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Abstract. In this paper, we study the Min-cost Perfect k-way Matching
with Delays (k-MPMD), recently introduced by Melnyk et al. In the
problem, m requests arrive one-by-one over time in a metric space. At
any time, we can irrevocably make a group of k requests who arrived so
far, that incurs the distance cost among the k requests in addition to
the sum of the waiting cost for the k requests. The goal is to partition
all the requests into groups of k requests, minimizing the total cost.
The problem is a generalization of the min-cost perfect matching with
delays (corresponding to 2-MPMD). It is known that no online algorithm
for k-MPMD can achieve a bounded competitive ratio in general, where
the competitive ratio is the worst-case ratio between its performance
and the offline optimal value. On the other hand, k-MPMD is known to
admit a randomized online algorithm with competitive ratio O(k5 log n)
for a certain class of k-point metrics called the H-metric, where n is
the size of the metric space. In this paper, we propose a deterministic
online algorithm with a competitive ratio of O(mk2) for the k-MPMD
in H-metric space. Furthermore, we show that the competitive ratio can
be improved to O(m + k2) if the metric is given as a diameter on a line.

Keywords: Online Matching · Online Algorithm · Competitive
Analysis

1 Introduction

Consider an online gaming platform supporting two-player games such as Chess.
In such a platform, players arrive one-by-one over time, and stay in a queue to
participate in a match. The platform then tries to suggest a suitable opponent
for each player from the queue. In order to satisfy the players, the platform aims
to maximize the quality of the matched games. Specifically, we aim to minimize
the distance of the matched players (e.g., the difference of their ratings) as well
as the sum of the players’ waiting time.
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The above situation can be modeled as the problem called Online Matching
with Delays, introduced by Emek et al. [11]. In the setting, arriving requests (or
players) are embedded in a metric space so that the distance of each pair is
determined. For the Online Matching with Delays, Emek et al. [11] proposed a
randomized algorithm with a competitive ratio of O(log2 n + log Δ), where n is
the number of points in a metric space, and Δ is the ratio of the maximum to
minimum distance between two points. The competitive ratio was later improved
to O(log n) by Azar et al. [5]. We remark that both algorithms require that
a metric space is finite and all the points in the metric space are known in
advance (we note that arriving requests may be embedded into the same point
more than once). Bienkowski et al. [9] presented a primal-dual algorithm with a
competitive ratio of O(m), where m is the number of requests. Another algorithm
with a better competitive ratio of O(m0.59) was proposed by Azar et al. [6].

In this paper, we consider a generalization of Online Matching with Delays,
called the Min-cost Perfect k-way Matching with Delays (k-MPMD) [22]. In the
problem, requests arrive one-by-one over time. At any time, instead of choos-
ing a pair of requests, we make a group of k requests. This corresponds to an
online gaming platform that allows more than two players to participate, such
as mahjong (k = 4), Splatoon (k = 8), Apex Legends (k = 60), and Fort-
nite (k = 100). Then we aim to partition all the requests into groups of size-k
subsets, minimizing the sum of the distance of the requests in the same group
and the total waiting time.

To generalize to k-MPMD, it is necessary to measure the distance of a group
of k > 2 requests. That is, we need to introduce a metric space that defines dis-
tances for any subset of k points. Although there are many ways of generalizing
a standard distance between two points to k > 2 points in the literature [4,16],
Melnyk et al. [22] showed that most known generalized metrics on k points can-
not achieve a bounded competitive ratio for the k-MPMD. Melnyk et al. [22]
then introduced a new interesting class of generalized metric, called H-metric,
and proposed a randomized algorithm for the k-MPMD on H-metric with a
competitive ratio of O(k5 log n), extending Azar et al. [5].

The main contribution of this paper is to propose a deterministic algorithm
for the k-MPMD on H-metric with a competitive ratio of O(mk2), where m is
the number of requests. The proposed algorithm adopts a primal-dual algorithm
based on a linear programming relaxation of the k-MPMD.

