Weili Wu
Guangmo Tong (Eds.)

Computing
and Combinatorics

29th International Conference, COCOON 2023
Hawaii, HI, USA, December 15-17, 2023
Proceedings, Part I

LNCS 14423

@ Springer

Lecture Notes in Computer Science 14423

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, Purdue University, West Lafayette, IN, USA

Wen Gao, Peking University, Beijing, China

Bernhard Steffen@®, TU Dortmund University, Dortmund, Germany
Moti Yung®, Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series counts many renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
and workshop proceedings and postproceedings. LNCS commenced publication in 1973.

Weili Wu - Guangmo Tong
Editors

Computing
and Combinatorics

29th International Conference, COCOON 2023
Hawaii, HI, USA, December 15-17, 2023
Proceedings, Part II

@ Springer

Editors

Weili Wu Guangmo Tong
University of Texas at Dallas University of Delaware
Richardson, TX, USA Newark, DE, USA
ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-031-49192-4 ISBN 978-3-031-49193-1 (eBook)

https://doi.org/10.1007/978-3-031-49193-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-8747-6340
https://orcid.org/0000-0003-3247-4019
https://doi.org/10.1007/978-3-031-49193-1

Preface

The papers in these proceedings, which consist of two volumes, were presented at the
29th International Computing and Combinatorics Conference (COCOON 2023), on
December 15-17, 2023, in Honolulu, Hawaii, USA. The topics cover most aspects of
theoretical computer science and combinatorics pertaining to computing.

In total 60 papers were selected from 146 submissions by an international program
committee consisting of a large number of scholars from various countries and regions,
distributed all over the world, including Asia, North America, Europe, and Australia.
Each paper was evaluated by at least three reviewers. The decision was made based on
those evaluations through a process containing a discussion period.

Authors of selected papers come from the following countries and regions: Australia,
Canada, China (including Hong Kong, Macau, and Taiwan), Czechia, France, Germany,
India, Israel, Japan, Sweden, and the USA. Many of these papers represent reports of
continuing research, and it is expected that most of them will appear in a more polished
and complete form in scientific journals.

We wish to thank all who have made this meeting possible and successful, the
authors for submitting papers, the program committee members for their excellent work
in reviewing papers, the sponsors, the local organizers, and Springer for their support
and assistance. We are especially grateful to Lian Li and Xiaoming Sun, who lead the
Steering committee, for making the ranking of COCOON go up significantly in recent
years, and to Yi Zhu and Xiao Li, who made tremendous efforts on local arrangements
and set-up.

December 2023 Weili Wu
Guangmo Tong

General Co-chairs

Peter Varman
Ding-Zhu Du

PC Co-chairs

Weili Wu
Guangmo Tong

Web Co-chairs

Xiao Li
Ke Su

Finance Co-chair

Jing Yuan

Registration Chair

Xiao Li

Local Chair

Yi Zhu

Organization

Rice University, USA
University of Texas at Dallas, USA

University of Texas at Dallas, USA
University of Delaware, USA

University of Texas at Dallas, USA
University of Texas at Dallas, USA

University of Texas at Dallas, USA

University of Texas at Dallas, USA

Hawaii Pacific University, USA

viii Organization

Program Committee Members

An Zhang
Bhaskar Dasgupta
Bo Li

Boting Yang

C. Pandu Rangan
Chee Yap
Chia-Wei Lee
Christos Zaroliagis
Chung-Shou Liao
Deshi Ye
Dominik Koppl
Eddie Cheng
Gruia Calinescu
Guohui Lin
Haitao Wang

Hans-Joachim Boeckenhauer

Ho-Lin Chen
Hsiang-Hsuan Liu
Jiangxiong Guo
Joong-Lyul Lee
Jou-Ming Chang
Kai Jin

Kunihiko Sadakane
Ling-Ju Hung

M. Sohel Rahman

Manki Min
Micheal Khachay
Ovidiu Daescu
Pavel Skums
Peng Li

Peng Zhang
Peter Rossmanith
Prudence Wong
Qilong Feng
Qiufen Ni
Raffaele Giancarlo
Ralf Klasing
Ryuhei Uehara

Hangzhou Dianzi University, China
University of Illinois at Chicago, USA
Hong Kong Polytechnic University, China
University of Regina, Canada

Indian Institute of Technology Madras, India
New York University, USA

National Tatung University, Taiwan
University of Patras, Greece

National Tsing Hua University, Taiwan
Zhejiang University, China

Tokyo Medical and Dental University, Japan
Oakland University, USA

Ilinois Institute of Technology, USA
University of Alberta, Canada

University of Utah, USA

ETH Zurich, Switzerland

National Taiwan University, Taiwan

Utrecht University, The Netherlands

Beijing Normal University at Zhuhai, China

University of North Carolina at Pembroke, USA

National Taipei University of Business, Taiwan
Sun Yat-sen University, China
University of Tokyo, Japan

National Taipei University of Business, Taiwan

Bangladesh University of Engineering and
Technology, Bangladesh

Louisiana Tech University, USA

Ural Federal University, Russia

University of Texas at Dallas, USA

Georgia State University, USA

Chongqing University of Technology, China

Shandong University, China

RWTH Aachen University, Germany

University of Liverpool, UK

Central South University, China

Guangdong University of Technology, China

University of Palermo, Italy

CNRS and University of Bordeaux, France

Japan Advanced Institute of Science and
Technology, Japan

Sharma V. Thankachan

Shengxin Liu

Sun-Yuan Hsieh

Takeshi Tokuyama
Thomas Erlebach

Travis Gagie
Van Bang Le

Vassilis Zissimopoulos

Vincent Chau
Wenguo Yang

Wing-Kai Hon
Wolfgang Bein
Xianyue Li
Xiaowei Wu
Xinjian Ding
Xujin Chen

Yifei Zou
Yitong Yin
Yixin Cao
Yong Chen
Yuqing Zhu
Zhao Zhang
Zhipeng Cai

Organization ix

North Carolina State University, USA

Harbin Institute of Technology at Shenzhen,
China

National Cheng Kung University, Taiwan

Tohoku University, Japan

Durham University, UK

Dalhousie University, Canada

University of Rostock, Germany

National and Kapodistrian University of Athens,
Greece

Southeast University, China

University of Chinese Academy of Sciences,
China

National Tsing Hua University, Taiwan

University of Nevada, USA

Lanzhou University, China

University of Macau, China

Beijing University of Technology, China

University of Chinese Academy of Sciences,
China

Shandong University, China

Nanjing University, China

Hong Kong Polytechnic University, China

Hangzhou Dianzi University, China

California State University, Los Angeles, USA

Zhejiang Normal University, China

Georgia State University, USA

Contents — Part I1

Combinatorics and Algorithms

Quantum Query Lower Bounds for Key Recovery Attacks
on the Even-Mansour Cipherooiiiiiiiiiiiiiin...
Akinori Kawachi and Yuki Naito

Extended Formulations via Decision Diagrams
Yuta Kurokawa, Ryotaro Mitsuboshi, Haruki Hamasaki, Kohei Hatano,
Eiji Takimoto, and Holakou Rahmanian

Greedy Gray Codes for Dyck Words and Ballot Sequences
Vincent Vajnovszki and Dennis Wong

Efficiently-Verifiable Strong Uniquely Solvable Puzzles and Matrix
MUultiplicationt
Matthew Anderson and Vu Le

(min, 4+) Matrix and Vector Products for Inputs Decomposable into Few
Monotone SubSEqUENCESuuuuuueeiiii
Andrzej Lingas and Mia Persson

A Sub-quadratic Time Algorithm for Computing the Beacon Kernel
of Simple Polygons
Binay Bhattacharya, Amirhossein Mozafari, and Thomas C. Shermer

An Approach to Agent Path Planning Under Temporal Logic Constraints
Chaofeng Yu, Nan Zhang, Zhenhua Duan, and Cong Tian

The Heterogeneous Rooted Tree Cover Problem
Pengxiang Pan, Junran Lichen, Ping Yang, and Jianping Li

The Hardness of Optimization Problems on the Weighted Massively
Parallel Computation Model i,
Hengzhao Ma and Jianzhong Li

The Regularized Submodular Maximization via the Lyapunov Method ..
Xin Sun, Congying Han, Chenchen Wu, Dachuan Xu, and Yang Zhou

Topological Network-Control Gamescoiiineeean..
Zihui Liang, Bakh Khoussainov, and Haidong Yang

xii Contents — Part IT

Lower Bounds of Functions on Finite Abelian Groups 157
Jianting Yang, Ke Ye, and Lihong Zhi

A Discharging Method: Improved Kernels for Edge Triangle Packing
and COVEIING . ..ottt 171
Zimo Sheng and Mingyu Xiao

Random Shortening of Linear Codes and Applications 184
Xue Chen, Kuan Cheng, Xin Li, and Songtao Mao

Algorithms for Full-View Coverage of Targets with Group Set Cover 198
Jingfang Su and Hongwei Du

Improved Bounds for the Binary Paint Shop Problem 210
J. Hancl, A. Kabela, M. Opler, J. Sosnovec, R. Sdmal, and P, Valtr

Algorithmic Solution in Applications

Fitch Graph Completionuee i 225
Marc Hellmuth, Peter F. Stadler,
and Sandhya Thekkumpadan Puthiyaveedu

Deterministic Primal-Dual Algorithms for Online k-Way Matching
with Delayso 238
Naonori Kakimura and Tomohiro Nakayoshi

Diversity and Freshness-Aware Regret Minimizing Set Queries 250
Hongjie Guo, Jianzhong Li, Fangyao Shen, and Hong Gao

A Modified EXP3 in Adversarial Bandits with Multi-user Delayed
Feedback 263
Yandi Li and Jianxiong Guo

Cabbage Can’t Always Be Transformed into Turnip: Decision Algorithms

for Sorting by Symmetric Reversals o i 279
Xin Tong, Yixiao Yu, Ziyi Fang, Haitao Jiang, Lusheng Wang,
Binhai Zhu, and Daming Zhu

k-Median/Means with Outliers Revisited: A Simple Fpt Approximation 295
Xianrun Chen, Lu Han, Dachuan Xu, Yicheng Xu, and Yong Zhang

A Cost-Sharing Scheme for the k-Product Facility Location Game
with Penalties i 303
Xiaowei Li and Xiwen Lu

Contents — Part II xiii
Algorithm in Networks

Maximizing Diversity and Persuasiveness of Opinion Articles in Social
NEtWOTKS . .ottt 317
Liman Du, Wenguo Yang, and Suixiang Gao

Stochastic Model for Rumor Blocking Problem in Social Networks Under
Rumor Source Uncertaintyuiiitiinineettinneeennnann 329
Jianming Zhu, Runzhi Li, Smita Ghosh, and Weili Wu

Algorithms for Shortest Path Tour Problem in Large-Scale Road Network 340
Yucen Gao, Mingqian Ma, Jiale Zhang, Songjian Zhang, Jun Fang,
Xiaofeng Gao, and Guihai Chen

Solving Systems of Linear Equations Through Zero Forcing Set 353
Jianbo Wang, Chao Xu, and Siyun Zhou

Profit Maximization for Competitive Influence Spread in Social Networks 366
Qiufen Ni, Yun Bai, and Zhongzheng Tang

Improved Approximation Algorithms for Multidepot Capacitated Vehicle
ROULING . oo 378
Jingyang Zhao and Mingyu Xiao

On the Minimum Depth of Circuits with Linear Number of Wires
Encoding Good Codesooiiiiii 392

Andrew Drucker and Yuan Li

Approval-Based Participatory Budgeting with Donations 404
Shiwen Wang, Chenhao Wang, Tian Wang, and Weijia Jia

Author Index e 417

Contents — Part I

Complexity and Approximation

Complexity and Enumeration in Models of Genome Rearrangement 3
Lora Bailey, Heather Smith Blake, Garner Cochran, Nathan Fox,
Michael Levet, Reem Mahmoud, Elizabeth Bailey Matson,
Inne Singgih, Grace Stadnyk, Xinyi Wang, and Alexander Wiedemann

Conditional Automatic Complexity and Its Metrics 15
Bjgrn Kjos-Hanssen

Streaming and Query Once Space Complexity of Longest Increasing

SUDSEQUENCE . . oottt ettt et e et e e e e e e e 29
Xin Li and Yu Zheng
Approximating Decision Trees with Priority Hypotheses 61

Jing Yuan and Shaojie Tang

Approximating the A-low-density Value 71
Joachim Gudmundsson, Zijin Huang, and Sampson Wong

Exponential Time Complexity of the Complex Weighted Boolean #CSP 83
Ying Liu

Hardness and Approximation for the Star 8-Hub Routing Cost Problem

in Ag-Metric Graphs 97
Meng-Shiou Tsai, Sun-Yuan Hsieh, and Ling-Ju Hung

Graph Algorithms

Linear Time Algorithms for NP-Hard Problems Restricted to GATEX

Gra NS oo 115
Marc Hellmuth and Guillaume E. Scholz

Polynomial Turing Compressions for Some Graph Problems Parameterized

by Modular-Width 127
Weidong Luo
Shortest Longest-Path Graph Orientationsccooiiiiiiiinna... 141

Yuichi Asahiro, Jesper Jansson, Avraham A. Melkman, Eiji Miyano,
Hirotaka Ono, Quan Xue, and Shay Zakov

Xvi Contents — Part I

Sink Location Problems in Dynamic Flow Grid Networks 155
Yuya Higashikawa, Ayano Nishii, Junichi Teruyama, and Yuki Tokuni

List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs 168
Banu Baklan Sen, Oznur Yasar Diner, and Thomas Erlebach

Parameterized Algorithms for Cluster Vertex Deletion on Degree-4 Graphs
and General Graphs 182
Kangyi Tian, Mingyu Xiao, and Boting Yang

Sum-of-Local-Effects Data Structures for Separable Graphs 195
Xing Lyu, Travis Gagie, Meng He, Yakov Nekrich, and Norbert Zeh

Applied Algorithms

Variants of Euclidean k-Center Clusteringscouiineeeenninnan.. 209
Shin-ichi Nakano

Red-Black Spanners for Mixed-Charging Vehicular Networks 220
Sergey Bereg, Yuya Higashikawa, Naoki Katoh, Junichi Teruyama,
Yuki Tokuni, and Binhai Zhu

Self-stabilizing (A + 1)-Coloring in Sublinear (in A) Rounds
via Locally-Iterative Algorithms oo 232
Xinyu Fu, Yitong Yin, and Chaodong Zheng

On Detecting Some Defective Items in Group Testing 244
Nader H. Bshouty and Catherine A. Haddad-Zaknoon

An Efficient Data Analysis Method for Big Data Using Multiple-Model
Linear Regressionuuuuue e 272
Bohan Lyu and Jianzhong Li

Multi-Load Agent Path Finding for Online Pickup and Delivery Problem 285
Yifei Li, Hao Ye, Ruixi Huang, Hejiao Huang, and Hongwei Du

Improved Sourcewise Roundtrip Spanners with Constant Stretch 297
Eli Stafford and Chunjiang Zhu

Randomized Data Partitioning with Efficient Search, Retrieval
and Privacy-Preservation i 310
M. Oguzhan Kiilekci

The k Edge-Vertex Domination Problem 324
Peng Li, Xingli Zhou, and Zhiang Zhou

Contents — Part I Xvii

Resource-Adaptive Newton’s Method for Distributed Learning 335
Shuzhen Chen, Yuan Yuan, Youming Tao, Zhipeng Cai, and Dongxiao Yu

DR-Submodular Function Maximization with Adaptive Stepsize 347
Yanfei Li, Min Li, Qian Liu, and Yang Zhou

On the Routing Problems in Graphs with Ordered Forbidden Transitions 359
Kota Kumakura, Akira Suzuki, Yuma Tamura, and Xiao Zhou

Delaying Decisions and Reservation COStscooiuniinnnnn... 371
Elisabet Burjons, Fabian Frei, Matthias Gehnen, Henri Lotze,
Daniel Mock, and Peter Rossmanith

A PTAS Framework for Clustering Problems in Doubling Metrics 384
Di Wu, Jinhui Xu, and Jianxin Wang

A Physical Zero-Knowledge Proof for Sumplete, a Puzzle Generated
by ChatGPT 398
Kyosuke Hatsugai, Kyoichi Asano, and Yoshiki Abe

Author Index 411

Combinatorics and Algorithms

®

Check for
updates

Quantum Query Lower Bounds for Key
Recovery Attacks on the Even-Mansour

Cipher

Akinori Kawachi®) and Yuki Naito

Mie University, Tsu, Japan
kawachi@info.mie-u.ac. jp

Abstract. The Even-Mansour (EM) cipher is one of the famous con-
structions for a block cipher. Kuwakado and Morii demonstrated that
a quantum adversary can recover its n-bit secret keys only with O(n)
nonadaptive quantum queries. While the security of the EM cipher and
its variants is well-understood for classical adversaries, very little is cur-
rently known of their quantum security. Towards a better understanding
of the quantum security, or the limits of quantum adversaries for the
EM cipher, we study the quantum query complexity for the key recov-
ery of the EM cipher and prove every quantum algorithm requires Q(n)
quantum queries for the key recovery even if it is allowed to make adap-
tive queries. Therefore, the quantum attack of Kuwakado and Morii has
the optimal query complexity up to a constant factor, and we cannot
asymptotically improve it even with adaptive quantum queries.

Keywords: Quantum computing + Query complexity - Lower bounds -
Symmetric-key cryptography

1 Introduction

Since the discovery of quantum algorithms for factorization and discrete loga-
rithm problems by Shor [15], it has become widely known that many practical
schemes based on public-key cryptography can be broken by quantum computers
theoretically. Although the quantum computer that can be implemented with the
current technology does not pose a threat to practical cryptographic schemes,
it is essential to study the schemes that are secure enough against quantum
computers that will be developed in the near future.

Much of the early work on quantum attacks focused on public-key cryp-
tosystems, and only generic algorithms based on Grover’s quantum search [9]
were known to attack symmetric-key cryptosystems. However, recent stud-
ies have shown that more sophisticated quantum attacks are possible even
against some symmetric-key cryptosystems. Kuwakado and Morii provided effi-
cient quantum attacks against the well-known symmetric-key primitives such
as the 3-round Feistel structure [12] and the Even-Mansour (EM) cipher [13]
using Simon’s quantum algorithm [16]. Following their celebrated results, several
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 3-16, 2024.
https://doi.org/10.1007/978-3-031-49193-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_1

4 A. Kawachi and Y. Naito

papers revealed new quantum attacks against many symmetric-key constructions
such as the work of Kaplan, Leurent, Leverrier, and Naya-Plasencia [10] that
provided efficient quantum attacks on some of the most common block-cipher
modes of operations for message authentication and authenticated encryption.
The discovery of these quantum attacks against symmetric-key cryptosystems
has led us to focus not only on analyses of the potential capabilities of quan-
tum adversaries for public-key cryptography but also on those for symmetric-key
cryptography.

In particular, the security of the EM cipher and its variants has been studied
in many papers so far against classical and quantum adversaries. The EM cipher
is a well-known construction for block ciphers and has a very simple structure to
achieve the security of pseudorandom functions. For a random public permuta-
tion 7 : Zy — Z% and secret keys ki1, ko € Z7%, its encryption function is defined
as EM (z) == n(x + k1) + ko.

The classical security of the EM cipher and its variants has been broadly
studied. The original paper of Even and Mansour proved that classical adver-
saries require O(2"/2) queries to break the EM cipher [8]. Chen and Steinberger
provided query lower bounds for generalizations of the EM cipher, called the
iterated EM ciphers iEMy(z) := ki + m(ke—1 + me—1(- - k1 + m(ko +) -+ +))
[5]. They proved the tight query lower bound of Q(2(!/(t+1)7) for attacking the
variant that matches to query upper bounds of (’)(2(t/ (t“))") by a generalization
of Daemen’s attack [7], which was pointed out by Bogdanov, Knudsen, Leander,
Standaert, Steinberger, and Tischhauser [3]. Chen, Lambooij, and Mennink also
studied the query bounds for security of “Sum of the EM ciphers” (SoEM), which
are variants of the EM cipher [6]. For example, they proved that O(2"/2) queries
are sufficient to classically attack SOEM1(z) := w(x + k1) + m(x + ko) + k1 + ko
for two independent keys ki, ko and SoEM21(z) := m(x+ k1) +ma(x+ k1) + k1
for two independent permutations 71, o, but Q(22"/3) queries are necessary to
classically attack SoEM22(x) := my(z+ky1)+m2(x+k2)+ k1 + k2 for independent
keys k1, ko and independent permutations 7y, 7o beyond the birthday bound.

Also, quantum attacks on the EM cipher and its variants have been devel-
oped following the result of Kuwakado and Morii. Shinagawa and Iwata demon-
strated quantum attacks on the variants of SOEM studied in [6] by extending
the Kuwakado-Morii (KM) attack [14]. For example, they demonstrated that
SoEM1 and SoEM21 can be broken only with O(n) quantum queries. Moreover,
their new quantum algorithm that combines Simon’s algorithm with Grover’s
algorithm can break SoFM22 with (’)(n2"/ 2) quantum queries, which is much
lower than the classical query lower bound of (22"/3) [6]. Bonnetain, Hosoya-
mada, Naya-Plasencia, Sasaki and Schrottenloher constructed a new quantum
algorithm that uses Simon’s algorithm as a subroutine without quantum queries
to oracles, and they succeeded in attacking the EM cipher with 0(2”/ 3) classical
queries, O(n?) qubits, and offline quantum computation O(2/3) [4].

On the other hand, little has been studied on the security of these schemes
against quantum adversaries, or limits of capabilities of quantum adversaries,
while the KM attack has been used to extend quantum attacks on other
variants of the EM cipher. In many security proofs against quantum adversaries

Quantum Query Lower Bounds for Key Recovery Attacks 5

with oracle access, including the EM cipher and its variants, it is generally not
possible to prove the security against quantum adversaries by conventional proof
techniques used in the standard classical settings. This is because we need to
assume that quantum adversaries have quantum access to cryptographic primi-
tives. Indeed, many papers developed new techniques to show the limits of quan-
tum adversaries against well-known symmetric-key cryptographic constructions
(e.g., [17,18]).

The only example of the quantum security proof for the EM cipher, to the
best of the authors’ knowledge, is by Alagic, Bai, Katz, and Majenz [1]. They con-
sidered a natural post-quantum scenario that adversaries make classical queries
to its encryption function EM, but can make quantum queries to the public
permutation 7. In this scenario, they demonstrated that it must hold either
Capnm = Q2") or ¢=q%,; = Q(27), where ¢, (qr, respectively) is the number
of queries to m (EM, respectively).

Therefore, it is important to understand better the limits of quantum adver-
saries for constructing quantumly secure variants of the EM cipher by studying
the quantum query lower bounds for attacking the EM cipher.

In this paper, we investigate the limits of quantum adversaries against the
original EM cipher to explore quantumly secure variants of the EM cipher. We
prove lower bounds Q(n) of quantum query complexity to recover n-bit secret
keys of the EM cipher even if quantum adversaries are allowed to make adaptive
queries. To the best of the authors’ knowledge, this is the first result that provides
new techniques for demonstrating the limits of adversaries against (variants of)
the EM cipher with purely quantum queries. Our quantum query lower bound
matches the upper bound O(n) of nonadaptive quantum queries provided by the
KM attack up to a constant factor. This implies that their attack is optimal up to
a constant factor in a setting of quantum query complexity, and thus, there is no
asymptotically better quantum attack than the one based on Simon’s algorithm
even if it is allowed to make adaptive queries.

2 Overviews of Previous Results and Our Ideas

Since the structure of our proof is based on the optimality proof of (generalized)
Simon’s algorithm studied by Koiran, Nesme, and Portier [11], we briefly review
Simon’s algorithm and its optimality.

The problem solved by Simon’s algorithm is commonly referred to as Simon’s
problem. The following is a generalized version of Simon’s problem with any
prime p. The oracle O hides some subgroup K of order D = p, where d is a
non-negative integer.

Generalized Simon’s (GS) Problem

Input: an oracle O : Z;; — Y that is sampled uniformly at random from all the
oracles that satisfy 2’ = x + k < O(z') = O(z) for some subgroup K < Zy of
order D;

Output: the generators of K.

6 A. Kawachi and Y. Naito

The original Simon’s problem corresponds to the case of p = 2 and D =
2. Then, K = {0,k} for k € Z3% \ {0"}. Simon’s algorithm first makes O(n)
nonadaptive queries Za:ezg |2)|0)/+/2™ to the oracle O and measures the second
register. By the measurement, it obtains independent copies of the coset-uniform
state (|zo) + |zo + k))/V/2 for a random zq in the first register. Applying the
quantum Fourier transform over Z% (or, the Hadamard transform H®™) to them
and measuring the resulting states, it obtains O(n) random linear constraints
> ien Zi - ki = 0 with respect to the undetermined secret key k = (ko, ..., kn_1).
From the constraints, it can identify k& with constant probability.

The idea of the KM attack against the EM cipher is to construct the ora-
cle of Simon’s problem from the public permutation 7 and encryption func-
tion EM(z) = w(x 4+ k1) + ko. In the KM attack, a quantum adversary is
allowed to make quantum queries to # and EM in a quantum manner. Let
O(z) := EM(z) + w(z) = m(x + k1) + m(x) + k2. The adversary applies Simon’s
algorithm to this function O. Since O(z+k1) = m(x+k1)+7(z)+ke = O(z), The
oracle O satisfies the direct part ' = z+k; — O(2’) = O(z) and approximately
satisfies the converse part with respect to random choices of 7. Therefore, the
KM attack succeeds in recovering k1 using O(n) nonadaptive quantum queries
to m and EM with constant probability by Simon’s algorithm. It is obvious to
recover ko from ky since ko = EM(0) + 7(kq).

To prove the optimality of (generalized) Simon’s algorithm, Koiran et al. stud-
ied quantum query lower bounds for its generalized decisional version. Let

Fp:={0:Zy - Y :3K <Z, Vi' Vo € Zy,Vk € K,2' =2+ k < O(2') = O(x)},
where D = |K| = p? for a non-negative integer d.

Generalized Decisional Simon’s (GDS) Problem

Input: an oracle O : Z; — Y that is sampled uniformly at random from Fj, or
Fy;

Output: “accept” if O is from F}, or “reject” if it is from F.

Note that [is the set of all the O : Z; — Y, The task of this problem is to
distinguish between a function that hides some subgroup K of order p and a
random function.

It is easy to see that if Simon’s problem is solved with T queries, the GDS
problem for p = 2 is also solved with the same T queries. Therefore, quantum
query lower bounds of GDS problem for an arbitrary prime p directly lead to
those for Simon’s problem.

The argument of Koiran et al. [11] is based on the polynomial method [2]
for the GDS problem. They analyzed the degree of the polynomial Q(D) that
represents the accepting probability for a random O € Fp, where D is the
order of the subgroup K that O hides. They showed an upper bound O(T)
of deg(Q(D)) for quantum algorithms with accepting probability Q(D) and T
queries to an oracle O that hides a subgroup K of order D, and further, a
lower bound Q(n) of deg(Q(D)) for any polynomial Q(D) that satisfies several
conditions naturally posed on Q(D), such as Q(p) > 1 — ¢, which corresponds
to the case of Fj,, Q(1) < €, which corresponds to the case of Fi, for a small
constant e, and Q(p) € [0, 1] for every i € {0,1,...,n}.

Quantum Query Lower Bounds for Key Recovery Attacks 7

Our goal, quantum query lower bounds for key recovery of the EM cipher,
seems to be close to those for Simon’s problem provided in [11]. However, there
are actually technical gaps between these two problems. In the setting of the key
recovery, a quantum adversary can make access to two oracles EM (z) and 7 (x)
rather than a single oracle O(x) in the setting of Simon’s problem. The quantum
query upper bound O(n) can be achieved by the KM attack that synchronously
makes a (quantumly superposed) query x to EM (z) and 7(x) and combines two
answers to compute O(z) = EM (z) + w(x). However, it would be possible to
achieve better attacks by making different queries to two oracles in an adaptive
manner.

We then provide a reduction of quantum query lower bounds in the standard
query model to those in a special query model. In the special query model, which
we refer to as a synchronized query model, any quantum adversary is posed to
make a synchronized query to two oracles as done in the KM attack. If a quantum
adversary A can recover the secret key with T'(n) queries to EM and 7 totally
in the standard query model, we can easily modify A to another adversary A’
that recovers it with 27°(n) queries in the synchronized query model.

In the synchronized query model, we can assume that a quantum algorithm
has synchronized access to a oracle sequence O : Z2% — (Z%)2, where O(x) =
(Oo(x),01(x)) for a random permutation Op(x) = w(x) and the encryption
function Oy (z) = EM (2) = Og(x + k1) + k2. In our proof, we focus only on the
inner key ki for simplification, which suffices to prove lower bounds since it is a
special case when ko = 0. We define O1(z) = Og(x + k1). Then, our goal is to
prove quantum query lower bounds for finding the inner key k; with synchronized
queries to the oracle sequence O(z) = (Og(z), O1(x)) = (Op(x), Op(z + k1)).

To apply the polynomial method as done in the proof of Koiran et al., we need
to consider a generalized version of the oracle sequence O(z) = (Op(z), O1(x))
to represent the accepting probability as a polynomial in some single parameter.

As a generalization, we consider an oracle sequence

O(l‘) = (00(33),01(.%‘), .. .,OD_l(.Z‘))
:(Oo($+k0), 0($+k1),...700($+k[),1))

of length D = p?, where K = {kg = 0", k1,...,kp_1} is a subgroup in Zy of the
order D. We then analyze the accepting probability Q(D) as a polynomial in D
for a given oracle sequence O.

The major difference from the argument of Koiran et al. is an algebraic
structure behind the oracles. In the cases of the GS and GDS problems, the
subgroup is hidden in the single oracle. However, it is hidden in the correlation
among D oracles in our setting. Recall that ' = x + k for some k € K if and
only if O(2’) = O(z) in Simon’s problem. We need to reveal a similar algebraic
structure to analyze of the degree of Q(D).

Our idea is to characterize the order of oracles in the sequence O by the hid-
den subgroup K. Actually, we demonstrate that the definition of O is equivalent
with the statement that 2’ = x + k; for k; € K if and only if for k; € K there
exists some permutation o; over {0,...,D — 1} it holds O(z') = 0;0(z).

8 A. Kawachi and Y. Naito

Let us consider a small example K = {0", ky, ko, k1 + ko } < Z% for p = 2 and
D =4, where ki # ko € Z3 \ {0"}. The oracle sequence is defined as

O(z) = (Oo(x), Og(x + k1), Oo(x + k2), Oo(x + k1 + k2))
= (O(o,o)(x)»0(0,1)(@»0(1,0)(%)70(1,1)($))

with some special indexing of the oracles. Then, we can see that

O(JZ + k‘1) = (Oo(l‘ + kl), Oo(l‘), 00(33‘ + k1 + k‘g), OQ(JT =+ kg))

= (0(0,0)+(0,1)($)7 O(o,1)+(0,1)($); 0(1,0)+(0,1)($)7 0(1,1)+(0,1)(95))
= (0(0,1)(55)»0(0,0)(5U),0(1,1)@),0(1,0)(55))'

Similarly, we have

Oz + ko) = (01,0 (), 0(1,1)(95)7 O(0,0) (), 0(0,1)(95))
O(x + k1 + k2) = (O1,1)(2), 0(1,0)(2), O0,1)(2), O(0,0) (7))

Hence, every k € K corresponds to some permutation over the order of the
oracles.

From the above characterization, we develop a variant of the argument of
Koiran et al. based on the polynomial method with the analogous property of
the oracle sequence that O(z + k;) = 0;0(x) instead of the one of Simon’s
problem that O(z+k) = O(x). As is obvious, the analogous property is different
from that of Simon’s problem, and hence, we need to fill this gap with other
technical tricks in our proof.

3 Preliminaries

Before describing the main result, we briefly discuss the formal treatment of
quantum query algorithms.

In the context of quantum query complexity, we usually assume the following
framework for quantum query algorithms. A quantum algorithm A© with a given
oracle O has quantum memory of three registers |z)|y}|z), where the first one is
the query register which stores a query to O, the second one is the answer register
which stores an answer from O, and the third one is the working register which
stores all the other than the query and answer registers. Let Up be the oracle
gate of O : X — Y that acts on the query and answer registers: Up|z)|y) =
|2)|O(z) @ y) for every € X and every y € Y. A starts with the initial state
|0)|0)]0), and applies an arbitrary unitary operator to all the three registers and
then applies Up to the two registers alternatively. Then, the A®’s final state is
provided as |¢r) = Ur(Up @ INUr—1 -+ - U1 (Up & I)Up|0)]0)]0).

The A9’s output can be obtained by measuring a part of the final state in
the computational basis. Note that this formulation allows A to make adaptive
queries. In other words, A can make a query that depends on the answers to the
previous queries.

Quantum Query Lower Bounds for Key Recovery Attacks 9

In this paper, we need to deal with multiple oracles such as 7 and EM.
We formulate the quantum query model with multiple oracles Oy, O1,...,0On_1
by the model with a single oracle O : {0,1,...,N — 1} x X — Y defined as
O(i,z) := O;(z). In the framework for quantum query algorithms, this oracle
can be implemented as Upli, 2)|y)|z) = |i,2)|0;(x) & y)|z) by extending the
query register.

As described in Sect. 2, we also consider a special query model referred to
as the synchronized query model. A quantum query algorithm A receives N
answers Og(z),...,On—1(z) simultaneously on a single query x at its oracle call
in the synchronized query model. Formally, the oracle call can be implemented
as Uo|z)|yo, - - - yn—1) = |2)|O0(x) ® Yo, - .., On_1(x) ® yn—_1). Similarly to the
standard query model, A applies an arbitrary unitary operator to the registers,
and then, the oracle operator Up, with the all-zero initial state. We count the
number of queries as the number of Uy used in the algorithm. We also regard the
oracle O as a function O : X — Y by setting O(z) := (Og(z),...,0n_1())
in this model.

As mentioned in Sect. 1, any quantum algorithm in the standard query model
can be converted to the one in the synchronized query model from the following
proposition. The proof is easily done by a standard reduction.

Proposition 1. Let A be any quantum query algorithm with T queries in the
standard query model. Then, there exists A’ with 2T queries in the synchronized
query model such that A’'’s output distribution is identical with A’s one.

From Proposition 1, if we obtain a query lower bound of T in the synchronized
query model, we also obtain a query lower bound of 7'/2 in the standard query
model. Thus, we focus on the synchronized query model in the remaining part
of this paper.

We next discuss our target problem to prove the quantum query lower bounds
for the key recovery of the EM cipher. As done in [11], we work on a decisional
version of attacks against the EM cipher. In the key recovery problem for the
EM cipher, we need to deal with multiple oracles such as m and EM, unlike
the GDS problem. We are given two oracles Oy := m and Oy := EM, where
Og : Z% — Z% is a public permutation and Oq(z) = m(x ® k1) @ ko for secret
keys ki, ke € Z5. Then, the task is to recover k1, ko via queries to Oy and O;.
We focus on a special case ko = 0™ of the key recovery problem since a lower
bound for this special case implies that for the general case.

To apply the polynomial method similarly to [11], we consider a generalized
version of the key recovery problem. One of the main technical contributions is a
formalization of the generalized version, named generalized decisional inner-key
only EM cipher (GDIKEM) problem, that is suitable for proving query lower
bounds.

Note that query lower bounds of the key recovery problem in the standard
query model can be obtained from the GDIKEM problem in the query synchro-
nized model by Proposition 1. Therefore, we can suppose that a quantum query
algorithm is provided an oracle sequence O(x) = (Og(x),...,0On—_1(x)) in the

10 A. Kawachi and Y. Naito

definition of the GDIKEM problem rather than a set of oracles Og,...,On_1

separately.
Before the definition of the GDIKEM problem, we consider a special index
system I = {(do,...,%a—1) : %0,...,%d—1 € Zyp} for the oracle sequences O. Let

K be any subgroup of Z; of order D = p?. We fix the lexicographic first set
{g&, ..., g% |} of generators for K. Then, any element k; € K can be associated

with ¢ € I to satisfy k; := Z?;é ijg]K. Note that k; + k; = ki for ki ky € K.
For simplification, let 0 denote 0¢. We sometimes identify I with {0,1,...,D—1}
by the lexicographical order.

To formulate the GDIKEM problem, we define a set of oracle sequences of

length D as O(x) = (O;(x))icr, where O; : Z; — Zy is a permutation. Let
Fp:= {O 13K < Zy (|K| = D),Vz € Z,,Vi € I,0;(x) = Oo(z + kl)},

where D = p? for some d. For O € Fp, we say that O hides a subgroup K.

Note that Fy is a set of the oracles O(x) = (Op(z),01(z)) = (Og(x +
0"),00(z + k1)) for a subgroup K = {0",k;} in the case when D = p = 2,
which corresponds to instances of the EM cipher only with an inner key k; and
public random permutation Oy.

From the following reason, we can see that every O € Fp hides the unique
subgroup K of order D. Assume that O hides two distinct subgroups K and
K’ of order D. For k' € K’ \ K, there exists some index ¢ O;(z) = Op(x + k).
Then, some k € K is associated with the index 4, and thus, O;(z) = Og(z + k).
Hence, Og(z + k') = Op(z + k). However, since z + k # x + k', Op cannot be
a permutation. This is a contradiction. Therefore, a subgroup hidden by O is
unique.

By analogy with the GDS problem, it would be natural to define the distin-
guishing task between oracle sequences from Fj, and F;. However, these oracle
sequences from F), and F; are of different output lengths. To align the lengths,
we pad redundant oracles to them. We define a set F p,n of oracle sequences
of length N O = (Oo,...,0ONn_1) such that (Og,...,Op_1) € Fp and O; is an
arbitrary permutation over Z; for i > D.

Now, we define the GDIKEM problem as follows.

GDIKEM Problem o o
Input: an oracle O that satisfies (i) O € Fp n or (ii) O € Fy n.
Output: “accept” if (i) or “reject” if (i4).

F} contains all the permutations over ZZ, and hence, 13‘1, N 1s the set of all

the possible sequences permutations over Zj of length N. On the other hand,
F, contains pairs of the permutations (Og(z), Og(x + k1)) for some subgroup
K = {0™,k1} of order 2 in the case when D = p = 2. Therefore, FLN and
FQ’ ~ correspond to the sets of accepting and rejecting instances of a decisional
version (with redundant N — 2 padded oracles) of the attack against EM cipher,
respectively.

Quantum Query Lower Bounds for Key Recovery Attacks 11

In this paper, we show that every quantum algorithm A requires Q(n) queries
if AC accepts for a randomly chosen oracle O in the case (1) with at most € and
for a randomly chosen oracle in the case (ii) with least 1 — ¢, where € is a fixed
constant. If there exists a key-recovery quantum algorithm for permutations
Op(z) and O; (z) = Og(x+k1) with some ky # 0™, it also works for the GDIKEM
problem. Thus, query lower bounds of the GDIKEM problem imply those of the
key recovery.

4 Proof Sketch of Quantum Query Lower Bounds

We briefly sketch the proof of quantum query lower bounds for key recovery
attacks against the EM cipher in this section. Most of technical details are omit-
ted due to space limitations. See the full version to be published for the omitted
details.

As used in the previous result of Koiran et al. [11], we characterize the accep-
tance probability of any quantum algorithm for the oracle O from a set of par-
tial functions whose domain size by the number of queries using the polynomial
method [2].

We say f extends s, which is also denoted by f 2 s, if s(x) = f(x) for
every x € Dom(s). For any function f : X — Y and any partial function
s: X =YV, we define

L(f) = {1 if f extends s; _ H Aug(f),

0 otherwise. seDom(s),

s(x)=7

where A, 5(f) =11if f(z) =g and A, 5(f) = 0 otherwise.

Similarly to [11], we can prove the following characterization (Theorem 1) of
the acceptance probability with respect to Is(f) even in the synchronized query
model. The proof follows from the same argument as the one of the standard
polynomial method. (We omit its proof.)

Theorem 1. Let A be any quantum algorithm with T queries in the synchro-
nized query model. Then, there exists a set S of partial functions s : X — YN
such that A accepts f with probability P(f) := > g csIs(f) for some real num-
bers cs, where |Dom(s)| < 2T.

As stated in Sect. 1, we focus on the degree of a polynomial that represents
accepting probability of a quantum algorithm to prove the query lower bounds
by the polynomial method.

In Sect. 3, we defined the GDIKEM problem to naturally fit some generalized
decisional version of the attack against the EM cipher. From technical reasons, we
focus on another equivalent formulation of the oracle set shown in the following
lemma. (We omit its proof.)

12 A. Kawachi and Y. Naito
Lemma 1. Suppose that O hides a subgroup K. Then, we have
FD:{O:EIK<ZZ (|[K| = D)
Vie ILVe,No' € Zy, o' =x+k;i (ki € K) < O(z') = aiO(x)}.

From technical reasons, we define a subset F}, := Fp N {0 : O € I} of
the oracles. The set IIx of permutations is defined as follows. Let K be the
subgroup hidden by O. We consider the coset decomposition of Z for K: Z; =
Uj<n/pici + K} for some fixed representatives, where co := 0" and N := |ZZ\ =
p". To construct I, for every sequence (ao, ..., a.n/py—1) of distinct N/D ele-
ments, we put a permutation 7 into Ilx such that m(co) = ao, ..., 7(c(n/py-1) =
a(n/py—1 and the remaining values w(z) for = ¢ co,...,c(n/p)—1 are deter-
mined by the lexicographically first sequence of N — (N/D) elements exclud-
ing ao, ..., a(n/py—1 from Zy. Therefore, any permutation in Ik is determined
uniquely by specifying the values 7(co),...,m(c(nv/py—1), and thus, [Ix| =
p(p" — 1)---(p" — (p"~¢ — 1)). We also define its padded version FB’N by
the same manner as FDJV.

We now provide a formal statement of our main theorem.

Theorem 2. Let p be any prime, and let € be any constant in (0,1/2). Suppose
that A is any quantum algorithm with adaptive T' = T(n) quantum queries to a
given oracle O : Zy — (ZZ)N, where O is sampled uniformly from (i) F; \ or
(i) Fl*N for any fized N > p. If A© accepts with at least 1 — € in the case (i)
and with at most € in the case (ii), it holds that T = Q(n).

Immediately from Proposition 1 and Theorem 2, we obtain a quantum query
lower bound of Q(n) to recover secret keys in the EM cipher with constant
success probability in the standard query model.

Proof of Theorem 2. We analyze the accepting probability that A© accepts
for an oracle O € FD n- From Theorem 1, the accepting probability is

Z ZCgIg(O): Z ch H Ax,g(é)
Ocky 5€8 O€F}, v 3€S zeDomS,g=3(z)

for some set S of partial functions. O

We convert this multivariate polynomial P(O) in {A, 5(0)},.4 into another
univariate polynomial Q(D) in D by averaging the redundant oracles, namely,

> PO).

D’N| OeF}

QD) :=

Recall that O is padded with N — D redundant oracles to align the length of
the oracle sequences. From the following lemma (Lemma 2), we can ignore such
redundant oracles for the degree analysis of Q(D). (We omit its proof.)

Quantum Query Lower Bounds for Key Recovery Attacks 13

Lemma 2. There exists a set of partial functions S such that for every O € Fp

we have
= (g7 2 L0

O€cF} ses

The following lemma shows deg(Q(D)) is upper-bounded by the domain size
of partial functions s.

Lemma 3. Let A be any quantum algorithm with T' queries in the synchronized
query model. Then, we have deg(Q(D)) < maxsecg|Dom(s)|.

By combining Theorem 1 and Lemma 3, the lower bound of T" can be reduced
to that of the degree of Q(D). Koiran et al. provided the degree analysis in [11],
which we apply in our proof.

Theorem 3 (Koiran et al. [11]). Let ¢ > 0 and £ > 1 be constants and let P
be a real polynomial with following properties: (i) |P(£%)| < 1, for any integer
0 <i<mn, and (it) |dP(xo)/dz| > ¢, for some real number 1 < zo < &. Then

deg(P) > min {n/2, (logy (¢"F3¢) — 1)/ <log2 (55_3 1) + 1> } .

Let A be any quantum algorithm solving GDIKEM problem for | K| = p with
bounded error probability € and T' queries in the synchronized query model. A°
rejects if | K| = 1 holds in GDIKEM problem, and A accepts if |K| = p. Then,
0<1Q(P) <10 <i<n)and Qp) > 1—¢ (k< n), Q1) < € holds
from the property of A. Therefore, for the derivative of the polynomial @, Q
satisfies [dQ(xg)/dD| > 11;_215 for some zq (1 < z¢ < p) and Q(p*) € [0, 1] for any
i € {0,...,n}. By applying Theorem 3 to the polynomial P = 2@Q) — 1, we obtain
the following inequality

deg(Q) > min {n/?, (10g2 <g(2 - 46)) - 1> / <1og2 (;%) + 1)} = Q(n).

Therefore, the remaining task for the proof of the lower bound is to show
Lemma 3.

Proof of Lemma 3. From Lemma 2, we have
_ ’
e X X n0)= Y0
O€eF} ses seS

1
where Q;(D) ::W E IS(O):OI;};* [ODs].
Dl ocerp, p

It suffices to show that deg(Qs(D)) < |Dom(s)| for every s € S. O

We can assume that the identity 0" is in Dom(s) for every partial function s
by modifying a given algorithm A as follows. At the beginning, A makes the query

14 A. Kawachi and Y. Naito

0" with the initial state |07)[(0")P)|0™), stores O(0™) in the answer register,
and swaps the answer register with a part of the working register. Afterwards,
A applies the original operations to the zero-cleared registers except for the part
that stores O(0™). Then, every s € S contains 0" in its domain, and the modified
algorithm keeps the original accepting probability and has the number T+ 1 of
queries if the original is T. Therefore, we can obtain a lower bound of T' from
the modified algorithm.

A= {a" : 3 € 1,5(a™) = oys(a™)}
and
abl, .., alvr € Al
(s a®l, .., a® ¢ A?
Dom(s) := .)
a®l . abve € AV

where a1 := 0".

By Lemma 1, we observe that ' = x + k¢ (ks € K) < O(2') = 0,0(z) for
every i € I and every O € F}, that hides K. Since O(a*’) = 0,0(a*!) < a® =
att+ky — a —abl = 0"+ ky — O(a™ —a®) = 0,0(0"), O(a™?) = 0,0(a’?t) if
and only if O(a™/ —a®') = 0,0(0") for every i, j, every £ € I and every O € F},.

Then, we modify s into another partial function s by modifying s as follows.
Let s(a®l) = oys(a®!) for some ¢ € I. We set 5(a) := s(a) for every a €
Dom(s)\{a®’}. Since 0" € Dom(s), we can also set §(a*/ —a®!) := a,5(0™). Note
that Dom(3) = (Dom(s)\{a"?})U{a®/ —a®'}, and hence, |Dom(s)| = |[Dom(s’)|.
From the modification, O extends s if and only if O extends §, and thus, we can
analyze the probability that O extends s instead of s.

From the above modification, we can suppose that Dom(s) = A'UA2U- - -UAY
has the following form without loss of generality.

abl, ..., abvr e AL,

a®! € A?,
Dom(s) = :)

aw,l c AW

where a®! := 0",
Let K’ := (Al) and let D" := |K’| = p? for some d'. For O € F}, that hides
K, let

£(0)

U\ 3, € 1:0(a™) = %o(on)}

i=1

We define

QFD)= Pr [£(0)], Q°(D)= Pr [035‘5(0)].

O€F;, O€F},

Quantum Query Lower Bounds for Key Recovery Attacks 15

Note that Q4(D) = QE(D) - Q¢ (D) since £(0) holds if O D s.
Since deg(Qs(D)) = deg(QF(D)) + deg(Q% (D)), it suffices to estimate
deg(QF(D)) and deg(QS (D)), which are given in Lemma 4. (We omit its proof.)

Lemma 4. We have deg(QF(D)) < vy — 1 and deg(Q% (D)) < w.

5 Concluding Remarks

The oracle distribution (that is uniform over F'}y) used for the quantum query
lower bounds is artificially biased because of the condition “O € Ilg” in the
definition of F7},. This condition is crucial in the proof of Lemma 4 to show
deg(QY (D)) < w, although we omitted the technical details in this conference
version due to space limitations. It is natural to use the uniform distribution
over Fp to prove the average-case lower bounds, but the polynomial method
fails because Q¢ (D) could be then exponential rather than polynomial. (See the
full version for more details.) Hence, we need new proof techniques for quantum
query lower bounds in the natural average case.

The obvious open problem is to prove the quantum security of classically
secure variants of the EM cipher such as Iterated EM cipher [5] and SoEM [6], but
there seem to be no approaches to them so far. The algebraic characterization of
the oracle used in this paper could help to establish security proofs for quantum
adversaries.

Acknowledgments. This work was supported by JSPS Grant-in-Aid for Scientific
Research (A) Nos. 21H04879, 23H00468, (C) No. 21K11887, JSPS Grant-in-Aid for
Challenging Research (Pioneering) No. 23K17455, and MEXT Quantum Leap Flagship
Program (MEXT Q-LEAP) Grant Number JPMXS0120319794.

References

1. Alagic, G., Bai, C., Katz, J., Majenz, C.: Post-quantum security of the Even-
Mansour cipher. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2022. LNCS, vol. 13277, pp. 458-487. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-07082-2_17

2. Beals, R., Buhrman, H., Cleve, R., Mosca, M.: Quantum lower bounds by polyno-
mials. J. ACM 48(4), 778-797 (2001)

3. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tis-
chhauser, E.: Key-alternating ciphers in a provable setting: encryption using a small
number of public permutations. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 45-62. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4.5

4. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Yu., Schrottenloher,
A.: Quantum attacks without superposition queries: the offline Simon’s algorithm.
In: Galbraith, S.D., Moriai, S. (eds.) ASTACRYPT 2019. LNCS, vol. 11921, pp.
552-583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_20

https://doi.org/10.1007/978-3-031-07082-2_17
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-030-34578-5_20

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Kawachi and Y. Naito

Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327—
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_19
Chen, Y.L., Lambooij, E., Mennink, B.: How to build pseudorandom functions from
public random permutations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11692, pp. 266-293. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26948-7_10

Daemen, J.: Limitations of the Even-Mansour construction. In: Imai, H., Rivest,
R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495-498.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_46

Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptol. 10(3), 151-162 (1997)

Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the 28th ACM Symposium on Theory of Computing, pp. 212-218
(1996)

Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207-237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5_8

Koiran, P., Nesme, V., Portier, N.: The quantum query complexity of the abelian
hidden subgroup problem. Theoret. Comput. Sci. 380, 115-126 (2007)
Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In: IEEE International Symposium on Infor-
mation Theory, pp. 2682—-2685. IEEE (2010)

Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher.
In: Proceedings of the International Symposium on Information Theory and Its
Applications, pp. 312-316 (2012)

Shinagawa, K., Iwata, T.: Quantum attacks on sum of Even-Mansour pseudoran-
dom functions. Inf. Process. Lett. 173, 106172 (2022)

Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. STAM J. Comput. 26(5), 1484-1509 (1997)
Simon, D.R.: On the power of quantum computation. STAM J. Comput. 26(5),
1474-1483 (1997)

Zhandry, M.: How to construct quantum random functions. In: 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, pp. 679-687 (2012)
Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11693, pp. 239-268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7_9

https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-030-26948-7_10
https://doi.org/10.1007/978-3-030-26948-7_10
https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

®

Check for
updates

Extended Formulations via Decision
Diagrams

1,2() 1,2

, Haruki Hamasaki ,
3

Yuta Kurokawa!, Ryotaro Mitsuboshi
Kohei Hatano'2®, Eiji Takimoto!'®, and Holakou Rahmanian

! Kyushu University, Fukuoka, Japan
ryotaro.mitsuboshi@inf.kyushu-u.ac. jp
2 Riken AIP, Tokyo, Japan
3 Amazon, Tokyo, Japan

Abstract. We propose a general algorithm of constructing an extended
formulation for any given set of linear constraints with integer coeffi-
cients. Our algorithm consists of two phases: first construct a decision
diagram (V, E') that somehow represents a given m X n constraint matrix,
and then build an equivalent set of |E/| linear constraints over n + |V|
variables. That is, the size of the resultant extended formulation depends
not explicitly on the number m of the original constraints, but on its
decision diagram representation. Therefore, we may significantly reduce
the computation time and space for optimization problems with integer
constraint matrices by solving them under the extended formulations,
especially when we obtain concise decision diagram representations for
the matrices. We demonstrate the effectiveness of our extended formu-
lations for mixed integer programming and the 1-norm regularized soft
margin optimization tasks over synthetic and real datasets.
Eligible for best student paper.

Keywords: Extend formulation - Decision diagrams - Mixed integer
programs

1 Introduction

Large-scale optimization tasks appear in many areas such as machine learning,
operations research, and engineering. Time/memory-efficient optimization tech-
niques are more in demand than ever. Various approaches have been proposed to
efficiently solve optimization problems over huge data, e.g., stochastic gradient
descent methods (e.g., [8]) and concurrent computing techniques using GPUs
(e.g., [26]). Among them, we focus on the “computation on compressed data”
approach, where we first compress the given data somehow and then employ an
algorithm that works directly on the compressed data (i.e., without decompress-
ing the data) to complete the task, in an attempt to reduce computation time
and/or space. Algorithms on compressed data are mainly studied in string pro-
cessing (e.g., [12,13,18,19,28]), enumeration of combinatorial objects (e.g., [21]),
and combinatorial optimization (e.g., [2]). In particular, in the work on combina-
torial optimization, they compress the set of feasible solutions that satisfy given

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 17-28, 2024.
https://doi.org/10.1007/978-3-031-49193-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_2&domain=pdf
http://orcid.org/0000-0003-2277-6750
http://orcid.org/0000-0001-8393-9002
http://orcid.org/0000-0002-1536-1269
http://orcid.org/0000-0001-9542-2553
https://doi.org/10.1007/978-3-031-49193-1_2

18 Y. Kurokawa et al.

constraints into a decision diagram so that minimizing a linear objective can
be done by finding the shortest path in the decision diagram. Although we can
find the optimal solution very efficiently when the size of the decision diagram is
small, the method can only be applied to specific types of discrete optimization
problems where the feasible solution set is finite, and the objective function is
linear.

Whereas, we mainly consider a more general form of discrete/continuous
optimization problems that include linear constraints with integer coefficients:

JJuin f(x) st. Az >b (1)
for some A € C"™*" and b € C™, where X denotes the constraints other than
Ax > b, and C is a finite subset of integers. This class of problems includes LP,
QP, SDP, and MIP with linear constraints of integer coefficients. So our target
problem is fairly general. Without loss of generality, we assume m > n, and we
are particularly interested in the case where m is huge.

In this paper, we propose a pre-processing method that “rewrites” integer-
valued linear constraints with equivalent but more concise ones. More precisely,
we propose a general algorithm that, when given an integer-valued constraint
matrix (A4, b) € C™*" x C™ of an optimization problem (1), produces a matrix
(A")b) € Cm'x(n4n’) 5 0™ that represents its extended formulation, that is, it

holds that
x

HseiR”,A/{
S

} >b < Az >b

for some n' and m/, with the hope that the size of (A’,b’) is much smaller than
that of (A, b) even at the cost of adding n’ extra variables. Using the extended
formulation, we obtain an equivalent optimization problem to (1):

Mfm&tmmzw (2)
rEXCR",s€R™ S

Then, we can apply any existing generic solvers, e.g., MIP/QP /LP solvers if
f is linear or quadratic, to (2), combined with our pre-processing method, which
may significantly reduce the computation time/space than applying them to the
original problem (1).

To obtain a matrix (A’,b’), we first construct a variant of a decision dia-
gram called a Non-Deterministic Zero-Suppressed Decision Diagram (NZDD,
for short) [11] that somehow represents the matrix (A,b). Observing that the
constraint Az > b can be restated in terms of the NZDD constructed as “every
path length is lower bounded by 0” for an appropriate edge weighting, we estab-
lish the extended formulation (A’,b') € C™ *(+n') s 0™ with m/ = |E| and
n' = |V|, where V and E are the sets of vertices and edges of the NZDD,
respectively. One of the advantages of the result is that the size of the resulting
optimization problem depends only on the size of the NZDD and the number n
of variables, but not on the number m of the constraints in the original problem.
Therefore, if the matrix (A, b) is well compressed into a small NZDD, then we
obtain an equivalent but concise optimization problem (2).

Extended Formulations via Decision Diagrams 19

To clarify the differences between our work and previous work regarding
optimization using decision diagrams, we summarize the characteristics of both
results in Table 1. Notable differences are that (i) ours can treat optimization
problems with any types of variables (discrete, or real), any types of objectives
(including linear ones) but with integer coefficients on linear constraints, and
(ii) ours uses decision diagrams for representing linear constraints while previous
work uses them for representing feasible solutions of particular classes of prob-
lems. So, for particular classes of discrete optimization problems, the previous
approach would work better with specific construction methods for decision dia-
grams. On the other hand, ours is suitable for continuous optimization problems
or/and discrete optimization problems for which efficient construction methods
for decision diagrams representing feasible solutions are not known. See the later
section for more detailed descriptions of related work.

Table 1. Characteristics of previous work on optimization with decision diagrams
(DDs) and ours.

coeff. of lin. variables objectives | DDs
consts.

Previous work ours|any type binary/integer |linear any | feasible solutions
binary/integer |any type type lin. consts.

Then, to realize succinct extended formulations, we propose practical heuris-
tics for constructing NZDDs, which is our third contribution. Since it is not
known to construct an NZDD of small size, we first construct a ZDD of mini-
mal size, where the ZDD is a restricted form of the NZDD representation. To
this end, we use a ZDD compression software called zcomp [30]. Then, we give
rewriting rules for NZDDs that reduce both the numbers of vertices and edges,
and apply them to obtain NZDDs of smaller size of V' and E. Although the rules
may increase the size of NZDDs (i.e., the total number of edge labels), the rules
seem to work effectively since reducing |V| and |E| is more important for our
purpose.

Experimental results on synthetic and real data sets show that our algorithms
improve time/space efficiency significantly, especially when (i) m > n, and (ii)
the set C' of integer coefficients is small, e.g., binary, where the datasets tend to
have concise NZDD representations.

2 Related Work

Various computational tasks over compressed strings or texts are investigated
in algorithms and data mining literature, including, e.g., pattern matching over
strings and computing edit distances or ¢g-grams [12,13,18,19,28]. The common
assumption is that strings are compressed using the straight-line program, which

20 Y. Kurokawa et al.

is a class of context-free grammars generating only one string (e.g., LZ77 and
+LZ78). As notable applications of string compression techniques to data mining
and machine learning, Nishino et al. [25] and Tabei et al. [29] reduce the space
complexity of matrix-based computations. So far, however, string compression-
based approaches do not seem to be useful for representing linear constraints.

Decision diagrams are used in the enumeration of combinatorial objects, dis-
crete optimization and so on. In short, a decision diagram is a directed acyclic
graph with a root and a leaf, representing a subset family of some finite ground
set X or, equivalently, a boolean function. Each root-to-leaf path represents a
set in the set family. The Binary Decision Diagram (BDD) [4,16] and its variant,
the Zero-Suppressed Binary Decision Diagram (ZDD) [16,20], are popular in the
literature. These support various set operations (such as intersection and union)
in efficient ways. Thanks to the DAG structure, linear optimization problems
over combinatorial sets X C {0,1}" can be reduced to shortest/longest path
problems over the diagrams representing X . This reduction is used to solve the
exact optimization of NP-hard combinatorial problems (see, e.g., [2,3,5,14,24])
and enumeration tasks [21-23]. Among work on decision diagrams, the work of
Fujita et al. [11] would be closest to ours. They propose a variant of ZDD called
the Non-deterministic ZDD (NZDD) to represent labeled instances and show
how to emulate the boosting algorithm AdaBoost* [27], a variant of AdaBoost
[10] that maximizes the margin, over NZDDs. We follow their NZDD-based rep-
resentation of the data. But our work is different from Fujita et al. in that, they
propose specific algorithms running over NZDDs, whereas our work presents
extended formulations based on NZDDs, which could be used with various algo-
rithms.

The notion of extended formulation arises in combinatorial optimization (e.g.,
[7,32]). The idea is to re-formulate a combinatorial optimization with an equiv-
alent different form, so that the size of the problem is reduced. For example,
a typical NP-hard combinatorial optimization problem has an integer program-
ming formulation of exponential size. Then a good extended formulation should
have a smaller size than the exponential. Typical work on extended formulation
focuses on some characterization of the problem to obtain succinct formula-
tions (see, e.g., [9]). Our work is different from these in that we focus on the
redundancy of the data and try to obtain succinct extended formulations for
optimization problems described with data.

3 Preliminaries

The non-deterministic Zero-suppressed Decision Diagram (NZDD) [11] is a vari-
ant of the Zero-suppressed Decision Diagram(ZDD) [16,20], representing subsets
of some finite ground set Y. More formally, NZDD is defined as follows.

Definition 1 (NZDD). An NZDD G is a tuple G = (V, E, X, ®), where (V, E)
is a directed acyclic graph (V and E are the sets of nodes and edges, respectively)
with a single root with no-incoming edges and a leaf with no outgoing edges, X

Extended Formulations via Decision Diagrams 21

{b c}

Fig.1. An NZDD representing {{a, b, c},{b}, {b,c,d},{c,d}}.

is the ground set, and @ : E — 2% is a function assigning each edge e a subset
&(e) of X. More precisely, we allow (V,E) to be a multigraph, i.e., two nodes
can be connected with more than one edge.

Furthermore, an NZDD G satisfies the following additional conditions. Let
Pa be the set of paths in G starting from the root to the leaf, where each path
P € Pg is represented as a subset of E, and for any path P € Pg, we abuse the
notation and let ®(P) = Ueep®P(e).

1. For any path P € Pg and any edges e, e’ € P, &(e) N P(e’) = (). That is, for
any path P, an element a € X' appears at most once in P.

2. For any paths P, P’ € Pg, &(P) # ®(P’). Thus, each path P represents a
different subset of X.

Then, an NZDD G naturally corresponds to a subset family of Y. Formally, let
L(G) = {®(P) | P € Pg}. Figurel illustrates an NZDD representing a subset
family {{a, b, c}, {b},{b, c,d}, {c,d}}.

