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Abstract. Influence maximization is a classic problem in social net-
works and has been extensively studied in recent years. Viral marketing
is an important application for influence maximization. Most of exist-
ing related research focus on influence maximization of a single product,
but in reality, a marketer may promote multiple products in the social
network at the same time. This paper studies the profit maximization
problem for multiple kinds of products in viral marketing. We formulate
it as the Profit Maximization Problem for Competitive Influence Spread
(PMPCIS), which aims at selecting a set of seed users within the total
budget B and the total number of seeds K to maximize the overall profit
of k kinds of products. The objective problem is proved to be a monotone
k-submodular maximization problem under the knapsack and cardinal-
ity constraint. We present a Singleton+Greedy-Local-Search Algorithm
in four steps, and prove the approximation performance guarantee of the
proposed algorithm.
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1 Introduction

Online social networks, such as WeChat, Facebook, Twitter, have been impor-
tant platforms for people to communicate and for business to advertise. People
keep in touch with each other and make friends through social networks, they
also like to share their innovations and ideas, etc., in the social networks [1,2].
According to statistics, there are 3.725 billion users active in the social net-
works by Dec. 2019. Companies make use of the advantage of large crowds and
rapid information dissemination in social networks to promote their products.
Motivated by the information propagation in social networks, Influence Maxi-
mization (IM) problem is put forward by Kempe et al. in [3]. They formulate
the IM problem as: selecting a set of users as seeds to maximize the expected
number of users who are influenced by seeds. Influence maximization finds appli-
cations in many domain, like viral marketing. Viral marketing makes good use
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of the word-of-mouth effect of the social networks, and it promotes products
by giving discounts to a small set of customers to spread their product infor-
mation. Two classic influence spread model: Independent Cascade (IC) model
and Linear Threshold (LT) model, are proposed by Kempe et al. in [3]. They
also prove that the influence propagation function is monotone and submodular,
thus, the greedy algorithm can be applied to solve the IM problem and obtain
an 1 − 1/e − ε approximation ratio.

In real life, it is very common for multiple types of information propagate
simultaneously in the social network. For example, in 2022 Apple Corporation
issues two kinds of new iPhone, iPhone 14 is more cost-effective and iPhone 14
Pro is more powerful but more expensive. Although iPhone 14 and iPhone 14
Pro are the same kind of product, but they have different prices, appearances
and performances, which can attract different groups of customers with different
requirements. Based on the described background, consider the scenario where
there are k kinds of products, a constraint K for the number of selected seeds,
and a budget B for the activation cost of all selected seeds. Assuming that
different seeds have different activation costs and different profits can be obtained
when the product is purchased, which nodes to be selected as seeds and how to
allocate the budget to seeds for k kinds of products such that the total profit is
maximized? We study the profit maximization problem for competitive products
in this paper, and assume that each seed can accept the discount of only one
product for the fairness. We aim to allocate discounts to k sets of seed users
for k kinds of products under two constraints K and B. The objective function
that maximizes the total profit of k kinds of products can be formulated as a k-
submodular function. Approximation algorithms with theoretical guarantee are
proposed in our work. We summarize the main contributions in this paper as
follows:

– We formulate the profit maximization for competitive influence spread prob-
lem as a k-submodular function with both a knapsack constraint and a car-
dinality constraint problem. To best of our knowledge, this is the first time
to study a monotone k-submodular maximization problem under both the
knapsack and cardinality constraints in social networks.

– We propose a Singleton+Greedy-Local-Search Algorithm in four steps, which
obtains two approximation ratios: 0.216 and 0.158, in two different conditions.

2 Related Work

In this paper, we consider the profit maximization problem with multiple kinds
of products in the network. We summarize the related studies on our work as
follows.

