
Weili Wu
Guangmo Tong (Eds.)

LN
CS

 1
44

22

29th International Conference, COCOON 2023
Hawaii, HI, USA, December 15–17, 2023
Proceedings, Part I

Computing
and Combinatorics

Lecture Notes in Computer Science 14422
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Weili Wu · Guangmo Tong
Editors

Computing
and Combinatorics
29th International Conference, COCOON 2023
Hawaii, HI, USA, December 15–17, 2023
Proceedings, Part I

Editors
Weili Wu
University of Texas at Dallas
Richardson, TX, USA

Guangmo Tong
University of Delaware
Newark, DE, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-49189-4 ISBN 978-3-031-49190-0 (eBook)
https://doi.org/10.1007/978-3-031-49190-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-8747-6340
https://orcid.org/0000-0003-3247-4019
https://doi.org/10.1007/978-3-031-49190-0

Preface

The papers in these proceedings, which consist of two volumes, were presented at the
29th International Computing and Combinatorics Conference (COCOON 2023), on
December 15–17, 2023, in Honolulu, Hawaii, USA. The topics cover most aspects of
theoretical computer science and combinatorics pertaining to computing.

In total 60 papers were selected from 146 submissions by an international program
committee consisting of a large number of scholars from various countries and regions,
distributed all over the world, including Asia, North America, Europe, and Australia.
Each paper was evaluated by at least three reviewers. The decision was made based on
those evaluations through a process containing a discussion period.

Authors of selected papers come from the following countries and regions: Australia,
Canada, China (including Hong Kong, Macau, and Taiwan), Czechia, France, Germany,
India, Israel, Japan, Sweden, and the USA. Many of these papers represent reports of
continuing research, and it is expected that most of them will appear in a more polished
and complete form in scientific journals.

We wish to thank all who have made this meeting possible and successful, the
authors for submitting papers, the program committee members for their excellent work
in reviewing papers, the sponsors, the local organizers, and Springer for their support
and assistance. We are especially grateful to Lian Li and Xiaoming Sun, who lead the
Steering committee, for making the ranking of COCOON go up significantly in recent
years, and to Yi Zhu and Xiao Li, who made tremendous efforts on local arrangements
and set-up.

December 2023 Weili Wu
Guangmo Tong

Organization

General Co-chairs

Peter Varman Rice University, USA
Ding-Zhu Du University of Texas at Dallas, USA

PC Co-chairs

Weili Wu University of Texas at Dallas, USA
Guangmo Tong University of Delaware, USA

Web Co-chairs

Xiao Li University of Texas at Dallas, USA
Ke Su University of Texas at Dallas, USA

Finance Co-chair

Jing Yuan University of Texas at Dallas, USA

Registration Chair

Xiao Li University of Texas at Dallas, USA

Local Chair

Yi Zhu Hawaii Pacific University, USA

viii Organization

Program Committee Members

An Zhang Hangzhou Dianzi University, China
Bhaskar Dasgupta University of Illinois at Chicago, USA
Bo Li Hong Kong Polytechnic University, China
Boting Yang University of Regina, Canada
C. Pandu Rangan Indian Institute of Technology Madras, India
Chee Yap New York University, USA
Chia-Wei Lee National Tatung University, Taiwan
Christos Zaroliagis University of Patras, Greece
Chung-Shou Liao National Tsing Hua University, Taiwan
Deshi Ye Zhejiang University, China
Dominik Köppl Tokyo Medical and Dental University, Japan
Eddie Cheng Oakland University, USA
Gruia Calinescu Illinois Institute of Technology, USA
Guohui Lin University of Alberta, Canada
Haitao Wang University of Utah, USA
Hans-Joachim Boeckenhauer ETH Zurich, Switzerland
Ho-Lin Chen National Taiwan University, Taiwan
Hsiang-Hsuan Liu Utrecht University, The Netherlands
Jiangxiong Guo Beijing Normal University at Zhuhai, China
Joong-Lyul Lee University of North Carolina at Pembroke, USA
Jou-Ming Chang National Taipei University of Business, Taiwan
Kai Jin Sun Yat-sen University, China
Kunihiko Sadakane University of Tokyo, Japan
Ling-Ju Hung National Taipei University of Business, Taiwan
M. Sohel Rahman Bangladesh University of Engineering and

Technology, Bangladesh
Manki Min Louisiana Tech University, USA
Micheal Khachay Ural Federal University, Russia
Ovidiu Daescu University of Texas at Dallas, USA
Pavel Skums Georgia State University, USA
Peng Li Chongqing University of Technology, China
Peng Zhang Shandong University, China
Peter Rossmanith RWTH Aachen University, Germany
Prudence Wong University of Liverpool, UK
Qilong Feng Central South University, China
Qiufen Ni Guangdong University of Technology, China
Raffaele Giancarlo University of Palermo, Italy
Ralf Klasing CNRS and University of Bordeaux, France
Ryuhei Uehara Japan Advanced Institute of Science and

Technology, Japan

Organization ix

Sharma V. Thankachan North Carolina State University, USA
Shengxin Liu Harbin Institute of Technology at Shenzhen,

China
Sun-Yuan Hsieh National Cheng Kung University, Taiwan
Takeshi Tokuyama Tohoku University, Japan
Thomas Erlebach Durham University, UK
Travis Gagie Dalhousie University, Canada
Van Bang Le University of Rostock, Germany
Vassilis Zissimopoulos National and Kapodistrian University of Athens,

Greece
Vincent Chau Southeast University, China
Wenguo Yang University of Chinese Academy of Sciences,

China
Wing-Kai Hon National Tsing Hua University, Taiwan
Wolfgang Bein University of Nevada, USA
Xianyue Li Lanzhou University, China
Xiaowei Wu University of Macau, China
Xinjian Ding Beijing University of Technology, China
Xujin Chen University of Chinese Academy of Sciences,

China
Yifei Zou Shandong University, China
Yitong Yin Nanjing University, China
Yixin Cao Hong Kong Polytechnic University, China
Yong Chen Hangzhou Dianzi University, China
Yuqing Zhu California State University, Los Angeles, USA
Zhao Zhang Zhejiang Normal University, China
Zhipeng Cai Georgia State University, USA

Contents – Part I

Complexity and Approximation

Complexity and Enumeration in Models of Genome Rearrangement 3
Lora Bailey, Heather Smith Blake, Garner Cochran, Nathan Fox,
Michael Levet, Reem Mahmoud, Elizabeth Bailey Matson,
Inne Singgih, Grace Stadnyk, Xinyi Wang, and Alexander Wiedemann

Conditional Automatic Complexity and Its Metrics . 15
Bjørn Kjos-Hanssen

Streaming and Query Once Space Complexity of Longest Increasing
Subsequence . 29

Xin Li and Yu Zheng

Approximating Decision Trees with Priority Hypotheses . 61
Jing Yuan and Shaojie Tang

Approximating the λ-low-density Value . 71
Joachim Gudmundsson, Zijin Huang, and Sampson Wong

Exponential Time Complexity of the Complex Weighted Boolean #CSP 83
Ying Liu

Hardness and Approximation for the Star β-Hub Routing Cost Problem
in Δβ -Metric Graphs . 97

Meng-Shiou Tsai, Sun-Yuan Hsieh, and Ling-Ju Hung

Graph Algorithms

Linear Time Algorithms for NP-Hard Problems Restricted to GaTEx
Graphs . 115

Marc Hellmuth and Guillaume E. Scholz

Polynomial Turing Compressions for SomeGraph Problems Parameterized
by Modular-Width . 127

Weidong Luo

Shortest Longest-Path Graph Orientations . 141
Yuichi Asahiro, Jesper Jansson, Avraham A. Melkman, Eiji Miyano,
Hirotaka Ono, Quan Xue, and Shay Zakov

xii Contents – Part I

Sink Location Problems in Dynamic Flow Grid Networks 155
Yuya Higashikawa, Ayano Nishii, Junichi Teruyama, and Yuki Tokuni

List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs 168
Banu Baklan Şen, Öznur Yaşar Diner, and Thomas Erlebach

Parameterized Algorithms for Cluster Vertex Deletion on Degree-4 Graphs
and General Graphs . 182

Kangyi Tian, Mingyu Xiao, and Boting Yang

Sum-of-Local-Effects Data Structures for Separable Graphs 195
Xing Lyu, Travis Gagie, Meng He, Yakov Nekrich, and Norbert Zeh

Applied Algorithms

Variants of Euclidean k-Center Clusterings . 209
Shin-ichi Nakano

Red-Black Spanners for Mixed-Charging Vehicular Networks 220
Sergey Bereg, Yuya Higashikawa, Naoki Katoh, Junichi Teruyama,
Yuki Tokuni, and Binhai Zhu

Self-stabilizing (Δ + 1)-Coloring in Sublinear (in Δ) Rounds
via Locally-Iterative Algorithms . 232

Xinyu Fu, Yitong Yin, and Chaodong Zheng

On Detecting Some Defective Items in Group Testing . 244
Nader H. Bshouty and Catherine A. Haddad-Zaknoon

An Efficient Data Analysis Method for Big Data Using Multiple-Model
Linear Regression . 272

Bohan Lyu and Jianzhong Li

Multi-Load Agent Path Finding for Online Pickup and Delivery Problem 285
Yifei Li, Hao Ye, Ruixi Huang, Hejiao Huang, and Hongwei Du

Improved Sourcewise Roundtrip Spanners with Constant Stretch 297
Eli Stafford and Chunjiang Zhu

Randomized Data Partitioning with Efficient Search, Retrieval
and Privacy-Preservation . 310

M. Oğuzhan Külekci

The k Edge-Vertex Domination Problem . 324
Peng Li, Xingli Zhou, and Zhiang Zhou

Contents – Part I xiii

Resource-Adaptive Newton’s Method for Distributed Learning 335
Shuzhen Chen, Yuan Yuan, Youming Tao, Zhipeng Cai, and Dongxiao Yu

DR-Submodular Function Maximization with Adaptive Stepsize 347
Yanfei Li, Min Li, Qian Liu, and Yang Zhou

On the Routing Problems in Graphs with Ordered Forbidden Transitions 359
Kota Kumakura, Akira Suzuki, Yuma Tamura, and Xiao Zhou

Delaying Decisions and Reservation Costs . 371
Elisabet Burjons, Fabian Frei, Matthias Gehnen, Henri Lotze,
Daniel Mock, and Peter Rossmanith

A PTAS Framework for Clustering Problems in Doubling Metrics 384
Di Wu, Jinhui Xu, and Jianxin Wang

A Physical Zero-Knowledge Proof for Sumplete, a Puzzle Generated
by ChatGPT . 398

Kyosuke Hatsugai, Kyoichi Asano, and Yoshiki Abe

Author Index . 411

Contents – Part II

Combinatorics and Algorithms

Quantum Query Lower Bounds for Key Recovery Attacks
on the Even-Mansour Cipher . 3

Akinori Kawachi and Yuki Naito

Extended Formulations via Decision Diagrams . 17
Yuta Kurokawa, Ryotaro Mitsuboshi, Haruki Hamasaki, Kohei Hatano,
Eiji Takimoto, and Holakou Rahmanian

Greedy Gray Codes for Dyck Words and Ballot Sequences 29
Vincent Vajnovszki and Dennis Wong

Efficiently-Verifiable Strong Uniquely Solvable Puzzles and Matrix
Multiplication . 41

Matthew Anderson and Vu Le

(min,+) Matrix and Vector Products for Inputs Decomposable into Few
Monotone Subsequences . 55

Andrzej Lingas and Mia Persson

A Sub-quadratic Time Algorithm for Computing the Beacon Kernel
of Simple Polygons . 69

Binay Bhattacharya, Amirhossein Mozafari, and Thomas C. Shermer

An Approach to Agent Path Planning Under Temporal Logic Constraints 82
Chaofeng Yu, Nan Zhang, Zhenhua Duan, and Cong Tian

The Heterogeneous Rooted Tree Cover Problem . 94
Pengxiang Pan, Junran Lichen, Ping Yang, and Jianping Li

The Hardness of Optimization Problems on the Weighted Massively
Parallel Computation Model . 106

Hengzhao Ma and Jianzhong Li

The Regularized Submodular Maximization via the Lyapunov Method 118
Xin Sun, Congying Han, Chenchen Wu, Dachuan Xu, and Yang Zhou

Topological Network-Control Games . 144
Zihui Liang, Bakh Khoussainov, and Haidong Yang

xvi Contents – Part II

Lower Bounds of Functions on Finite Abelian Groups . 157
Jianting Yang, Ke Ye, and Lihong Zhi

A Discharging Method: Improved Kernels for Edge Triangle Packing
and Covering . 171

Zimo Sheng and Mingyu Xiao

Random Shortening of Linear Codes and Applications . 184
Xue Chen, Kuan Cheng, Xin Li, and Songtao Mao

Algorithms for Full-View Coverage of Targets with Group Set Cover 198
Jingfang Su and Hongwei Du

Improved Bounds for the Binary Paint Shop Problem . 210
J. Hančl, A. Kabela, M. Opler, J. Sosnovec, R. Šámal, and P. Valtr

Algorithmic Solution in Applications

Fitch Graph Completion . 225
Marc Hellmuth, Peter F. Stadler,
and Sandhya Thekkumpadan Puthiyaveedu

Deterministic Primal-Dual Algorithms for Online k-Way Matching
with Delays . 238

Naonori Kakimura and Tomohiro Nakayoshi

Diversity and Freshness-Aware Regret Minimizing Set Queries 250
Hongjie Guo, Jianzhong Li, Fangyao Shen, and Hong Gao

A Modified EXP3 in Adversarial Bandits with Multi-user Delayed
Feedback . 263

Yandi Li and Jianxiong Guo

Cabbage Can’t Always Be Transformed into Turnip: Decision Algorithms
for Sorting by Symmetric Reversals . 279

Xin Tong, Yixiao Yu, Ziyi Fang, Haitao Jiang, Lusheng Wang,
Binhai Zhu, and Daming Zhu

k-Median/Means with Outliers Revisited: A Simple Fpt Approximation 295
Xianrun Chen, Lu Han, Dachuan Xu, Yicheng Xu, and Yong Zhang

A Cost-Sharing Scheme for the k-Product Facility Location Game
with Penalties . 303

Xiaowei Li and Xiwen Lu

Contents – Part II xvii

Algorithm in Networks

Maximizing Diversity and Persuasiveness of Opinion Articles in Social
Networks . 317

Liman Du, Wenguo Yang, and Suixiang Gao

Stochastic Model for Rumor Blocking Problem in Social Networks Under
Rumor Source Uncertainty . 329

Jianming Zhu, Runzhi Li, Smita Ghosh, and Weili Wu

Algorithms for Shortest Path Tour Problem in Large-Scale Road Network 340
Yucen Gao, Mingqian Ma, Jiale Zhang, Songjian Zhang, Jun Fang,
Xiaofeng Gao, and Guihai Chen

Solving Systems of Linear Equations Through Zero Forcing Set 353
Jianbo Wang, Chao Xu, and Siyun Zhou

Profit Maximization for Competitive Influence Spread in Social Networks 366
Qiufen Ni, Yun Bai, and Zhongzheng Tang

Improved Approximation Algorithms for Multidepot Capacitated Vehicle
Routing . 378

Jingyang Zhao and Mingyu Xiao

On the Minimum Depth of Circuits with Linear Number of Wires
Encoding Good Codes . 392

Andrew Drucker and Yuan Li

Approval-Based Participatory Budgeting with Donations . 404
Shiwen Wang, Chenhao Wang, Tian Wang, and Weijia Jia

Author Index . 417

Complexity and Approximation

Complexity and Enumeration in Models
of Genome Rearrangement

Lora Bailey1, Heather Smith Blake2, Garner Cochran3, Nathan Fox4,
Michael Levet5(B), Reem Mahmoud6, Elizabeth Bailey Matson7,

Inne Singgih8, Grace Stadnyk9, Xinyi Wang10, and Alexander Wiedemann11

1 Department of Mathematics, Grand Valley State University, Allendale, MI, USA
baileylo@gvsu.edu

2 Department of Mathematics and Computer Science, Davidson College,
Davidson, NC, USA

hsblake@davidson.edu
3 Department of Mathematics and Computer Science, Berry College,

Mount Berry, GA, USA
gcochran@berry.edu

4 Department of Quantitative Sciences, Canisius University, Buffalo, NY, USA
fox42@canisius.edu

5 Department of Computer Science, College of Charleston, Charleston, SC, USA
levetm@cofc.edu

6 Department of Computer Science, Virginia Commonwealth University,
Richmond, VA, USA
mahmoudr@vcu.edu

7 The Division of Mathematics and Computer Science, Alfred University,
Alfred, NY, USA

matson@alfred.edu
8 Department of Mathematical Sciences, University of Cincinnati,

Cincinnati, OH, USA
inne.singgih@uc.edu

9 Department of Mathematics, Furman University, Greenville, SC, USA
grace.stadnyk@furman.edu

10 Department of Computational Mathematics, Science, and Engineering,
Michigan State University, East Lansing, MI, USA

wangx249@msu.edu
11 Department of Mathematics, Randolph–Macon College, Ashland, VA, USA

alexanderwiedemann@rmc.edu

Abstract. In this paper, we examine the computational complexity of
enumeration in certain genome rearrangement models. We first show
that the Pairwise Rearrangement problem in the Single Cut-and-
Join model (Bergeron, Medvedev, & Stoye, J. Comput. Biol. 2010) is

We wish to thank the American Mathematical Society for organizing the Mathemat-
ics Research Community workshop where this work began. This material is based
upon work supported by the National Science Foundation under Grant Number DMS
1916439. ML was partially supported by J. A. Grochow’s NSF award CISE-2047756
and the University of Colorado Boulder, Department of Computer Science Summer
Research Fellowship. ML thanks J.A. Grochow for helpful discussions.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 3–14, 2024.
https://doi.org/10.1007/978-3-031-49190-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_1

4 L. Bailey et al.

#P-complete under polynomial-time Turing reductions. Next, we show
that in the Single Cut or Join model (Feijao & Meidanis, IEEE ACM
Trans. Comp. Biol. Bioinf. 2011), the problem of enumerating all medi-
ans (#Median) is logspace-computable (FL), improving upon the pre-
vious polynomial-time (FP) bound of Miklós & Smith (RECOMB 2015).

Keywords: Genome Rearrangement · Phylogenetics · Single
Cut-and-Join · Single Cut or Join · Computational Complexity

1 Introduction

With the natural occurrence of mutations in genomes and the wide range of
effects this can incite, scientists seek to understand the evolutionary relation-
ship between species. Several discrete mathematical models have been proposed
(which we discuss later) to model these mutations based on biological obser-
vations. Genome rearrangement models consider situations in which large scale
mutations alter the order of the genes within the genome. Sturtevant [26,27]
observed the biological phenomenon of genome rearrangement in the study of
strains of Drosophila (fruit flies), only a few years after he produced the first
genetic map [25]. Palmer & Herbon [21] observed similar phenomenon in plants.
McClintock [15] also found experimental evidence of genes rearranging them-
selves, or “transposing” themselves, within chromosomes. Subsequent to his work
on Drosophila, Sturtevant together with Novitski [28] introduced one of the first
genome rearrangement problems, seeking a minimum length sequence of opera-
tions (in particular, so-called reversals [12]) that would transform one genome
into another.

In this paper, we consider genome rearrangement models where each genome
consists of directed edges, representing genes. Each directed edge receives a
unique label, and each vertex has degree 1 or 2 (where we take the sum of
both the in-degree and out-degree). There are no isolated vertices. Notably, each
component in the associated undirected graph is either a path or a cycle. Biolog-
ically, each component in the graph represents a chromosome. Paths correspond
to linear chromosomes, such as in eukaryotes, and cycles correspond to circular
chromosomes, which play a role in tumor growth [22].

A genome model specifies the number of connected components (chromo-
somes), the types of components (linear, circular, or a mix of the two), and the
permissible operations. The models we will consider allow for removing (cut-
ting) and creating (joining) instances where two edges (genes) are incident, with
certain models allowing for multiple cuts or joins to occur as part of a sin-
gle operation. The reversal model [28], for example, takes as input a genome
consisting precisely of a single linear chromosome. In a now classical paper,
Hannenhalli & Pevzner [12] exhibited a polynomial-time algorithm for comput-
ing the distance between two genomes in the reversal model. Later, those same
authors generalized the reversal model to allow for multiple chromosomes and
additional operations [11]. There are also several models that permit genomes

Complexity and Enumeration in Models of Genome Rearrangement 5

which consist of both linear and circular chromosomes, including, for instance,
the Single Cut or Join (SCoJ) [10], Single Cut-and-Join (SCaJ) [3], and Double
Cut-and-Join (DCJ) [30] models (see Sect. 2.1 for a precise formulation). When
choosing an appropriate model, it is important to balance biological relevance
with computational tractibility. This motivates the study of the computational
complexity for genome rearrangement problems.

There are several natural genome rearrangement problems. We have already
mentioned the Distance problem, which asks for the minimum number of oper-
ations needed to transform one genome into another. Other natural problems
include Pairwise Rearrangement (see Definition 3) and Median (Defini-
tion 4). We summarize the known complexity-theoretic results in Table 1.

Table 1. Theorems are denoted by T, conjectures by C, and problems with unknown
complexity by U (those problems without enough evidence for a conjecture). The entry
“not in FP” is under the assumption that P �= NP. The entry “not in FPRAS” is under
the assumption that RP �= NP. Those marked with † and ‡ follow from the fact that
the corresponding decision problem is NP-hard, [7] and [29] respectively. Those marked
with ∗ indicate results in this paper.

Reversal SCoJ SCaJ DCJ

Distance T : in FP [12] T : in FP [3] T : in FP [10] T : in FP [4]

Pairwise
Rearrangement

C: #P-complete
C: In FPRAS

T: in FP [16] T: #P-complete∗
U: in/not in
FPRAS

C: #P-complete
T: in FPRAS [20]

Median T: not in FP†

T: not in
FPRAS†

T: in FP [17]
T: in FL∗

U: FP/NP-hard
U: in/not in
FPRAS

T: not in FP‡

T: not in FPRAS‡

Main Results. Our first main result concerns the computational complexity of
the Pairwise Rearrangement problem in the Single Cut-and-Join model:

Theorem 1. In the Single Cut-and-Join model, the Pairwise
Rearrangement problem is #P-complete under polynomial-time Turing reduc-
tions.

Remark 1. We establish Theorem 1 in the special case when the adjacency graph
(see Definition 5) is a disjoint union of cycles. A related question that remains
open is whether this #P-completeness holds when the adjacency graph consists
of only paths.

We also improve the known computational complexity of the #Median prob-
lem in the Single Cut or Join model. Miklós & Smith [17] previously showed
that counting the number of medians—the #Median problem—belongs to FP.
We carefully analyze their work to obtain the following improved complexity-
theoretic upper bound:

6 L. Bailey et al.

Theorem 2. In the Single Cut or Join model, the #Median problem belongs
to FL.

A complete proof of Theorem 2 will appear in the full version; we briefly
sketch the ideas here. We may, in FL, identify the connected components [23] of
an auxiliary graph that Miklós & Smith refer to as the conflict graph. We may
then evaluate the relevant formulas of [17] in TC0, and therefore in FL. As we
rely crucially on Reingold’s FL connectivity algorithm [23], we conjecture that
in the Single Cut or Join model, #Median is FL-complete.

The full version of our work is available on arXiv [6], and we refer the reader
there for the full details of our work.

Further Related Work. There has been significant work on efficient com-
putational approaches, such as sampling and approximation (see, for instance,
[8,9,14,16,17,19]), to cope with the intractability of enumeration. In addition
to the problems in Table 1, we run into issues of combinatorial explosion when
examining statistics such as the breakpoint reuse [2,5] and the size/positions of
reversals [1,8]. Developing an efficient uniform or near-uniform sampler would
allow for obtaining a statistically significant sample for hypothesis testing. Such
samples are needed, for instance, to test the Random Breakpoint Model [2,5]
and check if there is natural selection for maintaining balanced replicators [8].
Jerrum, Valiant, & Vazirani [13] showed that finding a near-uniform sampler
has the same complexity as enumerating the size of the space. Thus, approx-
imate counting and sampling are closely related. Past work on these samplers
has often utilized a rapidly mixing Markov chain on the full evolutionary history
space [18].

2 Preliminaries

2.1 Genome Rearrangement

Definition 1. A genome is an edge-labeled directed graph in which each label
is unique and the total degree of each vertex is 1 or 2 (in-degree and out-degree
combined). In particular, a genome consists of disjoint paths and cycles. The
components of a genome we call chromosomes. Each edge begins at its tail and
ends at its head, collectively referred to as its extremities. Degree 2 vertices are
called adjacencies, and degree 1 vertices are called telomeres.

Adjacencies can be viewed as unordered sets of two extremities, and telomeres
as sets containing exactly one extremity. For simplicity, we write adjacency {a, b}
as ab and telomere {c} as c. Each genome is then uniquely defined by its set of
adjacencies and telomeres. Consider the following operations on a given genome:

(i) Cut : an adjacency ab is separated into two telomeres, a and b,
(ii) Join: two telomeres a and b become one adjacency, ab,
(iii) Cut-join: replace adjacency ab and telomere c with adjacency ac and telom-

ere b, and

Complexity and Enumeration in Models of Genome Rearrangement 7

(iv) Double-cut-join: replace adjacencies ab and cd with adjacencies ac and bd.

Note that a cut-join operation combines a single cut and a single join into
one operation, and a double-cut-join operation performs two cuts and two joins
in one operation.

Several key models are based on these operations. The Double Cut-And-
Join (DCJ) model was initially introduced by Yancopoulos, Attie, & Fried-
berg [30] and permits all four operations. Later, Feijao & Meidanis [10] intro-
duced the Single Cut Or Join (SCoJ) model, which only allows operations (i)
and (ii). Alternatively, the Single Cut-And-Join (SCaJ) model [3] allows oper-
ations (i)-(iii), but not operation (iv). In this paper, we consider the Single
Cut-And-Join and Single Cut Or Join models.

Definition 2. For any genome rearrangement model J , it is always possible to
perform a sequence of operations from J that transforms genome G1 into G2

if they share the same set of edge labels. Such a sequence is called a scenario.
The minimum length of such a scenario is called the distance and is denoted
dJ(G1, G2). When J is understood, we simply write d(G1, G2). An operation on a
genome G1 that (strictly) decreases the distance to genome G2 is called a sorting
operation for G1 and G2. A scenario requiring d(G1, G2) operations to transform
G1 into G2 is called a most parsimonious scenario or sorting scenario. When
G2 is understood, we refer to the action of transforming G1 into G2 using the
minimum number of operations as sorting G1. The number of most parsimonious
scenarios transforming G1 into G2 is denoted #MPS(G1, G2).

We now turn to defining the key algorithmic problems that we will consider
in this paper.

Definition 3. Let J be a model of genome rearrangement, and let G1 and G2

be genomes. The Distance problem asks to compute d(G1, G2). The Pairwise
Rearrangement problem asks to compute #MPS(G1, G2).

Definition 4. Let J be a model of genome rearrangement, and let G be a col-
lection of k ≥ 3 genomes. A median for G is a genome G that minimizes

∑

Gi∈G
d(Gi, G).

The Median problem asks for one median for G. The #Median problem asks
for the number of medians for G.

To investigate these computational problems, we begin by introducing the
adjacency graph.

Definition 5. Given two genomes G1 and G2 with the same set of edge labels,
the adjacency graph A(G1, G2) is a bipartite multigraph (V1 ∪̇V2, E) where each
vertex in Vi corresponds to a unique adjacency or telomere in Gi and the number
of edges between two vertices is the size of the intersection of the corresponding
adjacency or telomere sets.

8 L. Bailey et al.

Note that each vertex in an adjacency graph A(G1, G2) must have either
degree 1 or 2 (corresponding, respectively, to telomeres and adjacencies in the
original genome), and so A(G1, G2) is composed entirely of disjoint cycles and
paths. Note also that every operation on G1 corresponds to an operation on
V1 in A(G1, G2). Whether or not an operation on A(G1, G2) corresponds to a
sorting operation on G1—that is, whether it decreases the distance to G2 or
not—depends highly on the structure of the components acted on. To better
describe such sorting operations, we adopt the following classification:

Definition 6. Components of A(G1, G2) are classified as follows, where the size
of a component B is defined to be � |E(B)|/2 �:
– A W -shaped component is an even path with its two endpoints in V1.
– An M -shaped component is an even path with its two endpoints in V2.
– An N -shaped component is an odd path, further called a trivial path if it is

size 0 (a single edge).
– A crown is an even cycle, further called a trivial crown if it is size 1 (a

2-cycle).

The language “trivial” is motivated by the fact that such components indicate
where G1 and G2 already agree, and hence no sorting operations are required
on vertices belonging to trivial components. Indeed, a sorting scenario can be
viewed as a minimal length sequence of operations which produces an adjacency
graph consisting of only trivial components.

Observation 3. In the SCaJ model, a case analysis yields precisely these sort-
ing operations on A(G1, G2):

(a) A cut-join operation on a non-trivial N -shaped component, producing an
N -shaped component and a trivial crown

(b) A cut-join operation on a W -shaped component of size at least 2, producing
a trivial crown and a W -shaped component

(c) A join operation on a W -shaped component of size 1, producing a trivial
crown

(d) A cut operation on an M -shaped component, producing two N -shaped com-
ponents

(e) A cut operation on a non-trivial crown, producing a W -shaped component
(f) A cut-join operation on an M -shaped component and a W -shaped compo-

nent, where an adjacency in the M -shaped component is cut and joined to a
telomere in the W -shaped component, producing two N -shaped components

(g) A cut-join operation on a non-trivial crown and an N -shaped component,
where an adjacency in the crown is cut and joined to the telomere in the
N -shaped component, producing an N -shaped component

(h) A cut-join operation on a non-trivial crown and a W -shaped component,
where an adjacency from the crown is cut and joined with a telomere from
the W -shaped component, producing a W -shaped component

Complexity and Enumeration in Models of Genome Rearrangement 9

Note that (a)–(e) are sorting operations on G1 that operate on only one
component in the adjacency graph, though they may produce two different com-
ponents. On the other hand, (f)–(h) are sorting operations on G1 that operate
on two separate components in the adjacency graph.

Using these sorting operations on A(G1, G2), the distance between two
genomes G1 and G2 for the SCaJ model is given by

d(G1, G2) = n − #N

2
− #T +#C (1)

where n is the number of genes in G1 (equivalently, one half of the number of
edges in A(G1, G2)), #N is the number of N -shaped components, #T is the
number of trivial crowns, and #C is the number of non-trivial crowns [3].

Let B be the set of all components of A(G1, G2) and let B′ be a subset of B.
Define

d(B′) :=
∑

B∈B′
size(B) − #T +#C.

Note that d(B) = d(G1, G2). In general, d(B′) is the minimum number of oper-
ations needed to transform all components of B′ into trivial components, with
no operation acting on a component not belonging to B′.

Definition 7. Let A and B be components of an adjacency graph, and consider
a particular sorting scenario. We say A ∼ B if either A = B or there is a cut-
join operation in the scenario where an extremity a from A and an extremity b
from B are joined into an adjacency. The transitive closure of ∼, which we call
≡, is an equivalence relation which we call sort together. We will be particularly
interested in subsets of the equivalence classes of ≡. We abuse terminology by
referring to such a subset as a set that sorts together.

Note that if two components in A(G1, G2) sort together, the cut-join witness
of this does not need to occur immediately. For example, two non-trivial crowns
C1 and C2 can sort together by first cutting C1 to produce a W -shaped com-
ponent, then operation (b) can be applied multiple times before operation (h)
sorts C2 and the remaining W -shaped component together.

We will now introduce additional notation that we will use in this paper.
Let B be the collection of all components of a given adjacency graph A(G1, G2).
Let Π(B) denote the set of all partitions of B. Define #MPS(B) to be the
number of most parsimonious scenarios transforming G1 into G2. For a partition
π ∈ Π(B), define #MPS(B, π) to be the number of most parsimonious scenarios
transforming G1 into G2, where two components A and B belong to the same
part of π if and only if A and B sort together. For a subset B′ of B, let #ST(B′)
denote the number of sequences with d(B′) operations in which the components
of B′ sort together and are transformed into trivial components with no operation
acting on a component not belonging to B′.

We conclude by restricting our attention to a single component of an adja-
cency graph and determine the number of most parsimonious scenario which
sort that component, independent of the other components. We will later use

10 L. Bailey et al.

these counts as building blocks to enumerate the most parsimonious scenarios
for multiple components in the adjacency graph.

Lemma 1. Let A(G1, G2) be an adjacency graph with component B.

(a) If B is an N -shaped component, then #ST({B}) = 1.
(b) If B is a W -shaped component of size w, then #ST({B}) = 2w−1.
(c) If B is a M -shaped component of size m, then #ST({B}) = 2m−1.
(d) If B is a non-trivial crown of size c, #ST({B}) = c · 2c−1.

Proof. To appear in the full version.

3 Enumerating All-Crowns Sorting Scenarios

Let C be a collection of crowns. Recall that Π(C) is the set of all partitions of C.
For any partition π = (π1, . . . , πk) in Π(C), let gi be the sum of the sizes of the
crowns in πi and pi be the number of crowns in πi.

Theorem 4. Consider an adjacency graph consisting entirely of a collection
C = {C1, C2, . . . , Cq} of q crowns where Ci has size ci. Then

#MPS(C) =
∑

π∈Π(C)

(
d

g1 + p1, . . . , gk + pk

)
4q−k2d−q−k

q∏

i=1

ci

⎛

⎝
k∏

j=1

pj−2∏

�=0

(gj + �)

⎞

⎠

(2)
where d := d(C) and, for each π ∈ Π(C), k = k(π) is the number of parts in π.

Proof. To appear in the full version.

We will now discuss some consequences that will be useful in Sect. 4.

Corollary 1. Let C = {C1, C2, . . . , C2n} be a collection of 2n crowns for some
positive integer n. Denote by ci the size of crown Ci. Suppose that

∑2n
i=1 ci =

2p−2n for some odd prime p. The number of most parsimonious scenarios where
all of the crowns sort together is

22p+2n−3
2n∏

i=1

ci

2n−2∏

�=0

(2p − 2n + �).

Proof. This is Eq. (2) with the powers of 4 and 2 combined, setting q = 2n and
d = 2p.

Corollary 2. Let C = {C1, C2, . . . , C2n} be a collection of 2n crowns for some
positive integer n. Denote by ci the size of crown Ci. Suppose that

∑2n
i=1 ci =

2p−2n for some odd prime p. Suppose C is partitioned by (π1, π2) with |π1| = |π2|
such that the crowns in each πi sort together and the sum of the sizes of the
crowns in πi is p − n. Then

#MPS(C, (π1, π2)) =
(
2p
p

)
22p+2n−6

2n∏

i=1

ci

n−2∏

�=0

(p − n + �)2.

Complexity and Enumeration in Models of Genome Rearrangement 11

Proof. The desired count is one term in Eq. (2) arising from a partition with
k = 2 parts. Since both parts have sum p − n, we have g1 = g2 = p − n. Hence,
the multinomial coefficient becomes

(
2p
p

)
. The result follows from combining the

powers of 4 and 2 along with the recognition that k = 2, q = 2n and d = 2p.

Lemma 2. Let A = {a1, a2, . . . , an} be a multiset whose elements are each at
least 3 and sum to kp, with p an odd prime and k a positive integer. Let C =
{C1, C2, . . . , Cn} be a collection of n crowns where Ci has size ai − 1. Let π be
a partition of C. If #MPS(C, π) is not divisible by p then, in the corresponding
partition π′ of A, (i) each part π′

i = {ai1 , . . . , aiq} has q ≤ p elements, and (ii)
p | ∑q

j=1 aij .

Proof. To appear in the full version.

4 PAIRWISE REARRANGEMENT is #P-Complete

In this section, we establish Theorem 1. Due to space constraints, we will outline
the construction. A full proof of correctness will appear in the full version.

Our starting point is the Multiset-Partition problem, which is
known to be #P-complete under parsimonious reductions [24]. Precisely, the
Multiset-Partition problem takes as input a multiset A = {a1, . . . , an} with
each ai > 0 is an integer. The goal is to count the number of ways of partitioning
A into two multisets B = {b1, . . . , bj} and C = {c1, . . . , ck} with equal sum, i.e.
such that

j∑

i=1

bi =
k∑

i=1

ci.

We say that B and C have equal size if j = k. The Multiset-Equal-Partition
is a variant of Multiset-Partition in which we wish to count partitions of A
into two multisets in which both the sizes and sums are equal. We first establish
the following:

Proposition 1. Multiset-Equal-Partition is #P-complete under
polynomial-time Turing reductions.

Proof. To appear in the full version.

In order to establish Theorem 1, we will establish a polynomial-time Turing
reduction from Multiset-Equal-Partition to Pairwise Rearrangement
in the SCaJ model. Let A be an instance of Multiset-Equal-Partition.
Our first step will involve a series of transformations from A to a new mul-
tiset A′′, where (i) every equal-sum partition of A′′ has equal size, and (ii)
the number of equal-size, equal-sum partitions of A′′ is twice that of A. Then
starting from A′′, we will construct a polynomial-time Turing reduction to
Pairwise Rearrangement in the SCaJ model.

Without loss of generality, we may assume that |A| = 2n for some integer n,
and that

∑
x∈A x is even. Otherwise, A has no equal-size, equal-sum partitions.

12 L. Bailey et al.

Let a := 1 +
∑

x∈A x. Define A′ to be the multiset obtained by adding a to
every element of A. We will later construct a multiset A′′ from A′. We begin by
establishing the following properties about A′:

Claim. A′ has the same number of equal-size, equal-sum partitions as A.

Claim. Every partition of A′ with equal sum must also have equal size.

Given A′, we now construct a second multiset A′′. Let

b :=
∑

x∈A′
x = (2n + 1)a − 1.

As a is odd, we have that b is even. Choose an integer c > b such that b+2c = 2p,
for some prime p >

(
2n+2
n+1

)
. (We will later construct a set C of crowns such that

the pair (p, C) satisfy the hypotheses of Corollary 1.) Observe that p � c. Define
A′′ := A′ ∪ {c, c}. Note that

∑
x∈A′′ x = 2p.

Claim. Every partition of A′′ with equal sum must also have equal size. In
particular, the number of equal-size, equal-sum partitions of A′′ is twice the
number of equal-size, equal-sum partitions of A′.

We now construct a set of crowns C from A′′ as follows. Let C =
{C1, . . . , C2n+2} be a set of 2n+2 crowns, one with size m− 1 for each m ∈ A′′.
Observe that the (multipartite) partitions of A′′ are in bijection with the (mul-
tipartite) partitions of C (where we stress that each crown in its entirety belongs
to a single part; that is, we are partitioning the set C of crowns and not the
underlying genes or telomeres).

Denote ci to be the size of Ci. Let N be the number of sorting scenarios for
C. Let

N ′ = N − 22p+2n−1
2n+2∏

i=1

ci

2n∏

�=0

(2p − 2n − 2 + �).

By Corollary 1, N ′ equals the number of most parsimonious scenarios for the
2n + 2 crowns in C where the crowns do not all sort together. Let w ≡ N ′

(mod p) with 0 ≤ w < p. We will show later that p � N ′ (see Claim 4). Now let

M =
(
2p
p

)
22p+2n−4

2n+2∏

i=1

ci

n−1∏

�=0

(p − n − 1 + �)2.

By Corollary 2, M equals the number of most parsimonious scenarios for any
partition of the crowns into two parts of equal size, where the sum of the sizes
of the crowns in each part is the same and the crowns within the same part sort
together. Let u ≡ M (mod p) with 0 ≤ u < p. We will now show that u > 0.

Claim. M is not divisible by p. Consequently, u > 0.

In order to complete the reduction and the proof of Theorem 1, we will recover
the number of equal-size, equal-sum partitions of A′′ in polynomial-time, relative
to the Pairwise Rearrangement oracle.

Claim. The number of equal-size, equal-sum partitions of A′′ is the least positive
integer m satisfying m ≡ u−1w (mod p).

Complexity and Enumeration in Models of Genome Rearrangement 13

5 Conclusion

We investigated the computational complexity of genome rearrangement prob-
lems in the Single Cut-and-Join and Single Cut or Join models. In particular,
we showed that the Pairwise Rearrangement problem in the Single Cut-and-
Join model is #P-complete under polynomial-time Turing reductions (Theorem
1) and in the Single Cut or Join model, #Median ∈ FL (Theorem 2).

Natural next steps for the Single Cut-and-Join model include investigating
the complexity of Median– it remains open whether this problem is NP-hard.
It would also be interesting to investigate whether there is particular combi-
natorial structure in the Single Cut-and-Join model that forces the Pairwise
Rearrangement problem to be #P-complete. It is open whether Pairwise
Rearrangement remains #P-hard when the adjacency graph does not con-
tain any crowns. In light of our result that Pairwise Rearrangement is #P-
complete, we seek efficient algorithmic approaches to cope with this intractabil-
ity. One natural approach would be to investigate if we can efficiently sam-
ple sorting scenarios; that is, whether Pairwise Rearrangement belongs to
FPRAS.

References

1. Ajana, Y., Jean-François, L., Tillier, E.R.M., El-Mabrouk, N.: Exploring the set of
all minimal sequences of reversals—an application to test the replication-directed
reversal hypothesis. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452,
pp. 300–315. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45784-
4_23

2. Alekseyev, M.A., Pevzner, P.A.: Comparative genomics reveals birth and death of
fragile regions in mammalian evolution. Genome Biol. 11(11), R117 (2010)

3. Bergeron, A., Medvedev, P., Stoye, J.: Rearrangement models and single-cut oper-
ations. J. Comput. Biol. J. Comput. Mol. Cell Biol. 17, 1213–1225 (2010)

4. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements.
In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS, vol. 4175, pp. 163–173.
Springer, Heidelberg (2006). https://doi.org/10.1007/11851561_16

5. Bergeron, A., Mixtacki, J., Stoye, J.: On computing the breakpoint reuse rate in
rearrangement scenarios. In: Nelson, C.E., Vialette, S. (eds.) RECOMB-CG 2008.
LNCS, vol. 5267, pp. 226–240. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87989-3_17

6. Bailey, L., et al.: Complexity and Enumeration in Models of Genome Rearrange-
ment. arXiv:2305.01851 (2023)

7. Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: Pro-
ceedings of the Third Annual International Conference on Computational Molec-
ular Biology, RECOMB 1999, pp. 84–93. Association for Computing Machinery,
New York, NY, USA (1999)

8. Darling, A., Miklós, I., Ragan, M.: Dynamics of genome rearrangement in bacterial
populations. PLoS Genet. 4, e1000128 (2008)

9. Durrett, R., Nielsen, R., York, T.: Bayesian estimation of genomic distance. Genet-
ics 166, 621–629 (2004)

https://doi.org/10.1007/3-540-45784-4_23
https://doi.org/10.1007/3-540-45784-4_23
https://doi.org/10.1007/11851561_16
https://doi.org/10.1007/978-3-540-87989-3_17
https://doi.org/10.1007/978-3-540-87989-3_17
http://arxiv.org/abs/2305.01851

14 L. Bailey et al.

10. Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several
rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 1318–1329
(2011)

11. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm
for genomic distance problem). In: Proceedings of IEEE 36th Annual Foundations
of Computer Science, pp. 581–592 (1995)

12. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

13. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci. 43, 169–188 (1986)

14. Larget, B., Simon, D.L., Kadane, J.B., Sweet, D.: A Bayesian analysis of metazoan
mitochondrial genome arrangements. Mol. Biol. Evol. 22(3), 486–495 (2004)

15. McClintock, B.: Chromosome organization and genic expression. In: Cold Spring
Harbor Symposia on Quantitative Biology, vol. 16, pp. 13–47. Cold Spring Harbor
Laboratory Press (1951)

16. Miklós, I., Kiss, S.Z., Tannier, E.: Counting and sampling SCJ small parsimony
solutions. Theor. Comput. Sci. 552, 83–98 (2014)

17. Miklós, I., Smith, H.: Sampling and counting genome rearrangement scenarios.
BMC Bioinf. 16, S6 (2015)

18. Miklós, I., Smith, H.: The computational complexity of calculating partition func-
tions of optimal medians with hamming distance. Adv. Appl. Math. 102, 18–82
(2019)

19. Miklós, I., Tannier, E.: Bayesian sampling of genomic rearrangement scenarios via
double cut and join. Bioinformatics 26(24), 3012–3019 (2010)

20. Miklós, I., Tannier, E.: Approximating the number of double cut-and-join scenarios.
Theoret. Comput. Sci. 439, 30–40 (2012)

21. Palmer, J.D., Herbon, L.A.: Plant mitochondrial DNA evolves rapidly in structure,
but slowly in sequence. J. Mol. Evol. 28, 87–97 (1988)

22. Raphael, B., Pevzner, P.: Reconstructing tumor amplisomes. Bioinformatics
(Oxford, England) 20(Suppl 1), i265–73 (2004)

23. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)
24. Simon, J.: On the difference between one and many. In: Salomaa, A., Steinby,

M. (eds.) ICALP 1977. LNCS, vol. 52, pp. 480–491. Springer, Heidelberg (1977).
https://doi.org/10.1007/3-540-08342-1_37

25. Sturtevant, A.H.: The linear arrangement of six sex-linked factors in drosophila,
as shown by their mode of association. J. Exp. Zool. 14(1), 43–59 (1913)

26. Sturtevant, A.H.: Genetic factors affecting the strength of linkage in drosophila.
Proc. Natl. Acad. Sci. U.S.A. 3(9), 555–558 (1917)

27. Sturtevant, A.H.: Known and probably inverted sections of the autosomes of
Drosophila melanogaster. Carnegie Inst. Washington Publisher 421, 1–27 (1931)

28. Sturtevant, A.H., Novitski, E.: The homologies of the chromosome elements in the
genus drosophila. Genetics 26(5), 517–541 (1941)

29. Tannier, C.Z., Sankoff, D.: Multichromosomal median and halving problems under
different genomic distances. BMC Bioinf. 10, 120 (2009)

30. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permuta-
tions by translocation, inversion and block interchange. Bioinformatics (Oxford,
England) 21, 3340–3346 (2005)

https://doi.org/10.1007/3-540-08342-1_37

Conditional Automatic Complexity
and Its Metrics

Bjørn Kjos-Hanssen(B)

University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
bjoernkh@hawaii.edu

https://math.hawaii.edu/wordpress/bjoern/

Abstract. Li, Chen, Li, Ma, and Vitányi (2004) introduced a similarity
metric based on Kolmogorov complexity. It followed work by Shannon
in the 1950s on a metric based on entropy. We define two computable
similarity metrics, analogous to the Jaccard distance and Normalized
Information Distance, based on conditional automatic complexity and
show that they satisfy all axioms of metric spaces.

Keywords: Automatic complexity · Kolmogorov complexity · Jaccard
distance

1 Introduction

In this article we show that metrics analogous to the Jaccard distance and the
Normalized Information Distance can be defined based on conditional nonde-
terministic automatic complexity AN . Our work continues the path of Shannon
(1950) on entropy metrics and Gács (1974) on symmetry of information among
others.

Shallit and Wang (2001) defined the automatic complexity of a word w as,
somewhat roughly speaking, the minimum number of states of a finite automaton
that accepts w and no other word of length |w|. This definition may sound a bit
artificial, as it is not clear the length of w is involved in defining the complexity
of w. In this article we shall see how conditional automatic complexity neatly
resolves this issue.

Definition 1 ([4,12]). Let L(M) be the language recognized by the automaton
M . Let x be a sequence of finite length n. The (unique-acceptance) nondeter-
ministic automatic complexity AN (w) = ANu(w) of a word w is the minimum
number of states of an NFA M such that M accepts w and the number of walks
along which M accepts words of length |w| is 1.

The exact-acceptance nondeterministic automatic complexity ANe(w) of a
word w is the minimum number of states of an NFA M such that M accepts w
and L(M) ∩ Σ|w| = {w}.
This work was partially supported by a grant from the Simons Foundation (#704836
to Bjørn Kjos-Hanssen).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 15–28, 2024.
https://doi.org/10.1007/978-3-031-49190-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_2&domain=pdf
http://orcid.org/0000-0002-6199-1755
https://doi.org/10.1007/978-3-031-49190-0_2

16 B. Kjos-Hanssen

The (deterministic) automatic complexity A(w) is the minimum number of
states of a DFA M with L(M) ∩ Σ|w| = {w}.

Finally, A−(w) is the minimum number of states of a deterministic but not
necessarily complete (total) NFA with L(M) ∩ Σ|w| = {w}.
Remark 1. A−(w) is so named because it satisfies A−(w) ≤ A(w) ≤ A−(w) + 1.

Lemma 1. For each word w, we have ANe(w) ≤ ANu(w).

Proof. We simply note that if M uniquely accepts w, then M exactly accepts w.

Remark 2. Let w = 00 and let M be the following NFA:

start ���������	q0
0

��

0

��
�������	
��
����q0

0

��

We see that M accepts w on two distinct walks, (q0, q0, q1) and (q0, q1, q1). Hence
M exactly accepts w, but does not uniquely accept w. This example is contrived
in the sense that we could remove an edge without changing L(M), but it is
not clear that this will always be possible for other NFAs. Thus the question
whether ANu = ANe, considered in [6], remains open.

2 Conditional Complexity

Definition 2 (Track of two words). Let Γ and Δ be alphabets. Let n ∈ N,
x ∈ Γn and y ∈ Δn. When no confusion with binomial coefficients is likely, we
let

(
a
b

)
= (a, b) ∈ Σ × Δ. The track of x and y, x#y ∈ (Γ × Δ)n, is defined to

be the word (
x0

y0

)(
x1

y1

)
. . .

(
xn−1

yn−1

)
,

which we may also denote as
(
x
y

)
.

Definition 3 (Projections of a word). Let Γ and Δ be alphabets. Let n ∈ N,
x ∈ Γn and y ∈ Δn. The projections π1 and π2 are defined by π1(x#y) = x,
π2(x#y) = y.

x#y can be thoughts of as a parametrized curve i �→ (xi, yi). The symbol #
reminds us of the two “tracks” corresponding to x and y. This use of the word
“track” can be found in [11].

Theorem 1. There exist words x, y with AN (x#y) �≤ AN (x) + AN (y).1

Proof. Let x = (010)4 and y = (01)6. Then we check that AN (x#y) = 6,
AN (x) = 3, and AN (y) = 2.

1 Recall that AN := ANu.

Conditional Automatic Complexity and Its Metrics 17

Definition 4. A permutation word is a word that does not contain two occur-
rences of the same symbol.

Theorem 2. For all words x, y, we have max{AN (x), AN (y)} ≤ AN (x#y).
There exist words x, y with max{A−(x), A−(y)} �≤ A−(x#y).

Proof. Let x be a word of some length n with A−(x) > n/2+1. An example can
be found among the maximum-length sequences for linear feedback shift registers
as observed in [5]. Let y be a permutation word (Definition 4) of the same length.
Whenever y is a permutation word, so is x#y. Therefore A−(x#y) ≤ n/2 + 1 <
A−(x).

Definition 5. Let Γ and Δ be alphabets. Let n ∈ N and x ∈ Γn, y ∈ Δn. The
conditional (nondeterministic) automatic complexity of x given y, AN (x | y), is
the minimum number of states of an NFA over Γ ×Δ such that Item i and Item
ii hold.

(i) Let m be the number of accepting walks of length n = |x| = |y| for which the
word w read on the walk satisfies π1(w) = y. Then m = 1.

(ii) Let w be the word in Item i. Then π2(w) = x.

An example of Definition 5 is given in Remark 3.
The conditional complexity A(x | y) must be defined in terms of a unique

sequence of edges rather than a unique sequence of states, since we cannot assume
that there is only one edge from a given state q to given state q′.

Theorem 3. AN (x#y) ≤ AN (x | y) · AN (y). In relativized form, AN (x | z) ≤
AN (y | z) · AN (x | y#z).

Proof. We describe the unrelativized form only. We use a certain product of
NFAs.2 Let two NFAs

M1 = (Q1, Γ × Δ, δ1, q0,1, F1), M2 = (Q2, Γ, δ2, q0,2, F2)

be given. The product is M1 ×1 M2 = (Q1 × Q2,Δ, δ, (q0,1, q0,2), F1 × F2) where
δ((q, q′), a) � (r, r′) if δ1(q, (b, a)) � r and δ2(q′, b) � r′ for some b.

(We can also form M1 ×2 M2 where δ((q, q′), (b, a)) � (r, r′) if δ1(q, (b, a)) � r
and δ2(q′, b) � r′.).

For a walk w, let word(w) be the word read on the labels of w. Consider
an accepting walk w from (q1, q2) to (r1, r2). By definition of the start and
final states of M1 ×1 M2, the projection π1(w) is also accepting. Hence by the
AN (y) witness assumption π1(w) is the only accepting walk of its length and
word(π1(w)) = y. Since word(π1(w)) = y, by the AM (x | y) witness assumption
w is the unique walk with word(π1(w)) = y, and word(π2(w)) = x. Thus the
accepted word is x#y and w is the unique accepting walk of its length.

Theorem 4. There exist x and y with AN (x#y) �= AN (x | y) · AN (y).

2 This construction may well have appeared elsewhere but we are not aware of it.

18 B. Kjos-Hanssen

Proof. Let y = 0001 and x = 0123. It is enough to note that AN (x#y) = 3,
AN (y) = 2, and AN (x | y) is an integer.

Remark 3. Theorem 3 is not optimal in the sense of Theorem 4. On the other
hand, Theorem 3 is optimal in the sense that there is a class of word pairs for
which it cannot be improved: let y = (012345)k for some large k, and let x =
(0123)l where 4l = 6k, so that |x| = |y|. We have AN (x#y) = lcm(4, 6) = 12,
AN (y) = 6, and AN (x | y) = 2 as witnessed by the NFA in (1).

M1 start

��
�������	
��
����q0

(51)
��(00),(11),(22),(33),(40)

��
�������	q1

(53)
�� (02),(13),(20),(31),(42)

�� (1)

The product of this and a cyclic M2 automaton for y is another cyclic automaton,
shown in (2).

M1 ×2 M2
��������q03

(33)

		��
��
��
��
��
��
��
��
��
��
��

��������q13
(31)

��
��
��
��

��������q04

(40)
��

��������q14

(42)
��

��������q12

(20)
����������

��������q02

(22)

���������������������

��������q05

(51) �����
����

����
����

����
� ��������q15

(53)

�
��

��
��

��
��

��
��

��������q11

(13)
��

��������q01

(11)
��

��������q10
(02)

����������

start �� ���������������	q00

(00)

���������������������

(2)

Definition 6. A word x induces an equivalence relation i ∼x j ⇐⇒ xi = xj.

Theorem 5. If ∼x refines ∼y then AN (y | x) = 1.
If y is a constant word then AN (x | y) = AN (x).

An equivalent characterization is that A(x | y) is the minimum number of
states of an NFA that accepts y on only one walk (but may accept other words
of the same length), such that the equivalence relation induced by the sequence
of labeled edges used refines ∼x.

Conditional Automatic Complexity and Its Metrics 19

3 Bearing on the Unique vs. Exact Problem

A central problem in automatic complexity is whether ANe = ANu [6]. Moving
to conditional complexity sheds new light.

Definition 7. A sparse witness for ANe(x | y) is an NFA M that witnesses the
value of ANe(x | y), with the additional properties that

(i) if any edge is removed from M , then it is no longer a witness of ANe(x | y);
and

(ii) M has fewer or equal number of edges as some witness M1 of ANu(x | y).

Note that if ANe(x | y) = ANu(x | y) then any witness for ANu(x | y) is a sparse
witness for ANe(x | y). The converse fails:

Theorem 6. There exist binary words x, y such that there is a ANe(x | y) sparse
witness that is not an ANu(x | y)-witness.

Proof. We will display slightly more than promised: an ANe(x | y) witness that
has strictly fewer edges than some ANu(x | y) witness for the same x, y. Consider
x = 0000110, y = 0010100, and the state sequences 00111200 and 01111200.
They both generate the same NFA:

�������	
��
����q0

0

�� 0 ���������	q1

0,1

��

1

��
start

��

�������	q2

0

����������

They are sparse witnesses, and have only 6 edges, whereas an ANu witness with
7 edges is the state sequence 01200210.

�������	
��
����q0

0

�� 0
�������	q1

0

(with y labels)

start

��

�������	q2

1

��������

�������	q2
(10)

�� (01) ��start ���������	
��
����q0
(11)

��

(00)

��
(00)

�������	q1

(00)
��

(with
(

y
x

)
labels)

Here, the arrowless edges represent two edges with the same label in opposite
directions.

20 B. Kjos-Hanssen

We do not know if sparse witnesses can ever be found in the unconditional
case ANe(x). For example, for x = 01110 the state sequence is 011220 is a
non-sparse witness; and there are no sparse witnesses for any |x| ≤ 8.

4 A Jaccard Distance Metric

For binary words x, y let

Jnum(x, y) = log(AN (x | y)AN (y | x)). (3)

The base of logarithm chosen is not important, but it is sometimes convenient
to let log = log2.

Let us briefly recall the definitions of metric and pseudometric spaces.

Definition 8. Let X be a set. A function d : X × X → R≥0 is a pseudometric
if it is commutative, satisfies the triangle inequality, and satisfies d(x, x) = 0 for
all x ∈ X. If in addition d(x, y) = 0 =⇒ x = y then d is a metric.

The underlying space for our metrics will be αn/Sym(α) where α is an alpha-
bet, n ∈ N, and Sym(α) is the symmetric group of all permutations of α.
Our metrics arise from pseudometrics on αn. If α is finite we can assume
α = [a] = {0, 1, . . . , a − 1} for some a ∈ N, and choose slow sequences as
representatives. Here, a sequence s ∈ αn is slow if s(0) = 0 and for each i,
s(i) ≤ max{s(j) | j < i} + 1. In the case of a binary alphabet {0, 1}, this set of
representatives is simply 0 {0, 1}n−1.

Theorem 7. Jnum is a metric on the set 0{0, 1}n−1 for any n ≥ 1.

Proof. We have Jnum(x, y) = 0 iff x and y are isomorphic under some per-
mutation of Σ. If we restrict attention to binary words of the form 0z we get
Jnum(x, y) = 0 ⇐⇒ x = y. And Jnum(x, y) = Jnum(y, x) is immediate. Theo-
rem 3 implies

AN (x | y) ≤ AN (z | y) · AN (x | z),

hence

Jnum(x, y) = log2(AN (x | y)AN (y | x))
≤ log2(AN (x | z)AN (z | y)AN (y | z)AN (z | x))
= Jnum(x, z) + Jnum(y, z)

hence the triangle inequality holds.

The argument in Theorem 7 has predecessors: for instance, the simple
inequality

|A \ C| ≤ |A \ B| + |B \ C|
was used in the analysis of the Jaccard distance (see Kjos-Hanssen 2022 [8]).
Horibe (1973) [3] gives the following argument which is credited to a conference

Conditional Automatic Complexity and Its Metrics 21

talk by Shannon (1950) later published in 1953 [13] (Shannon writes that it
is “readily shown” but does not give the argument). Let H(x | y) denote the
entropy of x given y. Then

H(x | z) ≤ H(x, y | z) = H(x | y, z) + H(y | z)
≤ H(x | y) + H(y | z).

Similarly, Gács, Tromp, and Vitányi [1] show

K(x | y∗) ≤+ K(x, z | y∗) ≤+ K(z | y∗) + K(x | z∗).

Here, K is the prefix-free Kolmogorov complexity, K(x | y) its conditional
version; y∗ is a shortest program for y, so K(y) = |y∗|; and a ≤+ b means
a ≤ b + O(1). The heavy lifting was already done in 1974 by Gács [2] who
showed “symmetry of information”, K(x, y) =+ K(x)+K(y | x∗). Symmetry of
information does not exactly hold in our setting:

Theorem 8. There exist words x, y with AN (x | y)AN (y) �= AN (y | x)AN (x).

Proof. Let x = 0001, y = 0011, then it would imply 2 · 3 = 2 · 2.

Remark 4. Let a, b, c, a′, b′, c′ be natural numbers. If a ≤ bc and a′ ≤ b′c′ then
max{a, a′} ≤ max{b, b′}max{c, c′},

Theorem 9. The following function Jnum
max is a metric on 0{0, 1}n−1.

Jnum
max (x, y) = log2 max{AN (x | y), AN (y | x)}

= max{log2 AN (x | y), log2 AN (y | x)}.

Proof. To show the triangle inequality, applying Remark 4,

max{A(x | y), AN (y | x)} ≤ max{AN (x | z), AN (z | x)} · max{AN (y | z), AN (z | y)}.

Lemma 2 ([8, Lemma 5]). Let d(x, y) be a metric and let a(x, y) be a non-
negative symmetric function. If a(x, z) ≤ a(x, y) + d(y, z) for all x, y, z, then
d′(x, y) = d(x,y)

a(x,y)+d(x,y) , with d′(x, y) = 0 if d(x, y) = 0, is a metric.

Theorem 10. The following Jaccard distance type function is a metric on
0{0, 1}n (with the convention 0/0 = 0):

J(x, y) =
log(AN (x | y)AN (y | x))

log(AN (x | y)AN (y | x)AN (x)AN (y)) − log(AN (x#y))

Proof. It suffices to prove the triangle inequality. We apply Lemma 2. Namely,
let d(x, y) = log2(AN (x | y)AN (y | x)) and let a(x, y) = log2

(
AN (x)AN (y)

AN (x#y)

)
.

Then we must show a(x, z) ≤ a(x, y) + d(y, z) which is equivalent to (writing
A = AN temporarily)

A(x#y)A(x)A(z) ≤ A(x)A(y)A(y | z)A(z | y)A(x#z)

22 B. Kjos-Hanssen

A(x#y)A(z) ≤ A(y)A(y | z)A(z | y)A(x#z)

Since A(z) ≤ A(z | y)A(y), it suffices to show

A(x#y) ≤ A(y | z)A(x#z)

This is shown as follows:

A(x#y) ≤ A(y#(x#z)) ≤ A(y | x#z)A(x#z) ≤ A(y | z)A(x#z).

One advantage of J is that it does not depend on the base of the logarithm
chosen.

Lemma 3. For the special case where y = 0n, a constant word, and x �= y, we
have J(x, y) = 1.

Proof. We compute

J(x, y) = log(AN (x))/ log(AN (x)AN (x)/AN (x)) = 1.

If this metric is very close to the discrete metric, it is of course not very
interesting. This is fortunately not the case:

Theorem 11. There exist words x, y ∈ 0{0, 1}n−1 with 0 < J(x, y) < 1/2, i.e.,

AN (x)AN (y) �≤ AN (x | y)AN (y | x)AN (x#y).

Proof. Let x = u0, y = u1, where u = 0000100. Then J(u0, u1) = 0.46.

Calculating AN (x | y) for independent random x, y of lengths n up to 20 we
find that the mode of the distribution is around n/4 (see Appendix).

We do not know whether the problem “J(x, y) = 1?” is decidable in polyno-
mial time.

Theorem 12 (Hyde [4]). For all words x, AN (x) ≤ |x|/2 + 1.

Theorem 13. Let x1, x2 ∈ 0{0, 1}n−1, n ≤ 12, with x1 �= x2. Let S = {x1, x2}
and let A = {001, 010, 011}. Then the following are equivalent:

1. J(x1, x2) = 1;
2. either

(a) 0n ∈ S, or
(b) n ≥ 10, and S = {(01)n/2, αn/3} for some α ∈ A.

Proof. This is done by computerized search, so we merely give some remarks on
the simplifications making the computation feasible. If there is an example of
length 9 or more then by Theorem 12, the equation AN (x#y) = AN (x)AN (y)
must be of the form a = a · 1, a ≤ 5 (already ruled out) or 4 = 2 · 2. So it is
enough to check words of complexity 2. At length 10 we also have to include the
possible equation 6 = 2 · 3, so we consider all words of complexity 3 or less.

Conditional Automatic Complexity and Its Metrics 23

Lemma 4. If α is a permutation word and k ∈ N then αk is (k + 1)-powerfree.

Proof. If w = αk contains a (k + 1)-power u then let a be the first symbol in u.
Then a appears at least k+1 times in w. However, there are |α| distinct symbols
in w and they each appear k times.

Theorem 14 ([4]). Let k ∈ N. If an NFA M uniquely accepts w of length n,
and visits a state p at least k + 1 times during its computation on input w, then
w contains a kth power.

Theorem 15. Let k ∈ N, k ≥ 1. If a word w is kth-powerfree, then AN (w) ≥
|w|+1

k .

Proof. Let k and w be given. Let q = AN (w) and let M witness that AN (w) ≤ q.
For a contrapositive proof, assume q < |w|+1

k . Thus k < |w|+1
q .

Let p be a most-visited state in M during its computation on input w. Then
p is visited at least (|w|+1)/q > k times, hence at least k+1 times. By Theorem
14, w contains an kth power.

Proposition 1. For each nonempty permutation word α and each k ∈ N with
k ≥ |α| − 1, we have AN (αk) = |α|.
Proof. Let a = |α| ≥ 1, let k ≥ a − 1, and w = αk. Then by Lemma 4 and
Theorem 15,

AN (w) ≥ |w| + 1
k + 1

=
ka + 1
k + 1

= a − a − 1
k + 1

≥ a − a − 1
a

> a − 1.

Since AN (w) is an integer, AN (w) ≥ a. The other direction just uses a single
cycle.

From Proposition 1 we have an infinite family of examples with J(x, y) = 1
as in Theorem 13. Namely, x and y can be powers of permutation words of
relatively prime length.

Lemma 5. If α and β are permutation words of lengths a and b, then

(αlcm(a,b)/a)#(βlcm(a,b)/b)

is a permutation word.

Proof. Let this word w = w1 . . . wn, wi ∈ Σ. If wi = wj then the first and second
coordinates of wi and wj are equal, so i is congruent to j mod a and mod b.
Hence i is congruent to j mod lcm(a, b), so i = j.

The case k = 2, α = 01, β = 012 exemplifies Theorem 16. There a = 2, b = 3,
u = 010101, v = 012012, x = 010101010101, and y = 012012012012.

Theorem 16. Let α and β be permutation words of relatively prime lengths
a = |α| and b = |β|. Let k ∈ N, k ≥ 2. Let x = uk, y = vk, where u = αb and
v = βa. Then J(x, y) = 1.

24 B. Kjos-Hanssen

Proof. It suffices to show AN (x#y) = AN (x)AN (y). By Lemma 5, u#v is a
permutation word, and x#y = (u#v)k, and so by Proposition 2,

AN (x#y) = |u#v| = |u| = ab = AN (x)AN (y).

In Proposition 2, the condition k ≥ |α| − 1 in Proposition 1 is strengthened to
simply k ≥ 2 (but of course not to k ≥ 1).

Proposition 1 still gives nonredundant information in the case where 2 >
|α| − 1, i.e., α ∈ {1, 2} and k ∈ {0, 1}.

Theorem 17 ([7]). Let q ≥ 1 and let x be a word such that AN (x) ≤ q. Then x
contains a set of powers xαi

i , αi ≥ 2, 1 ≤ i ≤ m such that all the |xi|, 1 ≤ i ≤ m
are distinct and nonzero, and satisfying (4).

n + 1 − m −
m∑

i=1

(αi − 2)|xi| ≤ 2q. (4)

Proposition 2. For each nonempty permutation word α, and k ≥ 2, we have
AN (αk) = |α|.
Proof. First assume k = 2. Theorem 17 implies that if a square of a permutation
word has complexity at most q, then n/2 ≤ q.

Now let k > 2. Since α2 is a prefix of αk, we have AN (αk) ≥ AN (α2) = |α|.
We may wonder whether as long as α is primitive, or at least if α has maximal
AN -complexity (achieving Hyde’s bound in Theorem 12), without necessarily
being a permutation word, Proposition 2 still holds, i.e., AN (α2) = |α|. But this
fails:

Definition 9. A word w has emergent simplicity if AN (w) is maximal, but
AN (w2) < |w|.
Proposition 3. There exists a word having emergent simplicity. The minimal
length of such a word in {0, 1}∗ is 7.

Proof. Let w = 0001000. Then w is maximally complex, but AN (w2) = 6. The
only other example of length 7 is 0010100.

Hence not all maximal-complexity words are like 001, 010, 011 in Theorem 13.
That is, in general, maximal-complexity words cannot be used to get instances
of J(x, y) = 1. We next show that this emergent simplicity can only go so far,
in Theorem 19.

Definition 10. A word w̃ is a cyclic shift (or a conjugate) of another word w
if there are words a, b with w = ab, w̃ = ba.

Lemma 6 ([11, Theorem 2.4.2]). A cyclic shift of a primitive word is
primitive.

Conditional Automatic Complexity and Its Metrics 25

Theorem 18 (Lyndon andSchützenberger [10]; see [11,Theorem2.3.3]).
Let x, y ∈ Σ+. Then the following four conditions are equivalent:

1. xy = yx.
2. There exists z ∈ Σ and integers k, l > 0 such that x = zk and y = zl.
3. There exist integers i, j > 0 such that xi = yj.

Theorem 19. If AN (w|w|) < |w| then w is not primitive (and hence does not
have maximal AN -complexity).

Proof. If AN (w|w|) < |w| then AN (w|w|) ≤ |w| − 1 and hence, since |w|w|| =
|w|2 and k − 1 �≥ (k2 + 1)/(k + 1) for all k, AN (w|w|) �≥ |w|2+1

|w|+1 . Therefore, by
Theorem 15 w|w| contains an (|w|+1)th power u|w|+1. Thus (|w|+1)|u| ≤ |w|2,
so |u| < |w| (*). Since w|w| also contains u|w|, there is a cyclic shift w̃ of w such
that u|w| = w̃|u|. Then letting g = gcd(|w|, |u|), we have u|w|/g = w̃|u|/g as well,
and now the exponents are relatively prime. By Theorem 18, there is a word α
with u = α|u|/g and w̃ = α|w|/g. If |w|/g > 1 then w̃ is nonprimitive and hence
so is w by Lemma 6. If |w|/g = 1 then |w| divides |u| which is a contradiction
to (*).

Theorem 20. Let x, y ∈ 0{0, 1}n−1. Then AN (x | y) = 1 iff x = y or x = 0n.

Proof. Suppose x �= 0n and M is a 1-state NFA such that there is only one
labeled walk on which there exists z with M accepting y#z (which we can also
write

(
y
z

)
); and on that one walk, z is x. M has at most four edges, with labels

from among
(
0
0

)
,
(
0
1

)
,
(
1
0

)
,
(
1
1

)
.

Since x = 0u and y = 0v both start with 0, the walk must start with an edge
labeled

(
0
0

)
. Then there is no edge labeled

(
0
1

)
, or else M would accept both y#x

and y#(1u).
Since x �= 0n, x contains a 1, so there is an edge labeled

(
0
1

)
or

(
1
1

)
. So there

is an edge labeled
(
1
1

)
.

Then there is no edge labeled
(
1
0

)
, or else two different z’s would occur. (Let

x = 0k1w, then M would accept both y#x and y#(0k0w).). So M is just the
1-state NFA with two edges labeled

(
0
0

)
and

(
1
1

)
only. Consequently, x = y.

This J deems x and y to be “disjoint” when AN (x#y) = AN (x)AN (y), which
for example happens when x and y are high powers of short words of relatively
prime length.

5 A Normalized Information Distance Metric

The following metric Jmax, more analogous to the Normalized Information Dis-
tance [9] than the Jaccard distance, seems better than J above in the following
way: If AN (x | y) = AN (x) and AN (y | x) = AN (y), then x and y are of no
help in compressing each other. This should mean that their distance is maximal
(Jmax(x, y) = 1). This argument can be compared to that made by Li et al. [9].
The condition we get from J , that J(x, y) = 1 when A(x#y) = AN (x)AN (y),
seems relatively unmotivated in comparison.

26 B. Kjos-Hanssen

Definition 11. Let x, y be words of length n ∈ N. We define

Jmax(x, y) =
log max{A(x | y), A(y | x)}

log max{A(x), A(y)}
Theorem 21. Jmax is a metric on the set 0{0, 1}n−1.

The proof is similar to that of Theorem 10 and is given in the Appendix. For
this metric the case J(x, y) = 1 is perhaps not much easier to understand. We
already have examples where A(y | x) = A(y) even though x and y are both
nontrivial, such as x, y ∈ {001, 010, 011}. We can ask whether this metric embeds
in Euclidean space but it fails already at n = 4.

Conclusion and Future Work. We have seen that while automatic complexity
AN is quite different from Kolmogorov complexity K, surprisingly we can obtain
metrics similar to those for K using log AN and a conditional version of AN . In
fact, these metrics are genuine metrics (not just up to some accuracy) and are
computable. We also saw that the conditional version of AN sheds more light
upon the problem of distinguishing AN = ANu and its word-counting version
ANe. In the future, we hope to characterize when J = 1 and Jmax = 1, and
determine whether AN , J or Jmax are efficiently computable.

Appendix

The distributions of q = ANu(x | y) for n ≤ 10 are as follows (modes indicated
in brackets):

n \ q 1 2 3 4 5 6

0 [1]

1 [1]

2 [3] 1

3 7 [9]

4 15 [45] 4

5 31 [197] 28

6 63 [755] 191 15

7 127 [2299] 1561 109

8 255 5905 [9604] 571 49

9 511 14005 [47416] 3205 399

10 1023 31439 [206342] 21066 2102 172

For example, the table entry for (n, q) = (2, 2) is 1 since the only instance of
x, y ∈ 0{0, 1} with AN (x | y) = 2 is AN (01 | 00).

Proof of Theorem 21.

Conditional Automatic Complexity and Its Metrics 27

Proof. The nontrivial part is the triangle inequality. Let

axy = log max{A(x), A(y)} − log max{A(x | y), A(y | x)};

then by Lemma 2 it suffices to show that axz ≤ axy + dyz. In other words:

log max{A(x), A(z)} − log max{A(x | z), A(z | x)}
≤ log max{A(x), A(y)} − log max{A(x | y), A(y | x)} + log max{A(y), A(z)}.

Equivalently, we must show that

max{A(x | y), A(y | x)}max{A(x), A(z)}
≤ max{A(x | z), A(z | x)}max{A(y), A(z)}max{A(x), A(y)}.

There are now two cases.
Case 1: A(x) ≤ A(z). Then in fact

max{A(x | y), A(y | x)}max{A(x), A(z)}
≤ max{A(y), A(z)}max{A(x), A(y)}.

