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Abstract. We revisit the classical metric k-median/means with out-
liers in this paper, whose proposal dates back to (Charikar, Khuller,
Mount, and Narasimhan SODA’01). Though good approximation algo-
rithms have been proposed, referring to the state-of-the-art (6.994+ε)-
approximation (Gupta, Moseley and Zhou ICALP’21) for k-median with
outliers and (53.002+ε)-approximation (Krishnaswamy, Li, and Sandeep
SODA’18) for k-means with outliers respectively, we are interested in
finding efficient fpt (fixed-parameter tractable) approximations, follow-
ing a recent research mainstream for constrained clusterings. As our main
contribution, we propose a simple but efficient technical framework that
yields a (3 + ε)/(9 + ε)-approximation for k-median/means with out-
liers, albeit in ((m + k)/ε)O(k) · nO(1) time. It is notable that our results
match with previous result (Goyal, Jaiswal, and Kumar IPEC’20) in
terms of ratio and asymptotic running time. But as aforementioned, our
technique is much more simplified and straightforward, where instead of
considering the whole client set, we restrict ourselves to finding a good
approximate facility set for coreset, which can be done easily in fpt time
even with provably small loss. Similar idea can be applied to more con-
strained clustering problems whose coresets have been well-studied.

Keywords: Approximation algorithm · Fixed-parameter tractability ·
Clustering with outliers · Coreset

1 Introduction

The k-median/means problem is a classical optimization problem in which one
must choose k facilities from a given set of candidate locations to serve a set of
clients, so as to minimize the total distance cost between the clients and their
closest facilities. This problem attracts research interests from various domains,
such as computer science, data science, and operations research.

In general metric, both k-median and k-means are NP-hard, more precisely,
APX-hard. The k-median is hard to approximate within a factor of (1 + 2/e),
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and the k-means is hard to approximate within a factor of (1 + 8/e) under P�=
NP [15,23]. Both problems have been extensively studied in the literature from
the perspective of approximation algorithms. The state-of-art approximation
algorithm for k-median, to the best of our knowledge, is 2.67059 by Cohen-
Addad et al. [8]. Kanungo et al. [24] give a (9+ε)-approximation algorithm for
k-means, which is improved to 6.357 by Ahmadian et al. [3].

However, the presence of outliers can significantly affect the solution of the
k-median/means, where some clients may not be served by any facility (i.e.
outliers) due to various reasons such as geographic constraints or capacity lim-
itations. Excluding outliers may greatly reduce the clustering cost and improve
the quality of the clustering. Despite practical considerations, identifying outliers
in clustering is a crucial and intriguing part of algorithm design, for example,
what we study in this paper, k-median with outliers (k-MedO) and k-means
with outliers (k-MeaO), which we will formally define later in definition 1.

Both k-MedO and k-MeaO are more difficult than the vanilla version. In
a seminal work, Charikar et al. [5] first introduce the problem of k-MedO in
the literature (also called robust k-median), and design a bi-criteria (1 + λ,
4+4/λ)-approximation algorithm that always returns a clustering at cost at most
4 + 4/λ times the optimum with violation of the outlier constraint by a factor
of 1 + λ. No constant approximation algorithm has been proposed for k-MedO
until Chen [6] presents the first true constant approximation algorithm, whose
approximation ratio is significantly improved to 7.081+ε by Krishnaswamy et
al. [26] and 6.994+ε by Gupta et al. [17] via iterative LP rounding. For k-
MeaO, Gupta et al. [18] give a bi-criteria approximation algorithm that outputs
a solution with a ratio of 274 using at most O(mlogn) outliers, where m stands
for the desired number of outliers and n corresponds to the total count of clients.
Krishnaswamy et al. [26] first propose a true constant approximation algorithm
of 53.002, which is quite far from the lower bound.

While there is a lot of work focusing on the approximation algorithms for k-
MedO and k-MeaO, there is another research mainstream aiming at developing
fixed-parameter tractable (fpt) approximations, which enables an additional
factor of f(k) in the running time. Fpt algorithms have demonstrated their abil-
ity to overcome longstanding barriers in the field of approximation algorithms in
recent years [11,25], improving the best-known approximation factors in poly-
nomial time for many classic NP-hard problems, e.g., k-vertex separator [27],
k-cut [17] and k-treewidth deletion [16].

