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Preface

The 26th Iberoamerican Congress on Pattern Recognition (CIARP) was the 2023 edition
of the annual international conference CIARP, which aims at fostering international
collaboration and knowledge exchange in the fields of pattern recognition, artificial
intelligence, and related areas with contributions covering a broad spectrum of theory
and applications. We are pleased to acknowledge the endorsement of CIARP 2023 by
IAPR, the International Association for Pattern Recognition.

Over the years, CIARP has evolved into a pivotal research event, playing a vital
role within the Iberoamerican pattern recognition community. As in previous editions,
CIARP 2023 brings together researchers and experts from around the world to show-
case ongoing research in areas such as Biometrics, Character recognition, Classification
clustering ensembles and multi-classifiers, Data mining and big data, Feature extrac-
tion, discretization and selection, Fuzzy logic and fuzzy image processing, Gesture
recognition, Hybrid methods, Image description and registration, Image enhancement,
restoration and segmentation, Image understanding, Image fusion, Information theory,
Intelligent systems, Machine vision, Neural network architectures, Object recognition,
Pattern recognition applications, Sensors and sensor fusion, Soft computing techniques,
Statistical methods, Syntactical methods, Deep learning, Transfer learning, and Natural
language processing.

Moreover, CIARP 2023 serves as a platform for the global scientific community to
share their research experiences, disseminate novel insights, and foster collaborations
among research groups specialising in artificial intelligence, pattern recognition, and
related fields.

CIARPhas always prided itself on its international character, and this edition received
contributions from 21 countries. Among the Iberoamerican contributors were Portugal,
Brazil, Spain, Argentina, Chile, Cuba, Ecuador, Mexico, and Uruguay. Other notable
submissions came from France, Germany, Ireland, Belgium, India, South Korea, the
Netherlands, Czech Republic, Italy, Taiwan, Tunisia, and the USA.

Through ameticulous reviewprocess, involving 59 dedicated reviewerswho invested
significant time and effort, 61 papers were selected for inclusion in these proceedings,
reflecting an acceptance rate of 60.4%. All accepted papers achieved scientific quality
scores exceeding the overall mean rating. The selection of reviewers was guided by their
expertise, ensuring representation from diverse countries and institutions worldwide.
We extend our heartfelt gratitude to all members of the Program Committee for their
invaluable contributions, which undoubtedly enhanced the quality of the selected papers.

The conference, held in Coimbra Institute of Engineering, Portugal, from November
27 to 30, 2023, featured four days of engaging sessions, tutorials, and keynotes. The
keynotes were delivered by João Paulo Papa, Petia Radeva, and João Manuel R. S.
Tavares. CIARP 2023 also awarded the Aurora Pons-Porrata Medal, honouring a female
researcher for her significant contributions in the field of pattern recognition and related
areas. The authors of the Best Paper and the Best Student Paper and the recipient of the



vi Preface

Aurora Pons-Porrata Medal were invited to submit a paper for publication in the Pattern
Recognition Letters journal.

CIARP 2023 was jointly organized by the Coimbra Institute of Engineering (ISEC)
and the Polytechnic University of Coimbra (IPC). We express our sincere gratitude for
their invaluable contributions to the success of CIARP 2023. We would also like to
express our gratitude to i2A for their generous sponsorship. Furthermore, we wish to
acknowledge the dedication of all members of the Organizing and Local Committees
for their dedication in orchestrating an outstanding conference and proceedings.

We extend our special thanks to the LNCS team at Springer for their invaluable
support and guidance throughout the preparation of this volume.

Finally, our deepest gratitude goes out to all authors who submitted their work to
CIARP 2023, including those whose papers could not be accommodated. We trust that
these proceedings will serve as a valuable reference for the global pattern recognition
research community.

November 2023 Inês Domingues
Verónica Vasconcelos

Simão Paredes
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Abstract. Melanoma is the most severe type of skin cancer due to its
ability to cause metastasis. It is more common in black people, often
affecting acral regions: palms, soles, and nails. Deep neural networks
have shown tremendous potential for improving clinical care and skin
cancer diagnosis. Nevertheless, prevailing studies predominantly rely on
datasets of white skin tones, neglecting to report diagnostic outcomes for
diverse patient skin tones. In this work, we evaluate supervised and self-
supervised models in skin lesion images extracted from acral regions com-
monly observed in black individuals. Also, we carefully curate a dataset
containing skin lesions in acral regions and assess the datasets concern-
ing the Fitzpatrick scale to verify performance on black skin. Our results
expose the poor generalizability of these models, revealing their favor-
able performance for lesions on white skin. Neglecting to create diverse
datasets, which necessitates the development of specialized models, is
unacceptable. Deep neural networks have great potential to improve
diagnosis, particularly for populations with limited access to dermatol-
ogy. However, including black skin lesions is necessary to ensure these
populations can access the benefits of inclusive technology.

Keywords: Self-supervision · Skin cancer · Black skin · Image
classification · Out-of-distribution

1 Introduction

Skin cancer is the most common type, with melanoma being the most aggres-
sive and responsible for 60% of skin cancer deaths. Early diagnosis is crucial
to improve patient survival rates. People of color have a lower risk of develop-
ing melanoma than those with lighter skin tones [1]. However, melanin does not
entirely protect individuals from developing skin cancer. In fact, acral melanoma,
or acrolentiginous melanoma, is the rarest and most aggressive type and occurs
more frequently in people with darker skin [2]. This subtype is not related to
sun exposure, as it tends to develop in areas with low sun exposure, such as the
soles, palms, and nails [3].

When melanoma occurs in individuals with darker skin tones, it is often
diagnosed later, making it more challenging to treat and associated with a high

c© Springer Nature Switzerland AG 2024
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mortality rate. This can be partly explained by the fact that acral areas, espe-
cially the feet, are often neglected by dermatologists in physical evaluations
because they are not exposed to the sun, leading to misdiagnoses [4]. Therefore,
it is common for melanoma to be confused by patients with fungal infections,
injuries, or other benign conditions [3]. This is related to the lack of representa-
tion of cases of black skin in medical education. Most textbooks do not include
images of skin diseases as they appear in black people, or when they do, the
number is no more than 10% [5]. This absence can lead to a racial bias in the
evaluation of lesions by dermatologists since the same lesion may have different
characteristics depending on the patient’s skin color1, significantly affecting the
diagnosis and treatment of these lesions [5].

Deep neural networks (DNNs) have revolutionized skin lesion analysis by auto-
matically extracting visual patterns for lesion classification and segmentation
tasks. However, training DNNs requires a substantial amount of annotated data,
posing challenges in the medical field due to the cost and complexity of data col-
lection and annotation. Transfer learning has emerged as a popular alternative. It
involves pre-training a neural network, the encoder, on a large unrelated dataset
to establish a powerful pattern extractor. The encoder is fine-tuned using a smaller
dataset specific to the target task, enabling it to adapt to skin lesion analysis.

Despite the advantages of transfer learning, there is a risk that the pre-trained
representations may not fully adapt to the target dataset [6]. Self-supervised
learning (SSL) has emerged as a promising solution. In SSL, the encoder is
trained in a self-supervised manner on unlabeled data using pretext tasks with
synthetic labels. The pretext task is only used to stimulate the network to create
transformations in the images and learn the best (latent) representations in the
feature space that describe them. This way, we have a powerful feature extractor
network that can be used in some other target task of interest, i.e., downstream
task. Furthermore, applying SSL models for diagnosing skin lesions has proven
advantageous, especially in scenarios with scarce training data [7].

However, deep learning models encounter challenges related to generaliza-
tion. The effectiveness of machine learning models heavily relies on the quality
and quantity of training data available. Unfortunately, in the current medical
landscape, skin lesion datasets often suffer from a lack of diversity, predomi-
nantly comprising samples from individuals with white skin or lacking explicit
labels indicating skin color. This presents a significant challenge as it can lead to
models demonstrating racial biases, performing better in diagnosing lesions that
are well-represented in the training data from white individuals while potentially
encountering difficulties in accurately diagnosing lesions on black skin.

Evaluating skin cancer diagnosis models on black skin lesions is one step
towards ensuring inclusivity and accuracy across diverse populations [8]. Most
available datasets suffer from insufficient information regarding skin tones, such
as the Fitzpatrick scale — a classification of skin types from 1 to 6 based on
a person’s ability to tan and their sensitivity and redness when exposed to the
sun [9] (Figs. 1 and 2). Consequently, we had to explore alternative approaches
to address this issue, leading us to conduct the evaluation based on both skin

1 If you have skin, you can get skin cancer.
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(a) (b) (c) (d) (e) (f)

Fig. 1. The Fitzpatrick skin type scale. (a) Type 1 (light): pale skin, always burns,
and never tans; (b) Type 2 (white): fair, usually burns, tans with difficulty; (c) Type 3
(medium): white to olive, sometimes mild burn, gradually tans to olive; Type 4 (olive):
moderate brown, rarely burns, tans with ease to moderate brown; Type 5 (brown):
dark brown, very rarely burns, tans very easily; Type 6 (black): very dark brown to
black, never burns, tans very easily, deeply pigmented.

tone and lesion location. We performed two distinct analyses: one focused on
directly assessing the impact of skin color using the Fitzpatrick scale, and another
centered around evaluating lesions in acral regions, which are more commonly
found in individuals with black skin [10].

The primary objective of this work is to assess the performance of skin cancer
classification models, which have performed well in white individuals, specifically
on black skin lesions. Our contribution is threefold:

– We carefully curate a dataset comprising clinical and dermoscopic images of
skin lesions in acral areas (e.g., palms, soles, and nails).

– We evaluate deep neural network models previously trained in a self-super-
vised and supervised manner to diagnose melanoma and benign lesions
regarding two types of analysis:
• Analysis #1 – Skin Lesions on Acral Regions: We select images from

existing datasets focusing on acral regions.
• Analysis #2 – Skin Lesions in People of Color: We evaluate datasets that

contain Fitzpatrick skin type information.
– We have made the curated sets of data and source code available at https://

github.com/httplups/black-acral-skin-lesion-detection.

2 Related Work

The accurate diagnosis of skin lesions in people of color, particularly those with
dark skin, has been a long-standing challenge in dermatology. One major con-
tributing factor to this issue is the underrepresentation of dark skin images in
skin lesion databases. Consequently, conventional diagnostic tools may exhibit
reduced accuracy when applied to this specific population, leading to disparities
in healthcare outcomes.

We present a pioneering effort to extensively curate and evaluate the perfor-
mance of supervised and self-supervised pre-trained models, specifically on black
skin lesions and acral regions. While skin lesion classification on acral regions has
been explored in previous literature, the focus is largely on general skin types,

https://github.com/httplups/black-acral-skin-lesion-detection
https://github.com/httplups/black-acral-skin-lesion-detection
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Fig. 2. Each image corresponds to a melanoma sample and is associated with a specific
Fitzpatrick scale value, representing a range of skin tones. The images are organized
from left to right, following the Fitzpatrick scale (1 to 6). Images retrieved from Fitz-
patrick 17k dataset [11].

with limited attention given to black skin tones. Works such as [12–14] inves-
tigated classification performance on acral regions, but they do not specifically
address the challenges posed by black skin tones.

Addressing the crucial issue of skin type diversity, Alipour et al. [15] con-
ducted a comprehensive review of publicly available skin lesion datasets and
their metadata. They observed that only PAD-UFES-20 [16], DDI [17], and Fitz-
patrick 17k [11] datasets provide the Fitzpatrick scale as metadata, highlighting
the need for improved representation of diverse skin types in skin lesion datasets.
However, the authors did not conduct model evaluations on these datasets.

Existing works explored the application of the Fitzpatrick scale in various
areas, such as debiasing [18,19] and image generation [20]. However, these studies
have not adequately addressed the specific challenge of skin lesion classification
on black skin tones.

To bridge this research gap, our study evaluates the performance of super-
vised and self-supervised pre-trained models exclusively on black skin lesion
images and acral regions. By systematically exploring and benchmarking dif-
ferent pre-training models, we aim to contribute valuable insights and advance-
ments to the field of dermatology, particularly in the context of underrepresented
skin types.

3 Materials and Methods

In this work, we assess the performance of six pre-trained models on white skin
in black skin. We pre-train all models as described in Chaves et al. [7]. First, we
take a pre-trained model backbone on ImageNet [21] and fine-tune it on the ISIC
dataset [22]. The ISIC (International Skin Imaging Collaboration) is a common



Assessing the Generalizability of Deep Neural Networks-Based Models 5

choice in this domain [6,11,23], presenting only white skin images. Next, we
evaluate the fine-tuned model on several out-of-distribution datasets, where
the distribution of the test data diverges from the training one. We also use
the same six pre-trained models as Chaves et al. [7] because they have the
code and checkpoint publicity available to reproduce their results. The authors
compared the performance of five self-supervised models against a supervised
baseline and showed that self-supervised pre-training outperformed traditional
transfer learning techniques using the ImageNet dataset.

We use the ResNet-50 [24] network as the feature extractor backbone. The
self-supervised approaches vary mainly in the choice of pretext tasks, which
are BYOL (Bootstrap Your Own Latent) [25], InfoMin [26], MoCo (Momentum
Contrast) [27], SimCLR (Simple Framework for Contrastive Learning of Visual
Representations) [28], and SwAV (Swapping Assignments Between Views) [29].
We assessed all six models using two different analyses on compound datasets.
The first analysis focused on skin lesions in acral regions, while the second con-
sidered variations in skin tone. Next, we detail the datasets we curated.

3.1 Datasets

Analysis #1: Skin Lesions on Acral Regions. To create a compound
dataset of acral skin lesions, we extensively searched for datasets and derma-
tological atlases available on the Internet that provided annotations indicating
the location of the lesions. We analyzed 17 datasets listed in SkinIA’s web-
site2 then filtered the datasets to include only images showcasing lesions in
acral regions, such as the palms, soles, and nails. As a result, we identified
three widely recognized datasets in the literature, namely the International Skin
Imaging Collaboration (ISIC Archive) [22], the 7-Point Checklist Dermatology
Dataset (Derm7pt) [30], and the PAD-UFES-20 dataset [16]. We also included
three dermatological atlases: Dermatology Atlas (DermAtlas) [31], DermIS [32],
and DermNet [33].

We describe the steps followed for each dataset in the following. Table 1 shows
the number of lesions for each dataset.

ISIC Archive [22]: We filtered images from the ISIC Archive based on clinical
attributes, focusing on lesions on palms and soles, resulting in 773 images.
We excluded images classified as carcinoma or unknown, reducing the dataset
to 400. As we trained our models using ISIC Archive, we removed all images
appearing in the models’ training set to avoid data leakage between training
and testing data and ensure an unbiased evaluation, resulting in a final dataset
with 149 images.

Derm7pt [30]: It consists of 1011 images for each lesion, including clinical and
dermoscopic versions3. It offers valuable metadata such as visual patterns,

2 https://www.medicalimageanalysis.com/data/skinia.
3 Clinical images can be captured with standard cameras, while dermoscopic images

are captured with a device called dermatoscope, that normalize the light influence
on the lesion, allowing to capture deeper details.

https://www.medicalimageanalysis.com/data/skinia
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lesion location, patient sex, difficulty level, and 7-point rule scores [34]. We
applied a filter based on lesion location to select images from it, selecting
acral images from the region attribute. This filter resulted in a total of 62
images, comprising only benign and melanoma lesions. We conducted separate
evaluations using the clinical and dermoscopic images, labeling the datasets
as derm7pt-clinic and derm7pt-derm, respectively.

PAD-UFES-20 [16]: It comprises 2298 clinical images collected from smart-
phone patients. It also includes metadata related to the Fitzpatrick scale,
providing additional information about skin tone. We focused on the hand
and foot region lesions, which yielded 142 images. We also excluded images
classified as carcinoma (malignant), resulting in a final set of 98 images.

Atlases (DermAtlas, DermIS, DermNet): The dataset included images
obtained from dermatological atlas sources such as DermAtlas [31], Der-
mIS [32], and DermNet [33]. We use specific search terms, such as hand,
hands, foot, feet, acral, finger, nail, and nails to target the lesion location.
We conducted a manual selection to identify images meeting the melanoma
or benign lesions criteria. This dataset comprised 8 images from DermAtlas
(including 1 melanoma), 12 images from DermIS (comprising 10 melanomas),
and 34 images from DermNet, all melanomas. Finally, we combined all images
in a set referenced as Atlases, containing 54 images.

Table 1. Number of benign and melanoma lesions for acral areas dataset.

Number of Lesions

Dataset Melanoma Benign Total

ISIC Archive [22] 72 77 149

Derm7pt [30] 3 59 62

PAD-UFES-20 [16] 2 96 98

Atlases [31–33] 45 9 54

Analysis #2: Skin Lesions in People of Color. We focused on select-
ing datasets that provided metadata indicating skin tone to analyze skin cancer
diagnosis performance for darker-skinned populations. Specifically, datasets con-
taining skin lesions with darker skin tones (Fitzpatrick scales 4, 5, and 6) allow
us to evaluate the performance of the models on these populations. For this
purpose, we evaluated three datasets: PAD-UFES-20 [16], which was previously
included in the initial analysis, as well as Diverse Dermatology Images (DDI)
[17], and Fitzpatrick 17k [11].

Table 2 shows the number of lesions for each dataset, considering the Fitz-
patrick scale.
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Table 2. Number of benign and melanoma lesions grouped by Fitzpatrick scale for
skin tone analysis datasets.

Fitzpatrick Number of Lesions

Dataset Scale Melanoma Benign Total

PAD-UFES-20* [16] 1–2 38 246 284

3–4 14 153 167

5–6 0 6 6

Total 52 405 457

DDI [17] 1–2 7 153 160

3–4 7 153 160

5–6 7 134 141

Total 21 440 461

Fitzpatrick 17k [11] 1–2 331 1115 1446

3–4 168 842 1010

5–6 47 203 250

Total 546 2160 2706

PAD-UFES-20*: We filtered images using the Fitzpatrick scale, including
lesions from all regions rather than solely acral areas. We specifically selected
melanoma cases from the malignant lesions category, excluding basal and
squamous cell carcinomas. Also, we excluded images lacking Fitzpatrick scale
information. Consequently, the dataset was refined to 457 images, including
52 melanoma cases. Notably, within this dataset, there were only five images
with a Fitzpatrick scale of 5 and one image with a Fitzpatrick scale of 6.

Diverse Dermatology Images (DDI) [17]: The primary objective of DDI is
to address the lack of diversity in existing datasets by actively incorporating
a wide range of skin tones. For that, the dataset was curated by experienced
dermatologists who assessed each patient’s skin tone based on the Fitzpatrick
scale. The initial dataset comprised 656 clinical images, categorized into dif-
ferent Fitzpatrick scale ranges. We filtered to focus on melanoma samples for
malignant lesions. As a result, we excluded benign conditions that do not
fall under benign skin lesions, such as inflammatory conditions, scars, and
hematomas. This process led to a refined dataset of 461 skin lesions, compris-
ing 440 benign lesions and 21 melanomas. Regarding the distribution based on
the Fitzpatrick scale, the dataset includes 160 images from scales 1 to 2, 160
images from scales 3 to 4, and 141 images from scales 5 to 6. The DDI dataset
represents a notable improvement in diversity compared to previous datasets,
but it still exhibits an unbalanced representation of melanoma images across
different skin tones.

Fitzpatrick 17k [11]: It comprises 16,577 clinical images, including skin diag-
nostic labels and skin tone information based on the Fitzpatrick scale. The
dataset was compiled by sourcing images from two online open-source der-
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matology atlases: 12,672 images from DermaAmin [35] and 3,905 images
from Atlas Dermatologico [36]. To ensure the analysis specifically targeted
benign and melanoma skin lesion conditions, we applied a filter based on
the “nine partition attribute”. This filter allowed us to select images that
fell into benign dermal, benign epidermal, benign melanocyte, and malignant
melanoma. After removing images with the unknown Fitzpatrick value, the
refined dataset consists of 2,706 images, 191 images corresponding to a Fitz-
patrick scale of 5 and 59 images corresponding to a Fitzpatrick scale of 6.

3.2 Evaluation Pipeline

Our pipeline to evaluate skin lesion image classification models is divided into
two main stages: pre-processing and model inference. Figure 3 shows the pipeline.

Fig. 3. Evaluation pipeline for all models. Given a test image, we adopt the final
confidence score as the average confidence over a batch of 50 augmented copies of the
input image.

Pre-Processing: We apply data augmentation techniques to the test data,
which have been proven to enhance the performance of classification prob-
lems [23]. The test set is evaluated in batches, and a batch of 50 copies is created
for each image. Each copy undergoes various data augmentations, including resiz-
ing, flipping, rotations, and color changes. Additionally, we normalize the images
using the mean and standard deviation values from the ImageNet dataset.

Model Inference: The batch of augmented images is fed into the selected
model for evaluation. The model generates representations or features specific
to its pre-training method. These representations are then passed through a soft-
max layer, which produces the probability values for the lesion being melanoma,
the positive class of interest. We calculate the average of the probabilities
obtained from all 50 augmented copies to obtain a single probability value for
each image in the batch.
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The evaluation process consisted of two analyses: Analysis #1 (skin lesions
on acral regions), which considered acral images, and Analysis #2 (skin lesions in
people of color), which considered images with diverse skin tones according to the
Fitzpatrick scale. For each analysis, we assessed each dataset individually using
the six models: BYOL, InfoMin, MoCo, SimCLR, SwAV, and the Supervised
baseline. In each evaluation, the dataset was passed to the respective model,
and the probability of melanoma lesions was obtained for all images. Metrics
such as balanced accuracy, precision, recall, and F1-score were calculated based
on these probabilities. We computed balanced accuracy using a threshold of 0.5.

4 Results

4.1 Skin Lesion Analysis on Acral Regions

Table 3 shows the classification metrics grouped by datasets of SSL models and
the supervised baseline for skin lesions in acral regions, such as palms, soles, and
nails. In the following, we discussed the results considering each dataset.

Table 3. Evaluation metrics for acral skin lesions. We grouped ISIC Archive, Derm7pt,
Atlases, and PAD-UFES-20 due to some datasets’ low number of Melanoma samples.
#Mel and #Ben indicate the number Melanomas, and benign skin lesions, respectively.

Samples Balanced

(#Mel/#Ben) Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

(89/336) SwAV 78.3 77.9 64.3 70.4

MoCo 79.9 72.0 71.4 71.7

SimCLR 76.1 70.2 63.5 66.7

BYOL 77.9 70.8 67.5 69.1

InfoMin 80.2 74.2 70.6 72.4

Supervised 78.4 73.7 66.7 70.0

Mean 78.5 73.1 67.3 70.1

ISIC Archive: We observed consistent result between balanced accuracy and
F1-score, both averaging around 87%. The evaluation metrics exhibit high per-
formance due to the fine-tuning process of the evaluated models using the ISIC
2019 dataset. The distribution of the ISIC Archive dataset closely resembles that
of the training data, distinguishing it from other datasets, and contributing to
the favorable evaluation metrics observed, even though excluding training sam-
ples from our evaluation set. Furthermore, in the ISIC 2019 dataset, all results
were above 90% [7]. This indicates that even with an external dataset with a
distribution more akin to the training data, the performance for lesions in acral
regions is significantly inferior to that in other regions. Additionally, it is essential
to highlight that in the ISIC 2019 dataset, all results exceeded 90% [7].
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Derm7pt: We analyzed two types of images: dermoscopic (derm7pt-derm) and
clinical (derm7pt-clinical). When examining the F1-score results for clinical
images, the models (SwAV, BYOL, and Supervised) encountered challenges in
accurately classifying melanoma lesions. However, the evaluation was performed
on a limited sample size of only three melanoma images. This scarcity of data
for melanoma evaluation has contributed to the observed zero precision and
recall scores. On average, dermoscopic images demonstrated better classifica-
tion performance than clinical images, with dermoscopic images achieving an
F1-score of 26% and clinical images achieving an F1-score of 16%. We attribute
this disparity to the models being trained on dermoscopic images from the ISIC
2019 dataset. Additionally, using different image capture devices (dermatoscope
vs. cell phone camera) can introduce variations in image quality and the level
of detail captured, affecting the overall data distribution. Given that the models
were trained with dermoscopic images and the test images were captured using
a dermatoscope, the training and test data distributions are expected to be
more similar. In general, the results for this dataset demonstrated low F1-score
and balanced accuracy, indicating an unsatisfactory performance, especially for
clinical images.

Atlases: The performance varies across different models. MoCo and InfoMin
achieved balanced accuracies of approximately 72%, indicating relatively bet-
ter performance. Other models, such as Supervised and BYOL, exhibited poor
results. Such dataset is considered challenging as it consists of non-standardized
skin lesions collected from online atlases, which may introduce variability in the
capture process. Still, models could perform better than previous datasets on
acral region images, specifically when considering F1-score values.

PAD-UFES-20: The models achieved an average balanced accuracy of around
90%. The model SwAV performed best, with a balanced accuracy of 95.8% and
an F1-score of 33.3%. All models showed similar patterns: the F1-score and
precision were relatively low, while recall was high (100%). The high recall was
mainly due to the correct prediction of the two melanoma samples in the dataset,
which inflated the balanced accuracy score. It indicates that relying solely on
balanced accuracy can lead to a misleading interpretation of the results. Also, the
small number of positive class samples limits the generalizability of the results
and reduces confidence in the evaluation.

4.2 Skin Lesion Analysis in People of Color

Table 4 shows the evaluation results of the SSL models and the Supervised base-
line for datasets containing melanoma and benign black skin lesions.

DDI: revealed poor results regarding balanced accuracy and F1-score for all
models. The supervised baseline model performed the worst, with an F1-score of
only 3.4%, while MoCo achieved a slightly higher F1-score of 12.5%. Although
most of the DDI dataset consisted of benign lesions, the performance of all
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Table 4. Evaluation metrics for skin tone analysis. #Mel and #Ben indicate the
number Melanomas, and benign skin lesions, respectively.

Dataset Balanced

(#Mel/#Ben) Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

DDI (21/440) SwAV 52.9 7.5 14.3 9.8

MoCo 55.8 8.5 23.8 12.5

SimCLR 54.2 7.8 19.0 11.1

BYOL 54.3 8.0 19.0 11.3

InfoMin 54.4 8.2 19.0 11.4

Supervised 48.2 2.6 4.8 3.4

Mean 53.3 7.1 16.7 9.9

Fitzpatrick 17k
(546/2160)

SwAV 57.6 40.7 24.2 30.3

MoCo 59.8 38.4 32.1 34.9

SimCLR 59.3 40.7 29.5 34.2

BYOL 59.3 38.4 32.1 34.9

InfoMin 60.1 36.5 35.9 36.2

Supervised 63.4 51.2 35.3 41.8

Mean 60.0 40.4 32.4 35.6

PAD-UFES-
20* (52/405)

SwAV 57.1 25.0 23.1 24.0

MoCo 59.1 23.9 30.8 26.9

SimCLR 58.4 21.0 32.7 25.6

BYOL 59.2 26.3 28.8 27.5

InfoMin 54.3 16.9 23.1 19.5

Supervised 58.5 23.8 28.8 26.1

Mean 57.8 22.8 27.9 24.9

models was considered insufficient. This underscores the significance of a pre-
training process incorporating diverse training data, as it enables the models to
learn more robust and generalizable representations across different skin tones
and lesion types. In addition, this highlights the importance of self-supervised
learning in improving performance and diagnostic accuracy, particularly in the
context of diverse skin tones.

Fitzpatrick 17k: In contrast to the DDI dataset, the supervised model achieved
the highest performance in balanced accuracy (63.4%) and F1-score (41.8%).
Both self-supervised and supervised models showed similar results for this
dataset.

PAD-UFES-20*: Both self-supervised and supervised models demonstrated
comparable performance. The BYOL method achieved the highest balanced
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accuracy (59.2%) and F1-score (27.5%). It is essential to highlight that this
dataset did not include any melanoma lesions corresponding to the Fitzpatrick
scale of 5 and 6 (see Table 2).

5 Conclusion

Our evaluation of self-supervised and supervised models on skin lesions in acral
regions reveals a significant deficiency in robustness and bias in deep-learning
models for out-of-distribution images, especially in darker skin tones. Both Self-
supervised and Supervised models achieved poor performance in Melanoma clas-
sification task compared to white skin only datasets. These results highlight the
generalization gap between models trained on white skin and tested on darker
skin tones, inviting further work on improving the generalization capabilities of
such models. But, we believe that improvements are not only necessary in model
designing, but requires richer data to represent specific population or subgroups.

The results for melanoma diagnosis in acral regions are insufficient and could
cause serious social problems if used clinically. Additionally, more samples are
needed to improve the metrics calculation and analysis of results. The general-
ization power of DNNs-based models heavily depends on training data distribu-
tion. Therefore, for DNNs-based models to be robust concerning different visual
patterns of lesions, training them with datasets that represent the real clinical
scenario, including patients with diverse lesion characteristics and skin tones,
is necessary. There is an urgent need for the creation of datasets that guaran-
tee data transparency regarding the source, collection process, and labeling of
lesions, as well as the reliability of data descriptions and the ethnic and racial
diversity of patients, in order to ensure high confidence in the diagnoses made
by the models.