Case 2: A(z) < A(x). Then we use A(x | y) ≤ A(x) ≤ A(x | z)A(z) and
A(y | x) ≤ A(y).

References

1. Gács, P., Tromp, J.T., Vitányi, P.M.B.: Algorithmic statistics. IEEE Trans. Inform.
Theory 47(6), 2443–2463 (2001). https://doi.org/10.1109/18.945257

2. Gač, P.: The symmetry of algorithmic information. Dokl. Akad. Nauk SSSR 218,
1265–1267 (1974)

3. Horibe, Y.: A note on entropy metrics. Inf. Control 22, 403–404 (1973)
4. Hyde, K.K., Kjos-Hanssen, B.: Nondeterministic automatic complexity of overlap-

free and almost square-free words. Electron. J. Combin. 22(3), 18 (2015)
5. Kjos-Hanssen, B.: Automatic complexity of shift register sequences. Discrete Math.

341(9), 2409–2417 (2018). https://doi.org/10.1016/j.disc.2018.05.015
6. Kjos-Hanssen, B.: Few paths, fewer words: model selection with automatic

structure functions. Exp. Math. 28(1), 121–127 (2019). https://doi.org/10.1080/
10586458.2017.1368048

7. Kjos-Hanssen, B.: An incompressibility theorem for automatic complexity. Forum
Math. Sigma 9, e62 (2021). https://doi.org/10.1017/fms.2021.58

8. Kjos-Hanssen, B.: Interpolating between the Jaccard distance and an ana-
logue of the normalized information distance. J. Logic Comput. 32(8),
1611–1623 (2022). https://doi.org/10.1093/logcom/exac069. https://doi-org.eres.
library.manoa.hawaii.edu/10.1093/logcom/exac069

9. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE
Trans. Inform. Theory 50(12), 3250–3264 (2004). https://doi.org/10.1109/TIT.
2004.838101

10. Lyndon, R.C., Schützenberger, M.P.: The equation aM = bNcP in a free group.
Michigan Math. J. 9, 289–298 (1962)

https://doi.org/10.1109/18.945257
https://doi.org/10.1016/j.disc.2018.05.015
https://doi.org/10.1080/10586458.2017.1368048
https://doi.org/10.1080/10586458.2017.1368048
https://doi.org/10.1017/fms.2021.58
https://doi.org/10.1093/logcom/exac069
https://doi-org.eres.library.manoa.hawaii.edu/10.1093/logcom/exac069
https://doi-org.eres.library.manoa.hawaii.edu/10.1093/logcom/exac069
https://doi.org/10.1109/TIT.2004.838101
https://doi.org/10.1109/TIT.2004.838101

28 B. Kjos-Hanssen

11. Shallit, J.: A Second Course in Formal Languages and Automata Theory, 1st edn.
Cambridge University Press, New York, NY, USA (2008)

12. Shallit, J., Wang, M.W.: Automatic complexity of strings. J. Autom. Lang. Comb.
6(4), 537–554 (2001). 2nd Workshop on Descriptional Complexity of Automata,
Grammars and Related Structures, London, ON (2000)

13. Shannon, C.: The lattice theory of information. Trans. IRE Prof. Group Inf. Theory
1(1), 105–107 (1953). https://doi.org/10.1109/TIT.1953.1188572

https://doi.org/10.1109/TIT.1953.1188572

Streaming and Query Once Space
Complexity of Longest Increasing

Subsequence

Xin Li1 and Yu Zheng2(B)

1 Johns Hopkins University, Baltimore, MD 21218, USA
lixints@cs.jhu.edu

2 Meta Platforms Inc., Menlo Park, CA 94025, USA
hizzy1027@gmail.com

Abstract. Longest Increasing Subsequence (LIS) is a fundamental prob-
lem in combinatorics and computer science. Previously, there have been
numerous works on both upper bounds and lower bounds of the time
complexity of computing and approximating LIS, yet only a few on the
equally important space complexity.

In this paper, we further study the space complexity of computing and
approximating LIS in various models. Specifically, we prove non-trivial
space lower bounds in the following two models: (1) the adaptive query-
once model or read-once branching programs, and (2) the streaming model
where the order of streaming is different from the natural order.

As far as we know, there are no previous works on the space com-
plexity of LIS in these models. Besides the bounds, our work also leaves
many intriguing open problems.

Keywords: longest increasing subsequence · streaming algorithm ·
approximation algorithm · branching program

1 Introduction

Longest Increasing Subsequence (LIS) is a natural measure of a sequence where
the alphabet has a total order, and finding (the length of) LIS in a sequence is
a fundamental problem in both combinatorics and computer science, which has
been studied for decades. For example, the well known Erdös-Szekeres theorem
in combinatorics states that, given any natural numbers r and s, any sequence
of at least (r − 1)(s − 1) + 1 objects with a total order contains a monotonically
increasing subsequence of length r or a monotonically decreasing subsequence of
length s. Besides being interesting in its own right, LIS is also closely related to
other important string problems. For example, it is a special case of the problem
of finding the longest common subsequence (LCS) between two strings, where
one string is arranged in the increasing order. As such, algorithms for LIS are
often used as subroutines for LCS, which in turn has wide applications in bio-
informatics due to its connections to gene sequences.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 29–60, 2024.
https://doi.org/10.1007/978-3-031-49190-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_3

30 X. Li and Y. Zheng

In terms of computing LIS, the classical Patience Sorting algorithm [Ham72,
Mal62] can find an LIS of a sequence of length n over an alphabet Σ in time
O(n log n) and space O(n log n), while the work of [KOO+20] generalizes this
by providing a trade-off between the time and space used. Specifically, for any
s ∈ N with

√
n ≤ s ≤ n, [KOO+20] gives an algorithm that uses O(s log n)

space and O(n2

s log n) time for computing LIS-length, and O(n2

s log2 n) time for
finding an actual subsequence. However, no algorithm is known to achieve a
better trade-off. We remark that the decision version of LIS is in the class NL
(non-deterministic logspace), and thus by Savitch’s theorem [Sav70], it can be
solved in time nO(log n) and space O(log2 n).

Several works studied the problem of approximating LIS, with the goal of
achieving either better time complexity or better space complexity. For time
complexity, one aims to obtain a good approximation of LIS using sublinear
time. The known results in this category depend heavily on the length of LIS.
For example, the work of [SS17] provides an (1+ ε) approximation of LIS-length
in truly sublinear time if the length is at least (1−λ)n for λ = Ω(log log n/ log n).
When the length of LIS is at least λn for an arbitrary λ < 1, [RSSS19] gave an
algorithm that provides an O(1/λ3) approximation in Õ(

√
n/λ7) time. A subse-

quent work of [MS21] improved the approximation to O(1/λε) and the time com-
plexity to O(n1−Ω(ε)(log n/λ)O(1/ε)). The work of [NV21] introduced an O(1/λ)
approximation algorithm with non-adaptive query complexity Õ(

√
r poly(1/λ))

assuming there are r distinct values in the sequence. Finally, a recent work of
[ANSS22] achieves a 1/λo(1) approximation in O(no(1)/λ) time for any λ = o(1).
We note that all these algorithms are randomized algorithms.

The situation becomes better for space complexity. Here, the goal is to obtain
a good approximation of LIS using sublinear space, while still maintaining poly-
nomial time. In this context, the work of [Sah17] provides an algorithm for LIS-
length that achieves an εn additive approximation using space O(log n

ε), while
a recent work [CFH+21] achieves a 1 + ε approximation using Õε,δ(nδ) space
and Õε,δ(n2−2δ) time, for any constants δ ∈ (0, 1

2) such that 1
δ is an integer, and

ε ∈ (0, 1). [CFH+21] further provides an algorithm that achieves a 1+O(1
log log n)

approximation using O(log4 n
log log n) space and n5+o(1) time.

In addition, due to applications on large data sets, LIS is also well studied
in the streaming model, where the sequence is accessed from a data stream with
one or a small number of passes, rather than random access. In this model, the
work of [GJKK07] provides a one-pass streaming algorithm that achieves a 1+ε
approximation of LIS-length, using O(n log n) time and O(

√
n/ε log n) space,

where the space complexity is known to be tight due to the lower bounds given
in [GG10,EJ08]. Interestingly, all these algorithms are deterministic, and it is
an intriguing question to see if randomized algorithms can achieve better space
complexity.

In this work, we further study the lower bounds of space complexity for com-
puting and approximating LIS in various models. Recall that the decision version
of LIS is in the class NL, and the question of whether NL = L (L stands for deter-
ministic logspace) is still a major open problem in theoretical computer science.

Streaming and Query Once Space Complexity 31

Hence, to get any non-trivial space lower bound, it is natural and necessary to
restrict the models. Here, we study two different models: the query-once model
and the streaming model.

Query-Once Model. In this model, we allow the algorithm to have random access
to the input sequence, but impose the restriction that the algorithm can only
query each element of the sequence at most once, using any adaptive strategy.
It is thus a natural and strict generalization of the one-pass streaming model.

In fact, we study the slightly more general model of read-once branching
program, which can be used to represent the deterministic query-once algorithm.
Informally, a read-once branching program models the query-once model as a
directed graph, where at each node of the branching program, the program
queries one position of the input sequence. Depending on the queried input
symbol, the program jumps to another node and continues the process. The
read-once property ensures that in any computation path, any input element
is queried at most once. The size of the branching program is defined as the
number of nodes, which roughly corresponds to 2O(s) for a space s computation.
A formal description is given in Appendix A. We note that the model of read-
once branching program is a non-uniform model, hence is more general than the
uniform query-once algorithm model.

Size lower bounds of read-once branching programs for explicit func-
tions have also been the subject of extensive study. Following a long line
of research [Weg88,Zák84,Dun85,Juk88,KMW91,SS92,Pon98,Gál97,BW98,
ABCR99,Kab03,Li23], the current best lower bound for a function in P is
2n−O(log n) [Li23], which is optimal up to the constant in O(·). There are even
functions in uniform-AC0 that give strong size lower bounds for read-once branch-
ing programs [Juk88,KMW91,Gál97,BW98,LZ23], where the current best lower
bound is 2(1−δ)n) for any constant δ > 0 [LZ23].

However, many of the above lower bounds are achieved by somewhat con-
trived functions, thus it is also important and interesting to study the size of
read-once branching programs computing natural functions. Notable examples
include the integer multiplication function [Pon98,BW01,AK03], where a lower
bound of Ω(2n/4) [BW01] is known for deterministic read-once branching pro-
grams and a lower bound of 2Ω(n/ log n) [AK03] is known for randomized read-
once branching programs; and the clique-only function [Zák84,BRS93], where a
lower bound of 2Ω(

√
n) is known even for non-deterministic read-once branching

programs.
Following this direction, in this paper we study the size of deterministic read-

once branching programs for LIS-length.

Streaming Model with Arbitrary Order. In this model, the input sequence is
again given to the algorithm in a data stream. However, unlike the standard
streaming model for LIS where the sequence is given from the first element to
the last element, here we study the streaming model where the elements are
given in some arbitrary order, according to a permutation of [n]. Indeed, in
practice the data stream containing the input sequence may not be exactly

32 X. Li and Y. Zheng

in the natural order of the elements. For example, consider the situation of
an asynchronous network, where a client sends a long sequence to a server for
processing. Even if the client sends the sequence from the first element to the
last element, the elements received by the server may be in a different order due
to transmission delays in the network. Hence, this model is also a natural and
practical generalization of the standard streaming model for LIS. In this paper
we study two types of streaming orders, which we define later. The motivation of
these orders comes from the fact that a random order falls into either type with
high probability. Therefore, these orders actually capture most of the streaming
orders.

We study LIS space lower bounds for both deterministic and random-
ized algorithms in these models. Previously, the only known non-trivial space
lower bounds for approximating LIS are in the streaming model with stan-
dard order, where the aforementioned works [GG10,EJ08] give a lower bound of

Ω

(
1
R

√
n
ε log

(
|Σ|
εn

))
for any R pass deterministic streaming algorithm achiev-

ing a 1 + ε approximation of LIS-length when the alphabet size |Σ| ≥ n, and
the subsequent work of [LZ21] which extends this bound to Ω(min(

√
n, |Σ|)/R)

for any constant ε > 0 with any alphabet size. In contrast, there is no known
non-trivial space lower bound for randomized algorithms that 1+ε approximate
LIS-length, for any constant ε > 0 in the streaming model.

For exact computation of the LIS-length, [SW07] establishes a space lower
bound of Ω(n) for any O(1)-pass randomized streaming algorithm, as long as
|Σ| ≥ n, again in the standard order.

In summary, we stress that the only known lower bounds for either approx-
imating or exact computation of the LIS-length in the streaming model are in
the standard order, as far as we know. Furthermore, there is no known space
lower bound (even for deterministic computation of LIS-length) in the query-
once model.

1.1 Our Results

In this paper we establish new space lower bounds for computing and approxi-
mating LIS-length in the query-once model and the streaming model. We start
by stating our results in the query-once model. Below, for a sequence x ∈ Σn,
we use LIS(x) to stand for the length of a longest increasing subsequence in x.
In this paper we always assume that the alphabet size |Σ| > n.

Query-Once Model

Theorem 1. Given input sequences x ∈ Σn, any read-once branching program
that computes LIS(x) has size 2Ω(n).

Remark 1. Since our alphabet size |Σ| > n, our input size is actually n′ =
O(n log n) and hence in terms of n′, the lower bound is 2Ω(n′/ log n′). Also, in our
model the read-once branching program reads a symbol in Σ each time, instead

Streaming and Query Once Space Complexity 33

of just one bit. It is an interesting open question to see if one can get better
lower bounds or in the model where the read-once branching program reads an
input bit each time.

This gives the following corollaries.

Corollary 1. Given input sequences x ∈ Σn, any deterministic algorithm that
computes LIS(x) and queries each symbol of x at most once (the queries can be
adaptive) needs to use Ω(n) space.

Corollary 2. Given input sequences x ∈ Σn, any one-pass deterministic
streaming algorithm computing LIS(x) needs to use Ω(n) space, regardless of
the order of the elements in the stream.

It is clear that these lower bounds are almost tight, up to a log |Σ| factor.

Remark 2. We note that [SW07] establishes a space lower bound of Ω(n) for
any O(1)-pass randomized streaming algorithm that computes LIS(x), as long
as |Σ| ≥ n. However, we stress that their result does NOT supersede ours,
since their result only applies to the standard streaming order, where the input
sequence is read from left to right. On the other hand, our Corollary 2 applies
to any arbitrary streaming order. Therefore, these two results are incomparable.
Furthermore, our Theorem 1 and Corollary 1 give lower bounds in the read-once
branching program model and query-once model, which are strictly stronger
than the streaming model.

Streaming Model in Special Orders. Given an alphabet Σ and an input sequence
x = x1x2 · · · xn ∈ Σn, we represent the order of streaming as a permutation
π : [n] → [n] and write π = π1π2 · · · πn, where each πi = π(i) ∈ [n]. The
streaming algorithm has access to x in the order of π, i.e., it sees xπ1 , then xπ2

and so on. In other words, the index i refers to the i-th symbol in the stream,
while the index πi refers to the πi-th symbol in the original input sequence x,
so the i-th symbol in the stream corresponds to the πi-th symbol in the original
input sequence x.

We prove space lower bounds for two types of orders.

Definition 1 (Type 1 order). π is a type 1 order with parameter m if there
are two sets of indices I = {i1, i2, . . . , im} and J = {j1, j2, . . . , jm}, with |I| =
|J | = m such that max(I) < min(J) and 1 ≤ πi1 < πj1 < πi2 < πj2 < · · · <
πim < πjm < n.

Notice that max(I) < min(J) guarantees that for any i ∈ I and j ∈ J , xπi

appears before xπj
in order π. The constraint 1 ≤ πi1 < πj1 < πi2 < πj2 < · · · <

πim < πjm < n says that the original indices of the symbols corresponding to I
and J in x are interleaved.

For example, any order that first reveals all symbols in odd positions and
then all symbols in even positions is an order of Type 1 with parameter n/2
since we can let I = {1, 2, . . . , n/2} and J = {n/2 + 1, n/2 + 2, . . . , n}.

We have the following lower bounds for deterministic approximation algo-
rithms in Type 1 order.

34 X. Li and Y. Zheng

Theorem 2. Given input sequences x ∈ Σn in any type 1 order with parameter
m, any R-pass deterministic algorithm that achieves a 1 + 1/32 approximation
of LIS(x) needs to use Ω(m/R) space.

We believe that type 1 order is interesting, since one can show that, with high
probability, a random streaming order is a type 1 order with parameter Ω(n).
Hence type 1 order actually captures most of the streaming orders. In turn, this
gives the following corollary.

Corollary 3. Given input sequences x ∈ Σn in a random order sampled uni-
formly from all permutations on [n], with probability 1 − 2−Ω(n), any R-pass
deterministic algorithm that achieves a 1 + 1/32 approximation of LIS(x) needs
to use Ω(n/R) space.

For randomized algorithms, we show a simple lower bound for exact compu-
tation.

Theorem 3. Given input sequences x ∈ Σn in any type 1 order with param-
eter m, any R-pass randomized algorithm that computes LIS(x) correctly with
probability at least 2/3 needs to use Ω(m/R) space.

The second type of orders generalizes type 1 orders, and corresponds to orders
with interleaving blocks.

Definition 2 (Type 2 order). π is a type 2 order with parameters r and s if
the following holds. There are r disjoint sets of indices B1, B2, . . . , Br each of
size s such that

max
(⋃

l is odd

Bl

)
< min

(⋃

l is even

Bl

)
,

and for any 1 ≤ l < r, we have maxi∈Bl
(πi) < mini∈Bl+1(πi).

For example, if we divide [n] evenly into
√

n blocks each of size n, then any
order that first reveals symbols in the odd blocks and then symbols in the even
blocks is a Type 2 order with r = s =

√
n. This is because we can pick r = s =√

n such that B1, B2, . . . , Br/2 are the odd blocks and Br/2+1, Br/2+2, . . . , Br

are the even blocks.

Remark. Type 1 order with parameter m can be viewed as a special case of type
2 order as it is essentially type 2 order with parameter r = 2m and s = 1.

We have the following lower bound for deterministic approximation algo-
rithms in type 2 order.

Theorem 4. Given input sequences x ∈ Σn in any type 2 order with parame-
ters r and s, any R-pass deterministic algorithm that gives a 1 + 1/400 approx-
imation of LIS(x) needs to use Ω(r · s/R) space.

Streaming and Query Once Space Complexity 35

Intuitively, the streaming order that is most friendly to computing or approx-
imating LIS-length is the natural order (or the reverse order). Indeed, in these
models the algorithm given in [GJKK07] achieves a one-pass 1+ε approximation
of LIS-length, using O(n log n) time and O(

√
n/ε log n) space. We thus conjec-

ture that this is the best one can do, and 1 + ε approximation of LIS-length in
any streaming order requires Ω(

√
n) space. Specifically, we have the following

conjecture, which seems quite natural but we haven’t been able to prove.

Conjecture 1. Given input sequences x ∈ Σn, for any one-pass streaming order,
any deterministic algorithm that achieves 1 + ε approximation of LIS(x) needs
to use Ωε(

√
n) space.

In particular, it is not clear if there is any streaming order where one can
get a constant factor deterministic approximation algorithm for LIS-length that
uses o(

√
n) space.

1.2 Technique Overview

We now give an overview of the techniques used in our paper. Full proofs are
deferred to the appendix.

Query-Once Model and Read-Once Branching Programs. Our first lower bound
is for any read-once branching program. Specifically, we prove that any read-
once branching program computing LIS exactly must have a large size, which in
turn implies a space lower bound. Assume the alphabet size is m and the input
length is n, and let x and y be two different input strings. Let Ij(x) denote the
set of positions the branching program queries at the j-th level on input x. Note
that Ij(x) may not be equal to Ij(y), due to the adaptivity of the algorithm.

However, we show that if the computation paths of two different inputs x and
y go through the same node at the j-th level, then we must have Ij(x) = Ij(y).
This is because if not, we can find two new sequences x′ and y′ such that x′ (resp.
y′) follows the same computation path as x (resp. y) until the j-th level, and at
the same time x′ and y′ follow the same computation path after the j-th level.
Since the branching program can query each position of an input at most once,
the computation path of x′ and y′ after the j-th level can not query any position
in Ij(x) ∪ Ij(y). That means the branching program will output the same result
for x′ and y′, and at the same time, there must be at least one position in x′ (and
y′) not queried by the branching program. We can now change the symbol in
that unqueried position of x′ to get another sequence with a different LIS-length,
but since this position is not queried the branching program will still give the
same output. This is a contradiction.

With the above observation, we show that there must be a level in the branch-
ing program with 2Ω(n) nodes. The proof is based on the following two claims.

First, for any two different increasing sequences x, y ∈ Σn and a subset S of
[n] with size n/5, if x and y are not equal when restricted to S (i.e. x|S �= y|S),
then we can find two new sequences x′ and y′ with unequal LIS-length such that

36 X. Li and Y. Zheng

for positions in S, x′ = x and y′ = y (i.e. x′|S = x|S , y′|S = y′|S) and for
positions not in S, x′ = y′ (i.e. x′|[n]\S = y′|[n]\S) (Claim 1 in the appendix).
The construction of x′ and y′ is given in the proof of Claim 1.

Second, there exists a set of 2Ω(n) increasing sequences such that for any
S ⊆ [n] with size n/5 and any two sequences in the set, they are not equal when
restricted to S (Claim 2 in the appendix). The proof is based on a probabilis-
tic argument, where we show that by independently randomly choosing 2Ω(n)

increasing sequences, there is a non-zero probability that they satisfy the claim.
Now, consider the set in Claim 2 and the n/5-th level of the branching pro-

gram, we argue that any two sequences in the set cannot go through the same
node at that level. This is because if they do, then by Claim 1, we can build
two new sequences with different LIS-length but the branching program will give
the same output. Thus, the n/5-th level must have 2Ω(n) nodes. This yields our
2Ω(n) size lower bound for read-once branching programs and Ω(n) space lower
bound any adaptive query-once algorithm.

Streaming in Special Orders. As many other streaming space lower bounds, our
proof is based on reductions from communication complexity problems. Specifi-
cally, we consider a 2-party communication problem where Alice and Bob each
holds a different part of the input sequence based on the streaming model. In
addition, our proof uses error-correcting codes to create gaps that are necessary
for our approximation lower bounds. A more detailed description is given below.

Type 1 Order. In type 1 order with parameter m, there are 2m positions and
the streaming first reveals the odd positions and then the even positions. To
make the presentation easier, let’s consider the special case where we first see
all the odd positions of the input sequence, and then all the even positions. We
can translate this streaming order into a 2-party communication problem, where
Alice holds all the odd positions of the input sequence and Bob holds all the
even positions. Their goal is to approximate the LIS-length. The space required
by any streaming algorithm is at least the communication complexity between
Alice and Bob.

The communication complexity lower bound is established by constructing
a large fooling set. Specifically, our fooling set is obtained from a simple binary
asymptotically good error-correcting code C with codeword length n/4. The size
of the code C (number of codewords) is 2Ω(n) and for any two different codewords
c1 and c2, their Hamming distance is Ω(n).

Assume Alice holds a codeword u ∈ {0, 1}n/4 and Bob holds a codeword
v ∈ {0, 1}n/4. Our proof gives a construction that transforms u and v into a
sequence such that the odd positions only depend on u and the even positions
only depend on v. Denote this new sequence by z = z(u, v). We divide z into
n/4 small blocks of size 4, such that, for the i-th block, if ui = vi, or ui = 0
and vi = 1, then the LIS-length of this block is 1; on the other hand, if ui = 1
and vi = 0, then the LIS-length of this block is 0. We design the blocks so that
the total LIS-length of z is the summation of the LIS-lengths of all blocks. Thus,
when u = v, the LIS of z is always a fixed number. But when u �= v, since u

Streaming and Query Once Space Complexity 37

and v are both codewords of C, there is a constant fraction of positions such
that ui �= vi. Then the LIS-length of one of z(u, v) and z(v, u) is smaller by
a constant factor. This makes C a fooling set and gives the Ω(n) space lower
bound. Generalizing this to any parameter m < n, we get the lower bound of
Ω(m) for type 1 order with parameter m.

We also show that any randomized algorithm computing LIS-length exactly
in this order must use Ω(m) space. The proof is based on a reduction from the
set-disjointness problem to computing LIS exactly.

Type 2 Order. In type 2 order, we assume Alice and Bob each holds r inter-
leaved blocks of size s. Since type 1 order is a special case of type 2 order with
r = m and s = 1, naturally, we want to extend our previous techniques to type
2 order and construct another fooling set.

Recall that for type 1 order, our fooling set is obtained from an asymptotically
good error-correcting code, where Alice and bob each holds a codeword, u and
v. The input sequence constructed from these codewords is divided into m small
blocks, where the i-th block is determined by ui and vi. Whenever ui �= vi, we
can potentially reduce the LIS-length by 1. Since the code C has Ω(m) distance,
this gives a lower bound for constant factor approximation algorithms.

In the case of type 2 order, each block has size s. If we can only create a gap of
1 in LIS-length for each pair of blocks depending on whether the corresponding
bits of u and v are equal, then we can only get a lower bound for 1 + o(1)
approximation. To amplify the gap, we use another asymptotically good error-
correcting code.

Here we present a simplified version of our construction to illustrate the high-
level idea, while the actual construction is slightly more complicated. We use two
asymptotically good error-correcting codes, C(1) and C(2). C(1) ⊆ {0, 1}s is a
binary code, which has codeword length s and distance s/4. Note that C(1) is a
subset of {0, 1}s. C(2) ⊆ (C(1))r uses C(1) as its alphabet, and it has codeword
length r and distance r/2. Since both C(1) and C(2) are asymptotically good,
we have |C(1)| = 2Ω(s) and |C(2)| = 2Ω(r·s).

We assume Alice and Bob each holds a codeword of C(2), denoted by A and
B. The first step is to construct a s × 2r weighted directed grid graph using A
and B. The grid has 2r columns and each column has s nodes. In this graph,
each node has two outgoing edges, one connecting to the node on its right, and
the other connecting to the node below. The graph has the following properties.
All edges going downward has weight 1, and all edges going from an even column
to an odd column has weight 1. For edges going from an odd column to an even
column, the weights depend on A and B. Specifically, for an edge going from
the j-th node in the (2i − 1)-th column to the j-th node in the 2i-th column, it
has weight 1 if (Ai)j �= (Bi)j and 0 otherwise. Here, Ai is the i-th symbol of A,
which is a codeword of C(1); and (Ai)j the j-th symbol of Ai, which is in {0, 1}.
The same notation applies to (Bi)j .

If A = B, then any edge going from an odd column to its right have weight
0. Otherwise, by the distance property of our codes, there are at least r/2 odd
columns such that for each column, at least 1/4 of the edges going out of this

38 X. Li and Y. Zheng

column to its right must have weight 1. This is because the code C(2) has distance
r/2 and C(1) has distance s/4.

We now transform the graph into a 2-party communication problem where
Alice holds the odd columns and Bob holds the even columns. Their goal is to
approximate the largest weight of any path going from the top-left node to the
bottom-right node. We can use a combinatorial argument based on the Erdös-
Szekeres theorem to show that if A = B, the largest weight of any path is
a fixed number; however, if A �= B, the largest weight of any path increases
by a constant factor. Thus, the code C(2) gives a fooling set for this problem
and any deterministic algorithm that solves the problem needs communication
complexity at least log(|C(2)|) = Ω(r · s).

Finally, we reduce this problem to approximating LIS-length in type 2 order,
by assigning appropriate values to each node of the grid graph and reordering
the nodes into a sequence. The high-level idea is that for each path in the grid
graph, we can find a sequence whose LIS-length is equal to the weight of the
path. This gives our space lower bound in type 2 order.

1.3 Related Work

There have also been several works studying the “complement” problem of LIS,
namely approximating the distance to monotonicity, i.e., dm(x) = n−LIS(x), in
both the sublinear-time and the streaming settings (note that computing dm(x)
exactly is equivalent to computing LIS(x)). For time complexity, this was first
studied by [ACCL07], and a subsequent work of [SS17] gave a (1 + ε) approxi-
mation algorithm in time poly(1/dm(x), log n) for any constant ε > 0.

In the streaming setting, [GJKK07,EJ08] gave algorithms that achieve O(1)
approximation of dm(x) using polylog(n) space. This was later improved by
[SS13] to achieve a randomized (1+ε)-approximation algorithm using polylog(n)
space, and further by [NS14] to achieve a deterministic (1 + ε)-approximation
algorithm using polylog(n) space. [NS14] also proved streaming space lower
bound of Ω(log2 n/ε) and Ω(log2 n/(ε log log n)) for deterministic and random-
ized (1 + ε)-approximation of dm(x), respectively.

LIS has also been recently studied in the Massively Parallel Computation
(MPC) model and the fully dynamic model. In the former, [IMS17] gave a
O(1/ε2)-round algorithm that achieves (1 + ε)-approximation of LIS-length, as
long as each machine uses space n3/4+Ω(1). In the latter, a sequence of works
[MS20,GJ21,KS21] resulted in an exact algorithm [KS21] with sublinear update
time, together with a deterministic 1 + o(1)-algorithm algorithm with update
time no(1).

2 Computing LIS in the Query-Once Model

In this section, we consider the query-once model where algorithms only allowed
to access each symbol of the input sequence once. We show that in this model,
any algorithm that computes LIS exactly must use Ω(n) space.

Streaming and Query Once Space Complexity 39

Theorem 1. Given input sequences x ∈ Σn, any read-once branching program
that computes LIS(x) has size 2Ω(n).

We introduce some notations. For any set of indices S ⊆ [n], the function
fS takes two sequences x, y ∈ Σn as input and outputs a sequence σ such that
σ|S = x|S and σ|[n]\S = y|[n]\S . So if σ = fS(x, y), then for any i ∈ [n],

σi =

{
xi, if i ∈ S,

yi, if i /∈ S.

Our proof is based on the following 2 claims.

Claim 1. Assume the alphabet size m > c · n for some large enough constant
c, and x, y ∈ [m]n are two increasing sequences. Then ∀ S ⊂ [n] with |S| = n/5
such that x|S �= y|S, there is a sequence z ∈ [0,m + 1]n such that

LIS(fS(x, z)) �= LIS(fS(y, z)).

Claim 2. Assume the alphabet size m > c · n for some large enough constant
c, then there exists a set T of increasing subsequences in [m]n with size 2Ω(n),
such that ∀ S ⊂ [n] with |S| = n/5 and ∀ x, y ∈ T , we have x|S �= y|S.

Due to the page limit, the proof of Claim 1 and Claim 2 are deferred to
Appendix B.

Proof (Proof of Theorem 1). Assume there is a levelled branching program that
computes LIS exactly. Let t = n/5, we show that the number of nodes at the
t-th level is 2Ω(n).

We consider the computation path of different input sequences. Given an
input sequence x, we let Ij(x) denote the set of positions that have been queried
in the first j levels by the branching program. Meanwhile, we say a sequence is
even if all its symbols are even numbers. We have the following observation.

Consider two sequences x and y that takes only even values, if their com-
putation path both go through the same node in j-th level, then we must have
Ij(x) = Ij(y). To see this, assume Ij(x) �= Ij(y), let Ij = Ij(x) ∪ Ij(y). If j = n,
Ij(x) �= Ij(y) means some positions in x or y are not queried. Say there is a
position l that is not queried in x, then fix any longest increasing subsequence
of x, we can change xl to an odd value and increase the LIS by 1. This will not
influence the computation path since xl is not queried. If 1 ≤ j < n, we can
build two new sequences x̃ and ỹ by letting x̃|Ij = x|Ij , ỹ|Ij = y|Ij , and fill any
positions in [n] \ Ij with symbol 1. Then after j-th level, x̃ and ỹ will follow the
same computation path since after j-th level, the branching program will not
query any position in Ij (or it will query some position in x or y twice). We
must have LIS(x̃) = LIS(ỹ). Since the LIS is only determined by positions in Ij ,
we have x|Ij = y|Ij . By the same argument as the case of j = n, we can get a
contradiction.

Also notice that, for two even increasing sequences x and y, if their computa-
tion path both go through the same node in t = n/5-th level, let S = It(x), then

40 X. Li and Y. Zheng

we must have x|S = y|S . This follows from Claim 1. To see this, if x|S �= y|S ,
then according to Claim 1, there exists x̃ and ỹ such that x̃|S = x|S , ỹ|S = y|S ,
x̃|[n]/S = ỹ[n]/S and LIS(x̃) �= LIS(ỹ). If we use x̃ as input to the branching
program, in the first t levels, it will follow the exact same computation path
as x since x̃|S = x|S . ỹ will also follow the same computation path as y.
Thus, the computation path of x̃ and ỹ will collide at t-th level. Notice that
x̃|[n]/S = ỹ|[n]/S , after t-th level, x̃ and ỹ will follow the same computation path,
which means our branching program will output the same result for x̃ and ỹ.
However, this is contradictory to LIS(x̃) �= LIS(ỹ).

Let T be a set of increasing sequences guaranteed by Claim 2. We can turn
it into a set of even increasing subsequences by multiplying each symbols by a
factor of two. This will not affect the properties guaranteed by Claim 2 and will
only increase the alphabet size by a factor of 2, which is still O(n). We denote
this new set by T ′. By the above observation, the computation paths of any two
sequences in T ′ must go through different nodes in t-th level. Thus, the t-th level
must have 2Ω(n) nodes. The space used by the branching program is Ω(n).

Corollary 4. Assume the input sequence x is given as a stream, then no matter
what is the order of the stream, any 1-pass deterministic algorithm computing
LIS(x) takes Ω(n) space.

Proof. The streaming model can be viewed as a restricted version of the query-
once model where the algorithm can only access input sequence in a specific
order. Thus, the space lower bound for query-once model also holds for the
streaming model.

3 Lower Bounds for Streaming LIS in Different Orders

Due to page limit, we defer this section to Appendix C.

4 Open Problems

Our work leaves several natural open problems. First, can one get better lower
bounds for the query-once model/read-once branching programs? Can one gen-
eralize the bounds to query-k times/read-k times branching programs? Can one
get any lower bounds for randomized or non-deterministic branching programs?
How about lower bounds for approximation?

Second, can one get any lower bounds for randomized algorithms approximat-
ing LIS-length in the streaming model? Finally, is our conjecture in the streaming
model true, or is there any streaming order where one can get a constant factor
deterministic approximation of LIS-length that uses o(

√
n) space?

Acknowledgments. The first author is supported by NSF CAREER Award CCF-
1845349 and NSF Award CCF-2127575. The second author was partially supported by
NSF CAREER Award CCF-1845349, with work mostly done while being a graduate
student at Johns Hopkins University.

Streaming and Query Once Space Complexity 41

A Preliminaries

Notations. We use [n] to denote the set of all positive integers that are at most
n, and use [a, b] to denote the set of all integers that are at least a and at most b.

For any set of indices I ⊆ [n], we use x|I to denote the subsequence of x
restricted to the indices in I. In other words, assume I = {i1, i2, . . . , it} and
1 ≤ i1 < i2 < · · · < it ≤ n, then x|I = xi1xi2 · · · xit .

Branching Program. The following definition is from [Bea89]. An R-way branch-
ing program consists of a directed acyclic rooted graph of out-degree R = R(n)
with each non-sink node labelled by an index from {1, 2, . . . , n} and with R
out-edges of each node labelled 1, . . . , R. Edges of the branching program may
also be labelled by a sequence of values from some output domain. The size of
a branching program is the number of nodes it has.

Let x = (x1, x2, . . . , xn) be an n-tuple of integers chosen from the range [R].
An R-way branching program computes a function of input x as follows. The
computation starts at the root of the branching program. At each non-sink node
v encountered, the computation follows the out edge labelled with the value of
xi where i is the index that labels node v (i.e. variable xi is queried at v). The
computation terminates when it reaches a sink node. The sequence of nodes
and edges encountered is the computation path followed by x. The output of the
branching program on input x is determined by the sink node the computation
path ends in.

The time used by a branching program is the length of the longest computa-
tion path followed by any input. The space used by a branching program is the
logarithm base 2 of its size.

An R-way branching program is levelled if the nodes of the underlying graph
are assigned levels so that the root has level 0 and the out edges of a node at
level l only go to nodes at level l+1. It is known that any branching program can
be levelled without changing its time and with at most squaring its size [Pip79].
This will not change the time used and will increase the space complexity by a
factor of 2 at most. Thus we can assume R-way branching programs are levelled
without loss of generality. If the branching program has the additional property
that in any computation path, any xi is queried at most once, then it is called
a read-once branching program.

The Log Sum Inequality. In Appendix C.2, we will use the following inequality.

Lemma 1 (The log sum inequality). Given 2n positive numbers a1, a2, . . . ,
an and b1, b2, . . . , bn, let a =

∑n
i=1 ai and b =

∑n
i=1 bi, then we have

n∑

i=1

ai log
ai

bi
≥ a log

a

b
.

42 X. Li and Y. Zheng

Communication Complexity and Fooling Set. We will consider the 2-party com-
munication model where 2 players Alice and Bob each holds input x ∈ X, y ∈ Y
respectively. The goal is to compute a function f : X × Y → {0, 1}. We define
the deterministic communication complexity of f in this model as the minimum
number of bits required to be sent by the players in every deterministic com-
munication protocol that always outputs a correct answer. Correspondingly, the
randomized communication complexity (denoted by Rε(f)) is the minimum num-
ber of bits required to be sent by the players in every randomized communication
protocol that can output a correct answer with probability at least 1 − ε.

Some of our proofs use the classical fooling set argument. Fooling set is
defined as following.

Definition 3 (Fooling set). Let f : X ×Y → {0, 1}. A subset S ⊆ X ×Y is a
fooling set for f if there exists z ∈ {0, 1} such that ∀(x, y) ∈ S, f(x, y) = z and
for any two distinct (x1, y1), (x2, y2) ∈ S, either f(x1, y2) �= z or f(x2, y1) �= z.

We have the following Lemma.

Lemma 2 (Corollary 4.7 of [Rou15]). If f has a fooling set S of size t, then
the deterministic communication complexity of f is at least log2 t.

Set-Disjointness Problem. We will use some classical results about the commu-
nication complexity of 2 party set-disjointness problem. 2 party set-disjointness
problem is defined as following. Assuming there are two parties, Alice and Bob,
each of them holds a k-subset of [n], i.e. Alice holds a set A ⊆ [n] with |A| = k
and Bob holds another set B ⊆ [n] with |B| = k. Alice and Bob wants to
compute whether A and B are disjoint (DISJn,k). Here,

DISJn,k(A,B) =

{
1, if A ∩ B = ∅,

0, if A ∩ B �= ∅.

We have the following result about the randomized communication complex-
ity of set-disjointness.

Theorem 5 (Theorem 1.2 of [HW07]). For any c < 1/2, the randomized
communication complexity R1/3(DISJn,k) = Ω(k) for every k ≤ cn.

Erdös-Szekeres Theorem.

Theorem 6 (Erdös-Szekeres theorem). Given two integers r > 0 and s >
0, any sequence of distinct real numbers with length at least (r − 1)(s − 1) + 1
contains a monotonically increasing subsequence of length r or a monotonically
decreasing subsequence of length s.

B Proofs Omitted in Section 2

In this section, we provide formal proofs omitted in Sect. 2.

Streaming and Query Once Space Complexity 43

B.1 Proof of Claim 1 in Section 2

Proof. In other words, the claim says if two increasing sequences x and y are
not equal on a subset of indices S with |S| = n/5, then there is a way to build
two sequences x̃, ỹ ∈ [0,m + 1]n with x̃|S = x|S , ỹ|S = y|S and x̃|[n]/S = ỹ|[n]/S

such that LIS(x̃) �= LIS(ỹ).
Let us fix index set S ∈ [n] and increasing sequences x, y such that x|S �=

y|S . Our goal is two build x̃ and ỹ satisfying the above properties. We first fix
x̃|S = x|S , ỹ|S = y|S and say that the positions not in S are unfixed.

Let l ∈ S be the first index that xl �= yl and r be the last position that
xr �= yr. There are two cases. First, there are at least 2n/5 unfixed positions
after l (with index larger than l). Second, there are less than 2n/5 unfixed
positions after l.

For the first case, without loss of generality, we assume xl < yl. Let E be the
set of symbols that appeared in x|S or y|S with value larger than xl, i.e.

E = {a | a > xl and a = xi or a = yi for some i ∈ S}

Let uE be the sequence of all elements in E concatenated in the increasing
order. Since |S| = n/5, we have |E| = |uE | ≤ 2n/5 − 1. We can build x̃ and ỹ
as follows. First, we put 0 into all unfixed positions before l (if any). Then, for
unfixed positions after l, we first put uE into the unfixed positions (notice that
we assume there are at least 2n/5 unfixed positions after l and |uE | ≤ 2n/5− 1)
and for the remaining unfixed positions, we put m + 1 into them.

We argue that LIS(x̃) �= LIS(ỹ). To see this, notice that x̃ and ỹ are equal
before l-th position and all symbols before l-th position are smaller than xl.
Also notice that, in both x̃|[l+1:n] and ỹ|[l+1:n], there are exactly |E| + 1 distinct
symbols (symbols in E plus the symbol m + 1) and we can find an increasing
subsequence of length |E|+1 (uE plus the symbol m+1). Since all symbols after
l-th position are larger than xl (in both x̃ and ỹ). For x̃, the longest increasing
subsequence is the longest increasing subsequence before l-th position plus the
symbol xl, and plus the longest increasing subsequence after l-th position. For
ỹ, the longest increasing subsequence we can find is similar except we can not
include the symbol xl (which does not appear in ỹ). Thus, we have LIS(x̃) =
LIS(ỹ) + 1.

For the second case, the argument is symmetric. There are 4n/5 unfixed
positions. If there are less than 2n/5 unfixed positions after l. There are at least
2n/5 unfixed positions before r. Without loss of generality, we assume xl > yl

and let E be the set of symbols that appeared in x|S or y|S with value smaller
than xr. Similarly, let uE be the sequence of all elements in E concatenated in
the increasing order.

We can build x̃ and ỹ as follows. First, we put m+1 into all unfixed positions
after r (if any). Then, for unfixed positions before r, we first put a 0 in the first
unfixed position and then put uE into the unfixed positions. If there are any
remaining unfixed positions, we put 0 into them. By a similar analysis in the
first case, we can show that LIS(x̃) = LIS(ỹ) + 1. This finishes the proof.

44 X. Li and Y. Zheng

B.2 Proof of Claim 2 in Section 2

Proof. We prove the claim by a probabilistic argument. Let A be the set of all
increasing sequence in [m]n (|A| =

(
m
n

)
) and x, y are two sequences sampled i.i.d.

from A uniformly. Then, consider a fixed set S ⊂ [n] with |S| = n/5. We now
give an estimation of the probability of x|S = y|S . Before the computation, we
introduce some notations. For simplicity, let t = n/5. Let S = {i1, i2, . . . , it}
such that i1 < i2 < · · · < it. In addition, we let i0 = 0 and it+1 = n + 1. For
i ∈ [t + 1], let

dl = il − il−1 − 1.

And for any fixed sequence z ∈ A, we let zt+1 = m + 1 and

al(z) = zil − zil−1 − 1.

Clearly, al(z) ≥ dl since z is an increasing sequence. Also, we have
∑t+1

l=1 dl =
n − t, and

∑t+1
l=1 al(z) = m − t.

We can write Pr[x|S = y|S] = 1
|A|

∑
z∈A Pr[x|S = z|S]. For a fixed z, Pr[x|S =

z|S] is exactly the number of sequences in A satisfies x|S = z|S divided by the
size of A. Notice that x|S = z|S fixed t positions in x. For any l ∈ [t], there are(
al(z)

dl

)
ways to pick symbols between il-th position and il−1-th position. Here,

we allow il = il−1 + 1 since in this case
(
al(z)

dl

)
= 1. For simplicity, we write

al = al(z) for simplicity. Thus, for fixed z ∈ A,

Pr[x|S = z|S] =
1

|A| ·
t+1∏

l=1

(
al

dl

)

≤ 1
|A| ·

t+1∏

l=1

(e · al

dl

)dl

≤ 1
|A| · en−t ·

t+1∏

l=1

(al

dl

)dl

(1)

By the log sum inequality (Lemma 1) and the fact that
∑t+1

l=1 dl = n− t, and
∑t+1

l=1 al(z) = m − t , we have

log
(t+1∏

l=1

(al

dl

)dl
)

=
t+1∑

l=1

dl log
al

dl

= −
t+1∑

l=1

dl log
dl

al

≤ −(n − t) · log
n − t

m − t

= (n − t) · log
m − t

n − t

(2)

Streaming and Query Once Space Complexity 45

Combine Eq. (1), Eq. (2) and |A| =
(
m
n

)
, we have

Pr[x|S = z|S] ≤ 1
|A| · en−t ·

t+1∏

l=1

(al

dl

)dl

≤ 1
|A| · en−t · (

m − t

n − t
)n−t

≤(n

m

)n ·
(
e · m − t

n − t

)n−t

(3)

Plug in t = n/5, we have Pr[x|S = z|S] ≤ (
n
m

)n ·
(
e · m−t

n−t

)n−t

≤ (
n
m

)n/5 ·
(
5e
4

)4n/5.Thus, for any two x, y sampled i.i.d. from A, we have

Pr[x|S = y|S] ≤ (n

m

)n/5 · (5e

4
)4n/5

.

Let I = {S ⊂ [n] such that |S| = n/5}. We have

Pr[∃ S ∈ I, x|S = y|S] ≤
∑

S∈I

Pr[x|S = y|S]

≤
(

n

n/5

)
· (n

m

)n/5 · (5e

4
)4n/5

≤
(
5e · n

m
· (

5e

4
)4

)n/5

.

(4)

Taking m = Ω(n) to be large enough, we have Pr[∃ S ∈ I, x|S = y|S] ≤
2−n/5.

If we take a random subset T ⊆ A with size 2n/20. By a union bound,

Pr[∀ x, y ∈ T and S ∈ I, x|S �= y|S] ≥1 −
(|T |

2

)
· 2−n/5 > 0. (5)

Thus, there exists a set T ⊂ [m]n of increasing sequences with size 2n/20 such
that for any two sequences x, y ∈ T and any S ∈ I, we have x|S �= y|S . This
proves the claim.

C Lower Bounds for Streaming LIS in Different Orders

In this section, we consider the problem of computing/approximating LIS in the
streaming model but with different orders.

We restate the definition of the orders we studied here.

Definition 1 (Type 1 order). π is a type 1 order with parameter m if there
are two sets of indices I = {i1, i2, . . . , im} and J = {j1, j2, . . . , jm}, with |I| =
|J | = m such that max(I) < min(J) and 1 ≤ πi1 < πj1 < πi2 < πj2 < · · · <
πim < πjm < n.

46 X. Li and Y. Zheng

Definition 2 (Type 2 order). π is a type 2 order with parameters r and s if
the following holds. There are r disjoint sets of indices B1, B2, . . . , Br each of
size s such that

max
(⋃

l is odd

Bl

)
< min

(⋃

l is even

Bl

)
,

and for any 1 ≤ l < r, we have maxi∈Bl
(πi) < mini∈Bl+1(πi).

C.1 Lower Bounds for Type 1 Orders

Lower Bounds for Deterministic Algorithms

Theorem 2. Given input sequences x ∈ Σn in any type 1 order with parameter
m, any R-pass deterministic algorithm that achieves a 1 + 1/32 approximation
of LIS(x) needs to use Ω(m/R) space.

Proof. Without loss of generality, we assume n is an even number. Consider the
order π = 1, 3, . . . , n − 1, 2, 4, . . . n, i.e. in order π, we first see symbols in odd
positions in natural order and then symbols in even positions in natural order.
We first show an Ω(n) lower bound for this order to illustrate our idea. Theorem
2 then follows from the proof by a simple observation.

The idea is to build a large fooling set. Let C ⊆ {0, 1}n/4 be an asymptotically
good error-correcting code with constant rate and distance n/16. We consider
the following two party communication scenario: Alice holds a codeword u ∈ C
and Bob holds a codeword v ∈ C.

Consider the following construction. Alice first turns u ∈ {0, 1}n/4 into u′ ∈
N

n/2 by the following transformation. Let u′ be an empty sequence at first. Then
for each i ∈ [n/4], let ui ∈ 0, 1 be the i-th symbol of u. If ui = 0, we attach
0, 2i − 1 to the end of u′ and if ui = 1, we attach 2i − 1, 0 to the end of u′.
Bob does a similar transformation to get v′ ∈ N

n/2. The only difference is that
if vi = 0, we attach 0, 2i and if vi = 1, we attach 2i, 0 to the end of v′. We note
both u′ and v′ has exactly n/4 symbols that are 0 and n/4 that are nonzero.

We can get a sequence z ∈ N
n such that

z = u′
1, v

′
1, u

′
2, v

′
2, . . . , u

′
n/2, v

′
n/2

.
In other words, z is equal to u′ if we only look at the odd positions of z and

is equal to v′ if we only look at the even positions. Notice that the sequence z
is different if Alice holds v and Bob holds u. Thus, we use zu,v to denote the
sequence we get when Alice hols u and Bobs holds v and zv,u vice versa.

We now show that if u = v, LIS(zu,v) ≥ n/2. Otherwise,

min{LIS (
zu,v

)
, LIS

(
zv,u

)} ≤ 15n

32
+ 1.

To see this, we can divide z = zu,v into n/4 blocks each with 4 symbols. Let
zi be the i-th block. By our construction of z, zi = u′

2i−1, v
′
2i−1, u

′
2i, v

′
2i. There

are four cases:

Streaming and Query Once Space Complexity 47

– Case 1: ui = vi = 0, zi = 0, 0, 2i − 1, 2i.
– Case 2: ui = 1, vi = 0, zi = 2i − 1, 0, 0, 2i.
– Case 3: ui = 0, vi = 1, zi = 0, 2i, 2i − 1, 0.
– Case 4: ui = vi = 1, zi = 2i − 1, 2i, 0, 0.

We note that in all cases except case 3, the two non-zero symbols 2i − 1, 2i
form an increasing sequence. Thus if u = v, then each block zi is either in case
1 or case 4. Thus, 1, 2, 3, . . . , n/2 − 1, n/2 is a subsequence of z since 2i − 1, 2i is
a subsequence of block zi. We have LIS(z) ≥ n/2.

If u �= v, since u, v are both codewords from C, by our assumption, the
Hamming distance between u and v is at least n/16. Thus, there are at least
n/16 positions i ∈ [n/4] such that zi is in case 2 or case 3. Let a be the number
of blocks zi that are of case 2 and b be the number of blocks zi that are in case 3.
Thus a + b > n/16 and one of a or b is at least n/32. Without loss of generality,
we can assume that b ≥ n/32 since if not, we can look at the sequence zv,u. This
is because if zi

u,v is in case 2, then zi
v,u is in case 3 and vice versa.

Notice that for any 1 ≤ i < j ≤ n/4, the nonzero symbols in zi is always
strictly smaller than the nonzero symbols in zj . The best strategy to pick a
longest increasing subsequence is to pick the longest increasing subsequence with
nonzero symbols in each block zi and then combine them (with an additional 0
symbol from the first block in some cases). In each block zi, the length of longest
increasing subsequence with nonzero symbols is 2 if the block is in case 1, 2, and
4. And it is 1 if the block is in cases 3. By our assumptions that the number of
blocks in cases 3 is at least n/32. We know LIS(z) ≤ 15n

32 + 1.
We can define a function f : C × C → {0, 1} such that

f(u, v) =

{
1, if LIS(zu,v) ≥ n/2
0, if LIS(zu,v) ≤ 15n

32 + 1

We have shown that C is a fooling set for function f . The deterministic
communication complexity of f is log |C| = Ω(n). Also notice that if we can get
a 1 + 1/32 approximation of LIS in the order that first reveals odd symbols and
then even symbols, we can use it as a protocol to compute f exactly. Thus, any
R pass streaming algorithm for this order that gives a 1 + 1/32 approximation
must use a Ω(n/R) space.

Finally, we generalize this result to any order of type 1 with parameter m.
This is because we can use an error correcting code with codeword length m/2
as a fooling set. The above construction gives us a sequence z ∈ N

2m. We can
then obtain another sequence z′ such that when z′ is restricted to indices in
I ∪ J , it is equal to z and all other symbols are fixed to 0. In the two party
communication scenario, Alice holds symbols with indices in I and Bob holds
symbols with indices in J . Their goal is to compute LIS(z′). By the same fooling
set argument, we get the lower bound.

We now show that, with high probability, deterministically approximating
LIS of a sequence given in a random streaming order requires Ω(n) space.

48 X. Li and Y. Zheng

Corollary 3. Given input sequences x ∈ Σn in a random order sampled uni-
formly from all permutations on [n], with probability 1 − 2−Ω(n), any R-pass
deterministic algorithm that achieves a 1 + 1/32 approximation of LIS(x) needs
to use Ω(n/R) space.

Before the proof of Corollary 3, we first show the following claim.

Claim 3. Assume n is a multiple of 32, and a streaming order is uniformly
randomly sampled from all permutations of [n], with probability at least 1 −
2−Ω(n), it is a type 1 order with parameter n/32.

Proof. Let π be a streaming order of n elements, which is also a permutation
of [n]. Denote the set of all permutations over n by Sn. Let Aπ be the first n/2
elements revealed by the order π.

First, for a subset A ⊆ [n], we consider A can be divided into how many
intervals of consecutive integers. In other words, each subset A can be represented
as the union of multiple intervals of consecutive integers. Let g(A) be the minimal
number of intervals that A can be represented as, i.e.

g(A) = min{k | A =
k⋃

t=1

[it, jt) for some i1 < j1 < i2 < j2 < · · · < ik < jk}

Here, [i, j) is the set of all integers at least i and smaller then j. For example,
if A = 1, 2, . . . , n/2, then g(A) = 1. If A is the subset of all even integers in [n],
then g(A) = n/2.

For any permutation π, if g(Aπ) = m + 1 distinct gaps, then π must a type
1 order with parameter m. This is because we can represent Aπ as

⋃m+1
t=1 [it, jt)

for some i1 < j1 < i2 < j2 < · · · < im+1 < jm+1. By the definition, we have
ji /∈ Aπ. We can pick I = {i1, i2, . . . , im} and J = {j1, j2, . . . , jm} (jm+1 may
be equal to n + 1). Since I ⊆ Aπ and J

⋂
Aπ = ∅, Any elements in I will be

revealed before J in the order of π. Thus, π is a type 1 order with parameter m.
Then, we show that if A is uniformly sampled from the set of all subsets with

size n/2, then g(A) ≥ n/2 with probability at least 1 − 2−Ω(n).
We compute how many subsets A has g(A) ≤ n/32. Given an integer k, con-

sider the how many set A has g(A) = k. A can be divided into k intervals. There
are

(
n/2−1
k−1

)
different ways to divide n/2 consecutive integers into k consecutive

intervals.
For elements not in A, depending on whether i0 = 0 or jk = n + 1, there are

k − 1, k or k +1 consecutive intervals. For simplicity, we add 2 dummy elements
0 and n + 1, and consider how many ways we can divide {0, 1, . . . , n/2 + 1} into
k + 1 consecutive intervals. Similarly to elements in A, there are

(
n/2+1

k

)
choice

of the size of intervals.
Thus, the number of subsets A with g(A) = k and |A| = n/2 is

(
n/2−1
k−1

)·(n/2
k

)
.

We can bound the number of sets A with g(A) ≤ n/32 as following

Streaming and Query Once Space Complexity 49

∣
∣
∣{A ⊂ [n]

∣
∣ |A| = n/2 and g(A) ≤ n/32}

∣
∣
∣ =

n/32
∑

i=1

(

n/2 − 1

k − 1

)

·
(

n/2

k

)

=

n/32
∑

i=1

(k − 1)!(n/2 − k)!

(n/2 − 1)!
· k!(n/2 − k)!

(n/2!)

≤ n

2
·
n/32
∑

i=1

(

n/2

k

)2

≤ n

2
·
(

n/32
∑

i=1

(

n/2

k

))2

.

(6)

Notice that
n/32∑

i=1

(
n/2
k

)
2−n/2 ≤

(
n/2
n/32

)
2−15n/32. (7)

This is because we can view
∑n/32

i=1

(
n/2
k

)
2−n/2 as the probability of doing

n/2 independent coin flip and there are at most n/32 coin flips with head up.
This happens if and only if there is a set of (n/2−n/32) = 15n/32 coin flips ends
with tail up. There are

(
n/2

15n/32

)
=

(
n/2
n/32

)
choices if subsets with size 15n/32, and

for each, the probability of all coin flips is tail up is 2−15n/32. Taking a union
bound, we get Eq. (7). Combining with Eq. (6), we have the following bound

∣∣∣{A ⊂ [n]
∣∣|A| = n/2 and g(A) ≤ n/32}

∣∣∣ ≤ n

2
·
(

n/32∑

i=1

(
n/2
k

))2

≤ n

2
·
((

n/2
n/32

)
· 2n/32

)2

≤ n

2
·
((

16e
)n/32 · 2n/32

)2

≤ n

2
· (

32e
)n/16

≤ n

2
· 27n/16

There are
(

n
n/2

)
subsets of [n] with size exactly n/2. When n is a large enough

integer, if we sample a subset A from all subsets of [n] with size n/2, we have

Pr[g(A) ≤ n/32] =

∣
∣∣{A ⊂ [n]

∣∣|A| = n/2 and g(A) ≤ n/32}
∣
∣∣

(
n

n/2

)

≤
n
2 · 27n/16

2n/2

≤ 2−n/32.

50 X. Li and Y. Zheng

Finally, we notice that if π is uniformly sampled from Sn, then Aπ is uniformly
distributed over all subset of [n] with size n/2. It is because for any two subsets
A,B ⊂ [n], both with size n/2, we have

∣∣{π ∈ Sn|Aπ = A}∣∣ =
∣∣{π ∈ Sn|Bπ = B}∣∣ =

((n

2
)
!
)2

.

Thus, with probability at lease 1 − 2−n/32, the permutation π has g(Aπ) >
n/32 and is a type 1 order with parameter n/32.

Proof (Proof of Corollary 3). Since with probability at least 1 − 2−Ω(n), a ran-
dom permutation (or streaming order) is a type 1 order with parameter n/32.
By Theorem 2, with probability at least 1 − 2−Ω(n), a 1 + 1/32 deterministic
approximation of LIS(x) needs Ω(n) space.

Lower Bounds for Randomized Algorithms. For randomized algorithms,
we show an Ω(m) lower bound for exact computation when the input is given
in type 1 order with parameter m. We prove the following.

Theorem 3. Given input sequences x ∈ Σn in any type 1 order with param-
eter m, any R-pass randomized algorithm that computes LIS(x) correctly with
probability at least 2/3 needs to use Ω(m/R) space.

Proof. The idea is to reduce set-disjointness problem to computing LIS exactly.
Consider a type 1 order with parameter m and let I and J be the subsets

in the definition. We only focus on the subsequence x̃ limited to the indices in
I ∪ J , denoted by x̃ = x̃1x̃2 · · · x̃2m. The streaming order, when restricted to x̃,
is x̃1, x̃3, · · · , x̃2m−1, x̃2, x̃4, · · · , x̃2m. In the 2 party communication model, Alice
holds x̃1, x̃3, · · · , x̃2m−1 and Bob holds x̃2, x̃4, · · · , x̃2m.

Consider an instance A,B of DISJ2m,k, where A and B are both k-subset of
[2m]. For simplicity, represent A and B as characteristic vectors in {0, 1}m, i.e.
A and B are both 0,1 vector with exactly k 1 s.

We construct the sequence x̃ such that x̃1, x̃3, · · · , x̃2m−1 is determined by
A and x̃2, x̃4, · · · , x̃2m is determined by B. The construction is straightforward.
For every i ∈ [m], let x̃2i−1 = Ai · 2i and x̃2i = Bi · (2i − 1).

For simplicity, we attach a dummy 0 character in front of x̃. This won’t affect
our asymptotic lower bound.

If DISJ2m,k(A,B) = 1, for any i ∈ [m], Ai and Bi must not both be 1. There
are 2k positions that one of x̃2i−1 and x̃2i is non-zero. Since these non-zero
positions are increasing, LIS(x̃) = 2k + 1 (plus the 0 at the first position).

If DISJ2m,k(A,B) = 0, there exists i ∈ [m] such that Ai = Bi = 1. We have
x̃2i−1 = 2i and x̃2i = 2i − 1. Since there are only 2k non-zero positions, we have
LIS(x̃) ≤ 2k (plus the 0 at the first position).

Thus, if Alice and Bob can compute LIS(x̃), they can also determine
DISJ2m,k(A,B). The communication complexity lower bound given in Theorem5
yields our space lower bound.

Streaming and Query Once Space Complexity 51

C.2 Lower Bounds for Type 2 Orders

Our communication complexity based argument relies on the analysis of a care-
fully constructed matrix. In the following, we represent any position in a matrix
with a pair of indices (i, j) where i is the row number and j is the column num-
ber. For any two distinct positions (i1, j1) and (i2, j2), we say (i1, j1) < (i2, j2)
if i1 < i2 and j1 < j2.

We first show the following lemma, which is a result of Erdös-Szekeres theo-
rem.

Lemma 3. Given a matrix M ∈ {0, 1}s×r with s rows and r columns, if each
column of M has exactly s

4 1’s, then there exists t = � r·s
8(r+s)� positions (denoted

by (i1, j1), (i2, j2), . . . , (it, jt)) in the matrix with value 1, such that (i1, j1) <
(i2, j2) < · · · < (it, jt).

Proof. Consider the function f : [s] × [r] → [rs] such that f(i, j) = r · i −
j + 1. f transforms any position (i, j) into an integer in [rs] and the integers
corresponding to different positions are distinct.

For each column, there are exactly s/4 positions that have value 1. We trans-
form them into integers in [rs] with function f and arrange them in a decreasing
order to get a sequence of integers. We denote the sequence corresponding to
j-th column by σ(j). For example, assume (i1, 1), . . . , (is/4, 1) are the positions
with value 1 in the first column with i1 < · · · < is/4, then σ(1) = r ·is/4, . . . , r ·i1.

Let σ = σ(1) ◦ · · · ◦σ(r). So σ is the concatenation from σ(1) to σ(r). We show
that there is an increasing subsequence of σ with length t = � r·s

8(r+s)�.
To see this, we first show that the longest decreasing subsequence of σ has

length at most r+s. Consider any decreasing subsequence of σ and the positions
corresponding to this decreasing subsequence in the matrix. Assume the first
element of this decreasing subsequence is in the range [r · i + 1, r · (i + 1)] for
some integer i, for the next element, there are two cases. First, the next element
is in the range [r · i + 1, r · (i + 1)], then it means the element is in the same
row but in a column to the right of the first element. Second, the next element
is in the same column as the first element, then it must be strictly smaller than
r · i + 1, which means it is in a row below the first element. This is true for
any two consecutive elements in the decreasing subsequence. Notice that σ is
concatenated by columns from left to right and there are r columns and s rows,
the decreasing subsequence has length at most r + s.

The next step is followed directly from Erdös-Szekeres theorem (Theorem 6).
σ has exactly r · s/4 elements. Let t = � r·s

8(r+s)� and l = r + s + 1. Then

t · l − t − l + 1 = � r · s

8(r + s)
� · (r + s + 1) − t − r − s ≤ r · s

4
.

Since there are no decreasing subsequence in σ with length l = r + s + 1,
by Erdös-Szekeres theorem, there must exists an increasing subsequence with
length t.

52 X. Li and Y. Zheng

Given an increasing subsequence of length t, consider the positions of any
two consecutive elements in this increasing subsequence, say (i1, j1) and (i2, j2).
By the construction of σ, we know j1 ≤ j2. If j1 = j2, then by f(i1, j2) <
f(i2, j2), we must have i1 < i2. But this is impossible since elements in the
same column are arranged in decreasing order. Thus, the only possible case is
(i1, j1) < (i2, j2). The increasing subsequence in σ corresponding to a sequence
of increasing positions (i1, j1) < (i2, j2) < · · · < (it, jt).

We restate the main result here.

Theorem 4. Given input sequences x ∈ Σn in any type 2 order with parame-
ters r and s, any R-pass deterministic algorithm that gives a 1 + 1/400 approx-
imation of LIS(x) needs to use Ω(r · s/R) space.

In the following, we sometimes view sequences as vectors. For example, a
sequence {0, 1}n can also be viewed as a vector of dimension n.

Proof. We first assume r · s = n. Our argument can be extended to the case
where r · s < n. This is because our lower bound is only related to r and s.
Given a lower bound for sequence of length r · s, we can put dummy elements
in the last n − r · s positions and our lower bound also holds for the sequence of
length n.

Without loss of generality, we assume s can be divided by 36 and r is an even
number. This is because our lower bound is asymptotic, if s can not be divided by
36, we can consider the largest multiple of 36 smaller than s and the similar for r.

In the following, let p = s/36 and q = r/2.
Our proof needs to use two asymptotically good error-correcting codes, C(1)

and C(2). Here, C(1) ⊆ {0, 1}p is over binary alphabet. It has codeword length p
and distance p/4. C(1) can be viewed as a subset of {0, 1}p. C(2) ⊆ (C(1))q uses
C(1) as its alphabet set. It has codeword length q and distance q/2. Since both
C(1) and C(2) are asymptotically good, |C(1)| = 2Ω(s) and |C(2)| = 2Ω(r·s).

Assume there are two parties, Alice and Bob, each holds a codeword of C(2),
say Alice holds u and Bob holds v. We now show how to use C(2) as a fooling set
to obtain our lower bound. The high level idea is, we build a sequence σ(u, v) ∈
Z

n depending on u and v, such that σ can be divided evenly into r blocks each of
length s. Those odd blocks are only depending on u (thus only known to Alice)
and those even blocks are only depending on v (thus only known to Bob).

Our construction guarantees that, if u = v, then LIS(σ) = s/9+3r+min(p, q),
and if u �= v, LIS(σ) = s/9+3r+min(p, q)+ pq

8(p+q) . We first give the construction
of σ.

Construction of σ. We first build a 01 matrix M ∈ {0, 1} s
4×4r using u and v. M

has s/4 rows and 4r columns. We can group the elements of the matrix into r
blocks such that, for 1 ≤ i ≤ r, the i-th block are elements from the 4 columns
with number 4i − 3, 4i − 2, 4i − 1, 4i. In the matrix M , the odd blocks are only
determined by u (the codeword known to Alice) and the even blocks are only
determined by v (the codeword known to Bob). A pictorial representation is
given in Fig. 1.

Streaming and Query Once Space Complexity 53

Fig. 1. pictorial representation of M . Each small square represents an element of M .
We partition elements of M into r blocks where each block contains 4 consecutive
columns. Odd blocks (elements in red) are determined by Alice’s codeword u and even
blocks (elements in blue) are determined by Bob’s codeword, v. (Color figure online)

We turn this 01 matrix M into a sequence of integers σ(M) as following.
We first build a new matrix M ′ ∈ Z

s
4×4r, such that, for each position (i, j) ∈

[s
4] × [4r], we set

M ′
i,j =

{
0, if Mi,j = 0,

4r · (i − 1) + j, if Mi,j = 1.
(8)

Then, σ is the concatenation of elements in M ′ column by column. Specifi-
cally, let σ(j) be the concatenation of all symbols in the j-th column of M ′, i.e.
σ(j) = M ′

1,j ◦ M ′
2,j ◦ · · · ◦ M ′

s/4,j . The final sequence σ we get is

σ(M) = σ(1) ◦ · · · ◦ σ(r).

View Matrix M as a Grid Graph. We can view the matrix M as a directed
grid graph, such that for each position (i, j), there are two out going edges from
this it connecting to (i + 1, j) and (i, j + 1) respectively (assuming they exist).
A path in the matrix M is a path in the corresponding graph that goes from
(1, 1) to (s

4 , 4r) (from left-top to right bottom). We define the weight of a path
is the number of 1 node (position with value 1) the path covers. We say a node
is covered by a path if the path goes through that node.

Claim 4. LIS(σ(M)) is equal to the largest weight of any path in M .

Proof. First, for any path in the grid graph, non-zero nodes it covers are in
increasing order. This is because any path can only go down or right. By our
assignment of the values in M ′ (Eq. (8)), non-zero elements in any row or column
are in strict increasing order. Also, since σ is the concatenation of all columns of
M ′ from left to right. For any path, nodes it covers is a subsequence of σ. Thus,
we can say for any path with weight w in the grid graph, there is an increasing
subsequence of σ with length w.

On the other hand, we show that for any increasing subsequence, there is a
path covering all the corresponding nodes in the grid graph. To see this, we show
that for any two consecutive nodes (i, j), (i′, j′) in the increasing subsequence, we

54 X. Li and Y. Zheng

have i ≤ i′ and j ≤ j′. j ≤ j′ is by definition since we concatenate columns from
left to right. Since it is an increasing subsequence, we must have 4r · (i−1)+ j <
4r · (i′ − 1) + j′. By the fact that there are only 4r columns, we have i ≤ i′.
Thus, (i′, j′) must appear on the down-right side of (i, j). We can find a path in
the grid graph connecting them. This shows for any increasing subsequence of σ
with length w, there is a path in the grid graph with weight w.

Constructing M with u and v. In the following, we show how to build the matrix
M with u, v (codewords hold by Alice and Bob) and then prove Claim 5 and
Claim 6, which yields Theorem 4.

We start with Alice’s part. Alice holds u ∈ C(2), or it can be viewed as q
codewords of C(1). We denote them by u(1), u(2), . . . , u(q). Alice has control over
all q = r/2 odd blocks. In our construction, the (2i − 1)-th block (or the i-th
block hold by Alice) is determined by u(i). The construction is the same for all i.

We take 2i − 1-th block for an example. There are 4 columns in this block,
i.e. columns with number 8i − 7, 8i − 6, 8i − 5 and 8i − 4. Given u(i) ∈ C(1) ⊆
{0, 1}p, we turn it into ū(i) ∈ {0, 1}9p such that each 1 in u(i) is replaced by
(1, 1, 0, 0, 0, 0, 1, 1, 0) and each 0 is replaced by (0, 0, 1, 1, 1, 1, 0, 0, 0). This is the
(8i − 4)-th column of M . For the other 3 columns, they all have 1 at rows 9j for
j ≥ 1 and 0 everywhere else.

For Bob, the construction is similar. We take 2i-th block for an example.
Given each v(i) ∈ C(1) ⊆ {0, 1}p, we turn it into v̄(i) ⊆ {0, 1}9p such that
each 1 in v(i) is replaced by (1, 1, 0, 0, 0, 0, 1, 1, 0) and each 0 is replaced by
(0, 0, 1, 1, 1, 1, 0, 0, 0), which is the same as Alice’s transform. Then we use v̄(i)

as the first column of the 2i-th block (Note: for Alice’s construction, we use it
as the last column of the corresponding block). For the other 3 columns, they
all have 1 at rows 9j for j ≥ 1 and 0 everywhere else.

Let us see an example. Say p = q = 2, u(1) = (0, 1), u(2) = (1, 1), v(1) = (0, 0)
and v(2) = (1, 0), then the matrix M is given in Fig. 2. Notice that M is a matrix
with s/4 = 9p = 18 rows and 4r = 8q = 16 columns. In Fig. 2, only elements in
red are determined by u and v. The rest of the matrix is fixed for any u and v.
In other words, u and v determined the content of p · q sub-matrices in M , each
of size 8 × 2.

Streaming and Query Once Space Complexity 55

Fig. 2. matrix M when u(1) = (0, 1), u(2) = (1, 1), v(1) = (0, 0) and v(2) = (1, 0).

We look at the sub-matrices determined by u and v. For each pair of indices
(i, j) ∈ [p] × [q], the sub-matrix determined by the value of u

(j)
i and v

(j)
i has 4

cases:

1. u
(j)
i = 1 and v

(j)
i = 0.

2. u
(j)
i = v

(j)
i = 1.

3. u
(j)
i = v

(j)
i = 0.

4. u
(j)
i = 0 and v

(j)
i = 1.

A pictorial depiction of these 4 cases (from left to right) is given in Fig. 3.
As shown in Fig. 3, if u

(j)
i = v

(j)
i , any path in the sub-matrix has weight at most

5 (marked in red). However, if u
(j)
i �= v

(j)
i , there exists a path in the sub-matrix

with weight 6 (marked in green).

Fig. 3. 4 cases of the submatrix determined by u
(j)
i and v

(j)
i . (Color figure online)

To simplify the argument a bit, we call the red sub-matrices in Fig. 2 key
sub-matrices since everything else are invariant and only these sub-matrices are

56 X. Li and Y. Zheng

determined by u and v. There are p · q key sub-matrices. We label them by (i, j)
such that the key sub-matrix (i, j) is determined by u

(j)
i and v

(j)
i . Here, 1 ≤ i ≤ p

and 1 ≤ j ≤ q.
A path in M can go through those key sub-matrices to gain higher weight.

It can also cover the 1’s outside these key sub-matrices. An abstraction of M is
given in Fig. 4. In Fig. 4, key sub-matrices are represented as red rectangles and
the blue arrow are the 1’s that paths can take. They are all on rows with row-
number that is a multiple of 9. 0’s are not shown in the figure since paths going
through these nodes won’t gain any weight. We are only interested in paths with
largest weight.

Fig. 4. abstraction of M

We show that the largest weight of any path in M can vary depending on
whether u = v. We have the following two claims.

Claim 5. If u = v, then LIS(σ(M)) ≤ 4p + 6q + min(p, q).

Proof. By Claim 4, only need to show that any path in M has weight at most
4p + 6q + min(p, q).

Let P be one of the path in M that has largest weight. Since u = v, for each
key sub-matrix, if P goes from top-left to bottom-right of this key sub-matrix, it
will gain a weight of 5. If P only goes through one column of the key sub-matrix,
it will gain a total weight of 4.

We have the following simple observation. We can assume P does not go
beyond key sub-matrices and blue arrows (except for the first few steps). This is
because every time P does this, it can only increase the total weight by at most
1, but it will waste the weight it could gain by going through the blue arrow
(which is 6) or the key sub-matrix (which is at least 4).

If p ≥ q, the best strategy is to gain a weight of 5 in as much key sub-matrices
as possible. But we can only do this for q times since every time it gain a total
weight of 5 in one key sub-matrix, it has to go to a new column. The total weight
it can gain in blue arrows is at most 6q since we assume it will not go to the
zero region. We can gain an additional weight of 4(p − q) in key sub-matrices

Streaming and Query Once Space Complexity 57

(in these sub-matrices, P only uses one column). Thus, the total weight in this
case is at most 5q + 6q + 4(p − q) = 4p + 6q + q.

