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Preface

The papers in these proceedings, which consist of two volumes, were presented at the
29th International Computing and Combinatorics Conference (COCOON 2023), on
December 15–17, 2023, in Honolulu, Hawaii, USA. The topics cover most aspects of
theoretical computer science and combinatorics pertaining to computing.

In total 60 papers were selected from 146 submissions by an international program
committee consisting of a large number of scholars from various countries and regions,
distributed all over the world, including Asia, North America, Europe, and Australia.
Each paper was evaluated by at least three reviewers. The decision was made based on
those evaluations through a process containing a discussion period.

Authors of selected papers come from the following countries and regions: Australia,
Canada, China (including Hong Kong, Macau, and Taiwan), Czechia, France, Germany,
India, Israel, Japan, Sweden, and the USA. Many of these papers represent reports of
continuing research, and it is expected that most of them will appear in a more polished
and complete form in scientific journals.

We wish to thank all who have made this meeting possible and successful, the
authors for submitting papers, the program committee members for their excellent work
in reviewing papers, the sponsors, the local organizers, and Springer for their support
and assistance. We are especially grateful to Lian Li and Xiaoming Sun, who lead the
Steering committee, for making the ranking of COCOON go up significantly in recent
years, and to Yi Zhu and Xiao Li, who made tremendous efforts on local arrangements
and set-up.

December 2023 Weili Wu
Guangmo Tong



Organization

General Co-chairs

Peter Varman Rice University, USA
Ding-Zhu Du University of Texas at Dallas, USA

PC Co-chairs

Weili Wu University of Texas at Dallas, USA
Guangmo Tong University of Delaware, USA

Web Co-chairs

Xiao Li University of Texas at Dallas, USA
Ke Su University of Texas at Dallas, USA

Finance Co-chair

Jing Yuan University of Texas at Dallas, USA

Registration Chair

Xiao Li University of Texas at Dallas, USA

Local Chair

Yi Zhu Hawaii Pacific University, USA



viii Organization

Program Committee Members

An Zhang Hangzhou Dianzi University, China
Bhaskar Dasgupta University of Illinois at Chicago, USA
Bo Li Hong Kong Polytechnic University, China
Boting Yang University of Regina, Canada
C. Pandu Rangan Indian Institute of Technology Madras, India
Chee Yap New York University, USA
Chia-Wei Lee National Tatung University, Taiwan
Christos Zaroliagis University of Patras, Greece
Chung-Shou Liao National Tsing Hua University, Taiwan
Deshi Ye Zhejiang University, China
Dominik Köppl Tokyo Medical and Dental University, Japan
Eddie Cheng Oakland University, USA
Gruia Calinescu Illinois Institute of Technology, USA
Guohui Lin University of Alberta, Canada
Haitao Wang University of Utah, USA
Hans-Joachim Boeckenhauer ETH Zurich, Switzerland
Ho-Lin Chen National Taiwan University, Taiwan
Hsiang-Hsuan Liu Utrecht University, The Netherlands
Jiangxiong Guo Beijing Normal University at Zhuhai, China
Joong-Lyul Lee University of North Carolina at Pembroke, USA
Jou-Ming Chang National Taipei University of Business, Taiwan
Kai Jin Sun Yat-sen University, China
Kunihiko Sadakane University of Tokyo, Japan
Ling-Ju Hung National Taipei University of Business, Taiwan
M. Sohel Rahman Bangladesh University of Engineering and

Technology, Bangladesh
Manki Min Louisiana Tech University, USA
Micheal Khachay Ural Federal University, Russia
Ovidiu Daescu University of Texas at Dallas, USA
Pavel Skums Georgia State University, USA
Peng Li Chongqing University of Technology, China
Peng Zhang Shandong University, China
Peter Rossmanith RWTH Aachen University, Germany
Prudence Wong University of Liverpool, UK
Qilong Feng Central South University, China
Qiufen Ni Guangdong University of Technology, China
Raffaele Giancarlo University of Palermo, Italy
Ralf Klasing CNRS and University of Bordeaux, France
Ryuhei Uehara Japan Advanced Institute of Science and

Technology, Japan



Organization ix

Sharma V. Thankachan North Carolina State University, USA
Shengxin Liu Harbin Institute of Technology at Shenzhen,

China
Sun-Yuan Hsieh National Cheng Kung University, Taiwan
Takeshi Tokuyama Tohoku University, Japan
Thomas Erlebach Durham University, UK
Travis Gagie Dalhousie University, Canada
Van Bang Le University of Rostock, Germany
Vassilis Zissimopoulos National and Kapodistrian University of Athens,

Greece
Vincent Chau Southeast University, China
Wenguo Yang University of Chinese Academy of Sciences,

China
Wing-Kai Hon National Tsing Hua University, Taiwan
Wolfgang Bein University of Nevada, USA
Xianyue Li Lanzhou University, China
Xiaowei Wu University of Macau, China
Xinjian Ding Beijing University of Technology, China
Xujin Chen University of Chinese Academy of Sciences,

China
Yifei Zou Shandong University, China
Yitong Yin Nanjing University, China
Yixin Cao Hong Kong Polytechnic University, China
Yong Chen Hangzhou Dianzi University, China
Yuqing Zhu California State University, Los Angeles, USA
Zhao Zhang Zhejiang Normal University, China
Zhipeng Cai Georgia State University, USA



Contents – Part II

Combinatorics and Algorithms

Quantum Query Lower Bounds for Key Recovery Attacks
on the Even-Mansour Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Akinori Kawachi and Yuki Naito

Extended Formulations via Decision Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Yuta Kurokawa, Ryotaro Mitsuboshi, Haruki Hamasaki, Kohei Hatano,
Eiji Takimoto, and Holakou Rahmanian

Greedy Gray Codes for Dyck Words and Ballot Sequences . . . . . . . . . . . . . . . . . . 29
Vincent Vajnovszki and Dennis Wong

Efficiently-Verifiable Strong Uniquely Solvable Puzzles and Matrix
Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Matthew Anderson and Vu Le

(min,+) Matrix and Vector Products for Inputs Decomposable into Few
Monotone Subsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Andrzej Lingas and Mia Persson

A Sub-quadratic Time Algorithm for Computing the Beacon Kernel
of Simple Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Binay Bhattacharya, Amirhossein Mozafari, and Thomas C. Shermer

An Approach to Agent Path Planning Under Temporal Logic Constraints . . . . . . 82
Chaofeng Yu, Nan Zhang, Zhenhua Duan, and Cong Tian

The Heterogeneous Rooted Tree Cover Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Pengxiang Pan, Junran Lichen, Ping Yang, and Jianping Li

The Hardness of Optimization Problems on the Weighted Massively
Parallel Computation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Hengzhao Ma and Jianzhong Li

The Regularized Submodular Maximization via the Lyapunov Method . . . . . . . . 118
Xin Sun, Congying Han, Chenchen Wu, Dachuan Xu, and Yang Zhou

Topological Network-Control Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Zihui Liang, Bakh Khoussainov, and Haidong Yang



xii Contents – Part II

Lower Bounds of Functions on Finite Abelian Groups . . . . . . . . . . . . . . . . . . . . . . 157
Jianting Yang, Ke Ye, and Lihong Zhi

A Discharging Method: Improved Kernels for Edge Triangle Packing
and Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Zimo Sheng and Mingyu Xiao

Random Shortening of Linear Codes and Applications . . . . . . . . . . . . . . . . . . . . . . 184
Xue Chen, Kuan Cheng, Xin Li, and Songtao Mao

Algorithms for Full-View Coverage of Targets with Group Set Cover . . . . . . . . . 198
Jingfang Su and Hongwei Du

Improved Bounds for the Binary Paint Shop Problem . . . . . . . . . . . . . . . . . . . . . . . 210
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Quantum Query Lower Bounds for Key
Recovery Attacks on the Even-Mansour

Cipher

Akinori Kawachi(B) and Yuki Naito

Mie University, Tsu, Japan

kawachi@info.mie-u.ac.jp

Abstract. The Even-Mansour (EM) cipher is one of the famous con-
structions for a block cipher. Kuwakado and Morii demonstrated that
a quantum adversary can recover its n-bit secret keys only with O(n)
nonadaptive quantum queries. While the security of the EM cipher and
its variants is well-understood for classical adversaries, very little is cur-
rently known of their quantum security. Towards a better understanding
of the quantum security, or the limits of quantum adversaries for the
EM cipher, we study the quantum query complexity for the key recov-
ery of the EM cipher and prove every quantum algorithm requires Ω(n)
quantum queries for the key recovery even if it is allowed to make adap-
tive queries. Therefore, the quantum attack of Kuwakado and Morii has
the optimal query complexity up to a constant factor, and we cannot
asymptotically improve it even with adaptive quantum queries.

Keywords: Quantum computing · Query complexity · Lower bounds ·
Symmetric-key cryptography

1 Introduction

Since the discovery of quantum algorithms for factorization and discrete loga-
rithm problems by Shor [15], it has become widely known that many practical
schemes based on public-key cryptography can be broken by quantum computers
theoretically. Although the quantum computer that can be implemented with the
current technology does not pose a threat to practical cryptographic schemes,
it is essential to study the schemes that are secure enough against quantum
computers that will be developed in the near future.

Much of the early work on quantum attacks focused on public-key cryp-
tosystems, and only generic algorithms based on Grover’s quantum search [9]
were known to attack symmetric-key cryptosystems. However, recent stud-
ies have shown that more sophisticated quantum attacks are possible even
against some symmetric-key cryptosystems. Kuwakado and Morii provided effi-
cient quantum attacks against the well-known symmetric-key primitives such
as the 3-round Feistel structure [12] and the Even-Mansour (EM) cipher [13]
using Simon’s quantum algorithm [16]. Following their celebrated results, several
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 3–16, 2024.
https://doi.org/10.1007/978-3-031-49193-1_1
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papers revealed new quantum attacks against many symmetric-key constructions
such as the work of Kaplan, Leurent, Leverrier, and Naya-Plasencia [10] that
provided efficient quantum attacks on some of the most common block-cipher
modes of operations for message authentication and authenticated encryption.
The discovery of these quantum attacks against symmetric-key cryptosystems
has led us to focus not only on analyses of the potential capabilities of quan-
tum adversaries for public-key cryptography but also on those for symmetric-key
cryptography.

In particular, the security of the EM cipher and its variants has been studied
in many papers so far against classical and quantum adversaries. The EM cipher
is a well-known construction for block ciphers and has a very simple structure to
achieve the security of pseudorandom functions. For a random public permuta-
tion π : Zn

2 → Z
n
2 and secret keys k1, k2 ∈ Z

n
2 , its encryption function is defined

as EM(x) := π(x + k1) + k2.
The classical security of the EM cipher and its variants has been broadly

studied. The original paper of Even and Mansour proved that classical adver-
saries require O(2n/2) queries to break the EM cipher [8]. Chen and Steinberger
provided query lower bounds for generalizations of the EM cipher, called the
iterated EM ciphers iEMt(x) := kt + πt(kt−1 + πt−1(· · · k1 + π1(k0 + x) · · · ))
[5]. They proved the tight query lower bound of Ω(2(t/(t+1))n) for attacking the
variant that matches to query upper bounds of O(2(t/(t+1))n) by a generalization
of Daemen’s attack [7], which was pointed out by Bogdanov, Knudsen, Leander,
Standaert, Steinberger, and Tischhauser [3]. Chen, Lambooij, and Mennink also
studied the query bounds for security of “Sum of the EM ciphers” (SoEM), which
are variants of the EM cipher [6]. For example, they proved that O(2n/2) queries
are sufficient to classically attack SoEM1(x) := π(x + k1) + π(x + k2) + k1 + k2
for two independent keys k1, k2 and SoEM21(x) := π1(x+k1)+π2(x+k1)+k1
for two independent permutations π1, π2, but Ω(22n/3) queries are necessary to
classically attack SoEM22(x) := π1(x+k1)+π2(x+k2)+k1+k2 for independent
keys k1, k2 and independent permutations π1, π2 beyond the birthday bound.

Also, quantum attacks on the EM cipher and its variants have been devel-
oped following the result of Kuwakado and Morii. Shinagawa and Iwata demon-
strated quantum attacks on the variants of SoEM studied in [6] by extending
the Kuwakado-Morii (KM) attack [14]. For example, they demonstrated that
SoEM1 and SoEM21 can be broken only with O(n) quantum queries. Moreover,
their new quantum algorithm that combines Simon’s algorithm with Grover’s
algorithm can break SoEM22 with O(n2n/2) quantum queries, which is much
lower than the classical query lower bound of Ω(22n/3) [6]. Bonnetain, Hosoya-
mada, Naya-Plasencia, Sasaki and Schrottenloher constructed a new quantum
algorithm that uses Simon’s algorithm as a subroutine without quantum queries
to oracles, and they succeeded in attacking the EM cipher with O(2n/3) classical
queries, O(n2) qubits, and offline quantum computation Õ(2n/3) [4].

On the other hand, little has been studied on the security of these schemes
against quantum adversaries, or limits of capabilities of quantum adversaries,
while the KM attack has been used to extend quantum attacks on other
variants of the EM cipher. In many security proofs against quantum adversaries
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with oracle access, including the EM cipher and its variants, it is generally not
possible to prove the security against quantum adversaries by conventional proof
techniques used in the standard classical settings. This is because we need to
assume that quantum adversaries have quantum access to cryptographic primi-
tives. Indeed, many papers developed new techniques to show the limits of quan-
tum adversaries against well-known symmetric-key cryptographic constructions
(e.g., [17,18]).

The only example of the quantum security proof for the EM cipher, to the
best of the authors’ knowledge, is by Alagic, Bai, Katz, and Majenz [1]. They con-
sidered a natural post-quantum scenario that adversaries make classical queries
to its encryption function EM , but can make quantum queries to the public
permutation π. In this scenario, they demonstrated that it must hold either
q2πqEM = Ω(2n) or qπq2EM = Ω(2n), where qπ (qEM , respectively) is the number
of queries to π (EM , respectively).

Therefore, it is important to understand better the limits of quantum adver-
saries for constructing quantumly secure variants of the EM cipher by studying
the quantum query lower bounds for attacking the EM cipher.

In this paper, we investigate the limits of quantum adversaries against the
original EM cipher to explore quantumly secure variants of the EM cipher. We
prove lower bounds Ω(n) of quantum query complexity to recover n-bit secret
keys of the EM cipher even if quantum adversaries are allowed to make adaptive
queries. To the best of the authors’ knowledge, this is the first result that provides
new techniques for demonstrating the limits of adversaries against (variants of)
the EM cipher with purely quantum queries. Our quantum query lower bound
matches the upper bound O(n) of nonadaptive quantum queries provided by the
KM attack up to a constant factor. This implies that their attack is optimal up to
a constant factor in a setting of quantum query complexity, and thus, there is no
asymptotically better quantum attack than the one based on Simon’s algorithm
even if it is allowed to make adaptive queries.

2 Overviews of Previous Results and Our Ideas

Since the structure of our proof is based on the optimality proof of (generalized)
Simon’s algorithm studied by Koiran, Nesme, and Portier [11], we briefly review
Simon’s algorithm and its optimality.

The problem solved by Simon’s algorithm is commonly referred to as Simon’s
problem. The following is a generalized version of Simon’s problem with any
prime p. The oracle O hides some subgroup K of order D = pd, where d is a
non-negative integer.

Generalized Simon’s (GS) Problem
Input: an oracle O : Zn

p → Y that is sampled uniformly at random from all the
oracles that satisfy x′ = x + k ↔ O(x′) = O(x) for some subgroup K ≤ Z

n
p of

order D;
Output: the generators of K.



6 A. Kawachi and Y. Naito

The original Simon’s problem corresponds to the case of p = 2 and D =
2. Then, K = {0, k} for k ∈ Z

n
2 \ {0n}. Simon’s algorithm first makes O(n)

nonadaptive queries
∑

x∈Z
n
2

|x〉|0〉/√2n to the oracle O and measures the second
register. By the measurement, it obtains independent copies of the coset-uniform
state (|x0〉 + |x0 + k〉)/√2 for a random x0 in the first register. Applying the
quantum Fourier transform over Zn

2 (or, the Hadamard transform H⊗n) to them
and measuring the resulting states, it obtains O(n) random linear constraints∑

i<n zi · ki = 0 with respect to the undetermined secret key k = (k0, . . . , kn−1).
From the constraints, it can identify k with constant probability.

The idea of the KM attack against the EM cipher is to construct the ora-
cle of Simon’s problem from the public permutation π and encryption func-
tion EM(x) = π(x + k1) + k2. In the KM attack, a quantum adversary is
allowed to make quantum queries to π and EM in a quantum manner. Let
O(x) := EM(x) + π(x) = π(x + k1) + π(x) + k2. The adversary applies Simon’s
algorithm to this function O. Since O(x+k1) = π(x+k1)+π(x)+k2 = O(x), The
oracle O satisfies the direct part x′ = x+k1 → O(x′) = O(x) and approximately
satisfies the converse part with respect to random choices of π. Therefore, the
KM attack succeeds in recovering k1 using O(n) nonadaptive quantum queries
to π and EM with constant probability by Simon’s algorithm. It is obvious to
recover k2 from k1 since k2 = EM(0) + π(k1).

To prove the optimality of (generalized) Simon’s algorithm, Koiran et al. stud-
ied quantum query lower bounds for its generalized decisional version. Let

FD := {O : Zn
p → Y : ∃K ≤ Z

n
p , ∀x′, ∀x ∈ Z

n
p , ∀k ∈ K, x′ = x + k ↔ O(x′) = O(x)},

where D = |K| = pd for a non-negative integer d.

Generalized Decisional Simon’s (GDS) Problem
Input: an oracle O : Zn

p → Y that is sampled uniformly at random from Fp or
F1;
Output: “accept” if O is from Fp or “reject” if it is from F1.

Note that F1 is the set of all the O : Zn
p → Y , The task of this problem is to

distinguish between a function that hides some subgroup K of order p and a
random function.

It is easy to see that if Simon’s problem is solved with T queries, the GDS
problem for p = 2 is also solved with the same T queries. Therefore, quantum
query lower bounds of GDS problem for an arbitrary prime p directly lead to
those for Simon’s problem.

The argument of Koiran et al. [11] is based on the polynomial method [2]
for the GDS problem. They analyzed the degree of the polynomial Q(D) that
represents the accepting probability for a random O ∈ FD, where D is the
order of the subgroup K that O hides. They showed an upper bound O(T )
of deg(Q(D)) for quantum algorithms with accepting probability Q(D) and T
queries to an oracle O that hides a subgroup K of order D, and further, a
lower bound Ω(n) of deg(Q(D)) for any polynomial Q(D) that satisfies several
conditions naturally posed on Q(D), such as Q(p) ≥ 1 − ε, which corresponds
to the case of Fp, Q(1) ≤ ε, which corresponds to the case of F1, for a small
constant ε, and Q(pi) ∈ [0, 1] for every i ∈ {0, 1, . . . , n}.
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Our goal, quantum query lower bounds for key recovery of the EM cipher,
seems to be close to those for Simon’s problem provided in [11]. However, there
are actually technical gaps between these two problems. In the setting of the key
recovery, a quantum adversary can make access to two oracles EM(x) and π(x)
rather than a single oracle O(x) in the setting of Simon’s problem. The quantum
query upper bound O(n) can be achieved by the KM attack that synchronously
makes a (quantumly superposed) query x to EM(x) and π(x) and combines two
answers to compute O(x) = EM(x) + π(x). However, it would be possible to
achieve better attacks by making different queries to two oracles in an adaptive
manner.

We then provide a reduction of quantum query lower bounds in the standard
query model to those in a special query model. In the special query model, which
we refer to as a synchronized query model, any quantum adversary is posed to
make a synchronized query to two oracles as done in the KM attack. If a quantum
adversary A can recover the secret key with T (n) queries to EM and π totally
in the standard query model, we can easily modify A to another adversary A′

that recovers it with 2T (n) queries in the synchronized query model.
In the synchronized query model, we can assume that a quantum algorithm

has synchronized access to a oracle sequence O : Zn
2 → (Zn

2 )2, where O(x) =
(O0(x), O1(x)) for a random permutation O0(x) = π(x) and the encryption
function O1(x) = EM(x) = O0(x + k1) + k2. In our proof, we focus only on the
inner key k1 for simplification, which suffices to prove lower bounds since it is a
special case when k2 = 0. We define O1(x) = O0(x + k1). Then, our goal is to
prove quantum query lower bounds for finding the inner key k1 with synchronized
queries to the oracle sequence O(x) = (O0(x), O1(x)) = (O0(x), O0(x + k1)).

To apply the polynomial method as done in the proof of Koiran et al., we need
to consider a generalized version of the oracle sequence O(x) = (O0(x), O1(x))
to represent the accepting probability as a polynomial in some single parameter.

As a generalization, we consider an oracle sequence

O(x) = (O0(x), O1(x), . . . , OD−1(x))
= (O0(x + k0), O0(x + k1), . . . , O0(x + kD−1))

of length D = pd, where K = {k0 = 0n, k1, . . . , kD−1} is a subgroup in Z
n
p of the

order D. We then analyze the accepting probability Q(D) as a polynomial in D
for a given oracle sequence O.

The major difference from the argument of Koiran et al. is an algebraic
structure behind the oracles. In the cases of the GS and GDS problems, the
subgroup is hidden in the single oracle. However, it is hidden in the correlation
among D oracles in our setting. Recall that x′ = x + k for some k ∈ K if and
only if O(x′) = O(x) in Simon’s problem. We need to reveal a similar algebraic
structure to analyze of the degree of Q(D).

Our idea is to characterize the order of oracles in the sequence O by the hid-
den subgroup K. Actually, we demonstrate that the definition of O is equivalent
with the statement that x′ = x + ki for ki ∈ K if and only if for ki ∈ K there
exists some permutation σi over {0, . . . , D − 1} it holds O(x′) = σiO(x).
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Let us consider a small example K = {0n, k1, k2, k1 +k2} ≤ Z
n
2 for p = 2 and

D = 4, where k1 	= k2 ∈ Z
n
2 \ {0n}. The oracle sequence is defined as

O(x) = (O0(x), O0(x + k1), O0(x + k2), O0(x + k1 + k2))
= (O(0,0)(x), O(0,1)(x), O(1,0)(x), O(1,1)(x))

with some special indexing of the oracles. Then, we can see that

O(x + k1) = (O0(x + k1), O0(x), O0(x + k1 + k2), O0(x + k2))
= (O(0,0)+(0,1)(x), O(0,1)+(0,1)(x), O(1,0)+(0,1)(x), O(1,1)+(0,1)(x))
= (O(0,1)(x), O(0,0)(x), O(1,1)(x), O(1,0)(x)).

Similarly, we have

O(x + k2) = (O(1,0)(x), O(1,1)(x), O(0,0)(x), O(0,1)(x))
O(x + k1 + k2) = (O(1,1)(x), O(1,0)(x), O(0,1)(x), O(0,0)(x)).

Hence, every k ∈ K corresponds to some permutation over the order of the
oracles.

From the above characterization, we develop a variant of the argument of
Koiran et al. based on the polynomial method with the analogous property of
the oracle sequence that O(x + ki) = σiO(x) instead of the one of Simon’s
problem that O(x+k) = O(x). As is obvious, the analogous property is different
from that of Simon’s problem, and hence, we need to fill this gap with other
technical tricks in our proof.

3 Preliminaries

Before describing the main result, we briefly discuss the formal treatment of
quantum query algorithms.

In the context of quantum query complexity, we usually assume the following
framework for quantum query algorithms. A quantum algorithm AO with a given
oracle O has quantum memory of three registers |x〉|y〉|z〉, where the first one is
the query register which stores a query to O, the second one is the answer register
which stores an answer from O, and the third one is the working register which
stores all the other than the query and answer registers. Let UO be the oracle
gate of O : X → Y that acts on the query and answer registers: UO|x〉|y〉 =
|x〉|O(x) ⊕ y〉 for every x ∈ X and every y ∈ Y . A starts with the initial state
|0〉|0〉|0〉, and applies an arbitrary unitary operator to all the three registers and
then applies UO to the two registers alternatively. Then, the AO’s final state is
provided as |ψT 〉 = UT (UO ⊗ I)UT−1 · · · U1(UO ⊗ I)U0|0〉|0〉|0〉.

The AO’s output can be obtained by measuring a part of the final state in
the computational basis. Note that this formulation allows A to make adaptive
queries. In other words, A can make a query that depends on the answers to the
previous queries.
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In this paper, we need to deal with multiple oracles such as π and EM .
We formulate the quantum query model with multiple oracles O0, O1, . . . , ON−1

by the model with a single oracle O : {0, 1, . . . , N − 1} × X → Y defined as
O(i, x) := Oi(x). In the framework for quantum query algorithms, this oracle
can be implemented as UO|i, x〉|y〉|z〉 = |i, x〉|Oi(x) ⊕ y〉|z〉 by extending the
query register.

As described in Sect. 2, we also consider a special query model referred to
as the synchronized query model. A quantum query algorithm A receives N
answers O0(x), . . . , ON−1(x) simultaneously on a single query x at its oracle call
in the synchronized query model. Formally, the oracle call can be implemented
as UO|x〉|y0, . . . , yN−1〉 = |x〉|O0(x) ⊕ y0, . . . , ON−1(x) ⊕ yN−1〉. Similarly to the
standard query model, A applies an arbitrary unitary operator to the registers,
and then, the oracle operator UO, with the all-zero initial state. We count the
number of queries as the number of UO used in the algorithm. We also regard the
oracle O as a function O : X → Y N by setting O(x) := (O0(x), . . . , ON−1(x))
in this model.

As mentioned in Sect. 1, any quantum algorithm in the standard query model
can be converted to the one in the synchronized query model from the following
proposition. The proof is easily done by a standard reduction.

Proposition 1. Let A be any quantum query algorithm with T queries in the
standard query model. Then, there exists A′ with 2T queries in the synchronized
query model such that A′’s output distribution is identical with A’s one.

From Proposition 1, if we obtain a query lower bound of T in the synchronized
query model, we also obtain a query lower bound of T/2 in the standard query
model. Thus, we focus on the synchronized query model in the remaining part
of this paper.

We next discuss our target problem to prove the quantum query lower bounds
for the key recovery of the EM cipher. As done in [11], we work on a decisional
version of attacks against the EM cipher. In the key recovery problem for the
EM cipher, we need to deal with multiple oracles such as π and EM , unlike
the GDS problem. We are given two oracles O0 := π and O1 := EM , where
O0 : Zn

2 → Z
n
2 is a public permutation and O1(x) = π(x ⊕ k1) ⊕ k2 for secret

keys k1, k2 ∈ Z
n
2 . Then, the task is to recover k1, k2 via queries to O0 and O1.

We focus on a special case k2 = 0n of the key recovery problem since a lower
bound for this special case implies that for the general case.

To apply the polynomial method similarly to [11], we consider a generalized
version of the key recovery problem. One of the main technical contributions is a
formalization of the generalized version, named generalized decisional inner-key
only EM cipher (GDIKEM) problem, that is suitable for proving query lower
bounds.

Note that query lower bounds of the key recovery problem in the standard
query model can be obtained from the GDIKEM problem in the query synchro-
nized model by Proposition 1. Therefore, we can suppose that a quantum query
algorithm is provided an oracle sequence O(x) = (O0(x), . . . , ON−1(x)) in the
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definition of the GDIKEM problem rather than a set of oracles O0, . . . , ON−1

separately.
Before the definition of the GDIKEM problem, we consider a special index

system I = {(i0, . . . , id−1) : i0, . . . , id−1 ∈ Zp} for the oracle sequences O. Let
K be any subgroup of Z

n
p of order D = pd. We fix the lexicographic first set

{gK
0 , . . . , gK

d−1} of generators for K. Then, any element ki ∈ K can be associated
with i ∈ I to satisfy ki :=

∑d−1
j=0 ijg

K
j . Note that ki + ki′ = ki+i′ for ki, ki′ ∈ K.

For simplification, let 0 denote 0d. We sometimes identify I with {0, 1, . . . ,D−1}
by the lexicographical order.

To formulate the GDIKEM problem, we define a set of oracle sequences of
length D as O(x) = (Oi(x))i∈I , where Oi : Zn

p → Z
n
p is a permutation. Let

FD :=
{

O : ∃K ≤ Z
n
p (|K| = D),∀x ∈ Z

n
p ,∀i ∈ I,Oi(x) = O0(x + ki)

}

,

where D = pd for some d. For O ∈ FD, we say that O hides a subgroup K.
Note that F2 is a set of the oracles O(x) = (O0(x), O1(x)) = (O0(x +

0n), O0(x + k1)) for a subgroup K = {0n, k1} in the case when D = p = 2,
which corresponds to instances of the EM cipher only with an inner key k1 and
public random permutation O0.

From the following reason, we can see that every O ∈ FD hides the unique
subgroup K of order D. Assume that O hides two distinct subgroups K and
K ′ of order D. For k′ ∈ K ′ \ K, there exists some index i Oi(x) = O0(x + k′).
Then, some k ∈ K is associated with the index i, and thus, Oi(x) = O0(x + k).
Hence, O0(x + k′) = O0(x + k). However, since x + k 	= x + k′, O0 cannot be
a permutation. This is a contradiction. Therefore, a subgroup hidden by O is
unique.

By analogy with the GDS problem, it would be natural to define the distin-
guishing task between oracle sequences from Fp and F1. However, these oracle
sequences from Fp and F1 are of different output lengths. To align the lengths,
we pad redundant oracles to them. We define a set F̂D,N of oracle sequences
of length N Ô = (O0, . . . , ON−1) such that (O0, . . . , OD−1) ∈ FD and Oi is an
arbitrary permutation over Z

n
p for i ≥ D.

Now, we define the GDIKEM problem as follows.

GDIKEM Problem
Input: an oracle Ô that satisfies (i) Ô ∈ F̂D,N or (ii) Ô ∈ F̂1,N .
Output: “accept” if (i) or “reject” if (ii).

F1 contains all the permutations over Z
n
p , and hence, F̂1,N is the set of all

the possible sequences permutations over Z
n
p of length N . On the other hand,

F2 contains pairs of the permutations (O0(x), O0(x + k1)) for some subgroup
K = {0n, k1} of order 2 in the case when D = p = 2. Therefore, F̂1,N and
F̂2,N correspond to the sets of accepting and rejecting instances of a decisional
version (with redundant N −2 padded oracles) of the attack against EM cipher,
respectively.
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In this paper, we show that every quantum algorithm A requires Ω(n) queries
if AÔ accepts for a randomly chosen oracle Ô in the case (i) with at most ε and
for a randomly chosen oracle in the case (ii) with least 1 − ε, where ε is a fixed
constant. If there exists a key-recovery quantum algorithm for permutations
O0(x) and O1(x) = O0(x+k1) with some k1 	= 0n, it also works for the GDIKEM
problem. Thus, query lower bounds of the GDIKEM problem imply those of the
key recovery.

4 Proof Sketch of Quantum Query Lower Bounds

We briefly sketch the proof of quantum query lower bounds for key recovery
attacks against the EM cipher in this section. Most of technical details are omit-
ted due to space limitations. See the full version to be published for the omitted
details.

As used in the previous result of Koiran et al. [11], we characterize the accep-
tance probability of any quantum algorithm for the oracle O from a set of par-
tial functions whose domain size by the number of queries using the polynomial
method [2].

We say f extends s, which is also denoted by f ⊇ s, if s(x) = f(x) for
every x ∈ Dom(s). For any function f : X → Y N and any partial function
s : X → Y N , we define

Is(f) :=

{
1 if f extends s;
0 otherwise.

=
∏

x∈Dom(s),
s(x)=ȳ

Δx,ȳ(f),

where Δx,ȳ(f) = 1 if f(x) = ȳ and Δx,ȳ(f) = 0 otherwise.
Similarly to [11], we can prove the following characterization (Theorem 1) of

the acceptance probability with respect to Is(f) even in the synchronized query
model. The proof follows from the same argument as the one of the standard
polynomial method. (We omit its proof.)

Theorem 1. Let A be any quantum algorithm with T queries in the synchro-
nized query model. Then, there exists a set S of partial functions s : X → Y N

such that A accepts f with probability P (f) :=
∑

s∈S csIs(f) for some real num-
bers cs, where |Dom(s)| ≤ 2T .

As stated in Sect. 1, we focus on the degree of a polynomial that represents
accepting probability of a quantum algorithm to prove the query lower bounds
by the polynomial method.

In Sect. 3, we defined the GDIKEM problem to naturally fit some generalized
decisional version of the attack against the EM cipher. From technical reasons, we
focus on another equivalent formulation of the oracle set shown in the following
lemma. (We omit its proof.)
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Lemma 1. Suppose that O hides a subgroup K. Then, we have

FD =
{

O : ∃K ≤ Z
n
p (|K| = D)

∀i ∈ I,∀x,∀x′ ∈ Z
n
p , x′ = x + ki (ki ∈ K) ↔ O(x′) = σiO(x)

}

.

From technical reasons, we define a subset F ∗
D := FD ∩ {O : O0 ∈ ΠK} of

the oracles. The set ΠK of permutations is defined as follows. Let K be the
subgroup hidden by O. We consider the coset decomposition of Zn

p for K: Zn
p =

∪i<N/D{ci +K} for some fixed representatives, where c0 := 0n and N := |Zn
p | =

pn. To construct ΠK , for every sequence (a0, . . . , a(N/D)−1) of distinct N/D ele-
ments, we put a permutation π into ΠK such that π(c0) = a0, . . . , π(c(N/D)−1) =
a(N/D)−1 and the remaining values π(x) for x /∈ c0, . . . , c(N/D)−1 are deter-
mined by the lexicographically first sequence of N − (N/D) elements exclud-
ing a0, . . . , a(N/D)−1 from Z

n
p . Therefore, any permutation in ΠK is determined

uniquely by specifying the values π(c0), . . . , π(c(N/D)−1), and thus, |ΠK | =
pn(pn − 1) · · · (pn − (pn−d − 1)). We also define its padded version F̂ ∗

D,N by
the same manner as F̂D,N .

We now provide a formal statement of our main theorem.

Theorem 2. Let p be any prime, and let ε be any constant in (0, 1/2). Suppose
that A is any quantum algorithm with adaptive T = T (n) quantum queries to a
given oracle Ô : Zn

p → (Zn
p )N , where Ô is sampled uniformly from (i) F̂ ∗

p,N or

(ii) F̂ ∗
1,N for any fixed N ≥ p. If AÔ accepts with at least 1 − ε in the case (i)

and with at most ε in the case (ii), it holds that T = Ω(n).

Immediately from Proposition 1 and Theorem 2, we obtain a quantum query
lower bound of Ω(n) to recover secret keys in the EM cipher with constant
success probability in the standard query model.

Proof of Theorem 2. We analyze the accepting probability that AÔ accepts
for an oracle Ô ∈ F̂ ∗

D,N . From Theorem 1, the accepting probability is

P (Ô) =
∑

Ô∈F̂ ∗
D,N

∑

ŝ∈Ŝ

cŝIŝ(Ô) =
∑

Ô∈F̂ ∗
D,N

∑

ŝ∈Ŝ

cŝ

∏

x∈DomŜ,ȳ=ŝ(x)

Δx,ȳ(Ô)

for some set Ŝ of partial functions. �
We convert this multivariate polynomial P (Ô) in {Δx,ȳ(Ô)}x,ȳ into another

univariate polynomial Q(D) in D by averaging the redundant oracles, namely,

Q(D) :=
1

|F̂ ∗
D,N |

∑

Ô∈F̂ ∗
D,N

P (Ô).

Recall that Ô is padded with N − D redundant oracles to align the length of
the oracle sequences. From the following lemma (Lemma 2), we can ignore such
redundant oracles for the degree analysis of Q(D). (We omit its proof.)
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Lemma 2. There exists a set of partial functions S such that for every O ∈ FD

we have
Q(D) =

1
|F ∗

D|
∑

O∈F ∗
D

∑

s∈S

c′
sIs(O)

The following lemma shows deg(Q(D)) is upper-bounded by the domain size
of partial functions s.

Lemma 3. Let A be any quantum algorithm with T queries in the synchronized
query model. Then, we have deg(Q(D)) ≤ maxs∈S |Dom(s)|.

By combining Theorem 1 and Lemma 3, the lower bound of T can be reduced
to that of the degree of Q(D). Koiran et al. provided the degree analysis in [11],
which we apply in our proof.

Theorem 3 (Koiran et al. [11]). Let c > 0 and ξ > 1 be constants and let P
be a real polynomial with following properties: (i) |P (ξi)| ≤ 1, for any integer
0 ≤ i ≤ n, and (ii) |dP (x0)/dx| ≥ c, for some real number 1 ≤ x0 ≤ ξ. Then

deg(P ) ≥ min
{

n/2,
(
log2

(
ξn+3c

) − 1
)
/

(

log2

(
ξ3

ξ − 1

)

+ 1
)}

.

Let A be any quantum algorithm solving GDIKEM problem for |K| = p with
bounded error probability ε and T queries in the synchronized query model. AO

rejects if |K| = 1 holds in GDIKEM problem, and AO accepts if |K| = p. Then,
0 ≤ |Q(pi)| ≤ 1 (0 ≤ i ≤ n) and Q(p) ≥ 1 − ε (k ≤ n), Q(1) ≤ ε holds
from the property of A. Therefore, for the derivative of the polynomial Q, Q
satisfies |dQ(x0)/dD| ≥ 1−2ε

p−1 for some x0 (1 ≤ x0 ≤ p) and Q(pi) ∈ [0, 1] for any
i ∈ {0, ..., n}. By applying Theorem 3 to the polynomial P = 2Q − 1, we obtain
the following inequality

deg(Q) ≥ min

{
n/2,

(
log2

(
pn+3

p − 1
(2 − 4ε)

)
− 1

)
/

(
log2

(
p3

p − 1

)
+ 1

)}
= Ω(n).

Therefore, the remaining task for the proof of the lower bound is to show
Lemma 3.

Proof of Lemma 3. From Lemma 2, we have

Q(D) =
1

|F ∗
D|

∑

O∈F ∗
D

∑

s∈S

c′
sIs(O) =

∑

s∈S

c′
sQs(O),

where Qs(D) :=
1

|F ∗
D|

∑

O∈F ∗
D

Is(O) = Pr
O∈F ∗

D

[ O ⊇ s ] .

It suffices to show that deg(Qs(D)) ≤ |Dom(s)| for every s ∈ S. �
We can assume that the identity 0n is in Dom(s) for every partial function s

by modifying a given algorithm A as follows. At the beginning, A makes the query
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0n with the initial state |0n〉|(0n)D〉|0m〉, stores O(0n) in the answer register,
and swaps the answer register with a part of the working register. Afterwards,
A applies the original operations to the zero-cleared registers except for the part
that stores O(0n). Then, every s ∈ S contains 0n in its domain, and the modified
algorithm keeps the original accepting probability and has the number T + 1 of
queries if the original is T . Therefore, we can obtain a lower bound of T from
the modified algorithm.

Let
Ai := {ai,j : ∃� ∈ I, s(ai,j) = σ�s(ai,1)}

and

Dom(s) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1,1, ..., a1,v1 ∈ A1

a2,1, ..., a2,v2 ∈ A2

...
aw,1, ..., ak,vw ∈ Aw

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

where a1,1 := 0n.
By Lemma 1, we observe that x′ = x + k� (k� ∈ K) ↔ O(x′) = σiO(x) for

every i ∈ I and every O ∈ F ∗
D that hides K. Since O(ai,j) = σ�O(ai,1) ↔ ai,j =

ai,1+k� ↔ ai,j −ai,1 = 0n+k� ↔ O(ai,j −ai,1) = σ�O(0n), O(ai,j) = σ�O(ai,1) if
and only if O(ai,j −ai,1) = σ�O(0n) for every i, j, every � ∈ I and every O ∈ F ∗

D.
Then, we modify s into another partial function s̃ by modifying s as follows.

Let s(ai,j) = σ�s(ai,1) for some � ∈ I. We set s̃(a) := s(a) for every a ∈
Dom(s)\{ai,j}. Since 0n ∈ Dom(s), we can also set s̃(ai,j −ai,1) := σ�s(0n). Note
that Dom(s̃) = (Dom(s)\{ai,j})∪{ai,j −ai,1}, and hence, |Dom(s)| = |Dom(s′)|.
From the modification, O extends s if and only if O extends s̃, and thus, we can
analyze the probability that O extends s̃ instead of s.

From the above modification, we can suppose that Dom(s) = A1∪A2∪· · ·∪Aw

has the following form without loss of generality.

Dom(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1,1, ..., a1,v1 ∈ A1,
a2,1 ∈ A2,

...
aw,1 ∈ Aw

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

where a1,1 := 0n.
Let K ′ := 〈A1〉 and let D′ := |K ′| = pd′

for some d′. For O ∈ F ∗
D that hides

K, let

E(O) ≡
[ v1∧

i=1

∃�i ∈ I : O(a1,i) = σ�iO(0n)
]

.

We define

QR
s (D) = Pr

O∈F ∗
D

[ E(O) ] , QC
s (D) = Pr

O∈F ∗
D

[
O ⊇ s

∣
∣
∣ E(O)

]
.
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Note that Qs(D) = QR
s (D) · QC

s (D) since E(O) holds if O ⊇ s.
Since deg(Qs(D)) = deg(QR

s (D)) + deg(QC
s (D)), it suffices to estimate

deg(QR
s (D)) and deg(QC

s (D)), which are given in Lemma 4. (We omit its proof.)

Lemma 4. We have deg(QR
s (D)) ≤ v1 − 1 and deg(QC

s (D)) ≤ w.

5 Concluding Remarks

The oracle distribution (that is uniform over F ∗
D) used for the quantum query

lower bounds is artificially biased because of the condition “O ∈ ΠK” in the
definition of F ∗

D. This condition is crucial in the proof of Lemma 4 to show
deg(QC

s (D)) ≤ w, although we omitted the technical details in this conference
version due to space limitations. It is natural to use the uniform distribution
over FD to prove the average-case lower bounds, but the polynomial method
fails because QC

s (D) could be then exponential rather than polynomial. (See the
full version for more details.) Hence, we need new proof techniques for quantum
query lower bounds in the natural average case.

The obvious open problem is to prove the quantum security of classically
secure variants of the EM cipher such as Iterated EM cipher [5] and SoEM [6], but
there seem to be no approaches to them so far. The algebraic characterization of
the oracle used in this paper could help to establish security proofs for quantum
adversaries.
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Research (A) Nos. 21H04879, 23H00468, (C) No. 21K11887, JSPS Grant-in-Aid for
Challenging Research (Pioneering) No. 23K17455, and MEXT Quantum Leap Flagship
Program (MEXT Q-LEAP) Grant Number JPMXS0120319794.
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Abstract. We propose a general algorithm of constructing an extended
formulation for any given set of linear constraints with integer coeffi-
cients. Our algorithm consists of two phases: first construct a decision
diagram (V,E) that somehow represents a given m×n constraint matrix,
and then build an equivalent set of |E| linear constraints over n + |V |
variables. That is, the size of the resultant extended formulation depends
not explicitly on the number m of the original constraints, but on its
decision diagram representation. Therefore, we may significantly reduce
the computation time and space for optimization problems with integer
constraint matrices by solving them under the extended formulations,
especially when we obtain concise decision diagram representations for
the matrices. We demonstrate the effectiveness of our extended formu-
lations for mixed integer programming and the 1-norm regularized soft
margin optimization tasks over synthetic and real datasets.

Eligible for best student paper.

Keywords: Extend formulation · Decision diagrams · Mixed integer
programs

1 Introduction

Large-scale optimization tasks appear in many areas such as machine learning,
operations research, and engineering. Time/memory-efficient optimization tech-
niques are more in demand than ever. Various approaches have been proposed to
efficiently solve optimization problems over huge data, e.g., stochastic gradient
descent methods (e.g., [8]) and concurrent computing techniques using GPUs
(e.g., [26]). Among them, we focus on the “computation on compressed data”
approach, where we first compress the given data somehow and then employ an
algorithm that works directly on the compressed data (i.e., without decompress-
ing the data) to complete the task, in an attempt to reduce computation time
and/or space. Algorithms on compressed data are mainly studied in string pro-
cessing (e.g., [12,13,18,19,28]), enumeration of combinatorial objects (e.g., [21]),
and combinatorial optimization (e.g., [2]). In particular, in the work on combina-
torial optimization, they compress the set of feasible solutions that satisfy given
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constraints into a decision diagram so that minimizing a linear objective can
be done by finding the shortest path in the decision diagram. Although we can
find the optimal solution very efficiently when the size of the decision diagram is
small, the method can only be applied to specific types of discrete optimization
problems where the feasible solution set is finite, and the objective function is
linear.

Whereas, we mainly consider a more general form of discrete/continuous
optimization problems that include linear constraints with integer coefficients:

min
x∈X⊂Rn

f(x) s.t. Ax ≥ b (1)

for some A ∈ Cm×n and b ∈ Cm, where X denotes the constraints other than
Ax ≥ b, and C is a finite subset of integers. This class of problems includes LP,
QP, SDP, and MIP with linear constraints of integer coefficients. So our target
problem is fairly general. Without loss of generality, we assume m > n, and we
are particularly interested in the case where m is huge.

In this paper, we propose a pre-processing method that “rewrites” integer-
valued linear constraints with equivalent but more concise ones. More precisely,
we propose a general algorithm that, when given an integer-valued constraint
matrix (A, b) ∈ Cm×n × Cm of an optimization problem (1), produces a matrix
(A′, b′) ∈ Cm′×(n+n′) × Cm′

that represents its extended formulation, that is, it
holds that

∃s ∈ R
n′

,A′
[
x
s

]
≥ b′ ⇔ Ax ≥ b

for some n′ and m′, with the hope that the size of (A′, b′) is much smaller than
that of (A, b) even at the cost of adding n′ extra variables. Using the extended
formulation, we obtain an equivalent optimization problem to (1):

min
x∈X⊂Rn,s∈Rn′

f(x) s.t. A′
[
x
s

]
≥ b′. (2)

Then, we can apply any existing generic solvers, e.g., MIP/QP/LP solvers if
f is linear or quadratic, to (2), combined with our pre-processing method, which
may significantly reduce the computation time/space than applying them to the
original problem (1).

To obtain a matrix (A′, b′), we first construct a variant of a decision dia-
gram called a Non-Deterministic Zero-Suppressed Decision Diagram (NZDD,
for short) [11] that somehow represents the matrix (A, b). Observing that the
constraint Az ≥ b can be restated in terms of the NZDD constructed as “every
path length is lower bounded by 0” for an appropriate edge weighting, we estab-
lish the extended formulation (A′, b′) ∈ Cm′×(n+n′) × Cm′

with m′ = |E| and
n′ = |V |, where V and E are the sets of vertices and edges of the NZDD,
respectively. One of the advantages of the result is that the size of the resulting
optimization problem depends only on the size of the NZDD and the number n
of variables, but not on the number m of the constraints in the original problem.
Therefore, if the matrix (A, b) is well compressed into a small NZDD, then we
obtain an equivalent but concise optimization problem (2).
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To clarify the differences between our work and previous work regarding
optimization using decision diagrams, we summarize the characteristics of both
results in Table 1. Notable differences are that (i) ours can treat optimization
problems with any types of variables (discrete, or real), any types of objectives
(including linear ones) but with integer coefficients on linear constraints, and
(ii) ours uses decision diagrams for representing linear constraints while previous
work uses them for representing feasible solutions of particular classes of prob-
lems. So, for particular classes of discrete optimization problems, the previous
approach would work better with specific construction methods for decision dia-
grams. On the other hand, ours is suitable for continuous optimization problems
or/and discrete optimization problems for which efficient construction methods
for decision diagrams representing feasible solutions are not known. See the later
section for more detailed descriptions of related work.

Table 1. Characteristics of previous work on optimization with decision diagrams
(DDs) and ours.

coeff. of lin.
consts.

variables objectives DDs

Previous work ours any type
binary/integer

binary/integer
any type

linear any
type

feasible solutions
lin. consts.

Then, to realize succinct extended formulations, we propose practical heuris-
tics for constructing NZDDs, which is our third contribution. Since it is not
known to construct an NZDD of small size, we first construct a ZDD of mini-
mal size, where the ZDD is a restricted form of the NZDD representation. To
this end, we use a ZDD compression software called zcomp [30]. Then, we give
rewriting rules for NZDDs that reduce both the numbers of vertices and edges,
and apply them to obtain NZDDs of smaller size of V and E. Although the rules
may increase the size of NZDDs (i.e., the total number of edge labels), the rules
seem to work effectively since reducing |V | and |E| is more important for our
purpose.

Experimental results on synthetic and real data sets show that our algorithms
improve time/space efficiency significantly, especially when (i) m � n, and (ii)
the set C of integer coefficients is small, e.g., binary, where the datasets tend to
have concise NZDD representations.

2 Related Work

Various computational tasks over compressed strings or texts are investigated
in algorithms and data mining literature, including, e.g., pattern matching over
strings and computing edit distances or q-grams [12,13,18,19,28]. The common
assumption is that strings are compressed using the straight-line program, which
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is a class of context-free grammars generating only one string (e.g., LZ77 and
+LZ78). As notable applications of string compression techniques to data mining
and machine learning, Nishino et al. [25] and Tabei et al. [29] reduce the space
complexity of matrix-based computations. So far, however, string compression-
based approaches do not seem to be useful for representing linear constraints.

Decision diagrams are used in the enumeration of combinatorial objects, dis-
crete optimization and so on. In short, a decision diagram is a directed acyclic
graph with a root and a leaf, representing a subset family of some finite ground
set Σ or, equivalently, a boolean function. Each root-to-leaf path represents a
set in the set family. The Binary Decision Diagram (BDD) [4,16] and its variant,
the Zero-Suppressed Binary Decision Diagram (ZDD) [16,20], are popular in the
literature. These support various set operations (such as intersection and union)
in efficient ways. Thanks to the DAG structure, linear optimization problems
over combinatorial sets X ⊂ {0, 1}n can be reduced to shortest/longest path
problems over the diagrams representing X. This reduction is used to solve the
exact optimization of NP-hard combinatorial problems (see, e.g., [2,3,5,14,24])
and enumeration tasks [21–23]. Among work on decision diagrams, the work of
Fujita et al. [11] would be closest to ours. They propose a variant of ZDD called
the Non-deterministic ZDD (NZDD) to represent labeled instances and show
how to emulate the boosting algorithm AdaBoost∗ [27], a variant of AdaBoost
[10] that maximizes the margin, over NZDDs. We follow their NZDD-based rep-
resentation of the data. But our work is different from Fujita et al. in that, they
propose specific algorithms running over NZDDs, whereas our work presents
extended formulations based on NZDDs, which could be used with various algo-
rithms.

The notion of extended formulation arises in combinatorial optimization (e.g.,
[7,32]). The idea is to re-formulate a combinatorial optimization with an equiv-
alent different form, so that the size of the problem is reduced. For example,
a typical NP-hard combinatorial optimization problem has an integer program-
ming formulation of exponential size. Then a good extended formulation should
have a smaller size than the exponential. Typical work on extended formulation
focuses on some characterization of the problem to obtain succinct formula-
tions (see, e.g., [9]). Our work is different from these in that we focus on the
redundancy of the data and try to obtain succinct extended formulations for
optimization problems described with data.

3 Preliminaries

The non-deterministic Zero-suppressed Decision Diagram (NZDD) [11] is a vari-
ant of the Zero-suppressed Decision Diagram(ZDD) [16,20], representing subsets
of some finite ground set Σ. More formally, NZDD is defined as follows.

Definition 1 (NZDD). An NZDD G is a tuple G = (V,E,Σ,Φ), where (V,E)
is a directed acyclic graph (V and E are the sets of nodes and edges, respectively)
with a single root with no-incoming edges and a leaf with no outgoing edges, Σ
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Fig. 1. An NZDD representing {{a, b, c}, {b}, {b, c, d}, {c, d}}.

is the ground set, and Φ : E → 2Σ is a function assigning each edge e a subset
Φ(e) of Σ. More precisely, we allow (V,E) to be a multigraph, i.e., two nodes
can be connected with more than one edge.

Furthermore, an NZDD G satisfies the following additional conditions. Let
PG be the set of paths in G starting from the root to the leaf, where each path
P ∈ PG is represented as a subset of E, and for any path P ∈ PG, we abuse the
notation and let Φ(P ) = ∪e∈P Φ(e).

1. For any path P ∈ PG and any edges e, e′ ∈ P , Φ(e) ∩ Φ(e′) = ∅. That is, for
any path P , an element a ∈ Σ appears at most once in P .

2. For any paths P, P ′ ∈ PG, Φ(P ) �= Φ(P ′). Thus, each path P represents a
different subset of Σ.

Then, an NZDD G naturally corresponds to a subset family of Σ. Formally, let
L(G) = {Φ(P ) | P ∈ PG}. Figure 1 illustrates an NZDD representing a subset
family {{a, b, c}, {b}, {b, c, d}, {c, d}}.

A ZDD [16,20] can be viewed as a special form of NZDD G = (V,E,Σ,Φ)
satisfying the following properties: (i) For each edge e ∈ E, Φ(e) = {a} for some
a ∈ Σ or Φ(e) = ∅. (ii) Each internal node has at most two outgoing edges. If
there are two edges, one is labeled with {a} for some a ∈ Σ and the other is
labeled with ∅. (iii) There is a total order over Σ such that, for any path P ∈ PG

and for any e, e′ ∈ P labeled with singletons {a} and {a′} respectively, if e is an
ancestor of e′, a precedes a′ in the order.

We believe that constructing a minimal NZDD for a given subset family is
NP-hard since closely related problems are NP-hard. For example, constructing
a minimal ZDD (over all orderings of Σ) is known to be NP-hard [16], and
construction of a minimal NFA which is equivalent to a given DFA is P-space
hard [15]. On the other hand, there is a practical construction algorithm of ZDDs
given a subset family and a fixed order over Σ using multi-key quicksort [30].

4 NZDDs for Linear Constraints with Binary Coefficients

In this section, we show an NZDD representation for linear constraints in
problem (1) when linear constraints have {0, 1}-valued coefficients, that is,
C = {0, 1}. We will discuss its extensions to integer coefficients in the later
section. Let ai ∈ {0, 1}n be the vector corresponding to the i-th row of the
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matrix A ∈ {0, 1}m×n (for i ∈ [m]). For x ∈ {0, 1}n, let idx(x) = {j ∈ [n] |
xj �= 0}, i.e., the set of indices of nonzero components of x. Then, we define
I = {idx(ci) | ci = (ai, bi), i ∈ [m]}. Note that I is a subset family of 2[n+1].
Then we assume that we have some NZDD G = (V,E, [n + 1], Φ) representing
I, that is, L(G) = I. We will later show how to construct NZDDs.

The following theorem shows the equivalence between the original problem
(1) and a problem described with the NZDD G.

Theorem 1. Let G = (V,E, [n + 1], Φ) be an NZDD such that L(G) = I. Then
the following optimization problem is equivalent to problem (1):

min
x∈X⊂Rn,s∈R|V |

f(x) (3)

s.t. se.u +
∑

j∈Φ(e)

x′
j ≥ se.v, ∀e ∈ E,

sroot = 0, sleaf = 0,

x′ = (x,−1),

where e.u and e.v are nodes that the edge e is directed from and to, respectively.

Before going through the proof, let us explain some intuition on problem (3).
Intuitively, each linear constraint in (1) is encoded as a path from the root to the
leaf in the NZDD G, and a new variable sv for each node v represents a lower
bound of the length of the shortest path from the root to v. The inequalities in
(3) reflect the structure of the standard dynamic programming of Dijkstra, so
that all inequalities are satisfied if and only if the length of all paths is larger
than zero. In Fig. 2, we show an illustration of the extended formulation.

Proof. Let x� and (x̂′, ŝ) be the optimal solutions of problems (1) and (3),
respectively. It suffices to show that each optimal solution can construct a feasible
solution of the other problem.

Let x̂ be the vector consisting of the first n components of x̂′. For each
constraint a�

i x ≥ bi (i ∈ [m]) in problem (1), there exists the corresponding
path Pi ∈ PG. By repeatedly applying the first constraint in (3 along the path
Pi, we have

∑
e∈Pi

∑
j∈Φ(e) ẑ′

j ≥ ŝleaf = 0. Further, since Φ(Pi) represents the set
of indices of nonzero components of ci,

∑
e∈Pi

∑
j∈Φ(e) ẑ′

j = c�
i x̂

′ = a�
i x̂ − bi.

By combining these inequalities, we have a�
i x̂− bi ≥ 0. This implies that x̂ is a

feasible solution of (1) and thus f(x�) ≤ f(x̂).
Let x′

� = (x�,−1). Assuming a topological order on V (from the root to the
leaf), we define s�,root = s�,leaf = 0 and s�,v = mine∈E,e.v=v s�,e.u +

∑
j∈Φ(e) z′

�,j

for each v ∈ V \{root, leaf}. Then, we have, for each e ∈ E s.t. e.v �= leaf, s�,e.v ≤
s�,e.u +

∑
j∈Φ(e) z′

�,j by definition. Now, mine∈E,e.v=leaf s�,e.u +
∑

j∈Φ(e) z′
�,j is

achieved by a path P ∈ PG corresponding to arg mini∈[m] a
�
i x� − bi, which is

≥ 0 since x� is feasible w.r.t. (1). Therefore, s�,e.v ≤ s�,e.u +
∑

j∈Φ(e) z′
�,j for

e ∈ E s.t. e.v = leaf as well. Thus, (x′
�, s�) is a feasible solution of (3) and

f(x̂) ≤ f(x�).



Extended Formulations via Decision Diagrams 23

Fig. 2. An illustration of the extended formulation. Left: Original constraints as in (1).
Middle: A NZDD representation of the left constraints. Right: The matrix form (3) of
the middle diagram without constant terms. This example reduces the 13 constraints
to 9 constraints by adding 2 variables.

Given the NZDD G = (V,E), problem (3) contains n + |V | − 2 variables
and |E| linear constraints, where |V | − 2 variables are real. The most naive
construction, where the resulting NZDD contains two nodes (root and leaf), and
every root-to-leaf path corresponds to a constraint, has the same problem size
as the original one. Thus, the problem size cannot be worse than the original
one. In particular, if problem (1) is LP or IP, then problem (3) is LP, or MIP,
respectively.

5 Extensions to Integer Coefficients

We briefly discuss how to extend our NZDD representation of linear constraints
to the cases where coefficients of linear constraints belong to a finite set C of
integers. There are two ways to do so.

–Binary Encoding of Integers. We assume some encoding of integers in C with
O(log |C|) bits. Then, each bit can be viewed as a binary-valued variable.
Each integer coefficient can be also recovered with its binary representation.
Under this attempt, the resulting extended formulation has O(n log |C|+ |V |)
variables and O(|E|) linear constraints.

–Extending Σ. Another attempt is to extend the domain Σ of an NZDD G =
(V,E,Σ,Φ). The extended domain Σ′ consists of all pairs of integers in C
and elements in Σ. Again, integer coefficients are recovered through the new
domain Σ′. The resulting extended formulation has O(n|C| + |V |) variables
and O(|E|) linear constraints. While the size of the problem is larger than the
binary encoding, its implementation is easy in practice and could be effective
for C of small size.

6 Construction of NZDDs

We propose heuristics for constructing NZDDs given a subset family S ⊆ 2Σ .
We use the zcomp [30,31], developed by Toda, to compress the subset family
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S to a ZDD. The zcomp is designed based on multikey quicksort [1] for sorting
strings. The running time of the zcomp is O(N log2 |S|), where N is an upper
bound of the nodes of the output ZDD and |S| is the sum of cardinalities of sets
in S. Since N ≤ |S|, the running time is almost linear in the input.

A naive application of the zcomp is, however, not very successful in our
experiences. We observe that the zcomp often produces concise ZDDs compared
to inputs. But, concise ZDDs do not always imply concise representations of
linear constraints. More precisely, the output ZDDs of the zcomp often contains
(i) nodes with one incoming edge or (ii) nodes with one outgoing edge. A node
v of these types introduces a corresponding variable sv and linear inequalities.
Specifically, in the case of type (ii), we have sv ≤ ∑

jΦ(e) z′
j + se.u for each

e ∈ E s.t. e.v = v, and for its child node v′ and edge e′ between v and v′, sv′ ≤∑
j∈Φ(e′) z′

j +sv. These inequalities are redundant since we can obtain equivalent
inequalities by concatenating them: sv′ ≤ ∑

j∈Φ(e′) z′
j +

∑
j∈Φ(e) z′

j +se.u for each
e ∈ E s.t. e.v = v, where sv is removed.

Based on the observation above, we propose a simple reduction heuristics
removing nodes of type (i) and (ii). More precisely, given an NZDD G = (V,E),
the heuristics outputs an NZDD G′ = (V ′, E′) such that L(G) = L(G′) and G′

does not contain nodes of type (i) or (ii). The heuristics can be implemented in
O(|V ′| + |E′| +

∑
e∈E′ |Φ(e)|) time by going through nodes of the input NZDD

G in the topological order from the leaf to the root and in the reverse order,
respectively. The details of the heuristics is given in the full paper [17].

7 Experiments

We show preliminary experimental results on synthetic and real large data sets1.
The tasks are, the mixed integer programming, and the 1-norm regularized soft
margin optimization (see the full paper for details). Our experiments are con-
ducted on a server with 2.60 GHz Intel Xeon Gold 6124 CPUs and 314 GB mem-
ory. We use Gurobi optimizer 9.01, a state-of-the-art commercial LP solver. To
obtain NZDD representations of data sets, we apply the procedure described
in the previous section. The details of preprocessing of data sets and NZDD
representations are shown in the full paper.

7.1 Mixed Integer Programming on Synthetic Datasets

First, we apply our extended formulation (1) to mixed integer programming tasks
over synthetic data sets. The problems are defined as the linear optimization with
n variables and m linear constraints of the form Ax ≥ b, where (i) each row of
A has k entries of 1 and others are 0s and nonzero entries are chosen randomly
without repetition (ii) coefficients ai of linear objective

∑n
i=1 aixi is chosen from

1,...,100 randomly, and (iii) first l variables take binary values in {0, 1} and

1 Codes are available at https://bitbucket.org/kohei hatano/codes extended formula
tion nzdd/.

https://bitbucket.org/kohei_hatano/codes_extended_formulation_nzdd/
https://bitbucket.org/kohei_hatano/codes_extended_formulation_nzdd/
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others take real values in [0, 1]. In our experiments, we fix n = 25, k = 10,
l = 12 and m ∈ {4 × 105, 8 × 105..., 20 × 105}. We apply the Gurobi optimizer
directly to the problem denoted as mip and the solver with pre-processing the
problem by our extended formulation (denoted as nzdd mip, respectively. The
results are summarized in Fig. 3. Our method consistently improves computation
time for these datasets. This makes sense since it can be shown that when m =
O(nk) there exists an NZDD of size O(nk) representing the constraint matrix.
In addition, the pre-processing time is within 2 s in all cases.

Fig. 3. The comparison for synthetic datasets of a MIP problem. The horizontal axis
represents the number of constraints of the original problem.

7.2 1-norm Soft Margin Optimization on Real Data Sets

Next, we apply our methods on the task of the 1-norm soft margin optimiza-
tion. This problem is a standard optimization problem in the machine learning
literature, categorized as LP, for finding sparse linear classifiers given labeled
instances. Details of this problem is shown in the full paper. We compare the
following methods using a naive LP solver, (i) previous formulation (denoted as
naive), (ii) our formulation over NZDD (denoted as nzdd naive). Formulations
of both (i) and (ii) is placed in the full paper. We measure its computation
time (CPU time) and maximum memory consumption, respectively, and com-
pare their averages over parameters. Further, we perform 5-fold cross validation
to check the test error rates of our methods on real data sets. In fact, the test
error rates are similar between methods for (i) and (ii). This means our extended
formulation is comparable to the standard one in terms of generalization perfor-
mance. Details of the cross validation is omitted and shown in the full paper.

We compare methods on some real data sets in the libsvm datasets [6] to see
the effectiveness of our approach in practice. Generally, the datasets contain huge
samples (m varies from 3 × 104 to 107) with a relatively small size of features
(n varies from 20 to 105). The features of instances of each dataset is trans-
formed into binary values. Results are summarized in Fig. 4. Note that these
results exclude NZDD construction times since the compression takes around
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1 s, except for the HIGGS dataset (around 13 s). Furthermore, the construction
time of NZDDs can be neglected in the following reason: We often need to try
multiple choices of the hyperparameters (ν in our case) and solve the optimiza-
tion problem for each set of choices. But once we construct an NZDD, we can be
re-use it for different values of hyperparameters without reconstructing NZDDs.

Fig. 4. Comparison of computation times (sec.) for real data sets of the soft margin
optimization problem. The y-axis is plotted in the logarithmic scale.

8 Conclusion

We proposed a generic algorithm of constructing an NZDD-based extended for-
mulation for any given set of linear constraints with integer constraints as well as
specific algorithms for the 1-norm soft margin optimization and practical heuris-
tics for constructing NZDDs. Our algorithms improve time/space efficiency on
artificial and real datasets, especially when the datasets have concise NZDD
representations.
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problems. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds.) DS 2013. LNCS
(LNAI), vol. 8140, pp. 281–293. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40897-7 19

31. Toda, T.: ZCOMP: Fast Compression of Hypergraphs into ZDDs (2015). https://
www.sd.is.uec.ac.jp/toda/code/zcomp.html

32. Yannakakis, M.: Expressing combinatorial optimization problems by Linear Pro-
grams. J. Comput. Syst. Sci. 43(3), 441–466 (1991). https://doi.org/10.1016/0022-
0000(91)90024-Y

https://doi.org/10.1287/IJOC.2015.0667
https://doi.org/10.1287/IJOC.2015.0667
https://doi.org/10.1007/978-3-540-27836-8_5
https://doi.org/10.1007/978-3-540-27836-8_5
https://doi.org/10.1007/978-3-642-40897-7_19
https://doi.org/10.1007/978-3-642-40897-7_19
https://www.sd.is.uec.ac.jp/toda/code/zcomp.html
https://www.sd.is.uec.ac.jp/toda/code/zcomp.html
https://doi.org/10.1016/0022-0000(91)90024-Y
https://doi.org/10.1016/0022-0000(91)90024-Y


Greedy Gray Codes for Dyck Words and Ballot
Sequences

Vincent Vajnovszki1 and Dennis Wong2(B)
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Abstract. We present a simple greedy algorithm for generating Gray codes for
Dyck words and fixed-weight Dyck prefixes. Successive strings in our listings dif-
fer from each other by a transposition, that is, two bit changes. Our Gray codes are
both homogeneous and suffix partitioned. Furthermore, we use our greedy algo-
rithm to produce the first known homogeneous 2-Gray code for ballot sequences,
which are Dyck prefixes of all weights. Our work extends a previous result on
combinations by Williams [Conference proceedings: Workshop on Algorithms
and Data Structures (WADS), LNTCS 8037:525-536, 2013].

Keywords: Dyck word · lattice path · balanced parentheses · ballot sequence ·
homogeneous Gray code · greedy algorithm

1 Introduction

A Dyck word is a binary string with the same number of 1 s and 0 s such that any
prefix contains at least as many 0 s as 1 s. Dyck words are in bijection with balanced
parentheses, with an open bracket represented by a 0 and a close bracket represented
by a 1 [4,7]. For example, all length six balanced parentheses are given by

((())), (()()), (())(), ()(()), ()()().

The Dyck words that correspond to the five balanced parentheses of length six are

000111, 001011, 001101, 010011, 010101.

Since the number of 0 s and 1 s of a Dyck word has to be the same, the length n of Dyck
words has to be an even number. Dyck words can be used to encode lattice paths that
end on their starting level and never pass below it.

A ballot sequence is a binary string of length n such that in any of its prefixes the
number of 0s is greater than or equal to the number of 1s. As an example, the ten ballot
sequences for length five are

00000, 00001, 00010, 00011, 01001, 00100, 00101, 00110, 01000, 01010.
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Such a length n sequence encodes a ballot counting scenario involving two candidates
in which the number of votes collected by the first candidate is always greater than or
equal to those collected by the second candidate throughout the count. Ballot sequences
are also known as Dyck prefixes, which are prefixes of Dyck words. Ballot sequences
and Dyck prefixes can also be used to encode lattice paths that end on the positive region
and never pass below it.

The number of Dyck words is known as the Catalan number, and the number of
ballot sequences is known as the ballot number. The enumeration sequences of Dyck
words and ballot sequences are A000108 and A001405 in the Online Encyclopedia of
Integer Sequences respectively [23]. The enumeration formulae for the number of Dyck
words and the number of ballot sequences [2] of length n are given as follows:

– Catalan number:
1

n
2 + 1

(
n
n
2

)
;

– Ballot number:

(
n

�n
2 �

)
.

Dyck words and ballot sequences are well studied combinatorial objects that have
a wide variety of applications. For example, Dyck words have been used to encode a
wide variety of combinatorial objects including binary trees, balanced parentheses, lat-
tice paths, and stack-sortable permutations [4,7,8,11,14,19,27,31]. Ballot sequences,
on the other hand, have many applications ranging from constructing more sums than
differences (MSTD) sets [33], generating n-node binary trees of different shapes [1,16],
and enumerating random walks with various constraints [3,6,10,12,29]. For more
applications of Dyck words and ballot sequences, see [9,13,20,24].

One of the most important aspects of combinatorial generation is to list the instances
of a combinatorial object so that consecutive instances differ by a specified closeness
condition involving a constant amount of change. Lists of this type are called Gray
codes. This terminology is due to the eponymous binary reflected Gray code (BRGC)
by Frank Gray, which orders the 2n binary strings of length n so that consecutive strings
differ in one bit. For example, when n = 4 the order is

0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010,
0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001.

The BRGC listing is a 1-Gray code in which consecutive strings differ by one symbol
change. In this paper, we are focusing on transposition Gray code, where consecutive
strings differ by swapping the positions of two bits. A transposition Gray code is also a
2-Gray code, where consecutive strings differ by at most two bit changes.

Several algorithms have been proposed to generate Dyck words. Proskurowski and
Ruskey [15] devised a transposition Gray code for Dyck words. Later, efficient algo-
rithms to generate such a listing were presented in [17,28]. Bultena and Ruskey [5],
and later van Baronaigien [26] and Xiang et al. [32], developed algorithms to generate
homogeneous transposition Gray codes for Dyck words. For example, the algorithm by
Bultena and Ruskey generates the 42 Dyck words for n = 10 as follows:
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0101010101, 0011010101, 0010110101, 0100110101, 0001110101, 0001101101,
0100101101, 0010101101, 0011001101, 0101001101, 0100011101, 0010011101,
0001011101, 0000111101, 0000111011, 0001011011, 0010011011, 0100011011,
0101001011, 0011001011, 0010101011, 0100101011, 0001101011, 0001110011,
0100110011, 0010110011, 0011010011, 0101010011, 0101000111, 0011000111,
0010100111, 0100100111, 0001100111, 0001010111, 0010010111, 0100010111,
0000110111, 0000101111, 0001001111, 0010001111, 0100001111, 0000011111.

The Gray code is said to be homogeneous, where the bits between the swapped 0 and
1 are all 0 s. Additionally, the Gray code is also a suffix-partitioned Gray code, where
strings with the same suffix are contiguous. Vajnovszki and Walsh [25] discovered an
even more restrictive Gray code that is two-close, where a 1 exchanges its position with
an adjacent 0 or a 0 that is separated from it by a single 0. In contrast, Ruskey and
Williams [18] provided a shift Gray code for Dyck words where consecutive strings
differ by a prefix shift.

For ballot sequences, the problem of finding a Gray code for ballot sequences was
first studied by Sabri and Vajnovszki [19]. Sabri and Vajnovszki proved that one defini-
tion of the reflected Gray code induces a 3-Gray code for k-ary ballot sequences, which
is a generalization of ballot sequences that involves more than two candidates. Wong
et al. [31] later provided an efficient algorithm to generate a 2-Gray code for ballot
sequences. For example, the algorithm by Wong et al. generates the following cyclic
2-Gray code for ballot sequences for n = 6:

000111, 010011, 000011, 001011, 001001, 000001, 010001, 010101, 000101, 001101,
001100, 000100, 010100, 010000, 000000, 001000, 001010, 000010, 010010, 000110.

Another approach by Wong et al. to obtain a cyclic 2-Gray code for ballot sequences
is by filtering the BRGC [31]. For more information about Gray codes induced by
the BRGC, see [21] and [22]. However, these Gray codes for ballot sequences are not
homogeneous. The greedy algorithm proposed in this paper can be used to generate the
first known homogeneous 2-Gray code for ballot sequences.

2 Gray Codes for Dyck Words and Fixed-Weight Dyck Prefixes

In this section, we present a greedy algorithm to generate transposition Gray codes for
fixed-weight Dyck prefixes and Dyck words.

In [30], Williams proposed a greedy algorithm to generate a transposition Gray code
for combinations. The greedy algorithm by Williams can be summarized as follows:

Greedy Gray code algorithm for k-combinations: Starts with 1k0n−k. Greed-
ily swap the leftmost possible 1 with the leftmost possible 0 before the next 1
and after the previous 1 (if there are any) such that the resulting string has not
appeared before.

For example, the greedy algorithm generates the following 4-combinations for n = 7:
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1111000, 1110100, 1101100, 1011100, 0111100, 0111010, 1011010,
1101010, 1110010, 1100110, 1010110, 0110110, 0101110, 1001110,
0011110, 0011101, 1001101, 0101101, 0110101, 1010101, 1100101,
1110001, 1101001, 1011001, 0111001, 0110011, 1010011, 1100011,
1001011, 0101011, 0011011, 0010111, 1000111, 0100111, 0001111.

We generalize the idea to fixed-weight Dyck prefixes and Dyck words. The weight
of a binary string is the number of 1 s it contains. A fixed-weight Dyck prefix of weight
k is a prefix of a Dyck word with its weight equal to k. Note that when 2k = n, then the
set of fixed-weight Dyck prefixes of weight k is equivalent to the set of Dyck words. The
following simple greedy algorithm generates transposition Gray codes for fixed-weight
Dyck prefixes and Dyck words of length n:

Greedy Gray code algorithm for fixed-weight Dyck prefixes: Starts with
(01)k0n−2k. Greedily swap the leftmost possible 1 with the leftmost possible 0
before the next 1 and after the previous 1 (if there are any) such that the resulting
string is a Dyck prefix and has not appeared before.

Our Gray codes for fixed-weight Dyck prefixes and Dyck words are homogeneous
and suffix-partitioned. Another way to understand the greedy algorithm is to greedily
swap the leftmost possible 1 with the leftmost possible 0 in a homogeneous manner. As
an example, the greedy algorithm generates the following Gray code for Dyck words
for n = 10 (Dyck prefixes for n = 10 and k = 5):

0101010101, 0011010101, 0010110101, 0100110101, 0001110101, 0001101101,
0100101101, 0010101101, 0011001101, 0101001101, 0100011101, 0010011101,
0001011101, 0000111101, 0000111011, 0100011011, 0010011011, 0001011011,
0001101011, 0100101011, 0010101011, 0011001011, 0101001011, 0101010011,
0011010011, 0010110011, 0100110011, 0001110011, 0001100111, 0100100111,
0010100111, 0011000111, 0101000111, 0100010111, 0010010111, 0001010111,
0000110111, 0000101111, 0100001111, 0010001111, 0001001111, 0000011111.

Greedy Gray codes have been studied previously, with Williams [30] reinterpreting
many classic Gray codes for binary strings, permutations, combinations, binary trees,
and set partitions using a simple greedy algorithm. The algorithm presented in this paper
can be considered as a novel addition to the family of greedy algorithms previously
studied by Williams.

All strings considered in this paper are binary. Our algorithm uses a vector represen-
tation S1S2 · · · Sk to represent a binary string with k ones, where each integer Si corre-
sponds to the position of the i-th one of the binary string. For example, the string α =
000110100011001 can be represented by S1, S2, S3, S4, S5, S6 = 4, 5, 7, 11, 12, 15.
We initialize the array S1, S2, . . . , Sk = 2, 4, . . . , 2k for both Dyck words and fixed-
weight Dyck prefixes. In addition, we set S0 = 0 and Sk+1 = n + 1. Pseudocode of
the greedy algorithm to generate fixed-weight Dyck prefixes and Dyck words is given
in Algorithm 1.
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Algorithm 1. The greedy algorithm that generates a homogeneous transposition Gray
code for fixed-weight Dyck prefixes and Dyck words.
1: procedure GREEDY-KDYCK-PREFIXES

2: S1S2 · · ·Sk ← 2 4 · · · 2k
3: Print(S1S2 · · ·Sk)
4: for i from 1 to k do
5: for j from MAX(Si−1 + 1, i × 2) to Si+1 − 1 do
6: if S1S2 · · ·Si−1(j)Si+1 · · ·Sk has not appeared before then
7: Si ← j
8: go to 4

Theorem 1. The algorithm Greedy-kDyck-Prefixes generates a homogeneous transpo-
sition Gray code for fixed-weight Dyck prefixes that is suffix-partitioned for all n and k
where 2k ≤ n.

3 Proof of Theorem 1

In this section, we prove Theorem 1 for fixed-weight Dyck prefixes. The results also
apply to Dyck words as the set of Dyck words is equivalent to the set of fixed-weight
Dyck prefixes when 2k = n. To this end, we begin by proving the following lemmas
for fixed-weight Dyck prefixes.

Lemma 1. The algorithm Greedy-kDyck-Prefixes terminates after visiting the Dyck
prefix 0n−k1k.

Proof. Assume the algorithm terminates after visiting some string b1b2 · · · bn �=
0n−k1k. Since b1b2 · · · bn �= 0n−k1k, it must contain the suffix 10i1j for some
n − k > i > 0 and k > j > 0. It follows by the greedy algorithm that there exists
a Dyck prefix of length n and weight k with the suffix 0i1j+1 in the listing since the
algorithm terminates after visiting a string with the suffix 10i1j . If j + 1 = k, then
clearly the only string with the suffix 0i1k is 0n−k1k. However, this string has a prede-
cessor since it is not the initial string of the greedy algorithm. Moreover, by the greedy
algorithm the predecessor of 0n−k1k is 0t10n−k−t1k−1 for some n−k > t > 0, and all
Dyck prefixes of length n and weight k with the suffix 01k−1 must have appeared before
0n−k1k in the listing. Therefore, the algorithm should terminate after visiting 0n−k1k,
a contradiction. Otherwise if j + 1 < k, then let α be the last string in the listing with
the suffix 10t1j+1 for some n − j − 2 > t > 0. Since α appears before b1b2 · · · bn in
the listing and b1b2 · · · bn has the suffix 10i1j , the algorithm must transpose the first 1
in the suffix 1j+1 of α with a 0 on the left to produce a later string with the suffix 01j .
It follows by the greedy algorithm that this is only possible if a string with the suffix
0t1j+2 appears before in the listing. Recursively applying the same argument implies
that 0n−k1k exists in the listing, a contradiction since the algorithm would terminate
after visiting 0n−k1k as discussed in the case of j + 1 = k. Therefore by proof by
contradiction, the greedy algorithm terminates after visiting 0n−k1k. ��



34 V. Vajnovszki and D. Wong

Lemma 2. If 0i1j0t1γ is a length n Dyck prefix with weight k for some i > 0,
k > j > 0, and t > 0, then the non-existence of 0i1j0t1γ in the greedy listing implies
the non-existence of 0i1j−1010t−11γ in the greedy listing.

Proof. We prove the lemma by contrapositive. Suppose α = 0i1j0t1γ is a Dyck prefix
of weight k. Clearly β = 0i1j−1010t−11γ is also a Dyck prefix of weight k and now
consider the possible predecessor of β in our greedy listing. If the predecessor of β is
of the form 0i−p10p1j−2010t−11γ for some p > 0, then by the greedy algorithm, all
Dyck prefixes of length n and weight k with the suffix 01j−2010t−11γ should have
appeared previously. The next string generated by the algorithm after β is thus α if α
has not appeared before, or otherwise α must have appeared previously. In either case,
α exists in the listing. Otherwise if the predecessor of β shares the same prefix 0i1j−1

as β, then by the greedy algorithm, this is only possible if α appears before in the listing
or α is the predecessor of β. Therefore, the string α exists if β exists, which completes
the proof by contrapositive. ��

We now prove Theorem 1 using the lemmas we proved in this section.

Theorem 1. The algorithm Greedy-kDyck-Prefixes generates a homogeneous transpo-
sition Gray code for fixed-weight Dyck prefixes that is suffix-partitioned for all n and k
where 2k ≤ n.

Proof. Our algorithm permits only homogeneous transposition operations, and the list-
ing is suffix-partitioned (as shown in Lemma 2). To demonstrate the Gray code property
of our algorithm, we now prove it by contradiction.

Since the greedy algorithm ensures that there is no duplicated length n string in
the greedy listing, it suffices to show that each Dyck prefix of length n and weight k
appears in the listing.

Assume by contradiction that there exists a Dyck prefix b1b2 · · · bn �= 0n−k1k that
does not appear in the listing. Since b1b2 · · · bn �= 0n−k1k, the string b1b2 · · · bn con-
tains the substring 10. Let b1b2 · · · bn = 0i1j0t1γ for some i > 0, k > j > 0, and
t > 0. Clearly, the string 0i1j−1010t−11γ is a Dyck prefix and by Lemma 2, the string
0i1j−1010t−11γ also does not exist in the greedy Dyck prefix listing. Repeatedly apply-
ing the same argument on 0i1j−1010t−11γ implies that the strings 0i+11j0t−11γ and
eventually 0n−k1k also do not exist in the listing, a contradiction to Lemma 1. ��

4 Gray Codes for Ballot Sequences

In this section, we leverage Theorem 1 to construct the first known homogeneous 2-
Gray code for ballot sequences. Our approach is to interleave strings from listings of
homogeneous transposition Gray codes for fixed-weight Dyck prefixes, across all pos-
sible weight k, in order to create the homogeneous 2-Gray code for ballot sequences.
To achieve this, we first prove the following lemma.

Lemma 3. The string b1b2 · · · bn−11 is a Dyck prefix if and only if b1b2 · · · bn−10 is a
Dyck prefix, provided that 2k < n − 1.
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Proof. The forward direction is straightforward. For the backward direction, sup-
pose that 2k < n − 1 and that the string b1b2 · · · bn−10 is a Dyck prefix. Since
2k < n − 1, the prefix b1b2 · · · bn−1 has more 0 s than 1 s and thus both b1b2 · · · bn−11
and b1b2 · · · bn−10 are Dyck prefixes. ��

By Lemma 3, we can establish a one-to-one correspondence between Dyck prefixes
b1b2 · · · bn−11 of weight k + 1 and Dyck prefixes b1b2 · · · bn−10 of weight k when
2k < n. This correspondence enables us to construct a homogeneous 2-Gray code for
ballot sequences.

The main idea of our algorithm is to utilize the same greedy strategy used for gen-
erating fixed-weight Dyck prefixes, with the addition of generating the correspondence
to the generated Dyck prefix by Lemma 3. Specifically, whenever we produce a Dyck
prefix b1b2 · · · bn that terminates with a 1, we also generate its corresponding Dyck
prefix b1b2 · · · bn−10. Conversely, when we generate a Dyck prefix b1b2 · · · bn that con-
cludes with a 0 with 2k < n − 1, we also generate its corresponding Dyck prefix
b1b2 · · · bn−11. Furthermore, if the application of the greedy strategy fails to produce a
new string, we proceed to complement the last 1 in b1b2 · · · bn−1 and then update the
value of bn = 1. By making two relatively minor changes to the Algorithm 1, we can
generate a homogeneous 2-Gray code for ballot sequences:

1. Before applying the greedy strategy to the current string S1S2 · · · Sk, test whether
Sk = n or Sk < n but with weight k < �n

2 �. If Sk = n, then the algorithm generates
its corresponding Dyck prefix S1S2 · · · Sk−1. Similarly, if Sk < n but with weight
k < �n

2 �, then the algorithm generates its corresponding Dyck prefix S1S2 · · · Skn;
2. After applying the greedy strategy to the current string S1S2 · · · Sk and it does not

lead to the generation of any new string. If Sk = n, then the next string in the
sequence is S1S2 · · · Sk−2n. On the other hand, if Sk < n, then the following string
in the sequence is S1S2 · · · Sk−1n.

The algorithm starts with the initial string (01)k0n−2k with k = �n
2 �. Pseudocode of

the algorithm to generate the Gray code for ballot sequences is given in Algorithm 2.
As an example, the algorithm generates the following homogeneous 2-Gray code for
ballot sequences for n = 7:

0101010, 0011010, 0010110, 0100110, 0001110, 0001101, 0001100,
0100100, 0100101, 0010101, 0010100, 0011000, 0011001, 0101001,
0101000, 0100010, 0100011, 0010011, 0010010, 0001010, 0001011,
0000111, 0000110, 0000101, 0000100, 0100000, 0100001, 0010001,
0010000, 0001000, 0001001, 0000011, 0000010, 0000001, 0000000.

Let α be a prefix of a Dyck word, and G(α) be the list of strings obtained by apply-
ing Algorithm 1 with α as initial string. Clearly, for any such string α, G(α) contains
prefixes of Dyck words of the same length and same number of 1s as α, and in G(α)
there are no repeated strings.
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Algorithm 2. The greedy algorithm that generates a homogeneous 2-Gray code for
ballot sequences.
1: procedure GREEDY-BALLOT

2: k = �n
2
�

3: S1S2 · · ·Sk ← 2 4 · · · 2k
4: Print(S1S2 · · ·Sk)
5: if Sk = n then
6: Sk ← n+ 1
7: k ← k − 1
8: if S1S2 · · ·Si−1(j)Si+1 · · ·Sk has not appeared before then go to 4
9: k ← k + 1

10: Sk ← n
11: else if k < �n

2
� then

12: Sk+1 ← n
13: k ← k + 1
14: if S1S2 · · ·Si−1(j)Si+1 · · ·Sk has not appeared before then go to 4
15: k ← k − 1
16: Sk+1 ← n+ 1

17: for i from 1 to k do
18: for j from MAX(Si−1 + 1, i × 2) to Si+1 − 1 do
19: if S1S2 · · ·Si−1(j)Si+1 · · ·Sk has not appeared before then
20: Si ← j
21: go to 4

22: if Sk = n then
23: Sk ← n+ 1
24: Sk−1 ← n
25: k ← k − 1
26: go to 4
27: else if Sk = n − 1 then
28: Sk ← n
29: go to 4

Theorem 2. The algorithm Greedy-Ballot generates a homogeneous 2-Gray code for
ballot sequences for all n.

Proof. The algorithm Greedy-Ballot starts with the string (01)�
n
2 �0n mod 2 with k =

�n
2 �. By Theorem 1, the algorithm generates all strings in G((01)� n

2 �0n mod 2) which
contains all Dyck prefixes of weight k = �n

2 �. Furthermore, according to Lemma 3 and
lines 5–16 of the algorithm, the algorithm also generates all Dyck prefixes of weight
�n
2 � − 1 that end with a 0.

Since G((01)� n
2 �0n mod 2) ends with 0n−�n

2 �1�n
2 �, the algorithm generates all Dyck

prefixes of weight k = �n
2 � and Dyck prefixes of weight �n

2 � − 1 that end with a 0
until it reaches the string 0n−�n

2 �1� n
2 � or 0n−� n

2 �1�n
2 �−10. Then, as indicated in lines

22–29 of the algorithm, the next string generated by the algorithm is 0n−�n
2 �1�n

2 �−201.
Observe that 0n−� n

2 �1�n
2 �−201 is generated in G((01)� n

2 �−1020n mod 2) by Algorithm 1
after exhaustively generating all Dyck prefixes of weight �n

2 � − 1 that end with a 0.
Since all Dyck prefixes of weight �n

2 � − 1 that end with a 0 have already been gen-
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erated in our ballot sequence algorithm, the algorithm follows the same operations as
G(0n−� n

2 �1�n
2 �−201) and proceeds to generate all Dyck prefixes of weight �n

2 �−1 that
end with a 1. Therefore, all Dyck prefixes of weight �n

2 �−1 are in the listing generated
by the algorithm.

By repeatedly applying the same argument, the algorithm generates the fixed-weight
Dyck prefixes with weight ranging from k to 0, which is the set of all ballot sequences
of length n.

Moreover, since each listing in G is a homogeneous transposition Gray code and
the operations in lines 5–16 and 22–29 of the algorithm only involve removing a 1
or swapping two nearby bits, the resulting sequence generated by the algorithm is a
homogeneous 2-Gray code. ��

5 Final Remarks

It is worth noting that an alternative homogeneous 2-Gray code for ballot sequences
can be constructed by concatenating the homogeneous transposition Gray code listings
of fixed-weight Dyck prefixes ranging from weight k to 0, and reversing the listings of
fixed-weight Dyck prefixes with even (or odd) weights. For instance, let G(α) denote
the reverse of the list of strings generated by applying Algorithm 1 with α as the initial
string. A homogeneous 2-Gray code for ballot sequences for n = 7 can be obtained
by G(0101010) · G(0101000) · G(0100000) · G(0000000), which would result in the
following listing:

0101010, 0011010, 0010110, 0100110, 0001110, 0001101, 0100101,
0010101, 0011001, 0101001, 0100011, 0010011, 0001011, 0000111,
0000011, 0001001, 0010001, 0100001, 0000101, 0000110, 0010010,
0100010, 0001010, 0001100, 0100100, 0010100, 0011000, 0101000,
0100000, 0010000, 0001000, 0000100, 0000010, 0000001, 0000000.

There is, however, no known simple algorithm to generate the reverse of the sequence
generated by our algorithm for fixed-weight Dyck prefixes. This remains an open prob-
lem for future research.

Finally, efficient algorithms that generate the same Gray codes for Dyck words,
fixed-weight Dyck prefixes and ballot sequences in constant amortized time per string
were developed, and their details will be presented in the full version of the paper.
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Appendix: C Code to Generate Homogeneous 2-Gray Codes for
k-Combinations, Dyck Words, Fixed-Weight Dyck Prefixes, and
Ballot Sequences

#include <stdio.h>
#include <stdlib.h>
#define INF 99999
#define MAX(a,b) (((a)>(b))?(a):(b))

int n, k, type, total = 0, s[INF], p[INF];

//-------------------------------------------------
int binToDec() {

int i, j = 1, t = 0;
for(i=1; i<=n; i++) if (s[j]==i) {t = t+(1<<(n-i)); j++;}
return t;

}
//-------------------------------------------------
int greedy() {

int i, j, t, r;

if (type==4) {
if (s[k]==n) {

s[k] = n+1; k--;
if (!p[binToDec()]) {p[binToDec()] = 1; return 1;}
k++; s[k] = n;

}
else if (k<n/2) {

s[k+1] = n; k++;
if (!p[binToDec()]) {p[binToDec()] = 1; return 1;}
k--; s[k+1] = n+1;

}
}

for (i=1; i<=k; i++) {
if (type==1) r = s[i-1]+1;
else r = MAX(s[i-1]+1, i*2);

for (j=r; j<s[i+1]; j++) {
t = s[i]; s[i] = j;
if (!p[binToDec()]) {p[binToDec()] = 1; return 1;}
s[i] = t;

}
}

if (type==4) {
if (s[k]==n) {

s[k] = n+1; s[k-1] = n; k--;
p[binToDec()] = 1; return 1;

}
else if (s[k]==n-1) {

s[k] = n;
p[binToDec()] = 1; return 1;

}
}
return 0;

}
//-------------------------------------------------
int main() {

int i, j;

printf(" =========================================\n");
printf(" 1. Combinations\n");
printf(" 2. Dyck words\n");
printf(" 3. Prefix of Dyck words of weight k\n");



Greedy Gray Codes for Dyck Words and Ballot Sequences 39

printf(" 4. Ballot sequences\n");
printf(" =========================================\n");

printf(" Enter selection #: "); scanf("%d", &type);

printf(" ENTER n: "); scanf("%d", &n);
if (type!=2 && type!=4) {printf(" ENTER k: "); scanf("%d", &k);}
else k = n/2;
if (type==2 && n%2>0) {printf("n must be an even number. \n"); exit(0);}
if (type==3 && k>n/2) {printf("k must be less than or equal to n/2. \n"); exit

(0);}

for (i=0; i<INF; i++) p[i] = 0;
for (i=0; i<=k; i++) {if (type!=1) s[i] = i*2; else s[i] = i;}

s[0] = 0; s[k+1] = n+1;
p[binToDec()] = 1;

do {
j = 1;
for (i=1; i<=n; i++) if (s[j]!=i) printf("0"); else {printf("1"); j++;}
printf("\n"); total++;

} while(greedy());
printf("Total = %d\n", total);

}
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Abstract. We advance the Cohn-Umans framework for developing fast
matrix multiplication algorithms. We introduce, analyze, and search for
a new subclass of strong uniquely solvable puzzles (SUSP), which we call
simplifiable SUSPs. We show that these puzzles are efficiently verifiable,
which remains an open question for general SUSPs. We also show that
individual simplifiable SUSPs can achieve the same bounds on the matrix
multiplication exponent ω that infinite families of SUSPs can. We con-
struct, by computer search, larger SUSPs than known for small width.
This, combined with our tighter analysis, strengthens the upper bound
on ω from 2.66 to 2.505 obtainable via this computational approach,
nearing the handcrafted constructions of Cohn-Umans.

Keywords: Matrix multiplication · Simplifiable strong uniquely
solvable puzzle · Arithmetic complexity · 3D matching · Iterative local
search

1 Introduction

Square matrix multiplication is a fundamental mathematical operation: Given
n ∈ N, a field F, and matrices A,B ∈ F

n×n, compute the resulting matrix
C = AB where the entry (i, k) ∈ [n]2 is Ci,k =

∑
j∈[n] Ai,jBj,k. Early work by

Strassen gave a recursive, divide-and-conquer algorithm for matrix multiplication
that runs in time O(n2.81) [16]. The situation steadily improved over the next two
decades, culminating with the O(n2.376) time Coppersmith-Winograd algorithm
[10]. More recently, a series of refinements to the Coppersmith-Winograd algo-
rithm has resulted in a state-of-the-art algorithm that runs in time O(n2.37188)
[2,12,13]. The question remains open: What is the smallest ω for which there
exists a matrix multiplication algorithm that runs in time O(nω)?

Instead of following the traditional approach of refinements to Coppersmith-
Winograd, we pursue the framework developed by Cohn and Umans [8,9]. This
framework connects the existence of efficient algorithms for matrix multiplication
to the existence of combinatorial objects called strong uniquely solvable puzzles
(SUSP). An (,sk)-puzzle P is a subset of {1, 2, 3}k with cardinality |P | = s.
The larger the size s of a strong uniquely solvable puzzle is for a fixed k, the
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more efficient a matrix multiplication algorithm is implied by the Cohn-Umans
framework (see Lemma 1). Anderson et al. initiated a systematic computer-
aided search for large puzzles that are SUSPs [4]. They developed algorithms
that are sufficiently efficient in practice—using reductions to NP-hard problems,
and sophisticated satisfiability and integer programming solvers—for verifying
SUSPs and applied those algorithms to find large SUSPs of small width k ≤ 12.

There are several aspects of the work of Anderson et al. that warranted
further study: (i) although the verification algorithm was shown to be exper-
imentally effective, its worst-case performance was exponential time, (ii) the
results used from [8] to imply efficient matrix multiplication algorithms were
limited because they only found individual SUSPs of small width, rather than
infinite families of SUSPs as in the constructions of [8], and (iii) they observed
that for some pairs of SUSPs P1, P2, the Cartesian product P1 × P2 was also
an SUSP, but they did not provide a theoretical explanation as to why. These
aspects limited the small-width SUSPs that were found in [4,5] to only achieve
ω ≤ 2.66.

Our Contributions. We make progress on the computer-aided search for large
SUSPs and resolve the three limitations mentioned above by introducing a new
class of SUSPs that we call simplifiable SUSPs.

In [4] they show that the problem of verifying whether a puzzle P is an
SUSP reduces to determining whether a related tripartite hypergraph HP has no
nontrivial 3D matchings. In Sect. 3, we describe a polynomial-time simplification
algorithm that takes a 3D hypergraph and attempts to simplify it to the trivial
matching without changing the set of matchings the graph has. In this way, we
define simplifiable SUSPs to be puzzles P whose 3D hypergraph HP simplifies
to the trivial matching. This gives a polynomial-time algorithm to generate a
proof that P is an SUSP. In this way, simplifiable SUSPs are polynomial-time
verifiable by definition, making them more feasible to search for.

Theorem 1. Let P be an (s, k)-puzzle. There is an algorithm for determining
whether P is a simplifiable SUSP. The algorithm runs in time poly(s, k).

In Sect. 4, we show that simplifiable SUSPs have other interesting properties that
make them a good candidate to search for when trying to improve bounds on
ω. In particular, we show that simplifiable SUSPs are a natural generalization
of local SUSPs from [8]. Local SUSPs are also efficiently verifiable, but since
they are not densely encoded, they are difficult to search for. Relatedly, we
show that simplifiable SUSPs are closed under Cartesian product, which is not
the case for general SUSPs, and that this property allows a single simplifiable
SUSP to generate an infinite family of SUSPs by taking all powers of the puzzle,
and that simplifiable SUSPs can achieve any bound on ω that SUSPs can. The
former allows the stronger infinite-family bound on ω of [8] to be applied, which
strengthens the bounds on ω implied by individual simplifiable SUSPs.

Theorem 2. Let ε > 0, if there is a simplifiable (s, k)-SUSP P , then there
is an algorithm for multiplying n-by-n matrices in time O(nω+ε) where ω ≤
minm∈N≥3 3 · k log m−log s

k log(m−1) .
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Finally, in Sect. 5, we report finding new large simplifiable SUSPs of small width
that improve the bounds on ω from 2.66 to 2.505 via the computational Cohn-
Umans approach. The SUSPs we construct for small width are considerably
larger than those of the previous work [4,5,8], and imply stronger bounds on ω
for the same domain. Our results further the computational approach to develop-
ing efficient matrix multiplication algorithms using the Cohn-Umans framework
started by [4]. However, it is important to note that this computational approach
has yet to surpass the ω ≤ 2.48 bound implied by the infinite families of SUSPs
handcrafted in [8], or the state-of-the-art Coppersmith-Winograd refinements
with the record bound of ω ≤ 2.37188 [13].

Related Work. Some negative results are known for the Cohn-Umans frame-
work that apply to our work as well. In particular, a series of articles [1,3,7,11]
showed that there exists an ε > 0 such that this framework, as well as a variety
of other algorithmic approaches, cannot achieve ω ≤ 2+ ε. This implies that our
approach cannot achieve the best potential result of Õ(n2), however, the authors
are unaware of a concrete value known for this ε.

We search for simplifiable SUSPs using a standard search technique called
iterative local search, c.f, e.g., [15]. Some comparison with our work can be drawn
to recent computational approach by Fawzi et al. who used reinforcement learn-
ing to generate low-rank representations of the matrix multiplication tensor [14],
producing algorithms with ω ≤ 2.77, which are weaker than our results.

2 Preliminaries

For a natural number n ∈ N, we use [n] to denote the set {1, 2, ..., n}. SymQ

denotes the symmetric group on the elements of a set Q.
Cohn et al. introduced the notion of puzzles and defined several useful sub-

classes [8]. For s, k ∈ N, an (,sk)-puzzle is a subset P ⊆ [3]k with |P | = s. We
say that an (s, k)-puzzle has s rows and k columns. The columns are inherently
ordered and indexed by [k]. The rows are not inherently ordered, although it is
often convenient to assume that they are arbitrarily ordered and indexed by [s].

Definition 1 (Strong Uniquely Solvable Puzzle (SUSP)). An (s, k)-
puzzle P is strong uniquely solvable if ∀π1, π2, π3 ∈ SymP , either (i) π1 = π2 =
π3, or (ii) ∃r ∈ P and i ∈ [k] such that exactly two of the following conditions
are true: (π1(r))i = 1, (π2(r))i = 2, (π3(r))i = 3.

For brevity, we call such puzzles SUSPs. Determining whether a puzzle is an
SUSP is in coNP. Anderson et al. studied this problem, devised a reduction
from this problem to a variant of the 3D perfect matching problem, and then
used it to develop a practical, but worst-case exponential time, algorithm [4].
Cohn et al. also introduced a subset of SUSPs, called local SUSPs that naturally
demonstrate that they are SUSPs. An (s, k)-puzzle P is local strong uniquely
solvable if for each (u, v, w) ∈ P 3 with u, v, w not all equal, there exists c ∈ [k]
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such that (uc, vc, wc) ∈ L = {(1, 2, 1), (1, 2, 2), (1, 1, 3), (1, 3, 3), (2, 2, 3), (3, 2, 3)}.
The task of determining whether a puzzle is a local SUSP can be done in time
O(s3 · k), by checking all triples of rows. Cohn et al. show that SUSPs can be
converted to local SUSPs, albeit with a substantial increase in the parameters.

Proposition 1 ([8, Proposition 6.3]). Let P be an (s, k)-SUSP, then there is
a local (s!, sk)-SUSP P ′. Moreover, SUSP capacity is achieved by local SUSPs.

Note that the second consequence of this proposition is that any bound on ω
that can be achieved by SUSPs can be achieved by local SUSPs.

From Matrix Multiplication to SUSPs. Using the concept of an SUSP,
[9] showed how to define group algebras that allow matrix multiplication to be
efficiently embedded into them. The existence of SUSPs implies upper bounds
on the matrix multiplication exponent ω.

The SUSP capacity is defined as the largest constant C such that there exist
SUSPs of size (C − o(1))k and width k for infinitely many values of k [8]. The
constructions of Cohn et al. produce families F of (s(k), k)-SUSPs for infinitely
many values of k. The key parameter that relates ω to the size of puzzles is the
capacity CF of the family, defined as the limit of (s(k))

1
k as k goes to ∞. Cohn

et al. showed the following bounds on ω as functions of capacity and SUSP size.

Lemma 1 ([8, Corollary 3.6]). Let ε > 0, (i) if there is a family F of SUSPs
with capacity CF , then there is an algorithm for multiplying n-by-n matrices in
time O(nω+ε) where ω ≤ minm∈N≥3 3 · log m−log CF

log(m−1) , and (ii) if there is an (s, k)-
SUSP, there is an algorithm for multiplying n-by-n matrices in time O(nω+ε)
where ω ≤ minm∈N≥3 3 · sk log m−log s!

sk log(m−1) .

They also show that if the SUSP capacity is Cmax = 3/22/3, it immediately
follows that ω = 2. As mentioned in Sect. 1, subsequent work has shown that
the SUSP capacity is strictly less than Cmax.

From SUSPs to 3D Matchings. Let G be a r-uniform hypergraph over
r disjoint copies of a domain U . We only consider r ∈ {2, 3} and use “2D
graph” to refer to the case where r = 2 and “3D graph” to refer to the case
where r = 3. We use the notation V (G) to denote the vertex set of G and
E(G) to denote the edge set of G. We say that G has a perfect matching if
there exists M ⊆ E(G) such that |M | = |U | and for all distinct pairs of edges
a, b ∈ M , a and b are vertex disjoint, that is, ai �= bi,∀i ∈ [r]. Note that
we only consider perfect matchings in this article, so often drop “perfect” for
brevity. The trivial matching of G is the set {ur | u ∈ U}. We call a matching
M nontrivial if it is not the trivial matching of HP . For two r-partite graphs
G1, G2 over domains U1 and U2, respectively, we define their tensor product to
be the r-partite graph G1 × G2 over the Cartesian product of their domain
sets U1 × U2, and whose edges are the Cartesian product of their edge sets
E(G1) × E(G2) = {((u1, u2), (v1, v2)) | (u1, v1) ∈ E(G1), (u2, v2) ∈ E(G2)}.
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Fig. 1. Let G be 2D graph over the domain U . This diagram represents the partitioning
of the adjacency matrix of G relative to a set S ⊆ U which divides the adjacency matrix
into four regions of edges, S × S, S × (U − S), (U − S) × S, (U − S) × (U − S). The
edges in the gray regions survive the simplification to G′ as in Lemma 3, while any
edges in E→ or E← are deleted from G.

Note that the adjacency matrix of the tensor product of two r-partite graphs is
the Kronecker product of the two adjacency matrices of the graphs.

Anderson et al. show a reduction from checking whether an (s, k)-puzzle P
is an SUSP to deciding whether there are no nontrivial perfect matchings in a
related 3D graph HP [4]. We briefly recall that construction. Define a function f
to represent the inner condition of being an SUSP on triplets of rows u, v, w ∈ P
where f(u, v, w) = 1, if ∃i ∈ [k] such that exactly two of the following hold:
ui = 1, vi = 2, wi = 3 and f(u, v, w) = 0, otherwise. Then, define HP to be the
3D graph with domain P whose edges are E(HP ) = {(u, v, w) | f(u, v, w) = 0}.
The trivial matching is a matching of HP . We use the following result.

Lemma 2 ([5]). P is an SUSP iff HP has no nontrivial perfect matchings.

3 Simplification and Efficiently-Verifiable SUSPs

The reduction from SUSP verification to the problem of 3D perfect matching,
from Lemma 2, leads to a näıve worst-case O(2s · poly(s, k))-time algorithm for
verification, without much hope for improvement as the latter problem is NP-
complete. We overcome this obstacle by introducing a useful subset of SUSPs
that are efficiently verifiable.

Let P be an (s, k)-puzzle and HP be its corresponding 3D graph as in Lemma
2. If HP has a nontrivial matching, the matching itself witnesses this fact. How-
ever, if HP has only the trivial matching, there may not be a short witness of
this fact. The subclass of SUSPs we develop naturally has short witnesses.

Our approach is based on the following insight about the 3D graph HP : If
HP has a matching, the matching projects to three 2D matchings of the 2D faces
of HP . Moreover, if edges in one of the faces cannot be used for a matching of
that face, none of the edges of HP that project onto that edge can be used in
a 3D matching of HP . We iteratively apply this idea to efficiently simplify the
3D graph HP , without changing the matchings it has, until it is reduced to a
trivial matching or no further simplification can be made. If the 3D graph is



46 M. Anderson and V. Le

reduced to the trivial matching, it means that HP had no nontrivial matchings,
and the puzzle P must be an SUSP. We call such puzzles simplifiable SUSPs.
A by-product of this simplification process is a series of edges deletions of HP ,
which provides a witness that P is an SUSP.

Simplifying 2D Graphs. We build up to simplifying 3D graphs and simpli-
fiable SUSPs by first considering 2D graphs. The following lemma shows that
certain edges can be removed from 2D graphs without eliminating matchings.
See Fig. 1 for a visual representation of this lemma.

Lemma 3. Let G be a 2D graph with domain U . Let S ⊆ U , E→ = S×(U −S),
and E← = (U −S)×S. Let G′ be a 2D graph with domain U and edges E(G′) =
E(G) − E→ − E←. If E→ ∩ E(G) = ∅ or E← ∩ E(G) = ∅, then G′ has the same
set of perfect matchings as G.

Proof. Observe that since the edges of G′ are a subset of the edges of G, G′

cannot have a matching that G does not have. It remains to show that for each
perfect matching M of G, M is also a perfect matching of G′.

Let M ⊆ E(G) be a perfect matching of G. There are two cases to consider.
Suppose E→∩E(G) = ∅. Consider an edge (u, v) ∈ M . If u ∈ S, then v /∈ (U −S)
since there are no edges in G that intersect with S × (U − S). Therefore, v ∈ S.
Thus, for each u ∈ S, (u, v) ∈ M and v ∈ S, so M matches S to S. If u ∈ (U −S)
and (u, v) ∈ M , then v /∈ S since for all v ∈ S there already exists a one-to-one
correspondence with u′ ∈ S where (u′, v) ∈ M .

Thus, M must match S to S and match U − S to U − S, that is, M ⊆
(S × S) ∪ ((U − S) × (U − S)). Hence, M must be a perfect matching of G′,
because M ∩ (E→ ∪E←) = ∅ and therefore the edges in M are deleted. The case
when E← ∩ E(G) = ∅ is symmetric. �

Let S ⊆ U be a subset of vertices in a 2D graph G with domain U for which
the conditions of Lemma 3 are met. We say that S induces a simplification of G
to G′. We now consider sequences of such simplifications. Let G0, G1, . . . , G� be
a sequence of 2D graphs with a common domain U and let S1, S2, . . . , S� ⊆ U
be sets such that Si induces a simplification of Gi−1 to Gi for 1 ≤ i ≤ �. We say
that G0 simplifies to G�. The following is a corollary resulting from repeated
application of Lemma 3 to the sets and 2D graphs in the above definition with
a generalization to tensor products.

Corollary 1. Let G,G′ be 2D graphs over the domain U , and F be a 2D graph
over the domain V . If G simplifies to G′, then G and G′ have the same set of
perfect matchings and G × F simplifies to G′ × F .

Proof (Sketch). Suppose G simplifies to G′. By definition, there exists
G0, G1, . . . , G� with G = G0 and G′ = G� and sets S1, S2, . . . , S� for which
Si induces a simplification of Gi−1 to Gi. Using Lemma 3, between Gi−1 and
Gi, one can show, by induction, that the set of perfect matchings for all Gi
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are the same. Therefore, G = G0 and G′ = G� have the same set of perfect
matchings.

One can argue that the sets S1×V, S2×V, . . . , S�×V induce the corresponding
chain of simplifications G × F = G0 × F,G1 × F, . . . , G� × F = G′ × F . The
argument for the individual simplification steps here proceeds analogously to the
proof of Lemma 3 and shows the second half of the corollary. �

Simplifying 3D Graphs. We lift the notion of simplification from 2D graphs to
3D graphs. Consider a 3D graph H with domain U . We construct three 2D graphs
R0, R1, R2, on the same domain U , which, respectively, correspond to projecting
out the first, second, and third coordinates of H. For example, the edges of R1

can be written E(R1) = {(u,w) | ∃v ∈ U, (u, v, w) ∈ E(H)}. If H has a perfect
matching, then it projects into a perfect matching for each of the Rf ’s. To see
this, let M be a perfect matching of H, then following the projection, define
M0 = {(v, w) | ∃u ∈ U, (u, v, w) ∈ M}. By definition M0 ⊆ E(R0). Because M
is a perfect matching of H, {v | (u, v, w) ∈ M} = {w | (u, v, w) ∈ M} = U , and
|M | = |U |, so M0 is a perfect matching of R0. The argument for R1 and R2 is
analogous. Furthermore, one can argue that if a matching is nontrivial for H,
then it is nontrivial for at least two of the Rf ’s.

We observe that simplifications induced on any of R0, R1, R2, also induce a
simplification of H. For brevity, the result below is stated only for R0, but holds
similarly for R1 and R2 using symmetric arguments.

Lemma 4. Let H, R0, U be defined as above. Let H ′ be the 3D graph over the
domain U whose edges are E(H ′) = E(H)−U × ((S × (U −S))∪ ((U −S)×S)).
If S ⊆ U induces a simplification of R0, then H ′ has the same set of perfect
matchings that H does.

Proof. Observe that since the edges of H ′ are a subset of the edges of H, H ′

cannot have a matching that H does not have. It remains to show that for each
matching M of H, M is also a matching of H ′.

