve testability. Winkler et
al. [83] identify assertions as one of the factors affecting test code readability
and understandability.

In summary, there are many secondary (and even tertiary) studies on software
testing, but to our knowledge, there is no study specifically focusing on assertions
used in software testing, and thus our survey fills a gap here.

3 Research Method

This study provides an overview of research involving (different types of) asser-
tions used in the context of software testing. We follow similar research proce-
dures as used in the literature surveys conducted by Harman et al. [4,6], namely
a term–based search in Google Scholar, followed by a filtering process, and finally
synthesized in a qualitative analysis. This type of reviews, i.e., semi-systematic
reviews, is proposed by Snyder [69], in particular, for a non-homogeneous concept
(similar to the target of our survey), where systematic literature reviews would
be too strict, and a narrative approach is more feasible. Kitchenham et al. [38]
label a similar process mapping study that “may be auditable but not necessarily
complete”; that they should have transparent procedures but the search scope
may be limited. In this paper, we aim to “map a field of research, synthesize the
state of knowledge, and create an agenda for further research” [69].

This survey was conducted in four major steps which were iterated in several
cycles (demonstrated in Fig. 1). The first author was the main driver of the work,
while the second author primarily took a validation role at each step.

1. Search To include also grey literature, Google scholar was used as the primary
search engine [31], with a query defined as: “assertion” AND “software” AND
(“test” OR “testing”). We limited the search in time to the 2000–2023 to get
an overview of modern research on assertions, still partially overlapping with
earlier surveys to ensure consistency (e.g. Barr et al. covered 1978–2012 [6]).
The initial search rendered about 173 000 hits.

78 M. Taromirad and P. Runeson

2. Screening The titles and abstracts were screened to find papers on asser-
tions, although being inclusive when in doubt. After about 5 000 titles, no
more relevant papers where found among the last dozens of titles. The screen-
ing resulted in a set of about 380 papers before further classification of the
papers. To validate the search and screening, we used the same query in our
university’s library search portal, limiting the search to title and abstract
within the context of software testing. The results were further screened for
relevance and overlap resulting in 86 additional papers, and hence, the initial
pool of about 470 papers.

3. Classification We then performed a preliminary coding of the papers, based
on the type of the study and then the type of assertion, resulting in five cate-
gories: 1) secondary studies, 2) empirical studies, 3) studies explicitly on test-
ing, 4) studies involving program assertions, and 5) studies on assertion-based
verification. Firstly, we filtered out category 1 studies, as they were already
considered under the related work. We also excluded the papers in category 5,
since they are fundamentally related to hardware. Moreover, throughout the
preliminary coding, we found out that the studies in category 4 are divided
into two groups of 1) studies totally separate from testing, and 2) studies
that are related to testing, and hence, we excluded the first group from the
further classification. Accordingly, we came up with 119 papers on assertions
related/contributing to testing. We further classified the remaining papers
according to the design science elements of problem, solution, and validation.

4. Synthesis Finally, we synthesised the research from the perspectives of 1) the
problems addressed, 2) the solutions presented, and 3) how they are evaluated.
The design science perspectives are motivated by earlier research, concluding
that this frame is feasible for software engineering research [25]. The results
are presented in Sect. 4 accordingly. The complete listing of the synthesis
(including 119 papers) is available as complementary material at https://
shorturl.at/ruCHL.

4 Results

This section presents the results of reviewing the studies through characterising
three aspects of each study: the addressed problem (Sect. 4.2), the main proposed
solution (Sect. 4.3), and how the proposal was evaluated (Sect. 4.4). It also out-
lines the type of assertions considered in the studies (Sect. 4.1). Throughout a
few iterations over the studies, these aspects were narrowed down using more
fine-grained and consistent taxonomy (presented in Fig. 2), that provides a com-
prehensive picture of the existing research on assertions in testing.

4.1 Assertion Types

Among our collection of studies, the three types of assertions are identified, which
are considered for different purposes in the context of testing. Evidently, most
of the studies deal with test assertions, where assertions are manipulated as the

https://shorturl.at/ruCHL
https://shorturl.at/ruCHL

A Literature Survey of Assertions in Software Testing 79

Fig. 2. Overview of the resulting taxonomy of the literature synthesis.

result of performing other tasks, such as automatically generating assertions [90]
or improving their effectiveness [18]. Empirical studies (e.g., [41,68]) also focus on
test assertions investigating them from different perspectives. Program assertions
are also found among the studies for testing purposes – rather than just program
verification. In such studies, program assertions are employed as part of the
solution in order to fulfill a goal, such as generating test data (e.g., [87,92]).
Specification assertions are also employed for generating tests (e.g., [23,43]).

4.2 Assertion Problems

The problem aspect looks into the principal focus of the research. The prob-
lems, addressed by the collected studies, include test oracle, test generation, test
regression, test smells, specific applications (e.g., Mobile Apps, GUI, ML), and
test improvements. Note that these classes recognize the most distinguishing
problem addressed by a piece of research, and hence, they are not necessarily
disjoint.

Test Oracle. While assertions are useful for specifying test oracles, writing
and generating effective assertions are yet challenging [6]. Test oracle problem
has been considered from different perspectives, including lack of specification,
automatic generation of assertions statements, improving assertion oracles, and
assertions based on specifications.

Specification of the intended behavior of the software under analysis is essen-
tial for assertion oracles. The lack of such specification has led to different tech-
niques to capture the software behavior, and then generate assertions accord-
ingly. Given an automatically generated test suite with no assertions, Ostra [86]
collects objects’ states, exercised by the test suite, and augments the test suite
with new assertions specifying the behavior of a method. Zamprogno [91] propose

80 M. Taromirad and P. Runeson

to automatically generate assertions for a given test case, based on its previous
executions and feedback of the developer. EvoSpex [52] uses genetic algorithms
to automatically produce a specification of the method’s current behavior, in
the form of postcondition assertions. Mesbah et al. [48] use a crawler to infer a
state-flow graph of user interface states and then identify AJAX-specific faults
and DOM-tree invariants that can serve as oracles. TOGA [22] is a unified
transformer-based neural approach to infer both exceptional and assertion test
oracles for a focal method, that in particular handles units with ambiguous or
missing documentation.

Assertion recommendation focuses on automatic generation of candidate
assertion statements. Agitator [9] applies software agitation to facilitate test
automation and recommends assertions based on observations of a code’s
behaviour. DODONA [44] ranks program variables based on the interactions
and dependencies, and accordingly proposes a set of variables to be monitored
within test oracles. Pham et al. [33] generate candidate assertions based on
test cases and then apply active learning techniques to iteratively refine them.
DSpot [18] takes developer-written test cases as input and synthesizes improved
versions of them by triggering new behaviors and adding new assertions. Val-
ueian et al. [79] employ an Artificial Neural Network to construct automated
oracles for low observable software based on tests inputs and verdict. Abdi et
al. [1] address test amplification for dynamically typed languages (e.g., Pharo),
and exploit profiling information to infer the necessary type information creating
special test inputs with corresponding assertions.

OASIs [34] is a search-based tool for improving oracle, using test case gener-
ation and mutation testing to reveal false positives and false negatives, respec-
tively. Given a set of assertions and a set of correct and incorrect program states,
GAssert [74] employs a co-evolutionary algorithm that explores the space of pos-
sible assertions to identify oracle with fewer false positives and false negatives.
Xie et al. [87] propose a mutation analysis approach for strengthening the asser-
tions of parameterised unit tests. Fraser and Zeller [28] present a mutation-based
assertion generation, within EvoSuite [27], optimised towards satisfying a cov-
erage criterion. ATLAS [80] is a deep learning (DL)-based approach to generate
meaningful assert statements for test methods based on existing unit tests. Yu
et al. [90] introduce an IR-based assertion retrieval technique and a technique
to adjust the assertions based on the context, that are more effective in generat-
ing a long sequence of tokens comparing to ATLAS. Tufano et al. [77] propose
an approach to generate accurate and useful assertions using transformer model
finetuned on the task of generating assert statements for unit tests.

Specification-based assertions can effectively reveal faults, up to their
limit [17], and hence have been employed in specifying test oracle. Xie and
Memon [85] automate GUI test oracles by inserting “assert” statements in test
cases based on the formal specifications, i.e., pre/postconditions of GUI events.
Zhao and Harris [94] introduce an approach to generate assertions directly from
the natural language specifications employing semantic analysis of sentences in
the specification document. Franke et al. [26] propose a method that identifies

A Literature Survey of Assertions in Software Testing 81

life cycle dependent properties in the application specification, and derives test
cases for validation. MeMo [8] automatically derives metamorphic equivalence
relations from natural language documentation (given in Javadoc comments),
which are then used as oracles in automatically generated test cases.

Runtime assertion checkers transparently ensure that the specification asser-
tions hold during program execution [16]. JML (or an extension of JML) and its
runtime assertion checker(s) are notably employed for testing in different context,
such as testing conformance of safety-critical systems [73], specifying metamor-
phic relations [54], testing services in the Home Automation System [62], testing
concurrent object-oriented software [5]. Cheon and Leavens [13,14] propose to
use a specification language’s runtime assertion checker (e.g., JML) to decide
whether methods work correctly, and hence automating the test oracles. Pastore
et al. [58] introduce CrowdOracles, exploiting CrowdSourcing idea in the context
of test oracle problem, and demonstrate that CrowdOracles are a viable solution
to automate the oracle problem, yet taming the crowd to get useful results is a
difficult task.
In summary, the studies in the test oracle category focus on how to generate
assertions, what (kind of) information can be used for generating assertions,
how to automate or augment the assertion generation process to have more
effective assertions.

Test Generation. Assertions have been considered in the context of test gen-
eration addressing different challenges including generating either complete tests
or part of a test, such as test data and input/output pair. Mirshokraie et al. [51]
leverage existing DOM-dependent assertions in human-written UI-based test
cases to automatically generate assertions for unit-level testing of JavaScript
code. TESTILIZER [50] learns from existing human-written assertions to gen-
erate assertions for unchecked portions of the web application.

In Assertion-based Testing, program assertions are combined with automated
test (data) generation in order to find assertion violations effectively. Zeng et
al. [92], automatically convert program dynamic invariants into program asser-
tions, which are then used to direct the test generation process. Mayer [47]
develops an assertion-based testing framework and a tool to generate runtime
checks based on the specification annotations, for the Go programming language.

Specification assertions are also used as the basis to automatically gener-
ate tests. Korat [10] uses a method precondition to automatically generate all
test cases up to a given size and the method postcondition as a test oracle.
Similarly, Jarteg [56] randomly generates test cases for Java classes specified in
JML, which are used to eliminate irrelevant test cases and serve as a test oracle.
Søndergaard et al. [73] use JML annotations to model conformance constraints
– in a safety-critical system – in order to generate JUnit tests as well as run-
time assertion checks. Higher-level specification languages (and their assertions)
are also employed for test generation. Li and Sun [43] translate Z formal mod-
els into their UML/OCL counterparts and JUnit tests (containing assertions).
TestEra [37] generates test inputs based on Alloy specifications using Alloy SAT

82 M. Taromirad and P. Runeson

solver. Stoyanova et al. [72] introduce a test generation process based on WS-
BPEL, having assertions at different levels (HTTP, SOAP and BPEL variable),
for testing web services. Drusinsky et al. [23] propose an automatic, JUnit-based,
white-box testing of statechart prototypes augmented with statechart assertions.

Using more recent ML-based techniques, A3Test [2] presents a DL-based test
case generation approach that uses a pre-trained language model of assertions
to improve test case generation from language models (e.g., AthenaTest).

In summary, different types of assertions have been basically employed to
direct test generation in order to generate complete tests or part of them,
such as test data and test oracle.

Specific Applications. Specialised assertions – in contrast to general-purpose
assertions – have been introduced addressing special requirements in particular
domains. For multi-agent system development, Tiryaki et al. [75] introduce a
specialized assertion method for agent level verification. Delamare et al. [21]
extend JUnit with new types of assertions to specify the expected joinpoints in
aspect-oriented programming using AspectJ. Chang et al. [76] introduce visual
assertions to verify whether certain GUI interaction generates the desired visual
feedback. Koesnander et al. [40] introduce web macro assertions to encode the
expectations and assumptions of a website developed by non-technical users.

Verification and validation of applications with inherent, uncertain outcomes
(e.g., machine learning programs) requires new types of assertions. Dutta et
al. [24] present FLEX which uses approximate assertions to compare the actual
and expected values, while systematically identify the acceptable bound between
the actual and expected output which minimizes flakiness. Kang et al. [36] intro-
duce model assertions – that could be ‘exact’ or ‘soft’, which adapts the classical
use of program assertions as a way to monitor and improve ML models.

Assertions are also adapted for specific purposes, in addition to typical test-
ing, such as fault localisation, detecting merge conflicts, and test-suite reduction.
Salehi Fathabadi et al. [64] use a formal model of the APIs of independently
developed components to generate a set of assertions embedded in the imple-
mentation. Xuan and Monperrus [88] present spectrum-driven test case purifi-
cation for improving fault localization, that generates purified versions of failing
test cases, which include only one assertion per test. Sequeira [66] provide an
automated technique to determine the DOM dependencies for each test assertion
(on DOM), so that assertion failures are connected to the underlying JavaScript
code which help finding the cause of failures. Pariente and Signoles [57] propose a
method to trigger security counter-measures, based on static detection and run-
time assertion checking of program weaknesses. Knauth et al. [39] recommend
assertion-driven development instead of test-driven development and introduce
meta-mutations at the code level to simulate common programmer errors. An
assertion-aware test-suite reduction technique has been proposed by Chen et
al. [12]. Messaoudi et al. [49] use assertion-based backward slicing to decompose
complex system test cases into smaller, separate ones. Petke and Blot [60] suggest
to consider the output of test case assertions in fitness functions for test-based

A Literature Survey of Assertions in Software Testing 83

program repair using genetic algorithms. Fang and Lam [95] introduce assertion
fingerprint to identify suitable candidates in refactoring test suites. TOM [35] is a
tool that detects merge conflicts with the help of assertions that are defined on
the variables that have different values.
In summary, the specific applications category demonstrates that assertions
are useful for many different purposes. With specialised syntax and semantics,
assertions may support specific problems more effectively.

Test Regression. Regression tests can fail not only due to faults in the program
but also due to obsolete tests which do not reflect the behavior of the updated
program. Moonen et al. [53] introduce “test-driven refactoring” in that general
code refactorings are induced by (re)structuring tests, for example to remove
assertion roulette. Sakakibara et al. [63] develop an assertion-based mechanism
to eliminate unnecessary dependencies between test code and objects in order to
decrease invalidated tests due to changes in a code. ReAssert [19] automatically
repairs broken unit tests by for example changing assertion methods. ReAssert
combines analysis of a test’s dynamic execution with analysis and transforma-
tion of the static structure of test code. WATER [15] suggests repairs for web
application test scripts (test assertions), employing differential testing in that
the behavior of tests on two successive versions of the application are compared
and analysed. Xu et al. [89] introduce TestFix to fix broken JUnit test cases by
synthesizing new method calls. TestFix regards the assertion of a broken test as
a constraint and relies on the information about changes between versions of the
software to guide the search of method-call sequences that meet the constraint.

In summary, the studies in test regression category largely address test obso-
lescence as the most known reason for test evolution, and introduce auto-
matic test repair techniques that mostly focus on changing assertions and use
assertion-based mechanisms.

Test Smells. Test smells, poorly designed tests, negatively affect the com-
prehensibility and the maintainability of the test code [7], and therefore, they
have been investigated and considered in many studies, e.g., [20,71]. Asser-
tion Roulette (i.e., several assertions with no explanation within the same test
method) is found as the most frequent and riskiest test smell [84]. RAID [65]
provides automated detection of lines of code affected by test smells, namely
Assertion Roulette and Duplicate Assert, and a semi-automated refactoring for
Java projects using JUnit. Soares et al. [70] present a set of refactorings – exploit-
ing specific features of JUnit 5 – that help to remove test smells. RTj [46] is a
framework for detecting and refactoring rotten green test cases, i.e., tests that
pass but contain assertions that are never executed, using static analysis and
dynamic analysis. Vahabzadeh et al. [78] recognize incorrect and missing asser-
tions as the dominant root cause of silent horror test bugs, i.e., those test that
pass, while the production code is incorrect. Wei et al. [81] introduce an ML-
based approach for labelling unit tests according to the AAA pattern (i.e., the

84 M. Taromirad and P. Runeson

Arrangement, Action, and Assertion), as a best practice towards better code
comprehension and less maintenance effort.

In summary, the studies in the test smells category largely aim to prevent
test quality degradation due to badly designed tests and hence, introduce
techniques to automatically detect test smells, in particular assertion roulette.

Engineering Aspects. There are many studies that focus on, so-called, engi-
neering aspects of using assertions in software development, including the impact
of using assertions, comparison between different techniques or types of asser-
tions, and good practices in using assertions. These studies consider assertions
in a more general context in comparison to the aforementioned problems.

The application of assertions as test oracles is empirically investigated by
Shrestha and Rutherford [68]. Li and Offutt [42] investigate the ability of test
oracles (that vary in amount and frequency of program state checked) to reveal
failures. The adequacy of assertions in test suite, particularly in the context of
automated test generation has been investigated in several studies, e.g., [3,67,
96]. Zhang and Mesbah [93] find a strong correlation between the number of
assertions in a test suite with its effectiveness. The relation between developers’
experience and assertion density is then investigated by Catolino et al. [11],
showing that such experience is a significant factor in effective testing.

The effect of fluent assertions on comprehensibility of tests is investigated
by Leotta et al. [41], demonstrating that adopting AssertJ (a fluent assertion
library in JUnit) has no significant effect on the level of comprehension, though it
significantly improves the efficiency in their comprehension. Ma’ayan [45] studied
the quality of real world unit tests and reported that they don’t follow the well-
known good patterns (in particular using the right assertions) for writing tests.

In summary, the studies of the engineering aspects category tend to empirically
investigate the application of assertions in software development in order to
provide rigorous evidence of the benefits developers gain by using assertions
and/or discover the best practices in the context.

4.3 Solutions

In order to a have an expressive view over the proposals in our collection, the
solution of each study is characterised by 1) the main technique(s) that specifies
the essence of the proposal, 2) the target domain/language for that the solution is
ultimately actualised and implemented (if applicable), and 3) the tooling support
which could be either a prototype implementation or within an existing tool.
Note that the studies considering the engineering aspects are excluded herein,
since they inherently do not provide any particular solution, in the way it is
investigated in this section, except very few of them. Also, the information was
collected based on the papers as the only source of our survey, and is hence
limited to what is explicitly provided.

A Literature Survey of Assertions in Software Testing 85

Technique. By technique, the very core idea of the proposed solution is deter-
mined. While the technique(s) are (have to be) eventually implemented and
hence, shaped within a context (e.g., language and domain) considering all of
its restrictions and capabilities, herein we abstract from such details and tend
to provide a high-level view of the techniques within limit. The main classes of
techniques, identified throughout our survey, are summarised in this section.

Learning and evolutionary algorithms have been used in several studies, par-
ticularly among the ones on assertion generation. Pham et al. [33] use active
learning techniques to generate assertions. A combination of evolutionary and
learning based techniques have been applied in EvoSpex [52] to automatically
generate specifications. GASSERT [74] applies a co-evolutionary algorithm that
explores the space of possible assertions to improve test oracles. Valueian et
al. [79] employ an Neural Network algorithm to construct automated test ora-
cles for low observable software. A3Test [2] uses a pre-trained language model
of assertions to generate assertions in test case generation process.

The application of static analysis is considered as a promising technique in
the literature, in different context. Zeng et al. [92] automatically generate asser-
tions based on program invariants. Pariente and Signoles [57] generate runtime
assertions checks based on static detection of CWEs1.

A number of studies exploit test execution in generating or improving test
oracles. Xie [86] adds assertions based on the object states collected through-
out previous test executions. Employing a search-based algorithm for improving
assertions, Jahangirova [34] combine test case generation to reveal false positives
and mutation testing to reveal false negatives. Test case execution logs are used
in DS3 [49] to determine dependencies among test slices. Mutation analysis has
been also used by Fraser and Zeller [28] to improve the fault detection capability
of test oracles, by Knauth et al. [39] to assess the quality of the assertions, and
by Xie et al. [87] for analyzing PUTs written by developers and identifying likely
locations in PUTs for improvement.

In several studies, a specific-purpose assertion is introduced, that is typically
defined on top of an existing assertion language/construct, through an extended
syntax and semantics, and a novel assertion evaluation technique. Corduroy [54]
introduces metamorphic assertions, built on top of Java Modelling Language
(JML). Model assertions [36] adapt the classical use of program assertions, tai-
lored to the specific needs of ML programs, in particular uncertainty in output.

Domain/Language. A wide range of domains and languages are considered
by the collected papers, though with different density. In addition to solu-
tions for general and typical programs, that are the target of many studies,
the proposed solution in many studies are applicable to specific types of pro-
grams, e.g., Machine Learning programs [24,36], web/mobile applications [26],
and GUI [85].

The solutions can also be characterised regarding the language for which
the solution is introduced. While the most common language is Java (e.g., [33,
1 Common Weakness Enumerations – https://cwe.mitre.org.

https://cwe.mitre.org

86 M. Taromirad and P. Runeson

Table 1. Evaluation Methods vs. Assertion Problems

Problem Evaluation Method
Limited Many/Large Benchmark Empirical

Test Oracle 16 18 2 3
Test Generation 12 4 1 –
Specific Application 6 5 1 3
Test Regression 4 1 – –
Test Smells 2 1 – 13
Engineering Aspects 3 1 1 17
Total 43 30 5 36

34,52,74,86]), a variety of other general-/specific-purpose languages have been
covered, including JavaScript/TypeScript [91], Go [47], and Pharo Smalltalk [1].
Other solutions (e.g., [49,79]) are not limited to a specific programming language
and are applicable to programs in different languages. For example, Valueian et
al. [79] demonstrate the application of their solution on programs in Java, C,
C++, Verilog, and VHDL. There are also a number of studies that consider
a higher level of abstraction and introduce their solutions for specific types of
models, such as UML statecharts [23], Alloy models [37], Z Specification [43],
WS-BPEL [72], and Machine Learning models [36].

Tool Support. Most of the solutions are embedded in and supported by tool
prototypes that are typically available online. A number of studies use a chain of
available tools to implement and demonstrate their solutions (e.g., [17,77]). One
study [9] introduces its solution as part of a commercial tool (Agitator). Studies
in the engineering aspects category and the empirical studies are exempted to
have prototypes or any other implementation support and few papers (e.g., [60,
92]) have not explicitly mentioned how the solution is implemented.

4.4 Evaluation

Looking into how the proposals of the collected studies have been evaluated, we
identified four main classes of the evaluation methods, namely limited experi-
ments, many/large experiments, benchmarks, and empirical & judgement, that
are described in the following. Note that most of the studies, excluding the ones
looking into the engineering aspects, provide a proof of concept through develop-
ing a prototype of the tooling support for their proposed solutions, which is not
considered herein as evaluation. There are few papers that do not present any
evaluation which is however compatible to their types of study, such as short
paper (e.g., [60]) or report on ongoing study (e.g., [87]). Table 1 summarises
evaluation methods w.r.t. the assertion problems.

A Literature Survey of Assertions in Software Testing 87

Limited Experiments. This type of evaluation provides preliminary and lim-
ited evidence of the application of the proposed techniques or tools, in that,
for example, the effectiveness of the proposals and how the proposal meets its
goal(s), is demonstrated throughout a limited number of case studies (e.g., up
to 10 cases), e.g., [64,94], or by limited artificial experiments (e.g., by manu-
ally generating or adding required information [39,68]). In our collection of 119
papers, the evaluation of 43 studies fall into this category; the studies focusing
on test generation and test oracle/assertion generation have the main portion
among this group (28 studies in total).

Many/Large Experiments. Several studies provide more convincing evalua-
tion results by assessing their solutions on many cases (e.g. > 10) or throughout
one or more experiments in an industrial setting. Large, open-source or public
projects or repositories, for example on GitHub, have been used in evaluation
experiments (e.g., [12,33,86]), that is, mostly used in the studies that address
assertion generation. Some of the studies use real systems/applications that are
under operation to demonstrate the usefulness and/or the cost-effectiveness of
their proposals, such as using an Aircraft e-Maintenance application [57].

Benchmarks. Few studies have used benchmarks to evaluate and demonstrate
properties of their solutions. Different sets of benchmarks (e.g., regarding size,
application, and domain) were used depending on the target and context of a
study. Messaoudi et al. [49] use a proprietary benchmark of 30 complex system
test cases to assess the effectiveness and efficiency of their solution in slicing
system test cases. The quality of EvoSpex [52] was assessed on a benchmark of
open source Java projects in SF1102. Alagarsamy et al. [2] use Defects4J reposi-
tory to evaluate A3Test’s performance. Ji et al. [35] firstly design the benchmark
MCon4j and then use it to evaluate the effectiveness of their solutions.

Empirical & Judgement. Some of the studies investigate and demonstrate
empirical evidence regarding a particular research question or of the use of a
technique or tool in practice. They may use surveys or interview among a cer-
tain number of participants (e.g., [91]), or use more formal experimental methods
(e.g., controlled experiment [41]). Most of the studies in this category, look into
the engineering aspects of the use of assertions, that is however obvious consid-
ering their intention.

5 Discussion

This section summarizes the research findings following the same structure we
used to review our collection of studies, and synthesise the results.

2 https://www.evosuite.org/experimental-data/sf110/.

https://www.evosuite.org/experimental-data/sf110/

88 M. Taromirad and P. Runeson

Assertion Problems. The dominant problem focus is the oracle problem.
About 34% of the studies (41) address the substantial challenge of specifying
the expected output or behaviour in tests using assertions. They largely inves-
tigate different types of information that can be used for generating or defining
test oracle (assertions) and how to automate or augment the assertion generation
process to improve effectiveness, efficiency, and practicality.

Engineering aspects is the second premier focus. About 20% of studies pro-
vide empirical evidence of the benefits to gain by using assertions and also point
out challenges and obstacles in effective application of assertions in practice.

The third group of studies (about 15%) employ assertions to direct test gen-
eration tasks, such as generating test data. The use of assertions for specific
applications, addressed in 16 studies, demonstrates that assertions are useful
and could support specific problems more effectively. Among different specific
domains, limited studies address uncertainty in outputs, which however, consid-
ering the emerging use of ML, require more research. The same of number of
studies focus on poorly designed tests. Most of these studies investigate how test
smells affect test quality, whereas few of them introduce techniques to detect
and fix test smells. Finally, few studies address test regression due to program
evolution which mostly introduce automatic test repair techniques.

Solutions. Most of the solutions are embedded in and supported by tool pro-
totypes that are generally available online. About 85% of the studies excluding
those considering the engineering aspects, since they inherently do not provide
any particular solution.

As described in Sect. 4.3, many and various techniques have been previously
introduced in the literature and therefore, they are not completely categorised.
However, a number of techniques and ideas are more visible among others. Learn-
ing and evolutionary algorithms have been used as a promising technique in many
recent studies (20 out of 119 papers), particularly among the ones focusing on test
oracle and test generation. Nearly the same amount of papers suggest integrating
static analysis and dynamic testing to improve the effectiveness of either testing
and/or static program analysis. Defining a specific-purpose assertion language,
including syntax, semantics, and possibly a new assertion checking method, is a
common proposal among the studies, e.g., the studies addressing uncertainty in
output.

While a wide range of domains and languages are considered in the collected
papers, general software programs and C/C++ and Java programming languages
are the target of the most of the studies (about 60%). While Java is a broadly
used programming language, it is important for the assertions research to also
take other languages into account. For example, in machine learning applications,
Python is frequently used, which may be a specific target for assertions.

Evaluation. As demonstrated in Table 1, the largest set of studies have been
evaluated throughout limited number of cases. The evaluation of 43 studies, out
of 119 papers, fall into this category, where the studies focusing on test oracle
and test generation have the main portion among this group (28 studies in total).
Empirical and judgement is the next more common evaluation method, that is

A Literature Survey of Assertions in Software Testing 89

obviously used in the studies that focus on engineering aspects and also the
studies on test smells. A quarter of the studies, largely on test oracle, evaluate
their proposals using many experiments or within large–scale industrial cases.
Benchmarks are used in five studies.

To ensure the relevance for practice, research has to go beyond small scale
proofs of concept. Among the surveyed studies, one third are evaluated in more
realistic cases, which is promising. However, for future research, we would like
to see even more focus on the scaling and relevance aspects.

6 Limitations

The main issues related to threats to validity of this survey are incomplete set of
studies in our collection and imprecise data extraction that are fundamentally
because of the researcher bias in choosing search terms, the search engine, and
the targeted databases, as well as, the exclusion/inclusion criteria. A very basic
method to address these issues is to conduct a survey in a structured way; we
accordingly carried out a semi-systematic review throughout four major steps,
which were iterated in several cycles and carefully defined and reported.

To reduce the risk of incomplete set of primary sources, Google Scholar was
used with a general search query which would render a large amount of studies,
including grey literature, as the initial pool. To minimise researchers’ bias, the
second author took a validation role and double checked the work done by the
first author. Design science paradigm was used as a lens for this survey, that was
motivated by earlier research concluding that this frame is feasible for software
engineering research. In order to ensure conclusion validity, the classification and
synthesis were performed repeatedly, and the outcome of each turn was discussed
between the authors to avoid any misunderstanding.

7 Conclusion

In this survey, we provide an overall picture of research work on assertions in
software testing, within the last two decades of research. Using a term–based
search, a collection of relevant papers was selected and then the papers were
reviewed and synthesised with respect to the design science elements, namely
the problem addressed, the solution proposed, and the evaluation method. The
synthesis demonstrated that test oracle is the dominant problem focus, followed
by engineering aspects of assertions and assertions in test generation. Solutions
include a wide range of techniques and are typically embedded in tool proto-
types. They are mostly consider general applications and languages, e.g., Java.
This however, suggest to consider other languages that are getting attention
more recently (e.g., Python). The proposals are by large evaluated within a lim-
ited number of cases while using large–scale industrial settings is also visible.
Nevertheless, in order to support practice, research has to go beyond small scale
experiments since scaling up analyses to large code bases is an essential challenge.
We conclude that assertions would be worth more attention in future research,

90 M. Taromirad and P. Runeson

particularly regarding the new and emerging demands (e.g., wide-spread applica-
tions of software, verification of applications with uncertain outputs), for effec-
tive, applicable, and domain-specific solutions, as well as more focus on the
scaling and relevance aspects.

Acknowledgements. This work is funded by the ELLIIT strategic research area
(https://elliit.se), project ‘A19 – Software Regression Testing with Near Failure Asser-
tions’.

References

1. Abdi, M., Rocha, H., Demeyer, S., Bergel, A.: Small-Amp: test amplification in a
dynamically typed language. Empir. Softw. Eng. 27(6), 128 (2022). https://doi.
org/10.1007/s10664-022-10169-8

2. Alagarsamy, S., Tantithamthavorn, C., Aleti, A.: A3Test: assertion-augmented
automated test case generation (2023). https://doi.org/10.48550/ARXIV.2302.
10352

3. Almasi, M.M., Hemmati, H., Fraser, G., Arcuri, A., Benefelds, J.: An industrial
evaluation of unit test generation: finding real faults in a financial application. In:
IEEE/ACM International Conference on Software Engineering: Software Engineer-
ing in Practice Track, pp. 263–272 (2017). https://doi.org/10.1109/ICSE-SEIP.
2017.27

4. Anand, S., et al.: An orchestrated survey of methodologies for automated software
test case generation. J. Syst. Softw. 86(8), 1978–2001 (2013). https://doi.org/10.
1016/j.jss.2013.02.061

5. Araujo, W., Briand, L., Labiche, Y.: On the effectiveness of contracts as test oracles
in the detection and diagnosis of race conditions and deadlocks in concurrent obj-
ect-oriented software. In: International Symposium on Empirical Software Engine-
ering and Measurement, pp. 10–19 (2011). https://doi.org/10.1109/ESEM.2011.9

6. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in
software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015). https://
doi.org/10.1109/TSE.2014.2372785

7. Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D.: Are test smells really
harmful? an empirical study. Empir. Softw. Eng. 20(4), 1052–1094 (2015). https://
doi.org/10.1007/s10664-014-9313-0

8. Blasi, A., Gorla, A., Ernst, M.D., Pezzè, M., Carzaniga, A.: MeMo: automatically
identifying metamorphic relations in javadoc comments for test automation. J. Sys.
Softw. 181 (2021). https://doi.org/10.1016/j.jss.2021.111041

9. Boshernitsan, M., Doong, R., Savoia, A.: From daikon to agitator: lessons and
challenges in building a commercial tool for developer testing. In: ACM Interna-
tional Symposium on Software Testing and Analysis, pp. 169–180. ISSTA ’06, ACM
(2006). https://doi.org/10.1145/1146238.1146258

10. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java
predicates. ACM SIGSOFT Softw. Eng. Notes 27(4), 123–133 (2002). https://doi.
org/10.1145/566171.566191

11. Catolino, G., Palomba, F., Zaidman, A., Ferrucci, F.: How the experience of devel-
opment teams relates to assertion density of test classes. In: IEEE International
Conference on Software Maintenance and Evolution, pp. 223–234 (2019). https://
doi.org/10.1109/ICSME.2019.00034, ISSN: 2576-3148

https://elliit.se
https://doi.org/10.1007/s10664-022-10169-8
https://doi.org/10.1007/s10664-022-10169-8
https://doi.org/10.48550/ARXIV.2302.10352
https://doi.org/10.48550/ARXIV.2302.10352
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1109/ESEM.2011.9
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1016/j.jss.2021.111041
https://doi.org/10.1145/1146238.1146258
https://doi.org/10.1145/566171.566191
https://doi.org/10.1145/566171.566191
https://doi.org/10.1109/ICSME.2019.00034
https://doi.org/10.1109/ICSME.2019.00034

A Literature Survey of Assertions in Software Testing 91

12. Chen, J., Bai, Y., Hao, D., Zhang, L., Zhang, L., Xie, B.: How do assertions impact
coverage-based test-suite reduction? In: IEEE International Conference on Soft-
ware Testing, Verification and Validation, pp. 418–423 (2017). https://doi.org/10.
1109/ICST.2017.45

13. Cheon, Y., Kim, M., Perumandla, A.: A complete automation of unit testing for
java programs. Tech. Rep. UTEP-CS-05-05, University of Texas at El Paso (2005).
https://scholarworks.utep.edu/cs_techrep/234

14. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: the
JML and JUnit way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp.
231–255. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47993-7_10

15. Choudhary, S.R., Zhao, D., Versee, H., Orso, A.: WATER: web application TEst
repair. In: ACM International Workshop on End-to-End Test Script Engineering,
pp. 24–29. ETSE ’11, ACM (2011). https://doi.org/10.1145/2002931.2002935

16. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. ACM SIGSOFT Softw. Eng. Notes 31(3), 25–37
(2006). https://doi.org/10.1145/1127878.1127900

17. Coppit, D., Haddox-Schatz, J.: On the use of specification-based assertions as
test oracles. In: IEEE/NASA Software Engineering Workshop, pp. 305–314 (2005).
https://doi.org/10.1109/SEW.2005.33, ISSN: 1550-6215

18. Danglot, B., Vera-Perez, O., Baudry, B., Monperrus, M.: Automatic test improve-
ment with DSpot: a study with ten mature open-source projects. Empir. Softw.
Eng. 24(4), 2603–2635 (2019). https://doi.org/10.1007/s10664-019-09692-y

19. Daniel, B., Gvero, T., Marinov, D.: On test repair using symbolic execution. In:
ACM International Symposium on Software Testing and Analysis, pp. 207–218.
ISSTA ’10, ACM (2010). https://doi.org/10.1145/1831708.1831734

20. De Stefano, M., Pecorelli, F., Di Nucci, D., De Lucia, A.: A preliminary evaluation
on the relationship among architectural and test smells. In: IEEE International
Working Conference on Source Code Analysis and Manipulation, pp. 66–70 (2022).
https://doi.org/10.1109/SCAM55253.2022.00013, ISSN: 2470-6892

21. Delamare, R., Baudry, B., Ghosh, S., Le Traon, Y.: A test-driven approach to
developing pointcut descriptors in AspectJ. In: IEEE International Conference on
Software Testing Verification and Validation. IEEE Computing Society. (2009).
https://doi.org/10.1109/ICST.2009.41

22. Dinella, E., Ryan, G., Mytkowicz, T., Lahiri, S.K.: TOGA: a neural method for
test oracle generation. In: IEEE/ACM International Conference on Software Engi-
neering, pp. 2130–2141. ACM (2022). https://doi.org/10.1145/3510003.3510141

23. Drusinsky, D., Shing, M.T., Demir, K.: Creation and validation of embedded asser-
tion statecharts. In: IEEE International Workshop on Rapid System Prototyping,
pp. 17–23 (2006). https://doi.org/10.1109/RSP.2006.12, ISSN: 1074-6005

24. Dutta, S., Shi, A., Misailovic, S.: FLEX: fixing flaky tests in machine learning
projects by updating assertion bounds. In: ACM Joint Meeting on European Soft-
ware Engineering Conf. and Symposium on the Foundations of Software Engineer-
ing, pp. 603–614. ESEC/FSE 2021, ACM (2021). https://doi.org/10.1145/3468264.
3468615

25. Engström, E., Storey, M., Runeson, P., Höst, M., Baldassarre, M.T.: How software
engineering research aligns with design science: a review. Empir. Softw. Eng. 25,
2630–2660 (2020). https://doi.org/10.1007/s10664-020-09818-7

26. Franke, D., Kowalewski, S., Weise, C., Prakobkosol, N.: Testing conformance of life
cycle dependent properties of mobile applications. In: IEEE International Confer-
ence on Software Testing, Verification and Validation, pp. 241–250 (2012). https://
doi.org/10.1109/ICST.2012.104, ISSN: 2159-4848

https://doi.org/10.1109/ICST.2017.45
https://doi.org/10.1109/ICST.2017.45
https://scholarworks.utep.edu/cs_techrep/234
https://doi.org/10.1007/3-540-47993-7_10
https://doi.org/10.1145/2002931.2002935
https://doi.org/10.1145/1127878.1127900
https://doi.org/10.1109/SEW.2005.33
https://doi.org/10.1007/s10664-019-09692-y
https://doi.org/10.1145/1831708.1831734
https://doi.org/10.1109/SCAM55253.2022.00013
https://doi.org/10.1109/ICST.2009.41
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1109/RSP.2006.12
https://doi.org/10.1145/3468264.3468615
https://doi.org/10.1145/3468264.3468615
https://doi.org/10.1007/s10664-020-09818-7
https://doi.org/10.1109/ICST.2012.104
https://doi.org/10.1109/ICST.2012.104

92 M. Taromirad and P. Runeson

27. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: ACM SIGSOFT Symposium and European Conference on Founda-
tions of Software Engineering, pp. 416–419. ESEC/FSE ’11, ACM (2011). https://
doi.org/10.1145/2025113.2025179

28. Fraser, G., Zeller, A.: Mutation-driven generation of unit tests and oracles. IEEE
Trans. Softw. Eng. 38(2), 278–292 (2012). https://doi.org/10.1109/TSE.2011.93

29. Garousi, V., Amannejad, Y., Betin Can, A.: Software test-code engineering: a
systematic mapping. Inf. Softw. Technol. 58, 123–147 (2015). https://doi.org/10.
1016/j.infsof.2014.06.009

30. Garousi, V., Felderer, M., Kılıçaslan, F.N.: A survey on software testability. Inf.
Softw. Technol. 108, 35–64 (2019). https://doi.org/10.1016/j.infsof.2018.12.003

31. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering. Inf. Softw.
Technol. 106, 101–121 (2019). https://doi.org/10.1016/j.infsof.2018.09.006

32. Garousi, V., Mäntylä, M.V.: A systematic literature review of literature reviews in
software testing. Inf. Softw. Technol. 80, 195–216 (2016). https://doi.org/10.1016/
j.infsof.2016.09.002

33. Pham, L.H., Tran Thi, L.L., Sun, J.: Assertion generation through active learn-
ing. In: Duan, Z., Ong, L. (eds.) Formal Methods and Software Engineering,
pp. 174–191. LNCS, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68690-5_11

34. Jahangirova, G., Clark, D., Harman, M., Tonella, P.: OASIs: oracle assessment
and improvement tool. In: ACM SIGSOFT International Symposium on Software
Testing and Analysis. ISSTA 2018, ACM, New York, NY, USA (2018). https://
doi.org/10.1145/3213846.3229503

35. Ji, T., Chen, L., Mao, X., Yi, X., Jiang, J.: Automated regression unit test gener-
ation for program merges (2020). http://arxiv.org/abs/2003.00154

36. Kang, D., Raghavan, D., Bailis, P., Zaharia, M.: Model assertions for monitoring
and improving ML models (2020). http://arxiv.org/abs/2003.01668

37. Khurshid, S., Marinov, D.: TestEra: specification-based testing of Java programs
using SAT. Autom. Softw. Eng. 11(4), 403–434 (2004). https://doi.org/10.1023/
B:AUSE.0000038938.10589.b9

38. Kitchenham, B.A., Budgen, D., Brereton, O.P.: Using mapping studies as the basis
for further research – a participant-observer case study. Inf. Softw. Technol. 53(6),
638–651 (2011). https://doi.org/10.1016/j.infsof.2010.12.011

39. Knauth, T., Fetzer, C., Felber, P.: Assertion-driven development: assessing the
quality of contracts using meta-mutations. In: IEEE International Conference on
Software Testing, Verification, and Validation Workshops, pp. 182–191 (2009).
https://doi.org/10.1109/ICSTW.2009.40

40. Koesnandar, A., Elbaum, S., Rothermel, G., Hochstein, L., Scaffidi, C., Stolee,
K.T.: Using assertions to help end-user programmers create dependable web
macros. In: ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pp. 124–134. SIGSOFT ’08/FSE-16, ACM (2008). https://doi.
org/10.1145/1453101.1453119

41. Leotta, M., Cerioli, M., Olianas, D., Ricca, F.: Fluent vs basic assertions in Java:
an empirical study. In: International Conference on the Quality of Information and
Communications Technology (QUATIC), pp. 184–192 (2018). https://doi.org/10.
1109/QUATIC.2018.00036

42. Li, N., Offutt, J.: Test oracle strategies for model-based testing. IEEE Trans. Softw.
Eng. 43(4), 372–395 (2017). https://doi.org/10.1109/TSE.2016.2597136

https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/TSE.2011.93
https://doi.org/10.1016/j.infsof.2014.06.009
https://doi.org/10.1016/j.infsof.2014.06.009
https://doi.org/10.1016/j.infsof.2018.12.003
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2016.09.002
https://doi.org/10.1016/j.infsof.2016.09.002
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1007/978-3-319-68690-5_11
https://doi.org/10.1145/3213846.3229503
https://doi.org/10.1145/3213846.3229503
http://arxiv.org/abs/2003.00154
http://arxiv.org/abs/2003.01668
https://doi.org/10.1023/B:AUSE.0000038938.10589.b9
https://doi.org/10.1023/B:AUSE.0000038938.10589.b9
https://doi.org/10.1016/j.infsof.2010.12.011
https://doi.org/10.1109/ICSTW.2009.40
https://doi.org/10.1145/1453101.1453119
https://doi.org/10.1145/1453101.1453119
https://doi.org/10.1109/QUATIC.2018.00036
https://doi.org/10.1109/QUATIC.2018.00036
https://doi.org/10.1109/TSE.2016.2597136

A Literature Survey of Assertions in Software Testing 93

43. Li, P., Sun, J., Wang, H.: Formal approach to assertion-based code generation.
Int. J. Softw. Eng. Knowl. Eng. 27(9), 1637–1662 (2017). https://doi.org/10.1142/
S0218194017400162, publisher: World Scientific Publishing Co

44. Loyola, P., Staats, M., Ko, I., Rothermel, G.: Dodona: automated oracle data set
selection. In: ACM International Symposium on Software Testing and Analysis,
pp. 193–203. ISSTA 2014, ACM (2014). https://doi.org/10.1145/2610384.2610408

45. Ma’ayan, D.D.: The quality of Junit tests: an empirical study report. In:
IEEE/ACM 1st International Workshop on Software Qualities and their Depen-
dencies, pp. 33–36 (2018)

46. Martinez, M., Etien, A., Ducasse, S., Fuhrman, C.: RTj: a java framework for
detecting and refactoring rotten green test cases. In: IEEE/ACM International
Conference on Software Engineering: ICSE-Companion, pp. 69–72 (2020). pub-
lisher: ACM

47. Mayer, E.C.: Assertion-based testing of go programs. Master thesis, Technical Uni-
versity Munich (2020)

48. Mesbah, A., van Deursen, A., Roest, D.: Invariant-based automatic testing of mod-
ern web applications. IEEE Trans. Softw. Eng. 38(1), 35–53 (2012). https://doi.
org/10.1109/TSE.2011.28

49. Messaoudi, S., Shin, D., Panichella, A., Bianculli, D., Briand, L.C.: Log-based
slicing for system-level test cases. In: Cadar, C., Zhang, X. (eds.) ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 517–528. ACM
(2021). https://doi.org/10.1145/3460319.3464824

50. Milani Fard, A., Mirzaaghaei, M., Mesbah, A.: Leveraging existing tests in auto-
mated test generation for web applications. In: ACM/IEEE International Con-
ference on Automated Software Engineering, pp. 67–78. ASE ’14, ACM (2014).
https://doi.org/10.1145/2642937.2642991

51. Mirshokraie, S., Mesbah, A., Pattabiraman, K.: Atrina: inferring unit oracles from
GUI test cases. In: IEEE International Conference on Software Testing, Verification
and Validation (ICST). IEEE Computer Society (2016). https://doi.org/10.1109/
ICST.2016.32

52. Molina, F., Ponzio, P., Aguirre, N., Frias, M.: EvoSpex: an evolutionary algorithm
for learning postconditions (artifact). In: IEEE/ACM International Conference on
Software Engineering: ICSE-Companion, pp. 185–186 (2021). https://doi.org/10.
1109/ICSE-Companion52605.2021.00080, iSSN: 2574-1926

53. Moonen, L., van Deursen, A., Zaidman, A., Bruntink, M.: On the interplay between
software testing and evolution and its effect on program comprehension. In: Soft-
ware Evolution, pp. 173–202. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-76440-3_8

54. Murphy, C., Shen, K., Kaiser, G.: Using JML runtime assertion checking to auto-
mate metamorphic testing in applications without test oracles. In: IEEE Inter-
national Conference on Software Testing Verification and Validation, pp. 436–445
(2009). https://doi.org/10.1109/ICST.2009.19, ISSN: 2159-4848

55. Oliveira, R.A.P., Kanewala, U., Nardi, P.A.: Chapter three - automated test ora-
cles: state of the art, taxonomies, and trends. In: Memon, A. (ed.) Advances in
Computers, vol. 95, pp. 113–199. Elsevier (2014). https://doi.org/10.1016/B978-
0-12-800160-8.00003-6

56. Oriat, C.: Jartege: a tool for random generation of unit tests for Java classes. In:
Reussner, R., Mayer, J., Stafford, J.A., Overhage, S., Becker, S., Schroeder, P.J.
(eds.) QoSA/SOQUA -2005. LNCS, vol. 3712, pp. 242–256. Springer, Heidelberg
(2005). https://doi.org/10.1007/11558569_18

https://doi.org/10.1142/S0218194017400162
https://doi.org/10.1142/S0218194017400162
https://doi.org/10.1145/2610384.2610408
https://doi.org/10.1109/TSE.2011.28
https://doi.org/10.1109/TSE.2011.28
https://doi.org/10.1145/3460319.3464824
https://doi.org/10.1145/2642937.2642991
https://doi.org/10.1109/ICST.2016.32
https://doi.org/10.1109/ICST.2016.32
https://doi.org/10.1109/ICSE-Companion52605.2021.00080
https://doi.org/10.1109/ICSE-Companion52605.2021.00080
https://doi.org/10.1007/978-3-540-76440-3_8
https://doi.org/10.1007/978-3-540-76440-3_8
https://doi.org/10.1109/ICST.2009.19
https://doi.org/10.1016/B978-0-12-800160-8.00003-6
https://doi.org/10.1016/B978-0-12-800160-8.00003-6
https://doi.org/10.1007/11558569_18

94 M. Taromirad and P. Runeson

57. Pariente, D., Signoles, J.: Static analysis and runtime-assertion checking: contri-
bution to security counter-measures (2017). https://zenodo.org/record/820856

58. Pastore, F., Mariani, L., Fraser, G.: CrowdOracles: can the crowd solve the oracle
problem? In: IEEE International Conference on Software Testing, Verification and
Validation, pp. 342–351 (2013). https://doi.org/10.1109/ICST.2013.13, publisher:
IEEE

59. Patel, K., Hierons, R.M.: A mapping study on testing non-testable systems. Softw.
Qual. J. 26(4), 1373–1413 (2018). https://doi.org/10.1007/s11219-017-9392-4

60. Petke, J., Blot, A.: Refining fitness functions in test-based program repair. In:
IEEE/ACM International Conference on Software Engineering Workshops, pp. 13–
14. ICSEW’20, ACM (2020). https://doi.org/10.1145/3387940.3392180

61. Pezzè, M., Zhang, C.: Chapter one - automated test oracles: a survey. In: Memon,
A. (ed.) Advances in Computers, vol. 95, pp. 1–48. Elsevier (2014). https://doi.
org/10.1016/B978-0-12-800160-8.00001-2

62. Rajan, A., du Bousquet, L., Ledru, Y., Vega, G., Richier, J.L.: Assertion-based
test oracles for home automation systems. In: ACM Int. Workshop on Model-
Based Methodologies for Pervasive and Embedded Software, pp. 45–52. MOMPES
’10, ACM (2010). https://doi.org/10.1145/1865875.1865882

63. Sakakibara, M., Sakurai, K., Komiya, S.: An assertion mechanism for software unit
testing to remain unaffected by program modification - the mechanism to eliminate
dependency from/to unnecessary object. Knowl.-Based Softw. Eng., pp. 125–134
(2008). https://doi.org/10.3233/978-1-58603-900-4-125

64. Salehi Fathabadi, A., Dalvandi, M., Butler, M., Al-Hashimi, B.M.: Verifying cross-
layer interactions through formal model-based assertion generation. IEEE Embed.
Syst. Lett. 12(3), 83–86 (2020). https://doi.org/10.1109/LES.2019.2955316

65. Santana, R., et al.: RAIDE: a tool for assertion roulette and duplicate assert iden-
tification and refactoring. In: Brazilian Symposium on Software Engineering, pp.
374–379. SBES ’20, ACM (2020). https://doi.org/10.1145/3422392.3422510

66. Sequeira, S.: Understanding web application test assertion failures. Ph.D. thesis,
University of British Columbia (2014). https://doi.org/10.14288/1.0167024

67. Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.: Do auto-
matically generated unit tests find real faults? an empirical study of effectiveness
and challenges (t). In: IEEE/ACM International Conference on Automated Soft-
ware Engineering, pp. 201–211 (2015). https://doi.org/10.1109/ASE.2015.86

68. Shrestha, K., Rutherford, M.J.: An empirical evaluation of assertions as oracles. In:
IEEE International Conference on Software Testing, Verification and Validation,
pp. 110–119 (2011). https://doi.org/10.1109/ICST.2011.50, ISSN: 2159-4848

69. Snyder, H.: Literature review as a research methodology: an overview and guide-
lines. J. Bus. Res. 104, 333–339 (2019). https://doi.org/10.1016/j.jbusres.2019.07.
039

70. Soares, E., Ribeiro, M., Gheyi, R., Amaral, G., Santos, A.: Refactoring test smells
with JUnit 5: why should developers keep up-to-date? IEEE Trans. Softw. Eng.
49(3), 1152–1170 (2023). https://doi.org/10.1109/TSE.2022.3172654

71. Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., Bacchelli, A.: On the rela-
tion of test smells to software code quality. In: IEEE Intetnational Conference on
Software Maintenance and Evolution, pp. 1–12 (2018). https://doi.org/10.1109/
ICSME.2018.00010, ISSN: 2576-3148

72. Stoyanova, V., Petrova-Antonova, D., Ilieva, S.: Automation of test case genera-
tion and execution for testing web service orchestrations. In: IEEE International
Symposium on Service-Oriented System Engineering, pp. 274–279 (2013). https://
doi.org/10.1109/SOSE.2013.9

https://zenodo.org/record/820856
https://doi.org/10.1109/ICST.2013.13
https://doi.org/10.1007/s11219-017-9392-4
https://doi.org/10.1145/3387940.3392180
https://doi.org/10.1016/B978-0-12-800160-8.00001-2
https://doi.org/10.1016/B978-0-12-800160-8.00001-2
https://doi.org/10.1145/1865875.1865882
https://doi.org/10.3233/978-1-58603-900-4-125
https://doi.org/10.1109/LES.2019.2955316
https://doi.org/10.1145/3422392.3422510
https://doi.org/10.14288/1.0167024
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ICST.2011.50
https://doi.org/10.1016/j.jbusres.2019.07.039
https://doi.org/10.1016/j.jbusres.2019.07.039
https://doi.org/10.1109/TSE.2022.3172654
https://doi.org/10.1109/ICSME.2018.00010
https://doi.org/10.1109/ICSME.2018.00010
https://doi.org/10.1109/SOSE.2013.9
https://doi.org/10.1109/SOSE.2013.9

A Literature Survey of Assertions in Software Testing 95

73. Søndergaard, H., Korsholm, S., Ravn, A.: Conformance test development with
the Java modeling language. Concurr. Comput.: Pract. Exper. 29(22), 32 (2017).
https://doi.org/10.1002/cpe.4071

74. Terragni, V., Jahangirova, G., Tonella, P., Pezzè, M.: GAssert: a fully automated
tool to improve assertion oracles. In: IEEE/ACM International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-Companion), pp. 85–88 (2021).
https://doi.org/10.1109/ICSE-Companion52605.2021.00042, iSSN: 2574-1926

75. Tiryaki, A.M., Öztuna, S., Dikenelli, O., Erdur, R.C.: SUNIT: a unit testing frame-
work for test driven development of multi-agent systems. In: Padgham, L., Zam-
bonelli, F. (eds.) AOSE 2006. LNCS, vol. 4405, pp. 156–173. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70945-9_10

76. Tsung-Hsiang, C., Yeh, T., Miller, R.C.: GUI testing using computer vision. In:
SIGCHI Conference on Human Factors in Computing Systems, pp. 1535–1544.
ACM (2010). https://doi.org/10.1145/1753326.1753555

77. Tufano, M., Drain, D., Svyatkovskiy, A., Sundaresan, N.: Generating accurate
assert statements for unit test cases using pretrained transformers. In: ACM/IEEE
International Conference on Automation of Software Test, pp. 54–64. AST ’22,
ACM (2022). https://doi.org/10.1145/3524481.3527220

78. Vahabzadeh, A., Milani Fard, A., Mesbah, A.: An empirical study of bugs in test
code. In: IEEE International Conference on Software Maintenance and Evolution,
pp. 101–110 (2015). https://doi.org/10.1109/ICSM.2015.7332456

79. Valueian, M., Attar, N., Haghighi, H., Vahidi-Asl, M.: Constructing automated
test oracle for low observable software. Scientia Iranica 27(3), 1333–1351 (2020).
https://doi.org/10.24200/sci.2019.51494.2219

80. Watson, C., Tufano, M., Moran, K., Bavota, G., Poshyvanyk, D.: On learning
meaningful assert statements for unit test cases. In: ACM/IEEE International Con-
ference on Software Engineering, pp. 1398–1409. ICSE ’20, ACM (2020). https://
doi.org/10.1145/3377811.3380429

81. Wei, C., Xiao, L., Yu, T., Chen, X., Wang, X., Wong, S., Clune, A.: Automatically
tagging the “AAA” pattern in unit test cases using machine learning models. In:
IEEE/ACM International Conference on Automated Software Engineering, pp.
1–3. ASE ’22, ACM (2023). https://doi.org/10.1145/3551349.3559510

82. Weyuker, E.J.: On testing non-testable programs. Comput. J. 25(4), 465–470
(1982). https://doi.org/10.1093/comjnl/25.4.465

83. Winkler, D., Urbanke, P., Ramler, R.: What do we know about readability of test
code? - a systematic mapping study. In: IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 1167–1174 (2022). https://
doi.org/10.1109/SANER53432.2022.00135, ISSN: 1534-5351

84. Wu, H., Yin, R., Gao, J., Huang, Z., Huang, H.: To what extent can code quality be
improved by eliminating test smells? In: International Conference on Code Quality,
pp. 19–26 (2022). https://doi.org/10.1109/ICCQ53703.2022.9763153

85. Xie, Q., Memon, A.M.: Designing and comparing automated test oracles for GUI-
based software applications. ACM Trans. Softw. Eng. Methodol. 16(1), 4-es (2007).
https://doi.org/10.1145/1189748.1189752

86. Xie, T.: Augmenting automatically generated unit-test suites with regression ora-
cle checking. In: Thomas, D. (ed.) ECOOP - Object-Oriented Programming,
pp. 380–403. LNCS, Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/
11785477_23

87. Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: Mutation analysis of parameter-
ized unit tests. In: IEEE International Conference on Software Testing, Verification,

https://doi.org/10.1002/cpe.4071
https://doi.org/10.1109/ICSE-Companion52605.2021.00042
https://doi.org/10.1007/978-3-540-70945-9_10
https://doi.org/10.1145/1753326.1753555
https://doi.org/10.1145/3524481.3527220
https://doi.org/10.1109/ICSM.2015.7332456
https://doi.org/10.24200/sci.2019.51494.2219
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3551349.3559510
https://doi.org/10.1093/comjnl/25.4.465
https://doi.org/10.1109/SANER53432.2022.00135
https://doi.org/10.1109/SANER53432.2022.00135
https://doi.org/10.1109/ICCQ53703.2022.9763153
https://doi.org/10.1145/1189748.1189752
https://doi.org/10.1007/11785477_23
https://doi.org/10.1007/11785477_23

96 M. Taromirad and P. Runeson

and Validation Workshops, pp. 177–181 (2009). https://doi.org/10.1109/ICSTW.
2009.43

88. Xuan, J., Monperrus, M.: Test case purification for improving fault localization.
In: ACM/SIGSOFT International Symposium on Foundations of Software Engi-
neering, pp. 52–63. ACM (2014). https://doi.org/10.1145/2635868.2635906

89. Xu, Y., Huang, B., Wu, G., Yuan, M.: Using genetic algorithms to repair JUnit test
cases. In: Asia-Pacific Software Engineering Conference, vol. 1. IEEE Computer
Society (2014). https://doi.org/10.1109/APSEC.2014.51

90. Yu, H., et al.: Automated assertion generation via information retrieval and its
integration with deep learning. In: IEEE/ACM International Conference on Soft-
ware Engineering, pp. 163–174 (2022). https://doi.org/10.1145/3510003.3510149,
publisher: ACM

91. Zamprogno, L., Hall, B., Holmes, R., Atlee, J.M.: Dynamic human-in-the-loop
assertion generation. IEEE Trans. Softw. Eng. 49(4), 2337–2351 (2023). https://
doi.org/10.1109/TSE.2022.3217544

92. Zeng, F., Deng, C., Yuan, Y.: Assertion-directed test case generation. In: World
Congress on Software Engineering, pp. 41–45 (2012). https://doi.org/10.1109/
WCSE.2012.16

93. Zhang, Y., Mesbah, A.: Assertions are strongly correlated with test suite effective-
ness. In: ACM Joint Meeting on Foundations of Software Engineering, pp. 214–224.
ESEC/FSE 2015, ACM (2015). https://doi.org/10.1145/2786805.2786858

94. Zhao, J., Harris, I.G.: Automatic assertion generation from natural language spec-
ifications using subtree analysis. In: Design, Automation Test in Europe Con-
ference Exhibition (DATE), pp. 598–601 (2019). https://doi.org/10.23919/DATE.
2019.8714857, iSSN: 1558–1101

95. Zheng, F., Lam, P.: Identifying test refactoring candidates with assertion finger-
prints. In: ACM Principles and Practices of Programming on The Java Platform,
pp. 125–137. PPPJ ’15, ACM (2015). https://doi.org/10.1145/2807426.2807437

96. Zhi, J., Garousi, V.: On adequacy of assertions in automated test suites: an empir-
ical investigation. In: IEEE International Conference on Software Testing, Veri-
fication and Validation Workshops. pp. 382–391 (2013). https://doi.org/10.1109/
ICSTW.2013.49

https://doi.org/10.1109/ICSTW.2009.43
https://doi.org/10.1109/ICSTW.2009.43
https://doi.org/10.1145/2635868.2635906
https://doi.org/10.1109/APSEC.2014.51
https://doi.org/10.1145/3510003.3510149
https://doi.org/10.1109/TSE.2022.3217544
https://doi.org/10.1109/TSE.2022.3217544
https://doi.org/10.1109/WCSE.2012.16
https://doi.org/10.1109/WCSE.2012.16
https://doi.org/10.1145/2786805.2786858
https://doi.org/10.23919/DATE.2019.8714857
https://doi.org/10.23919/DATE.2019.8714857
https://doi.org/10.1145/2807426.2807437
https://doi.org/10.1109/ICSTW.2013.49
https://doi.org/10.1109/ICSTW.2013.49

FPGA-Based Encryption for Peer-to-Peer
Industrial Network Links

Florian Sprang and Tiberiu Seceleanu(B)

Mälardalen University, Västerås, Sweden
{Florian.Sprang,Tiberiu.Seceleanu}@mdu.se

Abstract. Securing company networks has become a critical aspect of modern
industrial environments. With the recent rise of Industry 4.0 concepts, it became
essential to extend IT security across increasingly connected factories. However,
in the highly specialised field of operations technology and embedded systems,
not every device can run additional security measures, as they are old or designed
with sparse resources. We introduce here the concept of a “universal” encryption
device that enables the securing of communication links in a direct peer-to-peer
industrial setting by using the AES-128 encryption standard. We propose a design
of such an encryption device by developing a modular system architecture with
decoupled communication and cryptography. The resulting architecture is imple-
mented as a proof of concept for Ethernet communication and tested through
simulation as well as on an FPGA device. The impact of the encryption device
is briefly investigated in a lab setup, followed by conclusions on system stability
and performance.

