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Abstract. The Multidepot Capacitated Vehicle Routing Problem
(MCVRP) is a well-known variant of the classic Capacitated Vehicle
Routing Problem (CVRP), where we need to route capacitated vehicles
located in multiple depots to serve customers’ demand such that each
vehicle must return to the depot it starts, and the total traveling dis-
tance is minimized. There are three variants of MCVRP according to
the property of the demand: unit-demand, splittable and unsplittable.
We study approximation algorithms for k-MCVRP in metric graphs
where k is the capacity of each vehicle, and all three versions are APX-
hard for any constant k ≥ 3. Previously, Li and Simchi-Levi proposed a
(2α+ 1− α/k)-approximation algorithm for splittable and unit-demand
k-MCVRP and a (2α + 2 − 2α/k)-approximation algorithm for unsplit-
table k-MCVRP, where α = 3/2 − 10−36 is the current best approxi-
mation ratio for metric TSP. Harks et al. further improved the ratio to
4 for the unsplittable case. We give a (4 − 1/1500)-approximation algo-
rithm for unit-demand and splittable k-MCVRP, and a (4 − 1/50000)-
approximation algorithm for unsplittable k-MCVRP. Furthermore, we
give a (3 + ln 2 − max{Θ(1/

√
k), 1/9000})-approximation algorithm for

splittable and unit-demand k-MCVRP, and a (3 + ln 2 − Θ(1/
√

k))-
approximation algorithm for unsplittable k-MCVRP under the assump-
tion that the capacity k is a fixed constant. Our results are based on
recent progress in approximating CVRP.

Keywords: Capacitated Vehicle Routing · Multidepot ·
Approximation Algorithms

1 Introduction

In the Multidepot Capacitated Vehicle Routing Problem (MCVRP), we are given
a complete undirected graph G = (V ∪D,E) with an edge weight w satisfying the
symmetric and triangle inequality properties. The n nodes in V = {v1, . . . , vn}
represent n customers and each customer v ∈ V has a demand d(v) ∈ Z≥1.
The m nodes in D = {u1, . . . , um} represent m depots, with each containing an
infinite number of vehicles with a capacity of k ∈ Z≥1 (we can also think that
each depot contains only one vehicle, which can be used many times). A tour
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is a walk that begins and ends at the same depot and the sum of deliveries to
all customers in it is at most k. The traveling distance of a tour is the sum of
the weights of edges in the tour. In MCVRP, we wish to find a set of tours to
satisfy every customer’s demand with a minimum total distance of all the tours.
In the unsplittable version of the problem, each customer’s demand can only be
delivered by a single tour. In the splittable version, each customer’s demand can
be delivered by more than one tour. Moreover, if each customer’s demand is a
unit, it is called the unit-demand version.

In logistics, MCVRP is an important model that has been studied extensively
in the literature (see [19] for a survey). If there is only one depot, MCVRP is
known as the famous Capacitated Vehicle Routing Problem (CVRP). Since k-
CVRP is APX-hard for any fixed k ≥ 3 [3], it also holds for k-MCVRP.

Consider approximation algorithms for k-CVRP. Haimovich and Kan pro-
posed [11] a well-known algorithm based on a given Hamiltonian cycle, called
Iterated Tour Partitioning (ITP). Given an α-approximation algorithm for met-
ric TSP, for splittable and unit-demand k-CVRP, ITP can achieve a ratio of
α + 1−α/k [11]. For unsplittable k-CVRP, Altinkemer and Gavish [1] proposed
a modification of ITP, called UITP, that can achieve a ratio of α + 2 − 2α/k
for even k. When k is arbitrarily large, k-CVRP becomes metric TSP. For met-
ric TSP, there is a well-known 3/2-approximation Algorithm [6,21], and cur-
rently Karlin et al. [15,16] has slightly improved the ratio to 3/2 − 10−36.
Recently, some progress has been made in approximating k-CVRP. Blauth
et al. [4] improved the ratio to α + 1 − ε for splittable and unit-demand k-
CVRP and to α + 2 − 2ε for unsplittable k-CVRP, where ε is a value related
to α and satisfies ε ≈ 1/3000 when α = 3/2. Then, for unsplittable k-CVRP,
Friggstad et al. [9] further improved the ratio to α + 1 + ln 2 − ε based on
an LP rounding method, where ε ≈ 1/3000 is the improvement based on the
method in [4]. There are other improvements for the case that the capacity
k is a small fixed constant. Bompadre et al. [5] improved the classic ratios
by a term of Ω(1/k3) for all three versions. Zhao and Xiao [27] proposed a
(5/2 − Θ(1/

√
k))-approximation algorithm for splittable and unit-demand k-

CVRP and a (5/2 + ln 2 − Θ(1/
√

k))-approximation algorithm for unsplittable
k-CVRP, where the improvement Θ(1/

√
k) is larger than 1/3000 for any k ≤ 107.