If p < q, the best strategy is again to gain a weight of 5 in as much key sub-
matrices as possible. We can do this for p times. The total weight it can gain in
blue arrows is at most 6q. Thus, the total weight in this is at most 5p + 6q.

Combine these two cases, we conclude the largest weight of any path in M
is at most 4p + 6q + min(p, q).

Claim 6. If u �= v, then LIS(σ(M)) ≥ 4p + 6q − 3 + min(p, q) + pq
16(p+q) .

Proof. By Claim 4, only need to show there exists a path in M with weight at
least 4p + 6q − 3 + min(p, q) + pq

16(p+q) .
Since u and v are chosen from C(2), which is an error-correcting code with

distance q/2. If u �= v, there are q/2 positions what u and v that are not equal.
Let j be on of them (u(j) �= v(j)). Since u(j) and v(j) are both codewords of
C(1) ⊆ {0, 1}p. There are p/4 positions that u(j) and v(j) does not equal.

Let A be a p × q matrix such that Ai,j = 1 if u(j) �= v(j) and Ai,j = 0 if
u(j) = v(j). Then in matrix A there are at least q/2 columns with at least p/4 1’s.
Then, if we only look at those columns with at least p/4 1’s, by Lemma 3, there
are t = � r·s

16(r+s)� positions in the matrix (denoted (i1, j1), (i2, j2), . . . , (it, jt))
with value 1, such that (i1, j1) < (i2, j2) < · · · < (it, jt).

The best strategy for a path to gain largest weight is to go through key sub-
matrices that can provide a total weight of 6 as much as possible (u(j) �= v(j)).
Lemma 3 guarantees there are at least t = � r·s

16(r+s)� that a path can go through.
For the remaining, it can go from top-left to bottom-right of min p, q− t key sub-
matrices. Each will give a weight of at least 5. If p > q, it can gain additional
4(p−q) by going through p−q key sub-matrices but using only one column. Along
the blue arrows, a path can again at least 6q−3 (minus the 3 it misses on the first
row). Thus, we can find a path with weight at least 4p+6q−3+min(p, q)+ pq

16(p+q) .

By Claim 5 and Claim 6, we can conclude that C(2) is a fooling set for type 2.
Even if Alice and Bob can approximate LIS to within a factor of 1 + 1/400.

When p, q are large enough, we have

(1 + 1/400) · (4p + 6q + min(p, q)
) ≤4p + 6q + min(p, q) +

11max(p, q)
400

<4p + 6q + min(p, q) +
22 · p · q

400 · (p + q)

≤4p + 6q + min(p, q) +
pq

16(p + q)
− 3.

In this case, they can still not determine whether u = v or not. Since both
C(1) and C(2) are asymptotically good, C(2) has size 2Ω(rs). To deterministically
approximate LIS to within a 1 + 1/400 factor (know whether u = v or not), any
R-round streaming algorithm would need a space of at least Ω(rs/R).

58 X. Li and Y. Zheng

References

[ABCR99] Andreev, A.E., Baskakov, J.L., Clementi, A.E.F., Rolim, J.D.P.: Small
pseudo-random sets yield hard functions: new tight explicit lower bounds
for branching programs. In: Wiedermann, J., van Emde Boas, P., Nielsen,
M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 179–189. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48523-6 15

[ACCL07] Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Estimating the distance to
a monotone function. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D.
(eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 229–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27821-4 21

[AK03] Ablayev, F., Karpinski, M.: A lower bound for integer multiplication on
randomized ordered read-once branching programs. Inf. Comput. 186(1),
78–89 (2003)

[ANSS22] Andoni, A., Nosatzki, N.S., Sinha, S., Stein, C.: Estimating the longest
increasing subsequence in nearly optimal time. In: FOCS 2022, pp. 708–
719 (2022)

[Bea89] Beame, P.: A general sequential time-space tradeoff for finding unique ele-
ments. In: STOC, pp. 197–203 (1989)

[BRS93] Borodin, A., Razborov, A., Smolensky, R.: On lower bounds for read-k-
times branching programs. Comput. Complex. 3(1), 1–18 (1993)

[BW98] Bollig, B., Wegener, I.: A very simple function that requires exponential
size read-once branching programs. Inf. Process. Lett. (1998)

[BW01] Bollig, B., Woelfel, P.: A read-once branching program lower bound of
Ω(2n/4) for integer multiplication using universal. In: STOC (2001)

[CFH+21] Cheng, K.: Streaming and small space approximation algorithms for edit
distance and longest common subsequence. In: ICALP (2021)

[Dun85] Dunne, P.E.: Lower bounds on the complexity of 1-time only branching
programs (preliminary version). In: Budach, L. (ed.) FCT 1985. LNCS,
vol. 199, pp. 90–99. Springer, Heidelberg (1985). https://doi.org/10.1007/
BFb0028795

[EJ08] Ergun, F., Jowhari, H.: On distance to monotonicity and longest increasing
subsequence of a data stream. In: Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 730–736 (2008)

[Gál97] Gál, A.: A simple function that requires exponential size read-once branch-
ing programs. Inf. Process. Lett. 62(1), 13–16 (1997)

[GG10] Gál, A., Gopalan, P.: Lower bounds on streaming algorithms for approxi-
mating the length of the longest increasing subsequence. SIAM J. Comput.
39(8), 3463–3479 (2010)

[GJ21] Gawrychowski, P., Janczewski, W.: Fully dynamic approximation of LIS in
polylogarithmic time. In: STOC 2021. ACM (2021)

[GJKK07] Gopalan, P., Jayram, T.S., Krauthgamer, R., Kumar, R.: Estimating the
sortedness of a data stream. In: SODA (2007)

[Ham72] Hammersley, J.: A few seedlings of research. In: Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability, pp. 345–
394 (1972)

[HW07] H̊astad, J., Wigderson, A.: The randomized communication complexity of
set disjointness. Theory Comput. 3(1), 211–219 (2007)

[IMS17] Im, S., Moseley, B., Sun, X.: Efficient massively parallel methods for
dynamic programming. In: STOC, pp. 798–811. ACM (2017)

https://doi.org/10.1007/3-540-48523-6_15
https://doi.org/10.1007/978-3-540-27821-4_21
https://doi.org/10.1007/BFb0028795
https://doi.org/10.1007/BFb0028795

Streaming and Query Once Space Complexity 59

[Juk88] Jukna, S.: Entropy of contact circuits and lower bounds on their complexity.
Theor. Comput. Sci. 57, 113–129 (1988)

[Kab03] Kabanets, V.: Almost k-wise independence and hard Boolean functions.
Theor. Comput. Sci. 297(1–3), 281–295 (2003)

[KMW91] Krause, M., Meinel, C., Waack, S.: Separating the eraser turing machine
classes Le, NLe, coNLe and Pe. Theor. Comput. Sci. (1991)

[KOO+20] Kiyomi, M., Ono, H., Otachi, Y., Schweitzer, P., Tarui, J.: Space-efficient
algorithms for longest increasing subsequence. Theory Comput. Syst.
64(3), 522–541 (2020)

[KS21] Kociumaka, T., Seddighin, S.: Improved dynamic algorithms for longest
increasing subsequence. In: STOC, pp. 640–653. ACM (2021)

[Li23] Li, X.: Two source extractors for asymptotically optimal entropy, and
(many) more. arXiv:2303.06802 (2023)

[LZ21] Li, X., Zheng, Y.: Lower bounds and improved algorithms for asymmetric
streaming edit distance and longest common subsequence. In: FSTTCS
2021. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

[LZ23] Li, X., Zhong, Y.: Explicit directional affine extractors and improved hard-
ness for linear branching programs. arXiv:2304.11495 (2023)

[Mal62] Mallows, C.L.: Patience sorting. SIAM Rev. 4(2), 148–149 (1962)
[MS20] Mitzenmacher, M., Seddighin, S.: Dynamic algorithms for LIS and distance

to monotonicity. In: STOC, pp. 671–684. ACM (2020)
[MS21] Mitzenmacher, M., Seddighin, S.: Improved sublinear time algorithm for

longest increasing subsequence. In: SODA (2021)
[NS14] Naumovitz, T., Saks, M.: A polylogarithmic space deterministic streaming

algorithm for approximating distance to monotonicity. In: SODA, pp. 1252–
1262. SIAM (2014)

[NV21] Newman, I., Varma, N.: New sublinear algorithms and lower bounds for LIS
estimation. In: 48th International Colloquium on Automata, Languages,
and Programming (ICALP 2021) (2021)

[Pip79] Pippenger, N.: On simultaneous resource bounds. In: SFCS 1979 (1979)
[Pon98] Ponzio, S.: A lower bound for integer multiplication with read-once branch-

ing programs. SIAM J. Comput. 28(3), 798–815 (1998)
[Rou15] Roughgarden, T.: Communication complexity (for algorithm designers).

CoRR, abs/1509.06257 (2015)
[RSSS19] Rubinstein, A., Seddighin, S., Song, Z., Sun, X.: Approximation algorithms

for LCS and LIS with truly improved running times. In: FOCS 2019, Bal-
timore, Maryland, USA, pp. 1121–1145. IEEE (2019)

[Sah17] Saha, B.: Fast space-efficient approximations of language edit distance
and RNA folding: an amnesic dynamic programming approach. In: FOCS
(2017)

[Sav70] Savitch, W.J.: Relationships between nondeterministic and deterministic
tape complexities. J. Comput. Syst. Sci. (1970)

[SS92] Simon, J., Szegedy, M.: A new lower bound theorem for read-only-once
branching programs and its applications. In: Advances in Computational
Complexity Theory (1992)

[SS13] Saks, M., Seshadhri, C.: Space efficient streaming algorithms for the dis-
tance to monotonicity and asymmetric edit distance. In: SODA (2013)

[SS17] Saks, M., Seshadhri, C.: Estimating the longest increasing sequence in poly-
logarithmic time. SIAM J. Comput. 46(2), 774–823 (2017)

http://arxiv.org/abs/2303.06802
http://arxiv.org/abs/2304.11495

60 X. Li and Y. Zheng

[SW07] Sun, X., Woodruff, D.P.: The communication and streaming complexity of
computing the longest common and increasing subsequences. In: SODA,
pp. 336–345 (2007)

[Weg88] Wegener, I.: On the complexity of branching programs and decision trees
for clique functions. J. ACM 35(2), 461–471 (1988)

[Zák84] Žák, S.: An exponential lower bound for one-time-only branching programs.
In: Chytil, M.P., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 562–
566. Springer, Heidelberg (1984). https://doi.org/10.1007/BFb0030340

https://doi.org/10.1007/BFb0030340

Approximating Decision Trees
with Priority Hypotheses

Jing Yuan1 and Shaojie Tang2(B)

1 Department of Computer Science and Engineering, University of North Texas,
Denton, USA

jing.yuan@unt.edu
2 Naveen Jindal School of Management, University of Texas at Dallas, Richardson,

USA

shaojie.tang@utdallas.edu

Abstract. This paper addresses the problem of creating decision trees
for identifying hypotheses, also known as entities, in a setting where the
cost of an action is dependent on the true hypothesis. Specifically, we con-
sider the scenario where n hypotheses are divided into m groups based
on their priority levels. Taking an action on a higher priority hypothe-
sis incurs a higher cost. This is relevant to many real-world applications
where cost-sensitive decisions need to be made. For example, in a medi-
cal diagnosis task, the goal is to take a series of actions (such as medical
tests) to identify a cause. Each action in this process requires conduct-
ing a test on the patient and observing the outcome, which can take
anywhere from a few minutes to several weeks depending on the test.
In this case, the cost (the result of waiting for the outcome) is higher
if the true hypothesis is more time-sensitive. For example, if the true
hypothesis is toxic chemical exposure (as opposed to a chronic disease
such as diabetes), a delay of a few minutes could significantly increase
the patient’s risk of mortality. We propose a group greedy algorithm to
solve this problem. We demonstrate that under worst-case scenarios, our
algorithm has an approximation ratio of O(m log n). Importantly, when
m = 1, meaning there is only one group of hypotheses, our result is
consistent with the logarithmic approximation bound for the traditional
optimal decision tree problem.

1 Introduction

The goal of the traditional optimal decision tree problem is to identify an
unknown hypothesis through a series of actions, also known as tests or queries,
while minimizing the cost. Many applications, such as active learning and dis-
ease/fault diagnosis, can be formulated as an optimal decision tree problem; see
[1,3]. For instance, in the problem of disease diagnosis, a physician may perform
a series of medical tests on a patient. By ruling out diseases that are inconsistent
with the reported outcome, the physician can identify the cause at the lowest

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 61–70, 2024.
https://doi.org/10.1007/978-3-031-49190-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_4&domain=pdf
http://orcid.org/0000-0001-6407-834X
http://orcid.org/0000-0001-9261-5210
https://doi.org/10.1007/978-3-031-49190-0_4

62 J. Yuan and S. Tang

cost. In this context, it is important for the physician to strategically and adap-
tively choose a sequence of tests while taking into account the cost associated
with each action.

Previous studies on the optimal decision tree (or active learning) problem
[2,4,6,9] typically assume that the cost of taking an action is known in advance,
so the cost of taking any sequence of tests is also known in advance. There are
various ways to define the incurred cost of an action. In the context of disease
diagnosis, the cost of a medical test is often defined as the time it takes to perform
and observe the outcome from that medical test. For example, when an imaging
test is performed, it may take several days for the results. In this setting, the
incurred cost of an action is not dependent on the true disease. However, in prac-
tice, the consequences of taking a test can vary depending on the (unknown) true
disease. For example, if the true hypothesis is toxic chemical exposure (versus
a chronic disease such as diabetes), a delay of a few minutes could significantly
increase the patient’s risk of mortality. Another example would be detecting
fraudulent credit transactions, where the cost of investigating an honest trans-
action might be higher than that of investigating a fraud one. Given the above
discussions, it is crucial to develop a new model in which the costs are dependent
on the true hypothesis.

To achieve this, we divide the n hypotheses into m groups based on their
priority levels. We assume that taking an action on a higher priority hypothesis
incurs a higher cost (or penalty). In the example of disease diagnosis, we can
prioritize diseases based on their emergency levels, such that the cost of long wait
times is greater for emergent diseases. It’s important to note that the algorithm
may not know the cost of an action during the learning process until it observes
the true hypothesis. Our objective is to design a decision tree that minimizes
the total cost. To solve this problem, we propose a group greedy algorithm.
In summary, our algorithm prioritizes identifying hypotheses from high priority
groups. We prove that our algorithm has an approximation ratio of O(m log n)
under worst-case scenarios. Notably, when m = 1, meaning there is only one
group of hypotheses, our result is consistent with the logarithmic approximation
bound for the traditional optimal decision tree problem.

Additional Related Work. Our work is closely related to response-dependent
active learning [5,7,8] where they assume that the cost of an action is decided
by the outcome from that action. Moreover, [5,8] assume there are only two
possible outcomes of every action. Our hypothesis-dependent cost model is more
general: our cost function allows an action to have different incurred costs on
two hypotheses even if they cause the same outcome from that action. However,
our current results rely on the assumption that the incurred cost of an action
is always higher on a higher priority hypothesis. In the future, we would like to
generalize this work by relaxing this assumption.

Approximating Decision Trees with Priority Hypotheses 63

2 Preliminaries

An instance of our problem, known as Optimal Decision Trees with Priority
Hypotheses (ODTH), is defined as I = (H,G,A, c); here H is a set of n hypothe-
ses; G is a partition of H into m priority groups; A is a set of actions; c is a cost
function that assigns a cost c(a, g) for each pair of action a ∈ A and group g ∈ G
such that c(a, g) is the cost of taking action a given that the true (unknown)
hypothesis belongs to group g. We extend the notation of g by letting g(h) ∈ G
denote the group that contains hypothesis h ∈ H. Hence, selecting action a ∈ A
on hypothesis h ∈ H incurs a cost of c(a, g(h)) and returns an outcome a(h)
from a set of possible outcomes O. We assume that A is complete such that
for every distinct h ∈ H and h′ ∈ H, there exists an action a ∈ A such that
a(h) �= a(h′). Moreover, we assume that c(a, g′) ≥ c(a, g) for any action a ∈ A
and any pair of groups g and g′ such that g′ has a higher priority than g. That
is, higher priority groups are assumed to be more sensitive to the overhead such
as wait times of an action. In the motivating example of disease diagnosis, we
may prioritize diseases according to their emergency levels such that the con-
sequences of long wait times are greater for emergent diseases. Note that the
actual cost of an action is unknown during the learning process before the true
hypothesis is observed.

Given an instance of ODTH, our goal is to select a sequence of actions to
determine the true unknown hypothesis. Formally, any adaptive policy can be
represented as a decision tree where each internal node represents an action and
each edge represents an outcome from an action. We say that a tree D covers I
if each hypothesis from H is associated with an unique leaf in D. Given instance
I and decision tree D, the cost of D on a hypothesis h ∈ H is

cost(D,h) =
∑

a∈path(D,h)

c(a, g(h)) (1)

where path(D,h) denotes the set of all nodes that appear in the root-to-leaf path
in D traced by h. We define the total cost as

cost(D) = max
h∈H

cost(D,h).

The objective of ODTH is to identify an optimal feasible decision tree D∗
I

such that the worst-case cost is minimized, i.e.,

D∗
I ∈ argmin

D∈D(I)

cost(D), (2)

where D(I) denotes the set of all decision trees that cover I.

3 Group Greedy Algorithm and Analysis

Before presenting our algorithm, we first introduce a well studied problem called
Discrete Function Evaluation Problem (DFEP) [2]. We show that DFEP is
closely related to our problem. A solution to DFEP is required by our final
algorithm as a subroutine.

64 J. Yuan and S. Tang

3.1 Discrete Function Evaluation Problem

Given an instance of ODTH I = (H,G,A, c), assuming group g1 ∈ G has
the highest priority, we define the corresponding DFEP instance of I as P(I) =
(H,C,A, c′); here C is a partition of H into |g1|+1 classes, where each hypothesis
from g1 constitutes a class and the rest of the hypotheses constitute another class;
c′ is a cost function that assigns a cost c′(a) = c(a, g1) for each action a ∈ A,
that is, c′(a) is the highest possible cost of a w.r.t. I. Selecting action a ∈ A on
hypothesis h ∈ H incurs a cost of c′(a) w.r.t. P(I) and returns an outcome a(h)
from a set of possible outcomes O. Unlike the cost function defined in ODTH,
c′(a) is hypothesis independent. Given an instance of DFEP, our goal is to select
a sequence of actions to determine the class of an unknown true hypothesis.
Every adaptive policy w.r.t. P(I) can be represented as a decision tree where
each internal node is associated with an action and each edge is associated with
an outcome from an action. We say that a tree D covers P(I) if each leaf of
D is associated with a set of hypotheses that belong to the same class. Given
instance P(I) and decision tree D, the testing cost of h ∈ H w.r.t. P(I) is

cost′(D,h) =
∑

a∈path(D,h)

c′(a) (3)

where path(D,h) denotes the set of all nodes that appear in the root-to-leaf path
from the root of D to the leaf associated with h. We define the total cost of D
w.r.t. P(I) as

cost′(D) = max
h∈H

cost′(D,h).

The goal of DFEP is to identify a decision tree D∗
P(I) such that the worst-case

cost is minimized, i.e.,

D∗
P(I) ∈ argmin

D∈D(P(I))

cost′(D), (4)

where D(P(I)) denotes the set of all decision trees that cover P(I).

Greedy Algorithm for DFEP. To solve DFEP, [2] developed a greedy algo-
rithm that attains an O(log n) approximation ratio. Before introducing this
greedy algorithm, we introduce some additional notations. Given an instance
of DFEP P(I), two hypotheses are defined as a pair if they belong to different
classes. Let F (S) denote the total number of pairs in S ⊆ H, i.e.,

F (S) =
k−1∑

t=1

k∑

t′=t+1

zctzct′ , (5)

where zc is the number of hypotheses in S that belongs to class c ∈ C, i.e.,
zc = |S ∩ c|.

The greedy algorithm (labeled as GreedyTree) greedily chooses action with
the largest worst-case ratio of the reduction in F and cost until it covers P(I). It

Approximating Decision Trees with Priority Hypotheses 65

is easy to verify that upon the termination of GreedyTree, F (S) equals zero for all
S ⊆ H that is associated with a leaf node of the returned tree. We next explain
GreedyTree (listed in Algorithm 1) in details. In the first round of GreedyTree, it
takes V = H as input and computes R(a) := mino∈O(a,V)

F (V)−F (V o
a)

c′(a) for each
action a ∈ A, where O(a, V) is the set of possible outcomes for action a assuming
the true hypothesis belongs to V , i.e., O(a, V) = ∪h∈V a(h); V o

a is the set of
hypotheses in V that has outcome o for action a, i.e., V o

a = {h ∈ V | a(h) = o}.
Then it selects action with the largest R value (labeled as â) as the root. For each
outcome o ∈ O(â, V) of â, it applies the same procedure on V = Ho

â recursively,
where Ho

â is the set of hypotheses in H that has outcome o for action â, i.e.,
Ho

â = {h ∈ V | â(h) = o}.
It has been shown that GreedyTree attains an O(log n) approximation ratio

w.r.t. P(I).

Lemma 1 [2]. LetD∗
P(I) denote the optimal decision tree w.r.t.P(I) andDgreedy

P(I)

denote the decision tree returned from GreedyTree(P(I),H), we have

cost′(Dgreedy
P(I)) ≤ O(log n)cost′(D∗

P(I)). (6)

Algorithm 1. GreedyTree(P(I), V)
1: if F (V) = 0 then
2: return
3: for a ∈ A do
4: compute R(a) := mino∈O(a,V)

F (V)−F (V o
a)

c′(a) , where O(a, V) is the set of possible
outcomes for action a assuming the true hypothesis belongs to V and V o

a is the
set of hypotheses in V that has outcome o for action a.

5: â ← argmaxa R(a)
6: for each outcome o ∈ O(â, V) of â do
7: GreedyTree(P(I), V o

â)

Connecting DFEP to ODTH. We next establish a connection between the
optimal decision tree w.r.t. P(I) and the optimal decision tree w.r.t. I.

Lemma 2. Let D∗
I denote the optimal decision tree w.r.t. I and D∗

P(I) denote
the optimal decision tree w.r.t. P(I), we have

cost′(D∗
P(I)) ≤ cost(D∗

I). (7)

Proof: The proof of this lemma relies on the observation that given an optimal
decision tree D∗

I for our original problem I, we can build a decision tree for
its corresponding instance of DFEP P(I) from D∗

I . Given a decision tree D∗
I ,

rooted at r, we next show how to identify the class of an unknown hypothesis

66 J. Yuan and S. Tang

h∗ ∈ H. First, we select action r ∈ A and observe the outcome of a(h∗); then we
follow the branch associated with a(h∗) to reach a child r′ ∈ A of r; we apply
the same procedure recursively for the decision tree rooted at r′. This procedure
continues until it reaches some node which determines the class of h∗. Let D̂P(I)

denote this decision tree. Consider the parent node a ∈ A of an arbitrary leaf
node in D̂P(I), it is easy to verify that the decision tree rooted at a contains
at least one leaf that is associated with some hypothesis from g1. Hence, there
exists at least one “most expensive” (w.r.t. the cost function cost′) root-to-leaf
path in D̂P(I) such that its leaf is associated with some hypothesis ĥ ∈ g1, i.e.,

cost′(D̂P(I)) = cost′(D̂P(I), ĥ). (8)

By the definition of cost′(D̂P(I), ĥ), we have

cost′(D̂P(I), ĥ) =
∑

a∈path(D̂P(I),ĥ)

c′(a) =
∑

a∈path(D̂P(I),ĥ)

c(a, g1), (9)

where the second equality is by the definition of c′(a). According to the con-
struction of D̂P(I), we have path(D̂P(I), ĥ) is identical to path(D∗

I , ĥ). Hence,

∑

a∈path(D̂P(I),ĥ)

c(a, g1) =
∑

a∈path(D∗
I ,ĥ)

c(a, g1) ≤ cost(D∗
I), (10)

where the inequality is by the definition of cost(D∗
I).

Inequalities (8) (9) (10) together imply that

cost′(D∗
P(I)) ≤ cost(D∗

I). (11)

�
The following corollary follows from Lemma 1 and Lemma 2.

Corollary 1. Let D∗
I denote the optimal decision tree w.r.t. our original prob-

lem I and Dgreedy
P(I) denote the decision tree returned from GreedyTree(P(I),H),

we have

cost′(Dgreedy
P(I)) ≤ O(log n)cost(D∗

I). (12)

3.2 Design of Group Greedy Decision Tree

Now we are in position to present our final algorithm (labeled as Group-
GreedyTree). At a high level, GroupGreedyTree processes hypotheses in accor-
dance to their priorities. That is, GroupGreedyTree starts with identifying the
true hypothesis from the highest priority group g1, if the true hypothesis is
not from g1, then GroupGreedyTree proceeds to identifying the true hypothesis
from the second highest priority group, and this process continues until the true

Approximating Decision Trees with Priority Hypotheses 67

hypothesis has been identified. We next describe GroupGreedyTree in details. We
first introduce some notations. Given a ODTH instance I and any subset of
hypotheses S ⊆ H, define a new ODTH instance I∩S = (S,G∩S , A, c); here
G∩S = {g ∈ G | g ∩ S �= ∅} is the set of groups from G that contains at least
one item from S. GroupGreedyTree works as follows:

1. We first build a decision tree Dgreedy
P(I) from GreedyTree(P(I),H). Define a leaf

r from Dgreedy
P(I) as incomplete if it is associated with more than one hypotheses,

i.e., |H(r)| > 1 where H(r) denotes the set of possible hypotheses associated
with r. Note that if such r exists, then it must be the case that H(r) ⊆ H \g1,
this is because all hypotheses from the highest priority group g1 must be
uniquely identified by GreedyTree(P(I),H). We traverse Dgreedy

P(I) to find the
set U of all incomplete leaf nodes.

2. For each incomplete leaf node r ∈ U , define a new instance I∩H(r). Replace r

using a decision tree Dgreedy
P(I∩H(r))

returned from GreedyTree(P(I∩H(r)),H(r)).

3. Apply the same procedures recursively for Dgreedy
P(I∩H(r))

for each r ∈ U to further
expand the current tree. This process continues until each leaf node in the
current tree is associated with a single hypothesis.

Algorithm 2. GroupGreedyTree(P(I), V)
1: if F (V) = 0 then
2: if |V | = 1 then
3: return
4: else
5: GroupGreedyTree(P(I∩V), V)
6: for a ∈ A do
7: compute R(a) := mino∈O(a,V)

F (V)−F (V o
a)

c′(a) .

8: â ← argmaxa R(a)
9: for each outcome o ∈ O(â, V) of â do
10: GroupGreedyTree(P(I∩V o

â
), V o

â)

The pseudocode of GroupGreedyTree is listed in Algorithm 2. We next present
the main theorem of this paper.

Theorem 1. Let D∗
I denote the optimal decision tree w.r.t. our original problem

I and Dg-greedy
P(I) denote the decision tree returned from GroupGreedyTree(P(I),H),

we have

cost(Dg-greedy
P(I)) ≤ O(m log n)cost(D∗

I). (13)

Proof: We prove this theorem through induction on the number of groups m.
The base case when m = 1 is trivial. If m = 1, i.e., all hypotheses have the

68 J. Yuan and S. Tang

same priority, then ODTH is reduced to the classical optimal decision tree prob-
lem, which is a special case of DFEP, and the group greedy algorithm Group-
GreedyTree(P(I),H) is reduced to GreedyTree(P(I),H). Lemma 1 indicates that
the greedy decision tree returned from GroupGreedyTree(P(I),H) achieves a
O(log n) approximation ratio. I.e.,

cost(Dg-greedy
P(I)) ≤ O(log n)cost(D∗

I). (14)

Assume this theorem holds for m ≤ k, i.e., cost(Dg-greedy
P(I)) ≤ O(k log n)

cost(D∗
I), we next prove the case when m = k + 1. Recall that in Corollary

1, we show that

cost′(Dgreedy
P(I)) ≤ O(log n)cost(D∗

I). (15)

Observe that for every hypothesis h from g1, we have

cost′(Dgreedy
P(I) , h) = cost(Dgreedy

P(I) , h). (16)

This is because by the definition of c′, we have c′(a) = c(a, g1) for all a ∈ A.
Moreover, for every hypothesis h that does not belong to g1, we have

cost′(Dgreedy
P(I) , h) ≥ cost(Dgreedy

P(I) , h). (17)

This is because c′(a) = c(a, g1) ≥ c(a, gi) for all a ∈ A and i �= 1 where the
inequality is by the fact that g1 has the highest priority. Inequalities (16) and
(17) together imply that for all hypotheses h ∈ H, we have

cost′(Dgreedy
P(I) , h) ≥ cost(Dgreedy

P(I) , h). (18)

This together with (15) implies that for all hypotheses h ∈ H, we have

cost(Dgreedy
P(I) , h) ≤ cost′(Dgreedy

P(I) , h) ≤ cost′(Dgreedy
P(I)) ≤ O(log n)cost(D∗

I), (19)

where the second inequality is by the definition of cost′(Dgreedy
P(I)), that is,

cost′(Dgreedy
P(I)) = max

h∈H
cost′(Dgreedy

P(I) , h).

Now we are in position to prove this theorem. To prove this theorem, it suffices
to show that for all hypotheses h ∈ H, we have

cost(Dg-greedy
P(I) , h) ≤ O((k + 1) log n)cost(D∗

I). (20)

The proof of the case when h ∈ g1 is trivial. If h ∈ g1, then h must be
uniquely identified by both Dg-greedy

P(I) and Dgreedy
P(I) . Hence h is a leaf node in both

Dg-greedy
P(I) and Dgreedy

P(I) . It follows that cost(Dg-greedy
P(I) , h) = cost(Dgreedy

P(I) , h). This

together with (18) implies that cost(Dg-greedy
P(I) , h) ≤ O(log n)cost(D∗

I) ≤ O((k +
1) log n)cost(D∗

I).

Approximating Decision Trees with Priority Hypotheses 69

We next prove the case when h /∈ g1. By abuse of notation, define H(h) as
the set of hypotheses that can not be distinguished from h in Dgreedy

P(I) . Observe

that for all hypotheses h /∈ g1, we have cost(Dg-greedy
P(I) , h) = cost(Dgreedy

P(I) , h) +

cost(Dg-greedy
P(I∩H(h))

) by the design of Dg-greedy
P(I) . Hence,

cost(Dg-greedy
P(I) , h) = cost(Dgreedy

P(I) , h) + cost(Dg-greedy
P(I∩H(h))

) (21)

≤ O(log n)cost(D∗
I) + cost(Dg-greedy

P(I∩H(h))
) (22)

≤ O(log n)cost(D∗
I) + O(k log n)cost(D∗

I∩H(h)
) (23)

≤ O(log n)cost(D∗
I) + O(k log n)cost(D∗

I) (24)
= O((k + 1) log n)cost(D∗

I), (25)

where the first inequality is by (19), the second inequality is by the inductive
assumption, the third inequality is by the observation that any decision tree
that covers I is also a decision tree that covers I∩H(h), hence, cost(D∗

I∩H(h)
) ≤

cost(D∗
I) where D∗

I∩H(h)
denotes the optimal decision tree that covers instance

I∩H(h). This finishes the proof of the case when h /∈ g1. �

4 Conclusion

In conclusion, we have addressed the limitations of previous studies on the
optimal decision tree problem by considering costs that are dependent on the
unknown true hypothesis. By dividing the hypotheses into priority groups and
introducing a group greedy algorithm, we have developed a model that strate-
gically selects actions based on their priority level, minimizing the total cost in
scenarios where the consequences of actions vary with the true hypothesis.

Our proposed algorithm achieves an approximation ratio of O(m log n) in
worst-case scenarios, providing an efficient solution for optimizing decision trees
with cost-dependent actions. Furthermore, our result aligns with the logarithmic
approximation bound for the traditional optimal decision tree problem when
there is only one group of hypotheses.

For future work, we can explore extensions of our model to handle more com-
plex cost dependencies and investigate algorithms with improved approximation
ratios. Additionally, empirical evaluations on real-world datasets and applica-
tions can further validate the effectiveness and practicality of our approach.
By advancing the understanding of optimal decision trees with cost-dependent
actions, we can contribute to various domains such as active learning, disease
diagnosis, and fraud detection, enhancing decision-making processes and mini-
mizing costs in practical scenarios.

70 J. Yuan and S. Tang

References

1. Chakaravarthy, V.T., Pandit, V., Roy, S., Awasthi, P., Mohania, M.: Decision trees
for entity identification: approximation algorithms and hardness results. In: Pro-
ceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pp. 53–62 (2007)

2. Cicalese, F., Laber, E., Saettler, A.M.: Diagnosis determination: decision trees opti-
mizing simultaneously worst and expected testing cost. In: International Conference
on Machine Learning, pp. 414–422. PMLR (2014)

3. Dasgupta, S.: Analysis of a greedy active learning strategy. In: Advances in Neural
Information Processing Systems, vol. 17 (2004)

4. Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active
learning and stochastic optimization. J. Artif. Intell. Res. 42, 427–486 (2011)

5. Kapoor, A., Horvitz, E., Basu, S.: Selective supervision: guiding supervised learning
with decision-theoretic active learning. In: IJCAI, vol. 7, pp. 877–882 (2007)

6. Margineantu, D.D.: Active cost-sensitive learning. In: IJCAI, vol. 5, pp. 1622–1623
(2005)

7. Sabato, S.: Submodular learning and covering with response-dependent costs. The-
oret. Comput. Sci. 742, 98–113 (2018)

8. Saettler, A., Laber, E., Cicalese, F.: Approximating decision trees with value depen-
dent testing costs. Inf. Process. Lett. 115(6–8), 594–599 (2015)

9. Yuan, J., Tang, S.: Worst-case adaptive submodular cover. In: Proceedings of the
2023 International Conference on Autonomous Agents and Multiagent Systems, pp.
1915–1922 (2023)

Approximating the λ-low-density Value

Joachim Gudmundsson , Zijin Huang(B) , and Sampson Wong

University of Sydney, Darlington, NSW 2008, Australia

zijin.huang@sydney.edu.au

Abstract. The use of realistic input models has gained popularity in
the theory community. Assuming a realistic input model often precludes
complicated hypothetical inputs, and the analysis yields bounds that
better reflect the behaviour of algorithms in practice.

One of the most popular models for polygonal curves and objects is
λ-low-density. To select the most efficient algorithm for a certain input,
one often needs to approximate the λ-low-density value, or density for
short. In this paper, we show that given a set of n objects in R

2, one can
(2 + ε)-approximate the density value in O(n log n + λn/ε4) time.

Finally, we argue that some real-world trajectory data sets have small
density values, warranting the recent development of specialised algo-
rithms. This is done by computing approximate density values for 12
real-world trajectory data sets.

Keywords: realistic input models · c-packedness · low-density ·
computational geometry

1 Introduction

Theoretical algorithmic analysis is an essential tool for understanding the com-
plexity of a problem. It allows researchers to establish upper and lower bounds by
carefully constructing worst-case scenarios, giving us insight into the difficulty of
a problem. However, the lower bounds established on these worst-case scenarios
may not accurately reflect the difficulty of a problem in real-world situations.

Realistic input models, such as fatness [3], low-density [3], uncluttered [3],
and c-packedness [6] describe real-world patterns. These models rule out unlikely
scenarios by placing constraints on the input. For example, a set of segment S
is c-packed if for any ball B of radius r, ‖B ∩S‖ ≤ c · r — S has low congestion.
The packedness value c is the maximum value for which S is c-packed, and c is
the respective realistic input model parameter. There are extensive studies on
realistic input models [3,6,8], and many problems have more efficient solutions
when the input data has these constraints [4–7,11–13].

In this paper, we study the notion of low-density. Measuring the size of an
object by the radius of its smallest enclosing ball, we say a set S = {P1, ..., Pn}

J. Gudmundsson—Funded by the Australian Government through the Australian
Research Council DP180102870.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 71–82, 2024.
https://doi.org/10.1007/978-3-031-49190-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_5&domain=pdf
http://orcid.org/0000-0002-6778-7990
http://orcid.org/0000-0003-3417-5303
http://orcid.org/0000-0003-3803-3804
https://doi.org/10.1007/978-3-031-49190-0_5

72 J. Gudmundsson et al.

of objects with sizes {ρ1, ..., ρn} is λ-low-density if for any ball B of radius r,
there are at most λ objects with ρi ≥ r intersecting B. We say S is low-density
if λ is a small constant. Van der Stappen and Overmars [12] originally proposed
low-density as a realistic constraint for the environments of robotic navigation.
More recent studies of low-density focus on its application on road networks and
GPS trajectories analysis.

There are many examples where there are much more efficient algorithm if
the data set is low-density. Approximating the Frechet distance [6] and map-
matching [4,5] problems have much more efficient solutions if the input is low-
density.

Before employing these algorithms, it is often important to be confident
that λ is sufficiently small. As an example, Driemel et al. [6] proposed an algo-
rithm to approximate the Fréchet distance between a pair of d-dimensional low-
density curves. The running time of the algorithm is O((λn)2(d−1)/d log n)1. How-
ever, for any pair of general curves, there is an O(dn2 log n) time algorithm [2].
Therefore, the specialised algorithm of [6] is more efficient than the general algo-
rithm of [2] if and only if λ = o(n1/(d−1)).

Another example is Buchin et al.’s [4] data structure for map match-
ing queries on λ-low density road networks. For road network of complex-
ity n, constant spanning ratio, and constant query complexity, their queries
run in O(λ6

√
n polylog(n)) time. However, a general algorithm solves the map

matching problem in O(n log n) time [1], if the trajectory has constant complex-
ity. Therefore, the specialised algorithm of [4] is more efficient than the general
algorithm of [1] if and only if λ = o(n1/12). In both examples, one would need to
either compute or approximate the value of λ to decide whether the specialised
algorithm or the general algorithm would be more efficient.

Our Contribution. Given a set S of n objects in R
2, we propose an algorithm that

(2 + ε)-approximates the density value of a set of objects in O(n log n + λn/ε4)
time. Our algorithm is the first to approximate the density value of intersecting
objects, and the first to do so in a dynamic setting. Using this algorithm, we
also approximate the low-density values of 12 real-world trajectory data sets in
R

2, and show that about half of the data sets we tested have low density values.
In many applications, it suffices to decide whether λ is small. It is straight-

forward to modify our algorithm from a minimisation to a decision problem.
Given a parameter λ ∈ R and a set S of n objects in R

2, our algorithm can
decide in O(n log n + λn/ε4) time whether the density value is at least λ, or
at most (2 + ε)λ. For example, it is sufficient to run the decision version on
λ = o(n1/(d−1)) to choose between the algorithms [2,6], and on λ = o(n1/12) to
choose between data structures [1,4].

Related Work. De Berg et al. [3] proposed an O(n log3 n + λn log2 n + λ2n)
algorithm to compute the density of planar scenes (environments with non-
intersecting objects). However, in data sets such as vehicle trajectories, city road

1 The dependence on λ is based on our own calculation, as it is not stated in [6].

Approximating the λ-low-density Value 73

networks, and virtual environments, objects do intersect, so the algorithm of [3]
does not apply. Our algorithm works on intersecting objects.

Another related work is by Har-Peled and Zhou [10], in which they pre-
sented a randomised algorithm that, with high probability, computes a (288+ε)-
approximation of the c-packedness of a set of segments in O(n log2 n) time. They
used canonical squares of similar size to cover a segment, and stored these canon-
ical squares in a compressed quadtree. Once the quadtree is built, they use it to
compute the number of long segments intersecting a canonical square to approx-
imate the so-called α-long congestion. Their insights may be extended to obtain
an O(1)-approximation of the density value. However, it is not discussed in [10].
Our approach is similar in storing objects in a quadtree, and computing the
maximum number of intersecting objects of a canonical square.

Organisation. In Sect. 2, we formally define low-density, and discuss a property
that will be used throughout our study. In Sect. 3, we will discuss how to effi-
ciently store a set of λ-low-density objects in a compressed quadtree by storing
at most O(λ) objects in every square. In Sect. 4, we will discuss how to approx-
imate the density value by carefully placing balls in the plane such that a small
number of them can cover an optimal ball (a ball that intersects the most number
of objects of size greater than its radius).

2 Overview

In this section, we formally introduce low-density and its basic properties. We
will first give a formal definition of low-density. De Berg et al. [3] defined low-
density for non-intersecting objects, and we modified their definition to remove
this restriction. In our study, we will measure the size of an object Pi by the
radius ρi of Pi’s minimum enclosing ball.

Definition 1. Let S = {P1, ..., Pn} be a set of d-dimensional objects, and let
λ ≥ 1 be a parameter. We say S is λ-low-density if for any ball B, the number
of objects Pi ∈ S with ρi ≥ radius(B) that intersect B is at most λ. The density
of S is defined to be the smallest λ for which S is λ-low-density.

In addition, a ball B is density optimal, or optimal for short, with respect
to a set S if S is λ-low-density and B intersects exactly λ objects Pi with
ρi ≥ radius(B).

2.1 A Basic Property

De Berg et al. [3] made the useful observation that we can restrict our attention
to balls with radius ρi for some Pi ∈ S, as shown in the following.

Observation 1. Let S = {P1, ..., Pn} be a set of d-dimensional objects that is
λ-low-density, and let Pi be the smallest object that intersects an optimal ball.
Then there exists an optimal ball B with radius ρi.

As a result, if Pi is the smallest object that intersects an optimal ball B, we
can increase the radius of B to ρi, and B will still be optimal.

74 J. Gudmundsson et al.

3 Augmenting the Compressed Quadtree

In this section, we will discuss how to build an augmented compressed quadtree
to store objects in R

2. The main result of this section is a compressed quadtree
storing a set of λ-low-density objects that supports fuzzy range queries around
objects in S efficiently (Theorem 3). We will start with some preliminaries on
general compressed quadtree.

3.1 Preliminaries

We assume that, without loss of generality, all objects lie in a unit square. In a
quadtree, squares are recursively partitioned into four equal squares. A node v
in a quadtree corresponds to a square �v. If �v is partitioned into four equal
squares {�a,�b,�c,�d}, then node a, b, c, d are the children of node v. We say
a square � is a canonical square if and only if � is a node in the quadtree, where
the unit square is the root (see [9] for a formal definition). In the rest of the
paper, we blur the difference between a canonical square and its corresponding
node in the quadtree.

From the construction of a quadtree, one can define the grid and grid cell. We
will use the definition in [9]. For any i, j ∈ Z, the intersection of the halfplanes
x ≥ ai, x < a(i + 1), y ≥ aj and y < a(j + 1) is a grid cell of grid Ga. Since
each canonical square is recursively partitioned into four canonical squares, a
canonical square must be a cell in G1/2i (see Fig. 1).

Observation 2. ([9]) A square � is a canonical square if and only if � is a
cell in G1/2i , where i is a non-negative integer.

Fig. 1. The grid described by the squares of size 1/2i is denoted G1/2i . (a) Showing
G1/2, and (b) G1/4.

Approximating the λ-low-density Value 75

3.2 Covering a Minimal Enclosing Box with Canonical Squares

With unit square and canonical square defined, we will show that we can cover
the minimal enclosing box Q of P with a set CP of at most four large canonical
squares. Then we will partition CP into a set of small canonical squares, and
delete those that do not intersect P . In particular, we highlight that the minimal
enclosing balls or boxes of a set S of n objects can be computed in linear time
with respect to the size of the input (the total number of edges in S). Therefore
we assume that the minimal enclosing boxes of S can be computed in O(n) time.

In order to cover Q with canonical squares, we first need to define the most
significant separator of Q. Consider the vertical line at x = k

2i , i, k ∈ Z, where k is
odd. We say it is a vertical separator of Q if it intersects Q. We say x = k

2i is more
significant than x = k′

2j if i < j. We define a horizontal separator analogously.
Notice that each Q can intersect exactly one most significant vertical and one
most significant horizontal separator. Indeed, if Q intersects two most significant
vertical separators x = k

2i and x = k′
2i , k �= k′, there exists some k′′ ∈ (k, k′)

such that k′′ is even, since both k and k′ are odd. Then Q also intersects x =
k′′
2i = k′′/2

2i−1 , which means x = k
2i cannot be the most significant separator.

In order to find the most significant separators of Q, we need to assume the
unit RAM model. In particular, we assume that log2(·) and XOR operations of
arbitrarily large numbers take constant time.

Lemma 1. Finding the most significant separators of Q takes O(1) time under
the unit RAM model.

Proof. We use the bit twiddling method in [9]. We assume that α, β ∈ [0, 1) are
written in base two as α = 0.α1α2..., and β = 0.β1β2... Let bit�(α, β) be the
index of the first bit after the period in which they differ.

Let α, β be the x-coordinate of the top-left and top-right corner of Q, respec-
tively. Let i = bit�(α, β). Notice that if the first i − 1 bits of α and β are
the same, they must reside in a canonical square which is a cell of G1/2i−1 . For
example, if α1 = β1 = 1, then α, β ∈ [1/2, 1). Furthermore, if α2 = β2 = 0,
then α, β ∈ [2/4, 3/4). Therefore, the most significant vertical separator must be
either x = α, x = β or the immediate next separator to the right side of α which
takes the form x = k/2i, where k is odd.

We can then find the most significant separator by adding 1/2i to α, and set
the bits after ith bit to 0. Let l = 0.α1α2...α2i−11. We report the more significant
separator among α, β, and l as the most significant vertical separator of Q. And
since it takes O(1) time to calculate bit�(α, β), calculating l and comparing l,
α, and β also takes O(1) time.

Har-Peled [9] justified why it is reasonable to assume that bit�(·, ·) can be
computed in constant time. Exponents and mantissas represent modern float
numbers. If two numbers have different exponents, we can compute bit�(·, ·) by
giving the larger component. Otherwise, we can XOR the mantissas, and log2(·)
the result.

76 J. Gudmundsson et al.

The most significant separators of Q partitions Q into four quadrants. We
can expand each quadrant into a canonical square �, and partition � into a
constant number of smaller canonical squares in Lemma 2.

Lemma 2. Let P be an object in R
2. One can construct O(1) canonical squares

to cover the minimal enclosing box Q of P such that the size of each canonical
square is at most ρ, the radius of P ’s minimum enclosing ball.

3.3 Merging Canonical Squares

We have shown that we can compute a set Ci of canonical squares to cover Pi’s
minimal enclosing box. Next, we will show that we can efficiently merge these
canonical squares to remove duplicates, while making sure that each square
stores its intersecting objects in decreasing order of size. We say that the canon-
ical squares in Ci are the associated squares of Pi, and analogously, Pi is their
associated object. We will merge the canonical squares in the below step.

1. For each object Pi, perform a linear scan of the canonical squares in Ci, and
delete squares that do not intersect Pi.

2. Let C = ∪Pi∈S Ci and sort all the canonical squares in C based on their sizes,
then by coordinates of the bottom-left corners, and, finally, by the size of the
object they intersect in decreasing order.

3. Perform a linear scan of the sorted squares in the list, and merge adjacent
squares if they are identical. While merging two squares, also merge the set of
objects they intersect. The objects that intersect the same square are ordered
in decreasing order of size.

At the end of the preprocessing step, we have O(n) canonical squares. Each
canonical square stores its intersecting object(s) in decreasing order of size. It
takes linear time with respect to the input size to compute the minimum bound-
ing boxes of S. Scaling them to fit into the unit square takes O(n) time. Generat-
ing these squares takes O(n) time by Lemmas 1 and 2. Sorting C takes O(n log n)
time. Merging two adjacent squares requires inserting the larger object to the
start of the intersecting object list, which takes O(n) time in total. As a result,
we get the below lemma.

Lemma 3. One can generates a set of O(n) canonical squares to cover a set
S = {P1, ..., Pn} of objects in R

2 in O(n log n) time.

3.4 An Efficient Construction Using Compressed Quadtrees

We will construct the compressed quadtree from the O(n) canonical squares
constructed in the previous section. Let �v denote the square associated with a
node v. We use the below lemma from [9].

Lemma 4 (Lemma 2.11 in [9]). Given a list C of n canonical squares, all
lying inside the unit square, one can construct a (minimal) compressed quadtree
T such that for any square c ∈ C, there exists a node v ∈ T , such that �v = c.
The construction time is O(n log n).

Approximating the λ-low-density Value 77

We now apply Lemma 4, with the O(n) canonical squares constructed in
Sect. 3.3 as input, we obtain a compressed quadtree, where each canonical square
corresponds to an internal node.

Once we complete the construction of the compressed quadtree T , we start
the push-down step as follows. First, sort the objects in increasing order of size.
Then, for each object Pi ∈ S, and for each descendant �v of Pi’s associated
canonical squares, if �v intersects Pi, insert Pi at the beginning of the list of
intersecting objects of v.

An important property of the canonical squares in T is that each � ∈ T
stores at most O(λ) objects in decreasing order of size. For an object Pi, the
sizes of its associated canonical squares are at most ρi by Lemma 2. During the
push-down step, an object Pi is only stored in canonical squares with sizes at
most ρi.

Lemma 5. Each canonical square � in the compressed quadtree T stores all
O(λ) intersecting objects Pi ∈ S with ρi ≥ size(�) in decreasing order of size.

According to Lemma 3 and Lemma 4, one can construct a compressed
quadtree with O(n) canonical squares in O(n log n) time. It remains only to
analyse the running time of the push-down step. Sorting the objects by sizes
takes O(n log n) time. By Lemma 5, each canonical square stores O(λ) intersect-
ing objects. Charging O(λ) to each of O(n) objects, the push-down step takes
O(λn) time, and the compressed quadtree uses O(λn) space in total.

Lemma 6. One can construct a compressed quadtree of a set S of n objects in
R

2 in O(n log n + λn) time using O(λn) space. A canonical square in T stores
O(λ) intersecting objects in decreasing order of size.

3.5 Query Equal or Larger Nearby Objects

To use our data structure to approximate the density, we augment the quadtree
further to query nearby objects. Given a set of λ-low-density objects S =
{P1, ..., Pn}, and a set of parameters {d1, ..., dn}, where di ≥ 0, we will show
that we can construct our quadtree to answer the following query efficiently:
given an object Pi stored in T , report all objects Pj with ρj ≥ ρi that are at
most di apart from Pi. We will call this query the near-by query.

Recall that during the construction of the quadtree, we compute a set of
canonical squares to cover an object Pi. The main modification to support the
near-by query is to compute a set Ci of canonical squares to cover Pi, as well as
the area within distance di from Pi, i.e., Ci covers Mi = Pi⊕B(0, di/2). Naturally,
the number of canonical squares required to cover Mi depends on di. With an
increasing number of canonical squares, the size of the quadtree increases. To
perform the near-by query, one needs to visit each � ∈ Ci, and report intersecting
objects of �. We summarise our results in the below Theorem 3.

Theorem 3. Let S = {P1, ..., Pn} be a set of λ-low-density objects in R
2, and let

{d1, ..., dn} be a set of parameters where di ≥ 0. If one can generate ni canonical

78 J. Gudmundsson et al.

squares of size at most ρi to cover Pi ⊕ B(0, di/2), then one can compute a
compressed quadtree T to store S in O(N log N + λN) time, where N =

∑
i ni,

using O(λN) space. Each canonical square in T stores O(λ) objects, and it takes
O(niλ) time to report all objects Pj with ρj ≥ ρi that are within distance di from
Pi.

4 Approximating the Low-Density Value

In this section, we use a simple algorithm to approximate the density value of
a set of objects S = {P1, ..., Pn}. Each Pi ∈ S is a possible smallest object
intersecting an optimal ball, and by Observation 1, we can focus our attention
on balls of size ρi. As such, we are interested in objects Pj with ρj ≥ ρi that are
within distance ρi from Pi, since a ball of size ρi can intersect both Pi and Pj .

To query the nearby objects of Pi, we will use the augmented compressed
quadtree in Sect. 3. With a slight abuse of notation, we redefine Mi = Pi ⊕
B(0, ρi). As the diameter of Mi is at most a constant number times ρi, we can
compute a constant number of canonical squares with sizes at most ρi to cover
Mi by Lemma 2; combining with Theorem 3, this leads to the following corollary.

Corollary 1. Let S = {P1, ..., Pn} be a set of λ-low-density objects with sizes
{ρ1, ..., ρn} in R

2. One can cover Mi = Pi ⊕B(0, ρi) with O(1) canonical squares
Ci of size at most ρi to cover Mi. One can construct a compressed quadtree T
using ∪Pi∈S Ci in O(n log n + λn) time. Using T , one can query all objects Pj

intersecting Mi with ρj ≥ ρi in O(λ) time.

We now assume that Pi is the smallest object intersecting an optimal ball B∗.
These optimal balls must lie in Mi, and we can query the intersecting objects
of Mi efficiently using the above corollary. Our approximation algorithms relies
on a simple technique: covering potential optimal balls with equal-size balls. Let
us assume that we know an optimal ball B∗, and we can cover B∗ with c balls
{©1, ..., ©c} of equal sizes. If ©i intersects the most number of objects, ©i inter-
sect at least λ/c objects, and every ©i intersects at most λ objects. Reporting
c times the number of intersecting objects of ©i yield a c-approximation of the
density value.

Observation 4. Let S = {P1, ..., Pn} be a set of λ-low-density objects. If we
can cover an optimal ball B∗ with c balls of radius at most radius(B∗), we can
c-approximate the density value of S.

We present our (2 + ε)-approximation in the following section.

4.1 Improving the Approximation Factor to 2 + ε

We will first show that for any optimal ball B∗ and any object P intersecting
B∗, we can move B∗ in a circular sector of B∗ by a certain distance such that
B∗ still intersects P . A circular sector is a closed portion of a disk enclosed by

Approximating the λ-low-density Value 79

Fig. 2. Left: a circular sector (red) defined by a furthest point q of an object P . Moving
the center of the ball from p to p′, it still intersects q. Right: a slice (orange) covered
by two circular sectors (red and blue). (Color figure online)

two radii and an arc (see Fig. 2, left). To simplify the description, in this section,
we will assume, without loss of generality, that the smallest object intersecting
an optimal ball B∗ has size 1, and B∗ has radius 1.

Lemma 7. Let B∗ = B(p, 1) be an optimal ball, and let P intersect B∗. There
exists a circular sector in B∗ with angle π − 2δ such that we can move the
center of B∗ in any direction inside by 2 cos(π/2 − δ) and B∗ still intersects
P .

Proof. Say we move B∗ by distance d in a direction −→pr in (see Fig. 2, left).
Clearly, 0 ≤ �qpr ≤ π/2 − δ. We can move B∗ by a distance d = 2 · cos(�qpr) ≥
2 · cos(π

2 − δ), and B∗ still intersects q.

Next, we will show that there is a small circular sector with angle δ, which
we will call a slice, such that if we move the center of B∗ in the direction of

by 2 cos(π/2 − δ), B∗ intersects roughly λ/2 objects. The intuition is that if
we construct all the circular sectors within B∗ for all objects intersecting B∗

based on the method in Lemma 7. Then on average, roughly half of the circular
sectors, say c of them, will cover a slice (see Fig. 2, right). Move the center of
B∗ within a circular sector defined by the object P , and B∗ still intersects P .
Therefore if we move the center of B∗ in a slice covered by most number of
circular sectors, which we will call an optimal slice, then B∗ intersects at least
c objects. We formalise the above insight in the below Lemma 8. For simplicity,
we assume that a ball can be partitioned into slices of angle δ.

Lemma 8. Let B∗ = B(p, 1) be an optimal ball. If we partition B(p, 2 cos(π/2−
δ)) into slices with angles δ, there exists a slice such that any ball B(q, 1) with
its centre q residing in intersects at least (1/2 − 2δ/π) · λ objects.

80 J. Gudmundsson et al.

Proof. The average number of circular sectors that cover a slice is

minimum number of slices covered by one circular sector
total number of slices

=
π−2δ

δ − 2
2π/δ

=
1
2

− 2δ

π

On average, 1/2 − 2δ/π circular sectors cover a slice. Let be the slice that is
covered by the most number of circular sectors. Note that for any q ∈ , B(q, 1)
completely covers . Therefore, B(q, 1) intersects at least (1/2 − 2δ/π)λ objects,
since B∗ intersects λ objects.

Any ball B(, 1) intersects at least (1/2 − 2δ/π)λ objects.

Based on the above, if the center of a ball B lies in an optimal slice, then
B intersects at least λ(12 − 2δ

π) segments. Observe that one can construct an
incircle for a smaller triangle that lies within a slice. If our grid is so refined that
the distance from the center of an incircle to the nearest grid point is less than
its radius, then one of the grid points must lie in an optimal slice. Recall that
if P is the smallest object intersecting an optimal ball B∗, B∗ must exists in
M = P ⊕ B(0, ρ). We formalise the above arguments in Lemma 9.

Lemma 9. One can cover M = P ⊕ B(0, ρ) with O(cos4(π/2 − δ)) grid points
such that at least one grid point lies inside an optimal slice.

Proof. Consider a smaller triangle
 that lies in an optimal slice with two long
sides with lengths x = 2 cos(π/2 − δ) and one short side with length x2. Let the
lengths of the three sides of
 be a, b, and c. The radius of
’s incircle is2:

r =
1

2

√
(b + c − a)(c + a − b)(a + b − c)

a + b + c

=
1

2

√
2x2 · 2x2 · (2x − 2x2)

2x + 2x2
≥ x4

√
2

where 0 < δ <
π

2
and 0 < x < cos(

π

4
).

Therefore, if we cover M with a square grid such that the distance between
two adjacent grid points is x4/2. Then the incircle of any optimal slice contains at
least one such grid point since cos(π/2− δ/2) < cos(π/2− δ) when 0 < δ < π/2.

Based on Lemma 9, one can place O(1/ cos4(π/2 − δ)) balls to cover each
Mi, and one such ball B must have its centre lying in an optimal slice. Based
on Lemma 8, B must intersect at least (1/2 − 2δ/π) · λ objects, assuming that
Pi is the smallest object that intersects an optimal ball. Using the quadtree to
query objects intersecting Mi, and covering Mi with O(1/ε4) balls, we obtain
the following theorem.
2 Weisstein, Eric W. “Incircle.” From MathWorld–A Wolfram Web Resource. https://

mathworld.wolfram.com/Incircle.html.

https://mathworld.wolfram.com/Incircle.html
https://mathworld.wolfram.com/Incircle.html

Approximating the λ-low-density Value 81

Theorem 5. A (2 + ε)-approximation of the λ-low-density value of a set S of
objects in R

2 can be computed in O(n log n + λn/ε4) time, where 0 < ε < 1.

Proof. Given the approximation error ε, we first compute δ, the angle of a slice.

1
1
2 − 2δ

π

= 2 + ε =⇒ (2 + ε)(
1
2

− 2δ

π
) = 1 =⇒ δ =

1
2επ

4 + 2ε
∈ O(ε)

Using Corollary 1, we can construct a compressed quadtree in O(n log n+λn)
time. Querying O(λ) intersecting objects of Mi = Pi ⊕B(0, ρi) takes O(λ) time.
Combining Lemma 7, 8, and 9, we can cover each Mi with 1/ε4 balls of size
ρi, and compute the number of their intersecting objects in O(λn/ε4) time. In
total, it takes O(n log n + λn/ε4) time to (2 + ε)-approximate the density of S.

5 Experiments

We implemented a simple algorithm to obtain the 4-approximate density values
on several trajectory data sets. Among the twelve 2D trajectory data sets, we
observe that the density of six are much smaller than the size of the trajectories.

6 Concluding Remarks

In this paper we considered the problem of approximating the λ-low-density
value of a set of objects. Our main results is a (2 + ε)-approximation algorithm
running in O(n log n+λn/ε4) time. Previously, only an O(n log3 n+λn log2 n+
λ2n) time algorithms was known for the special case when the objects are dis-
joint.

We also implemented a simple 4-approximation algorithm to estimate the
density values of twelve real-world trajectory data sets. We observed that the
estimated densities for most of the data sets are small constants. We also
observed that the trajectories in half of the data sets have low density-to-size
ratios, which indicates that low density is a practical, and realistic input model
for trajectories.

References

1. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. J. Algorithms.
49(2), 262–283 (2003). https://doi.org/10.1016/S0196-6774(03)00085-3, https://
www.sciencedirect.com/science/article/pii/S0196677403000853

2. Alt, H., Godau, M.: Computing the Fréchet distance between two polygo-
nal curves. Int. J. Comput. Geom. Appl. 05, 75–91 (1995). https://doi.org/
10.1142/S0218195995000064, https://www.worldscientific.com/doi/abs/10.1142/
S0218195995000064

3. de Berg, M., Katz, M., van der Stappen, A.F., Vleugels, J.: Realistic input mod-
els for geometric algorithms. In: Proceedings of the thirteenth annual symposium
on Computational geometry, pp. 294–303. SCG 1997, Association for Computing
Machinery, New York, NY, USA (1997). https://doi.org/10.1145/262839.262986

https://doi.org/10.1016/S0196-6774(03)00085-3
https://www.sciencedirect.com/science/article/pii/S0196677403000853
https://www.sciencedirect.com/science/article/pii/S0196677403000853
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1142/S0218195995000064
https://www.worldscientific.com/doi/abs/10.1142/S0218195995000064
https://www.worldscientific.com/doi/abs/10.1142/S0218195995000064
https://doi.org/10.1145/262839.262986

82 J. Gudmundsson et al.

4. Buchin, K., Buchin, M., Gudmundsson, J., Popov, A., Wong, S.: Map matching
queries under Fréchet distance on low-density spanners. In: European Workshop
on Computational Geometry (2023)

5. Chen, D., Driemel, A., Guibas, L.J., Nguyen, A., Wenk, C.: Approximate
map matching with respect to the Fréchet distance. In: 2011 Proceedings of
the Workshop on Algorithm Engineering and Experiments (ALENEX), pp.
75–83. Proceedings, Society for Industrial and Applied Mathematics, Jan-
uary 2011. https://doi.org/10.1137/1.9781611972917.8, https://epubs.siam.org/
doi/abs/10.1137/1.9781611972917.8

6. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for
realistic curves in near linear time. Discr. Comput. Geom. 48(1), 94–127 (2012).
https://doi.org/10.1007/s00454-012-9402-z

7. Gudmundsson, J., Seybold, M.P., Wong, S.: Map matching queries on realistic
input graphs under the Fréchet distance. In: Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1464–1492. Society for
Industrial and Applied Mathematics, January 2023. https://doi.org/10.1137/1.
9781611977554.ch53

8. Gudmundsson, J., Sha, Y., Wong, S.: Approximating the Packedness of
polygonal curves. Comput. Geom. 108, 101920 (2023). https://doi.org/10.
1016/j.comgeo.2022.101920, https://www.sciencedirect.com/science/article/pii/
S0925772122000633

9. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical
Society, USA (2011)

10. Har-Peled, S., Zhou, T.: How Packed Is It, Really? May 2021. https://arxiv.org/
abs/2105.10776v1

11. Schwarzkopf, O., Vleugels, J.: Range searching in low-density environments.
Inf. Process. Lett. 60(3), 121–127 (1996). https://doi.org/10.1016/S0020-
0190(96)00154-8

12. van der Stappen, A.F., Overmars, M.H.: Motion planning amidst fat obstacles. In:
Proceedings of the Tenth Annual Symposium on Computational Geometry, pp.
31–40. SCG 1994, Association for Computing Machinery, New York, NY, USA,
June 1994. https://doi.org/10.1145/177424.177453

13. Van Der Stappen, A.F.: The complexity of the free space for motion planning
amidst fat obstacles. J. Intell. Robot. Syst. 11(1), 21–44 (1994). https://doi.org/
10.1007/BF01258292

https://doi.org/10.1137/1.9781611972917.8
https://epubs.siam.org/doi/abs/10.1137/1.9781611972917.8
https://epubs.siam.org/doi/abs/10.1137/1.9781611972917.8
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1137/1.9781611977554.ch53
https://doi.org/10.1137/1.9781611977554.ch53
https://doi.org/10.1016/j.comgeo.2022.101920
https://doi.org/10.1016/j.comgeo.2022.101920
https://www.sciencedirect.com/science/article/pii/S0925772122000633
https://www.sciencedirect.com/science/article/pii/S0925772122000633
https://arxiv.org/abs/2105.10776v1
https://arxiv.org/abs/2105.10776v1
https://doi.org/10.1016/S0020-0190(96)00154-8
https://doi.org/10.1016/S0020-0190(96)00154-8
https://doi.org/10.1145/177424.177453
https://doi.org/10.1007/BF01258292
https://doi.org/10.1007/BF01258292

Exponential Time Complexity
of the Complex Weighted Boolean #CSP

Ying Liu(B)

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy
of Sciences, University of Chinese Academy of Sciences, Beijing, China

liuy@ios.ac.cn

Abstract. Cai, Lu, and Xia [8] proved a dichotomy for complex
weighted Boolean #CSP. If the parameter set of Boolean constraint func-
tions F is a subset of either of the affine-type function set A and the
product type function set P, then #CSP(F) is polynomial-time solv-
able; otherwise, #CSP(F) is #P-hard. Furthermore, the result holds for
#R3-CSP(F), which additionally restricts every variable constrained by
no more than 3 constraint functions (not necessarily distinct).

We strengthen the #P-hardness to the tight sub-exponential time
lower bound under the counting Exponential Time Hypothesis (#ETH).
We demonstrate that, if #ETH holds, then #CSP(F) with F �⊆ A and
F �⊆ P has no sub-exponential time algorithm. The result also holds for
#RD-CSP(F) with some integer D > 0, even D = 3.

Additionally, we demonstrate that a vital tool pinning, forcing some
variables to be 0 or 1, is still available in the context of #RD-CSP when
proving the sub-exponential time lower bound.

Keywords: Block interpolation · Computational complexity ·
Dichotomy · Pinning · Counting exponential time hypothesis · #CSP

1 Introduction

This paper focuses on the complexity of a general class of counting problems:
counting constraint satisfaction problems (#CSP). A #CSP problem is param-
eterized by a set F of local constraint functions. Suppose F is defined over a
domain [q] = {1, 2, 3, ..., q} for some positive integer q. The problem #CSP(F)
accepts an input tuple I = (X,C) and outputs

Z(I) =
∑

x1,x2,...,xn∈[q]

∏

(F,xi1 ,xi2 ,...,xik
)∈C

F (xi1 , xi2 , ..., xik),

where X denotes a finite set of variables {x1, x2, ..., xn} and C denotes a finite
set of clauses. Each clause is a constraint F ∈ F of some arity k depending on F

Supported by NSFC61932002 and NSFC 62272448.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 83–96, 2024.
https://doi.org/10.1007/978-3-031-49190-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_6

84 Y. Liu

together with a sequence of k variables (not necessarily distinct) xi1 , xi2 , ..., xik ∈
{x1, x2, ..., xn}. If q = 2, [q] denotes the Boolean domain, and #CSP(F) belongs
to the class Boolean #CSP. Studying the computational complexity of #CSP
problems, is a significant and fantastic sub-field of complexity theory.

Beyond the complexity of individual #CSP problems [19–21], people are
interested in the dichotomy theorems for #CSP problems. Such a dichotomy
states that any #CSP problem is either solvable in polynomial time (P) or #P-
hard [21]. A series of dichotomy theorems [2,8,10,14] for Boolean #CSP prob-
lems were developed in the past years. An overview is available in [4]. Based on
these results, a series of dichotomies for #CSP problems with parameterized sets
over a general finite domain [3,5,6,15] were also developed and reached a peak
[5]. So a new type of dichotomy theorems has grabbed researchers’ attention.

The new type is called the fine-grained dichotomy, which states that a
problem in a class is either in P or unsolvable in sub-exponential time, if
the counting Exponential Time Hypothesis (#ETH) holds. #ETH [13] states
that counting the number of satisfying assignments to a given Boolean formula
(#SAT) can not be computed in sub-exponential time. Dell et al. developed
fine-grained dichotomies for Tutte polynomial [1,11,13], Chen et al. developed a
fine-grained dichotomy for unweighted #GH [9], and Curticapean demonstrated
a fine-grained dichotomy for immanant families [12]. In the class #CSP, only a
fine-grained dichotomy existed for the unweighted Boolean #CSP [1].

1.1 Main Results and Proof Outlines

We develop the fine-grained dichotomy for complex weighted Boolean #CSP.
After introducing the necessary preliminary knowledge in Sect. 2, we prepare

a powerful instrument pinning, which uses two special unary functions δ0 = [1, 0]
or δ1 = [0, 1] to fix some variables to the constant 0 or 1 respectively. The pinning
lemma [14] shows that δ0 and δ1 is available in the context of #CSP(F) for any
set F . We further demonstrate that they are also available in the context of
#RD-CSP(F), where each instance has every variable constrained by no more
than D constraints (not necessarily distinct) for some constant D > 0.

Theorem 1. Let F be a set of functions. For any constant D′ > 0, there exists
some constant D > 0 such that

#RD′-CSP(F ∪ {δ0, δ1}) ≤serf #RD-CSP(F).

The symbol A ≤serf B denotes the existence of a sub-exponential time reduc-
tion algorithm T for A, with oracle access for problem B.

We utilize some special black-box unary functions to help build a divide
and conquer reduction algorithm T , showed in Sect. 3. Actually, such a sub-
exponential time algorithm can also be established by the idea of block interpo-
lation [11], with classification discussion on the characters of functions in F .

Section 4 presents the main theorem: a fine-grained dichotomy for complex
weighted Boolean #CSP.

Exponential Time Complexity of the Complex Weighted Boolean #CSP 85

Theorem 2. Let F be a set of functions mapping Boolean inputs to complex
numbers. If F is a subset of either A or P, #CSP(F) can be computed in poly-
nomial time. Otherwise, if #ETH holds, then there exists a constant ε > 0 such
that #CSP(F) has no O(2εN) time deterministic algorithm, where N denotes
the number of variables in the input instance.

The result still holds for #R3-CSP(F).

Cai, Lu, and Xia [8] presented the polynomial algorithms for #CSP(A) and
#CSP(P), so we focus on the hardness.

In Sect. 4.1, we prove the lower bound for #RD-CSP({H}) with some con-
stant D > 0 and a binary function H /∈ A ∪ P, by classified discussion on
the first element of H. If H(0, 0) = 0, we prove that #RD-CSP({[0, 1, 1]}) ≤serf

#RD′-CSP({H}) for some constants D,D′, where #RD-CSP({[0, 1, 1]}) has sub-
exponential time lower bound [11, Theorem 1.2]. Else if H(0, 0) �= 0, we prove
that we can simulate a binary function H ′ /∈ A∪P with H ′(0, 0) = 0 in the con-
text of #RD-CSP({H}), when extra two unary functions Ux, Uy are available.
And we prove that we can also simulate any unary function in the context of
#RD-CSP({H}), with the help of the pinning lemma (Theorem 1).

In Sect. 4.2, we follow the original proofs in [8] to prove that, for #CSP(F)
with F �⊆ A and F �⊆ P, #RD-CSP({H})≤serf #RD′-CSP(F) ≤serf #R3-
CSP(F) for some binary function H /∈ A ∪ P, where D′ is some constant.

2 Preliminaries

2.1 Definitions and Notations

Let N, Z, and C denote the set of natural numbers, integers, and complex num-
bers, respectively. Let [q] denote a finite domain {1, 2, ..., q} for a positive integer
q. If q = 2, [q] denotes the Boolean domain, in which an element is 0 or 1. A com-
plex valued Boolean function F maps {0, 1}k to C for some integer k, and k is
called the arity of F . A unary Boolean function U is written as [U(0), U(1)], and a

binary Boolean function F can be expressed as a 2×2 matrix
(

F (0, 0) F (0, 1)
F (1, 0) F (1, 1)

)
.

A function F is a symmetric function if its value is invariant under the permu-
tations of its variables. A Boolean symmetric function F of some arity k can be
written as [f0, f1, ..., fk], where fj is the value of F when j, 0 ≤ j ≤ k, variables
are assigned the value 1. For example, an equality function (=k) of arity k ≥ 3
and the binary disequality function (�=2) are symmetric functions that can be
written as [1, 0, ..., 0, 1] and [0, 1, 0] respectively. δ0 and δ1 denotes two special
unary functions [1, 0] and [0, 1], respectively. A function is also called a constraint
or a signature.

Let ⊗ denote the tensor product (i.e., the Kronecker product), that is, for
two matrices X = Xa×b and Y = Yc×d, X ⊗ Y is an ac × bd matrix with entry
Xi,jYk,l at (i, k) ∈ [a] × [c] row and (j, l) ∈ [b] × [d] column. Tensor product is
defined recursively X⊗k = X⊗(k−1) ⊗ X.

86 Y. Liu

Definition 1. D = {[a1, b1] ⊗ [a2, b2] ⊗ · · · ⊗ [ak, bk] | ai, bi ∈ C for any i ∈ [k]
and k = 1, 2, ...}.
Definition 2. A function is of product type if it can be written as a product of
unary functions, binary equality functions (=2) and binary dis-equality functions
(�=2), on not necessarily disjoint subsets of variables. P denotes the set of all
functions of product type.

A function F is degenerate if F ∈ D. A binary function in P is either degen-

erate or of the form
(

a 0
0 b

)
or

(
0 a
b 0

)
with a, b ∈ C.

Let F be a function on variables x1, x2, ..., xk ∈ {0, 1}. The support of F is
defined as RF = {(x1, x2, ..., xk)|F (x1, x2, ..., xk) �= 0}. RF is affine if, for any
α, β, γ ∈ RF , α ⊕ β ⊕ γ ∈ RF , i.e., A(x1, x2, ..., xk, 1)T = 0 for some matrix
A ∈ GLk+1(Z) and any (x1, x2, ..., xk) ∈ RF . ⊕ denotes the operator: pairwise
XOR. Define X = (x1, x2, ..., xk, 1)T and an indicator function χAX : if AX = 0
then χAX = 1; else χAX = 0.

Definition 3. A function is of affine type if it can be written as λχAX iP (X),
where λ ∈ C, i =

√−1, and P (X) ∈ Z(X) is a homogeneous quadratic polyno-
mial with every cross term xixj (i �= j) having an even coefficient. A denotes
the class of all functions of affine type.