A 7DD [16,20] can be viewed as a special form of NZDD G = (V,E, X,)
satisfying the following properties: (i) For each edge e € E, ®(e) = {a} for some
a € ¥ or P(e) = (. (ii) Each internal node has at most two outgoing edges. If
there are two edges, one is labeled with {a} for some a € X and the other is
labeled with . (iii) There is a total order over X such that, for any path P € Pg
and for any e, ¢’ € P labeled with singletons {a} and {a’} respectively, if e is an
ancestor of €/, a precedes a’ in the order.

We believe that constructing a minimal NZDD for a given subset family is
NP-hard since closely related problems are NP-hard. For example, constructing
a minimal ZDD (over all orderings of X') is known to be NP-hard [16], and
construction of a minimal NFA which is equivalent to a given DFA is P-space
hard [15]. On the other hand, there is a practical construction algorithm of ZDDs
given a subset family and a fixed order over X' using multi-key quicksort [30].

4 NZDDs for Linear Constraints with Binary Coefficients

In this section, we show an NZDD representation for linear constraints in
problem (1) when linear constraints have {0,1}-valued coefficients, that is,
C = {0,1}. We will discuss its extensions to integer coefficients in the later
section. Let a; € {0,1}" be the vector corresponding to the i-th row of the

22 Y. Kurokawa et al.

matrix A € {0,1}*" (for ¢ € [m]). For & € {0,1}", let idx(x) = {j € [n] |
xj # 0}, Le., the set of indices of nonzero components of . Then, we define
I = {idx(¢;) | ¢; = (a;,b;),i € [m]}. Note that I is a subset family of 2[7+1.
Then we assume that we have some NZDD G = (V| E, [n + 1], §) representing
I, that is, L(G) = I. We will later show how to construct NZDDs.

The following theorem shows the equivalence between the original problem
(1) and a problem described with the NZDD G.

Theorem 1. Let G = (V, E,[n+ 1],®) be an NZDD such that L(G) = I. Then
the following optimization problem is equivalent to problem (1):

min f(x) (3)
€ XCR" seRIVI

5.t Sen + Z Th > Sey, Vec€kE,
j€D(e)
Sroot = 0, Sleat = 0,
' = (z,—1),
where e.u and e.v are nodes that the edge e is directed from and to, respectively.

Before going through the proof, let us explain some intuition on problem (3).
Intuitively, each linear constraint in (1) is encoded as a path from the root to the
leaf in the NZDD @, and a new variable s, for each node v represents a lower
bound of the length of the shortest path from the root to v. The inequalities in
(3) reflect the structure of the standard dynamic programming of Dijkstra, so
that all inequalities are satisfied if and only if the length of all paths is larger
than zero. In Fig. 2, we show an illustration of the extended formulation.

Proof. Let x, and (&',8) be the optimal solutions of problems (1) and (3),
respectively. It suffices to show that each optimal solution can construct a feasible
solution of the other problem.

Let & be the vector consisting of the first n components of Z’. For each
constraint a; > b; (i € [m]) in problem (1), there exists the corresponding
path P; € Pg. By repeatedly applying the first constraint in (3 along the path

P;, we have Zeep deﬁ © z > S1ear = 0. Further, since @(Pv) represents the set

of indices of nonzero components of ¢, Y ocp, D jea(e) 25 = € &' = aj & —bi.

By combining these inequalities, we have a; & — b; > 0. This implies that % is a

feasible solution of (1) and thus f(x,) < f(&).

Let o = (@4, —1). Assuming a topological order on V (from the root to the
leaf), we define sy yoot = Sx,leaf = 0 and Sxp = MiNce g e.v=v Sx,e.u + Zjeé(e) sz-
for each v € V'\{root, leaf}. Then, we have, for each e € E s.t. e.v # leaf, sy ¢.p <
Seew + Zjezp(e) z, ; by definition. Now, mineeg e v=leat Sx,e.u + Z]E@(e) z, is
achieved by a path P € Pg corresponding to arg min;¢,,](LTLE* b, Which is
> 0 since x, is feasible w.r.t. (1). Therefore, Sie.v < Swen + Zjeqs(e for
e € E s.t. ev = leaf as well. Thus, («,s,.) is a feasible solution of (3) and

f(@) < fla.).

Extended Formulations via Decision Diagrams 23

|
-
o

[
_ e
—

HErHOOOORRROOO W
OO N

FOFRrRrOROROROR~ =~
CoOrRROORREERERERER N
FHHHEERPRrHOOOOOO &

CoORrHHRrOOOOROOR O
N
v
Coocoocoococooooorrm o

Forocoocooocoo =
coocoroRrRO N
cororoooo O

cocoococoorRroR W
CcoocorrOOR A
(R —

%
Cooocoocooor~o O

cocoroo
o

Fig. 2. An illustration of the extended formulation. Left: Original constraints as in (1).
Middle: A NZDD representation of the left constraints. Right: The matrix form (3) of
the middle diagram without constant terms. This example reduces the 13 constraints
to 9 constraints by adding 2 variables.

Given the NZDD G = (V, E), problem (3) contains n + |V| — 2 variables
and |E| linear constraints, where |V| — 2 variables are real. The most naive
construction, where the resulting NZDD contains two nodes (root and leaf), and
every root-to-leaf path corresponds to a constraint, has the same problem size
as the original one. Thus, the problem size cannot be worse than the original
one. In particular, if problem (1) is LP or IP, then problem (3) is LP, or MIP,
respectively.

5 Extensions to Integer Coefficients

We briefly discuss how to extend our NZDD representation of linear constraints
to the cases where coefficients of linear constraints belong to a finite set C' of
integers. There are two ways to do so.

Binary Encoding of Integers. We assume some encoding of integers in C with
O(log |C]) bits. Then, each bit can be viewed as a binary-valued variable.
Each integer coefficient can be also recovered with its binary representation.
Under this attempt, the resulting extended formulation has O(nlog |C|+|V])
variables and O(|E|) linear constraints.

Extending Y. Another attempt is to extend the domain X of an NZDD G =
(V,E, X, ®). The extended domain X’ consists of all pairs of integers in C
and elements in Y. Again, integer coefficients are recovered through the new
domain X’. The resulting extended formulation has O(n|C| + |V]) variables
and O(|E|) linear constraints. While the size of the problem is larger than the
binary encoding, its implementation is easy in practice and could be effective
for C' of small size.

6 Construction of NZDDs

We propose heuristics for constructing NZDDs given a subset family S C 2*.
We use the zcomp [30,31], developed by Toda, to compress the subset family

24 Y. Kurokawa et al.

S to a ZDD. The zcomp is designed based on multikey quicksort [1] for sorting
strings. The running time of the zcomp is O(N log? [S]), where N is an upper
bound of the nodes of the output ZDD and |S| is the sum of cardinalities of sets
in S. Since N < |5/, the running time is almost linear in the input.

A naive application of the zcomp is, however, not very successful in our
experiences. We observe that the zcomp often produces concise ZDDs compared
to inputs. But, concise ZDDs do not always imply concise representations of
linear constraints. More precisely, the output ZDDs of the zcomp often contains
(i) nodes with one incoming edge or (ii) nodes with one outgoing edge. A node
v of these types introduces a corresponding variable s, and linear inequalities.
Specifically, in the case of type (ii), we have s, < qus(e) 2% + Se. for each
e € E s.t. e.v = v, and for its child node v’ and edge €’ between v and v’, s,» <
> jed(e) z; + s,. These inequalities are redundant since we can obtain equivalent
inequalities by concatenating them: s,/ < Zje(p(e,) z; +Ej€q§(e) zé + 8,4 for each
e € E s.t. e.v = v, where s, is removed.

Based on the observation above, we propose a simple reduction heuristics
removing nodes of type (i) and (ii). More precisely, given an NZDD G = (V, E),
the heuristics outputs an NZDD G’ = (V', E’) such that L(G) = L(G’') and G’
does not contain nodes of type (i) or (ii). The heuristics can be implemented in
O(IV'| + |E'| 4+ X .cp |P(e)]) time by going through nodes of the input NZDD
G in the topological order from the leaf to the root and in the reverse order,
respectively. The details of the heuristics is given in the full paper [17].

7 Experiments

We show preliminary experimental results on synthetic and real large data sets'.
The tasks are, the mixed integer programming, and the 1-norm regularized soft
margin optimization (see the full paper for details). Our experiments are con-
ducted on a server with 2.60 GHz Intel Xeon Gold 6124 CPUs and 314 GB mem-
ory. We use Gurobi optimizer 9.01, a state-of-the-art commercial LP solver. To
obtain NZDD representations of data sets, we apply the procedure described
in the previous section. The details of preprocessing of data sets and NZDD
representations are shown in the full paper.

7.1 Mixed Integer Programming on Synthetic Datasets

First, we apply our extended formulation (1) to mixed integer programming tasks
over synthetic data sets. The problems are defined as the linear optimization with
n variables and m linear constraints of the form Ax > b, where (i) each row of
A has k entries of 1 and others are Os and nonzero entries are chosen randomly
without repetition (ii) coefficients a; of linear objective >, a;z; is chosen from
1,...,100 randomly, and (iii) first ! variables take binary values in {0,1} and

! Codes are available at https://bitbucket.org/kohei_hatano/codes_extended_formula
tion_nzdd/.

https://bitbucket.org/kohei_hatano/codes_extended_formulation_nzdd/
https://bitbucket.org/kohei_hatano/codes_extended_formulation_nzdd/

Extended Formulations via Decision Diagrams 25

others take real values in [0,1]. In our experiments, we fix n = 25,k = 10,
[=12 and m € {4 x 10%,8 x 10°...,20 x 10°}. We apply the Gurobi optimizer
directly to the problem denoted as mip and the solver with pre-processing the
problem by our extended formulation (denoted as nzdd mip, respectively. The
results are summarized in Fig. 3. Our method consistently improves computation
time for these datasets. This makes sense since it can be shown that when m =
O(n*) there exists an NZDD of size O(nk) representing the constraint matrix.
In addition, the pre-processing time is within 2s in all cases.

Mem. consumption [MB] Computation time [sec]
8000 - ’
o 4000 /
7000 o S
ol T I'
6000 ’_,,—” 3000
5000 P o
e K
4000 —o 2000 Ve
3000 L
7 e T 4
2000 T 1000 = e
2000 4+ e e —
0 0
0.2 0.4 0.6 0.8 1.0 12 14 1.6 0.2 0.4 0.6 0.8 1.0 12 1.4 16
of constraints 1e6 # of constraints 1e6
---- mip —— nzdd_mip

Fig. 3. The comparison for synthetic datasets of a MIP problem. The horizontal axis
represents the number of constraints of the original problem.

7.2 1-norm Soft Margin Optimization on Real Data Sets

Next, we apply our methods on the task of the 1-norm soft margin optimiza-
tion. This problem is a standard optimization problem in the machine learning
literature, categorized as LP, for finding sparse linear classifiers given labeled
instances. Details of this problem is shown in the full paper. We compare the
following methods using a naive LP solver, (i) previous formulation (denoted as
naive), (ii) our formulation over NZDD (denoted as nzdd_naive). Formulations
of both (i) and (ii) is placed in the full paper. We measure its computation
time (CPU time) and maximum memory consumption, respectively, and com-
pare their averages over parameters. Further, we perform 5-fold cross validation
to check the test error rates of our methods on real data sets. In fact, the test
error rates are similar between methods for (i) and (ii). This means our extended
formulation is comparable to the standard one in terms of generalization perfor-
mance. Details of the cross validation is omitted and shown in the full paper.
We compare methods on some real data sets in the libsvin datasets [6] to see
the effectiveness of our approach in practice. Generally, the datasets contain huge
samples (m varies from 3 x 10* to 107) with a relatively small size of features
(n varies from 20 to 10°). The features of instances of each dataset is trans-
formed into binary values. Results are summarized in Fig.4. Note that these
results exclude NZDD construction times since the compression takes around

26 Y. Kurokawa et al.

1s, except for the HIGGS dataset (around 13s). Furthermore, the construction
time of NZDDs can be neglected in the following reason: We often need to try
multiple choices of the hyperparameters (v in our case) and solve the optimiza-
tion problem for each set of choices. But once we construct an NZDD, we can be
re-use it for different values of hyperparameters without reconstructing NZDDs.

ada art-1e5 real-sim HIGGS

BE nzdd_naive B naive

Fig. 4. Comparison of computation times (sec.) for real data sets of the soft margin
optimization problem. The y-axis is plotted in the logarithmic scale.

8 Conclusion

We proposed a generic algorithm of constructing an NZDD-based extended for-
mulation for any given set of linear constraints with integer constraints as well as
specific algorithms for the 1-norm soft margin optimization and practical heuris-
tics for constructing NZDDs. Our algorithms improve time/space efficiency on
artificial and real datasets, especially when the datasets have concise NZDD
representations.

Acknowledgements. We thank the reviewers for helpful comments. We also thank
Mohammad Amin Mansouri for valuable discussions and initial development. This
work was supported by JSPS KAKENHI Grant Numbers JP19H014174, JP19H04067,
JP20H05967, and JP22H03649, respectively.

References

1. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1997), pp. 360-369 (1997)

2. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.: Decision Diagrams for
Optimization. Springer Cham (2016). https://doi.org/10.1007/978-3-319-42849-9

3. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20-35. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21311-3.5

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C-35(8), 677691 (1986)

https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1007/978-3-642-21311-3_5
https://doi.org/10.1007/978-3-642-21311-3_5

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Extended Formulations via Decision Diagrams 27

Castro, M.P., Cire, A.A., Beck, J.C.: An MDD-based Lagrangian approach to the
multicommodity pickup-and-delivery TSP. INFORMS J. Comput. 32(2), 263-278
(2019). https://doi.org/10.1287/1JOC.2018.0881

Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(27), 1-27 (2011)

Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial
optimization. 40R 8(1), 1-48 (2010)

Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121-2159 (2011)
Fiorini, S., Huynh, T., Weltge, S.: Strengthening convex relaxations of 0/1-sets
using Boolean formulas. Math. Program. 190(1), 467-482 (2021)

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119-139 (1997)
Fujita, T., Hatano, K., Takimoto, E.: Boosting over non-deterministic ZDDs. The-
oret. Comput. Sci. 806, 81-89 (2020)

Goto, K., Bannai, H., Inenaga, S., Takeda, M.: Fast g-gram mining on SLP com-
pressed strings. J. Discrete Algorithms 18, 89-99 (2013)

Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for
accelerating edit-distance computation via text-compression. In: Proceedings of
the 26th International Symposium on Theoretical Aspects of Computer Science
(STACS 2009), LIPIcs, vol. 3, pp. 529-540 (2009)

Inoue, T., et al.: Distribution loss minimization with guaranteed error bound. IEEE
Trans. Smart Grid 5(1), 102-111 (2014)

Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput.
22(6), 1117-1141 (1993)

Knuth, D.E.: The Art of Computer Programming, vol. 4A, Combinatorial Algo-
rithms, Part 1. Addison-Wesley Professional, Upper Saddle River (2011)
Kurokawa, Y., Mitsuboshi, R., Hamasaki, H., Hatano, K., Takimoto, E., Rahma-
nian, H.: Extended formulations via decision diagrams (2022)

Lifshits, Y.: Processing compressed texts: a tractability border. In: Ma, B., Zhang,
K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228-240. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73437-6_24

Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups - Complex-
ity - Cryptology 4(2), 241-299 (2012)

Minato, S.I.: Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In: Proceedings of the 30th International Design Automation Conference
(DAC 1993), pp. 272-277 (1993)

Minato, S.I.: Power of enumeration - recent topics on BDD/ZDD-based techniques
for discrete structure manipulation. IEICE Trans. Inf. Syst. E100.D(8), 1556-1562
(2017)

Minato, S.I., Uno, T.: Frequentness-transition queries for distinctive pattern mining
from time-segmented databases. In: Proceedings of the 2010 STAM International
Conference on Data Mining (SDM), pp. 339-349 (2010)

Minato, S., Uno, T., Arimura, H.: LCM over ZBDDs: fast generation of very large-
scale frequent itemsets using a compact graph-based representation. In: Washio,
T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol.
5012, pp. 234-246. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68125-0_22

Morrison, D.R., Sewell, E.C., Jacobson, S.H.: Solving the pricing problem in a
branch-and-price algorithm for graph coloring using zero-suppressed binary deci-

https://doi.org/10.1287/IJOC.2018.0881
https://doi.org/10.1007/978-3-540-73437-6_24
https://doi.org/10.1007/978-3-540-68125-0_22
https://doi.org/10.1007/978-3-540-68125-0_22

28

25.

26.

27.

28.

29.

30.

31.

32.

Y. Kurokawa et al.

sion diagrams. INFORMS J. Comput. 28(1), 67-82 (2016). https://doi.org/10.
1287/1JOC.2015.0667

Nishino, M., Yasuda, N., Minato, S.I., Nagata, M.: Accelerating graph adjacency
matrix multiplications with adjacency forest. In: Proceedings of the 2014 STAM
International Conference on Data Mining (SDM 2014), pp. 1073-1081 (2014)
Raina, R., Madhavan, A., Ng, A.Y.: Large-scale deep unsupervised learning using
graphics processors. In: Proceedings of the 26th Annual International Conference
on Machine Learning (ICML 2009), pp. 873-880 (2009)

Raétsch, G., Warmuth, M.K.: Efficient margin maximizing with boosting. J. Mach.
Learn. Res. 6, 2131-2152 (2005)

Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with
implicit input. In: Diaz, J., Karhumaéki, J., Lepistd, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 15-27. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27836-8_5

Tabei, Y., Saigo, H., Yamanishi, Y., Puglisi, S.J.: Scalable partial least squares
regression on grammar-compressed data matrices. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD 2016), pp. 1875-1884 (2016)

Toda, T.: Fast compression of large-scale hypergraphs for solving combinatorial
problems. In: Firnkranz, J., Hilllermeier, E., Higuchi, T. (eds.) DS 2013. LNCS
(LNAI), vol. 8140, pp. 281-293. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40897-7_19

Toda, T.: ZCOMP: Fast Compression of Hypergraphs into ZDDs (2015). https://
www.sd.is.uec.ac.jp/toda/code/zcomp.html

Yannakakis, M.: Expressing combinatorial optimization problems by Linear Pro-
grams. J. Comput. Syst. Sci. 43(3), 441-466 (1991). https://doi.org/10.1016/0022-
0000(91)90024-Y

https://doi.org/10.1287/IJOC.2015.0667
https://doi.org/10.1287/IJOC.2015.0667
https://doi.org/10.1007/978-3-540-27836-8_5
https://doi.org/10.1007/978-3-540-27836-8_5
https://doi.org/10.1007/978-3-642-40897-7_19
https://doi.org/10.1007/978-3-642-40897-7_19
https://www.sd.is.uec.ac.jp/toda/code/zcomp.html
https://www.sd.is.uec.ac.jp/toda/code/zcomp.html
https://doi.org/10.1016/0022-0000(91)90024-Y
https://doi.org/10.1016/0022-0000(91)90024-Y

®

Check for
updates

Greedy Gray Codes for Dyck Words and Ballot
Sequences

Vincent Vajnovszki!' and Dennis Wong*®
! Université de Bourgogne, Dijon, France
vvajnov@u-bourgogne. fr
2 Macao Polytechnic University, Macao, China
cwong@uoguelph.ca

Abstract. We present a simple greedy algorithm for generating Gray codes for
Dyck words and fixed-weight Dyck prefixes. Successive strings in our listings dif-
fer from each other by a transposition, that is, two bit changes. Our Gray codes are
both homogeneous and suffix partitioned. Furthermore, we use our greedy algo-
rithm to produce the first known homogeneous 2-Gray code for ballot sequences,
which are Dyck prefixes of all weights. Our work extends a previous result on
combinations by Williams [Conference proceedings: Workshop on Algorithms
and Data Structures (WADS), LNTCS 8037:525-536, 2013].

Keywords: Dyck word - lattice path - balanced parentheses - ballot sequence *
homogeneous Gray code - greedy algorithm

1 Introduction

A Dyck word is a binary string with the same number of 1s and Os such that any
prefix contains at least as many Os as 1s. Dyck words are in bijection with balanced
parentheses, with an open bracket represented by a 0 and a close bracket represented
by a 1 [4,7]. For example, all length six balanced parentheses are given by

((0)); (O0); (D)0 OC0); OO0

The Dyck words that correspond to the five balanced parentheses of length six are
000111,001011,001101,010011,010101.

Since the number of 0 s and 1 s of a Dyck word has to be the same, the length n of Dyck
words has to be an even number. Dyck words can be used to encode lattice paths that
end on their starting level and never pass below it.

A ballot sequence is a binary string of length n such that in any of its prefixes the
number of Os is greater than or equal to the number of 1s. As an example, the ten ballot
sequences for length five are

00000, 00001, 00010, 00011, 01001, 00100, 00101, 00110, 01000, 01010.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 29-40, 2024.
https://doi.org/10.1007/978-3-031-49193-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_3

30 V. Vajnovszki and D. Wong

Such a length n sequence encodes a ballot counting scenario involving two candidates
in which the number of votes collected by the first candidate is always greater than or
equal to those collected by the second candidate throughout the count. Ballot sequences
are also known as Dyck prefixes, which are prefixes of Dyck words. Ballot sequences
and Dyck prefixes can also be used to encode lattice paths that end on the positive region
and never pass below it.

The number of Dyck words is known as the Catalan number, and the number of
ballot sequences is known as the ballot number. The enumeration sequences of Dyck
words and ballot sequences are AO00108 and A001405 in the Online Encyclopedia of
Integer Sequences respectively [23]. The enumeration formulae for the number of Dyck
words and the number of ballot sequences [2] of length n are given as follows:

— Catalan number: 1 n ;
sl

— Ballot number: (Z)
L7

Dyck words and ballot sequences are well studied combinatorial objects that have
a wide variety of applications. For example, Dyck words have been used to encode a
wide variety of combinatorial objects including binary trees, balanced parentheses, lat-
tice paths, and stack-sortable permutations [4,7,8,11,14,19,27,31]. Ballot sequences,
on the other hand, have many applications ranging from constructing more sums than
differences (MSTD) sets [33], generating n-node binary trees of different shapes [1, 16],
and enumerating random walks with various constraints [3,6,10,12,29]. For more
applications of Dyck words and ballot sequences, see [9, 13,20,24].

One of the most important aspects of combinatorial generation is to list the instances
of a combinatorial object so that consecutive instances differ by a specified closeness
condition involving a constant amount of change. Lists of this type are called Gray
codes. This terminology is due to the eponymous binary reflected Gray code (BRGC)
by Frank Gray, which orders the 2™ binary strings of length n so that consecutive strings
differ in one bit. For example, when n = 4 the order is

2

0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010,
0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001.

The BRGC listing is a /-Gray code in which consecutive strings differ by one symbol
change. In this paper, we are focusing on transposition Gray code, where consecutive
strings differ by swapping the positions of two bits. A transposition Gray code is also a
2-Gray code, where consecutive strings differ by at most two bit changes.

Several algorithms have been proposed to generate Dyck words. Proskurowski and
Ruskey [15] devised a transposition Gray code for Dyck words. Later, efficient algo-
rithms to generate such a listing were presented in [17,28]. Bultena and Ruskey [5],
and later van Baronaigien [26] and Xiang et al. [32], developed algorithms to generate
homogeneous transposition Gray codes for Dyck words. For example, the algorithm by
Bultena and Ruskey generates the 42 Dyck words for n = 10 as follows:

Greedy Gray Codes for Dyck Words and Ballot Sequences 31

0101010101, 0011010101, 0010110101, 0100110101, 0001110101, 0001101101,
0100101101, 0010101101, 0011001101, 0101001101, 0100011101, 0010011101,
0001011101, 0000111101, 0000111011, 0001011011, 0010011011, 0100011011,
0101001011, 0011001011, 0010101011, 0100101011, 0001101011, 0001110011,
0100110011, 0010110011, 0011010011, 0101010011, 0101000111, 0011000111,
0010100111, 0100100111, 0001100111, 0001010111, 0010010111, 0100010111,
0000110111, 0000101111, 0001001111, 0010001111, 0100001111, 0000011111.

The Gray code is said to be homogeneous, where the bits between the swapped 0 and
1 are all Os. Additionally, the Gray code is also a suffix-partitioned Gray code, where
strings with the same suffix are contiguous. Vajnovszki and Walsh [25] discovered an
even more restrictive Gray code that is two-close, where a 1 exchanges its position with
an adjacent 0 or a O that is separated from it by a single 0. In contrast, Ruskey and
Williams [18] provided a shift Gray code for Dyck words where consecutive strings
differ by a prefix shift.

For ballot sequences, the problem of finding a Gray code for ballot sequences was
first studied by Sabri and Vajnovszki [19]. Sabri and Vajnovszki proved that one defini-
tion of the reflected Gray code induces a 3-Gray code for k-ary ballot sequences, which
is a generalization of ballot sequences that involves more than two candidates. Wong
et al. [31] later provided an efficient algorithm to generate a 2-Gray code for ballot
sequences. For example, the algorithm by Wong et al. generates the following cyclic
2-Gray code for ballot sequences for n = 6:

000111, 010011, 000011, 001011, 001001, 000001, 010001, 010101, 000101, 001101,
001100, 000100, 010100, 010000, 000000, 001000, 001010, 000010, 010010, 000110.

Another approach by Wong et al. to obtain a cyclic 2-Gray code for ballot sequences
is by filtering the BRGC [31]. For more information about Gray codes induced by
the BRGC, see [21] and [22]. However, these Gray codes for ballot sequences are not
homogeneous. The greedy algorithm proposed in this paper can be used to generate the
first known homogeneous 2-Gray code for ballot sequences.

2 Gray Codes for Dyck Words and Fixed-Weight Dyck Prefixes

In this section, we present a greedy algorithm to generate transposition Gray codes for
fixed-weight Dyck prefixes and Dyck words.

In [30], Williams proposed a greedy algorithm to generate a transposition Gray code
for combinations. The greedy algorithm by Williams can be summarized as follows:

Greedy Gray code algorithm for k-combinations: Starts with 170" %, Greed-
ily swap the leftmost possible 1 with the leftmost possible 0 before the next 1
and after the previous 1 (if there are any) such that the resulting string has not
appeared before.

For example, the greedy algorithm generates the following 4-combinations for n = 7:

32 V. Vajnovszki and D. Wong

1111000, 1110100, 1101100, 1011100, 0111100, 0111010, 1011010,
1101010, 1110010, 1100110, 1010110, 0110110, 0101110, 1001110,
0011110, 0011101, 1001101, 0101101, 0110101, 1010101, 1100101,
1110001, 1101001, 1011001, 0111001, 0110011, 1010011, 1100011,
1001011, 0101011, 0011011, 0010111, 1000111, 0100111, 0001111.

We generalize the idea to fixed-weight Dyck prefixes and Dyck words. The weight
of a binary string is the number of 1 s it contains. A fixed-weight Dyck prefix of weight
k is a prefix of a Dyck word with its weight equal to k. Note that when 2k = n, then the
set of fixed-weight Dyck prefixes of weight k is equivalent to the set of Dyck words. The
following simple greedy algorithm generates transposition Gray codes for fixed-weight
Dyck prefixes and Dyck words of length n:

Greedy Gray code algorithm for fixed-weight Dyck prefixes: Starts with
(01)*0" 2k, Greedily swap the leftmost possible 1 with the leftmost possible 0
before the next 1 and after the previous 1 (if there are any) such that the resulting
string is a Dyck prefix and has not appeared before.

Our Gray codes for fixed-weight Dyck prefixes and Dyck words are homogeneous
and suffix-partitioned. Another way to understand the greedy algorithm is to greedily
swap the leftmost possible 1 with the leftmost possible 0 in a homogeneous manner. As
an example, the greedy algorithm generates the following Gray code for Dyck words
for n = 10 (Dyck prefixes for n = 10 and k = 5):

0101010101, 0011010101, 0010110101, 0100110101, 0001110101, 0001101101,
0100101101, 0010101101, 0011001101, 0101001101, 0100011101, 0010011101,
0001011101, 0000111101, 0000111011, 0100011011, 0010011011, 0001011011,
0001101011, 0100101011, 0010101011, 0011001011, 0101001011, 0101010011,
0011010011, 0010110011, 0100110011, 0001110011, 0001100111, 0100100111,
0010100111, 0011000111, 0101000111, 0100010111, 0010010111, 0001010111,
0000110111, 0000101111, 0100001111, 0010001111, 0001001111, 0000011111.

Greedy Gray codes have been studied previously, with Williams [30] reinterpreting
many classic Gray codes for binary strings, permutations, combinations, binary trees,
and set partitions using a simple greedy algorithm. The algorithm presented in this paper
can be considered as a novel addition to the family of greedy algorithms previously
studied by Williams.

All strings considered in this paper are binary. Our algorithm uses a vector represen-
tation S7.55 - - - Sy to represent a binary string with k ones, where each integer .S; corre-
sponds to the position of the ¢-th one of the binary string. For example, the string o =
000110100011001 can be represented by Sy, .S2,.55,54,55,5 = 4,5,7,11,12,15.
We initialize the array Si,Ss,...,5; = 2,4,...,2k for both Dyck words and fixed-
weight Dyck prefixes. In addition, we set Sy = 0 and Si+1 = n + 1. Pseudocode of
the greedy algorithm to generate fixed-weight Dyck prefixes and Dyck words is given
in Algorithm 1.

Greedy Gray Codes for Dyck Words and Ballot Sequences 33

Algorithm 1. The greedy algorithm that generates a homogeneous transposition Gray
code for fixed-weight Dyck prefixes and Dyck words.

1: procedure GREEDY-KDYCK-PREFIXES

2: S1SQ"~Sk<—24--~2]€

3 Print(S1Sz ce Sk)

4 for i from 1 to k£ do

5 for j from MAX(S;—1 + 1,7 x 2) to S;11 — 1 do

6: if 5152+ Si—1(4)Si+1 - - - Sk has not appeared before then
8 goto4

Theorem 1. The algorithm Greedy-kDyck-Prefixes generates a homogeneous transpo-
sition Gray code for fixed-weight Dyck prefixes that is suffix-partitioned for all n and k
where 2k < n.

3 Proof of Theorem 1

In this section, we prove Theorem 1 for fixed-weight Dyck prefixes. The results also
apply to Dyck words as the set of Dyck words is equivalent to the set of fixed-weight
Dyck prefixes when 2k = n. To this end, we begin by proving the following lemmas
for fixed-weight Dyck prefixes.

Lemma 1. The algorithm Greedy-kDyck-Prefixes terminates after visiting the Dyck
prefix 0" F1F,

Proof. Assume the algorithm terminates after visiting some string bibs---b, F#
0"~ F1*. Since biby---b, # 0" *1F it must contain the suffix 10°17 for some
n—=Fk>14>0and k > j > 0. It follows by the greedy algorithm that there exists
a Dyck prefix of length n and weight k with the suffix 0°17*! in the listing since the
algorithm terminates after visiting a string with the suffix 1017, If j + 1 = F, then
clearly the only string with the suffix 0°1* is 0"~*1*. However, this string has a prede-
cessor since it is not the initial string of the greedy algorithm. Moreover, by the greedy
algorithm the predecessor of 0"~ *1% is 0t10"*~*1%~1 for some n—k > ¢ > 0, and all
Dyck prefixes of length n and weight & with the suffix 01~ must have appeared before
0"~k1* in the listing. Therefore, the algorithm should terminate after visiting 0" %1%,
a contradiction. Otherwise if j + 1 < k, then let « be the last string in the listing with
the suffix 10t17+! for some n — j — 2 > ¢ > 0. Since o appears before b1 - - - b, in
the listing and by bs - - - b,, has the suffix 10?17, the algorithm must transpose the first 1
in the suffix 177! of « with a 0 on the left to produce a later string with the suffix 017,
It follows by the greedy algorithm that this is only possible if a string with the suffix
0!17+2 appears before in the listing. Recursively applying the same argument implies
that 0"~*1* exists in the listing, a contradiction since the algorithm would terminate
after visiting 0" ~*1* as discussed in the case of j + 1 = k. Therefore by proof by
contradiction, the greedy algorithm terminates after visiting 0" %1%, O

34 V. Vajnovszki and D. Wong

Lemma 2. If 0'170'1y is a length n Dyck prefix with weight k for some i > 0,
k> j >0, andt > 0, then the non-existence of 0°170 1 in the greedy listing implies
the non-existence of 017101011~ in the greedy listing.

Proof. We prove the lemma by contrapositive. Suppose o = 0°170¢1+ is a Dyck prefix
of weight k. Clearly 8 = 071971010° ! 1 is also a Dyck prefix of weight k and now
consider the possible predecessor of (3 in our greedy listing. If the predecessor of /3 is
of the form 0°=P10P17~2010" =1 for some p > 0, then by the greedy algorithm, all
Dyck prefixes of length n and weight k with the suffix 01772010°~ 11~ should have
appeared previously. The next string generated by the algorithm after (3 is thus « if «
has not appeared before, or otherwise o must have appeared previously. In either case,
« exists in the listing. Otherwise if the predecessor of 3 shares the same prefix 0717 ~!
as (3, then by the greedy algorithm, this is only possible if « appears before in the listing
or « is the predecessor of 3. Therefore, the string « exists if 3 exists, which completes
the proof by contrapositive. a

We now prove Theorem 1 using the lemmas we proved in this section.

Theorem 1. The algorithm Greedy-kDyck-Prefixes generates a homogeneous transpo-
sition Gray code for fixed-weight Dyck prefixes that is suffix-partitioned for all n and k
where 2k < n.

Proof. Our algorithm permits only homogeneous transposition operations, and the list-
ing is suffix-partitioned (as shown in Lemma 2). To demonstrate the Gray code property
of our algorithm, we now prove it by contradiction.

Since the greedy algorithm ensures that there is no duplicated length n string in
the greedy listing, it suffices to show that each Dyck prefix of length n and weight &
appears in the listing.

Assume by contradiction that there exists a Dyck prefix bibs - - - b,, # 0"~ *1* that
does not appear in the listing. Since b1by -+ - b, #* 0" %1%, the string b1 by - - - b, con-
tains the substring 10. Let b1by - --b,, = 0°170%1y for some i > 0, k > j > 0, and
t > 0. Clearly, the string 0°17~2010*~ 11+ is a Dyck prefix and by Lemma 2, the string
0%17-1010*~ 1+ also does not exist in the greedy Dyck prefix listing. Repeatedly apply-
ing the same argument on 0°17-1010*~ 11~ implies that the strings 0°*1170?~11~ and
eventually 0"~*1* also do not exist in the listing, a contradiction to Lemma 1. a

4 Gray Codes for Ballot Sequences

In this section, we leverage Theorem 1 to construct the first known homogeneous 2-
Gray code for ballot sequences. Our approach is to interleave strings from listings of
homogeneous transposition Gray codes for fixed-weight Dyck prefixes, across all pos-
sible weight £, in order to create the homogeneous 2-Gray code for ballot sequences.
To achieve this, we first prove the following lemma.

Lemma 3. The string biby - - - b,—11 is a Dyck prefix if and only if b1bs - - - b,,—10 is a
Dyck prefix, provided that 2k < n — 1.

Greedy Gray Codes for Dyck Words and Ballot Sequences 35

Proof. The forward direction is straightforward. For the backward direction, sup-
pose that 2k < n — 1 and that the string b1bs - --b,_10 is a Dyck prefix. Since
2k < n — 1, the prefix b1bs - - - b,,—1 has more Os than 1 s and thus both b1by - - - b,,_11
and by bs - - - b, 10 are Dyck prefixes. O

By Lemma 3, we can establish a one-to-one correspondence between Dyck prefixes
biby ---by—11 of weight k£ + 1 and Dyck prefixes b1bs - - - b, 10 of weight & when
2k < n. This correspondence enables us to construct a homogeneous 2-Gray code for
ballot sequences.

The main idea of our algorithm is to utilize the same greedy strategy used for gen-
erating fixed-weight Dyck prefixes, with the addition of generating the correspondence
to the generated Dyck prefix by Lemma 3. Specifically, whenever we produce a Dyck
prefix b1bs - - - b, that terminates with a 1, we also generate its corresponding Dyck
prefix b1bs - - - b, 1 0. Conversely, when we generate a Dyck prefix b1bs - - - b, that con-
cludes with a 0 with 2k < n — 1, we also generate its corresponding Dyck prefix
b1by - - - b, —1 1. Furthermore, if the application of the greedy strategy fails to produce a
new string, we proceed to complement the last 1 in b1bs - - - b,,—1 and then update the
value of b,, = 1. By making two relatively minor changes to the Algorithm 1, we can
generate a homogeneous 2-Gray code for ballot sequences:

1. Before applying the greedy strategy to the current string S1.95 - - - Sk, test whether
Sy = nor Sy < nbutwith weight k < [3 |.If Sy = n, then the algorithm generates
its corresponding Dyck prefix S1.92 - - - Si—1. Similarly, if S;; < n but with weight
k < [%], then the algorithm generates its corresponding Dyck prefix S1.55 - - - Spn;

2. After applying the greedy strategy to the current string S1.53 - - - S, and it does not
lead to the generation of any new string. If S, = n, then the next string in the
sequence is 5153 - - - Sk_on. On the other hand, if S; < n, then the following string
in the sequence is 5155 - - - Sp_1n.

The algorithm starts with the initial string (01)*0"~2* with k = | %]. Pseudocode of
the algorithm to generate the Gray code for ballot sequences is given in Algorithm 2.
As an example, the algorithm generates the following homogeneous 2-Gray code for
ballot sequences for n = 7:

0101010, 0011010, 0010110, 0100110, 0001110, 0001101, 0001100,
0100100, 0100101, 0010101, 0010100, 0011000, 0011001, 0101001,
0101000, 0100010, 0100011, 0010011, 0010010, 0001010, 0001011,
0000111, 0000110, 0000101, 0000100, 0100000, 0100001, 0010001,
0010000, 0001000, 0001001, 0000011, 0000010, 0000001, 0000000.

Let « be a prefix of a Dyck word, and G(«) be the list of strings obtained by apply-
ing Algorithm 1 with « as initial string. Clearly, for any such string o, G(«) contains
prefixes of Dyck words of the same length and same number of 1s as «, and in G(«)
there are no repeated strings.

36 V. Vajnovszki and D. Wong

Algorithm 2. The greedy algorithm that generates a homogeneous 2-Gray code for
ballot sequences.
1: procedure GREEDY-BALLOT

2: kE=1%]

3: Slsg---SkH24---2/€
4: Print(Sng cee Sk)
5: if S, = n then
6: Sk —n+1
7: k—k-—1
8: if S1.52 - Si—1(j)Si+1 - - - Sk has not appeared before then go to 4
9: k—k+1
10: Sk —n
11: elseif £ < [5 | then
12: Sk+1 —n
13: k—k+1
14: if 5152 - Si—1(j)Si+1 - - - Sk has not appeared before then go to 4
15: k—k-—1
16: Sk+1 —n+1
17: for i from 1 to k£ do
18: for j from MAX(S;—1 + 1, x 2) to S;+1 — 1 do
19: if S1.52---Si—1(j)Si+1 - - - Sk has not appeared before then
20: Si—J
21: goto4
22: if S = n then
23: S —n+1
24: Sk_1 < n
25: k—k-—1
26: go to 4
27: else if S, = n — 1 then
28: Sk —n
29: go to 4

Theorem 2. The algorithm Greedy-Ballot generates a homogeneous 2-Gray code for
ballot sequences for all n.

Proof. The algorithm Greedy-Ballot starts with the string (01)L3107 ™42 with k& =
|Z]. By Theorem 1, the algorithm generates all strings in G((01)L2/0™ ™4 2) which
contains all Dyck prefixes of weight & = | % |. Furthermore, according to Lemma 3 and
lines 5-16 of the algorithm, the algorithm also generates all Dyck prefixes of weight
| 5] — 1 thatend with a 0.

Since G((01)L310m ™4 2) ends with 0" ~L311L5], the algorithm generates all Dyck
prefixes of weight £ = [| and Dyck prefixes of weight || — 1 that end with a 0
until it reaches the string 0"~ L311L%) or 0»~L2)1L3]=10. Then, as indicated in lines
22-29 of the algorithm, the next string generated by the algorithm is 0"~ Lz11131-201,
Observe that 0"~ 13111317201 is generated in G((01)L21=1020™ ™4 2) by Algorithm 1
after exhaustively generating all Dyck prefixes of weight | %] — 1 that end with a 0.
Since all Dyck prefixes of weight | 4| — 1 that end with a 0 have already been gen-

Greedy Gray Codes for Dyck Words and Ballot Sequences 37

erated in our ballot sequence algorithm, the algorithm follows the same operations as
G(0n~L311151-201) and proceeds to generate all Dyck prefixes of weight | 5] —1 that
end with a 1. Therefore, all Dyck prefixes of weight [5 | — 1 are in the listing generated
by the algorithm.

By repeatedly applying the same argument, the algorithm generates the fixed-weight
Dyck prefixes with weight ranging from k to 0, which is the set of all ballot sequences
of length n.

Moreover, since each listing in G is a homogeneous transposition Gray code and
the operations in lines 5-16 and 22-29 of the algorithm only involve removing a 1
or swapping two nearby bits, the resulting sequence generated by the algorithm is a
homogeneous 2-Gray code. O

5 Final Remarks

It is worth noting that an alternative homogeneous 2-Gray code for ballot sequences
can be constructed by concatenating the homogeneous transposition Gray code listings
of fixed-weight Dyck prefixes ranging from weight k to 0, and reversing the listings of
fixed-weight Dyck prefixes with even (or odd) weights. For instance, let G(«/) denote
the reverse of the list of strings generated by applying Algorithm 1 with « as the initial
string. A homogeneous 2-Gray code for ballot sequences for n = 7 can be obtained

by G(0101010) - G(0101000) - G(0100000) - G(0000000), which would result in the
following listing:

0101010, 0011010, 0010110, 0100110, 0001110, 0001101, 0100101,
0010101, 0011001, 0101001, 0100011, 0010011, 0001011, 0000111,
0000011, 0001001, 0010001, 0100001, 0000101, 0000110, 0010010,
0100010, 0001010, 0001100, 0100100, 0010100, 0011000, 0101000,
0100000, 0010000, 0001000, 0000100, 0000010, 0000001, 0000000.

There is, however, no known simple algorithm to generate the reverse of the sequence
generated by our algorithm for fixed-weight Dyck prefixes. This remains an open prob-
lem for future research.

Finally, efficient algorithms that generate the same Gray codes for Dyck words,
fixed-weight Dyck prefixes and ballot sequences in constant amortized time per string
were developed, and their details will be presented in the full version of the paper.

Acknowledgements. The research is supported by the Macao Polytechnic University research
grant (Project code: RP/FCA-02/2022) and the National Research Foundation (NRF) grant
funded by the Ministry of Science and ICT (MSIT), Korea (No. 2020R1F1A1A01070666).

A part of this work was done while the second author was visiting Kanazawa University in
Japan. The second author would like to thank Hiroshi Fujisaki for his hospitality during his stay
in Kanazawa.

38 V. Vajnovszki and D. Wong

Appendix: C Code to Generate Homogeneous 2-Gray Codes for
k-Combinations, Dyck Words, Fixed-Weight Dyck Prefixes, and
Ballot Sequences

#include <stdio.h>

#include <stdlib.h>

#define INF 99999

#define MAX (a,b) (((a)>(b))?(a): (b))

int n, k, type, total = 0, s[INF], p[INF];

int binToDec () {
int i, j =1, t = 0;
for (i=1; i<=n; i++) if (s[jl==1) {t = t+(l<<(n-1)); J++;}
return t;

int greedy () {
int i, j, t, r;

if (type==4) {
if (s(kl==n) {
s[k] = n+l1; k--;
if (!p[binToDec()]) {plbinToDec()] = 1; return 1;}
k++; s[k] = n;
}

else if (k<n/2) {
s[k+l] = n; k++;
if (!p[binToDec()]1) {pl[binToDec()] = 1; return 1;}
k--; sl[k+1l] = n+1;

}

for (i=1; i<=k; i++) {
if (type==1) r = s[i-11+1;
else r = MAX(s[i-1]+1, ix2);

for (j=r; j<s[i+1l]; J++) {
t = slil; sli] = 3;
if (!p[binToDec()])
s[i] = t;

{p[binToDec ()] = 1; return 1;}

}

if (type==4) {
if (s(kl==n) {
s[k] = n+l; s[k-1] = n; k--;
plbinToDec()] = 1; return 1;

}
else if (s[kl==n-1) {
s[k] = n;
p[binToDec()] = 1; return 1;
}
}
return O;
}
Y et
int main() {
int i, j;
printf (" =s==============ooooooooooooooooooooooooo\nt)
printf(" 1. Combinations\n");
printf(" 2. Dyck words\n");
(

printf (" 3. Prefix of Dyck words of weight k\n");

Greedy Gray Codes for Dyck Words and Ballot Sequences 39

printf (" 4. Ballot sequences\n");

printf (" ===\n") ;
printf (" Enter selection #: "); scanf("%d", &type);
printf (" ENTER n: "); scanf("%d", &n);
if (type!=2 && type!=4) {printf(" ENTER k: "); scanf("%d", &k);}
else k = n/2;
if (type==2 && n%2>0) {printf("n must be an even number. \n"); exit(0);}
if (type==3 && k>n/2) {printf("k must be less than or equal to n/2. \n"); exit
(0);}
for (i=0; i<INF; i++) pl[i] = 0;
for (i=0; i<=k; i++) {if (type!=1l) s[i] = ix2; else s[i] = 1i;}
s[0] = 0; s[k+1l] = n+1;
pl[binToDec ()] = 1;
do {
j=1;
for (i=1; i<=n; i++) if (s[Jj]!=i) printf("0"); else {printf("1"); Jj++;}

printf("\n"); total++;
} while (greedy ()) ;
printf ("Total = %d\n", total);

References

10.

11.
12.

14.

15.

. Ahrabian, H., Nowzari-Dalini, A.: Generation of ¢-ary trees with ballot-sequences. Int. J.

Comput. Math. 80(10), 1243-1249 (2003)

. Aigner, M.: Enumeration via ballot numbers. Discrete Math. 308(12), 2544-2563 (2008)
. Barton, D., Mallows, C.: Some aspects of the random sequence. Ann. Math. Stat. 36(1),

236-260 (1965)

. Benchekroun, S., Moszkowski, P.: A new bijection between ordered trees and legal bracket-

ings. Eur. J. Combin. 17(7), 605-611 (1996)

. Bultena, B., Ruskey, F.: An Eades-McKay algorithm for well-formed parentheses strings.

Inf. Process. Lett. 68(5), 255-259 (1998)

. Carlitz, L.: Sequences, paths, ballot numbers. Fibonacci Quart 10(5), 531-549 (1972)
. Deutsch, E.: A bijection on Dyck paths and its consequences. Discrete Math. 179(1), 253—

256 (1998)

. Deutsch, E., Shapiro, L.: A bijection between ordered trees and 2-Motzkin paths and its

many consequences. Discrete Math. 256(3), 655-670 (2002)

. Goulden, L., Jackson, D.: Combinatorial Enumeration. A Wiley-Interscience Publication,

New York (1983)

Hackl, B., Heuberger, C., Prodinger, H., Wagner, S.: Analysis of bidirectional ballot
sequences and random walks ending in their maximum. Ann. Comb. 20(4), 775-797 (2016)
Labelle, J., Yeh, Y.N.: Generalized Dyck paths. Discrete Math. 82(1), 1-6 (1990)

Lengyel, T.: Direct consequences of the basic ballot theorem. Stat. Probab. Lett. 81(10),
1476-1481 (2011)

. Miitze, T.: Combinatorial Gray codes - an updated survey. arXiv Preprint arXiv:2202.01280

(2022)

Panayotopoulos, A., Sapounakis, A.: On binary trees and Dyck paths. Math. Sci. Hum. 131,
39-51 (1995)

Proskurowski, A., Ruskey, F.: Binary tree Gray codes. J. Algorithms 6(2), 225-238 (1985)

http://arxiv.org/abs/2202.01280

40

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

V. Vajnovszki and D. Wong

Rotem, D., Varol, Y.: Generation of binary trees from ballot sequences. J. ACM 25(3), 396—
404 (1978)

Ruskey, F., Proskurowski, A.: Generating binary trees by transpositions. J. Algorithms 11(1),
68-84 (1990)

Ruskey, F., Williams, A.: Generating balanced parentheses and binary trees by prefix shifts.
In: Proceedings of the Fourteenth Symposium on Computing: The Australasian Theory,
CATS 2008, Australia, vol. 77, pp. 107-115 (2008)

Sabri, A., Vajnovszki, V.: On the exhaustive generation of generalized ballot sequences in
lexicographic and Gray code order. Pure Math. Appl. 28(1), 109-119 (2019)

Savage, C.: A survey of combinatorial Gray codes. SIAM Rev. 4, 605-629 (1997)

Sawada, J., Williams, A., Wong, D.: Inside the binary reflected gray code: flip-swap lan-
guages in 2-gray code order. In: Lecroq, T., Puzynina, S. (eds.) WORDS 2021. LNCS, vol.
12847, pp. 172-184. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85088-3_15
Sawada, J., Williams, A., Wong, D.: Flip-swap languages in binary reflected Gray code order.
Theor. Comput. Sci. 933, 138-148 (2022)

Sloane, N.: The on-line encyclopedia of integer sequences. https://oeis.org/. Sequence
A000108 and A001405

Stanton, D., White, D.: Constructive Combinatorics. Springer, Heidelberg (2012)
Vajnovszki, V., Walsh, T.: A loop-free two-close Gray-code algorithm for listing k-ary Dyck
words. J. Discrete Algorithms 4(4), 633-648 (2006)

van Baronaigien, D.: A loopless gray-code algorithm for listing k-ary trees. J. Algorithms
35(1), 100-107 (2000)

Viennot, G.: Theorié combinatoire des nombres d’Euler et de Genocchi. Séminaire de théorie
des nombres. Publications Univ. Bordeaux I (1980)

Walsh, T.: Generation of well-formed parenthesis strings in constant worst-case time. J.
Algorithms 29(1), 165-173 (1998)

Wildon, M.: Knights, spies, games and ballot sequences. Discrete Math. 310(21), 2974-2983
(2010)

Williams, A.: The greedy Gray code algorithm. In: Dehne, F., Solis-Oba, R., Sack, J.-R.
(eds.) WADS 2013. LNCS, vol. 8037, pp. 525-536. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40104-6_46

Wong, D., Calero, F., Sedhai, K.: Generating 2-Gray codes for ballot sequences in constant
amortized time. Discrete Math. 346(1), 113168 (2023)

Xiang, L., Ushijima, K., Tang, C.: Efficient loopless generation of Gray codes for k-ary trees.
Inf. Process. Lett. 76(4), 169—174 (2000)

Zhao, Y.: Constructing MSTD sets using bidirectional ballot sequences. J. Number Theory
130(5), 1212-1220 (2010)

https://doi.org/10.1007/978-3-030-85088-3_15
https://oeis.org/
https://doi.org/10.1007/978-3-642-40104-6_46
https://doi.org/10.1007/978-3-642-40104-6_46

®

Check for
updates

Efficiently-Verifiable Strong Uniquely
Solvable Puzzles and Matrix
Multiplication

Matthew Anderson®™) and Vu Le

Department of Computer Science, Union College, Schenectady, NY, USA
{andersm2,lev}Qunion.edu

Abstract. We advance the Cohn-Umans framework for developing fast
matrix multiplication algorithms. We introduce, analyze, and search for
a new subclass of strong uniquely solvable puzzles (SUSP), which we call
simplifiable SUSPs. We show that these puzzles are efficiently verifiable,
which remains an open question for general SUSPs. We also show that
individual simplifiable SUSPs can achieve the same bounds on the matrix
multiplication exponent w that infinite families of SUSPs can. We con-
struct, by computer search, larger SUSPs than known for small width.
This, combined with our tighter analysis, strengthens the upper bound
on w from 2.66 to 2.505 obtainable via this computational approach,
nearing the handcrafted constructions of Cohn-Umans.

Keywords: Matrix multiplication + Simplifiable strong uniquely
solvable puzzle + Arithmetic complexity - 3D matching - Iterative local
search

1 Introduction

Square matrix multiplication is a fundamental mathematical operation: Given
n € N, a field F, and matrices A, B € F"*" compute the resulting matrix
C = AB where the entry (i,k) € [n]? is C; x = > jern Aij By Barly work by
Strassen gave a recursive, divide-and-conquer algorithm for matrix multiplication
that runs in time O(n?8!) [16]. The situation steadily improved over the next two
decades, culminating with the O(n?376) time Coppersmith-Winograd algorithm
[10]. More recently, a series of refinements to the Coppersmith-Winograd algo-
rithm has resulted in a state-of-the-art algorithm that runs in time O(n?37188)
[2,12,13]. The question remains open: What is the smallest w for which there
exists a matriz multiplication algorithm that runs in time O(n*)?

Instead of following the traditional approach of refinements to Coppersmith-
Winograd, we pursue the framework developed by Cohn and Umans [8,9]. This
framework connects the existence of efficient algorithms for matrix multiplication
to the existence of combinatorial objects called strong uniquely solvable puzzles
(SUSP). An (,sk)-puzzle P is a subset of {1,2,3}* with cardinality |P| = s.
The larger the size s of a strong uniquely solvable puzzle is for a fixed k, the
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 41-54, 2024.
https://doi.org/10.1007/978-3-031-49193-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_4

42 M. Anderson and V. Le

more efficient a matrix multiplication algorithm is implied by the Cohn-Umans
framework (see Lemma 1). Anderson et al. initiated a systematic computer-
aided search for large puzzles that are SUSPs [4]. They developed algorithms
that are sufficiently efficient in practice—using reductions to NP-hard problems,
and sophisticated satisfiability and integer programming solvers—for verifying
SUSPs and applied those algorithms to find large SUSPs of small width k < 12.

There are several aspects of the work of Anderson et al. that warranted
further study: (i) although the verification algorithm was shown to be exper-
imentally effective, its worst-case performance was exponential time, (i) the
results used from [8] to imply efficient matrix multiplication algorithms were
limited because they only found individual SUSPs of small width, rather than
infinite families of SUSPs as in the constructions of [8], and (iii) they observed
that for some pairs of SUSPs P;, P,, the Cartesian product P, x P, was also
an SUSP, but they did not provide a theoretical explanation as to why. These
aspects limited the small-width SUSPs that were found in [4,5] to only achieve
w < 2.66.

Our Contributions. We make progress on the computer-aided search for large
SUSPs and resolve the three limitations mentioned above by introducing a new
class of SUSPs that we call simplifiable SUSPs.

In [4] they show that the problem of verifying whether a puzzle P is an
SUSP reduces to determining whether a related tripartite hypergraph Hp has no
nontrivial 3D matchings. In Sect. 3, we describe a polynomial-time simplification
algorithm that takes a 3D hypergraph and attempts to simplify it to the trivial
matching without changing the set of matchings the graph has. In this way, we
define simplifiable SUSPs to be puzzles P whose 3D hypergraph Hp simplifies
to the trivial matching. This gives a polynomial-time algorithm to generate a
proof that P is an SUSP. In this way, simplifiable SUSPs are polynomial-time
verifiable by definition, making them more feasible to search for.

Theorem 1. Let P be an (s, k)-puzzle. There is an algorithm for determining
whether P is a simplifiable SUSP. The algorithm runs in time poly(s, k).

In Sect. 4, we show that simplifiable SUSPs have other interesting properties that
make them a good candidate to search for when trying to improve bounds on
w. In particular, we show that simplifiable SUSPs are a natural generalization
of local SUSPs from [8]. Local SUSPs are also efficiently verifiable, but since
they are not densely encoded, they are difficult to search for. Relatedly, we
show that simplifiable SUSPs are closed under Cartesian product, which is not
the case for general SUSPs, and that this property allows a single simplifiable
SUSP to generate an infinite family of SUSPs by taking all powers of the puzzle,
and that simplifiable SUSPs can achieve any bound on w that SUSPs can. The
former allows the stronger infinite-family bound on w of [8] to be applied, which
strengthens the bounds on w implied by individual simplifiable SUSPs.

Theorem 2. Let ¢ > 0, if there is a simplifiable (s, k)-SUSP P, then there

is an algorithm for multiplying n-by-n matrices in time O(n**¢) where w <
: 3. klogm—logs
MUNmeN; 5 klog(m—1) *

Efficiently-Verifiable SUSPs and Matrix Multiplication 43

Finally, in Sect. 5, we report finding new large simplifiable SUSPs of small width
that improve the bounds on w from 2.66 to 2.505 via the computational Cohn-
Umans approach. The SUSPs we construct for small width are considerably
larger than those of the previous work [4,5,8], and imply stronger bounds on w
for the same domain. Our results further the computational approach to develop-
ing efficient matrix multiplication algorithms using the Cohn-Umans framework
started by [4]. However, it is important to note that this computational approach
has yet to surpass the w < 2.48 bound implied by the infinite families of SUSPs
handcrafted in [8], or the state-of-the-art Coppersmith-Winograd refinements
with the record bound of w < 2.37188 [13].

Related Work. Some negative results are known for the Cohn-Umans frame-
work that apply to our work as well. In particular, a series of articles [1,3,7,11]
showed that there exists an € > 0 such that this framework, as well as a variety
of other algorithmic approaches, cannot achieve w < 2+ €. This implies that our
approach cannot achieve the best potential result of O(n?), however, the authors
are unaware of a concrete value known for this e.

We search for simplifiable SUSPs using a standard search technique called
iterative local search, c.f, e.g., [15]. Some comparison with our work can be drawn
to recent computational approach by Fawzi et al. who used reinforcement learn-
ing to generate low-rank representations of the matrix multiplication tensor [14],
producing algorithms with w < 2.77, which are weaker than our results.

2 Preliminaries

For a natural number n € N, we use [n] to denote the set {1,2,...,n}. Symg
denotes the symmetric group on the elements of a set Q.

Cohn et al. introduced the notion of puzzles and defined several useful sub-
classes [8]. For s,k € N, an (,sk)-puzzle is a subset P C [3]* with |P| = s. We
say that an (s, k)-puzzle has s rows and k columns. The columns are inherently
ordered and indexed by [k]. The rows are not inherently ordered, although it is
often convenient to assume that they are arbitrarily ordered and indexed by [s].

Definition 1 (Strong Uniquely Solvable Puzzle (SUSP)). An (s, k)-
puzzle P is strong uniquely solvable if Vi1, me, w3 € Symp, either (i) mp = mo =
wg, or (ii) Ir € P and i € [k] such that exactly two of the following conditions
are true: (wi(r)); =1, (m2(r)); = 2, (w3(r)); = 3.

For brevity, we call such puzzles SUSPs. Determining whether a puzzle is an
SUSP is in coNP. Anderson et al. studied this problem, devised a reduction
from this problem to a variant of the 3D perfect matching problem, and then
used it to develop a practical, but worst-case exponential time, algorithm [4].
Cohn et al. also introduced a subset of SUSPs, called local SUSPs that naturally
demonstrate that they are SUSPs. An (s, k)-puzzle P is local strong uniquely
solvable if for each (u,v,w) € P? with u,v,w not all equal, there exists ¢ € [k]

44 M. Anderson and V. Le

such that (u.,ve,we) € £ ={(1,2,1),(1,2,2),(1,1,3),(1,3,3),(2,2,3),(3,2,3)}.
The task of determining whether a puzzle is a local SUSP can be done in time
O(s® - k), by checking all triples of rows. Cohn et al. show that SUSPs can be
converted to local SUSPs, albeit with a substantial increase in the parameters.

Proposition 1 ([8, Proposition 6.3]). Let P be an (s,k)-SUSP, then there is
a local (8!, sk)-SUSP P'. Moreover, SUSP capacity is achieved by local SUSPs.

Note that the second consequence of this proposition is that any bound on w
that can be achieved by SUSPs can be achieved by local SUSPs.

From Matrix Multiplication to SUSPs. Using the concept of an SUSP,
[9] showed how to define group algebras that allow matrix multiplication to be
efficiently embedded into them. The existence of SUSPs implies upper bounds
on the matrix multiplication exponent w.

The SUSP capacity is defined as the largest constant C' such that there exist
SUSPs of size (C' — o(1))* and width k for infinitely many values of k [8]. The
constructions of Cohn et al. produce families F of (s(k), k)-SUSPs for infinitely
many values of k. The key parameter that relates w to the size of puzzles is the
capacity Cr of the family, defined as the limit of (s(k))* as k goes to co. Cohn
et al. showed the following bounds on w as functions of capacity and SUSP size.

Lemma 1 ([8, Corollary 3.6]). Let € > 0, (i) if there is a family F of SUSPs
with capacity Cr, then there is an algorithm for multiplying n-by-n matrices in
time O(n“*¢) where w < Mingyen., 3-%, and (ii) if there is an (s, k)-
SUSP, there is an algorithm for multiplying n-by-n matrices in time O(n*T¢)
where w < Mingen. , 3 - %.

They also show that if the SUSP capacity is Ciax = 3/2%/2, it immediately
follows that w = 2. As mentioned in Sect. 1, subsequent work has shown that
the SUSP capacity is strictly less than Cpax.

From SUSPs to 3D Matchings. Let G be a r-uniform hypergraph over
r disjoint copies of a domain U. We only consider r € {2,3} and use “2D
graph” to refer to the case where r = 2 and “3D graph” to refer to the case
where r = 3. We use the notation V(G) to denote the vertex set of G and
E(G) to denote the edge set of G. We say that G has a perfect matching if
there exists M C E(G) such that |M| = |U| and for all distinct pairs of edges
a,b € M, a and b are vertex disjoint, that is, a; # b;,Vi € [r]. Note that
we only consider perfect matchings in this article, so often drop “perfect” for
brevity. The trivial matching of G is the set {u" | u € U}. We call a matching
M nontrivial if it is not the trivial matching of Hp. For two r-partite graphs
G1, Gy over domains Uy and Us, respectively, we define their tensor product to
be the r-partite graph G; x G5 over the Cartesian product of their domain
sets Uy x Uz, and whose edges are the Cartesian product of their edge sets
E(G1) x E(G2) = {((u1,u2), (v1,v2)) | (u1,v1) € E(G1), (u2,v2) € E(G2)}-

Efficiently-Verifiable SUSPs and Matrix Multiplication 45

S U-=5

S E~

Fig. 1. Let G be 2D graph over the domain U. This diagram represents the partitioning
of the adjacency matrix of G relative to a set S C U which divides the adjacency matrix
into four regions of edges, S x S, S x (U —-S), (U—-95)x S, (U—-S) x (U-S). The
edges in the gray regions survive the simplification to G’ as in Lemma 3, while any
edges in £~ or E are deleted from G.