The current state of skin cancer datasets is concerning as it impacts the per-
formance of models and can further reinforce biases in diagnosing skin cancer
in people of color. Currently, these models cannot be used in a general sense, as
they only perform well on lesions in white skin on common regions affected, and
their performance may vary significantly for people with different skin tones.
Crafting models that are discriminative for diagnoses, yet discriminate against
patients’ skin tones, is unacceptable. Deep neural networks have great potential
to improve diagnosis, especially for populations with limited access to derma-
tology. However, including black skin lesions is extremely necessary for these
populations to access the benefits of inclusive technology.
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Abstract. Breast tumor is one of the most prominent indicators for
diagnosis of breast cancer. Magnetic Resonance Imaging (MRI) is a rel-
evant imaging modality tool for breast cancer screening. Moreover, an
accurate 3D segmentation of breast tumors from MRI scans plays a key
role in the analysis of the disease. This paper presents a pipeline to auto-
matically segment multiple tumors in breast MRI scans, following the
methodology proposed by one previous study, addressing its limitations
in detecting multiple tumors and automatically selecting seed points
using a 3D region growing algorithm. The pre-processing includes bias
field correction, data normalization, and image filtering. The segmenta-
tion process involved several steps, including identifying high-intensity
points, followed by identifying high-intensity regions using k-means clus-
tering. Then, the centers of the regions were used as seeds for the 3D
region growing algorithm, resulting in a mask with 3D structures. These
masks were then analyzed in terms of their volume, compactness, and
circularity. Despite the need for further adjustments in the model param-
eters, the successful segmentation of four tumors proved that our solu-
tion is a promising approach for automatic multi-tumor segmentation
with the potential to be combined with a classification model relying on
the characteristics of the segmented structures.

Keywords: Magnetic Resonance Imaging · Breast Tumor · Tumor
Segmentation · Region Growing
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1 Introduction

Breast cancer was the most common type of cancer diagnosed around the world
in 2020, with over 2.26 million new cases. It was also reported as the cancer with
the highest mortality rate in women and the fifth highest for both genders [1].
It is estimated to be responsible for 15% of cancer deaths [3]. Early detection
and intervention have been shown to significantly reduce the mortality rate and
improve the quality of life and survival rates of breast cancer patients. Therefore,
these factors are considered crucial for successful treatment outcomes [9].

In order to assist radiologists in detecting masses in early stages of breast can-
cer, it is highly desirable to develop a reliable Computer-aided Diagnosis (CAD)
system. These systems have become increasingly advanced and are now routinely
used in clinical settings [6]. They typically involve three stages: detection, seg-
mentation, and classification of masses. Automatic segmentation of breast tissue
in MRI image is a two-step process. First, the breast area is separated from the
chest wall and pectoral muscles (outer segmentation). In the second step, the
breast tissue is further divided into fibro-glandular, fatty and tumor tissue (inner
segmentation). This automatic segmentation of breast tissue can be challenging
due to variations in breast size and shape, intensity inhomogeneities, image arti-
facts, and other noise errors [12]. Tumors are then classified as either malignant
or benign based on their characteristics. Malignant tumors are often irregularly
shaped and surrounded, by spicules, whereas benign tumors tend to have more
rounded or elliptical shapes [10].

In this study, a segmentation pipeline proposed by Pelicano et al. [9] was
used to segment highly heterogeneous tumors from MRI exams. However, this
study presented two limitations: 1) the need for manual selection of the seed
point; and 2) the inability to segment multiple tumors, as the 3D region growing
algorithm is only capable of identifying one tumor per seed of high intensity.
This limitation is addressed by proposing an alternative segmentation process in
which multi-tumor classification is performed using an automatic selection of the
seed points for the 3D region growing algorithm. The proposed pipeline includes
the following steps: (i) image pre-processing and (ii) tumor segmentation. This
paper is organized as follows: firstly, an overview of related work on breast tumor
segmentation is presented; then, a description of the materials and methodology
used for image pre-processing and tumor segmentation is provided. Then, the
results of the proposed methods are presented, followed by a discussion of the
findings. Finally, the main conclusions of this work are highlighted.

2 Literature Review

Properly identifying the boundaries of a tumor is crucial to evaluate its charac-
teristics and determine appropriate treatment. However, this task can be quite
challenging due to the wide variability in shape and intensity distribution of
breast lesions.

Traditional methodologies to identify the region of interest (tumor) in an
image typically focus on using the intensity values of the entire image. This
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is based on the assumption that biological tissues are typically well-separated
in grayscale images. However, when dealing with heterogeneous structures that
contain a wide range of intensity values, such as diverse malignant tumors, these
methods may not be able to group all tumor voxels into the same cluster, result-
ing in a poor segmentation of the tumor volume. Researchers have proposed
various methods to circumvent this limitation, such as by specifying a seed point
where the algorithm begins the segmentation process and a threshold value to
distinguish lesion and non-lesion regions.

Yin et al. [16] proposed a technique to reconstruct the 3D volume of a breast
tumor using segmented 2D slices. The method involved using seeded region grow-
ing and Otsu thresholding to eliminate the breast border region on each 2D slice,
followed by segmentation using a gradient-based level set approach. The result-
ing segmented slices were then processed using a ray-casting method to rebuild
the 3D volume of the tumor. Chen et al. [4] presented a technique to create
a multi-faceted depiction of the contours of extracted breast tumors in three
dimensions. Their approach consisted of using a 2D level set method for the
segmentation of individual slices, applying this method to three distinct planes
- transverse, coronal, and sagittal. Specifically, the method located the targeted
tumor primarily in certain slices of an MRI and then used these identified loca-
tions to determine the tumor’s position in the remaining slices. The 2D contour
of the tumor was then highlighted in each slice through the use of the 2D level
set method. Finally, these found 2D contours were combined to construct a 3D
representation of the tumor contours for the specific plane under examination.

Wang et al. [15] proposed a deep learning model to identify micro-
calcifications in mammograms. The model uses a technique of dividing the image
into multiple small clusters, each of these clusters is then separately evaluated,
where the small clusters are used to focus on the characteristics of the micro-
calcifications and the larger clusters are used to analyze the surrounding tissue.
In [14], authors also used a machine learning algorithm for the detection of breast
tumors in mammograms. The location of the tumor was determined based on
a combination of geometric features such as roundness, entropy, ratio of area,
variance, and roughness, as well as texture features including energy, inverse
difference, correlated coefficient, and contrast. Melouah et al. [7] presented a
method to segment mammograms using a combination of threshold and seed
point selection. The threshold value was determined by finding the mean of
the maximum values in each row of the pixel matrix. For seed point selection,
various statistical features such as mean, standard deviation, contrast, entropy,
regularity, and uniformity were calculated, and the mean of these features was
used as the initial seed point. This method produced good results in terms of
detecting tumors, but it struggled in cases where the mammogram contained
multiple tumors. Later, Shrivastava et al. [11] presented a technique to iden-
tify the specific Region Of Interest (ROI) in mammograms through automatic
seed point identification and threshold calculation using the seeded region grow-
ing method. Similarly, Al-Faris et al. in [2] studied the segmentation of tumors
in MRI images using a modified version of the automatic seeded region grow-
ing algorithm, incorporating variations in seed point and threshold selection for
improved performance compared to previous methods. More recently, Pelicano
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et al. [9] proposed a method to segment tumors in MRI images using a 3D ver-
sion of the region growing technique. This method is similar to seeded region
growing but operates in three dimensions. The method is semi-automatic as it
needs a manual selection of the seed but it is highly successful in segmenting tis-
sues with different levels of heterogeneity. However, the algorithm fails to detect
the presence of multiple tumors.

Although various methods have been proposed in the literature for tumor
segmentation, most of them present some limitations. Many of these methods
prioritize high segmentation accuracy over computation efficiency, which can lead
to high computational costs. Additionally, some approaches require a significant
level of human input, such as the selection of initial seed positions and threshold
values, making them less practical to use. In contrast, some others achieve high
segmentation accuracy but fail to segment multi-tumor.

3 Materials and Methods

In this project, two MRI scans from two patients were used, yielding a total of
six tumors. One of the scans had five tumors, while the other had just one. The
patients were imaged in a prone position using a 3.05 MAGNETON Vida clinical
Magnetic Resonance (MR) scan from Siemens Healthineers, Erlangen, Germany.
The scan was performed with the use of a specialized coil for the breast, called
the Siemens Breast 18 coil, also from Siemens Healthineers. The images were
collected in Hospital de Luz Lisboa under clinical protocols: CES/44/2019/ME
(2019) and CES/34/2020/ME (2020).

Two MRI sequences were collected: Dynamic Contrast-Enhanced transver-
sal three-dimensional T1-weighted Fast low Angle Shot 3D Spectral Attenuated
Inversion Recovery sequence (DCE-fl3D); and Direct coronal isotropic 3D T1-
w fl3D Volumetric Interpolated Breath-hold Examination (VIBE) Dixon image
sequence (T1-w Dixon). DCE-fl3D consists of a fat-suppression sequence with six
sets of images: a pre-contrast image, acquired before the injection of intravenous
contrast agent gadolimium, and five post-contrast consecutive images. The con-
trast agent enhances highly vascularized tissues, such as tumors, allowing them
to stand out in the image. The digital subtractions enhance tumor regions due
to the contrast uptake in those locations and annul hypersignal regions present
in the pre-contrast image. The process of subtraction was exclusively performed
by Pelicano et al. [9]. For this project, the subtraction DCE-fl3D images, known
as SUB-DCE-fl3D, were used, as they are particularly effective in revealing the
entire tumor regions for tumor segmentation.

3.1 Pre-processing

The pre-processing applied to the breast MRI images followed the pipeline pro-
posed by Pelicano et al. [9], which can be divided into three main steps: bias
field correction, data normalization, and image filtering.

1. Bias Field Correction. The presence of bias field artifacts in MRI images
can lead to unreliable intensity variations within voxels of the same tissue,
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which can negatively impact the accuracy of intensity-based processing algo-
rithms such as segmentation and classification. In order to address this issue
and improve the reliability of the imaging data, the present study applied the
SimpleITK N4BiasFieldCorrectionImageFilter algorithm to correct the bias
field artifacts in all images [13].

2. Data Normalization. The images were normalized by scaling the voxel
values between 0 and 255, using the Minimum-Maximum (Min-Max) normal-
ization approach, which can be represented according to:

v′ =
v − min(A)

max(A) − min(A)
(newmax(A) − newmin(A)) + newmin(A)′ (1)

where v′ and v represent the original and transformed values of each voxel;
A is the volume data, with max(A) and min(A) being the highest and lowest
value of A, respectively. The new maximum and minimum values for the
transformed range are represented by newmax(A) and newmin(A), respectively
[8].

3. Image Filtering. MRI images can be compromised by noise resulting from
errors in image acquisition, which can negatively impact the performance of
intensity-based segmentation algorithms. One type of noise commonly found
in MRI images is Salt-and-Pepper noise, characterized by randomly scattered
voxels that have been set to either 0 or the maximum intensity value [5].
In the present study, a median filter, which replaces the value of a voxel
with the median gray level of its neighboring voxels, was applied to remove
noise and also to smooth variations in signal intensity between tumorous and
non-tumorous tissue, as suggested in [9].

3.2 Tumor Segmentation

As mentioned above, traditional methods to identify regions of interest in images,
such as tumors, rely on overall intensity values but can be inaccurate when
applied to heterogeneous tumors that have a range of intensity values, resulting
in poor segmentation.

Thus, to address tumors with voxels spreading over a wide range of intensity
values, a 3D region growing algorithm was used in this work. This algorithm
operates by initiating with a seed point located within the structure of interest,
which serves as the starting point for the growing process. Adjacent voxels with
intensity values similar to that of the seed point within a defined threshold are
subsequently added to the growing region through repeated evaluations of the
intensity values of voxels in proximity to the region. The 3D region growing
algorithm is a viable option for the segmentation of tumors in 3D images, as
it is able to handle variations in intensity values within the structure, a char-
acteristic commonly observed in tumors. However, it is important to note that
the performance of the algorithm is dependent on how adequate the threshold
value is. Additionally, the selection of a suitable seed point is a crucial aspect to
ensure the proper functioning of the algorithm.
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Threshold Selection. To determine the threshold for the application of the
3D region growing algorithm, a statistical analysis of the non-zero values in
the 3D image was performed. Specifically, the mean and standard deviation
were calculated. The threshold was then established as three standard deviations
above the mean, as proposed by Pelicano et al. [9], as a mean to ensure that
the threshold is set to a value that is sufficient to effectively differentiate the
tumor from the surrounding tissue, while still being low enough to include all
the voxels comprising the tumor within the same cluster.

Seed Selection. The initial stage of this tumor segmentation process involves
the selection of seed points to start the segmentation. In [9], this process of seed
selection was manual and only one single point was considered. However, in the
case of multi-tumor images, multiple seed points may be necessary to capture all
regions of interest. Furthermore, the heterogeneous nature of some tumors may
result in inaccurate segmentation if relying solely on a single seed point based
on the highest intensity. To address this limitation, an algorithm for automatic
seed detection was developed.

1. Subsampling strategy
In the first step, a subsampling strategy was employed. The image was divided
into a grid of non-overlapping regions, by specifying a step size of 5 points
in the x and y axis, resulting in a reduced set of points to be analyzed,
rather than testing all points within the image. This 5-point step allowed a
significant optimization of the computational efficiency, while still preserving
the relevant information for the subsequent analysis.

2. Points of Interest
In the second step, the algorithm examines each point in the reduced set, for
each transverse cut, to determine if it is surrounded by a region of interest
that can be segmented using the 3D region growing method. To do this, the
algorithm evaluates whether the intensity of the surrounding voxels around
the seed falls within the interval defined by the threshold. If this criterion
is met, it may indicate the presence of a region of interest around the seed,
and the point is considered for further processing in the algorithm. This step
results in a set of points of interest that have been identified as having high-
intensity values. However, it is important to note that these points may not
necessarily correspond to regions of interest, such as tumors.

Having identified the points of interest (x, y) of each transverse cut, the
following processing steps were applied orderly to each one of the cuts. The
order in which the cuts are processed was determined based on the number of
points of interest identified in each cut, where cuts with higher number were
processed first. This is because tumors are typically high-intensity structures,
and a higher number of high-intensity points on a cut is indicative of a higher
likelihood of finding a tumor. By prioritizing the processing of cuts with
the highest number of points of interest, the algorithm is more efficient in
identifying tumors.



Breast MRI Multi-tumor Segmentation 21

3. Regions of Interest
Having chosen a cut and its respective points, further analysis and evalua-
tion are necessary to determine the true nature of these points of interest
and distinguish them from other high-intensity zones of normal breast tis-
sue. In order to differentiate between isolated high-intensity points and high-
intensity regions, we employed a k-means clustering algorithm to group the
high-intensity points according to their spatial location. The k-means algo-
rithm resulted in multiple clusters, but not all the groups created by the
algorithm necessarily correspond to regions of interest. To ensure that only
regions of interest were being considered in the following analysis, we removed
any clusters containing only a single point. This is because single points are
more likely to be isolated high-intensity voxels, rather than part of a region
of interest. As a result, only clusters containing multiple voxels were retained
as potential regions of interest.

4. Region Segmentation
To segment the regions of interest, the 3D region growing algorithm was
applied to the centroid of each group. This resulted in a mask with all the
regions of interest that had been segmented, in a three-dimensional represen-
tation. The segmentation process continued by analyzing the next transverse
cut and identifying points of interest. To avoid duplicating efforts and opti-
mize computational efficiency, if the points of interest were already included
in the previous mask, they were not re-segmented. Instead, the algorithm
focused on identifying new regions by applying 3D region growing to any
points of interest that were not yet included in the mask. This process was
repeated for all transverse cuts, ultimately resulting in a comprehensive mask
that encompassed all structures identified across all cuts.

Structure Characterization. After conducting the segmentation and obtain-
ing the resulting 3D structures, we performed an analysis of these structures by
calculating their volume, circularity measures, and compactness.

1. Volume: The volume of the structures was determined by multiplying the
voxel size (1 mm× 1 mm × 1 mm) by the number of voxels in each structure.
The resulting value represented the volume of the structure in mm3. The
volume determines the size of the structures, which can provide important
information about their potential malignancy or benignancy.

2. Circularity: The circularity is based on the relationship between the volume
and surface area of a structure, being calculated by multiplying the volume
by 4π and then dividing it by the square of the surface area. The circularity
value ranges between 0 and 1, with 1 indicating a perfectly circular structure
and values closer to 0 indicating structures that are increasingly non-circular.
This value can be used to characterize the shape of a structure, providing, in
the context of medical imaging, information about its nature and behavior.

3. Compactness: The compactness of a structure is calculated as a measure of
its shape, and is determined by the ratio of the volume of the structure to
the volume of a sphere with the same surface area. As so, it can be calculated
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by multiplying the square of the volume by 36π, and then dividing the result
by the cube of the surface area. The compactness value ranges from 0 to 1, a
value of 1 indicates a perfect sphere. Computing the compactness of each 3D
structure can be useful in differentiating between different types of structures
since tumors tend to have higher compactness and to be more encapsulated,
while normal breast tissues tend to be more irregular in shape.

4 Results

The results of the implemented steps are demonstrated for a single MRI scan,
containing one heterogeneous malignant tumor and four benign tumors, accord-
ing to medical reports. The final segmentation of another MRI scan, which only
contained one malignant tumor, was also presented.

ITK-SNAP (also known as the Insight Segmentation and Registration
Toolkit), a powerful open-source software, which offers a wide range of tools
for image analysis and visualization, was used in this study to visualize the MRI
images of the breast, allowing for an enhanced view of the tumors present, in
the transverse, coronal, and sagittal planes. Figure 1, on top, shows a transverse
cut in which three different tumors can be seen - one malignant on the left, and
two benign in the center and right. The images in the middle and bottom show
the sagittal and coronal cuts, respectively, in which all tumors can be seen.

4.1 Image Filtering

The application of a median filter to the pre-processed image smooths the
edges, facilitating the breast tumor segmentation process. Figure 2 illustrates
the grayscale image before and after the filtering, on the left and right, respec-
tively.

4.2 Tumor Segmentation

As mentioned above, for the automatic selection of the seed point, the proposed
algorithm followed several steps. This subsection presents the results obtained
in each step for one chosen transverse cut of the MRI exam containing multiple
tumors.

After re-sampling the image in a reduced set of points, the algorithm will
find, for each transverse cut, the points that are possible candidates as seeds.
Figure 3, on the left, shows the location of the points of interest identified in the
second step of the process for the transverse slice depicted in Fig. 2. The intensity
of the voxels surrounding these points satisfies the established threshold criteria,
thereby rendering them suitable as seeds. These points are characterized by high
intensity, as they are represented in lighter shades of blue or yellow.

The subsequent step consisted of employing a selection criteria to differen-
tiate between regions of interest and high-intensity isolated points. To achieve
this, a k-means clustering algorithm was used. Figure 3, on the right, illustrates
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Fig. 1. Breast MRI visualization using ITK-Snap. The top images depict a transverse
view, showcasing the presence of three distinct tumors. The middle and bottom images
provide a clear representation of the same tumors in the sagittal and coronal planes,
respectively. Left: malignant tumor; Center and Right: benign tumors.

Fig. 2. Representation of the application of the median filter for edge smoothing: image
prior to filtering (left) and image after filtering (right).

the clusters of high-intensity points obtained based on their spatial location,
represented by different colors. Any cluster that consisted of a single point, such
as the yellow cluster depicted in the figure, was subsequently disregarded.

In the following step, the 3D region-growing algorithm was applied using the
centroid of the groups as seeds for the region-growing process. The intensity
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Fig. 3. Left: Location of the high-intensity points of interest for a transverse slice.
Right: High-intensity points separated in groups according to their spatial location.
The ‘X’ in black represents the centroids of the groups. (Color figure online)

threshold used was defined as mentioned above, i.e., three standard deviations
above the mean intensity of the image. Figure 4, on the left, presents the result-
ing mask overlaid on the transverse cut. The mask is depicted in yellow, and
a visual comparison with the structure of interest, highlighted in lighter blue
in the original image, demonstrates a high degree of similarity. This suggests
that the segmentation was successful. In Fig. 4, on the right, presents the mask
obtained in a three-dimensional view, which further supports the accuracy of the
segmentation, as it is observed that the structure of interest is well-segmented
in three dimensions.

Fig. 4. Left: Output of the region growing algorithm applied to the centroids of the
groups, in the previous transverse cut, represented in yellow. Right: Representation of
the output of the region growing (yellow zones in a three-dimensional plane. (Color
figure online)



Breast MRI Multi-tumor Segmentation 25

Although these structures were identified only using seeds on one transverse
cut, this process was successively applied to all cuts, which resulted in a total
mask including regions of interest from all the cuts. As so, in Fig. 5 the resulting
total mask displays four well-segmented structures that appear to be tumors, as
well as one irregular structure that is not likely to be a tumor. This irregular
structure is likely a segmentation artifact caused by high-intensity breast wall
tissues. Furthermore, medical records indicated that this MRI exam included
five tumors: one malignant and four benign. Thus, our methodology failed to
segment one benign tumor - the smallest one, according to the records. This
can be caused by limitations in the tuning of parameters, such as threshold or
k-means parameters, in detecting small volumes. Additionally, Fig. 6 shows the
mask obtained for the other MRI exam, in which our method did not perform
well, despite the presence of only one tumor. The tumor’s abnormally large size,
irregularity, and heterogeneity made it challenging to segment, which suggests
that further tuning of our parameters is required to improve performance in such
cases.

Fig. 5. Representation of the final 3D mask obtained when applying the 3D region
growing successively in all the transverse planes of the multi-tumor MRI exam. Malig-
nant tumors are identified with red, whereas benign tumors are identified with green.
(Color figure online)

The masks obtained were divided into separate structures - five structures
for the first exam, one single structure for the second exam - in order to be
further analyzed. In Table 1, we present the values of volume, compactness, and
circularity of each structure. For the first exam, structures are labeled from 1 to
5, according to their location in Fig. 5, from left to right.

Based on the results shown in Table 1, the malignant tumors were the struc-
tures with higher volumes, 11.682 mm3 and 12.259 mm3 for the first and second
exams, respectively. They presented lower levels of circularity - 0.0067 and 0.0035
-, and also compactness - 0.1502 and 0.0586 -, when compared to the benign
tumors, which indicates that their structures are more irregular and less round.
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Fig. 6. Representation of a poorly-segmented tumor obtained when applying the pro-
posed methodology to one single-tumor MRI exam.

Table 1. Characterization of the structures according to their volume, compactness,
and circularity. The classification was based on medical records and human inspection.

Structure Volume Compactness Circularity Classification

1–1 11682 0.1502 0.0067 Malignant

1–2 1938 0.2016 0.0148 Benign

1–3 845 0.0167 0.0037 Not Tumor

1–4 763 0.8451 0.0526 Benign

1–5 1813 0.2602 0.0180 Benign

2–1 12259 0.0586 0.0035 Malignant

The three benign tumors from the first exam (structures 2, 4, and 5) presented
the three highest values of compactness and circularity, highlighting their round
compact shape. The third structure, which is not a tumor, has a significantly
lower compactness value compared to the other structures - 0.0167 - and also
exhibits the second lowest values for both volume and circularity, 845 mm3 and
0.0037, respectively.

The results align with the typical characteristics of malignant and benign
tumors, providing additional information that could be used to improve the
effectiveness of our pipeline at identifying and discarding non-tumor structures.

5 Discussion

Previous algorithms, such as the one proposed by Pelicano et al. [9], used the
highest intensity voxel as the seed for the region growing algorithm. However, this
approach may not always correctly identify the tumor region and may require
manual selection of the seed. Additionally, it only allows selecting one seed, which
prevents targeting more than one region. Our proposed algorithm overcomes
these limitations by utilizing a k-means clustering approach to automatically
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select multiple seeds for the region growing algorithm, providing a more robust,
efficient and automatic method for multi-tumor segmentation.

The results of the proposed methodology for tumor segmentation suggests a
promising performance, as indicated by visual inspection. At least, four tumors
appear to have been segmented with high accuracy. However, due to the absence
of actual tumor structures for comparison, a comprehensive evaluation of the
effectiveness of the method is challenging. Nonetheless, the results partially
agree with medical records. In the first examination, the algorithm successfully
segmented a structure that displayed characteristics commonly associated with
malignant tumors, such as an irregular shape and a larger size. The structure
identified in the second exam, which is also a malignant tumor, also presented
a larger size and irregular shape. Additionally, the algorithm identified three
structures in the first exam with round regular shapes and smaller sizes, which
agree with the characteristics of benign tumors. Based on this visual analysis,
it can be inferred that the proposed pipeline demonstrated to be promising in
segmenting both malignant and benign tumors.

However, there were some drawbacks during the segmentation process. The
segmentation of the first MRI scan revealed two more shortcomings: one benign
tumor was missed and one irregular structure that was not a tumor was mistak-
enly identified. The limitations of the segmentation process may stem from the
parameters chosen throughout the pipeline. The threshold used was established
in [9], but distinct results could have been achieved with different thresholds.
The threshold is critical during the 3D region growing process, as it determines
the range of intensities around the seed point that is considered for segmenta-
tion. Thus, if too low, it may lead to the inclusion of regions with a low intensity
that are not tumors, while a high threshold may result in the exclusion of high-
intensity regions, that can be in fact tumors.

The k-means clustering results may have been influenced if different param-
eters for k had been used. In this case, the k-means was set to create 6 groups,
and groups with only one point were not further considered for segmentation.
However, other k values would have changed the results obtained. For instance,
if the k parameter was changed from 6 to 8, the seed points identified would be
different, and this would lead to a distinct resulting mask. The condition that
single-point groups should not be considered helps remove high-intensity points
that are not part of a tumor and may lead to removing points of interest that
actually belong to smaller regions of interest. This may have caused the missing
segmentation of the small benign tumor in the first image.

The parameters used in the algorithm play a crucial role in determining the
results obtained, as changes made to any parameter will have an impact on the
outcome. Hence, to improve the effectiveness of the proposed methodology, we
recommend performing a more thorough analysis of the threshold and k-means
clustering tuning parameters in future work.

In order to further analyze the structures identified by the algorithm, var-
ious features were computed, including volume, compactness, and circularity.
These features offer valuable insights into the structural attributes, despite the
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absence of precise threshold values specific to each tumor type. Nevertheless,
it is anticipated that malignant tumors will exhibit lower levels of compactness
and circularity, attributed to their irregular shapes, along with larger volumes,
as they typically manifest in larger sizes. The analysis of the results showed that,
in fact, the structures corresponding to the malignant tumors presented higher
volumes and lower compactness and circularity compared to the benign tumors,
as expected. The structures identified as benign tumors had a more round and
compact shape, as well as smaller volume, which is also consistent with the
expected characteristics of benign tumors. The non-tumor structure had lower
compactness compared to the tumor structures and was also characterized by a
low volume and circularity.

These findings provide additional information that could be used to differen-
tiate between malignant and benign tumors, as well as tumors and normal breast
tissue. In the future, by integrating these features with features of texture and
intensity, into a machine learning algorithm, the segmented structures could be
classified as malignant, benign, or non-tumor.

6 Conclusion

In conclusion, our study aimed to develop a fully automated methodology for
multi-tumor segmentation in breast MRI. Our proposed pipeline successfully
achieved both the completely automatic seed selection and the multi-tumor seg-
mentation objectives, leading to a successful segmentation in the majority of the
cases. However, there are some limitations to the pipeline, such as difficulties
in segmenting certain tumors, which suggest that future work should focus on
finding optimal parameters for the model. Additionally, by integrating features
such as volume, compactness, and circularity into machine-learning algorithms,
the segmented structures could potentially be classified as malignant, benign,
or non-tumor. Moreover, our method was evaluated on a limited sample size,
consisting of only two MRI exams from two different patients. This hinders the
generalization of the results to a larger population. As such, future research
should aim to expand the sample size and test the proposed pipeline on a more
representative population in order to validate the results.

Overall, our study presents a promising approach for automatic multi-tumor
segmentation in breast MRI and holds potential for refinement through the opti-
mization of model parameters and integration with a classification model based
on the characteristics of the segmented structures.
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Abstract. This work focuses on the problem of mortality prediction in
patients with pneumonia after admission into an intensive care unit, by
addressing it via logistic regression. This approach can model the relation-
ship between clinical correlates and the probability of the binary outcome,
with obvious advantages such as simplicity and interpretability of the pre-
dictive models. This work further inspects the potential of localized mod-
els, an approach based on different (parallel) predictive models each one
constructed in clusters automatically identified in the training set. The
predicted outcome is then obtained via membership separation (M, which
corresponds to the outcome of the closest localized model) or weights (W,
outcome as the weight average of localized outcomes via inverse distance).
The results point out a similar balanced accuracy of 0.73 for the global
model M24-48PS (without oversampling) and the W M24-48PSC model
(weighted average of localized models without oversampling), which is par-
tially explained by the small separability between the identified clusters.
Therefore, a proof of concept was performed to support the usefulness of
localized models in more separable data. This study considered a small
amount of data for training and testing (chosen as that closest to the cen-
troids of the identified clusters) and the results suggest that the localized
approach can outperform the global one in more separable data.

Keywords: Pneumonia Mortality · Machine Learning · Logistic
Regression · Localized Models

1 Introduction

Pneumonia constitutes a serious illness that can lead to critical medical compli-
cations, or even death, being characterized by inflammation of the lungs, mainly
affecting the lung alveoli [21]. Pneumonia is one of the most common infectious
causes of death worldwide and is the fourth major cause of death after heart
disease, stroke, and chronic obstructive pulmonary disease. The Global Burden
of Disease estimates that pneumonia caused 2.5 million deaths worldwide in
c© Springer Nature Switzerland AG 2024
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2019 across all age groups [10]. In outpatient contexts, especially in developed
countries, pneumonia has a relatively low fatality rate ranging from 1% to 5%.
However, among patients who require hospitalization, the mortality rate is much
higher and reaches up to 25%, particularly when admission to an ICU (intensive
Care Unit) is necessary [12].