Coresets turn out to be useful in fpt algorithm design for clustering recently.
Coresets are small representative subsets of the original dataset that capture
specific geometric structures of the data, which can help to develop existing
algorithms. Agarwal et al. [1] first introduce the framework of coreset in com-
puting diameter, width, and smallest bounding box, ball, and cylinder, initial-
izing a research path of the coreset for many other combinatorial problems. In
the classic k-median and k-means, Har-Peled and Mazumdar [19] first prove the
existence of small coreset for k-median and k-means with size O(k log nε−d) in
Euclidean metrics and near-optimal size bounds have been obtained in more
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recent works by Cohen-Addad et al. [10,22]. In general metric, a seminar paper
by Chen [7] obtains coresets for k-median and k-means with size O(k log n/ε)
based on hierarchical sampling. However, coresets for k-MedO and k-MeaO seem
to be less understood — previous results either suffer from exponential depen-
dence on (m + k) [12], or violate the constraint of k or m [20]. Recently, Huang
et al. [21] present a near-optimal coreset for k-MedO and k-MeaO in Euclidean
spaces with size O((m + k/ε)) based on uniform sampling.

Building on the previous work of coresets, there are several fpt results for
the clustering problem. For the classic k-median and k-means, (1 + 2/e + ε) and
(1 + 8/e + ε) fpt approximations are obtained by Cohen-Addad et al. [9], which
are proven to be tight even in f(k, ε) · nO(1) time, assuming Gap-ETH. For the
k-MedO and k-MeaO, existing work [2,28] mostly overcomes the difficulty of
identifying outliers by reducing the k-MedO/k-MeaO into a related (k + m)-
median/means problem, which leads to an exponential time dependency on the
outlier number m. Agrawal et al. [2] present (1 + 2/e + ε) and (1 + 8/e + ε)
fpt approximations for k-MedO and k-MeaO respectively, in ((k + m)/ε)O(m) ·
(k/ε)O(k) · nO(1) time. In addition to coresets, k-means++ [4] is also considered
as a dataset reduction for k-MeaO in Euclidean spaces in the literature [13,
28]. Though it is not stated explicitly, Statman et al. [28] yields a (1 + ε)-
approximation for Euclidean k-MeaO in fpt time.

Our Contribution. In this paper, we propose a coreset-based technical frame-
work for k-MedO and k-MeaO in general metric. We employ the coreset for k-
MedO and k-MeaO as a reduction of search space, which would help us to avoid
the exponential time dependency on m. We restrict ourselves to finding a good
facility set based on the constructed client coreset with size O((k + m) log n/ε).
We propose a provably good approximate facility set by finding substitute facil-
ities for leaders of clients in coreset, where leaders represent the clients with
minimum cost in each optimal cluster. Moreover, leaders can be found easily
in fpt(k) time by enumeration of k-sized subset from the coreset. Based on this
idea, we derive a (3+ε)-approximation for k-MedO and a (9+ε)-approximation
for the k-MeaO in ((k +m)/ε)O(k) ·nO(1) time. It is worth noting that our result
improves upon Akanksha et al. [2] in terms of running time, as the outlier count
m is consistently much larger than the facility count k in practical but with a
constant loss of approximation ratio. Also note that this matches with Goyal et
al. [14] in terms of approximation ratio and asymptotic running time, but with
a much simplified and straightforward technical framework, which is promising
to apply to more (constrained) clustering problems.

The rest of the paper is organized as follows. Section 2 describes the fpt
algorithm as well as its analysis in detail. We conclude this paper and provide
some interesting directions in Sect. 3.

2 A Coreset-Based Fpt Approximation

For ease of discussion, we provide formal definitions for k-MedO and k-MeaO.
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Definition 1. (k-MedO/k-MeaO) An instance I of the k-median/means prob-
lem with outliers contains a tuple ((X ∪F, d), k,m), where (X ∪F, d) is a metric
space over a set of n points with a function d(i, j) indicating the distance between
two points i, j in X ∪ F . Furthermore, X and F are two disjoint sets referred
to as “clients” and “facilities locations”, respectively, while k and m are two
positive parameters. The objective is to identify a subset S of k facilities in F
and simultaneously exclude a subset O of m clients from X to minimize

costm(X,S) = min
O⊆X:|O|=m

∑

x∈X\O
dz(x, S).

Here, z = 1 corresponds to k-MedO, and z = 2 corresponds to k-MeaO.

This definition implies that, for a fixed set S of k open facilities, the set of m
outliers can be naturally determined, namely the set of m points that are farthest
from S. This reminds us that we can overcome the difficulty of identifying outliers
by focusing on selecting a good approximation for the facilities.

As a pre-processing step, we construct a coreset for k-MedO/k-MeaO to
reduce the search space, in order to find a good facility set in fpt(k) time.

Definition 2. (Coreset) Let S = {S1, S2, . . . } be a set of candidate solutions.
Recall that

costm(X,S) = min
O⊆X:|O|=m

∑

x∈X\O
dz(x, S).

Then a weighted subset C ⊆ X is an ε-coreset, if for all candidate solution S ∈ S
we have

|costm(X,S) − costm(C,S)| ≤ ε · costm(X,S).

In other words, coreset is a weighted subset for the client set which preserves
a good approximation for the whole client set. In this paper, we make use of
the coreset construction technique [2], based on a hierarchical sampling idea [7],
which is suitable for clustering problems with outliers.