Note that the adjacency matrix of the tensor product of two r-partite graphs is
the Kronecker product of the two adjacency matrices of the graphs.

Anderson et al. show a reduction from checking whether an (s, k)-puzzle P
is an SUSP to deciding whether there are no nontrivial perfect matchings in a
related 3D graph Hp [4]. We briefly recall that construction. Define a function f
to represent the inner condition of being an SUSP on triplets of rows uw,v,w € P
where f(u,v,w) = 1, if 3i € [k] such that exactly two of the following hold:
w; = 1,v; = 2,w; = 3 and f(u,v,w) = 0, otherwise. Then, define Hp to be the
3D graph with domain P whose edges are E(Hp) = {(u,v,w) | f(u,v,w) = 0}.
The trivial matching is a matching of Hp. We use the following result.

Lemma 2 ([5]). P is an SUSP iff Hp has no nontrivial perfect matchings.

3 Simplification and Efficiently-Verifiable SUSPs

The reduction from SUSP verification to the problem of 3D perfect matching,
from Lemma 2, leads to a naive worst-case O(2° - poly(s, k))-time algorithm for
verification, without much hope for improvement as the latter problem is NP-
complete. We overcome this obstacle by introducing a useful subset of SUSPs
that are efficiently verifiable.

Let P be an (s, k)-puzzle and Hp be its corresponding 3D graph as in Lemma
2. If Hp has a nontrivial matching, the matching itself witnesses this fact. How-
ever, if Hp has only the trivial matching, there may not be a short witness of
this fact. The subclass of SUSPs we develop naturally has short witnesses.

Our approach is based on the following insight about the 3D graph Hp: If
Hp has a matching, the matching projects to three 2D matchings of the 2D faces
of Hp. Moreover, if edges in one of the faces cannot be used for a matching of
that face, none of the edges of Hp that project onto that edge can be used in
a 3D matching of Hp. We iteratively apply this idea to efficiently simplify the
3D graph Hp, without changing the matchings it has, until it is reduced to a
trivial matching or no further simplification can be made. If the 3D graph is

46 M. Anderson and V. Le

reduced to the trivial matching, it means that Hp had no nontrivial matchings,
and the puzzle P must be an SUSP. We call such puzzles simplifiable SUSPs.
A by-product of this simplification process is a series of edges deletions of Hp,
which provides a witness that P is an SUSP.

Simplifying 2D Graphs. We build up to simplifying 3D graphs and simpli-
fiable SUSPs by first considering 2D graphs. The following lemma shows that
certain edges can be removed from 2D graphs without eliminating matchings.
See Fig. 1 for a visual representation of this lemma.

Lemma 3. Let G be a 2D graph with domain U. Let S CU, E~ = Sx (U-295),
and E= = (U—=S8)xS. Let G’ be a 2D graph with domain U and edges E(G') =
E(G)—E~—E~.IfE”NE(G)=0or E-NE(G) =0, then G’ has the same
set of perfect matchings as G.

Proof. Observe that since the edges of G’ are a subset of the edges of G, G’
cannot have a matching that G does not have. It remains to show that for each
perfect matching M of G, M is also a perfect matching of G'.

Let M C E(G) be a perfect matching of G. There are two cases to consider.
Suppose E7”NE(G) = 0. Consider an edge (u,v) € M.Ifu € S, thenv ¢ (U—.5)
since there are no edges in G that intersect with S x (U — S). Therefore, v € S.
Thus, for each u € S, (u,v) € M and v € S, so M matches S to S. If u € (U-15)
and (u,v) € M, then v ¢ S since for all v € S there already exists a one-to-one
correspondence with v’ € S where (u',v) € M.

Thus, M must match S to S and match U — S to U — S, that is, M C
(SxSYU((U-=S) x (U-1S5)). Hence, M must be a perfect matching of G’,
because M N(E~ UE) = () and therefore the edges in M are deleted. The case
when £~ N E(G) = 0 is symmetric. O

Let S C U be a subset of vertices in a 2D graph G with domain U for which
the conditions of Lemma 3 are met. We say that S induces a simplification of G
to G'. We now consider sequences of such simplifications. Let Gy, Gy, ..., Gy be
a sequence of 2D graphs with a common domain U and let Sy,S;,...,5, C U
be sets such that S; induces a simplification of G;_1 to G; for 1 < i < {. We say
that Gg simplifies to Gy. The following is a corollary resulting from repeated
application of Lemma 3 to the sets and 2D graphs in the above definition with
a generalization to tensor products.

Corollary 1. Let G,G’ be 2D graphs over the domain U, and F be a 2D graph
over the domain V. If G simplifies to G', then G and G’ have the same set of
perfect matchings and G x F simplifies to G’ x F'.

Proof (Sketch). Suppose G simplifies to G’. By definition, there exists
Go,G1,...,Gy with G = Gy and G = Gy and sets Si,Ss,...,S, for which
S; induces a simplification of G;_1 to G;. Using Lemma 3, between G;_1 and
G;, one can show, by induction, that the set of perfect matchings for all G;

Efficiently-Verifiable SUSPs and Matrix Multiplication 47

are the same. Therefore, G = Gy and G’ = G, have the same set of perfect
matchings.

One can argue that the sets S; xV, SoxV, ..., Sy xV induce the corresponding
chain of simplifications G x F' = Gg X F,G1 X F,...,Gy x F = G’ x F. The
argument for the individual simplification steps here proceeds analogously to the
proof of Lemma 3 and shows the second half of the corollary. O

Simplifying 3D Graphs. We lift the notion of simplification from 2D graphs to
3D graphs. Consider a 3D graph H with domain U. We construct three 2D graphs
Ry, R1, R2, on the same domain U, which, respectively, correspond to projecting
out the first, second, and third coordinates of H. For example, the edges of Ry
can be written E(R;) = {(u,w) | Fv € U, (u,v,w) € E(H)}. If H has a perfect
matching, then it projects into a perfect matching for each of the R¢’s. To see
this, let M be a perfect matching of H, then following the projection, define
My = {(v,w) | Ju € U, (u,v,w) € M}. By definition My C E(Ry). Because M
is a perfect matching of H, {v | (u,v,w) € M} = {w | (u,v,w) € M} = U, and
|M| = |UJ, so My is a perfect matching of Ry. The argument for Ry and Ry is
analogous. Furthermore, one can argue that if a matching is nontrivial for H,
then it is nontrivial for at least two of the Ry’s.

We observe that simplifications induced on any of Ry, R1, R, also induce a
simplification of H. For brevity, the result below is stated only for Ry, but holds
similarly for Ry and R using symmetric arguments.

Lemma 4. Let H, Ry, U be defined as above. Let H' be the 3D graph over the
domain U whose edges are E(H') = E(H)—U x ((Sx (U—-8))U((U-2S5) x19)).
If S C U induces a simplification of Rg, then H' has the same set of perfect
matchings that H does.

Proof. Observe that since the edges of H' are a subset of the edges of H, H’
cannot have a matching that H does not have. It remains to show that for each
matching M of H, M is also a matching of H'.

Let M be a matching of H. Suppose, for the sake of contradiction, that M
is not a matching of H’'. There must exist an edge (u,v,w) € M that lies in
the set of edges deleted in H'. Let My be the projection of M into Ry, so that
My is a matching of Rg and (v,w) € M. By hypothesis and definition of H’,
(v,w) € (S x (U—-29))U((U—-S) x8). This is a contradiction to the fact that
S simplifies Ry, because, by Lemma 3, (S x (U —5)) U ((U — S) x .S) does not
intersect with any matchings of Ry. a

When the conditions of Lemma 4 are met, we say that this set S induces a
simplification of H wvia Ry. As before, we can lift the notion of simplification
to a series of induced simplifications. Here it is more complex because changing
H changes its projections. Let S1,Ss,...,S; C U and f1, fa,..., fe € {0,1,2}.
We define a series of tuples of graphs (H;, Ry ;, Rij,Ra ;) with 0 < j < £,
where Hy = H, R()’() = R07R1,0 = Rl,RQ’O = Ry and for 7 > 0, Rf].}j is
the simplification of Ry, ;1 induced by S;, Hj is the simplification of H;

48 M. Anderson and V. Le

0 1 2

(a) Edges of Hp (b) Projection to face u, v (c) SIMPLIFY(H p)

Fig. 2. Let P = {111,321, 323}. On the left is a 3D grid representing the edges of Hp.
In the middle is a projection of Hp onto the 2D face corresponding to u, v plane. Since
{0} x {1, 2} contains no edges in this projection, edges of the form {1, 2} x {0} x{0,1, 2}
can be simplified out of Hp. At the right is the result of applying this simplification
plus one more simplification on the u,w face. The final instance is SIMPLIFY(Hp) and
cannot be further simplified, showing that P is not a simplifiable SUSP.

induced by S; via Ry, and B(f,11 mod 3),; and R(f; 12 moa 3),; are the result of
reprojecting H;. For brevity in describing this situation, we say that H simplifies
to Hy. As before, repeated application of Lemma 4 and Lemma 3 implies that
H; has the same set of matchings as Hy = H does and results in the following
3D analog of Corollary 1.

Corollary 2. Let H, H' be 3D graphs with the domain U and K be a 3D graph
with domain V. If H simplifies to H', then H and H' have the same set of
perfect matchings and H x K simplifies to H' x K.

Simplifiable SUSPs. We now apply the notion of simplification to help in
checking whether an (s, k)-puzzle P is an SUSP. By Corollary 2, Hp has a
nontrivial matching iff any simplification of Hp has a nontrivial matching. This
suggests a way to construct a witness that P is an SUSP: If Hp simplifies to the
trivial matching, then, by Corollary 2, Hp has no nontrivial matchings, and, by
Lemma 2, P is an SUSP. The sequence of sets and their corresponding projection
indexes are a witness that P is an SUSP. Moreover, if we exclude simplifications
that do not change the 3D graph, the number of edges in the 3D graph—at most

s3—is a limit on the number of simplification steps that can occur.

Definition 2 (Simplifiable SUSP). An (s,k)-puzzle P is a simplifiable
SUSP if Hp simplifies to the trivial 3D perfect matching.

By definition, simplifiable SUSP are SUSPs with short (O(s*) bit length) wit-
nesses. To make this definition effective, we describe a polynomial-time algorithm
that simplifies puzzles. In particular, the algorithm takes Hp; projects it onto
its 2D faces, Ry, R1, R2; then, for each face, determines sets that induce max-
imal simplification of the faces; and, finally, applies those simplifications to Hp
to form a new 3D graph Hp. The algorithm repeats this until a fixed point is

Efficiently-Verifiable SUSPs and Matrix Multiplication 49

Algorithm 1 : SIMPLIFY(H)
1: f « 0; sinceChange < 0; Ro, R1, R2 < PROJECT(H)
2: while sinceChange < 3 do
3: edgesToRemove — CALCEDGESTOREMOVE(Ry)
for (u,v) € edgesToRemove do
if f =0 then delete all edges (*,u,v) from H
if f =1 then delete all edges (u, *,v) from H
if f =2 then delete all edges (u, v, *) from H
if edgesToRemove = () then sinceChange « sinceChange + 1
else sinceChange < 0; Ro, R1, Ro <— PROJECT(H)
10: f<— (f+1) mod3
11: return H

reached. The resulting 3D graph is the fully simplified version of Hp. If that
simplified graph is the trivial matching, this process witnesses that P is a (sim-
plifiable) SUSP. An example of the results of this process are shown in Fig. 2.
For completeness, this process is described in Algorithm 1.

In Algorithm 1, the subroutine PROJECT takes the 3D graph H and returns
three 2D graphs Ry, R, Rs that, respectively, correspond to projecting out the
first, second, and third coordinates of GG, as defined above. This subroutine can
be naively implemented in O(s?) time.

The subroutine CALCEDGESTOREMOVE at Line 3 takes each of the 2D
graphs corresponding to the faces and returns a list of edges that are not used in
any maximum 2D matchings of that face. This subroutine can be implemented
using the algorithm described in [17, Algorithm 2]. Their algorithm works by
constructing the strongly connected components of the input 2D graph Ry,
when Ry is viewed as a directed graph over P rather than a bipartite graph
over P U P. The strongly connected components calculated by this algorithm
inherently partition the vertex set P =57 USy U...US,.

Collapsing the 2D graph R; down to its strongly connected components
leaves us with a directed graph Gy with V(Gy) = {v1,v2,...,v,} and E(Gy) =
{(vi,vj) | Ju € S;,w € S, such that (u,v) € E(Ry)} with £ vertices v;, one
for each strongly connected component .S;. Furthermore, Gy must be an acyclic
graph, otherwise the strongly connected components would have been larger.
These strongly connected components are sets that induce the simplification of
R¢. Let v; be a vertex in Gy that has some incident edges but that has either
no incoming or no outgoing edges. The latter property is sufficient to apply
Lemma 3 and implies that S; induces a simplification of Ry. Furthermore, this
simplification corresponds to deleting all of the edges of v; in G/.

This process can be repeated until there are no more edges in G¢. Note
that because G is acyclic, it will always be possible to find such a vertex v; as
long as there are edges remaining. This series of strongly connected components
induces a complete simplification of Ry. This simplification is used to remove
the corresponding edges in the 3D graph H in Lines 4-7 & 9. The 3D graph H is

50 M. Anderson and V. Le

fully simplified when no edge can be removed from any of the three faces. By [17],
the remaining edges in each of the projections Ry are “maximally matchable” in
that they used in some perfect matching of R;. Thus, once this happens, there
can be no additional sets that can induce simplifications in any of the Ry that
remove edges in Ry (or in H).

Since each edge of H, except for the diagonal, can be removed at most once,
the algorithm must reach a fixed point within 3(|P|®> — |P|) iterations of the
main loop. The cost to update H and the projections in Lines 4-7 & 9 can be
amortized, with careful bookkeeping, to cost O(| P|3) across the whole algorithm.

For 2D graphs whose domain is the (s, k)-puzzle P, the subroutine of [17] runs
in O(s*?/y/log s) time. Combining the above analysis, the overall complexity of
SIMPLIFY is O(s® + s3 - s25/y/log s) = O(s°%/y/log s). The results of the above

arguments can be summarized in the following lemma.

Lemma 5. Let H be a 3D graph over P. In poly(|P|) time, SIMPLIFY(H) com-
putes the complete simplification of H. Therefore, H has the same set of match-
ings as SIMPLIFY(H).

By Definition 2, the 3D graph Hp associated with a simplifiable SUSP P simpli-
fies to the trivial matching. Furthermore, by Lemma 5, SIMPLIFY(H p) computes,
in polynomial time, the complete simplification of Hp, preserving the matchings.
These two facts imply a polynomial-time algorithm to determine whether a puz-
zle P is a simplifiable SUSP, proving Theorem 1.

Proof (Theorem 1). Perform the polynomial-time reduction from SUSP verifi-
cation to 3D matching of [4] to produce the 3D graph Hp in time poly(s, k).
Compute H) = SIMPLIFY(Hp) in time poly(s). In time O(s?) verify and return
whether or not H}p is the trivial matching {(u,w,) | w € P}. The algorithm is
correct by Lemma 2 and Lemma 5. ad

It is clear from the construction that simplifiable SUSPs are a subset of
SUSPs, but they are also a generalize of the notion of local SUSPs.

Lemma 6. Fvery local SUSP P is a simplifiable SUSP.

Proof. By the definition, for every triple of rows u,v,w € P, there is a column
¢ such (ue,ve,w:) € L. This implies, by the construction of Hp, that (u,v,w) is
not an edge in Hp. This implies that Hp has no edges except where u = v = w.
Therefore, Hp is the trivial matching and explicitly satisfies Definition 2 without
any further simplification. We conclude that P is a simplifiable SUSP. O

Intuitively, simplifiable SUSPs are an intermediate class between local SUSPs
and SUSPs. The set containments are proper. There exist SUSPs that are not
simplifiable, e.g., P, = {2233,1232,1123, 3311}, and simplifiable SUSPs that are
not local, e.g., P, = {11, 23}. Simplifiable SUSPs have the efficient verification of
local SUSPs, but the concise representation of general SUSPs. These properties
make the prospect of searching for large simplifiable SUSPs more feasible.

Efficiently-Verifiable SUSPs and Matrix Multiplication 51

4 Simplifiable SUSPs Generate Infinite Families

Lemma 1 gives bounds for the running time of matrix multiplication using infi-
nite families of SUSPs and individual SUSPs. The first bound produces stronger
results than the second. To see this, we define the capacity of an (s, k)-SUSP
P to be Cp = s%, this is analogous to the definition of capacity for families of
SUSPs. Now, consider an SUSP P and an infinite family F with the same capac-
ity Cp = Cr. Lemma 1 gives a weaker upper bound on w for the single puzzle
than its does for the infinite family. For example, a (14,6)-SUSP has capacity
14% and the bound on w using the dimensions of the puzzle is w < 2.73 and,
although the first part of Lemma 1 does not apply, if we were to use the capacity
of the puzzle instead of its dimensions, we get w < 2.52.

We show that simplifiable SUSPs can be turned into an infinite family of
simplifiable SUSPs by taking Cartesian products (powers) of P with itself to
product a family with the same capacity as P. This allows the first part of
Lemma 1 to be applied, instead of the second, to produce a stronger bound on
w using the capacity of P.

Let P, be an (si,k1)-puzzle and Py be an (sg, kg)-puzzle. We define the
product of P, and P» to be the Cartesian product of their underlying sets: P; x
Py, ={riory | r € P,r5 € Py}. Observe that P, x P is an (s - s2, k1 + k2)-
puzzle. Furthermore, if P is an (s, k)-puzzle, its m-th power is the Cartesian
product of P with itself m times, P™, and observe that this is an (s™,k - m)-
puzzle. For a puzzle P, we can define the infinite family Fp = {P™ | m € N}.
Observe that Fp has capacity (s™)%m = s* matching the capacity of P.

We say an SUSP P generates an infinite family of SUSPs, if every puzzle
in Fp is an SUSP. Unfortunately, the SUSP property is not generally preserved
under Cartesian product or powering. For example, P = {2233,1232,1123, 3311}
is an SUSP, but P x P is not. A consequence of this is that not every SUSP
generates an infinite family of SUSPs. Although SUSPs are generally not closed
under powering, we show that simplifiable SUSPs are.

Lemma 7. If P,Q are simplifiable SUSPs, P x Q is a simplifiable SUSP. More-
over, P generates an infinite family of simplifiable SUSPs.

The proof is a direct consequence of Definition 2 and Corollary 2, and we defer
it, for space, to the long version of this article [6]. Combining Lemma 7 with the
first part of Lemma 1 we produce a tighter bound on w from simplifiable SUSPs,
which proves our main theorem (Theorem 2).

Although it is not the case that every SUSP generates an infinite family,
there is evidence in both experimental results of [4,5] and some of the puzzle
constructions of [8] that there are (non-local) SUSP of maximum size for their
width that generate infinite families. For example, [8, Proposition 3.1] gives an
infinite family with capacity v/2 that is generated by the (2,2)-SUSP {12, 33}.

Finally, using Lemma 6 and Proposition 1 we conclude that using simplifiable
SUSPs does not inherently lead to weaker bounds on w than SUSPs.

Lemma 8. The SUSP capacity is achieved by SUSPs that are simplifiable.

52 M. Anderson and V. Le

Table 1. Comparison of lower bounds for the maximum of size of width-k SUSPs and
upper bounds on w they imply. All the results in this work are simplifiable SUSPs.

k 1 2 3 4 5 6 7 8 9 10 11 12
Bl|s>|1 2 3 4 4 10 10 16 36 36 36 136
w <]3.002.88 |2.85 |2.85 2.80 2.74 2.70
Ml |s> |1 2 3 5 8 14 21 30 42 64 112 | 196
w<]3.002.88 |2.85 281 |2.78 |2.74 |2.73 |2.72 |2.72 |2.71 |2.68 |2.66
Us |s> |1 2 3 5 8 14 23 35 52 78 128 | 196
w <]3.00|2.67|2.65|2.59|2.57 2.52|2.505|2.52|2.53|2.53|2.52|2.52

5 New Lowers Bounds on Maximum SUSP Size

The features of simplifiable SUSPs we proved in the previous sections make
them well suited for discovery via computer search. We use iterative local search
techniques to locate large simplifiable SUSPs with small width & < 12. For
brevity, we defer discussion of our search algorithm and implementation to the
long version of this article [6].!

We find simplifiable SUSPs that match or exceed the size of SUSPs found in
prior work [4,8] for k£ < 12. We summarize our results in Table 1. Because the
SUSPs we find are simplifiable, Theorem 2 implies that they produce stronger
bounds on w than the SUSPs of previous work that are analyzed using the
weaker Lemma 1. This results in substantial improvements over prior work in
this domain: decreasing the bound on w by about 0.2. For k < 5, the sizes in [4]
were shown to be maximum by exhaustive search, and our results match theirs.
For 6 < k < 11, we construct larger SUSPs than in the previous work. The long
version of this article include examples of these maximal simplifable SUSPs [6].

The improvement in the bounds on w appears to stall for £k > 8. We do not
believe that this reflects a real limit on the size of simplifiable SUSPs; rather,
it represents a barrier for our search techniques and the large polynomial-time
cost of running SIMPLIFY. Although our results improve substantially over [8]
for k < 12, their construction achieves w < 2.48 as k — oo.

6 Conclusions

We propose and analyze simplifiable SUSPs, a new subclass of strong uniquely
solvable puzzles. We prove that simplifiable SUSPs have nice properties: they are
efficiently verifiable and generate infinite families of SUSP that lead to tighter
bounds on w. We report the existence of new large (simplifiable) SUSPs with
width 7 < k < 11 and strengthen the bound on w that they imply compared to
previous work. The SUSPs we have found through computer search are now close

! Implementations of our algorithms, along with a tool for verifying simplifiable
SUSPs, are publicly available at https://bitbucket.org/paraphase/matmult-v2.

https://bitbucket.org/paraphase/matmult-v2

Efficiently-Verifiable SUSPs and Matrix Multiplication 53

to producing the same bounds (w < 2.505) as those families of SUSP designed
by human experts (w < 2.48).

New insights into the structure of (simplifiable) SUSPs or the search space
seem necessary to progress. A primary bottleneck in the search is the run time
of SIMPLIFY, which even if it quickly reaches a fixed point, the algorithm still
spends §2(s?) time to construct an instance from a puzzle with s - k entries.
We conjecture that if there are (s, k)-SUSPs, then there are simplifiable (s, k)-
SUSPs, which is consistent with the SUSPs we found and report in Table 1.

Acknowledgments. The second author’s work was funded in part by the Union Col-
lege Summer Research Fellows Program. Both authors acknowledge contributions from
other student researchers to various aspects of this research program. We thank our
anonymous reviewers for their helpful suggestions.

References

1. Alman, J., Williams, V.V.: Further limitations of the known approaches for
matrix multiplication. In: 9th Innovations in Theoretical Computer Science (ITCS).
LIPIcs. Leibniz International Proceedings in Informatics, vol. 94, pp. Art. No. 25,
15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Germany (2018). https://
doi.org/10.4230/LIPIcs.ITCS.2018.25

2. Alman, J., Williams, V.V.: A Refined Laser Method and Faster Matrix Multipli-
cation, pp. 522-539. SIAM (2020). https://doi.org/10.1137/1.9781611976465.32

3. Alon, N., Shpilka, A., Umans, C.: On sunflowers and matrix multiplication. Com-
put. Complex. 22(2), 219-243 (2013). https://doi.org/10.1007/s00037-013-0060-
1

4. Anderson, M., Ji, Z., Xu, A.Y.: Matrix multiplication: verifying strong uniquely
solvable puzzles. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp.
464-480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7_32

5. Anderson, M., Ji, Z., Xu, A.Y.: Matrix multiplication: verifying strong uniquely
solvable puzzles (2023). https://doi.org/10.48550/ARXIV.2301.00074

6. Anderson, M., Le, V.: Efficiently-verifiable strong uniquely solvable puzzles and
matrix multiplication (2023). https://doi.org/10.48550/ ARXIV.2307.06463

7. Blasiak, J., et al.: Which groups are amenable to proving exponent two for matrix
multiplication? (2017). https://doi.org/10.48550/ ARXIV.1712.02302

8. Cohn, H., Kleinberg, R., Szegedy, B., Umans, C.: Group-theoretic algorithms for
matrix multiplication. In: 46th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 379-388 (2005). https://doi.org/10.1109/SFCS.2005.
39

9. Cohn, H., Umans, C.: A group-theoretic approach to fast matrix multiplication.
In: 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 438-449 (2003). https://doi.org/10.1109/SFCS.2003.1238217

10. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progres-
sions. J. Symb. Comput. 9(3), 251-280 (1990). https://doi.org/10.1016/S0747-
7171(08)80013-2

11. Croot, E., Lev, V.F., Pach, P.P.: Progression-free sets in are exponentially small.
Ann. Math. 331-337 (2017). https://doi.org/10.4007 /annals.2017.185.1.7

12. Davie, A.M., Stothers, A.J.: Improved bound for complexity of matrix multiplica-
tion. Proc. R. Soc. Edinb. Sect. A: Math. 143(2), 351-369 (2013)

https://doi.org/10.4230/LIPIcs.ITCS.2018.25
https://doi.org/10.4230/LIPIcs.ITCS.2018.25
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1007/s00037-013-0060-1
https://doi.org/10.1007/s00037-013-0060-1
https://doi.org/10.1007/978-3-030-51825-7_32
https://doi.org/10.48550/ARXIV.2301.00074
https://doi.org/10.48550/ARXIV.2307.06463
https://doi.org/10.48550/ARXIV.1712.02302
https://doi.org/10.1109/SFCS.2005.39
https://doi.org/10.1109/SFCS.2005.39
https://doi.org/10.1109/SFCS.2003.1238217
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.4007/annals.2017.185.1.7

54

13.

14.

15.

16.

17.

M. Anderson and V. Le

Duan, R., Wu, H., Zhou, R.: Faster matrix multiplication via asymmetric hashing
(2022). https://doi.org/10.48550/ARXIV.2210.10173

Fawzi, A., et al.: Discovering faster matrix multiplication algorithms with reinforce-
ment learning. Nature 610(7930), 47-53 (2022). https://doi.org/10.1038 /s41586-
022-05172-4

Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, Lon-
don (2020)

Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354-356
(1969). https://doi.org/10.1007/BF02165411

Tassa, T.: Finding all maximally-matchable edges in a bipartite graph. Theoret.
Comput. Sci. 423, 50-58 (2012). https://doi.org/10.1016/j.tcs.2011.12.071

https://doi.org/10.48550/ARXIV.2210.10173
https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1007/BF02165411
https://doi.org/10.1016/j.tcs.2011.12.071

®

Check for
updates

(min, +) Matrix and Vector Products
for Inputs Decomposable into Few
Monotone Subsequences

Andrzej Lingas'®™) and Mia Persson?

! Department of Computer Science, Lund University, 22100 Lund, Sweden
Andrzej.Lingas@cs.l1lth.se
2 Department of Computer Science and Media Technology, Malmé University, 20506
Malmé, Sweden
Mia.Persson@mau.se

Abstract. We study the time complexity of computing the (min,+)
matrix product of two m X n integer matrices in terms of n and the
number of monotone subsequences the rows of the first matrix and the
columns of the second matrix can be decomposed into. In particular, we
show that if each row of the first matrix can be decomposed into at most
m1 monotone subsequences and each column of the second matrix can
be decomposed into at most ms monotone subsequences such that all the
subsequences are non-decreasing or all of them are non-increasing then
the (min, +) product of the matrices can be computed in O(m1man?>%9)
time. On the other hand, we observe that if all the rows of the first
matrix are non-decreasing and all columns of the second matrix are non-
increasing or vice versa then this case is as hard as the general one.

Similarly, we also study the time complexity of computing the (min, +)
convolution of two n-dimensional integer vectors in terms of n and the
number of monotone subsequences the two vectors can be decomposed
into. We show that if the first vector can be decomposed into at most m;
monotone subsequences and the second vector can be decomposed into at
most me subsequences such that all the subsequences of the first vector
are non-decreasing and all the subsequences of the second vector are non-
increasing or vice versa then their (min, +) convolution can be computed
in O(m1m2n1'5) time. On the other, the case when both vectors are non-
decreasing or both of them are non-increasing is as hard as the general
case.

1 Introduction

(min, +) matriz product. The (min, +) matrix product problem for two n x n
integer matrices A = (a;;), B = (b;;) requires computing an n x n matrix
C = (¢i,;) such that ¢; ; = min{a, ; + by ;|1 < k < n}. By the definition, this
problem admits an O(n?)-time algorithm. It is known to be equivalent to the
fundamental all-pairs shortest-paths problem (APSP) [11]. If any of these two
problems admits an ¢(n)-time algorithm then the other problem can be solved in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 55-68, 2024.
https://doi.org/10.1007/978-3-031-49193-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_5

56 A. Lingas and M. Persson

O(t(n)) time [11]. Hence, the APSP hypothesis states that solving any of these
two problems requires n3~°(1) time [22] and the current best algorithm for any
of them runs in 29(”71\/?@ time [24].

The (min, +) matrix product as APSP has a large number of important
applications. Because the prospects of deriving a substantially subcubic upper
time bound for the general (min, +) matrix product are so vague, several authors
studied the complexity of computing this product for restricted integer matrices.
Already several decades ago, it was known that the (min,+) matrix product
can be computed in O(Mn®) time, when the values of the entries in the input
matrices are in the range {—M, ..., M} U {+o0} [2,26]. Here, w stands for the
smallest real number such that two n X n matrices can be multiplied using
O(n“*¢) operations over the field of reals, for all € > 0 (i.e., the number of
operations is O(n*+t°(1)) [1]). More recently, one succeeded to derive substantially
subcubic upper time bounds when, e.g.,: one of the matrices has a small number
of different entries in each row [25], the input matrices are of the so called
bounded-difference (i.e., all pairs of horizontally and vertically adjacent entries
differ by at most O(1)) [4], the input matrices are geometrically weighted [§],
one of the matrices has a constant approximate rank [23], the entries of one of
the matrices are of size O(n) and its rows are non-decreasing [21], or just one of
the matrices range over a constant number of integers [8].

Contributions on (min, +) Matriz Product. In this paper, we take a more general
approach. We study the situation when each row of the first matrix A and each
column of the second matrix B can be decomposed into a bounded number of
monotone subsequences. When all the subsequences are non-decreasing or all of
them are non-increasing, we obtain a substantially subcubic algorithm for the
(min, +) matrix product already when the bound on the number of monotone
subsequences of each row in A and each column in B is O(n%2!%). Namely,
our algorithm runs in O(m,myn?°%9) time, where m, is an upper bound on
the number of monotone subsequences of each row in A and m, is an upper
bound on the number of the monotone subsequences of each column in B. On
the other hand, we observe that if all the rows of A are non-decreasing and
all columns of B are non-increasing or wvice versa then this case is as hard as
the general case. When the entries in each row or column of one of the input
matrices range over c¢ different integers then it is sufficient that the columns or
rows respectively of the other matrix can be decomposed into at most n%!!?
just monotone subsequences to subsume the upper time bound O(cn?%8) [§]
(see Fact 5) for the case without restrictions on the other matrix. Our results on
(min, +) matrix product are summarized in Table 1.

(min, 4) Vector Convolution. Our approach to the (min,+) matrix product is
in fact similar to that to (min,+) convolution of two n-dimensional integer
vectors taken by the authors in the prior paper [18]. The (min,+) convolu-
tion problem for two integer vectors a = (ag,...,an—1) and b = (bg,...,bp—1)
requires computing an 2n — 1 dimensional vector ¢ = (cp, ..., Can—2) such that
¢, = minf{a; + by—¢|l € [max{k —n + 1,0}, min{k,n — 1}]} for £k =0, ...,2n — 2.
By the definition, the (min,+) vector convolution can be computed in O(n?)

(min, +) Matrix and Vector Products 57
Table 1. Upper time bounds for computing the (min, +) matrix product of two n X n
integer matrices A, B, where the rows of A and/or the columns of B admit decomposi-
tions into a bounded number of monotone subsequences (in particular non-decreasing
or non-increasing) or the entries in each row of A or each column of B range over a
constant number of integers.

matrix A/matrix B | ¢, dif. values |m;p non-decr. subs. | mp non-incr. subs.
cq different values | O(cqcpn®) O(campn?°%9) O(campn®5%%)
mg non-decr. subs. | O(mqcyn?5%) | O(mampn®?) ?

mg non-incr. subs. | O(macyn?°%9) | ? O(mampn?%)
arbitrary O(cpyn?5%8) [8] | ? ?

time but again getting any substantially subquadratic upper time bound for
this problem would be a breakthrough. The (min, +) vector convolution has also
a large number of important applications ranging from stringology to knapsack
problem [3,5,9,19].

Contributions on (min,+) Convolution. We correct the requirements on the
monotonicity of the vector subsequences in the statement of Theorem 3.7 in [18]
and provide a proof of the corrected theorem. It states that the (min, +) convolu-
tion of two n-dimensional integer vectors a and b, given with the decompositions
of the sequences of their consecutive coordinates into m, and m; subsequences
respectively, such that either all the subsequences of a are non-decreasing and
all the subsequences of b are non-increasing or vice versa, can be computed in
O(mgmpn'®) time. On the other hand, the case when both vectors are non-
decreasing or both of them are non-increasing is as hard as the general case.
Table 2 summarizes the updated results on (min, +) vector convolution (cf. [18]).

Table 2. Upper time bounds for computing the (min,+) convolution of two n-
dimensional integer vectors either with coordinates having a bounded number of dif-
ferent values, or decompositions into a number of non-decreasing or non-increasing
subsequences.

vector a/vector b | ¢ dif. values | mp non-decr. subs. | mp non-incr. subs. ‘
cq different values | O(cqcpn) O(can?) O(can™®)

me non-decr. subs. O(cbn1'5) ? O(mambnl's)

me non-incr. subs. O(cbn1‘5) O(mambn1'5) ?

arbitrary O(cpn*®) ? ?

Techniques. Our algorithms for the (min,+) matrix product as well as those
for the (min, +) vector convolution are mostly based on efficient reductions to
collections of maximum or/and minimum witness problems for corresponding

58 A. Lingas and M. Persson

Boolean matrix products or Boolean vector convolutions, respectively. One of
our algorithms uses directly a method similar to that known for the extreme
witnesses. For the definition of the extreme witness problems and facts on them
see Preliminaries.

Paper Organization. The next section contains basic definitions and facts.
Section 3 presents our results on (min, +) matrix product while Sect. 4 presents
our results on (min, +) vector convolution.

2 Preliminaries

For two n-dimensional vectors a = (ag,...,an—1) and b = (bg,...,b,—1) over a
semi-ring (U, @, ®), their convolution over the semi-ring is a vector

¢ = (Coy-wey Con—2), Where ¢; = @ﬁ;{;g:ﬁﬂm a; ® b;_; for i = 0,...,2n —
2. Similarly, for a p X ¢ matrix A and a ¢ X r matrix B over the semi-ring,
their matrix product over the semi-ring is a p x r matrix C' = (¢; ;) such that
¢ij = DL _ aim ©by, for 1 <i<pandl < j<r In particular, for the
semi-rings (Z,+, x), (Z, min, +), (Z,max,+), and ({0,1},V,A), we obtain the
arithmetic, (min, 4), (max, +), and the Boolean convolutions or matrix products,
respectively.

We shall use the unit-cost RAM computational model with computer word
of length logarithmic in the maximum of the size of the input and the value of
the largest input integer.

For a positive integer r, we shall denote the set of positive integers not greater
than r by [r].

A witness for a non-zero entry c;; of the Boolean matrix product C of a
Boolean p x ¢ matrix A and a Boolean ¢ X r matrix B is any index k € [¢] such
that a; , and by ; are equal to 1. Such a maximum index is the mazimum witness
for ¢; ; while such a minimum index is the the minimum witness for ¢; ;. The
maximum witness problem (minimum witness problem, respectively) is to report
the maximum witness (minimum witness, respectively) for each non-zero entry
of the Boolean matrix product of the two input matrices.

For positive real numbers p, ¢, s, w(p,q,s) denotes the smallest real num-
ber such that an n? x n? matrix can be multiplied by n¢ x n® matrix using
O(n®P9)+€) operations over the field of reals, for all € > 0. For convenience, w
stands for w(1,1,1).

Fact 1. [10] The minimum witness problem and the mazimum witness problem
for the Boolean matrix product of two Boolean n X n matrices can be solved in
O(n?*) time, where \ satisfies the equation w(1,\,1) = 1+ 2\. By currently
best bounds on w(1,\, 1), O(n?*) = O(n?°%9).

The currently best bounds on w(1,\,1) follow from a fact in [16] combined

with the recent improved estimations on the parameters w = w(1,1,1) and «,

see [14,15]. They yield an O(n??%) upper bound on the running time of the

algorithm for minimum and maximum witnesses in [10] (originally, O(n?°75)).
The following fact is well known (cf. [12]).

(min, +) Matrix and Vector Products 59

Fact 2. Let p and q be two n-dimensional integer vectors. The arithmetic con-
volution of p and q can be computed in O(n) time. Hence, also the Boolean
convolution of two n-dimensional vectors can be computed in O(n) time.

Let ¢ = (co,...,Can—2) be the Boolean convolution of two n-dimensional
Boolean vectors a and b. A witness of ¢; = 1 is any | € [max{i — n +
1,0}, min{é,n — 1}] such that a; A b;—; = 1. A minimum witness (or mazimum
witness) of ¢; = 1 is the smallest (or, the largest, respectively) witness of ¢;.
The minimum witness problem, or mazximum witness problem for the Boolean
convolution of two n-dimensional Boolean vectors is to determine the minimum
witnesses or the maximum witnesses, respectively, for all non-zero entries of the
Boolean convolution of the vectors.

Fact 3. (Theorem 3.2 in [18]). The minimum witness problem (mazimum wit-
ness problem, respectively) for the Boolean convolution of two n-dimensional
vectors can be solved in O(n'-%) time.

For a sequence s of integers, we shall denote the minimum number of mono-
tone subsequences into which s can be decomposed by mon(s).

Fact 4. [13,20]. A sequence s of n integers can be decomposed into O(mon(s)
logn) monotone subsequences in O(n'->logn) time.

Fact 5. (Theorem 3.2 in [8]). Let A and B be two n X n integer matrices, where
the entries of one of the matrices range over at most ¢ different integers. The
(min, +) matriz product of A and B can be computed in O(cn?58%) time.

3 (min,+) Matrix Product

Consider two n X n integer matrices A and B. If we are given decompositions of
the rows of A and the columns of B into monotone subsequences such that either
all the subsequences are non-decreasing or all of them are non-increasing then
we can use the algorithm depicted in Fig.1 in order to compute the (min,+)
matrix product of A and B. First, for all 4,5 € [n], for each subsequence af of
the i-th row of A and each subsequence b of the j-th column of B, we compute
the Boolean vectors char(af) and char(b}) indicating with ones the entries of
the row and column covered by af or b7, respectively. Next, we form the Boolean
matrices A° whose rows are the vectors char(a$) and the Boolean matrices B”
whose columns are the vectors char(bg). Then, depending if the subsequences are
non-decreasing or non-increasing, for each pair of matrices A°, B", we compute
either the minimum witnesses of the Boolean matrix product of A° and B"
or the maximum witnesses of this Boolean product, respectively. We use the
extreme witnesses to update the current entries of the computed (min, +) matrix
product of A and B. The correctness of the reduction to extreme witnesses for
the Boolean matrix product of A° and B" in the algorithm is implied by the
following observation.

60 A. Lingas and M. Persson

Input: two n X n integer matrices A = (a;,;) and B = (b; ;), for each ¢ € [n], a
decomposition of the i-th row of A into m, subsequences aj, and for each j € [n],
a decomposition of the j-th column of B into m; subsequences b7, such that either
all the subsequences are non-decreasing or all of them are non-increasing.
Output: the (min, +) matrix product C' = (¢; ;) of A and B.
1: for each o € [m,] do
2: for each i € [n] do

3: form a Boolean vector char(af) with n coordinates indicating with ones the
entries of the i-th row of A covered by aj

4: end for

5: form a Boolean matrix A°, where for ¢ € [n], char(af) is the i-th row

6: end for

7: for each r € [my] do

8: for each j € [n] do

9: form a Boolean vector char(bj) with n coordinates indicating with ones the
entries of the j-th column of B covered by b}

10: end for

11: form a Boolean matrix B", where for j € [n], char(b}) is the j-th column

12: end for

13: initialize the C' = (¢;,;) matrix by setting each ¢; ; to 400
14: for each pair A° and B" do

15: if the subsequences are non-decreasing then compute the minimum witnesses
(wit(d;,;)) for the Boolean matrix product (d; ;) of A° and B”
16: if the subsequences are non-increasing then compute the maximum witnesses

(wit(d;,;)) for the Boolean matrix product (d; ;) of A° and B”
17: for i=1ton do

18: for j =1tondo

19: if di’j 7é 0 then Cij < min{ai,wit(dm) + bw’it(di,j),jv Ci,j}
20: end for

21: end for

22: end for

23: C + (Ci,j)

24: return C

Fig. 1. An algorithm for computing the (min, +) product of two n x n integer matrices
A and B given with decompositions of all rows of A into m, subsequences and decom-
positions of all columns of B into m; subsequences such that either all the subsequences
are non-decreasing or all the subsequences are non-increasing.

Remark 1. Let A = (a;;) and B = (b; ;) be two n x n integer matrices. Next,
let @’ be a subsequence of the sequence of entries in an i-th row of A and let o’
a subsequence of the sequence of entries in an j-th column of B. If @’ and b’ are
non-decreasing then if the set {a; x + bx j|k € [n] Aa;x € o’ ANby; € V'} is not
empty then the minimum sum in the set is achieved by the pair minimizing the
index k. Analogously, if ' and b’ are non-increasing then the minimum sum is
achieved by the pair maximizing the index k.

Theorem 6. Let A = (a;;) and B = (b;;) be two n x n integer matrices.
Suppose that for each i,j € [n], there is given a decomposition of the i-th row of
A into at most m, subsequences and a decomposition of the j-th column of B into

(min, +) Matrix and Vector Products 61

at most my subsequences, where either all the subsequences are non-decreasing
or all of them are non-increasing. Then, the (min, +) product of A and B can
be computed in O(mgmpn?°%9) time.

Proof. By Remark 1, the following condition holds: (*) if d;; # 0 in line
19 of the algorithm in Fig.1 then min{a; r + by |k € [n] A char(al), =
L; A char(b}) = 1} is equal to the first argument of the minimum in this line,
L.e., G wit(d; ;) T bwit(d: ;),j- Hence, none of the entries of the output matrix C
has a lower value than the corresponding entry of the (min, +) matrix product of
A and B. Conversely, if the i, j entry of the (min, +) matrix of A and B equals
ai + br; then there exist o, r such that a; € af and by ; € b;, i.e., more
precisely char(af)r = 1 and char(b}), = 1. Hence, again by (*) and line 19 in
the algorithm, the ¢; ; entry in the output matrix has value not larger than the
corresponding i, j entry of the (min, +) matrix product of A and B.

The time complexity of the algorithm is dominated by the m,m; computa-
tions of minimum or maximum witnesses of the Boolean product of two Boolean
n x n matrices. Thus, by Fact 1 the algorithm runs in O(mgmpn?°%) time. O

Ezxample 1. We shall assume the notation from our first algorithm. Suppose that
two input integer matrices A and B have size 6 x 6 and that each row of A can
be decomposed into at most 3 non-decreasing subsequences while each column
of B can be decomposed into at most 2 non-decreasing subsequences. Suppose
in particular that the fourth row a4 of A is (1,7,3,9,8,4) while the fifth column
bs of B is (5,11,2,7,13,10). Then, it is easy to see that in the (min, +) product
(ci,j) of A and B, cs5 = 5 holds. Note that a4 can be decomposed into three

following non-decreasing subsequences al = (1, ,3, , ,4), a2 = (,7, , ,8,),
ai=(,,,9, ,) while b5 can be decomposed into two non-decreasing subse-

quences b} = (5,11, , ,13, Yand b2 = (, , 2,7, ,10). Their characteristic Boolean
vectors are char(a}) = (1,0,1,0,0,1), char(a?) = (0,1,0,0,1,0), char(a}) =
(0,0,0,1,0,0), and char(b}) = (1,1,0,0,1,0), char(b?) = (0,0,1,1,0,1), respec-
tively. For o € [3] and r € [2], the inner Boolean product of the vectors char(a3)
and char(b}) yields the dy 5 entry of the Boolean matrix product of the Boolean
matrices A° and B" in the algorithm. The minimum witness of the entry dy 5 is
lforo=1,r=1,3foro=1,r=2,2foro=2, r=1,and 4 foro=3, r =2,
respectively. For the other combinations of o and r, it is undefined. Hence, c4 5
is computed as the minimum of 14 5,3 + 2,7+ 11,9 + 7 which is 5 as required.

We shall call a sequence of integers uniform if all its elements have the same
value.

A uniform subsequence of a matrix row or column covering all entries in
the row or column having the same fixed value is both non-increasing and non-
decreasing. If the entries in the row or column can have at most c¢ different
values then the row or column can be easily decomposed into at most ¢ uniform
subsequences. Hence, if the entries in rows or columns of one of the input matrices
range over relatively few different integers then it is sufficient to decompose the
rows or columns of the other matrix into relatively few monotone subsequences in
order to obtain relatively efficient algorithm for the (min, +) matrix product. The

62 A. Lingas and M. Persson

aforementioned subsequences do not have to be simultaneously non-decreasing
or non-increasing as the counterpart subsequences in the first matrix are uniform
and hence are both non-decreasing and non-increasing.

Remark 2. Let A = (a;;) and B = (b; ;) be two n x n integer matrices. Next,
let a’ be a subsequence of the sequence of entries in an i-th row of A and let o’
a uniform subsequence of the sequence of entries in an j-th column of B. If a’
is non-decreasing and the set {a; r + bx j|k € [n] Aa;r € o’ ANbyj € b'} is not
empty then the minimum sum in the set is achieved by the pair minimizing the
index k. Analogously, if ¢’ is non-increasing then the minimum sum is achieved
by the pair maximizing the index k.

Remark 2 yields our second algorithm for the (min, +) product described in
the following theorem. For the algorithm and the proof of the theorem the reader
is referred to the full version [17].

Theorem 7. Let A = (a;;) and B = (b;;) be two n x n integer matrices.
Suppose that at least one of the two following conditions holds:

1. the entries in each column of B range over at most ¢ integers and for each
i € [n], there is given a decomposition of the i-th row of A into at most m
monotone subsequences;

2. the entries in each row of A range over at most c integers and for each
J € [n], there is given a decomposition of the j-th column of B into at most
m monotone subsequences,

2.569)

Then, the (min, +) product of A and B can be computed in O(men time.

Clearly, if the entries in each row of A range over at most ¢, different integers
and the entries in each column of B range over at most ¢, different integers then
the (min, +) product can be computed in O(c,cpn®) time by reduction to cqcp
Boolean matrix products.

Recall that for an integer sequence s, mon(s) denotes the minimum number
of monotone subsequences into which s can be decomposed. By Fact 4, we obtain
immediately the following corollary from Theorem 7.

Corollary 1. Let A and B be two n x n integer matrices. Let my be the max-
imum of mon(d) over all sequences d formed by consecutive entries in the rows
of A and let mo be the mazimum of mon(d) over all sequences d formed by con-
secutive entries in the columns of B. If the entries in each row of A range over
at most ¢, different integers then the (min, +) matriz product of A and B can be
computed in O(mac,n?°% logn) time. Similarly, if the entries in each column
of B range over at most ¢, different integers than the product can be computed
in O(mycpn®°%9logn) time.

Note that when m; or my does not exceed n® then the upper bound of
Corollary 1 subsumes that of Fact 5.

Finally, we demonstrate that the case when the rows of the first matrix are
non-decreasing and the columns of the second matrix are non-increasing or wvice
versa is as hard as the general case.

(min, +) Matrix and Vector Products 63

Theorem 8. The problem of computing the (min, +) matriz product of two nxn
integer matrices A = (a; ;) and B = (b; ;), where fori € [n], the rows a; 1, ...,a; n
of A are non-decreasing and the columns by j,...,b, j of B are non-increasing or
vice versa is equally hard as computing the product for arbitrary n X n integer
matrices.

Proof. Let M be the maximum absolute value of an entry in the matrices A, B.
Transform the matrix A to a matrix A" by setting a; , = a; x+2kM for i, k € [n].
Observe that each row in A’ is non-decreasing. Similarly, define the matrix B’
by setting by, ; = by,; — 2kM for j, k € [n]. Similarly observe that each column
of B’ is non-increasing. Now, consider the (min,+) matrix products C = (c; ;)
of A, Band C" = (¢} ;) of A’, B'. For i, j € [n], we have

¢; . = min{(a; x + 2kM) + (b, ; — 2kM)|k € [n]} = ¢; ;.

2,]

The proof for the case where the rows of the first matrix are non-increasing and
the columns of the second matrix are non-decreasing is symmetric. O

We summarize our results on the (min, +) matrix product in Table 1.

4 (min, +) Convolution

If we are given decompositions of the two input n-dimensional vectors a and b
into monotone subsequences such that either all the subsequences of a are non-
decreasing and all the subsequences of b are non-increasing or vice versa then
we can use the algorithm depicted in Fig.2 in order to compute the (min,+)
convolution of a and b. First, for each subsequence a’ of a and each subsequence
b of b, we compute the Boolean vectors char(a’) and char(b’/) indicating with
ones the coordinates of a or b covered by a’ or b7, respectively. Next, depending
if the subsequences are non-decreasing and non-increasing, respectively, or vice
versa, for each pair of such subsequences a’ and b/, we compute the minimum
witnesses of the Boolean convolution of char(a’) and char(b’) or the maximum
witnesses of this Boolean convolution, respectively. We use the extreme witnesses
to update the current coordinates of the computed (min,+) convolution. The
correctness of the reduction to extreme witnesses of the Boolean convolution of
char(a®) and char(b’) in the algorithm is implied by the following observation.

Remark 3. Let a = (ag,...,an—1) and b = (by,...,bp—1) be two n-dimensional
integer vectors. Next, let a’ be a subsequence of ag,...,a,_1 and let b’ be a
subsequence of by, ...,b,_1. For each k € {0,...,2n — 2}, if @’ is non-decreasing
and b’ non-increasing then if the set {ag + by—¢|ag € a’ Abi_y € b’} is not empty
then the minimum sum in the set is achieved by a pair minimizing the index
£ (thus maximizing k — ¢). Analogously, if o’ is non-increasing and ' is non-
decreasing then the minimum sum is achieved by a pair maximizing the index /¢
(thus, minimizing the index k — £).

Hence, we obtain the following theorem, correcting Theorem 3.7 in [18].

64 A. Lingas and M. Persson

Input: two n-dimensional vectors a = (ao, ..., an—1) and b = (bo, ..., bp—1) with integer
coordinates and their decompositions into m, and m; subsequences a’ and b re-
spectively such that either all the subsequences a' are non-decreasing and all the
subsequences b’ are non-increasing or vice versa.

Output: the (min, +) convolution ¢ = (co,, can—2) of a and b.

1: for each a' do

2: form a Boolean vector char(a‘) with n coordinates indicating with ones the
coordinates of a covered by a

3: end for

4: for each ¥’ do

5. form a Boolean vector char(b’) with n coordinates indicating with ones the
coordinates of b covered by b’

6: end for

7: initialize the vector ¢ = (co, ..., c2n—2) by setting all its coordinates to 400

8: for each pair a’, b’ do

9: if the subsequence a’ is non-decreasing then compute the minimum witnesses
wit(do),...,wit(d2n—2) of the Boolean convolution (do, ..., d2n—2) of char(ai) and
char (b))

10: if if the subsequence a' is non-increasing then compute the maximum witnesses
wit(do),...,wit(dzn—2) of the Boolean convolution (do, ..., dan—2) of char(a®) and
char(b?)

11: for k=0to 2n—2do

12: if dg 7& 0 then ci < min{awit(dk) + bk—luit(dk)vck}

13: end for

14: end for

15: ¢ < (coy ...y Can—2)
16: return c

Fig. 2. An algorithm for computing the (min, +) convolution ¢ of two n-dimensional
integer vectors a and b given with their decompositions into m, and m; subsequences
respectively such that either all the subsequences of a are non-decreasing and all the
subsequences of b are non-increasing or vice versa.

Theorem 9. Let a and b be two n-dimensional integer vectors given with the
decompositions of the sequences of their consecutive coordinates into mg and my
monotone subsequences respectively such that either all the subsequences of a are
non-decreasing and all the subsequences of b are non-increasing or vice versa.
The algorithm depicted in Fig. 2 computes the (min,+) convolution of a and b
in O(mgmyn'®) time.

Proof. The proof of the correctness of the algorithm depicted in Fig. 2 is analo-
gous to that of the correctness of the algorithm depicted in Fig. 1. In particular,
we obtain the following implication from Remark 3: (***) if dj, # 0 in line 12 of
the algorithm in Fig.2 then min{a, + bx_¢|char(a®); = 1 A char(b/),_, = 1} is
equal to the first argument of the minimum in this line, i.e., yit(a,) + Ok —wit(dy)-
Hence, none of the coordinates of the output vector has a lower value than the
corresponding coordinate of the (min, +) convolution of a and b. Conversely, if
the k coordinate of the (min, +) convolution of a and b equals ag + by, then
there exists 4, j such that char(a®), = 1 and char(b?);_, = 1. Hence, again by

(min, +) Matrix and Vector Products 65

(***) and line 12 in the algorithm, the ¢j coordinate in the output vector has
value not larger than the corresponding coordinate of the (min, +) convolution
of a and b.

The time complexity analysis of the algorithm in Fig. 2 is also similar to that
of the algorithm in Fig.1. It is dominated by the m,m; runs of the O(n1'5)—
time algorithm for the extreme witnesses of the Boolean convolution of two
n-dimensional Boolean vectors given in Fact 3. ad

Ezxample 2. We shall assume the notation from the first algorithm in this
section. Suppose that a = (ag,...,a5) = (1,7,3,9,8,4) and b = (by,...,b5) =
(13,7,11,5,10,12). Then, it is easy to see that in the (min, +) vector convolu-
tion (co, ..., c10) of @ and b, in particular ¢4 = min{ag + by, a1 + b3, as + be, az +
b1,a4 + bp} = 11 holds. Similarly as in Example 1, a can be decomposed into
three non-decreasing subsequences a' = (1, ,3, , ,4),a®> = (,7, , ,8,), a® =
(,,,9,,). On the other hand, b can be decomposed into two non-increasing
subsequences b' = (13, ,11, ,10,) and b*> = (,7, ,5, ,2). Their correspond-
ing characteristic Boolean vectors are char(a') = (1,0,1,0,0,1), char(a®) =
(0,1,0,0,1,0), char(a®) = (0,0,0,1,0,0), and char(b’) = (1,0,1,0,1,0),
char(b?) = (0,1,0,1,0,1), respectively. The minimum witness of the entry dy
in the Boolean vector convolution (do, ..., d19) of char(b®) and char(b’) is 0 for
i=1j=14fori=2 j=1,1fori =2, j =2, and 3 fori =3, j =2,
respectively. For the other combinations of i € [3] and j € [2], it is undefined.
Hence, ¢4 is computed as the minimum of 1+ 10,8 4+ 13,7+ 5,9 4+ 7 which is 11
as required.

When the consecutive coordinates of the two input n-dimensional integer vectors
are simultaneously non-decreasing or non-increasing the problem of computing
the their (min, 4+) convolution appears to be as hard as in the general case [6].

Fact 10. [6] The problem of computing the (min,+) convolution of two integer
vectors a = (ag, ..., an—1) and b = (by, ..., bn_1,), where the sequences ag, ..., ap_1
and by, ...,b,_1 are both non-decreasing or both non-increasing, is equally hard
as computing the convolution for arbitrary n-dimensional integer vectors.

Proof. Let M be the maximum absolute value of a coordinate in the a, b vec-
tors. Transform the vectors a, b into vectors o/, b’ by setting a; = a; +2iM and
b, = b; + 2iM for i = 0,...,n — 1. Observe that both sequences ay,...,al,_;
and b, ...,b,_; are non-decreasing. Consider the (min,+) convolutions ¢ =

ey O

Coy ..., Con_2) of the vectors a, b and ¢’ = (c,...,ch, _,) of the vectors a/, V.
0 2n—2
For £ =0,...,2n — 2, we have

¢ = min{(ap+20M)+ (by—¢ +2(k—) M)|¢ € [max{k —n+1,0}, min{k,n—1}]}
=c, + 2kM.

Analogously, we can reduce the problem of computing the convolution of two
arbitrary n-dimensional integer vectors to that where both input vectors form
non-increasing sequences by using the transformation a = a; — 2iM and b} =
b; — 2iM fori=0,....,n — 1. O

66 A. Lingas and M. Persson

When the entries of one of the input n-dimensional integer vectors range over
a relatively few distinct integers then following the general idea of the proof
of Lemma 2.1 in [7], we can proceed as follows. First, we can decompose the
sequence of consecutive coordinates of the aforementioned vector into a rela-
tively few uniform subsequences. Then, we can sort the coordinates of the other
vector and divide the sorted sequence into interval groups of almost equal size.
Next, we can run Boolean vector convolution on pairs composed of characteristic
Boolean vectors covering with ones a group of the other vector and a uniform
subsequence of the first vector, respectively. Further, using the results of the
Boolean convolutions, for a fixed uniform subsequence, for k = 0, ...,2n — 2, we
can find the group with the smallest index containing an element whose mate
belongs to the uniform subsequence. By brute-force search in the group, we can
find a smallest element having a mate in the uniform subsequence in order to
update the computed k coordinate of the (min,+) convolution. The algorithm
is described in the full version [17]. Its correctness is implied by the following
observation based on the sorted order of the groups of the other vector and the
uniformity of considered subsequences of the first vector.

Remark 4. Let a = (ag,...,an—1) and b = (by,...,b,—1) be two n-dimensional
integer vectors. Next, let ag, ..., a,—1 be divided into subsequences g’ such that
no element in g° is greater that any element in ¢g**! for i = 1,2,... Suppose
that b is a uniform subsequence of by, ...,b,_1. Then, for k& = 0,...,2n — 2,
min{ag + by—q|br—q € b’} is equal to min{ag + by_glag € g™ Aby_q € b'}, where
m is the minimum ¢ such that there is a, € g for which by, € '.

We obtain the following generalization of Lemma 2.1 in [7], for its proof see
the full version [17].

Theorem 11. Let a and b be two n-dimensional integer vectors. Suppose that
the entries of a or the entries of b range over at most h distinct integers. The
(min, +) convolution of a and b can be computed in O(hn'-%) time.

Because of the correction of Theorem 3.7 from [18] and Theorem 11, several
entries in Table 1 in [18] need to be updated. Table 2 presents the updated version
of the table.

Acknowledgments. Thanks go to Alejandro Cassis for pointing the flaw in the state-

ment of Theorem 3.7 in [18], providing Fact 10, and suggesting Theorem 11. This
research was partially supported by Swedish Research Council grant 2018-04001.

References

1. Alman, J., Vassilevska Williams, V.: A refined laser method and faster matrix
multiplication. In: Proceedings of SODA, pp. 522-539 (2021)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

(min, +) Matrix and Vector Products 67

Alon, N.; Galil, Z., Margalit, D.: On the exponent of the all pairs shortest path
problem. J. Comput. Syst. Sci. 54(2), 255-262 (1997)

Bringmann, K., Cassis, A.: Faster knapsack algorithms via bounded monotone
min-plus-convolution. In: Proceedings of ICALP, pp. 31:1-31:21 (2022)
Bringmann, K., Grandoni, F., Saha, B., Vassilevska Williams, V.: Truly subcubic
algorithms for language edit distance and RNA folding via fast bounded-difference
min-plus product. SIAM J. Comput. 48(2), 481-512 (2019)

Bremner, D., et al.: Necklaces, convolutions and X+Y. Algorithmica 69, 294-314
(2014)

Cassis, A.: Personal communication (2023)

Chan, T.M., He, Q.: More on change-making and related problems. In: Proceedings
of ESA 2020, Article No. 29, pp. 29:1-29:14 (2020)

Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. STAM
J. Comput. 39(5), 2025-2089 (2010)

Cygan, M., Mucha, M., Wegrzycki, K., Wlodarczyk, M.: On problems equivalent
to (min, +)-convolution. ACM Trans. Algorithms 15(1), 14:1-14:25 (2019)
Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common
ancestors in directed acyclic graphs. Theor. Comput. Sci. 380(1-2), 37-46 (2007)
Fischer, M.J., Meyer, A.R.: Boolean matrix multiplication and transitive closure.
In: Proceedings of 12th Symposium on Switching and Automata Theory, pp. 129—
131 (1971)

Fisher, M.J., Paterson, M.S.: String-matching and other products. In: Proceedings
of 7th SIAM-AMS Complexity of Computation, pp. 113-125 (1974)

Fomin, F.V., Kratsch, D., Novelli, J.: Approximating minimum cocolorings. Inf.
Process. Lett. 84, 285-290 (2002)

Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
39th International Symposium on Symbolic and Algebraic Computation, pp. 296—
303 (2014)

Le Gall, F., Urrutia, F.: Improved rectangular matrix multiplication using powers
of the coppersmith-winograd tensor. In: Proceedings of SODA 2018, pp. 1029-1046
(2018)

Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and applications.
J. Complex. 14, 257-299 (1998)

Lingas, A., Persson, M.: (min, +) Matrix and Vector Products for Inputs Decom-
posable into Few Monotone Subsequences. CoRR abs/2309.01136 (2023)

Lingas, A., Persson, M.: extreme witnesses and their applications. Algorithmica
80(12), 3943-3957 (2018). (Prel. version in Proc. COCOA 2015)

Muthukrishnan, S.: New results and open problems related to non-standard
stringology. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 298
317. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60044-2_50
Yang, B., Chen, J., Lu, E., Zheng, S.Q.: A comparative study of efficient algorithms
for partitioning a sequence into monotone subsequences. In: Cai, J.-Y., Cooper,
S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 46-57. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72504-6_4

Gu, Y., Polak, A., Williams, V.V., Xu, Y.: Faster monotone min-plus product,
range mode, and single source replacement paths. In: Proceedings of ICALP 2021,
pp. 75:1-75:20 (2021)

Williams, V.V.: On some fine-grained questions in algorithms and complexity. In:
Proceedings of the ICM, vol. 3, pp. 3431-3472. World Scientific (2018)

Williams, V.V., Xu, Y.: Truly Subcubic Min-Plus Product for Less Structured
Matrices, with Applications. CoRR abs/1910.04911 (2019)

https://doi.org/10.1007/3-540-60044-2_50
https://doi.org/10.1007/978-3-540-72504-6_4

68

24.