P (X) = P (x1, x2, ..., xk, 1) = a0 +
∑k

i=1 aix
2
i +

∑
1≤i<j≤k 2bijxixj with

ai, bij ∈ Z. Considering the form of a binary function F ∈ A, the four elements
of F do not have exactly three non-zero values because F has affine support. If

F = λ

(
ip00 ip01

ip10 ip11

)
for some constant λ and p00, p01, p10, p11 ∈ {0, 1, 2, 3}, then

p00 + p01 + p10 + p11 ≡ 0 (mod 2) [7]. For example, a binary symmetric function
in (A − P)1 has the form λ[1,±i, 1] or λ[1,±1,−1]. More information about A
can be seen in [4,8].

Definition 4. Given a set F of functions over the Boolean domain, we define
the counting Boolean constraint satisfaction problem #CSP(F) as

Input: A tuple I = (X, C)
Output: Z(I) =

∑
x1,x2,...,xn∈{0,1}

∏
(F,xi1 ,xi2 ,...,xik

)∈C F (xi1 , xi2 , ..., xik),
where X denotes a set of variables x1, x2, ..., xn and C is a finite set of

clauses. Each clause in C is a constraint F ∈ F of some arity k depend-
ing on F together with a sequence of k variables (not necessarily distinct)
xi1 , xi2 , ..., xik ∈ {x1, x2, ..., xn}. A satisfying assignment is an assignment to
X such that the product of functions is not zero.

In the context of a #CSP problem, F and λF denote the same function
because the non-zero scalar λ only introduces a multiplication factor into the
final value. So we always normalize a function by multiplying it with some non-
zero constants.
1 Given two sets A and B, (A − B) denotes the set {x|x ∈ A and x /∈ B}.

Exponential Time Complexity of the Complex Weighted Boolean #CSP 87

Let G(V,E) denote a graph, where V is the set of vertices and E is the set
of edges. A vertex cover of graph G is a vertex set S ⊆ V such that v ∈ S or
u ∈ S for every edge e = (v, u) ∈ E. #Vertex Cover (#VC) denotes the problem
of counting the vertex covers of a given graph.

Any instance I = (X, C) of a #CSP has a graphical representation G(V,E).
If every constraint is binary, every vertex v ∈ V represents a variable in

X, and every edge e = (u, v) ∈ E represents a function F with (F, u, v) ∈ C.
For example, an instance of #CSP({[0, 1, 1]} is a graph G(V,E) and every edge
e = (u, v) represents a function OR2 = [0, 1, 1] on two variables u, v. The set of
variables assigned 1 in a satisfying assignment corresponds to a vertex cover of
G; therefore, Z(I) = #V C(G). So #VC can be expressed as #CSP({[0, 1, 1]}).

If there are some constraints of arity k > 2, then an instance I = (X, C)
can be expressed as a bipartite graph G(VL ∪ VR, E). Every vertex v ∈ VL

represents a variable, whereas every vertex u ∈ VR is assigned a function F
of arity k. Edges (u, v1), ..., (u, vk) in E represents the constraint relationship
(F, v1, v2, ..., vk) ∈ C. A graphic representation G is an undirected multigraph
that allows parallel edges and self-loops, and G is typically used to represent the
input tuple I. Correspondingly, Z(I) is also written as Z(G).

#RD-CSP(F) of some integer D > 0 denotes the restriction to #CSP(F)
that each instance has every variable constrained by no more than D constraints
(not necessarily distinct). Each instance of #RD-CSP(F) is bounded degree.

2.2 Counting Exponential Time Hypothesis

The counting Exponential Time Hypothesis (#ETH) is a relaxed version of ETH
which is introduced by Impagliazzo et al. in [16,17].

Conjecture 1 (#ETH [13]). There exists a constant ε > 0 such that no deter-
ministic algorithm can compute #3SAT in O(2ε·n) time, where n is the number
of variables in the input formula.

A class of Turing reductions preserving the sub-exponential time lower bound
is called sub-exponential time reduction families (SERF) [11,17]. We restrict the
definition of SERF on problems with graphs as inputs.

Definition 5 ([11,17]). Let A and B be two problems on graphs. A sub-
exponential time reduction family from A to B is an algorithm T with oracle
access for B. T accepts a tuple (G, ε) as input, where G is an input graph of A
and ε > 0 is a running time parameter of T , and

(1) computes A(G) in time f(ε)2(ε|V (G)|) with
(2) only invoking the oracle of B on graphs G′ with no more than g(ε)(|V (G)|+

|E(G)|) vertices and edges,

where f(ε) and g(ε) are computable functions.
If such an algorithm exists, We say that A is SERF-reducible to B, written

as A ≤serf B.

88 Y. Liu

SERF reductions are known to be transitive [17, Section 1.1.4], and they
preserve the sub-exponential time lower bound.

Lemma 1 ([11]). Let A and B be problems that satisfy A ≤serf B. If there exist
constants ε,D > 0 such that A has no O(2εn) time algorithm on graphs with n
vertices and no more than Dn edges, then there must exist constants ε′,D′ > 0
such that B has no O(2ε′n′

) time algorithm on graphs with n′ vertices and no
more than D′n′ edges.

2.3 Gadget Construction

A gadget is a signature grid G(V,E ∪ X) (π is omitted), where E is the set of
edges with two endpoints in V , and X is the set of dangling edges with one
endpoint in V and another end dangling. G defines a signature FG of arity
k = |X| which takes the value FG(a1, a2, ..., ak) =

∑
σ:E→{0,1}

∏
v∈V Fv(σ̂|N(v)),

where σ̂ is the extension of σ by the assignment (a1, a2, ..., ak) ∈ {0, 1}k on the
dangling edges X. G is called an F-gate with signature FG, if Fv ∈ F for every
v ∈ V . Therefore, we can replace each occurrence of FG by the gadget G. That
is, #CSP({FG} ∪ F) can be reduced to #CSP(F). Besides, this reduction is a
SERF reduction.

Lemma 2. Let F be a finite set of functions. If we can construct an F-gate
with the signature F , then #RD-CSP(F ∪ {F}) ≤serf #RD′-CSP(F) for some
constants D,D′ > 0.

2.4 Block Interpolation

Polynomial interpolation is widely applied to building reductions between count-
ing problems [19–21]. However, it can not always build the SERF reductions since
the generated instance maybe with non-linearly size growth and not sparse. Cur-
ticapean [11] introduces the idea of Block interpolation, which builds the SERF
reduction. We prove the following lemma to show how it works.

Lemma 3. Let x ∈ C be a nonzero constant. #RD-CSP({[0, 1, 1]}) is SERF-
reducible to #RD′-CSP({[0, 1, x]}) for some constants D,D′ > 0.

Proof. Let G(V,E) with |V | = n and |E| = m ≤ Dn be an instance of #RD-
CSP({[0, 1, 1]}). If xk = 1 for some integer k > 0, then we replace each edge with
k parallel edges with signature [0, 1, x]. The new instance G′ has Z(G′) = Z(G),
and we finish the proof. And D′ ≤ kD in this case.

Otherwise, x is not a root of unity. Given an integer d > 0, we can assume m
is divisible by d. Otherwise, we can add some isolated edges assigned [0, 1, 1] to
fit the assumption. The addition only bring a multiplication constant to Z(G).
Step 1: (Set up block interpolation) We divide the E to disjoint blocks
E1, E2, .., Em

d
such that |Ei| = d for any i ∈ [md]. For every satisfying assignment

to vertices of G, we label it a type t = (t1, t2, ..., tm
d
) ∈ {0, 1, ..., d}m

d where ti

Exponential Time Complexity of the Complex Weighted Boolean #CSP 89

records the number of edges e = (u, v) ∈ Ei with u = v = 1. And (d − ti) is the
number of edges e = (u, v) ∈ Ei with u �= v. Then

Z(G) =
∑

t

ρt

m
d∏

i=1

(1)d−ti(1)ti

where ρt is the number of satisfying assignments with type t. We define a
multivariate polynomial μ(y1, y2, ..., ym

d
) =

∑
t ρt

∏m
d

i=1 yti
i on indeterminates

y1, y2, ..., ym
d
, and Z(G) = μ(1, 1, ..., 1).

Step 2: (Recover coefficients) Given l = (l1, l2, ..., lm
d
) ∈ N

m
d , we construct a

graph Gl from G by replacing every edge in Ei by li parallel edges with signature
[0, 1, x].

Z(Gl) =
∑

t

ρt

m
d∏

i=1

(1li)d−ti(xli)ti =
∑

t

ρt

m
d∏

i=1

(xli)ti = μ(xl1 , xl2 , ..., x
l m
d).

Since x is not a root of unity, we can construct a series of graphs Gl with
l ∈ [d + 1]

m
d to obtain the values of μ at (d + 1)

m
d distinct points. Then we can

recover all ρt in poly((d + 1)
m
d) time by Lagrange interpolation.

Each instance Gl , with n vertices and no more than (d + 1)m edges, is an
instance of #RD′-CSP({[0, 1, x]}) where D′ = (d + 1)D. The time to generate
a new instance is poly(m) time. Therefore, the total time to compute Z(G) is
(d+1)

m
d poly(m)+poly((d+1)

m
d) ≤ c ·2 log(d+1)

d ·Dn for some constant c > 0, with
the oracle access for #RD′-CSP({[0, 1, x]}). Given a running time parameter ε,
we choose d such that D log(d+1)

d ≤ ε. The above algorithm is a SERF.

Block interpolation has been widely used to prove the sub-exponential time
lower bounds for individual counting problems [1,9,11].

Theorem 3 (Theorem 1.2 in [11]). If #ETH holds, then there exist constants
ε,D > 0 such that there is no O(2εn) time deterministic algorithm for #RD-
CSP({[0, 1, 1]}), where n is the number of vertices in the input graph.

3 Pinning

Pinning is a vital tool to reduce the arity of a function. Inspired by the proof
of the signature decomposition theorem [18, Lemma 3.1], we prove that the two
special unary functions [1, 0] and [0, 1] is available in the context of #RD-CSP(F)
for any nonempty set F , where D > 0 is some constant.

Proof (of Theorem 1). Let G(VL ∪ VR, E) with n variables and m clauses be an
instance of #RD′-CSP(F ∪ {δ0}). Each vertex in VL is a variable, each vertex
in VR is a constraint function in F ∪ {δ0} and the edges in E represent the
constraint relationships between variables and constraints. m ≤ |E| ≤ D′n.
Suppose X ⊆ VL is the set of variables that are constrained by δ0, i.e., all

90 Y. Liu

variables in X are forced to be assigned 0. So the variables in X can be replaced
by other variables assigned 0 without changing the value Z(G).

We can divide X to q = |X|
d disjoint blocks X1,X2, ...,Xq for some positive

integer d, such that |Xi| = d (w.l.o.g, |X| is divisible by d). We merge all variables
in Xi into one variable xi and the corresponding clauses (δ0, v) with v ∈ Xi

are merged into one (δ0, xi). The new bipartite graph Gq(V ′
L ∪ V ′

R, E′) with
V ′

L = {x1, ..., xq}∪(VL −X) has exactly q = |X|
d variables constrained by δ0, and

Z(Gq) = Z(G). |V ′
L| ≤ n, |V ′

R| ≤ m, |E′| ≤ |E|, and the max-degree of vertices
in V ′

L is no more than dD′. The process is shown in Fig. 1.

Fig. 1. Constructing Gq from G. Fig. 2. Constructing G′
q−1 from Gq−1

and G′, where the blue part is graph
Gq−1 and the orange part denotes
graph G′. (Color figure online)

We present a divide and conquer algorithm to compute Z(Gq). We construct a
new instance Gq−1 from Gq by deleting the clause (δ0, x1). We treat Gq−1 as a sig-
nature on variable x1. Gq−1(0) = Z(Gq−1|x1 = 0) and Gq−1(1) = Z(Gq−1|x1 =
1). Therefore, Z(Gq−1) = Gq−1(0) + Gq−1(1) and Z(Gq) = Gq−1(0).

(1). If Gq−1(x1) = [c, c] with some c ∈ C, no matter what inner structure Gq−1

has, then Z(Gq) = 1
2Z(Gq−1).

(2). There exists some graph Gq−1 such that Gq−1(x1) = [a, b] with a �= b.
Rename such a graph Gq−1 as G′ with G′(x1) = [a, b]. The vertex x1 in
G′ is also dubbed y1, and other vertices adjacent to δ0 are merged into one
vertex y2. Then we add the constraint G′(x1) to Gq−1, to construct a new
graph G′

q−1. We actually construct G′
q−1 by copying Gq−1 and G′, merging

x1, y1 into x1, merging x2, y2 into x2 and merging the corresponding clauses
(δ0, x2), (δ0, y2) into one (δ0, x2), showed in Fig. 2. Z(Gq) = 1

a−b (Z(G′
q−1)−

bZ(Gq−1)).
Since G′ is a given constraint function, of which the size is considered as a
constant, then G′

q−1 with O(n) vertices has maximum degree O(dD′).

We can compute the values Z(Gq−1) and Z(G′
q−1) in the same way. Let

T (l; |V (Gl)|) to denote the computation time of Z(Gl) where Gl has exactly l

Exponential Time Complexity of the Complex Weighted Boolean #CSP 91

variables constrained by δ0. Then the time recurrence inequality is

T (l; |V (Gl)|) ≤ poly(|V (Gl)|) + T (l − 1; |V (Gl−1)|) + T (l − 1; |V (G′
l−1)|) +O(1)

for 0 ≤ l ≤ q, with |V (Gl−1)| = O(|V (Gl)|), |V (G′
l−1)| = O(|V (Gl)|) and

T (0; ∗) = O(1). Besides, the maximum degree of each generated graph is O(dD′).
So the total time T (q; |V (Gq)|) ≤ 2q+1poly(|V (Gq)|) = 2

|X|
d +1poly(n + m). So

we can compute Z(G) = Z(Gq) in O(2
n
d) time, since |X| ≤ n and m ≤ D′n.

By the above algorithm, for any constant D′ > 0, there exists some constant
D = O(dD′) such that #RD′-CSP(F ∪ {δ0}) ≤serf RD-CSP(F). The proof of
#RD′-CSP(F ∪ {δ1}) ≤serf #RD-CSP(F) is similar.

4 The Fine-Grained Dichotomy

Cai, Lu, and Xia [8] presented the polynomial time algorithm for #CSP(F)
where F is a subset of either A or P. We focus on the hardness.

4.1 One Binary Function

We firstly consider the sub-exponential lower bound for #CSP({H}) with the

binary function H /∈ A ∪ P. Suppose H =
(

a b
c d

)
with a, b, c, d ∈ C. If a = 0,

then d �= 0 and bc �= 0 since H /∈ A ∪ P.

Lemma 4. Let H be a binary function
(
0 b
c d

)
with bcd �= 0. If #ETH holds, then

there exist constants ε,D > 0 such that #RD-CSP({H}) can not be computed
in O(2εn) time, where n is the number of variables in the input instance.

Proof. We normalize H to
(
0 1
c d

)
. We realize H ′ = [0, c, d2] by H ′(x1, x2) =

H(x1, x2)H(x2, x1). Normalize H ′ to [0, 1, d2

c].
According to Lemma 2 and Lemma 3, we build the reduction chain #RD-

CSP({[0, 1, 1]}) ≤serf #RD′-CSP({[0, 1, d2

c]}) ≤serf #R2D′ -CSP({H}), and con-
clude this lemma by Lemma 1 and Theorem 3.

Lemma 5. Let H be a binary function
(
1 b
c d

)
with bc �= d and bcd �= 0. If #ETH

holds, there exist constants ε,D > 0 such that #RD-CSP({H, [1, x], [1, y]}) can
not be computed in O(2εn) time, where n is the number of variables in the input
instance, and [1, x], [1, y] are some unary functions.

Proof. Let Ux = [1, x] and Uy = [1, y]. If d �= −bc, then we realize H ′ =(
0 bc−d

c
bc−d

b
(bc)2−d2

bc

)
by H ′(x1, x2) =

∑
x3∈{0,1} H(x1, x3)H(x3, x2)Ux(x3), where

92 Y. Liu

x = − 1
bc . Otherwise, we choose x = − 2

bc and H ′ =
(−1 3b
3c −bc

)
. Then we real-

ize H ′′ =
(

0 − 8
3b

− 8
3c 80

9 bc

)
by H ′′(x1, x2) =

∑
x3∈{0,1} H ′(x1, x3)H ′(x3, x2)Uy(x3),

where y = − 1
9bc .

By the above, #RD′-CSP({H ′,H ′′}) ≤serf #RD-CSP({H,Ux, Uy}) for some
constants D,D′ > 0. So this lemma is true by Lemma 4 and Lemma 1.

Lemma 6. Let H be a binary function
(

a b
c d

)
/∈ A ∪ P with a, b, c, d ∈ C. If

#ETH holds, there exist constants ε,D > 0 such that #RD-CSP({H}) can not
be computed in O(2εn) time, where n is the number of variables in the input
instance.

Proof. We discuss the values of a, b, c, d. If a = 0 (the case d = 0 is symmetric),

then we finish by Lemma 4. Suppose a, d �= 0. H is normalized to
(
1 b
c d

)
. Since

H /∈ P, then bc �= d and at most one of b, c is 0. W.l.o.g, we assume c �= 0.

1. b �= 0.
(1) At least one of b, c, d is not a root of unity. We realize U1 = [1, b],
U2 = [1, c], U3 = [1, d] from H by U1(x1) = H(x1, x2)δ0(x2), U2(x2) =
H(x1, x2)δ0(x1), U3(x1) = H(x1, x1), respectively. δ0 and δ1 are available
according to Theorem 1. One of U1, U2, U3 can interpolate [1, y] for any y ∈ C,
similar as the way in the proof of Lemma 3. So we build the SERF reduction
from #RD′ -CSP({H, [1, x], [1, y]}) to #RD-CSP({H}) for some constants
x, y,D,D′, and proof this lemma by Lemma 4 and Lemma 1.
(2) b, c, d are roots of unity. Suppose bk = ct = 1 for some integers k, t > 0.
We normalize U1 = [b, 1] and U2 = [c, 1], and realize H ′ = bc[1, 1, d

bc] /∈ P by
H ′(x1, x2) = H(x1, x2)U1(x2)U2(x1). If d

bc �= −1, then H ′ /∈ A. We realize
H ′′ = 2[1, bc+d

bc] by H ′′(x) =
∑

y∈{0,1} H ′(x, y), and bc+d
bc is not a root of

unity since d
bc �= 1. Then we do as the case (1). Otherwise, d

bc = −1 and

H ′ = [1, 1,−1]. If U1, U2 ∈ A, then b, c ∈ {±1,±i} and H =
(
1 b
c −bc

)
∈ A,

which is a contradiction. So at least one of U1, U2 is not in A. W.l.o.g, we
assume U1 = [1, b] /∈ A, so b /∈ {±1,±i}. We realize H ′′ = 2[1, b,−b2] /∈
A ∪ P by H ′′(x1, x2) = H ′(x1, x2)U1(x1)U1(x2) and H ′′′ = 2(1 + b)[1, b−b2

1+b]

by H ′′′(x) =
∑

y∈{0,1} H ′′(x, y). The element b−b2

1+b of H ′′′ is not a root of
unity. Then we turn to the case (1).

2. b = 0 and H =
(
1 0
c d

)
. We realize H ′ = [1, c, c2 + d2] /∈ P by H ′(x1, x2) =

∑
x3∈{0,1} H(x1, x3)H(x2, x3). If H ′ /∈ A, then we turn to case 1. Otherwise,

H ′ has the form [1,±i, 1] or [1,±1,−1]. So H is either
(

1 0
±i

√
2

)
or

(
1 0

±1
√
2i

)
.

Then U3 = [1,
√
2] or [1,

√
2i] can interpolate [1, y] for any y ∈ C.

Exponential Time Complexity of the Complex Weighted Boolean #CSP 93

We interpolate the function U(x) = [1, 2] to realize H ′′ = [1,±i, 3] or
[1,±1,−3] by H ′′(x1, x2) =

∑
x3∈{0,1} H(x1, x3)H(x2, x3)U(x3). Since H ′′ /∈

A ∪ P, we turn to the case 1-(1).

4.2 Proof of Theorem 2

Polynomial time algorithms for #CSP(A) and #CSP(P) are presented in [8].
Then we consider the sub-exponential time lower bound of #RD-CSP(F) with
F �⊆ A and F �⊆ P, where D ≥ 3 is some constant.

In [8], the original proofs of Lemma 5.6, Lemma 5.8, Lemma 5.9 and the
original proof in Sect. 5.4 built the SERF reductions from #CSP(H) of some
binary function H /∈ A ∪ P to #CSP(F) with a set F �⊆ A and F �⊆ P. With
the help of our pinning lemma (Theorem 1), these original proofs can be used to
demonstrate #RD′-CSP(H) ≤serf #RD-CSP(F) for some constants D,D′ > 0.

The original proofs in [8, Section 6] proved #RD-CSP(F) ≤serf #R3-
CSP(F ∪ {=2}) and #R3-CSP(F ∪ {Q}) ≤serf #R3-CSP(F), where Q is some
non-degenerate binary function. The original proof of [8, Lemma 6.1] used poly-
nomial interpolation to reduce #R3-CSP(F ∪ {=2}) to #R3-CSP(F ∪ {Q}). So
the reduction is not a SERF reduction. We transform the polynomial interpo-
lation to block interpolation and prove that #R3-CSP(F ∪ {=2}) ≤serf #R3-
CSP(F ∪ {Q}). Then we conclude the sub-exponential time lower bound for
#RD-CSP(F) by Lemma 6 and Lemma 5, even D = 3.

Lemma 7. Let Q be a non-degenerate binary function and F be a finite set of
functions.

#R3 − CSP(F ∪ {=2}) ≤serf #R3 − CSP(F ∪ {Q}).

Proof. The Jordan normal of Q is either Λ =
(

λ1 0
0 λ2

)
or Λ =

(
λ 1
0 λ

)
such that

Q = TΛT−1 for some invertible matrix T ∈ GL2(C), where λ1, λ2, λ �= 0.
Let G(V,E) be an instance of #R3-CSP(F ∪ {=2}) and S ⊆ V is the

set of vertices assigned signature (=2). We replace each vertex in S by a
chain T, (=2), T−1, that is, we replace each function (=2)(x,w) by T (x, y)(=2

)(y, z)T−1(z, w), where x, y, z, w ∈ {0, 1}. This defines a new instance G′(V ′, E′)
with |V ′| ≤ 3|V | and |E′| ≤ 2|E|. Let S′ ⊆ V ′ be the set of vertices assigned
signature (=2). There is a one-to-one mapping between the vertices of S and S′.

Because T

(
1 0
0 1

)
T−1 =

(
1 0
0 1

)
, Z(G) = Z(G′). We consider interpolating (=2)

by Q.

1. Λ =
(

λ1 0
0 λ2

)
. If (λ2

λ1
)k = 1 for some positive integer k, we replace each

vertex in S by a k-length chain Q,Q, ..., Q. The chain realizes the signature
(TΛT−1)k = TΛkT−1 = (λ1)k(T (=2)T−1) = (λ1)k(=2). This defines a new
instance G′′, and Z(G′′)=(λ1)k|S|Z(G).

94 Y. Liu

Otherwise, we divide S′ to r = |S′|
d disjoint blocks S′

1, S
′
2, ..., S

′
r such that

each block |S′
i| = d for some integer d > 0 (w.l.o.g, |S′| is divisible by d).

Correspondingly, S = S1 ∪ S2 ∪ · · · ∪ Sr. We label each satisfying assign-
ment to E′ a type t = (t1, t2, ..., tr) ∈ {0, 1, ..., d}r, where ti or (d − ti)
denotes the number of occurrences of (=2)(1, 1) or (=2)(0, 0) in S′

i, respec-
tively. Then Z(G′) =

∑
t ρt

∏r
i=1(1)

d−ti(1)ti , where ρt is the sum of prod-
ucts of the functions in (V ′ − S′) under satisfying assignments with type t.
We define a multivariate polynomial μ(y1, y2, ..., yn) =

∑
t ρt

∏r
i=1(yi)ti on

variables y1, y2, ..., yn ∈ C, and Z(G′) = μ(1, 1, ..., 1). We want to obtain the
values of μ at (d+1)r distinct points, to recover all coefficients ρt by Lagrange
interpolation.
We build a series of new instances Gl with l = (l1, l2, ..., lr) ∈ [d + 1]r from
G, by replacing each (=2) in Si by a li-length chain Q,Q, ..., Q. Since Qli =
T (Λ)liT−1, Gl is the same as the instance constructed by replacing each (=2)
in S′

i by Λli . Therefore,

Z(Gl) =
∑

t

ρt

r∏

i=1

(λ1)
li(d−ti)(λ2)

liti = (

r∏

i=1

(λ1)
dli)μ((

λ2

λ1
)l1 , (

λ2

λ1
)l2 , ..., (

λ2

λ1
)lr).

Because λ2
λ1

is not a root of unity, we get the values of μ at (d + 1)r points
((λ2

λ1
)l1 , ..., (λ2

λ1
)lr), by the oracle for #R3-CSP(F ∪ {Q}).

2. Λ =
(

λ 1
0 λ

)
. The construction is the same, but we define ti as the number of

occurrences of (=2)(0, 1) in S′
i. Correspondingly, (d − ti) denotes the number

of the occurrences of (=2)(0, 0) or (=2)(1, 1). Z(G) = Z(G′) = ρ(0,0,...,0).

Λli =
(

λli liλ
li−1

0 λli

)
so

Z(Gl) =
∑

t

ρt

r∏

i=1

(λli)d−ti(liλli−1)ti = (
r∏

i=1

λdli)μ(
l1
λ

,
l2
λ

, ...,
lr
λ
).

Analyzing as we do in the proof of Lemma 3, #R3-CSP(F ∪ {=2}) is SERF-
reducible to #R3-CSP(F ∪ {Q}).

5 Conclusion

In this article, we develop a fine-grained dichotomy of complex weighted Boolean
#CSP, which also holds for #R3-CSP. Besides, an essential part of this article
is the pinning lemma under #ETH. In the proof of pinning lemma, we can
see many operators about functions we can simulate in the context of #CSP
problems, for example, the addition and subtraction between functions.

This article presents the high feasibility of transforming the traditional
dichotomies into fine-grained dichotomies for counting problems on general
graphs. However, it is challenging if we restrict the inputs to planar graphs.
The time lower bound might be 2o(

√
N). We need to build the reductions which

cost 2o(
√

N) time and generate planar instances with linearly size growth.

Exponential Time Complexity of the Complex Weighted Boolean #CSP 95

Acknowledgements. The author is very grateful to Prof. Mingji Xia for his beneficial
guidance and advise.

References

1. Brand, C., Dell, H., Roth, M.: Fine-grained dichotomies for the Tutte plane
and Boolean #CSP. Algorithmica 81(2), 541–556 (2019). https://doi.org/10.1007/
s00453-018-0472-z

2. Bulatov, A., Dyer, M., Goldberg, L.A., Jalsenius, M., Richerby, D.: The complexity
of weighted Boolean #CSP with mixed signs. Theor. Comput. Sci. 410(38–40),
3949–3961 (2009)

3. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. J.
ACM 60(5), 1–41 (2013). https://doi.org/10.1145/2528400

4. Cai, J.Y., Chen, X.: Complexity Dichotomies for Counting Problems, vol.
1. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/
9781107477063

5. Cai, J.Y., Chen, X.: Complexity of counting CSP with complex weights. J. ACM
64(3), 1–39 (2017). https://doi.org/10.1145/2822891

6. Cai, J.Y., Chen, X., Lu, P.: Nonnegative weighted #CSP: an effective complexity
dichotomy. SIAM J. Comput. 45(6), 2177–2198 (2016). https://doi.org/10.1137/
15M1032314

7. Cai, J.Y., Fu, Z., Girstmair, K., Kowalczyk, M.: A complexity trichotomy for k-
regular asymmetric spin systems using number theory. Comput. Complex. 32(4),
4 (2023). https://doi.org/10.1007/s00037-023-00237-w

8. Cai, J.Y., Lu, P., Xia, M.: The complexity of complex weighted Boolean #CSP. J.
Comput. Syst. Sci. 80(1), 217–236 (2014). https://doi.org/10.1016/j.jcss.2013.07.
003

9. Chen, H., Curticapean, R., Dell, H.: The exponential-time complexity of counting
(quantum) graph homomorphisms. In: Sau, I., Thilikos, D.M. (eds.) WG 2019.
LNCS, vol. 11789, pp. 364–378. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30786-8_28

10. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting prob-
lems. Inf. Comput. 125(1), 1–12 (1996). https://doi.org/10.1006/inco.1996.0016

11. Curticapean, R.: Block interpolation: a framework for tight exponential-time count-
ing complexity. Inf. Comput. 261, 265–280 (2018). https://doi.org/10.1016/j.ic.
2018.02.008

12. Curticapean, R.: A full complexity dichotomy for immanant families. In: Proceed-
ings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp.
1770–1783. STOC 2021, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3406325.3451124

13. Dell, H., Husfeldt, T., Wahlén, M.: Exponential time complexity of the permanent
and the Tutte Polynomial. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 426–437.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2_37

14. Dyer, M., Goldberg, L.A., Jerrum, M.: The complexity of weighted Boolean #CSP.
SIAM J. Comput. 38(5), 1970–1986 (2009). https://doi.org/10.1137/070690201

15. Dyer, M.E., Richerby, D.M.: On the complexity of #CSP. In: Proceedings of the
Forty-Second ACM Symposium on Theory of Computing, pp. 725–734. STOC
2010, Association for Computing Machinery, New York, NY, USA (2010). https://
doi.org/10.1145/1806689.1806789

https://doi.org/10.1007/s00453-018-0472-z
https://doi.org/10.1007/s00453-018-0472-z
https://doi.org/10.1145/2528400
https://doi.org/10.1017/9781107477063
https://doi.org/10.1017/9781107477063
https://doi.org/10.1145/2822891
https://doi.org/10.1137/15M1032314
https://doi.org/10.1137/15M1032314
https://doi.org/10.1007/s00037-023-00237-w
https://doi.org/10.1016/j.jcss.2013.07.003
https://doi.org/10.1016/j.jcss.2013.07.003
https://doi.org/10.1007/978-3-030-30786-8_28
https://doi.org/10.1007/978-3-030-30786-8_28
https://doi.org/10.1006/inco.1996.0016
https://doi.org/10.1016/j.ic.2018.02.008
https://doi.org/10.1016/j.ic.2018.02.008
https://doi.org/10.1145/3406325.3451124
https://doi.org/10.1007/978-3-642-14165-2_37
https://doi.org/10.1137/070690201
https://doi.org/10.1145/1806689.1806789
https://doi.org/10.1145/1806689.1806789

96 Y. Liu

16. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci.
62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

17. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/
jcss.2001.1774

18. Lin, J., Wang, H.: The complexity of Boolean Holant problems with nonnega-
tive weights. SIAM J. Comput. 47(3), 798–828 (2018). https://doi.org/10.1137/
17M113304X

19. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar
graphs. SIAM J. Comput. 31(2), 398–427 (2001). https://doi.org/10.1137/
S0097539797321602

20. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979). https://doi.org/10.1137/0208032

21. Valiant, L.: The complexity of computing the permanent. Theoret. Comput. Sci.
8(2), 189–201 (1979). https://doi.org/10.1016/0304-3975(79)90044-6

https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/17M113304X
https://doi.org/10.1137/17M113304X
https://doi.org/10.1137/S0097539797321602
https://doi.org/10.1137/S0097539797321602
https://doi.org/10.1137/0208032
https://doi.org/10.1016/0304-3975(79)90044-6

Hardness and Approximation for the Star
β-Hub Routing Cost Problem

in Δβ-Metric Graphs

Meng-Shiou Tsai1, Sun-Yuan Hsieh1, and Ling-Ju Hung2(B)

1 Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan

hsiehsy@mail.ncku.edu.tw
2 Department of Creative Technologies and Product Design,
National Taipei University of Business, Taoyuan City, Taiwan

ljhung@ntub.edu.tw

Abstract. Minimizing transportation costs through the design of a hub-
and-spoke network is a crucial concern in hub location problems (HLP).
Within the realm of HLP, the Δβ-Star p-Hub Routing Cost Prob-
lem (Δβ-SpHRP) represents an open problem stemming from the Star
p-Hub Routing Cost Problem (SpHRP) discussed in a publication
by [Yeh et al., Theoretical Computer Science, 2022]. The Δβ-SpHRP
deals with a specific vertex c, a positive integer p, and a Δβ-metric
graph denoted as G, which is an undirected, complete, and weighted
graph adhering to the β-triangle inequality. The objective is to identify
a spanning tree T that satisfies the following conditions: it is rooted at c,
contains exactly p hubs adjacent to c, and assigns each remaining vertex
to a hub while minimizing the routing cost of T . This paper expands the
input instances from metric graphs to Δβ-metric graphs. Our research
demonstrates that SpHRP is NP-hard for any β > 1

2
, indicating that

SpHRP remains NP-hard for various subclasses of metric graphs. For
approximation algorithms, we introduce two approaches that improve
upon previous results, particularly when β is close to 1

2
.

1 Introduction

The hub location problem (HLP) is a renowned optimization problem in the field
of transportation planning. In the HLP, some nodes are selected to be hubs, and
the remaining nodes (called non-hubs) are allocated to the hubs. It involves
the strategic placement of hub facilities in a transportation network to optimize
various objectives, such as minimizing transportation costs, maximizing service
coverage, or minimizing travel distances. If each non-hub is connected to exactly
one hub, it is called single allocation. Conversely, if a non-hub is connected to
more than one hub, it is called multi-allocation.

The earliest research on HLPs was initiated by O’Kelly [18], who derived
the first mathematical formulation for the HLP in 1987. Over the past three
decades, HLP has had various applications in real life, including: airlines [1,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 97–111, 2024.
https://doi.org/10.1007/978-3-031-49190-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_7&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_7

98 M.-S. Tsai et al.

Fig. 1. A feasible solution of the Δβ-SpHRP for p = 3, where c is given by input, hi

denotes i-th hub, and the rectangles are non-hubs.

21,22], delivery systems [1], and transportation systems [3]. Various approaches
proposed in the literature of this well-studied problem: linear-programming [12,
16,23,26], Benders decomposition [17,19], branch-and-cut methods [10], genetic
algorithm [4], and simulated annealing [20]. Interested readers can refer to the
surveys [2,11,13].

Although HLP is a well-studied problem, the research results on design-
ing approximation algorithms are still very few. Iwasa et al. [14] investigated
the single allocation p-Hub Median problem in metric graphs and proposed
a 3-approximation algorithm and a randomized 2-approximation algorithm. A
variation of the p-Hub Median problem, known as the Single Allocation at
most p-Hub Center Routing problem was studied in [8]. In this variant, all
origin-destination pairs have an identical unit traffic (flow) cost. It was shown
in [8] the NP-hardness of the Single Allocation at most p-Hub Center
Routing problem and for any β > 1

2 , polynomial-time 2β-approximation algo-
rithms were given, whose approximation ratio is at least Ω(β). Yeh et al. [25]
studied the Star p-Hub Routing Cost Problem in metric graphs with the
assumption that |V | ≥ 2p + 1. They proved the NP-hardness of this problem
and derived a 3-approximation algorithm.

Minimizing the diameter of the specific network topology is another issue
in HLPs. Chen et al. [7] investigated the p-Hub Center Problem in met-
ric graphs, where they showed the NP-hardness of approximating this prob-
lem within a ratio 1.5 − ε for any ε > 0 and derived a 5

3 -approximation algo-
rithm. This results were extended to investigate the parameterized metric graphs
instances [9]. For any β > 1

2 , they derived the corresponding approximation
results. Yaman and Elloumi [24] proved the NP-hardness of the Star p-Hub
Center problem. Liang [15] studied this problem in metric graphs and showed
the NP-hardness of approximating this problem within a ratio of 5

4−ε and derived
a 7

2 -approximation algorithm. It was shown that for any ε > 0, to approximate
the Star p-Hub Center problem to a ratio g(β) − ε is NP-hard and r(β)-
approximation algorithms were given in the same paper where g(β) and r(β) are
functions of β [6].

In this paper, we study the Δβ-Star p-Hub Routing Cost Problem (Δβ-
SpHRP), which is a general version of SpHRP [25]. A Δβ-metric graph G =
(V,E,w) is an undirected, complete, weighted graph satisfying the following con-
ditions: (i) w(v, v) = 0 for any v ∈ V ; (ii) w(u, v) = w(v, u) for any u, v ∈ V ;

Hardness and Approximation for the Star β-Hub Routing Cost Problem 99

(iii) for any three vertices u, v, x ∈ V , w(u, v) ≤ β · (w(u, x) + w(x, v)), known as
β-triangle inequality. (If β > 1, it is called relaxed triangle inequality. If β < 1, it
is called sharpen triangle inequality.) Notice that for β = 1

2 , all edges are with the
same cost which is a trivial instance. The goal of Δβ-SpHRP is to find a spanning
tree T of depth-2 that minimizes the routing cost subject to the following con-
straints: T is rooted at c, which is adjacent to exactly p vertices called hubs, and
each remaining vertex is adjacent to a hub. Fig. 1 presents a feasible solution of
this problem. In transportation systems, the transportation cost from location A
to location B may be different than the cost in the opposite direction, which makes
the problem even more complicated. To simplify this problem, in this paper, we
assumed that the input graph is undirected. The primary motivation behind this
research is to explore the possibilities and limitations of solving the Δβ-SpHRP
problem for β < 1. The goal is to determine if there exists a significant subclass of
input instances that can be solved efficiently, i.e., polynomial-time approximation
algorithms with a reasonable approximation ratio. On the other hand, for cases
where β ≥ 1, a noteworthy concern is to investigate the feasibility of developing
a polynomial-time approximation algorithm with an approximation ratio which
is a function of β. This investigation aims to address the question of whether it is
possible to achieve efficient approximation algorithms for larger values of β while
maintaining an acceptable level of accuracy.

Before we give the formal definition of the Δβ-SpHRP, we list a property
regarding to the Δβ-metric graphs.

Lemma 1 ([5]). Let G = (V,E) be a Δβ-metric graph for 1
2 ≤ β < 1. For any

two edges (u, x), (v, x) with a common endvertex x in G, w(v, x) ≤ β
1−β ·w(u, x).

In the following, we give some notations and definitions. For u, v ∈ V , we
denote the distance between u, v in graph H as dH(u, v), and the length of the
path between u, v in tree T as dT (u, v). The routing cost of tree T , denoted
as r(T), is defined as r(T) =

∑
u∈V

∑
v∈V dT (u, v). The formal definition of

Δβ-SpHRP is listed below.

Δβ-Star p-Hub Routing Cost Problem (Δβ-SpHRP)
Input: A Δβ-metric graph G = (V,E,w), a specific vertex c, and a positive

integer p.
Output: A depth-2 spanning tree T ∗ rooted at c with exactly p children such

that the routing cost r(T ∗) is minimized.

We expand the input graph set of SpHRP from metric graphs to Δβ-metric
graphs, and improve the NP-hardness for any β > 1

2 . For approximation algo-
rithms, we derive an approximation algorithms for solving Δβ-SpHRP and ana-
lyze the algorithm given in [25]. The main results of this paper are listed in
Table 1. Notice that for β close to 1

2 , our approximation ratios are very close to
one. In the cases that |V | ≥ 2p + 1, we improve the ratio to 2β + 1 for β < 1,
(2β3 + 1) for β ≥ 1.

The organization of this paper is as follows. In Sect. 2, we derive an approxi-
mation algorithms for solving Δβ-SpHRP and analyze the algorithm given in [25]

100 M.-S. Tsai et al.

Table 1. The Approximation results of Δβ-SpHRP in this paper.

β Approximation ratio for general
Δβ-SpHRP

Approximation ratio for
Δβ-SpHRP with |V | ≥ 2p + 1

(1
2
, 1) min((β

1−β
)2, 2β + 2) 2β + 1

[1, ∞) 2β3 + 2 2β3 + 1

for β < 1. In Sect. 3, we analyze the algorithm given in [25] for solving Δβ-SpHRP
for β ≥ 1. Finally, we give a concluding remark in Sect. 4.

We end this section with the following NP-hardness theorem. Due to limita-
tion of space, the proof is omitted.

Theorem 1. For any β > 1
2 , Δβ-SpHRP is NP-hard.

2 Approximation Algorithms for Δβ-SpHRP for β < 1

For β = 1, Yeh et al. [25] gave a 3-approximation algorithm with the assumption
that |V | ≥ 2p + 1. In this paper, we solve a more general problem which has
no such constraint. In this section, we design an algorithm, Algorithm 1 and
analyze the algorithm, Algorithm 2 given in [25] to solve Δβ-SpHRP for β < 1.

Let (G = (V,E,w), c, p) be the input graph of Δβ-SpHRP. We use n to denote
the number of the vertices, T to be the output of proposed algorithms, hi to be
the i-th hub in T , and li to be the i-th non-hub in T . Lemma 2 is needed for the
situation that |V | ≥ 2p + 1.

Lemma 2 ([25]). If |V | ≥ 2p + 1, r(T ∗) ≥ 2(2n − 2 − p) ·
p∑

i=2

dG(c, hi).

In the following, we show that the approximation ratio of Algorithm 1 is
(β
1−β)2 for 1

2 < β < 1.

Algorithm 1. APX1
1: Choose any vertex to be h1, and connect c to h1 in T .
2: Choose any p − 1 vertices to be {h2, h3, . . . , hp}.
3: Connect all vertices in non-hubs to h1 in T .
4: Return T .

Theorem 2. Algorithm 1 is a (β
1−β)2-approximation algorithm for 1

2 < β < 1,
and the time complexity is O(n).

Proof. It is evident that Algorithm 1 returns a feasible solution of the Δβ-SpHRP
in O(n) time. We now prove that r(T) ≤ (β

1−β)2 · r(T ∗).

Hardness and Approximation for the Star β-Hub Routing Cost Problem 101

Let e1, e2 be the cost of the shortest and longest edges in G. We construct
two graphs G1 and G2, where all the edge costs of G1 are e1 and all the edge
costs of G2 are e2. Let T1 be the optimal solution of G1, and T2 be the optimal
solution of G2. The idea is that we find the lower bound of the optimal solution
and the upper bound of the output of Algorithm 1 by constructing two new
graphs with the shortest and longest edges in G.

It is clear that, for all vertices u, v ∈ V ,

dG1(u, v) ≤ dG(u, v) ≤ dG2(u, v). (1)

According to (1),
r(T1) ≤ r(T ∗) ≤ r(T) ≤ r(T2). (2)

If e1 and e2 have common endvertex, by Lemma 1,

e2 ≤
(

β

1 − β

)

· e1 ≤
(

β

1 − β

)2

· e1 (since
1
2

< β < 1).

If e1 and e2 have no common end vertex, there exists e3 which has one end
vertex incident to e1 and the other end vertex incident to e2.

According to Lemma 1, e2 ≤ (β
1−β) · e3 and e3 ≤ (β

1−β) · e1, we see that

e2 ≤
(

β

1 − β

)

· e3 ≤
(

β

1 − β

)2

· e1.

This implies

r(T2) ≤
(

β

1 − β

)2

· r(T1). (3)

Therefore, we find the approximation ratio

r(T) ≤ r(T2) (By (2))

≤
(

β

1 − β

)2

· r(T1) (By (3))

≤
(

β

1 − β

)2

· r(T ∗) (By (2)).

This completes the proof. ��
Yeh et al. [25] gave Algorithm 2 for solving the Δβ-SpHRP for β = 1.

In the following, we analyze the approximation ratio of Algorithm 2 for 1
2 <

β < 1. Before we start to prove that the approximation ratio of Algorithm 2 is
(2β + 2) for 1

2 < β < 1, we first prove technical Lemma 3 and Lemma 4.

Lemma 3. r(T ∗) ≥ 1
β · (n − 1) · ∑

v∈V dG(cs, v)

102 M.-S. Tsai et al.

Algorithm 2. APX2 [25]
1: Find cs, where cs = argminu∈V \{c}(

∑
v∈V dG(u, v)).

2: Let vertex cs be h1 and connect c to h1 in T .
3: Select p − 1 vertices {h2, h3, . . . , hp} closest to c from V \ {c, h1}, and connect the

hubs to c in T .
4: Connect all non-hubs to h1 in T .
5: Return T .

Algorithm 3. ONE HUB
1: r(T ∗) ← ∞
2: i ← 0
3: while i �= n do
4: Let vi be the hub h∗

1 adjacent to all non-hubs.
5: For v ∈ V \ {c, h∗

1}, select the first p − 1 vertices to be hubs h∗
2, . . . , h

∗
p whose

dG(u, v) − dG(c, v) are the greatest.
6: Connect all non-hubs to h∗

1.
7: i ← i + 1
8: if r(T ∗) > r(T) then
9: T ∗ = T

10: end if
11: end while

Proof. We denote H to be the set containing all hubs, L to be the set containing
all non-hubs. The routing cost of T ∗ is DT ∗(L, V) + DT ∗(H,V) + DT ∗(c, V).

Assume that there exist at least two hubs adjacent to the non-hubs. If all
non-hubs are adjacent to the same hub, then T ∗ can be computed in O(n2 lg n)-
time by Algorithm 3. In step 4, we iterate all nodes to be the hub adjacent to
all non-hubs, and we select h∗

2, . . . , h
∗
p by sorting dG(u, v) − dG(c, v) in step 5.

Therefore, the output of Algorithm 3 is the optimal solution.
For a non-hub li, we calculate the routing cost

∑
li∈L DT ∗(li, V) in the fol-

lowing.
For a hub v adjacent to li,

DT ∗(li, v) = dG(li, v). (4)

For v = c or a non-hub v such that li, v are adjacent to the same hub,

DT ∗(li, v) = dG(li, f∗(li)) + dG(f∗(li), v)

≥ 1
β

· dG(li, v) (by β-triangle inequality).
(5)

Hardness and Approximation for the Star β-Hub Routing Cost Problem 103

For a hub v not adjacent to li,

DT ∗(li, v) = DT ∗(f∗(li), v) + dG(li, f∗(li))

≥ 1
β

· dG(f∗(li), v) + dG(li, f∗(li))

(by β-triangle inequality)

≥ 1
β

· dG(li, v) + (
1
β

− 1) · dG(f∗(li), v)

(by β-triangle inequality).

(6)

For a non-hub v such that li, v are not adjacent to the same hub,

DT ∗(li, v) = DT ∗(f∗(li), f∗(v)) + dG(li, f∗(li)) + dG(v, f∗(v))

≥ 1
β

· dG(f∗(li), f∗(v)) + dG(li, f∗(li)) + dG(v, f∗(v))

(by β-triangle inequality)

≥ 1
β

· dG(li, f∗(v)) + dG(v, f∗(v)) + (
1
β

− 1) · dG(f∗(li), f∗(v))

(by β-triangle inequality)

≥ 1
β

· dG(li, v) + (
1
β

− 1) · [dG(li, f∗(v)) + dG(f∗(li), f∗(v))]

(by β-triangle inequality)

≥ 1
β

· dG(li, v) +
1
β

· (
1
β

− 1)dG(li, f∗(li))

(by β-triangle inequality).

(7)

By the fact that
[

1 +
1
β

· (
1
β

− 1)
]

· dG(li, f∗(li)) ≥ 1
β

· dG(li, f∗(li)), (8)

and according to (4)–(8),

∑

li∈L

DT ∗(li, V) ≥ 1
β

·
∑

li∈L

∑

v∈V

dG(li, v). (9)

For c, we simplify DT ∗(c, V)

DT ∗(c, V) >
∑

hi∈H

dG(c, hi) +
∑

li∈L

dG(li, f∗(li)). (10)

For a hub hi, we calculate the routing cost
∑

hi∈H DT ∗(hi, V) in the following.
For v is a hub such that v �= hi or f∗(v) �= hi

DT ∗(hi, v) ≥ 1
β

· dG(hi, v). (11)

104 M.-S. Tsai et al.

For v = c or f∗(v) = hi,

DT ∗(hi, v) + DT ∗(c, V) ≥ 2dG(hi, v)

≥ 1
β

· dG(hi, v) (since β >
1
2
).

(12)

According to (10)–(12),

∑

hi∈H

DT ∗(hi, V) + DT ∗(c, V) ≥ 1
β

·
∑

hi∈H

∑

v∈V

dG(hi, v). (13)

We calculate the routing cost of T ∗ to complete the proof.

r(T ∗) = DT ∗(L, V) + DT ∗(H,V) + DT ∗(c, V)

≥ 1
β

· (
∑

li∈L

∑

v∈V

dG(li, v) +
∑

hi∈H

∑

v∈V

dG(hi, v))

≥ 1
β

·
∑

u∈V \{c}

∑

v∈V

dG(u, v)

≥ 1
β

· (n − 1) ·
∑

v∈V

dG(cs, v) (by the selection of cs in Algorithm 1).

This completes the proof. ��

Lemma 4. r(T ∗) ≥ 2(n − 1) ·
p∑

i=2

dG(c, hi)

Proof. Note that r(T ∗) can be calculated by the sum of the occurrences of each
edge. If there is no child adjacent to a hub h∗

i in T ∗, then the occurrences of
dG(c, h∗

i) is 2(n−1). In this proof, we only consider the occurrences of dG(c, h∗
i).

r(T ∗) ≥ 2(n − 1) ·
p∑

i=2

dG(c, h∗
i) ≥ 2(n − 1) ·

p∑

i=2

dG(c, hi)

(due to the selection of h2, . . . , hp in Algorithm 2)

This completes the proof. ��
According to Lemma 3 and Lemma 4, we now show that the approximation ratio
of Algorithm 2 is (2β + 2) for 1

2 ≤ β < 1.

Theorem 3. Algorithm 2 is a (2β + 2)-approximation algorithm running in
O(n2) time for 1

2 < β < 1.

Proof. It is not difficult to verify that Algorithm 2 returns a feasible solution of
the Δβ-SpHRP in O(n2) time. We now prove that r(T) ≤ (2β + 2) · r(T ∗).

Hardness and Approximation for the Star β-Hub Routing Cost Problem 105

r(T) =2p(n − p)dG(h1, c) + 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

=2(n − 1)dG(h1, c) + 2(n − 1 − p)(p − 1)dG(h1, c)

+ 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

≤2(n − 1)dG(h1, c) + 2(n − 1 − p)
p∑

i=2

[dG(h1, hi) + dG(hi, c)]

+ 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

(by β-triangle inequality)

=2(n − 1)
∑

v∈V

dG(h1, v) − 2p

p∑

i=2

dG(h1, hi) + 2(2n − 2 − p)
p∑

i=2

dG(c, hi)

≤2β · r(T ∗) − 2p

p∑

i=2

dG(h1, hi) + 2(2n − 2 − p)
p∑

i=2

dG(c, hi)

(by Lemma 3)

≤2β · r(T ∗) − 2p

p∑

i=2

dG(h1, hi) + 2r(T ∗) − 2p

p∑

i=2

dG(c, hi)

(by Lemma 4)
≤(2β + 2) · r(T ∗)

This completes the proof. ��
Corollary 1. If |V | ≥ 2p+1, Algorithm 2 is a (2β+1)-approximation algorithm
running in O(n2) time for 1

2 < β < 1.

106 M.-S. Tsai et al.

Proof. By Lemma 2, we improve the approximation ratio in Algorithm 2 for
1
2 < β < 1 to 2β + 1.

r(T) =2p(n − p)dG(h1, c) + 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

=2(n − 1)dG(h1, c) + 2(n − 1 − p)(p − 1)dG(h1, c)

+ 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

≤2(n − 1)dG(h1, c) + 2(n − 1 − p)
p∑

i=2

[dG(h1, hi) + dG(hi, c)]

+ 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

(by the β-triangle inequality)

=2(n − 1)
∑

v∈V

dG(h1, v) − 2p

p∑

i=2

dG(h1, hi) + 2(2n − 2 − p)
p∑

i=2

dG(c, hi)

≤2β · r(T ∗) − 2p

p∑

i=2

dG(h1, hi) + 2(2n − 2 − p)
p∑

i=2

dG(c, hi)

(by Lemma 3)

≤2β · r(T ∗) − 2p

p∑

i=2

dG(h1, hi) + r(T ∗) (by Lemma 2)

≤(2β + 1) · r(T ∗)

This completes the proof. ��

3 Approximation Algorithms for Δβ-SpHRP for β ≥ 1

In this section, we analyze the approximation ratio of Algorithm 2 for β ≥ 1.
We first prove Lemma 5 to show that the approximation ratio of Algorithm 2 is
(2β3 + 2) for β ≥ 1.

Lemma 5. r(T ∗) ≥ 1
β3 · (n − 1) · ∑

v∈V dG(cs, v).

Hardness and Approximation for the Star β-Hub Routing Cost Problem 107

Proof. For two non-hubs u, v such that u, v connect to the different hubs,

DT ∗(u, v) ≥ 1
β

· dG(u, c) + dG(c, f∗(v)) + dG(f∗(v), v)

(by β-triangle inequality)

≥ 1
β2

· dG(u, f∗(v)) + dG(f∗(v), v)

(by β-triangle inequality)

≥ 1
β3

· dG(u, v) (by β-triangle inequality).

(14)

According to (14), we know that for any two vertices u, v,

DT ∗(u, v) ≥ 1
β3

· dG(u, v). (15)

We now prove r(T ∗) ≥ 1
β3 · (n − 1) · ∑

v∈V dG(cs, v).

r(T ∗) =DT ∗(L, V) + DT ∗(H,V) + DT ∗(c, V)

≥ 1
β3

· (
∑

li∈L

∑

v∈V

dG(li, v) +
∑

hi∈H

∑

v∈V

dG(hi, v)) (according to (15))

≥ 1
β3

·
∑

u∈V \{c}

∑

v∈V

dG(u, v)

≥ 1
β3

· (n − 1) ·
∑

v∈V

dG(cs, v) (by the selection of cs in Algorithm 2).

This completes the proof. ��
According to Lemma 4 and Lemma 5, we now show that the approximation

ratio of Algorithm 2 is 2β3 + 2.

Theorem 4. Algorithm 2 is a (2β3 + 2)-approximation algorithm running in
O(n2) time for β ≥ 1.

108 M.-S. Tsai et al.

Proof. It is not difficult to verify that Algorithm 2 returns a feasible solution of
the Δβ-SpHRP in O(n2) time. In the following, we prove r(T) ≤ (2β3+2)·r(T ∗).

r(T) =2p(n − p)dG(h1, c) + 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

=2(n − 1)dG(h1, c) + 2(n − 1 − p)(p − 1)dG(h1, c)

+ 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

≤2(n − 1)dG(h1, c) + 2(n − 1 − p)
p∑

i=2

[dG(h1, hi) + dG(hi, c)]

+ 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

(by the β-triangle inequality)

=2(n − 1)
∑

v∈V

dG(h1, v) − 2p

p∑

i=2

dG(h1, hi) + 2(2n − 2 − p)
p∑

i=2

dG(c, hi)

≤2β3 · r(T ∗) − 2p

p∑

i=2

dG(h1, hi) + 2(2n − 2 − p)
p∑

i=2

dG(c, hi)

(by Lemma 4)

≤2β3 · r(T ∗) − 2p

p∑

i=2

dG(h1, hi) + 2r(T ∗) − 2p

p∑

i=2

dG(c, hi)

(by Lemma 5)

≤(2β3 + 2) · r(T ∗)

This completes the proof. ��
Corollary 2. If |V | ≥ 2p+1, Algorithm 2 is a (2β3+1)-approximation algorithm
running in O(n2) time for β ≥ 1.

Proof. By Lemma 2, we improve the approximation ratio in Algorithm 2 for
β > 1 to 2β3 + 1.

Hardness and Approximation for the Star β-Hub Routing Cost Problem 109

r(T) =2p(n − p)dG(h1, c) + 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

=2(n − 1)dG(h1, c) + 2(n − 1 − p)(p − 1)dG(h1, c)

+ 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

≤2(n − 1)dG(h1, c) + 2(n − 1 − p)
p∑

i=2

[dG(h1, hi) + dG(hi, c)]

+ 2(n − 1)

[
n−p−1∑

i=1

dG(h1, li) +
p∑

i=2

dG(c, hi)

]

(by the β-triangle inequality)

=2(n − 1)
∑

v∈V

dG(h1, v) − 2p

p∑

i=2

dG(h1, hi) + 2(2n − 2 − p)
p∑

i=2

dG(c, hi)

≤2β3 · r(T ∗) − 2p

p∑

i=2

dG(h1, hi) + 2(2n − 2 − p)
p∑

i=2

dG(c, hi)

(by Lemma 5)

≤2β3 · r(T ∗) − 2p

p∑

i=2

dG(h1, hi) + r(T ∗) (by Lemma 2)

≤(2β3 + 1) · r(T ∗)

This completes the proof. ��

4 Conclusion

In this paper, we proved that Δβ-SpHRP is NP-hard for any β > 1
2 . For 1

2 <

β < 1, we designed a min{(β
1−β)2, 2β +2}-approximation algorithm to solve Δβ-

SpHRP. For β ≥ 1, we derive a (2β3+2)-approximation algorithm for solving the
same problem. One may argue that the solution returned by our approximation
algorithms always allocates all non-hubs to exactly one hub which is not very
practical in real application scenarios. However, the solution, say T , returned
by our algorithm is with approximation ratios guaranteed. Suppose that there
exists an AI algorithm A which computes a solution, T ′, with the same input
instance. Usually, we don’t know how good the solution T ′ is. If the routing cost
of T ′ is less than the routing cost of T , then we can definitely say that T ′ is an
approximation solution with a certain approximation ratio guarantee. In future
works, it is still open to show the inapproximability of Δβ-SpHRP for any β > 1

2 .
Moreover, in real application scenario, some infrastructures (hubs) may already
exist, the goal is to expand the whole networks with some known hubs such that
the routing cost is minimized. Thus, it is also very interesting to consider the
extension problem of Δβ-SpHRP which parts of hubs are specified in advance.

110 M.-S. Tsai et al.

References

1. Alumur, S., Kara, B.Y.: A hub covering network design problem for cargo appli-
cations in Turkey. J. Oper. Res. Soc. 60(10), 1349–1359 (2009)

2. Alumur, S., Kara, B.Y.: Network hub location problems: the state of the art. Eur.
J. Oper. Res. 190(1), 1–21 (2008)

3. Aversa, R., Botter, R.C., Haralambides, H., Yoshizaki, H.: A mixed integer pro-
gramming model on the location of a hub port in the east coast of south America.
Marit. Econ. Logist. 7, 1–18 (2005)

4. Bashiri, M., Rezanezhad, M., Tavakkoli-Moghaddam, R., Hasanzadeh, H.: Mathe-
matical modeling for a p-mobile hub location problem in a dynamic environment
by a genetic algorithm. Appl. Math. Model. 54, 151–169 (2018)

5. Böckenhauer, H.J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approxima-
tion algorithms for the tsp with sharpened triangle inequality. Inf. Process. Lett.
75, 133–138 (2000)

6. Chen, L.-H., et al.: Approximability and inapproximability of the star p-hub center
problem with parameterized triangle inequality. J. Comput. Syst. Sci. 92, 92–112
(2018)

7. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.-Y.:
Approximation algorithms for single allocation k-hub center problem. In: Proceed-
ings of the 33rd Workshop on Combinatorial Mathematics and Computation The-
ory (CMCT 2016), pp. 13–18 (2016)

8. Chen, L.-H., Hsieh, S.-Y., Hung, L.-J., Klasing, R.: Approximation algorithms
for the p-hub center routing problem in parameterized metric graphs. Theoret.
Comput. Sci. 806, 271–280 (2020)

9. Chen, L.-H., Hsieh, S.-Y., Hung, L.-J., Klasing, R.: On the approximability of
the single allocation p-hub center problem with parameterized triangle inequality.
Algorithmica 84, 1993–2027 (2022)

10. Espejo, I., Marín, A., Muñoz-Ocaña, J.M., Rodríguez-Chía, A.M.: A new formula-
tion and branch-and-cut method for single-allocation hub location problems. Com-
put. Oper. Res. 155, 106241 (2023)

11. Farahani, R.Z., Hekmatfar, M., Arabani, A.B., Nikbakhsh, E.: Hub location prob-
lems: a review of models, classification, solution techniques, and applications. Com-
put. Ind. Eng. 64(4), 1096–1109 (2013)

12. Ghaffarinasab, N.: Stochastic hub location problems with Bernoulli demands. Com-
put. Oper. Res. 145, 105851 (2022)

13. Hsieh, S.-Y., Kao, S.-S.: A survey of hub location problems. J. Interconnect. Netw.
19(01), 1940005 (2019)

14. Iwasa, M., Saito, H., Matsui, T.: Approximation algorithms for the single allocation
problem in hub-and-spoke networks and related metric labeling problems. Discret.
Appl. Math. 157, 2078–2088 (2009)

15. Liang, H.: The hardness and approximation of the star p-hub center problem. Oper.
Res. Lett. 41, 138–141 (2013)

16. Lüer-Villagra, A., Eiselt, H., Marianov, V.: A single allocation p-hub median prob-
lem with general piecewise-linear costs in arcs. Comput. Ind. Eng. 128, 477–491
(2019)

17. Mokhtar, H., Krishnamoorthy, M., Ernst, A.T.: The 2-allocation p-hub median
problem and a modified benders decomposition method for solving hub location
problems. Comput. Oper. Res. 104, 375–393 (2019)

Hardness and Approximation for the Star β-Hub Routing Cost Problem 111

18. O’kelly, M.E.: A quadratic integer program for the location of interacting hub
facilities. Eur. J. Oper. Res. 32, 393–404 (1987)

19. Oliveira, F.A., de Sá, E.M., de Souza, S.R.: Benders decomposition applied to
profit maximizing hub location problem with incomplete hub network. Comput.
Oper. Res. 142, 105715 (2022)

20. Rodríguez, V., Alvarez, M., Barcos, L.: Hub location under capacity constraints.
Transp. Res. Part E: Logist. Transp. Rev. 43(5), 495–505 (2007)

21. Sharma, A., Kohar, A., Jakhar, S.K.: Sonia: profit maximizing hub location prob-
lem in the airline industry under coopetition. Comput. Ind. Eng. 160, 107563
(2021)

22. Soylu, B., Katip, H.: A multiobjective hub-airport location problem for an airline
network design. Eur. J. Oper. Res. 277(2), 412–425 (2019)

23. Wang, C., Liu, Y., Yang, G.: Adaptive distributionally robust hub location and
routing problem with a third-party logistics strategy. Socioecon. Plann. Sci. 87,
101563 (2023)

24. Yaman, H., Elloumi, S.: Star p-hub center problem and star p-hub median problem
with bounded path lengths. Comput. Oper. Res. 39(11), 2725–2732 (2012)

25. Yeh, H.-P., Wei, L., Chen, L.-H., Hung, L.-J., Klasing, R., Hsieh, S.-Y.: Hard-
ness and approximation for the star p-hub routing cost problem in metric graphs.
Theoret. Comput. Sci. 922, 13–24 (2022)

26. Yin, F., Chen, Y., Song, F., Liu, Y.: A new distributionally robust p-hub median
problem with uncertain carbon emissions and its tractable approximation method.
Appl. Math. Model. 74, 668–693 (2019)

Graph Algorithms

Linear Time Algorithms for NP-Hard
Problems Restricted to GATEX Graphs

Marc Hellmuth1 and Guillaume E. Scholz2(B)

1 Department of Mathematics, Faculty of Science, Stockholm University,
10691 Stockholm, Sweden

marc.hellmuth@math.su.se
2 Bioinformatics Group, Department of Computer Science and Interdisciplinary

Center for Bioinformatics, Universität Leipzig, 04107 Leipzig, Germany
guillaume@bioinf.uni-leipzig.de

Abstract. The class of Galled-Tree Explainable (GaTEx) graphs has
just recently been discovered as a natural generalization of cographs.
Cographs are precisely those graphs that can be uniquely represented
by a rooted tree where the leaves of the tree correspond to the vertices
of the graph. As a generalization, GaTEx graphs are precisely those
graphs that can be uniquely represented by a particular rooted directed
acyclic graph (called galled-tree).

We consider here four prominent problems that are, in general, NP-
hard: computing the size ω(G) of a maximum clique, the size χ(G) of an
optimal vertex-coloring and the size α(G) of a maximum independent set
of a given graph G as well as determining whether a graph is perfectly
orderable. We show here that ω(G), χ(G), α(G) can be computed in
linear-time for GaTEx graphs G. The crucial idea for the linear-time
algorithms is to avoid working on the GaTEx graphs G directly, but
to use the galled-trees that explain G as a guide for the algorithms to
compute these invariants. In particular, we show first how to employ the
galled-tree structure to compute a perfect ordering of GaTEx graphs in
linear-time which is then used to determine ω(G), χ(G), α(G).

Keywords: modular decomposition · perfect order · galled-tree ·
cograph · NP-hard problems · linear-time algorithms

1 Introduction

Modular decomposition is a general technique to display nested “substructures”
(modules) of a given graph in form of a rooted tree (the modular decomposition
tree of G) whose inner vertices are labeled with “0”, “1”, and “prime”. Cographs
are precisely those graphs for which the modular decomposition tree has no
prime vertices. In this case, complete structural information of the underlying
cograph, i.e., the knowledge of whether two vertices are linked by an edge or not,
is provided by their modular decomposition tree. As a consequence, these mod-
ular decomposition trees serve as perfect guide for algorithms to efficiently solve
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 115–126, 2024.
https://doi.org/10.1007/978-3-031-49190-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_8&domain=pdf
http://orcid.org/0000-0002-1620-5508
http://orcid.org/0000-0001-5033-8040
https://doi.org/10.1007/978-3-031-49190-0_8

116 M. Hellmuth and G. E. Scholz

many computationally hard problems on cographs (e.g. the graph-isomorphism
problem or classical NP-hard problems as “minimum independent set”, “maxi-
mum clique” or “minimum vertex coloring”) [4,5]. In general, however, “prime”
vertices get in the way and refute the algorithmic utility of modular decom-
position trees. To circumvent this issue, we recently introduced the concept of
graphs that are explained by rooted networks instead of trees [13]. In partic-
ular, we focused on so-called galled-trees that are obtained from the modular
decomposition tree by replacing prime-vertices by rooted 0/1-labeled cycles. A
graph G = (X,E) is Galled-Tree Explainable (GaTEx) if there is a 0/1-labeled
galled-tree (N, t) such that {x, y} ∈ E if and only if the label t(lcaN (x, y)) of
the unique least-common ancestor of x and y in N is “1”. GaTEx graphs, thus,
naturally generalize the concept of cographs.

We consider here the problems of determining the size ω(G) of a maximum
clique, the size χ(G) of an optimal vertex-coloring and the size α(G) of a maxi-
mum independent set of a given graph G. In general, determining the invariants
ω(G), χ(G) and α(G) for arbitrary graphs G is an NP-hard task [10]. All these
invariants are not only of interest from a theoretical point of view but also
have many practical applications in case the underlying graph models real-world
structures, e.g. social networks [18], gene/protein-interaction networks [1,22],
job/time-slots assignments in scheduling problems [19] and many more. In addi-
tion, we consider the problem of determining a perfect ordering of GaTEx
graphs, i.e., an ordering of the vertices of G such that a greedy coloring algo-
rithm with that ordering optimally colors every induced subgraph of G. As shown
by Middendorf and Pfeiffer [21], the problem of deciding whether a graph is per-
fectly orderable is NP-complete. As we will argued below, the problem of finding
a perfect ordering remains NP-hard even for perfectly orderable graphs.

We show here that ω(G), χ(G), α(G) as well as a perfect ordering can be
computed in linear-time for GaTEx graphs G. The crucial idea for the linear-
time algorithms is to avoid working directly on the GaTEx graphs G, but rather
to utilize the galled-trees that explain G as a guide for the algorithms to com-
pute these invariants. In particular, we show first how to employ the galled-tree
structure to compute a perfect ordering of GaTEx graphs. This result is then
used to determine ω(G), χ(G), α(G).

2 Preliminaries

Graphs. We consider graphs G = (V,E) with vertex set V (G) := V �= ∅ and edge
set E(G) := E. A graph G is undirected if E is a subset of the set of two-element
subsets of V and G is directed if E ⊆ V × V \ {(v, v) | v ∈ V }. Thus, edges e ∈ E
in an undirected graph G are of the form e = {x, y} and in directed graphs of the
form e = (x, y) with x, y ∈ V being distinct. We write H ⊆ G if H is a subgraph
of G and G[W] for the subgraph in G that is induced by some subset W ⊆ V . A P4

denotes an induced undirected path on four vertices. We often write a−b−c−d for
an induced P4 with vertices a, b, c, d and edges {a, b}, {b, c}, {c, d}. An undirected
graph is connected if, for every two vertices u, v ∈ V , there is a path connecting u

Linear Time Algorithms for NP-Hard Problems Restricted to GaTEx Graphs 117

and v. A directed graph G is connected if its underlying undirected graph (i.e., the
undirected graph obtained from G by ignoring its edge-directions) is connected.
A (directed or undirected) graph G is biconnected if it contains no vertex whose
removal disconnects G. A biconnected component of G is a maximal biconnected
subgraph. If such a biconnected component is not a single vertex or an edge, then
it is called non-trivial.
From here on, we will call an undirected graph simply graph.

A clique of a graph G is an inclusion-maximal complete subgraph of G. The
size of a maximum clique of G is called the clique number and denoted by ω(G).
A coloring of a graph G is a map σ : V (G) → S, where S denotes a set of
colors, such that σ(u) �= σ(v) for all {u, v} ∈ E(G). The minimum number
of colors needed for a coloring of G is called the chromatic number of G and
denoted by χ(G). A subset W ⊆ V (G) of pairwise non-adjacent vertices in G
is called independent set. The size of a maximum independent set in G is called
the independence number of G and denoted by α(G).

We consider total orders ζ = v1 . . . v|V | of graphs G = (V,E) and assume
that vi <ζ vj precisely if vi is left of vj in this sequence ζ (or equivalently, if
i < j in case indices are provided). We denote with ζ|H the order ζ that is
restricted to V (H). Let X and Y be two disjoint sets. If ζ1 = x1, x2, . . . xl and
ζ2 = y1, y2, . . . ym are two total orderings on X and Y , respectively, then we
denote with ζ1ζ2 the total ordering on X ∪ Y given by concatenating ζ1 and ζ2,
i.e., ζ1ζ2 = x1, x2, . . . xly1, y2, . . . ym.

For a given total order ζ of G, a greedy coloring algorithm scans the vertices
in the order ζ and assigns to each vertex v the smallest positive integer (color)
assigned to none of the vertices w <ζ v that are adjacent to v. A coloring of G
obtained with such an algorithm is called greedy coloring. A total order ζ of G
is perfect if, for all induced subgraphs H of G, a greedy coloring algorithm that
scans the vertices in order ζ|H uses the minimum number of colors to color H.
A graph G is perfectly orderable if it admits a perfect order ζ. A total order ζ
on G contains an obstruction (w.r.t. G) if there is an induced P4 a − b − c − d
in G such that a <ζ b and c >ζ d.

Proposition 1 ([3]). A total order ζ on a graph G is a perfect order if and only
if ζ does not contain any obstructions w.r.t. G.

Perfectly orderable graphs are NP-complete to recognize [21]. By Proposition
1, one can test in polynomial-time whether a given order is perfect: simply check
if one of the O(|V |4) induced P4s yields an obstruction. This, in particular,
implies that the problem to find a perfect ordering of a graph remains NP-hard,
even if the graph is already known to be perfectly orderable.

Trees, Galled-Trees and GaTEx Graphs. Phylogenetic trees and galled-
trees are particular directed acyclic graphs (DAGs). To be more precise, a galled-
tree N = (V,E) on X is such that either

(N0) V = X = {x} and, thus, E = ∅.

or N satisfies the following four properties

118 M. Hellmuth and G. E. Scholz

(N1) There is a unique root ρN with indegree 0 and outdegree at least 2; and
(N2) x ∈ X if and only if x has outdegree 0 and indegree 1 (x is a leaf); and
(N3) Every vertex v ∈ V 0 := V \ X with v �= ρN has

(i) indegree 1 and outdegree at least 2 (tree-vertex) or
(ii) indegree 2 and outdegree at least 1 (hybrid-vertex).

(N4) Each biconnected component C contains at most one hybrid-vertex v for
which the two vertices v1, v2 with (v1, v), (v2, v) ∈ E belong to C.

We note that in [13] galled-trees have been called level-1 networks. By definition,
every non-trivial biconnected component in a galled-tree N forms a (rooted)
“cycle” C in N [2,17] that is composed of two directed paths P 1(C) and P 2(C)
in N (called sides of C) with the same start-vertex ρC (the root of C) and
end-vertex ηC (the hybrid-vertex of C) and whose internal vertices are pairwise
distinct. Trees are galled-trees without hybrid-vertices.

Let N = (V,E) be a galled-tree on X. A vertex u ∈ V is called an ancestor
of v ∈ V and v a descendant of u, in symbols v �N u, if there is a directed
path (possibly reduced to a single vertex) in N from u to v. We write v ≺N u
if v �N u and u �= v. If (u, v) ∈ E, then the vertex v is a child of u and u is
a parent of v. The set of children, resp., parents of a vertex w in N is denoted
by childN (w), resp., parN (w). For a non-empty subset of leaves A ⊆ V of N , we
define a least common ancestor lcaN (A) of A to be a �N -minimal vertex of N
that is an ancestor of every vertex in A. Note that in trees and galled-trees the
lcaN ({x, y}) is uniquely determined for all leaves x and y [12,17]. For simplicity
we put lcaN (x, y) := lcaN ({x, y}).

A galled-tree N with leaf-set L is elementary if it contains a single rooted
cycle C of length |L|+1 with root ρC = ρN and single hybrid-vertex ηC ∈ V (C)
and additional edges {vi, xi} such that every vertex vi ∈ V (C)\{ρC} is adjacent
to a unique vertex xi ∈ L. A galled-tree is strong if it does not contain cycles of
the following form: (i) P 1(C) or P 2(C) consist of ρC and ηC only or (ii) both
P 1(C) and P 2(C) contain only one vertex distinct from ρC and ηC .

The tuple (N, t) denotes a galled-tree N = (V,E′) on X that is equipped
with a (vertex-)labeling t i.e., a map t : V → {0, 1,
} such that t(x) =
 if
and only if x ∈ X is a leaf in N . A labeling t (or equivalently (N, t)) is quasi-
discriminating if t(u) �= t(v) for all (u, v) ∈ E′ with v not being a hybrid-vertex.
The graph G(N, t) = (X,E) with vertex set X and edges {x, y} ∈ E precisely
if t(lcaN (x, y)) = 1 is said to be explained by (N, t). A graph G = (X,E) is
Galled-Tree Explainable (GaTEx)) if there is a labeled galled-tree (N, t) such
that G � G(N, t).