Consider approximation algorithms for k-MCVRP. Few results are available
in the literature. Note that α ≈ 3/2. Based on a modification of ITP, Li and
Simchi-Levi [18] proposed a cycle-partition algorithm, which achieves a ratio of
2α + 1 − α/k ≈ 4 − Θ(1/k) for splittable and unit-demand k-MCVRP and a
ratio of 2α+2−2α/k ≈ 5−Θ(1/k) for unsplittable k-MCVRP. The only known
improvement was made by Harks et al. [12], where they proposed a tree-partition
algorithm with an improved 4-approximation ratio for unsplittable k-MCVRP.
Note that their algorithm also implies a 4.38-approximation ratio for a more
general problem, called Capacitated Location Routing, where we need to open
some depots (with some cost) first and then satisfy customers using vehicles
in the opened depots. When k is arbitrarily large, k-MCVRP becomes metric
m-depot TSP. For metric m-depot TSP, Rathinam et al. [20] proposed a simple
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2-approximation algorithm, and Xu et al. [25] proposed an improved (2− 1/m)-
approximation algorithm. Then, based on an edge exchange algorithm, Xu and
Rodrigues [24] obtained an improved 3/2-approximation algorithm for any fixed
m. Traub et al. [22] further improved the ratio to α+ε for any fixed m. Recently,
Deppert et al. [8] obtained a randomized (3/2+ε)-approximation algorithm with
a running time of (1/ε)O(d log d) ·nO(1), and hence their algorithm even works with
a variable number of depots.

If the capacity k is fixed, we will see that splittable k-MCVRP is equiva-
lent to unit-demand k-MCVRP. Moreover, both unit-demand and unsplittable
k-MCVRP can be reduced to the minimum weight k-set cover problem. In min-
imum weight k-set cover, we are given a set of elements (called universe), a set
system with each set in it having a weight and at most k elements, and we need to
find a collection of sets in the set system with a minimum total weight that covers
the universe. In the reduction, customers can be seen as the elements. There are
at most mnO(k) feasible tours, and each tour can be seen as a set containing all
customers in the tour with a weight of the tour. When k is fixed, the reduction
is polynomial. It is well-known [7] that the minimum weight k-set cover problem
admits an approximation ratio of Hk, where Hk := 1+1/2+ · · ·+1/k is the k-th
harmonic number. Hassin and Levin [13] improved the ratio to Hk − Θ(1/k).
Recently, using a non-obvious local search method, Gupta et al. [10] improved
the ratio to Hk −Θ(ln2 k/k), which is better than 4 for any fixed k ≤ 30. So, for
some k ≤ 30, the best ratios of k-MCVRP are Hk − Θ(ln2 k/k).

Note that each vehicle must return to the depot it starts in our setting, which
is also known as the fixed-destination property [18]. Li and Simchi-Levi [18] also
considered a non-fixed-destination version where each vehicle may terminate at
any depot. The non-fixed-destination MCVRP can be reduced to CVRP easily
with the approximation ratio preserved since one can regard all depots as a single
super-depot and let the distance between a customer and the super-depot be the
minimum weight of the edges between the customer and the depots.

Recently, Lai et al. [17] studied a variant of MCVRP, called m-Depot Split
Delivery Vehicle Routing, where the number of depots is still m, but the number
of vehicles in each depot is limited and each vehicle can be used for at most
one tour (one can also think that each depot contains only one vehicle, which
can be used a limited number of times). When m is fixed, they obtained a (6 −
4/m)-approximation algorithm. Carrasco Heine et al. [14] considered a bifactor
approximation algorithm for a variant of Capacitated Location Routing, where
each depot has a capacity as well.

1.1 Our Contributions

Motivated by recent progress in approximating k-CVRP, we design improved
approximation algorithms for k-MCVRP. For the sake of presentation, we assume
that α = 3/2. The contributions are shown as follows.

Firstly, we review the cycle-partition algorithm in [18] and then propose a
refined tree-partition algorithm based on the idea in [12]. Note that our refined
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algorithm has a better approximation ratio for fixed k. For splittable and unit-
demand k-MCVRP, both of them are 4-approximation algorithms. By making a
trade-off between them and further using the result in [4], we obtain an improved
(4 − 1/1500)-approximation ratio. The cycle-partition algorithm itself may only
lead to a (4 − 1/3000)-approximation ratio.