25.

26.

A. Lingas and M. Persson

Williams, R.: Faster all-pairs shortest paths via circuit complexity. In: Proceedings
of 26th STOC, pp. 664-673. ACM (2014)

Yuster, R.: Efficient algorithms on sets of permutations, dominance, and real-
weighted APSP. In: Proceedings of 20th SODA, pp. 950-957 (2009)

Yuval, G.: An algorithm for finding all shortest paths using N2-%! infinite-precision
multiplication. Inf. Process. Lett. 11(3), 155-156 (1976)

®

Check for
updates

A Sub-quadratic Time Algorithm
for Computing the Beacon Kernel
of Simple Polygons

Binay Bhattacharya, Amirhossein Mozafari®) and Thomas C. Shermer

School of Computing Science, Simon Fraser University, Burnaby, Canada
{binay,amozafar,shermer}@sfu.ca

Abstract. In 2011, Biro et al. [4] initiated the concept of beacon attrac-
tion trajectory motivated by routing messages in sensor network systems.
Let P be a polygonal region such that there is a point particle at each
point in P. When we activate a beacon at a point b € P, each particle in
P greedily moves toward b. For a point p € P, if the particle at p reaches
b, we say b attracts p. We call a point b € P a beacon kernel point of
P if a beacon at b attracts all points in P. The beacon kernel of P is
defined as the set of all beacon kernel points of P. In 2013 [3] Biro pre-
sented a naive quadratic time algorithm to compute the beacon kernel of
polygonal domains and showed that this bound is tight. But, obtaining a
sub-quadratic time algorithm for computing the beacon kernel of simple
polygons remained open. In this paper, we answer to this open problem
by presenting an O(n'-® log® n) time algorithm for computing the beacon
kernel of simple polygons.

1 Introduction

Studying the behaviour of point particles in a polygonal region under the influ-
ence of an attraction actuator, called beacon, is an active area in computa-
tional geometry due to its applications in several computer science branches
such as robot motion planning and network systems [1,10,11]. The problem first
appeared in the context of sensor network systems in early 2000s [10]. Consider
a network of sensors in a polygonal region P that gather information and send it
to a destination point (base) b in the region. Each sensor has a range such that
it only can pass a message to the sensors within its range (we call these sensors
neighbor sensors). Greedy routing protocol is widely used in such circumstances
as each sensor only needs to know the location of itself, the base and its neighbor
sensors. Specifically, each sensor passes its message to the neighbor sensor that
is closest to b (if all the neighbor sensors are farther to b than itself the sensor
does not pass its message). Two main problems can arise here. The first problem
is determining the sensors that can successfully send their messages to the base
using the above greedy protocol and the other is determining the locations for a
base such that all sensors can successfully send their information to the base. If
we assume that P is uniformly filled with sensors and the range of each sensor

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 69-81, 2024.
https://doi.org/10.1007/978-3-031-49193-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_6

70 B. Bhattacharya et al.

is infinitely small, then for each pair of points (p,b) in P, we can assign a path
inside P that indicates the trajectory of a message that a sensor at p tries to
send to b. Note that p can successfully send its message to b if and only if this
path ends up at b.

In general, we use the beacon/particle terminology to model such problems.
In this terminology, beacons and particles are pointwise objects which means at
each time they can reside in only one point of P. We assume that initially there
is a particle at each point in P and beacon is an attraction actuator that exerts
magnetic pull on the particles. Without any confusion, when we say a point p in
P, based on the context, we either refer to the location p in the polygon or the
particle that initially resides at p. When we activate a beacon at a point b € P,
the particles inside P greedily move toward b (we assume that the particles do
not interact with each other). Specifically, consider the particle initially resides
at a point p € P. At each time, the particle moves in a direction that maximizes
the reduction of its distance from b while it remains inside the polygon. If the
particle reaches b or such a direction does not exist, the particle stands still. In
the first case, we say b attracts p. The attraction region of b denoted by A(b) is
defined as the set of points in P that can get attracted by b. For a point p € P,
the inverse attraction region of pis {b € P :p € A(b)}. b € P is called a (beacon)
kernel point of P if it attracts all points in P (A(b) = P). The (beacon) kernel
of P is defined as the set of all kernel points of P and is denoted by Ker(P).
Figure 1, depicts an example of Ker(P) which as we can see, it may not form a
connected region.

Simple polygon P Chord C

-~ HI)

N

P2(C)

Ker(P) iy

extensions of v

Fig. 1. Ker(P) is shown as the green regions. DW (v) is showed in gray. C' is a chord
that divides P into two sub-polygons P;(C) and P»(C). (Color figure online)

1.1 Previous Works

The concept of beacon attraction trajectory was first introduced by Biro et
al. in 2011 [3,5] as a framework to address problems involving greedy routing
toward a destination point in polygonal regions. A polygonal region is called a
simple polygon when it has no hole and its boundary does not intersect itself.
They gave an O(n) (resp. O(nh)) time algorithm for computing the attraction

A Sub-quadratic Time Algorithm 71

region of a point b € P when P is a simple polygon with n vertices (resp. a
polygonal domain with n vertices and h holes). They also proposed an O(n?)
time algorithm for computing the inverse attraction region of a given point p
in polygonal domains. In addition, they proposed a naive O(n?) time algorithm
for computing the beacon kernel of polygonal domains. They showed that for
polygonal domains, the kernel might have quadratic number of vertices but for
simple polygons, this bound is linear [3]. Since then, obtaining a sub-quadratic
time algorithm for computing the bacon kernel of simple polygons remained
as an open problem. In 2015, Kouhestani et al. presented an O(nlogn) (resp.
O(n)) time algorithm for computing the inverse attraction region of a point
in monotone polygons (resp. polygonal terrains) [13]. In 2018, Kostitsyna et
al. obtained an O(nlogn) time algorithm for computing the inverse attraction
region of a point in simple polygons and showed that this bound is optimal
[12]. In 2019, Bae et al. [2] studied rectilinear polygons and showed that | % |
(resp. L"THJ) beacons are always sufficient and sometimes necessary to attract
any point in simple (resp. monotone) rectilinear polygons. They also showed
that the beacon kernel of rectilinear polygons can be computed in linear time.
In [6] Bose and Shermer introduced the concept of attraction-conver polygons.
A polygon P is called attraction-convex if any point b € P can attract any point
p € P (P = Ker(P)). They provided a linear time algorithm to detect whether
a simple polygon is attraction-convex.

Despite recent studies on various problems regarding beacon based trajectory
of points in polygonal regions, it is still unknown whether the beacon kernel of
simple polygons can be computed in sub-quadratic time. Let us call this problem
the beacon kernel problem (BKP). In this paper, we address this problem by
providing the first sub-quadratic time algorithm to solve the BKP.

2 Preliminaries

Let us assume that P is a given simple polygon with n vertices and (p,d) is a
pair of points in P where we have a beacon at b. Also, let p, be the unit vector

from p toward b. We call a unit vector z' a greedy direction of p with respect to
b if:

1. Z (located at p) points toward the inside of P (including its boundary).
2. Z+pp > 0 (inner product of two vectors).
3. 7+ pp is maximum over all unit vectors satisfying the first two conditions.

If a point d € P does not have a greedy direction with respect to b, we call d
a dead point of P with respect to b. Note that if p is a vertex of P, p might
have more than one greedy direction with respect to b. We call a path 7 in P an
attraction path of p with respect to b if it starts at p and at each point x € 7, the
path continues along a greedy direction of x with respect to b. We say b attracts
p if there is an attraction path of p with respect to b that ends at b.

Observation 1. If b attracts p, the attraction path of p (with respect to b) that
ends at b is unique.

72 B. Bhattacharya et al.

This follows from the fact that if two attraction paths from p ends at b, P
must have a hole enclosed by the paths that contradicts the simplicity of P.
Henceforth, if b attracts p, we consider the attraction path of p (with respect to
b) as the one that ends at b. In Fig. 1, the attraction path from p with respect
to b is depicted by the red dashed line segments.

Let 7 be a path in P starting from a point p. For two points 1 and x5 in 7, let
us denote the distance between 1 and x5 along 7 by d,(z1, 22). We say 1 < 9
if d;(p,x1) < dr(p,xz2). We say 7 is a distance decreasing path with respect to b
if and only if for any two points {x1,x2} € 7 if 21 < z3 then d(x1,b) > d(z2,b)
where d(z1,b) (similarly d(z2,b)) is the Euclidean distance between z; and b.
Based on the definition of an attraction path, we have the following observation:

Observation 2. Any attraction path of p with respect to b is distance decreasing.

Therefore, if there is no distance decreasing path from p to b, then b can not
attract p. A chord C of P is defined as a line segment such that its endpoints lie
on OP (the boundary of P) and its interior completely lies in the interior of P.
C divides P into two sub-polygons. We denote these sub-polygons by P; (C) and
P,(C) (see Fig.1). For a reflex vertex v with incident edges e; and ez, consider the
two half-planes H;(v) and Hs(v) induced by the lines perpendicular to sup(e;)
(the supporting line of e1) and sup(ez) at v containing e; and es respectively. The
dead wedge of v is defined as the interior of the cone induced by H;(v) N Ha(v)
and is denoted by DW (v). Also, we define the perpendicular extensions (for
short extensions) of v as the two half-lines from v perpendicular to e; and eg
respectively enclosing DW (v). See Fig.1 for an example of Hy(v), DW (v) and
the extensions of v.

Observation 3 [3]. If a beacon lies on DW (v), it can not be a kernel point.

For example, in Fig. 1, the point ¥’ € DW (v) can not be a kernel point because
it can not attract the points in the interior of e;. Indeed, the above observation
not only gives us a necessary condition for a point to be a kernel point but also
gives us a sufficient condition:

Theorem 1. A point b € P is a kernel point if and only if it is not contained
in the dead wedge of any reflex vertex of P.

The proof of the above theorem can be found in [3]. In order to simplify our
algorithm, we assume that all given points are in general position by which we
mean no three points are collinear. First, we consider the discrete beacon kernel
problem (DBKP) and provide a sub-quadratic time algorithm to solve it. Next,
we use our algorithm for solving the DBKP to obtain a sub-quadratic time
algorithm for the BKP.

A Sub-quadratic Time Algorithm 73

3 The Discrete Beacon Kernel Problem

Let P be a given simple polygon with n vertices and X be a given set on m
points in P. In the DBKP, we want to find out which points from & are kernel
points for P. The idea for solving the DBKP is applying Theorem 1 to the points
in X to see which points survive from all reflex vertices of P (not lying in the
dead wedge of any reflex vertex). For a reflex vertex v, we say x is eliminated by
v if x lies in DW (v). In order to compute the points in X that are eliminated
by at least one reflex vertex, we use the following theorem from Matousek [14]:

Theorem 2. For a given set of m points in R%, one can preprocess it in
O(m'*?) time and O(m) space for simplex range searching such that each query
can be answered in O(m%>logm) time'.

Here, 0 > 0 is an arbitrary fixed number. The idea behind Theorem 2 is recur-
sively building a simplicial partition (partitioning of the plane into a set of
simplices each simplex contains a suitable number of points) to form a partition
tree 7 with O(logm) height. When a query simplex @ is given, we start from
the root of 7 and in each internal node of the tree, we proceed into the chil-
dren whose corresponding regions crosses @@ (has non-empty intersection with
both inside and outside of Q). Therefore, according to the above theorem, by
spending O(m!*?) time for preprocessing, we can specify the points in X elim-
inated by a given reflex vertex in O(m%®logm) time described as an union
of simplices containing the eliminated points (we do not need to report the
points here). We can modify this data structure to detect the points lying in
{UDW (v) : v is a reflex vertex of P} as follows: after preprocessing and build-
ing the partition tree, we query each DW (v) where v is a reflex vertex. But,
when a simplex is completely lies in DW (v), we mark it as eliminated. After
querying all dead wedges, for each point x € X', we perform a point location to
find the leaf simplez (a simplex corresponding to a leaf-node of 7) containing
it. Next, we traverse 7 from the corresponding leaf-node to the root and if we
see any marked simplex, we report = as eliminated. Based on Theorem 1, the
points of X that do not get eliminated are the kernel points. Because the height
of T is O(logm), this step can be done in O(mlogm) time.

Theorem 3. The discrete beacon kernel problem can be solved in O(mlogm +
nm®5logm) time.

4 The Beacon Kernel Problem

Our general framework to solve the BKP is as follows: we first introduce a data
structure for P called the split decomposition tree (SDT) similar to the polygon-
cutting decomposition of Chazelle [7]. Next, we use the SDT to build a set of
candidate points K for the vertices of Ker(P) and store them in an appropriate

! In the original paper, this time complexity is O(m0'52o<l°g* 7">). For the sake of
simplicity, here we use O(m°® logm).

74 B. Bhattacharya et al.

partial order. Finally, we run our algorithm for solving the DBKP on K to obtain
a set of kernel point K*. We show that the points of K* are indeed the vertices
of Ker(P). Using K* and the partial order on it, we can construct Ker(P).

4.1 The Split Decomposition Tree of P

We start by computing a triangulation A of P and its dual graph T . The
triangulation of P can be done in linear time using Chazelle’s polygon trian-
gulation algorithm [8]. T is a graph for which there is a node corresponding
to each triangle in A and two nodes in T 5 are connected by an edge if their
corresponding triangles share an edge. Note that because P is simple, T » is a
tree (this is because we can always embed T o in P such that each node of T 5
lies in its corresponding triangle in A). We can see that each subtree T C T 5
corresponds to a connected region in P which is obtained by the union of the
triangles corresponding to the nodes in T'. The centroid of T 5 is defined as a
node for which by removing it (and its incident edges) from T 4, the maximum
size of each connected component is minimum. Therefore, the size of each con-
nected component of the remaining graph is at most [|T A|/2]. Note that because
the degree of each node of T 4 is at most three, by removing a node, we would
have at most three connected components. In order to avoid confusion in our
algorithm, we always assume that the trees are rooted and if there are multiple
choices for selecting a centroid, we choose the one closest to the root. Based on
this assumption, the centroid of T o (and each of its subtrees) is unique and can
be computed in linear time [15]. Suppose that |Ta| > 2 (|T | is the number of
nodes in T) and ¢ is the centroid of T . Also, suppose that ¢ has degree three
(resp. two) and {T1,Ts,T5} (resp. {I1,T2}) are the subtrees of T o emanating
from removing ¢ from T 5 such that 77 has the greatest size. We say two subtrees
{81, S2} are obtained from splitting T o over ¢ if S; = Ty and Sy is the join of
T5 and T5 by ¢ (resp. So = T> U {c}). Based on the definition of centroid, we
have [S1] > [T a|/3 and |Sa| < 2|TAl/3.

Next, we build a data structure called the split decomposition tree for T o
denoted by SDT(T a) which is a binary tree such that each of its nodes corre-
sponds to a subtree of T' ». We build SDT(T a) recursively by splitting the sub-
trees of T A over their centroids starting from T 4. For each node w € SDT(T),
let us denote the sub-polygon of P corresponding to its subtree by P(w). If w
is an internal node with two children w; and ws, we call the chord separating
P(w1) and P(ws), the chord corresponding to w and we store it in w.

Proposition 1. SDT(T) can be constructed in O(nlogn) time.

This is because the height of SDT(T ») is O(logn) and the subtrees in each level
of SDT(T ») are disjoint. Let C be the set of all chords corresponding to the
internal nodes of SDT(T a). Note that because SDT(T 4) has linear number of
nodes, the number of chords in C is also linear. For a node w € SDT(TA), we
say w contains p if p € P(w). Let L(v) be the set of leaf-nodes of SDT(T)
containing a vertex v, then we have:

A Sub-quadratic Time Algorithm 75

> > [P'| = O(n) (1)

v is a vertex P’€Esub-polygons of L(v)

where |P’| is the number of vertices in P’. This is because we have O(n) leaf-
node sub-polygons in P and each of these sub-polygons contains O(1) number
of vertices. We say a chord C separates a point p from a vertex v if p € P;(C)
and v € P»(C) or vice versa. Now, for a vertex v, let C,, C C be the set of chords
corresponding to the nodes in SDT(T 4) on the path(s) from the root to the leafs
in L(v). Here, the construction of SDT(T 4) implies the following proposition:

Proposition 2. For any point p and any vertex v of P (except possibly an O(1)
number of vertices), a chord in C, separates p from v.

Note that based on our definition, if p lies on a chord, the chord separates it
from all vertices in the polygon.

4.2 Computing Candidate Kernel Points

According to Theorem 1, each vertex of Ker(P) (other than a vertex of P) is
either the intersection of two extensions or the intersection of an extension and
an edge of P. Using this property, we build a set K of candidate points such that
if k is a vertex of Ker(P) then x € K. In order to build C, we consider each pair
(w, E,,) where w is a vertex of P and E,, is an extension (if w is a reflex vertex)
or an edge incident to w. We compute a set K(E,,) of candidate points on E,,
such that:

K= U {K(Ey): E, is an extension or an edge incident to w}

w is a vertex of P

Note that if « is a vertex of Ker(P) on E,, such that x ¢ K(E,), then s should
be the intersection of F,, and E, for some vertex v and x € K(E,). Also, we
store the points in IC(F),,) in sorted order based on their distances to w. Suppose
that a pair (w, E,,) is given and we are going to compute }C(E,,). In order to do
that, we provide an algorithm to compute the candidates on F,, with respect to
a giwen chord C denoted by K¢ (FE,). Then, we show that how we can use this
algorithm to build IC(F,,). In the following, we discuss this approach in detail.

Let us assume that C is a given chord with two induced sub-polygons P; (C)
and P»(C) such that w € Py(C) (the case w € P;(C) is symmetrical). We build
Kc(Ey) as a set of points with constant size such that if K € Py(C) is a vertex
of Ker(P) obtained by the intersection of E,, and an extension of a reflex vertex
in P1(C), then k € Kc(E,,). In order to build K¢ (E,,), we introduce two types
of partitions. One is with respect to the given chord C and we call it the C-
partition. The other is with respect to a reflex vertex v € P;(C) which is called
the v-partition. In the following, we define these two types of partitions.

The C-Partition for P5(C): Suppose that C' is horizontal such that P;(C)
lies below C' (in the neighborhood of C'). We first compute all chords of P»(C')
induced by sup(C). Next, we modify the triangulation A on P(C) such that each

76 B. Bhattacharya et al.

of these new chords becomes an edge of the triangulation. We denote this new
triangulation for Po(C) by Az(C). According to [16], A2(C) can be computed
in O(|P2(C)]) time. Let T2(C) be the dual graph of Ay(C) rooted at a node p
corresponding to the triangle incident to C. For a node v € T9(C), we say v
crosses sup(C') from left (resp. right), if the sequence of triangles corresponding
to the path from p to v crosses (by the first time) sup(C) from the left (resp.
right) side of C. If the path does not cross sup(C) we say v does not cross
sup(C). The C-partition of P,(C) is defined as the following three regions (See
Fig.2(a)):

1. Py*(C) is the union of the triangles corresponding to the nodes that do not
cross sup(C).

2. Pl () (resp. Py (C)) is the union of triangles corresponding to the nodes
that cross sup(C) from the left (resp. right) side of C.

The v-Partition of P: Suppose that v is a reflex vertex such that {ej,es}
are its incident edges. Also, let C., and C., be the two chords from v along
sup(e1) and sub(es). These chords divides P into three sub-polygons. Let us
denote the sub-polygon containing e; (resp. ez) by S(e1) (resp. S(ez)). Also, we
call the sub-polygon containing neither of e; and es, the sub-polygon in front of
v denoted by S(v) (see Fig. 2(b)).

(a) (b)

Fig. 2. (a) The C-partition of P>(C) (b) the v-partition of P.

We recall that the half-plane containing e; (resp. e2) with the boundary
passing v and perpendicular to e; (resp. es) is denoted by Hi(v) (resp. Ha(v)).
Let us denote the half-lines from v containing C., and C., by C., and C,,
respectively. Also, for a point b and an edge e, we denote the perpendicular
projection of b on sup(e) by hy(e).

Lemma 1. For any reflex vertex v € P1(C) with incident edges e and ey, we
have:

1. Ifb is a point in the interior of Hy(v) (resp. Ha(v)), then there is no attraction
path from a point in the interior of e; N [v, hy(e1)] (resp. e2 N [v, hy(e2)]) to b.

2. For a point b € S(v), if b € DW (v), then there is a reflex vertex v’ # v such
that b € DW (v').

A Sub-quadratic Time Algorithm 7

Proof. 1) Suppose that b is a beacon in H;(v) and ¢ is a point in the interior of
e1 N [v, hp(e1)] (the case for ey is similar). Note that ¢ exists because b € Hy(v)
as in Fig. 3 (a). Also, suppose that there is an attraction path 7; from ¢ to b that
passes Cp, at a point z. But in this case, d(b,t) < d(b,z) which means m, is not
a distance decreasing path with respect to b that contradicts Observation 2.

2) Suppose that b € DW(v) and B is the visible portion of 9P from b
(as in Fig.3 (b)). Note that the points on B can directly get attracted by b.
Let us assume that the sequence of triangles corresponding to the path in T A
between the two nodes containing v and b enters DW (v) by passing the extension
perpendicular to ey as in Fig. 3 (b) (the other case is similar). Let v = vb’ (b is
an endpoint of B) be the portion of 9P from v to B starting with e;. Because
b € S(v), y intersects C., after leaving v. This implies that can not be distance
decreasing with respect to b (because of the right angle between C,., and the
extension of v perpendicular to es). Therefore, there must be the last (from ¥’)
vertex v/ € « such that v'b’ is distance decreasing but this happens only when
be DW(v'). O

\
\
\
\
]
B
-
1
\
\,
=
\\
=
o

@ RS

Fig. 3. In this figure, the dashed black curves represent any combination of vertices.
In (a), b can not attract ¢ by a path passing Ce, and in (b), b lies in the dead wedge
of v’ because the points of 9P around v’ go into different directions by activating a
beacon at b.

Note that in the above proof d- (v',b") < d(v,b"). Suppose that R is a region
of the C-partition of P»(C'). Here, we show that each reflex vertex v € P;(C) can
generate at most one half-plane Hg (v) called the eliminating half-plane of v on
R such that for any point b € R, if b € Hg(v), then b can not be a kernel point.
Furthermore, if b ¢ Hg(v), b can not be eliminated by v. Based on the part 1 of
Lemma 1, if Po(C) C S(ey) (resp. P2(C) C S(ez)), then Hy(v) (resp. Hy(v)) is
the eliminating half-plane of v on each region of the C-partition of P»(C). On
the other hand, based on the part 2 of the lemma, if P>(C') contained in S(v),
then v does not need to generate any eliminating half-plane on P»(C) (because
all points in P»(C')NDW (v) also gets eliminated by another reflex vertices along
OP). Therefore, we only need to care about the case where C' intersects C,, or
C., (or both).

78 B. Bhattacharya et al.

Observation 4. If C intersects Ce, or Ce,, then at most one extension of v
can intersect sup(C).

The reason is that the extensions of v make right angles with C,, and C,,. For
Py?(C), if none of the extensions of v intersect sup(C), Py (C) N DW (v) =0
and so, v does not generate an eliminating half-plane for P,?(C). Otherwise, if
the extension of v perpendicular to e; (resp. for ez) intersects C, Hy(v) (resp.
H,(v)) would be the eliminating half-plane for P;”(C'). Note that in this case,
Observation 4 implies that the intersection of Py”(C') and this eliminating half-
plane lies in DW (v) and therefore, the eliminating half-plane correctly eliminates
the points of Py?(C) in it.

For PLTH(C) (Py"9"(C) is symmetrical), suppose that z is the left vertex
of C. If z lies in the sub-polygon in front of v, then leeft(C) is a subset of
S(v) and therefore, v does not need to generate any eliminating half-plane on
PLTH(C) (part 2 of Lemma 1). Now, suppose that z € S(ez) (the case z € S(ey)
is symmetrical). Then, if b € Hy(v) N leeft(C), any path from ¢ (a point in the
interior of e1) to b should pass Ce, (see Fig.3 (a)). Therefore, by the part 1 of
Lemma 1, Hi(v) would be the eliminating half-plane for Péef (C). Using the
algorithm of Chazelle et al. in [9], by spending O(nlogn) time for preprocessing
P, we can compute the emanating chords of each reflex vertex in O(logn) time.
Therefore, we can compute all eliminating half-planes of the reflex vertices in
Py (C) on the regions of the C-partition in O(]P1(C)|logn) time. Finally, for
each of these regions, we compute the union of the eliminating half-planes. Let
us denote the polygonal chains corresponding to the boundaries of these unions
in PY?(C), PTH(C) and Py " (C) by WiP(C), WP (C) and WM (C) respec-
tively (note that each of these chains are convex). Using the divide-and-conquer
schema, these chains can be computed in O(|P;(C)|log|P1(C)|) time. Now, hav-
ing a pair (w, E,), we set Kco(Fy) as the intersections (if any) of E,, with
WEP(C), WETH(C) and W39 (C) (which implies |[Ko(Ey,)| < 3). Because of
the convexity of the chains, K¢ (FE,,) can be computed in O(log |P;(C)|) time.
The above discussion gives us the following proposition:

Proposition 3. We can compute Kc(Ey) and Ko(E,) for all vertices w €
Py(C) and v € Pi(C) in O(nlogn) time.

Instead of the entire polygon P, we can work with a sub-polygon P(w) C P
where w € SDT(T) is an internal node with two children wy and wy. Let C” be
the chord stored in w (C’ divides P(w) into P(w;) and P(ws)). In this case, if
we assume that w is a vertex in P(ws), we denote the set of candidate points

induced by the reflex vertices of P(w;) on E,, by ng,(w) (Ey) (the case w € P1(C)
is symmetrical). Algorithm 1 generates K(E,,) (the set of all candidate points on
E,,) sorted based on their distances to w. In addition, for each point in K(E,,),
we store the pair of vertices (one of them is w) creating it in the point. Finally,
we set [C as the union of all K£(FE,) where w is a vertex of P and E,, is an
extension or an edge incident to w.

A Sub-quadratic Time Algorithm 79

Algorithm 1 BUILD_CANDIDATE (FE,,)
: Let K(Eyw) = 0.
Let II,, be the set of root-leaf paths in SDT (T a) to the leafs containing w.
for each 7 in I1,, do
for each internal node w € 7 with corresponding chord C’ do
Let w1 and w2 be the children of w such that w € P(w2).
Add K2 (By) to K(Ew).
end for
Let ¢ be the leaf-node of 7.
Add the intersections of E,, with the extensions of the reflex vertices in P({)
to K(Ew).
10: end for
11: Sort the points in K(E,,) based on their distances to w.
12: return K(Ey).

Theorem 4. If k is a vertex of Ker(P) and not a vertex of P then k € K.

Proof. Suppose that « is a vertex of Ker(P) such that it is not a vertex of P.
Therefore, x should be the intersection of an extension FE, incident to a reflex
vertex v and an extension (or an edge) E,, incident to a vertex w. We need to
prove that xk € K(E,) U K(E,). Suppose that wepie € SDT(T) is the node
where the two paths from the root to the leafs containing w and v split (if such
a node does not exist, w and v lie on the same leaf-node sub-polygon and we
catch such candidates in the line 9 of Algorithm 1). Let wq and w9 be the children
of wgpii¢ such that w € P(ws). Suppose that x € P(ws) (note that if E,, is an
incident edge of w, then x always lie in P(ws) but if & € P(w;), we catch it while

processing v). Then k € ICg,(w)(Ew) and thus, based on line 6 of Algorithm 1,
k € K(Ey,) and so, k € K. O

Proposition 4. The set of candidate points KC can be computed in O(n log? n)
time.

Proof. In each level of SDT(T), the corresponding sub-polygons of the nodes

are internally disjoint. For each internal node w € SDT(T A) with two chil-

dren w; and ws, we need to compute ICg/(w)(Ew) and ng,(w)(Ev) for all vertices

v € P(wy), w € P(ws2) and their extensions and incident edges. This costs
O(|P(w)|log |P(w)]) and so O(nlogn) for all nodes in a level of SDT(T,).
Because SDT'(T a) has O(logn) levels, the total time complexity of computing
K would be O(nlog?n). In addition, the total number of vertices in the regions
corresponding to the leafs of SDT(T 4) is linear (here, a vertex may count more
than once due to its presence in more than one such regions). For each of such
vertices, its corresponding root-leaf path in Algorithm 1 generates O(logn) can-
didate points. Therefore, we have O(nlogn) candidate points in K and the total
cost of sortings is O(nlog?n). O

80 B. Bhattacharya et al.

4.3 Building the Beacon Kernel

After computing IC, we first run the DBKP algorithm on it to find a subset £*
which are the beacon kernel points in K. Note that for each node w € SDT(T A),
we have O(|P(w)|) candidates in IC and thus, || = O(nlogn). Based on Theo-
rem 3, K* can be computed in O(n!- log? n) time. Having K*, we pick a point
Kk € K*. We know that & is the intersection of two extensions or an extension and
an edge of P. Specifically, let x be the intersection of F, and F,, for two vertices
v and w. For each of E, and FE,,, one side of k£ can not be in Ker(P) because it
is either lies in the dead wedge of v or w or outside of P (depending on whether
E, or E, is an extension or an edge). This implies that & is a vertex of Ker(P).
Now, the candidate points on F, and F,, are sorted along on E, and E,. So,
by traversing these candidate points from x along F, and F,, in the direction
that does not get eliminated, we can get the vertices of Ker(P) incident to .
By repeating this process, we build all the edges of the connected component of
Ker(P) containing x and therefore the component itself. We remove all vertices
of the component from K* and pick a new k € K* (we can sort K£* once to
facilitate this operation) and repeat the above process until all components of
Ker(P) are built.

Theorem 5. Given a simple polygon P with n vertices, Ker(P) can be com-
puted in O(n'®log®n) time.

References

1. Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a
survey. IEEE Wirel. Commun. 11(6), 6-28 (2004)

2. Bae, S.W., Shin, C.S., Vigneron, A.: Tight bounds for beacon-based coverage in
simple rectilinear polygons. Computat. Geom. 80, 40-52 (2019)

3. Biro, M.: Beacon-based routing and guarding. PhD thesis, State University of New
York at Stony Brook (2013)

4. Biro, M., Gao, J., Iwerks, J., Kostitsyna, 1., Mitchell, J.S.: Beacon-based routing
and coverage. In: 21st Fall Workshop on Computational Geometry (2011)

5. Biro, M., Iwerks, J., Kostitsyna, 1., Mitchell, J.S.B.: Beacon-based algorithms for
geometric routing. In: Dehne, F.; Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013.
LNCS, vol. 8037, pp. 158-169. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40104-6_14

6. Bose, P., Shermer, T.C.: Attraction-convexity and normal visibility. Comput.
Geom. 96, 101748 (2021)

7. Chazelle, B.: A theorem on polygon cutting with applications. In: 23rd Annual
Symposium on Foundations of Computer Science, pp. 339-349. IEEE (1982)

8. Chazelle, B.: Triangulating a simple polygon in linear time. Discret. Comput.
Geom. 6(3), 485-524 (1991)

9. Chazelle, B., Guibas, L.J.: Visibility and intersectin problems in plane geometry.
In: Proceedings of the First Annual Symposium on Computational Geometry, pp.
135-146 (1985)

10. Karp, B., Kung, H.-T.: GPSR: greedy perimeter stateless routing for wireless net-
works. In Proceedings of the 6th Annual International Conference on Mobile Com-
puting and Networking, pp. 243-254 (2000)

https://doi.org/10.1007/978-3-642-40104-6_14
https://doi.org/10.1007/978-3-642-40104-6_14

11.

12.

13.

14.

15.

16.

A Sub-quadratic Time Algorithm 81

Kim, Y.-D., Yang, Y.-M., Kang, W.-S., Kim, D.-K.: On the design of beacon based
wireless sensor network for agricultural emergency monitoring systems. Comput.
Stand. Interfaces 36(2), 288-299 (2014)

Kostitsyna, 1., Kouhestani, B., Langerman, S., Rappaport, D.: An optimal
algorithm to compute the inverse beacon attraction region. arXiv preprint
arXiv:1803.05946 (2018)

Kouhestani, B., Rappaport, D., Salomaa, K.: On the inverse beacon attraction
region of a point. In: CCCG (2015)

Matousek, J.: Efficient partition trees. In: Proceedings of the Seventh Annual Sym-
posium on Computational Geometry, pp. 1-9 (1991)

Megiddo, N.: Linear-time algorithms for linear programming in R*® and related
problems. STAM J. Comput. 12(4), 759-776 (1983)

Sojka, E.: A simple and efficient algorithm for sorting the intersection points
between a Jordan curve and a line. In Fifth International Conference in Central
Europe in Computer Graphics and Visualisation, pp. 524-533 (1997)

http://arxiv.org/abs/1803.05946

l‘)

Check for
updates

An Approach to Agent Path Planning
Under Temporal Logic Constraints

Chaofeng Yu, Nan Zhang®™), Zhenhua Duan, and Cong Tian

Institute of Computing Theory and Technology, and ISN Laboratory,
Xidian University, Xi’an 710071, China
nanzhang@xidian.edu.cn, {zhhduan,ctian}@mail.xidian.edu.cn

Abstract. The capability of path planning is a necessity for an agent to
accomplish tasks autonomously. Traditional path planning methods fail
to complete tasks that are constrained by temporal properties, such as
conditional reachability, safety, and liveness. Our work presents an inte-
grated approach that combines reinforcement learning (RL) with multi-
objective optimization to address path planning problems with the con-
sideration of temporal logic constraints. The main contributions of this
paper are as follows. (1) We propose an algorithm LCAP? to design
extra rewards and accelerate training by tackling a multi-objective opti-
mization problem. The experimental results show that the method effec-
tively accelerates the convergence of the path lengths traversed during
the agent’s training. (2) We provide a convergence theorem based on the
fixed-point theory and contraction mapping theorem.

Keywords: Path planning - Reinforcement learning -
Pareto-dominance - Unified temporal logic - Fixed-point theory

1 Introduction

Path planning [9] plays a crucial role in various domains, including autonomous
driving, robot navigation, and unmanned aerial vehicle (UAV) navigation [1,18].
It contributes significantly to enhancing efficiency, reducing costs, and optimiz-
ing resource utilization [12]. In the context of robot navigation, path planning
ensures collision-free movement and efficient task execution. Furthermore, it is
desirable for the agent to accomplish the task with minimal time, minimum
energy, and minimum jerk [9]. Given that intelligent systems are prone to errors,
the path-planning policy of agents necessitates a certain level of fault tolerance.
This implies that they should be capable of re-planning an optimal sub-path from
an erroneous position when they deviate from the originally planned trajectory.

This research is supported by National Natural Science Foundation of China under
Grant Nos. 62272359 and 62172322; Natural Science Basic Research Program of
Shaanxi Province under Grant Nos. 2023JC-XJ-13 and 2022JM-367.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 82-93, 2024.
https://doi.org/10.1007/978-3-031-49193-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_7

An Approach to Agent Path Planning Under Temporal Logic Constraints 83

Traditional path planning methods, such as the graph search-based A* algo-
rithm [19], exhibit inefficiency in path search and require complete environmen-
tal information. Sampling-based methods often converge slowly. Intelligent opti-
mization techniques, including ant colony algorithms and genetic algorithms [13],
tend to encounter challenges in escaping local optima.

In contrast, reinforcement learning (RL) [14] provides a powerful approach
to tackling sequential decision problems by improving policies through continu-
ous interactions with the environment, guided by reward signals. RL-based path
planning methods have gained significant traction in various applications. How-
ever, challenges remain, particularly in terms of training stability and robustness.
Concurrently, the path planning task assigned to agents are often intricate and
multi-phased. Within a designated area, agents may be required to visit multi-
ple locations sequentially. Tasks with temporal properties can be described by
temporal logic formulas [17]. Hasanbeig et al. [10,11] propose an RL algorithm
to synthesize policies that satisfy linear time properties for Markov Decision
Processes (MDPs) [3]. Comparing to dynamic programming, the number of iter-
ations is reduced by one order of magnitude.

However, the approach does not address the challenge of inadequate stability
in the training process of RL, nor does it effectively mitigate the duration of
the training process. Therefore, we introduce LCAP?, an algorithm that utilize
multi-objective optimization to evaluate different positions in the destination
and provide extra rewards during the RL procedure. Experiments show that it
effectively shortens the average path length.

The structure of this paper is outlined as follows: Sect. 2 provides an introduc-
tion to the path planning problem and presents fundamental concepts. Moreover,
it introduces essential notions such as Pareto dominance. Section 3 introduces
the proposed LCAP? algorithm and outlines the process of reward design. In
Sect. 4, we empirically demonstrate the efficacy of the proposed algorithm. In
Sect. 5, we give a convergence theorem. Finally, we explore potential extensions
of the ideas presented in this paper.

2 Preliminaries

Multi-phase tasks require agents to reach several target areas in a specific order
and complete the sub-tasks. When the agent reaches the target area, it receives
a positive reward signal. On the contrary, when it reaches an unsafe area, it will
receive a negative punishment signal.

Markov Decision Process (MDP). An MDP is defined as a six tuple 9t =
(S, A, so, P, AP, L) over a finite set of states S, where A is a finite set of actions;
so € S is the initial state; P : S x Ax .S — [0, 1] specifies transition probabilities,
P(s,a,s') is the probability of transitioning from s to s’ with action a; AP is a
finite set of atomic propositions, and L : S — 247 is a labeling function.

An MDP 99t describes the interactions between the agent and environment.
At state s € S, given the policy function 7 : S x A — [0, 1], agent makes the

84 C. Yu et al.

action a = arg max 7(s,a’), and the agent is assigned a reward according to the
a’'e

reward function R : S x A x § — R. State-action value function @ : S x A — R,
Q(s,a) denotes the expected discounted reward that the agent can get after
performing action a at state s. Q(s,a) is usually assigned a fixed value before
training. It will be updated by back propagation of the reward signal:

{Q(&a) — (1=)Q(s,0) + alR(s,a,5") + 7 max Q(s',a')

1" " 1 " (1)
Q(s",a") — Q(s",a")

where « is the learning rate, v is the discount factor, s’ is the next state after

performing action a in state s.

We describe temporal properties through Unified Temporal Logic (UTL) with
the infinite model, then construct a product MDP using original MDP 9t and the
Biichi Automaton (BA) B converted from UTL formula. The agent’s trajectory is
trained to satisfy UTL [20] properties by learning to synthesize a policy through
product MDP. UTL combines all characteristics of traditional Linear Temporal
Logic (LTL) and Propositional Projection Temporal Logic (PPTL) [4]. There-
fore, UTL can be used to describe full regular and omega-regular properties,
which are often encountered in the field of formal verification. A UTL property
can be characterized by an automaton. We converts UTL properties into BA.
After that, a product MDP based on MDP and BA is constructed. Then, the
state-action value function is iteratively calculated by Q-learning [16]. For UTL
syntax and semantics, please refer to [20)].

Biichi Automaton (BA). A BA is a five-tuple, B = (Q, %, A, qo, F), where Q
denotes a finite set of states; ¥ = 247 is a finite alphabet; A: Q x ¥ — 2% is a
transition function; gg € Q is initial state; F is the set of accepting conditions.

Let X be the set of all infinite words over X, an infinite word w € X* can be
accepted by a BA if and only if there exists an infinite run § € Q¥ starting from
qo, where 0[i + 1] € A(0[i],wl[i]),i > 0 and inf(0) N F # O (inf(0) is the set of
states that are visited infinitely often in the sequence). The accepted language
of the BA B is the set of all infinite words accepted by the BA B.

The task’s property is described in UTL, which is a complete and sound
system. If the property is exclusively described in LTL, the LTL3BA tools [2] is
called. If the property is described in UTL or PPTL, PPTL2LNFG is called to
transform the formula into labeled normal form graph (LNFG) [5,6]. Then an
LNFG can be transformed to a GBA, and it can further be transformed to a
BA [7].

Multi-objective optimization [15] allows us to consider multiple objectives
simultaneously and find a set of optimal solutions known as the Pareto frontier.
By exploring the trade-offs among different objectives, multi-objective optimiza-
tion offers a more comprehensive understanding of the problem space. The def-
inition of a multi-objective optimization problem is as follows:

An Approach to Agent Path Planning Under Temporal Logic Constraints 85

st gi(x) <0, i=1,2,...,q (2)
hj(x) =0, j=1,2,...,p.

where x = (21,...,2,) € X C R”™ denotes n-dimensional decision vector,
X denotes n-dimensional decision space, y = (y1,...,%m) € ¥ C R™ is m-
dimensional target vector. g;(x) < 0,7 = 1,2,...,q, represent ¢ inequality con-
straints, and h; () =0,j=1,2,...,p, represent p equation constraints.

Pareto Dominance. Suppose x4, xp are two feasible solutions to the multi-
objective optimization problem defined above, then x4 is said to be Pareto
dominant compared to xp if and only if: Vi € {1,2,...,m}.fi(x4) < fi(xp) A
Jj € {1,2,...,m}.fj(xza) < fj(xp), which denoted as x4 > xp, and called as
x4 dominate xp.

Pareto optimal solution
|
@ |
|
L% e
I
B+® © ®
\\ [] °
~a ® ° L4 °
° °
° ° °
/\\ [] []
RS ©
Pareto frontier T~
fi(®)

Fig. 1. Illustrative Example of Pareto Optimality in Objective Space

A feasible solution x* is called a Pareto optimal solution if and only if there
is no feasible solution @, such that x > x*. The Pareto optimal solution set P*
is the set of Pareto optimal solutions. Pareto frontier PF™* is the surface formed
by the target vector corresponding to the optimal solution in P*. Figure 1 shows
the Pareto frontier and Pareto optimal solutions in a minimization problem with
two objective functions (f1(x), f2(x)). It is evident that none of the alternatives
can claim dominance over solution A. That is, A is a Pareto optimal solution.

3 LCAP?

In this section, we present an innovative algorithm, named LCAP?2, designed
specifically for tackling the intricate challenges of Logically-Constrained Agent
Path Planning (LCAP?) problems within the realms of RL. The following are
the details of the algorithm:

86 C. Yu et al.

Algorithm 1 LCAP?(G, P, episodemas, €pisodenreshold, iterationmas, a, 7, €)

Input: gridworld environment G = (w, h, start,end, Ag,T, Rc), UTL Constraint P,
episodemaz, €pisodeinreshold; teTationmag, @, ¥, €
//G is an instantiated object that defines width, height of the gridworld and
the start and end positions; Ag denotes the action space; T shows the type of a
position; Rg is the reward; P is a constraint defined by UTL formula; episodenm,qx
is the upper limit of the episodes in a training session; episodeipreshold determines
the number of episode to start adding extra rewards; « is the learning rate; ~y is the
discount factor; € is the probability of taking a random action in e— greedy policy
Output: @Q-function

1: Transform P into the corresponding BA B = (Q5,%, A, qo, F)

2: Modeling the gridworld G into an MDP 9t = (S, A, so, P, AP, L)

3: Combine B and 91 to construct the product MDP 9 = (S*, A, s5, P*, AP*, L")

4: Variable: Q = dict = {}, episode = iteration = flag = Rfiag =7 =q=¢ =0

5: Variable: hm = vm = Az; = 0(i = 1,2,3,4), s* = s* =[], label = a* =*”

6: while episode <= episodemas do //value iteration process

7 episode + +

8: if flag == 0 and episode >= episodeinreshoid then //set the time to start
adding extra rewards

9: flag=1

10: end if

11: s* = so.append(qo) //reset the current state to the initial state of Mip
12: Az; =0, i=1,2,3,4, Rfiag =0, v’ =0 //reset the values

13: while iteration < iterationmq. do

14: Qlstr(s™)] ={“up”:0, “down™:0, “left”:0, “right”:0, “stay”:0}

15: a* = max(Q[str(s*)], key = Q[str(s*)].get) with the probability of 1 — ¢
16: if a* == “up” then //determine Az;(i = 1,2,3,4) and next state s’

17: Az ++, s =[s*[0] — 1, s*[1]]

18: else if a* == “down” then

19: ANzg++, s =[s"[0] + 1, s*[1]]

20: else if a* == “left” then

21: Az ++, s =[s*]0], s*[1] —1]

22: else if a* == “ right” then

23: Azy++, s =[s*]0], s [1]+1]

24: else if a* == “ stay” then

25: Azy++, s =[s[0], s*[1]]

26: end if

27: label = L(s"), ¢ = A(q,label) //q’ is the next state of B

28: s* = s'.append(q’) //s*' is the next state of s*

29: Qstr(s*)] ={“up™0, “down™:0, “left”:0, “right”:0, “stay”:0}

30: if s*'[2] € F then //reach terminal state

31: Rfiag =1 //reward for reaching terminal state

32: Compute the target vector [hm,om) corresponds to s*' through Eq. (4)
33: if flag then //start to add an additional reward

34: if not dict then

35: dict[s*'] = [hm,vm) //add “s*' : [hm,vm)” to dict

36: end if

37 for key in dict do

38: if hm <= dict[key][0] and vm <= dict[key][1] and (hm + vm) <

sum(dictlkey]) then //this solution is dominated
39: *

An Approach to Agent Path Planning Under Temporal Logic Constraints 87

40: del dict[key] //remove the dominated solution

41: dict[s*'] = [hm,vm] //add the new Pareto optimal solution

42: end if

43: if hm > dict[key][0] or vm > dict[key][1] then // not a Pareto
optimal solution

44: break

45: end if

46: end for

4T if s in dict then //s* corresponds to a Pareto optimal solution

48: v’ = sum(min(list(dict.values()), aris = 0))/(hm + vm)

49: end if

50: end if

51: Break

52: end if

53: Q(s*,a") = (1 —a)Q(s",a") + a[Ryiag + 1" + ymaz(Q[str(s™)].values())]

54: s* = s //step forward

55: iteration + +

56: end while
57: end while

In Algorithm 1, we first transform UTL constraints and the reinforcement
learning task into a Biichi automaton and an MDP. These are then com-
bined to form a product MDP. The main part of the algorithm (lines 6 to
57) involves value iteration. Lines 13 to 56 explain how agents execute actions
within trajectories, covering state transitions, action selection, Q-value initial-
ization, and updates. Once the endpoint is reached, lines 33 to 50 detail the
reward design using multi-objective optimization. This includes computing and
updating Pareto optimal solutions and an additional reward calculation. Overall,
Algorithm 1 provides a concise framework that leverages reinforcement learning,
temporal logic, and Pareto optimal solutions for effective path planning.

3.1 Property Extraction for Path Planning in Gridworld

In RL, the gridworld problem serves as a prevalent and illustrative environ-
ment model for investigating and exploring the capabilities of various RL algo-
rithms. Gridworld, an abstract representation consisting of a two-dimensional
grid comprised of squares, is employed to symbolize discrete states or spatial
locations. The agent possesses the capacity to execute diverse actions, encom-
passing movements in vertical and horizontal directions, thereby eliciting corre-
sponding rewards depending upon the action performed and the agent’s present
location.

Our focus initially revolves around comprehending the task requirements
inherent to the gridworld scenario. By leveraging the label function, we trans-
form the demand encapsulated within the UTL formula into an associated BA.
Given an MDP 9 = (S, A4,s9, P, AP,L) and an BA B = (Q,%, A, qo, F),
where ¥ = 247 a product MDP is defined as a tuple M @ B = My =
(S*, A, s§, P*, AP*, L*), where S* = Sx Q, s = (s0,q0), AP* = Q,L* : SxQ —
22 such that L*(s,q) = g, P* : S* x A x 8* — [0,1] is the transition probability

88 C. Yu et al.

function such that (s; = s;)A(g; L) q;) = P*((si,4:),a,(s5,q5)) = P(si,a,s;).

Over the states of the product MDP we also define accepting condition F*such
that s* = (s,q) € F*.

3.2 Formulating Multi-Objective Optimization Problem

During the training process, the agent learns an optimal path and concurrently
strives to identify the optimal goal. These two elements possess a mutually rein-
forcing relationship, where advancements in one aspect can effectively facilitate
progress in the other. As illustrated in Fig. 2, the scenario arises where the agent
accomplishes the last sub-task but deviates towards a sub-optimal goal. There-
fore, considering the path planning task’s objective of reaching a predefined
region, our approach revolves around optimizing the refined target region. By
leveraging this optimized region, we design an additional reward signal.

Task 1
-‘:.....,..
~.,..' /e)‘ <

G'A'Q) o e . N~
G Task2 7 te, |
I — ’W.
—r \ | :

« oy L

~ Vonin >~

Fig. 2. The robot is encouraged to explore during the early stages of training. So it is
possible for the task to conclude with a sub-optimal goal.

In the subsequent step, we establish two generic optimization sub-objectives
that are intrinsically linked to the path, namely, the optimization of consumption
hm along the horizontal direction and consumption vm along the vertical direc-
tion. By delineating these generic sub-objectives, we aim to capture the essence of
optimizing energy expenditure and resource allocation within the multi-objective
optimization framework, thereby paving the way for a comprehensive exploration
of trade-offs and potential synergies in the pursuit of optimal solutions.

min y = F(z) = (hm(z),vm(z))T.

s.t. Tmin <z < Tmaz,
Ymin S Yy S Ymax,
0 < AZ“’L = 1a2a354'

3)

Let Sy = {x|xmzn <z < ThaziYmin < Y < Ymaz; 0 < Dzgyi = 1725374}
be the feasible set of the above multi-objective optimization problem. x € S,
is the feasible solution, x; = (xj,y;j, Az1j, Nz j, Nz i, Nzay) € Sy C RS,
represents the jth sample, i.e. the training situation when the agent reaches
area t for the jth time, j = 1,2,...,n. z;,y; represent the location in gridworld,
Az j, Nz 4, Az3 j, Azys ; represent the distance traveled by the jth learning

An Approach to Agent Path Planning Under Temporal Logic Constraints 89

sample in four directions. hmy, (z) = £ Z;L:1 hm(x;) = %22:1 Z?:l iz 5 +
b; denotes the average consumption of the first n learning sessions in the left
and right directions, vm,(z) = £ Y7 om(z;) = £ 30, S Gz + a;
denotes the average consumption of the first n learning sessions in the up and
down directions. 1;, (;(¢ = 1,2, 3, 4) are coefficients, and a;, b; denotes the static

consumption incurred by the agent while waiting in place.

3.3 Reward Design Method

We update the average consumption in an incremental manner:

4

[(k = 1) x hmg 1 () + Y (1 D2k + b)]
- (4)
4

= hmg_1(x) + %(Z(m&zm + b)) — hmg_1(x))
i=1

hmy,(x) =

| =

In fact, it is not meaningful to calculate the average consumption from
the beginning. Therefore, we set the episodeipresnoia- When episode >
episodeipreshold, We start to calculate the average consumption incrementally.
In the process of updating the target vector, we maintain a dictionary where the
key is the coordinate of the Pareto optimal solution and the corresponding value
is the target vector. When an agent reaches a new target point, it compares the
target vector with all the values in the dictionary. When it is confirmed that the
target point reached corresponds to the Pareto optimal solution, an appropriate
reward signal is given to each path that reaches the target area:

min (im(@) + om(@))

"= TESy 5
hm(x*) + vm(x*) ©)

where the numerator represents the lowest average consumption sum in the
set S, C S;, which are feasible solutions obtained. And the denominator is the
average consumption sum of the optimal solutions visited in the current episode.
The @ value is updated according to the following formulas:

" if s’ is the state corresponding to x* (6)

/ n o
R(s,a,5') = {O otherwise

Qs,a) — (1 -)Q(s,) +alR(s,0,) + R (s,0,5) + yargmax Q(s',a')] (7)

90 C. Yu et al.

/—\Stnr((ﬂ,ﬂ) (0,39)

(39,0

Fig. 3. Illustrations of agent path planning in a 2-D space.

4 Experiments

As shown in Fig. 3, we tested the effectiveness of the LCAP? method on gridworld
G [8]. The task s — p — t while avoiding the unsafe area u illustrated in Fig. 3
can be described by the UTL formula [10]:

Olp AOH) AD(E — Ot) A (u — D) (8)

The underlying rationale behind Eq. (8) is that the agent needs to, at a certain
point in the future, sequentially visit the state represented by p and then reach
the state represented by ¢, ensuring O(p A ¢t). Furthermore, the agent should
stay there (¢t — Ot) while avoiding unsafe areas {(u — Ou). We can build the
BA B associated with (8) as in Fig.4a, and the product MDP is obtained from
BA B and MDP 9 according to the construction rule of the product MDP.
For example, the initial state of the product MDP Mg is s§ = (so0,q0) =
(0,0,q0), where sp = (0,0)(in the gridworld) is the initial state of the MDP

M, and qq is the initial state of BA. If the agent steps “down”, then we have

(0,0) don (1,0) and go L) qo, so the transition probability is corresponding

to the original one P*((0,0, go), down, (1,0, q0)) = P((0,0), down, (1,0)).
Suppose the initial episode of the agent is being executed, and at the state
st = (15,14, qo), the agent selects the action “left”. The corresponding next
state in the 2 is (15,15), and its associated atomic propositions, is obtained
through the label function L*(s},.) = p. Subsequently, BA transitions from
state gg to g1 based on p. By combining the 9t state and the B state, we obtain
the corresponding state s = (15,15,¢1) in Mp. At this point, since the agent
has not yet received any reward signal, the state-action value functions for both
states are initialized to 0. As the agent transitions from the current state s,
to a new state s, the incurred cost of moving left is captured as the leftward
movement consumption(Azs+ = 1). Upon reaching the target area, the target
vector can be calculated using Eq. (4). Consider the scenario where the agent
is still at state s%,,., and the Q-values for states s}, and s} are presented in

following table:

An Approach to Agent Path Planning Under Temporal Logic Constraints 91

-p -t t

[4866] | [47,64] | [43,65] | [4467) | [(41,70] | [43,65] | [40.66]
@0 | @ [@32 | @83 | @34 | @35 [@36

141,68
(346)

13871]
(356)

start

1573
(366)

778
(376)

15084
(386)

15288
(396)

(b)

Fig. 4. (a) BA B for (8). (b) Illustration of the target vectors in target area.

s* | Up |Down | Left | Right | Stay
Seur 1 0.0310.44 |0.12/0.52 |0.32
sy 10.00/0.67 |0.80/0.14 |0.28

Notably, the Q-value associated with the “right” action is the highest, imply-
ing that the agent is most likely to choose this action. If the agent opts for the
“right” action, its Q-value will be updated according to the following equation:

Qlstr(sey,)][“right”] = (1 — a)Q[str(sg,,)|[“right”] + [0
+7 mai‘(Q[str(st)] [a] = 0.488 (9)
a’'e

The decision vector is @ = (x,y, Az1, Dzo, Azz, Azy). We set the coefficients
a;,b; to 0. And since the location(x,y) of the target region in this problem
does not affect the optimization objective, the (hm(x),vm(x)) = (1/2 x (Azs3 +
Nz4),1/2 x (Az + Azg)). As depicted in Fig.4b, consider the target vector
[43,65] associated with each terminal state (33, 5). If the agent reaches the state
(33,4), we proceed to evaluate whether the target vector corresponding to this
state represents a Pareto optimal solution. If the target vector satisfies the Pareto

1750

1750 —— S_Pareto(LCAP?) — Q-Learning(LCRL)
5_non-Pareto 1500 Sarsa
1500 —— Q_Pareto

—— Q_non-Pareto
—— Q-Learning(LCRL)
—— Sarsa

1250

1000

o
=}
3

500

Agent Traversed Distance
Agent Traversed Distance
<
]
g

N
o
3

250

o
o

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Episode Number Episode Number

Fig. 5. Experimental results

92 C. Yu et al.

optimality conditions, an additional reward, denoted as 1’ = (38+64)/(43+65) =
0.94, is given according to Eq. (5).

We examine the average distance traversed by the agent under various train-
ing configurations. Notably, Fig. 5 illustrates that the agent performs better and
achieves faster convergence compared to the (J-learning algorithm in this specific
problem domain. Figure 6 indicates that the incorporation of LCAP? enhances
the training stability when using the same learning algorithm. This observation
suggests that LCAP? mitigates the issue of the agent wandering within a region
to some extent, thereby reducing sampling complexity and expediting the train-
ing process. These outcomes support the effectiveness of our proposed method.

1400
—— Q_Pareto —— S_Pareto(LCAP?)

1750
Q_non-Pareto

S_non-Pareto

-

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Episode Number Episode Number

1200

H
&
3
3

=

S

3

8

1250

H

1

3

5]

s
@
S
8

Agent Traversed Distance
<
3
S

Agent Traversed Distance
PO
8 3
g 8

w
3
5}

S

3

N
o
3

=3

o

Fig. 6. Apply LCAP? on Q-learning and Sarsa

5 Convergence Theorem

Theorem 1. For an MDP MM = (S, A, so, P, AP,L), let X : S x A — R be
the state-action value function, S be the set of state-action value functions, the
operator T is defined on & : T(X) = (1 — a)X + a(0+ v - X'), then operator
T converges and has a fixed-point. T converges at the only fized-point, and the

S e
rate Of convergence 18 T—ay"

6 Conclusion

We propose an innovative approach called LCAP2. The simulation results sug-
gest that this method provides valuable assistance in learning the optimal path.
The scalability of this method has practical significance for solving complex
problems. Finally, we give a theorem demonstrating the convergence of the algo-
rithm. Our future research will focus on using methods such as value function
approximation and policy gradient to study RL problems with logical constraints
in continuous state spaces.

References

1. Aggarwal, S.;, Kumar, N.: Path planning techniques for unmanned aerial vehicles:
a review, solutions, and challenges. Comput. Commun. 149, 270-299 (2020)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

An Approach to Agent Path Planning Under Temporal Logic Constraints 93

. Babiak, T., Kfetinsky, M., Rehdk, V., Strejéek, J.: LTL to Biichi automata trans-

lation: fast and more deterministic. In: Flanagan, C., Konig, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95-109. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5_8

. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge

(2008)

. Duan, Z.: Temporal logic and temporal logic programming. Science Press (2005)
. Duan, Z., Tian, C., Yang, M., He, J.: Bounded model checking for propositional

projection temporal logic. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS,
vol. 7936, pp. 591-602. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38768-5_52

. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection

temporal logic with infinite models. Acta Informatica 45(1), 43-78 (2008)

. Duan, Z., Tian, C., Zhang, N.: A canonical form based decision procedure and

model checking approach for propositional projection temporal logic. Theor. Com-
put. Sci. 609, 544-560 (2016)

. Gao, Q.: Deep Reinforcement Learning with Temporal Logic Specifications. Ph.D.

thesis, Duke University (2018)

. Gasparetto, A., Boscariol, P., Lanzutti, A., Vidoni, R.: Path planning and tra-

jectory planning algorithms: a general overview. Motion Oper. Plan. Robot. Syst.
Background Pract. Approach. 29, 3-27 (2015)

Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained reinforcement learn-
ing. arXiv preprint arXiv:1801.08099 (2018)

Hasanbeig, M., Jeppu, N.Y., Abate, A., Melham, T., Kroening, D.: Deepsynth:
automata synthesis for automatic task segmentation in deep reinforcement learn-
ing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp.
7647-7656 (2021)

Hayat, S., Yanmaz, E., Brown, T.X., Bettstetter, C.: Multi-objective UAV path
planning for search and rescue. In: 2017 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5569-5574. IEEE (2017)

Masehian, E., Sedighizadeh, D.: Multi-objective robot motion planning using a
particle swarm optimization model. J. Zhejiang Univ. Sci. C 11, 607-619 (2010)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

Van Moffaert, K., Nowé, A.: Multi-objective reinforcement learning using sets of
pareto dominating policies. J. Mach. Learn. Res. 15(1), 3483-3512 (2014)
Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8, 279-292 (1992)

Xu, Z., Topcu, U.: Transfer of temporal logic formulas in reinforcement learning.
In: IJCAI: Proceedings of the Conference, vol. 28, p. 4010. NIH Public Access
(2019)

Yijing, Z., Zheng, Z., Xiaoyi, Z., Yang, L.: Q learning algorithm based UAV path
learning and obstacle avoidence approach. In: 2017 36th Chinese Control Confer-
ence (CCC), pp. 3397-3402. IEEE (2017)

Yu, J., Hou, J., Chen, G.: Improved safety-first a-star algorithm for autonomous
vehicles. In: 2020 5th International Conference on Advanced Robotics and Mecha-
tronics (ICARM), pp. 706-710. IEEE (2020)

Zhang, N., Yu, C., Duan, Z., Tian, C.: A proof system for unified temporal logic.
Theor. Comput. Sci. 949, 113702 (2023)

https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-38768-5_52
https://doi.org/10.1007/978-3-642-38768-5_52
http://arxiv.org/abs/1801.08099

l‘)

Check for
updates

The Heterogeneous Rooted Tree Cover
Problem

Pengxiang Pan!, Junran Lichen?, Ping Yang!, and Jianping Li!(®)
1 School of Mathematics and Statistics, Yunnan University,
East Outer Ring South Road, University Town,
Kunming 650504, People’s Republic of China
{pengxiang,jianping}@ynu.edu.cn
2 School of Mathematics and Physics, Beijing University of Chemical Technology,
No.15, North Third Ring East Road, Chaoyang District,
Beijing 100029, People’s Republic of China
J.R.Lichen@buct.edu.cn

Abstract. We consider the heterogeneous rooted tree cover (HRTC)
problem. Concretely, given an undirected complete graph G = (V, E)
with a root 7 € V, an edge-weight function w : £ — R satisfying the
triangle inequality, a vertex-weight function f : V\{r} — R{, and k con-
struction teams having nonuniform construction speeds A1, A2, ..., Ak,
we are asked to find k trees for these k construction teams to cover all
vertices in V', each tree starting at the same root r, i.e., k trees having a
sole common vertex called root r, the objective is to minimize the max-
imum completion time, where the completion time of each team is the
total construction weight of its related tree divided by its construction
speed.