Influence Maximization with Competitive Influence Spread: Most of
the existing relevant studies on influence maximization consider the scenario of
a single kind of information spreading in the social network. The competitive
IM problem is firstly studied by Bharathi et al. [4]. They propose a game the-
ory based method to solve it. Liang et al. [5] consider that multiple kinds of
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similar products promote in the network at the same time and the target of
the promotion is a specific user group. They formulate such a problem as Tar-
geted Influence Maximization in Competitive social networks (TIMC). A reverse
reachable set based greedy method is proposed by them to solve the TIMC with
approximation performance guarantee. Wu et al. [6] consider a scenario that
multiple information propagate in a social network with different propagation
probabilities. The problem is formulated as maximizing the total influence of all
the different information under a constraint of seed budget k. They present a
greedy algorithm with 1

3 approximation ratio, and also propose a parallel algo-
rithm which improves the efficiency of the algorithm.

Profit Maximization: Profit maximization problem is a transformation of the
influence maximization problem, which aims at maximizing the profit of prod-
ucts by selecting a seed set with a limited budget. Zhang et al. [7] study the
Profit Maximization with Multiple Adoptions (PM2A) problem. Two different
approximation algorithms are devised to maximize the total profit of multiple
kinds of product by selecting a limited number of seeds. Chen et al. [8] propose
a Randomized Modified Greedy (RMG) algorithm to solve the Profit Maximiza-
tion with Multiple Adoptions (PM2A) problem, which obtain an (1 − 1/e − ε)
approximation ratio. Yuan et al. [9] design two discount allocation strategies
under the non-adaptive setting and adaptive setting, respectively, which achieve
the goal of maximizing the expected number of users who adopt the product
finally.

k-Submodular Maximization: Huber et al. [10] firstly define the k-submod-
ular function, which is a generalization of the submodular function. Ohsaka et
al. [11] study the maximization for a monotone k-submodular function with two
different size constraints, and propose greedy algorithms with constant approxi-
mation factor. Tang et al. [12] study the maximization for a non-negative mono-
tone k-submodular function with a knapsack constraint, they present a greedy
algorithm which can obtain an 1

2 − 1
2e approximation ratio with an O(n4k3) time

complexity. Wang et al. [13] propose a framework for relaxing a k-submodular
function to continuous space with the technique of multilinear extension. They
also improve the approximation ratio to 1/2 − ε for maximizing a monotone
k-submodular function with knapsack constraint. V. Pham et al. [14] explore
the applications of maximizing the k-submodular function under the knapsack
constraint in influence maximization of social networks and the sensor place-
ment. However, for the monotone k-submodular maximization problem under
the knapsack constraint and cardinality constraint, to best of our knowledge,
there is no related conclusion about it in social networks. Thus, we try to fill
this gap and apply it to the social networks.

3 Diffusion Model and Problem Definition

3.1 The Diffusion Model

A social network is constructed as a directed graph G(V,E), where each node
v ∈ V represents a user, and each edge (u, v) ∈ E represents that user v follows
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user u, u is an incoming neighbor of v, while v is an outgoing neighbor of u. The
incoming neighbor set and the outgoing neighbor set of a node v are denoted as
N−(v) and N+(v), respectively. IC model is used as the influence propagation
model in our problem, its influence propagation process is described as follows.

Definition 1 (IC model). Nodes in social networks have two different states:
active and inactive, all nodes are initially inactive. There is a activation prob-
ability puv ∈ (0, 1] associated with each edge e = (u, v) ∈ E. When a node
u is firstly activated at time t, then for each of his inactive outgoing neighbor
v ∈ N+(u), he can activate them with a probability puv at time t+1. Finally, the
influence propagation process terminates if there are no newly activated nodes
in the future.

3.2 Problem Formulation

Give a social network G = (V,E). Assume that marketers wants to promote k
kinds of products in the social network. k kinds of products information prop-
agate under the IC model at the same time. We aim to choose k seed sets
S = {S1, S2, · · · , Sk} and provide discounts to them, and assume that each seed
user can only be used for propagating at most one kind of product information.
As different user can bring different levels of influence, so we give different dis-
counts to different seeds, and influential users get bigger discounts. Let σ(Si)
be the expected influence spread of seed set Si for product i, i.e., the expected
number of users who adopt product i in the social network. Let f(Si) be the
total profit that obtained by purchasing product i. Moreover, σ(S|G) and f(S|G)
are the expected number of influenced people and the total profit obtained by
adopting k kinds of products, respectively.