Let M be a matching of H. Suppose, for the sake of contradiction, that M
is not a matching of H ′. There must exist an edge (u, v, w) ∈ M that lies in
the set of edges deleted in H ′. Let M0 be the projection of M into R0, so that
M0 is a matching of R0 and (v, w) ∈ M0. By hypothesis and definition of H ′,
(v, w) ∈ (S × (U − S)) ∪ ((U − S) × S). This is a contradiction to the fact that
S simplifies R0, because, by Lemma 3, (S × (U − S)) ∪ ((U − S) × S) does not
intersect with any matchings of R0. �

When the conditions of Lemma 4 are met, we say that this set S induces a
simplification of H via R0. As before, we can lift the notion of simplification
to a series of induced simplifications. Here it is more complex because changing
H changes its projections. Let S1, S2, . . . , S� ⊆ U and f1, f2, . . . , f� ∈ {0, 1, 2}.
We define a series of tuples of graphs (Hj , R0,j , R1,j , R2,j) with 0 ≤ j ≤ �,
where H0 = H, R0,0 = R0, R1,0 = R1, R2,0 = R2 and for j > 0, Rfj ,j is
the simplification of Rfj ,j−1 induced by Sj , Hj is the simplification of Hj−1
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Fig. 2. Let P = {111, 321, 323}. On the left is a 3D grid representing the edges of HP .
In the middle is a projection of HP onto the 2D face corresponding to u, v plane. Since
{0}×{1, 2} contains no edges in this projection, edges of the form {1, 2}×{0}×{0, 1, 2}
can be simplified out of HP . At the right is the result of applying this simplification
plus one more simplification on the u, w face. The final instance is Simplify(HP ) and
cannot be further simplified, showing that P is not a simplifiable SUSP.

induced by Sj via Rfj
and R(fj+1 mod 3),j and R(fj+2 mod 3),j are the result of

reprojecting Hj . For brevity in describing this situation, we say that H simplifies
to H�. As before, repeated application of Lemma 4 and Lemma 3 implies that
H� has the same set of matchings as H0 = H does and results in the following
3D analog of Corollary 1.

Corollary 2. Let H, H ′ be 3D graphs with the domain U and K be a 3D graph
with domain V . If H simplifies to H ′, then H and H ′ have the same set of
perfect matchings and H × K simplifies to H ′ × K.

Simplifiable SUSPs. We now apply the notion of simplification to help in
checking whether an (s, k)-puzzle P is an SUSP. By Corollary 2, HP has a
nontrivial matching iff any simplification of HP has a nontrivial matching. This
suggests a way to construct a witness that P is an SUSP: If HP simplifies to the
trivial matching, then, by Corollary 2, HP has no nontrivial matchings, and, by
Lemma 2, P is an SUSP. The sequence of sets and their corresponding projection
indexes are a witness that P is an SUSP. Moreover, if we exclude simplifications
that do not change the 3D graph, the number of edges in the 3D graph—at most
s3—is a limit on the number of simplification steps that can occur.

Definition 2 (Simplifiable SUSP). An (s, k)-puzzle P is a simplifiable
SUSP if HP simplifies to the trivial 3D perfect matching.

By definition, simplifiable SUSP are SUSPs with short (O(s4) bit length) wit-
nesses. To make this definition effective, we describe a polynomial-time algorithm
that simplifies puzzles. In particular, the algorithm takes HP ; projects it onto
its 2D faces, R0, R1, R2; then, for each face, determines sets that induce max-
imal simplification of the faces; and, finally, applies those simplifications to HP

to form a new 3D graph H ′
P . The algorithm repeats this until a fixed point is
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Algorithm 1 : Simplify(H)

1: f ← 0; sinceChange ← 0; R0, R1, R2 ← Project(H)
2: while sinceChange < 3 do
3: edgesToRemove ← CalcEdgesToRemove(Rf )
4: for (u, v) ∈ edgesToRemove do
5: if f = 0 then delete all edges (∗, u, v) from H

6: if f = 1 then delete all edges (u, ∗, v) from H

7: if f = 2 then delete all edges (u, v, ∗) from H

8: if edgesToRemove = ∅ then sinceChange ← sinceChange + 1
9: else sinceChange ← 0; R0, R1, R2 ← Project(H)

10: f ← (f + 1) mod 3

11: return H

reached. The resulting 3D graph is the fully simplified version of HP . If that
simplified graph is the trivial matching, this process witnesses that P is a (sim-
plifiable) SUSP. An example of the results of this process are shown in Fig. 2.
For completeness, this process is described in Algorithm 1.

In Algorithm 1, the subroutine Project takes the 3D graph H and returns
three 2D graphs R0, R1, R2 that, respectively, correspond to projecting out the
first, second, and third coordinates of G, as defined above. This subroutine can
be näıvely implemented in O(s3) time.

The subroutine CalcEdgesToRemove at Line 3 takes each of the 2D
graphs corresponding to the faces and returns a list of edges that are not used in
any maximum 2D matchings of that face. This subroutine can be implemented
using the algorithm described in [17, Algorithm 2]. Their algorithm works by
constructing the strongly connected components of the input 2D graph Rf ,
when Rf is viewed as a directed graph over P rather than a bipartite graph
over P  P . The strongly connected components calculated by this algorithm
inherently partition the vertex set P = S1 ∪ S2 ∪ . . . ∪ S�.

Collapsing the 2D graph Rf down to its strongly connected components
leaves us with a directed graph Gf with V (Gf ) = {v1, v2, . . . , v�} and E(Gf ) =
{(vi, vj) | ∃u ∈ Si, w ∈ Sj such that (u, v) ∈ E(Rf )} with � vertices vj , one
for each strongly connected component Sj . Furthermore, Gf must be an acyclic
graph, otherwise the strongly connected components would have been larger.
These strongly connected components are sets that induce the simplification of
Rf . Let vj be a vertex in Gf that has some incident edges but that has either
no incoming or no outgoing edges. The latter property is sufficient to apply
Lemma 3 and implies that Sj induces a simplification of Rf . Furthermore, this
simplification corresponds to deleting all of the edges of vj in Gf .

This process can be repeated until there are no more edges in Gf . Note
that because Gf is acyclic, it will always be possible to find such a vertex vj as
long as there are edges remaining. This series of strongly connected components
induces a complete simplification of Rf . This simplification is used to remove
the corresponding edges in the 3D graph H in Lines 4–7 & 9. The 3D graph H is
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fully simplified when no edge can be removed from any of the three faces. By [17],
the remaining edges in each of the projections Rf are “maximally matchable” in
that they used in some perfect matching of Rf . Thus, once this happens, there
can be no additional sets that can induce simplifications in any of the Rf that
remove edges in Rf (or in H).

Since each edge of H, except for the diagonal, can be removed at most once,
the algorithm must reach a fixed point within 3(|P |3 − |P |) iterations of the
main loop. The cost to update H and the projections in Lines 4–7 & 9 can be
amortized, with careful bookkeeping, to cost O(|P |3) across the whole algorithm.

For 2D graphs whose domain is the (s, k)-puzzle P , the subroutine of [17] runs
in O(s2.5/

√
log s) time. Combining the above analysis, the overall complexity of

Simplify is O(s3 + s3 · s2.5/
√

log s) = O(s5.5/
√

log s). The results of the above
arguments can be summarized in the following lemma.

Lemma 5. Let H be a 3D graph over P . In poly(|P |) time, Simplify(H) com-
putes the complete simplification of H. Therefore, H has the same set of match-
ings as Simplify(H).

By Definition 2, the 3D graph HP associated with a simplifiable SUSP P simpli-
fies to the trivial matching. Furthermore, by Lemma 5, Simplify(HP ) computes,
in polynomial time, the complete simplification of HP , preserving the matchings.
These two facts imply a polynomial-time algorithm to determine whether a puz-
zle P is a simplifiable SUSP, proving Theorem 1.

Proof (Theorem 1). Perform the polynomial-time reduction from SUSP verifi-
cation to 3D matching of [4] to produce the 3D graph HP in time poly(s, k).
Compute H ′

P = Simplify(HP ) in time poly(s). In time O(s3) verify and return
whether or not H ′

P is the trivial matching {(u, u, u) | u ∈ P}. The algorithm is
correct by Lemma 2 and Lemma 5. �

It is clear from the construction that simplifiable SUSPs are a subset of
SUSPs, but they are also a generalize of the notion of local SUSPs.

Lemma 6. Every local SUSP P is a simplifiable SUSP.

Proof. By the definition, for every triple of rows u, v, w ∈ P , there is a column
c such (uc, vc, wc) ∈ L. This implies, by the construction of HP , that (u, v, w) is
not an edge in HP . This implies that HP has no edges except where u = v = w.
Therefore, HP is the trivial matching and explicitly satisfies Definition 2 without
any further simplification. We conclude that P is a simplifiable SUSP. �

Intuitively, simplifiable SUSPs are an intermediate class between local SUSPs
and SUSPs. The set containments are proper. There exist SUSPs that are not
simplifiable, e.g., P1 = {2233, 1232, 1123, 3311}, and simplifiable SUSPs that are
not local, e.g., P2 = {11, 23}. Simplifiable SUSPs have the efficient verification of
local SUSPs, but the concise representation of general SUSPs. These properties
make the prospect of searching for large simplifiable SUSPs more feasible.
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4 Simplifiable SUSPs Generate Infinite Families

Lemma 1 gives bounds for the running time of matrix multiplication using infi-
nite families of SUSPs and individual SUSPs. The first bound produces stronger
results than the second. To see this, we define the capacity of an (s, k)-SUSP
P to be CP = s

1
k , this is analogous to the definition of capacity for families of

SUSPs. Now, consider an SUSP P and an infinite family F with the same capac-
ity CP = CF . Lemma 1 gives a weaker upper bound on ω for the single puzzle
than its does for the infinite family. For example, a (14, 6)-SUSP has capacity
14

1
6 and the bound on ω using the dimensions of the puzzle is ω ≤ 2.73 and,

although the first part of Lemma 1 does not apply, if we were to use the capacity
of the puzzle instead of its dimensions, we get ω ≤ 2.52.

We show that simplifiable SUSPs can be turned into an infinite family of
simplifiable SUSPs by taking Cartesian products (powers) of P with itself to
product a family with the same capacity as P . This allows the first part of
Lemma 1 to be applied, instead of the second, to produce a stronger bound on
ω using the capacity of P .

Let P1 be an (s1, k1)-puzzle and P2 be an (s2, k2)-puzzle. We define the
product of P1 and P2 to be the Cartesian product of their underlying sets: P1 ×
P2 = {r1 ◦ r2 | r1 ∈ P1, r2 ∈ P2}. Observe that P1 × P2 is an (s1 · s2, k1 + k2)-
puzzle. Furthermore, if P is an (s, k)-puzzle, its m-th power is the Cartesian
product of P with itself m times, Pm, and observe that this is an (sm, k · m)-
puzzle. For a puzzle P , we can define the infinite family FP = {Pm | m ∈ N}.
Observe that FP has capacity (sm)

1
k·m = s

1
k matching the capacity of P .

We say an SUSP P generates an infinite family of SUSPs, if every puzzle
in FP is an SUSP. Unfortunately, the SUSP property is not generally preserved
under Cartesian product or powering. For example, P = {2233, 1232, 1123, 3311}
is an SUSP, but P × P is not. A consequence of this is that not every SUSP
generates an infinite family of SUSPs. Although SUSPs are generally not closed
under powering, we show that simplifiable SUSPs are.

Lemma 7. If P,Q are simplifiable SUSPs, P ×Q is a simplifiable SUSP. More-
over, P generates an infinite family of simplifiable SUSPs.

The proof is a direct consequence of Definition 2 and Corollary 2, and we defer
it, for space, to the long version of this article [6]. Combining Lemma 7 with the
first part of Lemma 1 we produce a tighter bound on ω from simplifiable SUSPs,
which proves our main theorem (Theorem 2).

Although it is not the case that every SUSP generates an infinite family,
there is evidence in both experimental results of [4,5] and some of the puzzle
constructions of [8] that there are (non-local) SUSP of maximum size for their
width that generate infinite families. For example, [8, Proposition 3.1] gives an
infinite family with capacity

√
2 that is generated by the (2, 2)-SUSP {12, 33}.

Finally, using Lemma 6 and Proposition 1 we conclude that using simplifiable
SUSPs does not inherently lead to weaker bounds on ω than SUSPs.

Lemma 8. The SUSP capacity is achieved by SUSPs that are simplifiable.
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Table 1. Comparison of lower bounds for the maximum of size of width-k SUSPs and
upper bounds on ω they imply. All the results in this work are simplifiable SUSPs.

k 1 2 3 4 5 6 7 8 9 10 11 12

[8] s ≥ 1 2 3 4 4 10 10 16 36 36 36 136

ω ≤ 3.00 2.88 2.85 2.85 2.80 2.74 2.70

[4] s ≥ 1 2 3 5 8 14 21 30 42 64 112 196

ω ≤ 3.00 2.88 2.85 2.81 2.78 2.74 2.73 2.72 2.72 2.71 2.68 2.66

Us s ≥ 1 2 3 5 8 14 23 35 52 78 128 196

ω ≤ 3.00 2.67 2.65 2.59 2.57 2.52 2.505 2.52 2.53 2.53 2.52 2.52

5 New Lowers Bounds on Maximum SUSP Size

The features of simplifiable SUSPs we proved in the previous sections make
them well suited for discovery via computer search. We use iterative local search
techniques to locate large simplifiable SUSPs with small width k ≤ 12. For
brevity, we defer discussion of our search algorithm and implementation to the
long version of this article [6].1

We find simplifiable SUSPs that match or exceed the size of SUSPs found in
prior work [4,8] for k ≤ 12. We summarize our results in Table 1. Because the
SUSPs we find are simplifiable, Theorem 2 implies that they produce stronger
bounds on ω than the SUSPs of previous work that are analyzed using the
weaker Lemma 1. This results in substantial improvements over prior work in
this domain: decreasing the bound on ω by about 0.2. For k ≤ 5, the sizes in [4]
were shown to be maximum by exhaustive search, and our results match theirs.
For 6 < k ≤ 11, we construct larger SUSPs than in the previous work. The long
version of this article include examples of these maximal simplifable SUSPs [6].

The improvement in the bounds on ω appears to stall for k ≥ 8. We do not
believe that this reflects a real limit on the size of simplifiable SUSPs; rather,
it represents a barrier for our search techniques and the large polynomial-time
cost of running Simplify. Although our results improve substantially over [8]
for k ≤ 12, their construction achieves ω ≤ 2.48 as k → ∞.

6 Conclusions

We propose and analyze simplifiable SUSPs, a new subclass of strong uniquely
solvable puzzles. We prove that simplifiable SUSPs have nice properties: they are
efficiently verifiable and generate infinite families of SUSP that lead to tighter
bounds on ω. We report the existence of new large (simplifiable) SUSPs with
width 7 ≤ k ≤ 11 and strengthen the bound on ω that they imply compared to
previous work. The SUSPs we have found through computer search are now close

1 Implementations of our algorithms, along with a tool for verifying simplifiable
SUSPs, are publicly available at https://bitbucket.org/paraphase/matmult-v2.

https://bitbucket.org/paraphase/matmult-v2
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to producing the same bounds (ω ≤ 2.505) as those families of SUSP designed
by human experts (ω ≤ 2.48).

New insights into the structure of (simplifiable) SUSPs or the search space
seem necessary to progress. A primary bottleneck in the search is the run time
of Simplify, which even if it quickly reaches a fixed point, the algorithm still
spends Ω(s3) time to construct an instance from a puzzle with s · k entries.
We conjecture that if there are (s, k)-SUSPs, then there are simplifiable (s, k)-
SUSPs, which is consistent with the SUSPs we found and report in Table 1.
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Abstract. We study the time complexity of computing the (min,+)
matrix product of two n × n integer matrices in terms of n and the
number of monotone subsequences the rows of the first matrix and the
columns of the second matrix can be decomposed into. In particular, we
show that if each row of the first matrix can be decomposed into at most
m1 monotone subsequences and each column of the second matrix can
be decomposed into at most m2 monotone subsequences such that all the
subsequences are non-decreasing or all of them are non-increasing then
the (min,+) product of the matrices can be computed in O(m1m2n

2.569)
time. On the other hand, we observe that if all the rows of the first
matrix are non-decreasing and all columns of the second matrix are non-
increasing or vice versa then this case is as hard as the general one.

Similarly, we also study the time complexity of computing the (min,+)
convolution of two n-dimensional integer vectors in terms of n and the
number of monotone subsequences the two vectors can be decomposed
into. We show that if the first vector can be decomposed into at most m1

monotone subsequences and the second vector can be decomposed into at
most m2 subsequences such that all the subsequences of the first vector
are non-decreasing and all the subsequences of the second vector are non-
increasing or vice versa then their (min,+) convolution can be computed
in Õ(m1m2n

1.5) time. On the other, the case when both vectors are non-
decreasing or both of them are non-increasing is as hard as the general
case.

1 Introduction

(min,+) matrix product. The (min,+) matrix product problem for two n × n
integer matrices A = (ai,j), B = (bi,j) requires computing an n × n matrix
C = (ci,j) such that ci,j = min{ai,k + bk,j |1 ≤ k ≤ n}. By the definition, this
problem admits an O(n3)-time algorithm. It is known to be equivalent to the
fundamental all-pairs shortest-paths problem (APSP) [11]. If any of these two
problems admits an t(n)-time algorithm then the other problem can be solved in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 55–68, 2024.
https://doi.org/10.1007/978-3-031-49193-1_5
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O(t(n)) time [11]. Hence, the APSP hypothesis states that solving any of these
two problems requires n3−o(1) time [22] and the current best algorithm for any
of them runs in n3

2Θ(
√

log n) time [24].
The (min,+) matrix product as APSP has a large number of important

applications. Because the prospects of deriving a substantially subcubic upper
time bound for the general (min,+) matrix product are so vague, several authors
studied the complexity of computing this product for restricted integer matrices.
Already several decades ago, it was known that the (min,+) matrix product
can be computed in O(Mnω) time, when the values of the entries in the input
matrices are in the range {−M, ...,M} ∪ {+∞} [2,26]. Here, ω stands for the
smallest real number such that two n × n matrices can be multiplied using
O(nω+ε) operations over the field of reals, for all ε > 0 (i.e., the number of
operations is O(nω+o(1)) [1]). More recently, one succeeded to derive substantially
subcubic upper time bounds when, e.g.,: one of the matrices has a small number
of different entries in each row [25], the input matrices are of the so called
bounded-difference (i.e., all pairs of horizontally and vertically adjacent entries
differ by at most O(1)) [4], the input matrices are geometrically weighted [8],
one of the matrices has a constant approximate rank [23], the entries of one of
the matrices are of size O(n) and its rows are non-decreasing [21], or just one of
the matrices range over a constant number of integers [8].

Contributions on (min,+) Matrix Product. In this paper, we take a more general
approach. We study the situation when each row of the first matrix A and each
column of the second matrix B can be decomposed into a bounded number of
monotone subsequences. When all the subsequences are non-decreasing or all of
them are non-increasing, we obtain a substantially subcubic algorithm for the
(min,+) matrix product already when the bound on the number of monotone
subsequences of each row in A and each column in B is O(n0.215). Namely,
our algorithm runs in O(mambn

2.569) time, where ma is an upper bound on
the number of monotone subsequences of each row in A and mb is an upper
bound on the number of the monotone subsequences of each column in B. On
the other hand, we observe that if all the rows of A are non-decreasing and
all columns of B are non-increasing or vice versa then this case is as hard as
the general case. When the entries in each row or column of one of the input
matrices range over c different integers then it is sufficient that the columns or
rows respectively of the other matrix can be decomposed into at most n0.119

just monotone subsequences to subsume the upper time bound O(cn2.688) [8]
(see Fact 5) for the case without restrictions on the other matrix. Our results on
(min,+) matrix product are summarized in Table 1.

(min,+)Vector Convolution. Our approach to the (min,+) matrix product is
in fact similar to that to (min,+) convolution of two n-dimensional integer
vectors taken by the authors in the prior paper [18]. The (min,+) convolu-
tion problem for two integer vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1)
requires computing an 2n − 1 dimensional vector c = (c0, ..., c2n−2) such that
ck = min{a� + bk−�|� ∈ [max{k − n + 1, 0},min{k, n − 1}]} for k = 0, ..., 2n − 2.
By the definition, the (min,+) vector convolution can be computed in O(n2)
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Table 1. Upper time bounds for computing the (min,+) matrix product of two n× n
integer matrices A, B, where the rows of A and/or the columns of B admit decomposi-
tions into a bounded number of monotone subsequences (in particular non-decreasing
or non-increasing) or the entries in each row of A or each column of B range over a
constant number of integers.

matrix A/matrix B cb dif. values mb non-decr. subs. mb non-incr. subs.

ca different values O(cacbn
ω) O(cambn

2.569) O(cambn
2.569)

ma non-decr. subs. O(macbn
2.569) O(mambn

2.569) ?

ma non-incr. subs. O(macbn
2.569) ? O(mambn

2.569)

arbitrary O(cbn
2.688) [8] ? ?

time but again getting any substantially subquadratic upper time bound for
this problem would be a breakthrough. The (min,+) vector convolution has also
a large number of important applications ranging from stringology to knapsack
problem [3,5,9,19].

Contributions on (min,+) Convolution. We correct the requirements on the
monotonicity of the vector subsequences in the statement of Theorem 3.7 in [18]
and provide a proof of the corrected theorem. It states that the (min,+) convolu-
tion of two n-dimensional integer vectors a and b, given with the decompositions
of the sequences of their consecutive coordinates into ma and mb subsequences
respectively, such that either all the subsequences of a are non-decreasing and
all the subsequences of b are non-increasing or vice versa, can be computed in
Õ(mambn

1.5) time. On the other hand, the case when both vectors are non-
decreasing or both of them are non-increasing is as hard as the general case.
Table 2 summarizes the updated results on (min,+) vector convolution (cf. [18]).

Table 2. Upper time bounds for computing the (min,+) convolution of two n-
dimensional integer vectors either with coordinates having a bounded number of dif-
ferent values, or decompositions into a number of non-decreasing or non-increasing
subsequences.

vector a/vector b cb dif. values mb non-decr. subs. mb non-incr. subs.

ca different values Õ(cacbn) Õ(can
1.5) Õ(can

1.5)

ma non-decr. subs. Õ(cbn
1.5) ? Õ(mambn

1.5)

ma non-incr. subs. Õ(cbn
1.5) Õ(mambn

1.5) ?

arbitrary Õ(cbn
1.5) ? ?

Techniques. Our algorithms for the (min,+) matrix product as well as those
for the (min,+) vector convolution are mostly based on efficient reductions to
collections of maximum or/and minimum witness problems for corresponding
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Boolean matrix products or Boolean vector convolutions, respectively. One of
our algorithms uses directly a method similar to that known for the extreme
witnesses. For the definition of the extreme witness problems and facts on them
see Preliminaries.

Paper Organization. The next section contains basic definitions and facts.
Section 3 presents our results on (min,+) matrix product while Sect. 4 presents
our results on (min,+) vector convolution.

2 Preliminaries

For two n-dimensional vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1) over a
semi-ring (U,⊕,�), their convolution over the semi-ring is a vector
c = (c0, ..., c2n−2), where ci =

⊕min{i,n−1}
l=max{i−n+1,0} al � bi−l for i = 0, ..., 2n −

2. Similarly, for a p × q matrix A and a q × r matrix B over the semi-ring,
their matrix product over the semi-ring is a p × r matrix C = (ci,j) such that
ci,j =

⊕q
m=1 ai,m � bm,j for 1 ≤ i ≤ p and 1 ≤ j ≤ r. In particular, for the

semi-rings (Z,+,×), (Z,min,+), (Z,max,+), and ({0, 1},∨,∧), we obtain the
arithmetic, (min,+), (max,+), and the Boolean convolutions or matrix products,
respectively.

We shall use the unit-cost RAM computational model with computer word
of length logarithmic in the maximum of the size of the input and the value of
the largest input integer.

For a positive integer r, we shall denote the set of positive integers not greater
than r by [r].

A witness for a non-zero entry ci,j of the Boolean matrix product C of a
Boolean p × q matrix A and a Boolean q × r matrix B is any index k ∈ [q] such
that ai,k and bk,j are equal to 1. Such a maximum index is the maximum witness
for ci,j while such a minimum index is the the minimum witness for ci,j . The
maximum witness problem (minimum witness problem, respectively) is to report
the maximum witness (minimum witness, respectively) for each non-zero entry
of the Boolean matrix product of the two input matrices.

For positive real numbers p, q, s, ω(p, q, s) denotes the smallest real num-
ber such that an np × nq matrix can be multiplied by nq × ns matrix using
O(nω(p,q,s)+ε) operations over the field of reals, for all ε > 0. For convenience, ω
stands for ω(1, 1, 1).

Fact 1. [10] The minimum witness problem and the maximum witness problem
for the Boolean matrix product of two Boolean n × n matrices can be solved in
O(n2+λ) time, where λ satisfies the equation ω(1, λ, 1) = 1 + 2λ. By currently
best bounds on ω(1, λ, 1), O(n2+λ) = O(n2.569).

The currently best bounds on ω(1, λ, 1) follow from a fact in [16] combined
with the recent improved estimations on the parameters ω = ω(1, 1, 1) and α,
see [14,15]. They yield an O(n2.569) upper bound on the running time of the
algorithm for minimum and maximum witnesses in [10] (originally, O(n2.575)).

The following fact is well known (cf. [12]).
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Fact 2. Let p and q be two n-dimensional integer vectors. The arithmetic con-
volution of p and q can be computed in Õ(n) time. Hence, also the Boolean
convolution of two n-dimensional vectors can be computed in Õ(n) time.

Let c = (c0, ..., c2n−2) be the Boolean convolution of two n-dimensional
Boolean vectors a and b. A witness of ci = 1 is any l ∈ [max{i − n +
1, 0},min{i, n − 1}] such that al ∧ bi−l = 1. A minimum witness (or maximum
witness) of ci = 1 is the smallest (or, the largest, respectively) witness of ci.
The minimum witness problem, or maximum witness problem for the Boolean
convolution of two n-dimensional Boolean vectors is to determine the minimum
witnesses or the maximum witnesses, respectively, for all non-zero entries of the
Boolean convolution of the vectors.

Fact 3. (Theorem 3.2 in [18]). The minimum witness problem (maximum wit-
ness problem, respectively) for the Boolean convolution of two n-dimensional
vectors can be solved in Õ(n1.5) time.

For a sequence s of integers, we shall denote the minimum number of mono-
tone subsequences into which s can be decomposed by mon(s).

Fact 4. [13,20]. A sequence s of n integers can be decomposed into O(mon(s)
log n) monotone subsequences in O(n1.5 log n) time.

Fact 5. (Theorem 3.2 in [8]). Let A and B be two n×n integer matrices, where
the entries of one of the matrices range over at most c different integers. The
(min,+) matrix product of A and B can be computed in O(cn2.688) time.

3 (min,+) Matrix Product

Consider two n × n integer matrices A and B. If we are given decompositions of
the rows of A and the columns of B into monotone subsequences such that either
all the subsequences are non-decreasing or all of them are non-increasing then
we can use the algorithm depicted in Fig. 1 in order to compute the (min,+)
matrix product of A and B. First, for all i, j ∈ [n], for each subsequence ao

i of
the i-th row of A and each subsequence br

j of the j-th column of B, we compute
the Boolean vectors char(ao

i ) and char(br
j) indicating with ones the entries of

the row and column covered by ao
i or br

j , respectively. Next, we form the Boolean
matrices Ao whose rows are the vectors char(ao

i ) and the Boolean matrices Br

whose columns are the vectors char(br
j). Then, depending if the subsequences are

non-decreasing or non-increasing, for each pair of matrices Ao, Br, we compute
either the minimum witnesses of the Boolean matrix product of Ao and Br

or the maximum witnesses of this Boolean product, respectively. We use the
extreme witnesses to update the current entries of the computed (min,+) matrix
product of A and B. The correctness of the reduction to extreme witnesses for
the Boolean matrix product of Ao and Br in the algorithm is implied by the
following observation.
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Fig. 1. An algorithm for computing the (min,+) product of two n×n integer matrices
A and B given with decompositions of all rows of A into ma subsequences and decom-
positions of all columns of B into mb subsequences such that either all the subsequences
are non-decreasing or all the subsequences are non-increasing.

Remark 1. Let A = (ai,j) and B = (bi,j) be two n × n integer matrices. Next,
let a′ be a subsequence of the sequence of entries in an i-th row of A and let b′

a subsequence of the sequence of entries in an j-th column of B. If a′ and b′ are
non-decreasing then if the set {ai,k + bk,j |k ∈ [n] ∧ ai,k ∈ a′ ∧ bk,j ∈ b′} is not
empty then the minimum sum in the set is achieved by the pair minimizing the
index k. Analogously, if a′ and b′ are non-increasing then the minimum sum is
achieved by the pair maximizing the index k.

Theorem 6. Let A = (ai,j) and B = (bi,j) be two n × n integer matrices.
Suppose that for each i, j ∈ [n], there is given a decomposition of the i-th row of
A into at most ma subsequences and a decomposition of the j-th column of B into
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at most mb subsequences, where either all the subsequences are non-decreasing
or all of them are non-increasing. Then, the (min,+) product of A and B can
be computed in O(mambn

2.569) time.

Proof. By Remark 1, the following condition holds: (*) if di,j 
= 0 in line
19 of the algorithm in Fig. 1 then min{ai,k + bk,j |k ∈ [n] ∧ char(ao

i )k =
1i ∧ char(br

j)k = 1} is equal to the first argument of the minimum in this line,
i.e., ai,wit(di,j) + bwit(di,j),j . Hence, none of the entries of the output matrix C
has a lower value than the corresponding entry of the (min,+) matrix product of
A and B. Conversely, if the i, j entry of the (min,+) matrix of A and B equals
ai,k + bk,j then there exist o, r such that ai,k ∈ ao

i and bk,j ∈ br
j , i.e., more

precisely char(ao
i )k = 1 and char(br

j)k = 1. Hence, again by (*) and line 19 in
the algorithm, the ci,j entry in the output matrix has value not larger than the
corresponding i, j entry of the (min,+) matrix product of A and B.

The time complexity of the algorithm is dominated by the mamb computa-
tions of minimum or maximum witnesses of the Boolean product of two Boolean
n × n matrices. Thus, by Fact 1 the algorithm runs in O(mambn

2.569) time. ��
Example 1. We shall assume the notation from our first algorithm. Suppose that
two input integer matrices A and B have size 6 × 6 and that each row of A can
be decomposed into at most 3 non-decreasing subsequences while each column
of B can be decomposed into at most 2 non-decreasing subsequences. Suppose
in particular that the fourth row a4 of A is (1, 7, 3, 9, 8, 4) while the fifth column
b5 of B is (5, 11, 2, 7, 13, 10). Then, it is easy to see that in the (min,+) product
(ci,j) of A and B, c4,5 = 5 holds. Note that a4 can be decomposed into three
following non-decreasing subsequences a1

4 = (1, , 3, , , 4), a2
4 = ( , 7, , , 8, ),

a3
4 = ( , , , 9, , ) while b5 can be decomposed into two non-decreasing subse-

quences b15 = (5, 11, , , 13, ) and b25 = ( , , 2, 7, , 10). Their characteristic Boolean
vectors are char(a1

4) = (1, 0, 1, 0, 0, 1), char(a2
4) = (0, 1, 0, 0, 1, 0), char(a3

4) =
(0, 0, 0, 1, 0, 0), and char(b15) = (1, 1, 0, 0, 1, 0), char(b25) = (0, 0, 1, 1, 0, 1), respec-
tively. For o ∈ [3] and r ∈ [2], the inner Boolean product of the vectors char(ao

4)
and char(br

5) yields the d4,5 entry of the Boolean matrix product of the Boolean
matrices Ao and Br in the algorithm. The minimum witness of the entry d4,5 is
1 for o = 1, r = 1, 3 for o = 1, r = 2, 2 for o = 2, r = 1, and 4 for o = 3, r = 2,
respectively. For the other combinations of o and r, it is undefined. Hence, c4,5

is computed as the minimum of 1 + 5, 3 + 2, 7 + 11, 9 + 7 which is 5 as required.

We shall call a sequence of integers uniform if all its elements have the same
value.

A uniform subsequence of a matrix row or column covering all entries in
the row or column having the same fixed value is both non-increasing and non-
decreasing. If the entries in the row or column can have at most c different
values then the row or column can be easily decomposed into at most c uniform
subsequences. Hence, if the entries in rows or columns of one of the input matrices
range over relatively few different integers then it is sufficient to decompose the
rows or columns of the other matrix into relatively few monotone subsequences in
order to obtain relatively efficient algorithm for the (min,+) matrix product. The
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aforementioned subsequences do not have to be simultaneously non-decreasing
or non-increasing as the counterpart subsequences in the first matrix are uniform
and hence are both non-decreasing and non-increasing.

Remark 2. Let A = (ai,j) and B = (bi,j) be two n × n integer matrices. Next,
let a′ be a subsequence of the sequence of entries in an i-th row of A and let b′

a uniform subsequence of the sequence of entries in an j-th column of B. If a′

is non-decreasing and the set {ai,k + bk,j |k ∈ [n] ∧ ai,k ∈ a′ ∧ bk,j ∈ b′} is not
empty then the minimum sum in the set is achieved by the pair minimizing the
index k. Analogously, if a′ is non-increasing then the minimum sum is achieved
by the pair maximizing the index k.

Remark 2 yields our second algorithm for the (min,+) product described in
the following theorem. For the algorithm and the proof of the theorem the reader
is referred to the full version [17].

Theorem 7. Let A = (ai,j) and B = (bi,j) be two n × n integer matrices.
Suppose that at least one of the two following conditions holds:

1. the entries in each column of B range over at most c integers and for each
i ∈ [n], there is given a decomposition of the i-th row of A into at most m
monotone subsequences;

2. the entries in each row of A range over at most c integers and for each
j ∈ [n], there is given a decomposition of the j-th column of B into at most
m monotone subsequences,

Then, the (min,+) product of A and B can be computed in O(mcn2.569) time.

Clearly, if the entries in each row of A range over at most ca different integers
and the entries in each column of B range over at most cb different integers then
the (min,+) product can be computed in O(cacbn

ω) time by reduction to cacb

Boolean matrix products.
Recall that for an integer sequence s, mon(s) denotes the minimum number

of monotone subsequences into which s can be decomposed. By Fact 4, we obtain
immediately the following corollary from Theorem 7.

Corollary 1. Let A and B be two n × n integer matrices. Let m1 be the max-
imum of mon(d) over all sequences d formed by consecutive entries in the rows
of A and let m2 be the maximum of mon(d) over all sequences d formed by con-
secutive entries in the columns of B. If the entries in each row of A range over
at most ca different integers then the (min,+) matrix product of A and B can be
computed in O(m2can2.569 log n) time. Similarly, if the entries in each column
of B range over at most cb different integers than the product can be computed
in O(m1cbn

2.569 log n) time.

Note that when m1 or m2 does not exceed n0.119 then the upper bound of
Corollary 1 subsumes that of Fact 5.

Finally, we demonstrate that the case when the rows of the first matrix are
non-decreasing and the columns of the second matrix are non-increasing or vice
versa is as hard as the general case.
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Theorem 8. The problem of computing the (min,+) matrix product of two n×n
integer matrices A = (ai,j) and B = (bi,j), where for i ∈ [n], the rows ai,1, ..., ai,n

of A are non-decreasing and the columns b1,j , ..., bn,j of B are non-increasing or
vice versa is equally hard as computing the product for arbitrary n × n integer
matrices.

Proof. Let M be the maximum absolute value of an entry in the matrices A, B.
Transform the matrix A to a matrix A′ by setting a′

i,k = ai,k+2kM for i, k ∈ [n].
Observe that each row in A′ is non-decreasing. Similarly, define the matrix B′

by setting b′
k,j = bk,j − 2kM for j, k ∈ [n]. Similarly observe that each column

of B′ is non-increasing. Now, consider the (min,+) matrix products C = (ci,j)
of A, B and C ′ = (c′

i,j) of A′, B′. For i, j ∈ [n], we have

c′
i,j = min{(ai,k + 2kM) + (bk,j − 2kM)|k ∈ [n]} = ci,j .

The proof for the case where the rows of the first matrix are non-increasing and
the columns of the second matrix are non-decreasing is symmetric. ��
We summarize our results on the (min,+) matrix product in Table 1.

4 (min,+) Convolution

If we are given decompositions of the two input n-dimensional vectors a and b
into monotone subsequences such that either all the subsequences of a are non-
decreasing and all the subsequences of b are non-increasing or vice versa then
we can use the algorithm depicted in Fig. 2 in order to compute the (min,+)
convolution of a and b. First, for each subsequence ai of a and each subsequence
bj of b, we compute the Boolean vectors char(ai) and char(bj) indicating with
ones the coordinates of a or b covered by ai or bj , respectively. Next, depending
if the subsequences are non-decreasing and non-increasing, respectively, or vice
versa, for each pair of such subsequences ai and bj , we compute the minimum
witnesses of the Boolean convolution of char(ai) and char(bj) or the maximum
witnesses of this Boolean convolution, respectively. We use the extreme witnesses
to update the current coordinates of the computed (min,+) convolution. The
correctness of the reduction to extreme witnesses of the Boolean convolution of
char(ai) and char(bj) in the algorithm is implied by the following observation.

Remark 3. Let a = (a0, ..., an−1) and b = (b0, ..., bn−1) be two n-dimensional
integer vectors. Next, let a′ be a subsequence of a0, ..., an−1 and let b′ be a
subsequence of b0, ..., bn−1. For each k ∈ {0, ..., 2n − 2}, if a′ is non-decreasing
and b′ non-increasing then if the set {a� + bk−�|a� ∈ a′ ∧ bk−� ∈ b′} is not empty
then the minimum sum in the set is achieved by a pair minimizing the index
� (thus maximizing k − �). Analogously, if a′ is non-increasing and b′ is non-
decreasing then the minimum sum is achieved by a pair maximizing the index �
(thus, minimizing the index k − �).

Hence, we obtain the following theorem, correcting Theorem 3.7 in [18].
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Fig. 2. An algorithm for computing the (min,+) convolution c of two n-dimensional
integer vectors a and b given with their decompositions into ma and mb subsequences
respectively such that either all the subsequences of a are non-decreasing and all the
subsequences of b are non-increasing or vice versa.

Theorem 9. Let a and b be two n-dimensional integer vectors given with the
decompositions of the sequences of their consecutive coordinates into ma and mb

monotone subsequences respectively such that either all the subsequences of a are
non-decreasing and all the subsequences of b are non-increasing or vice versa.
The algorithm depicted in Fig. 2 computes the (min,+) convolution of a and b
in Õ(mambn

1.5) time.

Proof. The proof of the correctness of the algorithm depicted in Fig. 2 is analo-
gous to that of the correctness of the algorithm depicted in Fig. 1. In particular,
we obtain the following implication from Remark 3: (***) if dk 
= 0 in line 12 of
the algorithm in Fig. 2 then min{a� + bk−�|char(ai)� = 1 ∧ char(bj)k−� = 1} is
equal to the first argument of the minimum in this line, i.e., awit(dk)+bk−wit(dk).
Hence, none of the coordinates of the output vector has a lower value than the
corresponding coordinate of the (min,+) convolution of a and b. Conversely, if
the k coordinate of the (min,+) convolution of a and b equals a� + bk−� then
there exists i, j such that char(ai)� = 1 and char(bj)k−� = 1. Hence, again by



(min,+) Matrix and Vector Products 65

(***) and line 12 in the algorithm, the ck coordinate in the output vector has
value not larger than the corresponding coordinate of the (min,+) convolution
of a and b.

The time complexity analysis of the algorithm in Fig. 2 is also similar to that
of the algorithm in Fig. 1. It is dominated by the mamb runs of the Õ(n1.5)-
time algorithm for the extreme witnesses of the Boolean convolution of two
n-dimensional Boolean vectors given in Fact 3. ��
Example 2. We shall assume the notation from the first algorithm in this
section. Suppose that a = (a0, ..., a5) = (1, 7, 3, 9, 8, 4) and b = (b0, ..., b5) =
(13, 7, 11, 5, 10, 12). Then, it is easy to see that in the (min,+) vector convolu-
tion (c0, ..., c10) of a and b, in particular c4 = min{a0 + b4, a1 + b3, a2 + b2, a3 +
b1, a4 + b0} = 11 holds. Similarly as in Example 1, a can be decomposed into
three non-decreasing subsequences a1 = (1, , 3, , , 4), a2 = ( , 7, , , 8, ), a3 =
( , , , 9, , ). On the other hand, b can be decomposed into two non-increasing
subsequences b1 = (13, , 11, , 10, ) and b2 = ( , 7, , 5, , 2). Their correspond-
ing characteristic Boolean vectors are char(a1) = (1, 0, 1, 0, 0, 1), char(a2) =
(0, 1, 0, 0, 1, 0), char(a3) = (0, 0, 0, 1, 0, 0), and char(b1) = (1, 0, 1, 0, 1, 0),
char(b2) = (0, 1, 0, 1, 0, 1), respectively. The minimum witness of the entry d4
in the Boolean vector convolution (d0, ..., d10) of char(bi) and char(bj) is 0 for
i = 1, j = 1, 4 for i = 2, j = 1, 1 for i = 2, j = 2, and 3 for i = 3, j = 2,
respectively. For the other combinations of i ∈ [3] and j ∈ [2], it is undefined.
Hence, c4 is computed as the minimum of 1 + 10, 8 + 13, 7 + 5, 9 + 7 which is 11
as required.

When the consecutive coordinates of the two input n-dimensional integer vectors
are simultaneously non-decreasing or non-increasing the problem of computing
the their (min,+) convolution appears to be as hard as in the general case [6].

Fact 10. [6] The problem of computing the (min,+) convolution of two integer
vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1, ), where the sequences a0, ..., an−1

and b0, ..., bn−1 are both non-decreasing or both non-increasing, is equally hard
as computing the convolution for arbitrary n-dimensional integer vectors.

Proof. Let M be the maximum absolute value of a coordinate in the a, b vec-
tors. Transform the vectors a, b into vectors a′, b′ by setting a′

i = ai +2iM and
b′
i = bi + 2iM for i = 0, ..., n − 1. Observe that both sequences a′

0, ..., a
′
n−1

and b′
0, ..., b

′
n−1 are non-decreasing. Consider the (min,+) convolutions c =

(c0, ..., c2n−2) of the vectors a, b and c′ = (c′
0, ..., c

′
2n−2) of the vectors a′, b′.

For k = 0, ..., 2n − 2, we have

c′
k = min{(a� +2�M)+(bk−� +2(k−�)M)|� ∈ [max{k−n+1, 0},min{k, n−1}]}

= ck + 2kM.

Analogously, we can reduce the problem of computing the convolution of two
arbitrary n-dimensional integer vectors to that where both input vectors form
non-increasing sequences by using the transformation a′′

i = ai − 2iM and b′′
i =

bi − 2iM for i = 0, ..., n − 1. ��
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When the entries of one of the input n-dimensional integer vectors range over
a relatively few distinct integers then following the general idea of the proof
of Lemma 2.1 in [7], we can proceed as follows. First, we can decompose the
sequence of consecutive coordinates of the aforementioned vector into a rela-
tively few uniform subsequences. Then, we can sort the coordinates of the other
vector and divide the sorted sequence into interval groups of almost equal size.
Next, we can run Boolean vector convolution on pairs composed of characteristic
Boolean vectors covering with ones a group of the other vector and a uniform
subsequence of the first vector, respectively. Further, using the results of the
Boolean convolutions, for a fixed uniform subsequence, for k = 0, ..., 2n − 2, we
can find the group with the smallest index containing an element whose mate
belongs to the uniform subsequence. By brute-force search in the group, we can
find a smallest element having a mate in the uniform subsequence in order to
update the computed k coordinate of the (min,+) convolution. The algorithm
is described in the full version [17]. Its correctness is implied by the following
observation based on the sorted order of the groups of the other vector and the
uniformity of considered subsequences of the first vector.

Remark 4. Let a = (a0, ..., an−1) and b = (b0, ..., bn−1) be two n-dimensional
integer vectors. Next, let a0, ..., an−1 be divided into subsequences gi such that
no element in gi is greater that any element in gi+1 for i = 1, 2, ... Suppose
that b′ is a uniform subsequence of b0, ..., bn−1. Then, for k = 0, ..., 2n − 2,
min{aq + bk−q|bk−q ∈ b′} is equal to min{aq + bk−q|aq ∈ gm ∧ bk−q ∈ b′}, where
m is the minimum i such that there is aq ∈ gi for which bk−q ∈ b′.

We obtain the following generalization of Lemma 2.1 in [7], for its proof see
the full version [17].

Theorem 11. Let a and b be two n-dimensional integer vectors. Suppose that
the entries of a or the entries of b range over at most h distinct integers. The
(min,+) convolution of a and b can be computed in Õ(hn1.5) time.

Because of the correction of Theorem 3.7 from [18] and Theorem 11, several
entries in Table 1 in [18] need to be updated. Table 2 presents the updated version
of the table.

Acknowledgments. Thanks go to Alejandro Cassis for pointing the flaw in the state-
ment of Theorem 3.7 in [18], providing Fact 10, and suggesting Theorem 11. This
research was partially supported by Swedish Research Council grant 2018-04001.
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Abstract. In 2011, Biro et al. [4] initiated the concept of beacon attrac-
tion trajectory motivated by routing messages in sensor network systems.
Let P be a polygonal region such that there is a point particle at each
point in P . When we activate a beacon at a point b ∈ P , each particle in
P greedily moves toward b. For a point p ∈ P , if the particle at p reaches
b, we say b attracts p. We call a point b ∈ P a beacon kernel point of
P if a beacon at b attracts all points in P . The beacon kernel of P is
defined as the set of all beacon kernel points of P . In 2013 [3] Biro pre-
sented a naive quadratic time algorithm to compute the beacon kernel of
polygonal domains and showed that this bound is tight. But, obtaining a
sub-quadratic time algorithm for computing the beacon kernel of simple
polygons remained open. In this paper, we answer to this open problem
by presenting an O(n1.5 log2 n) time algorithm for computing the beacon
kernel of simple polygons.

1 Introduction

Studying the behaviour of point particles in a polygonal region under the influ-
ence of an attraction actuator, called beacon, is an active area in computa-
tional geometry due to its applications in several computer science branches
such as robot motion planning and network systems [1,10,11]. The problem first
appeared in the context of sensor network systems in early 2000s [10]. Consider
a network of sensors in a polygonal region P that gather information and send it
to a destination point (base) b in the region. Each sensor has a range such that
it only can pass a message to the sensors within its range (we call these sensors
neighbor sensors). Greedy routing protocol is widely used in such circumstances
as each sensor only needs to know the location of itself, the base and its neighbor
sensors. Specifically, each sensor passes its message to the neighbor sensor that
is closest to b (if all the neighbor sensors are farther to b than itself the sensor
does not pass its message). Two main problems can arise here. The first problem
is determining the sensors that can successfully send their messages to the base
using the above greedy protocol and the other is determining the locations for a
base such that all sensors can successfully send their information to the base. If
we assume that P is uniformly filled with sensors and the range of each sensor
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 69–81, 2024.
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is infinitely small, then for each pair of points (p, b) in P , we can assign a path
inside P that indicates the trajectory of a message that a sensor at p tries to
send to b. Note that p can successfully send its message to b if and only if this
path ends up at b.

In general, we use the beacon/particle terminology to model such problems.
In this terminology, beacons and particles are pointwise objects which means at
each time they can reside in only one point of P . We assume that initially there
is a particle at each point in P and beacon is an attraction actuator that exerts
magnetic pull on the particles. Without any confusion, when we say a point p in
P , based on the context, we either refer to the location p in the polygon or the
particle that initially resides at p. When we activate a beacon at a point b ∈ P ,
the particles inside P greedily move toward b (we assume that the particles do
not interact with each other). Specifically, consider the particle initially resides
at a point p ∈ P . At each time, the particle moves in a direction that maximizes
the reduction of its distance from b while it remains inside the polygon. If the
particle reaches b or such a direction does not exist, the particle stands still. In
the first case, we say b attracts p. The attraction region of b denoted by A(b) is
defined as the set of points in P that can get attracted by b. For a point p ∈ P ,
the inverse attraction region of p is {b ∈ P : p ∈ A(b)}. b ∈ P is called a (beacon)
kernel point of P if it attracts all points in P (A(b) = P ). The (beacon) kernel
of P is defined as the set of all kernel points of P and is denoted by Ker(P ).
Figure 1, depicts an example of Ker(P ) which as we can see, it may not form a
connected region.

Fig. 1. Ker(P ) is shown as the green regions. DW (v) is showed in gray. C is a chord
that divides P into two sub-polygons P1(C) and P2(C). (Color figure online)

1.1 Previous Works

The concept of beacon attraction trajectory was first introduced by Biro et
al. in 2011 [3,5] as a framework to address problems involving greedy routing
toward a destination point in polygonal regions. A polygonal region is called a
simple polygon when it has no hole and its boundary does not intersect itself.
They gave an O(n) (resp. O(nh)) time algorithm for computing the attraction
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region of a point b ∈ P when P is a simple polygon with n vertices (resp. a
polygonal domain with n vertices and h holes). They also proposed an O(n2)
time algorithm for computing the inverse attraction region of a given point p
in polygonal domains. In addition, they proposed a naive O(n2) time algorithm
for computing the beacon kernel of polygonal domains. They showed that for
polygonal domains, the kernel might have quadratic number of vertices but for
simple polygons, this bound is linear [3]. Since then, obtaining a sub-quadratic
time algorithm for computing the bacon kernel of simple polygons remained
as an open problem. In 2015, Kouhestani et al. presented an O(n log n) (resp.
O(n)) time algorithm for computing the inverse attraction region of a point
in monotone polygons (resp. polygonal terrains) [13]. In 2018, Kostitsyna et
al. obtained an O(n log n) time algorithm for computing the inverse attraction
region of a point in simple polygons and showed that this bound is optimal
[12]. In 2019, Bae et al. [2] studied rectilinear polygons and showed that �n

6 �
(resp. �n+4

8 �) beacons are always sufficient and sometimes necessary to attract
any point in simple (resp. monotone) rectilinear polygons. They also showed
that the beacon kernel of rectilinear polygons can be computed in linear time.
In [6] Bose and Shermer introduced the concept of attraction-convex polygons.
A polygon P is called attraction-convex if any point b ∈ P can attract any point
p ∈ P (P = Ker(P )). They provided a linear time algorithm to detect whether
a simple polygon is attraction-convex.

Despite recent studies on various problems regarding beacon based trajectory
of points in polygonal regions, it is still unknown whether the beacon kernel of
simple polygons can be computed in sub-quadratic time. Let us call this problem
the beacon kernel problem (BKP). In this paper, we address this problem by
providing the first sub-quadratic time algorithm to solve the BKP.

2 Preliminaries

Let us assume that P is a given simple polygon with n vertices and (p, b) is a
pair of points in P where we have a beacon at b. Also, let �pb be the unit vector
from p toward b. We call a unit vector �z a greedy direction of p with respect to
b if:

1. �z (located at p) points toward the inside of P (including its boundary).
2. �z · �pb > 0 (inner product of two vectors).
3. �z · �pb is maximum over all unit vectors satisfying the first two conditions.

If a point d ∈ P does not have a greedy direction with respect to b, we call d
a dead point of P with respect to b. Note that if p is a vertex of P , p might
have more than one greedy direction with respect to b. We call a path τ in P an
attraction path of p with respect to b if it starts at p and at each point x ∈ τ , the
path continues along a greedy direction of x with respect to b. We say b attracts
p if there is an attraction path of p with respect to b that ends at b.

Observation 1. If b attracts p, the attraction path of p (with respect to b) that
ends at b is unique.
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This follows from the fact that if two attraction paths from p ends at b, P
must have a hole enclosed by the paths that contradicts the simplicity of P .
Henceforth, if b attracts p, we consider the attraction path of p (with respect to
b) as the one that ends at b. In Fig. 1, the attraction path from p with respect
to b is depicted by the red dashed line segments.

Let τ be a path in P starting from a point p. For two points x1 and x2 in τ , let
us denote the distance between x1 and x2 along τ by dτ (x1, x2). We say x1 < x2

if dτ (p, x1) < dτ (p, x2). We say τ is a distance decreasing path with respect to b
if and only if for any two points {x1, x2} ∈ τ if x1 < x2 then d(x1, b) > d(x2, b)
where d(x1, b) (similarly d(x2, b)) is the Euclidean distance between x1 and b.
Based on the definition of an attraction path, we have the following observation:

Observation 2. Any attraction path of p with respect to b is distance decreasing.

Therefore, if there is no distance decreasing path from p to b, then b can not
attract p. A chord C of P is defined as a line segment such that its endpoints lie
on ∂P (the boundary of P ) and its interior completely lies in the interior of P .
C divides P into two sub-polygons. We denote these sub-polygons by P1(C) and
P2(C) (see Fig. 1). For a reflex vertex v with incident edges e1 and e2, consider the
two half-planes H1(v) and H2(v) induced by the lines perpendicular to sup(e1)
(the supporting line of e1) and sup(e2) at v containing e1 and e2 respectively. The
dead wedge of v is defined as the interior of the cone induced by H1(v) ∩ H2(v)
and is denoted by DW (v). Also, we define the perpendicular extensions (for
short extensions) of v as the two half-lines from v perpendicular to e1 and e2
respectively enclosing DW (v). See Fig. 1 for an example of H1(v), DW (v) and
the extensions of v.

Observation 3 [3]. If a beacon lies on DW (v), it can not be a kernel point.

For example, in Fig. 1, the point b′ ∈ DW (v) can not be a kernel point because
it can not attract the points in the interior of e1. Indeed, the above observation
not only gives us a necessary condition for a point to be a kernel point but also
gives us a sufficient condition:

Theorem 1. A point b ∈ P is a kernel point if and only if it is not contained
in the dead wedge of any reflex vertex of P .

The proof of the above theorem can be found in [3]. In order to simplify our
algorithm, we assume that all given points are in general position by which we
mean no three points are collinear. First, we consider the discrete beacon kernel
problem (DBKP) and provide a sub-quadratic time algorithm to solve it. Next,
we use our algorithm for solving the DBKP to obtain a sub-quadratic time
algorithm for the BKP.
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3 The Discrete Beacon Kernel Problem

Let P be a given simple polygon with n vertices and X be a given set on m
points in P . In the DBKP, we want to find out which points from X are kernel
points for P . The idea for solving the DBKP is applying Theorem 1 to the points
in X to see which points survive from all reflex vertices of P (not lying in the
dead wedge of any reflex vertex). For a reflex vertex v, we say x is eliminated by
v if x lies in DW (v). In order to compute the points in X that are eliminated
by at least one reflex vertex, we use the following theorem from Matoušek [14]:

Theorem 2. For a given set of m points in R
2, one can preprocess it in

O(m1+δ) time and O(m) space for simplex range searching such that each query
can be answered in O(m0.5 log m) time1.

Here, δ > 0 is an arbitrary fixed number. The idea behind Theorem 2 is recur-
sively building a simplicial partition (partitioning of the plane into a set of
simplices each simplex contains a suitable number of points) to form a partition
tree T with O(log m) height. When a query simplex Q is given, we start from
the root of T and in each internal node of the tree, we proceed into the chil-
dren whose corresponding regions crosses Q (has non-empty intersection with
both inside and outside of Q). Therefore, according to the above theorem, by
spending O(m1+δ) time for preprocessing, we can specify the points in X elim-
inated by a given reflex vertex in O(m0.5 log m) time described as an union
of simplices containing the eliminated points (we do not need to report the
points here). We can modify this data structure to detect the points lying in
{∪DW (v) : v is a reflex vertex of P} as follows: after preprocessing and build-
ing the partition tree, we query each DW (v) where v is a reflex vertex. But,
when a simplex is completely lies in DW (v), we mark it as eliminated. After
querying all dead wedges, for each point x ∈ X , we perform a point location to
find the leaf simplex (a simplex corresponding to a leaf-node of T ) containing
it. Next, we traverse T from the corresponding leaf-node to the root and if we
see any marked simplex, we report x as eliminated. Based on Theorem 1, the
points of X that do not get eliminated are the kernel points. Because the height
of T is O(log m), this step can be done in O(m log m) time.

Theorem 3. The discrete beacon kernel problem can be solved in O(m log m +
nm0.5 log m) time.

4 The Beacon Kernel Problem

Our general framework to solve the BKP is as follows: we first introduce a data
structure for P called the split decomposition tree (SDT) similar to the polygon-
cutting decomposition of Chazelle [7]. Next, we use the SDT to build a set of
candidate points K for the vertices of Ker(P ) and store them in an appropriate

1 In the original paper, this time complexity is O(m0.52O(log∗ m)). For the sake of
simplicity, here we use O(m0.5 log m).
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partial order. Finally, we run our algorithm for solving the DBKP on K to obtain
a set of kernel point K∗. We show that the points of K∗ are indeed the vertices
of Ker(P ). Using K∗ and the partial order on it, we can construct Ker(P ).

4.1 The Split Decomposition Tree of P

We start by computing a triangulation Δ of P and its dual graph TΔ. The
triangulation of P can be done in linear time using Chazelle’s polygon trian-
gulation algorithm [8]. TΔ is a graph for which there is a node corresponding
to each triangle in Δ and two nodes in TΔ are connected by an edge if their
corresponding triangles share an edge. Note that because P is simple, TΔ is a
tree (this is because we can always embed TΔ in P such that each node of TΔ

lies in its corresponding triangle in Δ). We can see that each subtree T ⊆ TΔ

corresponds to a connected region in P which is obtained by the union of the
triangles corresponding to the nodes in T . The centroid of TΔ is defined as a
node for which by removing it (and its incident edges) from TΔ, the maximum
size of each connected component is minimum. Therefore, the size of each con-
nected component of the remaining graph is at most �|TΔ|/2	. Note that because
the degree of each node of TΔ is at most three, by removing a node, we would
have at most three connected components. In order to avoid confusion in our
algorithm, we always assume that the trees are rooted and if there are multiple
choices for selecting a centroid, we choose the one closest to the root. Based on
this assumption, the centroid of TΔ (and each of its subtrees) is unique and can
be computed in linear time [15]. Suppose that |TΔ| > 2 (|TΔ| is the number of
nodes in TΔ) and c is the centroid of TΔ. Also, suppose that c has degree three
(resp. two) and {T1, T2, T3} (resp. {T1, T2}) are the subtrees of TΔ emanating
from removing c from TΔ such that T1 has the greatest size. We say two subtrees
{S1, S2} are obtained from splitting TΔ over c if S1 = T1 and S2 is the join of
T2 and T3 by c (resp. S2 = T2 ∪ {c}). Based on the definition of centroid, we
have |S1| ≥ |TΔ|/3 and |S2| ≤ 2|TΔ|/3.

Next, we build a data structure called the split decomposition tree for TΔ

denoted by SDT (TΔ) which is a binary tree such that each of its nodes corre-
sponds to a subtree of TΔ. We build SDT (TΔ) recursively by splitting the sub-
trees of TΔ over their centroids starting from TΔ. For each node ω ∈ SDT (TΔ),
let us denote the sub-polygon of P corresponding to its subtree by P (ω). If ω
is an internal node with two children ω1 and ω2, we call the chord separating
P (ω1) and P (ω2), the chord corresponding to ω and we store it in ω.

Proposition 1. SDT (TΔ) can be constructed in O(n log n) time.

This is because the height of SDT (TΔ) is O(log n) and the subtrees in each level
of SDT (TΔ) are disjoint. Let C be the set of all chords corresponding to the
internal nodes of SDT (TΔ). Note that because SDT (TΔ) has linear number of
nodes, the number of chords in C is also linear. For a node ω ∈ SDT (TΔ), we
say ω contains p if p ∈ P (ω). Let L(v) be the set of leaf-nodes of SDT (TΔ)
containing a vertex v, then we have:
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∑

v is a vertex

∑

P ′∈sub-polygons of L(v)

|P ′| = O(n) (1)

where |P ′| is the number of vertices in P ′. This is because we have O(n) leaf-
node sub-polygons in P and each of these sub-polygons contains O(1) number
of vertices. We say a chord C separates a point p from a vertex v if p ∈ P1(C)
and v ∈ P2(C) or vice versa. Now, for a vertex v, let Cv ⊆ C be the set of chords
corresponding to the nodes in SDT (TΔ) on the path(s) from the root to the leafs
in L(v). Here, the construction of SDT (TΔ) implies the following proposition:

Proposition 2. For any point p and any vertex v of P (except possibly an O(1)
number of vertices), a chord in Cv separates p from v.

Note that based on our definition, if p lies on a chord, the chord separates it
from all vertices in the polygon.

4.2 Computing Candidate Kernel Points

According to Theorem 1, each vertex of Ker(P ) (other than a vertex of P ) is
either the intersection of two extensions or the intersection of an extension and
an edge of P . Using this property, we build a set K of candidate points such that
if κ is a vertex of Ker(P ) then κ ∈ K. In order to build K, we consider each pair
(w,Ew) where w is a vertex of P and Ew is an extension (if w is a reflex vertex)
or an edge incident to w. We compute a set K(Ew) of candidate points on Ew

such that:

K =
⋃

w is a vertex of P

{K(Ew) : Ew is an extension or an edge incident to w}

Note that if κ is a vertex of Ker(P ) on Ew such that κ /∈ K(Ew), then κ should
be the intersection of Ew and Ev for some vertex v and κ ∈ K(Ev). Also, we
store the points in K(Ew) in sorted order based on their distances to w. Suppose
that a pair (w,Ew) is given and we are going to compute K(Ew). In order to do
that, we provide an algorithm to compute the candidates on Ew with respect to
a given chord C denoted by KC(Ew). Then, we show that how we can use this
algorithm to build K(Ew). In the following, we discuss this approach in detail.

Let us assume that C is a given chord with two induced sub-polygons P1(C)
and P2(C) such that w ∈ P2(C) (the case w ∈ P1(C) is symmetrical). We build
KC(Ew) as a set of points with constant size such that if κ ∈ P2(C) is a vertex
of Ker(P ) obtained by the intersection of Ew and an extension of a reflex vertex
in P1(C), then κ ∈ KC(Ew). In order to build KC(Ew), we introduce two types
of partitions. One is with respect to the given chord C and we call it the C-
partition. The other is with respect to a reflex vertex v ∈ P1(C) which is called
the v-partition. In the following, we define these two types of partitions.

The C-Partition for P2(C): Suppose that C is horizontal such that P1(C)
lies below C (in the neighborhood of C). We first compute all chords of P2(C)
induced by sup(C). Next, we modify the triangulation Δ on P2(C) such that each
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of these new chords becomes an edge of the triangulation. We denote this new
triangulation for P2(C) by Δ2(C). According to [16], Δ2(C) can be computed
in O(|P2(C)|) time. Let T2(C) be the dual graph of Δ2(C) rooted at a node ρ
corresponding to the triangle incident to C. For a node ν ∈ T2(C), we say ν
crosses sup(C) from left (resp. right), if the sequence of triangles corresponding
to the path from ρ to ν crosses (by the first time) sup(C) from the left (resp.
right) side of C. If the path does not cross sup(C) we say ν does not cross
sup(C). The C-partition of P2(C) is defined as the following three regions (See
Fig. 2(a)):

1. Pup
2 (C) is the union of the triangles corresponding to the nodes that do not

cross sup(C).

2. P left
2 (C) (resp. P right

2 (C)) is the union of triangles corresponding to the nodes
that cross sup(C) from the left (resp. right) side of C.

The v-Partition of P : Suppose that v is a reflex vertex such that {e1, e2}
are its incident edges. Also, let Ce1 and Ce2 be the two chords from v along
sup(e1) and sub(e2). These chords divides P into three sub-polygons. Let us
denote the sub-polygon containing e1 (resp. e2) by S(e1) (resp. S(e2)). Also, we
call the sub-polygon containing neither of e1 and e2, the sub-polygon in front of
v denoted by S(v) (see Fig. 2(b)).

Fig. 2. (a) The C-partition of P2(C) (b) the v-partition of P .

We recall that the half-plane containing e1 (resp. e2) with the boundary
passing v and perpendicular to e1 (resp. e2) is denoted by H1(v) (resp. H2(v)).
Let us denote the half-lines from v containing Ce1 and Ce2 by C̄e1 and C̄e2

respectively. Also, for a point b and an edge e, we denote the perpendicular
projection of b on sup(e) by hb(e).

Lemma 1. For any reflex vertex v ∈ P1(C) with incident edges e1 and e2, we
have:

1. If b is a point in the interior of H1(v) (resp. H2(v)), then there is no attraction
path from a point in the interior of e1 ∩ [v, hb(e1)] (resp. e2 ∩ [v, hb(e2)]) to b.

2. For a point b ∈ S(v), if b ∈ DW (v), then there is a reflex vertex v′ �= v such
that b ∈ DW (v′).
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Proof. 1) Suppose that b is a beacon in H1(v) and t is a point in the interior of
e1 ∩ [v, hb(e1)] (the case for e2 is similar). Note that t exists because b ∈ H1(v)
as in Fig. 3 (a). Also, suppose that there is an attraction path πt from t to b that
passes C̄e1 at a point x. But in this case, d(b, t) < d(b, x) which means πt is not
a distance decreasing path with respect to b that contradicts Observation 2.

2) Suppose that b ∈ DW (v) and B is the visible portion of ∂P from b
(as in Fig. 3 (b)). Note that the points on B can directly get attracted by b.
Let us assume that the sequence of triangles corresponding to the path in TΔ

between the two nodes containing v and b enters DW (v) by passing the extension
perpendicular to e2 as in Fig. 3 (b) (the other case is similar). Let γ = vb′ (b′ is
an endpoint of B) be the portion of ∂P from v to B starting with e1. Because
b ∈ S(v), γ intersects C̄e2 after leaving v. This implies that γ can not be distance
decreasing with respect to b (because of the right angle between C̄e2 and the
extension of v perpendicular to e2). Therefore, there must be the last (from b′)
vertex v′ ∈ γ such that v′b′ is distance decreasing but this happens only when
b ∈ DW (v′). �

Fig. 3. In this figure, the dashed black curves represent any combination of vertices.
In (a), b can not attract t by a path passing C̄e1 and in (b), b lies in the dead wedge
of v′ because the points of ∂P around v′ go into different directions by activating a
beacon at b.

Note that in the above proof dγ(v′, b′) < dγ(v, b′). Suppose that R is a region
of the C-partition of P2(C). Here, we show that each reflex vertex v ∈ P1(C) can
generate at most one half-plane HR(v) called the eliminating half-plane of v on
R such that for any point b ∈ R, if b ∈ HR(v), then b can not be a kernel point.
Furthermore, if b /∈ HR(v), b can not be eliminated by v. Based on the part 1 of
Lemma 1, if P2(C) ⊆ S(e1) (resp. P2(C) ⊆ S(e2)), then H2(v) (resp. H1(v)) is
the eliminating half-plane of v on each region of the C-partition of P2(C). On
the other hand, based on the part 2 of the lemma, if P2(C) contained in S(v),
then v does not need to generate any eliminating half-plane on P2(C) (because
all points in P2(C)∩DW (v) also gets eliminated by another reflex vertices along
∂P ). Therefore, we only need to care about the case where C intersects Ce1 or
Ce2 (or both).
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Observation 4. If C intersects Ce1 or Ce2 , then at most one extension of v
can intersect sup(C).

The reason is that the extensions of v make right angles with Ce1 and Ce2 . For
Pup
2 (C), if none of the extensions of v intersect sup(C), Pup

2 (C) ∩ DW (v) = ∅
and so, v does not generate an eliminating half-plane for Pup

2 (C). Otherwise, if
the extension of v perpendicular to e1 (resp. for e2) intersects C, H1(v) (resp.
H2(v)) would be the eliminating half-plane for Pup

2 (C). Note that in this case,
Observation 4 implies that the intersection of Pup

2 (C) and this eliminating half-
plane lies in DW (v) and therefore, the eliminating half-plane correctly eliminates
the points of Pup

2 (C) in it.
For P left

2 (C) (P right
2 (C) is symmetrical), suppose that z is the left vertex

of C. If z lies in the sub-polygon in front of v, then P left
2 (C) is a subset of

S(v) and therefore, v does not need to generate any eliminating half-plane on
P left
2 (C) (part 2 of Lemma 1). Now, suppose that z ∈ S(e2) (the case z ∈ S(e1)

is symmetrical). Then, if b ∈ H1(v) ∩ P left
2 (C), any path from t (a point in the

interior of e1) to b should pass C̄e1 (see Fig. 3 (a)). Therefore, by the part 1 of
Lemma 1, H1(v) would be the eliminating half-plane for P left

2 (C). Using the
algorithm of Chazelle et al. in [9], by spending O(n log n) time for preprocessing
P , we can compute the emanating chords of each reflex vertex in O(log n) time.
Therefore, we can compute all eliminating half-planes of the reflex vertices in
P1(C) on the regions of the C-partition in O(|P1(C)| log n) time. Finally, for
each of these regions, we compute the union of the eliminating half-planes. Let
us denote the polygonal chains corresponding to the boundaries of these unions
in Pup

2 (C), P left
2 (C) and P right

2 (C) by Wup
2 (C), W left

2 (C) and Wright
2 (C) respec-

tively (note that each of these chains are convex). Using the divide-and-conquer
schema, these chains can be computed in O(|P1(C)| log |P1(C)|) time. Now, hav-
ing a pair (w,Ew), we set KC(Ew) as the intersections (if any) of Ew with
Wup

2 (C), W left
2 (C) and Wright

2 (C) (which implies |KC(Ew)| ≤ 3). Because of
the convexity of the chains, KC(Ew) can be computed in O(log |P1(C)|) time.
The above discussion gives us the following proposition:

Proposition 3. We can compute KC(Ew) and KC(Ev) for all vertices w ∈
P2(C) and v ∈ P1(C) in O(n log n) time.

Instead of the entire polygon P , we can work with a sub-polygon P (ω) ⊆ P
where ω ∈ SDT (T) is an internal node with two children ω1 and ω2. Let C ′ be
the chord stored in ω (C ′ divides P (ω) into P (ω1) and P (ω2)). In this case, if
we assume that w is a vertex in P (ω2), we denote the set of candidate points
induced by the reflex vertices of P (ω1) on Ew by KP (ω)

C′ (Ew) (the case w ∈ P1(C)
is symmetrical). Algorithm 1 generates K(Ew) (the set of all candidate points on
Ew) sorted based on their distances to w. In addition, for each point in K(Ew),
we store the pair of vertices (one of them is w) creating it in the point. Finally,
we set K as the union of all K(Ew) where w is a vertex of P and Ew is an
extension or an edge incident to w.
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Algorithm 1 BUILD CANDIDATE (Ew)
1: Let K(Ew) = ∅.
2: Let Πw be the set of root-leaf paths in SDT (TΔ) to the leafs containing w.
3: for each π in Πw do
4: for each internal node ω ∈ π with corresponding chord C′ do
5: Let ω1 and ω2 be the children of ω such that w ∈ P (ω2).

6: Add KP (ω)

C′ (Ew) to K(Ew).
7: end for
8: Let � be the leaf-node of π.
9: Add the intersections of Ew with the extensions of the reflex vertices in P (�)

to K(Ew).
10: end for
11: Sort the points in K(Ew) based on their distances to w.
12: return K(Ew).

Theorem 4. If κ is a vertex of Ker(P ) and not a vertex of P then κ ∈ K.

Proof. Suppose that κ is a vertex of Ker(P ) such that it is not a vertex of P .
Therefore, κ should be the intersection of an extension Ev incident to a reflex
vertex v and an extension (or an edge) Ew incident to a vertex w. We need to
prove that κ ∈ K(Ew) ∪ K(Ev). Suppose that ωsplit ∈ SDT (TΔ) is the node
where the two paths from the root to the leafs containing w and v split (if such
a node does not exist, w and v lie on the same leaf-node sub-polygon and we
catch such candidates in the line 9 of Algorithm 1). Let ω1 and ω2 be the children
of ωsplit such that w ∈ P (ω2). Suppose that κ ∈ P (ω2) (note that if Ew is an
incident edge of w, then κ always lie in P (ω2) but if κ ∈ P (ω1), we catch it while
processing v). Then κ ∈ KP (ω)

C′ (Ew) and thus, based on line 6 of Algorithm 1,
κ ∈ K(Ew) and so, κ ∈ K. �

Proposition 4. The set of candidate points K can be computed in O(n log2 n)
time.

Proof. In each level of SDT (TΔ), the corresponding sub-polygons of the nodes
are internally disjoint. For each internal node ω ∈ SDT (TΔ) with two chil-
dren ω1 and ω2, we need to compute KP (ω)

C′ (Ew) and KP (ω)
C′ (Ev) for all vertices

v ∈ P (ω1), w ∈ P (ω2) and their extensions and incident edges. This costs
O(|P (ω)| log |P (ω)|) and so O(n log n) for all nodes in a level of SDT (TΔ).
Because SDT (TΔ) has O(log n) levels, the total time complexity of computing
K would be O(n log2 n). In addition, the total number of vertices in the regions
corresponding to the leafs of SDT (TΔ) is linear (here, a vertex may count more
than once due to its presence in more than one such regions). For each of such
vertices, its corresponding root-leaf path in Algorithm 1 generates O(log n) can-
didate points. Therefore, we have O(n log n) candidate points in K and the total
cost of sortings is O(n log2 n). �
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4.3 Building the Beacon Kernel
After computing K, we first run the DBKP algorithm on it to find a subset K∗

which are the beacon kernel points in K. Note that for each node ω ∈ SDT (TΔ),
we have O(|P (ω)|) candidates in K and thus, |K| = O(n log n). Based on Theo-
rem 3, K∗ can be computed in O(n1.5 log2 n) time. Having K∗, we pick a point
κ ∈ K∗. We know that κ is the intersection of two extensions or an extension and
an edge of P . Specifically, let κ be the intersection of Ev and Ew for two vertices
v and w. For each of Ev and Ew, one side of κ can not be in Ker(P ) because it
is either lies in the dead wedge of v or w or outside of P (depending on whether
Ev or Ew is an extension or an edge). This implies that κ is a vertex of Ker(P ).
Now, the candidate points on Ev and Ew are sorted along on Ev and Ew. So,
by traversing these candidate points from κ along Ev and Ew in the direction
that does not get eliminated, we can get the vertices of Ker(P ) incident to κ.
By repeating this process, we build all the edges of the connected component of
Ker(P ) containing κ and therefore the component itself. We remove all vertices
of the component from K∗ and pick a new k ∈ K∗ (we can sort K∗ once to
facilitate this operation) and repeat the above process until all components of
Ker(P ) are built.

Theorem 5. Given a simple polygon P with n vertices, Ker(P ) can be com-
puted in O(n1.5 log2 n) time.
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Abstract. The capability of path planning is a necessity for an agent to
accomplish tasks autonomously. Traditional path planning methods fail
to complete tasks that are constrained by temporal properties, such as
conditional reachability, safety, and liveness. Our work presents an inte-
grated approach that combines reinforcement learning (RL) with multi-
objective optimization to address path planning problems with the con-
sideration of temporal logic constraints. The main contributions of this
paper are as follows. (1) We propose an algorithm LCAP2 to design
extra rewards and accelerate training by tackling a multi-objective opti-
mization problem. The experimental results show that the method effec-
tively accelerates the convergence of the path lengths traversed during
the agent’s training. (2) We provide a convergence theorem based on the
fixed-point theory and contraction mapping theorem.

Keywords: Path planning · Reinforcement learning ·
Pareto-dominance · Unified temporal logic · Fixed-point theory

1 Introduction

Path planning [9] plays a crucial role in various domains, including autonomous
driving, robot navigation, and unmanned aerial vehicle (UAV) navigation [1,18].
It contributes significantly to enhancing efficiency, reducing costs, and optimiz-
ing resource utilization [12]. In the context of robot navigation, path planning
ensures collision-free movement and efficient task execution. Furthermore, it is
desirable for the agent to accomplish the task with minimal time, minimum
energy, and minimum jerk [9]. Given that intelligent systems are prone to errors,
the path-planning policy of agents necessitates a certain level of fault tolerance.
This implies that they should be capable of re-planning an optimal sub-path from
an erroneous position when they deviate from the originally planned trajectory.
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Traditional path planning methods, such as the graph search-based A* algo-
rithm [19], exhibit inefficiency in path search and require complete environmen-
tal information. Sampling-based methods often converge slowly. Intelligent opti-
mization techniques, including ant colony algorithms and genetic algorithms [13],
tend to encounter challenges in escaping local optima.

In contrast, reinforcement learning (RL) [14] provides a powerful approach
to tackling sequential decision problems by improving policies through continu-
ous interactions with the environment, guided by reward signals. RL-based path
planning methods have gained significant traction in various applications. How-
ever, challenges remain, particularly in terms of training stability and robustness.
Concurrently, the path planning task assigned to agents are often intricate and
multi-phased. Within a designated area, agents may be required to visit multi-
ple locations sequentially. Tasks with temporal properties can be described by
temporal logic formulas [17]. Hasanbeig et al. [10,11] propose an RL algorithm
to synthesize policies that satisfy linear time properties for Markov Decision
Processes (MDPs) [3]. Comparing to dynamic programming, the number of iter-
ations is reduced by one order of magnitude.

However, the approach does not address the challenge of inadequate stability
in the training process of RL, nor does it effectively mitigate the duration of
the training process. Therefore, we introduce LCAP2, an algorithm that utilize
multi-objective optimization to evaluate different positions in the destination
and provide extra rewards during the RL procedure. Experiments show that it
effectively shortens the average path length.

The structure of this paper is outlined as follows: Sect. 2 provides an introduc-
tion to the path planning problem and presents fundamental concepts. Moreover,
it introduces essential notions such as Pareto dominance. Section 3 introduces
the proposed LCAP2 algorithm and outlines the process of reward design. In
Sect. 4, we empirically demonstrate the efficacy of the proposed algorithm. In
Sect. 5, we give a convergence theorem. Finally, we explore potential extensions
of the ideas presented in this paper.

2 Preliminaries

Multi-phase tasks require agents to reach several target areas in a specific order
and complete the sub-tasks. When the agent reaches the target area, it receives
a positive reward signal. On the contrary, when it reaches an unsafe area, it will
receive a negative punishment signal.

Markov Decision Process (MDP). An MDP is defined as a six tuple M =
(S,A, s0, P,AP, L) over a finite set of states S, where A is a finite set of actions;
s0 ∈ S is the initial state; P : S×A×S → [0, 1] specifies transition probabilities,
P (s, a, s′) is the probability of transitioning from s to s′ with action a; AP is a
finite set of atomic propositions, and L : S → 2AP is a labeling function.

An MDP M describes the interactions between the agent and environment.
At state s ∈ S, given the policy function π : S × A → [0, 1], agent makes the
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action a = arg max
a′∈A

π(s, a′), and the agent is assigned a reward according to the

reward function R : S × A × S → R. State-action value function Q : S × A → R,
Q(s, a) denotes the expected discounted reward that the agent can get after
performing action a at state s. Q(s, a) is usually assigned a fixed value before
training. It will be updated by back propagation of the reward signal:{

Q(s, a) ← (1 − α)Q(s, a) + α[R(s, a, s′) + γ max
a′∈A

Q(s′, a′)]

Q(s′′, a′′) ← Q(s′′, a′′)
(1)

where α is the learning rate, γ is the discount factor, s′ is the next state after
performing action a in state s.

We describe temporal properties through Unified Temporal Logic (UTL) with
the infinite model, then construct a product MDP using original MDP M and the
Büchi Automaton (BA) B converted from UTL formula. The agent’s trajectory is
trained to satisfy UTL [20] properties by learning to synthesize a policy through
product MDP. UTL combines all characteristics of traditional Linear Temporal
Logic (LTL) and Propositional Projection Temporal Logic (PPTL) [4]. There-
fore, UTL can be used to describe full regular and omega-regular properties,
which are often encountered in the field of formal verification. A UTL property
can be characterized by an automaton. We converts UTL properties into BA.
After that, a product MDP based on MDP and BA is constructed. Then, the
state-action value function is iteratively calculated by Q-learning [16]. For UTL
syntax and semantics, please refer to [20].

Büchi Automaton (BA). A BA is a five-tuple, B = (Q,Σ,Δ, q0,F), where Q
denotes a finite set of states; Σ = 2AP is a finite alphabet; Δ : Q × Σ → 2Q is a
transition function; q0 ∈ Q is initial state; F is the set of accepting conditions.

Let Σω be the set of all infinite words over Σ, an infinite word ω ∈ Σω can be
accepted by a BA if and only if there exists an infinite run θ ∈ Qω starting from
q0, where θ[i + 1] ∈ Δ(θ[i], ω[i]), i ≥ 0 and inf(θ) ∩ F �= ∅ (inf(θ) is the set of
states that are visited infinitely often in the sequence θ). The accepted language
of the BA B is the set of all infinite words accepted by the BA B.

The task’s property is described in UTL, which is a complete and sound
system. If the property is exclusively described in LTL, the LTL3BA tools [2] is
called. If the property is described in UTL or PPTL, PPTL2LNFG is called to
transform the formula into labeled normal form graph (LNFG) [5,6]. Then an
LNFG can be transformed to a GBA, and it can further be transformed to a
BA [7].

Multi-objective optimization [15] allows us to consider multiple objectives
simultaneously and find a set of optimal solutions known as the Pareto frontier.
By exploring the trade-offs among different objectives, multi-objective optimiza-
tion offers a more comprehensive understanding of the problem space. The def-
inition of a multi-objective optimization problem is as follows:
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⎧⎨
⎩

min y = F (x) = (f1(x), f2(x), . . . , fm(x))T .
s.t. gi(x) ≤ 0, i = 1, 2, . . . , q.

hj(x) = 0, j = 1, 2, . . . , p.
(2)

where x = (x1, . . . , xn) ∈ X ⊂ R
n denotes n-dimensional decision vector,

X denotes n-dimensional decision space, y = (y1, . . . , ym) ∈ Y ⊂ R
n is m-

dimensional target vector. gi(x) ≤ 0, i = 1, 2, . . . , q, represent q inequality con-
straints, and hj(x) = 0, j = 1, 2, . . . , p, represent p equation constraints.

Pareto Dominance. Suppose xA,xB are two feasible solutions to the multi-
objective optimization problem defined above, then xA is said to be Pareto
dominant compared to xB if and only if: ∀i ∈ {1, 2, . . . ,m}.fi(xA) ≤ fi(xB) ∧
∃j ∈ {1, 2, . . . ,m}.fj(xA) < fj(xB), which denoted as xA � xB, and called as
xA dominate xB.

Fig. 1. Illustrative Example of Pareto Optimality in Objective Space

A feasible solution x� is called a Pareto optimal solution if and only if there
is no feasible solution x, such that x � x�. The Pareto optimal solution set P �

is the set of Pareto optimal solutions. Pareto frontier PF � is the surface formed
by the target vector corresponding to the optimal solution in P �. Figure 1 shows
the Pareto frontier and Pareto optimal solutions in a minimization problem with
two objective functions (f1(x), f2(x)). It is evident that none of the alternatives
can claim dominance over solution A. That is, A is a Pareto optimal solution.

3 LCAP2

In this section, we present an innovative algorithm, named LCAP2, designed
specifically for tackling the intricate challenges of Logically-Constrained Agent
Path Planning (LCAP2) problems within the realms of RL. The following are
the details of the algorithm:
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In Algorithm 1, we first transform UTL constraints and the reinforcement
learning task into a Büchi automaton and an MDP. These are then com-
bined to form a product MDP. The main part of the algorithm (lines 6 to
57) involves value iteration. Lines 13 to 56 explain how agents execute actions
within trajectories, covering state transitions, action selection, Q-value initial-
ization, and updates. Once the endpoint is reached, lines 33 to 50 detail the
reward design using multi-objective optimization. This includes computing and
updating Pareto optimal solutions and an additional reward calculation. Overall,
Algorithm 1 provides a concise framework that leverages reinforcement learning,
temporal logic, and Pareto optimal solutions for effective path planning.

3.1 Property Extraction for Path Planning in Gridworld

In RL, the gridworld problem serves as a prevalent and illustrative environ-
ment model for investigating and exploring the capabilities of various RL algo-
rithms. Gridworld, an abstract representation consisting of a two-dimensional
grid comprised of squares, is employed to symbolize discrete states or spatial
locations. The agent possesses the capacity to execute diverse actions, encom-
passing movements in vertical and horizontal directions, thereby eliciting corre-
sponding rewards depending upon the action performed and the agent’s present
location.

Our focus initially revolves around comprehending the task requirements
inherent to the gridworld scenario. By leveraging the label function, we trans-
form the demand encapsulated within the UTL formula into an associated BA.
Given an MDP M = (S,A, s0, P,AP, L) and an BA B = (Q,Σ,Δ, q0,F),
where Σ = 2AP , a product MDP is defined as a tuple M ⊗ B = MB =
(S∗, A, s∗

0, P
∗,AP∗, L∗), where S∗ = S×Q, s∗

0 = (s0, q0),AP∗ = Q, L∗ : S×Q →
2Q, such that L∗(s, q) = q, P ∗ : S∗ ×A×S∗ → [0, 1] is the transition probability
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function such that (si
a→ sj)∧(qi

L(sj)→ qj) ⇒ P ∗((si, qi), a, (sj , qj)) = P (si, a, sj).
Over the states of the product MDP we also define accepting condition F∗such
that s∗ = (s, q) ∈ F∗.

3.2 Formulating Multi-Objective Optimization Problem

During the training process, the agent learns an optimal path and concurrently
strives to identify the optimal goal. These two elements possess a mutually rein-
forcing relationship, where advancements in one aspect can effectively facilitate
progress in the other. As illustrated in Fig. 2, the scenario arises where the agent
accomplishes the last sub-task but deviates towards a sub-optimal goal. There-
fore, considering the path planning task’s objective of reaching a predefined
region, our approach revolves around optimizing the refined target region. By
leveraging this optimized region, we design an additional reward signal.

Fig. 2. The robot is encouraged to explore during the early stages of training. So it is
possible for the task to conclude with a sub-optimal goal.

In the subsequent step, we establish two generic optimization sub-objectives
that are intrinsically linked to the path, namely, the optimization of consumption
hm along the horizontal direction and consumption vm along the vertical direc-
tion. By delineating these generic sub-objectives, we aim to capture the essence of
optimizing energy expenditure and resource allocation within the multi-objective
optimization framework, thereby paving the way for a comprehensive exploration
of trade-offs and potential synergies in the pursuit of optimal solutions.⎧⎪⎪⎨

⎪⎪⎩
min y = F (x) = (hm(x), vm(x))T .
s.t. xmin ≤ x ≤ xmax,

ymin ≤ y ≤ ymax,
0 ≤ �zi, i = 1, 2, 3, 4.

(3)

Let Sx = {x|xmin ≤ x ≤ xmax; ymin ≤ y ≤ ymax; 0 ≤ �zi, i = 1, 2, 3, 4}
be the feasible set of the above multi-objective optimization problem. x ∈ Sx

is the feasible solution, xj = (xj , yj ,�z1,j ,�z2,j ,�z3,j ,�z4,j) ∈ Sx ⊂ R
6,

represents the jth sample, i.e. the training situation when the agent reaches
area t for the jth time, j = 1, 2, . . . , n. xj , yj represent the location in gridworld,
�z1,j ,�z2,j ,�z3,j ,�z4,j represent the distance traveled by the jth learning
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sample in four directions. hmn(x) = 1
n

∑n
j=1 hm(xj) = 1

n

∑n
j=1

∑4
i=1 ηi�zi,j +

bj denotes the average consumption of the first n learning sessions in the left
and right directions, vmn(x) = 1

n

∑n
j=1 vm(xj) = 1

n

∑n
j=1

∑4
i=1 ζi�zi,j + aj

denotes the average consumption of the first n learning sessions in the up and
down directions. ηi, ζi(i = 1, 2, 3, 4) are coefficients, and aj , bj denotes the static
consumption incurred by the agent while waiting in place.

3.3 Reward Design Method

We update the average consumption in an incremental manner:

hmk(x) =
1
k

[(k − 1) × hmk−1(x) +
4∑

i=1

(ηi�zi,k + bk)]

= hmk−1(x) +
1
k

(
4∑

i=1

(ηi�zi,k + bk) − hmk−1(x))

(4)

In fact, it is not meaningful to calculate the average consumption from
the beginning. Therefore, we set the episodethreshold. When episode >
episodethreshold, we start to calculate the average consumption incrementally.
In the process of updating the target vector, we maintain a dictionary where the
key is the coordinate of the Pareto optimal solution and the corresponding value
is the target vector. When an agent reaches a new target point, it compares the
target vector with all the values in the dictionary. When it is confirmed that the
target point reached corresponds to the Pareto optimal solution, an appropriate
reward signal is given to each path that reaches the target area:

r′ =
min
x∈̂Sx

(hm(x) + vm(x))

hm(x�) + vm(x�)
(5)

where the numerator represents the lowest average consumption sum in the
set Ŝx ⊂ Sx , which are feasible solutions obtained. And the denominator is the
average consumption sum of the optimal solutions visited in the current episode.
The Q value is updated according to the following formulas:

R′(s, a, s′) =
{

r′ if s′ is the state corresponding to x�

0 otherwise
(6)

Q(s, a) ← (1 − α)Q(s, a) + α[R(s, a, s′) + R′(s, a, s′) + γ arg max
a′∈A

Q(s′, a′)] (7)
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Fig. 3. Illustrations of agent path planning in a 2-D space.

4 Experiments

As shown in Fig. 3, we tested the effectiveness of the LCAP2 method on gridworld
G [8]. The task s → p → t while avoiding the unsafe area u illustrated in Fig. 3
can be described by the UTL formula [10]:

♦(p ∧ ♦t) ∧ �(t → �t) ∧ (u → �u) (8)

The underlying rationale behind Eq. (8) is that the agent needs to, at a certain
point in the future, sequentially visit the state represented by p and then reach
the state represented by t, ensuring ♦(p ∧ ♦t). Furthermore, the agent should
stay there �(t → �t) while avoiding unsafe areas ♦(u → �u). We can build the
BA B associated with (8) as in Fig. 4a, and the product MDP is obtained from
BA B and MDP M according to the construction rule of the product MDP.

For example, the initial state of the product MDP MB is s∗
0 = (s0, q0) =

(0, 0, q0), where s0 = (0, 0)(in the gridworld) is the initial state of the MDP
M, and q0 is the initial state of BA. If the agent steps “down”, then we have

(0, 0) down→ (1, 0) and q0
L((1,0))→ q0, so the transition probability is corresponding

to the original one P ∗((0, 0, q0), down, (1, 0, q0)) = P ((0, 0), down, (1, 0)).
Suppose the initial episode of the agent is being executed, and at the state

s∗
cur = (15, 14, q0), the agent selects the action “left”. The corresponding next

state in the M is (15, 15), and its associated atomic propositions, is obtained
through the label function L∗(s∗

cur) = p. Subsequently, BA transitions from
state q0 to q1 based on p. By combining the M state and the B state, we obtain
the corresponding state s∗

n = (15, 15, q1) in MB. At this point, since the agent
has not yet received any reward signal, the state-action value functions for both
states are initialized to 0. As the agent transitions from the current state s∗

cur

to a new state s∗
n, the incurred cost of moving left is captured as the leftward

movement consumption(�z3+ = 1). Upon reaching the target area, the target
vector can be calculated using Eq. (4). Consider the scenario where the agent
is still at state s∗

cur, and the Q-values for states s∗
cur and s∗

n are presented in
following table:



An Approach to Agent Path Planning Under Temporal Logic Constraints 91

Fig. 4. (a) BA B for (8). (b) Illustration of the target vectors in target area.

a

s∗ Up Down Left Right Stay

s∗
cur 0.03 0.44 0.12 0.52 0.32

s∗
n 0.00 0.67 0.80 0.14 0.28

Notably, the Q-value associated with the “right” action is the highest, imply-
ing that the agent is most likely to choose this action. If the agent opts for the
“right” action, its Q-value will be updated according to the following equation:

Q[str(s∗
cur)][“right”] = (1 − α)Q[str(s∗

cur)][“right”] + α[0
+ γ max

a′∈A
Q[str(s∗

n)][a] = 0.488 (9)

The decision vector is x = (x, y,�z1,�z2,�z3,�z4). We set the coefficients
aj , bj to 0. And since the location(x, y) of the target region in this problem
does not affect the optimization objective, the (hm(x), vm(x)) = (1/2× (�z3 +
�z4), 1/2 × (�z1 + �z2)). As depicted in Fig. 4b, consider the target vector
[43, 65] associated with each terminal state (33, 5). If the agent reaches the state
(33, 4), we proceed to evaluate whether the target vector corresponding to this
state represents a Pareto optimal solution. If the target vector satisfies the Pareto

Fig. 5. Experimental results
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optimality conditions, an additional reward, denoted as r′ = (38+64)/(43+65) =
0.94, is given according to Eq. (5).

We examine the average distance traversed by the agent under various train-
ing configurations. Notably, Fig. 5 illustrates that the agent performs better and
achieves faster convergence compared to the Q-learning algorithm in this specific
problem domain. Figure 6 indicates that the incorporation of LCAP2 enhances
the training stability when using the same learning algorithm. This observation
suggests that LCAP2 mitigates the issue of the agent wandering within a region
to some extent, thereby reducing sampling complexity and expediting the train-
ing process. These outcomes support the effectiveness of our proposed method.

Fig. 6. Apply LCAP2 on Q-learning and Sarsa

5 Convergence Theorem

Theorem 1. For an MDP M = (S,A, s0, P,AP, L), let X : S × A → R be
the state-action value function, S̃ be the set of state-action value functions, the
operator T is defined on S̃ : T (X) = (1 − α)X + α(0 + γ · X ′), then operator
T converges and has a fixed-point. T converges at the only fixed-point, and the
rate of convergence is 1−α

1−αγ .

6 Conclusion

We propose an innovative approach called LCAP2. The simulation results sug-
gest that this method provides valuable assistance in learning the optimal path.
The scalability of this method has practical significance for solving complex
problems. Finally, we give a theorem demonstrating the convergence of the algo-
rithm. Our future research will focus on using methods such as value function
approximation and policy gradient to study RL problems with logical constraints
in continuous state spaces.
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Abstract. We consider the heterogeneous rooted tree cover (HRTC)
problem. Concretely, given an undirected complete graph G = (V, E)
with a root r ∈ V , an edge-weight function w : E → R+ satisfying the
triangle inequality, a vertex-weight function f : V \{r} → R+

0 , and k con-
struction teams having nonuniform construction speeds λ1, λ2, . . ., λk,
we are asked to find k trees for these k construction teams to cover all
vertices in V , each tree starting at the same root r, i.e., k trees having a
sole common vertex called root r, the objective is to minimize the max-
imum completion time, where the completion time of each team is the
total construction weight of its related tree divided by its construction
speed.

In this paper, we first design a 58.3286(1 + δ)-approximation algo-
rithm to solve the HRTC problem in time O(n3(1 + 1

δ
) + log(w(E) +

f(V \{r}))) for any δ > 0. In addition, we present a max{2ρ, 2 + ρ − 2
k
}-

approximation algorithm for resolving the HRTC problem in time O(n2),
where ρ is the ratio between the maximum and minimum speed of these
k teams.

Keywords: Rooted tree cover · Nonuniform speeds · Approximation
algorithms · Complexity of algorithms

1 Introduction

The subgraph cover problems, including the cycle cover problem and the tree
cover problem, form a much-studied family of combinatorial optimization prob-
lems. These problems have wide range of practical applications, such as routings
of multi-vehicles [2,7,12], nurse station location [4] and data gathering in wireless
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sensor networks [13,15]. In some applications, the minimization of the latest ser-
vice completion time at the service locations is more relevant. As a result, there
is a growing body of literature on cover problems under the min-max objective.

Considering the vehicles to have nonuniform speeds in routing planning,
Gørtz et al. [8] in 2016 proposed the heterogeneous traveling salesman problem,
which we refer to as the heterogeneous rooted cycle cover (HRCC) problem. In
the HRCC problem, given a complete graph G = (V,E) equipped with an edge-
weight function w : E → R+ that satisfies the triangle inequality, a root r ∈ V
and k vehicles with nonuniform speeds λ1, λ2, . . ., λk, we are asked to find k
cycles for these k vehicles to cover all vertices in V , each vehicle starting at r,
i.e., these k cycles having a sole common vertex r, the objective is to minimize
the maximum completion time, where the completion time of a vehicle is the
total weight of its related cycle divided by its speed. For the HRCC problem,
Gørtz et al. [8] in 2016 presented a constant factor approximation algorithm.

The rooted cycle cover (RCC) problem [6], also called the k-traveling sales-
man problem, which is an important special version of the HRCC problem, where
λi = 1 for each i ∈ {1, 2, . . . , k}. Employing a splitting strategy, Frederickson et
al. [6] in 1978 gave a (52 − 1

k )-approximation algorithm to solve the RCC problem.
For the version k = 1 of the RCC problem, i.e., the metric traveling salesman
problem, Christofides [3] provided a famous 3/2-approximation algorithm by
using an algorithm for solving the Euler tour problem.

In addition, many researches focus on the tree cover problems of graphs, in
which vertices are all covered by a set of k trees. Taking the service handling
times of vertices into consideration, Nagamochi [10] proposed the rooted tree
cover (RTC) problem, which is modelled as follows. Given a complete graph
G = (V,E) equipped with an edge-weight function w : E → R+ satisfying the
triangle inequality, a vertex-weight function f : V \{r} → R+

0 , a root r ∈ V and
k construction teams, it is asked to find k trees for these k teams to cover all
vertices in V , each tree starting at the same root r, the objective is to minimize
the maximum total weight among these k trees, where the total weight of a tree is
the summation of edge weights and vertex weights in that tree, equivalently, the
objective is to minimize the maximum completion time, where the completion
time of a construction team is the total construction weight of that tree divided
by its speed for the case that speeds of these k teams are all same one.

The RTC problem is NP-hard [1] even for the case k = 2 and f(·) ≡ 0.
Many research papers have been focused on the development of constant factor
approximation algorithms to resolve the RTC problem. Using a tree partition
technique, Nagamochi [10] in 2005 presented a (3 − 2

k+1 )-approximation algo-
rithm to resolve the RTC problem. Xu and Wen [14] in 2010 gave a lower bound
of 10/9 for the RTC problem. Moreover, the other relevant results can be found
in [5,9,11,16].

In practice, the construction efficiencies or construction speeds of multiple
construction teams are often different similar to the vehicle speeds of the HRCC
problem. Motivated by the observation and the RTC problem, we address the
heterogeneous rooted tree cover (HRTC) problem. Concretely, given an undi-
rected complete graph G = (V,E;w, f) with a root r ∈ V , an edge-weight
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function w : E → R+ satisfying the triangle inequality, a vertex-weight function
f : V \{r} → R+

0 , and k construction teams having nonuniform construction
speeds λ1, λ2, . . ., λk, we are asked to find k trees T = {Ti | i = 1, 2, . . . , k}
for these k construction teams to cover all vertices in V , each starting at the
same root r, i.e., k trees having a sole common vertex called root r, the objec-
tive is to minimize the maximum completion time, where the completion time
of each team is the total construction weight of its related tree divided by its
construction speed. In a formulaic way, the min-max objective is written as
minT max{w(Ti)+f(Ti)

λi
| i = 1, 2, . . . , k}.

As far as what we have known, the HRTC problem has not been considered
in the literature. The aforementioned HRCC problem (without vertex weights)
has been studied in [8], but we cannot directly use the algorithms for the HRCC
problem to solve the HRTC problem, because the HRTC problem includes the
vertex weights. However, modifying the technique in [8], we intend to design
first approximation algorithm with constant approximation ratio to solve the
HRTC problem. In addition, we shall present second approximation algorithm
with lower time complexity to resolve the HRTC problem.

The remainder of this paper is organized as follows. In Sect. 2, we present
some terminologies and fundamental lemmas to state descriptions of approxima-
tion algorithms; In Sect. 3, we design first constant factor approximation algo-
rithm to solve the HRTC problem; In Sect. 4, we design second approximation
algorithm with lower time complexity to resolve the HRTC problem; In Sect. 5,
we provide our conclusion and further research.

2 Terminologies and Fundamental Lemmas

All graphs considered in the paper are assumed to be finite, undirected and
loopless. Given a graph G = (V,E), to contract a vertex subset V ′ ⊆ V is to
replace these vertices by a single vertex incident to all the edges which were
incident in G to any vertex in V ′. The resulting graph is denoted by G/V ′

with vertex set V ∪ {v′}\V ′ and edge set E ∪ {uv′ | uv ∈ E, u ∈ V \V ′, v ∈
V ′}\E(G[V ′]), where v′ is viewed as a new vertex obtained by contracting the
vertex subset V ′. For a vertex set V and a set T = {Ti | i = 1, 2, . . . , k} of trees
(or cycles), if V ⊆

⋃k
i=1 V (Ti), we say that T covers V .

For any two sets X1 and X2, X1 + X2 is a multiset obtained by adding all
elements in X1 ∩ X2 to X1 ∪ X2. Especially, for any two graphs G = (V,E) and
G′ = (V ′, E′), denote G ∪ G′ = (V ∪ V ′, E ∪ E′) and G + G′ = (V ∪ V ′, E + E′),
respectively.

In designing a constant factor approximation algorithm for the HRTC prob-
lem, we need the following definition, which is obtained by slightly modifying
the definition in [8].

Definition 1. Given an undirected graph G = (V,E;w, f) with two constants
M > 0 and ε > 0, where w : E → R+ is an edge-weight function and f :
V \{r} → R+

0 is a vertex-weight function, let Fi be a set of trees in G starting at
the same vertex r for each integer i ≥ 0. Then the collection {Fi}i≥0 =

⋃
i≥0 Fi

is referred to as (α, β)M,ε-assignable, if it has the following properties
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(1) w(F ) + f(F ) ≤ α · (1 + ε)iM , for each tree F ∈ Fi, i ≥ 0;
(2)

∑
j≥i(w(Fi) + f(Fi)) ≤ βM · Λ((1 + ε)i−1) for each i ≥ 0, where Λ((1 +

ε)i−1) is the sum of speeds that at least (1 + ε)i−1.

For Definition 1, we can regard the sum of edge weights and vertex weights
of each tree as a whole weight, and using the ASSIGN algorithm in Gørtz et al.
[8], we can obtain the following important result.

Lemma 1. [8] Given an (α, β)M,ε-assignable collection {Fi}i≥0 of trees starting
at r, we can use the ASSIGN algorithm to assign all trees in {Fi}i≥0 to k
construction teams in time O(n3 + log(w(E) + f(V \{r}))), satisfying that the
completion time of each construction team is at most ((1 + ε)α + β)M , where
the completion time of each team is the total construction weight divided by its
construction speed, n is the number of vertices.

3 An Approximation Algorithm with Constant
Approximation Ratio

In this section, we consider the heterogeneous rooted tree cover (HRTC) problem.
Without loss of generality, we may assume that the considered graph are all
connected and 2 ≤ k ≤ n − 1.

By Lemma 1, we design the following strategies to solve the HRTC problem.

(1) Find an (α, β)M,ε-assignable collection of subtrees to cover all vertices;
(2) Assign subtrees in the above collection to k construction teams to mini-
mize the completion time of any team.

Given an undirected graph G = (V,E;w, f) with two current values M and
ε (the precise value to be chosen later), we first give a partition of V that
is {V0, V1, · · · }, where V0 = {v ∈ V | w(rv) + f(v) ≤ M}, and Vi = {v ∈
V | (1 + ε)i−1M < w(rv) + f(v) ≤ (1 + ε)iM} for each i ≥ 1. For each i ≥ 0,
let V≤i =

⋃
j≤i Vj and V≥i =

⋃
j≥i Vj . Similarly, we give a partition of E that is

{E0, E1, · · · }, where Ei = {uv ∈ E | u ∈ V≤i, v ∈ Vi} for each i ≥ 0. For each
i ≥ 0, let E≤i =

⋃
j≤i Ej and E≥i =

⋃
j≥i Ej .

Now, analyzing the lower bound of the HRTC problem, we obtain the fol-
lowing lemma.

Lemma 2. Given a complete graph G = (V,E;w, f) as an instance of the
HRTC problem, for any constant M ≥ OPT , we have w(TMS

G/V<l
) + f(V≥l) ≤

M · Λ((1 + ε)l−1) for each integer l ≥ 0, where OPT is the optimal value to the
given instance, TMS

G/V<l
is a minimum edge-weight spanning tree of G/V<l, i.e.,

a new graph obtained by contracting a vertex set V<l, and Λ((1 + ε)l−1) is the
total of speeds that exceed (1 + ε)l−1.

Proof. Consider that in an optimal solution to G for the HRTC problem, if any
vertex v ∈ V≥l can be constructed by a construction team with speed λ′, then
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we have λ′ > (1 + ε)l−1. This is because w(rv) + f(v) > (1 + ε)l−1M holds for
each v ∈ V≥l, and the construction weight of a construction team with speed
λ′ is at most λ′ · OPT ≤ λ′ · M , implying λ′ · M ≥ λ′ · OPT > (1 + ε)l−1M .
Since max{w(rv) + f(v), w(rv′) + f(v′)} > (1 + ε)l−1M holds for each edge
e = vv′ ∈ E≥l, we deduce that any edge in E≥l must be constructed by some
team with speed exceed (1 + ε)l−1.

Let E∗ denote the set of edges constructed by teams in the optimal solution.
By the above arguments, we have w(E∗ ∩E≥l)+f(V≥l) ≤ OPT ·Λ((1+ε)l−1) ≤
M · Λ((1 + ε)l−1), meaning w(E∗ ∩ E≥l) + f(V≥l) ≤ M · Λ((1 + ε)l−1). Clearly,
G[E∗] is a spanning tree of G, and E∗ ∩ E≥l corresponds to a spanning tree
of G/V<l. Since TMS

G/V<l
is a minimum edge-weight spanning tree of G/V<l, we

obtain w(TMS
G/V<l

) + f(V≥l) ≤ w(E∗ ∩ E≥l) + f(V≥l), implying w(TMS
G/V<l

) +
f(V≥l) ≤ M · Λ((1 + ε)l−1). 
�

For each i ≥ 0, let Hi denote the edge subset of G corresponding to a min-
imum spanning tree of G[V≤i]/V<i. Obviously, G[H] with H =

⋃
i≥0 Hi is a

spanning tree of G. Using the similar arguments in [8] to analyze the relation
between H and a minimum edge-weight spanning tree of G, we obtain a result
as follows.

Lemma 3. [8] Given a complete graph G = (V,E;w, f) and a constant ε > 0,
a spanning tree G[H] with H =

⋃
i≥0 Hi of G can be constructed to satisfy:

– The vertex levels along every root-leaf path are nondecreasing.
– For each i ≥ 0, we have

∑
j≥i w(Hj) ≤ (6 + 6

ε ) · w(TMS
G/V<i

), where TMS
G/V<i

is
a minimum edge-weight spanning tree of G/V<i.

In Lemma 3, for each i ≥ 0, it is clear that
∑

j≥i w(Hj) ≤ (6+ 6
ε ) ·w(TMS

G/V<i
)

means
∑

j≥i(w(Hj)+f(Vj)) ≤ (6+ 6
ε )·w(TMS

G/V<i
)+f(V≥i) ≤ (6+ 6

ε )·(w(TMS
G/V<i

)+
f(V≥i)). By Lemma 2, we obtain at once that

∑
j≥i(w(Hj) + f(Vj)) ≤ (6 + 6

ε ) ·
(w(TMS

G/V<i
)+f(V≥i)) ≤ (6+ 6

ε ) ·M ·Λ((1+ε)i−1), which is stated in the following

Lemma 4. Given a complete graph G = (V,E;w, f) with two constants ε > 0
and M ≥ OPT , where OPT is the optimal value to the instance G for the HRTC
problem, then the spanning tree G[H] with H =

⋃
i≥0 Hi of G mentioned-above

satisfies:

– The vertex levels along every root-leaf path are nondecreasing.
– For each i ≥ 0, we have

∑
j≥i(w(Hj) + f(Vj)) ≤ (6 + 6

ε ) · M · Λ((1 + ε)i−1).

To shorten notation, given each edge e = uv in H, denote xe ∈ {u, v} to be a
vertex farther away from r in G[H], and ye ∈ {u, v} to be a vertex closer to r in
G[H]. For each subtree G′ = (V ′, E′) of G[H] mentioned above, we define a new
function f1(·) to be f1(G′) =

∑
e∈E′ f1(xe), implying f1(G′) = f(G′) − f(yG′),

where yG′ is a vertex in G[H] closest to r.
Basing from Lemma 1 to Lemma 4, we design a following algorithm, denoted

by the algorithm HRTC1, to solve the HRTC problem.
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Algorithm: HRTC1

Input: An undirected complete graph G = (V,E;w, f) with a root r ∈ V , an
edge-weight function w : E → R+, a vertex-weight function f : V \{r} →
R+

0 , k construction teams having speeds λ1, . . . , λk respectively, a small fixed
constant δ > 0, and two constants ζ = 2 and ε = 1.3146 (to be chosen in
Theorem 1);

Output: A set T = {Ti | i = 1, 2, . . . , k} of k trees.
Begin
Step 1 Set M = maxv∈V {w(r,v)+f(v)

λmax
}, where λmax = max{λi | i = 1, 2, . . . , k};

Step 2 Using M and ε, we can partition the set V into subsets V0, V1, . . ., and the
set E into subsets E0, E1, . . . as mentioned-above; For convenience, we may
actually assume that the number of subsets partitioned is t, i.e., (1+ε)t−1M <
max{w(rv) + f(v) | v ∈ V } ≤ (1 + ε)tM ;

Step 3 If (w(TMS
G/V<l

)+f(V≥l) > M ·Λ((1+ε)l−1) holds for some l ∈ {1, 2, . . . , t})
then

set M := (1 + δ)M , and go to Step 2;
Step 4 Construct a spanning tree G[H] with H =

⋃
i≥0 Hi of G, where Hi is the

edge subset of G corresponding to a minimum edge-weight spanning tree of
G[V≤i]/V<i; Set S0 := {H0};

Step 5 For each i ∈ {1, 2, . . . , t}, partition Hi into a set Si of subtrees such
that each subtree η ∈ Si contains exactly one edge h(η) from V<i to Vi; Let
γ = ε

(2+ε)(1+ε) and Sm
0 = S0; For each i ∈ {1, 2, . . . , t}, set Sm

i = ∅ and
Su

i = ∅;
Step 6 For all i ∈ {1, 2, . . . , t}, η ∈ Si do:

If (w(η) + f1(η) ≥ γ · (1 + ε)iM) then
Set Sm

i := Sm
i ∪ {η};

Else
Set Su

i := Su
i ∪ {η};

Step 7 For all i ∈ {1, 2, . . . , t}, σ ∈ Su
i do:

Determine a subtree π(σ) in
⋃

j<i Sj , having π(σ) ∩ σ = ∅;
Step 8 For all i ∈ {0, 1, 2, . . . , t}, τ ∈ Sm

i do:
(8.1) Set Dangle(τ) = {σ ∈ Su

i+1 : π(σ) = τ};
(8.2) If the total weight of (τ\h(τ))∪Dangle(τ) is at most ζ(1+ε)i+1M ,

then set q = 1 and F ′
1 = (τ\h(τ)) ∪ Dangle(τ), and go to Step (8.5);

(8.3) Find an Euler tour in the multigraph ((τ\h(τ)) ∪ Dangle(τ)) +
((τ\h(τ)) ∪ Dangle(τ)), and transform the tour to a cycle by “short-cutting”
previously visited vertices;

(8.4) Split the resulting cycle into maximal paths of total weight, includ-
ing edge weights and vertex weights, at most ζ(1 + ε)i+1M each, denoted by
F ′
1, F

′
2, . . . , F

′
q;

(8.5) For each j ∈ {1, . . . , q}, augment F ′
j by adding an edge from r to

the vertex in F ′
j closest to r, to obtain a set of subtrees starting at r, denoted

by Fi(τ) = {F1, F2, . . . , Fq};
Step 9 For each i ∈ {0, 1, . . . , t}, set Fi =

⋃
τ∈Sm

i
Fi(τ); Using the ASSIGN

algorithm, combine the set {Fi}i≥0 =
⋃

i≥0 Fi into k trees T = {Ti | i =
1, 2, . . . , k} corresponding to k construction teams;
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Step 10 Output k trees T = {Ti | i = 1, 2, . . . , k} corresponding to k teams.
End

Using Step 4, we obtain that each connected component of the subgraph in
G corresponding to Hi (i ≥ 1) is a subtree. Note that such a subtree contains
at least one edge from V<i to Vi, it follows that the partition at Step 5 is indeed
executed.