Proposition 2 ([13]). GaTEx graphs can be recognized in linear-time and a
galled-tree (N, t) that explains a GaTEx graph can be constructed in linear-
time as well.

Moreover, GaTEx graphs are characterized by a finite set of forbidden sub-
graphs [15]. GaTEx graphs that are explained by labeled trees (T, t) are pre-
cisely the cographs and, therefore, those graphs that do not contain induced
P4s [4].

Linear Time Algorithms for NP-Hard Problems Restricted to GaTEx Graphs 119

Modular Decomposition (MD). A module M of a graph G = (X,E) is a
subset M ⊆ V (G) = X such that for all x, y ∈ M it holds that NG(x) \ M =
NG(y) \ M , where NG(x) is the set of all vertices of X that are adjacent to x
in G. A module M of G is strong if M does not overlap with any other module
of G, that is, M ∩ M ′ ∈ {M,M ′, ∅} for all modules M ′ of G. The set of strong
modules Mstr(G) ⊆ M(G) is uniquely determined [9,16] and forms a hierarchy
which gives rise to a unique tree representation TG of G, known as the modular
decomposition tree (MDT) of G. Uniqueness and the hierarchical structure of
Mstr(G) implies that there is a unique partition Mmax(G) = {M1, . . . ,Mk} of X
into inclusion-maximal strong modules Mj �= X of G [7,8].

Similar as for galled-trees, one can equip TG with a vertex-labeling tG such
that, for M ∈ Mstr(G) = V (TG), we have

tG(M) =
 if |M | = 1;
tG(M) = 0 if |M | > 1 and G[M] is disconnected;
tG(M) = 1 if |M | > 1 and G[M] is connected but G[M] is disconnected;
tG(M) = prime in all other cases.

Strong modules of G are called series, parallel and prime if tG(M) = 1, tG(M) =
0 and tG(M) = prime, respectively. Efficient linear-time algorithms to compute
(TG, t) have been proposed e.g. in [6,20,23]. The quotient graph G/Mmax(G) has
Mmax(G) as its vertex set and edges {Mi,Mj} ∈ E(G/Mmax(G)) if and only if
there are x ∈ Mi and y ∈ Mj that are adjacent in G. As argued in [11], this
quotient graph is well-defined.

From Modular Decomposition Trees to Galled-Trees. Galled-trees that
explain a given GaTEx graph G can be obtained from the modular decom-
position trees (TG, tG) by replacing its prime vertices locally by simple rooted
cycles. To this end, we first compute for prime vertices v and the corresponding
prime modules M = L(TG(v)) the quotient H = G[M]/Mmax(G[M]) which can
be explained by a strong elementary quasi-discriminating galled-tree (Nv, tv)
(cf. [13, Thm. 6.10]). We then use (the rooted cycle in) (Nv, tv) to replace v in
(TG, tG), see Fig. 1 for an illustrative example. The latter is formalized as follows.

Definition 1 (prime-vertex replacement (pvr) networks). Let G be a
GaTEx graph and P be the set of all prime vertices in (TG, tG). A prime-vertex
replacement (pvr) networks (N, t) of G (or equivalently, of (TG, tG)) is obtained
by the following procedure:

1. For all v ∈ P, let (Nv, tv) be a strong quasi-discriminating elementary galled-
tree with root v that explains G[M]/Mmax(G[M]) with M = L(TG(v)).

2. For all v ∈ P, remove all edges (v, u) with u ∈ childTG
(v) from TG to obtain

the forest (T ′, tG) and add Nv to T ′ by identifying the root of Nv with v in
T ′ and each leaf M ′ of Nv with the corresponding child u ∈ childTG

(v) for
which M ′ = L(TG(u)).
This results in the pvr graph N .

120 M. Hellmuth and G. E. Scholz

3. Define the labeling t : V (N) → {0, 1,
} by putting, for all w ∈ V (N),

t(w) =

{
tG(v) if v ∈ V (TG) \ P
tv(w) if w ∈ V (Nv) \ X for some v ∈ P

The construction of a pvr network for a GaTEx graph can be done in linear-
time, cf. [13, Alg. 4 & Thm. 9.4]. By [13, Prop. 7.4 & 8.3], a pvr-network (N, t)
of a GaTEx graph G is a galled-tree that explains G. Moreover, there is a 1:1
correspondence between cycles C in N and prime modules M of G. By the latter
result, we can define CM as the unique cycle in N corresponding to prime module
M .

Observation 1. Let v be a prime vertex associated with the prime module Mv =
L(TG(v)) module and let C := CMv

. Since we used strong elementary networks
for the replacement of v, one easily verifies that:

– C has a unique root ρC and a unique hybrid-vertex ηC .
– ηC has precisely one child and precisely two parents.
– All vertices v �= ηC in C have two children and one parent.

In particular, all vertices v �= ηC , ρC in C have one child v1 located in
C and one child v2 that is not located in C and these children satisfy
L(N(v1))∩L(N(v2)) = ∅ and it holds that lcaN (x, y) = v for all x ∈ L(N(v1))
and y ∈ L(N(v2)).
Both children u′ and u′′ of ρC are located in C and satisfy L(N(u′)) ∩
L(N(u′′)) = L(N(ηC)). Moreover, L(N(ηC)) ∩ L(N(v2)) = ∅ for the child
v2 of v �= ηC , ρC that is not located in C.

Lemma 1. Let P = a − b − c − d be an induced P4 in a GaTEx graph G and
(N, t) a pvr-network that explains G. Moreover, let M be the inclusion-minimal
strong module of G that contains V (P), i.e., V (P) ⊆ M and there is no strong
module M ′ of G that satisfies V (P) ⊆ M ′

� M . Then, M is a prime module
of G. Moreover, in the unique cycle CM in N that corresponds to M , there are
vertices ua, ub, uc, ud ∈ V (CM) that satisfy the following conditions:

1. For x ∈ {a, b, c, d} it holds that x ∈ L(N(u′
x)) where u′

x is the unique child of
ux that is not located in CM .

2. The vertices ua, ub, uc, ud are pairwise distinct.
3. The vertices ua, ub, uc, ud do not all belong to the same side of CM .
4. One of ua, ub, uc, ud coincides with the unique hybrid ηCM

of CM .

Proof. The full proof is available in [14, Lemma 1].
�

3 Linear-Time Algorithms for Hard Problems

We provide here linear-time algorithms to compute the clique number ω(G), the
chromatic number χ(G) and an optimal coloring, the independence number α(G)
as well as a perfect ordering of a given GaTEx graph G. For this purpose, we
show first how to employ the structure of labeled galled-trees (N, t) to determine
a perfect ordering of GaTEx graphs in linear time (cf. Algorithm 1).

Linear Time Algorithms for NP-Hard Problems Restricted to GaTEx Graphs 121

Before studying Algorithm 1 in detail, we illustrate this algorithm on the
graph G as shown in Fig. 1. We first compute the modular decomposition tree
(TG, tG) and a pvr-network (N, t) that explains G (Line 1). For all leaves v of
TG (and thus, of N), we initialize the perfect order ζ(v) = v of the induced
subgraph G[{v}] (Line 2). We then traverse TG in postorder and choose in our
example the order v1, v2, v3, v4, v5 in which the vertices are visited (Line 3). Note
that postorder-traversal ensures that all children of a given vertex v in TG are
visited before this vertex v is processed. Since v1 is a non-prime vertex of TG, we
put ζ(v1) = ζ(a)ζ(b) = ab (Line 4). Similarly, we put ζ(v2) = ζ(v1)ζ(c) = abc.
The vertex v3 is a prime vertex in TG. The unique cycle C in N such that
L(N(ρC)) = L(TG(v3)) = {f, g, h, i, j} is the cycle with root ρ1 (Line 7). Note
that uh = η where η is the unique hybrid of C. In Line 8, we put ζ(ux) = ζ(x) =
x for each x ∈ {f, g, h, i, j}. In Line 9 we can choose an arbitrary ordering
ζ∗(v3) and decide, in this example, for ζ∗(v3) = ζ(ug)ζ(uf)ζ(ui)ζ(uj) = gfij.
Since uh = η and t(ρ1) = 1, we put ζ(v3) = ζ∗(v3)ζ(η) = gfijh (Line 13).
Then, the non-prime vertex v4 is processed, and we put ζ(v4) = ζ(k)ζ(l) = kl
(Line 4). Finally, the prime vertex v5 is processed. The unique cycle C in N
such that L(N(ρC)) = L(TG(v5)) = V (G) is the cycle with root ρ2 (Line 7).
We put ζ(w1) = ζ(v2) = abc, ζ(w2) = ζ(v4) = kl, ζ(w3) = ζ(v3) = gfijh,
ζ(w4) = ζ(e) = e and ζ(w5) = ζ(d) = d (Line 8). Again, we can choose an
arbitrary ordering ζ∗(v5) in Line 9 and decide, in this example, for ζ∗(v5) =
ζ(w1)ζ(w4)ζ(w3)ζ(w2) = abcegfijhkl. Finally, since t(ρ1) = 0 and η = w5, we
put ζ(v5) = ζ(η)ζ∗(v5) = dabcegfijhkl (Line 11). Since v5 is the root of TG,
the algorithm stops there, and returns the ordering ζ = ζ(v5) = dabcegfijhkl.
As we shall show in Proposition 3, the ordering returned by Algorithm 1 is a
perfect ordering provided the input graph is GaTEx.

122 M. Hellmuth and G. E. Scholz

Fig. 1. Shown is a GaTEx graph G (right), its modular decomposition tree (TG, tG)
(left) and a pvr network (N, t) that explains G (middle). The inner vertices of (TG, tG)
and (N, t) have label “1”, “0” and “P” (prime). One easily observes that (N, t) is obtained
from (TG, tG) by replacing the prime vertices by rooted 0/1-labeled cycles. Using Algo-
rithm 1, we obtain a perfect order ζ = dabcegfijhkl of G (see text for details). The
graph G is colored w.r.t. the greedy coloring based on the order ζ (the order of colors
is shown in the figure.) Since G[{g, h, i, k}] � K4, this coloring is optimal, i.e., it uses
χ(G) = 4 colors. (Color figure online)

Proposition 3. Algorithm 1 determines a perfect ordering of GaTEx graphs.

Proof. Let G = (V,E) be a GaTEx graph that serves as input for Algorithm 1.
We first compute (TG, tG) and a pvr-network (N, t) of G (Line 1). In this proof,
we put Lw := L(N(w)) for w ∈ V (N). Let ζ(w) be the ordering computed
with Algorithm 1 for the subgraph G[Lw] induced by the vertices in Lw. We
then initialize ζ(v) = v for all leaves v in TG (Line 2). Clearly, ζ(v) is a perfect
ordering of G[{v}]. We then continue to traverse the remaining vertices in TG in
postorder. This ensures that, whenever we reach a vertex v in TG, all its children
have been processed and thus, that ζ(v) is well-defined in each step.

To verify that the ordering ζ returned by Algorithm 1 is a perfect order of
G, we must show that ζ does not contain any obstructions w.r.t. G (cf. Proposi-
tion 1). If G does not contain any induced P4, then any ordering is perfect. Thus,
assume that G contains an induced P4, say P = a−b−c−d. Put Y = {a, b, c, d}.

We first remark that Algorithm 1 builds ζ by successively concatenating sub-
orderings of the form ζ(w), w ∈ V (T(G)). In particular ζ|Y = ζ(w)|Y holds for all
w ∈ V (TG) for which Y ⊆ Mw where Mw := L(TG(w)). Let M be the inclusion-
minimal strong module of G that contains Y . By Lemma 1, M is a prime module
of G. Hence, there is the unique cycle C := CM in N corresponding to M . For
all vertices v ∈ V (C) \ {ρC}, we denote with v′ the unique child of v that is not
in V (C). By Lemma 1, there are four vertices ua, ub, uc, ud ∈ V (C) that satisfy
the Condition (1)–(4). Hence, for x ∈ {a, b, c, d} it holds that x ∈ Lu′

x
. Moreover,

the vertices ua, ub, uc, ud are pairwise distinct, do not all belong to the same side
of CM and one of ua, ub, uc, ud coincides with the unique hybrid η := ηC of C.
The latter arguments, in particular, allow us to denote by P− (resp., P+) the
side of C such that the set V (P−)\{η} (resp., V (P+)\{η}) contains one (resp.,

Linear Time Algorithms for NP-Hard Problems Restricted to GaTEx Graphs 123

two) of ua, ub, uc and ud. In the following, let v be the prime vertex in TG with
L(TG(v)) = M . We now distinguish between two cases: (1) t(ρC) = 0 and (2)
t(ρC) = 1.

Case (1): t(ρC) = 0. Let x ∈ Y be the vertex such that ux ∈ V (P−) \ {η}.
Then, for all y ∈ Y \ {x} with uy ∈ V (P+) \ {η}, we have lcaN (x, y) = ρC and
thus, x and y are not joined by an edge in G[Y]. In particular, x has degree at
most one in G[Y]. Since G[Y] = P , it follows that x has degree exactly one in
G[Y], and that the unique vertex z ∈ Y adjacent to x in N satisfies uz = η. Due
to the “symmetry” of G[Y] = P = a−b−c−d, we can assume w.l.o.g. that x = a
and thus, z = b. By construction of ζ(v) in Line 11, we have ζ(v) = ζ(η)ζ∗(v).
Since vertex b appears in the order ζ(η) and vertex a appears in the order ζ∗(v),
we have in the final order ζ of G always b <ζ a. In this case, P does not yield
an obstruction of ζ.

Case (2): t(ρC) = 1. Let x ∈ Y be the vertex such that ux ∈ V (P−) \ {η}.
Then for all y ∈ Y \ {x} such that uy ∈ V (P+) \ {η}, we have lcaN (x, y) = ρC

and thus, x and y are joined by an edge in G[Y]. In particular, x has degree at
least two in G[Y]. Since G[Y] = P , it follows that x has degree exactly two in
G[Y], and that the unique vertex z ∈ Y that is not adjacent to x in N satisfies
uz = η. Again, by “symmetry” of G[Y] = P = a−b−c−d, we can assume w.l.o.g.
that x = c and thus, z = a. Now consider the unique vertex b that is adjacent
to a in G[Y]. By assumption, b ∈ V (P+) \ {η}. Furthermore, by construction of
ζ(v) in Line 13, we have ζ(v) = ζ∗(v)ζ(η). Since vertex a appears in the order
ζ(η) and vertex b appears in the order ζ∗(v), we have in the final order ζ of G
always b <ζ a. In this case, P does not yield an obstruction of ζ.

In summary, the ordering ζ returned by Algorithm 1 does not contain any
obstructions w.r.t. G. By Proposition 1, ζ is a perfect order of G.
�
Proposition 4. Algorithm 1 can be implemented to run in O(|V | + |E|) time
where G = (V,E) is the input GaTEx graph.

Proof. We show now that Algorithm 1 can be implemented to run in O(|V |+|E|)
time for a given GaTEx graph G = (V,E). The modular decomposition tree
(TG, tG) can be computed in O(|V |+|E|) time [11]. By [13, Thm. 9.4 and Alg. 4],
the pvr-network (N, t) of G can be computed within the same time complexity.
Thus, Line 1 takes O(|V | + |E|) time. Initializing ζ(v) := v for all leaves v (and
thus, the vertices of G) in Line 2 can be done in O(|V |) time.

We then traverse each of the O(|V |) vertices in (TG, tG) in postorder. To
compute the final prefect order, we consider an auxiliary directed graph H that,
initially, just consists of the vertices in V and is edge-less. Whenever, we concate-
nate ζ ′ and ζ ′′, we simply add an edge (u, v) from the maximal element u in ζ ′

to the minimal element v in ζ ′′ and define the minimal element of this now order
ζ ′′′ = ζ ′ζ ′′ as the minimal element of ζ ′ and the maximal element of ζ ′′′ as the
maximal element of ζ ′′. Since we can keep track of these maximal and minimal
elements (starting with ζ(v) := v for all leaves v and defining v as the maximal
and minimal element of ζ(v)) in each of the steps, the concatenation of two
orders ζ ′ and ζ ′′ and updating the maximal and minimal element of ζ ′′′ = ζ ′ζ ′′

124 M. Hellmuth and G. E. Scholz

can be done in constant time. The final graph H is then isomorphic to a single
directed path that traverses each vertex in V once. If tG(v) ∈ {0, 1}, then we
pick an arbitrary ordering of the children of v and define ζ(v) = ζ(v1) . . . ζ(vk)
by concatenating the orderings of its k children v1, . . . , vk (Line 4–5). By the
latter arguments, this task can be done in O(| childTG

(v)|) time for each non-
prime vertex v. Otherwise, if tG(v) = prime, we consider the unique cycle C
in N that satisfies L(N(ρC)) = L(TG(v)) in Line 7. We note that we can keep
track of C and its correspondence to v when constructing the pvr-network (N, t)
based on (TG, tG) and thus have constant-time access to these cycles C in N .
The assignment ζ(w) = ζ(w′) for all w ∈ V (C) \ {ρC} can be done in O(|V (C)|)
time (Line 8). By the latter arguments, construction of ζ∗(v) in Line 9 can be
done in O(|V (C)|) time. Note that O(|V (C)|) = O(| childTG

(v)|), since the ele-
mentary galled-tree Nv that is used to replace v and the edges to its children in
TG, contains C and has 2 childTG

(v) + 1 edges and vertices. The tasks in Line
10–13 can be done in constant time. Hence, the time-complexity of the Lines 6
to 13 is in O(| childTG

(v)|) for each prime vertex v.
To obtain the overall time complexity of the for loop starting in Line 3,

observe that the degrees of vertices in TG sum up to 2|E(TG)| = 2(|V (TG)| − 1).
By the latter arguments and by iterating over each vertex v ∈ V (TG) \ L(TG),
we obtain

∑
v∈V (TG)\L(TG) O(| childTG

(v)|) = O(|V (TG)|) = O(|V |).
Hence, the overall time-complexity of Algorithm 1 is dominated by the time-

complexity to compute (TG, tG) and (N, t) in Line 1 and is, therefore, in O(|V |+
|E|).
�

As an immediate consequence of Proposition 3 and 4, we obtain

Theorem 1. Every GaTEx graph is perfectly orderable and this ordering can
be determined in linear-time.

For a given graph G = (V,E), a greedy coloring algorithm can be imple-
mented to run in O(|V | + |E|) time, see e.g. [24, Sec. 6.4]. This together with
Theorem 1 implies

Theorem 2. The chromatic number χ(G) and an optimal coloring of a GaTEx
graph G can be determined in linear-time.

A graph G is perfect, if the chromatic number of every induced subgraph
equals the size of the largest clique of that subgraph. Every perfectly orderable
graph is a perfect graph [3]. Hence, GaTEx graphs are perfect and we have
ω(G) = χ(G). Thus, we obtain

Theorem 3. The clique number ω(G) of a GaTEx graph G can be determined
in linear-time.

We consider now the problem of determining the independence number α(G)
of GaTEx graphs G, i.e., a maximum subset W ⊆ V (G) of pairwise non-
adjacent vertices. Suppose that a GaTEx graph G is explained by the network
(N, t) and let t : V (N) → {0, 1,
} where t(v) =
 for all leaves v of N and

Linear Time Algorithms for NP-Hard Problems Restricted to GaTEx Graphs 125

t(v) = 1 if and only if t(v) = 0. Since L(N) = V (G) and by [2, Prop. 1],
we have O(|V (N)|) = O(|V (G)|) and thus, this labeling can be computed in
O(|V (G)|) time. It is easy to verify that (N, t) explains the complement G of G.
The latter arguments imply that the complement of every GaTEx graph is a
GaTEx graph as well. Since maximum cliques in G are precisely the maximum
independent sets in G, we obtain

Theorem 4. The independence number α(G) of a GaTEx graph can be com-
puted in linear-time.

4 Outlook and Summary

GaTEx graphs form a natural generalization of cographs and are precisely those
graphs that can be explained by a 0/1-labeled galled-trees. We have shown here
that several NP-hard problems become linear-time solvable when restricted to
GaTEx graphs. In particular, we showed how to determine a perfect order, the
chromatic number and an optimal coloring, the clique number and the indepen-
dence number of GaTEx graphs in linear-time. We assume that the underlying
idea of letting algorithms be guided by the galled-trees that explains a GaTEx
graph G instead of working directly on G has the potential to show that many
other computationally difficult problems as e.g. the graph isomorphism prob-
lem or other NP-hard problems become tractable on GaTEx graphs. This will,
however, be part of future work.

References

1. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J.
Comput. Biol. 6(3–4), 281–297 (1999). https://doi.org/10.1089/106652799318274.
pMID: 10582567

2. Cardona, G., Rosselló, F., Valiente, G.: Comparison of tree-child phylogenetic net-
works. IEEE/ACM Trans. Comput. Biol. Bioinf. 6, 552–569 (2007)

3. Chvátal, V.: Perfectly ordered graphs. In: Berge, C., Chvátal, V. (eds.) Top-
ics on Perfect Graphs. North-Holland Mathematics Studies, vol. 88, pp. 63–65.
North-Holland (1984). https://doi.org/10.1016/S0304-0208(08)72923-2. https://
www.sciencedirect.com/science/article/pii/S0304020808729232

4. Corneil, D.G., Lerchs, H., Stewart Burlingham, L.K.: Complement reducible
graphs. Discr. Appl. Math. 3, 163–174 (1981)

5. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM J. Comput. 14(4), 926–934 (1985). https://doi.org/10.1137/0214065

6. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithms for
sequential modular decomposition. J. Algorithms 41(2), 360–387 (2001)

7. Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, part I: clans, basic sub-
classes, and morphisms. Theor. Comp. Sci. 70, 277–303 (1990)

8. Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, part II: representation
through labeled tree families. Theor. Comp. Sci. 70, 305–342 (1990)

9. Ehrenfeucht, A., Gabow, H.N., Mcconnell, R.M., Sullivan, S.J.: An O(n2) divide-
and-conquer algorithm for the prime tree decomposition of two-structures and
modular decomposition of graphs. J. Algorithms 16(2), 283–294 (1994)

https://doi.org/10.1089/106652799318274
https://doi.org/10.1016/S0304-0208(08)72923-2
https://www.sciencedirect.com/science/article/pii/S0304020808729232
https://www.sciencedirect.com/science/article/pii/S0304020808729232
https://doi.org/10.1137/0214065

126 M. Hellmuth and G. E. Scholz

10. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San
Francisco (1979)

11. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Comput. Sci. Rev. 4(1), 41–59 (2010)

12. Hellmuth, M., Schaller, D., Stadler, P.F.: Clustering systems of phylogenetic net-
works. Theory Biosci. (2023). https://doi.org/10.1007/s12064-023-00398-w

13. Hellmuth, M., Scholz, G.E.: From modular decomposition trees to level-1 networks:
pseudo-cographs, polar-cats and prime polar-cats. Discret. Appl. Math. 321, 179–
219 (2022). https://doi.org/10.1016/j.dam.2022.06.042

14. Hellmuth, M., Scholz, G.E.: Linear time algorithms for NP-hard problems
restricted to GaTEx graphs (2023). arXiv:2306.04367

15. Hellmuth, M., Scholz, G.E.: Resolving prime modules: the structure of pseudo-
cographs and galled-tree explainable graphs (2023). arXiv:2211.16854

16. Hellmuth, M., Stadler, P.F., Wieseke, N.: The mathematics of xenology: di-
cographs, symbolic ultrametrics, 2-structures and tree-representable systems of
binary relations. J. Math. Biol. 75(1), 199–237 (2017). https://doi.org/10.1007/
s00285-016-1084-3

17. Huber, K.T., Scholz, G.E.: Beyond representing orthology relations with trees.
Algorithmica 80(1), 73–103 (2018)

18. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psy-
chometrika 14(2), 95–116 (1949). https://doi.org/10.1007/BF02289146

19. Marx, D.: Graph colouring problems and their applications in scheduling. Periodica
Polytechnica Electr. Eng. 48, 11–16 (2004)

20. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation.
Discret. Math. 201(1–3), 189–241 (1999)

21. Middendorf, M., Pfeiffer, F.: On the complexity of recognizing perfectly
orderable graphs. Discret. Math. 80(3), 327–333 (1990). https://doi.org/10.
1016/0012-365X(90)90251-C. https://www.sciencedirect.com/science/article/pii/
0012365X9090251C

22. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular
networks. Proc. Natl. Acad. Sci. 100(21), 12123–12128 (2003). https://doi.org/10.
1073/pnas.2032324100

23. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decom-
position via recursive factorizing permutations. In: Aceto, L., Damgård, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70575-8_52

24. Turau, V., Weyer, C.: Algorithmische Graphentheorie. De Gruyter, Berlin,
München, Boston (2015). https://doi.org/10.1515/9783110417326

https://doi.org/10.1007/s12064-023-00398-w
https://doi.org/10.1016/j.dam.2022.06.042
http://arxiv.org/abs/2306.04367
http://arxiv.org/abs/2211.16854
https://doi.org/10.1007/s00285-016-1084-3
https://doi.org/10.1007/s00285-016-1084-3
https://doi.org/10.1007/BF02289146
https://doi.org/10.1016/0012-365X(90)90251-C
https://doi.org/10.1016/0012-365X(90)90251-C
https://www.sciencedirect.com/science/article/pii/0012365X9090251C
https://www.sciencedirect.com/science/article/pii/0012365X9090251C
https://doi.org/10.1073/pnas.2032324100
https://doi.org/10.1073/pnas.2032324100
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1515/9783110417326

Polynomial Turing Compressions
for Some Graph Problems Parameterized

by Modular-Width

Weidong Luo1,2(B)

1 Université de Sherbrooke, Sherbrooke, Canada
weidong.luo@yahoo.com

2 Humboldt-Universität zu Berlin, Berlin, Germany

Abstract. A polynomial Turing compression (PTC) for a parameter-
ized problem L is a polynomial-time Turing machine that has access to
an oracle for a problem L′ such that a polynomial in the input parame-
ter bounds each query. Meanwhile, a polynomial (many-one) compression
(PC) can be regarded as a restricted variant of PTC where the machine
can query the oracle exactly once and must output the same answer as
the oracle. Bodlaender et al. (ICALP 2008) and Fortnow and Santhanam
(STOC 2008) initiated an impressive hardness theory for PC under the
assumption coNP �⊆ NP/poly. Since PTC is a generalization of PC, we
define C as the set of all problems that have PTCs but have no PCs under
the assumption coNP �⊆ NP/poly. Based on the hardness theory for PC,
Fernau et al. (STACS 2009) found the first problem Leaf Out-tree(k)
in C. However, very little is known about C, as only a dozen problems
were shown to belong to the complexity class in the last ten years. Several
problems are open, for example, whether CNF-SAT(n) and k-path are
in C, and novel ideas are required to better understand the fundamental
differences between PTCs and PCs.

In this paper, we enrich our knowledge about C by showing that sev-
eral problems parameterized by modular-width (mw) belong to C. More
specifically, exploiting the properties of the well-studied structural graph
parameter mw, we demonstrate 17 problems parameterized by mw are in
C, such as Chromatic Number(mw) and Hamiltonian Cycle(mw).
In addition, we develop a general recipe to prove the existence of PTCs
for a large class of problems, including our 17 problems.

Keywords: Turing compression · modular-width · Turing kernel ·
structural graph parameter · fixed parameter tractable

1 Introduction

Preprocessing, such as compression (kernelization) and Turing compression (ker-
nelization), is a core research topic in parameterized complexity [11,13,17]. Let

Supported by CSC 201708430114 fellowship.
The full version of this paper can be found on https://arxiv.org/abs/2201.04678.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 127–140, 2024.
https://doi.org/10.1007/978-3-031-49190-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_9&domain=pdf
http://orcid.org/0009-0003-5300-606X
https://arxiv.org/abs/2201.04678
https://doi.org/10.1007/978-3-031-49190-0_9

128 W. Luo

Q ⊆ Σ∗ × N be a parameterized problem, and f : N → N be a computable func-
tion. A compression for Q is a polynomial-time algorithm that, given an instance
(x, k) of Q, returns an instance l of a problem L with length at most f(k), such
that (x, k) ∈ Q if and only if l ∈ L. We say Q admits a polynomial compres-
sion (PC) if f is a polynomial function. If L equals Q, then the compression is
called a kernelization. Turing compression is a generalization of compression. A
Turing compression for Q of size f(k) is a polynomial-time algorithm A with
access to an oracle for a problem L such that, for any input (x, k), A can decide
whether (x, k) ∈ Q sending queries of length at most f(k) to the oracle. We say
Q has a polynomial Turing compression (PTC) if f is a polynomial function. If
L equals Q, then the Turing compression is called a Turing kernelization. Q is
fixed-parameter tractable (FPT) if there is an f(k) · |x|O(1) algorithm deciding
whether (x, k) ∈ Q. Note that a PTC for Q is not sufficient for an FPT algorithm
for Q since L can be undecidable.

The upper bounds and lower bounds for PCs have been studied extensively
and a large number of results were achieved [17]. In particular, Bodlaender et al.
[5,18] initiated an impressive hardness theory to refute the existence of PCs for
a large class of problems under the assumption coNP � NP/poly. Since Turing
compression generalizes compression [35], it is possible that some natural prob-
lems without a PC admit a PTC. Guo [4] was the first to introduce the concept of
Turing compression by asking whether some problems, such as the important and
still open problem about k-path [17], have PTCs but have no PCs unless coNP ⊆
NP/poly. More than ten years ago, Fernau et al. [14] found the first problem of
this kind, by showing that Leaf Out-tree(k) has a PTC but has no PCs unless
coNP ⊆ NP/poly. However, by now, only about a dozen problems of this kind
are known [1,6,12,24–26,32,34]. In addition, despite a few results on the non-
existence of PTCs [22,29] and PTCs of restricted types [8,15], negative results
on PTCs are much sparser and generally harder to obtain than positive results.
In fact, developing a framework for refuting the existence of PTCs (under widely
believed assumptions) is a significant open problem in parameterized complexity,
and is referred to as “a big research challenge” in the textbook [17]. In order to
tackle this ambitious challenge, more knowledge on PTCs is required.

In this work, we focus on the PTC versus PC question for problems parame-
terized by modular-width (mw). The modular-width is a well-studied structural
parameter first proposed in [9] and introduced into parameterized complexity in
[19]. Let G = (V,E) be a graph. A module of G is a subset of vertices M ⊆ V
such that, for every v ∈ V \ M , either M ∩ N(v) = ∅ or M ⊆ N(v). The empty
set, V , and every singleton {v} for v ∈ V are the trivial modules. G is called a
prime graph if all modules of G are trivial modules. The modular-width of G,
denoted by mw(G) or mw, is the number of vertices of the largest prime induced
subgraph of G. In addition, mw can also be defined as the number of children
of the largest prime node of the modular decomposition tree, whose definition can
be found in the preliminaries. Moreover, the dynamic programming technique can
be used to design algorithms for some problems over modular decomposition trees
in a bottom-up fashion. The solution of each node is obtained by combining the
partial solutions of its children, where the small number of children for each node

Polynomial Turing Compression Parameterized by Modular-Width 129

leads to an efficient algorithm. The usage of this technique can be dated back to the
1980s [31], where some efficient parallel algorithms for problems such as Clique,
Max-cut, and Chromatic Number are provided. In fact, from the perspective
of parameterized complexity, which appears after that, the algorithms in [31] for
Clique(mw) and Chromatic Number(mw) are FPT, and the algorithm in [31]
for Max-cut(mw) is XP1. Recently, the technique is also used in designing FPT
algorithms for graph problems in structural parameters [2,9,27]. Observe that the
process of combining the partial solutions in the dynamic programming over a
modular decomposition tree can be replaced by a query to an oracle with length
at most a function of the largest degree of the tree. Thus, we can use Turing com-
pression to solve a problem by simulating the dynamic programming process over
the modular decomposition tree for the problem. Consequently, this technique can
also help us to obtain PTCs for graph problems parameterized by mw, all of which
coincidentally have no PCs unless coNP ⊆ NP/poly.

Our Results. Exploiting the well-studied technique of dynamic programming
algorithm over modular decomposition trees, we provide PTCs for 17 fundamental
graph problems parameterized by mw, which have no PCs unless coNP ⊆ NP/poly
(some of the PC lower bounds are provided in [28]). Thus, we largely enrich the
class of problems that admit PTC but do not admit PC. In addition, by capturing
the characteristics of constructing PTCs using the technique of dynamic program-
ming algorithm over modular decomposition tree, we develop a recipe to facilitate
the development of PTCs for a large class of problems, including all the 17 prob-
lems. In particular, our study gives rise to the following result.

Theorem 1. The following problems parameterized by mw have PTCs but have
no PCs unless coNP ⊆ NP/poly: Independent Set, Clique, Vertex Cover,
Chromatic Number, Dominating Set,Hamiltonian Cycle, Hamiltonian

Path, Feedback Vertex Set,Odd cycle Transversal,Connected Ver-

tex Cover, Induced Matching, Nonblocker, Maximum Induced For-

est,Partitioning Into Paths, Longest Induced Path, Independent Tri-

angle Packing, and Independent Cycle Packing, where the results of the
PC lower bounds for the first 11 problems are demonstrated in [28].

2 Preliminaries

We denote Σ = {0, 1} and [n] = {1, . . . , n}. Let G denote the complement of
a graph G. Unless otherwise specified, V (G) and E(G) indicate the vertex and
edge sets of G, respectively. For v ∈ V (G), N(v) consists of all neighbors of v. We
denote N [v] = N(v) ∪ {v}. For M ⊆ V (G), G[M] denotes the subgraph induced
in G by M , and N(M) consists of all vertices that are not in M but are adjacent
to some vertex of M . We denote N [M] = N(M)∪M . The cardinality of a set S
is denoted by |S|. Symbols G and N denote the sets of undirected graphs and the
natural numbers, respectively. For two disjoint vertex sets M and M ′ of a graph,

1 polynomial-time algorithm for any fixed parameter.

130 W. Luo

the edges between M and M ′ refer to all edges uv such that u ∈ M and v ∈ M ′.
In addition, we say M and M ′ are adjacent if all possible edges between M and
M ′ exist, and M and M ′ are non-adjacent if there are no edges between M and
M ′. Kn and Cn denote a complete graph and a cycle with n vertices, respectively.
For X ⊆ V (G), we write G − X for the subgraph induced in G by V (G) \ X. In
addition, we also use G−G′ to represent G−V (G′) for a subgraph G′ of G. The
intersection and union of two graphs G = (V,E) and G′ = (V ′, E′) are denoted
as G ∩ G′ = (V ∩ V ′, E ∩ E′) and G ∪ G′ = (V ∪ V ′, E ∪ E′), respectively. The
O∗-notation suppresses factors that are polynomial in the input size.

Let G = (V,E) be a graph. Recall that a module of G is a subset of vertices
M ⊆ V such that, for every v ∈ V \ M , either M ∩ N(v) = ∅ or M ⊆ N(v). A
module M is a strong module if, for any module M ′, only one of the following
holds: (1) M ⊆ M ′ (2) M ′ ⊆ M (3) M ∩ M ′ = ∅. A module M is maximal
if M � V and no module M ′ satisfies M � M ′

� V . Assume P ⊆ 2V is a
vertex partition of V . P is a (maximal) modular partition if all M ∈ P are
(maximal strong) modules of G. For a modular partition P , the quotient graph
G/P = (VP , EP) is defined as follows. The set of vertices VP contains one vertex
vM for each module M ∈ P , so that VP = {vM : M ∈ P}. An edge vMvM ′ is
contained in EP if and only if M,M ′ ∈ P are adjacent. All strong modules M of
G can be represented by an inclusion tree MD(G), where each M corresponds
to a vertex vM of MD(G), and, for any two strong modules M,M ′ of G, vM ′ is
a descendant of vM in MD(G) if and only if M ′

� M . This unique tree MD(G)
is called the modular decomposition tree of G. The internal vertices are divided
into three types: a vertex vM is parallel if G[M] is disconnected, series if G[M] is
disconnected, prime if both G[M] and G[M] are connected. The modular-width
of G can also be defined as the minimum number k such that the number of
children of any prime vertex in MD(G) is at most k. In addition, for a module
M of G, G[M] is called a factor. The modular decomposition tree of G can be
obtained in time O(m+n) [33]. Refer to [20] for more information about modular
decomposition trees. The null graph and the empty module are disregarded in
the proofs of this paper (the results are trivial for these cases).

Next, we give the definitions of the problems of Theorem 1, all of which are
NP-hard. Given a graph G, Hamiltonian Cycle (Hamiltonian Path) asks
whether G has a cycle (path) that visits each vertex of G exactly once. Let (G, k)
be the input of the following problems, where G = (V,E) is a graph and k is an
integer. Chromatic Number asks whether V can be colored by at most k colors
such that no two adjacent vertices share the same color. Clique asks whether
V has a subset of size at least k such that any two vertices in it are adjacent.
Vertex Cover asks whether V has a subset, called vertex cover, of size at
most k such that every edge of G has at least one endpoint in it. Connected

Vertex Cover asks whether G has a vertex cover X such that |X| ≤ k and
G[X] is connected. Dominating Set asks whether V has a subset of size at
most k such that every vertex not in it is adjacent to at least one vertex of
it. Feedback Vertex Set asks whether V has a subset X of size at most k
such that G − X is a forest. Independent Cycle (Triangle) Packing asks

Polynomial Turing Compression Parameterized by Modular-Width 131

whether G contains an induced subgraph consisting of at least k pairwise vertex-
disjoint cycles (triangles). Independent Set asks whether V has a subset of size
at least k such that any two vertices in it are not adjacent. Induced Matching

asks whether V has a subset X of size at least 2k such that G[X] is a matching
with at least k edges. Longest Induced Path asks whether G contains the
path on k vertices as an induced subgraph. Max Leaf Spanning Tree asks
whether G has a spanning tree with at least k leaves. Nonblocker asks whether
V has a subset of size at least k such that every vertex in it is adjacent to a
vertex outside of it. Odd Cycle Transversal asks whether V has a subset
X of size at most k such that G − X is a bipartite graph. Partitioning Into

Paths asks whether G contains k vertex disjoint paths whose union includes
every vertex of G. The function (optimization) versions of all these problems
are defined in their natural ways, for example, for the function (optimization)
version of Clique, the input is G and the output is the number of vertices of
the largest clique of G.

3 Recipe for Polynomial Turing Compression
in Parameter Modular-Width

Suppose we are given graphs G = (V,E) and H = (VH , EH), as well as a module
M of G. Assume GS is a supergraph of G, which is obtained as follows: (1) add
G and H into GS , (2) add uv to GS for all v ∈ N(M), u ∈ VH . Let G′ be
the subgraph induced in GS by (V \ M) ∪ VH . We say G′ is obtained from G
by replacing G[M] with H, and the process of obtaining G′ from G is called a
modular replacement. Clearly, VH is a module of G′. Recall that symbols G and
N denote the sets of undirected graphs and the natural numbers, respectively.

Lemma 2. Let each Fi be a function from G to N for i ∈ [r]. For any graphs
G and H, as well as any module M of G, suppose Fi(G[M]) = Fi(H) for all
i implies Fi(G) = Fi(G′) for all i, where G′ is obtained from G by replacing
G[M] with H. Then, for any graph G and any modular partition P of V (G), the
quotient graph G/P together with F1(G[M]), . . . , Fr(G[M]) for all modules M in
P completely determine F1(G), . . . , Fr(G).

Proof. Let tuple T (G) = (F1(G), . . . , Fr(G)). For a graph G and a modular
partition P of V (G), we say X is a values-attached quotient graph generated
from P if X is the quotient graph G/P = (VP , EP) with each vertex vM ∈ VP

attached the tuple T (G[M]). Suppose X consists of all possible X generated
from any P of V (G), where G ∈ G. Assume the binary relation R over X and G
consists of all pairs (X,G) such that X is generated from some modular partition
of V (G). For each i ∈ [r], let binary relation fi be the composition relation of R
and Fi over X and N, which means that fi = R;Fi = {(X,n) | there exists G ∈
G such that (X,G) ∈ R and (G,n) ∈ Fi}.

Consider every fi. According to the definition of R, for any X ∈ X , there is
at least a G ∈ G such that (X,G) ∈ R. Moreover, as Fi is a function, for any
G ∈ G, there is an n ∈ N such that (G,n) ∈ Fi. Therefore, for any X ∈ X ,

132 W. Luo

there is at least an n ∈ N such that (X,n) ∈ fi, so fi is left-total. For an
X ∈ X , assume G′ consists of all G such that (X,G) ∈ R. We claim that
Fi(G1) = Fi(G2) for any G1, G2 ∈ G′. Since (X,G1), (X,G2) ∈ R, there exist
modular partitions P1 of G1 and P2 of G2 such that X is not only generated
from P1 but also generated from P2. Thus, the quotient graphs G1/P1 and G2/P2

are isomorphic, and there exists an edge-preserving bijection g from V (G1/P1)
to V (G2/P2) such that T (G[M1]) = T (G[M2]) for every vM1 of V (G1/P1) and
vM2 = g(vM1) of V (G2/P2). Here, we say G[M2] of G2 corresponds to G[M1]
of G1 if vM2 = g(vM1). Now, consider every module M1 of P1. We replace each
G[M1] of G1 with its corresponding factor G[M2] of G2 one by one. According to
the prerequisite of this lemma,2 since T (G[M1]) = T (G[M2]), the value of Fi for
the new obtained graph after every modular replacement does not change. After
the final modular replacement, G2 is obtained, so we have Fi(G1) = Fi(G2).
Hence, Fi(G) is a fixed number for any G ∈ G′. This means that fi is right-
unique (note that a relation is called right-unique if each element on the right
side of the relation is mapped to a unique element on the left side). Consequently,
fi is a function from X to N, moreover, Fi(G) equals fi(X), where (X,G) ∈ R.

Note that, for each i, we say an algorithm solves Fi(G) if it outputs Fi(G)
with the input G. The decision version of Fi(G) is as follows: given a graph G
and an integer k, decide whether Fi(G) ≤ k (or Fi(G) ≥ k).

Lemma 3. Let each Fi be a function from G to N for i ∈ [r], where r is a
constant. Assume the following statements hold.

1. For any graphs G and H, as well as any module M of G, Fi(H) = Fi(G[M])
for all i implies Fi(G) ≤ Fi(G′) (or Fi(G) ≥ Fi(G′)) for all i,3 where G′ is
obtained from G by replacing G[M] with H.

2. For each i, there is a 2mwO(1) |G|O(1) time algorithm to solve Fi(G).
3. Fi(G) ≤ |G|O(1) for each i.

Then each Fi(G) can be solved by a polynomial-time algorithm together with an
oracle for a problem Q that can decide in one step whether a string of length
mwO(1) is in Q. Moreover, the decision version of each Fi(G) has a PTC param-
eterized by mw.

Proof. For all i, assume Fi(G) ≤ |G|c and Fi(G) can be solved in 2mwc |G|c
for some constant c. Suppose w.l.o.g. that mw ≥ log

1
c |G| henceforth (other-

wise, each Fi(G) can be solved in polynomial time based on statement 2 and
the consequence of this lemma holds). Consider statement 1. Since V (H) is a
module of G′, we can obtain Fi(G) = Fi(G′) by exchanging the position of G
and G′ as follows. For the graphs G′ and G[M], as well as the module V (H)
of G′, that Fi(G[M]) = Fi(H) for all i also implies that Fi(G) ≥ Fi(G′) (or
Fi(G) ≤ Fi(G′)) for all i, where G is obtained from G′ by replacing H with
G[M]. Thus, functions F1, . . . , Fr fulfill the conclusion of Lemma 2. Let the
2 The prerequisite of this lemma is the second sentence of Lemma 2.
3 Here, we only require every Fi is monotone under module-substitution.

Polynomial Turing Compression Parameterized by Modular-Width 133

definitions of values-attached quotient graph X, set X , binary relation R and
functions f1, . . . , fr be the same as that in the proof of Lemma 2. Assume Q
consists of all the strings (X, f1(X), . . . , fr(X)) for X ∈ X .

Recall that every vertex vM of the modular decomposition tree MD(G)
of a graph G corresponds to the strong module M of G, where MD(G) can
be constructed in linear time. Here, we call G[M] the corresponding graph of
vM . Roughly speaking, to obtain F1(G), . . . , Fr(G), we compute in a bottom-
up fashion the values of all Fi for the graphs that correspond to the vertices
of MD(G). First, the corresponding graph of each leaf of MD(G) is the sin-
gleton graph K1, where Fi(K1) can be solved in O(1) time according to state-
ment 2. Secondly, consider an internal vertex vM of MD(G). Let P be the
maximal modular partition of M . Then every child vM ′ of vM corresponds
to the module M ′ of P and the quotient graph of vM is G[M]/P . Suppose
vM is prime. Assume X ∈ X is the values-attached quotient graph gener-
ated from P . Since F1(G[M ′]), . . . , Fr(G[M ′]) for all M ′ of P and G[M]/P are
given, X can be obtained immediately. Let k1, . . . , kr be non-negative integers
at most |G|c. Exhaustively generate string (X, k1, . . . , kr) and query the ora-
cle whether it is in Q. Based on Lemma 2, we have fi(X) = Fi(G[M]) ≤
|G|c for all i. Hence, we can obtain F1(G[M]), . . . , Fr(G[M]) by finding the
string (X, k1, . . . , kr) = (X, f1(X), . . . , fr(X)) after querying the oracle at most
(|G|c+1)r = |G|O(1) times. Moreover, the length of any (X, k1, . . . , kr) is at most
O(mw2 log |G|) = mwO(1). Assume vM is parallel. Suppose P contains t modules,
where 2 ≤ t ≤ |V (G)|. Then, the quotient graph G[M]/P is Kt. Consider any
two modules M ′

1 and M ′
2 of P . Let M ′

12 be M ′
1∪M ′

2 and G[M ′
12] be the subgraph

induced by M ′
12 in G[M]. Then, P ′ = {M ′

1,M
′
2} is a modular partition of M ′

12.
Since the values-attached quotient graph generated from P ′ are given, we can
obtain F1(G[M ′

12]), . . . , Fr(G[M ′
12]) using the same method as that of the prime

vertex. Now, consider the new modular partition P = {M ′
12} ∪ (P \ {M ′

1,M
′
2})

of M . It contains only t − 1 modules and the new quotient graph G[M]/P is
Kt−1. Moreover, F1(G[M ′]), . . . , Fr(G[M ′]) are known for every module M ′ in
P . Clearly, this process decreases the vertex number of the quotient graph by
one. We can repeat t − 1 times the same process on every newly generated quo-
tient graph. Finally, F1(G[M]), . . . , Fr(G[M]) can be obtained. Assume vM is a
series vertex. F1(G[M]), . . . , Fr(G[M]) can be obtained using the same strategy
as that of the parallel vertex. Therefore, for any internal vertex vM of MD(G),
we obtain F1(G[M]), . . . , Fr(G[M]) in |G|O(1) time with each query length at
most mwO(1). In addition, the vertex number of MD(G) is O(|G|). As a result,
F1(G), . . . , Fr(G) can be solved by a polynomial-time algorithm with an oracle
for Q that can decide whether a string of length mwO(1) is in Q. Furthermore,
according to the definition of PTC, the decision version of each Fi(G) has a PTC
parameterized by mw.

4 Polynomial Turing Compressions for Problems

Obviously, the function versions of all problems in Theorem 1 fulfill state-
ment 3 of Lemma 3. Clique, Feedback Vertex Set, Longest Induced

134 W. Luo

Path, Induced Matching, Independent Triangle Packing, Indepen-

dent Cycle Packing can be solved in O∗(1.74mw) time [16]. Chromatic

Number can be solved in O∗(2mw) time [19]. Hamiltonian Cycle and Par-

titioning Into Paths can be solved in 2O(mw2 logmw)nO(1) time [19]. In
addition, clique-width (cw) [10] is a generalized parameter of mw such that
cw ≤ mw + 2 in a graph (the cw and mw of a cograph are two and zero,
respectively). Connected Vertex Cover [3], Dominating Set [7], and Odd

Cycle Transversal [21,23] can be solved in 2O(cw)nO(1) time, thus also in
2O(mw)nO(1) time. Therefore, the function versions of all the above-mentioned
problems fulfill statement 2 of Lemma 3.

Clearly, a PTC of each problem in Theorem 1 can be obtained if we can
obtain a PTC of the problem with connected input graphs. So we assume w.l.o.g.
the input graph of every problem is connected. In this section, unless otherwise
specified, assume G = (V,E) and H = (VH , EH) are connected graphs, M
= ∅
is a module of G, M ′ = N(M) in G, and graph G′ = (V ′, E′) is obtained from
G by replacing G[M] with H. Now, we only need to prove the function versions
of the above-mentioned problems, all of which will be discussed in this section,
fulfill statement 1 of Lemma 3 to provide PTCs for the problems parameterized
by mw. More specifically, we will prove that Fi(H) = Fi(G[M]) for all i implies
that Fi(G) ≤ Fi(G′) (or Fi(G) ≥ Fi(G′)) for all i, where functions Fi are
the function versions of the problems discussed in some lemma of this section.
Obviously, the statement is true for any function Fi if M = V . So assume M
= V
henceforth. In addition, M ′
= ∅ since G is connected and M
∈ {∅, V }. In this
section, assume function Fv(I) denotes the vertex number of I for any I ∈ G. Let
min-DS, min-CVC, min-VC, min-FVS, min-OCT, max-IM, max-ITP, and max-
ICP be the abbreviations of the minimum dominating set, minimum connected
vertex cover, minimum vertex cover, minimum feedback vertex set, minimum odd
cycle transversal, maximum induced matching, maximum independent triangle
packing, and maximum independent cycle packing, respectively.

Lemma 4. Chromatic Number(mw) has a PTC.

Proof. Let function F (I) denote the chromatic number for any I ∈ G. Suppose
F (G[M]) = F (H). Then, there is a coloring c : V → C for G, where C = [F (G)].
Let CM = {c(v) | v ∈ M} and CM ′ = {c(v) | v ∈ M ′}. Since M ′ = N(M),
CM ∩CM ′ = ∅. Consider G′. Since F (H) = F (G[M]) ≤ |CM |, there is a coloring
cH : VH → CM for H. Suppose c′ : V ′ → C is a function such that c′(v) = c(v)
for all v ∈ V ′ \ VH and c′(v) = cH(v) for all v ∈ VH . Since N(VH) = M ′ and
CM ∩ CM ′ = ∅, c′ is a coloring for G′. Thus, F (G′) ≤ |C| = F (G).

Lemma 5. Let D be a min-DS of G. Then M ∩D is either ∅, {v}, or a min-DS
of G[M].

Proof. Assume, for contradiction, |D ∩ M | ≥ 2 and D ∩ M is not a min-DS of
G[M]. If D∩M is a dominating set of G[M] that is not minimum, then let X be
a smaller one, and (D\M)∪X is a smaller dominating set of G, a contradiction.
Hence, D∩M is not a dominating set of G[M], so there must be an x ∈ D∩M ′.

Polynomial Turing Compression Parameterized by Modular-Width 135

Then M ⊆ N(x) and every vertex in M has the same neighborhood outside of
M , so D is still a dominating set of G by removing from D all but one vertex of
M ∩ D, contradicting the minimality of D.

Lemma 6. Dominating Set(mw) has a PTC.

Proof. Let function F (I) denote the size of the min-DS for any I ∈ G. Suppose
F (G[M]) = F (H) and D is a min-DS of G. Assume D ∩ M = ∅. Then there
exists an x ∈ D∩M ′ such that VH ⊆ N(x) in G′. Thus, D is a dominating set of
G′ and F (G′) ≤ F (G). Assume D ∩ M = {u}. Suppose F (G[M]) = F (H) ≥ 2.
Then {u} is not a dominating set of G[M], so there is a v ∈ D ∩ M ′ such that
VH ⊆ N(v) in G′. Clearly, {w} ∪ (D \ {u}) is a dominating set of G′ for any
w ∈ VH , so F (G′) ≤ F (G). Suppose F (G[M]) = F (H) = 1. We may assume
{v} is a dominating set of H. Clearly, {v} ∪ (D \ {u}) is a dominating set of G′,
so F (G′) ≤ F (G). Now, according to Lemma 5, we only need to consider that
D∩M is a min-DS of G[M]. Suppose DH is a min-DS of H. Clearly, DH∪(D\M)
is a dominating set of G′, so F (G′) ≤ F (G).

Lemma 7. Assume IG[M] and IH with the same size are independent sets of
G[M] and H, respectively. Suppose S ⊆ V \M . Then, the subgraph in G induced
by S ∪ IG[M] and the subgraph in G′ induced by S ∪ IH are isomorphic.

Proof. It is trivial if S or IG[M] is empty. Assume IG[M] and S are not empty.
Since |IH | = |IG[M]|, we may assume S = {v1, . . . , vr}, IG[M] = {u1, . . . , us}, and
IH = {w1, . . . , ws}. Suppose f is a bijection from S ∪ IG[M] to S ∪ IH such that
f = {[v1, v1], . . . , [vr, vr], [u1, w1], . . . , [us, ws]}. Clearly, f is an edge-preserving
bijection.

Lemma 8. G has an edge if and only if G[V \ S] has an edge, where S is a
min-FVS or a min-OCT of G.

Proof. Let S be a min-FVS of G. For the forward direction, suppose G has an
edge. G[V \ S] has an edge if S = ∅. Assume S
= ∅. After deleting any |S| − 1
vertices of S from G, there exists a cycle in G, otherwise, G has a feedback vertex
set of size |S| − 1. Hence, G[V \ S] has at least one edge since the edges of a
cycle cannot be entirely removed by deleting one vertex. The reverse direction
is trivial. The proof goes the same way if S is a min-OCT of G

Lemma 9. Assume C,F,O,R are a min-VC, a min-FVS, a min-OCT, and a
min-CVC of G, respectively. Let v be a vertex of M . The following statements
hold. (1) M ∩ C is either M or a min-VC of G[M]. (2) M ∩ F is either M ,
M \ {v}, a min-VC of G[M], or a min-FVS of G[M]. (3) M ∩ O is either M ,
a min-VC of G[M], or a min-OCT of G[M]. (4) M ∩ R is either M , a min-VC
of G[M], or {v}.
Proof. Recall that M ′
= ∅. (1) If M ∩ C
= M , then M ′ ⊆ C and M ∩ C is a
min-VC of G[M]. (2) Assume G[M \ F] has an edge. Then M ′ ⊆ F and M ∩ F
is a min-FVS of G[M]. Assume G[M \ F] has no edges but has at least two

136 W. Luo

vertices. Then M ′ \ F contains at most one vertex, otherwise, there exists a C4

in G[V \ F]. Hence, F ∩ M is a min-VC of G[M]. Assume M \ F equals {v} or
∅. Then M ∩ F is M \ {v} or M . (3) Clearly, M ∩ O = M if M \ O = ∅. Assume
G[M \ O] contains an edge. Then M ′ ⊆ O, so M ∩ O is a min-OCT of G[M].
Assume G[M \ O] contains a vertex but no edges. Then G[M ′ \ O] contains no
edges, so M ∩ O is a min-VC of G[M]. (4) Clearly, M ⊆ R if M ′
⊆ R. Assume
M ′ ⊆ R henceforth. Then, M ∩R is a min-VC of G[M] if G[R \M] is connected
or G[M] contains an edge, otherwise, M ∩ R is a vertex of M to ensure the
connectivity of G[R].

Lemma 10. Vertex Cover(mw), Connected Vertex Cover(mw),
Feedback Vertex Set(mw), and Odd Cycle Transversal(mw) have
PTCs.

Proof. Suppose functions Foct(I), Ffvs(I), Fcvc(I), and Fvc(I) represent the
sizes of min-OCT, min-FVS, min-CVC, and min-VC of any I ∈ G, respectively.
Suppose Fv(G[M]) = Fv(H), Fvc(G[M]) = Fvc(H), Fcvc(G[M]) = Fcvc(H),
Ffvs(G[M]) = Ffvs(H), and Foct(G[M]) = Foct(H). Let C, R, F , and O rep-
resent a min-VC, a min-CVC, a min-FVS, and a min-OCT of G, respectively.
Let CH , FH , and OH represent a min-VC, a min-FVS, and a min-OCT of H,
respectively. Obviously, Fv(G′) ≤ Fv(G).

We claim Fvc(G′) ≤ Fvc(G). Based on Lemma 9, C∩M is either M or a min-
VC of G[M]. Let S denote V \(C∪M). Assume C∩M = M . Clearly, (C\M)∪VH

is a vertex cover (VC) of G′. Assume C ∩ M is a min-VC of G[M]. Then,
M \C and VH \CH are independent sets of G[M] and H, respectively. Moreover,
|M \ C| = |VH \ CH | since Fv(G[M]) = Fv(H) and Fvc(G[M]) = Fvc(H).
According to Lemma 7, the subgraph induced by S ∪ (M \ C) = V \ C in G and
the subgraph induced by S ∪ (VH \ CH) in G′ are isomorphic, so S ∪ (VH \ CH)
is an independent set of G′. Hence, (C \ M) ∪ CH is a VC of G′.

We claim Fcvc(G′) ≤ Fcvc(G). According to Lemma 9, M ∩ R is either M ,
a min-VC of G[M], or {v}. Suppose M ∩ R = M . Clearly, (R \ M) ∪ VH is a
connected vertex cover (CVC) of G′. Suppose M ∩ R is a min-VC of G[M]. Let
S = V \(R∪M). According to Lemma 7, G′[S∪(VH \CH)] and G[S∪(M \R)] =
G[V \ R] are isomorphic. Hence, S ∪ (VH \ CH) is an independent set of G′, and
(R \ M) ∪ CH is a VC of G′. Clearly, G′[(R \ M) ∪ CH] is connected since G[R]
is connected. Therefore, (R \ M) ∪ CH is a CVC of G′. Suppose M ∩ R = {v}.
Assume u ∈ M \R (the case M = {v} has been discussed). Since G is connected,
M ′ ⊆ N(u). Thus, M ′ ⊆ R. Since Fvc(G[M]) = Fvc(H), Fv(G[M]) = Fv(H),
and {v} is a VC of G[M], there exists w ∈ VH that covers all edges of H.
Therefore, (R \ {v}) ∪ {w} is a VC of G′. In addition, according to Lemma 7,
G[R], which is connected, and the subgraph induced by (R \ {v}) ∪ {w} in G′

are isomorphic. Thus, (R \ {v}) ∪ {w} is a CVC of G′.
We claim Ffvs(G′) ≤ Ffvs(G). Based on Lemma 9, F ∩ M is either M ,

M \ {v}, a min-VC of G[M], or a min-FVS of G[M]. Let S = V \ (F ∪ M).
Clearly, (F \M)∪VH is an FVS of G′ if F ∩M = M . Suppose F ∩M = M \{v}.
Let u ∈ VH . Based on Lemma 7, G[S ∪ {v}] and G′[S ∪ {u}] are isomorphic.

Polynomial Turing Compression Parameterized by Modular-Width 137

Hence, G′[S ∪{u}] is a forest, and (F \M)∪ (VH \{u}) is an FVS of G′. Suppose
F ∩ M is a min-VC of G[M]. Based on Lemma 7, G[S ∪ (M \ F)] = G[V \ F]
and G′[S ∪ (VH \ CH)] are isomorphic. So G′[S ∪ (VH \ CH)] has no cycles, and
(F \ M) ∪ CH is an FVS of G′. Suppose F ∩ M is a min-FVS of G[M]. Assume
G[M \ F] has no edges. Based on Lemma 8, G[M] has no edges. Thus, H has
no edges, moreover, G and G′ are isomorphic according to Lemma 7. Assume
G[M \ F] has an edge. Then M ′ ⊆ F . Hence, (F \ M) ∪ FH is an FVS of G′.

We claim Foct(G′) ≤ Foct(G). Based on Lemma 9, O∩M is either M , a min-
VC of G[M], or a min-OCT of G[M]. Let S = V \(O∪M). Clearly, (O\M)∪VH

is an OCT of G′ if O∩M = M . Assume O∩M is a min-VC of G[M]. According
to Lemma 7, G[S ∪ (M \ O)] = G[V \ O] and G′[S ∪ (VH \ CH)] are isomorphic.
Therefore, G′[S ∪ (VH \ CH)] has no odd cycles, and (O \ M) ∪ CH is an OCT
of G′. Assume O ∩ M is a min-OCT of G[M]. Suppose G[M \ O] has no edges.
Based on Lemma 8, G[M] has no edges. Thus, H has no edges, moreover, G and
G′ are isomorphic according to Lemma 7. Suppose G[M \ O] has an edge, then
M ′ ⊆ O. Hence, (O \ M) ∪ OH is an OCT of G′.

Due to space constraints, we omit the proofs of the following three lemmas,
which can be found in the full version of this paper [30].

Lemma 11. Partitioning Into Paths(mw) and Hamiltonian Cycle(mw)

have PTCs.

Lemma 12. Longest Induced Path(mw) has a PTC.

Lemma 13. Induced Matching(mw), Independent Triangle Packing

(mw), and Independent Cycle Packing(mw) have PTCs.

Corollary 14 holds according to Lemma 6, 10, 11 and the following reasons.
(1) An independent set, a nonblocker, and the vertex set of a maximum induced
forest of G are complements of a vertex cover, a dominating set, and a feedback
vertex set of G, respectively. (2) mw does not change under graph complemen-
tation, and an independent set in G is a clique in the complement graph of G.
(3) The mw of the output graph equals that of the input graph using the routine
reduction from Hamiltonian Path to Hamiltonian Cycle.

Corollary 14. Independent Set(mw), Clique(mw), Maximum Induced

Forest(mw), Nonblocker(mw), and Hamiltonian Path(mw) have PTCs.

5 Polynomial Compression Lower Bounds for Problems

Polynomial compression (PC) lower bounds for the first 11 problems of The-
orem 1 are provided in [28] that include Dominating Set(mw), Feedback

Vertex Set(mw), and Hamiltonian Path(mw), so PC lower bounds for
Nonblocker(mw), Maximum Induced Forest(mw), and Partitioning

Into Paths(mw) are obtained immediately. Next, we use the cross-composition

138 W. Luo

[6] to prove Longest Induced Path(mw), Independent Triangle Pack-

ing(mw), and Independent Cycle Packing(mw) have no PCs unless NP ⊆
coNP/poly.

Due to space constraints, we only provide sketches of Lemma 15 as well as
16, and omit the proofs of Lemma 17 and 18. The proofs of them can be found
in the full version of this paper [30].

We define a new problem Independent Triangle Packing Refinement

(ITPR) as follows: the input is a graph G and an independent triangle packing
(ITP) of G with k triangles, decide whether G has an ITP with k + 1 triangles?

Lemma 15. ITPR is NP-hard under Karp reductions.

Proof (sketch). We provide a Karp reduction from Independent Triangle

Packing to ITPR. Given an instance (G, k), where G = (V,E) and V =
{v1, . . . , vn}. Assume w.l.o.g. that 2 ≤ k ≤ n

3 . Construct G′ = (V ′, E′) as follows.
First, add G, vertices x1, . . . , xn−k+1, and n triangles u1-w1-w′

1, . . . , un-wn-w′
n

into G′. Then, connect ui with all vertices of V for each i ∈ [n]. Finally, connect
xi with wi, w

′
i for each i ∈ [n − k] and connect xn−k+1 with wn−k+1, . . . , wn,

w′
n−k+1, . . . , w

′
n. Clearly, T = {u1-w1-w′

1, . . . , un-wn-w′
n} is an ITP of G′. Thus,

(G′, T) is an instance of ITPR with n triangles. Then, we can prove that (G, k)
is a yes instance of Independent Triangle Packing if and only if (G′, T) is
a yes instance of ITPR.

Lemma 16. Independent Triangle Packing(mw) has no PCs unless NP
⊆ coNP/poly.

Proof (sketch). We can provide an or-cross-composition from ITPR to it, where
the output instance is the disjoint union of the input instances.

Lemma 17. Independent Cycle Packing(mw) has no PCs unless NP ⊆
coNP/poly.

Lemma 18. Longest Induced Path(mw) has no PCs unless NP ⊆
coNP/poly.

6 Conclusions

We conclude this paper by proposing some open questions. Does k-Path have a
PTC parameterized by mw? In addition, Fomin et al. [16] gives a meta-theorem
that proves a family of problems is FPT parameterized by mw. Can we also give
a meta-theorem to prove the problems in that family have PTCs?

Acknowledgements. I thank Manuel Lafond for his careful reading and construc-
tive comments to improve this manuscript, as well as his valuable help in many other
aspects. I thank the anonymous referees for their valuable comments on the improve-
ment of this manuscript.

Polynomial Turing Compression Parameterized by Modular-Width 139

References

1. Ambalath, A.M., et al.: On the kernelization complexity of colorful motifs. In:
Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 14–25. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17493-3 4

2. Belmonte, R., Hanaka, T., Lampis, M., Ono, H., Otachi, Y.: Independent set recon-
figuration parameterized by modular-width. Algorithmica 82(9), 2586–2605 (2020)

3. Bergougnoux, B., Kanté, M.M.: Fast exact algorithms for some connectivity prob-
lems parameterized by clique-width. Theor. Comput. Sci. 782, 30–53 (2019)

4. Bodlaender, H.L., et al.: Open problems in parameterized and exact computation.
In: IWPEC 2008 (2008)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels (extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008.
LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70575-8 46

6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)

7. Bodlaender, H.L., van Leeuwen, E.J., van Rooij, J.M.M., Vatshelle, M.: Faster
algorithms on branch and clique decompositions. In: Hliněný, P., Kučera, A. (eds.)
MFCS 2010. LNCS, vol. 6281, pp. 174–185. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15155-2 17

8. Burjons, E., Rossmanith, P.: Lower bounds for conjunctive and disjunctive turing
kernels. In: IPEC 2021. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

9. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

10. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret.
Appl. Math. 101(1–3), 77–114 (2000)

11. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

12. Donkers, H., Jansen, B.M.P.: A Turing kernelization dichotomy for structural
parameterizations of f-minor-free deletion. J. Comput. Syst. Sci. 119, 164–182
(2021)

13. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS,
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

14. Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.:
Kernel(s) for problems with no kernel: on out-trees with many leaves. In: STACS
2009, February 26–28, Freiburg, Germany, Proceedings. LIPIcs, vol. 3, pp. 421–432
(2009)

15. Fluschnik, T., Heeger, K., Hermelin, D.: Polynomial Turing kernels for clique with
an optimal number of queries. CoRR abs/2110.03279 (2021)

16. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized
by vertex cover and modular width, through potential maximal cliques. Algorith-
mica 80(4), 1146–1169 (2017)

17. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press, Cambridge (2013)

18. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPS for NP. In: STOC 2008, Victoria, British Columbia, Canada, May 17–20,
pp. 133–142. ACM (2008)

https://doi.org/10.1007/978-3-642-17493-3_4
https://doi.org/10.1007/978-3-540-70575-8_46
https://doi.org/10.1007/978-3-540-70575-8_46
https://doi.org/10.1007/978-3-642-15155-2_17
https://doi.org/10.1007/978-3-642-15155-2_17
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1

140 W. Luo

19. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8 15

20. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Comput. Sci. Rev. 4(1), 41–59 (2010)

21. Hegerfeld, F., Kratsch, S.: Towards exact structural thresholds for parameterized
complexity. In: IPEC 2022, September 7–9, 2022, Potsdam, Germany. LIPIcs, vol.
249, pp. 17:1–17:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

22. Hermelin, D., Kratsch, S., Soltys, K., Wahlström, M., Wu, X.: A completeness
theory for polynomial (Turing) kernelization. Algorithmica 71(3), 702–730 (2015)

23. Jacob, H., Bellitto, T., Defrain, O., Pilipczuk, M.: Close relatives (of feedback
vertex set), revisited. In: IPEC 2021, September 8–10, Lisbon, Portugal. LIPIcs,
vol. 214, pp. 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

24. Jansen, B.M.P.: Turing kernelization for finding long paths and cycles in restricted
graph classes. J. Comput. Syst. Sci. 85, 18–37 (2017)

25. Jansen, B.M.P., Marx, D.: Characterizing the easy-to-find subgraphs from the
viewpoint of polynomial-time algorithms, kernels, and Turing kernels. In: SODA
2015, San Diego, CA, USA, January 4–6, 2015. pp. 616–629 (2015)

26. Jansen, B.M.P., Pilipczuk, M., Wrochna, M.: Turing kernelization for finding long
paths in graph classes excluding a topological minor. Algorithmica 81(10), 3936–
3967 (2019)

27. Kratsch, S., Nelles, F.: Efficient and adaptive parameterized algorithms on modular
decompositions. In: ESA 2018, August 20–22, 2018, Helsinki, Finland. LIPIcs, vol.
112, pp. 55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

28. Lafond, M., Luo, W.: Preprocessing complexity for some graph problems parame-
terized by structural parameters. CoRR abs/2306.12655 (2023)

29. Luo, W.: On some FPT problems without polynomial Turing compressions. Theor.
Comput. Sci. 905, 87–98 (2022)

30. Luo, W.: Polynomial Turing compressions for some graph problems parameterized
by modular-width. CoRR abs/2201.04678 (2022)

31. Novick, M.B.: Fast parallel algorithms for the modular decomposition. Cornell
University, Technical report (1989)

32. Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computa-
tional complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891
(2012)

33. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decom-
position via recursive factorizing permutations. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70575-8 52

34. Thomassé, S., Trotignon, N., Vuskovic, K.: A polynomial Turing-kernel for
weighted independent set in bull-free graphs. Algorithmica 77(3), 619–641 (2017)

35. Witteveen, J., Bottesch, R., Torenvliet, L.: A hierarchy of polynomial kernels.
In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019.
LNCS, vol. 11376, pp. 504–518. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-10801-4 39

https://doi.org/10.1007/978-3-319-03898-8_15
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-030-10801-4_39
https://doi.org/10.1007/978-3-030-10801-4_39

Shortest Longest-Path Graph
Orientations

Yuichi Asahiro1, Jesper Jansson2(B), Avraham A. Melkman3, Eiji Miyano4,
Hirotaka Ono5, Quan Xue6, and Shay Zakov7

1 Kyushu Sangyo University, Fukuoka, Japan
asahiro@is.kyusan-u.ac.jp

2 Kyoto University, Kyoto, Japan
jj@i.kyoto-u.ac.jp

3 Ben-Gurion University of the Negev, Be’er Sheva, Israel
melkmana@gmail.com

4 Kyushu Institute of Technology, Iizuka, Japan
miyano@ai.kyutech.ac.jp

5 Nagoya University, Nagoya, Japan
ono@nagoya-u.jp

6 The University of Hong Kong, Hong Kong, China
quan.xue@connect.polyu.hk

7 Ruppin Academic Center, Kfar Monash, Israel
Zakov.Shay@ruppin365.net

Abstract. We consider a graph orientation problem that can be viewed
as a generalization of Minimum Graph Coloring. Our problem takes as
input an undirected graph G = (V, E) in which every edge {u, v} ∈
E has two (potentially different and not necessarily positive) weights
representing the lengths of its two possible directions (u, v) and (v, u),
and asks for an orientation, i.e., an assignment of a direction to each
edge of G, such that the length of a longest simple directed path in
the resulting directed graph is minimized. A longest path in a graph is
not always a maximal path when some edges have negative lengths, so
the problem has two variants depending on whether all simple directed
paths or maximal simple directed paths only are taken into account in
the definition. We prove that the problems are NP-hard to approximate
even if restricted to subcubic planar graphs, and develop fast polynomial-
time algorithms for both problem variants for three classes of graphs:
path graphs, cycle graphs, and star graphs.

Keywords: Algorithm · Computational complexity · Graph
orientation · Graph coloring · Path graph · Cycle graph · Star graph

Y. Asahiro—Funded by KAKENHI grant number JP22K11915.
E. Miyano—Funded by KAKENHI grant number JP21K11755.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 141–154, 2024.
https://doi.org/10.1007/978-3-031-49190-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_10&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_10

142 Y. Asahiro et al.

1 Introduction

1.1 Background

An orientation of an undirected graph is an assignment of a direction to each of
its edges. Based on this natural concept, many kinds of algorithmic problems with
applications to telecommunications, scheduling, data structures for supporting
fast adjacency queries in sparse graphs, bioinformatics, etc. can be defined (see,
e.g., [2,3,5,7,8,18,20]). Certain graph orientation problems have turned out to be
equivalent to well-known classic graph algorithmic problems, and modifying the
definitions of these graph orientation problems may then yield new generaliza-
tions of their classic counterparts. To illustrate, recall the Minimum Vertex Cover
problem and the Maximum Independent Set problem, which take as input an undi-
rected graph G = (V,E) and ask for a smallest possible subset V ′ ⊆ V such that
every edge in E is incident to at least one vertex in V ′, and a largest possible sub-
set V ′ ⊆ V such that no two vertices in V ′ are adjacent in G, respectively. As
shown in [1], to orient an undirected graph while minimizing the number of ver-
tices with outdegree at least 1 is in fact the Minimum Vertex Cover problem; by
replacing the number “1” by a parameter W , one obtains a relaxed variant of Min-
imum Vertex Cover in which every vertex of the input graph is allowed to cover
up to W −1 of its incident edges without having to be placed in the output vertex
cover. Similarly, maximizing the number of vertices that get outdegree at most W
is the Maximum Independent Set problem when W = 0 (see [1]).

In this paper, we study a graph orientation problem that can be viewed as
a generalization of another classic problem, namely Minimum Graph Coloring.
Our starting point is the following problem, which we call Unweighted Shortest
Longest-Path Orientation (USLPO): Given an undirected, unweighted graph G,
find an orientation of G that minimizes the length of a longest simple directed path.

For any undirected graph G, let H(G) and χ(G) denote the length of a
longest simple directed path in an optimal solution to USLPO for G and the
chromatic number of G, respectively. In the 1960s and 1970s, several researchers
independently proved that H(G)+1 = χ(G) [10,13,19,21] and that this equality
still holds when only acyclic orientations are allowed [7]. Note that since Mini-
mum Graph Coloring is NP-hard [15], this immediately implies that USLPO is
NP-hard. Moreover, known inapproximability results apply directly as well; e.g.,
Theorem 1.2 of [22] shows that Minimum Graph Coloring, and hence USLPO,
cannot be approximated within a ratio of n1−ε for any constant ε > 0 in polyno-
mial time, where n is the number of vertices in the input graph, unless P = NP.
Also, H(G)+1 = χ(G) implies that even if USLPO is restricted to 4-regular pla-
nar graphs, it cannot be approximated within a ratio of (3/2−ε) for any constant
ε > 0 in polynomial time, unless P = NP, because it is an NP-complete problem
to determine if a 4-regular planar graph G satisfies χ(G) ≤ 3 or χ(G) = 4 [6].

