
A Physical Zero-Knowledge Proof
for Sumplete, a Puzzle Generated

by ChatGPT

Kyosuke Hatsugai1(B), Kyoichi Asano1, and Yoshiki Abe1,2

1 The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu,
Tokyo 182-8585, Japan

{hatsugai,k.asano,yoshiki}@uec.ac.jp
2 National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi,

Koto-ku, Tokyo 135-0064, Japan

Abstract. In March 2023, ChatGPT generated a new puzzle, Sumplete.
Sumplete consists of an n × n grid, each whose cell has an integer. In
addition, each row and column of the grid has an integer, which we call
a target value. The goal of Sumplete is to make the sum of integers in
each row and column equal to the target value by deleting some inte-
gers of the cells. In this paper, we prove that Sumplete is NP-complete
and propose a physical zero-knowledge proof for Sumplete. To show the
NP-completeness, we give a polynomial reduction from the subset sum
problem to Sumplete. In our physical zero-knowledge proof protocol, we
use a card protocol that realizes the addition of negative and positive
integers using cyclic permutation on a sequence of cards. To keep the
solution secret, we use a technique named decoy technique.

Keywords: Physical Zero-knowledge Proof · Card-based
Cryptographic Protocol · Sumplete

1 Introduction

1.1 Background

Chat Generative Pre-trained Transformer (ChatGPT) is an artificial intelligence
chatbot developed by OpenAI [18]. ChatGPT can response to questions more
naturally than usual artificial intelligence. Moreover, it can work on generative
tasks such as writing sentences, programming, drawing pictures and making
puzzles.

In March 2023, ChatGPT generated a puzzle named Sumplete1 [19].
Sumplete is a puzzle consisting of a grid with n × n cells. Each cell in the grid
has an integer. In addition, each row and column in the grid also has an integer,
and we call it the target value hereafter. The goal of Sumplete is to delete some

1 This name was also named by ChatGPT [19].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 398–410, 2024.
https://doi.org/10.1007/978-3-031-49190-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_29&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_29

A Physical Zero-Knowledge Proof for Sumplete 399

Fig. 1. Example of a problem (left) and its solution (right) of Sumplete.

integers in the cells so that the sum of the non-deleted integers in every row
(resp., column) is equal to the target value of the row (resp., column). Figure 1
shows an example of the Sumplete problem and its solution: deleted integers’
locations.

Since there are 2n2
possible combinations of locations to delete integers, it

seems hard to judge whether the given Sumplete problem has a solution if n
becomes large. Indeed, as described later, Sumpelte is NP-complete. It is inter-
esting that AI generates an NP-complete puzzle.

This paper considers a situation where a contestant wants to convince a
challenger the existence of a solution to a given Sumplete problem while the
contestant does not want to tell the solution to the challenger. Although these
requirements may seem contradictory at first glance, they can be satisfied simul-
taneously using a cryptographic technique called Zero-knowledge proof (ZKP).

ZKP is an interactive proof proposed by Goldwasser, Micali, and Rackoff
in 1989 [7]. ZKP allows a prover P , who knows the solution to a problem, to
convince a verifier V of the existence of the problem’s solution without reveal-
ing the solution itself. Usually, ZKP protocols are implemented using comput-
ers. However, ZKP protocols implemented by physical tools like cards instead of
computers are also studied, called physical zero-knowledge proof (physical ZKP).
The first physical ZKP protocol is that for a pencil puzzle, Sudoku, proposed
by Gradwohl, Naor, Pinkas, and Rothblum in 2007 [8]. Since then, physical
ZKP protocols are proposed for various puzzles such as Sudoku [8,20,28,29],
Nonogram [4,21], Slitherlink [11,12], Akari [2], Numberlink [23,24], Norinori [6],
Makaro [3,27], Takuzu [2,14], Kakuro [2,15], Shikaku [26], and Pancake sort-
ing [10].

Most card operations used in physical ZKP protocols come from card-based
cryptography, secure multiparty computation (MPC) using cards. The study of
card-based cryptographic protocol began with the protocol for computing the
two-input logical AND function by den Boar in 1989 [1] and that for computing
the two-input logical XOR function by Crepeau and Kilian in 1993 [5]. After
their work, to realize MPC with cards for more complex functions, card shuffle
operations called pile-shifting shuffle [30,31] and pile-scramble shuffle [9] are
proposed. We also use these operations in this paper.