The cases of Community Acquired Pneumonia (CAP, the most common type
of pneumonia) range from 1.5 to 14 cases per 1000 persons per year, with the
value of a specific region depending on geography, wealth and population char-
acteristics [24]. At any level of medical care, treating patients with CAP accom-
panies high direct and indirect costs. As an example, the costs in USA range
from 8.4 to 10 thousand million dollars annually [19], with a cost per patient
that required hospitalization of 10 thousand dollars (from 2008 to 2014) [28].
In Europe, the costs are about 10.1 thousand million euros annually [32]. All
of this with an increasing trend in costs aggravated by inflation [1]. This makes
pneumonia not only a health problem, but also a financial burden.

Predicting outcomes related to pneumonia is crucial from a medical and
financial perspective. In this work, the focus is on a distinct prediction that can
be simplified into a binary problem, the risk of mortality following admission to
ICU (Intensive Care Unit). It is a big challenge to predict because ICU mortality
rates range greatly depending on various patient characteristics, including phys-
iologic characteristics, clinical, and demographic [15]. There are several advan-
tages to predicting mortality in a hospital setting. Firstly, it can help determine
the severity of an illness, as well as the potential effectiveness of advanced ther-
apies [23]. Secondly, it can aid in triaging and allocating resources, which can be
critical in times of high demand or resource scarcity. Additionally, mortality pre-
diction can be useful for health research and administration, for benchmarking
and evaluating the performance of healthcare systems in comparison to observed
death rates. Lastly, it can also facilitate conversations with patients and their
families about predicted outcomes and inform healthcare policies [15].

There are already some clinical scores that are commonly used as daily tools
in the hospital setting to predict mortality after admission to the ICU, including
APACHE II (Acute Physiology and Chronic Health Evaluation II) [13], SAPS II
(Simplified Acute Physiology Score II) [11] and SOFA (Sequential Organ Failure
Assessment) [29]. For mortality specific to patients with pneumonia, there is
CURB-65 [18] and PSI/PORT (Pneumonia Severity Index) [7]. Although useful,
alternative methods to predict mortality can substantially improve accuracy
and simplicity. Evaluating a high number of scores can make the process more
complicated, and some scores may not be adapted to specific situations. By using
alternative methods, predictions can be more specific and accurate.

ML (Machine Learning) methods have gained considerable attention in the
medical field due to their excellent performance in various prediction tasks. These
methods have the potential to enhance diagnosis and outcome prediction, partic-
ularly as the number of healthcare providers using electronic records continues to
increase [27]. The predictive objectives of this study align with this perspective,
and thus, ML methods will be employed to predict the possibility of mortality
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after admission to the ICU. This topic has already been studied in the literature
using various approaches, with some of the more recent summarized in Table 1.

Table 1. Recent research papers. Acronymous: GLM - Generalized Linear Model, CPN
- Causal Probabilistic Network, XGBoost - Extreme Gradient Boosting, GBM - Gra-
dient Boosting Machine, MLP - Multilayer Perception, KNN - K Nearest Neighbours,
NN - Neural Networks, SVM - Support Vector Machine, LR - Logistic Regression.

Method Dataset and Details AUC Ref.

SeF-ML (CPN to
predict mortality in
sepsis, adapted with
ML).

From two Spanish university hospitals.
With 4,531 CAP patients in total. With
Structured health data. For 30-day CAP
mortality.

0.801 [4]

Extensive-CURB-RF
model (CURB-65 and
Random Forest mix
model).

From an emergency department in Seoul,
Korea with 1,732 patients. With
demographic information, mental status and
laboratory findings, including CURB-65
variables. For 30-day pneumonia mortality.

0.822 [12]

Random forest (best),
LR (also best), GBM
and XGBoost with
SMOTE.

From humanitas Research Hospital in Milan,
Italy. With 1,135 consecutive patients with
COVID-19. With vital parameters,
laboratory values and demographic features.

0.88 (best) [14]

XGBoost (best), Data
Mining, Gaussian Naive
Bayes, KNN and SVM.

From a Hospital in Cuenca, Spain. With
symptom and vital signs, analytical
parameters, chest X-ray, demographic
characteristics and presence of
comorbidities. For 150 COVID-19 patients.

0.93 (best) [2]

XGBoost for different
time intervals.

MIMIC dataset, with 60,000 ICU admissions
with demographics, vital signs, laboratory
tests, medications and caregiver notes.

0.87–12h
0.78–24h
0.77–48h
0.73–72h

[26]

XGBoost (best), GLM,
Random Forest and NN
(also best)

From german Helios hospitals with 241,988
patients, with administrative hospital data.
For Severe acute respiratory infections.

0.834 (best)
0.830 (GLM)

[16]

LR , Random Forest,
SVM, LightGBM (best),
MLP and XGBoost

52,626 patients with pneumonia in Taiwan
between 2010 and 2019, with 33 features
including vital signs, laboratory data and
underlying comorbidities.

0.835 (best)
0.807 (LR)

[3]

Table 1 shows that recent studies have achieved a fair performance while
using a diverse range of data, with different origins, sizes and types of patients.
It also presents a tendency for the use of complex models, with special emphasis
on XGBoost. Although the use of complex models can result in good predic-
tions, the use of simpler and interpretable models, such as logistic regression,
enables to better understand the rules and correlations of variables in a model.
Another important aspect that is often overlooked is the significant variation
that exists within the populations from which the data originates. Different
subsets of the population possess unique characteristics that can have varying
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impacts on mortality predictions. To address this, one approach is to partition
the data into more homogeneous populations and develop separate models for
each population group.

This work has the objective to predict, with machine learning, the probability
of mortality in patients with pneumonia after entrance in ICU. This will be
done by resorting to hospital data obtained from patients with pneumonia in
ICU. Another objective is to separate the data into different more homogeneous
populations, and then obtain different models for the different populations, in
order to try to increase the performance of the predictions. All of this with
the aim to improve outcome prediction in a hospital environment, with great
importance in terms of hospital logistics, ensuring health care quality.

2 Materials and Methods

This work is based on experimental data collected from patients admitted into a
ICU, in an anonymous and confidential manner. The methods used in this work
aimed at data pre-processing and modelling, which are described in more detail
in the following subsections.

The data preprocessing and modelling were carried out using Python, high-
lighting the use of the following packages. SciPy in the Yeo and Johnson algo-
rithm for the transformation of the data and the linkage algorithm to construct
the dendrograms to separate clusters for localized models and to select highly
correlated features [30]. Scikit-learn for the Standard scaling, for the imputation
related functions (KNN Imputer, Iterative Imputer, IterativeImputer, Random
Forest Regressor and Bayesian Ridge) and for the logistic regression implementa-
tion [22]. Imbalanced-learn in the oversampling technique ADASYN [17]. Finally,
Pandas and NumPy for general data manipulation [8,20].

2.1 Experimental Data

The data under analysis contains information on a large number of patient admis-
sions in the ICU diagnosed with pneumonia, in Portugal, from February 02, 2009
to August 18, 2020 in about 5000 health units. The data were simulated from the
real dataset to ensure the complete anonymity of the patients and non disclosure
of the real data, using the joint probability distributions empirically estimated
from the real data. The data simulated is confidential under a signed agreement
between the involved parties in order to make sure that the information con-
veyed in the data is not released to the general public. This complies with the
overall rules of the General Data Protection Regulation (GDPR) requirements
on collecting, storing and managing personal data.

The data comprised a total of 15355 admissions mimicking a total of 7719
unique patients. The variables available included the associated with the hospi-
tal episode, clinical and logistic data e.g. patient age, birth date, gender, vital
signs, laboratory measurements, diagnoses, medications, clinical devices, types
of services and others. In order to extract the variables from the database two
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criteria were used, firstly, variables similar to those found in the literature were
sought, and then, other factors were extracted based on human intuition and
later analyzed their importance for solving the problem. The chosen time inter-
val of a patient’s stay in the hospital to extract starts at 24h and ends at 48h
after the patient’s entrance into ICU, to do predictions based on the 24–48h
patient status. After pre-processing, the sample consisted of a set of 64 features
observed from 2729 patients, with a final mortality ratio of 17.3%.

2.2 Data Pre-processing

The pre-processing tasks were divided into 7 steps, including, (1) transforma-
tion, (2) outlier removal, (3) first feature/observation removal, (4) scaling, (5)
imputation, (6) selection and (7) second feature/observation removal.

In the first step, the Yeo and Johnson transformation was used to reduce
asymmetry in the distribution of the data [33]. Equation 1 presents the transfor-
mation, where y is the original value and λ is a chosen parameter optimized as
to provide the best approximation to a normal distribution.

y(λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(y+1)λ−1
λ if λ �= 0, y ≥ 0

log(y + 1) if λ = 0, y ≥ 0
−((−y+1)2−λ−1)

2−λ if λ �= 2, y < 0
−log(−y + 1) if λ = 2, y < 0

. (1)

The choice of the optimal λ is performed via log-likelihood maximization. The
transformation is applied to each feature (separately) with a skewness greater
than 1 in absolute terms. Here, features with a negative skew were previously
changed into a positive skewed feature, where the new value of each observation
corresponds to the max value of the variable minus the value of the observation.

The second step consisted in outlier removal based on a rule constructed
from the empirical IQR (Interquartile Range) multiplied by a fairly large con-
stant in an effort to just eliminate very severe outliers. This work considered a
multiplication factor of 5.

Third, in first feature/observation removal, features and observations with a
big amount missing data (NaNs) were eliminated. The thresholds of elimination
were more than 8000 NaNs for features and 23 for observations. These values
were chosen in an attempt to balance the loss of information with the elimination
of observations and features.

Fourth, in scaling, the data was scaled using Standard scaling. It adjusts each
feature to have a variance of one while removing the mean. This is important to
make features comparable to the model.

Fifth, in imputation, data imputation is used to estimate the values of NaN
data. Three different imputation techniques were used based on two imputation
functions, KNN Imputer and Iterative Imputer [22]. Regarding IterativeImputer,
2 techniques were used with different estimators, Random Forest Regressor and
Bayesian Ridge. To evaluate and compare the imputation results, the R2 (coef-
ficient of determination) mean values were calculated based on validation data,



Mortality Prediction in ICU Patients with Pneumonia 35

where 200 available data points were randomly selected and replaced with NaN
values in 5 validation iterations. This was done for each function and feature. In
the end, for each feature, the technique with the best R2 is saved, and if the R2

is longer than 0.3, the imputed feature will substitute the original feature.
Sixth, in selection, the influence of each feature in logistic regression becomes

less precise if the input variables have a high degree of correlation between
them. This is known as multicollinearity. To remove highly correlated features,
a correlation dendrogram analysis was performed based on dissimilarity, which
corresponds to 1 minus the absolute value of the correlation. The threshold of
dissimilarity to separate highly correlated features from non-correlated is 0.3 [6].
Then from a pull of correlated features, the one to keep is the one with a higher
correlation with the prediction objective variable.

Seventh and final, in the second removal, the remainder of NaN data was
eliminated. First, features with a larger fraction of NaNs than 0.3 were elimi-
nated. Then, the rows that still had NaNs were eliminated, achieving the final
2729 admissions and 64 features.

2.3 Predictive Models

This work makes use of Logistic Regression, which is characterized by a smooth
and linear decision boundary between two classes, making it good for linearly
separable data and permitting binary classification [5]. It constitutes a simple
model that is easy to interpret and fast to train. Also, Recursive Feature Elimi-
nation (RFE) based on logistic regression was used to choose the most important
features to use in the final models.

Oversampling techniques permit to improve the performance of models in
unbalanced data. ADASYN (Adaptive Synthetic Sampling Method for Imbal-
anced Data) is the oversampling technique used in this work. It allows to deal
with unbalanced datasets by creating synthetic data to balance the classes, and
thus obtain better results in the algorithms. ADASYN works similarly to the
popular algorithm SMOTE, but skews slightly the sample space to the points
that are not located in the homogenous neighbourhoods, adding a small random
value, making the data more realistic [9].

Twelve different models were created, namely, 2 global models, denoted by
M24-48PS (without oversample) and OSM24-48PS (with oversample) and 10
localized models, the M24-48PSC family (without oversample) and the OSM24-
48PSC family (with oversample). The names of the models were created accord-
ing to their specifications, the core, M24-48PS, stands for mortality given the
24–48h patient status, the OS, in the beginning, for oversampled and the C, in
the end, for clustered. A simplified pipeline of the procedure to construct the
models is presented in Fig. 1.
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Fig. 1. Pipeline to obtain the models. Blue squares are in common for all models, green
squares are just for the identified OS model and orange squares are just for C models.
(Color figure online)

A more detailed explanation of the steps present in Fig. 1 are as follows.
Train test split: To split the data, a 0.33 ratio was used, resulting in 1828 obser-
vations (1512 in class 0 and 316 in class 1) for train and 901 observations (745
in class 0 and 156 in class 1) for test. Class 1 stands for the mortality class
and class 0 for the non-mortality one. Oversample (OSM24-48PS): The data
for the global oversampled model (OSM24-48PS) is oversampled, balancing the
– classes.

• Feature selection via RFE (Recursive Feature Elimination): RFE was applied
and 20 features were obtained that make a substantial difference in the models
performance, consequently, these are the features that will be used.

• Dendrogram analysis (for localized models): To separate the data into differ-
ent populations, hierarchical clustering dendrogram analysis was applied to
the train data. The clustering was done with the Ward variance minimization
algorithm and the Euclidean metric [31]. It got 5 clusters as the optimal sep-
aration, with a silhouette score of 0.11 [25]. The low silhouette value shows
that some cluster overlap is to be expected, however, it was still possible to
obtain different clusters, all of them with a different number of observations
and mortality ratios.

• Oversample (OSM24-48PSC): Each cluster is oversampled independently for
the OSM24-48PSC family of models data to balance the classes.

• Feature selection via RFE (second time for localized models): This time, it
was done for each specific cluster, because important features in a single
cluster can differ from the important features in all the data.
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• Penalty analysis: The performance of the models with different penalties was
accessed (L1, L2 and Elastic Net with various ratios of L1 and L2 penalties,
according to the implementation of logistic regression in Scikit-learn [22]). All
the models got L2 (standard one) as the final one, because the results with
other penalties were not significantly different.

• Final model(s) and convergence analysis: The final models were obtained and
the convergence of the cost functions and parameters were confirmed.

3 Results and Discussion

The final models are summarized in Table 2, there, chosen features for each model
have the coefficient value, with the total number of features chosen for a model
present in the Total row. The number of observations for training and the cor-
responding mortality ratios are presented in the following rows. Some features
have their name abbreviated. Their meaning is the following, TAD is diastolic
blood pressure, PaCO2 is the partial pressure of oxygen, NIVUD is non inva-
sive ventilation until date, MultiorganD is Multiorgan Dysfunction, NeuroMy-
opathy is Polyneuropathy/Myopathy, metHB is Methemoglobin, AST/TGO is
Aspartate Aminotransferase, DHL is Lactate Dehydrogenase, GGT is Gamma-
Glutamyl Transferase and BE is the Base Excess. Some relevant aspects that
can be highlighted from Table 2 are the great variety of different mortality ratios
in the different clusters, evidencing that different populations in the data have
different probabilities of mortality. The great variation in the number of obser-
vations for each population. And the fact that each cluster had an optimal pull
of different features shows that important factors to predict mortality vary from
population to population.

Examining the coefficient values present in Table 2, that permit to assess
the importance of features in each model, M24-48PS and OSM24-48PS models
exhibit similar coefficient patterns. The ones that lead larger increase in the
probability of mortality (larger positive value) are DHL, PaCO2 and GGT and
the ones that lead to a smaller probability of mortality are TAD, BE, AST/TGO,
AlkalinePhosph and Age (the true age leads to a larger probability of mortality,
because it was inverted in pre-processing). In the coefficients of the localized
models, there is considerable variation in the importance of the features, indi-
cating that different populations exhibit distinct mortality indicators, and that
the importance of these indicators varies across clusters. These insights are very
useful in a hospital environment and help doctors understand how a prediction
of a model was made, and change their procedures accordingly.
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Table 2. Models Summary, with the features used in each model with their coefficient
value, number of train observations used and the mortality ratios. Some features have
their name abbreviated.

3.1 Model Performance and Comparison

The performance via cross-validation with 10 iterations for each model is present
in Table 3. There, the localized models and global models have approximately the
same accuracy and balanced accuracy, suggesting that the data may not exhibit
sufficient heterogeneity to yield significantly improved predictions with the local-
ized models, evidenced by the low silhouette score. Furthermore, it is noteworthy
that the oversampled models consistently outperform the non-oversampled mod-
els across various performance metrics (except for accuracy, expected due to data
imbalance). In addition, the Recall, and subsequently F1-score, are especially low
for non oversampled models, implying that the percentage of data samples that
the model correctly identified as 1 in mortality is low. In terms of specific local-
ized models, significant variations in performance across different cluster models
are observed, pointing to the obtainment of different models with distinct pre-
dicting capabilities. Lastly, it is important to note that the M24-48PSC1 model
exhibits Precision, Recall, and F1-score values of 0, because the performance
functions had a zero division due to the low amount of positive mortality pre-
dictions present in the train data. In such cases, the function returns 0.
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Table 3. Performance metrics via cross-validation for all models. W. Average is the
weighted average of the specific localized models, weighted according to the amount of
train data for each model.

The performance with test data is present in Table 4. There, to be able to
compare the test results of the global and localized models, two systems of
assigning test data to the localized models were used. First, membership Sepa-
ration (M), where the observations of the test data are assigned to the cluster
with a smaller distance to the cluster centroid. Second, via weights (W) were all
the test data is predicted using all models, and the final probability for a given
observation is the weighted average over all model predictions. The weights are
calculated via inverse distance weighting (IDW) between the observation and
the cluster centroids.

In Table 4, global and localized models do not have a very significant dif-
ference between them in performance, consistent with the findings from cross-
validation. However, contrary to the cross-validation results, the models trained
with oversampled data show slightly lower performance compared to the mod-
els without oversampling. This suggests that the performance improvement
observed with oversampling in cross-validation did not generalize well to the test
data with the original mortality ratios. By comparing specific localized models,
there is a trend were models trained for the same cluster, with or without over-
sample, have the same tendency to be better or worse compared to the other
models. This indicates that certain clusters have inherent factors that make
it easier or more challenging for the models to accurately predict outcomes.
Notably, the models obtained with cluster 1 exhibit the poorest performance,
likely due to the small number of observations in its training data and the low
probability of mortality in that cluster. Conversely, the models built with cluster
2 demonstrate the best performances. Finally, out of all the models, M24-24PS
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and M24-24PSC Weights can be picked as slightly better in terms of performance
in test data.

Table 4. Performance metrics obtained with test data. Individual localized models
are evaluated via membership. Membership A. is the weighted average of the localized
models membership, weighted according to the amount of test data for each model.

3.2 Localized Models Proof of Concept

To show that in a dataset with greater separability, localized models can give
better performances, the centroids of the previously obtained clusters were taken
and the 75 closest observations for train and the 50 closest test observations
were extracted. Three new models were created, NEW 3, NEW 4 and NEW
5. Cluster 1 and 2 models, because of the already low amount of data present,
were used as before. For comparison reasons, a global model with new data with
greater separability was created (NEW GLOBAL). The results are present in
Table 5, with a new silhouette score between all clusters of 0.2, evidencing a
larger separability than the one obtained before (0.11).

In Table 5, the cross-validation performance (except precision) and the test
recall of the combined models is larger than the one from the global model, which
may indicate that this approach is useful in more separable populations. The test
recall is especially of interest because it shows that the combined models correctly
identify more mortality observations. However, the F1 Score and precision of the
combined new models is smaller. On the surface, this would not be expected,
however, when taking into account the limited amount of data and the resulting
scarcity of positive mortality observations in some clusters, this can be explained.
These characteristics significantly limit the predictive capabilities, particularly
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impacting this type of analysis. Cluster 1 stands out as particularly problematic
in this regard. This leads to conclude that localized models would probably
be useful in more separable data, but not compromised by imbalanced class
distribution and a small amount of data. Nonetheless, further research is still
necessary to fully understand and validate this approach.

Table 5. Performance of the NEW 3, NEW 4 and NEW 5 models, the weighted average
(NEW COMBINED) of the new models in conjunction with 1 and 2 of the M24-24PSC
family and the NEW GLOBAL model.

4 Conclusions

This work had the objective of predicting the probability of mortality in patients
with pneumonia after entrance into ICU. The usefulness of localized models was
also accessed, to predict outcomes in different populations of the data.

The best models obtained were M24-48PS and Weights M24-48PSC, both
with 0.73 of balanced accuracy and 0.49 and 0.48 in F1-score, respectively. Unfor-
tunately, the F1-score is low, due to the low precision. The results of the global
and combined localized models do not reveal major differences in performance,
due to the low separability of the data, however, the proof of concept showed
that it has the potential to be useful in more separable data. Nevertheless, the
localized models achieved different performances separately and got different
importance in the mortality indicators, showing that the model performance
and mortality indicators depend on the population.

The obtained AUROC value of 0.78 for the best models is lower compared to
most of the models presented in Table 1. This difference can be mainly attributed
to the fact that in current literature, more complex models than the one used in
this work are usually used, that permit to get better performances. However, the
choice of more complex models could hinder the search for localized models and
compromise the interpretability of the results, which is especially important in
a medical context. The other reason that explains these results is the fact that
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very heterogeneous and varied data was used, which does not always happen in
other models.

Future work will explore different approaches aiming to increase the perfor-
mance of the predictive models, including optimizing data pre-processing param-
eters, as well as clustering analysis, and considering other clinical variables (or
other codifications of the existing ones). It will also experiment with more com-
plex models that permit better performances. Lastly, it would be important to
continue this work together with professionals in the field of health, who can
provide insights on how to tune the models according to their needs. Overall, it
is very important that this research for optimizing the prediction of mortality in
pneumonia is continued, in an effort to improve health care.
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Abstract. Appropriate pain treatment relies on an accurate assessment
of pain. Limitations regarding subjective reporting of pain or observa-
tional bias, when pain is assessed by a healthcare professional, can lead
to inadequate pain treatment. Therefore, pain assessment using physio-
logical signals has been studied in past years due to the importance of
objective measurement. The aim of this work is to use features extracted
from Electrocardiogram (ECG) signals to classify pain induced by a Cold
Pressor Task (CPT). Specifically, the goal is to determine the optimal
hyperparameters of the classification algorithms and the optimal features
for accurately distinguishing between higher and lower levels of pain. A
model combining 15 ECG-features related to the P, R, S, and T waves
and the Random Forest algorithm provided the best performance for pre-
dicting induced pain levels. This model achieved an accuracy of 95.3%,
an F1-score of 94.0%, a precision of 97.9%, and a recall of 90.4%. These
results show the feasibility of identifying pain through the physiological
characteristics of the ECG.

Keywords: Cold Pressor Task (CPT) · Classification ·
Electrocardiogram (ECG) · Induced pain · Machine learning · Pain
assessment

1 Introduction and Background

An accurate assessment of pain intensity is crucial for effective pain manage-
ment [10]. Currently, pain is typically assessed through self-reporting using scales
and questionnaires, both in clinical and experimental settings. For instance, one
widely used approach is the Numerical Rating Scale (NRS), where patients rate
their pain on a scale from 0 to 10 (or 100), representing the absence of pain
to the worst imaginable pain [5]. While self-reporting is considered the most
appropriate method for accurately assessing pain, it may not always be feasible,
particularly in individuals with limited verbal communication ability or cogni-
tive impairment [9]. In clinical settings where patients are unable to self-report
their pain, healthcare providers assess pain intensity by considering physiologi-
cal indicators and behavioral cues to derive a final pain score. Nonetheless, this
assessment process may be susceptible to the influence of observational bias [12].
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Artificial Intelligence (AI) has shown advantages in accurately assessing pain
and recent research has been exploring physiological signals to support it [17].
The effects of the Autonomic Nervous System (ANS) in response to pain can be
measured non-invasively through physiological signals, allowing for the detection
of increased sympathetic activity related to pain through physiological changes
rather than relying on self-report [10]. The work [6] showed that k-Nearest Neigh-
bor (KNN), Linear Discriminant Analysis (LDA), and Support Vector Machine
(SVM) classifiers could identify pain, induced by external electrical stimulation,
with accuracies of 83.94%, 84.28%, and 96.47%, respectively, using Skin Conduc-
tance Level (SCL), Blood Volume Pulse (BVP), and Electrocardiogram (ECG)
signals. In [13], an SVM classifier was used to classify pain levels based on ECG
signals, achieving validation accuracies of 62.72% for the classification between
the baseline and the highest pain levels category, and 84.14% for the classi-
fication between the baseline and moderate pain levels category. The work [2]
achieved an accuracy of 82.8% for the classification of pain using Electromyogra-
phy (EMG), SCL, and ECG signals. The approach involved data augmentation
and feature selection prior to training an SVM-rbf (SVM with Radial Basis
Function kernel) model. In [11], a pain classifier based on a Deep Belief Net-
work (DBN) using Photoplethysmography (PPG) was proposed. This method
achieved an accuracy of 86.79% in distinguishing between the absence of pain
during the preoperative period and the presence of pain in the immediate post-
operative period. Furthermore, the DBN-based classifier achieved an accuracy
of 65.57% in a multi-class classification approach for distinguishing between the
absence of pain, and mild, moderate, and severe pain. In the work [17], a classifi-
cation method based on deep neural networks with a late fusion approach using
ECG, EMG, and Electrodermal Activity (EDA) signals achieved an accuracy of
84.40% for the classification between baseline and pain using the BioVid Heat
Pain Database. However, this approach demonstrated an accuracy of 84.57%
using only the EDA signal.

The aim of this study was to investigate the responses of ECG signals to
pain through a controlled pain-inducing procedure involving thermal stimula-
tion, the Cold Pressor Task (CPT) [16], as a step towards developing an AI
physiological method for objective pain assessment. This method aims to assist
healthcare providers in assessing, monitoring, and treating pain in clinical prac-
tice, contributing to better patient care. The ECG records the electrical activity
of the heart and represents a sequence of cardiac cycles, which is composed of
the P wave, the QRS complex, and the T wave [15]. This paper analyzes features
based on ECG waves, with the goal of determining the most relevant ones for
classifying pain. This work aims to perform model and algorithm comparisons to
identify the most appropriate model for accurately distinguishing between two
pain levels, low/moderate pain and high pain.

The paper is organized as follows: Sect. 2 presents the protocol implemented
for data collection. In addition, this section outlines the proposed methodology
for data preprocessing and processing and provides a description of the extracted
features and the Machine Learning (ML) methods employed for the classification
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of pain induced during CPT. In Sects. 3 and 4, the findings are presented and
discussed, respectively. The last section contains the conclusions and future work.

2 Methods

This section describes the experimental protocol for data collection and explains
the methods implemented for analyzing the ECG responses during pain induc-
tion through cold pain stimuli applied as a CPT.

2.1 Dataset

The dataset comprises 642 examples and consists of data from 37 participants, 23
female and 14 male, with ages ranging from 19 to 25 years old (21.36 ± 1.27 years
old). All volunteers were recruited from the university student community.

2.2 Experimental Protocol and Data Collection

A representation of the stages of the experimental procedure of the data col-
lection protocol is shown in Fig. 1. This study was approved by the Ethics and
Deontological Council of the University of Aveiro (CED-UA-24-CED/2021).

Fig. 1. Experimental procedure for data collection.

During the initial phase of the protocol, the participant was asked to sit in
a comfortable position, while a five-minute baseline was recorded. Following the
baseline recording, participants were instructed to immerse their nondominant
hand and forearm in a warm water tank for two minutes to ensure a consistent
skin temperature across the participants before the CPT. After, the participants
submerged their nondominant forearm in a cold water tank with a temperature
of approximately 7 ◦C±1 ◦C. Participants were asked to endure the pain for as
long as they could, with a time limit of two minutes. If they could not tolerate
the pain, they were encouraged to inform the researcher and, before withdrawing
their arm, to report their pain level. If they were able to complete the CPT, they
were asked to report their maximum discomfort around the two-minute mark.
Participants were required to report their pain level using the NRS. Afterward,
participants were instructed to immerse their nondominant hand and forearm in
the warm water tank for another two minutes of immersion. Before the end of
the protocol, the participants were at rest while sitting in a comfortable position
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for five minutes. The ECG was recorded continuously using minimally invasive
equipment during the entire protocol.

More details regarding the experimental procedure for data collection, includ-
ing inclusion and exclusion criteria, ethical considerations, and the data collec-
tion setup can be consulted in the work [16].

2.3 Methods for Dataset Analysis

The goal of this study was to analyze the physiological changes in the ECG signal
caused by pain. Therefore, for this analysis, only the data collected during the
CPT, which regards the pain induction phase, was considered.

This work performed binary classification between low and medium pain
(NRS score < 8) and high pain (NRS score ≥ 8), with the goal of identifying the
most relevant ECG features and optimal hyperparameters of the classification
algorithms for accurately distinguishing these pain categories. The experiments
were performed in Python, mainly using scikit-learn (which supports supervised
learning).

Feature Extraction and Normalization. The dataset includes 21 features
extracted from the ECG signals in 20-second periods with a 75% overlap. The
features, described in Table 1, were computed based on the location of the peaks
of the P, R, S, and T waves and the onsets and offsets from the P, R, and T waves
(see Fig. 2). The extracted features were normalized by dividing each epoch by
the average of the respective feature in the baseline (see Fig. 1).