The profit maximization problem for competitive products marketing at the
same time in the social network with a total activation cost B and a total number
of seeds K constraints can be formulated as follows:

Problem 1 (Profit Maximization Problem for Competitive Influence
Spread (PMPCIS)). Given a social network graph G = (V,E), k kinds of
products, the IC model, the cost c(a) that activating a node a to purchase
a product, the profit pi that a node can gain when he adopts product i, the
seed set S = {S1, S2, · · · , Sk}, where Si is selected for propagating the infor-
mation of the product i and Si ∩ Sj = ∅ for any i, j ∈ [1, k] and i �= j.
The total number of selected seeds is represented by |S| =

∑k
i=1 |Si| and the

upper bound is K. The total activation cost for the seed set S is denoted by
c(S) =

∑k
i=1

∑
a∈Si

c(a) and the total budget is given as B. The expected influ-
ence spread for seed set Si is expressed by σ(Si). Our target is to select an optimal
seed set S = {S1, S2, · · · , Sk} such that the total profit f(S) is maximized, i.e.,

S∗ = argmax
S

f(S)

s.t. c(S) ≤ B

|S| ≤ K.

(1)
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From the definition of PMPCIS, we can intuitively get f(S) =
∑k

i=1 piσ(Si).
In literature [3], Kempe et al. have proved that the classical influence maximiza-
tion problem in IC model is a NP-hard problem. When the types of products
are reduced to one, our PMPCIS is equivalent to the traditional IM problem for
IC model. Thus, the PMPCIS is a NP-hard problem.

4 Solution for PMPCIS

We propose solution for PMPCIS in this section. At first, we analyze the prop-
erties of the objective function f for PMPCIS.

4.1 Properties for Objective Function f

Firstly, we introduce an important property for a set function: k-submodular.
Let X be a finite non-empty set, and let (k+1)X := {(U1, · · · , Uk) | Ui ⊆ X,∀i ∈
{1, 2, · · · , k}, Ui ∩ Uj = ∅,∀i �= j} be the family of k disjoint sets (U1, · · · , Uk).
A function h: (k + 1)X → R is k-submodular if for any U = {U1, · · · , Uk} and
W = {W1, · · · ,Wk} in (k + 1)X , it satisfies,

h(U) + h(W ) ≥ h(U 
 W ) + h(U � W ),

where
U � W := (U1 ∩ W1, · · · , Uk ∩ Wk),

U 
 W :=
(
U1 ∪ W1\

(⋃

i�=1
Ui ∪ Wi

)
, · · · , Uk ∪ Wk\

(⋃

i�=k
Ui ∪ Wi

))
.

If a function satisfies the properties of orthant submodularity and pairwise
monotonicity at the same time, which indicates that it is a k-submodular func-
tion. It is very intuitively to verify that our objective function is k-submodularity.

Then, we elaborate on additional characteristics and notations of k-submodu-
lar functions for our problem. Every k-tuple x = (X1, . . . , Xk) ∈ (k + 1)V

uniquely corresponds to a set A = {(a, d) | a ∈ Xd, d ∈ [k]} composed of item-
dimension pairs. Hence, a user-product pair (a, d) is included in set A (termed
as a solution) if and only if a ∈ Xd in x.

In our problem, for ease of presentation, we write x and its corresponding
solution A interchangeably. For any solution A ∈ (k + 1)V , we define U(A) :=
{a ∈ V | ∃ d ∈ [k], (a, d) ∈ A} to be the set of seed included, and the size is
|A| = |U(A)|.

The marginal gain of adding a user-product pair (a, d) to A is

Δa,df(A) = f(A ∪ {(a, d)}) − f(A),

and the marginal density is Δa,df(A)
c(a) . As the profit maximization function f is

monotone k-submodular, it satisfies the pairwise monotonicity

Δa,df(A) + Δa,lf(A) ≥ 0,
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for any d, l ∈ [k] and d �= l. And it also satisfies the orthant submodularity

Δa,df(A) ≥ Δa,df(C),

∀A,C ∈ (k + 1)V with A ⊆ C, a /∈ U(C), d ∈ [k].