Using Steps 6–7 in the algorithm HRTC1, we can obtain the following

Lemma 5. For any i ≥ 1 and σ ∈ Su
i , there exists π(σ) ∈ Si−1. Moreover,

π(σ) ∈ Sm
i−1.

Proof. For an σ ∈ Su
i , it is clear that w(h(σ)) + f1(h(σ)) ≤ w(σ) + f1(σ) <

γ · (1 + ε)iM . By the definition of Su
i , we have v ∈ V≤i for every v ∈ V (σ). Let

h(σ) = yx, where y ∈ π(σ) and x ∈ Vi. Moreover, we deduce that y ∈ Vi−1.
Otherwise, we assume x ∈ Vi and y ∈ V<i−1, it follows that w(σ) + f1(σ) ≥
w(yx) + f(x) ≥ w(rx) + f(x) − (w(ry) + f(y)) > (1 + ε)i−1M − (1 + ε)i−2M >
γ · (1 + ε)iM , which contradicts σ ∈ Su

i . Thus, we obtain y ∈ Vi−1, implying
π(σ) ∈ Si−1.

For the second part of the lemma, if i = 1, then clearly π(σ) = S0 and
π(σ) ∈ Sm

0 . When i ≥ 2, from the above arguments, we have π(σ) ∈ Si−1.
Similar to the above arguments, since G is connected, we conclude that there is
a vertex z ∈ π(σ) satisfying z ∈ V<i−1. Using the triangle inequality twice, we
have the following

w(zy) + f(y) + w(yx) + f(x) ≥ w(zx) + f(x) ≥ w(rx) + f(x) − (w(rz) + f(z)).

Since x ∈ Vi and z ∈ V<i−1, we obtain w(rx) + f(x) − (w(rz) + f(z)) > (1 +
ε)i−1M −(1+ε)i−2M = ε(1+ε)i−2M , meaning w(rx)+f(x)−(w(rz)+f(z)) >
ε(1+ε)i−2M . Since σ ∈ Su

i , we have w(yx)+f(x) ≤ w(σ)+f1(σ) < γ ·(1+ε)iM .
Hence, we have the following

w(π(σ))+f1(π(σ)) ≥ w(zy)+f(y) > ε(1+ε)i−2M−γ ·(1+ε)iM = γ ·(1+ε)i−1M.

This shows that the subtree π(σ) ∈ Sm
i−1. 
�

Employing the similar argument as in [8], we obtain the following two lemmas
by executing Step 8.

Lemma 6. For any F ∈ Fi(τ), we have w(F ) + f(F ) ≤ (ζ + 1 + (ζ + 1)ε)(1 +
ε)iM .

Proof. For each F ∈ Fi(τ), note that F consists of some subtree F ′
j (1 ≤ j ≤ q)

and an edge rv′
j connecting r to v′

j , where v′
j is a vertex in F ′

j closest to r. Based
on the construction of F ′

j , we obtain w(F ′
j) + f(F ′

j) ≤ ζ(1 + ε)i+1M . Since F ′
j

only contains vertices in V≤i+1, we have w(rv′
j) ≤ w(rv′

j)+f(v′
j) ≤ (1+ε)i+1M .

Hence, it follows that w(F ) + f(F ) = w(F ′
j) + f(F ′

j) + w(rv′
j) ≤ (ζ + 1 + (ζ +

1)ε)(1 + ε)iM . 
�
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Lemma 7.
∑

F∈Fi(τ)
(w(F ) + f(F )) ≤ max{2 + 2

ε , 4
ζ + 2} · (w(τ ∪ Dangle(τ)) +

f1(τ ∪ Dangle(τ))).

Proof. We break the analysis into two cases depending on q.
Case 1: q = 1, i.e., Fi(τ) only contains a subtree F .
If i = 0, then τ includes r and w(F ) + f(F ) ≤ w(τ ∪ Dangle(τ)) + f1(τ ∪

Dangle(τ)). If i > 0, it is clear that there exists u ∈ τ having u ∈ V<i. Based
on the construction of subtree, we obtain w(F ) + f(F ) ≤ w(rxh(τ)) + w(F ′) +
f1(τ ∪ Dangle(τ)) ≤ w(ryh(τ)) + w(yh(τ)xh(τ)) + w(F ′) + f1(τ ∪ Dangle(τ)) ≤
(1 + ε)i−1M + w(τ ∪ Dangle(τ)) + f1(τ ∪ Dangle(τ)). Since τ ∈ Sm

i , implying
w(τ) + f1(τ) ≥ γ · (1 + ε)iM , we have (1 + ε)i−1M ≤ 2+ε

ε · (w(τ) + f1(τ)). Thus,
we obtain w(F )+f(F ) ≤ (1+ε)i−1M +w(τ ∪Dangle(τ))+f1(τ ∪Dangle(τ)) ≤
(2+ε

ε +1) · (w(τ ∪Dangle(τ))+f1(τ ∪Dangle(τ))) = (2+ 2
ε ) · (w(τ ∪Dangle(τ))+

f1(τ ∪ Dangle(τ))), which implies
∑

F∈Fi(τ)
(w(F ) + f(F )) = w(F ) + f(F ) ≤

(2 + 2
ε ) · (w(τ ∪ Dangle(τ)) + f1(τ ∪ Dangle(τ))).

Case 2: q ≥ 2.
By Step 8, we obtain that 4(w(τ ∪Dangle(τ))+f1(τ ∪Dangle(τ))) > (q−1) ·

ζ(1+ε)i+1M , that is (1+ε)i+1M < 4(w(τ∪Dangle(τ))+f1(τ∪Dangle(τ)))
ζ(q−1) . Since V (τ ∪

Dangle(τ)) ⊆ V≤i+1, each edge added from r to subtree F ′
j (1 ≤ j ≤ q) has weight

at most (1 + ε)i+1M . Therefore, we conclude that
∑

F∈Fi(τ)
(w(F ) + f(F )) ≤

q · (1 + ε)i+1M + 2w(τ ∪ Dangle(τ)) + f1(τ ∪ Dangle(τ)) ≤ ( 4q
ζ(q−1) + 2) · (w(τ ∪

Dangle(τ))+f1(τ ∪Dangle(τ))) ≤ ( 4ζ +2)·(w(τ ∪Dangle(τ))+f1(τ ∪Dangle(τ))).
Combining the two preceding arguments in Cases 1–2, we obtain

∑
F∈Fi(τ)

(
w(F ) + f(F )) ≤ max{2 + 2

ε , 4
ζ + 2} · (w(τ ∪ Dangle(τ)) + f1(τ ∪ Dangle(τ))). 
�

Applying Lemmas 5–7, we obtain the following

Lemma 8. If w(TMS
G/V<i

) + f(V≥i) ≤ M · Λ((1 + ε)i−1) holds for each integer
i ≥ 0, then the collection {Fi}i≥0 obtained at Step 8 is (α, β)M,ε-assignable,
where α = ζ +1+(ζ +1)ε, β = (6+ 6

ε )max{2+ 2
ε , 4

ζ +2} and Fi =
⋃

τ∈Sm
i

Fi(τ).

Proof. We shall prove that the collection {Fi}i≥0 satisfies the two properties in
Definition 1. By Lemma 6, it is clear that the property (1) in Definition 1 holds.
Recall that in Lemma 4,

∑
j≥i(w(Hj)+f(Vj)) ≤ (6+ 6

ε )·M ·Λ((1+ε)i−1) holds for
each i ≥ 0. Now, the proof is completed by showing that

∑
j≥i(w(Fj)+f(Fj)) ≤

max{2 + 2
ε , 4

ζ + 2} ·
∑

j≥i(w(Hj) + f(Vj)).
In the algorithm HRTC1, we observe that

∑

j≥i

(w(Sm
j ) + w(Su

j+1)) ≤
∑

j≥i

w(Sj) =
∑

j≥i

w(Hj).

By Lemma 5, {Dangle(τ) | τ ∈ Sm
j } is a partition of Su

j+1, which means∑
τ∈Sm

j
(w(τ ∪ Dangle(τ)) + f1(τ ∪ Dangle(τ))) = w(Sm

j ) + w(Su
j+1) + f1(Sm

j ∪
Su

j+1). By Lemma 7, we have w(Fj) + f(Fj) =
∑

τ∈Sm
j

(w(Fj(τ)) + f(Fj(τ))) =
∑

τ∈Sm
j

∑
F∈Fj(τ)

(w(F )+f(F )) ≤ max{2+ 2
ε , 4

ζ +2}·
∑

τ∈Sm
j

(w(τ ∪Dangle(τ))+
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f1(τ ∪ Dangle(τ))), implying w(Fj) + f(Fj) ≤ max{2 + 2
ε , 4

ζ + 2} · (w(Sm
j ) +

w(Su
j+1)+f1(Sm

j ∪Su
j+1)). By Steps 6–8, for each edge e ∈ Sm

i (i ≥ 0), we see that
xe ∈ V≥i, and any two subtrees in {Fi}i≥0 are disjoint except for root r. Thus,
we obtain

∑
j≥i(w(Fj)+ f(Fj)) ≤ max{2+ 2

ε , 4
ζ +2} ·

∑
j≥i(w(Sm

j )+w(Su
j+1)+

f1(Sm
j ∪ Su

j+1) ≤ max{2 + 2
ε , 4

ζ + 2} ·
∑

j≥i(w(Hj) + f(Vj)). 
�
Using the above lemmas, we obtain the following result.

Theorem 1. The algorithm HRTC1 is a 58.3286(1 + δ)-approximation algo-
rithm to solve the HRTC problem, and it runs in time O(n3(1+ 1

δ )+ log(w(E)+
f(V \{r}))), where w(E) =

∑
e∈E w(e) and f(V \{r}) =

∑
v∈V \{r} f(v), respec-

tively.

Proof. By Lemma 2, the decision condition in Step 3 does not hold whenever
M ≥ OPT . Based on the update rule for M , we deduce that Steps 4–9 is
executed with M ≤ (1 + δ) · OPT . When fixing ζ = 2 and ε = 1.3146, using
Lemma 8, we obtain a (6.9438, 42.2565)M,1.3146-assignable collection {Fi}i≥0.
Using Lemma 1 at Step 9, we can assign {Fi}i≥0 into k construction teams
in time O(n3 + log(w(E) + f(V \{r}))), such that the completion time of any
construction team is at most 58.3286 · M , which implies OUT ≤ 58.3286 · M ≤
58.3286(1 + δ) · OPT .

Notice that every step in the algorithm HRTC1 can be executed in poly-
nomial time. We shall bound the number of iterations. As mentioned above,
the algorithm HRTC1 halts before M > (1 + δ)OPT , where (1 + δ)OPT ≤
(1 + δ) ·

∑
v∈V (w(rv)+f(v))

λmax
≤ (1 + δ) · |V | · maxv∈V {w(rv)+f(v)}

λmax
. Since M is initial-

ized at maxv∈V {w(r,v)+f(v)}
λmax

, and increased by an (1+ δ)-factor for each iteration,
we deduce that the number of iterations is at most O(1δ log |V |). This implies
that Steps 1–3 run in at most time O(n3

δ ). By Lemma 1, it is easy to check that
Steps 4–10 execute in time O(n3 +log(w(E)+f(V \{r}))). Hence, the algorithm
HRTC1 can be implemented in time O(n3(1 + 1

δ ) + log(w(E) + f(V \{r}))). 
�

4 An Approximation Algorithm with Lower Time
Complexity

In practice, we observe a fact that λmax
λmin

is generally small, where λmax =
max{λi | i = 1, 2, . . . , k} and λmin = min{λi | i = 1, 2, . . . , k}. Thus, we intend
to design a better approximation algorithm to resolve the HRTC problem under
the above fact.

Different from the method in [10] for solving the RTC problem, we modify
a splitting technique in [6] to design an approximation algorithm to resolve the
HRTC problem, which is described as follows.

Algorithm: HRTC2

Input: An undirected complete graph G = (V,E;w, f) with a root r ∈ V , an
edge-weight function w : E → R+, a vertex-weight function f : V \{r} → R+

0

and k construction teams having speeds λ1, . . . , λk, respectively;
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Output: A set T = {Ti | i = 1, 2, . . . , k} of trees.
Begin
Step 1 Find a minimum edge-weight spanning tree TMS in G; Determine an

Euler tour in (V,ETMS + ETMS ) traversing each edge exactly once, and use
“short-cutting” to transform such tour to a cycle C = rvi1vi2 · · · r traversing
each vertex v ∈ V exactly once;

Step 2 Set w0 = max{w(rv) | v ∈ V }; For each edge uv ∈ E, set w′(uv) =
w(uv) + f(u) + f(v); For each i ∈ {1, 2, . . . , k}, set λ1,i =

∑i
j=1 λj ;

Step 3 For j = 1 to k − 1 do:
Set Lj = λ1,j

λ1,k
(w′(C) − 2w0) + w0, find the last vertex vip(j) such that

w′(C[r, vip(j) ]) ≤ Lj , where C[r, vip(j) ] = rvi1vi2 · · · vip(j) ;
Step 4 Set T ′

1 = C[r, vip(1) ] = rvi1 · · · vip(1) , T ′
2 = C[vip(1)+1 , vip(2) ], . . . , T ′

k =
C[vip(k−1)+1 , r]; For each j ∈ {1, 2, . . . , k}, augment T ′

j by connecting r to a
vertex in T ′

j closest to r with edge, where the resulting tree is denoted by Tj ;
Step 5 Output k trees T = {Ti | i = 1, 2, . . . , k} corresponding to k teams.
End

Analyzing the lower bound of the optimal value for the HRTC problem, we
obtain the following result.

Lemma 9. Given a complete graph G = (V,E;w, f) as an instance of the
HRTC problem, we have OPT ≥ max{ f0

λmax
, w0

λmax
, w′(C)
2λ1,k

}, where OPT is
the optimal value to the given instance, f0 = max{f(v) | v ∈ V }, w0 =
max{w(rv) | v ∈ V } and C is produced at Step 1 of the algorithm HRTC2.

Proof. Note that any feasible solution for the instance G cover all vertices in V ,
it is clear that OPT ≥ f0

λmax
and OPT ≥ w0

λmax
. We shall prove OPT ≥ w′(C)

2λ1,k
.

Consider any optimal solution T ∗ = {T ∗
i | i = 1, 2, . . . , k} for the instance G.

By the construction of C at Step 1, we have w(TMS) + f(TMS) ≥ w(C)
2 + f(C),

where TMS is a minimum edge-weight spanning tree of G. Since all subtrees
in T ∗ can be merged into a spanning tree, we obtain

∑k
i=1(w(T ∗

i ) + f(T ∗
i )) ≥

w(TMS)+f(TMS), implying
∑k

i=1(w(T ∗
i )+f(T ∗

i )) ≥ w(C)
2 +f(C). Since OPT =

max{w(T ∗
i )+f(T ∗

i )
λi

|i = 1, 2, . . . , k}, it follows that OPT ·
∑k

i=1 λi ≥
∑k

i=1(w(T ∗
i )+

f(T ∗
i )) ≥ w(C)

2 + f(C), meaning OPT ≥ w(C)+2f(C)

2
∑k

i=1 λi
= w(C)+2f(C)

2λ1,k
. This implies

OPT ≥ w(C)+2f(C)
2λ1,k

= w′(C)
2λ1,k

. 
�
By the algorithm HRTC2, we obtain the following result.

Theorem 2. The algorithm HRTC2 is a max{ 2λmax
λmin

, 2 + λmax
λmin

− 2
k}-

approximation algorithm for resolving the HRTC problem, and it runs in time
O(n2), where n is the number of vertices.

Proof. Given an instance G = (V,E;w, f) of the HRTC problem, we may assume
that T ∗ = {T ∗

i | i = 1, 2, . . . , k} is an optimal solution with the optimal value
OPT = max{w(T ∗

i )+f(T ∗
i )

λi
| i = 1, . . . , k}, and T is trees outputted by the algo-

rithm HRTC2 with the output value OUT = max{w(Ti)+f(Ti)
λi

| i = 1, . . . , k}.
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Now, we consider the jth tree Tj (1 ≤ j ≤ k) in T . Using the algorithm
HRTC2, we obtain the following

w(Tj) + f(Tj)
λj

≤
w(T ′

j) + f(T ′
j) + w0

λj

≤ max{ f0
λj

,
w′(T ′

j)
λj

} +
w0

λj

= max{f0 + w0

λj
,
w′(T ′

j) + w0

λj
}.

From Lemma 9, it may be concluded that f0+w0
λj

= f0
λj

+ w0
λj

≤ f0
λmin

+ w0
λmin

≤
2λmax
λmin

OPT . On account of the construction of T in algorithm, we have the
following

w′(T ′
j) + w0

λj
≤

λj

λ1,k
· (w′(C) − 2w0) + w0

λj

=
w0

λj
+

w′(C) − 2w0

λ1,k

≤ w0

λmin
+

w′(C)
λ1,k

− 2w0

λ1,k

=
λmax · w0

λmin · λmax
+

w′(C)
λ1,k

− 2w0

λ1,k

≤ λmax · w0

λmin · λmax
+

w′(C)
λ1,k

− 2w0

k · λmax

=
w′(C)
λ1,k

+ (
λmax

λmin
− 2

k
) · w0

λmax

≤ 2OPT + (
λmax

λmin
− 2

k
) · OPT

= (2 +
λmax

λmin
− 2

k
) · OPT,

implying w(Tj)+f(Tj)
λj

≤ max{ 2λmax
λmin

, 2 + λmax
λmin

− 2
k} · OPT .

Thus, for each j ∈ {1, . . . , k}, we have w(Tj)+f(Tj)
λj

≤ max{ 2λmax
λmin

, 2 + λmax
λmin

−
2
k} · OPT by using the above arguments. This shows that

OUT ≤ max{2λmax

λmin
, 2 +

λmax

λmin
− 2

k
} · OPT.

The time complexity of the algorithm HRTC2 can be determined as follows.
(1) Using Prim algorithm for solving the minimum spanning tree problem, Step
1 execute in time O(n2); (2) Step 2 needs O(m) time to compute w0 and define
w′(·), where m = |E|; (3) Step 3 needs time O(n2) to split a cycle; (4) Step 4
needs time O(m) to construct the trees T = {Ti | i = 1, 2, . . . , k}. Therefore, the
running time of the algorithm HRTC2 is O(n2). 
�
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5 Conclusion and Further Work

In this paper, we consider the heterogeneous rooted tree cover problem (the
HRTC problem), and design two approximation algorithms for solving the HRTC
problem.

In further work, it is a challenge for us to design some approximation
algorithms with constant approximation ratios to solve the HRTC problem in
strongly polynomial time, and we shall study other versions of the cover problems
with nonuniform speeds.
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Abstract. The topology-aware Massively Parallel Computation (MPC)
model is proposed and studied recently, which enhances the classical
MPC model by the awareness of network topology. The work of Hu et
al. on topology-aware MPC model considers only the tree topology. In
this paper a more general case is considered, where the underlying net-
work is a weighted complete graph. We then call this model Weighted
Massively Parallel Computation (WMPC) model, and study the prob-
lem of minimizing communication cost under it. Two communication
cost minimization problems are defined based on different pattern of
communication, which are the Data Redistribution Problem and Data
Allocation Problem. We also define four kinds of objective functions for
communication cost, which consider the total cost, bottleneck cost, max-
imum of send and receive cost, and summation of send and receive cost,
respectively. Combining the two problems in different communication
pattern with the four kinds of objective cost functions, 8 problems are
obtained. The hardness results of the 8 problems make up the content of
this paper. With rigorous proof, we prove that some of the 8 problems
are in P, some FPT, some NP-complete, and some W[1]-complete.

Keywords: massively parallel computation · Weighted MPC model ·
communication cost optimization

1 Introduction

The Massively Parallel Computation model [14], MPC for short, has been a well
acknowledged model to study parallel algorithms [2–5,9,11,16,19] ever since it
was proposed. Compared to other parallel computation models such as PRAM
[15], BSP [20], LogP [8] and so on, the advantage of the MPC model lies in
its simplicity and the power to capture the essence of computation procedure
of modern share-nothing clusters. In the MPC model, computation proceeds in
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synchronous rounds, where in each round the computation machines first com-
municate with each other, then conduct local computation. Any pair of machines
can communicate in a point-to-point manner, and all the communication mes-
sages can be transferred without congestion.

AlthoughtheMPCmodelissimpleandpowerful,oneofitsmostimportantshort-
comings is revealed by some recent works [6,13], which is the strong assumption of
homogeneity. All the machines in MPC model are considered as identical, and the
communication bandwidth between any pair of machines are identical too [14]. In
realistic parallel environment, the assumption of identical computation machines
canbe satisfied inmost cases, but the assumptionof identical communicationband-
width can not. Typically, a cluster consists of several racks connected by slower
communication channels, and each rack includes several machines connected by
faster communication channels. Thus, the communication bandwidth of in-rack
and across-rack communication differ significantly, which refutes the assumption
of homogeneous communication network in MPC model.

In order to tackle this shortcoming of the MPC model, a new topology aware
massively parallel computation model was proposed and studied in [6,13]. The
computation machines are still identical in this model1, but the communication
bandwidth between different pair of machines are different. This model was first
proposed in recent works [6], where the underlying communication network is
represented as a graph, and the edges are assigned with a weight which represents
the communication bandwidth. However, the paper [6] only declared the new
model but did not give any theoretical results. The other work [13] considered
three data processing tasks on this model, which are set intersection, Cartesian
product and sorting. Algorithms and lower bounds about the communication
cost optimization problems for the three tasks were proposed. However, the
authors of [13] restricted the underlying communication network to trees, and
the algorithm and lower bounds given in that paper can not be generalized to
graphs other than trees.

In this paper, we follow the line of research started by [6,13], and consider
the topology aware massively parallel computation model in a more general case,
where the underlying communication network is a complete weighted graph.
In this sense, our work is a complement to the work in [13]. The goal of this
paper is also to minimize the communication cost. However, unlike the work in
[13] which considers specific computation tasks, in this paper we define general
communication cost minimization problems that capture the characteristics of a
variety of computation tasks.

1.1 Description of the Research Problems in This Paper

The WMPC Model. We first give a more detailed description of the com-
putational model considered in this paper, which is called Weighted Massively
Parallel Computation (WMPC) model.

In WMPC model, there are n computation machines with identical compu-
tational power. The communication network is modeled as a weighted complete

1 There may be non-computational machines in this model, though.
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graph represented by a n × n matrix C. C is called the communication cost
matrix from now on, and it is considered as a known parameter of the WMPC
model. C[i, j] is the communication cost from computation machine i to j for
1 ≤ i, j ≤ n, where larger value implies larger communication cost or commu-
nication latency. C[i, i] is set to 0 for 1 ≤ i ≤ n. It is assumed that all pairs of
machines can communicate in a point-to-point way which is in accordance with
the original MPC model, and thus C[i, j] < ∞ holds for 1 ≤ i, j ≤ n. The matrix
C is not necessary to be symmetric, i.e., C[i, j] may not be equal to C[j, i].

The computation on WMPC proceeds in synchronous rounds which behaves
the same with the original MPC model. In each round, the computation machines
first communicate with each other, then conduct local computation.

The initial data distribution is important in the problems studied in this
paper. A lot of former research works on MPC model assume that the data
are uniformly split across the machines [4,11]. In this paper, it is assumed that
the data can be arbitrarily distributed, and the amount of data placed at each
machine is known in advance. This is also the same assumption adopted in [5,13].

Objective Functions. The goal of this paper is to minimize the communication
cost under WMPC model, which is divided into send cost and receive cost. If α
amount of data is transferred from machine i to machine j, it incurs α · C[i, j]
send cost to machine i, and α · C[i, j] receive cost to machine j. Denote sendi

and rcvi to be the send and receive cost of machine i for 1 ≤ i ≤ n, then we
define the following four objective functions.
Total cost (TOTAL):

∑n
i=1 sendi.

Bottleneck cost (BTNK): maxn
i=1 rcvi.

Maximum of send and receive cost (MSR): maxn
i=1{sendi, rcvi}.

Sum of send and receive cost (SSR): maxn
i=1{sendi + rcvi}.

Note that the send and receive cost is defined based on the amount of data
transferred between two machines. For different computation task and different
communication pattern, the way of calculating the amount of transferred data
will be different. Next we will use parallel sorting as the introducing example,
analyze their communication patterns, and define the problems to be studied in
this paper. We will introduce two problems, named Data Redistribution Problem
and Data Allocation Problem.

The Data Redistribution Problem. Consider the following parallel sorting
algorithm on classical MPC model, which is often referred as TeraSort [18]. The
algorithm first selects n − 1 splitters s1 ≤ s2 ≤ · · · ≤ sn−1 and broadcast the
splitters to all machines. The n−1 splitters form n intervals Ii = (si−1, si] where
s0 = −∞ and sn = ∞. After obtaining the splitters, each machine sends the
local data falling in the i-th interval to the i-th machine. In such way the data
is ordered across the machines. Note that the label of the machines are fixed
before the algorithm starts. Then the machines conduct local sorting, and the
sorting task can be finished.

Now consider running the parallel sorting algorithm on the WMPC model,
and assume that the splitters have been determined. The algorithm described
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above asks the data in the i-th interval to be sent to the i-th machine. However,
this operation may lead to non-optimal communication cost. Consider the fol-
lowing extreme case. The data are initially inversely sorted across the machines,
i.e., for machine i < j, the data in machine i are always no less than the data
in machine j. In such a case, if the i-th interval is assigned to the (n − i)-th
machine, there would be no need to conduct communication. However, if the
algorithm asks to send the data in the i-th interval to the i-th machine, all the
data will be totally redistributed, incurring large amount of communication.

Actually, there exist two shortcomings for the above TeraSort algorithm on
classical MPC model. First, it neglects the initial data distribution, and neglects
the importance of the way to assign the intervals to the machines to minimize
the communication cost. Second, it does not consider the difference of commu-
nication costs between different pair of machines. By tackling these two points
together, the first research problem to be studied in this paper is formed, which
is called the Data Redistribution Problem (DRP).

The input of DRP is two n × n matrices T and C. T [i, j] represents the
amount of data in the i-th machine that fall in the j-th interval. The C matrix
is the communication cost matrix of the WMPC model. The output is to assign
the intervals to the machines, such that the communication cost is minimized.
By applying the four communication cost functions introduced in Sect. 1.1, we
get four problems denoted as DRP-TOTAL, DRP-BTNK, DRP-MSR and DRP-
SSR, respectively. The four problems are studied in Sect. 2.

The Data Allocation Problem. In the above case of parallel sorting, it is
assumed that the splitters are known in advance. However, how to select the split-
ters to minimize the communication cost is also an important research problem
[19], and even a new problem under the WMPC model. For a formal descrip-
tion, let N be the total number of data records to be sorted, and n be the
number of machines. Under the assumption that the initial data distribution is
known in advance, let Si = {si,1, si,2, · · · , si,li}, 1 ≤ i ≤ n, which is the data
initially residing in machine i. li is the number of data records in machine i,
and

∑n
i=1 li = N . If the splitters are chosen as s1, s2, · · · , sn−1, they will form n

intervals (sj−1, sj ], where s0 = −∞ and sn = ∞. Let T [i, j] = |Si ∩ (sj−1, sj ]|,
which is the number of data records in machine i that falls into the j-th interval
(sj−1, sj ]. To minimize the communication cost, the problem is to select n − 1
splitters s1 ≤ s2 ≤ · · · ≤ sn−1 which split the data into n intervals, then find
an assignment from the intervals to the machines, such that the communication
cost is minimized. This problem is called Data Allocation Problem (DAP).

Remark. Although DRP and DAP are introduced based on sorting, they
can be defined using the idea of virtual machines and physical machines. For
DRP, the input T [i, j] can be considered as the amount of data initially residing
in physical machine i to be processed by virtual machine j, and the output
is a permutation which assigns virtual machines to physical machines so that
the communication cost is minimized. For DAP, choosing the splitters can be
regarded as deciding the data distribution across the virtual machines. In such
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a point of view, DRP and DAP can be applied to a wide range of concrete
problems. Also, DRP and DAP reflect only the problems that can be solved using
one synchronous round. It will the future work to study multi-round algorithms
on WMPC model.

1.2 Summary of Results and Paper Organization

Summarizing the above descriptions, we have two kinds of problems including
DRP and DAP. We also have four kinds of communication cost functions includ-
ing TOTAL, BTNK, MSR and SSR. 8 problems are obtained by combining two
kinds of problems with four kinds of cost functions. The hardness for the 8
problems make up the content of this paper. Table 1 summarizes all the pro-
posed results. Note that the parameterized complexities consider the number of
machines as the parameter.

Table 1. Summary of results

TOTAL BTNK MSR SSR

DRP P P NP-complete NP-complete

DAP FPT FPT W[1]-complete W[1]-complete

In the rest of this paper, we first introduce some denotations in Sect. 1.3, then
present the theoretical results in Sects. 2 and 3. The future work are discussed
in Sect. 4. Finally Sect. 5 concludes this paper.

1.3 Denotations

A m × n matrix A is denoted as Am×n. The element in A at row i and column
j is denoted as A[i, j]. The set of consecutive integers {i, i + 1, i + 2, · · · , j} is
denoted as [i, j]. The set of integers {1, 2, · · · , n} is denoted as [n].

A permutation on [n] is a one-to-one mapping from [n] to [n], and it is usually
denoted as π. The set of all permutations on [n] is denoted as Π(n). Denote πi

as the image of i under π. If πi = j, it is also said that i is assigned to j by
permutation π. We also use π−1 to denote the inverse permutation of π, i.e., if
πi = j then π−1

j = i.

2 The Data Redistribution Problem Series

Definition 2.1 (DRP). Input: A n×n transmission matrix Tn×n and a n×n
communication cost matrix Cn×n, where C[i, i] = 0 for i ∈ [n].
Output: find a permutation π ∈ Π(n) such that the communication cost function
chosen from TOTAL, BTNK, MSR and SSR is minimized. Formally,
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DRP-TOTAL: min
π∈Π(n)

n∑

i=1

n∑

j=1

T [i, j]C[i, πj ]

DRP-BTNK: min
π∈Π(n)

max
i∈[n]

n∑

j=1

T [j, π−1
i ]C[j, i]

DRP-MSR: min
π∈Π(n)

max
i∈[n]

{
n∑

j=1

T [i, j]C[i, πj ],
n∑

j=1

T [j, π−1
i ]C[j, i]

}

DRP-SSR: min
π∈Π(n)

max
i∈[n]

{
n∑

j=1

T [i, j]C[i, πj ] +
n∑

j=1

T [j, π−1
i ]C[j, i]

}

Theorem 2.1. DRP-TOTAL can be solved in O(n3) time.

Theorem 2.2. DRP-BTNK can be solved in O(n3) time.

Theorem 2.3. DRP-MSR is NP-complete.

Theorem 2.4. DRP-SSR is NP-complete.

The proofs for the four theorems are omitted due to space limitation. See
our full paper online [17].

3 The Problem Series of Data Allocation Problem

In this section we study the parameterized hardness and algorithms for the
DAP problem series, parameterized by the number of machines. We will use N
to denote the size of the input, and n to denote the number of machines.

Definition 3.1 (DAP). Input: a set S of N integers divided into n subsets
S1 = {s1,1, s1,2, · · · , s1,l1}, · · · , Sn = {sn,1, sn,2, · · · , sn,ln}, where n > 1 is the

number of machines, and li is the size of Si satisfying
n∑

i=1

li = N .

Output: find n − 1 integers s∗
1, · · · s∗

n−1 ∈ S and a permutation π ∈ Π(n), such
that the communication cost function chosen from TOTAL, BTNK, MSR and
SSR is minimized. Formally,

DAP-TOTAL: min
s∗
1 ,···s∗

n−1∈S
min

π∈Π(n)

n∑

i=1

n∑

j=1

T [i, j]C[i, πj ]

DAP-BTNK: min
s∗
1 ,···s∗

n−1∈S
min

π∈Π(n)
max
i∈[n]

n∑

j=1

T [j, π−1
i ]C[j, i]

DAP-MSR: min
s∗
1 ,···s∗

n−1∈S
min

π∈Π(n)
max
i∈[n]

{
n∑

j=1

T [i, j]C[i, πj ],
n∑

j=1

T [j, π−1
i ]C[j, i]

}

DAP-SSR: min
s∗
1 ,···s∗

n−1∈S
min

π∈Π(n)
max
i∈[n]

{
n∑

j=1

T [i, j]C[i, πj ] +
n∑

j=1

T [j, π−1
i ]C[j, i]

}

where T [i, j] = |Si ∩ (s∗
j−1, s

∗
j ]| and s∗

0 = −∞, s∗
n = ∞.
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3.1 The Splitter-Graph

We introduce the splitter-graph, which transforms the problem of choosing split-
ters to choosing a path in a special graph. Given a set S = {s1, s2, · · · , sN} of
integers, assuming s1 ≤ s2 ≤ · · · ≤ sN , and a parameter n, construct a graph
G(V,E) as follows. For i ∈ [n − 1], j ∈ [N ], construct a vertex vi,j . Let v0,0 be
the starting vertex −∞, and vn,N+1 be the end vertex ∞. Let (vi,j , vi′,j′) ∈ E iff
i + 1 = i′ and j < j′. In such way, a vertex vi,j represents a splitter sj placed in
the i-th position, and a path (−∞, v1,i1 , v2,i2 · · · vn−1,in−1 ,∞) represents select-
ing si1 , si2 , · · · sin−1 as splitters. A splitter-graph based on set S with parameter
n will be denoted as Gs(V,E, S, n).

3.2 FPT Algorithm of DAP-TOTAL and DAP-BTNK

The FPT algorithm of DAP-TOTAL and DAP-BTNK is based on the following
transformation. Given an instance of DAP-TOTAL, denote S = {s1, s2, · · · , sN}
and assume s1 ≤ s2 ≤ · · · ≤ sN . Let s0 = −∞ and sN+1 = ∞. Let Acc[i, j] =
|Si ∩ (−∞, sj ]|, i ∈ [n], j ∈ [0, N + 1]. Slightly abusing denotation, let πn×n be a
matrix defined based on the permutation π, such that π[i, j] = 1 if πi = j, and
π[i, j] = 0 otherwise, i, j ∈ [n]. Under the above denotations, DAP-TOTAL can
be transformed into

min
s∗
1 ,···s∗

n−1∈S
min

π∈Π(n)

n∑

i=1

n∑

j=1

n∑

k=1

(Acc[i, s∗
j ] − Acc[i, s∗

j−1])C[i, k]π[j, k] (1)

where s∗
0 = −∞ and s∗

n = ∞. Let F [j, k] =
n∑

i=1

Acc[i, j]C[i, k], j ∈ [0, N + 1], k ∈
[n], then the above equation is transformed into

min
s∗
1 ,···s∗

n−1∈S
min

π∈Π(n)

n∑

j=1

n∑

k=1

(F [s∗
j , k] − F [s∗

j−1, k])π[j, k] (2)

Let Cost[i, j, k] = F [i, k] − F [j, k], 0 ≤ j < i ≤ N + 1, k ∈ [n], and we get

min
s∗
1 ,···s∗

n−1∈S
min

π∈Π(n)

n∑

j=1

n∑

k=1

Cost[s∗
j , s

∗
j−1, k]π[j, k] (3)
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If π is represented by a permutation, we get

min
s∗
1 ,···s∗

n−1∈S
min

π∈Π(n)

n∑

j=1

Cost[s∗
j , s

∗
j−1, πj ] (4)

Now we can associate the above Cost function to the spiltter-graph. For
each edge (vi,j , vi′,j′) in the splitter-graph and each l ∈ [n], let ω(vi,j , vi′,j′ , l) =
Cost[j′, j, l], and we have the following splitter-graph formation of DAP-TOTAL.

Definition 3.2. Input: a splitter-graph Gs(V,E, S, n), the weight function ω :
V × V × [n] → R of DAP-TOTAL.
Output: a path (−∞, v1,i1 , v2,i2 · · · vn−1,in−1 ,∞), and a permutation π, to mini-

mize
n∑

j=1

ω(vj,ij , vj−1,ij−1 , πj).

FPT Algorithm for Decision-DAP-TOTAL. We prove the following deci-
sion version of DAP-TOTAL is FPT.

Definition 3.3 (Decision-DAP-TOTAL). Input: a splitter-graph
Gs(V,E, S, n), the weight function ω : V × V × [n] → R of DAP-TOTAL, a
threshold value α, and parameter n.
Output: Is the optimum value of DAP-TOTAL less than α?

We need the following definition of partial permutations. A partial permu-
tation π is a function defined on [i] where i ∈ [n], such that πj , πk ∈ [n] and
πj �= πk for 1 ≤ j �= k ≤ i. Here πj is the image of j under π. Given a partial
permutation π whose definition domain is [i], and an integer l ∈ [n], let l ∈ π
denote that there exists some j ∈ [i] such that πj = l. Given an integer l /∈ π, let
π ∪{l} be a new partial permutation π′ defined on [i+1] such that π′

i+1 = l and
π′

j = πj for j ∈ [i]. Given an integer l = πi, let π \ {l} be a partial permutation
π′ defined on [i − 1], such that π′

j = πj for all j ∈ [i − 1]. Denote Φ as the empty
partial permutation.

Algorithm 1 is the FPT algorithm for Decision-DAP-TOTAL. The algorithm
maintains two arrays of length O(n!) for each vertex vi,j , namely Perm(vi,j) and
Cost(vi,j , π). Perm (vi,j) stores all the feasible partial permutations for the path
from −∞ to vi,j , and Cost(vi,j , π) stores the partial accumulated cost value
corresponding to the partial permutation π. The proof for the correctness and
complexity of the algorithm is omitted due to space limitation.

FPT Algorithm for DAP-BTNK. Using a transformation similar with
that for DAP-TOTAL, we have the following splitter-graph formation for DAP-
BTNK.

Definition 3.4. Input: a splitter-graph Gs(V,E, S, n), the weight function ω :
V × V × [n] → R of DAP-BTNK, and parameter n.
Output: a path (−∞, v1,i1 , v2,i2 · · · vn−1,in−1 ,∞), and a permutation π, to mini-
mize max

j∈[n]
ω(vj,ij , vj−1,ij−1 , πj).
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Algorithm 1: Decision version of DAP-TOTAL
1 Perm(−∞) ← {Φ}, Cost(−∞, Φ) ← 0;
2 for 1 ≤ i ≤ n, 1 ≤ j ≤ N, 1 ≤ k ≤ N do
3 if edge (vi−1,k, vi,j) exists then
4 for 1 ≤ l ≤ n do
5 foreach partial permutation π ∈ Perm(vi−1,k) do
6 if l /∈ π then
7 if Cost(vi−1,k, π) + ω(vi−1,k, vi,j , l) ≤ α then
8 Add π ∪ {l} into Perm(vi,j);
9 Cost(vi,j , π ∪ {l}) ← Cost(vi−1,k, π) + ω(vi−1,k, vi,j , l);

10 else
11 Update Cost(vi,j , π) if

Cost(vi−1,k, π \ {l}) + ω(vi−1,k, vi,j , l) < Cost(vi,j , π)
12 Return Y es if Perm(∞) is non-empty, and No otherwise.

The decision version of DAP-BTNK has an extra value α as input, and asks
whether the optimum value of DAP-BTNK is less than α. We propose the FPT
algorithm for the decision version, which is given as Algorithm 2. It needs one
array for each vertex vi,j which is Perm(vi,j). The algorithm is similar with that
for Decision-DAP-TOTAL, only changing the sum-check (Line 7 in Algorithm
1) to maximum check (Line 6 in Algorithm 2). The correctness proof of this
algorithm is omitted.

Algorithm 2: Decision version of DAP-BTNK
1 Perm(−∞) ← {Φ};
2 for 1 ≤ i ≤ n, 1 ≤ j ≤ N, 1 ≤ k ≤ N do
3 if edge (vi−1,k, vi,j) exists then
4 for 1 ≤ l ≤ n do
5 foreach partial permutation π ∈ Perm(vi−1,k) do
6 if l /∈ π and ω(vi−1,k, vi,j , l) ≤ α then
7 Add π ∪ {l} into Perm(vi,j);

8 Return Y es if Perm(∞) is non-empty, and No otherwise.

3.3 W[1]-Completeness of DAP-MSR and DAP-SSR

Due to space limitation, the proof for DAP-MSR and DAP-SSR are in W[1] is
omitted. See our full paper online [17]. We then prove the W[1]-hardness of the
two problems. We first transform DAP-MSR and DAP-SSR into a splitter-graph
formation. We only describe the transformation for DAP-MSR, and it is similar
for the other.
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min
s∗
1 ,···s∗

n−1∈S
min

π∈Π(n)
max
i∈[n]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑

j=1

n∑

k=1

(Acc[i, s∗
j ] − Acc[i, s∗

j−1])C[i, k]π[j, k]

n∑

j=1

n∑

k=1

(Acc[j, s∗
k] − Acc[j, s∗

k−1])C[j, i]π[k, i]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(5)

Let V be a N ×N matrix where each element is a vector of length n, and let
V [j, k][i] = Acc[i, j]−Acc[i, k], i ∈ [n], j, k ∈ [0, N +1], then Eq. 5 is transformed
into

min
s∗
1 ,···s∗

n−1∈S
min

π∈Π(n)
max
i∈[n]

{ n∑
j=1

n∑
k=1

V [s∗
j , s∗

j−1][i]C[i, k]π[j, k],
n∑

j=1

n∑
k=1

V [s∗
k, s∗

k−1][j]C[j, i]π[k, i]

}

Next we give the following splitter-graph formation of DAP-MSR.

Definition 3.5. Input: splitter-graph Gs(V,E, S, n), edge weight function ω :
V × V → Rn, communication cost matrix Cn×n, and parameter n.
Output: a path (−∞, v1,k1 , v2,k2 · · · vn−1,kn−1 ,∞), which corresponds to a matrix
Tn×n where T [i, j] = ω(vj,kj

, vj−1,kj−1)[i], and a permutation π, such that the
following MSR cost function is minimized:

max
i∈[n]

⎧
⎨

⎩

n∑

j=1

T [i, j]C[i, πj ],
n∑

j=1

T [j, π−1
i ]C[j, i]

⎫
⎬

⎭

To prove the W[1]-hardness of the problem, we introduce an intermediate
problem called Selecting-PARTITION. The idea is to reduce k-clique, which is
W[1]-complete, to Selecting-PARTITION, and reduce Selecting-PARTITION to
DAP-MSR (and similarly to DAP-SSR).

Definition 3.6 (Selecting-PARTITION). Input: n integers S = {s1, s2,
· · · , sn}, target sum value B, and parameter k.
Output: decide whether there exists a set A ⊂ S with |A| = k, such that A is
a Yes-instance of PARTITION, i.e., there exists A1, A2 such that A1 ∩ A2 =
∅, A1 ∪ A2 = A and

∑
si∈A1

si =
∑

si∈A2
si = B/2.

Theorem 3.1. There is a parameterized reduction from k-clique to Selecting-
PARTITION, and from Selecting-PARTITION to DAP-MSR and DAP-SSR.

Proof. See the full version of this paper [17]. ��

4 Future Works

Recall that the problem series of DRP and DAP are introduced using parallel
sorting as the representing example. They reflect the communication pattern
of problems that can be solved in one synchronous round. However, there are
many problems that need multiple rounds to solve. For example, joining multiple
relations can be solved using one round [5] or multiple rounds [1]. Computing
the graph coloring [7], maximum matching [12], shortest path [10], etc., must use
multiple rounds. The problem to minimize the communication cost on WMPC
model with multiple rounds is left as future work.
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5 Conclusion

In this paper we proposed the WMPC (Weighted Massively Parallel Computa-
tion) model based on the existing works of topology-aware Massively Parallel
Computation model [6,13]. The WMPC model considers the underlying compu-
tation network as a complete weighted graph, which is a complement to the work
in [13] where the network topology is restricted to trees. Based on the WMPC
model the DRP and DAP problem series are defined, each representing a set of
problems with the same pattern of communication. We also defined four kinds of
objective functions for communication cost which are TOTAL, BTNK, MSR and
SSR, and obtained 8 problems combining the four objective functions with two
communication pattern problems. We studied the hardness of the 8 problems,
and provided substantial theoretical results. In conclusion, this paper studied the
communication minimization problem on WMPC model with a scope both deep
and wide, but we must point out that this paper only investigated a small por-
tion of the research area on the WMPC or topology-aware MPC model. There
are a lot of problems to be studied following what was studied in this paper.
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Abstract. In the paper, we study Regularized Submodular Maximiza-
tion (RegularizedSM) problem over a down-closed family of sets by
applying the Lyapunov method. The Regularized Submodular Maximiza-
tion can be viewed as a generalization of the Submodular Maximiza-
tion since it adds an extra linear regular term (possibly negative) to the
objective so that it may no longer be non-negative. For Regularized Non-
monotone Submodular Maximization (RegularizedNSM), we systemati-
cally design an algorithm framework in two phases. With a proper choice
of coefficients in the framework, a (1/e, γ−γ/e−1

γ−1
)-approximation algo-

rithm is obtained in the continuous-time phase, where γ ∈ [0, 1)∪(1, +∞)
is a parameter reflecting the relative dominance of the positive and neg-
ative parts of the linear optimal value. In the second phase, we make the
algorithm implemented by discretization with almost the same approx-

imation guarantee and O
(

n3

ε

)
time complexity. Moreover, the Lya-

punov method can also be applied in Regularized Monotone Submodular
Maximization (RegularizedMSM) with (1 − 1/e, 1)-approximation per-
formance, which coincides with the state-of-the-art result given by Feld-
man [9]. This observation implies that the algorithm framework designed
by the Lyapunov method can unify some of the existing approximation
algorithms.
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1 Introduction

Recently, plenty of works related to RegularizedSM have been published from
both theoretical and practical perspectives, since the objective, which consists of
submodular and linear terms, owns very general properties. Formally, the Regu-
larizedSM can be formulated as maxS⊆E,S∈I f(S)+ �(S) with a given groundset
E and a certain constraint I. Usually, the first part is a non-negative submodu-
lar set function f : 2E → R≥0. Submodularity is an important economic concept
that quantifies the degree of fungibility between objects. The second part of Reg-
ularizedSM is a linear set function � : 2E → R defined by the summation of all
single-element value in the field of real numbers, therefore it makes the objective
not necessarily non-negative. The linear term enhances the application versa-
tility compared with submodular maximization. One example is in the design
of approximation algorithms, where RegularizedSM can be viewed as a sub-
problem of the curvature optimization problems, where the goal is to improve
the constant approximation ratio by introducing a parameter curvature [4] of
the objective function. Another popular scenario is the overfitting in machine-
learning. When the linear term is non-positive, RegularizedSM generalizes the
regularization model. It is worth noting that the two functions in the objective
of RegularizedSM tend to be valued differently in applications, where the first
term normally is more important since it is the initial target (e.g. the quan-
tity function in machine-learning) and the second is just the implementation of
regularization.

1.1 Lyapunov Function Approach

In response to the above situation, a new method called Lyapunov function
is introduced in submodular maximization not only as a technique for analy-
sis and proof, but also as a systematic instruction for designing approximation
algorithm. The “designing” here indicates that it can directly start the analysis
process and derive the approximation guarantee and complexity without know-
ing the algorithm. Besides, we could gradually learn the details of the algorithm
during this procedure. The Lyapunov function was originally used to study the
stability of an ODE equilibrium as a technique for analysis and is therefore widely
used in the stability and control theory of dynamic system [15]. This method
normally works in the continuous-time setting, where a vecter-valued function
x(t) ∈ R

n varies itself by following an evolution equation ẋ(t) = φ(x(t)) with
t ∈ [0, T ]. Denote V (x(t)) ∈ R as the Lyapunov function of x(t) such that the
stable criteria V̇ (x(t)) = (∇V (x(t)))� · φ(x(t)) is non-negative on t ∈ [0, T ].
This implies that V (x(t)) is a non-decreasing function during this time interval.
With this property, we could obtain surprisingly simple sufficient conditions for
the problem we consider. The Lyapunov function method also has many appli-
cations in other areas, such as optimization. Frequently, with a given algorithm,
this method is used as a proof technique to show the convergence [14,17,20–22].
For example, Bansal and Gupta [1] discussed the convergence rate for gradient
methods such as smooth and non-smooth gradient descent, mirror descent and
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some accelerated variants. Recently, Diaknonikolas and Orecchia [5] dealt with
it in a reverse direction, i.e., the continuous-time algorithm emerges itself from
the derivation, to present a general analysis framework of first-order methods.
Similarly, Du [7,8] firstly gave a two-phase systematical framework for various
submodular maximization problems by applying the Lyapunov method as an
algorithm-design technique. The first phase still focuses on the continuous-time
analysis. It begins with specifying the parametric form of the Lyapunov func-
tion. Then, it derives the sufficient conditions of the stable criteria by the help
of a proper bound of the optimal value. Next, it produces the algorithm by
solving the ordinary differential equation related to update of the solution in
the conditions. Finally, it maximizes the approximation guarantee by determin-
ing the parameters given before. Since submodular maximization is a kind of
combinatorial optimization, the second phase should fulfill the request of an
implementable algorithm and output an integral solution. To do so, the discrete
counterpart of the Lyapunov function should be derived and the discretization of
the continuous-time algorithm is necessary. At the end of the whole procedure,
a similar approximation ratio with only a small loss and the time complexity
can be obtained automatically. Running this two-phase paradigm, Du repro-
duced the state-of-the-art results for maximizing monotone DR-submodular over
a solvable convex set, non-monotone DR-submodular subject to a down-closed
solvable convex set and non-monotone DR-submodular constrained by a solvable
convex set. The more important achievement for this work is that it essentially
explains the design philosophy of the commonly used methods mentioned above.

1.2 Related Work

In RegularizedSM, an algorithm is called (α, β)-approximation for some coef-
ficients α, β ≥ 0 if its output S ⊆ E satisfying E[f(S) + �(S)] ≥ maxO⊆E [α ·
f(O)+β ·�(O)]. For the Regularized Monotone Submodular Maximization (Reg-
ularizedMSM) problem with matroid constraints, Sviridenko et al. [19] pre-
sented two algorithms that are a modified non-oblivious local search and an
adapted continuous-greedy, respectively. They both achieved an (1 − 1/e, 1)-
approximation with O(ε) error term. Unfortunately, a guessing step is necessary
which remarkably damages its query complexity. To avoid the guessing step,
Feldman [9,10] described a clean alternative algorithm called distorted contin-
uous greedy for solving the multilinear relaxation of the above problem over
a down-monotone and solvable polytope. This constraint is more general and
includes many common polytopes such as matroid polytope. By applying the
adaptive weight (1 + δ)(t−1)/δ related to the time interval δ ∈ O(ε/n2) on the
first-order information of the submodular term, this variant of continuous-greedy
yielded (1 − 1/e, 1) guarantee for the submodular and linear term, respectively.
Also, a hardness result of this problem is showed in [9]. It states that there
exists no polynomial time algorithm with bi-factor better than (1 − e−λ + ε, λ),
where λ ∈ [0, 1] is a calibrating parameter. Now, researchers pay attention on
a more challenging setting, where the submodular component of the objective
is not necessarily monotone. In this case, the continuous-greedy normally fails,
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since the marginal gains right now could be negative. For non-monotone sub-
modular maximization, a powerful technique named measured continuous-greedy
is introduced by Feldman et al. [11] as a unified algorithm. It compensates for
the difference between the residual value of the current fractional solution and
its gradient. This is achieved by multiplying an adaptive ratio in the update
process. The ratio slows down the evolution of the fractional solution by diverg-
ing the direction obtained by linear programming, so as to mimic the gradi-
ent value. Fortunately, the first-order property of the multilinear extension can
ensure this intention. Based on this, Lu et al. [16] designed a variant of the mea-
sured continuous-greedy with distorted objective for Regularized Non-Monotone
Submodular Maximization (RegularizedNSM) subject to a matroid constraint.
The performance guarantee of the algorithm is (1/e−ε, 1). However, this result is
built only when � is non-positive. For the linear term without any limitation, Qi
[18] presented a ( te−t

t+e−t −ε, t
t+e−t )-approximation algorithm for RegularizedNSM

subject to a matroid constraint, where t ∈ [0, 1]. Furthermore, many inapprox-
imability results for RegularizedSM were also provided in this work. Besides, for
Regularized Unconstrained Submodular Maximization (RegularizedUSM), Bodek
and Feldman [3] offered the first non-trivial guarantee and proved that non-
oblivious local search yields (α(β) − ε, β − ε)-approximation for all β ∈ [0, 1],
α(β):=β(1 − β)/(1 + β). They also showed some negative conclusions for the
special case of RegularizedUSM in which the linear function is non-positive and
non-negative, respectively.

For applying the Lyapunov function method as not only an analysis but also
a design technique in submodular maximization, Du [7] used three problems of
DR-submodular maximization with different constraints as examples to propose
a two-phase systematical framework. After determining the form of the Lya-
punov function, a continuous-time algorithm is designed in the first stage, and
afterwards the theoretical approximation guarantee could be derived. Then, for
the purpose of implementation, a discrete-time algorithm and the corresponding
complexity are obtained in the second stage. For the three problems they con-
sider, the performance guarantees and complexities coincides with the current
best results. Moreover, Du et al. [6] improved the approximation ratio of max-
imizing a DR-submodular function over a general convex set from 0.19 to 0.25
by using the Lyapunov method to design a Frank-Wolfe type algorithm with the
same order of time-complexity.

1.3 Our Contribution

The informal conclusions for RegularizedNSM and RegularizedMSM are pre-
sented below by denoting F : [0, 1]n → R≥0 and L : [0, 1]n → R, which are the
multi-linear extensions of f and �, respectively.

Theorem 1.1. For RegularizedNSM over a down-closed family of sets, there
exists a continuous-time approximation algorithm designed by a certain Lya-
punov function. Given γ ∈ [0, 1) ∪ (1,+∞), it outputs a feasible x ∈ [0, 1]E
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obeying

F (x) + L(x) ≥ 1
e
f(x�) +

γ − γ/e − 1
γ − 1

�(x�).

Theorem 1.2. For RegularizedNSM over a down-closed family of sets, there
exists a discrete-time approximation algorithm designed by a certain Lyapunov
function. Given ε > 0 and γ ∈ [0, 1) ∪ (1,+∞), it outputs a feasible x ∈ [0, 1]E

obeying

F (x) + L(x) ≥ 1
e
f(x�) +

γ − γ/e − 1
γ − 1

�(x�) − O(ε).

Moreover, the time complexity of the algorithm is O (
nD
ε

)
, where n is the ele-

ment’s number of the ground set and D is the smoothness of F .

Moreover, we can also take the Lyapunov function method to deal with Reg-
ularizedMSM with the same constraint. With a similar derivation process, we
can obtain the following results.

Theorem 1.3. For RegularizedMSM over a down-closed family of sets, there
exists a continuous-time approximation algorithm designed by a certain Lya-
punov function, whose output x ∈ [0, 1]E is feasible and satisfies

F (x) + L(x) ≥
(

1 − 1
e

)
f(x�) + �(x�).

Theorem 1.4. For RegularizedMSM over a down-closed family of sets, there
exists a discrete-time approximation algorithm designed by a certain Lyapunov
function. Given ε > 0, it outputs a feasible x ∈ [0, 1]E obeying

F (x) + L(x) ≥
(

1 − 1
e

)
f(x�) + �(x�) − O(ε).

Moreover, the time complexity of the algorithm is O (
nD
ε

)
, where n is the ele-

ment’s number of the ground set and D is the smoothness of F .

1.4 Organization

In Sect. 2, we introduce some necessary conceptions. In Sect. 3, we explain why
the Lyapunov method can systematically design an algorithm framework and
analyze its approximation guarantee for RegularizedNSM with no limitation on
the linear term. In Sect. 4, we finally conclude the paper. Due to page limitation,
we present the discrete-time phase of the Lyapunov method for RegularizedNSM
in Appendix B, the results for RegularizedMSM in Appendix C and all missing
proofs of Sect. 3 in Appendix D.
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2 Preliminaries

Given a ground set E with n elements and a set function f : 2E → R≥0, we use
fS({e}):=f(S ∪ {e}) − f(S) to denote the marginal gains of adding an element
e to a set S ∈ E w.r.t. f . We say f is submodular if fS({e}) ≥ fT ({e}) holds for
any S ⊆ T ⊆ E and an element e ∈ E\T . Also, the set function f is non-negative
if f(S) ≥ 0 for any S ⊆ E. Besides, we say a set function � : 2E → R is linear
if �(S) =

∑
e∈S �({e}) for every set S ∈ E, where �({e}) ∈ R for each e ∈ E.

For easy of implementation, we omit the brace when viewing an element as a set
and define S ∪ {e} and S\{e} by the shorthand S ∪ e and S − e, respectively.

We study RegularizedNSM with no limitation on the linear term. The solu-
tions are required to be feasible to an instance of a down-closed family of subsets
I ⊆ 2E , which is quite general including several regular and natural constraints
such as matroid and knapsack. I is down-closed (or down-monotone) if every
subset of S ∈ I also belongs to I. Since there are no lossless rounding techniques
for this setting, we instead aim at the relaxation of the above problem. For a
submodular function f , its multilinear extension is defined as F : [0, 1]n → R≥0,
which constructs a mapping between a point x = (xe1 , . . . , xen

) ∈ [0, 1]n and the
expected function value of a random set Rx ⊆ S w.r.t. x. The random set Rx

includes each element e ∈ E with probability xe independently. The formal math-
ematical expression is F (x):=E[f(Rx)] =

∑
S⊆E f(S)

∏
e∈S xe

∏
e/∈S(1−xe). We

denote the join, meet and product operations for any two vectors x,y ∈ [0, 1]n by
(x∨y)e = max{xe, ye}, (x∧y)e = min{xe, ye} and (x�y)e = xe ·ye respectively.
Also, we refer to the polytope PI ⊆ [0, 1]n as the feasible field in the relaxation
problem. It is the convex hull of characteristic vectors of all the feasible sets of
I. Its formal definition is PI = conv{1S , S ∈ I}. Similarly, we say PI is down-
monotone if 0 ≤ y ≤ x (0 ≤ yi ≤ xi for each i = 1, ..., n) and x ∈ PI imply
y ∈ PI . Moreover, PI is solvable if linear functions can be maximized over
it in polynomial time. The formal description of the relaxation (which is the
real problem we consider in this paper) can be stated as maxx∈PI F (x) + L(x),
where L(·) is the extension form of �. It is actually the dot product of the
input variable and the regularized (weight) vector 
� = (�e1 , . . . , �en

). Formally,
L(x):=〈
�,x〉 =

∑
e∈E �e · xe and ∇L(x) = 
�. For the regularized vector 
�, it

is obvious that it can be split into 
�+ and 
�−, where all the components are
non-negative for the former and non-positive for the latter. Therefore, we have

� = 
�+ + 
�−. Moreover, we denote x� ∈ {0, 1}n as the optimal integral solu-
tion for RegularizedNSM with down-monotone. One advantage of denoting x� is
that we can directly build the connection between the relaxation’s solution and
the optimal value of RegularizedNSM without any anxiety about the rounding
errors.

To simplify the proof process, we next present some assumptions about the
multilinear extension. Note that these hypotheses are not necessary for the con-
clusions. We can estimate the relevant variables by sampling, so that the same
results can be obtained with a high probability.
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Assumption 1. The value oracles of the multilinear extension F (·) and its gra-
dient ∇F (·) are given, which means that the feedback of any vector consultation
could be provided immediately.
Assumption 2. The multilinear extension F : [0, 1]n → R≥0 is D-smooth, i.e.,
for any x,y ∈ [0, 1]n, we have

F (x)+〈∇F (x),y−x〉−D

2
‖y−x‖2 ≤ F (y) ≤ F (x)+〈∇F (x),y−x〉+D

2
‖y−x‖2.

The D-smoothness above is widely assumed in first-order methods in con-
vex optimization [17] and in DR-submodular maximization [2]. Moreover, with
Lemma 3.3 in [9] we have

D = O(n2)f(OPT ),

where OPT denotes the optimal solution for the submodular maximization prob-
lem with certain constraints.

3 Lyapunov Method – Continuous-Time Phase

In this section, we apply the Lyapunov function method to design an algorithm
framework and analyze it for RegularizedNSM with no limitation on the linear
term. The output approximation algorithm yields the best guarantee for the
submodular term. Inspired by [7,8], we also present the whole process in two-
stage, where the theoretical algorithm and the approximation guarantee are
derived in the continuous-time phase and the practicable counterpart of the
algorithm and the complexity are showed in the discrete-time setting.

The purpose of the continuous-time phase is to give a guideline on algorithm
design and an informal expression of the analysis, where continuous-time means
that the solution x(t) varies continuously about time t and an update rule could
be described as a dynamical system ẋ(t) = φ(x(t)). In this stage, the Lyapunov
function will be taken as an input and an approximation algorithm is going to
be produced with a provable ratio. The first task is to determine the specific
parametric form of the Lyapunov function, which may be quiet different related
to the problem on hand. In this study, the Lyapunov function can be defined
as:

V (x(t)) = a(t)F (x(t)) − b(t)F (x�) + c(t)L(x(t)) − d(t)L(x�), (1)

where the coefficient functions a(t), b(t), c(t), d(t) ∈ R≥0 are non-decreasing, non-
negative and differentiable for t ∈ [0, T ] and we demand a(T ) = c(T ). For ease
of notation, we scale the time interval by 1/T , which only affects the complexity
order. We could easily recover the general result by multiplying T . As we men-
tioned above, the most critical property of the Lyapunov function is that in the
given time interval it is a non-decreasing function, i.e., the stable criteria

V̇ (x(t)) = ȧ(t)F (x(t)) + ċ(t)L(x(t)) + 〈a(t)∇F (x(t)) + c(t)∇L(x(t)), ẋ(t)〉
−

(
ḃ(t)F (x�) + ḋ(t)L(x�)

)

≥ 0.

(2)
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Then, we could easily have V (x(1))−V (x(0)) ≥ 0 and obtain the approximation
ratio below by rearranging the inequality

F (x(1)) + L(x(1)) ≥ b(1) − b(0)
a(1)

F (x�) +
d(1) − d(0)

a(1)
L(x�)

=
b(1) − b(0)

a(1)
f(x�) +

d(1) − d(0)
a(1)

�(x�),

where the equality holds since we assume x� is the optimal integral solution.
Finally, we solve a maximization problem with approximation ratio of the first
term as the objective, since it is normally the initial target (e.g. the quantity
function in machine-learning) and the second term is just the implementation of
regularization. We seek feasible coefficient-functions a(t), b(t), c(t), d(t) so that
the objective value is as large as possible.

After stating the high-level ideas, we formally start to derive the sufficient
conditions for meeting the stable criteria of the Lyapunov function V (x(t)) and
design a conceptual algorithm at the same time. To do so, one of the main
obstacles is the optimal sum

(
ḃ(t)F (x�) + ḋ(t)L(x�)

)
in the derivative V̇ (x(t)),

since we have no information of it. A natural thought for it in dealing with
maximization problems in optimization is to find a proper upper bound, which
is constructed mainly by the current solution and its gradient information so
that the bound and the optimal solution x� are irrelevant or at least not highly
correlated. The following lemma gives a such bound.

Lemma 3.1. Assuming xe(t) ≤ θ(t) for every e ∈ E and t ∈ [0, 1], there exists
an upper bound

U(t) = ḃ(t) · 〈∇F (x(t)),v(x(t)) � (1 − x(t))〉 + F (x(t))
1 − θ(t)

+ ḋ(t) · γ − 1
γ(1 − θ(t)) − 1

〈
�,v(x(t)) � (1 − x(t))〉

such that U(t) ≥ ḃ(t)F (x�) + ḋ(t)L(x�), where γ = 〈��+,x�〉
−〈��−,x�〉 and

v(x(t)) = arg max
v∈PI

〈
ḃ(t)

1 − θ(t)
∇F (x(t)) +

γ − 1
γ(1 − θ(t)) − 1

ḋ(t)
�,v � (1 − x(t))

〉

.

Note that the parameter γ is unavoidable according to the proof of the last
lemma, which we present in Appendix D. Now we could show the sufficient
conditions that guarantee the stable criteria of the Lyapunov function V (x(t)).

Lemma 3.2. For any t ∈ [0, 1], the defined Lyapunov function V (x(t)) is non-
decreasing if the coefficient functions (a(t), b(t), c(t), d(t)) ∈ Ccon where Ccon
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Algorithm 1. Continuous-time Algorithm for RegularizedNSM

Input: multilinear extension F , regularized vector ��, polytope PI and coefficient func-
tions (a(t), b(t), c(t), d(t)) ∈ Ccon

Output: x(1)
1: Set: x(0) = 0
2: for t ∈ [0, 1] do

3: v(x(t)) = arg maxv∈PI

〈
ȧ(t)∇F (x(t)) + γ−1

γ
a(0)
a(t) −1

ḋ(t)��,v � (1 − x(t))

〉

4: ẋ(t) = ȧ(t)
a(t)

(v(x(t)) � (1 − x(t)))
5: end for

includes

1 > θ(t) ≥ ‖x(t)‖∞ ≥ 0

ȧ(t) − ḃ(t)
1 − θ(t)

≥ 0

ċ(t) = 0

a(t)ẋ(t) − ḃ(t)
1 − θ(t)

(v(x(t)) � (1 − x(t))) = 0

c(t)ẋ(t) − ḋ(t)(γ − 1)
γ(1 − θ(t)) − 1

(v(x(t)) � (1 − x(t))) = 0,

where θ(t) is the upper bound of xe(t) for every e ∈ E.

According to the constraints Ccon, we could derive the update rule of the
solution in continuous-time setting and guarantee its feasibility.

Lemma 3.3. Given the Lyapunov function V (x(t)), the update rule in
continuous-time is

ẋ(t) =
ȧ(t)
a(t)

(v(x(t)) � (1 − x(t)))

for t ∈ [0, 1]. Moreover, assuming that ln a(t) is a cumulative distribution func-
tion on [0, 1], the output solution x(1) ∈ PI .

Due to the update rule given in Lemma 3.3, we can quantify the coordinate-
wise upper bound of the solution by the following lemma.

Lemma 3.4. For the coordinate-wise upper bound θ(t) of the solution x(t) with
t ∈ [0, 1], we have θ(t) ≤ 1 − a(0)

a(t) .

Under the guidance of the Lyapunov function V (x(t)) and combining all lem-
mas above, our continuous-time algorithm for RegularizedNSM with no limita-
tion on the linear term could be automatically designed and shown as Algorithm
1. And its utility guarantee is shown by the following theorem.
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Theorem 3.1. For RegularizedNSM with no limitation on the linear term, the
algorithm Continuous-time Algorithm for RegularizedNSM achieves
an (1/e, γ−γ/e−1

γ−1 )-approximation with feasible range γ ∈ [0, 1) ∪ ( 1
1−1/e ,+∞)

and γ ∈ (1, 1
1−1/e ) for �(x�) ≥ 0 and �(x�) < 0 respectively, where γ = 〈��+,x�〉

−〈��−,x�〉 .

Fig. 1. The approximation ratio of the linear term. The light blue (γ ∈ [0, 1)) and dark

blue (γ ∈ (1, +∞)) solid lines are the curves of γ−γ/e−1
γ−1

(our result), which illustrates
the approximation ratio of the linear term with various regularized weight vector. The
green dash line is the result given by Lu et al. [16] for the non-positive setting of �(·).
The red dash line is the result presented by Qi [18] for the non-negative setting of
�(·).(Color figure online)

The Discussion of the Approximation Ratio of the Linear Term. Since
the parameter γ ∈ [0,+∞) according to its definition, the curve of γ−γ/e−1

γ−1 is
represented by light (γ ∈ [0, 1)) and dark blue (γ ∈ (1,+∞)) solid lines in Fig. 1.
There are several cases to discuss.

(a) γ = 1 (the black dotted vertical line in Fig. 1.) In this case, the optimal
value of the linear term is �(x�) = 0 since there is no dominator between the
positive and negative parts.

(b) γ ∈ (1,+∞). In this case, the optimal value of the linear term is non-negative
since the positive part is dominant. From the curve of this interval (the dark
blue solid line), we have a non-negative guarantee when γ ∈ [ 1

1−1/e ,+∞].
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Moreover, the limitation of the guarantee is (1 − 1/e) when γ → +∞ (the
black point (+∞, 1−1/e) in Fig. 1) implying that the linear function is nearly
non-negative. Hence, the bi-ratio is (1/e, 1 − 1/e) for this special situation,
which coincides with the result given by Qi [18]. Then, we focus on the
interval γ ∈ (1, 1

1−1/e ), where the guarantee of �(x�) is negative. However,
it is not unacceptable since there is no algorithm whose output can make
a positive �(·) value while keeping 1/e guarantee for the submodular term,
when the non-negativity assumption of �(·) is violated. Now the only problem
is how bad the performance of the linear term will be. Notice that we have
the following result when γ ∈ (1, 1

1−1/e )

(
γ − γ/e − 1

γ − 1

)
· �(x�) =

(
1 − 1

e(1− 1
γ )

)
(1 − γ) · 〈
�−,x�〉

≥
∣
∣
∣
∣

n∑

k=1

(
�−)k

∣
∣
∣
∣ · ((1 − 1/e)γ − 1) ,

where the inequality is true since x� ≤ 1. Therefore, we have the lower
bound of

(
γ−γ/e−1

γ−1 · �(x�)
)

if there is a limitation of
∑n

k=1(
�−)k.
(c) γ ∈ [0, 1). In this case, the optimal value of the linear term is non-positive

since the negative part is dominant. From the curve of this interval (the light
blue solid line), we have a positive guarantee for �(x�) < 0. Fortunately, the
conclusion is the same since the inequality above also holds when γ ∈ [0, 1).
Moreover, the approximation ratio is 1 when γ = 0 (the black point (0, 1)
in Fig. 1). Hence, the bi-ratio is (1/e, 1) for this special situation, which is
coincident with the result given by Lu et al. [16] but worse than (0.385, 1)
presented by Qi [18].

(d) Comparing with (0.29, 0.59)-approximation given by Qi [18], our result given
in Theorem 3.1 is strictly better from the perspective of the performance
of the submodular function, which is more important in a real scenario of
RegularizedNSM since the linear function is normally just a regular term.

4 Conclusion

In the paper, we present algorithm frameworks for RegularizedNSM subject to
down-monotone family of sets with the help of the Lyapunov function. By prop-
erly choosing the coefficients, our algorithms yield (1/e, γ−γ/e−1

γ−1 ) approximation
guarantees with polynomial-time complexity for the above problems respectively,
where γ ∈ [0, 1)∪(1,+∞) is a parameter reflecting the relative dominance of the
positive and negative parts of the linear optimal value. Notably, our results are
quiet general since it could go back to many existed conclusions when the lin-
ear function own special property like non-negativity and non-positivity. More-
over, our results are strictly better from the perspective of the performance of
the submodular function comparing with (0.29, 0.59)-approximation given by Qi
[18] when there is no limitation on the linear term. At the end, we also show
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a (1 − 1/e, 1)-approximation algorithm for RegularizedMSM by the Lyapunov
method with a similar analysis process, which coincides with that the state-of-
the-art result. In the future, we focus on eliminating the parameter γ in the
bicriteria approximation without losing the approximation guarantee of the sub-
modular term as much as possible.
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Appendices

A Technical Lemmata

Finally, we give two rephrased technical lemmata about the multilinear exten-
sion, which are frequently used in later sections. The first is a well-known bound,
which build the connection of any two feasible vectors with coordinate-wise oper-
ations and the dot product between the gradient and their difference.

Lemma A.1 ([13]). For any differentiable DR-submodular function F :
[0, 1]n → R≥0, we have the following result for any x,y ∈ [0, 1]n,

〈∇F (x),y − x〉 ≥ F (x ∨ y) + F (x ∧ y) − 2F (x).

The second lemma can be viewed as a typical technique, which is normally
applied in non-monotone setting for obtaining a binary-valued vector.

Lemma A.2 ([11]). For any DR-submodular function F : [0, 1]n → R≥0 and
any y ∈ {0, 1}n, we have F (x ∨ y) ≥ (1 − ‖x‖∞) · F (y).

B Discrete-Time Phase for RegularizedNSM

In the last subsection, we introduce Algorithm 1, which is automatically designed
by the given Lyapunov function for solving RegularizedNSM in continuous-time.
Although the algorithm can yield state of the art approximation ratio, it is only
theoretically illustrative and hard to be implemented on a discrete computer.
Therefore, the goal of this phase is to discretize the algorithm with acceptable
guarantee losses so that it is executable with provable time complexity. The whole
process is not as intuitive as we think. One major obstacle is that the Lyapunov
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function may not be strictly monotone due to the discretization errors. The
discrete-time counter-part of the Lyapunov function remains the following form

V (x(ti)) = a(ti)F (x(ti)) − b(ti)F (x�) + c(ti)L(x(ti)) − d(ti)L(x�), (3)

where for every i = 1, . . . , K, a(ti), b(ti), c(ti), d(ti) are the point-mass sequences
sampled by the coefficient functions in the last phase. Since it is impossible to
verify the stable criteria through the derivative of V , we focus on the value
increment per unit of time of two adjacent iteration and expect that it has a
controllable lower bound even if it is negative, i.e.,

V (x(ti+1)) − V (x(ti))
ti+1 − ti

≥ −Bi ∈ −O
( ε

K2

)
, (4)

where the error term Bi ≥ 0 for every i = 1, . . . , K and the total number
of rounds K decides the time complexity. Then, by telescoping over all time
stamps, we have

V (x(tK)) − V (x(t0)) = a(tK)F (x(tK)) − (b(tK) − b(t0)) F (x�)
+ c(tK)L(x(tK)) − (d(tK) − d(t0)) L(x�)

≥ −
K−1∑

i=0

Bi(ti+1 − ti) ∈ −O(ε).

Finally, the approximation guarantee could be obtained with requiring a(tK) =
c(tK)

F (x(tK)) + L(x(tK)) ≥ b(tK) − b(t0)
a(tK)

F (x�) +
d(tK) − d(t0)

a(tK)
L(x�) − O(ε).

After the high-level thinking, we formally give the analysis process of the
discrete-time phase. Similar with the continuous-time phase, we begin with the
derivation of all sufficient constraints that the sampled sequences should satisfy.

Lemma B.1. For every i = 1, . . . , K, the increment of two successive solutions
has the following error term

Bi =
a(ti+1)D

2(ti+1 − ti)
‖x(ti+1) − x(ti)‖2,

when the point-mass sequences (a(ti), b(ti), c(ti), d(ti)) ∈ Cdis, where Cdis

includes

a(ti+1) − a(ti) ≥ b(ti+1) − b(ti)
1 − θ(ti)

c(ti+1) − c(ti) = 0

x(ti+1) − x(ti) =
b(ti+1) − b(ti)

a(ti+1)(1 − θ(ti))
(v(x(ti)) � (1 − x(ti)))

x(ti+1) − x(ti) =
(γ − 1)(d(ti+1) − d(ti))
c(ti)(γ(1 − θ(ti)) − 1)

(v(x(ti)) � (1 − x(ti))) ,
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where v(x(ti)) = arg maxv∈PI 〈wf (i)∇F (x(ti))+
�,v� (1−x(ti))〉, and wf (i) =
b(ti+1)−b(ti)

(ti+1−ti)(1−θ(ti))
, w�(i) = (d(ti+1)−d(ti))(γ−1)

((ti+1−ti))(γ(1−θ(ti))−1) .

Proof. The value increment per unit of time is,

V (x(ti+1)) − V (x(ti))

ti+1 − ti
=

a(ti+1)F (x(ti+1)) − a(ti)F (x(ti)) − (b(ti+1) − b(ti))F (x�)

ti+1 − ti

+
c(ti+1)L(x(ti+1)) − c(ti)L(x(ti)) − (d(ti+1) − d(ti))L(x�)

ti+1 − ti
.

Due to Lemma 3.1, the upper bound of the optimal sum can be denoted as

U(ti) =
b(ti+1) − b(ti)

(ti+1 − ti)(1 − θ(ti))
(〈∇F (x(ti)),v(x(ti)) � (1 − x(ti))〉 + F (x(ti)))

+
(d(ti+1) − d(ti))(γ − 1)

(ti+1 − ti)(γ(1 − θ(ti)) − 1)
〈
�,v(x(ti)) � (1 − x(ti))〉

≥ (b(ti+1) − b(ti))F (x�) + (d(ti+1) − d(ti))L(x�)
ti+1 − ti

,

where v(x(ti)) = arg maxv∈PI 〈wf (i)∇F (x(ti)) + w�(i)
�,v � (1 − x(ti))〉 and
wf (i) = b(ti+1)−b(ti)

(ti+1−ti)(1−θ(ti))
, w�(i) = (d(ti+1)−d(ti))(γ−1)

(ti+1−ti)(γ(1−θ(ti))−1) .
Then,

V (x(ti+1)) − V (x(ti))
ti+1 − ti

≥ a(ti+1) (F (x(ti+1)) − F (x(ti))) + (a(ti+1) − a(ti)) F (x(ti))
ti+1 − ti

+
c(ti+1)L(x(ti+1)) − c(ti)L(x(ti))

ti+1 − ti
− U(ti).

Applying the D-smoothness assumption of F , we obtain

a(ti+1)
ti+1 − ti

(F (x(ti+1)) − F (x(ti))) ≥ 〈∇F (x(ti)),
a(ti+1)
ti+1 − ti

(x(ti+1) − x(ti))〉

− a(ti+1)D
2(ti+1 − ti)

‖x(ti+1) − x(ti)‖2.
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Combining with Ut, the above inequality could be further derived as

V (x(ti+1)) − V (x(ti))

ti+1 − ti

≥ 〈∇F (x(ti)),
a(ti+1)

ti+1 − ti
(x(ti+1) − x(ti)) − b(ti+1) − b(ti)

(1 − θ(ti))(ti+1 − ti)
v � (1 − x(ti))〉

+

⎛
⎝a(ti+1) − a(ti) − b(ti+1)−b(ti)

1−θ(ti)

ti+1 − ti

⎞
⎠ F (x(ti))

+ 〈��, c(ti+1)x(ti+1) − c(ti)x(ti)

ti+1 − ti
− (d(ti+1) − d(ti))(γ − 1)

(γ(1 − θ(ti)) − 1)((ti+1 − ti))
v � (1 − x(ti))〉

− a(ti+1)D

2(ti+1 − ti)
‖x(ti+1) − x(ti)‖2.

Since F is non-negative and non-monotone and the range of L is
read domain, the sufficient conditions Cdis that the point-mass sequences
(a(ti), b(ti), c(ti), d(ti)) should satisfy are listed below

a(ti+1) − a(ti) ≥ b(ti+1) − b(ti)
1 − θ(ti)

c(ti+1) − c(ti) = 0

x(ti+1) − x(ti) =
b(ti+1) − b(ti)

a(ti+1)(1 − θ(ti))
(v(x(ti)) � (1 − x(ti)))

x(ti+1) − x(ti) =
(γ − 1)(d(ti+1) − d(ti))
c(ti)(γ(1 − θ(ti)) − 1)

(v(x(ti)) � (1 − x(ti))) .

Therefore, the increment per unit of time has the lower bound

V (x(ti+1)) − V (x(ti))
ti+1 − ti

≥ − a(ti+1)D
2(ti+1 − ti)

‖x(ti+1) − x(ti)‖2 = −Bi.

��
With a properly choice of the coeffcients in continuous-time, we meet the suf-

ficient constraints in discrete-time and make the error term controllable with the
next lemma. Moreover, the time complexity will also be automatically decided
by the total number of rounds K.

Lemma B.2. Setting 1 − θ(ti) = a(t0)
a(ti)

, a(ti) = eti−1, b(ti) = t
e , c(ti) = 1,

d(ti) = −γe−ti+t
γ−1 , where ti = i

K for i = 1, . . . , K and K = O (
nD
ε

)
with ε > 0.

Then, the sufficient conditions Cdis can be satisfied and the total error is

K−1∑

i=0

Bi(ti+1 − ti) ≤
K−1∑

i=0

a(ti+1)D
2

‖x(ti+1) − x(ti)‖2 ≤ O(ε).
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Proof. We first testify that the choice of all point-mass sequence meets the suf-
ficient conditions. Since 1 − θ(ti) = a(t0)

a(ti)
, a(ti) = eti−1, b(ti) = t

e , c(ti) = 1,

d(ti) = −γe−ti+t
γ−1 , we have c(ti+1) − c(ti) = 0 and

a(ti+1) − a(ti) − b(ti+1) − b(ti)
1 − θ(ti)

= eti+1−1 − eti−1 − (ti+1 − ti)eti−1

= eti−1
[
eti+1−ti − 1 − (ti+1 − ti)

]

≥ 0,

where the inequality holds since ex ≥ 1 + x for x ∈ R. Moreover,

b(ti+1) − b(ti)
a(ti+1)(1 − θ(ti))

=
ti+1 − ti
eti+1−ti

∈ O
(

1
K

)
= O(ε),

and

(γ − 1)(d(ti+1) − d(ti))
c(ti)(γ(1 − θ(ti)) − 1)

=
ti+1 − ti − γe−ti(1 − e−ti+1+ti)

1 − γe−ti

≥ ti+1 − ti − γe−ti(ti+1 − ti)
1 − γe−ti

= ti+1 − ti ∈ O
(

1
K

)
= O(ε),

where the inequality holds since x ≥ 1 − e−x for x ∈ R.
Then, we focus on the total error by telescoping over all iterations

K−1∑

i=0

Bi(ti+1 − ti) =
K−1∑

i=0

a(ti+1)D
2

‖x(ti+1) − x(ti)‖2

By plugging the relevant sufficient constraint in Cdis and v(x(ti)) � (1 −
x(ti)) ≤ 1, we get

‖x(ti+1) − x(ti)‖2 ≤
∥
∥
∥
∥O

(
1
K

)
· 1

∥
∥
∥
∥

2

= O
( n

K

)
.

Therefore, the total error can be bounded by

K−1∑

i=0

Bi(ti+1 − ti) ≤ O
(

a(ti+1)nD

K

)
≤ O(ε),

where the inequality holds due to a(ti+1) ≤ 1. ��
After presenting the discrete-time phase analysis, the Discrete-time Algo-

rithm for RegularizedNSM could be naturally introduced as Algorithm 2.
The designed algorithm produces a sequential feasible vectors x(ti) for all time
stamps i = 1, . . . , K in polynomial-time complexity, and it yields an identical
approximation ratio with arbitrarily small loss.
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Algorithm 2. Discrete-time Algorithm for RegularizedNSM

Input: multilinear extension F , regularized vector ��, polytope PI and coefficient func-
tions (a(ti), b(ti), c(ti), d(ti)) ∈ Cdis for every i = 1, . . . , K

Output: x(tK)

1: Set: x(t0) = 0, K = nD
ε

= n3

ε

2: for i = 0, . . . , K − 1 do
3: ti = i

K

4: v(x(ti)) = arg maxv∈PI 〈wf (i)∇F (x(ti)) + w�(i)��,v � (1 − x(ti))〉
5: x(ti+1) = x(ti) +

b(ti+1)−b(ti)

a(ti)(1−θ(ti))
(v(x(ti)) � (1 − x(ti)))

6: end for

Theorem B.1. For arbitrary ε > 0, the Discrete-time Algorithm for
RegularizedNSM outputs x(tK) ∈ PI and it satisfies

F (x(tK)) + L(x(tK)) ≥ 1
e
f(x�) +

γ − γ/e − 1
γ − 1

�(x�) − O(ε),

with feasible range γ ∈ [0, 1)∪ ( 1
1−1/e ,+∞) and γ ∈ (1, 1

1−1/e ) for �(x�) ≥ 0 and

�(x�) < 0 respectively, where γ = 〈��+,x�〉
−〈��−,x�〉 . Moreover, the time complexity of is

O
(

n3

ε

)
.

Proof. Since the algorithm runs K rounds, we trivially get the O
(

n3

ε

)
time

complexity. For the increment value of two iterative solution, its telescoping
sum over all time stamps ti for i = 1, . . . , K is

K−1∑
i=0

V (x(ti+1)) − V (x(ti)) = F (x(tK)) − 1

e
F (x�) + L(x(tK)) − γ − γ/e − 1

γ − 1
L(x�)

≥ −
K−1∑
i=0

Bi(ti+1 − ti) ≥ −O(ε),

where the inequality holds due to Lemma B.1 and Lemma B.2.
Since x� ∈ {0, 1}n, we obtain the following result by rearranging the inequal-

ity,

F (x(tK)) + L(x(tK)) ≥ 1
e
f(x�) +

γ − γ/e − 1
γ − 1

�(x�) − O(ε).

��

C The Lyapunov Method for RegularizedMSM

For RegularizedMSM, where the submodular function in the objective is mono-
tone, i.e. f(T ) ≥ f(S) for any S ⊆ T ⊆ E, the Lyapunov function method
can also be applied to design continuous-time and discrete-time algorithms. The
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approximation ratio and the time-complexity coincide with the result given by
Feldman [9]. Since the analysis process is similar to Sect. 3 and Appendix B, we
will only show the algorithms designed by this systematical framework and the
conclusions about guarantee and time complexity without proofs.

Continuous-Time Phase. For RegularizedMSM, we also define the Lyapunov
function in this phase as Eq. (1) with non-decreasing, non-negative and differ-
entiable coefficient functions a(t), b(t), c(t), d(t) ∈ R≥0 for t ∈ [0, 1] and require
a(1) = c(1). Hence, its derivative is the same as Eq. (2). The analysis pro-
cess of the Lyapunov function method in continuous-time setting is consis-
tent. The key point is deriving the sufficient conditions of the stable criteria.
To do so, we still begin with find a proper upper bound for the optimal sum(
ḃ(t)F (x�) + ḋ(t)L(x�)

)
in the derivative V̇ (x(t)). The following lemma gives a

such bound.

Lemma C.1. For any t ∈ [0, 1], there exists an upper bound

U(t) = ḃ(t) (〈∇F (x(t)),v(x(t))〉 + F (x(t))) + ḋ(t)〈
�,v(x(t))〉

such that U(t) ≥ ḃ(t)F (x�) + ḋ(t)L(x�), where

v(x(t)) = arg max
v∈PI

〈
ḃ(t)∇F (x(t)) + ḋ(t)
�,v

〉
.

The following lemma shows the sufficient conditions of the stable criteria.

Lemma C.2. For RegularizedMSM, the defined Lyapunov function V (x(t)) is
non-decreasing if the coefficient functions (a(t), b(t), c(t), d(t)) ∈ C′

con for any
t ∈ [0, 1], where C′

con includes

ȧ(t) − ḃ(t) ≥ 0
ċ(t) = 0

a(t)ẋ(t) − ḃ(t)v(x(t)) ≥ 0
c(t)ẋ(t) − ḋ(t)v(x(t)) = 0,

where v(x(t)) = arg maxv∈PI

〈
ḃ(t)∇F (x(t)) + ḋ(t)
�,v

〉
.

According to the constraints C′
con, we could derive the update rule of the

solution in continuous-time setting and guarantee its feasibility.

Lemma C.3. Given the Lyapunov function V (x(t)), the update rule in
continuous-time is

ẋ(t) =
ȧ(t)
a(t)

v(x(t))

for t ∈ [0, 1]. Moreover, assuming that ln a(t) is a cumulative distribution func-
tion on [0, 1], the output solution x(1) ∈ PI .
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Algorithm 3. Continuous-time Algorithm for RegularizedMSM

Input: multilinear extension F , regularized vector ��, polytope PI and coefficient func-
tions (a(t), b(t), c(t), d(t)) ∈ C′

con

Output: x(1)
1: Set: x(0) = 0
2: for t ∈ [0, 1] do

3: v(x(t)) = arg maxv∈PI 〈ȧ(t)∇F (x(t)) + ḋ(t)��,v〉
4: ẋ(t) = ȧ(t)

a(t)
v(x(t))

5: end for

Then, the continuous-time algorithm for RegularizedMSM with no limitation
on the linear term could be automatically designed and shown as Algorithm3.
The following theorem presents its utility guarantee, which coincides with the
result given in [9]. The approximation ratio is derived with a careful choice of the
coefficient functions, i.e. a(t) = et−1, b(t) = et−1, c(t) = 1, d(t) = t and therefore
the Lyapunov function is finally given by

V (x(t)) = et−1 (F (x(t)) − F (x�)) + L(x(t)) − tL(x�).

Theorem C.1. For RegularizedMSM with no limitation on the linear term, the
algorithm Continuous-time Algorithm for RegularizedMSM achieves
an (1 − 1/e, 1)-approximation.

Discrete-Time Phase. In discrete-time phase, we take advantage of the
obtained results in the last phase to develop an implemented algorithm with
yielding almost the same approximation guarantee along with polynomial-time
complexity. The counter-part of the Lyapunov function in this setting keeps
Eq. (3) unchanged, where for every i = 1, . . . , K, a(ti), b(ti), c(ti), d(ti) are the
point-mass sequences sampled by the coefficient functions in the last phase with
requiring a(tK) = c(tK). Instead of verifying the stable criteria strictly, we con-
sider the difference operation (shown as Eq. (4)) of the Lyapunov function in
discrete-time setting, although it may cause discretization errors. Fortunately,
we could get an identical approximation ratio with arbitrarily small loss as long
as the iterative accumulation error can be bounded by properly choosing the
number of rounds.

The following lemma gives the sufficient conditions of the increment per unit
of time with certain error.

Lemma C.4. For every i = 1, . . . , K, the increment of two successive solutions
has the following error term

Bi =
a(ti+1)D

2(ti+1 − ti)
‖x(ti+1) − x(ti)‖2,
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when the point-mass sequences (a(ti), b(ti), c(ti), d(ti)) ∈ C′
dis, where C′

dis

includes

a(ti+1) − a(ti) ≥ b(ti+1) − b(ti)
c(ti+1) − c(ti) = 0

x(ti+1) − x(ti) ≥ b(ti+1) − b(ti)
a(ti+1)

v(x(ti))

x(ti+1) − x(ti) =
d(ti+1) − d(ti)

c(ti)
v(x(ti)),

where v(x(ti)) = arg maxv∈PI

〈
a(ti+1)−a(ti)

ti+1−ti
∇F (x(ti)) + d(ti+1)−d(ti)

ti+1−ti


�,v
〉
.

Our next lemma shows that the sufficient constraints in discrete-times can
be satisfied with a properly choices of the coefficient functions in continuous-
time. Moreover, the discretization errors are manageable if we set the number
of rounds reasonable.

Lemma C.5. Setting a(ti) = eti−1, b(ti) = eti−1, c(ti) = 1, d(ti) = t, where
ti = i

K for i = 1, . . . , K and K = O
(

n3

ε

)
with ε > 0. Then, the sufficient

conditions C′
dis can be satisfied and the accumulative error is

K−1∑

i=0

Bi(ti+1 − ti) ≤ a(ti+1)KD

2
‖x(ti+1) − x(ti)‖2 ≤ O(ε).

The Discrete-time Algorithm for RegularizedMSM designed by this
framework could be naturally introduced as Algorithm 4, which produces a
sequential feasible vectors x(ti) for all time stamps i = 1, . . . , K in polynomial-
time complexity. Given the specific form of the Lyapunov function,

V (x(ti)) = eti−1 (F (x(ti)) − F (x�)) + L(x(ti)) − tL(x�),

for every i = 1, . . . , K with K = O
(

n3

ε

)
, it yields an identical approximation

ratio with arbitrarily small loss, which coincides with the result presented in [9].

Theorem C.2. For arbitrary ε > 0, the Discrete-time Algorithm for
RegularizedMSM outputs x(tK) ∈ PI and it satisfies

F (x(tK)) + L(x(tK)) ≥
(

1 − 1
e

)
f(x�) + �(x�) − O(ε).

Moreover, the time complexity is of O
(

n3

ε

)
.
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Algorithm 4. Discrete-time Algorithm for RegularizedMSM

Input: multilinear extension F , regularized vector ��, polytope PI and coefficient func-
tions (a(ti), b(ti), c(ti), d(ti)) ∈ C′

dis for every i = 1, . . . , K
Output: x(tK)

1: Set: x(t0) = 0, K = nD
ε

= n3

ε

2: for i = 0, . . . , K − 1 do
3: ti = i

K

4: v(x(ti)) = arg maxv∈PI

〈
a(ti+1)−a(ti)

ti+1−ti
∇F (x(ti)) +

d(ti+1)−d(ti)

ti+1−ti

��,v
〉

5: x(ti+1) = x(ti) +
d(ti+1)−d(ti)

c(ti)
v(x(ti))

6: end for

D Missing Proofs in Section 3

Lemma 3.1. Assuming xe(t) ≤ θ(t) for every e ∈ E and t ∈ [0, 1], there exists
an upper bound

U(t) = ḃ(t) · 〈∇F (x(t)),v(x(t)) � (1 − x(t))〉 + F (x(t))
1 − θ(t)

+ ḋ(t) · γ − 1
γ(1 − θ(t)) − 1

〈
�,v(x(t)) � (1 − x(t))〉

such that U(t) ≥ ḃ(t)F (x�) + ḋ(t)L(x�), where γ = 〈��+,x�〉
−〈��−,x�〉 and

v(x(t)) = arg max
v∈PI

〈
ḃ(t)

1 − θ(t)
∇F (x(t)) +

γ − 1
γ(1 − θ(t)) − 1

ḋ(t)
�,v � (1 − x(t))

〉

.

Proof. We first consider the F (x�) term in the optimal sum ḃ(t)F (x�) +
ḋ(t)L(x�). Since the non-negative multilinear extension F is a kind of DR-
submodular function and x� ∈ {0, 1}n, we build the following connection for
F (x�) in the optimal sum by Lemma A.2

F (x�) ≤ F (x(t) ∨ x�)
1 − ‖x(t)‖∞

≤ F (x(t) ∨ x�)
1 − θ(t)

.

Due to Lemma A.1, we can further derive the inequality by taking x = x(t)
and y = x(t) ∨ x�,

F (x�) ≤ 〈∇F (x(t)),x(t) ∨ x� − x(t)〉 + F (x(t))
1 − θ(t)

=
〈∇F (x(t)),x� � (1 − x(t))〉 + F (x(t))

1 − θ(t)
,

where the equality holds since x ∨ y − x = y � (1 − x) for any x ∈ [0, 1]n and
y ∈ {0, 1}n.
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With oracle assumptions of F , it is obvious that the only uncertainty is
x�. Since x� ∈ PI and PI is solvable, we could bound the right-side above by
maximizing the linear programming in polynomial time.

For the term L(x�), the situation is more complicated since there is no non-

negativity. To do so, we define a parameter γ = 〈��+,x�〉
−〈��−,x�〉 , which characterizes

the relative dominance of the positive and negative parts of L(x�). It is trivial
that 〈
�,x�〉 = (1 − 1

γ ) · 〈
�+,x�〉 = (1 − γ) · 〈
�−,x�〉. Now, we present the upper
bound for L(x�) in a similar manner. Due to the definition of γ, we have

L(x�) =
γ − 1

γ(1 − θ(t)) − 1

(
1 − θ(t)
1 − 1/γ

+
1

1 − γ

)
〈
�,x�〉

=
γ − 1

γ(1 − θ(t)) − 1

(
(1 − θ(t))〈
�+,x�〉 + 〈
�−,x�〉

)

≤ γ − 1
γ(1 − θ(t)) − 1

(
〈
�+,x� � (1 − x(t))〉 + 〈
�−,x�〉

)

≤ γ − 1
γ(1 − θ(t)) − 1

〈
�,x� � (1 − x(t))〉,

where the first inequality holds due to the assumption and the second is guar-
anteed by 
�− ≤ 
0.

Combining with the coefficients, we obtain an upper bound

U(t) = ḃ(t) · 〈∇F (x(t)),v(x(t)) � (1 − x(t))〉 + F (x(t))
1 − θ(t)

+ ḋ(t) · γ − 1
γ(1 − θ(t)) − 1

〈
�,v(x(t)) � (1 − x(t))〉,

where v(x(t)) = arg maxv∈PI

〈
ḃ(t)

1−θ(t)∇F (x(t)) + (γ−1)ḋ(t)
γ(1−θ(t))−1


�,v � (1 − x(t))
〉
.

��
Lemma 3.2. For any t ∈ [0, 1], the defined Lyapunov function V (x(t)) is non-
decreasing if the coefficient functions (a(t), b(t), c(t), d(t)) ∈ Ccon where Ccon

includes

1 > θ(t) ≥ ‖x(t)‖∞ ≥ 0

ȧ(t) − ḃ(t)
1 − θ(t)

≥ 0

ċ(t) = 0

a(t)ẋ(t) − ḃ(t)
1 − θ(t)

(v(x(t)) � (1 − x(t))) = 0

c(t)ẋ(t) − ḋ(t)(γ − 1)
γ(1 − θ(t)) − 1

(v(x(t)) � (1 − x(t))) = 0,

where θ(t) is the upper bound of xe(t) for every e ∈ E.
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Proof. By replacing the optimal sum in the derivative of the defined Lyapunov
function with the upper bound U(t) given by Lemma 3.1, we have

V̇ (x(t)) ≥ ȧ(t)F (x(t))+ ċ(t)L(x(t))+〈a(t)∇F (x(t))+c(t)∇L(x(t)), ẋ(t)〉−U(t).

Rearranging the inequality, we get

V̇ (x(t)) ≥
(

ȧ(t) − ḃ(t)
1 − θ(t)

)

F (x(t)) + ċ(t)L(x(t))

+

〈

∇F (x(t)), a(t)ẋ(t) − ḃ(t)
1 − θ(t)

(v(x(t)) � (1 − x(t)))

〉

+

〈

∇L(x(t)), c(t)ẋ(t) − ḋ(t)(γ − 1)
γ(1 − θ(t)) − 1

(v(x(t)) � (1 − x(t)))

〉

.

Since F is non-negative and non-monotone and the range of L is real domain,
the sufficient conditions that makes V̇ (x(t)) ≥ 0 can be naturally listed below

1 > θ(t) ≥ ‖x(t)‖∞ ≥ 0

ȧ(t) − ḃ(t)
1 − θ(t)

≥ 0

ċ(t) = 0

a(t)ẋ(t) − ḃ(t)
1 − θ(t)

(v(x(t)) � (1 − x(t))) = 0

c(t)ẋ(t) − ḋ(t)(γ − 1)
γ(1 − θ(t)) − 1

(v(x(t)) � (1 − x(t))) = 0.

��
Lemma 3.3. Given the Lyapunov function V (x(t)), the update rule in
continuous-time is

ẋ(t) =
ȧ(t)
a(t)

(v(x(t)) � (1 − x(t)))

for t ∈ [0, 1]. Moreover, assuming that ln a(t) is a cumulative distribution func-
tion on [0, 1], the output solution x(1) ∈ PI .

Proof. Due to Lemma 3.2, we get

ẋ(t) =
ȧ(t)
a(t)

(v(x(t)) � (1 − x(t))) .

Therefore,

x(1) =
∫ 1

0

v(x(t)) � (1 − x(t))d(ln a(t)).

Since v(x(t)) ∈ PI for any t ∈ [0, 1] and PI is down-monotone, we have
v(x(t)) � (1 − x(t)) ∈ PI .

By the assumption that ln a(t) is a cumulative distribution function on [0, 1],
the output x(1) is the convex combination of feasible solutions. ��
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Lemma 3.4. For the coordinate-wise upper bound θ(t) of the solution x(t) with
t ∈ [0, 1], we have θ(t) ≤ 1 − a(0)

a(t) .

Proof. Due to the update rule, we have

ẋ(t) =
ȧ(t)
a(t)

(v(x(t)) � (1 − x(t))) ≤ ȧ(t)
a(t)

(1 − x(t)),

where the inequality is true since v(x(t)) ≤ 1 and a(t), ȧ(t) ≥ 0.
An equivalent expression could be obtained for the above inequality by apply-

ing the Grönwall’s inequality [12], i.e., for any i = 1, . . . , n,

1 − xi(t) ≥ e− ∫ t
0

ȧ(s)
a(s)ds = e− ln

a(t)
a(0) =

a(0)
a(t)

.

Therefore, we have θ(t) ≤ 1 − a(0)
a(t) . ��

Theorem 3.1. For RegularizedNSM with no limitation on the linear term, the
algorithm Continuous-time Algorithm for RegularizedNSM achieves
an (1/e, γ−γ/e−1

γ−1 )-approximation with feasible range γ ∈ [0, 1) ∪ ( 1
1−1/e ,+∞)

and γ ∈ (1, 1
1−1/e ) for �(x�) ≥ 0 and �(x�) < 0 respectively, where γ = 〈��+,x�〉

−〈��−,x�〉 .

Proof. Since obtaining a better performance for the first term in the objective
of RegularizedNSM is the priority, the approximation ratio of Algorithm 1 could
be yielded by solving the maximization problem below

sup b(1)−b(0)
a(1)

s.t. (a(t), b(t), c(t), d(t)) ∈ Ccon

a(1) = c(1)
a(0), b(0), c(0), d(0) ≥ 0
ȧ(t), ḃ(t), ċ(t), ḋ(t) ≥ 0
t ∈ [0, 1].

(5)

where Ccon is given by Lemma 3.2.
A feasible solution for the above ODE is

a(t) = et−1, b(t) = t/e, c(t) = 1, d(t) = −γ/et + t

γ − 1
.

Thus, the Lyapunov function is

V (x(t)) = et−1F (x(t)) − t

e
F (x�) + L(x(t)) +

γ/et + t

γ − 1
L(x�).

Guaranteed by Lemma3.2, the stable criteria of V (x(t)) yields the following
result for the output x(1) of Algorithm 1

F (x(1)) + L(x(1)) ≥ 1
e

· f(x�) +
(

γ − γ/e − 1
γ − 1

)
· �(x�).

��
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Topological Network-Control Games
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Abstract. The paper introduces new combinatorial games, called topo-
logical network-control games, played on graphs. These games model the
influence of competing two parties aiming to control a given network. In
a such game given the network, the players move alternatively. At each
turn, a player selects an unclaimed vertex and its unclaimed neighbours
within distance t. The players obey the topological condition that all
claimed vertices stay connected. The goal is to decide which player claims
the majority of the vertices at the end of the play. We study greedy, sym-
metric and optimal strategies. We solve the topological network-control
games on various classes of graphs. This progresses our understanding of
combinatorial games played on graphs. We prove that finding an optimal
winning strategy is a PSPACE-complete problem.

Keywords: combinatorial games · strategies · algorithms · PSPACE

1 Introduction, Preliminary Definitions and Results

We introduce new combinatorial games played on finite graphs. These games
are called topological network-control games. These games model the influence of
competing two parties aiming to control the network by preserving connectedness
property. Below we present basic definitions, preliminary concepts, related work
and our contribution.

1.1 Statement of the Problem

Let G = (V,E) be a finite graph. We assume that the graphs are simple, that
is, the graphs are undirected, have no loops and multiple edges. For a vertex
x ∈ V in G = (V,E), and an integer t ≥ 0, the t-neighbourhood of x, denoted by
Nt(x), is the set of all vertices at distance at most t from x. So, N0(x) = x and
Nt(x) ⊆ Nt+1(x) for all t ≥ 0. Vertices in Nt(x) are called t-neighbours of x. For
a set of vertices X ⊆ V in G = (V,E), and an integer t ≥ 0, the t-neighbourhood
of X is denoted by Nt(X) = ∪x∈XNt(x). We fix t that will be our parameter.

Now we define topological network-control game played on G = (V,E). There
are two players: Player 1 and Player 2. The opponent of Player ε, where ε ∈ {0, 1},

B. Khoussainov—Acknowledges the National Science Foundation of China under Grant
No. 62172077.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 144–156, 2024.
https://doi.org/10.1007/978-3-031-49193-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_11


Topological Network-Control Games 145

is denoted by Player ε̄. Each play consists of rounds. At odd rounds Player 1
moves. At even rounds Player 2 moves. Player 1 starts the first round. At this
round the player selects a vertex x and claims (all vertices in) Nt(x). Let X2i−1

be the set of all vertices claimed by the players by the end of round 2i−1, i > 0.
At round 2i, where i > 0, Player 2 selects a vertex from Nt+1(X2i−1)/X2i−1,
and then claims the selected vertex and its unclaimed t-neighbour vertices. Let
X2i be the set of all vertices claimed by the players by the end of round 2i, i > 0.
At round 2i + 1, where i > 0, Player 1 selects a vertex in Nt+1(X2i)/X2i, and
then claims the selected vertex and its unclaimed t-neighbour vertices.

Let t be the round at which no vertices can be claimed. If Xt = V , then
the play stops. If V �= Xt, then the player whose turn it is at round t, selects
a new vertex (from a component with unclaimed vertices) and claims its t-
neighbourhood, and the play continues on just as above.

To define a winner, we need a few notations. By C1,2i+1 we denote the set
of vertices claimed by Player 1 at the end of round 2i + 1, i ≥ 0. Similarly,
C2,2i+2 denotes the set of vertices claimed by Player 2 at the end of round
2i + 2. If S2i+1 is the set of vertices claimed by Player 1 at round 2i + 1, then
C1,2i+1 = C1,2i−1 ∪ S2i+1. Similarly, C2,2i+2 = C1,2i ∪ S2i+2.

Once the play stops, let C1 and C2 be all vertices claimed by Player 1 and
Player 2, respectively. The sets C1 and C2 partition G.

Definition 1. We say that Player ε wins the play if |Cε| > |Cε̄|. If |Cε| = |Cε̄|,
then we say that the play is a draw.

If G is connected, then the set of claimed vertices is connected at any round.
Connectedness is a topological property, and hence we call our games topologi-
cal network-control game. We assume the reader is familiar with the notion of
strategy. A player is the winner of the topological network-control game played
on G if the player has a winning strategy. Our goal is twofold. First, we want
to solve games by designing algorithms that given a game decide the winner.
Second, we want to extract winning strategies for the winners. Note that when
t = 0, Player 1 wins iff |V | is odd. So, we always assume that t > 0.

1.2 Preliminaries and Basic Results

Assume that the players play the game on G. By (S, v) we denote a move where
Player ε selects vertex v and claims the set of vertices S on G. Thus, a play is
a sequence (S1, v1), . . ., (Si, vi) of selected nodes and claimed vertices at each
round. The configuration determined by this play is the tuple (Gi, Ci), where

1. The set Gi is the sub-graph of G that consists of all unclaimed vertices at the
end of the play, and thus Gi = V \ (S1 ∪ S2 ∪ . . . Si)

2. The set Ci is a set of vertices which players can select in Gi. Thus, Ci =
Nt+1(S1 ∪ S2 ∪ . . . Si) \ (S1 ∪ S2 ∪ . . . Si).

Greedy and monotonic strategies. During a game, the players might follow
a greedy strategy.
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Definition 2. A greedy strategy is one that, at any round, selects a vertex
with the maximal number of unclaimed t-neighbours.

Greedy strategies could be losing strategies.

Example 1. Consider the graph in Fig 1. Assume t = 1. Player 1’s first greedy
move is the vertex of degree 5. Player 2 responds by selecting the vertex of
degree 4. Then Player 1 greedily selects the vertex of degree 3. Player 2 selects
the vertex of degree 4 and wins.

Fig. 1. Greedy strategy does not always help

However, greedy strategies might be useful if they satisfy monotonicity prop-
erty. Let (G,C) be a configuration of a play. By max-degt(G,C) we denote the
maximal cardinality among cardinalities of the sets Nt(v), where v ∈ C. This
corresponds to a greedy move in the configuration (G,C).

Definition 3. A strategy is monotonic if for any play (S1, v1), . . ., (Si, vi), . . .
consistent with the strategy, max-degt(Gi, Ci) ≥ max-degt(Gi+1, Ci+1), where
(Gi, Ci) is the configuration determined by the play (S1, v1), (S2, v2), . . . , (Si, vi).

Example 2. If G = C then Player 1 has a monotonic greedy strategy on (G,C).
Moreover, Player 2 can guarantee to lose at most max-degt(G,C) vertices.

Lemma 1. Assume that Player 1 has a monotonic greedy strategy on G. Then
Player 1 can guarantee to not lose the game.

Proof. Fix a monotonic greedy strategy for Player 1. Let (S1, v1), . . ., (Sn, vn) be
a play consistent with the strategy and (G0, C0), . . . , (Gn, Cn) be the correspond-
ing configurations. For all i = 1, . . . , �n

2 �, |S2i−1| = max-degt(G2i−2, C2i−2) ≥
max-degt(G2i−1, C2i−1) ≥ |S2i|. Therefore,

∑�n
2 �

i=1 |S2i−1| ≥ ∑�n
2 �

i=1 |S2i| and
Player 1 doesn’t lose.

We apply this lemma to a few examples of graphs. For this, we recall several
specific classes of graphs. These graphs will further be studied in this paper.

The path graph of size n, Pathn, has vertices {1, . . . , n} with the edge rela-
tion between the consecutive integers. The cycle graph of size n ≥ 3, Cyclen,
is obtained from Pathn by adding the edge between 1 and n. A caterpillar is
a tree in which all non-leaf vertices are on a path and leaves are at distance 1
from the path. We call the path the central path. Let G be a caterpillar with
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central path Pathn. A caterpillar is degree-homogeneous if degrees of all vertices
along the central path are the same. By Caterpillarn,k we denote the degree-
homogeneous caterpillar whose central path is Pathn in which every vertex has
degree k. Not hard to see that Player 1 has a monotonic greedy strategy on
Pathn, Cyclen, and Caterpillarn,m. Therefore, we have the following corollary.

Corollary 1. Player 1 never loses Pathn, Cyclen, and Caterpillarn,m.

Symmetric strategies. Two configurations (G1, C1) and (G2, C2) are isomor-
phic if there exists an isomorphism f : G1 → G2 from G1 = (V1, E1) to
G2 = (V2, E2) such that for all x in G1 we have x ∈ C1 iff f(x) ∈ C2.

Definition 4. Let f : G1 → G2 be an isomorphism between two disjoint config-
urations (G1, C1) and (G2, C2). Let (G,C) = (G1, C1)∪ (G2, C2) be the union of
(G1, C1) and (G2, C2): V = V1 ∪ V2, E = E1 ∪ E2 and C = C1 ∪ C2. The sym-
metric strategy for Player ε is this: if Player ε selects x from G1 then Player ε
selects f(x); if Player ε selects x from G2 then Player ε selects f−1(x).

Lemma 2. If (G1, C1) and (G2, C2) are isomorphic, then Player 2 guarantees
a draw in the configuration (G,C) = (G1, C1) ∪ (G2, C2).

Optimal strategies. Here is a definition of optimal strategies.

Definition 5. Let w ≥ 0 be an integer. A strategy for Player ε is w-optimal if

1. The strategy can guarantee that Player ε wins any play with at least w more
vertices independent on the opponent’s strategies.

2. The opponent, Player ε̄, has a strategy that guarantees that no more than w
vertices are lost independent on strategies of Player ε.

Let (G,C) be a configuration. We define the integer Opt(G,C) such that
player ε faced with the configuration can guarantee a win with at least Opt(G,C)
vertices starting at (G,C):

1. If G = ∅ then Opt(G,C) = 0.
2. If C = ∅, Player ε can select any vertex v ∈ G and make corresponding moves

(S, v). Let S1, . . . , Sm be all possible moves of player ε at (G,C). Let (Gi, Ci)
be updated configuration after moving Si and n(Si) be the cardinality of Si,
i = 1, . . . ,m. Set Opt(G,C) = max1≤i≤m{n(Si) − Opt(Gi, Ci)}.