Table 1. Description of the extracted ECG features.

ECG Feature Description

P,R,S,T_amplitude Average amplitude of P, R, S and T waves
P,R,S,T_distance Average distance between each corresponding wave
P,R,S,T_peaks Number of peaks of P, R, S and T waves
P,R,T_onsetamp Amplitude of the onset of P, R, and T waves
P,R,T_offsetamp Amplitude of the offset of P, R, and T waves
P,R,T_onoffdist Average distance between the onset and offset of P, R, and T waves

Fig. 2. Location of the extracted peaks, onsets and offsets of an ECG cycle.
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Feature Selection. Feature selection was accomplished to remove redundant
features and reduce the computational complexity and execution time. Two
methods were compared:

1. Filter method: features with a correlation coefficient higher than 0.9 were
considered strongly correlated, and the one with lower variance was removed
from each pair of highly correlated features. The correlation between the fea-
tures was evaluated using the Spearman correlation coefficient, as the features
did not follow a normal distribution.

2. Wrapper method: sequential feature selection through a backward selection
was used to select sets composed of 2 to 20 features. Backward elimination
starts with the set of all available features, and one feature at a time is
removed.

Feature Scaling. Standardization of the features was employed for the classifi-
cation models which are based on distance measures to guarantee that variations
in the magnitude and range of the features do not influence the results of the
classification task, thus ensuring a fair and equitable comparison.

Classification. Binary classification was performed to distinguish between low
and moderate pain levels (NRS score < 8) and high pain levels (NRS score
≥ 8). For comparing the classification algorithms, nested cross-validation (CV)
was used. It is a recommended method for comparing algorithms in small to
moderate-sized datasets. The nested CV involves two nested k-fold CV loops.
The inner loop (2-fold CV in the inner loop) is used for model selection and the
outer loop (5-fold CV in the outer loop) provides an estimate of the general-
ization performance. This approach has been shown to reduce bias in hyperpa-
rameter tuning and evaluation compared to traditional k-fold cross-validation,
as reported in the study by Varma and Simon [18].

The original dataset was divided into train and test data (80/20) in a strat-
ified fashion in order to maintain the original class proportion in the resulting
subsets. The test data was set aside for the final evaluation of the model selected
through nested CV on the train data. Since the performance estimates may suffer
from pessimist bias if the training set is too small, the data from the outer loop
was merged and used to fit the best model after model selection using nested
CV. Finally, the generalization performance of the models was evaluated using
the independent test set.

Six ML algorithms were evaluated, namely kNN, SVM, decision tree (DT),
random forest (RF), adaptive boosting (AdaB), and extreme gradient boost-
ing (XGB). The kNN approach is based on computing distances and perform-
ing classification predictions based on the majority vote of its nearest exam-
ples [8]. SVMs construct a hyperplane as the decision boundary between the
two classes [1]. DTs learn simple decision rules based on the data features and
implement recursive partitioning to construct the tree nodes [3]. RF is an ensem-
ble method that builds on a set of several individual DTs, trained in parallel,
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which all contribute, equally, to make a final prediction [4]. AdaB and XGB
are gradient-boosting algorithms, training several models in sequence emphasiz-
ing the training samples according to previous misclassification. These ensemble
models typically use DTs as base learners, combining the performance of a set
of weak learners to create a single strong learner [7,14]. Table 2 lists the hyper-
parameters that were tuned for each algorithm. The optimal hyperparameters
of the classification algorithms were searched using scikit-learn GridSearchCV
function by maximizing the F1-score, which was calculated by averaging the CV
F1-score of the two inner loop splits. In addition to the F1-score, accuracy, pre-
cision, and recall scores were also used to assess the performance of each model.
These metrics were also calculated in the outer loop for selecting the best models
according to the generalization performance.

Table 2. Tuned hyperparameters of the classification algorithms.

Algorithm Hyperparameters

kNN p_neighbors: [1, 2, 3, 4, 5, 6, 7, 8, 9], p: [1, 2]
SVM kernel: ‘rbf’, C: [0.1, 1, 10, 100, 1000], gamma: [0.00001, 0.0001, 0.001, 0.01, 0.1]
DT criterion: [‘gini’, ‘entropy’], max_depth: [5, 10, 15, 20, 25, 30, 35, 40, 45, ‘None’]
RF criterion: [‘gini’, ‘entropy’], max_depth: [5, 10, 15, 20, 25, 30, 35, 40, 45, ‘None’]

n_estimators: [10, 50, 100, 500]
AdaB n_estimators: [10, 50, 100, 500], learning_rate: [0.01, 0.1, 0.5, 1]
XGB n_estimators: [10, 50, 100, 500], learning_rate: [0.01, 0.1, 0.5, 1],

max_depth: [2, 4, 6, 8]

Feature Importance. The importance of the features was computed for each
model. For kNN and SVM algorithms, the feature importance was determined
through the evaluation of feature permutation. Regarding DT, RF, AdaB and
XGB, the importance was obtained through the total reduction of the criterion
used to choose the best split at each node.

3 Results

The participants were required to report their pain level before the end of the
CPT. The average value reported was 7.29 ± 1.58 (mean ± standard deviation),
while the distribution of the pain levels had a median value of 7.

To conduct binary classification between two levels of pain intensity, the sam-
ples were divided into two groups based on the pain score distribution. Samples
with pain scores greater than the median value (NRS score ≥ 8), which corre-
spond to high pain, were assigned to the positive class, with 259 examples. The
negative class, consisting of low and moderate pain levels (NRS score < 8), has
383 examples.
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3.1 Datasets

The dataset was split into a training dataset and a test dataset. The training
dataset consists of 513 samples, with 106 negative samples and 207 positive
samples. The test dataset, on the other hand, consists of 129 samples, with
77 negative samples and 52 positive samples. The ratio between the positive
and negative classes in both the train and test datasets is approximately 0.68,
indicating a reasonably balanced dataset.

3.2 Classification

Table 3 presents the performance metrics of the models employing the original set
of 21 ECG features listed in Table 1. These results correspond to the performance
of the ML models using the test dataset.

Table 3. Performance evaluation metrics of the models using the test dataset, utilizing
all 21 ECG features (the highest result for each performance metric is identified in
bold). The optimal hyperparameters of each algorithm are also listed.

Model Accuracy F1-score Precision Recall

kNN (n_neighbors = 1, p = 1) 0.930 0.913 0.922 0.904
SVM (C = 10.0, gamma = 0.1, kernel = ‘rbf’) 0.876 0.855 0.810 0.904
DT (criterion = ‘entropy’, max_depth = 10) 0.876 0.857 0.800 0.923
RF (criterion = ‘entropy’, max_depth = 15, 0.946 0.923 0.979 0.885
n_estimators = 500)
AdaB (learning_rate = 1, n_estimators = 100) 0.922 0.904 0.904 0.904
XGB (learning_rate = 0.1, max_depth = 4, 0.953 0.940 0.979 0.904
n_estimators = 100)

Table 4 displays the test performance of the models using the features selected
through the filter method based on the pairwise correlation of the features. The
filter method was applied to the 21 features, removing six features (R_distance,
S_distance, T_distance, Rpeaks, Speaks, and Tpeaks). Therefore, the result-
ing dataset contains 15 features (P,R,S,T_amplitude, P_distance, P_peaks,
P,R,T_onsetamp, P,R,T_offsetamp, P,R,T_onoffdist) for classification.

Table 5 shows the best results for each algorithm obtained using the
wrapper feature selection method previous to nested CV. The classi-
fication models with the highest performance were obtained by com-
bining the optimal hyperparameters of each algorithm with the opti-
mal features selected with backward feature selection. In all models,
eleven features were consistently used from the original set, includ-
ing P_distance, P_onoffdist, P_offsetamp, R_amplitude, R_onoffdist,
R_onsetamp, S_amplitude, T_amplitude, T_onoffdist, T_onsetamp, and
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Table 4. Performance evaluation metrics of the models using the test dataset with the
features selected through the filter method (the highest result for each performance
metric is identified in bold). The optimal hyperparameters of each algorithm are also
listed.

Model Accuracy F1-score Precision Recall

kNN (n_neighbors = 1, p = 1) 0.946 0.931 0.959 0.904
SVM (C = 10, gamma = 0.1, kernel = ‘rbf’) 0.860 0.833 0.804 0.865
DT (criterion = ‘entropy’, max_depth = 10) 0.891 0.870 0.839 0.904
RF (criterion = ‘entropy’, max_depth = 10, 0.953 0.940 0.979 0.904
n_estimators = 50)
AdaB (learning_rate = 1, n_estimators = 500) 0.946 0.923 0.979 0.885
XGB (learning_rate = 0.1, max_depth = 8, 0.946 0.932 0.941 0.923
n_estimator s = 100)

T_offsetamp. Most of these features concern the onsets and offsets of the P,
R, and T waves.

The test results, displayed in Tables 3, 4, and 5, for distinguishing between
low and moderate (NRS score < 8) and high (NRS score ≥ 8) pain categories
are summarized in Fig. 3.

Figures 4 and 5 display the scatter plots of the two principal components
of the samples, highlighting the misclassified instances, which are categorized
as false positives and false negatives for each model. Figure 4 shows the scatter
plots depicting the results of the models using the set of 21 features. Figure 5

Table 5. Performance evaluation metrics of the models using the test dataset with the
features selected through the wrapper method (the highest result for each performance
metric is identified in bold). The optimal hyperparameters of each algorithm and the
number of optimal features are also listed.

Model Number of Accuracy F1-score Precision Recall
features

kNN (n_neighbors = 1, p = 2) 11 0.884 0.857 0.849 0.865
SVM (C = 10, gamma = 0.1, 12 0.907 0.887 0.870 0.904
kernel = ‘rbf’)
DT (criterion = ‘entropy’, 20 0.876 0.857 0.800 0.923
max_depth = 15)
RF (criterion = ‘gini’, max_depth = 10, 18 0.938 0.920 0.958 0.885
n_estimators = 500)
AdaB (learning_rate = 1, 12 0.946 0.931 0.959 0.904
n_estimators = 500)
XGB (learning_rate = 0.1, 15 0.930 0.916 0.891 0.942
max_depth = 4, n_estimators = 100)
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Fig. 3. Performance of the classification models using the test dataset for distinguishing
between low and moderate (NRS score < 8) and high (NRS score ≥ 8) pain. FS: Feature
selection.

displays the scatter plots of the models that achieved superior performances
after employing feature selection, which are highlighted in Tables 4 and 5. The
two principal components were obtained through principal component analysis
(PCA) in order to reduce dimensionality by projecting the testing data to a
2D dimensional space, for data visualization purposes. Two scatter plots are
provided for each model: one displaying all the samples in the plot, while the
other provides a zoomed-in view of the plot. These scatter plots provide a visual
representation of how well the classification models were able to distinguish
between the two pain groups based on the set of ECG features used.

Figure 6 identifies the features included in the models whose classification
results are illustrated in Fig. 5 and their corresponding feature importance in
descending order. Particularly, both P_offsetamp and T_onsetamp demonstrate
high importance across all four models.

4 Discussion

In general, the models were able to distinguish higher pain from low and mod-
erate pain measured during the CPT with good performance (Fig. 3).

Globally, when training the models with the set of 21 features (Table 3),
SVM and DT models had the worst results. However, the DT model (cri-
terion=’entropy’, max_depth=10) achieved the highest recall score of 92.3%.
Therefore, this model presented the highest capability to correctly classify the
higher pain samples. kNN, SVM, AdaB and XGB all achieved a recall score of
90.4%. Therefore, less than 10% of the high pain samples were misclassified as
lower pain levels. XGB model (learning_rate=0.5, n_estimators=500) provided
the best results, with an accuracy score of 95.3% and an F1-score of 94.0%.
Moreover, XGB and RF models exhibited the highest precision (97.9%) among
all the models, indicating a high capability in classifying the negative samples
(lower pain levels).

In Fig. 4, the boundary between the two classes is not clearly defined for any
of the models. When examining the classification results obtained using kNN,
RF, and XGB models, it is observed that only samples that are located in a
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Fig. 4. Scatter plots representing the classification test results of the two groups of
pain levels: low and moderate (NRS score < 8) and high (NRS score ≥ 8), using 21
ECG features. Each scatter plot is a 2D representation of the set of 21 features. The
positive and negative class samples are shown in different colors, with the misclassified
samples further distinguished between false positives (FP) and false negatives (FN).
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Fig. 5. Scatter plots representing the classification test results of the two groups of pain
levels: low and moderate (NRS score < 8) and high (NRS score ≥ 8) for the: (a) RF
and (b) XGB models using 15 ECG features selected using the filter method and (c)
AdaB and (d) XGB models using 12 and 15 ECG features, respectively, selected using
the wrapper method. The positive and negative class samples are shown in different
colors, with the misclassified samples further distinguished between false positives (FP)
and false negatives (FN).

Fig. 6. Feature importance of the 15 features selected using the filter method employed
with (a) RF and (b) XGB models and feature importance of the 12 and 15 features
selected using the wrapper method implemented with (c) AdaB and (d) XGB models,
respectively.

space with both negative and positive class samples in close proximity were
misclassified, and one may reason that this could be justified by the lack of a
clear boundary between both classes. However, when analyzing the results of
SVM, DT, and AdaB models, it is observed that samples located at a greater
distance from other observations were prone to misclassification, particularly
negative samples (only the DT model presents one false negative).

Regarding the results obtained using the feature subset selected through pair-
wise feature correlation (Table 4), SVM and DT models also exhibited the lowest
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results. For this approach, the RF model (criterion=’entropy’, max_depth=10,
n_estimators=50) had the best global performance, with an accuracy of 95.3%
and an F1-score of 94.0%. The RF model performs well at identifying high-pain
samples (recall=90.3%), but it may still incorrectly classify a small percentage
of them as low and moderate pain levels, resulting in false negatives (Fig. 5 (a))
and the possibility of missing a participant in pain. Both RF and AdaB models
had a high precision score of 97.9%, which indicates that the models are good
at avoiding false positives. This precision score was also achieved in the previous
approach with the RF and XGB algorithms, although with a larger feature set. In
addition to the advantage of obtaining similar results to the previous approach
with a smaller number of features, the RF model presented in Table 4 is less
complex: an ensemble of 50 DT (10% of the ensemble of the previous approach)
with a maximum depth of 10 (as opposed to 15). kNN also showed improved per-
formance, with an accuracy of 94.6% and an F1-score of 93.1%. The kNN model
has the advantage of a significantly lower mean fit time (0.002 s) compared to the
RF model (0.892 s). The XGB model achieved a recall score of 92.3% (Fig. 5 (b)),
using only 15 features, which matches the recall obtained with the DT model
in the previous approach, despite the DT model employing a larger feature set
consisting of 21 features.

Figure 6 shows that the feature importance attributed to the 15 features
determined through pairwise correlation analysis of the original feature set
exhibited variations between the RF (Fig. 6 (a)) and XGB (Fig. 6 (b)) models,
resulting in distinct importance rankings for this set of features. Nonetheless,
P_offsetamp, T_onsetamp, R_onoffdist, and T_amplitude were included in
the six most significant features for both models.

Regarding the approach implementing backward feature selection (Table 5),
the optimal number of features differed among the classification models. While
DT and RF required a larger set of features, kNN, SVM, AdaB and XGB mod-
els performed well with a relatively smaller number of features. When com-
pared to the previous results, the kNN model exhibited a significant decrease
in performance (see Fig. 3). Similarly, the RF model demonstrated superior
overall performance for the two previous approaches. SVM, on the other hand,
improved performance. The AdaB model (learning_rate=1, n_estimators=500)
was able to improve its performance as well. Using only 12 ECG features, the
AdaB model led to an accuracy of 94.6% and an F1-score of 93.1%. Although
reducing the number of features from 15 (selected using the filter method) to
12 features (selected using the wrapper method) only resulted in an improve-
ment of 0.8% in the F1-score, the decrease in the number of features leads to
reduced complexity of the model and faster run times. The AdaB model iden-
tified the amplitude (S,R,T_amplitude) and offset amplitude (P,T_offsetamp)
of the ECG waves as the most significant features for the classification task (see
Fig. 6 (c)). In contrast to the preceding two approaches, where a maximum preci-
sion score of 97.9% was achieved, the models resulting from the subset of features
selected through sequential feature selection exhibited comparatively lower preci-
sion scores. Among these models, the AdaB model achieved the highest precision
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score of 95.9%, indicating that this model correctly identified 95.9% (FP=2)
of the higher pain samples (Fig. 5 (c)). The XGB model (learning_rate=0.1,
max_depth=4, n_estimators=100) achieved the highest recall score among all
approaches with a score of 94.2%, using 15 features. This result indicates that
5.8% (3 samples) of the higher pain samples remained to be predicted, as dis-
played in Fig. 5 (d). XGB attributed the highest importance to features asso-
ciated with various characteristics of the ECG wave. These features include
the onset amplitude of the T wave (T_onsetamp), the offset amplitude of the
P wave (P_offsetamp), the amplitude of the T and P waves (T_amplitude,
P_amplitude), the distance between corresponding S waves (S_distance), and
the distance between the onset and offset of the R waves (R_onoffdist). Despite
having an equal number of features (n=15) to the subset selected through the
filter method, the results achieved with this particular subset are inferior, further
emphasizing the importance of selecting the most relevant and informative fea-
tures. Regarding the subset selected through pairwise correlation analysis (Fig. 5
(b)), it achieved a precision of 94.1% (FP=3) and a recall of 92.3% (FN=4). In
comparison, the subset selected using sequential feature selection (Fig. 5 (d))
achieved a precision of 89.1% (FP=6) and a recall of 94.2% (FN=3).

Finally, while the performance achieved by the models in all three approaches
was similar, reducing the number of features results in a less complex model.
Moreover, in the majority of the models, the mean fit time increased when using
a larger feature set as opposed to a smaller one.

5 Conclusions and Further Research

The inadequate management of pain can result in psychological and physiological
adverse effects. Both undertreatment and overtreatment may lead to complica-
tions. Therefore it is important to minimize false positives and false negatives in
the detection of the level of pain in clinical settings. Thus, developing a model
for pain management with high precision and high recall is crucial in order
to prevent unnecessary treatment or undertreatment of patients and to ensure
appropriate and effective management of pain.

This work evaluated a methodology for ECG feature-based classification of
pain levels induced through a controlled pain-inducing procedure with cold ther-
mal stimulation. The methodology involved optimizing the hyperparameters of
the classification algorithms and identifying the most relevant features through
feature selection for pain detection, resulting in models with reduced compu-
tational costs and time, that yielded comparable performances to the models
presented in previous research of the authors.

The classification models were able to distinguish between higher and lower
levels of pain measured during the CPT with high accuracy. The study showed
that the ECG features related to the P, R, S, and T waves were effective in dis-
tinguishing between lower and higher pain levels. Overall, the models performed
better at classifying lower pain samples than higher pain samples, as evidenced
by the higher precision scores compared to the recall scores. However, XGB
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was particularly successful in correctly identifying higher pain samples, achiev-
ing a recall score of 94.2%, using only 15 ECG features. Among these features,
T_onsetamp, S_distance, P_offsetamp, P_amplitude, and T_amplitude were
identified in descending order of importance as the most relevant. Moreover, the
RF algorithm, when combined with a different set of 15 ECG features, demon-
strated the best overall performance in predicting pain levels, with an accuracy
of 95.3%, an F1-score of 94.0%, a precision of 97.9%, and a recall of 90.4%. In
decreasing order of importance, the most significant features were P_offsetamp,
T_onsetamp, P_onsetamp, R_onoffdist, and R_offsetamp.

This work is an initial stage for an AI system that aims to support clinicians
in objectively assessing pain for guiding drug administration. Although further
research is required, the obtained results are a step further to contribute to an
objective assessment of pain, which may lead to more personalized healthcare,
ultimately improving the condition of patients. In future work, we propose inves-
tigating the ability of ECG to predict pain across more than two levels of pain
through a multi-class classification approach. Additionally, exploring the use of
deep learning is also suggested. Furthermore, integrating diverse physiological
signals into a multi-signal assessment may improve the reliability and advance
the development of more effective pain assessment methods.
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Abstract. License Plate Recognition (LPR) plays a critical role in vari-
ous applications, such as toll collection, parking management, and traffic
law enforcement. Although LPR has witnessed significant advancements
through the development of deep learning, there has been a noticeable
lack of studies exploring the potential improvements in results by fusing
the outputs from multiple recognition models. This research aims to fill
this gap by investigating the combination of up to 12 different models
using straightforward approaches, such as selecting the most confident
prediction or employing majority vote-based strategies. Our experiments
encompass a wide range of datasets, revealing substantial benefits of
fusion approaches in both intra- and cross-dataset setups. Essentially,
fusing multiple models reduces considerably the likelihood of obtaining
subpar performance on a particular dataset/scenario. We also found that
combining models based on their speed is an appealing approach. Specif-
ically, for applications where the recognition task can tolerate some addi-
tional time, though not excessively, an effective strategy is to combine
4–6 models. These models may not be the most accurate individually,
but their fusion strikes an optimal balance between accuracy and speed.

Keywords: License Plate Recognition · Model Fusion · Ensemble

1 Introduction

Automatic License Plate Recognition (ALPR) has garnered substantial inter-
est in recent years due to its many practical applications, which include
toll collection, parking management, border control, and road traffic monitor-
ing [18,22,43].

In the deep learning era, ALPR systems customarily comprise two key com-
ponents: license plate detection (LPD) and license plate recognition (LPR). LPD
entails locating regions containing license plates (LPs) within an image, while
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LPR involves identifying the characters within these LPs. Recent research has
predominantly concentrated on advancing LPR [27,30,47], given that widely
adopted object detectors such as Faster-RCNN and YOLO have consistently
delivered impressive results in LPD for some years now [14,21,48].

This study also focuses on LPR but provides a unique perspective compared
to recent research. Although deep learning techniques have enabled significant
advancements in this field over the past years, multiple studies have shown that
different models exhibit varying levels of robustness across different datasets [19,
29,46]. Each dataset poses distinct challenges, such as diverse LP layouts and vary-
ing tilt ranges. As a result, a method that performs optimally on one dataset may
yield poor results on another. This raises an important question: “Can we substan-
tially enhanceLPRresults by fusing the outputs of diverse recognitionmodels?” If so,
two additional questions arise: “To what extent can this improvement be attained?”
and “How many and which models should be employed?” As of now, such questions
remain unanswered in the existing literature.

We acknowledge that some ALPR applications impose stringent time con-
straints on their execution. This is particularly true for embedded systems
engaged in tasks such as access control and parking management in high-traffic
areas. However, in other contexts, such as systems used for issuing traffic tickets
and conducting forensic investigations, there is often a preference to prioritize
the recognition rate, even if it sacrifices efficiency [16,30,33]. These scenarios can
greatly benefit from the fusion of multiple recognition models.

Taking this into account, in this study, we thoroughly examine the potential
of enhancing LPR results through the fusion of outputs from multiple recognition
models. Remarkably, we assess the combination of up to 12 well-known models
across 12 different datasets, setting our investigation apart from earlier studies.

In summary, this paper has two main contributions:

• We present empirical evidence showcasing the benefits offered by fusion
approaches in both intra- and cross-dataset setups. In the intra-dataset setup,
the mean recognition rate across the datasets experiences a substantial boost,
rising from 92.4% achieved by the best model individually to 97.6% when
leveraging the best fusion approach. Similarly, in the cross-dataset setup, the
mean recognition rate increases from 87.6% to levels exceeding 90%. Notably,
in both setups, the sequence-level majority vote fusion approach outperform
both character-level majority vote and selecting the prediction made with the
highest confidence approaches.

• We draw attention to the effectiveness of fusing models based on their speed.
This approach is particularly useful for applications where the recognition
task can accommodate a moderate increase in processing time. In such cases,
the recommended strategy is to combine 4–6 fast models. Although these
models may not achieve the highest accuracy individually, their fusion results
in an optimal trade-off between accuracy and speed.

The rest of this paper is structured as follows. Section 2 provides a concise
overview of the recognition models explored in this work. The experimental setup
adopted in our research is detailed in Sect. 3. The results obtained are presented
and analyzed in Sect. 4. Lastly, Sect. 5 summarizes our findings.
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2 Related Work

LPR is widely recognized as a specific application within the field of scene text
recognition [7,26,50]. LPR sets itself apart primarily due to the limited pres-
ence of strong linguistic context information and the minimal variation observed
between characters. The following paragraphs briefly describe well-known mod-
els originally proposed for general scene text recognition, LPR, and related tasks.
These models will be explored in this study.

Baek et al. [2] introduced a four-stage framework (depicted in Fig. 1) that
models the design patterns of most modern methods for scene text recognition.
The Transformation stage removes the distortion from the input image so that
the text is horizontal or normalized. This task is generally done through spa-
tial transformer networks with a thin-plate splines (TPS) transformation, which
models the distortion by finding and correcting fiducial points. The second stage,
Feature Extraction, maps the input image to a representation that focuses on
the attributes relevant to character recognition while suppressing irrelevant fea-
tures such as font, color, size and background. This task is usually performed by
a module composed of Convolutional Neural Networks (CNNs), such as VGG,
ResNet, and RCNN. The Sequence Modeling stage converts visual features to
contextual features that capture the context in the sequence of characters. Bidi-
rectional Long Short-Term Memory (Bi-LSTM) is generally employed for this
task. Finally, the Prediction stage produces the character sequence from the
identified features. This task is typically done by a Connectionist Temporal
Classification (CTC) decoder or through an attention mechanism. As can be
seen in Table 1, while most methods can fit within this framework, they do not
necessarily incorporate all four modules.

Fig. 1. The four modules or stages of modern scene text recognition, according to [2].
“Trans.” stands for Transformation, “Feat.” stands for Feature Extraction, “Seq.” stands
for Sequence Modeling, and “Pred.” stands for Prediction. Image reproduced from [2].

Table 1. Summary of seven well-known models for scene text recognition. These models
are listed chronologically and are further explored in other sections of this work.

Model Transformation Feature Extraction Sequence Modeling Prediction

R2AM [25] − RCNN − Attention
RARE [35] TPS VGG Bi-LSTM Attention
STAR-Net [28] TPS ResNet Bi-LSTM CTC
CRNN [34] − VGG Bi-LSTM CTC
GRCNN [42] − RCNN Bi-LSTM CTC
Rosetta [4] − ResNet − CTC
TRBA [2] TPS ResNet Bi-LSTM Attention
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Atienza [1] drew inspiration from the accomplishments of the Vision Trans-
former (ViT) and put forward a single-stage model named ViTSTR for scene text
recognition. It operates by initially dividing the input image into non-overlapping
patches. These patches are then converted into 1–D vector embeddings (i.e., flat-
tened 2–D patches). To feed the encoder, each embedding is supplemented with
a learnable patch embedding and a corresponding position encoding.

Recent works on LPR have focused on developing multi-task CNNs that
can process the entire LP image holistically, eliminating the need for character
segmentation [6,11,39]. Two such models are Holistic-CNN [39] and Multi-task-
LR [11]. In these models, the LP image undergoes initial processing via convo-
lutional layers, followed by N branches of fully connected layers. Each branch is
responsible for predicting a single character class (including a ‘blank’ character)
at a specific position on the LP, enabling the branches to collectively predict up
to N characters. Both models are often used as baselines due to their remarkable
balance between speed and accuracy [12,19,20,27,30].

The great speed/accuracy trade-off provided by YOLO networks [41] has
inspired many authors to explore similar architectures targeting real-time per-
formance for LPR and similar tasks. Silva & Jung [37] proposed CR-NET, a
YOLO-based model that effectively detects and recognizes all characters within
a cropped LP [19,22,38]. Another noteworthy model is Fast-OCR [23], which
incorporates features from several object detectors that prioritize the trade-off
between speed and accuracy. In the domain of automatic meter reading [23], Fast-
OCR achieved considerably better results than multiple baselines that perform
recognition holistically, including CRNN [34], Multi-task-LR [11] and TRBA [2].

While we found a few works leveraging model fusion to improve LPR results,
we observed that they explored a limited range of models and datasets in the
experiments. For example, Izidio et al. [16] employed multiple instances of the
same model (i.e., Tiny-YOLOv3) rather than different models with varying archi-
tectures. Their experiments were conducted exclusively on a private dataset.
Another example is the very recent work by Schirrmacher et al. [33], where they
examined deep ensembles, BatchEnsemble, and Monte Carlo dropout using mul-
tiple instances of two backbone architectures. The authors’ primary focus was
on recognizing severely degraded images, leading them to perform nearly all of
their experiments on a synthetic dataset containing artificially degraded images.

In summary, although the field of LPR has witnessed significant advance-
ments through the development and application of deep learning-based models,
there has been a noticeable lack of studies thoroughly examining the potential
improvements in results by fusing the outputs from multiple recognition models.

3 Experimental Setup

This section provides an overview of the setup adopted in our experiments. We
first enumerate the recognition models implemented for this study, providing
specific information about the framework used for training and testing each of
them, as well as the corresponding hyperparameters. Subsequently, we compile
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a list of the datasets employed in our assessments, showcasing sample LP images
from each dataset to highlight their diversity. Afterward, we elaborate on the
strategies examined for fusing the outputs of the different models. Finally, we
describe how the performance evaluation is carried out.