Secondly, using the LP-rounding method in [9], we obtain an LP-based cycle-
partition algorithm that can achieve a (4 + ln 2 + δ)-approximation ratio for
unsplittable k-MCVRP with any constant δ > 0. By making a trade-off between
the LP-based cycle-partition algorithm and the tree-partition algorithm and fur-
ther using the result in [4], we obtain an improved (4 − 1/50000)-approximation
ratio.

At last, we propose an LP-based tree-partition algorithm, which works for
fixed k. Using the lower bounds of k-CVRP in [27], we obtain an improved
(3+ln 2−Θ(1/

√
k))-approximation algorithm for all three versions of k-MCVRP,

which is better than the current-best ratios for any k > 11. By making a trade-off
between the LP-based tree-partition algorithm and the cycle-partition algorithm
and further using the result in [4], we show that the ratio can be improved to
3 + ln 2 − max{Θ(1/

√
k), 1/9000} for splittable and unit-demand k-MCVRP.

Due to limited space, the proofs of lemmas and theorems marked with “*”
were omitted and they can be found in the full version of this paper [28].

2 Preliminaries

2.1 Definitions

In MCVRP, we let G = (V ∪ D,E) denote the input complete graph, where
vertices in V represent customers and vertices in D represent depots. There is
a non-negative weight function w : E → R≥0 on the edges in E. We often write
w(u, v) to mean the weight of edge uv, instead of w(uv). Note that w(u, v) would
be the same as the distance between u and v. The weight function w is a semi-
metric function, i.e., it is symmetric and satisfies the triangle inequality. For
any weight function w : X → R≥0, we extend it to subsets of X, i.e., we define
w(Y ) =

∑
x∈Y w(x) for Y ⊆ X. There is a demand function d: V → N≥1, where

d(v) is the demand required by v ∈ V . We let Δ =
∑

v∈V minu∈D d(v)w(u, v).
For a component S, we simply use v ∈ S (resp., e ∈ S) to denote a vertex (resp.,
an edge) of S, and let w(S) :=

∑
e∈S w(e) and d(S) :=

∑
v∈S d(v).

A walk in a graph is a succession of edges in the graph, where an edge may
appear more than once. We will use a sequence of vertices to denote a walk. For
example, v1v2v3 . . . vl means a walk with edges v1v2, v2v3, and so on. A path in
a graph is a walk such that no vertex appears more than once in the sequence,
and a cycle is a walk such that only the first and the last vertices are the same.
A cycle containing l edges is called an l-cycle and the length of it is l. A spanning
forest in a graph is a forest that spans all vertices. A constrained spanning forest
in graph G is a spanning forest where each tree contains only one depot.

An itinerary I is a walk that starts and ends at the same depot and does not
pass through any other depot. It is called an empty itinerary and denote it by
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I = ∅ if there are no customer vertices on I, and a non-empty itinerary otherwise.
A non-empty itinerary can be split into several minimal cycles containing only
one depot, and each such cycle is called a tour. The Multidepot Capacitated
Vehicle Routing Problem (k-MCVRP) can be described as follows.

Definition 1 (k-MCVRP). An instance (G = (V ∪D,E), w, d, k) consists of:

– a complete graph G, where V = {v1, . . . , vn} represents the n customers and
D = {u1, . . . , um} represents the m depots,

– a weight function w: (V ∪D)×(V ∪D) → R≥0, which represents the distances,
– a demand function d: V → N≥1, where d(v) is the demand required by cus-

tomer v ∈ V ,
– the capacity k ∈ Z≥1 of vehicles that initially stays at each depot.

A feasible solution is a set of m itineraries, with each having one different depot:

– each tour delivers at most k of the demand to customers on the tour,
– the union of tours over all itineraries meets every customer’s demand.

Specifically, the goal is to find a set of itineraries I = {I1, . . . , Im} where Ii

contains depot ui, minimizing the total weight of the succession of edges in the
walks in I, i.e., w(I) :=

∑
I∈I w(I) =

∑
I∈I

∑
e∈I w(e).

According to the property of the demand, we define three well-known ver-
sions. If each customer’s demand must be delivered in one tour, we call it unsplit-
table k-MCVRP. If a customer’s demand can be split into several tours, we call it
splittable k-MCVRP. If each customer’s demand is a unit, we call it unit-demand
k-MCVRP.

In the following, we use CVRP to denote MCVRP with m = 1, i.e., only one
depot. Unless otherwise specified, we think that k-MCVRP satisfies the fixed-
destination property. Moreover, if it holds the non-fixed-destination property, we
called it non-fixed k-MCVRP.

2.2 Assumptions

Note that in our problem the demand d(v) may be very large since the capacity
k may be arbitrarily larger than n. For the sake of analysis, we make several
assumptions that can be guaranteed by some simple observations or polynomial-
time reductions (see the full version).