In this paper, we first design a 58.3286(1 + §)-approximation algo-
rithm to solve the HRTC problem in time O(n®(1 + 1) + log(w(E) +
F(V\{r}))) for any § > 0. In addition, we present a max{2p,2+p— 2}-
approximation algorithm for resolving the HRTC problem in time O(n?),
where p is the ratio between the maximum and minimum speed of these
k teams.

Keywords: Rooted tree cover + Nonuniform speeds + Approximation
algorithms - Complexity of algorithms

1 Introduction

The subgraph cover problems, including the cycle cover problem and the tree
cover problem, form a much-studied family of combinatorial optimization prob-
lems. These problems have wide range of practical applications, such as routings
of multi-vehicles [2,7,12], nurse station location [4] and data gathering in wireless

This paper is supported by the National Natural Science Foundation of China [Nos.
12361066, 12101593]. Junran Lichen is also supported by Fundamental Research Funds
for the Central Universities [No.buctrc202219], and Jianping Li is also supported by
Project of Yunling Scholars Training of Yunnan Province [No. K264202011820].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 94-105, 2024.
https://doi.org/10.1007/978-3-031-49193-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_8

The Heterogeneous Rooted Tree Cover Problem 95

sensor networks [13,15]. In some applications, the minimization of the latest ser-
vice completion time at the service locations is more relevant. As a result, there
is a growing body of literature on cover problems under the min-max objective.

Considering the vehicles to have nonuniform speeds in routing planning,
Gortz et al. [8] in 2016 proposed the heterogeneous traveling salesman problem,
which we refer to as the heterogeneous rooted cycle cover (HRCC) problem. In
the HRCC problem, given a complete graph G = (V, F) equipped with an edge-
weight function w : E — R™ that satisfies the triangle inequality, a root r € V
and k vehicles with nonuniform speeds Ay, Ao, ..., Ax, we are asked to find k
cycles for these k vehicles to cover all vertices in V', each vehicle starting at r,
i.e., these k cycles having a sole common vertex r, the objective is to minimize
the maximum completion time, where the completion time of a vehicle is the
total weight of its related cycle divided by its speed. For the HRCC problem,
Gortz et al. [8] in 2016 presented a constant factor approximation algorithm.

The rooted cycle cover (RCC) problem [6], also called the k-traveling sales-
man problem, which is an important special version of the HRCC problem, where
A; =1 for each i € {1,2,...,k}. Employing a splitting strategy, Frederickson et
al. [6] in 1978 gave a (3 — %)—approximation algorithm to solve the RCC problem.
For the version & = 1 of the RCC problem, i.e., the metric traveling salesman
problem, Christofides [3] provided a famous 3/2-approximation algorithm by
using an algorithm for solving the Euler tour problem.

In addition, many researches focus on the tree cover problems of graphs, in
which vertices are all covered by a set of k trees. Taking the service handling
times of vertices into consideration, Nagamochi [10] proposed the rooted tree
cover (RTC) problem, which is modelled as follows. Given a complete graph
G = (V, E) equipped with an edge-weight function w : F — R satisfying the
triangle inequality, a vertex-weight function f : V\{r} — Ry, a root r € V and
k construction teams, it is asked to find k trees for these k teams to cover all
vertices in V', each tree starting at the same root r, the objective is to minimize
the maximum total weight among these & trees, where the total weight of a tree is
the summation of edge weights and vertex weights in that tree, equivalently, the
objective is to minimize the maximum completion time, where the completion
time of a construction team is the total construction weight of that tree divided
by its speed for the case that speeds of these k teams are all same one.

The RTC problem is NP-hard [1] even for the case k = 2 and f(-) = 0.
Many research papers have been focused on the development of constant factor
approximation algorithms to resolve the RTC problem. Using a tree partition
technique, Nagamochi [10] in 2005 presented a (3 — ﬁ)—approximation algo-
rithm to resolve the RTC problem. Xu and Wen [14] in 2010 gave a lower bound
of 10/9 for the RTC problem. Moreover, the other relevant results can be found
in [5,9,11,16].

In practice, the construction efficiencies or construction speeds of multiple
construction teams are often different similar to the vehicle speeds of the HRCC
problem. Motivated by the observation and the RTC problem, we address the
heterogeneous rooted tree cover (HRTC) problem. Concretely, given an undi-
rected complete graph G = (V, E;w, f) with a root r € V, an edge-weight

96 P. Pan et al.

function w : E — R satisfying the triangle inequality, a vertex-weight function
f: V\{r} — R{, and k construction teams having nonuniform construction
speeds A1, Ao, ..., A\g, we are asked to find k trees 7 = {T; | i = 1,2,...,k}
for these k construction teams to cover all vertices in V', each starting at the
same root r, i.e., k trees having a sole common vertex called root r, the objec-
tive is to minimize the maximum completion time, where the completion time
of each team is the total construction weight of its related tree divided by its
construction speed. In a formulaic way, the min-max objective is written as
minTmax{w |i=1,2,...,k}.

As far as what we have known, the HRTC problem has not been considered
in the literature. The aforementioned HRCC problem (without vertex weights)
has been studied in [8], but we cannot directly use the algorithms for the HRCC
problem to solve the HRTC problem, because the HRTC problem includes the
vertex weights. However, modifying the technique in [8], we intend to design
first approximation algorithm with constant approximation ratio to solve the
HRTC problem. In addition, we shall present second approximation algorithm
with lower time complexity to resolve the HRTC problem.

The remainder of this paper is organized as follows. In Sect. 2, we present
some terminologies and fundamental lemmas to state descriptions of approxima-
tion algorithms; In Sect. 3, we design first constant factor approximation algo-
rithm to solve the HRTC problem; In Sect. 4, we design second approximation
algorithm with lower time complexity to resolve the HRTC problem; In Sect. 5,
we provide our conclusion and further research.

2 Terminologies and Fundamental Lemmas

All graphs considered in the paper are assumed to be finite, undirected and
loopless. Given a graph G = (V, E), to contract a vertex subset V' C V is to
replace these vertices by a single vertex incident to all the edges which were
incident in G to any vertex in V’. The resulting graph is denoted by G/V’
with vertex set V U {v'}\V’ and edge set EU {w’ | uwv € E,u € V\V',ju €
V'I\NE(G[V']), where v’ is viewed as a new vertex obtained by contracting the
vertex subset V'. For a vertex set V and aset 7 = {T; | i = 1,2,...,k} of trees
(or cycles), if V C Ule V(T;), we say that T covers V.

For any two sets X; and Xs, X; + X5 is a multiset obtained by adding all
elements in X7 N Xs to X7 U Xs. Especially, for any two graphs G = (V, E) and
G' = (V',E'), denote GUG' = (VUV'EUE') and G+ G = (VUV' E+ FE’),
respectively.

In designing a constant factor approximation algorithm for the HRTC prob-
lem, we need the following definition, which is obtained by slightly modifying
the definition in [8].

Definition 1. Given an undirected graph G = (V, E;w, f) with two constants
M > 0 and € > 0, where w : E — R is an edge-weight function and f :
V\{r} — R{ is a vertex-weight function, let F; be a set of trees in G starting at
the same vertex r for each integer i > 0. Then the collection {F;}i>o = U;>o Fi
is referred to as (o, B)p c-assignable, if it has the following properties

The Heterogeneous Rooted Tree Cover Problem 97

(1) w(F)+ f(F)<a-(1+¢)'M, for each tree F € F;, i > 0;
(2) iji(w(.ﬂ) + f(F)) < BM - A((1 +¢)i1) for each i > 0, where A((1+
€)'1) is the sum of speeds that at least (1 +¢)i~ 1.

For Definition 1, we can regard the sum of edge weights and vertex weights
of each tree as a whole weight, and using the ASSIGN algorithm in Gortz et al.
[8], we can obtain the following important result.

Lemma 1. [8] Given an («, 8) um,.-assignable collection {F;}i>o of trees starting
at v, we can use the ASSIGN algorithm to assign all trees in {F;}i>o to k
construction teams in time O(n® + log(w(E) + f(V\{r}))), satisfying that the
completion time of each construction team is at most ((1+ ¢)a + B)M, where
the completion time of each team is the total construction weight divided by its
construction speed, n is the number of vertices.

3 An Approximation Algorithm with Constant
Approximation Ratio

In this section, we consider the heterogeneous rooted tree cover (HRTC) problem.
Without loss of generality, we may assume that the considered graph are all
connected and 2 < k <n —1.

By Lemma 1, we design the following strategies to solve the HRTC problem.

(1) Find an (a, 8) ac-assignable collection of subtrees to cover all vertices;
(2) Assign subtrees in the above collection to k construction teams to mini-
mize the completion time of any team.

Given an undirected graph G = (V, E;w, f) with two current values M and
¢ (the precise value to be chosen later), we first give a partition of V' that
is {Vo,Vi,---}, where Vj = {v € V | w(rv) + f(v) < M}, and V; = {v €
VI(A+e) M < w(rv) + f(v) < (1+¢)*M} for each i > 1. For each i > 0,
let Vo; =<, Vj and V>; = U;5, V. Similarly, we give a partition of E' that is
{E07E1,-~-i,7where E; ={uv € E | u € V<;,v € V;} for each i > 0. For each
1 > O, let Egi = Ujgi Ej and EZi = UjZi Ej.

Now, analyzing the lower bound of the HRTC problem, we obtain the fol-
lowing lemma.

Lemma 2. Given a complete graph G = (V,E;w, f) as an instance of the
HRTC problem, for any constant M > OPT, we have w(TéVﬁ,d) + f(V>) <
M - A((1 +€)'=1) for each integer I > 0, where OPT is the optimal value to the
given instance, Tgﬁ,@ is a minimum edge-weight spanning tree of G/V<, i.e.,
a new graph obtained by contracting a vertex set Vo, and A((1 + &)'=1) is the
total of speeds that exceed (1 + ¢)!1.

Proof. Consider that in an optimal solution to G for the HRTC problem, if any
vertex v € V>; can be constructed by a construction team with speed N, then

98 P. Pan et al.

we have N > (1 + ¢)!~1. This is because w(rv) + f(v) > (1 +)'~1M holds for
each v € V5>, and the construction weight of a construction team with speed
M\ is at most \' - OPT < X - M, implying \' - M > X - OPT > (1 +¢)"1M.
Since max{w(rv) + f(v),w(rv’) + f(v')} > (1 + ¢)""*M holds for each edge
e = vv' € E>j, we deduce that any edge in E>; must be constructed by some
team with speed exceed (1 +¢)'~L.

Let E* denote the set of edges constructed by teams in the optimal solution.
By the above arguments, we have w(E*NE>;)+ f(Vs) < OPT-A((1+¢)i71) <
M - A((1 +¢)!7Y), meaning w(E* N Exs) + f(Vs) < M - A((1 4 ¢)!71). Clearly,
G[E*] is a spanning tree of G, and E* N E>; corresponds to a spanning tree
of G/V,,. Since Tgﬁ@d is a minimum edge-weight spanning tree of G/V.;, we
obtain ’LU(TCJ}!/“?/Q) + f(V>1) < w(E* N Esp) + f(V>;), implying w(Tg%S/d) +
F(Var) € M- A((1+2)), 0

For each ¢ > 0, let H; denote the edge subset of G corresponding to a min-
imum spanning tree of G[V<;]/V<;. Obviously, G[H] with H = J,~, H; is a
spanning tree of G. Using the similar arguments in [8] to analyze the relation
between H and a minimum edge-weight spanning tree of GG, we obtain a result
as follows.

Lemma 3. [8] Given a complete graph G = (V, E;w, f) and a constant € > 0,
a spanning tree G[H] with H = ;5o Hi of G can be constructed to satisfy:

— The vertex levels along every root-leaf path are nondecreasing.
~ For each i > 0, we have 3, w(H;) < (6 + 9) .w(T%€<i), where Téy/}g/d is
a minimum edge-weight spanning tree of G/V;.

In Lemma 3, for each i > 0, it is clear that 3., w(H;) < (6+ g)w(TgﬁQ)
means -, (w(Hy)+f(V;)) < (6+2)w(TER,_)+f(Vai) < (64+2)-(w(THT_)+
f(V>;)). By Lemma 2, we obtain at once that >, (w(H;) + f(V;)) < (6 + 9).
(w(Téﬂ/f,Q)—&—f(VZ,')) < (648)-M-A((14¢)"""), which is stated in the following
Lemma 4. Given a complete graph G = (V, E;w, f) with two constants € > 0
and M > OPT, where OPT is the optimal value to the instance G for the HRTC
problem, then the spanning tree GH] with H = \J,~, Hi of G mentioned-above
satisfies: -

— The vertex levels along every root-leaf path are nondecreasing.
= For each i >0, we have 3, (w(H;) + f(V;)) < (6 + 8- M- A((L+¢e)).

To shorten notation, given each edge e = uv in H, denote z. € {u,v} to be a
vertex farther away from r in G[H], and y. € {u, v} to be a vertex closer to r in
G[H)]. For each subtree G' = (V' E’) of G[H] mentioned above, we define a new
function fi(-) to be fi(G') = > .cp fi(ze), implying f1(G") = f(G') — f(yar),
where yg is a vertex in G[H] closest to 7.

Basing from Lemma 1 to Lemma 4, we design a following algorithm, denoted
by the algorithm HRTCy, to solve the HRT'C problem.

The Heterogeneous Rooted Tree Cover Problem 99

Algorithm: HRT'C,
INPUT: An undirected complete graph G = (V, E;w, f) with a root » € V, an
edge-weight function w : E — R*, a vertex-weight function f : V\{r} —

R(J{ , k construction teams having speeds A1, ..., A; respectively, a small fixed
constant 0 > 0, and two constants (= 2 and ¢ = 1.3146 (to be chosen in
Theorem 1);

OutpuT: Aset T ={T; | i=1,2,...,k} of k trees.

Begin

Step 1 Set M = maXUeV{W}, where Apax = max{\; | i =1,2,...,k};

Step 2 Using M and e, we can partition the set V into subsets V, V1, ..., and the
set F into subsets Ejy, E1, ... as mentioned-above; For convenience, we may
actually assume that the number of subsets partitioned is ¢, i.e., (14+¢€)! =1 M <
max{w(rv) + f(v) |v eV} < (1+4¢)'M;

Step 3 If (w(Tg/f/d)—l—f(Vzl) > M- A((14¢)'71) holds for some [€ {1,2,...,t})
then

set M := (1+)M, and go to Step 2;

Step 4 Construct a spanning tree G[H] with H = (J,~, H; of G, where H; is the
edge subset of G corresponding to a minimum edge-weight spanning tree of
G[Vgl]/V<“ Set SO = {Ho};

Step 5 For each ¢ € {1,2,...,t}, partition H; into a set S; of subtrees such
that each subtree n € S; contains exactly one edge h(7n) from V.; to V;; Let
Y = @roare and St = So; For each i € {1,2,...,t}, set S = () and
S = 0;

Step 6 For all ¢ € {1,2,...,t},n € S; do:

If (w(n) + fi(n) > v (1 +¢)'M) then

Set S := 8" U {n};

Else

Set S¥ :=S* U {n};

Step 7 For all i € {1,2,...,t},0 € S do:

Determine a subtree 7(o) in [, _; S;, having 7(o) N o # 0;

Step 8 For all i € {0,1,2,...,t},7 € S do:

(8.1) Set Dangle() = {0 € S}, : m(0) = T};

(8.2) If the total weight of (7\h(7))UDangle(r) is at most ((1+¢)* Tt M,
then set ¢ = 1 and F{ = (7\h(7)) U Dangle(7), and go to Step (8.5);

(8.3) Find an Euler tour in the multigraph ((7\h(7)) U Dangle(r)) +
((T\h(7)) UDangle(7)), and transform the tour to a cycle by “short-cutting”
previously visited vertices;

(8.4) Split the resulting cycle into maximal paths of total weight, includ-
ing edge weights and vertex weights, at most (1 + ¢)**1 M each, denoted by
Fi, Fy .. Fy;

(8.5) For each j € {1,...,q}, augment F; by adding an edge from r to
the vertex in FJ’ closest to 7, to obtain a set of subtrees starting at r, denoted
by .7:1(7') = {F‘]_,F‘Q7 .. .,Fq};

Step 9 For each i € {0,1,...,t}, set F; = Uresgn Fi(7); Using the ASSIGN
algorithm, combine the set {F;}i>0 = ;5o Fi into k trees 7 = {T; | i =
1,2,...,k} corresponding to k construction teams;

100 P. Pan et al.

Step 10 Output & trees 7 = {T; | i = 1,2, ..., k} corresponding to k teams.
End

Using Step 4, we obtain that each connected component of the subgraph in
G corresponding to H; (¢ > 1) is a subtree. Note that such a subtree contains
at least one edge from V; to V;, it follows that the partition at Step 5 is indeed
executed.

Using Steps 67 in the algorithm HRTC;, we can obtain the following

Lemma 5. For any i > 1 and o € S, there exists n(c) € S;—1. Moreover,
w(o) € S*4.

Proof. For an o € S, it is clear that w(h(o)) + fi(h(0)) < w(o) + fi(o) <
v+ (1+€)"M. By the definition of S*, we have v € V; for every v € V(o). Let
h(o) = yx, where y € w(c) and = € V;. Moreover, we deduce that y € V;_;.
Otherwise, we assume x € V; and y € V;_1, it follows that w(o) + fi(o) >
w(yz) + F(2) > w(rz) + f(@) — (w(ry) + F(5) > (1 +2)~ M — (1 4+ —2M >
v (1 4 ¢)*M, which contradicts o € S*. Thus, we obtain y € V;_;, implying
m(o) € Si—1.

For the second part of the lemma, if ¢ = 1, then clearly n(c) = Sy and
m(o) € §§*. When i > 2, from the above arguments, we have w(c) € S;_;.
Similar to the above arguments, since G is connected, we conclude that there is
a vertex z € 7(o) satisfying z € V.;_1. Using the triangle inequality twice, we
have the following

w(zy) + f(y) + wlyz) + f(z) =2 wzz) + f(2) 2 wrz) + f(z) - (w(rz) + £(2)).

(
Since z € V; and z € V.;_1, we obtain w(rz) + f(z) — (w(rz) + f(2)) > (1 +
e) M —(1+¢)72M = e(1+¢)""2M, meaning w(rz) + f(z) — (w(rz) + f(2)) >
g(14¢€)=2M. Since o € S*, we have w(yz)+ f(z) < w(o)+ fi(o) < y-(1+¢)'M.
Hence, we have the following

w(m(o))+fi(m(0)) > w(zy)+f(y) > e(14€) 2 M —~-(14¢)'M = ~-(1+¢)" "' M.

This shows that the subtree 7(c0) € S™;. |
Employing the similar argument as in [8], we obtain the following two lemmas
by executing Step 8.

Lemma 6. For any F' € Fi(7), we have w(F) + f(F) < ((+ 1+ ((+1)e)(1+
e)'M.

Proof. For each I € F;(7), note that I consists of some subtree F; (1 <j < q)
and an edge rv; connecting r to v, where v} is a vertex in Fj closest to r. Based
on the construction of FJ, we obtain w(Fj) + f(F}) < ((1 4 ¢)"*' M. Since F}
only contains vertices in Ve;y1, we have w(rv}) < w(rv}) + f(vf) < (1+¢)"7' M.

Hence, it follows that w(F) + f(F) = w(F}) + f(F}) + w(rvj) < ((+ 1+ (¢ +
De)(1+¢e)'M. O

The Heterogeneous Rooted Tree Cover Problem 101

Lemma 7. 3 pcr o (w(F) + f(F)) < max{2+ 2, % + 2} - (w(r UDangle(7)) +
f1(7 UDangle(7))).

Proof. We break the analysis into two cases depending on q.

Case 1: ¢ =1, i.e., F;(7) only contains a subtree F.

If i = 0, then 7 includes r and w(F) + f(F) < w(r U Dangle(7)) + f1(7 U
Dangle()). If ¢ > 0, it is clear that there exists v € 7 having u € V;. Based
on the construction of subtree, we obtain w(F) + f(F) < w(rzp)) +w(F") +
f1(r U Dangle(7)) < w(Tyh(T)) + W(Yn(n) Tn(r)) + w(EF') + fi(r U Dangle(r)) <
(1 + €)M + w(r U Dangle(r)) + f1(7 U Dangle(r)). Since 7 € S, implying

w(r) + f1(1) = v-(1+¢€)'M, we have (1+¢)" "M < 2= (w(r) + f1(7)). Thus,
we obtain w(F)+f()< (1+¢)~ 1M~t—w(7'UDangle()+ f1(r UDangle()) <
(2£2 +1) - (w(r UDangle(r)) + f1 (T UDangle(7))) = (2+ 2) - (w(r UDangle(r)) +
f1(7 U Dangle(7))), which implies }_pc 7) (w(F) + f(F)) = w(F) + f(F) <
2+ %) - (w(7 UDangle(7)) + f1(7 U Dangle(7))).

Case 2: ¢ > 2.

By Step 8, we obtain that 4(w(7UDangle(7)) + f1(7UDangle(r))) > (¢—1)-
C(14¢€) 1M, that is (1+¢)T1M < 4(w(TUDangle(Zg;r{l)(TUDangle(T D) Since V(rU
Dangle(7)) C V<iy1, each edge added from r to subtree I} (1 < j < ¢) has weight
at most (1 4 ¢)**1 M. Therefore, we conclude that ZFG}- T)(w(F) + f(F)) <
q-(1+¢)'M + 2w(r UDangle(7)) + f1(7 U Dangle(7)) < (C(q 57 +2) (w(ru
Dangle(7))+ f1(tUDangle(7))) < (%+2)-(w(TUDangle(7))+ fi(rUDangle(7))).

Combining the two preceding arguments in Cases 1-2, we obtain » .. E_(T)(

w(F) + f(F)) < max{2+ %, % + 2} - (w(7 UDangle(7)) + f1(7 UDangle(7))). O
Applying Lemmas 5-7, we obtain the following

Lemma 8. If w(Tgﬁ/)+ f(Vs) < M- A((1 +€)1) holds for each integer
i > 0, then the collection {Fi}i>o obtained at Step 8 is («,) -assignable,
where a = (+1+((+1)e, B = (6+2) max{2+ 2, %—i—?} and F; = Ures;ﬁ Fi(7).

Proof. We shall prove that the collection {F;};>¢ satisfies the two properties in
Definition 1. By Lemma 6, it is clear that the property (1) in Definition 1 holds.
Recall that in Lemma 4, 3~ (w(H;)+f(V})) < (642)-M-A((1+¢)"~") holds for
each i > 0. Now, the proof is completed by showing that > .- ;(w(F;) +f(F;)) <
max{2 + 2,2 + 2} 30,5 (w(H,) + (V).

In the algorithm HRTC;, we observe that

D (WS +w(Si) £ D w(S;) =Y w(Hy).

> Jj>i Jj2i
By Lemma 5, {Dangle(r) | 7 € S"} is a partition of S}, ;, which means
2 resy (w(r U Dangle(r)) + f1(7 U Dangle())) = w(S}") + w(Sj4,) + f1(S]" U
Si.1). By Lemma 7, we have w(F;) + f(F;) = Eresjm (w(F; (1)) + f(F;(1))) =
ZTGSJ?” Yrer @ (WE)+f(F)) < max{2+2, %"‘2}'2765;" (w(rUDangle(r)) +

102 P. Pan et al.

f1(7 U Dangle(r))), implying w(F;) + f(F;) < max{2 + %,% + 2} - (w(S]) +

w(SH 1)+ f1(S]'US},1)). By Steps 6-8, for each edge e € S (i > 0), we see that

ze € V>4, and any two subtrees in {F;};>o are disjoint except for root r. Thus,

we obtain ZjZi(w(]:j) + f(F;)) < max{2+ %, % +2}- ijz(w(sjm) +w(S})+

[i(SPUSH,) <max{2+ 2, % + 2} 35 (w(Hy) + f(V5)). 0
Using the above lemmas, we obtain the following result.

Theorem 1. The algorithm HRTCy is a 58.3286(1 + §)-approzimation algo-
rithm to solve the HRTC problem, and it runs in time O(n®(1+ %) +log(w(E) +
FOA)), where w(E) = e pwle) and FV\{r}) = Sy fg £(0), respec-
tively.

Proof. By Lemma 2, the decision condition in Step 3 does not hold whenever
M > OPT. Based on the update rule for M, we deduce that Steps 4-9 is
executed with M < (14 6) - OPT. When fixing ¢ = 2 and ¢ = 1.3146, using
Lemma 8, we obtain a (6.9438,42.2565),1.3146-assignable collection {F;}i>o.
Using Lemma 1 at Step 9, we can assign {F;};>0 into k construction teams
in time O(n® + log(w(E) + f(V\{r}))), such that the completion time of any
construction team is at most 58.3286 - M, which implies OUT < 58.3286 - M <
58.3286(1 +) - OPT.

Notice that every step in the algorithm HRTC; can be executed in poly-
nomial time. We shall bound the number of iterations. As mentioned above,
the algorithm HRTC; halts before M > (1 4+ 6)OPT, where (1 + §)OPT <

(1+96)- M < (1+6)|v]|. mewev{wl) /) Gince M is initial-

max max

maxyev{w(r,v)+f(v)}

, and increased by an (1+ §)-factor for each iteration,

ized at

Amax

we deduce that the number of iterations is at most O(} log|V). This implies

that Steps 1-3 run in at most time O(”;). By Lemma 1, it is easy to check that
Steps 4-10 execute in time O(n3 +log(w(E)+ f(V\{r}))). Hence, the algorithm
HRTC; can be implemented in time O(n?(1 4 3) + log(w(E) + f(V\{r}))). O

4 An Approximation Algorithm with Lower Time
Complexity

In practice, we observe a fact that % is generally small, where Apnax =
max{\; | i =1,2,...,k} and Amm = min{A; | i = 1,2,...,k}. Thus, we intend
to design a better approximation algorithm to resolve the HRT'C problem under
the above fact.

Different from the method in [10] for solving the RTC problem, we modify
a splitting technique in [6] to design an approximation algorithm to resolve the
HRTC problem, which is described as follows.

Algorithm: HRTCs

INPUT: An undirected complete graph G = (V, E;w, f) with a root » € V, an
edge-weight function w : E — R, a vertex-weight function f : V\{r} — R}
and k construction teams having speeds A1, ..., \g, respectively;

The Heterogeneous Rooted Tree Cover Problem 103

OutpuT: Aset T ={T; | i=1,2,...,k} of trees.

Begin

Step 1 Find a minimum edge-weight spanning tree in G; Determine an
Euler tour in (V, Epms + Epus) traversing each edge exactly once, and use
“short-cutting” to transform such tour to a cycle C' = rv;,v;, - - - r traversing
each vertex v € V exactly once;

Step 2 Set wy = max{w(rv) | v € V}; For each edge uv € E, set w'(uv) =
w(uv) + f(u) + f(v); For each i € {1,2,...,k}, set A\ ;=375 Aj;

Step 3 For j =1 to k—1 do:
Set L; =)‘l’j’ (w'(C) — 2wp) + wo, find the last vertex wv;, such that

TMS

ALk
w'(Clr,vi, 1) < Ly, where Clr,v;,] = 104, vi, -0, 5
Step 4 Set 77 = C[r,v;,] = Ui Vi), T3 = Clvi, 11 Vipga s SHr T, =
Cli g _1y4.,7); For each j € {1,2,...,k}, augment T by connecting r to a

vertex in T/ closest to r with edge, where the resulting tree is denoted by Tj;
Step 5 Output k trees 7 = {T; | i = 1,2,...,k} corresponding to k teams.
End

Analyzing the lower bound of the optimal value for the HRTC problem, we
obtain the following result.

Lemma 9. Given a complete graph G = (V,E;w, f) as an instance of the

HRTC problem, we have OPT > max{)\i"“”fr‘:ix, I } where OPT s
the optimal value to the given instance, fo = max{f(v) | v e V}, wy =

max{w(rv) | v € V} and C is produced at Step 1 of the algorithm HRTCs.

Proof. Note that any feasible solution for the instance G cover all vertices in V/,
it is clear that OPT > /\Kfn“ax and OPT > 5*°~. We shall prove OPT > w (C)
Consider any optimal solution 7* = {TZ* | i=1,2,...,k} for the 1nstance G.
By the construction of C' at Step 1, we have w(TM%) 4 f(TMS) > @ + f(C),
where TM3 is a minimum edge-weight spanning tree of G. Since all subtrees
in 7* can be merged into a spanning tree, we obtain Zle(w(Ti*) + f(T7)) >
w(TMS) 4 f(TMS), implying z’“ V(T +F(T7)) > 2+ £(C). Since OPT =

max{w\z ., k}, it follows that OPT - Zz 1A > Zz L (w(TF)+
f(T) > “’(C -|—f() meaning OPT > wé%fﬁ? = w(CQ);i{(C). This implies
OPT > w(C)+2f(C) w (C) O

2A1k
By the algorlthm HRTC,, we obtain the following result.

Theorem 2. The algorithm HRTCh is a max{Zmex 2 4 Jmex _ 23

approzimation algorithm for resolving the HRTC problem, and it runs in time
O(n?), where n is the number of vertices.

Proof. Given an instance G = (V, E; w, f) of the HRTC problem, we may assume
that 7* = {T; | i = 1,2,...,k} is an optimal solution with the optimal value
OPT = max{% | i=1,...,k}, and T is trees outputted by the algo-
rithm HRTC, with the output value OUT = max{w |i=1,...,k}.

104 P. Pan et al.

Now, we consider the j'* tree T; (1 < j < k) in 7. Using the algorithm

HRTC,, we obtain the following
w(Ty) + £(Ty) _ w(T}) + f(T5) + wo
)\j -)\j

w' (T}
ﬁ, (J) } 4+ =
AjTA Aj
fo+wo w'(T}) +wo

Y Y

Wo

< max

}.

= max{

From Lemma 9, it may be concluded that jo;riwo = {—0 + %0 <)\f? 4 Mo
J J J min

Amin —

2umax OPT. On account of the construction of 7 in algorithm, we have the

min

following

W (1)) +wo _ il - (w'(C) = 2wo) + wo
Aj - Aj
_we w'(C) — 2w
Py ALk
wg w(C) 2wo
Amin Ak Ak
Amax - wo | w'(C) 2wg
Amin - Amax Ak ALk

< Amax * Wo w'(C) 2w
-)\min : /\max >\1,k k-)\max
w'(C Amax 2, wp
= () + (— - ,) .
/\17]@ Amm k‘ Amax
)\max 2
< 20PT + (- %y.orT
)\min k
A 2
= (2 X _2)Y).0oPT
(+ >\min k) ?

implying % < maX{Q)\A“A, 2+ i\‘mi - 2}-OPT.

min min

Thus, for each j € {1,...,k}, we have %@ < max{%,? 4 dmax _

min

%} - OPT Dby using the above arguments. This shows that

2)\max)\max
2+

min)\min

OUT < max{ - %} -OPT.

The time complexity of the algorithm HRTCy can be determined as follows.
(1) Using Prim algorithm for solving the minimum spanning tree problem, Step
1 execute in time O(n?); (2) Step 2 needs O(m) time to compute wy and define
w'(+), where m = |E|; (3) Step 3 needs time O(n?) to split a cycle; (4) Step 4
needs time O(m) to construct the trees 7 = {T; | i = 1,2, ..., k}. Therefore, the
running time of the algorithm HRTCs is O(n?). O

5

The Heterogeneous Rooted Tree Cover Problem 105

Conclusion and Further Work

In this paper, we consider the heterogeneous rooted tree cover problem (the
HRTC problem), and design two approximation algorithms for solving the HRTC
problem.

In further work, it is a challenge for us to design some approximation

algorithms with constant approximation ratios to solve the HRTC problem in
strongly polynomial time, and we shall study other versions of the cover problems
with nonuniform speeds.

References

10.

11.

12.

13.

14.

15.

16.

Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing
of two travelling salesmen on a tree. Discret. Appl. Math. 68(1-2), 17-32 (1996)
Campbell, A.M., Vandenbussche, D., Hermann, W.: Routing for relief efforts.
Transp. Sci. 42(2), 127-145 (2008)

Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem, Report 388. Carnegie Mellon University, Graduate School of Industrial
Administration (1976)

Even, G., Garg, N., Koemann, J., Ravi, R., Sinha, A.: Min-max tree covers of
graphs. Oper. Res. Lett. 32(4), 309-315 (2004)

Farbstein, B., Levin, A.: Min-max cover of a graph with a small number of parts.
Discret. Optim. 16, 51-61 (2015)

Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. STAM J. Comput. 7(2), 178-193 (1978)

Golden, B.L., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest
Advances and New Challenges. Springer, New York (2008). https://doi.org/10.
1007/978-0-387-77778-8

Gortz, I.L., Molinaro, M., Nagarajan, V., Ravi, R.: Capacitated vehicle routing
with nonuniform speeds. Math. Oper. Res. 41(1), 318-331 (2016)

Nagamochi, H., Okada, K.: Polynomial time 2-approximation algorithms for the
minmax subtree cover problem. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC
2003. LNCS, vol. 2906, pp. 138-147. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-24587-2_16

Nagamochi, H.: Approximating the minmax rooted-subtree cover problem. IEICE
Trans. Fundamentals Electron. Commun. Comput. Sci. E88-A(5), 1335-1338
(2005)

Schwartz, S.: An overview of graph covering and partitioning. Discret. Math.
345(8), 112884 (2022)

Toth, P., Vigo, D.: Vehicle Routing: Problems. Methods and Applications. MOS-
SIAM, Philadelphia (2014)

Wu, W., Zhang, Z., Lee, W., Du, D.Z.: Optimal Coverage in Wireless Sensor Net-
works. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-52824-9
Xu, Z., Wen, Q.: Approximation hardness of min-max tree covers. Oper. Res. Lett.
38(3), 169-173 (2010)

Xu, W., Liang, W., Lin, X.: Approximation algorithms for min-max cycle cover
problems. IEEE Trans. Comput. 64(3), 600-613 (2015)

Yu, W., Liu, Z.: Better approximability results for min-max tree/cycle/path cover
problems. J. Comb. Optim. 37, 563-578 (2019)

https://doi.org/10.1007/978-0-387-77778-8
https://doi.org/10.1007/978-0-387-77778-8
https://doi.org/10.1007/978-3-540-24587-2_16
https://doi.org/10.1007/978-3-540-24587-2_16
https://doi.org/10.1007/978-3-030-52824-9

q

Check for
updates

The Hardness of Optimization Problems
on the Weighted Massively Parallel
Computation Model

Hengzhao Ma®™) and Jianzhong Li®™=)

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

{hz.ma,lijzh}@siat.ac.cn

Abstract. The topology-aware Massively Parallel Computation (MPC)
model is proposed and studied recently, which enhances the classical
MPC model by the awareness of network topology. The work of Hu et
al. on topology-aware MPC model considers only the tree topology. In
this paper a more general case is considered, where the underlying net-
work is a weighted complete graph. We then call this model Weighted
Massively Parallel Computation (WMPC) model, and study the prob-
lem of minimizing communication cost under it. Two communication
cost minimization problems are defined based on different pattern of
communication, which are the Data Redistribution Problem and Data
Allocation Problem. We also define four kinds of objective functions for
communication cost, which consider the total cost, bottleneck cost, max-
imum of send and receive cost, and summation of send and receive cost,
respectively. Combining the two problems in different communication
pattern with the four kinds of objective cost functions, 8 problems are
obtained. The hardness results of the 8 problems make up the content of
this paper. With rigorous proof, we prove that some of the 8 problems
are in P, some FPT, some NP-complete, and some W[1]-complete.

Keywords: massively parallel computation - Weighted MPC model -
communication cost optimization

1 Introduction

The Massively Parallel Computation model [14], MPC for short, has been a well
acknowledged model to study parallel algorithms [2-5,9,11,16,19] ever since it
was proposed. Compared to other parallel computation models such as PRAM
[15], BSP [20], LogP [8] and so on, the advantage of the MPC model lies in
its simplicity and the power to capture the essence of computation procedure
of modern share-nothing clusters. In the MPC model, computation proceeds in

This work was supported by the National Natural Science Foundation of China under
grants 61832003, 62273322, 61972110, and National Key Research and Development
Program of China under grants 2021 YFF1200100 and 2021 YFF1200104.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 106-117, 2024.
https://doi.org/10.1007/978-3-031-49193-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_9

The Hardness of Optimization Problems on the WMPC Model 107

synchronous rounds, where in each round the computation machines first com-
municate with each other, then conduct local computation. Any pair of machines
can communicate in a point-to-point manner, and all the communication mes-
sages can be transferred without congestion.

Althoughthe MPCmodelissimpleand powerful, oneofits most important short-
comings is revealed by some recent works [6, 13], which is the strong assumption of
homogeneity. All the machines in MPC model are considered as identical, and the
communication bandwidth between any pair of machines are identical too [14]. In
realistic parallel environment, the assumption of identical computation machines
can be satisfied in most cases, but the assumption of identical communication band-
width can not. Typically, a cluster consists of several racks connected by slower
communication channels, and each rack includes several machines connected by
faster communication channels. Thus, the communication bandwidth of in-rack
and across-rack communication differ significantly, which refutes the assumption
of homogeneous communication network in MPC model.

In order to tackle this shortcoming of the MPC model, a new topology aware
massively parallel computation model was proposed and studied in [6,13]. The
computation machines are still identical in this model!, but the communication
bandwidth between different pair of machines are different. This model was first
proposed in recent works [6], where the underlying communication network is
represented as a graph, and the edges are assigned with a weight which represents
the communication bandwidth. However, the paper [6] only declared the new
model but did not give any theoretical results. The other work [13] considered
three data processing tasks on this model, which are set intersection, Cartesian
product and sorting. Algorithms and lower bounds about the communication
cost optimization problems for the three tasks were proposed. However, the
authors of [13] restricted the underlying communication network to trees, and
the algorithm and lower bounds given in that paper can not be generalized to
graphs other than trees.

In this paper, we follow the line of research started by [6,13], and consider
the topology aware massively parallel computation model in a more general case,
where the underlying communication network is a complete weighted graph.
In this sense, our work is a complement to the work in [13]. The goal of this
paper is also to minimize the communication cost. However, unlike the work in
[13] which considers specific computation tasks, in this paper we define general
communication cost minimization problems that capture the characteristics of a
variety of computation tasks.

1.1 Description of the Research Problems in This Paper

The WMPC Model. We first give a more detailed description of the com-
putational model considered in this paper, which is called Weighted Massively
Parallel Computation (WMPC) model.

In WMPC model, there are n computation machines with identical compu-
tational power. The communication network is modeled as a weighted complete

! There may be non-computational machines in this model, though.

108 H. Ma and J. Li

graph represented by a n x n matrix C. C is called the communication cost
matrix from now on, and it is considered as a known parameter of the WMPC
model. C[i, j] is the communication cost from computation machine i to j for
1 < 4,5 < n, where larger value implies larger communication cost or commu-
nication latency. C[i, 4] is set to 0 for 1 <4 < n. It is assumed that all pairs of
machines can communicate in a point-to-point way which is in accordance with
the original MPC model, and thus C[i, j] < oo holds for 1 < 4,j < n. The matrix
C' is not necessary to be symmetric, i.e., C[i, j] may not be equal to C[j,1].

The computation on WMPC proceeds in synchronous rounds which behaves
the same with the original MPC model. In each round, the computation machines
first communicate with each other, then conduct local computation.

The initial data distribution is important in the problems studied in this
paper. A lot of former research works on MPC model assume that the data
are uniformly split across the machines [4,11]. In this paper, it is assumed that
the data can be arbitrarily distributed, and the amount of data placed at each
machine is known in advance. This is also the same assumption adopted in [5,13].

Objective Functions. The goal of this paper is to minimize the communication
cost under WMPC model, which is divided into send cost and receive cost. If «
amount of data is transferred from machine 7 to machine j, it incurs a - C[i, j]
send cost to machine 4, and « - C[i, j] receive cost to machine j. Denote send;
and rcv; to be the send and receive cost of machine ¢ for 1 < i < n, then we
define the following four objective functions.

Total cost (TOTAL): Y7 | send;.

Bottleneck cost (BTNK): max?_; rcv;.

Maximum of gend and receive cost (MSR): max}_, {send;, rcv;}.

Sum of send and receive cost (SSR): max}_,{send; + rcv;}.

Note that the send and receive cost is defined based on the amount of data
transferred between two machines. For different computation task and different
communication pattern, the way of calculating the amount of transferred data
will be different. Next we will use parallel sorting as the introducing example,
analyze their communication patterns, and define the problems to be studied in
this paper. We will introduce two problems, named Data Redistribution Problem
and Data Allocation Problem.

The Data Redistribution Problem. Consider the following parallel sorting
algorithm on classical MPC model, which is often referred as TeraSort [18]. The
algorithm first selects n — 1 splitters s; < s9 < -+ < s,_1 and broadcast the
splitters to all machines. The n—1 splitters form n intervals I; = (s;_1, s;] where
sop = —oo and s, = oco. After obtaining the splitters, each machine sends the
local data falling in the i-th interval to the i-th machine. In such way the data
is ordered across the machines. Note that the label of the machines are fixed
before the algorithm starts. Then the machines conduct local sorting, and the
sorting task can be finished.

Now consider running the parallel sorting algorithm on the WMPC model,
and assume that the splitters have been determined. The algorithm described

The Hardness of Optimization Problems on the WMPC Model 109

above asks the data in the i-th interval to be sent to the i-th machine. However,
this operation may lead to non-optimal communication cost. Consider the fol-
lowing extreme case. The data are initially inversely sorted across the machines,
i.e., for machine ¢ < j, the data in machine 7 are always no less than the data
in machine j. In such a case, if the i-th interval is assigned to the (n — i)-th
machine, there would be no need to conduct communication. However, if the
algorithm asks to send the data in the i-th interval to the i-th machine, all the
data will be totally redistributed, incurring large amount of communication.

Actually, there exist two shortcomings for the above TeraSort algorithm on
classical MPC model. First, it neglects the initial data distribution, and neglects
the importance of the way to assign the intervals to the machines to minimize
the communication cost. Second, it does not consider the difference of commu-
nication costs between different pair of machines. By tackling these two points
together, the first research problem to be studied in this paper is formed, which
is called the Data Redistribution Problem (DRP).

The input of DRP is two n x n matrices T and C. TVi,j] represents the
amount of data in the i-th machine that fall in the j-th interval. The C' matrix
is the communication cost matrix of the WMPC model. The output is to assign
the intervals to the machines, such that the communication cost is minimized.
By applying the four communication cost functions introduced in Sect. 1.1, we
get four problems denoted as DRP-TOTAL, DRP-BTNK, DRP-MSR and DRP-
SSR, respectively. The four problems are studied in Sect. 2.

The Data Allocation Problem. In the above case of parallel sorting, it is
assumed that the splitters are known in advance. However, how to select the split-
ters to minimize the communication cost is also an important research problem
[19], and even a new problem under the WMPC model. For a formal descrip-
tion, let IV be the total number of data records to be sorted, and n be the
number of machines. Under the assumption that the initial data distribution is
known in advance, let S; = {s;1,8:2,- - ,8:1,}, 1 <4 < n, which is the data
initially residing in machine 4. [; is the number of data records in machine 4,
and Y. | [; = N. If the splitters are chosen as s1, 82, , $p—1, they will form n
intervals (s;_1,s;], where so = —oo and s, = oo. Let T'[i,j] = |S; N (sj-1, 4]/,
which is the number of data records in machine 7 that falls into the j-th interval
(sj—1,s;]. To minimize the communication cost, the problem is to select n — 1
splitters s; < s9 < -+ < s,_1 which split the data into n intervals, then find
an assignment from the intervals to the machines, such that the communication
cost is minimized. This problem is called Data Allocation Problem (DAP).
Remark. Although DRP and DAP are introduced based on sorting, they
can be defined using the idea of virtual machines and physical machines. For
DRP, the input T[4, j] can be considered as the amount of data initially residing
in physical machine ¢ to be processed by virtual machine j, and the output
is a permutation which assigns virtual machines to physical machines so that
the communication cost is minimized. For DAP, choosing the splitters can be
regarded as deciding the data distribution across the virtual machines. In such

110 H. Ma and J. Li

a point of view, DRP and DAP can be applied to a wide range of concrete
problems. Also, DRP and DAP reflect only the problems that can be solved using
one synchronous round. It will the future work to study multi-round algorithms
on WMPC model.

1.2 Summary of Results and Paper Organization

Summarizing the above descriptions, we have two kinds of problems including
DRP and DAP. We also have four kinds of communication cost functions includ-
ing TOTAL, BTNK, MSR and SSR. 8 problems are obtained by combining two
kinds of problems with four kinds of cost functions. The hardness for the 8
problems make up the content of this paper. Table 1 summarizes all the pro-
posed results. Note that the parameterized complexities consider the number of
machines as the parameter.

Table 1. Summary of results

TOTAL | BINK | MSR SSR
DRP | P P NP-complete | NP-complete
DAP | FPT FPT | W[l]-complete | W[1]-complete

In the rest of this paper, we first introduce some denotations in Sect. 1.3, then
present the theoretical results in Sects.2 and 3. The future work are discussed
in Sect. 4. Finally Sect.5 concludes this paper.

1.3 Denotations

A m x n matrix A is denoted as A™*". The element in A at row ¢ and column
J is denoted as A[i, j]. The set of consecutive integers {i,i + 1,4 +2,--- ,j} is
denoted as [i, j]. The set of integers {1,2,--- ,n} is denoted as [n].

A permutation on [n] is a one-to-one mapping from [n] to [r], and it is usually
denoted as 7. The set of all permutations on [n] is denoted as IT(n). Denote 7;
as the image of ¢ under 7. If m; = j, it is also said that ¢ is assigned to j by
permutation m. We also use 7! to denote the inverse permutation of =, i.e., if
m; = j then 7rj*1 =1.

2 The Data Redistribution Problem Series

Definition 2.1 (DRP). Input: A n x n transmission matrix T™*™ and a n X n
communication cost matriz C™*™, where Cli,i] =0 for i € [n].

Output: find a permutation © € II(n) such that the communication cost function
chosen from TOTAL, BTNK, MSR and SSR is minimized. Formally,

The Hardness of Optimization Problems on the WMPC Model 111

DRP-TOTAL: min Z Z T, j1Ci,)]
m€ll(n) j=1 j=

DRP-BTNK: min max Y. T[j
n€ll(n) i€[n] j=1

DRP-MSR: min max{i T[4, 3]C[i, m], é T[j,=; '1Clj,]}

m€ll(n) i€[n] =1

;1 C1,]

» e

DRP-SSR: wg};{lﬂ) ?el?)]{ { Z:: T, jICli, 7] + é:lT[j, 7Cl, z]}
Theorem 2.1. DRP-TOTAL can be solved in O(n?) time.
Theorem 2.2. DRP-BTNK can be solved in O(n?) time.
Theorem 2.3. DRP-MSR is NP-complete.

Theorem 2.4. DRP-SSR is NP-complete.

The proofs for the four theorems are omitted due to space limitation. See
our full paper online [17].

3 The Problem Series of Data Allocation Problem

In this section we study the parameterized hardness and algorithms for the
DAP problem series, parameterized by the number of machines. We will use N
to denote the size of the input, and n to denote the number of machines.

Definition 3.1 (DAP). Input: a set S of N integers divided into n subsets

St =As11,812, 810} S = {Sn1,5n.2, "+, Sn1,}, where n > 1 is the
n

number of machines, and l; is the size of S; satisfying > l; = N.
i=1

Output: find n — 1 integers si,---s;_, € S and a permutation m € II(n), such

that the communication cost function chosen from TOTAL, BTNK, MSR and
SSR is minimized. Formally,

DAP-TOTAL: min min T, §1Ci, 7
ST ,esk 1€S'Tr€17(n)lz:1]z [] [j]

DAP-BTNK: T, Clj,i
. Mninomin max Zl i 1C

DAP-MSR: X min min maX{ZT[i J1C, 7T]] 2": Tlj, ™ e] [»]}

81,8y €S weIl(n)i€n] | i= j=1

DAP-SSR: min min maX Z TTi, 5]C[i, 7Tj] + ST, 77;1}0[" i
81,8y €S well(n) i€[n] — =1

where TT[i, j] = [S; N (s_y,s5]| and s 3— —00, 8% = 00.

112 H. Ma and J. Li

3.1 The Splitter-Graph

We introduce the splitter-graph, which transforms the problem of choosing split-
ters to choosing a path in a special graph. Given a set S = {s1,82, -+, sy} of
integers, assuming s; < so < --- < sy, and a parameter n, construct a graph
G(V,E) as follows. For i € [n —1],j € [N], construct a vertex v; ;. Let vy o be
the starting vertex —oo, and v, y41 be the end vertex co. Let (v; 5, vy) € E iff
i+1=14and j < j'. In such way, a vertex v; ; represents a splitter s; placed in
the i-th position, and a path (—o00,v1,4,, V24, -+ - Un—1,,_,,00) represents select-
ing S;,, Siy, - - Si,_, as splitters. A splitter-graph based on set .S with parameter
n will be denoted as G5(V, E, S, n).

1 1 |
1 1 !
: : : 6,0 o o [o)
51 O . it o 1 o /
| | i \ 10
1 | 1 o 0. o o]
S ! 7E 4 ©
2 ° 4 u kA g1 °
! . - o)) No— o
53 ° g © | 1 = -
| i : o o o T~
Ss : : y e 44
I | 1
S1 S, S3 So $1 S22 S3 Sn-1 Sn
(a) Demonstration of DAP. (b) The splitter-graph.

3.2 FPT Algorithm of DAP-TOTAL and DAP-BTNK

The FPT algorithm of DAP-TOTAL and DAP-BTNK is based on the following
transformation. Given an instance of DAP-TOTAL, denote S = {s1,52, -+ ,sn}
and assume $1 < s9 < -+ < sy. Let s = —o0 and sy11 = 00. Let Accli, j] =
|S; N (=00, s4]|,i € [n],j € [0, N +1]. Slightly abusing denotation, let 7*" be a
matrix defined based on the permutation 7, such that «[i,j] = 1 if m; = j, and
w[i, j] = 0 otherwise, ¢,j € [n]. Under the above denotations, DAP-TOTAL can
be transformed into

min min ZZZ (Accli, s7] — Accli, s7_1])C[i, klm[5, k] (1)

81,8k _,€Swell(n
L -1 e 7,1] 1 k=1

n

where s§ = —oo and s}, = c0. Let F[j, k] = > Acc[i, j|C[i, k], j € [0, N+ 1],k €
i=1

[n], then the above equation is transformed into

o min o min ZZ Fls_y, k])n(j, k])
Let Costli, j, k] = F[i,k] — F[j, k], 0 < j <i< N+ 1,k € [n], and we get
n n

sf»'-nslgn GSﬂ'g]lYln pasi 1COSt R J lak]ﬂ-['ak] (3)

The Hardness of Optimization Problems on the WMPC Model 113

If 7 is represented by a permutation, we get

n

min min Costlst, sk, m; 4
57,55, €8 mell (n) £ [55> 8j-1,])
j=

Now we can associate the above Cost function to the spiltter-graph. For
each edge (v; j, vy j+) in the splitter-graph and each I € [n], let w(v; ;,vi jv,1) =
Cost[j’, j, 1], and we have the following splitter-graph formation of DAP-TOTAL.

Definition 3.2. Input: a splitter-graph G4(V, E,S,n), the weight function w :
VxV x[n]—R of DAP-TOTAL.
Output: a path (—00,v14,,V2,5 = * Un—1,i,_,,), and a permutation 7, to mini-

n
mize Y w(Vji,, Vi1, 1,Tj)-
j=1

FPT Algorithm for Decision-DAP-TOTAL. We prove the following deci-
sion version of DAP-TOTAL is FPT.

Definition 3.3 (Decision-DAP-TOTAL). Input: a splitter-graph
Gs(V,E,S,n), the weight function w : V X V x [n] = R of DAP-TOTAL, a
threshold value o, and parameter n.

Output: Is the optimum value of DAP-TOTAL less than «?

We need the following definition of partial permutations. A partial permu-
tation 7 is a function defined on [i] where ¢ € [n], such that 7;, 7, € [n] and
m; # 7 for 1 < j # k < 4. Here 7; is the image of j under 7. Given a partial
permutation 7w whose definition domain is [i], and an integer I € [n], let [€ 7
denote that there exists some j € [i] such that 7; = [. Given an integer [¢ m, let
mU{l} be a new partial permutation 7’ defined on [+ 1] such that 7;, ;, = [and
7w = m; for j € [i]. Given an integer | = m;, let 7\ {l} be a partial permutation
7' defined on [i — 1], such that 7 = ; for all j € [i — 1]. Denote @ as the empty
partial permutation.

Algorithm 1 is the FPT algorithm for Decision-DAP-TOTAL. The algorithm
maintains two arrays of length O(n!) for each vertex v; ;, namely Perm(v; ;) and
Cost(v;,5,). Perm (v; ;) stores all the feasible partial permutations for the path
from —oo to v;;, and Cost(v; j,m) stores the partial accumulated cost value
corresponding to the partial permutation w. The proof for the correctness and
complexity of the algorithm is omitted due to space limitation.

FPT Algorithm for DAP-BTNK. Using a transformation similar with
that for DAP-TOTAL, we have the following splitter-graph formation for DAP-
BTNK.

Definition 3.4. Input: a splitter-graph Gs(V, E, S,n), the weight function w :
V xV x [n] = R of DAP-BTNK, and parameter n.
Output: a path (—00, V1 ,4,,V2,5 - Un—1,i,_,,0), and a permutation 7, to mini-

mize Max w(Vi;, Vj—1,i;_1,75)-
J€ln]

114 H. Ma and J. Li

Algorithm 1: Decision version of DAP-TOTAL

1 Perm(—o0) « {®}, Cost(—oo, P) «— 0;

2 for1<i<n,1<j<N,1<k<N do

3 if edge (vi—1,k,vi ;) exists then

4 for1 <i<ndo

5 foreach partial permutation m € Perm(v;_1,%) do

6 if | ¢ m then

7 if Cost(vi—1,k,m) + w(viz1,k,vi,5,1) < a then

8 Add 7 U {l} into Perm(v;,;);

9 ‘ Cost(v; 5,7 U{l}) — Cost(vi—1,k, T) + w(Vi—1,k, Vi,j,1);
10 else
11 Update Cost(v; ;,7) if

Cost(vi—1,k, 7™\ {1}) + w(viz1,k,5,5,1) < Cost(vs,;,m)

12 Return Yes if Perm(oco) is non-empty, and No otherwise.

The decision version of DAP-BTNK has an extra value « as input, and asks
whether the optimum value of DAP-BTNK is less than «. We propose the FPT
algorithm for the decision version, which is given as Algorithm 2. It needs one
array for each vertex v; ; which is Perm(v; ;). The algorithm is similar with that
for Decision-DAP-TOTAL, only changing the sum-check (Line 7 in Algorithm
1) to maximum check (Line 6 in Algorithm 2). The correctness proof of this
algorithm is omitted.

Algorithm 2: Decision version of DAP-BTNK

1 Perm(—o0) « {®};

2 for 1<i<n,1<j<N,1<k<N do

3 if edge (vi—1,k,vi ;) exists then

4 for1 <l <ndo

5 foreach partial permutation m € Perm(v;_1,%) do
6 if | ¢ 7 and w(vi—1,k,05,5,1) < « then
7
8

| Add 7 U{l} into Perm(v;);
Return Yes if Perm(co) is non-empty, and No otherwise.

3.3 W]J1]-Completeness of DAP-MSR and DAP-SSR

Due to space limitation, the proof for DAP-MSR and DAP-SSR are in W[1] is
omitted. See our full paper online [17]. We then prove the W[1]-hardness of the
two problems. We first transform DAP-MSR and DAP-SSR into a splitter-graph
formation. We only describe the transformation for DAP-MSR, and it is similar
for the other.

The Hardness of Optimization Problems on the WMPC Model 115

Z Z(Acc[71— Accli, s7_4])C[i, k] [j, K]
min min max TR (5)
87,08y €S eIl (n) i€[n] no"M . . o)
DD (Acelj si] = Acclj, si_1])Cljs ik,]
j=1k=1
Let V be a N x N matrix where each element is a vector of length n, and let
Vg, k][{] = Accli, j] — Accli, k], i € [n], 4,k € [0, N +1], then Eq. 5 is transformed
into

., min min maX{ZZ S5y Sjo 1[@]C[i,k]7r[j,k],zz Visk, sk—11lA1C, ilx [k, l]}
k=1 j=1k=1

s, sy _ €S mEIl(n)i€[n]

Next we give the following splitter-graph formation of DAP-MSR.

Definition 3.5. Input: splitter-graph Gs(V, E,S,n), edge weight function w :
V xV —R", communication cost matriz C™*™, and parameter n.

Output: a path (—00, V1 ky s V2.ky < ** Un—1,k,_,,), Which corresponds to a matric
T where Ti, j] = w(vjk,,vj—1,k;_,)li], and a permutation 7, such that the
following MSR cost function is minimized:

max iT[’L,j} ’L7T] ZTJ, m; 1C[7, 1]
j=1

i€[n]

To prove the W[l]-hardness of the problem, we introduce an intermediate
problem called Selecting-PARTITION. The idea is to reduce k-clique, which is
W(1]-complete, to Selecting-PARTITION, and reduce Selecting-PARTITION to
DAP-MSR (and similarly to DAP-SSR).

Definition 3.6 (Selecting-PARTITION). Input: n integers S = {s1, s,
,Sn}, target sum value B, and parameter k.

Output: decide whether there exists a set A C S with |A| = k, such that A is

a Yes-instance of PARTITION, i.e., there exists A1, As such that A1 N Ay =

@,Al UAQ = A and ZS¢€A1 S; = ZSiEAz S; = B/2

Theorem 3.1. There is a parameterized reduction from k-clique to Selecting-

PARTITION, and from Selecting-PARTITION to DAP-MSR and DAP-SSR.
Proof. See the full version of this paper [17]. O

4 Future Works

Recall that the problem series of DRP and DAP are introduced using parallel
sorting as the representing example. They reflect the communication pattern
of problems that can be solved in one synchronous round. However, there are
many problems that need multiple rounds to solve. For example, joining multiple
relations can be solved using one round [5] or multiple rounds [1]. Computing
the graph coloring [7], maximum matching [12], shortest path [10], etc., must use
multiple rounds. The problem to minimize the communication cost on WMPC
model with multiple rounds is left as future work.

116 H. Ma and J. Li

5 Conclusion

In this paper we proposed the WMPC (Weighted Massively Parallel Computa-
tion) model based on the existing works of topology-aware Massively Parallel
Computation model [6,13]. The WMPC model considers the underlying compu-
tation network as a complete weighted graph, which is a complement to the work
in [13] where the network topology is restricted to trees. Based on the WMPC
model the DRP and DAP problem series are defined, each representing a set of
problems with the same pattern of communication. We also defined four kinds of
objective functions for communication cost which are TOTAL, BTNK, MSR and
SSR, and obtained 8 problems combining the four objective functions with two
communication pattern problems. We studied the hardness of the 8 problems,
and provided substantial theoretical results. In conclusion, this paper studied the
communication minimization problem on WMPC model with a scope both deep
and wide, but we must point out that this paper only investigated a small por-
tion of the research area on the WMPC or topology-aware MPC model. There
are a lot of problems to be studied following what was studied in this paper.