The experiments were conducted on a PC with an AMD Ryzen Threadripper
1920X 3.5GHz CPU, 96 GB of RAM operating at 2133 MHz, an SSD (read:
535 MB/s; write: 445 MB/s), and an NVIDIA Quadro RTX 8000 GPU (48 GB).

3.1 Recognition Models

We explore 12 recognition models in our experiments: RARE [35], R2AM [25],
STAR-Net [28], CRNN [34], GRCNN [42], Holistic-CNN [39], Multi-task-LR [11],
Rosetta [4], TRBA [2], CR-NET [37], Fast-OCR [23] and ViTSTR-Base [1]. As
discussed in Section 2, these models were chosen because they rely on design
patterns shared by many renowned models for scene text recognition, as well as
for their frequent roles as baselines in recent LPR research [12,17,19,20].

We implemented each model using the original framework or well-known pub-
lic repositories associated with it. Specifically, we used Darknet1 for the YOLO-
based models (CR-NET and Fast-OCR). The multi-task models, Holistic-CNN
and Multi-task-LR, were trained and evaluated using Keras. As for the remain-
ing models, which were originally proposed for general scene text recognition,
we used a fork2 of the open source repository of Clova AI Research (PyTorch).

Here we list the hyperparameters employed in each framework for training the
recognition models. These hyperparameters were determined based on existing
research [1,2,19] and were further validated through experiments on the val-
idation set. In Darknet, the parameters include: Stochastic Gradient Descent
(SGD) optimizer, 90K iterations, a batch size of 64, and a learning rate of
[10-3, 10-4, 10-5] with decay steps at 30K and 60K iterations. In Keras, we
employed the Adam optimizer with an initial learning rate of 10-3 (ReduceL-
ROnPlateau’s patience of 5 and factor of 10-1), a batch size of 64, and a patience
value of 11 (patience indicates the number of epochs without improvement before
training is stopped). In PyTorch, we used the following parameters: Adadelta
optimizer with a decay rate of ρ = 0.99, 300K iterations, and a batch size of 128.
The only modification we made to the models’ architectures was adjusting the
respective input layers to accommodate images with a width-to-height ratio of 3.

3.2 Datasets

Researchers have conducted experiments on various datasets to showcase the
effectiveness of their systems in recognizing LPs from different regions [13,22,
26,36]. As shown in Table 2, we perform experiments using images from 12 pub-
lic datasets commonly used to benchmark ALPR systems [18,19,24,38,46]. Each
dataset was divided using standard splits, defined by the datasets’ authors, or

1 https://github.com/AlexeyAB/darknet.
2 https://github.com/roatienza/deep-text-recognition-benchmark/.

https://github.com/AlexeyAB/darknet
https://github.com/roatienza/deep-text-recognition-benchmark/
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following previous works [18,22,43] (when there is no standard split)3. Specifi-
cally, eight datasets were used both for training and evaluating the recognition
models, while four were used exclusively for testing. The selected datasets exhibit
substantial diversity in terms of image quantity, acquisition settings, image reso-
lution, and LP layouts. As far as we know, no other work in ALPR research has
conducted experiments using images from such a wide range of public datasets.

Table 2. The datasets employed in our experimental analysis, with ‘∗’ indicating those
used exclusively for testing (i.e., in cross-dataset experiments). The “Chinese” layout
denotes LPs assigned to vehicles registered in mainland China, while the “Taiwanese”
layout corresponds to LPs issued for vehicles registered in the Taiwan region.

Dataset Year Images LP Layout

Caltech Cars [44] 1999 126 American
EnglishLP [40] 2003 509 European
UCSD-Stills [5] 2005 291 American
ChineseLP [49] 2012 411 Chinese
AOLP [15] 2013 2,049 Taiwanese
OpenALPR-EU∗ [31] 2016 108 European

Dataset Year Images LP Layout

SSIG-SegPlate [9] 2016 2,000 Brazilian
PKU∗ [45] 2017 2,253 Chinese
UFPR-ALPR [21] 2018 4,500 Brazilian
CD-HARD∗ [36] 2018 102 Various
CLPD∗ [47] 2021 1,200 Chinese
RodoSol-ALPR [19] 2022 20,000 Brazilian & Mercosur

The diversity of LP layouts across the selected datasets is depicted in Fig.
2, revealing considerable variations even among LPs from the same region. For
instance, the EnglishLP and OpenALPR-EU datasets, both collected in Europe,

Fig. 2. Some LP images from the public datasets used in our experimental evaluation.

3 Detailed information on which images were used to train, validate and test the
models can be accessed at https://raysonlaroca.github.io/supp/lpr-model-fusion/.

https://raysonlaroca.github.io/supp/lpr-model-fusion/
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include images of LPs with notable distinctions in colors, aspect ratios, symbols
(e.g., coats of arms), and the number of characters. Furthermore, certain datasets
encompass LPs with two rows of characters, shadows, tilted orientations, and at
relatively low spatial resolutions.

We explored various data augmentation techniques to ensure a balanced dis-
tribution of training images across different datasets. These techniques include
random cropping, the introduction of random shadows, grayscale conversion,
and random perturbations of hue, saturation, and brightness. Additionally, to
counteract the propensity of recognition models to memorize sequence patterns
encountered during training [8,10,46], we generated many synthetic LP images
by shuffling the character positions on each LP (using the labels provided in [22]).
Examples of these generated images are shown in Fig. 3.

Fig. 3. Examples of LP images we created to mitigate overfitting. Within each group,
the image on the left is the original, while the remaining ones are artificially generated
counterparts. Various transformations were applied to enhance image variability.

To further mitigate the inherent biases present in public datasets [24], we
expanded our training set by including 772 images from the internet. These
images were annotated and made available by Ref. [22]. This supplementary
dataset comprises 257 American LPs, 347 Chinese LPs, and 178 European LPs.

3.3 Fusion Approaches

This study examines three primary approaches to combine the outputs of mul-
tiple recognition models. The first approach involves selecting the sequence pre-
dicted with the Highest Confidence (HC) value as the final prediction, even if only
one model predicts it. The second approach employs the Majority Vote (MV)
rule to aggregate the sequences predicted by the different models. In other words,
the final prediction is based on the sequence predicted by the largest number
of models, disregarding the confidence values associated with each prediction.
Lastly, the third approach follows a similar Majority Vote rule but performs
individual aggregation for each Character Position (MVCP). To illustrate, the
characters predicted in the first position are analyzed separately, and the char-
acter predicted the most times is selected. The same process is then applied to
each subsequent character position until the last one. Ultimately, the selected
characters are concatenated to form the final string.

One concern that arises when employing majority vote-based strategies is the
potential occurrence of a tie. Let’s consider a scenario where an LP image is pro-
cessed by five recognition models. Two models predict “ABC-123,” two models
predict “ABC-124,” and the remaining model predicts “ABC-125.” In this case,
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a tie occurs between “ABC-123” and “ABC-124.” To address this, we assess two
tie-breaking approaches for each majority vote strategy: (i) selecting the predic-
tion made with higher confidence among the tied predictions as the correct one,
and (ii) selecting the prediction made by the “best model” as the correct one.
In this study, for simplicity, we consider the best model the one that performs
best individually across all datasets. However, in a more practical scenario, the
chosen model could be the one known to perform best in the specific implemen-
tation scenario (e.g., one model may be the most robust for recognizing tilted
LPs while another model may excel at handling low-resolution or noisy images).
We intuitively use the acronym MV–HC to refer to the majority vote approach
in which ties are broken by selecting the prediction made with the highest con-
fidence value. Similarly, MV–BM refers to the majority vote approach in which
ties are resolved by choosing the prediction made by the best model. The MVCP
approaches follow a similar naming convention (MVCP–HC and MVCP–BM).

It is important to mention that when conducting fusion based on the highest
confidence, we consider the confidence values derived directly from the models’
outputs, even though some of them tend to make overconfident predictions. We
carried out several experiments in which we normalized the confidence values of
different models before fusing them, using various strategies such as weighted
normalization based on the average confidence of each classifier’s predictions.
Somewhat surprisingly, these attempts did not yield improved results.

3.4 Performance Evaluation

In line with the standard practice in the literature, we report the performance
of each experiment by calculating the ratio of correctly recognized LPs to the
total number of LPs in the test set. An LP is considered correctly recognized
only if all the characters on the LP are accurately identified, as even a single
incorrectly recognized character can lead to the misidentification of the vehicle.

It is important to note that, although this work focuses on the LPR stage, the
LP images used as input for the recognition models were not directly cropped
from the ground truth. Instead, the YOLOv4 model [3] was employed to detect
the LPs. This approach allows for a more accurate simulation of real-world
scenarios, considering the imperfect nature of LP detection and the reduced
robustness of certain recognition models when faced with imprecisely detected
LP regions [10,26]. As in [19], the results obtained using YOLOv4 were highly
satisfactory. Considering detections with an Intersection over Union (IoU) ≥ 0.7
as correct, YOLOv4 achieved an average recall rate exceeding 99.7% in the test
sets of the datasets used for training and validation, and 97.8% in the cross-
dataset experiments. In both cases, the precision rates obtained were greater
than 97%.

4 Results

Table 3 shows the recognition rates obtained on the disjoint test sets of the
eight datasets used for training and validating the models. It presents the results
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Table 3. Comparison of the recognition rates achieved across eight popular datasets by
12 models individually and through five different fusion strategies. Each model (rows)
was trained once on the combined set of training images from all datasets and evaluated
on the respective test sets (columns). The models are listed alphabetically, and the best
recognition rates achieved in each dataset are shown in bold.

Approach
Test set # LPs’

Average
Caltech Cars # 46 EnglishLP # 102 UCSD-Stills # 60 ChineseLP # 161 AOLP # 687 SSIG-SegPlate # 804 UFPR-ALPR # 1,800 RodoSol-ALPR # 8,000

CR-NET [37] 97.8% 94.1% 100.0% 97.5% 98.1% 97.5% 82.6% †59.0%† 90.8%
CRNN [34] 93.5% 88.2% 91.7% 90.7% 97.1% 92.9% 68.9% 73.6% 87.1%
Fast-OCR [23] 93.5% 97.1% 100.0% 97.5% 98.1% 97.1% 81.6% †56.7%† 90.2%
GRCNN [42] 93.5% 92.2% 93.3% 91.9% 97.1% 93.4% 66.6% 77.6% 88.2%
Holistic-CNN [39] 87.0% 75.5% 88.3% 95.0% 97.7% 95.6% 81.2% 94.7% 89.4%
Multi-task-LR [11] 89.1% 73.5% 85.0% 92.5% 94.9% 93.3% 72.3% 86.6% 85.9%
R2AM [25] 89.1% 83.3% 86.7% 91.9% 96.5% 92.0% 75.9% 83.4% 87.4%
RARE [35] 95.7% 94.1% 95.0% 94.4% 97.7% 94.0% 75.7% 78.7% 90.7%
Rosetta [4] 89.1% 82.4% 93.3% 93.8% 97.5% 94.4% 75.5% 89.0% 89.4%
STAR-Net [28] 95.7% 96.1% 95.0% 95.7% 97.8% 96.1% 78.8% 82.3% 92.2%
TRBA [2] 93.5% 91.2% 91.7% 93.8% 97.2% 97.3% 83.4% 80.6% 91.1%
ViTSTR-Base [1] 87.0% 88.2% 86.7% 96.9% 99.4% 95.8% 89.7% 95.6% 92.4%
Fusion HC (top 6 ) 97.8% 95.1% 96.7% 98.1% 99.0% 96.6% 90.9% 93.5% 96.0%
Fusion MV–BM (top 8 ) 97.8% 97.1% 100.0% 98.1% 99.7% 98.4% 92.7% 96.4% 97.5%
Fusion MV–HC (top 8 ) 97.8% 97.1% 100.0% 98.1% 99.7% 99.1% 92.3% 96.5% 97.6%
Fusion MVCP–BM (top 9 ) 95.7% 96.1% 100.0% 98.1% 99.6% 99.0% 92.8% 96.4% 97.2%
Fusion MVCP–HC (top 9 ) 97.8% 96.1% 100.0% 98.1% 99.6% 99.3% 92.5% 96.3% 97.5%

†Images from the RodoSol-ALPR dataset were not used for training the CR-NET and
Fast-OCR models, as each character’s bounding box needs to be labeled for training them.

Table 4. Average results obtained across the datasets by combining the output of the
top N recognition models, ranked by accuracy, using five distinct strategies.

Models HC MV–BM MV–HC MVCP–BM MVCP–HC

Top 1 (ViTSTR-Base) 92.4% 92.4% 92.4% 92.4% 92.4%
Top 2 (+ STAR-Net) 94.1% 92.4% 94.1% 92.4% 94.1%
Top 3 (+ TRBA) 94.2% 94.6% 94.9% 94.2% 94.2%
Top 4 (+ CR-NET) 95.2% 95.9% 96.3% 94.8% 95.9%
Top 5 (+ RARE) 95.5% 96.1% 96.6% 96.1% 96.2%
Top 6 (+ Fast-OCR) 96.0% 97.1% 97.0% 96.7% 96.9%
Top 7 (+ Rosetta) 95.4% 97.3% 97.2% 97.1% 97.0%
Top 8 (+ Holistic-CNN) 95.7% 97.5% 97.6% 96.1% 97.2%
Top 9 (+ GRCNN) 95.7% 97.5% 97.5% 97.2% 97.5%
Top 10 (+ R2AM) 95.5% 97.4% 97.2% 96.1% 96.6%
Top 11 (+ CRNN) 95.2% 97.1% 97.0% 96.5% 96.5%
Top 12 (+ Multi-task-LR) 95.0% 97.0% 97.0% 95.5% 96.5%

reached by each model individually, as well as the outcomes achieved through the
fusion strategies outlined in Section 3.3. To improve clarity, Table 3 only includes
the best results attained through model fusion. For a detailed breakdown of the
results achieved by combining the outputs from the top 2 to the top 12 recogni-
tion models, refer to Table 4. The ranking of the models was determined based
on their mean performance across the datasets (the ranking on the validation
set was essentially the same, with only two models swapping positions).
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Upon analyzing the results presented in Table 3, it becomes evident that
model fusion has yielded substantial improvements. Specifically, the highest aver-
age recognition rate increased from 92.4% (ViTSTR-Base) to 97.6% by combin-
ing the outputs of multiple recognition models (MV–HC). While each model
individually obtained recognition rates below 90% for at least one dataset (three
on average), all fusion strategies surpassed the 90% threshold across all datasets.
Remarkably, in most cases, fusion led to recognition rates exceeding 95%.

The significance of conducting experiments on multiple datasets becomes
apparent as we observe that the best overall model (ViTSTR-Base) did not
achieve the top result in five of the eight datasets. Notably, it exhibited relatively
poor performance on the Caltech Cars, EnglishLP, and UCSD-Stills datasets.
We attribute this to two primary reasons: (i) these datasets are older, containing
fewer training images, which seems to impact certain models more than others (as
explained in Section 3.2, we exploited data augmentation techniques to mitigate
this issue); and (ii) these datasets were collected in the United States and Europe,
regions known for having a higher degree of variability in LP layouts compared to
the regions where the other datasets were collected (specifically, Brazil, mainland
China, and Taiwan). It is worth noting that we included these datasets in our
experimental setup, despite their limited number of images, precisely because
they provide an opportunity to uncover such valuable insights.

Basically, by analyzing the results reported for each dataset individually,
we observe that combining the outputs of multiple models does not necessarily
lead to significantly improved performance compared to the best model in the
ensemble. Instead, it reduces the likelihood of obtaining poor performance. This
phenomenon arises because diverse models tend to make different errors for each

Fig. 4. Predictions obtained in eight LP images by multiple models individually and
through the best fusion approach. Although we only show the predictions from the top 5
models for better viewing, it is noteworthy that in these particular cases, fusing the
top 8 models (the optimal configuration) yielded identical predictions. The confidence
for each prediction is indicated in parentheses, and any errors are highlighted in red.
(Color figure online)



70 R. Laroca et al.

sample, but generally concur on correct classifications [32]. Illustrated in Fig. 4
are representative examples of predictions made by multiple models and the MV–
HC fusion strategy on various LP images. It is remarkable that model fusion can
produce accurate predictions even in cases where most models exhibit prediction
errors. To clarify, with the MV–HC approach, this occurs when each incorrect
sequence is predicted fewer times than the correct one, or in the case of a tie,
the correct sequence is predicted with higher confidence.

Shifting our attention back to Table 4, we note that the majority vote-based
strategies yielded comparable results, with the sequence-level approach (MV)
performing marginally better for a given number of combined models. Our
analysis indicates that this difference arises in cases where a model predicts one
character more or one character less, impacting the majority vote by character
position (MVCP) approach relatively more. Conversely, selecting the prediction
with the highest confidence (HC) consistently led to inferior results. This can be
attributed to the general tendency of all models to make incorrect predictions
also with high confidence, as demonstrated in Fig. 4.

A growing number of authors [19,24,43,46] have stressed the importance of
also evaluating LPR models in a cross-dataset fashion, as it more accurately
simulates real-world scenarios where new cameras are regularly being deployed
in new locations without existing systems being retrained as often. Taking this
into account, we present in Table 5 the results obtained on four distinct datasets,
none of which were used during the training of the models4. These particular
datasets are commonly employed for this purpose [6,18,22,38,50].

Table 5. Comparison of the results achieved in cross-dataset setups by 12 models indi-
vidually and through five different fusion strategies. The models are listed alphabeti-
cally, with the highest recognition rates attained for each dataset highlighted in bold.

Approach
Dataset # LPs

Average
OpenALPR-EU # 108 PKU # 2,253 CD-HARD # 104 CLPD # 1,200

CR-NET [37] 96.3% 99.1% 58.7% 94.2% 87.1%
CRNN [34] 93.5% 98.2% 31.7% 89.0% 78.1%
Fast-OCR [23] 97.2% 99.2% 59.6% 94.4% 87.6%
GRCNN [42] 87.0% 98.6% 38.5% 87.7% 77.9%
Holistic-CNN [39] 89.8% 98.6% 11.5% 90.2% 72.5%
Multi-task-LR [11] 85.2% 97.4% 10.6% 86.8% 70.0%
R2AM [25] 88.9% 97.1% 20.2% 88.2% 73.6%
RARE [35] 94.4% 98.3% 37.5% 92.4% 80.7%
Rosetta [4] 90.7% 97.2% 14.4% 86.9% 72.3%
STAR-Net [28] 97.2% 99.1% 48.1% 93.3% 84.4%
TRBA [2] 93.5% 98.5% 35.6% 90.9% 79.6%
ViTSTR-Base [1] 89.8% 98.4% 22.1% 93.1% 75.9%
Fusion HC (top 6 ) 95.4% 99.2% 48.1% 94.9% 84.4%
Fusion MV–BM (top 8 ) 99.1% 99.7% 65.4% 97.0% 90.3%
Fusion MV–HC (top 8 ) 99.1% 99.7% 65.4% 96.3% 90.1%
Fusion MVCP–BM (top 9 ) 95.4% 99.7% 54.8% 95.5% 86.3%
Fusion MVCP–HC (top 9 ) 97.2% 99.7% 57.7% 95.9% 87.6%

4 To train the models, we excluded the few images from the ChineseLP dataset that
are also found in CLPD (both datasets include internet-sourced images [20]).
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These experiments provide further support for the findings presented earlier
in this section. Specifically, both strategies that rely on a majority vote at the
sequence level (MV–BM and MV–HC) outperformed the others significantly; the
most notable performance gap was observed in the CD-HARD dataset, known for
its challenges due to the predominance of heavily tilted LPs and the wide variety
of LP layouts (as shown in Fig. 2). Interestingly, in this cross-dataset scenario,
the MV–BM strategy exhibited slightly superior performance compared to MV–
HC. Surprisingly, the HC approach failed to yield any improvements in results
on any dataset, indicating that the models made errors with high confidence
even on LP images extracted from datasets that were not part of their training.

While our primary focus lies on investigating the improvements in recognition
rates achieved through model fusion, it is also pertinent to examine its impact
on runtime. Naturally, certain applications might favor combining fewer models
to attain a moderate improvement in recognition while minimizing the increase
in the system’s running time. With this in mind, Table 6 presents the number
of frames per second (FPS) processed by each model independently and when
incorporated into the ensemble. In addition to combining the models based on
their average recognition rate across the datasets, as done in the rest of this
section, we also explore combining them based on their processing speed.

Table 6. The number of FPS processed by each model independently and when incor-
porated into the ensembles. On the left, the models are ranked based on their results
across the datasets, while on the right they are ranked according to their speed. The
reported time, measured in milliseconds per image, represents the average of 5 runs.

Models
(ranked by accuracy)

MV–HC
Individual Fusion

Time FPS Time FPS

Top 1 (ViTSTR-Base) 92.4% 7.3 137 7.3 137

Top 2 (+ STAR-Net) 94.1% 7.1 141 14.4 70

Top 3 (+ TRBA) 94.9% 16.9 59 31.3 32

Top 4 (+ CR-NET) 96.3% 5.3 189 36.6 27

Top 5 (+ RARE) 96.6% 13.0 77 49.6 20

Top 6 (+ Fast-OCR) 97.0% 3.0 330 52.6 19

Top 7 (+ Rosetta) 97.2% 4.6 219 57.2 18

Top 8 (+ Holistic-CNN) 97.6% 2.5 399 59.7 17

Top 9 (+ GRCNN) 97.5% 8.5 117 68.2 15

Top 10 (+ R2AM) 97.2% 15.9 63 84.2 12

Top 11 (+ CRNN) 97.0% 2.9 343 87.1 11

Top 12 (+ Multi-task-LR) 97.0% 2.3 427 89.4 11

Models
(ranked by speed)

MV–HC
Individual Fusion

Time FPS Time FPS

Top 1 (Multi-task-LR) 85.9% 2.3 427 2.3 427

Top 2 (+ Holistic-CNN) 90.2% 2.5 399 4.9 206

Top 3 (+ CRNN) 91.1% 2.9 343 7.8 129

Top 4 (+ Fast-OCR) 95.4% 3.0 330 10.8 93

Top 5 (+ Rosetta) 96.0% 4.6 219 15.4 65

Top 6 (+ CR-NET) 96.6% 5.3 189 20.7 48

Top 7 (+ STAR-Net) 96.9% 7.1 141 27.8 36

Top 8 (+ ViTSTR-Base) 96.9% 7.3 137 35.0 29

Top 9 (+ GRCNN) 97.1% 8.5 117 43.6 23

Top 10 (+ RARE) 97.1% 13.0 77 56.6 18

Top 11 (+ R2AM) 97.1% 15.9 63 72.5 14

Top 12 (+ TRBA) 97.1% 16.9 59 89.4 11

Remarkably, fusing the outputs of the three fastest models results in a lower
recognition rate (91.1%) than using the best model alone (92.4%). Nevertheless,
as more methods are included in the ensemble, the gap reduces considerably.
From this observation, we can infer that if attaining the utmost recognition
rate across various scenarios is not imperative, it becomes more advantageous to
combine fewer but faster models, as long as they perform satisfactorily individu-
ally. According to Table 6, combining 4–6 fast models appears to be the optimal
choice for striking a better balance between speed and accuracy.
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5 Conclusions

This paper examines the potential improvements in LPR results by fusing the
outputs from multiple recognition models. Distinguishing itself from prior stud-
ies, our research explores a wide range of models and datasets in the experiments.
We combined the outputs of different models through straightforward approaches
such as selecting the most confident prediction or through majority vote (both at
sequence and character levels), demonstrating the substantial benefits of fusion
approaches in both intra- and cross-dataset experimental setups.

In the traditional intra-dataset setup, where we explored eight datasets, the
mean recognition rate experienced a significant boost, rising from 92.4% achieved
by the best model individually to 97.6% when leveraging model fusion. Essen-
tially, we demonstrate that fusing multiple models reduces considerably the like-
lihood of obtaining subpar performance on a particular dataset. In the more
challenging cross-dataset setup, where we explored four datasets, the mean recog-
nition rate increased from 87.6% to rates surpassing 90%. Notably, the optimal
fusion approach in both setups was via majority vote at sequence level.

We also conducted an evaluation to analyze the speed/accuracy trade-off in
the final approach by varying the number of models included in the ensemble.
For this assessment, we ranked the models in two distinct ways: one based on
their recognition results and the other based on their efficiency. The findings
led us to conclude that for applications where the recognition task can tolerate
some additional time, though not excessively, an effective strategy is to combine
4–6 fast models. Employing this approach significantly enhances the recognition
results while maintaining the system’s efficiency at an acceptable level.

Acknowledgments. We thank the support of NVIDIA Corporation with the dona-
tion of the Quadro RTX 8000 GPU used for this research.
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Abstract. Over the years,many solutions have been suggested in order to improve
object detection in maritime environments. However, none of these approaches
uses flight information, such as altitude, camera angle, time of the day, and atmo-
spheric conditions, to improve detection accuracy and network robustness, even
though this information is often available and captured by the UAV. This work
aims to develop a network unaffected by image-capturing conditions, such as alti-
tude and angle. To achieve this, metadata was integrated into the neural network,
and an adversarial learning training approach was employed. This was built on top
of the YOLOv7, which is a state-of-the-art realtime object detector. To evaluate
the effectiveness of this methodology, comprehensive experiments and analyses
were conducted. Findings reveal that the improvements achieved by this approach
are minimal when trying to create networks that generalize more across these spe-
cific domains. The YOLOv7 mosaic augmentation was identified as one potential
responsible for this minimal impact because it also enhances the model’s ability
to become invariant to these image-capturing conditions. Another potential cause
is the fact that the domains considered (altitude and angle) are not orthogonal with
respect to their impact on captured images. Further experiments should be con-
ducted using datasets that offer more diverse metadata, such as adverse weather
and sea conditions, which may be more representative of real maritime surveil-
lance conditions. The source code of this work is publicly available at https://git
hub.com/ipleiria-robotics/maritime-metadata-adaptation.

Keywords: Computer Vision · Remote Sensing ·Maritime Surveillance ·
Domain Adaptation ·Metadata

1 Introduction

UAVs’ aerial images differ from those usually used on object detection tasks, which
mostly include large objects and a horizontal angle of view. Drone images have different
shooting angles, the objects to be detected are often very small, and the features to
be extracted are sometimes ambiguous [1]. Images taken over the ocean suffer from
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other effects, such as extreme glare, boat wakes, and white caps caused by waves [2].
Moreover, adverseweather conditions such as rain and fogwill also degrade the quality of
images,making itmore challenging to performobject detection in this context.Alongside
images, UAVs have other information available, such as altitude, camera angle, date,
time, and location. This data is commonly referred to as metadata and can offer valuable
details. The embedded devices on UAVs also have limited computational power, making
it difficult to run some of the larger and more computationally intensive algorithms
commonly used for object detection [3]. Making these algorithms achieve real-time
inference in edge devices while maintaining an acceptable performance is essential in
this application scenario.

This work aims to explore the detection of ships and other objects in the sea using
images captured by UAVs and additional flight-related information that may be useful
to improve the detection performance while keeping the complexity under control.

2 Related Work

2.1 Maritime Surveillance Datasets

UAV images pose challenges in image-based surveillance since they have a variable
angle perspective and altitude, significantly impacting the size of objects to be detected.
In 2019, Ribeiro et al. [2] presented a dataset containing images from UAVs captured
on the coast of Lisbon. The images have different altitudes and shooting angles. The
images also have glare, boat wakes, and waves, making detecting ships in this environ-
ment more challenging. Chen et al. [4] also created a dataset with images taken under
different weather conditions, angles, and altitudes. It includes images captured in a foggy
environment with many small ships, which can be challenging to detect. However, nei-
ther of these datasets includes flight-related information, such as altitude and shooting
angles. SeaDronesSee [5] is a recent dataset published in 2022 that contains this infor-
mation. The authors collected data and annotated over 54,000 frames from high altitudes
and viewing angles from the videos. They evaluated state-of-the-art algorithms on their
dataset and provided a baseline. The difficulty of gathering real data associated with
the cost and legal limitations of using UAVs led to the creation of synthetic datasets, as
pointed out by Kiefer et al. in their study [6].

2.2 Data-Level Techniques to Enhance Object Detection

Improving object detection requires changes to deep learning models and the training
data.Bypreprocessing and restoring images, it is possible tominimize the effects of glare,
fog, and other factors, enhancing the image quality. SRCYOLO [7] is an object detection
network that tackles the issue of foggy images by incorporating Single Scale Retinex
[8] defogging algorithm at the input level. However, Nie et al. [9] stated that image
restoration techniques could degrade the images, leading to a worse detection of objects.
To test this hypothesis, they synthesized hazy and low-light images. Then, they trained
a neural network using three approaches: (1) without synthesized images and image
preprocessing, (2)with image preprocessing only, and (3) using only synthesized images.
The third approach performed better, while the other two produced nearly identical
results.
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2.3 Network-Level Techniques to Enhance Object Detection

One of the main challenges is that vessels and ships are usually captured from many
different perspectives, making them appear smaller or larger due to their distance from
the camera. If the object detection system were trained on a single scale of these images,
themodelmight struggle to detect the vessel in the other perspectives accurately. Training
on multiple scales allows the model to become more robust. HSF-Net [10] is a network
that embeds feature maps in different scales to the same space using an HSF layer.
The network is similar to the faster R-CNN, having a feature extraction network with
multiple convolutional and pooling layers, an RPN, and a DN. The HSF layer is applied
both to RPN and DN. This layer focuses on extracting the shape instead of detailed
local features. Three scales are utilized to embed objects of varying sizes into the same
dimensional feature space. Chen et al. [11] proposed and tested a similar method based
on an optimized FPN, incorporated in a traditional RPN, and then mapped into a new
feature space. The k-means algorithm based on Shape Similar Distance clustering is then
used to obtain the initial anchor boxes. The proposed network outperformed previous
models in complex scenarios, showing that it is appropriate for multi-scale and multi-
target recognition and detecting small ships. These approaches can also be employed on
one-stage detectors, resulting in better performance and faster processing. Zhang et al.
[12] created a multi-layer convolution feature fusion (CFF-SDN). This model fuses
shallow with deep features, which are then used for classification and regression.

