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Abstract. We consider the heterogeneous rooted tree cover (HRTC)
problem. Concretely, given an undirected complete graph G = (V, E)
with a root r ∈ V , an edge-weight function w : E → R+ satisfying the
triangle inequality, a vertex-weight function f : V \{r} → R+

0 , and k con-
struction teams having nonuniform construction speeds λ1, λ2, . . ., λk,
we are asked to find k trees for these k construction teams to cover all
vertices in V , each tree starting at the same root r, i.e., k trees having a
sole common vertex called root r, the objective is to minimize the max-
imum completion time, where the completion time of each team is the
total construction weight of its related tree divided by its construction
speed.

In this paper, we first design a 58.3286(1 + δ)-approximation algo-
rithm to solve the HRTC problem in time O(n3(1 + 1

δ
) + log(w(E) +

f(V \{r}))) for any δ > 0. In addition, we present a max{2ρ, 2 + ρ − 2
k
}-

approximation algorithm for resolving the HRTC problem in time O(n2),
where ρ is the ratio between the maximum and minimum speed of these
k teams.

Keywords: Rooted tree cover · Nonuniform speeds · Approximation
algorithms · Complexity of algorithms

1 Introduction

The subgraph cover problems, including the cycle cover problem and the tree
cover problem, form a much-studied family of combinatorial optimization prob-
lems. These problems have wide range of practical applications, such as routings
of multi-vehicles [2,7,12], nurse station location [4] and data gathering in wireless
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sensor networks [13,15]. In some applications, the minimization of the latest ser-
vice completion time at the service locations is more relevant. As a result, there
is a growing body of literature on cover problems under the min-max objective.

Considering the vehicles to have nonuniform speeds in routing planning,
Gørtz et al. [8] in 2016 proposed the heterogeneous traveling salesman problem,
which we refer to as the heterogeneous rooted cycle cover (HRCC) problem. In
the HRCC problem, given a complete graph G = (V,E) equipped with an edge-
weight function w : E → R+ that satisfies the triangle inequality, a root r ∈ V
and k vehicles with nonuniform speeds λ1, λ2, . . ., λk, we are asked to find k
cycles for these k vehicles to cover all vertices in V , each vehicle starting at r,
i.e., these k cycles having a sole common vertex r, the objective is to minimize
the maximum completion time, where the completion time of a vehicle is the
total weight of its related cycle divided by its speed. For the HRCC problem,
Gørtz et al. [8] in 2016 presented a constant factor approximation algorithm.

The rooted cycle cover (RCC) problem [6], also called the k-traveling sales-
man problem, which is an important special version of the HRCC problem, where
λi = 1 for each i ∈ {1, 2, . . . , k}. Employing a splitting strategy, Frederickson et
al. [6] in 1978 gave a (52 − 1

k )-approximation algorithm to solve the RCC problem.
For the version k = 1 of the RCC problem, i.e., the metric traveling salesman
problem, Christofides [3] provided a famous 3/2-approximation algorithm by
using an algorithm for solving the Euler tour problem.

In addition, many researches focus on the tree cover problems of graphs, in
which vertices are all covered by a set of k trees. Taking the service handling
times of vertices into consideration, Nagamochi [10] proposed the rooted tree
cover (RTC) problem, which is modelled as follows. Given a complete graph
G = (V,E) equipped with an edge-weight function w : E → R+ satisfying the
triangle inequality, a vertex-weight function f : V \{r} → R+

0 , a root r ∈ V and
k construction teams, it is asked to find k trees for these k teams to cover all
vertices in V , each tree starting at the same root r, the objective is to minimize
the maximum total weight among these k trees, where the total weight of a tree is
the summation of edge weights and vertex weights in that tree, equivalently, the
objective is to minimize the maximum completion time, where the completion
time of a construction team is the total construction weight of that tree divided
by its speed for the case that speeds of these k teams are all same one.

The RTC problem is NP-hard [1] even for the case k = 2 and f(·) ≡ 0.
Many research papers have been focused on the development of constant factor
approximation algorithms to resolve the RTC problem. Using a tree partition
technique, Nagamochi [10] in 2005 presented a (3 − 2

k+1 )-approximation algo-
rithm to resolve the RTC problem. Xu and Wen [14] in 2010 gave a lower bound
of 10/9 for the RTC problem. Moreover, the other relevant results can be found
in [5,9,11,16].