Lemma 3. Player ε has an Opt(G,C)-optimal strategy at (G,C). Moreover, the
computation of Opt(G,C)-optimal strategy is in PSPACE.

Proof. The case G = ∅ is clear. Assume that for all (G′, C ′) with 0 ≤ n(G′) ≤
k the lemma is true. Let (G,C) be a configuration with n(G) = k + 1.
Let S1, . . . , Sm be possible moves at (G,C) . By induction, Player ε̄ has an
Opt(Gi, Ci)-optimal strategy on (Gi, Ci). So Player ε̄ guarantees to lose no
more than max1≤i≤m{n(Si) − Opt(Gi, Ci)} vertices, and Player ε guarantees
to win at least max1≤i≤m{n(Si) − Opt(Gi, Ci)} vertices. This implies that
Opt(G,C) = max1≤i≤m{n(Si) − Opt(Gi, Ci)}. Showing that Opt(G,C)-optimal
strategy can be computed in PSPACE is standard.
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1.3 Related Work and Our Contribution

This work belongs to the area of combinatorial games. Typically these games are
of finite duration played on spaces of finite configurations. Combinatorial games
are usually classified as scoring games and non-scoring games. In scoring games,
a player wants to collect a certain amount of points to win the game. Examples
of scoring games are graph-grabbing game [13,23], median game [12], orthogonal
colouring game [3], Vertex-Capture Game [8] and the largest connected subgraph
game [6,7]. In non-scoring games, the players aim to put their opponent into a
deadlock (e.g., the opponent makes the last move). Examples of non-scoring
games are GRIM [1], Nim on graphs [11,17], Kayles on graphs [9,10,18–20,24],
game 0.33 [4] Weighted Arc and generalized Kayles [15]. Our games are obviously
scoring games as the winner is the one who claims the most number of vertices
of the graph. However, one unexpected side of our games is that they exhibit
a behaviour of non-scoring games when the game graph G consists of more
than one component. Indeed, once players start playing in a component C of
G, the players need to claim all the vertices of C before they move to the other
components. Therefore, if a player makes the last move on C, then the opponent
will start a new component and might gain an advantage. This implies that the
players need to take into account the parity of the last move in C. So, when the
players play the games on graphs that consists of more than one component, the
parties of the last moves on the components matter. This is a typical feature of
non-scoring games. Here now we briefly list the main contributions of this work:

1. We introduce topological network-control games. These games model the
influence of competing parties to control a given network. The restraint is
that the players need to ensure connectivity of the set of claimed vertices.

2. In combinatorial game theory, understanding games in algebraically simple
graphs (such as paths, cycles, trees, etc.) usually constitutes bottleneck prob-
lems [2,5,14,16]. That is why we start by studying our games in these classes
of graphs. We succeed to characterize some classes of graphs where Player
1 wins. Our proofs are combinatorial and are based on careful analysis of
configuration spaces of games. These are presented in Theorems 1, 2, and 3
of Sect. 2.

3. As we mentioned above, one novel side of our games is that they exhibit
characteristics of both scoring games and non-scoring games. We study this
interplay between scoring condition (the number of vertices claimed) and
the parity condition (the player moving the last loses) on graphs through
two recursively defined functions Feven and Sodd. We then fully describe a
non-trivial behaviour of these functions on path graphs. This is presented in
Theorem 4 of Sect. 3.

4. We fully characterize the graphs Path�1 ∪ Path�2 (disjoint union of two path
graphs), where Player 1 wins. Our charcaterization makes use of a computer
program that lists all graphs Path�1 ∪ Path�2 , where �1 ≤ 100 and �2 ≤ 100,
won by Player 1. See Theorem 5 in Sect. 4. The proof takes into account the
interplay between the parity and the number claimed vertices.
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5. We prove that finding optimal strategies is a PSPACE-complete problem.
There are two key difficulties in the proof. The first is that the cardinalities
of t-neighbourhoods of unclaimed vertices depend on configurations. In com-
parison, this does not happen in the Competetive Facility Allocation problem,
where coding of a quantified Boolean Formula becomes easy [21]. The second
is the connectivity condition put on the set of claimed vertices. These two
conditions make it challenging to code PSPACE-complete problems into our
games.

We finally mention the recent work by Z. Liang, B. Khoussainov, and M.
Xiao on network-control games played on graphs [22]. The work of this paper is
a natural and independent follow-up of the control-network games. As opposed to
topological network-control games, network-control games lack the connectivity
condition of the set of claimed vertices. In particular, in network-control games,
players can select and claim vertices with no regards (in terms of connectivity)
to already claimed vertices. In this sense, network-control games from [22] do not
exhibit characteristics of non-scoring games as we described above. Hence, the
proof methods and ideas in this work are, in many ways, orthogonal to those in
the study of network-control games. For instance, greedy strategies in network-
control games suffice to prove that Player 1 never loses any network-control
game. In contrast, we already showed that the greedy strategies in topological
network-control games can be losing for Player 1. Furthermore, we do not know
if there is graph G where Player 1 loses the topological network-control game.

2 Games on Paths, Cycles, and Caterpillars

The strategies defined above can be used to analyze the topological network-
control games on paths, cycles, and caterpillars. Note that by Corollary 1 Player
1 never loses these graphs.

Theorem 1. Player 1 wins the topological network-control games on paths.

Proof. Player 1 wins Pathn with n ≤ 2t + 1 by claiming all vertices in the first
move. Assume n > 2t + 1. If n = 2k + 1 then Player 1 has a monotonic greedy
strategy on Pathn and by Lemma 1, Player 1 wins Pathn. Assume n = 2k.
Player 1 selects the middle vertex k and claims its t-neighbours Nt(k). Both
players make greedy moves. In the remaining configuration, Player 2 claims one
more vertex at most. Therefore, Player 1 wins 2t vertices. If Player 2 makes
non-greedy moves more times, Player 2 will lose more vertices.

Theorem 2. Player 1 wins the game on Cyclen iff n �= 0 mod (4t + 2).

Proof. It is clear that Player 1 wins Cyclen if n < 4t + 2. Assume n ≥ 4t + 2.
If n = 0 mod (4t + 2), then both of the players must follow greedy strategies.
Otherwise, the player making a non-greedy move loses. Therefore, the last move
will be made by Player 2. This guarantees a draw for Player 2 due to the condition
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on n. Assume n �= 0 mod (4t+2). Player 1 selects p, say p = 1, and claimed its
t-neighbours Nt(p). Assume both players must follow greedy strategies. Because
n �= 0 mod (4t + 2), Player 1 can claim more vertices than Player 2 in last two
rounds. If Player 2 makes non-greedy moves until Player 1 makes more moves,
Player 1 will claim more vertices than before.

The proof of the next theorem is more involved but uses the same ideas as
the proofs of the theorems above.

Theorem 3. Player 1 wins the games on Caterpillarn,k.

3 Parity Vs the Number of Claimed Vertices

Suppose that the game graph G consists of more than one component, say C1

and C2. Even if Player 1 wins topological network-control game on each of these
components C1 and C2, this does not guarantee that Player 1 wins G. The
reason is that Player 1 might make the last move playing on each of these
components. Therefore, once all vertices in one of the components are claimed,
Player 2 continues the game by starting the remaining component. Thus, each
player has two, somewhat opposing, aims. On the one hand, the player would like
to win as many nodes as possible in a given component. On the other hand, the
player would like the opponent to make the last move in the current component
to take the advantage of the remaining component.

A natural question is thus the following. Assume that the players play the
game on connected graph G. How many nodes should a player give up to ensure
that the opponent makes the last move? To answer this question, below we
provide a general framework, and apply it to the case when the underlying
graphs are paths graphs. Even the case of paths turns out to involve non-trivial
combinatorial and inductive arguments.

Let (G,C) be a configuration. Let us define two functions Feven(G,S) and
Sodd(G,C). The function Feven(G,S) computes the maximal number of vertices
won by the first player who starts the game at (G,S) under the assumption
that the player can force the opponent to make the last move in the game.
Similarly, Seven(G,S) computes the maximal number of vertices won by the
second player in the game (G,C) under the assumption that the player can
force the opponent to make the last move in the game. Note that the value
Feven(G,C) and Sodd(G,C) can be undefined if the player can not force the
opponent to make the last move. We defined these functions through mutual
recursion as follows:

– Set Feven(∅, ∅) = 0 and Sodd(∅, ∅) = −∞.
– Let S1, . . . , Sm be all possible moves of a player at (G,C). Let (Gi, Ci) be the

configuration after move Si, i = 1, . . . ,m. Set

Feven(G,C) = max{n(Si) + Sodd(Gi, Si) | i = 1, . . . ,m}, and
Sodd(G,C) = min{−n(Si) + Feven(Gi, Si) | i = 1, . . . , m}
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As an example, on graphs Path13 and Path18, one can compute that we have
Feven(Path13, ∅) = −1 and F18(Path18, ∅) = −2, respectively. Also, from the
definitions of Feven and Sodd, we have the following corollary.

Corollary 2. Feven(G,C) �= −∞ if and only if Sodd(G,C) = −∞.

It turns out guaranteeing that the opponent makes the last move can be
costly even in such graphs as Pathn. The proof of the next theorem is based on
a careful analysis of Feven and Sodd functions.

Theorem 4. Consider a game played on Pathn with t = 1. If n < 3 then
Feven(Pathn) = −∞ and Sodd(Pathn) = −n. Otherwise:

Sodd(Pathn) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1 − �n

5
� if n = 1 mod 5

−�n

5
� if n = 2 mod 5 and n �= 7

−3 if n = 7
−∞ otherwise

Feven(Pathn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�n

5
� + 4 if n = 0 mod 5, n �= 0 and n �= 5

−�n

5
� + 1 if n = 3 mod 5

−�n

5
� + 2 if n = 4 mod 5

0 if n = 0
1 if n = 5

−∞ otherwise

4 Topological Network-Control Games on Path�1 ∪Path�2

From the previous section, we see that controlling the parity is a challenging
task even on path graphs. Our goal is to settle the topological network-control
games problem for the class of graphs of the type Path�1 ∪Path�2 . The previous
section shows that the players can not rely solely on only greedy strategies or
parity control strategies in Path�1 ∪Path�2 . The players need to adapt different
strategies, e.g., mixing greedy and parity strategies. Note that Player 1 never
loses the game on Path�1 ∪ Path�2 . Thus, we aim to characterize those graphs
Path�1 ∪ Path�2 where Player 1 guarantees a win. For this section we assume
that t = 1.

Our next Lemma 4 is proved through a computer-assisted technique. The
code for the lemma computes the function Opt(Path�1 ∪ Path�2 , ∅)1

1 The code is at https://github.com/ZihuiLiang/Topological-Network-Control-
Game..

https://github.com/ZihuiLiang/Topological-Network-Control-Game
https://github.com/ZihuiLiang/Topological-Network-Control-Game
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Lemma 4. Player 2 can guarantee a draw in the game Path�1 ∪ Path�2 , where
1 ≤ �1 ≤ �2 < 100, if and only if {�1, �2} ∈ {{1, 1}, {2, 2}, {7, 7}, {7, 6x + 5},
{2, 6x}, {6x, 6y}, {6x + 5, 6y + 5}}1≤x,y.

This lemma can be used to fully characterize those games on Path�1 ∪Path�2

where Player 2 guarantees a draw. We prove the theorem below based on the
analysis of several conditions on �1 and �2. We showcase our proofs on several
cases.

Theorem 5. Player 2 guarantees a draw on Path�1 ∪Path�2 iff {�1, �2} belongs
to {{1, 1}, {2, 2} , {7, 7} , {7, 6x + 5} , {2, 6x} , {6x, 6y} , {6x + 5, 6y + 5}}1≤x,y.

Proof. Our proof is based on the analysis of 9 cases (and their subcases). By the
lemma above we can always assume that either �1 ≥ 100 or �2 ≥ 100.

Case 1: The parities of �1 and �2 are different. Without loss of generality, assume
�1 is odd, �2 is even, with �1 ≥ 3 and �2 ≥ 2. Then Player 1 wins as follows. The
player selects the middle node in the path of odd length (greater than 1) and
then uses a greedy strategy. Player 1 wins at least 3 vertices. Even if Player 2
starts the line of even length, the play can win at most 2 vertices. If the length
of the odd path graph is 1, then Player starts with the even length path graph
and wins two nodes guaranteeing the overall win.

Case 2: �1 = 4 ( mod 6). Player 1 uses a greedy strategy on Path�1 starting
from one end of Path�1 . If Player 2 uses a greedy strategy, then the last move
on Path�1 is made by Player 2. Hence, in this case Player 1 wins the game. In
order to ensure that Player 1 makes the last move in Path�1 , Player 2 must give
up the greedy strategy at least twice. Thus, either Player 1 starts the second
line Path�2 or wins at least 3 vertices on Path�1 . In either case, Player 1 wins
the game.

Case 3: �1 = 3 ( mod 6). Player 1 starts using the greedy strategy on Path�1

from one end of the graph. If Player 2 also plays a greedy strategy, then in the
last move on Path�1 , Player 1 will claim 2 vertices instead of greedy 3. In this
way, Player 2 makes the last move in Path�1 . Hence, Player 1 moves to the next
line and wins the game. This implies that Player 2 must abandon its greedy
strategy on Path�1 at least four times. If this happens, Player 1 will have won
at least 4 vertices when the play moves to Path�2 . So Player 1 wins.

Case 4: �1 = 2 ( mod 6) with �1 > 2. Player 1 makes a move from one side of
Path�1 . In the first round, Player 1 only claims 2 nodes. After that Player 1 will
always use a greedy strategy. If Player 2 uses a greedy strategy, then in the last
move on Path�1 Player 1 claims two vertices (instead of 3). In this case, Player
2 makes the last move in Path�1 . Hence, Player 1 starts Path�2 (with a draw
on Path�1) and wins the game. Therefore, Player 2 must abandon its greedy
strategy while playing on Path�1 at least 4 times. In this game Player 2 moves
to Path�2 , where Player 1 won at least 3 vertices in Path�1 . So, Player 1 wins.

Case 5. �1 = 1 ( mod 6) with �1 > 7. Player 1 makes a move from the
middle of Path�1 , dividing the Path�1 into two parts. The length of two parts
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are 6x1 + 3, 6x2 + 1 respectively. In previous rounds, Player 1 gives up once
in first part. After that Player 1 will always use a greedy strategy. If Player 2
uses a greedy strategy, Player 2 makes last move in Path�1 . Hence, Player 1
starts Path�1(loses 1 node on Path�1 and wins the game). Therefore Player 2
must abandon its greedy strategy while playing on Path�1 at least 3 times. In
this game the game moves to Path�2 , where Player 1 won at least 5 vertices in
Path�1 . So, Player 1 wins.

Case 6. �1 = 5 and �2 = 5 ( mod 5). In this case, we show that Player 1 wins
on Path�1 ∪Path�2 . Player 1 starts by selecting a vertex in Path�1 so that Player
1 wins 1 vertex and Player 2 makes the last move in Path�1 . Since Player 1 wins
on Path�2 , Player 1 wins the game.

Case 7. �1 = 5 ( mod 6) and �2 = 5 ( mod 6) with �1 > 7 and �2 > 7. In
this case we show that Player 2 doesn’t lose. W.L.O.G, assume Player 1 starts
by selecting a vertex in Path�1 . Then there are 4 subcases.

Subcase 1: The unclaimed vertices of Path�1 consist of two parts L,R where
|L| = 6x1 and |R| = 6x2+2. Consider the play in the unclaimed parts of Path�1 .
If Player 1 applies a greedy strategy all the time, then Player 2 also follows a
greedy strategy until the number of unclaimed vertices of L is less than 10.
By abandoning greedy strategy for one time in L, Player 2 guarantees that the
opponent wins three vertices and makes the last move in Path�1 . Since Player
2 wins at least 3 vertices on Path�2 , Player 2 doesn’t lose the game. Therefore
Player 1 needs to abandon its greedy strategy at least 6 times in Path�1 so
that Player 2 makes the last move in Path�1 . Correspondingly, Player 2 wins 3
vertices in Path�1 . Since Player 1 wins at most 3 vertices on Path�2 , Player 2
doesn’t lose the game.

Subcase 2: The unclaimed vertices of Path�1 consist of two parts L,R where
|L| = 6x1 + 3 and |R| = 6x2 + 5. If Player 1 applies a greedy strategy all the
time, then Player 2 also follows a greedy strategy until the number of unclaimed
vertices of L is less than 7. By abandoning greedy strategy for one time, Player
2 guarantees that the opponent wins three vertices and makes the last move in
Path�1 . Since Player 2 wins at least 3 vertices in Path�2 , Player 2 doesn’t lose
the game. Therefore Player 1 needs to abandon at least 6 times in Path�1 so
that Player 2 makes the last move in Path�1 . Correspondingly, Player 2 wins 3
vertices in Path�1 . Since Player 1 wins at most 3 vertices on Path�2 , Player 2
doesn’t lose the game.

Subcase 3: The unclaimed vertices of Path�1 consist of two parts L,R where
|L| = 6x1 + 1 and |R| = 6x2 + 1. If both players apply greedy strategy, then
Player 1 wins 3 vertices and makes the last move in. Since Player 2 wins at least
3 vertices in Path�2 , Player 2 doesn’t lose the game. Therefore Player 1 needs
to abandon at least 6 times in Path�1 so that Player 2 makes the last move in
Path�1 . Correspondingly, Player 2 wins 3 vertices in Path�1 . Since Player 1 wins
at most 3 vertices on Path�2 , Player 2 doesn’t lose the game.

Subcase 4: The unclaimed vertices of Path�1 consist of two parts L,R where
|L| = 6x1 + 4 and |R| = 6x2 + 4. If both players apply greedy strategy, then
Player 1 wins 3 vertices and makes the last move in. Since Player 2 wins at least
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3 vertices in Path�2 , Player 2 doesn’t lose the game. Therefore Player 1 needs
to abandon at least 6 times in Path�1 so that Player 2 makes the last move in
Path�1 . Correspondingly, Player 2 wins 3 vertices in Path�1 . Since Player 1 wins
at most 3 vertices on Path�2 , Player 2 doesn’t lose the game.

Case 8: �1 = 0 ( mod 6) and �2 = 0 ( mod 6). In this case, we show that
Player 2 doesn’t lose. W.L.O.G, assume Player 1 starts by selecting a vertex in
Path�1 . Then there are 2 subcases.

Subcase 1: The unclaimed vertices of Path�1 consist of two parts L,R where
|L| = 6x1 and |R| = 6x2 + 3. Assume both players apply greedy strategy and
Player 2 abandons its greedy strategy one time in Path�1 . Then Player 1 wins
2 vertices and makes the last move in Path�1 . Since Player 2 wins at least 2
vertices on Path�2 , Player 2 doesn’t lose the game. Therefore Player 1 needs to
abandon its greedy strategy at least two times in Path�1 so that Player 2 makes
the last move in Path�1 . Correspondingly, Player 2 wins 2 vertices in Path�1 .
Since Player 1 wins at most 2 vertices on Path�2 , Player 2 doesn’t lose the game.

Subcase 2: The unclaimed vertices of Path�1 consist of two parts L,R where
|L| = 6x1 + 1 and |R| = 6x2 + 2. If both players apply greedy strategy, then
Player 1 wins two vertices and makes the last move in Path�1 . Since Player 2
wins at least 2 vertices in Path�2 , Player 2 doesn’t lose the game. Therefore
Player 1 needs to abandon its greedy strategy at least two times in Path�1 so
that Player 2 makes the last move in Path�1 . Correspondingly, Player 2 wins 2
vertices in Path�1 . Since Player 1 wins at most 2 vertices on Path�2 , Player 2
doesn’t lose the game.

Case 9: Player 2 doesn’t lose on the following subcases.
Subcases 1: �1 = 2 and �2 = 0 ( mod 6). Note that �2 ≥ 100. If Player 1

starts by selecting a vertex in Path�1 , then Player 1 wins 2 vertices in Path�1 .
Since Player 2 wins at least 2 vertices in Path�2 , Player 2 doesn’t lose the game.
Therefore, assume Player 1 starts by selecting a vertex in Path�2 . If both players
apply greedy strategy, Player 1 wins 2 vertices and makes the last move on
Path�2 . Since Player 2 wins 2 vertices in Path�1 , Player 2 doesn’t lose the game.
Therefore Player 1 needs to abandon its greedy strategy at least two times in
Path�2 so that Player 2 makes the last move in Path�2 . Correspondingly, Player
2 wins 2 vertices in Path�2 . Since Player 1 wins at most 2 vertices on Path�1 ,
Player 2 doesn’t lose the game.

Subcases 2: �1 = 7 and �2 = 5 ( mod 6). Note that �2 ≥ 100. If Player
1 starts by selecting a vertex in Path�1 , then Player 2 can forces Player 1 to
select the last move in Path�1 and guarantee to lose at most 3 vertices. Since
Player 2 wins Path�2 with at least 3 vertices, Player 2 doesn’t lose the game.
Therefore, assume Player 1 starts by selecting a vertex in Path�2 . Note that
Opt(Path7) = Opt(Path6x+5) = 2 where x > 0. Therefore, following similar
proofs of Case 7, one can prove that Player 2 doesn’t lose the game.

Corollary 3. Player 1 wins topological network-control games on Path�1 ∪
Path�2 if and only if {�1, �1} satisfies one of the following conditions: (1) �1
and �2 have different parities, (2) �1 = 4 (mod 6), (3) �1 = 3 (mod 6), (4)
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�1 = 2 (mod 6) except for {2, 2}, {2, 6x}, (5) �1 = 1 (mod 6) except for {1, 1},
{7, 7}, {7, 6x + 5}. In all other cases, Player 2 can guarantee a draw and can-
not win.

5 PSPACE-Completeness

The alternating 3-TQBF problem is to determine if a fully quantified Boolean
formula ψ = ∃x1∀x2∃x3 . . . ∃xnφ(x1, x2, . . . , xn) is true, where φ is a conjunction
of clauses with three literals. The problem is PSPACE-complete [25]. The optimal
topological network-control game problem with parameter t is this:

OTNC(t) = {〈G,w〉 | Player 1 has a w-optimal strategy on game G}.

Let ψ be an alternating 3-TQBF formula with clauses C1, . . . , Cm and vari-
ables x1, . . . , xn. W.L.O.G, we assume n > 1, n is odd and for each pair of
distinct variables xi and xj , the clauses xi ∨ xi ∨ xj and xi ∨ xi ∨ xj are in
{Ci}i≤m. We build a connected graph Gψ with 2n + 6n(n + 1)m + 3m vertices
and n + 12n(n + 1)m + 3m + 2m2 + m(m − 1)/2 edges such that the for-
mula ψ = ∃x1∀x2∃x3 . . . ∃xnφ(x1, x2, . . . , xn) is true iff F (Gψ) ≥ 6nm+5m+2.
Therefore, we can prove the following theorem.

Theorem 6. The OTNC(1) problem is PSPACE-complete.
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Abstract. The problem of computing the optimum of functions on finite
abelian groups is an important problem in mathematics and computer
science. Many combinatorial problems, such as MAX-SAT, MAX-CUT
and the knapsack problem, can be recognized as optimization problems
on the group Cn

2 = {−1, 1}n. This paper proposes an algorithm that
efficiently computes verifiable lower bounds of functions on finite abelian
groups by the technique of the Fourier sum of squares with error. More-
over, we propose a new rounding method to obtain a feasible solution
that minimizes the objective function as much as possible. We also imple-
ment the algorithm and test it on MAX-SAT benchmark problems and
random functions. These experiments demonstrate the advantage of our
algorithm over previously known methods.

1 Introduction

Combinatorial problems can usually be formulated as optimizaiton problems
on finite sets, thus many of them are notoriously difficult. Examples include
the Knapsack problem [19,20], the set cover problem [4,13], the k-SAT prob-
lem [3,11] and their numerous variants. Although each of these problems can be
regarded as an integer programming problem, there do not exist polynomial time
algorithms for most of them unless P = NP [11,13,14,22,23]. Therefore various
approximation algorithms are employed to resolve the issue [2,8,17,28,31,32].
Semidefinite programming (SDP) based relaxation methods, particularly the
sum of squares (SOS) relaxation is one of the most powerful and extensively
studied techniques to design and analyze an approximation algorithm for poly-
nomial optimization problems [6,10,12,16,25,29,31,40]. Among those successful
applications of the SDP technique, the most well-known ones are MAX-2SAT
[9], MAX-3SAT [10] and MAX-CUT [12]. On the other side, it is noticed in
[5,27,38,39] that if a finite set is equipped with an abelian group structure, then
one can efficiently certify nonnegative functions on it by Fourier sum of squares
(FSOS). Motivated by previous works, this paper is concerned with establishing
a framework to solve Problem 1 below by techniques of FSOS with error and
semidefinite programming.
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Problem 1 (lower bound by FSOS). Given a function f on a finite abelian group,
find a lower bound of f efficiently.

Let S ⊆ C
n be an algebraic variety. Algebraically, identifying the ring C[S] of

polynomial functions on S with C[z1, . . . , zn]/I(S) is a favorable perspective as
the latter ring is endowed with rich geometric and algebraic structures. For com-
putational purposes, however, regarding a function as an equivalence class is not
convenient, on account of the fact that an equivalence class can be represented
by infinitely many different polynomials. If S = G is a finite group, then there
is an alternative algebraic structure on C[G] which is extremely useful for com-
putations [5,27,38,39]. Namely, one can identify C[G] with the group ring of G
via the Fourier transform [7]. The advantage of such a point of view is that a
function f on G can be expanded as f =

∑
χ∈ ̂G f̂(χ)χ, where Ĝ is the dual

group of G and f̂(χ) is the Fourier coefficient of f at χ ∈ Ĝ. This well-known
viewpoint enables us to introduce analytic tools to solve Problem 1.

Related Works and Our Contributions

A method for general-purpose sparse polynomial optimization called the TSSOS
hierarchy is proposed in [35]. The new method follows the well-known method-
ology established in [15], but it exploits the sparsity of polynomials to reduce
the size of SDP. Combing the TSSOS hierarchy and the method in [33] for cor-
relative sparsity, [34] introduces the CS-TSSOS hierarchy for large scale sparse
polynomial optimization. In particular, both TSSOS and CS-TSSOS hierarchies
are applicable to optimization problems on finite abelian groups.

Due to its great importance in computer science, there are various solvers
for MAX-SAT. For instance, in [31], the quotient structure of C[Cn

2 ] is explored
for support selection strategies, from which one can solve MAX-SAT by SDP;
by combing several optimization techniques specifically designed for MAX-SAT,
[36] provides an efficient SDP-based MIXSAT algorithm; based on the resolution
refutation, a solver called MS-builder is proposed in [24].

On the one hand, TSSOS and CS-TSSOS hierarchies can handle general poly-
nomial optimization problems, while specially designed solvers such as MIXSAT
[36] and MS-builder [24] can only deal with MAX-SAT problems. On the other
hand, however, it is natural to expect that these specially designed solvers would
outperform general-purpose methods on MAX-SAT problems.

Our framework balances the universality and efficiency. Indeed, our method
is applicable to optimization problems on any finite abelian groups, including
the hypercube Cn

2 , cyclic group ZN and their product. We briefly summarize
our main contributions below.

– We present an efficient approximation algorithm to minimize a function on a
finite abelian group by computing its lower bounds. (Algorithm 1), which is
validated by Theorems 1 and 2.

– We propose a new rounding method to obtain high-quality feasible solutions
of binary optimization problems (Sect. 3.4).
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– We test our algorithm on MAX-2SAT, MAX-3SAT benchmark problems and
randomly generated functions. These numerical experiments demonstrate the
advantage of our algorithm over aforementioned polynomial optimization
methods.

2 Preliminaries

In this section, we review the Fourier analysis on abelian groups and provide a
brief introduction to Fourier sum of squares (FSOS) on finite abelian groups.

2.1 Fourier Analysis on Groups

We briefly summarize fundamentals of group theory and representation theory
in this subsection. For more details, we refer interested readers to [7,21,26].

Let G be a finite abelian group. A character of G is a group homomorphism
χ : G → C

×. Here C
× is C \ {0} endowed with the multiplication of complex

numbers as the group operation. The set of all characters of G is denoted by Ĝ,
called the dual group1 of G. According to [7, Chapter 1], any function f on G
admits the Fourier expansion:

f =
∑

χ∈ ̂G

f̂(χ)χ,

where f̂(χ) := 1
|G|

∑
g∈G f(g)χ(g) is called the Fourier coefficient of f at χ ∈ Ĝ.

The support of f is supp(f) :=
{

χ ∈ Ĝ : f̂(χ) �= 0
}

. As an example, the dual
group of the hypercube Cn

2 = {−1, 1}n is

Ĉn
2 = {zα : α = (α1, . . . , αn) ∈ Z

n
2} � Z

n
2 .

Here Z2 = Z/2Z = {0, 1} is the additive group and zβ := zβ1
1 . . . zβn

n for each
β ∈ N

n. Thus a function f : Cn
2 → C can be expressed as a linear combination

of multilinear monomials: f =
∑

α∈Z
n
2

fαzα.

2.2 Sparse Fourier Sum of Squares on Finite Abelian Groups

This subsection briefly reviews the theory of FSOS developed in [5,27,38]. Let f
be a nonnegative function on a finite abelian group G. A Fourier sum of squares
(FSOS) of f is a finite family {hi}i∈I of complex valued functions on G such that
f =

∑
i∈I |hi|2. According to [5], a function f : G → R admits an FSOS if and

only if f is nonnegative. The sparsity of {hi}i∈I is defined to be |⋃i∈I supp(hi)|.
We say that {hi}i∈I is a sparse FSOS of f if its sparsity is small.

1 Since G is an abelian group, ̂G is indeed a group and ̂G � G.
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A function f on G is nonnegative if and only if there exists a Hermitian
positive semidefinite matrix Q = (Qχ,χ′)χ,χ′∈ ̂G ∈ C

̂G× ̂G such that

∑

χ′∈ ̂G

Qχ′,χ′χ = f̂(χ), ∀χ ∈ Ĝ. (1)

Here we index columns and rows of Q by elements of Ĝ. We call Q a Gram matrix
of f . In fact, if Q is a Gram matrix of f and Q = M∗M for some matrix M =
(Mj,χ)1≤j≤r,χ∈ ̂G ∈ C

r× ̂G, then we must have f =
∑r

j=1 |∑χ∈ ̂G Mj,χχ|2. Clearly
this construction provides us a correspondence between (sparse) Gram matrices
and (sparse) FSOS of f . Because of the above correspondence, a sparse FSOS of f
is always preferable to reduce the cost of computations involving Gram matrices.
We remark that since G is finite, any nonnegative function f on G can be written
as f = |√f |2, which gives an FSOS of f . Here

√
f denotes the pointwise square

root of f . Moreover,
√

f gives an optimal solution to the convex relaxation of
the problem of finding an FSOS with the minimal support [38]. However,

√
f

is usually not sparse and thus the computation of
√

f becomes challenging. In
[39], we propose a polynomial approximation method for computing efficiently√

f approximately: suppose 0 ≤ l ≤ f ≤ m is a function on G, and a univariate
polynomial p(t) approximates

√
t at points between l and m with pointwise error

at most ε, then p ◦ f is an estimate of
√

f with coefficient error bounded by ε.

3 Main Results

In this section, we present our solution to Problem 1 for integer-valued functions.

3.1 Lower Bounds by FSOS

Let f : G �→ Z be a function on a finite abelian group G and let α be a real
number. For each S ⊆ Ĝ, we define

FS :=
{

{hi}i∈I : f − α =
∑

i∈I

|hi|2 for some α ∈ R,
⋃

i∈I

supp(hi) ⊆ S
}

,

and consider the following optimization problem:

max
{hi}i∈I∈FS

α,

s.t. f − α =
∑

i∈I

|hi|2. (2)

According to the discussion in Subsect. 2.2, α is a lower bound of f if and only
if f − α admits an FSOS {hi}i∈I . As a consequence, an optimal solution to (2)
for any S ⊆ Ĝ provides a lower bound of f . Moreover, the larger S we choose
for (2), the better lower bound we obtain, since S1 ⊆ S2 ⊆ Ĝ implies FS1 ⊆ FS2 .
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Since the quality of the lower bound obtained by solving (2) depends on
the choice of S ⊆ Ĝ, in order to efficiently compute a high-quality lower
bound, we need to choose a small subset S which contains as many elements
in

⋃
i∈I supp(hi) as possible, where {hi}i∈I is an FSOS of f − ming∈G f(g).

Clearly such {hi}i∈I is an optimal solution to (2) for S = Ĝ.
The correspondence between FSOS and Gram matrices (cf. Subsect. 2.2)

enables us to reformulate (2) as the following SDP problem:

maxQ∈CS×S f̂(χ0) − trace(Q), (3)

s.t.
∑

χ′∈ ̂G

Qχ′,χ′χ = f̂(χ), χ �= χ0 ∈ Ĝ (4)

Q � 0. (5)

Here χ0 denotes the identity element in Ĝ.
The next theorem provides us a simple but effective method to pick S ⊆ Ĝ

such that an optimal solution to (3)–(5) gives a high-quality lower bound of f .

Theorem 1. Let f be a function on G and let a > ã ≥ 0 be lower bounds
of f . Assume that cχ is the coefficient of χ in

√
f − a. If |cχ| >

√
a − ã, then

χ ∈ supp(
√

f − ã). Moreover, if G = Cn
2 and f ≤ m for some m ∈ R, then

|cχ| > a−ã
2

(
1√
a−ã

− 1√
m−a+

√
m−ã

)
implies χ ∈ supp(

√
f − ã).

Proof. We recall that cχ := 1
|G|

∑
g∈G χ(g)

√
f(g) − a. Similarly, we may write

√
f − ã =

∑
χ∈ ̂G c̃χχ. For each χ ∈ Ĝ, we notice that

|cχ − c̃χ| = 1
|G|

∣
∣
∣
∑

g∈G

χ(g)
(√

f(g) − a −
√

f(g) − ã
) ∣

∣
∣

=
a − ã

|G|
∣
∣
∣
∑

g∈G

χ(g)
√

f(g) − a +
√

f(g) − ã

∣
∣
∣

≤
√

a − ã.

Therefore, if |cχ| >
√

a − ã then c̃χ �= 0. If G = Cn
2 , then χ ∈ Ĝ � Z

n
2 is a

multilinear monomial. Thus χ(g) = ±1 for any g ∈ Cn
2 = {−1, 1}n. Moreover, it

is straightforward to verify that we can construct a bijective map ψ : Cn
2 → Cn

2

such that χ(g) = −χ(ψ(g)) and ψ2 = Id. Thus we have

|cχ − c̃χ| = a − ã

|G|
∣
∣
∣
∑

g∈G

χ(g)
√

f(g) − a +
√

f(g) − ã

∣
∣
∣

≤ a − ã

|G|
∑

g∈G,χ(g)=1

(
1√

a − ã
− 1√

m − a +
√

m − ã

)

=
a − ã

2

(
1√

a − ã
− 1√

m − a +
√

m − ã

)

.
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An important implication of Theorem 1 is that for each α ≤ fmin :=
ming∈G f(g), supp(

√
f − α) contains elements in supp(

√
f − fmin) whose Fourier

coefficients in
√

f − α are large. In particular, if f is nonnegative, then we can
even take supp(

√
f) as an estimate of supp(

√
f − fmin). Therefore, we may con-

struct S of cardinality k by taking the first k terms of an approximation of
√

f
and Theorem 1 ensures that S is a good estimate of supp(

√
f − fmin).

3.2 FSOS with Error

We discuss in this subsection a remarkable feature of the SDP problem (3)–(5):
a solution that violates conditions (4) and (5) may still provide us a tight lower
bound of f . This is the content of the next theorem.

Theorem 2. Let G be a finite abelian group and let S be a subset of Ĝ. Given
a function f : G → R and a Hermitian matrix Q ∈ C

S×S, we have

min
g∈G

f(g) ≥ −‖ê‖1 + λmin(Q)|S|,

where λmin(Q) is the minimal eigenvalue of Q, e = f − v∗
SQvS, vS = (χ)χ∈S

is the column vector consisting of all characters in S and ‖ê‖1 =
∑

χ∈ ̂G |ê(χ)|.
Furthermore, Q − λmin(Q) Id � 0 is a Gram matrix of f − e − λmin(Q)|S|.
Proof. For any g ∈ G, we have f(g)−e(g) = vS(g)∗Qv(g) ≥ λmin(Q)vS(g)∗v(g).
We observe that |χ(g)| = 1 for each g ∈ G and χ ∈ Ĝ. Thus vS(g)∗vS(g) = |S|
and |e(g)| ≤ ‖ê‖1 for any g ∈ G. This implies

f(g) ≥ −‖ê‖1 + λmin(Q)|S|, ∀g ∈ G.

Theorem 2 implies that −‖ê‖1 + λmin(Q)|S| is a lower bound of f even if Q � 0
or e �= 0.

Given a Hermitian matrix M ∈ C
n×n, we may define its associated real-

valued polynomial FM (z) := z∗Mz. Then we have FM = FM−λ Id + Fλ Id for
any λ ∈ R. Therefore, if M − λ Id � 0 then minz∈Cn Fλ Id(z) provides a lower
bound of FM . Unfortunately, minz∈Cn Fλ Id(z) = −∞ is a trivial lower bound of
FM for λ < 0, as Fλ Id(z) = λ‖z‖2. This phenomenon distinguishes optimization
problems on finite abelian groups from the usual polynomial optimizations.

For instance, we consider f(z1, z2) =
[
z1 z2

]
[
0 1
1 0

]
[
z1 z2

]T = 2z1z2 on C2
2 .

Since S = {z1, z2} and λmin(Q) = −1 where Q =
[
0 1
1 0

]

, Theorem 2 implies

that f ≥ −2 on C2
2 . As a comparison, we notice that f is the restriction of

FQ to C2
2 thus a lower bound of FQ is also a lower bound of f . However, the

above discussion indicates that the lower bound of FQ obtained by the SOS
technique is trivial, since FQ = FQ+Id + F− Id = |z1 + z2|2 − (|z1|2 + |z2|2) ≥
min(z1,z2)∈C2 −(|z1|2 + |z2|2) = −∞.
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3.3 Computation of Lower Bounds

In this subsection, we present an algorithm for computing a lower bound of a
function f on a finite abelian group G. For simplicity, for any function h, we
denote h0 := ĥ(χ0), where χ0 is the identity element in Ĝ.

Let S be a subset of Ĝ and let Q ∈ C
S×S be a Hermitian matrix. We define

e := f − f0 − v∗
SQvS , where vS is the |S|-dimensional column vector consisting

of characters in S. Applying Theorem 2 to f − f0 − e0, we have

min
g∈G

f(g) ≥ f0 + e0 − ‖ê − e0‖1 + λmin(Q)|S|. (6)

Since e0 = −∑
χ=χ′ Q(χ, χ′) = − trace(Q), we can rewrite the right side of (6) as

f0−F (Q) where F (Q) := trace(Q)+‖E(Q)‖1−λmin(Q)|S| and E : C
S×S �→ C

|G|

is the affine map sending Q to the (sparse) vector consisting of Fourier coefficients
of e − e0. Therefore we may obtain a lower bound of f by solving the following
unconstrained convex optimization problem:

min
Q∈CS×S , Q=Q∗

F (Q), (7)

Combining our discussions on the SDP problem (3)–(5), the support selection
method obtained from Theorem 1 and the convex optimization problem (7), we
obtain Algorithm 1.

Algorithm 1 Lower Bounds of Functions on Finite Abelian Groups.
Input a nonnegative function f on G, integers d and k, l, m such that 0 ≤ l ≤ f ≤ m.
Output a lower bound of f
1: approximate

√
t by a polynomial p(t) of degree at most d at integer points in [l, m].

2: compute the composition p◦f =
∑|G|

i=1 aiχi, where |a1| ≥ · · · ≥ |a|G|| and deg(χi) ≥
deg(χi+1) if |ai| = |ai+1|, 1 ≤ i ≤ |G| − 1.

3: Select S := {χ1, . . . , χk}.
4: Solve (3)-(5) for Q0. � by SDPNAL+
5: Solve (7) for Q. � by gradient descent with initial point Q0

6: return f0 − F (Q).

We remark that a lower and upper bound l and m of f are required as a part
of input for Algorithm 1. In most applications, they are in fact readily available.
In rare cases where no non-trivial bounds can be obtained beforehand, we may
simply use the trivial bounds: l = 0 and m = ‖f̂‖1 for nonnegative function
f . The goal of Algorithm 1 is to find a lower bound that is much better than
l. Steps 1–3 of Algorithm 1 are validated by Theorem 1. In practice, it suffices
to use d = 1 or 2, as it is shown by experiments in Sect. 4. Due to Theorem 2,
we do not need to solve the SDP problem (3)–(5) exactly in step 4. Instead, we
are allowed to compute an approximate solution, which may violate conditions
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(4) and (5). Moreover, the ADMM method used by SDPNAL+ augments an
objective function by an �2-norm, while our algorithm actually aims to minimize
the �1-norm. Thus Step 5 in Algorithm 1 is necessary for computing a better
lower bound. We solve (7) by the gradient descent method. Although F is not
smooth, we are able to compute its subgradient by

∂F = Id+(∂E)∗ sign(E(Q)) − |S|uu∗,

where ∂E is the gradient of E, sign(x) is the sign function and u is the unit
eigenvector of Q corresponding to λmin(Q).

We conclude this subsection by briefly summarizing the main advantages of
Algorithm 1. Interested readers are referred to Sect. 4 for numerical examples
which demonstrate these advantages.

1. Early termination: existing methods [31,35] need to wait the algorithm con-
verges to a solution satisfying conditions (4) and (5). However, Theorem 2
ensures that our method can find a lower bound even if these conditions are
not satisfied. This feature enables us to set time limits on solving the SDP
problem (3)–(5) instead of waiting for converging to a feasible solution.

2. Adaptivity to more SDP solvers: since the conditions (4) and (5) are not
required to be satisfied exactly, we can use more efficient SDP solvers, such
as SDPNAL+ [30]. As a consequence, MAX-SAT problems of much larger
sizes from the benchmark set 2 can be solved efficiently.

3. Size reduction: given a subset S ⊆ Ĝ, the SOS based algorithms may not
get a lower bound if f has no FSOS supported on S. However, Example 1
indicates that an FSOS supported on S with a small error may provide us a
tight lower bound. This feature leads to a reduction on the size of the SDP
problem (3)–(5).

Example 1. Let f : C3
2 → R be the function defined by

f(z1, z2, z3) = 4 + z1 + z2 + z3 + z1z2z3.

We can check that problem (3)–(5) has no feasible solution for S = {1, z1, z2, z3}.
However, we have f − e = 1+ 1

2

∑3
i=1(1+ zi)2 where e(z1, z2, z3) := z1z2z3, from

which we obtain f ≥ 1 − ‖ê‖1 = 0. We remark that in this case, the matrix size
in (3)–(5) reduces from 8 = |Ĝ| to 4 = |S|.

3.4 Rounding

Rounding is an important step in SDP-based algorithms for combinatorial opti-
mization problems, especially when both the optimum value and optimum point
are concerned. The purpose of rounding is to find a high-quality feasible solu-
tion. There exist several rounding techniques in the literature. Examples include
rounding by random hyperplanes [8] together with its improved version [6], the

2 http://www.maxsat.udl.cat/16/index.html.

http://www.maxsat.udl.cat/16/index.html
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skewed rounding procedure [18] and the randomized rounding technique [31].
Among all these rounding strategies, the one proposed in [31] can be easily
adapted to our situation.

Our rounding method is based on the null space of the Gram matrix. Let
Q ∈ R

S×S be a solution to (3)–(5). For a given f : Cn
2 → R and S ⊆ Ĉn

2

containing all characters of degree at most one, we assume f − α = v∗
SQvS ,

where α is the minimum value of f , vS is the |S|-dimensional column vector
consisting of characters in S and Q � 0.

In practice, the matrix Q obtained in Algorithm 1 may not be positive
semidefinite. We need to update it by Q − λmin(Q) Id. It is a little surprise
for us to notice that the numerical corank of Q − λmin(Q) Id is 1 very often,
which makes it possible to recover the optimal solution efficiently from its null
vector. By normalizing the element indexed by χ0 ∈ Ĝ of the null vector v of
Q − λmin(Q) Id to be one, we obtain the desired solution g̃ ∈ G by rounding
elements of the normalized null vector.

To conclude this subsection, we illustrate our rounding procedure by example.

Example 2 (rounding). The polynomial f(z1, z2, z3) = 4 + z1 + z2 + z3 +
z1z2z3 given in Example 1 is a nonnegative function on C3

2 . For S =
{1, z1, z2, z3, z1z2z3}, we obtain a Hermitian matrix by SDPNAL+:

Q =

⎡

⎢
⎢
⎢
⎢
⎣

1 z1 z2 z3 z1z2z3

1 1.9546 0.5000 0.5000 0.5000 0.5000
z1 0.5000 0.4536 0.0000 0.0000 0.0000
z2 0.5000 0.0000 0.4536 0.0000 0.0000
z3 0.5000 0.0000 0.0000 0.4536 0.0000

z1z2z3 0.5000 0.0000 0.0000 0.0000 0.4536

⎤

⎥
⎥
⎥
⎥
⎦

,

whose eigenvalues are −0.0462, 0.4536, 0.4536, 0.4536, 2.4544. The normalized
null vector of Q + 0.0462 Id is

v =
[ 1 z1 z2 z3 z1z2z3

1 −1.000447 −1.000447 −1.000447 −1.000447
]
.

We recover the solution z1 = z2 = z3 = −1 by rounding the elements of v.

4 Numerical Experiments

In this section, we conduct numerical experiments to test Algorithm 1
and the rounding technique discussed in Subsect. 3.4. We implement
our algorithm in Matlab (2016b) and invoke the ADMM algorithm
in SDPNAL+ [30] to solve SDP problems. The code is available on
github.com/jty-AMSS/Fast-Lower-Bound-On-FAG. All experiments are per-
formed on a desktop computer with Intel Core i9-10900X@3.70 GHz CPU and
128 GB RAM memory. Due to the page limit, we only present three numerical
experiments here. Interested readers are referred to the full-length version [37]
on arXiv for more numerical experiments.

http://github.com/jty-AMSS/Fast-Lower-Bound-On-FAG
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4.1 Upper Bounds of MAX-2SAT Problems

Recall that any CNF-formula φ in n variables with m clauses can be transformed
into the characteristic function fφ on Cn

2 such that the minimum number of
simultaneously falsified clauses in φ is equal to ming∈Cn

2
fφ(g). Hence solving

the MAX-SAT problem for φ is equivalent to computing the minimum value of
the function fφ on Cn

2 . For comparison purposes, we compute lower bounds of
the number of falsified clauses of benchmark MAX-SAT problems respectively
by Algorithm 1, TSSOS [35] and CS-TSSOS [34]3. The MAX-SAT problems
are drawn from the randomly generated unweighted MAX-2SAT benchmark
problem set in 2016 MAX-SAT competition4. Such a problem has 120 variables,
in which the number of clauses ranges from 1200 to 2600. We apply Algorithm 1
to compute lower bounds of the corresponding characteristic functions, with
parameters d = 1, k = |supp(f)|, l = 0, and m = number of clauses. We also
apply TSSOS and CS-TSSOS of the first order relaxation to these functions5.

Numerical results are reported in Table 1, in which “clause” denotes the num-
ber of clauses in each CNF formula, “min” is the minimum of the characteris-
tic function and “bound” means the lower bound of the characteristic function
obtained by each method. From Table 1, we see that lower bounds obtained by
Algorithm 1 are very close to minimum values of characteristic functions, which
are better than those obtained by TSSOS and CS-TSSOS.

Table 1. Unweighted MAX-2SAT problems

No clause min Algorithm 1 TSSOS CS-TSSOS
bound time bound time bound time

1 1200 161 159.5 370 146.7 45 146.7 52
2 1200 159 156.7 327 143.1 49 143.1 55
3 1200 160 159.0 362 146.8 46 146.8 64
4 1300 180 177.5 450 162.4 52 162.4 73
5 1300 172 170.6 417 156.2 47 156.2 65
6 1300 173 171.6 432 158.8 44 158.8 58
7 1400 197 194.8 506 179.8 46 179.8 75
8 1400 191 189.3 499 174.3 51 174.3 87
9 1400 189 187.2 504 172.1 58 172.1 78

3 To solve SDP problems, we use SDPNAL+ [30] in Algorithm 1 and MOSEK [1] in
TSSOS and CS-TSSOS.

4 http://www.maxsat.udl.cat/16/index.html.
5 Both of them fail to compute the second and higher order relaxations due to the

insufficient memory. In fact, there are
∑k

j=0

(

120
k

)

monomials involved in the k-th
relaxation. In particular, the size of the Gram matrix in the first relaxation is 121×
121 while it is 7261 × 7261 in the second relaxation.

http://www.maxsat.udl.cat/16/index.html
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4.2 Rounding Techniques

We compare the rounding technique presented in Subsect. 3.4 with rounding
techniques with scaling factors ρN

i and 2−(i−1) in [31] on the same benchmark
problems used in the previous experiment. For the rounding method in [31], we
solve the SDP problem with MOSEK and basis Mp, where Mp is the monomial
basis containing M1 and monomials zizj whenever xi and xj appear in the same
clause (cf. [31, Definition 1]) and M1 is the set of monomials with degree at most
1. For the rounding method proposed in Subsect. 3.4, we select basis with input
parameters l = 0, d = 2, m = number of clauses and k is chosen so that the
cardinality of the union of M1 and the basis obtained by steps 1–3 in Algorithm
1, is equal to the cardinality of Mp. The maximum number of iterations in
SDPNAL+ is set to be |Mp|.

We record results in Table 2, which indicate that our rounding method out-
performs the method presented in [31]. Furthermore, rounding techniques in [31]
usually take at least 6000 seconds by the interior point method based solvers as
conditions (4) and (5) are required to be satisfied. However, our method takes
less than 1000 seconds, as (4) and (5) can be violated.

Table 2. rounding on MAX-2SAT benchmarks

No clause min Gram ρN
i 2−(i−1)

1 1200 161 162 225 227
2 1200 159 159 215 194
3 1200 160 160 162 160
4 1300 180 180 226 243
5 1300 172 173 225 230
6 1300 173 173 245 253
7 1400 197 198 234 270
8 1400 191 192 255 246
9 1400 189 189 227 231

4.3 Lower Bounds of Random Functions

The goal of this experiment is to exhibit the correctness and efficiency of Algo-
rithm 1. We randomly generate nonnegative integer-valued functions on C25

2 , C15
3

and C10
5 and compute their lower bounds by Algorithm 1, TSSOS [35] and CS-

TSSOS [34] respectively. Without loss of generality, we only consider functions
whose minimum values are 1.

We generate random functions by the following steps. For group C25
2 , we

generate a polynomial f = f0 +
∑

i ciz
αi of degree three and sparsity around

450 on C25
2 by randomly picking multilinear monomials zαi with degree at most
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3 and coefficients ci ∈ {c ∈ Z : −5 ≤ c ≤ 5}. The constant term f0 is chosen so
that the minimum values is 1. Clearly, f ≤ m :=

∑
i |ci|+f0. For group C15

3 and
C10

5 , we generate functions f with sparsity around 200 on group C15
3 or C10

5 by
the following procedure:

1. Set f = 0;
2. Randomly generate an integer-valued function h on C2

3 (resp. C2
5 ), such that

0 ≤ h ≤ 10;
3. Randomly pick a projection map τ : C15

3 → C2
3 (resp. τ : C10

5 → C2
5 );

4. Update f ← f + h ◦ τ ;
5. Repeat steps (2.)–(4.) until the sparsity of f is greater than 200.
6. Update f ← f − ming∈C15

3
f(g) + 1 (resp. f ← f − ming∈C10

5
f(g) + 1).

Then clearly f ≤ m := sum of maximum value of h in step (2.).
For each of these functions, we perform Algorithm 1 with parameters d = 2,

k = 3 |supp(f)|, l = 0, and m as discussed earlier. We also apply TSSOS and
CS-TSSOS of the second (resp. fourth, eighth) order relaxation on C25

2 (resp.
C15

3 , C10
5 ) with the term sparsity parameter TS = “MD” to these functions6.

Results are shown in Table 3, where “sp” means the sparsity of the function
and “bound” means the lower bound obtained by the corresponding algorithm.
“MO” in the table indicates that the program was terminated due to insufficient
memory. We do not test TSSOS on functions on C15

3 and C10
5 as it is only

applicable to functions with real variables and real coefficients7. Thus we place “–
” in corresponding positions of the table. It is clear from Table 3 that Algorithm 1
outperforms both TSSOS and CS-TSSOS on random examples.

Table 3. Random examples on C25
2 , C15

3 and C10
5

No group sp Algorithm 1 TSSOS CS-TSSOS
bound time bound time bound time

1 C25
2 451 1.00 1058.00 1.00 1027.03 1.00 1451.53

2 C25
2 451 0.67 867.38 –8.72 853.47 –7.23 1483.55

3 C25
2 451 0.75 773.06 1.00 1442.03 1.00 1846.23

4 C25
2 451 0.99 906.15 1.00 1519.08 1.00 1831.33

5 C25
2 451 0.02 718.21 1.00 1364.66 1.00 1710.47

6 C15
3 203 0.97 327.58 – – 1.00 7336.23

7 C15
3 203 1.00 223.73 – – 1.00 2876.34

8 C15
3 203 1.00 212.43 – – 1.00 1353.14

9 C10
5 201 0.97 191.54 – – MO MO

10 C10
5 201 0.94 236.33 – – 1.00 559.68

11 C10
5 213 0.90 233.82 – – MO MO

6 CS-TSSOS fails to complete the computation if we use lower order relaxations.
7 Cn = {exp(2kπi/n)}n−1

k=0 �⊆ R if n ≥ 3.
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Abstract. Edge Triangle Packing and Edge Triangle Covering

are dual problems extensively studied in the field of parameterized com-
plexity. Given a graph G and an integer k, Edge Triangle Packing

seeks to determine whether there exists a set of at least k edge-disjoint tri-
angles in G, while Edge Triangle Covering aims to find out whether
there exists a set of at most k edges that intersects all triangles in G.
Previous research has shown that Edge Triangle Packing has a kernel
of (3+ ε)k vertices, while Edge Triangle Covering has a kernel of 6k
vertices. In this paper, we show that the two problems allow kernels of 3k
vertices, improving all previous results. A significant contribution of our
work is the utilization of a novel discharging method for analyzing kernel
size, which exhibits potential for analyzing other kernel algorithms.

1 Introduction

Preprocessing is a fundamental and commonly used step in various algorithms.
However, most preprocessing has no theoretical guarantee on the quality. Ker-
nelization, originating from the field of parameterized algorithms [1], now has
been found to be an interesting way to analyze the quality of preprocessing.
Consequently, kernelization has received extensive attention in both theoretical
and practical studies.

Given an instance (I, k) of a problem, a kernelization (or a kernel algorithm)
runs in polynomial time and returns an equivalent instance (I ′, k′) of the same
problem such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,
where k′ ≤ k and |I ′| ≤ g(k) for some computable function g only of k. The new
instance (I ′, k′) is called a kernel and g(k) is the size of the kernel. If g(·) is a
polynomial or linear function, we classify the problem as having a polynomial
or linear kernel, respectively.

Edge Triangle Packing (ETP), to check the existence of k edge-disjoint
triangles in a given graph G is NP-hard even on planar graphs with maximum
degree 5 [2]. The optimization version of this problem is APX-hard on general
graphs [3]. A general result of [4] leads to a polynomial-time (3/2+ε) approxima-
tion algorithm for any constant ε > 0. When the graphs are restricted to planar
graphs, the result can be improved. A polynomial-time approximation scheme for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 171–183, 2024.
https://doi.org/10.1007/978-3-031-49193-1_13
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the vertex-disjoint triangle packing problem on planar graphs was given by [5],
which can be extended to ETP on planar graphs. In terms of parameterized
complexity, a 4k-vertex kernel and an O∗(2

9k
2 log k+ 9k

2 )-time parameterized algo-
rithm for ETP were developed in [6]. Later, the size of the kernel was improved
to 3.5k [7]. The current best-known result is (3+ ε)k [8], where ε > 0 can be any
positive constant. On tournaments, there is also a kernel of 3.5k vertices [9].

Another problem considered in this paper is Edge Triangle Covering

(ETC). ETC is the dual problem of ETP, which is to check whether we can
delete at most k edges from a given graph such that the remaining graph has
no triangle. ETC is also NP-hard even on planar graphs with maximum degree
7 [10]. In terms of kernelization, a 6k-vertex kernel for ETC was developed [10].
On planar graphs, the result was further improved to 11k

3 [10].
In this paper, we will deeply study the structural properties of Edge Tri-

angle Packing and Edge Triangle Covering and give some new reduction
rules by using a variant of crown decomposition. After that, we will introduce
a new technology called the discharging method to analyze the size of problem
kernels. Utilizing the new discharging method, we obtain improved kernel sizes
of 3k vertices for both ETP and ETC. Notably, our results even surpass the
previously best-known kernel size for ETC on planar graphs [10]. Due to the
page limitation, proofs of lemmas and theorems marked with ‘*’ are omitted,
which can be found in the full version of this paper.

2 Preliminaries

Let G = (V,E) denote a simple and undirected graph with n = |V | vertices
and m = |E| edges. A vertex is a neighbor of another vertex if there is an edge
between them. The set of neighbors of a vertex v is denoted by N(v), and the
degree of v is defined as d(v) = |N(v)|. For a vertex subset V ′ ⊆ V , we let
N(V ′) = ∪v∈V ′N(v) \ V ′ and N [V ′] = N(V ′) ∪ V ′. The subgraph induced by a
vertex subset V ′ ⊆ V is denoted by G[V ′] and the subgraph spanned by an edge
set E′ ⊆ E is denoted by G[E′]. The vertex set and edge set of a graph H are
denoted by V (H) and E(H), respectively.

A complete graph on 3 vertices is called a triangle. We will use vuw to denote
the triangle formed by vertices v, u, and w. If there is a triangle vuw in G, we
say that vertex v spans edge uw. An edge triangle packing in a graph is a set of
triangles such that every two triangles in it have no common edge. The Edge

Triangle Packing problem (ETP) is defined below.

Edge Triangle Packing (ETP) Parameter: k
Input: An undirected graph G = (V,E), and an integer k.
Question: Does there exist an edge triangle packing of size at least k in G?

An edge covers a triangle if it is contained in the triangle. An edge triangle
covering in a graph is a set of edges S such that there is no triangle after deleting
S from G. The Edge Triangle Covering problem (ETC) is defined below.
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Fig. 1. An illustration for the fat-head crown decomposition

Edge Triangle Covering (ETC) Parameter: k
Input: An undirected graph G = (V,E), and an integer k.
Question: Does there exist an edge triangle covering of size at most k in G?

3 Fat-Head Crown Decomposition

One important technique in this paper is based on a variant of the crown decom-
position. Crown decomposition is a powerful technique for the famous Vertex

Cover problem and it has been extended to solve several related problems [11–
14]. Specifically, we employ a specific variant called the fat-head crown decompo-
sition to tackle (ETP) [8]. This variant of the crown decomposition will also be
applied in our algorithms for both ETP and ETC. To provide a comprehensive
understanding, let us begin by introducing the definition of the fat-head crown
decomposition.

A fat-head crown decomposition of a graph G = (V,E) is a triple (C,H,X)
such that C and X form a partition of V and H ⊆ E is a subset of edges
satisfying the following properties:

1. C is an independent set.
2. H is the set of edges spanned by at least one vertex in C.
3. No vertex in C is adjacent to a vertex in X \ V (H).
4. There is an edge-disjoint triangle packing P of size |P | = |H| such that

each triangle in P contains exactly one vertex in C and exactly one edge in
H. The packing P is also called the witness packing of the fat-head crown
decomposition.

An illustration of the fat-head crown decomposition is shown in Fig. 1. To
determine the existence of fat-head crown decompositions in a given graph struc-
ture, we present three lemmas.

Lemma 1 (Lemma 2 in [8]). Let G = (V,E) be a graph such that each edge and
each vertex is contained in at least one triangle. Given a non-empty independent
set I ⊆ V such that |I| > |S(I)|, where S(I) is the set of edges spanned by at
least one vertex in I. A fat-head crown decomposition (C,H,X) of G with C ⊆ I
and H ⊆ S(I) together with a witness packing P of size |P | = |H| > 0 can be
found in polynomial time.
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Lemma 2 (*). Given a graph G = (V,E), a vertex set A ⊆ V , and an edge set
B ⊆ E, where A ∩ V (B) = ∅. There is a polynomial-time algorithm that checks
whether there is a fat-head crown decomposition (C,H,X) such that ∅ �= C ⊆ A
and H ⊆ B and outputs one if yes.

Lemma 3 (*). If there is a fat-head crown decomposition (C,H,X) in G, then
G has an edge-disjoint triangle packing (resp., edge triangle covering) of size k
if and only if the graph G′ has an edge-disjoint triangle packing (resp., edge
triangle covering) of size k − |H|, where G′ is the graph obtained from G by
deleting vertex set C and deleting edge set H.

4 The Algorithms

In this section, we present our kernelization algorithms for the Edge Trian-

gle Packing (ETP) and Edge Triangle Covering (ETC) problems. Our
algorithms involve a set of reduction rules that are applied iteratively until no
further reduction is possible. Each reduction rule is applied under the assump-
tion that all previous reduction rules have already been applied and cannot be
further applied to the current instance. A reduction rule is correct if the original
instance (G, k) is a yes-instance if and only if the resulting instance (G′, k′) after
applying the reduction rule is a yes-instance.

We have one algorithm for ETP and ETC, respectively. The two algorithms
are similar. We will mainly describe the algorithm for ETP and introduce the
difference for ETC. In total, we have nine reduction rules. The first four rules
are simple rules to handle some special structures, while the remaining five rules
are based on a triangle packing. Especially, the last rule will use the fat-head
crown decomposition. We will show that the algorithms run in polynomial time.

4.1 Simple Rules

Reduction Rule 1. For ETP, if k ≤ 0, then return ‘yes’ to indicate that the
instance is a yes-instance; if k > 0 and the graph is empty, then return ‘no’ to
indicate that the instance is a no-instance.
For ETC, if k ≥ 0 and the graph is empty, then return ‘yes’ to indicate that the
instance is a yes-instance; if k < 0, then return ‘no’ to indicate that the instance
is a no-instance.

Reduction Rule 2. If there is a vertex or an edge not appearing in any trian-
gle, then delete it from the graph.

Reduction Rule 3. If there are 4 vertices u, v, w, x ∈ V inducing a complete
graph (i.e., there are 6 edges uv, uw, ux, vw, vx,wx ∈ E) such that none of the
6 edges is in a triangle except uwv, uvx, uwx, and vwx, then

– For ETP, delete the 6 edges uv, uw, ux, vw, vx and wx and let k = k − 1;
– For ETC, delete the 6 edges uv, uw, ux, vw, vx and wx and let k = k − 2.
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Fig. 2. An Illustration for Reduction Rule 4

The correctness of Reduction Rule 3 is based on the following observation.
For ETP, any edge triangle packing can have at most one triangle containing
some edge from these 6 edges and we can simply take one triangle from this local
structure. For ETC, any edge triangle covering must contain at least two edges
from these 6 edges and after deleting vu and wx, none of uw, ux, vw, and vx is
contained in a triangle anymore.

Reduction Rule 4. If there is a vertex v ∈ V such that all edges incident to v
can be partitioned into two parts E1 and E2 such no triangle in G contains an
edge in E1 and an edge in E2, then split v into two vertices v′ and v′′ such that
all edges in E1 are incident on v′ and all edges in E2 are incident on v′′.

An illustration of Reduction Rule 4 is shown in Fig. 2. This reduction rule will
increase the number of vertices in the graph. However, this operation will simplify
the graph structure and our analysis.

Lemma 4. Reduction Rule 4 is correct and can be executed in polynomial time.

Proof. First, we consider the correctness. Let G′ = (V ′, E′) be the graph after
applying Reduction Rule 4 on a vertex v. We can establish a one-to-one mapping
between the edges in E and the edges in E′ by considering the vertices v′ and
v′′ ∈ V ′ as v ∈ V . Three edges in E form a triangle in G if and only if the three
corresponding edges in E′ form a triangle in G′ since there is no triangle in G
contains an edge in E1 and an edge in E2. Thus, an edge triangle packing of
size k (resp., an edge triangle covering of size k) in G is also an edge triangle
packing of size k (resp., an edge triangle covering of size k) in G′. This implies
that Reduction Rule 4 is correct for both ETP and ETC.

We give a simple greedy algorithm to find the edge sets E1 and E2 for a
given vertex v. Initially, let E1 contain an arbitrary edge e incident on v. We
iteratively perform the following steps until no further updates occur: if there is
a triangle containing an edge in E1 and an edge e′ incident on v but not in E1,
then add edge e′ to E1. It is easy to see that all edges in E1 must be in the same
part to satisfy the requirement. If E1 �= E, then we can split E to two parts E1

and E2 = E \ E1. Otherwise, the edges incident on v cannot be split. 
�

4.2 Adjustments Based on a Triangle Packing

After applying the first four rules, our algorithms will find a maximal edge-
disjoint triangle packing S by using an arbitrary greedy method. This can be
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done easily in polynomial time. The following rules are based on the packing S.
From now on, we let F = V \ V (S) denote the set of vertices not appearing in
S and R = E \ E(S) denote the set of edges not appearing in S. We begin with
the following trivial rule.

Reduction Rule 5. If |S| > k, for ETP, return ‘yes’ to indicate that the
instance is a yes-instance; and for ETC, return ‘no’ to indicate that the instance
is a no-instance.

The following three rules just update the packing S by replacing some trian-
gles in it and do not change the graph. Illustrations of the three rules are shown
in Fig. 3.

Fig. 3. Illustrations of Reduction Rules 6–8

Reduction Rule 6. If there is a triangle v1v2v3 ∈ S such that there are at least
two edge-disjoint triangles in the spanned graph G[R ∪ {v1v2, v1v3, v2v3}], then
replace v1v2v3 with these triangles in S to increase the size of S by at least 1.

Reduction Rule 7. If there are two edge-disjoint triangles v1v2v3 and v4v5v6 ∈
S such that there are at least three edge-disjoint triangles in the spanned graph
G[R ∪ {v1v2, v1v3, v2v3, v4v5, v4v6, v5v6}], then replace v1v2v3 and v4v5v6 with
these triangles in S to increase the size of S by at least 1.

Reduction Rule 8. If there are two edge-disjoint triangles v1v2v3 and v4v5v6 ∈
S such that there are two edge-disjoint triangles v′

1v
′
2v

′
3 and v′

4v
′
5v

′
6 in the

induced graph G[F ∪{v1, v2, v3, v4, v5, v6}] such that |{v′
1, v

′
2, v

′
3}∪{v′

4, v
′
5, v

′
6}| >

|{v1, v2, v3} ∪ {v4, v5, v6}| , then replace triangles v1v2v3 and v4v5v6 with trian-
gles v′

1v
′
2v

′
3 and v′

4v
′
5v

′
6 in S to increase the number of vertices appearing in S by

at least 1.

Note that an application of Reduction Rules 6–8 will not change the structure of
the graph. Thus, the first four reduction rules will not be applied after executing
Reduction Rules 6–8.
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4.3 A Reduction Based on Fat-Head Crown Decomposition

After Reduction Rule 8, we obtain the current triangle packing S. An edge in
E(S) is called a labeled edge if it is spanned by at least one vertex in F . We let
L denote the set of labeled edges.

We can find a fat-head crown decomposition (C,H,X) with C ⊆ V \ V (L)
and H ⊆ L in polynomial time if it exists by Lemma 2. Moreover, we will apply
the following reduction rule to reduce the graph, the correctness of which is
based on Lemma 3.

Reduction Rule 9. Use the algorithm in Lemma 2 to check whether there is a
fat-head crown decomposition (C,H,X) such that ∅ �= C ⊆ V \V (L) and H ⊆ L.
If yes, then delete vertex set C and edge set H, and let k = k − |H|.

An instance is called reduced if none of the nine reduction rules can be applied
to it. The corresponding graph is also called a reduced graph.

Lemma 5 (*). For any input instance, the kernelization algorithms run in
polynomial time to output a reduced instance.

5 Analysis Based on Discharging

Next, we use a discharging method to analyze the size of a reduced instance. Note
that there is no significant difference between ETC and ETP in the analysis. We
partition the graph into two parts: one part is the edge-disjoint triangle packing
S after applying all the reductions; the other part is the set F of vertices not
appearing in S. Before proceeding with the analysis, we will establish some
properties that will be utilized.

Lemma 6. Consider a reduced graph G = (V,E) with triangle packing S. For
any triangle uvw ∈ S, at most one of {uv, vw, uw} is a labeled edge.

Proof. Assume to the contrary that there are two edges, say uv and vw are
spanned by vertices in F . We show some contradiction.

If edges uv and vw are spanned by two different vertices x, x′ ∈ F respec-
tively, then Reduction Rule 6 could be applied (Case 1 in Fig. 4). Therefore,
edges uv and vw are spanned by the same vertex x ∈ F . Since Reduction Rule
3 is not applied on the four vertices {u, v, w, x}, we know that at least one edge
in {uw, uw, ux, vw, vx,wx} is contained in a triangle other than uwv, uvx, uwx,
and vwx. Due to symmetry, we only need to consider two edges vw and xw.

Assume that edge vw is contained in a triangle vwy, where y �∈ {u, x}. If
none of {yv, yw} appears in E(S), then Reduction Rule 6 could be applied to
replace uvw with two triangles xvu and yvw in S. If at least one edge in {yv, yw}
is contained in E(S), without loss of generality, assume yw ∈ E(S) and there is
a triangle ywz ∈ S. For this case, Reduction Rule 8 could be applied to replace
vuw and ywz with xvu and ywz (Case 2 in Fig. 4).

Assume that edge xw is contained in a triangle xwy, where y �∈ {u, v}. By
the maximality of S, we know that at least one of {xy, yw} must appear in E(S).
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Fig. 4. Three cases in Lemma 6

Fig. 5. An illustration for triangles and vertices in G

However, edge xy can not appear in E(S) since x ∈ F . We know that wy ∈ E(S)
and there is a triangle wyz ∈ S. For this case, Reduction Rule 8 could be applied
to replace vuw and ywz with xvu and wyz (Case 3 in Fig. 4).

In any of these cases, we can find a contradiction to the fact that the graph
is reduced. 
�

A triangle uvw ∈ S is good if it contains a labeled edge and bad otherwise. By
Lemma 6, we know that there is exactly one labeled edge in each good triangle.
We let G′ be the graph obtained by deleting the set L of labeled edges from G.
Consider a good triangle uvw with labeled edge uv. If the two edges vw and
wu are not in any triangle in G′, we call the triangle excellent. Otherwise, we
call the triangle pretty-good. We let S1 denote the set of excellent triangles, S2

denote the set of pretty-good triangles, and S3 denotes the set of bad triangles
in S. The number of triangles in S1, S2 and S3 are denoted by k1, k2, and k3,
respectively. Let V1 = V (S1) \ (V (L) ∪ V (S2) ∪ V (S3)) and V2 = V (S2) \ V (L).
See Fig. 5 for an illustration of these concepts.

5.1 The Analysis

The discharging method stands as a renowned technique in graph theory, finding
its most notable application in the proof of the famous Four Color Theorem. In
this section, we will use the discharging method to analyze the number of vertices
present in S1, S2, S3, and F . The idea of the method is as follows.

First, we initially assign some integer values to vertices, edges, and triangles
in S. The total value assigned is at most 3k. Subsequently, we perform steps
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Fig. 6. An illustration for Step 1

to update the values, where certain values on vertices, edges, and triangles are
transformed into other vertices, edges, and triangles. In these steps, we never
change the structure of the graph and the total value in the graph. After per-
forming these transformations, we demonstrate that each vertex in the graph
has a value of at least 1. Consequently, we conclude that the number of vertices
in the graph is at most 3k.

Initialization: Assign value 3 to each edge in L and each triangle in S3. Edges
not in L, vertices, and triangles in S1 ∪ S2 are assigned a value of 0.

By Lemma 6, we know that each of excellent and pretty-good triangles con-
tains exactly one labeled edge in L and each bad triangle in S3 contains no
labeled edge. Thus, the total value in the graph is 3k1 + 3k2 + 3k3 ≤ 3k.

Step 1: For each labeled edge in L, transform a value of 1 to each of its two
endpoints; for each triangle in S3, transform a value of 1 to each of its three
vertices.

Figure 6 illustrates the transformation process of Step 1. After Step 1, each
labeled edge has a value of 1, and all triangles have values of 0. Note that some
vertices may have a value of 2 or more, as they may serve as endpoints of multiple
labeled edges and can also be vertices in V (S3). However, vertices in F ∪V1 ∪V2

still retain a value of 0.
A triangle component is a connected component in the graph H =

(V (S), E(S)). For a vertex v ∈ V (S), we let C(v) denote the set of vertices
in the triangle component which contain v.

Step 2: For each triangle component in G, we iteratively transform a value of 1
from a vertex with a value of at least 2 to a vertex with a value of 0 in the same
triangle component, where vertices in V1 have a higher priority to get the value.

Lemma 7. After Step 2, each triangle component has at most one vertex with
a value of 0. Moreover,

(i) For any triangle component containing a triangle in S3, each vertex in the
triangle component has a value of at least 1;

(ii) For any triangle component containing at least one triangle in S2, if there
is a vertex with a value of 0 in the triangle component, then the vertex must
be a vertex in V2.

Proof. Let Q be a triangle component with x triangles. Since Q is connected,
it contains at most 2x + 1 vertices. Assume that among the x triangles, there
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Fig. 7. An illustration for Step 3, where the number in parentheses next to each vertex
represents the value of that vertex

are x1 triangles in S1 ∪ S2 and x2 triangles in S3, where x1 + x2 = x. By the
definition, we know that each triangle in S1 ∪ S2 contains a distinct labeled
edge. According to the initialization of the assignment, we know that the total
value is 2x1 + 3x2 = 2x + x2. It always holds that 2x + 1 ≤ (2x + x2) + 1, and
2x + 1 ≤ 2x + x2 when x2 ≥ 1. Thus, Q has at most one vertex with a value of
0. When Q contains some triangles from S3, i.e., x2 ≥ 1, all vertices in Q will
get a value of at least 1. The statement (ii) holds because vertices in V1 have a
higher priority to receive the value in Step 2. 
�

After Step 2, only vertices in F , some vertices in V1, and some vertices in
V2 have values of 0. We use the following lemma to transform some values to
vertices in V2 with a value of 0.

Lemma 8 (*). Consider two triangles vuw and vxy ∈ S2 sharing a common
vertex v, where uv and vx ∈ L. If there is an edge wy ∈ E, then uv and vx are
spanned by exactly one vertex in F ∪ V1 \ C(v).

Step 3: If there are two triangles vuw and vxy ∈ S2 sharing a common vertex
v such that uv and vx are two labeled edges in L and there is an edge wy ∈ E,
we transform a value of 1 from edge vx to the unique vertex q1 ∈ F spanning
vx and transform a value of 1 from edge uv to the vertex with a value of 0 in
C(v) if this vertex exists.

See Fig. 7 for an illustration of Step 3. We have the following property.

Lemma 9. Every vertex in V2 has a value of at least 1 after Step 3.

Proof. Assume to the contrary there is a vertex w ∈ V2 with a value of 0. We
know that all vertices in C(w) \ {w} have a value of at least 1 by Lemma 7. Let
wuv ∈ S2 be the triangle containing w, where uv is the labeled edge spanning
by a vertex q ∈ F . As shown in Fig. 8. At least one of uw and vw is in a triangle
in graph G − L by the definition of S2. Without loss of generality, we assume
that uw is contained in a triangle uwx, where x �= v. At least one of ux and wx
is contained in a triangle in S otherwise Reduction Rule 6 could be applied.
Case 1: Edge ux is contained in a triangle uxy ∈ S. See Case 1 in Fig. 8. The
triangle uxy is not in S3 otherwise there is a contradiction that w would have



Improved Kernels for Edge Triangle Packing and Covering 181

Fig. 8. An illustration for Lemma 9

a value of at least 1 by Lemma 7. Thus, triangle uxy must be in S1 ∪ S2 and
there is exactly one of ux, uy, and xy is a labeled edge. Edge ux would not be a
labeled edge since triangle uwx is contained in G − L. If xy is the labeled edge
that is spanned by a vertex q′ ∈ F , then Reduction Rule 8 could be applied
to replace triangles uvw and uxy with triangles uvw and xyq′, a contradiction
to the factor that the graph is reduced. If uy is the labeled edge, then triangle
uxy ∈ S2 since ux is contained in a triangle uxw ∈ G − L. For this case, the
vertex w would have a value of at least 1 by Lemma 7. We can always find a
contradiction.
Case 2: Edge wx is contained in a triangle wxz ∈ S. See Case 2 in Fig. 8. If
z �= q, then Reduction Rule 8 could be applied to replace triangles uvw and
wxz with triangles wxz and qvu, a contradiction to the factor that the graph is
reduced. If z = q, then at least two edges in triangle vuw are spanned by vertices
in F , a contradiction to Lemma 6.

In either case, a contradiction is reached, which implies that the assumption
of a vertex w ∈ V2 having a value of 0 is incorrect. Therefore, every vertex in V2

has a value of at least 1 after Step 3. 
�
After Step 3, all vertices with a value of 0 are in either F or V1. We let V ′

1 denote
the set of vertices with a value of 0 in V1, F ′ denote the set of vertices with a
value of 0 in F , and L′ denote the set of edges with a value of 1 in L after Step
3. We give more properties.

Lemma 10. Set F ′ ∪ V ′
1 is an independent set.

Proof. We prove that F ∪ V1 is an independent set, which implies F ′ ∪ V ′
1 is an

independent set since F ′ ∪V ′
1 ⊆ F ∪V1. Assume to the contrary that there is an

edge uv between two vertices in F ∪ V1. There is at least one triangle uvw ∈ G
containing uv since Reduction Rule 2 has been applied. At least one of uv, vw,
and uw must be in E(S) by the maximality of S.

If uv ∈ E(S), we let uvx be the triangle in S containing uv. First, we know
that u and v ∈ V1 since F ∩ V (S) = ∅. By the definition of V1, we get that none
of u and v is contained in a triangle in S3 and none of u and v is an endpoint of
a labeled edge. Thus, triangle uvx is not a triangle in S3 and it does not contain
any labeled edge and then it is not a triangle in S1 ∪ S2, which implies triangle
uvx is not in S, a contradiction.
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Otherwise, one of uw and vw, say uw, is contained in E(S). Let uwy be the
triangle in S containing uw. We also have that u ∈ V1 since F ∩ V (S) = ∅. By
the definition of V1, we know that u is not a vertex in a triangle in S3, and then
uwy is not a triangle in S3. Thus, triangle uwy can only be in S1 ∪S2. Note that
none of uv, vw and uw can be a labeled edge since u and v ∈ F ∪V1. Thus, edge
uw is still in a triangle uvw in G − L, and then uwy can not be a triangle in S1.
However, triangle uvw can not be a triangle in S2 too since u is a vertex in V1.
We also get a contradiction that triangle uvw is not in S.

Hence, we have shown that no edge exists between any two vertices in F ′∪V ′
1 ,

which proves that F ′ ∪ V ′
1 forms an independent set. 
�

Lemma 11 (*). Vertices in F ′ only span edges in L′.

Lemma 12 (*). Vertices in V ′
1 only span edges in L′.

Lemma 13. After Step 3, it holds that |F ′ ∪ V ′
1 | ≤ |L′|.

Proof. By Lemma 10, 11, and 12, we know that F ′∪V ′
1 is an independent set and

any vertex v′ ∈ F ′∪V ′
1 only span edges in L′. If |F ′∪V ′

1 | > |L′|, then by Lemma 1
there is a fat-head crown decomposition (C,H,X) of G with C ⊆ F ′ ∪ V ′

1 and
H ⊆ L′. Moreover, the fat-head crown decomposition can be detected by Lemma
2 and will be handled by Reduction Rule 9 since F ′ ∪ V ′

1 ⊆ F ∪ V1 ⊆ V \ V (L)
and L′ ⊆ L. Thus, we know the lemma holds. 
�
Step 4: We transform value from edges in L′ to vertices in F ′ ∪ V ′

1 such that
each vertex in F ′ ∪ V ′

1 gets value at least 1 by Lemma 13.
After Step 4, each vertex in G has a value of at least 1. Since the total value

in G is at most 3k, we can conclude that the graph has at most 3k vertices.

Theorem 1. Edge Triangle Packing and Edge Triangle Covering

admit a kernel of at most 3k vertices.

6 Conclusion

In this paper, we present simultaneous improvements in the kernel results for
both Edge Triangle Packing and Edge Triangle Covering. Our app-
roach incorporates two key techniques to achieve these enhancements. The first
technique involves utilizing fat-head crown decomposition, which enables us to
effectively reduce various graph structures. By applying this technique, we can
simplify the problem instances. The second technique we introduce is the dis-
charging method, which plays a crucial role in analyzing kernel size. This method
is simple and intuitive, and we believe it has the potential to be applied to the
analysis of other kernel algorithms.
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Abstract. Random linear codes (RLCs) are well known to have nice
combinatorial properties and near-optimal parameters in many different
settings. However, getting explicit constructions matching the parame-
ters of RLCs is challenging, and RLCs are hard to decode efficiently. This
motivated several previous works to study the problem of partially deran-
domizing RLCs, by applying certain operations to an explicit mother
code. Among them, one of the most well studied operations is random
puncturing, where a series of works culminated in the work of Guruswami
and Mosheiff (FOCS’ 22), which showed that a random puncturing of a
low-biased code is likely to possess almost all interesting local properties
of RLCs.

In this work, we provide an in-depth study of another, dual opera-
tion of random puncturing, known as random shortening, which can be
viewed equivalently as random puncturing on the dual code. Our main
results show that for any small ε, by starting from a mother code with
certain weaker conditions (e.g., having a large distance) and performing
a random (or even pseudorandom) shortening, the new code is ε-biased
with high probability. Our results hold for any field size and yield a short-
ened code with constant rate. This can be viewed as a complement to
random puncturing, and together, we can obtain codes with properties
like RLCs from weaker initial conditions.

Our proofs involve several non-trivial methods of estimating the
weight distribution of codewords, which may be of independent
interest.

1 Introduction

Error correcting codes are fundamental objects in combinatorics and computer
science. The study of these objects together with the bounds and parameters that
can be achieved, has also helped shape the field of information theory starting
from the pioneering work of Shannon and Hamming. In the theory of error-
correcting codes, linear codes form a fundamental class of codes that are building
blocks of many important constructions and applications. Such codes have simple

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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algebraic structures that are often key ingredients in their performance and
analysis. For example, any linear code with message length k and codeword
length n over the field Fq can be described by both a generator matrix in F

k×n
q

and a parity check matrix in F
n×(n−k)
q .

It is well known that random linear codes (RLCs, where one samples each
entry of the generator matrix uniformly independently from Fq) enjoy nice
combinatorial properties and have near-optimal parameters in many different
settings. Specifically, with high probability they achieve Shannon capacity, the
Gilbert-Varshamov (GV) bound of rate-distance tradeoff, and are list-decodable
up to capacity. However, getting explicit constructions remains a challenging
problem in many situations. In addition, random linear codes have little struc-
ture, which makes it difficult to design efficient decoding algorithms. Indeed,
decoding random linear codes is closely related to the problems of learning parity
with noise and learning with errors, whose hardness is the basis of many cryp-
tographic applications (see e.g., [Reg09]). As such, many previous works studied
the problem of slightly derandomizing, or equivalently reducing the randomness
used in RLCs, while still maintaining their nice properties.

Among these works, random puncturing is one of the most well-studied oper-
ations. Here, one takes an explicit mother code, and then randomly punctures
some coordinates from the code (or equivalently, punctures some columns from
the generator matrix) to get a new, shorter code. Specifically, a P-puncturing of
a mother code C ⊆ F

n
q randomly chooses a subset P ⊆ [n] of size p, and for every

codeword of C, deletes all symbols with positions in P. Compared to standard
RLCs, the number of random bits used is thus reduced from O(nk log q) to O(n).
Furthermore, certain nice structures of the mother code are often inherited by
the punctured code, which makes decoding easier.

With sophisticated techniques, previous works have shown that if the mother
code satisfies some natural conditions, then after a random puncturing, with
high probability the new code has certain properties similar to those of RLCs.
For example, motivated by the problem of achieving list-decoding capacity,
recent works [Woo13,RW14,FKS22,GST21,BGM22,GZ23,AGL23] studied ran-
dom puncturing of Reed-Muller (RM) codes and Reed-Solomon (RS) codes.
Subsequent works [GM22,PP23] generalized the list-decoding property to all
monotone-decreasing local properties. In all these works, the mother code needs
to have some special properties, such as being an RS code, an RM code, having a
large distance over a large alphabet, or having a low bias over a small alphabet.
These properties are not immediately implied by general linear codes, and thus,
one of the natural goals is to gradually weaken the requirements of the mother
code so that the approach works for a broader class of codes. Indeed, as we shall
see later, this is one of the main motivations and themes in previous works.

In this paper we continue this line of work and study the following two natural
questions:

1. If the mother code is not that strong, can we still use some operations to get
a new code that has properties similar to random linear codes?

2. What other operations, besides random puncturing, are useful in this context?
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Towards answering these questions, we consider a different operation to
reduce the randomness of RLCs, called random shortening, previously stud-
ied in [BGL17,LDT21,YP17,NvZ15]. Specifically, for an integer s, a random
s-shortening of a code C ⊆ F

n
q randomly chooses a subset S ⊆ [n] of size s, and

forms a new code by picking all codewords of C which are zeros at the positions
in S, and deleting these zero symbols.

We note that just like random puncturing, the operation of random short-
ening can in fact be carried out on any code, not just on linear codes. However,
for linear codes there is an important, alternative view of random shortening: it
is actually the dual version of random puncturing. In particular, one can check
that it is equivalent to a random puncturing of size s on the parity check matrix
of a linear code C, or the generator matrix of the dual code C⊥. Thus in this
paper, for a linear code, we also call shortening dual puncturing.

This view brings some convenience from the viewpoint of the parity check
matrix. For example, any puncturing of the parity check matrix (hence also
shortening) of a low-density parity check (LDPC) code [Gal62] still results in an
LDPC code. Another example is expander codes [SS96]. A binary expander code
C is based on a bipartite expander graph Γ : [N ] × [D] → [M ] with N nodes on
the left, M nodes on the right, and left degree D. The parity check matrix of C is
defined as follows. Each left node corresponds to a codeword bit and each right
node corresponds to a parity check which checks if the parity of its neighboring
codeword bits is 0. Such a code has linear time decoding algorithms, and the
distance of C can be lower bounded by using the vertex expansion property of Γ .
Specifically, assume that for every left set A ⊆ [N ], with |A| ≤ αN , the neighbors
of A, denoted as Γ (A) has size at least (1 − ε)D|A|, then [CCLO23] showed
that the distance of C is at least roughly αN

2ε . Notice that an S-shortening of C
actually corresponds to deleting nodes in S from the left set [N ] together with
their adjacent edges, thus this does not change the vertex expansion property of
the remaining graph. Hence the new code still has a distance of at least roughly
αN
2ε , which in fact corresponds to a larger relative distance (since the new code

has a shorter length). As we will see shortly, this is actually a general property
of any shortening of a code. In summary, just like puncturing, the shortening
operation also preserves certain nice properties of the mother code, e.g., being
an LDPC code or an expander code. In turn, this makes decoding easier.

Before stating our results, we first review some previous works on random
puncturing and random shortening in more detail.

1.1 Previous Work

Recently, random puncturing has drawn a lot of attention in the context of list
decoding. In [Woo13], Wootters showed that by applying a random puncturing to
a Reed-Muller code and setting the desired rate to O(ε2), with high probability
one can list-decode the punctured code up to a relative radius of 1/2 − ε, with
an exponential but non-trivial list size. In [RW14], Rudra and Wootters showed
that if the mother code is an RS code, and has a large enough relative distance
of 1 − 1/q − ε2, then after puncturing one can get a list-decoding radius of
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1 − 1/q − ε and a rate close to capacity up to a poly log(1/ε) factor, while the
list size is O(1/ε). We remark that a rate upper bound for list-decodable linear
codes is given by Shangguan and Tamo [ST20], which is a generalized singleton
bound. Specifically, they proved that if C is a linear code of rate R that is (ρ, L)
list decodable, i.e., the code has a relative list decoding radius of ρ and list
size L, then ρ ≤ (1 − R) L

L+1 . They conjectured the existence of such codes and
proved the case for L = 2, 3. Later, towards proving this conjecture, Guo et. al.
[GLS+22] showed that there are RS codes that are (1−ε,O(1/ε)) list decodable
and the rate can be Ω(ε/ log(1/ε)), though they mainly use intersection matrices
instead of random puncturing. Ferber, Kwan, and Sauermann [FKS22] further
showed that through random puncturing one can achieve a rate of ε/15 with
list decoding radius 1 − ε and list size O(1/ε). This was further improved by
Goldberg et. al. [GST21] to achieve a rate of ε

2−ε . Most recently, [BGM22] showed
that random puncturing of RS codes can go all the way up to the generalized
singleton bound if the field size is 2O(n), resolving a main conjecture of [ST20].
This was subsequently improved by [GZ23], which reduced the field size to O(n2);
and again by [AGL23], which further reduced the field size to O(n), although
[GZ23,AGL23] can only get close to the generalized singleton bound. We note
that all the above works mainly studied RS codes or RM codes, which have strong
algebraic structures, and some of them also require a large relative distance (e.g.,
close to 1 − 1/q).

On the other hand, Guruswami and Mosheiff [GM22] considered random
puncturing of more general codes with weaker properties. Specifically, they con-
sidered two cases, where the mother code either has a low bias or has a large
distance over a large alphabet (note that the property of a low bias implies a
large distance, hence is stronger). For both cases, they showed that the punctured
code can achieve list decoding close to capacity. In fact, they showed a stronger
result, that all monotone-decreasing local properties of the punctured code are
similar to those of random linear codes. Subsequent to [GM22], Putterman and
Pyne [PP23] showed that the same results in [GM22] can be achieved by using
a pseudorandom puncturing instead, which reduces the number of random bits
used in the puncturing to be linear in the block length of the punctured code,
even if the mother code has a much larger length.

Unlike puncturing, there are only a handful of previous works on shortening.
In [NvZ15], Nelson and Van Zwam proved that all linear codes can be obtained
by a sequence of puncturing and/or shortening of a collection of asymptotically
good codes. In [YP17], Yardi and Pellikaan showed that all linear codes can
be obtained by a sequence of puncturing and/or shortening on some specific
cyclic code. In [BGL17], Bioglio et. al. presented a low-complexity construction
of polar codes with arbitrary length and rate using shortening and puncturing. In
[LDT21], Liu et. al. provided some general properties of shortened linear codes.

1.2 Notation and Definitions

Definition 1. A linear code C of length n and dimension k over a finite field
Fq is a k-dimensional subspace of the n-dimensional vector space F

n
q . The dual
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code C⊥ of a linear code is the dual linear subspace of C. Hence the sum of the
rates of C and C⊥ is 1. We call d⊥(C) the dual distance of C as the minimum
distance of its dual code C⊥. The relative dual distance of C is the ratio of its
dual distance to its length: δ⊥(C) = d⊥(C)

n . We denote a linear code with these
properties as an [n, k, d]q code or an [n, k, d, d⊥]q code.

Definition 2. Let P be a subset of [n] of size p. A P-puncturing on a code C
of length n involves removing p positions indexed by P. The resulted punctured
code C(P) has length n − p. If P is a uniformly random subset of size p, we say
that C(P) is obtained from C by a random p-puncturing.

Definition 3. Let S be a subset of [n] of size s. An S-shortening on a code C
of length n involves selecting all codewords with zero values on positions indexed
by S and removing these positions. The resulted shortened code C[S] has length
n − s. If S is a uniformly random subset of size s, we say that C[S] is obtained
from C by a random s-shortening.

Definition 4. The q-ary entropy function is defined as Hq(x) = x logq(q − 1) −
x logq x − (1 − x) logq(1 − x).

Throughout the paper, we use “with high probability” to mean that when the
rate R, relative distance δ, relative dual distance δ⊥ of the code, and other given
parameters are fixed, the probability of the event is 1 − O(exp(−tn)) for some
constant t. Essentially, this means that the probability of the event occurring
approaches 1 as the block length n increases, making it increasingly likely that
the desired properties hold.

As in [GM22], in this paper we also consider monotone-decreasing, local prop-
erties. Informally, we call a code property P monotone-decreasing and local if,
the fact that a code C does not satisfy P can be witnessed by a small “bad
set” of codewords in C. For example, some typical properties, such as being list-
decodable to capacity and having a small bias, are monotone-decreasing and
local properties. More formally, a monotone-decreasing and local property is the
opposite of a monotone-increasing and local property, defined below.

Definition 5. A property P is said to be

– monotone-increasing if, for any code C, whenever one of its subcodes (i.e.,
a subspace of C) satisfies P, the code C itself also satisfies P (monotone-
decreasing if the complement of P is monotone-increasing);

– b-local for some b ∈ N if there exists a family BP of sets of words in F
n
q , with

the size of the sets at most b, and such that C satisfies P if and only if there
exists an set B ∈ BP satisfying B ⊆ C,

– row-symmetric if, for any code C ⊆ F
n
q that satisfies P, the resulting code

obtained by performing a permutation on the n positions of C also satisfies
P.



Random Shortening of Linear Codes and Applications 189

1.3 Main Results

Random Puncturing vs. Random Shortening. Before formally stating our results,
we first informally compare the two operations of random puncturing and ran-
dom shortening. A random p-puncturing of a code of length n involves uniformly
selecting p positions randomly from [n], and discarding these positions in the
code. One can see that under appropriate conditions, this operation preserves
the distinctness of all codewords, and thus can increase the rate of the code.
However it may decrease the distance or relative distance of the code. In con-
trast, a random s-shortening of a code involves picking s positions uniformly
randomly from [n], forming a subcode that consists of codewords which contain
only zeros at these positions, and then deleting these positions in the subcode.
It can be seen that this operation perserves the distance of the code, and thus
increases the relative distance of the code, but on the other hand the rate of the
code can potentially decrease. Hence, these two operations are indeed “dual” in
some sense, and therefore one can apply both operations to adjust both the rate
and the relative distance of the code.

A linear code C ⊆ F
n
q , where q = pr for some prime p, is called ε-biased, if

for every codewords c ∈ C,
∣
∣
∑n

i=1 ωtr(a·ci)
∣
∣ ≤ εn for all a ∈ F

∗
q . where ω = e

2πi
p

and tr : Fq → Fp is the field trace map.
Our main results show that random shortening is an effective way to reduce

the bias of a code. Note that this is stronger than increasing the relative dis-
tance, since the former implies the latter. If the mother code satisfies certain
conditions, then we show after random shortening the new code can achieve an
arbitrarily small bias with high probability. We note that a random linear code
has a small bias, and thus in this sense the code after random shortening behaves
like random linear codes. Moreover, the condition that the mother code has a
low bias is required in several previous works (e.g., [GM22,PP23]), while these
works essentially do not care about the rate of the mother code. Thus we can
apply a random puncturing to the new code after a random shortening, to get
another code where all monotone-decreasing local properties are similar to those
of random linear codes. This further weakens the requirements of mother codes
in previous works to some extent.

Low-Biased Codes from Codes with Large Distance. A low-biased code must
have a large distance. However, the reverse may not hold. The following theorem
shows that it is also possible to derive a low-biased code from a code with a large
distance by random shortening.

Theorem 1. For any 0 < ε < 1, any [n,Rn, δn]q code C with q−1
q −

q
q−1

(
ε

2(q−1)

)2

< δ < q−1
q and any constant 0 < γ < R, there exists a number

0 < s < R such that the following holds. If we perform a random sn-shortening
S to C, then with high probability, the shortened code C[S] is ε-biased and has
rate at least R − γ.
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We note that the theorem only requires a lower bound on the relative dis-
tance, but there are no restrictions on the rate of the original code, R. Hence, this
requirement is generally easy to satisfy, for example, from simple constructions
using code concatenation. Furthermore, we can select an appropriate shortening
size to ensure that the rate of the shortened code is arbitrarily close to R.

The distance condition of C in Theorem 1 can also be relaxed, resulting in
the following theorem.

Theorem 2. Given any 0 < ε < 1, if an [n,Rn, δn]q code C satisfies the condi-

tion that there exists some 0 < β < 1, such that δ
1−(1−β)R > q−1

q − q
q−1

(
ε

2(q−1)

)2

,
then there exists a number 0 < s < R such that the following holds. If we perform
a random sn-shortening S to C, then with high probability, the shortened code
C[S] is ε-biased with rate at least βR.

Indeed, the asymptotic form of the Plotkin bound is given by

R ≤ 1 − (
q

q − 1
) · δ + o(1). (1)

Thus Theorem 2 implies that as long as the rate-distance trade-off of the original
code is close enough to the Plotkin bound, we can obtain a code with an arbi-
trarily small bias by random shortening. On the other hand, unlike in Theorem
1, the rate of the shortened code may not be arbitrarily close to R, but we can
still get a new rate that is only a constant factor smaller.

Low-Biased Codes from Codes with Small Rate and not too Small Dual Distance.
In the next theorem, there is no requirement for δ to be very large. Instead, we
impose constraints on its dual distance, δ⊥, and the rate, R. If the dual distance
is not too small and the rate can be upper bounded, then we can also apply the
shortening technique to obtain a low-biased code.

Theorem 3. Given any 0 < ε < 1, if an [n,Rn, δn, δ⊥n]q code C satisfies the

condition that there exist 0 < γ < 1
4 , 0 < δ⊥

0 < min{ε
1
γ ,

(
1+logq(1−δ)

36

)2

, ( 1q )
1
γ },

such that δ⊥ > δ⊥
0 and 0 < R < 0.5−2γ

1+0.9·logq(1−δ)Hq(δ⊥
0 ), then there exists a number

0 < s < R such that the following holds. If we perform a random sn-shortening
S to C, then with high probability the shortened code C[S] is ε-biased with rate at
least 0.1R.

In Theorem 3, the rate of the dual code must be sufficiently large. Addition-
ally, if the term

1
2−2γ

1+0.9·logq(1−δ) is less than 1, the rate-distance trade-off of the
dual code surpasses the Gilbert-Varshamov (GV) bound. Consequently, when
examining the problem within the context of the GV bound, we need to impose
specific constraints on δ. This leads to the following corollary.

Corollary 1. Given any 0 < ε < 1, δ > 1 − q−0.6, there exists a number
γ > 0, such that for any δ⊥ > δ⊥

0 , 0 < R < (1 + γ)Hq(δ⊥
0 ) for a certain
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0 < δ⊥
0 < min{ε

1
γ , 1

8100 , ( 1q )
1
γ }, there exists a number 0 < s < R such that the

following holds. Let C be any [n,Rn, δn, δ⊥n]q code. If we perform a random sn-
shortening S to C, then with high probability the shortened code C[S] is ε-biased
with rate at least 0.1R.

Theorem 3 and Corollary 1 show that as long as the mother code and its
dual both have a reasonable relative distance, one can use random shortening to
get a new code with an arbitrary small bias, while only losing a constant factor
in the rate. We note that linear codes such that both the code and its dual have
good relative distance are also easily constructible, for example, see [Shp09].

Random-Like Codes by Random Shortening and Puncturing. In [GM22], the
authors showed that a random puncturing of a low-biased code results in a new
code that behaves like random linear codes. Using our theorems, we present a
weaker condition that still achieves similar results. This follows from a combina-
tion of random shortening and random puncturing, as briefly discussed before.

Theorem 4. For any 0 < ε < 1, b ∈ N, and prime power q, there exists some
η > 0, such that the following holds. Let P be a monotone-decreasing, b-local,
and row-symmetric property over F

n
q satisfied by a random linear code of length

n and rate R′. There exists some η > 0 such that the following holds. If any one
of the following properties is satisfied for R, δ, δ⊥, q, η:

1. δ > ( q−1
q − η)(1 − R), or

2. δ⊥ > δ⊥
0 and 0 < R <

1
2−2γ

1+0.9·logq(1−δ)Hq(δ⊥
0 ) for a certain 0 < δ⊥

0 <

min{ε
1
γ ,

(
1+logq(1−δ)

36

)2

, ( 1q )
1
γ },

then there exists m, p, s > 0 such that for any [m,Rm, δm]q code, if we perform
a random sm-shortening and then a random pm-puncturing on C, the resulted
code D has length n, rate at least R′ − ε and with high probability, satisfies P.

1.4 Technique Overview

We investigate the effect of shortening as follows. An S-shortening applied to
a code C of length n involves selecting all codewords with zeros at positions
indexed by S and removing these positions. Specifically, if the support of a
codeword c ∈ C intersects S (in which case we say S hits c), then c will not be
included in the shortened code; if the support of c does not intersect S, then
there is a codeword c′ ∈ C[S], which is obtained from c by removing all positions
in S. In this way, under a random shortening, each non-zero codeword has a
certain probability of being dropped and a certain probability of being retained
in C[S]. If the distance of C is δn, then the probability of each codeword being
hit and dropped is at least 1 − (1 − δ)s, where s is the size of S.

We use Cε to denote all codewords in C which are not ε-biased. If the size of
Cε is small, then by a union bound, the probability that not all codewords in Cε
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are hit by S is exponentially small. Thus, with high probability, all codewords
in C that are not hit by S and inherited to C[S] are ε-biased. Hence, a critical
part of all our proofs is to upper bound the size of Cε.

Furthermore, as long as C is a linear code and s is less than the dimension
k of C, we know that the shortened code C[S] has dimension at least k − s.
Consequently, C[S] retains a nonzero constant rate as well.

Change of parameters. The shortening results in changes to the parameters of
the code. Here, we mainly apply shortening for two purposes: adjusting the bias
and amplifying the relative distance.

1. Adjusting the bias: Let C be of length n. When Cε′ is hit by S, it implies
that the codewords in C not hit by S are all ε′-biased. However, it doesn’t
directly imply that the shortened code C[S] is also ε′-biased, since the shorten-
ing operation changes the length of the code. Nevertheless, the new bias ε of
C[S] is given by ε ≤ ε′n+s

n−s , where s is the size of the shortening S. If s is small
compared to n, ε is close to ε′. In the proof of Theorem 1, we can choose s to
be a sufficiently small fraction of n. In the proof of Theorem 3, we provide an
upper bound for R, which also enables us to choose a small shortening size.
In both cases, we set the shortening size to be less than 0.05ε′n, allowing us
to choose ε′ = 0.9ε.

2. Amplifying the relative distance: We use another technique in the proof
of Theorem 2 to first transform a code with a rate-distance trade-off near the
Plotkin bound into a code with near-optimal distance. The distance of the
shortened code C[S] is no less than that of the original code C. However, since
C[S] has length n − s instead of n, its relative distance becomes δ

1− s
n

. This
allows us to increase the relative distance of the code. In turn, Theorem 2
follows from Theorem 1.

Estimation of the Size of Cε. This is the most critical part of all our proofs. For
Theorem 1 and Theorem 3, we have two different ways of estimating the upper
bound of |Cε|:
1. Estimating |Cε| with relative distance δ: We use Jq(δ) to denote the list

decoding radius corresponding to the classical Johnson bound for a code over
Fq with relative distance δ. It is easy to see that when δ is close to the optimal
q−1

q , so is Jq(δ). To give an upper bound of |Cε|, we construct q balls in F
n
q

with radius Jq(δ) and centered at t·1, where 1 is the all-one vector and t ∈ Fq.
By the Johnson bound, the number of codewords covered by these balls is at
most poly(n). We show that, if a codeword c is not covered by these balls,
its empirical distribution over Fq is close to the uniform distribution, which
implies c is small biased. This upper bounds |Cε| by poly(n).

2. Estimating |Cε| with relative dual distance δ⊥ and rate R: If C has
dual distance d⊥, then any d⊥ − 1 columns of the generator matrix of C are
linearly independent, which means that if we uniformly randomly choose a
codeword from C, then any d⊥ −1 symbols of the codeword are independently
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uniform, i.e., the symbols of a random codeword are d⊥ −1-wise independent.
We can now use this property to estimate the probability that a codeword
randomly chosen from C is not ε-biased. This is a typical application of the
concentration phenomenon from the higher moment method, where we use
Hoeffding inequality, Chernoff bound, and Sub-Gaussian property to bound
the (d⊥ −1)th moment of the summation of some random variables. Then by
Markov’s inequality, the probability that a random codeword is not ε-biased
can be bounded, which also gives an upper bound on |Cε|.

Obtaining Random-Like Codes. To obtain random-like codes, we combine our
results with those in [GM22], which state that a randomly punctured low-biased
code is likely to possess any monotone-decreasing local property typically sat-
isfied by a random linear code of a similar rate. By our results, we can start
from a code with less stringent conditions and achieve the same results as in
[GM22], through the operations of a random shortening followed by a random
puncturing.

2 Estimation on Low-Biased Codewords

For a random vector x ∈ F
n
q , it is known from the law of large numbers that

its empirical distribution Empx is, with high probability, ε-close to the uniform
distribution over Fq for any ε as n goes to infinity. Therefore, for each ε, let C be
a random code; Cε will, with high probability, constitute only a small fraction
of C. In the following, we present several estimation methods for the size of |Cε|
under general conditions.

Lemma 1. Let C be an [n,Rn, δn]q code. For any ε ≥ 2(q − 1)
√

q−1
q ( q−1

q − δ),

|Cε| ≤ q2δn2.

Another approach to approximate |Cε| is the probability method. It is essen-
tial to observe that when the dual code of C has distance d + 1, every set of d
columns within the generator matrix of C are linearly independent. This observa-
tion implies that when examining the distribution of a randomly selected code-
word from C, the bits exhibit d-wise independence. Consequently, C is bound by
the constraints of the d-th moment inequality.

Lemma 2. x1, · · · , xn are independent random variables with μ = 0, and xi ∈
[−1, 1]. Denote Xn =

∑n
i=1 xi. Then for any even d,

E((Xn)d) ≤ 2 · (2n)d/2 · (
d

2
)!. (2)

Corollary 2. Let x1, x2 · · · , xn be random variables taking values in [−1, 1]
which are d-wise independent, E(xi) = 0. Let Xn =

∑n
i=1 xi, δ = d/n, then

for any ε > 0,

Pr(|
n∑

i=1

xi| ≥ εn) ≤ 4
√

πd(
δ

ε2e
)δn/2. (3)
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Lemma 3. Let x be a random vector, whose components uniformly take values
in Fq and are d-wise independent. Let δ = d/n. Then

Pr(x is not ε-biased) ≤ 2
√

2(q − 1)
(

2δ

ε2e

)δn/2

. (4)

Corollary 3. Let C be a code of length n, rate R and dual distance d⊥ = δ⊥n
over the field Fq. Then for each ε > 0, the number of codewords which are not
ε-biased is not more than

8q
√

πδ⊥n ·
(

2δ⊥

ε2e

)δ⊥n/2

· qRn

for sufficiently large n.

3 Proof of the Main Theorems

Before proving Theorem 1, we first give the following theorem.

Theorem 5. Let C be an [n,Rn, δn]q code. If we perform a random sn-
shortening S to C, where s < R, then with high probability, the shortened code

C[S] is ε-biased, where ε =
2(q−1)

√
q−1

q ( q−1
q −δ)+s

1−s .

Proof. (of Theorem 1). Let s = min{ γ
1+γ , R

2 , ε
2 − (q − 1)

√
q−1

q ( q−1
q − δ)}. Since

s ≤ min{ γ
1+γ , R

2 }, the rate of C[S] is

R − s

1 − s
> R − γ. (5)

Rearranging the inequality q−1
q − q

q−1

(
ε

2(q−1)

)2

< δ, we get

(q − 1)
√

q − 1
q

(
q − 1

q
− δ) <

ε

2
, (6)

And since s < ε
2 − (q − 1)

√
q−1

q ( q−1
q − δ).

2(q − 1)
√

q−1
q ( q−1

q − δ) + s

1 − s

<
(q − 1)

√
q−1

q ( q−1
q − δ) + ε

2

1 − ε
2 + (q − 1)

√
q−1

q ( q−1
q − δ)

<ε.

(7)

By Lemma 5, C[S] is ε-biased.
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Now we present an inequality concerning the q-ary entropy function Hq(x)
here.

Lemma 4. For any q = pr, 0 < γ < 1
4 , when 0 < x < ( 1q )

1
γ , Hq(x) < −(1 +

2γ)x logq x.

Proof. (of Theorem 3). We set ε′ = 0.9ε and get δ⊥
0 < (

√
eε′

√
2

)
1
γ . Let s =

R−( 1
2−2γ)Hq(δ

⊥
0 )

− logq(1−δ) . We get

Pr (S doesn’t hit all codewords in Cε′ )

≤
∑

c∈C
ε′

Pr (c is not hit by S)

≤|Cε′ | · (1 − δ)
sn

≤8q

√
πδ⊥

0 n ·
(

2δ⊥
0

(ε′)2e

)δ⊥
0 n/2

· q
Rn · (1 − δ)

sn
(using Corollary 3)

=8q

√
πδ⊥

0 n ·
(

2δ⊥
0

(ε′)2e

)δ⊥
0 n/2

· q
Rn · q

logq(1−δ)sn

=8q

√
πδ⊥

0 n ·
(
(δ

⊥
0 )

1−2γ
)δ⊥

0 n/2 · q
( 1
2 −2γ)Hq(δ⊥

0 )·n
(using s =

R − ( 1
2 − 2γ)Hq(δ

⊥
0 )

− logq(1 − δ)
)

≤8q

√
πδ⊥

0 n ·
(
(δ

⊥
0 )

1−2γ
)δ⊥

0 n/2 · q
−( 1

2 −2γ)(1+2γ)δ⊥
0 logq δ⊥

0 ·n
(using Lemma 4)

=8q

√
πδ⊥

0 n ·
(
(δ

⊥
0 )

1
2 −γ · (δ⊥

0 )
−( 1

2 −2γ)(1+2γ)
)δ⊥

0 n

=8q

√
πδ⊥

0 n · (δ⊥
0 )

4γ2δ⊥
0 n

.

(8)

Therefore, this probability in Eq. 8 tends to 0 as n approaches infinity.
Moreover, one can verify that s < 0.9R given s = R−( 1

2−2γ)Hq(δ
⊥
0 )

− logq(1−δ) and R ≤
1
2−2γ

1+0.9·logq(1−δ)Hq(δ⊥
0 ). Hence, the shortened code C[S] has rate at least R−s

1−s >

0.1R, and

s < R

<
0.5 − 2γ

1 + logq(1 − δ)
Hq(δ⊥

0 )

< − 0.75
1 + logq(1 − δ)

· δ⊥
0 · logq(δ

⊥
0 ) (using Lemma 4)

<
0.75

1 + logq(1 − δ)
· (δ⊥

0 )
1
2 · (δ⊥

0 )γ · (δ⊥
0 )

1
4 · (− logq(δ

⊥
0 )) (using γ <

1
4
)

<
1
48

· 10
9

ε′ · 4
e ln(2)

(9)
C[S] is ε′+s

1−s -biased and since ε′+s
1−s < 10

9 ε′ < ε. So, with high probability, C[S]

is ε-biased.
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Abstract. Group Set Cover is an optimization problem which its solu-
tion that can be used to solve the problem of full-view target coverage.
In the context of time slices, two methods (TSC-FTC, FTC-TW) based
on Group Set Cover have been proposed to optimize full-view coverage
of targets problem. In TSC-FTC, the set of sensors that can cover the
most targets are chosen using Group Set Cover in each time slice, and
the total number of targets covered throughout time is calculated. This
method effectively utilizes the resources in each time slice and enables
the evaluation of coverage effectiveness. FTC-TW, an improvement of
TSC-FTC, involves using Group Set Cover in each time slice to select
the set of sensors that can cover the maximum number of targets, and
then calculating the cumulative number of targets covered after a certain
period of time. This method enables a quick selection of the set of sensors
covering the maximum number of targets and also enables the evalua-
tion of the effectiveness of full-view coverage. Both methods can effec-
tively improve the full-view coverage of targets in different scenarios. We
perform approximate solutions for both algorithms separately and pro-
vide a global approximation to the local optimality of non-submodular
optimization.