To design a primal-dual algorithm, we first formulate a linear programming
relaxation of the offline problem, that is, when a sequence of requests is given
in advance. We remark that even the offline setting is NP-hard when k ≥ 3, as
it includes the triangle packing problem. We first show that H-metric can be
approximated by a standard metric (Theorem 1). This allows us to construct a
linear programming problem with variables for each pair of requests such that
the optimal value gives a lower bound on the offline version of the k-MPMD.
Using the linear programming problem, we can design a primal-dual algorithm
by extending the one by Bienkowski et al. [9] for Online Matching with Delays.
We show that, by the observation on H-metric (Theorem 1) again, the cost
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of the output can be upper-bounded by the dual objective value of our linear
programming problem.

An interesting special case of the H-metric is the diameter on a line. That is,
points are given on a 1-dimensional line, and the distance of k points is defined
to be the maximum difference in the k points. In the context of an online gaming
platform, the diameter on a line can be interpreted as the difference of players’
ratings. In this case, we show that the competitive ratio of our algorithm can
be improved to O(m + k2). Moreover, we construct an instance such that our
algorithm achieves the competitive ratio of Ω(m/k).

Related Work. An online algorithm for the matching problem was first intro-
duced by Karp et al. [15]. They considered the online bipartite matching problem
where arriving requests are required to match upon their arrival. Since then, the
problem has been studied extensively in theory and practice. For example, moti-
vated by internet advertising, Mehta et al. [20] generalized the problem to the
AdWords problem. See also Mehta [21] and Goel and Mehta [13]. The weighted
variant of the online bipartite matching problem is considered in the literature.
It includes the vertex-weighted online bipartite matching [1], the problem with
metric costs [8,23,25], and the problem with line metric cost [2,12,14,17]. We
remark that the edge-weighted online bipartite matching in general has no online
algorithm with bounded competitive ratio [1].

This paper deals with a variant of the online matching problem with delays,
in which arriving requests are allowed to make decision later with waiting costs.
Besides the related work [5,6,9,11] mentioned before, Liu et al. [18] extended
the problem to the one with non-linear waiting costs. Other delay costs are
studied in [7,10,19]. Ashlagi et al. [3] studied the online matching problem with
deadlines, where each arriving request has to make a decision by her deadline.
Pavone et al. [24] considered online hypergraph matching with deadlines.

Paper Organization. This paper is organized as follows. In Sect. 2, we formally
define the minimum-cost perfect k-way matching problem and H-metric. We
also discuss useful properties of H-metrics which will be used in our analysis. In
Sect. 3, we present our main algorithm for the k-MPMD on H-metric. In Sect. 4,
we show that there exists an instance such that our algorithm admits an almost
tight competitive ratio. Due to the space limitation, the proofs of lemmas and
theorems are omitted, which may be found in the full version of this paper.

2 Preliminaries

2.1 Minimum-Cost Perfect k-Way Matching with Delays

In this section, we formally define the problem k-MPMD. Let (χ, d) be a gener-
alized metric space where χ is a set and d : χk → [0,∞) represents a distance
among k elements.
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In the problem, m requests u1, u2, . . . , um arrive one-by-one in this order. The
arrival time of ui is denoted by atime(ui). When ui arrives, the location pos(ui)
of ui in the metric space χ is revealed. Thus, an instance of the problem is given
as a tuple σ = (V, atime,pos), where V = {u1, . . . , um}, atime : V → R+, and
pos : V → χ such that atime(u1) ≤ · · · ≤ atime(um). We note that m may be
unknown in advance, but we assume that m is a multiple of k.

At any time τ , with the only information for requests arrived so far, an
online algorithm can make a set of k requests v1, . . . , vk in V , where we say
that v1, . . . , vk are matched, if they satisfy the following two conditions: (a)
The requests v1, . . . , vk have already arrived, that is, atime(vi) ≤ τ for any
i = 1, . . . , k; (b) None of v1, . . . , vk has been matched to other requests yet. The
cost to match v1, . . . , vk at time τ is defined to be

d(pos(v1),pos(v2), . . . ,pos(vk)) +
k∑

i=1

(τ − atime(vi)).

The first term means the distance cost among the k requests and the second
term is the total waiting cost of the k requests.

The objective of the problem is to design an online algorithm that matches
all the requests, minimizing the total cost. In other words, an online algorithm
finds a family of disjoint subsets of size k that covers all the requests. We call a
family of disjoint subsets of size k a k-way matching, and a k-way matching is
called perfect if it covers all the requests.