In practice, the construction efficiencies or construction speeds of multiple
construction teams are often different similar to the vehicle speeds of the HRCC
problem. Motivated by the observation and the RTC problem, we address the
heterogeneous rooted tree cover (HRTC) problem. Concretely, given an undi-
rected complete graph G = (V,E;w, f) with a root r ∈ V , an edge-weight
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function w : E → R+ satisfying the triangle inequality, a vertex-weight function
f : V \{r} → R+

0 , and k construction teams having nonuniform construction
speeds λ1, λ2, . . ., λk, we are asked to find k trees T = {Ti | i = 1, 2, . . . , k}
for these k construction teams to cover all vertices in V , each starting at the
same root r, i.e., k trees having a sole common vertex called root r, the objec-
tive is to minimize the maximum completion time, where the completion time
of each team is the total construction weight of its related tree divided by its
construction speed. In a formulaic way, the min-max objective is written as
minT max{w(Ti)+f(Ti)

λi
| i = 1, 2, . . . , k}.

As far as what we have known, the HRTC problem has not been considered
in the literature. The aforementioned HRCC problem (without vertex weights)
has been studied in [8], but we cannot directly use the algorithms for the HRCC
problem to solve the HRTC problem, because the HRTC problem includes the
vertex weights. However, modifying the technique in [8], we intend to design
first approximation algorithm with constant approximation ratio to solve the
HRTC problem. In addition, we shall present second approximation algorithm
with lower time complexity to resolve the HRTC problem.

The remainder of this paper is organized as follows. In Sect. 2, we present
some terminologies and fundamental lemmas to state descriptions of approxima-
tion algorithms; In Sect. 3, we design first constant factor approximation algo-
rithm to solve the HRTC problem; In Sect. 4, we design second approximation
algorithm with lower time complexity to resolve the HRTC problem; In Sect. 5,
we provide our conclusion and further research.

2 Terminologies and Fundamental Lemmas

All graphs considered in the paper are assumed to be finite, undirected and
loopless. Given a graph G = (V,E), to contract a vertex subset V ′ ⊆ V is to
replace these vertices by a single vertex incident to all the edges which were
incident in G to any vertex in V ′. The resulting graph is denoted by G/V ′

with vertex set V ∪ {v′}\V ′ and edge set E ∪ {uv′ | uv ∈ E, u ∈ V \V ′, v ∈
V ′}\E(G[V ′]), where v′ is viewed as a new vertex obtained by contracting the
vertex subset V ′. For a vertex set V and a set T = {Ti | i = 1, 2, . . . , k} of trees
(or cycles), if V ⊆

⋃k
i=1 V (Ti), we say that T covers V .

For any two sets X1 and X2, X1 + X2 is a multiset obtained by adding all
elements in X1 ∩ X2 to X1 ∪ X2. Especially, for any two graphs G = (V,E) and
G′ = (V ′, E′), denote G ∪ G′ = (V ∪ V ′, E ∪ E′) and G + G′ = (V ∪ V ′, E + E′),
respectively.

In designing a constant factor approximation algorithm for the HRTC prob-
lem, we need the following definition, which is obtained by slightly modifying
the definition in [8].

Definition 1. Given an undirected graph G = (V,E;w, f) with two constants
M > 0 and ε > 0, where w : E → R+ is an edge-weight function and f :
V \{r} → R+

0 is a vertex-weight function, let Fi be a set of trees in G starting at
the same vertex r for each integer i ≥ 0. Then the collection {Fi}i≥0 =

⋃
i≥0 Fi

is referred to as (α, β)M,ε-assignable, if it has the following properties
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(1) w(F ) + f(F ) ≤ α · (1 + ε)iM , for each tree F ∈ Fi, i ≥ 0;
(2)

∑
j≥i(w(Fi) + f(Fi)) ≤ βM · Λ((1 + ε)i−1) for each i ≥ 0, where Λ((1 +

ε)i−1) is the sum of speeds that at least (1 + ε)i−1.

For Definition 1, we can regard the sum of edge weights and vertex weights
of each tree as a whole weight, and using the ASSIGN algorithm in Gørtz et al.
[8], we can obtain the following important result.

Lemma 1. [8] Given an (α, β)M,ε-assignable collection {Fi}i≥0 of trees starting
at r, we can use the ASSIGN algorithm to assign all trees in {Fi}i≥0 to k
construction teams in time O(n3 + log(w(E) + f(V \{r}))), satisfying that the
completion time of each construction team is at most ((1 + ε)α + β)M , where
the completion time of each team is the total construction weight divided by its
construction speed, n is the number of vertices.

3 An Approximation Algorithm with Constant
Approximation Ratio

In this section, we consider the heterogeneous rooted tree cover (HRTC) problem.
Without loss of generality, we may assume that the considered graph are all
connected and 2 ≤ k ≤ n − 1.

By Lemma 1, we design the following strategies to solve the HRTC problem.

(1) Find an (α, β)M,ε-assignable collection of subtrees to cover all vertices;
(2) Assign subtrees in the above collection to k construction teams to mini-
mize the completion time of any team.