In this problem, each seed node a ∈ V has a non-negative cost c(a), and the
cost of solution A is c(A) =

∑
a∈U(A) c(a). The goal is to find a solution that

maximizes the function value within the given budget B ∈ Z+ and size K ∈ Z+.
Then we rewrite the PMPCIS in Eq. (1) as follows.

A∗ = arg max
A∈(k+1)V

f(A)

s.t. c(A) ≤ B

|A| ≤ K.

(2)

4.2 Proposed Algorithm

We present our solution for the proposed PMPCIS in four steps. In the first
step, we consider unconstrained profit maximization problem and propose a
simple greedy algorithm in Algorithm 1. Given a node set V ′ = {e1, e2, . . . , em}
and V ′ ⊆ V . Firstly, we remove the two constraints of the problem in Eq. 2,
then, Algorithm 1 is devised by greedily finding the maximum function value
maxA∈(k+1)V ′ f(A) without any constraint.

Let T = {(e1, d∗
1), . . . , (em, d∗

m)} be an optimal solution that maximizes the
function f(A) over V ′. Assume without loss of generality that the seed set are
obtained by Greedy Algorithm in the order of {e1, e2, . . . , em}, and denote the
returned greedy solution by A = {(e1, d1), . . . , (em, dm)}. For j = {0, 1, . . . ,m},
define Aj = {(e1, d1), . . . , (ej , dj)}. We have A0 = ∅ and Am = A. The following
Lemma 1 is crucial to our subsequent proof.

Lemma 1 ([15,16]). If f is monotone, for t = {0, 1, . . . ,m}, we have f(T ) ≤
2f(At) +

∑
ei∈U(T )\U(At)

Δei,d∗
i
f(At).

Algorithm 1. A Simple Greedy Algorithm
Input: Social network subgraph G = (V ′, E′), objective function f .
Output: A solution A ∈ (k + 1)V

′
.

1: A ← ∅

2: for each item a ∈ V ′ do
3: da ← argmaxd∈[k] Δa,df(A)
4: A ← A ∪ {(a, da)}
5: end for
6: return A
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Algorithm 2. Greedy-Knapsack Algorithm
Input: Social network graph G = (V, E), objective function f , costs c(a) for a ∈ V ,

budget B, seed size constraint K.
Output: Solution At in (k + 1)V .
1: A0 ← ∅, V0 ← V , card ← 0
2: for t from 1 to |V | do
3: Let (at, dt) = arg max

a∈Vt−1,d∈[k]

Δa,df(At−1)

c(a)
maximize the marginal density, and

denote ρt =
Δat,dt

f(At−1)

c(at)
.

4: if c(At−1) + c(at) ≤ B then
5: At ← At−1 ∪ {(at, dt)}
6: card ← card+1
7: if card = K then
8: break
9: end if
10: else
11: At ← At−1

12: end if
13: Vt ← Vt−1\{at}
14: end for
15: return At.

Then we propose the following Algorithm 2. In Algorithm 2, we select the
user who can bring the largest marginal density for objective function f in each
iteration, and the selected users can not violate the budget and size constraint
at the same time. Algorithm 2 returns the solution At.

Next, we devise the Algorithm 3, which aims at further optimizing the solu-
tion At. If we have solution with size K that is obtained with the Algorithm 2,
we can execute the local search procedure utilizing Algorithm 3. We input the
solution obtained by Algorithm 2, and denote it as a feasible solution A′. In each
iteration, we try to swap a pair of selected and unselected items, aiming to aug-
ment the objective value while ensuring adherence to the knapsack constraint.
In Algorithm 3, when we obtain the new seed set after the exchange in step 6,
we invoke the Algorithm 1 Greedy Algorithm in step 7 to reassign the type
of product that the seeds correspond to since the selected seed set may change.

Our main algorithm is as shown in Algorithm 4, which combines the singleton
optimum, the greedy strategy in Algorithm 2 and the local search strategy in
Algorithm 3. In step 1 of Algorithm 4, we find out the node that can maximize
the objective function f among all the nodes, then A∗ is the item pair with a
single node set and the product it corresponds.
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Algorithm 3. Local-Search Algorithm
Input: Social network graph G = (V, E), objective function f , costs c(a) for a ∈ V ,

budget B, seed size constraint K. a feasible solution A′ ∈ (k + 1)V with |A′| = K.
Output: A local optimal solution At ∈ (k + 1)V .
1: AK ← A′, t = K, swap ← true
2: while swap do
3: swap ← false
4: Let ρ(x,y) = maxd∈[k]

f(At\(y,dy)∪(x,d))−f(At)

c(x)
be the exchange marginal density.