To measure the performance of an online algorithm, we define the competitive
ratio. For an instance σ, let ALG(σ) be the cost incurred by the online algorithm,
and let OPT (σ) be the optimal cost when we know in advance a sequence of
requests V as well as atime(ui) and pos(ui) for each request ui. The competitive
ratio of the online algorithm is defined as supσ

ALG(σ)
OPT (σ) .

2.2 H-Metric

In this section, we define H-metric, introduced by Melnyk et al. [22]. Recall that
a function d : χ2 → [0,∞) is called a distance function (or a metric) if d satisfies
the following three axioms:

– (Symmetry) d(p1, p2) = d(p2, p1) for any p1, p2 ∈ χ.
– (Positive definiteness) d(p1, p2) ≥ 0 for any p1, p2 ∈ χ, and d(p1, p2) = 0

if and only if p1 = p2.
– (Triangle inequality) d(p1, p3) ≤ d(p1, p2)+d(p2, p3) for any p1, p2, p3 ∈ χ.

We first define a k-point metric as a k-variable function satisfying general-
izations of the symmetry axiom and the positive definiteness axiom.

Definition 1. We call a function d : χk → [0,∞) a k-point metric if it satisfies
the following two axioms.

Π: For any permutation π of {p1, . . . , pk}, we have d(p1, . . . , pk) =
d(π(p1), . . . , π(pk)).
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OD: It holds that d(p1, . . . , pk) ≥ 0. Moreover, d(p1, . . . , pk) = 0 if and only if
p1 = p2 = · · · = pk.

There are several ways of generalizing the triangle inequality to k-variable
functions. One possibility is the following axiom: for any p1, . . . , pk, a ∈ χ and
any i ∈ {1, . . . , k}, it holds that

ΔH : d(p1, . . . , pk) ≤ d(p1, . . . , pi, a, . . . , a︸ ︷︷ ︸
k−i

) + d(a, . . . , a︸ ︷︷ ︸
i

, pi+1, . . . , pk).

We note that it is identical to the triangle inequality when k = 2.
For a multiset S on χ, we denote by elem(S) the set of all distinct elements

contained in S. In addition to the generalized triangle inequality, we consider the
relationship between d(p1, . . . , pk) and d(p′

1, . . . , p
′
k) when elem({p1, . . . , pk}) ⊆

elem({p′
1, . . . , p

′
k}). The separation axiom SH says that, for some nonnegative

integer γ ≤ k − 1,

d(p1, . . . , pk) ≤ d(p′
1, . . . , p

′
k) if elem({p1, . . . , pk}) ⊂ elem({p′

1, . . . , p
′
k}),

d(p1, . . . , pk) ≤ γ · d(p′
1, . . . , p

′
k) if elem({p1, . . . , pk}) = elem({p′

1, . . . , p
′
k}).

The H-metric is a k-point metric that satisfies all the above axioms.

Definition 2 (Melnyk et al. [22]). A k-point metric dH : χk → [0,∞) is
an H-metric with parameter γ ≤ k − 1 if it satisfies Π, OD, ΔH and SH with
parameter γ.

We remark that there are weaker conditions than ΔH and SH , generalizing
the triangle inequality, which yields other classes of k-point metrics such as the
n-metric [4] and the K-metric [16]. See [22] for the formal definition. Melnyk et
al. [22], however, showed that the k-MPMD cannot be solved for such more gen-
eral metrics. Specifically, they proved that there exists no randomized algorithm
for the k-MPMD (k ≥ 5) problem on n-metric or K-metric agaist an oblivious
adversary that has a competitive ratio which is bounded by a function of the
number of points n.

2.3 Properties of H-Metric

In this section, we discuss approximating H-metric by a standard metric, and
present specific examples of H-metric.

Melnyk et al. proved that H-metric can be approximated by the sum of
distances between all pairs [22, Theorem 6]. We refine their results as in the
theorem below, which will be used in the next section.

Theorem 1. Let dH be an H-metric on χ with parameter γ. Define a metric
d : χ2 → [0,∞) as

d(p1, p2) := dH(p1, p2, . . . , p2) + dH(p2, p1, . . . p1)
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for any p1, p2 ∈ χ. Then it holds that

1
γk2

·
k−1∑

i=1

k∑

j=i+1

d(pi, pj) ≤ dH(p1, . . . , pk) ≤
k∑

i=1

d(v, pi), (1)

for all v ∈ {p1, . . . , pk}.