In addition to multi-scale features, properly adjusted anchor boxes are crucial to
ensure no missing objects. To address this, Hong et al. [13] improved the anchor boxes
by using a linear scaling based on the k-means++ instead of the k-means clustering
algorithm. They also used a Gaussian model to output the uncertainty of each prediction
bounding box, improving the detection accuracy, and four anchors are assigned in the
detection layer to increase the robustness of this model for detecting objects in multiple
scales.

Researchers are also using attention modules to improve their networks. Li et al. [14]
proposed an improved YOLOv3 tiny network with the CBAM attention module at the
end of the backbone. The authors also used convolution layers instead of max-pooling
and expanded the number of input channels for prediction, improving the detection of
small objects. Chen et al. [15] proposed a Dilated Attention Module (DAM) to extract
feature representations of ship targets. This lightweight attention module has a larger
receptive field that can capture a wider variety of surrounding information and a residual
connection, which helps discern small ship targets in harsher environments. Li et al.
[16] use the Coordinate Attention (CA) module, putting it on the last layer of the back-
bone of the YOLOv5. The CA embeds positional information into channel attention,
allowing the network to focus on large regions without introducing a large amount of
processing. Later, the same researchers proposed a backbone with both convolutions
and transformers [17]. In the neck, the feature maps are fused based on GhostNet, and
the head employs three detectors of different scales to calculate the position and size
of the objects. Transformer networks are also starting to appear, even though they have
more considerable complexity than those based on convolutions. Sun et al. [3] uses
the Swin-Transformer, a hierarchical transformer, as the backbone network for Faster
R-CNN.
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2.4 Metadata Integration

Some datasets contain imageswith different features and characteristics that make object
detection harder, such as weather conditions (i.e., fog, rain, and sunny weather). Each
of these conditions can be treated as a distinct domain. Training a model in a specific
domain and ensuring its effective generalization to other domains is commonly known
as domain adaptation [18]. Ganim et al. [19] were the first to propose a method using
adversarial learning to perform domain adaptation. The architecture consists of a feature
extractor that processes the input image, followed by a label predictor to classify the
image and a domain classifier to determine the image domain. The gradients of the
domain classifier are passed through agradient reversal layer tomake the feature extractor
learn domain-invariant features. On the other hand, the class labels undergo normal
backpropagation so that the network can learn how to classify each class correctly. This
approach is also helpful when we want to make the network invariant to these domains,
making the networks more robust. Li et al. [20] enhanced object detection performance
in autonomous driving under adverse weather conditions using a similar methodology
with adversarial learning. Zhenyu Wu et al. [21] also employed this adversarial learning
methodology to enhance the model’s ability to generalize effectively across diverse
domains in drone images, which is a similar case to the one addressed in this work.
This approach ensured that the underlying network focused on extracting only relevant
features by becoming invariant to three distinct domains, which were altitude, angle,
and weather.

3 Data Analysis

Since our approach focuses on using metadata to improve detection, we chose SeaD-
ronesSee [5], which is a large dataset with images captured from UAV designed to help
develop systems for search and rescue operations. The relevant metadata variables avail-
able were the altitude and the camera angle at which the images were taken. The authors
of the dataset have supplied the data with pre-established divisions into training, testing,
and validation sets.

The altitude represents the vertical distance between the aircraft and the sea level at
the moment of image capture. The altitude at which the pictures were taken influences
the object size, scale, and level of detail, meaning that higher altitudes provide a more
challenging time at detection. Figure 1 provides valuable insights into the distribution
of altitudes at which the images were captured. We divided the altitude domain into
three intervals, low, medium, and high, each one with the same number of images. Each
interval corresponds to a distinct altitude range and will be used by our network to
become more robust.

On the other hand, the angle variable refers to the orientation from which the images
were captured. Figure 2 shows the distribution of angles at which the images were
captured. Similarly to the altitude, we divided the angle variable into three groups based
on the respective camera angles. The groups encompassed angles between 0 and 35°,
36 to 65°, and from 66 to 90°.

During our analysis of altitude and angle variables in the dataset, an interesting
pattern came to light. It becameevident that images captured at higher altitudes frequently
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Fig. 1. Image altitude distribution.

Fig. 2. Image angle distribution.

showed a downward angle of the camera, while images taken at lower altitudes tended
to have a more horizontal camera orientation. This implies that the altitude and camera
angle variables are non-orthogonal.

4 Proposed Architecture

In this study, our objective is to investigate the potential impact of variations, specifically
the altitude and angle, on the performance of object detection algorithms in maritime
environments. Our goal is to have a model that preserves object-related information
while discarding or de-emphasizing the influence of these variations unrelated to the
objects. This leads to a problem in which:

– A domain classification network receives latent representations from the feature
extractor and will try to predict the domain associated with a given image.

– An object detection network receives latent representations from the feature extractor
and will try to predict the objects associated with a given image.
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– The feature extractor will attempt to deceive the domain classification network while
providing high-quality representations to ensure optimal performance of the object
detection network.

UAVs come with diverse hardware setups, many of which use the NVIDIA Jetson
platform, capable of running YOLOv7 [22]. With this in mind, we used YOLOv7 as
the foundation of our model, where the feature extractor consists of the first 40 layers
of the backbone and the object detection is built with the remaining 10 layers of the
backbone, along with the head. The domain classification consists of convolutional
and fully connected layers. However, one problem with using YOLOv7 is the high
number of image augmentations responsible for making this network more robust and
high-performing, making it impossible to discern which domain the image belongs to.
Because of this, augmented images are only used for object detection and imageswithout
augmentations for domain classification. In Fig. 3, it is possible to see the high-level
diagram of our architecture.

Two techniques were used to assess the network’s performance at inference time.
The first method involved conducting end-to-end inference using the model trained on
either a single domain or multiple domains using an adversarial approach. The second
method of inference was using a model ensemble. Each base model was trained in one
domain and then combined to produce a final prediction for unseen data. This approach
was chosen to avoid potential gradient cancellation during backpropagation when using
multiple-domain classification networks.

Fig. 3. Diagram of our architecture with image processing.

5 Training Methodology

Acknowledging that this deliberate emphasis on making the model invariant to domain
characteristics may have potential drawbacks is essential. The model may inadvertently
overlook being invariant to these variables and struggle to detect objects, which is the
main task. To mitigate the potential impact of these inherent characteristics, we built a
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custom training loop that comprises three distinct stages, each contributing to the overall
process of training our model.

5.1 First Stage

During the first stage of our methodology, we focus on training the domain classifier to
distinguish betweendifferent domains.As depicted inFig. 4, the object detection network
is not used, and the feature extractor is frozen. We train the domain classification until
we meet a minimum of 70% validation accuracy or 90% training accuracy or after a
maximum number of epochs to avoid overfitting. The input data is processed through
the feature extractor, and the resulting output is subsequently subjected to image domain
classification, outputting the predicted probability p for each domain. The loss that the
domain classification tries to minimize is shown in Eq. (1). Here, gti represents the true
probability of class i, and pi represents the predicted probability of class i. Following this
process, we obtain a robust domain classifier network capable of accurately predicting
the domain labels.

Ldomain(gt, p)= −
N∑

i=1

gtilog(pi) (1)

Fig. 4. First stage of our training loop.

5.2 Second Stage

During the second stage, the domain classifier network is frozen. The feature extractor is
updated by the adversarial and object detection loss, while the object detection network
is updated just by the object detection loss. The input data is processed again through the
feature extractor, and the resulting output is passed through two subsequent branches.
Augmented images are fed through the feature extractor and then to the object module,
while non-augmented images are fed through the feature extractor and then to the domain
classifier, similar to the first stage of the training. This can be seen in Fig. 5.
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Fig. 5. Second stage of our training loop.

This helps the encoder to learn features in a way that the predictions of the object
detection are as accurate as possible, and the predictions of the domain classification
are kept close to a uniform distribution, meaning that this domain classifier is not bet-
ter than random guessing the corresponding domain. For this, we use the KL diver-
gence as the adversarial domain loss. The KL loss is depicted in Eq. (2), being Pi the
probability of domain i according to the predicted distribution P, and Qi represents the
probability of domain i according to the uniform target distribution Q. By minimizing
the KL divergence, we encourage the predicted probabilities to approach the uniform
distribution.

Ladv(P||Q) =
N∑

i

Pilog

(
Pi

Qi

)
(2)

The loss regarding object detection is the one used in the YOLOv7, and we denote
this loss as Lod , which is composed of the bounding box, objectness, and classification
loss. The loss function is presented in Eq. (3), which is the sum of the object detection
loss Lod and the adversarial loss Ladv, which is multiplied by a weighting factor λ. By
jointly training these branches, the model will learn domain invariant features.

L = Lod + λLadv (3)

5.3 Third Stage

During the third stage, the main focus is updating the model weights based solely on the
object detection task, as depicted in Fig. 6. This means that the training process exclu-
sively relies on the object detection loss without considering the adversarial domain
loss or any domain-related factors. The reason for using only object detection in this
stage is to ensure that the feature extractor learns to extract relevant features from the
images and objects in the dataset. This stage continues for a specific number of epochs.
After completing this stage, the process returns to the first stage, and the weights of the
domain classifier, optimizer, and scheduler are reset. By resetting the domain classifi-
cation module, we avoid potential bias or interference from previous domain-specific
information.
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Fig. 6. Third stage of our training loop.

6 Results and Discussion

We start our work improving the baseline to ensure a solid enough validation for our
proposed methodology. We evolved the YOLOv7 hyperparameters for 350 iterations.
The image size used was 640, although bigger sizes may have yielded better results.
Unfortunately, we used an NVIDIA A2000 for training, which restricted our ability to
work with larger image sizes. To ensure that our results are reliable and not dependent
on seed randomness, we run the models on different seeds. Table 1 shows the model
performance using evolved hyperparameters.

Table 1. Baseline Performance.

Model mAP mAP@50 mAP@75 AR1 AR10

Seed 0
Seed 42
Seed 821
Seed 1765

43.02
42.55
42.18
42.53

71.86
71.42
70.81
71.25

45.00
44.29
44.46
44.94

38.26
37.54
37.08
37.52

50.17
49.61
49.25
49.41

Average
Standard Deviation

42.57
0.34

71.34
0.43

44.67
0.35

37.6
0.49

49.61
0.40

6.1 Domain Adversarial Learning

We started by making the model become invariant to the different altitude intervals. We
performed some experiments using different combinations of N, the number of epochs
that the model will train before using the domain adversarial network again, and λ, the
weighting factor for our adversarial loss. We started by experimenting with N = 1, but
the obtained results were unsatisfactory and subsequently disregarded, leading us to
choose to test with 4 and 8, as can be seen in Table 2. We conducted additional runs with
the best model using different seeds, as shown in Table 3, obtaining an average mAP
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of 43.05%, which signifies a marginal increase of 0.48. The lower gain at mAP@50
compared to mAP@75 can happen because objects with small dimensions can be easily
missed.

Table 2. Performance using altitude domain.

N λ mAP mAP@50 mAP@75 AR1 AR10

8 0.001
0.005
0.01

43.85
42.88
42.75

74.28
71.75
72.24

45.85
45.30
44.20

38.39
37.45
37.61

51.57
49.67
49.93

4 0.001
0.005
0.01

43.17
43.09
42.52

73.47
71.60
71.95

45.07 46.16
44.48

37.89
37.77
37.63

50.50
50.23
49.58

Table 3. Performance using the best parameters using altitude.

Model mAP mAP@50 mAP@75 AR1 AR10

Seed 0
Seed 42
Seed 821
Seed 1765

43.85
42.17
42.96
43.23

74.28
71.74
72.26
72.70

45.85
43.55
44.75
46.00

38.39
37.26
37.48
37.70

51.57
49.65
49.88
50.25

Average
Standard Deviation

43.05
0.70

72.75
1.10

45.04
1.14

37.71
0.49

50.34
0.86

Baseline Average
Improvement over Baseline Average

42.57
0.48

71.34
1.41

44.67
0.37

37.60
0.11

49.61
0.73

The same tests were employed for the angle variable and are depicted in Table 4
where the highest achieved performance was 43.77% when using N = 8 and λ = 0.005.
The average mAP of the best model in different seeds was 43.24% which represents an
increment of 0.67, as can be seen in Table 5. Similar to the altitude results, we observed
higher gains at mAP@50, with an improvement of 1.30. The increase in performance at
mAP@75 is relatively small, with an improvement of only 0.47.

Testing with both domains simultaneously is expected to improve performance. For
this approach, two domain classification modules were used, one for the altitude and
one for the angle, and a different λ was employed for each domain. The results using
the best combinations can be found in Table 6 and show lower gains regarding using
only one domain. One possible factor for this occurrence could be the mutual exclusion
of gradients since the domains considered are not orthogonal, leading to the mutual
exclusion of gradients.

The ensemble model employed in this study also tries to be invariant to multiple
domains at the same time. We combine the weights from different pre-trained models
using the adversarial learning technique. We integrated the weights obtained from the



86 D. S. Fernandes et al.

Table 4. Performance using angle domain.

N λ mAP mAP@50 mAP@75 AR1 AR10

8 0.001
0.005
0.01

42.96
43.77
43.02

71.83
74.15
72.05

45.54
45.56
45.45

37.76
38.84
37.63

50.29
51.23
50.07

4 0.001
0.005
0.01

43.19
43.36
40.91

72.72
72.39
69.37

45.07
45.65
41.82

37.92
38.27
36.10

50.09
50.5
48.34

Table 5. Performance using the best parameters using angle.

Model mAP mAP@50 mAP@75 AR1 AR10

Seed 0
Seed 42
Seed 821
Seed 1765

43.77
43.51
42.41
43.28

74.15
73.45
71.13
71.83

45.56
45.34
44.08
45.56

38.84
37.91
37.62
38.18

51.23
50.45
50.01
50.47

Average
Standard Deviation

43.24
0.59

72.64
1.40

45.14
0.71

38.14
0.52

50.54
0.51

Baseline Average
Improvement over Baseline Average

42.57
0.67

71.34
1.30

44.67
0.47

37.60
0.54

49.61
0.93

Table 6. Performance using the best parameters using multiple domains.

Model mAP mAP@50 mAP@75 AR1 AR10

Seed 0
Seed 42
Seed 821
Seed 1765

43.61
42.83
42.57
42.49

73.18
72.24
71.13
71.40

45.58
44.52
44.77
45.03

38.15
37.64
36.87
37.33

50.64
50.07
49.38
49.44

Average
Standard Deviation

42.88
0.51

71.99
0.93

44.98
0.46

37.50
0.54

49.89
0.60

Baseline Average
Improvement over Baseline Average

42.57
0.31

71.34
0.65

44.67
0.31

37.60
−0.1

49.61
0.28

models that were solely trained on a single domain, either on altitude or angle. To
illustrate this with an example, we used the weights from the best angle model of seed
0 and the weights from the best altitude model of seed 0 to form an ensemble model.
The results of this approach are presented in Table 7. This ensemble model yielded the
best results regarding all techniques. By combining the strengths of multiple models, we
enhanced overall performance and achieved moderate gains with a 1.44 improvement
on mAP and an improvement of 3.26 on mAP@50 over the baseline model.
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Table 7. Performance using ensemble model.

Model mAP mAP@50 mAP@75 AR1 AR10

Seed 0
Seed 42
Seed 821
Seed 1765

45.12
43.62
43.41
43.90

76.57
73.87
73.53
74.44

46.78
45.22
44.76
46.10

39.93
38.54
38.16
38.64

53.47
51.44
51.06
51.43

Average
Standard Deviation

44.01
0.77

74.60
1.36

45.72
0.90

38.82
0.77

51.85
1.09

Baseline Average
Improvement over Baseline Average

42.57
1.44

71.34
3.26

44.67
1.05

37.60
1.22

49.61
2.24

6.2 Influence of Mosaic Augmentation

Upon closer examination, we suspected that the use of mosaic augmentation [23] might
be one of the reasons for it. This augmentation combines different portions of the original
image to generate a transformed and augmented version, which can enhance the training
dataset’s diversity and variability.

We trained the model without employing this augmentation technique to evaluate its
influence. The results can be depicted in Table 8. The baseline without mosaic achieves
an average mAP of 34.74%, which is 7.83 lower than the mAP achieved by the baseline
using mosaic augmentation. We performed more experiments without the mosaic aug-
mentation on altitude, angle, and ensemble. These findings reinforce the significance
of mosaic augmentation in this dataset. Mosaic augmentation aids the model in devel-
oping a more robust model, improving its performance. However, further tests should
be conducted on datasets with orthogonal metadata to draw a more comprehensive
understanding regarding the merits of one technique relative to the other.

Table 8. Average performance of each model without mosaic.

Model mAP mAP@50 mAP@75 AR1 AR10

Baseline 34.74 58.99 35.11 30.85 40.8

Single Domain with Altitude 35.55 60.75 36.27 31.67 42.10

Single Domain with Angle 35.97 60.88 36.94 32.08 42.30

Ensemble with Altitude and Angle 36.85 62.46 37.66 32.80 43.73

7 Conclusion

The use of UAVs for maritime surveillance is increasing, suggesting the importance
of maritime object detection. To have a robust network capable of detecting objects in
different altitudes and angles, we designed a robust network built on top of the YOLOv7,



88 D. S. Fernandes et al.

a state-of-the-art real-time object detector. The metadata was solely used during the
training process, allowing the algorithm to be efficient at inference. We also designed an
ensemble method combining multiple models, which is more complex and less suitable
for deployment on edge devices.

Comprehensive experiments and analyses were conducted to evaluate this method-
ology’s effectiveness. The gains achieved over the baseline were minimal when utilizing
a single domain. An unexpected result was obtained when incorporating the adversarial
domain alongside the other domain since the gains were lower than just a single domain.
One potential reason for lower performance when utilizing multiple domains is that they
may not be orthogonal regarding their impact on the captured images. As a result, dur-
ing network training, the gradients generated during backpropagation may cancel each
other. On the other hand, the ensemble model merging two models gave better results,
having a higher improvement than the two previous methodologies. We also theorize
that the mosaic augmentation would also increase the robustness of our neural network.
We discovered that this augmentation helped the model to have a better performance,
which is fundamental in this dataset. We also found that the gains using our approach
without mosaic were higher, showing that mosaic helps the network become invariant
to these variances.

Further experiments should be conducted using datasets that offer more diverse
metadata. Also, to capture more real maritime surveillance scenarios, it is crucial to
include representative conditions encompassing adverse weather and challenging sea
conditions within the dataset, enabling the establishment of orthogonal domains. Unfor-
tunately, publicly available datasets don’t have images with adverse conditions along
with metadata, as including them could provide further insights into the merits of this
adversarial model training performance.
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1 Introduction

In image and video applications, it is often essential to divide the image or
video into meaningful regions or objects, in order to extract specific and rele-
vant information from them. One may generate groups of connected elements
(i.e., superpixels or supervoxels) that share a common property (e.g., color and
texture). When numerous groups are generated, the object can be effectively
defined by its comprising regions, being the major premise of superpixel and
supervoxel segmentation algorithms. Such methods are applied to many con-
texts such as: (i) object detection [11,13]; (ii) cloud connectivity [14,18,20]; and
(iii) long-range tracking [15].

In general, three properties are desirable in video supervoxel segmenta-
tion: (i) spatiotemporal boundary adherence; (ii) computational efficiency; and
(iii) ability to control the number of supervoxels generated. However, no super-
voxel segmentation algorithm has all these characteristics [19]. For early video
processing, one can interpret it as a three-dimensional spatiotemporal volume
and segment its objects. Streaming video segmentation refers to the process of
dividing a continuous video stream into smaller segments in order to reduce mem-
ory consumption and improve segmentation processing time. Usually, good early
video segmentation methods preserve temporal coherence. However, this is not
the case when video segmentation streaming is applied. Thus, one of the major
challenges for streaming video segmentation is to ensure its temporal coherence.

The Graph-based supervoxel (GB) [10] is an image segmentation method
based on graphs with good boundary adherence but is computationally expen-
sive. The hierarchical GB (GBH) [12] considers the GB strategy for computing
a hierarchical iterative method; while the stream GBH (sGBH) [21] extends the
latter for online video segmentation. In [7,8], the authors proposed a hierarchi-
cal segmentation method – HOScale (Hierarchical video segmentation using an
Observation Scale) – based on the same criterion of [10] that removes the need
for parameter tuning and for the computation of video segmentation at finer lev-
els. In their proposal, the video segmentation strategy is not dependent on the
hierarchical level, and consequently, it is possible to compute any level without
the previous ones. Therefore, the time for computing a segmentation is almost
the same for any specified level. Moreover, according to experimental results pre-
sented in [8], HOScale produces good quantitative and qualitative results when
compared to other methods.

Following [21], StreamHOScale [16] divides a video into frame blocks and
transforms the streaming video segmentation into a graph partitioning problem
for each frame block. StreamHOScale merges the segmentation blocks using a
simple and efficient strategy to achieve temporal coherence. Our method also
performs segmentation in blocks and does not need the entire video in memory, as
does StreamHOScale, but uses an IFT-based supervoxel design for segmentation.
However, due to its hierarchical property, wrong borders computed in the lowest
levels could be persistent for the highest ones. This is why we have decided to use
Dynamic Iterative Spanning Forest (DISF). Even this one is not a hierarchical
method, it starts from a very large number of seeds, and consequently, regions
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to a desired number of regions by using a strategy of removing seeds allowing,
then, a competition between them for correcting wrong borders.

In [2], a supervoxel segmentation framework for video segmentation, named
Iterative Spanning Forest to compute Supervoxels (ISF2SVX), was proposed.
This method was inspired by the Iterative Spanning Forest (ISF) [17], which
is a recent superpixel segmentation framework. This method could be seen as
an application of the DISF for supervoxel computation in which the graph
is obtained by the video instead. Similar to ISF, the proposed approach was
composed of independent steps: (i) graph construction; (ii) seed sampling; (iii)
supervoxel generation; and (iv) seed recomputation. In step (i), the video vol-
ume is converted to a directed graph representation which will be used as input
for determining the seeds in step (ii). Then, for several iterations, ISF2SVX
generates supervoxels through the Image Foresting Transform (IFT) [9] using
improved seed sets—in steps (iii) and (iv), respectively.

Inspired by [16], we propose, in this article, a promising strategy for streaming
the ISF2SVX method that does not need all the video in memory, its processing
time is 30% faster and the only previous information needed to segment a block
is the intersection frame.

Figure 1 illustrates examples of results obtained by ISF2SVX and the pro-
posed method, so-called StreamISF, for 10 and 500 supervoxels. It is possible
to observe in Fig. 1(a) that in the first segmented blocks, the skater’s dress is
a region that is not in the ISF2SVX result, and even after the dress does not
appear in the last blocks due to tree mergers during the propagation of the labels
of the intersection trees, the sign on the wall is more detailed in our proposed
method in all the images of Fig. 1(a) and 1(b), both for 10 supervoxels and for
500 supervoxels.

This paper is organized as follows. In Sect. 2, important concepts used in this
work such as graphs and IFT are clarified. In Sect. 3, the methodology for the
proposed streaming segmentation approach is explained. In Sect. 4, we describe
the experiments carried out, the generation of metrics, and a comparison with
other segmentation methods. And in Sect. 5 the final considerations and future
works are presented.

2 Theoretical Background

To facilitate the understanding of our method, we explain the necessary concepts
and techniques related to our proposal. We first introduce some graph notions to
present the core delineation algorithm of our proposal: Image Foresting Trans-
form (IFT) [9] framework.

2.1 Graph

A video V can be represented as a pair V = (V, I) in which V ⊆ N
3 denotes

the set of volume elements (i.e., voxels), and I maps every v ∈ V to a feature
vector I(v) ∈ R

m. One can see that, for m = 3, V is a colored video (e.g., RGB
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Fig. 1. Examples of video segmentations for a video extracted of the GATech. The
original frames are illustrated in the first row. We illustrate examples of the proposed
method changing the seed sampling. We illustrate results for (a) 10 and (b) 500 super-
voxels, considering ISF2SVX-GRID-DYN and StreamISF with k = 30% and allowing
tree merges (second and third rows). Each resulting region is colored by its mean color.

or CIELAB colorspaces). One may create a simple graph (i.e., no loops and no
parallel edges) G = (N , E), derived from V, in which N ⊆ V denotes the vertex
set and E ⊂ N 2, the edge set. Two nodes vi, vj ∈ N are said to be adjacent if
(vi, vj) ∈ E . From that, a weighted-vertex graph (G, I) may be defined in which
I(v) ∈ R

m. In this work, the elements in E are oriented arcs (i.e., G is a digraph).
Consider πs�t = 〈s = v1, v2, . . . , vn = t〉 to be a finite sequence of adjacent nodes
(i.e., a path) in which (vi, vi+1) ∈ E for 1 ≤ i < n. For simplicity, we may omit
the path origin voxel by writing πt. For n = 1, πt = 〈t〉 is said to be trivial. We
denote the extension of a path πs by an arc (s, t) ∈ E as πs · 〈s, t〉 with the two
instances of s being merged into one.

2.2 Image Foresting Transform

The Image Foresting Transform (IFT) [9] is a framework for the development of
image processing operators based on connectivity and has been used to reduce
image processing tasks as optimum-path forest computations over the image
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graph. As indicated by the authors [9], the IFT is independent of the input’s
dimensions and, therefore, the relation between pixels (or voxels) in such dimen-
sionality can effectively be represented by an adjacency relation between them.
In this work, we consider the IFT version restricted to a seed set S ⊂ N .

For a given arc (s, t) ∈ E , it is possible to assign a non-negative arc-cost
value w∗(s, t) ∈ R

+ through an arc-cost function w∗. A common approach is
to compute the �2-norm between the nodes’ features—i.e., ‖I(s) − I(t)‖2 for
s, t ∈ N . Consider ΠG the set of all possible paths in G. Then, a connectivity
function f∗ maps every path in ΠG to a path-cost value f∗(πt) ∈ R

+. One of the
most effective connectivity functions for object delineation is the fmax function:

fmax(〈t〉) =

{
0 if t ∈ S,

+∞ otherwise

fmax(πs · 〈s, t〉) = max{fmax(πs),w∗(s, t)}
(1)

A path π∗
t is said to be optimum if, for any other path τt ∈ ΠG, f∗(π∗

t ) ≤ f∗(τt).
Let C be a cost map in which assigns, to every path πt ∈ ΠG, its respective

path-cost value f∗(πt). The IFT algorithm minimizes C(t) = min∀πt∈ΠG
{f∗(πt)}

whenever f∗ satisfies certain conditions [6]. First, the IFT assigns path-costs to
all trivial paths accordingly and, then, it computes optimum paths in a non-
decreasing order, from the seeds to the remaining nodes in the graph. Therefore,
independently if f∗ suffices the desired properties in [6], the IFT always generates
a spanning forest and, consequently, each supervoxel is a unique tree. During the
segmentation process, a predecessor map P is generated and defined. Such map
assigns any node t ∈ N to its predecessor s in the optimum path π∗

s · 〈s, t〉, or to
a distinctive marker nil 
∈ N—in such case, t is said to be a root of P. In this
work, every seed is a root of P. One may see that P is a representation of an
optimum-path forest, and it allows to recursively obtain the optimum-path root
R(t) of t and its root’s label L(R(t)).

3 A Strategy for Supervoxel Computation Based
on Dynamic Iterative Spanning Forest

In this work, we propose an approach for supervoxel computation based on
Iterative Spanning Forest (ISF) [17] superpixel framework which was successfully
applied to video segmentation in [2], and that it is not necessary to have the
entire video in memory, with only the intersection image as prior information
for block segmentation. Our proposal, so-called StreamISF, adopts a six-step
methodology: (1) creation of block graphs; (2) seed sampling; (3) IFT-based
supervoxel delineation; (4) seed set recomputation; (5) propagation of label trees;
and (6) video segmented. This proposed pipeline is illustrated in Fig. 2. It is
important to note that this work performs video segmentation in blocks followed
by a propagation of supervoxel trees computed by the ISF-based Dynamic and
Iterative Spanning Forest (DISF) [3] method. Thus, StreamISF could be seen
as an application of the DISF for supervoxel computation in which the graph is
obtained by the video.
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Fig. 2. Outline for streaming graph-based supervoxel segmentation based on iterative
spanning forest. Our method is composed of six stages: (1) formation of the graph for
each block of the video; (2) seed oversampling; (3) IFT-based supervoxel design; (4)
reduction in the number of supervoxels; (5) spread of trees; and (6) creation of the
segmented video.

3.1 Video Block Computation and Seed Sampling

First, the video is divided into k-sized blocks, in which the first block has k frames
and the remaining ones have (k +1). Therefore, each block, except the first one,
has an intersection frame with the previous block. The intersection frame is
used to try to maintain the temporal coherence of the video, which is based only
on the color information. Let a video block Vi ∈ V , in which 〈V1, . . . , Vn〉 is a
sequence of n blocks in temporal ordering, one may compute a graph Gi for each
Vi. Similar to [3], in StreamISF, a seed oversampling is performed at each Gi

using a grid sampling scheme [1] (hereinafter named GRID), which selects N0

equally distanced seeds within the graph.