Assumption 1. For splittable and unsplittable k-MCVRP, each customer’s
demand is at most k.

Assumption 2. For splittable k-MCVRP with fixed k, each customer’s
demand is a unit.

Assumption 3. For unsplittable, splittable, and unit-demand k-MCVRP,
there exists an optimal solution where each tour delivers an integer amount of
demand to each customer in the tour.
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By Assumption 3, in the following, we may only consider a tour that delivers
an integer amount of demand to each customer in the tour. Moreover, we know
that for unit-demand k-MCVRP, there is an optimal solution consisting of a set
of cycles, which intersect only at the depot.

3 Lower Bounds

To connect approximation algorithms for k-MCVRP with k-CVRP, we consider
non-fixed k-MCVRP. The first reason is that non-fixed k-MCVRP is a relaxation
of k-MCVRP, and then an optimal solution of the former provides a lower bound
for the latter. Let OPT (resp., OPT′) denote the weight of an optimal solution
for k-MCVRP (resp., k-CVRP). We have OPT′ ≤ OPT. The second is that non-
fixed k-MCVRP is equivalent to k-CVRP. The reduction is shown as follows.

Given G = (V ∪ D,E), we obtain a new undirected complete graph H =
(V ∪ {o}, F ) by replacing the m depots in D with a new single depot, denoted
by o. There is a weight function c : F → R≥0 on the edges in F . Moreover, it holds
that c(o, v) = minu∈D w(u, v) and c(v, v′) = min{c(o, v) + c(o, v′), w(v, v′)} for
all v, v′ ∈ V . We can verify that the weight function c is a semi-metric function.
Note that Δ =

∑
v∈V d(v)c(o, v). Clearly, any feasible solution of k-CVRP in H

corresponds to a feasible solution for non-fixed k-MCVRP in G with the same
weight. Note that an edge vv′ in E with w(v, v′) > c(o, v)+c(o, v′) was also called
a “dummy” edge in [18]. Any tour using a dummy edge vv′ can be transformed
into two tours with a smaller weight by replacing vv′ with two edges uv and u′v′

incident to depots such that c(o, v) = w(u, v) and c(o, v′) = w(u′, v′). So, any
feasible solution of non-fixed k-MCVRP in G can also be modified into a feasible
solution for k-CVRP in H with a non-increasing weight.

A Hamiltonian cycle in a graph is a cycle that contains all vertices in the
graph exactly once. Let C∗ be a minimum cost Hamiltonian cycle in graph H.
We mention three lower bounds for k-CVRP, which also works for k-MCVRP.

Lemma 1 ([11]). It holds that OPT ≥ OPT′ ≥ c(C∗).

Lemma 2 ([11]). It holds that OPT ≥ OPT′ ≥ (2/k)Δ.

Let T ∗ denote an optimal spanning tree in graph H. Clearly, its cost is a
lower bound of an optimal Hamiltonian cycle in H. By Lemma 1, we have

Lemma 3. It holds that OPT ≥ OPT′ ≥ c(T ∗).

4 Review of the Previous Algorithms

4.1 The Cycle-Partition Algorithm

The main idea of the cycle-partition algorithm [18] is to construct a solution
for non-fixed k-MCVRP based on the ITP or UITP algorithm for k-CVRP, and
then modify the solution into a solution for k-MCVRP.
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The ITP and UITP Algorithms. For splittable and unit-demand k-CVRP,
given a Hamiltonian cycle C in graph H, the ITP algorithm is to split the cycle
into segments in a good way, with each containing at most k of demand, and for
each segment assign two edges between the new depot o and endpoints of the
segment. The solution has a weight of at most (2/k)Δ+c(C) [2,11]. For unsplit-
table k-CVRP, the UITP algorithm is to use the ITP algorithm with a capacity
of k/2 to obtain a solution for splittable and unit-demand k-CVRP, and then
modify the solution into a feasible solution for unsplittable k-CVRP. Altinkemer
and Gavish proved [1] that the modification does not take any additional cost.

Lemma 4 ([1,2,11]). Given a Hamiltonian cycle C in graph H, for splittable
and unit-demand k-CVRP, the ITP algorithm can use polynomial time to output
a solution of cost at most (2/k)Δ + c(C); for unsplittable k-CVRP, the bound
improves to (4/k)Δ + c(C).

The Cycle-Partition Algorithm. For k-MCVRP, the cycle-partition algo-
rithm uses the ITP or UITP algorithm to obtain a feasible solution for non-fixed
k-MCVRP, and then modify the solution into a feasible solution for k-MCVRP
using some additional cost. Li and Simchi-Levi [18] proved that the additional
cost is exactly the cost of the Hamiltonian cycle used.