400 K. Hatsugai et al.

1.2 Our Contributions

Neither NP-completeness of Sumplete nor zero-knowledge proof protocol for
Sumplete has been proven. In this paper, we prove that Sumplete is NP-complete.
Our proof is based on the reduction from the Subset Sum Problem (SSP), known
as an NP-complete problem.

In addition, we propose a physical zero-knowledge proof protocol for
Sumplete. Our card-based ZKP protocol allows a prover P to convince a verifier
V that integers in a Sumplete instance’s cells can be deleted to satisfy the sum
conditions in each row and column. On the other hand, during the protocol,
the verifier V cannot get any information about which integers in the cells are
deleted. Because of the NP-completeness of Sumplete, the larger problem’s size
n becomes, the more difficult it is to obtain the solution. Therefore, it is worth
proposing a zero-knowledge proof protocol for Sumplete.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we introduce zero-
knowledge proof and card operations. Section 3 is devoted to show the NP-
completeness of Sumplete. In Sect. 4, we propose a physical ZKP protocol for
Sumplete. Then, in Sect. 5, we show our proposed protocol satisfies the condi-
tions required for ZKP. Finally, Sect. 6 concludes this paper.

2 Preliminaries

2.1 Notation

(Multi)sets are denoted by uppercase letters of the italic font, e.g., A = {a1, a2,
a3}. Vectors are denoted by lowercase letters of the bold font and the i-th element
of a vector v is denoted by vi, e.g., v = (v1, v2, v3). Matrices are denoted by
uppercase letters of the bold font and the element of the i-th row and j-th
column of a matrix M is denoted by mi,j , e.g.,

M =
(

m1,1 m1,2

m2,1 m2,2

)
.

2.2 Zero-Knowledge Proof

Zero-knowledge proof is an interactive proof between a prover P and a verifier V .
From now, we assume that P is a probabilistic Turing machine with unbounded
computational ability and V is a probabilistic polynomial-time Turing machine.
Let x be an instance of a NP language. For a given x which has the witness, we
suppose that P can calculate the witness from x, however V cannot. We note
that x has the witness if and only if P knows the witness since the computational
ability of P is unbound. In zero-knowledge proof, P interacts with V and finally
convince V that the problem x has the witness without revealing the witness.
Zero-knowledge proof protocols must achieve the following three conditions.

A Physical Zero-Knowledge Proof for Sumplete 401

Completeness. If P knows the witness, V is always convinced.
Soundness. If P does not know the witness, V is not convinced with more

than negligible probability. The probability that V is convinced when P does
not know the witness is called soundness error. If soundness error is less
than 1, it approaches asymptotically to 0 by executing proof many times.
However, repeating physical protocols by human hands is hard. Therefore, it
is desirable that soundness error of physical zero-knowledge proof is 0.

Zero Knowledge. V cannot obtain any information of the witness. Formally,
for every V , there exists a probabilistic polynomial-time algorithm S that
does not know the witness. If the output of S is indistinguishable from the
output of the interaction of P and V , any information about the solution is
not leaked during the interaction.

2.3 Card Operations

In this paper, we use cards whose front side is either ♣ or ♥ and whose back side
is ? . We assume that the front sides of cards with the same suit are identical,
i.e., we cannot distinguish them. In addition, the back sides of all cards are also
assumed to be indistinguishable. For understanding, we denote a face-down card
♣ (resp., ♥) by ?

♣
(resp., ?

♥
).

Cyclic Shift. Let a c := (c1, c2, . . . , ck) be a card sequence of k cards. Left cyclic
shift over c is defined as a operation that outputs

(cρ−1(1), cρ−1(2), . . . , cρ−1(k)),

where ρ is a cyclic permutation ρ:=(1 k k − 1 . . . 3 2).
Similarly, right cyclic shift over c is defined as a operation that outputs

(cσ−1(1), cσ−1(2), . . . , cσ−1(k)),

where σ is a cyclic permutation σ:=(1 2 3 . . . k − 1 k).