Given an undirected graph G = (V,E;w, f) with two current values M and
ε (the precise value to be chosen later), we first give a partition of V that
is {V0, V1, · · · }, where V0 = {v ∈ V | w(rv) + f(v) ≤ M}, and Vi = {v ∈
V | (1 + ε)i−1M < w(rv) + f(v) ≤ (1 + ε)iM} for each i ≥ 1. For each i ≥ 0,
let V≤i =

⋃
j≤i Vj and V≥i =

⋃
j≥i Vj . Similarly, we give a partition of E that is

{E0, E1, · · · }, where Ei = {uv ∈ E | u ∈ V≤i, v ∈ Vi} for each i ≥ 0. For each
i ≥ 0, let E≤i =

⋃
j≤i Ej and E≥i =

⋃
j≥i Ej .

Now, analyzing the lower bound of the HRTC problem, we obtain the fol-
lowing lemma.

Lemma 2. Given a complete graph G = (V,E;w, f) as an instance of the
HRTC problem, for any constant M ≥ OPT , we have w(TMS

G/V<l
) + f(V≥l) ≤

M · Λ((1 + ε)l−1) for each integer l ≥ 0, where OPT is the optimal value to the
given instance, TMS

G/V<l
is a minimum edge-weight spanning tree of G/V<l, i.e.,

a new graph obtained by contracting a vertex set V<l, and Λ((1 + ε)l−1) is the
total of speeds that exceed (1 + ε)l−1.

Proof. Consider that in an optimal solution to G for the HRTC problem, if any
vertex v ∈ V≥l can be constructed by a construction team with speed λ′, then
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we have λ′ > (1 + ε)l−1. This is because w(rv) + f(v) > (1 + ε)l−1M holds for
each v ∈ V≥l, and the construction weight of a construction team with speed
λ′ is at most λ′ · OPT ≤ λ′ · M , implying λ′ · M ≥ λ′ · OPT > (1 + ε)l−1M .
Since max{w(rv) + f(v), w(rv′) + f(v′)} > (1 + ε)l−1M holds for each edge
e = vv′ ∈ E≥l, we deduce that any edge in E≥l must be constructed by some
team with speed exceed (1 + ε)l−1.

Let E∗ denote the set of edges constructed by teams in the optimal solution.
By the above arguments, we have w(E∗ ∩E≥l)+f(V≥l) ≤ OPT ·Λ((1+ε)l−1) ≤
M · Λ((1 + ε)l−1), meaning w(E∗ ∩ E≥l) + f(V≥l) ≤ M · Λ((1 + ε)l−1). Clearly,
G[E∗] is a spanning tree of G, and E∗ ∩ E≥l corresponds to a spanning tree
of G/V<l. Since TMS

G/V<l
is a minimum edge-weight spanning tree of G/V<l, we

obtain w(TMS
G/V<l

) + f(V≥l) ≤ w(E∗ ∩ E≥l) + f(V≥l), implying w(TMS
G/V<l

) +
f(V≥l) ≤ M · Λ((1 + ε)l−1). 
�

For each i ≥ 0, let Hi denote the edge subset of G corresponding to a min-
imum spanning tree of G[V≤i]/V<i. Obviously, G[H] with H =

⋃
i≥0 Hi is a

spanning tree of G. Using the similar arguments in [8] to analyze the relation
between H and a minimum edge-weight spanning tree of G, we obtain a result
as follows.

Lemma 3. [8] Given a complete graph G = (V,E;w, f) and a constant ε > 0,
a spanning tree G[H] with H =

⋃
i≥0 Hi of G can be constructed to satisfy:

– The vertex levels along every root-leaf path are nondecreasing.
– For each i ≥ 0, we have

∑
j≥i w(Hj) ≤ (6 + 6

ε ) · w(TMS
G/V<i

), where TMS
G/V<i

is
a minimum edge-weight spanning tree of G/V<i.

In Lemma 3, for each i ≥ 0, it is clear that
∑

j≥i w(Hj) ≤ (6+ 6
ε ) ·w(TMS

G/V<i
)

means
∑

j≥i(w(Hj)+f(Vj)) ≤ (6+ 6
ε )·w(TMS

G/V<i
)+f(V≥i) ≤ (6+ 6

ε )·(w(TMS
G/V<i

)+
f(V≥i)). By Lemma 2, we obtain at once that

∑
j≥i(w(Hj) + f(Vj)) ≤ (6 + 6

ε ) ·
(w(TMS

G/V<i
)+f(V≥i)) ≤ (6+ 6

ε ) ·M ·Λ((1+ε)i−1), which is stated in the following

Lemma 4. Given a complete graph G = (V,E;w, f) with two constants ε > 0
and M ≥ OPT , where OPT is the optimal value to the instance G for the HRTC
problem, then the spanning tree G[H] with H =

⋃
i≥0 Hi of G mentioned-above

satisfies:

– The vertex levels along every root-leaf path are nondecreasing.
– For each i ≥ 0, we have

∑
j≥i(w(Hj) + f(Vj)) ≤ (6 + 6

ε ) · M · Λ((1 + ε)i−1).