Keywords: AES-128 · FPGA · encryption · industrial communication

1 Introduction

Cryptography has always been embedded into society. Encryption also brought along
the first efforts to gain access to data, leading to approaches to forcefully decrypt mes-
sages and gain an advantage over the “adversary”. In parallel with the development of
newer technologies, more potent ciphers were developed.

In modern manufacturing environments, embedded devices are often used to con-
trol, monitor and supervise industrial processes. These enabled factories to become con-
nected, enabling machines to be remotely controlled or monitored. Industrial processes
no longer have to be supervised at the machine itself, instead this can be done from
anywhere in the world. The current Industry 4.0 concepts yield many benefits for com-
panies, such as predictive maintenance or increased throughput. Yet from an economic
standpoint, it is inefficient to rebuild and redesign all factories from ground up, due to a
mix of technologies in production lines, with old control units and machines being con-
nected to the modern manufacturing network. Legacy devices are notoriously known to
have security vulnerabilities and thus being a weak point in many systems [12,17].

Modern industrial cyber security standards such as IEC-62443 or ISO-27001 call
for different measures to protect those devices. One of them is to deploy encryption
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 97–114, 2024.
https://doi.org/10.1007/978-3-031-49252-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_9&domain=pdf
https://doi.org/10.1007/978-3-031-49252-5_9

98 F. Sprang and T. Seceleanu

on important network links. However, these requirements cannot be met by all compo-
nents, especially when it comes to protocols or legacy devices. The latter might lack the
computing capabilities to incorporate new requirements, leaving security vulnerabilities
opened to possible attack vectors [17].

This work investigates how communication of legacy devices can be secured in
order to fulfill cryptography requirements of standards. We propose to add a signal
encryption device, by deploying a field prgrammable gate array (FPGA) integrated cir-
cuit (IC), on a connection link, to provide the encryption/decryption of the respective
data.

We address the feasibility of a generic approach to secure communication by apply-
ing cryptography shortly after the physical network layer. This idea’s application is
briefly considered for a small part of the Ethernet (IEEE 802.3) [10] standards family.
To reach our goal, two ICs are introduced in front of each SCADA1 device and are
responsible for the encryption and decryption of the data link. Figure 1 depicts a high
level of the proposed architecture, with each IC holding the key for data encryption and
decryption.

Fig. 1. High level representation of the proposed system architecture

2 Background

The ISO/OSI Model. The official ISO OSI specifications (1994), mostly known as
ISO/OSI model - Fig. 2, describe how connections between two or more systems are
handled. Typically, this model is used as a representation of internet connections, but
it is a good generic representation of how connections work and it can be adapted to
various kinds of transmission standards.

Encryption and decryption in the OSI model are handled at higher layers. Custom
encryption can be implemented in layers 6 or 7, or existing protocols such as HTTPS
or SFTP can be used at the session layer. Layer 3 can also introduce encryption in the
IPsec context if communication is handled through standard internet protocols and both
endpoints support IPsec. The model can be adapted. This often means layers are left
out or combined for simpler transmission protocols, possibly removing capabilities of
high-level encryption [2].

1 Supervisory Control And Data Acquisition.

FPGA-Based Encryption for Peer-to-Peer Industrial Network Links 99

Fig. 2. ISO/OSI Model with associated protocols.

A digital signal between two compatible devices can be transmitted over an
unshielded twisted pair (UTP) Ethernet cable, part of the physical layer. The modula-
tion of the signal is handled by the so-called Ethernet Physical Layer (PHY) Chip. It is
responsible for demodulating and modulating the signal and builds the bridge between
the external electrical signal and a digital circuit. The PHY is further responsible for nego-
tiating the link speed between two Ethernet devices and handling link establishment.

The media access control (MAC) controls the communication, defining the Ethernet
frame: header - includes the destination and the sending MAC-address and the Ether
Type, which either defines the size of the payload or the next layer protocol; payload -
data; checksum - verifies the sent data integrity [1].

Figure 3 displays a model of a cryptosystem. The sender uses an encryption key
to turn his original message/plaintext into an encrypted cipher text. A 3rd party that
intercepts or copies the message can read the cipher text but cannot infer the original
message, as it does not know the decryption key and the algorithm. The receiver knows
those two components and can decipher the encrypted message.

Fig. 3. Model of a cryptosystem

The advanced encryption standard (AES) [15] is a block cypher algorithm following
the symmetric encryption approach. This means that it takes n-bits, forms them into a

100 F. Sprang and T. Seceleanu

block, and encrypts them together. AES uses varying amounts of key lengths, most
common being 128bit, 192bit or 256bit, with respective naming conventions of AES-
128, AES-192, or AES-256. The algorithm can be divided into five steps (Fig. 4), to be
applied multiple times based on the length of the keys: 10 iterations for AES-128, 12
for AES-192, and 14 for AES-256.

Fig. 4. Steps of the AES-Encryption Algorithm

After arranging the plaintext into the matrix format, a key is determined. The initial
key serving as the pre-shared secret is created based on a true random generator that
outputs a key in the desired length based on the algorithm. For each round, a different
key is created by deriving it from the original pre-shared secret, with a technique called
key expansion. Depending on the amount of performed rounds, n+1 keys with a length

Fig. 5. Key-expansion: original key split into words.

FPGA-Based Encryption for Peer-to-Peer Industrial Network Links 101

of 128bit are needed. With each key containing four words, a total of 4 ∗ (n+1) words
are needed [13] - Fig. 5.

3 Related Work

Currently, the problem of connecting old devices to the existing production network is
ideally solved by deploying a firewall to protect them from malicious traffic. Two fire-
walls can be configured in a way that resembles the original problem solution: creating
an encrypted site-to-site VPN, for sending the SCADA traffic. This works by taking
the original protocol and packaging it into a standard TCP/IP package, encrypting it
and sending it to the receiver. This task can be performed by small devices, such as a
Raspberry Pi. Both firewall and VPN tunneling devices need to understand the original
protocol [6]. This shows that securing industrial network connections and links is pos-
sible with lower-cost devices, yet encryption is applied on a higher layer. For Layer 2,
encryption firewalls are necessary, coming with a premium in cost. Both solutions need
to be maintained, patched, and licensed, bringing in additional costs.

Xue et al. are proposing a FPGA combined with a two-core ARM processor solu-
tion. Aiming to achieve a throughput of 1 GBit/s, a maximum of 700 Mbit/s was mea-
sured. The final design includes an additional chip that acts as a networking card access-
ing the Ethernet signal [18]. Ideally, the prototype that we propose here would not trans-
fer the Ethernet frames back to a CPU, but only re-creates the digital signal in such a
way that it is processable by the FPGA.

The approach of combining an FPGA with an Ethernet controller chip, such as the
WIZnet W5500, is often used in designing Ethernet solutions for FPGA [5,16]. Such
a design is proposed by Herrmann et al., focusing on UDP traffic [8]. It shows that
Gigabit-Ethernet speeds can be achieved, by including RAM on both the transmitter
and receiving side to buffer packets. The overall architecture and inclusion of the buffer
RAM are relevant to us here. It would solve problems related to AES cypher rotation,
as well as to clocking.

There is a relatively rich body of results on implementing AES on FPGAs. Naidu
et al. are implementing FPGA by applying a fully pipelined architecture. They find a
speed advantage over normal sequential encryption and further concluded that using
low energy registers can also yield a lower power consumption [3]. This pipelining
approach could be applied by us, as it allows the possibility to encrypt multiple (2) data
lines at the same time.

Trang et al. [9] limited their approach to 128-bit length and focused on a low latency
design, which was shown to depend on the used FPGA chip. Their longest encryption
or decryption duration was done within 25 clock cycles, achieving an overall encryption
throughput of 1GBit/s and 615 Mbit/s for decryption. The throughput related research
is interesting, as it shows that lower-speed Ethernet standards 10Base-T, and 100Base-T
are theoretically not limited by the encryption, resulting in no loss of network speed.
Unfortunately, they do not provide any insights on the maximum usable clocking fre-
quency.

Harb et al. [7] further show that, in a parallelized application, high speeds can be
observed for hardware implementations of AES. In a video stream decoding implemen-
tation, they achieved 63 GBit/s, due to optimization techniques. In difference, though,

102 F. Sprang and T. Seceleanu

they do not address networked system encryption, where data comes in continuous
streams.

Caldas-Calle et al. [4] looked into the QoS, which can be achieved by small embed-
ded devices that use site-to-site VPNs themselves. Applying encryption decreases the
computational capacity of these devices, as the load can exceed the available resources,
causing a slowdown of the overall system. Hence, not every device is capable of per-
forming encryption with its provided resources, leading back to the solution of an addi-
tional device.

Park et al. [14] showed that in case of a continuous large data stream for video
transmission, the deployment of VPNs increases the time needed to transmit the video
between 20% of up to 60%. Measurements show that a significant latency is added to
transmissions when encrypted.

The MAC security standard (MACsec) is defined by the IEEE 802.1AE standard,
published in 2008. Despite its age, adoption has been slow with its addition to the Linux
Kernel in 2016. The strength of MAC security is its application on all Layer 2 protocols
and is independent of other higher-level security mechanisms [11]. At this moment,
MACsec is the solution that implements important security mechanisms and uses key
exchanges and common cryptography mechanisms. Nevertheless, its slow adoption will
mean that legacy devices might not be able to support this standard, especially as two
devices have to support it.

4 Implementation

An FPGA is ideal for prototyping and testing IC designs. As the design, construction,
and validation of a deployment-ready custom PCB board cannot be performed in the
limited available time, then development boards or evaluation kits are preferred. These
contain the FPGA chip integrated into the necessary power circuitry, additional stor-
age and communication interfaces, making them an ideal solution for evaluating the
proposed implementation.

4.1 System Architecture

The overall idea of the implementation is that neither of the original systems is aware
of the additional devices. The theory behind this is that it enables easier adaptability to
other protocols in the future. Overall, the proposed architecture imitates the principle
of a VPN. However, instead of using the entire TCP\IP stack, it uses only the MAC-
Layer to communicate between the two crypto devices. In order to achieve this, the
communication side towards the systems has to only implement the retrieval of the
data stream of the original bus system. This is done in the PHY-chip, which has to be
connected properly to the FPGA. The overall idea of the individual connection parts
can be seen in Fig. 6.

The disadvantage of using a standard Ethernet connection between the two crypto
devices is that it will add latency to the transmission. As the FPGAs do not come with a
preset MAC address, it might be interesting to adapt the existing MAC core to address
agnosticism. This would be a cost-saving measure with little impact on performance,

FPGA-Based Encryption for Peer-to-Peer Industrial Network Links 103

Fig. 6. MAC-tunneling between the crypto devices

as the area of deployment is directly connected peer to peer links. It is necessary to
consider the usage of a non-standardized frame size, as adding an MMAC header might
exceed the maximum standard size. Those frames are also called jumbo frames and can-
not be routed easily through traditional network switches, hinting towards the direct net-
work link limitation. The design of the crypto implementation, seen in Fig. 7, includes
an abstract overview of the elements that must be implemented.

The interface consists of two data connections to the PHY chips, for receiving (RX)
and for sending/transceiving (TX). On the open traffic side the FPGA needs to interface
with the corresponding protocol PHY-chip but only directly forwards the bit-stream to
the AES_encoder. After the message is encrypted, it is wrapped into a standard Ether-
net frame and sent out through the other PHY chip. If that chip receives an encrypted
message, it will unwrap it by removing the MAC header and then run it through the
AES_decoder to retrieve the original signal. This is then forwarded to the PHY-chip to
re-modulate the original signal.

The AES_encryptor and AES_decryptor will need the correct key for each round.
Further, they will have to perform the key-expansion rounds and counting for the CTR
operation mode of AES. The time within the FPGA should be decreased as much as
possible to decrease the impact on latency.

Fig. 7. The crypto IC with the dataflow and the sections in the FPGA.

104 F. Sprang and T. Seceleanu

4.2 System Implementation

A limitation of this project is that only a few protocols can be implemented, given the
short time frame. Therefore the project will focus on providing an interface for Ether-
net only, whose physical layer is utilized by many bus systems. As different physical
mediums use different clock speeds it is essential to decouple the encryption from the
communication side, providing more flexibility in terms of protocols and usable physi-
cal mediums.

For this, an approach is chosen which utilizes three different clocking zones. One
for the open physical layer chip communication, one for encryption/decryption, and the
last for the encrypted Ethernet communication. As proposed by the high-level system
architecture in Fig. 7, the device can be divided into two independent data streams for
deencryption. In order to connect the different clocking zones, two FIFO queues are
used per data stream.

The encryption data stream consists of a minimal receiving interface and the “chunk
generator” that combines the received data to be stored in chunks of 128 bits in the
FIFO, alongside status information representing if it is the last chunk in the transmission
and how many bits it contains. From there, the encryption controller takes out blocks
of 128 bits and performs the encryption, after which it stores the cyphertext, with the
status information, in the second FIFO of the data stream. This FIFO builds the bridge
between clocking zones 2 and 3. From here, the FIFO is emptied continuously and its
content is stored in a block of RAM until the original data frame is complete. This frame
is then transmitted through the Ethernet PHY to the other crypto-IC.

Fig. 8. Data streams combined with clocking zones and actual implemented modules

FPGA-Based Encryption for Peer-to-Peer Industrial Network Links 105

The decryption data stream works equivalent to the encryption stream, with the sig-
nificant difference being that the output interface does not write any protocol-specific
data, but only the decrypted data from memory which already includes the necessary
control bits, such as the start of frame delimiter, in case of a standard Ethernet trans-
mission.

Figure 8, shows the previously described concept of the streams. Each stream con-
sists of the four major implemented design blocks, shown on the right of the picture.
The actual schematic overview of the pipeline is available in Fig. 9.

In the following, each implemented module’s pin assignments and programmed
logic, will be discussed in detail. In many cases, the module will be implemented based
on state machines. Finally, the actual flow of the program and implementation reasoning
will be provided.

Fig. 9. Schematic drawing of the two data streams in a crypto device

4.3 Hardware Implementation

The resulting system was implemented in System Verilog, due to its benefits in data
structures and lower complexity compared to VHDL. The used board is a custom com-
munication board - Fig. 10. It provides the required network interfaces. The FPGA-
chip is a Spartan 6 (xa6slx45) automotive chip that interfaces with two Ethernet PHYs
through the MMII protocol. The Ethernet PHYs are Marvell 88E3018 chips. It further
provides a Serial port through USB-A and JTAG to interface with the FPGA.

4.4 Test Methodology

The testing of the system is done in two steps, as follows.

A Simulation Approach That will Test for System Functionality. The simulation
produces exact timings for signal propagation and models an ideal scenario with no
delay within the developed circuit.

In order to evaluate the functionality of all developed modules, different test benches
have been created, as unit tests for the Chunk Gen Tester, the FIFO 135 Tester, the
Transceiver Test, the Key Creator Tester and the AES Test. A Main test testbench

106 F. Sprang and T. Seceleanu

Fig. 10. Communication board.

was conceived to test all the components together, followed by a Two device test, where
the Main test was extended to simulate communication on both endpoints.

The testbench structure is illustrated by Algorithm 1. It initializes one crypto core,
and wires the output of the second Ethernet interface to its input. On the first interface,
it injects a payload that resembles a real Ethernet package, consisting of the pream-
ble, header, and payload. After encryption and decryption, the same data is written to
the data out array. If the data matches, the simulation will halt, otherwise it will run
indefinitely. With a clock of 25 MHz, it takes about 11µs to complete for one frame.

Algorithm 1: Testbench FPGA simulation (test_bench.v)
clk = clk125MHz(); rst = resetSignal(); e1 = Eth.Port(); e2 = Eth.Port();
topMod testSub (.clk(clk), .reset(rst), .e1_rxc(e1.rxc), ..submodules..,
.e1_txer(e1.txer)); //Rewired eth2 to itself

1 dataIN = [h’5555 5555 55d5 abcd effe dcba fffe fdfc fbfa 0800]
2 + [h’656c 6c6f 2057 6f72 6c64 2054 6869 7320 6973 206d 65ff];
3 dataOUT = [];
4 begin
5 e1.rxdv = 1 //Start transmission
6 foreach byte in dataIN do
7 @(posedgeclk); e1.rxd = byte[3 : 0];
8 @(posedgeclk); e1.rxd = byte[7 : 4];

9 while e1.txen == 1 do
10 @(posedgeclk); dataOUT = e1.txd;
11 if dataOUT == dataIN then
12 exit();

An Actual Real-World Deployment in a Test Environment. For testing the latency,
a commonly used technique is the Internet Control Message Protocol (ICMP) echo,

FPGA-Based Encryption for Peer-to-Peer Industrial Network Links 107

more commonly known as ping. An ICMP package containing a sequence number is
sent to a device upon which it replies with the same sequence number back. The sender
measures the time it takes from sending the package until an answer is returned. The
package counts as lost if no reply is returned within two seconds. For establishing a
baseline, 400 pings are sent without the encryption device. Later the encryption device
is added, and the same amount of pings is repeated.

Figure 11 shows a picture of the test setup. The Pi connected to Ethernet interface 2
(left) and the MacBook connected to Ethernet interface 1 (right), via USB. Wireshark2,
a networking monitoring utility, and ping run on the laptop, to check and induce network
traffic.

Fig. 11. Hardware test setup

A ping command measures the round trip time of a network link. The times are
aggregated and stored for evaluation. At 25 MHz frequency, the expected throughput of
the cryptography part is around 63 MBit/s. A frequency of 40 MHz is also tested, to see
if the device can still function correctly. Testing the crypto core is done until 400 valid
time samples have been gathered.

5 Evaluation and Results

We first perform a functional evaluation of all major components via simulation, and
we follow up with tests run on the actual hardware.

5.1 Simulation

The introduction of different clocking zones is used to evaluate the functionality of the
system based on simulation. As the FIFO does not contain important logic and works
straightforwardly with data storing and reading, its functionality can be evaluated based
on the output and input to the major modules. Further, we decided to go through one
whole transmission of the main test bench, rather than looking into each module test.

Simulation Level. The simulated testbench runs a full execution until the output data
matches the input. The duration of the entire transmission with full encryption and
decryption is 8.88µs. Sending of the open data takes 1.76µs, and the transmission of

2 https://www.wireshark.org/.

https://www.wireshark.org/

108 F. Sprang and T. Seceleanu

the encrypted data takes 3.32µs. This increase in time is an additional overhead of 88%
to the original time. In total, the actual sending of the data makes up 6.84µs, or 77%
of the added latency. Therefore the encryption, decryption, and additional control flows
are 2.04µs long. These simulation timings reflect the sending of a 45 byte message
(Fig. 12), where the last byte (ff) is for determining the data-streams end.

Fig. 12. Simulation test data.

One can test if the sent frame is correctly stored in the individual chunks: Chunk
1: 5555 5555 5555 55d5 | abcd effe dcba fffe; Chunk 2: fdfc fbfa | 0800 |
4865 6c6c 6f20 576f 72 6c; Chunk 3: 6420 5468 6973 2069 7320 6d65 ff | 00 0000.

Note that in the third stored chunk, the final three bytes are left blank, as they
do not correspond to any message. This correlates to the previously established
size_last_frame value. Thus the message is fully stored in the queue.

Encryption/Decryption. The encryption controller uses these 128 bit chunk data
blocks for encryption. For the first message, the keys are not yet available as none
has been set yet. The key generator starts generating keys once the new_iv signal
is triggered, at approximately 3.5µs. As of the end of the simulation, the write
address of the RAM is located at 7a816 = 196010. The first generated 119 bit ini-
tialization vector is f056638484d609c0895e811215352416 with the static key being
2b7e151628aed2a6abf7158809cf4f3c16.

Once the controller has the data to encrypt and the keys, it creates the cipher-
text blocks for the transmission. The stored header is: 00, 0, 01f0 56638484d609
c0895e811215352416, where the first byte of data 000000 012 is the protocol flag for a
new initialization vector. After that, the controller remains in an idle state until the first
keys are created. Then, a XOR function is applied to the original message block and the
key instance. This produces the output in Fig. 13 a), based on the created key instances
and plain message blocks.

The input and output blocks are combined with the status flags of size and last
frame, denoted by the comma-separated values at the beginning. After the plaintext
is converted to the cyphertext, it is stored for transmission in the next FIFO-queue.
The basic flow is the same when considering the decryption mode. It only differs upon
reading the first data block from the queue, which is taken out right away, as it represents
the protocol header. The decryption of each read data block, with the keys read from
RAM are listed in Fig. 13 b).

Looking at the encrypted data output, it can be seen that it is equivalent to the data
that is now inserted into the decryption. The read keys from the RAM are equivalent
to the keys used for encryption, showing that the key generators create the same keys
in both modules. The final output data to the transmit queue of the decryptor is also
equivalent to the previously encrypted data blocks.

FPGA-Based Encryption for Peer-to-Peer Industrial Network Links 109

Fig. 13. a) Encryption per input and the resulting ciphertext; b) Decryption per input and the
resulting message.

The Transceiver. The transmit controller contains the control logic, the IP-RAM imple-
mentation, and the transmitter itself. The transmitter and the RAM are embedded within
the controller. The controller is connected to the transmit FIFO. Therefore it needs
inputs to the data, the status flag if a frame is complete, and the size of the last chunk.
It also uses the status flags of the FIFO.

The block memory is able to store 2048 bytes, larger than the maximum transmis-
sion size of Ethernet. For this, it uses the state machine displayed in Fig. 14. The con-
troller takes every data chunk from the FIFO until the last frame is detected. Each data
frame can be fully stored in RAM. Upon detecting the last frame, it enables the trans-
mitter to send out the full data frame.

Fig. 14. State machine of the transmit controller

Upon a negative edge of a signal (fifo_empty), the controller changes from IDLE to
LOAD_FRAME (state machine of Fig. 14), where it starts to write the data blocks of
128 bits to the RAM. It changes back and forth between these two states until another

110 F. Sprang and T. Seceleanu

signal (is_last_frame) is triggered. After storing the last data block, the controller tran-
sitions to the SEND_DATA state, where the transmitter starts to work. Upon the trans-
mitter finishing, the WAIT_IPG state is entered for waiting for the defined inter-packet
gap and resetting all variables. After the waiting period, the controller moves back to
IDLE and waits for the next frame. The transmit controller works for both operation
modes the same.

Expected Signal Impact. It is possible to infer signal delays based on the simula-
tion time from the first signal received to the last byte sent. A delay of approximately
8µs + 2 ∗ modulation_timeencrypted + 2 ∗ modulation_timeplaintext is added for
the pipelined implementation. Looking at the slower low area implementation, the
delay is significantly larger, with ≈ 242µs + 2 ∗ modulation_ timeencrypted + 2 ∗
modulation_timeplaintext. Both values represent a worst case, where no keys are
stored in the key ram yet. Therefore, the modulation time has to be added and can be
calculated based on the following formula for the encrypted packet and Fast Ethernet
(100 MBit/s):

modulation_timeencrypted =
8 ∗ (23 + plaintextLength)

25 ∗ 106 Bits/s

For the plaintext packet, the used length shortens by the added 23 bytes. These 23 bytes
represent the additional preamble, mac-header, size, and encryption header. If keys are
already available, the logic’s added base delay for the low-area implementation equates
to 127µs instead of the 242µs.

It takes ≈ 20.4µs for a key to be generated in the low area implementation. There-
fore a theoretical maximum throughput of 128bit

20.4µs = 62.74MBit/s is possible if the key
generator is clocked at 25 MHz. For a 40 MHz clock this time is reduced to ≈ 12.6µs,
equating to a theoretical throughput of 101 MBit/s.

5.2 Hardware

Synthesis Results. The exact result of the synthesis is shown in Fig. 15, where the top
result shows the non-fitting pipelined AES-core and the bottom one is the low area
implementation for a single crypto device. With a more modern chip selection, a pos-
sible placement was reachable. Yet the amount of used LUTs, for the pipeline core, is
significantly higher than the documentation-estimated 4000.

Performance Test. For performance evaluation, we develop an extensive testing routine
and establish a performance baseline. For the link latency, we conducted 400 individual
pings at different times, while no load is applied to either link, with a median latency
of 700µs (Fig. 16). The highest measured latency is at 982µs, and the quickest trans-
mission was 302µs. These values represent the round trip time between the devices,
expecting half of them for one-way communication.

The same approach with the crypto device clocked at 25 MHz, resulted in a median
round trip time of 715µs. The highest measured round trip time is 1.97 s, compared
to the 362µs of the lowest time. For the 40 MHz test, no data could be gathered. The

FPGA-Based Encryption for Peer-to-Peer Industrial Network Links 111

Fig. 15. Synthesis results.

Fig. 16. Ping comparison in µs

increase of the clock speed seems to violate timing constraints within the process result-
ing in failure of correct decryption. Data is still received by the Pi but is omitted by the
MAC layer.

The package loss due to instabilities is significant. In order to get 400 data points
for the 25 MHz encryption, 2800 ICMP echo requests were sent, with 475 succeeded
and another 38 slower than the required 2 s. This results in a package loss of 83%. In
comparison, the median round trip time was increased by 100µs, yet the overall spread
increased. Also, more extreme highs were observed.

When running a quick throughput test, the measured transmission instance resulted
in a measured throughput of 217 kbit/s.

6 Discussion

The overall functionality of the architecture was tested within a controlled simulation
environment, in which the transfer of a fixed amount of Ethernet frames was success-

112 F. Sprang and T. Seceleanu

fully conducted. The simulation proved that both the synchronization as well as en-/de-
cryption function according to the specifications. Using a stream cypher approach and
the preparation of keys increases the system throughput and should theoretically sup-
port high bandwidth protocols such as Gigabit Ethernet. This could not be tested in a
real-world scenario.

A downside of the conducted simulation is that it only looked into one-way com-
munication and did not take simultaneous send and receive into account. Due to the
separation of the encryption and decryption pipeline, the behaviour should be explored
in additional simulations.

Depending on the choice of the FPGA, either a pipeline or a slower single-key gen-
eration approach can be chosen. The pipeline approach trades FPGA resources for speed
and should be used for high throughput protocols. The low area single key implemen-
tation will significantly reduce the used resources, leaving more space for additional
communication interfaces or other custom logic.

We also tested the impact of a crypto device on an actual network link, following a
developed testing routine. The routine was first used without the cryptography device
to establish a baseline. Given the amount of processed data, the used protocol proved
highly stable and robust, with almost no re-transmissions.

The conducted tests provide a proof of concept. It is possible to encrypt a link’s
data independent of the protocol and maintain the original communication between the
devices. This comes at the cost of latency, yet not a significant one. A more elaborate
testing on the latency impact has to be pursued to get more definitive results, though.

In order to satisfy modern interfaces such as Gigabit Ethernet, a frequency of
25 MHz is insufficient. The performance should be increased, and the testing devices
should be configured not to insert any additional traffic data.

Security Considerations. A lot has yet to be determined, when it comes to security.
The devices themselves were not tested for implementation vulnerabilities. Due to the
large volume of conducted work, errors and oversights are easily made that can lead to
problematic outcomes.

One finding that came up, though, was that a potential leak of the key can be
achieved by observing the data stream, and gaining the initialization vector while send-
ing prepared payloads of continuous zeros. With a brute-force approach, it might be pos-
sible to identify the key. Another downside is that the message length can be inferred.
This is especially important in industrial applications because messages and control
signals are repeated multiple times. Depending on the protocol and deployment archi-
tecture, an attacker could potentially infer what message has been sent based on length.

Lastly, the remaining unencrypted link pieces have to also be secured physically.
However, this is easier done for small sections of a long cable than physically securing
the whole link.

7 Conclusions

We proposed here an architecture that takes extendability and flexibility into consid-
eration, based on an FPGA design, for evaluation purposes. The architecture separates
the communication from the actual cryptography part, by introducing FIFO queues to

FPGA-Based Encryption for Peer-to-Peer Industrial Network Links 113

connect the communication and crypto core. We introduce a custom protocol header
to synchronize the devices to the same initialization vector for key generation. We use
state machines, resulting in simplified logic flows, increased readability, and code main-
tainability. In addition, dividing the architecture into different zones provides enhanced
adaptability to multiple protocols, proven by the implementation of GMII and MII.

The implementation shows that encrypting any traffic on the network link and
regaining the original signal can be a viable alternative to existing technologies. The
result is a proof of concept to be seen as a complementary technology in case of non-
accessibility to higher-layer solutions, with increased stability. It further indicates that a
universal cryptography device interfacing with different physical layer chips can solve
encryption requirements in industrial links.

Future Work. We present here a list of possible actions that will improve the quality
and utility of the presented efforts.

• The approach should be scaled to cover different protocols (such as CAN) to enable
the greater scheme of the protocol-independent encryption.

• The current design deals with direct network links. It is possible to extend the imple-
mentation to a one-hop distributed network by using the MAC addresses, assuming
that the network is able to support larger frame sizes.

• Removing the buffering of the full frame in the transceivers and the FIFO queues.
This alternative would only use the stream cypher approach, where the encryptor
would no longer encrypt 128-bit blocks but rather apply a portion of the key on
either the 4 bits of RGMII or the 8 bits of the GMII, to be sent out without waiting to
rebuild a whole message. This may lead to time savings, but communication between
the cryptography devices has to be solved differently, while also losing modularity.

References

1. IEEE Standard for Ethernet. Technical report. IEEE. https://doi.org/10.1109/IEEESTD.
2022.9844436, iSBN 9781504487252

2. OSI model, January 2023. https://en.wikipedia.org/w/index.php?title=OSI_model&
oldid=1134681638, page Version ID: 1134681638

3. Anusha Naidu, A.P., Joshi, P.K.: FPGA implementation of fully pipelined advanced encryp-
tion standard. In: 2015 international Conference on Communications and Signal Processing
(ICCSP), pp. 0649–0653 (2015). https://doi.org/10.1109/ICCSP.2015.7322568

4. Caldas-Calle, L., Jara, J., Huerta, M., Gallegos, P.: QoS evaluation of VPN in a Raspberry
Pi devices over wireless network. In: 2017 International Caribbean Conference on Devices,
Circuits and Systems (ICCDCS), pp. 125–128, June 2017. https://doi.org/10.1109/ICCDCS.
2017.7959718, iSSN 2165-3550

5. Choudhary, A., Porwal, D., Parmar, A.: FPGA based solution for ethernet controller as alter-
native for TCP/UDP software stack. In: 2018 6th Edition of International Conference on
Wireless Networks and Embedded Systems (WECON), pp. 63–66, November 2018. https://
doi.org/10.1109/WECON.2018.8782050

6. Fattahi, A.: IoT Product Design and Development: Best Practices for Industrial, Consumer,
and Business Applications. Wiley, Hoboken (2022)

https://doi.org/10.1109/IEEESTD.2022.9844436
https://doi.org/10.1109/IEEESTD.2022.9844436
https://en.wikipedia.org/w/index.php?title=OSI_model& oldid=1134681638
https://en.wikipedia.org/w/index.php?title=OSI_model& oldid=1134681638
https://doi.org/10.1109/ICCSP.2015.7322568
https://doi.org/10.1109/ICCDCS.2017.7959718
https://doi.org/10.1109/ICCDCS.2017.7959718
https://doi.org/10.1109/WECON.2018.8782050
https://doi.org/10.1109/WECON.2018.8782050

114 F. Sprang and T. Seceleanu

7. Harb, S., Ahmad, M.O., Swamy, M.N.S.: A high-speed FPGA implementation of AES for
large scale embedded systems and its applications. In: 2022 13th International Conference
on Information and Communication Systems (ICICS), pp. 59–64, June 2022. https://doi.org/
10.1109/ICICS55353.2022.9811140, iSSN 2573-3346

8. Herrmann, F.L., Perin, G., de Freitas, J.P.J., Bertagnolli, R., dos Santos Martins, J.B.: A
gigabit UDP/IP network stack in FPGA. In: 2009 16th IEEE International Conference on
Electronics, Circuits and Systems - (ICECS 2009), pp. 836–839, December 2009. https://
doi.org/10.1109/ICECS.2009.5410757

9. Hoang, T., Nguyen, V.L.: An efficient FPGA implementation of the advanced encryption
standard algorithm. In: 2012 IEEE RIVF International Conference on Computing and Com-
munication Technologies, Research, Innovation, and Vision for the Future, pp. 1–4 (2012).
https://doi.org/10.1109/rivf.2012.6169845

10. IEEE: IEEE 802.3 ETHERNET. https://www.ieee802.org/3/
11. Luber, S.: Was IST MACsec?, June 2022. https://www.security-insider.de/was-ist-macsec-

a-e945e21bc26faeed7999ee600aa61d78/
12. National Cyber Security Centre: Obsolete products. https://www.ncsc.gov.uk/collection/

device-security-guidance/managing-deployed-devices/obsolete-products
13. National Technical Information Service (NTIS): FIPS 197, Advanced Encryption Standard

(AES). FIPS 197, November 2001
14. Park, S., Matthews, B., D’Amours, D., McIver Jr., W.J.: Characterizing the impacts of VPN

security models on streaming video. In: 2010 8th Annual Communication Networks and Ser-
vices Research Conference, pp. 152–159, May 2010. https://doi.org/10.1109/CNSR.2010.60

15. Lefmann, H.: AES - Advanced Encryption Standard (Rijndael) (2005). https://www.tu-
chemnitz.de/informatik/ThIS/vlzits/aes.html

16. Shi, Y., Jin, C., Gao, F.: The solution of ethernet based on hardware protocol stack W5300
and FPGA. In: Proceedings of 2011 International Conference on Electronic and Mechanical
Engineering and Information Technology, vol. 3, pp. 1328–1331, August 2011). https://doi.
org/10.1109/EMEIT.2011.6023339

17. Stouffer, K., Pease, M., Tang, C., Zimmerman, T., Pillitteri, V., Lightman, S.: Guide to oper-
ational technology (OT) security: initial public draft. preprint, April 2022. https://doi.org/10.
6028/NIST.SP.800-82r3.ipd, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-82r3.ipd.pdf

18. Xue, T., Pan, W., Gong, G., Zeng, M., Gong, H., Li, J.: Design of giga bit ethernet readout
module based on ZYNQ for HPGe. In: 2014 19th IEEE-NPSS Real Time Conference, pp.
1–4, May 2014. https://doi.org/10.1109/RTC.2014.7097556

https://doi.org/10.1109/ICICS55353.2022.9811140
https://doi.org/10.1109/ICICS55353.2022.9811140
https://doi.org/10.1109/ICECS.2009.5410757
https://doi.org/10.1109/ICECS.2009.5410757
https://doi.org/10.1109/rivf.2012.6169845
https://www.ieee802.org/3/
https://www.security-insider.de/was-ist-macsec-a-e945e21bc26faeed7999ee600aa61d78/
https://www.security-insider.de/was-ist-macsec-a-e945e21bc26faeed7999ee600aa61d78/
https://www.ncsc.gov.uk/collection/device-security-guidance/managing-deployed-devices/obsolete-products
https://www.ncsc.gov.uk/collection/device-security-guidance/managing-deployed-devices/obsolete-products
https://doi.org/10.1109/CNSR.2010.60
https://www.tu-chemnitz.de/informatik/ThIS/vlzits/aes.html
https://www.tu-chemnitz.de/informatik/ThIS/vlzits/aes.html
https://doi.org/10.1109/EMEIT.2011.6023339
https://doi.org/10.1109/EMEIT.2011.6023339
https://doi.org/10.6028/NIST.SP.800-82r3.ipd
https://doi.org/10.6028/NIST.SP.800-82r3.ipd
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r3.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r3.ipd.pdf
https://doi.org/10.1109/RTC.2014.7097556

Formalization and Verification
of MQTT-SN Communication Using CSP

Wei Lin(B), Sini Chen, and Huibiao Zhu

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

51265902028@stu.ecnu.edu.cn, hbzhu@sei.ecnu.edu.cn

Abstract. The MQTT-SN protocol is a lightweight version of the
MQTT protocol and is customized for Wireless Sensor Networks (WSN).
It removes the need for the underlying protocol to provide ordered and
reliable connections during transmission, making it ideal for sensors in
WSN with extremely limited computing power and resources. Due to
the widespread use of WSN in various areas, the MQTT-SN protocol
has promising application prospects. Furthermore, security is crucial for
MQTT-SN, as sensor nodes applying this protocol are often deployed
in uncontrolled wireless environments and are vulnerable to a variety of
external security threats.

To ensure the security of the MQTT-SN protocol without compromis-
ing its simplicity, we introduce the ChaCha20-Poly1305 cryptographic
authentication algorithm. In this paper, we formally model the MQTT-
SN communication system using Communicating Sequential Process
(CSP) and then verify seven properties of this model using Process Anal-
ysis Toolkit (PAT), including deadlock freedom, divergence freedom, data
reachability, client security, gateway security, broker security, and data
leakage. According to the verification results in PAT, our model satisfies
all the properties above. Therefore, we can conclude that the MQTT-SN
protocol is secure with the introduction of ChaCha20-Poly1305.

Keywords: MQTT-SN Protocol · Communicating Sequential Process
(CSP) · Formal Methods · Modeling · Verification

1 Introduction

Wireless sensor nodes in wireless sensor networks (WSN) are characterized by
their small size, ease of deployment, and low cost, making WSN widely used
in various fields, such as real-time intelligent monitoring and hazardous zone
operations [1,2]. MQTT-SN protocol (Message Queuing Telemetry Transport
for Wireless Sensor Networks) is a topic-based publish-subscribe message trans-
mission protocol designed by IBM specifically for WSN [3]. It is a lightweight
and resource-efficient version of the MQTT protocol. Compared to the MQTT
protocol, which requires the underlying protocol to provide ordered and reliable

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 115–132, 2024.
https://doi.org/10.1007/978-3-031-49252-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_10&domain=pdf
http://orcid.org/0000-0002-0214-8565
https://doi.org/10.1007/978-3-031-49252-5_10

116 W. Lin et al.

connections during data transmission, the MQTT-SN protocol eliminates these
requirements. As a result, it is more suitable for sensor nodes in WSN with
extremely limited energy, computing capacity, storage capacity, and bandwidth.

In addition, wireless sensor nodes are usually deployed in uncontrollable and
open wireless environments where external security threats are inevitable [4]. At
the same time, sensitive data that is not intended to be accessed by outsiders
is often transmitted between wireless sensor nodes. Therefore, it is important
to investigate whether MQTT-SN communication can meet the reliability and
security requirements for data transmission in WSN.

Several studies have analyzed and tested the communication mechanism of
the MQTT-SN protocol. For example, Park et al. [5] standardized the generation,
distribution, and registration of security certificates. They then proposed a secure
MQTT-SN protocol communication architecture and tested the performance
of this architecture by building a simulation scenario. Roldán-Gómez et al. [6]
constructed an MQTT-SN protocol communication network and simulated a
series of attack behaviors to test the security of the protocol, comparing it with
communication in an environment without attacks. Diwan et al. [7] used Event-
B to propose an abstract model for the MQTT, MQTT-SN, and CoAP, and
verified their common properties.

It can be seen that most studies have conducted experiments by building envi-
ronments to simulate actual application scenarios or attacks, collecting exper-
imental data, and analyzing the security of communication mechanisms based
on the data. However, experiments may be affected by many external factors.
Potential security issues in MQTT-SN communication may exist but have not
been discovered.

As the MQTT-SN protocol itself does not specify any security mechanism
to maintain its simplicity, this paper introduces a lightweight encryption and
authentication algorithm, ChaCha20-Poly1305 [8–10], as a security guarantee
for MQTT-SN. In this paper, we adopt a classical formal method, Communicat-
ing Sequential Process (CSP) [11], to construct models for entities involved in
MQTT-SN communication. We also introduce the intruder which can intercept
and fake messages to simulate real-world attacks. After that, we use the model
checking tool Process Analysis Toolkit (PAT) [12,13] to verify seven properties
with the interference of the intruder, including deadlock freedom, divergence
freedom, data reachability, client security, gateway security, broker security, and
data leakage. The verification results show that the reliability and security of
the MQTT-SN protocol communication are ensured with the introduction of
ChaCha20-Poly1305.

The structure of this paper is organized as follows. Section 2 provides a brief
introduction to the communication mechanism of the MQTT-SN protocol, the
process algebra CSP, and the verification tool PAT. In Sect. 3, we present the
detailed modeling process for the main entities in our model. In Sect. 4, we imple-
ment the constructed model using PAT and verify seven properties. Section 5
concludes the paper and gives a discussion about further improvement.

Formalization and Verification of MQTT-SN Communication Using CSP 117

2 Background

In this section, we start with the MQTT-SN architecture and a brief explanation
of its communication mechanism. We also give a brief introduction to CSP and
PAT.

2.1 MQTT-SN Architecture

The communication architecture of the MQTT-SN protocol is shown in Fig. 1.
There are four main entities in MQTT-SN communication: clients, gateways,
forwarders, and brokers [3].

Fig. 1. MQTT-SN Architecture

– Clients: Clients can be divided into two types of roles, namely publishers and
subscribers. Clients who publish messages with topics are called publishers,
while clients who subscribe to topics are called subscribers.

– Gateways: The communication between clients and gateways follows the
MQTT-SN protocol, while the communication between gateways and brokers
adopts the MQTT protocol. The main function of the gateway is to adjust the
format of data packets and forward them after protocol conversion between
MQTT-SN and MQTT. The gateway may be integrated into the broker server
or may exist independently. As the function of the gateway is independent of
that of the broker, the gateway is assumed to be an independent module in
the subsequent modeling part.

– Forwarders: When the gateway cannot directly connect to the network
where the client is located, a forwarder is needed. The forwarder functions
basically the same as the gateway. Therefore, it is omitted for simplicity in
the subsequent modeling part.

– Brokers: All clients need to be connected to the broker via a gateway to
achieve topic-based message exchange, rather than communicating with each
other directly. The main function of brokers is to receive messages from pub-
lishers and distribute these messages to the appropriate subscribers.

118 W. Lin et al.

2.2 Communication Mechanism of the MQTT-SN Protocol

The MQTT-SN protocol itself does not specify security mechanisms in order to
maintain its lightweight characteristics. Since a majority of the MQTT-SN clients
do not possess the ability to process and store complex data, there are higher
efficiency requirements. Therefore, this paper adopts ChaCha20-Poly1305 [8–10],
an efficient and lightweight cryptographic authentication algorithm, to ensure
the security of MQTT-SN communication.

Fig. 2. Mechanism of ChaCha20-Poly1305

The workflows of ChaCha20-Poly1305 are shown in Fig. 2. The algorithm
requires the secret key K, the interference term N, the plaintext P, and the
associated data AD as input. As an assumption of this paper, the sender and the
receiver need to generate the shared K, N, and AD that are kept confidential from
others using a secure exchange algorithm. The sender computes the ciphertext
C and the authentication tag T with the following two steps and sends them to
the receiver:

– Use K and N to produce a stream of bytes that is XORed with P. The result
of the XOR operation is C.

– Hash P with K, and then combine the hash value with N. The result is T.

After receiving these messages, the receiver needs to compute a new plaintext P
and a new authentication tag T’. Only when the T and the T’ are equal, the
receiver considers that the sender can pass the identity authentication.

The two most important entity behaviors in MQTT-SN communication are
publishing data with topics by publishers and subscribing to topics by sub-
scribers. Because these two behaviors result in similar interaction behaviors, we
will introduce the communication mechanism of MQTT-SN using the example
of a publisher publishing data with topics. The whole process of a publisher pub-
lishing data with topics mainly consists of four stages, as illustrated in Fig. 3,

Formalization and Verification of MQTT-SN Communication Using CSP 119

including searching for a gateway, establishing a connection, registering a topic
name and publishing a message.

Fig. 3. MQTT-SN Communication Mechanism

In the first step, the publisher needs to find a gateway to assist in forwarding
its requests and messages. This involves the following steps:

1. The publisher broadcasts an encrypted control packet to all other devices in
the network to search for a gateway.

2. When a gateway receives the packet, it verifies the legitimacy of the publisher.
If the publisher is legitimate, it replies to the publisher with a control packet
containing its own information to inform the client of its address.

3. After receiving the packet containing the gateway’s information, the client
also needs to confirm the legitimacy of the gateway’s identity. If the gateway
is legitimate, the publisher stops searching for a gateway.

MQTT-SN is based on the publish-subscribe pattern and requires a broker
to coordinate data between publishers and subscribers. In the second step, the
publisher needs to establish a connection with the broker through the gateway
to publish messages. The steps to establish a connection are as follows:

1. The client sends an encrypted packet requesting to set up a connection.
2. When the gateway receives the request, it verifies the legitimacy of the client.

If the client is legitimate, it forwards the request to the broker.
3. When the broker receives the request, it also needs to verify the legitimacy of

the gateway’s identity. If the gateway is legitimate, it replies with a response
message indicating that the broker agrees to establish a connection.

4. After the client successfully receives the response message agreeing to estab-
lish a connection, the connection is established successfully.

120 W. Lin et al.

In the third step, the publisher needs to initiate a registration process with
the gateway to obtain the TopicId corresponding to the topic name. When the
publisher publishes a message, it needs to use a fixed-length 2-byte topic id
(represented by TopicId) field to tell the broker which topic the message wants
to be published to. Using a shorter TopicId to represent the topic instead of
the topic name aims to reduce the length of the message, which is one of the
adjustments made by MQTT-SN. Here are the steps to follow:

1. The publisher sends an encrypted registration request packet to the gateway.
2. When the gateway receives the request, it first checks the legitimacy of the

publisher’s identity. If legitimate, it assigns a unique TopicId and includes this
TopicId in the response message to inform the client. The gateway ensures
that different topic names have different TopicIds.

3. If registration fails due to network or other unexpected reasons, the publisher
can initiate registration again.

The fourth step is that the publisher can send encrypted data to the gateway
using the TopicId successfully registered in the third step. The message is then
successfully published to the broker via the gateway. After the broker receives
the message, it replies with a confirmation packet. When the publisher receives
this confirmation packet, one successful publishing is complete.

2.3 CSP

Process algebra is a formal method that characterizes the communication
between processes in concurrent systems. Communicating Sequential Process
(CSP), proposed by C.A.R. Hoare [11], is a type of process algebra, which has
been successfully applied to verify many parallel systems [14] and communica-
tion protocols [15,16]. Therefore, this paper uses CSP as the method to analyze
and verify the security of the MQTT-SN protocol communication mechanism.

The syntax and definitions of CSP statements are briefly introduced below,
where P and Q represent the processes, a means the atomic actions (also called
events), b stands for a boolean expression and c denotes the name of channel:

P,Q :: = SKIP | a → P | c ? v → P | c ! x → P |
P � b � Q | P � Q | P || Q | P ; Q

– SKIP represents that the process terminates successfully.
– a → P represents that the process performs the atomic action a first and

then executes the process P .
– c?v → P represents that the process first receives a value a through the

channel c, then assigns the value to the variable v, and finally continues to
execute the process P .

– c!x → P represents that the process first sends a value x through the channel
c to another process, and then continues to execute the process P .

– P �b�Q represents that if b is true, process P is executed. Otherwise, process
Q is executed.

Formalization and Verification of MQTT-SN Communication Using CSP 121

– P � Q represents that it is uncertain whether process P or process Q is
executed and the choice is made by the external environment.

– P || Q represents that processes P and Q are executed concurrently.
– P ;Q represents that processes P and Q are executed in sequence.
– P [[a ← b]] represents that the atomic event a in process P is replaced by

another atomic event b.
– P [|c|]Q represents that processes P and Q are executed in parallel through

the channels defined in set c.

3 Modeling MQTT-SN Communication

In this section, we formalize the MQTT-SN communication model based on the
mechanism presented in the previous Sect. 2.2.

3.1 Sets, Messages and Channels

In order to formalize the behaviors of different entities in MQTT-SN, we first
need to define the sets, messages, and channels used in our model.

First, we give the definition of the sets. Entity set contains all entities during
message transmission, including the publishers, subscribers, brokers and gate-
ways. Req set denotes all request messages during the communication process,
such as topic registration requests, connection setup requests, etc. Prk set repre-
sents the set of private keys involved in communication transmission for imple-
menting encryption and authentication algorithms. Data set is composed of
plaintext data during communication. Content set contains all the other mes-
sages, which includes the Ack set for feedback messages, the Tag set for identity
authentication and the Identifier set for various identifiers.

Next, we define the following messages based on the sets described above:

MSG = MSGreq ∪ MSGdata ∪ MSGack

MSGreq = {msgreqa.b.E(k, t, req) | a, b ∈ Entity, k ∈ Prk,

t ∈ Tag, req ∈ Req}
MSGdata = {msgdataa.b.req.E(k, t, d) | a, b ∈ Entity, k ∈ Prk,

t ∈ Tag, req ∈ Req, d ∈ Data}
MSGack = {msgacka.b.E(k, t, ack), msgack1a.b.E(k, t, ack).id |

a, b ∈ Entity, ack ∈ Ack, id ∈ Identifier}

MSGreq represents the set of request messages used in the interaction process for
clients to find gateways and establish connections. MSGdata represents the set
of messages involving topic registration, data publishing, topic subscribing, and
data updating. MSGack represents all the confirmations and response messages.
MSG includes all the messages above.

Take one message msgack1a.b.E(k, t, ack).id as an example. It means that
entity a sends an acknowledgment message to entity b with its identifier id.

122 W. Lin et al.

E(k,t,ack) indicates that ack is encrypted with the shared private key k by
applying ChaCha20-Poly1305 algorithm and t is the generated tag value for
identity authentication.

Finally, we define two sets of channels to simulate communications between
entities. The set of channels used when there is no intruder is described as
COM PATH and it contains ComPP , ComBP , ComSS and ComBS. The
set of channels denoted as INTRUDER PATH is used when an intruder is
present and it contains FakeA, FakeB, FakeC, FakeD and FakeE.

3.2 Overall Modeling

Fig. 4. Publisher Model Fig. 5. Subscriber Model

Based on the communication model diagram for the publisher in Fig. 4 and
for the subscriber in Fig. 5, we define two models SystemP and SystemS. We
divide gateways into two categories: GatewayP to interact with the publishers
and GatewayS to interact with the subscribers.

SystemP = Pub [|COM PATH|]GatewayP [|COM PATH|]Broker

SystemS = Sub [|COM PATH|]GatewayS [|COM PATH|]Broker

System0 = SystemP [|COM PATH|]SystemS

SY STEM = System0 [|INTRUDER PATH|] Intruder
Then we formalize the MQTT-SN communication system without intruders

System0 by combining SystemP and SystemS. SYSTEM stands for the complete
system with the presence of intruders. In this paper, we assume that the intruders
are able to eavesdrop on messages sent through normal channels, and are also
capable of forging messages and sending them to other entities.

3.3 Publisher Modeling

It is the responsibility of the publishers to utilize gateways to transmit mes-
sages to the broker so that the broker can forward messages to other clients
(i.e. subscribers). As we mentioned before in Sect. 2.2, the process of a publisher

Formalization and Verification of MQTT-SN Communication Using CSP 123

publishing data can be broken down into four main steps: searching for a gate-
way, establishing a connection, registering a topic id for each topic name and
publishing messages. Based on this, we give the following definition:

Pub0 = FindGWP ;Connect;TopicReg;MsgPub;Pub0

We define a recursive process Pub0 that executes FindGWP, Connect, TopicReg
and MsgPub in sequence, and finally executes itself. This definition indicates
that Pub0 can repeatedly execute itself so FindGWP, Connect, TopicReg and
MsgPub will be continuously executed, which is in line with real-world scenarios
where publishers can disconnect and reconnect to resume message publishing.

We define two special events to denote exception handling. We use fail to
indicate that the request was not processed successfully due to various reasons
while drop is adopted to represent that the response was sent by some invalid
entities and should be discarded.

FindGWP = ComPP !msgreqA.B.E(k, t, search) →
ComPP?msgack1B.A.E(k, t, ack).gwId →⎛
⎜⎝

(SKIP � (ack == true) � (fail → FindGWP))
� (DV(k, t′, E(k, t, ack))) �

(drop → FindGWP)

⎞
⎟⎠

Connect = ComPP !msgreqA.B.E(k, t, connect) →

T opicReg = ComPP !msgdataA.B.reg.E(k, t, name) →

MsgPub = ComPP !msgdataA.B.pub.E(k, t, data) →
ComPP?msgackB.A.E(k, t, ack) →⎛
⎜⎝

(MsgPub � (ack == true) � (fail → MsgPub))
� (DV (k, t′, E(k, t, ack))) �

(drop → MsgPub)

⎞
⎟⎠

� ComPP !msgreqA.B.E(k, t, disconnect) →
ComPP?msgackB.A.E(k, t, ack) →

For instance, in the subprocess FindGWP, the publisher (represented by
A) first sends an encrypted search request and then waits for a response from
the gateway (represented by B). After that, it verifies whether the response
is sent by a legal gateway entity using function DV (means Decryption and
Verification). The function DV will determine the legitimacy of the entity by
comparing the tag values (i.e. t and t’). If the response is sent by an illegal
entity, the publisher will drop the response (denoted as drop), resend the search
request, and repeat the above steps. Otherwise, the publisher will judge whether
the gateway allows a connection according to the value of the ack. If ack is
true, it means that the gateway accepts communication from the publisher. The
publisher can then stop searching for a gateway, which is denoted as SKIP,
so the process Pub0 can execute the next subprocess Connect to establish a

124 W. Lin et al.

connection with the broker. However, the search request failed (denoted as fail)
when ack is false.

Subprocesses Connect, TopicReg and MsgPub are similar to FindGWP, so
we will only provide partial definitions for them. Especially, MsgPub will call
itself instead of executing SKIP to continue the recursion when a pub request
is successfully ended. This means that multiple messages can be published in a
single connection until a disconnect request is made. The general choice symbol
� splits the handling of different requests, which are frequently used later.

The Pub0 model above does not consider the presence of intruders. Based on
the Pub0 model, we define Pub model that takes intruders into account by the
following renaming operations:

Pub = Pub0 [[ComPP ! {|ComPP |} ← ComPP ! {|ComPP |} ,
ComPP ! {|ComPP |} ← FakeB! {|ComPP |} ,
ComPP? {|ComPP |} ← ComPP? {|ComPP |} ,
ComPP? {|ComPP |} ← FakeA? {|ComPP |}]]

Here, |c| represents the set of messages that can be transmitted on channel c.
The first two lines of the above Pub definition indicate that when Pub0 sends

messages on channel ComPP, Pub can also send the same messages on channel
FakeB. This is to simulate the behavior of intruders faking messages. The last
two lines indicate that when Pub0 receives messages on channel ComPP, Pub
can also receive the same messages on channel FakeA. This is to achieve the
behavior of intruders eavesdropping on messages.

3.4 Gateway Modeling

The main function of gateways is to respond to search gateway requests and
topic registration requests from clients. Gateways also need to forward other
requests between clients and the broker. We divide and formalize the behaviors
of gateways into two processes: GatewayP which interacts with publishers and
GatewayS which interacts with subscribers.

The detail of modeling GatewayP is presented below. We omit the detail
of modeling GatewayS due to their similarity. We set a variable TpcTable for
GatewayS and GatewayP respectively, which records the corresponding relation-
ship between each topic name and its topicId.

GatewayP0(TpcTable) =
ComPP?msgreqA.B.E(k, t, search) →⎛
⎜⎝

ComPP !msgack1B.A.E(k, t, true).gwId

�
(
DV (k, t′, E(k, t, search))

)
�

ComPP !msgack1B.A.E(k, t, false).none

⎞
⎟⎠ →

GatewayP0(TpcTable)
� ComPP?msgdataA.B.reg.E(k, t, name) →

Formalization and Verification of MQTT-SN Communication Using CSP 125

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

SKIP

� (∃entry ∈ TpcTable · entry.key == name)�
AddEntry

⎞
⎟⎠ ;

ComPP !msgack1B.A.E(k, t, true).TpcTable [name]
→ GatewayP0(TpcTable)

⎞
⎟⎟⎟⎟⎟⎟⎠

�
(
DV (k, t′, E(k, t, name))

)
�(

ComPP !msgack1B.A.E(k, t, false).none
→ GatewayP0(TpcTable)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� ComPP?msgreqA.B.E(k, t, connect) →

� ComPP?msgdataA.B.pub.E(k, t, data) →

� ComPP?msgreqA.B.E(k, t, disconnect) →

In the first part, we describe how to handle gateway searching requests.
Upon receiving a search request from a client, the gateway first uses the DV
function to verify the legitimacy of the client. When the client is legal, the
gateway replies with a message containing a value of true for ack and its own
information represented by gwId, indicating its agreement to help the client
forward messages. The reply messages also need to be encrypted.

In the second part, we describe how to handle topic registration requests.
After receiving a registration request reg from the publisher, the gateway still
needs to verify the legitimacy of the publisher’s identity. Only when the pub-
lisher is a legal entity can the following steps be taken. The gateway searches
in TpcTable for the topic name. If the name exists, it means that the name has
been registered before and there is no need to allocate a new id. Otherwise, a
unique id is assigned to the name and this record is added to TpcTable, which is
marked as a function named AddEntry. Finally, we retrieve the corresponding
id for name using TpcTable[name] and send it to the related publisher.

Since the definitions for the other requests are similar to the first part, their
detailed modeling is omitted here.

As with the process Pub, we can define the process GatewayP that takes into
account the existence of intruders by renaming operations based on the current
process GatewayP0.

3.5 Broker Modeling

The broker is mainly responsible for two functions: first, to respond to various
requests from the gateway, and second, to coordinate messages from different
topics. If the data related to a certain topic subscribed by a subscriber changes,
the broker should push the updated data to the subscriber.

We formalize the model of the broker as below:

Broker0 = ComBS!msgdataC.D.update.E(k, t, data) →
ComBS?msgackD.C.E(k, t, ack) →

126 W. Lin et al.

⎛
⎜⎝

(
Broker0 � (ack == true) � (fail → Broker0)

)

�
(
DV (k, t′, E(k, t, ack))

)
�(

drop → Broker0
)

⎞
⎟⎠

� ComBP?msgreqB.C.E(k, t, connect) →⎛
⎜⎝

ComBP !msgackC.B.E(k, t, true)

�
(
DV (k, t′, E(k, t, connect))

)
�

ComBP !msgackC.B.E(k, t, false)

⎞
⎟⎠ → Broker0

� ComBP?msgdataB.C.pub.E(k, t, data) →

� ComBS?msgdataD.C.sub.E(k, t, topic) →

�

In the first part, the broker (represented by C) sends an update request to
the gateway (represented by D) interacting with the subscriber, in order to
notify the subscriber that the data of topics he has subscribed to have changed.
Then the broker waits for the response and uses the DV function to test the
legitimacy of the gateway. After authentication, if the value of ack is true, the
request is processed successfully, and vice versa. Failure to pass authentication
means that the response is from an illegal entity. For simplicity, we allow the
broker to send update requests at any time.

In the second part, the broker receives a connection setup request from the
gateway. After verifying that the gateway is legitimate, the broker gives an answer
with an ack value of true, indicating that the connection is allowed to be set up.
The rest parts are similar to the second part, so we omit the details here.

As with the process Pub, we can define the process Broker under the existence
of intruders by renaming Broker0.

3.6 Intruder Modeling

In this paper, we assume that intruders can intercept or fake messages via normal
communication channels ComPP , ComBP , ComSS and ComBS.

First, we define a set Fact as below, which includes all the facts the intruder
can learn at its initial state. The intruder can know all the entities in the system,
the intruder’s own private key prki and its own tag value tagi, as well as all the
encrypted messages MSG during communication.

Fact = Entity ∪ {prki, tagi} ∪ MSG

In addition, the intruder can deduce new facts based on the set of facts that
it has already learned. And the specific deduction rules are as follows:

{k, d} → E (k, d)
{sk,E (sk, d)} → d

(F → f) ∧ (F ⊆ F ′) → (F ′ =⇒ f)

Formalization and Verification of MQTT-SN Communication Using CSP 127

The first rule states that the intruder can get the encrypted message E(k,d)
if it has the encryption key k and the data d. The second rule states that the
intruder can get the plaintext d if it has the decryption key sk and the encrypted
message E(sk,d). The third rule states that if the fact f can be deduced from
the fact set F, and F is a subset of F’, then the intruder can also deduce f from
the bigger set F’.