Keywords: Camera sensor network · Full-view coverage · Group set
cover

1 Introduction

Camera sensor networks (CSNs) have revolutionized the way we monitor and
collect data in various applications, ranging from environmental monitoring to
security surveillance. A fundamental challenge for this network is to achieve tar-
get coverage and ensure sufficient monitoring of the required areas of interest.
In more detail, the goal is to obtain full-view coverage, in which case the camera
sensors catch the entire target region. This study focuses on developing approx-
imation methods to solve the target full-view coverage issue in camera sensor
networks.

Camera sensor networks offer a promising solution for target coverage due to
their ability to capture visual information from multiple viewpoints. However,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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achieving full-view coverage can be a complex optimization problem, especially
when considering factors such as limited resources, variable camera ranges, over-
lapping coverage, and dynamic target movements. Full-view coverage ensures
the accuracy of target coverage, provides coverage services for moving targets. It
provides more information for subsequent image processing, another unavoidable
tendency in the growth of the Internet of Things in the monitoring industry.

The camera sensor is a typical directional antenna equipped sensor. This
directed sensing model (Fig. 1) is modeled as a triple r, α, �f . When r is the
sensing radius (0 ≤ r ≤ R), α is the sensing angle, and �f is the sensing direction.
�f is located on the extension line of the angle bisector of the sensing angle. The
camera sensor is a directional sensor that can be rotated and zoomed. At a certain
moment, one perceived direction of the camera sensor can simultaneously cover
multiple facing directions of multiple targets. The camera sensor may rotate and
zoom over time to capture more of the target’s facing orientation. Therefore,
the direction and position selection of the sensor has always been the focus of
research. For the first time, Du et al. [3] studied the problem of maximizing the
target full-view coverage by planning the direction and position of the sensor. In
this paper, group set cover was created from the full-view coverage maximization
problem. And it has been established that this problem is NP-Hard.

Fig. 1. A Directed Sensing Model for Camera Sensors.

Targets are typically repreented of as being static in latest coverage studies.
The target’s directionality is not necessary. As long as it is in the camera sensor’s
field of view, it is assumed to be covered. However, the ever-increasing demands
on surveillance quality give new definitions to target coverage. When all views
of an object are covered, this object is called full-view coverage. Here, targets
can be static or even moving. Under this definition, the camera sensor can cover
different viewing angles of the target at different times, so as to realize the
monitoring of the moving target. As shown in Fig. 2(a), there is the directional
target with only one facing direction. A directed target is a triple R, θ, �F where
θ represents facing angle and �F is the facing direction ( �F bisects θ). Figure 3
demonstrates how the sensor covers one direction of the target. The conditions
that need to be met for one perspective �F of target t to be covered are as follows,

– Target t is inside the sensor’s sensing range.
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Fig. 2. Target model. (a) The directionality of the goal; (b) Schematic diagram of
target full view coverage.

Fig. 3. The direction of the target is covered.

– ct lies in the fan-shaped area of c and the facing area of t at the same time.

Figure 2(b) shows multiple directions of the target. When all views
�F1, �F2, . . . , �F are covered, it means that the target is covered by the full view.

Related Works. An upsurge in research has been aroused within the domain
of coverage [1,2]. Especially in the area of CSNs, with a focus on resolving issues
related to networks with limited resources [4–6]. The research on full-view cover-
age is mainly aimed at achieving the maximum coverage of moving targets with
limited camera sensor resources. For the first time, Wang and Cao [7] proposed
the definition of full-view coverage of target. The domain of the coverage model
they presented is [0, 2π], thence, many efforts [8–10] were concentrated on the
basis of this model. They conducted related research focusing on the deployment
strategy of camera sensors [11–15]. He et al. [11] proposed that point coverage
is the basis of area coverage, so the area coverage problem was reduced to point
coverage, and two methods were proposed, one was a greedy algorithm, the
other was a set-cover-based algorithm, and analyzed the approximate ratio of
the two methods. Finding that achieving full view coverage depends more on
sensor coverage area than sensor shape, Wu et al. [12] explored the required and
sufficient criteria to accomplish full-view coverage under two random deployment
strategies, uniform deployment and Poisson deployment. Shi et al. [13] proposed
iterative screening algorithm (ISA) and improved ISA (IISA) to solve the opti-
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mal deployment of research full view point coverage (OFP) problem. Wang et
al. [14] explored regular-shaped deployment strategies and developed sufficient
requirements for the sensor density necessary for full-view coverage in stochastic
uniform deployments. To forecast the sensor specifications needed to achieve a
specific heterogeneous CSN full-view coverage probability, Liu et al. [15] created
a model for estimating sensor parameters, including sensor scale and percep-
tion radius. Du et al. [3] divided the target into h (h = 4π/θ) parts evenly.
They proposed Maximum Group Set Coverage with Size Constraint (MGSC-
SC). This algorithm achieved the purpose of maximizing full-view coverage by
solving the selection problem of camera sensor position and orientation. The
above researches generally converts the covering problem into a group set cov-
ering problem to find a local optimal solution. But this is only a solution at a
certain moment, and full-view coverage is a process that needs to be completed
within a period of time.

Contribution of this Paper. We introduce the concept of time slice into the
Group Set Cover problem, thereby transforming the full-view coverage of mobile
targets into a complete process for the first time. The time element is added
to the group set coverage problem, and two approximation algorithms, TSC-
FTCand FTC-TW to obtain the global optimum from the local optimum are
proposed Where FTC-TW is an improvement of TSC-FTC.

– Group Set Cover with Time Segmented Cumulative Full-View Target Cov-
erage (TSC-FTC). Select the sensor’s position and orientation for each time
slice to cover the most targets with a full view and, cumulatively, to cover
the most targets overall. TSC-FTC maximizes the use of the target facing
directions covered by each time slice. This approximation algorithm has an
approximate ratio of (1 − e−1)β(1 − ε).

– Group Set Cover with Cumulative Maximum Target Coverage Time Window
(FTC-TW). FTC-TW changes the steps of accumulative calculation of full-
view coverage. The position and orientation of the sensor is chosen in each
time slice to accumulatively cover the maximum number of targets throughout
the time window. This approximation algorithm has an approximate ratio of
(1 − e−γ)β(1 − ε).

This paper is organized from the following sections. Section 1 mainly intro-
duces the research problem. Some preliminaries are detailed in Sect. 2. In Sect. 3,
two improved group set covering algorithms are studied, and the corresponding
approximate solutions are given. The final conclusion is presented in Sect. 4.

2 Preliminaries

The network of camera sensors is defined as heterogeneous. The heterogeneous
camera sensor network has different sensing radii and sensing angles, and each
sensing direction can cover a set of target facing directions. Through rotation and
scaling, each camera covers multiple sets of target orientations. Therefore, the
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target full-view coverage problem is transformed into group set coverage. But at
a time, each sensor has only one direction of perception. This study investigates
the greatest target full-view coverage with time slices under the constraint of a
finite number of sensors and the coverage problem of moving targets.

At time t, X represents the set of all directions for all moving targets, |X| = n.
There are k combined targets in X, i.e., X1,X2, . . . , Xk and X = X1 ∪X2 ∪· · ·∪
Xk. There is no intersection between any two subsets, Xi ∩ Xj = ∅, i �= j,∀i, j ∈
{1, 2, . . . , k}. G1, G2, . . . , Gm are subset groups of X. m groups of finite set X
correspond to m camera sensors.

The full-view coverage maximization problem has been shown to be NP-Hard
[3], and under the consideration of temporal slices, it remains NP-Hard. �

Three stages are required to solve the full-view coverage maximization prob-
lem: first, choose l groups from the m groups (pick cameras at l places), and
then choose Sp subsets from each group Gp from the l groups (choosing the sen-
sor’s detecting direction). Finally, we maximize the number of composed targets
covered during γ time slices.

The target side is investigated to optimize the desired full-view coverage. The
method of judging whether each facing direction is covered or not is as follows,
t is located in the fan-shaped sensing area of c, ct lies in the fan-shaped area of
c and the facing direction of t at the same time.

Lemma 1. The angle σ between the extension line facing direction �F and the
opposite direction of the sensing direction �f needs to meet the following condi-
tions,

θ − α

2
≤ σ ≤ α + θ

2

Proof. When t is within the coverage of c, it is guaranteed that ct is in the
perception area of c. Therefore we only need to prove whether ct is within the
target’s facing direction. When the line segment ct is on the left boundary of the
target, as shown in Fig. 4(a), we have

α
′
+ θ

′
= σ

0 ≤ α
′ ≤ α

2

Hence,

σ ≤ α + θ

2

When the line segment ct is on the right boundary of the target, as shown in
Fig. 4(b), we have

α
′
+ σ = π − θ

′

0 ≤ α
′ ≤ α

2
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Hence,

σ = π − θ
′ − α

′

≥ θ − α

2

θ − α

2
≤ σ ≤ α + θ

2

The lemma is proved. �

Fig. 4. The direction of the target is covered.

3 Problem Formulation

To effectively cover a moving target, in addition to dividing the target into a
full view, time t as another moving feature of the moving target also needs to
be taken into consideration. Therefore, two improved algorithms are proposed
on the basis of MGSC-SC [3].

Assume that the time required for each rotation and scaling of the camera
sensor is Δt. A time slice is defined as Δt, and τth time slice tτ = t0 + τ ∗ Δt.

At time t, given m subset groups of a finite set X G1, G2, . . . , Gm. The k
composed targets are pairwise disjoint subsets of X, X1,X2, . . . , Xk and X =
X1 ∪ X2 ∪ · · · ∪ Xk, Xi ∩ Xj = ∅, i �= j,∀i, j ∈ {1, 2, . . . , k}. First, we select
the position of the sensor, that is, select l groups from m groups. Where l is an
integer, l > 0. Then we choose the direction of the camera, that is, select a subset
Sp from each group Gp, S1, S2, . . . , Sl. wp, upS and vq are indicator functions. wp

means whether the group set Gp will be selected, wp ∈ {0, 1} ∀p = 1, 2, ...,m.
upS indicates whether S is selected in group Gp. vq = 1 means that element q is
in the selected subset S. Next we will analyze the proposed two time-slice-based
full-view coverage algorithms.
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3.1 Group Set Cover with Time Segmented Cumulative Full-View
Target Coverage (TSC-FTC)

To maximize the number of targets covered by the full-view during this time slice,
the camera sensor’s position and orientation are chosen at time t. However, only
a small number of targets can be full-view covered in a time slice. Therefore, we
show the cumulative full-view coverage target over a time segment. When t from
t0 to T , T = t0 + γ ∗ Δt represents the time spent by the most time-consuming
target in a set of composed targets. As depicted in Formula (1),

max
T∑

t=t0

k∑

i=1

∏

q∈Xi

vq s.t. vq ≤
m∑

p=1

∑

S:q∈S∈Gp

upS ∀q = 1, ..., n,

∑

S:S∈Gi

upS ≤ wp ∀i = 1, ...,m,

m∑

p=1

wp ≤ l ∀p = 1, ...,m

vq ∈ {0, 1} ∀q = 1, 2, ..., n,

wp ∈ {0, 1} ∀p = 1, 2, ...,m,

upS ∈ {0, 1} ∀S ∈ G and p = 1, 2, ...,m.

(1)

Its relaxation is as shown below,

max
T∑

t=t0

k∑

i=1

∏

q∈Xi

vq s.t. vq ≤
m∑

p=1

∑

S:q∈S∈Gp

upS ∀q = 1, ..., n,

∑

S:S∈Gi

upS ≤ wp ∀i = 1, ...,m,

m∑

p=1

wp ≤ l ∀p = 1, ...,m

0 ≤ vq ≤ 1 ∀q = 1, 2, ..., n,

0 ≤ wp ≤ 1 ∀p = 1, 2, ...,m,

0 ≤ upS ≤ 1 ∀S ∈ G and p = 1, 2, ...,m.

(2)

E[vq] = Prob[vq = 1] ≥ (1 − e−1)v∗
q (3)

E

⎡

⎣
k∑

i=1

∏

q∈Xt

vq

⎤

⎦ ≥ (
1 − e−1

)β
(1 − ε)lopt (4)

Literature [3] provided the approximate solution as shown in Eq. (3)(4).
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Theorem 1.

E

⎡

⎣
T∑

t=t0

k∑

i=1

∏

q∈Xi

vq

⎤

⎦ ≥ (
1 − e−1

)β
(1 − ε)lopt1 (5)

Proof. From Formula (3), we have,

E[vq] = Prob[vq = 1] ≥ (1 − e−1)v∗
q

Then,

E

⎡

⎣
T∑

t=t0

k∑

i=1

∏

q∈Xi

vq

⎤

⎦ =
T∑

t=t0

k∑

i=1

E

⎡

⎣
∏

q∈Xi

vq

⎤

⎦ =
T∑

t=t0

k∑

i=1

∏

q∈Xi

E [vq]

≥ (
1 − e−1

)β
T∑

t=t0

k∑

i=1

∏

q∈Xi

v∗
q = (1 − e−1)β(1 − ε) · lopt1.

The objective value of a locally optimal solution for the Formula (2) is lopt1.
The total number of full-view coverage targets that can be reached is β in a time
segment T .

The theorem is proved. �
Algorithm 1 serves as a summary of the above approximation algorithm.

Algorithm 1: TSC-FTC
Input : a finite set X; m groups G1,G2, · · · ,Gi, · · · ,Gm of subsets of X;

a partition of X into composed targets X = X1 ∪ X2 ∪ · · · ∪ Xk;
an integer r > 0.

Output: a collection S ; a collection of composed targets X
1 X ← ∅;
2 for t = t0, t ≤ T , ti++ do
3 S ← ∅;
4 Solve formula (2) to obtain a (1 − ε)-approximate solution

(u∗
pS , v∗

q , w∗
p);

5 Select one collection S� with probability u∗
pS/v∗

q ;
6 for each i ∈ Si do
7 Select one subset S with probability u∗

pS/v∗
q from Gi;

8 S ← S ∪ {S}.
9 end

10 return S;
11 end
12 The set of objective functions composed of selected subsets X ;
13 X ← X ∪ {X}.
14 return X ;
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3.2 Group Set Cover with Cumulative Maximum Full-View Target
Coverage Time Window (FTC-TW)

TSC-FTC effectively utilizes all coverage resources in a time slice, and realizes
the largest coverage in each time slice, but cannot achieve the best coverage
effect. FTC-TW enables fast maximum full-view coverage throughout the entire
time segment. First calculate all the target facing directions that can be covered
in a time slice. Since one time slice cannot cover all target orientations, we
maximize the number of objects covered by the full view within a time window
T . Multiple time slices form a time window. Choose a camera position and
orientation that maximizes full-view target coverage over the entire time window.
As illustrated by the formulation in (6),

max
k∑

i=1

∏

q∈Xi

T∑

t=t0

vq s.t. vq ≤
m∑

p=1

∑

S:q∈S∈Gp

upS ∀q = 1, ..., n,

∑

S:S∈Gi

upS ≤ wp ∀i = 1, ...,m,

m∑

p=1

wp ≤ l ∀i = p, ...,m

vq ∈ {0, 1} ∀q = 1, 2, ..., n,

wp ∈ {0, 1} ∀p = 1, 2, ...,m,

upS ∈ {0, 1} ∀S ∈ G and p = 1, 2, ...,m.

(6)

Relax as follows,

max
k∑

i=1

∏

q∈Xi

T∑

t=t0

vq s.t. vq ≤
m∑

p=1

∑

S:q∈S∈Gp

upS ∀q = 1, ..., n,

∑

S:S∈Gi

upS ≤ wp ∀i = 1, ...,m,

m∑

p=1

wp ≤ l ∀i = p, ...,m

0 ≤ vq ≤ 1 ∀q = 1, 2, ..., n,

0 ≤ wp ≤ 1 ∀p = 1, 2, ...,m,

0 ≤ upS ≤ 1 ∀S ∈ G and p = 1, 2, ...,m.

(7)

Theorem 2.

E

⎡

⎣
k∑

i=1

∏

q∈Xi

T∑

t=t0

vq

⎤

⎦ ≥ (
1 − e−γ

)β (1 − ε)lopt2 (8)
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Proof.

Prob [vq = 0] =

⎡

⎣
m∏

i=1

∏

S:q∈S∈Gi

(
1 − u∗

pS

)
⎤

⎦
γ

≤
⎡

⎣
(∑m

i=1

∑
S:q∈S∈Gi

(
1 − u∗

pS

)

Kq

)Kq
⎤

⎦
γ

=

(
1 −

∑m
i=1

∑
S:q∈S∈Gi

u∗
pS

Kq

)γ·Kq

≤
(

1 − v∗
q

Kq

)γ·Kq

Kq = |{(q, S) | q ∈ S ∈ Gi}|

Hence,

Prob[vq = 1] = 1 − Prob [vq = 0]

≥ 1 −
(

1 − v∗
q

Kq

)γ∗Kq

.

≥ (
1 − e−γ

)
v∗

q

E

⎡

⎣
k∑

i=1

∏

q∈Xi

T∑

t=t0

vq

⎤

⎦ =
k∑

i=1

∏

q∈Xi

T∑

t=t0

E [vq]

≥ (
1 − e−γ

)β
k∑

i=1

∏

q∈Xi

T∑

t=t0

v∗
q

≥ (
1 − e−γ

)β (1 − ε)lopt2

The objective value of a locally optimal solution for the formula (7) is lopt2. The
total number of full-view coverage targets that can be reached is β in a time
segment T . �
This approximate algorithm is summarized as Algorithm 2.



208 J. Su and H. Du

Algorithm 2: FTC-TW
Input : a finite set X; m groups G1,G2, · · · ,Gi, · · · ,Gm of subsets of X;

a partition of X into composed targets X = X1 ∪ X2 ∪ · · · ∪ Xk;
an integer r > 0.

Output: a collection S; a collection of composed targets X
1 X ← ∅;
2 for t = t0, t ≤ T , ti++ do
3 S ← ∅;
4 Solve formula (2) to obtain a (1 − ε)-approximate solution

(u∗
pS , v∗

q , w∗
i );

5 Select one collection S� with probability u∗
pS/v∗

q ;
6 for each i ∈ Si do
7 Select one subset S with probability u∗

pS/v∗
q from Gi;

8 S ← S ∪ {S}.
9 end

10 return S;
11 end
12 The set of objective functions composed of selected subsets X ;
13 X ← X ∪ {X}.
14 return X ;

4 Conclusion

In conclusion, this paper proposes two approximation methods based on Group
Set Cover to optimize full-view coverage in the context of time slices. Both
approaches choose a collection of sensors that can cover the most targets in each
time slice, and then calculating the cumulative number of targets covered over
time or after a certain period of time. TSC-FTC effectively utilizes the resources
in each time slice and enables the evaluation of coverage effectiveness. Based
on TSC-FTC, FTC-TW enables a quick selection of the set of sensors covering
the maximum number of targets. Overall, the proposed methods offer practical
and efficient solutions to the problem of full-view target coverage in the context
of time slices. The results demonstrate that these methods can significantly
improve the effectiveness of full-view target coverage and provide a useful tool
for surveillance systems.
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Abstract. We improve bounds for the binary paint shop problem posed
by Meunier and Neveu [Computing solutions of the paintshop-necklace
problem. Comput. Oper. Res. 39, 11 (2012), 2666-2678]. In particular, we
disprove their conjectured upper bound for the number of color changes
by giving a linear lower bound. We show that the recursive greedy heuris-
tics is not optimal by providing a tiny improvement. We also introduce
a new heuristics, recursive star greedy, that a preliminary analysis shows
to be 10% better.

1 Introduction

A double occurrence word w is a word (sequence of letters) in which each of its
letters occurs exactly twice. A legal 2-coloring of w is a coloring of individual
letters such that each letter occurs once red and once blue. We let Wn denote the
set of all double occurrence words with letters A1, . . . , An, each occurring twice.
We denote the first, resp. the second, occurrence of a letter A by A, resp. A.

Our goal is to find, for a double occurrence word w, a legal 2-coloring of w
with minimal number of color changes – neighboring letters of different colors.
We use γ(w) to denote this quantity.

To state this more formally, a legal coloring of w = w1w2 . . . w2n ∈ Wn is a
mapping c : {1, . . . , 2n} → {0, 1} such that i �= j and wi = wj implies c(i) �= c(j).
We define the number of color changes

γ(w) := min
legal c

|{i < 2n : c(i) �= c(i + 1)}|.
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The motivation for the definition (and for the “paint shop” in the title of the
paper) is the following: Imagine a line of cars in a paint shop factory, suppose
that there are just two cars of each type, and that we need to paint one of them
blue and the other red. To decrease cost, we want to minimize the number of
color changes. This problem was introduced by Epping et al. [6] under the name
binary paint shop problem (non-binary case considers more than two colors).

Another guise of the same problem is necklace splitting: two thieves stole a
necklace with 2n gems stones, two of each of n types. As the price of each of
the gems is unknown, they want to cut the necklace, so that each of the thieves
can get one of each type of the gems. Alon’s necklace-splitting theorem [1] gives
an upper bound for this (and for much more general) version. Translated to our
setting, this result says that γ(w) ≤ n for every w ∈ Wn. Easily, this is tight for
w = A1A1A2A2 . . . AnAn.

It is known [6] that deciding whether γ(w) ≤ k for given w and k is NP-
complete. Moreover, γ is APX-hard [5,8]. Thus, the study of various heuristics
is in order. A natural way to evaluate them is to look at the behaviour on random
instances of Wn.

This motivates the following notion, which will be of our main interest: We
let γn be the expectation of γ(w) when w is a random element of Wn,

γn := En γ

where En γ is a shortcut for Ew∈Wn
γ(w). To exemplify, W2 consists of the

following words: AABB, ABAB, ABBA (up to renaming the letters). As
γ(AABB) = 2, γ(ABAB) = γ(ABBA) = 1, we have γ2 = 4/3.

Andres and Hochstättler [4] describe two heuristics, greedy and recursive
greedy. Use g(w) and rg(w) for the resulting number of color changes. They
prove that

En g = 1
2n + O(1) and En rg = 2

5n + 7
10 .

Consequently, γn ≤ 2
5n+ 7

10 . Meunier and Neveu [7] say: “We were not able to
propose an interesting lower bound on En γ, but we conjecture that En γ = o(n).”

In the second section, we disprove this conjecture, proving γn ≥ 0.214n−o(n).
In the third section we slightly improve the recursive greedy heuristics, getting
an upper bound of (0.4−ε)n for any ε < 10−6. This shows that recursive greedy
heuristics is not optimal. In the fourth section we describe a new simple heuristics
“recursive star greedy” that probably satisfies En rsg ≤ 0.361n, although we are
not able to prove that. (An ad-hoc algorithm gets even better results, but we
cannot analyze its performance at all.) Finally, in the fifth section we indicate
how to use Azuma inequality to show that the value of γ(w) is concentrated on
a short interval.

Recently, Andres [3] cites preliminary version of our work [10] and contin-
ues the research of the paintshop problem by comparing optimality of various
heuristics.

When we finalized our work (after some pause) for publication we became
aware of a closely related work. Alon et al. [2] revisit the problem of necklace
splitting for randomly constructed necklaces. This has led to parallel study of
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equivalent problems and as a result their and our manuscripts have a partial
overlap. We now briefly describe their results in our terminology. They study
the problem in greater generality – each letter occurs in km copies, the goal is to
find coloring with k colors such that each letter has m copies of each color and the
number of color changes is minimized. In the context of our paper (k = 2, m = 1)
their Theorem 1.4 gives a lower bound (in a similar way as we do in Theorem 1).
They rediscover upper bound 0.4n + o(n) of Andres and Hochstättler [4]. They
also sketch an argument that both upper and lower bound can be improved and
that the optimal number of colors is sharply concentrated.

2 Lower Bounds

We could not find in the literature any mention of lower bounds for γn. As a
warm-up, we present a very simple lower bound using random interval graphs.
Scheinerman [9] introduced a model of random interval graphs that is closely
related to our problem. He starts by choosing at random, uniformly and inde-
pendently, xi, yi ∈ [0, 1] for i = 1, . . . , n. Then he creates an interval graph G
of intervals [xi, yi]. Explicitly, the vertices of G are [n] = {1, . . . , n} and ij is an
edge of G whenever intervals [xi, yi] and [xj , yj ] intersect.

With probability 1, no two of the selected 2n real numbers coincide. Thus,
we may to our random selection of xi’s and yi’s also assign a double-occurrence
word: we sort X = {xi, yi : i ∈ [n]} and replace both xi and yi by Ai (the i-th
letter). If w is the resulting word, we call G the interval graph associated with w
and use IG(w) to denote it.

It is easy to see that γ(w) is equal to the smallest k such that there is a
set S ⊂ [0, 1] of size k, such that for every i the size of [xi, yi) ∩ S is odd. This
leads to an easy lower bound for γ(w) in terms of properties of random interval
graphs.

Claim. γ(w) ≥ α(IG(w))

As Scheinerman [9] proves that expectation of α(G) is at least C
√

n, we have
the following corollary.

Corollary 1. There is a C > 0 such that γn ≥ C
√

n.

Next, we provide a linear lower bound on γn, disproving the conjecture of
Meunier and Neveu [7].

Theorem 1. γn ≥ 0.214n − o(n)

Proof. We let w be a uniformly random element of Wn. We will show, for an
appropriate choice of k and p, that

Pr[γ(w) ≤ k] ≤ p.

This will prove that
γn = E γ(w) ≥ (1 − p)k. (1)
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Let C≤k
n be the set of all possible binary colorings of 1, . . . , 2n using n zeros and

n ones, starting with a zero, that have at most k color changes. We use union
bound and straightforward estimates:

Pr[γ(w) ≤ k] = Pr[w has a legal coloring in C≤k
n ]

≤
∑

C∈C
≤k
n

Pr[C is legal for w]

=
∑

C∈C
≤k
n

n!2

(2n)!/2n
≤

k∑

l=0

(
2n − 1

l

)
2n(
2n
n

)

≤
√

4n

2n

k∑

l=0

(
2n

l

)
≤

√
4n

2n

(
e · 2n

k

)k

So we may let p be equal to the last line and we have proved (1).
Put a = k/n. Then p =

√
4n

((
2e
a

)a 1
2

)n
. Thus if

(
2e
a

)a 1
2 < 1, then we have

p = o(1) and, thus,
E γ(w) ≥ (1 − o(1))an.

Numerical computation shows, that this works whenever a < 0.214 . . . . This
finishes the proof.

3 Small Improvement of the Upper Bound

In [4] the recursive greedy (RG) heuristics was used to prove the upper bound
γn ≤ 0.4n+O(1). We slightly improve that result by decreasing the linear term.
Main interest of this is showing that 0.4n is not the final answer.

In the original proof the following recursive greedy heuristics was used. To
obtain a coloring

c : [2n] = {1, 2, . . . , 2n} → {0, 1}
of the double occurrence word w ∈ Wn, we first omit both occurrences of the
first letter of w, say A. Then we color the shorter word recursively, add both
letters A back and color them in the best possible way. Before we give more
formal description, recall that we denote the first, resp. second, occurrence of a
letter A by A, resp. A.

Recursive greedy algorithm: Let 1 and j be the position of A and A in a
word w ∈ Wn and c′ : [2n − 2] → {0, 1} be the coloring of w′ ∈ Wn−1. We
define the coloring c of w such that it coincides with c′ on the letters of w′,
hence only colors c(A) = c(1) and c(A) = c(j) are to be determined. Let
Nc′(A) = {c′(j − 2), c′(j − 1)} be the multiset of colors that c′ uses in the
neighborhood of A.
(a) If j = 2 then c(A) = 1 − c′(1).
(b) If j = 2n and n > 1 then c(A) = c′(1).
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(c) If j ∈ [3, 2n − 1] then

c(A) =
{

c′(1) if Nc′(A) contains 1 − c′(1),
1 − c′(1) if Nc′(A) = {c′(1), c′(1)}.

and color A accordingly.

Note that in our description of RG we reversed the input of the original algorithm
and colored first letter first (in [4] they colored last letter first). We use the
following observation.

Lemma 1. Let n ≥ 1 and w ∈ Wn be a fixed word colored by RG. Then the
number of neighboring pairs in w that are colored with color c is at least 
(n −
1)/2�.
Proof. We prove by induction that rg(w), i.e. the number of color changes in
the coloring of w obtained from RG, is at most n. This clearly holds for n = 1
and in every recursive step RG adds two letters and at most one color change.
Since every color colors the same number of letters we conclude that half of the
remaining n − 1 neighboring pairs have the color c.

As proved in [4], this algorithm results in En rg ≤ 0.4n + O(1). However, we
can improve the final coloring of RG. We find a set V of pairs of letters X,Y such
that w = . . . AXB . . . CY D . . . EXY F . . . , there are two color changes around
both X and Y and none around the pair XY . Recoloring both copies of X
and Y decreases the number of color changes by two. Moreover, we will prove
that expected size of V is linear in n, getting the following theorem.

Theorem 2. For ε ≈ 2 × 10−6 and sufficiently large n we have

γn <

(
2
5

− ε

)
n.

Proof. Let (for simplicity) n be even and w ∈ Wn. Denote the letters of w as
A1, A2, . . . , An such that the first occurrence of Aj lies before the first occurrence
of Ai whenever i < j, i.e. the letters are ordered in descending order by their first
occurrences. We denote by τk(w) ∈ Wk the word obtained from w by removing
every letter Ai for i > k. Note that τk(w) is the word that the RG algorithm
considers at the k-th deepest level of recursion. We split RG into two stages. In
the first stage we color the word τn/2(w), in the second stage we extend that
coloring onto w; in both stages we color n/2 pairs of letters.

Let us fix w′ ∈ Wn/2 and denote by c′ : [n] → {0, 1} the coloring in the
output of RG for w′. We set

T = {t ∈ [n − 1] : c′(t) = c′(t + 1) = 0}.

to be the set of positions of two consecutive letters colored by 0. We know that T
contains at least 
(n−2)/4� elements due to Lemma 1. We refer to the elements
of T as monochromatic pairs. We consider the probability space of all words
w ∈ Wn that were built from w′; that is τn/2(w) = w′.

Let t ∈ T . We estimate the probability p = p(t) such that:
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S1. In the second stage of RG there are exactly two letters, say C and D, inserted
in between the monochromatic pair t. Moreover, no letter is ever inserted
around C and D (other than the one in the next step).

S2. First occurrences C and D are colored so that there are two color changes
around.

Let Ui,j be the set of words in Wn such that S1, S2 holds and letter C and
D is the i-th and j-th added letter in stage two for indices i < j. We denote by
pi,j the probability that w ∈ Ui,j which allows us to express p as

p =
∑

1<i<j<n/2

Pr[w ∈ Ui,j ] =
∑

1<i<j<n/2

pi,j .

We remark that if j = i+1 then the first occurrences of C and D cannot have
two changes around them and pi,j = 0. Let us therefore assume that j − i ≥ 2.
We let Uk

i,j be the set of words of length n/2 + k that can be extended to some
word w ∈ Ui,j , that is

Uk
i,j = {τn/2+k(w) |w ∈ Ui,j}.

Observe that U
n/2
i,j is precisely the set Ui,j while U0

i,j contains only the word w′.
We define the probability that after adding k letters in the second stage we did
not violate any of the desired properties conditioned by the fact that the same
holds after adding k − 1 letters.

pki,j = Pr[τn/2+k(w) ∈ Uk
i,j | τn/2+k−1(w) ∈ Uk−1

i,j ].

We can chain these probabilities and get

pi,j =
n/2∏

k=1

pki,j .

We proceed by providing lower bounds on pki,j for every k between 1 and n/2.
Let us denote the k-th added letter by Ak.

(1) For k = i, we have to insert C inside the pair t and thus pii,j = 1
n+2i−1 .

(2) For k = j, we have to insert D next to C and thus pji,j = 2
n+2j−1 .

(3) For k such that |k−i| = 1 or |k−j| = 1, we have to guarantee that Ak receives
the color opposite to the color of C and D. Due to Lemma 1, we have at least

((n/2)+k−2)/2� ≥ (n+2k−6)/4 options and pki,j ≥ n+2k−6

4(n+2k−1) > n+2k−8
4(n+2k−1) .

(4) Otherwise, we can insert Ak everywhere except in t or around C and D. There
are at most 7 forbidden positions and thus pki,j ≥ n+2k−8

n+2k−1 .

There can be either 3 or 4 positions for the case (3) depending on whether
j − i = 2. However we can assume that there are 4 of them as we are aiming to
obtain a lower bound. Putting it all together, we get
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pi,j ≥ 1
(n + 2i − 1)

2
(n + 2j − 1)

1
44

n/2∏

k=1
k �=i,j

n + 2k − 8
n + 2k − 1

=
1

27(n + 2i − 8)(n + 2j − 8)

n/2∏

k=1

n + 2k − 8
n + 2k − 1

>
1

27(2n − 3)2

(
n − 7

n

)n/2

.

As we remarked, the lower bound does not hold whenever j−i = 1. Furthermore,
we cannot guarantee the condition S2 if i = 1. Summing over all other choices
of i and j we obtain

p >

((
n/2
2

)
− n

)
1

27(2n − 3)2

(
n − 7

n

)n/2

→ e−7/2

212
> 7 · 10−6.

Thus there exists n0 such that for n ≥ n0 and for fixed w′ ∈ Wn/2 the
expected size of V ⊂ T for which S1 and S2 holds is

En |V | = p · |T | >

⌊
n − 2

4

⌋
p > n · 10−6.

By recoloring both letters inserted between a color pair of V we decrease the
number of color changes by two. Notice that the condition S2 guarantees that
letters inserted into different color pairs of V do not neighbor since their first
occurrences are colored with 1. Therefore recoloring all inserted letters for all
color pairs of V decreases the number of color changes by 2|V | which implies

γn <
2
5
n + O(1) − 2En |V | =

(
2
5

− 2 · 10−6

)
n.

Setting ε = 2 · 10−6 we get the bound.

4 Recursive Star Greedy Heuristics

In this section we describe new heuristic for binary paint shop problem called
recursive star greedy (RSG) and discuss its mean output that appears to be
approximately 0.361n. That bound is better than the previously described RG
heuristics; however, we are not able to prove that rigorously.

Let us start with a simple but crucial observation. In a legal coloring of a
word w there might be a letter X such that when we flip the colors of X and X
the total number of color changes remains the same. Then during the recursive
coloring process, we might use this color flip to avoid introducing a new color
change.
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The recursive star greedy (RSG) heuristics is the following modification of
RG. It introduces an additional color ∗ which marks that the occurrences of a
given letter can be colored in any of the two legal ways without changing the
total number of color changes. RSG maintains the invariant that for any letter
X, either both X and X are colored by stars, or they are colored by different
binary colors, and that there are no two neighboring letters both colored by star.
At the point when another letter is inserted next to a letter X colored by star,
RSG recolors X and X with binary colors if it prevents increasing the number of
color changes. The final output of RSG is then a binary coloring of w obtained
by recoloring all stars with binary colors in an arbitrary (legal) way.

More precisely, let w ∈ Wn. RSG outputs two colorings of w, a coloring c∗

using the color set C = {0, 1, ∗} and a binary coloring c; that is,

c∗ : [2n] → C and c : [2n] → {0, 1}.

We proceed recursively with adding (both copies X, X of) the first letter A but
keep in mind the positions of the last added letter B, resp. record the number
of color changes around B to possibly recolor it by a star.

Recursive star greedy: Let 1 and j be the positions of a letter A in a word
w ∈ Wn. Let w′ ∈ Wn−1 be the word that one obtains from w by deleting
A and A, B be the first letter of w′, and c′ be the C-coloring of w′ from the
recursion. Recall that Nc′(A) = {c′(j − 2), c′(j − 1)} denotes the multiset of
colors that c′ uses in the neighborhood of A. We define the coloring c∗ of w
by the case analysis below. Note that we use the notation c∗(A) = c∗(1) and
c∗(A) = c∗(j).
(A) If j = 2 and n > 1 we set c∗(A) = 1 − c′(B).
(B) If j = 2n we set c∗(A) = 1.
(C) If Nc′(A) = {t, t} for some t ∈ {0, 1} we set c∗(A) = 1 − t.
(D) If Nc′(A) = {0, 1} we set c∗(A) = c′(B).
(E) If Nc′(A) = {1 − c′(B), ∗} we set c∗(A) = c′(B).
(F) If Nc′(A) = {c′(B), ∗} we set c∗(A) = c′(B). Moreover, we set c∗(X1) =

1 − c′(B) and c∗(X2) = c′(B), where X1 is the neighbor of A with star
color and X2 is the other copy of the same letter.

We color c∗(A) accordingly. Finally, if B and B are not neighboring, all their
neighbors are colored with binary colors and swapping the colors of B and
B preserves the total number of color changes, we set c∗(B) = c∗(B) = ∗.
The output of RSG for w is the coloring c∗ and a binary coloring c that is
obtained by coloring every ∗-colored letter X arbitrarily, say X with 0 and
X with 1.

An example of better performance of RSG over RG is for the word w =
ABCBDCAD, for which one obtains rg(w) = 3, but rsg(w) = 2. We follow
both algorithms in the following table.

On the other hand, there are words for which RG still performs better than
RSG. Surprisingly, we can create a word v (e.g. the one in next table) by adding
two new letters to w in a way that they both introduce one new color change
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algorithm ABCBDCAD BCBDCD CDCD DD

RG 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0
RSG 0 0 0 1 1 1 1 0 0 ∗ 1 1 ∗ 0 1 1 0 0 1 0

algorithm WXABCBDWCADX XABCBDCADX

RG 1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0
RSG 0 1 ∗ 0 0 1 1 1 1 ∗ 0 0 1 ∗ 0 0 1 1 1 ∗ 0 0

to RSG, but not to RG. Hence rg(v) = 3 but rsg(v) = 4. Observe that the star
color is introduced only to color the letter B at the end of the recursive step.
Every star is then recolored back to a binary color either at the end with the
transformation of C-coloring into a binary coloring, or in case (F) where it allows
us to color A and A without increasing the total number of changes. That is in
contrast to RG, for which the number of color changes in such step might have
increased.

Computer experiments suggest, that this modification leads to a significant
saving in terms of color changes:

Conjecture 1. En rsg = αn+o(n), where α = (
√

37−5)/3 .= 0.361 is the positive
solution of 3α2 + 10α = 4.

We were unable to prove this conjecture. However, we provide below some of
the arguments we have tried. They explain where the constant α comes from.

Let c∗, resp. c, be the C-coloring, resp. binary coloring, of a random word
w ∈ Wn produced by RSG. Let sn be the probability that a random letter A of
w is assigned the star color in the coloring c∗. Then nsn is the expected number
of pairs of stars (coupled by the letter they color) in c∗. Furthermore, let an/2
be the probability that a random pair of neighbouring letters in w constitute a
color change in the coloring c. Observe that En rsg = (2n − 1)an/2 is the value
we are interested in.

One could express the probabilities of the individual cases (A) – (F) with
the variables an and sn, which leads to recurrence relations that allow one to
compute En rsg for fixed n in time that is polynomial in n. However, we were
not able to solve these recurrences in general.

Let us thoroughly analyze the recursive step and support Conjecture 1. For
a word w ∈ Wn and j ∈ [1, 2n−1], let Nc(w, j) be the pair of colors c(j)c(j +1).
Based on sn and an we can count the probabilities of all variations of pairs of
neighboring colors in c∗-coloring. They are displayed in the Pr-column of the
Table 1. For example, in case (D2), the probability of a color with condition
c(2) = 1 is

Pr
w,j

[(D2)] =
1
2

(
Pr
w,j

[Nc(w, j) ∈ {01, 10}] − 1
2

Pr
w,j

[∗ ∈ Nc∗(w, j)]
)

+ O(1/n)

=
1
2

(an

2
− sn

)
=

an

4
− sn

2
+ O(1/n),
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where the first fraction 1/2 refers to the condition c(2) = 1 and the second
fraction 1/2 is there because only half of the color changes with stars produce
01/10 color changes (others produce 00/11). Finally, the O(1/n) term includes
the case when |Nc(w, j)| = 1, i.e. when A gets inserted either at the beginning or
at the end of the word. Other probabilities of Table 1 up to the error term O(1/n)
can be calculated similarly. Set qn = 1/4 − an/8 − sn/4 to be the probability of
cases (C1)-(C4).

Table 1. Case analysis of recursive star greedy heuristics: Nc′(A) is the multiset of
colors around A, c(A) = c(1) the resulting color of A, Nc(w, 1) = c(1)c(2), Δan, resp.
Δsn are the increases of number of color changes of c, resp. pairs of stars, Pr is the
probability for that case up to O(1/n) error term and qn = 1/4 − an/8 − sn/4.

Recursive star greedy

Case w Nc′(A) c(A) Nc(w, 1) Δan Δsn Pr[Case]

(A1) AA0 . . . . . . {0} 1 10 +1 0

(A2) AA1 . . . . . . {1} 0 01 +1 0

(B1) A0 . . . . . . 0A {0} 1 10 +1 0

(B2) A1 . . . . . . 0A {0} 1 11 = 0

(C1) A0 . . . 0A0 . . . {0, 0} 1 10 +1 + qn

(C2) A1 . . . 1A1 . . . {1, 1} 0 01 +1 + qn

(C3) A1 . . . 0A0 . . . {0, 0} 1 11 = qn

(C4) A0 . . . 1A1 . . . {1, 1} 0 00 = qn

(D1) A0 . . . 0A1 . . . {0, 1} 0 00 = an/4 − sn/2

(D2) A1 . . . 0A1 . . . {0, 1} 1 11 = an/4 − sn/2

(E1) A1 . . . 0A ∗ . . . {0, ∗} 1 11 = sn/2

(E2) A0 . . . 1A ∗ . . . {1, ∗} 0 00 = sn/2

(F1) A0 . . . 0A ∗ . . . {0, ∗} 0 00 = −1 sn/2

(F2) A1 . . . 1A ∗ . . . {1, ∗} 1 11 = −1 sn/2

Observe that the average increase of color changes in c is

(2n − 1)
an

2
− (2n − 3)

an−1

2
= an + (an − an−1)

(
n − 3

2

)
.

That increase happens only in cases (C1) and (C2); indeed, they are the only
cases with +1 in Δan-column and nonzero (limit) probability, we have

an + (an − an−1)
(

n − 3
2

)
= Pr

[
(C1) ∪ (C2)

]
= 2qn + O(1/n). (2)

By definition, the average increase of the number of stars is nsn−(n−1)sn−1.
We may color A by a star in the next step in cases (C1), (C2), (D1), (D2), (F1)
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and (F2), but only under the condition that the color of the next added letter X
will be opposite to the color of A, which happens only in the new cases (C1) and
(C2). Note that here we assume that these events are independent which we were
unfortunately not able to prove. On the other hand, we can also decrease the
number of stars by recoloring them to binary colors which happens in case (F).
Hence

sn+1(n + 1) − snn

= Pr
[
(C1) ∪ (C2)

]
Pr

[
(C1) ∪ (C2) ∪ (D) ∪ (F )

]
− Pr

[
(F )

]

= 2qn

(
2qn−1 +

an−1

2

)
− sn + O(1/n). (3)

Our goal is to solve the system of two recurrences above. However, we are
not able to do that analytically and we need additional assumptions. We assume
that

an − an−1 = o(1/n) and sn − sn−1 = o(1/n). (4)

That allows us to substitute an by an±1 and sn by sn±1. Hence we modify
equations (2) and (3) and using (4) obtain system

an =
1
2

− an

4
− sn

2
+ o(1)

sn =
3
2
a2
n − sn + o(1)

with the only relevant solution

an = α + o(1) and sn = .098 . . . + o(1).

We were able to compute the values an and sn for n up to 120. The obtained
data suggest that our assumptions (4) are reasonable, and that both sequences
(an)n≥1 and (sn)n≥1 seem to be monotone and bounded.

Finally, we remark that the RSG heuristics actually uses two somewhat dif-
ferent types of stars since the pair of letters X, X colored by star can be either
surrounded by four neighbors of the same color or both X and X have one
neighbor colored with 0 and the other colored using 1. It might be more feasi-
ble to analyze a modified heuristic that only uses the second type of stars. The
numerical data suggest that this heuristic still performs better than RG albeit
worse than RSG. However, we were not able to rigorously show this either.

5 Concentration Result for the Optimal Number of Color
Changes

Theorem 3. Let w be a random element of Wn. Then

Pr
[
|γ(w) − γn| ≥

√
n log n

]
≤ 2n−1/8.
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The proof using Azuma–Hoeffding inequality can be found in the full version
of this paper. We remark that the function

√
n log n in Theorem 3 could be

replaced by f(n)
√

n for an arbitrary function f such that f(n) → ∞ for n → ∞.
We would still have the key corollary that for a random word w ∈ Wn,

Pr
[
|γ(w) − γn| ≥ f(n)

√
n
]

→ 0.
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Abstract. Horizontal gene transfer is an important contributor to evo-
lution. According to Walter M. Fitch, two genes are xenologs if they are
separated by at least one HGT. More formally, the directed Fitch graph
has a set of genes as its vertices, and directed edges (x, y) for all pairs of
genes x and y for which y has been horizontally transferred at least once
since it diverged from the last common ancestor of x and y. Subgraphs of
Fitch graphs can be inferred by comparative sequence analysis. In many
cases, however, only partial knowledge about the “full” Fitch graph can
be obtained. Here, we characterize Fitch-satisfiable graphs that can be
extended to a biologically feasible “full” Fitch graph and derive a simple
polynomial-time recognition algorithm. We then proceed to showing that
finding the Fitch graphs with total maximum (confidence) edge-weights
is an NP-hard problem.

Keywords: Directed Cograph · Fitch Graph · Horizontal Gene
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1 Introduction

Horizontal gene transfer (HGT) is a biological process by which genes from
sources other than the parents are transferred into an organism’s genome. In
particular in microorganism it is an important contributor to evolutionary inno-
vation. The identification of HGT events from genomic data, however, is still a
difficult problem in computational biology, both mathematically and in terms
of practical applications. Recent formal results are phrased in terms of a binary
relation between genes. In most situations it can be assumed that the evolution
of genes is tree-like and thus can described by a gene tree T whose leaves corre-
spond to the present-day, observable genes; the interior vertices and edges then
model evolutionary events such as gene duplications, speciations, and also HGT.
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Since HGT distinguishes between the gene copy that continues to be transmitted
vertically, and the transferred copy, one associated the transfer with the edge
in T connecting the HGT event with its transferred offspring. Focusing on a
pair of present-day genes, it is of interest to determine whether or not they have
been separated by HGT events in their history. This information is captured by
the Fitch (xenology) graph. It contains an edge x → y whenever a HGT event
occurred between y and the least common ancestor of x and y [6]. Fitch graphs
form a hereditary sub-class of the directed cographs [4], and admit a simple char-
acterization in terms of eight forbidden induced subgraphs on three vertices (see
Fig. 1 below). Moreover, every Fitch graph uniquely determines a least resolved
edge-labeled tree by which it is explained. This tree is related to the gene tree
by a loss of resolution [6].

Information on HGT events can be extracted from sequence information
using a broad array of methods [15], none of which is likely to yield a complete
picture. Reliable information to decide whether or not two genes are xenologs,
thus, may be available only for some pairs of genes (x, y), but not for others.
In this situation it is natural to ask whether this partial knowledge can be used
to infer missing information. In [14] the analogous question was investigated
for di-cographs. The main result of the present contribution is a characteriza-
tion of partial Fitch graphs, Theorem 2, and an accompanying polynomial-time
algorithm. In addition, we show that the “weighted” version of Fitch graph com-
pletion is NP-hard.

2 Preliminaries

Relations. Throughout, we consider only irreflexive, binary relations R on V ,
i.e., (x, y) ∈ R implies x �= y for all x, y ∈ V . We write

←−
R := {(x, y) | (y, x) ∈ R}

and Rsym := R ∪ ←−
R for the transpose and the symmetric extension of R,

respectively. The relation R×
V := {(x, y) | x, y ∈ V, x �= y} is called the full

relation. For a subset W ⊆ V and a relation R, we define the induced sub-
relation as R[W ] := {(x, y) | (x, y) ∈ R, x, y ∈ W}. Moreover, we consider
ordered tuples of relations R = (R1, . . . , Rn). Let R1, . . . , Rn ⊆ R×

V , then
R = (R1, . . . , Rn) is full if ∪n

i=1Ri = R×
V and partial if ∪n

i=1Ri ⊆ R×
V . Note that

a full tuple of relations is also considered to be a partial one. Moreover, we con-
sider component-wise sub-relation and write R[W ] := (R1[W ], . . . , Rn[W ]) and
R = (R1, . . . , Rn) ⊆ R′ = (R′

1, . . . , R
′
n) if Ri ⊆ R′

i holds for all i ∈ {1, . . . , n}.
In the latter case, we say that R′ extends R.

Digraphs and DAGs. A directed graph (digraph) G = (V,E) comprises a
vertex set V (G) = V and an irreflexive binary relation E(G) = E on V called
the edge set of G. Given two disjoint digraphs G = (V,E) and H = (W,F ), the
digraphs G ∪ H = (V ∪ W,E ∪ F ), G �� H = (V ∪ W,E ∪ F ∪ {(x, y), (y, x) |
x ∈ V, y ∈ W}) and G � H = (V ∪ W,E ∪ F ∪ {(x, y) | x ∈ V, y ∈ W}) denote
the union, join and directed join of G and H, respectively. For a given subset
W ⊆ V , the induced subgraph G[W ] = (W,F ) of G = (V,E) is the subgraph
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for which x, y ∈ W and (x, y) ∈ E implies that (x, y) ∈ F . We call W ⊆ V a
(strongly) connected component of G = (V,E) if G[W ] is an inclusion-maximal
(strongly) connected subgraph of G.

Given a digraph G = (V,E) and a partition {V1, V2, . . . , Vk}, k ≥ 1 of
its vertex set V , the quotient digraph G/{V1, V2, . . . , Vk} has as vertex set
{V1, V2, . . . , Vk} and two distinct vertices Vi and Vj form an edge (Vi, Vj) in
G/{V1, . . . , Vk} if there are vertices x ∈ Vi and y ∈ Vj with (x, y) ∈ E. Note,
that edges (Vi, Vj) in G/{V1, . . . , Vk} do not necessarily imply that (x, y) form an
edge in G for x ∈ Vi and y ∈ Vj . Nevertheless, at least one such edge (x, y) with
x ∈ Vi and y ∈ Vj must exist in G given that (Vi, Vj) is an edge in G/{V1, . . . , Vk}

A cycle C in a digraph G = (V,E) of length n is an ordered sequence of
n > 1 (not necessarily distinct) vertices (v1, . . . , vn) such that (vn, v1) ∈ E and
(vi, vi+1) ∈ E, 1 ≤ i < n. A digraph that does contain cycles is a DAG (directed
acyclic graph). Define the relation 
G of V such that v 
G w if there is directed
path from w to v. A vertex x is a parent of y if (x, y) ∈ E. In this case y is
child of x. Then G is DAG if and only if 
G is a partial order. We write y ≺G x
if y 
G x and x �= y. A topological order of G is a total order � on V such
that (v, w) ∈ E implies that v � w. It is well known that a digraph G admits a
topological order if and only if G is a DAG. In this case, x ≺G y implies y � x,
i.e., � is a linear extension of ≺. Note that 
 and � are arranged in opposite
order. The effort to check whether G admits a topological order � and, if so,
to compute � is linear, i.e., in O(|V | + |E|) [11]. If C1, . . . , Ck, k ≥ 1 are the
strongly connected components of a digraph, then G/{C1, C2, . . . , Ck} is a DAG.

A DAG G is rooted if it contains a unique 
G-maximal element ρG called
the root. Note that ρG is �-minimal. A rooted tree T with vertex set V (T ) is a
DAG such that every vertex x ∈ V (T ) \ {ρT } has a unique parent. The rooted
trees considered here do not contain vertices v with indeg(v) = outdeg(v) = 1.
A vertex x is an ancestor of y if y 
T x, i.e., if x is located on the unique path
from ρT to y. A vertex in T without a child is a leaf. The set of leaves of T will
be denoted by L(T ). The elements in V 0(T ) := V (T ) \L(T ) are called the inner
vertices. We write T (u) for the subtree of T induced by {v ∈ V (T ) | v 
T u}.
Note that u is the root of T (u).

For a subset W ⊆ L(T ), the least common ancestor lcaT (W ) of W is the
unique 
T -minimal vertex that is an ancestor of each w ∈ W . If W = {x, y},
we write lcaT (x, y) := lcaT ({x, y}). A rooted tree T is ordered, if the children of
every vertex in T are ordered. Rooted trees T1, . . . , Tk, k ≥ 2 are joined under
a new root in the tree T if T is obtained by the following procedure: add a new
root ρT and all trees T1, . . . , Tk to T and connect the root ρTi

of each tree Ti to
ρT with an edge (ρT , ρTi

).

Directed Cographs. Di-cographs generalize the notion of undirected cographs
[2–5] and are defined recursively as follows: (i) the single vertex graph K1 is a
di-cograph, and (ii) if G and H are di-cographs, then G ∪ H, G �� H, and G � H
are di-cographs [7,14]. Every di-cograph G = (V,E) is explained by an ordered
rooted tree T = (W,F ), called a cotree of G, with leaf set L(T ) = V and a
labeling function t : W 0 → {0, 1,−→1 } that uniquely determines the set of edges
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Fig. 1. Of the 16 possible irreflexive binary relations on three vertices, eight (A1

through A8) may appear in Fitch graphs, while the remaining eight (F1 through F8)
form forbidden induced subgraphs.

E(G) = E1(T, t)∪E−→
1
(T, t) and the set of non-adjacent pairs of vertices E0(T, t)

of G as follows:

E1(T, t) = {(x, y) | t(lca(x, y)) = 1},

E0(T, t) = {(x, y) | t(lca(x, y)) = 0}, and

E−→
1
(T, t) = {(x, y) | t(lca(x, y)) =

−→
1 and x is left of y in T}.

Note that Ei(T, t) = Ei(T, t)sym for i ∈ {0, 1} since lca(x, y) = lca(y, x). Every
di-cograph G = (V,E) is explained by a unique discriminating cotree (T, t)
satisfying t(x) �= t(y) for all (x, y) ∈ E(T ). Every cotree (T ′, t′) that explains
G is “refinement” of its discriminating cotree (T, t), i.e., (T, t) is obtained by
contracting all edges (x, y) ∈ E(T ′) with t′(x) = t′(y) [1]. Determining whether
a digraph is a di-cograph, and if so, computing its discriminating cotree requires
O(|V | + |E|) time [2,7,13].

3 Fitch Graphs and Fitch-Satisfiability

Basic Properties of Fitch Graphs. Fitch Graphs are defined in terms of
edge-labeled rooted trees T with an edge-labeling λ : E → {0, 1} and leaf set
L(T ) = V . The graph G(T, λ) = (V,E) contains an edge (x, y) for x, y ∈ V if
and only if the (unique) path from lcaT (x, y) to y contains at least one edge
e ∈ E(T ) with label λ(e) = 1. The edge set of G(T, λ) by construction is a
binary irreflexive relation on V . A directed graph G is a Fitch graph if there is a
tree (T, λ) such that G  G(T, λ). Fitch graphs form a proper subset of directed
cographs [6]. Therefore, they can be explained by a cotree.

Definition 1. A cotree (T, t) is a Fitch-cotree if there are no two vertices v, w ∈
V 0(T ) with w ≺T v such that either (i) t(v) = 0 �= t(w) or (ii) t(v) =

−→
1 ,

t(w) = 1, and w ∈ V (T (u)) where u is a child of v distinct from the right-most
child of v.
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In other words, a Fitch-cotree satisfies:
(a) No vertex with label 0 has a descendant with label 1 or

−→
1 .

(b) If a vertex v has label
−→
1 , then the subtree T (u) rooted at a u child of

v — except the right-most one — does not contain vertices with label 1. In
particular, if T is discriminating, then T (u) is either a star-tree whose root u
has label t(u) = 0 or u is a leaf. In either case, the di-cograph G[L(T (u))] defined
by the subtree T (u1) of left-most child u1 of v, is edge-less.

Fitch graphs have several characterizations that will be relevant throughout
this contribution. We summarize [8, L. 2.1] and [6, Thm. 2] in the following

Theorem 1. For every digraph G = (V,E) the following statements are equiv-
alent.

1. G is a Fitch graph.
2. G does not contain an induced F1, F2, . . . , F8 (cf. Fig. 1).
3. G is a di-cograph that does not contain an induced F1, F5 and F8 (cf. Fig. 1).
4. G is a di-cograph that is explained by a Fitch-cotree.
5. Every induced subgraph of G is a Fitch graph, i.e., the property of being a

Fitch graph is hereditary.

Fitch graphs can be recognized in O(|V |+ |E|) time. In the affirmative case, the
(unique least-resolved) edge-labeled tree (T, λ) can be computed in O(|V |) time.

Alternative characterizations can be found in [9]. The procedure cotree2
fitchtree described in [6] can be used to transform a Fitch cotree (T, t) that
explains a Fitch graph G into an edge-labeled tree (T ′, λ) that explains G in
O(|V (T )|) time, avoiding the construction of the di-cograph altogether. For later
reference, we provide the following simple results. The proofs can be found in
[10].

Lemma 1. The graph obtained from a Fitch graph by removing all bi-directional
edges is a DAG.

Corollary 1. Every Fitch graph without bi-directional edges is a DAG.

Removal of the bi-directional edges from the Fitch graph A6 yields the graph
F1, i.e., although removal of all bi-directional edges from Fitch graphs yields a
DAG it does not necessarily result in a Fitch graph.

Corollary 2. Let G be a directed graph without non-adjacent pairs of vertices
and no bi-directional edges. Then, G is a Fitch graph if and only if it is a DAG.

Characterizing Fitch-satisfiability. Throughout we consider 3-tuples of
(partial) relations E = (E0, E1, E−→

1
) on V such that E0 and E1 are symmet-

ric and E−→
1

is antisymmetric.

Definition 2 (Fitch-sat). E is Fitch-satisfiable (in short Fitch-sat), if there
is a full tuple E∗ = {E∗

0 , E∗
1 , E∗−→

1
} (with E∗

0 and E∗
1 being symmetric and E∗−→

1
being antisymmetric) that extends E and that is explained by a Fitch-cotree (T, t).
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By slight abuse of notation, we also say that, in the latter case, E is explained
by (T, t). The problem of finding a tuple E∗ that extends E and that is explained
by an arbitrary cotree was investigated in [14]. Theorem 1 together with the
definition of cotrees and Def. 2 implies

Corollary 3. E = (E0, E1, E−→
1
) on V is Fitch-sat precisely if it can be extended

to a full tuple E∗ = (E∗
0 , E∗

1 , E∗−→
1
) for which H = (V,E∗

1 ∪ E∗−→
1
) is a Fitch graph.

In particular, there is a discriminating Fitch-cotree that explains E, E∗, and H.

In [10] we prove that Fitch-satisfiability is a hereditary graph property:

Lemma 2. A partial tuple E on V is Fitch-sat if and only if E [W ] is Fitch-sat
for all W ⊆ V .

For the proof of Theorem 2, we will need the following technical result, which
is proven in [10].

Lemma 3. Let E = (E0, E1, E−→
1
) be a Fitch-sat partial tuple on V that is

explained by the discriminating Fitch-cotree (T, t) and put G0[W ] := (W,E1[W ]∪
E−→

1
[W ]) for W ⊆ V . If there is a vertex u ∈ V 0(T ) such that t(u) = 0, then

G0[C] is edge-less for all C ⊆ L(T (u)).

We are now in the position to provide a characterization of Fitch-sat partial
tuples. A detailed version of this proof can be found in [10].

Theorem 2. The partial tuple E = (E0, E1, E−→
1
) on V is Fitch-sat if and only

if at least one of the following statements hold.

(S1) G0 := (V,E1 ∪ E−→
1
) is edge-less.

(S2) (a) G1 := (V,E0 ∪ E−→
1
) is disconnected and

(b) E [C] is Fitch-sat for all connected components C of G1

(S3) (a)(I) G−→
1
:= (V,E0 ∪ E1 ∪ E−→

1
) contains k > 1 strongly connected

components C1, . . . , Ck collected in C and
(II) there is a C ∈ C for which the following conditions are satisfied:

(i) G0[C] is edge-less.
(ii) C is �-minimal for some topological order �

on G−→
1
/{C1, C2, . . . , Ck}.

(b) E [V \ C] is Fitch-sat .

Proof. (Sketch) If E satisfies (S1) then E∗ = (R×
V , ∅, ∅) and the star tree with

leaf set V and root label “0” explains E∗. If E satisfies (S2) then each connected
component E [Ci] can be expanded to a Fitch-sat tuple E∗[Ci] explained by some
Fitch-cotree (Ti, ti). In this way, we obtain the graph G∗

1 = (V,E∗
0 ∪ E∗−→

1
) whose

connected components are the same as those of G1. The full tuple E∗ is obtained
from the union of the E∗[Ci] and by adding all missing pairs (x, y), (y, x) for all
x ∈ Ci and y ∈ Cj , i �= j. The Fitch cotree is (T, t) is obtained by joining the
(Ti, ti) under a new root with label “1”. If E satisfies (S3), then G0[C] is edge-
less for a �-minimal component C and thus can be extended to the full tuple
E∗[C] = (E∗

0 [C], ∅, ∅) by adding all pairs (x, y) ∈ R×
C \ C to E0[C]. This leaves
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G∗
0[C] = (C,E∗

1 [C] ∪ E∗−→
1
[C]) edge-less and thus it is explained by the Fitch-

cotree (T ′, t′) where T ′ is a star tree whose root is labeled “0”. On the other
hand, E [V \ C] is Fitch-sat and thus can be extended to a full tuple E∗[V \ C]
that is explained by a Fitch-cotree ( ̂T ,̂t). Then E is obtained from the union of
the E∗[Ci] and by adding all pairs (x, y) for all x ∈ C and y ∈ V \ C, The Fitch
cotree is (T, t) is obtained by placing (T ′, t′) to the left of ( ̂T ,̂t) under a common
root with label

−→
1 .

For the only-if direction, we start from the discriminating Fitch-cotree (T, t)
endowed with the sibling order < that explains E and E∗ whose existence if
guaranteed by Corollary 3. Moreover, the root ρ of T has at r ≥ 2 children
v1, . . . , vr ordered from left to right according to < and has one of the three
labels 0, 1,

−→
1 . Denote by Li = {x ∈ L(T ) | x 
 vi} the set of all leaves x of T

with x 
 vi and note that x ∈ Li and y ∈ Lj with i �= j implies lca(x, y) = ρ.
If t(ρ) = 0, then Lemma 3 implies that G0 = (V,E1 ∪ E−→

1
) is edge-less and thus

E satisfies (S1). If t(ρ) = 1, then G∗
1 = (V,E∗

0 ∪ E∗−→
1
) must be disconnected, and

Lemma 2 implies that E [C] is Fitch-sat for each connected component. Therefore,
E satisfies (S2). If t(ρ) =

−→
1 then (x, y) ∈ E∗−→

1
and (y, x) /∈ E∗−→

1
for all x ∈ Li

and y ∈ Lj with 1 ≤ i < j ≤ r, and thus G∗−→
1
:= (V,E∗

0 ∪ E∗
1 ∪ E∗−→

1
) = G∗−→

1
[L1] �

. . . � G∗−→
1
[Lr] consists of two or more strongly connected components, each of

which is contained within some Li. Since G−→
1

is a subgraph of G∗−→
1
, it contains

more than one strongly connected component and thus E satisfies (S3.a.I). Since
(T, t) is a discriminating Fitch-cotree, the left-most child v1 of ρ is either a leaf
of T or t(v1) = 0, and thus G0[L1] is edge-less by Lemma 3, and thus there is a
strongly connected component C of G∗−→

1
for which G0[C] ⊆ G0[L1] is edgeless.

Thus (S3.a.II.i) holds. Let C ′ be any other strongly connected component of G∗−→
1
.

If C ′ ⊆ L1, then there are are no edges between C and C ′ in G−→
1
. Otherwise,

any two adjacent vertices x ∈ C and y ∈ C ′ in G−→
1

must satisfy (x, y) ∈ E−→
1

and
(y, x) /∈ E−→

1
. It is not difficult to show that that (S3.a.II.ii) is satisfied. Finally,

Lemma 2 implies that E [V \ C] is Fitch-sat and thus (S3.b) is also satisfied. ��

4 Recognition Algorithm and Computational Complexity

The proof of Theorem 2 provides a recipe to construct a Fitch-cotree (T, t)
explaining a tuple E . We observe, furthermore, that two or even all three alter-
natives (S1), (S2.a), and (S3.a) may be satisfied simultaneously, see Fig. 2 for
an illustrative example. In this case, it becomes necessary to check stepwisely
whether conditions (S2.b) and/or (S3.b) holds. Potentially, this result in expo-
nential effort to determine recursively whether E [C] or E [V \ C] is Fitch-sat .
The following simple lemma shows, however, that the alternatives always yield
consistent results:

Lemma 4. Let E = (E0, E1, E−→
1
) be a partial tuple on V . Then

(S1) and (S2.a) implies (S2.b);
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(S1) and (S3.a) implies (S3.b);
(S2a) and (S3a) implies that (S2.b) and (S3.b) are equivalent.

Proof. If (S1) holds, then Theorem 2 implies that E is Fitch-sat . If (S2.a) holds,
then heredity (Lemma 2) implies that E [C] is Fitch-sat and thus (S2.b) is sat-
isfied. Analogously, if (S3.a) holds, then E [V \ C] is Fitch-sat and thus (S3.b)
holds. Now suppose (S2a) and (S3a) are satisfied but (S1) does not hold. Then
E is Fitch-sat if and only if one of (S2.b) or (S3.b) holds; in the affirmative case,
heredity again implies that both (S2.b) and (S3.b) are satisfied. ��

Fig. 2. A partial tuple E = (E0, E1, E−→
1
) on V = {a, b, c} with E0 = ∅, E1 =

{(b, c), (c, b)} (bi-directional arc), and E−→
1
= {(a, b)} (single arc) is shown on the left.

Observe that (S1) is not satisfied while (S2.a) and (S3.a) hold for E . Application of
the different rules and subsequent construction of the Fitch-cotrees that explain the
subgraphs induced by the respective (strongly) connected components results in two
Fitch-cotrees that both explain E . Hence, we obtain two different edge-labeled Fitch-
trees (T, λ) (with HGT-edges drawn in bold-red) that both explain E .

It follows that testing whether E can be achieved by checking if any one of the
three conditions (S1), (S2), or (S3) holds and, if necessary, recursing down on
E [C] or E [V \ C]. This give rise to Algorithm 1.

Lemma 5. Let E = (E0, E1, E−→
1
) be a partial tuple. Then Alg. 1 either outputs

a Fitch-cotree (T, t) that explains E or recognizes that E is not Fitch-sat.

Proof. (Sketch) By Lemma 4, the order in which (S1), (S2), and (S3) are tested
is arbitrary. If none of the conditions (S1), (S2), or (S3) is satisfied, Theorem 2
implies that E is not Fitch-sat . If Rule (S1) or (S2.a), resp., is satisfied (Line
4), then Alg. 1 recurses on the connected components defined by G0 or G1,
respectively. For (S1), correctness follows from the if direction of Theorem 2.
Otherwise, the Fitch-cotree of connected components, which are Fitch-sat , are
joined a single cotree (T, t) with root label “1” explaining an extension E∗ of
E , which is thus correctly identified as Fitch-sat . Finally, if (S3.a) is satisfied,
we consider the strongly connected components Ci of G−→

1
. By (S3.a.II) there
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is component, say C1 for which G[Ci] is edge-less, and thus I in Line 12 is
non-empty and the topological order � is well-defined. If E [C∗] and E [ ̂C] are
Fitch-sat , the two Fitch-cotrees (T ∗, t∗) and ( ̂T ,̂t) explaining E [C∗] and E [ ̂C] are
returned and joined under a new root resulting in a-cotree (T, t) that explains
E . It is not difficult to verify that (T, t) is a Fitch-cotree. For full details [10]. ��
Theorem 3. Let E = (E0, E1, E−→

1
) be a partial tuple, n = |V | and m = |E0 ∪

E1∪E−→
1
|. Then, Alg. 1 computes a Fitch-cotree (T, t) that explains E or identifies

that E is not Fitch-sat in O(n2 + nm) time.

Proof. Correctness is established in Lemma 5. We first note that in each single
call of BuildFitchCotree, all necessary di-graphs defined in (S1), (S2) and
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(S3) can be computed in O(n+m) time. Furthermore, each of the following tasks
can be performed in O(n+m) time: finding the (strongly) connected components
of each digraph, construction of the quotient graphs, and finding the topological
order on the quotient graph using Kahn’s algorithm [11]. Moreover, the vertex
end edge sets V [C] and E [C] for the (strongly) connected components C (or
their unions) can be constructed in O(n + m) time by going through every
element in V and E and assigning each pair to their respective induced subset.
Thus, every pass of BuildFitchCotree takes O(n+m) time. Since every call
of BuildFitchCotree either halts or adds a vertex to the final constructed
Fitch-cotree, and the number of vertices in this tree is bounded by the number
n of leaves, it follows that BuildFitchCotree is called at most O(n) times
resulting in an overall running time O(n(n + m)). ��

Instead of asking only for the existence of a Fitch-completion of a tuple
E = (E0, E1, E−→

1
), it is of interest to ask for the completion that maximizes a

total score for the pairs of distinct vertices x, y that are not already classified by
E , i.e., {x, y} ∈ E := {{x, y} /∈ (E0 ∪ E1 ∪ E−→

1
)sym}. For every pair of vertices

there are four possibilities x :: y ∈ {x � y, x → y, x ← y, x ␣ y}. The score
w(x :: y) may be a log-odds ratio for observing one of the four possible xenology
relationship as determined from experimental data. Let us write F = FE∗ for
the Fitch graph defined by the extension E∗ of E and associate with it the total
weight of relations added, i.e.,

f(F ) =
∑

{x,y}∈E
w(F [{x, y}]) (1)

The weighted Fitch-graph completion problem can also be seen as spe-
cial case of the problem with empty tuple E∅ := (∅, ∅, ∅). To see this, sup-
pose first that an arbitrary partial input tuple E is given. For each two ver-
tices x, y for which {x, y} /∈ E the induced graphs F [{x, y}] is well-defined
and we extend the weight function to all pairs of vertices by setting, for all
input pairs, w(F [{x, y}]) = m0 and w(x :: y) = −m0 for (x :: y) �= F [{x, y}],
where m0 � |V |2 max::,{x,y}∈E |w(x :: y)|. Now consider the weighted Fitch graph
completion problem with this weight function and an empty tuple E∅. The
choice of weights ensures that any Fitch graph F ′ maximizing f(F ′) induces
F ′[{x, y}] = F [{x, y}] for all pairs {x, y} in the input tuple, because not choos-
ing F [{x, y}] reduces the score by 2m0 while the total score of all pairs not
specified in the input is smaller than m0. In order to study the complexity of
this task, it therefore suffices to consider the following decision problem:

Problem 1. (Fitch Completion Problem (FC)).

Input: A set V , an assignment of four weights wxy(x :: y) to all distinct
x, y ∈ V where :: ∈ {�,→,←, ␣}, and an integer k.

Question: Is there a Fitch graph F = (V,E) such that
f(F ) =

∑

x,y∈V
x�=y

wxy(F [{x, y}]) ≥ k?
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For the NP-hardness reduction, we use the following NP-complete problem [12]

Problem 2. (Maximum Acyclic Subgraph Problem (MAS)).

Input: A digraph G = (V,E) and an integer k.
Question: Is there a subset E′ ⊆ E such that |E′| ≥ k and (V,E′) is a DAG?

Theorem 4. FC is NP-complete.

Proof. We claim that FC is in NP. To see this, let F = (V,E) be a given digraph.
We can check whether f(F ) ≥ k in polynomial time by iterating over all edges
in F . In addition, by Theorem 1, we can check whether F is a Fitch graph in
polynomial time by iterating over all 3-subsets of V and verifying that none of
the induced a forbidden subgraph of Fitch graphs.

To prove NP-hardness, let (G = (V,E), k) be an instance of MAS. We take
as input for FC the set V , the integer k and the following weights for all distinct
x, y ∈ V :

(i) If (x, y) ∈ E, then put wxy(x → y) = 1
(ii) If (x, y) /∈ E, then put wxy(x → y) = 0
(iii) Put wxy(x ␣ y) = 0 and wxy(x � y) = −|V |2.
Note that Condition (i) ensures that, for all x, y ∈ V , we have wxy(y → x) = 1
if (y, x) ∈ E and wxy(x → y) = wxy(y → x) = 1 whenever both (x, y) and (y, x)
are edges in G.

Suppose first that there is a subset E′ ⊆ E such that |E′| ≥ k and G′ =
(V,E′) is a DAG. Hence, for any x, y ∈ V not both (x, y) and (y, x) can be
contained in E′. This, together with the construction of the weights implies that
f(G′) = |E′| ≥ k. We now extend G′ to a Fitch graph F . To this end, observe
that G′ admits a topological order �. We now add for all pairs x, y with x � y
and (x, y) /∈ E′ the edge (x, y) to obtain the di-graph F . Clearly, � remains
a topological order of F and, therefore, F is a DAG. This with the fact that
F does not contain bi-directional edges or non-adjacent vertices together with
Corollary 2 implies that F is a Fitch graph. In particular, f(F ) ≥ f(G′) ≥ k.

Assume now that there is a Fitch graph F such that f(F ) ≥ k. Since wxy(x �
y) = −|V |2 and the weight for any uni-directed edge and every pair of non-
adjacent vertices is 0 or 1 and the maximum number of edges in F is 2 · (|V |

2

)

=
|V |2 − |V | < |V |2, f(F ) ≥ k implies that F cannot contain bidirectional edges.
By Corollary 1, F is acyclic. Now, take the subgraph G′ of F that consists of
all edges with weight 1. Clearly, G′ remains acyclic and f(F ) = f(G′) ≥ k. By
construction of the weights, all edges of G′ must have been contained in G and
thus, G′ ⊆ G is an acyclic subgraph of G containing at least k edges. ��



236 M. Hellmuth et al.

5 Concluding Remarks

Since FC is NP-complete, practical approaches will be based on heuristics. The
structure of the problem suggests a canonical greedy heuristic, in which the
weights for the possible 2-vertex graphs are sorted in descending order. For
each proposed insertion of x :: y, it suffices to test whether the additional edges
produced a forbidden subgraph on {x, y, z} for some z ∈ V . The greedy heuristic
thus runs in cubic time. We also note that seemingly simpler variants of the
problem such as FC without bi-directional edges, and FC without non-adjacent
vertices remain NP-complete.
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Abstract. In this paper, we study the Min-cost Perfect k-way Matching
with Delays (k-MPMD), recently introduced by Melnyk et al. In the
problem, m requests arrive one-by-one over time in a metric space. At
any time, we can irrevocably make a group of k requests who arrived so
far, that incurs the distance cost among the k requests in addition to
the sum of the waiting cost for the k requests. The goal is to partition
all the requests into groups of k requests, minimizing the total cost.
The problem is a generalization of the min-cost perfect matching with
delays (corresponding to 2-MPMD). It is known that no online algorithm
for k-MPMD can achieve a bounded competitive ratio in general, where
the competitive ratio is the worst-case ratio between its performance
and the offline optimal value. On the other hand, k-MPMD is known to
admit a randomized online algorithm with competitive ratio O(k5 log n)
for a certain class of k-point metrics called the H-metric, where n is
the size of the metric space. In this paper, we propose a deterministic
online algorithm with a competitive ratio of O(mk2) for the k-MPMD
in H-metric space. Furthermore, we show that the competitive ratio can
be improved to O(m + k2) if the metric is given as a diameter on a line.

Keywords: Online Matching · Online Algorithm · Competitive
Analysis

1 Introduction

Consider an online gaming platform supporting two-player games such as Chess.
In such a platform, players arrive one-by-one over time, and stay in a queue to
participate in a match. The platform then tries to suggest a suitable opponent
for each player from the queue. In order to satisfy the players, the platform aims
to maximize the quality of the matched games. Specifically, we aim to minimize
the distance of the matched players (e.g., the difference of their ratings) as well
as the sum of the players’ waiting time.
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The above situation can be modeled as the problem called Online Matching
with Delays, introduced by Emek et al. [11]. In the setting, arriving requests (or
players) are embedded in a metric space so that the distance of each pair is
determined. For the Online Matching with Delays, Emek et al. [11] proposed a
randomized algorithm with a competitive ratio of O(log2 n + log Δ), where n is
the number of points in a metric space, and Δ is the ratio of the maximum to
minimum distance between two points. The competitive ratio was later improved
to O(log n) by Azar et al. [5]. We remark that both algorithms require that
a metric space is finite and all the points in the metric space are known in
advance (we note that arriving requests may be embedded into the same point
more than once). Bienkowski et al. [9] presented a primal-dual algorithm with a
competitive ratio of O(m), where m is the number of requests. Another algorithm
with a better competitive ratio of O(m0.59) was proposed by Azar et al. [6].

In this paper, we consider a generalization of Online Matching with Delays,
called the Min-cost Perfect k-way Matching with Delays (k-MPMD) [22]. In the
problem, requests arrive one-by-one over time. At any time, instead of choos-
ing a pair of requests, we make a group of k requests. This corresponds to an
online gaming platform that allows more than two players to participate, such
as mahjong (k = 4), Splatoon (k = 8), Apex Legends (k = 60), and Fort-
nite (k = 100). Then we aim to partition all the requests into groups of size-k
subsets, minimizing the sum of the distance of the requests in the same group
and the total waiting time.

To generalize to k-MPMD, it is necessary to measure the distance of a group
of k > 2 requests. That is, we need to introduce a metric space that defines dis-
tances for any subset of k points. Although there are many ways of generalizing
a standard distance between two points to k > 2 points in the literature [4,16],
Melnyk et al. [22] showed that most known generalized metrics on k points can-
not achieve a bounded competitive ratio for the k-MPMD. Melnyk et al. [22]
then introduced a new interesting class of generalized metric, called H-metric,
and proposed a randomized algorithm for the k-MPMD on H-metric with a
competitive ratio of O(k5 log n), extending Azar et al. [5].

The main contribution of this paper is to propose a deterministic algorithm
for the k-MPMD on H-metric with a competitive ratio of O(mk2), where m is
the number of requests. The proposed algorithm adopts a primal-dual algorithm
based on a linear programming relaxation of the k-MPMD.

To design a primal-dual algorithm, we first formulate a linear programming
relaxation of the offline problem, that is, when a sequence of requests is given
in advance. We remark that even the offline setting is NP-hard when k ≥ 3, as
it includes the triangle packing problem. We first show that H-metric can be
approximated by a standard metric (Theorem 1). This allows us to construct a
linear programming problem with variables for each pair of requests such that
the optimal value gives a lower bound on the offline version of the k-MPMD.
Using the linear programming problem, we can design a primal-dual algorithm
by extending the one by Bienkowski et al. [9] for Online Matching with Delays.
We show that, by the observation on H-metric (Theorem 1) again, the cost
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of the output can be upper-bounded by the dual objective value of our linear
programming problem.

An interesting special case of the H-metric is the diameter on a line. That is,
points are given on a 1-dimensional line, and the distance of k points is defined
to be the maximum difference in the k points. In the context of an online gaming
platform, the diameter on a line can be interpreted as the difference of players’
ratings. In this case, we show that the competitive ratio of our algorithm can
be improved to O(m + k2). Moreover, we construct an instance such that our
algorithm achieves the competitive ratio of Ω(m/k).

Related Work. An online algorithm for the matching problem was first intro-
duced by Karp et al. [15]. They considered the online bipartite matching problem
where arriving requests are required to match upon their arrival. Since then, the
problem has been studied extensively in theory and practice. For example, moti-
vated by internet advertising, Mehta et al. [20] generalized the problem to the
AdWords problem. See also Mehta [21] and Goel and Mehta [13]. The weighted
variant of the online bipartite matching problem is considered in the literature.
It includes the vertex-weighted online bipartite matching [1], the problem with
metric costs [8,23,25], and the problem with line metric cost [2,12,14,17]. We
remark that the edge-weighted online bipartite matching in general has no online
algorithm with bounded competitive ratio [1].

This paper deals with a variant of the online matching problem with delays,
in which arriving requests are allowed to make decision later with waiting costs.
Besides the related work [5,6,9,11] mentioned before, Liu et al. [18] extended
the problem to the one with non-linear waiting costs. Other delay costs are
studied in [7,10,19]. Ashlagi et al. [3] studied the online matching problem with
deadlines, where each arriving request has to make a decision by her deadline.
Pavone et al. [24] considered online hypergraph matching with deadlines.

Paper Organization. This paper is organized as follows. In Sect. 2, we formally
define the minimum-cost perfect k-way matching problem and H-metric. We
also discuss useful properties of H-metrics which will be used in our analysis. In
Sect. 3, we present our main algorithm for the k-MPMD on H-metric. In Sect. 4,
we show that there exists an instance such that our algorithm admits an almost
tight competitive ratio. Due to the space limitation, the proofs of lemmas and
theorems are omitted, which may be found in the full version of this paper.

2 Preliminaries

2.1 Minimum-Cost Perfect k-Way Matching with Delays

In this section, we formally define the problem k-MPMD. Let (χ, d) be a gener-
alized metric space where χ is a set and d : χk → [0,∞) represents a distance
among k elements.
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In the problem, m requests u1, u2, . . . , um arrive one-by-one in this order. The
arrival time of ui is denoted by atime(ui). When ui arrives, the location pos(ui)
of ui in the metric space χ is revealed. Thus, an instance of the problem is given
as a tuple σ = (V, atime,pos), where V = {u1, . . . , um}, atime : V → R+, and
pos : V → χ such that atime(u1) ≤ · · · ≤ atime(um). We note that m may be
unknown in advance, but we assume that m is a multiple of k.

At any time τ , with the only information for requests arrived so far, an
online algorithm can make a set of k requests v1, . . . , vk in V , where we say
that v1, . . . , vk are matched, if they satisfy the following two conditions: (a)
The requests v1, . . . , vk have already arrived, that is, atime(vi) ≤ τ for any
i = 1, . . . , k; (b) None of v1, . . . , vk has been matched to other requests yet. The
cost to match v1, . . . , vk at time τ is defined to be

d(pos(v1),pos(v2), . . . ,pos(vk)) +
k∑

i=1

(τ − atime(vi)).

The first term means the distance cost among the k requests and the second
term is the total waiting cost of the k requests.

The objective of the problem is to design an online algorithm that matches
all the requests, minimizing the total cost. In other words, an online algorithm
finds a family of disjoint subsets of size k that covers all the requests. We call a
family of disjoint subsets of size k a k-way matching, and a k-way matching is
called perfect if it covers all the requests.

To measure the performance of an online algorithm, we define the competitive
ratio. For an instance σ, let ALG(σ) be the cost incurred by the online algorithm,
and let OPT (σ) be the optimal cost when we know in advance a sequence of
requests V as well as atime(ui) and pos(ui) for each request ui. The competitive
ratio of the online algorithm is defined as supσ

ALG(σ)
OPT (σ) .

2.2 H-Metric

In this section, we define H-metric, introduced by Melnyk et al. [22]. Recall that
a function d : χ2 → [0,∞) is called a distance function (or a metric) if d satisfies
the following three axioms:

– (Symmetry) d(p1, p2) = d(p2, p1) for any p1, p2 ∈ χ.
– (Positive definiteness) d(p1, p2) ≥ 0 for any p1, p2 ∈ χ, and d(p1, p2) = 0

if and only if p1 = p2.
– (Triangle inequality) d(p1, p3) ≤ d(p1, p2)+d(p2, p3) for any p1, p2, p3 ∈ χ.

We first define a k-point metric as a k-variable function satisfying general-
izations of the symmetry axiom and the positive definiteness axiom.

Definition 1. We call a function d : χk → [0,∞) a k-point metric if it satisfies
the following two axioms.

Π: For any permutation π of {p1, . . . , pk}, we have d(p1, . . . , pk) =
d(π(p1), . . . , π(pk)).
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OD: It holds that d(p1, . . . , pk) ≥ 0. Moreover, d(p1, . . . , pk) = 0 if and only if
p1 = p2 = · · · = pk.

There are several ways of generalizing the triangle inequality to k-variable
functions. One possibility is the following axiom: for any p1, . . . , pk, a ∈ χ and
any i ∈ {1, . . . , k}, it holds that

ΔH : d(p1, . . . , pk) ≤ d(p1, . . . , pi, a, . . . , a︸ ︷︷ ︸
k−i

) + d(a, . . . , a︸ ︷︷ ︸
i

, pi+1, . . . , pk).

We note that it is identical to the triangle inequality when k = 2.
For a multiset S on χ, we denote by elem(S) the set of all distinct elements

contained in S. In addition to the generalized triangle inequality, we consider the
relationship between d(p1, . . . , pk) and d(p′

1, . . . , p
′
k) when elem({p1, . . . , pk}) ⊆

elem({p′
1, . . . , p

′
k}). The separation axiom SH says that, for some nonnegative

integer γ ≤ k − 1,

d(p1, . . . , pk) ≤ d(p′
1, . . . , p

′
k) if elem({p1, . . . , pk}) ⊂ elem({p′

1, . . . , p
′
k}),

d(p1, . . . , pk) ≤ γ · d(p′
1, . . . , p

′
k) if elem({p1, . . . , pk}) = elem({p′

1, . . . , p
′
k}).

The H-metric is a k-point metric that satisfies all the above axioms.

Definition 2 (Melnyk et al. [22]). A k-point metric dH : χk → [0,∞) is
an H-metric with parameter γ ≤ k − 1 if it satisfies Π, OD, ΔH and SH with
parameter γ.

We remark that there are weaker conditions than ΔH and SH , generalizing
the triangle inequality, which yields other classes of k-point metrics such as the
n-metric [4] and the K-metric [16]. See [22] for the formal definition. Melnyk et
al. [22], however, showed that the k-MPMD cannot be solved for such more gen-
eral metrics. Specifically, they proved that there exists no randomized algorithm
for the k-MPMD (k ≥ 5) problem on n-metric or K-metric agaist an oblivious
adversary that has a competitive ratio which is bounded by a function of the
number of points n.

2.3 Properties of H-Metric

In this section, we discuss approximating H-metric by a standard metric, and
present specific examples of H-metric.

Melnyk et al. proved that H-metric can be approximated by the sum of
distances between all pairs [22, Theorem 6]. We refine their results as in the
theorem below, which will be used in the next section.

Theorem 1. Let dH be an H-metric on χ with parameter γ. Define a metric
d : χ2 → [0,∞) as

d(p1, p2) := dH(p1, p2, . . . , p2) + dH(p2, p1, . . . p1)
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for any p1, p2 ∈ χ. Then it holds that

1
γk2

·
k−1∑

i=1

k∑

j=i+1

d(pi, pj) ≤ dH(p1, . . . , pk) ≤
k∑

i=1

d(v, pi), (1)

for all v ∈ {p1, . . . , pk}.

We conclude this section with providing specific examples of H-metric. We
note that the examples below satisfy that γ = 1, and thus the approximation
factor in Theorem 1 becomes small.

Let d : χ2 → [0,∞) be a distance function. We define a k-point metric
dmax by dmax(p1, . . . , pk) = maxi,j∈{1,...,k} d(pi, pj). Then it turns out to be an
H-metric.

Proposition 1. Let d : χ2 → [0,∞) be a distance function. Then the k-point
metric dmax is an H-metric with γ = 1.

For real numbers p1, . . . , pk ∈ R, we define the diameter on a line as
dD(p1, . . . , pk) = maxi,j∈{1,...,k} |pi − pj |. By Proposition 1, dD is an H-metric.

For a distance function d : χ2 → [0,∞), we define another H-metric dHC by

dHC(p1, . . . , pk) = min

⎧
⎨

⎩

∑

e∈C

d(e) | C ⊆
(χ

2

)
, C forms a Hamiltonian circuit in {p1, . . . , pk}

⎫
⎬

⎭

where
(
χ
2

)
= {(p, q) | p, q ∈ χ, p 	= q}. This means that dHC(p1, . . . , pk) equals

to the minimum cost of a Hamiltonian circuit contained in {p1, . . . , pk} with
respect to cost d.

Proposition 2. Let d : χ2 → [0,∞) be a distance function. Then the k-point
metric dHC is an H-metric with parameter γ = 1.

3 k-MPMD on H-Metric Space

This section proposes a primal-dual algorithm for k-MPMD on H-metric space.
Let (χ, dH) be an H-metric space with parameter γ.

3.1 Linear Programming Relaxation

This subsection introduces a linear programming relaxation for computing the
offline optimal value OPT (σ) for a given instance σ.

We first give some notation. Let E = {F ⊆ V | |F | = k}. For any subset
S ⊆ V , we denote sur(S) = |S| mod k, which is the number of remaining requests
when we make a k-way matching of size 
|S|/k� among S. We denote Δ(S) =
{F ∈ E | F ∩ S 	= ∅, F \ S 	= ∅}, which is the family of k request sets that
intersect both S and V \ S.
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Preparing a variable xF for any subset F ∈ E , we define a linear programming
problem:

(P)

∣∣∣∣∣∣∣∣∣∣∣∣

min.
∑

F∈E
opt-cost(F ) · xF

s.t.
∑

F∈Δ(S)

xF ≥
⌈

sur(S)
k

⌉
, ∀S ⊆ V (2)

xF ≥ 0, ∀F ∈ E

where, for any F = (v1, . . . , vk) ∈ E , we define

opt-cost(F ) := dH(pos(v1), . . . ,pos(vk)) +
k∑

i=1

(
max

j
atime(vj) − atime(vi)

)
.

Notice that opt-cost(F ) is the cost of choosing F at the moment when all the
requests in F have arrived.

Let M be a perfect k-way matching with optimal cost OPT (σ). Define a
0-1 vector (xF )F∈E such that xF = 1 if and only if F ∈ M. Then the vector
satisfies the constraint (2). Moreover, the cost incurred by F ∈ M is equal to
opt-cost(F ). This is because the optimal algorithm that returns M chooses F at
the moment when all the requests in F have arrived. Thus the objective value
for the vector (xF )F∈E is equal to OPT (σ), and hence the optimal value of (P)
gives a lower bound of OPT (σ).

We further relax the above LP (P) by replacing xF ’s with variables for all
pairs of requests. Let E = {(u, v) | u, v ∈ V, u 	= v}, and we prepare a variable
xe for any e ∈ E. We often call an element in E an edge.

We denote by δ(S) the set of pairs between S and V \S. Define the following
linear programming problem:

(P ′)

∣∣∣∣∣∣∣∣∣∣∣∣

min.
∑

e∈E

1
γk2

· opt-cost(e) · xe

s.t.
∑

e∈δ(S)

xe ≥ sur(S) · (k − sur(S)), ∀S ⊆ V (3)

xe ≥ 0, ∀e ∈ E

where, for any e = (v1, v2) ∈ E with p1 = pos(v1) and p2 = pos(v2), we define

d(p1, p2) := dH(p1, p2, . . . , p2) + dH(p2, p1, . . . , p1), and
opt-cost(e) := d(p1, p2) + |atime(v1) − atime(v2)|.

The following lemma follows from Theorem 1.

Lemma 1. It holds that, for any F = (v1, . . . , vk) ∈ E,

1
γk2

·
k−1∑

i=1

k∑

j=i+1

opt-cost(vi, vj) ≤ opt-cost(F ) ≤
k∑

i=1

opt-cost(v, vi), (4)
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where v = arg max
u∈F

atime(u).

For any perfect k-way matching M, define an edge subset M such that e ∈ M
if and only if the pair e is contained in some set F of M. Thus we represent
each set in M with a complete graph of k vertices. We will show below that the
characteristic vector for M is feasible to (P ′). Here, for a subset X ⊆ E, the
characteristic vector 1X ∈ {0, 1}E is defined to be

1X(x) =

{
1 (x ∈ X)
0 (x /∈ X)

.

Moreover, this implies that the optimal value of (P ′), denoted by P ′(σ), is a
lower bound of OPT (σ) for any instance σ.

Lemma 2. Let M be a perfect k-way matching. Define an edge subset M =
{(u, v) ∈ E | ∃F ∈ M s.t. u, v ∈ F}. Then x = 1M is a feasible solution to P ′.
Furthermore, P ′(σ) ≤ OPT (σ) holds.

The dual linear programming problem of (P ′) is

(D′)

∣∣∣∣∣∣∣∣∣∣∣∣

max.
∑

S⊆V

sur(S) · (k − sur(S)) · yS

s.t.
∑

S:e∈δ(S)

yS ≤ 1
γk2

· opt-cost(e), ∀e ∈ E (5)

yS ≥ 0, ∀S ⊆ V

The weak duality of LP implies that D′(σ) ≤ P ′(σ), where D′(σ) is the dual
optimal value.

3.2 Greedy Dual for k-MPMD (GD-k)

We present our proposed algorithm, called Greedy Dual for k-MPMD(GD-k).
The proposed algorithm extends the one by Bienkowski et al. [9] for 2-MPMD
using the LP (P ′).

In the algorithm GD-k, we maintain a family of subsets of requests, called
active sets. At any time, any request v arrived so far belongs to exactly one
active set, denoted by A(v). We also maintain a k-way matching M. A request
not in

⋃
F∈M F is called free, and, for a subset S ⊆ V of requests, free(S) is the

set of free requests in S.
When request v arrives, we initialize A(v) = {v} and yS = 0 for any subset

S ⊆ V such that v ∈ S. At any time, for an active set S such that free(S)
is nonempty, we increase yS with rate r, where r is set to be 1/(γk2). Then,
at some point, there exists an edge e = (u, v) ∈ E such that

∑
S:e∈δ(S) yS =

1
γk2 · opt-cost(e), which we call a tight edge. When it happens, we merge the
active sets A(u) and A(v) to a large subset S = A(u) ∪ A(v), that is, we update
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A(w) = S for all w ∈ S. We also mark the tight edge e. If |free(S)| ≥ k, we
partition free(S) arbitrarily into subsets of size k with sur(S) free requests, and
add these size-k subsets to M.

The pseudo-code of the algorithm is given as in Algorithm 1.
Let T be the time when all requests are matched in the algorithm. For any

subset S, we denote the value of yS at time τ in the algorithm by yS(τ).

Algorithm 1 Greedy Dual for k -MPMD
1: procedure GD-k(σ)
2: M ← ∅
3: for all moments t do
4: if a request v arrives then
5: A(v) ← {v}
6: for all subsets S � v do
7: yS ← 0
8: end for
9: modify constraints of (D′).

10: end if
11: if there exists e = (u, v) ∈ E such that

∑
S:e∈δ(S) yS = 1

γk2 ·opt-cost(e) and

A(u) �= A(v) then
12: S ← A(u) � A(v)
13: for all v ∈ S do
14: A(v) ← S
15: end for
16: mark e
17: while |free(S)| ≥ k do
18: choose arbitrarily a set F of k requests from S
19: M ← M ∪ {F}
20: end while
21: end if
22: for all sets S which are active and free(S) �= ∅ do
23: increase continuously yS at the rate of r per unit time
24: end for
25: end for
26: end procedure

We show that yS ’s maintained in Algorithm 1 are always dual feasible.

Lemma 3. For any request v, it holds that
∑

S:v∈S

yS(τ) ≤ r · (τ − atime(v)) (6)

at any time τ ≥ atime(v). This holds with equality while v is not matched.

Lemma 4. Let r = 1
γk2 . Then, at any time τ , yS(τ) maintained in Algorithm 1

is a feasible solution to (D′).
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3.3 Competitive Ratio of GD-k

To bound the competitive ratio of GD-k, we evaluate the distance cost and the
waiting cost separately. We will show that each cost is upper-bounded by the
dual optimal value of D′(σ).

Waiting Cost. We can upper-bound the waiting cost of the output as follows.

Lemma 5. Let M = {M1, . . . ,Mp} be a perfect k-way matching returned by
Algorithm 1, and let τ� be the time when we match M�. Then it holds that

p∑

�=1

k∑

i=1

(τ� − atime(v�,i)) =
1
r

·
∑

S⊆V

sur(S) · yS(T ) ≤ 1
r

· D′(σ),

where we denote M� = {v�,1, . . . , v�,k}.

Distance Cost. We say that a set S ⊆ V is formerly-active at time τ if S is
not active at time τ , but has been active before time τ .

Lemma 6. Let S be an active or formerly-active set at time τ . Then, marked
edges both of whose endpoints are contained in S form a spanning tree in S.

We now evaluate the distance cost.

Lemma 7. Let M = {M1, . . . ,Mp} be a perfect k-way matching returned by
Algorithm 1. Then it holds that

p∑

�=1

d(pos(v�,1), . . . ,pos(v�,k)) ≤ 4γmk·
∑

S

sur(S)·(k−sur(S))·yS(T ) ≤ 4γmkD′(σ),

where we denote M� = {v�,1, . . . , v�,k}.

Competitive Ratio. Summarizing the above discussion, we obtain Theorem 2.

Theorem 2. Let dH be an H-metric with parameter γ. Setting r = 1/(γk2),
Greedy Dual for k-MPMD achieves a competitive ratio (4mk+k2)γ for k-MPMD.

Proof. Let σ be an instance of k-MPMD. It follows from Lemmas 5 and 7 that
the cost of the returned perfect k-way matching is upper-bounded by (4mk +
k2)γ ·D′(σ). By the weak duality and Lemma 4, we observe that D′(σ) ≤ P ′(σ) ≤
OPT (σ). Thus the theorem holds. ��

Finally, we consider applying our algorithm to the problem with specific H-
metrics such as dmax and dHC given in Sect. 2.3. Since they have parameter γ = 1,
it follows from Theorem 2 that GD-k achieves a competitive ratio O(mk + k2).
In the case of dmax, we can further improve the competitive ratio.

Theorem 3. For the k-MPMD on a metric space (χ, dmax), GD-k achieves a
competitive ratio O(m + k2).
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4 Lower Bound of GD-k for a Diameter on a Line

In this section, we show a lower bound on the competitive ratio for GD-k for the
metric dD. Recall that dD(p1, . . . , pk) = maxi,j∈{1,...,k} |pi−pj | for p1, . . . , pk ∈ R.

We define an instance σl = (V,pos, atime) where V = {u1, u2, . . . , um} as
follows. Suppose that the number m of requests is equal to m = sk2 for some
integer s. Let p1, . . . , pk be k points in R such that d(pi, pi+1) = 2 for any
i = 1, 2, . . . , k − 1.

For i = 1, 2, . . . , sk and j = 1, 2, . . . , k, define atime(uk(i−1)+j) = ti
and pos(uk(i−1)+j) = pj for j = 1, 2, . . . , k, where we define t1 = 0 and
ti = 1 + (2i − 3)ε for i ≥ 2. Thus, at any time ti (i = 1, . . . , sk), the k requests
uk(i−1)+1, . . . , uk(i−1)+k arrive at every point in p1, . . . , pk, respectively.

Then it holds that OPT (σl) ≤ k+kε+k3ε+mkε, while the output of GD-k
has cost at least m + k + (m − k)ε.

Theorem 4. For a metric space (R, dD), there exists an instance σl of m
requests such that GD-k admits a competitive ratio Ω(m

k ).
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Abstract. Multi-criteria decision-making often involves selecting a
small representative set from a database. A recently proposed method is
the regret minimization set (RMS) queries. It aims to rectify the short-
comings of needing a utility function in top-k queries and the overly
large result size of skyline queries. However, the existing definition of
RMS only ensures one result under any utility function, and do not con-
sider the diversity and freshness of the returned results. In this paper,
we define a strong regret set, which guarantees the utility value error
of k data points under any utility function. Given this new definition,
we propose two problems, namely the Minimum Size problem and the
Max-sum Diversity and Freshness problem. Both proposed problems have
been proven to be NP-hard. Correspondingly, we devise approximation
algorithms for them, and analyze algorithms’ time complexities and the
approximation ratios of the solutions obtained.

Keywords: Regret minimizing set · Diversity · Freshness · NP-hard

1 Introduction

Finding a representative set of points from a database for multi-criteria decision-
making is a critical issue. This problem is fundamental in numerous applications
where users are primarily interested in selecting a few or even just one point
within a large database. For example, Bob visits a large car database, in which
each car point has two attributes: horsepower (HP) and miles per gallon (MPG).
He is in search of a car with both high MPG and high HP. However, there is an
inherent trade-off between these two objectives, as an increase in HP often results
in decreased fuel efficiency. Consequently, it may be infeasible for Bob to examine
every car in the database. A more feasible approach involves presenting a select
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number of representative points based on specific criteria, such as those poten-
tially favored by the majority of users. In existing literature, numerous queries
have been proposed to address multi-criteria decision-making. Among these, the
most extensively researched include top-k queries [1], skyline queries [2], and
regret minimization set queries [3].

A top-k query [1] requires the user to specify a utility function that reflects
his/her preference for each attribute. The database points are then ranked based
on utility values computed from the utility function, and the k highest-ranked
points are returned to the user. For instance, in a car database, a user’s util-
ity function may assign a weight of 0.8 (more important) to HP and 0.2 (less
important) to MPG. A top-10 query would return the 10 cars with the highest
utility values according to this function. However, it is challenging for non-expert
users to provide specific utility functions for top-k queries. In contrast, a skyline
query [2] does not necessitate any utility function from users. Instead, it relies
on the concept of domination: point p is considered to dominate point q iff p is
no worse than q in every attribute and is strictly superior to q in at least one
attribute. In a car database, car A would be dominated by car B if B is both
higher HP and higher MPG than B. A skyline query returns all points that are
not dominated by any other point in the database. However, the result sizes of
skyline queries are not controllable, particularly when the dimensionality (i.e.,
the number of attributes) of the database is high.

Recently, Nanongkai et al. [3] introduced the Regret Minimization Set (RMS)
queries as a solution to overcome the drawbacks of top-k queries and skyline
queries. RMS computes a smaller, more representative subset Q from a large
dataset P , ensuring that for any utility function, the maximum utility value
in Q has a small error compared to the maximum utility value in P . RMS
incorporates features of both top-k and skyline queries, eliminating the need for
users to supply utility functions and producing significantly smaller result sets
compared to skyline queries. To further reduce the set size, Chester et al. [4]
relaxed the RMS definition and introduced k-RMS. For k-RMS, the error in Q
is defined as the gap between the highest utility value in Q and the kth highest
utility value in P , with this gap referred to as the regret ratio. Studies [4–6]
have demonstrated the complexity of the k-RMS problem, showing that it is
NP-hard when the dimensionality d ≥ 3. Subsequently, numerous algorithms
have been proposed to improve the efficiency of computing k-RMS [7–9], as well
as to consider its computation in dynamic environments [6,10,11].

A utility function represents a potential user preference, while both RMS
and k-RMS only guarantee a result under any given utility function. However,
users may require more results under this preference, and the more diverse these
results, the better. Consider the following example: a car database has the fol-
lowing three products information: (1) 130HP and 50MPG, (2) 130HP and
52MPG, (3) 200HP and 37MPG. Suppose the utility values of these products,
computed by a specific utility function, are 2.0, 1.9, and 1.8. If the desired result
set size is 2, with a tolerance error of less than or equal to 0.2, providing prod-
ucts (1) and (3) offers more diverse choices for the user. A large body of research
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exists on query result diversity [12–15]. However, no work has considered diver-
sity when computing RMS. Result diversity refers to the lower similarity between
the returned results, the better, and the similarity between two points in the
dataset is typically measured by the distance between them. The optimization
objective of maximizing result diversity is to maximize the sum of the distances
between any two points in the result set, which is called the Max-sum Diversi-
fication (MSD) problem [16]. In addition to diversity, data freshness is another
data characteristic that needs to be considered when computing regret sets. Data
points in a database often have temporal characteristics; even in read-oriented
environments like data warehouses, data is usually updated in batch periodi-
cally. In particular, in sensor network, sensing devices continuously collect data
and periodically transmit the data back to the database. During multi-criteria
decision-making on these data, data freshness is an important indicator.

Based on the above discussion, this paper extends RMS and defines the
Strong Regret Minimization Set (SRMS). For any utility function, the returned
result set Q contains k data points whose the kth highest utility value have an
error guarantee with the kth highest utility value of P . This error is called the
maximum strong regret rate, denoted as lk(Q). Based on the SRMS definition,
this paper studies the following two problems: (1) Min-size (MS) problem, which
minimizes the size of Q with the premise that lk(Q) ≤ ε, and (2) Max-sum
Diversity and Freshness (MSDF) problem, which jointly considers diversity and
freshness in defining the scoring function of Q. Under the premise that lk(Q) ≤ ε,
the score of Q is maximized. This paper discusses the computation of the MSDF
problem under Manhattan distance (l1), Euclidean distance (l2), and Chebyshev
distance (l∞) for measuring the diversity between two points.

The rest of the paper is organized as follows: Firstly, Sect. 2 defines the prob-
lem to be solved in this paper and introduces the relevant background knowledge.
Then, Sect. 3.1 proposes a method for solving the MS problem, and Sect. 3.2
provides the algorithms for the MSDF problem under l1, l2, and l∞ distances,
respectively. Finally, Sect. 4 concludes this paper.

2 Preliminaries

In this section, we first present several basic notions used throughout the paper
in Sect. 2.1 and formally define the problems in Sect. 2.2. Then, we analyze the
hardness of formalized problems in Sect. 2.3. Finally, In Sect. 2.4, we introduce
the concepts of ε-coreset, δ-net and set multicover problem, on which our algo-
rithms will be built.

2.1 Basic Notions

Let P be a set of n d-dimensional points. For each point p ∈ P , the value on
the ith dimension is represented as p[i]. Before introducing the problem, we first
present some related concept, following [4,6,10,11], we focus on the popular-in-
practice linear utility functions.
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Definition 1. (Linear utility function) Given a class of linear utility functions
U = {u ∈ R

d : ||u|| = 1}, a utility function u is a mapping u: R
d → R, the utility

value of a data point p is denoted as ω(u, p), ω(u, p) = 〈u, p〉 =
∑d

i=1 uip[i],
which shows how satisfied the user is with the data point.

Given a utility function u and a integer k ≥ 1, let ϕk(u, P ) represent the data
point with the kth highest utility value in P , and ωk(u, P ) denotes its utility
value, where ω1(u, P ) is abbreviated as ω(u, P ). The definition of regret ratio of
k-RMS problem is as follows [4,6,10,11]:

Definition 2. (Regret ratio) Given a dataset P , a subset Q of P and a utility
function u. The regret ratio of Q, represented as l(u,Q, P ), is defined as

l(u,Q, P ) =
max{0, ωk(u, P ) − ω(u,Q)}

ωk(u, P )
.

Given a utility function u, the regret ratio of Q represents the loss of the
highest utility value in Q relative to the kth highest utility value in P . For a
class of utility functions U , the definition of maximum regret ratio is as follows:

Definition 3. (Maximum regret ratio) Given a dataset P , a subset Q of P and
a class of utility functions U . The maximum regret ratio of Q, represented as
l(Q,P ), is defined as

l(Q,P ) = max
u∈U

l(u,Q, P ).

In this paper, when the context is clear, we will use the shorthand notation
l(u,Q) and l(Q) for l(u,Q, P ) and l(Q,P ), respectively. The definition of l(Q)
indicates that it is monotonically decreasing with respect to k. That is, for any
k

′ ≤ k, l(Q) ≤ l(Q
′
), where Q

′
is the regret set corresponding to k

′
. If the

maximum regret rate of Q is l(Q) ≤ ε, then Q is called a (k, ε)-RMS. Obviously,
for any k ≥ 1, a (1, ε)-RMS is also a (k, ε)-RMS.

The definition of (k, ε)-RMS only ensures the maximum utility value error for
Q w.r.t. any u ∈ U . Unlike this definition, we propose a more stringent definition
of the regret rate, which guarantees the error of k utility values for Q w.r.t. u,
is defined as

Definition 4. (Strong regret ratio) Given a dataset P , a subset Q of P and
a class of utility functions U . The maximum regret ratio of Q, represented as
lk(u,Q), is defined as

lk(u,Q) = max
1≤i≤k

1 − ωi(u,Q)
ωk(u, P )

.

Correspondingly, this paper defines the maximum strong regret ratio as
lk(Q) = maxu∈U lk(u,Q). If the maximum strong regret ratio of Q, lk(Q) ≤ ε,
then Q is called a (k, ε)-SRMS. Clearly, if Q is a (k, ε)-SRMS for P , then Q is
also a (k, ε)-RMS for P .
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Definition 5. (Freshness) Given a data point p, its freshness represented as
F (p), which is computed by the following exponential decay function.

F (p) = B(tcur−tp).

where B ∈ (0, 1) is the base number determining the decay rate, tcur denotes
the current time, and tp represents the time when point p is inserted into the
database.

For a dataset Q, its freshness is defined as the sum of the freshness decay of
all the data in the set, i.e., F (Q) =

∑
p∈Q F (p).

Definition 6. (Diversity) Given data points p and q, the diversity between them
is represented as D(p, q), which is described by the distance dist(p, q) between p
and q.

D(p, q) = dist(p, q).

For a dataset Q, its diversity is defined as the sum of the pairwise distances
between all data points in the set, that is, D(Q) =

∑
p,q∈Q D(p, q). In this paper,

the distance function dist(·, ·) being studied includes the following three distance
functions for numerical attributes: Manhattan distance (l1), Euclidean distance
(l2), and Chebyshev distance (l∞).

In this paper, we propose a scoring function that takes into account both
freshness and diversity. For a given set Q. The scoring function is defined as
follows: f(Q) = αD(Q) + (1− α)F (Q). Here, the parameter α ∈ [0, 1] is used to
weigh the importance of diversity and freshness.

2.2 Problem Definition

In this paper, we study the following two problems.

Problem 1. (Minimization set problem, MS): Given a dataset P , an integer k ≥
1, a class of utility functions U and a parameter ε > 0, compute a subset Q∗ ⊆ P
such that lk(Q∗) ≤ ε and |Q∗| is minimized, i.e., return a set

Q∗ = arg min
Q⊆P,lk(Q)≤ε

|Q|.

Problem 2. (Max-sum Diversity and Freshness, MSDF) Given a dataset P , an
integer k ≥ 1, a class of utility functions U and a parameter ε > 0, compute a
subset Q∗ ⊆ P such that lk(Q∗) ≤ ε and f(Q∗) is maximized, i.e., return a set

Q∗ = arg max
Q⊆P,lk(Q)≤ε

f(Q).

We refer to the MSDF problem, which measures diversity using the l1, l2,
and l∞ distance functions, as the MSDF-l1 problem, MSDF-l2 problem, and
MSDF-l∞ problem, respectively.
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2.3 Hardness

We prove the NP-hardness for MS and MSDF problems by reducing RMS prob-
lem to them.

Theorem 1. The MC and MSDF problems are both NP-hard when d ≥ 3.