To shorten notation, given each edge e = uv in H, denote xe ∈ {u, v} to be a
vertex farther away from r in G[H], and ye ∈ {u, v} to be a vertex closer to r in
G[H]. For each subtree G′ = (V ′, E′) of G[H] mentioned above, we define a new
function f1(·) to be f1(G′) =

∑
e∈E′ f1(xe), implying f1(G′) = f(G′) − f(yG′),

where yG′ is a vertex in G[H] closest to r.
Basing from Lemma 1 to Lemma 4, we design a following algorithm, denoted

by the algorithm HRTC1, to solve the HRTC problem.
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Algorithm: HRTC1

Input: An undirected complete graph G = (V,E;w, f) with a root r ∈ V , an
edge-weight function w : E → R+, a vertex-weight function f : V \{r} →
R+

0 , k construction teams having speeds λ1, . . . , λk respectively, a small fixed
constant δ > 0, and two constants ζ = 2 and ε = 1.3146 (to be chosen in
Theorem 1);

Output: A set T = {Ti | i = 1, 2, . . . , k} of k trees.
Begin
Step 1 Set M = maxv∈V {w(r,v)+f(v)

λmax
}, where λmax = max{λi | i = 1, 2, . . . , k};

Step 2 Using M and ε, we can partition the set V into subsets V0, V1, . . ., and the
set E into subsets E0, E1, . . . as mentioned-above; For convenience, we may
actually assume that the number of subsets partitioned is t, i.e., (1+ε)t−1M <
max{w(rv) + f(v) | v ∈ V } ≤ (1 + ε)tM ;

Step 3 If (w(TMS
G/V<l

)+f(V≥l) > M ·Λ((1+ε)l−1) holds for some l ∈ {1, 2, . . . , t})
then

set M := (1 + δ)M , and go to Step 2;
Step 4 Construct a spanning tree G[H] with H =

⋃
i≥0 Hi of G, where Hi is the

edge subset of G corresponding to a minimum edge-weight spanning tree of
G[V≤i]/V<i; Set S0 := {H0};

Step 5 For each i ∈ {1, 2, . . . , t}, partition Hi into a set Si of subtrees such
that each subtree η ∈ Si contains exactly one edge h(η) from V<i to Vi; Let
γ = ε

(2+ε)(1+ε) and Sm
0 = S0; For each i ∈ {1, 2, . . . , t}, set Sm

i = ∅ and
Su

i = ∅;
Step 6 For all i ∈ {1, 2, . . . , t}, η ∈ Si do:

If (w(η) + f1(η) ≥ γ · (1 + ε)iM) then
Set Sm

i := Sm
i ∪ {η};

Else
Set Su

i := Su
i ∪ {η};

Step 7 For all i ∈ {1, 2, . . . , t}, σ ∈ Su
i do:

Determine a subtree π(σ) in
⋃

j<i Sj , having π(σ) ∩ σ 
= ∅;
Step 8 For all i ∈ {0, 1, 2, . . . , t}, τ ∈ Sm

i do:
(8.1) Set Dangle(τ) = {σ ∈ Su

i+1 : π(σ) = τ};
(8.2) If the total weight of (τ\h(τ))∪Dangle(τ) is at most ζ(1+ε)i+1M ,

then set q = 1 and F ′
1 = (τ\h(τ)) ∪ Dangle(τ), and go to Step (8.5);

(8.3) Find an Euler tour in the multigraph ((τ\h(τ)) ∪ Dangle(τ)) +
((τ\h(τ)) ∪ Dangle(τ)), and transform the tour to a cycle by “short-cutting”
previously visited vertices;

(8.4) Split the resulting cycle into maximal paths of total weight, includ-
ing edge weights and vertex weights, at most ζ(1 + ε)i+1M each, denoted by
F ′
1, F

′
2, . . . , F

′
q;

(8.5) For each j ∈ {1, . . . , q}, augment F ′
j by adding an edge from r to

the vertex in F ′
j closest to r, to obtain a set of subtrees starting at r, denoted

by Fi(τ) = {F1, F2, . . . , Fq};
Step 9 For each i ∈ {0, 1, . . . , t}, set Fi =

⋃
τ∈Sm

i
Fi(τ); Using the ASSIGN

algorithm, combine the set {Fi}i≥0 =
⋃

i≥0 Fi into k trees T = {Ti | i =
1, 2, . . . , k} corresponding to k construction teams;
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Step 10 Output k trees T = {Ti | i = 1, 2, . . . , k} corresponding to k teams.
End

Using Step 4, we obtain that each connected component of the subgraph in
G corresponding to Hi (i ≥ 1) is a subtree. Note that such a subtree contains
at least one edge from V<i to Vi, it follows that the partition at Step 5 is indeed
executed.