Then, we define the function Info(msg) to describe the facts that the intruder
can deduce from the different types of messages that are defined previously.

Info (msgreqa.b.E(k, t, req)) = {a, b, E(k, t, req)}
Info (msgdataa.b.req.E(k, t, d)) = {a, b, req, E(k, t, d)}

Info (msgacka.b.E(k, t, ack)) = {a, b, E(k, t, ack)}
Info (msgack1a.b.E(k, t, ack).id) = {a, b, E(k, t, ack), id}

The first rule indicates that the intruder can deduce from this kind of mes-
sage that it was sent from entity a to entity b. Also, the message content is an
encrypted packet E(k,t,req). The remaining rules are similar to the first one.

Therefore, we introduce a channel called Deduce for the intruder process to
deduce new facts through this channel, which is defined as follows:

Channel Deduce : Fact.P (Fact)

Based on all the deduction rules and the channel definition above, the model
of the intruder can be defined as follows:

Intruder0(F) = m∈MSGFake?m → Intruder0(F ∪ Info(m))
��m∈MSG∩Info(m)⊆FFake!m → Intruder0(F)
��f∈Fact,f /∈F,F→fInit {Data Leakage Success = false}
→ Deduce.f.F

→

⎛
⎜⎜⎜⎜⎝

(
Data Leakage Success = true

→ Intruder0(F ∪ {f})

)

� (f == data) �

Intruder0(F)

⎞
⎟⎟⎟⎟⎠

In the above definition, Fake represents the integrated set of all channels con-
tained in INTRUDER PATH , and F is a set that contains the intruder’s current
known messages. The first line states that the intruder can eavesdrop on mes-
sages through all the channels in the Fake set and add the deduced content to
its known fact set F. The second line states that the intruder can fake messages
based on known facts and send them to other entities. The remaining lines state
that the intruder can deduce new facts based on known messages through the
Deduce channel, and then add these deduced new facts to its known fact set F.
If the intruder can deduce the plaintext of a message (defined as f==data), it
indicates a data leakage scenario.

128 W. Lin et al.

Finally, we give the complete definition of the intruder process as below,
where IF represents the set of facts the intruder can get initially:

Intruder = Intruder0 (IF)
IF = {A,B,C,D,E, prki, tagi}

4 Implementation and Verification

In this section, we use the model checking tool PAT to implement the model
we constructed in Sect. 3 and then verify seven properties of the model. The
verification results are shown at the end of this section.

4.1 Implementation

First, we give a brief introduction of the syntax and definitions of PAT as below:

– #define goal value == 1; It defines a proposition named goal that evaluates
to true only when the variable named value is equal to 1.

– var a = 1; It defines a global variable named a and assigns it the value 1.
– enum{a,b}; It defines two enumeration constants named a and b.
– channel c 0; It defines a channel named c with a buffer size of 0, indicating

that it is for synchronous communication. The buffer size of the channel must
be greater than or equal to 0.

– # assert P() deadlockfree; It defines an assertion to check whether the
process P will go into a deadlock state with a built-in primitive in PAT.

– # assert P() reaches goal; It defines an assertion to check whether the pro-
cess P will go into a state, where the property named goal is satisfied.

– # assert P() | = [] ! F; It defines an assertion to check whether the process
P can never reach a state where the property F holds.

4.2 Properties Verification

Property 1: Deadlock Freedom
The deadlock state refers to the situation where the system is continuously
blocked and unable to perform any actions. We can use the verification primitive
provided by PAT to check this property. The verification primitive is as follows:

assert SYSTEM deadlockfree;

Property 2: Divergence Freedom
Divergence refers to the system being trapped in an infinite loop and continu-
ously consuming resources secretly. We also use the primitive provided by PAT
to check this property. The verification primitive is as follows:

assert SYSTEM divergencefree;

Formalization and Verification of MQTT-SN Communication Using CSP 129

Property 3: Data Reachability

Data Reachability refers to the ability that all the messages published by the
clients and all the requests sent by the clients can be successfully received
and processed by the broker server. We define a state with a variable called
Data Reachability Success to indicate that this property is satisfied and then
use assert to check whether the model can reach this state.

#define Data Reachability Success data reachability == true;
#assert SYSTEM reaches Data Reachability Success;

Property 4: Client Security

Client Security refers to the situation where intruders cannot impersonate pub-
lishers or subscribers to communicate with other entities in the system. We define
a state called Client Fake Success to indicate that the system is in a state where
intruders can successfully impersonate clients. Then we use an assert statement
with the always symbol [] defined in PAT to check whether the model can ever
reach this state.

#define client fake success (pub fake success || sub fake success);
#define Client Fake Success client fake success == true;
#assert SYSTEM | = []! Client Fake Success;

Property 5: Gateway Security

Gateway Security refers to the state in which intruders are unable to pretend to
be gateways. Similarly, we define a state called Gateway Fake Success and then
check whether the system will never enter into this state.

#define gateway fake success (gwp fake success || gws fake success);
#define Gateway Fake Success gateway fake success == true;
#assert SYSTEM | = []! Gateway Fake Success;

Property 6: Broker Security

Broker Security stands for the situation where intruders cannot impersonate
brokers to communicate in the system. Similarly, we define a state called Bro-
ker Fake Success and check by using an assert statement.

#define Broker Fake Success broker fake success == true;
#assert SYSTEM | = []! Broker Fake Success;

Property 7: Data Leakage
Data leakage refers to the situation where intruders can obtain, use or share
plaintext data during the communication process, which is not allowed in a safe

130 W. Lin et al.

system. Protecting data privacy and confidentiality is an important issue for
WSN. We define a state called Data Leakage Success to indicate the state where
intruders can access the plaintext data.

#define Data Leakage Success data leakage success == true;
#assert SYSTEM | = []! Data Leakage Success;

4.3 Verification Results

According to our definitions and assertions of different properties, we verify our
model in PAT. The verification results are shown in Fig. 6. We can see that the
seven properties are all valid.

Fig. 6. Verification Results in PAT

This means that our system will never run into a deadlock or divergence state
and all the clients can get the data they want. In addition, it indicates that the
intruder cannot pretend to be a normal entity during communication and there
is no risk of leaking data in our system.

5 Conclusion and Future Work

This paper analyzes and formalizes the main components of MQTT-SN commu-
nication. The MQTT-SN protocol does not specify security measures to main-
tain lightweight, so this paper introduces the ChaCha20-Poly1305 algorithm as
a security guarantee. Then, we list seven properties that need to be verified
including deadlock freedom, divergence freedom, data reachability, client secu-
rity, gateway security, broker security, and data leakage. Moreover, we use the
model checker PAT to verify the above properties. According to the verification
results, we can summarize that all these properties are satisfied in our model.

When modeling the MQTT-SN protocol communication system, this paper
considers the possible attack behaviors that may be encountered in the real envi-
ronment, such as eavesdropping and forgery. However, in practical applications,
there are more types of attacks that may weaken the security of the MQTT-SN
communication, such as DDoS attacks and sinkhole attacks [4,17]. In the future,
more attack behaviors can be introduced to enrich the intruder process.

Formalization and Verification of MQTT-SN Communication Using CSP 131

Acknowledgements. This work was partially supported by the National Key
Research and Development Program of China (No. 2022YFB3305102), the National
Natural Science Foundation of China (Grant No. 62032024), the “Digital Silk
Road” Shanghai International Joint Lab of Trustworthy Intelligent Software (No.
22510750100), and Shanghai Trusted Industry Internet Software Collaborative Inno-
vation Center.

References

1. Kandris, D., Nakas, C., Vomvas, D., Koulouras, G.: Applications of wireless sensor
networks: an up-to-date survey. Appl. Syst. Innov. 3(1) (2020)

2. Sharma, S., Kaur, A.: Survey on wireless sensor network, its applications and issues.
J. Phys: Conf. Ser. 1969(1), 12042 (2021)

3. Stanford-Clark, A., Truong, H.L.: MQTT for sensor networks (MQTT-SN) proto-
col specification. Int. Bus. Mach. (IBM) Corporation version 1(2), 1–28 (2013)

4. Avila, K., Sanmartin, P., Jabba, D., Gómez, J.: An analytical survey of attack
scenario parameters on the techniques of attack mitigation in WSN. Wirel. Pers.
Commun. 122, 3687–3718 (2022)

5. Park, C.S., Nam, H.M.: Security architecture and protocols for secure MQTT-SN.
IEEE Access 8, 226422–226436 (2020)

6. Roldán-Gómez, J., Carrillo-Mondéjar, J., Castelo Gómez, J.M., Ruiz-Villafranca,
S.: Security analysis of the MQTT-SN protocol for the internet of things. Appl.
Sci. 12(21), 10991 (2022)

7. Diwan, M., D’Souza, M.: A framework for modeling and verifying iot communi-
cation protocols. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.) SETTA 2017.
LNCS, vol. 10606, pp. 266–280. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69483-2 16

8. Sadio, O., Ngom, I., Lishou, C.: Lightweight security scheme for MQTT/MQTT-SN
protocol. In: 2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS), pp. 119–123. IEEE (2019)

9. Kao, T., Wang, H., Li, J.: Safe MQTT-SN: a lightweight secure encrypted commu-
nication in IoT. J. Phys. Conf. Ser. 012044. IOP Publishing (2021)

10. De Santis, F., Schauer, A., Sigl, G.: ChaCha20-Poly1305 authenticated encryption
for high-speed embedded iot applications. In: Design, Automation and Test in
Europe Conference and Exhibition (DATE), pp. 692–697. IEEE (2017)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International,
Upper Saddle River (1985)

12. National University of Singapore: PAT: Process Analysis Toolkit (2007). https://
pat.comp.nus.edu.sg/

13. Sun, J., Liu, Y., Dong, J.S.: Model checking CSP revisited: introducing a process
analysis toolkit. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp.
307–322. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-
8 22

14. Xu, J., Yin, J., Zhu, H., Xiao, L.: Modeling and verifying producer-consumer com-
munication in Kafka using CSP. In: 7th Conference on the Engineering of Computer
Based Systems, pp. 1–10. ACM (2021)

15. Lowe, G., Roscoe, B.: Using CSP to detect errors in the TMN protocol. IEEE
Trans. Softw. Eng. 23(10), 659–669 (1997)

https://doi.org/10.1007/978-3-319-69483-2_16
https://doi.org/10.1007/978-3-319-69483-2_16
https://pat.comp.nus.edu.sg/
https://pat.comp.nus.edu.sg/
https://doi.org/10.1007/978-3-540-88479-8_22
https://doi.org/10.1007/978-3-540-88479-8_22

132 W. Lin et al.

16. Chen, S., Li, R., Zhu, H.: Formalization and verification of group communication
CoAP using CSP. In: Shen, H., et al. (eds.) PDCAT 2021. LNCS, vol. 13148, pp.
616–628. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96772-7 58

17. Abidoye, A.P., Obagbuwa, I.C.: DDoS attacks in WSNs: detection and counter-
measures. IET Wirel. Sens. Syst. 8(2), 52–59 (2018)

https://doi.org/10.1007/978-3-030-96772-7_58

Detecting Road Tunnel-Like Environments
Using Acoustic Classification for Sensor

Fusion with Radar Systems

Nikola Stojkov1(B) , Filip Tirnanić2, and Aleksa Luković2

1 Faculty of Technical Sciences, Novi Sad, Serbia
nikola.stojkov@outlook.com

2 Novi Sad, Serbia

Abstract. Radar systems equipped with Misalignment Monitoring and
Adjustment (MM&A) face challenges in accurately functioning within
complex environments, particularly tunnels. Standard radar system
design assumes constant background activity of the MM&A throughout
a host vehicle’s ignition cycle, monitoring for misaligned radar sensors
and mitigating issues associated with faulty radar measurements. How-
ever, the presence of tunnels and other unfavorable driving conditions
can influence MM&A, thereby affecting its performance.

To address this issue, it is crucial to develop a reliable method
for detecting tunnel-like environments and appropriately adjusting the
MM&A system. This research paper focuses on the novel acoustic sensing
system called SONETE (Sonic Sensing for Tunnel Environment) for clas-
sification of acoustic signatures recorded by pressure zone microphone to
accurately identify tunnel environments.

The study aims to explore acoustic features and classification algo-
rithms to distinguish between road and tunnel environment and using
a sensor fusion with radar systems, suspend the MM&A system accord-
ingly. By tackling this problem, the research contributes to the advance-
ment of intelligent transportation systems by enhancing radar technol-
ogy’s robustness in complex environments and ensuring effective MM&A
adjustments in tunnels.

Overall, this paper demonstrates the potential of using acoustic sig-
natures as a complementary sensor for tunnel detection in vehicles where
traditional sensors have limitations.

Keywords: Misalignment monitoring and adjustment · Acoustic
signatures · Classification · Tunnel detection

1 Introduction

The presence of tunnel like environments might affect Advanced Driver Assis-
tance Systems (ADAS). In this study we are focusing on radar systems. One

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 133–152, 2024.
https://doi.org/10.1007/978-3-031-49252-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_11&domain=pdf
http://orcid.org/0009-0004-2160-2411
https://doi.org/10.1007/978-3-031-49252-5_11

134 N. Stojkov et al.

of the features in radar systems is MM&A, which performs a process of assess-
ing and correcting the alignment of radar components to ensure optimal system
performance. Signal reflections in tunnel like environments can result in over-
lapping or delayed signals reaching the radar system, leading to inaccuracies in
target detection and localization. Misalignment in such scenarios can amplify the
effects of signal reflections, making it challenging to distinguish between direct
and reflected signals.

In this study we are exploring use of a complementary sensor for tunnel detec-
tion in order to compensate MM&A challenges in tunnel like environments. We
will explore acoustic phenomena of the sudden change in an acoustic environ-
ment. In order to achieve this, an externally mounted acoustic pressure sensor
proves to be suitable. Selected sensor configuration should remain unaffected by
the tunnel’s geometry, including wall curvature and internal infrastructure such
as Heating, ventilation, and air conditioning (HVAC) systems and piping.

The driver, when listening to the aural landscape before and after the tunnel,
may not be consciously aware of the tunnel’s size or any specific internal char-
acteristics. However, the presence of a tunnel is clearly perceivable throughout
its entire length, with the driver’s reaction time (i.e., resolution) determined by
the capabilities of the human auditory system.

2 Related Studies

Numerous research studies have extensively explored different approaches and
technologies for vehicle localization and tunnel detection. For instance, using
LiDAR sensors and imaging technologies mounted on vehicles to acquire the
geometry and structural information of tunnels while the vehicle is in moving
[23,24,27].

Acoustic and vibration signals have also been effectively utilized for tunnel
detection. Studies have examined the use of microphones to capture these signals
and analyzed their distinct patterns or characteristics [13,28].

Radar sensors integrated in vehicles could be used for tunnel detection by
detecting changes in signal reflections. Researchers have explored diverse radar-
based techniques, including Doppler radar, in order to assess their potential for
tunnel detection [17,21,25].

Moreover, imaging systems have been deployed for tunnel detection, lever-
aging their capabilities to identify tunnel-like environments [1]. Certain research
has focused on utilizing the object elevation property and applying Gaussian
filtering techniques for detecting tunnel environments [7].

These comprehensive research studies highlight the diverse range of tech-
niques and technologies being explored in the field of tunnel detection, effectively
demonstrating the advancements made in this domain.

Detecting Road Tunnel-Like Environments 135

2.1 Discussion of Related Studies

This article shows use of pressure zone microphone (PZM) for tunnel detection
through acoustic signature analysis, and offers some distinct differences com-
pared to the previously mentioned detection methods.

Acoustic pressure variations are accurately captured by pressure zone micro-
phones, which exhibit high sensitivity and can detect even subtle changes in
sound pressure levels. On the other hand, LiDAR, imaging technologies, and
radar sensors utilize different sensing modalities such as light, electromagnetic
waves, or radio waves.

When it comes to tunnel environments, pressure zone microphones are pri-
marily employed to analyze their acoustic signatures or characteristics. This anal-
ysis involves examining the frequency content, amplitude, and temporal patterns
of sound signals collected by these microphones. In contrast, LiDAR, imaging
technologies, and radar sensors focus on capturing the geometric or structural
information of tunnels, rather than directly studying their acoustic properties.
One notable advantage of pressure zone microphones is their ability to provide
real-time monitoring of the acoustic environment while a vehicle is in motion.
This allows for continuous detection and characterization of tunnel-like environ-
ments. Conversely, other detection methods often require periodic measurements
or snapshots of the environment.

It’s important to note that pressure zone microphones can be sensitive to
internal infrastructure elements present in tunnels, such as HVAC systems or
piping. These internal components may introduce additional noise or interfere
with the analysis of acoustic signatures. Therefore, the implementation of noise
filtering algorithms or physical isolation methods becomes necessary to mini-
mize the unwanted effects caused by the internal infrastructure. In contrast,
other detection methods like LiDAR or radar are generally less affected by these
internal infrastructure elements.

Another advantage of pressure zone microphones is relatively low cost com-
pared to specialized LiDAR or radar systems. They are also relatively easy to
install and integrate into existing vehicles or monitoring systems, making them
a cost-effective option for tunnel detection through the analysis of acoustic sig-
natures.

3 Methodology

3.1 Selected Pressure Zone Microphone

Surface-mounted pressure microphone 147AX [6] was used as it is optimized for
testing in the automotive industry. It combines the high precision and stability of
a laboratory microphone with a high level of ruggedness, including the ability to
function properly in the most challenging environment with vibrations, oil mists,
water spray and dirt and dust - and high temperatures up to 125◦C. Microphone
design and other internal parts makes it resilient to shock and vibrations. It
functions well under conditions with vibrations and g-forces from uneven road

136 N. Stojkov et al.

Table 1. 147AX Specifications

Specification Value

Frequency range (±1 dB) 5 to 12.5 kHz
Frequency range (±2 dB) 3.15 to 20 kHz
Dynamic range lower limit 19 dB(A)
Dynamic range upper limit 133 dB
Set sensitivity @ 250 Hz (±2 dB) 42 mV/Pa
Set sensitivity @ 250 Hz (±2 dB) –27 dB re 1V/Pa
Output impedance < 50Ω

Static pressure coefficient @250 Hz, typical –0.02 dB/kPa

surfaces and other sudden directional shifts as encountered in real-life driving
tests.

The provided Table 1 contains specifications of the pressure microphone suit-
able for tunnel detection.

The microphone has a wide frequency range from 5 kHz to 12.5 kHz (±1
dB) and 3.15 kHz to 20 kHz (±2 dB). Tunnels often exhibit specific acoustic
characteristics within certain frequency ranges. By capturing and analyzing the
acoustic signals within these ranges, the microphone can detect and differentiate
tunnel environments from other surroundings.

Tunnels can have varying levels of ambient noise or signal strength. The
microphone has a high dynamic range, with a lower limit of 19 dB(A) and
an upper limit of 133 dB. This wide dynamic range allows the microphone to
capture both low-level ambient sounds and high-intensity sounds within the
tunnel environment.

Sensitivity level at 250Hz is 42 mV/P which is important for detecting the
acoustic signatures specific to tunnels, which may have characteristic frequencies
and amplitudes. The microphone’s sensitivity enables it to capture and analyze
these signals effectively.

Output impedance of less than 50 Ω ensures that the microphone can provide
a strong and stable output signal, allowing for accurate and reliable measure-
ments of the acoustic environment.

Static pressure coefficient of –0.02 dB/kPa at 250Hz indicates its ability to
maintain consistent performance even in the presence of static pressure varia-
tions. This is important in tunnel environments, where air pressure may change
due to factors such as ventilation or vehicle movement.

3.2 Recording Audio Signals

Microphone was placed on the vehicle (Škoda Karoq) at two positions. First
position was on the right side of the vehicle where microphone was exposed
to wind, and second position below back door handle making microphone less

Detecting Road Tunnel-Like Environments 137

Fig. 1. Mišeluk tunnel model.

exposed to wind, see Fig. 5. Recordings of audio signals were done in Mišeluk
tunnel, Novi Sad, Serbia showed in Fig. 1.

Recordings were made in two sessions, respectively to microphone positions,
using a portable multi-channel sound analyzer Voyager at sample rate of 48KHz
[12]. Vehicle speed was in range between 70 Km/h and 80 Km/h. One set of
recordings were in a quiet environment without traffic, and other in a quite busy
environment with other vehicles on the road.

Audio samples were cut into 1 s length to be used in the signal processing
algorithms showed in Fig. 5.

3.3 Time-Frequency Spectrum Analysis

The approach we used to identify tunnel-like environments is through the analy-
sis of the time-frequency spectrum of acoustic signals. In our preliminary exper-
iments, we determined that the presence of a dominant frequency component at
around 1 kHz reliably indicates the presence of a tunnel-like environment.

We analyzed time-frequency spectrum to check the distribution of energy in
the frequency domain over time, see Fig. 2. By capturing the variations in the
spectral content of the acoustic signals, analysis revealed specific patterns and
features associated with tunnel environments. When a vehicle enters a tunnel,
analysis showed that there is a noticeable shift in the time-frequency spectrum
of the acoustic signal. The sudden change in the acoustic environment shows
a distinct shift in the energy distribution across different frequency bands. In
particular, the presence of a dominant frequency component at around 1 kHz
becomes more noticeable when entering a tunnel, see Fig. 2. This frequency com-
ponent can be attributed to the interaction between the vehicle’s motion and
the tunnel’s geometry, resulting in specific resonances or reflections that are
characteristic of tunnel-like environments.

In Fig. 2 we see a dominant frequency component at around 1 kHz. This
was used as a reliable indicator of tunnel presence. Algorithms and techniques
can be developed to automatically detect and analyze the sudden changes in
the time-frequency spectrum, allowing for real-time identification of tunnel-like
environments. By focusing on the distinctive features of tunnel environments,

138 N. Stojkov et al.

Fig. 2. Mel-scale power spectrogram and Short-Time Energy of raw audio sample.

such as the dominant frequency component at around 1 kHz, the research aims
to develop accurate method for tunnel detection based on the analysis of the
time-frequency spectrum of acoustic signals.

3.4 External Influences

Handling of external influences are crucial factors in designing an effective detec-
tion system for tunnel environments. One important aspect considered was the
selection of an appropriate frequency range used. In the case of road and tunnel
detection, it has been determined that the relevant frequency range for capturing
the acoustic signatures is from 500Hz to 2 kHz, see Fig. 6.

By focusing on this frequency range, the system can effectively capture and
analyze the specific acoustic characteristics associated with roads and tunnels.
These frequencies are known to contain vital information related to the road
and tunnel environment, such as reverberations, echoes, and specific resonance
patterns (Figs. 3 and 4).

To ensure accurate detection, frequencies outside of the relevant range were
filtered out. Filtering out frequencies above and below the desired range helps to
eliminate unwanted noise and interference that may arise from external sources,
such as road traffic, wind, or other environmental factors.

Detecting Road Tunnel-Like Environments 139

Fig. 3. Vehicle horn spectrogram.

Fig. 4. Vehicle passing by spectrogram.

3.5 Data Collection Process

The audio processing pipeline for tunnel detection involved several steps. First,
audio samples with a duration of 1 s were re-sampled from the original 48 kHz
to 8 kHz, which had been found to yield good results, and also filter some noise
out.

Next, Mel-frequency spectrograms (MELs) were computed from the re-
sampled audio samples. The MEL spectrograms represented the spectral energy
distribution of the audio signals across different frequency bands.

140 N. Stojkov et al.

After generating the MEL spectrograms, a filtering operation was applied
to isolate the frequency range of interest. The aim was to focus the analysis on
the relevant frequency components. Specifically, the MEL coefficients outside the
range of 500Hz to 2 kHz were filtered out, see Fig. 6.

Once the filtering was completed, the resulting filtered MEL spectrograms
served as the basis for extracting features using the Mel-frequency cepstral coef-
ficients (MFCCs) technique. The MFCCs are calculated by taking the discrete
cosine transform (DCT) of the logarithm of the filtered MEL spectrograms.

These steps were performed using the Python programming language [16],
which provided a versatile and efficient environment for audio data processing.

Several Python libraries were used to streamline the various steps. The scikit-
learn library [14] played a crucial role in providing powerful tools for data pre-
processing, feature extraction, and machine learning algorithms.

The scipy library [20] proved invaluable for its comprehensive suite of signal
processing functions. These functions were utilized for tasks such as Fourier
transforms, filtering operations.

A key component of the data collection process was the utilization of the
librosa library [11], which is specifically designed for audio and music signal
analysis. Librosa provided a high-level interface and a wealth of functionality
tailored for tasks such as audio loading, resampling, spectrogram computation,
and feature extraction. Resulting data was shown via matplotlib library [8].

By following this pipeline, the system was able to preprocess the audio sam-
ples, extracting MFCC features from the filtered MEL spectrograms within the
relevant frequency range of 500Hz to 2 kHz, see Fig. 6 and Fig. 7. These MFCC
features served as valuable inputs for subsequent analysis, classification, and
detection algorithms, enabling the system to effectively differentiate tunnel-like
environments based on their acoustic signatures.

These below formulas describe the mathematical operations involved in com-
puting the MEL spectrogram and extracting the MFCC features:

– Computing the MEL Spectrogram:
• Apply the Short-Time Fourier Transform (STFT) to audio signal x(t):

X(n, ω) =
∑N−1

m=0 x(m) · w(m − n) · e−jωm

(This is a simplified equation which assumes that the audio signal is zero
outside the range of 0 to N − 1, where N is the length of the window.
This is a frame-based approach, where the signal is divided into frames
of fixed length.)

• Compute the magnitude spectrum |X(n, ω)|.
• Apply a Mel filterbank to the magnitude spectrum:

S(m, t) =
∑N/2

ω=0 H(m,ω) · |X(n, ω)|2
• Apply a logarithmic compression to the MEL spectrogram: S(m, t) =
log(1 + S(m, t))

– Extracting MFCC Features:
• Apply the Discrete Cosine Transform (DCT)

S(m, t): Y (p, t) =
∑M−1

m=0 C(m, t) · cos (
π
M (m + 0.5)p

)

Detecting Road Tunnel-Like Environments 141

(The equation calculates each MFCC coefficient Y (p, t) by summing
the product of the Mel-scaled filterbank energies or log-compressed
spectrogram coefficients C(m, t) and the cosine of a specific argument
π
M (m + 0.5)p. The index m iterates over the filterbank or spectrogram
coefficients, and M represents the total number of filters or coefficients.)

• Select a subset of the resulting DCT coefficients Y (p, t) to represent the
MFCC features.

4 Analysis and Results

In this section, we present the results of our study on road and tunnel acoustic
signature classification combined with Principal Component Analysis (PCA).
We begin by providing a detailed analysis of the obtained data, followed by a
discussion of the implications and reliability of our findings.

The dataset used for this study consisted of audio spectrograms extracted
from road and tunnel environments. Each spectrogram was processed to extract
relevant features, and PCA was applied to reduce the dimension of the data.
The resulting principal components represented the most informative aspects of
the audio signals Fig. 5. A total of 280 samples were available, with 200 samples
allocated for training and 80 samples reserved for testing the performance of the
classification models.

Firstly, the data was scaled using the RobustScaler, which helps normalize
the features and make them less sensitive to outliers. This step was crucial to
ensure that all features have a similar scale and avoid biasing the classification
models.

4.1 Principal Component Analysis

After scaling, PCA (Fig. 9) was applied to reduce the dimensionality of the
feature space. PCA, short for Principal Component Analysis, is a widely used
dimensionality reduction technique that transforms the data into a new set of
uncorrelated variables called principal components [5]. This transformation is
achieved by finding linear combinations of the original features that capture the
maximum variance in the data. By doing so, PCA helps to extract the most
important information while reducing the dimensionality of the dataset.

In the specific case of the PCA accuracy plot (Fig. 8), which depicts the
performance of PCA for different numbers of components using k-fold cross-
validation, an interesting observation can be made. Initially, as the number of
components increases, there is a noticeable improvement in the accuracy of the
PCA-based model. This suggests that the early principal components capture
the essential information that contributes to accurate classification or predic-
tion. However, as the number of components continues to increase, the improve-
ment in accuracy becomes less substantial. Beyond a certain threshold, typically
around 50 components in this case, the accuracy curve begins to flatten out,

142 N. Stojkov et al.

Fig. 5. Audio signal classification process. [2–4,6,9,10,12,19,22,26]

Detecting Road Tunnel-Like Environments 143

Fig. 6. Mel spectrogram for road and tunnel.

Fig. 7. Signals for classification.

144 N. Stojkov et al.

indicating that additional components contribute less significantly to the over-
all performance. This suggests that a substantial portion of the discriminatory
information is captured within the first 50 components, and incorporating more
components provides diminishing returns in terms of accuracy improvement.

This finding reinforces the notion that PCA effectively captures the most rel-
evant and informative aspects of the data, allowing for dimensionality reduction
without sacrificing much accuracy. By retaining a subset of the most important
principal components, we can achieve a compact representation that retains the
discriminatory power necessary for accurate classification or prediction tasks.

4.2 Classification

Five different classification models were employed in this study: Logistic Regres-
sion, Support Vector Machine with c-support vector classification (SVM/SVC),
K-Nearest Neighbors (KNN), Gaussian Naive Bayes (NB), and Random Forest.
Each model was trained using the training dataset and evaluated on the test
dataset.

The performance of each classification model was assessed using various eval-
uation metrics, including accuracy, precision, recall, and F1-score. Confusion
matrices were also generated to visualize the classification results, see Table 2.

The Logistic Regression model achieved a high accuracy of 98.75% on the
test dataset. The precision, recall, and F1-score for both road and tunnel classes
were consistently high, indicating reliable classification performance.

The SVM model demonstrated a strong performance with an accuracy of
95.62%. It exhibited balanced precision, recall, and F1-score for both road and
tunnel classes, suggesting effective discrimination between the two classes.

The KNN model yielded an accuracy of 70% on the test dataset. While it
achieved a high recall for the tunnel class, its precision and F1-score were rela-
tively lower for both road and tunnel classes, indicating some misclassifications.

The Gaussian NB model attained an accuracy of 83.75%. It demonstrated a
higher precision and F1-score for the road class compared to the tunnel class.
However, its recall for the tunnel class was notably higher, suggesting better
identification of tunnel audio samples.

The Random Forest model achieved an accuracy of 80% on the test dataset.
It exhibited balanced precision, recall, and F1-score for both road and tunnel
classes, indicating reliable classification performance.

4.3 Results Overview

The results indicate that both Logistic Regression and SVM models outper-
formed the KNN, Gaussian NB, and Random Forest models in accurately clas-
sifying road and tunnel audio samples. Logistic Regression showed the highest
accuracy, precision, recall, and F1-score, indicating its suitability for audio sig-
nature classification in road and tunnel environments.

Detecting Road Tunnel-Like Environments 145

The KNN model exhibited lower accuracy and precision, suggesting its limi-
tations in effectively distinguishing between road and tunnel classes. The Gaus-
sian NB and Random Forest models achieved moderate accuracies, with slightly
varying precision, recall, and F1-scores for road and tunnel classes. These mod-
els may be suitable for specific applications or when a balanced performance is
desired.

Overall, the findings presented suggest that audio signature classification for
environments like road and tunnel can be effectively accomplished using Logistic
Regression or SVM (Fig. 10) models. Further research could focus on refining
and optimizing these models, as well as exploring additional feature extraction
techniques to improve classification performance.

Analysis of PCA component cumulative variance (Fig. 9) shows an interest-
ing trend. Initially, as the number of principal components increases, there is
a rapid increase in the cumulative variance explained. This indicates that the
early components capture the majority of the variability in the data.

Fig. 8. PCA accuracy for N components.

However, we observed a diminishing rate of increase in the cumulative vari-
ance. We reach a point where adding additional components contributes only
marginally to the cumulative variance explained. In fact, beyond a certain thresh-
old, as shown in Fig. 9, the curve becomes nearly linear.

This suggests that a significant amount of information of the data is captured
by a relatively small number of principal components. These components rep-
resent the most dominant and essential features that characterize the acoustic
signatures of tunnel environments. As we incorporate more components beyond
this critical threshold, the additional information gained becomes increasingly
marginal.

146 N. Stojkov et al.

Fig. 9. Principal component analysis.

Fig. 10. Confusion matrix of Logistic Regression and SVM.

5 Misalignment Monitoring and Adjustment for Radar
Systems

Monitoring and adjusting the alignment of radar systems is a critical process
aimed at optimizing their performance. Radar systems consist of various hard-
ware components, such as antennas, transmitters, receivers, and signal process-
ing modules, all of which need to be properly aligned for accurate and reliable
operation.

Misalignment in radar systems can result from mechanical vibrations, envi-
ronmental conditions, installation errors, or component degradation over time.
These misalignments can have detrimental effects on system performance,

Detecting Road Tunnel-Like Environments 147

Table 2. Model evaluation.

Sample Model Accuracy Inference time

1 sec LogisticRegression 98.75% ∼ 1 ms
SVC 95.625% ∼ 15.6 ms
GaussianNB 83.75% ∼ 1 ms
RandomForest 80% ∼ 3 ms
K-Nearest Neighbors 70% ∼ 130.9 ms

0.5 sec LogisticRegression 97.5% ∼ 1 ms
SVC 93.7% ∼ 10.6 ms
GaussianNB 86.8% ∼ 1 ms
RandomForest 81.8% ∼ 2 ms
K-Nearest Neighbors 73.1% ∼ 80.9 ms

0.1 sec LogisticRegression 94.3% ∼ 1 ms
SVC 88.1% ∼ 5.6 ms
GaussianNB 61.8% ∼ 1 ms
RandomForest 76.8% ∼ 3 ms
K-Nearest Neighbors 76.2.1% ∼ 12.9 ms

including reduced detection range, inaccurate target localization, degraded sig-
nal quality, and increased false alarms.

Hence, it is essential to assess and correct misalignment in radar systems
to ensure their effectiveness. This can be achieved through various techniques,
such as sensor-based measurements, optical alignment systems, or signal analysis
methods. These techniques enable operators or automated systems to analyze
and identify the presence and extent of misalignment. The ultimate goal of this
monitoring and adjustment process is to secure maximum accuracy, sensitivity,
and reliability in radar system operations.

By employing rigorous analysis and assessment, radar system misalignment
can be properly diagnosed and addressed. Findings from such analysis allow
for informed conclusions and the development of effective alignment strategies.
This comprehensive approach guarantees that radar systems operate at their
highest potential, enabling them to fulfill their intended functions with optimal
performance.

5.1 Environment Impact

When a vehicle is traveling trough a tunnel, several factors come into play that
can affect the alignment and performance of radar systems such are: signal reflec-
tions and attenuation, electromagnetic interference etc.

Tunnels are enclosed environments with reflective surfaces, such as walls and
ceilings, which can cause signal reflections and multi-path propagation. These
reflections can result in overlapping or delayed signals reaching the radar system,

148 N. Stojkov et al.

leading to inaccuracies in target detection and localization. Misalignment in such
scenarios can amplify the effects of signal reflections, making it challenging to
distinguish between direct and reflected signals.

The presence of walls and other structures in tunnels can cause signal atten-
uation, leading to a decrease in signal strength. This attenuation can reduce the
effective range and sensitivity of the radar system, making it more difficult to
detect and track targets accurately.

Tunnels often have electrical infrastructure, such as lighting, ventilation sys-
tems, and power cables, which can generate electromagnetic interference (EMI).
EMI can introduce noise and distortions into the radar signals, affecting the
quality and reliability of the measurements.

5.2 Mitigate Issues of Misalignment in Tunnel Environments

One of the mitigation of issues with misalignment of radar systems in tunnel like
environments, is to provide information of environment to the system in order
to incorporate environmental compensation techniques. The radar system can
adapt to the specific conditions inside the tunnel, compensating for signal loss
and addressing the challenges posed by signal reflections and multipath propa-
gation. This can help improve the quality of radar measurements and mitigate
the impact of misalignment-induced errors.

We propose in this paper novel acoustic system called SONETE [18] (Sonic
Sensing for Tunnel Environment) for automotive diagnostics.

Fig. 11. Sonete system. [15]

Assistance and driving functions, for example, lane keeping or automated
driving, require information about the static and dynamic environment of a
vehicle. Usually this information is available trough a sensor data fusion, where
information about different environments is available. Here we add SONETE
(Fig. 11) as a complementary sensor to a data fusion to ensure that information
about vehicle tunnel entrance is available, thus using sensor data fusion to create
a comprehensive view of the vehicle’s surrounding.

Utilizing information of tunnel presence, Fig. 12, radar system can switch
off MM&A feature while the vehicle is traversing trough the tunnel, thus not
degrading performance of the system when vehicle exits the tunnel.

Detecting Road Tunnel-Like Environments 149

Fig. 12. Mitigate issues of MM&A in tunnel environments.

5.3 Limitations

The presented solution of using PZMs for tunnel detection through acoustic sig-
nature analysis has provided valuable insights and plausibility. However, it is
important to acknowledge several limitations that should be taken into consid-
eration when interpreting the results and guiding future research.

We analyzed acoustic signatures of a specific tunnel “Mišeluk”, and in order to
enhance the robustness of the SONETE system, it is crucial to gather recordings
from more tunnels with varying characteristics. This would involve considering
tunnels of different sizes, materials, traffic conditions, and geographical locations.
With this, proposed approach can be better evaluated and its applicability to a
wider range of tunnel environments can be assessed.

Placement of the PZM we believe can impact the overall system performance
and classification. Optimal placement of the PZM might vary depending on fac-
tors such as the vehicle type. Therefore, further investigations will be needeed
to explore the effects of different PZM placements to determine the most effec-
tive and reliable positioning for capturing tunnel acoustic signatures. This would

150 N. Stojkov et al.

involve systematically evaluating the influence of microphone location and ori-
entation on the accuracy and consistency of the collected audio data.

The analysis and processing of the audio data in this study were performed
on a Windows based machine (Windows PC) with Intel I7-11850H and 32GB
of RAM memory, using Python and relevant libraries. However, it is crucial to
assess the feasibility and performance of the proposed approach on embedded
systems or real-time monitoring platforms. Evaluating the algorithm’s implemen-
tation on resource-constrained devices would provide insights into its practical
viability for on-board vehicle systems or embedded monitoring systems.

6 Conclusion

Time-frequency spectrum analysis of road and tunnel audio signals, showed the
potential of utilizing acoustic signatures for classification of tunnel like environ-
ments, thus implying the use of PZMs for tunnel detection plausible.

In this paper we used information of the environment, gathered from a pro-
posed novel SONETE system, to enhances the robustness of radar technology
in complex environments and ensures effective MM&A adjustments in tunnels,
where traditional sensors often encounter limitations.

Recordings from other tunnels with varying characteristics should be gath-
ered in order to enhance the robustness of the SONETE system. This would
involve considering tunnels of different sizes, materials, traffic conditions, and
geographical locations. With this, proposed approach can be better evaluated
and its applicability to a wider range of tunnel environments can be assessed.

In conclusion, this research paper highlights the significance of addressing
the challenges faced by radar systems equipped with Misalignment Monitoring
and Adjustment (MM&A) in complex environments, specifically tunnels.

References

1. Bertozzi, M., Broggi, A., Boccalini, G., Mazzei, L.: Fast vision-based road tunnel
detection. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011. LNCS, vol. 6979, pp.
424–433. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24088-
1_44

2. Bhandari, A.: Understanding & interpreting confusion matrices for machine learn-
ing (2023). https://cdn.analyticsvidhya.com/wp-content/uploads/2020/04/Basic-
Confusion-matrix.png

3. CarSized: Skoda karoq rear view image. (2023). https://www.carsized.com/
resources/skoda/karoq/d/2017/ra_299000000_skoda-karoq-2017-rear-view_4x.
png

4. Cheng, C.: Towards data science (2023). https://miro.medium.com/v2/resize:fit:
596/1*QinDfRawRskupf4mU5bYSA.png

5. Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space.
London, Edinburgh, Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901). https://
doi.org/10.1080/14786440109462720

https://doi.org/10.1007/978-3-642-24088-1_44
https://doi.org/10.1007/978-3-642-24088-1_44
https://cdn.analyticsvidhya.com/wp-content/uploads/2020/04/Basic-Confusion-matrix.png
https://cdn.analyticsvidhya.com/wp-content/uploads/2020/04/Basic-Confusion-matrix.png
https://www.carsized.com/resources/skoda/karoq/d/2017/ra_299000000_skoda-karoq-2017-rear-view_4x.png
https://www.carsized.com/resources/skoda/karoq/d/2017/ra_299000000_skoda-karoq-2017-rear-view_4x.png
https://www.carsized.com/resources/skoda/karoq/d/2017/ra_299000000_skoda-karoq-2017-rear-view_4x.png
https://miro.medium.com/v2/resize:fit:596/1*QinDfRawRskupf4mU5bYSA.png
https://miro.medium.com/v2/resize:fit:596/1*QinDfRawRskupf4mU5bYSA.png
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720

Detecting Road Tunnel-Like Environments 151

6. GRAS: 147AX CCP rugged pressure microphone (2023). https://www.
grasacoustics.com/products/measurement-microphone-sets/constant-current-
power-ccp/product/806-147ax

7. Gupta, S., Debata, R.R.: Tunnel detection for automotive radar using object eleva-
tion trends and gaussian filtering. In: 2022 1st International Conference on Infor-
matics (ICI), pp. 132–136 (2022). https://doi.org/10.1109/ICI53355.2022.9786874

8. Hunter, J.D.: Matplotlib: A 2d graphics environment. Comput. Sci. Eng. 9(3), 90
(2007)

9. Javatpoint: logistic regression in machine learning (2023). https://miro.medium.
com/v2/resize:fit:596/1*QinDfRawRskupf4mU5bYSA.png

10. KGP, K.I.: Naive bayes algorithm (2023). https://editor.analyticsvidhya.com/up-
loads/23385Capture6.PNG

11. McFee, B., et al.: Librosa: audio and music signal analysis in python. In: Proceed-
ings of the 14th Python in Science Conference, vol. 8 (2015)

12. Microflown: Voyager portable measuring systems (2023). https://www.microflown.
com/products/portable-measuring-systems/voyager

13. Nedelchev, K., Gieva, E., Kralov, I., Ruskova, I.: Investigation of the change of
acoustic pressure in an element of acoustic barrier with an elliptical shape. Acous-
tics 5, 46–56 (2022). https://doi.org/10.3390/acoustics5010003

14. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

15. PngWing: Skoda karoq car (2023). https://w7.pngwing.com/pngs/355/475/
png-transparent-volkswagen-%C5%A0koda-auto-%C5%A0koda-karoq-car-%C5
%A0koda-fabia-vehicle-rim-metal.png

16. Python core team: python: a dynamic, open source programming language. Python
software foundation (2020). https://www.python.org/, python version 3.9

17. Sim, H., Lee, S., Lee, B.H., Kim, S.C.: Road structure classification through artifi-
cial neural network for automotive radar systems. IET Radar, Sonar Navig. 13(6),
1010–1017 (2019)

18. Stojkov, N.: Tunnel detection github repository (2023). https://github.com/nikola-
winmaker/tunnel_detection

19. Vashist, A.: Random forest classification (2023). https://www.fromthegenesis.com/
wp-content/uploads/2018/06/RanFore.jpg

20. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in
python. Nat. Methods (2020). https://doi.org/10.1038/s41592-019-0686-2

21. Wang, K., et al.: An imaging algorithm for obstacle detection of tunnel horizontal
transporter based on millimeter wave radar. In: 2022 4th International Academic
Exchange Conference on Science and Technology Innovation (IAECST), pp. 1388–
1393 (2022). https://doi.org/10.1109/IAECST57965.2022.10062270

22. Xilinx: Support vector machine (2023). https://www.xilinx.com/content/xilinx/
en/developer/articles/exploring-support-vector-machine-acceleration-with-
vitis/_jcr_content/root/parsys/xilinximage.img.png/1571676692198.png

23. Yanase, R., Hirano, D., Aldibaja, M., Yoneda, K., Suganuma, N.: Lidar- and radar-
based robust vehicle localization with confidence estimation of matching results.
Sensors 22(9), 3545 (2022). https://doi.org/10.3390/s22093545, http://dx.doi.org/
10.3390/s22093545

24. Yi, C., et al.: Hierarchical tunnel modeling from 3d raw lidar point cloud.
Comput.-Aided Des. 114, 143–154 (2019). https://doi.org/10.1016/j.cad.2019.05.
033, https://www.sciencedirect.com/science/article/pii/S0010448519302064

https://www.grasacoustics.com/products/measurement-microphone-sets/constant-current-power-ccp/product/806-147ax
https://www.grasacoustics.com/products/measurement-microphone-sets/constant-current-power-ccp/product/806-147ax
https://www.grasacoustics.com/products/measurement-microphone-sets/constant-current-power-ccp/product/806-147ax
https://doi.org/10.1109/ICI53355.2022.9786874
https://miro.medium.com/v2/resize:fit:596/1*QinDfRawRskupf4mU5bYSA.png
https://miro.medium.com/v2/resize:fit:596/1*QinDfRawRskupf4mU5bYSA.png
https://editor.analyticsvidhya.com/up-loads/23385Capture6.PNG
https://editor.analyticsvidhya.com/up-loads/23385Capture6.PNG
https://www.microflown.com/products/portable-measuring-systems/voyager
https://www.microflown.com/products/portable-measuring-systems/voyager
https://doi.org/10.3390/acoustics5010003
https://w7.pngwing.com/pngs/355/475/png-transparent-volkswagen-%C5%A0koda-auto-%C5%A0koda-karoq-car-%C5%A0koda-fabia-vehicle-rim-metal.png
https://w7.pngwing.com/pngs/355/475/png-transparent-volkswagen-%C5%A0koda-auto-%C5%A0koda-karoq-car-%C5%A0koda-fabia-vehicle-rim-metal.png
https://w7.pngwing.com/pngs/355/475/png-transparent-volkswagen-%C5%A0koda-auto-%C5%A0koda-karoq-car-%C5%A0koda-fabia-vehicle-rim-metal.png
https://www.python.org/
https://github.com/nikola-winmaker/tunnel_detection
https://github.com/nikola-winmaker/tunnel_detection
https://www.fromthegenesis.com/wp-content/uploads/2018/06/RanFore.jpg
https://www.fromthegenesis.com/wp-content/uploads/2018/06/RanFore.jpg
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/IAECST57965.2022.10062270
https://www.xilinx.com/content/xilinx/en/developer/articles/exploring-support-vector-machine-acceleration-with-vitis/_jcr_content/root/parsys/xilinximage.img.png/1571676692198.png
https://www.xilinx.com/content/xilinx/en/developer/articles/exploring-support-vector-machine-acceleration-with-vitis/_jcr_content/root/parsys/xilinximage.img.png/1571676692198.png
https://www.xilinx.com/content/xilinx/en/developer/articles/exploring-support-vector-machine-acceleration-with-vitis/_jcr_content/root/parsys/xilinximage.img.png/1571676692198.png
https://doi.org/10.3390/s22093545
http://dx.doi.org/10.3390/s22093545
http://dx.doi.org/10.3390/s22093545
https://doi.org/10.1016/j.cad.2019.05.033
https://doi.org/10.1016/j.cad.2019.05.033
https://www.sciencedirect.com/science/article/pii/S0010448519302064

152 N. Stojkov et al.

25. Yoon, J., Lee, S., Lim, S., Kim, S.C.: High-density clutter recognition and suppres-
sion for automotive radar systems. IEEE Access 7, 58368–58380 (2019). https://
doi.org/10.1109/ACCESS.2019.2914267

26. Zhang, L.: K nearest neighbor illustration (2023). https://www.
researchgate.net/profile/Le-Zhang-61/publication/261052898/figure/fig1/AS:
613879138750464@1523371600052/K-Nearest-Neighbor-Illustration.png

27. Zhen, W., Scherer, S.: Estimating the localizability in tunnel-like environments
using lidar and UWB. In: 2019 International Conference on Robotics and Automa-
tion (ICRA), pp. 4903–4908 (2019). https://doi.org/10.1109/ICRA.2019.8794167

28. Zhu, H.H., Liu, W., Wang, T., Su, J.W., Shi, B.: Distributed acoustic sensing for
monitoring linear infrastructures: Curr. Status Trends. Sens. 22(19), 7550 (Oct
2022). https://doi.org/10.3390/s22197550, http://dx.doi.org/10.3390/s22197550

https://doi.org/10.1109/ACCESS.2019.2914267
https://doi.org/10.1109/ACCESS.2019.2914267
https://www.researchgate.net/profile/Le-Zhang-61/publication/261052898/figure/fig1/AS:613879138750464@1523371600052/K-Nearest-Neighbor-Illustration.png
https://www.researchgate.net/profile/Le-Zhang-61/publication/261052898/figure/fig1/AS:613879138750464@1523371600052/K-Nearest-Neighbor-Illustration.png
https://www.researchgate.net/profile/Le-Zhang-61/publication/261052898/figure/fig1/AS:613879138750464@1523371600052/K-Nearest-Neighbor-Illustration.png
https://doi.org/10.1109/ICRA.2019.8794167
https://doi.org/10.3390/s22197550
http://dx.doi.org/10.3390/s22197550

Comparative Analysis of Uppaal SMC,
ns-3 and MATLAB/Simulink

Muhammad Naeem(B), Michele Albano, Kim Guldstrand Larsen,
and Brian Nielsen

Department of Computer Science, Aalborg University, Aalborg, Denmark
{mnaeem,mialb,kgl,bnielsen}@cs.aau.dk

Abstract. IoT networks connect everyday devices to the internet to
communicate with one another and humans. It is more cost-effective
to analyse and verify the performance of the designed prototype before
deploying these complex networks. Network Simulator 3 (ns-3), MAT-
LAB/Simulink, and Uppaal SMC are three industry-leading tools that
simulate communicating models, each with strengths and weaknesses.
NS3 is suitable for large-scale network simulations, MATLAB/Simulink
is suitable for complex models and data analysis, and Uppaal SMC is
efficient for real-time probabilistic systems with complex timing require-
ments, This paper presents a comparative analysis of NS3 and MAT-
LAB/Simulink and Uppaal SMC, based on a Sigfox-based case study,
focusing on the behaviour of a single Sigfox node. The comparison is
drawn on ease of use, flexibility, and scalability. The results can help
researchers make informed decisions when designing and evaluating sim-
ulation experiments. They demonstrate that the choice of tool depends
on the specific requirements of the simulation project and requires careful
consideration of the strengths and weaknesses of each tool.

Keywords: WSN · Network Simulators · Sigfox · Energy Model ·
Network Modelling · IoT

1 Introduction

The Internet of Things (IoT) has seen significant growth in recent years, leading
to the development of intelligent environments in areas like smart homes, energy,
and industry [8]. As IoT devices are often used in sensitive areas to collect
information and control the environment, designing an efficient model to reduce
the error risk and ensure system security is crucial. Simulating the prototype’s
model during the design process is essential to analyse its performance, identify
flaws, and overcome potential vulnerabilities. Several network simulation tools
are available, but selecting the most suitable one can be difficult.

This paper presents a comparative analysis of three simulation tools: Network
Simulator 3 (ns-3), Uppaal Statistical Model Checker (SMC) [3], and MAT-
LAB/Simulink [6], based on the simulation of an industrial case study aiming
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 153–169, 2024.
https://doi.org/10.1007/978-3-031-49252-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-49252-5_12

154 M. Naeem et al.

to develop an energy-efficient wireless network for monitoring water levels in
drainage lines.

The choice to compare these three tools is driven by their distinct network
simulation and analysis capabilities. ns-3 excels in scalability and efficiency, mak-
ing it ideal for large-scale wireless network simulations. Uppaal SMC’s statis-
tical model checking offers valuable formal verification capabilities, while MAT-
LAB/Simulink’s versatility in handling continuous and deterministic simulations
adds another dimension to the comparison. This study aims to provide valuable
insights into their performance and applicability for simulating energy-efficient
wireless networks. The findings will help researchers and network administrators
select the most suitable tool for their simulation needs.

The analysis involves the utilisation of these different tools to explore multi-
ple aspects, including modelling complexity, simulation time, memory utilisation,
and validation of the energy-efficient wireless network. The objective is to inves-
tigate the strengths and weaknesses of each tool and identify key considerations
in selecting the most suitable tool for applications of this nature.

The rest of this paper is structured in the following manner: Sect. 2 provides
an overview of the Related Work. Section 3 presents the tools overview used in
this study. Section 4 presents the case study, focusing on the Sigfox sensor node.
Subsequently, Sect. 5 describes the case study’s modelling in ns-3, Uppaal SMC,
and MATLAB/Simulink. Section 6 presents a comprehensive comparative anal-
ysis of the tools. Finally, in Sect. 7, we conclude the paper and propose avenues
for future research.

2 Related Work

In recent years, the availability of various network simulation tools has provided
researchers and network administrators with numerous options to choose from.
However, the diversity of tools can complicate selecting the most suitable one
for specific applications [12].

Nayyar and Singh [12] provided a comprehensive review of 31 simulators,
aiming to clarify the features and limitations of each simulator to help new
researchers in selecting the most appropriate simulation tool for their applica-
tions. The authors discussed the architecture of WSN simulators and proposed
evaluation criteria, including the type of simulator, license, platform, ease of
coding, tracing, debugging, popularity, and graphical support. The simulators
were classified into three categories: generic simulators, code-level simulators,
and firmware-level simulators. Generic simulators use high-level programming
languages to simulate networking models but are considered less reliable com-
pared to code-level and firmware-level simulators.

Xian et al. [17] compared OMNet++ simulators against other simulators such
as OPNET and ns-2. The study demonstrated that OMNet++ outperformed
both OPNET and ns-2 in terms of functionalities, including debugging, tracing,
hierarchical modelling, and a powerful simulation library. The authors evaluated
the performance of the simulators by implementing a well-known WSN protocol
called directed diffusion and measuring performance metrics like total run time,

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 155

delivery rate, and memory requirement. The results showed that OMNet++ was
the most powerful and efficient simulator.

In a study by Gnanaselvi [5], a survey was conducted to gain a better under-
standing of the current network simulation tools available and their features.
Bakni et al. [1] presented a methodology for evaluating WSN simulators focus-
ing on energy conservation. Kochhar and Kaur [7] proposed an approach to guide
beginners in choosing an efficient simulator for designing a simulation environ-
ment based on their application area.

Our work presents the first comparative analysis of the network simula-
tion tool ns-3 and MATLAB/Simulink with Uppaal SMC. None of the prior
research considers the use of the model checker, which is a distinct feature in
Uppaal SMC. The comparison is based on applying the three tools in an indus-
trial case study.

3 Tools Overview

This section presents an overview of ns-3, Uppaal SMC and MAT-
LAB/Simulink.

3.1 ns-3

ns-3 is an open-source Discrete Event Simulator (DES) released in 2008 [13].
It offers C++ simulation language with optional Python bindings, making it
highly adaptable. It includes models for wired technologies, such as Ethernet
networks with CSMA/CD protocols, and wireless technologies, like 802.11 MAC-
level and 802.11a physical layer models. Its simulation library focuses on realism
and reusability, allowing researchers to create complex network scenarios. ns-3
also supports NetAnim software, allowing for real-time experiments via emu-
lation. ns-3 is a comprehensive and widely used network protocol design and
evaluation platform because it integrates various simulation tools. The ns-3 sim-
ulator’s basic architecture is depicted in Fig. 1 [15]. The figure shows that users
create simulation programs that define network behaviour, utilising a simulation
library with built-in models for nodes, links, channels, and protocols (ns-3 core).
The engine executes these scripts to simulate the network. Data analysis mod-
ules offer statistics and performance metrics. Simulation outcomes are generated
in a text file that can be analysed using the external graphing tool.

3.2 Uppaal SMC

Statistical model checking (SMC) advances the classic model checking technique
[14]. SMC avoids the state-space exploration problem of the classic model check-
ing, and it also comparatively consumes less time and memory in simulation.
It simulates a model a number of times and uses statistical hypothesis test-
ing for model checking. SMC technique can also estimate probabilistic systems’
quantitative and qualitative properties.

156 M. Naeem et al.

Fig. 1. Framework of NS-3 architec-
ture [15]

Fig. 2. Architecture of Uppaal SMC
[4]

Uppaal SMC is an extension of Uppaal [3], and it models a system using
priced timed automata. Uppaal SMC’s model is based on stochastic and non-
linear dynamic behavioural properties. Figure 2 depicts the Uppaal SMC’s
architecture [4]. The tool’s interface allows users to create automata models in
the editor and run simulations for the system’s verification, validation and quan-
titative analysis. It supports visualising results as plots. The Uppaal SMC exe-
cution engine exploits the stochastic semantics of interacting stochastic hybrid
automata to evaluate the performance queries.

3.3 MATLAB/Simulink

MATLAB/Simulink is a robust simulation methodology, combining MATLAB
for matrix-based computation and Simulink for dynamic system design and sim-
ulation [6]. It offers a graphical programming language, visualisation tools, and
extensibility through MATLAB integration, enabling efficient modelling, simu-
lation, and analysis of diverse systems.

This integration offers researchers and developers in the embedded systems
domain an efficient platform to model, simulate, and analyse complex embedded
systems scenarios. With a graphical programming language and visualisation
tools, MATLAB/Simulink enables the creation of intricate embedded systems
models, including various network topologies and sensor node behaviours.

4 Case Study

The aim of the Distributed ONline monitoring of the Urban waTer cycle
(DONUT) project is to develop a cost and energy-efficient IoT-based network to
monitor the water cycle (See Fig. 3). The Montem Company (a project partner
of the DONUT project) has developed a prototype of a digital wireless sen-
sor network based on the Sigfox transceiver. The prototype includes a Sigfox
transceiver, Atmega controller, ultrasonic sensor, Digital accelerometer, EEP-
ROM, Regulator, and Battery (10,000 mAh). The controller uses the ultrasonic
sensor to measure the water height and then analyses the data to determine
the water height for a cycle. The processed value is stored in the EEPROM

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 157

before being transmitted to the base station through the Sigfox transmitter.
The accelerometer is used to ensure the sensor node’s position. Our project is
focused on modelling the designed prototype’s behaviour using a simulation tool
to analyse the battery lifetime and investigate different transmission strategies
to improve the overall node’s lifetime.

Fig. 3. DONUT-project’s low cast sensor network provides holistic urban water system
insights for better decisions. 200+ sensors monitor the water cycle, from groundwater
to stormwater.

Sigfox is a low-power wide-area network (LPWAN) developed and operated
by Sigfox, a company based in France. The basic structure of the Sigfox network
is shown in Fig. 4. Sensor nodes use binary phase-shift keying modulation to
communicate with the base station in a star topology. A Sigfox node broadcasts
its message, which nearby base stations can receive, and these messages are
then transferred to the Sigfox cloud. From there, they can be accessed by any
IoT platform [16]. Sigfox specifications may vary depending on the region. The
European part is the focus of this case study [16]. Sigfox restricts the messages
a node can transmit to 6 per hour (144 per day) with a maximum payload of
12 bytes to reduce energy consumption. Additionally, nodes can receive up to 4
downlink messages per day.

5 Modelling the Case Study

In this section, we present the modelling of the DONUT case study utilising
different tools, enabling us to conduct a comprehensive comparative analysis.

158 M. Naeem et al.

Fig. 4. Sigfox network Architecture

5.1 Implementation in ns-3

In [11], we have presented a Sigfox module for ns-3, and we also investigate the
DONUT case study. The model is parametric concerning the hardware properties
of the IoT device under research and includes all major energy-consuming states
and actions of a Sigfox node. We built the energy model for the device based on
data from the Sigfox radio specifications and power characteristics. We also used
a novel battery model that considers the self-discharge current. Figure 5 depicts
the class diagram of the C++-based designed Sigfox module, which includes the
classes and functions that implement the core functionalities.

Fig. 5. Class Diagram of Sigfox Module in ns-3 [11]

Sigfox-phy: The sigfox module implementation features a PHY layer abstrac-
tion that models the interference between multiple colliding Sigfox trans-
missions to ensure appropriate behaviour when the simulation features large
deployments. It also computes energy consumed by each state using subclass
sigfox-radio-energy-model (See Fig. 5).

Sigfox-mac: The MAC protocol operates on top of the physical layer. As
shown in Fig. 5, the implementation of this layer is divided into two classes,
EndPointSigfoxMac and GatewaySigfoxMac, which model the MAC protocol
for end node and Gateway separately. The behaviour of a node’s MAC layer

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 159

Fig. 6. Basic structure of the designed model in Uppaal SMC [9]

160 M. Naeem et al.

implements the communication procedures (Uni-directional and Bi-directional),
and it controls transmission strategies using subclass sender (See Fig. 5).

5.2 Implementation in Uppaal SMC

In articles [9,10], we have presented the energy-aware analysis of this case study
by designing and simulating its model in Uppaal SMC. In the developed model,
we only include the sensor node’s behaviour, as the node’s battery lifetime is
unaffected by the remaining network elements following the Sigfox protocol.
Unlike ns-3, we don’t need to develop a complete network to simulate a node’s
behaviour but only a more abstract model capturing the system’s behaviour.