Lemma 5 ([18]). Given a Hamiltonian cycle C in graph H, for splittable and
unit-demand k-MCVRP, there is a polynomial-time algorithm to output a solu-
tion of cost at most (2/k)Δ + 2c(C); for unsplittable k-MCVRP, the bound
improves to (4/k)Δ + 2c(C).

Using the 3/2-approximate Hamiltonian cycle [6,21], by Lemmas 1 and 2,
the cycle-partition algorithm achieves a 4-approximation ratio for splittable and
unit-demand k-MCVRP and a 5-approximation ratio for unsplittable k-MCVRP.

4.2 The Tree-Partition Algorithm

The tree-partition algorithm is based on an optimal spanning tree in graph H.
Note that an optimal spanning tree in H corresponds to an optimal constrained
spanning forest in G. The algorithm is to split the corresponding constrained
spanning forest into small components in a good way such that each component
has a demand of at most k, and moreover each that contains no depots in it has
a demand of at least k/2. Note that each component that contains one depot
can be transformed into a tour by doubling all edges in it and then shortcutting.
For each component that contains no depots, the algorithm will add one edge
with minimized weight connecting one depot to it. Then, it can be transformed
into a tour by the same method: doubling and shortcutting.

Lemma 6 ([12]). For all three versions of k-MCVRP, there is a polynomial-
time algorithm to output a solution of cost at most (4/k)Δ + 2c(T ∗).

By Lemmas 2 and 3, the tree-partition algorithm achieves a 4-approximation
ratio for all three versions of k-MCVRP.
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5 An Improvement for Splittable MCVRP

In this section, we first propose a refined tree-partition algorithm based on the
idea in [12]. Our algorithm is simpler due to the previous assumptions. Moreover,
our algorithm has a better approximation ratio for the case that the capacity k is
fixed. Then, based on recent progress in approximating k-CVRP [4], we obtain an
improved (4 − 1/1500)-approximation algorithm for splittable and unit-demand
k-MCVRP.

A Refined Tree-Partition Algorithm. In our algorithm, we first assign a sin-
gle cheapest trivial tour for each v ∈ V with d(v) > �k/2� since each customer’s
demand is at most k by Assumption 1. Let V ′ denote the rest customers. To sat-
isfy customers in V ′, we find an optimal spanning tree T ′∗ in graph H[V ′ ∪{o}].
Note that T ′∗ corresponds to a constrained spanning forest in G[V ′∪D], denoted
by F . Consider a tree Tu ∈ F that is rooted at the depot u ∈ D. Then, we will
generate tours based on splitting Tu, like Hark et al. did in [12]. For each v ∈ Tu,
we denote the sub-tree rooted at v and the children set of v by Tv and Qv, and
let d(Tv) =

∑
v′∈Tv

d(v′).

– If d(Tu) ≤ k, it can be transformed into a tour by doubling and shortcutting.
– Otherwise, we can do the following repeatedly until it satisfies that d(Tu) ≤ k.

We can find a customer v ∈ Tu such that d(Tv) > k and d(Tv′) ≤ k for every
children v′ ∈ Qv. Consider the sub-trees Tv := {Tv′ | v′ ∈ Qv}. We can
greedily partition them into l sets T1, . . . , Tl such that �k/2� < d(Ti) ≤ k for
each i ∈ {2, . . . , l}. For each such set, saying T2, we can combine them into
a component S by adding v with edges joining v and each tree in T2. Note
that S is a sub-tree of Tv. Then, we find an edge eS with minimized weight
connecting one depot to one vertex in S. By doubling eS with the edges in
S and shortcutting (note that we also need to shortcut v), we obtain a tour
satisfying all customers in trees of T2. After handling Ti for each i ∈ {2, . . . , l},
we only have T1. If d(T1) > �k/2�, we can handle it like Ti with i > 1.
Otherwise, we have d(T1) ≤ �k/2�. The remaining tree is denoted by T ′

u.
Note that d(T1) + d(v) ≤ k since d(v) ≤ �k/2�. So, in T ′

u the condition
d(T ′

v) > k and d(T ′
v′) ≤ k for every children v′ ∈ Q′

v will no longer hold which
makes sure that the algorithm will terminate in polynomial time.

The algorithm is shown in Algorithm 1.

Theorem 1 (*). For all three versions of k-MCVRP, the refined tree-partition
algorithm can use polynomial time to output a solution of cost at most 2

�k/2�+1Δ+
2c(T ′∗).

Lemma 7. It holds that c(C∗) ≥ c(T ′∗).