We conclude this section with providing specific examples of H-metric. We
note that the examples below satisfy that γ = 1, and thus the approximation
factor in Theorem 1 becomes small.

Let d : χ2 → [0,∞) be a distance function. We define a k-point metric
dmax by dmax(p1, . . . , pk) = maxi,j∈{1,...,k} d(pi, pj). Then it turns out to be an
H-metric.

Proposition 1. Let d : χ2 → [0,∞) be a distance function. Then the k-point
metric dmax is an H-metric with γ = 1.

For real numbers p1, . . . , pk ∈ R, we define the diameter on a line as
dD(p1, . . . , pk) = maxi,j∈{1,...,k} |pi − pj |. By Proposition 1, dD is an H-metric.

For a distance function d : χ2 → [0,∞), we define another H-metric dHC by

dHC(p1, . . . , pk) = min

⎧
⎨

⎩

∑

e∈C

d(e) | C ⊆
(χ

2

)
, C forms a Hamiltonian circuit in {p1, . . . , pk}

⎫
⎬

⎭

where
(
χ
2

)
= {(p, q) | p, q ∈ χ, p 	= q}. This means that dHC(p1, . . . , pk) equals

to the minimum cost of a Hamiltonian circuit contained in {p1, . . . , pk} with
respect to cost d.

Proposition 2. Let d : χ2 → [0,∞) be a distance function. Then the k-point
metric dHC is an H-metric with parameter γ = 1.

3 k-MPMD on H-Metric Space

This section proposes a primal-dual algorithm for k-MPMD on H-metric space.
Let (χ, dH) be an H-metric space with parameter γ.

3.1 Linear Programming Relaxation

This subsection introduces a linear programming relaxation for computing the
offline optimal value OPT (σ) for a given instance σ.

We first give some notation. Let E = {F ⊆ V | |F | = k}. For any subset
S ⊆ V , we denote sur(S) = |S| mod k, which is the number of remaining requests
when we make a k-way matching of size 
|S|/k� among S. We denote Δ(S) =
{F ∈ E | F ∩ S 	= ∅, F \ S 	= ∅}, which is the family of k request sets that
intersect both S and V \ S.
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Preparing a variable xF for any subset F ∈ E , we define a linear programming
problem:

(P)

∣∣∣∣∣∣∣∣∣∣∣∣

min.
∑

F∈E
opt-cost(F ) · xF

s.t.
∑

F∈Δ(S)

xF ≥
⌈

sur(S)
k

⌉
, ∀S ⊆ V (2)

xF ≥ 0, ∀F ∈ E

where, for any F = (v1, . . . , vk) ∈ E , we define

opt-cost(F ) := dH(pos(v1), . . . ,pos(vk)) +
k∑

i=1

(
max

j
atime(vj) − atime(vi)

)
.

Notice that opt-cost(F ) is the cost of choosing F at the moment when all the
requests in F have arrived.

Let M be a perfect k-way matching with optimal cost OPT (σ). Define a
0-1 vector (xF )F∈E such that xF = 1 if and only if F ∈ M. Then the vector
satisfies the constraint (2). Moreover, the cost incurred by F ∈ M is equal to
opt-cost(F ). This is because the optimal algorithm that returns M chooses F at
the moment when all the requests in F have arrived. Thus the objective value
for the vector (xF )F∈E is equal to OPT (σ), and hence the optimal value of (P)
gives a lower bound of OPT (σ).

We further relax the above LP (P) by replacing xF ’s with variables for all
pairs of requests. Let E = {(u, v) | u, v ∈ V, u 	= v}, and we prepare a variable
xe for any e ∈ E. We often call an element in E an edge.

We denote by δ(S) the set of pairs between S and V \S. Define the following
linear programming problem:

(P ′)

∣∣∣∣∣∣∣∣∣∣∣∣

min.
∑

e∈E

1
γk2

· opt-cost(e) · xe

s.t.
∑

e∈δ(S)

xe ≥ sur(S) · (k − sur(S)), ∀S ⊆ V (3)

xe ≥ 0, ∀e ∈ E

where, for any e = (v1, v2) ∈ E with p1 = pos(v1) and p2 = pos(v2), we define

d(p1, p2) := dH(p1, p2, . . . , p2) + dH(p2, p1, . . . , p1), and
opt-cost(e) := d(p1, p2) + |atime(v1) − atime(v2)|.