1.2 New Results

We generalize USLPO (thus making the problem even harder) to bi-weighted
edges, which means that every edge {u, v} in G has two (potentially different

Shortest Longest-Path Graph Orientations 143

and not necessarily positive) weights representing the lengths of its two possible
directions (u, v) and (v, u). Our goal is then to determine whether the generalized
problem, from here on simply referred to as Shortest Longest-Path Orientation
(SLPO), becomes efficiently solvable in some special cases. Observe that in a
directed graph, if some edge lengths are negative then a longest path is not nec-
essarily a maximal path. For this reason, we consider two variants of the prob-
lem called SLPOs and SLPOm, in which the longest path is taken, respectively,
among all simple directed paths and among maximal simple directed paths only.

An undirected graph G is subcubic if every vertex in G has degree at most
three. We first prove that SLPOs and SLPOm are NP-hard to approximate even
if restricted to subcubic planar graphs. This result is important in view of the
close connection between USLPO and Minimum Graph Coloring described above
and the fact that the latter is polynomial-time solvable for subcubic graphs [11].

Motivated by the hardness of the general case, we then focus on special cases.
Throughout the paper, n denotes the number of vertices in the input graph.
As a first step, note that if G is a tree then one can root G in an arbitrarily
selected vertex and apply dynamic programming over rooted subtrees: For every
node v of G (in bottom-up order) and every possible triple (Wu,Wd,W�) of
weights, check if there exists an orientation of the subtree rooted at v whose
longest paths to, from, and not passing through v have lengths Wu, Wd, and W�,
respectively. Since G has Θ(n2) many paths, one can precompute the set of all
possible path weights and use this set to prune the dynamic programming table,
resulting in a polynomial-time algorithm. However, the degree of the polynomial
will be large because the table can have Ω(n · n2 · n2 · n2) = Ω(n7) entries and
computing any entry involving a node v may take Ω(n6 · deg(v)) time, where
deg(v) is the number of children of v, if done by directly looking at the entries
for (Wu,Wd,W�)-triples for each child of v. The rest of the paper is devoted
to developing much faster algorithms for solving SLPOs and SLPOm on path
graphs, cycle graphs, and star graphs. See the following table for a summary of
our algorithms’ time complexities.

Graph class SLPOs SLPOm Section Theorems

Tree (Polynomial time) (Polynomial time) 1.2 –

Path graph O(n) O(n log n) 4 4 and 5

Cycle graph O(n) O(n2 log n) 5 6 and 7

Star graph O(n log n) O(n log n) 6 9 and 8

The paper is organized as follows. Section 2 defines SLPOs and SLPOm for-
mally and lists some useful properties. The NP-hardness result is presented in
Sect. 3. We describe our fast algorithms for path graphs in Sect. 4, for cycle
graphs in Sect. 5, and for star graphs in Sect. 6. Due to space constraints, several
correctness proofs have been omitted from the conference version of this paper.
They will be available in the journal version.

144 Y. Asahiro et al.

Fig. 1. An example. Let G be the undirected graph in (a). For every edge {u, v}, its
two weights w(u, v) and w(v, u) are specified as w(v, u) / w(u, v). The orientation in (b)

satisfies hs(
∼
G) = hm(

∼
G) = 2, while the one in (c) satisfies hs(

∼
G) = 3, hm(

∼
G) = −7.

They are optimal under hs and hm, respectively, so Hs(G) = 2 and Hm(G) = −7.

2 Preliminaries

An orientation of an undirected graph G = (V,E) is a directed graph
∼
G obtained

by replacing each undirected edge {u, v} ∈ E by either the directed edge (u, v)
or the directed edge (v, u). Denote by O(G) the set of all orientations of G.

An edge-bi-weighted graph is an undirected graph G = (V,E) in which every
edge {u, v} ∈ E has a pair of possibly nonpositive weights w(u, v) and w(v, u)
associated with the two directions (u, v) and (v, u), respectively. The length of
a directed edge (u, v) in an orientation of an edge-bi-weighted graph is w(u, v),
and the length of a path �P = 〈v1, . . . , vq〉 is:

W (�P) =
q−1∑

k=1

w(vk, vk+1). (1)

A path in a directed graph is said to be maximal if it is not contained in
any path with more edges. As pointed out in Sect. 1.2, if some edge lengths are
negative in a directed graph then a longest path is not necessarily a maximal
path. We therefore employ two ways of measuring the cost of orienting a graph.

Definition 1. Define the following two cost measures for an oriented graph
∼
G:

hs(
∼
G) = max{W (�P) | �P is a simple directed path in

∼
G}, (2)

hm(
∼
G) = max{W (�P) | �P is a maximal simple directed path in

∼
G}. (3)

The corresponding cost functions for orienting an undirected graph are:

Hs(G) = min{hs(
∼
G) | ∼

G∈ O(G)}, (4)

Hm(G) = min{hm(
∼
G) | ∼

G∈ O(G)}. (5)

Figure 1 illustrates the difference between Hs(G) and Hm(G).

Shortest Longest-Path Graph Orientations 145

The two problem variants that we consider in this paper are the following:

The Shortest Longest-Path Orientation Problem, variants SLPOs & SLPOm:
Input: An undirected, edge-bi-weighted graph G.

Output: An orientation
∼
G of G such that hs(

∼
G) = Hs(G) (for SLPOs) or

hm(
∼
G) = Hm(G) (for SLPOm).

In other words, SLPOs and SLPOm ask for orientations of G such that the
length of a longest simple path in the resulting directed graph is minimized,
using the two alternative definitions of a “longest path”.

We now state some easily verified properties of the cost measures. Note that
the empty path participates in determining the value of hs(

∼
G), so hs(

∼
G) ≥ 0 for

any
∼
G and Hs(G) ≥ 0. Another useful property of Hs is its monotonicity:

Lemma 1. If G′ is a subgraph of an edge-bi-weighted graph G then Hs(G′) ≤
Hs(G).

Hm is not monotone in general, but if all weights are nonnegative then Hm

is monotone as well. In fact, if all weights are nonnegative then the definitions
of Hm and Hs coincide:

Lemma 2. If all weights of an edge-bi-weighted graph G are nonnegative then
hs(

∼
G) = hm(

∼
G) for any orientation

∼
G of G. In particular, Hs(G) = Hm(G), and

∼
G is an optimal orientation of G with respect to hs if and only if it is optimal
with respect to hm.

3 NP-Hardness for Subcubic Planar Graphs

The following theorem is proved by a polynomial-time reduction from Planar
3-SAT restricted to instances where each variable occurs in at most four clauses,
which is known to be NP-hard [14]. For the details of the reduction, the reader
is referred to the journal version of this paper.

Theorem 1. SLPOs is NP-hard even if restricted to subcubic planar graphs
where all edge weights belong to {0, 1, 2}.

By Lemma 2, we immediately obtain:

Corollary 1. SLPOm is NP-hard even if restricted to subcubic planar graphs
where all edge weights belong to {0, 1, 2}.

The reduction in the proof of Theorem 1 constructs a subcubic planar
graph G such that if one could determine whether Hs(G) = 2 or Hs(G) ≥ 3
then one would know if the instance of Planar 3-SAT is satisfiable or not.
This yields:

Theorem 2. If, for any constant ε > 0, there exists a polynomial-time (3/2−ε)-
approximation algorithm for SLPOs or SLPOm (even if restricted to subcubic
planar graphs) then P = NP.

146 Y. Asahiro et al.

4 Algorithms for Path Graphs

A path graph is an undirected, connected graph in which two vertices have
degree 1 and all other vertices have degree 2. In Sect. 4.1 below, we first give
a generic dynamic programming algorithm for finding the cost of an optimal
orientation of an edge-bi-weighted path graph L. A straightforward implemen-
tation of the algorithm runs in O(n2) time. This high-level version makes no
use of the details of the cost function, be it Hm or Hs. Then, Sects. 4.2 and 4.3
present faster implementations that take into account the specifics of Hs and Hm,
thereby improving the time complexity to O(n) and O(n log n), respectively.

4.1 A Generic Algorithm for Path Graphs

Given a path graph L with n vertices, assume without loss of generality that
its vertices are numbered from 1 to n. For simplicity, we present an algorithm
that computes the cost of an optimal orientation only; a corresponding opti-
mal orientation can be found by adding a traceback step at no increase in the
asymptotic time complexity. The algorithm is named BestOrientPathx(L) and
its pseudocode is listed in Algorithm 1.

Algorithm 1: BestOrientPathx(L)
Input: an edge-bi-weighted path graph L with n vertices
Output: an optimal orientation of L under Hx

1 if n = 1 then
2 return 0;

3 H→
x (1) = H←

x (1) = −∞;
4 for j = 2 to n do

5 H→
x (j) = min1≤i<j max{H←

x (i), hx(�Li,j)};

6 H←
x (j) = min1≤i<j max{H→

x (i), hx(�Li,j)};

7 return min{H→
x (n), H←

x (n)};

We use the following notation.

• Li,j is the subgraph of L induced by the vertices i, . . . , j.
• �Li,j and �Li,j are the oriented versions of Li,j in which all edges are directed

towards larger numbered vertices (i.e., of the form (i, i + 1)) and towards
smaller numbered vertices (i.e., of the form (i + 1, i)), respectively.

• The subscript x satisfies x ∈ {s,m}.
• H→

x (i) is the value of an optimal orientation of L1,i under Hx assuming that
edge {i − 1, i} is directed towards i. Analogously, H←

x (i) is the value of an
optimal orientation of L1,i under Hx assuming that edge {i− 1, i} is directed
towards i− 1. In particular, the cost of an optimal orientation of L under Hx

is given by min{H→
x (n), H←

x (n)}.

Shortest Longest-Path Graph Orientations 147

To compute H→
x (n) and H←

x (n), we compute H→
x (j) and H←

x (j) using dynamic
programming from j = 2 up to j = n. The idea is to locate, in an optimal
orientation of L1,j , the largest vertex i at which there is a change in direction
given that the last edge {j − 1, j} has a specified direction.

Theorem 3. BestOrientPathx finds the cost of an optimal orientation of L.

4.2 Running Time Under Cost Function Hs

Here, we show that Algorithm BestOrientPaths can be made to run in O(n)
time.

The first issue is computing hs(�Li,j) and hs(�Li,j) for given 1 ≤ i < j ≤ n.
The weight of an edge {i, i+1} when oriented as (i, i+1) is denoted by w(i, i+1)
and when oriented as (i + 1, i) by w(i + 1, i). Equations (1) and (2) give:

hs(�Li,j) = max

⎧
⎨

⎩

j′−1∑

t=i′
w(t, t + 1) | i ≤ i′ ≤ j′ ≤ j

⎫
⎬

⎭ . (6)

Computing hs(�Li,j) for a pair (i, j) is therefore an instance of the Range
Maximum-sum Segment Online Query problem, RMSOQ for short [4]:

Problem 1 (Range Maximum-sum Segment Online Query).
Input to be preprocessed: A nonempty sequence a1, . . . , an of real numbers.
Online query: respond to a query of the form RMSOQ(i, j) by returning a
pair of indices (i′, j′) that maximizes

∑j′

t=i′ at over all i ≤ i′ ≤ j′ ≤ j.

Chen and Chao [4] presented a method for answering each such query in
constant time after A has been preprocessed in O(n) time. This gives:

Lemma 3. Suppose w(i, i + 1), 1 ≤ i < n and w(i + 1, i), 1 ≤ i < n have been
preprocessed in linear time for the RMSOQ problem. After H←

s (i) and H→
s (i)

have been computed for 1 ≤ i < j, each value of the form max{H←
s (i), hs(�Li,j)}

and max{H→
s (i), hs(�Li,j)} appearing in steps 5 and 6 in iteration j can be eval-

uated in constant time.

Next, we address the second issue: what is the time needed to find all mini-
mum values in steps 5 and 6 in Algorithm BestOrientPaths(L)? To answer the
question, first define two (n × n)-matrices M→(i, j) and M←(i, j) by:

• M→[1, j] = hs(�L1,j) and M←[1, j] = hs(�L1,j) for 2 ≤ j ≤ n
• M→[i, j] = M←[i, j] = ∞ for 1 ≤ j ≤ i ≤ n

• M→[i, j] = max{H←
s (i), hs(�Li,j)} and M←[i, j] = max{H→

s (i), hs(�Li,j)} for
2 ≤ i < j ≤ n

In these terms, the algorithm computes the minimum value in column j of
the matrices M→ and M← for 1 ≤ j ≤ n. Two features of this computation
deserve particular attention. The first is that before computing the minimum

148 Y. Asahiro et al.

value in column j of the matrix M→, or M←, the minimum values of all previous
columns j′ < j, H←

s [j′], respectively H→
s [j′], must have been computed already.

The second feature we want to point out is that it follows from Eq. (6) that
both matrices M→ and M← are of the form M [i, j] = max{f(i), g(i, j)}, with g
non-increasing in i and non-decreasing in j. This leads to the next proposition,
where a matrix M is called totally r-monotone if it has the following property:
If M [i1, j1] ≥ M [i2, j1] then M [i1, j2] ≥ M [i2, j2] for all i1 < i2 and j1 < j2.

Proposition 1. If g(i, j) is non-increasing in i and non-decreasing in j and
M(i, j) = max{f(i), g(i, j)} then M is totally r-monotone.

Proof. Suppose that M [i1, j1] ≥ M [i2, j1] holds. Then max{f(i1), g(i1, j1)} ≥
max{f(i2), g(i2, j1)}. In particular, we have f(i2) ≤ max{f(i1), g(i1, j1)} ≤
max{f(i1), g(i1, j2)} since g is non-decreasing in j. Moreover, g(i1, j2) ≥ g(i2, j2).
Hence max{f(i1), g(i1, j2)} ≥ max{f(i2), g(i2, j2)}. 	

To find all minimum values in steps 5 and 6 of the algorithm, we apply a
solution to the following problem.

Problem 2 (Online Column Minima of a Totally r-Monotone Matrix). For 1 ≤
j ≤ n, compute H(j) = min{M(i, j) | 1 ≤ i ≤ n}, where M is totally r-
monotone and the values of H(j′), j′ < j have to be computed before M(i, j)
can be evaluated.

Several linear-time online algorithms for solving Problem 2 exist [9,16,17].

Theorem 4. BestOrientPathx with cost function Hs runs in O(n) time.

4.3 Running Time Under Cost Function Hm

We now make BestOrientPathm run in O(n log n) time. Combining (1) and (3):

hm(�Li,j) = Wj − Wi =
j−1∑

t=i

w(t, t + 1), (7)

where W1 = 0 and Wj =
∑j−1

t=1 w(t, t + 1) for j ≥ 2. A similar equality holds
for hm(�Li,j). Consequently, finding the minimum values in steps 5 and 6 takes
on a form different from the one obtained for Hs; more precisely, Eq. (7) shows
that for 2 ≤ j ≤ n, H→

m (j) = min1≤i<j max{H←
m (i),Wj − Wi}. We split the

points of the interval 1 ≤ i < j into those that satisfy H←
m (i) + Wi ≥ Wj and

the remainder. Since H←
m (1) = −∞, the point i = 1 belongs to the latter. Also,

H→
m (2) = W2, and for j ≥ 3, H→

m (j) = min{M1(j),M2(j)} with:

M1(j) = min
2≤i<j

{H←
m (i) | H←

m (i) + Wi ≥ Wj}, (8)

M2(j) = min
1≤i<j

{Wj − Wi | H←
m (i) + Wi < Wj}. (9)

Next, we consider how to efficiently compute the minima in Eq. (8).
Equation (9) can be handled similarly. We rephrase the problem as:

Shortest Longest-Path Graph Orientations 149

Problem 3 (Minima of Sequence Prefixes under Key-Bounds).

Given: A sequence KV of n pairs of the form (key, value), and a sequence of
lower bounds Wj , 1 ≤ j ≤ n,

Compute: minj(Wj) = min{value | (key, value) ∈ Prej and key ≥ Wj}, for
1 ≤ j ≤ n, where Prej is the prefix of length j of KV .

Problem 3 can be solved by red-black trees [12]; see the journal version for details.
This gives:

Theorem 5. BestOrientPathx with cost function Hm runs in O(n log n) time.

5 Algorithms for Cycle Graphs

A cycle graph is an undirected, connected graph in which all vertices have
degree 2. Given a cycle graph C on n vertices, we fix a numbering of its vertices
by assigning the number 0 to an arbitrarily selected vertex and then assigning
the numbers 1 through n−1 to the remaining vertices in the order that they are
visited by a depth-first traversal starting at 0. Denote the weight of a directed
edge (i, i+1) by w(i, i+1). When a vertex j with j ≥ n is referred to, it should be
understood as referring to vertex j mod n. For example, w(n−1, n) = w(n−1, 0).

5.1 An Algorithm for Cost Function Hs

Our algorithm for cycle graphs under Hs, BestOrientCycles, employs the follow-
ing strategy. It first creates a special path graph L from the input cycle graph C
and then applies BestOrientPaths from Sect. 4.2 to L to find an optimal orien-
tation

∼
L

∗
of L. An optimal orientation of C will always be one of five possible

orientations that depends on the structure of
∼
L

∗
, so the algorithm simply checks

which one of five conditions holds and outputs the corresponding orientation
of C.

The pseudocode is given in Algorithm 2. It uses the following notation.

Definition 2. Let C be a cycle graph, L the path graph constructed in step 1 of
BestOrientCycles(C), and

∼
L

∗
an optimal orientation of L. The five orientations

of C denoted by
∼
C

∗1way
,

∼
C

2+xx
,

∼
C

i
,

∼
C

rflipi

, and
∼
C

lflipi

are defined as:

–
∼
C

∗1way
is a one-way orientation of C whose cost, OneWayCosts, is the least.

– For a cycle graph of odd length,
∼
C

2+xx
is the orientation of C obtained as

follows: among all possible directed paths of length two find one, L2
�

�

, whose
weight is minimal; starting with this path, direct each successive edge of the
cycle graph in the direction opposite to that of its predecessor.

150 Y. Asahiro et al.

–
∼
C

i
is the orientation of C obtained by copying from

∼
L

∗
the directions of the

edges {k, k + 1}, i ≤ k < i + n.

–
∼
C

rflipi

is created when 0 ≤ i ≤ 2n and
∼
L

∗
has the directed edges (i, i+1), (i+

1, i + 2), (i + 3, i + 2). Its first directed edge is (i + 1, i), and the directions of
the following edges {k, k + 1}, i + 1 ≤ k < i + n, are copied from

∼
L

∗
.

–
∼
C

lflipi

is created when n ≤ i ≤ 3n and
∼
L

∗
has the directed edges (i, i−1), (i−

1, i − 2), (i − 3, i − 2). Its first directed edge is (i − 1, i), and the directions of
the following edges {k, k − 1}, i − n < k ≤ i − 1, are copied from

∼
L

∗
.

The algorithm’s time complexity is linear because running BestOrientPaths in
step 2 takes O(n) time according to Theorem 4 and each of the other steps is
easy to implement in O(n) time.

Theorem 6. BestOrientCycles returns an orientation for a cycle graph that is
optimal under the cost function Hs in O(n) time.

5.2 An Algorithm for Cost Function Hm

A simple method that works for cycle graphs under the cost function Hm is shown
in Algorithm 3 (BestOrientCyclem). It tries all ways of breaking the input cycle
graph into a path graph by cutting one edge, applies BestOrientPathm to each
such obtained path graph, and chooses one with the least cost. (This approach

Algorithm 2: BestOrientCycles(C)
Input: an edge-bi-weighted cycle graph C
Output: an optimal orientation of C under Hs

1 create a path graph L of length 3n by unrolling the cycle graph three times
starting from vertex 0, numbering its vertices 0 to 3n, and assigning each
edge {i, i + 1} of L the same weights as edge {i, i + 1} of C;

2 let
∼
L

∗
be the oriented graph returned by BestOrientPaths(L);

3 if hs(
∼
L

∗
) ≥ OneWayCosts then set

∼
C to

∼
C

∗1way
;

4 else if n is odd and every two consecutive edges in
∼
L

∗
have opposite directions

then set
∼
C to

∼
C

2+xx
;

5 else if two edges {i, i + 1} and {i + n − 1, i + n} have opposite directions in
∼
L

∗

then set
∼
C to

∼
C

i
;

6 else if there is an i, 0 ≤ i ≤ 2n, such that the directed edges

(i, i + 1), (i + 1, i + 2), (i + 3, 1 + 2) appear in
∼
L

∗
then set

∼
C to

∼
C

rflipi
;

7 else find i, n ≤ i ≤ 3n, such that
∼
L

∗
contains the directed edges

(i, i − 1), (i − 1, i − 2), (i − 3, i − 2), and set
∼
C to

∼
C

lflipi
;

8 return
∼
C;

Shortest Longest-Path Graph Orientations 151

would also work for the cost function Hs, but the resulting time complexity
would be worse than the one in Theorem 6.)

In the pseudocode,
∼
C

∗1way
denotes the one-way orientation of C whose cost,

OneWayCostm, is the least. Also, Li+1,i−1 for 0 ≤ i ≤ n is the subgraph of C
induced by vertices i + 1, i + 2, . . . , i − 1, with sums taken mod n.

Theorem 7. Algorithm BestOrientCyclem(C) returns an optimal orientation
of C in O(n2 log n) time.

Proof. Let
∼
C

∗
be an optimal orientation of C. If

∼
C

∗
is a directed cycle then an

optimal solution will be found in step 1. Otherwise,
∼
C

∗
has at least one vertex i

such that both edges {i − 1, i} and {i, i + 1} are oriented away from i. Consider
the path graph Li constructed in iteration i. Denote by

∼
Li the orientation of

Li induced by breaking the cycle at vertex i, and note that hm(
∼
Li) = hm(

∼
C

∗
).

Let
∼
Li

∗
be an optimal orientation of Li.

∼
Li

∗
induces an orientation

∼
C of C

by identifying i′ with i′′. Then hm(
∼
C) = hm(

∼
Li

∗
) ≤ hm(

∼
Li) = hm(

∼
C

∗
). Since

hm(
∼
C) ≥ hm(

∼
C

∗
), it follows that hm(

∼
Li

∗
) = hm(

∼
C

∗
).

Because one call to BestOrientPathm takes O(n log n) time by Theorem 5,
the algorithm runs in O(n2 log n) time. 	

Algorithm 3: BestOrientCyclem(C)
Input: an edge-bi-weighted cycle graph C
Output: an optimal orientation of C under Hm

1 set
∼
C to

∼
C

∗1way
and set BestCost to OneWayCostm;

2 for i = 0 to n − 1 do
3 construct a path graph Li by adding two vertices i′ and i′′ and two edges

{i + 1, i′} and {i − 1, i′′} to Li+1,i−1 with edge weights
wLi(i + 1, i′) = ∞, wLi(i′, i + 1) = w(i, i + 1), wLi(i − 1, i′′) = ∞, and
wLi(i′′, i − 1) = w(i, i − 1);

4 let
∼
Li be the graph returned by BestOrientPathm(Li);

5 if hm(
∼
Li) < BestCost then

6 set
∼
C to the orientation of C induced by

∼
Li and BestCost to hm(

∼
Li);

7 return
∼
C;

6 Algorithms for Star Graphs

A star graph is a tree with exactly one internal node and at least two leaves. In
this section, the internal node of a given star graph is denoted by c.

152 Y. Asahiro et al.

6.1 An Algorithm for Cost Function Hm

Algorithm BestOrientStarm for SLPOm on star graphs is given in Algorithm 4. It
initially orients each edge so that it points in its lighter direction and then refines
this solution to obtain an optimal orientation. To do so, it either flips edges that
were initially pointing inwards only or edges that were initially pointing outwards
only. The correctness of this approach is guaranteed by:

Lemma 4. There is no optimal orientation of a star graph in which both the
largest inward edge weight is less than w(u1, c) and the largest outward edge
weight is less than w(c, v1).

Proof. The cost of the initial orientation is hm(
∼
S) = w(u1, c) + w(c, v1). For the

purpose of obtaining a contradiction, suppose that there is an optimal orientation
∼
S

∗
with largest inward weight w(x, c) < w(u1, c) and largest outward weight

w(c, y) < w(c, v1). Then hm(
∼
S

∗
) = w(x, c) + w(c, y). The initial orientation

implies that w(c, u1) > w(u1, c), and w(v1, c) ≥ w(c, v1). Since {u1, c} is an
outward edge in

∼
S

∗
and {v1, c} an inward edge, hm(

∼
S

∗
) ≥ w(v1, c) + w(c, u1) >

w(u1, c) + w(c, v1) = hm(
∼
S), which is impossible. 	

Theorem 8. BestOrientStarm solves SLPOm on star graphs in O(n log n) time.

6.2 An Algorithm for Cost Function Hs

Based on the observation in the next lemma, we can use BestOrientStarm from
Sect. 6.1 as a subroutine to obtain a solution for SLPOs on star graphs, as shown
in Algorithm 5 (BestOrientStars).

Algorithm 4: BestOrientStarm(S)
Input: an edge-bi-weighted star graph S
Output: an optimal orientation of S under Hm

1 orient each edge {u, c} inwards to c if w(u, c) < w(c, u), and outwards from c
otherwise;

2 denote by
∼
S the resulting directed graph, by BestCost its cost,

3 by Ein = {(u1, c), . . . , (u�, c)} the list of its inward edges,
4 and by Eout = {(c, v1), . . . , (c, vr)} the list of its outward edges;
5 reorder each of Ein and Eout so that the weights of its edges are in

non-increasing order;

6 set
∼
S′ to

∼
S;

7 for k = 1 to � do

8 flip the direction of edge (uk, c) in
∼
S′ and update BestCost if necessary;

9 set
∼
S′ to

∼
S;

10 for k = 1 to r do

11 flip the direction of edge (c, vk) in
∼
S′ and update BestCost if necessary;

12 return an orientation whose cost is BestCost;

Shortest Longest-Path Graph Orientations 153

Lemma 5. Suppose S has a vertex u with an edge to or from c with non-positive
weight. Let S′ be the star graph obtained by removing u from S. Then an optimal
orientation of S is obtained by first optimally orienting S′, and then adding to it
the vertex u with its edge {u, c} oriented in a direction with non-positive weight.

Proof. The number of edges on a directed path in an oriented star graph is no
more than two. An edge with non-positive weight is therefore either the first or
the last edge on any directed path, and does not contribute to its cost. 	

Theorem 9. BestOrientStars solves SLPOs on star graphs in O(n log n) time.

Algorithm 5: BestOrientStars(S)
Input: an edge-bi-weighted star graph S
Output: an optimal orientation of S under Hs

1 remove from S every edge with a direction of non-positive weight, and denote
the resulting star graph S′;

2 set
∼
S′ to BestOrientStarm(S′);

3 direct all edges removed in step 1 in a direction of non-positive weight and add

them to
∼
S′, and denote the resulting directed star graph

∼
S;

4 return
∼
S;

References

1. Asahiro, Y., Jansson, J., Miyano, E., Ono, H.: Graph orientations optimizing the
number of light or heavy vertices. J. Graph Algorithms Appl. 19(1), 441–465 (2015)

2. Asahiro, Y., Jansson, J., Miyano, E., Ono, H., Zenmyo, K.: Approximation algo-
rithms for the graph orientation minimizing the maximum weighted outdegree. J.
Comb. Optim. 22(1), 78–96 (2011)

3. Borradaile, G., Iglesias, J., Migler, T., Ochoa, A., Wilfong, G., Zhang, L.: Egali-
tarian graph orientations. J. Graph Algorithms Appl. 21(4), 687–708 (2017)

4. Chen, K.Y., Chao, K.M.: On the range maximum-sum segment query problem.
Discret. Appl. Math. 155(16), 2043–2052 (2007)

5. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and com-
paction of adjacency matrices. Theoret. Comput. Sci. 86(2), 243–266 (1991)

6. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs
are NP-complete. Discret. Math. 30(3), 289–293 (1980)

7. Deming, R.W.: Acyclic orientations of a graph and chromatic and independence
numbers. J. Comb. Theory B 26(1), 101–110 (1979)

8. Elberfeld, M., et al.: On the approximability of reachability-preserving network
orientations. Internet Math. 7(4), 209–232 (2011)

9. Galil, Z., Park, K.: A linear-time algorithm for concave one-dimensional dynamic
programming. Inf. Process. Lett. 33(6), 309–311 (1990)

10. Gallai, T.: On directed graphs and circuits. In: Theory of Graphs (Proceedings of
the Colloquium held at Tihany 1966), pp. 115–118. Akadémiai Kiadó (1968)

154 Y. Asahiro et al.

11. Garey, M., Johnson, D.: Computers and Intractability - A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York (1979)

12. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: Pro-
ceedings of the Nineteenth Annual Symposium on Foundations of Computer Sci-
ence (FOCS 1978), pp. 8–21. IEEE Computer Society (1978)

13. Hasse, M.: Zur algebraischen Begründung der Graphentheorie. I. Mathematische
Nachrichten 28(5–6), 275–290 (1965)

14. Jansen, K., Müller, H.: The minimum broadcast time problem for several processor
networks. Theoret. Comput. Sci. 147(1–2), 69–85 (1995)

15. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of Com-
plexity of Computer Computations, pp. 85–103. The IBM Research Symposia
Series, Plenum Press (1972)

16. Klawe, M.M.: A simple linear time algorithm for concave one-dimensional dynamic
programming. Technical Report 89–16, Department of Computer Science, Univer-
sity of British Columbia (1989)

17. Larmore, L.L., Schieber, B.: On-line dynamic programming with applications to
the prediction of RNA secondary structure. J. Algorithms 12(3), 490–515 (1991)

18. Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An algorithm for orienting
graphs based on cause-effect pairs and its applications to orienting protein net-
works. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS, vol. 5251, pp.
222–232. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87361-
7 19

19. Roy, B.: Nombre chromatique et plus longs chemins d’un graphe. Revue française
d’informatique et de recherche opérationnelle 1(5), 129–132 (1967)

20. Venkateswaran, V.: Minimizing maximum indegree. Discret. Appl. Math. 143(1–
3), 374–378 (2004)

21. Vitaver, L.M.: Determination of minimal coloring of vertices of a graph by means
of Boolean powers of the incidence matrix (in Russian). In: Proceedings of the
USSR Academy of Sciences, vol. 147, pp. 758–759. Nauka (1967)

22. Zuckerman, D.: Linear degree extractors and the inapproximability of Max Clique
and Chromatic Number. Theory Comput. 3(1), 103–128 (2007)

https://doi.org/10.1007/978-3-540-87361-7_19
https://doi.org/10.1007/978-3-540-87361-7_19

Sink Location Problems in Dynamic Flow
Grid Networks

Yuya Higashikawa, Ayano Nishii(B), Junichi Teruyama, and Yuki Tokuni

Graduate School of Information Science, University of Hyogo, Kobe, Japan
{higashikawa,junichi.teruyama}@gsis.u-hyogo.ac.jp,

{ad23f047,af23v006}@guh.u-hyogo.ac.jp

Abstract. A dynamic flow network consists of a directed graph, where
nodes called sources represent locations of evacuees, and nodes called
sinks represent locations of evacuation facilities. Each source and each
sink are given supply representing the number of evacuees and demand
representing the maximum number of acceptable evacuees, respectively.
Each edge is given capacity and transit time. Here, the capacity of an
edge bounds the rate at which evacuees can enter the edge per unit time,
and the transit time represents the time which evacuees take to travel
across the edge. The evacuation completion time is the minimum time at
which each evacuees can arrive at one of the evacuation facilities. Given
a dynamic flow network without sinks, once sinks are located on some
nodes or edges, the evacuation completion time for this sink location is
determined. We then consider the problem of locating sinks to minimize
the evacuation completion time, called the sink location problem. The
problems have been given polynomial-time algorithms only for limited
networks such as paths [1,2,10], cycles [1], and trees [4,9,18], but no
polynomial-time algorithms are known for more complex network classes.
In this paper, we prove that the 1-sink location problem can be solved
in polynomial-time when an input network is a grid with uniform edge
capacity and transit time.

Keywords: facility location problem · dynamic flow · quickest
transshipment problem · evacuation problem · polynomial-time
algorithm

1 Introduction

In recent years, natural disasters such as earthquakes, tsunamis and hurricanes
have been occurring more frequently, and in Japan, the revision of the Basic

Supported by JSPS KAKENHI Grant Numbers 19H04068, 23H03349.
The full version of this paper [12] is available at the following link:
https://doi.org/10.48550/arXiv.2308.12651.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 155–167, 2024.
https://doi.org/10.1007/978-3-031-49190-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_11&domain=pdf
https://doi.org/10.48550/arXiv.2308.12651
https://doi.org/10.1007/978-3-031-49190-0_11

156 Y. Higashikawa et al.

Act on Disaster Management1 has accelerated the development of evacuation
facilities, i.e., locating tsunami evacuation towers and setting tsunami evacua-
tion buildings, which had been delayed. On the other hand, when considering
evacuation planning for urgent large-scale disasters such as tsunamis, floods, and
nuclear power plant accidents, one of the most important issues to be considered
is the delay in evacuation time due to traffic congestion. In fact, it is known that
many people were killed in the Great East Japan Earthquake due to delayed
evacuation caused by traffic congestion [17].

To attack this issue, the dynamic flow network model proposed by Ford and
Fulkerson [6] can be applied. Since the dynamic flow network model can handle
the movement of people or objects over time, it is possible to develop an evacu-
ation plan that quantitatively takes traffic congestion into account. A dynamic
flow network consists of a directed graph, where nodes called sources represent
locations of evacuees, and nodes called sinks represent locations of evacuation
facilities. Each source and each sink are given supply representing the number
of evacuees and demand representing the maximum number of acceptable evac-
uees, respectively. Each edge is given capacity and transit time. The capacity of
an edge bounds the rate at which evacuees can enter the edge per unit time,
and the transit time represents the time which evacuees take to travel across the
edge.

One of the most fundamental problems in dynamic flow networks is the quick-
est transshipment problem. The objective of this problem is to compute the min-
imum time by which each evacuees can arrive at one of sinks, i.e., the evacuation
completion time, and to find the optimal flow of evacuees that achieves the evacu-
ation completion time. For the quickest transshipment problem, several strongly
polynomial-time algorithms have been developed so far [13,16,19].

Given a dynamic flow network without sinks, once sinks are located on
some nodes or edges, the evacuation completion time for this sink location is
determined. We then consider the problem of locating sinks to minimize the
evacuation completion time, called the sink location problem. The problems
have been given polynomial-time algorithms only for limited networks such as
paths [1,2,10], cycles [1], and trees [4,9,18], but no polynomial-time algorithms
are known for more complex network classes. In this paper, we address the sink
location problem on grid networks. A grid network can model an actual road
network better than the networks studied so far, in that it consists of a number
of cycles. We present the first polynomial-time algorithm for the 1-sink location
problem in dynamic flow grid networks with uniform edge capacity and transit
time.

We describe the basic ideas of this study. In our model, a sink can be located
on a node or an edge. When a sink is located at a node, the evacuation completion
time for that sink can be computed in polynomial-time using the algorithms [13,
16,19] for the quickest transshipment problem. Therefore, if one can compute in
polynomial-time the optimal sink location for each edge, i.e., the sink location
that minimizes the evacuation completion time over the points on the edge, the

1 https://www.bousai.go.jp/taisaku/kihonhou/index.html (in Japanese).

https://www.bousai.go.jp/taisaku/kihonhou/index.html

Sink Location Problems in Dynamic Flow Grid Networks 157

optimal sink location for the entire network can be obtained in polynomial-time.
In the following, we deal with the 1-sink location problem on a particular edge
of the input network.

This paper is organized as follows. In Sect. 2, we introduce notations, models
and known related results used throughout the paper. In Sect. 3, we will give a
polynomial-time algorithm for the 1-sink location problem on a particular edge.
Combining this algorithm and previous results, we will give a polynomial-time
algorithm for the 1-sink location problem on a grid network. We conclude this
paper in Sect. 4 with some discussions.

2 Preliminaries

2.1 Models

Let R and R+ denote the sets of real values and non-negative real values. A
dynamic flow network N is given as a 6-tuple N = (G = (V,E), S+, S−, w, c, τ),
where G = (V,E) is a directed graph with node set V and edge set E, S+ ⊆ V
and S− ⊆ V are sets of sources and sinks, respectively, function w : S+∪S− → R

represents supply of a source or demand of a sink, function c : E → R+ is capacity
of an edge, and function τ : E → R+ is transit time of an edge. As for function
w, for a source s ∈ S+, w(s)(≥ 0) represents supply of source s, and for a sink
s ∈ S−, w(s)(< 0) represents demand of sink s. We define w(X) :=

∑
s∈X w(s)

for a subset X ⊆ S+ ∪ S−.
In this paper, we consider the problem of locating a sink in a dynamic flow

grid network. Here, let us describe an input network N in our problem. First,
a graph G = (V,E) is a grid, where V consists of n = N × N nodes and E
consists of bidirected edges in between each adjacent nodes of V (see Fig. 1).
Furthermore, we assume that all edge capacities and transit times are uniform,
thus c and τ are constant functions. In the sink location problem, input network
N has no sinks and all nodes are treated as sources. Therefore, N is represented
as (G = (V,E), S+ = V, S− = ∅, w, c, τ). In the following, we abuse c and τ as
non-negative real constants.

Fig. 1. The input network N Fig. 2. N (y)

158 Y. Higashikawa et al.

Let us consider the problem of locating a sink s− in between two adjacent
nodes p, q ∈ V at a distance of y (0 < y < τ) from node p. For a given dynamic
flow grid network N without sinks, we apply the following operations to N :

1. Remove directed edges (p, q) and (q, p).
2. Add a sink s− with demand w(s−)=−∑

v∈V w(v).
3. Add directed edges (p, s−) with capacity c and transit time y, and (q, s−)

with capacity c and transit time τ − y.

The dynamic flow network obtained from the above operations is denoted as
N (y) (see Fig. 2). Hereafter, we denote the sets of nodes and edges in N (y) as
V (y) and E(y), respectively. In the following, we consider embedding network
N (y) in a Cartesian coordinate system so that p and q are mapped at (0, 0)
and (τ, 0), respectively, and the other nodes are mapped at points (iτ, jτ) with
some integers i, j. For simplicity, a node mapped at (iτ, jτ) is called node (i, j).
We refer to the directions from (0, 0) to (0, 1), from (0, 1) to (0, 0), from (0, 0)
to (1, 0), and from (1, 0) to (0, 0) as upward, downward, rightward, and leftward,
respectively.

2.2 Evacuation Completion Time

A dynamic flow f is defined as a function f : E(y) × R+ → R+, where f(e, θ)
represents the flow rate entering edge e ∈ E(y) at time θ ∈ R+. In this paper,
we deal with dynamic flows in continuous-time model [5,11]. Let us consider the
following constraints for a dynamic flow f :

0 ≤ f(e, θ) ≤ c for any e ∈ E(y), and for any θ ∈ R+, (1)

∑

(v,u)∈E(y)

∫ θ

0

f((v, u), t)dt −
∑

(u,v)∈E(y)

∫ θ−τ

0

f((u, v), t)dt ≤ w(v)

for any v ∈ S+(= V (y) \ {s−}), and for any θ ∈ R+.

(2)

The constraints (1) and (2) are called the capacity constraint and the conserve
constraint. The conserve constraint (2) means that for any time θ and any source
v, the amount of flow out of v within time θ is at most the amount of flow entering
v within θ plus the amount of the supply at v. Furthermore, for a time horizon
T ∈ R+, consider the following constraint:

∑

(v,u)∈E(y)

∫ T

0

f((v, u), t)dt −
∑

(u,v)∈E(y)

∫ T−τ

0

f((u, v), t)dt = w(v)

for any v ∈ S+(= V (y) \ {s−}),
∫ T−y

0

f((p, s−), t)dt +
∫ T−(τ−y)

0

f((q, s−), t)dt = −w(s−).

(3)

The constraint (3) implies that for each node v, the net amount of flow accumu-
lated at v within time T equals its supply or demand. For a time horizon T , if

Sink Location Problems in Dynamic Flow Grid Networks 159

a dynamic flow f on N (y) satisfies the above constraints (1), (2), and (3), then
f is said to be feasible for T . Moreover, a time horizon T for which a dynamic
flow is feasible is said to be feasible. The evacuation completion time denotes the
minimum time for which a feasible dynamic flow exists. Letting Θ∗(y) denote
the evacuation completion time in N (y), the 1-sink location problem between p
and q is formulated as follows:

minimize Θ∗(y)
subject to 0 < y < τ,

which we call Sink-Location-on-Edge (for short, SLE). Next, we describe
known properties of the evacuation completion time. Given a dynamic flow net-
work N (y), for a subset of the sources X ⊆ S+ and a time horizon θ ∈ R+, let
oθ(X, y) be the maximum amount of dynamic flow that can reach the sink s−

from X within time horizon θ (more formal definition in our model will be given
in (7)). The following theorem by Hoppe and Tardos [13] says a property of a
feasible time horizon.

Theorem 1 ([13]). Given a dynamic flow network N (y) for a real value y with
0 < y < τ , and a time horizon θ ∈ R+, there exists a feasible dynamic flow for
θ on N (y) if and only if

min{oθ(X, y) − w(X) | X ⊆ S+} ≥ 0 (4)

holds.

Therefore, the evacuation completion time Θ∗(y) in N (y) is the minimum θ that
satisfies (4). Here, we define

Θ(X, y) := min{θ | oθ(X, y) − w(X) ≥ 0} (5)

and then, because oθ(X, y) − w(X) is monotonically non-decreasing in θ ∈ R+

for any X ⊆ S+ and any y, we have

Θ∗(y) = max{Θ(X, y) | X ⊆ S+}. (6)

2.3 Residual Networks

The dynamic flow network N (y) can be treated as a static flow network N (y)
by considering the transit time as the cost of each edge. We say that a static
flow f̄ : E(y) → R+ is feasible with respect to X ⊆ S+ if f̄ satisfies the following
conditions:

0 ≤ f̄(e) ≤ c for any e ∈ E(y),
∑

(v,u)∈E(y)

f̄(v, u) −
∑

(u,v)∈E(y)

f̄(u, v) = 0 for any v ∈ V (y) \ (X ∪ {s−}),

∑

v∈X

∑

(v,u)∈E(y)

f̄(v, u) −
∑

u∈{p,q}
f̄(u, s−) = 0.

160 Y. Higashikawa et al.

When a feasible static flow f̄ : E(y) → R+ is given to N (y), the residual network
with respect to f̄ , denoted by N (y)f̄ , is constructed as follows. For each edge e

with f̄(e) > 0, a reverse edge
←
e is added, and the edge set obtained by adding

such reverse edges to E(y) is denoted by E(y)f̄ . The capacity of residual edges
cf̄ : E(y)f̄ → R+ is defined so that cf̄ (e) = c − f̄(e) for original edges e ∈ E(y),
and cf̄ (

←
e) = f̄(e) for reverse edges

←
e ∈ E(y)f̄ \ E(y). The cost of residual

edges τf̄ : E(y)f̄ → R is defined as follows: For edges (p, s−), (s−, p), (q, s−), and
(s−, q), τf̄ (p, s−) = y, τf̄ (s−, p) = −y, τf̄ (q, s−) = τ − y, and τf̄ (s−, q) = −τ + y
respectively. For other original edges e ∈ E(y), τf̄ (e) = τ , and for reverse edges
←
e ∈ E(y)f̄ \ E(y), τf̄ (

←
e) = −τ .

2.4 Envelope of Two-Dimensional Line Segments

Let F be a family of one-variable linear functions f1, . . . , fn defined on closed
intervals [a1, b1], . . . , [an, bn], respectively. We simply refer to such F as a set of
two-dimensional line segments. Moreover, for each function f ∈ F defined on a
closed interval [a, b], we define f(x) as follows:

f(x) :=
{

f(x) (x ∈ [a, b]),
−∞ (x /∈ [a, b]).

The upper envelope UF of the two-dimensional line segments F is defined as

UF (x) := max
1≤i≤n

fi(x)

that is defined on
⋃

1≤i≤n[ai, bi]. A point (x′, UF (x′)) in the upper envelope UF
is called a break point if a function constituting UF switches at x′, that is, if

lim
x→x′+0

argmax1≤i≤nfi(x)
= lim
x→x′−0

argmax1≤i≤nfi(x).

It is known that the following theorem holds for the upper envelope UF of the
set of two-dimensional line segments F .

Theorem 2 ([7,8]). Given a set F containing n two-dimensional line segments,
the upper envelope UF has at most O(nα(n)) break points, and they can be com-
puted in O(n log n) time. Here, the function α denotes the inverse function of
the Ackermann function.

In the upper envelope UF of a two-dimensional line segments F , a line segment
connects each pair of adjacent break points. Then, this implies that some of break
points gives the minimum value of UF , and we have the following corollary.

Corollary 1. Given a two-dimensional line segments F containing n line seg-
ments, the break point that minimizes the upper envelope UF can be computed
in O(n log n) time.

Sink Location Problems in Dynamic Flow Grid Networks 161

3 Sink Location on an Edge

In this section, we propose a polynomial-time algorithm for problem SLE.
According to (6), if we can compute the function Θ(X, y) in y, for all X ⊆ S+,
then the objective function Θ∗(y) can be represented as the upper envelope of
Θ(X, y) over 0 < y < τ . However, this brute-force method does not provide a
polynomial-time algorithm since there are exponentially many subsets X. On
the contrary, we give a family of O(

√
n) source sets that must contain X max-

imizing Θ(X, y) for any y with 0 < y < τ , and based on this property, provide
a polynomial-time algorithm. In Sect. 3.1, we show properties of Θ(X, y), in
Sect. 3.2, we show properties of X that maximizes Θ(X, y), and in Sect. 3.3, a
polynomial-time algorithm is provided.

3.1 Properties of Θ(X, y)

First, we introduce the notation used in the following. For any two sources
u, v ∈ S+, we define d(u, v) as the length of the shortest path from u to v in the
static flow network N (y). Note that the shortest path from u to v does not use
edges (p, s−) and (q, s−) in E(y). For any source set X ⊆ S+ and source v ∈ S+,
we define d(X, v) as the length of the shortest path from X to v in N (y), that
is,

d(X, v) := min{d(x, v) | x ∈ X}.

Here, we discuss the properties of oθ(X, y) which represents the maximum
amount of dynamic flow that can reach the sink s− from X within time horizon
θ. It is known that oθ(X, y) is characterized by a minimum-cost flow from X to
S− in the static flow network N (y) [6]. Specifically, given X ⊆ S+∪S−, oθ(X, y)
as a function in θ can be computed by applying the successively shortest path
algorithm [3,14,15] for the minimum-cost flow problem in the following manner.
Initially, set f̄ as a zero static flow, i.e., f̄ : E(y) → 0. At each step i (≥ 1),
execute the following two procedures.

1. Find the shortest (i.e., minimum-cost) path Pi(X, y) from X to s− in the
current residual network N (y)f̄ . If there is no such path, then break the
iteration.

2. Update f̄ by adding a static flow of amount c along path Pi(X, y).

Note that the number of paths obtained when the above iteration halts is exactly
two. Letting |P1(X, y)| and |P2(X, y)| be the lengths of paths P1(X, y) and
P2(X, y), respectively, oθ(X, y) is represented by the following equation.

oθ(X, y) =

⎧
⎨

⎩

0 0 ≤ θ < |P1(X, y)|,
c(θ − |P1(X, y)|) |P1(X, y)| ≤ θ < |P2(X, y)|,
c(θ − |P1(X, y)|) + c(θ − |P2(X, y)|) |P2(X, y)| ≤ θ.

(7)
Since (7) implies that oθ(X, y) is a piecewise linear convex function in θ, it can
be transformed into the following:

oθ(X, y) = max {0, c(θ−|P1(X, y)|), c(θ−|P1(X, y)|) + c(θ−|P2(X, y)|)} . (8)

162 Y. Higashikawa et al.

Note that P1(X, y) clearly does not contain any reverse edge since P1(X, y)
is a path in N (y). In fact, not only that, there exists P2(X, y) not containing any
reverse edge, which follows Lemma 1 below. Thus, it is not necessary to consider
the residual network when calculating oθ(X, y). Here, we define d1(X, y) as the
minimum of the shortest path lengths that pass through p or q, respectively,
from X to s− on N (y). We define d2(X, y) as the maximum of these shortest
path lengths. We thus have

d1(X, y) := min{d(X, p) + y, d(X, q) + τ − y}, and
d2(X, y) := max{d(X, p) + y, d(X, q) + τ − y}.

(9)

As for paths in N (y) corresponding to d1(X, y) and d2(X, y), we present the
following lemma. See the full version of this paper [12] for the proof.

Lemma 1. For any source set X ⊆ S+, there exists on N (y) a pair of edge-
disjoint paths from X to y whose lengths are d1(X, y) and d2(X, y), respectively.

As mentioned above, by Lemma 1, we have |P1(X, y)| = d1(X, y) and
|P2(X, y)| = d2(X, y). Substituting these into (8), oθ(X, y) is represented by

oθ(X, y) = max {0, c (θ − d1(X, y)) , c (θ − d1(X, y)) + c (θ − d2(X, y))} . (10)

By the definition of d1(X, y), we obtain

c (θ − d1(X, y)) = c (θ − min{d(X, p) + y, d(X, q) + τ − y})
= max {c(θ − d(X, p) −y), c(θ − d(X, q) − τ + y)} .

(11)

Since
d1(X, y) + d2(X, y) = d(X, p) + d(X, q) + τ

holds by (9), we have

c (θ − d1(X, y)) + c (θ − d2(X, y)) = c (2θ − d(X, p) − d(X, q) − τ) . (12)

Substituting (11) and (12) into (10), we obtain

oθ(X, y) = max
{
0, c(θ − d(X, p) − y), c(θ − d(X, q) − τ + y),

c(2θ − d(X, p) − d(X, q) − τ)
}
.

(13)

Here, we describe the properties of Θ(X, y). According to its definition (5),
Θ(X, y) is the value of θ that satisfies oθ(X, y) = w(X). Regarding Θ(X, y) as a
function in y, we have the following theorem (see Fig. 3 for the shape of Θ(X, y)
for 0 < y < τ).

Sink Location Problems in Dynamic Flow Grid Networks 163

Fig. 3. The shape of Θ(X, y) for 0 < y < τ in the cases where (a) d(X, p) < d(X, q),
(b) d(X, p) > d(X, q), and (c) d(X, p) = d(X, q), respectively.

Theorem 3. For any source set X ⊆ S+, Θ(X, y) is a piecewise linear function
in y with 0 < y < τ of at most three line segments, represented by

Θ(X, y) = min
{

y +
w(X)

c
+ d(X, p),−y + τ +

w(X)
c

+ d(X, q),

w(X)
2c

+
d(X, p) + d(X, q) + τ

2

}

.

Proof. Let us denote the linear functions in θ that compose oθ(X, y) as

g1(θ) = c (θ − d(X, p) − y) ,

g2(θ) = c (θ − d(X, q) − τ + y) ,

g3(θ) = c (2θ − d(X, p) − d(X, q) − τ) .

By Eqs. (5) and (13), Θ(X, y) is the minimum value of θ among values that
make each of g1(θ), g2(θ), and g3(θ) equal to w(X). By solving g1(θ) = w(X)
for θ, we obtain θ = y + w(X)

c + d(X, p). Similarly, g2(θ) = w(X) when θ =
−y + τ + w(X)

c + d(X, q), and g3(θ) = w(X) when θ = w(X)
2c + d(X,p)+d(X,q)+τ

2 .
Therefore, the minimum value among these three values is Θ(X, y). Additionally,
with respect to y, each of the above θ is linear function. Hence, Θ(X, y) is a
piecewise linear function in y consisting of at most three segments. �

3.2 Dominant Source Sets

For two subsets of S+, X and X ′, X is said to dominate X ′ if Θ(X, y) ≥ Θ(X ′, y)
holds for all y. Let us consider the sufficient condition for a source set X to
dominate another source set X ′. If d(X, p) = d(X ′, p) and d(X, q) = d(X ′, q),
then functions oθ(X, y) and oθ(X ′, y) coincide according to (13). In this case,
if w(X) ≥ w(X ′), then Θ(X, y) ≥ Θ(X ′, y) by definition (5). Among source
sets X such that d(X, p) and d(X, q) remain the same respectively, one with the
maximum w(X) is called a dominant source set. For two integers i and j, let
Xi,j be the dominant source set such that d(Xi,j , p) = iτ and d(Xi,j , q) = jτ .

164 Y. Higashikawa et al.

Then, Xi,j is formally defined by the following:

Xi,j := {x ∈ V (y) | d(x, p) ≥ iτ, d(x, q) ≥ jτ}.

Note that Xi,j = ∅ may hold when i or/and j are large enough. Let X be the
family of dominant source sets. Note that both d(X, p) and d(X, q) are at most
2τ

√
n, we thus have

X := {Xi,j | 0 ≤ i ≤ 2
√

n, 0 ≤ j ≤ 2
√

n} \ {∅}, (14)

and also
Θ∗(y) = max{Θ(Xi,j , y) | Xi,j ∈ X}. (15)

Although the number of source sets in X seems to be O(n) by definition (14), we
can provide a more precise upper bound on the number of Xi,j . The following
lemma implies that when considering Xi,j for a fixed i, only the constant number
of j are enough to be considered. See the full version of this paper [12] for the
proof.

Lemma 2. For any source set X ⊆ S+, it holds in N (y)

d(X, p) − d(X, q) = iτ,

where i is one of integers −3,−2,−1, 0, 1, 2, 3.

Recall that d(X, p) can take at most O(
√

n) values, and for a fixed value
of d(X, p), the number of values which d(X, q) can take is at most seven by
Lemma 2. Therefore, we obtain the following theorem.

Theorem 4. The number of dominant source sets in X is O(
√

n).

3.3 Algorithms

Our algorithm consists of three steps. First, we compute w(Xi,j) for all Xi,j ∈ X .
Next, we calculate the segments that compose Θ(Xi,j , y) for all Xi,j ∈ X . Finally,
we find the value of y that minimizes the upper envelope of the function family
{Θ(Xi,j , y) | Xi,j ∈ X}.

Let us first describe a method to compute w(Xi,j) for all Xi,j ∈ X . Since
the number of nodes is n, we can compute w(Xi,j) in O(n) time for any i, j.
Moreover, we have |X | = O(

√
n) by Theorem 4, so all w(Xi,j) can be computed

in O(n
√

n) time. However, w(Xi,j) can be calculated more efficiently by using
dynamic programming. See the following lemma.

Lemma 3. Values w(Xi,j) for all Xi,j ∈ X can be computed in O(n) time.

Proof. Basically we calculate w(Xi,j) by subtracting the sum of supplies of
O(

√
n) nodes from w(Xi−1,j) or w(Xi,j−1) as shown in Fig. 4, which can be

done in O(
√

n) time. We then show the order of calculation of w(Xi,j) as follows.
First of all, we calculate w(X0,0) in O(n) time, and successively updating from

Sink Location Problems in Dynamic Flow Grid Networks 165

w(X0,0), we calculate w(X1,0) and w(X2,0). For i = 0, 1, 2, successively updat-
ing from w(Xi,0), we calculate w(Xi,1), . . . , w(Xi,i+3). For i ≥ 3, we update
w(Xi−1,i−3) to w(Xi,i−3), and successively updating from w(Xi,i−3), calculate
w(Xi,i−2), . . . , w(Xi,i+3). Note that for each i, we consider only at most seven
subsets Xi,j according to Lemma 2.

By Theorem 4, the total number of subsets Xi,j considered is O(
√

n), there-
fore, all values of w(Xi,j) can be computed in O(n) + O(

√
n) × O(

√
n) = O(n)

time. �

In the second step, we calculate the segments that compose Θ(Xi,j , y) for

all Xi,j ∈ X . Recall that d(Xi,j , p) = iτ and d(Xi,j , q) = jτ . By Theorem 3,
Θ(Xi,j , y) is piecewise linear function represented by

Θ(Xi,j , y) = min
{

y +
w(Xi,j)

c
+ iτ,−y + τ +

w(Xi,j)
c

+ jτ,

w(Xi,j)
2c

+
i + j + 1

2
τ

}

.

(16)

Using w(Xi,j) obtained at the first step, Θ(Xi,j , y) can be calculated in O(1)
time. According to Eq. (15), Θ∗(y) is the upper envelope of the function family
{Θ(Xi,j , y) | Xi,j ∈ X}. By Eq. (16), Θ(Xi,j , y) consists of at most three line
segments, hence by Theorem 4, Θ∗(y) is determined by the upper envelope of
O(

√
n) line segments, which can be computed in O(

√
n log n) time by Corollary 1.

Thus, the value of y that minimizes Θ∗(y) can also be found in O(
√

n log n) time
in the third step.

Summarizing the above discussions, the first step requires O(n) time, the
second step requires O(

√
n) time, and the third step requires O(

√
n log n) time.

Therefore, we obtain the following theorem.

Theorem 5. Given a dynamic flow grid network of N × N nodes (without any
sink) with uniform edge capacity and transit time, the 1-sink location problem
on a particular edge can be solved in O(n) time.

Fig. 4. The regions of X3,1 and X4,1 consist of nodes within the gray area respectively.
The nodes located on the dashed line in (b) represent the difference between X3,1 and
X4,1.

166 Y. Higashikawa et al.

Solving problem SLE for each edge, the 1-sink location problem for all edges
can be solved in O(n2) time. In general, the evacuation completion time can be
computed in Õ(m2k4+m2nk) time using the algorithm developed by Schlöter et
al. [19]. Here, m is the number of edges and k is the total number of sources and
sinks, and the Õ omits the logarithmic factor from Big O notation. Adapting
this algorithm to our problem, the evacuation completion time for each node
can be computed in Õ(n6) time since m = O(n) and k = O(n). If we focus on
the sink location on only nodes, by applying this algorithm to each node, the
optimal 1-sink location can be computed in Õ(n7) time. Therefore, we obtain
the following corollary.

Corollary 2. Given a dynamic flow grid network of N ×N nodes (without any
sink) with uniform edge capacity and transit time, the 1-sink location problem
can be solved in Õ(n7) time.

4 Conclusion

The sink location problem is a kind of evacuation problems that seeks to deter-
mine the location of sinks that minimize the time it takes for each evacuee to
arrive at one of the evacuation facilities. In this paper, we proposed a polynomial-
time algorithm for the 1-sink location problem on a dynamic flow grid network
with uniform edge capacity and transit time. This is the first polynomial-time
algorithm for networks that contain a number of cycles. We remark that our
provided approach can be extended to the 1-sink location problem on M × N
grid networks, which gives a polynomial-time algorithm even when M
= N .

It would be interesting to develop polynomial-time algorithms for the sink
location problems on more complex networks, especially, a grid networks with
multiple number of capacities and transit times. In addition, from the view-
point of real world applications, developing polynomial-time algorithms for grid
networks with holes or the case of multiple sinks is a future challenge.

References

1. Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.,
Teruyama, J.: Locating evacuation centers optimally in path and cycle networks.
In: 21st Symposium on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2021). Open Access Series in Informatics
(OASIcs), vol. 96, pp. 13:1–13:19 (2021)

2. Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved
algorithms for computing k -sink on dynamic flow path networks. In: WADS 2017.
LNCS, vol. 10389, pp. 133–144. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-62127-2 12

3. Busacker, R.G., Gowen, P.J.: A procedure for determining a family of minimum-
cost network flow patterns. Technical report, RESEARCH ANALYSIS CORP
MCLEAN VA (1960)

https://doi.org/10.1007/978-3-319-62127-2_12
https://doi.org/10.1007/978-3-319-62127-2_12

Sink Location Problems in Dynamic Flow Grid Networks 167

4. Chen, D., Golin, M.: Sink evacuation on trees with dynamic confluent flows. In:
27th International Symposium on Algorithms and Computation (ISAAC 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

5. Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algo-
rithms. Oper. Res. Lett. 23(3–5), 71–80 (1998)

6. Ford, L.R., Jr., Fulkerson, D.R.: Constructing maximal dynamic flows from static
flows. Oper. Res. 6(3), 419–433 (1958)

7. Hart, S., Sharir, M.: Nonlinearity of Davenport-Schinzel sequences and of general-
ized path compression schemes. Combinatorica 6(2), 151–177 (1986)

8. Hershberger, J.: Finding the upper envelope of n line segments in O(n log n) time.
Inf. Process. Lett. 33(4), 169–174 (1989)

9. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in
dynamic tree networks with uniform capacity. In: Pal, S.P., Sadakane, K. (eds.)
WALCOM 2014. LNCS, vol. 8344, pp. 125–137. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-04657-0 14

10. Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in
dynamic path networks. Theoret. Comput. Sci. 607, 2–15 (2015)

11. Higashikawa, Y., Katoh, N.: A survey on facility location problems in dynamic flow
networks. Rev. Socionetw. Strateg. 13(2), 163–208 (2019)

12. Higashikawa, Y., Nishii, A., Teruyama, J., Tokuni, Y.: Sink location problems in
dynamic flow grid networks. arXiv e-prints arXiv:2308.12651 (2023). https://doi.
org/10.48550/arXiv.2308.12651

13. Hoppe, B., Tardos, É.: The quickest transshipment problem. Math. Oper. Res.
25(1), 36–62 (2000)

14. Iri, M.: A new method of solving transportation-network problems. J. Oper. Res.
Soc. Jpn. 3(1), 2 (1960)

15. Jewell, W.S.: Optimal flow through networks. In: Operations Research, vol. 6, pp.
633–633 (1958)

16. Kamiyama, N.: Discrete newton methods for the evacuation problem. Theoret.
Comput. Sci. 795, 510–519 (2019)

17. Kinjo, K., Matsumoto, M.: An analysis of the impact of individuals and society to
evacuation based on the Great East Japan Earthquake survey (in Japanese). Jpn.
Soc. Urbanol. Annu. Rep. 45, 104–112 (2011)

18. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An O(n log2 n) algorithm for the
optimal sink location problem in dynamic tree networks. Discret. Appl. Math.
154(16), 2387–2401 (2006)

19. Schlöter, M., Skutella, M., Van Tran, K.: A faster algorithm for quickest trans-
shipments via an extended discrete Newton method. In: Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 90–102.
SIAM (2022)

https://doi.org/10.1007/978-3-319-04657-0_14
https://doi.org/10.1007/978-3-319-04657-0_14
http://arxiv.org/abs/2308.12651
https://doi.org/10.48550/arXiv.2308.12651
https://doi.org/10.48550/arXiv.2308.12651

List 3-Coloring on Comb-Convex
and Caterpillar-Convex Bipartite Graphs

Banu Baklan Şen1 , Öznur Yaşar Diner1 , and Thomas Erlebach2(B)

1 Computer Engineering Department, Kadir Has University, Istanbul, Turkey
oznur.yasar@khas.edu.tr

2 Department of Computer Science, Durham University, Durham, UK
thomas.erlebach@durham.ac.uk

Abstract. Given a graph G = (V, E) and a list of available colors L(v)
for each vertex v ∈ V , where L(v) ⊆ {1, 2, . . . , k}, List k-Coloring
refers to the problem of assigning colors to the vertices of G so that
each vertex receives a color from its own list and no two neighboring
vertices receive the same color. The decision version of the problem List
3-Coloring is NP-complete even for bipartite graphs, and its complex-
ity on comb-convex bipartite graphs has been an open problem. We give
a polynomial-time algorithm to solve List 3-Coloring for caterpillar-
convex bipartite graphs, a superclass of comb-convex bipartite graphs.
We also give a polynomial-time recognition algorithm for the class of
caterpillar-convex bipartite graphs.

1 Introduction

Graph coloring is the problem of assigning colors to the vertices of a given graph
in such a way that no two adjacent vertices have the same color. List coloring
[16,27] is a generalization of graph coloring in which each vertex must receive a
color from its own list of allowed colors. In this paper, we study the list coloring
problem with a fixed number of colors in subclasses of bipartite graphs. We
give a polynomial-time algorithm for the list 3-coloring problem for caterpillar-
convex bipartite graphs, a superclass of comb-convex bipartite graphs. We also
give a polynomial-time recognition algorithm for the class of caterpillar-convex
bipartite graphs. Our results resolve the open question regarding the complexity
of list 3-coloring for comb-convex bipartite graphs stated in [5,6].

We consider finite simple undirected graphs G = (V,E) with vertex set V
and edge set E. By NG(v) (or by N(v) if the graph is clear from the context) we
denote the neighborhood of v in G, i.e., the set of vertices that are adjacent to v.
A k-coloring of G is a labeling that assigns colors to the vertices of G from the
set [k] = {1, 2, . . . , k}. A coloring is proper if no two adjacent vertices have the
same color. A list assignment of a graph G = (V,E) is a mapping L that assigns
each vertex v ∈ V a list L(v) ⊆ {1, 2, . . .} of admissible colors for v. When
L(v) ⊆ [k] = {1, 2, . . . k} for every v ∈ V we say that L is a k-list assignment of
G. The total number of available colors is bounded by k in a k-list assignment.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 168–181, 2024.
https://doi.org/10.1007/978-3-031-49190-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_12&domain=pdf
http://orcid.org/0000-0003-4545-5044
http://orcid.org/0000-0002-9271-2691
http://orcid.org/0000-0002-4470-5868
https://doi.org/10.1007/978-3-031-49190-0_12

List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs 169

On the other hand, when the only restriction is that |L(v)| ≤ k for every v ∈ V ,
then we say that L is a list k-assignment of G. List coloring is the problem of
deciding, for a given graph G = (V,E) and list assignment L, whether G has a
proper coloring where each vertex v receives a color from its list L(v). If L is a
k-list assignment for a fixed value of k, the problem becomes the list k-coloring
problem:
List k-Coloring (Li k-Col)
Instance: A graph G = (V,E) and a k-list assignment L.
Question: Does G have a proper coloring where each vertex v receives a color
from its list L(v)?

If L is a list k-assignment instead of a k-list assignment, the problem is called
k-List Coloring.

Fig. 1. (a) A comb-convex bipartite graph G1, (b) a comb representation of G1, (c) a
caterpillar-convex bipartite graph G2, and (d) a caterpillar representation for G2.

The classes of bipartite graphs of interest to us are defined via a convexity
condition for the neighborhoods of the vertices on one side of the graph with
respect to a tree defined on the vertices of the other side. The following types
of trees are relevant here: A star is a tree of diameter 2. A comb is a tree that
consists of a chordless path P , called the backbone, with a single leaf neighbor
attached to each backbone vertex [10]. A caterpillar is a tree that consists of a
chordless path P , called the backbone, with an arbitrary number (possibly zero)
of leaf vertices attached to each vertex on P . Note that if a caterpillar has exactly
one leaf vertex attached to each vertex on P , then that caterpillar is a comb.

A bipartite graph G = (X ∪Y,E) is called a star-convex (or comb-convex, or
caterpillar-convex) bipartite graph if a star (or comb, or caterpillar) T = (X,F)
can be defined on X such that for each vertex y ∈ Y , its neighborhood NG(y)
induces a subtree of T . The star (or comb, or caterpillar) T = (X,F) is then

170 B. Baklan Şen et al.

called a star representation (or comb representation, or caterpillar representa-
tion) of G.

Figure 1 shows an example of a comb-convex bipartite graph and its comb
representation, and a caterpillar-convex bipartite graph and its caterpillar rep-
resentation. Both the comb (in part (b)) and the caterpillar (in part (d)) have
the path P = x1x3x5 as backbone.

The remainder of this paper is organized as follows. In Sect. 2, we dis-
cuss related work. In Sect. 3, we give a polynomial-time algorithm for Li 3-
col for caterpillar-convex bipartite graphs (and thus also for comb-convex
bipartite graphs). In Sect. 4, we give a polynomial-time recognition algorithm
for caterpillar-convex bipartite graphs. In Sect. 5, we give concluding remarks.
Proofs omitted due to space restrictions can be found in the full version [1].

2 Related Work

Deciding whether a graph has a proper coloring with k colors is polynomial-
time solvable when k = 1 or 2 [26] and NP-complete for k ≥ 3 [27]. As Li
k-col generalizes this problem, it is also NP-complete for k ≥ 3. When the
list coloring problem is restricted to perfect graphs and their subclasses, it is
still NP-complete in many cases such as for bipartite graphs [25] and interval
graphs [3]. On the other hand, it is polynomially solvable for trees and graphs
of bounded treewidth [22]. The problems Li k-col and k-List Coloring are
polynomial-time solvable if k ≤ 2 and NP-complete if k ≥ 3 [26,27]. k-list
coloring has been shown to be NP-complete for small values of k for complete
bipartite graphs and cographs by Jansen and Scheffler [22], as observed in [17].
The 3-List Coloring problem is NP-complete even if each color occurs in the
lists of at most three vertices, as shown by Kratochvil and Tuza [24].

We use the following standard notation for specific graphs: Pt denotes a path
with t vertices; Kt denotes a clique with t vertices; K�,r denotes a complete
bipartite subgraph with parts of sizes � and r; K1

1,s denotes the 1-subdivision
of K1,s (i.e., every edge e = {u, v} of K1,s is replaced by two edges {u,we}
and {we, v}, where we is a new vertex); and sP1 + P5 is the disjoint union of s
isolated vertices and a P5. Li k-col is known to be NP-complete even for k = 3
within the class of 3-regular planar bipartite graphs [23]. On the positive side,
for fixed k ≥ 3, Li k-col is polynomially solvable for P5-free graphs [19]. Li
3-col is polynomial for P6-free graphs [8] and for P7-free graphs [4]. Li 3-col
is polynomial-time solvable for (K1

1,s, Pt)-free graphs for every s ≥ 1 and t ≥ 1
[11]. Li k-col is polynomial-time solvable for (sP1 +P5)-free graphs, which was
proven for s = 0 by Hoàng et al. [19] and for every s ≥ 1 by Couturier et al. [12].

An overview of complexity results for Li k-col in some subclasses of bipartite
graphs is shown in Fig. 2. The computational complexity of Li 3-col for chordal
bipartite graphs has been stated as an open problem in 2015 [21] and has been
of interest since then [13]. In [13] a partial answer is given to this question by
showing that Li 3-col is polynomial in the class of biconvex bipartite graphs
and convex bipartite graphs. Li 3-col is solvable in polynomial time when it is

List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs 171

Fig. 2. Computational complexity results for Li k-Col on subclasses of bipartite
graphs. [*] refers to this paper, [�] refers to an open problem, NP-C denotes NP-
complete problem, PTIME denotes polynomial-time solvable problem.

restricted to graphs with all connected induced subgraphs having a multichain
ordering [15]. This result can be applied to permutation graphs and interval
graphs. In [13], it is shown that connected biconvex bipartite graphs have a
multichain ordering, implying a polynomial time algorithm for Li 3-col on this
graph class. They also provide a dynamic programming algorithm to solve Li 3-
col in the class of convex bipartite graphs and show how to modify the algorithm
to solve the more general Li H-col problem on convex bipartite graphs. The
computational complexity of Li 3-col for P8-free bipartite graphs is open [3].
Even the restricted case of Li 3-col for P8-free chordal bipartite graphs is open.
Golovach et al. [17] survey results for Li k-col on H-free graphs in terms of the
structure of H.

So-called width parameters play a crucial role in algorithmic complexity. For
various combinatorial problems, it is possible to find a polynomial-time solution
by exploiting bounded width parameters such as mim-width, sim-width and
clique-width. Given a graph class, it is known that when mim-width is bounded,
then Li k-col is polynomial-time solvable [7]. Brettell et al. [7] proved that for
every r ≥ 1, s ≥ 1 and t ≥ 1, the mim-width is bounded and quickly computable
for (Kr,K

1
1,s, Pt)-free graphs. This result further implies that for every k ≥ 1, s ≥

1 and t ≥ 1, Li k-col is polynomial-time solvable for (K1
1,s, Pt)-free graphs. Most

recently, Bonomo-Braberman et al. [5] showed that mim-width is unbounded for
star-convex and comb-convex bipartite graphs. On the other hand, Li 3-col
is polynomial-time solvable for star-convex bipartite graphs whereas Li k-col
is NP-complete for k ≥ 4 [6]. Furthermore, Bonomo-Braberman et al. [6] show
that for comb-convex bipartite graphs, Li k-col remains NP-complete for k ≥ 4

172 B. Baklan Şen et al.

and leave open the computational complexity of Li 3-col for this graph class. In
this paper, we resolve this problem by showing that Li 3-col is polynomial-time
solvable even for caterpillar-convex bipartite graphs.

As for the recognition of graph classes, Bonomo-Braberman et al. [6] provide
an algorithm for the recognition of (t,Δ)-tree convex bipartite graphs by using a
result from Buchin et al. [9]. Here, a tree is a (t,Δ)-tree if the maximum degree
is bounded by Δ and the tree contains at most t vertices of degree at least 3.
This result for the recognition of (t,Δ)-tree convex bipartite graphs, however,
does not apply to caterpillar-convex bipartite graphs. Therefore, we give a novel
algorithm for the recognition of caterpillar-convex bipartite graphs.

3 List 3-Coloring Caterpillar-Convex Bipartite Graphs

In this section we give a polynomial-time algorithm for solving Li 3-col in
caterpillar-convex bipartite graphs. Let a caterpillar-convex bipartite graph G =
(X ∪ Y,E) be given, together with a 3-list assignment L. We assume that a
caterpillar T = (X,F) is also given, where NG(y) induces a subtree of T for each
y ∈ Y . If the caterpillar is not provided as part of the input, we can compute one
in polynomial time using the recognition algorithm that we present in Sect. 4.

Let T consist of a backbone B with vertices b1, b2, . . . , bn (in that order) and
a set of leaves L(bi), possibly empty, attached to each bi ∈ B. We use L to denote
the set of all leaves, i.e., L =

⋃n
i=1 L(bi). Furthermore, for any 1 ≤ i ≤ j ≤ n,

we let Bi,j = {bi, bi+1, . . . , bj} and Li,j =
⋃j

k=i L(bk).
The idea of the algorithm is to define suitable subproblems that can be solved

in polynomial time, and to obtain the overall coloring as a combination of solu-
tions to subproblems. Roughly speaking, the subproblems consider stretches of
the backbone in which all backbone vertices are assumed to be assigned the same
color in a proper list 3-coloring. More precisely, a subproblem SP (i, j, c1, c2, c3)
is specified via two values i, j with 1 ≤ i ≤ j ≤ n and three colors c1, c2, c3
with c1 �= c2 and c2 �= c3 where ci ∈ [3], for i = 1, 2, 3. Hence, there are O(n2)
subproblems.