Proof. Let C ′∗ denote an optimal Hamiltonian cycle in graph H[V ′ ∪ {o}]. By
the proof of Lemma 3, we have c(C ′∗) ≥ c(T ′∗). Note that we can obtain a
Hamiltonian cycle in H[V ′ ∪{o}] by shortcutting the optimal Hamiltonian cycle
C∗ in H. By the triangle inequality, we have c(C∗) ≥ c(C ′∗).



386 J. Zhao and M. Xiao

Algorithm 1. A refined tree-partition algorithm for k-MCVRP

Input: Two undirected complete graphs: G = (V ∪ D, E) and H = (V ∪ {o}, F ).
Output: A solution for k-MCVRP.

1: For each customer v ∈ V with d(v) > �k/2�, assign a trivial tour from v to its
nearest depot.

2: Find an optimal spanning tree T ′∗ in graph H[V ′ ∪ {o}].
3: Obtain the constrained spanning forest F in G[V ′ ∪ D] with respect to T ′∗.
4: for every tree Tu ∈ F do � Tu is rooted at the depot u
5: while d(Tu) > k do
6: Find v ∈ Tu such that d(Tv) > k and d(Tv′) ≤ k for each v′ ∈ Qv. � Qv is

the children set of v
7: Greedily partition trees in Tv := {Tv′ | v′ ∈ Qv} into l sets T1, . . . , Tl such

that �k/2� < d(Ti) ≤ k for each i ∈ {2, . . . , l}.
8: Initialize Index := {2, . . . , l}.
9: if d(T1) > �k/2� then
10: Index := Index ∪ {1}.
11: end if
12: for i ∈ Index do
13: Combine trees in Ti into a component S by adding v with edges joining

v and each tree in Ti.
14: Find an edge eS with minimized weight connecting one depot to one

vertex in S.
15: Obtain a tour satisfying all customers in trees of Ti by doubling eS with

the edges in S and shortcutting.
16: Update Tu by removing the component S except for v from Tu.
17: end for
18: end while
19: Obtain a tour satisfying all customers in Tu by doubling and shortcutting.
20: end for

By Theorem 1 and Lemmas 1 and 7, the refined tree-partition algorithm has
an approximation ratio of k

�k/2�+1 + 2 < 4. Next, we consider the improvement
for general k.

The Improvement. Blauth et al. [4] made a significant progress in approximat-
ing k-CVRP. We show that it can be applied to k-MCVRP to obtain an improved
(4−1/1500)-approximation ratio for splittable and unit-demand k-MCVRP. The
main idea is to make a trade-off between the cycle-partition algorithm and the
refined tree-partition algorithm.

Lemma 8 ([4]). If (1 − ε) · OPT′ < (2/k)Δ, there is a function f : R>0 → R>0

with limε→0 f(ε) = 0 and a polynomial-time algorithm to get a Hamiltonian cycle
C in H with c(C) ≤ (1 + f(ε)) · OPT′.

Theorem 2 (*). For splittable and unit-demand k-MCVRP, there is a
polynomial-time (4 − 1/1500)-approximation algorithm.
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Note that if we only use the cycle-partition algorithm with a 3/2-approximate
Hamiltonian cycle, we can merely get a (4 − 1/3000)-approximation algorithm.

6 An Improvement for Unsplittable MCVRP

In this section, we consider unsplittable k-MCVRP. Recently, Friggstad et al. [9]
proposed an improved LP-based approximation algorithm for unsplittable k-
CVRP. We show that it can be used to obtain an LP-based cycle-partition algo-
rithm for unsplittable k-MCVRP with an improved (4−1/50000)-approximation
ratio.

An LP-Based Cycle-Partition Algorithm. Recall that unsplittable k-CVRP
can be reduced to the minimum weight k-set cover problem if k is fixed. The
main idea of the LP-based approximation algorithm in [9] is that fixing a constant
0 < δ < 1 they build an LP (in the form of set cover) only for customers v with
d(v) ≥ δk. Then, the number of feasible tours is nO(1/δ) which is polynomially
bounded. Using the well-known randomized LP-rounding method (see [23]), they
obtain a set of tours that forms a partial solution with a cost of ln 2 ·OPT. Then,
they design tours to satisfy the left customers based on a variant of UITP with
an excepted cost of 1

1−δ · (2/k)Δ + c(C), where C is a given Hamiltonian cycle
in graph H.

Lemma 9 ([9]). Given a Hamiltonian cycle C in graph H, for unsplittable k-
CVRP with any constant δ > 0, there is a polynomial-time algorithm to output
a solution of cost at most (ln 2 + δ) · OPT′ + (2/k)Δ + c(C).