Using Steps 6–7 in the algorithm HRTC1, we can obtain the following

Lemma 5. For any i ≥ 1 and σ ∈ Su
i , there exists π(σ) ∈ Si−1. Moreover,

π(σ) ∈ Sm
i−1.

Proof. For an σ ∈ Su
i , it is clear that w(h(σ)) + f1(h(σ)) ≤ w(σ) + f1(σ) <

γ · (1 + ε)iM . By the definition of Su
i , we have v ∈ V≤i for every v ∈ V (σ). Let

h(σ) = yx, where y ∈ π(σ) and x ∈ Vi. Moreover, we deduce that y ∈ Vi−1.
Otherwise, we assume x ∈ Vi and y ∈ V<i−1, it follows that w(σ) + f1(σ) ≥
w(yx) + f(x) ≥ w(rx) + f(x) − (w(ry) + f(y)) > (1 + ε)i−1M − (1 + ε)i−2M >
γ · (1 + ε)iM , which contradicts σ ∈ Su

i . Thus, we obtain y ∈ Vi−1, implying
π(σ) ∈ Si−1.

For the second part of the lemma, if i = 1, then clearly π(σ) = S0 and
π(σ) ∈ Sm

0 . When i ≥ 2, from the above arguments, we have π(σ) ∈ Si−1.
Similar to the above arguments, since G is connected, we conclude that there is
a vertex z ∈ π(σ) satisfying z ∈ V<i−1. Using the triangle inequality twice, we
have the following

w(zy) + f(y) + w(yx) + f(x) ≥ w(zx) + f(x) ≥ w(rx) + f(x) − (w(rz) + f(z)).

Since x ∈ Vi and z ∈ V<i−1, we obtain w(rx) + f(x) − (w(rz) + f(z)) > (1 +
ε)i−1M −(1+ε)i−2M = ε(1+ε)i−2M , meaning w(rx)+f(x)−(w(rz)+f(z)) >
ε(1+ε)i−2M . Since σ ∈ Su

i , we have w(yx)+f(x) ≤ w(σ)+f1(σ) < γ ·(1+ε)iM .
Hence, we have the following

w(π(σ))+f1(π(σ)) ≥ w(zy)+f(y) > ε(1+ε)i−2M−γ ·(1+ε)iM = γ ·(1+ε)i−1M.

This shows that the subtree π(σ) ∈ Sm
i−1. 
�

Employing the similar argument as in [8], we obtain the following two lemmas
by executing Step 8.

Lemma 6. For any F ∈ Fi(τ), we have w(F ) + f(F ) ≤ (ζ + 1 + (ζ + 1)ε)(1 +
ε)iM .

Proof. For each F ∈ Fi(τ), note that F consists of some subtree F ′
j (1 ≤ j ≤ q)

and an edge rv′
j connecting r to v′

j , where v′
j is a vertex in F ′

j closest to r. Based
on the construction of F ′

j , we obtain w(F ′
j) + f(F ′

j) ≤ ζ(1 + ε)i+1M . Since F ′
j

only contains vertices in V≤i+1, we have w(rv′
j) ≤ w(rv′

j)+f(v′
j) ≤ (1+ε)i+1M .

Hence, it follows that w(F ) + f(F ) = w(F ′
j) + f(F ′

j) + w(rv′
j) ≤ (ζ + 1 + (ζ +

1)ε)(1 + ε)iM . 
�
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Lemma 7.
∑

F∈Fi(τ)
(w(F ) + f(F )) ≤ max{2 + 2

ε , 4
ζ + 2} · (w(τ ∪ Dangle(τ)) +

f1(τ ∪ Dangle(τ))).

Proof. We break the analysis into two cases depending on q.
Case 1: q = 1, i.e., Fi(τ) only contains a subtree F .
If i = 0, then τ includes r and w(F ) + f(F ) ≤ w(τ ∪ Dangle(τ)) + f1(τ ∪

Dangle(τ)). If i > 0, it is clear that there exists u ∈ τ having u ∈ V<i. Based
on the construction of subtree, we obtain w(F ) + f(F ) ≤ w(rxh(τ)) + w(F ′) +
f1(τ ∪ Dangle(τ)) ≤ w(ryh(τ)) + w(yh(τ)xh(τ)) + w(F ′) + f1(τ ∪ Dangle(τ)) ≤
(1 + ε)i−1M + w(τ ∪ Dangle(τ)) + f1(τ ∪ Dangle(τ)). Since τ ∈ Sm

i , implying
w(τ) + f1(τ) ≥ γ · (1 + ε)iM , we have (1 + ε)i−1M ≤ 2+ε

ε · (w(τ) + f1(τ)). Thus,
we obtain w(F )+f(F ) ≤ (1+ε)i−1M +w(τ ∪Dangle(τ))+f1(τ ∪Dangle(τ)) ≤
(2+ε

ε +1) · (w(τ ∪Dangle(τ))+f1(τ ∪Dangle(τ))) = (2+ 2
ε ) · (w(τ ∪Dangle(τ))+

f1(τ ∪ Dangle(τ))), which implies
∑

F∈Fi(τ)
(w(F ) + f(F )) = w(F ) + f(F ) ≤

(2 + 2
ε ) · (w(τ ∪ Dangle(τ)) + f1(τ ∪ Dangle(τ))).