The following lemma follows from Theorem 1.

Lemma 1. It holds that, for any F = (v1, . . . , vk) ∈ E,

1
γk2

·
k−1∑

i=1

k∑

j=i+1

opt-cost(vi, vj) ≤ opt-cost(F ) ≤
k∑

i=1

opt-cost(v, vi), (4)
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where v = arg max
u∈F

atime(u).

For any perfect k-way matching M, define an edge subset M such that e ∈ M
if and only if the pair e is contained in some set F of M. Thus we represent
each set in M with a complete graph of k vertices. We will show below that the
characteristic vector for M is feasible to (P ′). Here, for a subset X ⊆ E, the
characteristic vector 1X ∈ {0, 1}E is defined to be

1X(x) =

{
1 (x ∈ X)
0 (x /∈ X)

.

Moreover, this implies that the optimal value of (P ′), denoted by P ′(σ), is a
lower bound of OPT (σ) for any instance σ.

Lemma 2. Let M be a perfect k-way matching. Define an edge subset M =
{(u, v) ∈ E | ∃F ∈ M s.t. u, v ∈ F}. Then x = 1M is a feasible solution to P ′.
Furthermore, P ′(σ) ≤ OPT (σ) holds.

The dual linear programming problem of (P ′) is

(D′)

∣∣∣∣∣∣∣∣∣∣∣∣

max.
∑

S⊆V

sur(S) · (k − sur(S)) · yS

s.t.
∑

S:e∈δ(S)

yS ≤ 1
γk2

· opt-cost(e), ∀e ∈ E (5)

yS ≥ 0, ∀S ⊆ V

The weak duality of LP implies that D′(σ) ≤ P ′(σ), where D′(σ) is the dual
optimal value.

3.2 Greedy Dual for k-MPMD (GD-k)

We present our proposed algorithm, called Greedy Dual for k-MPMD(GD-k).
The proposed algorithm extends the one by Bienkowski et al. [9] for 2-MPMD
using the LP (P ′).

In the algorithm GD-k, we maintain a family of subsets of requests, called
active sets. At any time, any request v arrived so far belongs to exactly one
active set, denoted by A(v). We also maintain a k-way matching M. A request
not in

⋃
F∈M F is called free, and, for a subset S ⊆ V of requests, free(S) is the

set of free requests in S.
When request v arrives, we initialize A(v) = {v} and yS = 0 for any subset

S ⊆ V such that v ∈ S. At any time, for an active set S such that free(S)
is nonempty, we increase yS with rate r, where r is set to be 1/(γk2). Then,
at some point, there exists an edge e = (u, v) ∈ E such that

∑
S:e∈δ(S) yS =

1
γk2 · opt-cost(e), which we call a tight edge. When it happens, we merge the
active sets A(u) and A(v) to a large subset S = A(u) ∪ A(v), that is, we update
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A(w) = S for all w ∈ S. We also mark the tight edge e. If |free(S)| ≥ k, we
partition free(S) arbitrarily into subsets of size k with sur(S) free requests, and
add these size-k subsets to M.

The pseudo-code of the algorithm is given as in Algorithm 1.
Let T be the time when all requests are matched in the algorithm. For any

subset S, we denote the value of yS at time τ in the algorithm by yS(τ).

Algorithm 1 Greedy Dual for k -MPMD
1: procedure GD-k(σ)
2: M ← ∅
3: for all moments t do
4: if a request v arrives then
5: A(v) ← {v}
6: for all subsets S � v do
7: yS ← 0
8: end for
9: modify constraints of (D′).

10: end if
11: if there exists e = (u, v) ∈ E such that

∑
S:e∈δ(S) yS = 1

γk2 ·opt-cost(e) and

A(u) �= A(v) then
12: S ← A(u) � A(v)
13: for all v ∈ S do
14: A(v) ← S
15: end for
16: mark e
17: while |free(S)| ≥ k do
18: choose arbitrarily a set F of k requests from S
19: M ← M ∪ {F}
20: end while
21: end if
22: for all sets S which are active and free(S) �= ∅ do
23: increase continuously yS at the rate of r per unit time
24: end for
25: end for
26: end procedure

We show that yS ’s maintained in Algorithm 1 are always dual feasible.