The system’s model includes four sub-process automaton models (Initial,
SensorNode, Self-Discharge, and Scheduler), interconnected through shared
variables and synchronisation channels to model the sensor node’s energy
behaviour effectively. Initial enables all other processes to an active state
using a synchronisation channel, and the Self-Discharge model represents the
battery’s self-discharge behavior. The SensorNode automaton (shown in Fig. 6)
models the behaviour of the Sigfox sensor node, and the Scheduler controls the
actions of the SensorNode. The complete model is presented in paper [9].

The studies also investigate the different transmission strategies to optimise
the battery lifetime. In UPPAAL SMC, as depicted in Fig. 6, users need to have
proficiency in automaton modelling and a basic knowledge of the C language.

5.3 Implementation in MATLAB/Simulink

Figure 7 illustrates the behavioural model of the case study implemented in
Simulink. We use the C Function block from the Simulink Library to build
the Simulink model for the case study. It supports C programming to define the
desired algorithm or functionality.

Fig. 7. Sigfox Sensor Node Energy Model in Simulink

The model comprises five main components: Controller, Sigfox transceiver,
Ultrasonic sensor, Digital Accelerometer, and EnergyModel. The Controller is

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 161

responsible for managing the operations of the active components. A sum block
adds the current consumption by the Sigfox transceiver, Ultrasonic sensor, and
Digital Accelerometer. The EnergyModel utilises the combined system’s current
to update the battery level for every time unit and manage the self-discharge
mechanism. By using a scope block, we can observe the behaviour of combined
current and battery discharge.

6 Comparative Analysis of UPPAAL and ns-3

This section presents the comparative analysis of ns-3, Uppaal SMC, and MAT-
LAB/Simulink, considering tool performance, simulation, validation, and usabil-
ity. The research is based on the DONUT case study.

6.1 Classification of Network Simulation

Article [15] categorises simulations into different classes based on their applica-
tion areas.

Continuous simulation: Continuous simulation is employed for models with
dynamic state variables or parameters that change frequently over time. This
type of simulation finds utility in diverse areas, such as military applications
(e.g., simulating missile trajectories in WSN deployment).

DES: Discrete-event simulation is applied to systems with events occurring at
discrete time intervals. Each change represents an event, with no expected
changes between events.

Stochastic simulation: Stochastic simulation involves modelling probabilistic
systems, such as evaluating telecommunication system latency, traffic flow in
communication networks, and studying climatic changes. Monte Carlo simu-
lation is a specific type of stochastic simulation.

Deterministic simulation: Deterministic simulation is employed in systems
characterised by a lack of randomness. These systems possess pre-known
inputs and yield unique sets of outputs.

Uppaal SMC: Uppaal SMC is a powerful tool that supports various simula-
tions, including continuous, discrete, stochastic, and deterministic simulations
[3]. It uses timed automata to model systems with precise timing and discrete
events, allowing for continuous and discrete behaviour representation. With its
support for continuous simulation, researchers can define clock variables to con-
trol the timing and duration of events. For stochastic simulation, Uppaal SMC
introduces random variables and probability distributions, making it suitable
for modelling systems with uncertainty and probabilistic outcomes. Addition-
ally, Uppaal SMC can perform deterministic simulation, enabling researchers
to precisely control the timing of events and verify the deterministic properties
of real-time systems.

162 M. Naeem et al.

Fig. 8. Discrete and continuous behaviour (a,b) and Probabilistic choice (c) in
Uppaal SMC

Figure 8 depicts a segment of our Uppaal SMC model. Figures 8(a,b) show-
case discrete and continuous behaviours modelling. We update environment vari-
ables (Battery clock) after task completion to simulate discrete behaviour, con-
sidering the time spent at that location. Uppaal SMC supports ordinary differ-
ential equations to model continuous variable evolution while staying at a specific
location. Figure 8(c) illustrates the implementation of a probabilistic choice for
stochastic simulation in Uppaal SMC. The dotted line represents a probabilis-
tic choice, where the model selects the next action based on probability. In our
model, there is a 1% likelihood that the system measurement might be inaccu-
rate. In this scenario, the model reverts to the measuring location. Otherwise, it
will proceed to the following location.

Overall, Uppaal SMC is a versatile tool that provides comprehensive capa-
bilities for analysing a wide range of real-time systems with different behaviours
and uncertainties. One limitation of Uppaal SMC is that its continuous simu-
lation is not as comprehensive as specialised tools like MATLAB/Simulink.

ns-3: ns-3 is a flexible and versatile network simulator that supports various
types of simulation [13]. It can perform continuous simulation through event-
based modelling, approximating continuous behaviour using small time steps.
As a discrete-event simulator, ns-3 follows strict event scheduling for discrete
simulation, making it suitable for modelling systems with specific time intervals
for events.

In ns-3, we use Random Number Generator (RNG) (a built-in class) to model
the probabilistic choice. It supports stochastic simulation by allowing researchers
to introduce random variables and probability distributions. Additionally, ns-3
can perform deterministic simulation, where researchers can control the sequence
of events and verify the deterministic properties of communication networks
and protocols. It offers different algorithms to generate deterministic random
variables.

While ns-3 offers a wide range of capabilities, it is important to note that
continuous simulation in ns-3 is less comprehensive than in specialised contin-
uous simulation tools, and stochastic simulation might require more manual
intervention and configuration.

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 163

MATLAB/Simulink: Simulink is a robust simulation and modelling envi-
ronment that extends the capabilities of MATLAB to support continuous, dis-
crete, stochastic, and deterministic simulation [6]. It excels in continuous sim-
ulation by providing a graphical interface to model and simulate dynamic sys-
tems described by differential equations. Simulink’s solvers can numerically solve
these equations, allowing for the simulation of continuous behaviour over time.
Additionally, researchers can use it to perform discrete simulations by speci-
fying the sample time of blocks in the block diagram, enabling the simulation
of systems with specific time intervals for events. It also supports stochastic
simulation by allowing the introduction of random variables and probability dis-
tributions, and it can perform a deterministic simulation with precise control
over the sequence of events. In this project, we use discrete modelling using an
integer clock and schedule all events based on that, and we use a random variable
to model stochastic behaviour. MATLAB/Simulink model is more abstract and
simple in our case; however, the author [6] claims that building complex models
in MATLAB/Simulink might require more time and effort than programming-
based approaches.

6.2 Simulation Terms (Memory Consumption and Simulation
Time)

The same model’s memory consumption and simulation time can vary depending
on the tool used. Figure 9 compares the tools regarding memory consumption
and execution time while simulating the case study. ns-3 has less memory con-
sumption, while Uppaal SMC has the shortest execution time. MATLAB has
the lowest memory consumption but the longest execution time.

Fig. 9. Memory Consumption and Simulation time

System Configuration Details: The simulations for all models were con-
ducted on a local machine with the following specifications: a MacBook Pro

164 M. Naeem et al.

(2019) workstation equipped with 16 GB 2133 MHz LPDDR3 memory and a
2.4 GHz Quad-Core Intel Core i5 processor. The machine ran macOS Monterey
(Version 12.3.1) as the operating system.

6.3 General Comparison

This section provide a comprehensive comparison of the tools, with an abstract
visual representation in Fig. 10 and a tabulated summary in Table 1. The Table
presents how we categorise the different aspects of modelling a system in the
tools focused on in this study; we’ve given them scores ranging from 0 to 10
(where 0 means challenging to use, and 10 means most accessible to use).

Expertise Required to Model: Uppaal SMC focuses on formal modelling
and verification, making it suitable for researchers with a strong background in
formal methods and automata theory. It also required a basic level of C++ to
model actions behaviour. On the other hand, ns-3 demands a higher level of
programming expertise in C++ and the core architecture of the network and
protocols for developing network simulations. MATLAB/Simulink, in contrast,
provides a higher level of abstraction and requires less programming expertise.

Other Expertise: Modelling in ns-3 only requires only good programming
expertise. Uppaal SMC needs a good knowledge of automata models with
the basic concept of programming to design a system model, and MAT-
LAB/Simulink requires familiarity with Simulink’s interface and its blocks.

Graphical User Interface (GUI) Support: Uppaal SMC provides a user-
friendly GUI that simplifies formal modelling and verification tasks, allowing
users to design and visualise timed automata models. In contrast, ns-3 does not
have a built-in GUI, and users must write network simulations using C++ or
Python, which requires advanced programming expertise. MATLAB/Simulink
provides a complete GUI environment allowing users to visually represent com-
plex system models using blocks and connections. This user-friendly interface
benefits researchers with an engineering or numerical analysis background.

Availability of Good Online Documentation: Online network analysis and
simulation documentation for ns-3 and MATLAB/Simulink is more detailed and
readily available than for Uppaal SMC. The dedicated networking focus and
their active community provide comprehensive tutorials and user guides. Many
built-in libraries and baseline examples are also available to build the basic
structure of the network and standard communication protocols. The specialised
focus of Uppaal SMC on formal modelling and verification may result in limited
specific documentation for network analysis and simulation tasks. But it provides
a good user guide and online support group for efficient model design.

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 165

Table 1. Comparison of Uppaal SMC (U/S), ns-3(N) and MATLAB/Simulink(M/S)

U/S ns-3 M/S

Programming Expertise

No 10

Basic (Conditions, loops, function) 7

Expert (Classes and structures, Pointers, Memory Management) 3

7 3 7

Other Expertise

Only programming skill required 10

Multiple languages required 7

Other modelling technique 3

3 10 3

GUI Support

Advanced 10

Moderate 5

No 0

10 0 10

Availability of good online documentation

BaseLine Examples 10

Built-in libraries 8

Strong Literature Review 6

Week Literature Review 5

Online Support Group 4

User Guide 2

No Help 0

5 10 10

Scalability

Allowed large scale network simulations 10

Allowed but simulation time increase more frequently 7

Partiacialy allowed 3

Not allowed 0

7 10 7

Limitations in model Design

Allowed most of the operation in networks 10

Limited tool set 5

Not allowed 0

5 10 10

Result Visualisation

Optimisation of graphs 10

Graphical Representation & Text Data output 7

Text Data 3

7 3 10

Model Verification

Rich proper language 10

Automatic analysis 8

Model Validation for function requirements 6

Ad Hoc Test Cases as Script 4

Verbose output log enabling extend analysis 2

10 4 4

Documentation of model / Representation of model

Graphical representation 10

Document in the form of blocks or class diagram 5

Code based representation 3

10 5 10

166 M. Naeem et al.

Fig. 10. General Comparison of Uppaal SMC, ns-3 and MATLAB/Simulink

The Sigfox module wasn’t available in ns-3 for this case study, so we mod-
ified and customised a LoRaWan module for Sigfox. We built the models for
MATLAB/Simulink and Uppaal SMC from scratch.

Scalability: Scalability was not within the scope of our case study, but in
general, ns-3 is highly scalable and optimised for large-scale network simula-
tions, making it an excellent option for simulations requiring much scalability.
Uppaal SMC is well-suited for small to medium-sized systems, but its scal-
ability may be limited for large and complex systems. Scalability to the very
large system can be achieved by exploiting the possibility in the newly released
UPPAAL 5.0 of linking to external compiled C-code (this was successfully done
for the simulation of a model of Nothern Jutland of COVID-19 comprising more
than 1 million components) [2]. The scalability of MATLAB/Simulink is gen-
erally good for small to moderate-sized models, but it may have performance
limitations for large-scale simulations involving complex mathematical compu-
tations.

Limitations in Model Design: Both ns-3 and MATLAB/Simulink exhibit
versatility in network analysis, allowing for robust modelling without signifi-
cant design limitations. On the other hand, UPPAAL employs clock variables
in timed automata, which evolve continuously through time derivative rates. It
only supports integer values in clock rates and clock conditional statements.

In this case study, the node takes 4.9 s to gather measurements in the measur-
ing state. However, Uppaal SMC doesn’t support conditions with floating-point
numbers, so we adjusted the base time clock from seconds to desi-seconds. This

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 167

conversion allowed us to represent the condition as 49 desi-seconds instead of
4.9 s. Simulating the node becomes more complicated when the base clock needs
to be reduced to micro or nanoseconds to avoid floating point numbers, and the
simulation time is in multiple years.

Result Visualisation: Uppaal SMC provides result analysis and visualisation
through its built-in plot composer tool. However, it cannot zoom in on specific
sections of the simulation graph for detailed analysis. In comparison, the ns-3
provides simulation results in a text data stream format that requires additional
software like Gnuplot for graphical representations. We use MATLAB to visu-
alise ns-3 simulation results and some simulation results from Uppaal SMC to
highlight a specific plot section. However, MATLAB/Simulink stands out with its
extensive visualisation functions and exceptional versatility in handling diverse
simulation types, making it highly suitable for a wide range of result analysis
and visualisation tasks.

Model Verification: Uppaal SMC is a specialised tool designed explicitly for
formal model checking, making it a powerful choice for testing model correctness.
It uses statistical model-checking techniques to verify if the system behaviour
meets predefined requirements. This tool automatically checks for probabilistic
systems’ reachability, safety, and liveness properties, providing valuable insights
into the model’s correctness.

Pr[<=100∗days](<> Sensors(0).Listening && r>20) (1)

Equation 1 illustrates a query in Uppaal SMC, verifying the model’s com-
pliance with the requirement that it start listening (to receive a message) 20 s
after sending an up-link. In this query, the clock variable r is a timer initiated
upon transmitting the up-link frame. The query executes the model for hundred
days to compute the possibility of reaching the state with the greater value of
r. In this case, the calculated probability is zero, so the model is correct.

In contrast, ns3 and Simulink do not offer statistical model-checking capabil-
ities like Uppaal SMC. However, researchers can still create test cases, analyse
simulation results, and validate the system’s behaviour against expected out-
comes.

Documentation of Model/Representation of Model: We need good doc-
umentation of a designed model to present in front of others for many reasons
(Publishing, collaborating or proving). The documentation must be graphical
and more generic to make it more understandable for people from all domains.

Comparatively, the model in Uppaal SMC and MATLAB/Simulink has a
graphical representation of the system’s behaviour, and it is easy to convert into
documentation in the form of states and actions.

168 M. Naeem et al.

7 Conclusions and Future Work

Uppaal SMC is a powerful tool for verifying early-phase design and identify-
ing vulnerabilities in distributed communication systems. Its statistical model-
checking capabilities ensure the correctness and reliability of the model, partic-
ularly benefiting users with expertise in Automaton models. ns-3 stands out for
large-scale network simulations. Its event-driven architecture and visualisation
modules are ideal for extensive network simulations and analysis. It is particu-
larly well-suited for users proficient in C++ programming with a solid under-
standing of communication networks and protocols, enabling them to perform
comprehensive network analyses. MATLAB/Simulink is versatile for simulat-
ing and testing communication networks. It has powerful simulation capabilities
and visualisation functions, making analysis and visualisation of results easy. It’s
flexible for different types of simulations and result analysis. It is more suitable
for users who know basic C code function blocks.

Future work can explore the co-simulation of Uppaal SMC, ns-3, and MAT-
LAB/Simulink to leverage their strengths and enhance overall simulation capa-
bilities. Integrating these tools can offer a more comprehensive approach to net-
work simulation and analysis, allowing researchers to tackle complex scenarios
more effectively.

References

1. Bakni, M., Chacón, L.M.M., Cardinale, Y., Terrasson, G., Curea, O.: WSN sim-
ulators evaluation: an approach focusing on energy awareness. arXiv preprint
arXiv:2002.06246 (2020)

2. Bilgram, A., et al.: An investigation of safe and near-optimal strategies for pre-
vention of covid-19 exposure using stochastic hybrid models and machine learning.
Decis. Anal. J. 5, 100141 (2022). https://doi.org/10.1016/j.dajour.2022.100141,
https://www.sciencedirect.com/science/article/pii/S2772662222000728

3. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: UPPAAL SMC
tutorial. Int. J. Softw. Tools Technol. Transfer 17(4), 397–415 (2015)

4. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards,
S.: Runtime verification of biological systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012. LNCS, vol. 7609, pp. 388–404. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34026-0 29

5. Gnanaselvi, S.: A study on various simulation tools for wireless sensor networks.
Int. J. Eng. Res. Manag. (IJERM) 5, 1–3 (2018)

6. Knight, A.: Basics of MATLAB and Beyond. CRC Press, Boca Raton (2019)
7. Kochhar, A., Kaur, P., Preeti.: Simulation platforms for wireless sensor networks:

how to select?. In: Tuba, M., Akashe, S., Joshi, A. (eds.) Information and Commu-
nication Technology for Sustainable Development. Advances in Intelligent Systems
and Computing, vol. 933, pp. 539–545. Springer, Singapore (2020). https://doi.
org/10.1007/978-981-13-7166-0 54

8. Korala, H., Georgakopoulos, D., Jayaraman, P.P., Yavari, A.: A survey of tech-
niques for fulfilling the time-bound requirements of time-sensitive IoT applications.
ACM Comput. Surv. 54(11s), 1–36 (2022)

http://arxiv.org/abs/2002.06246
https://doi.org/10.1016/j.dajour.2022.100141
https://www.sciencedirect.com/science/article/pii/S2772662222000728
https://doi.org/10.1007/978-3-642-34026-0_29
https://doi.org/10.1007/978-3-642-34026-0_29
https://doi.org/10.1007/978-981-13-7166-0_54
https://doi.org/10.1007/978-981-13-7166-0_54

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 169

9. Naeem, M., Albano, M., Larsen, K.G., Nielsen, B., Høedholt, A., Laursen, C.Ø.:
Modelling and analysis of a sigfox based IoT network using uppaal SMC. IEEE
Sens. J. 23, 10577–10587 (2023)

10. Naeem, M., Albano, M., Larsen, K.G., Nielsen, B., Høedholt, A., Østergaard
Laursen, C.: Battery aware analysis of sensor networks in uppaal SMC. In: 2021
10th Mediterranean Conference on Embedded Computing (MECO), pp. 1–6. IEEE
Budva, Montenegro (2021)

11. Naeem, M., Albano, M., Magrin, D., Nielsen, B., Guldstrand, K.: A sigfox module
for the network simulator 3. In: Proceedings of the WNS3 2022, pp. 81–88 (2022)

12. Nayyar, A., Singh, R.: A comprehensive review of simulation tools for wireless
sensor networks (WSNS). J. Wirel. Netw. Commun. 5(1), 19–47 (2015)

13. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Wehrle, K., Güneş,
M., Gross, J. (eds.) Modeling and Tools for Network Simulation, pp. 15–34.
Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12331-3 2

14. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 16

15. Sharma, R., Vashisht, V., Singh, U.: Modelling and simulation frameworks for
wireless sensor networks: a comparative study. IET Wirel. Sens. Syst. 10(5), 181–
197 (2020)

16. Sigfox: Sigfox Radio specifications, February 2020. https://storage.googleapis.
com/public-assets-xd-sigfox-production-338901379285/abaedf62-56de-402e-93c3-
3a9c10a1cb49.pdf

17. Xian, X., Shi, W., Huang, H.: Comparison of Omnet++ and other simulator for
WSN simulation. In: 2008 3rd IEEE Conference on Industrial Electronics and
Applications, pp. 1439–1443. IEEE (2008)

https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://storage.googleapis.com/public-assets-xd-sigfox-production-338901379285/abaedf62-56de-402e-93c3-3a9c10a1cb49.pdf
https://storage.googleapis.com/public-assets-xd-sigfox-production-338901379285/abaedf62-56de-402e-93c3-3a9c10a1cb49.pdf
https://storage.googleapis.com/public-assets-xd-sigfox-production-338901379285/abaedf62-56de-402e-93c3-3a9c10a1cb49.pdf

Using Automata Learning for Compliance
Evaluation of Communication Protocols

on an NFC Handshake Example

Stefan Marksteiner1,2(B) , Marjan Sirjani2 , and Mikael Sjödin2

1 AVL List Gmbh, Graz, Austria
stefan.marksteiner@avl.com

2 Mälardalen University, Väster̊as, Sweden
{stefan.marksteiner,marjan.sirjani,mikael.sjodin}@mdu.se

Abstract. Near-Field Communication (NFC) is a widely adopted stan-
dard for embedded low-power devices in very close proximity. In order to
ensure a correct system, it has to comply to the ISO/IEC 14443 standard.
This paper concentrates on the low-level part of the protocol (ISO/IEC
14443-3) and presents a method and a practical implementation that
complements traditional conformance testing. We infer a Mealy state
machine of the system-under-test using active automata learning. This
automaton is checked for bisimulation with a specification automaton
modelled after the standard, which provides a strong verdict of confor-
mance or non-conformance. As a by-product, we share some observations
of the performance of different learning algorithms and calibrations in
the specific setting of ISO/IEC 14443-3, which is the difficulty to learn
models of system that a) consist of two very similar structures and b)
very frequently give no answer (i.e. a timeout as an output).

Keywords: NFC · Automata Learning · Protocol Compliance ·
Bisimulation · Formal Methods

1 Introduction

In this paper we describe an approach of very thoroughly evaluating the com-
pliance of Near-Field Communications (NFC)-based chip systems with the
ISO/IEC 14443-3 NFC handshake protocol [10] using formal methods, concretely
automata learning and equivalence checking. We present a tool chain that is easy

This research received funding within the ECSEL Joint Undertaking (JU) under grant
agreement No. 876038 (project InSecTT) and from the program “ICT of the Future”
of the Austrian Research Promotion Agency (FFG) and the Austrian Ministry for
Transport, Innovation and Technology under grant agreement No. 880852 (project
LEARNTWINS). The JU receives support from the European Union’s Horizon 2020
research and innovation programme and Austria, Sweden, Spain, Italy, France, Por-
tugal, Ireland, Finland, Slovenia, Poland, Netherlands, Turkey. The document reflects
only the author’s view and the Commission is not responsible for any use that may be
made of the information it contains.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 170–190, 2024.
https://doi.org/10.1007/978-3-031-49252-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_13&domain=pdf
http://orcid.org/0000-0001-8556-1541
http://orcid.org/0000-0001-5478-0987
http://orcid.org/0000-0001-7586-0409
https://doi.org/10.1007/978-3-031-49252-5_13

Protocol Compliance Evaluation Using Automata Learning 171

to use - both the learning and the equivalence checking can run fully automatic.
A complete automaton of the system-under-test (SUT) compared with a spec-
ification automaton modeled after the standard, provides a strong complement
to conformance testing. The remainder of this paper structures as follows. First
we provide its motivation and contribution. Section 2 gives an overview of basic
concepts in this paper, including a formal definition of bisimulation for Mealy
Machines as used in this paper. Section 3 describes the developed interface for
automata learning of NFC systems, while Sect. 4 describes the learning setup
including a comparison of different algorithms and calibrations to be most suit-
able for the specifics of the NFC handshake protocol. Section 5 shows real-world
results, while Sect. 6 compare them to the works of others. Section 7, eventually,
concludes the paper and gives and outlook on future work.

1.1 Motivation

As the NFC protocol is widely adopted in a broad variety of different, often
security-critical, chip systems like banking cards, passports, access systems, etc.,
that use relatively weak hardware, a correct implementation is utterly important.
While there are many works about security weaknesses in NFC (e.g., [14,30]),
also specifically regarding the ISO/IEC 14443-3 handshake (e.g., [8,18]), there
is few works on comprehensive testing (see Sect. 6). Assuring the correctness of
the system is a principal step in the quest to trustworthy systems. As there
is, to the best of our knowledge, no comprehensive works regarding assessment
of the handshake protocols, as the fundament of secure protocols build atop,
we aim for a strong verdict of ISO compliance for NFC systems. To make this
verdict more scalable than manual modeling, yet strongly verified, we choose
automata learning to automatically infer a formal model of the implementations
under scrutiny. For the actual compliance checking, we use bisimulation and
trace equivalence checks against a specification automaton from the ISO/IEC
14443-3 standard (a rationale is given in Sect. 2.2).

1.2 Contribution

Overall, this paper is on the interface between communications protocols, embed-
ded systems and formal methods. This work provides the following contributions
for people with scholarly or applied interest in this approach of strong compliance
checking:

– Insights regarding the specifics of learning NFC using active automata learn-
ing

– An evaluation on the performance of different learning algorithms in systems
with very similar structures

– Developing an NFC interface for a learning system
– An approach for automated compliance checking using bisimulation and trace

equivalence

172 S. Marksteiner et al.

We saw the NFC handshake to be specific in two aspects: a) it consists of
two parts that are very similar and hard to distinguish for Learners and b)
the vast majority of outputs from a system-under-learning are timeouts. This
has severe impact on the learning where we examined different algorithms and
configurations. The maximum word length has an impact on correctly infer-
ring an automaton: too short yields incomplete automata, too long seemed to
have a negative performance impact. Surprisingly the L* algorithm [3] with
Rivest/Schapire (LSR) closure [25] surpassed more modern ones in learning
performance. For discovering deviations from the standard, the minimum word
length was found to have an impact. Here, the TTT algorithm [12] performed
best, also followed by LSR. We further created a concrete hardware/software
interface using a Proxmark device and an abstraction layer for NFC systems.
Lastly, we integrated bisimulation and trace equivalence checking into the learn-
ing tool chain, which enables completely automated compliance checking with
counterexamples in the case of deviations from the standard.

2 Preliminaries

This section outlines the theoretical fundamentals of state machines and
automata learning including a definition of equivalence and bisimilarity in the
context of this paper. It further briefly describes the used framework and the
basics and characteristics of the scrutinized protocol.

2.1 State Machines

A state machine (or automaton) is a fundamental concept in computer science.
One of the most widely used flavors of state machines are Mealy machines, which
describe a system as a set of states and functions of resulting state changes
(transitions) and outputs for a given input in a certain state [20]. More formally,
a Mealy machine can be defined as M = (Q,Σ,Ω, δ, λ, q0), with Q being the set
of states, Σ the input alphabet, Ω the output alphabet (that may or may not
identical to the input alphabet), δ the transition function (δ : Q × Σ → Q), λ
the output function (λ : Q × Σ → Ω), and q0 the initial state. The transition
and output functions might be merged (Q×Σ → Q×Ω). An even simpler type
of automaton is a deterministic finite acceptor (DFA) [19]. It lacks of an output
(i.e. no Ω and no λ), but instead it has a set of accepted finishing states F ,
which are deemed as valid final states for an input word (i.e. sequence of input
symbols), resulting in a definition of D = (Q,Σ, δ, q0, F). The purpose is to
define an automaton that is capable of deciding if an input word is a valid part
of a language. A special subset of DFAs are combination lock automata (with
the same properties) but the additional constraint that an invalid symbol in an
input sequence would set the state machine immediately back into the initial
state [22].

Protocol Compliance Evaluation Using Automata Learning 173

2.2 Transitions and Equivalence

An element of the combined transition/output function can be defined as 4-tuple
(〈p, q, σ, ω〉) with p ∈ Q as origin state of the transition, q ∈ Q as destination
state, σ ∈ Σ as input symbol and ω ∈ Ω as output symbol. Generally, to conform
to a standard, a system must display the behavior defined in that standard. The
ISO 14443-3 standard [10] describe the states of the NFC handshake with their
respective expected input and result. That means one can derive an automaton
from this specification. The problem of determining NFC standard compliance
can therefore be seen as comparing two (finite) automata. There is a spectrum
of equivalences between Labeled Transition Systems (LTS) including automata.
For being compliant with a standard, not necessarily every state and transi-
tion must be identical as long as the behavior of the system is the same. There
might be learned automata that deviate from the standard automaton and still
be compliant, e.g., if they are not minimal (the smallest automaton to imple-
ment a desired behavior). Figure 1 shows a very simple example of a three-state
automaton and its behavior-equivalent (minimal) two-state counterpart.

Fig. 1. Example for a partial automaton and its minimal counterpart.

To compare this type of equivalence between two LTS LTS1 and LTS2,
commonly used are (various degrees of) simulation, bisimulation (noted as
LTS1 ∼ LTS2) and trace equivalence. Simulation means that one automaton can
completely reproduce the behavior of the other, for the bisimulation, this relation
becomes bidirectional (i.e. functional). Trace equivalence compares the respec-
tive output of automata. Just (uni-directional) simulation alone is not sufficient
as this would only the presence or absence of a certain behavior with respect to
the specification, while the standard compliance mandates both. Bisimilarity of
two transition systems is originally defined for labeled transition systems (LTS),
defined as LTS = (S,Act,→, I, AP,L), with S being the set of states, Act a set

174 S. Marksteiner et al.

of actions, → a transition function, I the set of initial states, AP a set of atomic
propositions and L a labelling function.

Definition 1 (Bisimilarity). Bisimlarity of two LTS LTS1 LTS2 is defined
as exhibiting a binary relation R ⊆ QxQ, such that [4]:

A) ∀s1 ∈ I1∃s2 ∈ I2 · (s1, s2) ∈ R and ∀s2 ∈ I2(∃s1 ∈ I1 · (s1, s2) ∈ R.
B) for all (s1, s2) ∈ R must hold

1) L1(s1) = L2(s2)
2) if s1′ ∈ Post(s1) then there exists s2′ ∈ Post(s2) with (s1′, s2′) ∈ R
3) if s2′ ∈ Post(s2) then there exists s1′ ∈ Post(s1) with (s1′, s2′) ∈ R

Condition A of Definition 1 means that all initial states must be related, while
Condition B means that for all related states the labels must be equal (1) and
their successor states must be related (2-3). Formally the succession (Post) is
defined as Post(s, α) = {s′ ∈ S|s α−→ s′} and Post(s) =

⋃
α∈Act Post(s, α),

meaning the union of all action successions, which again are again the result the
transition function with a defined action and state as input. As this is recursive, a
relation of the initial states implies that all successor states are related. Since all
reachable states are (direct or indirect) successor states of the initial states, this
definition encompasses the complete LTS. We interpret Mealy machines as LTS
using the output functions as labeling functions for transitions and the input
symbols as actions, similar to [28]. Based on this, we define Mealy bisimilarity
(M1 M2) for our purpose follows:

Definition 2. Mealy Bisimilarity

A) q01 ∈ Q1, q02 ∈ Q2 · (q01 , q02) ∈ R.
B) for all q1 ∈ Q1, q2 ∈ Q2 · (q1, q2) ∈ R must hold

1) σ ∈ Σ · λ1(q1, σ) = λ2(q2, σ)
2) if q1′ ∈ Post(q1) then there exists q2′ ∈ Post(q2) with (q1′, q2′) ∈ R
3) if q2′ ∈ Post(q2) then there exists q1′ ∈ Post(q1) with (q1′, q2′) ∈ R

As the transition function is dependent on the input, we define Post(q, σ) =
δ(q, σ) and Post(σ) =

⋃
σ∈Σ Post(q, σ), which is essentially the same as for LTS

brought into the notation of Sect. 2.1. There are a couple of different bisimula-
tion types that differentiate by the handling of non-observable (internal) tran-
sitions (ordinarily labeled as τ transitions), e.g. strong and weak bisimulation,
and branching bisimulation to give a few examples. This distinction is, however,
theoretical in the context of this paper. The reason is that we intend to compare
a specification, which consists of an automaton that does not contain any τ tran-
sitions, with an implementation that is externally (black box) learned, rendering
τs unobservable. Therefore, two automata without any τs are compared directly,
which makes this distinction not applicable. More precisely, from a device per-
spective, the type of bisimulation equivalence cannot be determined, as the SUTs
are black boxes. This means that internal state changes (commonly denoted as
τ) are not visible, which determines the kind of bisimulation. From a model
perspective, the chosen comparison implies strong bisimulation (i.e. the initial

Protocol Compliance Evaluation Using Automata Learning 175

state is related (formally, q0Ml
= q0Ms

) and all subsequent states are related as
well (formally Q = QMl

= QMs
;n = |Q|;∀n ∈ Q|qnMl

= qnMs
).

Trace equivalence, on the other hand, means that two transitions systems
produce the same traces for each same input.

Definition 3 (Trace equivalence). Traces(LTS1) = Traces(LTS2)

Although both bisimulation and trace equivalence might be principally capa-
ble of comparing a specification with an implementation automaton for deter-
mining the standard compliance, determining bisimulation is a problem to be
solved in efficiently, whereas trace equivalence is PSPACE complete [2]. How-
ever, this might be negligible with a relatively low number of states and transi-
tions. In any case, bisimulation implies trace equivalence (LTS1 ∼ LTS2 implies
Traces(LTS1) = Traces(LTS2), but is finer than the latter [4]. For the pur-
pose of this paper, we consider two automata equivalent if they are trace or
bisimulation equivalent. In practice, we have obtained positive results with both
bisimulation and trace equivalence (see Sect. 4.4). Therefore, trace equivalence
is preferred as it is sufficient for standard compliance, but bisimilarity might be
used in cases where more efficient checking algorithms are necessary.

2.3 Automata Learning

The classical method of actively learning automata of systems, was outlined in
Angluin’s pivotal work known as the L* algorithm [3]. This work uses a minimally
adequate Teacher that has (theoretically) perfect knowledge of the SUT (in this
case called System-under-learning – SUL) behind a Teacher and is allowed to
answer to kinds of questions:

– Membership queries and
– Equivalence queries.

The membership queries are used to determine if a certain word is part of the
accepted language of the automaton, or, in the case of Mealy machines, which
output word will result of a specific input word. These words are noted in an
observation table that will be made closed and consistent. The observation table
consists of suffix-closed columns (E) and prefix-closed rows. The rows are inter-
sected in short prefixes (S) and long prefixes (S.Σ). The short prefixes initially
only contain the empty prefix (λ), while the long ones and the columns con-
tain the members of the input alphabet. The table is filled with the respective
outputs of prefixes concatenated with suffixes (S.E or S.Σ.E). The table closed
if for every long prefix row, there is a short prefix row with the same content
(∀s.σ ∈ S.Σ∃s ∈ S : s.σ = s). The table is consistent if for any two equal short
prefix rows, the long prefix rows beginning with these short prefixes are also
equal (∀s, s′ ∈ S∀a ∈ Σ : s = s′ → s.a = s′.a. A complete, closed and consistent
table can be used to infer a state machine (set of states Q consists of all dis-
tinct short prefixes, the transition function is derived by following the suffixes).
Even though this algorithm was initially defined for DFAs, it has been adapted

176 S. Marksteiner et al.

to other types of state machines (e.g., Mealy or Moore machines) [15]. Alterna-
tively, some algorithms use a discrimination tree that uses inputs as intermediate
nodes, states as leaf nodes, and outputs as branch labels, with a similar method
of inferring an automaton. One of these algorithms, TTT [12], is deemed cur-
rently the most efficient [29]. Other widely used algorithms include a modified
version of the original L* with a counterexample handling strategy by Rivest
and Schapire [25], or the tree-based Direct Hypothesis Construction (DHC) [21]
and Kearns-Vazirani (KV) [17] algorithms.

Once this is performed, the resulting automaton is presented to the Teacher,
which is called equivalence query. The Teacher either acknowledges the correct-
ness of the automaton or provides a counterexample. The latter is incorporated
into the observation table or discrimination tree and the learning steps described
above are repeated until the model is correct. To allow for learning black box
systems, the equivalence queries in practice often consist of a sufficient set of
conformance tests instead of a Teacher with perfect knowledge [24]. Originally
for Deterministic Finite Automata, this learning method could be used to learn
Mealy Machines [26]. This preferred for learning black box reactive systems (e.g.
cyber-physical systems), as modeling these as Mealy is comparatively simple.

2.4 LearnLib

To utilize automata learning we use a widely adopted Java library called Learn-
Lib [13]. This library provides a variety of learning algorithms (L* and variants
thereof, KV, DHC and TTT), as well as various strategies for membership and
equivalence testing (e.g., conformance testing like random words, random walk,
etc.). The library provides Java classes for instantiating these algorithms and
interfaces systems under test. The interface classes further allow for defining
the input alphabets that the algorithm routines uses to factor queries used to
fill an observation table or tree. Depending on the used algorithms, the library
is capable of inferring DFAs, NFAs (Non-deterministic finite acceptors), Mealy
machines or VPDAs (Visibly Pushdown Automata).

2.5 Near Field Communication

Near Field Communication (NFC) is a standard for simple wireless communi-
cation between close coupled devices with relatively low data rates (106, 212,
and 424 kbit/s). One distinctive characteristic of this standard (operating at
13.56 Mhz center frequency) is that it, based on Radio-Frequency Identification
(RFID), uses passive devices (proximity cards - PICCs) that receive power from
an induction field from an active device (reader or proximity coupling device
PCD) that also serves as field for data transmission. There are a couple of defined
procedures that allow for operating proximity cards in presence of other wireless
objects in order to exchange data [11]. One standard particularly defines two
handshake procedures based on cascade-based anti-collision and card selection
(called type A and type B), one of which NFC proximity cards must be compliant
with [10]. This handshake is the particular target system-under-learning (SUL)

Protocol Compliance Evaluation Using Automata Learning 177

of this paper, with the purpose of providing very strong evidence for compliance.
Due to the proliferation and the nature of the given system-under-learning, this
paper concentrates on type A devices. Therefore, all statements on NFC and its
handshake apply for type A only.

2.6 The NFC Handshake Automaton

ISO 14443-3 contains a state diagram that outlines the Type A handshake pro-
cedure for an NFC connection (see Fig. 2). This diagram is not a state machine

Fig. 2. NFC handshake automaton after ISO 14443-3 [10] augmented with abstract
outputs. Note: star (*) as input means any symbol that is not explicitly stated in
another outbound transition of the respective state.

178 S. Marksteiner et al.

Fig. 3. NFC interface setup.

of the types described in Sect. 2.1, for it lacks both output and final states. As we
learn Mealy machines, we augmented it with abstract outputs (see Sects. 4.2 and
4.4) to get a machine of the same type. The goal of the handshake is to reach a
defined state in which a higher layer protocol (e.g. as defined in ISO 14443-4 [11])
can be executed (the PROTOCOL state). The intended way described in the
standard to reach this state is: when coming into an induction field and power-
ing up, the passive NFC device enters the IDLE state. After receiving a wake-up
(WUPA) or request (REQA) message it enters the READY state. In this state,
anti-collision (AC, remaining in that state) or card selection (SELECT going to
the ACTIVE state) occur. In the latter state, the card waits for a request to
answer-to-select (RATS), which brings it into said PROTOCOL state. In all of
these states, an unexpected input would return the system to the IDLE state, no
giving an answers (denoted as NAK). Based solely on ISO 14443-3 commands,
the card should only leave this state after a DESELECT command, after which
it enters the HALT state. Apart from a complete reset, it only leaves the HALT
state after a wake-up (WUPA) signal (in contrast to the initial IDLE state,
which also allows a REQA message). This brings it into the READY* state,
which again gets via a SELECT into the ACTIVE* state that can be used to
get to the PROTOCOL state again. The only difference between READY and
READY*, as well as ACTIVE and ACTIVE* state is that it comes from the
HALT instead of IDLE state. Similar to the first part of the automaton, an
unexpected answer brings the state back to HALT without an answer (NAK).

Apart from the commands stated above that are expected by a card in
the respective state, every other (i.e. unexpected) command would reset the
handshake if its not complete (i.e. wrong commands from IDLE, READY, and
ACTIVE states would lead back to the IDLE state, while HALT, READY*,
and ACTIVE* lead back to the HALT state and unexpected commands in the
PROTOCOL state let it remain in that state. Even though this behavior of
falling back into a base state resembles a combination-lock automaton or gener-
ally an accepting automaton, we model the handshake as a Mealy Machine for
the following reasons:

a) As we observe a black box, input/output relations are easier to observe than
not intrinsically defined accepting states

Protocol Compliance Evaluation Using Automata Learning 179

b) The states are easier distinguishable: a variety of input symbols with the
corresponding output may represent a broader signature than just if a state
is accepting (apart from the transition to other states)

c) The output may processed at different level of abstraction (see Sect. 4.2)

There is also one specific feature to the NFC handshake protocol: unlike most
communication protocols, an unexpected or wrong input yield to no output. This
has an implication to learning, as a timeout will be interpreted as a general error
message.

3 NFC Interface

As Learner, we use the algorithm implementations in the Learnlib Java library
(see Sect. 2.4), configured as outlined in Sect. 4. To interact with the NFC SUL,
a Proxmark RFID/NFC device (see Sect. 3.1) is used that works with an adapter
written in C++ (see Sect. 3.2). Figure 3 provides an overview of the setup.

3.1 Learner Interface Device

The interface with an NFC SUL is established via Proxmark3. Proxmark3 is
a pocket-size NFC device capable of acting as an NFC reader (PCD) or tag
(PICC), as well as sniffing device [7]. Proxmark3 can be controlled from a PC,
as well as, allowing firmware updates. Thus it allows us to construct the NFC
frames needed for learning and establishing a connection to the learning library
via a software adapter (see Sect. 3.2).

3.2 Adapter Class

The actual access to the NFC interface runs over a C++ program, running on
a PC, based on a provided application that comes with the Proxmark device.
As this application is open source, it was possible to modify it in order to adapt
it for learning. The main interface to the Java-based Learner is a Socket con-
nection that take symbols from the Learner (see Sect. 4.2) and concretizes them
by translating the symbols into valid NFC frames utilizing functions from the
SendCommand and WaitForResponse families. These functions send and receive,
respectively, command data (i.e. concrete inputs, symbol for symbol) to the Prox-
mark device where the firmware translates it into frames and sends them to the
SUL and proceeds vice versa for the response. This, however, turned out to create
an error prone bottleneck at the connection between the PC application and the
Proxmark device running over USB. Due to round-trip times and timeouts, the
learning was slowed down and occasional non-deterministic behavior was intro-
duced, which jeopardized the learning process and made it necessary to repeat
the latter (depending on the scrutinized system, multiple times, which hindered
the overall learning greatly). Therefore, the Learner was re-implemented to send
bulk inputs (i.e. send complete input words instead of single symbols), which
improved the throughput significantly and solved non-determinism.

180 S. Marksteiner et al.

Firmware Modifications. In order to be able to transfer traces word-wise
instead of symbol-wise, significant modifications of the device’s firmware were
necessary. The standard interface of the device is designed for sending a sin-
gle packet at one time (via a provided application on a PC) and delivering the
answer back to the application via a USB interface. This introduces latency,
which through the sheer amount of symbols sent in the learning process, has
a significant performance impact. To reach the device’s firmware with multiple
symbols at once, we modulate the desired inputs into one sent message in Type-
Length-Value (TLV) format (implemented types are with or without CRC and
a specialized type for SELECT sequences) and modify the main routine of the
running firmware to execute a custom function if a certain flag is set. This cus-
tom function deserializes the sent commands and sends them to the NFC SUT.
Answers are modulated into an answer packet in length-value format, followed
by subsequent answer messages containing precise logging and timestamps, if
used. As NFC is a protocol that works with relatively low round-trip times
and time outs these modifications, eliminating a great portion of the latency
times of frequently used USB connections, boost the performance of the learn-
ing using different learning algorithms significantly (for a performance evaluation
see Sect. 4.1).

4 Learning Setup

One distinctive attribute of ISO14443-3 with respect to learning is that it spec-
ifies to not give an answer on unexpected (i.e. not according to the standards
specification) input. Ordinarily, the result of such a undefined input is to drop
back to a defined (specifically the IDLE or HALT) state. In this sense, the NFC
handshake resembles a combination lock. A positive output on the other hand,
ordinarily consists of a standardized status code or information that is needed for
the next phase of the handshake, e.g., parts of a card’s unique identifier (UID).
The non-answer to undefined is a characteristic feature of the NFC standard.
This directly affects the learning because it yields many identical answers and
efficient time-out handling is essential. It is therefore necessary to evaluate dif-
ferent state-of-the-art learning algorithms for their specific fitness (see Sect. 4.1)
well as determining the optimal parameter set (Sect. 4.1). We scrutinize the main
algorithms supported by Learnlib: classical L*, L* with Rivest/Schapire coun-
terexample handling, DHC, KV and TTT - the latter two with linear search (L)
and binary search (B) counterexample analysis.

Protocol Compliance Evaluation Using Automata Learning 181

Table 1. Runtime (minutes) per algorithm and maximum word length.

Max. Word Length Algorithm

L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B

10 5.92 5.05 6.00 4.38 4.38 5.45 5.37

20 20.08 9.34 10.93 12.24 11.65 7.66 7.40

30 41.90 12.92 9.82 12.19 11.47 10.67 10.04

40 68.17 8.54 11.16 15.56 12.89 10.87 9.49

50 34.75 7.87 11.02 15.60 12.53 11.29 9.91

60 77.33 17.15 12.98 17.16 13.37 13.04 10.85

70 134.65 11.34 14.46 17.68 14.81 13.06 11.32

4.1 Comparing Learning Algorithms and Calibrations

All of the algorithms can be parameterized regarding the membership and equiv-
alence queries. The former are mainly defined via the minimum and maximum
word length, while the equivalence queries (lack of a perfect Teacher), is deter-
mined by the method and number of conformance tests. Generally speaking, a
too short (maximum) word length results in an incompletely learned (which,
if the implementation is correct, should contain seven states). The maximum
length, however, has a different impact on the performance for observation
and tree-based algorithms: table-based are quicker with a short maximum word
length, whereas for tree-based ones there seems to be a break-even point between
many sent words and many sent symbols in our specific setting. Table 1 shows
a comparison of the runtime of different algorithms with different maximum
word lengths (in red the respective algorithm’s shortest runtime that learned
the correct 7-state model). Some of the non-steadiness in the results can be
explained by the fact that some calibrations with shorter word lengths required
more equivalence queries and, thus, refinement procedures. Table 2 shows the
results with the best performing (correct) run of the respective algorithm. This,
however, only covers the performance of learning a correct implementation. The
opposite side, discovering a bug, shows a different picture. We therefore used
a SUT with a slightly deviating behavior (see Sect. 5.3). This system is much
more error-prone, needing significantly higher timeout values, resulting in higher
overall runtimes. One key property in this case seems to be the minimum word
length. Some of the algorithms by their require a lower minimum word length
to discover than others. This has a significant impact with the special setting of
getting relatively many timeouts, which is greatly aggravated by the necessary
long timeout periods. With a minimum word length of 10 symbols, again the
original L* with the Rivest/Schapire closing strategy was performing quickest,
but discovered only 7 out of 10 states of the deviating implementation. DHC
yielded a similar result. Both needed a word length of 20 to discover the actual
non-compliant model, which was significantly less efficient in terms of runtime.

182 S. Marksteiner et al.

Table 2. Performance evaluation of different algorithms for a compliant system with
their respective fastest calibration in the given setting.

Algorithm L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B

(20) (10) (30) (30) (30) (30) (40)

States 7 7 7 7 7 7 7

Runtime (min) 20.08 5.05 9.82 12.19 11.47 10.67 9.49

Words 1137 282 539 496 451 468 382

Symbols 10192 2588 5124 7932 7607 6628 6213

EQs 2 3 2 5 5 4 4

The TTT and KV algorithms needed a minimum length of 10, however with
quite some deviation in efficiency. While TTT was the best performing algo-
rithm to learn the SUT’s actual behavior model, KV was performing worst. The
runtimes roughly correspond with the amount of sent symbols, in this case the
a very long timeout has to be set to avoid non-determinism. The classical L* is
not in the list, as the algorithm crashed after more than 24 h of runtime. Table 3
provides an overview of minimum word lengths, run time, words, symbols and
equivalence queries. Lower minimum word lengths yielded false negatives (i.e.
the result showed a correct model with the deviation not uncovered).

4.2 Abstraction

Ordinarily, when applying automata learning to real-world systems, the input
and output spaces are very large. To reduce the alphabets’ cardinalities to a
manageable amount, an abstraction function (∇), that transforms the concrete
inputs (I) and outputs (O) to symbolic alphabets (Σ and Ω) using equivalence
classes. Of all possible combinations of data to be send, we therefore concentrate
on relevant input for the purpose of compliance verification. In the following we
present some rationales for the chosen degree of abstraction through the input
and output alphabets. These alphabets’ symbols are abstracted and concretized
via an according adapter class that translates symbols to data to be send (see
Sect. 3.2).

Input Alphabet. For the input alphabet we use the one needed for successfully
establishing a handshake (cf. Fig. 2), according to the state diagram for Type-A
cards in the ISO 14443-3 standard [10]:

– Wake-UP command Type A (WUPA)
– Request command, Type A (REQA)
– Anticollision (AC)
– Select command, Type A (SELECT)
– Halt command, Type A (HLTA)
– Request for answer to select (RATS)

Protocol Compliance Evaluation Using Automata Learning 183

Table 3. Performance evaluation of different algorithms for a non-compliant system
with their respective fastest calibration in the given setting.

Algorithm L*-RS DHC KV-L KV-B TTT-L TTT-B

Min Length 20 20 10 10 10 10

Runtime (min) 309.81 328.83 520.34 423.27 277.67 131.43

Words 575 855 952 679 688 616

Symbols 14637 15262 23867 19241 13353 11769

Eqs 5 3 6 6 5 5

– Deselect (DESEL)

The last two commands are actually defined in the ISO 14443-4 standard [11].
However, as the handshake’s purpose is to enter and leave the protocol state, they
are included in the 14443-3 state diagram and, consequentially, in our compliance
verification.

Output Alphabets. In general, the output alphabet does not need to be
defined beforehand. It simply consists of all output symbols observed by the
Learner in a learning run. The Learner can derive the output alphabet implicitly.
This means that if a system behaved non-deterministically, the output alphabet
could vary – although when learning Mealy machines, which are deterministic
by definition, nondeterminism would jeopardize the Learner. The output alpha-
bet has obviously to be defined (in the abstraction layer) when abstracting the
output. Therefore, using raw output has the benefit of not having to define the
alphabet beforehand. The raw method has one drawback: there are cards that
use a random UID (specifically, this behavior was observed in passports). Every
anti-collision (AC) and SELECT yields a different output, which introduces
non-deterministic behavior. This is not a problem with abstract output, as the
concrete answer is abstracted away. We therefore tried a heavily abstracted out-
put consisting of only two symbols, namely ACK for a (positive) answer and
NAK for a timeout, which in this case means a negative answer (see Sect. 2.5).
This solves the problem, but degrades the performance of the Learner, since
states are harder to distinguish if the possible outputs are limited to two (aggra-
vated by the similar behavior of certain states - see Sect. 2.6). This idea was
therefore forfeit in favor of raw output for the learning. We still maintained this
higher abstraction for the equivalence checking (see Sect. 4.4 for the reasoning).
Raw output, however, retains this problematic non-determinism. We therefore
introduce a caching strategy to cope with this issue. Whenever a valid (partial)
UID is received as an answer to an anti-collision or select input symbol, we put
it on one of two caches (one for partial UIDs from AC and one for full ones
from SELECT sequences). The Learner will subsequently only be confronted
with the respective top entries of these caches. We therefore abstract away the
randomness of the UID by replacing it with an actual but fixed one. This keeps

184 S. Marksteiner et al.

the learning deterministic while saving the other learned UIDs for analysis, if
needed.

4.3 Labeling and Simplification

An implementation that conforms to the standard will automatically labeled
correctly, as the labelling function follows a standards-conform handshake trace:

a) label the initial state with IDLE,
b) from that point, find the state, where the transition with REQA as an input

and a positive acknowledgement as an output ends and label it as READY,
c) from that point, find the endpoint of a positively acknowledged SELECT

transition and label it as ACTIVE,
d) from that point, find the endpoint of a positively acknowledged RATS tran-

sition and label it as PROTOCOL,
e) from that point, find the endpoint of a positively acknowledged DESELECT

transition and label it as HALT
f) from that point, find the endpoint of a positively acknowledged WUPA tran-

sition and label it as READY*
g) from that point, find the endpoint of a positively acknowledged SELECT

transition and label it as ACTIVE*

If the labeling algorithm fails or there are additional states (which are out of the
labeling algorithm’s scope), this is an indicator for the learned implementation’s
non-compliance with the ISO 14443-3 standard (given that only the messages
defined in that standard are used as an input alphabet - see Sect. 4.2).

To simplify the state diagram for better readability and analysis, we cluster
the transitions of each states for output/target tuples and label the input for that
mostly traveled tuple with a star (∗). Normally that is the group of transitions
that mark an unexpected input and transitions back to the IDLE or HALT state.
This reduces the diagram significantly. Therefore, in those simplified diagrams,
all inputs not marked explicitly in a state can be subsumed under the respective
star (∗) transition.

4.4 Compliance Evaluation

Proving or disproving compliance needs a verdict if a potential deviation from
the standard violates the (weak) bisimulation relation. We use mCRL2 with
the Aldebaran (.aut) format for bisimilarity and trace equivalence checking (as
described in Sect. 2.2) [5]. As the Learnlib toolset provides to possibility to store
the learned automata in a couple of formats, including Aldebaran, setting up
the tool chain is easy, even though some re-engineering was necessary. Learnlib’s
standard function for exporting in the Aldebaran format does not include out-
puts. This accepts transitions as equal that are in fact not (as they distinguish
only through the output). We therefore rewrote this function to use the transi-
tion’s in the label of an LTS as well. mCRL2 comes with a model comparison

Protocol Compliance Evaluation Using Automata Learning 185

tool that uses, amongst others, the algorithm of Jansen et al. [16] for bisimilarity
checking. We therefore simply model the specification in form of the handshake
diagram (see Fig. 2) as an LTS with the corresponding Mealy’s input and output
as a label in the Aldebaran format and use the mCRL2 tool to compare it to
automata of learnt implementations. The models of SUTs, although, could dif-
fer greatly event if the behavior is similar. Due to different UIDs the outputs to
legit AC and SELECT commands would ordinarily differ between any two NFC
cards. Also most other outputs might differ slightly. E.g., we observed some
cards to respond to select with 4800, others with 4400. We therefore use the
higher abstraction level as described above and use only NAK and ACK as out-
put, circumventing this problem. This way, inequalities as detected by the tool
indicate non-compliance to the ISO 14443-3 standard of the scrutinized imple-
mentation. If a non-compliance (i.e. a missing or additional state or transition
actually countering the bisimulation relation) is found, all we need is to do a
simple conformance test. A trace of the non-compliant state/transition is trivial
to extract from the automaton (see the example in Sect. 5.3). If that trace is exe-
cuted on the system-under-test and actually behaves like predicted in the model,
we have found the actual specification violation in the real system, disproving
the compliance.

Alternatively, an actual positive verdict of compliance of a learned model is
simple. A full compliance proof can be made when doing identity equivalence,
that is comparing the learned model state by state and transition by transition
with the model manually derived from the ISO 14443-3 standard. If every state
and transition is equal, we consider the system as compliant. More formally,
the learned machine Ml must be fully equal the specification machine Ms, i.e.
Ml = Ms ∧ (Ml = Ms |= QMl

= QMs
∧ ΣMl

= ΣMs
∧ ΩMl

= ΩMs
∧ δMl

=
δMs

∧ λMl
= λMs

∧ q0Ml
= q0Ms

). This, obviously, is a simpler but stronger
relation that is not coersive for ISO protocol compliance. The probability of
learning (with a sufficient amount of conformance testing) an incorrect model
that is still compliant with the standard is negligible.

5 Evaluation

In this section we briefly outline the achieved results with the described tool
chain. We used serveral different NFC card systems for testing, which are
described below. All of these systems have shown to be conform to the ISO14443-
3 standard, except for the Tesla key fob.

5.1 Test Cards and Credit Cards

We used five different NFC test test cards by NXP (part of an experimental car
access system) to develop and configure the Learner. Furthermore, we used two
different banking cards, a Visa and a Mastercard debit. All of these cards are
conform to the standard, with only minor differences. One of these differences is
replying with different ATQA to REQA/WUPA messages with 4400 and 4800

186 S. Marksteiner et al.

respectively. Overall, the results with these cards are very similar. Figure 4 shows
an example of a learnt automaton (left side).

Fig. 4. Automaton of an NXP test card (left) and a Tesla car key fob (right) learnt
with TTT.

5.2 Passports

We also examined two different passports from European Union countries: one
German and one Austrian. The main noticeable difference (at ISO 14443-3 level)
between the other systems is that these systems answer to AC and SELECT
inputs with randomly generated (parts of) UIDs. This implements a privacy
feature to make passports less traceable. Without accessing the personal data

Protocol Compliance Evaluation Using Automata Learning 187

stored on the device the passport should not be attributable. This, however,
requires authentication.

5.3 Tesla Key Fob

Apart from significantly slower answers than the other devices, which required to
adapt the timeouts to avoid nondeterministic behavior, the learned automaton
slightly differs when learnt with the TTT algorithm. Figure 4 (right side) shows
a model of a Tesla car key fob learnt with TTT. The (unnamed) states 3, 4 and
6 are very similar to the HALT, READY* and ACTIVE* states, respectively.
Apart from the entry points (HALTA from the ACTIVE state for the first and
DESEL from the PROTOCOL state, respectively) these two structures are iden-
tical and in the reference model, those two transitions lead to the same state.
However, the ACTIVE* transition allows for issuing a DESELECT command
that actually returns a value (i.e. an ACK in the higher abstraction), which does
not correspond to the standard.

The mCRL2 comparison tool rightfully identifies this model not to be bisim-
ilar and trace equivalent with the specification. Using the according option, the
tool also provided a counterexample in the form of the trace (〈REQA/ACK〉,
〈SELECT/ACK〉, 〈RATS/ACK〉, 〈DESEL/ACK〉, 〈WUPA/ACK〉, 〈SELECT/
ACK〉, 〈DESEL/ACK〉). According to the specification, the last label should be
〈DESEL/NAK〉.

6 Related Work

There are other, partly theoretic, approaches of inferring a model using automata
learning and comparing it with other automata using bisimulation algorithms.
However, they target DFAs [6] or probabilistic transition systems (PTS) [9]. Nei-
der et al. [23] contains some significant theoretic fundamentals of using automata
learning and bisimulation for different types of state machines, including Mealys.
It also contains the important observation that (generalized) Mealy Machines are
bisimilar if their underlying LTS are bisimilar. Tappler et al. [28] used a simi-
lar approach of viewing Mealy Machines as LTS to compare automata regarding
their bisimilarity. Similarly, bisimulation checking was also used to verify a model
inferred from an embedded control software [27]. There is also previous work
on using automata learning for inferring models of NFC cards [1], which con-
centrates on the upper layer (ISO/IEC 14443-4) protocol, dodging the specific
challenges of the handshake protocol. Also there is no mentioning of automatic
compliance checking in this approach. To the best of our knowledge, there is
no comprehensive approach for compliance verification of the ISO/IEC 14443-3
protocol.

7 Conclusion

In this paper, we demonstrated the usage of automata learning to infer models
of systems under test and evaluate their compliance with the ISO 14443-3 pro-
tocol by checking their bisimilarity with a specification. We described a learning

188 S. Marksteiner et al.

interface setup, showed practical results and made interesting observations on
the impact of the protocol specifics on learning algorithms’ performances.

7.1 Discussion

Using our learning setup on real-world devices, we found little differences
between the SUTs – all examined systems were compliant to ISO/IEC 14443-3.
Observed differences were mainly in the privacy-related random UIDs sent by
passports and the slow answers and a slightly different automaton of the Tesla
key fob. However, the scrutinized NFC handshake protocol has two characteris-
tics that are distinct from other communications protocols: a) it does not send
an answer on unexpected input and b) the automaton has two almost identi-
cal parts (IDLE/READY/ACTIVE and HALT/READY*/ACTIVE*) that pose
challenges in learning. Supposedly these characteristics are responsible for the
somewhat surprising finding that the L* algorithm with the Rivest/Schapire
improvement surpasses more modern tree-based algorithms for correct systems.
However, TTT performed best in finding a non-compliant system, which is the
actual purpose of the testing and that the minimum word length has an impact
on the ability to find incompliances. This might give some hints for optimization
of learning strategies for similar structures.

7.2 Outlook

The compliance checking is but a first step towards assuring correctness and,
subsequently, cybersecurity for NFC systems. Concretely, further research direc-
tions include test case generation using model checking and using the model to
guide an intelligent fuzzer to leverage cybersecurity validation and verification
(V&V). The target of these V&V activities are on the one hand upper layer
protocols and on the other hand NFC reader devices to search for faults that
might lead to exploitable security vulnerabilities. To talk to readers, because of
the low latency of NFC communications, it is crucial to already know what to
send before a conversation, which is satisfied by the predefined input words in
the automata learning process.