The swap (at+1, bt+1) achieves the value maxx∈V \U(At),(y,dy)∈At ρ(x, y) and ρt+1 =
ρ(at+1, bt+1)

5: if ρt+1 > 0 and c(at+1) − c(bt+1) + c(At) ≤ B then
6: V ′ ← U(At)\{bt+1} ∪ {at+1}
7: At+1 ← Greedy(V ′, f)
8: swap ← true
9: t ← t + 1
10: end if
11: end while
12: return At

Algorithm 4. Singleton+Greedy-Local-Search Algorithm
Input: Social network graph G = (V, E), objective function f , costs c(a) for a ∈ V ,

budget B, seed size constraint K.
Output: The solution A∗ in (k + 1)V .
1: Let A∗ ∈ arg max

A: |A|=1,c(A)≤B
f(A) be a size-1 solution giving the largest value.

2: A ← Greedy-Knapsack(V, f, c, B, K)
3: if f(A) > f(A∗) then
4: A∗ ← A
5: end if
6: if |A| < K then
7: return A∗

8: end if
9: A ← Local-Search(V, f, c, B, K, A)
10: if f(A) > f(A∗) then
11: A∗ ← A
12: end if
13: return A∗

If f(A∗) ≥ f(A), then A∗ is returned as the final solution. We always find
the node that maximize the marginal density as seeds in Algorithm 3, which
may miss some nodes that can bring large profit and also need large costs at the
same time, but have small marginal density. However, such nodes are actually a
good solution. So the step 1 in Algorithm 4 is to find such kind of nodes. The
returned solution A∗ by the Algorithm 4 is a seed-product pair set, but in our
original objective function in Eq. 1, we need to find an optimal seed set S∗, so
the nodes in A∗ is the returned solution for our PMPCIS in Eq. (1).
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4.3 Approximation Performance Analysis

In this section, we analyze the approximation performance guarantee of the pro-
posed Algorithm 4. We intend to establish the approximation ratio in Theorem
1 following the proof framework in [17]. The subsequent observation will be used
twice in the proof of Theorem 1.

Lemma 2. Let A1, A2 ∈ (k+1)V be two node sets with |A1| ≤ K and |A2| = K,
then for any one-to-one function y : U(A1)\U(A2) → U(A2)\U(A1), we have∑

x∈U(A1)\U(A2) f(A2)−f(A2\{(y(x), dy(x))}) ≤ f(A2) where (y(x), dy(x)) ∈ A2.

Proof. Let U(A1)\U(A2) = {x1, x2, . . . , xK′}. For any one-to-one function y,
suppose yj = y(xj) for each j ∈ {1, . . . , K ′}. Then we have

∑

x∈U(A1)\U(A2)

f(A2) − f(A2\{(y(x), dy(x))})

≤
K′
∑

j=1

f(A2\{(y1, dy1), . . . , (yj−1, dyj−1)}) − f(A2\{(y1, dy1), . . . , (yj , dyj
)})

≤ f(A2),

where j = 1, {(y1, dy1), . . . , (yj−1, dyj−1)} is an empty set.

Theorem 1. Algorithm 4 has an approximation ratio at least 1
6 (1 − e−3) ≈

0.15836.

Proof. Let T be the optimal solution with |T | ≥ 2 and A be the seed set out-
put by Algorithm 4. If |A| < K, then A is a 1−e−2

4 -approximation solution
of maximum k-submodular with a knapsack constraint [16]. Thus, A is also a
1−e−2

4 -approximation solution of maximum our k-submodular objective function
f with a knapsack constraint and a cardinality constraint.

If |A| = K, we distinguish between two cases based on the last iteration of
the algorithm.