Pile-Scramble Shuffle. Let a p:=(p1, p2, . . . , pk) be a sequence of k piles of
cards. Note that each pile has the same number of cards. Pile-scramble shuffle
over p is a operation that outputs

(pπ−1(1), pπ−1(2), . . . , pπ−1(k)),

where a permutation π is an element of Sk, the symmetric group of degree k.

2.4 Representation of an Integer

Here, we show a representation of an integer using cards. In physical ZKP proto-
cols and card-based cryptography protocols, e.g., [10,13,22,25,32], integers from

402 K. Hatsugai et al.

1 to n are represented by a sequence of n cards, which consists of a ♥ card
and n − 1♣ cards. Specifically, an integer i (1 ≤ i ≤ n) is represented by the
position of ♥ in the sequence: if ♥ is at the i-th leftmost position, the sequence
represents the integer i. For example, 1 and 3 are represented as follows.

1 = ♥ ♣ ♣ ♣ ♣
3 = ♣ ♣ ♥ ♣ ♣

In this paper, we apply this method to represent integers including less than 1.

Definition 1 (Integer Counter). Let α and β be positive integers. An integer
i (−α ≤ i ≤ β) is represented by a sequence of α + β + 1 cards, consisting of
a ♥ card and α + β ♣ cards. Specifically, if ♥ is at the i-th leftmost position
of the sequence, the sequence represents the integer i − α − 1. We call the card
sequence to represent an integer an integer counter.

For example, 0 and −2 are represented as follows when α = 3 and β = 2.

0 = ♣ ♣ ♣ ♥ ♣ ♣
−2 = ♣ ♥ ♣ ♣ ♣ ♣

We execute the addition by shifting the counter. This method is used by Shi-
nagawa et al. [31] and Ruangwises and Itoh [26]. Suppose there is an integer
counter representing x ∈ Z, where the number of cards (i.e., the values α and
β for the counter) is large enough so that ♥ does not overflow. Then, we can
obtain the counter representing x + y (y ∈ Z) as follows: if y < 0, we execute
the left cyclic shift over the card sequence |y| times; otherwise (i.e., if y ≥ 0), we
execute the right cyclic shift over the card sequence |y| times. Since these cyclic
shift operations can be performed even if the cards of the counter are face-down,
the addition of y can be performed without revealing the value of x.

3 NP-Completeness of Sumplete

In this section, we prove that Sumplete is NP-complete. To prove the NP-
completeness, we show a polynomial-time reduction from an NP-complete prob-
lem SSP to Sumplete.

3.1 Formal Definition of Problems

Before proving Sumplete’s NP-completeness, we formally define the decisional
version of Sumplete and SSP.

Definition 2 (Sumplete). An instance of Sumplete consists of three ingredi-
ents: an n × n matrix G ∈ Z

n×n that represents each integer of the correspond-
ing cell, a vector R ∈ Z

n that represents each row’s target value, and a vector

A Physical Zero-Knowledge Proof for Sumplete 403

C ∈ Z
n that represents each column’s target value. The answer of the instance

S = (G,R,C) is Yes if there exists an n×n matrix Ĝ ∈ {0, 1}n×n that satisfies
following equations:

ri =
n∑

j=1

gi,j ĝi,j for all i ∈ {1, . . . , n} ,

cj =
n∑

i=1

gi,j ĝi,j for all j ∈ {1, . . . , n} .

If there does not exist such Ĝ, the answer is No.

For instance, the example of Fig. 2 can be represented as follows:

G =

⎛
⎜⎜⎜⎜⎝

−3 3 2 −7 9
5 −1 −9 8 −7
1 8 6 3 5
9 9 −6 8 −8

−7 3 −9 5 8

⎞
⎟⎟⎟⎟⎠ ,

R =
(−8 −5 14 3 16

)
,

C =
(
11 10 −7 6 0

)
.

The answer of above instance is Yes since there exists the following solution Ĝ:

Ĝ =

⎛
⎜⎜⎜⎜⎝

1 0 1 1 0
1 1 1 0 0
0 1 1 0 0
1 0 1 1 1
0 1 0 1 1

⎞
⎟⎟⎟⎟⎠ .