Case 2: q ≥ 2.
By Step 8, we obtain that 4(w(τ ∪Dangle(τ))+f1(τ ∪Dangle(τ))) > (q−1) ·

ζ(1+ε)i+1M , that is (1+ε)i+1M < 4(w(τ∪Dangle(τ))+f1(τ∪Dangle(τ)))
ζ(q−1) . Since V (τ ∪

Dangle(τ)) ⊆ V≤i+1, each edge added from r to subtree F ′
j (1 ≤ j ≤ q) has weight

at most (1 + ε)i+1M . Therefore, we conclude that
∑

F∈Fi(τ)
(w(F ) + f(F )) ≤

q · (1 + ε)i+1M + 2w(τ ∪ Dangle(τ)) + f1(τ ∪ Dangle(τ)) ≤ ( 4q
ζ(q−1) + 2) · (w(τ ∪

Dangle(τ))+f1(τ ∪Dangle(τ))) ≤ ( 4ζ +2)·(w(τ ∪Dangle(τ))+f1(τ ∪Dangle(τ))).
Combining the two preceding arguments in Cases 1–2, we obtain

∑
F∈Fi(τ)

(
w(F ) + f(F )) ≤ max{2 + 2

ε , 4
ζ + 2} · (w(τ ∪ Dangle(τ)) + f1(τ ∪ Dangle(τ))). 
�

Applying Lemmas 5–7, we obtain the following

Lemma 8. If w(TMS
G/V<i

) + f(V≥i) ≤ M · Λ((1 + ε)i−1) holds for each integer
i ≥ 0, then the collection {Fi}i≥0 obtained at Step 8 is (α, β)M,ε-assignable,
where α = ζ +1+(ζ +1)ε, β = (6+ 6

ε )max{2+ 2
ε , 4

ζ +2} and Fi =
⋃

τ∈Sm
i

Fi(τ).

Proof. We shall prove that the collection {Fi}i≥0 satisfies the two properties in
Definition 1. By Lemma 6, it is clear that the property (1) in Definition 1 holds.
Recall that in Lemma 4,

∑
j≥i(w(Hj)+f(Vj)) ≤ (6+ 6

ε )·M ·Λ((1+ε)i−1) holds for
each i ≥ 0. Now, the proof is completed by showing that

∑
j≥i(w(Fj)+f(Fj)) ≤

max{2 + 2
ε , 4

ζ + 2} ·
∑

j≥i(w(Hj) + f(Vj)).
In the algorithm HRTC1, we observe that

∑

j≥i

(w(Sm
j ) + w(Su

j+1)) ≤
∑

j≥i

w(Sj) =
∑

j≥i

w(Hj).

By Lemma 5, {Dangle(τ) | τ ∈ Sm
j } is a partition of Su

j+1, which means∑
τ∈Sm

j
(w(τ ∪ Dangle(τ)) + f1(τ ∪ Dangle(τ))) = w(Sm

j ) + w(Su
j+1) + f1(Sm

j ∪
Su

j+1). By Lemma 7, we have w(Fj) + f(Fj) =
∑

τ∈Sm
j

(w(Fj(τ)) + f(Fj(τ))) =
∑

τ∈Sm
j

∑
F∈Fj(τ)

(w(F )+f(F )) ≤ max{2+ 2
ε , 4

ζ +2}·
∑

τ∈Sm
j

(w(τ ∪Dangle(τ))+
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f1(τ ∪ Dangle(τ))), implying w(Fj) + f(Fj) ≤ max{2 + 2
ε , 4

ζ + 2} · (w(Sm
j ) +

w(Su
j+1)+f1(Sm

j ∪Su
j+1)). By Steps 6–8, for each edge e ∈ Sm

i (i ≥ 0), we see that
xe ∈ V≥i, and any two subtrees in {Fi}i≥0 are disjoint except for root r. Thus,
we obtain

∑
j≥i(w(Fj)+ f(Fj)) ≤ max{2+ 2

ε , 4
ζ +2} ·

∑
j≥i(w(Sm

j )+w(Su
j+1)+

f1(Sm
j ∪ Su

j+1) ≤ max{2 + 2
ε , 4

ζ + 2} ·
∑

j≥i(w(Hj) + f(Vj)). 
�
Using the above lemmas, we obtain the following result.