References

1. Aarts, F., De Ruiter, J., Poll, E.: Formal models of bank cards for free. In: 2013
IEEE Sixth International Conference on Software Testing, Verification and Vali-
dation Workshops, pp. 461–468 (2013). https://doi.org/10.1109/ICSTW.2013.60

2. Aceto, L., Ingolfsdottir, A., Srba, J.: The algorithmics of bisimilarity. In: Advanced
Topics in Bisimulation and Coinduction, pp. 100–172. Cambridge University Press
(2011)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1016/0890-5401(87)90052-6

Protocol Compliance Evaluation Using Automata Learning 189

5. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

6. Chen, Y.F., Hong, C.D., Lin, A.W., Rümmer, P.: Learning to prove safety
over parameterised concurrent systems. In: 2017 Formal Methods in Computer
Aided Design (FMCAD), pp. 76–83 (2017). https://doi.org/10.23919/FMCAD.
2017.8102244

7. Garcia, F.D., de Koning Gans, G., Verdult, R.: Tutorial: proxmark, the swiss army
knife for RFID security research: tutorial at 8th workshop on RFID security and
privacy (RFIDSEC 2012). Technical report, Radboud University Nijmegen, ICIS,
Nijmegen (2012)

8. Hancke, G.: Practical attacks on proximity identification systems. In: 2006 IEEE
Symposium on Security and Privacy (S&P 2006), pp. 6 pp.-333 (2006). https://
doi.org/10.1109/SP.2006.30

9. Hong, C.-D., Lin, A.W., Majumdar, R., Rümmer, P.: Probabilistic bisimulation
for parameterized systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 455–474. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 27

10. International Organization for Standardization: Cards and security devices for per-
sonal identification - Contactless proximity objects - Part 3: Initialization and
anticollision. ISO/IEC Standard “14443-3”. International Organization for Stan-
dardization (2018)

11. International Organization for Standardization: Cards and security devices for per-
sonal identification - Contactless proximity objects - Part 4: Transmission proto-
col. ISO/IEC Standard “14443-4”. International Organization for Standardization
(2018)

12. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

13. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

14. Issovits, W., Hutter, M.: Weaknesses of the ISO/IEC 14443 protocol regarding relay
attacks. In: 2011 IEEE International Conference on RFID-Technologies and Appli-
cations, pp. 335–342 (2011). https://doi.org/10.1109/RFID-TA.2011.6068658

15. Jacobs, B., Silva, A.: Automata learning: a categorical perspective. In: van Breugel,
F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute
to Prakash Panangaden. LNCS, vol. 8464, pp. 384–406. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06880-0 20

16. Jansen, D.N., Groote, J.F., Keiren, J.J.A., Wijs, A.: An O(m log n) algorithm
for branching bisimilarity on labelled transition systems. In: TACAS 2020. LNCS,
vol. 12079, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45237-7 1

17. Kearns, M.J., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

18. Maass, M., Müller, U., Schons, T., Wegemer, D., Schulz, M.: NFCGate: an NFC
relay application for Android. In: Proceedings of the 8th ACM Conference on Secu-
rity & Privacy in Wireless and Mobile Networks, WiSec 2015, pp. 1–2. Association
for Computing Machinery, New York (2015). https://doi.org/10.1145/2766498.
2774984

https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.1109/SP.2006.30
https://doi.org/10.1109/SP.2006.30
https://doi.org/10.1007/978-3-030-25540-4_27
https://doi.org/10.1007/978-3-030-25540-4_27
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1109/RFID-TA.2011.6068658
https://doi.org/10.1007/978-3-319-06880-0_20
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1145/2766498.2774984
https://doi.org/10.1145/2766498.2774984

190 S. Marksteiner et al.

19. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in ner-
vous activity. Bull. Math. Biophys. 5(4), 115–133 (1943). https://doi.org/10.1007/
BF02478259

20. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J.
34(5), 1045–1079 (1955). https://doi.org/10.1002/j.1538-7305.1955.tb03788.x

21. Merten, M., Howar, F., Steffen, B., Margaria, T.: Automata learning with on-
the-fly direct hypothesis construction. In: Hähnle, R., Knoop, J., Margaria, T.,
Schreiner, D., Steffen, B. (eds.) ISoLA 2011. CCIS, pp. 248–260. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-34781-8 19

22. Moore, E.F.: Gedanken-experiments on sequential machines. In: Automata Studies,
AM-34, vol. 34, pp. 129–154. Princeton University Press (1956). https://doi.org/
10.1515/9781400882618-006

23. Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for automata
learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.)
Models, Mindsets, Meta: The What, the How, and the Why Not? LNCS, vol.
11200, pp. 390–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22348-9 23

24. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed
Systems. IAICT, vol. 28, pp. 225–240. Springer, Boston, MA (1999). https://doi.
org/10.1007/978-0-387-35578-8 13

25. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993). https://doi.org/10.1006/inco.1993.1021

26. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3 14

27. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying automata
learning to embedded control software. In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 67–83. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25423-4 5

28. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 276–287 (2017). https://doi.org/
10.1109/ICST.2017.32

29. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017). https://doi.
org/10.1145/2967606

30. Vila, J., Rodŕıguez, R.J.: Practical experiences on NFC relay attacks with android.
In: Mangard, S., Schaumont, P. (eds.) RFIDSec 2015. LNCS, vol. 9440, pp. 87–103.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24837-0 6

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1007/978-3-642-34781-8_19
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-319-24837-0_6

Towards LLM-Based System Migration
in Language-Driven Engineering

Daniel Busch(B), Alexander Bainczyk, and Bernhard Steffen

Department of Computer Science, Chair for Programming Systems,
TU Dortmund University, 44227 Dortmund, Germany

{daniel2.busch,alexander.bainczyk,bernhard.steffen}@tu-dortmund.de

Abstract. In this paper we show how our approach of extending Lan-
guage Driven Engineering (LDE) with natural language-based code gen-
eration supports system migration: The characteristic decomposition of
LDE into tasks that are solved with dedicated domain-specific languages
divides the migration tasks into portions adequate to apply LLM-based
code generation. We illustrate this effect by migrating a low-code/no-
code generator for point-and-click adventures from JavaScript to Type-
Script in a way that maintains an important property: generated web
applications can automatically be validated via automata learning and
model analysis by design. In particular, this allows to easily test the
correctness of migration by learning the difference automaton for the
generated products of the source and the target system of the migration.

Keywords: Software Engineering · Low-Code/No-Code ·
Language-driven Engineering · Large Language Models · Migration ·
Transformation · Automata Learning · Verification · Web Application

1 Motivation and Introduction

Many Large Language Models (LLMs) can be used for coding tasks [12]. They
are used as programming assistants [16], reviewers [10], or even full-blown code
generation tools [11]. In particular for small problems this works very well, but
the quality and reliability of the code drastically degrades with growing context
size and structural or conceptual complexity of the software projects. In [14], we
have illustrated how this problem of scalability can be mitigated within a hetero-
geneous approach that comprises model-based and LLM-based code generation:
We extended our Language-Driven Engineering (LDE) environment [7] for low-
code/no-code development via dedicated Domain-Specific Languages (DSLs) to
also support specification in natural language with the following benefits:

– The tasks to be solved via LLM-based code generation can be tailored in size
and conceptual complexity and

– the overall heterogeneously constructed system can be directly validated at
system level using automata learning and model analysis.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 191–200, 2024.
https://doi.org/10.1007/978-3-031-49252-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_14&domain=pdf
https://doi.org/10.1007/978-3-031-49252-5_14

192 D. Busch et al.

Our approach has been illustrated via a system to generate fully running, web-
based point-and-click adventures from two specifications, (1) an easy graphical
specification for the ’landscape’ of the adventure, and (2) a natural language
specification for the game logic. The corresponding system structure is depicted
in the upper half of Fig. 1. In [14], we concluded that this approach is unique by
placing this concept in the context of existing research.

In this paper, we illustrate an additional benefit of our approach to LDE-
based natural language integration: The heterogeneous LDE-based structure also
supports the automatic migration of entire heterogeneous LDE-based systems.
In particular, we sketch a migration process that allows one to migrate the
entire system generators we constructed for point-and-click adventures to differ-
ent programming languages just using a simple user prompt specifying the target
language. For illustration, we migrated the system generator from JavaScript to
TypeScript which essentially requires the migrator to automatically insert the
missing type information into the system code.

Like in [14], our approach applies natural language based code generation
only for very dedicated, small-scale tasks. Other tasks can be solved using textual
or graphical DSLs. For each task we apply the paradigm that is most suitable
to solve it. In our example these tasks are:

1. Generating base code that implements the ’landscape’ of the adventure using
graphical models.

2. Generating a prompt frame that provides contextual information using the
same graphical models.

3. Introducing game logic into the generated base code (from task one) utilizing
the generated prompt frame (from task two) using an LLM.

This separation of tasks does not only addresses the scalability problem,
but it also allowed us to maintain the second benefit mentioned above: The
migrated system generator automatically supports validation at system level via
automata learning and model analysis. In particular, this allows us to easily test
the correctness of migration simply by learning the difference automaton for the
generated products of the source and the target system of the migration.

Figure 1 explains the reason for this benefits: Migrating the original
JavaScript system generator sketched in the top to the TypeScript generator
in the bottom only requires very local adaptations. In our example, this means
that we only have to provide a descriptive natural language prompt for the
portion marked in red in Fig. 1.

This paper is organized as follows: In Sect. 2, we outline our previous work [14]
and introduce fundamentals of learning-based evolution control. Section 3 covers
our concept of LLM-based code generator migration. Next, Sect. 4 demonstrates
this concept with a running example, and following that, Sect. 5 concludes this
paper with a discussion and an outlook on future work.

Towards LLM-Based System Migration in LDE 193

Fig. 1. LLM-based code transformation concept. (Color figure online)

2 Preliminaries

In this section, we recapitulate the core ideas of our work from our previous paper
[14] and outline the necessary basics of learning-based testing in the context of
our approach.

2.1 LLM-Based Code Generators and Language Decomposition

In [14] we presented a way to combine LDE with the generative power of LLMs.
This approach enables users to use both graphical modeling and natural language
descriptions, each applicable to whichever part of the domain is more suitable.
This also reduces overall complexity by splitting the domain into smaller, more
manageable aspects. We further demonstrated the approach on a web-based
point-and-click adventure: A sitemap of game screens is modeled graphically,
while the game logic is described in natural language.

Our approach generates code from graphical models and an accompanying
Prompt Frame that provides context to the LLM. The Prompt Frame contains
the expected target language, variables and functions that are available from
the code generated from the graphical model, as well as code stubs that provide
the function signatures for which the LLM needs to generate code to obtain the
resulting product. The combination of the code generated from the graphical

194 D. Busch et al.

model, which we refer to as the base code, and the code generated by the LLM
then results in the final product.

This divide-and-conquer approach aims to solve some problems of LLM-based
code generation, such as too large contexts or loose task descriptions. Moreover,
it allows us to benefit from the formal aspects of the LDE paradigms and informal
natural languages and LLMs.

Further, our approach employs code instrumentation for the resulting prod-
uct code which allows the automated inference of behavioral models for ver-
ification purposes, see Sect. 2.2. The instrumentation is part of the manually
implemented code generator that generates code from the graphical model.

2.2 Learning-Based Evolution Control

Active Automata Learning. [1] has proven to be a viable solution for automated
black-box testing of web applications in the past [2,4,9]. Active learning refers
to the process in which a learner poses test queries over an input alphabet
to a System Under Learning (SUL) in an automated fashion to infer a formal
automaton model representing the SUL’s behavior. Because web applications can
be characterized as reactive systems, previous research relied on Mealy machines
to capture their behavior.

To minimize manual effort, [13] introduces the iHTML DSL to instrument an
application’s HTML code in a way that enables the on-the-fly inference of system
inputs by interacting with and analyzing the website’s Document Object Model
(DOM) automatically. We already exploited iHTML in [4] for our LLM-based
code generation approach to generate instrumented, web-based point-and-click
adventures that can be learned by simply providing their URLs.

Previous research [3,4] established that a stable alphabet abstraction is
required to enable structural comparisons between models to detect behavioral
changes. In this context, [8] introduces the notion of difference automata, i.e.
Mealy machines inferred by testing two systems simultaneously. The resulting
automaton will then show all traces that lead to the occurrence of divergent
behavior, see e.g. Fig. 2. In this paper, we learn difference automata to detect
and visualize behavioral differences between two software versions that are the
result of LLM-based code migration.

3 Concept

Our goal is to use LLMs for code generator migration tasks. While in some cases
this could be done for any code generator, we want to apply additional principles
to be able to more easily handle the outcome of the code generated by the LLMs.
The principles are based on the approach presented in [14] and are as follows:

1. Split the problem domain to minimize individual generation contexts and
make code generation for LLMs easier to solve.

2. Instrument the generated code so that products can be verified which provides
additional trust in the LLM-generated code.

Towards LLM-Based System Migration in LDE 195

3. Validate the product using automata learning and provide feedback to the
user. Mismatches introduced by the migration can be detected using difference
automata.

Splitting. We split the problem domain according to our approach of [14], as
described in Sect. 2.1. The existing system generator (see the colored cogs in
Fig. 1) consists of two sub-generators, one for the application code and another
for the Prompt Frame (see Source Language in Fig. 1). Each sub-generator is
migrated separately by being passed to an LLM, together with a supporting
description to instruct the LLM with the migration task.

Instrumentation. Only the LLM-based migration of the application code gen-
erator may lead to violations of the iHTML syntax. However, such violations
are automatically detected by the iHTML syntax checker and can be corrected
manually by refining the prompt for the LLM-based migration.

Validation. Syntactically correct instrumented code can automatically be vali-
dated via difference automata provide via automata learning (see Fig. 2): When-
ever there is a path ending in a behavioural discrepancy (see area marked in red)
we can conclude that the LLM-based migration is erroneous. This information
is then passed to a human expert for updating the prompt for the LLM-based
migration in a similar fashion as before for eliminating iHTML syntax violations.

Figure 1 summarizes our setup. The upper half of the figure shows the app-
roach as presented in [14]. In the middle, it is visualized that the generator used
to generate the application code and the Prompt Frame is fed into an LLM
(e.g. ChatGPT) to instruct it to migrate the sub-generators separately into the
desired target language. The bottom half of the figure shows the same workflow
as the top half, but using the migrated generator instead. Having two applica-
tion instances, automata learning is used to create the difference automaton and
feedback is passed to the user who refines the LLM-based migrator.

4 Example

To evaluate our concept described in Sect. 3, we have applied it to the example
of the river crossing puzzle [14]. In this example, we developed a web-based
point-and-click adventure using the Webstory DSL [5] of the graphical modeling
suite Cinco [6]. Webstory has been modified so that graphical modeling is only
used to model the available game screens and their reachability in a sitemap-like
manner. From these graphical models a point-and-click adventure base code as
well as a Prompt Frame with contextual information is generated (see Fig. 1).
All game logic, such as win/loss conditions, is modeled using natural language
descriptions that are embedded in the generated Prompt Frame.

196 D. Busch et al.

Migration of the source generators that generate the base code and the
Prompt Frame was done using ChatGPT in its GPT-4 version [15]. The source
generators use JavaScript in the case of the base code and the code stubs in
the Prompt Frame, or natural language referencing JavaScript and JavaScript
objects in the case of the natural language part of the Prompt Frame. In this
example, our goal is to migrate these generators to TypeScript, a typed scripting
language.

Migration. Listing 1.1 shows the initial prompt that prepares ChatGPT to
migrate the Prompt Frame generator. An excerpt of the target Prompt Frame
generated by ChatGPT can be seen in Listing 1.2. Note that ChatGPT success-
fully migrated both the natural language contextualization and the code stubs to
be implemented. All necessary functions were present and properly typed after
the migration.

The base code generator was migrated using a separate conversation and
prompts. Listing 1.3 is an excerpt of the target base code generator. Two things
are noteworthy about this successful migration. First, the overall migration and
typing was done correctly and quite extensively. Second, the instrumentation
that is introduced with this base code is preserved. This second aspect is critical
to the validation of the migration proposed in this paper.

You are provided with prompt frames. The prompt frame is

wrapped into "BEGIN PROMPT FRAME" and "END PROMPT

FRAME ". The prompt frame includes ALL text AND code.

These prompt frames should be used for yourself to

provide you with information to get a desired code

output for an input scenario.

Your overall task will be to modify the given prompt

frame so that you output a modified prompt frame for

another programming language instead of the given

prompt frame.

Answer only as follows in two interactions:

1. First , output only the programming language for which

the given prompt frame seems to be made , and ask the

user which programming language you should migrate the

prompt frame to.

2. After receiving the user ’s answer , display only the

migrated prompt frame and no additional text.

Listing 1.1. Priming prompt for Prompt Frame migration.

Towards LLM-Based System Migration in LDE 197

BEGIN PROMPT FRAME

Your task is to fill in code as part of a larger

TypeScript code base.

[...]

The code blocks for you to implement:

function initVariables (): void {[...]}

function checkWin (): void {[...]}

function checkLoss (): void {[...]}

Listing 1.2. Excerpt of migrated Prompt Frame generator.

interface GameObject {

name: string;

currentScreen: string;

transitions: Array <{ screen: string , function: () =>

void }>;

}

function init(): void {

this.currentState = states.first;

this.states = states;

this.gameObjects = [] as GameObject [];

[...]

}

[...]

function addCustomClickAreas (): void {

[...]

items.forEach ((item: GameObject) => {

const itemElement: HTMLButtonElement =

document.createElement(’button ’);

itemElement.classList.add(’flex -item ’,

’interaction -item ’);

itemElement.setAttribute(’data -lbd -action ’, ’Click ’);

itemElement.setAttribute(’data -lbd -name ’, item.name +

’-’ + this.currentState);

itemElement.innerText = item.name;

[...]

}

[...]

Listing 1.3. Excerpt of migrated base code generator.

Verifying the Migration. For illustrative purposes, we demonstrate how
automata learning can be used to detect behavioral differences between two
system iterations. The means for this are difference automata [8] (see Fig. 2),

198 D. Busch et al.

which contain all observed traces that lead to a different input-output behavior
of the two systems in question. By default, difference automata are constructed
as Mealy machines, but in this paper we convert them to Moore machines to
reflect user-level interactions more accurately [14].

Fig. 2. Difference automaton for two learned WebStories.

To demonstrate the benefits of our migration approach, we manually intro-
duced a bug into the generated code to simulate a possible flaw in the LLM when
translating the user specifications into TypeScript code. The changes affect the
part of the code responsible for checking the game’s win condition. More specif-
ically, it affects a function that returns true when the win condition is met, i.e.
when all items are on the right side of the river. For our example, however, we
have modified the function to return false in this case, resulting in the game
never reaching the winning screen.

We first learned the automaton of the original JavaScript application, trans-
formed it to TypeScript using our presented approach, then manually introduced
the bug, and finally learned the automaton of the now erroneous application to
infer the difference automaton seen in Fig. 2. The behavioral difference is high-
lighted in red: If the farmer is on the left side of the river with the goat, while
the cabbage and wolf are on the right side of the river, the game would have
been won as soon as the user clicked on the goat, resulting in the display of the
winning screen in the source system. However, in our modified target system,
the game enters a state where instead of the winning screen, all three items are
displayed on the right side of the river, and therefore the game is never actually
won. This information is graphically displayed and can be used to fix the bug.

Towards LLM-Based System Migration in LDE 199

5 Conclusion

In this paper we have shown how our approach of extending Language-Driven
Engineering (LDE) with natural language-based code generation presented
in [14] supports system migration. Central to this extension is the LDE-
characteristic decomposition into tasks that are solved with dedicated domain-
specific languages, be they textual, graphical, or natural. This decomposition
allows the division of the migration tasks into portions adequate to apply LLM-
based code generation. We have illustrated the impact of our approach by migrat-
ing a low-code/no-code generator for web-based point-and-click adventures from
JavaScript to TypeScript, showing that

– the LLM-based migration correctly introduces the types required for Type-
Script and that

– also the point-and-click adventures generated with the migrated system can
be validated via automata learning and model analysis by design. In partic-
ular, this allows to easily test the correctness of migration by learning the
difference automaton for the generated products of the source and the target
system of the migration.

Technically, we have used LLMs to automatically migrate all code genera-
tors involved in our presented example, those that follow classical model-driven
approaches as well as those that were based on natural language descriptions.
Currently, we are experimenting with more complex scenarios.

We are convinced that hybrid approaches as the one presented here are a good
way to mitigate the weaknesses of LLM-based code generation: They provide
means for decomposition-based scalability, and to safely position LLM-based
code in an overall application.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Raffelt, H., et al.: Dynamic testing via automata learning. Int. J. Softw. Technol.
Transf. (STTT) 11(4), 307–324 (2009). ISSN 1433-2779. https://doi.org/10.1007/
s10009-009-0120-7

3. Windmüller, S., et al.: Active continuous quality control. In: Proceedings of the
16th International ACM Sigsoft Symposium on Component-Based Software Engi-
neering, CBSE 2013, Vancouver, British Columbia, Canada, pp. 111–120. Associ-
ation for Computing Machinery (2013). ISBN 9781450321228. https://doi.org/10.
1145/2465449.2465469

4. Neubauer, J., Windmüller, S., Steffen, B.: Risk- based testing via active contin-
uous quality control. Int. J. Softw. Tools Technol. Transf. 16(5), 569–591 (2014).
https://doi.org/10.1007/s10009-014-0321-6

5. Lybecait, M., Kopetzki, D., Zweihoff, P., Fuhge, A., Naujokat, S., Steffen, B.:
A tutorial introduction to graphical modeling and metamodeling with CINCO.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 519–538.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4 31

https://doi.org/10.1007/s10009-009-0120-7
https://doi.org/10.1007/s10009-009-0120-7
https://doi.org/10.1145/2465449.2465469
https://doi.org/10.1145/2465449.2465469
https://doi.org/10.1007/s10009-014-0321-6
https://doi.org/10.1007/978-3-030-03418-4_31

200 D. Busch et al.

6. Naujokat, S., et al.: CINCO: a simplicity-driven approach to full generation of
domain-specific graphical modeling tools. Int. J. Softw. Tools Technol. Transf. 20,
327–354 (2018)

7. Steffen, B., et al.: Language-driven engineering: from general-purpose to purpose-
specific languages. In: Computing and Software Science: State of the Art and Per-
spectives, pp. 311–344 (2019)

8. Bainczyk, A., Steffen, B., Howar, F.: Lifelong learning of reactive systems in prac-
tice. In: Ahrendt, W., et al. (eds.) The Logic of Software. A Tasting Menu of
Formal Methods: Essays Dedicated to Reiner Hähnle on the Occasion of His 60th
Birthday, pp. 38–53. Springer, Cham (2022). ISBN 978-3-031-08166-8. https://doi.
org/10.1007/978-3-031-08166-8 3

9. Bainczyk, A., Boßelmann, S., Krause, M., Krumrey, M., Wirkner, D., Steffen, B.:
Towards continuous quality control in the context of language-driven engineering.
In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
Verification and Validation. Software Engineering, ISoLA 2022. LNCS, vol. 13702,
pp. 389–406. Springer, Cham (2022). ISBN 978-3-031-19756-7. https://doi.org/10.
1007/978-3-031-19756-7 22

10. Li, Z., et al.: Automating code review activities by large-scale pre-training. In:
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 1035–1047 (2022)

11. Vaithilingam, P., Zhang, T., Glassman, E.L.: Expectation vs. experience: evaluat-
ing the usability of code generation tools powered by large language models. In:
Chi Conference on Human Factors in Computing Systems Extended Abstracts, pp.
1–7 (2022)

12. Xu, F.F., et al.: A systematic evaluation of large language models of code. In: Pro-
ceedings of the 6th ACM SIGPLAN International Symposium on Machine Pro-
gramming, pp. 1–10 (2022)

13. Bainczyk, A.: Simplicity-oriented lifelong learning of web applications. [work in
progress]. Ph.D. thesis. Dortmund, Germany: TU Dortmund University (2023)

14. Busch, D., et al.: ChatGPT in the loop - a natural language extension for domain-
specific modeling languages. In: Lecture Notes of Computer Science, vol. 14380.
Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-46001-2 22

15. OpenAI. GPT-4 Technical Report. arXiv arXiv:2303.08774 (2023)
16. Tian, H., et al.: Is ChatGPT the ultimate programming assistant-how far is it?

arXiv preprint arXiv:2304.11938 (2023)

https://doi.org/10.1007/978-3-031-08166-8_3
https://doi.org/10.1007/978-3-031-08166-8_3
https://doi.org/10.1007/978-3-031-19756-7_22
https://doi.org/10.1007/978-3-031-19756-7_22
https://doi.org/10.1007/978-3-031-46001-2_22
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2304.11938

Synthesizing Understandable Strategies

Peter Backeman(B)

Mälardalen University, Väster̊as, Sweden
peter.backeman@mdu.se

Abstract. The result of reinforcement learning is often obtained in the
form of a q-table mapping actions to future rewards. We propose to use
SMT solvers and strategy trees to generate a representation of a learned
strategy in a format which is understandable for a human. We present
the methodology and demonstrate it on a small game.

Keywords: Synthesizing Strategies · Reinforcement Learning · SMT

1 Introduction

Reinforcement learning has in the last decade gained enormous popularity for
creating an AI agent learning an optimal strategy. The result is often obtained
in the form of a q-table, mapping, for each state, every action to an expected
future reward. While this is useful for a computer to execute it, for a human it is
inconvenient. We propose to use SMT solvers to generate a representation of a
learned strategy in a format which is understandable, by limiting the representa-
tion to a pre-defined format. Moreover, we introduce strategy trees, to enable a
step-wise refinement process. Generating strategies is a well-researched problem,
but In contrast to other recent work, e.g., [4], we emphasize trying to generate
an understandable representation of a strategy. We demonstrate an approach on
a simple example which we hope to extend to more challenging problems.

Running Example: Nim is a classic game with many variants. In this abstract
we focus on a specific version for simplicity, where the game starts with 21 sticks
being placed in a row. Each player takes turn removing one or two sticks, and
the winning player is the one who removes the final stick.

2 Reinforcement Learning

Reinforcement learning is an approach where an optimal strategy is learned by
interaction with an environment [3]. The programmer only provides a definition
of the state-space, the possible actions and rewards for reaching certain states1.
For our example, we consider a state space of a single variable s ∈ [1, 21] indicat-
ing the number of remaining sticks. In each state there are two possible actions
1 As well as a set of meta-parameters to the learning algorithm, e.g., learning rate.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 201–204, 2024.
https://doi.org/10.1007/978-3-031-49252-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_15&domain=pdf
http://orcid.org/0000-0001-7965-248X
https://doi.org/10.1007/978-3-031-49252-5_15

202 P. Backeman

Fig. 1. AST for function template with
three internal nodes {n1, n2, n3} and five
leaf nodes {l1, . . . , l5}

Fig. 2. Excerpt of SMT formula.

a1, a2, picking one or two sticks2. A reward of one is given when winning (i.e.,
reaching s = 0), and minus one when losing (i.e., opponent reaches s = 0).

By running a straightforward reinforcement learning algorithm, we can obtain
a q-table as shown in Table 1, giving an optimal strategy for playing Nim. For
example, it shows that when there are seven sticks left (s = 7), taking one stick
(a1 = 0.90) is preferable to taking two sticks (a2 = −0.90).

Table 1. Q-table of Nim player.

s 1 2 3 4 5 6 7 8 9 10 11

a1 1.00 −1.00 −1.00 0.95 −0.91 −0.95 0.90 −0.76 −0.90 0.86 −0.78

a2 n/a 1.00 −1.00 −0.98 0.95 −0.95 −0.90 0.90 −0.90 −0.74 0.86

s 12 13 14 15 16 17 18 19 20 21

a1 −0.86 0.81 −0.76 −0.80 0.77 −0.70 −0.67 0.74 −0.47 −0.72

a2 −0.86 −0.75 0.81 −0.81 −0.62 0.77 −0.76 −0.70 0.74 −0.43

3 SMT Synthesis

Satisfiability Modulo Theories (SMT) is a technique of finding models of formulas
defined over a Boolean structure combined with theory literals [1]. In this section
we present a method for searching functions, constrained by a template, to find a
function which corresponds to a function relating inputs to outputs. A template
is shown in Fig. 1. It is an AST with seven nodes. We restrict each internal node
to be one of the operators +,−, ∗,%3, and each leaf to be set either the input
value (x) or a constant (c ∈ [−10, 10]). The restrictions on the AST should be
set in such a way to balance expressability and understandability.

2 For simplicity, action a2 is forbidden when s = 1, i.e., it is impossible to pick more
sticks than remaining.

3 Where % is the remainder operator.

Synthesizing Understandable Strategies 203

Given an AST template and input/output-pairs, we can formulate an SMT
query which yields a model with assignments to leaves and internal nodes such
that the function computes as desired. We sketch the formulation here:

– Each internal node has an integer variable defining which operator it is,
– Each leaf has two variables: one indicating whether it is the input value or a

constant; the second the value of the (potential) constant,
– For each input/output-pair, each node and leaf is given a integer variable

which should equal the value of the node or leaf given the specific input.

For example, encoding that if node n1 is addition (corresponding integer
value is zero), then the value of n2 should be equal to the sum of the values of
l1 and l2 (with five input/output-pairs) is shown in Fig. 2.

We can encode the q-table in Table 1 (with symmetry-breaking constraints),
and solve it using the SMT-solver Z3 [2]. After a long time (hours), it returns
a model {n1 = +, n2 = +, n3 = %, l1 = −1, l2 = 0, l3 = x, l4 = 3} which
corresponds to the function (−1 + 0) + (x%3) = (x % 3) − 1.4 This function
condenses the strategy into a understandable format.

4 Strategy Trees

As finding the function takes a long time, we introduce an alternative approach:
strategy trees. A tree over a set of input/output-pairs consists of a root r node
with a set of children C, s.t. every edge from r to c ∈ C is labelled with a
function over the input variable, and every leaf is labelled with an output.

Fig. 3. (Partial) naive strategy tree for Nim game.

Intuitively, each child corresponds to a sub-strategy: its edge-label states
when it should be applied, and the node-label states what action should be made.
A naive strategy tree based on the q-table in our running example is obtained
by creating one node for each row in the table, see Fig. 3. However, since such a
tree is note very useful, we introduce a merge-operator, transforming a strategy
tree into an equivalent one. We can merge two children if they have the same
node label and we can find a edge label which identifies both sub-strategies and
no other strategy. We can find functions using the approach presented in Sect. 3.

4 The subtraction of one comes from the action space being defined as {a1 = 0, a2 = 1}
instead of the number of sticks removed ({a1 = 1, a2 = 2}).

204 P. Backeman

For example, two children with identical node-labels and edge-labels n = 1 and
n = 2 could be merged to a child with edge-label 1 ≤ n ∧ n ≤ 2.5

We can apply the merge-operator repeatedly to obtain a reduced strategy
tree. If we perform this strategy on the tree in Fig. 3, after a few seconds of
merging, we obtain the tree shown in Fig. 4, a more succinct representation
of the same information. Of course, in which order the operator is applied is
important, currently a naive approach is used (enumerate all pairs of children
with same node label, and try to merge in order).

Fig. 4. Reduced strategy tree for Nim game.

5 Conclusions

We presented strategy trees and show we can use them to step-wise synthesize
an understandable strategy representation. In future work, we want to flesh out
the theory, e.g., considering more input variables and trees with greater depth.
Moreover, we will look into different templates for the edge labels. We also wish
to explore more use cases and compare different merging strategies and study
the scaling of the approach. It is also interesting to introduce a splitting operator
to allow the search to go in two directions (where a single split might allow for
many merges).

Acknowledgements. This work was supported by the Knowledge Foundation in Swe-
den through the ACICS project (20190038).

References

1. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model Check-
ing, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-
8 11

2. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

3. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The
MIT Press (2018)

4. Wu, K., et al.: Automatic synthesis of generalized winning strategies of impartial
combinatorial games using SMT solvers. In: Bessiere, C. (ed.) Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20,
pp. 1703–1711. International Joint Conferences on Artificial Intelligence Organiza-
tion (2020)

5 Interval constraints are added on edges, limiting the functions domains for efficiency.

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-540-78800-3_24

ReProInspect: Framework
for Reproducible Defect Datasets

for Improved AOI of PCBAs

Ahmad Rezaei1(B) , Johannes Nau1 , Detlef Streitferdt1 ,
Jörg Schambach2 , and Todor Vangelov1

1 Technische Universität Ilmenau, Helmholtzplatz 5, 98693 Ilmenau, Germany
{ahmad.rezaei,johannes.nau,detlef.streitferdt,

todor.vangelov}@tu-ilmenau.de
2 GÖPEL electronic GmbH, Jena, Germany

j.schambach@goepel.com

Abstract. Today, the process of producing a printed circuit board
assembly (PCBA) is growing rapidly, and this process requires cutting-
edge debugging and testing of the boards. The Automatic Optical Inspec-
tion (AOI) process detects defects in the boards, components, or solder
pads using image processing and machine learning (ML) algorithms.
Although state-of-the-art approaches for identifying defects are well
developed, due to three main issues, the ML algorithms and datasets
are incapable of fully integrating into industrial plants. These issues are
privacy limitations for sharing data, the distribution shifts in the PCBA
industry, and the absence of a degree of freedom for reproducible and
modifiable synthetic datasets.

This paper addresses these challenges and introduces “ReProIn-
spect”, a comprehensive framework designed to meet these requirements.
ReProInspect uses fabrication files from the designed PCBs in the man-
ufacturing line to automatically generate 3D models of the PCBAs. By
incorporating various techniques, the framework introduces controlled
defects into the PCBA, thereby creating reproducible and differentiable
defect datasets. The quality data produced by this framework enables
an improved detection and classification scenario for AOI in industrial
applications. The initial results of ReProInspect are demonstrated and
discussed through detailed instances. Finally, the paper also highlights
future work to improve the current state of the framework.

Keywords: Automated Optical Inspection · Machine Learning · 3D
Rendering

1 Introduction

The global Printed Circuit Board (PCB) market size is currently growing from
72 billion USD in 2022 to an estimated 89 billion by 2028.1 This rapid growth in
1 MarketWatch, The Prospects of Printed Circuit Board (PCB) Market 2023: Industry

Trends and Challenges till 2030.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 205–214, 2024.
https://doi.org/10.1007/978-3-031-49252-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_16&domain=pdf
http://orcid.org/0000-0002-9232-6934
http://orcid.org/0000-0001-7538-2283
http://orcid.org/0000-0003-0878-0614
http://orcid.org/0009-0003-6398-4860
https://doi.org/10.1007/978-3-031-49252-5_16

206 A. Rezaei et al.

Table 1. PCBA defect categories covered by AOI systems.

Category Area Short explanation

Incorrect placement (IP) Component The component is positioned in the false angle or place.
The connection with the solder pad can be weak or lost

Missing component (MC) Component The component is not present in its specified place

Tombstone (T) Component Due to solder heat setting or placement the component
loses solder connection on one side

Textual failure (TF) Component The text on the component refers to a false component
or is distracted

Extra or insufficient solder (EIS) Solder pad The amount of solder is too low or too much

Not soldered (NS) Solder pad The soldering paste is removed before melting

Short circuit (SC) Solder pad and Board An undesirable electrical connection

Missing solder pad (MSP) Board Incorrect manufacturing of PCB solder pads

Open circuit (OC) Board The loss of connection between copper lines, which
should be connected

Spurious or mouse bite on copper (SMC) Board damaged copper lines without loss of electrical
connection

Pseudo defects (PD) All areas Environmental particles are observed

PCB production requires advancements for fast, reliable, and cost-effective pro-
duction chains. A major challenge in production chains is the detection, repair,
or elimination of defective components or boards.

AOI is a process for detecting defective PCBA boards (listed in Table 1) by
processing the industrial camera images taken from the boards in the production
line. AOI contains three factors; the camera and light setup, the image processing
algorithm used for better highlighting the defects, and the machine learning
(ML) techniques for decision-making. These factors are constantly studied and
improved in the literature. For instance, defective areas and components are not
observable without having the proper light setting and camera setup. Shadows
or reflections of other components or solder pads should be tackled for a clear
view of the defects. Authors in [3,8], and [9] cover these issues regarding capture
angle and light settings, and they propose various settings for AOI systems.
Moreover, the image processing techniques are mathematically well developed
and intertwined with the need for ML techniques used for decision-making. For
instance, the large industrial images should be re-scaled and divided into several
smaller sets for faster decision-making [12,17]. Subsequently, ML techniques for
the detection and classification of PCBA defects are constantly improving by
using cutting-edge object detectors and Convolutional Neural Networks (CNNs);
e.g. improved versions of the “You Only Look Once” (YOLO) algorithm for the
detection of defects in PCBA surface [2,12] or CNN models used for component
defect classification [8].

Although the state-of-the-art (SOTA) shows great improvement for AOI sys-
tems, three challenging factors (discussed in details in Sect. 2) in PCBA AOI
datasets such as privacy-criticality, quality of synthetic data, and degree of free-
dom persist. Former datasets include a limited number of defect categories (due
to privacy issue) without considering the distribution shifts present in the indus-
try, and moreover, they produce synthetic or partly real data with constant light
and camera setting for all images, which does not adhere to industry preferences

ReProInspect: Framework for Reproducible Defect Datasets for PCBA AOI 207

and is not practical for detection of all defect types. In this paper, these factors
are discussed and tackled with the proposal of a framework for reproducible
PCBA AOI defect dataset. The framework adheres to industrial privacy con-
straints, and gives the users a degree of freedom in producing their own PCBA
AOI datasets from 3D PCBA models with a degree of freedom in environmental
settings, distribution shifts, and the quality of captured data.

The following sections in this paper are organized as follows. Section 2 elabo-
rates on PCBA defects and covered defects in the former works. Next, the techni-
cal setup for the framework to produce synthetic data is covered in Sect. 2.2. The
Sect. 3 presents our proposed framework and describes its architecture. Using this
architecture, visual results for the captured data by the framework are discussed
in Sect. 4.

2 Related Works

PCBA defects are abnormalities in the manufacturing process, which can lead to
malfunction or complete breakdown of a PCBA. These defects in PCBA happen
in three main areas such as electrical components, soldering pads, and board
surface. More than 100 defects are categorized in National Physical Laboratory
Industry Defects Database2, which are structured into eleven categories (shown
in Table 1) classified based on AOI system detection (categorized based on pub-
lications in [14,17]).

A summary on former datasets is provided in Table 2, which is used for the
identification of research gaps discussed in Sect. 2.1. The literature consists of
datasets for PCBA AOI for defect detection or normal board inspection [7,10,13].
The latter is out of scope for this paper; however, the ReProInspect framework
can help enhance the datasets in the normal board inspections. In 2019, Deep-
PCB [18] and synthesized PCB [6] datasets focused on five categories of defects
on board or solder pads. The use case for these datasets is for the defect detec-
tion with object detectors, but they lack other common defects. Another issue
in these datasets is the quality of synthetic data (manual insertion of defects)
and the quality of captured data which does not conform to industrial settings.
Moreover, in 2020, the authors in [10] used a nonpublic dataset, including real
PCBA images captured in an industrial setting, that includes more defects focus-
ing on solder pads. Furthermore, in 2021, CD-PCB [4] was published with 20
image pairs consisting of synthetic board and solder pad defects. In this dataset
the manual synthesized data and lacking industrial capturing environment are
persistent. Authors in [21] published PCBNet dataset (2022) that conversely to
previous datasets focuses more on component defects. This dataset contains real
images taken in an industrial setting, but it lacks other categories of defects.
Subsequently, in 2023, the HU-Solder [20], capturing some of the defect cate-
gories on components and solder pads, is released. This dataset contains real
images taken in a manual setting using a 13-megapixel camera. Finally, in the

2 Available (last seen on 18.08.2023): http://defectsdatabase.npl.co.uk/.

http://defectsdatabase.npl.co.uk/

208 A. Rezaei et al.

Table 2. Summary on the datasets used in previous literature.

Dataset Name DeepPCB [18] Synthesized PCB [6] Advantech Data [11] CD-PCB [4] PCBNet Data [21] HU-Solder [20] Vision Automobile [1]

Available ✓ ✓ ✗ ✓ ✓ ✓ ✗

Industrial Capture ✓ ✗ ✓ ✗ ✓ ✗ ✓

Real Data ✗ ✗ ✓ ✗ ✓ ✓ ✓

C
o
v
e
re

d
D
e
fe
c
ts

IP ✗ ✗ ✗ ✗ ✓ ✓ ✗

MC ✗ ✗ ✗ ✗ ✓ ✗ ✗

T ✗ ✗ ✗ ✗ ✓ ✓ ✗

TF ✗ ✗ ✗ ✗ ✓ ✗ ✗

EIS ✗ ✗ ✓ ✗ ✗ ✓ ✓

NS ✗ ✗ ✓ ✓ ✗ ✗ ✗

SC ✓ ✓ ✓ ✓ ✗ ✓ ✓

MSP ✓ ✓ ✗ ✓ ✗ ✗ ✗

OC ✓ ✓ ✗ ✓ ✗ ✗ ✗

SMC ✓ ✓ ✗ ✓ ✗ ✗ ✗

PD ✓ ✓ ✓ ✓ ✗ ✗ ✗

#Defect images 1,500 1,386 834 20 - 655* 600*

(*=snapshot images, -=no information given)

same year, a non-public dataset is used in [1] that includes real data taken under
an industrial setting but with only a focus on some solder pad defects.

2.1 A Recap on the Privacy Issue

Privacy is the main culprit for the lack of unified and well-developed datasets in
PCBA AOI domain. However, the privacy of companies’ intellectual properties
contributes to the reliability of the products, the companies’ competition in open
market, and resilience to security threats. In other domains, the authors try to
leverage privacy by redefining privacy-preserving data exchange [15], but due to
lack of viable solution for PCBA AOI, this paper proposes a solution adhering
to the privacy constraints in the industry.

The quantity of produced images for PCBA defect datasets in [6,18] shows
the great potential to create synthetic data from fewer actual PCBAs. However,
the production of the synthetic data in former approaches is done manually and
in an uncontrolled way. First, they include a subset of defect categories, which
can be extended for a more realistic dataset. Second, the defects are manually
inserted to a 2D image without adhering to their actual rationale (heat, physical
fluid dynamics, and malfunction of pick-and-place arms) behind the formation
of defects. Thus, larger quantity of higher quality data is producible with solving
these two issues. Furthermore, in industrial AOI scenarios, the capturing angle
and the light settings for images are adjustable. Henceforth, it is valuable to
allow the researchers having the same degree of freedom while producing their
synthetic dataset.

Subsequently, in realistic AOI scenarios, distribution shifts are available [19].
So the test data (PCBA images taken from the production line) can be differ-
ent from training data (already-made defect dataset), which can degrade the
performance of ML algorithms severely. In the PCBA AOI, the source of distri-
bution shift is basically the difference in color of boards or in the components
used during the assembly. The distribution shifts affect the defect detection
greatly, although the PCBA possesses the same functionality. Creation of syn-
thetic defects with distribution shifts for improving the AOI systems or evalu-
ating the robustness of proposed AOI systems is beneficial.

ReProInspect: Framework for Reproducible Defect Datasets for PCBA AOI 209

Table 3. Ordered factors for selection of rendering software (highest priority first)

Priority Factor Description

1 Complexity Handling Managing complex scenes efficiently

2 Speed Rendering speed impacts dataset production timeline

3 GPU Rendering Utilizing GPUs for fast rendering

4 Ease of Use User-friendly interface for a smooth workflow

5 Cost-effectiveness Balancing capabilities with costs

6 Render Farm Support Integration with distributed rendering

7 Integration Seamless collaboration with modeling tools

8 Light Control Precise control over lighting settings/scenarios

9 Quality Control Fine-grained adjustments for visual fidelity

10 Supported Platforms Compatibility with multiple operating systems

11 Community Support Active user community and resources

12 Updates and Development Regular software improvements

In conclusion, the ReProInspect framework enables the users to reproduce a
controlled defect dataset with a degree of freedom in modifying the image capture
settings, distribution shifts, and adhering to industrial settings. The following
sub-section explains the technical setup for generation of 3D defect data.

2.2 Technical Requirements and Setup

An important part of the ReProInspect framework is the rendering software
which creates the PCBA 3D model from the fabrication data. In Table 3, twelve
selection factors for producing sheer volume of high quality data are prioritized
based on the authors’ experiences and research.

After applying the first factor to the search for different rendering software
packages, results were limited to 8 rendering softwares with similar characteris-
tics for factors 6 to 12. These software packages are shown in Table 4 retaining
high integration capacity, support for rendering farms, flexible control on light
and quality, various OS support, and active maintenance and community sup-
port. Thus, Table 4 only lists the comparison factors of the subset between 2 to
5. Based on a comparison in this Table, Blender and LuxCoreRender allow a
user-friendly, high speed, and open-source experience with GPU compatibility.

The 3D computer-aided design (CAD) data for components (in OBD++,
DXF, and Blend formats) are usually accessible via open source libraries such as
Kicad software package3. These 3D data enable manual user modifications, which
are automated in ReProInspect framework with production of components with
irregular shapes (due to manufacturing problems), broken parts, different colors
or textures, and also, with simulated dust and other environmental particles as
pseudo defects.

3 Available: https://www.kicad.org/.

https://www.kicad.org/

210 A. Rezaei et al.

Table 4. Rendering software comparison for PCBA defect dataset production

Software Speed GPU Rendering Ease of Use Cost-effectiveness

Blender Fast Yes User-friendly Free

Autodesk Maya Moderate Yes Moderate Costly

Maxon Cinema 4D Moderate Partial User-friendly Costly

Chaos Group V-Ray Fast Yes Moderate Costly

Redshift Fast Yes Less User-friendly Reasonably Priced

LuxCoreRender Fast Yes User-friendly Free

Octane Render Fast Yes Moderate Reasonably Priced

Arnold Fast Yes Less User-friendly Costly

Furthermore, the fabrication data (Gerber files, PCB NC files, and Pick and
placement files) are required for production and assembly of PCB and CAD
components in the ReProInspect. Next section proposes the architecture of the
ReProInspect based on the explained technical setup and requirements.

3 Proposed Framework

The architecture is based on an enhanced tool chain as described in [14]. The
core architectural style of the tool chain is Pipes & Filters, to support several
operations on each PCBA-element. As modelled in Fig. 1, the filters operate on
a central repository. Thus, the original Pipes of the Pipes & Filters style had to
be adapted, in favor of a data model supporting the later introduction of defects
for the ML training, the ultimate goal of this paper.

As seen in Fig. 1, the input for the tool-chain are PCBA fabrication data (e.g.
from Kicad) and the 3D component files for each of the PCBA components. In
the diagram, the repository holds all the PCBA geometric layer data combined
with the 3D component data items, which is essential for production of complete
PCBA 3D model in the rendering step. Next, the Renderer is an independent
component for final image production, and the tool-chain’s filters are responsible
for the introduction of defects (listed in Table 1) into the dataset. Eventually, the
resulting and rendered image can contain correct or erroneous images of PCBA.

Fig. 1. Software Architecture, Tool Chain

ReProInspect: Framework for Reproducible Defect Datasets for PCBA AOI 211

Fig. 2. Software Architecture, Data Model

Based on the detailed architecture of the repository (Fig. 2), each of the filters
adhere to this software architecture. The filter has access to the complete data
model of the PCBA and its components, which is modeled as a list of all virtual
components. This list will be read and serialized back to the repository, e.g. a
database.

The virtual components are the core part of the composite design pattern [5]
for PCBA and its components, and it reflects the PCBA system structure and
allows the introduction of defects at any layer or component of the structure. The
Board, a leaf of the composite pattern, with its layers is the central building block
of an electronic system, and the eComponent can then be placed on the board
and have types like Resistor, Capacitor, or Integrated Circuit (IC). Based on this
architecture a list of possible defects is held with any level of granularity, and
these defects can be implanted sequentially as it results in different rendered
output image (e.g. sequential order of a broken colored resistor or a colored
broken resistor).

The main emphasis was put on the extensibility of the software architecture.
The composite pattern allows to add any number of components for and layers of
the PCBA. In addition, it would also be possible to derive classes from composite
and introduce special composites, to allow a further grouping of components.
The same argument holds for the PCBA defects which are also extensible. The
method applyError() will be implemented in any new defect class. Thus, this
method works on a component level and can change the components parameters
(e.g. change the material, reflectiveness of the surface, or the written type on the
component) or change its geometric form (e.g. to simulate mechanical damages
or the simply move or misplace the component).

Although each filter will have to implement the architecture of Fig. 2, it will
be specifically developed for a given defect use case/scenario. This allows to use
the software framework within a command line scripting environment. Finally,
we create the desired and fully labeled pictures for the following ML training.
The scripts hold all the necessary information for the generated picture set and
thus, will be stored in a versioning system.

212 A. Rezaei et al.

Fig. 3. Correct PCBA Image Fig. 4. PCBA Image With Defects

4 Results and Discussion

Produced images with ReProInspect framework underline the capabilities dis-
cussed in the last sections. In Fig. 3 an example PCBA4 with black theme and
without any defects is shown, whereas in Fig. 4, the same PCBA (green theme)
has defects. Of course, in these views it is hard for humans to identify the defects
on the board. Thus, an AOI system inspects components for the defect detec-
tion. Five defects are “implanted” on Fig. 4. Detailed pictures of four of them,
generated with ReProInspect, are shown in Fig. 5.

Fig. 5. Snapshots taken from normal and defective components.

First, a rotated capacitor in Fig. 5e with its correct positioning in Fig. 5a is
shown. This defect might happen when the airflow in the soldering oven moves
components with the liquefied soldering paste. Second, the resistor R12, correctly
placed in Fig. 5b, has a billboard defect in Fig. 5f. This defect might be due to

4 Available (last seen on 18.08.2023):https://github.com/dmitrystu/Nucleo2USB.

https://github.com/dmitrystu/Nucleo2USB

ReProInspect: Framework for Reproducible Defect Datasets for PCBA AOI 213

the placement of resistor upwards instead of its flat side. These two defects
may result in fully functioning PCBA with probability of malfunctions, which
is the reason for manufacturers to sort out such boards as not ok. Next defect
is yet another resistor R6, placed correctly in Fig. 5c. The tombstone defect in
Fig. 5g is hard to detect for humans from this above the component viewpoint.
Tombstones are formed by a time delay of the liquefaction of the two solder paste
sides. The right side liquefied earlier and its surface tension lifted the component.
Fourth defect is a 180 degrees misplaced IC as in Fig. 5h (correct placement as
in Fig. 5d). The last two defects cause malfunctioning PCBA in the end.

All in all the ReProInspect framework has been successfully set up a tool
chain. It is capable of processing the original PCBA data as input and can
generate the desired pictures as output and input for the following ML training.
Its generality and scalability are given by the scalable architecture (any defects
can be added). Across Operating systems only Python and the availability of
the rendering engine (currently: Blender) are the requirements.

5 Future Works

Despite the current working state of the framework and its core software archi-
tecture, several of the architectural features have to be further enhanced.

As shown in the figures above, the soldering points, although available [14],
need to be integrated into the picture generation process. Due to high computa-
tion and rendering time, the parallelization (discussed in Sect. 3) together with
soldering computation could be further improved. Currently we experienced a
speedup of 35 times from a four core CPU to a CPU + GPU setup.

The validation of PCBA dataset generated by ReProInspect will be done
through a comparison with real industrial data. The important difference here is
the validation on the premises of the picture owner. Thus, the actual data stays
on owner’s site and the privacy is ensured. The same applies for enhancement of
AOI systems with distribution shifts so the ReProInspect can be used on sites for
further enhancing and refining approaches (e.g. in [16]), again on the premises
The same argumentation is taken for the defect in PCBAs which are different
amongst PCBA production sites. Here, the defect classification as started in [16]
can be further enhanced and refined, again on the premises of AOI systems.

Acknowledgments. Thüringer Aufbaubank (TAB, 2021 FE 9036) provided financial
support for this study.

References

1. Chen, M.C., et al.: A PCBA solder joint defects inspection system based on deep
learning technology. In: 2023 IEEE International Conference on Consumer Elec-
tronics (ICCE), pp. 1–3. IEEE (2023)

2. Du, B., Wan, F., Lei, G., Xu, L., Xu, C., Xiong, Y.: YOLO-MBBi: PCB surface
defect detection method based on enhanced YOLOv5. Electronics 12(13), 2821
(2023)

214 A. Rezaei et al.

3. Du, Y., et al.: An automated optical inspection (AOI) platform for three-
dimensional (3D) defects detection on glass micro-optical components (GMOC).
Opt. Commun. 545, 129736 (2023)

4. Fridman, Y., Rusanovsky, M., Oren, G.: ChangeChip: a reference-based unsuper-
vised change detection for PCB defect detection. In: 2021 IEEE Physical Assurance
and Inspection of Electronics (PAINE), pp. 1–8. IEEE (2021)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Pearson Education (1994)

6. Huang, W., Wei, P.: A PCB dataset for defects detection and classification. arXiv
preprint arXiv:1901.08204 (2019)

7. Jessurun, N., et al.: FPIC: a novel semantic dataset for optical PCB assurance.
ACM J. Emerg. Technol. Comput. Syst. 19(2), 1–21 (2023)

8. Kim, Y.G., Park, T.H.: SMT assembly inspection using dual-stream convolutional
networks and two solder regions. Appl. Sci. 10(13), 4598 (2020)

9. Lavrik, E., Panasenko, I., Schmidt, H.R.: Advanced methods for the optical quality
assurance of silicon sensors. Nucl. Instrum. Methods Phys. Res., Sect. A 922, 336–
344 (2019)

10. Li, J., Gu, J., Huang, Z., Wen, J.: Application research of improved YOLO V3
algorithm in PCB electronic component detection. Appl. Sci. 9(18), 3750 (2019)

11. Li, Y.T., Kuo, P., Guo, J.I.: Automatic industry PCB board dip process defect
detection system based on deep ensemble self-adaption method. IEEE Trans. Com-
pon. Packag. Manuf. Technol. 11(2), 312–323 (2020)

12. Liao, X., Lv, S., Li, D., Luo, Y., Zhu, Z., Jiang, C.: YOLOv4-MN3 for PCB surface
defect detection. Appl. Sci. 11(24), 11701 (2021)

13. Lu, H., Mehta, D., Paradis, O., Asadizanjani, N., Tehranipoor, M., Woodard, D.L.:
FICS-PCB: a multi-modal image dataset for automated printed circuit board visual
inspection. Cryptology ePrint Archive (2020)

14. Nau, J., Richter, J., Streitferdt, D., Kirchhoff, M.: Simulating the printed circuit
board assembly process for image generation. In: 2020 IEEE 44th Annual Com-
puters, Software, and Applications Conference, pp. 245–254. IEEE (2020)

15. Pennekamp, J., et al.: Privacy-preserving production process parameter exchange.
In: Annual Computer Security Applications Conference, pp. 510–525 (2020)

16. Richter, J., Nau, J., Kirchhoff, M., Streitferdt, D.: KOI: an architecture and frame-
work for industrial and academic machine learning applications. In: MDIS 2020.
CCIS, vol. 1341, pp. 113–128. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-68527-0 8

17. Shi, W., Lu, Z., Wu, W., Liu, H.: Single-shot detector with enriched semantics for
PCB tiny defect detection. J. Eng. 2020(13), 366–372 (2020)

18. Tang, S., He, F., Huang, X., Yang, J.: Online PCB defect detector on a new PCB
defect dataset. arXiv preprint arXiv:1902.06197 (2019)

19. Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., Schmidt, L.: Measuring
robustness to natural distribution shifts in image classification. Adv. Neural. Inf.
Process. Syst. 33, 18583–18599 (2020)

20. Ulger, F., Yuksel, S.E., Yilmaz, A., Gokcen, D.: Solder joint inspection on printed
circuit boards: a survey and a dataset. IEEE Trans. Instrum. Meas. 72, 1–21 (2023)

21. Wu, H., Lei, R., Peng, Y.: PCBNet: a lightweight convolutional neural network for
defect inspection in surface mount technology. IEEE Trans. Instrum. Meas. 71,
1–14 (2022)

http://arxiv.org/abs/1901.08204
https://doi.org/10.1007/978-3-030-68527-0_8
https://doi.org/10.1007/978-3-030-68527-0_8
http://arxiv.org/abs/1902.06197

Cyber-Physical Ecosystems: Modelling
and Verification

Manuela L. Bujorianu(B)

University College London, Gower Street, London WC1E 6EA, UK

l.bujorianu@ucl.ac.uk

Abstract. In this paper, we set up a mathematical framework for the
modelling and verification of complex cyber-physical ecosystems. In our
setting, cyber-physical ecosystems are cyber-physical systems of systems
that are highly connected. These are networked systems that combine
cyber-physical systems with an interaction mechanism with other sys-
tems and the environment (ecosystem capability). Our contribution will
be on two streams: (i) modelling the constituent systems and their inter-
faces, and (ii) local/global verification of cyber-physical ecosystems. We
introduce a concept of basic model, whose skeleton is a Markov decision
process and we propose a verification based abstraction methodology.

Keywords: cyber-physical ecosystem · Markov model · reachability ·
abstraction

1 Introduction

The Cyber-Physical System (CPS) paradigm was introduced by NSF in 2006
to define a new generation of systems that are built from, and rely upon, the
coherent integration of computational algorithms and physical components. It is
based on three technologies which are: embedded systems, sensor and actuation,
and network and communication systems.

An ecosystem is a complex system, i.e. a group of interrelated things, work-
ing together to achieve a common objective. In system engineering, an ecosystem
usually consists of components or subsystems, interacting via interfaces, which
together satisfy a set of requirements. There exists also an external environment
where the given system activates. Examples include the global financial infrastruc-
ture of banks and exchanges, transportation networks, cyber-physical systems, IoT
networks and semiautomated manufacturing lines, and distributed databases.

Cyber-physical ecosystems (CPES) are ecosystems of networked CPS, mean-
ing that they are systems of CPS (CPSoS) provided with an interaction activ-
ity between them and with their environment. Alternatively, we may call them
cyber-physical infrastructures (CPI). Examples are smart grid, autonomous vehi-
cles and maritime ships, autonomous swarm drones.

This work has been funded by the EPSRC project EP/R006865/1: Interface reasoning
for interacting systems (IRIS).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 215–230, 2024.
https://doi.org/10.1007/978-3-031-49252-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_17&domain=pdf
http://orcid.org/0000-0001-9630-1868
https://doi.org/10.1007/978-3-031-49252-5_17

216 M. L. Bujorianu

The aim of this paper is to set up a modelling framework for CPES based
on the distributed system paradigm. The necessary shift to the ecosystem view
means that we have to consider not only the construction of models of individ-
ual components but also the mechanism that allows them to interact with one
another. The interaction mechanism is based on the concept of interface, which,
in this paper, is defined in a very general way. From an engineering standpoint,
the interfaces can be treated from different perspectives. It is important to note
that in the architecture of an ecosystem, an interface may be itself a subsystem
with its own interfaces.

In this paper, we consider that components have the possibility to connect
with some free interfaces. The interfaces have separate structure and the link
with specific components is realized via interface requirements.

We model the CPES components as Markov decision processes that encap-
sulate at a higher level of abstraction the interaction between physics and com-
putation in the CPS model. The interaction between components will be done
by means of specific interfaces, which will be modelled using again decision
processes with constraints. This kind of interfaces is flexible enough to enable
dynamic interactions and reconfiguration within the underlying CPES.

The novelty of our CPES modelling approach relies on the use of dis-
tributed systems paradigm combined with the dynamic behaviour of components
described by suitable Markov models. In this setting, the component interaction
is enabled by some independent interfaces that play the role of connectors. For
this modelling framework, we propose a safety verification methodology based
on abstractions.

The paper is structured as follows. In Sect. 2, we discuss our use of dis-
tributed systems as a metaphor for cyber-physical ecosystems of systems and
show how we combine it with the dynamic system behaviours. In Sect. 3, we
present the mathematical models for the CPES constituents using some suitable
Markov models. In Sect. 4, we explain how to model the compositional structure
of ecosystem models using a rather general notion of interface. Interfaces between
models describe how they can be composed together to construct a model of an
ecosystem. Conditions that ensure the soundness of the composition operation
are also provided. Our notion of interface captures a wide range of the notions
of interface that are in the literature on systems and modelling [6]. In Sect. 5, we
define verification of CPES as a stochastic reachability problem. This reachabil-
ity problem is specialised for models of components and interfaces. In Sect. 6,
we introduce a specific concept of abstraction map that preserves the Markov
property. Then this is used to obtain aggregations of models and interface mod-
els and to simplify the computation of the reach probabilities. The abstraction
process is done in a modular way supporting the local reasoning. Modular rea-
soning involves breaking down a computational ecosystem into smaller, more
manageable components, and to determine local properties of these components
that guarantee desired properties of the global system. First, we check the local
safety properties and then we combine them in order to deduce the global sys-
tem safety. This modular safety approach is quite standard in the verification

Cyber-Physical Ecosystems: Modelling and Verification 217

community [7]. We apply the philosophy of this approach in a new setting of
CPES modelled as networks of Markov decision processes. The paper ends with
some conclusions.

2 CPES - Conceptual Modelling

CPES are modelled as systems of systems, defined through the composition of
their CPS constituents. The composition operation is done via specific subsystem
interfaces. In this work, we combine the distributed system modelling approach
with the behavioural approach for dynamical systems.

In a nutshell, a constituent can be viewed as a tuple

C = 〈Loc,X, I,Beh〉

where Loc represents its location, X is a finite set of variables (both computa-
tional and physical), I represents its interface thought of as a set of variables
that can be observed by the other systems of the CPES. Finally, Beh denotes
the set of the system behaviours that are thought as system traces (evolutions
of its variables).