3.2 Supervoxel Generation

Once seeds are sampled, the supervoxels are generated using the IFT algorithm
considering a connectivity function f∗ and an arc-cost function w∗. In this work,
we consider the fmax connectivity function for computing the path-costs.

In [17], the authors recall an arc-cost function w1(p, q) = (α‖I(R(p)) −
I(q)‖2)β + ‖p − q‖2 in which α ∈ R

+
∗ permits the user to control the regu-

larity of the superpixels and to control their adherence to boundaries through a
factor β ∈ R

+
∗ . However, superpixel and supervoxel regularity tend to prejudice

the object delineation performance [3].
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In DISF, the arc-costs are computed dynamically considering mid-level super-
pixel features, using a function first proposed in [4]. Let a graph Gi = (N , E) be
a simple graph computed on the block i and (Gi, I) be the associated weighted-
vertex graph to the block i. Let Tx ⊂ N be an optimum-path growing tree
rooted in a node x ∈ N , and let μ(Tx) be its mean feature vector. Then, the
arc-cost function w2 can be formally defined as w2(p, q) = ‖μ(TR(p)) − I(q)‖2.
The function w2 has proven to be more effective than classic arc-cost functions
for both superpixel segmentation [3] and for interactive image segmentation [4].

3.3 Seed Recomputation

Like ISF2SVX, the fourth step in StreamISF iteratively updates the seed set S
to improve the supervoxel delineation for subsequent iterations. This update can
be performed by including, shifting, or removing the seeds in S. Similar to other
ISF-based methods [2,3], after seed sampling, we iteratively perform supervoxel
generation followed by seed recomputation. This recomputation procedure pro-
motes the growth of relevant supervoxels, by removing the irrelevant ones and
maintaining the competition among the primers. Let N i

f ∈ N be the desired
number of final supervoxels per block, in which N0 � N i

f and 1 ≤ i ≤ b. At
each iteration j ∈ N, M(j) = max{N0 exp−j , N i

f} relevant seeds are maintained
for the subsequent iteration j + 1, while the remaining ones are discarded. The
stopping criterion is reaching the desired number of supervoxels, which is often
less than 10—a common value for many iterative methods.

The M(j) relevant seeds may be selected by a combination of their sizes and
contrast [3] in which the former indicates the supervoxel’s growth ability, and the
latter, whether the supervoxel is located in a homogeneous region (thus, probably
irrelevant). Let B be a tree adjacency relation, which defines the immediate
neighbors of any supervoxel. Then, with the use of a priority queue, a relevance
of a seed s can be measured by a function V(s) = |Ts|

|N | min∀(Ts,Tr)∈B{‖μ(Ts) −
μ(Tr)‖2}, which Tr is an adjacent supervoxel of Ts. It is important to observe
that each supervoxel is related to the tree, so-called supervoxel tree.

3.4 Propagating Labels of the Supervoxel Trees

Our proposal allows for computing a segmentation in a video block without
having to keep the previous blocks in memory. Also, StreamISF tries to preserve
temporal coherence with a minimum amount of information, which is, in this
case, one frame-sized. After computing supervoxels for a graph Gi (related to
the ith video block), each supervoxel tree is associated to labels in order to
facilitate the propagation of the information between different blocks, thus we
propagate the labels from the previous block to Gi based on the intersection
frame (first frame) in Gi and the labels of the last frame of the previous block. To
propagate the labels from one video block to the next, we propose two strategies:
(i) merging trees to improve supervoxel coherence, or (ii) prioritizing the highest
number of supervoxels. An example of each strategy is illustrated in Fig. 3.
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Fig. 3. Example of propagation methods.

Let Gi = (Ni, Ei) and Gj
i = (N j

i , Ej
i ) be the simple graphs for the block i

and for the frame j of the block i. Let (Gi, I) be the weighted-vertex graph for
the ith video block and (Gj

i , I
j) a subgraph containing vertices related with its

jth frame. One may represent N j
i as a set of disjoint subsets Lj

i = 〈τ1, ..., τl〉, in
which τt contains the vertices of the same tree in Gi, and

⋃
τt∈Lj

i
τt = N j

i . Let
the ith video block with k frames and the sets τp ∈ Lk

i−1, and τq ∈ L1
i . In tree

label propagation across different frames, the following cases may require label
propagation: (1) τq = τp; and (2) τp ∩ τq 
= {∅}, but τp 
= τq.

In both propagation strategies, when τp = τq the label of τp is propagated
to τq (e.g., the orange tree being propagated to the light blue supervoxel tree in
Fig. 3(a)). When τp ∩ τq 
= {∅}, but τq 
= τp, one may have a tree competition
between τp and τr ∈ Lk

i−1 or τq and τr ∈ L1
i . For the former, at least two trees

in the intersection compete for a tree in the block. In this case, we propagate
the label of τ = argmaxτx∈Lk

i−1
{|τx ∩ τq|} (e.g., in Fig. 3(a), the green and pink

trees, at the intersection frame, competing for the green tree of the next block).
When a tie occurs (i.e., when |τq ∩ τq| = |τr ∩ τq|), we propagate the label
of τ = argmaxτx∈Lk

i−1
{|τx|}. Finally, when a tree in the intersection τp may

propagate its label for at least two trees in the block, we may perform one of two
strategies: (i) propagate the label in τp to the trees at the block, merging them
(merging propagation strategy); or (ii) propagate the label in τp to the tree τ =
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argmaxτx∈L1
i
{|τx|} and maintain the label of the others (non-merging strategy).

Our first propagation strategy prioritizes time coherence by propagating trees
even when they are not exactly the same (i.e., when τp ∩ τq 
= {∅}, but τp 
= τq).
Therefore, it may perform tree merging, reducing the number of supervoxels,
which hampers maintaining the exact final number of supervoxels. For instance,
in Fig. 3(a), the purple tree is propagated to the lighter pink and lilac trees in
the block, causing these two trees to merge, and reducing the number of final
supervoxels in one. Conversely, the second propagation strategy prioritizes the
desired number of final supervoxels, choosing a unique tree to propagate the
label and maintaining the others. In Fig. 3(b), instead of propagating the purple
tree in the intersection frame to both trees and merging them, it propagates to
one.

The final number of supervoxels depends on the number of supervoxels pro-
duced at each block, which may be greater or lesser than the desired and directly
depends on the N i

f for each block i. Therefore, we assign values to N i
f accord-

ing to the label propagation strategy used. Let Nmax
f be the final number of

supervoxels desired, and γ and δ are the decreasing factors for each propaga-
tion strategy. For the merging-based strategy, we first set N1

f � Nmax
f , the

decreasing factor γ(i) = (Nmax
f × (i − 1))/100, and Nmin = ρ ∗ Nmax

f as min-
imum number of supervoxels at any block. Then, for each block i > 1, we set
N i

f = max{N i−1
f − γ,Nmin}, preventing the graphs of video blocks from gener-

ating a number of supervoxels lesser than Nmin. On the other hand, for the non-
merging strategy, let κi the number of supervoxels in Gi−1 that are not into Gi−2,
and δi−1 = N i−1

f + κi−1. Then, for each block i > 1, we set N i
f = Nmax

f −δi−1

b−i . In
contrast to the merging-based strategy, the non-merging one prevents the graphs
from generating a high number of supervoxels.

4 Experimental Analysis

In this work, we propose a strategy for streaming graph-based supervoxel com-
putation, named StreamISF, in which the size of each block is flexible and it
depends on the size of the video. Here, we consider the size of each frame-
block equal to 10%, 20%, and 30% of the video size. We also made some
experiments when the number of frames for each block is independent of the
video’s size, for instance, 10 and 20 frames. It is important to observe that when
k = 100%, this method becomes the ISF2SVX. We compared our approaches
with different state-of-the-art methods: (a) ISF2SVX; (b) StreamGBH; and (c)
StreamHOScale. The number of supervoxels varied from 200 to 800 and, for
the baselines, the recommended parameter settings were used. StreamISFw is
when propagating intersection labels allows tree merges and StreamISFn does
not allow merges.

We evaluated on Chen [5] dataset, some samples can be seen in Fig. 4, which
is a subset of the well-known xiph.org videos that have been supplemented with
a 24-class semantic pixel labeling set (the same classes from the MSRC object-
segmentation dataset). The eight videos in this set are densely labeled with
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Fig. 4. Example of images from Chen dataset.

semantic pixels and have an average of 85 fpv, minimum 69 fpv, and maxi-
mum 86 fpv, leading to a total of 639 annotated frames. This dataset allows us
to evaluate the supervoxel methods against human perception. The annotated
frames correspond to semantic pixels, thus objects spatially disconnected have
the same label, thereby the evaluations using these annotated frames do not over
an accurate label placement of supervoxels in the videos.

In terms of measures, we selected five classic evaluation metrics: (a) 3D
boundary recall (BR); (b) 3D undersegmentation error (UE); (c) Explained vari-
ation (EV); and (d) Mean duration. BR measures the quality of the spatiotem-
poral boundary delineation. UE calculates the fraction of object supervoxels
overlapping background voxels—and vice-versa—(i.e., lower is better). EV mea-
sures the method’s ability to describe the video’s color variations through its
supervoxels (i.e., higher is better). Finally, the mean supervoxel duration mea-
sures if a supervoxel perpetuates throughout the frames, indicating a temporal
coherence to the object which it compounds (i.e., higher is better).

4.1 Quantitative Analysis

Figures 5 and 6 present the quantitative results. Considering UE on Figs. 5, one
may see that StreamISF, with 26-neighborhood and k equal to 20% and 30% have
competitive or better results than the compared works, with significantly less
supervoxel leakage than StreamHOScale. Similarly, StreamISF has competitive
BR results, in which StreamISF with 26-neighborhood with k equal to 20%
and 30% have a higher BR than StreamGBH. As stated in [3,17] path-based
methods, and more specifically IFT-based methods, are known to be effective
solutions in object delineation, thus justifying why the ISF2SVX method in its
variations have the best boundary recall results.

As one may see in Fig. 6, since IFT minimizes the cumulative path cost, the
internal variation of the supervoxels tends to be significantly reduced. Thus, com-
pared to other streaming video segmentation, the StramISF variations achieved
the best EV results. Maintaining temporal coherence is a challenging task for
streaming-based methods since they intend to reduce memory consumption and
allow for real-time video processing. The mean duration tries to capture the tem-
poral coherence of the supervoxels, and our method manages to maintain the
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Fig. 5. A comparison between our method StreamISF, and the methods StreamGBH
(k = 10), StreamHOScaleand ISF2SVX when applied to Chen datasets. The compar-
ison is based on the following metrics: (i) 3D undersegmentation error; and (ii) 3D
boundary recall .

Fig. 6. A comparison between our method StreamISF, and the methods StreamGBH
(k = 10), StreamHOScaleand ISF2SVX when applied to Chen datasets. The compari-
son is based on the explained variation and mean duration.

temporal coherence between the blocks, but as our method is still not able to
guarantee the final number of supervoxels in the video, which is an approximate
number, our method in this metric obtains lower results than other segmentation
methods. StreamISF with 26-neighborhood with k equal to 30% is the one with
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Table 1. Video execution time of the images in Fig. 7 from the Chen dataset. The
column k indicates the block size (in frames) in relation to the video size. In both
StreamISF and ISF2SVX the parameters were 5000 initial seeds and 100 final super-
voxels.

Method k Tree merging Time (s)

ISF2SVX-GRID-DYN – – 34.368
ISF2SVX-RND-ROOT – – 31.245
StreamISF-GRID-DYN 30% ✗ 30.478
StreamISF-RND-ROOT 30% ✗ 27.062
StreamISF-GRID-DYN 20% ✗ 29.470
StreamISF-RND-ROOT 20% ✗ 26.120
StreamISF-GRID-DYN 10% ✗ 30.795
StreamISF-RND-ROOT 10% ✗ 29.181
StreamISF-GRID-DYN 30% � 25.656

StreamISF-RND-ROOT 30% � 22.334
StreamISF-GRID-DYN 20% � 25.746

StreamISF-RND-ROOT 20% � 22.756
StreamISF-GRID-DYN 10% � 24.590

StreamISF-RND-ROOT 10% � 22.190

the best temporal coherence among the variations of our own method, according
to Fig. 6.

According to Table 1, when comparing the average execution time of Stream-
ISF with ISF2SVX, our proposal can improve efficiency and reduce memory
consumption. As you can see, the efficiency of StreamISF improves by around
30% by allowing tree merging and using a random sampling strategy. In Stream-
ISF, when two or more trees can receive the label of the same tree from the
intersection frame, performing tree merging is a more efficient task (in terms of
execution time) than choosing which tree to propagate to. Furthermore, when
sampling seeds in random positions, there is a reduction in computational cost
in relation to grid sampling, since grid sampling requires the computation of
equally spaced positions.

4.2 Qualitative Analysis

In Fig. 7, we compare the StreamISF variant with 26-neighborhood and k =
30% with other segmentation methods. As can be seen, our approach manages
to generate large supervoxels in non-significant regions (e.g., the grass), while
effectively delineating even small important regions (e.g., the player’s head and
the letters on the jersey). In contrast, due to the fusions in the propagation of
the labels of the intersection trees, some of the temporal coherence of the colors
is lost in the course of the video.
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Fig. 7. Example extracted from Chen dataset. The first row contains the original
frames, and the following rows, from top to bottom have results with 50 and 100
supervoxels obtained from StreamGBH (k = 10), StreamHOScale (k = 10), StreamISF
(26-neighborhood e k = 30%), and ISF2SVX-GRID-DYN.

5 Conclusions and Future Work

In this paper, we propose a new supervoxel segmentation streaming framework,
named Stream Iterative Spanning Forest (StreamISF), which was inspired by
[16] and the Iterative Spanning Forest for Supervoxels (ISF2SVX), supervoxel
segmentation framework. Our method allows video segmentation without high
memory consumption, since only the video block and its intersection image are
stored, and not the whole video as is done in the ISF2SVX method. Also, accord-
ing to the presented results, our algorithm is better than some compared methods
that also perform streaming video segmentation.

For future works, we intend to study the performance of StreamISF consider-
ing new ways of propagating supervoxel tree labels to improve the supervoxels’
delineation with fewer tree merges and improving temporal coherence. Also, we
intend to study strategies to ensure the number of final supervoxels.
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Abstract. Pest monitoring models play a vital role in enabling informed
decisions for pest control and effective management strategies. In the
context of smart farming, various approaches have been developed, sur-
passing traditional techniques in both efficiency and accuracy. However,
the application of Few-Shot Learning (FSL) methods in this domain
remains limited. In this study, we aim to bridge this gap by leveraging
Transfer Learning (TL). Our findings highlight the considerable efficacy
of TL techniques in this context, showcasing a significant 24% improve-
ment in mAP performance and a 10% reduction in training time, thereby
enhancing the efficiency of the model training process.

Keywords: Machine Learning · Transfer Learning · Few-shot
Learning · Pest Detection · Object Detection

1 Introduction

In the agriculture industry, several algorithms have been employed alongside Inter-
net of Things (IoT) technologies to enhance productivity [9]. Some of these smart
techniques are specifically tailored to enhance plant growth, such as precision trim-
ming methods that promote uniform growth across the plantation, leading to con-
sistent and similar fruits. Additionally, some techniques utilize available data on
weather and soil conditions to aid farmers in planning optimal planting schedules,
forecasting crop yields, and estimating food requirements. A particular application
with significant potential is pest detection, as it can effectively enhance crop yields
and minimize pesticide usage by detecting pests at early stages. Traditional pest
detection methods rely on expert technicians manually inspecting the plantation
to identify and count the pests [1]. Since this task is challenging due to the difficulty
of identifying some pests, and also time-consuming and error-prone, the number
of pests in a plantation is often extrapolated from the number of pests counted by
the experts in a particular area of the plantation.

Smart methods have the advantage of surpassing traditional approaches in
pest detection, as they do not always necessitate the presence of an expert tech-
nician and can efficiently cover larger regions of a plantation. However, training
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such models requires high-quality labeled data, which, unfortunately, is scarce in
this domain. The limited availability of labeled data poses a significant challenge,
leading to the development of innovative methods that aim to reduce the reliance
on large volumes of real data while effectively addressing these constraints.

With that in mind, there is a growing demand for lighter, less data-intensive,
and energy-efficient AI models. Optimized learning processes are required to
achieve data-efficient AI, ensuring reduced input requirements without compro-
mising the quality of the output. As an example, Active Learning (AL) seeks
to alleviate the requirement for extensive datasets to train Deep Learning (DL)
models by utilizing only the most relevant and informative data for the train-
ing process. This approach not only enhances the efficiency of Machine Learning
(ML) but also eases the burden of the annotation process [3]. Annotating data for
model training can be challenging, time-consuming, error-prone, and expensive.
The complexity and cost of this process can escalate significantly, particularly
when experts’ involvement is necessary for data annotation. Another approach
that tackles the challenge of data scarcity is Few-Shot Learning (FSL). This tech-
nique aims to enable models to generalize their knowledge and perform similar,
yet slightly different tasks using only a few examples for training. This approach
is highly relevant in the context of pest detection, where data scarcity is com-
mon. It enables us to train new models by leveraging the knowledge of previous
models and using only a few available images of the pests for training.

In this research, we adopt a non-Meta-Learning Few-Shot Learning (FSL)
approach, specifically Transfer Learning (TL), to investigate its influence on
training object detection models. We conduct a comparative analysis of the
impact on performance and training time when employing this approach as
opposed to not using it.

The paper’s structure is organized as follows. The subsequent section offers
an overview of the background information relevant to our study. In Sect. 3,
we provide a detailed outline of our methodology, encompassing the dataset
creation and experiment design. Our findings and the discussion of the results
are presented in Sect. 4. Finally, Sect. 5 presents the conclusions drawn from our
research and outlines potential directions for future studies.

2 Background

In this section, we lay the groundwork by introducing the essential concepts rele-
vant to our research. We present a study conducted on intelligent pest detection
and outline the key principles of object detection and classification models, with
a specific emphasis on the one-stage model, YOLOv5. Additionally, we delve
into the field of Few-Shot Learning (FSL), with a particular focus on Transfer
Learning (TL).

2.1 Pest Detection

Agriculture 4.0, also known as Smart Farming, emerged with the goal of mak-
ing agriculture more efficient. As the world’s population grows, the demand for
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food has significantly increased. Consequently, the pursuit of more profitable
production in this field has become highly relevant. In this research, we focus
on pest detection, which is one of the major causes of crop losses in the field of
agriculture.

One specific pest that causes significant losses is the whitefly, which prompted
the authors of [10] to construct a dataset of images of this pest on yellow sticky
traps. In [1], the authors utilized this dataset to build a system for detecting
whiteflies on traps using an internal camera connected to the cloud. The sys-
tem analyzes daily captured images for pest detection. Several object detection
models were tested, and YOLOv5 models notably outperformed Faster R-CNN.
The authors opted to use YOLOv5 small in the trap due to its speed (0.01 s per
image), low memory usage and good performance, achieving an 81.2% mAP.

2.2 Object Detection and Classification

Object detection and classification algorithms are largely based on Convolutional
Neural Networks (CNNs). They generally perform two tasks: detecting objects
within an image and then classifying them. Object detection models can be
broadly categorized into two types: single-stage models and two-stage models.

Single-stage models process the image in a single pass, which often makes
these models faster than two-stage models, which analyze the image in two
stages. Faster R-CNN [14] and Fast R-CNN [6] are examples of two-stage models,
both belonging to the R-CNN algorithm family. In contrast, the YOLO algorithm
exemplifies single-stage models. Currently, YOLOv8 is considered the state-of-
the-art in object detection algorithms [7]. For the purpose of this research, we are
particularly interested in YOLO models due to their high speed and lightweight
nature.

YOLOv5 was proposed by Ultralytics and held the state-of-the-art title until
its successors were introduced. Figure 1 highlights the three components into
which the architecture can be divided [8]: the backbone, which extracts the fea-
tures from the input image; the neck, where the extracted features are processed
to provide context to next component; and the head or output, which predicts
the locations, classes, and confidences of the objects detected in the image.

The performance of object detection models is typically assessed using mean
Average Precision (mAP), offering valuable insights into the model’s efficacy in
detecting annotated objects. To comprehend mAP, it is essential to understand
the concept of Intersection over Union (IoU), which is calculated as follows:

Intersection over Union (IoU) =
A ∩ B

A ∪ B
, (1)

where A is the real object box and B is the prediction box obtained from the
detection model. Basically the numerator represents the Overlaparea, i.e., the
shared region between the predicted and ground truth bounding boxes, and the
denominator represents the Unionarea, i.e., the combined area of both these
boxes. The predicted bounding box is the object’s location predicted by the
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Fig. 1. Overview of YOLOv5 architecture: The model’s Backbone extracts relevant
features from the input; the Neck processes the extracted features, providing insight to
the next component; and the Output is responsible for making the predictions [18].

model and the ground truth corresponds to the manually annotated object loca-
tion in the image. Using this metric, the model computes True Positives (TPs)
and False Positives (FPs). For an IoU threshold of 0.5, objects detected with
IoU >= 0.5 are classified as TPs, while those with IoU < 0.5 are classified as
FPs. This allows the calculation of the Precision-Recall (PR) curve across vari-
ous confidence levels. The mAP is then determined by averaging the Area under
the Curve (AuC) of the PR curve across all classes.

2.3 Few-Shot Learning

DL requires a substantial amount of data for training, which makes it an undesir-
able algorithm in the face of data scarcity. FSL emerged to address the challenge
of limited data availability in training DL models, enabling them to learn tasks
with just a few annotated examples. This approach originated from the effort to
narrow the gap between human-like learning and machine learning [12]. Humans
have an innate ability to learn new concepts with little or no previous demon-
stration. The idea is to systematically revisit previous learning iterations and
define a promising strategy based on experience. Specifically, a few examples are
needed to make the process faster and more efficient. This inductive-learning
perspective gave rise to the few-shot learning methods [4,17]. FSL can be cat-
egorized into meta-learning and non-meta-learning algorithms. A meta-learning
algorithm aims to learn new representations across few-shot tasks to predict a
new set of test tasks with limited available data [5]. A meta-learner iteratively
updates model parameters and generalizes to new experimental tasks from a
limited amount of labeled data. Specifically, considering a set of training tasks t
and task-specific data Dt (meta-training), the goal is to learn model parameters
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θ that generalize well across all learning tasks,

θ′ = argminθ

∑

ti∼ρ(t)

L(Dti , θ) (2)

where ρ(t) is a distribution of tasks, Dti is the data of task ti and L the loss for
a downstream task. Model parameters are updated to quickly adapt to the new
task at hand. In the meta-testing phase, the meta-learner generalizes to unseen
representations by mapping the initialized parameters θ′ to new test tasks tj
with parameters

θ′′ = L(Dtj , θ
′) (3)

where Dtj contains just a few examples of each test task tj . In general, FSL meta-
learning approaches can be broadly divided in two main classes of few-shot mod-
els: metric-based and optimization-based methods. Metric-based models adapt
to new tasks by learning the similarity between a support set and a query set
[15,16]. Optimization-based methods update model parameters across tasks to
quickly adapt to new representations with just a few gradient steps [5,13]. The
goal is to learn an optimized parameter configuration that generalizes well to
new test tasks with just a few examples. In meta-training, the model is trained
on the support set of each training task and is evaluated by computing the gra-
dient and loss on a query set. In the meta-testing phase, the updated parameters
are used to quickly adapt to new test tasks using limited available data and just
a few gradient steps.

In this research, our primary focus is on TL, a non-meta-learning approach.
This technique involves leveraging the knowledge that a model has gained from
performing tasks that are similar, yet not identical. Figure 2 provides a schematic
representation of the TL process in a CNN.

Fig. 2. An Overview of TL in CNNs: A new model is initiated with the weights of a
pre-trained model, facilitating its training process
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As defined in [11], a domain is denoted as D = {X , P (X)}, where X rep-
resents the feature space and P (X) is the marginal probability distribution. A
task T consists of a label space Y and a predictive function f(.). Given a source
domain Ds and a source task Ts, a target domain Dt and a target task Tt, trans-
fer learning aims to help improve the learning of the target predictive function
ft(.) in Dt using the knowledge in Ds and Ts, where Ds �= Dt, or Ts �= Tt. In
the context model training, TL is commonly implemented by using the weights
of a pre-existing model as a starting point. This means that the training pro-
cess does not start from scratch as the model already possesses some knowledge
about performing a similar task. Such an approach conserves time and resources
and, in the context of this research, it facilitates the construction of a model
with a limited amount of data.

3 Methodology

In this research, we aim to explore and evaluate the effectiveness of transfer
learning techniques when applied to object detection models in the field of pest
detection. Our primary focus is on whitefly detection as we have the ability to
utilize the model from [1] as a starting point to train a new model. This model
was trained to detect this pest using high-resolution images (5184×3456 pixels)
captured in a controlled environment, i.e., with regulated light exposure and
absence of noise, such as yellow sticky traps, as illustrated in Fig. 3.

In this study, we collected 500 images of tomato leaves infested with whiteflies
from a greenhouse during the late stages of plant growth. These images, with a
resolution of 3000 × 3000, were taken from three randomly selected rows within
the plantation, which was composed of rows of tomato plants. Due to the nature
of the greenhouse environment, the images were captured in an uncontrolled
setting, resulting in varying light exposures and occasional disturbances, such
as out-of-focus instances. Additionally, these images are complex and rich in
content, displaying a range of colors and elements, including the green of the
leaves, the red of the tomato fruits, the white of the whiteflies, among various
other features in the background. Figure 3 provides an illustration of an image
from our dataset.

3.1 Experiment Design

To evaluate the effectiveness of TL in the specific case of whitefly detection, we
conducted an experiment that involved training several models under different
scenarios, varying the number of training images. We start with two images and
finish with all the available examples. We planned to train two models with each
set of images: one using the weights from the YOLOv5 small model from [1] as
a starting point, and the other initializing the weights randomly. We denote the
latter as “Scratch” models since their training starts from scratch.

From our dataset, 200 images were annotated and randomly split into 160
images for training and validation, and 40 for testing. For the creation of each
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(a)

(b) (c)

Fig. 3. Comparison of the images from: a) the dataset used in [1], which was taken
under regulated light exposure and absence of noise; b) an image collected in our work,
which is abundant in content and showcases a variety of colors and elements; and c)
the same image as in b) but annotated from our dataset to indicate whiteflies using
red squares. In image a), whiteflies are annotated with green circles.

Table 1. Overview of the experiment: The first column indicates the number of images
used in the training process, while the subsequent columns represent the distribution
of images used for training and validation in each scenario, respectively. Note: The
exploration of 1-shot learning, i.e., training with only one example, is not feasible since
YOLOv5 requires images for the validation.

Number of images Training Images Validation Images

0 – –

2 1 1

4 2 2

7 5 2

15 10 5

20 15 5

30 20 10

50 40 10

160 120 40
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scenario, the images used for training and validation are randomly selected from
the set of 160 images. Table 1 summarizes the experiment.

4 Experiments and Results

To account for the random factor in image selection for each scenario, we con-
ducted the experiment five times to ensure the robustness of our findings. Each
scenario underwent training for 200 epochs. Table 2 showcases the average mAP
and training time obtained over all repetitions for each scenario.

Table 2. Table presenting a comparison of models trained with the same image set
but different weight initialization methods: ”TL” (Transfer Learning with pre-trained
model weights) and ”Scratch” (randomly initialized weights). The number of images
used, mAP results, and training times are outlined for each approach. Bold figures
denote superior performance. The models were trained using an NVIDIA GeForce
RTX 4080.

Average mAP Average Training Time (s)

# Images TL Scratch TL Scratch

0 0.02 0.00 – –

2 0.16 0.00 225 248

4 0.18 0.00 210 241

7 0.19 0.00 227 253

15 0.35 0.00 245 287

20 0.42 0.04 298 346

30 0.56 0.23 300 373

50 0.62 0.34 405 443

160 0.77 0.68 917 962

The results clearly illustrate a significant advantage in utilizing TL. Across
all scenarios, the application of TL outperforms the random initialization of
the CNN weights, in both performance and training time. The results obtained
unequivocally demonstrate that the implementation of TL significantly boosted
the mAP by an average of 24% and accelerated the training process by 10%.

In Fig. 4, we present a comparative view of the mAP evolution during the
training process in one of the scenarios with 160 images. This analysis clearly
illustrates the substantial advantage of employing TL. The model trained using
TL achieved satisfactory performance as early as epoch 40, while the model
trained with randomly initialized weights only reached comparable results at
epoch 150. However, it is important to note that no model performed satisfac-
torily when trained with only a few examples. Exclusively in the final scenario,
where the full dataset was used, the model achieved an acceptable performance
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with an mAP of 0.78. This event might be attributable to the differences in
the tasks of each model. The pre-trained model was trained to detect white-
flies in a controlled environment with high-resolution images, while our model
was trained to detect the same pest but in a completely different environment
and with significantly lower resolution. The prior knowledge of the pre-trained
model provided a significant advantage in the training process but was definitely
insufficient to detect the same pest in an entirely different environment.

Fig. 4. mAP evolution during training for a scenario with 160 images. The graph
depicts two training processes: one using Transfer Learning (TL mAP) and the other
with randomly initialized weights (Scratch mAP).