The subproblem S = SP (i, j, c1, c2, c3) is concerned with the subgraph GS

of G induced by Bi−1,j+1 ∪ Li,j ∪ {y ∈ Y | N(y) ∩ (Bi,j ∪ Li,j) �= ∅}. It assumes
that color c1 is assigned to bi−1, color c2 to the backbone vertices from bi to
bj , and color c3 to bj+1. See Fig. 3 for an illustration of SP (i, j, 2, 1, 2). Solving
the subproblem S means determining whether this coloring of Bi−1,j+1 can be
extended to a proper list 3-coloring of GS . The result of the subproblem is False
if this is not possible, or True (and a suitable proper list 3-coloring of GS)
otherwise. If c1 /∈ L(bi−1), or c3 /∈ L(bj+1), or c2 /∈ L(bk) for some i ≤ k ≤ j,
then the result of the subproblem is trivially False.

We will show that this subproblem can be solved in polynomial time as it can
be reduced to the 2-list coloring problem, which is known to be solvable in linear
time [14,18]. Furthermore, solutions to consecutive ‘compatible’ subproblems
can be combined, and a proper list 3-coloring of G exists if and only if there

List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs 173

Fig. 3. Illustration of subproblem SP (i, j, c1, c2, c3) for the case SP (i, j, 2, 1, 2).

is a collection of subproblems whose solutions can be combined into a list 3-
coloring of G. For example, the colorings of two subproblems SP (i, j, c1, c2, c3)
and SP (j + 1, k, c2, c3, c4) can be combined because they agree on the colors
of backbone vertices that are in both subproblems, they do not share any leaf
vertices, and the vertices y ∈ Y that have neighbors in both Bi,j ∪ Li,j and
Bj+1,k ∪Lj+1,k must be adjacent to bj and bj+1, which are colored with colors c2
and c3 (where c2 �= c3) in the colorings of both subproblems, and hence must have
received the same color (the only color in {1, 2, 3}\{c2, c3}) in both colorings. To
check whether there is a collection of compatible subproblems whose solutions
can be combined into a list 3-coloring of G, we will show that it suffices to search
for a directed path between two vertices in an auxiliary directed acyclic graph
(DAG) on the subproblems whose result is True.

For a subproblem S = SP (i, j, c1, c2, c3), if i = 1, there is no vertex bi−1,
and we write ∗ for c1; similarly, if j = n, there is no vertex bj+1, and we write
∗ for c3. The graph GS considered when solving such a subproblem does not
contain bi−1 or bj+1, respectively, but is otherwise defined analogously. If i = 1
and j = n, then GS contains neither bi−1 nor bj+1.

Lemma 1. There is a linear-time algorithm for solving any subproblem of the
form SP (i, j, c1, c2, c3).

Proof. Consider the subproblem S = SP (i, j, c1, c2, c3). Let GS be the subgraph
of G defined by S, and let XS ⊆ X, YS ⊆ Y be such that the vertex set of GS

is XS ∪ YS . First, we check whether c1 ∈ L(bi−1) (only if i > 1), c3 ∈ L(bj+1)
(only if j < n), and c2 ∈ L(bk) for all i ≤ k ≤ j. If one of these checks fails,
we return False. Otherwise, we assign color c1 to bi−1, color c2 to all vertices in
Bi,j , and color c3 to bj+1.

For every vertex y ∈ YS , we check if N(y) contains any vertices of Bi−1,j+1

and, if so, remove the colors of those vertices from L(y) (if they were contained
in L(y)). If the list of any vertex y ∈ YS becomes empty in this process, we
return False.

Let BS denote the backbone vertices in XS and LS the leaf vertices in XS

(with respect to the caterpillar T). If there is a vertex in LS or YS with a list of
size 1, assign the color in that list to that vertex and remove that color from the
lists of its neighbors (if it is contained in their lists). Repeat this operation until
there is no uncolored vertex with a list of size 1. (If an uncolored vertex with a
list of size 1 is created later on in the algorithm, the same operation is applied

174 B. Baklan Şen et al.

to that vertex.) If the list of any vertex becomes empty in this process, return
False. Otherwise, we must arrive at a state where all uncolored vertices in GS

have lists of size 2 or 3.
If there is a vertex y ∈ YS with a list of size 3, that vertex must be adjacent

to a single leaf � in LS (as it cannot be adjacent to a backbone vertex). In this
case we remove an arbitrary color from L(y): This is admissible as, no matter
what color � receives in a coloring, vertex y can always be colored with one of
the two colors that have remained in its list.

If there is a vertex � ∈ LS with a list of length 3, assign color c2 to � (and
remove color c2 from the lists of vertices in N(�)). This color assignment does not
affect the existence of a proper list 3-coloring for the following reasons (where
we let bk denote the backbone vertex with � ∈ L(bk)):

– If a vertex y ∈ N(�) is adjacent to more than one vertex, it must be adjacent
to bk, which has been colored with c2, and hence it cannot receive color c2 in
any case.

– If a vertex y ∈ N(�) is adjacent only to � and no other vertex, then y can still
be colored after � is assigned color c2, because we cannot have L(y) = {c2};
this is because, if y had the list L(y) = {c2}, it would have been colored c2
and the color c2 would have been removed from L(�).

If at any step of this process, an uncolored vertex with an empty list is cre-
ated, return False. Otherwise, we arrive at an instance I of Li 3-col where all
uncolored vertices have lists of size 2. Such an instance can be solved in lin-
ear time [14,18] (via reduction to a 2SAT problem). If I admits a proper list
3-coloring, that coloring gives a proper list 3-coloring of GS , and we return True
and that coloring. Otherwise, we return False.

Correctness of the algorithm follows from its description, and the algorithm
can be implemented to run in linear time using standard techniques. ��

Call a subproblem S = SP (i, j, c1, c2, c3) valid if its answer is True (and a
proper list 3-coloring of GS has been produced), and invalid otherwise. To check
whether the colorings obtained from valid subproblems can be combined into a
list 3-coloring of G, we make use of an auxiliary DAG H constructed as follows.
The existence of a proper list 3-coloring of G can then be determined by checking
whether H contains a directed path from s to t.

Definition 1. The auxiliary DAG H = (VH , A) has vertices s, t, and
a vertex for each valid subproblem SP (i, j, c1, c2, c3). Its arc set A con-
tains the following arcs: An arc (s, SP (1, i, ∗, c2, c3)) for each i < n and
c2, c3 ∈ [3] such that SP (1, i, ∗, c2, c3) is valid; an arc (SP (i, n, c1, c2, ∗), t)
for each i > 1 and c1, c2 ∈ [3] such that SP (i, n, c1, c2, ∗) is valid; arcs
(s, SP (1, n, ∗, c2, ∗)) and (SP (1, n, ∗, c2, ∗), t) if SP (1, n, ∗, c2, ∗) is valid; an arc
(SP (i, j, c1, c2, c3), SP (j + 1, k, c2, c3, c4) for each i ≤ j ≤ k − 1 and each
c1, c2, c3, c4 ∈ [3] (or c1 = ∗ or c4 = ∗ if i = 1 or k = n, respectively) such
that SP (i, j, c1, c2, c3) and SP (j + 1, k, c2, c3, c4) are both valid.

List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs 175

Algorithm 1 . List-3-Coloring Algorithm for Caterpillar-Convex Bipartite
Graphs
Require: A caterpillar-convex bipartite graph G = (X ∪ Y, E) (with caterpillar T =

(X, F)) and a list assignment L.
Ensure: A proper coloring that obeys L, or False if no such coloring exists.
1: � Compute solutions to all subproblems
2: for i = 1 to n do
3: for j = i to n do
4: for ci ∈ [3], i = 1, 2, 3 with c1 �= c2 and c2 �= c3 do
5: � let c1 = ∗ if i = 1 and c3 = ∗ if j = n
6: Solve SP (i, j, c1, c2, c3) (Lemma 1)
7: end for
8: end for
9: end for

10: � Check if solutions of subproblems can be combined into a list 3-coloring of G
11: Build a DAG H whose vertices are s, t, and a vertex SP (i, j, c1, c2, c3) for each

subproblem with answer True (Definition 1)
12: if H contains a directed path P from s to t then
13: Return the coloring obtained as union of the colorings of the subproblems on P
14: else
15: Return False
16: end if

Theorem 1. Li 3-col can be solved in polynomial time for caterpillar-convex
bipartite graphs.

The resulting algorithm is shown in Algorithm 1. As comb-convex bipartite
graphs are a subclass of caterpillar-convex bipartite graphs, we obtain:

Corollary 1. Li 3-col can be solved in polynomial time for comb-convex bipar-
tite graphs.

Combining Corollary 1 with Theorem 4 in [6] and the polynomial-time solv-
ability of Li k-col for k ≤ 2 [16,27] yields a complexity dichotomy: Li k-col
is polynomial-time solvable on comb-convex bipartite graphs when k ≤ 3; oth-
erwise, it is NP-complete.

4 Recognition of Caterpillar-Convex Bipartite Graphs

We give a polynomial-time recognition algorithm for caterpillar-convex bipartite
graphs. We are given a bipartite graph G = (X ∪ Y,E) and want to decide
whether it is caterpillar-convex and, if so, construct a caterpillar representation
T = (X,F). First, we assume that a specific partition of the vertex set into
independent sets X and Y is given as part of the input, and we want to decide
whether there is a caterpillar representation T = (X,F) with respect to that
given bipartition (i.e., the vertex set of the caterpillar is the independent set X
that was specified in the input). At the end of this section, we will discuss how

176 B. Baklan Şen et al.

to handle the case that the bipartite graph is given without a specific bipartition
of the vertex set and we want to decide whether the vertex set can be parti-
tioned into independent sets X and Y in such a way that there is a caterpillar
representation with respect to that bipartition.

The main idea of the algorithm for recognizing caterpillar-convex bipartite
graphs is to construct an auxiliary DAG D on vertex set X in such a way that
the sinks in D can be used as the backbone vertices of T . To make this work, it
turns out that we first need to remove some vertices from G that have no effect
on whether G is caterpillar-convex. First, we show that we can remove isolated
vertices from X and vertices of degree 0 or 1 from Y .

Lemma 2. Let x ∈ X be a vertex with degree 0, and let G′ be the graph
obtained from G by removing x. Then G′ is caterpillar-convex if and only if
G is caterpillar-convex. Furthermore, a caterpillar representation of G can be
constructed from a caterpillar representation of G′ by adding x in a suitable
location.

Lemma 3. Let y ∈ Y be a vertex with degree 0 or 1, and let G′ be the graph
obtained from G by removing y. Then G′ is caterpillar-convex if and only if G
is caterpillar-convex. Any caterpillar representation of G′ is also a caterpillar
representation of G.

We call a pair of vertices xi and xj twins if N(xi) = N(xj). The twin relation
on X partitions X into equivalence classes, such that x1, x2 ∈ X are twins if and
only if they are in the same class. We say that two twins x, x′ are special twins
if {x, x′} is an equivalence class of the twin relation on X and if there is y ∈ Y
with NG(y) = {x, x′}. Now, we show that removing a twin from X (with some
additional modification in the case of special twins) has no effect on whether the
graph is caterpillar-convex or not.

Lemma 4. Let x, x′ ∈ X be twins of non-zero degree, and let G′ = (X ′ ∪Y ′, E′)
be the graph obtained from G by deleting x. If x, x′ are special twins in G,
then modify G′ by adding a new vertex x̄ to X ′, a new vertex ȳ to Y ′, and
the edges {x′, ȳ} and {x̄, ȳ} to E′. Then G is caterpillar-convex if and only if
G′ is caterpillar-convex. Furthermore, a caterpillar representation of G can be
constructed from a caterpillar representation of G′ by adding x in a suitable
location (and removing x̄ if it has been added to G′).

We remark that the special treatment of special twins in Lemma 4 seems
necessary because there is a graph G = (X ∪ Y,E) with special twins that
does not have a caterpillar representation T = (X,F), while simply remov-
ing one of the two special twins (without adding the extra vertices x̄ and
ȳ) would produce a graph G′ = (X ′ ∪ Y ′, E′) that has a caterpillar rep-
resentation T ′ = (X ′, F ′). An example of such a graph is the graph with
X = {a, b, c, f, g, x, x′} where the neighborhoods of the vertices in Y are
{a, f}, {a, b}, {b, x, x′}, {x, x′}, {b, c}, {c, g}. Here, the vertices x and x′ are spe-
cial twins, and the graph obtained after removing x has the caterpillar represen-
tation with backbone path abc and leaf f attached to a, leaf x′ attached to b,
and leaf g attached to c.

List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs 177

Let G1 = (X1 ∪ Y1, E1) be the graph obtained from G = (X ∪ Y,E) by
repeatedly removing vertices of degree 0 from X, vertices of degree 0 or 1 from
Y , and twins from X (with the extra modification detailed in Lemma 4 in case
of special twins) as long as such vertices exist. Lemmas 2–4 imply:

Corollary 2. G1 is caterpillar-convex if and only if G is caterpillar-convex.

We now define a directed graph D = (X1, A) based on G1: For every pair
of distinct vertices x, x′ ∈ X1, we let D contain the arc (x, x′) if and only if
NG1(x) ⊆ NG1(x

′), i.e., we add the arc (x, x′) if and only if every vertex in y
that is adjacent to x in G1 is also adjacent to x′ in G1. Note that D is transitive:
If it contains two arcs (x, x′) and (x′, x′′), it must also contain (x, x′′).

Lemma 5. D is a directed acyclic graph.

Proof. Assume there is a cycle on vertices xi, xi+1, . . . , xj in D. Then, N(xi) ⊆
N(xi+1) ⊆ · · · ⊆ N(xj) ⊆ N(xi). Thus N(xi) = N(xi+1) = · · · = N(xj), and
so xi, xi+1, . . . , xj are twins, a contradiction because there are no twins in X1.
Thus D is acyclic. ��

The following lemma can be proved along the following lines: If there is a
caterpillar representation in which two backbone vertices are connected by an
arc in D, then there must be two adjacent backbone vertices u and v with an arc
(u, v) in D. The caterpillar can then be modified by attaching u and the vertices
in L(u) as leaves to v, giving another valid caterpillar representation with fewer
arcs between backbone vertices.

Lemma 6. If G1 = (X1 ∪ Y1, E1) is caterpillar-convex, there is a caterpillar
representation T1 = (X1, F) in which no two backbone vertices are connected by
an arc in D.

Lemma 7. If G1 = (X1 ∪ Y1, E1) is caterpillar-convex, there is a caterpillar
representation T1 = (X1, F) such that the set of backbone vertices is exactly the
set of sinks in D.

Proof. By Lemma 6, there exists a caterpillar representation T1 of G1 in which
no two backbone vertices are connected by an arc in D. Furthermore, every leaf
attached to a backbone vertex (in T1) has an arc (in D) to that backbone vertex
(because every y ∈ Y has degree at least 2). A backbone vertex cannot have an
arc (in D) to a leaf attached to it (in T1), as D is acyclic (Lemma 5). Finally,
a backbone vertex b cannot have an arc (in D) to a leaf vertex � attached to a
different backbone vertex b′ because that would imply that b has an arc to b′

(since every vertex in y that is adjacent to b is also adjacent to � and hence, as
N(y) induces a tree in T1, also to b′). Therefore, the backbone vertices of T1 are
exactly the sinks (vertices without outgoing edges) of D. ��

Theorem 2. Algorithm 2 decides in polynomial time whether a given bipartite
graph G = (X ∪ Y,E) is caterpillar-convex and, if so, outputs a caterpillar
representation T = (X,F).

178 B. Baklan Şen et al.

Algorithm 2. Recognition Algorithm for Caterpillar-Convex Bipartite Graphs
Require: A bipartite graph G = (X ∪ Y, E)
Ensure: Either return a caterpillar representation T = (X, F) of G, or decide that G

is not caterpillar-convex and return ‘fail’
1: Obtain G1 = (X1∪Y1, E1) from G by removing vertices of degree 0 from X, vertices

of degree 0 or 1 from Y , and twins from X (with the extra modification stated in
Lemma 4 in case of special twins), as long as any such vertex exists (Lemmas 2–4)

2: Create a directed graph D = (X1, A) that contains the arc (x, x′) if and only if
NG1(x) ⊆ NG1(x

′)
3: B = the set of sinks in D, L = all other vertices in D
4: Use an algorithm for consecutive ones [20] to order B. If it fails, return ‘fail’.
5: Form caterpillar T1 by taking the ordered backbone B and attaching each vertex

in L as leaf to an arbitrary vertex in B to which it has an arc in D
6: Obtain T from T1 by adding the vertices that were deleted from X in Step 1

(and removing vertices that have been added when special twins were processed)
(Lemmas 2 and 4).

Proof. Let G = (X ∪ Y,E) be a bipartite graph and n = |X ∪ Y |. First, the
algorithm removes vertices of degree 0 from X, vertices of degree 0 or 1 from Y ,
and twins from X (with the extra modification of Lemma 4 in case of special
twins) as long as such vertices exist. The resulting graph is G1 = (X1 ∪ Y1, E1).
By Corollary 2, G1 is caterpillar-convex if and only if G is caterpillar-convex.

Next, the algorithm constructs the directed graph D = (X1, A) from G1 =
(X1 ∪ Y1, E1) by adding an arc (xi, xj) for xi, xj ∈ X1 if NG1(xi) ⊆ NG1(xj).
Once D has been constructed, the set B of sinks and the set L of remaining
vertices are determined. Then, we create a set system S containing for every
y ∈ Y the set N(y) ∩ B and apply an algorithm for checking the consecutive
ones property [20] to check if B can be ordered in such a way that every set in
S consists of consecutive vertices. If so, the resulting order is used to determine
the order in which B forms the backbone path. Otherwise, G1 (and hence G)
cannot be caterpillar-convex (cf. Lemma 7), and the algorithm returns ‘fail’.

Next, the algorithm attaches each vertex � ∈ L as a leaf to an arbitrary
vertex b ∈ B to which it has an arc in D. Every � ∈ L must indeed have at
least one arc to a vertex in B: As D is acyclic, every vertex � that is not a sink
must have a directed path leading to some sink b, and as D is transitive, the arc
(�, b) must exist. Attaching � to b yields a valid caterpillar representation for the
following reason: As every neighbor y of � is also adjacent to b, and as N(y)∩ B
is a contiguous segment of B, it is clear that N(y) induces a tree in the resulting
caterpillar T1. Hence, T1 is a caterpillar representation of G1.

Finally, the vertices that have been deleted in the first step are added back
(and vertices that have been added when special twins were processed are
removed) in order to extend the caterpillar T1 to a caterpillar representation
T of G (Lemmas 2 and 4). By Corollary 2, T is a caterpillar representation of G.

It can be shown that the algorithm can be implemented to run in O(n3) time
(see the full version [1] for details). ��

List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs 179

Finally, we discuss the case that the bipartition of the vertex set V of the
input graph G = (V,E) into independent sets X and Y is not provided as part of
the input. First, if G = (V,E) is a connected bipartite graph, note that there is
a unique partition of V into two independent sets Q and R. We can then run the
recognition algorithm twice, once with X = Q and Y = R and once with X = R
and Y = Q. G is caterpillar-convex if and only if at least one of the two runs of the
algorithm produces a caterpillar representation. If G = (V,E) is not connected,
let H1, . . . , Hr for some r > 1 be its connected components. As just discussed,
we can check in polynomial time whether each connected component Hj , 1 ≤
j ≤ r, is a caterpillar-convex bipartite graph. If all r connected components
are caterpillar-convex, the whole graph G is caterpillar-convex, and a caterpillar
representation can be obtained by concatenating the backbones of the caterpillar
representations of the connected components in arbitrary order. If at least one
of the connected components, say, the component Hj , is not caterpillar-convex,
then G is not caterpillar-convex either. This can be seen as follows: Assume for
a contradiction that G is caterpillar-convex while Hj is not caterpillar-convex.
Then let T = (X,F) be a caterpillar representation of G. Observe that the
subgraph of T induced by V (Hj) ∩ X, where V (Hj) denotes the vertex set
of Hj , must be connected. Therefore, that subgraph of T provides a caterpillar
representation of Hj , a contradiction to our assumption. Thus we get:

Corollary 3. There is a polynomial-time algorithm that decides whether a given
bipartite graph G = (V,E) is caterpillar-convex, i.e., whether it admits a bipar-
tition of V into independent sets X and Y such that there is a caterpillar repre-
sentation T = (X,F).

5 Conclusion

Determining the computational complexity of Li k-col for k ≥ 3 when restricted
to comb-convex bipartite graphs was stated as an open problem by Bonomo-
Braberman et al. [5]. Subsequently, the same authors proved that the problem
is NP-complete for k ≥ 4 [6], but the complexity for k = 3 was still left open.
In this paper, we resolve this question by showing that Li 3-col is solvable
in polynomial time even for caterpillar-convex bipartite graphs, a superclass of
comb-convex bipartite graphs.

Recall that if mim-width is bounded for a graph class G, then Li k-col is
polynomially solvable when it is restricted to G. Polynomial-time solvability of
Li k-col on circular convex graphs is shown by demonstrating that mim-width
is bounded for this graph class [5]. On the other hand, there are graph classes for
which Li 3-col is tractable but mim-width is unbounded, such as star-convex
bipartite graphs [6]. By combining our result with Theorem 3 in [5], we conclude
that caterpillar-convex bipartite graphs and comb-convex bipartite graphs also
belong to this type of graph classes. On a much larger graph class, chordal
bipartite graphs, the computational complexity of Li 3-col is still open [21].

Finally, as for future work, it would be interesting to see whether one can
modify and extend Algorithm 2 to recognize comb-convex bipartite graphs.

180 B. Baklan Şen et al.

References

1. Baklan Şen, B., Diner, Ö.Y., Erlebach, T.: List 3-coloring on comb-convex and
caterpillar-convex bipartite graphs. CoRR abs/2305.10108 (2023). https://doi.
org/10.48550/arXiv.2305.10108

2. Belmonte, R., Vatshelle, M.: Graph classes with structured neighborhoods and
algorithmic applications. Theor. Comput. Sci. 511, 54–65 (2013). https://doi.org/
10.1016/j.tcs.2013.01.011

3. Biró, M., Hujter, M., Tuza, Z.: Precoloring extension. I. Interval graphs. Discret.
Math. 100(1–3), 267–279 (1992). https://doi.org/10.1016/0012-365X(92)90646-W

4. Bonomo, F., Chudnovsky, M., Maceli, P., Schaudt, O., Stein, M., Zhong, M.: Three-
coloring and list three-coloring of graphs without induced paths on seven vertices.
Comb. 38(4), 779–801 (2018). https://doi.org/10.1007/s00493-017-3553-8

5. Bonomo-Braberman, F., Brettell, N., Munaro, A., Paulusma, D.: Solving problems
on generalized convex graphs via Mim-width. In: Lubiw, A., Salavatipour, M. (eds.)
WADS 2021. LNCS, vol. 12808, pp. 200–214. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-83508-8_15

6. Bonomo-Braberman, F., Brettell, N., Munaro, A., Paulusma, D.: Solving problems
on generalized convex graphs via mim-width. CoRR abs/2008.09004, September
2022. https://arxiv.org/abs/2008.09004

7. Brettell, N., Horsfield, J., Munaro, A., Paulusma, D.: List k-colouring Pt-free
graphs: a mim-width perspective. Inf. Process. Lett. 173, 106168 (2022). https://
doi.org/10.1016/j.ipl.2021.106168

8. Broersma, H., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three complexity results
on coloring Pk-free graphs. Eur. J. Comb. 34(3), 609–619 (2013). https://doi.org/
10.1016/j.ejc.2011.12.008

9. Buchin, K., van Kreveld, M.J., Meijer, H., Speckmann, B., Verbeek, K.: On pla-
nar supports for hypergraphs. J. Graph Algorithms Appl. 15(4), 533–549 (2011).
https://doi.org/10.7155/jgaa.00237

10. Chen, H., Lei, Z., Liu, T., Tang, Z., Wang, C., Xu, K.: Complexity of domination,
hamiltonicity and treewidth for tree convex bipartite graphs. J. Comb. Optim.
32(1), 95–110 (2016). https://doi.org/10.1007/s10878-015-9917-3

11. Chudnovsky, M., Spirkl, S., Zhong, M.: List 3-coloring Pt-free graphs with no
induced 1-subdivision of K1,s. Discret. Math. 343(11), 112086 (2020). https://doi.
org/10.1016/j.disc.2020.112086

12. Couturier, J.F., Golovach, P.A., Kratsch, D., Paulusma, D.: List coloring in the
absence of a linear forest. Algorithmica 71(1), 21–35 (2015). https://doi.org/10.
1007/s00453-013-9777-0

13. Díaz, J., Diner, Ö., Serna, M., Serra, O.: On list k-coloring convex bipartite graphs.
Graphs Comb. Optim. Theory Appl. 5, 15–26 (2021)

14. Edwards, K.: The complexity of colouring problems on dense graphs. Theor. Com-
put. Sci. 43, 337–343 (1986). https://doi.org/10.1016/0304-3975(86)90184-2

15. Enright, J.A., Stewart, L., Tardos, G.: On list coloring and list homomorphism of
permutation and interval graphs. SIAM J. Discret. Math. 28(4), 1675–1685 (2014).
https://doi.org/10.1137/13090465X

16. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proceedings of
the West Coast Conference on Combinatorics, Graph Theory and Computing.
Congressus Numerantium, vol. 26, pp. 125–157 (1979)

17. Golovach, P.A., Paulusma, D.: List coloring in the absence of two subgraphs. Dis-
cret. Appl. Math. 166, 123–130 (2014). https://doi.org/10.1016/j.dam.2013.10.010

https://doi.org/10.48550/arXiv.2305.10108
https://doi.org/10.48550/arXiv.2305.10108
https://doi.org/10.1016/j.tcs.2013.01.011
https://doi.org/10.1016/j.tcs.2013.01.011
https://doi.org/10.1016/0012-365X(92)90646-W
https://doi.org/10.1007/s00493-017-3553-8
https://doi.org/10.1007/978-3-030-83508-8_15
https://doi.org/10.1007/978-3-030-83508-8_15
https://arxiv.org/abs/2008.09004
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1016/j.ejc.2011.12.008
https://doi.org/10.1016/j.ejc.2011.12.008
https://doi.org/10.7155/jgaa.00237
https://doi.org/10.1007/s10878-015-9917-3
https://doi.org/10.1016/j.disc.2020.112086
https://doi.org/10.1016/j.disc.2020.112086
https://doi.org/10.1007/s00453-013-9777-0
https://doi.org/10.1007/s00453-013-9777-0
https://doi.org/10.1016/0304-3975(86)90184-2
https://doi.org/10.1137/13090465X
https://doi.org/10.1016/j.dam.2013.10.010

List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs 181

18. Gravier, S., Kobler, D., Kubiak, W.: Complexity of list coloring problems with a
fixed total number of colors. Discret. Appl. Math. 117(1–3), 65–79 (2002). https://
doi.org/10.1016/S0166-218X(01)00179-2

19. Hoàng, C.T., Kaminski, M., Lozin, V.V., Sawada, J., Shu, X.: Deciding k-
colorability of P5-free graphs in polynomial time. Algorithmica 57(1), 74–81 (2010).
https://doi.org/10.1007/s00453-008-9197-8

20. Hsu, W.L.: A simple test for the consecutive ones property. J. Algorithms 43(1),
1–16 (2002). https://doi.org/10.1006/jagm.2001.1205

21. Huang, S., Johnson, M., Paulusma, D.: Narrowing the complexity gap for coloring
(Cs, Pt)-free graphs. Comput. J. 58(11), 3074–3088 (2015)

22. Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discret. Appl.
Math. 75(2), 135–155 (1997). https://doi.org/10.1016/S0166-218X(96)00085-6

23. Kratochvil, J.: Precoloring extension with fixed color bound. Acta Math. Univ.
Comen. 62, 139–153 (1993)

24. Kratochvíl, J., Tuza, Z.: Algorithmic complexity of list colorings. Discret. Appl.
Math. 50(3), 297–302 (1994). https://doi.org/10.1016/0166-218X(94)90150-3

25. Kubale, M.: Some results concerning the complexity of restricted colorings of
graphs. Discret. Appl. Math. 36(1), 35–46 (1992). https://doi.org/10.1016/0166-
218X(92)90202-L

26. Lovász, L.: Coverings and coloring of hypergraphs. In: Proceedings of the 4th
Southeastern Confeernce on Combinatorics, Graph Theory, and Computing, Util-
itas Math, pp. 3–12 (1973)

27. Vizing, V.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz
101(29), 3–10 (1976)

https://doi.org/10.1016/S0166-218X(01)00179-2
https://doi.org/10.1016/S0166-218X(01)00179-2
https://doi.org/10.1007/s00453-008-9197-8
https://doi.org/10.1006/jagm.2001.1205
https://doi.org/10.1016/S0166-218X(96)00085-6
https://doi.org/10.1016/0166-218X(94)90150-3
https://doi.org/10.1016/0166-218X(92)90202-L
https://doi.org/10.1016/0166-218X(92)90202-L

Parameterized Algorithms for Cluster
Vertex Deletion on Degree-4 Graphs

and General Graphs

Kangyi Tian1(B), Mingyu Xiao1 , and Boting Yang2

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, China

tkysss@outlook.com
2 University of Regina, Regina, Canada

Abstract. In the Cluster Vertex Deletion problem, we are given a
graph G and an integer k, and the goal is to determine whether we can
delete at most k vertices from G to make the remaining graph a cluster,
i.e., a graph with each connected component being a complete graph. In
this paper, we show that Cluster Vertex Deletion can be solved in
O∗(1.7549k) time, improving the previous result of O∗(1.811k). To obtain
this result, one crucial step is to show Cluster Vertex Deletion on
graphs of maximum degree at most 4 can be solved in O∗(1.7485k) time.
After this, we know that the graph will always have a vertex of degree at
least 5. Then by adopting the previous method of automated generation
of searching trees, we can get the result on general graphs.

1 Introduction

In clustering problems, there is a set of elements and a value of similarity between
each pair of elements in it. The goal is to partition these elements into distinct
groups based on their similarities. This problem has wide-ranging applications
in various fields, such as machine learning [1] and computational biology [2].
One effective approach to model this problem is by constructing a similarity
graph, where the elements form the vertices and edges exist only if the similar-
ity between two vertices exceeds a specified threshold. Therefore, the clustering
problem transforms into partitioning the similarity graph into parts where each
part induces a complete graph. Occasionally, the given similarity data may devi-
ate slightly from the actual clustering model due to noise or other factors, result-
ing in improper no-instance. For such cases, modifications are permitted within
the clustering problem, leading to cluster graph modification problems. Depend-
ing on the type of modifications allowed, different problems can be defined. If
we can only delete edges to create a cluster, i.e., a graph where each connected
component forms a complete graph, the problem is referred to as Cluster Edge
Deletion [7,8,10,11,15]. If both deleting and adding edges are allowed to form
a cluster, the problem is known as Cluster Editing [3,4,7,10,11]. When solely
the deletion of vertices is allowed, the problem becomes Cluster Vertex Dele-
tion (CVD) [5,6,10,12,14,16]. These problems have been extensively examined
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 182–194, 2024.
https://doi.org/10.1007/978-3-031-49190-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_13&domain=pdf
http://orcid.org/0000-0002-1012-2373
https://doi.org/10.1007/978-3-031-49190-0_13

Parameterized Algorithms for Cluster Vertex Deletion 183

in the literature. In this paper, we focus on studying parameterized and exact
algorithms for CVD.

Table 1. Parameterized algorithms for Cluster Vertex Deletion

References Results Main Methods

Cai, 1996 [6] O∗(3k) forbidden graphs

Gramm et al., 2004 [10] O∗(2.26k) automated generation of searching trees

Wahlström, 2007 [16] O∗(2.076k) 3-hitting

Hüffer et al., 2010 [12] O∗(2k) iterative compression

Boral et al., 2016 [5] O∗(1.911k) auxiliary graph Hv

Tsur, 2021 [14] O∗(1.811k) careful analysis by considering twins

This paper O∗(1.7549k) dealing with low-degree graphs

In the Cluster Vertex Deletion (CVD) problem, we are given a graph
G = (V,E) and an integer k. The goal is to determine whether there is a set
of vertices S of size at most k such that after deleting S from G the remain-
ing graph is a cluster. One important property is that a graph is a cluster if
and only if there is no induced 3-path (i.e., a path with three vertices such
that there is no edge between the first and the last vertices) in the graph. In
other words, induced 3-path is the forbidden graph of a cluster. By using this
property and applying the general branching algorithm of Cai [6], we can get
an O∗(3k)-time branching algorithm for this problem. Later, Gramm et al. [10]
improved this result to O∗(2.26k) by using automated generation techniques for
search trees. Since hitting all induced 3-paths is a special case of the 3-hitting
problem, the O∗(2.076k)-time algorithm for the 3-hitting problem [16] directly
implies the same complexity for CVD. In 2010, Hüffer et al. [12] improved the
runtime to O∗(2k) using the iterative compression method. However, the itera-
tive compression method naturally provides a lower bound of 2k in complexity,
limiting further improvement. The next breakthrough came in 2016 when Boral
et al. [5] proposed a novel idea of selecting a vertex v and considering vertex sets
that hit all induced 3-paths containing v. They constructed an auxiliary graph
and used a Python script, similar to the one in [10], to automate the generation
of search trees, resulting in an improved O∗(1.911k)-time algorithm. Tsur [14]
further refined the algorithm, achieving the current best runtime of O∗(1.811k).

In this paper, we further improve the running time bound to O∗(1.7549k)
for CVD. To get this result, we first show that the problem can be solved in
O∗(1.7485k) when the input graph has maximum degree at most 4. After that,
we adopt the technique of the auxiliary graph Hv and a method to automati-
cally generate branching vectors used in [5,14]. Since the degree of the vertex
considered is at least 5, we have more vertices in the local structure and the pre-
vious bottlenecks can be avoided. The history of parameterized algorithms for
CVD was listed in Table 1. We also remark that by using the general approach

184 K. Tian et al.

to obtain exact algorithms via fast parameterized algorithms in [9], we can also
solve CVD in O(1.4302n) time, improving all previous results.

One of the most important contributions in this paper is to obtain the
improved result for the problem in degree-4 graphs. For vertices of degree ≥ 5,
we just modify previous algorithms to get our desired result. Due to the space
limitation, we mainly introduce our algorithm for degree-4 graphs in the main
body and the part for high-degree vertices and general graphs can be found in
the full version of this paper.

2 Notations

Let G = (V,E) denote an undirected graph. For a vertex v ∈ V , we use NG(v)
to represent the set of neighbors of v in graph G, i.e., vertices adjacent to v in
G. Define degG(v) = |NG(v)| as the degree of the vertex v. For a subset V ′ of
vertices, let NG(V ′) = (∪v∈V ′NG(v)) \ V ′ and NG[V ′] = NG(V ′) ∪ V ′. We also
use N2

G(v) = NG(NG(v)) \ {v} to represent the vertices with distance exactly 2
to vertex v. In the above notations, we may omit the subscript G if the graph
G is clear from the context. A singleton {v} may be simply written as v. For
a graph G′, we use V (G′) and E(G′) to denote the set of vertices and the set
of edges in G′, respectively. For V ′ ⊆ V and E′ ⊆ E, a graph G′ = (V ′, E′) is
called an induced subgraph of G if any edge (x, y) in E is in E′ iff x ∈ V ′ and
y ∈ V ′. Let G[V ′] denote the induced subgraph of G with vertices V ′ and G−V ′

denote G[V \ V ′].
A vertex set S of a graph G is called a vertex cover if for any edge in G there

is at least one endpoint in S. A 3-path is a path of 3 vertices. A 3-path (u, v, w) is
called an induced 3-path if there is no edge between u and w. A complete graph
is also called a clique. A graph is called a cluster if each connected component is
a clique. The Cluster Vertex Deletion problem (CVD) is to check whether
we can delete at most k vertices from a graph to make the remaining graph
a cluster. An instance of CVD is denoted by (G, k). A subset S of vertices is
called a CVD-set if G − S is a cluster. A CVD-set is also called a solution set
to CVD and a minimum CVD-set is called an optimal solution set to CVD. The
following forbidden-graph property has been frequently used in algorithms for
CVD [5,6,10,12,14,16].

Lemma 1. A graph is a cluster iff the graph contains no induced 3-path.

3 Properties for Algorithm of Degree-4 Graph

3.1 The CVD-Dominating Family

Definition 1. Let V ′ be a subset of vertices of the graph G. Define ΔG(V ′) =
NG(V \ V ′) ∩ V ′, i.e., the set of vertices in V ′ adjacent to some vertices not
in V ′. Let T be a CVD-set of G[V ′]. Define ΔG(V ′, T) as the set of vertices
of cliques in G[V ′ − T] containing some vertices in ΔG(V ′). See Fig. 1 for an
illustration of these concepts.

Parameterized Algorithms for Cluster Vertex Deletion 185

Fig. 1. An example for Definition 1.

In Fig. 1, vertices in ΔG(V ′) are bold. A CVD-set T of G[V ′] is {c}. After
removing T from V ′, there are 3 cliques and the vertices in ΔG(V ′, T) are all
marked as gray vertices.

Definition 2. Let V ′ be a subset of vertices of the graph G. For two CVD-sets
X and Y of induced graph G[V ′], we say that Y dominates X under G[V ′] if

|ΔG(V ′, Y) \ ΔG(V ′,X)| ≤ |X| − |Y |.

Lemma 2. Let V ′ ⊆ V be a vertex subset of G, and X and Y be two CVD-sets
of G[V ′] such that Y dominates X under G[V ′]. If there is a CVD-set S of G
containing X then there is a CVD-set S′ of G containing Y such that |S′| ≤ |S|.

Proof. Let S be a CVD-set of G containing X. Let Y ′ = Y ∪ (ΔG(V ′, Y) \
ΔG(V ′,X)). We show that S′ = (S \ X) ∪ Y ′ is a CVD-set of G containing Y
such that |S′| ≤ |S|.

Since Y ⊆ Y ′ ⊆ S′, we know that S′ contains Y . Next, we prove G − S′ is a
cluster. Assume to the contrary that G − S′ is not a cluster. By Lemma 1, we
know there is an induced 3-path P in graph G − S′.

Since Y is a CVD-set of G[V ′] and Y ⊆ S′, we know that G[V ′ \ S′] is a
cluster. Then the induced 3-path P must contain at least one vertex in V \ V ′.
Thus, all the three vertices of P must be in (V \(V ′∪S′))∪ΔG(V ′, Y ′), which is a
superset of (V \ (V ′ ∪S′))∪ΔG(V ′,X), by the definition of Y ′. This implies that
the induced 3-path P also exists in G−S, a contradiction. So G−S′ is a cluster.
Last, we consider the size of S′. We can see that |S′| = |(S \X)∪Y ′| = |(S \X)∪
Y ∪ (ΔG(V ′, Y)\ΔG(V ′,X))| ≤ |S|−|X|+ |Y |+ |ΔG(V ′, Y)\ΔG(V ′,X)| ≤ |S|.
So S′ is a satisfied set. �	

Definition 3. A CVD-dominating family FG(V ′) is a set of CVD-sets of G[V ′]
such that for every CVD-set X of G[V ′], there is a CVD-set in FG(V ′) domi-
nating X under G[V ′].

Based on Definition 3, to search for a solution, instead of listing all CVD-sets
of V ′, we can only consider a CVD-dominating family.

Definition 4. A vertex subset V ′ ⊆ V is called an important set if there is a
minimum CVD-set C of induced subgraph G[V ′] such that ΔG(V ′) ⊆ C. The set
C is called an important cut.

Corollary 1 (of Lemma 2). Let V ′ ⊆ V be an important set with an impor-
tant cut C. There is a minimum CVD-set of G containing C.

186 K. Tian et al.

3.2 Core Branching Processing

We introduce a technique to design branching rules. The idea is to relax the
concept of important sets. For an instance (G, k), we consider a set of vertices
C that induces a clique. Let S be a CVD-set of (G, k). Since G − S is a cluster,
we know that C ∩ (V − S) is either empty or forms a clique. When designing a
branching rule, we can only consider all possible cliques in G − S intersecting
with C. Furthermore, we can also reduce some dominated cases. This processing
to generate branching rules is called core branching processing and the selected
set C is called the core clique.

Definition 5. Given an reduced instance (G, k), the core branching processing
will produce a branching rule by the following steps:
1. Choose an induced clique of G as the core clique C;
2. Let T be the set of cliques intersected with C and C = {C} ∪ {N(T)|T ∈ T };
3. If there exist T1 and T2 ∈ T such that |N(T1)| ≥ |N(T2)| and N [T1] ⊆ N [T2],
remove N(T1) from C;
4. If there exist T1 ∈ T such that |N(T1)| ≥ |C| and N [T1] ⊆ C(resp., |C| ≥
|N(T1)| and C ⊆ N [T1]), remove N(T1)(resp., C) from C.

The correctness of Step 3 of the core branching processing is based on the fact
that if there is a CVD-set of G containing N(T1), then there must be a CVD-
set containing N(T2). Here we use the concept of dominating. Let V ′ = N [T2].
We know that ΔG(V ′) ⊆ N(T2). Assume that S is a CVD-set of G containing
N(T1). Let X = S ∩ V ′. Then S is also a CVD-set of V ′. Since N [T1] ⊆ N [T2],
we know that |X| ≥ |N(T1)| ≥ |N(T2)|. By Definition 2 and Lemma 2, we know
that N(T2) dominates X and there must be a CVD-set containing N(T2).

4 Reduction Rules

We first introduce some reduction rules that will be applied in our algorithms
to reduce the instance in polynomial time.

R-Rule 1. If k < 0, return ‘no’ to indicate that the instance is a no-instance.

R-Rule 2. If the graph is an empty graph, return ‘yes’ to indicate that the
instance is a yes-instance.

R-Rule 3. If there is a connected component of G that is a clique, delete it from
the graph.

R-Rule 4. If there is a connected component C of G and a vertex u ∈ C such
that G[C] − u is a cluster, delete u from the graph and decrease k by 1.

R-Rule 5. If there is an important set V ′ ⊆ V with an important cut C such
that |C| ≤ 10, then return the instance (G − C, k − |C|).

Parameterized Algorithms for Cluster Vertex Deletion 187

In R-Rule 5, we require that |C| ≤ 10. So the important sets V ′ and important
cuts C can be found in polynomial time if they exist. We mention a special
case of the important sets that will be reduced by this rule. Let u be a degree-2
vertex with one degree-1 neighbor v and another neighbor w. Then {u, v, w} is
an important set satisfying the condition in R-Rule 5. We may delete w directly
from the graph.

5 The Algorithm for Degree-4 Graphs

First of all, we present our algorithm for the case that the input graph is a graph
with maximum degree at most 4. In this section, we mainly use the concept of
the CVD-dominating family and the method of core branching processing. The
algorithm contains the following seven main steps. When introduce one step, we
will assume all previous steps can not be applied.

1. Iteratively apply the above five reduction rules to get a reduced instance.
2. If there is a degree-1 vertex v, execute the branching operations in Sect. 5.1.
3. If there is a 4-clique, execute the branching operations in Sect. 5.2.
4. If there is a degree-4 vertex v, execute the branching operations in Sect. 5.3.
5. If there are two triangles sharing one edge, execute the branching operations

in Sect. 5.4.
6. If there is a triangle, execute the branching operations in Sect. 5.5.
7. Reduce the problem to the 3-path vertex cover problem.

5.1 Degree-1 Vertices

Assume there is a degree-1 vertex u. We let v denote the unique neighbor of u.
We know that v is a vertex of degree at least three otherwise if v is of degree 2
then R-Rule 5 would be applied on the important set N [v] and if v is of degree
1 then R-Rule 3 would be applied. We pick {u} as the core clique and apply the
core branching processing. The set of intersecting cliques is T = {∅, {u}, {u, v}}
and thus we will get three initial branches: (1) deleting {u} and decreasing k by
1; (2) deleting {v} and decreasing k by 1; (3) deleting N(u, v) and decreasing k
by |N(u, v)| ≥ 2. However, the first branch is dominated by the second branch
and then the first branch will be removed according to the last step of the core
branching processing. Thus, we get a branching vector at least (1, 2).

5.2 4-Cliques

Assume there is a 4-clique {v, u, w, t}. We show all possible configurations of
the clique in Fig. 2, where dark vertices mean all neighbors of them are already
drawn on the figure and a dotted edge incident on a vertex means there may be
some further edges incident on this vertex. Note that a vertex has degree at most
4. Each vertex in {v, u, w, t} can be adjacent to at most one vertex not in this set.
Thus |N(v, u, w, t)| ≤ 4. Let Nc = |N(v, u, w, t)|. The cases in Fig. 2 are listed

188 K. Tian et al.

Fig. 2. The cases with 4-cliques

according to the value of Nc. In Case 1, Nc = 0; In Cases 2–5, Nc = 1; In Cases
6–9, Nc = 2; In Cases 10–11, Nc = 3; In Case 12, Nc = 4. For Cases 1 and 5, the
graph is a component of clique and it would be reduced by R-Rule 3. For Cases
2–4, {v, u, w, t, a} is an important set with the important cut {a} and it would
be reduced by R-Rule 5. For Cases 6, 7 and 9, {v, u, w, t, a, b} is an important set
with the important cut {a, b} and it would be reduced by R-Rule 5. For Case 8, we
consider the subgraph G′ induced by {v, u, w, t, a, b}. All CVD-sets in G′ of size
at least 2 are dominated by {a, b} and there is only one CVD-set {u} of size less
than 2 in G′. Thus, we branch into two branches: deleting {a, b} and decreasing
k by 2; deleting {u} and decreasing k by 1. We get a branching vector (2, 1). For
Case 10, {v, u, w, t, a, b, c} is an important set with the important cut {a, b, c}
and it would be reduced by R-Rule 5. For Case 11, we consider the subgraph G′

induced by {v, u, w, t, a, b, c}. All CVD-sets in G′ of size at least 3 are dominated
by {a, b, c} and there is only one CVD-set {u,w} of size less than 3 in G′. Thus,
we branch into two branches: deleting {a, b, c} and decreasing k by 3; deleting
{u,w} and decreasing k by 2. We get a branching vector (3, 2). For Case 12, we
first consider the subgraph G′ induced by {v, u, w, t, a, b, c, d}. All CVD-sets in
G′ of size at least 4 are dominated by {a, b, c, d}. Next, we assume that S is a
CVD-set such that S′ = S∩{v, u, w, t, a, b, c, d} contains at most 3 vertices. Then,

Parameterized Algorithms for Cluster Vertex Deletion 189

there are only four possibilities: S′ = {u, v, w}, {u, v, t}, {v, t, w} or {t, w, u}. We
consider S′ = {u, v, w}. For this case, both t and d are left in a component of
a clique of size 2 and thus N(t, d) is in S. After Sect. 4.1, there is no degree-1
vertex, and then d is adjacent to a vertex d′ �= t. Furthermore, d′ �∈ {u, v, w}
since the graph is a degree-4 graph. For this case, {u, v, w, d′} ⊆ N(t, d) and
at least |N(t, d)| ≥ 4 vertices can be deleted. We can decrease k by at least 4.
By the same reason, for the cases S′ = {u, v, t}, {v, t, w} and {t, w, u}, we can
also decrease k by at least 4. Thus, we can branch into five branches and in
each branch the parameter k decreases by at least 4. We get a branching vector
(4, 4, 4, 4, 4).

Among all the cases, the worst branching vector is (2, 1), the branching factor
of which is 1.6182.

Fig. 3. The cases with 4-degree vertices

5.3 Degree-4 Vertices

Assume there is a degree-4 vertex u with four neighbors {a, b, c, d}. Let El denote
the set of edges with both endpoints in {a, b, c, d} and l be the size of El. Note
that the edges in El will not form a triangle, since there is no cliques of size 4
after Sect. 4.2. We consider different cases according to the value of l. All the
cases are shown in Fig. 3.
Case 1. l = 4. Since there is no triangle, the four edges in El will form a cycle of
size 4. Without loss of generality, we assume that El = {(a, b), (b, c), (c, d), (d, a)}.
Let X be the set with the least neighbors among {u, a, b}, {u, b, c}, {u, c, d} and
{u, d, a}. If |N(X)| ≤ 3, then N [X] is an important set with the important cut
being N(X), because any CVD-set of the graph induced by N [X] will contain
at least |N(X)| vertices. For this case, it will be reduced by R-Rule 5. Next, we
assume that |N(X)| ≥ 4. Let a′, b′, c′ and d′ be the four neighbor of a, b, c and
d, respectively, where a′ �= b′, b′ �= c′, c′ �= d′ and d′ �= a′.

190 K. Tian et al.

We choose {u} as the core clique and apply the core branching processing.
The intersecting cliques are ∅, {u}, {u, a}, {u, b}, {u, c}, {u, d}, {u, a, b}, {u, b, c},
{u, c, d}, and {u, d, a}. We get initial branches of deleting {u}, N(u), N(u, a),
N(u, b), N(u, c), N(u, d), N(u, a, b), N(u, b, c), N(u, c, d), and N(u, d, a). The
branches of deleting N(u), N(u, a) and N(u, b) are dominated by the branch of
deleting N(u, a, b). The branches of deleting N(u, c) and N(u, d) are dominated
by the branch of deleting N(u, c, d). We can branch by deleting {u}, N(u, a, b),
N(u, b, c), N(u, c, d) or N(u, d, a), where |N(u, a, b)|, |N(u, b, c)|, |N(u, c, d)| and
|N(u, d, a)| = 4 since |N(X)| ≥ 4 and the maximum degree of the graph is 4.
The branching vector is (1,4,4,4,4) with a branching factor 1.7485.

Case 2. l = 3. There are three edges in El and they form a path of length 3.
Without loss of generality, we assume that El = {(a, b), (b, c), (c, d)}. If deg(b) =
deg(c) = 3, then {u, a, b, c, d} is an important set with an important cut {a, d},
which would be reduced by R-Rule 5. Next, we assume that |N(u, b, c)| ≥ 3.

Case 2.1. Only one of {b, c} is of degree 4. We assume without loss of generality
that deg(b) = 4, deg(c) = 3 and e is the fourth neighbor of b. We further
distinguish two cases. If a is not adjacent to e or both of a and d are adjacent to
e, then {u, a, b, c, d, e} is an important set with an important cut {a, d, e}, which
would be reduced by R-Rule 5. Next, we assume that a and e are adjacent but
d and e are not adjacent. If d is of degree 2, then {u, a, b, c, d} is an important
set with an important cut {a, b}, which would be reduced by R-Rule 5. Thus,
we assume that d is adjacent to a vertex f different from {e, u, c}.

Let V ′ = {u, a, b, c, d, e, f} and G′ = G[V ′]. In G′, any CVD-set of size at
least three is dominated by {a, d, e} or {a, b, f}. There is only one CVD-set of
size less than three {u, c}. We can branch by either deleting {a, d, e} or {a, b, f}
or {u, c}, and we get a branching vector (3, 3, 2).

Case 2.2. Both of {b, c} are degree-4 vertices. Let e be the fourth neighbor of
b and f be the fourth neighbor of d. We know that e, f �∈ {u, a, b, c, d}. First we
show that e �= f . If e = f , then e is not adjacent to either a or d. Otherwise, this
case will be solved in Case 1. Thus, there is an important set V ′ = {u, a, b, c, d, e}
with an important cut {a, e, d}, which should be reduced by R-Rule 5. Next, we
assume that e �= f .

If a is not adjacent to a vertex different from u, b and e, then there is an
important set {u, a, b, c, d, e} with an important cut {c, d, e}. If d is not adjacent
to a vertex different from u, c and f , then there is an important set {u, a, b, c, d, f}
with an important cut {a, b, f}. Thus, we can assume that N(u, a, b), N(u, c, d) ≥
4.

We choose {u} as the core clique and apply the core branching processing.
The intersecting cliques are ∅, {u}, {u, a}, {u, b}, {u, c}, {u, d}, {u, a, b}, {u, b, c},
{u, c, d}, and {u, d, a}. The branches of deleting N(u), N(u, b) and N(u, c) are
dominated by the branch of deleting N(u, b, c). The branch of deleting N(u, a) is
dominated by the branch of deleting N(u, a, b). The branch of deleting N(u, d) is
dominated by the branch of deleting N(u, c, d). We can branch by deleting {u},

Parameterized Algorithms for Cluster Vertex Deletion 191

N(u, a, b), N(u, b, c) or N(u, c, d), where |N(u, a, b)|, |N(u, b, c)|, |N(u, c, d)| ≥ 4.
The branching vector is (1, 4, 4, 4) with a branching factor 1.6851.

Case 3. l = 3 and the three edges in El have a common endpoint. Without loss of
generality, we assume that El = {(a, b), (b, c), (b, d)}. Let X = {u, a, b}, {u, b, c},
or {u, b, d}. If |N(X)| ≤ 2, then N [X] is an important set with the important cut
being N(X). It will be reduced by R-Rule 5. Next, we assume that |N(X)| ≥ 3.
Let a′, c′ and d′ be the three neighbors of a, c and d, respectively.

We choose {u} as the core clique and apply the core branching process-
ing. The intersecting cliques are ∅, {u}, {u, a}, {u, b}, {u, c}, {u, d}, {u, a, b},
{u, b, c}, and {u, b, d}. We get initial branches of deleting {u}, N(u), N(u, a),
N(u, b), N(u, c), N(u, d), N(u, a, b), N(u, b, c) and N(u, b, d). The branches of
deleting N(u) and N(u, a) are dominated by the branch of deleting N(u, a, b).
The branches of deleting N(u, c) and N(u, d) are dominated by the branches of
deleting N(u, b, c) and N(u, b, d), respectively. The branch of deleteing N(u, b)
will be dominated by the branching deleting X if |N(X)| ≤ 3. Notice that u
and b are twins of each other and by Lemma 9 in [15], we can delete b at the
same time if we delete u. We can branch by deleting {u, b}, N(u, b), N(u, a, b),
N(u, b, c) or N(u, b, d), where |N(u, a, b)|, |N(u, b, c)| and |N(u, b, d)| = 4 or
deleting {u, b}, N(u, a, b), N(u, b, c) or N(u, b, d), where |N(u, a, b)|, |N(u, b, c)|
or |N(u, b, d)| = 3. The branching vector is (2,3,4,4,4) or (2,3,3,3) with a branch-
ing factor 1.6472 or 1.6717.

Case 4. l = 2 and the two edges in El have a common endpoint. Without loss
of generality, we assume that El = {(a, b), (b, c)}. After Sect. 5.1, there is no
degree-1 vertex. We assume that d is adjacent to a vertex e �= u.

Case 4.1. deg(b) = 3. For this case, neither a or c can be a degree-2 vertex,
otherwise there would be an important set {u, a, b, c, d} with an important cut
{c, d} or {a, d}. Thus, we have |N(a, b, u)| ≥ 3 and |N(c, d, u)| ≥ 3. We choose
{b} as the core clique and apply the core branching processing. The intersecting
cliques are ∅, {b}, {b, a}, {b, u}, {b, c}, {b, a, u} and {b, c, u}. The branch of delet-
ing N(b) and deleting N(b, a) is dominated by the branch of deleting N(b, a, u).
The branch of deleting N(b, c) is dominated by the branch of deleting N(b, c, u).
After ignoring the branching of deleting N(b), N(b, a) and N(b, c), we may be
able to get a branching vector (1, 3, 3, 3). However, it is not good enough. We
further analyze several cases. If deg(a) = 3 (resp., deg(c) = 3), then the branch-
ing of deleting N(b, u) is dominated by the branch of deleting N(b, u, a) (resp.,
N(b, u, c)). For this case, we can branch with (1, 3, 3) at least, the branching
factor of which is 1.6957. Otherwise, deg(a) ≥ 4 and deg(c) ≥ 4. The branching
vector is at least (1, 3, 4, 4) with a branching factor 1.7254.

Case 4.2. deg(b) = 4. Let f be the fourth neighbor of b. We choose {u} as the
core clique and apply the core branching processing. The intersecting cliques
are ∅, {u}, {u, a}, {u, b}, {u, c}, {u, d}, {u, a, b}, and {u, b, c}. The branch of
deleting N(u) is dominated by the branch of deleting N(u, b). The branch of
deleting N(u, a) is dominated by the branch of deleting N(u, a, b). The branch
of deleting N(u, c) is dominated by the branch of deleting N(u, b, c). We only

192 K. Tian et al.

need to consider five branches of deleting {u}, N(u, b), N(u, d), N(u, a, b), and
N(u, b, c). We further consider several subcases. If deg(a) = deg(c) = 4, we
have |N(a, u, b)| = |N(b, u, c)| = 5 because a and b (resp., b and c) have no
common neighbor other than u after Case 1. Then, we will get a branching
vector (1, 4, 4, 5, 5) with a branching factor 1.6770. Next, we assume that either
a or c is a vertex of degree at most 3. Then the branch of deleting N(u, b)
is dominated by the branch of deleting N(u, a, b) or N(u, c, d). There are four
branches left: deleting {u}, N(u, d), N(u, a, b), and N(u, b, c). If deg(a) = 3 or
deg(c) = 3, we can get a branching vector (1, 4, 4, 3) with a branching factor
1.7254. The only left case is that deg(a) = deg(c) = 2. For this case, the branch
of deleting N(u, b, c) is dominated by the branch of deleting N(u, a, b). we get a
branching vector (1, 4, 3) with a branching factor 1.6181.

Please see the details of analysis for Cases 5,6 and 7 in the full version of this
paper.

Fig. 4. two triangles sharing an edge

5.4 Two Triangles Sharing One Edge

In this step, there is no vertex of degree ≥ 4. Assume there are two triangles
{u,w, v} and {t, w, v} sharing one edge (w, v). All possible configurations are
shown in Fig. 4. Since the maximum degree is at most 3 now, we know that
only u and t are possibly adjacent to a vertex out of {u, v, w, t}. Case 1 is a
component of 4 vertices. We can simply put u to the solution. For Case 2, let
V ′ = {u, v, w, t, a} and G′ = G[V ′]. We can see that {u} is a CVD-set dominates
all other CVD-sets in G′. Thus, we can also simply put u to the solution. For
Case 3, let V ′ = {u, v, w, t, a} and G′ = G[V ′]. We can see that {a, u} is a CVD-
set dominates all other CVD-sets in G′. Thus, we can also simply put {a, u} to
the solution. For Case 4, let V ′ = {u, v, w, t, a, b} and G′ = G[V ′]. Any CVD-set
in G′ is dominated by either {a, t} or {u, b}. We can branch with a branching
vector (2, 2).

Parameterized Algorithms for Cluster Vertex Deletion 193

5.5 Triangles

Assume that there is still a triangle {u, v, w} in the graph. If |N(u, v, w)| ≤ 2,
then N [u, v, w] is an important set with an important cut N(u, v, w), which
should be reduced by R-Rule 5. Thus, it holds that |N(u, v, w)| = 3. Note that
after Sect. 5.4, no two triangles share an edge and there are exact three edges
between {u, v, w} and {u′, v′, w′}. Let {u′, v′, w′} = N(u, v, w), where there are
three edges (u, u′), (v, v′), (w,w′) between {u, v, w} and {u′, v′, w′}. We choose
{u, v, w} as the core clique and apply the core branching processing. The inter-
secting cliques will be ∅, {u}, {v}, {w}, {u, v}, {u,w}, {v, w} ,{u, u′}, {v, v′},
{w,w′} and {u, v, w}. Any branch will be dominated by one of the branches
of deleting N(u, u′), N(v, v′), N(w,w′) and {u′, v′, w′}. Since there is no degree-
1 vertex, we can get a branching vector at least (3, 3, 3, 3) with the branching
factor 1.5875.

5.6 The Remaining Case

Now the graph has the maximum degree at most 3 and there is no triangle in
it. CVD is equal to delete at most k vertices from the graph to make the each
connected component containing at most 2 vertices. The latter problem is the
3-path vertex cover problem. We directly use the O∗(1.713k)-time algorithm for
the 3-path vertex cover problem in [13] to solve our problem.

We have considered all the cases and the worst branching factor is 1.7485.

Theorem 1. Cluster Vertex Deletion in graphs with maximum degree at
most 4 can be solved in O∗(1.7485k) time and polynomial space.

With this result, we can improve the running time bound for Cluster Vertex
Deletion in general graphs to O∗(1.7549k). The details can be found in the full
version of this paper.

6 Conclusion

In this paper, we proposed an improved parameterized algorithm for the classic
Cluster Vertex Deletion. Except using previous techniques such as the
auxiliary graph, twins, and automated generation of searching trees, we introduce
two new concepts: CVD-dominating family and core branching processing. A
significant contribution of our work is to tackle the problem in low-degree graphs
as the first step. Subsequently, we focus solely on vertices with high degrees,
which potentially contain more valuable information. This allows us to design
specific branching rules to achieve better branching factors. It is worth noting
that even for graphs with maximum degree 4, our algorithm still requires some
new techniques and deep analyses to get the desired improvement.

Acknowledgments. The author is grateful to all the anonymous reviewers for fruit-
ful and insightful comments to improve the presentation of the paper. The work is
supported by the National Natural Science Foundation of China, under the grants
62372095 and 61972070.

194 K. Tian et al.

References

1. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

2. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Com-
put. Biol. 6(3/4), 281–297 (1999)

3. Böcker, S.: A golden ratio parameterized algorithm for cluster editing. J. Disc.
Algor. 16, 79–89 (2012)

4. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: parameterized
algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)

5. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm
for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)

6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

7. Cygan, M., Fomin, F.V., Kowalik, �L, Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

8. Damaschke, P.: Bounded-degree techniques accelerate some parameterized graph
algorithms. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp.
98–109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0 8

9. Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via mono-
tone local search. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, 18–21 June 2016, pp. 764–775. ACM (2016)

10. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347
(2004)

11. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data cluster-
ing: exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392
(2005)

12. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010)

13. Tsur, D.: Parameterized algorithm for 3-path vertex cover. Theor. Comput. Sci.
783, 1–8 (2019)

14. Tsur, D.: Faster parameterized algorithm for cluster vertex deletion. Theory Com-
put. Syst. 65(2), 323–343 (2021)

15. Tsur, D.: Cluster deletion revisited. Inf. Process. Lett. 173, 106171 (2022)
16. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and

related problems. PhD thesis, Linköping University, Sweden (2007)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-642-11269-0_8

Sum-of-Local-Effects Data Structures
for Separable Graphs

Xing Lyu1, Travis Gagie2(B) , Meng He2 , Yakov Nekrich3 ,
and Norbert Zeh2

1 Halifax West High School, Halifax, Canada
2 Dalhousie University, Halifax, Canada

{travis.gagie,meng.he,norbert.zeh}@dal.ca
3 Michigan Technological University, Houghton, USA

yakov@mtu.edu

Abstract. It is not difficult to think of applications that can be mod-
elled as graph problems in which placing some facility or commodity at a
vertex has some positive or negative effect on the values of all the vertices
out to some distance, and we want to be able to calculate quickly the
cumulative effect on any vertex’s value at any time or the list of the most
beneficial or most detrimential effects on a vertex. In this paper we show
how, given an edge-weighted graph with constant-size separators, we can
support the following operations in time polylogarithmic in the number
of vertices and the number of facilities placed on the vertices, where
distances between vertices are measured with respect to edge weights:
Add (v, f,w, d) places a facility of weight w and with effect radius d

onto vertex v.
Remove (v, f) removes a facility f previously placed on v using Add

from v.
Sum (v) or Sum(v, d) returns the total weight of all facilities affecting

v or, with a distance parameter d, the total weight of all facilities
whose effect region intersects the “circle” with radius d around v.

Top(v, k) or Top(v, k, d) returns the k facilities of greatest weight
that affect v or, with a distance parameter d, whose effect region
intersects the “circle” with radius d around v.

The weights of the facilities and the operation that Sum uses to “sum”
them must form a semigroup. For Top queries, the weights must be
drawn from a total order.

Keywords: Graph data structures · Treewidth · Branchwidth · Graph
decompositions · Tree decompositions · Sum of local effects

1 Introduction

Even people who have never heard of Baron Samuel of Wych Cross may have
heard a saying often attributed to him, that there are three things that matter in

This work is supported by NSERC.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 195–206, 2024.
https://doi.org/10.1007/978-3-031-49190-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_14&domain=pdf
http://orcid.org/0000-0003-3689-327X
http://orcid.org/0000-0003-0358-7102
http://orcid.org/0000-0003-3771-5088
http://orcid.org/0000-0002-0562-1629
https://doi.org/10.1007/978-3-031-49190-0_14

196 X. Lyu et al.

real estate: location, location, location. This means that the value of a property
may increase or decrease depending on whether it is close to a bus stop, a good
school, a supermarket or a landfill, for example. Of course, “close” may not mean
the same thing for a bus stop as it does for a landfill, and the positive effect of
the former may not offset the negative effect of the latter. In fact, “close” may
not refer to Euclidean distance, since walking to a bus stop five minutes down
the street is preferable to walking to one five minutes away through a landfill.
To model applications in which there are such additive local effects with a non-
Euclidean definition of locality, we propose in this paper a data structure for a
graph G that supports the following operations:

Add (v, f,w, d) places a facility of weight w onto vertex v. The effect region
of f is a circle with radius d around v.

Remove (v, f) removes a facility f previously placed on v using Add from v.
Sum (v) or Sum(v, d) returns the total weight of all facilities affecting v or,

with a distance parameter d, the total weight of all facilities whose effect
region intersects the “circle” with radius d around v.

Top(v, k) or Top(v, k, d) returns the k facilities of greatest weight that affect
v or, with a distance parameter d, whose effect region intersects the “circle”
with radius d around v.

We assume that every edge e ∈ G has a non-negative length �(e) and that
distances between vertices are measured as the minimum total length of all
edges on any path between these two vertices. A circle with radius d around
some vertex v includes all vertices and (parts of) edges at distance d from v.
More precisely, if f is a facility with effect radius d′ placed on some vertex u,
then we consider f ’s effect region to intersect a circle with radius d around some
other vertex v if and only if dist(u, v) ≤ d + d′.

The weights of the facilities and the operation that Sum uses to “sum” them
must form a semigroup. For Top queries, the weights must be drawn from a
total order. Note that Sum(v) and Top(v, k) can be viewed as “range stabbing
queries on graphs”, whereas Sum(v, d) and Top(v, k, d) with d > 0 are “range
intersection queries on graphs,” where the ranges are the effect regions of the
facilities and a query is either an individual vertex or a region of some radius d
around some vertex.

We call such a data structure a sum-of-local-effects (SOLE) data structure.
In Sect. 2, we show that when G is a tree on n vertices, then there is a SOLE data
structure for it supporting Add, Remove, and Sum operations in O(lg n lgm)
time, and Top queries in O(k lg n lgm) time, where m is the total number of
facilities currently placed on the vertices of G. In Sect. 3, we generalize this result
to t-separable graphs, for any constant t, which includes series-parallel graphs
(t ≤ 2), graphs of constant treewidth w (t ≤ w + 1), and graphs of constant
branchwidth b (t ≤ b). We show that when G is t-separable, there exists a
SOLE data structure for it supporting Add, Remove, and Sum operations in
O(lg n lgt m) time, and Top queries in O(k lg n lgt m) time. The costs of Add
and Remove operations are amortized in this case.

SOLE Data Structures 197

Our results can be extended to directed graphs G and our data structure
can be made to support vertex and edge deletions in G. We will investigate this
generalization in the full version of this paper.

2 A SOLE Data Structure for Trees

In this section, we prove that

Theorem 1. If G is a tree on n vertices, then there is a SOLE data structure
for it supporting Add, Remove, and Sum operations in O(lg n lgm) time, and
Top(v, k, d) operations in O(k lg n lgm) time, where m is the number of facilities
currently on the vertices of G. The size of this data structure is O(n + m lg n).

To obtain a SOLE data structure for arbitrary trees, we can transform any
tree G into a tree G′ whose nodes have degree at most 3 by replacing every high-
degree vertex u in G with a degree-3 subtree G′

u whose edges all have length 0
(see Figs. 1b,c). We choose an arbitrary vertex in G′

u as the representative of u
in G′. This ensures that the distances between vertices in G and between their
representatives in G′ are the same. Thus, we can support operations on G by
building a SOLE data structure on G′ instead. Therefore, for the rest of this
section, we assume that all vertices of G have degree at most 3.

2.1 Designing SOLE Data Structures for Trees

We choose an arbitrary vertex ρ of G and label every vertex v in G with its
distance dist(ρ, v) from ρ. A centroid edge of G is an edge (u, v) whose removal
splits G into two subtrees Gu and Gv with at most 2n/3 vertices each. Such an
edge exists because all vertices of G have degree at most 3. A centroid decom-
position of G is a binary tree T defined inductively as follows (see Fig. 1c): If G
has a single vertex v, then T has v as its only node. Otherwise, let (u, v) be an
arbitrary centroid edge of G. Then the root of T is (u, v), and the two children
of (u, v) are the roots of centroid decompositions of Gu and Gv. For each edge
e of T , let Te be the subtree of T below e, and let Ve be the set of vertices of G
corresponding to the leaves of Te. The height of T is at most log3/2 n = O(lg n).

Our SOLE data structure for G consists of a centroid decomposition T of G
where each edge e of T has an associated data structure We storing facilities in
Ve′ that may affect the vertices in Ve, where e′ is the other edge in T descending
from the same node as e. Each leaf v of T (corresponding to the vertex v of G)
also has an associated data structure Wv storing the facilities placed on v itself.
Each facility f with weight w in We or Wv has an associated radius r and is
stored as the triple (r, f, w) in We.

We represent each data structure Wx, where x can be an edge or a leaf
of T , as two search trees Rx and Fx. Rx is a priority search tree [4] on the
triples (r, f, w) in Wx, using the radii r as x-coordinates and the weights w as y-
coordinates. Each node v of Rx is augmented with the total weight of all triples
in the subtree below v. Fx is a standard search tree over the triples (r, f, w)

198 X. Lyu et al.

v1

v2

v3

v4

v5

v6

v7

v8v9

v10
v11

v12
5 3

1 7

2

4
25

51

8

(a)

v1

v2

v3

v4 v′
4 v′′

4 v5

v6

v7

v8v9

v10

v11

v12

5 3

1
7

2

425

5

1

8
0 0

(b)

8

v2 v3 (v10, v12) v11 v′
4 v9 v′′

4 v8 v5 v7

v10 v12

(v10, v11)v4(v2, v3)v1 (v′
4, v9) (v′′

4 , v8) (v5, v7) v6

(v4, v10)(v1, v2) (v′
4, v

′′
4) (v5, v6)

(v2, v4) (v′′
4 , v5)

(v4, v′
4)

1

2

7

2

−6

−8

1

(c)

Fig. 1. A tree (a), its degree-3 version (b), and the centroid decomposition (c) of the
tree in (b). The shaded subtree in (b) is the degree-3 tree replacing the high-degree
vertex v4 in (a). A facility f with effect radius 8 placed on v11 has the pink effect
region in (b). This region overlaps the blue query region with radius 8 around v6. In
the centroid decomposition (c), f is stored in the edge data structures of the fat red
edges and the node data structure of v11, with the radii shown in red. A query with
radius 8 around v6 queries the node data structure of v6 an the edge data structures of
the fat blue edges, with the query radii shown in blue. In particular, f is reported as
part of the query on the data structure We associated with the highlighted child edge
of (v4, v′

4). (Color figure online)

SOLE Data Structures 199

in Wx, using the identifiers f of facilities as keys. The two copies of (r, f, w)
in Rx and Fx are linked using cross pointers. Thus, Wx supports the following
operations in O(lgm) time: insertion of a new triple (r, f, w), deletion of a triple
associated with facility f , and reporting of the total weight of all triples (r, f, w)
with q ≤ r, for some query radius q. It also supports, in O(k lgm) time, reporting
the k triples with maximum weight among all triples (r, f, w) with q ≤ r.

To bound the size of the data structure, note that T has size O(n), each data
structure Wx, with x a leaf or edge of T , has size linear in the number of triples
it stores, and each facility placed on some vertex v is stored in Wv and in the
data structure We associated with each edge e on the path Pv = 〈x1, . . . , xh, v〉
from the root of T to v (which is a leaf of T). Since this path has length O(lg n),
each facility is stored O(lg n) times. Thus, the SOLE data structure for trees has
size O(n + m lg n).

2.2 Supporting Queries over Trees

We now use our data structures to support operations.
An Add(v, f, w, d) operation traverses the path Pv. We insert the triple

(d, f, w) into Wv. Each node xi in Pv represents an edge (x, y) of G and has
two child edges ex and ey such that x ∈ Vex and y ∈ Vey . Assume w.l.o.g. that
v ∈ Vex , and let d′ = |dist(ρ, y) − dist(ρ, v)|. We insert the triple (d − d′, f, w)
into the data structure Wey associated with ey. This is illustrated in Fig. 1c. This
takes O(lgm) time per vertex in Pv, O(lg n lgm) time in total.

A Remove(v, f) operation traverses the path Pv and deletes the triple asso-
ciated with f from the data structure We of every child edge e of every node xi

in Pv, and from Wv. By a similar analysis as for Add(v, f, w, d) operations, this
takes O(lg n lgm) time.

A Sum(v, d) query traverses the path Pv. For each edge e on this path with
top endpoint xi, xi represents an edge (x, y) ∈ G such that w.l.o.g. e = ey.
We query We to report the total weight of all triples (r, f, w) in We with r ≥
|dist(ρ, y) − dist(ρ, v)| − d. We also query Wv to report the total weight of all
facilities placed on v itself. This is illustrated in Fig. 1c. We sum these weights
retrieved from Wv and from all the edge data structures We along Pv and report
the resulting total. Since we answer a Sum(v, d) query by querying O(lg n) data
structures We and Wv, the cost is O(lg n lgm). A Sum(v) query is the same as
a Sum(v, 0) query.