The interaction with other constituent systems and the environment may
affect these parameters. For example, Loc can be modelled as a random graph,
or the time evolution of X can be modelled as a stochastic dynamical system
where the environment perturbation is captured as a contiguous noise (modelled
as white noise in the structure of a stochastic differential equation), or as shot
noise (modelled by a Poisson type process).

2.1 The Distributed Systems Metaphor

CPES are thought of as systems of systems, or systems with different (semi)-
autonomous constituent systems, which interact, collaborate, inter-operate to
achieve common goals. Each system may have a private activity with a specific
structure, behaviour, decision mechanism or internal information encapsulated
in a specific mathematical model.

We use distributed systems as a metaphor for describing CPES. Our mod-
elling approach for ecosystems is component based, where each constituent sys-
tem is modelled using a quite general basic model. A basic model is intended to
capture the simplest convenient representation of a single constituent system.

There are three key ingredients upon which we draw.

– Location. Distributed systems naturally have a concept of distinct locations,
which may be connected to one another. In the setting of computer systems,
components are present at different locations and connected by a network. In
the more general view, locations can be physical (e.g., a room, a container),
logical (e.g., an address in computer memory), or abstract (e.g., the location
where a semaphore exists).

218 M. L. Bujorianu

– Resource. Resources exist at locations and can move between them according
to the locations’ connections. In general, they can represent physical objects,
people, information, and more.

– Process. Processes manipulate resources—such as consuming, creating, and
moving between locations—as they go.

These concepts can be used to build a representation of a system’s structure and
operation, but there is one more concept required: the environment in which the
system operates.

– Environment—Environments capture the world outside of the system of inter-
est and how the two interact.

Each basic model encapsulates the above primitives—locations, resources, pro-
cesses, and environment.

2.2 Dynamic Behaviour

Each constituent system is characterized by a specific dynamic behaviour. We
can model this behaviour as a deterministic dynamical system or a stochas-
tic process. In [4], the behaviour of CPS subsystems has been modelled as a
stochastic hybrid process to encapsulate the physical part and the digital part
of a component.

In this paper, for simplicity, we will use an abstraction of this behaviour mod-
elled by a simple Markov chain, viewed as graph whose states are the locations,
which have associated some resources. To capture the processes that manage
the resources, we add control actions to the Markov chain, transforming it into
a Markov decision process. A CPES will be modelled as a network of Markov
chains, and its safety verification will be based on some coarse-graining process
implemented using specific abstraction morphisms. The continuous dynamics
will be abstracted into control action, in the sense that an action could enable a
continuous path from a discrete state to another. This technique has been suc-
cessfully applied for different models of cyber-physical systems such piecewise
deterministic Markov processes or stochastic hybrid processes [1]. An interesting
CPES example is the water distribution network for which a modelling frame-
work based on Markov decision processes has been developed in [12].

3 Mathematical Modelling of CPES

In this section, we set up a mathematical framework where the basic models
and their composition are formally described. Our CPES model builds on some
well-known formalisms as Markov chains and interface theory. A CPES, viewed
as a system of systems, will be modelled as a composition of Markov chains.

Cyber-Physical Ecosystems: Modelling and Verification 219

3.1 Basic Model

The basic model is a representation of a single constituent system. In this paper,
the basic model is defined as a discrete time Markov chain (MC) with a finite
state space. The MC states represent the system locations. Resources exist in
each state and their manipulation will be modelled using Markov decision pro-
cesses.

A Markov Chain MC is a directed graph which consists of a set of states S
as nodes, and a set of edges defined by a set of probabilistic transitions. An MC
can be also specified as a (discrete-time) stochastic process (Xn) with values in
S.

The relation between the states of the MC is defined by a set of transitions:

T = {(s, s′)|s, s′ ∈ S}

where each transition (s, s′) is governed by a transition probability

p(s, s′) = P[Xn+1 = s′|Xn = s].

The transition matrix P = (p(s, s′)) is a stochastic matrix (that means the sum
of each row is equal to one).

Usually, to ensure the uniqueness of an MC, we need to have an initial state
s0 or an initial probability distribution μ0. Sometimes, a deadlock or a cemetery
state sΔ to encounter for the case when the chain enters in a failure state or is
dying (that is sΔ is an absorbing state). Then, an MC is defined as a tuple:

MC = (S, T, s0, sΔ).

The important advantage is that the infinitesimal generator has a matrix form,
and the probability distributions are probability vectors. For a Markov chain,
the generator is one-step increment of the transition matrix

L = P − I (1)

Each state of the MC is associated with some resources. We denote the set of
resources by R. We may add an algebraic structure to R. The processes (which
execute the resource management) will be modelled by using a Markov decision
process (MDP). To introduce an MDP we need a set of actions A, where each
action a ∈ A will represent a resource operation decision or a resource control
action. At each time step n, the corresponding decision is denoted by an.

Considering the decision process (an), the transition probabilities of the MDP
is:

pa(s, s′) = P[Xn+1 = s′|Xn = s, an = a].

Therefore, we have a transition set T a associated to each action a ∈ A. For each
s ∈ S, denote by A(s) the set of all actions a ∈ A, which enable a transition
from s.

220 M. L. Bujorianu

For a Q ⊂ S, we use the notation s
a−→μ Q whenever a ∈ A(s) and

∑

q∈Q

pa(s, q) = μ.

For an MDP, we may define also a reward function ρ : S×A → R, which specifies
the gain and cost of being in a particular state and applying a particular action.

An MDP policy is a set of rules a controller would follow to choose the
action to perform in each state. A Markov policy is a family of stochastic kernels
πn : S → Δ(A), where Δ(A) is the space of probability distributions on A:

π(s, a)(n) = P[An = a|Xn = s]. (2)

If a policy does not depend on time, it is called stationary. Under each policy,
the MDP behaviour is described by an MC.

We define a basic model as follows:

M = (S[R],A, (T a)a∈A, s0). (3)

We can replace the initial condition s0 with an initial probability distribution μ0.
A basic model is an MDP that models the resource dynamics. The basic model
can be seen, as well, as a probabilistic automaton [11] where all the transitions
are Markovian (we do not consider nondeterminism). We treat the basic model
as graph with probabilistic transitions.

We can view an MDP or an MC as a dynamical system on the space of
probability distributions of S, denoted by Δ(S). Let us call μn the probability
distribution at time n; that is

μn(s) = P[Xn = s|X0 = s0]. (4)

The distribution dynamics of an MC can be described the following master
equation:

μn+1 = μnP (5)

where P is the associated stochastic matrix. Then (5) describes a semi-dynamical
system with the initial condition equal to μ0. For an MDP, to each action a ∈ A,
we have the corresponding dynamics:

μn+1 = μnP a, (6)

where P a is thought of as a matrix operator acting on the space of probability
distributions. For simplicity we use the notation μn instead of μa

n.
We can adapt the master equation to capture also the resource dynamics:

μn(s,R) = P[Xn = (s,R)|X0 = (s0, R0)].

Then the master equation describes a probabilistic modification function of the
basic model graph. In the following, we consider the process dynamics contains
the resource movement in an implicit way to ease the notation.

Cyber-Physical Ecosystems: Modelling and Verification 221

3.2 Probabilistic Modal Logic

We consider below a probabilistic modal logic (PML), which is a probabilistic
version of the Henessy-Milner logic as defined in [8]

φ := ¬φ | � | ⊥ | φ ∧ φ | φ ∨ φ | Δa | 〈a〉μφ

where a ∈ A and μ ∈ [0, 1]. The semantics of PML is given using a probabilistic
labelled transition system, which is an MDP in our setting. The satisfaction
relation between states and formulas s |= φ is defined as usual for ¬φ, �, ⊥,
φ ∧ φ and φ ∨ φ. s |= Δa holds whenever a /∈ A(s).

The satisfaction of s |= 〈a〉μφ holds when for some Q ⊂ S we have s
a−→ν Q

for a ν ≥ μ and q |= φ for all q ∈ Q. Then

[a]φ ≡ 〈a〉1φ
A concept of probabilistic bisimulation can be defined on the state space S

of an MDP which is characterized by the above logic (see [8] for definitions and
characterizations).

4 Interfaces and Composition

To start thinking about system interaction, a concept that captures how these
interactions happen is required. In this section, we introduce the notion of basic
interface, and we equip our basic model with this concept.

4.1 Basic Interface

We define a basic interface for a basic model M as:

I = 〈SI [R],AI〉 (7)

where AI is a set of actions specified by a transition function TI . The transition
function could be deterministic or stochastic. Such an interface will be connected
with a basic model, and then we will define a model for a CPES subsystem.

With the above concept of interface, we define the model of a constituent
system in the CPES architecture as M = 〈M, I〉, where SI ⊂ S, AI ⊂ A is a
subset of observable actions and TI coincides with T on SI for all a ∈ AI .

For the soundness of the underlying mathematical model, we enforce the
following assumption.

Assumption 1. The state space S is partitioned into the union of a transient
set and an absorbing set:

– S \ SI is a transient set for the underlying MC (that means the probability to
leave this set is strictly positive);

– SI contains an absorbing set for the underlying MC (it may contain also
transient states).

Moreover, the initial condition s0 will belong to S \SI , otherwise the model will
evolve only in SI .

222 M. L. Bujorianu

4.2 Composition of Models

The composition operation joins two models using a specified basic interface
from each one. Let M1 = 〈M1, I1〉 and M2 = 〈M2, I2〉 be two models.

Assumption 2. Suppose that SI1∩SI2 �= ∅, AI1∩AI2 �= ∅ and (S1\SI1)∩S2 = ∅,
(S2 \ SI2) ∩ S1 = ∅; (A1 \ AI1) ∩ A2 = ∅, (A2 \ AI2) ∩ A1 = ∅.
The two models need to match their transition structure on the intersection of
their basic interfaces. So, the following assumption is necessary:

Assumption 3. Let SI12 = SI1 ∩ SI2 . For any a ∈ AI1 ∩ AI2 , we have:

pa
1(s, s

′) = pa
2(s, s

′), ∀s, s′ ∈ SI12 .

The composition M1 ◦I1,I2 M2 is defined as follows:

M = M1 ◦I1,I2 M2 = 〈S[R], T,A, s0, I〉
where: S = S1 × S2; R = R1 ⊗ R2; T = T1 ⊗ T2; A = A1 ∪ A2; s0 = (s01, s02),
I = I1 ⊗ I2.

The resource allocation for a state s = (s1, s2) in the composed model M is
defined as the union of component resources: s(R) = s1(R) ∪ s2(R).

The transition function T of model M is defined as follows:

– If a ∈ A1 \ A2, and s = (s1, s2) ∈ S then a ∈ A(s) if and only if a ∈ A(s1)
with

pa(s, s′) = pa
1(s1, s

′
1)δs2(s

′
2), ∀s′ = (s′

1, s
′
2) ∈ S.

– If a ∈ A2 \ A1, and s = (s1, s2) ∈ S then a ∈ A(s) if and only if a ∈ A(s2)
with

pa(s, s′) = pa
2(s2, s

′
2)δs1(s

′
1), ∀s′ = (s′

1, s
′
2) ∈ S.

The interface I of the model M has the following items:

– SI = SI1 × SI2 .
– The transition function TI is defined similarly as T , the only difference is that

we encounter an extra case:
If a ∈ AI1 ∩ AI2 , and s = (s1, s2) ∈ SI12 × SI12 then a ∈ AI(s) if and only if
a ∈ AI1(s1) ∩ AI2(s2) with

pa(s, s′) = pa
1(s1, s

′
1)p

a
2(s2, s

′
2), ∀s′ = (s′

1, s
′
2) ∈ SI .

The synchronization of the two models is realized only on the overlapping region
SI12 . Outside of this region, the composed model inherits the structure (loca-
tions, resources, processes) of its components. The model composition is similar
with the MDP composition, taking into account the interface separation. The
following result is easy to establish.

Proposition 1 (Composition Soundness). If M1 and M2 are models as
above, then so is M1 ◦I1,I2 M2.

Cyber-Physical Ecosystems: Modelling and Verification 223

Standard properties of composition as commutativity and associativity are
straightforward.

When two models are composed using their basic interfaces it follows, by
construction, that their basic structures fit together. But this is not always the
case. The main observation is that for model, whenever it is composed with
another model, it is necessary to specify which of the properties or functionalities
must be preserved.

In this paper, we define a more general concept of interface which is defined
as a model itself together with some constraints. These constraints may concern
the states, the resources, the rewards or the cost functions associated to MDPs.
To be more general, suppose we have given an appropriate logic for MDPs (for
example, probabilistic modal logic defined in Subsect. 3.2).

4.3 Interface Model

An interface model is a pair I = 〈M,ψ〉 where M is a model, and ψ is a set
of formulae that describe properties of the model that must be preserved under
composition. We refer to these formulae as interface formulae.

The concept of an interface model strictly generalizes that of a model, as we
can take the interface model as 〈M, {�}〉, which has no constraint on M .

Our concept of interface model can be thought of as a connector with a model
structure (locations, resources, processes and basic interfaces). The interface
requirements are specified as logical formulas.

4.4 Admissibility

For the interface composition, some extra conditions are required to ensure the
soundness of this operation.

Let 〈M1, ψ1〉 and 〈M2, ψ2〉 be interface models such that M1 and M2 are
built on MDPs as in the previous section. Let M1 ◦ M2 denote a composition of
M1 and M2 using some choice of interfaces that satisfy the Assumption 2. Then
the composition of 〈M1, ψ1〉 and 〈M2, ψ2〉, denoted

〈M1, ψ1〉 ◦ 〈M2, ψ2〉 := 〈M1 ◦ M2, ψ1 ∧ ψ2〉

is admissible if ψ1 ∧ ψ2 �⊃ ⊥.

Proposition 2 (Composition Soundness). If 〈M1, ψ1〉 and 〈M2, ψ2〉 are
interface models, then so is their composition 〈M1, ψ1〉 ◦ 〈M2, ψ2〉.
Proposition 3 (Commutativity and Associativity). Commutativity of
composition of interface model follows as for models. Associativity of compo-
sition of interface models 〈M1, ψ1〉, 〈M2, ψ2〉, and 〈M3, ψ3〉 holds as for models
provided also ψ1 ∧ ψ2 ∧ ψ3 �⊃ ⊥.

In our setting, an ecosystem is modelled as a composition of interface models.

224 M. L. Bujorianu

5 Verification

Verification of cyber-physical systems is a difficult, yet extremely important,
problem. In this paper, we formulate the CPES verification as a reachability
problem. Reachability analysis is a fundamental problem in verification that
checks for a specific model and a set of initial states if the system will reach a
specified set of unsafe states. Complementary, reachability analysis can check if
the system will achieve its objective, that is if the system will reach a set of target
states. For CPS, the reachability problem is challenging when we consider hybrid
models that combine discrete transitions alternating with continuous dynamics.
In this work, we abstract away the continuous behaviour of CPES, but the main
difficulty is arising from the distributed nature of CPES.

In modular verification of distributed systems, the component verification is
specified and solved independently (locally) for each module. Then the entire
system verification is defined as a global property, whose solution is obtained as
the composition of local solutions rather than using the global implementation
of the system.

5.1 Reachability Problem for a Basic Model

Suppose that we have given a basic model M as described by (3).
Here, we define the state-constrained reachability, called sometimes reach

avoidance problem. Let U ⊂ S be an unsafe set, and E ⊂ S be a target (or
objective) set. Then the reach avoidance problem aims to compute the probabil-
ity to reach the unsafe set U , before hitting the target E.

Formally, for the underlying MC, we have to compute the reach probability
function, i.e.

qM(s) = qM(s, U,E) = P{τU < τE |X0 = s} (8)

where we use the notation τQ = min{k > 0|Xk ∈ Q} for the first hitting time of
a set Q ⊂ S. Then qM is the solution of the following Dirichlet problem:

(Lq)(i) = 0,∀i ∈ S \ U,

q(j) = 1,∀j ∈ U,

q(l) = 0 if l ∈ E,

which is a system of linear equations.
When the transition probabilities are triggered by the action a ∈ A, we will

use the notation qa
M(s).

For an MDP, the reach probability can be computed for any policy π. Usually,
the stochastic safety aims to compute the optimal policies for which the reach
probabilities are bounded by an admissible threshold p ∈ [0, 1]. For the analysis
and computational methods that characterize the reach avoidance problem for
MDPs, we refer to [5,13].

Cyber-Physical Ecosystems: Modelling and Verification 225

5.2 Reachability Problem for a Model

We adapt the reach probability function for a model that is equipped with a
basic interface. In this case, we take U ⊂ (S \ SI) and E ⊂ S. Then we define:

qM (s) = qM (s, U,E) = qM(s, U,E ∪ SI) (9)

i.e.
qM (s) = P{τ(U) < τE∪SI

|X0 = s}.

In this case, our objective is to compute the probability to reach either the unsafe
set U before reaching the target E, or the basic interface space SI . Then qM is
the solution of the following Dirichlet problem:

(Lq)(i) = 0,∀i ∈ S \ (U ∪ SI); q(j) = 1,∀j ∈ U ; q(l) = 0,∀l ∈ E ∪ SI . (10)

We assume that the basic interface is a safe region for the model. The problem
of verification concerns only the unsafe states which are transient. As in the case
of basic model, when the transition probabilities are controlled by the action
a ∈ A, we will use the notation qa

M (s).

5.3 Reachability for an Interface Model

Suppose now we have given an interface model 〈M,ψ〉. In order to verify safety
of such a model, we need to check two conditions: (1) the logical constraints ψ
are satisfied, and (2) the stochastic safety condition qM < p, where p ∈ [0, 1] is
an admissible probability threshold. If the logical constraints ψ regard only the
basic interface space SI , the two conditions can be checked separately.

5.4 Reachability for Model Composition

Let M1 = 〈M1, I1〉 and M2 = 〈M2, I2〉 be two models that satisfy the Assump-
tions 2, 3 for composition. Let M = 〈M, I〉 be their composition.

Let
E = E1 × E2 ⊂ S1 × S2

be a target set, and

U = U1 × U2 ⊂ (S1 \ SI1) × (S2 \ SI2)

be an unsafe set for M .
It is important to remark that the model composition does not change the

behaviour on S1 \SI1 or S2 \SI2 of its constituents. Then the next result can be
easily checked.

Proposition 4. The reach probability function of M w.r.t. U and E is equal to
the component reach functions as follows:

226 M. L. Bujorianu

– If a ∈ A1 \ A2 then

qa
M (s, U,E) = qa

M1
(s1, U1, E1),

for all s = (s1, s2) ∈ (S1 \ SI1) × (S2 \ SI2).
– If a ∈ A2 \ A1 then

qa
M (s, U,E) = qa

M2
(s2, U2, E2),

for all s = (s1, s2) ∈ (S1 \ SI1) × (S2 \ SI2).

The above proposition states that the computation of the reach probability for
the composed model is done in a modular way, for each component. The reason
is that outside of the interfaces, a control action a modifies only one component
when it is enforced.

6 Abstractions

For MDPs, according to [9], there exist five types of abstraction functions. Here,
we use the state abstraction function.

6.1 Abstraction of a Basic Model

Let M be a basic model defined by (3).
Formally, an abstraction function is defined as a surjective map ϕ : S → S,

which maps the underlying MC into another MC. Then we define a matrix Φ of
dimension |S| × |S| by:

Φ(s, s′) = δs′(ϕ(s)) = 1ϕ−1(s′)(s).

A sufficient condition for ϕ to be a Markovian abstraction function is the exis-
tence of a stochastic kernel Λ : S → Δ(S) such that suppΛ(s, ·) = ϕ−1(s) for all
s in S, i.e.,

Λ(s, ϕ−1(s)) =
∑

y∈ϕ−1(s)

Λ(s, s) = 1, ∀s ∈ S.

This assumption implies that:
ΛΦ = I|S| (11)

where I|S| is the identity matrix of order |S|. Note this condition is more general
than the one given in [9]. The condition is inspired by the seminal paper on
Markov functions of Rogers and Pitman [10].

The kernel Λ will be called concretization kernel. The reason is that it maps
the abstract model into the concrete one. The following relationship holds:

P{Xn = s|ϕ(Xm), 0 ≤ m ≤ n} = Λ(ϕ(Xn), s), ∀s ∈ S. (12)

Cyber-Physical Ecosystems: Modelling and Verification 227

This states a very prominent thing that the estimator of the state Xn that
predicts the process from the abstractions is the same as the abstracted state.
We denote by Xn = ϕ(Xn) the abstraction process, which is still Markov. The
relationship between the infinitesimal generator of the abstraction process and
the concrete one is as follows:

L = ΛLΦ.

We define an equivalence relation on S by:

s ∼ s′ ⇐⇒ ϕ(s) = ϕ(s′).

Let [s] be the equivalence relation of s w.r.t. ∼, and S/∼ be the quotient space.
A subset F of S is closed w.r.t. ∼ if whenever s ∈ F then s′ ∈ F for all s′ ∈ [s].

In fact the abstract basic model is thought of as:

M = (S[R],A, (T
a
)a∈A, s0), (13)

where the underlying Markov chain is the quotient process. In fact, the equiva-
lence relation ∼ is thought on the hybrid space (S,R). Due to the limited room
of this paper, we keep the implicit notation.

Let U ⊂ S and E ⊂ S be two closed subsets (w.r.t. ∼) of S. Denote U = ϕ(U)
and E = ϕ(E). Then ϕ−1(U) = U and ϕ−1(E) = E. The reach probability
function qM for the abstraction process Xn the unsafe set U and target set E
will be the solution of the Dirichlet problem associated to the generator L. The
following result is straightforward:

Proposition 5. The reach probability function qM of the concrete basic model
M w.r.t. the target set E and the unsafe set U is related with the reach probability
function qM of the abstraction of the basic model M w.r.t. the target set E and
the unsafe set U by the following relation:

qM = qMΛ.

6.2 Abstraction of a Model

Let M = 〈M, I〉 be a model defined as before. An abstraction function for M
is defined as an abstraction function for the underlying basic model M, which
satisfies the following condition:

ϕ−1(SI) = SI , (14)

where SI = ϕ(SI). Then, the interface space ‘invariance’ will lead to the following
relations that connect the abstraction function and the concretization kernel:

Λ|S\SI
Φ|S\SI

= I|S\SI |, Λ|SI
Φ|SI

= I|SI |.

For a model M , the reach probability function qM w.r.t. U and E is a spe-
cialization of the reach probability function qM of basic model M w.r.t. U and
E ∪ SI . Then:

qM = qMΛ. (15)

228 M. L. Bujorianu

6.3 Abstraction of an Interface Model

Let I = 〈M,ψ〉 be an interface model. An abstraction function ϕ : S → S of the
model M is an abstraction function for the interface model I if it is compatible
with the constraints ψ. This will be explained below.

We impose the following compatibility assumption between ∼ and the con-
straints ψ:

Assumption 4. If there exists s′ ∈ [s] such that s′ |= ψ then s′′ |= ψ for all
s′′ ∈ [s].

Therefore, the equivalence relation ∼ is consistent with the interface constraints.
The computation of the reach probability function remains the same, the main
difficulty in this case is to find an abstraction map that preserves the interface
requirements.

6.4 Abstraction Composition

Suppose that we have given two interface models 〈Mi, ψi〉 with i = 1, 2 such that
the Assumptions 2, 3 hold and the admissibility condition is satisfied.

Let ϕi, i = 1, 2 be associated abstractions functions, with their corresponding
concretization kernels Λi, i = 1, 2 such that the Assumption 4 holds for both of
them.

We have the underlying models defined as Mi = 〈Mi, Ii〉, i = 1, 2. To make
the composition of their abstractions we need a further assumption as follows.

Assumption 5. The abstraction functions coincide on the basic interface over-
lapping SI12 = SI1 ∩ SI2 , i.e.

ϕ1(s) = ϕ2(s), ∀s ∈ SI12

and SI12 is ‘invariant’ w.r.t. both abstraction maps:

ϕ−1
1 (ϕ1(SI12)) = ϕ−1

2 (ϕ2(SI12)) = SI12

Then ϕ = (ϕ1, ϕ2) will play the role of an abstraction map for the composed
model M .

We denote by M the composition of the abstract interface models M1 and
M2.

The reach probability function qM corresponding to the unsafe set U =
U1×U2 and the target set E = E1×E2 will be the superposition of the component
reach probabilities:

qM = (qM1 , qM2).

The reach probability function qM corresponding to the unsafe set U = U1 ×U2

and the target set E = E1×E2 will be the superposition of the component reach
probabilities:

qM = (qM1
, qM2

).

Cyber-Physical Ecosystems: Modelling and Verification 229

We introduce the notation:
Λ = (Λ1, Λ2)

where Λ1 and Λ2 are the concretization kernels associated to the component
models M1 and M2. The following result holds:

Proposition 6. The reach probability function qM of the concrete model M and
the reach probability qM of the abstraction model M are related as follows:

qM = qM ◦ Λ

where qM ◦ Λ is the Hadamard product of matrices, i.e.

qM ◦ Λ = (qM1
Λ1, qM2

Λ2).

The main remark here is that the verification process is carried out in a
modular way.

7 Conclusions

In this paper, we have presented an approach to modelling and verification
of cyber-physical ecosystems based on concepts from distributed systems and
Markov decision processes. We have developed the notion of a basic model based
on the MDP skeleton, expanded it with basic interfaces to define a model. Then
we have characterised an interface model as a model which has associated a set
of formulae that characterize the composition requirements. We have defined the
verification of CPES as a stochastic reach avoidance problem for all constituent
models. Then, we have explored how to use modular abstractions to find simple
computational solutions for the stochastic safety of CPES.

This paper provides the theoretical setting for CPES verification, when the
system constituents are modelled as MDPs and they interact through some gen-
eral interfaces. A case study of a cyber-physical ecosystem as a system of supply
chains is under development. New results will be reported in a follow-up paper.

References

1. Bäuerle, N., Rieder, U.: Piecewise deterministic Markov decision processes. In:
Bäuerle, N., Rieder, U. (eds.) Markov Decision Processes with Applications to
Finance. Universitext, pp. 243–265. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-18324-9 8

2. Bujorianu, M.L., Caulfield, T., Ilau, M.C., Pym, D.S.: Interfaces in Ecosystems:
Concepts, Form, and Implementation. Submitted to TARK

3. Bujorianu, M.L.: Stochastic reachability analysis of hybrid systems. In: Bujorianu,
M.L. (ed.) Stochastic Reachability Analysis of Hybrid Systems. Communications
and Control Engineering, pp. E1–E3. Springer, London (2012). https://doi.org/10.
1007/978-1-4471-2795-6 12

4. Bujorianu, M.L., Caulfield, T., Pym, D.: Modelling and control of complex cyber-
physical ecosystems. IFAC-PapersOnLine 55(40), 253–258 (2022)

https://doi.org/10.1007/978-3-642-18324-9_8
https://doi.org/10.1007/978-3-642-18324-9_8
https://doi.org/10.1007/978-1-4471-2795-6_12
https://doi.org/10.1007/978-1-4471-2795-6_12

230 M. L. Bujorianu

5. Bujorianu, M.L., Wisniewski, R., Boulougouris, E.: Stochastic safety for Markov
chains. IEEE Control Syst. Lett. 5(2), 427–432 (2021)

6. Caulfield, T., Ilau, M.-C., Pym, D.: Engineering ecosystem models: semantics
and pragmatics. In: Jiang, D., Song, H. (eds.) SIMUtools 2021. LNICST, vol. 424,
pp. 236–258. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97124-
3 21

7. Kupferman, O., Vardi, M.Y.: Modular model checking. In: de Roever, W.-P.,
Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 381–401.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-5 14

8. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

9. Li, L., Walsh, T.J., Littman, M.L.: Towards a unified theory of state abstraction
for MDPs. In: Proceedings of the Ninth International Symposium on Artificial
Intelligence and Mathematics (2006)

10. Rogers, L.C.G., Pitman, J.W.: Markov functions. Ann. Probab. 9(4), 573–582
(1981)

11. Stoelinga, M.: An introduction to probabilistic automata. Bull. EATCS 78 (2004)
12. Misra, R., Wisniewski, R., Kallesøe, C.S.: Approximating the model of a water

distribution network as a Markov decision process. IFAC-PapersOnLine 55(20),
271–276 (2022)

13. Wisniewski, R., Bujorianu, M.L.: Probabilistic safety guarantees for Markov deci-
sion processes. IEEE Trans. Autom. Control (2023). https://doi.org/10.1109/TAC.
2023.3291952

https://doi.org/10.1007/978-3-030-97124-3_21
https://doi.org/10.1007/978-3-030-97124-3_21
https://doi.org/10.1007/3-540-49213-5_14
https://doi.org/10.1109/TAC.2023.3291952
https://doi.org/10.1109/TAC.2023.3291952

Integrating IoT Infrastructures
in Industrie 4.0 Scenarios with the Asset

Administration Shell

Sven Erik Jeroschewski, Johannes Kristan(B), Milena Jäntgen,
and Max Grzanna

Bosch.IO GmbH, Ullsteinstr. 128, 12109 Berlin, Germany
{sven.jeroschewski,johannes.kristan,milena.jantgen,max.grzanna}@bosch.io

Abstract. The Asset Administration Shell (AAS) specifies digital twins
to enable unified access to all data and services available for a physical
asset to cope with heterogeneous and fragmented data sources. The setup
of an AAS infrastructure requires the integration of all relevant devices
and their data. As the devices often already communicate with an IoT
backend, we present three approaches to integrate an IoT backend with
an AAS infrastructure, share insights into an implementation project,
and briefly discuss them.

Keywords: IoT · Asset Administration Shell · I40 · digital twin

1 Introduction

The rising heterogeneity and complexity of their environments make it hard for
manufacturers to adapt to changes, integrate new components, and prevent fast
and sound decision-making, as relevant data may be theoretically available but
practically not accessible where it is needed [8].

The Asset Administration Shell (AAS) [5,6] is a building block in achiev-
ing interoperability in Industrie 4.0 scenarios by specifying interaction models,
formats, and abstractions for the handling and access of information as digital
twins. Various domains already adopt the AAS for scenarios like Digital Calibra-
tion Certificates (DCC) [4], or accessing semantically and syntactically aligned
data sets for training, and re-using higher quality AI models [8].

To benefit from the AAS, manufacturers link existing systems, services, and
devices with an AAS infrastructure, which may result in high configuration
efforts for each device and possibly long down times. Many connected devices
already communicate with an Internet of Things (IoT) backend [1,7], which
manages the device state, collects data, and routes messages. Often, it is thus
easier to connect the AAS to an IoT backend and leave each device unchanged.

2 Integration Approaches

The AAS defines flows for data retrieval (Fig. 1) [6], which the presented integra-
tion approaches need to fit to. The flow starts by requesting an AAS ID from the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 231–234, 2024.
https://doi.org/10.1007/978-3-031-49252-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_18&domain=pdf
https://doi.org/10.1007/978-3-031-49252-5_18

232 S. E. Jeroschewski et al.

AAS discovery interface based on a (local) specific asset ID or a global asset ID.
With the AAS ID, the application retrieves an endpoint for the AAS through
the AAS Registry interface. The application then requests the Submodel (SM)
ID from that AAS endpoint and uses this SM ID to get the SM endpoint from
the SM Registry. From that SM endpoint, the user can request the SM Element
(SME), which contains the required value.

Fig. 1. Sequence of data flow through
AAS infrastructure

Fig. 2. Implemented integration approaches

This generic flow shows that an IoT backend integration essentially boils
down to making device data available via SMs and their SMEs as an SM Interface
Endpoint. We identify three approaches for this: The IoT backend may push
latest updates to an AAS SM server or the AAS SM server pulls the current
state from the IoT backend either via a wrapper or via a bridge.

Push: Whenever the IoT backend receives an update from a device, a backend
component transforms and pushes the data in the AAS format [5] to an SM
server. This approach allows for re-using a generic implementation of the SM
Server with the drawback of duplicate data storage in the IoT backend and the
SM server, leading to potential synchronization and data consistency issues.

Pull via Bridge: Some AAS SM servers support delegating requests for specific
SME values to other endpoints like a data bridge, which then retrieves the actual
data from the IoT backend and applies transformation logic. With this approach,
one can use a generic AAS server implementation and enable mixed scenarios
where only a few requests get delegated to one or multiple IoT backends while the
SM server stores all other SMEs. However, it requires the AAS server component
to provide such functionality.

Pull via Wrapper: It is also possible to add a custom wrapper that imple-
ments the SM interface for the client and fetches the required data from the
IoT backend. This approach does not require data duplication but may impose
implementation efforts concerning identifier mapping and coupling between the
wrapper and the IoT backend.

As part of the project GEMIMEG-II [4], which works on DCCs and better
data orchestration, we implemented the approaches push (dotted) and pull via

Integrating IoT Infrastructures in Industrie 4.0 Scenarios 233

a bridge (dashed) as depicted in Fig. 2. We used Eclipse Ditto [3] as an IoT
backend and Eclipse BaSyx as AAS infrastructure [2].

Eclipse Ditto is an IoT backend built of micro-services, which evolves around
the concept of Things representing the state of a device. Each Thing has Proper-
ties grouped as Features, which may change over time (e.g. sensor values).
One can express constant values, such as identifiers, as Attributes. Grouping
of Things is possible by assigning them to a Namespace. Ditto comprises a
Connectivity API for the integration with other systems, which allows to provide
JavaScript code, which gets executed on events (e.g. changing a Thing).

Eclipse BaSyx is an open-source framework to realize an Industrie 4.0 mid-
dleware [2] based on the AAS Spec. [5,6].

For push, we configured a Ditto instance through the connectivity API to
forward changes of a device and its corresponding Thing to a BaSyx SM Server.
This results in duplicated data storage in Ditto and the BaSyx SM Server.

For pull, the BaSyx SM server supports delegation and calls the endpoint of
a bridge component for each request for a corresponding SME. Since Ditto has
the option to return the value without additional payload, the main task of the
bridge is to perform the authorization flow of Ditto.

The pull via wrapper was not realized for AAS as it would require high
implementation efforts, as demonstrated by the integration of the Web of Things
(WoT) by the Eclipse Ditto Project [3].

The mapping between concepts of Ditto and AAS is depicted in Table 1.

Table 1. Concept mapping from Eclipse Ditto to the AAS

Eclipse Ditto Asset Administration Shell

Namespace Asset Administration Shell
Thing -
Features Submodel
Property Submodel Element
Attribute Submodel Element

3 Discussion

Based on our observations, the pull approach with a wrapper is a good trade-off for
scenarios with a high and medium frequency of sensing and actuation updates. But
the development and operation of new software artifacts lead to higher engineering
costs and operation efforts in comparison to the other approaches. The push app-
roach is a good solution for scenarios with many data reads and few data updates
but it lacks a good way of pushing actuation information to the IoT backend and
introduces risks regarding data inconsistency. Compared to the other presented
approaches, the pull approach with data bridge seems to have lower engineering
cost and is easier to operate allowing to get started a bit faster, but it is not so
well-suited when the frequency of data access rises.

234 S. E. Jeroschewski et al.

As we draw our conclusions about the three approaches solely from our obser-
vations in one project, it is worthwhile to extend the analysis and run some even
quantifiable evaluations based on further projects or in controlled environments.
We also have not yet looked further into executing AAS operations. Once BaSyx
supports authenticating during requests for delegated data, we may also try to
retrieve the raw data from Eclipse Ditto without using a data bridge.

4 Summary

We presented the architectural approaches, push, pull with wrapper, and pull
with data bridge, to integrate existing IoT backends with the AAS. Based on
the experiences gained in the GEMIMEG-II project, we discussed the approaches
without identifying a preferred option since each alternative has different advan-
tages and drawbacks for the sensing and actuating frequency or the engineering
and operation cost.

Acknowledgements. The research has received funding from the Federal Ministry for
Economic Affairs and Climate Action of Germany under the funding code 01MT20001J.
The responsibility for the content of this publication lies with the author(s).

References

1. Banijamali, A., Heisig, P., Kristan, J., Kuvaja, P., Oivo, M.: Software architecture
design of cloud platforms in automotive domain: an online survey. In: 2019 IEEE
12th Conference on Service-Oriented Computing and Applications (SOCA), pp.
168–175 (2019)

2. Eclipse BaSyx: Eclipse BaSyx - Industry 4.0 operating system (2023). https://www.
eclipse.org/basyx/

3. Eclipse Ditto: Eclipse ditto (2023). https://www.eclipse.org/ditto
4. Hackel, S., Schönhals, S., Doering, L., Engel, T., Baumfalk, R.: The digital calibra-

tion certificate (DCC) for an end-to-end digital quality infrastructure for Industry
4.0. Sci 5(1) (2023). https://doi.org/10.3390/sci5010011. https://www.mdpi.com/
2413-4155/5/1/11

5. IDTA: Spec. of the Asset Administration Shell - Part 1: Metamodel, April 2023.
https://industrialdigitaltwin.org/en/wp-content/uploads/sites/2/2023/04/IDTA-
01001-3-0_SpecificationAssetAdministrationShell_Part1_Metamodel.pdf

6. IDTA: Spec. of the Asset Administration Shell - Part 2: Application Programming
Interface, April 2023. https://industrialdigitaltwin.org/en/wp-content/uploads/
sites/2/2023/04/IDTA-01002-3-0_SpecificationAssetAdministrationShell_Part2_
API.pdf

7. Kristan, J., Azzoni, P., Römer, L., Jeroschewski, S.E., Londero, E.: Evolving the
ecosystem: eclipse arrowhead integrates eclipse IoT. In: 2022 IEEE/IFIP Network
Operations and Management Symposium, NOMS 2022, pp. 1–6 (2022)

8. Rauh, L., Reichardt, M., Schotten, H.D.: AI asset management: a case study with
the asset administration shell (AAS). In: 2022 IEEE 27th International Conference
on Emerging Technologies and Factory Automation (ETFA), pp. 1–8 (2022)

https://www.eclipse.org/basyx/
https://www.eclipse.org/basyx/
https://www.eclipse.org/ditto
https://doi.org/10.3390/sci5010011
https://www.mdpi.com/2413-4155/5/1/11
https://www.mdpi.com/2413-4155/5/1/11
https://industrialdigitaltwin.org/en/wp-content/uploads/sites/2/2023/04/IDTA-01001-3-0_SpecificationAssetAdministrationShell_Part1_Metamodel.pdf
https://industrialdigitaltwin.org/en/wp-content/uploads/sites/2/2023/04/IDTA-01001-3-0_SpecificationAssetAdministrationShell_Part1_Metamodel.pdf
https://industrialdigitaltwin.org/en/wp-content/uploads/sites/2/2023/04/IDTA-01002-3-0_SpecificationAssetAdministrationShell_Part2_API.pdf
https://industrialdigitaltwin.org/en/wp-content/uploads/sites/2/2023/04/IDTA-01002-3-0_SpecificationAssetAdministrationShell_Part2_API.pdf
https://industrialdigitaltwin.org/en/wp-content/uploads/sites/2/2023/04/IDTA-01002-3-0_SpecificationAssetAdministrationShell_Part2_API.pdf

A Software Package (in progress)
that Implements the Hammock-EFL

Methodology

Moshe Goldstein(B) and Oren Eliezer

Jerusalem College of Technology - Lev Academic Center, 9372115 Jerusalem, Israel
goldmosh@g.jct.ac.il

Abstract. This poster paper presents a software package (in progress) that
implements the Hammock-EFL approach for Project Management and Parallel
Programming, written in Python.

Keywords: Hammock-EFL · Project Management · Parallel Programming ·
Python Programming

1 Motivation

In sequential programming a problem is solved by decomposing it into sub-problems
and by identifying the structural dependencies among them. In project design and man-
agement, the designer needs to identify not only all the activities (or sub-problems) that
compose the whole project and their structural dependencies, but also their temporal
dependencies. The identification of those temporal dependencies implicitly requires the
application of parallel thinking. The same is required from a programmer when he tries
to solve a problem by Parallel Programming. All those problem-solving-related obser-
vations induced us to realize that a project management methodology, like the Hammock
Cost Techniques for Project Management [1], will contribute to better problem solving
thinking in Parallel Programming.

EFL (Embedded Flexible Language) [2, 3] is a mini embedded language whose
semantics are those of the Flexible Algorithms (FA) [4] approach to computation, which
is applicable for parallel programming (as well as sequential programming) and ensures
deterministic results without the need of locking. EFL was designed to make parallel
programming independent of any specific parallel programming platform, making the
programmer’s task easier. To allow that independence, two EFL pre-compilers were
implemented for the Python programming language as the host language.

Based on all the above, the Hammock-EFL methodology [5–7] was proposed. It
combines the Hammock methodology and the FA approach to Computation. This com-
bination allows developers to treat programs and project schedules as conceptually the
same, at a higher level of abstraction, enabling them to deal with the complexity of
computing systems engineering in a more reliable and easier way. This is the novelty of
the Hammock-EFL methodology. We argue that this is the first research which makes a

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 235–238, 2024.
https://doi.org/10.1007/978-3-031-49252-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_19&domain=pdf
http://orcid.org/0000-0002-0429-4873
http://orcid.org/0000-0001-9699-8247
https://doi.org/10.1007/978-3-031-49252-5_19

236 M. Goldstein and O. Eliezer

symbiotic combination ofmethodologies taken from two different disciplines - (Parallel)
Computing and Programming, and Project Management.

2 Proof of Concept

The Project Schedule diagram depicted in Fig. 1 was used as the Proof of Concept of
the combined methodology.

Fig. 1. The Project Schedule diagram (taken from [1]) used to try the software.

That schedule is composed by an appropriate combination of Regular, Compound
and Hammock activities: two Compound activities are activated in parallel, the Regular
activities that compose each of them, the activities no. 4, 8, 12, 16, and 19, and no. 3, 7,
11, 15, 18, and 20, are activated serially, and a Hammock activity H1 whose Hammock
members are organized in two groups, Regular activities no. 5, 9, and 13, and no. 6, 10,
and 14. Each activity may include properties such as duration (Di), earliest beginning
(ESi), latest beginning (LSi), amount of resources (Ri), etc.

If the same diagram is intended to describe a program, a Regular activity represents
a function with a relatively simple behavior, a Compound activity represents a function
whose behavior is expressed by an appropriate combination of the behaviors of its sub-
activities, a Hammock activity represents a function whose behavior is expressed by
a randomly scheduled ensemble of sub-activities, executed in sequence. Based on the

Fig. 2. The tree representation of the above project schedule

A Software Package that Implements the Hammock-EFL Methodology 237

structural and temporal dependencies of the sub-activities of a Compound activity, the
functions represented by them may be executed in parallel or in sequence.

The software presented here uses a tree data structure to represent project schedules
like that in Fig. 1. Figure 2 shows the rendering of the tree representation of that schedule.

3 The Software

Figure 3 shows a graph of the modules that compose the software presented here, and
their dependencies. Table 1 gives a brief description of each one of those modules.

Fig. 3. The Dependency Graph of the Software.

Table 1. Description of modules that compose the software.

Program/Module Description

anytree A Python module implementing tree data structures

HammockEFL.py Schedule and Activity are classes defined in this module. See [7]

HEhelpers.py Helper functions are defined for general use, as needed

HEprojRun.py Module used to actually run or simulate the schedule

HEprojDef.py A tree data structure, representing a schedule (or program), will be
defined by the designer (or programmer), using methods from the
Schedule and Activity classes

HEprojDraw.py A schedule’s diagram is rendered using this module (see Fig. 2)

HEprojImplement.py The behavior of each activity is expressed by a three-step
(pre-processing → processing → post-processing) pipeline-like
procedure. This module is intended to include their implementations

mpire A module that substitutes Python’s Multiprocessing module

4 Experiment

The software was successfully tried to run and simulate the above Proof of Concept
schedule, restricted to the case that all the activities are defined tobe executed in sequence.
At the current moment, we are debugging the capability of running and simulating
schedules that combine activities defined to be executed in sequence, with activities
defined to be executed in parallel.

238 M. Goldstein and O. Eliezer

5 Conclusion and Further Work

The current state of a software package has been presented, which intends to be both,
a framework for project management based on the Hammock Cost Techniques, and for
developing parallel software based on the FA approach to Computation. Following [1],
the impact of the presented tool should be expressed as a trade-off between project’s
makespan and total revenue. To check this, a comparative and experimental research
must be done when Di, ESi, LSi, Ri and cost, for each activity i, will be taken into
account in the case of a planned project relative to an already executed project. A new
version of the software should include (a) a shared-memory mechanism like PSTM [8]
which will allow the implementation of shared-memory-based parallel programs, and
(b) support of JSON files (or YAML files) which will allow amore readable and writable
definition of a schedule (or program). Additionally, experimental analysis of Time and
Space Complexity of a designed computing systemwill be possible by calculating actual
run time and storage of programs described by graphs of the kind discussed above.

References

1. Csébfalvi, G., Csébfalvi, A.: Hammock activities in Project scheduling. In: Proceedings of the
Sixteenth Annual Conference of POMS, POMS, Chicago, IL, USA (2005)

2. Dayan, D., et al.: EFL: implementing and testing an embedded language which provides safe
and efficient parallel execution. In: Proceedings of ECBS-EERC 2015, Brno, Czech Republic,
pp. 83–90. IEEE Press (2015). https://doi.org/10.1109/ECBS-EERC.2015.21

3. Goldstein, M., Dayan, D., Rabin, M., Berlovitz, D., Berlovitz, O., Yehezkael, R.B.: Design
principles of an embedded language (EFL) enabling well defined order-independent execution.
In: Proceedings of ECBS 2017, Larnaca, Cyprus, pp. 1–8. ACM (2017). https://doi.org/10.
1145/3123779.3123789

4. Yehezkael, R.B., Goldstein, M., Dayan, D., Mizrahi, Sh.: Flexible algorithms: enabling well-
defined order-independent execution with an imperative programming style. In: Proceedings
of ECBS-EERC 2015, Brno, Czech Republic, pp. 75–82. IEEE Press (2015). https://doi.org/
10.1109/ECBS-EERC.2015.20

5. Eliezer, O., Goldstein, M.: Implementing Hammock cost techniques using the parallel pro-
gramming paradigm of EFL (embedded flexible language). In: Proceedings of ZINC 2018,
Novi-Sad, Serbia, pp. 132–134. IEEE Press (2018). https://doi.org/10.1109/ZINC.2018.844
8763

6. Eliezer, O., Goldstein,M., Dayan, D.: About the trade-off between time and space consumption
when combining the Hammock-Cost model with the EFL (Embedded Flexible Language)
parallel programming paradigm. In: Proceedings of the 16th International Conference on Civil,
Structural and Environmental Engineering Computing, Riva del Garda, Italy (2019)

7. Goldstein, M., Eliezer, O., Dayan, D.: Implementing the Hammock-EFL methodology for
project management and parallel programming. In: Proceedings of ECBS 2021, Novi-Sad,
Serbia, pp. 1–5. ACM (2021). https://doi.org/10.1145/3459960.3459967

8. Popovic,M., Kordic, B.: PSTM: Python software transactionalmemory. In: 2014 2nd Telecom-
munications Forum Telfor, Belgrade, Serbia, pp 1106–1109. TELFOR (2014). https://doi.org/
10.1109/TELFOR.2014.7034600

https://doi.org/10.1109/ECBS-EERC.2015.21
https://doi.org/10.1145/3123779.3123789
https://doi.org/10.1109/ECBS-EERC.2015.20
https://doi.org/10.1109/ZINC.2018.8448763
https://doi.org/10.1145/3459960.3459967
https://doi.org/10.1109/TELFOR.2014.7034600

Dynamic Priority Scheduling for Periodic
Systems Using ROS 2

Lukas Dust(B) and Saad Mubeen

Mälardalen University, Väster̊as, Sweden
{lukas.dust,saad.mubeen}@mdu.se

Abstract. In this paper, a novel dynamic priority scheduling algorithm
for ROS 2 systems is proposed. The algorithm is based on determin-
ing deadlines of callbacks by taking the buffer size and update rates of
channels into account. The efficacy of the scheduling algorithm is demon-
strated on an illustrative example, where the needed buffer size is reduced
in comparison to the conventional single-threaded executor in ROS 2.

Keywords: Robot Operating System 2 · Scheduling · Executor

1 Introduction and Background

Robot Operating System (ROS) 2 is a middleware introducing real-time capa-
bilities to its predecessor ROS [1]. With the end of support for ROS in 2025,
researchers and practitioners are forced to transition their systems to ROS 2.
Hence, increased research activities have been seen in the past few years. ROS 2
systems consist of so-called Nodes as main components distributed in a network,

Fig. 1. Schematic example of a ROS 2 Node and
its essential components for scheduling.

communicating via designated
channels in the Data Dis-
tribution Service (DDS). As
depicted in Fig. 1, each node
consists of a scheduler, called
an executor, that schedules the
schedulable entities, called call-
backs. Two types of trigger
events release callbacks. Data-
triggered callbacks are con-
nected to a specified channel in
the DDS. Time-triggered call-
backs are connected to a system

timer. Generally, there are four types of callbacks, namely, Timer, Subscription,
Service, and Client callbacks. An input buffer with a configurable size for each
callback collects the trigger instances, such as messages and timestamps. In order
to explore the real-time capabilities of ROS 2, the inbuilt scheduling algorithm
has been analyzed [2]. Alternative priority-based scheduling algorithm has been
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 239–243, 2024.
https://doi.org/10.1007/978-3-031-49252-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_20&domain=pdf
https://doi.org/10.1007/978-3-031-49252-5_20

240 L. Dust and S. Mubeen

proposed [4], assigning static priorities to callbacks. In the default executor,
only one instance of each callback, released before the scheduler interaction with
the middleware (polling-point), is considered for scheduling. Polling is performed
when the set containing one instance of every released callback has been emptied.
Blocking of callbacks [3,6], and missing configuration options have been exposed
as a weakness by [2,5]. In this paper, supported by the increased demand for
enhanced scheduling options, we propose a new dynamic priority scheduling algo-
rithm developed for periodic nodes. For the sake of simplicity, a periodic node
is defined, where all n callbacks contained in a node execute periodically where
the period P of each callback Pcb > 0. Each callback is released by the trigger
events contained in the Buffer Bcb, where rk is the kth trigger instance in the
buffer and t(rkcb) is the stored arrival time of the kth trigger instance of callback
cb. This paper shows that the algorithm can reduce the needed buffer size com-
pared to the native ROS 2 scheduling algorithm, while potentially reducing the
number of resource-demanding interactions with the ROS Middle Ware (RMW)
compared to the fixed-priority scheduling.

2 Algorithm

Algorithm 1:. Proposed Schedul-
ing Algorithm
1 foreach callback cb where

nextrelease(cb) ≤ systime do
2 collect entity(cb) from RMW
3 if New Data available then
4 add cb to readyset;

5 calculate Tmin
cb and Dcb;

6 end

7 end
8 if readyset �= Null then
9 cb = callback with shortest

deadline
10 pop data from input buffer
11 if buffer(cb) empty then
12 remove cb from readyset
13 end
14 else
15 calculate new deadline
16 end
17 execute cb

18 end

The proposed algorithm, shown in
Algorithm 1, assigns a deadline to
every released callback collected in
the so-called readyset. A schedul-
ing decision is performed following
the earliest-deadline-first metric. The
deadline for a callback is determined
by the predicted time the input buffer
to overflow, following (2). Initially,
the deadline is set to infinite. When
new data arrives, the minimum time
difference Tmin

cb between two con-
secutive arrivals is determined using
(1). Now, the deadline as the pre-
dicted time of a buffer overflow can
be calculated by knowing Tmin

cb and
the buffer utilization U(Bcb). When
running the algorithm, the scheduler
updates the readyset by scanning
the input buffers in the RMW. When
newly arrived data is detected, the
callback is added to the readyset. In

order to reduce the needed interactions with the middleware, based on Tmin
cb ,

the time for the next trigger instance arrival is predicted and stored as the
nextrelease for every callback. An interaction with the middleware is per-
formed only when the system time exceeds or equals the nextrelease. Initially,

Dynamic Priority Scheduling for Periodic Systems Using ROS 2 241

the nextrelease is set to zero, forcing a scan in the middleware until the first
trigger instance has arrived. In the second step, the callback with the earli-
est deadline is selected for execution. In case of shared deadlines, the callback
with the highest buffer utilization is given the highest priority, followed by the
registration order in case of further shared priority. The data for the selected
callback is removed from the buffer. A new deadline is calculated, or the callback
is removed from the readyset when no trigger instance is left in the buffer.

Tmin
cb =

{
t(rkcb), if Tmin

cb = 0
min(Tmin

cb , t(rkcb) − t(rk−1
cb)), if Tmin

cb > 0
(1)

Tmin
cb is the minimum time difference between two consecutive trigger events,

and t(rkcb) is the arrival time of the last trigger instance k.

Dcb =

{
inf, if Tmin

cb = 0
Tmin
cb ∗ (S(Bcb) ∗ (1 − U(Bcb)) + t(rkcb), if Tmin

cb > 0
(2)

Dcb is the deadline of callback cb, TB
cb is the minimum time difference between

two consecutive trigger instances, S(Bcb is the input buffer size, U(Bcb) is the
utilization of the buffer and t(rkcb) is the arrival time of the latest (kth) message.

3 Illustrative Example and Comparison to ROS 2

In this section, the scheduling of the proposed algorithm is shown in an example
and compared to the executor of ROS 2. Execution traces are carefully created
by hand based on the algorithms. The following scenario is taken: A ROS 2 node
consists of five callbacks that are triggered periodically. The callbacks are one
timer callback TI, two subscriber callback S1, S2, and one service callback SR,
all triggered every 400 ms and one client callback CL triggered every 100 ms. For
the sake of simplicity, the input buffers have a size of five, and the execution
time for each callback is 50 ms. Figure 2 shows the execution of the scenario by
the proposed algorithm on the left and ROS 2 on the right plot. At the start, all
callbacks have been triggered once at 0 ms. Therefore, each task’s deadline is set
to infinite. As all tasks have the same deadline and buffer utilization, execution
is conducted after the registration order, leading to the execution of TI and S1.
At SI2, CL is triggered a second time. The scheduler now determines Tmin

CL as
100 ms and a Deadline of DCL = 400 ms. Furthermore, the predicted next release
time is 200 ms. As all other callbacks still do not have two consecutive releases,
their deadline is still infinite. Therefore, the client callback is executed, and the
deadline is calculated until the buffer is empty, as no other callback gains a lower
deadline. At SI8,for TI, S1, S2 and SR, Tmin

cb is be determined as 400 ms and
Dcb = 2000 ms. For CL, Dcb = 800 ms. Hence, CL is executed first. In comparison
to the ROS 2 execution, CL is in all cases executed closer to the trigger event.
The buffer utilization never exceeds 40%, while the maximum utilization in the
ROS 2 system is 60%. If now CL has the smallest buffer size of all callbacks, even
in the first 400 ms, there will never be more than one element in the buffer as
CL would gain the highest priority.

242 L. Dust and S. Mubeen

Fig. 2. Execution traces using the proposed (left) and the ROS 2 executor (right). Red
lines are trigger events and the blue numbers the scheduling iterations (SI). (Color
figure online)

Table 1. Amount of RMW interactions

Proposed
Alg. ROS 2

Static
priority Alg.

First 400 ms
SI 0–SI 7 37 20 40

Second 400 ms
SI 8–SI 15 8 20 40

The number of needed interactions
with the RMW is presented in
Table 1. At the initial 400 ms, except
for CL, the predicted next arrival time
is 0. Therefore an interaction is per-
formed during every scheduling iter-
ation. After S2, the period of CL is

known, and interactions with the middleware are only needed every second
scheduling iteration. After 400 ms, the period for all callbacks is known, reducing
the number of interactions with the RMW significantly. Therefore, fewer interac-
tions with the RMW are needed than in the ROS 2 executor and static priority
algorithms, that need to interact with the RMW at each scheduling iteration for
each channel.

4 Discussion and Ongoing Work

The presented algorithm is created to give developers further configuration
options while preventing buffer overflow. This work is in its infancy, and the
proposed algorithm is at a conceptual level. Nevertheless, the given schedul-
ing example showed the algorithm to have the potential to decrease the needed
space of buffer size and give the developer more configuration options regard-
ing priorities compared to the single-threaded executor in ROS 2. The needed
interactions with the RMW are only increased at the first iterations. In the
long run, the number of interactions can be decreased compared to the actual
executor in ROS 2. Nevertheless, further analysis is needed to determine possible
weaknesses of the proposed scheduling mechanism. Furthermore, the algorithm
will be implemented in the ROS 2 stack and tested to be compared with the
other existing algorithms on a real system. Adaptions of the algorithm might
be needed to mitigate errors caused by offsets, changes in publishing rates, and
message arrival jitter and make the algorithm usable in non-periodic systems.

Dynamic Priority Scheduling for Periodic Systems Using ROS 2 243

References

1. OpenRobotics ROS 2: Docs (2023). https://docs.ros.org/en/humble
2. Blaß, T., Casini, D., Bozhko, S., Brandenburg, B.B.: A ROS 2 response-time analysis

exploiting starvation freedom and execution-time variance. In: IEEE Real-Time
Systems Symposium, pp. 41–53. IEEE (2021)

3. Casini, D., Blaß, T., Lütkebohle, I., Brandenburg, B.: Response-time analysis of
ROS 2 processing chains under reservation-based scheduling. In: 31st Euromicro
Conference on Real-Time Systems, pp. 1–23 (2019)

4. Choi, H., Xiang, Y., Kim, H.: Picas: new design of priority-driven chain-aware
scheduling for ROS2. In: IEEE 27th Real-Time and Embedded Technology and
Applications Symposium, pp. 251–263. IEEE (2021)

5. Dust, L., Persson, E., Ekström, M., Mubeen, S., Seceleanu, C., Gu, R.: Experi-
mental evaluation of callback behavior in ROS 2 executors. In: 28th International
Conference on Emerging Technologies and Factory Automation (2023)

6. Tang, Y., et al.: Response time analysis and priority assignment of processing chains
on ros2 executors. In: IEEE Real-Time Systems Symposium, pp. 231–243 (2020)

https://docs.ros.org/en/humble

Continuous Integration of Neural
Networks in Autonomous Systems

Bruno Steffen(B) , Jonas Zohren , Utku Pazarci , Fiona Kullmann ,
and Hendrik Weißenfels

Technische Universität Dortmund, 44149 Dortmund, Germany
bruno.steffen@tu-dortmund.de

http://www.tu-dortmund.de/

Abstract. The perception of the autonomous driving software of the
FS223, a low-level sensor fusion of Lidar and Camera data requires the
use of a neural network for image classification. To keep the neural net-
work up to date with updates in the training data, we introduce a Con-
tinuous Integration (CI) pipeline to re-train the network. The network
is then automatically validated and integrated into the code base of the
autonomous system. The introduction of proper CI methods in these
high-speed embedded software applications is an application of state-
of-the-art MLOps techniques that aim to provide rapid generation of
production-ready models. It further serves the purpose of professional-
izing the otherwise script-based software production, which is re-done
almost completely every year as the teams change from one year to the
next.

Keywords: ML Ops · Continuous Integration · Neural Networks

1 Motivation and Background

Since 1981 SAE international1 hosts the Formula SAE, a student design com-
petition where teams around the world design and manufacture formula-style
racing cars. The Formula SAE requires that major design decisions and imple-
mentations must not be made by professionals, but rather by students. This
paper is written by members of the German team of TU Dortmund University,
GET racing2, who work on the autonomous driving capabilities of their vehicle
as the competitions have started featuring a driverless format.

In this paper, we discuss a solution within the software stack that is devel-
oped to enable the latest vehicle manufactured by GET racing (the FS223) to
autonomously participate in the racing events on Formula SAE-compliant racing

1 SAE international is a standards developing organization for engineers, see: https://
www.sae.org/.

2 GET racing participates annually in the events since 2005, see https://www.get-
racing.de/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 244–253, 2024.
https://doi.org/10.1007/978-3-031-49252-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_21&domain=pdf
http://orcid.org/0000-0003-1769-1824
http://orcid.org/0000-0001-9392-7582
http://orcid.org/0000-0001-7595-2901
http://orcid.org/0000-0001-5858-0659
http://orcid.org/0000-0001-7001-1037
https://www.sae.org/
https://www.sae.org/
https://www.get-racing.de/
https://www.get-racing.de/
https://doi.org/10.1007/978-3-031-49252-5_21

Continuous Integration of Neural Networks in Autonomous Systems 245

tracks. The software is designed to be safe and reliable but is also complex and
requires a diverse set of software components. These components range from the
perception of the environment to the processing of the recorded data and finally
to the transmission of commands to the underlying actuators in the vehicle for
steering and acceleration.

The presented solution is part of the perception component, where the chal-
lenge lies in the recognition of track-specific features. These are colored cones
marking the edge of the track. To solve this issue, camera images are classified by
a neural network as portraying blue, yellow, or orange cones, or alternatively, no
cones at all. However, while the actual task of image classification is not partic-
ularly unique, the circumstances under which this network has to be developed,
trained, and maintained are unusual.