References

1. Afrati, F.N., Joglekar, M.R., Re, C.M., Salihoglu, S., Ullman, J.D.: GYM: a mul-
tiround distributed join algorithm. In: Leibniz International Proceedings in Infor-
matics, LIPIcs, vol. 68, pp. 4:1-4:18 (2017)

2. Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In:
Advances in Database Technology - EDBT 2010-13th International Conference on
Extending Database Technology, Proceedings, pp. 99-110. ACM Press, New York
(2010)

3. Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geo-
metric graph problems. In: Shmoys, D.B. (ed) Symposium on Theory of Comput-
ing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pp. 574-583. ACM,
(2014)

4. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query pro-
cessing. In: Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, vol. 64, pp. 273-284. ACM Press, New York, USA
(2013)

5. Beame, P., Koutris, P., Suciu, D.: Skew in parallel query processing. In: Proceedings
of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pp. 212-223. Association for Computing Machinery (2014)

6. Blanas, S.: Topology-aware parallel data processing : models, algorithms and sys-
tems at scale. In: 10th Annual Conference on Innovative Data Systems Research
(CIDR 2020) (2020)

7. Chang, Y.-J., Fischer, M., Ghaffari, M., Uitto, J., Zheng, Y.: The complexity of
(64 1) coloring in congested clique, massively parallel computation, and centralized
local computation. In: Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, pp. 471-480 (2019)

8. Culler, D.E., et al.: LogP: a practical model of parallel computation. Commun.
ACM 39(11), 78-85 (1996)

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

The Hardness of Optimization Problems on the WMPC Model 117

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

Dory, M., Fischer, O., Khoury, S., Leitersdorf, D.: Constant-round spanners and
shortest paths in congested clique and MPC. In: Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing, pp. 223-233 (2021)
Ghaffari, M., Gouleakis, T., Konrad, C., Mitrovi¢, S., Rubinfeld, R.: Improved
massively parallel computation algorithms for MIS, matching, and vertex cover.
In: Proceedings of the Annual ACM Symposium on Principles of Distributed Com-
puting, pp. 129-138. ACM, New York, NY, USA (2018)

Ghaffari, M., Kuhn, F.: Distributed minimum cut approximation. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 8205 LNCS, pp. 1-15 (2013)

Hu, X., Koutris, P., Blanas, S.: Algorithms for a topology-aware massively paral-
lel computation model. In: Proceedings of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 199-214. Association for Com-
puting Machinery (2021)

Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In:
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
938-948. Society for Industrial and Applied Mathematics, Philadelphia, PA (2010)
Karp, R.M.: A Survey of Parallel Algorithms for Shared-memory Machines (1988)
Koutris, P., Suciu, D.: Parallel evaluation of conjunctive queries. In: Lenzerini, M.,
Schwentick, T. (eds) Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2011, June 12-16, 2011,
Athens, Greece, pp. 223-234. ACM (2011)

Ma, H., Li, J., Gao, X.: Optimization problems on the weighted massively paral-
lel computation model: hardness and algorithms. arXiv preprint arXiv:2302.12953
(2023)

O’malley, O.: Terabyte sort on apache hadoop, pp. 1-3 (2008). https://
sortbenchmark.org/Yahoo-Hadoop.pdf

Tao, Y., Lin, W., Xiao, X.: Minimal MapReduce algorithms. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, number June,
pp. 529-540. ACM Press, New York, New York, USA (2013)

Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103-111 (1990)

http://arxiv.org/abs/2302.12953
https://sortbenchmark.org/Yahoo-Hadoop. pdf
https://sortbenchmark.org/Yahoo-Hadoop. pdf

l‘)

Check for
updates

The Regularized Submodular
Maximization via the Lyapunov Method

Xin Sun', Congying Han', Chenchen Wu?, Dachuan Xu®, and Yang Zhou*®™)
1 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, People’s Republic of China
{sunxin,hancy}@ucas.ac.cn
2 College of Science, Tianjin University of Technology, Tianjin 300072,
People’s Republic of China
3 Beijing Institute for Scientific and Engineering Computing, Beijing University
of Technology, Beijing 100124, People’s Republic of China
xudc@bjut.edu.cn
4 School of Mathematics and Statistics, Shandong Normal University, Jinan 250014,
People’s Republic of China
zhouyang@sdnu.edu.cn

Abstract. In the paper, we study Regularized Submodular Maximiza-
tion (RegularizedSM) problem over a down-closed family of sets by
applying the Lyapunov method. The Regularized Submodular Maximiza-
tion can be viewed as a generalization of the Submodular Maximiza-
tion since it adds an extra linear regular term (possibly negative) to the
objective so that it may no longer be non-negative. For Regularized Non-
monotone Submodular Maximization (RegularizedNSM), we systemati-
cally design an algorithm framework in two phases. With a proper choice
of coefficients in the framework, a (1/e, %)—appmxima‘cion algo-
rithm is obtained in the continuous-time phase, where vy € [0, 1)U(1, +00)
is a parameter reflecting the relative dominance of the positive and neg-
ative parts of the linear optimal value. In the second phase, we make the
algorithm implemented by discretization with almost the same approx-

imation guarantee and O ("—3) time complexity. Moreover, the Lya-
€

punov method can also be applied in Regularized Monotone Submodular
Maximization (RegularizedMSM) with (1 — 1/e, 1)-approximation per-
formance, which coincides with the state-of-the-art result given by Feld-
man [9]. This observation implies that the algorithm framework designed
by the Lyapunov method can unify some of the existing approximation
algorithms.

Keywords: Regularized submodular maximization - Lyapunov
function - Approximation algorithm design and analysis - Down-closed
family of sets

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 118-143, 2024.
https://doi.org/10.1007/978-3-031-49193-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_10

The Regularized Submodular Maximization via the Lyapunov Method 119

1 Introduction

Recently, plenty of works related to RegularizedSM have been published from
both theoretical and practical perspectives, since the objective, which consists of
submodular and linear terms, owns very general properties. Formally, the Regu-
larizedSM can be formulated as maxsc g sez f(S)+£(S) with a given groundset
FE and a certain constraint Z. Usually, the first part is a non-negative submodu-
lar set function f : 2F — R>g. Submodularity is an important economic concept
that quantifies the degree of fungibility between objects. The second part of Reg-
ularizedSM is a linear set function ¢ : 2 — R defined by the summation of all
single-element value in the field of real numbers, therefore it makes the objective
not necessarily non-negative. The linear term enhances the application versa-
tility compared with submodular maximization. One example is in the design
of approximation algorithms, where RegularizedSM can be viewed as a sub-
problem of the curvature optimization problems, where the goal is to improve
the constant approximation ratio by introducing a parameter curvature [4] of
the objective function. Another popular scenario is the overfitting in machine-
learning. When the linear term is non-positive, RegularizedSM generalizes the
regularization model. It is worth noting that the two functions in the objective
of RegularizedSM tend to be valued differently in applications, where the first
term normally is more important since it is the initial target (e.g. the quan-
tity function in machine-learning) and the second is just the implementation of
regularization.

1.1 Lyapunov Function Approach

In response to the above situation, a new method called Lyapunov function
is introduced in submodular maximization not only as a technique for analy-
sis and proof, but also as a systematic instruction for designing approximation
algorithm. The “designing” here indicates that it can directly start the analysis
process and derive the approximation guarantee and complexity without know-
ing the algorithm. Besides, we could gradually learn the details of the algorithm
during this procedure. The Lyapunov function was originally used to study the
stability of an ODE equilibrium as a technique for analysis and is therefore widely
used in the stability and control theory of dynamic system [15]. This method
normally works in the continuous-time setting, where a vecter-valued function
x(t) € R™ varies itself by following an evolution equation x(t) = ¢(x(t)) with
t € [0, 7). Denote V(x(t)) € R as the Lyapunov function of x(¢) such that the
stable criteria V(x(t)) = (VV(x()))T - ¢(x(t)) is non-negative on t € [0,T].
This implies that V(x(¢)) is a non-decreasing function during this time interval.
With this property, we could obtain surprisingly simple sufficient conditions for
the problem we consider. The Lyapunov function method also has many appli-
cations in other areas, such as optimization. Frequently, with a given algorithm,
this method is used as a proof technique to show the convergence [14,17,20-22].
For example, Bansal and Gupta [1] discussed the convergence rate for gradient
methods such as smooth and non-smooth gradient descent, mirror descent and

120 X. Sun et al.

some accelerated variants. Recently, Diaknonikolas and Orecchia [5] dealt with
it in a reverse direction, i.e., the continuous-time algorithm emerges itself from
the derivation, to present a general analysis framework of first-order methods.
Similarly, Du [7,8] firstly gave a two-phase systematical framework for various
submodular maximization problems by applying the Lyapunov method as an
algorithm-design technique. The first phase still focuses on the continuous-time
analysis. It begins with specifying the parametric form of the Lyapunov func-
tion. Then, it derives the sufficient conditions of the stable criteria by the help
of a proper bound of the optimal value. Next, it produces the algorithm by
solving the ordinary differential equation related to update of the solution in
the conditions. Finally, it maximizes the approximation guarantee by determin-
ing the parameters given before. Since submodular maximization is a kind of
combinatorial optimization, the second phase should fulfill the request of an
implementable algorithm and output an integral solution. To do so, the discrete
counterpart of the Lyapunov function should be derived and the discretization of
the continuous-time algorithm is necessary. At the end of the whole procedure,
a similar approximation ratio with only a small loss and the time complexity
can be obtained automatically. Running this two-phase paradigm, Du repro-
duced the state-of-the-art results for maximizing monotone DR-submodular over
a solvable convex set, non-monotone DR-submodular subject to a down-closed
solvable convex set and non-monotone DR-submodular constrained by a solvable
convex set. The more important achievement for this work is that it essentially
explains the design philosophy of the commonly used methods mentioned above.

1.2 Related Work

In RegularizedSM, an algorithm is called («, 3)-approzimation for some coef-
ficients «, 8 > 0 if its output S C E satisfying E[f(S) + ¢(S)] > maxocg|a -
f(O)+3-£(0)]. For the Regularized Monotone Submodular Maximization (Reg-
ularizedMSM) problem with matroid constraints, Sviridenko et al. [19] pre-
sented two algorithms that are a modified non-oblivious local search and an
adapted continuous-greedy, respectively. They both achieved an (1 — 1/e, 1)-
approximation with O(e) error term. Unfortunately, a guessing step is necessary
which remarkably damages its query complexity. To avoid the guessing step,
Feldman [9,10] described a clean alternative algorithm called distorted contin-
uous greedy for solving the multilinear relaxation of the above problem over
a down-monotone and solvable polytope. This constraint is more general and
includes many common polytopes such as matroid polytope. By applying the
adaptive weight (1 + 6)*~1/% related to the time interval 6 € O(e/n?) on the
first-order information of the submodular term, this variant of continuous-greedy
yielded (1 — 1/e,1) guarantee for the submodular and linear term, respectively.
Also, a hardness result of this problem is showed in [9]. It states that there
exists no polynomial time algorithm with bi-factor better than (1 —e™* 4 ¢, \),
where A € [0,1] is a calibrating parameter. Now, researchers pay attention on
a more challenging setting, where the submodular component of the objective
is not necessarily monotone. In this case, the continuous-greedy normally fails,

The Regularized Submodular Maximization via the Lyapunov Method 121

since the marginal gains right now could be negative. For non-monotone sub-
modular maximization, a powerful technique named measured continuous-greedy
is introduced by Feldman et al. [11] as a unified algorithm. It compensates for
the difference between the residual value of the current fractional solution and
its gradient. This is achieved by multiplying an adaptive ratio in the update
process. The ratio slows down the evolution of the fractional solution by diverg-
ing the direction obtained by linear programming, so as to mimic the gradi-
ent value. Fortunately, the first-order property of the multilinear extension can
ensure this intention. Based on this, Lu et al. [16] designed a variant of the mea-
sured continuous-greedy with distorted objective for Regularized Non-Monotone
Submodular Maximization (RegularizedNSM) subject to a matroid constraint.
The performance guarantee of the algorithm is (1/e—e, 1). However, this result is
built only when ¢ is non-positive. For the linear term without any limitation, Qi
[18] presented a (tt_f% —€, H_%)—approximation algorithm for RegularizedNSM
subject to a matroid constraint, where ¢ € [0, 1]. Furthermore, many inapprox-
imability results for RegularizedSM were also provided in this work. Besides, for
Regularized Unconstrained Submodular Mazimization (RegularizedUSM), Bodek
and Feldman [3] offered the first non-trivial guarantee and proved that non-
oblivious local search yields (a(8) — €, 3 — ¢)-approximation for all 8 € [0, 1],
a(B):=6(1 - B)/(1 + B). They also showed some negative conclusions for the
special case of RegularizedUSM in which the linear function is non-positive and
non-negative, respectively.

For applying the Lyapunov function method as not only an analysis but also
a design technique in submodular maximization, Du [7] used three problems of
DR-submodular maximization with different constraints as examples to propose
a two-phase systematical framework. After determining the form of the Lya-
punov function, a continuous-time algorithm is designed in the first stage, and
afterwards the theoretical approximation guarantee could be derived. Then, for
the purpose of implementation, a discrete-time algorithm and the corresponding
complexity are obtained in the second stage. For the three problems they con-
sider, the performance guarantees and complexities coincides with the current
best results. Moreover, Du et al. [6] improved the approximation ratio of max-
imizing a DR-submodular function over a general convex set from 0.19 to 0.25
by using the Lyapunov method to design a Frank-Wolfe type algorithm with the
same order of time-complexity.

1.3 Owur Contribution

The informal conclusions for RegularizedNSM and RegularizedMSM are pre-
sented below by denoting F : [0,1]" — R>¢ and L : [0,1]" — R, which are the
multi-linear extensions of f and ¢, respectively.

Theorem 1.1. For RegularizedNSM over a down-closed family of sets, there
erists a continuous-time approximation algorithm designed by a certain Lya-
punov function. Given v € [0,1) U (1,+00), it outputs a feasible x € [0,1]F

122 X. Sun et al.

obeying .
vl =L

Pl +L(x) = - (x") + T2

Theorem 1.2. For RegularizedNSM over a down-closed family of sets, there
exrists a discrete-time approzimation algorithm designed by a certain Lyapunov
function. Given € > 0 and v € [0,1) U (1,400), it outputs a feasible x € [0,1]F
obeying

—v/e—1
£y + T ey 040,

v—1

Moreover, the time complezity of the algorithm is O (%), where n is the ele-
ment’s number of the ground set and D is the smoothness of F.

F()+ L(x) >

Moreover, we can also take the Lyapunov function method to deal with Reg-
ularizedMSM with the same constraint. With a similar derivation process, we
can obtain the following results.

Theorem 1.3. For RegularizedMSM over a down-closed family of sets, there
erists a continuous-time approximation algorithm designed by a certain Lya-
punov function, whose output x € [0,1]F is feasible and satisfies

1
F(x)+ L(x) > (1 - e) F(x*) + £(x*).
Theorem 1.4. For RegularizedMSM over a down-closed family of sets, there
exrists a discrete-time approzimation algorithm designed by a certain Lyapunov
function. Given e > 0, it outputs a feasible x € [0,1]F obeying

n@+L@pEQ_i>ﬂwa@ﬂ—0@.

Moreover, the time complexity of the algorithm is O (%), where n is the ele-
ment’s number of the ground set and D is the smoothness of F.

1.4 Organization

In Sect. 2, we introduce some necessary conceptions. In Sect. 3, we explain why
the Lyapunov method can systematically design an algorithm framework and
analyze its approximation guarantee for RegularizedNSM with no limitation on
the linear term. In Sect. 4, we finally conclude the paper. Due to page limitation,
we present the discrete-time phase of the Lyapunov method for RegularizedNSM
in Appendix B, the results for RegularizedMSM in Appendix C and all missing
proofs of Sect. 3 in Appendix D.

The Regularized Submodular Maximization via the Lyapunov Method 123

2 Preliminaries

Given a ground set E with n elements and a set function f : 2F — R>q, we use
fs({e}):==f(Su{e}) — f(S) to denote the marginal gains of adding an element
etoaset Se€F wrt. f. Wesay f is submodular if fs({e}) > fr({e}) holds for
any S C T C F and an element e € E\T'. Also, the set function f is non-negative
if f(S) >0 for any S C E. Besides, we say a set function £ : 28 — R is linear
if £(S) = > .csl({e}) for every set S € E, where £({e}) € R for each e € E.
For easy of implementation, we omit the brace when viewing an element as a set
and define S U {e} and S\{e} by the shorthand S Ue and S — e, respectively.

We study RegularizedNSM with no limitation on the linear term. The solu-
tions are required to be feasible to an instance of a down-closed family of subsets
T C 2P, which is quite general including several regular and natural constraints
such as matroid and knapsack. Z is down-closed (or down-monotone) if every
subset of S € 7 also belongs to Z. Since there are no lossless rounding techniques
for this setting, we instead aim at the relaxation of the above problem. For a
submodular function f, its multilinear extension is defined as F': [0, 1] — R,
which constructs a mapping between a point x = (z,,,...,Z.,) € [0,1]" and the
expected function value of a random set Ry C S w.r.t. x. The random set Ry
includes each element e € F with probability x, independently. The formal math-
ematical expression is F/(x):=E[f(Rx)] = > _gcp f(5) [leces Te [Iegs(1—2c). We
denote the join, meet and product operations for any two vectors x,y € [0, 1]™ by
(xVy)e = max{xe,ye}, (XAY)e = min{z,,y.} and (xOy). = . ye respectively.
Also, we refer to the polytope Pz C [0, 1]™ as the feasible field in the relaxation
problem. It is the convex hull of characteristic vectors of all the feasible sets of
T. Tts formal definition is Pz = conv{lg, S € Z}. Similarly, we say Pr is down-
monotone if 0 <y < x (0 <y; < x; for each i = 1,...,n) and x € Pr imply
y € Pz. Moreover, Pz is solvable if linear functions can be maximized over
it in polynomial time. The formal description of the relaxation (which is the
real problem we consider in this paper) can be stated as maxyxep, F(x) + L(x),
where L(:) is the extension form of ¢. It is actually the dot product of the
input variable and the regularized (weight) vector £ = (f,,, ..., {.). Formally,
L(x):=(l,x) = Yecple - xe and VL(x) = 7. For the regularized vector 7, it
is obvious that it can be split into tl and F_, where all the components are
non-negative for the former and non-positive for the latter. Therefore, we have
7= E:. + 0. Moreover, we denote x* € {0,1}" as the optimal integral solu-
tion for RegularizedNSM with down-monotone. One advantage of denoting x* is
that we can directly build the connection between the relaxation’s solution and
the optimal value of RegularizedNSM without any anxiety about the rounding
€rrors.

To simplify the proof process, we next present some assumptions about the
multilinear extension. Note that these hypotheses are not necessary for the con-
clusions. We can estimate the relevant variables by sampling, so that the same
results can be obtained with a high probability.

124 X. Sun et al.

Assumption 1. The value oracles of the multilinear extension F(-) and its gra-
dient VF'(-) are given, which means that the feedback of any vector consultation
could be provided immediately.

Assumption 2. The multilinear extension F : [0,1]" — Rx>¢ is D-smooth, i.e.,
for any x,y € [0,1]", we have

FHTF(),y %)~ 2 Iy < Fly) < PO+ (VF(x), y)+ 2 |y x|

The D-smoothness above is widely assumed in first-order methods in con-
vex optimization [17] and in DR-submodular maximization [2]. Moreover, with
Lemma 3.3 in [9] we have

D =0(n*)f(OPT),

where O PT denotes the optimal solution for the submodular maximization prob-
lem with certain constraints.

3 Lyapunov Method — Continuous-Time Phase

In this section, we apply the Lyapunov function method to design an algorithm
framework and analyze it for RegularizedNSM with no limitation on the linear
term. The output approximation algorithm yields the best guarantee for the
submodular term. Inspired by [7,8], we also present the whole process in two-
stage, where the theoretical algorithm and the approximation guarantee are
derived in the continuous-time phase and the practicable counterpart of the
algorithm and the complexity are showed in the discrete-time setting.

The purpose of the continuous-time phase is to give a guideline on algorithm
design and an informal expression of the analysis, where continuous-time means
that the solution x(t) varies continuously about time ¢ and an update rule could
be described as a dynamical system x(t) = ¢(x(t)). In this stage, the Lyapunov
function will be taken as an input and an approximation algorithm is going to
be produced with a provable ratio. The first task is to determine the specific
parametric form of the Lyapunov function, which may be quiet different related
to the problem on hand. In this study, the Lyapunov function can be defined
as:

V(x(t)) = a(t)F(x(t)) = b(t) F(x") + c(t) L(x(t)) — d(t)L(x"), (1)

where the coefficient functions a(t), b(t), c(t), d(t) € R>¢ are non-decreasing, non-
negative and differentiable for ¢ € [0, 7] and we demand a(T") = ¢(T'). For ease
of notation, we scale the time interval by 1/T, which only affects the complexity
order. We could easily recover the general result by multiplying 7. As we men-
tioned above, the most critical property of the Lyapunov function is that in the
given time interval it is a non-decreasing function, i.e., the stable criteria

V(x(8)) = a(t)F(x(t)) + () Lx(1) + () VE(x(D)) + e(t) VE(x(1)), %(1))
— (b)) F () +d(HL(x)) (2)
> 0.

The Regularized Submodular Maximization via the Lyapunov Method 125

Then, we could easily have V(x(1)) —V(x(0)) > 0 and obtain the approximation
ratio below by rearranging the inequality

Pox(1)) + Lx(1) > 200 Pl 4 T 1

a(1) a(1)

where the equality holds since we assume x* is the optimal integral solution.
Finally, we solve a maximization problem with approximation ratio of the first
term as the objective, since it is normally the initial target (e.g. the quantity
function in machine-learning) and the second term is just the implementation of
regularization. We seek feasible coeflicient-functions a(t), b(t), c(t), d(t) so that
the objective value is as large as possible.

After stating the high-level ideas, we formally start to derive the sufficient
conditions for meeting the stable criteria of the Lyapunov function V(x(¢)) and
design a conceptual algorithm at the same time. To do so, one of the main
obstacles is the optimal sum (b(t)F(X*) + d(t)L(x*)) in the derivative V(x(t)),
since we have no information of it. A natural thought for it in dealing with
maximization problems in optimization is to find a proper upper bound, which
is constructed mainly by the current solution and its gradient information so
that the bound and the optimal solution x* are irrelevant or at least not highly
correlated. The following lemma gives a such bound.

Lemma 3.1. Assuming x.(t) < 0(t) for every e € E and t € [0,1], there exists
an upper bound

VE(x(t)), v(x(t)) © (1 —x(t))) + F(x(t))
1-0()

Lv(x(t) © (1 - x(1))

U(t) = b(t) - <

o

) g1

such that U(t) > b(t)F(x*) + d(t) L(x*), where y = 2520 qng

v(x(t)) = arg max <1 E(I;)(t) VF(x(t)) + *y(l—’yﬁ—_(t;)—ld(t)g’ vo (l- x(t))> .

Note that the parameter 7 is unavoidable according to the proof of the last
lemma, which we present in Appendix D. Now we could show the sufficient
conditions that guarantee the stable criteria of the Lyapunov function V(x(t)).

Lemma 3.2. For anyt € [0, 1], the defined Lyapunov function V(x(t)) is non-
decreasing if the coefficient functions (a(t),b(t),c(t),d(t)) € Ceon where Ceon

126 X. Sun et al.

Algorithm 1. CONTINUOUS-TIME ALGORITHM FOR REGULARIZEDNSM

Input: multilinear extension F', regularized vector Z polytope Pz and coefficient func-
tions (a(t), b(t), c(t),d(t)) € Coon
Output: x(1)
1: Set: x(0) =0
2: for t € [0,1] do

v(x(t)) = argmaxvep, <d(t)VF(x(t)) — 1cl(t)a vo(l- x(t))>

4 x(t) = 48 (v(x(t) © (1 —x(t)))
5: end for

w

mncludes

1>0(t) = [[x(t)][c = 0

aty— 25 g

1—0() ~
| &(t) =

alt)k(t) = T2 s (V(x() © (1= x(1) =0
A=)

where O(t) is the upper bound of x.(t) for every e € E.

According to the constraints Cco,, we could derive the update rule of the
solution in continuous-time setting and guarantee its feasibility.

Lemma 3.3. Given the Lyapunov function V(x(t)), the wupdate rule in
continuous-time s

o alt) 1 ;

x(t) = alh) (v(x(t)) © (1 —x(1)))
fort €]0,1]. Moreover, assuming that Ina(t) is a cumulative distribution func-
tion on [0, 1], the output solution x(1) € Pz.

Due to the update rule given in Lemma 3.3, we can quantify the coordinate-
wise upper bound of the solution by the following lemma.

Lemma 3.4. For the coordinate-wise upper bound 6(t) of the solution x(t) with

t €10,1], we have 8(t) <1 — %'

Under the guidance of the Lyapunov function V' (x(t)) and combining all lem-
mas above, our continuous-time algorithm for RegularizedNSM with no limita-
tion on the linear term could be automatically designed and shown as Algorithm
1. And its utility guarantee is shown by the following theorem.

The Regularized Submodular Maximization via the Lyapunov Method 127

Theorem 3.1. For RegularizedNSM with no limitation on the linear term, the
algorithm CONTINUOUS-TIME ALGORITHM FOR REGULARIZEDNSM achieves
an (1/e, =2L=1Y_approzimation with feasible range v € [0,1) U (1%1/6,—1-00)

y—1
and v € (1, 1%1/?) for £(x*) > 0 and £(x*) < 0 respectively, where v = %.

....... ,-y — 1
10] ratio= 1
: - ratio=1—1/e
= %ﬁ_l, ~v € [0,1) (our result)
= 5 %, ~v € (1,400) (our result)
S
L
= (0,1)
= L e i
8 0 ; (+00,1-1/e)
= (171/570)
£
g
o8 -5
2
@
-10 :
0o 1 2 4 6 8 10

parameter y

Fig. 1. The approximation ratio of the linear term. The light blue (v € [0, 1)) and dark
blue (v € (1,400)) solid lines are the curves of % (our result), which illustrates
the approximation ratio of the linear term with various regularized weight vector. The
green dash line is the result given by Lu et al. [16] for the non-positive setting of £(-).
The red dash line is the result presented by Qi [18] for the non-negative setting of
£(+).(Color figure online)

The Discussion of the Approximation Ratio of the Linear Term. Since
the parameter v € [0, +00) according to its definition, the curve of % is
represented by light (v € [0,1)) and dark blue (v € (1, 400)) solid lines in Fig. 1.
There are several cases to discuss.

(a) v = 1 (the black dotted vertical line in Fig.1.) In this case, the optimal
value of the linear term is ¢(x*) = 0 since there is no dominator between the
positive and negative parts.

(b) v € (1,+00). In this case, the optimal value of the linear term is non-negative
since the positive part is dominant. From the curve of this interval (the dark
blue solid line), we have a non-negative guarantee when ~ € [1%1/6, +00].

128 X. Sun et al.

Moreover, the limitation of the guarantee is (1 — 1/e) when v — +oo (the
black point (+00,1—1/e) in Fig. 1) implying that the linear function is nearly
non-negative. Hence, the bi-ratio is (1/e,1 — 1/e) for this special situation,
which coincides with the result given by Qi [18]. Then, we focus on the
interval v € (1, 17171/3)7 where the guarantee of £(x*) is negative. However,
it is not unacceptable since there is no algorithm whose output can make
a positive £(-) value while keeping 1/e guarantee for the submodular term,
when the non-negativity assumption of ¢(+) is violated. Now the only problem
is how bad the performance of the linear term will be. Notice that we have
the following result when ~ € (1, 17711/5)

(P ey = (1 sity) (=) ()

> (0)

k=1

>

((T=1/e)y=1),

where the inequality is true since x* < 1. Therefore, we have the lower

bound of (% -K(x*)) if there is a limitation of Y57, (£).

(¢) v €]0,1). In this case, the optimal value of the linear term is non-positive
since the negative part is dominant. From the curve of this interval (the light
blue solid line), we have a positive guarantee for £(x*) < 0. Fortunately, the
conclusion is the same since the inequality above also holds when v € [0, 1).
Moreover, the approximation ratio is 1 when v = 0 (the black point (0,1)
in Fig.1). Hence, the bi-ratio is (1/e,1) for this special situation, which is
coincident with the result given by Lu et al. [16] but worse than (0.385,1)
presented by Qi [18].

(d) Comparing with (0.29,0.59)-approximation given by Qi [18], our result given
in Theorem 3.1 is strictly better from the perspective of the performance
of the submodular function, which is more important in a real scenario of
RegularizedNSM since the linear function is normally just a regular term.

4 Conclusion

In the paper, we present algorithm frameworks for RegularizedNSM subject to
down-monotone family of sets with the help of the Lyapunov function. By prop-
erly choosing the coefficients, our algorithms yield (1/e, %ﬁ_l) approximation
guarantees with polynomial-time complexity for the above problems respectively,
where v € [0,1)U(1, +00) is a parameter reflecting the relative dominance of the
positive and negative parts of the linear optimal value. Notably, our results are
quiet general since it could go back to many existed conclusions when the lin-
ear function own special property like non-negativity and non-positivity. More-
over, our results are strictly better from the perspective of the performance of
the submodular function comparing with (0.29, 0.59)-approximation given by Qi
[18] when there is no limitation on the linear term. At the end, we also show

The Regularized Submodular Maximization via the Lyapunov Method 129

a (1 — 1/e,1)-approximation algorithm for RegularizedMSM by the Lyapunov
method with a similar analysis process, which coincides with that the state-of-
the-art result. In the future, we focus on eliminating the parameter ~ in the
bicriteria approximation without losing the approximation guarantee of the sub-
modular term as much as possible.

Acknowledgments. The first author is supported by National Natural Science Foun-
dation of China (No. 12301419), the Fundamental Research Funds for the Cen-
tral Universities and the National key research and development program of China
(2021YFA1000403). The second author is supported by National Natural Science Foun-
dation of China (No. 11991022) and the National key research and development pro-
gram of China (2021YFA1000403). The third author is supported by National Natu-
ral Science Foundation of China (No. 11971149). The fourth author is supported by
National Natural Science Foundation of China (No. 12131003). The fifth author is
supported by the National Science Foundation of China (No. 12001335).

Appendices

A Technical Lemmata

Finally, we give two rephrased technical lemmata about the multilinear exten-
sion, which are frequently used in later sections. The first is a well-known bound,
which build the connection of any two feasible vectors with coordinate-wise oper-
ations and the dot product between the gradient and their difference.

Lemma A.1 ([13]). For any differentiable DR-submodular function F
[0,1]" — R, we have the following result for any x,y € [0,1]",

(VE(x),y —x) > F(xVy) + F(x \y) - 2F(x).

The second lemma can be viewed as a typical technique, which is normally
applied in non-monotone setting for obtaining a binary-valued vector.

Lemma A.2 ([11]). For any DR-submodular function F : [0,1]" — R>q and
any 'y € {0,1}", we have F(x Vy) > (1 — [Ix[loc) - F(y).

B Discrete-Time Phase for RegularizedNSM

In the last subsection, we introduce Algorithm 1, which is automatically designed
by the given Lyapunov function for solving RegularizedNSM in continuous-time.
Although the algorithm can yield state of the art approximation ratio, it is only
theoretically illustrative and hard to be implemented on a discrete computer.
Therefore, the goal of this phase is to discretize the algorithm with acceptable
guarantee losses so that it is executable with provable time complexity. The whole
process is not as intuitive as we think. One major obstacle is that the Lyapunov

130 X. Sun et al.

function may not be strictly monotone due to the discretization errors. The
discrete-time counter-part of the Lyapunov function remains the following form

V(x(t:)) = at) F(x(t:)) = b(t:) F(x") + c(t:) L(x(t:)) — d(t:) LX), (3)

where for every i = 1,..., K, a(t;),b(t;), c(t;), d(t;) are the point-mass sequences
sampled by the coefficient functions in the last phase. Since it is impossible to
verify the stable criteria through the derivative of V', we focus on the value
increment per unit of time of two adjacent iteration and expect that it has a
controllable lower bound even if it is negative, i.e.,

V(x(t; — Vi(x(t;
Liv1 —t; K?
where the error term B; > 0 for every ¢ = 1,..., K and the total number

of rounds K decides the time complexity. Then, by telescoping over all time
stamps, we have

Vix(tx)) = V(x(to)) = a(tx)F(x(tx)) — (b(tx) — b(to)) F(x")

+ c(tr) L(x(tx)) — (d(tx) — d(to)) L(x")
K-1

— Z Bi(ti+1 — ti) S —0(6).

=0

v

Finally, the approximation guarantee could be obtained with requiring a(tx) =

c(tk)

btx) — blto) d(tx) —d(to)
a(tk) a(tk)

After the high-level thinking, we formally give the analysis process of the

discrete-time phase. Similar with the continuous-time phase, we begin with the
derivation of all sufficient constraints that the sampled sequences should satisfy.

F(x(tk)) + L(x(tk)) > F(x*) + L(x*) — O(e).

Lemma B.1. For everyi=1,..., K, the increment of two successive solutions
has the following error term

a(ti+1)D
2(tiv1 — ts)

when the point-mass sequences (a(t;),b(t;),c(t;),d(t;)) € Cais, where Cgs
includes

B; = Ix(tir1) — x(t:)1%,

b(tit1) — b(ts)
1= 000,
0
b(tiv1) — b(t;)
i) (=0 (v(x(t:) © (1 —x(t:)))
(v = D(d(ti1) — d(t:))
c(t)(v(1 = 0(t:)) — 1)

Y

a(tiv1) — a(t;)
c(tiv1) —c(ts)

X(tiy1) — x(;)

X(tiv1) —x(ti) =

(v(x(t:)) © (1 =x(t:))),

The Regularized Submodular Maximization via the Lyapunov Method 131

where v(x(t;)) = arg maxy cp, (wr (i) VF(x(t;)) +£,v O (1 —x(t;))), and wy(i) =
e b0 () —d)G-1)
(tig1—t:)(1—0(t;))”’ et ((tit1—t:))(v(1=0(t:))—1)

Proof. The value increment per unit of time is,

V(x(titr)) = V(x(t:)) _ altip) F(x(tir1)) — a(ti) F(x(t:)) — (b(tiy1) — b(t:)) F(x7)
tiv1 — t;

tiv1 —
(tisn) L(x(ti1)) — elt) LGx(t)) — (dltirn) — d(t) L(x")
+ tiv1 — ’

Due to Lemma 3.1, the upper bound of the optimal sum can be denoted as

N b(z+1) (tl) v(x(t: —x
U = G S gy (VFO), vx(t) © (1= x(t) + F(x(t)

(d(tizr) — d(t:))(y — 1) N
o = 0G0 = oy = 1) V) © (1= x(w))
)

o (Blti) = b)) F) + (dlti11) — d(t:) L(x*)

+

)

tiy1 —t;

where v(x(t;)) = argmaxvep, (wr(i)VF(x(t;)) + we(i)l,v ® (1 — x(t;))) and
; b(tit1)—=b(t:) (dti+1)=d(t:))(y=1)

wi(l) = g tma—ewy wl) = @ aea-ee)-1-
Then,

Vix(tis1)) = V(x(t:))

tit1 — 1t
a(tiv1) (F(x(tit1)) — F(x(t:))) + (altiv1) — alts)) F(x(t:))
- tit1 — 1t
c(tiv1) L(x(ti1)) — et L(x(t:)) Ut
tit1 — 1t v

Applying the D-smoothness assumption of F', we obtain

% (F(x(tiy1)) — F(x(t:))) > (VF(x(t;)), tq(titli, (x(ti1) —x(t:)))
o ; i+1 2
DD) — ()]

2(t¢+1 — ti)

132 X. Sun et al.

Combining with Uy, the above inequality could be further derived as

V(x(ti+1)) = V(x(t:))

tiv1 — ti
> (VFO(t)), 0 (i) = xt0)) — LMy ()

b(tiy1)—b(t:)
a tz 1) —a tq, — T _arr
. ((ti) — alts) — 52550)F(X(ti))

tiv1 —
7 Civ)x(tivs) —e(to)x(ts) (d{tivn) —dt:)(v=1) g o
+& tit1 — ¢ (y(1 = 0(t;)) — 1)((tit1 — t;)) o1 (t:))
(tl 1) 2
_ m” x(tiv1) — x(t)||”

Since F' is non-negative and non-monotone and the range of L is
read domain, the sufficient conditions Cgjs that the point-mass sequences
(a(t;),b(t;), c(t;),d(t;)) should satisfy are listed below

a(tiv1) — a(t;) W
c(tiy1) —c(t;) =0
b(ti1) — b(t:)

X(ti) = x(t0) = Lo AT (vx() © (1 (1))
(-1

(d(tiy1) — d(ti))
c(t)(v(1 = 0(t:) — 1)

Therefore, the increment per unit of time has the lower bound

V(i) - V) o altiz)D
tiy1 —t T 2(tipr — ta)

Y

X(tiv1) —x(ti) =

(v(x(t:)) © (1 = x(t:))) -

x(ti+1) — x(t:)|* = —Bi.

O

With a properly choice of the coeffcients in continuous-time, we meet the suf-
ficient constraints in discrete-time and make the error term controllable with the
next lemma. Moreover, the time complexity will also be automatically decided
by the total number of rounds K

Lemma B.2. Setting 1 — 0(t;) = Zg”)), a(t;) = e b(ty) = L, c(t;) = 1,

d(t;) = —A’eﬂ:il'”, where t; = % fori=1,..., K and K = O (%) with € > 0.
Then, the sufficient conditions Cg;s can be satisfied and the total error is

K-1

K-1 A
S Bt -t < > 0Pt - x(e)? < 000)
1=0

=0

The Regularized Submodular Maximization via the Lyapunov Method 133

Proof. We first testify that the choice of all point-mass sequence meets the suf-

ficient conditions. Since 1 — 0(t;) = ZE?’;, a(t;) = e 1 b(t;) = L, e(t;) = 1,

d(t;) = =22 e have c(ti1) — c(t;) = 0 and
b(t; b(t _ _ .
altiir) — a(ty) — (1+1)0()() — et gt (g —)i

— 6ti71 [6ti+17ti — 1 — (tiJrl — tl)]
>0,

where the inequality holds since e > 1 + x for € R. Moreover,

b< “rl) b() tiyi— l _ O
altivn) (1 —0(t;)) bt €0<K) O(e),

and

(v = D(d(tit1) —d(t:)) _ tigr —ti —ye (1 — ettt
c(ti)(v(1 = 6(t:)) — 1) 1—ret

S ligr — b — e ti(tip1 — ti)

- 1—reti

1
=141 — 1 € O (K) = O(E),

where the inequality holds since z > 1 — e™® for x € R.
Then, we focus on the total error by telescoping over all iterations

K-1

K-1

a(t‘+1)D
Z Bi(ti—i-l — ti) ZTHX(LLI’-H) - X(ti)||2
i=0

=0

By plugging the relevant sufficient constraint in Cgis and v(x(t;)) @ (1 —
x(t;)) < 1, we get

x(ti1) — x(t:)]* < HO <I1(> 1

Therefore, the total error can be bounded by

Z Bi(tiz1 —1;) <O <(+K1)nD> < O(e),

where the inequality holds due to a(t;4+1) < 1. O

After presenting the discrete-time phase analysis, the DISCRETE-TIME ALGO-
RITHM FOR REGULARIZEDNSM could be naturally introduced as Algorithm 2.
The designed algorithm produces a sequential feasible vectors x(t;) for all time
stamps ¢ = 1,..., K in polynomial-time complexity, and it yields an identical
approximation ratio with arbitrarily small loss.

134 X. Sun et al.

Algorithm 2. DISCRETE-TIME ALGORITHM FOR REGULARIZEDNSM

Input: multilinear extension F', regularized vector Z polytope Pz and coefficient func-
tions (a(ts),b(ts), c(ts), d(ts)) € Cais for every i =1,..., K

Output: x(tx)
3

1: Set: x(to) =0, K = "2 = ==

2: fori=0,...,K —1do

3: t; = r

4 v(x(t:)) = argmaxyepy (w ()VF(x(1)) + we(i) v © (1 - x(t:))
5 x(tiy1) = X(t) + s (v(x(t) © (1 - x(t)))

6: end for

Theorem B.1. For arbitrary € > 0, the DISCRETE-TIME ALGORITHM FOR
REGULARIZEDNSM outputs x(tx) € Pz and it satisfies

1 — -1
Fx(tx)) + Lix(tr) > - f(x*) + %é(x*) ~0(e),
with feasible range v € [0,1) U (1%1/6, +00) and v € (1, 1%1/6) for £(x*) > 0 and

(T x*)

T Moreover, the time complexity of is

£(x*) < 0 respectively, where v =
o(=).

Proof. Since the algorithm runs K rounds, we trivially get the O (é) time

complexity. For the increment value of two iterative solution, its telescoping
sum over all time stamps ¢; fori =1,..., K is

K—

,_

V(x(tip1)) = V(x(t:) = F(x(tx)) - éF(x*) T Lx(ti)) - 22 L e

1=0 ’Y*l

K—1
=Y Biltig1 — t;) > —0(e),
1=0

where the inequality holds due to Lemma B.1 and Lemma B.2.
Since x* € {0,1}"™, we obtain the following result by rearranging the inequal-
ity,

Fix(t0) + Hxtix) = L1 + T2 o) - ot

C The Lyapunov Method for RegularizedMSM

For RegularizedMSM, where the submodular function in the objective is mono-
tone, ie. f(T) > f(S) for any S C T C E, the Lyapunov function method
can also be applied to design continuous-time and discrete-time algorithms. The

The Regularized Submodular Maximization via the Lyapunov Method 135

approximation ratio and the time-complexity coincide with the result given by
Feldman [9]. Since the analysis process is similar to Sect. 3 and Appendix B, we
will only show the algorithms designed by this systematical framework and the
conclusions about guarantee and time complexity without proofs.

Continuous-Time Phase. For RegularizedMSM, we also define the Lyapunov
function in this phase as Eq. (1) with non-decreasing, non-negative and differ-
entiable coefficient functions a(t), b(t), c(t), d(t) € Rx¢ for ¢t € [0,1] and require
a(l) = ¢(1). Hence, its derivative is the same as Eq. (2). The analysis pro-
cess of the Lyapunov function method in continuous-time setting is consis-
tent. The key point is deriving the sufficient conditions of the stable criteria.
To do so, we still begin with find a proper upper bound for the optimal sum

(b(t)F(x*) + d(t)L(x*)) in the derivative V(x(t)). The following lemma gives a
such bound.

Lemma C.1. For any t € [0,1], there exists an upper bound
U(t) = b(t) (VE(x(1)), v(x(1))) + F(x(t))) + d(t)(£, v(x(t)))

such that U(t) > b(t)F(x*) + d(t)L(x*), where

v(x()) = arg max <b(t)VF(x(t)) +d@)L, v> .

veEPT
The following lemma shows the sufficient conditions of the stable criteria.

Lemma C.2. For Regularized MSM, the defined Lyapunov function V(x(t)) is
non-decreasing if the coefficient functions (a(t),b(t), c(t),d(t)) € C.,, for any
t € 10,1], where C.,,, includes

con

where v(x(t)) = arg maxyep, <b(t)VF(x(t)) +d(t)e, v>.
According to the constraints C.,,, we could derive the update rule of the
solution in continuous-time setting and guarantee its feasibility.

Lemma C.3. Given the Lyapunov function V(x(t)), the update rule in
continuous-time s ®)
a(t
K(t) = ——=v(x(t
(1) = SOv(x(1)
for t € [0,1]. Moreover, assuming that Ina(t) is a cumulative distribution func-
tion on [0, 1], the output solution x(1) € Pz.

136 X. Sun et al.

Algorithm 3. CONTINUOUS-TIME ALGORITHM FOR REGULARIZEDMSM

Input: multilinear extension F', regularized vector Z polytope Pz and coefficient func-
tions (a(t), b(t), c(t),d(t)) € Coon
Output: x(1)
1: Set: x(0) =0
: for t € [0,1] do
v(x(t)) = argmaxvep, (a(t) VF(x(t)) + d(t)l,v)
X(t) = S v(x(1)

— a(t)
end for

AR

Then, the continuous-time algorithm for RegularizedMSM with no limitation
on the linear term could be automatically designed and shown as Algorithm 3.
The following theorem presents its utility guarantee, which coincides with the
result given in [9]. The approximation ratio is derived with a careful choice of the
coefficient functions, i.e. a(t) = e!~1,b(t) = e!~1,¢(t) = 1,d(t) = t and therefore
the Lyapunov function is finally given by

V(x(t)) = e (F(x(t) — F(x")) + L(x(t)) — tL(x").

Theorem C.1. For RegularizedMSM with no limitation on the linear term, the
algorithm CONTINUOUS-TIME ALGORITHM FOR REGULARIZEDMSM achieves
an (1 —1/e, 1)-approxzimation.

Discrete-Time Phase. In discrete-time phase, we take advantage of the
obtained results in the last phase to develop an implemented algorithm with
yielding almost the same approximation guarantee along with polynomial-time
complexity. The counter-part of the Lyapunov function in this setting keeps
Eq. (3) unchanged, where for every i = 1,..., K, a(t;),b(t;), c(t;), d(t;) are the
point-mass sequences sampled by the coefficient functions in the last phase with
requiring a(tx) = ¢(tk). Instead of verifying the stable criteria strictly, we con-
sider the difference operation (shown as Eq. (4)) of the Lyapunov function in
discrete-time setting, although it may cause discretization errors. Fortunately,
we could get an identical approximation ratio with arbitrarily small loss as long
as the iterative accumulation error can be bounded by properly choosing the
number of rounds.

The following lemma gives the sufficient conditions of the increment per unit
of time with certain error.

Lemma C.4. For everyi=1,..., K, the increment of two successive solutions
has the following error term

a(tiy1)D

B; =
L2ty — 1)

Ix(tir1) — x(t:)%,

The Regularized Submodular Maximization via the Lyapunov Method 137

when the point-mass sequences (a(t;),b(t;),c(t;),d(t;)) € Cl,, where Cl.
includes

a(tiv1) —alt;) > b(tiv1) — b(ts)
c(tiy1) —c(t;) =0
X(tig1) — x(t;) > M

x(tiy1) — x(t;) = M

where v(x(t;)) = arg maxyep, <7a(t”1) ot G p(x(t;)) 4) =dla) 7 >

tiy1—t tiv1—t;

Our next lemma shows that the sufficient constraints in discrete-times can
be satisfied with a properly choices of the coefficient functions in continuous-
time. Moreover, the discretization errors are manageable if we set the number
of rounds reasonable.

Lemma C.5. Setting a(t;) = et=1 b(t;) = eti=L c(t;) = 1,d(t;) = t, where
t; = ﬁ fori=1,....K and K = O(%) with € > 0. Then, the sufficient

conditions Cl;;, can be satisfied and the accumulative error is

K-1

tiv1)KD
3 Bittinn 1) < I) < < o)
=0

The DISCRETE-TIME ALGORITHM FOR REGULARIZEDMSM designed by this
framework could be naturally introduced as Algorithm 4, which produces a
sequential feasible vectors x(t;) for all time stamps ¢ = 1,..., K in polynomial-
time complexity. Given the specific form of the Lyapunov function,

V(x(ti) = "7 (F(x(t:)) — F(x") + L(x(t:)) — tL(x"),
for every i = 1,..., K with K = O (”;), it yields an identical approximation
ratio with arbitrarily small loss, which coincides with the result presented in [9)].

Theorem C.2. For arbitrary ¢ > 0, the DISCRETE-TIME ALGORITHM FOR
REGULARIZEDMSM outputs x(tx) € Pz and it satisfies

e

F(x(tk)) + L(x(tx)) > (1 — 1) F(x*) +L(x*) — O(e).

Moreover, the time complezity is of O ("3)

€

138 X. Sun et al.

Algorithm 4. DISCRETE-TIME ALGORITHM FOR REGULARIZEDMSM

Input: multilinear extension F', regularized vector Z polytope Pz and coefficient func-
tions (a(ts),b(ts), c(ti), d(t:)) € Clys for every i =1,..., K
Output: x(tx)
1: Set: x(to) =0, K = % = %
2: fori=0,...,K —1do
3: i = %
v(x(t;)) = arg maxyep, <a(ti+1>*ﬂ(tz‘)VF(X(ti)) + d(fz‘+1)*d(ti)lﬁ: v>

tip1—t; tiy1—t;

4

d(tig1)—d(t;
5 x(ti) = x(t) + LS v(x(n)
6

D Missing Proofs in Section 3

Lemma 3.1. Assuming x.(t) < 6(t) for every e € E and t € [0,1], there exists
an upper bound

i (VEX®), v(x(t) © (1 —x(t))) + F(x(t))
U(t) = b(t) - T
. v—1 .
+d(t) - W@V(X(t)) o (1-x(1)))
such that U(t) > b(t)F(x*) + d(t)L(x*), where y = “52"0 apg

—

x*)

b(t) v-1 SN
t)) = F(x(t ————d(t)¢ 1 —x(t .
v(x(1) afg‘fféfg;<1_9(t)v (x(0) + gy =AY © (1 = x(8)
Proof. We first consider the F(x*) term in the optimal sum b(t)F(x*) +
d(t)L(x*). Since the non-negative multilinear extension F' is a kind of DR-
submodular function and x* € {0,1}", we build the following connection for
F(x*) in the optimal sum by Lemma A.2

o Fx@)vx*) Fx((t)Vvx*)
R T [T

Due to Lemma A.1, we can further derive the inequality by taking x = x(t)
and y = x(¢) V x*,

(VF(x(t)),x(t) Vx* —x(t)) + F(x(t))

Fi) < =000
_ (VE(x(1),x* © (1 —x(1))) + F(x(t))
1—0(t) ’

where the equality holds since x Vy —x =y ® (1 — x) for any x € [0,1]" and
y € {0,1}".

The Regularized Submodular Maximization via the Lyapunov Method 139

With oracle assumptions of F', it is obvious that the only uncertainty is
x*. Since x* € Pz and Pz is solvable, we could bound the right-side above by
maximizing the linear programming in polynomial time.

For the term L(x*), the situation is more complicated since there is no non-
<Zt7X*>
—(l-x*)’
the relative dominance of the positive and negative parts of L(x*). It is trivial
that (/,x*) = (1 — %) A0y, x*) = (1 =) - ({_,x*). Now, we present the upper

bound for L(x*) in a similar manner. Due to the definition of +, we have

L) = y—1 (1—9(:5)4r 1)(EX*>

negativity. To do so, we define a parameter v = which characterizes

y1—-0@)-1\1-1/y 1-7
-1 R I

= = (0O x) + (- x)
v—1 o I

< S a1 (T © 0 =x0) + ()

’7_1 7 oox
< W@»X © (1 =x(1))),

where the first inequality holds due to the assumption and the second is guar-
anteed by /_ < 0.
Combining with the coefficients, we obtain an upper bound

(VEx(), v(x() © (1 = x(1))) + F(x(1))

U(t) = b(t)

1-0(t)
. ¥ — 1 -
+d(t) - W%V(X(ﬂ) © (1 =x(1))),
where v(x(t)) = arg maxyep, <1E(79t()t)VF(x(t)) + %Zv ©(1- x(t))>

g

Lemma 3.2. For any t € [0,1], the defined Lyapunov function V (x(t)) is non-
decreasing if the coefficient functions (a(t),b(t),c(t),d(t)) € Ceon where Ceon
includes

1>0(t) = [x(t)]c = 0

at) — % >0
&t) =0
a(t)x(t) — 117(1‘;)(0 (v(x(t) © (1 -x(t))=0
. d(t)(y— 1) _
c(t)x(t) — 0= 00) —1 (v(x(t) © (1 —=x(t))) =0,

where 6(t) is the upper bound of x.(t) for every e € E.

140 X. Sun et al.

Proof. By replacing the optimal sum in the derivative of the defined Lyapunov

function with the upper bound U(t) given by Lemma 3.1, we have

V(x(t) = a(t)F(x(t))+é(t) L(x(t) +(a(t) VF(x(t) +e(t) VL(x(t)), x(t) = U ().
Rearranging the inequality, we get

7 (x(1)) > (aa) - f(?(t)> F(x(t)) + &(t)L(x(1)

- <VF<x<t>>,a<t>>'<<t> - 0) o 1 - x<t>>>>

n <VL<x<t>>, c(tx(0) ~ 1 (v(0) © (1 - x<t>>>> .

Since F' is non-negative and non-monotone and the range of L is real domain,
the sufficient conditions that makes V' (x(¢)) > 0 can be naturally listed below

1>6(t) = [[x(t)][c = 0

a(t)—L’;)zo

iW0-1

O

Lemma 3.3. Given the Lyapunov function V(x(t)), the wupdate rule in
continuous-time s
a(t)

x(t) =) (v(x(#)) © (1 = x(1)))

fort € [0,1]. Moreover, assuming that Ina(t) is a cumulative distribution func-

tion on [0, 1], the output solution x(1) € Pz.
Proof. Due to Lemma 3.2, we get

)
x(t) = alh) (v(x(t)) © (1 —x(t)))-

Therefore, .
x<1):/0 v(x(£)) © (1 — x(£))d(In a(t)).

Since v(x(t)) € Pr for any ¢t € [0,1] and Pz is down-monotone, we have
v(x(t)) © (1 —x(¢)) € Pr.

By the assumption that In a(t) is a cumulative distribution function on [0, 1],
the output x(1) is the convex combination of feasible solutions. O

The Regularized Submodular Maximization via the Lyapunov Method 141

Lemma 3.4. For the coordinate-wise upper bound 0(t) of the solution x(t) with

t €[0,1], we have 8(t) <1 — %'

Proof. Due to the update rule, we have

o alt) a(t)
x(t) = 7 (Vix®) © (0 =x(#) = Zar(= x(®),
where the inequality is true since v(x(t)) < 1 and a(t),a(t) > 0.

An equivalent expression could be obtained for the above inequality by apply-

ing the Gronwall’s inequality [12], i.e., for any i = 1,...,n,
1—$Z(t) >6_f(; ZE:;dS :e—ln Z((é)) = @
- a(t)
Therefore, we have 0(t) <1 — % O

Theorem 3.1. For Regularized NSM with no limitation on the linear term, the
algorithm CONTINUOUS-TIME ALGORITHM FOR REGULARIZEDNSM achieves
an (1/e, %)—appmximation with feasible range v € [0,1) U (1%1/?, +00)

and v € (1, 1%1/6) for £(x*) > 0 and £(x*) < 0 respectively, where v = %,

Proof. Since obtaining a better performance for the first term in the objective
of RegularizedNSM is the priority, the approximation ratio of Algorithm 1 could
be yielded by solving the maximization problem below

where Ceop is given by Lemma 3.2.
A feasible solution for the above ODE is

| _ _ _ v/et +t
a(t) = e 7 b(t) =t/e,c(t) = 1,d(t) = — po
Thus, the Lyapunov function is
V(x(t) = e F(x(t)) — EF(X*> + L(x(t)) + WQQJ; tL(x*).

Guaranteed by Lemma 3.2, the stable criteria of V(x(t)) yields the following
result for the output x(1) of Algorithm 1

FOx() + Lx0) 2 &)+ (T2 o)

142

X. Sun et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Bansal, N.; Gupta, A.: Potential-function proofs for gradient methods. Theory

Comput. 15(1), 1-32 (2019)

. Bian, Y., Buhmann, J.M., Krause, A.: Continuous submodular function maximiza-

tion. Preprint arXiv:2006.13474 (2020)

Bodek, K., Feldman, M.: Maximizing sums of non-monotone submodular and lin-
ear functions: Understanding the unconstrained case. Preprint arXiv:2204.03412.
(2022)

. Conforti, M., Cornuejols, G.: Submodular set functions, matroids and the greedy

algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds
theorem. Discret. Appl. Math. 7(3), 251-274 (1984)

Diakonikolas, J., Orecchia, L.: The approximate duality gap technique: a unified
theory of first-order methods. STAM J. Optim. 29(1), 660-689 (2019)

Du, D., Liu, Z., Wu, C., Xu, D., Zhou, Y.: An improved approximation algo-
rithm for maximizing a DR-submodular function over a convex set. Preprint

arXiv:2203.14740 (2022)

. Du, D.: Lyapunov function approach for approximation algorithm design and anal-

ysis: with applications in submodular maximization. Preprint arXiv:2205.12442
(2022)

Du, D.: Submodularity and lattice: theory, algorithms and applications. Unpub-
lished book (in preparation) (2022)

Feldman, M.: Guess free maximization of submodular and linear sums. Algorith-
mica 83(3), 853-878 (2021)

Feldman, M.: Correction to: guess free maximization of submodular and linear
sums. Algorithmica 84(10), 3101-3102 (2022)

Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for
submodular maximization. In: Proceedings of the 52nd Annual Symposium on
Foundations of Computer Science, pp. 570-579 (2011)

Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions
of a system of differential equations. Ann. Math. 20, 292-296 (1919). https://doi.
org/10.2307/1967124

Hassani, H., Soltanolkotabi, M., Karbasi, A.: Gradient methods for submodular
maximization. In: Proceedings of the 30th International Conference on Advances
in Neural Information Processing Systems, pp. 5841-5851 (2017)

Krichene K, Bayen A, Bartlett PL. Accelerated mirror descent in continuous and
discrete time. In Proceedings of the 28th International Conference on Advances in
Neural Information Processing Systems, pp. 2845-2853 (2015)

Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control
55(3), 531-534 (1992)

Lu, C., Yang, W., Gao, S.: Regularized non-monotone submodular maximization.
Preprint arXiv:2103.10008

Nemirovsky, A., Yudin, D.B.: Problem Complexity and Method Efficiency in Opti-
mization. John Wiley, New York (1983)

Qi, B.: On maximizing sums of non-monotone submodular and linear functions.
Preprint arXiv:2205.15874 (2022)

Sviridenko, M., Vondrak, J., Ward, J.: Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4),
1197-1218 (2017)

http://arxiv.org/abs/2006.13474
http://arxiv.org/abs/2204.03412
http://arxiv.org/abs/2203.14740
http://arxiv.org/abs/2205.12442
https://doi.org/10.2307/1967124
https://doi.org/10.2307/1967124
http://arxiv.org/abs/2103.10008
http://arxiv.org/abs/2205.15874

20.

21.

22.

The Regularized Submodular Maximization via the Lyapunov Method 143

Su, W., Boyd, S., Candes, E.J.: A differential equation for modeling Nesterov’s
accelerated gradient method: theory and insights. J. Mach. Learn. Res. 17, 1-43
(2016)

Wibisono, A., Wilson, A.C., Jordan, M.I.: A variational perspective on accelerated
methods in optimization. Proc. Natl. Acad. Sci. 113(47), E7351-E7358 (2016)
Wilson, A.C., Recht, B., Jordan, M.I.: A Lyapunov analysis of momentum methods
in optimization. J. Mach. Learn. Res. 22, 1-34 (2021)

l‘)

Check for
updates

Topological Network-Control Games

Zihui Liang®), Bakh Khoussainov, and Haidong Yang

University of Electronic Science and Technology of China, Chengdu, China
zihuiliang.tcs@gmail.com, bmkQuestc.edu.cn

Abstract. The paper introduces new combinatorial games, called topo-
logical network-control games, played on graphs. These games model the
influence of competing two parties aiming to control a given network. In
a such game given the network, the players move alternatively. At each
turn, a player selects an unclaimed vertex and its unclaimed neighbours
within distance t. The players obey the topological condition that all
claimed vertices stay connected. The goal is to decide which player claims
the majority of the vertices at the end of the play. We study greedy, sym-
metric and optimal strategies. We solve the topological network-control
games on various classes of graphs. This progresses our understanding of
combinatorial games played on graphs. We prove that finding an optimal
winning strategy is a PSPACE-complete problem.

Keywords: combinatorial games - strategies - algorithms - PSPACE

1 Introduction, Preliminary Definitions and Results

We introduce new combinatorial games played on finite graphs. These games
are called topological network-control games. These games model the influence of
competing two parties aiming to control the network by preserving connectedness
property. Below we present basic definitions, preliminary concepts, related work
and our contribution.

1.1 Statement of the Problem

Let G = (V, E) be a finite graph. We assume that the graphs are simple, that
is, the graphs are undirected, have no loops and multiple edges. For a vertex
z €V in G = (V,E), and an integer ¢t > 0, the t-neighbourhood of x, denoted by
N;i(z), is the set of all vertices at distance at most ¢ from z. So, Ny(z) = = and
Ni(z) C NMg1(z) for all ¢ > 0. Vertices in M;(z) are called ¢-neighbours of . For
a set of vertices X C V in G = (V, E), and an integer ¢ > 0, the t-neighbourhood
of X is denoted by Ni(X) = UzexNi(z). We fix ¢t that will be our parameter.
Now we define topological network-control game played on G = (V, E'). There
are two players: Player 1 and Player 2. The opponent of Player ¢, where € € {0, 1},

B. Khoussainov—A cknowledges the National Science Foundation of China under Grant
No. 62172077.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 144-156, 2024.
https://doi.org/10.1007/978-3-031-49193-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_11

Topological Network-Control Games 145

is denoted by Player €. Each play consists of rounds. At odd rounds Player 1
moves. At even rounds Player 2 moves. Player 1 starts the first round. At this
round the player selects a vertex = and claims (all vertices in) N;(x). Let Xo;_1
be the set of all vertices claimed by the players by the end of round 2i —1, ¢ > 0.
At round 2i, where i > 0, Player 2 selects a vertex from Nji1(Xo;—1)/X2i—1,
and then claims the selected vertex and its unclaimed t-neighbour vertices. Let
Xo; be the set of all vertices claimed by the players by the end of round 2i, 7 > 0.
At round 2i + 1, where i > 0, Player 1 selects a vertex in N;11(Xsg;)/X2;, and
then claims the selected vertex and its unclaimed ¢-neighbour vertices.

Let t be the round at which no vertices can be claimed. If X; = V, then
the play stops. If V' # X;, then the player whose turn it is at round ¢, selects
a new vertex (from a component with unclaimed vertices) and claims its ¢-
neighbourhood, and the play continues on just as above.

To define a winner, we need a few notations. By Cj 2,41 we denote the set
of vertices claimed by Player 1 at the end of round 2i + 1, ¢ > 0. Similarly,
C,2i+2 denotes the set of vertices claimed by Player 2 at the end of round
2 + 2. If Sy;4+1 is the set of vertices claimed by Player 1 at round 2i + 1, then
C12i+1 = C1,2i—1 U S2441. Similarly, C 2542 = C1,2; U S2i42.

Once the play stops, let C; and C5 be all vertices claimed by Player 1 and
Player 2, respectively. The sets C; and Cy partition G.

Definition 1. We say that Player e wins the play if |C.| > |Ce|. If |Ce| = |Cl,
then we say that the play is a draw.

If G is connected, then the set of claimed vertices is connected at any round.
Connectedness is a topological property, and hence we call our games topologi-
cal network-control game. We assume the reader is familiar with the notion of
strategy. A player is the winner of the topological network-control game played
on G if the player has a winning strategy. Our goal is twofold. First, we want
to solve games by designing algorithms that given a game decide the winner.
Second, we want to extract winning strategies for the winners. Note that when
t = 0, Player 1 wins iff |V] is odd. So, we always assume that ¢ > 0.

1.2 Preliminaries and Basic Results

Assume that the players play the game on G. By (S, v) we denote a move where
Player € selects vertex v and claims the set of vertices S on G. Thus, a play is
a sequence (S1,v1), ..., (S;,v;) of selected nodes and claimed vertices at each
round. The configuration determined by this play is the tuple (G;, C;), where

1. The set G; is the sub-graph of G that consists of all unclaimed vertices at the
end of the play, and thus G; = V' \ (S;US2U...S;)

2. The set C; is a set of vertices which players can select in G;. Thus, C; =
M+1(Sl USQU.-.Si)\(31USQU...Si).

Greedy and monotonic strategies. During a game, the players might follow
a greedy strategy.