Lemma 3. For any request v, it holds that
∑

S:v∈S

yS(τ) ≤ r · (τ − atime(v)) (6)

at any time τ ≥ atime(v). This holds with equality while v is not matched.

Lemma 4. Let r = 1
γk2 . Then, at any time τ , yS(τ) maintained in Algorithm 1

is a feasible solution to (D′).
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3.3 Competitive Ratio of GD-k

To bound the competitive ratio of GD-k, we evaluate the distance cost and the
waiting cost separately. We will show that each cost is upper-bounded by the
dual optimal value of D′(σ).

Waiting Cost. We can upper-bound the waiting cost of the output as follows.

Lemma 5. Let M = {M1, . . . ,Mp} be a perfect k-way matching returned by
Algorithm 1, and let τ� be the time when we match M�. Then it holds that

p∑

�=1

k∑

i=1

(τ� − atime(v�,i)) =
1
r

·
∑

S⊆V

sur(S) · yS(T ) ≤ 1
r

· D′(σ),

where we denote M� = {v�,1, . . . , v�,k}.

Distance Cost. We say that a set S ⊆ V is formerly-active at time τ if S is
not active at time τ , but has been active before time τ .

Lemma 6. Let S be an active or formerly-active set at time τ . Then, marked
edges both of whose endpoints are contained in S form a spanning tree in S.

We now evaluate the distance cost.

Lemma 7. Let M = {M1, . . . ,Mp} be a perfect k-way matching returned by
Algorithm 1. Then it holds that

p∑

�=1

d(pos(v�,1), . . . ,pos(v�,k)) ≤ 4γmk·
∑

S

sur(S)·(k−sur(S))·yS(T ) ≤ 4γmkD′(σ),

where we denote M� = {v�,1, . . . , v�,k}.

Competitive Ratio. Summarizing the above discussion, we obtain Theorem 2.

Theorem 2. Let dH be an H-metric with parameter γ. Setting r = 1/(γk2),
Greedy Dual for k-MPMD achieves a competitive ratio (4mk+k2)γ for k-MPMD.

Proof. Let σ be an instance of k-MPMD. It follows from Lemmas 5 and 7 that
the cost of the returned perfect k-way matching is upper-bounded by (4mk +
k2)γ ·D′(σ). By the weak duality and Lemma 4, we observe that D′(σ) ≤ P ′(σ) ≤
OPT (σ). Thus the theorem holds. ��

Finally, we consider applying our algorithm to the problem with specific H-
metrics such as dmax and dHC given in Sect. 2.3. Since they have parameter γ = 1,
it follows from Theorem 2 that GD-k achieves a competitive ratio O(mk + k2).
In the case of dmax, we can further improve the competitive ratio.

Theorem 3. For the k-MPMD on a metric space (χ, dmax), GD-k achieves a
competitive ratio O(m + k2).



248 N. Kakimura and T. Nakayoshi

4 Lower Bound of GD-k for a Diameter on a Line

In this section, we show a lower bound on the competitive ratio for GD-k for the
metric dD. Recall that dD(p1, . . . , pk) = maxi,j∈{1,...,k} |pi−pj | for p1, . . . , pk ∈ R.

We define an instance σl = (V,pos, atime) where V = {u1, u2, . . . , um} as
follows. Suppose that the number m of requests is equal to m = sk2 for some
integer s. Let p1, . . . , pk be k points in R such that d(pi, pi+1) = 2 for any
i = 1, 2, . . . , k − 1.

For i = 1, 2, . . . , sk and j = 1, 2, . . . , k, define atime(uk(i−1)+j) = ti
and pos(uk(i−1)+j) = pj for j = 1, 2, . . . , k, where we define t1 = 0 and
ti = 1 + (2i − 3)ε for i ≥ 2. Thus, at any time ti (i = 1, . . . , sk), the k requests
uk(i−1)+1, . . . , uk(i−1)+k arrive at every point in p1, . . . , pk, respectively.

Then it holds that OPT (σl) ≤ k+kε+k3ε+mkε, while the output of GD-k
has cost at least m + k + (m − k)ε.

Theorem 4. For a metric space (R, dD), there exists an instance σl of m
requests such that GD-k admits a competitive ratio Ω(m

k ).
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