For unsplittable k-MCVRP, we can use the same idea (see the full version).
Fixing a constant 0 < δ < 1, we build an LP (in the form of set cover) only
for customers v with d(v) ≥ δk. A partial solution based on randomized LP-
rounding has a weight of ln 2 · OPT. For left customers, we obtain a solution for
k-CVRP in H with an excepted cost of 1

1−δ · (2/k)Δ + c(C). Since the latter
is based on the idea of the UITP algorithm, we can modify them into a set of
feasible tours for k-MCVRP using an additional cost of c(H) like Lemma 5. So,
we can get the following theorem.

Theorem 3 (*). Given a Hamiltonian cycle C in graph H, for unsplittable k-
MCVRP with any constant δ > 0, the LP-based cycle-partition algorithm can use
polynomial time to output a solution of cost at most (ln 2 + δ) ·OPT+ (2/k)Δ +
2c(C).

The Improvement. By making a trade-off between the LP-based cycle-
partition algorithm and the refined tree-partition algorithm, we can obtain an
improved (4 − 1/50000)-approximation ratio for unsplittable k-MCVRP.

Theorem 4 (*). For unsplittable k-MCVRP, there is a polynomial-time (4 −
1/50000)-approximation algorithm.
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Algorithm 2. An LP-based tree-partition algorithm for k-MCVRP

Input: Two undirected complete graphs: G = (V ∪ D, E) and H = (V ∪ {o}, F ), and
a constant γ ≥ 0.
Output: A solution for k-MCVRP.

1: Solve the LP in mnO(k) time.
2: for C ∈ C do Put the tour C into solution with a probability of min{γ · xC , 1}.
3: end for
4: For each customer contained in multiple tours, we shortcut it for all but one tour.

� Some customers may be contained in more than one tour due to the randomized
rounding.

5: Let ˜V be the customers that are still unsatisfied.
6: Obtain two new complete graphs: ˜G = G[˜V ∪ D] and ˜H = G[˜V ∪ {o}].
7: Call the refined tree-partition algorithm in Algorithm 1.

7 An Improvement for k-MCVRP with Fixed Capacity

In this section, we consider further improvements for the case that the capacity
k is fixed. We propose an LP-based tree-partition algorithm based on the refined
tree-partition algorithm with the LP-rounding method. The algorithm admits
an approximation ratio of 3 + ln 2 − Θ(1/

√
k). Then, by further using the result

in Lemma 8, we also obtain a (3 + ln 2 − 1/9000)-approximation algorithm for
splittable and unit-demand k-MCVRP. Note that the former is better when k is
a fixed constant less than 3 × 108.

An LP-Based Tree-Partition Algorithm. Due to Assumption 3 we can only
consider a tour that delivers an integer amount of demand to each customer
in the tour. Since k is fixed, there are at most mnO(k) feasible tours for k-
MCVRP. Note that for splittable k-MCVRP each customer’s demand is a unit
by Assumption 2. Denote the set of feasible tours by C, and define a variable xC

for each tour C ∈ C. We have the following LP.

minimize
∑

C∈C
w(C) · xC

subject to
∑

C∈C:
v∈C

xC ≥ 1, ∀ v ∈ V,

xC ≥ 0, ∀ C ∈ C.

The LP-based tree-partition algorithm is shown in Algorithm 2.
Consider an optimal solution of k-CVRP in graph H. It consists of a set of

simple cycles. Note that if we delete the longest edge from each cycle, we can
obtain a spanning tree (by shortcutting if necessary since a customer may appear
in more than one tour for the splittable case). Denote this spanning tree by T ∗∗.

Theorem 5 (*). For all three versions of k-MCVRP with any constant γ ≥
0, the LP-based tree-partition algorithm can use polynomial time to output a
solution with an expected cost at most γ · OPT + e−γ · 2

�k/2�+1Δ + 2c(T ∗∗).
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The algorithm can be derandomized efficiently by conditional expecta-
tions [23].

The Analysis. Next, we show that the LP-based tree-partition algorithm
achieves a ratio of 3 + ln 2 − Θ(1/

√
k) for all three versions of k-MCVRP (see

the full version). Note that the ratio Hk − Θ(ln2 k/k) for k-set cover in [10] is
better than ours only for k ≤ 11.

Theorem 6 (*). For all three versions of k-MCVRP, the LP-based tree-
partition algorithm achieves an approximation ratio of max{g(�x0�), g(�x0�)},
where x0 :=

√
4k+5−1

2 and g(x) := 3 + ln( k+1−x
�k/2�+1 ) − 1

x .

A Further Improvement for Splittable k-MCVRP. By making a trade-off
between the cycle-partition algorithm and the LP-based tree-partition algorithm,
we can obtain an improved (3+ ln 2−1/9000)-approximation ratio for splittable
and unit-demand k-MCVRP.

Theorem 7 (*). For splittable and unit-demand k-MCVRP, there is a
polynomial-time (3 + ln 2 − 1/9000)-approximation algorithm.