146 Z. Liang et al.

Definition 2. A greedy strategy is one that, at any round, selects a vertex
with the mazimal number of unclaimed t-neighbours.

Greedy strategies could be losing strategies.

Example 1. Consider the graph in Fig 1. Assume ¢t = 1. Player 1’s first greedy
move is the vertex of degree 5. Player 2 responds by selecting the vertex of
degree 4. Then Player 1 greedily selects the vertex of degree 3. Player 2 selects
the vertex of degree 4 and wins.

Fig. 1. Greedy strategy does not always help

However, greedy strategies might be useful if they satisfy monotonicity prop-
erty. Let (G, C) be a configuration of a play. By maz-deg; (G, C) we denote the
maximal cardinality among cardinalities of the sets N;(v), where v € C. This
corresponds to a greedy move in the configuration (G, C).

Definition 3. A strategy is monotonic if for any play (S1,v1), ..., (Si,vi), ...
consistent with the strategy, max-deg:(G;, C;) > mazx-degi(Git1,Cit1), where
(G;, C;) is the configuration determined by the play (S1,v1), (S2,v2),. .., (Si, v;).

Ezample 2. If G = C then Player 1 has a monotonic greedy strategy on (G, C).
Moreover, Player 2 can guarantee to lose at most maz-deg:(G, C') vertices.

Lemma 1. Assume that Player 1 has a monotonic greedy strategy on G. Then
Player 1 can guarantee to not lose the game.

Proof. Fix a monotonic greedy strategy for Player 1. Let (S1,v1), ..., (Sp,vn) be
a play consistent with the strategy and (Gy, Cp), . . ., (Gn, Cy) be the correspond-
ing configurations. For all i = 1,...,[%], [S2i—1| = max-deg:(Gai—2,Cai—2) >
maz—degt(Ggi_l, Cgi_l) 2 |Sgl‘ Therefore, ZZ[:%J |S2i_1‘ Z ZZI':%lJ |S21| and
Player 1 doesn’t lose.

We apply this lemma to a few examples of graphs. For this, we recall several
specific classes of graphs. These graphs will further be studied in this paper.

The path graph of size n, Path,, has vertices {1,...,n} with the edge rela-
tion between the consecutive integers. The cycle graph of size n > 3, Cycle,,
is obtained from Path,, by adding the edge between 1 and n. A caterpillar is
a tree in which all non-leaf vertices are on a path and leaves are at distance 1
from the path. We call the path the central path. Let G be a caterpillar with

Topological Network-Control Games 147

central path Path,,. A caterpillar is degree-homogeneous if degrees of all vertices
along the central path are the same. By Caterpillar, , we denote the degree-
homogeneous caterpillar whose central path is Path,, in which every vertex has
degree k. Not hard to see that Player 1 has a monotonic greedy strategy on
Path,,, Cycle,, and Caterpillary, ,,,. Therefore, we have the following corollary.

Corollary 1. Player 1 never loses Path,,, Cycle,, and Caterpillar,, p,.

Symmetric strategies. Two configurations (G1,C1) and (Ga, Cs) are isomor-
phic if there exists an isomorphism f : G; — Go from G; = (V1,FE) to
Go = (Va, Es) such that for all z in Gy we have z € Cy iff f(x) € Cs.

Definition 4. Let f : G1 — G4 be an isomorphism between two disjoint config-
urations (G1,C1) and (Ga,C3). Let (G,C) = (G1,C1)U (G2, C3) be the union of
(Gl,Cl) and (GQ,CQ).' V=V uVe, E=FE1UEFE; and C = C; UC5. The sym-
metric strategy for Player € is this: if Player € selects x from G1 then Player €
selects f(z); if Player € selects x from Gy then Player € selects f~1(x).

Lemma 2. If (G1,C4) and (Ge,Cs) are isomorphic, then Player 2 guarantees
a draw in the configuration (G,C) = (G1,C1) U (G, Ca).

Optimal strategies. Here is a definition of optimal strategies.
Definition 5. Let w > 0 be an integer. A strategy for Player € is w-optimal if

1. The strategy can guarantee that Player ¢ wins any play with at least w more
vertices independent on the opponent’s strategies.

2. The opponent, Player €, has a strategy that guarantees that no more than w
vertices are lost independent on strategies of Player €.

Let (G,C) be a configuration. We define the integer Opt(G,C) such that
player e faced with the configuration can guarantee a win with at least Opt(G, C)
vertices starting at (G, C):

1. If G = 0 then Opt(G,C) = 0.

2. If C = (, Player € can select any vertex v € G and make corresponding moves
(S,v). Let Sy, ..., Sy, be all possible moves of player € at (G, C). Let (G, C)
be updated configuration after moving S; and n(S;) be the cardinality of \S;,
i=1,...,m. Set Opt(G,C) = maxi<i<m{n(S;) — Opt(Gi, C;)}.

Lemma 3. Player € has an Opt(G, C)-optimal strategy at (G, C'). Moreover, the
computation of Opt(G,C)-optimal strategy is in PSPACE.

Proof. The case G = () is clear. Assume that for all (G',C") with 0 < n(G’) <
k the lemma is true. Let (G,C) be a configuration with n(G) = k + 1.
Let Sy,...,Sm, be possible moves at (G,C) . By induction, Player € has an
Opt(G;, C;)-optimal strategy on (G;, C;). So Player € guarantees to lose no
more than maxj<i<m{n(S;) — Opt(G;,C;)} vertices, and Player ¢ guarantees
to win at least maxi<;<m{n(S;) — Opt(G;,C;)} vertices. This implies that
Opt(G, C) = maxi<i<m{n(S;) — Opt(G;, C;)}. Showing that Opt(G, C)-optimal
strategy can be computed in PSPACE is standard.

148 Z. Liang et al.

1.3 Related Work and Our Contribution

This work belongs to the area of combinatorial games. Typically these games are
of finite duration played on spaces of finite configurations. Combinatorial games
are usually classified as scoring games and non-scoring games. In scoring games,
a player wants to collect a certain amount of points to win the game. Examples
of scoring games are graph-grabbing game [13,23], median game [12], orthogonal
colouring game [3], Vertex-Capture Game [8] and the largest connected subgraph
game [6,7]. In non-scoring games, the players aim to put their opponent into a
deadlock (e.g., the opponent makes the last move). Examples of non-scoring
games are GRIM [1], Nim on graphs [11,17], Kayles on graphs [9,10,18-20,24],
game 0.33 [4] Weighted Arc and generalized Kayles [15]. Our games are obviously
scoring games as the winner is the one who claims the most number of vertices
of the graph. However, one unexpected side of our games is that they exhibit
a behaviour of non-scoring games when the game graph G consists of more
than one component. Indeed, once players start playing in a component C of
G, the players need to claim all the vertices of C' before they move to the other
components. Therefore, if a player makes the last move on C, then the opponent
will start a new component and might gain an advantage. This implies that the
players need to take into account the parity of the last move in C'. So, when the
players play the games on graphs that consists of more than one component, the
parties of the last moves on the components matter. This is a typical feature of
non-scoring games. Here now we briefly list the main contributions of this work:

1. We introduce topological network-control games. These games model the
influence of competing parties to control a given network. The restraint is
that the players need to ensure connectivity of the set of claimed vertices.

2. In combinatorial game theory, understanding games in algebraically simple
graphs (such as paths, cycles, trees, etc.) usually constitutes bottleneck prob-
lems [2,5,14,16]. That is why we start by studying our games in these classes
of graphs. We succeed to characterize some classes of graphs where Player
1 wins. Our proofs are combinatorial and are based on careful analysis of
configuration spaces of games. These are presented in Theorems 1, 2, and 3
of Sect. 2.

3. As we mentioned above, one novel side of our games is that they exhibit
characteristics of both scoring games and non-scoring games. We study this
interplay between scoring condition (the number of vertices claimed) and
the parity condition (the player moving the last loses) on graphs through
two recursively defined functions Fi,e, and S,qq. We then fully describe a
non-trivial behaviour of these functions on path graphs. This is presented in
Theorem 4 of Sect. 3.

4. We fully characterize the graphs Pathy, U Pathy, (disjoint union of two path
graphs), where Player 1 wins. Our charcaterization makes use of a computer
program that lists all graphs Pathy, U Pathy,, where ¢; < 100 and ¢ < 100,
won by Player 1. See Theorem 5 in Sect. 4. The proof takes into account the
interplay between the parity and the number claimed vertices.

Topological Network-Control Games 149

5. We prove that finding optimal strategies is a PSPACE-complete problem.
There are two key difficulties in the proof. The first is that the cardinalities
of t-neighbourhoods of unclaimed vertices depend on configurations. In com-
parison, this does not happen in the Competetive Facility Allocation problem,
where coding of a quantified Boolean Formula becomes easy [21]. The second
is the connectivity condition put on the set of claimed vertices. These two
conditions make it challenging to code PSPACE-complete problems into our
games.

We finally mention the recent work by Z. Liang, B. Khoussainov, and M.
Xiao on network-control games played on graphs [22]. The work of this paper is
anatural and independent follow-up of the control-network games. As opposed to
topological network-control games, network-control games lack the connectivity
condition of the set of claimed vertices. In particular, in network-control games,
players can select and claim vertices with no regards (in terms of connectivity)
to already claimed vertices. In this sense, network-control games from [22] do not
exhibit characteristics of non-scoring games as we described above. Hence, the
proof methods and ideas in this work are, in many ways, orthogonal to those in
the study of network-control games. For instance, greedy strategies in network-
control games suffice to prove that Player 1 never loses any network-control
game. In contrast, we already showed that the greedy strategies in topological
network-control games can be losing for Player 1. Furthermore, we do not know
if there is graph G where Player 1 loses the topological network-control game.

2 Games on Paths, Cycles, and Caterpillars

The strategies defined above can be used to analyze the topological network-
control games on paths, cycles, and caterpillars. Note that by Corollary 1 Player
1 never loses these graphs.

Theorem 1. Player 1 wins the topological network-control games on paths.

Proof. Player 1 wins Path,, with n < 2t + 1 by claiming all vertices in the first
move. Assume n > 2t + 1. If n = 2k 4+ 1 then Player 1 has a monotonic greedy
strategy on Path, and by Lemma 1, Player 1 wins Path,. Assume n = 2k.
Player 1 selects the middle vertex k and claims its ¢-neighbours N;(k). Both
players make greedy moves. In the remaining configuration, Player 2 claims one
more vertex at most. Therefore, Player 1 wins 2¢ vertices. If Player 2 makes
non-greedy moves more times, Player 2 will lose more vertices.

Theorem 2. Player 1 wins the game on Cycle, iff n #0 mod (4t + 2).

Proof. 1t is clear that Player 1 wins Cycle,, if n < 4t + 2. Assume n > 4t + 2.
If n =0 mod (4t + 2), then both of the players must follow greedy strategies.
Otherwise, the player making a non-greedy move loses. Therefore, the last move
will be made by Player 2. This guarantees a draw for Player 2 due to the condition

150 Z. Liang et al.

on n. Assume n # 0 mod (4t + 2). Player 1 selects p, say p = 1, and claimed its
t-neighbours NV (p). Assume both players must follow greedy strategies. Because
n # 0 mod (4t + 2), Player 1 can claim more vertices than Player 2 in last two
rounds. If Player 2 makes non-greedy moves until Player 1 makes more moves,
Player 1 will claim more vertices than before.

The proof of the next theorem is more involved but uses the same ideas as
the proofs of the theorems above.

Theorem 3. Player 1 wins the games on Caterpillar,, j.

3 Parity Vs the Number of Claimed Vertices

Suppose that the game graph G consists of more than one component, say C
and Cy. Even if Player 1 wins topological network-control game on each of these
components C; and Cbs, this does not guarantee that Player 1 wins G. The
reason is that Player 1 might make the last move playing on each of these
components. Therefore, once all vertices in one of the components are claimed,
Player 2 continues the game by starting the remaining component. Thus, each
player has two, somewhat opposing, aims. On the one hand, the player would like
to win as many nodes as possible in a given component. On the other hand, the
player would like the opponent to make the last move in the current component
to take the advantage of the remaining component.

A natural question is thus the following. Assume that the players play the
game on connected graph G. How many nodes should a player give up to ensure
that the opponent makes the last move? To answer this question, below we
provide a general framework, and apply it to the case when the underlying
graphs are paths graphs. Even the case of paths turns out to involve non-trivial
combinatorial and inductive arguments.

Let (G,C) be a configuration. Let us define two functions Fey,en(G,S) and
Sodd(G, C). The function Feyen (G, S) computes the maximal number of vertices
won by the first player who starts the game at (G,.S) under the assumption
that the player can force the opponent to make the last move in the game.
Similarly, Seyen(G,S) computes the maximal number of vertices won by the
second player in the game (G,C) under the assumption that the player can
force the opponent to make the last move in the game. Note that the value
Fepen(G,C) and S,44(G,C) can be undefined if the player can not force the
opponent to make the last move. We defined these functions through mutual
recursion as follows:

— Set Fepen(0,0) =0 and Spqq(0, 0) = —oc.
— Let Sy, ..., Sy, be all possible moves of a player at (G, C). Let (G;, C;) be the
configuration after move S;, ¢ = 1,...,m. Set

Fepen (G, C) = max{n(S;) + Spqa(Gi,S;) | i =1,...,m}, and
Sodd(G,C) = min{—n(S;) + Feyen(G:,S;) | i =1,...,m}

Topological Network-Control Games 151

As an example, on graphs Pathisz and Pathig, one can compute that we have
Fopen(Pathis,0) = —1 and Fig(Pathyg,) = —2, respectively. Also, from the
definitions of Fgye, and S,qq, we have the following corollary.

Corollary 2. Fyen(G,C) # —oc0 if and only if Seqa(G,C) = —c0.

It turns out guaranteeing that the opponent makes the last move can be
costly even in such graphs as Path,,. The proof of the next theorem is based on
a careful analysis of F,,ep, and S,qq functions.

Theorem 4. Consider a game played on Path, with t = 1. If n < 3 then
Fopen(Path,) = —oo and Syqq(Pathy,) = —n. Otherwise:

—1—L%J if n=1 mod 5

n., .
Soda(Pathy,) = ~lzgl#f n=2 mod5andn#T7

-3if n=7
—o0 otherwise

—L%J““l if n=0 modb5n#0andn+#5

5] +1if n=3 mod5

n .
Feven(Pathn) = _I_EJ + 2 Zf n=4 mod?5H

0 n=0
lif n=5

—oo otherwise

4 Topological Network-Control Games on Path,, UPath,,

From the previous section, we see that controlling the parity is a challenging
task even on path graphs. Our goal is to settle the topological network-control
games problem for the class of graphs of the type Pathy, U Pathy,. The previous
section shows that the players can not rely solely on only greedy strategies or
parity control strategies in Pathy, U Pathy,. The players need to adapt different
strategies, e.g., mixing greedy and parity strategies. Note that Player 1 never
loses the game on Path,, U Pathy,. Thus, we aim to characterize those graphs
Pathy, U Pathy, where Player 1 guarantees a win. For this section we assume
that t = 1.

Our next Lemma 4 is proved through a computer-assisted technique. The
code for the lemma computes the function Opt(Pathg, U Pathy,,0)*!

! The code is at https://github.com/ZihuiLiang/Topological-Network-Control-
Game..

https://github.com/ZihuiLiang/Topological-Network-Control-Game
https://github.com/ZihuiLiang/Topological-Network-Control-Game

152 Z. Liang et al.

Lemma 4. Player 2 can guarantee a draw in the game Pathe, U Pathy,, where
1<y <4y <100, if and only if {€1,02} € {{1,1}, {2,2}, {7,7}, {7,62 + 5},
{2,6z}, {6z,6y}, {62+ 5,6y+5}}i<sy-

This lemma can be used to fully characterize those games on Path,, U Pathy,
where Player 2 guarantees a draw. We prove the theorem below based on the
analysis of several conditions on ¢; and f5. We showcase our proofs on several
cases.

Theorem 5. Player 2 guarantees a draw on Pathg, U Pathy, iff {¢1,42} belongs
to {{1,1},{2,2} ,{7,7} ,{7,62 +5} ,{2,62} ,{6x,6y} , {6z + 5,6y + 5} }1<ay-

Proof. Our proof is based on the analysis of 9 cases (and their subcases). By the
lemma above we can always assume that either ¢; > 100 or ¢ > 100.

Case 1: The parities of {1 and ¢5 are different. Without loss of generality, assume
{1 is odd, ¢ is even, with ¢; > 3 and ¢ > 2. Then Player 1 wins as follows. The
player selects the middle node in the path of odd length (greater than 1) and
then uses a greedy strategy. Player 1 wins at least 3 vertices. Even if Player 2
starts the line of even length, the play can win at most 2 vertices. If the length
of the odd path graph is 1, then Player starts with the even length path graph
and wins two nodes guaranteeing the overall win.

Case 2: {; =4 (mod 6). Player 1 uses a greedy strategy on Path,, starting
from one end of Pathy,. If Player 2 uses a greedy strategy, then the last move
on Pathy, is made by Player 2. Hence, in this case Player 1 wins the game. In
order to ensure that Player 1 makes the last move in Pathy,, Player 2 must give
up the greedy strategy at least twice. Thus, either Player 1 starts the second
line Pathy, or wins at least 3 vertices on Pathy,. In either case, Player 1 wins
the game.

Case 3: ;1 =3 (mod 6). Player 1 starts using the greedy strategy on Pathy,
from one end of the graph. If Player 2 also plays a greedy strategy, then in the
last move on Pathy,, Player 1 will claim 2 vertices instead of greedy 3. In this
way, Player 2 makes the last move in Pathy,. Hence, Player 1 moves to the next
line and wins the game. This implies that Player 2 must abandon its greedy
strategy on Pathy, at least four times. If this happens, Player 1 will have won
at least 4 vertices when the play moves to Pathy,. So Player 1 wins.

Case 4: /1 =2 (mod 6) with ¢; > 2. Player 1 makes a move from one side of
Pathy, . In the first round, Player 1 only claims 2 nodes. After that Player 1 will
always use a greedy strategy. If Player 2 uses a greedy strategy, then in the last
move on Pathg, Player 1 claims two vertices (instead of 3). In this case, Player
2 makes the last move in Pathy,. Hence, Player 1 starts Pathy, (with a draw
on Pathg,) and wins the game. Therefore, Player 2 must abandon its greedy
strategy while playing on Path,, at least 4 times. In this game Player 2 moves
to Pathy,, where Player 1 won at least 3 vertices in Pathy,. So, Player 1 wins.

Case 5. {; = 1 (mod 6) with ¢; > 7. Player 1 makes a move from the
middle of Pathy,, dividing the Path,, into two parts. The length of two parts

Topological Network-Control Games 153

are 6x1 + 3,6x2 + 1 respectively. In previous rounds, Player 1 gives up once
in first part. After that Player 1 will always use a greedy strategy. If Player 2
uses a greedy strategy, Player 2 makes last move in Path,,. Hence, Player 1
starts Pathy, (loses 1 node on Path,, and wins the game). Therefore Player 2
must abandon its greedy strategy while playing on Path,, at least 3 times. In
this game the game moves to Pathy,, where Player 1 won at least 5 vertices in
Pathy,. So, Player 1 wins.

Case 6. /1 =5 and fo =5 (mod 5). In this case, we show that Player 1 wins
on Pathy, UPathy,. Player 1 starts by selecting a vertex in Pathy, so that Player
1 wins 1 vertex and Player 2 makes the last move in Pathy, . Since Player 1 wins
on Pathy,, Player 1 wins the game.

Case 7. ¢ =5 (mod 6) and 5 =5 (mod 6) with ¢; > 7and 5 > 7. In
this case we show that Player 2 doesn’t lose. W.L.O.G, assume Player 1 starts
by selecting a vertex in Pathy,. Then there are 4 subcases.

Subcase 1: The unclaimed vertices of Pathy, consist of two parts L, R where
|L| = 61 and |R| = 6x2+2. Consider the play in the unclaimed parts of Pathy, .
If Player 1 applies a greedy strategy all the time, then Player 2 also follows a
greedy strategy until the number of unclaimed vertices of L is less than 10.
By abandoning greedy strategy for one time in L, Player 2 guarantees that the
opponent wins three vertices and makes the last move in Pathy,. Since Player
2 wins at least 3 vertices on Pathy,, Player 2 doesn’t lose the game. Therefore
Player 1 needs to abandon its greedy strategy at least 6 times in Path,, so
that Player 2 makes the last move in Pathy,. Correspondingly, Player 2 wins 3
vertices in Pathy,. Since Player 1 wins at most 3 vertices on Pathy,, Player 2
doesn’t lose the game.

Subcase 2: The unclaimed vertices of Pathy, consist of two parts L, R where
|L| = 6x1 + 3 and |R| = 6x2 + 5. If Player 1 applies a greedy strategy all the
time, then Player 2 also follows a greedy strategy until the number of unclaimed
vertices of L is less than 7. By abandoning greedy strategy for one time, Player
2 guarantees that the opponent wins three vertices and makes the last move in
Pathy, . Since Player 2 wins at least 3 vertices in Pathy,, Player 2 doesn’t lose
the game. Therefore Player 1 needs to abandon at least 6 times in Pathy, so
that Player 2 makes the last move in Pathy,. Correspondingly, Player 2 wins 3
vertices in Pathy,. Since Player 1 wins at most 3 vertices on Pathy,, Player 2
doesn’t lose the game.

Subcase 3: The unclaimed vertices of Path,, consist of two parts L, R where
|L| = 6x1 + 1 and |R| = 6z + 1. If both players apply greedy strategy, then
Player 1 wins 3 vertices and makes the last move in. Since Player 2 wins at least
3 vertices in Pathy,, Player 2 doesn’t lose the game. Therefore Player 1 needs
to abandon at least 6 times in Pathy, so that Player 2 makes the last move in
Pathy, . Correspondingly, Player 2 wins 3 vertices in Pathy, . Since Player 1 wins
at most 3 vertices on Pathy,, Player 2 doesn’t lose the game.

Subcase 4: The unclaimed vertices of Pathy, consist of two parts L, R where
|L| = 621 4+ 4 and |R| = 6x2 + 4. If both players apply greedy strategy, then
Player 1 wins 3 vertices and makes the last move in. Since Player 2 wins at least

154 Z. Liang et al.

3 vertices in Pathy,, Player 2 doesn’t lose the game. Therefore Player 1 needs
to abandon at least 6 times in Pathy, so that Player 2 makes the last move in
Pathy, . Correspondingly, Player 2 wins 3 vertices in Pathy, . Since Player 1 wins
at most 3 vertices on Pathy,, Player 2 doesn’t lose the game.

Case 8: /; =0 (mod 6)and ¢o = 0 (mod 6). In this case, we show that
Player 2 doesn’t lose. W.L.O.G, assume Player 1 starts by selecting a vertex in
Pathy,. Then there are 2 subcases.

Subcase 1: The unclaimed vertices of Pathy, consist of two parts L, R where
|L| = 621 and |R| = 6x2 + 3. Assume both players apply greedy strategy and
Player 2 abandons its greedy strategy one time in Pathy,. Then Player 1 wins
2 vertices and makes the last move in Pathy,. Since Player 2 wins at least 2
vertices on Pathy,, Player 2 doesn’t lose the game. Therefore Player 1 needs to
abandon its greedy strategy at least two times in Pathy, so that Player 2 makes
the last move in Pathy,. Correspondingly, Player 2 wins 2 vertices in Pathy, .
Since Player 1 wins at most 2 vertices on Pathy,, Player 2 doesn’t lose the game.

Subcase 2: The unclaimed vertices of Pathy, consist of two parts L, R where
|L| = 621 + 1 and |R| = 625 + 2. If both players apply greedy strategy, then
Player 1 wins two vertices and makes the last move in Pathy,. Since Player 2
wins at least 2 vertices in Pathy,, Player 2 doesn’t lose the game. Therefore
Player 1 needs to abandon its greedy strategy at least two times in Pathy, so
that Player 2 makes the last move in Pathy,. Correspondingly, Player 2 wins 2
vertices in Pathy,. Since Player 1 wins at most 2 vertices on Pathy,, Player 2
doesn’t lose the game.

Case 9: Player 2 doesn’t lose on the following subcases.

Subcases 1: /1 =2 and /o = 0 (mod 6). Note that ¢, > 100. If Player 1
starts by selecting a vertex in Pathy,, then Player 1 wins 2 vertices in Pathy, .
Since Player 2 wins at least 2 vertices in Pathy,, Player 2 doesn’t lose the game.
Therefore, assume Player 1 starts by selecting a vertex in Pathy,. If both players
apply greedy strategy, Player 1 wins 2 vertices and makes the last move on
Pathy,. Since Player 2 wins 2 vertices in Pathy,, Player 2 doesn’t lose the game.
Therefore Player 1 needs to abandon its greedy strategy at least two times in
Pathy, so that Player 2 makes the last move in Pathy,. Correspondingly, Player
2 wins 2 vertices in Pathy,. Since Player 1 wins at most 2 vertices on Pathy,,
Player 2 doesn’t lose the game.

Subcases 2: {1 = 7and ¢ = 5 (mod 6). Note that ¢, > 100. If Player
1 starts by selecting a vertex in Pathy,, then Player 2 can forces Player 1 to
select the last move in Pathy, and guarantee to lose at most 3 vertices. Since
Player 2 wins Pathy, with at least 3 vertices, Player 2 doesn’t lose the game.
Therefore, assume Player 1 starts by selecting a vertex in Pathy,. Note that
Opt(Pathr) = Opt(Pathey4+s) = 2 where z > 0. Therefore, following similar
proofs of Case 7, one can prove that Player 2 doesn’t lose the game.

Corollary 3. Player 1 wins topological network-control games on Path,, U
Pathy, if and only if {{1,01} satisfies one of the following conditions: (1) ¢,
and {a have different parities, (2) {1 = 4 (mod 6), (3) {1 = 3 (mod 6), (4)

Topological Network-Control Games 155

0y =2 (mod 6) except for {2,2}, {2,6x}, (5) ¢1 =1 (mod 6) except for {1,1},
{7,7}, {7,6x +5}. In all other cases, Player 2 can guarantee a draw and can-
not win.

5 PSPACE-Completeness

The alternating 3-TQBF problem is to determine if a fully quantified Boolean
formula ¢ = 3z VaeIxs ... I, d(21, 22, . . ., Ty) is true, where ¢ is a conjunction
of clauses with three literals. The problem is PSPACE-complete [25]. The optimal
topological network-control game problem with parameter ¢ is this:

OTNC(t) = {{G,w) | Player 1 has a w-optimal strategy on game G}.

Let ¥ be an alternating 3-TQBF formula with clauses C1,...,C), and vari-
ables z1,...,z,. W.L.O.G, we assume n > 1, n is odd and for each pair of
distinct variables x; and x;, the clauses z; V z; V x; and z; V T; V T; are in
{Ci}i<m. We build a connected graph Gy with 2n + 6n(n + 1)m + 3m vertices
and n + 12n(n + 1)m + 3m + 2m? + m(m — 1)/2 edges such that the for-
mula ¢ = 3z \Vaedzs ... Ixpd(21, 22, ..., 2y) is true iff F(Gy) > 6nm+5m+2.
Therefore, we can prove the following theorem.

Theorem 6. The OTNC(1) problem is PSPACE-complete.

References

1. Adams, R., Dixon, J., Elder, J., Peabody, J., Vega, O., Willis, K.: Combinatorial
analysis of a subtraction game on graphs. Int. J. Comb. 2016, 1-9 (2016)

2. Ahn, HK., Cheng, S.W., Cheong, O., Golin, M., Van Oostrum, R.: Competi-
tive facility location: the Voronoi game. Theoret. Comput. Sci. 310(1-3), 457-467
(2004)

3. Andres, S.D., Huggan, M., Mc Inerney, F., Nowakowski, R.J.: The orthogonal
colouring game. Theoret. Comput. Sci. 795, 312-325 (2019)

4. Beaudou, L., et al.: Octal games on graphs: the game 0.33 on subdivided stars and
bistars. Theoret. Comput. Sci. 746, 19-35 (2018)

5. Bensmail, J., Fioravantes, F., Mc Inerney, F., Nisse, N.: The largest connected
subgraph game. In: Kowalik, L., Pilipczuk, M., Rzazewski, P. (eds.) WG 2021.
LNCS, vol. 12911, pp. 296-307. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-86838-3_23

6. Bensmail, J., Fioravantes, F., Mc Inerney, F., Nisse, N.: The largest connected
subgraph game. Algorithmica 84(9), 2533-2555 (2022)

7. Bensmail, J., Fioravantes, F., Mc Inerney, F., Nisse, N., Oijid, N.: The maker-
breaker largest connected subgraph game. Theoret. Comput. Sci. 943, 102-120
(2023)

8. Bensmail, J., Mc Inerney, F.: On a vertex-capturing game. Theoret. Comput. Sci.
923, 27-46 (2022)

9. Bodlaender, H.L., Kratsch, D.: Kayles and nimbers. J. Algorithms 43(1), 106-119
(2002)

https://doi.org/10.1007/978-3-030-86838-3_23
https://doi.org/10.1007/978-3-030-86838-3_23

156

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.
22.
23.
24.

25.

Z. Liang et al.

Brown, S., et al.: Nimber sequences of node-kayles games. J. Integer Seque. 23,
1-43 (2020)

Calkin, N.J., et al.: Computing strategies for graphical Nim. In: Proceedings of
the Forty-First Southeastern International Conference on Combinatorics, Graph
Theory and Computing, vol. 202, pp. 171-185. Citeseer (2010)

Changat, M., Lekha, D.S., Peterin, I., Subhamathi, A.R., Spacapan, S.: The median
game. Discret. Optim. 17, 80-88 (2015)

Cibulka, J., Kyn¢l, J., Mészaros, V., Stolar, R., Valtr, P.: Graph sharing games:
complexity and connectivity. Theoret. Comput. Sci. 494, 49-62 (2013)

Cohen, N., Martins, N.A., Mc Inerney, F., Nisse, N., Pérennes, S., Sampaio, R.:
Spy-game on graphs: complexity and simple topologies. Theoret. Comput. Sci. 725,
1-15 (2018)

Dailly, A., Gledel, V., Heinrich, M.: A generalization of ARC-KAYLES. Int. J.
Game Theory 48(2), 491-511 (2019)

Duchene, E., Gonzalez, S., Parreau, A., Rémila, E., Solal, P.: Influence: a partizan
scoring game on graphs. Theoret. Comput. Sci. 878, 26-46 (2021)

Duchéne, E., Renault, G.: Vertex Nim played on graphs. Theoret. Comput. Sci.
516, 20-27 (2014)

Fleischer, R., Trippen, G.: Kayles on the Way to the Stars. In: van den Herik,
H.J., Bjornsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 232—
245. Springer, Heidelberg (2006). https://doi.org/10.1007/11674399_-16

Guignard, A., Sopena, E.: Compound node-KAYLES on paths. Theoret. Comput.
Sci. 410(21-23), 2033-2044 (2009)

Huggan, M.A., Stevens, B.: Polynomial time graph families for ARC KAYLES.
Integers 16, A86 (2016)

Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education, India (2006)
Liang, Z., Khoussainov, B., Xiao, M.: Who controls the network? SSRN 4291268
Micek, P., Walczak, B.: A graph-grabbing game. Comb. Probab. Comput. 20(4),
623-629 (2011)

Schaefer, T.J.: On the complexity of some two-person perfect-information games.
J. Comput. Syst. Sci. 16(2), 185-225 (1978)

Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (pre-
liminary report). In: Proceedings of the Fifth Annual ACM Symposium on Theory
of Computing, pp. 1-9 (1973)

https://doi.org/10.1007/11674399_16

®

Check for
updates

Lower Bounds of Functions on Finite
Abelian Groups

Jianting Yang' 2™ Ke Ye!2, and Lihong Zhi'?

! Key Lab of Mathematics Mechanization, AMSS, Beijing 100190, China
{yangjianting,keyk}@amss.ac.cn, lzhi@mmrc.iss.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100190, China

Abstract. The problem of computing the optimum of functions on finite
abelian groups is an important problem in mathematics and computer
science. Many combinatorial problems, such as MAX-SAT, MAX-CUT
and the knapsack problem, can be recognized as optimization problems
on the group C3 = {—1,1}". This paper proposes an algorithm that
efficiently computes verifiable lower bounds of functions on finite abelian
groups by the technique of the Fourier sum of squares with error. More-
over, we propose a new rounding method to obtain a feasible solution
that minimizes the objective function as much as possible. We also imple-
ment the algorithm and test it on MAX-SAT benchmark problems and
random functions. These experiments demonstrate the advantage of our
algorithm over previously known methods.

1 Introduction

Combinatorial problems can usually be formulated as optimizaiton problems
on finite sets, thus many of them are notoriously difficult. Examples include
the Knapsack problem [19,20], the set cover problem [4,13], the k-SAT prob-
lem [3,11] and their numerous variants. Although each of these problems can be
regarded as an integer programming problem, there do not exist polynomial time
algorithms for most of them unless P = NP [11,13,14,22,23]. Therefore various
approximation algorithms are employed to resolve the issue [2,8,17,28,31,32].
Semidefinite programming (SDP) based relaxation methods, particularly the
sum of squares (SOS) relaxation is one of the most powerful and extensively
studied techniques to design and analyze an approximation algorithm for poly-
nomial optimization problems [6,10,12,16,25,29,31,40]. Among those successful
applications of the SDP technique, the most well-known ones are MAX-2SAT
[9], MAX-3SAT [10] and MAX-CUT [12]. On the other side, it is noticed in
[5,27,38,39] that if a finite set is equipped with an abelian group structure, then
one can efficiently certify nonnegative functions on it by Fourier sum of squares
(FSOS). Motivated by previous works, this paper is concerned with establishing
a framework to solve Problem 1 below by techniques of FSOS with error and
semidefinite programming.

L. Zhi—This research is supported by the Nsational Natural Science Foundation of
China 12071467 (Zhi).
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 157-170, 2024.
https://doi.org/10.1007/978-3-031-49193-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_12

158 J. Yang et al.

Problem 1 (lower bound by FSOS). Given a function f on a finite abelian group,
find a lower bound of f efficiently.

Let S C C™ be an algebraic variety. Algebraically, identifying the ring C[S] of
polynomial functions on S with C[z1,...,2,]/I(S) is a favorable perspective as
the latter ring is endowed with rich geometric and algebraic structures. For com-
putational purposes, however, regarding a function as an equivalence class is not
convenient, on account of the fact that an equivalence class can be represented
by infinitely many different polynomials. If S = G is a finite group, then there
is an alternative algebraic structure on C[G] which is extremely useful for com-
putations [5,27,38,39]. Namely, one can identify C[G] with the group ring of G
via the Fourier transform [7]. The advantage of such a point of view is that a
function f on G can be expanded as f = ngé fA(X)Xv where G is the dual

group of G and f(x) is the Fourier coefficient of f at y € G. This well-known
viewpoint enables us to introduce analytic tools to solve Problem 1.

Related Works and Our Contributions

A method for general-purpose sparse polynomial optimization called the TSSOS
hierarchy is proposed in [35]. The new method follows the well-known method-
ology established in [15], but it exploits the sparsity of polynomials to reduce
the size of SDP. Combing the TSSOS hierarchy and the method in [33] for cor-
relative sparsity, [34] introduces the CS-TSSOS hierarchy for large scale sparse
polynomial optimization. In particular, both TSSOS and CS-TSSOS hierarchies
are applicable to optimization problems on finite abelian groups.

Due to its great importance in computer science, there are various solvers
for MAX-SAT. For instance, in [31], the quotient structure of C[C¥] is explored
for support selection strategies, from which one can solve MAX-SAT by SDP;
by combing several optimization techniques specifically designed for MAX-SAT,
[36] provides an efficient SDP-based MIXSAT algorithm; based on the resolution
refutation, a solver called MS-builder is proposed in [24].

On the one hand, TSSOS and CS-TSSOS hierarchies can handle general poly-
nomial optimization problems, while specially designed solvers such as MIXSAT
[36] and MS-builder [24] can only deal with MAX-SAT problems. On the other
hand, however, it is natural to expect that these specially designed solvers would
outperform general-purpose methods on MAX-SAT problems.

Our framework balances the universality and efficiency. Indeed, our method
is applicable to optimization problems on any finite abelian groups, including
the hypercube C7, cyclic group Zy and their product. We briefly summarize
our main contributions below.

— We present an efficient approximation algorithm to minimize a function on a
finite abelian group by computing its lower bounds. (Algorithm 1), which is
validated by Theorems 1 and 2.

— We propose a new rounding method to obtain high-quality feasible solutions
of binary optimization problems (Sect. 3.4).

Lower Bounds of Functions on Finite Abelian Groups 159

— We test our algorithm on MAX-2SAT, MAX-3SAT benchmark problems and
randomly generated functions. These numerical experiments demonstrate the
advantage of our algorithm over aforementioned polynomial optimization
methods.

2 Preliminaries

In this section, we review the Fourier analysis on abelian groups and provide a
brief introduction to Fourier sum of squares (FSOS) on finite abelian groups.

2.1 Fourier Analysis on Groups

We briefly summarize fundamentals of group theory and representation theory
in this subsection. For more details, we refer interested readers to [7,21,26].

Let G be a finite abelian group. A character of G is a group homomorphism
X : G — C*. Here C* is C\ {0} endowed with the multiplication of complex
numbers as the group operation. The set of all characters of G is denoted by CAT',
called the dual group' of G. According to [7, Chapter 1], any function f on G
admits the Fourier expansion:

F=>foox
xeé

~ _

where f(x) = ﬁ EQGG f(9)x(g) is called the Fourier coefficient of f at x € G.

The support of f is supp(f) = {X €qG: f(x) #* 0}. As an example, the dual
group of the hypercube C% = {-1,1}" is

@:{za:a:(al,...,an)EZQ}EZg.

Here Zy = Z/2Z = {0,1} is the additive group and 27 := 2 .. 2P for each
B € N". Thus a function f: C§ — C can be expressed as a linear combination
of multilinear monomials: f =" a€zy faz®.

2.2 Sparse Fourier Sum of Squares on Finite Abelian Groups

This subsection briefly reviews the theory of FSOS developed in [5,27,38]. Let f
be a nonnegative function on a finite abelian group G. A Fourier sum of squares
(FSOS) of f is a finite family {h; };cs of complex valued functions on G such that
[=>icr |hil®. According to [5], a function f: G — R admits an FSOS if and
only if f is nonnegative. The sparsity of {h;}icr is defined to be ||J,;c; supp(hi)|.
We say that {h;},cr is a sparse FSOS of f if its sparsity is small.

! Since G is an abelian group, G is indeed a group and G~G.

160 J. Yang et al.

A function f on G is nonnegative if and only if there exists a Hermitian
positive semidefinite matrix Q = (Qx,x’)x vea € CE*% such that

Z Qx' x'x =]?(X)v Vx € G. (1)

x'eqG

Here we index columns and rows of @ by elements of G. We call Q a Gram matriz
of f. In fact, if @ is a Gram matrix of f and @ = M*M for some matrix M =
(Mjx)1<jcryed € C"*¢, then we must have f = 22:1 DI M; ,x|?. Clearly
this construction provides us a correspondence between (sparse) Gram matrices
and (sparse) FSOS of f. Because of the above correspondence, a sparse FSOS of f
is always preferable to reduce the cost of computations involving Gram matrices.
We remark that since G is finite, any nonnegative function f on G can be written
as f = [/f|?, which gives an FSOS of f. Here /f denotes the pointwise square
root of f. Moreover, v/f gives an optimal solution to the convex relaxation of
the problem of finding an FSOS with the minimal support [38]. However, v/f
is usually not sparse and thus the computation of v/f becomes challenging. In
[39], we propose a polynomial approximation method for computing efficiently
V/f approximately: suppose 0 < ! < f < m is a function on G, and a univariate
polynomial p(t) approximates v/# at points between [and m with pointwise error
at most ¢, then po f is an estimate of \/f with coefficient error bounded by ¢.

3 Main Results

In this section, we present our solution to Problem 1 for integer-valued functions.

3.1 Lower Bounds by FSOS

Let f : G — Z be a function on a finite abelian group G and let o be a real
number. For each S C G, we define

Fg = {{hi}ie[f-a= Z |hs|? for some a € R, U supp(h;) C S’},
i€l iel
and consider the following optimization problem:

max Q
{hi}ic1€Fs

st f—a=Y_|hl’ (2)

icl

)

According to the discussion in Subsect. 2.2, « is a lower bound of f if and only
if f — « admits an FSOS {h;}icr. As a consequence, an optimal solution to (2)
for any S C G provides a lower bound of f. Moreover, the larger S we choose
for (2), the better lower bound we obtain, since S; C So C G implies Fg, C Fg,.

Lower Bounds of Functions on Finite Abelian Groups 161

Since the quality of the lower bound obtained by solving (2) depends on
the choice of § C @, in order to efficiently compute a high-quality lower
bound, we need to choose a small subset S which contains as many elements
in (J;c;supp(h;) as possible, where {h;}icr is an FSOS of f — mingeq f(9)-
Clearly such {h;};c; is an optimal solution to (2) for S = G.

The correspondence between FSOS and Gram matrices (cf. Subsect. 2.2)
enables us to reformulate (2) as the following SDP problem:

maxgecs«s f(xo) — trace(Q), (3)

s.t. > Quax =5, x#x0€G (4)
x'e@

Q= 0. (5)

Here x(¢ denotes the identity element in G. R
The next theorem provides us a simple but effective method to pick S C G
such that an optimal solution to (3)—(5) gives a high-quality lower bound of f.

Theorem 1. Let f be a function on G and let a > a > 0 be lower bounds
of f. Assume that c, is the coefficient of x in f —a. If |c,| > Va —a, then
X € supp(\/f — a). Moreover, if G = C§ and f < m for some m € R, then

lox| > %52 (\/ﬁ - m) implies x € supp(v/f —a).

Proof. We recall that ¢, = |G| deax v/ f(g) — a. Similarly, we may write
Vf—a=3% cgcx. Foreach x € G, we notice that

o= &1 = g | 23 (VI —a - VI 3|

_a-— x(9)
_GGF‘% 9) —a++/f(g) ‘

< +va-—a.

Therefore, if |c¢y| > va—a then ¢, # 0. If G = CF, then x € G~ 178 is a
multilinear monomial. Thus x(g) = %1 for any g € C% = {—1,1}". Moreover, it
is straightforward to verify that we can construct a bijective map ¢ : C3 — C¥
such that x(g) = —x(¢(g)) and 1? = Id. Thus we have

|Cx_é;<‘:a|g;|a‘z —a-l-)\/f ‘

g% > <\/a15 maima)

9€G,x(9)=1

a;a (Val—a_\/m—ai\/m—a)

162 J. Yang et al.

An important implication of Theorem 1 is that for each a < fun =

mingeq f(g), supp(v/f —) contains elements in supp(v/f — fmin) whose Fourier

coefficients in y/f — « are large. In particular, if f is nonnegative, then we can
even take supp(y/f) as an estimate of supp(v/f — fmin). Therefore, we may con-
struct S of cardinality k& by taking the first k terms of an approximation of \/f
and Theorem 1 ensures that S is a good estimate of supp(v/f — fmin)-

3.2 FSOS with Error

We discuss in this subsection a remarkable feature of the SDP problem (3)—(5):
a solution that violates conditions (4) and (5) may still provide us a tight lower
bound of f. This is the content of the next theorem.

Theorem 2. Let G be a finite abelian group and let S be a subset of G. Given
a function f : G — R and a Hermitian matriz Q € C*°, we have

min f(g) > —[ells + Amin(Q)5],
9€G

where Amin(Q) is the minimal eigenvalue of Q, e = f — v§Qug, vs = (X)yes
is the column vector consisting of all characters in S and |lelly = >_ & [e(x)]-
Furthermore, Q — Amin(Q)1d = 0 is a Gram matriz of f — e — Amin(Q)|S].

Proof. For any g € G, we have f(g) —e(g) = vs(g)*QE(g) > Amin(Q)vs(g)*v(g).
We observe that |x(g)| = 1 for each g € G and x € G. Thus vg(g)*vs(g) = |S|
and |e(g)| < ||e]|1 for any g € G. This implies

f(g) = =llell + Amin(@)[S], Vg € G.

Theorem 2 implies that —||€]|1 + Amin (Q)]S] is a lower bound of f even if Q % 0
or e # 0.

Given a Hermitian matrix M € C"*" we may define its associated real-
valued polynomial Fjs(z) := z*Mz. Then we have Fj;y = Fayr_x1a + Fa1q for
any A € R. Therefore, if M — AId »= 0 then min,ccn Fa14(2) provides a lower
bound of Fjs. Unfortunately, min,ccn Fy1q(z) = —o0 is a trivial lower bound of
Fyy for A < 0, as F\14(2) = A||z]|?. This phenomenon distinguishes optimization
problems on finite abelian groups from the usual polynomial optimizations.

:| [Zl ZQ]T = 22122 on 022

01
10
that f > —2 on C2. As a comparison, we notice that f is the restriction of
Fg to C3 thus a lower bound of Fy is also a lower bound of f. However, the
above discussion indicates that the lower bound of Fig obtained by the SOS
technique is trivial, since Fg = Foi1a + Fo1a = |21 + 22* — (|21]> + |22]%) >
ming,, .,yecz —(|21]% + [22/?) = —c0.

1
10
Since S = {z1,22} and Apin(Q) = —1 where Q = [

For instance, we consider f(z1,z2) = [21 22} {O

], Theorem 2 implies

Lower Bounds of Functions on Finite Abelian Groups 163

3.3 Computation of Lower Bounds

In this subsection, we present an algorithm for computing a lower bound of a
function f on a finite abelian group G. For simplicity, for any function h, we
denote hy := h(xo), where xq is the identity element in G.

Let S be a subset of G and let Q € C%%5 be a Hermitian matrix. We define
e = f — fo —v5Qug, where vg is the |S|-dimensional column vector consisting
of characters in S. Applying Theorem 2 to f — fy — eg, we have

min f(g) > fo+eo — [l€ = €ollr + Amin(@)[S]. (6)
geG

Since eg = — 3>, _ ., Q(x; X') = — trace(Q), we can rewrite the right side of (6) as
fo—F(Q) where F(Q) := trace(Q)+|| E(Q)||1 — Amin(Q)|S] and E : C5*% s CI€]
is the affine map sending @ to the (sparse) vector consisting of Fourier coefficients
of e — eg. Therefore we may obtain a lower bound of f by solving the following
unconstrained convex optimization problem:

min F(Q), 7
occsH . (@) (7)
Combining our discussions on the SDP problem (3)—(5), the support selection
method obtained from Theorem 1 and the convex optimization problem (7), we
obtain Algorithm 1.

Algorithm 1 Lower Bounds of Functions on Finite Abelian Groups.
Input a nonnegative function f on G, integers d and k, [, m such that 0 <1 < f < m.
Output a lower bound of f

1: approximate v/¢ by a polynomial p(t) of degree at most d at integer points in [I,m].

2: compute the composition po f = Zﬁ‘l aiXi, where [a1| > -+ > |a|g|| and deg(x:) >
deg(xi+1) if ai| = [ait1],1 <9 < |G| - 1.

3: Select S :== {x1,.--, Xk}

4: Solve (3)-(5) for Qo. > by SDPNAL-+
5: Solve (7) for Q. > by gradient descent with initial point Qo
6:

return fo — F(Q).

We remark that a lower and upper bound [and m of f are required as a part
of input for Algorithm 1. In most applications, they are in fact readily available.
In rare cases where no non-trivial bounds can be obtained beforehand, we may
simply use the trivial bounds: | = 0 and m = || f||; for nonnegative function
f. The goal of Algorithm 1 is to find a lower bound that is much better than
[. Steps 1-3 of Algorithm 1 are validated by Theorem 1. In practice, it suffices
to use d = 1 or 2, as it is shown by experiments in Sect.4. Due to Theorem 2,
we do not need to solve the SDP problem (3)—(5) exactly in step 4. Instead, we
are allowed to compute an approximate solution, which may violate conditions

164 J. Yang et al.

(4) and (5). Moreover, the ADMM method used by SDPNAL+ augments an
objective function by an £2-norm, while our algorithm actually aims to minimize
the ¢!-norm. Thus Step 5 in Algorithm 1 is necessary for computing a better
lower bound. We solve (7) by the gradient descent method. Although F' is not
smooth, we are able to compute its subgradient by

OF =1d +(0F)" sign(E(Q)) — |S|uu™,

where OF is the gradient of F, sign(z) is the sign function and wu is the unit
eigenvector of @ corresponding to Anin (Q@)-

We conclude this subsection by briefly summarizing the main advantages of
Algorithm 1. Interested readers are referred to Sect.4 for numerical examples
which demonstrate these advantages.

1. Early termination: existing methods [31,35] need to wait the algorithm con-
verges to a solution satisfying conditions (4) and (5). However, Theorem 2
ensures that our method can find a lower bound even if these conditions are
not satisfied. This feature enables us to set time limits on solving the SDP
problem (3)—(5) instead of waiting for converging to a feasible solution.

2. Adaptivity to more SDP solvers: since the conditions (4) and (5) are not
required to be satisfied exactly, we can use more efficient SDP solvers, such
as SDPNAL+ [30]. As a consequence, MAX-SAT problems of much larger
sizes from the benchmark set 2 can be solved efficiently.

3. Size reduction: given a subset S C G, the SOS based algorithms may not
get a lower bound if f has no FSOS supported on S. However, Example 1
indicates that an FSOS supported on S with a small error may provide us a
tight lower bound. This feature leads to a reduction on the size of the SDP
problem (3)—(5).

Example 1. Let f: C3 — R be the function defined by
f(z1,22,23) = 4 + 21 + 22 + 23 + 212223,

We can check that problem (3)—(5) has no feasible solution for S = {1, z1, 22, 23}
However, we have f —e =1+ 1 Z?zl(l +2;)? where e(z1, 29, 23) == 212223, from
which we obtain f > 1 — ||e]|; = 0. We remark that in this case, the matrix size
in (3)—(5) reduces from 8 = |@| to 4 =19|.

3.4 Rounding

Rounding is an important step in SDP-based algorithms for combinatorial opti-
mization problems, especially when both the optimum value and optimum point
are concerned. The purpose of rounding is to find a high-quality feasible solu-
tion. There exist several rounding techniques in the literature. Examples include
rounding by random hyperplanes [8] together with its improved version [6], the

2 http://www.maxsat.udl.cat /16 /index.html.

http://www.maxsat.udl.cat/16/index.html

Lower Bounds of Functions on Finite Abelian Groups 165

skewed rounding procedure [18] and the randomized rounding technique [31].
Among all these rounding strategies, the one proposed in [31] can be easily
adapted to our situation.

Our rounding method is based on the null space of the Gram matrix. Let
Q € R5*S be a solution to (3)—(5). For a given f : CF — R and S C Cy
containing all characters of degree at most one, we assume f — a = v§Qus,
where « is the minimum value of f, vg is the |S|-dimensional column vector
consisting of characters in S and @ = 0.

In practice, the matrix) obtained in Algorithm 1 may not be positive
semidefinite. We need to update it by Q — Anmin(Q)Id. Tt is a little surprise
for us to notice that the numerical corank of @ — Apin(Q)Id is 1 very often,
which makes it possible to recover the optimal solution efficiently from its null
vector. By normalizing the element indexed by xg € G of the null vector v of
Q — Mnin(Q) Id to be one, we obtain the desired solution § € G by rounding
elements of the normalized null vector.

To conclude this subsection, we illustrate our rounding procedure by example.

Ezample 2 (rounding). The polynomial f(z1,22,23) = 4 + 21 + 22 + 23 +
212223 given in Example 1 is a nonnegative function on C3. For S =
{1, z1, 22, 23, 212223 }, we obtain a Hermitian matrix by SDPNAL+:

1 21 22 z3 212223

1 1.9546 0.5000 0.5000 0.5000 0.5000

z1 | 0.5000 0.4536 0.0000 0.0000 0.0000
z | 0.5000 0.0000 0.4536 0.0000 0.0000 |,

zz | 0.5000 0.0000 0.0000 0.4536 0.0000

212223 | 0.5000 0.0000 0.0000 0.0000 0.4536

whose eigenvalues are —0.0462,0.4536, 0.4536,0.4536, 2.4544. The normalized
null vector of @ + 0.04621d is

1 z1 Zo 23 212923

v = [1-1.000447 —1.000447 —1.000447 —1.000447].

We recover the solution z; = z3 = z3 = —1 by rounding the elements of v.

4 Numerical Experiments

In this section, we conduct numerical experiments to test Algorithm 1
and the rounding technique discussed in Subsect. 3.4. We implement
our algorithm in Matlab (2016b) and invoke the ADMM algorithm
in SDPNAL+ [30] to solve SDP problems. The code is available on
github.com /jty-AMSS /Fast-Lower-Bound-On-FAG. All experiments are per-
formed on a desktop computer with Intel Core i9-10900X@3.70 GHz CPU and
128 GB RAM memory. Due to the page limit, we only present three numerical
experiments here. Interested readers are referred to the full-length version [37]
on arXiv for more numerical experiments.

http://github.com/jty-AMSS/Fast-Lower-Bound-On-FAG

166 J. Yang et al.

4.1 Upper Bounds of MAX-2SAT Problems

Recall that any CNF-formula ¢ in n variables with m clauses can be transformed
into the characteristic function fy on C3 such that the minimum number of
simultaneously falsified clauses in ¢ is equal to mingecp fg(g). Hence solving
the MAX-SAT problem for ¢ is equivalent to computing the minimum value of
the function f4 on C3. For comparison purposes, we compute lower bounds of
the number of falsified clauses of benchmark MAX-SAT problems respectively
by Algorithm 1, TSSOS [35] and CS-TSSOS [34]3. The MAX-SAT problems
are drawn from the randomly generated unweighted MAX-2SAT benchmark
problem set in 2016 MAX-SAT competition?. Such a problem has 120 variables,
in which the number of clauses ranges from 1200 to 2600. We apply Algorithm 1
to compute lower bounds of the corresponding characteristic functions, with
parameters d = 1, k = |supp(f)|, I = 0, and m = number of clauses. We also
apply TSSOS and CS-TSSOS of the first order relaxation to these functions®.

Numerical results are reported in Table 1, in which “clause” denotes the num-
ber of clauses in each CNF formula, “min” is the minimum of the characteris-
tic function and “bound” means the lower bound of the characteristic function
obtained by each method. From Table 1, we see that lower bounds obtained by
Algorithm 1 are very close to minimum values of characteristic functions, which
are better than those obtained by TSSOS and CS-TSSOS.

Table 1. Unweighted MAX-2SAT problems

No | clause | min | Algorithm 1 | TSSOS CS-TSSOS
bound | time | bound | time | bound | time
1 1200 |161 |159.5|370 |146.7 |45 |146.7 |52
2 1200 |159 |156.7 | 327 |143.1 |49 143.1 |55
3 1200 |160 |159.0 362 |146.8 |46 146.8 | 64
4 1300 |180 |177.5 1450 |162.4 |52 162.4 |73
5 1300 |172 |170.6 417 156.2 |47 156.2 | 65
6 1300 |173 |171.6 |432 |158.8 |44 |158.8 |58
7 1400 197 |194.8 |506 |179.8 |46 |179.8 |75
8 1400 |191 |189.3 499 |174.3 |51 174.3 | 87
9 1400 |189 |187.2 504 |172.1 |58 172.1 |78

3 To solve SDP problems, we use SDPNAL+ [30] in Algorithm 1 and MOSEK [1] in
TSSOS and CS-TSSOS.

* http://www.maxsat.udl.cat /16 /index.html.

5 Both of them fail to compute the second and higher order relaxations due to the
insufficient memory. In fact, there are Zfzo (IZO) monomials involved in the k-th

relaxation. In particular, the size of the Gram matrix in the first relaxation is 121 x

121 while it is 7261 x 7261 in the second relaxation.

http://www.maxsat.udl.cat/16/index.html

Lower Bounds of Functions on Finite Abelian Groups 167

4.2 Rounding Techniques

We compare the rounding technique presented in Subsect. 3.4 with rounding
techniques with scaling factors pY and 2~(¢~1 in [31] on the same benchmark
problems used in the previous experiment. For the rounding method in [31], we
solve the SDP problem with MOSEK and basis M,,, where M, is the monomial
basis containing M; and monomials z;z; whenever x; and z; appear in the same
clause (cf. [31, Definition 1]) and M is the set of monomials with degree at most
1. For the rounding method proposed in Subsect. 3.4, we select basis with input
parameters [= 0, d = 2, m = number of clauses and k is chosen so that the
cardinality of the union of M; and the basis obtained by steps 1-3 in Algorithm
1, is equal to the cardinality of M,. The maximum number of iterations in
SDPNAL+ is set to be |M,|.

We record results in Table 2, which indicate that our rounding method out-
performs the method presented in [31]. Furthermore, rounding techniques in [31]
usually take at least 6000 seconds by the interior point method based solvers as
conditions (4) and (5) are required to be satisfied. However, our method takes
less than 1000 seconds, as (4) and (5) can be violated.

Table 2. rounding on MAX-2SAT benchmarks

Z
o

clause | min | Gram | pY | 27071
1200 |161 |162 | 225|227
1200 |159 [159 [215|194
1200 | 160 |160 | 162160
1300 | 180 |180 |226 243
1300 | 172|173 | 225 230
1300 | 173 | 173 | 245253
1400 | 197 |198 |234|270
1400 |191 |192 | 255246
1400 |189 |189 |227|231

O |00 ||| U x| Wi~

4.3 Lower Bounds of Random Functions

The goal of this experiment is to exhibit the correctness and efficiency of Algo-
rithm 1. We randomly generate nonnegative integer-valued functions on C2°, C15
and C2° and compute their lower bounds by Algorithm 1, TSSOS [35] and CS-
TSSOS [34] respectively. Without loss of generality, we only consider functions
whose minimum values are 1.

We generate random functions by the following steps. For group C3°, we
generate a polynomial f = fy + Y. c;z% of degree three and sparsity around
450 on C2° by randomly picking multilinear monomials 2% with degree at most

168 J. Yang et al.

3 and coefficients ¢; € {¢ € Z : —5 < ¢ < 5}. The constant term fy is chosen so
that the minimum values is 1. Clearly, f < m =), |c;| + fo. For group C3° and
C3% we generate functions f with sparsity around 200 on group C3% or C29 by
the following procedure:

1. Set f=0;

2. Randomly generate an integer-valued function h on C3 (resp. C2), such that
0<h<10;

Randomly pick a projection map 7 : C3®> — C% (resp. 7: C30 — C2);
Update f «— f+hoT;

Repeat steps (2.)—(4.) until the sparsity of f is greater than 200.

Update f < f —mingecois f(g) +1 (vesp. f« f—mingecio f(g) +1).

Then clearly f < m := sum of maximum value of h in step (2.).

For each of these functions, we perform Algorithm 1 with parameters d = 2,
k = 3supp(f)], I = 0, and m as discussed earlier. We also apply TSSOS and
CS-TSSOS of the second (resp. fourth, eighth) order relaxation on C2° (resp.
C315, C19) with the term sparsity parameter TS = “MD” to these functions®.