Definition 3 (Subset Sum Problem). The Subset Sum Problem (SSP) con-
sists of a multiset A ⊂ Z

n and an integer N ∈ Z. The answer of the instance
SSP = (A, N) is Yes if there exists a subset A′ ⊆ A that satisfies

∑
a∈A′ a = N .

If there does not exist such A′, the answer is No.

For example, let us consider the instance SSP = (A, N) where A:={−3, 3, 2,
−7, 9} and N := − 8. The answer of this instance is Yes since there exists the
solution A′ = {−3, 2,−7} ⊂ A.

3.2 Proof of NP-Completeness

To show that Sumplete is NP-complete, we prove that the following holds.

(1) Sumplete is in NP.
(2) Sumplete is polynomial-time reductive from SSP.

404 K. Hatsugai et al.

Proof of (1). We prove the existence of a non-deterministic polynomial-time
algorithm which can decide whether Yes or No for a given instance of Sumplete.
Let us consider the non-deterministic algorithm M that works as follows.

1. M non-deterministically chooses some cells.
2. M deletes integers in chosen cells.
3. For every row and column, M calculates the sum of non-deleted integers and

compares it with the target value. M rejects if there are rows or columns
whose sum does not equal the target value. Otherwise, M accepts.

Since each operation ends in polynomial time, M halts in polynomial time. Thus,
(1) holds.

Proof of (2). We prove (2) by showing the following three conditions hold.

(i) There exists a polynomial-time reduction f from SSP to Sumplete.
(ii) For arbitrary SSP’s instance SSP, if the answer of SSP is Yes, then the

answer of the reducted Sumplete’s instance S′:=f(SSP) is Yes.
(iii) For arbitrary SSP’s instance SSP, if the answer of S′:=f(SSP) is Yes, the

answer of SSP is Yes.

First, we show (i). Let us consider the following polynomial-time reduction
f (See also Fig. 2).

– f receives an instance of SSP, denoted by SSP:=(A, N) where
A:={a1, a2, . . . , an} ∈ Z

n and N ∈ Z.
– f outputs an instance of Sumplete, denoted by S′:=(G′,R′,C′), where G′,

R′, and C′ are defined as follows:

G′:=

⎛
⎜⎜⎜⎝

a1 a2 · · · an

aρ−1(1) aρ−1(2) · · · aρ−1(n)

...
...

. . .
...

aρ−(n−1)(1) aρ−(n−1)(2) · · · aρ−(n−1)(n)

⎞
⎟⎟⎟⎠ ,

R′:=
(
N N · · · N

)
,

C′:=
(
N N · · · N

)
,

where ρ:=(1 n n − 1 · · · 3 2) is a cyclic permutation.

We note that all the target values in S′ are N . In addition, each element of
A appears once for each row and column. In reduction f , n2 + 2n times writing
of integers and n times shifting are executed. Therefore, the running time of f
is polynomial in n.

Next, we show (ii). Since the answer of SSP is Yes, there exists the solution
A′ ⊆ A such that

∑
a′∈A′ a′ = N . Here, let us consider to delete all integers

in G′ excluding all integers in A′. Then, the set of the non-deleted integers for
each row and column in G′ equals A′ since each row and column in G′ equals

A Physical Zero-Knowledge Proof for Sumplete 405

Fig. 2. Instance of Sumplete constructed form an instance of the subset sum problem.

A. Thus, the sum of the non-deleted integers for each row and column is N .
Therefore, the answer of S′ is Yes.

Finally, we show (iii). For each row and column in S′ after deletion, the set
of non-deleted integers equals the solution of SSP. Therefore, if the answer of S′

is Yes, then the answer of SSP is Yes.
From (i), (ii), and (iii), (2) holds. 	

Hence, from (1) and (2), Sumplete is NP-complete.

4 Physical Zero-Knowledge Proof Protocol for Sumplete

In our proposed protocol, the prover represents the solution of a Sumplete’s
instance using cards, and the verifier checks whether the sum of non-deleted
integers equals the target value for each row and column.

4.1 Idea of Proposed Protocol

The outline of our proposed protocol is as follows. The prover calculates the
sum of non-deleted integers for each row and column of the grid using an integer
counter. Then, the verifier checks that the sum equals the target value. If the sum
equals the target value for all rows and columns, the verifier can be convinced
of the solution’s existence.