Furthermore, the fact that the models were trained for 200 epochs may not
have been enough for them to learn all the features necessary for optimal per-
formance. In contrast, the model was achieving higher mAP values during the
training process on the validation set, reaching up to 0.96 mAP, indicative of
overfitting. Therefore, finding a suitable balance between the number of epochs,
the number of examples, and the distribution of examples in the training and
validation sets during the training process is a challenging task. In [2], the same
dataset was used to train a model for the same task, and it achieved a signif-
icantly higher mAP of 0.931, on the same test set we used. This suggests that
selecting the right configuration when training these types of models can indeed
be challenging.

To delve deeper into the impact of the number of epochs on the training
process, we conducted an additional experiment in a 20-shot scenario (i.e., using
20 images), dividing them into 15 for training and 5 for validation. We varied
the number of epochs, starting from 50 and incrementally going up to 700 with
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intervals of 50. For each epoch scenario, two models were trained using the same
set of randomly selected images for the experiment. While one model employed
TL, the weights of the other model were randomly initialized. Figure 5 depicts
the results obtained from our experiment. Once again, the results demonstrate
that models utilizing TL outperform those with randomly initialized weights.
However, even with an increase in the number of epochs, the use of TL was
not enough build models with satisfactory performance, as the highest mAP
achieved was 0.58 with 600 epochs. Despite this, employing TL resulted in an
average mAP performance increase of approximately 30% over randomly initial-
ized weights.

Fig. 5. mAP performance difference between models utilizing Transfer Learning (TL
mAP) and those with randomly initialized weights (Scratch mAP), across various num-
bers of epochs in training.

5 Conclusion

The primary aim of this research was to explore the effectiveness of Transfer
Learning (TL) techniques when applied to object detection models. Our findings
demonstrated notable advantages in the training process with TL, exhibiting an
average increase of 24% in mAP performance and a 10% reduction in training
time. However, in cases where only a few examples were used for training, the
benefits were not sufficient for successful task completion.

In the realm of Few-Shot Learning (FSL), the Meta-Learning approach seeks
to construct models capable of performing tasks when trained with limited exam-
ples. By exposing the model to various tasks, it adapts to the learning process,
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enabling effective learning even with few examples when encountering novel,
unseen tasks. Considering that the pre-trained model used in this research was
trained solely for whitefly detection, a Meta-Learning approach may be more
suitable for the specific case of whitefly detection compared to the TL approach
employed here.

Future endeavors should prioritize the exploration of Meta-Learning
approaches to identify a strategy that allows for the construction of a robust
model with limited training examples, addressing the challenges posed by data
scarcity in pest detection scenarios.

Having employed YOLOv5, a lightweight architecture, for our models, we
can now leverage it to provide farmers with a reliable tool for whitefly detection.
This model can power an IoT camera. When placed in a plantation, this setup
helps to monitor and manage the progression of pests, further advancing the
initiatives of Agriculture 4.0.
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Abstract. Pain is a highly subjective and complex phenomenon. Cur-
rent methods used to measure pain mostly rely on the patient’s descrip-
tion, which may not always be possible. This way, pain recognition sys-
tems based on body language and physiological signals have emerged.
As the emotional state of a person can also influence the way pain is
perceived, in this work, a protocol for pain induction with previous emo-
tional elicitation was conducted. Eletrocardiogram (ECG), Electroder-
mal Activity (EDA) and Eletromyogram (EMG) signals were collected
during the protocol. Besides the physiological responses, perception was
also assessed through reported-scores (using a numeric scale) and times
for pain tolerance. In this protocol, 3 different emotional elicitation ses-
sions, negative, positive and neutral, were performed through videos of
excerpts of terror, comedy and documentary movies, respectively, and
pain was induced using the Cold Pressor Task (CPT). A total of 56 par-
ticipants performed the study (with 54 completing all three sessions). The
results showed that during the negative emotional state, pain reported-
scores were higher and pain threshold and tolerance times were smaller
when compared with positive. As expected, the physiological response to
pain remain similar despite the emotional elicitation.

Keywords: Cold Pressor Task · Emotion · Pain · Physiological Signals

1 Introduction

Pain is a subjective phenomenon that depends on the past experiences of each
individual and the circumstances of the moment. It’s a survival mechanism that
allows us to identify harmful situations and avoid tissue damage [9].

Pain has a big impact on people’s lives and society in general, it’s the principal
reason for seeking medical attention and it can also provoke a loss of productivity
in companies [9]. Moreover, chronic pain costs society more than cancer and
heart diseases [9]. So, it is important to deal with pain as soon as possible,
identifying its origin to achieve diagnosis and adequate treatment, preventing
harmful consequences.
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Currently, there are several methods to measure pain, but all of them depend
on the patient’s description. Pain assessment is typically done by a caregiver
through self-reports, observing behavioral or physiological pain responses, and
using information about the pain cause [9]. The methods used to quantify pain
are usually visual or numeric scales [4]. However, patients with limited commu-
nication skills cannot report their pain experience, these may include infants
and children, adults with cognitive damage or intellectual disability, and uncon-
scious people [9]. Thus, an objective measurement of pain could be beneficial.
To achieve this goal, there has been some research devoted to the development
of pain recognition systems, which are based on the detection of some character-
istics provoked in the human body by pain, such as facial expressions, sounds,
gestures, or even some physiological signals.

To evaluate pain sensitivity there are three measurements that are commonly
used: pain threshold, which is the minimal stimulus intensity required to elicit
pain; pain tolerance, which is the maximal stimulus intensity that an individual
can withstand; and pain perception, which refers to what classification an indi-
vidual gives to a standardized stimulus intensity [10]. Pain is not only a physical
experience but is also connected with emotions. As mentioned earlier, pain is
a subjective experience that depends on the circumstances in which it occurs.
One factor that can influence the pain experience is the emotional state of the
individual [4].

This work addresses the influence of emotional states on pain responses.
Firstly, the participants are subjected to the elicitation of different kinds of
emotions, namely negative, positive, and neutral, through the visualization of
different excerpts of terror, comedy and documentary movies, respectively, while
pain induction is attained through the Cold Pressor Task (CPT) test in three
different emotional sessions. Throughout each entire session, electrocardiogram
(ECG), eletromyogram (EMG) from triceps and trapezius, electrodermal activity
(EDA) and pain-reported measures are collected.

The aim of this work is to understand if emotion elicitation has an influence
in pain perception and response. It is expected that emotional elicitation will
not have an influence on the physiological response to pain, while it is supposed
that perception depends on the elicited emotional state. Negative emotions (in
this case, fear) should exacerbated pain, increasing the perception and lowering
the tolerance to pain. On the other hand, positive emotions (happiness) should
attenuate the perception of pain. This way, this work proposes a new protocol to
assess pain perception related to the emotional state of a person and establishes
a relationship among pain and positive and negative emotions.

This document is structured as follows: Sect. 2 presents some related studies
that assess emotional modulation in pain perception; Sect. 3 describes the mate-
rials and the methods used to develop this work; Sect. 4 exposes the obtained
results; Sect. 5 presents its discussion and Sect. 6 highlights the main conclusions
achieved and a perspective for future research.
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2 Related Works

There have been several studies developing pain recognition systems with differ-
ent approaches. The works below support that emotions can have a crucial role
in pain perception, driving the motivation for the present work in studying the
influence of emotions on pain perception.

Zhang et. al [10] investigated the differences in pain perception between men
and women and how that is related to negative emotions. To quantify pain sen-
sitivity, they used a cold pressure test (CPT), and to assess negative emotions
they used several questionnaires and MRI data. The hypothesis was that females
experience more negative emotions and that is related to a higher pain sensitivity.
So, first, the subjects responded to emotion-related questionnaires and then they
were submitted to a CPT. The questionnaires included were the Chinese version
of the Fear of Pain Questionnaire (FPQ), the Pain Anxiety Symptoms Scale-20
(PASS), the trait version of State-Trait Anxiety Inventory (STAI) and the Beck
Depression Inventory. The pain was induced by putting the individual’s left hand
into cold water at a temperature of 2◦C. Pain threshold was determined as the
duration of immersion from the time that the hand was kept in the water to the
time the subject began to feel pain and pain tolerance as the total time from
immersing the hand in the water to the time the participants remove it. Several
statistical analyses were performed, such as the non-parametric Mann-Whitney
U-tests and Spearman rank correlation analyses (with the skewed distributed
variables) and the parametric independent samples t-tests and Pearson corre-
lation analyses (with normally distributed variables). They found statistically
significant gender differences in pain threshold and tolerance, and two question-
naires: the males presented higher pain threshold and tolerance and lower scores
in the FPQ and PASS questionnaires. Further analysis showed that the two
questionnaires’ scores were negatively correlated with pain threshold and toler-
ance, showing that differences in pain sensitivity were mediated by pain-related
negative emotions, specifically pain-related fear and anxiety.

Silva and Sebastião [7] studied the ECG signal during pain induction under
disctint emotional contexts. The participants were subjected to a CPT, for induc-
ing pain, while watching an emotional inducing video. The protocol consisted
of two sessions, one using a fear emotion-inducing video and a second using a
neutral one. The data was pre-processed and then was used 8 machine learn-
ing algorithms to classify pain. Attempting on a binary classification of pain,
training and testing was performed in several strategies using ECG data from
both emotional sessions, and classification results were compared across different
strategies. In their work, the results supports that ECG response remain similar
along both sessions. As for the classifiers, the RF and AdaBoost showed better
performance to classify pain and the LDA and LR models were the worst ones.

Srisopa et. al [8] found that emotion regulation strategies produced signif-
icant improvements in decreasing pain intensity during labor. In this review,
the type of pain studied was the pain caused in the labor and was measured
by self-report or the observation of the participant’s behavior. Strategies based
on mindfulness intervention and distraction were used to train the subjects to
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manage pain. The individuals submitted to these techniques showed a signifi-
cantly reduced pain intensity during the active phase of labor.

Although the studies of Zhang et al. [10] and Srisopa et al. [8] associate
emotional state with pain perception, they do not establish a protocol for emo-
tional and pain induction. The protocol proposed by Silva et al. [7] has certain
limitations, which will be discussed in Sect. 5.

3 Materials and Methods

This section presents the materials and methods implemented in this work. The
data acquisition and approaches used to analyse the data are also exposed.

3.1 Experimental Setup

Pain was induced using the Cold Pressor Task (CPT). The CPT is a test that
involves putting a hand or forearm in cold water causing a stimulus that produces
a slowly increasing pain of slight to moderate intensity. It has been used in many
different types of works, such as studies about pain, autonomic reactivity, and
hormonal stress responses [2].

For the signals collection, a 4-Channel Biosignalsplux1 was used. Four sensors
were connected to this device: two EMG sensors, one EDA sensor, and one ECG.

In Fig. 1 the equipment’s setup and its placement in the room are shown.

Fig. 1. Experimental Setup.

For the CPT test, a stainless-steel tank of 45 liters was used. The tank has
an immersion thermostat, that includes a circulation pump that can be used to
1 https://www.pluxbiosignals.com/apps/builder/biosignalsplux-kit-builder (accessed

20 July 2023).

https://www.pluxbiosignals.com/apps/builder/biosignalsplux-kit-builder
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improve the homogeneity within the bath and to perform a closed liquid circula-
tion circuit. The water was initially cooled with ice and the control panel allows
the control and adjustment of temperature. Also, two notebooks were used: one
for the acquisition of the sensors’ reading and the respective monitorization
(through the software OpenSignals from Biosignalsplux) and the other for dis-
playing the videos with an external monitor (used with headphones for audio).
This notebook was also used for completing the questionnaires. The experimen-
tal procedure was implemented at the Institute of Electronics and Informatics
Engineering of Aveiro, University of Aveiro, in a room prepared specifically for
this purpose.

3.2 Protocol

Before the procedure, informed consent with all the information about the
process was given to the participants. In the case of a positive response, the
first questionnaire, the trait version of State-Trait Inventory for Cognitive and
Somatic Anxiety (STICSA-trait) was also given to the participant to be replied
before the procedure.

The protocol begins with the participant answering the following question-
naires: the state version of STICSA (STICSA-state), the Perceived Stress Scale
(PSS), the Eysenck Personality Inventory (EPI) and the Visual Analog Scale
(VAS), in this order. The purpose of these questionnaires is to assess some psy-
chological traits of the participant, as well as the emotional state. The VAS
questionnaire measures the participant’s arousal and valence state.

After the questionnaires, the electrodes connected to the Biosignalsplux sen-
sors are placed on the participant according to Fig. 2.

Fig. 2. Scheme of the electrodes placement: A) EMG electrodes on the trapezius and
triceps muscles; B) ECG electrodes plus reference electrode of the EMG and C) EDA
electrodes.

The positive electrodes are represented with a red circle and the negative
ones with a black circle. The white electrodes are the reference electrodes for the
ECG and EMG signals and must be placed above the pelvic bone for ECG above
on the collarbone for EMG. The EMG electrodes were placed in the trapezius
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and triceps muscles of the non-dominant arm. The ECG electrodes were placed
on the rib cage (the positive one on the right side and the negative one on the left
side of the body). The EDA was collected on the dominant hand: the positive
electrode was placed in the upper part of the palm and the negative in the lower
part of the palm.

Accounting for the inter-participant variability regarding the physiological
responses, the data collection begins with a rest time (Baseline 1), correspond-
ing to five minutes, where the person will be just sat in a comfortable position
without any stimuli. After this time, while still in a comfortable position with-
out any pain stimuli, the participant will watch an emotional-inducing video
for around ten minutes, in the frontal screen. The video can be one of three
kind: an neutral emotional inducing video, which is composed of excerpts of
documentaries, a negative emotional inducing video (Fear), which is composed
of excerpts of terror movies or a positive emotional inducing video (Happiness),
which is composed by excerpts of comedy movies.

When the video ends, the subject will be asked to respond to a last question-
naire, the VAS-pos, and then another rest time begins (Baseline 2) also with a
duration of five minutes. At the end of this resting time, the participant is asked
to report the pain level, in his non-dominant hand, using a numerical pain scale
(NPS) ranging from 0 to 10. Afterwards, the pain stimulus is applied. The indi-
vidual will be requested to put his non-dominant hand in the cold-water tank
with a temperature of approximately 7◦C± 1◦C, beginning the CPT test. To
register the participant’s pain threshold, they are asked to report the pain level
using the NPS as soon as they feel any pain. The participants are informed to
hold the hand immersed as long as they can, with a time limit of 2min. If they
reach the point where they can no longer tolerate the pain, they are instructed
to report to the researchers that they will remove the hand from the tank. Before
doing so, they are asked to report the pain level (pain tolerance). If they can
keep the hand immersed in the tank for the complete duration, the maximum
pain experience will be reported at the limited time defined (2min). Finally, the
last rest period begins. After three minutes the level of pain is reported again.
At the end of the rest period, the procedure ends.

Each participant repeats this protocol three times, with an interval of approx-
imately 1week, where each session differs from the type of emotion-induced
through the video. The order of the videos is randomized. In the second and
third sessions, the participants will only respond to the questionnaires STICSA-
state, VAS-pre, and VAS-pos.

The protocol for data collection is schematized in Fig. 3.
This study was approved by the Ethics and Deontological Council of the

University of Aveiro (CED-UA-12-CED/2023).

3.3 Physiological Data Preparation

After the acquisition, the physiological data was filtered and divided into epochs
according to the triggers given and processed.
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Fig. 3. Scheme of the protocol applied.

The epochs used in this work correspond to Baseline 1 and CPT epochs
only, since the aim is to evaluate if the emotion elicitation had some influence
on physiological response to pain and in pain perception.

The signals were pre-processed using Neurokit22 in Python. The ECG was
filtered using a 5th-order high-pass Butterworth filter with cut off frequency of
0.5Hz, followed by powerline filtering (50Hz). The EDA was filtered using a
4th-order low-pass Butterworth filter with cut off frequency of 5Hz followed by
smoothing of the signal. Lastly, the EMG was filtered using a 4th-order 10Hz
highpass Butterworth filter followed by a notch filter at 50Hz and a constant
detrending. After the filtering, Neurokit2 functions were used to extract some
important features of the signals.

Table 1 summarizes all the features extracted from the physiological signals.
The choice of the features was based on previous studies where CPT was used
[6,7] and other features were considered for analyses.

Regarding the Heart Rate Variability (HRV), only ultra-short metrics were
extracted since the CPT lasted 2min or less. The works of Salahuddin et. al
[5] and Boonnithi et. al [3] prove that the HRV features present in Table 1 are
suitable to be calculated through signals lasting only 30 s or less. This way, only
the sessions where the participant endured at least 30 s with the hand on the
cold water tank were tacked into account to this work.

In order to minimize inter-participant variability, the features were normal-
ized by the ratio between those features extracted from CPT and those extracted
from Baseline 1, for each participant.

As HRV_pNN50 had some zero values in the Baseline 1 epoch, this feature
was removed from the dataset, since the ratio would lead to NaN values. The
HRV_LF, HRV_LFn and HRV_LFHF features were also removed since they
had several NaN values.

3.4 Statistical Analysis

In order to investigate if the extracted features differed significantly regarding
the emotion elicitation, statistical tests were performed.

First, the normality of all the features was tested using the Shapiro-Wilk
test, which tests the null hypothesis that the data was drawn from a normal
distribution. Therefore, if the p-value is below a chosen significance level (in this

2 https://neuropsychology.github.io/NeuroKit/ (Accessed 9 July 2023).

https://neuropsychology.github.io/NeuroKit/
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Table 1. Description of the extracted features.

Signal Series Designation Description

ECG HR Mean_HR Mean of Heart Rate (HR)
HRV RMSSD Square Root of the Mean of the Squared

Successive Differences between adjacent RR
intervals

meanNN Mean of the RR intervals
SDNN Standard Deviation of the RR intervals
SDSD Standard Deviation of the Successive

Differences between RR intervals
CVNN Standard deviation of the RR intervals divided

by the mean of the RR intervals
pNN50 Proportion of RR intervals greater than 50ms,

out of the total number of RR intervals
TINN Baseline width of the RR intervals distribution

obtained by Triangular Interpolation, where
the error of the least squares determines the
triangle

HTI HRV Triangular Index, measuring the total
number of RR intervals divided by the height
of the RR intervals histogram

LF Spectral power of Low Frequencies
HF Spectral power of Low Frequencies
LFHF Ratio obtained by dividing the Low Frequency

power by the High Frequency power
LFn Normalized Low Frequency, obtained by

dividing the low frequency power by the total
power

HFn Normalized High Frequency, obtained by
dividing the high frequency power by the total
power

SD1 Standard Deviation perpendicular to the line
of identity. It is an index of short-term RR
interval fluctuations

SD2 Standard Deviation along the identity line. I
ndex of long-term HRV changes

ApEn Approximate Entropy
SampEn Sample Entropy

Peaks (P_, T_, R_, S_) NPeaks/min Number of peaks per minute
Amp Amplitude of the correspondent peak
dist Distance (in samples) between consecutive

peaks
Waves (P_, T_, R_) OnsetAmp Amplitude of the correspondent waves’ onsets

OffsetAmp Amplitude of the correspondent waves’ offsets
OnOffDist Distance (in samples) between consecutive

waves onsets and waves’ offsets
EDA SCR NPeaks/min Number of peaks per minute

Mean_SRC Mean SCR
SCR_Height Mean SCR height
SCR_Amp Mean SCR amplitude
SCR_RiseTime Mean Rise Time
SCR_RecoveryTime Mean Recovery Time

SCL Mean_SCL Mean SCL
EMG (Trap_, Tric_) EMG Var Variance of the EMG signal

RMSE Root Mean Square for EMG
Amplitude Mean_Amp Mean of the EMG Envelope

Med_Amp Median of the EMG Envelope
RMSA Root Mean Square for EMG Envelop
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case, α=0.05), the null hypothesis should be rejected and therefore the feature
is not likely to follow a normal distribution [1].

The features that fail the Shapiro-Wilk test (the data does not meet the
assumption of normality) were submitted to a non-parametric Friedman test.
Those who passed the Shapiro-Wilk test (the data is likely to follow a normal
distribution) were submitted to the parametric repeated measures ANOVA test.
Both Friedman and ANOVA tests were used to evaluate if the features could dif-
ferentiate between sessions with different emotion elicitation (F: Fear, H: Hap-
piness, N: Neutral). Afterwards, the Nemenyi post-hoc test was performed to
evaluate, for those features, which pair of emotional states differed.

4 Results

A total of 56 volunteers (28 females) with ages between 18 and 30 y.o. (mean
of 22.46 and standard deviation of 2.04 y.o.) participate in the study. Only 2
participants did not undergo the last session due to personal reasons. Therefore,
a total of 166 sessions were performed.

4.1 Pain Perception

Among all the sessions the mean time of the CPT was about 91.70 ± 39.64 s
(mean±standard deviation). Within the 166 sessions, there were 9 sessions where
the participant kept the hand in the cold-water tank for less than 30 s. On the
opposite, there were 96 sessions where the participants endured the maximum
times (2min) with the hand immersed.

With regard to the pain scores reported, none of the participants felt pain
before the CPT. At the time the participants felt pain (pain threshold) they
reported a score of 4.78 ± 2.08 in the NPS. At the end of the 2min or at the
moment the participant took the hand off the tank (tolerance) the pain reported
was of 7.84±1.71 in the NPS. After 3min of the removal of the hand from the
cold water, the pain reported decreased to 0.72 ± 1.09 in the NPS. There were
96 sessions where participants did not feel any pain at this time.

Taking into account the emotional elicitation, only data from 54 participants
were analysed, since 2 did not perform the three sessions and therefore, they
were missing an elicitation.

Considering the negative state, the scores reported at pain tolerance and at
the 3min after taking the hand off the water, were greater than those reported
when in neutral and positive states. With respect to the scores reported at pain
threshold, the values are similar across emotional sessions, specially for nega-
tive and positive inducing sessions (4.70 ± 2.20 and 4.71 ± 2.05, respectively).
However, with regard to time, both pain threshold and tolerance were lower for
the negative state (15.76 ± 9.29 and 92.11 ± 39.76, respectively) when com-
pared with the positive induced condition (19.74 ± 21.94 and 93.23 ± 38.71,
respectively).
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Figure 4 presents the violinplots for the reported pain scores (top) and for
the times (in seconds) of pain threshold and tolerance (bottom). Regarding the
scores, when comparing the violins for each emotion, it can be noted that they
are very similar to each other. Only smaller differences, regarding gender, can
be found, as females tend to report highest scores than males.

Fig. 4. Violinplots of the NPS scores reported by participants (top) and of the pain
threshold and tolerance, expressed in seconds (bottom). The � stands for the mean of
the scores and times within each emotion. (Color figure online)

With respect to tolerance’s time, the violins are quite similar. However, it
is interesting that the three plots seem to have two clusters. It shows that the
distribution of the time that participants can stand with the hand immersed in
the water is not uniform, indicating that are mainly two groups of participants:
those who can tolerate the 2min and those who can barely reach the 1min.
However, it is evident that more participants can reach the two minutes than
the opposite. Regarding gender, no differences stand out, since the violins look
quite symmetric.

Concerning pain threshold’s time, the violins are also very similar but the
values are more dispersed for Positive and Neutral states than for Negative, and,
in general, females tend to report pain sooner than males.

These results seem to support the hypothesis that emotion elicitation influ-
ences pain perception since, despite the similar scores, when in the negative
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induced session the pain scores were higher and the threshold and tolerance
times where lower, which indicates less resilience to pain and greater exacerba-
tion.

4.2 Physiological Data

As mentioned above, in this work only the sessions where the participant lasted
at least 30 s with the hand immersed in the cold water were considered for
physiological data analysis. Therefore, the 9 sessions where participants did not
endure the CPT for at least 30 s were removed. Two cases where the acquisition
of physiological data failed were also removed, leaving signals of 155 sessions for
analysis. For statistical analyses, only the participants who had the features com-
puted for the three emotions were considered, leaving a total of 46 participants
and therefore 138 samples per feature.

Only two features could differentiate statistically between emotional states,
namely R_OnOffDist and SCR_Height.

Figure 5 presents the boxplots of R_OnOffDist and SCR_Height and the
p-values between the different emotional states.

Fig. 5. Boxplots of the features R_OnOffDist and SCR_Height (top) and the respec-
tive p-values between different emotions (bottom). The � stands for outliers and the
� stands for the mean of the features within each emotion. (Color figure online)

The boxplots of the ECG feature for Positive and Neutral states are quite
similar, with the Neutral one presenting slight higher values. However, the box-
plot for Negative indicates that the values obtained with this state were lower.
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In fact, all the quartiles, and even the mean, are lower in this case. This fea-
ture shows a significant statistically difference between the Negative and Neutral
states with a p-value lower than 0.05. With regard to SCR_Height (obtained
through EDA), this feature differentiated between Fear and Happy emotions.
In fact, despite the minimum and median values of the three boxes being very
closer, the boxplot of the Happy elicitation presents higher values compared to
the other boxplots, while the Fear elicitation presents the lowest values. The
means of the three states are highly influenced by the outliers. Furthermore,
the two features, specially SCR_Height, have a considerable number of outliers
which can explain the unexpected statistical differences.

Figure 6 presents the boxplots of several features obtained from the ECG
signal. None of these features differentiates between any emotion elicitation.
Despite some slight differences, the boxplots and the means of these features are
very similar across the different emotional states.

Fig. 6. Boxplots of several features of the ECG signal. The � stands for outliers and
the � stands for the mean of the features within each emotion. (Color figure online)

Fig. 7 presents boxplots from features extracted from the EDA signal, and
none presents statistical significant differences regarding emotion elicitation.
Although some outliers, the means computed for each emotion are close to each
other and distributions are similar.

Fig. 7. Boxplots of several features of the EDA signal. The � stands for outliers and
the � stands for the mean of the features within each emotion. (Color figure online)
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Figure 8 shows the boxplots of features computed from the EMG signals
from both the trapezius and triceps muscles, presenting a great number of out-
liers. For the same feature, the values obtained from triceps muscle are lower
than those obtained from trapezius, which indicates that trapezius was more
activated. Regarding the features from the triceps muscle, despite, consistently,
presenting lowest values for Neutral state, the Friedman test did not find any
statistical difference between emotional conditions. For the features obtained
through the EMG from trapezius, the values and the boxplots are similar for
the three emotional elicitation, and Friedman test did not report significant dif-
ferences between emotional states for any feature.

Fig. 8. Boxplots of several features of the EMG signal of both triceps and trapezius
muscles. The � stands for outliers and the � stands for the mean of the features within
each emotion.

The obtained results for the four physiological signals analyzed support the
hypothesis that the physiological response to pain is not influenced by emotional
elicitation.

5 Discussion

The aim of this work was to show that emotional elicitation influences the way
pain is perceived, but it has no influence on physiological response to pain.

The related works presented supports the idea that emotion has a correlation
with pain perception, namely the works of Zhang et. al [10] and Srisopa et. al
[8]. Both articles studied the influence of the emotional state on pain perceived
(with different pain origins) and the results lead to the conclusion that negative
emotions affect the way pain is perceived [10] and emotion modulation can help
to manage pain [8].
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In the work of Silva and Sebastião [7] the emotion elicitation was performed
during the CPT task. The authors found that this strategy was not adequate
since many of the participants did not pay enough attention to the video due to
the pain felt at the same time. The current protocol was implemented consid-
ering the strategy of watching the video before the CPT, anticipated that this
adjustment would elicit emotions. However, although differences regarding scores
and times for pain tolerance and threshold, the discrepancy in pain perception
was not highlighted.

Also, despite the protocol being thoroughly explained to the participants and
all the doubts being addressed, some participants did not understand that they
were required to report the time they first perceived pain. Consequently, they
only reported pain when specifically asked to do so. This may lead to increased
values of pain perception in some cases. By re-evaluating the violinplots of pain
perception (Fig. 4), this observation is evident from the long tails of the violins.
Additionally, some participants reported being confused when evaluating the
pain felt using the NPS, struggling to choose the appropriate number.

Another factor that may have hindered emotional elicitation is the fact that
some participants had already watched the movies from which the excerpts were
taken. Consequently, in this case, the video was unable to elicit emotion, espe-
cially fear.

With regard to gender, the distribution of the violinplots for scores and pain
threshold seems to be in line with the conclusions of Zhang et. al [10] that males
present higher pain threshold and tolerance.

Concerning the second hypothesis, there were only two features among the
52 studied that could distinguish between elicited emotions. This supports the
hypothesis that the emotion elicited does not influence on the physiological
response to pain. The physiological system shows the same response to pain
regardless the emotional state.

6 Conclusions and Further Research

In this work, a protocol for pain induction with previous emotional elicitation
was conducted.

The state of the art shows that the emotional state of a person influences the
way pain is perceived but has no influence on physiological pain response.

The results showed that emotion elicitation was not clearly achieved, since
the pain perception was slightly modified despite the emotional video visualized,
which may be due to the time elapsed between the emotional elicitation and the
pain induction.

On other hand, as expected, the results showed emotional states pose no
influence on the physiological response to pain.

Regarding the encouraging results, further research should be concerned with
the design of a protocol to specifically attain the emotional elicitation in order
to ensure that emotional states still elicited during pain induction.
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With respect to the physiological response to pain, the collected data should
be deeper analyzed in order to find relevant patterns and to extract important
information for pain prediction. It would also be worthwhile to obtain feature
validation from clinical experts and conduct a selection process based on these
inputs. Moreover, participant-independent strategies for training and testing the
models should be considered, as well as attaining the development of personalized
models fitted only with data from the same participant.

As this work emerges within the scope of the EMPA project, the database,
fully anonymized, will become available to the scientific community once data
collection is complete.
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