Results are shown in Table 3, where “sp” means the sparsity of the function
and “bound” means the lower bound obtained by the corresponding algorithm.
“MQO?” in the table indicates that the program was terminated due to insufficient
memory. We do not test TSSOS on functions on Ci® and C2° as it is only
applicable to functions with real variables and real coefficients”. Thus we place ‘-~
” in corresponding positions of the table. It is clear from Table 3 that Algorithm 1
outperforms both TSSOS and CS-TSSOS on random examples.

o G

Table 3. Random examples on C2°, C35 and Cg°

No | group |sp | Algorithm 1 TSSOS CS-TSSOS
bound | time bound | time bound | time
1 |C% 1451/1.00 |1058.00(1.00 |1027.03/1.00 |1451.53
2 |02 451|067 |867.38 |—8.72 |853.47 | —7.23 |1483.55
3 |C¥ |451/0.75 |773.06 |1.00 |1442.03|1.00 |1846.23
4 |C2% |451/099 |906.15 |1.00 |1519.08 1.00 |1831.33
5 |C% |451/0.02 |718.21 |1.00 |1364.66|1.00 |1710.47
6 | Ci5 203097 |327.58 |- - 1.00 | 7336.23
7 1CY¥ 1203]/1.00 |223.73 |- - 1.00 | 2876.34
8 |C35 |203/1.00 |212.43 |- - 1.00 | 1353.14
9 |C:% 201097 |191.54 |- —~ MO |MO
10 [C20 1201/0.94 |236.33 |- - 1.00 | 559.68
11 |Cci° 1213]0.90 |233.82 |- - MO |MO

6 CS-TSSOS fails to complete the computation if we use lower order relaxations.
TCh= {exp(Qkﬂ'i/n)}Z;é ZRifn > 3.

Lower Bounds of Functions on Finite Abelian Groups 169

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

ApS, M.: The MOSEK optimization toolbox for MATLAB manual. Version 9.3.11
(2019). https://docs.mosek.com/9.3/toolbox/index.html

Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sci-
ences Research Group (1976)

Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, pp. 151-158 (1971)
Dinur, 1., Steurer, D.: Analytical approach to parallel repetition. In: STOC’14-
Proceedings of the 2014 ACM Symposium on Theory of Computing, pp. 624-633.
ACM, New York (2014)

Fawzi, H., Saunderson, J., Parrilo, P.A.: Sparse sums of squares on finite abelian
groups and improved semidefinite lifts. Math. Program. 160(1-2), 149-191 (2016)
Feige, U., Goemans, M.: Approximating the value of two power proof systems,
with applications to MAX 2SAT and MAX DICUT. In: Proceedings Third Israel
Symposium on the Theory of Computing and Systems, pp. 182-189 (1995)
Fulton, W., Harris, J.: Representation Theory: A First Course, vol. 129. Springer
Science & Business Media, New York (2013). https://doi.org/10.1007/978-1-4612-
0979-9

Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
(JACM) 42(6), 1115-1145 (1995)

Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. Assoc.
Comput. Mach. 42(6), 1115-1145 (1995)

Karloff, H., Zwick, U.: A 7/8-approximation algorithm for MAX 3SAT? In: Pro-
ceedings 38th Annual Symposium on Foundations of Computer Science, pp. 406—
415 (1997)

Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations,
pp. 85-103. The IBM Research Symposia Series. Springer, Boston, MA (1972).
https://doi.org/10.1007/978-1-4684-2001-2 9

Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319-357
(2007)

Korte, B.H., Vygen, J., Korte, B., Vygen, J.: Combinatorial Optimization, vol. 1.
Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24488-9
Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci.
36(3), 490-509 (1988)

Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11(3), 796-817 (2001)

Lasserre, J.B.: A max-cut formulation of 0/1 programs. Oper. Res. Lett. 44(2),
158-164 (2016)

Laurent, M.: A comparison of the sherali-adams, lovasz-schrijver, and lasserre
relaxations for 01 programming. Math. Oper. Res. 28(3), 470-496 (2003)

Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the MAX 2-
SAT and MAX DI-CUT problems. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002.
LNCS, vol. 2337, pp. 67-82. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-47867-1_6

https://docs.mosek.com/9.3/toolbox/index.html
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-642-24488-9
https://doi.org/10.1007/3-540-47867-1_6
https://doi.org/10.1007/3-540-47867-1_6

170

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

J. Yang et al.

Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley & Sons, Inc., Hoboken (1990)

Mathews, G.B.: On the partition of numbers. Proc. Lond. Math. Soc. 1(1), 486-490
(1896)

O’Donnell, R.: Analysis of Boolean functions. Cambridge University Press, New
York (2014)

Papadimitriou, C.H.: The Euclidean traveling salesman problem is N P-complete.
Theor. Comput. Sci. 4(3), 237-244 (1977)

Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing
Company, Reading, Boston, MA (1994)

Py, M., Cherif, M.S., Habet, D.: A proof builder for Max-SAT. In: Li, C.-M,,
Manya, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 488-498. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-80223-3 33

Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP?
[extended abstract]. In: STOC’08, pp. 245-254. ACM, New York (2008)

Rudin, W.: Fourier Analysis on Groups, vol. 121967. Wiley Online Library, Hobo-
ken (1962)

Sakaue, S., Takeda, A., Kim, S., Ito, N.: Exact semidefinite programming relax-
ations with truncated moment matrix for binary polynomial optimization prob-
lems. SIAM J. Optim. 27(1), 565-582 (2017)

Slavik, P.: A tight analysis of the greedy algorithm for set cover. In: Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing
(Philadelphia, PA, 1996), pp. 435—441. ACM, New York (1996)

Slot, L., Laurent, M.: Sum-of-squares hierarchies for binary polynomial optimiza-
tion. Math. Program. 197(2), 621-660 (2023)

Sun, D., Toh, K.C., Yuan, Y., Zhao, X.Y.: SDPNAL+: a Matlab software for
semidefinite programming with bound constraints (version 1.0). Optim. Methods
Softw. 35(1), 87-115 (2020)

van Maaren, H., van Norden, L., Heule, M.: Sums of squares based approximation
algorithms for max-sat. Discret. Appl. Math. 156(10), 1754-1779 (2008)
Vazirani, V.V.: Approximation Algorithms, vol. 1. Springer, Berlin, Heidelberg
(2001). https://doi.org/10.1007/978-3-662-04565-7

Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidef-
inite program relaxations for polynomial optimization problems with structured
sparsity. STAM J. Optim. 17(1), 218-242 (2006)

Wang, J., Magron, V., Lasserre, J.B., Mai, N.H.A.: CS-TSSOS: correlative and
term sparsity for large-scale polynomial optimization. ACM Trans. Math. Softw.
48(4), 1-26 (2022)

Wang, J., Magron, V., Lasserre, J.B.: TSSOS: a moment-SOS hierarchy that
exploits term sparsity. STAM J. Optim. 31(1), 30-58 (2021)

Wang, P.W., Kolter, J.Z.: Low-rank semidefinite programming for the MAX2SAT
problem. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
33, pp. 1641-1649 (2019)

Yang, J., Ye, K., Zhi, L.: Lower bounds of functions on finite abelian groups (2023)
Yang, J., Ye, K., Zhi, L.: Computing sparse Fourier sum of squares on finite abelian
groups in quasi-linear time. arXiv preprint arXiv:2201.03912 (2022)

Yang, J., Ye, K., Zhi, L.: Short certificates for MAX-SAT via Fourier sum of
squares. arXiv preprint arXiv:2207.08076 (2022)

Zhang, R.Y., Lavaei, J.: Sparse semidefinite programs with guaranteed near-linear
time complexity via dualized clique tree conversion. Math. Program. 188(1), 351—
393 (2021)

https://doi.org/10.1007/978-3-030-80223-3_33
https://doi.org/10.1007/978-3-662-04565-7
http://arxiv.org/abs/2201.03912
http://arxiv.org/abs/2207.08076

®

Check for
updates

A Discharging Method: Improved Kernels
for Edge Triangle Packing and Covering

Zimo Sheng and Mingyu Xiao®™)

School of Computer Science and Engineering, University of Electronic Science
and Technology of China, Chengdu, China
myxiaoQuestc.edu.cn

Abstract. EDGE TRIANGLE PACKING and EDGE TRIANGLE COVERING
are dual problems extensively studied in the field of parameterized com-
plexity. Given a graph G and an integer k, EDGE TRIANGLE PACKING
seeks to determine whether there exists a set of at least k edge-disjoint tri-
angles in GG, while EDGE TRIANGLE COVERING aims to find out whether
there exists a set of at most k edges that intersects all triangles in G.
Previous research has shown that EDGE TRIANGLE PACKING has a kernel
of (3+ €)k vertices, while EDGE TRIANGLE COVERING has a kernel of 6k
vertices. In this paper, we show that the two problems allow kernels of 3k
vertices, improving all previous results. A significant contribution of our
work is the utilization of a novel discharging method for analyzing kernel
size, which exhibits potential for analyzing other kernel algorithms.

1 Introduction

Preprocessing is a fundamental and commonly used step in various algorithms.
However, most preprocessing has no theoretical guarantee on the quality. Ker-
nelization, originating from the field of parameterized algorithms [1], now has
been found to be an interesting way to analyze the quality of preprocessing.
Consequently, kernelization has received extensive attention in both theoretical
and practical studies.

Given an instance (I, k) of a problem, a kernelization (or a kernel algorithm)
runs in polynomial time and returns an equivalent instance (I’, k") of the same
problem such that (I, k) is a yes-instance if and only if (I’, k') is a yes-instance,
where k' < k and |I’| < g(k) for some computable function g only of k. The new
instance (I', k') is called a kernel and g(k) is the size of the kernel. If g(+) is a
polynomial or linear function, we classify the problem as having a polynomial
or linear kernel, respectively.

EDGE TRIANGLE PACKING (ETP), to check the existence of k edge-disjoint
triangles in a given graph G is NP-hard even on planar graphs with maximum
degree 5 [2]. The optimization version of this problem is APX-hard on general
graphs [3]. A general result of [4] leads to a polynomial-time (3/2+¢€) approxima-
tion algorithm for any constant ¢ > 0. When the graphs are restricted to planar
graphs, the result can be improved. A polynomial-time approximation scheme for

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 171-183, 2024.
https://doi.org/10.1007/978-3-031-49193-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_13&domain=pdf
http://orcid.org/0000-0002-1012-2373
https://doi.org/10.1007/978-3-031-49193-1_13

172 Z. Sheng and M. Xiao

the vertex-disjoint triangle packing problem on planar graphs was given by [5],
which can be extended to ETP on planar graphs. In terms of parameterized
complexity, a 4k-vertex kernel and an O*(297k log k+%)—time parameterized algo-
rithm for ETP were developed in [6]. Later, the size of the kernel was improved
to 3.5k [7]. The current best-known result is (3 + €)k [8], where € > 0 can be any
positive constant. On tournaments, there is also a kernel of 3.5k vertices [9].

Another problem considered in this paper is EDGE TRIANGLE COVERING
(ETC). ETC is the dual problem of ETP, which is to check whether we can
delete at most k edges from a given graph such that the remaining graph has
no triangle. ETC is also NP-hard even on planar graphs with maximum degree
7 [10]. In terms of kernelization, a 6k-vertex kernel for ETC was developed [10].
On planar graphs, the result was further improved to % [10].

In this paper, we will deeply study the structural properties of EDGE TRI-
ANGLE PACKING and EDGE TRIANGLE COVERING and give some new reduction
rules by using a variant of crown decomposition. After that, we will introduce
a new technology called the discharging method to analyze the size of problem
kernels. Utilizing the new discharging method, we obtain improved kernel sizes
of 3k vertices for both ETP and ETC. Notably, our results even surpass the
previously best-known kernel size for ETC on planar graphs [10]. Due to the
page limitation, proofs of lemmas and theorems marked with ‘*’ are omitted,
which can be found in the full version of this paper.

2 Preliminaries

Let G = (V,E) denote a simple and undirected graph with n = |V| vertices
and m = |E| edges. A vertex is a neighbor of another vertex if there is an edge
between them. The set of neighbors of a vertex v is denoted by N(v), and the
degree of v is defined as d(v) = |N(v)|. For a vertex subset V' C V, we let
N(V') =Uyer' N(v) \ V' and N[V'] = N(V’) U V’. The subgraph induced by a
vertex subset V/ C V is denoted by G[V'] and the subgraph spanned by an edge
set E' C E is denoted by G[FE’]. The vertex set and edge set of a graph H are
denoted by V(H) and E(H), respectively.

A complete graph on 3 vertices is called a triangle. We will use vuw to denote
the triangle formed by vertices v, u, and w. If there is a triangle vuw in G, we
say that vertex v spans edge uw. An edge triangle packing in a graph is a set of
triangles such that every two triangles in it have no common edge. The EDGE
TRIANGLE PACKING problem (ETP) is defined below.

EDGE TRIANGLE PACKING (ETP) Parameter: k
Input: An undirected graph G = (V, E), and an integer k.
Question: Does there exist an edge triangle packing of size at least k in G?

An edge covers a triangle if it is contained in the triangle. An edge triangle
covering in a graph is a set of edges S such that there is no triangle after deleting
S from G. The EDGE TRIANGLE COVERING problem (ETC) is defined below.

Improved Kernels for Edge Triangle Packing and Covering 173

Fig. 1. An illustration for the fat-head crown decomposition

EDGE TRIANGLE COVERING (ETC) Parameter: k
Input: An undirected graph G = (V, E), and an integer k.
Question: Does there exist an edge triangle covering of size at most k in G?

3 Fat-Head Crown Decomposition

One important technique in this paper is based on a variant of the crown decom-
position. Crown decomposition is a powerful technique for the famous VERTEX
COVER problem and it has been extended to solve several related problems [11—-
14]. Specifically, we employ a specific variant called the fat-head crown decompo-
sition to tackle (ETP) [8]. This variant of the crown decomposition will also be
applied in our algorithms for both ETP and ETC. To provide a comprehensive
understanding, let us begin by introducing the definition of the fat-head crown
decomposition.

A fat-head crown decomposition of a graph G = (V, E) is a triple (C, H, X)
such that C' and X form a partition of V and H C FE is a subset of edges
satisfying the following properties:

1. C is an independent set.

2. H is the set of edges spanned by at least one vertex in C.

3. No vertex in C' is adjacent to a vertex in X \ V(H).

4. There is an edge-disjoint triangle packing P of size |P| = |H| such that
each triangle in P contains exactly one vertex in C' and exactly one edge in
H. The packing P is also called the witness packing of the fat-head crown
decomposition.

An illustration of the fat-head crown decomposition is shown in Fig.1. To
determine the existence of fat-head crown decompositions in a given graph struc-
ture, we present three lemmas.

Lemma 1 (Lemma 2 in [8]). Let G = (V, E) be a graph such that each edge and
each vertex is contained in at least one triangle. Given a non-empty independent
set I CV such that [I| > |S(I)|, where S(I) is the set of edges spanned by at
least one vertex in I. A fat-head crown decomposition (C, H,X) of G with C C T
and H C S(I) together with a witness packing P of size |P| = |H| > 0 can be
found in polynomial time.

174 Z. Sheng and M. Xiao

Lemma 2 (*). Given a graph G = (V, E), a vertex set A CV, and an edge set
B C E, where ANV (B) = 0. There is a polynomial-time algorithm that checks
whether there is a fat-head crown decomposition (C, H, X) such that) # C C A
and H C B and outputs one if yes.

Lemma 3 (*). If there is a fat-head crown decomposition (C, H, X) in G, then
G has an edge-disjoint triangle packing (resp., edge triangle covering) of size k
if and only if the graph G’ has an edge-disjoint triangle packing (resp., edge
triangle covering) of size k — |H|, where G’ is the graph obtained from G by
deleting vertex set C' and deleting edge set H.

4 The Algorithms

In this section, we present our kernelization algorithms for the EDGE TRIAN-
GLE PackING (ETP) and EDGE TRIANGLE COVERING (ETC) problems. Our
algorithms involve a set of reduction rules that are applied iteratively until no
further reduction is possible. Each reduction rule is applied under the assump-
tion that all previous reduction rules have already been applied and cannot be
further applied to the current instance. A reduction rule is correct if the original
instance (G, k) is a yes-instance if and only if the resulting instance (G’, k') after
applying the reduction rule is a yes-instance.

We have one algorithm for ETP and ETC, respectively. The two algorithms
are similar. We will mainly describe the algorithm for ETP and introduce the
difference for ETC. In total, we have nine reduction rules. The first four rules
are simple rules to handle some special structures, while the remaining five rules
are based on a triangle packing. Especially, the last rule will use the fat-head
crown decomposition. We will show that the algorithms run in polynomial time.

4.1 Simple Rules

Reduction Rule 1. For ETP, if k < 0, then return ‘yes’ to indicate that the
instance is a yes-instance; if k > 0 and the graph is empty, then return ‘no’ to
indicate that the instance is a no-instance.

For ETC, if k > 0 and the graph is empty, then return ‘yes’ to indicate that the
instance is a yes-instance; if k < 0, then return ‘no’ to indicate that the instance
1S a mo-instance.

Reduction Rule 2. If there is a vertex or an edge not appearing in any trian-
gle, then delete it from the graph.

Reduction Rule 3. If there are 4 vertices u,v,w,x € V inducing a complete
graph (i.e., there are 6 edges uv,vw,ux, vw,ve,wr € FE) such that none of the
6 edges is in a triangle except uwv, uvx, uwz, and vwz, then

— For ETP, delete the 6 edges wv, uw, ux,vw,ve and wx and let k =k — 1;
— For ETC, delete the 6 edges uv, uw, ux, vw,vx and wr and let k = k — 2.

Improved Kernels for Edge Triangle Packing and Covering 175

u, u, us A w, u, u, u3 Wy W,
\Y v’ v’

Fig. 2. An Illustration for Reduction Rule 4

The correctness of Reduction Rule 3 is based on the following observation.
For ETP, any edge triangle packing can have at most one triangle containing
some edge from these 6 edges and we can simply take one triangle from this local
structure. For ETC, any edge triangle covering must contain at least two edges
from these 6 edges and after deleting vu and wz, none of uw, ux, vw, and v is
contained in a triangle anymore.

Reduction Rule 4. If there is a vertex v € V such that all edges incident to v
can be partitioned into two parts Fy and Fs such no triangle in G contains an
edge in Eq1 and an edge in Es, then split v into two vertices v’ and v” such that
all edges in By are incident on v’ and all edges in Eo are incident on v".

An illustration of Reduction Rule 4 is shown in Fig.2. This reduction rule will
increase the number of vertices in the graph. However, this operation will simplify
the graph structure and our analysis.

Lemma 4. Reduction Rule 4 is correct and can be executed in polynomial time.

Proof. First, we consider the correctness. Let G' = (V/, E’) be the graph after
applying Reduction Rule 4 on a vertex v. We can establish a one-to-one mapping
between the edges in E and the edges in E’ by considering the vertices v’ and
v € V' as v € V. Three edges in F form a triangle in G if and only if the three
corresponding edges in E’ form a triangle in G’ since there is no triangle in G
contains an edge in F; and an edge in E5. Thus, an edge triangle packing of
size k (resp., an edge triangle covering of size k) in G is also an edge triangle
packing of size k (resp., an edge triangle covering of size k) in G’. This implies
that Reduction Rule 4 is correct for both ETP and ETC.

We give a simple greedy algorithm to find the edge sets E; and FEs for a
given vertex v. Initially, let F; contain an arbitrary edge e incident on v. We
iteratively perform the following steps until no further updates occur: if there is
a triangle containing an edge in F; and an edge €’ incident on v but not in Ej,
then add edge €’ to E;. It is easy to see that all edges in 7 must be in the same
part to satisfy the requirement. If Fy # E, then we can split E to two parts F
and Fy = E'\ E;. Otherwise, the edges incident on v cannot be split. a

4.2 Adjustments Based on a Triangle Packing

After applying the first four rules, our algorithms will find a maximal edge-
disjoint triangle packing S by using an arbitrary greedy method. This can be

176 Z. Sheng and M. Xiao

done easily in polynomial time. The following rules are based on the packing .S.
From now on, we let F' = V' \ V(S) denote the set of vertices not appearing in
S and R = E'\ E(S) denote the set of edges not appearing in S. We begin with
the following trivial rule.

Reduction Rule 5. If |S| > k, for ETP, return ‘yes’ to indicate that the
instance is a yes-instance; and for ETC, return ‘no’ to indicate that the instance
18 a mo-instance.

The following three rules just update the packing S by replacing some trian-
gles in it and do not change the graph. Illustrations of the three rules are shown
in Fig. 3.

_— Edges in E(S)

EdgesinR

V2 V3

Reduction 6

vy vy

vy’

Reduction 7 Reduction 8

Fig. 3. Illustrations of Reduction Rules 6-8

Reduction Rule 6. If there is a triangle vivaovs € S such that there are at least
two edge-disjoint triangles in the spanned graph G[R U {vive,vivs, vous}], then
replace v1vav3 with these triangles in S to increase the size of S by at least 1.

Reduction Rule 7. If there are two edge-disjoint triangles v1vov3 and v V5V €
S such that there are at least three edge-disjoint triangles in the spanned graph
G[R U {v1v2, 0103, 203, V405, V46, U5Vs }|, then replace vivavs and vivsvg with
these triangles in S to increase the size of S by at least 1.

Reduction Rule 8. If there are two edge-disjoint triangles vivov3 and v4v5v6 €
S such that there are two edge-disjoint triangles vivhvs and vyvivg in the
induced graph G[F U{v1, va,vs, v4, s, 6 }]| such that |{v],vh, vi} U{v), vE, v5} >
[{v1,v2,v3} U {vg,v5,06}| , then replace triangles vivavs and vivsvg with trian-
gles vivhvh and vivivg in S to increase the number of vertices appearing in S by
at least 1.

Note that an application of Reduction Rules 68 will not change the structure of
the graph. Thus, the first four reduction rules will not be applied after executing
Reduction Rules 6-8.

Improved Kernels for Edge Triangle Packing and Covering 177

4.3 A Reduction Based on Fat-Head Crown Decomposition

After Reduction Rule 8, we obtain the current triangle packing S. An edge in
E(S) is called a labeled edge if it is spanned by at least one vertex in F'. We let
L denote the set of labeled edges.

We can find a fat-head crown decomposition (C, H, X) with C C V' \ V(L)
and H C L in polynomial time if it exists by Lemma 2. Moreover, we will apply
the following reduction rule to reduce the graph, the correctness of which is
based on Lemma 3.

Reduction Rule 9. Use the algorithm in Lemma 2 to check whether there is a
fat-head crown decomposition (C, H, X) such that®) # C C V\V(L) and H C L.
If yes, then delete vertex set C' and edge set H, and let k =k — |H|.

An instance is called reduced if none of the nine reduction rules can be applied
to it. The corresponding graph is also called a reduced graph.

Lemma 5 (*). For any input instance, the kernelization algorithms run in
polynomial time to output a reduced instance.

5 Analysis Based on Discharging

Next, we use a discharging method to analyze the size of a reduced instance. Note
that there is no significant difference between ETC and ETP in the analysis. We
partition the graph into two parts: one part is the edge-disjoint triangle packing
S after applying all the reductions; the other part is the set F' of vertices not
appearing in S. Before proceeding with the analysis, we will establish some
properties that will be utilized.

Lemma 6. Consider a reduced graph G = (V, E) with triangle packing S. For
any triangle vow € S, at most one of {uv,vw,uw} is a labeled edge.

Proof. Assume to the contrary that there are two edges, say wv and vw are
spanned by vertices in F'. We show some contradiction.

If edges uv and vw are spanned by two different vertices z, 2’ € F respec-
tively, then Reduction Rule 6 could be applied (Case 1 in Fig.4). Therefore,
edges uv and vw are spanned by the same vertex x € F. Since Reduction Rule
3 is not applied on the four vertices {u,v,w,x}, we know that at least one edge
in {vww, uw, ux, vw, ve, wr} is contained in a triangle other than wwv, uvz, vwe,
and vwzx. Due to symmetry, we only need to consider two edges vw and xw.

Assume that edge vw is contained in a triangle vwy, where y & {u,z}. If
none of {yv,yw} appears in E(S), then Reduction Rule 6 could be applied to
replace uvw with two triangles zvu and yvw in S. If at least one edge in {yv, yw}
is contained in E(S), without loss of generality, assume yw € E(S) and there is
a triangle ywz € S. For this case, Reduction Rule 8 could be applied to replace
vuw and ywz with zvu and ywz (Case 2 in Fig. 4).

Assume that edge zw is contained in a triangle zwy, where y & {u,v}. By
the maximality of S, we know that at least one of {xy, yw} must appear in E(S).

178 Z. Sheng and M. Xiao
X v x' X \Y y X \Y z
u w u w z u w y
Casel Case 2 Case 3

Fig. 4. Three cases in Lemma 6

v L

Fig. 5. An illustration for triangles and vertices in G

However, edge 2y can not appear in E(S) since x € F. We know that wy € E(S)
and there is a triangle wyz € S. For this case, Reduction Rule 8 could be applied
to replace vuw and ywz with zvu and wyz (Case 3 in Fig. 4).

In any of these cases, we can find a contradiction to the fact that the graph
is reduced. O

A triangle wvw € S is good if it contains a labeled edge and bad otherwise. By
Lemma 6, we know that there is exactly one labeled edge in each good triangle.
We let G’ be the graph obtained by deleting the set L of labeled edges from G.
Consider a good triangle uvw with labeled edge uwv. If the two edges vw and
wu are not in any triangle in G’, we call the triangle ezcellent. Otherwise, we
call the triangle pretty-good. We let S; denote the set of excellent triangles, Sy
denote the set of pretty-good triangles, and S5 denotes the set of bad triangles
in S. The number of triangles in S7, Sy and S3 are denoted by ki, k2, and ks,
respectively. Let V3 = V(S1) \ (V(L) UV (S2) UV(S3)) and Vo = V(S2) \ V(L).
See Fig. 5 for an illustration of these concepts.

5.1 The Analysis

The discharging method stands as a renowned technique in graph theory, finding
its most notable application in the proof of the famous Four Color Theorem. In
this section, we will use the discharging method to analyze the number of vertices
present in Sy, So, S3, and F. The idea of the method is as follows.

First, we initially assign some integer values to vertices, edges, and triangles
in S. The total value assigned is at most 3k. Subsequently, we perform steps

Improved Kernels for Edge Triangle Packing and Covering 179

3 1 11 j 1 1
; ; l ; 1 ;
Fig. 6. An illustration for Step 1

to update the values, where certain values on vertices, edges, and triangles are
transformed into other vertices, edges, and triangles. In these steps, we never
change the structure of the graph and the total value in the graph. After per-
forming these transformations, we demonstrate that each vertex in the graph
has a value of at least 1. Consequently, we conclude that the number of vertices
in the graph is at most 3k.

Initialization: Assign value 3 to each edge in L and each triangle in S3. Edges
not in L, vertices, and triangles in S; U Sy are assigned a value of 0.

By Lemma 6, we know that each of excellent and pretty-good triangles con-
tains exactly one labeled edge in L and each bad triangle in S3 contains no
labeled edge. Thus, the total value in the graph is 3k; + 3ks 4+ 3k3 < 3k.

Step 1: For each labeled edge in L, transform a value of 1 to each of its two
endpoints; for each triangle in S3, transform a value of 1 to each of its three
vertices.

Figure 6 illustrates the transformation process of Step 1. After Step 1, each
labeled edge has a value of 1, and all triangles have values of 0. Note that some
vertices may have a value of 2 or more, as they may serve as endpoints of multiple
labeled edges and can also be vertices in V' (S3). However, vertices in FUV; UV,
still retain a value of 0.

A triangle component is a connected component in the graph H =
(V(S),E(S)). For a vertex v € V(S5), we let C(v) denote the set of vertices
in the triangle component which contain v.

Step 2: For each triangle component in G, we iteratively transform a value of 1
from a vertex with a value of at least 2 to a vertex with a value of 0 in the same
triangle component, where vertices in V7 have a higher priority to get the value.

Lemma 7. After Step 2, each triangle component has at most one vertex with
a value of 0. Moreover,

(i) For any triangle component containing a triangle in S3, each vertex in the
triangle component has a value of at least 1;

(i) For any triangle component containing at least one triangle in Sa, if there
s a vertex with a value of 0 in the triangle component, then the vertex must
be a vertex in Vs.

Proof. Let @ be a triangle component with x triangles. Since) is connected,
it contains at most 2x + 1 vertices. Assume that among the = triangles, there

180 Z. Sheng and M. Xiao

a(0),

NN
VAVARSAVAV

w(1) y(0) w(1) v(1)

Fig. 7. An illustration for Step 3, where the number in parentheses next to each vertex
represents the value of that vertex

are xp triangles in S U S5 and x5 triangles in S, where z1 + zo = x. By the
definition, we know that each triangle in S; U S5 contains a distinct labeled
edge. According to the initialization of the assignment, we know that the total
value is 2x1 + 3z9 = 2z + x2. It always holds that 22 + 1 < (2z + 22) + 1, and
2z 4+ 1 < 2z 4+ x5 when x5 > 1. Thus, @ has at most one vertex with a value of
0. When @ contains some triangles from Ss, i.e., zo > 1, all vertices in @ will
get a value of at least 1. The statement (ii) holds because vertices in V; have a
higher priority to receive the value in Step 2. g

After Step 2, only vertices in F', some vertices in V7, and some vertices in
V5 have values of 0. We use the following lemma to transform some values to
vertices in V5 with a value of 0.

Lemma 8 (*). Consider two triangles vuw and vxy € Sy sharing a common
vertex v, where uwv and vax € L. If there is an edge wy € E, then wv and v are
spanned by exactly one vertex in F'UVy \ C(v).

Step 3: If there are two triangles vuw and vry € Sy sharing a common vertex
v such that uv and vz are two labeled edges in L and there is an edge wy € E,
we transform a value of 1 from edge vz to the unique vertex ¢; € F' spanning
vz and transform a value of 1 from edge uv to the vertex with a value of 0 in
C(v) if this vertex exists.

See Fig. 7 for an illustration of Step 3. We have the following property.

Lemma 9. Every vertex in Vo has a value of at least 1 after Step 3.

Proof. Assume to the contrary there is a vertex w € V, with a value of 0. We
know that all vertices in C(w) \ {w} have a value of at least 1 by Lemma 7. Let
wuv € Sy be the triangle containing w, where wv is the labeled edge spanning
by a vertex g € F'. As shown in Fig. 8. At least one of uw and vw is in a triangle
in graph G — L by the definition of Ss. Without loss of generality, we assume
that uw is contained in a triangle uwz, where x # v. At least one of uz and wzx
is contained in a triangle in S otherwise Reduction Rule 6 could be applied.

Case 1: Edge ux is contained in a triangle uxy € S. See Case 1 in Fig.8. The
triangle uxy is not in S3 otherwise there is a contradiction that w would have

Improved Kernels for Edge Triangle Packing and Covering 181

q q

Case 1

Fig. 8. An illustration for Lemma 9

a value of at least 1 by Lemma 7. Thus, triangle uxy must be in S; U Se and
there is exactly one of ux, uy, and xy is a labeled edge. Edge ux would not be a
labeled edge since triangle wwz is contained in G — L. If zy is the labeled edge
that is spanned by a vertex ¢’ € F, then Reduction Rule 8 could be applied
to replace triangles uvw and wxy with triangles uvw and zyq’, a contradiction
to the factor that the graph is reduced. If uy is the labeled edge, then triangle
ury € So since ux is contained in a triangle uxw € G — L. For this case, the
vertex w would have a value of at least 1 by Lemma 7. We can always find a
contradiction.
Case 2: Edge wz is contained in a triangle wzz € S. See Case 2 in Fig.8. If
z # ¢, then Reduction Rule 8 could be applied to replace triangles uvw and
wxz with triangles wzz and quu, a contradiction to the factor that the graph is
reduced. If z = ¢, then at least two edges in triangle vuw are spanned by vertices
in F, a contradiction to Lemma 6.

In either case, a contradiction is reached, which implies that the assumption
of a vertex w € V5 having a value of 0 is incorrect. Therefore, every vertex in V5
has a value of at least 1 after Step 3. O

After Step 3, all vertices with a value of 0 are in either F' or V;. We let V] denote
the set of vertices with a value of 0 in Vi, F’ denote the set of vertices with a
value of 0 in F, and L’ denote the set of edges with a value of 1 in L after Step
3. We give more properties.

Lemma 10. Set F' U V] is an independent set.

Proof. We prove that F'U V] is an independent set, which implies F’ U V7 is an
independent set since F UV] C FUV;. Assume to the contrary that there is an
edge uv between two vertices in F'U V. There is at least one triangle vvw € G
containing uv since Reduction Rule 2 has been applied. At least one of uv, vw,
and uw must be in F(S) by the maximality of S.

If uv € E(S), we let uvz be the triangle in S containing uv. First, we know
that u and v € V; since FNV(S) = 0. By the definition of V;, we get that none
of u and v is contained in a triangle in S3 and none of u and v is an endpoint of
a labeled edge. Thus, triangle uvz is not a triangle in S3 and it does not contain
any labeled edge and then it is not a triangle in S; U S, which implies triangle
uvzx is not in S, a contradiction.

182 Z. Sheng and M. Xiao

Otherwise, one of uw and vw, say uw, is contained in E(S). Let uwy be the
triangle in S containing uw. We also have that u € V; since F N V(S) = (. By
the definition of V7, we know that u is not a vertex in a triangle in S3, and then
uwy is not a triangle in S3. Thus, triangle uwy can only be in S U.S5. Note that
none of uv, vw and uw can be a labeled edge since v and v € FUV;. Thus, edge
uw is still in a triangle uvw in G — L, and then wwy can not be a triangle in ;.
However, triangle uvw can not be a triangle in S5 too since u is a vertex in Vj.
We also get a contradiction that triangle uvw is not in S.

Hence, we have shown that no edge exists between any two vertices in F'UVY,
which proves that F/ U V] forms an independent set. O

Lemma 11 (*). Vertices in F’ only span edges in L'.
Lemma 12 (*). Vertices in V| only span edges in L’.
Lemma 13. After Step 3, it holds that |[F' U V]| <|L’|.

Proof. By Lemma 10, 11, and 12, we know that F’UVY is an independent set and
any vertex v’ € F'UV{ only span edges in L'. If |[F’UVY| > |L/|, then by Lemma 1
there is a fat-head crown decomposition (C, H, X) of G with C C F' U V{ and
H C L'. Moreover, the fat-head crown decomposition can be detected by Lemma,
2 and will be handled by Reduction Rule 9 since F" UV C FUV; CV \ V(L)
and L' C L. Thus, we know the lemma holds. O

Step 4: We transform value from edges in L’ to vertices in F’ U V] such that
each vertex in F" U VY gets value at least 1 by Lemma 13.

After Step 4, each vertex in G has a value of at least 1. Since the total value
in G is at most 3k, we can conclude that the graph has at most 3k vertices.

Theorem 1. EDGE TRIANGLE PACKING and EDGE TRIANGLE COVERING
admit a kernel of at most 3k vertices.

6 Conclusion

In this paper, we present simultaneous improvements in the kernel results for
both EDGE TRIANGLE PACKING and EDGE TRIANGLE COVERING. Our app-
roach incorporates two key techniques to achieve these enhancements. The first
technique involves utilizing fat-head crown decomposition, which enables us to
effectively reduce various graph structures. By applying this technique, we can
simplify the problem instances. The second technique we introduce is the dis-
charging method, which plays a crucial role in analyzing kernel size. This method
is simple and intuitive, and we believe it has the potential to be applied to the
analysis of other kernel algorithms.

Acknowledgments. The work is supported by the National Natural Science Foun-
dation of China, under the grants 62372095 and 61972070.

Improved Kernels for Edge Triangle Packing and Covering 183

References

10.

11.

12.

13.

14.

Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

Holyer, I.: The NP-completeness of some edge-partition problems. SIAM J. Com-
put. 10(4), 713-717 (1981)

Kann, V.: Maximum bounded h-matching is MAX SNP-complete. Inf. Process.
Lett. 49(6), 309-318 (1994)

Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM J. Discret. Math. 2(1), 68-72 (1989)

Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs.
J. ACM 41(1), 153-180 (1994)

Mathieson, L., Prieto, E., Shaw, P.: Packing edge disjoint triangles: a parameterized
view. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC 2004. LNCS, vol.
3162, pp. 127-137. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28639-4_12

Yang, Y.: Towards optimal kernel for edge-disjoint triangle packing. Inf. Process.
Lett. 114(7), 344-348 (2014)

Lin, W., Xiao, M.: A (3+¢)k-vertex kernel for edge-disjoint triangle packing. Inf.
Process. Lett. 142, 20-26 (2019)

Yuan, H., Feng, Q., Wang, J.: Improved kernels for triangle packing in tourna-
ments. Sci. China Inf. Sci. 66(5), 152104 (2023). https://doi.org/10.1007/s11432-
021-3551-2

Briigmann, D., Komusiewicz, C., Moser, H.: On generating triangle-free graphs.
Electron. Notes Discret. Math. 32, 51-58 (2009)

Dehne, F., Fellows, M., Rosamond, F., Shaw, P.: Greedy localization, iterative
compression, and modeled crown reductions: new FPT techniques, an improved
algorithm for SET SPLITTING, and a novel 2k kernelization for VERTEX COVER. In:
Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp.
271-280. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28639-
4.24

Xiao, M., Kou, S.: Parameterized algorithms and kernels for almost induced match-
ing. Theor. Comput. Sci. 846, 103-113 (2020)

Xiao, M., Kou, S.: Kernelization and parameterized algorithms for 3-path ver-
tex cover. In: Gopal, T.V., Jager, G., Steila, S. (eds.) TAMC 2017. LNCS, vol.
10185, pp. 654-668. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55911-7.47

Cerveny, R., Choudhary, P., Suchy, O.: On kernels for d-path vertex cover. In:
47th International Symposium on Mathematical Foundations of Computer Sci-
ence, MFCS 2022, 22-26 August 2022, Vienna, Austria, vol. 241 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fiur Informatik, pp. 29:1-29:14 (2022)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-28639-4_12
https://doi.org/10.1007/978-3-540-28639-4_12
https://doi.org/10.1007/s11432-021-3551-2
https://doi.org/10.1007/s11432-021-3551-2
https://doi.org/10.1007/978-3-540-28639-4_24
https://doi.org/10.1007/978-3-540-28639-4_24
https://doi.org/10.1007/978-3-319-55911-7_47
https://doi.org/10.1007/978-3-319-55911-7_47

q

Check for
updates

1

Error correcting codes are fundamental objects in combinatorics and computer
science. The study of these objects together with the bounds and parameters that
can be achieved, has also helped shape the field of information theory starting
from the pioneering work of Shannon and Hamming. In the theory of error-
correcting codes, linear codes form a fundamental class of codes that are building
blocks of many important constructions and applications. Such codes have simple

Random Shortening of Linear Codes
and Applications

Xue Chen', Kuan Cheng?, Xin Li®, and Songtao Mao>®)

! University of Science and Technology of China, Anhui, China
2 Peking University, Beijing, China
ckkcdh@pku.edu.cn
3 Johns Hopkins University, Baltimore, MD 21218, USA
{lixints,smao13}@jhu.edu

Abstract. Random linear codes (RLCs) are well known to have nice
combinatorial properties and near-optimal parameters in many different
settings. However, getting explicit constructions matching the parame-
ters of RLCs is challenging, and RLCs are hard to decode efficiently. This
motivated several previous works to study the problem of partially deran-
domizing RLCs, by applying certain operations to an explicit mother
code. Among them, one of the most well studied operations is random
puncturing, where a series of works culminated in the work of Guruswami
and Mosheiff (FOCS’ 22), which showed that a random puncturing of a
low-biased code is likely to possess almost all interesting local properties
of RLCs.

In this work, we provide an in-depth study of another, dual opera-
tion of random puncturing, known as random shortening, which can be
viewed equivalently as random puncturing on the dual code. Our main
results show that for any small e, by starting from a mother code with
certain weaker conditions (e.g., having a large distance) and performing
a random (or even pseudorandom) shortening, the new code is e-biased
with high probability. Our results hold for any field size and yield a short-
ened code with constant rate. This can be viewed as a complement to
random puncturing, and together, we can obtain codes with properties
like RLCs from weaker initial conditions.

Our proofs involve several non-trivial methods of estimating the
weight distribution of codewords, which may be of independent
interest.

Introduction

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14423, pp. 184-197, 2024.
https://doi.org/10.1007/978-3-031-49193-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49193-1_14&domain=pdf
https://doi.org/10.1007/978-3-031-49193-1_14

Random Shortening of Linear Codes and Applications 185

algebraic structures that are often key ingredients in their performance and
analysis. For example, any linear code with message length k£ and codeword

length n over the field F, can be described by both a generator matrix in IFZ xn

and a parity check matrix in Fy*" %),

It is well known that random linear codes (RLCs, where one samples each
entry of the generator matrix uniformly independently from Fy) enjoy nice
combinatorial properties and have near-optimal parameters in many different
settings. Specifically, with high probability they achieve Shannon capacity, the
Gilbert-Varshamov (GV) bound of rate-distance tradeoff, and are list-decodable
up to capacity. However, getting explicit constructions remains a challenging
problem in many situations. In addition, random linear codes have little struc-
ture, which makes it difficult to design efficient decoding algorithms. Indeed,
decoding random linear codes is closely related to the problems of learning parity
with noise and learning with errors, whose hardness is the basis of many cryp-
tographic applications (see e.g., [Reg09]). As such, many previous works studied
the problem of slightly derandomizing, or equivalently reducing the randomness
used in RLCs, while still maintaining their nice properties.

Among these works, random puncturing is one of the most well-studied oper-
ations. Here, one takes an explicit mother code, and then randomly punctures
some coordinates from the code (or equivalently, punctures some columns from
the generator matrix) to get a new, shorter code. Specifically, a P-puncturing of
a mother code C C Fy randomly chooses a subset P C [n] of size p, and for every
codeword of C, deletes all symbols with positions in P. Compared to standard
RLCs, the number of random bits used is thus reduced from O(nklogq) to O(n).
Furthermore, certain nice structures of the mother code are often inherited by
the punctured code, which makes decoding easier.

With sophisticated techniques, previous works have shown that if the mother
code satisfies some natural conditions, then after a random puncturing, with
high probability the new code has certain properties similar to those of RLCs.
For example, motivated by the problem of achieving list-decoding capacity,
recent works [Wool3,RW14,FKS22, GST21,BGM22, GZ23, AGL23] studied ran-
dom puncturing of Reed-Muller (RM) codes and Reed-Solomon (RS) codes.
Subsequent works [GM22,PP23] generalized the list-decoding property to all
monotone-decreasing local properties. In all these works, the mother code needs
to have some special properties, such as being an RS code, an RM code, having a
large distance over a large alphabet, or having a low bias over a small alphabet.
These properties are not immediately implied by general linear codes, and thus,
one of the natural goals is to gradually weaken the requirements of the mother
code so that the approach works for a broader class of codes. Indeed, as we shall
see later, this is one of the main motivations and themes in previous works.

In this paper we continue this line of work and study the following two natural
questions:

1. If the mother code is not that strong, can we still use some operations to get
a new code that has properties similar to random linear codes?
2. What other operations, besides random puncturing, are useful in this context?

186 X. Chen et al.

Towards answering these questions, we consider a different operation to
reduce the randomness of RLCs, called random shortening, previously stud-
ied in [BGL17,LDT21,YP17,NvZ15]. Specifically, for an integer s, a random
s-shortening of a code C C IE‘Z randomly chooses a subset S C [n] of size s, and
forms a new code by picking all codewords of C which are zeros at the positions
in &, and deleting these zero symbols.

We note that just like random puncturing, the operation of random short-
ening can in fact be carried out on any code, not just on linear codes. However,
for linear codes there is an important, alternative view of random shortening: it
is actually the dual version of random puncturing. In particular, one can check
that it is equivalent to a random puncturing of size s on the parity check matrix
of a linear code C, or the generator matrix of the dual code C*+. Thus in this
paper, for a linear code, we also call shortening dual puncturing.

This view brings some convenience from the viewpoint of the parity check
matrix. For example, any puncturing of the parity check matrix (hence also
shortening) of a low-density parity check (LDPC) code [Gal62] still results in an
LDPC code. Another example is expander codes [SS96]. A binary expander code
C is based on a bipartite expander graph I' : [N] x [D] — [M] with N nodes on
the left, M nodes on the right, and left degree D. The parity check matrix of C is
defined as follows. Each left node corresponds to a codeword bit and each right
node corresponds to a parity check which checks if the parity of its neighboring
codeword bits is 0. Such a code has linear time decoding algorithms, and the
distance of C can be lower bounded by using the vertex expansion property of I".
Specifically, assume that for every left set A C [N], with |A| < aN, the neighbors
of A, denoted as I'(A) has size at least (1 — €)D|A|, then [CCLO23] showed
that the distance of C is at least roughly % Notice that an S-shortening of C
actually corresponds to deleting nodes in S from the left set [N] together with
their adjacent edges, thus this does not change the vertex expansion property of
the remaining graph. Hence the new code still has a distance of at least roughly
%, which in fact corresponds to a larger relative distance (since the new code
has a shorter length). As we will see shortly, this is actually a general property
of any shortening of a code. In summary, just like puncturing, the shortening
operation also preserves certain nice properties of the mother code, e.g., being
an LDPC code or an expander code. In turn, this makes decoding easier.

Before stating our results, we first review some previous works on random
puncturing and random shortening in more detail.

1.1 Previous Work

Recently, random puncturing has drawn a lot of attention in the context of list
decoding. In [Woo13], Wootters showed that by applying a random puncturing to
a Reed-Muller code and setting the desired rate to O(g?), with high probability
one can list-decode the punctured code up to a relative radius of 1/2 — ¢, with
an exponential but non-trivial list size. In [RW14], Rudra and Wootters showed
that if the mother code is an RS code, and has a large enough relative distance
of 1 —1/q — €2, then after puncturing one can get a list-decoding radius of

Random Shortening of Linear Codes and Applications 187

1—1/qg — € and a rate close to capacity up to a polylog(1/e) factor, while the
list size is O(1/e). We remark that a rate upper bound for list-decodable linear
codes is given by Shangguan and Tamo [ST20], which is a generalized singleton
bound. Specifically, they proved that if C is a linear code of rate R that is (p, L)
list decodable, i.e., the code has a relative list decoding radius of p and list
size L, then p < (1 — R)L%rl They conjectured the existence of such codes and
proved the case for L = 2, 3. Later, towards proving this conjecture, Guo et. al.
[GLS+22] showed that there are RS codes that are (1 —e,0(1/¢)) list decodable
and the rate can be §2(¢/log(1/¢)), though they mainly use intersection matrices
instead of random puncturing. Ferber, Kwan, and Sauermann [FKS22] further
showed that through random puncturing one can achieve a rate of €/15 with
list decoding radius 1 — ¢ and list size O(1/¢). This was further improved by
Goldberg et. al. [GST21] to achieve a rate of 5=. Most recently, [BGM22] showed
that random puncturing of RS codes can go all the way up to the generalized
singleton bound if the field size is 2°(™), resolving a main conjecture of [ST20].
This was subsequently improved by [GZ23], which reduced the field size to O(n?);
and again by [AGL23], which further reduced the field size to O(n), although
[GZ23,AGL23] can only get close to the generalized singleton bound. We note
that all the above works mainly studied RS codes or RM codes, which have strong
algebraic structures, and some of them also require a large relative distance (e.g.,
close to 1 —1/q).

On the other hand, Guruswami and Mosheiff [GM22] considered random
puncturing of more general codes with weaker properties. Specifically, they con-
sidered two cases, where the mother code either has a low bias or has a large
distance over a large alphabet (note that the property of a low bias implies a
large distance, hence is stronger). For both cases, they showed that the punctured
code can achieve list decoding close to capacity. In fact, they showed a stronger
result, that all monotone-decreasing local properties of the punctured code are
similar to those of random linear codes. Subsequent to [GM22], Putterman and
Pyne [PP23] showed that the same results in [GM22] can be achieved by using
a pseudorandom puncturing instead, which reduces the number of random bits
used in the puncturing to be linear in the block length of the punctured code,
even if the mother code has a much larger length.

Unlike puncturing, there are only a handful of previous works on shortening.
In [NvZ15], Nelson and Van Zwam proved that all linear codes can be obtained
by a sequence of puncturing and/or shortening of a collection of asymptotically
good codes. In [YP17], Yardi and Pellikaan showed that all linear codes can
be obtained by a sequence of puncturing and/or shortening on some specific
cyclic code. In [BGL17], Bioglio et. al. presented a low-complexity construction
of polar codes with arbitrary length and rate using shortening and puncturing. In
[LDT21], Liu et. al. provided some general properties of shortened linear codes.

1.2 Notation and Definitions

Definition 1. A linear code C of length n and dimension k over a finite field
Fy is a k-dimensional subspace of the n-dimensional vector space Fy. The dual

188 X. Chen et al.

code C*+ of a linear code is the dual linear subspace of C. Hence the sum of the
rates of C' and C* is 1. We call d*(C) the dual distance of C as the minimum
distance of its dual code C*+. The relative dual distance of C is the ratio of its

dual distance to its length: 6+(C) = %. We denote a linear code with these
properties as an [n, k,d), code or an [n,k,d,d"], code.

Definition 2. Let P be a subset of [n] of size p. A P-puncturing on a code C
of length n involves removing p positions indexed by P. The resulted punctured
code CP) has length n — p. If P is a uniformly random subset of size p, we say
that C'P) is obtained from C by a random p-puncturing.

Definition 3. Let S be a subset of [n] of size s. An S-shortening on a code C
of length n involves selecting all codewords with zero values on positions indexed
by S and removing these positions. The resulted shortened code CIS! has length
n—s. If S is a uniformly random subset of size s, we say that C!5) is obtained
from C by a random s-shortening.

Definition 4. The g-ary entropy function is defined as Hy(x) = xlog,(q —1) —
rlog,r — (1 —z)log, (1 —).

Throughout the paper, we use “with high probability” to mean that when the
rate R, relative distance 6, relative dual distance §* of the code, and other given
parameters are fixed, the probability of the event is 1 — O(exp(—tn)) for some
constant t. Essentially, this means that the probability of the event occurring
approaches 1 as the block length n increases, making it increasingly likely that
the desired properties hold.

As in [GM22], in this paper we also consider monotone-decreasing, local prop-
erties. Informally, we call a code property &2 monotone-decreasing and local if,
the fact that a code C does not satisfy & can be witnessed by a small “bad
set” of codewords in C. For example, some typical properties, such as being list-
decodable to capacity and having a small bias, are monotone-decreasing and
local properties. More formally, a monotone-decreasing and local property is the
opposite of a monotone-increasing and local property, defined below.

Definition 5. A property & is said to be

— monotone-increasing if, for any code C, whenever one of its subcodes (i.e.,
a subspace of C) satisfies &, the code C itself also satisfies &2 (monotone-
decreasing if the complement of & is monotone-increasing);

— b-local for some b € N if there exists a family Bs of sets of words in Fy, with
the size of the sets at most b, and such that C satisfies &2 if and only if there
exists an set B € By satisfying B C C,

- row-symmetric if, for any code C C Fy that satisfies &, the resulting code
obtained by performing a permutation on the n positions of C also satisfies

Z.

Random Shortening of Linear Codes and Applications 189

1.3 Main Results

Random Puncturing vs. Random Shortening. Before formally stating our results,
we first informally compare the two operations of random puncturing and ran-
dom shortening. A random p-puncturing of a code of length n involves uniformly
selecting p positions randomly from [n], and discarding these positions in the
code. One can see that under appropriate conditions, this operation preserves
the distinctness of all codewords, and thus can increase the rate of the code.
However it may decrease the distance or relative distance of the code. In con-
trast, a random s-shortening of a code involves picking s positions uniformly
randomly from [n], forming a subcode that consists of codewords which contain
only zeros at these positions, and then deleting these positions in the subcode.
It can be seen that this operation perserves the distance of the code, and thus
increases the relative distance of the code, but on the other hand the rate of the
code can potentially decrease. Hence, these two operations are indeed “dual” in
some sense, and therefore one can apply both operations to adjust both the rate
and the relative distance of the code.

A linear code C C Fy, where ¢ = p” for some prime p, is called e-biased, if
tr(a-c;)

27

< en for allaEF;. where w = e »

for every codewords ¢ € C, [Y7 | w
and tr : F; — I, is the field trace map.

Our main results show that random shortening is an effective way to reduce
the bias of a code. Note that this is stronger than increasing the relative dis-
tance, since the former implies the latter. If the mother code satisfies certain
conditions, then we show after random shortening the new code can achieve an
arbitrarily small bias with high probability. We note that a random linear code
has a small bias, and thus in this sense the code after random shortening behaves
like random linear codes. Moreover, the condition that the mother code has a
low bias is required in several previous works (e.g., [GM22,PP23]), while these
works essentially do not care about the rate of the mother code. Thus we can
apply a random puncturing to the new code after a random shortening, to get
another code where all monotone-decreasing local properties are similar to those
of random linear codes. This further weakens the requirements of mother codes
in previous works to some extent.

Low-Biased Codes from Codes with Large Distance. A low-biased code must
have a large distance. However, the reverse may not hold. The following theorem
shows that it is also possible to derive a low-biased code from a code with a large
distance by random shortening.

Theorem 1. For any 0 < ¢ < 1, any [n,Rn,dn|, code C with %1 —

2
(ﬁ) <6< q;—l and any constant 0 < v < R, there exists a number

0 < s < R such that the following holds. If we perform a random sn-shortening
S to C, then with high probability, the shortened code C!°! is e-biased and has
rate at least R — 7.

190 X. Chen et al.

We note that the theorem only requires a lower bound on the relative dis-
tance, but there are no restrictions on the rate of the original code, R. Hence, this
requirement is generally easy to satisfy, for example, from simple constructions
using code concatenation. Furthermore, we can select an appropriate shortening
size to ensure that the rate of the shortened code is arbitrarily close to R.

The distance condition of C in Theorem 1 can also be relaxed, resulting in
the following theorem.

Theorem 2. Given any 0 < e < 1, if an [n, Rn,dn], code C satisfies the condi-

2
i i s a=l_ _a_ e

tion that there exists some 0 < 8 < 1, such that T—O-AE > ¢ o-1 (2(q71)) ,

then there exists a number 0 < s < R such that the following holds. If we perform

a random sn-shortening S to C, then with high probability, the shortened code
CIS) is e-biased with rate at least AR.

Indeed, the asymptotic form of the Plotkin bound is given by
q

R<1— () -5+ 0(1). (1)

Thus Theorem 2 implies that as long as the rate-distance trade-off of the original
code is close enough to the Plotkin bound, we can obtain a code with an arbi-
trarily small bias by random shortening. On the other hand, unlike in Theorem
1, the rate of the shortened code may not be arbitrarily close to R, but we can
still get a new rate that is only a constant factor smaller.

Low-Biased Codes from Codes with Small Rate and not too Small Dual Distance.
In the next theorem, there is no requirement for § to be very large. Instead, we
impose constraints on its dual distance, 5+, and the rate, R. If the dual distance
is not too small and the rate can be upper bounded, then we can also apply the
shortening technique to obtain a low-biased code.

Theorem 3. Given any 0 < ¢ < 1, if an [n, Rn,én, 6 n], code C satisfies the
. . . 1 [1+log (1-6)\2 1
condition that there exist 0 < v < i, 0 < 63 < min{e”, (0;76) ,(%)w 1,

such that §* > 63 and 0 < R < 1Jro+_gj'g1ﬂ;)Hq(éd-), then there exists a number

0 < s < R such that the following holds. If we perform a random sn-shortening
S to C, then with high probability the shortened code C'S! is e-biased with rate at
least 0.1R.

In Theorem 3, the rate of the dual code must be sufficiently large. Addition-

ngﬂ—a is less than 1, the rate-distance trade-off of the

dual code surpasses the Gilbert-Varshamov (GV) bound. Consequently, when
examining the problem within the context of the GV bound, we need to impose
specific constraints on . This leads to the following corollary.

ally, if the term

Corollary 1. Given any 0 < ¢ < 1, 6 > 1 — ¢, there exists a number
v > 0, such that for any 6+ > 85, 0 < R < (1 + v)H,(65) for a certain

Random Shortening of Linear Codes and Applications 191

0<d < min{E%, 05 (%)%}, there exists a number 0 < s < R such that the

following holds. Let C be any [n, Rn,dn, 8 n], code. If we perform a random sn-
shortening S to C, then with high probability the shortened code C'S) is e-biased
with rate at least 0.1R.

Theorem 3 and Corollary 1 show that as long as the mother code and its
dual both have a reasonable relative distance, one can use random shortening to
get a new code with an arbitrary small bias, while only losing a constant factor
in the rate. We note that linear codes such that both the code and its dual have
good relative distance are also easily constructible, for example, see [Shp09].

Random-Like Codes by Random Shortening and Puncturing. In [GM22], the
authors showed that a random puncturing of a low-biased code results in a new
code that behaves like random linear codes. Using our theorems, we present a
weaker condition that still achieves similar results. This follows from a combina-
tion of random shortening and random puncturing, as briefly discussed before.

Theorem 4. For any 0 < e < 1, b € N, and prime power q, there exists some
n > 0, such that the following holds. Let & be a monotone-decreasing, b-local,
and row-symmetric property over Fy satisfied by a random linear code of length
n and rate R'. There exists some 1 > 0 such that the following holds. If any one
of the following properties is satisfied for R, 8,0+, q,n:

1. 6 > (%—n)(l—R), or
2.6t > 85 and 0 < R < W{%Hq(éé‘) for a certain 0 < 65 <

. 1 [14log, (1-6)\2 1
min{e~, (4%3‘16(7)) ,(%)W};

then there exists m,p,s > 0 such that for any [m, Rm,om|, code, if we perform
a random sm-shortening and then a random pm-puncturing on C, the resulted
code D has length n, rate at least R’ — & and with high probability, satisfies 2.

1.4 Technique Overview

We investigate the effect of shortening as follows. An S-shortening applied to
a code C of length n involves selecting all codewords with zeros at positions
indexed by S§ and removing these positions. Specifically, if the support of a
codeword ¢ € C intersects S (in which case we say S hits ¢), then ¢ will not be
included in the shortened code; if the support of ¢ does not intersect S, then
there is a codeword ¢ € C°!, which is obtained from ¢ by removing all positions
in §. In this way, under a random shortening, each non-zero codeword has a
certain probability of being dropped and a certain probability of being retained
in CIS!. If the distance of C is én, then the probability of each codeword being
hit and dropped is at least 1 — (1 — §)®, where s is the size of S.

We use C. to denote all codewords in C which are not e-biased. If the size of
C. is small, then by a union bound, the probability that not all codewords in C,

192 X. Chen et al.

are hit by S is exponentially small. Thus, with high probability, all codewords
in C that are not hit by S and inherited to CI®) are e-biased. Hence, a critical
part of all our proofs is to upper bound the size of C..

Furthermore, as long as C is a linear code and s is less than the dimension
k of C, we know that the shortened code C!®! has dimension at least k — s.
Consequently, CIS! retains a nonzero constant rate as well.

Change of parameters. The shortening results in changes to the parameters of
the code. Here, we mainly apply shortening for two purposes: adjusting the bias
and amplifying the relative distance.

1. Adjusting the bias: Let C be of length n. When C.s is hit by &, it implies
that the codewords in C not hit by S are all ¢’-biased. However, it doesn’t
directly imply that the shortened code CIS! is also £’-biased, since the shorten-
ing operation changes the length of the code. Nevertheless, the new bias € of
51 is given by € < %, where s is the size of the shortening S. If s is small
compared to n, € is close to €’. In the proof of Theorem 1, we can choose s to
be a sufficiently small fraction of n. In the proof of Theorem 3, we provide an
upper bound for R, which also enables us to choose a small shortening size.
In both cases, we set the shortening size to be less than 0.05¢'n, allowing us
to choose ¢/ = 0.9¢.

2. Amplifying the relative distance: We use another technique in the proof
of Theorem 2 to first transform a code with a rate-distance trade-off near the
Plotkin bound into a code with near-optimal distance. The distance of the
shortened code C¥) is no less than that of the original code C. However, since
CS] has length n — s instead of n, its relative distance becomes 1_% This

allows us to increase the relative distance of the code. In turn, Theorem 2
follows from Theorem 1.

Estimation of the Size of C.. This is the most critical part of all our proofs. For
Theorem 1 and Theorem 3, we have two different ways of estimating the upper
bound of |C.|:

1. Estimating |C.| with relative distance §: We use J,;(6) to denote the list
decoding radius corresponding to the classical Johnson bound for a code over
F, with relative distance ¢. It is easy to see that when § is close to the optimal
q%l, so is J,(0). To give an upper bound of |C.|, we construct ¢ balls in Fy
with radius J, () and centered at ¢-1, where 1 is the all-one vector and ¢ € F,.
By the Johnson bound, the number of codewords covered by these balls is at
most poly(n). We show that, if a codeword ¢ is not covered by these balls,
its empirical distribution over F, is close to the uniform distribution, which
implies ¢ is small biased. This upper bounds |C.| by poly(n).

2. Estimating |C.| with relative dual distance 6 and rate R: If C has
dual distance d*, then any d* — 1 columns of the generator matrix of C are
linearly independent, which means that if we uniformly randomly choose a
codeword from C, then any d* — 1 symbols of the codeword are independently

Random Shortening of Linear Codes and Applications 193

uniform, i.e., the symbols of a random codeword are d*+ — 1-wise independent.
We can now use this property to estimate the probability that a codeword
randomly chosen from C is not e-biased. This is a typical application of the
concentration phenomenon from the higher moment method, where we use
Hoeffding inequality, Chernoff bound, and Sub-Gaussian property to bound
the (d* — 1)th moment of the summation of some random variables. Then by
Markov’s inequality, the probability that a random codeword is not e-biased
can be bounded, which also gives an upper bound on |C.]|.

Obtaining Random-Like Codes. To obtain random-like codes, we combine our
results with those in [GM22], which state that a randomly punctured low-biased
code is likely to possess any monotone-decreasing local property typically sat-
isfied by a random linear code of a similar rate. By our results, we can start
from a code with less stringent conditions and achieve the same results as in
[GM22], through the operations of a random shortening followed by a random
puncturing.

2 Estimation on Low-Biased Codewords

For a random vector x € Fy, it is known from the law of large numbers that
its empirical distribution Emp,, is, with high probability, e-close to the uniform
distribution over F, for any € as n goes to infinity. Therefore, for each €, let C be
a random code; C. will, with high probability, constitute only a small fraction
of C. In the following, we present several estimation methods for the size of |C,|

under general conditions.

Lemma 1. Let C be an [n, Rn,dn], code. For any e > 2(q — 1) %1(‘%1 —9),
IC.| < ¢*on?.

Another approach to approximate |C.| is the probability method. It is essen-
tial to observe that when the dual code of C has distance d + 1, every set of d
columns within the generator matrix of C are linearly independent. This observa-
tion implies that when examining the distribution of a randomly selected code-
word from C, the bits exhibit d-wise independence. Consequently, C is bound by
the constraints of the d-th moment inequality.

Lemma 2. zq,--- ,x, are independent random variables with u = 0, and x; €
[—1,1]. Denote X,, = > ., x;. Then for any even d,
d

E((Xn)%) <2-(2n)*? - (! (2)

Corollary 2. Let zy,x9-- ,2, be random wvariables taking values in [—1,1]

which are d-wise independent, E(x;) = 0. Let X,, = > | x;, 6 = d/n, then
for any e > 0,

Pr(| Y| 2 em) < 4@(&%)5”/? (3)

194 X. Chen et al.

Lemma 3. Let x be a random vector, whose components uniformly take values
in Fy and are d-wise independent. Let § = d/n. Then

(4)

gce

25 on/2
Pr(z is not e-biased) < 2v/2(q — 1) (2> .

Corollary 3. Let C be a code of length n, rate R and dual distance d*+ = 6*n
over the field Fy. Then for each € > 0, the number of codewords which are not
e-biased is not more than

951 5+tn/2
8qVmdtn - <) gt

e2e

for sufficiently large n.

3 Proof of the Main Theorems

Before proving Theorem 1, we first give the following theorem.

Theorem 5. Let C be an [n,Rn,dn|, code. If we perform a random sn-
shortening S to C, where s < R, then with high probability, the shortened code

_ fa=1l(a=1_§5)4¢
CIS) is e-biased, where & = 27D "7(8 o)t .

Proof. (of Theorem 1). Let s = min{ -, e U 1),/%((1;—1 —6)}. Since

s <min{ -, £}, the rate of C1 is

—

R—s

1_S>R—'y. (5)

€

2
Rearranging the inequality q;—l — q%l (m) < §, we get

And since s < £ — (¢ — 1) q;—l(% —4).

q q
1—s
—1 —1 £
Dy oS (7)
L= 5+ (a— 1)/ (1 —9)
<e.

By Lemma 5, C!¥! is e-biased.

Random Shortening of Linear Codes and Applications 195

Now we present an in