Theorem 1. (Agrawal et al. [2]) For ε > 0, there exists an algorithm that for
each instance I = ((X ∪F, d), k,m) of k-MedO or k-MeaO, outputs an ε-coreset
C ⊆ X with size |C| = O(((k + m) log n/ε)2) with constant probability, running
in O(nk) + poly(n) time.

For any instance I = ((X ∪ F, d), k,m) and ε > 0, we run the hierarchical
sampling in [2] on I to obtain a coreset C ⊆ X with size O(((k + m) log n/ε)2).
By the definition of coreset, an α-approximate solution on I ′ = ((C ∪F, d), k,m)
implies a (1+ε)α-approximate solution on I. Therefore, the only thing we need
to do is to find a facility subset S ⊆ F of size k to minimize the objective function
minL⊆C:|L|=m

∑
x∈C\L dz(x, S) on instance I ′. Towards this end, we present our

algorithm in Algorithm 1.
Let F ∗ = {f∗

1 , f∗
2 , . . . f∗

k} be facility set of optimal solution on instance I ′ =
((C ∪ F, d), k,m). For any f∗

i ∈ F ∗, let C∗
i be the clients served by facility f∗

i ,
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Algorithm 1. Coreset-based fpt approximation
Require: Instance I = ((X ∪ F, d), k, m)

Construct the coreset C based on hierarchical sampling
Find leaders of C by enumeration
S ← the nearest facilities in F for every leader client
return S

and denote c∗
i as the leader of C∗

i representing the client in C∗
i who is closest to

f∗
i . We define leaders as all such leader clients, thus is a k-sized set.

We will find a good substitute facility for each C∗
i via leader, inspired by

[9] except that their leader is defined on the origin client set in order to deal
with capacity constraints. By the definition, we can find leaders eventually by
enumeration of a k-sized subset, which is allowed in fpt(k) time. We will prove
that a good approximate facility set can be found around the leaders with a
constant approximation guarantee.

Lemma 1. Algorithm 1 yields a (3+ε)-approximation for k-MedO and a (9+ε)-
approximation for k-MeaO.

Proof. We define fi for each leader client c∗
i as the closest facility in F . As c∗

i is
the closest client of f∗

i in C∗
i , it must satisfy that d(c∗

i , fi) ≤ d(c∗
i , f

∗
i ) ≤ d(c, f∗

i )
for any client c in C∗

i , which is shown in Fig. 1.

Fig. 1. Substitute facility in optimal cluster C∗
i

Thus, for each c in the coreset,

d(c, fi) ≤ d(c, f∗
i ) + d(f∗

i , c∗
i ) + d(c∗

i , fi) ≤ 3d(c, f∗
i ),

where the first inequality follows from the triangle inequality. Combined with
the definition of coreset (Theorem 1), it holds that

costm(X, S) ≤ 1

1 − ε
costm(C, S) ≤ 3z

1 − ε
costm(C, F ∗) ≤ 3z(1 + ε)

1 − ε
costm(X, F ∗),

which implies a (3 + ε)-approximation/(9 + ε)-approximation for k-MedO/k-
MeaO respectively. Though it is possible that some leader clients may share the
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same closest facility fi, it will not affect the performance guarantee as it does not
hurt to let fi serve all C∗

i corresponding to these leader clients. This concludes
the proof of Lemma 1. ��
By combining Theorem 1 and Lemma 1 together, we can establish that our
algorithm yields a (3+ε)\(9+ε)-approximation with a constant probability. To
ensure a high probability of success, we can repeat the algorithm for a logarithmic
number of rounds, which leads to the following theorem.

Theorem 2. For any ε > 0, there exists a (3+ε)-approximation for k-MedO
and a (9+ε)-approximation for k-MeaO with high probability, running in ((m +
k)/ε)O(k)· nO(1) time.

3 Conclusion

To summarize, we propose a simple unified approach to obtain constant factor
approximations for metric k-MedO/k-MeaO in fpt(k) time, more specifically,
in ((m + k)/ε)O(k)· nO(1) time. It is highlighted that the running time avoids
exponential dependency on m, which partially answers (Agrawal et al. AAAI’23)
who ask for faster fpt approximations for k-MedO/k-MeaO while obtaining the
tight approximation ratios. The proposed approach leverages recent results on
coresets for robust clustering, and presents a simple but novel idea to find a good
substitute facility set for those leaders of coreset. We prove that the substitute
facility set can be found easily in fpt(k) time and have provably small loss com-
pared with the optimal facility set in terms of the k-MedO/k-MeaO objective for
coreset. We believe similar idea has the potential to apply to a wide range of con-
strained clustering problems, for example, fair clustering, a recent mainstream
in clustering field.
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