Case 1: For any node x ∈ U(T )\U(A), node y ∈ U(A)\U(T ), the swap (x, y)
was rejected because ρ(x,y) ≤ 0. Since A is a greedy solution, by Lemma 1, we
derive

f(T ) ≤ 2f(A) +
∑

x∈U(T )\U(A)

[f(A ∪ {(x, d∗
x)}) − f(A)]

≤ 2f(A) +
∑

x∈U(T )\U(A)

[f(A ∪ {(x, d∗
x)}\{(y(x), dy(x))}) − f(A\{(y(x), dy(x))})]

≤ 2f(A) +
∑

x∈U(T )\U(A)

[f(A) − f(A\{(y(x), dy(x))})]

≤ 3f(A),

where (x, d∗
x) ∈ T and y(x) is a one-to-one function with (y(x), dy(x)) ∈ A. The

second inequality holds because of submodularity. The third inequality holds as
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ρ(x,y) ≤ 0. The last inequality holds by Lemma 2. Thus, in this case, we have
Algorithm 4 yields a 1

3 -approximation on the optimum.

Case 2: At least one swap for node pair (x, y) with ρ(x,y) > 0, for x ∈
U(T )\U(A), y ∈ U(A)\U(T ) was rejected because c(x) − c(y) + c(A) > B.

Let At be the partial greedy solution after t iterations as shown in Algorithm
2 and 3. Let l+1 be the first iteration in which a swap (al+1, bl+1) was rejected
since it violates the knapsack constraint where al+1 ∈ U(T )\U(Al). We can
further assume that l+1 is the first iteration t for which At = At−1. Since At is
a greedy solution for t = 0, 1, . . . , l, by Lemma 1, we have

f(T ) ≤ 2f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}) − f(At)],

where (x, d∗
x) ∈ T .

For t = 0, . . . , K − 1, |At| = t, we have

f(T ) ≤ 2f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}) − f(At)] ≤ 2f(At) + Bρt+1.

The second inequality holds since c(T ) ≤ B.
For t = K, . . . , l, |At| = K, we have

f(T ) ≤ 2f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}) − f(At)]

≤ 2f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}\{(y(x), dy(x))}) − f(At\{(y(x), dy(x))})]

≤ 2f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}\{(y(x), dy(x))}) − f(At)]+

∑

x∈U(T )\U(At)

[f(At) − f(At\{(y(x), dy(x))})]

≤ 3f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}\{(y(x), dy(x))}) − f(At)]

≤ 3f(At) + Bρt+1.

The second inequality holds because of submodularity. The fourth inequality
holds by Lemma 2. The last inequality holds since c(T ) ≤ B.
Therefore, for each t = 0, 1, . . . , l, we have

f(T ) ≤ 3f(At) + Bρt+1.

Take advantage of the techniques in [17,18], we get

f(Al\{(bl+1, dbl+1)} ∪ {(al+1, dal+1)})
f(T )

≥ 1
3
(1 − e−3),



376 Q. Ni et al.

where ρ(al+1,bl+1) =
f(Al\{(bl+1,dbl+1 )}∪{(al+1,dal+1 )})−f(Al)

c(al+1)
.

Therefore, Singleton+Greedy-Local-Search has a function value at least

max{f(Al), f({(al+1, dal+1)})} ≥ 1
2
f(Al ∪ {(al+1, dal+1)})

≥ 1
2
f(Al\{(bl+1, dbl+1)} ∪ {(al+1, dal+1)}) ≥ 1

6
(1 − e−3)f(T ).

The theorem is proved.

5 Conclusion

In this paper, we investigate the profit maximization problem for k kinds of
competitive products information spreading at the same time in social networks.
Considering that one seed user spreads multiple product information at the same
time may disperse its followers’ attention, one seed user can only propagate the
influence of one kind of product. The goal of the proposed problem is to select
k subsets of users as seeds with a budget B and a seed size K constraints such
that the total profit for k kinds of products is maximized. Our optimal problem
is formulated as maximizing a monotone k-submodular function under a knap-
sack constraint and a cardinality constraint. A Singleton+Greedy-Local-Search
Algorithm is put forward in four steps to solve the profit maximization problem,
which achieves a 0.216 and 0.158 approximation performance guarantees in two
different cases, respectively.
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