Theorem 1. The algorithm HRTC1 is a 58.3286(1 + δ)-approximation algo-
rithm to solve the HRTC problem, and it runs in time O(n3(1+ 1

δ )+ log(w(E)+
f(V \{r}))), where w(E) =

∑
e∈E w(e) and f(V \{r}) =

∑
v∈V \{r} f(v), respec-

tively.

Proof. By Lemma 2, the decision condition in Step 3 does not hold whenever
M ≥ OPT . Based on the update rule for M , we deduce that Steps 4–9 is
executed with M ≤ (1 + δ) · OPT . When fixing ζ = 2 and ε = 1.3146, using
Lemma 8, we obtain a (6.9438, 42.2565)M,1.3146-assignable collection {Fi}i≥0.
Using Lemma 1 at Step 9, we can assign {Fi}i≥0 into k construction teams
in time O(n3 + log(w(E) + f(V \{r}))), such that the completion time of any
construction team is at most 58.3286 · M , which implies OUT ≤ 58.3286 · M ≤
58.3286(1 + δ) · OPT .

Notice that every step in the algorithm HRTC1 can be executed in poly-
nomial time. We shall bound the number of iterations. As mentioned above,
the algorithm HRTC1 halts before M > (1 + δ)OPT , where (1 + δ)OPT ≤
(1 + δ) ·

∑
v∈V (w(rv)+f(v))

λmax
≤ (1 + δ) · |V | · maxv∈V {w(rv)+f(v)}

λmax
. Since M is initial-

ized at maxv∈V {w(r,v)+f(v)}
λmax

, and increased by an (1+ δ)-factor for each iteration,
we deduce that the number of iterations is at most O(1δ log |V |). This implies
that Steps 1–3 run in at most time O(n3

δ ). By Lemma 1, it is easy to check that
Steps 4–10 execute in time O(n3 +log(w(E)+f(V \{r}))). Hence, the algorithm
HRTC1 can be implemented in time O(n3(1 + 1

δ ) + log(w(E) + f(V \{r}))). 
�

4 An Approximation Algorithm with Lower Time
Complexity

In practice, we observe a fact that λmax
λmin

is generally small, where λmax =
max{λi | i = 1, 2, . . . , k} and λmin = min{λi | i = 1, 2, . . . , k}. Thus, we intend
to design a better approximation algorithm to resolve the HRTC problem under
the above fact.

Different from the method in [10] for solving the RTC problem, we modify
a splitting technique in [6] to design an approximation algorithm to resolve the
HRTC problem, which is described as follows.

Algorithm: HRTC2

Input: An undirected complete graph G = (V,E;w, f) with a root r ∈ V , an
edge-weight function w : E → R+, a vertex-weight function f : V \{r} → R+

0

and k construction teams having speeds λ1, . . . , λk, respectively;
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Output: A set T = {Ti | i = 1, 2, . . . , k} of trees.
Begin
Step 1 Find a minimum edge-weight spanning tree TMS in G; Determine an

Euler tour in (V,ETMS + ETMS ) traversing each edge exactly once, and use
“short-cutting” to transform such tour to a cycle C = rvi1vi2 · · · r traversing
each vertex v ∈ V exactly once;

Step 2 Set w0 = max{w(rv) | v ∈ V }; For each edge uv ∈ E, set w′(uv) =
w(uv) + f(u) + f(v); For each i ∈ {1, 2, . . . , k}, set λ1,i =

∑i
j=1 λj ;

Step 3 For j = 1 to k − 1 do:
Set Lj = λ1,j

λ1,k
(w′(C) − 2w0) + w0, find the last vertex vip(j) such that

w′(C[r, vip(j) ]) ≤ Lj , where C[r, vip(j) ] = rvi1vi2 · · · vip(j) ;
Step 4 Set T ′

1 = C[r, vip(1) ] = rvi1 · · · vip(1) , T ′
2 = C[vip(1)+1 , vip(2) ], . . . , T ′

k =
C[vip(k−1)+1 , r]; For each j ∈ {1, 2, . . . , k}, augment T ′

j by connecting r to a
vertex in T ′

j closest to r with edge, where the resulting tree is denoted by Tj ;
Step 5 Output k trees T = {Ti | i = 1, 2, . . . , k} corresponding to k teams.
End

Analyzing the lower bound of the optimal value for the HRTC problem, we
obtain the following result.

Lemma 9. Given a complete graph G = (V,E;w, f) as an instance of the
HRTC problem, we have OPT ≥ max{ f0

λmax
, w0

λmax
, w′(C)
2λ1,k

}, where OPT is
the optimal value to the given instance, f0 = max{f(v) | v ∈ V }, w0 =
max{w(rv) | v ∈ V } and C is produced at Step 1 of the algorithm HRTC2.