The result 3 + ln 2 − Θ(1/
√

k) in Theorem 6 is better than 3 + ln 2 − 1/9000
for any k < 3 × 108. Note that for unsplittable k-MCVRP we cannot obtain
further improvements using the same method. The reason is that even using an
optimal Hamiltonian cycle the LP-based cycle-partition only achieves a ratio of
about 3 + ln 2 by Theorem 3. So, there is no improvement compared with the
LP-based tree-partition algorithm.

8 Conclusion

In this paper, we consider approximation algorithms for k-MCVRP. Previously,
only a few results were available in the literature. Based on recent progress in
approximating k-CVRP, we design improved approximation algorithms for k-
MCVRP. When k is general, we improve the approximation ratio to 4 − 1/1500
for splittable and unit-demand k-MCVRP and to 4 − 1/50000 for unsplittable
k-MCVRP; when k is fixed, we improve the approximation ratio to 3 + ln 2 −
max{Θ(1/

√
k), 1/9000} for splittable and unit-demand k-MCVRP and to 3 +

ln 2 − Θ(1/
√

k) for unsplittable k-MCVRP.
We remark that for unsplittable, splittable, and unit-demand k-MCVRP

with fixed 3 ≤ k ≤ 11 the current best approximation ratios are still
Hk −Θ(ln2 k/k) [10]. In the future, one may study how to improve these results.

A more general problem than k-MCVRP is called Multidepot Capacitated
Arc Routing (MCARP), where both vertices and arcs are allowed to require
a demand. For MCARP, the current best-known approximation algorithms on
general metric graphs are still based on the cycle-partition algorithm (see [26]).
Some results in this paper could be applied to MCARP to obtain some similar
improvements.

Acknowledgments. The work is supported by the National Natural Science Foun-
dation of China, under the grants 62372095 and 61972070.



390 J. Zhao and M. Xiao

References

1. Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with
a fixed error guarantee. Oper. Res. Lett. 6(4), 149–158 (1987)

2. Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error
guarantees. Transp. Sci. 24(4), 294–297 (1990)

3. Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by
k-tours: towards a polynomial time approximation scheme for general k. In: STOC
1997, pp. 275–283. ACM (1997)

4. Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated
vehicle routing. Math. Program., 1–47 (2022)

5. Bompadre, A., Dror, M., Orlin, J.B.: Improved bounds for vehicle routing solutions.
Discret. Optim. 3(4), 299–316 (2006)

6. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Carnegie-Mellon University, Tech. rep. (1976)

7. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

8. Deppert, M., Kaul, M., Mnich, M.: A (3/2+ ε)-approximation for multiple tsp with
a variable number of depots. In: 31st Annual European Symposium on Algorithms
(ESA 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2023)

9. Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approxi-
mations for capacitated vehicle routing with unsplittable client demands. In: IPCO
2022. LNCS, vol. 13265, pp. 251–261. Springer (2022). https://doi.org/10.1007/
978-3-031-06901-7 19

10. Gupta, A., Lee, E., Li, J.: A local search-based approach for set covering. In: SOSA
2023, pp. 1–11. SIAM (2023)

11. Haimovich, M., Kan, A.H.G.R.: Bounds and heuristics for capacitated routing
problems. Math. Oper. Res. 10(4), 527–542 (1985)

12. Harks, T., König, F.G., Matuschke, J.: Approximation algorithms for capacitated
location routing. Transp. Sci. 47(1), 3–22 (2013)

13. Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the min-
imum set cover problem. SIAM J. Comput. 35(1), 189–200 (2005)

14. Heine, F.C., Demleitner, A., Matuschke, J.: Bifactor approximation for location
routing with vehicle and facility capacities. Eur. J. Oper. Res. 304(2), 429–442
(2023)

15. Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algo-
rithm for metric TSP. In: STOC 2021, pp. 32–45. ACM (2021)

16. Karlin, A.R., Klein, N., Gharan, S.O.: A deterministic better-than-3/2 approxi-
mation algorithm for metric TSP. In: IPCO 2023. LNCS, vol. 13904, pp. 261–274.
Springer (2023). https://doi.org/10.1007/978-3-031-32726-1 19

17. Lai, X., Xu, L., Xu, Z., Du, Y.: An approximation algorithm for k-depot split
delivery vehicle routing problem. INFORMS J. Comput. (2023)

18. Li, C., Simchi-Levi, D.: Worst-case analysis of heuristics for multidepot capacitated
vehicle routing problems. INFORMS J. Comput. 2(1), 64–73 (1990)

19. Montoya-Torres, J.R., Franco, J.L., Isaza, S.N., Jiménez, H.F., Herazo-Padilla, N.:
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