On the one hand, GET racing as a student team does not have a lot of capital
to invest in computational power that is crucial for the training of complex neural
networks. As a consequence, the decision was made to use a fairly simplistic and
lightweight neural network, building a framework around it that constantly uses
the available computing power. On the other hand, the dataset used for the
training of the network is not static, instead, it changes on a weekly basis. The
original dataset does not generalize well to real life as it does not cover a wide
variety of scenarios, resulting in the misclassification of many cones when testing
on the field. Consequently, the team adds new data to the dataset after every
test run. The network’s performance can hence increase on a weekly basis, if and
only if it is retrained or improved with the updated dataset.

Overall, to enable the work with limited computational power as well as an
ever-changing dataset, we present a solution to continuously train and validate
the neural network when one of the base components for the training of the
network changes. The presented solution aims at the rapid generation of machine
learning models through automation using CI-pipelines.

In Sect. 1.1 a discussion about related work takes place to put this paper in
the context of the machine learning landscape. Section 2 introduces all concepts
that are required for the understanding of the paper. In Sect. 3.1, the approach
and important implementation details are explained. The solution is evaluated
in Sect. 4 and future prospects are described in Sect. 5.

1.1 Related Work

Traditionally ML-based approaches are based on a data-centric design containing
the data acquisition, analysis, and preparation for the ML models, also known
as the CRISP-DM model [15], depicted in Fig. 1.

While the focus typically lies in the design and training of the models, a
paradigm called MLOps coins the idea to improve and accelerate the process for
providing production-ready software [5]. One recent and well-known application
by Tesla is described by Andrej Karpathy’s Ted Talk called “AI for Full-Self
Driving at Tesla”. Their approach uses continuous integration to constantly feed
critical sensor data of vehicles into their supercomputer Dojo [9] for NN refine-
ment. This approach aims at the improvement of the network for edge cases.

246 B. Steffen et al.

Fig. 1. Crisp-DM Process Model for Data Mining (edited from [15]).

While the project of Tesla vastly exceeds the complexity proposed in this
paper, we also present an MLOps approach to continuously improve a neural
network through automation. We do this by applying DevOps techniques such
as continuous integration to the machine learning process, a workflow that was
also presented and evaluated by Karamitsos et al. [4].

2 Preliminaries

This section introduces basic concepts and the overall software architecture for
easier comprehension of the ideas and implementations shown in Sect. 3. In
Sect. 2.1, we discuss the DevOps tools that are used to build our development
framework. Section 2.2 introduces the theory behind image classification using
neural networks. Finally, Sect. 2.3 presents the operational software pipeline that
is used for autonomous driving.

2.1 DevOps Tools

To solve a difficult task such as autonomous driving, a certain level of software
complexity is necessary. The complexity lies within individual tasks such as the
perception of objects or control theory, but also results from the composition
and connection of components.

DevOps tools and practices combat these difficulties. The methodology
enforces development practices that ensure stable versioning and continuous
delivery of software. This is typically accomplished using tools such as version
control systems, but also Continuous Integration (CI), where staged builds (typ-
ically referred to as build pipelines) consisting of shell scripts are triggered once
code is updated in order to test, build, and deploy software [1]. A prominent
provider for such services is GitLab3. Within GitLab, the build pipelines have
3 GitLab is a DevOps platform that aims to assist software developers with project

management, versioning, etc. See https://about.gitlab.com/company/.

https://about.gitlab.com/company/

Continuous Integration of Neural Networks in Autonomous Systems 247

multiple capabilities that exceed simple scripts. It is possible to trigger other
pipelines and to use (software-) artifacts from external pipelines and feedback
can be portrayed through metrics and info texts.

Overall, build pipelines are perfectly suited to improve the quality of code
through automated testing which enables developers to “Commit Daily, Com-
mit Often” to introduce a culture which can greatly improve debugging capabil-
ities [8].

2.2 Image Classification

Image classification is a fundamental problem in computer vision that has been
prevalent for decades, and it has been used throughout history as one of the
key instruments to benchmark the various approaches to artificial intelligence.
There are many techniques that can be used to classify images into meaningful
categories, namely support vector machines, fuzzy sets, genetic algorithms, or
random forests [7,11]. However, with increasing computational power and avail-
ability of recorded data, the current state of the art is deep learning using neural
networks (NNs).

While the state-of-the-art architectures of NNs evolve year by year, the train-
ing process has remained mostly the same. First, the given dataset is split into
training, validation, and test sets. The neural network is trained and improved
using the training set, while the validation set is used for further refinement of
the model and its hyperparameters. Finally, the test set is used to check the
performance of the neural network on unseen data.

During the training process, complex networks are prone to overfitting [16]
generating perfect accuracy in prediction performed on the training data. How-
ever, at the same time, these models lose accuracy on the unseen test data.
Consequently, the goal is to improve the performance of the neural network on
unseen test data, rather than training data.

2.3 JARVIC

In order to understand how and why image classification is used, core princi-
ples of JARVIC, a self-developed software used for autonomous driving, must
be introduced. In essence, perceived sensor data is processed and then used to
generate commands for actuators that control the steering and throttle of the
vehicle. This is done using a software pipeline that is depicted in Fig. 2 and is
inspired by the pipeline of AMZ from 2019 [3]. Starting from the top, we have
the Perception component, which takes in Lidar and camera data and processes
these to allow for the detection of object location relative to the vehicle. This
information and additional sensor data in the form of vehicle odometry (acceler-
ation, wheel speed, etc.) is used by the Estimation component, to generate a map
and localize the car within. The map is processed by the Planning component
calculating a suitable trajectory for the vehicle to follow. Finally, the Controls
component uses the trajectory to derive control commands for the steering and
throttle of the vehicle.

248 B. Steffen et al.

Fig. 2. Abstraction of JARVIC Software architecture.

The neural network described in this paper is found in the Perception com-
ponent. As previously mentioned, the input for this component is Lidar point
clouds and camera images. Both sources are used in a sensor fusion approach to
combine the advantages of both sensors. Lidar is specialized in depth perception
and camera images are great for the detection of objects and colors [14].

Fig. 3. Fusion of Lidar and Camera data (The figure is kindly provided by Leon
Schwarzer[0000−0002−0882−3912].).

The fusion workflow is depicted in Fig. 3 and begins by matching the coordi-
nate systems of both sensors. Once the Lidar detects a point cloud that resembles
an object, the corresponding area in the video feed is cut out and then classified
by color or as a no cone. This classification is done using a fairly simple neural
network designed for image classification. Once the image is classified, the pose
and color of the cones are forwarded to the Estimation component for further
processing.

3 The Neural Network CI-Pipeline

The motivation section hinted at the unique characteristics of the use case
regarding NN training. The NN of choice is the MobileNetV2 [10] which is fairly
small with its 3.4 million adjustable parameters. This neural network is designed
for usage on mobile and embedded devices.

A lightweight neural network was picked for two reasons. First, the task of
image classification on a small (56× 60 pixels) image does not require complex
approximations. Choosing a more complex architecture such as the DenseNet
with 46 million parameters, can perform worse since it has a higher runtime

Continuous Integration of Neural Networks in Autonomous Systems 249

than smaller NNs [10] and is prone to overfitting due to high variance [6]. Second,
the usage of a GPU was avoided to cut costs and power consumption. Instead,
the NN is executed on an Edge TPU co-processor that is integrated into the
hardware using a Coral PCIe Accelerator4. While the Coral setup is extremely
efficient, it is also limited in its capacity to run complex neural networks.

An additional unique characteristic of our scenario is the frequently chang-
ing dataset of cone images used for training. The first iteration of the dataset
was an adapted version of the Formula Student Objects in Context (FSOCO)
dataset [13] which emerged through the collaborative efforts of multiple Formula
SAE teams. Hence, the cone images vary in quality and a multitude of cameras
were used for capturing. This is not necessarily bad, as a diverse dataset for
training can lead to great generalization of the NN. However, the raw images
from FSOCO did not exactly portray the characteristics found in real data. In
an attempt to match the dataset closer to the real data, an augment of the
FSOCO dataset is performed. A depiction of that step can be seen in Fig. 4. The
augmentation focuses on imitating the size variance and cone position in cap-
tured images, even adding cropped cones to the augmented dataset. Analyzing,
the average image shows that a cone is further zoomed out and less centered,
compared to the original dataset. Using a CI-pipeline helps explore numerous
configurations quickly, including augmentation setting and the integration of
recorded data (from manual testing sessions) into the training dataset.

To ensure the usage of the best-performing NN, the following four require-
ments are used:

1. Train a new NN once the augmentation algorithm is changed
2. Train a new NN once images are added to the training dataset
3. Train a new NN once the training algorithm or NN architecture change
4. Validate the performance of any newly trained neural network

Section 3.1 will discuss the solution using CI-Pipelines to automate the train-
ing and validation process of the neural network.

Fig. 4. Data augmentation of FSOCO dataset to resemble the real data.

4 Coral offers hardware and software platforms for embedded systems. Our accelerator:
https://coral.ai/products/pcie-accelerator.

https://coral.ai/products/pcie-accelerator

250 B. Steffen et al.

3.1 Design and Implementation

Referring back to Fig. 1, we want to improve this paradigm through the use
of MLOps techniques such as CI-pipelines. The goal is to fully automate the
modeling, evaluation, and deployment steps (signified by the red arrows) for the
rapid generation of models. This means that any changes triggered by the Data
Preparation step automatically result in a trained model, an evaluation, and the
deployment of production-ready software. The developer can then analyze the
automatic evaluation, improve their Business or Data Understanding, and start
the cycle again if expectations are not met.

To best explain the approach hands-on the focus will be kept on the workflow
of the scenario when the data augmentation is updated since the other workflows
are part of this case. The design, consisting of a pipeline, is depicted in Fig. 5.
The process starts, once a developer changes the augmentation script augment.py
inside the prepare_dataset project. The pipeline executes the script, preparing
and augmenting the original FSOCO dataset. To accelerate feedback, a fraction
of the FSOCO dataset is augmented, which serves as a sample.

The output is then combined with a set of self-recorded cone images called
self_train, to train the NN with the corresponding train.py script. The resulting
network is validated using the validate.py script with self-recorded data stored
in self_val. If the validation shows an improvement to the previous version, the
neural network is updated within JARVIC. As mentioned before, the cases of
retraining of the NN when the dataset changed (meaning self_train increased) or
when the training algorithm changed (train.py), are almost identical to the pre-
sented one. In both cases, the untouched pipeline steps can be skipped, resulting
in a shortened overall pipeline.

Fig. 5. Overall idea for the design of the continuous NN integration.

Continuous Integration of Neural Networks in Autonomous Systems 251

While the design above describes a single pipeline, the reality is a little
bit more nuanced. Separate CI-pipelines are used for the dataset preparation,
NN training, and for validation. These pipelines are then triggered in succes-
sion, automatically passing on the respective artifacts to continue validating the
model. An additional detail is that it does not make sense to endlessly increase
the amount of self-shot images for training. While adding data is beneficial, espe-
cially data that is captured using the real sensors, there is a point of diminishing
returns with regard to the resulting NN performance [2]. Hence, the pipeline is
used to test different combinations of datasets with varying sizes and character-
istics, to ultimately find a suitable combination.

For demonstration purposes, we provide an exemplary simplified implemen-
tation of the proposed solution [12].

4 Conclusion

As hinted at throughout the paper, the aim of the presented solution is to
save time and resources through the automation of training and validation of
machine learning models. Using our solution, the pipeline does indeed provide a
production-ready model that can be integrated into the JARVIC software stack.

Fig. 6. Confusion matrices of classification NNs. Green cells signify correct and red
cells incorrect classifications. (Color figure online)

The CI-pipeline allows the user to assert the viability of NN training setups
with the push of a button. This means that the hurdle to test ideas is almost
diminished, meaning that a broad spectrum of ideas can be put into practice.

Even though manually running the scripts required for training and valida-
tion might not always take a lot of time, it does require human interaction every
time the prior step is finished. In our use case, this sometimes meant the differ-
ence between 48 h and 8 h to retrieve a model, even though computation took
the same amount of time.

To further assess the viability of the proposed solution, we regard the per-
formance of the cone classifier NN used within JARVIC. The constant testing of
new setups was primarily used to change the pre- and post-processing steps. This

252 B. Steffen et al.

resulted in a significant increase in the performance of the neural network, as
depicted in Sect. 4. These confusion matrices show the performance of the neu-
ral networks when classifying images of blue, yellow, orange, and large orange
cones and background images. In the beginning, the neural network exhibited
only an accuracy of 18.37% on the self-collected test dataset, with a significant
number of misclassifications, as depicted in the confusion matrix of Fig. 6a. How-
ever, as seen in Fig. 6b, the classes are now predicted correctly with an accuracy
of 91.83%. In this case, achieving further improvement is exceedingly challeng-
ing, as the test dataset was manually labeled, and some cases are impossible to
classify even by humans.

While such an improvement of neural networks is not exclusive to cases where
automated training and validation are in place, this mechanism motivated the
developers to try out dozens of varying setups.

5 Future Work

The current architecture of the CI-pipelines already provides validation of the
trained neural network with data that is captured on the same hardware as
installed on the final vehicle. The quality of the NN can therefore be assessed by
the number of correctly classified cones. However, it is not clear whether NNs
with equally large test errors, perform equally well in an actual racing scenario.
Depending on the algorithms used for the map generation or the boundary esti-
mation of the track, different errors could lead to varying results. With a test
error of 50%, one classification NN could be correct for one set of cones (blue
or yellow) and completely wrong for the other, while a second NN could have
the same error distributed over both kinds of cones equally. It is obvious that
depending on the evaluation of the NN, either one of these errors could be better
or worse.

Fig. 7. Concept for extending the NN validation with the Perception CI-pipeline.

This is why validation of a newly trained NN in the already existing vali-
dation pipeline within JARVIC could result in a more accurate representation
of the NN performance. The concept for this step is depicted in Fig. 7. Some
of the validation techniques used in the CI-pipeline for the Perception compo-
nent also include the execution of the Estimation and Planning components.
Hence, deeper implications of the NN performance could be analyzed, and a
final conclusion of the performance of the NN could be drawn.

Continuous Integration of Neural Networks in Autonomous Systems 253

References

1. Fowler, M., Foemmel, M.: Continuous integration (2006)
2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge

(2016)
3. Kabzan, J., et al.: AMZ driverless: the full autonomous racing system. J. Field

Robot. 37(7), 1267–1294 (2020)
4. Karamitsos, I., Albarhami, S., Apostolopoulos, C.: Applying DevOps practices of

continuous automation for machine learning. Information 11(7), 363 (2020)
5. Kreuzberger, D., Kühl, N., Hirschl, S.: Machine learning operations (mlops):

overview, definition, and architecture. IEEE Access (2023)
6. Lever, J., Krzywinski, M., Altman, N.: N. model selection and overfitting. Nat.

Methods (2016). https://doi.org/10.1038/nmeth.3968
7. Lu, D., Weng, Q.: A survey of image classification methods and techniques for

improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007).
https://doi.org/10.1080/01431160600746456

8. Meyer, M.: Continuous integration and its tools. IEEE Softw. 31(3), 14–16 (2014).
https://doi.org/10.1109/MS.2014.58

9. Salecker, J.: Whitepaper-tesla-floating-formats, November 2021
10. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2:

inverted residuals and linear bottlenecks (2019)
11. Stathakis, D., Vasilakos, A.: Comparison of computational intelligence based clas-

sification techniques for remotely sensed optical image classification. IEEE Trans.
Geosci. Remote Sens. 44(8), 2305–2318 (2006). https://doi.org/10.1109/TGRS.
2006.872903

12. Steffen, B., Zohren, J., Pazarci, U., Kullmann, F., Weißenfels, H.: Gitlab Demo
Project for Paper “Continuous Integration of Neural Networks in Autonomous
Systems”, September 2023. https://doi.org/10.5281/zenodo.8370907

13. Vödisch, N., Dodel, D., Schötz, M.: Fsoco: the formula student objects in context
dataset. arXiv preprint arXiv:2012.07139 (2020)

14. Wei, P., Cagle, L., Reza, T., Ball, J., Gafford, J.: Lidar and camera detection fusion
in a real-time industrial multi-sensor collision avoidance system. Electronics 7(6),
84 (2018). https://doi.org/10.3390/electronics7060084

15. Wirth, R., Hipp, J.: Crisp-DM: towards a standard process model for data mining.
In: Proceedings of the 4th International Conference on the Practical Applications
of Knowledge Discovery and Data Mining, vol. 1, pp. 29–39. Manchester (2000)

16. Ying, X.: An overview of overfitting and its solutions. J. Phys. Conf. Ser. 1168,
022022. IOP Publishing (2019)

https://doi.org/10.1038/nmeth.3968
https://doi.org/10.1080/01431160600746456
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1109/TGRS.2006.872903
https://doi.org/10.1109/TGRS.2006.872903
https://doi.org/10.5281/zenodo.8370907
http://arxiv.org/abs/2012.07139
https://doi.org/10.3390/electronics7060084

Building a Digital Twin Framework
for Dynamic and Robust Distributed

Systems

Tiberiu Seceleanu(B), Ning Xiong, Eduard Paul Enoiu, and Cristina Seceleanu

Mälardalen University, Västerås, Sweden
{Tiberiu.Seceleanu,Ning.Xiong,Eduard.Paul.Enoiu,

Cristina.Seceleanu}@mdu.se

Abstract. Digital Twins (DTs) serve as the backbone of Industry 4.0,
offering virtual representations of actual systems, enabling accurate sim-
ulations, analysis, and control. These representations help in predicting
system behaviour, facilitating multiple real-time tests, and reducing risks
and costs while identifying optimization areas. DTs meld cyber and phys-
ical realms, accelerating the design and modelling of sustainable innova-
tions. Despite their potential, the complexity of DTs presents challenges
in their industrial application. We sketch here an approach to build an
adaptable and trustable framework for building and operating DT sys-
tems, which is the basis for the academia-industry project A Digital Twin
Framework for Dynamic and Robust Distributed Systems (D-RODS). D-
RODS aims to address the challenges above, aiming to advance industrial
digitalization and targeting areas like system efficiency, incorporating AI
and verification techniques with formal support.

Keywords: digital twins · industrial automation · AI · verification
and validation · resource utilization

1 Introduction

Industry 4.0 is the digital transformation (a.k.a. digitalization) in the indus-
trial sector that includes automation, data exchange, cloud computing, robotics,
Artificial Intelligence (AI), IoT, etc., all used to achieve industrial objectives
and intelligent practices through the interaction of people, new technologies, and
innovation. Modern industry is facing various complex challenges in adapting to
Industry 4.0 contexts, covering the whole lifecycle of products. Further sources
of challenges are identified as the inclusion of legacy systems and technologies,
finding optimal deployment solutions, and achieving overall performance and
robustness of complex systems.

One of the approaches that can provide a unified solution towards digitaliza-
tion is arguably the exploitation of Digital Twins (DTs) - virtual representations
(devices, data, properties, etc.) of actual systems that exist within their environ-
ment [4]. DTs use a set of models to describe the system and explore different
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 254–258, 2024.
https://doi.org/10.1007/978-3-031-49252-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_22&domain=pdf
https://doi.org/10.1007/978-3-031-49252-5_22

Building a Digital Twin Framework for D-RODS 255

types of actions on the system. Multiple “real” tests can be run before, during,
and after product design. As standards in the DT domain are “barely emerg-
ing” [5], “reference architectures” and “DT-platforms”1 are trying to provide the
needed support for companies to cross into the digital world of DT.

The inherent complexity of the DT concept raises additional challenges with
respect to industrial utilization [7]. D-RODS addresses problems related to sys-
tem integration, performance, organization, data volume and quality, and chal-
lenges of distributed system automation: integration and compatibility of legacy
systems, continuous improvement, lack of skilled labour, etc. D-RODS aims to
advance the level of digitalization towards autonomous operations, validated via
use cases coming from major Swedish companies in the domains of industrial
automation: ABB, transportation: Alstom, and telecommunication: Ericsson.

The overall goal of D-RODS is to propose and validate a reference
DT framework based on trustworthy artificial intelligence, supporting highly
autonomous system testing and operation, optimal resource utilization and
increased resilience to faults. D-RODS aims to support the development and
operation of such a framework via modern and complementary approaches.

2 The D-RODS Approach

D-RODS solutions will offer verified and verifiable AI-based approaches, adapted
to the size and features of system instances, continuously evolving through the
operational stages, improving with respect to their targeted goals. The architec-
ture is organized on several contexts, briefly described as follows.

Context: Physical (CP). This layer corresponds to the physical world, con-
taining the plant, the system controlling it, etc.

Context: Learning (CL). This layer (Fig. 1 a)) focuses on the creation of the
DT models corresponding to the relevant parts of the other layers. Unsupervised
learning, validated by specific V&V methods (transparent, explainable, under-
standable results), extracts from a long data history a filtered set of data. Based
on existing domain expertise and models from libraries, this creates the set of
DT models to be employed in the other contexts. Once a complete version of
the models is accepted, the CL can go offline, to reduce energy consumption.

Context: Functionality (CF) and Context: Infrastructure (CI). These
similar layers (Fig. 1 b), c)) contain each an AI and a V&V block, which control
and enhance the functionality of a complex DT (from CL). The DT execution is
supervised by a collection of AI algorithms and a V&V procedures. Continuous
learning, optimization and behavior evaluation are in place.

Targeted Results. D-RODS proposes a novel architectural set-up uniting DT,
AI, and V&V technologies. It targets an increase in the trustfulness of AI
approaches via formal analysis and online testing, optimizes operations, resource

1 e.g. DIGITBrain. https://digitbrain.eu/.

https://digitbrain.eu/

256 T. Seceleanu et al.

Fig. 1. Approach details.

usage and power consumption, and improves maintainability aspects. The D-
RODS framework will cater to the accuracy and efficiency of employed models
by continuous learning and verification, towards high levels of autonomy. The
cross-domain validation is expected to innovate the content of “reference archi-
tectures” in the context of DT developments.

D-RODS also proposes, verifies and demonstrates a novel methodology to
detect system faults and means to mitigate their impact, based on: a) new AI-
based approaches to identify HW failures; b) a new and verified learning solution
to acquire adaptation strategies to re-distribute resources in reaction to identified
faults. This provides a novel dimension in the DT research, toward enhancing
the resilience and robustness of digitalized systems.

Focusing on AI methods, D-RODS is set to refine system performance predic-
tion and resource utilization optimization. For V&V, D-RODS is deriving from
past work on passive testing, integrating formal verification and runtime testing.
It ensures that the developed models, when incorporated into DT, are accurate
and continuously monitor operational correctness. Techniques will include design
verification, continuous monitoring, and metamorphic testing.

Related Work. In manufacturing and automation, several studies (e.g., [1])
show the usefulness of AI in monitoring, maintenance, error diagnosis and real-
time optimization tools, at elevated costs in energy, though. If concepts such as
DT and automated model creation exist, consumption may be reduced up to
20%, pending on computation efficiency and accuracy of models [6].

In the telecom, the non-incremental leap from 4G to 5G came with large
implementation challenges. Existing assurance processes become inadequate,
requiring new techniques and related procedures. Device and network DTs, using
of AI and the correctness of results are critical for the industry as a whole [2].

Building a Digital Twin Framework for D-RODS 257

Work on formal verification of AI components has been carried out, especially
for neural networks [3]. The system-level simulation-based formal analysis of AI-
based systems, performed by the VerifAI toolchain [8] is complementary. It comes
close to D-RODS’ envisioned verification approach, yet it does not apply game-
theoretic model checking for AI verification, and it does not target distributed
learning in networked environments, which we tackle in D-RODS.

AI and big data have played an important role in the development and train-
ing of production control optimization of DT models for industrial applications
[9]. However, AI-related techniques have been only used for planning, schedul-
ing and control of the operation of machines. They have not been exploited for
monitoring and managing the sensing-computing system of DTs for enhancing
their resilience, robustness and energy efficiency.

3 Conclusions

We introduced the D-RODS approach as a novel framework for the implemen-
tation of DT within Industry 4.0 paradigms. It is formulated to address existing
challenges by creating a cohesive integration between AI methodologies, V&V
techniques, and current DT concepts. This should foster enhanced system effi-
ciency, reduced power consumption, and prolonged system component life. The
inclusion of AI in D-RODS not only facilitates better simulation and prediction
models but also offers advanced fault detection and mitigation mechanisms.

Acknowledgements. The authors are partly supported by Vinnova’s Advanced dig-
italization programme in the project D-RODS (ID: 2023-00244).

References

1. Bambura, R., Šolc, M., Dado, M., Kotek, L.: Implementation of digital twin for
engine block manufacturing processes. Appl. Sci. 10(18), 6578 (2020)

2. Bhadada, K.: Enhancing innovation in telecom with digital twins. Harward Bus.
Rev. Anal. Serv. (2022)

3. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: safety and robustness certification of neural networks with abstract inter-
pretation. In: IEEE Symposium on Security and Privacy, pp. 3–18. IEEE (2018)

4. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital twin:
a systematic literature review. CIRP J. Manuf. Sci. Technol. 29, 36–52 (2020)

5. Kung, A., Baudoin, C., Tobich, K.: Report of TWG digital twins: landscape of
digital twins. EU Observatory for ICT Standardisation (2022)

6. Mawson, V.J., Hughes, B.R.: The development of modelling tools to improve energy
efficiency in manufacturing processes and systems. J. Manuf. Syst. 51, 95–105 (2019)

7. Perno, M., Hvam, L., Haug, A.: Implementation of digital twins in the process
industry: a systematic literature review of enablers and barriers. Comput. Ind. 134,
103558 (2022)

258 T. Seceleanu et al.

8. Tommaso, D., et al.: Verifai: a toolkit for the design and analysis of artificial
intelligence-based systems. In: The 31st Conference on Computer Aided Verifica-
tion (2019)

9. Zambrano, V., et al.: Industrial digitalization in the industry 4.0 era: classification,
reuse and authoring of digital models on digital twin platforms. Array 14, 100176
(2022)

A Simple End-to-End Computer-Aided
Detection Pipeline for Trained Deep Learning

Models

Ali Teymur Kahraman1(B) , Tomas Fröding2 , Dimitrios Toumpanakis3,4 ,
Mikael Fridenfalk5 , Christian Jamtheim Gustafsson6,7 , and Tobias Sjöblom1

1 Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
ali_teymur.kahraman@igp.uu.se

2 Department of Radiology, Nyköping Hospital, Nyköping, Sweden
3 Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
4 Department of Surgical Sciences, Uppsala University, Uppsala, Sweden

5 Department of Game Design, Uppsala University, Visby, Gotland, Sweden
6 Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital,

Lund, Sweden
7 Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö,

Sweden

Abstract. Recently, there has been a significant rise in research and develop-
ment focused on deep learning (DL) models within healthcare. This trend arises
from the availability of extensive medical imaging data and notable advances
in graphics processing unit (GPU) computational capabilities. Trained DL mod-
els show promise in supporting clinicians with tasks like image segmentation
and classification. However, advancement of these models into clinical validation
remains limited due to two key factors. Firstly, DL models are trained on off-
premises environments by DL experts using Unix-like operating systems (OS).
These systems rely on multiple libraries and third-party components, demanding
complex installations. Secondly, the absence of a user-friendly graphical interface
for model outputs complicates validation by clinicians. Here, we introduce a con-
ceptual Computer-Aided Detection (CAD) pipeline designed to address these two
issues and enable non-AI experts, such as clinicians, to use trained DL models
offline in Windows OS. The pipeline divides tasks between DL experts and clini-
cians, where experts handle model development, training, inference mechanisms,
Grayscale Softcopy Presentation State (GSPS) objects creation, and container-
ization for deployment. The clinicians execute a simple script to install neces-
sary software and dependencies. Hence, they can use a universal image viewer
to analyze results generated by the models. This paper illustrates the pipeline’s
effectiveness through a case study on pulmonary embolism detection, showcasing
successful deployment on a local workstation by an in-house radiologist. By sim-
plifying model deployment and making it accessible to non-AI experts, this CAD
pipeline bridges the gap between technical development and practical application,
promising broader healthcare applications.

Keywords: Computer-aided detection · grayscale softcopy presentation state ·
machine learning · deep learning · pulmonary embolism

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 259–262, 2024.
https://doi.org/10.1007/978-3-031-49252-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_23&domain=pdf
http://orcid.org/0000-0001-7488-6105
http://orcid.org/0000-0002-4053-4301
http://orcid.org/0000-0002-5221-2721
http://orcid.org/0000-0002-3754-172X
http://orcid.org/0000-0003-2931-5615
http://orcid.org/0000-0001-6668-4140
https://doi.org/10.1007/978-3-031-49252-5_23

260 A. T. Kahraman et al.

1 Introduction

In recent years, there has been a notable surge in both research and development pertain-
ing to applications grounded in machine learning (ML) and deep learning (DL) models
within the healthcare system [1]. This trend is aroused by the availability of extensive
volumes of medical imaging data estimated at 4.2 billion annual diagnostic examina-
tions worldwide [2], along with significant advancements in graphical computational
capacities now measured in tera floating point operations per second [3]. Within these
advances, researchers have demonstrated the potential of trained ML/DLmodels to sup-
port clinicians in a variety of medical image-processing tasks, including segmentation
[4], classification [5]. However, adoption of these trained ML/DL models by clinicians
for clinical validation purposes is hindered by two main factors. First, ML/DL models
are trained on off-premises environments by ML/DL experts using Unix-like operating
systems (OS) such as Ubuntu and macOS. Preparing the development environment for
ML/DL model training on Unix-like operating systems requires proper installation of
libraries, packages, and third-party components. Therefore, these challenging complex
installations are not easy to do by non-AI experts such as clinicians. Second, the absence
of a user-friendly graphical interface for trained ML/DL model outputs to maintain easy
integration with a universal image viewer.

Cloud services that use Infrastructure as a Service (IaaS) architecture, such as Ama-
zon Web Services (AWS), Microsoft Azure, and Google Cloud, are the common way of
deploying trainedML/DLmodels byML/DLexperts [6].While there have been advance-
ments in the creation of cloud-based services for deployingDLmodels, the assessment of
models on these platforms presents challenges, primarily because of regulations related
to general data protection or local institutional policies. To address these challenges, we
proposed a conceptual end-to-end Computer-Aided Detection (CAD) pipeline that can
be easily implementable on theWindowsOS, which does not require expert-level knowl-
edge. The proposed conceptual pipeline enables non-AI experts such as radiologists and
clinicians to perform trained ML/DL models offline within on-premises environments.

2 Objectives and Concepts

Our objective is to present a conceptual pipeline designed to simplify the offline instal-
lation of trained ML/DL models on local workstations, enabling non-AI experts, such
as clinicians, to carry out this process with ease. To ensure this, the pipeline we pro-
pose involves two distinct parties: ML/DL experts and clinicians. ML/DL experts are
responsible for both the development and deployment of the trained models, while clin-
icians are primarily tasked with utilizing these trained models. Unlike ML/DL experts,
clinicians typically have greater familiarity with the Windows operating system [7].

As a result, it is imperative that trained ML/DL models are easily adaptable for use
within the Windows OS environment. With the advent of containerization technology
and the introduction of the Windows Subsystem for Linux (WSL), a new feature within
the Windows OS, it has become notably straightforward to employ models developed
on Unix-based operating systems on Windows platforms. Here, we have presented the
pipeline, as explained below, by leveraging the capabilities of these two technologies.

A Simple End-to-End Computer-Aided Detection Pipeline 261

First, we made a clear division of tasks betweenML/DL experts and clinicians when
utilizing deep learning models for medical image analysis. ML/DL experts are respon-
sible for a series of complex tasks structured as follows: The DL model development
and training, encompassing essential preprocessing steps to prepare the data for training,
creating the model’s inference mechanism, generating Grayscale Softcopy Presentation
State (GSPS) objects for image annotations, saving the trained model in standard for-
mats like HDF5 or pickle, packaging the model into a Docker container for deployment,
crafting a bash script for automated setup of CUDA drivers, Docker, and Windows Sub-
system for Linux (WSL), and finally, uploading all essential files, including the model,
Docker configurations, and scripts, to platforms like GitHub for version control, collab-
oration, or storage purposes. As aimed, the clinicians have a less complex set of tasks.
They just need to download and execute a single bash script uploaded to GitHub by the
ML/DL experts. This script typically handles the installation of essential software and
dependencies needed to run the DL model. Once the setup is complete, clinicians utilize
a universal image viewer to analyze the results generated by the GSPS objects (Fig. 1).

Fig. 1. The illustration of the end-to-end Computer-Aided Detection pipeline.

3 Case Pipeline: Pulmonary Embolism Detection

To assess the usability of the proposed pipeline, we followed the same procedures out-
lined in the previous section, using an in-house trained DL model for the detection of
pulmonary embolisms [4]. First, the trained model was saved in the pickle file format.
Second, a bash script file was generated to facilitate the proper execution of the DL
model. As a final step, all files were uploaded to a file storage system for sharing. Our
in-house radiologist was able to successfully deploy and test the trained DL model on
100 CT pulmonary angiography (CTPA) volume images at the local workstation with-
out requiring expert assistance. The results of 97 of these 100 CTPAs were successfully
analyzed in the universal image viewer.

262 A. T. Kahraman et al.

4 Conclusion

In conclusion, our proposed CAD pipeline offers a practical solution to the challenges
of deploying trained ML/DL models in on-premises environments. By streamlining
the process and making it accessible to non-AI experts, such as clinicians, we bridge
the gap between technical model development and practical application. Leveraging
containerization technology and the Windows Subsystem for Linux, we’ve simplified
the deployment of Unix-based models onWindows platforms, ensuring adaptability and
usability. A successful case study in pulmonary embolism detection underscores the
effectiveness of this approach, promising broader applications in healthcare.

References

1. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019). https://
doi.org/10.1038/s41591-018-0316-z

2. UNSCEAR 2020/2021 Report Volume I. www.unscear.org/unscear/en/publications/2020_2
021_1.html. Accessed 18 Sept 2023

3. Dally, W.J., Keckler, S.W., Kirk, D.B.: Evolution of the graphics processing unit (GPU). IEEE
Micro 41, 42–51 (2021). https://doi.org/10.1109/MM.2021.3113475

4. Kahraman, A.T., Fröding, T., Toumpanakis, D., Gustafsson, C.J., Sjöblom, T.: Deep learning
based segmentation for pulmonary embolism detection in real-world CT Angiography: classi-
fication performance (2023). https://doi.org/10.1101/2023.04.21.23288861v2. https://doi.org/
10.1101/2023.04.21.23288861

5. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks.
Nature 542, 115–118 (2017). https://doi.org/10.1038/nature21056

6. Nyarko, K., Taiwo, P., Duru, C., Masa-Ibi, E.: AI/ML systems engineering workbench frame-
work. In: 2023 57th Annual Conference on Information Sciences and Systems (CISS), pp. 1–5
(2023). https://doi.org/10.1109/CISS56502.2023.10089781

7. Newaz, A.I., Sikder, A.K., Rahman, M.A., Uluagac, A.S.: A survey on security and privacy
issues in modern healthcare systems: attacks and defenses. ACM Trans. Comput. Healthcare
2, 27:1–27:44 (2021). https://doi.org/10.1145/3453176

https://doi.org/10.1038/s41591-018-0316-z
http://www.unscear.org/unscear/en/publications/2020_2021_1.html
https://doi.org/10.1109/MM.2021.3113475
https://doi.org/10.1101/2023.04.21.23288861v2
https://doi.org/10.1101/2023.04.21.23288861
https://doi.org/10.1038/nature21056
https://doi.org/10.1109/CISS56502.2023.10089781
https://doi.org/10.1145/3453176

Astrocyte-Integrated Dynamic Function
Exchange in Spiking Neural Networks

Murat Isik1(B) and Kayode Inadagbo2

1 Stanford University, Stanford, CA, USA
mrtisik@stanford.edu

2 Prairie View A&M University, Prairie View, TX, USA

Abstract. This paper presents an innovative methodology for improv-
ing the robustness and computational efficiency of Spiking Neural Net-
works (SNNs), a critical component in neuromorphic computing. The
proposed approach integrates astrocytes, a type of glial cell prevalent
in the human brain, into SNNs, creating astrocyte-augmented networks.
To achieve this, we designed and implemented an astrocyte model in
two distinct platforms: CPU/GPU and FPGA. Our FPGA implemen-
tation notably utilizes Dynamic Function Exchange (DFX) technology,
enabling real-time hardware reconfiguration and adaptive model creation
based on current operating conditions. The novel approach of leveraging
astrocytes significantly improves the fault tolerance of SNNs, thereby
enhancing their robustness. Notably, our astrocyte-augmented SNN dis-
plays near-zero latency and theoretically infinite throughput, implying
exceptional computational efficiency. Through comprehensive compara-
tive analysis with prior works, it’s established that our model surpasses
others in terms of neuron and synapse count while maintaining an effi-
cient power consumption profile. These results underscore the potential
of our methodology in shaping the future of neuromorphic computing,
by providing robust and energy-efficient systems.

Keywords: Astrocytes · Spiking Neural Networks · FPGA
Implementation · Dynamic Function Exchange · Fault Tolerance

1 Introduction

Fault tolerance has become a critical feature of today’s increasingly sophisti-
cated computational systems, which require not just high performance, but also
continuous and reliable operation. This is especially true for neural networks
that mimic the structure of the brain, pushing the limits of existing computing
paradigms. Spiking Neural Networks (SNNs), a type of artificial neural network
patterned after the brain’s neuronal dynamics, are energy efficient, use time-
dependent data processing, and have bio-plausible algorithms for learning. In
spite of this, SNNs are susceptible to faults and failures, which could disrupt
their functionality and reduce their efficiency. Therefore, fault-tolerant mech-
anisms within SNNs need to be explored. Recent research has demonstrated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 263–273, 2024.
https://doi.org/10.1007/978-3-031-49252-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_24&domain=pdf
http://orcid.org/0000-0002-0907-7253
http://orcid.org/0009-0009-9512-3321
https://doi.org/10.1007/978-3-031-49252-5_24

264 M. Isik and K. Inadagbo

that astrocytes play a crucial role in regulating neuronal activity and synaptic
transmission in the brain. It has long been believed that neurons contributed
significantly to the resilience and adaptability of biological neural networks, but
astrocytes have now been found to play a much more important role which is
shown in Fig. 1. Dynamically modulating neuronal activity based on state, they
effectively support fault tolerance at the molecular level. The hypothesis of inte-
grating astrocytic mechanisms into SNNs is an exciting prospect, potentially
leading to dynamic adjustment for fault tolerance in these systems [2,5,6].

Field Programmable Gate Arrays (FPGAs) are reprogrammable silicon chips
that can be customized to perform complex computations in parallel, making
them ideally suited for implementing SNNs. FPGAs have been increasingly used
for emulating SNNs due to their high degree of parallelism, energy efficiency, and
low latency. Further, their inherent re-programmability makes them a prime can-
didate for implementing adaptive mechanisms, such as those inspired by astro-
cytes, to handle faults dynamically. This could potentially enable SNNs imple-
mented on FPGAs to autonomously adapt in the face of faults, mimicking the
resilience observed in biological neural networks [3,4].

Fig. 1. Inserting an astrocyte in a neural network. [5]

In this paper, we explore how FPGA-implemented SNNs could benefit from
astrocyte-powered dynamic adjustments to enhance fault tolerance. The purpose
of this study is to investigate whether introducing astrocyte-inspired mecha-
nisms could enhance network performance and reliability by reducing faults and
failures. The rest of the paper is organized as follows: Sect. 2 discusses astro-
cytes’ significance in SNNs and reviews related works. Section 3 describes SNN
architecture and the integration of astrocytes. Section 4 details our astrocyte-
augmented SNN model, emphasizing hardware implementations. Section 5 eval-
uates the model’s fault tolerance and efficiency, comparing it with other models
and introducing the Dynamic Function eXchange technology. Section 6 concludes
with our key findings and suggests future research avenues.

2 Background

The principles of biological brains are reflected in SNNs, which are artificial neu-
ral networks. A key difference between them is the emulation of time-dependent

Astrocyte-Integrated Dynamic Function Exchange in SNNs 265

spikes or ‘action potentials’, which are the primary means of communication
between neurons in the brain. The SNN is a powerful computational model
capable of handling complex tasks such as pattern recognition, sensory pro-
cessing, and motor control in a highly energy-efficient, low-latency manner.
Recent advances in neuromorphic engineering have propelled research in this
field, which aims to create hardware and software solutions that mimic neu-
ronal spike dynamics [11]. Fault-tolerance techniques are essential for ensur-
ing robustness and reliability of complex systems like SNNs, particularly when
uninterrupted functionality is critical. Several methods have been proposed and
implemented, ranging from redundancy and error correction codes to adaptive
mechanisms that enable dynamic fault recovery [18]. The disadvantages of these
traditional techniques are often increased resource consumption and decreased
performance. Therefore, innovative solutions are needed that minimize these
trade-offs while ensuring robust fault tolerance. Astrocytes once considered mere
supporting cells in the brain, are now recognized as key players in regulating
neuronal activity. The ability of biological neural networks to detect and mod-
ulate neural activity contributes to their adaptability and resilience [13]. The
idea of integrating these astrocytic mechanisms into artificial neural networks
to enhance their resilience and adaptability is a novel and promising area of
research. Previous works have explored the implementation of SNNs on FPGAs
for their advantages in parallelism, energy efficiency, and re-programmability
[15]. However, the integration of astrocyte-inspired fault-tolerance mechanisms
in such systems has not been adequately explored. This research seeks to fill
this gap, extending our understanding of fault tolerance in SNNs and paving the
way for more robust and adaptive neural network architectures. By examining
how astrocyte-powered dynamic adjustments could enhance fault-tolerance in
FPGA-implemented SNNs, this study could provide a valuable contribution to
the fields of computational neuroscience and neuromorphic engineering.

3 Astrocyte and Spiking Neural Networks

Astrocytes constitute about 20–40% of the total glial population in the human
brain. Studies have revealed that these molecules play an active role in neu-
ronal signaling and information processing. The astrocyte extends its processes
near neurons, where it senses and modulates neuronal activity through gliotrans-
mission [16]. This remarkable capability motivates the integration of astrocyte
mechanisms into SNNs, providing an intriguing avenue to enhance their fault
tolerance and adaptability. An SNN is an artificial neural network that mim-
ics time-dependent and event-driven communication between biological neurons
through spikes or ‘action potentials’. High temporal resolution, high power effi-
ciency, and bio-plausible mechanisms have made them a subject of keen inter-
est [14]. It is possible to mimic the fault tolerance and dynamic adjustment of
biological neural networks by incorporating astrocyte mechanisms into SNNs. A
bidirectional communication system connects astrocytes to neurons. Neurotrans-
mitters released by neurons can be detected and responded to by them, and the

266 M. Isik and K. Inadagbo

gliotransmitters released can modulate neuronal activity. Among the main mech-
anisms of astrocyte-neuron interaction is the tripartite synapse model, in which
astrocytes actively contribute to neuronal synaptic transmission [1]. Among the
diverse effects of this interaction are the modification of synaptic strength, the
regulation of local blood flow, and metabolic support for neurons, thus enhanc-
ing network resilience and adaptability. SNNs based on astrocyte functionality
can incorporate these aspects to enhance their resilience. Synaptic weights can
be modulated by astrocytes to balance neuron firing rates across a network,
thereby preventing neurons from ‘dying out’ or ‘overfiring’ as a result of neural
network models. Moreover, astrocytes are able to sense and respond to changes
in neuronal activity, enabling them to design fault-tolerance mechanisms that
dynamically adjust to faults in networks [8,9]. The incorporation of astrocyte-
neuron interactions into SNNs, especially those based on FPGAs, has yet to be
explored in various computational neuroscience studies.

4 Method

4.1 Dataset

Our project is based on the DAVIS 240C Dataset, a unique collection of event-
based data ideal for pose estimation, visual odometry, and SLAM. This dataset,
generated using DAVIS 240C cameras by iniLabs, offers event-based images,
IMU measurements, and motion-captured ground truth. Some datasets that uti-
lized a motorized linear slider lack motion-capture or IMU data; however, their
ground truth derives from the slider’s position. The “calibration” dataset pro-
vides alternative camera models, with all gray datasets sharing identical intrinsic
calibration. This dataset proves invaluable for image data analysis, particularly
in SNNs and related domains [10]. For this project, we employ a subset of the
DAVIS 240C dataset. Figure 2 showcases the DAVIS 240C event camera which
was utilized to produce this dataset.

Fig. 2. DAVIS 240 DVS Event Camera

Astrocyte-Integrated Dynamic Function Exchange in SNNs 267

4.2 Training Details

In our implementation, the SNN is architected to emulate astrocyte functions
using a subset of the DAVIS 240C Dataset that records astrocyte activity in
response to neuronal behavior. The architecture is composed of:

– Input Layer: Simulates neuron-astrocyte interactions, customizable for spe-
cific neurological scenarios.

– Astrocyte Layer: Represents spiking astrocytes, processing inputs and
relaying spike trains to the subsequent layer.

– Output Layer: Decodes the spike trains, producing responses analogous to
biological outcomes from astrocyte activities.

During compilation, the aim is to synchronize the Output Layer’s reactions
with the anticipated responses in the training set. We employ the ‘Adam’ opti-
mizer, recognized for efficiently addressing complex problems. Performance eval-
uation utilizes the ‘accuracy’ metric, with the ‘EarlyStopping’ callback inte-
grated during training to mitigate overfitting. Following training, outcomes are
juxtaposed with validation data, assessing accuracy, precision, and recall. This
implementation paves the way for deeper explorations into astrocytic roles in
SNNs. Subsequent iterations may further refine the model and incorporate addi-
tional cellular dynamics, with a recommendation to consider advanced SNN
metrics such as spike timing and spiking rate accuracy.

4.3 Hardware Implementation

Hardware implementation is vital for real-world applications, particularly in
computationally-intensive tasks. This section presents our methodology for phys-
ically implementing the astrocyte model using two different approaches: CPU/
GPU and FPGA.

Fig. 3. Block Diagram of Implementation

CPU/GPU Implementations. We utilized Python to execute implementa-
tions on the CPU and GPU. The study leveraged the computational prowess
of NVIDIA’s GeForce RTX 3060 GPU and Intel’s Core i9 12900H CPU, both
of which are optimized for different tasks, ensuring an efficient execution of our
implementations.

268 M. Isik and K. Inadagbo

FPGA Implementation. Our FPGA implementation was executed on the
XCVC1902 FPGA chip, equipped with 400 AI Chips, utilizing the 2021.1 soft-
ware version of Vivado. Our central module, “Astrocyte”, processes a 42-bit input
and produces a 42-bit output. The internal operations of the PiP (Place-in-Place)
module, which is a crucial component of this design, are depicted in Fig. 3. The
efficiency of our astrocyte-augmented SNN, as presented through metrics, was
evident in its low latency and theoretically infinite throughput, emphasizing its
computational prowess. The presented metrics stem from an experiment involv-
ing an astrocyte-augmented SNN. Our aim was to evaluate how the astrocyte
implementation impacts the network’s robustness and computational efficiency.
Initially, our SNN displayed a fault tolerance of 72.08% without astrocytes, sig-
nifying that a single artificially silenced neuron caused the network’s output to
diverge by this proportion from the original, fault-free state. Such a measure pro-
vided an estimate of the SNN’s resilience to localized neuronal failures. When
astrocytes were incorporated into the SNN, a remarkable reduction in latency
was observed; the time required for an entire round of astrocytic updates was
essentially zero as per the system clock. This extremely low latency indicated an
impressive efficiency in the computational implementation. Moreover, this near-
zero latency facilitated theoretically infinite throughput, implying instantaneous
processing of all neurons in the network, which further emphasized the excep-
tional computational efficiency of our astrocyte-augmented SNN. The observed
new fault tolerance was quantified as 8.96%, highlighting the degree of enhance-
ment in SNN’s fault tolerance as a direct result of astrocyte integration. Post
astrocyte integration, the SNN demonstrated an improved fault tolerance of
63.11%. The fault tolerance FT of a SNN is conceptually defined as the propor-
tionate deviation of the SNN’s output from the original, fault-free state when
subject to a fault condition.

1. FTinitial: Initial fault tolerance without astrocytes.
2. FTastro: Fault tolerance after integrating astrocytes.
3. ΔFT : Improvement in fault tolerance due to astrocyte integration, given by

ΔFT = FTinitial − FTastro.

The fault tolerance of the SNN, considering the given description, is repre-
sented as:

FT =
Ofault − Ooriginal

Ooriginal
× 100% (1)

where:

– Ooriginal is the output in the original, fault-free state.
– Ofault is the output when a fault (like a silenced neuron) is induced.

From our results:
FTinitial = 72.08%

FTastro = 8.96%

ΔFT = 63.11%

Astrocyte-Integrated Dynamic Function Exchange in SNNs 269

This confirms the mathematical relationship:

ΔFT = FTinitial − FTastro (2)

The reduced FTastro implies that the network’s output deviates less from the
fault-free state when a fault condition is induced, indicating enhanced resilience
of the SNN upon integrating astrocytes.

4.4 Adaptive Model Creation with Dynamic Function eXchange
Technology

We utilize Dynamic Function Exchange (DFX) technology for an adaptable
model construction. Central to this approach is on-the-fly hardware reconfig-
uration, allowing computational functions to map onto hardware according to
emerging demands. Initially, the model engages in “Training & Predicting” using
historical data, recognizing patterns for adaptation. It then proceeds to “Adjust-
ing Hyperparameters” for performance refinement. Ultimately, in the “Execute
DFX” phase, as illustrated in Fig. 4, DFX’s real-time hardware reprogramming
facilitates model functionality adjustments according to network state changes,
optimizing computational resource allocation. This not only enhances adaptabil-
ity to SNN variability but also fosters energy efficiency, pivotal for high-demand
machine learning tasks. In essence, our DFX-integrated model offers enhanced
performance and adaptability in astrocyte-based neuronal network implementa-
tions.

Fig. 4. DFX Diagram

4.5 Quantitative Analysis of the Hardware Accelerator

For computational tasks, especially in real-time scenarios, metrics like through-
put and latency are vital. Throughput gauges the system’s capability to handle
data processing, whereas latency measures the delay before a transfer of data

270 M. Isik and K. Inadagbo

begins. These metrics play a pivotal role in understanding and optimizing the
performance of our system.

Throughput =
No. of MACs

Operational Latency
(3)

The above equation delineates the throughput as a function of the number of
Multiply-Accumulate (MAC) operations over the operational latency. The count
of MAC operations is derived from specialized neural network libraries [12]. On
the other hand, the operational latency, which is synonymous with simulation
time in this context, predominantly emerges from the inherent characteristics
and constraints of the underlying hardware architecture. This is mathematically
captured by:

Operational Latency =
Time for Inference

Dataset Loader Iteration
(4)

This equation emphasizes the interdependence between the time taken for
model inference and the iterations dictated by the dataset loader.

Table 1. Resource utilization summary

VC1902 Versal
Resource Utilization Available % Utilization

LUT 900 899,840 0.10%
FF 100 75,000 0.13%
BRAM 0 1,000 0%
IO 86 770 11.17%
AI Engine 0 400 0%
DSP 0 1,968 0%

Our FPGA implementation’s efficiency can be further understood through
the resource utilization summary provided in Table 1. The low percentages in the
utilization column indicate efficient use of resources. However, there remains an
opportunity to further leverage these resources for complex tasks or to enhance
performance.

5 Results

Table 2 covers metrics such as manufacturing technology, operating frequency,
and power consumption. Notably, the parallel execution of GPUs and FPGAs
often surpasses CPUs in efficiency, even at lower frequencies. This is demon-
strated by the Xilinx FPGA’s 4.6ms latency and its mere 2W consumption.
Emphasizing energy efficiency, the table indicates FPGA’s throughput of 58.5

Astrocyte-Integrated Dynamic Function Exchange in SNNs 271

Table 2. Comparison between CPU, GPU, and FPGA

i9 12900H RTX 3060 VCK190

Vendor Intel NVIDIA AMD-Xilinx
Tech (nm) 10 8 7
Freq (MHz) 5200 1320 100
MACs (G) 0.269 0.269 0.269
Latency (ms) 84 11.6 4.6
Power (W) 27 68 2
Throughput (GOP/s) 3.2 24.5 58.5
Efficiency (GOP/s/W) 0.11 0.36 29.2

GOP/s and an energy efficiency of 29.2 GOP/s/W, accentuating FPGAs’ profi-
ciency for energy-sensitive applications. This underscores the unique attributes
and potential applications of each technology. In Table 3, our FPGA-based astro-
cyte modeling on the advanced Xilinx VCK-190 chip is compared with prior
works such as [6,7], and [5]. Operating at a standard 100MHz, our model encom-
passes 680 neurons and 69,888 synapses, outstripping other models in complexity.
Correspondingly, our model demonstrates robustness with a fault tolerance rate
of 9.96%, on par with [5], and a resilience improvement of 63.11%. Despite a
2W power demand, higher than certain FPGA models, our implementation’s
extensive neuronal and synaptic counts justify this. This consumption reflects
our model’s commendable energy efficiency amidst heightened complexity.

Table 3. Comparisons with previous implementations.

[17] [7] [6] [5] Our

Platform CPU FPGA Virtex-5 FPGA Artix-7 FPGA VCU-128 FPGA VCK-190
Clock 3.1 GHz 100MHz 100MHz 100MHz 100 MHz
Neurons 2 14 – 336 680
Synapses 1 100 – 17,408 69,888
Fault Tolerance Rate 30% 30% – 39% 8.96%
Resilience Improvement 12.5% 70% 80% 51.6% 63.11%
Power – 1.37 W 0.33W 0.538W 2 W

6 Conclusions

This work has presented a novel astrocyte-augmented spiking neural network
model implemented on CPU/GPU and FPGA platforms. The inclusion of astro-
cytes has shown significant improvements in the network’s fault tolerance,

272 M. Isik and K. Inadagbo

demonstrating the potential benefits of astrocyte integration in artificial neu-
ral networks. Additionally, the use of FPGA hardware for this model leverages
the advantages of parallel computation and on-the-fly hardware reconfiguration
offered by DFX technology. The comparison with different computational archi-
tectures and previous works highlighted the strengths of our approach in terms of
computational efficiency and network robustness. Future research in this direc-
tion could yield more sophisticated and efficient neuromorphic systems, thus
paving the way for advanced applications in diverse areas such as robotics, bioin-
formatics, and cognitive computing.

References

1. Covelo, A., Araque, A.: Lateral regulation of synaptic transmission by astrocytes.
Neuroscience 323, 62–66 (2016)

2. Haghiri, S., Ahmadi, A.: Digital FPGA implementation of spontaneous astrocyte
signalling. Int. J. Circuit Theory Appl. 48(5), 709–723 (2020)

3. Inadagbo, K., Arig, B., Alici, N., Isik, M.: Exploiting FPGA capabilities for accel-
erated biomedical computing. arXiv preprint arXiv:2307.07914 (2023)

4. Isik, M., Oldland, M., Zhou, L.: An energy-efficient reconfigurable autoencoder
implementation on FPGA. arXiv preprint arXiv:2301.07050 (2023)

5. Isik, M., Paul, A., Varshika, M.L., Das, A.: A design methodology for fault-tolerant
computing using astrocyte neural networks. In: Proceedings of the 19th ACM Inter-
national Conference on Computing Frontiers, pp. 169–172 (2022)

6. Johnson, A.P., et al.: An FPGA-based hardware-efficient fault-tolerant astrocyte-
neuron network. In: 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1–8. IEEE (2016)

7. Johnson, A.P., et al.: Homeostatic fault tolerance in spiking neural networks utiliz-
ing dynamic partial reconfiguration of FPGAs. In: 2017 International Conference
on Field Programmable Technology (ICFPT), pp. 195–198. IEEE (2017)

8. Karim, S., et al.: Assessing self-repair on FPGAs with biologically realistic
astrocyte-neuron networks. In: 2017 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pp. 421–426. IEEE (2017)

9. Kumar, S.R., Singhal, S.: Implementation of neuron astrocyte interaction dynam-
ics. In: 2023 IEEE 8th International Conference for Convergence in Technology
(I2CT), pp. 1–6. IEEE (2023)

10. Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., Scaramuzza, D.: The event-
camera dataset and simulator: Event-based data for pose estimation, visual odom-
etry, and slam. Int. J. Robot. Res. 36(2), 142–149 (2017)

11. Pfeiffer, M., Pfeil, T.: Deep learning with spiking neurons: opportunities and chal-
lenges. Front. Neurosci. 12, 774 (2018)

12. PyTorch-OpCounter. https://pypi.org/project/thop/. Accessed 26 Aug 2023
13. Santello, M., Toni, N., Volterra, A.: Astrocyte function from information processing

to cognition and cognitive impairment. Nat. Neurosci. 22(2), 154–166 (2019)
14. Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.: Deep

learning in spiking neural networks. Neural Netw. 111, 47–63 (2019)
15. Venkataramani, S., et al.: Rapid: AI accelerator for ultra-low precision training and

inference. In: 2021 ACM/IEEE 48th Annual International Symposium on Com-
puter Architecture (ISCA), pp. 153–166. IEEE (2021)

http://arxiv.org/abs/2307.07914
http://arxiv.org/abs/2301.07050
https://pypi.org/project/thop/

Astrocyte-Integrated Dynamic Function Exchange in SNNs 273

16. Volterra, A., Meldolesi, J.: Astrocytes, from brain glue to communication elements:
the revolution continues. Nat. Rev. Neurosci. 6(8), 626–640 (2005)

17. Wei, X., Li, C., Lu, M., Yi, G., Wang, J.: A novel astrocyte-mediated self-repairing
CPG neural network. In: 2019 Chinese Control Conference (CCC), pp. 4872–4877.
IEEE (2019)

18. Zhang, S., Ji, W., Li, X., Huang, K., Yin, R.: Precise failure location and protection
mechanism in long-reach passive optical network. J. Lightwave Technol. 34(22),
5175–5182 (2016)

Correct Orchestration of Federated
Learning Generic Algorithms:

Formalisation and Verification in CSP

Ivan Prokić1(B) , Silvia Ghilezan1,3 , Simona Kašterović1 ,
Miroslav Popovic1 , Marko Popovic2 , and Ivan Kaštelan1

1 Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
{prokic,gsilvia,simona.k,ivan.kastelan}@uns.ac.rs,

miroslav.popovic@rt-rk.uns.ac.rs
2 RT-RK Institute for Computer Based Systems, Novi Sad, Serbia

Marko.Popovic@rt-rk.com
3 Mathematical Institute of the Serbian Academy of Sciences and Arts,

Belgrade, Serbia
http://www.ftn.uns.ac.rs/, http://www.mi.sanu.ac.rs/

Abstract. Federated learning (FL) is a machine learning setting where
clients keep the training data decentralised and collaboratively train a
model either under the coordination of a central server (centralised FL)
or in a peer-to-peer network (decentralised FL). Correct orchestration is
one of the main challenges. In this paper, we formally verify the correct-
ness of two generic FL algorithms, a centralised and a decentralised one,
using the Communicating Sequential Processes calculus (CSP) and the
Process Analysis Toolkit (PAT) model checker. The CSP models consist
of CSP processes corresponding to generic FL algorithm instances. PAT
automatically proves the correctness of the two generic FL algorithms by
proving their deadlock freeness (safety property) and successful termi-
nation (liveness property). The CSP models are constructed bottom-up
by hand as a faithful representation of the real Python code and is auto-
matically checked top-down by PAT.

Keywords: Decentralised intelligence · Federated learning · Python ·
Formal verification · CSP process calculus

1 Introduction

Originally, federated learning (FL) was introduced by McMahan et al. [13] as
a decentralised approach to model learning that leaves the training data dis-
tributed on the mobile devices and learns a shared model by aggregating locally
computed updates. Besides preserving local data privacy, FL is robust to the
unbalanced and non-independent and identically distributed (non-IID) data dis-
tributions, and it reduces required communication rounds by 10–100x as com-
pared to the synchronized stochastic gradient descent algorithm. Inspired by [13],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 274–288, 2024.
https://doi.org/10.1007/978-3-031-49252-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_25&domain=pdf
http://orcid.org/0000-0001-5420-1527
http://orcid.org/0000-0003-2253-8285
http://orcid.org/0000-0002-7161-3926
http://orcid.org/0000-0001-8385-149X
http://orcid.org/0000-0002-1957-0092
http://orcid.org/0000-0003-3417-7237
https://doi.org/10.1007/978-3-031-49252-5_25

Correct Orchestration of Federated Learning Generic Algorithms 275

Bonawitz et al. [4] introduced an efficient secure aggregation protocol for feder-
ated learning, and Konecny et al. [10] presented algorithms for further decreasing
communication costs. More recently, Bonawitz et al. [5] and Perino et al. [15]
focused on data privacy.

Nowadays, there are many FL frameworks. The most prominent TensorFlow
Federated (TFF) [12,23] and BlueFog [24,25] are well supported and accepted
and they work well in cloud-edge continuum. However, they are not deployable
to edge only, they are not supported on OS Windows, and they have numerous
dependencies that make their installation far from trivial.