Proof. Note that any feasible solution for the instance G cover all vertices in V ,
it is clear that OPT ≥ f0

λmax
and OPT ≥ w0

λmax
. We shall prove OPT ≥ w′(C)

2λ1,k
.

Consider any optimal solution T ∗ = {T ∗
i | i = 1, 2, . . . , k} for the instance G.

By the construction of C at Step 1, we have w(TMS) + f(TMS) ≥ w(C)
2 + f(C),

where TMS is a minimum edge-weight spanning tree of G. Since all subtrees
in T ∗ can be merged into a spanning tree, we obtain

∑k
i=1(w(T ∗

i ) + f(T ∗
i )) ≥

w(TMS)+f(TMS), implying
∑k

i=1(w(T ∗
i )+f(T ∗

i )) ≥ w(C)
2 +f(C). Since OPT =

max{w(T ∗
i )+f(T ∗

i )
λi

|i = 1, 2, . . . , k}, it follows that OPT ·
∑k

i=1 λi ≥
∑k

i=1(w(T ∗
i )+

f(T ∗
i )) ≥ w(C)

2 + f(C), meaning OPT ≥ w(C)+2f(C)

2
∑k

i=1 λi
= w(C)+2f(C)

2λ1,k
. This implies

OPT ≥ w(C)+2f(C)
2λ1,k

= w′(C)
2λ1,k

. 
�
By the algorithm HRTC2, we obtain the following result.

Theorem 2. The algorithm HRTC2 is a max{ 2λmax
λmin

, 2 + λmax
λmin

− 2
k}-

approximation algorithm for resolving the HRTC problem, and it runs in time
O(n2), where n is the number of vertices.

Proof. Given an instance G = (V,E;w, f) of the HRTC problem, we may assume
that T ∗ = {T ∗

i | i = 1, 2, . . . , k} is an optimal solution with the optimal value
OPT = max{w(T ∗

i )+f(T ∗
i )

λi
| i = 1, . . . , k}, and T is trees outputted by the algo-

rithm HRTC2 with the output value OUT = max{w(Ti)+f(Ti)
λi

| i = 1, . . . , k}.
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Now, we consider the jth tree Tj (1 ≤ j ≤ k) in T . Using the algorithm
HRTC2, we obtain the following

w(Tj) + f(Tj)
λj

≤
w(T ′

j) + f(T ′
j) + w0

λj

≤ max{ f0
λj

,
w′(T ′

j)
λj

} +
w0

λj

= max{f0 + w0

λj
,
w′(T ′

j) + w0

λj
}.

From Lemma 9, it may be concluded that f0+w0
λj

= f0
λj

+ w0
λj

≤ f0
λmin

+ w0
λmin

≤
2λmax
λmin

OPT . On account of the construction of T in algorithm, we have the
following

w′(T ′
j) + w0

λj
≤

λj

λ1,k
· (w′(C) − 2w0) + w0

λj

=
w0

λj
+

w′(C) − 2w0

λ1,k

≤ w0

λmin
+

w′(C)
λ1,k

− 2w0

λ1,k

=
λmax · w0

λmin · λmax
+

w′(C)
λ1,k

− 2w0

λ1,k

≤ λmax · w0

λmin · λmax
+

w′(C)
λ1,k

− 2w0

k · λmax

=
w′(C)
λ1,k

+ (
λmax

λmin
− 2

k
) · w0

λmax

≤ 2OPT + (
λmax

λmin
− 2

k
) · OPT

= (2 +
λmax

λmin
− 2

k
) · OPT,

implying w(Tj)+f(Tj)
λj

≤ max{ 2λmax
λmin

, 2 + λmax
λmin

− 2
k} · OPT .

Thus, for each j ∈ {1, . . . , k}, we have w(Tj)+f(Tj)
λj

≤ max{ 2λmax
λmin

, 2 + λmax
λmin

−
2
k} · OPT by using the above arguments. This shows that

OUT ≤ max{2λmax

λmin
, 2 +

λmax

λmin
− 2

k
} · OPT.

The time complexity of the algorithm HRTC2 can be determined as follows.
(1) Using Prim algorithm for solving the minimum spanning tree problem, Step
1 execute in time O(n2); (2) Step 2 needs O(m) time to compute w0 and define
w′(·), where m = |E|; (3) Step 3 needs time O(n2) to split a cycle; (4) Step 4
needs time O(m) to construct the trees T = {Ti | i = 1, 2, . . . , k}. Therefore, the
running time of the algorithm HRTC2 is O(n2). 
�
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5 Conclusion and Further Work

In this paper, we consider the heterogeneous rooted tree cover problem (the
HRTC problem), and design two approximation algorithms for solving the HRTC
problem.

In further work, it is a challenge for us to design some approximation
algorithms with constant approximation ratios to solve the HRTC problem in
strongly polynomial time, and we shall study other versions of the cover problems
with nonuniform speeds.
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