Decoy Technique. To realize the above operation without revealing the solution,
i.e., the locations of cells whose integer is deleted, we prepare two integer counters
called a true counter and a false counter for each row and column. The true
(resp., false) counter is used to calculate the sum of the non-deleted (resp.,
deleted) integers in a row or column. In our protocol, for each integer in a row
or column, the prover add the integer to the true or false counter depending
on the solution: if it is a non-deleted (resp., deleted) integer, it is added to the
true (resp., false) counter. By using a technique we call decoy technique, we can
add integers while hiding the solution, i.e., which counter they were added to.
Similar technique is widely seen in physical cryptography, e.g., [16,17].

406 K. Hatsugai et al.

4.2 Proposed Protocol

Proposed protocol proceeds as follows.

1. For each cell, the prover places a pair of face-down cards ?
♥
?
♣

on non-deleted

integer’s cells and ?
♣
?
♥

on deleted integer’s cells.

2. For each row and column, the prover and the verifier execute the following
operations.
(a) The prover calculates α (resp., β), an absolute value of the sum of negative

(resp., positive) integers. The prover also makes a true counter and a false
counter which can represent an integer i (−α ≤ i ≤ β). Then, the prover
places the false counter below the true counter. In addition, the verifier
checks that both counters indicates 0.

(b) The prover places ♥ on the left of the true counter and ♣ on the left
of the false counter. After placing them, the prover makes all the cards
face-down. We call these two sequences of cards a card matrix.

?
♥

? · · · ?︸ ︷︷ ︸
the true counter

?
♣

? · · · ?︸ ︷︷ ︸
the false counter

(c) For every cell in the row (or column), the prover and the verifier execute
the following operations.
i. The prover picks a pair of cards on the cell and places left (resp.,

right) card of the pair to leftmost position of the upper (resp., lower)
sequence of the card matrix made in Step 2(b).

?
♥

?︸︷︷︸
left card

? · · · ?︸ ︷︷ ︸
the true counter

?
♣

?︸︷︷︸
right card

? · · · ?︸ ︷︷ ︸
the false counter

ii. The prover regards each of the upper row and lower row in the matrix
made in Step 2(c)i as a pile and applies pile-scramble shuffle to these
two piles.

iii. The prover opens the leftmost card of each row and adds the integer
of the cell to the counter in the row whose opened leftmost card is
♥ . Note that this addition must be executed keeping the cards of the
counter face-down.

?♣ ? · · · ?

?♥ ? · · · ? add integer
︸ ︷︷ ︸

the true/false counter

A Physical Zero-Knowledge Proof for Sumplete 407

iv. The prover makes all cards face-down. The prover regards upper and
lower row as two piles and applies pile-scramble shuffle in same way
as Step 2(c)ii.

v. The verifier opens the second leftmost card of each row. The verifier
regards the upper and lower row as two piles and replaces these rows
so that the row in which ♥ is opened becomes the upper row.

♥? ? · · · ?
♣? ? · · · ?

vi. The prover makes all the cards face-down and returns the pair of
leftmost cards of the rows to the cell.

?
♥

?︸︷︷︸
left card

? · · · ?

?
♣

?︸︷︷︸
right card

? · · · ?

(d) The verifier opens the leftmost card of each row and opens the counter in
the row whose opened leftmost card is ♥ card. If the value indicated by
opened counter does not equal the target value, the verifier rejects.

3. If the verifier did not reject fot all rows and columns, the verifier accepts.

4.3 Decoy Technique

The decoy techniqueis used in Step 2(c)ii and Step 2(c)iii. In Step 2(c)iii, the
counter in the same row with ♥ is the true (resp., false) counter if the inte-
gers’ cell is non-deleted (resp., deleted). Thanks to the pile-scramble shuffle in
Step 2(c)ii, the location of ♥ in the leftmost column is independent from the
card matrix made in Step (c)i. Therefore, the verifier cannot know which counter
appears on the right of ♥ .