Proof. Given an instance I1 of RMS problem with the dataset as P , a class of util-
ity functions U and a parameter ε > 0. Construct an instance I2 = (P

′
,U ′

, ε
′
, k)

of MS problem by the following function: P
′
= P , U ′

= U , ε
′
= ε and k = 1.

Let Q∗ is the optimal solution of I1, we can construct the solution as Q
′
= Q∗

for I2. Apparently, Q
′
is the optimal solution for I2.

Similarly, we can also reduce the RMS problem to the MSDF problem.
Clearly, the reduction could be accomplished in polynomial time. Since RMS

is an NP-hard problem for any constant d ≥ 3 [5], The MS and MSDF problem
are both NP-hard problem for any constant d ≥ 3.

2.4 Background

δ-net. For a given parameter δ > 0, a set N ⊂ U is a δ-net iff for any u ∈ U ,
there exists v ∈ N such that the angle between u and v is less than δ. The
δ-net is widely used to transform the RMS problem into a hitting set problem
or set coverage problem [6,10,11,18]. A δ-net of size O( 1

δd−1 ) can be obtained
by extracting a uniform grid from U . In practical applications, a δ-net can be
obtained by randomly and uniformly sampling O( 1

δd−1 log 1
δ ) points on U [19].

The δ-net in this paper is centrosymmetric, that is, if u ∈ N , then −u ∈ N .

Set Multicover Problem. The Set Multicover Problem (SMC) is a general-
ization of the set cover problem. Given a universe U = a1, · · · , an of n elements,
and a family of sets S = S1, · · · , Sm, where for i = 1, · · · ,m, Si ⊆ U . For each
a ∈ U , there is a positive integer τa > 0 that represents the number of times a
needs to be covered. The goal of SMC is to select the smallest group of sets to
cover the entire U according to the cover count requirement. The approximation
ratio of the greedy algorithm for solving the SMC problem is O(log |U |) [20].

3 Algorithm and Algorithm Analysis

Due to the NP-hardness of MS and MSDF problems, this section first provides
an approximate solution to the MS problem based on the computation of ε-
coreset in Sect. 3.1, and analyzes the approximation ratio and time complexity
of the proposed algorithm. Then, in Sect. 3.2, we discuss the computation of the
MSDF-l2 problem, MSDF-l1 problem, and MSDF-l∞ problem, respectively, and
analyze the approximation ratio and time complexity of each algorithm.
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3.1 Algorithm for MS

This section proposes an algorithm that approximately solves the MS problem
based on computing ε-coreset. The core idea is to discretize the entire utility
space U into a finite number of utility functions W, and then use the smallest
set Q to k-cover W, thereby ensuring that lk(Q) ≤ ε. Here, k-cover means that
for any u ∈ W, there are at least k points in Q whose utility values are not much
less than ωk(u, P ).

Let B be the d standard basis vectors of R
d
+: v1, · · · , vd, N be the δ-net of U ,

and ε = ε − 2dδ
c , where c = mini∈[1,d] ωk(vi, P ). The ε-approximate top-k results

of P w.r.t. u are represented as Φk,ε(u, P ) = {p ∈ P : 〈u, p〉 ≥ (1− ε) ·ωk(u, P )}.
The pseudocode of the algorithm is shown in Algorithm 1. Specifically: construct
the utility function set W composed of B and N (lines 1–3); for each u ∈ W,
p ∈ P , if p ∈ Φk,ε(u, P ), add u to the set Sp (lines 5–8); construct the set system
Σ = (W,S), where S = {Sp : p ∈ P} (line 9); select the data set Q with the
minimum size using a greedy method to make it k-cover W (lines 10–21); return
Q (line 22).

Algorithm 1: MS
Input: Dataset P , parameter ε ∈ (0, 1)
Output: Q

1 Construct B as d basis vectors
2 Construct N as a δ-net of U
3 Let W = B ∪ N
4 Initialize Q = ∅ and U

′
= W

5 For each p ∈ P , set Sp = ∅

6 foreach u ∈ W do
7 Sp ← Sp ∪ {u : p ∈ Φk,ε(u, P )}
8 end
9 Construct Σ = (W,S), where S = {Sp : p ∈ P}

10 For each u ∈ W, set count(u) = 0
11 while U

′ �= ∅ do
12 p∗ ← argminp∈P\Q |Sp ∩ U

′ |
13 Q ← Q ∪ {p∗}
14 foreach u ∈ Sp∗ do
15 count(u) + +
16 if count(u) == k then
17 U

′ ← U
′ \ u

18 end
19 end
20 S ← S \ Sp∗

21 end
22 return Q
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Theorem 2. Q returned by Algorithm 1 is a (k, ε)-SRMS, i.e., lk(Q) ≤ ε. The
approximation ratio of Q is O(d log 1

δ ), and the time complexity of Algorithm 1
is O(n|Q||W |), where |W| = O( 1

δd−1 ), |Q| = O( k
ε(d−1)/2 ).

Proof. Due to N is a δ-net of U , ∀u ∈ U , ∃v ∈ N such that ||v − u||2 ≤ δ.
Therefore, for each p ∈ P , the following formula holds [6,10].

|〈v, p〉 − 〈u, p〉| = |〈v − u, p〉| ≤ ||v − u||2 · ||p|| ≤ δ ·
√

d. (1)

where we have used the Cauchy-Schwarz inequality for the first inequality, and
the second inequality holds since ||v − u||2 =

√
2 − 2 cos(∠vOu) = 2 sin ∠vOu

2 ≤
δ||p|| ≤ d.

Q is a k-cover solution of Σ, for each v ∈ W, ∃Qv ⊆ P , |Qv| = k, such that for
each q ∈ Qv, 〈v, q〉 ≥ (1− ε) · ωk(v, P ). For a basis vector vi ∈ W,i ∈ [1, d], each
q ∈ Qvi

, 〈vi, q〉 ≥ (1−ε)·ωk(vi, P ), hence, 〈vi, q〉 ≥ (1−ε)·c. Given that ||u|| = 1,
there exists an i for any u ∈ U such that u[i] ≥ 1√

d
. Hence, for any u ∈ U , there

exists Qvi
such that for each q ∈ Qvi

, 〈u, q〉 ≥ 〈vi, q〉 · 1√
d

≥ (1 − ε) · c√
d
.

Next, we discuss two cases separately.
Case 1: ωk(u, P ) ≤ c√

d
: For each u ∈ U , exists Qvi

such that for each q ∈
Qvi

, 〈u, q〉 ≥ (1 − ε) · ωk(u, P ) ≥ (1 − ε) · ωk(u, P ). Since |Qvi
| = k, therefore

lk(u,Q) ≤ ε.
Case 2: ωk(u, P ) > c√

d
: For each u ∈ U , let v ∈ W such that ||v − u||2 ≤ δ.

Let p1, · · · , pk represent the top-k results of P w.r.t. u. According to formula (1),
for i ∈ [1, k], we have 〈v, pi〉 ≥ 〈u, pi〉−δ ·√d, which is 〈v, pi〉 ≥ ωk(u, P )−δ ·√d.
In other words, there exist k points in P , the utility values of which w.r.t. v are
at least ωk(u, P ) − δ · √d, i.e., ωk(v, P ) ≥ ωk(u, P ) − δ · √d. Hence, there exists
a set Qv, with |Qv| = k, such that for each q ∈ Qv,

〈u, q〉 ≥ 〈v, q〉 − δ ·
√

d ≥ (1 − ε) · ωk(v, P ) − δ ·
√

d

≥ (1 − ε) · (ωk(u, P ) − δ ·
√

d) − δ ·
√

d

≥ (1 − ε − (1 − ε)dδ

c
− dδ

c
) · ωk(u, P )

≥ (1 − ε − 2dδ

c
) · ωk(u, P ) = (1 − ε) · ωk(u, P ).

Considering the above both cases, we have lk(Q) ≤ ε.
The time complexity of the algorithm consists of the following parts: the

time to construct W is O( 1
δd−1 ), the time to construct Σ is O(n|W |). Due to the

possible size of the top-k result set for an ε-approximate solution being O(n),
the time to greedily solve the set multicover problem is O(n|Q||W |).

3.2 Algorithms for MSDF

This section first discusses the solution of the MSDF-l2 problem, which measures
diversity using the most common l2 distance. It then separately solves the MSDF-
l1 and MSDF-l∞ problems.
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Theorem 2 proves that as long as Q is a k-cover of Σ, then for any u ∈ U , there
exists Qu ⊆ Q, |Qu| = k, lk(u,Qu) ≤ ε. In fact, here Qu ⊆ Φk,ε(v, P ), where
v ∈ W such that ||v − u|| ≤ δ, or v is a basis vector. Therefore, the MSDF-l2
problem is transformed into finding the k subsets Qv with the highest scores
from Sv = Φk,ε(v, P ) for each v ∈ W, that is, Q∗

v = argmaxQv⊆Sv,|Qv|=k f(Qv).
Then Q∗ = ∪v∈WQv

∗, f(Q∗) =
∑

v∈W f(Qv
∗). The pseudocode of the algorithm

is shown in Algorithm 2.

Algorithm 2: MSDF-l2
Input: Dataset P , parameter ε ∈ (0, 1)
Output: Solution Q to the MSDF-l2 problem over P

1 Construct B as d basis vectors
2 Construct N as the δ-net of U
3 Let W = B ∪ N
4 foreach v ∈ W do
5 Let Sv = Φk,ε(v, P )
6 Compute Q∗

v = MSD(Sv,N , k) by Algorithm 3
7 end
8 Q∗ = ∪v∈WQ∗

v

9 return Q∗

Define a distance function f
′
: for pi, pj ∈ P , if p = q, f

′
(p, q) = 0, otherwise

f
′
(p, q) = αD(p, q)+ 1−α

k−1 (F (p)+F (q)). For Qv ⊆ Sv, f(Qv) =
∑

p,q∈Qv
f

′
(p, q),

the MSDF-l2 problem is to solve Q∗
v = argmaxQv⊆Sv,|Qv|=k

∑
p,q∈Qv

f
′
(p, q).

Literature [21] presents an approximation algorithm to solve such problem, which
selects the two furthest points to be included in the result set in each itera-
tion, and obtains the approximate result with the maximum diversity through
k/2 iterations. However, the time complexity of simply implementing this algo-
rithm is O(kn2). This paper refers to the literature [14], using the relation-
ship between the distance and the inner product of points in space, that is,
||p − q||2 = maxu∈U 〈p − q, u〉, define the following new distance function f

′′
,

and turn the search for the furthest point pair about f
′

into the search for the
furthest point pair about f

′′
. The new distance function f

′′
: for pi, pj ∈ P , if

p = q, f
′′
(p, q) = 0, otherwise f

′′
(p, q) = αmaxu∈N 〈p − q, u〉+ 1−α

k−1 (F (p)+F (q)).
Next, this paper presents an approximate algorithm (Algorithm 3) for computing
Qv = argmaxQv⊆Sv,|Qv|=k

∑
p,q∈Qv

f
′′
(p, q).

Define the score s(p, u) = α〈p, u〉 + 1−α
k−1F (p). Let ϕs

k(u, Sv) represent the
data point with the kth highest score under u in Sv, ωs

k(u, Sv) is the corre-
sponding score value, and Φs

k(u, Sv) represents the set of data points with the
top-k scores under u in Sv. The pseudocode of the algorithm is as shown in
Algorithm 3. Each round of the algorithm proceeds as follows: Firstly, for each
u,−u ∈ N , we consider the following 3 cases: Case 1: ϕs

1(u, Sv) �= ϕs
1(−u, Sv)

(because when the freshness of a point dominates, ϕs
1(u, Sv) may be equal

to ϕs
1(−u, Sv)), we let ξu = ϕs

1(u, Sv) and ξ−u = ϕs
1(−u, Sv) (lines 3–6).

Case 2: ϕs
1(u, Sv) = ϕs

1(−u, Sv), and ωs
1(u, Sv) + ωs

2(−u, Sv) ≥ ωs
1(−u, Sv) +
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ωs
2(u, Sv), we let ξu = ϕs

1(u, Sv) and ξ−u = ϕs
2(−u, Sv) (lines 7–10). Case 3:

ϕs
1(u, Sv) = ϕs

1(−u, Sv), and ωs
1(u, Sv) + ωs

2(−u, Sv) < ωs
1(−u, Sv) + ωs

2(u, Sv),
we let ξu = ϕs

2(u, Sv) and ξ−u = ϕs
1(−u, Sv) (lines 11–13). Then, for all

u,−u ∈ N , add the ξu∗ , ξ−u∗ that make s(ξu∗ , u∗)+s(ξ−u∗ ,−u∗) the largest into
Qv (line 16). Finally, delete ξu∗ , ξ−u∗ from Sv (lines 17–20). The algorithm iter-
ates k/2 rounds in total, and when k is odd, the algorithm chooses the freshest
point from the remaining points in the last round.

Algorithm 3: MSD(Sv, N , k)
Input: Sv, N , k
Output: Q∗

v

1 Initializes round = 0, Q∗
v = ∅

2 while round ≤ k/2, round ++ do
3 foreach u ∈ N do
4 if ϕs

1(u, Sv) �= ϕs
1(−u, Sv) then

5 ξu = ϕs
1(u, Sv), ξ−u = ϕs

1(−u, Sv)
6 end
7 if ϕs

1(u, Sv) == ϕs
1(−u, Sv) then

8 if ωs
1(u, Sv)+ωs

2(−u, Sv) ≥ ωs
1(−u, Sv)+ωs

2(u, Sv) then
9 ξu = ϕs

1(u, Sv), ξ−u = ϕs
2(−u, Sv)

10 end
11 else if ωs

1(u, Sv)+ωs
2(−u, Sv) < ωs

1(−u, Sv)+ωs
2(u, Sv) then

12 ξu = ϕs
2(u, Sv), ξ−u = ϕs

1(−u, Sv)
13 end
14 end
15 end
16 Q∗

v ← Q∗
v ∪ {ξu∗ , ξ−u∗ : u∗ = argmaxu∈N s(ξu, u) + s(ξ−u,−u)}

17 foreach u ∈ N do
18 If ξv ∈ Φs

k(u, Sv), then Φs
k(u, Sv) ← Φs

k(u, Sv) \ ξv

19 If ξ−v ∈ Φs
k(u, Sv), then Φs

k(u, Sv) ← Φs
k(u, Sv) \ ξ−v

20 end
21 end
22 return Q∗

v

Lemma 1. The Algorithm 3 selects ξu∗ , ξ−u∗ in each iteration, which are the
farthest point pair concerning the distance function f

′′
.

Proof. Let the remaining data after the r − 1 round of the algorithm be Sr−1.
For the point pairs ξu∗ , ξ−u∗ added in the rth round of the algorithm, prove
that f

′′
(ξu∗ , ξ−u∗) = maxp,q∈Sr−1 f

′′
(p, q). First, we need to prove that for any

u and any p, q ∈ Sr−1, s(ξu, u) + s(ξ−u,−u) ≥ s(p, u) + s(q,−u). In the first
case, according to the definition, ωs

1(u, Sv) ≥ s(p, u) and ωs
1(−u, Sv) ≥ s(q,−u),

therefore ωs
1(u, Sv) + ωs

1(−u, Sv) ≥ s(p, u) + s(q,−u). Next, we discuss case
2 (case 3 is symmetric), when p �= ϕs

1(u, Sv) = ϕs
1(−u, Sv), according to the

definition, ωs
2(u, Sv) ≥ s(p, u) and ωs

1(−u, Sv) ≥ s(q,−u), therefore ωs
1(u, Sv) +

ωs
2(−u, Sv) ≥ ωs

2(u, Sv)+ωs
1(−u, Sv) ≥ s(p, u)+s(q,−u). When q �= ϕs

1(u, Sv) =
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ϕs
1(−u, Sv), according to the definition, ωs

2(−u, Sv) ≥ s(q,−u) and ωs
1(u, Sv) ≥

s(p, u), therefore ωs
1(u, Sv) + ωs

2(−u, Sv) ≥ s(p, u) + s(q,−u). In the rth round,
ξu∗ and ξ−u∗ are selected, where u∗ = argmaxu∈N s(ξu, u)+s(ξ−u,−u). Let u1 =
argmaxu∈N 〈p − q, u〉, s(ξu∗ , u∗) + s(ξ−u∗ ,−u∗) = f

′′
(ξu∗ , ξ−u∗) ≥ s(ξu1 , u1) +

s(ξ−u1 ,−u1) ≥ s(p, u1) + s(q,−u1) = f
′′
(p, q). Since p, q are arbitrary, hence,

ξu∗ , ξ−u∗ are the farthest point pair under the current dataset w.r.t. the distance
function f

′′
.

Lemma 2. f
′′
(p, q) ≥ (1 − cos δ)f

′
(p, q).

Proof. By the definition of the δ-net, for any u ∈ U , there exists a v ∈ N
such that ∠vOu ≤ δ. Let u = argmaxu∈U 〈p − q, u〉, then αmaxu∈N 〈p−q,u〉

α〈p−q,u〉 ≥
α〈p−q,v〉
α〈p−q,u〉 ≥ cos∠vOu ≥ cos δ. f

′′
(p, q) = αmaxu∈N 〈p − q, u〉 + 1−α

k−1 (F (p) +

F (q)) ≥ (1−cos δ)(αmaxu∈U 〈p − q, u〉+ 1−α
k−1 (F (p)+F (q))) = (1−cos δ)f

′
(p, q).

Lemma 3. For a instance (P , dist(·, ·), k) of MSD problem, the algorithm iter-
ates k/2 rounds, choosing the furthest pair of points under the distance function
dist(·, ·) from P in each round. This algorithm obtains a solution with an asymp-
totically tight approximation ratio of 2.

Proof. See Theorem 3.2 in [21].

Theorem 3. The approximate ratio of Q∗
v computed by Algorithm 3 is 2

cos δ ,
and the time complexity of Algorithm 3 is O(|N |k log k).

Proof. Let Q1 and Q2 be the solutions obtained under the distance functions f
′′

and f
′
by Algorithm 3, respectively, and let Q∗ be the optimal solution of the prob-

lem. We have f(Q∗)
f(Q2)

≤ 2 and f(Q2)
f(Q1)

≤ 1
cos δ . Therefore, f(Q1)

f(Q∗) ≥ 2
cos δ . The time com-

plexity comes from the fact that for each u ∈ N , the computation and maintenance
of Φs

k(u, Su) are respectively O(n|N |) and O(log k). The computation needs to be
done only once, and the maintenance needs O(k|N |). Algorithm 3 is a subroutine
of Algorithm 2. In fact, in practice, Algorithm 2 can compute both Su = Φk,ε(u, P )
and Φs

k(u, Su) (if u ∈ N ) for each u ∈ W at the same time. Therefore, the time
complexity of Algorithm 3 is merely the cost of maintaining Φs

k(u, Su).

Finally, we obtain the following corollary about the approximation ratio and
time complexity for solving the MSDF-l2 problem.

Corollary 1. The Algorithm 2 solves the MSDF-l2 problem with an approxima-
tion ratio of 2

cos δ , and the time complexity is O(|W|(n + k log k)).

When the diversity between two points is measured by the l1 distance, since
||p − q||1 ≥ ||p − q||2 ≥ ||p−q||1√

d
, using the solution obtained by Algorithm 2 as

the solution to the MSDF-l1 problem results in an approximation ratio of 2
√

d
cos δ .

In fact, there exist algorithms that solve the MSDF-l1 problem with a smaller
approximation ratio and lower complexity than Algorithm 2.

Let Sa = a1, · · · , ad be a d-dimensional point set of size d, where ai rep-
resents a d-dimensional point with the ith dimension being 1 and the other
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dimensions being 0. For instance, when d = 3, a1 = (1, 0, 0), a2 = (0, 1, 0),
and a3 = (0, 0, 1). Let Sb be a d-dimensional point set of size 2d, where each
point b in Sb has each dimension being either 1 or −1. Then, ||p − q||1 =
∑d

i=1 |〈p − q, ai〉| = maxb∈Sb
〈p, b〉 + 〈q,−b〉. Let s(p, b) = α〈p, b〉 + 1−α

k−1F (p).
Analogous to the solution process for the MSDF-l2 problem, we simply uti-
lize (Sv, Sb, k) as the input to Algorithm 3. For the MSDF-l∞ problem, we
have ||p − q||∞ = maxi∈[1,d] |〈p − q, ai〉| = maxi∈[1,d] |〈p, ai〉 + 〈q,−ai〉|. Let
s(p, a) = α〈p, a〉+ 1−α

k−1F (p), simply taking (Sv, Sa, k) as the input of Algorithm
3 will provide the solution to the problem. The pseudocode of the algorithm
solving the MSDF-l1 and MSDF-l∞ problems is shown in Algorithm 4.

Algorithm 4: MSDF-l1 and MSDF-l∞
Input: Dataset P , parameterε ∈ (0, 1)
Output: The solution Q of the MSDF-l1 or MSDF-l∞ problem on P

1 Construct B as d basis vectors
2 Construct N as the δ-net of U
3 let W = B ∪ N
4 foreach v ∈ W do
5 Sv = Φk,ε(v, P )
6 if l1 then
7 Compute Q∗

v = MSD(Sv, Sb, k) by Algorithm 3
8 end
9 if l∞ then

10 Compute Q∗
v = MSD(Sv, Sa, k)by Algorithm 3

11 end
12 end
13 Q∗ = ∪v∈WQ∗

v

14 return Q∗

Theorem 4. Algorithm 4 achieves an approximation ratio of 2 for both the
MSDF-l1 and MSDF-l∞ problems. The time complexities for these problems are
O(n(|W| + 2d) + 2dk log k) and O(n(|W| + d) + dk log k), respectively.

Proof. The proof of this theorem follows the same process as Theorem 3. We
omit the details here.

4 Conclusion

This paper addresses the shortcoming of the current definition of RMS, which
can only ensure one result under a utility value and ignoring data diversity
and freshness, by proposing the definition of SRMS. Based on this new defi-
nition, this paper studies the Minimum Set problem (MS) and the Max-sum
Diversity and Freshness problem (MSDF). For the MS problem, an algorithm
with an approximation ratio of O(d log 1

δ ) is proposed. For the MSDF problem,
this paper transforms the MSDF problem into the MSD problem, and designs
approximation algorithms with approximate ratios of 2

cos δ , 2, and 2 respectively
for diversity measurements under l2, l1, and l∞ distances.
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Abstract. For the adversarial multi-armed bandit problem with delayed
feedback, we consider that the delayed feedback results are from multiple
users and are unrestricted on internal distribution. As the player picks an
arm, feedback from multiple users may not be received instantly yet after
an arbitrary delay of time which is unknown to the player in advance.
For different users in a round, the delays in feedback have no latent cor-
relation. Thus, we formulate an adversarial multi-armed bandit problem
with multi-user delayed feedback and design a modified EXP3 algorithm
named MUD-EXP3, which makes a decision at each round by consid-
ering the importance-weighted estimator of the received feedback from
different users. On the premise of known terminal round index T , the
number of users M , the number of arms N , and upper bound of delay
dmax, we prove a regret of O(

√
TM2 ln N(Ne + 4dmax)).
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1 Introduction

Multi-armed Bandit (MAB) problems are a collection of sequential decision-
making problems that attract increasing attention for substantial application
scenarios such as recommendation systems [10], online advertising [2], and clini-
cal trials [13]. They refer to adopting an action at each round and collecting feed-
back information for subsequent action selection. In the conventional stochastic
bandits, the feedback generated from actions is assumed to follow a fixed but
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unknown distribution, where the player can gradually estimate the expected
feedback through continuous interaction with the environment. However, the
potential feedback distribution tends to alter with time in the real world. For
example, the audience of an advertisement change with time, leading to variation
in the feedback distribution due to individuality. This induces the adversarial
bandit problems [1], a.k.a. the non-stochastic bandits, of which the feedback of
a certain action can arbitrarily change over time as if they are selected by an
adversary. Furthermore, it experiences delays between conducting actions and
receiving feedback. This triggers off the problem of adversarial bandits with
delayed feedback [3,6,11,12,14].

However, the existing works only consider single-user feedback situations but
not feedback from multiple users at a time. As an example, for online advertis-
ing, an advertisement is taken out for multiple users at a time and the delays in
receiving those users’ feedback are different. The new advertisement has to be
put in before receiving all the user feedback of the last-round advertisement. In
this situation, the user group can vary with time, corresponding to arbitrarily
changed feedback in adversarial bandits. In this paper, we focus on oblivious
adversary bandits with multi-user obliviously delayed feedback, where the feed-
back and delays for all arms, all users, and all rounds are arbitrarily chosen in
advance. Specifically, the player executes an arm out of total N arms on M
distinct users at round t. Then, the feedback from user j is observed at round
t+dj

t , where dj
t is the delay of the feedback. To solve this problem, we propose a

modified EXP3 algorithm [1] named MUD-EXP3 which effectively distinguishes
the potential optimal arms. At each round, the player chooses an arm accord-
ing to the importance-weighted estimator of the received feedback from different
users. In addition, we conduct a detailed theoretical analysis and prove the upper
bound of regret for the proposed algorithm.

The main contributions of the paper are summarized as the following points:

– We introduce a sequential decision-making problem with multi-user delayed
feedback, which is ubiquitous in real-life situations. Then, we model it by
using an adversarial bandit framework considering the trait of varying indi-
vidual loss.

– We propose a modified EXP3 algorithm to adapt to our problem setting,
which adopts an importance-weighted estimating method for the received
feedback from different users in order to effectively balance exploration and
exploitation.

– Sound and detailed theoretical analysis is presented to derive the regret upper
bound of the proposed algorithm, achieving sublinear properties with regard
to the terminal round index T .

2 Problem Formulation

Suppose the time is discretized into consecutive rounds. We consider an adversar-
ial multi-armed bandit environment with N arms where the player selects an arm
At at round t and the corresponding feedback is generated from M individual
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Algorithm 1 MUD-EXP3
Input: N , M, T , learning rate η, upper bound on the delays dmax;

1: Truncate the learning rate: η′ = mini∈N
{

η, 1
MNe(dmax+1)

}
;

2: Initialize L̂i(1) = 0, pi(1) = 1
N

for any arm i ∈ N ;
3: for t = 1, 2, · · · , T do
4: Draw an arm At ∈ N according to the distribution p(t);
5: Observe a set of delayed losses {ljAs

(s)|(s, j) ∈ Φt};

6: Update the cumulative estimated loss L̂i(t) for all i ∈ N :

7: l̂ji (s) =
I{As=i}·lji (s)

pi(s)
, (s, j) ∈ Φt; �i(t) =

∑
(s,j)∈Φt

l̂ji (s);

8: L̂i(t) = L̂i(t − 1) + �j
i (t)

9: Update the distribution p(t + 1):

10: Wi(t) = exp(−η′L̂i(t)); pi(t + 1) = Wi(t)∑N
k=1 Wk(t)

for all i ∈ N ;

11: p(t + 1) = [p1(t + 1), · · · , pN (t + 1)];
12: end for

users. We use the notation [K] = {1, 2, · · · ,K} for brevity, then we define the set
of arm indexes as N = {i|i ∈ [N ]}, the set of user indexes as M = {j|j ∈ [M ]}
and the set of round indexes as T = {t|t ∈ [T ]}. We use the loss rather than
the reward to represent the feedback, denoted as lji (t) for loss from user j by
selecting arm i at round t. The loss ljAt

(t) is observed by the player after dj
t

rounds where the delay dj
t is a non-negative integer and dmax = max{dj

t}. In
other words, the player will observe a bunch of feedback losses {ljAs

(s)|s+dj
s = t}

at round t. Without loss of generality, we assume lji (t) ∈ [0, 1]. Note that there
is no restriction on the distribution of dj

t for generality. The losses of arms and
the delays are arbitrarily chosen by an adversary prior to the start of the game,
which is known as an oblivious adversary.

The objective is to find a policy of the player for the sequential arm selection
in order to approximate the performance of the best fixed arm in hindsight. We
use the expected regret as the measure of the approximation, which is defined as
the difference between the expected cumulative loss induced by the player and
the cumulative loss of the best arm in hindsight, as shown below:

R = E

⎡
⎣

T∑
t=1

M∑
j=1

ljAt
(t)

⎤
⎦ − min

i∈N

T∑
t=1

M∑
j=1

lji (t). (1)

3 Algorithm

We propose an algorithm named MUD-EXP3 (Multi-User Delayed EXP3) to
solve this problem. MUD-EXP3 is devised based on the well-known EPX3 algo-
rithm and takes into account the multi-user delayed feedback. The detailed algo-
rithm is laid out in Algorithm 1. We assume the terminal round T and the upper
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bound on the delays dmax are known. The input learning rate η has to be trun-
cated first if it is over 1/(MNe(dmax + 1)) for the guarantee of upper bound on
regret.

At each round, MUD-EXP3 chooses an arm according to the softmax dis-
tribution p(t) derived from the cumulative estimated rewards, i.e. the minus
cumulative expected losses, of each arm, where p(t) = [p1(t), · · · , pN (t)] and the
cumulative estimated loss of arm i is denoted by L̂i(t). Note that the rounds
and the users that contribute to the received losses at a round are arbitrary.
For convenience, we first introduce the set of round-user pairs whose feedback
losses are observed at round t as Φt, and represent the set of round-user pairs
whose feedback losses are received out of the terminal round T as Ω, where
Φt = {(s, j)|s + dj

s = t} and Ω = {(s, j) ∈ Φt(t > T )}. The importance-weighted
estimator l̂ji (t) is adopted to estimate the loss lji (t) for introducing the explo-
ration into the algorithm, which is defined as:

l̂ji (t) =
I{At = i} · lji (t)

pi(t)
. (2)

We wrap up the sum of the estimated losses at round t as �i(t) =
∑

(s,j)∈Φt
l̂ji (s).

Then, the cumulative estimated loss is:

L̂i(t) = L̂i(t − 1) + �i(t). (3)

Let Wi(t) = exp(−η′L̂i(t)). The probability of choosing arm i at round t which is
conditioned on the history observed after t−1 rounds is of the softmax function:

pi(t) =
Wi(t − 1)∑N

k=1 Wk(t − 1)
. (4)

Define the filtration Ft as Ft = σ
({

As|s + dj
s ≤ t

})
, where σ

({
As|s + dj

s ≤ t
})

denotes the σ-algebra generated by the random variables in
{
As|s + dj

s ≤ t
}
.

Note that the distribution p(t) is Ft−1-measurable since p(t) is a function of all
feedback received up to round t − 1.

4 Regret Analysis

In this section, we establish the regret upper bound for MUD-EXP3. The regret
is defined as Eq. (1) in terms of the optimal arm in hindsight. However, we can
hardly acquire the optimal arm in practice. Thus, we transform the regret R
into Ri as follows:

Ri = E

⎡
⎣

T∑
t=1

M∑
j=1

ljAt
(t)

⎤
⎦ −

T∑
t=1

M∑
j=1

lji (t), (5)

which considers the difference between the proposed policy and any fixed arm i.
Note that the bounding Ri is sufficient for bounding R since a regret bound that
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is applicable for any fixed arm i definitely fits the optimal arm. In the present,
our target changes to bound Ri and then transfer the bound to R.

We prove our regret upper bound by partially following some techniques of
the existing work [3,6,9,12]. We will first introduce some auxiliary lemmas and
intermediate theorems before reaching the analysis of eventual regret bound. For
a brief explanation, Lemma 1 and Lemma 2 serve Lemma 3, Corollary 1 serves
Lemma 4, and Lemma 3 and 4 support Theorem 1.

Lemma 1. Under the setting of MUD-EXP3, for any round t ≥ 1 and for
any arm i ∈ N , we have the following: −η′pi(t) · �i(t) ≤ pi(t + 1) − pi(t) ≤
η′pi(t + 1)

∑N
k=1 pk(t) · �k(t).

Proof. We start the proof with upper bounding pi(t + 1) − pi(t) and then lower
bounding it by using the definition of pi(t) in terms of Wi(t). According to the
definition of pi(t), we can make the following transformation for the upper bound
of pi(t + 1) − pi(t):

pi(t + 1) − pi(t) = pi(t + 1) − Wi(t − 1)∑N
k=1 Wk(t − 1)

= pi(t + 1) − pi(t + 1) ·
∑N

k=1 Wk(t)
Wi(t − 1) exp (−η′�i(t))

· Wi(t − 1)∑N
k=1 Wk(t − 1)

≤
(a)

pi(t + 1) − pi(t + 1) ·
∑N

k=1 Wk(t)∑N
k=1 Wk(t − 1)

= pi(t + 1) − pi(t + 1) ·
∑N

k=1 Wk(t − 1) exp (−η′�k(t))∑N
k=1 Wk(t − 1)

= pi(t + 1) − pi(t + 1) ·
N∑

l=1

Wl(t − 1)∑N
k=1 Wk(t − 1)

exp (−η′�l(t))

= pi(t + 1) − pi(t + 1) ·
N∑

l=1

pl(t) exp (−η′�l(t))

= pi(t + 1)

(
N∑

l=1

pl(t) −
N∑

l=1

pl(t) exp (−η′�l(t))

)

= pi(t + 1)
N∑

l=1

pl(t) (1 − exp (−η′�l(t)))

≤
(b)

pi(t + 1)
N∑

l=1

η′pl(t) · �l(t).

The Ineq. (a) results from Wi(t − 1) exp (−η′�i(t)) ≤ Wi(t − 1) since for x ≤ 0
there exists exp (x) ≤ 1 and Ineq. (b) is obtained by using 1 − exp (−x) ≤ x for
x ∈ R with x = η′�l(t) here.
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We then infer the lower bound:

pi(t + 1) − pi(t) =
Wi(t − 1) exp(−η′�i(t))∑N

k=1 Wk(t)
− pi(t)

=
Wi(t − 1)∑N

k=1 Wk(t − 1)
· exp(−η′�i(t)) ·

∑N
k=1 Wk(t − 1)∑N

k=1 Wk(t)
− pi(t)

= pi(t) exp(−η′�i(t)) ·
N∑

l=1

Wl(t − 1)∑N
k=1 Wk(t)

− pi(t)

= pi(t) exp(−η′�i(t)) ·
N∑

l=1

Wl(t − 1) exp(−η′�l(t))∑N
k=1 Wk(t)

1
exp(−η′�l(t))

− pi(t)

= pi(t) exp(−η′�i(t)) ·
N∑

l=1

pl(t + 1)
1

exp(−η′�l(t))
− pi(t)

≥ pi(t) exp(−η′�i(t)) ·
N∑

l=1

pl(t + 1) − pi(t)

=
(c)

pi(t) exp(−η′�i(t)) − pi(t)

= pi(t) (exp(−η′�i(t)) − 1)
≥
(d)

−η′pi(t) · �i(t),

where Eq. (c) results from
∑N

l=1 pl(t + 1) = 1 and Ineq. (d) results from the fact
of exp(x) ≥ 1 + x with x = −η′�l(t) here. �

Lemma 1 derives both the upper bound and lower bound of pi(t + 1) − pi(t),
which is applied to the proof of Lemma 2 so that we can obtain the upper bound
of pi(t+1)

pi(t)
. Before moving to the next lemma, we need to infer a corollary from

Lemma 1, upper bounding the sum of the absolute value of pi(t+1)−pi(t) with
respect to pi(t) and �i(t) for subsequent utilization.

Corollary 1.
∑N

i=1|pi(t + 1) − pi(t)| ≤ 2η′ ∑N
k=1 pk(t) · �k(t).

Proof. Based on Lemma 1, we have

|pi(t + 1) − pi(t)| ≤ max

{
η′pi(t) · �i(t), η′pi(t + 1)

N∑
k=1

pk(t) · �k(t)

}

≤ η′
(

pi(t) · �i(t) + pi(t + 1)
N∑

k=1

pk(t) · �k(t)

)
.
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Then, the sum over all arms can be bounded as

N∑
i=1

|pi(t + 1) − pi(t)| ≤ η′
N∑

i=1

(
pi(t) · �i(t) + pi(t + 1)

N∑
k=1

pk(t) · �k(t)

)

= η′
(

N∑
i=1

pi(t) · �i(t) +
N∑

i=1

pi(t + 1)
N∑

k=1

pk(t) · �k(t)

)

= η′
(

N∑
i=1

pi(t) · �i(t) +
N∑

k=1

pk(t)�k(t) ·
N∑

i=1

pi(t + 1)

)

=
(a)

η′
(

N∑
i=1

pi(t) · �i(t) +
N∑

k=1

pk(t) · �k(t)

)

= 2η′
N∑

k=1

pk(t) · �k(t),

where Eq. (a) results from
∑N

i=1 pi(t + 1) = 1. �

Lemma 2. Under the setting of MUD-EXP3, for any round t ≥ 1 and for any
arm i ∈ N , if η′ ≤ 1

MNe(dmax+1) , then we have pi(t + 1) ≤
(
1 + 1

dmax

)
pi(t).

Proof. We will use the strong mathematical induction method with the assis-
tance of Lemma 1 to prove this result. First, we deal with the base case.

According to the initialization step of MUD-EXP3, pi(1) = 1/N . When t = 2,
the maximal increase of pi(2) compared with pi(1) should come if a different arm
other than i has been chosen at round t = 1 and all feedback losses lji (1) are
observed with no delays and are of value 1 for j ∈ M at round t = 2. Hence, we
have the following:

pi(2) ≤ 1
N − 1 + e−η′N ≤

(a)

1
N − η′N

=
1
N

(
1 − 1 − η′

1 − η′ +
1

1 − η′

)
=

1
N

(
1 +

η′

1 − η′

)
= pi(1)

(
1 +

1
1/η′ − 1

)

≤
(b)

pi(1)
(

1 +
1

dmax

)
,

where Ineq. (a) follows since exp(x) ≥ 1 + x for x ∈ R and Ineq. (b) holds for
η′ ≤ 1

MNe(dmax+1) .
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Next, we assume pi(t) ≤
(
1 + 1

dmax

)
pi(t−1) holds for pi(2), · · · , pi(t). Before

we prove the case for pi(t + 1), an intermediate result need to be introduced:
N∑

i=1

pi(t) · l̂ji (s) =
N∑

i=1

pi(t)
I{As = i} · lji (S)

pi(s)

≤
N∑

i=1

pi(t)
pi(s)

=
N∑

i=1

s+ds∏
t=s

pi(t)
pi(t − 1)

≤
(c)

N∑
i=1

(
1 +

1
dmax

)ds

≤
N∑

i=1

(
1 +

1
dmax

)dmax

≤ Ne, (6)

where Ineq. (c) adopts the inductive hypothesis. Then, we have
N∑

i=1

pi(t) · �i(t) =
N∑

i=1

pi(t)
∑

(s,j)∈Φt

l̂ji (s)

=
∑

(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s) ≤
(d)

∑
(s,j)∈Φt

Ne ≤
(f)

MNe, (7)

where Eq. (6) brings about Ineq. (d) and |Φt| ≤ M brings about Ineq. (f).
According to this result and Lemma 1, we have

pi(t + 1) (1 − η′MNe) ≤
(g)

pi(t + 1)

(
1 − η′

N∑
i=1

pi(t) · �i(t)

)

= pi(t + 1) − η′pi(t + 1)
N∑

i=1

pi(t) · �i(t) ≤
(h)

pi(t + 1) − (pi(t + 1) − pi(t)) = pi(t)

where Ineq. (g) follows Eq. (7) and Ineq. (h) follows Lemma 1. By taking into
account the constraint η′ ≤ 1

MNe(dmax+1) , we can prove the inductive case:

pi(t + 1) ≤ 1
1 − η′MNe

pi(t) ≤ 1
1 − 1

dmax+1

pi(t) =
(

1 +
1

dmax

)
pi(t).

Finally, we finish the proof by combining the base case and the inductive
case for a complete mathematical induction. �

The two expectation terms in Lemma 3 and Lemma 4 are key components
that constitute the transformed regret expression. For clarity of expression, we
analyze the upper bound for these two terms separately in advance, and then
utilize their consequences in the analysis of Theorem 1 to obtain the final regret
bound.

Lemma 3. MUD-EXP3 satisfies the following inequality:

E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

pk(t) · ljk(s) −
T∑

t=1

M∑
j=1

lji (t)

⎤
⎦ ≤ ln N

η′ +
1
2
η′M2TNe.
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Proof. The proof will be shown in AppendixA. �

Lemma 4. MUD-EXP3 satisfies the following inequality:

E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

pk(s) · ljk(s) −
T∑

t=1

∑
(s,j)∈Φt

N∑
k=1

pk(t) · ljk(s)

⎤
⎦ ≤ 2η′M2Tdmax.

Proof. To prove this inequality, we first transform the expression into a form
containing

∑N
i=1|pi(t + 1) − pi(t)|, then adopt Corollary 1 to upper bound it.

E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

pk(s) · ljk(s) −
T∑

t=1

∑
(s,j)∈Φt

N∑
k=1

pk(t) · ljk(s)

⎤
⎦

= E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

ljk(s) (pk(s) − pk(t))

⎤
⎦

≤ E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

(pk(s) − pk(t))

⎤
⎦

= E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

t−1∑
r=s

(pk(r) − pk(r + 1))

⎤
⎦

≤ E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

t−1∑
r=s

N∑
k=1

|pk(r) − pk(r + 1)|

⎤
⎦

≤
(a)

E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

t−1∑
r=s

2η′
N∑

k=1

pk(r) · �k(r)

⎤
⎦

=
(b)

2η′
E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

t−1∑
r=s

N∑
k=1

pk(r) · E [�k(r)|Fr−1]

⎤
⎦

= 2η′
E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

t−1∑
r=s

N∑
k=1

pk(r) · E

⎡
⎣ ∑
(s′,j′)∈Φr

l̂j
′

k (s′)|Fr−1

⎤
⎦

⎤
⎦

=
(c)

2η′
E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

t−1∑
r=s

N∑
k=1

pk(r)
∑

(s′,j′)∈Φr

lj
′

k (s′)

⎤
⎦

≤ 2η′M2Tdmax,

where Ineq. (a) holds by using Corollary 1, Eq. (b) uses pk(r) ∈ Fr−1, and Ineq.
(c) follows the fact that l̂j

′
k (s′) is lj

′
k (s′)/pk(s′) with probability pk(s′) and zero

otherwise. �
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Theorem 1. For any arm i ∈ N , MUD-EXP3 guarantees the upper bound for
Ri as shown below:

Ri ≤ ln N

η′ +
1
2
η′M2TNe + 2η′M2Tdmax + |Ω|, (8)

which implies the same regret upper bound as follows:

R ≤ ln N

η′ +
1
2
η′M2TNe + 2η′M2Tdmax + |Ω|. (9)

Specially, for the known T and dmax, if η =
√

lnN
TM2(Ne+4dmax)

≤ 1
MNe(dmax+1) ,

we have:
R ≤ O

(√
TM2 ln N(Ne + 4dmax)

)
. (10)

Proof. The expression of Ri can be transformed in order to approach Lemma 3
and Lemma 4 for upper bounding, as shown below:

Ri = E

⎡
⎣

T∑
t=1

M∑
j=1

ljAt
(t)

⎤
⎦ −

T∑
t=1

M∑
j=1

lji (t)

= E

⎡
⎣

T∑
t=1

M∑
j=1

E

[
ljAt

(t)|Ft

]
⎤
⎦ −

T∑
t=1

M∑
j=1

lji (t)

= E

⎡
⎣

T∑
t=1

M∑
j=1

N∑
k=1

pk(t) · ljk(t) −
T∑

t=1

M∑
j=1

lji (t)

⎤
⎦

= E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

pk(s) · ljk(s) +
∑

(t,j)∈Ω

N∑
k=1

pk(t) · ljk(t) −
T∑

t=1

M∑
j=1

lji (t)

⎤
⎦

≤
(a)

E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

pk(s) · ljk(s) −
T∑

t=1

M∑
j=1

lji (t)

⎤
⎦ + |Ω|

= E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

pk(t) · ljk(s) −
T∑

t=1

∑
(s,j)∈Φt

N∑
k=1

pk(t) · ljk(s)

⎤
⎦

+ E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

pk(s) · ljk(s) −
T∑

t=1

M∑
j=1

lji (t)

⎤
⎦ + |Ω|

= E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

pk(t) · ljk(s) −
T∑

t=1

M∑
j=1

lji (t)

⎤
⎦

+ E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

pk(s) · ljk(s) −
T∑

t=1

∑
(s,j)∈Φt

N∑
k=1

pk(t) · ljk(s)

⎤
⎦ + |Ω|
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≤
(b)

ln N

η′ +
1
2
η′M2TNe + 2η′M2Tdmax + |Ω|,

where Ineq. (a) follows since lji (t) ≤ 1 and Ineq. (b) results from Lemma 3 and
Lemma 4. �

5 Related Work

Delayed Feedback. Joulani et al. [8] studied delayed feedback under full
information setting rather than adversarial bandits, and proved regret bound
of O(

√
(T + D) ln N) by reducing the problem from non-delayed feedback full

information setting, where D =
∑T

t=1 dt is delay sum. Cesa-Bianchi et al. [6]
proposed a cooperative version of the EXP3 for delayed feedback under the ban-
dit setting. They achieved regret upper bound of O(

√
(NT + D) ln N). On the

basis of [6], Thune et al. [12] proposed a wrapper algorithm to eliminate the
restriction on T and D for adversarial bandit setting with delayed feedback,
allowing regret bound of O(

√
(NT + D) ln N) for unknown T and D. Bistritz

et al. [3] also proposed a modified EXP3 algorithm for the same problem as
[12] and proved the Nash Equilibrium for a two-player zero-sum game with this
algorithm. Zimmert and Seldin [17] presented a Follow the Regularized Leader
algorithm for adversarial bandits with arbitrary delays and achieved the upper
bound of O(

√
NT +

√
DT log N) on the regret, requiring no prior knowledge of

D or T . In recent years there has been an increasing interest in algorithms that
perform well in both regimes with no prior knowledge of stochastic or adver-
sarial regimes [4,16], known as best-of-both-worlds problems. Masoudian et al.
[11] followed Zimmert and Seldin [17] and introduce delayed feedback setting to
the best-of-both-worlds problem. They proposed a slightly modified algorithm
and achieved a best-of-both-worlds regret guarantee for both adversarial and
stochastic bandits.

Composite Anonymous Feedback. On the basis of delayed feedback setting,
Cesa-Bianchi et al. [5] raised a more complex problem, where the feedback is
both anonymous and delayed, and can be partly observed at different rounds. It
means the player can only observe the sum of partial feedback generated from
different rounds. They proposed a general reduction technique that enables the
conversion of a standard bandit algorithm to operate in this harder setting. Wang
et al. [15] proposed a modified EXP3 algorithm for the problem in [5] with non-
oblivious delays, requiring no knowledge of delays in advance and achieving an
O(

√
d + N log NT

2
3 ) regret. Wan et al. [14] extended the problem into anony-

mous delayed feedback with non-oblivious loss and delays and prove both the
lower and upper bounds.

6 Conclusion

In conclusion, this study addresses the adversarial multi-armed bandit prob-
lem with delayed feedback, where feedback results are obtained from multiple
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users without any internal distribution restrictions. A modified EXP3 algorithm
called MUD-EXP3 is proposed to solve this problem with the oblivious loss and
oblivious delay adversary setting. MUD-EXP3 employs the importance-weighted
estimator for the received feedback from different users, and selects an arm at
each round stochastically according to the amount of the cumulative received
loss. Under the assumptions of a known terminal round index, the number of
users, the number of arms, and an upper bound on the delay, the study proves
a regret bound of O(

√
TM2 ln N(Ne + 4dmax)), demonstrating the algorithm’s

effectiveness. Overall, this research provides valuable insights for addressing com-
plex real-life scenarios with multi-user delayed feedback.

A Appendix: Proof of Lemma 3

According to the definition of Wi(t), we can first calculate a lower bound of∑N
i=1 Wi(T )/

∑N
i=1 Wi(0) as follows:

∑N
i=1 Wi(T )∑N
i=1 Wi(0)

=
∑N

i=1 exp(−η′L̂T
i )∑N

i=1 exp(−η′L̂0
i )

≥
maxi∈N exp

(
−η′ ∑T

t=1

∑
(s,j)∈Φt

l̂ji (s)
)

N

≥
exp

(
−η′ ∑T

t=1

∑
(s,j)∈Φt

l̂ji (s)
)

N
.

Before we derive the corresponding upper bound, we first analyze the upper
bound of

∑N
i=1 Wi(t)/

∑N
i=1 Wi(t − 1) and then telescope this over T .

∑N
i=1 Wi(t)∑N

i=1 Wi(t − 1)
=

∑N
i=1 exp(−η′L̂t

i)∑N
i=1 exp(−η′L̂t−1

i )

=
∑N

i=1 exp(−η′L̂t−1
i ) exp(−η′�t

i)∑N
i=1 exp(−η′L̂t−1

i )

=
N∑

i=1

pi(t) · exp(−η′�t
i) =

N∑
i=1

pi(t) exp

⎛
⎝−η′ 1

|Φt|
∑

(s,j)∈Φt

|Φt| · l̂ji (s)

⎞
⎠

≤
(a)

N∑
i=1

pi(t)
1

|Φt|
∑

(s,j)∈Φt

exp
(
−η′|Φt| · l̂ji (s)

)

≤
(b)

N∑
i=1

pi(t)
1

|Φt|
∑

(s,j)∈Φt

(
1 − η′|Φt| · l̂ji (s) +

1
2
η′2|Φt|2 · l̂ji (s)

2
)

=
N∑

i=1

pi(t)

⎛
⎝1 − η′ ∑

(s,j)∈Φt

l̂ji (s) +
1
2
η′2|Φt|

∑
(s,j)∈Φt

l̂ji (s)
2

⎞
⎠
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= 1 − η′ ∑
(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s) +
1
2
η′2|Φt|

∑
(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s)
2

≤
(c)

exp

⎛
⎝−η′ ∑

(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s) +
1
2
η′2|Φt|

∑
(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s)
2

⎞
⎠ ,

where Ineq. (a) follows Jensen’s inequality [7], Ineq. (b) follows exp(x) ≤ 1 +
x + (1/2)x2 for x ∈ R, and Ineq. (c) follows 1 + x ≤ exp(x) for x ∈ R. Then, we
use it to upper bound

∑N
i=1 Wi(T )/

∑N
i=1 Wi(0).

∑N
i=1 Wi(T )∑N
i=1 Wi(0)

=
T∏

t=1

∑N
i=1 Wi(t)∑N

i=1 Wi(t − 1)

≤
T∏

t=1

exp

⎛
⎝−η′ ∑

(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s) +
1
2
η′2|Φt|

∑
(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s)
2

⎞
⎠

= exp

⎛
⎝−η′

T∑
t=1

∑
(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s) +
1
2
η′2

T∑
t=1

|Φt|
∑

(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s)
2

⎞
⎠ .

Combining the lower bound and upper bound of
∑N

i=1 Wi(T )/
∑N

i=1 Wi(0)
establishes the following expression:

exp
(
−η′ ∑T

t=1

∑
(s,j)∈Φt

l̂ji (s)
)

N

≤ exp

⎛
⎝−η′

T∑
t=1

∑
(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s) +
1
2
η′2

T∑
t=1

|Φt|
∑

(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s)
2

⎞
⎠ .

Take ln(·) on both sides and do transposition:

η′
T∑

t=1

∑
(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s) − η′
T∑

t=1

∑
(s,j)∈Φt

l̂ji (s)

≤ ln N +
1
2
η′2

T∑
t=1

|Φt|
∑

(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s)
2
. (11)
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Before moving on, we conduct an analysis of the expectation on both sides of
Ineq. (11), respectively. We first deal with the left part:

E

⎡
⎣η′

T∑
t=1

∑
(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s) − η′
T∑

t=1

∑
(s,j)∈Φt

l̂ji (s)

⎤
⎦

=
(d)

η′
E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
i=1

pi(t) · E
[
l̂ji (s)|Ft−1

]
−

T∑
t=1

∑
(s,j)∈Φt

E

[
l̂ji (s)|Ft−1

]
⎤
⎦

=
(e)

η′
E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
i=1

pi(t) · lji (s) −
T∑

t=1

∑
(s,j)∈Φt

lji (s)

⎤
⎦ , (12)

where Eq. (d) uses pi(t) ∈ Ft−1 and Eq. (e) uses pi(s) ∈ Ft−1 together with the
fact that l̂ji (s) is lji (s)/pi(s) with probability pi(s) and zero otherwise. Then, the
same operation is carried out for the right part:

E

⎡
⎣ln N +

1
2
η′2

T∑
t=1

|Φt|
∑

(s,j)∈Φt

N∑
i=1

pi(t) · l̂ji (s)
2

⎤
⎦

= lnN +
1
2
η′2

E

⎡
⎣

T∑
t=1

|Φt|
∑

(s,j)∈Φt

N∑
i=1

pi(t) · E
[
l̂ji (s)

2|Ft−1

]
⎤
⎦

= lnN +
1
2
η′2

E

⎡
⎣

T∑
t=1

|Φt|
∑

(s,j)∈Φt

N∑
i=1

pi(t)
pi(s)

lji (s)
2

⎤
⎦

≤
(f)

ln N +
1
2
η′2ME

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
i=1

pi(t)
pi(s)

⎤
⎦

≤
(g)

ln N +
1
2
η′2ME

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
i=1

(
1 +

1
dmax

)dj
s

⎤
⎦

≤ ln N +
1
2
η′2ME

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
i=1

(
1 +

1
dmax

)dmax

⎤
⎦

≤ ln N +
1
2
η′2M2TNe, (13)

where Ineq. (f) is due to lji (s) ≤ 1 and |Φt| ≤ M , and Ineq. (g) uses Lemma 2.
By substituting Eq. (12) and Eq. (13) into Eq. (11), we have:

η′
E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
i=1

pi(t) · lji (s) −
T∑

t=1

∑
(s,j)∈Φt

lji (s)

⎤
⎦ ≤ ln N +

1
2
η′2M2TNe.
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Thus, the eventual result is presented as follows:

E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
k=1

pk(t) · ljk(s) −
T∑

t=1

M∑
j=1

lji (t)

⎤
⎦

≤ E

⎡
⎣

T∑
t=1

∑
(s,j)∈Φt

N∑
i=1

pi(t) · lji (s) −
T∑

t=1

∑
(s,j)∈Φt

lji (s)

⎤
⎦ ≤ ln N

η′ +
1
2
η′M2TNe.

The lemma has been proven. �
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Abstract. Sorting a permutation by reversals is a famous problem in
genome rearrangements, and has been well studied over the past thirty
years. But the involvement of repeated segments is sometimes inevitable
during genome evolution, especially in reversal events. Since 1997, quite
some biological evidence were found that in many genomes the reversed
regions are usually flanked by a pair of inverted repeats. For example,
a reversal will transform +a + x − y − z − a into +a + z + y − x − a,
where +a and −a form a pair of inverted repeats. This type of rever-
sals are called symmetric reversals, which, unfortunately, were largely
ignored in algorithm design. While sorting genomes with a mixture of
reversals and symmetric reversals sees more practical in many scenarios,
it is certainly a much harder problem (which is out the scope of this
paper). In this paper, we investigate the decision problem of sorting by
symmetric reversals (SSR(A,B)), which requires a series of symmetric
reversals to transform one chromosome A into the another chromosome
B. Given a pair of chromosomes A and B with n repeats, we present
an O(n2) time algorithm to solve the decision problem SSR(A,B). This
result is achieved by converting the problem to the circle graph, which
has been augmented significantly from the traditional circle graph and
a list of combinatorial properties must be proved to successfully answer
the decision question.

Keywords: Genome rearrangements · Sorting by symmetric
reversals · Decision algorithms · NP-hardness

1 Introduction

In the 1980 s, quite some evidence were found that some species have essentially
the same set of genes, but their gene order differs [12,17]. Since then, sorting
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permutations with rearrangement operations has gained a lot of interest in
the area of computational biology in the last thirty years. Sankoff et al. for-
mally defined the genome rearrangement events with some basic operations on
genomes, e.g., reversals and transpositions, etc. [20], where the reversal operation
is adopted the most frequently [9,14,30].

The complexity of the problem of sorting permutations by reversals is closely
related to whether the genes are signed or not. Watterson et al. pioneered the
research on sorting an unsigned permutation by reversals [29]. In 1999, Caprara
established the NP-hardness of this problem [7]. Soon after, Berman et al. showed
it to be APX-hard [4] and polynomial time approximations have been designed
with factors from 2 down to 1.375 [3,8,14]. As for the more realistic problem of
sorting signed permutations by reversals, Hannenhalli and Pevzner proposed an
O(n4) time exact algorithm for this problem, where n is the number of genes in
the given permutations (or singleton genomes) [11]. The running time has been
improved to O(n2), O(n1.5

√
log n) and finally to O(n1.5) [10,13,24].

On the other hand, some evidence has been found that the breakpoints where
reversals occur could have some special property in the genomes [15,19]. As early
as in 1997, some studies showed that the breakpoints are often associated with
repetitive elements on mammals and drosophila genomes [1,2,23,25]. In fact, the
well-known “site-specific recombination”, which has an important application in
“gene knock out” [16,21,22], is responsible for many important DNA rearrange-
ments, including insertion, deletion or inversion of a segment of DNA, and an
inversion occurs when the two recombination sites are related to each other in
an inverted repeat manner [28].

Recently, Wang et al. conducted a systematic study on comparing different
strains of various bacteria such as Pseudomonas aeruginosa, Escherichia coli,
Mycobacterium tuberculosis and Shewanella [26,27]. Their study further illus-
trated that repeats are associated with the ends of rearrangement segments
for various rearrangement events such as reversal, transposition, inverted block
interchange, etc, so that the left and right neighborhoods of those repeats remain
unchanged after the rearrangement events. Focusing on reversal events, the
reversed regions are usually flanked by a pair of inverted repeats [23]. Such a
phenomenon can also better explain why the famous “breakpoint reuse”, which
was an interesting finding and discussed in details when comparing human with
mouse, could happen [18].

In this paper, we propose a new model called sorting by symmetric reversals,
which requires each inverted region on the chromosomes being flanked by a pair
of mutually inverted repeats. Admittedly, in real datasets, not all reversals are
symmetric. For instance, in [27], among the 17 inversions reported 12 are sym-
metric. Hence, a practical mixed model might be sorting by (mixed) reversals
and symmetric reversals, which seems to be a much harder problem to be inves-
tigated. (A reversal could change breakpoints while a symmetric reversal does
not, as can be seen a bit later.) In this paper, we solely focus on the sorting
by symmetric reversals problem, which is certainly a theoretical model and is a
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subproblem of the more general mixed version — to solve the general problem,
we must be able to solve this restricted theoretical problem.

We investigate the decision problem of sorting by symmetric reversals (SSR
for short), which asks whether a chromosome can be transformed into the other
by a series of symmetric reversals. We devise an O(n2) time algorithm to solve
this decision problem. (Additional results on the optimization version can be
found in arXiv:abs/2302.03797.)

This paper is organized as follows. In Sect. 2, we give some necessary defi-
nitions. Then we present the details in Sects. 3–4, focusing only on the decision
algorithms and leaving out most of the proofs. Finally, we conclude the paper in
Sect. 5.

2 Preliminaries

In the literature of genome rearrangement, we always have a set of integers
Σ1 = {1, · · · , g}, where each integer stands for a long DNA sequence (syntenic
block or a gene). For simplicity, we use “gene” hereafter. Since we will study
symmetric reversals, we define Σ2 = {r0, r1, r2, · · · , rt} to be a set of symbols,
each of them is referred to as a repeat and represents a relative shorter DNA
sequence compared with genes. We then set Σ = Σ1 ∪Σ2 to be the alphabet for
the whole chromosome.

Since reversal operations work on a chromosome internally, a genome can be
considered as a chromosome for our purpose, i.e., each genome is a singleton
and contains only one chromosome. Here we assume that each gene appears
exactly once on a chromosome, on the other hand, by name, a repeat could
appear multiple times. A gene/repeat x on a chromosome may appear in two
different orientations, i.e., either as +x or −x. Thus, each chromosome of interest
is presented by a sequence of signed integers/symbols.

The number of occurrences of a gene/repeat x in both orientations is
called the duplication number of x on the chromosome π, denoted by dp[x, π].
The duplication number of a chromosome π, denoted by dp[π], is the max-
imum duplication number of the repeats on it. For example, chromosome
π = [+r0,+1,−r,+2,+r,−r0], dp[1, π] = dp[2, π] = 1, dp[r0, π] = dp[r, π] = 2,
and dp[π] = 2. Two chromosomes π1 and π2 are related if their duplication
numbers for all genes and repeats are identical. Let |x| ∈ Σ be an integer or
symbol, and +|x| and −|x| be two occurrences of |x|, where the orientations
of +|x| and −|x| are different. A chromosome of n genes/repeats is denoted as
π = [x1, x2, . . . , xn−1, xn]. A linear chromosome has two ends, and it can be read
from either end to the other, so the chromosome π = [x1, x2, . . . , xn−1, xn] can
also be described as [−xn,−xn−1, . . . ,−x2,−x1], which is called the reversed
and negated form of π. (Note that −(−xi) = +xi.)

A reversal is an operation that reverses a segment of continuous inte-
gers/symbols on the chromosome. A symmetric reversal is a reversal, where the
reversed segment is flanked by pair of identical repeats with different orienta-
tions, i.e., either (+r, · · · ,−r) or (−r, · · · ,+r) for some r ∈ Σ2. In other words,
let π = [x1, x2, . . . , xn] be a chromosome. The reversal ρ(i, j) (1 ≤ i < j ≤ n)
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reverses the segment [xi, xi+1, . . . , xj−1, xj ], and yields π′ = [x1, x2, . . . , xi−1,
−xj , −xj−1, . . . ,−xi+1, −xi, xj+1, . . . , xn]. If xi = −xj , we say that ρ(i, j) is a
symmetric reversal on |xi|. Reversing a whole chromosome will not change the
relative order of the integers but their signs, so we assume that each chromosome
is flanked by +r0 and −r0, then a chromosome will turn into its reversed and
negated form by performing a symmetric reversal between +r0 and −r0.

Again, as a simple example, let π = [+r0,+1,−r1,+2,+r2,+r1,+r2,−r0],
then a symmetric reversal on r1 yields π′ = [+r0,+1,−r1,−r2,−2,+r1,
+r2,−r0].

Now, we formally define the problems to be investigated in this paper.

Definition 1. Sorting by Symmetric Reversals, SSR for short.
Instance: Two related chromosomes π and τ , such that dp[π] = dp[τ ] ≥ 2.
Question: Is there a sequence of symmetric reversals that transform π into

τ?.

There is a standard way to make a signed gene/repeat unsigned. Let π =
[x0, x1, . . . , xn+1] be a chromosome, each occurrence of gene/repeat of π, say xi

(0 ≤ i ≤ n + 1), is represented by a pair of ordered nodes, l(xi) and r(xi). If the
sign of xi is +, then l(xi) = |xi|h and r(xi) = |xi|t; otherwise, l(xi) = |xi|t and
r(xi) = |xi|h. (Here, h represents ‘head’ and t represents ‘tail’.) Note that, if xi

and xj (i �= j) are different occurrences of the same repeat, i.e., |xi| = |xj |, l(xi),
l(xj), r(xi) and r(xj) correspond to two nodes |xi|h and |xi|t only. Consequently,
π will also be described as [l(x0), r(x0), l(x1), r(x1), . . . , l(xn+1), r(xn+1)]. We
say that r(xi) and l(xi+1), for 0 ≤ i ≤ n, form an adjacency, denoted by
〈r(xi), l(xi+1)〉. (In the signed representation of a chromosome π, 〈xi, xi+1〉 forms
an adjacency, noting that 〈xi, xi+1〉 = 〈−xi+1,−xi〉.) Also, we say that the adja-
cency 〈r(xi), l(xi+1)〉 is associated with xi and xi+1. Let A[π] represent the multi-
set of adjacencies of π. We take the chromosome π = [+r0,+1,−r1,+2,+r1,−r0]
as an example to explain the above notations. The multi-set of adjacencies is
A[π] = {〈rt

0, 1
h〉, 〈1t, rt

1〉, 〈rh
1 , 2h〉, 〈2t, rh

1 〉, 〈rt
1, r

t
0〉}, π can also be viewed as

[rh
0 , rt

0, 1
h, 1t, rt

1, r
h
1 , 2h, 2t, rh

1 , rt
1, r

t
0, r

h
0 ].

Lemma 1. Let π be a chromosome and π′ is obtained from π by performing a
symmetric reversal. Then A[π] = A[π′].

Lemma 1 implies a necessary condition for answering the decision question
of SSR.

Theorem 1. Chromosome π cannot be transformed into τ by a series of sym-
metric reversals if A[π] �= A[τ ].

A simple negative example would be π = [+r0, +r1, −2, +r1, −1, −r0] and
τ = [+r0, −r1, +2, −r1, +1,−r0]. One can easily check that A[π] �= A[τ ], which
means that there is no way to convert π to τ using symmetric reversals. In the
next section, as a warm-up, we first solve the case when each repeat appears
at most twice in π and τ . Even though the method is not extremely hard, we
hope the presentation and some of the concepts can help readers understand the
details for the general case in Sect. 4 better.
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3 An O(n2) Algorithm for SSR with Duplication Number
2

In this section, we consider a special case, where the duplication numbers for
the two related chromosomes π and τ are both 2. That is, A[π] = A[τ ] and
dp[π] = dp[τ ] = 2. We will design an algorithm with running time O(n2) to
determine if there is a sequence of symmetric reversals that transform π into τ .

Note that A[π] is a multi-set, where an adjacency may appear more than
once. When the duplication number of each repeat in the chromosome is at
most 2, the same adjacency can appear at most twice in A[π].

Let π = [x0, x1, . . . , xn+1] be a chromosome. Let xi and xj be the two occur-
rences of a repeat x, and xi+1 and xj+1 the two occurrences of some other repeat
x′ in π. We say that |xi| and |xi+1| are redundant, if r(xi) = r(xj) and l(xi+1) =
l(xj+1) (or r(xi) = l(xj) and l(xi+1) = r(xj−1)). In this case, the adjacency
〈r(xi), l(xi+1)〉 appears twice. In fact, it is the only case that an adjacency can
appear twice. An example is as follows: π = [+r0,+r1,−r2,+1,+r2,−r1,−r0],
where the adjacency 〈+r1,−r2〉 appears twice (the second negatively), hence
r1 and r2 are redundant. The following lemma tells us that if xi and xj are
redundant, we only need to use one of them to do reversals and the other can
be deleted from the chromosome so that each adjacency appears only once.

Lemma 2. Given two chromosomes π = [x0, x1, . . . , xn+1] and τ , such that
A[π] = A[τ ]. Let |xi| and |xi+1| be two repeats in π that are redundant. Let π′

and τ ′ be the chromosomes after deleting the two occurrences of |xi+1| from both
π and τ , respectively. Then π can be transformed into τ by a series of symmetric
reversals if and only if π′ can be transformed into τ ′ by a series of symmetric
reversals.

Regarding the previous example, π = [+r0,+r1,−r2,+1,+r2,−r1,−r0],
where r1 and r2 are redundant, following the above lemma, one can obtain
π′ = [+r0,+r1, +1, −r1, −r0]. This is in fact equivalent to replacing the adja-
cency 〈+r1,−r2〉 by +r1, and 〈+r2, −r1〉 by −r1.

A chromosome π is simple if every adjacency in A[π] appears only once. Based
on Lemma 2, we can remove the two occurrences of a redundant repeat from
the chromosomes. Thus, if dp[π] = dp[τ ] = 2, we can always assume that both π
and τ are simple. Consequently, there is a unique bijection between the identical
adjacencies in A[π] and A[τ ] respectively. We say that any pair of adjacencies,
determined by the bijection, are matched to each other.

For each repeat x with dp[π, x] = dp[τ, x] = 2, let xi, xj be the two occur-
rences of x in π, and yi′ , yj′ be the two occurrences of x in τ , there are four
adjacencies associated with xi and xj in π: 〈r(xi−1), l(xi)〉, 〈r(xi), l(xi+1)〉,
〈r(xj−1), l(xj)〉, 〈r(xj), l(xj+1)〉. Similarly, there are four adjacencies associ-
ated with yi′ and yj′ in τ . We say that x is a neighbor-consistent repeat, if
〈r(xi−1), l(xi)〉 and 〈r(xi), l(xi+1)〉 are matched to two adjacencies both associ-
ated with yi′ or both associated with yj′ . That is, the left and right neighbors of
xi are identical in both chromosomes. Note that A[π] = A[τ ] also implies that the
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left and right neighbors of the other occurrences xj are also identical in both two
chromosomes if x is neighbor-consistent. If 〈r(xi−1), l(xi)〉 and 〈r(xi), l(xi+1)〉
are matched to two adjacencies, one of which is associated with yi′ and the other
is associated with yj′ , then x is a neighbor-inconsistent repeat. The genes and
the repeats which appear once in π are also defined to be neighbor-consistent.
(See Fig. 1 for an example.) By definition and the fact that A[π] = A[τ ], we have

Proposition 1. Performing a symmetric reversal on a repeat will turn the
repeat from neighbor-consistent to neighbor-inconsistent or vice versa. (See
Fig. 1.)

Fig. 1. xi, xj are the two occurrences of x in π with xi = −xj , and yi′ , yj′ be the two
occurrences of x in τ . Case (a): x is neighbor-consistent, and will turn to neighbor-
inconsistent by a reversal on itself. Case (b): x is neighbor-inconsistent, and will turn
to neighbor-consistent by a reversal on itself.

Theorem 2. Given two simple related chromosomes π∗ and τ with dp[π∗] =
dp[τ ] = 2, π∗ = τ if and only if A[π∗] = A[τ ] and every repeat is neighbor-
consistent.

Based on Proposition 1 and Theorem 2, to transform π into τ , it is sufficient
to perform an odd number (at least 1) of symmetric reversals on each neighbor-
inconsistent repeat, and an even number (might be 0) of symmetric reversals on
each neighbor-consistent repeat. Hereafter, we also refer a neighbor-consistent
(resp. neighbor-inconsistent) repeat as an even (resp. odd) repeat.

The main difficulty to find a sequence of symmetric reversals between π and
τ is to choose a “correct” symmetric reversal at a time. Note that, for a pair of
occurrences (xi, xj) of a repeat x, the orientations may be the same at present
but after some reversals, the orientations of xi and xj may differ. We can only
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perform a reversal on a pair of occurrences of a repeat with different orientations.
Thus, it is crucial to choose a “correct” symmetric reversal at the right time. In
the following, we will use “intersection” graph to handle this.

Suppose that we are given two simple related chromosomes π and τ with
dp[π] = dp[τ ] = 2 and A[π] = A[τ ]. In this case, each repeat in the chromosomes
represent an interval indicated by the two occurrences of the repeat. Thus, we
can construct an intersection graph IG(π, τ) = (V [π], E[π]). For each repeat x
with dp[π, x] = 2, construct a vertex x ∈ Vπ, and set its weight, ω(x) = 2 if x
is even, and ω(x) = 1 if x is odd; set the color of x black if the signs of the
two occurrences of x in π are different, and white otherwise. Construct an edge
between two vertices x and y if and only if the occurrences of x and y appear
alternatively in π, i.e., let xi and xj (i < j) be the two occurrences of x, and xk

and xl (k < l) be the two occurrences of y in π, there will be an edge between
the vertices x and y if and only if i < k < j < l or k < i < l < j. There are
three types of vertices in V [π]: black vertices (denoted as Vb[π]), white vertices
of weight 1 (denoted as V 1

w [π]) and white vertices of weight 2 (denoted as V 2
w [π]).

Thus, V [π] = Vb[π] ∪ V 1
w [π] ∪ V 2

w [π]. In fact, the intersection graph is a circle
graph while ignoring the weight and color of all the vertices.

Lemma 3. A single white vertex of weight 1 cannot be a connected component
in IG(π, τ).

For each vertex x in IG(π, τ), let N(x) denote the set of vertices incident
to x. For a black vertex, say x, in IG(π, τ), performing a symmetric reversal on
x in π, yields π′, where the intersection graph IG(π′) = (V [π′], E[π′]) can be
derived from IG(π, τ) following the three rules:

– rule-I: for each vertex v ∈ N(x) in IG(π, τ), change its color from black to
white, and vice versa.

– rule-II: for each pair of vertices u, v ∈ N(x) of IG(π, τ), if (u, v) ∈ E[π], then
E[π′] = E[π] − {(u, v)}; and if (u, v) /∈ E[π], then E[π′] = E[π] ∪ {(u, v)}.

– rule-III: decrease the weight of x by one, if ω(x) > 0, then V [π′] = V [π]; and
if ω(x) = 0, then V [π′] = V [π] − {x}.

Fig. 2. π = [+r0, +r1, +1, +r2, +r3, +r1, −r2, −2, +r3, −r0], and τ = [+r0, +r1, −r2,
−2, +r3, +r1, +1, +r2, +r3, −r0]. A[π] = A[τ ] ={〈rt

0, r
h
1 〉, 〈rt

1, 1
h〉, 〈1t, rh

2 〉, 〈rt
2, r

h
3 〉,

〈rt
3, r

h
1 〉, 〈rt

1, r
t
2〉, 〈rh

2 , 2t〉, 〈2h, rh
3 〉, 〈rt

3, r
t
0〉}. The repeats r1 and r3 are odd, while the

repeat r2 is even. (a) The intersection graph IG(π, τ), performing the symmetric rever-
sal on repeat r2 will transform π into π′ =[+r0, +r1, +1, +r2, −r1, −r3, −r2, −2, +r3,
−r0], (b) The intersection graph IG(π′, τ). (c) The intersection graph after performing
the symmetric reversal on the repeat r1. (d) The intersection graph after performing
the symmetric reversal on the repeat r3.
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If x is a black vertex in IG(π, τ) and ω(x) = 1, then performing the symmetric
reversal of x in π yields π′. Let C1, C2, . . . , Cm be the connected components
introduced by the deletion of x in IG(π′, τ), we go through some properties of
performing this symmetric reversal.

Lemma 4. In each Ci (1 ≤ i ≤ m), there is at least one vertex zi such that
zi ∈ N(x) in IG(π, τ).

Lemma 5. Let x′ be a black vertex, ω(x) = ω(x′) = 1, and x′ ∈ N(x) in
IG(π, τ). After performing the symmetric reversal on x in π, let y be a vertex
in the connected component Ci, and x′ is in the connected component Cj, i �= j.
Let π′′ be the resulting chromosome after performing the symmetric reversal on
x′ in π, then the color of y is the same in IG(π′, τ) and IG(π′′, τ).

Lemma 6. Let x′ be a black vertex, ω(x) = ω(x′) = 1, and x′ ∈ N(x) in
IG(π, τ). After performing the symmetric reversal of x in π, let y, z be two
vertices in the connected component Ci, and x′ is in the connected component
Cj, i �= j. Let π′′ be the resulting chromosome after performing the symmetric
reversal on x′ in π. If (y, z) ∈ E[π′], then (y, z) ∈ E[π′′].

Theorem 3. If a connected component of IG(π, τ) contains at least one black
vertex, then there exists a symmetric reversal, after performing it, any newly
created connected component containing a white vertex of weight 1 also contains
a black vertex.

The main contribution of this section is the following theorem.

Theorem 4. A chromosome π can be transformed into the other chromosome
τ if and only if (I) A[π] = A[τ ], and (II) each white vertex of weight 1 belongs
to a connected component of IG(π, τ) containing a black vertex.

The above theorem implies that a breadth-first search of IG[π, τ ] will deter-
mine whether π can be transformed into τ , which takes O(n2) time, because
IG(π, τ) contains at most n vertices and n2 edges. We will show the details
of the algorithm in Sect. 4, since it also serves as a decision algorithm for the
general case.

4 An O(n2) Decision Algorithm for the General Case

For the general case, i.e., when the duplication number for the two related input
genomes is arbitrary, the extension of the algorithm in Sect. 3 is non-trivial as it
is impossible to make the genomes simple. Our overall idea is to fix any bijec-
tion f between the (identical) adjacencies of the input genomes, and build the
corresponding alternative-cycle graph. This alternative-cycle graph is changing
according to the corresponding symmetric reversals; and we show that, when
the graph contains only 1-cycles, then the target τ is reached. Due to the chang-
ing nature of the alternative-cycle graph, we construct a blue edge intersection
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graph to capture these changes. However, this is not enough as the blue intersec-
tion graph built from the alternative-cycle graph could be disconnected and we
need to make it connected by adding additional vertices such that the resulting
sequence of symmetric reversals are consistent with the original input genomes,
and can be found in the new intersection graph (called IG, which is based on
the input genomes π and τ as well as f). We depict the details in the following.

Suppose that we are given two related chromosomes π = [x0, x1, . . . , xn+1]
and τ = [y0, y1, . . . , yn+1], such that x0 = y0 = +r0 and xn+1 = yn+1 = −r0.
Theorem 1 shows that A[π] = A[τ ] is a necessary condition, thus there is a
bijection f between identical adjacencies in A[π] and A[τ ], as shown in Fig. 3.
Based on the bijection f , we construct the alternative-cycle graph ACG(π, τ, f)
as follows. For each xi in π, construct an ordered pair of nodes, denoted by l(xi)
and r(xi), which are connected by a red edge. For each yk in τ , assume that
〈r(yk−1), l(yk)〉 is matched to 〈r(xi−1), l(xi)〉, and 〈r(yk), l(yk+1)〉 is matched to
〈r(xj−1), l(xj)〉, in the bijection f . There are four cases:

1. l(yk) = l(xi) and r(yk) = r(xj−1), then connect l(xi) and r(xj−1) with a blue
edge,

2. l(yk) = r(xi−1) and r(yk) = r(xj−1), then connect r(xi−1) and r(xj−1) with
a blue edge,

3. l(yk) = l(xi) and r(yk) = l(xj), then connect l(xi) and l(xj) with a blue edge,
4. l(yk) = r(xi−1) and r(yk) = l(xj), then connect r(xi−1) and l(xj) with a blue

edge.

Fig. 3. The bijection between identical adjacencies in A[π] and A[τ ], and the corre-
sponding alternative-cycle graph.

Actually, two nodes connected by a red edge implies they are from the same
occurrence of some repeat/gene in π, so each occurrence of some repeat/gene in
π corresponds to a red edge; and similarly, two nodes connected by a blue edge
implies that they are from the same occurrence of some repeat/gene in τ , thus
each occurrence of some repeat/gene in τ corresponds to a blue edge. Note that
each node associates with one red edge and one blue edge, so ACG(π, τ, f) is
composed of edge disjoint cycles, on which the red edges and blue edge appears
alternatively. A cycle composed of c blue edges as well as c red edges is called a
c-cycle, it is called a long cycle when c ≥ 2.
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Theorem 5. Given two chromosomes π∗ and τ , π∗ = τ if and only if
A[π∗] = A[τ ], and there is a bijiection f between the identical adjacencies in
A[π∗] and A[τ ], such that all the cycles in the resulting alternative-cycle graph
ACG(π∗, τ, f) are 1-cycles.

The above theorem gives us a terminating condition for our algorithm: let
π and τ be the input chromosomes, and our algorithm keeps updating the
alternative-cycle graph until all cycles in it become 1-cycles. Unfortunately, in
the following, we observe that some cycles can not be performed by symmetric
reversals directly, then we consider these cycles intersecting with each other as
a connected component. But this is still not enough, since there could also be
some connected components which do not admit any symmetric reversal, we
managed to handle this case by joining all the cycles of the same repeat into a
whole connected component.

Lemma 7. In an alternative-cycle graph, each cycle corresponds to a unique
repeat and every edge (both red and blue) in the cycle corresponds to an occur-
rence of the unique repeat.

Proof. W.l.o.g, assume that l(xi) and l(xj) are connected with a blue edge, from
the construction of the alternative-cycle graph, there must be an occurrence in
τ , say yk, such that {l(xi), l(xj} = {l(yk), r(yk)}, thus, |xi| = |xj | = |yk|, and
the blue edge (l(xi), l(xj)) corresponds the occurrence yk of the repeat |yk|. 
�

Since each gene appears once in π, Lemma 7 implies that each gene has a 1-
cycle in ACG(π, τ, f), these 1-cycles will be untouched throughout our algorithm.

Lemma 8. In an alternative-cycle graph, if we add a green edge connecting each
pairs of nodes r(xi) and l(xi+1) (for all 0 ≤ i ≤ n), then all the blue edges and
green edges together form a (blue and green alternative) path.

Proof. Actually, the green edge connecting r(xi) and l(xi+1) (0 ≤ i ≤ n)
is the adjacency 〈r(xi), l(xi+1)〉 of A[π], which is identical to some adjacency
〈r(yj), l(yj+1)〉 of A[τ ] according to the bijection between identical adjacencies
of A[π] and A[τ ]. Therefore, yj and yj+1 appears consecutively in τ , and fol-
lowing the construction of ACG(π, τ, f) and Lemma 7, they correspond to the
two blue edges, one of which is associated with r(xi) and the other is associated
with l(xi+1) in ACG(π, τ, f), thus, the two blue edges are connected through
the green edge (r(xi), l(xi+1)). The above argument holds for every green edge,
therefore, all the blue edges and green edges constitute a path. We show an
example in Fig. 3. 
�

Let x ∈ Σ be a repeat. Let xi and xj be two occurrences of x in π, where
i �= j. A blue edge is opposite if it connects l(xi) and l(xj) or r(xi) and r(xj). A
blue edge is non-opposite if it connects l(xi) and r(xj) or r(xi) and l(xj).

Specially, the blue edge on any 1-cycle (with a blue edge and a red edge) is
non-opposite. A cycle is opposite if it contains at least one opposite blue edge.
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Lemma 9. Let xi and xj be two occurrences of repeat x in π. In the alternative-
cycle graph ACG(π, τ, f), if l(xi) and l(xj) ( or r(xi) and r(xj)) are connected
with an opposite edge, xi and xj has different orientations; and if l(xi) and r(xj)
( or r(xi) and l(xj)) are connected with a non-opposite edge, xi and xj has the
same orientations.

Proposition 2. Given a k-cycle C of x, performing a symmetric reversal on
two occurrences of x that are connected by an opposite blue edge, will break C
into a (k − 1)-cycle as well as a 1-cycle. Given a k1-cycle C1 and a k2-cycle C2

of x, performing a symmetric reversal on the two occurrences of xi ∈ C1 and
xj ∈ C2, will join C1 and C2 into a (k1 + k2)-cycle.

Now, we construct the blue edge intersection graph BG(π, τ, f) =
(BVπ, BEπ, f) according to ACG(π, τ, f), viewing each blue edge as an inter-
val of the two nodes it connects. For each interval, construct an original vertex
in BVπ, and set its weight to be 1, set its color to be black if the blue edge
is opposite, and white otherwise. An edge in BEπ connects two vertices if and
only if their corresponding intervals intersect but neither overlaps the other. An
example of the blue edge intersection graph is shown in Fig. 4-(b).

Note that each connected component of BG(π, τ, f) forms an interval on π,
for each connected component P in BG(π, τ, f), we use P to denote its corre-
sponding interval on π.

Lemma 10. Let P be some connected component of BG(π, τ, f), the leftmost
endpoint of P must be a left node of some xi, i.e., l(xi), and the rightmost
endpoint of P must be a right node of some xj, i.e., r(xj), where i < j.

Lemma 11. All the vertices in BG(π, τ, f) corresponding to the blue edges on
the same long cycle in ACG(π, τ, f) are in the same connected component of
BG(π, τ, f).

As the two blue edges of a non-opposite 2-cycle do not intersect each other,
we have,

Corollary 1. A non-opposite 2-cycle can not form a connected component of
BG(π, τ, f).

For each repeat x, assume that it constitutes k cycles in ACG(π, τ, f). Let xi1 ,
xi2 , . . . , xik be the k occurrences of x that are in distinct cycles in ACG(π, τ, f),
where 1 ≤ i1 < i2 < · · · < ik ≤ n. We construct k − 1 additional vertices
corresponding to the intervals [r(xij ) − ε, l(xij+1) + ε] to BVπ (1 ≤ j ≤ k − 1),
for each such vertex, set its weight to be 1, and set its color to be black if the
signs of xij and xij+1 are distinct, and white otherwise. See the vertex marked
with 10 in Fig. 4-(c) for an example. Also, there is an edge between two vertices
of BVπ if and only if their corresponding intervals intersect, but none overlaps
the other. The resulting graph is called the intersection graph of π, denoted as
IG(π, τ, f) = (V [π], E[π]). An example is shown in Fig. 4-(c). Let V w

π ⊆ V [π] be
the subset of vertices which corresponding to non-opposite blue edges on long
cycles in ACG(π, τ, f).
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Fig. 4. (a) The alternative-cycle graph ACG(π, τ, f), where each blue edge is marked
with a number. (b) The blue edge intersection graph BG(π, τ, f). (c) The intersection
graph IG(π, τ, f) with additional vertices, where each number represents an interval.
(Color figure online)

From Lemma 10 and the construction of the intersection graph of π, all the
vertices corresponding to all the blue edges of the same repeat are in the same
connected component. Note that the intersection graph of π may be distinct,
when the bijection between identical adjacencies of A[π] and A[τ ] differs. Nev-
ertheless, we have,

Lemma 12. Let π and τ be two related chromosomes with A[π] = A[τ ]. Let xi

and xj (i < j) be two occurrences of x in π, and xi′ and xj′ (i′ < j′) be two
occurrences of x′ in π, if either i < i′ < j < j′ or i′ < i < j′ < j is satisfied,
then, based on any bijection f between A[π] = A[τ ], in the intersection graph
IG(π, τ, f), the vertices corresponding to all the intervals of x and x′ are in the
same connected component.

Actually, the connected components of the intersection graph partition the
repeats on π into groups. From Lemma 10 and Lemma 12, the group partition
of the repeats is independent of the bijection between identical adjacencies of
A[π] and A[τ ]. In other words, the group partition will be fixed once π and τ are
given. Thus, each connected component corresponds to a group of sub-sequences
in π and τ respectively. Then, we can check whether the sub-sequences in π are
identical to these in τ . If so, we can check whether it is possible to convert all
the cycles in this connected component into 1-cycles by changing f to another
bijection f ′ according to the identical sub-sequences. Hence, in the following, we
assume that, under the bijection f , the cycles in each connected component of
IG(π, τ, f) cannot all be converted into 1-cycles by changing the bijection.

Similar to the intersection graph of chromosomes with a duplication number
of 2, the intersection graph of chromosomes with unrestricted duplication num-
ber also admit the rule-I, rule-II, and rule-III, as in Sect. 3, while performing a
symmetric reversal on π.
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Algorithm 1. The decision algorithm for SSR
Input: Two related chromosomes π and τ .
Output: Y ES\NO

1: if A[π] �= A[τ ] then
2: return NO.
3: end if
4: Delete the redundant repeats from π and τ when dp[π] = 2 (by Lemma 2).
5: Build a bijection f between A[π] and A[τ ] when dp[π] > 2 by mapping identical

adjacencies together and adopting any bijection among multiple occurrences of the
same adjacency.

6: Construct the alternative-cycle graph ACG(π, τ, f) based on f when dp[π] > 2.
7: Construct the corresponding intersection graph IG(π, τ, f) = (Vπ, Eπ) (based on

ACG(π, τ, f) when dp[π] > 2 and directly from π and τ if dp[π] = 2).
8: if dp[π] = 2 then
9: set V w

π to be the set of weight 1 white vertices
10: end if
11: if dp[π] > 2 then
12: set V w

π to be the set of white vertices corresponding to non-opposite blue edge
on long cycle.

13: end if
14: Let V b

π be set of black vertices in IG(π, τ, f).
15: Set queue Q = V b

π .
16: Do a breadth first search using Q as the initial value to mark all vertices in the

same component of every x ∈ V b
π .

17: if there exists an u ∈ V w
π , which is not marked then return NO.

18: end if
19: return YES.

Theorem 6. If a connected component of IG(π, τ, f) contains a black vertex,
then there exists a symmetric reversal, after performing it, we obtain π′, any
newly created connected component containing a white vertex, which corresponds
to a blue edge on a non-opposite long cycle in ACG(π′, τ, f), also contains a black
vertex.

Theorem 7. A chromosome π can be transformed into the other chromosome τ
by symmetric reversals if and only if (I) A[π] = A[τ ], and (II) each white vertex
in V w

π belongs to a connected component of IG(π, τ, f) containing a black vertex.

Now, we are ready to formally present the decision algorithm based on The-
orem 7 for both the general case and the case, where the duplication number 2
in Algorithm 1. We just directly test conditions (I) and (II) in Theorem 7. Note
that each connected component in IG(π, τ, f) may contain more than one black
vertex. By setting Q = V b

π in line 11, we can guarantee that each connected
component in IG(π, τ, f) is explored once during the breadth first search so that
O(n2) running time can be kept.

Running time of Algorithm 1: Let us analyze the time complexity of Algo-
rithm 1. Verifying whether A[π] = A[τ ] can be done in O(n2) time. It takes
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O(n2) time to build a bijection between A[π] and A[τ ], and construct the cycle
graph ACG(π, τ, f), as well as the corresponding intersection graph IG(π, τ, f).
It remains to analyze the size of IG(π, τ, f). For each repeat, say x, there are
dp[x, π] original vertices and c[x] − 1 additional vertices in IG[π], where c[x]
is the number of cycles of x in ACG(π, τ, f ]. Note that c[x] ≤ dp[x, π] and∑

x∈∑ dp[x, π] = n. Thus, the total number of vertices in IG(π, τ, f) is bounded
by

∑
x∈∑(dp[x, π] + c[x] − 1) ≤ 2

∑
x∈∑ dp[x, π] − 1 = 2n − 1, then the number

of edges in IG[π] is at most 4n2. The whole breadth-search process takes O(n2)
time, since there are at most 2n−1 vertices and at most 4n2 edges in IG(π, τ, f).
Therefore, Algorithm 1 runs in O(n2) time.

5 Concluding Remarks

This paper investigates a new theoretical model of genome rearrangements
named sorting by symmetric reversals. We show that the decision problem, which
asks whether a chromosome can be transformed into another by symmetric rever-
sals, is polynomially solvable.

A key idea when the duplication number is 2, is that Lemma 2 shows two
chromosomes can be converted into two new chromosomes which can be viewed
as permutations of distinct adjacencies. At this point, some readers might think
that the problem could then be solved by the famous HP-theory [6,11]. Actually,
HP-theory does not always work in this symmetric reversal model. The reason
is that, according to HP-theory, two “hurdles” can be mixed together into one
component by performing a reversal between an element of one “hurdle” and
some element of the other. Under the symmetric reversal model, this is not
always possible — there might not be a pair of repeats with opposite signs in
these two “hurdles” at all. In this paper, we manage to mix the hurdles with
other oriented (good) components by using a series of “trivial” components,
each composed of a single 1-cycle. These “trivial” components do not need to be
considered by HP-theory while solving the classical sorting signed permutations
by reversals problem.
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Abstract. We revisit the classical metric k-median/means with out-
liers in this paper, whose proposal dates back to (Charikar, Khuller,
Mount, and Narasimhan SODA’01). Though good approximation algo-
rithms have been proposed, referring to the state-of-the-art (6.994+ε)-
approximation (Gupta, Moseley and Zhou ICALP’21) for k-median with
outliers and (53.002+ε)-approximation (Krishnaswamy, Li, and Sandeep
SODA’18) for k-means with outliers respectively, we are interested in
finding efficient fpt (fixed-parameter tractable) approximations, follow-
ing a recent research mainstream for constrained clusterings. As our main
contribution, we propose a simple but efficient technical framework that
yields a (3 + ε)/(9 + ε)-approximation for k-median/means with out-
liers, albeit in ((m + k)/ε)O(k) · nO(1) time. It is notable that our results
match with previous result (Goyal, Jaiswal, and Kumar IPEC’20) in
terms of ratio and asymptotic running time. But as aforementioned, our
technique is much more simplified and straightforward, where instead of
considering the whole client set, we restrict ourselves to finding a good
approximate facility set for coreset, which can be done easily in fpt time
even with provably small loss. Similar idea can be applied to more con-
strained clustering problems whose coresets have been well-studied.

Keywords: Approximation algorithm · Fixed-parameter tractability ·
Clustering with outliers · Coreset

1 Introduction

The k-median/means problem is a classical optimization problem in which one
must choose k facilities from a given set of candidate locations to serve a set of
clients, so as to minimize the total distance cost between the clients and their
closest facilities. This problem attracts research interests from various domains,
such as computer science, data science, and operations research.

In general metric, both k-median and k-means are NP-hard, more precisely,
APX-hard. The k-median is hard to approximate within a factor of (1 + 2/e),
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and the k-means is hard to approximate within a factor of (1 + 8/e) under P�=
NP [15,23]. Both problems have been extensively studied in the literature from
the perspective of approximation algorithms. The state-of-art approximation
algorithm for k-median, to the best of our knowledge, is 2.67059 by Cohen-
Addad et al. [8]. Kanungo et al. [24] give a (9+ε)-approximation algorithm for
k-means, which is improved to 6.357 by Ahmadian et al. [3].

However, the presence of outliers can significantly affect the solution of the
k-median/means, where some clients may not be served by any facility (i.e.
outliers) due to various reasons such as geographic constraints or capacity lim-
itations. Excluding outliers may greatly reduce the clustering cost and improve
the quality of the clustering. Despite practical considerations, identifying outliers
in clustering is a crucial and intriguing part of algorithm design, for example,
what we study in this paper, k-median with outliers (k-MedO) and k-means
with outliers (k-MeaO), which we will formally define later in definition 1.

Both k-MedO and k-MeaO are more difficult than the vanilla version. In
a seminal work, Charikar et al. [5] first introduce the problem of k-MedO in
the literature (also called robust k-median), and design a bi-criteria (1 + λ,
4+4/λ)-approximation algorithm that always returns a clustering at cost at most
4 + 4/λ times the optimum with violation of the outlier constraint by a factor
of 1 + λ. No constant approximation algorithm has been proposed for k-MedO
until Chen [6] presents the first true constant approximation algorithm, whose
approximation ratio is significantly improved to 7.081+ε by Krishnaswamy et
al. [26] and 6.994+ε by Gupta et al. [17] via iterative LP rounding. For k-
MeaO, Gupta et al. [18] give a bi-criteria approximation algorithm that outputs
a solution with a ratio of 274 using at most O(mlogn) outliers, where m stands
for the desired number of outliers and n corresponds to the total count of clients.
Krishnaswamy et al. [26] first propose a true constant approximation algorithm
of 53.002, which is quite far from the lower bound.

While there is a lot of work focusing on the approximation algorithms for k-
MedO and k-MeaO, there is another research mainstream aiming at developing
fixed-parameter tractable (fpt) approximations, which enables an additional
factor of f(k) in the running time. Fpt algorithms have demonstrated their abil-
ity to overcome longstanding barriers in the field of approximation algorithms in
recent years [11,25], improving the best-known approximation factors in poly-
nomial time for many classic NP-hard problems, e.g., k-vertex separator [27],
k-cut [17] and k-treewidth deletion [16].

Coresets turn out to be useful in fpt algorithm design for clustering recently.
Coresets are small representative subsets of the original dataset that capture
specific geometric structures of the data, which can help to develop existing
algorithms. Agarwal et al. [1] first introduce the framework of coreset in com-
puting diameter, width, and smallest bounding box, ball, and cylinder, initial-
izing a research path of the coreset for many other combinatorial problems. In
the classic k-median and k-means, Har-Peled and Mazumdar [19] first prove the
existence of small coreset for k-median and k-means with size O(k log nε−d) in
Euclidean metrics and near-optimal size bounds have been obtained in more
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recent works by Cohen-Addad et al. [10,22]. In general metric, a seminar paper
by Chen [7] obtains coresets for k-median and k-means with size O(k log n/ε)
based on hierarchical sampling. However, coresets for k-MedO and k-MeaO seem
to be less understood — previous results either suffer from exponential depen-
dence on (m + k) [12], or violate the constraint of k or m [20]. Recently, Huang
et al. [21] present a near-optimal coreset for k-MedO and k-MeaO in Euclidean
spaces with size O((m + k/ε)) based on uniform sampling.

Building on the previous work of coresets, there are several fpt results for
the clustering problem. For the classic k-median and k-means, (1 + 2/e + ε) and
(1 + 8/e + ε) fpt approximations are obtained by Cohen-Addad et al. [9], which
are proven to be tight even in f(k, ε) · nO(1) time, assuming Gap-ETH. For the
k-MedO and k-MeaO, existing work [2,28] mostly overcomes the difficulty of
identifying outliers by reducing the k-MedO/k-MeaO into a related (k + m)-
median/means problem, which leads to an exponential time dependency on the
outlier number m. Agrawal et al. [2] present (1 + 2/e + ε) and (1 + 8/e + ε)
fpt approximations for k-MedO and k-MeaO respectively, in ((k + m)/ε)O(m) ·
(k/ε)O(k) · nO(1) time. In addition to coresets, k-means++ [4] is also considered
as a dataset reduction for k-MeaO in Euclidean spaces in the literature [13,
28]. Though it is not stated explicitly, Statman et al. [28] yields a (1 + ε)-
approximation for Euclidean k-MeaO in fpt time.

Our Contribution. In this paper, we propose a coreset-based technical frame-
work for k-MedO and k-MeaO in general metric. We employ the coreset for k-
MedO and k-MeaO as a reduction of search space, which would help us to avoid
the exponential time dependency on m. We restrict ourselves to finding a good
facility set based on the constructed client coreset with size O((k + m) log n/ε).
We propose a provably good approximate facility set by finding substitute facil-
ities for leaders of clients in coreset, where leaders represent the clients with
minimum cost in each optimal cluster. Moreover, leaders can be found easily
in fpt(k) time by enumeration of k-sized subset from the coreset. Based on this
idea, we derive a (3+ε)-approximation for k-MedO and a (9+ε)-approximation
for the k-MeaO in ((k +m)/ε)O(k) ·nO(1) time. It is worth noting that our result
improves upon Akanksha et al. [2] in terms of running time, as the outlier count
m is consistently much larger than the facility count k in practical but with a
constant loss of approximation ratio. Also note that this matches with Goyal et
al. [14] in terms of approximation ratio and asymptotic running time, but with
a much simplified and straightforward technical framework, which is promising
to apply to more (constrained) clustering problems.

The rest of the paper is organized as follows. Section 2 describes the fpt
algorithm as well as its analysis in detail. We conclude this paper and provide
some interesting directions in Sect. 3.

2 A Coreset-Based Fpt Approximation

For ease of discussion, we provide formal definitions for k-MedO and k-MeaO.
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Definition 1. (k-MedO/k-MeaO) An instance I of the k-median/means prob-
lem with outliers contains a tuple ((X ∪F, d), k,m), where (X ∪F, d) is a metric
space over a set of n points with a function d(i, j) indicating the distance between
two points i, j in X ∪ F . Furthermore, X and F are two disjoint sets referred
to as “clients” and “facilities locations”, respectively, while k and m are two
positive parameters. The objective is to identify a subset S of k facilities in F
and simultaneously exclude a subset O of m clients from X to minimize

costm(X,S) = min
O⊆X:|O|=m

∑

x∈X\O
dz(x, S).

Here, z = 1 corresponds to k-MedO, and z = 2 corresponds to k-MeaO.

This definition implies that, for a fixed set S of k open facilities, the set of m
outliers can be naturally determined, namely the set of m points that are farthest
from S. This reminds us that we can overcome the difficulty of identifying outliers
by focusing on selecting a good approximation for the facilities.

As a pre-processing step, we construct a coreset for k-MedO/k-MeaO to
reduce the search space, in order to find a good facility set in fpt(k) time.

Definition 2. (Coreset) Let S = {S1, S2, . . . } be a set of candidate solutions.
Recall that

costm(X,S) = min
O⊆X:|O|=m

∑

x∈X\O
dz(x, S).

Then a weighted subset C ⊆ X is an ε-coreset, if for all candidate solution S ∈ S
we have

|costm(X,S) − costm(C,S)| ≤ ε · costm(X,S).

In other words, coreset is a weighted subset for the client set which preserves
a good approximation for the whole client set. In this paper, we make use of
the coreset construction technique [2], based on a hierarchical sampling idea [7],
which is suitable for clustering problems with outliers.

Theorem 1. (Agrawal et al. [2]) For ε > 0, there exists an algorithm that for
each instance I = ((X ∪F, d), k,m) of k-MedO or k-MeaO, outputs an ε-coreset
C ⊆ X with size |C| = O(((k + m) log n/ε)2) with constant probability, running
in O(nk) + poly(n) time.

For any instance I = ((X ∪ F, d), k,m) and ε > 0, we run the hierarchical
sampling in [2] on I to obtain a coreset C ⊆ X with size O(((k + m) log n/ε)2).
By the definition of coreset, an α-approximate solution on I ′ = ((C ∪F, d), k,m)
implies a (1+ε)α-approximate solution on I. Therefore, the only thing we need
to do is to find a facility subset S ⊆ F of size k to minimize the objective function
minL⊆C:|L|=m

∑
x∈C\L dz(x, S) on instance I ′. Towards this end, we present our

algorithm in Algorithm 1.
Let F ∗ = {f∗

1 , f∗
2 , . . . f∗

k} be facility set of optimal solution on instance I ′ =
((C ∪ F, d), k,m). For any f∗

i ∈ F ∗, let C∗
i be the clients served by facility f∗

i ,
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Algorithm 1. Coreset-based fpt approximation
Require: Instance I = ((X ∪ F, d), k, m)

Construct the coreset C based on hierarchical sampling
Find leaders of C by enumeration
S ← the nearest facilities in F for every leader client
return S

and denote c∗
i as the leader of C∗

i representing the client in C∗
i who is closest to

f∗
i . We define leaders as all such leader clients, thus is a k-sized set.

We will find a good substitute facility for each C∗
i via leader, inspired by

[9] except that their leader is defined on the origin client set in order to deal
with capacity constraints. By the definition, we can find leaders eventually by
enumeration of a k-sized subset, which is allowed in fpt(k) time. We will prove
that a good approximate facility set can be found around the leaders with a
constant approximation guarantee.

Lemma 1. Algorithm 1 yields a (3+ε)-approximation for k-MedO and a (9+ε)-
approximation for k-MeaO.

Proof. We define fi for each leader client c∗
i as the closest facility in F . As c∗

i is
the closest client of f∗

i in C∗
i , it must satisfy that d(c∗

i , fi) ≤ d(c∗
i , f

∗
i ) ≤ d(c, f∗

i )
for any client c in C∗

i , which is shown in Fig. 1.

Fig. 1. Substitute facility in optimal cluster C∗
i

Thus, for each c in the coreset,

d(c, fi) ≤ d(c, f∗
i ) + d(f∗

i , c∗
i ) + d(c∗

i , fi) ≤ 3d(c, f∗
i ),

where the first inequality follows from the triangle inequality. Combined with
the definition of coreset (Theorem 1), it holds that

costm(X, S) ≤ 1

1 − ε
costm(C, S) ≤ 3z

1 − ε
costm(C, F ∗) ≤ 3z(1 + ε)

1 − ε
costm(X, F ∗),

which implies a (3 + ε)-approximation/(9 + ε)-approximation for k-MedO/k-
MeaO respectively. Though it is possible that some leader clients may share the
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same closest facility fi, it will not affect the performance guarantee as it does not
hurt to let fi serve all C∗

i corresponding to these leader clients. This concludes
the proof of Lemma 1. ��
By combining Theorem 1 and Lemma 1 together, we can establish that our
algorithm yields a (3+ε)\(9+ε)-approximation with a constant probability. To
ensure a high probability of success, we can repeat the algorithm for a logarithmic
number of rounds, which leads to the following theorem.

Theorem 2. For any ε > 0, there exists a (3+ε)-approximation for k-MedO
and a (9+ε)-approximation for k-MeaO with high probability, running in ((m +
k)/ε)O(k)· nO(1) time.

3 Conclusion

To summarize, we propose a simple unified approach to obtain constant factor
approximations for metric k-MedO/k-MeaO in fpt(k) time, more specifically,
in ((m + k)/ε)O(k)· nO(1) time. It is highlighted that the running time avoids
exponential dependency on m, which partially answers (Agrawal et al. AAAI’23)
who ask for faster fpt approximations for k-MedO/k-MeaO while obtaining the
tight approximation ratios. The proposed approach leverages recent results on
coresets for robust clustering, and presents a simple but novel idea to find a good
substitute facility set for those leaders of coreset. We prove that the substitute
facility set can be found easily in fpt(k) time and have provably small loss com-
pared with the optimal facility set in terms of the k-MedO/k-MeaO objective for
coreset. We believe similar idea has the potential to apply to a wide range of con-
strained clustering problems, for example, fair clustering, a recent mainstream
in clustering field.
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Abstract. In the k-product facility location game with penalties, each
customer must be supplied with k different products or be rejected by
paying the penalty cost. The game is considered in this paper. The cost-
sharing scheme for this game refers to allocating the costs of the problem
to all customers. We present a cross-monotonic and competitive scheme
which satisfies 2 and ( 3k

2
− 3

2
)-approximate cost recovery when k = 2 and

k ≥ 3, respectively. Moreover, the lower bound of the cost-sharing scheme
is obtained for the k-product facility location game with penalties.

Keywords: Facility location game · Cost-sharing scheme ·
Competitive · Cross-monotonic · Approximate cost recovery

1 Introduction

In the classic facility location problem (FLP), the inputs are a set of facilities
F , a set of customers U , facility opening cost fi ≥ 0 for each facility i ∈ F , and
service cost cij ≥ 0 between each facility i ∈ F and each customer j ∈ U . Each
customer must be serviced by an opened facility. The objective is to open some
facilities and service all customers such that the sum of the opening costs and
service costs are minimized. The algorithm design of the facility location problem
[3,8,9,12,16] and some variants of the facility location problem [1,2,4] has been
extensively studied. The corresponding game of the facility location problem is
called the facility location game. In this game, each customer is a player. For
any given subset of customers D ⊆ U , let c∗(D) denote the minimum costs
required to serve all customers in D. The objective is to design a cost-sharing
scheme that allocates the total costs to all customers. A cost-sharing scheme
is an algorithm to compute the cost share α(D, j) of each customer j ∈ D.
The cost-sharing scheme should be fair, group strategy − proof , competitive,
cross − monotonic, and exactorapproximatecostrecovery [15]. Pál and Tardos
[15] showed that competitiveness and cross-monotonicity imply fairness. Moulin
and Shenker [14] stated that cross-monotonicity implies group strategyproofness.
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Thus, researchers focus on developing a cost-sharing scheme that satisfies cross-
monotonicity, competitiveness, and exact or approximate cost recovery.

A cost-sharing scheme is cross − monotonic if the price charged to any indi-
vidual in a group never goes up as the group expands, i.e., α(D, j) ≤ α(D

′
, j)

for all D ⊆ D
′
. Hence, customers have an economic incentive to cooperate.

A cost-sharing scheme is competitive if the customers are charged no more
than the total costs, i.e.,

∑
j∈D α(D, j) ≤ c∗(D). A cost-sharing scheme sat-

isfies r − approximate cost recovery if the customers are required to recover
1/r of the total costs, i.e.,

∑
j∈D α(D, j) ≥ c∗(D)/r, where r ≥ 1. If r = 1,

it is the exact cost recovery. However, Immorlica et al. [11] proved that
no cross-monotonic and competitive cost-sharing scheme could recover more
than one-third of the costs for the facility location game. Pál and Tardos [15]
studied the facility location game and obtained a cost-sharing scheme that is
cross-monotonic, competitive and 3-approximate cost recovery. Xu and Du [19]
extended it to the k-level facility location game and obtained a 3-approximation
cost recovery scheme. Wang and Xu [18] studied the facility location game with
linear penalties. They presented a 3-approximate cost recovery scheme by adopt-
ing the ghost-process [15]; this process can be viewed as a smoothed version of
a primal-dual algorithm [12]. Furthermore, Wang et al. [17] discussed the k-
level facility location game with linear penalties. By applying the ghost-process
outlined in [18] and [19], they obtained a 6-approximate cost recovery scheme.

In addition, researchers have also studied other forms of facility location
games. Cheng et al. [7] discussed the mechanism design for an obnoxious facility
location game where the customers want to be as far away from facilities as
possible. Ye et al. [20] researched the problem where the objective is to minimize
the sum of the squares of distances. Chen et al. [6] studied the optional preference
model of the facility location game with two heterogeneous facilities on a line. Li
et al. [13] studied the budgeted facility location games with strategic facilities.
Chen et al. [5] proposed the facility location game with minimax envy.

The k-product facility location problem is an essential variant of the classic
facility location problem. In the k-product facility location problem, there are
k different kinds of products m1,m2, ...,mk. Each facility can only produce one
kind of product at most. The cost of opening facility i to produce product ml is
f l
i . The customer is serviced if it is supplied with k kinds of products by a set

of k different opened facilities. The goal is to open some facilities and service
all customers while minimizing total costs, including facility opening costs and
customer service costs. Huang and Li [10] obtained an approximation algorithm
with an approximate ratio is 2k+1. In particular, they considered the k-product
facility location problem with no opening costs (k-PFLPN), in which the opening
cost is zero for any facility. They proved that the 2-PFLPN is NP-hard. Then,
they devised a (2k − 1)-approximation algorithm for the k-PFLPN.

The k-product facility location problem with linear penalties is a variant of
the k-product facility location problem. The study of this problem is driven by
practical problems. On the one hand, the customers may have diverse product
demands in actual situations, so it is necessary to consider the multi-product
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facility location problem. On the other hand, for many facility location appli-
cations, it may be economically essential to ignore distant customers by paying
the penalty costs. The corresponding game of k-product facility location problem
with linear penalties is the k-product facility location game with linear penalties.
For this game, the objective is to design a cost-sharing scheme that allocates the
total costs to all customers. The service costs between customers and facilities in
this game have become more complex compared with the facility location game.
This challenges algorithm design.

The main contribution of this paper is to develop a cost-sharing scheme for
the k-product facility location game with penalties and no opening costs (k-
PFLGPN), which can be applied in situations where the government bears the
opening costs of some public facilities and customers only need to share other
costs. Based on the linear-rounding technique and the greedy algorithm, we get
a cross-monotonic and competitive cost-sharing scheme with 2-approximate cost
recovery when k = 2. More generally, the scheme is 3k

2 − 3
2 -approximate cost

recovery when k ≥ 3. Moreover, we analyze the lower bound of the k-PFLGPN.
The rest of the paper is organized as follows. After describing the k-PFLPN

and a preliminary algorithm in Sect. 2, we proceed with algorithm design and
performance analysis for the k-PFLGPN in Sect. 3. Section 4 is devoted to con-
clusions and future works.

2 Preliminary Algorithm

Now, we present a model of the k-product facility location problem with no
opening costs(k-PFLPN) and a preliminary algorithm. The algorithm will be
used to design a cost-sharing scheme for the k-product facility location game
with penalties in Sect. 3.1.

Given a set of facilities F and potential customers U . There are k kinds
of products ml, l = 1, 2, ..., k. Each facility can produce exactly one product.
The service cost between any facility i and customer j is cij , which satisfies non-
negativity, symmetry, and triangle inequality, where i ∈ F, j ∈ U . Given a subset
D ⊆ U of customers, each customer j ∈ D demands k kinds of products. In the
k-PFLPN, we need to open all facilities, specify the products they produce,
and assign all customers to the opened facilities to meet their demands. Note
that each customer must be served by a series of k facilities producing different
products, which means each customer is assigned to a series of k facilities. The
goal of the problem is to minimize the total service costs.