Recently, in 2021, Kholod et al. [9] made a comparative review and analysis
of open-source FL frameworks for IoT, covering TensorFlow Federated (TFF)
from Google Inc [23], Federated AI Technology Enabler (FATE) from Webank’s
AI department [2], Paddle Federated Learning (PFL) from Baidu [3], PySyft
from the open community OpenMined [1], and Federated Learning and Differ-
ential Privacy (FL&DP) framework from Sherpa.AI [18]. They found out that
application of these frameworks in the IoTs environment is almost impossible.
So, developing a FL framework targeting smart IoTs in edge systems is still an
open challenge.

More recently, in 2023, Popovic et al. proposed their solution to that chal-
lenge called Python Testbed for Federated Learning Algorithms (PTB-FLA) [16].
PTB-FLA was developed with the primary intention to be used as a FL frame-
work for developing federated learning algorithms (FLAs), or more precisely as a
runtime environment for FLAs. The word “testbed” in the name PTB-FLA that
might be misleading was selected by ML & AI developers in TaRDIS project
[22] because they see PTB-FLA as an “algorithmic” testbed where they can plu-
gin and test their FLAs. Note that PTB-FLA is neither a system testbed, such
as the one that was used for testing the system based on PySyft in [19], nor
a complete system such as CoLearn [6] and FedIoT [26] (for more elaborated
comparison with CoLearn and FedIoT see Sect. I.A in [16]).

PTB-FLA is written in pure Python to keep the application footprint small
so to fit to IoTs, and to keep installation as simple as possible (with no external
dependencies). PTB-FLA supports both centralised and decentralised FLAs.
The former is as defined in [13], whereas the latter are generalized such that
each process (or node) alternatively takes server and client roles from [13] or
more precisely, it switches roles from server to client and back to server.

PTB-FLA enforces a restricted programming model, where a developer writes
a single application program, which is later instantiated and launched by the
PTB-FLA launcher as a set of independent processes, and within their applica-
tion program, a developer only writes callback functions for the client and the
server roles, which are then called by the generic federated learning algorithms
hidden inside PTB-FLA.

So far, PTB-FLA usage has been illustrated and validated by three simple
examples in [16], but PTB-FLA has not been formally verified. In this paper, we
formally verify the correctness of two generic FL algorithms, a centralised and a
decentralised one, using the Communicating Sequential Processes calculus (CSP)

276 I. Prokić et al.

[7] and the Process Analysis Toolkit (PAT) [21] model checker, in a process with
two phases.

In the first phase, we construct by hand CSP models of the generic centralised
and decentralised FLAs as faithful representations of the real Python code. We
construct these models in a bottom-up fashion in two steps. In the first step, we
construct processes corresponding to generic FL algorithm instances, and in the
second step, we construct the system model as an asynchronous interleaving of
n FL algorithm instances.

In the second phase, we formally verify CSP models constructed in the pre-
vious phase in two steps. In the first step, we formulate desired system proper-
ties, namely deadlock freeness (safety property) and successful FLA termination
(liveness property). We formulate the latter property in two equivalent forms
(reachability statement and always-eventually LTL formula). In the second step,
we use PAT to automatically prove formulated verification statements.

The main contributions of this paper are: (i) the CSP models of the generic
centralised and decentralised FLAs, (ii) the formulations of generic centralised
and decentralised FLAs properties. To the best of our knowledge, this is the first
paper that formally verifies decentralised FLAs.

The rest of the paper is organized as follows. Section 1.1 presents closely
related work. Section 2 presents the PTB-FLA overview, Sect. 3 presents PTB-
FLA formalization, Sect. 4 presents PTB-FLA verification, and Sect. 5 concludes
the paper.

1.1 Short Discussion of Closely Related Work

While tools for decentralised ML (DML), especially FL, are starting to flourish,
many are not flexible and portable enough to experiment with novel processors,
not fully connected network topologies, and asynchronous schemes. To overcome
these limitations, Mittone et al. use the formal language RISC-pb2l to describe
distributed FL workloads and to map them to the FastFlow parallel program-
ming library [14]. We consider this approach as orthogonal to our work because it
targets parallel and distributed processing composition and optimization whereas
our work targets formal verification of system correctness, i.e. proving desired
system properties.

Multiparty Asynchronous Session Types (MPST) is a class of behavioural
types tailored for describing distributed protocols relying on asynchronous com-
munications. Hu and Yoshida extended MPST in [8] with explicit connection
actions to support protocols with optional and dynamic participants. Although
these extended MPST enabled modelling and verification of some protocols in
cloud-edge continuum [20], we could not use them to model the generic cen-
tralised and decentralised FLAs, because we could not express arbitrary order
of message arrivals that take place at an FLA instance.

Correct Orchestration of Federated Learning Generic Algorithms 277

Fig. 1. Block diagram of the PTB-FLA system architecture. (The figure is an adapta-
tion of a figure from [17]).

The design of robust protocols for coordination of peer-to-peer systems is
difficult because it is hard to specify and reason about their global behaviour.
Recently, Kuhn et al. presented an approach in [11] where a so-called swarm
protocol is a global system specification, whereas swarm protocol projections to
machines are local specifications of peers. They claim that swarms are dead-
lock free, but liveness is not guaranteed in their theory. We find this approach
interesting and in our future work we plan to investigate whether it would be
feasible for our generic FLAs. At present, we identify some of the differentiating
points between [11] and our work: (i) in their approach communication of peers
is conducted through a shared log instead of point-to-point message passing; (ii)
they model peers using finite state automata, while we use (CSP) processes; (iii)
they model protocols in the style of MPST via top-down approach (projecting
global type onto peers to obtain local type specification) while we only write
local processes specifications, that we ensemble together to obtain global pro-
tocol behaviour; (iv) they use TypeScript language and develop tools to check
protocol conformance at runtime through equivalence testing, whereas our pro-
tocols are written in Python language, modeled in CSP, and we use PAT to
prove deadlock freeness and liveness.

2 Generic Federated Learning Algorithms: PTB-FLA
Overview

This section presents the PTB-FLA overview. The term PTB-FLA system refers
to a system based on PTB-FLA. The next three subsections present the PTB-
FLA system architecture, the PTB-FLA API, and the PTB-FLA system oper-
ation, respectively.

278 I. Prokić et al.

Fig. 2. UML class diagram of the PTB-FLA system architecture. (The figure is an
adaptation of a figure from [17]).

2.1 PTB-FLA System Architecture

The PTB-FLA system architecture is composed of the application launcher pro-
cess s, the distributed application A = {a1, a2, . . . , an}, and the distributed
testbed T = {t1, t2, . . . , tn}, see Fig. 1, where ai is an application program
instance, ti is a testbed instance, and n is the number of instances in both A
and T . The distributed application A uses the distributed testbed T to execute
the distributed algorithm, which is specified by the callback functions within the
application program. PTB-FLA supports both centralised and decentralised fed-
erated learning algorithms by providing the API functions that implement the
generic centralised algorithm and the generic decentralised algorithm, named
fl_centralised and fl_decentralised, respectively.

A particular distributed federated learning algorithm is executed as follows.
Each instance ai prepares its input data based on the command line arguments
(including the identification i, the number of instances n, etc.) and then calls
the desired generic API function on its testbed instance ti.

The testbed instance ti in turn plays its role in the generic algorithm by
exchanging messages with other testbed instances and by calling the associated
callback function at the right point of the generic algorithm. The communication
graph of testbed instances either takes the form of a star in case of a centralised
algorithm (see solid edges connecting the server t1 and the clients t2 to tn in Fig.
1), or the form of a clique in the case of a decentralised algorithm (see solid and
dashed edges connecting all the testbed instances in Fig. 1).

Figure 2 shows the simplified UML class diagram of a PTB-FLA system. The
PTB-FLA system architecture comprises three layers: the distributed application
layer, the PTB-FLA layer (comprising the class PtbFla in the module ptbfla
and the module mpapi) in the middle, and the Python layer at the bottom. The
application module uses the PtbFla to create or destroy a testbed instance and
to conduct its role in the distributed algorithm execution by calling the API
function fl_centralised or the API function fl_decentralised.

Correct Orchestration of Federated Learning Generic Algorithms 279

Fig. 3. The generic centralised one-shot FLA execution.

The API functions fl_centralised and fl_decentralised, within an instance ti,
use the module mpapi (mpapi is the abbreviation of the term message passing
API) to communicate with other instances. The module mpapi in turn instanti-
ates the Python multiprocessing classes Listener and Client to create the mpapi
server and the mpapi client, which are hidden with the module mpapi and pro-
vide reliable TCP connections among testbed instances.

2.2 PtbFla API

There are many PTB-FLA APIs, and one of them is Ptb-Fla API. This is the
only API intended for external usage. The PtbFla API offers the constructor,
two generic FLAs, and the destructor:

– PtbFla(noNodes, nodeId, flSrvId = 0)
– ret fl_centralised(sfun, cfun, ldata, pdata, noIters = 1)
– ret fl_decentralised(sfun, cfun, ldata, pdata, noIters = 1)
– PtbFla()

The arguments are as follows: noNodes is the number of nodes (or processes),
nodeId is the node identification, flSrvId is the server id (default is 0; this
argument is used by the function fl_centralised), sfun is the server callback
function, cfun is the client callback function, ldata is the initial local data, pdata
is the private data, and noIters is the number of iterations that is by default
equal to 1 (for the so called one-shot algorithms), i.e. if the calling function does
not specify it, it will be internally set to 1. The return value ret is the node final
local data. Data (ldata and pdata) is application specific.

Typically, ldata is a machine learning model, whereas pdata is a training data
that is used to train the model. Normally, the testbed instances only exchange
ldata and they never send out pdata (that is how they guarantee the training
data privacy). The pdata is only passed to callback functions within the same
process instance to immediately set them in their working context.

280 I. Prokić et al.

2.3 PTB-FLA Operation

This subsection provides an overview of the PTB-FLA operation by presenting
the two most important scenarios: the generic centralised and decentralised one-
shot FLA executions, respectively.

The generic centralised one-shot FLA has three phases, see Fig. 3 (here a1
is the server and ai, i = 2, . . . , n, are the clients). In the first phase, the server
broadcasts its local data to the clients, which in their turn call their callback
function to get the update data and store the update data locally. In the second
phase, the server receives the update data from all the clients (in any order,
caused by arbitrary delays), and in the third phase, the server calls its callback
function to get its update data (i.e. aggregated data) and stores it locally. Finally,
all the instances return their new local data as their results.

Unlike the generic centralised FLA that uses the single field messages carrying
data, the generic decentralised FLA uses the three field messages carrying: the
messages sequence number (i.e. the phase number), the message source address
(i.e. the source instance network address), and the data (local or update).

The generic decentralised one-shot FLA has three phases, see Fig. 4. In the
first phase, each instance acts as a server, and it sends its local data to all its
neighbours. These messages have the sequence number 1, each instance sends
(n− 1) such messages and is also the destination for (n− 1) such messages.

Fig. 4. The generic decentralised one-shot FLA execution.

In the second phase, each instance acts as a client, and it may receive either
a message with the sequence numbers 1 or 2. In the latter case, it just stores it
in a buffer for later processing in the third phase, whereas in the former case, it
calls the client callback and sends the update data in the reply to the message

Correct Orchestration of Federated Learning Generic Algorithms 281

source. Note that during the second phase, the instance does not update its local
data, it just passes the update data it got from the client callback function.

Since messages are sent asynchronously, they may be received in any order.
Figure 4 shows a scenario where the instance a1 receives the messages in the mes-
sages sequence 1–2–1–2, which is out of the phase order, whereas the instances
ai and an receive the messages in the sequence 1–1–2–2, which is in the phase
order. However, by using the abovementioned buffering, the instance a1 post-
pones processing of the phase 2 messages until the third phase.

The second phase is completed after the instance received and processed all
2(n− 1) message. In the third phase, each instance again acts as a server, and it
calls the server callback function to get its update data (e.g., aggregated data)
and stores it locally. Finally, all the instances return their new local data as their
results.

3 CSP Formal Models

In this section we use the Communicating Sequential Processes calculus (CSP)
[7] to obtain a formal specification of the communication layer of our PTB-FLAs.
The CSP provides modeling of the concurrency primitives as follows:

– the system components are CSP processes;
– communication between the system components is performed through the
communication channels;

– the system of parallel processes communicating asynchronously (i.e. without
barrier synchronization) is assembled via interleaving of the CSP processes.

The rest of the section is organized as follows: Sect. 3.1 presents the model for
our centralised algorithm and Sect. 3.2 presents the model for the decentralised
algorithm.

3.1 Modeling Centralised Algorithm

Figure 5 shows a CSP model for our centralised algorithm. Lines 2–3 define
number of nodes (NoNodes) (indexed with 0, 1, 2, . . .) with the server (FlSrvId)
having the largest index, and other nodes being clients. We remark we could set
here the index of the server node with the smallest index (as it is in Sect. 2.3),
but this would in fact make our model less intuitive because of the channel
manipulation (as explained bellow). Lines 4–5 define arrays of local data ldata
and private data pdata—one per each node. The communication channels are
defined in lines 8–9. The array of channels server2client - one per each client
(hence, NoNodes−1 channels) are used for the server broadcast of their local data
to the clients (one channel per client). Notice that the indexes of array elements
are generated starting with 0, hence the channel index indicates the index of the
client node. Since we consider one-shot algorithm the server sends their local
data only once, hence the channels are specified to have FIFO buffers of size
1. Channel clients2server is used in the second phase of our algorithm, i.e.

282 I. Prokić et al.

Fig. 5. CSP model for centralised algorithm.

Correct Orchestration of Federated Learning Generic Algorithms 283

for clients replying to the server with the update data. The FIFO size of this
channel is NoNodes−1, since all clients reply with a single update.

Lines 11–16 define a generic node as a CSP process with parameters of the
number of nodes, identification of the node, index of the server, their local and
private data. We remark that parameters sfun, cfun, and noIters, also present
in fl_centralised (cf. Sect. 2.2), were considered out of the scope for this model.
Based on the node index the process proceeds as the server node CeServer or
as one of the client nodes CeClient.

The server node is modeled in lines 18–22. The process first sets its state
to not terminated and then performs the broadcasting of the local data via
CeBroadcastMsg (i.e. it enters the phase 1, cf. Fig. 3), then proceeds to phase 2
by receiving updates via CeRcvMsgs. The successful termination is modeled with
Skip. The broadcasting of server’s local data CeBroadcastMsg is defined in lines
24–30. The server sends ldata on channels server2clients[id] (if id is not
their own index), and then recursively calls itself with index increased by 1 — if
the index is less then noNodes−1. Since CeServer passes id to CeBroadcastMsg
to be 0, the server will send the local data to all the clients exactly once. Once
the broadcast is done, the server starts receiving clients’ updates on channel
clients2server as defined with CeRcvMsgs in lines 32–35.

The client process is defined with CeClient in lines 37–40. The client
with index nodeId first receives server’s local data on channel server2client
[nodeId], and then replies updated server’s local data with its own local data
(here for simplicity modeled with addition) on channel clients2server, after
which client process successfully terminates.

The system consisting of NoNodes−1 clients and a single server is then mod-
eled as the interleaving of the FlCentralised processes (lines 42–48), since
all processes but one indexed FlSrvId are instantiated as clients (and the one
indexed FlSrvId is instantiated as a server).

3.2 Modeling Decentralised Algorithm

The CSP model for our decentralised algorithm is given in Fig. 6. Albeit more
complex than the centralised one, the decentralised algorithm yields a slightly
simpler CSP model. The reason is that all nodes in the system have the same
behaviour. In phase 1 all nodes behave as servers broadcasting their local data
to all other nodes, which in turn update the data and return an answer in phase
2 (corresponding to phases given in Fig. 4 in Sect. 2.3). All the nodes receive
messages from all other nodes as they arrive, but first process the messages from
phase 1 and only then deals with the messages from the phase 2. We model this
behaviour with assigning two channels to each process (i.e. node). One channel
is for receiving messages from other processes, called tonode, with buffer of size
2*(NoNodes-1) (line 7), since the node will receive messages from all other nodes
from both phases. The other channel assigned to node, called buffer (line 8),
serves only for storing messages from the second phase while all messages from
the first phase are processed - later in phase 3 the same node will read those
messages. Hence, the buffer size of these channels are NoNodes-1.

284 I. Prokić et al.

Fig. 6. CSP model for decentralised algorithm.

Correct Orchestration of Federated Learning Generic Algorithms 285

Fig. 7. Verifying centralised algorithm.

The node processes are defined with FlDecentralised in lines 10–15. Process
first broadcasts their local data with DeBroadcastMsg (defined in lines 17–23) —
which behaves in the same way as CeBroadcastMsg in the centralised algorithm
(cf. Fig. 5), except that the sent messages now contain not only field for local
data of the node, but also fields marking the phase (here 1) and the node’s index
(that the receiving node uses for the reply in phase 2). The node then proceeds
with receiving messages from all other nodes with DeRcvMsgs, and finally (phase
3) process the messages from the second phase with DeRcvMsgs2.

DeRcvMsgs is given in lines 25–35. Here we deviate from the centralised
algorithm: node receives all messages from both phases from the other nodes
and then performs an analysis on the phase of the received message. If the phase
is 1, the node replies updated data to from they received message in the first
place, marking the phase of the message 2. If, on the other hand, the phase is
2, the node stores the message to their own channel buffer[nodeId]. Once the
node process all messages from phase 1 (and buffers all messages from phase
2), DeRcvMsgs2 (lines 37–41) is used to read from the buffer[nodeId], which
behaves in the same way as CeRvcMsgs from the centralised algorithm (cf. Fig. 5).

The system of NoNodes nodes is finally modeled as the interleaving of the
FlDecentralised processes in lines 43–48.

4 Formal Verification in PAT

The correctness of our CSP models is automatically checked by Process Analysis
Toolkit (PAT) [21], that supports the system analysis in two ways: simulation
and model checker. We have used the latter one.

The correctness of our centralised and decetralised algorithms is verified by
proving the deadlock freeness (safety property) and successful termination (live-
ness property). The properties about algorithms are stated in the form of queries,
called assertions, which are checked by PAT. The assertions that formally verify
the correctness of our centralised algorithm are shown in Fig. 7.

The assertion given in line 5 of Fig. 7 claims that the centralised algorithm is
deadlock free. PAT model checker performs Depth-First-Search or Breath-First-
Search algorithm to check if the assertion is true. It explores unvisited states

286 I. Prokić et al.

Fig. 8. Verifying decentralised algorithm.

until a non-terminated state with no further move—called a deadlock state, is
found or all states have been visited.

The assertion given in line 7 of Fig. 7 claims that the centralised algorithm
reaches a terminated state. This assertion is checked by performing Depth-First-
Search algorithm. PAT model checker repeatedly explores all unvisited states
until it finds a state at which the condition Terminated is satisfied or it visits
all the states. The condition Terminated is a proposition defined as a global
definition (line 6 in Fig. 7).

PAT supports the full syntax of the linear temporal logic (LTL), which is
used in the last assertion of Fig. 7 that claims our centralised algorithm satisfies
formula []<> Terminated. The modal operator [] reads as “always” and the
operator <> reads as “eventually”, so statement asserts our centralised algorithm
always eventually reaches the terminated state.

The proof of correctness of our decentralised algorithm is given in Fig. 8, and
follows the same explanations given for the centralised one.

5 Conclusion

In this paper, we formally verified the correctness of two generic FL algorithms,
a centralised and a decentralised one, using the CSP process calculus and the
PAT model checker. The CSP models are constructed bottom-up by hand as a
faithful representation of the real Python code and their correctness (safety and
liveness) are automatically checked top-down by PAT.

The main contributions of this paper are:

– the CSP models of the generic centralised and decentralised FLAs,
– the formulations of generic centralised and decentralised FLAs properties.

To the best of our knowledge, this is the first paper that formally verifies
decentralised FLAs.

The main limitations of this paper are:

– we implicitly assumed that callback functions are terminating (i.e., have ter-
mination property),

Correct Orchestration of Federated Learning Generic Algorithms 287

– we did not model any ML&AI processing within the callback functions and
therefore were unable to address the properties of the corresponding infor-
mation flows and output results, such as privacy of information flows, under-
standability/interpretability of the resulting models, etc.

In our future work, we may try to address some of the latter limitations
mentioned above.

Acknowledgements. Funded by the European Union (TaRDIS, 101093006).
Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union. Neither the European Union nor the
granting authority can be held responsible for them.

References

1. A world where every good question is answered. https://www.openmined.org.
Accessed 15 Mar 2023

2. An industrial grade federated learning framework. https://fate.fedai.org/. Accessed
15 Mar 2023

3. An open-source deep learning platform originated from industrial practice. https://
www.paddlepaddle.org.cn/en. Accessed 15 Mar 2023

4. Bonawitz, K.A., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, 30 October–3 November 2017, pp. 1175–1191. ACM
(2017). https://doi.org/10.1145/3133956.3133982

5. Bonawitz, K.A., Kairouz, P., McMahan, B., Ramage, D.: Federated learning and
privacy. Commun. ACM 65(4), 90–97 (2022). https://doi.org/10.1145/3500240

6. Feraudo, A., et al.: CoLearn: Enabling federated learning in MUD-compliant IoT
edge networks. In: Proceedings of the Third ACM International Workshop on
Edge Systems, Analytics and Networking, pp. 25–30. EdgeSys 2020. Association
for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/
3378679.3394528

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs (1985)

8. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Huisman, M., Rubin, J. (eds.) Fundamental Approaches to Software Engineering
- 20th International Conference, FASE 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
22–29 April 2017, Proceedings. LNCS, vol. 10202, pp. 116–133. Springer, Cham
(2017). https://doi.org/10.1007/978-3-662-54494-5_7

9. Kholod, I., et al.: Open-source federated learning frameworks for IoT: A compar-
ative review and analysis. Sensors 21(1), 167 (2021)

10. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: Strategies for improving communication efficiency (2017). http://
arxiv.org/abs/1610.05492

https://www.openmined.org
https://fate.fedai.org/
https://www.paddlepaddle.org.cn/en
https://www.paddlepaddle.org.cn/en
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3500240
https://doi.org/10.1145/3378679.3394528
https://doi.org/10.1145/3378679.3394528
https://doi.org/10.1007/978-3-662-54494-5_7
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492

288 I. Prokić et al.

11. Kuhn, R., Melgratti, H.C., Tuosto, E.: Behavioural types for local-first software.
In: Ali, K., Salvaneschi, G. (eds.) 37th European Conference on Object-Oriented
Programming, ECOOP 2023, 17–21 July 2023, Seattle, Washington, United States.
LIPIcs, vol. 263, pp. 15:1–15:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2023). https://doi.org/10.4230/LIPIcs.ECOOP.2023.15

12. McMahan, B.: “Federated learning from research to practice”, a presentation hosted
by Carnegie Mellon University seminar series. https://www.pdl.cmu.edu/SDI/
2019/slides/2019-09-05Federated. Accessed 15 Mar 2023

13. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Singh, A., Zhu, X.J. (eds.) Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, AISTATS 2017, 20–22 April 2017, Fort Laud-
erdale, FL, USA. Proceedings of Machine Learning Research, vol. 54, pp. 1273–
1282. PMLR (2017). http://proceedings.mlr.press/v54/mcmahan17a.html

14. Mittone, G., et al.: Experimenting with emerging RISC-V systems for decentralised
machine learning (2023)

15. Perino, D., Katevas, K., Lutu, A., Marin, E., Kourtellis, N.: Privacy-preserving
AI for future networks. Commun. ACM 65(4), 52–53 (2022). https://doi.org/10.
1145/3512343

16. Popovic, M., Popovic, M., Kastelan, I., Djukic, M., Ghilezan, S.: A simple Python
testbed for federated learning algorithms. CoRR abs/2305.20027 (2023). https://
doi.org/10.48550/arXiv.2305.20027

17. Popovic, M., Popovic, M., Kastelan, I., Djukic, M., Ghilezan, S.: A simple Python
testbed for federated learning algorithms. In: 2023 Zooming Innovation in Con-
sumer Technologies Conference (ZINC), pp. 148–153 (2023). https://doi.org/10.
1109/ZINC58345.2023.10173859

18. Privacy-preserving artificial intelligence to advance humanity. https://sherpa.ai.
Accessed 15 Mar 2023

19. Shen, C., Xue, W.: An experiment study on federated learning testbed. In: Zhang,
Y.-D., Senjyu, T., So-In, C., Joshi, A. (eds.) Smart Trends in Computing and Com-
munications. LNNS, vol. 286, pp. 209–217. Springer, Singapore (2022). https://doi.
org/10.1007/978-981-16-4016-2_20

20. Simic, M., Prokic, I., Dedeic, J., Sladic, G., Milosavljevic, B.: Towards edge com-
puting as a service: Dynamic formation of the micro data-centers. IEEE Access 9,
114468–114484 (2021). https://doi.org/10.1109/ACCESS.2021.3104475

21. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_59

22. TaRDIS: Trustworthy and resilient decentralised intelligence for edge systems.
https://www.project-tardis.eu/

23. TensorFlow Federated: Machine learning on decentralized data. https://www.
tensorflow.org/federated. Accessed 15 Mar 2023

24. Ying, B., Yuan, K., Chen, Y., Hu, H., Pan, P., Yin, W.: Exponential graph is
provably efficient for decentralized deep training (2021)

25. Ying, B., Yuan, K., Hu, H., Chen, Y., Yin, W.: BlueFog: Make decentralized algo-
rithms practical for optimization and deep learning. CoRR abs/2111.04287 (2021).
https://arxiv.org/abs/2111.04287

26. Zhang, T., He, C., Ma, T., Gao, L., Ma, M., Avestimehr, S.: Federated learning
for Internet of Things. In: Proceedings of the 19th ACM Conference on Embedded
Networked Sensor Systems, SenSys 2021, pp. 413–419. Association for Computing
Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3485730.3493444

https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://www.pdl.cmu.edu/SDI/2019/slides/2019-09-05Federated
https://www.pdl.cmu.edu/SDI/2019/slides/2019-09-05Federated
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1145/3512343
https://doi.org/10.1145/3512343
https://doi.org/10.48550/arXiv.2305.20027
https://doi.org/10.48550/arXiv.2305.20027
https://doi.org/10.1109/ZINC58345.2023.10173859
https://doi.org/10.1109/ZINC58345.2023.10173859
https://sherpa.ai
https://doi.org/10.1007/978-981-16-4016-2_20
https://doi.org/10.1007/978-981-16-4016-2_20
https://doi.org/10.1109/ACCESS.2021.3104475
https://doi.org/10.1007/978-3-642-02658-4_59
https://www.project-tardis.eu/
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://arxiv.org/abs/2111.04287
https://doi.org/10.1145/3485730.3493444

CareProfSys - Combining Machine Learning
and Virtual Reality to Build an Attractive Job
Recommender System for Youth: Technical

Details and Experimental Data

Maria-Iuliana Dascalu1(B), Andrei-Sergiu Bumbacea1, Ioan-Alexandru Bratosin1,
Iulia-Cristina Stanica1, and Constanta-Nicoleta Bodea2,3(B)

1 National University of Science and Technology POLITEHNICA Bucharest,
Splaiul Independenţei 313, 060042 Bucharest, Romania
{maria.dascalu,iulia.stanica}@upb.ro

2 Department of Economic Informatics and Cybernetics, Bucharest University of Economic
Studies, Calea Dorobantilor 13-15, 010552 Bucharest, Romania

bodea@ase.ro
3 “COSTIN C. KIRITESCU”, National Institute for Economic Research, Romanian Academy,

Calea 13 Septembrie 13, 050711 Bucharest, Romania

Abstract. The current article presents CareProfSys - an innovative job recom-
mender system (RS) for youth, which integrates several emergent technologies,
such as machine learning (ML) and virtual reality on web (WebVR). The recom-
mended jobs are the ones provided by the well-known European Skills, Com-
petences, Qualifications, and Occupations (ESCO) framework. The machine-
learning based recommendation mechanism uses a K-Nearest Neighbors (KNN)
algorithm: the data needed to train the machine learning model was based on the
Skills Occupation Matrix Table offered by ESCO, as well as on data collected by
our project team. This two-source method made sure that the dataset was strong
and varied, which made it easier for the model to make accurate recommenda-
tions. Each job was described in terms of the features needed by individuals to
be good professionals, e.g., skill levels for working with computers, constructing,
management, working with machinery and specialized equipment, for assisting
and caring, for communication collaboration and creativity are just a few of the
directions considered to define a profession profile. The recommended jobs are
described in a modern manner, by allowing the users to explore various WebVR
scenarios with specific professional activities. The article provides the technical
details of the system, the difficulties of building a stack of such diverse tech-
nologies (ML, WebVR, semantic technologies), as well as validation data from
experiments with real users: a group of high school students from not so developed
cities from Romania, interacting first time with modern technologies.

Keywords: Recommender System ·Machine Learning · Virtual Reality on Web

1 Introduction

Career coaching is essential for preparing young individuals with the information and
skills required to navigate a job market that is complicated and constantly evolving.
Also, insufficient career advising resources in developing countries, such as Romania,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 289–298, 2024.
https://doi.org/10.1007/978-3-031-49252-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49252-5_26&domain=pdf
https://doi.org/10.1007/978-3-031-49252-5_26

290 M.-I. Dascalu et al.

have made the transition from education to job difficult for them. There are certain
challenges encountered by young adults in developing countries that require our attention
and discussion. Young adults in Romania, particularly those living in rural regions,
have limited access to career counseling facilities. This lack of accessibility hinders
their chances for long-term success in the job market by preventing them from making
educated decisions on their education and future pathways [1]. At the same time, the job
search process may be time-consuming, inefficient, and irritating for both job seekers
and employers. To solve these difficulties, researchers have started creating RSs that
employ deep reinforcement learning for online advertising. These systems strive to
enhance the entire job search process by giving tailored job recommendations based on
an individual’s likes and talents.

This article presents a RS (RS) to enhance the efficacy and efficiency of job choosing
for young individuals: the recommendations are made using a machine-learning (ML)
technique and the provided results do not contain only a text-based description of a
job, but a gamified virtual reality (VR) scenario of activities specific to that job, thus
allowing the young users to better understand whether that job is suitable or not for
them. To implement ML, accurate data about the features of practitioners of a certain
job is needed. We used the Skills Occupation Matrix Table offered by European Skills,
Competences, Qualifications, and Occupations (ESCO) framework [2], but also data
provided by Romanian practitioners, thus we claim that the recommendations are useful
in developing countries, such as Romania, but also aligned with the European landscape.
Experimental datawas collected from 27 technological high school students fromRoma-
nia, participants at a summer school at National University of Science and Technology
POLITEHNICA Bucharest. The young students, aged between 16 and 18 years old,
decided to follow engineering, but were still undecided what engineering specialization
to choose. Thus, they found the recommendationsmade by our system to be enlightening.
Our article presents the ML-based recommendation technique, in the context of other
RSs and underlines the efficiency of embedding WebVR in a career guidance system.

2 Job Recommender Systems

2.1 Recommender Systems: Usage and Typologies

ARS offers consumers customized on-line service or product tips to combat the expand-
ing trouble of online information overload as well as to boost consumer connection
monitoring. There are three main types of RSs: content-based, collaborative filtering,
and hybrid ones. The purpose of content-based filtering systems is to recommend items
based on the collected knowledge of users. This approach concentrates on matching
individual interests with item attributes, so it is essential that the system includes one of
the most essential item features. Concern number one prior to creating a system must be
to determine each user’s recommended features. This can be completed through a com-
bination of the two strategies. Users are initially provided with a checklist of functions
from which they can select those that most ignite their passion. Second, the recommen-
dation algorithms keep a document of all items formerly chosen by the user, which acts
as the premise for the customer’s behavioral data. The customer’s account is based on

CareProfSys - Combining Machine Learning and Virtual Reality 291

their preferences, inclinations, as well as options, which inevitably affect their rankings
[3].

Collaborative filtering recommenders (CF RSs) require a set of things based on the
individual’s previous choices. Each object and user are described by an embedding or
attribute vector, which places both the objects and the individuals in a similar embed-
ding location. When suggesting a certain product to the primary user, the viewpoints of
other customers are taken into consideration. It keeps an eye on the activities of all users
to identify which item is the most popular. When suggesting an item to the main cus-
tomer, it likewise relates comparable individuals based on their shared preferences and
behavior toward a comparable product [3]. There are two types of collaborative filtering
approaches. Memory-based Collaborative Filtering is an approach that determines the
similarity between users or items by utilizing past user data, specifically rankings. The
primary goal of this technique is to quantify the similarity between users or items, identify
similar ratings, and recommend hidden items accordingly. Model-based approaches use
ML models to predict and rank interactions between users and unengaged items. Using
algorithms such as matrix factorization, deep learning, and clustering, etc., these models
are trained utilizing the interaction information already available from the interaction
matrix [4].

When making recommendations, a hybrid method mixes techniques from both
collaborative and content-based filtering.

Understanding the differences between the types of RSs helps developers choose the
best approach, as seen in Table 1.

Table 1. Criteria of choosing the RS type.

Criteria of choosing Collaborative RSs CB RSs Hybrid RSs

Data used User-item
interaction data
(e.g., clicks,
purchases, ratings)

User-item interaction
data (e.g., clicks,
purchases, ratings)

Both user-item
interaction data and
item content data

User & Item cold start Sensitive (new users
& items have no
interaction data)

Less sensitive (can use
user preferences and
item features to
recommend new data)

Can handle cold start
problems by
leveraging
content-based filtering
component

Scalability Can be
computationally
expensive for large
user-item matrices

Can be
computationally
expensive for large
user-item matrices

Depends on the
specific combination
of methods used

Diversity of provided
recommendations

Can be high Can be lower Can be adjusted

Personalization High Moderate Can be high if the
combination of
methods is optimized

292 M.-I. Dascalu et al.

CF RSs are used in music streaming, movies recommendation and e-commerce. CB
RSs are also used in movies recommendations, but more in news articles’ platforms and
job portals, while hybrid RSs have a wide variety of exploitation cases.

2.2 Recommender Systems Used in Career Path Profiling and Jobs’ Searching

In recent years, one may have witnessed a boom in the popularity of computer-based
applications that assist individuals in the process of job searching. CareerExplorer by
PathSource [5] uses ML algorithms to match users with careers based on their skills,
interests, values, andwork preferences.Users take an online assessment, and the platform
generates personalized career suggestions alongwith relevant educational and job oppor-
tunities. The major limitation of the system is the fact that it depends on self-reported
data, and the assessment process can be time-consuming. O*NET Interest Profiler [6] is
a free tool that helps users identify their interests and match them to potential careers.
Users answer questions related to their likes and dislikes, and the profiler suggests careers
based on the user’s interests. The system is limited to U.S. labor market data andmay not
be as engaging as other platforms. Pymetrics [7] uses neuroscience-based assessments,
such as games and puzzles, to measure users’ cognitive and emotional traits. The main
drawbacks are: it is based on a relatively new and untested method, has a limited career
database, and may not be suitable for all users due to the game-based assessment for-
mat. Jobscan [8] is primarily focused on optimizing resumes and LinkedIn profiles for
specific job postings. However, it also offers a career path exploration feature by sug-
gesting related job titles and industries based on the user’s current resume or LinkedIn
profile. Jobscan is limited in terms of career exploration, relies on existing resume or
LinkedIn profile data, and may not cater to users seeking a significant career change.
MyNextMove [9] allows users to search for careers based on keywords, browse careers
by industry, or take an interest-based assessment (similar to O*NET Interest Profiler)
to receive career suggestions. It is limited to U.S. labor market. Although all the sys-
tems have strengths and limitations, none is suitable for young people from European
Union, especially from developing countries such as Romania. That is whyCareProfSys,
our recommended system, has a place in this plethora of career path guidance and job
recommendation systems, by combining a ML hybrid recommender system with other
emerging technology, very appealing to young people, VR on Web. VR technologies
are increasingly used for developing professional capabilities, as required by jobs in
different industries, e.g., in civil engineering [10], in medicine [11] or science [12].

3 CareProfSys: A Job Recommender System for Youth

Following registration and login, a user must answer a quiz about one’ s skills and then
job recommendations are listed. After that, the user can access a WebVR scenario of
basic activities typical for that job. By exploring this game-like scenario, the young user
may better understand the details of a certain recommendation. Premium users have
the possibility to browse the entire list of skills needed for a certain job, thus they can
improve one’s CV. In Fig. 1, snippets from CareProfSys system are provided: a list of
recommended jobs and a scenario in VR for the profession of network specialist.

CareProfSys - Combining Machine Learning and Virtual Reality 293

Fig. 1. Snippets from CareProfSys Recommender System.

3.1 Technical Details

Various technologies were used to make the recommender system work. The Angular
framework was used to make the user interface for the recommender system. Angular
is a strong tool for making dynamic, single-page web apps, and it helped make the
user experience easy to use and responsive [13]. Flask is a simple, lightweight web
platform for Python that was used to make a web server that the Angular application
could talk to [14]. Python was used to build the core of the recommender system. The
Python code was written so that it could read CSV files, preprocess the data, train the
ML model, and then use this model to make job suggestions based on what the user
said [15]. Specific packages of Unity Engine allowed us to execute a VR application
directly from a web-browser: an application can be hosted on a web-browser if the
build type of the application is WebGL [16]. WebGL is a Javascript API meant for
rendering 3D graphics without the aid of additional plugins. WebXR Exporter is a Unity
package that allows the development and build of VR applications in WebGL format
compatible with multiple browsers such as Mozilla Firefox, Google Chrome, Microsoft
Edge on Windows, Oculus Browser and Firefox Reality on Oculus Quest. The basic
functionalities such asmovement, rotation and interactionwere handled using theVRTK
Tilia packages which contain a collection of common functionalities meant for VR
environments.Due to theWebGL format, the application is also compatiblewithmultiple
models of VR equipment as successful tests were done with HTC Vive Cosmos Elite,
Oculus Rift and Oculus Quest. MongoDB, a JSON database, was also used: the Angular
application sends user data to the Flask server in JSON format, which is further saved
in the database and the Flask server responded with job recommendations in the same
format [17] (Fig. 2).

3.2 Machine-Learning Based Recommendation Algorithm

To execute the ML algorithm, several steps had been taken, such as: data collection, data
preprocessing and cleaning, feature extraction and engineering, MLmodel selection and
training, ML model evaluation and fine-tuning.

Data Collection. Data gathering was a very important part of the work. The ESCO
website [2] was the main place where the data was found. This platform offers a full

294 M.-I. Dascalu et al.

Fig. 2. Architecture of CareProfSys Recommender System.

grid of jobs and corresponding skills, which was used as the basis for training the ML
model. ESCO is generally known as a reference for jobs and schooling in the European
Union: it is like a dictionary for the European labor market. As the number of people
who use ESCO grows, so does the number of ways the classification can be used. But
not all users need the fine-grained information that ESCO skills or jobs provide. Some
people like smaller, combined files that are easier to work with for their own reasons. To
meet these needs, the European Commission has tried to make the ESCO dataset easier
to understand by giving more active examples of how ESCO ideas can be linked together
and used at more aggregated levels. The Commission has made matrix tables that link
The International Standard of Occupations ISCO-08 work groups [18] to ESCO skills
organizational groups. These tables, which come from the most thorough level of the
ESCO classification, show what percentage of ISCO-08 work groups have ESCO skills.
This method was very helpful in gathering data for our study: it made it possible to pull
out relevant and doable data for the recommender system.

A Google Form poll was the second source of information. The goal of this survey
was to get people’s opinions about their skills and job choices: see Fig. 3. The answers
were then put into a CSV file, thus building a complex model’s testing data set. This
two-source method made sure that the dataset was strong and varied, which made it
easier for the model to make accurate recommendations. The fact that we used both
the ESCO skills matrix table and other data assures that the job descriptions match
also the local Romanian labor market status, as all our Google Form poll’s respondents
were Romanians. All jobs/ occupations were described in various precents (between 0
and 1) by the following skills: handling and moving, information skills, working with
computers, constructing, management skills, working with machinery and specialized
equipment, assisting and caring, communication, collaboration, and creativity. If several
respondents declared to have a certain profession (e.g., accountant), then an average of
their perceived need for a certain skill was made.

Data Preprocessing and Cleaning. Data preprocessing and cleaning is a crucial step
in any data-driven project. For this research, both the training and testing datasets were
cleaned using Excel. This process involved several steps: (1) any irrelevant or redundant
information was removed to ensure the model was trained only on pertinent data; (2)

CareProfSys - Combining Machine Learning and Virtual Reality 295

Fig. 3. Snippet of the Matrix Job-Needed Skills of CareProfSys Recommender System.

missing or incomplete data was addressed to prevent any potential bias or inaccuracies
in the model’s recommendations; (3) the data was formatted appropriately to ensure
compatibility with the ML algorithm. This meticulous cleaning process was essential
in ensuring the integrity of the data and, by extension, the reliability of the model’s
recommendations.

Feature Extraction and Engineering. During feature extraction and engineering, the
variables that the model would use to make its suggestions had to be found and worked
on. In this case, the skills that go with each job were the variables, e.g., skill levels
for working with computers, constructing, management, working with machinery and
specialized equipment, for assisting and caring, for communication collaboration and
creativity. These were taken from the datasets and then put on the same size to make
sure they were all the same. Normalization is an important step because it makes sure
that all features add the same amount to the distance calculation in the ML algorithm.

ModelSelectionandTraining. TheK-NearestNeighbors (KNN) algorithmwaspicked
for this study because it is good at making similarity-based recommendations. KNN is
an instance-based learning algorithm that predicts the values of new instances based
on how close their features are to the ones already known. In this case, it was used to
suggest jobs based on how close the skills were. The model was trained with data from
the ESCO page about jobs and skills and tested with the data provided by our poll. The
number of neighbors was set to eight, so the model could suggest up to eight jobs that are
most like the user’s skills. This parameter was picked so that users would get a variety
of job suggestions without having too many to choose from [19].

Model Evaluation and Fine-tuning. Model evaluation and fine-tuning is a fundamen-
tal part of building any maker discovering model. For this study, the screening dataset
from our Google survey was used to analyze as well as modify the design. The design’s
success was evaluated by how well it could discover jobs that fit the preferences and
abilities of the people that filled out the form. This indicated contrasting the model’s tips

296 M.-I. Dascalu et al.

with the jobs that the interviewees desired. To make the design of the job profile much
better, changes were made to its features, such as the number of next-door neighbors.
This process of evaluating and tweaking the model repeatedly ensured that it was as
accurate as well as dependable as feasible.

3.3 Validation of CareProfSys System in Real-Life Settings

Tovalidate the recommender system,wemade a 2-weeks experimentwith 27 high school
students from Romanian technological schools, who participated at a summer school
organized by University POLITEHNICA of Bucharest. The purpose of the experiment
was to investigate whether the recommended jobs are considered appealing to young
people and whether they see themselves practicing those professions. The students had
the opportunity to test the VR scenarios of the recommended jobs, thus simulating some
basic activities from a possible future working day: see Fig. 4. Almost half (51.9%) of
the participants have used emergent technologies like VR before. All the students were
offered the same explanations and the same testing conditions.

Some interesting experiment data are listed below: (1) 63% of the students have not
done anything related to the activities of the recommended occupation before, especially
the ones who were advised by CareProfSys to become computer networking special-
ists or civil engineers; nevertheless, just 7.4% of them found the tasks specific to that
profession to be difficult and very difficult; (2) all participants enjoyed the tasks in VR
for the recommended profession (70.4% of them very much); (3) 59.3% of participants
understoodwhat he/ she should do in the future profession; (4) 85.2% of participants saw
the VR scenarios as learning experiences (not just entertainment); (5) 88.9% of students
considered VR scenarios to be helpful for describing professional occupations to young
people; (6) 92.6% of students considered the idea of CareProfSys Job Recommender

Fig. 4. Validation experiment of CareProfSys Recommender System.

CareProfSys - Combining Machine Learning and Virtual Reality 297

to be useful, because they needed career guidance and explanations about the activities
they would do whether choosing a certain occupation. Most of the participants were
happy to discover the recommended professions and saw themselves practicing those
jobs in the future.

Somevalidity threats for the positive responseweobtainedwere: the fact that students
were attracted by the gamification feature of the VR scenes, not by the activities specific
to a certain profession, the fact that they wanted to be nice with us, as they were our
guests and the fact that not all the recommended jobs has VR scenarios.

4 Conclusions

CareProfSys demonstrates howML can be used to fix problems in real life: to implement
a recommender system that can truly help young people discover their suitable jobs. The
fact that CareProfSys does not offer only a textual description of the recommended pro-
fession, but aVR immersive experience, makes the recommender system to be especially
useful for young people, a fact demonstrated by our experimental data. In the future, the
hybrid recommended algorithm will be optimized by adding an ontological inference
mechanism, the targeted ontology being the one reflecting the Romanian Classification
of Occupations [20].

Acknowledgment. This work was supported by a grant of the Ministry of Research, Innovation
and Digitization, CNCS–UEFISCDI, project number TE 151 from 14/06/2022, within PNCDI III:
“Smart Career Profiler based on a Semantic Data Fusion Framework.”

References

1. Stanica, I.C., Hainagiu, S.M., Neagu, S., Litoiu, N., Dascalu, M.I.: How to choose one’s
career? a proposal for a smart career profiler system to improve practices from romanian
educational institutions. In: 15th annual International Conference of Education, Research,
and Innovation Proceedings (ICERI 2022), pp. 7423–7432. IATED, Seville (2022)

2. ESCO: Skills-Occupations Matrix Tables. https://esco.ec.europa.eu/en/about-esco/publicati
ons/publication/skills-occupations-matrix-tables. Accessed 20 June 2023

3. Turing: How Does Collaborative Filtering Work in Recommender Systems? https://www.
turing.com/kb/collaborative-filtering-in-recommender-system#user-item-interaction-matrix.
Accessed 22 Oct 2022

4. Iterators: Collaborative Filtering In Recommender Systems: Learn All You Need To
Know. https://www.iteratorshq.com/blog/collaborative-filtering-in-recommender-systems/.
Accessed 28 Oct 2023

5. Career Explorer. https://www.careerexplorer.com/assessments/. Accessed 27 May 2023
6. *NET Interest Profiler. https://www.mynextmove.org/explore/ip. Accessed 25 June 2023
7. Pymetrics, https://www.pymetrics.ai. Accessed 25 June 2023
8. Job Scan. https://www.jobscan.co. Accessed 25 June 2023
9. My Next Move. https://www.mynextmove.org. Accessed 25 June 2023
10. Sampaio, A.Z., Martins, O.P.: The application of virtual reality technology in the construction

of bridge: the cantilever and incremental launchingmethods. Autom.Constr. 37, 58–67 (2014)

https://esco.ec.europa.eu/en/about-esco/publications/publication/skills-occupations-matrix-tables
https://www.turing.com/kb/collaborative-filtering-in-recommender-system#user-item-interaction-matrix
https://www.iteratorshq.com/blog/collaborative-filtering-in-recommender-systems/
https://www.careerexplorer.com/assessments/
https://www.mynextmove.org/explore/ip
https://www.pymetrics.ai
https://www.jobscan.co
https://www.mynextmove.org

298 M.-I. Dascalu et al.

11. Tay, Y.X., McNulty, J.P.: Radiography education in 2022 and beyond - Writing the history of
the present: a narrative review. Radiography 29(2), 391–397 (2023)

12. Harknett, J., et al.: The use of immersive virtual reality for teaching fieldwork skills in complex
structural terrains. J. Struct. Geol. 163, 104681 (2022)

13. Angular. https://angular.io/. Accessed 25 June 2023
14. Flask. https://pythonbasics.org/what-is-flask-python/. Accessed 25 June 2023
15. Python. https://www.python.org/doc/essays/blurb/. Accessed 25 June 2023
16. WebG. https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API. Accessed 25 June

2023
17. MongoDB. https://www.mongodb.com/. Accessed 25 June 2023
18. ISCO-08. https://www.ilo.org/public/english/bureau/stat/isco/isco08/. Accessed 17 Oct 2022
19. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in classification.

In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 986–996.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39964-3_62

20. Dascalu, M.I., et al.: CareProfSys – an ontology for career development in engineering
designed for the Romanian job market. Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.
(RRST-EE) 68(2), 212–217 (2022)

https://angular.io/
https://pythonbasics.org/what-is-flask-python/
https://www.python.org/doc/essays/blurb/
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://www.mongodb.com/
https://www.ilo.org/public/english/bureau/stat/isco/isco08/
https://doi.org/10.1007/978-3-540-39964-3_62

Author Index

A
Ahmed, Bestoun S. 42
Albano, Michele 153
Avgouleas, Ioannis 12

B
Backeman, Peter 201
Bainczyk, Alexander 191
Basicevic, Ilija 26
Bodea, Constanta-Nicoleta 289
Bratosin, Ioan-Alexandru 289
Bujorianu, Manuela L. 215
Bumbacea, Andrei-Sergiu 289
Busch, Daniel 191

C
Chen, Sini 115

D
Dascalu, Maria-Iuliana 289
Djukic, Miodrag 26
Dust, Lukas 239

E
Eliezer, Oren 235
Enoiu, Eduard Paul 254

F
Fridenfalk, Mikael 259
Fröding, Tomas 259

G
Ghilezan, Silvia 274
Goldstein, Moshe 235
Grzanna, Max 231
Gu, Rong 70
Gustafsson, Christian Jamtheim 259

H
Herrera, Francisco 7

I
Inadagbo, Kayode 263
Isik, Murat 263

J
Jäntgen, Milena 231
Jeroschewski, Sven Erik 231

K
Kahraman, Ali Teymur 259
Kastelan, Ivan 26
Kaštelan, Ivan 274
Kašterović, Simona 274
Kristan, Johannes 231
Kullmann, Fiona 244

L
Larsen, Kim Guldstrand 153
Lin, Wei 115
Luković, Aleksa 133

M
Marksteiner, Stefan 170
Minguett, Olga 60
Mubeen, Saad 239

N
Naeem, Muhammad 153
Nau, Johannes 205
Nielsen, Brian 153

O
Olausson, Mattias 12

P
Pazarci, Utku 244
Popovic, Marko 26, 274
Popovic, Miroslav 26, 274
Prokić, Ivan 274

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
J. Kofroň et al. (Eds.): ECBS 2023, LNCS 14390, pp. 299–300, 2024.
https://doi.org/10.1007/978-3-031-49252-5

https://doi.org/10.1007/978-3-031-49252-5

300 Author Index

R
Rahal, Manal 42
Rahman, Selma 12
Rezaei, Ahmad 205
Runeson, Per 75

S
Samuelsson, Jörgen 42
Schambach, Jörg 205
Seceleanu, Cristina 254
Seceleanu, Tiberiu 97, 254
Singh, Amandeep 60
Sirjani, Marjan 170
Sjöblom, Tobias 259
Sjödin, Mikael 170
Sprang, Florian 97
Stanica, Iulia-Cristina 289
Steffen, Bernhard 191
Steffen, Bruno 244
Stojkov, Nikola 133
Streitferdt, Detlef 205

T
Taromirad, Masoumeh 75
Tirnanić, Filip 133
Toumpanakis, Dimitrios 259

V
Vangelov, Todor 205
Vardi, Moshe Y. 1
Vitucci, Carlo 12

W
Weißenfels, Hendrik 244

X
Xiong, Ning 254

Z
Zhu, Huibiao 115
Zohren, Jonas 244

	 Preface
	 Organization
	 Contents
	How to Be An Ethical Technologist
	1 Social Responsibility
	2 Technology and Democracy
	3 Ethics and Corporate Behavior
	4 In Conclusion

	Toward Responsible Artificial Intelligence Systems: Safety and Trustworthiness
	1 Keynote Talk: Extended Abstract
	References

	Ambient Temperature Prediction for Embedded Systems Using Machine Learning
	1 Introduction
	1.1 Context Description
	1.2 Problem Statement
	1.3 Research Objective
	1.4 Research Methodology

	2 Related Works
	3 Temperature Prediction Process
	3.1 Design Description
	3.2 Execution
	3.3 Results
	3.4 Predictions on Under-Represented Training Data

	4 Conclusion and Future Works
	References

	A Federated Learning Algorithms Development Paradigm
	1 Introduction
	1.1 Related Work

	2 Development Paradigm
	2.1 Concept
	2.2 Development Phases

	3 Case Study: Logistic Regression
	3.1 Centralized Logistic Regression
	3.2 Decentralized Logistic Regression

	4 Conclusions
	References

	Machine Learning Data Suitability and Performance Testing Using Fault Injection Testing Framework
	1 Introduction
	2 Background
	2.1 ML in Chromatography Applications
	2.2 Common Faults in Chromatography Data
	2.3 Data Mutation

	3 Methodology
	3.1 Research Questions
	3.2 Use Case Dataset
	3.3 The FIUL-Data Framework

	4 Results and Analysis
	4.1 Effect on G1 Dataset
	4.2 Effect on G3 Dataset
	4.3 Effect Analysis

	5 Conclusion
	6 Threats to Validity
	References

	IDPP: Imbalanced Datasets Pipelines in Pyrus
	1 Introduction
	2 Framework Description
	3 Use Case and Demonstration
	3.1 Python Pre-requisites
	3.2 Datasets
	3.3 Data Pre-processing and Transformation
	3.4 Experiments
	3.5 Pyrus Pipelines
	3.6 Results

	4 Conclusions
	References

	Learning in Uppaal for Test Case Generation for Cyber-Physical Systems
	1 Introduction
	2 Test-Case Generation by Learning in Uppaal
	References

	A Literature Survey of Assertions in Software Testing
	1 Introduction
	2 Background and Related Work
	3 Research Method
	4 Results
	4.1 Assertion Types
	4.2 Assertion Problems
	4.3 Solutions
	4.4 Evaluation

	5 Discussion
	6 Limitations
	7 Conclusion
	References

	FPGA-Based Encryption for Peer-to-Peer Industrial Network Links
	1 Introduction
	2 Background
	3 Related Work
	4 Implementation
	4.1 System Architecture
	4.2 System Implementation
	4.3 Hardware Implementation
	4.4 Test Methodology

	5 Evaluation and Results
	5.1 Simulation
	5.2 Hardware

	6 Discussion
	7 Conclusions
	References

	Formalization and Verification of MQTT-SN Communication Using CSP
	1 Introduction
	2 Background
	2.1 MQTT-SN Architecture
	2.2 Communication Mechanism of the MQTT-SN Protocol
	2.3 CSP

	3 Modeling MQTT-SN Communication
	3.1 Sets, Messages and Channels
	3.2 Overall Modeling
	3.3 Publisher Modeling
	3.4 Gateway Modeling
	3.5 Broker Modeling
	3.6 Intruder Modeling

	4 Implementation and Verification
	4.1 Implementation
	4.2 Properties Verification
	4.3 Verification Results

	5 Conclusion and Future Work
	References

	Detecting Road Tunnel-Like Environments Using Acoustic Classification for Sensor Fusion with Radar Systems
	1 Introduction
	2 Related Studies
	2.1 Discussion of Related Studies

	3 Methodology
	3.1 Selected Pressure Zone Microphone
	3.2 Recording Audio Signals
	3.3 Time-Frequency Spectrum Analysis
	3.4 External Influences
	3.5 Data Collection Process

	4 Analysis and Results
	4.1 Principal Component Analysis
	4.2 Classification
	4.3 Results Overview

	5 Misalignment Monitoring and Adjustment for Radar Systems
	5.1 Environment Impact
	5.2 Mitigate Issues of Misalignment in Tunnel Environments
	5.3 Limitations

	6 Conclusion
	References

	Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink
	1 Introduction
	2 Related Work
	3 Tools Overview
	3.1 ns-3
	3.2 Uppaal SMC
	3.3 MATLAB/Simulink

	4 Case Study
	5 Modelling the Case Study
	5.1 Implementation in ns-3
	5.2 Implementation in Uppaal SMC
	5.3 Implementation in MATLAB/Simulink

	6 Comparative Analysis of UPPAAL and ns-3
	6.1 Classification of Network Simulation
	6.2 Simulation Terms (Memory Consumption and Simulation Time)
	6.3 General Comparison

	7 Conclusions and Future Work
	References

	Using Automata Learning for Compliance Evaluation of Communication Protocols on an NFC Handshake Example
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Preliminaries
	2.1 State Machines
	2.2 Transitions and Equivalence
	2.3 Automata Learning
	2.4 LearnLib
	2.5 Near Field Communication
	2.6 The NFC Handshake Automaton

	3 NFC Interface
	3.1 Learner Interface Device
	3.2 Adapter Class

	4 Learning Setup
	4.1 Comparing Learning Algorithms and Calibrations
	4.2 Abstraction
	4.3 Labeling and Simplification
	4.4 Compliance Evaluation

	5 Evaluation
	5.1 Test Cards and Credit Cards
	5.2 Passports
	5.3 Tesla Key Fob

	6 Related Work
	7 Conclusion
	7.1 Discussion
	7.2 Outlook

	References

	Towards LLM-Based System Migration in Language-Driven Engineering
	1 Motivation and Introduction
	2 Preliminaries
	2.1 LLM-Based Code Generators and Language Decomposition
	2.2 Learning-Based Evolution Control

	3 Concept
	4 Example
	5 Conclusion
	References

	Synthesizing Understandable Strategies
	1 Introduction
	2 Reinforcement Learning
	3 SMT Synthesis
	4 Strategy Trees
	5 Conclusions
	References

	ReProInspect: Framework for Reproducible Defect Datasets for Improved AOI of PCBAs
	1 Introduction
	2 Related Works
	2.1 A Recap on the Privacy Issue
	2.2 Technical Requirements and Setup

	3 Proposed Framework
	4 Results and Discussion
	5 Future Works
	References

	Cyber-Physical Ecosystems: Modelling and Verification
	1 Introduction
	2 CPES - Conceptual Modelling
	2.1 The Distributed Systems Metaphor
	2.2 Dynamic Behaviour

	3 Mathematical Modelling of CPES
	3.1 Basic Model
	3.2 Probabilistic Modal Logic

	4 Interfaces and Composition
	4.1 Basic Interface
	4.2 Composition of Models
	4.3 Interface Model
	4.4 Admissibility

	5 Verification
	5.1 Reachability Problem for a Basic Model
	5.2 Reachability Problem for a Model
	5.3 Reachability for an Interface Model
	5.4 Reachability for Model Composition

	6 Abstractions
	6.1 Abstraction of a Basic Model
	6.2 Abstraction of a Model
	6.3 Abstraction of an Interface Model
	6.4 Abstraction Composition

	7 Conclusions
	References

	Integrating IoT Infrastructures in Industrie 4.0 Scenarios with the Asset Administration Shell
	1 Introduction
	2 Integration Approaches
	3 Discussion
	4 Summary
	References

	A Software Package (in progress) that Implements the Hammock-EFL Methodology
	1 Motivation
	2 Proof of Concept
	3 The Software
	4 Experiment
	5 Conclusion and Further Work
	References

	Dynamic Priority Scheduling for Periodic Systems Using ROS 2
	1 Introduction and Background
	2 Algorithm
	3 Illustrative Example and Comparison to ROS 2
	4 Discussion and Ongoing Work
	References

	Continuous Integration of Neural Networks in Autonomous Systems
	1 Motivation and Background
	1.1 Related Work

	2 Preliminaries
	2.1 DevOps Tools
	2.2 Image Classification
	2.3 JARVIC

	3 The Neural Network CI-Pipeline
	3.1 Design and Implementation

	4 Conclusion
	5 Future Work
	References

	Building a Digital Twin Framework for Dynamic and Robust Distributed Systems
	1 Introduction
	2 The D-RODS Approach
	3 Conclusions
	References

	A Simple End-to-End Computer-Aided Detection Pipeline for Trained Deep Learning Models
	1 Introduction
	2 Objectives and Concepts
	3 Case Pipeline: Pulmonary Embolism Detection
	4 Conclusion
	References

	Astrocyte-Integrated Dynamic Function Exchange in Spiking Neural Networks
	1 Introduction
	2 Background
	3 Astrocyte and Spiking Neural Networks
	4 Method
	4.1 Dataset
	4.2 Training Details
	4.3 Hardware Implementation
	4.4 Adaptive Model Creation with Dynamic Function eXchange Technology
	4.5 Quantitative Analysis of the Hardware Accelerator

	5 Results
	6 Conclusions
	References

	Correct Orchestration of Federated Learning Generic Algorithms: Formalisation and Verification in CSP
	1 Introduction
	1.1 Short Discussion of Closely Related Work

	2 Generic Federated Learning Algorithms: PTB-FLA Overview
	2.1 PTB-FLA System Architecture
	2.2 PtbFla API
	2.3 PTB-FLA Operation

	3 CSP Formal Models
	3.1 Modeling Centralised Algorithm
	3.2 Modeling Decentralised Algorithm

	4 Formal Verification in PAT
	5 Conclusion
	References

	CareProfSys - Combining Machine Learning and Virtual Reality to Build an Attractive Job Recommender System for Youth: Technical Details and Experimental Data
	1 Introduction
	2 Job Recommender Systems
	2.1 Recommender Systems: Usage and Typologies
	2.2 Recommender Systems Used in Career Path Profiling and Jobs’ Searching

	3 CareProfSys: A Job Recommender System for Youth
	3.1 Technical Details
	3.2 Machine-Learning Based Recommendation Algorithm
	3.3 Validation of CareProfSys System in Real-Life Settings

	4 Conclusions
	References

	Author Index