4.4 The Numbers of Cards and Shuffles

At first, we consider the number of cards used in our protocol. In Step 1, the
prover uses n2 pairs of ♥ and ♣ cards. In Step 2, the prover and verifier check
n rows and n columns. Let M be the max value of α+β in each row and column,
where α and β are those in Step 2(a). Then, Step 2(a) needs a ♥ card and at
most M ♣ cards for each counter. In addition, Step 2(b) needs a ♥ card and
a ♣ card. Since we can reuse the cards required for Steps 2(a) and 2(b), it is
sufficient to consider the maximum number of cards required for the counter
within the 2n times check. Thus, the prover and the verifier need 3 ♥ cards and
2M + 1 ♣ cards in Step 2 Therefore, our protocol needs 2n2 + 2M + 4 cards
(specifically, n2 + 3 ♥ cards and n2 + 2M + 1 ♣ cards) in total.

408 K. Hatsugai et al.

Next, we consider the number of shuffle in our protocol. Since pile-scramble
shuffle is executed in Step 2(c)ii and Step 2(c)iv, 2n shuffles are executed in
Step 2(c). In addition, Step 2(c) is executed 2n times in Step 2 Thus, our protocol
needs 2n × 2n = 4n2 shuffles.

5 Proof of Security

Here, we show our protocol satisfies the three conditions for ZKP.

5.1 Completeness

Lemma 1. If the prover knows the solution, the verifier always accepts.

Proof. If the prover knows the solution, the sum of the integers in cells, where
two cards ♥ ♣ are placed in this order, equals the target value for all rows and
columns. Thus, the verifier does not reject for all rows and columns. Therefore,
the verifier always accepts. 	

5.2 Soundness

Lemma 2. The soundness error is 0, that is, if the prover does not know the
solution, the verifier always rejects.

Proof. We prove a contraposition of this lemma: if the verifier accepts, the prover
knows the solution of the given instance of Sumplete. When the verifier accepts,
the sum of cells where ♥ ♣ are placed equals the target value for every row and
column. Thus, we can see that the positions of the integers in the cells where
♣ ♥ are placed are the solution. This fact implies that the prover knows the
solution. Since the above argument holds with probability 1, the contraposition
of Lemma 2 holds. 	

5.3 Zero Knowledge

Lemma 3. During the protocol, the verifier learns nothing about the solution
of the given instance.

Proof. To prove zero-knowledge, it is sufficient that all distributions of opened
cards can be simulated without the solution. In order to prove the zero-knowledge
property, it is sufficient to show that all distributions of cards opened during the
protocol execution can be simulated without the solution.

– In Step 2(c)iii, we open the leftmost column in the card matrix made in
Step 2(c)i. Before the opening operation, we apply the pile-scramble shuffle
to the two piles; one consists of the upper row, and the other consists of the
lower row of the card matrix. Thus, ♥ appears at each row with the same
probability, i.e., probability 1/2. Therefore, the distribution of cards opened
in Step 2(c)iii can be simulated without the solution.

A Physical Zero-Knowledge Proof for Sumplete 409

– In Step 2(c)v, we open the second leftmost column in the card matrix made
in Step 2(c)i. Before the opening operation, we apply the pile-scramble shuffle
to the two piles of the upper row and the lower row of the card matrix. Thus,
♥ appears at each low with the probability 1/2. Therefore, the distribution
of cards opened in Step 2(c)v can be simulated without the solution.

– In Step 2(d), we open the true counter after adding integers in the row or
column for every row and column. If the prover knows the solution, the value
represented by the true counter equals the target value of the row (or column).
Therefore, the distribution of the true counter’ cards opened in Step 2(d) can
be simulated without the solution. Specifically, the true counter represents
the target value with the probability of 1.

Therefore, the verifier learns nothing about the solution. 	

6 Conclusion

In this paper, we proved that Sumplete, a puzzle generated by ChatGPT, is NP-
complete and proposed a physical zero-knowledge proof protocol. In our zero-
knowledge proof protocol, we realized the addition of not only positive integers
but negative integers by expansion the usual technique. Moreover, we use the
decoy technique to conceal the solution from the verifier.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
JP22KJ1362 and JP23KJ0968.