Let xl
ij be equal to 1 if facility i supplies customer j with product ml, for

any i ∈ F, j ∈ D and l ∈ {1, 2, . . . , k}. Otherwise, it is 0. Let yl
i be 1 if facility

i is opened and produce product ml, and 0 otherwise. Thus, the k-PFLPN can
be formulated as the following integer programming.
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P1 min
k∑

l=1

∑

i∈F

∑

j∈D

cijx
l
ij

s.t.
∑

i∈F

xl
ij = 1,∀j ∈ D, l ∈ {1, 2, · · · , k},

yl
i ≥ xl

ij ,∀i ∈ F, j ∈ D, l ∈ {1, 2, · · · , k},

k∑

l=1

yl
i = 1,∀i ∈ F,

xl
ij ∈ {0, 1},∀i ∈ F, j ∈ D, l ∈ {1, 2, · · · , k},

yl
i ∈ {0, 1},∀i ∈ F, l ∈ {1, 2, · · · , k}.

(1)

The first constraint guarantees that each customer j is supplied with k dif-
ferent products. The second constraint ensures that customer j is provided with
product ml by facility i only if facility i produces product ml. The third con-
straint ensures that each facility produces exactly one product.

The LP-relaxation of the above programming is

P2 min
k∑

l=1

∑

i∈F

∑

j∈D

cijx
l
ij

s.t.
∑

i∈F

xl
ij = 1,∀j ∈ D, l ∈ {1, 2, · · · , k},

yl
i ≥ xl

ij ,∀i ∈ F, j ∈ D, l ∈ {1, 2, · · · , k},

k∑

l=1

yl
i = 1,∀i ∈ F,

xl
ij ≥ 0,∀i ∈ F, j ∈ D, l ∈ {1, 2, · · · , k},

yl
i ≥ 0,∀i ∈ F, l ∈ {1, 2, · · · , k}.

(2)

The P2 is analyzed below, and the results will help design the cost-sharing
scheme for the k-product facility location game with linear penalties.

For the convenience of describing the algorithm, we regard the service cost
between facility i and customer j as their distance for each i ∈ F, j ∈ D.

The following algorithm can obtain an optimal solution of P2.
Algorithm 1
Step 1. Set ȳl

i = 1
k , for any l ∈ {1, 2, . . . , k}, i ∈ F .

Step 2. Any customer j ∈ D is fractionally supplied by the k closest facilities
to customer j. That is, if i1, i2, . . . , ik are the k closest facilities to customer j,
then we set

x̄l
i1j = x̄l

i2j = · · · = x̄l
ikj

=
1
k

, ∀l ∈ {1, 2, . . . , k}.

x̄l
ij = 0, ∀i ∈ F\ {i1, i2, . . . , ik} , l ∈ {1, 2, . . . , k}.
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For each customer j ∈ D, let c̄j =
k∑

l=1

∑

i∈F

cij x̄
l
ij , where (x̄, ȳ) is the solution

obtained by Algorithm 1. The performance of Algorithm 1 is analyzed below.

Lemma 1. For any customer j ∈ D and any feasible solution (x,y) of P2, cj ≥
c̄j, where cj =

k∑

l=1

∑

i∈F

cijx
l
ij.

Proof. For any customer j ∈ D, denote F (j) as the set of the k closest facilities
to customer j. Without loss of generality, suppose that F (j) = {i1, i2, · · · , ik}.

According to Algorithm 1, we have c̄j =
k∑

l=1

∑

i∈F

cij x̄
l
ij =

∑

i∈F (j)

cij . Since |F (j)| =

k, we can get that

k∑

l=1

(1 −
∑

i∈F (j)

xl
ij) =

∑

i∈F (j)

(1 −
k∑

l=1

xl
ij).

Let S(j) = {i ∈ F |
k∑

l=1

xl
ij > 0}. We can know that, if i /∈ S(j), xl

ij = 0 for

any l ∈ {1, 2, · · · , k}. Combining with the first constraint of P2, we have

∑

i∈S(j)

xl
ij =

∑

i∈F

xl
ij =

∑

i∈F (j)

xl
ij +

∑

i∈F\F (j)

xl
ij =

∑

i∈F (j)

xl
ij +

∑

i∈S(j)\F (j)

xl
ij = 1

for any l ∈ {1, 2, · · · , k}.
Let cmax = max

i∈F (j)
cij . According to the definition of F (j), it can be seen that

cij ≥ cmax for any facility i ∈ S(j)\F (j). This implies that

k∑

l=1

∑

i∈S(j)

cijx
l
ij =

k∑

l=1

∑

i∈F (j)

cijx
l
ij +

k∑

l=1

∑

i∈S(j)\F (j)

cijx
l
ij

≥
k∑

l=1

∑

i∈F (j)

cijx
l
ij + cmax

k∑

l=1

∑

i∈S(j)\F (j)

xl
ij

=
k∑

l=1

∑

i∈F (j)

cijx
l
ij + cmax

k∑

l=1

⎛

⎝1 −
∑

i∈F (j)

xl
ij

⎞

⎠

=
k∑

l=1

∑

i∈F (j)

cijx
l
ij + cmax

∑

i∈F (j)

(

1 −
k∑

l=1

xl
ij

)

≥
k∑

l=1

∑

i∈F (j)

cijx
l
ij +

∑

i∈F (j)

cij

(

1 −
k∑

l=1

xl
ij

)

= c̄j .
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Hence, we get that cj =
k∑

l=1

∑

i∈F

cijx
l
ij ≥ c̄j . The lemma is proved. �

Lemma 2. An optimal solution for P2 can be obtained by Algorithm 1.

Proof. We can find that the solution (x̄, ȳ) obtained by Algorithm 1 satisfies all
the constraints of P2, so it is a feasible solution for P2. By Lemma 1, for any

feasible solution (x, y) of P2, we have
k∑

l=1

∑

i∈F

∑

j∈D

cijx
l
ij =

∑

j∈D

cj ≥ ∑

j∈D

c̄j .

Therefore, the lemma is proved. �

3 The Cost-Sharing Scheme for the k-PFLGPN

Now, we first consider the k-product facility location problem with penalties, in
which the customer j can be rejected by paying the penalty cost pj for any cus-
tomer j ∈ D. The objective is to select some customers to reject their demands
by paying penalty costs and assign the remaining customers to opened facilities
to minimize the total costs, including service and penalty costs.

For any i ∈ F, j ∈ D, l ∈ {1, 2, ..., k}, let xl
ij be 1 if facility i supplies

customer j with product ml, and 0 otherwise. Let yl
i be 1 if facility i is opened

to supply product ml, and 0 otherwise. Let zj be 1 if customer j is rejected, and 0
otherwise. The problem can be formulated as the following integer programming.

P3 min
k∑

l=1

∑

i∈F

∑

j∈D

cijx
l
ij +

∑

j∈D

pjzj

s.t.
∑

i∈F

xl
ij + zj = 1,∀j ∈ D, l ∈ {1, 2, · · · , k},

yl
i ≥ xl

ij ,∀i ∈ F, j ∈ D, l ∈ {1, 2, · · · , k},

k∑

l=1

yl
i = 1,∀i ∈ F,

xl
ij ∈ {0, 1},∀i ∈ F, j ∈ D, l ∈ {1, 2, · · · , k},

yl
i ∈ {0, 1},∀i ∈ F, l ∈ {1, 2, · · · , k},

zj ∈ {0, 1},∀j ∈ D.

(3)

The first constraint guarantees that each customer is either served or rejected.
If customer j is served, it is supplied with k different products. The second
constraint ensures that customer j is provided with product ml by facility i only
if facility i produces product ml. The third constraint ensures that each facility
produces exactly one product.

The game corresponding to the k-product facility location problem with
penalties is k-PFLGPN. In this game, each customer is a player. The objec-
tive is to construct a competitive and cross-monotonic cost-sharing scheme such
that each customer pays a certain amount to recover the minimum costs of the
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P3. We can know that P1 corresponds to P3 when the penalty cost of each cus-
tomer in P3 is large enough. Huang and Li [10] proved that P1 is an NP-hard
problem, which means that P3 is also an NP-hard problem. So, it is impossible
to obtain the optimal solution of P3 in polynomial time unless P = NP . Hence,
this paper focuses on designing an approximation algorithm for the k-PFLGPN.
The following algorithm will give a cost-sharing scheme that is cross-monotonic,
competitive, and approximate cost recovery for the k-PFLGPN.

3.1 Algorithm for the k-PFLGPN

In the last section, we have known that the optimal solution of P2 can be obtained
by Algorithm 1. Then we use the method of greed to convert the optimal solution
of P2 into a feasible solution of P3, and finally determine the cost shared by each
customer. For the convenience of describing the algorithm, we regard the service
cost between facility i and customer j as its distance for any i ∈ F, j ∈ D.
Meanwhile, α(D, j) is abbreviated as αj in this section.

Algorithm 2
Step 1. Let D̄ denote the set of customers that have not been processed, D̃

denote the set of customers to be rejected, and Sl denote the set of facilities
to produce product ml. For the convenience of algorithm analysis, subset D

′
is

introduced. Initially, set D̄ = D, D̃ = ∅,D
′
= ∅, S1 = S2 = · · · = Sk = ∅.

Step 2. Use Algorithm 1 to solve P2, and denote the obtained solution as

(x̄, ȳ). For each customer j ∈ D, let c̄j =
k∑

l=1

∑

i∈F

cij x̄ij , and denote F (j) as the

set of the k closest facilities to customer j.
Step 3. Choose the customer in D̄ with the minimum value of c̄j , i.e., choose

j
′
= arg min

j∈D̄
{c̄j}.

Step 3.1. If pj′ < c̄j′ , reject customer j
′
and set zj′ = 1. Set D̄ = D̄\{j

′}, D̃ =
D̃ ∪ {j

′}.
Step 3.2. If pj′ ≥ c̄j′ , discuss the following two cases respectively.

– Case 1. If
∣
∣
∣Sl ∩ F (j

′
)
∣
∣
∣ ≤ 1 for each l = 1, 2, ..., k, put the facilities in F (j

′
) into

Sl such that the updated Sl satisfies
∣
∣
∣Sl ∩ F (j

′
)
∣
∣
∣ = 1 for each l = 1, 2, ..., k.

Set D̄ = D̄\{j
′}.

– Case 2. If
∣
∣
∣Sl ∩ F (j

′
)
∣
∣
∣ ≥ 2 for some l = 1, 2, ..., k, set D̄ = D̄\{j

′},D′ =

D′ ∪ {j
′}.

Then, repeat Step 3, until D̄ = ∅.
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Step 4. For each facility i ∈ F\(
k⋃

l=1

Sl), arbitrarily put it into any set of Sl,

where l ∈ {1, 2, · · · , k}. Use the facilities in Sl to produce products ml, i.e., set
yl
i = 1 for any i ∈ Sl, l ∈ {1, 2, · · · , k}. Otherwise, it is 0.

For each customer j ∈ D\D̃, select its closest facility in Sl to supply product
ml (l ∈ {1, 2, · · · , k}), i.e., set xl

ij = 1 if i = il(j), where il(j) is the closest
facility in Sl to customer j. Otherwise, it is 0.

Step 5. Determine the costs allocated to all customers. For each customer
j ∈ D, set αj = min(c̄j , pj), i.e., αj = pj , if j ∈ D̃. Otherwise, it is c̄j .

3.2 Analysis of Algorithm 2

From now on, we prove that the cost-sharing scheme obtained in Sect. 3.1 is
competitive, cross-monotonic, and 2-approximate cost recovery when k = 2.
Moreover, we demonstrate that no competitive and cross-monotonic cost-sharing
scheme can recover more than two-thirds of the costs.

Let the service and penalty costs be C∗ and P ∗, C and P in the optimal
solution and the solution obtained by Algorithm 2, respectively.

Let the set of customers to be served and the set of customers to be rejected
be D∗

1 and D∗
2 , D1 and D2 in the optimal solution and the solution obtained by

Algorithm 2, respectively.
By Algorithm 2, we can find that D1 = D\D̃, D2 = D̃. Let c∗

j denote the
service cost of customer j in the optimal solution, where j ∈ D∗

1 . By Lemma 1,

c̄j =
k∑

l=1

∑

i∈F

cij x̄
l
ij =

∑

i∈F (j)

cij ≤ c∗
j for each customer j ∈ D∗

1 . We can get the

following facts.

Fact 1. For each customer j ∈ D2, we have j ∈ D∗
2 .

Proof. By Algorithm 2, we can know that c̄j > pj for each customer j ∈ D2. If
there is a customer j ∈ D2, and j /∈ D∗

2 , we can get that j ∈ D∗
1 , which implies

that c∗
j ≥ c̄j > pj . Therefore, we can obtain a better solution by transferring

customer j from set D∗
1 to set D∗

2 . The fact is proved. �

Since D1 ∪ D2 = D∗
1 ∪ D∗

2 = D, combining with Fact 1, we have D∗
1 ⊆

D1,D1\D∗
1 = D∗

2\D2. Now, we show that Algorithm 2 satisfies the following
fact.

Fact 2. The customers are not charged more than OPT (P3), which is the opti-
mal value of P3. Specifically,

∑

j∈D

αj ≤ OPT (P3).
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Proof. By Algorithm 2, we can get that pj ≥ c̄j for each customer j ∈ D1.
Therefore, we have

∑

j∈D

αj =
∑

j∈D1

c̄j +
∑

j∈D2

pj

=
∑

j∈D∗
1

c̄j +
∑

j∈D1\D∗
1

c̄j +
∑

j∈D2

pj

≤
∑

j∈D∗
1

c∗
j +

∑

j∈D1\D∗
1

pj +
∑

j∈D2

pj

=
∑

j∈D∗
1

c∗
j +

∑

j∈D∗
2

pj

= OPT (P3).

(4)

The fact is proved. �
We can get that Fact 2 implies competitiveness.
Furthermore, we can know that the cost α(D, j) shared by customer j will

not go up as the set D expands, since αj = min(c̄j , pj). Thus, we have the
following fact.

Fact 3. The cost-sharing scheme obtained in Sect. 3.1 is cross-monotonic.
We analyze the approximation ratio of the cost-sharing scheme below. For each
customer j ∈ D1, let ĉj denote the service cost of customer j obtained by
Algorithm 2.

Lemma 3. For any customer j ∈ D1, we can get that ĉj ≤ 2c̄j when k = 2.

Proof. According to Step 3 of Algorithm 2, we need to discuss two kinds of the
customers in D1.

For each customer j ∈ D1\D
′
, ĉj =

k∑

l=1

cil(j)j = c̄j .

For each customer j ∈ D
′
, we have c̄j ≥ pj , and

∣
∣Sl ∩ F (j)

∣
∣ > 1 for l = 1 or

l = 2. Without loss of generality, we assume that
∣
∣S1 ∩ F (j)

∣
∣ = 2, and F (j) =

{i1, i2}, ci1j ≤ ci2j . By Case 2 in Step 3.2, we can know that there is a customer

j
′

which satisfies the following three properties: (a) i1 ∈ F (j
′
). (b)c̄j′ ≤ c̄j .

(c)j
′ ∈ D1\D

′
. Without loss of generality, we assume that F (j

′
) = {i1, i3}. By

Step 3.2 of Algorithm 2, we can know that i3 ∈ S2. Denote il(j) as the closest
facility in Sl to customer j. From the triangle inequality, we can get that

ĉj =
2∑

l=1

cil(j)j ≤ ci1j + ci3j

≤ ci1j + ci1j + ci1j′ + ci3j′

≤ ci1j + ci2j + ci1j′ + ci3j′

≤ c̄j + c̄j′ ≤ 2c̄j
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The lemma is proved. �

By Lemma 3, we can get the following theorem.

Theorem 1. Algorithm 2 develops a 2-approximate cost recovery cost-sharing
scheme when k = 2. More specifically, the cost of the solution obtained by Algo-
rithm 2 is at most 2

∑

j∈D

αj.

Proof. Note that the solution obtained by Algorithm 2 is a feasible solution for
P3, which means that

OPT (P3) ≤
∑

j∈D1

ĉj +
∑

j∈D2

pj ≤
∑

j∈D1

2c̄j +
∑

j∈D2

pj ≤ 2
∑

j∈D

αj

.

The theorem is proved. �

We conclude that Algorithm 2 is a 2-approximate, cross-monotonic, and com-
petitive cost-sharing scheme for 2-PFLGPN. In other words, the scheme (or algo-
rithm) obtained in Sect. 3.1 can recover at least half of the costs when k = 2.
Next, we analyze the lower bound of the 2-PFLGPN.

Theorem 2. There doesn’t exist a competitive and cross-monotonic cost-
sharing scheme that can recover more than two-thirds of the costs when k = 2.

Proof. We construct a complete graph G = (V,E), where V = {v1, v2, ..., v2n},
E = {e1, e2, ..., e(2n−1)n}. Then, we consider the following instance I of P3.

Let F = {i1, i2, ..., i2n},D = {j1, j2, ..., j(2n−1)n}. For each customer j ∈ D,
let pj = 6. The service cost between i ∈ F and j ∈ D is as follows.

cij =

{
1, vertex i is an endpoint of edge ej ,

3, otherwise.

For any feasible solution of the instance I, let the set of facilities producing
product m1 and those producing product m2 be S1 and S2, respectively. Let
|S1| = a, then |S2| = 2n − a. We can find that there are a(2n − a) customers
with a service cost of 2 and other customers with a service cost of 4. So the total
costs are 2a(2n − a) + 4((2n − 1)n − a(2n − a)) if no customer is penalized. If
some customers are penalized, the total costs will be more since pj = 6 for each
customer j ∈ D.

Obviously, the optimal value of instance I is 6n2 − 4n if and only if a = n.
We can know that c̄j = 2 for each customer j ∈ D. For any competitive

and cross-monotonic cost-sharing scheme, we can get that α(D, j) ≤ α({j}, j) ≤
c∗({j}) = min(c̄j , pj) = 2 for any customer j ∈ D. Thus the recovery costs is no
more than

∑

j∈D

α(D, j) ≤ 2 ∗ (2n − 1) ∗ n = 4n2 − 2n.
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The ratio of 4n2−2n
6n2−4n tends to 2

3 when n tends to infinity. Thus, we can know
that there doesn’t exist a competitive and cross-monotonic cost-sharing scheme
that can recover more than two-thirds of the costs. �

For the general cases, we analyze the approximate ratio of Algorithm 2 when
k ≥ 3.

Theorem 3. Algorithm 2 develops a 3k
2 − 3

2 -approximate cost-sharing scheme
when k ≥ 3. More specifically, the cost of the solution obtained by Algorithm 2
is at most (3k2 − 3

2 )
∑

j∈D

αj.

The proof of Theorem 3 is similar to Theorem 1, we only need to show that
ĉj ≤ ( 3k2 − 3

2 )c̄j for each customer j ∈ D1. At the same time, the key of the
analysis is to discuss the closest facility to customer j among all facilities for
each customer j ∈ D1.

4 Conclusions

The k-product facility location game with penalties and no opening costs is pro-
posed in this paper. We design a cross-monotonic and competitive cost-sharing
scheme which is 2-approximate cost recovery and ( 3k2 − 3

2 )-approximate cost
recovery when k = 2 and k ≥ 3, respectively. Moreover, it is proved that no
competitive and cross-monotonic cost-sharing scheme can recover more than 2

3
of the costs when k = 2. One direction of future research is to analyze the low
bound for k > 2. Additionally, the next stage of work may be to design a cost-
sharing scheme for the k-product facility location game with non-zero opening
costs.

References

1. Aardal, K., Chudak, F.A., Shmoys, D.B.: A 3-approximation algorithm for the
k-level uncapacitated facility location problem. Inf. Process. Lett. 72, 161–167
(1999)

2. An, H.C., Singh, M., Svensson, O.: LP-based algorithms for capacitated facility
location. SIAM J. Comput. 46, 272–306 (2017)

3. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristic for k-median and facility location problems. In: Proceedings of the
Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 21–29 (2001)

4. Charikar, M., Khuller, S., Mount, D.M., et al.: Algorithms for facility location prob-
lems with outliers. In: Proceedings of the Twelfth Annual Symposium on Discrete
Algorithm, pp. 642–651 (2001)

5. Chen, X., Fang, Q., Liu, W., Ding, Y., Nong, Q.: Strategyproof mechanisms for 2-
facility location games with minimax envy. J. Comb. Optim. 43, 1628–1644 (2022)

6. Chen, Z., Fong, K.C., Li, M., Wang, K., Yuan, H., Zhang, Y.: Facility location
games with optional preference. Theor. Comput. Sci. 847, 185–197 (2020)

7. Cheng, Y., Yu, W., Zhang, G.: Strategy-proof approximation mechanisms for an
obnoxious facility game on networks. Theor. Comput. Sci. 497, 154–163 (2013)



314 X. Li and X. Lu

8. Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for the unca-
pacitated facility location problem. SIAM J. Comput. 33, 1–25 (2003)

9. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms.
J. Algor. 31, 228–248 (1999)

10. Huang, H.C., Li, R.: A k-product uncapacitated facility location problem. Eur. J.
Oper. Res. 185, 552–562 (2008)

11. Immorlica, N., Mahdian, M., Mirrokni, V.S.: Limitations of cross-monotonic cost-
sharing schemes. ACM Trans. Algor. 4, 1–25 (2008)

12. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM 48, 274–296 (2001)

13. Li, M., Wang, C., Zhang, M.: Budgeted facility location games with strategic facili-
ties. In: Proceedings of the Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence, pp. 400–406 (2021)

14. Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: budget balance
versus efficiency. Econ. Theory. 18, 511–533 (2001)
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Abstract. The formation and evolution of opinions in social networks
is a complex process affected by the interplay of different elements that
incorporate peer interaction in social networks and the diversity of infor-
mation to which each individual is exposed. Taking a step in this direc-
tion, we propose a model which captures the dynamic of both opinion
and relationship in this paper. It not only considers the direct influence
of friends but also highlights the indirect effect of group when individuals
are exposed to new opinions. And it allows nodes which represent users
of social networks to slightly adjust their own opinion and sometimes
redefines friendships. A novel problem in social network whose purpose
is simultaneously maximizing both the diversity and persuasiveness of
new opinions that individuals have access to is formulated. This problem
is proved to be NP-hard and its objective function is neither submodu-
lar nor supermodular. However, we devise an approximation algorithm
based on the sandwich framework. And the influence of different seed
selection strategies is experimentally demonstrated.

Keywords: Social Networks · Information Spread · Opinion
Dynamics · Group Effect · Echo Chamber

1 Introduction

An opinion is usually defined as the degree of an individual’s preference towards
a particular phenomenon or thing [8]. Opinion articles can be shared through
frequency interaction between friends [7]. During this process, humans’ behav-
iors play an important role [3]. Toward a sensitive topic, people can be attracted,
indifferent or repulsive. As part of their behaviors, they update their opinions
and even change existing friendships, resulting in echo-chamber effect and polar-
ization phenomenon. The echo-chamber effect is used to describe how people’s
opinion might be artificially enhanced as they are only exposed to information
from like-minded individuals and opinions are reflected back at them through
social interactions [2]. Polarization is a steady state where people do not change

Supported by the National Natural Science Foundation of China under grant numbers
12071459 and 11991022.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 317–328, 2024.
https://doi.org/10.1007/978-3-031-49193-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_24&domain=pdf
http://orcid.org/0000-0002-4553-3762
http://orcid.org/0000-0002-8441-7334
https://doi.org/10.1007/978-3-031-49193-1_24


318 L. Du et al.

their opinion anymore and form only two clusters opposing each other [14]. In
social platforms, a controversial issue is often brought into public focus and
people’s initial opinions vary from person to person. Different from face-to-face
debates, more related details can be persistently revealed and spread in social
network during an online discussion. From the perspective of individuals par-
ticipating in or watching the debate, they can be exposed to these external
materials which incline toward a different view of the problem. Therefore, it is
feasible to combat echo-chamber and polarization in social networks by selecting
some initial publishers for those external materials.

How to select some individuals to share supplement materials for the purpose
of maximizing their influence is studied in this paper. And as a prerequisite, it
is necessary to propose a method to measure the influence of external materials
shared by selected individuals. For the purpose of keeping an online discussion
reasonable and rational, the external materials received by users in a social net-
work should be diverse as much as possible. For everyone engaging in a debate
and evolving their own opinions, reading widely, considering what they read crit-
ically and looking for holes in arguments can help them thinking more rationally.
It not only makes a good atmosphere for discussion but also improve the quality
of discussion. At the same time, one reasonable measure of the influence of an
opinion expressed by a supplement material is the degree to which everyone’s
opinion changes in the discussion it triggers. Hence, we propose a novel problem
which wants to find a wise information source selection strategy to achieve these
two goals.

The remainder of this paper is organized as follows: Sect. 2 introduces some
related work. The proposed model is introduced in Sect. 3. Then, Sect. 4 formu-
lates the Opinions Diversity and Persuasiveness Maximization (ODPM) prob-
lem. Consequently, an algorithm designed to address ODPM problem is proposed
and analyzed in Sect. 5. Section 6 shows some experimental results and we con-
clude in Sect. 7.

2 Related Work

As one of the domains which enjoy rapid theoretical growth, opinion dynamics
has attracted the interest of researchers who are from different fields and study
the evolution as well as formation of opinions in social systems. Individuals holds
one of several possible opinions in discrete opinion models while continuous opin-
ion models take value from a certain range of real numbers to represent people’s
opinions toward a given topic or issue [4,15]. And most of them confine values
of opinions in the interval [−1, 1]. Social media can limit the exposure to diverse
perspectives and favor the formation of groups of like-minded users framing and
reinforcing a shared narrative. So, proposing mechanisms that expose online
social media users to content that does not necessarily align with their prior
beliefs could be a way to depolarize opinions.

The influence maximization (IM) problem has been one of the most attractive
topics in the field of social networks and is well studied in the literature. The
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classical version of influence maximization problem which aims to find a set of
seed nodes in the network to maximize the influence of information that spreads
from the seed nodes is formalized in [9]. It is regarded as a discrete optimization
problem and two basic propagation models are introduced to describe the process
of information dissemination. As for complexity, it has been proven to be NP-
hard [9]. And due to the stochasticity of information diffusion process, it is
#P-hard to accurately compute the influence spread given a seed set under the
commonly used diffusion models [1]. A great deal of research devoted to studying
how to estimate the influence spread and using the design techniques to seek a
balance between effectiveness, efficiency, and generalization ability [1,5,6,16].

3 The Model

Abstract a social network as directed graph G = (V,E) where each element of
V represents a social platform’s user (individual). For each pair of users u and
v who are friends or have direct social ties, (u, v) ∈ E is used to reveal their
friendship. U = {U1, U2, . . . } is a group structure of given social network and⋃

Uk∈U Uk ⊂ V . For a given topic, denote M as the set of supplement materials
(opinion articles) and the exposure order is given as 〈m1,m2, . . . , m|M |〉. For
each opinion article mi, i = 1, . . . , |M |, its opinion l(mi) ∈ [−1, 1] is given. And
for each node v ∈ V , only its initial opinion l0(v) = l(v) ∈ [−1, 1] is known.

Now, we propose our definition of several probability functions and an opinion
update function based on the adopted configuration introduced in [3,18].

Denote li(v) as the current opinion of node v after the dissemination of mi

and St−1
i as the set of nodes that have been exposed to mi at time t−1. Denote

U(v) = {k|Uk ∈ U, v ∈ Uk} and U(St−1
i ) =

⋃
v∈Sy−1

i
U(v). Let Δ ∈ (0, 1). Then,

we have the following definitions.

Definition 1. – For v ∈ St−1
i , the probability with which v shares the i-th

opinion article mi is defined as

ps(v,mi) = cos2
(

π|li−1(v) − l(mi)|
2

)

. (1)

– For each set, the probability with which v ∈ V can successfully receive the
opinion article mi shared by St−1

i is defined as

pr(St−1
i , v) = 1 −

∏

u∈N(u)∩St−1
i

(1 − pi
r(u, v))

∏

Uk∈U(v)

(1 − pi
r(Uj , v)). (2)

Here, for each directed edge (u, v) ∈ E,

pi
r(u, v) = ps(u,mi) cos2

(
π|li−1(u) − li−1(v)|

4

)

(3)

is the direct social influence probability with which v ∈ V can successfully
receive the opinion article mi shared by u ∈ V . Denote SU = St−1

i ∩ Uk. For
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each group Uk that v belongs to, the probability with which v ∈ N(St−1
i ) can

receive mi resulting from Uk at time step t is defined as

pi
r(Uj , v) =

{
exp{−|Uk|/|SU |}

exp{−|Uk|/|SU |}+exp{−|Uk|/(|Uk|−|SU |)} , SU �= ∅,

0, otherwise.
(4)

– For v ∈ V , if v has not received mi resulting from Si, li−1(v) = li(v), other-
wise opinion update function li(v) is defined as

li(v) =

{
li−1(v)(1 + Δ), l0(v) · l(mi) ≥ 0,

li−1(v)(1 − Δ), l0(v) · l(mi) < 0.
(5)

– For each directed edge (u, v) ∈ E, the probability with which (u, v) ∈ E is
removed is defined as

pi
b(u, v) =

{
cos2

(
π|li(u)−li(v)|

2

)
, |li(u) − li(v)| ≥ 1,

0, otherwise.
(6)

Now, we introduce the Opinion influenced by Group - Independent Cascade (OG-
IC) model which is proposed to model the opinion dynamic based on group effect
in social network. Define a piece of writing which expresses a particular point
of view as an opinion article. Let M be a set of opinion articles waiting to be
shared and 〈m1, . . . , m|M |〉 be a given sequence. We focus on m1 at first and then
check other elements in M following the given order. For m1, the OG-IC model
begins with choosing some individuals to form S0

1 as initial publishers. And a
selected individual v ∈ S0

1 shares the given article with probability ps(v,m1).
When m1 is successfully shared by publishers in S0

1 , both the direct and indirect
social ties can play roles in the following spread. In other words, each individual v
which has not received m1 can receive the article with probability p1r(S

0
1 , v) which

considers the influence of both neighbors and groups. Then, all new receivers can
be persuaded and update their opinions according to the relationship between
their initial opinion and l(m1). The update function is defined as Eq. 5. And the
friendship between two individuals is influenced by opinion change. Even worse,
the already established friendship will end, once the strong disagreements occur.
The probability with which the relationship between two individuals ends is
shown as Eq. 6. Then, these newly activated individuals have to decide whether
to share the article. Such dissemination continues until there is no individual
which can receive the given opinion article m1. If there are more than one articles
waiting to be shared, i.e. |M | > 1, successively repeat the above process for
m2,m3, . . . , m|M |.

4 Problem Formulation

Given a series of articles with different opinions toward the same topic, every
node can receive (be activated on) some of them in OG-IC model. Denote N =
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{(v, i)|v ∈ V, i ∈ {1, . . . , |M |}}. Let S = {(v, i)|v ∈ Si, i = 1, . . . , |M |} ⊂ N be
a seed set where Si ⊂ V consists of all initial publisher selected for mi ∈ M .
Then, denote Iv(S) ⊂ M as a set of all opinion articles that v has received when
dissemination of all the given opinion articles initially published by S terminates.
Let L(v, Iv(S)) represent the set {lv} ∪ {lmi

: mi ∈ Iv(S)} ∪ {−1, 1} sorted by
increasing values. As is mentioned above, lv is the initial opinion of node v.
{−1, 1} includes two extreme opinions. And {lmi

: mi ∈ Iv(S)} consists opinions
of all the opinion articles received by node v. Now, we can define diversity score
of node v resulting from S to quantify the diversity of opinions expressed by
articles and received by node v. Taking a step further, a metric, defined as
diversity function, can be proposed to quantity the diversity of opinions articles
that are shared by S and spread in the social network.

Definition 2. Given a seed set S, the diversity score function div(v) of each
node v ∈ V can be calculated by

div(v, S) = 1 −
|L(v,Iv(S))|−1∑

j=1

(lj+1 − lj)2

4
(7)

where v ∈ V and lj ∈ L(v, Iv(S)). Then, diversity score function div(S) of S is
defined as

div(S) =
∑

v∈V

div(v, S). (8)

Given a series of opinion articles with a determined order of arrival, there is
another perspective from which we can measure the quality of individuals who
are selected as the initial opinion articles publishers. When the spread of all the
opinion articles terminates, the difference between v’s initial opinion l0(v) and
final opinion l|M |(v) can show the influence of opinion articles on v’s opinion
formation and evolution. We propose the following definition to formally define
opinion articles’ persuasiveness.

Definition 3. Given a seed set S, the influence of all the opinion articles in M
shared by S on v can be calculated by per(v, S) = (l0(v) − l|M |(v))2 and per(S)
of S is defined as

per(S) =
∑

v∈V

per(v, S). (9)

Denote c and o as the number of opinion articles mi satisfying l(mi) · l0(v) ≥ 0
and l(mi) · l(v) < 0 among all the opinion articles received by v, respectively.
Then, we have |Iv(S)| = c + o ≤ |M | and per(v, S) = (l(v) − l|M |(v))2 =
l(v)2((1 + Δ)c(1 − Δ)o − 1)2.

On the foundation of these two definitions, opinion influence function which
is a combination of exposure diversity and opinion articles’ persuasiveness is
defined as follows.

Definition 4. Given S = {(v, i)|v ∈ Si, i ∈ {1, . . . , |M |}}, an opinion article
set M , a given sequence 〈m1,m2, . . . 〉 where mi ∈ M , l(v) for v ∈ V , and l(mi)
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for mi ∈ M , opinion influence function of S is defined as a combination of
diversity score function div(S) and persuasiveness score function per(S), i.e.,

σ(S) = div(S) + αper(S) (10)

where α is a parameter used to adjust the weight of persuasiveness score function
per(S).

What should be emphasized is that the order of opinion articles’ publication
plays an important role in the whole process of dissemination. In this paper, we
assume that opinion articles are published by selected initial publishers one by
one and the order of publication is given. Besides, due to the definition of opinion
update function and persuasiveness score function, when the value of Δ is pretty
small, the change of persuasiveness score function resulting from different seed
sets may be too small to be ignored without a suitable setting of α.

Then, we introduce the definition of ODPM problem.

Definition 5 (ODPM Problem). Given a directed social graph G = (V,E)
with group structure U , an opinion article set M , a sequence 〈m1,m2, . . . 〉 where
mi ∈ M , individual’s opinion l(v) for v ∈ V , and article’s opinion l(mi) for
mi ∈ M , positive integers av for v ∈ V , parameter α and a constant k, Opinions
Diversity and Persuasiveness Maximization (ODPM) problem aims to find a seed
set S, a union of seeds selected as initial publishers for each opinion article, such
that the expectation value of opinion influence function σ(S) is maximized under
OG-IC model, i.e.,

max E[σ(S)]
s.t. |Smi

| ≤ k,mi ∈ M

|Sv| ≤ av, v ∈ V

where σ(S) = div(S) + αper(S), Smi
⊂ V is the set of initial publishers for

opinion article mi ∈ M and Sv ⊂ M is the set of opinion articles assigned to
v ∈ V to share.

Similar to [13], a bound constraint av for v ∈ V is a positive integer. There are
two main reasons for doing so. In social networks, if a user expresses too many
different opinions on the same topic, there may be some mutually exclusive and
contradictory opinions among them, leading to a decrease in the reliability and
persuasiveness. Besides, human attention is a limited resource. Sharing too many
similar opinion articles can make friends impatient and affect the probability
with which these opinion articles are successfully spread.

The following theorem is proposed to describe properties of ODPM problem
and its objective function.

Theorem 1. ODPM problem is NP-hard. Given S, computing σ(S) is #P-hard
under the OG-IC model. σ(S) is non-monotone, non-submodular and nonsuper-
modular.



Maximizing Diversity and Persuasiveness of Opinion Articles 323

5 The Algorithm

Inspired by the concept of Sandwich Approximation [12], we bound σ(·) with two
functions. The upper bound function of σ(·) is denoted as σu(·) while the lower
bound function of σ(·) is denoted as σl(·). The first phase of ODPM algorithm
aims to obtain optimal solutions for maximizing σ(·), σu(·) and σl(·) respectively.
And the final solution S∗ of ODPM problem is one of these three optimal solu-
tions which maximizes the ODPM problem’s objective function σ(·). Given that
ODPM algorithm needs to select the best one from three candidates obtained
by solving different optimization problems, we introduce all the methods used
for addressing subproblems one by one.

Due to the fact that opinion influence function is neither submodular nor
supermodular, algorithms designed for IM problem are not suitable for ODPM
problem. Therefore, a sampling method based on the Monte Carlo simulation
is used to estimate the value of opinion influence function for any given set S
of initial publishers selected for each opinion article in M . Then, we propose
an improved greedy algorithm to obtain a solution of maximizing the opinion
influence function σ(S). Following the order of publication which is given as

Algorithm 1. Activating
Require: G = (V, E), U , M , l, Si

Ensure: A
1: Initialize A = Si and Snew = Si

2: while Snew �= ∅ do
3: Stemp = ∅
4: for all u ∈ Snew do
5: Sc = {v|(u, v) ∈ E} ∪ {v|v ∈ Ui, Ui ∈ U(u)}
6: for v ∈ Sc do
7: Calculate pi

r(Snew, v)
8: Generate a random number r ∈ [0, 1]
9: if r ≤ pi

r(Snew, v) then
10: Stemp = Stemp ∪ {v}
11: Snew = Stemp

12: A = A ∪ Stemp

〈m1,m2, . . . 〉, a set of nodes that received mi resulting from Si = {v|(v, i) ∈ S}
is returned by Algorithm 1. Then, for activated nodes, update their opinion and
the set of opinion articles assigned to them. Before finding nodes activated on
mi+1 resulting from Si+1, check each (u, v) ∈ E and remove it with probability
pi

b(u, v). After updating opinions of nodes activated on m|M |, a sampling process
finishes and the value of σ(S) is returned by Algorithm 2. As is mentioned above,
it is difficult to compute σ(S) for any given S. Inspired by [18], Algorithm 3 is
proposed to obtain an estimator σ̂(·) of σ(·) with (ε, δ)-approximation where
σmax(·) is the maximum of σ(·). Now, on the basis of sub-algorithms introduced
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Algorithm 2. Sampling
Require: : G = (V, E), U , M , l, S,α
Ensure: : σ(S)
1: for i = 1, . . . , |M | do
2: Initialize A = ∅
3: Si = {v|(v, i) ∈ S}
4: Update A by Algorithm 1
5: for all v ∈ A do
6: Iv(S) = Iv(S) ∪ {mi}
7: Update the opinion of v according to Eq. 5

8: Check (u, v) ∈ E according to Eq. 6

9: Calculate σ(S)

Algorithm 3. Estimating
Require: G = (V, E), U , M , l, S,α
Ensure: σ̂(S)
1: Γ = 1 + (1 + ε)(4(e − 2) ln(2\δ)\ε2)
2: Calculate σ(S)

3: γ = σ(S)
σmax(·)

4: while γ ≤ Γ do
5: Calculate σ(S)

6: γ = γ + σ(S)
σmax(·)

7: σ̂(S) = γ

Algorithm 4. Selecting
Require: G = (V, E), U , M , l, k,α
Ensure: S
1: Initialize Si = ∅ for i = 1, . . . , |M | and S = ∅
2: for i = 1, . . . , |M | do
3: Vc = V , A = ∅
4: while |Si| < k do
5: Scur = S ∪ {(v, i)|v ∈ Si}
6: u = arg maxv∈Vc\Vi

σ̂(Scur ∪ {(v, i)}) − σ̂(Scur)
7: if Su < au then
8: Si = Si ∪ {u}
9: else

10: Vc = Vc\{u}
11: Update A
12: for all w ∈ A do
13: Iw(S) = Iw(S) ∪ {mi}
14: Update the opinion of w according to Eq. 5

15: Check (u, v) ∈ E according to Eq. 6
16: S = S ∪ {(u, i)|u ∈ Si}
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above, we propose Algorithm 4. It describes the whole process of finding a set S
such that the opinion influence function σ(S) is maximized. Therefore, S consists
of initial publishers for each opinion article mi ∈ M and is a feasible solution
for ODPM problem.

To find a lower bound function σl(·) of σ(·), we change some settings of OG-
IC model to obtain LOG-IC model, a modified version of the former. The new
definition is shown as follows.
– pi

r(Uj , v) = 0.
–

pi
b(u, v) =

{
cos2

(
πx
4 + π

2

)
x < 2

1, otherwise
(11)

where x = (|l(u)| + |l(v)|)(1 + Δ)i.

At the same time, define perl(S) = l2(v)((1 − Δ2)c − 1)2. Therefore, we have
σl(S) = div(S) + αperl(S).

Similarly, we start with proposing UOG-IC model to find σu(·). Compared
with OG-IC model, the changed configuration is listed below.
– pr(St−1

i , v) = 1−∏
u∈N(u)∩St−1

i
(1−pi

r(u, v)) if U(v)∩U(St−1
i ) = ∅, otherwise

pr(St−1
i , v) = 1.

– li(v) = li−1(v)(1 + Δ) only if l(v) · l(mi) ≥ 0, otherwise li(v) = li−1(v).
– pi

b(u, v) = 0.

Then, we have peru(v, S) = (l|M |(v)−l(v)))2 = l2(v)((1+Δ)c−1)2 and σu(S) =
div(S) + αperu(S).

For these two bound functions, we propose a theorem as follows.
Theorem 2. Both divl(·) and perl(·) are submodular. divu(·) is submodular
while peru(·) is supermodular. All of these four functions are monotone non-
decreasing.
Therefore, σl(·) is submodular and σu(·) can be represented as the sum of a sub-
modular function and a supermodular function. Now, the maximization of σl(·)
under LOG-IC model is the maximization of submodular set function subject to
a matroid constraint while the maximization of σu(·) under UOG-IC model is the
maximization of the sum of a submodular function and a supermodular function.
Based on [13,17], Algorithm 4 can achieve approximation ratio 1−kperu

1+(1−kperu )kdivu

for σu(·) and 1
2 for the maximization of σl(·), where kdivu

and kperu
are the

curvature of divu(·) and peru(·) respectively. However, according to [11], there is
another algorithm that can produce a solution with better approximation ratio.
On the foundation of these results, we propose the following theorem.
Theorem 3. There is an algorithm such that the solution S∗ of ODPM problem
obtained by ODPM algorithm satisfies

σ(S∗) ≥ max
{

gu · σ(Sσu
)

σu(Sσu
)
,
1
2

· σl(So
σl

)
σ(So

σ)

}

· σ(So
σ) (12)

where So is the optimal solution maximizing σ(·) subject to matroid constraint
and gu = min{1 − kperu

, 1 − kdivu
e−1}.
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6 Experiments Settings and Results

There are two data sets used in our experiments. One is denoted as SYN which
is derived from a randomly generated directed graph containing 10 nodes and all
the edges are directed. The other is MI (Moreno-Innovation data set introduced
in [10]) which is a directed network capturing innovation shown as 25571 edges
among physicians represented by 241 nodes. Set the maximum of |M | is 10. For
each mi ∈ M , its opinion tendency l(mi) is randomly generated from [−1, 1].
And all the opinion articles are published following a given sequence. For each
v ∈ V , the value of its opinion l(v) is randomly generated from [−1, 1]. Generate
a random integer number from the given range to represent the bound constraint
av. Set |U | = 2 for SYN and |U | = 65 for MI. Then, each group randomly selects
nodes from ground set V as its members and each node can be selected by many
groups.

Now, we focus on the influence of |M | on σ(·) with different settings of
the number of initial publishers. In order to decrease time complexity, we use
Algorithm 4 to find a solution for maximizing σu(·). According to [17], it also
guarantees an approximation ratio.

Fig. 1. the influence of |M | on σ(·)

We focus on the influence of the number of external materials on the value of
opinion influence function. And two series of experiments are conducted on two
different data sets. The main difference between them are their setting about the
number of initial publishers. Experiments conducted on SYN data set assume
that the number of initial publishers selected for each opinion article is given
whereas the total number of initial publishers is given for those experiments
based on MI data set. Therefore, |S| increases in the former and decreases in the
later when M increases.

Based on SYN data set, set |M | = 5 and assume that |Si| = 5 for i =
1, . . . , |M |, i.e. k = 5. Both the order 〈m1, . . . , m5〉 and opinions l(mi) of article
mi ∈ M are given. We conduct experiments in three different cases. In the first
one, only the first opinion article m1 spreads in the social network. And set |M | =
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3 in the second case, that is, three opinion articles are published by individuals
following the order 〈m1,m2,m3〉. And the last experiment is conducted under
the assumption that all the opinion articles are considered, and the total number
of initial publishers becomes 25. Experimental results are shown in Fig. 1a. And
it is obvious that the value of opinion influence function increases with |M | when
the number of initial publishers selected for each opinion article is given.

Then, Fig. 1b shows results of another series of experiments conducted on MI
data set. They also reflect the influence of the number of opinion articles spread-
ing in the social network on the value of opinion influence function. Although
their setting about constraint are different to those of experiments based on SYN
data set, we can reach a similar conclusion that the σ(·) increases with |M |.

7 Conclusion

In this paper, we firstly introduce the OG-IC model reflecting the effect of group
in opinion dynamic. Then, the novel Opinions Diversity and Persuasiveness Max-
imization (ODPM) problem which is NP-hard to approximate with any factor is
proposed. Its objective function is neither submodular nor supermodular, which
is a challenge in algorithm designed for address it. Hence, inspired by the method
of sandwich framework, we propose the ODPM algorithm which can achieve an
approximation guarantee with a high probability when finding a solution for
ODPM problem. As a prerequisite, the upper and lower bound functions of
opinion influence function are obtained by modifying the OG-IC model. And
the theoretical analysis of their properties set the state for that of ODPM algo-
rithm. And the experimental results on both synthetic and real-world data sets
demonstrate the influence of different seed selection strategies.
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Abstract. Either in real world social society or online social networks,
rumor blocking is an important issue. Rumor sources spread nega-
tive information throughout the network, which may cause unbelievable
results in real society, such as panic, unrest. Propagating positive infor-
mation from several “protector” users is an effective method for rumor
blocking once the rumor is detected. In this paper, we assume that user
will not be influenced if they receive the positive information ahead of
negative one. According to data analysis of user’s activity, network man-
ager may not know the exact positions of rumor but the probability of
each user being a rumor, “protector” nodes need to be selected in order
to prepare for rumor blocking. Given a social network G = (V, E, P, Q),
where P is the weight function on edge set E, P(u,v) is the probability
that v is activated by u after u is activated, and Q is the weight func-
tion on node set V , Qv is the probability that v will be a rumor source.
Stochastic Rumor Blocking (SRB) problem is to select k nodes as “pro-
tectors” such that the expected influence of rumors on users is minimized
eventually. SRB will be proved to be NP-hard and the objective function
is supermodular. We present a Compound Reverse Influence Set (CRIS)
sampling method for estimation of the objective value which can be rep-
resented as a compound set function. Based on CRIS, a randomized
greedy algorithm with theoretical analysis will be presented.

Keywords: rumor blocking · stochastic · uncertainty · CRIS
sampling · social networks

1 Introduction

Recently, smart phone plays an important role in every one’s daily life, people
are more convenient to access the world or each other through different kinds
of online social networks by using the mobile smart phone. With the soaring
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popularity of online social networks, such as Twitter, Facebook, Wechat and
Chinese Sina Weibo, etc., more and more people are able to become friends
and share all kinds of information with each other. These information contain
positive and negative. Sometimes the negative information may turn to a rumor.
For example, in 2011, Japan Fukushima Daiichi nuclear-power was damaged by
earthquake, and consumers in cities along the Chinese coastline, such as Shanghai
and Guangzhou, and even in inland capital Beijing, began stockpiling table salt
after problems while there were rumors that radiation would spread to China
by air and sea and iodized table salt could protect body from radiation [5]. Salt
was temporarily out of stock and salt price was 10 times over in some places.
Another example is spread of misinformation on swine flu in Twitter [15]. Such
negative information reached large scale panic in the population. Undoubtedly,
rumors should be blocked as soon as possible once detected so that their negative
influence can be minimized.

Lots of previous works studies the influence maximization problem aims
to select k initially-influenced seed users to maximize the expected number of
eventually-influenced users. Influence maximization finds its application in many
domains, such as viral marketing [18]. In contrast, the negative influence mini-
mization problem attempts to design effective strategies for blocking rumors and
minimizing the negative influence. The first strategy is to block a limited num-
ber of links in a social network to minimize the propagation of rumor [12]. The
second strategy is to block nodes in a social network [25]. Neither blocking links
nor blocking nodes strategy do not take into account the issue of user experience
in real social networks. The third strategy is to launch a positive information
against the rumor from a set of nodes in the social network [4,23]. Positive infor-
mation will spread in the network, and users will be immune to rumor if they
receive the positive information ahead of rumor since first impressions are always
strongest.

Unfortunately, the previous work on positive information spreading is based
on rumor has been detected, while government sometimes needs to do prepa-
ration before rumors appear. In this paper, we will consider the uncertainty
case that it is unknown who will be rumor sources in the social network. For-
tunately, the probability of user being a rumor source may be analyzed from
his activities in the Internet by data mining methods. For example, one will be
a rumor source with high probability if he had spread a rumor or he always
posted articles without information filtering on his own Twitter/Weibo. Govern-
ment or network manager need to select nodes to spread positive information
after rumor sources appear up to the probability of each node being a rumor
source, which will be called “protector” in this paper. Sponsoring a “protector”
always needs cost. Under the budget, k initially protectors are required to select
such that rumor influence will be minimized. Then, robust decision of “protec-
tor” selection strategy should be made to deal with uncertainty of rumor sources.
Models for uncertainty have widely application scenarios, such as pre-location
of emergency resource, preparation of terrorist attack.
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1.1 Related Works

In viral marketing, there may be multiple companies competing products.
Bharathi et al. [2] modeled the innovation diffusion with multiple competing
innovations as a game. They gave a (1 − 1/e)-approximate algorithm for com-
puting the best response to an opponent’s strategy. The rumor blocking was
also studied from the game theory aspect [24], rumor blocking is viewed as a
two-player game, in which one player, the rumor, will attempt to maximize the
number of nodes accepting it while the second player, the protector, will attempt
to minimize the rumor’s influence. Both the rumor and the protector will choose
their action sources (initial rumor sources and initial protector sources). In the
zero-sum game context, the rumor’s payoff is equal to the expected number of
nodes infected, and the protector’s payoff is the opposite of the rumor ’s pay-
off. The authors propose a double oracle algorithm for this game. Budak et
al. [4] considered the multi-campaign independent cascade model and investi-
gated the problem of identifying a subset of individuals that need to adopt the
“good” campaign in order to minimize the number of person that adopt the
rumor. Li et al. [13] formulate the γ − k rumor restriction problem and present
(1−1/e)−approximation algorithm. And Fang et al. [9] propose an efficient ran-
dom algorithm to solve the general rumor blocking problem. Several heuristic
methods had been proposed by different works without performance guarantee
[10,20,27].

When considering influence maximization for information propagation,
Kempe et al. [11] were the first to formulate social Influence Maximization (IM)
problem as an optimization problem under the IC model. They prove IM to
be NP-hard under IC model and design a natural greedy algorithm that yields
(1 − 1/e − ε)-approximate solutions for any ε > 0. Motivated by this celebrate
work, a fruitful literature for IM [1,8,19,26,28,30] has been developed. Zhu et
al. [31] studied the influence maximization problem considering the crowd psy-
chology influence. Also, several studies focus on uncertainty of the influence prob-
ability [29]. Chen et al. [6] and Lowalekar et al. [14] studied the robust influence
maximization problem. However, most of the existing methods are either too
slow for billion-scale networks such as Facebook, Twitter and World Wide Web
or fail to retain the (1 − 1/e − ε)-approximation guarantees.

TIM/TIM+ [22] and IMM [21] are two scalable methods with (1− 1/e − ε)-
approximation guarantee for IM. Tang et al. utilize a novel Reverse Influence
Set (RIS) sampling technique introduced by Borgs et al. [3]. TIM+ and IMM
attempt to generate a (1 − 1/e − ε)-approximate solution with minimal num-
bers of RIS samples. However, they may take days on billion-scale networks.
Later, Nguyen et al. [17] make a breakthrough and proposed two novel sampling
algorithms SSA and D-SSA. Unlike the previous heuristic algorithms, SSA and
D-SSA are faster than TIM+ and IMM while providing the same (1 − 1/e − ε)-
approximate guarantee. SSA and D-SSA are the first approximation algorithms
that use minimum numbers of samples, meeting strict theoretical thresholds
characterized for IM.
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The rest of this paper is organized as follows. In Sect. 2, we formulate the
Stochastic Rumor Blocking (SRB) model. The statement of NP-hardness and
properties of objective function will be given in Sect. 3. Algorithms for solving
SRB are designed in Sect. 4 and we draw a conclusion in Sect. 5.

2 Problem Formulation

In this section, we present the rumor spreading model in this paper. Then
Stochastic Rumor Blocking (SRB) model will be formulated.

2.1 Rumor Spreading Model

Since protectors and rumors are diffusing opposite information in the social net-
work, the cascade arriving first will dominate the node and never change its state
once activated. If a node is successfully activated by two or more neighbors with
different cascades at the same time step, we assume the protector has a higher
priority. Let S and R denote the seed sets of protectors and rumors, respectively.
The information diffusion process is as follows. At time step t = 0, nodes in S
and R are activated by protectors and rumors, respectively. At step t > 0, each
node u which is activated at t − 1 will try to activate each of its inactive neigh-
bors v with successful probability p(u,v). If v is successfully activated by rumors
and protectors simultaneously, v will be activated by protectors. This means v
will be protected against rumors. Finally, the diffusion process terminates when
there is no node can be further activated.

2.2 Stochastic Rumor Blocking Problem

Firstly, we will introduce the concept of realization of rumors and random graph
which helps to understand the rumor spreading model.

Let G = (V,E, P,Q) be a social network with a node set V and a directed
edge set with |V | = n and |E| = m. Assume that each node v ∈ V is associated
with a weight 0 ≤ Qv ≤ 1 and Qv is the probability that v will be a rumor
source. For each directed edge e, definition of Pe has been stated in Sect. 2.1.

A realization rumor set R is a subset of V . The generation of R is as follows:
(1) for each node v ∈ V , a random number r is generated from 0 to 1 in uniform;
(2) add v into R if and only if r ≤ Qv. Then, a rumor source set R is determin-
istic. Let R be the set of all possible realizations of rumor source set. Obviously,
there are 2|V | = 2n realizations in R. Let P [R] be the probability that R can be
generated. Then,

P [R] =
∏

v∈R

Qv

∏

v∈V \R
(1 − Qv)

Further, a realization g of G is a graph where V (g) = V (G) and E(g) is
a subset of E(G). Each edge in E(g) has the influence probability of 1 and is
constructed in random. The construction process is as follows: (1) for each edge
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e ∈ E(G), a random number r is generated from 0 to 1 in uniform; (2) this edge
e appears in g if and only if r ≤ Pe. Then, g is a deterministic directed graph.
Let G be the set of all possible realizations of G. Obviously, there are 2|E(G)|

realizations in G. Let P [g] be the probability that g can be generated. Then,

P [g] =
∏

e∈E(g)

Pe

∏

e∈E(G)\E(g)

(1 − Pe)

Let σg
r (S,R) be the number of nodes activated by rumor sources set R in g

under a “protector” set S. According to the rumor spreading model, each node
in g can be easily determined whether it is activated by R for given S and R
by shortest path algorithm. Let Ug(R,S) denote the node set that contains all
nodes activated by rumor, where Ug(R,S) ⊂ V and R ⊂ V . Then,

σg
r (R,S) = |Ug(R,S)| (1)

Let σr(R,S) be the expected number of nodes that are activated by rumor
sources set R when S is selected as the seed set of protector. Therefore, σr(R,S)
can be expressed as

σr(R,S) = E[σg
r (R,S)] =

∑

g∈G

P [g]σg
r (R,S) (2)

While R is not exactly known before locating protectors, then we should
consider the expected value for given S. Let f(S) be expected number of nodes
that are activated by all possible subset R ∈ V with probability distribution Q,
and f(S) = E[σr(R,S)] can be expressed as

f(S) = E[σr(R,S)] =
∑

R∈R

P [R]σr(R,S) (3)

Given a budget k, the Stochastic Rumor Blocking problem is given as follows.

Stochastic Rumor Blocking (SRB). Select k initially seed “protectors” S
such that f(S) is minimized.

2.3 Strategies for Choosing “Protector”

In this section, we will present two heuristic strategies for choosing “protector”.
One is called Maximum Outdegree Seeds (MOS) which picks up the first k nodes
with maximum outdegree in G, while the other one is Influence Maximization
Seeds (IMS) which picks up k nodes such that the expected eventually influenced
nodes are maximized.

3 Properties of Stochastic Rumor Blocking

In this section, we first present statement of the hardness of the stochastic rumor
blocking problem. Then discuss the properties of the objective function f(S).
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3.1 Hardness Results

First we review the well-known problem of Influence Maximization raised in [11].
Here, the information diffusion process is based on Independent Cascade (IC)
model.

Influence Maximization (IM). Given a graph G = (V,E, P ) and a fixed
budget k, we are required to select k initially seeds such that the expected
eventually-influenced number of nodes is maximized.

It is known that any generalization of a NP-hard problem is also NP-hard.
The influence maximization problem [11] has been proved NP-hard, which is a
special case of our problem.

Theorem 1. The Stochastic Rumor Blocking problem is NP-hard.

Also, we can get the following complexity result of computing σr(R,S) for
given R and S since calculation for the objective function of IM was proved to
be #P-hard under the IC model [11].

Theorem 2. Given a protector node set S and a rumor node set R, computing
σr(R,S) is #P-hard under the IC model.

3.2 Modularity of Objective Function

In this section, let h(S) = σr(R,S) be set function of S for fixed R, then we
will prove h(S) is a supermodular function. Furthermore, we will discuss the
modularity of f(S). For given rumor source set R, h(S) = σr(R,S) has the
following property.

Theorem 3. For given rumor source set R, h(S) = σr(R,S) has the following
properties:

1. h(∅) = σr(R, ∅).
2. h(S) = 0 for |S| ≥ |R|.
3. h(S) is monotone nonincreasing.
4. h(S) is a supermodular function under IC model.

Since f(S) is the expected value of h(S) for all possible rumor source sets R,
we directly obtain the following corollary.

Corollary 1. f(S) has the following properties:

1. f(∅) = E[h(∅)] = E[σr(R, ∅)] = ∑
R∈R P [R]σr(R, ∅).

2. f(S) is monotone nonincreasing.
3. f(S) is a supermodular function under IC model.

f(S) is not a polymatroid function since f(∅) �= 0. Instead of analysis of
f(S), we define

y(S) = f(∅) − f(S).

Then, SRB problem for minimizing f(S) is equivalent to maximize y(S). While
y(S) has the following properties.
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Lemma 1. y(S) is a monotone nondecreasing function under IC model with
y(∅) = 0.

Lemma 2. y(S) is a submodular function under IC model.

Furthermore, the following theorem is directly obtained.

Theorem 4. y(S) is a polymatroid function.

As shown in [16], greedy algorithm guarantees (1− 1/e)-approximation for such
a polymatroid maximization problem with cardinality constraints. Meanwhile,
y(S) is a compound function with two random variables R and g. Then, we
will develop a new sampling method for approximating the objective value and
design randomized greedy algorithm based on Compound Reverse Influence Set
(CRIS) sampling method.

4 Algorithm

In this section, we will design a randomized greedy algorithm based on Com-
pound Reverse Influence Set (CRIS) sampling method. Firstly, recall the (ε, δ)-
approximation in [7]. Then, we will present Compound Reverse Influence Set
(CRIS) sampling method to estimate f(S) for given S and the sample complex-
ity will be analyzed. Finally, a randomized greedy algorithm for solving SRB
problem with theoretical results will proposed.

4.1 CRIS Sampling

Firstly, Our CRIS sampling method is based on Reverse Influence Set(RIS) sam-
pling method [3]. Given a graph G = (V,E, P ), RIS captures the influence land-
scape of G through generating a set C of random Reverse Reachable(RR) sets.
Different from RIS in [3], RR set in our method contains another parameter
as shown in the following definition. Each RR set Cj is a subset of V and con-
structed as follows.

Definition 1. (Reverse Reachable (RR) set). Given G = (V,E, P ), a random
RR set Cj is generated from G by (1) selecting a random node v ∈ V ; (2)gen-
erating a sample graph g from G; (3)returning Cj as the set of nodes that can
reach v in g; (4)for each node u ∈ Cj, computing d(u) as length of the directed
shortest path from u to v and return d(u) along with Cj.

Then for given rumor sources set R and “protector” set S, an RR set Cj is
covered by R if satisfies the following two constraints: (1) Cj∩R �= ∅; (2)Cj∩S =
∅ or min{d(u)|u ∈ Rj ∩ R} < min{d(u)|u ∈ Cj ∩ S �= ∅}. Assume v ∈ Cj is the
random node selected in construction process of RR set, then constraint (1)
means v can be activated by R, while constraint (2) means either v can not be
activated by S or the shortest distance from v to R is strictly smaller than that
from v to S. Let D(Cj , R) = 1 if Cj is covered by R, otherwise D(Cj , R) = 0.
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Let C be a collection of RR sets, and CovC(R,S) =
∑

Cj∈C D(Cj , R) repre-
sents the number of RR sets in C covered by rumor source set R. σr(R,S) can be
estimated by computing CovC(R,S) of rumor source set R and “protector” set S.
Then, the following lemma gives an estimation of σr(R,S) = nPr[R covers Cj ].

Lemma 3. Given G = (V,E, P ), a random RR set Cj generated from G. For
each pair of sets S,R ⊆ V ,

σr(R,S) = nPr[R covers Cj ]. (4)

4.2 Randomized Greedy Algorithm

In this section, we will present a randomized greedy algorithm for solving SRB.
Since y(S) is a polymatroid function, we try to maximize y(S) by applying
greedy strategy and prove this Randomized Greedy Algorithm (RGA) guarantees
(1 − 1/e − ε)-approximation.

Let Δvy(S) = y(S∪{v})−y(S) be the increment of y(S) by adding node v to
S. We have Δvy(S) = y(S ∪{v})−y(S) = (f(∅)−f(S ∪{v}))− (f(∅)−f(S)) =
f(S)−f(S∪{v}). And Δv ŷ(S) = ŷ(S∪{v})− ŷ(S) represents the corresponding
value in the case of sampling. We have

Δv ŷ(S) = f̂(S) − f̂(S ∪ {v})
=

1
N1

∑

R

(
n

N2
(CovC(R,S) − CovC(R,S ∪ {v})))

The greedy algorithm is to pick node one by one according to increment maxi-
mization until all k nodes are selected. RGA is shown below.

The time complexity of Algorithm 1 is O(knN2) where N = 4(e − 2)(1 +
ε′)2 ln(2/δ′)(1/ε′2). And we also have the following theoretical result.

Theorem 5. Given an instance of SRB G and 0 ≤ ε, δ ≤ 1, Algorithm 1 returns
a (1 − 1/e − ε)−approximation solution S for objective function y(S), i.e.

ŷ(S) ≥ (1 − 1
e

− ε)y(S∗).

5 Conclusions

In this paper, we studied the rumor blocking problem which was an impor-
tant research topic in social network. We proposed a Stochastic Rumor Blocking
(SRB) model that aims to minimize the expected number of users that are
activated by rumor sources under uncertainty scenario. We showed the SRB is
NP-hard under IC model. Moreover, the objective function f(S) of this prob-
lem was proved to be supermodular. A Compound Reverse Influence Set (CRIS)
sampling method to estimate the objective value was developed. Further, we
proved CRIS was near-optimal estimation method. We presented an random-
ized greedy algorithm for SRB problem with theoretical analysis on sampling
complexity and performance. For future research, new rumor blocking models
need to be developed such as considering crowd influence during rumor diffusion.
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Algorithm 1: Randomized Greedy Algorithm (RGA)
Input: Given an instance of SRB G = (V, E, P, Q), 0 ≤ ε, δ ≤ 1, and the number of

“protector” k.
Output: A (1 − 1/e − ε)-approximation solution S for objective function y(S) and

f̂(S).
S = ∅ ε′ = 1 − √

1 − ε δ′ = 1 − √
1 − δ

Υ ← 4(e − 2)(1 + ε′)2 ln(2/δ′)(1/ε′2) Υ1 = 1 + (1 + ε)Υ
C ← generate Υ1 random RR sets by CRIS
R ← generate Υ1 random rumor source sets
for i = 1 to k do

for v ∈ V do
fbest = 0
L = 1

|C|
∑

R∈R CovC(R, S ∪ {v})
while L < Υ1 do

R′ ← generate a random rumor source set R = R ∪ {R′}
LR′ = CovC(R

′, S ∪ {v})
while LR′ < Υ1 do

C′ ← generate a random RR set by CRIS C = C ∪ {C′}
LR′ = CovC(R

′, S ∪ {v});
end

end
if fbest ≤ Δvy(Ŝ) then

fbest = Δvy(Ŝ)
v∗ ← v;

end
end
Add v∗ to S;

end
f̂(S) ← 1

|R|
∑

R(
n

|C|CovC(R, S))

return S and f̂(S)
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Abstract. Carpooling route planning becomes an important problem
with the growth of low-carbon traffic systems. When each passenger has
several potential locations to get on and off the car, the problem will
be more challenging. In the paper, we discussed a simplified carpool-
ing route planning problem, namely the Shortest Path Tour Problem
(SPTP), whose aim is to find a single-origin single-destination short-
est path through an ordered sequence of disjoint node subsets. We pro-
pose Stage Dijkstra and Global Dijkstra algorithms to find the opti-
mal shortest path, with the time complexity of O(l(n + m) log n) and
O(l(n + m) log(ln)) respectively, where l represents the number of node
subsets. To the best of our knowledge, O(l(n+m) logn) is the best time
complexity of the exact algorithms for SPTP. Experiments conducted on
large-scale road networks and synthetic datasets demonstrate the effec-
tiveness and efficiency of our proposed algorithms.

Keywords: Carpooling route planning · Shortest path tour problem ·
Large-Scale Road Network · Stage & Global Dijkstra

1 Introduction

With the development of low-carbon transportation, carpooling becomes an
increasingly important travel scenario [1]. Route planning is an essential problem
in the carpooling scenario [2]. Compared with route planning for ride-hailing,
route planning for carpooling that includes multiple pick-up and drop-off posi-
tions for passengers is more difficult. Given a many-to-one carpooling order that
includes the driver’s location and the locations of multiple passengers’ pick-up
and drop-off positions, the goal of route planning is to discover the shortest route
from large-scale road networks. In addition, the problem becomes more challeng-
ing if each passenger has several possible candidate pick-up/drop-off locations,
which is called the Multi-candidate Carpooling Route Planning (MCRP) prob-
lem. The MCRP problem is NP-hard, which can be proved by the reduction from
the Travelling Salesman Problem (TSP), a famous NP-Complete problem [3].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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To solve the MCRP, we need to determine the pick-up and drop-off sequence
and identify the most proper pick-up/drop-off position. In the paper, we focus on
a simplified MCRP problem, namely the Shortest Path Tour Problem (SPTP),
where the sequence has been determined. The aim of SPTP is to find the shortest
path through at least one node in each node subset in a fixed order. It was first
proposed in [4], as a variant of the Shortest Path Problem (SPP). The authors
in [5] proved that SPTP belongs to the complexity class P by reducing it to
a Single Source Shortest Path (SSSP) problem, which is a classical P problem.
This means that the SPTP could be solved with the exact solution in polynomial
time. However, SPTP is still worth studying because the time complexity of the
algorithm needs to be as low as possible to meet the fast response requirements
and to save computational resource overhead of the carpooling platform.

In addition to the carpooling scenario, applications of SPTP emerge in mul-
tiple other scenarios. For instance, automatic manufacture requires a robot to
complete multiple stages of tasks [6]. Within each stage, the universal robot only
needs to complete one of the selected tasks. This whole process can be seen as
an SPTP in which tasks can be taken as nodes in a directed graph while the
length of the arcs connecting every two nodes can be seen as the time needed
for a robot to change tools to perform the following task.

Before reviewing the SOTA algorithms that will be described in Table 2 and
summarizing our contributions, we first recall the definition of the SPTP.

Definition 1 (Shortest Path Tour Problem (SPTP)). Given a directed
graph G = (V,E,W ) with non-negative weights, the length L(P ) of a path P is
defined as the sum of weights of the edges connecting consecutive nodes in P .
Given an origin node vs ∈ V , a destination node vd ∈ V and disjoint node subsets
V1, V2, · · · , Vl, (|Vi| ≤ r,∀Vi), where r represents the maximum size of node
subsets, the aim is to find the shortest path P , which starts from vs, sequentially
passes through at least one node in each node subset, and ends at vd.

The notations are listed in Table 1.

Table 1. Symbols and Definitions

Symbol Definition

G = (V,E,W ) directed graph with non-negative weights, |V | = n, |E| = m

vs, vd origin and destination node

V1, V2, · · ·Vl node subsets

l number of node subsets

r maximum size of the node subsets

d average degree of nodes

w(vj , vk) weight of edge from vj to vk

dist(i, vj) shortest distance from vs to vj that has passed
through the first i node subsets in order
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After the SPTP problem was proposed, a Dijkstra algorithm based on the
SPTP reduction, some dynamic programming algorithms, shortest-path-based
algorithms and a depth-first tour search algorithm were proposed [7,8]. Table 2
shows the comparison of the time complexity of existing algorithms.

Table 2. Comparison of Time Complexity of Existing Algorithms

Citation Venue Year Algorithm Time Complexity

[5] Optim. Lett. 2012 Reduction + Dijkstra O(l2m2 log ln)

Dynamic Programming O(n3m)

[7] EJOR 2013 Modified Graph Method O(n3)

Dynamic Programming O(l2rn3)

[8] ICCCN 2017 DC-MPSP-1 O(n3) + O(lr2)

DC-MPSP-2 O(n3) + O(lr2)

DC-SSSP-1 O(lr(n + m) logn)

DC-SSSP-2 O(l(n + m) logn)

DFTS O(l2(n + m) log n)

Assuming V0 � {vs}, Vl+1 � {vd}, SPTP reduction transforms an SPTP
instance into an SSSP instance by calculating the shortest distances between
nodes in adjacent stages, thus getting a trellis graph as shown in Fig. 1 [9]. Here,
the original problem is transformed into finding the shortest path from vs to
vd through all node subsets in order from the trellis graph. Hence, the problem
can naturally be solved by applying the Dijkstra algorithm [10]. The first to
sixth algorithms in Table 2 first use methods similar to SPTP reduction to get
the trellis graph, and then use either the Viterbi algorithm [11], shortest-path
algorithm or dynamic programming approach to achieve the exact solution.

Fig. 1. A toy example of trellis graph
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In order to reduce the time complexity of the algorithm, the latter three algo-
rithms give up obtaining the fully connected trellis graph, and instead, compute
only the edges that are possibly useful for the exact solution based on the SSSP
or depth-first search methods. It is worth noting that although the DC-SSSP-2
algorithm has the lowest time complexity, the algorithm does not correctly derive
the exact solution. We review the implementation of the DC-SSSP-2 algorithm.

DC-SSSP-2: When calculating distances between nodes in adjacent stages, it
considers a virtual node v̂i that connects to nodes in Vi with zero-weight edges,
and applies Dijkstra to find the shortest paths from v̂i to nodes in Vi+1. Hence,
it has high efficiency as it only calls the Dijkstra algorithm once in each stage.

The problem with DC-SSSP-2 is that zero-weight edges are used to connect
the virtual starting node with nodes in Vi. This can find the shortest paths from
Vi to nodes in Vi+1, but it is not certain from which node in Vi the shortest
path to the jth node in Vi+1 starts. This leads to the inability to find the eligible
shortest path from vs to vd based on the idea of the shortest path algorithm.

Take the implementation of the DC-SSSP-2 in Fig. 1 as an example. We first
calculate the shortest distance from V0 to each node in V1. Then it proceeds to
calculate the shortest distance from V1 to each node in V2. However, it cannot
correctly track the source of the shortest path from the previous stage to the
nodes in the current stage when we want to form a complete path. For instance,
we cannot actually add up the shortest distance 3 from V0 to V1 and 5 from
V1 to V2 as they don’t share the same node in V1. This makes it impossible to
concatenate the result from each stage to the eligible shortest path.

Therefore, the minimum time complexity of the existing algorithms that can
correctly obtain the exact solution is O(lr(n+m) log n) or O(l2(n+m) log n) [8].
In the paper, we propose an exact algorithm called Stage Dijkstra that can
achieve a lower time complexity of O(l(n + m) log n) than all other existing
methods. Besides, we propose a Global Dijkstra algorithm, though it has a higher
time complexity, its running time is shorter in the large-scale road network.

2 Algorithm

2.1 Stage Dijkstra

We call the process of finding the shortest path from vs to each node in Vi

through the first i node subsets in order as stage i and propose the Stage Dijkstra
algorithm. Algorithm 1 shows the pseudo-code of our proposed algorithm.

Stage Dijkstra first performs some initialization operations (Lines 1 − 2),
defining V0, Vl+1 and dist[0, vs] to facilitate the inclusion of subsequent per-stage
computations. At stage i (Line 3), we first define the set of nodes whose shortest
distance from vs through the first i − 1 node subsets in order are known (Line
4), and explore outward from this node set similar to the Dijkstra algorithm
until the shortest distance from vs through the first i − 1 node subsets in order
is found for all nodes in Vi (Lines 5 − 10). Since these nodes belong to Vi, the
shortest distance from vs through the first i − 1 node subsets is equal to the
shortest distance from vs through the first i node subsets in order. We perform
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the distance update operation (Lines 11 − 12). When stage l+ 1 is executed, we
find the shortest path from vs to vd through all node subsets in order.

Algorithm 1: Stage Dijkstra
Input: Directed graph G = (V,E,W ), origin node vs, destination node vd, node

subsets V1, V2, · · ·Vl.
Output: Shortest path P .

1 V0 � {vs}, Vl+1 � {vd};
2 dist[0, vs] = 0;
3 for Stage i ← 1 to l + 1 do
4 Si = Vi−1; //initialize the starting node set of Stage i
5 while Vi ⊂ Si �= True do //calculate the shortest distance from vs through

the first i − 1 node subsets in order
6 vj = arg minj dist[i − 1, vj ], vj ∈ V/Si;
7 Si ← Si ∪ {vj};
8 for vk ∈ G.Adj[vj ] do
9 if dist[i − 1, vj ] + w(vj , vk) < dist[i − 1, vk] then

10 dist[i − 1, vk] = dist[i − 1, vj ] + w(vj , vk);

11 for vj ∈ Vi do //update the shortest distance from vs to each node in Vi

through the first i node subsets
12 dist[i, vj ] ← dist[i − 1, vj ];

Our algorithm implements an algorithm similar to the Dijkstra algorithm for
single-source shortest path at each stage but differs in that we define a set of
starting nodes and start exploring from them instead of exploring from a single
node. We can also understand that at each stage i, we create a virtual starting
node and connect the virtual starting node with the nodes in Vi−1 using the
shortest distance from vs to each node in Vi−1 obtained in the previous stage.

2.2 Global Dijkstra

In fact, we do not actually need to wait until the previous stage is completely
finished before starting the next one. Instead, we can explore nodes in multiple
stages simultaneously to increase computational efficiency. Algorithm 2 shows
the pseudo-code of Global Dijkstra.

For the global algorithm, we perform the initialization operation first (Lines
1− 6). We construct a minimum heap to store distances to speed up the process
of finding the nearest neighboring node (Line 5). We also set up a flag set to
mark whether each stage is being executed. fi == 1 means that stage i is being
executed. We then perform the exploration process. When Vl+1 ⊂ Sl+1 �= True,
dist[l+1, vd] has not yet been found and the algorithm needs to continue running
(Line 7). At each exploration, we take the nearest neighboring node from the
top of the heap, thus determining the value of i and vj (Line 8). If stage i is
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being executed and vj has not been explored (Line 9), we update Si and push
the distances to neighboring nodes into the heap (Lines 10−12). If vj ∈ Vi, then
dist[i, vj ] can be determined (Lines 13 − 14). If vj is the first node in Vi that is
added to Si, stage i+1 can start execution (Lines 15−16). If vj is the last node
in Vi added to Si, all stages before stage i can be closed (Lines 17 − 19).

Algorithm 2: Global Dijkstra
Input: Directed graph G = (V,E,W ), origin node vs, destination node vd, node

subsets V1, V2, · · ·Vl.
Output: Shortest path P .

1 V0 � {vs}, Vl+1 � {vd};
2 dist[0, vs] = 0;
3 Construct a minimum heap q = ∅;
4 q.push(dist[0, vs]);
5 For starting set S = {S1, · · · , Sl+1}, Si = ∅, ∀i ∈ {1, 2, 3, · · · , l + 1};
6 For flag set F = {f1, · · · fl+1}, f1 = 1, and fi = 0, ∀i ∈ {2, 3, · · · , l + 1};

//initialize the flag set, which mark whether the stages are executing
7 while Vl+1 ⊂ Sl+1 �= True do //not yet got dist[l + 1, vd]
8 dist[i − 1, vj ] = q.pop();
9 if vj �∈ Si and fi == 1 then //search for the node with the minimum

distance in the stages being executed
10 Si = Si ∪ {vj};
11 for vk ∈ G.Adj[vj ] ∩ V/Si do
12 q.push(dist[i − 1, vj ] + w(vj , vk));

13 if vj ∈ Vi then
14 dist[i, vj ] ← dist[i − 1, vj ];
15 if Vi ∩ Si = {vj} then //first node in Vi being added to Si

16 fi+1 = 1;

17 if Vi ⊂ Si == True then //last node in Vi being added to Si

18 for k ← 1 to i do //not explore nodes in previous stages
19 fk = 0;

The advantage of the global algorithm is on the one hand that the use of
minimum heap reduces the time to find the minimum distance value, and on
the other hand that when stage i is finished, the previous stages before stage
i can also be finished immediately, thus saving the unnecessary calculations.
The essence of the global algorithm is to preferentially explore the nodes with
smaller shortest distances starting from vs. When arriving at vd in such a way, the
remaining unexplored paths will not yield eligible paths with shorter distances
to vd. We will give a more rigorous proof of correctness in Sect. 3.2.

Take the implementation of Global Dijkstra in Fig. 2 as an example.
The exploration sequence for the nodes of the Global Dijkstra algorithm is
[vs, v1, v2, v3, v4, v6, vd]. Node involved are marked in red. Compared with Stage
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Fig. 2. A toy example of the implementation of Global Dijkstra

Dijkstra, the global algorithm does not need to calculated the shortest distance
to v5 and v7, thus speeding up the execution time. This speedup comes from two
aspects. One is that it is not necessary to explore all nodes in each stage, such as
v5, and the other is that some explorations of intermediate nodes between two
adjacent stages can be saved, such as v7. The effect of this acceleration will be
even more pronounced in a larger scale real road network.

2.3 Complexity Analysis

Stage Dijkstra: Intuitively, Algorithm 1 has l+1 stages and the time complexity
of each stage is equal to that of the Dijkstra algorithm for the single-source
shortest path. Since the time complexity of Dijkstra is O((n + m) log n), the
time complexity of Stage Dijkstra is O(l(n + m) log n).

From the perspective of formula calculation, the formula for calculating the
time complexity of the Stage Dijkstra algorithm is

T s
stage ∗ T s

exploration ∗ (T s
extract−min + T s

delete + T s
add ∗ d) (1)

where T s
stage represents the number of stages (Line 3), T s

exploration represents the
number of explorations in each stage (Line 5), T s

extractmin represents the number
of operations required to find the nearest neighbor node (Line 6), T s

delete repre-
sents the number of operations required to delete the explored node (Line 6),
and T s

add represents the number of operations required to add possible distances
of neighboring nodes (Lines 8 − 10). Since we use a minimum heap to store
distances, the time complexity is O((l + 1) ∗ (n − 1) ∗ (1 + log n + log n ∗ d)) =
O(ln(1 + d) log n) = O(l(n + m) log n).

Global Dijkstra: Compared with Stage Dijkstra, the time complexity of Global
Dijkstra is higher even though the improved algorithm uses global computing to
speed up the execution. The worst case is that all stage functions run simultane-
ously from stage 1 to stage l+1. In this case, we need to explore the neighboring
node with the smallest shortest distance from the node set with the size of ln.
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Intuitively, the algorithm is essentially equivalent to running the single-source
shortest path algorithm on a graph with ln nodes and lm edges, which means
that the time complexity of Global Dijkstra is O(l(n + m) log(ln)).

From the perspective of formula calculation, the formula for calculating the
time complexity of the Global Dijkstra algorithm is

T g
exploration ∗ (T g

extract−min + T g
delete + T g

add ∗ d) (2)

Since the node size is ln, the time complexity is O(ln−1)∗(1+log ln+log ln∗
d)) = O(ln ∗ (1+ d) log(ln)) = O(l(n+m) log(ln)). Though the time complexity
is higher than the original Stage Dijkstra algorithm, the accurate execution time
is faster, as demonstrated by the experimental results in Sect. 4.

3 Correctness Proof

3.1 Correctness Proof for Stage Dijkstra

We can prove that Algorithm 1 can find the shortest distance from vs to vd
through all node subsets in order by the induction method and contradiction
method. We first introduce Theorem 1 and give the proof.

Theorem 1. Suppose dist[i− 1, vj ],∀vj ∈ Vi−1 is the shortest distance from vs
to vj through the first i − 1 node subsets in order, and v(1), v(2), · · · , v(k) are
the nodes that are added to Si in order at stage i. Then dist[i − 1, v(t)], t ∈
{1, 2, · · · , k} is the shortest distance from vs to v”(t) through the first i− 1 node
subsets in order.

Proof. We use the induction method, which is divided into two steps.
Step 1: For stage i, v(1) = arg minj dist[i − 1, vj ], vj ∈ V/Vi−1, so dist[i −

1, v] ≥ dist[i− 1, v(1)],∀v ∈ V/(Vi−1 ∪ {v(1)}). This means that there is no node
v ∈ V/(Vi−1 ∪ {v(1)}) such that dist[i− 1, v] +w(v, v(1)) < dist[i− 1, v(1)]. That
is, dist[i − 1, v(1)] is the shortest distance from vs to v(1) through the first i − 1
node subsets in order.

Step 2: We need to prove that, assuming dist[i − 1, v(t−1)] is the shortest
distance from vs to v(t−1) through the first i − 1 node subsets in order, dist[i −
1, v(t)] is also the shortest distance from vs to v(t) through the first i − 1 node
subsets in order. After v(t−1) is added to Si, v(t) = arg minj dist[i− 1, vj ],∀vj ∈
V/Si. That is to say, there is no node v ∈ V/(Si∪{v(t)}) such that dist[i−1, v]+
w(v, v(t)) < dist[i − 1, v(t)]. Hence, dist[i − 1, v(t)] is the shortest distance from
vs to v(t) through the first i − 1 node subsets.

We then prove the correctness of Stage Dijkstra.

Theorem 2. dist[l + 1, vd] obtained by Stage Dijkstra is the shortest distance
from vs to vd through all node subsets in order.
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Proof. We still use the induction method, which is divided into two steps.
Step 1: Since dist[0, vs] = 0, V0 = {vs}, and the minimum distance in the

non-negative weighted graph is 0, dist[0, vj ],∀vj ∈ V0 is the shortest distance.
Step 2: We need to prove that, assuming dist[i−1, vj ],∀vj ∈ Vi−1 is the short-

est distance through the first i−1 node subsets in order, then dist[i, vj ],∀vj ∈ Vi

is the shortest distance through the first i node subsets in order. Accord-
ing to Theorem 1, dist[i − 1, vj ],∀vj ∈ Vi is the shortest distance through
the first i − 1 node subsets. Since dist[i, vj ] ≥ dist[i − 1, vj ],∀vj ∈ V , and
dist[i, vj ] = dist[i − 1, vj ],∀vj ∈ Vi, dist[i, vj ],∀vj ∈ Vi is the shortest distance
through the first i node subsets.

Hence, dist[l + 1, vj ],∀vj ∈ Vl+1 is the shortest distance through the first
l+1 node subsets in order. Since vd ∈ Vl+1, dist[l+1, vd] is the shortest distance
through all node subsets in order.

3.2 Correctness Proof for Global Dijkstra

Though different stages are executed alternately, the order of nodes that are
added to Si in stage i in Algorithm 2 is constantly compared with that in Algo-
rithm 1. Hence, dist[i− 1, vj ],∀vj ∈ V/Vi−1 obtained by Algorithm 2 is still the
shortest distance from vs to vj through the first i− 1 node subsets in order, and
dist[i, vj ],∀vj ∈ Vi obtained by Algorithm 2 is still the shortest distance from vs
to vj through the first i node subsets in order. That is to say, Theorem 1 and
Theorem 2 still hold for Algorithm 2.

4 Experiments

4.1 Baseline Methods

Reduction Dijkstra [5]: The algorithm first uses the SPTP Reduction method
to obtain the shortest distance between two nodes in transformed trellis graph
G′. Then, it uses the Dijkstra algorithm to obtain the shortest path.

Depth-First Tour Search (DFTS). [8]: The algorithm constructs multiple
sets with the distance as the object of comparison for all stages, and selects the
node with the minimum distance in possible sets. Note that, the time-consuming
operation of finding the minimum value may negatively affect the performance.

4.2 Dataset

Real-World Dataset: We use the Beijing, Shanghai and Qingdao road network
from an anonymous carpooling service provider because they have different road
network structures. We randomly select samples from the historical orders and
use the popular pick-up and drop-off nodes based on historical data within 150m
of the order’s pick-up and drop-off positions as multiple candidate nodes. Table 3
shows the statistics corresponding to the different datasets.
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Table 3. Statistics of the Datasets

Dataset #Edges #Nodes Time Range

Beijing 2,575,216 1,119,143 11/07/2022-11/13/2022

Shanghai 2,840,477 1,225,903 08/03/2022

Qingdao 2,135,189 821,661 10/10/2022

Fig. 3. The Structure of Road Networks in Different Cities

Figure 3 shows the difference in the road network structure of different cities
(labels on maps are marked in Chinese). Beijing has a relatively more regular
road network structure as shown in Fig. 3(a), while road network structures of
Shanghai and Qingdao are freer as shown in Fig. 3(b) and (c).

Synthetic Dataset: We use latitude and longitude to frame subplots from real
datasets and use the Kosaraju algorithm to select the largest strongly connected
directed graph. We construct instances by uniformly randomly selecting nodes.

4.3 Configurations and Metric

Table 4. Parameter Setting

Parameter Value

No. of nodes [10, 100, 1000,10000, 100000, 1000000]

No. of stages [4,6, 8]

No. of nodes in each stages [3,5, 7, 9]

All the experiments are implemented on a Macbook Pro with 16 GB memory
and a 2.9 GHz Intel Core i7 CPU. Our proposed algorithms and baselines are
implemented in Python. Besides, we set the following parameters and change
their values to test the algorithms’ performance as shown in Table 4, where the
default ones are marked in bold. Since the algorithms can find the exact shortest
path, we use the running time as the metric to evaluate the performance.
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4.4 Results

Results for Synthetic Dataset: Figure 4, 5 and 6 show the running time for
different parameter values in Beijing, Shanghai and Qingdao.

Fig. 4. Running time comparison for part of Beijing road network

Fig. 5. Running time comparison for part of Shanghai road network

Fig. 6. Running time comparison for part of Qingdao road network

Regarding the node size, the algorithms have little variability in running time on
a graph with less than a hundred nodes. However, as the node size increases, the
gap in running time between the baseline algorithm and our proposed algorithms
expands rapidly. Because the actual road network’s node size is of the scale of
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millions or more, the baseline algorithms can hardly meet the demand for fast
real-time response. Moreover, there are many solution requirements per day, thus
using our proposed algorithm will save a lot of computational resources.

In terms of the number of node subsets and the node size in node subsets,
the running time of our proposed algorithms grows linearly with either of them,
which is consistent with the time complexity analysis in Sect. 2.3. The running
time for different subset sizes doesn’t change much for Reduction Dijkstra, as
only the number of stages influences the size of the map it constructs.

Results for Real-World Dataset: We sample 100 orders uniformly randomly
from real orders in three cities and took the average running time. Table 5 reports
the corresponding results. In the actual application scenario, the Global Dijk-
stra achieves the best performance, while the Reduction Dijkstra algorithm that
needs to calculate the shortest distance between nodes for adjacent stages is
much slower than the other three algorithms. This indicates that although the
time complexity of Global Dijkstra is higher than that of Stage Dijkstra, it can
stop unnecessary exploration of nodes in intermediate stages in advance when
the shortest path from vs to vd through all node subsets has been searched.

The running time of Reduction Dijkstra is positively correlated with the
node size of the city. For the other three algorithms, in addition to the node size,
the structure of road network can also considerably impact the running time.
For instance, finding the shortest paths in Shanghai with more nodes takes less
running time than Beijing except for Reduction Dijkstra. Observing the network
structure, when exploring nodes in Beijing with a more regular road network
structure, more intermediate nodes that may constitute the shortest path are
explored, leading to a longer running time despite a smaller network size.

Table 5. Running Time of Different Algorithms for Different Cities (Seconds)

Algorithm Dataset

Beijing Shanghai Qingdao

Reduction Dijkstra 33.370 46.426 20.477

DFTS 1.035 0.734 0.194

Stage Dijkstra 0.537 0.378 0.100

Global Dijkstra 0.436 0.291 0.072

5 Conclusion

In the paper, we propose a Stage Dijkstra algorithm for finding the shortest path
with a single origin and a single destination passing through at least one node
in multiple node subsets in order, which improves the time complexity of the
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problem from the previously known O(lr(n+m) log n) or O(l2(n+m) log n) [8]
to O(l(n+m) log n). We further propose an improved global algorithm to explore
nodes in different stages simultaneously thus speeding up the execution time. We
validate the effectiveness and efficiency of the Stage Dijkstra and Global Dijkstra
algorithm through experiments based on a city-level road network. Although
the worst time complexity of the Global Dijkstra is higher than that of Stage
Dijkstra, its execution time is lower than that of Stage Dijkstra.
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Abstract. Let F be any field, we consider solving Ax = b for a matrix
A ∈ F

n×n of m non-zero elements and b ∈ F
n. If we are given a zero

forcing set of A of size k, we can solve the linear equation in O(mk +kω)
time, where ω is the matrix multiplication exponent. As an application,
we show how the lights out game in an n × n grid is solved in O(n3)
time, and then improve the running time to O(nω log n) by exploiting
the repeated structure in grids.

Keywords: Linear Algebra · Finite Field · Zero Forcing

1 Introduction

Solving the linear system Ax = b has been a fundamental problem in mathe-
matics. We consider the problem in its full generality. Given a field F, a matrix
A ∈ F

n×n and a vector b ∈ F
n, we are interested to find an x ∈ F

n such that
Ax = b. Additionally, a zero forcing set associated with A is also given.

As arguably the most important algorithmic problem in linear algebra, there
are many algorithms designed for solving systems of linear equations, we refer
the reader to [13]. However, most works are for matrices over the real, complex
or rational number fields. As this work is concerned with general fields, we will
describe some known general algorithms below. The Gaussian elimination is a
classic method for solving systems of linear equations, which requires O(n3)
time. If the system is of full rank, one can reduce the problem to a single matrix
multiplication, by taking x = A−1b. In general cases, the more recent LSP
decomposition, which is a generalization of the LUP decomposition, allows the
running time to match the matrix multiplication [15,16]. If one views the non-
zeros of the matrix as an adjacency matrix of a graph, the property of the
graph can be then used to speed up the algorithm. For example, if the graph
is planar, then the nested-dissection technique can generate an O(n3/2) time
algorithm when the field is real or complex [19]. Later, it was extended to any
non-singular matrix over arbitrary fields, and the running time was improved to
O(nω/2) [3], where ω < 2.3728596 is the matrix multiplication constant [2]. More
recently, Fomin et al. made a major breakthrough in developing a fast algorithm
that has a polynomial dependency on treewidth, pathwidth, and tree-partition
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width of the bipartite graph generated from the incidences of the row and the
column [11,12]. In particular, when restricted to square matrices, there exist an
O(k2n) time algorithm for solving Ax = b if a width k path decomposition or
tree-partition is given, and an O(k3n) time algorithm if a tree decomposition of
width k is given. These algorithms are fairly complicated, but share one similarity
with our work in taking the advantage of properties of the graph to improve the
running time of the algorithm (Fig. 1).

Fig. 1. Known algorithms using graph structure corresponding to the n × p matrix.

Zero forcing sets were first studied in [1] on graphs relating to the maximum
nullity of a matrix, and the results were later expanded to the directed graphs
[4]. The zero forcing set captures some “core” information of the linear system,
or to be more specific, the system Ax = b is uniquely determined by the values of
x on a zero forcing set, which implies that one just needs to observe part of x to
recover its entirety. This idea leads to the independent discovery of zero forcing
set by physicists for control of quantum systems [8,20]. Later it was shown to be
applicable to Phasor Measurement Units (PMU) for monitoring power networks
[9], and also discovered as a graph searching technique [23]. Most studies in zero
forcing set concentrate on its algebraic and combinatorial properties. On the
computational front, finding the smallest zero forcing set of both the undirected
and directed graphs is NP-hard [21,23], and some exact algorithms have been
proposed [6,7].

This work was inspired by an algorithm for the lights out game. In the game,
there is a light on each vertex of the graph, and each light is in a state either on
(1) or off (0). There is also a button on each vertex. Pressing the button would
flip the state of the light of itself and all its (out-)neighbors. The goal is to turn
off all the lights. The lights out game is equivalent to solving a system of linear
equations Ax+b = 0 in F2, where A is the adjacency matrix of the graph G, and
b is the state of the lights and F2 is the finite field of order 2. The interpretation
is that xv = 1 means pressing the button at vertex v, and bv is the initial state
of the light at vertex v. Note that in F2, −b = b, and thus the game is equivalent
to solving Ax = b. There is a large amount of research in the lights out game,
see [10] for a survey. Finding a solution of the lights out game with the minimum
number of button presses is NP-hard [5].

We focus on the case where G is an n × n grid, which corresponds to an
n2 × n2 matrix. Gaussian elimination would take O(n6) time. An alternative
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approach is the light-chasing algorithm [18], which is equivalent to zero forcing
in the grid graph. Since the lights in the first row uniquely affect the states of
the remaining rows, one can then look up which action on the first row should
be taken according to the states of the last row. However, the literature does
not provide the strategy for finding the lookup table. Wang claimed there is an
O(n3) time algorithm that given the state of the last row, the state of the first
row can be found through solving a linear equation of an n-square matrix [22].
Wang’s result is the motivation behind this work. However, there is no proof of its
correctness. Alternatively, the algorithm in [12] can be used to obtain an O(n4)
time solver by observing that the pathwidth is n and the path decomposition is
computed in linear time.

Our Contribution. We generalize Wang’s method for the lights out game to
solving an arbitrary system of linear equations Ax = b, and give a formal proof
of its correctness. We define a structure, the core matrix B of A, such that one
can solve the system of linear equations over B instead of A, and then lift it
to a solution of A in linear time. As a consequence, we obtain the following
algorithmic result.

Theorem 1 (main). Given a matrix A ∈ F
n×n of m non-zero elements, and

a zero forcing set of A of size k where k ≤ n. A data structure of size O(k2)
can be computed in O(mk + kω) time, such that for each b ∈ F

n, solving Ax = b
takes O(k2 + m) time.

Note that the data structure is just the LSP decomposition of the core matrix.
We also show that the lights out game on an n × n grid can be solved in

O(nω log n) time by finding the core matrix using an alternative method. In
addition, we prove some linear algebraic properties of the zero forcing set, which
might be of independent interest.

Comparison with Previous Algorithms. If the pathwidth and zero-forcing number
are within a constant of each other, the performance of our algorithm can be no
worse than the existing algorithms. Actually, our algorithm can be much more
efficient when the graph is sparse. In the extreme case where m, the number
of edges, is O(n), our algorithm is faster by a factor of k. For example, when
the graph is an n × n grid graph, the pathwidth is n, and so is the zero-forcing
number. Since there are n2 nodes, the algorithm in [12] would then take O(n4)
time, while our algorithm takes a faster O(n3) time.

On the other hand, zero forcing number can be much larger than the path-
width. Indeed, the zero forcing number of a star on n vertices is n − 1, but
the pathwidth is O(1). Also, finding a small zero forcing set is difficult, and no
good approximation is known so far. In this context, our algorithm may be very
limited in practical applications.
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2 Preliminaries

Define an index set [n] = {1, . . . , n}. We consider an algebraic model, where every
field operation takes O(1) time, and each element in the field can be stored in
O(1) space.

It is useful to view a vector x indexed by elements X as a function x : X →
F, and thus we can write x ∈ F

X . Define supp(x) to be the set of non-zero
coordinates of x. For a matrix A and a set of row indices R and a set of column
indices C, we define AR,C to be the submatrix of elements indexed by the rows
and columns in R and C, respectively. We use ∗ to represent the set of all row
indices or column indices, depending on context. For example, AR,∗ stands for
the submatrix of A that is composed of the rows indexed by R, Ai,∗ is the ith row
vector of A, and A∗,j is the jth column vector. In addition, Ai,j is the element
in the ith row and jth column of A. For a vector x, xi is the scalar at index i,
and xI is the subvector formed by the elements in the index set I.

Solving Ax = b is finding a vector x such that Ax = b holds. Given a directed
graph G = (V,E) with n vertices, and a field F, we define M(G,F) to be the set
of all matrices A ∈ F

n×n such that for all u �= v, Au,v �= 0 if and only if (u, v) ∈ E.
We do not impose any restriction on Av,v. Let N+(u) = {v | (u, v) ∈ E} be the
set of all out-neighbors of u.

Then, we briefly review some basic concepts and results related to the zero
forcing. Consider the process of coloring a graph. We start with a set of blue
colored vertices, denoted by Z. If there exists a blue vertex v with exactly one
non-blue out-neighbor, say u ∈ V , then color u blue. The operation of turning
u blue is called forcing, and we say u is forced by v. If this process ends up with
a situation where all vertices are colored blue, then we say the initial set Z is a
zero forcing set. The zero forcing number Z(G) of G is the size of the smallest
zero forcing set. We also call Z a zero forcing set of A if A ∈ M(G,F) for some
field F. The following proposition gives the reason for the name “zero forcing”.

Proposition 1 ([1,14]). For a zero forcing set Z of A, if x ∈ ker(A), then
xZ = 0 implies x = 0. Namely, x vanishing at zero forcing set forces x to be 0.

The converse is not true in general. As a counterexample, we can simply take A
to be a 2 × 2 identity matrix. Then, Z = {1, 2} is the unique zero forcing set of
A, and ker(A) = {0}. If x ∈ ker(A) and x1 = 0, then we have x = 0. But {1} is
clearly not a zero forcing set.

The order of forces for a set Z is not unique, although the final coloring is
[1,14]. For simplicity, we avoid this issue by considering a particular chronological
list of forces π, which picks the smallest indexed vertex that can be forced. π is a
total ordering of the vertices such that the elements in Z are ordered arbitrarily,
and smaller than all elements in V \Z. For each v, u ∈ V \Z, v ≤π u if v is forced
no later than u. The forcing graph is a graph where there is an edge between
u and v if u forces v. It is well known that such graph is a set of node disjoint
paths that begin in Z [14]. Hence, if v forces u, we can define u↑ = v to be the
forcing parent, and correspondingly, u is called the forcing child of u↑. A vertex
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is a terminal, if it does not have a forcing child. Let T be the set of terminals,
then |T | = |Z|. See Fig. 2 for sequence of forcing and terminal vertices.

Fig. 2. The sequence of forcing starting from right most two vertices. In the final
figure, the zero forcing set Z is the dark blue vertices, and the terminal set T is the
red vertices. (Color figure online)

Consider the algorithm Forcing(A,Z, b) as given in Fig. 3, which takes a
matrix A, a vector b, and a zero forcing set Z of A as inputs, and updates xu

for all u ∈ V in each round. We set xu = 0 during initialization. Then, for each
u ∈ V \Z, we update xu according to

(
bu↑ − ∑

v∈N+(u↑)\{u} Au↑,vxv

)
/Au↑,u,

iteratively in the forcing order. Note that it is equivalent to setting xu ←(
bu↑ − Au↑,∗x

)
/Au↑,u, since xu is previously 0.

Fig. 3. The forcing operation.

The following result formalizes the relation between the solution to a given
linear system and the corresponding zero forcing set.

Proposition 2. After the value of xu is updated in Forcing(A,Z, b), we have
Au↑,∗x = bu↑ for all v ≤π u. In particular, if Ax = b has a solution where
xZ = 0, then Forcing(A,Z, b) finds such solution.

Proof. The proof is by induction. The trivial case is when no xu has been
updated, then the conclusion is vacuously true. If some xu is updated by
Forcing(A,Z, b), we let x′ be the vector before the update, and x′′ be the
one after the update. Then we get x′

v = x′′
v for all v �= u, and x′

u = 0. And
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Au,∗x′′ = Au,∗x′ + Au↑,ux′′
u = Au,∗x′ + Au↑,u(bu↑ − Au↑,∗x′)/Au↑,u = bu↑ . Also,

for all v <π u, Av↑,∗x′′ = Av↑,∗x′ = bv↑ .

For some fixed A and Z, Forcing(A,Z, b) is a linear transform with respect
to b. Moreover, the running time of Forcing(A,Z, b) is O(m), where m is the
number of non-zero elements in A.

Theorem 2. Let Z be a zero forcing set of A, and L be the matrix such that
Lb = Forcing(A,Z, b). The following statements hold.

1. The columns in V \Z are linearly independent.
2. If Ax = b, Ay = b, and xZ = yZ , then x = y.
3. Given x′ ∈ F

V such that supp(x′) ⊆ Z. If Ax = b for some x such that
xZ = x′

Z , then x = L(b − Ax′) + x′.

Proof. The proofs of the first two statements can be found in [17]. Though for
the second statement, only the b = 0 version was proven in [17], its proof still
works for a general b. For the third statement, if Ax = b where xZ = x′

Z , then
A(x′+(x−x′)) = b, or in other words, A(x−x′) = b−Ax′. Hence by Proposition
2, L(b − Ax′) = x − x′, and therefore (x − x′) + x′ = x.

The LSP decomposition of A ∈ F
m×n takes the form A = LSP , where L ∈

F
m×m is a lower triangular matrix with value 1 in the diagonals, S ∈ F

m×n can
be reduced to a upper triangular matrix if all zero rows are deleted and elements
in the main diagonal after the zero row deletion is non-zero, and P ∈ F

n×n is a
permutation matrix. The LSP decomposition can be found in O(mnrω−2) time
[16], where r is the rank of A. Given the LSP decomposition of an n × n matrix
A, solving Ax = b can be achieved by solving Ly = b and SPx = y based on the
back substitution [15], which takes O(n2) time.

3 Solving Ax = b Through Zero Forcing Set

In this section, we first introduce the core matrix that serves as the key part of
our algorithm, followed by its theoretical guarantees. Based on the core matrix,
we then present the detailed algorithm for solving Ax = b with a given zero
forcing set of size k, as well as the corresponding computational analysis.

For a clear exposition, we set up the instances we are working with. Through-
out this section, we fix a directed graph G = (V,E), a field F, a matrix
A ∈ M(G,F), a zero forcing set Z of G, a forcing order π, and the termi-
nals T under the forcing order. Since the operations are performed on indices,
without loss of generality, we assume that V = [n] and Z = [k].

Let L(b) = Forcing(A, π, b). Given that L is a linear transform, we abuse
the notation and let L be the matrix that induces the transform. Let R = I−AL.
It can be observed that supp(Rb) ⊂ T and supp(Lb) ⊂ V \Z for all b. Moreover,
we have that |V | = n, |Z| = k, and the number of non-zero elements in A is m.
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3.1 Core Matrix

As Theorem 2 suggests, the solution to Ax = b can be obtained by knowing only
xZ . Hence, it is natural to think of finding the correct xZ instead of acquiring
the full information of x for solving Ax = b.

Let av = A∗,v be the column of A indexed by v. Define a k × k matrix
B ∈ F

T×Z as B = (RA)T,Z . In other words, the vth column equals R(av)T . The
matrix B is called the core matrix of A. We will show that for an arbitrary b,
Ax = b holds if and only if BxZ = R(b)T . Hence, solving the equation By =
R(b)T along with some post processing is sufficient to give a solution of Ax = b.

Lemma 1. Rav = 0 for v �∈ Z.

Proof. The forcing algorithm given in Fig. 3 shows that if v �= u, we will then
have xv = 1, and xu = 0. Note that Ax = av, and therefore Rav = av − Ax = 0.

Before delving into the key theorem, we introduce some useful notations and
definitions that will be repeatedly used in the remaining part of this section. Let
rank(A) = r ≥ n−k. Define A′ = A∗,[k] ∈ F

n×k, and A′′ = A∗,[n]\[k] ∈ F
n×(n−k).

To facilitate the analysis, we further decompose A′ into a 1 × 2 block matrix
form A′ = [A′

1 A′
2] such that A′

1 = [a1 . . . ap], A′
2 = [ap+1 . . . ak],

rank([A′
1 A′′]) = r, rank(A′′) = n − k and rank(A′

1) = p = r − (n − k). The
matrix A can be then rewritten as

A = [A′
1 A′

2 A′′]. (1)

The following result presents the rank-preserving property of A′
1 under the

linear mapping R. Based on this property, together with the assumption of the
existence of the solution to Ax = b.

Lemma 2. rank(RA′
1) = rank(A′

1).

Proof. For any s ∈ F
n, there exist γk+1, · · · , γn, such that

s +
n∑

i=k+1

γiai = Rs,

which implies that (R − I)s ∈ span(A′′). Define another linear mapping Q as

Q = R − I, (2)

and we have span Q ⊂ span A′′. Then, we can write RA′
1 as

RA′
1 = (Q + I)A′

1 = QA′
1 + A′

1,

where QA′
1 ∈ span Q ⊂ span A′′. Hence, the columns of QA′

1 and the ones of
A′

1 are linearly independent, which immediately gives rank(RA′
1) = rank(A′

1).

The following theorem plays a pivotal role in the theoretical guarantees for
our algorithm.
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Theorem 3. Given A ∈ F
n×n of the form (1). Let M ∈ F

k×n (k ≤ n) such that
A′′ ∈ ker(M), and rank(MA′

1) = rank(A′
1). For b ∈ F

n, suppose that Ax = b
has a solution. If MA′y = Mb for some y ∈ F

k, then there exists x ∈ F
n such

that Ax = b and xZ = y.

Proof. Since A′
2 ∈ span(A′

1, A
′′), we can rewrite A′

2 as A′
2 = A′

1C
′
1+A′′C ′′ where

C ′
1 ∈ F

p×(k−p) and C ′′ ∈ F
(n−k)×(k−p) are coefficient matrices. The existence of

the solution to Ax = b indicates that b ∈ span(A′
1, A

′′). Similarly, we can write
b = A′

1C
′
b + A′′C ′′

b where C ′
b ∈ F

p and C ′′
b ∈ F

n−k are coefficient vectors. Then,
we have

M [A′
1 A′

2]y = M [A′
1 A′

1C
′
1 + A′′C ′′]y = M [A′

1 A′
1C

′
1]y,

Mb = M(A′
1C

′
b + A′′C ′′

b ) = MA′
1C

′
b,

where the last equalities of the above two formulas follow from A′′ ∈ ker(M).
Then, the equation MA′y = Mb can be written as [MA′

1 MA′
1C

′
1]y = MA′

1C
′
b.

Decomposing y ∈ F
k into y =

[
y1
y2

]
with y1 ∈ F

p, y2 ∈ F
k−p further leads to a

new homogeneous linear system

MA′
1(y1 + C ′

1y2 − C ′
b) = 0.

The condition rank(MA′
1) = rank(A′

1) gives rank(MA′
1) = p, or to say, MA′

1 is
of full rank. Thus, we have y1 + C ′

1y2 − C ′
b = 0.

In a similar manner, we decompose x ∈ F
n into three subvectors x1 ∈ F

p,
x2 ∈ F

k−p, and x3 ∈ F
n−k. Then Ax = b gives

[A′
1 A′

1C
′
1 + A′′C ′′ A′′]

⎡
⎣

x1

x2

x3

⎤
⎦ = A′

1C
′
b + A′′C ′′

b .

Taking x1 = y1, x2 = y2 yields

A′
1y1 + A′

1C
′
1y2 + A′′C ′′y2 + A′′x3 = A′

1C
′
b + A′′C ′′

b ,

which can be rearranged as

A′
1(y1 + C ′

1y2 − C ′
b) + A′′(C ′′y2 + x3 − C ′′

b ) = 0.

Since C ′′y2 + x3 − C ′′
b = 0, we get

A′′(C ′′y2 + x3 − C ′′
b ) = 0.

Now, we can set x3 = C ′′
b − C ′′y2, which immediately gives a solution of Ax = b

of the form

x =

⎡
⎣

y1
y2

C ′′
b − C ′′y2

⎤
⎦ .
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Theorem 4. Let B be the core matrix of A. If there is a y such that By = RT,∗b,
then there exists x such that Ax = b and xZ = y. Otherwise, Ax = b has no
solution.

Proof. Assume there is a solution to Ax = b. Since supp(Rx), supp(RT,∗x) ∈ T
for all x, we have rank(RA′

1) = rank(RT,∗A′
1). By Theorem 3 with M = RT,∗,

we know there is a solution of Ax = b such that xZ = y.
Otherwise, suppose for contradiction that Ax = b has no solution, but By =

RT,∗b. From the definition of the core matrix B, we get (RA)T,Zy = (Rb)T .
Then, we can construct an x∗ as

x∗
Z = y, x∗

V/Z = 0,

such that (RA)T,∗x∗ = (Rb)T holds. Due to the fact that supp(RA) ⊂ T and
supp(Rb) ⊂ T , we obtain that RAx∗ = Rb, and from (2) we further arrive
at QAx∗ + Ax∗ = Qb + b. Since QAx∗, Ax∗, Qb ∈ span(A), we thus have b ∈
span(A), which gives a contradiction.

3.2 The Algorithm

We first provide the algorithm FindCore for effectively computing the core
matrix in Fig. 4, with the computational cost given in Theorem 5.

Fig. 4. Find the core matrix.

Theorem 5. The algorithm FindCore takes O(mk + kω) time.

Proof. Computing L(A∗,v) for all v ∈ Z takes O(m(1 + |Z|)) = O(mk) time.
The computation of B∗,v for a v ∈ Z consists of a vector-vector difference and
a matrix-vector product, which can be implemented in O(m) linear time. Thus,
computing the core matrix takes O(mk) time in total. The time taken for LSP
decomposition is O(kω).

Next, the algorithm SolveLinearSystemGivenCore(A,Z,B, b) in Fig. 5
shows how the solution of Ax = b is obtained using the computed core matrix
and all the information about the zero forcing set. By Theorem 4, we know
there exists a solution that matches y at the zero forcing set. By Theorem 2, we
obtain the remaining part of the solution through forcing. The corresponding
computational cost is provided in Theorem 6.
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Fig. 5. Solve a linear system Ax = b given a core matrix.

Theorem 6. Given a matrix A ∈ F
n×n of m non-zero elements, its zero forcing

set of size k, and a core matrix B represented by its LSP decomposition. The
system of linear equations Ax = b can be solved in O(k2 + m) time.

Proof. Following the algorithm in Fig. 5, the computation of b′ = RT,∗b by forc-
ing takes O(m) time. As mentioned earlier, if the LSP decomposition of the
matrix is given, then solving a system of linear equations with k variables and
k equations takes O(k2) time. Once the solution of the linear system for the
core matrix is attained, we can find the solution to the original problem through
forcing in O(m) time. The total running time is thus O(k2 + m).

Combining Theorem 5 and Theorem 6, we finally arrive at our main theorem.

Theorem 1 (Main). Given a matrix A ∈ F
n×n of m non-zero elements, and

a zero forcing set of A of size k where k ≤ n. A data structure of size O(k2)
can be computed in O(mk + kω) time, such that for each b ∈ F

n, solving Ax = b
takes O(k2 + m) time.

4 Lights Out Game on a Grid

In this section, we show that the lights out game in an n × n grid can be solved
in O(nω log n) time.

Consider the lights out game on an n×n grid graph. We number the vertices
in position (i, j) with index (i − 1)n + j, and hence, the vertices are in [n2]. Let
Z = [n], which is obviously a zero forcing set. If we apply Theorem 1 directly to
the adjacency matrix of the grid graph, then in this special case, we will obtain
precisely the algorithm of [22]. Since m = n2 and k = n, the algorithm takes
O(n3) time. The computational bottleneck is the calculation of the core matrix,
as forcing itself only takes O(n2) time. Fortunately, by exploiting the repeated
structure in grids, we can significantly improve the running time of computing
the core matrix to O(nω log n).

The forcing operation for the lights out game is greatly simplified, because
the field is F2. In this case, xu = 1 or xu = 0 can be interpreted as pressing the
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button at vertex u or not, respectively. The bu can be understood as the state of
light at vertex u, where the value 1 means on, and 0 means off. When operating
on the uth vertex, the forcing operation sets xu = 1 if and only if b′

u↑ = 1. Here
b′ is the state of the board after applying all previous button presses. In other
words, the forcing operation is iteratively setting xu = b′

u↑ .
We then encode the operation of forcing, where we are given the states of

the first and second rows and the aim is to compute the force operations on the
second row ensuring that the states of the first row can be all 0. The output is
the states of the second and the third rows after all of the button presses. To
this end, we define such matrix to be N(n) ∈ F

(2n)×(2n)
2 . The vertices of the first

row are indexed from 1 to n. The vertex of the second row below the vertex i is
n + i. One can easily verify that N could be written in the following block form

N(n) =
[
N ′(n) In

In 0n

]
,

where N ′(n) is the matrix satisfying that N ′(n)i,j = 1 if and only if |i − j| ≤ 1
(Fig. 6).

Fig. 6. The matrix N(3).

Now, we define M = Nn−1(n), which requires O(nω log n) computational
time using the exponentiation by squaring. Let aj be the jth column of A. Since
supp(aj) is a subset of the first two rows if j ∈ [n], we first let a′

j = (aj)[2n]. Next,
we compute y = Ma′

j . Let t be the last n coordinates of y, which then yields
the desired RT,∗aj . Note that we can batch all the multiplications together, that
is to say, we can compute M [a′

j |j ∈ [n]] = MA[n],[2n] in one go, which takes
O(nω) running time, and recover the desired core matrix from it. The procedure
described above is summarized in Fig. 7.

Fig. 7. Find core matrix for a grid graph.



364 J. Wang et al.

At this point, we have provided an O(nω log n) time algorithm for solving the
lights out problem on an n×n grid. Moreover, the algorithm can also be applied
to the n×m grids with n ≤ m, and the running time becomes O(nω log m+nm)
accordingly.

Acknowledgements. Chao like to thank Jephian C.-H. Lin for discussion on algo-
rithmic application of zero forcing set.
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Abstract. Influence maximization is a classic problem in social net-
works and has been extensively studied in recent years. Viral marketing
is an important application for influence maximization. Most of exist-
ing related research focus on influence maximization of a single product,
but in reality, a marketer may promote multiple products in the social
network at the same time. This paper studies the profit maximization
problem for multiple kinds of products in viral marketing. We formulate
it as the Profit Maximization Problem for Competitive Influence Spread
(PMPCIS), which aims at selecting a set of seed users within the total
budget B and the total number of seeds K to maximize the overall profit
of k kinds of products. The objective problem is proved to be a monotone
k-submodular maximization problem under the knapsack and cardinal-
ity constraint. We present a Singleton+Greedy-Local-Search Algorithm
in four steps, and prove the approximation performance guarantee of the
proposed algorithm.

Keywords: Social Network · Profit Maximization · k-submodular

1 Introduction

Online social networks, such as WeChat, Facebook, Twitter, have been impor-
tant platforms for people to communicate and for business to advertise. People
keep in touch with each other and make friends through social networks, they
also like to share their innovations and ideas, etc., in the social networks [1,2].
According to statistics, there are 3.725 billion users active in the social net-
works by Dec. 2019. Companies make use of the advantage of large crowds and
rapid information dissemination in social networks to promote their products.
Motivated by the information propagation in social networks, Influence Maxi-
mization (IM) problem is put forward by Kempe et al. in [3]. They formulate
the IM problem as: selecting a set of users as seeds to maximize the expected
number of users who are influenced by seeds. Influence maximization finds appli-
cations in many domain, like viral marketing. Viral marketing makes good use
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 366–377, 2024.
https://doi.org/10.1007/978-3-031-49193-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_28&domain=pdf
http://orcid.org/0000-0002-0462-9549
http://orcid.org/0000-0002-8593-0383
https://doi.org/10.1007/978-3-031-49193-1_28


Profit Maximization for Competitive Influence Spread in Social Networks 367

of the word-of-mouth effect of the social networks, and it promotes products
by giving discounts to a small set of customers to spread their product infor-
mation. Two classic influence spread model: Independent Cascade (IC) model
and Linear Threshold (LT) model, are proposed by Kempe et al. in [3]. They
also prove that the influence propagation function is monotone and submodular,
thus, the greedy algorithm can be applied to solve the IM problem and obtain
an 1 − 1/e − ε approximation ratio.

In real life, it is very common for multiple types of information propagate
simultaneously in the social network. For example, in 2022 Apple Corporation
issues two kinds of new iPhone, iPhone 14 is more cost-effective and iPhone 14
Pro is more powerful but more expensive. Although iPhone 14 and iPhone 14
Pro are the same kind of product, but they have different prices, appearances
and performances, which can attract different groups of customers with different
requirements. Based on the described background, consider the scenario where
there are k kinds of products, a constraint K for the number of selected seeds,
and a budget B for the activation cost of all selected seeds. Assuming that
different seeds have different activation costs and different profits can be obtained
when the product is purchased, which nodes to be selected as seeds and how to
allocate the budget to seeds for k kinds of products such that the total profit is
maximized? We study the profit maximization problem for competitive products
in this paper, and assume that each seed can accept the discount of only one
product for the fairness. We aim to allocate discounts to k sets of seed users
for k kinds of products under two constraints K and B. The objective function
that maximizes the total profit of k kinds of products can be formulated as a k-
submodular function. Approximation algorithms with theoretical guarantee are
proposed in our work. We summarize the main contributions in this paper as
follows:

– We formulate the profit maximization for competitive influence spread prob-
lem as a k-submodular function with both a knapsack constraint and a car-
dinality constraint problem. To best of our knowledge, this is the first time
to study a monotone k-submodular maximization problem under both the
knapsack and cardinality constraints in social networks.

– We propose a Singleton+Greedy-Local-Search Algorithm in four steps, which
obtains two approximation ratios: 0.216 and 0.158, in two different conditions.

2 Related Work

In this paper, we consider the profit maximization problem with multiple kinds
of products in the network. We summarize the related studies on our work as
follows.

Influence Maximization with Competitive Influence Spread: Most of
the existing relevant studies on influence maximization consider the scenario of
a single kind of information spreading in the social network. The competitive
IM problem is firstly studied by Bharathi et al. [4]. They propose a game the-
ory based method to solve it. Liang et al. [5] consider that multiple kinds of
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similar products promote in the network at the same time and the target of
the promotion is a specific user group. They formulate such a problem as Tar-
geted Influence Maximization in Competitive social networks (TIMC). A reverse
reachable set based greedy method is proposed by them to solve the TIMC with
approximation performance guarantee. Wu et al. [6] consider a scenario that
multiple information propagate in a social network with different propagation
probabilities. The problem is formulated as maximizing the total influence of all
the different information under a constraint of seed budget k. They present a
greedy algorithm with 1

3 approximation ratio, and also propose a parallel algo-
rithm which improves the efficiency of the algorithm.

Profit Maximization: Profit maximization problem is a transformation of the
influence maximization problem, which aims at maximizing the profit of prod-
ucts by selecting a seed set with a limited budget. Zhang et al. [7] study the
Profit Maximization with Multiple Adoptions (PM2A) problem. Two different
approximation algorithms are devised to maximize the total profit of multiple
kinds of product by selecting a limited number of seeds. Chen et al. [8] propose
a Randomized Modified Greedy (RMG) algorithm to solve the Profit Maximiza-
tion with Multiple Adoptions (PM2A) problem, which obtain an (1 − 1/e − ε)
approximation ratio. Yuan et al. [9] design two discount allocation strategies
under the non-adaptive setting and adaptive setting, respectively, which achieve
the goal of maximizing the expected number of users who adopt the product
finally.

k-Submodular Maximization: Huber et al. [10] firstly define the k-submod-
ular function, which is a generalization of the submodular function. Ohsaka et
al. [11] study the maximization for a monotone k-submodular function with two
different size constraints, and propose greedy algorithms with constant approxi-
mation factor. Tang et al. [12] study the maximization for a non-negative mono-
tone k-submodular function with a knapsack constraint, they present a greedy
algorithm which can obtain an 1

2 − 1
2e approximation ratio with an O(n4k3) time

complexity. Wang et al. [13] propose a framework for relaxing a k-submodular
function to continuous space with the technique of multilinear extension. They
also improve the approximation ratio to 1/2 − ε for maximizing a monotone
k-submodular function with knapsack constraint. V. Pham et al. [14] explore
the applications of maximizing the k-submodular function under the knapsack
constraint in influence maximization of social networks and the sensor place-
ment. However, for the monotone k-submodular maximization problem under
the knapsack constraint and cardinality constraint, to best of our knowledge,
there is no related conclusion about it in social networks. Thus, we try to fill
this gap and apply it to the social networks.

3 Diffusion Model and Problem Definition

3.1 The Diffusion Model

A social network is constructed as a directed graph G(V,E), where each node
v ∈ V represents a user, and each edge (u, v) ∈ E represents that user v follows
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user u, u is an incoming neighbor of v, while v is an outgoing neighbor of u. The
incoming neighbor set and the outgoing neighbor set of a node v are denoted as
N−(v) and N+(v), respectively. IC model is used as the influence propagation
model in our problem, its influence propagation process is described as follows.

Definition 1 (IC model). Nodes in social networks have two different states:
active and inactive, all nodes are initially inactive. There is a activation prob-
ability puv ∈ (0, 1] associated with each edge e = (u, v) ∈ E. When a node
u is firstly activated at time t, then for each of his inactive outgoing neighbor
v ∈ N+(u), he can activate them with a probability puv at time t+1. Finally, the
influence propagation process terminates if there are no newly activated nodes
in the future.

3.2 Problem Formulation

Give a social network G = (V,E). Assume that marketers wants to promote k
kinds of products in the social network. k kinds of products information prop-
agate under the IC model at the same time. We aim to choose k seed sets
S = {S1, S2, · · · , Sk} and provide discounts to them, and assume that each seed
user can only be used for propagating at most one kind of product information.
As different user can bring different levels of influence, so we give different dis-
counts to different seeds, and influential users get bigger discounts. Let σ(Si)
be the expected influence spread of seed set Si for product i, i.e., the expected
number of users who adopt product i in the social network. Let f(Si) be the
total profit that obtained by purchasing product i. Moreover, σ(S|G) and f(S|G)
are the expected number of influenced people and the total profit obtained by
adopting k kinds of products, respectively.

The profit maximization problem for competitive products marketing at the
same time in the social network with a total activation cost B and a total number
of seeds K constraints can be formulated as follows:

Problem 1 (Profit Maximization Problem for Competitive Influence
Spread (PMPCIS)). Given a social network graph G = (V,E), k kinds of
products, the IC model, the cost c(a) that activating a node a to purchase
a product, the profit pi that a node can gain when he adopts product i, the
seed set S = {S1, S2, · · · , Sk}, where Si is selected for propagating the infor-
mation of the product i and Si ∩ Sj = ∅ for any i, j ∈ [1, k] and i �= j.
The total number of selected seeds is represented by |S| =

∑k
i=1 |Si| and the

upper bound is K. The total activation cost for the seed set S is denoted by
c(S) =

∑k
i=1

∑
a∈Si

c(a) and the total budget is given as B. The expected influ-
ence spread for seed set Si is expressed by σ(Si). Our target is to select an optimal
seed set S = {S1, S2, · · · , Sk} such that the total profit f(S) is maximized, i.e.,

S∗ = argmax
S

f(S)

s.t. c(S) ≤ B

|S| ≤ K.

(1)
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From the definition of PMPCIS, we can intuitively get f(S) =
∑k

i=1 piσ(Si).
In literature [3], Kempe et al. have proved that the classical influence maximiza-
tion problem in IC model is a NP-hard problem. When the types of products
are reduced to one, our PMPCIS is equivalent to the traditional IM problem for
IC model. Thus, the PMPCIS is a NP-hard problem.

4 Solution for PMPCIS

We propose solution for PMPCIS in this section. At first, we analyze the prop-
erties of the objective function f for PMPCIS.

4.1 Properties for Objective Function f

Firstly, we introduce an important property for a set function: k-submodular.
Let X be a finite non-empty set, and let (k+1)X := {(U1, · · · , Uk) | Ui ⊆ X,∀i ∈
{1, 2, · · · , k}, Ui ∩ Uj = ∅,∀i �= j} be the family of k disjoint sets (U1, · · · , Uk).
A function h: (k + 1)X → R is k-submodular if for any U = {U1, · · · , Uk} and
W = {W1, · · · ,Wk} in (k + 1)X , it satisfies,

h(U) + h(W ) ≥ h(U 
 W ) + h(U � W ),

where
U � W := (U1 ∩ W1, · · · , Uk ∩ Wk),

U 
 W :=
(
U1 ∪ W1\

(⋃

i�=1
Ui ∪ Wi

)
, · · · , Uk ∪ Wk\

(⋃

i�=k
Ui ∪ Wi

))
.

If a function satisfies the properties of orthant submodularity and pairwise
monotonicity at the same time, which indicates that it is a k-submodular func-
tion. It is very intuitively to verify that our objective function is k-submodularity.

Then, we elaborate on additional characteristics and notations of k-submodu-
lar functions for our problem. Every k-tuple x = (X1, . . . , Xk) ∈ (k + 1)V

uniquely corresponds to a set A = {(a, d) | a ∈ Xd, d ∈ [k]} composed of item-
dimension pairs. Hence, a user-product pair (a, d) is included in set A (termed
as a solution) if and only if a ∈ Xd in x.

In our problem, for ease of presentation, we write x and its corresponding
solution A interchangeably. For any solution A ∈ (k + 1)V , we define U(A) :=
{a ∈ V | ∃ d ∈ [k], (a, d) ∈ A} to be the set of seed included, and the size is
|A| = |U(A)|.

The marginal gain of adding a user-product pair (a, d) to A is

Δa,df(A) = f(A ∪ {(a, d)}) − f(A),

and the marginal density is Δa,df(A)
c(a) . As the profit maximization function f is

monotone k-submodular, it satisfies the pairwise monotonicity

Δa,df(A) + Δa,lf(A) ≥ 0,
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for any d, l ∈ [k] and d �= l. And it also satisfies the orthant submodularity

Δa,df(A) ≥ Δa,df(C),

∀A,C ∈ (k + 1)V with A ⊆ C, a /∈ U(C), d ∈ [k].

In this problem, each seed node a ∈ V has a non-negative cost c(a), and the
cost of solution A is c(A) =

∑
a∈U(A) c(a). The goal is to find a solution that

maximizes the function value within the given budget B ∈ Z+ and size K ∈ Z+.
Then we rewrite the PMPCIS in Eq. (1) as follows.

A∗ = arg max
A∈(k+1)V

f(A)

s.t. c(A) ≤ B

|A| ≤ K.

(2)

4.2 Proposed Algorithm

We present our solution for the proposed PMPCIS in four steps. In the first
step, we consider unconstrained profit maximization problem and propose a
simple greedy algorithm in Algorithm 1. Given a node set V ′ = {e1, e2, . . . , em}
and V ′ ⊆ V . Firstly, we remove the two constraints of the problem in Eq. 2,
then, Algorithm 1 is devised by greedily finding the maximum function value
maxA∈(k+1)V ′ f(A) without any constraint.

Let T = {(e1, d∗
1), . . . , (em, d∗

m)} be an optimal solution that maximizes the
function f(A) over V ′. Assume without loss of generality that the seed set are
obtained by Greedy Algorithm in the order of {e1, e2, . . . , em}, and denote the
returned greedy solution by A = {(e1, d1), . . . , (em, dm)}. For j = {0, 1, . . . ,m},
define Aj = {(e1, d1), . . . , (ej , dj)}. We have A0 = ∅ and Am = A. The following
Lemma 1 is crucial to our subsequent proof.

Lemma 1 ([15,16]). If f is monotone, for t = {0, 1, . . . ,m}, we have f(T ) ≤
2f(At) +

∑
ei∈U(T )\U(At)

Δei,d∗
i
f(At).

Algorithm 1. A Simple Greedy Algorithm
Input: Social network subgraph G = (V ′, E′), objective function f .
Output: A solution A ∈ (k + 1)V

′
.

1: A ← ∅

2: for each item a ∈ V ′ do
3: da ← argmaxd∈[k] Δa,df(A)
4: A ← A ∪ {(a, da)}
5: end for
6: return A
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Algorithm 2. Greedy-Knapsack Algorithm
Input: Social network graph G = (V, E), objective function f , costs c(a) for a ∈ V ,

budget B, seed size constraint K.
Output: Solution At in (k + 1)V .
1: A0 ← ∅, V0 ← V , card ← 0
2: for t from 1 to |V | do
3: Let (at, dt) = arg max

a∈Vt−1,d∈[k]

Δa,df(At−1)

c(a)
maximize the marginal density, and

denote ρt =
Δat,dt

f(At−1)

c(at)
.

4: if c(At−1) + c(at) ≤ B then
5: At ← At−1 ∪ {(at, dt)}
6: card ← card+1
7: if card = K then
8: break
9: end if
10: else
11: At ← At−1

12: end if
13: Vt ← Vt−1\{at}
14: end for
15: return At.

Then we propose the following Algorithm 2. In Algorithm 2, we select the
user who can bring the largest marginal density for objective function f in each
iteration, and the selected users can not violate the budget and size constraint
at the same time. Algorithm 2 returns the solution At.

Next, we devise the Algorithm 3, which aims at further optimizing the solu-
tion At. If we have solution with size K that is obtained with the Algorithm 2,
we can execute the local search procedure utilizing Algorithm 3. We input the
solution obtained by Algorithm 2, and denote it as a feasible solution A′. In each
iteration, we try to swap a pair of selected and unselected items, aiming to aug-
ment the objective value while ensuring adherence to the knapsack constraint.
In Algorithm 3, when we obtain the new seed set after the exchange in step 6,
we invoke the Algorithm 1 Greedy Algorithm in step 7 to reassign the type
of product that the seeds correspond to since the selected seed set may change.

Our main algorithm is as shown in Algorithm 4, which combines the singleton
optimum, the greedy strategy in Algorithm 2 and the local search strategy in
Algorithm 3. In step 1 of Algorithm 4, we find out the node that can maximize
the objective function f among all the nodes, then A∗ is the item pair with a
single node set and the product it corresponds.
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Algorithm 3. Local-Search Algorithm
Input: Social network graph G = (V, E), objective function f , costs c(a) for a ∈ V ,

budget B, seed size constraint K. a feasible solution A′ ∈ (k + 1)V with |A′| = K.
Output: A local optimal solution At ∈ (k + 1)V .
1: AK ← A′, t = K, swap ← true
2: while swap do
3: swap ← false
4: Let ρ(x,y) = maxd∈[k]

f(At\(y,dy)∪(x,d))−f(At)

c(x)
be the exchange marginal density.

The swap (at+1, bt+1) achieves the value maxx∈V \U(At),(y,dy)∈At ρ(x, y) and ρt+1 =
ρ(at+1, bt+1)

5: if ρt+1 > 0 and c(at+1) − c(bt+1) + c(At) ≤ B then
6: V ′ ← U(At)\{bt+1} ∪ {at+1}
7: At+1 ← Greedy(V ′, f)
8: swap ← true
9: t ← t + 1
10: end if
11: end while
12: return At

Algorithm 4. Singleton+Greedy-Local-Search Algorithm
Input: Social network graph G = (V, E), objective function f , costs c(a) for a ∈ V ,

budget B, seed size constraint K.
Output: The solution A∗ in (k + 1)V .
1: Let A∗ ∈ arg max

A: |A|=1,c(A)≤B
f(A) be a size-1 solution giving the largest value.

2: A ← Greedy-Knapsack(V, f, c, B, K)
3: if f(A) > f(A∗) then
4: A∗ ← A
5: end if
6: if |A| < K then
7: return A∗

8: end if
9: A ← Local-Search(V, f, c, B, K, A)
10: if f(A) > f(A∗) then
11: A∗ ← A
12: end if
13: return A∗

If f(A∗) ≥ f(A), then A∗ is returned as the final solution. We always find
the node that maximize the marginal density as seeds in Algorithm 3, which
may miss some nodes that can bring large profit and also need large costs at the
same time, but have small marginal density. However, such nodes are actually a
good solution. So the step 1 in Algorithm 4 is to find such kind of nodes. The
returned solution A∗ by the Algorithm 4 is a seed-product pair set, but in our
original objective function in Eq. 1, we need to find an optimal seed set S∗, so
the nodes in A∗ is the returned solution for our PMPCIS in Eq. (1).



374 Q. Ni et al.

4.3 Approximation Performance Analysis

In this section, we analyze the approximation performance guarantee of the pro-
posed Algorithm 4. We intend to establish the approximation ratio in Theorem
1 following the proof framework in [17]. The subsequent observation will be used
twice in the proof of Theorem 1.

Lemma 2. Let A1, A2 ∈ (k+1)V be two node sets with |A1| ≤ K and |A2| = K,
then for any one-to-one function y : U(A1)\U(A2) → U(A2)\U(A1), we have∑

x∈U(A1)\U(A2) f(A2)−f(A2\{(y(x), dy(x))}) ≤ f(A2) where (y(x), dy(x)) ∈ A2.

Proof. Let U(A1)\U(A2) = {x1, x2, . . . , xK′}. For any one-to-one function y,
suppose yj = y(xj) for each j ∈ {1, . . . , K ′}. Then we have

∑

x∈U(A1)\U(A2)

f(A2) − f(A2\{(y(x), dy(x))})

≤
K′
∑

j=1

f(A2\{(y1, dy1), . . . , (yj−1, dyj−1)}) − f(A2\{(y1, dy1), . . . , (yj , dyj
)})

≤ f(A2),

where j = 1, {(y1, dy1), . . . , (yj−1, dyj−1)} is an empty set.

Theorem 1. Algorithm 4 has an approximation ratio at least 1
6 (1 − e−3) ≈

0.15836.

Proof. Let T be the optimal solution with |T | ≥ 2 and A be the seed set out-
put by Algorithm 4. If |A| < K, then A is a 1−e−2

4 -approximation solution
of maximum k-submodular with a knapsack constraint [16]. Thus, A is also a
1−e−2

4 -approximation solution of maximum our k-submodular objective function
f with a knapsack constraint and a cardinality constraint.

If |A| = K, we distinguish between two cases based on the last iteration of
the algorithm.

Case 1: For any node x ∈ U(T )\U(A), node y ∈ U(A)\U(T ), the swap (x, y)
was rejected because ρ(x,y) ≤ 0. Since A is a greedy solution, by Lemma 1, we
derive

f(T ) ≤ 2f(A) +
∑

x∈U(T )\U(A)

[f(A ∪ {(x, d∗
x)}) − f(A)]

≤ 2f(A) +
∑

x∈U(T )\U(A)

[f(A ∪ {(x, d∗
x)}\{(y(x), dy(x))}) − f(A\{(y(x), dy(x))})]

≤ 2f(A) +
∑

x∈U(T )\U(A)

[f(A) − f(A\{(y(x), dy(x))})]

≤ 3f(A),

where (x, d∗
x) ∈ T and y(x) is a one-to-one function with (y(x), dy(x)) ∈ A. The

second inequality holds because of submodularity. The third inequality holds as
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ρ(x,y) ≤ 0. The last inequality holds by Lemma 2. Thus, in this case, we have
Algorithm 4 yields a 1

3 -approximation on the optimum.

Case 2: At least one swap for node pair (x, y) with ρ(x,y) > 0, for x ∈
U(T )\U(A), y ∈ U(A)\U(T ) was rejected because c(x) − c(y) + c(A) > B.

Let At be the partial greedy solution after t iterations as shown in Algorithm
2 and 3. Let l+1 be the first iteration in which a swap (al+1, bl+1) was rejected
since it violates the knapsack constraint where al+1 ∈ U(T )\U(Al). We can
further assume that l+1 is the first iteration t for which At = At−1. Since At is
a greedy solution for t = 0, 1, . . . , l, by Lemma 1, we have

f(T ) ≤ 2f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}) − f(At)],

where (x, d∗
x) ∈ T .

For t = 0, . . . , K − 1, |At| = t, we have

f(T ) ≤ 2f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}) − f(At)] ≤ 2f(At) + Bρt+1.

The second inequality holds since c(T ) ≤ B.
For t = K, . . . , l, |At| = K, we have

f(T ) ≤ 2f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}) − f(At)]

≤ 2f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}\{(y(x), dy(x))}) − f(At\{(y(x), dy(x))})]

≤ 2f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}\{(y(x), dy(x))}) − f(At)]+

∑

x∈U(T )\U(At)

[f(At) − f(At\{(y(x), dy(x))})]

≤ 3f(At) +
∑

x∈U(T )\U(At)

[f(At ∪ {(x, d∗
x)}\{(y(x), dy(x))}) − f(At)]

≤ 3f(At) + Bρt+1.

The second inequality holds because of submodularity. The fourth inequality
holds by Lemma 2. The last inequality holds since c(T ) ≤ B.
Therefore, for each t = 0, 1, . . . , l, we have

f(T ) ≤ 3f(At) + Bρt+1.

Take advantage of the techniques in [17,18], we get

f(Al\{(bl+1, dbl+1)} ∪ {(al+1, dal+1)})
f(T )

≥ 1
3
(1 − e−3),
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where ρ(al+1,bl+1) =
f(Al\{(bl+1,dbl+1 )}∪{(al+1,dal+1 )})−f(Al)

c(al+1)
.

Therefore, Singleton+Greedy-Local-Search has a function value at least

max{f(Al), f({(al+1, dal+1)})} ≥ 1
2
f(Al ∪ {(al+1, dal+1)})

≥ 1
2
f(Al\{(bl+1, dbl+1)} ∪ {(al+1, dal+1)}) ≥ 1

6
(1 − e−3)f(T ).

The theorem is proved.

5 Conclusion

In this paper, we investigate the profit maximization problem for k kinds of
competitive products information spreading at the same time in social networks.
Considering that one seed user spreads multiple product information at the same
time may disperse its followers’ attention, one seed user can only propagate the
influence of one kind of product. The goal of the proposed problem is to select
k subsets of users as seeds with a budget B and a seed size K constraints such
that the total profit for k kinds of products is maximized. Our optimal problem
is formulated as maximizing a monotone k-submodular function under a knap-
sack constraint and a cardinality constraint. A Singleton+Greedy-Local-Search
Algorithm is put forward in four steps to solve the profit maximization problem,
which achieves a 0.216 and 0.158 approximation performance guarantees in two
different cases, respectively.
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Abstract. The Multidepot Capacitated Vehicle Routing Problem
(MCVRP) is a well-known variant of the classic Capacitated Vehicle
Routing Problem (CVRP), where we need to route capacitated vehicles
located in multiple depots to serve customers’ demand such that each
vehicle must return to the depot it starts, and the total traveling dis-
tance is minimized. There are three variants of MCVRP according to
the property of the demand: unit-demand, splittable and unsplittable.
We study approximation algorithms for k-MCVRP in metric graphs
where k is the capacity of each vehicle, and all three versions are APX-
hard for any constant k ≥ 3. Previously, Li and Simchi-Levi proposed a
(2α+ 1− α/k)-approximation algorithm for splittable and unit-demand
k-MCVRP and a (2α + 2 − 2α/k)-approximation algorithm for unsplit-
table k-MCVRP, where α = 3/2 − 10−36 is the current best approxi-
mation ratio for metric TSP. Harks et al. further improved the ratio to
4 for the unsplittable case. We give a (4 − 1/1500)-approximation algo-
rithm for unit-demand and splittable k-MCVRP, and a (4 − 1/50000)-
approximation algorithm for unsplittable k-MCVRP. Furthermore, we
give a (3 + ln 2 − max{Θ(1/

√
k), 1/9000})-approximation algorithm for

splittable and unit-demand k-MCVRP, and a (3 + ln 2 − Θ(1/
√

k))-
approximation algorithm for unsplittable k-MCVRP under the assump-
tion that the capacity k is a fixed constant. Our results are based on
recent progress in approximating CVRP.

Keywords: Capacitated Vehicle Routing · Multidepot ·
Approximation Algorithms

1 Introduction

In the Multidepot Capacitated Vehicle Routing Problem (MCVRP), we are given
a complete undirected graph G = (V ∪D,E) with an edge weight w satisfying the
symmetric and triangle inequality properties. The n nodes in V = {v1, . . . , vn}
represent n customers and each customer v ∈ V has a demand d(v) ∈ Z≥1.
The m nodes in D = {u1, . . . , um} represent m depots, with each containing an
infinite number of vehicles with a capacity of k ∈ Z≥1 (we can also think that
each depot contains only one vehicle, which can be used many times). A tour
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is a walk that begins and ends at the same depot and the sum of deliveries to
all customers in it is at most k. The traveling distance of a tour is the sum of
the weights of edges in the tour. In MCVRP, we wish to find a set of tours to
satisfy every customer’s demand with a minimum total distance of all the tours.
In the unsplittable version of the problem, each customer’s demand can only be
delivered by a single tour. In the splittable version, each customer’s demand can
be delivered by more than one tour. Moreover, if each customer’s demand is a
unit, it is called the unit-demand version.

In logistics, MCVRP is an important model that has been studied extensively
in the literature (see [19] for a survey). If there is only one depot, MCVRP is
known as the famous Capacitated Vehicle Routing Problem (CVRP). Since k-
CVRP is APX-hard for any fixed k ≥ 3 [3], it also holds for k-MCVRP.

Consider approximation algorithms for k-CVRP. Haimovich and Kan pro-
posed [11] a well-known algorithm based on a given Hamiltonian cycle, called
Iterated Tour Partitioning (ITP). Given an α-approximation algorithm for met-
ric TSP, for splittable and unit-demand k-CVRP, ITP can achieve a ratio of
α + 1−α/k [11]. For unsplittable k-CVRP, Altinkemer and Gavish [1] proposed
a modification of ITP, called UITP, that can achieve a ratio of α + 2 − 2α/k
for even k. When k is arbitrarily large, k-CVRP becomes metric TSP. For met-
ric TSP, there is a well-known 3/2-approximation Algorithm [6,21], and cur-
rently Karlin et al. [15,16] has slightly improved the ratio to 3/2 − 10−36.
Recently, some progress has been made in approximating k-CVRP. Blauth
et al. [4] improved the ratio to α + 1 − ε for splittable and unit-demand k-
CVRP and to α + 2 − 2ε for unsplittable k-CVRP, where ε is a value related
to α and satisfies ε ≈ 1/3000 when α = 3/2. Then, for unsplittable k-CVRP,
Friggstad et al. [9] further improved the ratio to α + 1 + ln 2 − ε based on
an LP rounding method, where ε ≈ 1/3000 is the improvement based on the
method in [4]. There are other improvements for the case that the capacity
k is a small fixed constant. Bompadre et al. [5] improved the classic ratios
by a term of Ω(1/k3) for all three versions. Zhao and Xiao [27] proposed a
(5/2 − Θ(1/

√
k))-approximation algorithm for splittable and unit-demand k-

CVRP and a (5/2 + ln 2 − Θ(1/
√

k))-approximation algorithm for unsplittable
k-CVRP, where the improvement Θ(1/

√
k) is larger than 1/3000 for any k ≤ 107.

Consider approximation algorithms for k-MCVRP. Few results are available
in the literature. Note that α ≈ 3/2. Based on a modification of ITP, Li and
Simchi-Levi [18] proposed a cycle-partition algorithm, which achieves a ratio of
2α + 1 − α/k ≈ 4 − Θ(1/k) for splittable and unit-demand k-MCVRP and a
ratio of 2α+2−2α/k ≈ 5−Θ(1/k) for unsplittable k-MCVRP. The only known
improvement was made by Harks et al. [12], where they proposed a tree-partition
algorithm with an improved 4-approximation ratio for unsplittable k-MCVRP.
Note that their algorithm also implies a 4.38-approximation ratio for a more
general problem, called Capacitated Location Routing, where we need to open
some depots (with some cost) first and then satisfy customers using vehicles
in the opened depots. When k is arbitrarily large, k-MCVRP becomes metric
m-depot TSP. For metric m-depot TSP, Rathinam et al. [20] proposed a simple
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2-approximation algorithm, and Xu et al. [25] proposed an improved (2− 1/m)-
approximation algorithm. Then, based on an edge exchange algorithm, Xu and
Rodrigues [24] obtained an improved 3/2-approximation algorithm for any fixed
m. Traub et al. [22] further improved the ratio to α+ε for any fixed m. Recently,
Deppert et al. [8] obtained a randomized (3/2+ε)-approximation algorithm with
a running time of (1/ε)O(d log d) ·nO(1), and hence their algorithm even works with
a variable number of depots.

If the capacity k is fixed, we will see that splittable k-MCVRP is equiva-
lent to unit-demand k-MCVRP. Moreover, both unit-demand and unsplittable
k-MCVRP can be reduced to the minimum weight k-set cover problem. In min-
imum weight k-set cover, we are given a set of elements (called universe), a set
system with each set in it having a weight and at most k elements, and we need to
find a collection of sets in the set system with a minimum total weight that covers
the universe. In the reduction, customers can be seen as the elements. There are
at most mnO(k) feasible tours, and each tour can be seen as a set containing all
customers in the tour with a weight of the tour. When k is fixed, the reduction
is polynomial. It is well-known [7] that the minimum weight k-set cover problem
admits an approximation ratio of Hk, where Hk := 1+1/2+ · · ·+1/k is the k-th
harmonic number. Hassin and Levin [13] improved the ratio to Hk − Θ(1/k).
Recently, using a non-obvious local search method, Gupta et al. [10] improved
the ratio to Hk −Θ(ln2 k/k), which is better than 4 for any fixed k ≤ 30. So, for
some k ≤ 30, the best ratios of k-MCVRP are Hk − Θ(ln2 k/k).

Note that each vehicle must return to the depot it starts in our setting, which
is also known as the fixed-destination property [18]. Li and Simchi-Levi [18] also
considered a non-fixed-destination version where each vehicle may terminate at
any depot. The non-fixed-destination MCVRP can be reduced to CVRP easily
with the approximation ratio preserved since one can regard all depots as a single
super-depot and let the distance between a customer and the super-depot be the
minimum weight of the edges between the customer and the depots.

Recently, Lai et al. [17] studied a variant of MCVRP, called m-Depot Split
Delivery Vehicle Routing, where the number of depots is still m, but the number
of vehicles in each depot is limited and each vehicle can be used for at most
one tour (one can also think that each depot contains only one vehicle, which
can be used a limited number of times). When m is fixed, they obtained a (6 −
4/m)-approximation algorithm. Carrasco Heine et al. [14] considered a bifactor
approximation algorithm for a variant of Capacitated Location Routing, where
each depot has a capacity as well.

1.1 Our Contributions

Motivated by recent progress in approximating k-CVRP, we design improved
approximation algorithms for k-MCVRP. For the sake of presentation, we assume
that α = 3/2. The contributions are shown as follows.

Firstly, we review the cycle-partition algorithm in [18] and then propose a
refined tree-partition algorithm based on the idea in [12]. Note that our refined
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algorithm has a better approximation ratio for fixed k. For splittable and unit-
demand k-MCVRP, both of them are 4-approximation algorithms. By making a
trade-off between them and further using the result in [4], we obtain an improved
(4 − 1/1500)-approximation ratio. The cycle-partition algorithm itself may only
lead to a (4 − 1/3000)-approximation ratio.

Secondly, using the LP-rounding method in [9], we obtain an LP-based cycle-
partition algorithm that can achieve a (4 + ln 2 + δ)-approximation ratio for
unsplittable k-MCVRP with any constant δ > 0. By making a trade-off between
the LP-based cycle-partition algorithm and the tree-partition algorithm and fur-
ther using the result in [4], we obtain an improved (4 − 1/50000)-approximation
ratio.

At last, we propose an LP-based tree-partition algorithm, which works for
fixed k. Using the lower bounds of k-CVRP in [27], we obtain an improved
(3+ln 2−Θ(1/

√
k))-approximation algorithm for all three versions of k-MCVRP,

which is better than the current-best ratios for any k > 11. By making a trade-off
between the LP-based tree-partition algorithm and the cycle-partition algorithm
and further using the result in [4], we show that the ratio can be improved to
3 + ln 2 − max{Θ(1/

√
k), 1/9000} for splittable and unit-demand k-MCVRP.

Due to limited space, the proofs of lemmas and theorems marked with “*”
were omitted and they can be found in the full version of this paper [28].

2 Preliminaries

2.1 Definitions

In MCVRP, we let G = (V ∪ D,E) denote the input complete graph, where
vertices in V represent customers and vertices in D represent depots. There is
a non-negative weight function w : E → R≥0 on the edges in E. We often write
w(u, v) to mean the weight of edge uv, instead of w(uv). Note that w(u, v) would
be the same as the distance between u and v. The weight function w is a semi-
metric function, i.e., it is symmetric and satisfies the triangle inequality. For
any weight function w : X → R≥0, we extend it to subsets of X, i.e., we define
w(Y ) =

∑
x∈Y w(x) for Y ⊆ X. There is a demand function d: V → N≥1, where

d(v) is the demand required by v ∈ V . We let Δ =
∑

v∈V minu∈D d(v)w(u, v).
For a component S, we simply use v ∈ S (resp., e ∈ S) to denote a vertex (resp.,
an edge) of S, and let w(S) :=

∑
e∈S w(e) and d(S) :=

∑
v∈S d(v).

A walk in a graph is a succession of edges in the graph, where an edge may
appear more than once. We will use a sequence of vertices to denote a walk. For
example, v1v2v3 . . . vl means a walk with edges v1v2, v2v3, and so on. A path in
a graph is a walk such that no vertex appears more than once in the sequence,
and a cycle is a walk such that only the first and the last vertices are the same.
A cycle containing l edges is called an l-cycle and the length of it is l. A spanning
forest in a graph is a forest that spans all vertices. A constrained spanning forest
in graph G is a spanning forest where each tree contains only one depot.

An itinerary I is a walk that starts and ends at the same depot and does not
pass through any other depot. It is called an empty itinerary and denote it by
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I = ∅ if there are no customer vertices on I, and a non-empty itinerary otherwise.
A non-empty itinerary can be split into several minimal cycles containing only
one depot, and each such cycle is called a tour. The Multidepot Capacitated
Vehicle Routing Problem (k-MCVRP) can be described as follows.

Definition 1 (k-MCVRP). An instance (G = (V ∪D,E), w, d, k) consists of:

– a complete graph G, where V = {v1, . . . , vn} represents the n customers and
D = {u1, . . . , um} represents the m depots,

– a weight function w: (V ∪D)×(V ∪D) → R≥0, which represents the distances,
– a demand function d: V → N≥1, where d(v) is the demand required by cus-

tomer v ∈ V ,
– the capacity k ∈ Z≥1 of vehicles that initially stays at each depot.

A feasible solution is a set of m itineraries, with each having one different depot:

– each tour delivers at most k of the demand to customers on the tour,
– the union of tours over all itineraries meets every customer’s demand.

Specifically, the goal is to find a set of itineraries I = {I1, . . . , Im} where Ii

contains depot ui, minimizing the total weight of the succession of edges in the
walks in I, i.e., w(I) :=

∑
I∈I w(I) =

∑
I∈I

∑
e∈I w(e).

According to the property of the demand, we define three well-known ver-
sions. If each customer’s demand must be delivered in one tour, we call it unsplit-
table k-MCVRP. If a customer’s demand can be split into several tours, we call it
splittable k-MCVRP. If each customer’s demand is a unit, we call it unit-demand
k-MCVRP.

In the following, we use CVRP to denote MCVRP with m = 1, i.e., only one
depot. Unless otherwise specified, we think that k-MCVRP satisfies the fixed-
destination property. Moreover, if it holds the non-fixed-destination property, we
called it non-fixed k-MCVRP.

2.2 Assumptions

Note that in our problem the demand d(v) may be very large since the capacity
k may be arbitrarily larger than n. For the sake of analysis, we make several
assumptions that can be guaranteed by some simple observations or polynomial-
time reductions (see the full version).

Assumption 1. For splittable and unsplittable k-MCVRP, each customer’s
demand is at most k.

Assumption 2. For splittable k-MCVRP with fixed k, each customer’s
demand is a unit.

Assumption 3. For unsplittable, splittable, and unit-demand k-MCVRP,
there exists an optimal solution where each tour delivers an integer amount of
demand to each customer in the tour.
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By Assumption 3, in the following, we may only consider a tour that delivers
an integer amount of demand to each customer in the tour. Moreover, we know
that for unit-demand k-MCVRP, there is an optimal solution consisting of a set
of cycles, which intersect only at the depot.

3 Lower Bounds

To connect approximation algorithms for k-MCVRP with k-CVRP, we consider
non-fixed k-MCVRP. The first reason is that non-fixed k-MCVRP is a relaxation
of k-MCVRP, and then an optimal solution of the former provides a lower bound
for the latter. Let OPT (resp., OPT′) denote the weight of an optimal solution
for k-MCVRP (resp., k-CVRP). We have OPT′ ≤ OPT. The second is that non-
fixed k-MCVRP is equivalent to k-CVRP. The reduction is shown as follows.

Given G = (V ∪ D,E), we obtain a new undirected complete graph H =
(V ∪ {o}, F ) by replacing the m depots in D with a new single depot, denoted
by o. There is a weight function c : F → R≥0 on the edges in F . Moreover, it holds
that c(o, v) = minu∈D w(u, v) and c(v, v′) = min{c(o, v) + c(o, v′), w(v, v′)} for
all v, v′ ∈ V . We can verify that the weight function c is a semi-metric function.
Note that Δ =

∑
v∈V d(v)c(o, v). Clearly, any feasible solution of k-CVRP in H

corresponds to a feasible solution for non-fixed k-MCVRP in G with the same
weight. Note that an edge vv′ in E with w(v, v′) > c(o, v)+c(o, v′) was also called
a “dummy” edge in [18]. Any tour using a dummy edge vv′ can be transformed
into two tours with a smaller weight by replacing vv′ with two edges uv and u′v′

incident to depots such that c(o, v) = w(u, v) and c(o, v′) = w(u′, v′). So, any
feasible solution of non-fixed k-MCVRP in G can also be modified into a feasible
solution for k-CVRP in H with a non-increasing weight.

A Hamiltonian cycle in a graph is a cycle that contains all vertices in the
graph exactly once. Let C∗ be a minimum cost Hamiltonian cycle in graph H.
We mention three lower bounds for k-CVRP, which also works for k-MCVRP.

Lemma 1 ([11]). It holds that OPT ≥ OPT′ ≥ c(C∗).

Lemma 2 ([11]). It holds that OPT ≥ OPT′ ≥ (2/k)Δ.

Let T ∗ denote an optimal spanning tree in graph H. Clearly, its cost is a
lower bound of an optimal Hamiltonian cycle in H. By Lemma 1, we have

Lemma 3. It holds that OPT ≥ OPT′ ≥ c(T ∗).

4 Review of the Previous Algorithms

4.1 The Cycle-Partition Algorithm

The main idea of the cycle-partition algorithm [18] is to construct a solution
for non-fixed k-MCVRP based on the ITP or UITP algorithm for k-CVRP, and
then modify the solution into a solution for k-MCVRP.
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The ITP and UITP Algorithms. For splittable and unit-demand k-CVRP,
given a Hamiltonian cycle C in graph H, the ITP algorithm is to split the cycle
into segments in a good way, with each containing at most k of demand, and for
each segment assign two edges between the new depot o and endpoints of the
segment. The solution has a weight of at most (2/k)Δ+c(C) [2,11]. For unsplit-
table k-CVRP, the UITP algorithm is to use the ITP algorithm with a capacity
of k/2 to obtain a solution for splittable and unit-demand k-CVRP, and then
modify the solution into a feasible solution for unsplittable k-CVRP. Altinkemer
and Gavish proved [1] that the modification does not take any additional cost.

Lemma 4 ([1,2,11]). Given a Hamiltonian cycle C in graph H, for splittable
and unit-demand k-CVRP, the ITP algorithm can use polynomial time to output
a solution of cost at most (2/k)Δ + c(C); for unsplittable k-CVRP, the bound
improves to (4/k)Δ + c(C).

The Cycle-Partition Algorithm. For k-MCVRP, the cycle-partition algo-
rithm uses the ITP or UITP algorithm to obtain a feasible solution for non-fixed
k-MCVRP, and then modify the solution into a feasible solution for k-MCVRP
using some additional cost. Li and Simchi-Levi [18] proved that the additional
cost is exactly the cost of the Hamiltonian cycle used.

Lemma 5 ([18]). Given a Hamiltonian cycle C in graph H, for splittable and
unit-demand k-MCVRP, there is a polynomial-time algorithm to output a solu-
tion of cost at most (2/k)Δ + 2c(C); for unsplittable k-MCVRP, the bound
improves to (4/k)Δ + 2c(C).

Using the 3/2-approximate Hamiltonian cycle [6,21], by Lemmas 1 and 2,
the cycle-partition algorithm achieves a 4-approximation ratio for splittable and
unit-demand k-MCVRP and a 5-approximation ratio for unsplittable k-MCVRP.

4.2 The Tree-Partition Algorithm

The tree-partition algorithm is based on an optimal spanning tree in graph H.
Note that an optimal spanning tree in H corresponds to an optimal constrained
spanning forest in G. The algorithm is to split the corresponding constrained
spanning forest into small components in a good way such that each component
has a demand of at most k, and moreover each that contains no depots in it has
a demand of at least k/2. Note that each component that contains one depot
can be transformed into a tour by doubling all edges in it and then shortcutting.
For each component that contains no depots, the algorithm will add one edge
with minimized weight connecting one depot to it. Then, it can be transformed
into a tour by the same method: doubling and shortcutting.

Lemma 6 ([12]). For all three versions of k-MCVRP, there is a polynomial-
time algorithm to output a solution of cost at most (4/k)Δ + 2c(T ∗).

By Lemmas 2 and 3, the tree-partition algorithm achieves a 4-approximation
ratio for all three versions of k-MCVRP.
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5 An Improvement for Splittable MCVRP

In this section, we first propose a refined tree-partition algorithm based on the
idea in [12]. Our algorithm is simpler due to the previous assumptions. Moreover,
our algorithm has a better approximation ratio for the case that the capacity k is
fixed. Then, based on recent progress in approximating k-CVRP [4], we obtain an
improved (4 − 1/1500)-approximation algorithm for splittable and unit-demand
k-MCVRP.

A Refined Tree-Partition Algorithm. In our algorithm, we first assign a sin-
gle cheapest trivial tour for each v ∈ V with d(v) > �k/2� since each customer’s
demand is at most k by Assumption 1. Let V ′ denote the rest customers. To sat-
isfy customers in V ′, we find an optimal spanning tree T ′∗ in graph H[V ′ ∪{o}].
Note that T ′∗ corresponds to a constrained spanning forest in G[V ′∪D], denoted
by F . Consider a tree Tu ∈ F that is rooted at the depot u ∈ D. Then, we will
generate tours based on splitting Tu, like Hark et al. did in [12]. For each v ∈ Tu,
we denote the sub-tree rooted at v and the children set of v by Tv and Qv, and
let d(Tv) =

∑
v′∈Tv

d(v′).

– If d(Tu) ≤ k, it can be transformed into a tour by doubling and shortcutting.
– Otherwise, we can do the following repeatedly until it satisfies that d(Tu) ≤ k.

We can find a customer v ∈ Tu such that d(Tv) > k and d(Tv′) ≤ k for every
children v′ ∈ Qv. Consider the sub-trees Tv := {Tv′ | v′ ∈ Qv}. We can
greedily partition them into l sets T1, . . . , Tl such that �k/2� < d(Ti) ≤ k for
each i ∈ {2, . . . , l}. For each such set, saying T2, we can combine them into
a component S by adding v with edges joining v and each tree in T2. Note
that S is a sub-tree of Tv. Then, we find an edge eS with minimized weight
connecting one depot to one vertex in S. By doubling eS with the edges in
S and shortcutting (note that we also need to shortcut v), we obtain a tour
satisfying all customers in trees of T2. After handling Ti for each i ∈ {2, . . . , l},
we only have T1. If d(T1) > �k/2�, we can handle it like Ti with i > 1.
Otherwise, we have d(T1) ≤ �k/2�. The remaining tree is denoted by T ′

u.
Note that d(T1) + d(v) ≤ k since d(v) ≤ �k/2�. So, in T ′

u the condition
d(T ′

v) > k and d(T ′
v′) ≤ k for every children v′ ∈ Q′

v will no longer hold which
makes sure that the algorithm will terminate in polynomial time.

The algorithm is shown in Algorithm 1.

Theorem 1 (*). For all three versions of k-MCVRP, the refined tree-partition
algorithm can use polynomial time to output a solution of cost at most 2

�k/2�+1Δ+
2c(T ′∗).

Lemma 7. It holds that c(C∗) ≥ c(T ′∗).

Proof. Let C ′∗ denote an optimal Hamiltonian cycle in graph H[V ′ ∪ {o}]. By
the proof of Lemma 3, we have c(C ′∗) ≥ c(T ′∗). Note that we can obtain a
Hamiltonian cycle in H[V ′ ∪{o}] by shortcutting the optimal Hamiltonian cycle
C∗ in H. By the triangle inequality, we have c(C∗) ≥ c(C ′∗).
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Algorithm 1. A refined tree-partition algorithm for k-MCVRP

Input: Two undirected complete graphs: G = (V ∪ D, E) and H = (V ∪ {o}, F ).
Output: A solution for k-MCVRP.

1: For each customer v ∈ V with d(v) > �k/2�, assign a trivial tour from v to its
nearest depot.

2: Find an optimal spanning tree T ′∗ in graph H[V ′ ∪ {o}].
3: Obtain the constrained spanning forest F in G[V ′ ∪ D] with respect to T ′∗.
4: for every tree Tu ∈ F do � Tu is rooted at the depot u
5: while d(Tu) > k do
6: Find v ∈ Tu such that d(Tv) > k and d(Tv′) ≤ k for each v′ ∈ Qv. � Qv is

the children set of v
7: Greedily partition trees in Tv := {Tv′ | v′ ∈ Qv} into l sets T1, . . . , Tl such

that �k/2� < d(Ti) ≤ k for each i ∈ {2, . . . , l}.
8: Initialize Index := {2, . . . , l}.
9: if d(T1) > �k/2� then
10: Index := Index ∪ {1}.
11: end if
12: for i ∈ Index do
13: Combine trees in Ti into a component S by adding v with edges joining

v and each tree in Ti.
14: Find an edge eS with minimized weight connecting one depot to one

vertex in S.
15: Obtain a tour satisfying all customers in trees of Ti by doubling eS with

the edges in S and shortcutting.
16: Update Tu by removing the component S except for v from Tu.
17: end for
18: end while
19: Obtain a tour satisfying all customers in Tu by doubling and shortcutting.
20: end for

By Theorem 1 and Lemmas 1 and 7, the refined tree-partition algorithm has
an approximation ratio of k

�k/2�+1 + 2 < 4. Next, we consider the improvement
for general k.

The Improvement. Blauth et al. [4] made a significant progress in approximat-
ing k-CVRP. We show that it can be applied to k-MCVRP to obtain an improved
(4−1/1500)-approximation ratio for splittable and unit-demand k-MCVRP. The
main idea is to make a trade-off between the cycle-partition algorithm and the
refined tree-partition algorithm.

Lemma 8 ([4]). If (1 − ε) · OPT′ < (2/k)Δ, there is a function f : R>0 → R>0

with limε→0 f(ε) = 0 and a polynomial-time algorithm to get a Hamiltonian cycle
C in H with c(C) ≤ (1 + f(ε)) · OPT′.

Theorem 2 (*). For splittable and unit-demand k-MCVRP, there is a
polynomial-time (4 − 1/1500)-approximation algorithm.
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Note that if we only use the cycle-partition algorithm with a 3/2-approximate
Hamiltonian cycle, we can merely get a (4 − 1/3000)-approximation algorithm.

6 An Improvement for Unsplittable MCVRP

In this section, we consider unsplittable k-MCVRP. Recently, Friggstad et al. [9]
proposed an improved LP-based approximation algorithm for unsplittable k-
CVRP. We show that it can be used to obtain an LP-based cycle-partition algo-
rithm for unsplittable k-MCVRP with an improved (4−1/50000)-approximation
ratio.

An LP-Based Cycle-Partition Algorithm. Recall that unsplittable k-CVRP
can be reduced to the minimum weight k-set cover problem if k is fixed. The
main idea of the LP-based approximation algorithm in [9] is that fixing a constant
0 < δ < 1 they build an LP (in the form of set cover) only for customers v with
d(v) ≥ δk. Then, the number of feasible tours is nO(1/δ) which is polynomially
bounded. Using the well-known randomized LP-rounding method (see [23]), they
obtain a set of tours that forms a partial solution with a cost of ln 2 ·OPT. Then,
they design tours to satisfy the left customers based on a variant of UITP with
an excepted cost of 1

1−δ · (2/k)Δ + c(C), where C is a given Hamiltonian cycle
in graph H.

Lemma 9 ([9]). Given a Hamiltonian cycle C in graph H, for unsplittable k-
CVRP with any constant δ > 0, there is a polynomial-time algorithm to output
a solution of cost at most (ln 2 + δ) · OPT′ + (2/k)Δ + c(C).

For unsplittable k-MCVRP, we can use the same idea (see the full version).
Fixing a constant 0 < δ < 1, we build an LP (in the form of set cover) only
for customers v with d(v) ≥ δk. A partial solution based on randomized LP-
rounding has a weight of ln 2 · OPT. For left customers, we obtain a solution for
k-CVRP in H with an excepted cost of 1

1−δ · (2/k)Δ + c(C). Since the latter
is based on the idea of the UITP algorithm, we can modify them into a set of
feasible tours for k-MCVRP using an additional cost of c(H) like Lemma 5. So,
we can get the following theorem.

Theorem 3 (*). Given a Hamiltonian cycle C in graph H, for unsplittable k-
MCVRP with any constant δ > 0, the LP-based cycle-partition algorithm can use
polynomial time to output a solution of cost at most (ln 2 + δ) ·OPT+ (2/k)Δ +
2c(C).

The Improvement. By making a trade-off between the LP-based cycle-
partition algorithm and the refined tree-partition algorithm, we can obtain an
improved (4 − 1/50000)-approximation ratio for unsplittable k-MCVRP.

Theorem 4 (*). For unsplittable k-MCVRP, there is a polynomial-time (4 −
1/50000)-approximation algorithm.
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Algorithm 2. An LP-based tree-partition algorithm for k-MCVRP

Input: Two undirected complete graphs: G = (V ∪ D, E) and H = (V ∪ {o}, F ), and
a constant γ ≥ 0.
Output: A solution for k-MCVRP.

1: Solve the LP in mnO(k) time.
2: for C ∈ C do Put the tour C into solution with a probability of min{γ · xC , 1}.
3: end for
4: For each customer contained in multiple tours, we shortcut it for all but one tour.

� Some customers may be contained in more than one tour due to the randomized
rounding.

5: Let ˜V be the customers that are still unsatisfied.
6: Obtain two new complete graphs: ˜G = G[˜V ∪ D] and ˜H = G[˜V ∪ {o}].
7: Call the refined tree-partition algorithm in Algorithm 1.

7 An Improvement for k-MCVRP with Fixed Capacity

In this section, we consider further improvements for the case that the capacity
k is fixed. We propose an LP-based tree-partition algorithm based on the refined
tree-partition algorithm with the LP-rounding method. The algorithm admits
an approximation ratio of 3 + ln 2 − Θ(1/

√
k). Then, by further using the result

in Lemma 8, we also obtain a (3 + ln 2 − 1/9000)-approximation algorithm for
splittable and unit-demand k-MCVRP. Note that the former is better when k is
a fixed constant less than 3 × 108.

An LP-Based Tree-Partition Algorithm. Due to Assumption 3 we can only
consider a tour that delivers an integer amount of demand to each customer
in the tour. Since k is fixed, there are at most mnO(k) feasible tours for k-
MCVRP. Note that for splittable k-MCVRP each customer’s demand is a unit
by Assumption 2. Denote the set of feasible tours by C, and define a variable xC

for each tour C ∈ C. We have the following LP.

minimize
∑

C∈C
w(C) · xC

subject to
∑

C∈C:
v∈C

xC ≥ 1, ∀ v ∈ V,

xC ≥ 0, ∀ C ∈ C.

The LP-based tree-partition algorithm is shown in Algorithm 2.
Consider an optimal solution of k-CVRP in graph H. It consists of a set of

simple cycles. Note that if we delete the longest edge from each cycle, we can
obtain a spanning tree (by shortcutting if necessary since a customer may appear
in more than one tour for the splittable case). Denote this spanning tree by T ∗∗.

Theorem 5 (*). For all three versions of k-MCVRP with any constant γ ≥
0, the LP-based tree-partition algorithm can use polynomial time to output a
solution with an expected cost at most γ · OPT + e−γ · 2

�k/2�+1Δ + 2c(T ∗∗).
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The algorithm can be derandomized efficiently by conditional expecta-
tions [23].

The Analysis. Next, we show that the LP-based tree-partition algorithm
achieves a ratio of 3 + ln 2 − Θ(1/

√
k) for all three versions of k-MCVRP (see

the full version). Note that the ratio Hk − Θ(ln2 k/k) for k-set cover in [10] is
better than ours only for k ≤ 11.

Theorem 6 (*). For all three versions of k-MCVRP, the LP-based tree-
partition algorithm achieves an approximation ratio of max{g(�x0�), g(�x0�)},
where x0 :=

√
4k+5−1

2 and g(x) := 3 + ln( k+1−x
�k/2�+1 ) − 1

x .

A Further Improvement for Splittable k-MCVRP. By making a trade-off
between the cycle-partition algorithm and the LP-based tree-partition algorithm,
we can obtain an improved (3+ ln 2−1/9000)-approximation ratio for splittable
and unit-demand k-MCVRP.

Theorem 7 (*). For splittable and unit-demand k-MCVRP, there is a
polynomial-time (3 + ln 2 − 1/9000)-approximation algorithm.

The result 3 + ln 2 − Θ(1/
√

k) in Theorem 6 is better than 3 + ln 2 − 1/9000
for any k < 3 × 108. Note that for unsplittable k-MCVRP we cannot obtain
further improvements using the same method. The reason is that even using an
optimal Hamiltonian cycle the LP-based cycle-partition only achieves a ratio of
about 3 + ln 2 by Theorem 3. So, there is no improvement compared with the
LP-based tree-partition algorithm.

8 Conclusion

In this paper, we consider approximation algorithms for k-MCVRP. Previously,
only a few results were available in the literature. Based on recent progress in
approximating k-CVRP, we design improved approximation algorithms for k-
MCVRP. When k is general, we improve the approximation ratio to 4 − 1/1500
for splittable and unit-demand k-MCVRP and to 4 − 1/50000 for unsplittable
k-MCVRP; when k is fixed, we improve the approximation ratio to 3 + ln 2 −
max{Θ(1/

√
k), 1/9000} for splittable and unit-demand k-MCVRP and to 3 +

ln 2 − Θ(1/
√

k) for unsplittable k-MCVRP.
We remark that for unsplittable, splittable, and unit-demand k-MCVRP

with fixed 3 ≤ k ≤ 11 the current best approximation ratios are still
Hk −Θ(ln2 k/k) [10]. In the future, one may study how to improve these results.

A more general problem than k-MCVRP is called Multidepot Capacitated
Arc Routing (MCARP), where both vertices and arcs are allowed to require
a demand. For MCARP, the current best-known approximation algorithms on
general metric graphs are still based on the cycle-partition algorithm (see [26]).
Some results in this paper could be applied to MCARP to obtain some similar
improvements.
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Abstract. We determine, up to an additive constant 2, the minimum
depth required to encode asymptotically good error-correcting codes
using a linear number of wires. The inverse-Ackermann-type upper bound
is guided by an encoding circuit construction due to Gál et al. [IEEE
Trans. Inform. Theory 59(10), pp. 6611-6627, 2013] (which the authors
showed asymptotically optimal for constant depths), but applies some
new ideas in the construction and analysis to obtain shallower linear-
size circuits. We also show our codes can obtain any constant rate and
constant relative distance within the Gilbert-Varshamov bounds. The
lower bound, which we credit to Gál et al., since it directly follows their
method (although not explicitly claimed or fully verified in that work), is
obtained by making some constants explicit in a graph-theoretic lemma
of Pudlák, extending it to super-constant depths.

We also study a subclass of MDS codes C : Fn → F
m characterized

by the Hamming-distance relation dist(C(x), C(y)) ≥ m − dist(x, y) + 1
for any distinct x, y ∈ F

n. (For linear codes this is equivalent to the gen-
erator matrix being totally invertible.) We call these superconcentrator-
induced codes, and we show their tight connection with superconcentra-
tors. Specifically, we observe that any linear or nonlinear circuit encoding
a superconcentrator-induced code must be a superconcentrator graph,
and any superconcentrator graph can be converted to a linear circuit,
over a sufficiently large field (exponential in the size of the graph), encod-
ing a superconcentrator-induced code.

Keywords: Error-correcting codes · Circuit complexity ·
Superconcentrator

1 Introduction

Understanding the computational complexity of encoding error-correcting codes
is an important task in theoretical computer science. Complexity measures of
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interest include time, space, and parallelism. Error-correcting codes are indis-
pensable as a tool in computer science. Highly efficient encoding algorithms (or
circuits) are desirable in settings studied by theorists including zero-knowledge
proofs [Gol+21], circuit lower bounds [CT19], data structures for error-correcting
codes [Vio19], pairwise-independent hashing [Ish+08], and secret sharing [DI14].
Besides that, the existence of error-correcting codes with efficient encoding cir-
cuits sheds light on the designing of practical error-correcting codes.

We consider codes with constant rate and constant relative distance, which
are called asymptotically good error-correcting codes or good codes for short. The
complexity of encoding good codes has been studied before. Bazzi and Mitter
[BM05] proved that branching programs with linear time and sublinear space
cannot encode good codes. By using the sensitivity bounds [Bop97], one can
prove that AC0 circuits cannot encode good codes; Lovett and Viola proved that
AC0 circuits cannot sample good codes [LV11]; Beck, Impagliazzo and Lovett
[BIL12] strengthened the result.

Dobrushin, Gelfand and Pinsker [DGP73] proved that there exist linear-
size circuits encoding good codes. Sipser and Spielman [Spi96,SS96] explicitly
constructed good codes that are encodable by bounded fanin circuits of depth
O(log n) and size O(n), and decodable by circuits of size O(n log n). For bounded
fan-in, the depth O(log n) is obviously optimal. Henceforth, unless otherwise
stated, we consider circuits with unbounded fan-in, where the size is measured
by the number of wires instead of gates.

Gál, Hansen, Koucký, Pudlák, and Viola [Gal+13] investigated the circuit
complexity of encoding good codes. Gál et al. constructed circuits recursively
and probabilistically, with clever recursive composition ideas, which resemble
the construction of superconcentrators in [Dol+83]. They also proved size lower
bounds for bounded depth, by showing that any circuit encoding good codes
must satisfy some superconcentrator-like properties; the lower bound follows
from the size bounds for a variant of bounded-depth superconcentrators studied
by Pudlák [Pud94]. Their construction’s wire upper bounds are of form Od(n ·
λd(n)) (in our notation1) and their lower bounds are of form Ωd(n · λd(n)),
matching up to a multiplicative constant cd for constant values d. They also
proved that there exist Od(n)-size O(log λd(n))-depth circuits encoding good
codes. Here λd(n) are slowly growing inverse Ackermann-type functions, e.g.,
λ2(n) = Θ(log n), λ3(n) = Θ(log log n), λ4(n) = Θ(log∗ n).

Druk and Ishai [DI14] proposed a randomized construction of good codes
meeting the Gilbert-Varshamov bound, which can be encoded by linear-size
logarithmic-depth circuits (with bounded fan-in). Their construction is based
on linear-time computable pairwise independent hash functions [Ish+08].

Chen and Tell [CT19] constructed explicit circuits of depth d encoding linear
code with constant relative distance and code rate Ω

(
1

log n

)
using n1+2−Ω(d)

wires, for every d ≥ 4. They used these explicit circuits to prove bootstrapping
results for threshold circuits.
1 Our definition of λd(n) follows Raz and Shpilka [RS03]. It is slightly different from

Gál et al.’s. In [Gal+13], the function λi(n) is actually λ2i(n) in our notation.
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1.1 Background and Results

To encode good error-correcting codes, linear size is obviously required. It is
natural to ask, what is the minimum depth required to encode goods using a
linear number of wires? This question is addressed, but not fully answered, by
the work of Gál et al. [Gal+13].

We show that one can encode error-correcting codes with constant rate and
constant relative distance using O(n) wires, with depth at most α(n), for suffi-
ciently large n. Here, α(n) is a version of the inverse Ackermann function. This
is nearly optimal, by a lower bound of α(n) − 2 that we credit to Gál et al.
[Gal+13] as discussed below. Our new upper bound states:

Theorem 1. (Upper bound) Let r ∈ (0, 1) and δ ∈ (0, 1
2 ) such that r < 1−h(δ).

For sufficiently large n, there exists a linear circuit C : {0, 1}n → {0, 1}� n
r � of

size Or,δ(n) and depth α(n) that encodes an error-correcting code with relative
distance ≥ δ.

Our upper bound in Theorem 1 constructs certain binary codes encodable
by linear-size circuits meeting any constant rate and relative distance within the
Gilbert-Varshamov bound. For unbounded depth d, these circuits are smaller
than the bounds provided by Gál et al., and this efficiency combined with a
careful analysis allows us to achieve linear size in smaller and optimal (to within
additive constant 2) depth. In comparison, Gál et al. constructed binary codes
with rate 1/32 and relative distance 1/8, which are encodable by circuits of the
size Od(n) and depth O(log λd(n)), for any constant d. Their upper bound is
strong, but suboptimal.

In terms of techniques, we follow Gál et al.’s upper-bound constructions and
distill some clarifying concepts, with a few new ingredients. For example, in our
recursive construction, the fanin of the gates on the last layer is bounded by
an absolute constant (which makes the constant in the size bound O(λd(n) · n)
an absolute constant, eliminating the dependence on d compared with Gál et
al.’s); we use a property of the inverse Ackermann function to get rid of an
O(log α(n)) factor in the analysis — this observation also improves the depth
of the superconcentrator constructions [Dol+83]. Finally, by using a disperser
graph at the bottom layer in the circuit and collapsing that layer afterward,
we boost the rate and distance to any constants within the Gilbert-Varshamov
bound. (This kind of rate or distance boosting technique is widely used, for
instance, see [DI14], but it is not considered in [Gal+13]. Based on pairwise
independent hash functions, Druk and Ishai [DI14] constructed codes meeting
the Gilbert-Varshamov bound; in comparison, their circuits have bounded fanin
and are of linear size and depth O(log n).) Our framework is also inspired by
the superconcentrator construction by Dolev, Dwork, Pippenger, and Wigderson
[Dol+83]. See the beginning of Section 3 for a detailed discussion.

Turning to the lower bounds: we credit the lower bound in the result below to
Gál et al. (although it was not explicitly claimed or fully verified in that work),
since it is directly obtainable by their size lower-bound method and the tool of
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Pudlák [Pud94] on which it relies, when that tool is straightforwardly extended
to super-constant depth.2

Theorem 2. (Lower bound) [Gal+13] Let ρ ∈ (0, 1) and δ ∈ (0, 1
2 ), and let

constant c > 0. Let Cn : {0, 1}n → {0, 1}�n/ρ� be a family of circuits of size at
most cn that encode error-correcting codes with relative distance ≥ δ. Arbitrary
Boolean-function gates of unrestricted fanin are allowed in Cn. If n is sufficiently
large, i.e., n ≥ N(r, δ, c), the depth of the circuit Cn is at least α(n) − 2.

The proof for Theorem 2 closely follows [Gal+13] and is an application of a
graph-theoretic argument in the spirit of [Val77,Dol+83,Pud94,RS03]. In detail,
we use Pudlák’s size lower bounds [Pud94] on “densely regular” graphs, and rely
on the connection between good codes and densely regular graphs by Gál et al.
[Gal+13]. Pudlák’s bound was originally proved for bounded depth; in order to
apply it to unbounded depth, we explicitly determine the hidden constants by
directly following Pudlák’s work, and verify that their decay at higher unbounded
depths is moderate enough to allow the lower-bound method to give superlinear
bounds up to depth α(n) − 3.

Stepping back to a higher-level view, the strategy of the graph-theoretic
lower-bound arguments in the cited and related works is as follows:

– Prove any circuit computing the target function must satisfy some
superconcentrator-like connection properties;

– Prove any graph satisfying the above connection properties must have many
edges;

– Therefore, the circuit must have many wires.

Valiant [Val75,Val76,Val77] first articulated this kind of argument, and
proposed the definition of superconcentrators. Somewhat surprisingly, Valiant
showed that linear-size superconcentrators exist. As a result, one cannot prove
superlinear size bounds using this argument (when the depth is unbounded).
Dolev, Dwork, Pippenger, and Wigderson [Dol+83] proved Ω(λd(n) · n) lower
bounds for bounded-depth (weak) superconcentrators, which implies circuit
lower bounds for functions satisfying weak-superconcentrator properties. Pudlák
[Pud94] generalized Dolev et al.’s lower bounds by proposing the definition of
densely regular graphs, and proved lower bounds for bounded-depth densely reg-
ular graphs, which implies circuit lower bounds for functions satisfying densely
regular property, including shifters, parity shifters, and Vandermonde matri-
ces. Raz and Shpilka [RS03] strengthened the aforementioned superconcentrator
lower bounds by proving a powerful graph-theoretic lemma, and applied it to
2 The Ω(·) notation in the circuit size lower bound of Gál et al., for example, Theorem

1 in [Gal+13], involves an implicit constant which decays with the depth d, as can
be suitable for constant depths; similarly for the tool of Pudlák, Theorem 3.(ii) in
[Pud94], on which it relies. For general super-constant depths, more explicit work is
required to verify the decay is not too rapid. In fact, even after our work, the precise
asymptotic complexity of encoding good codes remains an open question for d in the
range [ω(1), α(n) - 3].
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prove superlinear lower bounds for matrix multiplication. (This powerful lemma
can reprove all the above lower bounds.) Gál et al. [Gal+13] proved that any
circuits encoding good error-correcting codes must be densely regular. They
combined this with Pudlák’s lower bound on densely regular graphs [Pud94] to
obtain Ω(λd(n) · n) size bounds for depth-d circuits encoding good codes.

All the circuit lower bounds mentioned above apply even to the powerful
model of arbitrary-gate circuits, that is,
– each gate has unbounded fanin,
– a gate with fanin s can compute any function from {0, 1}s to {0, 1},
– circuit size is measured as the number of wires.

In this “arbitrary-gates” model, any function from {0, 1}n to {0, 1}m can be
computed by a circuit of size mn.

It is known that any circuits encoding good codes must satisfy some
superconcentrator-like connection properties [Spi96], [Gal+13]. Our other result
is a theorem in the reverse direction in the algebraic setting over large
finite fields. Motivated by this connection, we study superconcentrator-induced
codes (Definition 6), a subclass of maximum distance separable (MDS) codes
[LX04,GRS12], and observe its tight connection with superconcentrators.

Theorem 3. (Informal) Given any (n,m)-superconcentrator, one can convert
it to a linear arithmetic circuit encoding a code C : Fn → F

m such that

dist(C(x), C(y)) ≥ m − dist(x, y) + 1 ∀x �= y ∈ F
n (1)

by replacing each vertex with an addition gate and assigning the coefficient
for each edge uniformly at random over a sufficiently large finite field (where
d2Ω(n+m) suffices, and d is the depth of the superconcentrator).

We also observe that any arithmetic circuit, linear or nonlinear, encoding a
code C : Fn → F

m satisfying (1), viewed as a graph, must be a superconcentra-
tor.

The proof of Theorem 3 relates the connectivity properties with the rank
of a matrix, and uses Schwartz-Zippel lemma to estimate the rank of certain
submatrices; these techniques are widely used, for example, in [CKL13,Lov18].
In addition, the idea of assigning uniform random coefficients (in a finite field)
to edges, to form linear circuits, has appeared before in e.g. network coding
[Ahl+00,LYC03]. The question we study is akin to a higher-depth version of the
GM-MDS type questions about matrices with restricted support [Lov18].

Observe that any code satisfying the distance inequality (1) is a good code.
The existence of depth-d size-O(λd(n) · n) superconcentrators [Dol+83,AP94],
for any d ≥ 3, immediately implies the existence of depth-d (linear) arithmetic
circuits of size O(λd(n) · n) encoding good codes over large finite field.

In a subsequent work [Li23], inspired by this connection and using sim-
ilar techniques, the second author proved that any (n,m)-superconcentrator
can compute the shares of an (n,m) linear threshold secret sharing scheme.
In other words, any (n,m)-superconcentrator-induced code induces an (n,m)
linear threshold secret sharing scheme. Results in [Li23] can be viewed as an
application of superconcentrator-induced codes.
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2 Inverse Ackermann Functions

Definition 1. (Definition 2.3 in [RS03]) For a function f , define f (i) to be the
composition of f with itself i times. For a function f : N → N such that f(n) < n
for all n > 0, define

f∗(n) := min{i : f (i)(n) ≤ 1}.

Let

λ1(n) := �√n
 ,

λ2(n) := �log n� ,

λd(n) := λ∗
d−2(n) .

As d gets larger, λd(n) becomes extremely slowly growing, for example,
λ3(n) = Θ(log log n), λ4(n) = Θ(log∗ n), λ5(n) = Θ(log∗ n), etc.

We define the inverse Ackermann function as follows.

Definition 2 (Inverse Ackermann Function). For any positive integer n,
let

α(n) := min{even d : λd(n) ≤ 6}.

There are different variants of the inverse Ackermann function; they differ
by at most a multiplicative constant factor.

We need the definition of the Ackermann function.

Definition 3. (Ackermann function [Tar75,Dol+83]) Define
⎧
⎪⎨
⎪⎩

A(0, j) = 2j, for j ≥ 1
A(i, 1) = 2, for i ≥ 1
A(i, j) = A(i − 1, A(i, j − 1)), for i ≥ 1, j ≥ 2.

(2)

For notational convenience, we often write A(i, j) as Ai(j).

3 Upper Bound

In this section, we prove Theorem 1. That is, we non-explicitly construct, for any
rate r ∈ (0, 1) and relative distance δ ∈ (0, 1

2 ) satisfying r < 1 − h(δ), circuits
encoding error-correcting codes C : {0, 1}n → {0, 1}�n/r� with relative distance
δ, where the circuit is of size Or,δ(n) and depth α(n).

First, we construct circuits encoding codes C : {0, 1}n → {0, 1}32n with
relative distance 1

8 , where the constants 32 and 1
8 are picked for convenience.

Then, we use a simple trick to adjust the rate and boost the distance to achieve
the Gilbert-Varshamov bound (without increasing the depth of the circuit).

Note that random linear codes achieve the Gilbert-Varshamov bound. How-
ever, circuits encoding random linear codes have size O(n2). In contrast, our
circuits have size O(n). Our circuits consist of XOR gates only; we call these
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linear circuits hereafter. We point out that the construction generalizes to any
finite field, where XOR gates are replaced by addition gates (over that finite
field).

Let Sd(n) denote the minimum size of a depth-d linear circuit encoding a
code C : {0, 1}n → {0, 1}32n with distance 4n.

Our construction heavily relies our Gál et al. [Gal+13], who proved that
Sd(n) = Od(λd(n) · n), and proved that, for any fixed d, when the depth
d = O(log(λd(n))), Sd(n) = Od(n). Our main technical contribution is to prove
Sd(n) = O(λd(n) · n), where the hidden constant is an absolute constant. As
a result, it implies that, Sα(n) = O(n), which is almost optimal. In terms of
techniques,

• We distill a few clarifying concepts including partial good codes, composition
lemmas, etc., which are implicit in [Gal+13]. Our framework of analysis is
also inspired by [Dol+83].

• Step by step, we control the fanin of the output gates in the recursive con-
struction. We make sure this property, bounded output fan-in, is preserved
after composing a constant number of partial good codes and after boost-
ing the rate. This is critical for the improvement of the upper bound, from
Od(λd(n) · n) to O(λd(n) · n), eliminating a dependence growing with d.

• Using a property of the inverse Ackermann function, we improve the anal-
ysis to get rid of an additive O(log α(n)) factor on the depth (compared
with Corollary 32 in [Gal+13], or Corollary 1.1 in [Dol+83]). Specifically, in
[Dol+83], a version of the inverse Ackermann function is (roughly) defined as
the minimum d such that λd(n) ≤ d. We observe that λd+2(n) = O(1), which
implies that the depth-(d + 2) circuit has size O(λd+2(n) · n) = O(n). This
observation improves the depth from α(n) + O(log α(n)) to α(n).

• The above observation can also improve the depth bound on the linear-size
superconcentrators in [Dol+83] from α(n) + O(log α(n)) to α(n) (without
change in the construction).

Definition 4. (Partial good code) C : {0, 1}n → {0, 1}32n is called (n, r, s)-
partial good code if for all x ∈ {0, 1}n with wt(x) ∈ [r, s], we have wt(C(x)) ≥
4n.

Denote by Sd(n, r, s) the minimum size of a linear circuit that encodes an
(n, r, s)-partial good code, where r, s are real numbers.

The following theorem is our main construction, whose proof and the auxil-
iary lemmas are in the full version of our paper.

Theorem 4. For any 1 ≤ r ≤ n, and for any k ≥ 3, we have

S2k

(
n,

n

A(k − 1, r)
,
n

r

)
= O(n). (3)

Moreover, the output gates of the linear circuits encoding
(
n, n

A(k−1,r) ,
n
r

)
-partial

good code have bounded fanin.



Minimum Circuit Depth for Encoding Good Error-Correcting Codes 399

For any 1 ≤ r ≤ n and for any k ≥ 2,

S2k

(
n,

n

r
, n

)
= O(λ2k(r) · n). (4)

By taking r = n in Theorem 4, we immediately have

Corollary 1. For any n,
Sα(n)(n) = O(n).

We have constructed a linear circuit of size O(n) and depth α(n) encoding a
code C : {0, 1}n → {0, 1}32n with relative distance 1

8 . By putting a rate booster
at the bottom, we can achieve any constant rate and relative distance within the
Gilbert-Varshamov bound. The proof of Theorem 1 is in the full version of our
paper.

4 Depth Lower Bound

Definition 5. (Densely regular graph [Pud94]) Let G be a directed acyclic graph
with n inputs and n outputs. Let 0 < ε, δ and 0 ≤ μ ≤ 1. We say G is (ε, δ, μ)-
densely regular if for every k ∈ [μn, n], there are probability distributions X and
Y on k-element subsets of inputs and outputs respectively, such that for every
i ∈ [n],

Pr
X∈X

[i ∈ X] ≤ k

δn
, Pr

Y ∈Y
[i ∈ Y ] ≤ k

δn
,

and the expected number of vertex-disjoint paths from X to Y is at least εk for
randomly chosen X ∈ X and Y ∈ Y.

Denote by D(n, d, ε, δ, η) the minimal size of a (ε, δ, μ)-densely regular layered
directed acyclic graph with n inputs and n outputs and depth d.

Theorem 5. (Theorem 3 in [Pud94]) Let ε, δ > 0. For every d ≥ 3, and every
r ≤ n,

D(n, d, ε, δ,
1
r
) = Ωd,ε,δ(nλd(r)).

To apply the above lower bounds when d is not fixed, we need to figure out
the hidden constant that depends on d, ε, δ.

Theorem 6. Let ε, δ > 0. For every d ≥ 3, and every r ≤ n,

D(n, d, ε, δ,
1
r
) ≥ Ω(2−d/2εδ2λd(r)n).

The constant in Ω(2−d/2εδ2λd(r)n) is an absolute constant. The proof of
Theorem 6 is almost the same as Theorem 5. Due to the space constraints, the
proof is deferred to the full version.
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Corollary 2. (Corollary 15 in [Gal+13]) Let 0 < ρ, δ < 1 be constants and
C be a circuit encoding an error-correcting code {0, 1}ρn → {0, 1}n with relative
distance at least δ. If we extend the underlying graph with (1−ρ)n dummy inputs,
then its underlying graph is (ρδ, ρ, 1

n )-densely regular.

The proof of Theorem 2 readily follows from Theorem 6 and Corollary 2; see
the full version.

We would like to point out that, alternatively, one can use a powerful lemma
by Raz and Shipilka [RS03], to prove the depth lower bound (i.e., Theorem 6).

5 Superconcentrator-induced Codes

It is known that circuits for encoding error-correcting codes must satisfy some
superconcentrator-like connectivity properties. For example, Speilman [Spi96]
observed that any circuits encoding codes from {0, 1}n to {0, 1}m with distance
δm must have δn vertex-disjoint paths connecting any chosen δn inputs to any
set of (1 − δ)m outputs; using matroid theory, Gál et al. [Gal+13] proved that,
for any k ≤ n, for any k-element subset of inputs X, taking a random k-element
subset of outputs Y , the expected number of vertex-disjoint paths from X to Y
is at least δk.

We observe a connection in the reverse direction by showing that any super-
concentrator graph, converted to an arithmetic circuit over a sufficiently large
field can encode a good code. (Recall that a directed acyclic graph G = (V,E)
with m inputs and n outputs is an (m,n)-superconcentrator, if for any equal-size
inputs X ⊆ [m] and outputs Y ⊆ [n], the number of vertex-disjoint paths from
X to Y is |X|.) Furthermore, the code C : Fn → F

m (encoded by the above
circuits) satisfies a distance criterion, stronger than MDS (maximum distance
separable) codes, captured by the following definition.

Definition 6. (Superconcentrator-induced code) C : F
n → F

m is a
superconcentrator-induced code if

dist(C(x), C(y)) ≥ m − dist(x, y) + 1

for any distinct x, y ∈ F
m.

For a linear code C : Fn → F
m, it is well known that C is an MDS code, i.e.,

C satisfies the Singleton bound

dist(C(x), C(y)) ≥ m − n + 1 ∀x �= y ∈ F
n,

if and only if any n columns of its generator matrix are linearly independent.
Similarly, we show that a linear code is a superconcentrator-induced code if
and only if every square submatrix of its generator matrix is nonsingular. (Such
matrices are sometimes called totally invertible matrices.) See the full version for
a proof.

We justify the naming “superconcentrator-induced codes” by proving the
following two lemmas. The proofs are in the full version of our paper.
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Lemma 1. Any unrestricted arithmetic circuit encoding a superconcentrator-
induced code must be a superconcentrator.

Lemma 2. Let G by an (n,m)-superconcentrator. Let CG : F
n → F

m be an
arithmetic circuit by replacing each vertex in G with an addition gate, and choos-
ing the coefficient on each edge uniformly and random (over the finite field F).
With probability at least 1 − ∑n

i=1

(
n
i

)(
m
i

)
di
|F| , CG encodes a superconcentrator-

induced code.

6 Conclusion

In this work, we determine, up to an additive constant 2, the minimum depth
required to encoding asymptotically good error-correcting codes, i.e., codes with
constant rate and constant relative distance, using a linear number of wires. The
minimum depth is between α(n) − 2 and α(n), where α(n) is a version of the
inverse Ackermann function. The upper bound is met by certain binary codes
we construct (building on Gál et al. [Gal+13] with a few new ingredients) for
any constant rate and constant relative distance within the Gilbert-Varshamov
bounds. The lower bound applies to any constant rate and constant relative
distance. We credit the lower bound to Gál et al. [Gal+13], although not explic-
itly claimed or fully verified in [Gal+13]; because our contribution is a routine
checking of detail.

Valiant articulated graph-theoretic arguments for proving circuit lower
bounds [Val75,Val76,Val77]. Since then, there have been fruitful results along
this line. We show a result in the reverse direction, that is, we prove that any
superconcentrator (after being converted to an arithmetic circuit) can encode a
good code over a sufficiently large field (exponential in the size of the supercon-
centrator graph).
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Abstract. Participatory budgeting (PB) is a democratic process that
allows voters to directly participate in the decision-making process
regarding budget spending. The process typically involves presenting vot-
ers with a range of proposed projects, and the goal is to select a subset
of projects that will be funded. We explore the inclusion of donations in
approval-based PB. By allowing voters to pledge donations to projects,
the total available budget can increase, however, the concern arises that
wealthier donors may wield disproportionate influence. Addressing this,
we consider three broad classes of aggregation rules and examine whether
they satisfy crucial desideratum in PB with donations.

Keywords: participatory budgeting · donation · aggregation rule

1 Introduction

Participatory budgeting (PB) is a democratic process that allows voters (or
citizens, agents) to have a direct say in how public funds are allocated and spent
within their communities [3,8,19]. It is a form of participatory democracy that
involves community members in decision-making regarding the distribution of
public resources. In a typical setting, the voters are presented a range of proposed
projects, such as constructing a library or a park, and are asked to vote on these
options. The goal is to select a subset of projects, known as a bundle, that will
be funded. To ensure feasibility, the PB process considers the available budget
as a constraint, and the total cost of the selected bundle should not exceed the
budget.

Recently, Chen et al. [7] proposed an additional element for the PB pro-
cess: the inclusion of donations. In this model, voters have the option to pledge
financial contributions to the projects they support. If a project is selected, the
donations pledged towards it are collected, and the remaining cost is covered by
the public budget. This approach allows projects to be funded with a reduced
impact on the public budget.

Incorporating donations into PB referenda offers several advantages. With an
increased total available budget, it becomes possible to achieve a higher overall
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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satisfaction by funding more projects. Additionally, voters who have a strong
preference for a particular project can support it financially, thereby increasing
its chances of being funded. However, allowing donations introduces a significant
risk. Wealthier voters may be able to contribute more money, granting them a
potentially disproportionate influence over the PB process. This raises concerns
about fairness and equity. Thus, in the paper, the main goal is to explore whether
it is possible to include donations in PB while mitigating this risk and still
reaping the advantages mentioned earlier.

We consider approval preferences of agents in this paper, while Chen et al.
[7] studied general preferences. In approval-based PB, voters specify subsets of
the projects which they approve of, and the agents can only make donations to
those projects they approve of.

We study three classes of normal PB aggregations rules (namely, T ,G,P) to
tackle donations, by reducing the cost of a project by the amount of donations
pledged to the project. T rules refer to global optimization, and select a feasible
bundle with maximum score in total. G rules refer to greedy rules, which adds a
project with the maximum marginal score in each step, until up to the budget.
P rules refer to proportional greedy rules, which is similar to G except that it
adds a project with the maximum marginal density (the score divided by cost).
In addition, we consider two classes of aggregations rules proposed by Chen
et al. [7] for the setting with donations, namely, Sequential-R and Pareto-R,
where R can be any normal rule T ,G or P. The first step of both approaches
is to use a normal rule R to obtain a bundle without taking any donations into
consideration. Then, Sequential-R uses the budget saved in the first round due
to the donations and runs R in a second round, and so on. Pareto-R selects a
bundle with maximum social welfare among the bundles that Pareto-dominate
the one selected in the first step, taking donations into account.

Our Results. In this paper, following Chen et al. [7], we address the concern
that wealthier voters may have additional power to influence the outcome, and
consider four desiderata as crucial for aggregation rules in PB with donations:
donation-no-harm (D1), donation-project-monotonicity (D2), donation-welfare-
monotonicity (D3) and donation-voter-monotonicity (D4). D1 means that no
voter may become less satisfied with the outcome than in a process without
donations. D2 means that increasing the donations to a winning project will not
make it lose. D3 means that increasing the donations to a project will not hurt
the social welfare. D4 means that a voter will not be worse off if she donates
money for a project than if she donates no money for that project.

In our axiomatic analysis, we find that in the generalized approach, D1 is not
satisfied under any of the three rules T , G and P, but is always satisfied under
Sequential and Pareto rules. D2 is always satisfied for all rules we consider. D3 is
satisfied by T rules, Pareto-T rules and Pareto-G rules. Regarding D4, whether
these rules satisfy it depends on the utility functions of voters and the scoring
functions. We defer a summary of results to Tables 7, 8 and 9 in the last section
of this work, because some necessary notations will be introduced later.
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We note that since Chen et al. [7] study a more general preferences than
ours, their positive results straightforwardly apply to our setting. (For example,
if a rule R is proven to satisfy property D2 in [7], then it also satisfies D2 in our
setting. ) But their negative results (e.g., a rule does not satisfy some property)
may not hold for our setting. Moreover, we study a new class of rules P that is
not considered in [7].

Organization. Section 2 presents the preliminaries. Section 3 considers the three
classes of PB rules T ,G,P. Sections 4 and 5 consider the sequential rules and
Pareto rules, respectively.

Related Works. Participatory budgeting has garnered significant attention
within the realm of computational social choice. It is one of the most successful
democratic innovations in recent years [21]. Following its initial implementation
in Porto Alegre, Brazil, in 1989, PB has become a widely adopted practice around
the world [8,9]. Researchers have explored various approaches in participatory
budgeting, including ordinal-based budgeting methods where voters rank items
[1,14,20], utility-based budgeting methods where voters assign numerical utilities
to items [4,11], and approval-based budgeting methods where voters approve a
set of items [2,13], considered in this paper. Other notable works in this area
include [5,6,10,12,15–18].

Very recently, Rey and Maly [19] presented a comprehensive overview of
the state of the research on PB, including both a general overview of the main
research questions that are being investigated, and formal and unified definitions
of the most important technical concepts from the literature.

The most related work is by Chen et al. [7], who initialized the study of PB
with donations, where citizens may provide additional money to projects they
want to see funded. They proposed two budgeting methods (Sequential-R and
Pareto-R) in the donation setting under diversity constraints and analyze their
axiomatic properties. They further investigated the computational complexity
of determining the outcome of a PB process with donations and of finding a
citizen’s optimal donation strategy.

2 Preliminaries

An instance or a budgeting scenario of PB (without donations) is a tuple E =
(A, V, c,B), where A = {p1, p2, . . . , pm} is a set of m projects, V = {1, 2, . . . , n}
is a set of voters/agents, c : A → R is a cost function so that the cost of a project
p ∈ A is c(p), and B ∈ R is the budget limit. Each voter i ∈ V has a dichotomous
preference over the projects, i.e., i specifies an approval set Ai ⊆ A that contains
those projects she approves. If pj ∈ Ai, then we say voter i has a satisfaction
sati(j) = 1, otherwise sati(j) = 0. Given an instance E, a solution is a bundle
of projects S ⊆ A satisfying the budget constraint c(S) :=

∑
pj∈S c(pj) ≤ B.

Given a solution S, we say that a project p is a winner or is funded if p ∈ S. An
aggregation rule (or a rule, for short) is a function R that maps an instance E
to a feasible bundle R(E) ⊆ A.
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In PB with donations, each voter i ∈ V may additionally have a donation
bij to each project pj ∈ A, which indicates how much money she is willing to
donate if project pj is selected. The voter is only willing to donate those projects
she approves, i.e., bij > 0 only if pj ⊆ Ai. Denote the donation vector of voter i
by bi = (bi1, . . . , bim), and b = (bi)i∈V . Such donations can decrease the cost of
selected projects. Hence, the budget constraint is relaxed to

∑

pj∈S

max{0, c(pj) −
∑

i∈V

bij} ≤ B.

We define two utility functions μ, which lift the approvals of voters to utilities
over every bundle S ⊆ A. (1) μ+

i (S) := |Ai∩S| is the number of winners approved
by voter i. (2) μmax

i (S) = 0 if S ∩ Ai = ∅, and μmax
i (S) = 1 otherwise. Then, a

scoring function score computes a number indicating the overall utilities of the
voters towards S. We consider two types of scoring functions: the sum scoring
functions and the min scoring functions. Precisely, for each � ∈ {max,+}, define

score�
Σ(S) =

∑

i∈V

μ�
i (S), score�

min(S) = min
i∈V

μ�
i (S).

When two bundles S and S′ have the same score value, then we compare
their utility vectors lexicographically. We look at 12 rules based on global opti-
mization, greedy, and proportional greedy, respectively. Let � ∈ {max,+} and
� ∈ {Σ,min}.

– Global optimization. Rule R�
� selects a feasible bundle S with maximum

score�
�(S). Define T := {T +

Σ , T +
min, T max

Σ , T max
min }.

– Greedy. Rule G�
� iteratively adds a feasible project p to the winning bundle

C ′ that maximizes the marginal gain score�
�(C

′ ∪ {p}) at each step. Define
G := {G+

Σ ,G+
min,Gmax

Σ ,Gmax
min }

– Proportional greedy. Rule P �
� iteratively adds a feasible project pj to the

winning bundle C ′ that maximizes the marginal density score�
�(C

′∪{pj})
max{0,c(pj)−

∑
i∈V bij}

at each step. Define P := {P+
Σ ,P+

min,Pmax
Σ ,Pmax

min }.

These rules can simply handle the setting with donations, in a way that allowing
donation is equivalent to reducing the cost of the respective project.

Axioms. We consider four axioms that are crucial properties for rules in PB
with donations [7]. Let E = (A, V, c,B,b) be an instance with donations, and
E0 = (A, V, c,B,0) be the instance derived from E where all donations are zero.

Definition 1 (Donation-no-harm, D1). An aggregation rule R is donation-
no-harm if for each PB instance E and each voter i ∈ V it holds that μi(R(E)) ≥
μi(R(E0)).

Definition 2 (Donation-project-monotonicity, D2). An aggregation rule
R is donation-project-monotone if for each PB instance E, each voter i ∈ V
and each donation b′

i with bij < b′
ij and bik = b′

ik ∀k �= j, it holds that if
j ∈ R(E) then j ∈ R(E − bi + b′

i), where E − bi + b′
i is the instance that

replaces voter i’s donation vector bi by b′
i in the instance E.
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Definition 3 (Donation-welfare-monotonicity, D3). An aggregation rule
R is donation-welfare-monotone if for each PB instance E, each voter i ∈ V and
each donation b′

i with bij < b′
ij and bik = b′

ik ∀k �= j, it holds that score(R(E)) ≤
score(R(E − bi + b′

i)).

Definition 4 (Donation-voter-monotonicity, D4). An aggregation rule R
is donation-voter-monotonicity if for each PB instance E, each voter i ∈ V and
each donation b′

i with b′
ij = 0 and bik = b′

ik ∀k �= j, it holds that μi(R(E)) ≥
μi(R(E − bi + b′

i)).

3 Normal PB Rules

First, we look at the three classes of normal rules T ,G,P, and examine whether
they satisfy the four desiderata.

Proposition 1. All rules in T , G and P do not satisfy D1.

Proof. Recall that D1 means that no voter will receive a lower utility by allowing
donations than that without donations. We can always construct the following
instance. There are three projects {p1, p2, p3}, where the cost of p1 exceeds the
total budget, and the sum of the costs of p2 and p3 is below budget. When
donation is not allowed, the winning bundle can only be {p2, p3}. If the score
of p1 is greater than {p2, p3}, and the cost of p1 reduced by the donations is
equal to the budget, then p1 will be the unique winning project after donations.
Suppose that there is a voter who approves p2 and p3 but not p1. In this case,
the satisfaction score of this voter will decrease by allowing donations.

Precisely, for every rules R ∈ {T +
Σ ,G+

Σ ,P+
Σ}, consider an instance E with

three projects {p1, p2, p3} and 10 voters. The budget is B = 5, and the project
cost is c(p1) = 7, c(p2) = 2 and c(p3) = 3, respectively. Voter 1 approves
A1 = {p2, p3}, and other 9 voters approve {p1}. Voter 2 has a donation b22 = 2
to project p1. The rule R without donations will return {p2, p3}, and the utility
of voter 1 is 2. However, R with donations will return {p1}, and the utility of
voter 1 decreases to 0. It indicates that donation harms voter 1, and thus R does
not satisfy D1. For those rules not in {T +

Σ ,G+
Σ ,P+

Σ}, we provide counterexamples
in Appendix. �

Proposition 2. All rules in T , G and P satisfy D2.

Proof. Recall that D2 means that increasing the donations to a winning project
will not make it lose. By [7], T and G satisfies D2 even for general preferences.
It remains to consider P rules.

Based on the definition of the proportional greedy rule, it selects a project
with the largest marginal density at each time, which is defined as the marginal
score divided by its cost deducted by the donations. Consider any winning project
that is selected in time t. When increasing the donation to it, the marginal
density increases, implying that this project would either be still selected in
time t, or be selected even earlier. Therefore, the proportional greedy rules can
always satisfy D2. �
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Proposition 3. All T rules satisfy D3, and G rules and P rules do not satisfy
D3.

Proof. Recall that D3 can be satisfied if increasing the donation to a project
would not hurt the social welfare. By [7], T rules satisfy D3 even for general
preferences, and thus we only need to consider G and P.

For G and P rules, we can always construct an instance, where the winning
bundle without donations is {p1, p2}. With donations, p3’s cost deducted by
donations is slightly less than the budget and no other project fits, while its
original cost exceeds the budget. As long as the marginal score (or marginal
density) derived by p3 is greater than p1 and p2, then p3 would be selected as
the unique winner. However, it may be the case that the social welfare of p3 is
less than {p1, p2}, and thus D3 is not satisfied.

For example, for rules G+
Σ and P+

Σ , consider an instance with three projects
p1, p2 and p3. The costs are c(p1) = 2.5, c(p2) = 2.5 and c(p3) = 6, and the
budget is B = 5. Voter 1 approves {p1, p2, p3}, voter 2 approves {p1, p2, p3}
with a donation b23 = 3 to p3, and voter 3 approves {p3} only. The rule R
without donations will return {p1, p2}, and the social welfare is 4. However, G+

Σ

with donations will return {p3} only, and the social welfare decreases to 3. It
indicates that increasing the donation to project p3 harms the social welfare,
and thus R does not satisfy D3. For other rules, counterexamples can be found
in Appendix. �

Proposition 4. For T , G and P rules, the rules w.r.t. utility function umax
i

satisfy D4, and the rules w.r.t. u+
i do not satisfy D4.

Proof. Recall that D4 means that a voter will not be worse off if she donates
money for a project than if she donates no money for that project.

For utility function umax
i , suppose voter i’s utility is 1 when she donates no

money to project p which she approves, implying that there exists a winning
project p′ approved by i. If voter i denotes some money to p, then either p′ is
still a winner, or p becomes a winner. In both cases, the utility of voter i is 1,
and thus she cannot be worse off by donating money to p. Thus, the rules w.r.t.
utility function umax

i satisfy D4.
For the rules w.r.t. utility function u+

i , using the same analysis in the proof of
Proposition 1, we can show that it does not satisfy the axiom D4. For example,
consider an instance with three projects {p1, p2, p3} and a budget of B = 5. The
costs are c(p1) = 6, c(p2) = 2.5 and c(p3) = 2.5. Voter 1 approves {p1}, voter 2
approves {p1, p2, p3} with a donation b21 = 3 to p1, and voter 3 approves {p1}. If
voter 2 does not donate money to project p1, then the winning bundle is {p2, p3}
and her utility is 2. However, if voter 2 donates b21 = 3 to p1, the winning bundle
becomes {p1}, and her utility decreases to 1. It indicates that the donation to
p1 makes voter 2 less satisfied than not donating to p1, and thus the rules do
not satisfy D4. �
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4 Sequential Rules

In this section, we consider the Sequential rules. For a normal rule R ∈ T ∪G∪P,
Sequential-R, or simply S-R, is defined as follows [7]. Given instance E, it first
applies R on E0 (the instance without donations) to find out an allocation A0.
If afterwards some budget is left due to donations (that is, all the donations
of the funded projects will be collected and included in the remaining budget),
then R is applied again with the remaining budget but still without donations;
repeat this step until no more project can be added. In the last step, R is applied
directly with donations, thus guaranteeing an exhaustive bundle.

Next, we examined whether S-R rules satisfy the four desiderata. By [7],
for any normal rule R ∈ T ∪ G, the S-R rules satisfy D1 and D2 even for
general utility-based setting. For the S-P rules, it is easy to see that in sequential
selections rules, the projects selected in the first round (without any donations)
will not be removed in the later rounds, and thus the winner bundle by allowing
donations contains the winner bundle without donations. implying that D1 is
satisfied. Moreover, by the definition of proportional greedy rules, a winning
project remains a winner if some voter increases the donation to it, and thus D2
is also satisfied.

We only need to focus on desiderata D3 and D4.

Table 1. Both S-T +
Σ and S-G+

Σ do not satisfy D3 or D4.

c(·) sat1 sat2 sat3 sat4 b1 b3

p1 5 1 1 1 0 0 → 1 3

p2 4 0 1 1 1 0 0

p3 3 1 0 1 0 0 3

p4 3 1 1 0 0 0 3

Proposition 5. Rule S-T +
Σ and S-G+

Σ do not satisfy D3, D4.

Proof. Consider the instance in Table 1 with budget B = 5. When voter 1
donates b11 = 0 to project p1, both S-T +

Σ and S-G+
Σ rules will return {p1, p3, p4}.

Then, the social welfare is 7 and the utility of voter 1 is 3. However, when
voter 1 increases the donation to project p1 from 0 to b′

11 = 1, both rules will
return {p1, p2}. Then the social welfare decreases to 6, and the utility of voter 1
decreases to 1. It indicates that S-T +

Σ and S-G+
Σ do not satisfy D3, D4. �

Proposition 6. Rule S-P+
Σ does not satisfy D3 and D4.

Proof. Consider the instance in Table 2 with budget B = 5. When voter 1
donates 2 money to project p1, the rule S-P+

Σ returns {p1, p3, p4}. The social
welfare is 10 and the utility of voter 1 is 3. If voter 1 increases the donation to
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Table 2. S-P+
Σ does not satisfy D3, D4

c(·) sat1 sat2 sat3 sat4 sat5 b1

p1 4 1 1 1 1 1 2 → 4

p2 3.5 1 1 1 1 0 0

p3 3 1 1 1 0 0 2

p4 2 1 1 0 0 0 2

project p1 from 2 to 4, S-P+
Σ would return a winning bundle {p1, p2}. Then the

social welfare decreases to 9 and the utility of voter 1 decreases to 2. It indicates
that increasing donations harms the social welfare and the voter’s utility, S-P+

Σ

does not satisfy D3, D4. �

Table 3. Both S-T +
min and S-G+

min do not satisfy D3, D4

c(·) sat1 sat2 sat3 sat4 sat5 b1 b5

p1 5 1 1 0 1 1 0 → 1 3

p2 4 1 1 0 0 1 0 0

p3 3 1 0 1 0 0 0 3

p4 3 1 0 0 0 1 0 3

Proposition 7. Rules S-T +
min and S-G+

min do not satisfy D3 and D4.

Proof. Consider the instance in Table 3 with budget B = 5. When voter 1
donates 0 money to project p1, both rules S-T +

min and S-G+
min return {p1, p3, p4}.

The social welfare is 1 and the utility of voter 1 is 3. If voter 1 increases the
donation to project 1 from 0 to 1, both rules would return {p1, p2}. Then the
social welfare decreases to 0 and the utility of voter 1 decreases to 2. It indi-
cates that increasing the donations harms both the social welfare and the voter’s
utility. Hence, S-T +

min and S-G+
min do not satisfy D3, D4. �

Table 4. S-T max
Σ , S-T max

min , S-Gmax
Σ and S-Gmax

min do not satisfy D3

c(·) sat1 sat2 sat3 sat4 b1

p1 5 1 1 1 0 3 → 4

p2 4 1 1 0 0 0

p3 3 0 0 0 1 0

Proposition 8. Rules S-T max
Σ , S-T max

min , S-Gmax
Σ and S-Gmax

min satisfy D4, but
do not satisfy D3.
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Proof. Regarding D3, consider the instance in Table 4 with budget B = 5. When
voter 1 donates money 3 to project p1, rules S-T max

Σ , S-Gmax
Σ , S-T max

min and S-
Gmax

min return {p1, p3}. Then, the social welfare under rule S-T max
Σ and S-Gmax

Σ is
4 and the social welfare under rule S-T max

min and S-Gmax
min is 1. If voter 1 increases

the donation to project p1 from 3 to 4, all the above four rules will return
{p1, p2}. Then, the social welfare under rule S-T max

Σ and S-Gmax
Σ is 3 and the

social welfare under rule S-T max
min and S-Gmax

min is 0. It indicates that increasing
donations harms the social welfare, and thus the rules do not satisfy D3.

Regarding D4, it is known that the utility for a certain voter in the above four
rules can only be 1 or 0. Suppose that a voter is going to increase her donation
to a project p that she approves. If the project p is in the winning bundle before
increasing donation, then it will be still in the winning bundle after increasing
donation, and the utility of this voter is 1. If p is not in the winning bundle
before increasing donation, then the output will not change. Thus, increasing
the donation to a project that she did not donate will not harm her utility, and
thus D4 is satisfied. �

Proposition 9. Rule S-P+
min does not satisfy D3 and D4. S-Pmax

min and S-Pmax
Σ

satisfy D4, and do not satisfy D3.

5 Pareto Rules

In this section, we consider the Pareto rules. For a normal rule R ∈ T ∪G∪P,
Pareto-R, or simply P -R, is defined as follows. Given instance E, the first step
is to apply R to the instance E0 (without considering all donations). Based on
the winning bundle A0, it returns a bundle with maximum social welfare among
all bundles that Pareto-dominate A0, taking donations into account.1 Further,
we consider a process of increasing a voter’s donation to a project, and denote
by A1 the winning bundle before this process, and by A2 the winning bundle
after this process.

Next, we examine whether P -R rules satisfy the four desiderata. By [7], for
any normal rule R ∈ T ∪ G, P -R satisfies D1, D2 and D3 even for general
utility-based setting. Thus, we turn to other cases.

Table 5. P -T +
Σ , P -T +

min, P -G+
Σ and P -G+

min do not satisfy D4

c(·) sat1 sat2 sat3 sat4 b1 b3

p1 5 1 1 1 0 0 → 1 3

p2 4 0 1 0 1 0 0

p3 3 1 0 0 0 0 0

1 We say that a bundle A Pareto-dominates another bundle A′, if all voters have a
utility under A at least as well as that under A′, and at least one voter strictly
prefers A to A′.
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Proposition 10. Rule P -T +
Σ , P -T +

min, P -G+
Σ and P -G+

min do not satisfy D4.

Proof. Regarding D4, consider the instance in Table 5 with budget B = 5. When
voter 1 does not donate to p1, rules P -T +

Σ , P -G+
Σ , P -T +

min and P -G+
min return

{p1, p3}, and the utility of voter 1 is 2. If voter 1 increases the donation to project
p1 from 0 to 1, then the rules would return {p1, p2}, and the utility of voter 1
decreases to 1. It indicates that increasing donations harms the utility of voter
1, and thus these rules do not satisfy D4. �

Proposition 11. Rules P -T max
Σ , P -T max

min , P -Gmax
Σ and P -Gmax

min satisfy D4.

Proof. If the increased donation is given to a project in A0 or A2, the utility of
the voter must be 1, and thus the outcome will not be worse off. If the increased
donation is given to A1, the utility of this voter in A1 is 1. Thus, only if the
utility of this voter in A2 is 1 will A2 be chosen instead of A1. Therefore, the
utility of the voter who increases donation to a project would not be worse off.
It indicates that D4 is satisfied. �

Proposition 12. All P -P rules can satisfy D1 and D2.

Proof. By the definition of Pareto rules, a bundle that Pareto-dominates A0 is
chosen with donations. Therefore, the winning bundle will not change if donation
is not allowed. It indicates that donation will not make voters less satisfied and
Pareto rules can satisfy D1 all the time.

Since the winning bundle under Pareto rules Pareto-dominates A0, the utility
of any voter must be no less than the original one. If the donation is given to
the project in the bundle of A0, then this project must be chosen as well. If
the donation is given to A1 (dominating A0), then A2 dominates A1, and A2

be selected. At this time, this project with donation must be selected as well.
It indicates that project with donation will not lose any more, and Pareto rules
always satisfy D2. �

Table 6. P -P+
Σ does not satisfy D3, D4

c(·) sat1 sat2 sat3 sat4 sat5 b1

p1 4 1 1 1 1 1 2 → 4

p2 3.5 1 1 1 1 0 0

p3 3 1 1 1 0 0 2

p3 2 1 1 0 0 0 2

Proposition 13. Rule P -P+
Σ does not satisfy D3, D4.

Proof. Consider the instance in Table 6 with budget B = 5. When voter 1 has
a donation 2 to project p1, rule P -P+

Σ returns {p1, p3, p4}. The social welfare is
10 and the utility of voter 1 is 3. If voter 1 increases the donation to project p1
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from 2 to 4, then P -P+
Σ will return {p1, p2}. The social welfare decreases to 9

and the utility of voter 1 decreases to 2. It indicates that donation harms the
social welfare and the utility of voter 1, and thus P -P+

Σ does not satisfy D3,
D4. �

Proposition 14. Rule P -P+
min does not satisfy D3 and D4, and rules P -Pmax

min

and P -Pmax
Σ do not satisfy D3.

6 Conclusion

We have conducted a comprehensive analysis of various PB aggregation rules
for approval-based participatory budgeting with donations pledged by voters,
including the global optimization approaches, greedy approaches, proportional
greedy approaches, as well as Sequential rules and Pareto rules. All results are
presented in Tables 7, 8 and 9. Basically, D1 and D2 can always be satisfied
through Sequential and Pareto rules, while D1 can not be satisfied by any normal
rule. Further, when the utility function is μmax

i , D4 is satisfied by all rules.
Regarding the question whether it is possible to include donations in

approved-based PB while maintaining the fairness and equity, our results show
that it depends on the utility functions of voters and the scoring functions with
respect to a bundle. For example, when the utility function is μmax

i , the Pareto-
T and the Pareto-G rules satisfy all of the four properties, while they are not
compatible for other setting. For future work, it would be interesting to explore
more aggregations rules and other properties for the PB with donations.

Table 7. A summary of the results on normal PB rules.

T +
Σ T +

min T max
Σ T max

min G+
Σ G+

min Gmax
Σ Gmax

min P+
Σ P+

min Pmax
Σ Pmax

min

D1 × × × × × × × × × × × ×
D2 � � � � � � � � � � � �
D3 � � � � × × × × × × × ×
D4 × × � � × × � � × × � �

Table 8. A summary of the results on Sequential rules.

T +
Σ T +

min T max
Σ T max

min G+
Σ G+

min Gmax
Σ Gmax

min P+
Σ P+

min Pmax
Σ Pmax

min

D1 � � � � � � � � � � � �
D2 � � � � � � � � � � � �
D3 × × × × × × × × × × × ×
D4 × × � � × × � � × × � �



Approval-Based Participatory Budgeting with Donations 415

Table 9. A summary of the results on Pareto rules.

T +
Σ T +

min T max
Σ T max

min G+
Σ G+

min Gmax
Σ Gmax

min P+
Σ P+

min Pmax
Σ Pmax

min

D1 � � � � � � � � � � � �
D2 � � � � � � � � � � � �
D3 � � � � � � � � × × × ×
D4 × × � � × × � � × × � �
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