References

1. Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

2. Bultel, X., Dreier, J., Dumas, J., Lafourcade, P.: Physical zero-knowledge proofs
for Akari, Takuzu, Kakuro and KenKen. In: FUN, vol. 49, pp. 8:1–8:20 (2016)

3. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: SSS, pp. 111–125
(2018)

4. Chien, Y., Hon, W.: Cryptographic and physical zero-knowledge proof: from
Sudoku to Nonogram. In: FUN, pp. 102–112 (2010)

5. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2_27

6. Dumas, J., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interac-
tive physical zero-knowledge proof for Norinori. In: COCOON, pp. 166–177 (2019)

7. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

8. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput.
Syst. 44(2), 245–268 (2009)

https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27

410 K. Hatsugai et al.

9. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: UCNC, vol. 9252, pp. 215–
226 (2015)

10. Komano, Y., Mizuki, T.: Card-based zero-knowledge proof protocol for pancake
sorting. In: SecITC, pp. 222–239 (2022)

11. Lafourcade, P., et al.: How to construct physical zero-knowledge proofs for puzzles
with a “single loop condition.” Theor. Comput. Sci. 888, 41–55 (2021)

12. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical ZKP for
slitherlink: how to perform physical topology-preserving computation. In: ISPEC,
pp. 135–151 (2019)

13. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)

14. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: FUN,
pp. 20:1–20:21 (2021)

15. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge
proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102-
A(9), 1072–1078 (2019)

16. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: FAW,
pp. 358–369 (2009)

17. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based
cryptographic protocols for millionaires’ problem utilizing private permutations.
In: CANS, pp. 500–517 (2016)

18. OpenAI: GPT-4 technical report (2023)
19. Penguin, P.: ChatGPT invented its own puzzle game (2023). https://

puzzledpenguin.substack.com/p/chatgpt-invented-its-own-puzzle-game
20. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for

sudoku. New Gener. Comput. 40(1), 49–65 (2022)
21. Ruangwises, S.: An improved physical ZKP for nonogram and nonogram color. J.

Comb. Optim. 45(5), 122 (2023)
22. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with

2n cards. In: TAMC, pp. 25–36 (2020)
23. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink. In: FUN,

vol. 157, pp. 22:1–22:11 (2021)
24. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and

k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)
25. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Ripple Effect. In: WAL-

COM, vol. 12635, pp. 296–307 (2021)
26. Ruangwises, S., Itoh, T.: How to physically verify a rectangle in a grid: a physical

ZKP for shikaku. In: FUN, pp. 24:1–24:12 (2022)
27. Ruangwises, S., Itoh, T.: Physical ZKP for makaro using a standard deck of cards.

In: TAMC, vol. 13571, pp. 43–54 (2022)
28. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge

proof for sudoku. Theor. Comput. Sci. 839, 135–142 (2020)
29. Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for sudoku. In:

FUN, vol. 100, pp. 29:1–29:10 (2018)
30. Shinagawa, K., et al.: Multi-party computation with small shuffle complexity using

regular polygon cards. In: ProvSec, pp. 127–146 (2015)
31. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE

Trans. Fundam. Electron. Commun. Comput. Sci. 100-A(9), 1900–1909 (2017)
32. Takashima, K., et al.: Card-based protocols for secure ranking computations.

Theor. Comput. Sci. 845, 122–135 (2020)

https://puzzledpenguin.substack.com/p/chatgpt-invented-its-own-puzzle-game
https://puzzledpenguin.substack.com/p/chatgpt-invented-its-own-puzzle-game

	A Physical Zero-Knowledge Proof for Sumplete, a Puzzle Generated by ChatGPT
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Zero-Knowledge Proof
	2.3 Card Operations
	2.4 Representation of an Integer

	3 NP-Completeness of Sumplete
	3.1 Formal Definition of Problems
	3.2 Proof of NP-Completeness

	4 Physical Zero-Knowledge Proof Protocol for Sumplete
	4.1 Idea of Proposed Protocol
	4.2 Proposed Protocol
	4.3 Decoy Technique
	4.4 The Numbers of Cards and Shuffles

	5 Proof of Security
	5.1 Completeness
	5.2 Soundness
	5.3 Zero Knowledge

	6 Conclusion
	References