A Top(v, k, d) query traverses Pv. For each edge e on this path with top
endpoint xi, xi represents an edge (x, y) ∈ G such that w.l.o.g. e = ey. We query
We to retrieve the k triples with maximum weight among all triples (r, f, w) in
We such that r ≥ |dist(ρ, y) − dist(ρ, v)| − d. This takes O(k lg n lgm) time for
all edges on Pv. We also retrieve the k facilities with maximum weight from Wv,
which takes O(k lgm) time. The k maximum-weight facilities affecting vertices
at distance at most d from v are among the O(k lgn) facilities retrieved by these
queries and can be found in O(k lg n) time using linear-time selection [2]. Thus,
a Top(v, k, d) query takes O(k lgn lgm) time. A Top(v, k) query is the same as
a Top(v, k, 0) query.

200 X. Lyu et al.

To prove the correctness of Sum(v, d) and Top(v, k, d) queries, note that
both queries query the same data structures We, with the same query regions.
A Sum query reports the total weight of all facilities in these query regions. A
Top query reports the k maximum weight queries in these regions. Both queries
are correct if we can argue that if either query were to report all facilities in
these query regions instead of summing their weights or picking the k facilities
with maximum weight, then any facility placed on some vertex u is reported if
and only if its effect radius d′ satisfies d + d′ ≥ dist(u, v), and any such facility
is reported exactly once.

So consider a facility f with effect radius d′ placed on some vertex u ∈ G,
and let v be another vertex v ∈ G. If v = u, then f must be reported because
it affects v no matter the query radius d. The facility f does not belong to any
data structure We on the path Pu = Pv. Thus, if f is to be reported, it must be
reported by the query Wv. Since placing f on u adds f to Wu = Wv, a Sum(v, d)
query reports the total weight of all facilities in Wv, and a Top(v, k, d) query
reports the k facilities with maximum weight in Wv, the corresponding reporting
query would report all facilities in Wv, including f .

If v �= u, then let xi be the highest vertex on the path from u to v in T .
This vertex represents an edge (x, y) such that w.l.o.g. u ∈ Vex and v ∈ Vey . In
this case, f is not stored in Wv, and ey is the only edge on the path Pv that
is a pendant edge of Pu. Thus, Wey is the only data structure considered by a
Sum(v, d) or Top(v, k, d) query that stores f . In Wey , f is stored with radius
r = d′ −|dist(ρ, y)−dist(ρ, u)| = d′ −dist(u, y). The path from u to v in G passes
through y, so dist(u, v) = dist(u, y) + dist(y, v). Therefore, dist(u, v) ≤ d + d′ if
and only if q = |dist(ρ, v) − dist(ρ, y)| − d = dist(v, y) − d ≤ d′ − dist(u, y) = r.
The reporting version of a Sum(v, d) or Top(v, k, d) query reports all triples
(r, f, w) in Wey with r ≥ q. Thus, f is reported if and only if d+ d′ ≥ dist(u, v).

This finishes the proof of Theorem 1.

3 A SOLE Data Structures for Separable Graphs

We call a graph G t-separable, for some constant t, if it has a t-separator decom-
position C of the following structure (see Figs. 2a,b):

– C is an unrooted tree with O(n) nodes, all of which have degree at most 3.
– Each edge e of C has an associated subset Se ⊆ V of vertices of G of size

|Se| ≤ t. We call Se the (edge) bag associated with e.
– Every vertex of G belongs to at least one bag of C.
– Let C1 and C2 be the subtrees of C obtained by removing any edge e from C,

and let Vi, i ∈ {1, 2}, be the union of the bags of all edges in Ci. Then any
path from a vertex in V1 to a vertex in V2 includes at least one vertex in Se.
In other words, Se separates the vertices in V1 from the vertices in V2.

This definition of a t-separator decomposition is similar to both a tree decom-
position [5] and a branch decomposition [5], but the properties of a t-separator
decomposition are weaker than those of both a tree-decomposition and a branch

SOLE Data Structures 201

decomposition. In particular, a branch decomposition of width b and degree 3
is easily seen to be a b-separator decomposition, and a nice tree decomposi-
tion C [3] of width w gives rise to a (w+1)-separator decomposition by defining
the (edge) bag associated with each edge (v, w) ∈ C to be the union of the (node)
bags associated with v and w. However, a t-separator decomposition does not
require a bijection between the edges of G and the leaves of C, as required by a
branch decomposition. A tree decomposition requires that for every edge (v, w)
of G, there exists a (node) bag that contains both v and w, a condition not
imposed by a t-separator decomposition. Thus, every graph of branchwidth b
has a t-separator decomposition with t ≤ b, every graph of treewidth w has a
t-separator decomposition with t ≤ w +1, but there may exist graphs for which
these inequalities are strict.

In this section, we prove that

Theorem 2. If G is a t-separable graph on n vertices, for some constant t,
then there is a SOLE data structure for it supporting Add, Remove, and Sum
operations in O(lg n lgt m) time, and Top(v, k, d) operations in O(k lg n lgt m)
time. The size of this data structure is O(tn lg n + m lgt−1 m lg n). The costs of
Add and Remove operations are amortized.

3.1 Designing SOLE Data Structures for Separable Graphs

To design our SOLE structure, let C be a t-separator decomposition for G. Since
C is an unrooted tree whose nodes have degree at most 3, we can once again
construct its centroid decomposition T (see Fig. 2c). Each leaf of T corresponds
to a node of C, and each internal node of T corresponds to an edge e of C.
Since C has size O(n), the height of T is O(lg n). Since a vertex v of G may be
contained in more than one bag of C, we choose an arbitrary bag Se of C that
contains v and refer to e as ev, as indicated by the bold vertex labels in Fig. 2b.

We obtain a SOLE data structure for G by augmenting each internal node
e of T with two data structures We and De and augmenting each edge a of T
with a data structure Wa. We refer to We as a node data structure and to Wa

as an edge data structure. Each data structure Wx, with x a node or an edge
of T , stores a number of facilities f as tuples (r1, . . . , rt′ , f, w). If x = e is a
node of T or x = a is an edge of T with top endpoint e, then t′ = |Se| ≤ t.
Again, Wx consists of two trees Rx and Fx over the set of tuples stored in Wx.
Fx stores these tuples as a binary search tree with the facility f as the key for
each tuple (r1, . . . , rt′ , f, w) in Wx. Rx is a “t′-dimensional range sum priority
search tree” over the points defined by the coordinates (r1, . . . , rt′). This is a
t′-dimensional range tree [1,6] augmented to support t′-dimensional range sum
queries in O

(
lgt

′
m

)
time and t′-dimensional range top-k queries in O

(
k lgt

′
m

)

time.
The structure De associated with each internal node e of T stores the distance

from every vertex v such that ev is a descendant of e in T to all vertices in Se.

202 X. Lyu et al.

v1

v2

v3

v4

v5

v6

v7 v8

2

2

5

2

3

1

1

1

1

1

(a)

(v1, v7) (v5, v7)

(v5, v6)

(v1, v8)

(v6, v8)

(v1, v2)

(v4, v5)

(v2, v4)

(v2, v3) (v3, v4)

e1 : {v1, v7} e2 : {v5,v7}

e3 : {v1, v5}

e4 : {v1, v5}

e5 : {v5, v6}

e6 : {v1,v6}

e7 : {v1,v8}

e8 : {v6, v8}e9 : {v1, v5}

e10 : {v1, v2}

e11 : {v2, v5}

e12 : {v4, v5}e13 : {v2,v4}

e14 : {v2, v4}

e15 : {v2, v4}

e16 : {v2,v3} e17 : {v3, v4}

(b)

Fig. 2. A series-parallel graph G (a) and a branch decomposition C of G of width 2(b),
which is also a 2-separator decomposition of G. Each edge in (a) is labelled with its
length. Each edge in (b) is labelled with its name and its corresponding bag Se. A
facility with effect radius 5 placed on vertex v6 affects vertex v4, since the path shown
in red in (a) has length 5. If we assume that ev6 = e6 and ev4 = e13, as indicated by
the bold vertices in (b), then f is stored in the node data structure of e6 and in the
edge data structures of the red edges shown in Fig. 3. (Color figure online)

SOLE Data Structures 203

e17 e8 e2

e16 e14 e12 e10 e5 e7 e1

e15 e11 e6 e3

e13 e4

e9

(2, 5) (2, 5)

(2, 4)

(2, 4)

(2, 4)

(2, 5)

(1, 0)

Fig. 3. The centroid decomposition T of the branch decomposition C in Fig. 2b. A
facility with effect radius 5 placed on vertex v6 is stored in the node data structure of
e6 and in the edge data structures of the red edges, with the pairs of radii shown in
red. A Sum(v4) or Top(v4, k) query queries the vertex data structure of e13 and the
edge data structure of the blue edge, with the pairs of radii shown in blue. The facility
f is added to the query result because 2 ≤ 2 and 4 ≤ 4. One of these two conditions
would have sufficed. (Color figure online)

A t′-dimensional range sum priority search tree supports insertions and dele-
tions in O

(
lgt

′
m

)
amortized time. Thus, each data structure Wx supports inser-

tion of a new tuple (r1, . . . , rt′ , f, w) and the deletion of the tuple associated
with a facility f in O

(
lgt

′
m

)
= O(lgt m) amortized time.

We now bound the size of the SOLE data structure. Once again, the tree
T has size O(n) and height O(lg n). For every vertex v ∈ G, the distance data
structure De of every ancestor node e of ev in T stores the distances from v
to all t′ ≤ t vertices in Se. Thus, each vertex v contributes at most t to the
size of each of O(lg n) distance data structures. The total size of the distance
data structures is thus O(tn lg n). Each facility f placed on some vertex u is
stored in the node data structures of the O(lg n) nodes along the path Pu and
in one or two edge data structures of child edges of these nodes. Thus, every
facility is stored in O(lg n) data structures Wx. Each such data structure is a
t′-dimensional range sum priority search tree, where t′ ≤ t. Thus, if it stores
s facilities, it has size O(s lgt−1 s). The total size of all node and edge data
structures is thus O(m lgt−1 m lg n).

204 X. Lyu et al.

3.2 Sum and Top-k over Wx with an Uncommon Query Range

To support Sum and Top, we need to support range sum queries and range
top-k queries on Wx, but with an uncommon query range. A query point q =
(q1, . . . , qt′) defines a query range Rt′ \((−∞, q1)×(−∞, q2)×· · ·×(−∞, qt′)), i.e.,
the complement of t′-sided range query. We need to support range sum queries
and range top-k queries for any such complement of a t′-sided range query.

An easy solution is to decompose it into t′ “normal” range queries, with query
ranges [q1,∞) × (−∞,∞) × · · · × (−∞,∞), (−∞, q1) × [q2,∞) × (−∞,∞) ×
· · · × (−∞,∞), (−∞, q1)× (−∞, q2)× [q3,∞)× (−∞,∞)× · · · × (−∞,∞), · · · ,
(−∞, q1)×(−∞, q2)×· · ·×(−∞, qt′−1)×[qt′ ,∞). This allows us to support range
sum and range top-k queries in O

(
t′ lgt

′
m

)
and O

(
t′k lgt

′
m

)
time, respectively,

which is O
(
lgt

′
m

)
and O

(
k lgt

′
m

)
time because t′ ≤ t and t is a constant.

A better way to support range queries with query ranges of the form R
t′ \

((−∞, q1) × (−∞, q2) × · · · × (−∞, qt′)) without the factor t′ overhead is to
implement them directly on the t′-dimensional range sum priority search tree.
To answer a range sum query with such a query range, we answer a 1-dimensional
range sum query with query range [q1,∞) on the level-1 tree of Rx. This query
traverses the path corresponding to q1 in the level-1 tree of Rx. For the root
of each subtree to the left of this path, we answer a (t′ − 1)-dimensional range
sum query with query range R

t′−1 \ ((−∞, q2) × (−∞, q3) × · · · × (−∞, qt′)) on
the (t′ −1)-dimensional range sum priority search tree associated with this root.
The final result is the sum of the totals produced by these queries, including
the 1-dimensional range sum query on the level-1 tree of Rx. Thus, a range sum
query with the complement of a t′-sided range query as the query range has the
same cost as a “normal” orthogonal range sum query, O

(
lgt

′
m

)
.

Similarly, to support a t′-dimensional range top-k query with query range
Q = R

t′ \ ((−∞, q1) × (−∞, q2) × · · · × (−∞, qt′)), we answer a 1-dimensional
range top-k query on the level-1 tree of Rx, with query range [q1,∞). This query
traverses the path corresponding to q1 in the level-1 tree of Rx. For the root of
each subtree to the left of this path, we answer a (t′ −1)-dimensional range top-k
query with query range R

t′−1 \ ((−∞, q2) × (−∞, q3) × · · · × (−∞, qt′)) on the
(t′ −1)-dimensional range sum priority search tree associated with this root. The
top k tuples in the query range Q are easily seen to be among the O(k log n)
elements reported by these (t′ − 1)-dimensional range top-k queries and by the
1-dimensional range top-k query on the level-1 tree. The top k tuples can now
be found in O(k lg n) time using linear-time selection [2]. Thus, a range top-k
query with the complement of a t′-sided range query as the query range takes
O

(
k lgt

′
m

)
time, just as a “normal” orthogonal range top-k query does.

3.3 Supporting Queries over Separable Graphs

We are ready to discuss how to support Sum and Top queries for t-separable
graphs; the support for Add and Remove will be described in the full version
of this paper.

SOLE Data Structures 205

A Sum(v, d) query traverses the path Pv = 〈e1, . . . , eh = ev〉. For each node
ei in Pv, let Sei = {v1, . . . , vt′}, and let Q = R

t′ \ ((−∞, q1) × (−∞, q2) × · · · ×
(−∞, qt′)), where qj = dist(v, vi) − d, for all 1 ≤ j ≤ t′. If 1 ≤ i < h, then we
answer a range sum query with query range Q on the edge data structure Wa,
where a = (ei, ei+1) is the child edge of ei that belongs to Pv. If i = h, then
we answer a range sum query with query range Q on Wei . This is illustrated in
Fig. 2c. The result of the Sum(v, d) query is the sum of the results reported by
all these range sum queries. Since a range sum query on each data structure Wx

can be answered in O
(
lgt

′
m

)
= O(lgt m) time, the cost of a Sum(v, d) query is

thus O(lg n lgt m). A Sum(v) query is the same as a Sum(v, 0) query.
A Top(v, k, d) query traverses the path Pv = 〈e1, . . . , eh = ev〉. For each

node ei in Pv, let Sei = {v1, . . . , vt′}, and let Q = R
t′ \ ((−∞, q1) × (−∞, q2) ×

· · · × (−∞, qt′)), where qj = dist(v, vi) − d, for all 1 ≤ j ≤ t′. If 1 ≤ i < h,
then we ask a range top-k query with query range Q on the edge data struc-
ture Wa, where a = (ei, ei+1) is the child edge of ei that belongs to Pv. If i = h,
then we answer a range top-k query with query range Q on Wei . The result of
the Top(v, k, d) query is the list of the k maximum-weight facilities among the
O(k lg n) facilities reported by all these range top-k queries. These k facilities
can be found in O(k lgn) time using linear-time selection [2]. Each query on a
data structure Wx takes O(k lgt m) time. Thus, the total cost of a Top(v, k, d)
query is O(k lg n lgt m). A Top(v, k) query is the same as a Top(v, k, 0) query.

To establish the correctness of Sum(v, d) and Top(v, k, d) queries, observe
that, similar to Sect. 2, both queries query the same node and edge data struc-
tures, with the same query ranges. Thus, it suffices to prove that if either query
reported all facilities in these query ranges, it would report any facility with
effect radius d′ placed on some vertex u if and only if d + d′ ≥ dist(u, v), and
each such facility is reported exactly once.

So let f be a facility with effect radius d′ placed on some vertex u ∈ G, and
let v by any other vertex v ∈ G. Let e be the lowest common ancestor (LCA) of
eu and ev in T , and let Se = {v1, . . . , vt′} We distinguish two cases:

If ev is a proper descendant of e, then f is not stored in Wev and the only
edge data structure in Pv that stores f is the data structure Wa corresponding
to the child edge a of e on the path from e to ev. Thus, f is reported at most once
by the reporting version of a Sum(v, d) or Top(v, k, d) query. This query queries
Wa with query region Q = R

t′ \((−∞, q1)×· · · (−∞, qt′)), where qj = dist(vj)−d
for all 1 ≤ j ≤ t′. Since e is the LCA of eu and ev in T , any path from u to v in G
must include at least one vertex in Se. Assume w.l.o.g. that v1 is one such vertex.
Then dist(u, v) = dist(v, v1)+dist(u, v1) and dist(u, v) ≤ dist(v, vj)+dist(u, vj)
for all 1 < j ≤ t′. The facility f is stored in Wa as the tuple (r1, . . . , rt′ , f, w)
with rj = d′ − dist(u, vj) for all 1 ≤ j ≤ t′. Thus, (r1, . . . , rt′) ∈ Q if and only if
there exists an index 1 ≤ j ≤ t′ such that d′ − dist(u, vj) ≥ dist(v, vj) − d, that
is, d+d′ ≥ dist(u, vj)+dist(v, vj). Since dist(u, v1)+dist(v, v1) = dist(u, v) and
dist(u, vj) + dist(v, vj) ≥ dist(u, v) for all 1 ≤ j ≤ t′, this is true if and only if
d + d′ ≥ dist(u, v). Thus, f is reported if and only if d + d′ ≥ dist(u, v).

206 X. Lyu et al.

If ev is not a proper descendant of e, then ev = e and Pv ⊆ Pu. Thus, f is
not stored in any edge data structure along Pv, but it is stored in We = Wev ,
as the tuple (r1, . . . , rt′ , f, w) with rj = d′ − dist(u, vj) for all 1 ≤ j ≤ t′.
Thus, f is reported at most once by the reporting version of a Sum(v, d)
or Top(v, k, d) query. This query queries Wev with query region Q = R

t′ \
((−∞, q1)×· · · (−∞, qt′)), where qj = dist(vj)−d for all 1 ≤ j ≤ t′. Since v ∈ Sev ,
we can assume w.l.o.g. that v = v1. Then dist(u, v) = dist(v, v1) + dist(u, v1)
and dist(u, v) ≤ dist(v, vj) + dist(u, vj) for all 1 < j ≤ t′. The same analysis as
in the previous case now shows that f is reported by the query on Wev if and
only if d + d′ ≥ dist(u, v). This finishes the proof of Theorem 2.

References

1. Bentley, J.L.: Decomposable searching problems. Inf. Process. Lett. 8(5), 244–251
(1979)

2. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

3. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

4. McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)
5. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-

decomposition. J. Comb. Theory B 52(2), 153–190 (1991)
6. Willard, D.E., Lueker, G.S.: Adding range restriction capability to dynamic data

structures. J. ACM 32(3), 597–617 (1985)

Applied Algorithms

Variants of Euclidean k-Center
Clusterings

Shin-ichi Nakano(B)

Gunma University, Kiryu 376-8515, Japan

nakano@gunma-u.ac.jp

Abstract. Fix two constant integers k and r. Given a set P of n points
on a plane, the Euclidean k-center r-gather clustering problem is the
problem to compute a set {c1, c2, · · · , ck} of k points on the plane and
a partition P1 ∪ P2 ∪ · · · ∪ Pk of P such that each Pi contains r or more
points in P , and the maximum radius of P1, P2, · · · , Pk is minimized,
where the radius of Pi (with center at ci) is the maximum distance from
p ∈ Pi to ci. If r is 0 then the problem is the ordinary Euclidean k-center
clustering problem. This is a geometric version of the k-anonymity which
is an important model for privacy preserving.

In this paper we design a polynomial-time algorithm to solve the
Euclidean k-center r-gather clustering problem when k and r are con-
stant integers. We also design polynomial-time algorithms to solve some
related problems.

Keywords: k-center problem · r-gathering problem · Algorithms

1 Introduction

Given a set P of n points on a plane and a constant integer k, the Euclidean
k-center clustering problem (also called minmax radius clustering problem, min-
max Euclidean facility location problem, etc.) is the problem to compute a set
C of k points such that the maximum Euclidean distance from a point in P to
the nearest point in C is minimized. Intuitively our task is to locate a set of k
identical disks covering P with the minimum radius. (Many similar and related
problems are known. For instance, k-mean problem finds C minimizing the sum
of the squared distances from a point in P to the nearest point in C, k-median
problem finds C minimizing the sum of the distances from a point in P to the
nearest point in C, or we need to find C either in P , a given candidate set, or any-
where in the plane. Also the distance is either arbitrary, metric, Euclidean, L1,
etc.) See surveys in Sect. 7.1 Euclidean p-Center of [1] and Sect. 8.5.1 MINMAX
K-CLUSTERING of [6].

The Euclidean k-center clustering problem is NP-complete if k is a part of
the input [19]. An nO(

√
k) time exact (non-polynomial time) algorithm is known

[15]. An approximation algorithm with approximation ratio at most 2 is known

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 209–219, 2024.
https://doi.org/10.1007/978-3-031-49190-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_15&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_15

210 S. Nakano

[14], and it is NP-hard to design an approximation algorithm with approximation
ratio less than 1.822 [12].

If k is a constant then one can solve the problem in O(n2k+2) time [1], since
basically every three points determine a possible disk D and every two other
points determine possible two disks with the radius same to D, the number of k
disks corresponding to possible solutions is at most n3 · (2(n − 3)2)k−1, and we
can check whether each set of k disks covers P or not in O(n) time.

If P is a set of points on a line (1D case), one can solve (more general weighted
version of) the problem in O(n log n) time [8]. If P is a set of points on a plane
and we need to find the centers on a given line (1.5D case), one can solve the
problem in O(n log2 n) time [7] and O(n log n) time [16,21].

A solution C = {c1, c2, · · · , ck} of the Euclidean k-center clustering problem
generates a natural partition P1∪P2∪· · ·∪Pk of P in which Pi consists of points
in P having the nearest point ci in C. In the partition the size of each Pi does
not matter, however in some application the size of each Pi is crucial. Thus some
variants of the problem are known.
Problems with Bounded Cluster Size
Fix two constant integers k and r. Given a set P of n points on a plane, the
Euclidean k-center r-gather clustering problem is the problem to compute a set
C = {c1, c2, · · · , ck} of k points on the plane and a partition P1 ∪ P2 ∪ · · · ∪ Pk

of P such that
(1a) each Pi contains r or more points in P , and
(2) the maximum radius of P1, P2, · · · , Pk is minimized, where the radius of Pi

with center at ci is the maximum distance from p ∈ Pi to ci.
For instance, this is a problem to assign n people to k shelters so that each

shelter serves at least r people, where r is the minimum number of people to
open a new shelter.

If r is 0 then the problem is the ordinary Euclidean k-center clustering prob-
lem.

Note that the partition may not be so natural because of (1a).
This is a geometric version of the k-anonymity, which is an important model

for privacy preserving [2]. In the model to protect privacy we perturbate each
data so that there are at least k − 1 other data with the same value. Then it
becomes difficult to finds the owner of each perturbated data even if one can
access other open data containing the pair of the original data and its owners.
Without the perturbation one may find the owner of the data, since the data
may be unique before the perturbation. One can regard the perturbation as a
partition of the original data into clusters (where each cluster has k or more
data) and each original data is perturbated to the common data at the center
to hide its owner. The data remains meaningful if the amount of perturbation
is small.

By replacing the condition (1a) with the following (1b) we can define one
more problem, called the Euclidean k-center capacitated clustering problem.
(1b) each Pi contains at most r points in P .

Variants of Euclidean k-Center Clusterings 211

If r is n then the problem is the ordinary Euclidean k-center clustering prob-
lem.

This is a model for facility location in which each facility can serve at most
r customers.

We can define more general problem, as follows. Given a set P of points on
a plane and three constant integers k, � and u, the Euclidean k-center (�, u)-
clustering problem is the problem to compute a set C = {c1, c2, · · · , ck} of k
points on the plane and a partition P1 ∪ P2 ∪ · · · ∪ Pk of P such that
(1c) each Pi contains at least � and at most u points in P , and
(2) the maximum radius of P1, P2, · · · , Pk is minimized.

If � = 0 and u = n then the problem is the ordinary Euclidean k-center
clustering problem.
Known Results and Our Results
Euclidean k-Center r-Gather Clustering Problem
The followings are known for the Euclidean k-center r-gather clustering problem.

If P is a set of points on a plane, the number of k is not restricted, and the
distance is metric, then the problem is NP-hard [2]. If P is a set of points on a
line and the number k is not restricted, then an O(rn) time algorithm to solve
the problem is known [20].

For some application we can regard that k and r are fixed integers, say open
4 shelters so that each shelter serves 50 or more people.

In this paper when k and r are both fixed integers we design (1) a polynomial-
time algorithm to solve the Euclidean k-center r-gather clustering problem, (2)
a polynomial-time algorithm to solve the problem in 1.5D, explained as follows.

Given a set P of points and a horizontal line L (1D) on a plane (2D) and two
constant integers k and r, we want to compute a set {c1, c2, · · · ck} of k points on
L and a partition of P into k clusters P1∪P2∪· · ·∪Pk so that (1) each cluster Pi

contains r or more points in P , and (2) the maximum Euclidean distance from
p ∈ Pi to ci is minimized. We call the problem the Euclidean k-center r-gather
clustering problem in 1.5D. Intuitively we need to locate shelters on the main
road in a town.

Euclidean k-Center Capacitated Clustering Problem
The followings are known for the Euclidean k-center capacitated clustering prob-
lem.

If we need to find C among P (a graph version), several approximation
algorithms are known [5,10,17]. An inapproximability result for more general
problem is known [10,18].

For a similar problem which computes a partition of P into a minimum
number of clusters such that each cluster contains at most r points in P and
each cluster is covered by a unit disk, a PTAS is known [13].

Even if P is on a line (1D case), if each center has a possibly distinct capacity,
say ri, the problem is NP-hard, however if each center has identical capacity,
say r, then one can solve the problem in O(rkn) time [4].

212 S. Nakano

In this paper, when k and r are both fixed integers, we design (1) a
polynomial-time algorithm to solve the Euclidean k-center capacitated clustering
problem, and (2) a polynomial-time algorithm to solve the problem in 1.5D.

Euclidean k-Center (�, u)-Clustering Problem
For the Euclidean k-center (�, u)-clustering problem, a constant factor approxi-
mation algorithms is known even for more general (a non-uniform upper bound)
constraints [11].

In this paper, when k, � and u are fixed integers, we design (1) a polynomial-
time algorithm to solve the Euclidean k-center (�, u)-clustering problem, (2) a
polynomial-time algorithm to solve the problem in 1.5D. We also design (3) an
O(kun) time algorithm to solve the problem if P is a set of points on a line.

The rest of the paper is organized as follows. In Sect. 2 we give some observa-
tions. In Sect. 3 we give algorithms to solve the Euclidean k-center r-gather
clustering problem. In Sect. 4 we give algorithms to solve the Euclidean k-
center capacitated clustering problem. In Sect. 5 we give algorithms to solve
the Euclidean k-center (�, u)-clustering problem. Finally Sect. 6 is a conclusion.

2 Preliminaries

In this section we give some observations for the k-center r-gather clustering
problem.

Let xCy be the number of ways to choose y elements from a set of x distinct
objects, and xCy = x!/((x − y)!y!) ≤ xy.

A solution of the k-center r-gather clustering problem consists of a set
{c1, c2, · · · , ck} of k points on a plane and a partition P1 ∪ P2 ∪ · · · ∪ Pk of P .

For each solution we can construct k disks D1,D2, · · · ,Dk with the same
radius rad such that Pi is covered by disk Di for each i.

We have the following two observations if P is a set of points on a plane (2D
case).

Observation 1: For each solution one can assume that the corresponding k
disks contain a disk having two or more points in P on the boundary. Otherwise
there is a solution with less rad, a contradiction. Either the disk has three or
more points in P on the boundary, or the disk has two points in P on the
boundary with the distance equal to the diameter.

Thus the number of possible maximum radius is at most nC3 +n C2 ≤ 2n3.

Observation 2: For each solution one can assume that each disk in the corre-
sponding k disks has at least two points in P on the boundary. (Otherwise we
can move each disk so that two points in P appear on the boundary and the set
of points in P covered by the disk remains the same.)

We have the following two observations if P is a set of points on a plane and
C is on a given horizontal line (1.5D case).

Observation 3: For each solution one can assume that the corresponding k
disks contain a disk having one or more points in P on the boundary. Otherwise

Variants of Euclidean k-Center Clusterings 213

there is a solution with less rad, a contradiction. Either the disk has two or more
points in P on the boundary, or has one point in P on the boundary with exactly
above the center of the disk.

Thus the number of possible maximum radius is at most nC2 + n ≤ 2n2.

Fig. 1. An example of the move operation of a disk to the left. (a) Before the move
and (b) after the move.

Observation 4: For each solution one can assume that each disk in the corre-
sponding k disks has a point in P on the boundary. (Otherwise we can move
each disk so that a point in P appears on the boundary and the set of points in
P covered by the disk remains the same. See an example in Fig. 1.)

3 Algorithms for the Euclidean k-Center r-Gather
Clustering Problem

In this section we design a polynomial-time algorithms to solve the Euclidean
k-center r-gather clustering problem. The algorithm solves a set of the maxi-
mum flow problems with lower bounds, defined below. Then we design a similar
polynomial-time algorithms to solve the problem in 1.5D.

Given a network N = (V,A) with two vertices s, t ∈ V , and a capacity
u(i, j) ≥ 0 and a lower bound �(i, j) ≥ 0 associated with each arc (i, j) ∈ A, a
flow consisting of f(i, j) for each arc (i, j) ∈ A is feasible if

∑
(i,x)∈A,x∈V f(i, x) =

∑
(x,i)∈A,x∈V f(x, i) for each i ∈ V/{s, t} and �(i, j) ≤ f(i, j) ≤ u(i, j) for each

(i, j) ∈ A. The maximum flow problem with lower bounds is the problem to
compute a feasible flow with the maximum

∑
(s,x)∈A,x∈V f(s, x). One can solve

the problem in polynomial time, by a reduction to the ordinary maximum flow
problem [3], where the ordinary maximum flow problem is the maximum flow
problem with �(i, j) = 0 for each (i, j) ∈ A. The reduction needs O(|V | + |A|)
time. So one can solve the maximum flow problem with lower bounds in poly-
nomial time using an algorithm to solve the ordinary maximum flow problem,
say in O(|V |3) time (Theorem 26.30 in [9]).

Now we explain a reduction from the Euclidean k-center r-gather clustering
problems to a set of the maximum flow problems with lower bound.

Every two or three points in P possibly define the disk D having the points
on the boundary (assuming that the three points are not on a line). Fix D. The
number of possible radii is at most 2n3 by Observation 1. Each other two points
in P possibly define the two disks having the two points on the boundary and

214 S. Nakano

with the radius same to D. Thus by Observation 1 and 2 the number of the sets
of k disks possibly corresponding to a solution of the Euclidean k-center r-gather
clustering problem is at most 2n3(2n2)k−1.

For each set of such possible k disks {D1,D2, · · · ,Dk} with the same radius
and with centers C = {c1, c2, · · · , ck}, we check if the set of k disks actually
correspond to a solution of the Euclidean k-center r-gather clustering problem
or not, as follows.

First we check if the k disks cover P or not in O(n) time. If the k disks cover
P then we construct the following instance of the maximum flow problem with
lower bounds (See Fig. 2) in O(kn) time, and solve it in O(n3) time.

Fig. 2. The network derived from an Euclidean k-center r-gathering clustering problem.

Let N = (V,A), where
V = {s} ∪ P ∪ C ∪ {t}, and
A = {(s, p)|p ∈ P}∪ {(p, c1)|D1 contains p ∈ P}∪
{(p, c2)|D2 contains p ∈ P} ∪ · · · ∪ {(p, ck)|Dk contains p ∈ P}∪ {(c, t)|c ∈ C}.
�(s, p) = 1 and u(s, p) = 1 for each (s, p) ∈ A with p ∈ P ,
�(p, c) = 0 and u(p, c) = 1 for each (p, c) ∈ A with p ∈ P and c ∈ C,
�(c, t) = r and u(c, t) = n for each (c, t) ∈ A with c ∈ C.

One can solve each maximum flow problem with lower bounds above in O(n3)
time (Theorem 26.30 in [9]), since |V | = 1 + n + k + 1 and k is a constant. The
number of the maximum flow problems with lower bounds is at most 2n3 ·
(2n2)k−1, so the total time to solve the problems is O(2n3 · (2n2)k−1 · n3) =
O(n3+2(k−1)+3) = O(n2k+4).

If the maximum flow problem with lower bounds has a solution f then it
generates a partition of P = P1 ∪ P2 ∪ · · · ∪ Pk where Pi = {p|f(p, ci) = 1}, and
this partition and the set {c1, c2, · · · , ck} corresponds to a possible solution of
the k-center r-gather clustering problem. Note that each Pi has r or more points
in P since �(ci, t) = r for each i.

Variants of Euclidean k-Center Clusterings 215

Thus we have the following theorem.

Theorem 1. One can solve the k-center r-gather clustering problem on a plane
in O(n2k+4) time.

By binary search in at most log 2n3 stages to compute the minimum of the
maximum radius of the k disks corresponding to a solution of the k-center r-
gather clustering problem, one can improve the running time to O(n2k+1 log n).

Next we consider for 1.5D case. We need to find centers on the horizontal
line L.

Every one or two points in P define the disk D having the points on the
boundary and having the center at a point on L. The number of such D is at
most 2n2 by Observation 3. Each other point in P define at most two disks
having the point on the boundary (those are the disk having the point on the
left half of the boundary and the disk having the point on the right half of the
boundary) with the radius same to D, and has the center at a point on L. Thus
the number of the set of k disks possibly corresponding to a solution of the
Euclidean k-center r-gather clustering problem in 1.5D is at most 2n2(2n)k−1.
One can solve each maximum flow problem corresponding to each set of k disks
in O(n3) time.

We have the following theorem.

Theorem 2. One can solve the k-center r-gather clustering problem in 1.5D in
O(nk+4) time.

4 Algorithms for the Euclidean k-Center Capacitated
Clustering Problem

By slightly modifying the algorithm in Sect. 3 we can design a polynomial-time
algorithms to solve the Euclidean k-center capacitated clustering problem and
the Euclidean k-center capacitated clustering problem in 1.5D. The only differ-
ence is to set �(c, t) = 0 and u(c, t) = r for each (c, t) ∈ A with c ∈ C. (See
Fig. 3.)

We have the following two theorem.

Theorem 3. One can solve the k-center capacitated clustering problem on a
plane in O(n2k+4) time.

Theorem 4. One can solve the k-center capacitated clustering problem in 1.5D
in O(nk+4) time.

216 S. Nakano

Fig. 3. The network derived from an Euclidean k-center capacitated clustering prob-
lem.

5 Algorithms for the Euclidean k-Center (�, u)-Clustering
Problem

By slightly modifying the algorithm in Sect. 3 we can design a polynomial-
time algorithms to solve the Euclidean k-center (�, u)-clustering problem and
the Euclidean k-center (�, u)-clustering problem in 1.5D. The only difference is
to set �(c, t) = � and u(c, t) = u for each (c, t) ∈ A with c ∈ C.

We have the following two theorems.

Theorem 5. One can solve the k-center (�, u)-clustering problem in O(n2k+4)
time.

Theorem 6. One can solve the k-center (�, u)-clustering problem in 1.5D in
O(nk+4) time.

We can design an O(�un) time algorithm to solve the k-center (�, u)-clustering
problem in 1D, that is the k-center (�, u)-clustering problem when P is on a line.
We assume that P is given with sorted order in x-coordinates. Our algorithm
is similar to the algorithm in [20] which solve the Euclidean r-gather clustering
problem on a line.

One can observe that there exists a solution in which the points in each
cluster Pi are consecutive in x-coordinate. We can assume that each cluster in
a solution consists of consecutive points {pi, pi+1, · · · , pj} for some i and j.

Now we define the directed (acyclic) graph D(V,E) and the weight of each
edge, as follows.

V = {v0, v1, v2, · · · , vn}
E = {(vi, vj)|i + � ≤ j ≤ i + u}

Variants of Euclidean k-Center Clusterings 217

Fig. 4. The path corresponding to a solution of an Euclidean k-center (� = 4, u = 5)-
clustering problem in 1D.

Intuitively each vi corresponds to the midpoint of pi and pi+1, and each edge
is directed from left to right. Note that |V | = |P | + 1 holds because of v0. Also
note that the number |E| of edges is at most un. The weight of an edge (vi, vj)
is the half of the distance between pi+1 and pj , and denoted by w(vi, vj).

We define the cost of a directed path from v0 to vn as the weight of the edge
having the maximum weight in the directed path. The min-max path from v0 to
vn is the directed path from v0 to vn with the minimum cost.

Now there is a solution of the Euclidean k-center (�, u)-clustering problem
with the maximum radius rad iff D(V,E) has a directed path from p0 to pn with
k edges and cost rad. See Fig. 4.

We can construct the D(V,E) in O(un) time. Since D(V,E) is directed acyclic
we can compute the min-max path from v0 to vn with k edges in O(kun) time by
a simple dynamic programming algorithm. (Let wi,k′ be the cost of the min-max
path from v0 to vi with k′ edges. For each vi and k′, we can compute wi,k′ by
checking each incoming edge (vx, vi) to vi and the cost wx,k′−1 of the min-max
path from v0 to vx with k′ − 1 edges.) The total running time is O(kun).

Since k and u are constants we have the following theorem.

Theorem 7. One can solve the k-center (�, u)-clustering problem in 1D in
O(kun) = O(n) time.

6 Conclusion

In this paper we have designed a polynomial-time algorithm to solve the
Euclidean k-center r-gather clustering problem, where k and r are constant
integers. The running time of the algorithm is O(n2k+4). Additionally we design
a similar algorithm to solve the problems in 1.5D. The running time of the
algorithm is O(nk+4).

Also by slightly modifying the algorithm in Sect. 3 we have designed similar
polynomial-time algorithms to solve the Euclidean k-center capacitated cluster-
ing problem and the Euclidean k-center (�, u)-clustering problem.

218 S. Nakano

Also we have designed a simple O(kun) = O(n) time algorithm to solve the
Euclidean k-center (�, u)-clustering problem if P is on a line.

Given a radius rad can we solve the decision version of the problems in 1.5D
efficiently? Note that each cluster may not consist of consecutive set of points
in P with respect to their x-coordinates. See Fig. 5.

Fig. 5. An example in which a center may serve non-consecutive points with respect
to their x-coordinates, where r = 3 and c1 serves {p1, p2, p4} and c2 serves {p3, p5, p6}.

References

1. Agarwal, P., Sharir, M.: Efficient algorithms for geometric optimization. ACM
Comput. Surv. 30, 412–458 (1998)

2. Aggarwal, G., et al.: Achieving anonymity via clustering. Trans. Algorithms 6(3),
1–19 (2010)

3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory, Algorithms and
Applications. Prentice Hall, Upper Saddle River (1993)

4. Aziz, H., Chan, H., Lee, B., Li, B., Walsh, T.: Facility location problem with capac-
ity constraints: algorithmic and mechanism design perspectives. In Proceedings of
AAAI 2020, pp. 1806–1813. AAAI Press (2020)

5. Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. J. Algorithms
15(3), 385–415 (1993)

6. Bern, M., Eppstein, D.: Approximation algorithms for geometric problems.
Approximation algorithms for NP-hard problems, pp. 296–345 (1996)

7. Brass, P., Knauer, C., Na, H., Shin, C., Vigneron, A.: The aligned k-center problem.
Int. J. Comput. Geom. Appl. 21(2), 157–178 (2011)

8. Chen, D., Li, J., Wang, H.: Efficient algorithms for the one-dimensional k-center
problem. Theor. Comput. Sci. 592, 135–142 (2015)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd Edition. MIT Press, Cambridge (2009)

10. Cygan, M., Hajiaghayi, M.T., Khuller, S.: LP rounding for k-centers with non-
uniform hard capacities. In: Proceedings of FOCS 2012, pp. 273–282. IEEE Com-
puter Society (2012)

11. Ding, H., Hu, L., Huang, L., Li, J.: Capacitated center problems with two-sided
bounds and outliers. In: WADS 2017. LNCS, vol. 10389, pp. 325–336. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-62127-2 28

12. Feder , T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Pro-
ceedings of STOC 1988, pp. 434–444. ACM (1988)

https://doi.org/10.1007/978-3-319-62127-2_28

Variants of Euclidean k-Center Clusterings 219

13. Ghasemi, T., Razzazi, M.: A PTAS for the cardinality constrained covering with
unit balls. Theor. Comput. Sci. 527, 50–60 (2014)

14. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

15. Hwang, R.Z., Richard C. T. Lee, and R. C. Chang. The slab dividing approach
to solve the Euclidean p-center problem. Algorithmica 9(1), 1–22 (1993). https://
doi.org/10.1007/BF01185335

16. Karmakar, A., Das, S., Nandy, S.C., Bhattacharya, B.K.: Some variations on con-
strained minimum enclosing circle problem. J. Comb. Optim. 25, 176–190 (2013)

17. Khuller, S., Sussmann, Y.J.: The capacitated K-center problem. SIAM J. Discret.
Math. 13(3), 403–418 (2000)

18. Kumar, A.: Capacitated k-center problem with vertex weights. In: Proceedings of
FSTTCS 2016, vol. 65 of LIPIcs, pp. 8:1–8:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2016)

19. Megiddo, N., Supowit, K.: On the complexity of some common geometric location
problems. SIAM J. Comput. 13, 182–196 (1984)

20. Nakano, S.: A simple algorithm for r-gatherings on the line. J. Graph Algorithms
Appl. 23(5), 837–845 (2019)

21. Wang, H., Zhang, J.: Line-constrained k-median, k-means, and k-center problems
in the plane. Int. J. Comput. Geom. Appl. 26, 185–210 (2016)

https://doi.org/10.1007/BF01185335
https://doi.org/10.1007/BF01185335

Red-Black Spanners for Mixed-Charging
Vehicular Networks

Sergey Bereg1 , Yuya Higashikawa2, Naoki Katoh2, Junichi Teruyama2,
Yuki Tokuni2, and Binhai Zhu3(B)

1 Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA

besp@utdallas.edu
2 Graduate School of Information Science, University of Hyogo, Kobe, Japan

{higashikawa,naoki.katoh,junichi.teruyama,ad21o040}@gsis.u-hyogo.ac.jp
3 Gianforte School of Computing, Montana State University,

Bozeman, MT 59717, USA
bhz@montana.edu

Abstract. Motivated by the recent trend of increasing number of e-cars
and hybrid cars, we investigate the problem of building a red-black span-
ner for a mixed-charging vehicular network. In such a network, we have
two kinds of gas/charging stations: electric (black) and the traditional gas
(red) stations. Our requirement is that one cannot connect two gas sta-
tions directly in the spanner (i.e., no red-red edge), and our goal is to build
a linear-size spanner with a bounded stretch factor under this requirement.
(In 2-d, it can be shown that a spanner with an optimal stretch factor could
have a quadratic size and if one is restricted to build the spanner purely
from a given road network then it is impossible to obtain a bounded stretch
factor.) Our main results are summarized as follows.
1. In 1-d, we show a linear-size red-black spanner satisfying the ‘no

red-red edge’ requirement which achieves the optimal stretch factor.
2. In 2-d and under the L2 metric, we show a linear-size red-black

spanner satisfying the ‘no red-red edge’ requirement which achieves
a stretch factor of 1.998.

3. In 2-d and under the L1 metric, we show a linear-size red-black
spanner satisfying the ‘no red-red edge’ requirement which achieves
a stretch factor of 3.613.

Keywords: Geometric spanners · Delaunay triangulations ·
Approximation algorithms

1 Introduction

As early as in 1990, in Daniel Sperling’s book [14], it was pointed out that the
traditional gas will not last forever and new technologies must be developed to
drive our vehicles. Since then, new technologies have resulted in electric vehicles

This work is partially supported by JSPS KAKENHI Grant Number 19H04068.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 220–231, 2024.
https://doi.org/10.1007/978-3-031-49190-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_16&domain=pdf
http://orcid.org/0000-0002-2866-6766
http://orcid.org/0000-0002-3929-4128
https://doi.org/10.1007/978-3-031-49190-0_16

Red-Black Spanners for Mixed-Charging Vehicular Networks 221

(e-vehicles), most notably, electric cars (e-cars) and they are becoming more
and more popular nowadays, with Tesla as an eminent example. This is mostly
related to the common belief that e-vehicles are more environmental friendly
and are more sustainable. On the other hand, it is known that, up to this point,
e-vehicles typically have relatively limited mileage (especially in cold regions),
hence need to be recharged more frequently or swapped for new batteries in those
regions — consequently, the charging stations should be designed and placed to
capture e-car flows.

In the past decade, a lot of research has been done in this aspect; for example,
Zhu and Pei studied how to locate battery swapping stations for e-bicycles [18],
Kazemi et al. and Sadeghi-Barzani et al. studied how to minimize the cost of
designing charging infrastructure to capture more e-car flows [9,13], Wang et
al. studied how to site and size fast charging stations with budget and service
capability constraints in a highway network [15], and Liang et al. studied how to
site charging stations based on a Voronoi partition method [11]. For more and
related references, we refer the readers to [11,15].

In this paper, we focus on hybrid cars, i.e., those that can be powered by both
battery and gas. Typically, the battery power of such a car is far less compared
with the regular e-cars. For example, the Chevrolet Volt can only be driven for
a range of about 50 mi using a fully charged battery alone, while its gas tank
can easily sustain a distance of over 250 mi. This raises an interesting question:
how do we plan trips where we could charge a hybrid car more frequently by
electricity when needed?

In this paper, we make the first step in answering this question. Instead of
constructing new charging stations, we are more concerned with path planning
using existing gas (red) and fast-charging (black) stations to form a restricted
road/highway network T . Given any two sites p and q, we would like to construct
a path between them in T such that every edge on the path must have at least
one endpoint of black color (i.e., no red-red edge is allowed); moreover, the length
of this path is no more than t times the shortest distance between p and q in a
complete graph among all gas/charging stations — of course, with red-red edges
removed. (Note that in a more general setting, we could require that any path
between p and q in T must have at least C fraction of nodes in black. Then, the
above ‘no red-red edge’ requirement satisfies the minimum C = 1/3, matching
the lower bound when both p and q are red and they are connected through a
black node r.)

Naturally, this problem is related to the traditional t-spanner research (t is
called the stretch factor), with all the sites uncolored. (Clearly, in the traditional
spanners if t = 1 then we would need the complete graph over all the sites. But
usually we allow t to be greater than one, though ideally bounded from above
by some constant.) To distinguish with the traditional spanners, we term our
spanners as red-black spanners. We next briefly review the literature that is the
most relevant to our research, i.e., plane t-spanners.

Chew pioneered the research on planar t-spanners by showing that for a
set of planar points P there is a planar 2-spanner [5]. Subsequently, Dobkin,
Friedman and Supowit showed that the Delaunay triangulation of P (under

222 S. Bereg et al.

the L2 distance) gives a 5.08-spanner [6]. This stretch factor was subsequently
improved to 2.42 by Keil and Gutwin [10]. Finally, the stretch factor of the
Delaunay triangulation of P was shown to be bounded by 1.998 by Xia [16].
On the other hand, the best lower bound for the stretch factor of the Delaunay
triangulation of P is 1.5932 [17]. (Throughout the paper, we use λ2(P), or simply
λ2 when the point set P is clearly given, to represent the stretch factor of the
Delaunay triangulation of P .)

For the Delaunay triangulation of P under the L1 distance, Bonichon et al.
showed a tight stretch factor of

√
4 + 2

√
2 ≈ 2.613 [2]. (Throughout the paper,

we use λ1(P), or simply λ1, to represent the stretch factor of the Delaunay
triangulation of P under L1 distance.) For more variants of planar t-spanners,
readers are referred to the survey paper by Bose and Smid [3], or the book by
Narasimhan and Smid [12]. For example, Biniaz et al. [1] studied spanners of
low degree and Dumitrescu and Ghosh [7] studied lower bounds on the dilation
of plane spanners.

Coming back to this paper and as discussed earlier, motivated by the above
mixed-charging networks for hybrid cars, we study the red-black spanner problem
for a set of points. Note that if we aim at optimal stretch factors we might need
a spanner with a quadratic size. In Fig. 1, we show such an example. In this
example, the building block is a square of 7 points, 3 black and 4 red; moreover,
the middle column are all black points. It can be easily verified that between
any two red points in column-1 and column-3 we must connect them through
the black point in column-2 (which is exactly the midpoint). This immediately
gives a quadratic lower bound if we aim at obtaining the optimal stretch factors.
Hence, in the following we focus on linear size red-black t-spanners; of course,
we just aim at constant t’s.

Fig. 1. An example for the optimal red-black spanner with quadratic size. (Color figure
online)

We summarize our results as follows.

1. In 1-d, we show a linear size spanner satisfying the ‘no red-red edge’ require-
ment which achieves the optimal stretch factor.

Red-Black Spanners for Mixed-Charging Vehicular Networks 223

2. In 2-d and under the L2 metric, we show a linear size red-black spanner
satisfying the ‘no red-red edge’ requirement which achieves a stretch factor
of 1.998.

3. In 2-d and under the L1 metric, we show a linear size red-black spanner
satisfying the ‘no red-red edge’ requirement which achieves a stretch factor
of 3.613.

This paper is organized as follows. In Sect. 2, we give necessary definitions.
In Sect. 3 we solve the 1-d case. In Sect. 4 we handle the 2-d case under the L2

distance and we also cover the lower bounds. We cover the L1 case in Sect. 5, but
most details are omitted due to space constraint. We close the paper in Sect. 6
with quite a few open problems.

2 Preliminaries

We make some necessary definitions. Given two points u = (xu, yu) and v =
(xv, yv), the Euclidean (or L2) distance between u and v is d2(u, v) = d(u, v) =
|uv| =

√
(xu − xv)2 + (yu − yv)2 and the Manhattan (or L1) distance between

them is denoted as d1(u, v) = |uv|1 = |xu − xv| + |yu − yv|. While the Lp metric
could be general, we only focus on p = 1, 2 in this paper.

In this paper, we study spanners that can be applied to the motion planning
or routing of electric/hybrid vehicles. We use two types of vertices: red (resp.
black) vertices for points with gas (resp. electric) charging stations. A desired
property of a spanner is that every path in the spanner enables convenient electric
charging. This can be further expressed as a simple condition: every edge of the
spanner has at least one endpoint of black color. We call a spanner satisfying
this property a red-black spanner or RB-spanner for short. Note that any path
with k vertices in an RB-spanner has at least �k/2� black vertices.

Let P = R ∪ B be a set of N points in R
d where R and B are sets of red

and black points. We define a complete RB-spanner KR,B as (R ∪ B,E) where
(u, v) ∈ E iff u or v is black. Let δp(u, v) denote the length of the shortest path
between u and v in KR,B under Lp metric. A general problem asks for an RB-
spanner S in Lp (satisfying some condition, e.g., size and the ‘no red-red edge’
condition) which minimizes the stretch factor (sometimes also called spanning
ratio)

αp(S) = max
u,v∈R∪B

dp,S(u, v)
δp(u, v)

(1)

where dp,S(u, v) is the length of the shortest path between u and v in S under
Lp. Again, when S is clear from the context, we could simply use αp to denote
the stretch factor of S. Similarly, when the Lp metric is clear from the context
we would use dS(u, v) to denote dp,S(u, v).

Regarding some constraint on S, there is certainly a trade-off between the
size of an RB-spanner and the stretch factor, reflected in Fig. 1. As another
example, if an RB-spanner is a spanning tree of R ∪ B in the plane then the
stretch factor is unbounded. This can be seen in an example where the points

224 S. Bereg et al.

of R ∪ B are the vertices of a regular N -gon, say v1, v2, . . . , vN , and a vertex vi

is red/black if i is even/odd, respectively. Then (i) every two adjacent vertices
along the boundary of the polygon are not both red and (ii) the same proof
for the dilation of a spanning tree on the vertices of a regular polygon can be
applied [8].

Also, notice that in the αp(S) definition the denominator is not d2(u, v). This
is different from the traditional geometric spanners, mainly because there is no
red-red edge in KR,B . In Fig. 2(I), such an example shows that had we used
d2(u, v) as the denominator in the definition of αp(S), the stretch factor would
have been unbounded. (We could set the distance between the two red points
|pq| arbitrarily small, while the distance between two black points u and v is a
large constant; hence to connect p, q we need a distance of at least 2|pu| in any
spanner S, which is a large constant as well. Then, 2|pu|/|pq| = +∞.)

A naive though practical question is: using this new definition, can we simply
use an existing road network on the given point sites to build a good spanner?
Unfortunately, the answer is no. In Fig. 2(II), we augment the set P of 4 points
into 6, by adding two black points r, s such that 	rpq and 	spq form equilateral
triangles. If the existing network is a polygon Q = 〈u, r, p, v, s, q〉, then any
spanner S would preserve the property that the distance of a path between p, q
in S is at least 2|pu|. However, even in KR,B the minimum distance between
p, q is at most 2|pq|. Hence, no matter what algorithm is used, for this example,
with the existing network Q given, the stretch factor of any spanner S on these
6 points is unbounded (i.e., at least (2|pu|)/(2|pq|) = +∞).

Fig. 2. (I) A set P of 4 points with d(p, q) = ε; and (II) An existing network which is
also a polygon, with �rpq and �spq being equilateral.

Summarizing the above discussion, we focus on computing a linear-size RB-
spanner in the following sections.

3 Red-Black Spanner in 1-D

Given a set R of n red points and a set B of m(≥ 1) black points on the real line,
the problem asks for a spanner T minimizing max{dT (x, y)/δ2(x, y), ∀x, y ∈ P},
s.t. there is no red-red edge in T , where dT (x, y) denotes the distance between x
and y in the spanner T and δ2(x, y) denotes the shortest path distance between
x and y in KR,B. The following algorithm constructs an optimal spanner T with
at most 2n + m edges as follows.

Red-Black Spanners for Mixed-Charging Vehicular Networks 225

1. Sort all the points from left to right. Organize them into maximal red (resp.
black) blocks, say B1, R1, B2, R2, · · · , Bz, Rz (one or both of B1 and Rz could
be empty).

2. Connect all black points in Bi from left to right as a chain.
3. Connect every point in Rj to the closest black neighbors to the left and to

the right (if exists). That is, we connect every point in Rj to the rightmost
black point in Bj and to the leftmost one in Bj+1 if exists.

4. Return T as the spanner.

Note that T is not a tree. We have the following lemma.

Fig. 3. Illustration for the proof of Lemma 1.

Lemma 1. Let Rj = 〈rj,1, rj,2, · · · , rj,�〉 be a maximal block of red points. Then,
dT (rj,i, rj,k) = δ2(rj,i, rj,k) holds for i < k.

Proof. We refer to Fig. 3. By the algorithm, rj,i is connected to the closest black
point b′ to its left and is also connected to the closest black point b′′ to the right.
Similar connections are done for rj,k. Then the shortest path between rj,i and
rj,k must be either 〈rj,i, b

′, rj,k〉 or 〈rj,i, b
′′, rj,k〉. It can be easily seen that any

path connecting rj,i and rj,k and either containing both b′ and b′′, or containing
a point to the left of b′ or to the right of b′′ is longer than the shorter of the
length of 〈rj,i, b

′, rj,k〉 or 〈rj,i, b
′′, rj,k〉. ��

Between two black points, or a red point and a black point, it is easily seen
that their distance on T is exactly their Euclidean distance. Since we connect all
black points as chains, the number of black-black edges is at most m. Because
every red point is connected at most two black points, the number of red-black
edges is at most 2n. Therefore, we have the following theorem.

Theorem 1. Given n red points R and m(≥ 1) black points B on a line, a red-
black spanner T of at most 2n+m edges can be constructed in O((n+m) log(n+
m)) time; moreover, T achieves the optimal stretch factor (i.e., one).

4 Red-Black Spanner Under the Euclidean Distance
in 2-D

4.1 Constructing the Red-Black Spanner

In this section, we investigate the red-black spanner construction for a set R of
n red points and a set B of m(≥ 1) black points under the Euclidean distance

226 S. Bereg et al.

in 2-d. Recall that in such a spanner T there is no red-red edge, T must have a
linear size and we want to minimize

α2(T) = max
x,y∈R∪B

dT (x, y)
δ2(x, y)

.

As we just discussed in the previous section, a tree spanner might not be able
to to achieve a bounded stretch factor in the plane. Hence we try to construct
T by augmenting a Delaunay triangulation, whose stretch factor is λ2 = 1.998
[16]. We show the algorithm for constructing a spanner T .

1. Construct the Delaunay triangulation DT 2(B) of black points B. Let
δ2,B(u, v) be the shortest path between two black points u and v on DT 2(B).

2. For each red point p, partition the plane into 13 sectors Sp(i), i ∈ {1, 2, . . . , 13}
around p. In each sector Sp(i), find the closest black point under L2, if exists,
and add this red-black edge into DT 2(B) to form the spanner T .

To analyze the stretch factor of T , we give an algorithm for routing two points
on T as follows.

1. To find a route from a red point p to a black point u, in each sector Sp(i)
find the closest black point vi, then measure |pvi| + δ2,B(u, vi). Return the
minimum mini∈{1,...,13}{|pvi| + δ2,B(u, vi)}.

2. To find a route from a red point p to a red point q, in each sector Sp(i)
find the closest black point vi, and in each sector Sq(j) find the closest
black point wj then measure |pvi| + δ2,B(vi, wj) + |wjq|. Return the mini-
mum mini,j∈{1,...,13}{|pvi| + δ2,B(vi, wj) + |wjq|}.

Lemma 2. Given an acute isosceles triangle 	ABC with |AB| = |AC| being
the long edges (i.e., |AB| > |BC|), and D being an point inside 	ABC, then
when ∠BAC = 2π

13 we have |AD| + 1.998|CD| < 1.998|AB|.

Fig. 4. Illustration of the proof of Lemma 2.

Proof. We refer to Fig. 4. First of all, we prove that D must lie on AB or AC,
due to symmetry, say on AB, to achieve the maximum of |AD| + 1.998|CD|.
Suppose it is not the case and D is properly inside 	ABC, we look at the isoceles

Red-Black Spanners for Mixed-Charging Vehicular Networks 227

triangle 	ADE, where E is on AB and |AD| = |AE|. We have 0 < ∠DAE.
Consequently, ∠ADE < π/2. Hence ∠ADC +∠CDE > 2π −∠ADE > 3

2π, and
∠CDE > π/2 (as ∠ADC < π). As a matter of fact, |CE| > |CD|. Therefore,
|AD| + 1.998|CD| < |AE| + 1.998|CE|.

When D lies on edge AB, we can see that |AD| increases when D is moving
from A to F (CF is perpendicular to AB), while |CD| decreases. When D is
moving from F to B, |AD| keeps increasing and |CD| also increases. Hence
|AD| + 1.998|CD| achieves the maximum value when D is at A (this solution is
not relevant) or at B (that is the place for us to decide the maximum θ where
|AD| + 1.998|CD| achieves the maximum value of 1.998|AB|).

Let θ denote ∠BAC and let us first use a constant 2 instead of 1.998. With a
simple calculation, when sin θ

2 = 1
4 , 2|BC| = |AB|. Hence, cos θ = 1 − 2 sin2 θ

2 =
7
8 . Consequently, in this case θ = arccos 7

8 ≈ 28.96◦.
When we select θ = 2π

13 ≈ 27.6923◦, sin θ
2 ≈ sin 13.845◦ ≈ 0.2393 and D is at

B, we have 1.998|CD| = 1.998|BC| = 1.998 × 2 × 0.2393|AB| = 0.9562|AB|. In
this case,

|AD| + 1.998|CD| = |AB| + 1.998|CD| = 1.9562|AB| < 1.998|AB|.

��

Fig. 5. Illustration of the proof of Theorem 2.

Theorem 2. Given n red points R and m(≥ 1) black points B in the plane, a
red-black spanner T under the L2 distance and of at most 13n + 3m edges can
be constructed in O((n + m) log(n + m)) time; moreover, the stretch factor of T
is bounded by 1.998.

Proof. We focus on the case to compute the shortest path between two red nodes
p and q on the spanner T as the case between a red and a black node easily
follows. We refer to Fig. 5. Let p and q be two red points and let the optimal
solution of routing p to q be OPT = δ2(p, q) = |pu| + |qu|, where u is some
black point in Sp(i) ∩ Sq(j), i, j ∈ {1, 2, . . . , 13}. According to our algorithm,
the approximation solution might select a black point v in some of the 13 cones

228 S. Bereg et al.

apexed at p; similarly, the algorithm might select a black point w in some cone
at q, where u is in the intersection of these two cones. Hence,

dT (p, q) ≤ |pv| + δ2,B(v, w) + |wq| //by the algorithm
≤ |pv| + λ2|vw| + |wq| //by Delaunay stretch factor
≤ |pv| + 1.998(|uv| + |uw|) + |wq| //by triangle inequality
= (|pv| + 1.998|uv|) + (1.998|uw| + |wq|)
≤ 1.998|pu| + 1.998|qu| //by Lemma 2
= 1.998(|pu| + |qu|)
= 1.998 · OPT

��

4.2 The Lower Bounds

In the introduction, we illustrate a lower bound in which to achieve the opti-
mal stretch factor one must construct a spanner T of quadratic size. The same
example can be slightly augmented to have the following lower bounds on the
stretch factor α2(T).

1. If T must be of linear size and the edges in T cannot intersect, then there is
a lower bound 1.079 for α2(T).

2. If T must be of linear size and the edges in T can intersect, then there is a
lower bound 1 + ε for α2(T), for some ε > 0.

Clearly, how to improve these lower bounds makes a good open problem. In
the next section, we consider very much the same problem as in this section,
except that we will be under the Manhattan (or L1) distance.

5 Red-Black Spanner Under the Manhattan Distance
in 2-D

The idea for constructing a red-black spanner T1 under the Manhattan (L1)
distance is similar to the previous section. We will augment the Delaunay tri-
angulation under the L1 distance, which is known to have a tight stretch factor
λ1 =

√
4 + 2

√
2 ≈ 2.613 [2]. But the details and the analysis are different from

the Euclidean case.
Given a set R of n red points and a set B of m(≥ 1) black points, our

algorithm for constructing a red-black spanner T and routing points on T is as
follows.

1. Construct the L1 Delaunay triangulation DT 1(B) of black points. Let
δ1,B(u, v) be the shortest path between two black points u and v on DT 1(B).

Red-Black Spanners for Mixed-Charging Vehicular Networks 229

2. For each red point p, partition the plane into 8 sectors Sp(i), i ∈ {1, . . . , 8},
around p, using lines through p and with a slope of kπ/4, k ∈ {0, 1, 2, 3}. For
convenience, we order these sectors in counterclockwise order, starting from
the first one Sp(1) corresponding to the range (0, π/4]. In each sector, find
the closest black point under L1, if exists, and add this red-black edge into
DT 1(B) to form the spanner T1.

3. To find a route from a red point p to a black point u, in each sector Sp(i)
find the closest black point vi, then measure |pvi| + δ1,B(u, vi). Return the
minimum mini∈{1,...,8}{|pvi| + δ1,B(u, vi)}.

4. To find a route from a red point p to a red point q, in each sector Sp(i)
find the closest black point vi, and in each sector Sq(j) find the closest
black point wj then measure |pvi| + δ1,B(vi, wj) + |wjq|. Return the mini-
mum mini,j∈{1,...,8}{|pvi| + δ1,B(vi, wj) + |wjq|}.

We will make use of the stretch factor of a Delaunay triangulation under L1,
which is λ1 =

√
4 + 2

√
2 ≈ 2.613 [2]. To prove a stretch factor of 3.613 for T1,

we first prove two lemmas.

Lemma 3. Let p be a red point and the goal be routing p to a black point u.
When the closest black point v (to p) and u are both in the first sector Sp(1),
the spanning ratio of routing p to u through T1 is at most 1 + λ1.

Proof. Due to space constraint, we leave the proof to the full version. ��
Lemma 4. Let p be a red point and the goal be routing p to a black point u.
When the closest black point v (to p) and u are both in the second sector Sp(2),
the spanning ratio of routing p to u through T1 is at most 1 + λ1.

Proof. Due to space constraint, we leave the proof to the full version. ��
We can symmetrically show that the stretch factor of routing a red point p

to a black point u through T1 remains 1+λ1 when u, v are in other sectors of p.
In fact, it is easy to show that the 1 + λ1 bound is tight for the algorithm using
only three points p, v and u (where u, v are vertices in DT 1(B)). (We leave that
as a simple exercise.) Next, we summarize with the following theorem.

Theorem 3. Given n red points R and m(≥ 1) black points B in the plane, a
red-black spanner T1 under the L1 distance and of at most 8n+3m edges can be
constructed in O((n + m) log(n + m)) time; moreover, the stretch factor of T1 is
bounded by 1 + λ1 = 1 +

√
4 + 2

√
2 ≈ 3.613.

Proof. The running time for constructing DT 1(B) and T1 easily follows. To
complete the proof of this theorem, we need to show the stretch factor of routing
two red points p, q is also 1+λ1. We use triangle inequality, similar to the proof
of Theorem 2. Let u be the optimal solution to minimize |pu|1 + |uq|1, and let
u ∈ Sp(i)∩Sq(j), for some i, j ∈ {1, . . . , 8}; moreover, let v be the point in Sp(i)
which is the closest to p and w be the point in Sq(j) which is the closest to q.
Then

230 S. Bereg et al.

dT1(p, q) ≤ |pv|1 + δ1,B(v, w) + |wq|1 //by the algorithm
≤ |pv|1 + λ1|vw|1 + |wq|1 //by Delaunay stretch factor
≤ |pv|1 + λ1(|uv|1 + |uw|1) + |wq|1 //by triangle inequality
= (|pv|1 + λ1|uv|1) + (λ1|uw|1 + |wq|1)
≤ (1 + λ1)|pu|1 + (1 + λ1)|qu|1 //by Lemmas 3, 4 and extensions
= (1 + λ1) · δ1(p, q)
≤ 3.613 · δ1(p, q).

��

6 Concluding Remarks

We investigate the red-black spanners for points in 1-d and 2-d in this paper.
In 1-d we construct a linear-size red-black spanner under the ‘no red-red edge’
constraint that achieves the optimal stretch factor. In 2-d we construct linear-
size spanners with constant stretch factors (1.998 and 3.613 respectively) by
augmenting the corresponding Delaunay triangulations (under L2 and L1). This
opens up with a lot of open questions in 2-d.

1. Our red-black spanners might involve edge intersections (crossings) between
two red-black edges, and between a red-black edge and a black-black edge. Is
it possible to have a red-black spanner with no edge crossings while keeping a
small stretch factor? An instant try is to compute the Delaunay triangulation
of R ∪ B and then remove all red-red edges. It certainly has no edge crossing
but the stretch factor part falls off.

2. Due to the planarity of Delaunay triangulations, we could say that the average
vertex degree in our spanners is a constant. Is it possible to have a red-black
spanner with a constant maximum vertex degree, with no edge crossing, while
still keeping a small stretch factor? Notice that starting with the bounded-
degree spanner for black points, say using the one by Bose et al. [4], then use
the same idea of augmentation, we could easily fulfill the constant maximum
degree constraint. But it will not guarantee the ‘no edge crossing’ property.
An alternative solution is to construct the bounded degree spanner of R ∪ B
using [4] and then remove all red-red edges, but the proof of a bounded stretch
factor becomes non-trivial.

3. In Sect. 2 we show that using an existing road network Q cannot help us obtain
a good spanner. Can we augment Q, say, by adding a minimum number of
edges to Q, to achieve a decent (bounded) stretch factor?

Acknowledgment. Part of this research was done while the first and last author
visited University of Hyogo in late 2022.

Red-Black Spanners for Mixed-Charging Vehicular Networks 231

References

1. Biniaz, A., Bose, P., Carufel, J.D., Gavoille, C., Maheshwari, A., Smid, M.H.M.:
Towards plane spanners of degree 3. J. Comput. Geom. 8(1), 11–31 (2017)

2. Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: The stretch factor of L 1-
and L ∞-delaunay triangulations. In: Epstein, L., Ferragina, P. (eds.) ESA 2012.
LNCS, vol. 7501, pp. 205–216. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33090-2 19

3. Bose, P., Smid, M.H.M.: On plane geometric spanners: a survey and open problems.
Comput. Geom. 46(7), 818–830 (2013)

4. Bose, P., Smid, M.H.M., Xu, D.: Delaunay and diamond triangulations contain
spanners of bounded degree. Int. J. Comput. Geom. Appl. 19(2), 119–140 (2009)

5. Chew, P.: There is a planar graph almost as good as the complete graph. In:
Aggarwal, A. (ed.), Proceedings of the Second Annual ACM SIGACT/SIGGRAPH
Symposium on Computational Geometry, Yorktown Heights, NY, USA, 2–4 June
1986, pp. 169–177. ACM (1986)

6. Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good
as complete graphs. In: 28th Annual Symposium on Foundations of Computer Sci-
ence, Los Angeles, California, USA, 27–29 October 1987, pp. 20–26. IEEE Com-
puter Society (1987)

7. Dumitrescu, A., Ghosh, A.: Lower bounds on the dilation of plane spanners. Int.
J. Comput. Geom. Appl. 26(2), 89–110 (2016)

8. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Hand-
book of Computational Geometry, pp. 425–461. Elsevier Science Publishers B.V.
North-Holland, Amsterdam (2000)

9. Kazemi, M.A., Sedighizadeh, M., Mirzaei, M.J., Homaee, O.: Optimal siting and
sizing of distribution system operator owned EV parking lots. Appl. Energy 179,
1176–1184 (2016)

10. Keil, M., Gutwin, C.A.: Classes of graphs which approximate the complete
Euclidean graph. Discret. Comput. Geom. 7, 13–28 (1992)

11. Liang, Y., Guo, C., Yang, J., Ding, Z.: Optimal planning of charging station based
on discrete distribution of charging demand. IET Gener. Trans. Distrib. 14(6),
965–974 (2020)

12. Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge Univer-
sity Press, Cambridge (2007)

13. Sadeghi-Barzani, P., Rajabi-Ghahnavieh, A., Kazemi-Karegar, H.: Optimal fast
charging station placing and sizing. Appl. Energy 125, 289–299 (2014)

14. Sperling, D.: New Transportation Fuels: A Strategic Approach to Technological
Change. University of California Press, Berkeley (1990)

15. Wang, Y., Shi, J., Wang, R., Liu, Z., Wang, L.: Siting and sizing of fast charging
stations in highway network with budget constraint. Appl. Energy 228, 1255–1271
(2018)

16. Xia, G.: The stretch factor of the Delaunay triangulation is less than 1.998. SIAM
J. Comput. 42(4), 1620–1659 (2013)

17. Xia, G., Zhang, L.: Toward the tight bound of the stretch factor of delaunay tri-
angulations. In: Proceedings of the 23rd Annual Canadian Conference on Compu-
tational Geometry, Toronto, Ontario, Canada, 10–12 August 2011 (2011)

18. Zhu, H., Pei, Z.: Data-driven layout design of regional battery swapping stations
for electric bicycles. IFAC PapersOnLine 53(5), 13–18 (2020)

https://doi.org/10.1007/978-3-642-33090-2_19
https://doi.org/10.1007/978-3-642-33090-2_19

Self-stabilizing (Δ + 1)-Coloring
in Sublinear (in Δ) Rounds

via Locally-Iterative Algorithms

Xinyu Fu(B), Yitong Yin, and Chaodong Zheng

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing,
China

xyfu@smail.nju.edu.cn, {yinyt,chaodong}@nju.edu.cn

Abstract. Fault-tolerance is a central theme in distributed computing.
Self-stabilization is a key property that guarantees a distributed system
starting from an arbitrary state eventually converges to a desired behav-
ior. Such strong level of fault-tolerance is often desirable due to the error-
prone nature of distributed systems. Developing fast and robust coloring
algorithms has been a central topic in the study of distributed graph
algorithms. In this paper, we give a (Δ + 1)-coloring algorithm with
O(Δ3/4 log Δ) + log∗ n stabilization time, only using messages of size
O(log n), on input graphs of n vertices and maximum degree Δ. This
is the first self-stabilizing (Δ + 1)-coloring algorithm with sublinear-in-
Δ stabilization time. The key building block of our algorithm is a new
locally-iterative (Δ + 1)-coloring algorithm with O(Δ3/4 log Δ) + log∗ n
runtime. To the best of our knowledge, this is the first locally-iterative
(Δ+1)-coloring algorithm with sublinear-in-Δ runtime. This answers an
open question raised in [Barenboim, Elkin, and Goldberg, JACM ’21].

1 Introduction

Distributed graph coloring is a fundamental and extensively studied problem in
distributed computing [1,3–6,12,13,18,19,21,24]. As a locally checkable label-
ing problem, it is widely considered to be one of the benchmark problems for
answering the fundamental question “what can be computed locally” [22]. This
problem also has a wide range of applications in practice, including channel
allocation, scheduling, and mutual exclusion [14,15].

In graph theory, for a graph G = (V,E), a q-coloring is a mapping φ from V
to a palette Q, where |Q| = q. A q-coloring is proper if φ(u) �= φ(v) for every edge
(u, v) ∈ E. Distributed graph coloring is often studied in synchronous message-
passing model [23]. In this model, a communication network is represented by an
n-vertex graph G = (V,E) with maximum degree Δ. Each vertex v ∈ V hosts
a processor and each edge (u, v) ∈ E denotes a communication link between
two vertices u and v. Each vertex v ∈ V has a unique identifier id(v) belonging
to the set [n] = {0, 1, · · · , n − 1}. In each synchronous round, vertices perform
local computation and exchange messages with their neighbors. We restrict each
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 232–243, 2024.
https://doi.org/10.1007/978-3-031-49190-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_17&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_17

Self-stabilizing (Δ + 1)-Coloring in Sublinear (in Δ) Rounds 233

message’s size to O(log n) bits, as in the standard CONGEST model [23]. The
time complexity of an algorithm is the maximum number of rounds required for
all vertices to arrive at a solution for the considered problem.
Self-stabilization. Fault-tolerance is another central topic in the study of dis-
tributed computing. Self-stabilization, a concept proposed by Edsger W. Dijk-
stra [10], is a property that, roughly speaking, guarantees a distributed sys-
tem starting from an arbitrary state eventually converges to a desired behav-
ior. This concept is regarded as “a milestone in work on fault tolerance” by
Leslie Lamport [16]. Indeed, over the last four decades, a vast collection of self-
stabilizing distributed algorithms have been devised (see the classical monograph
by Dolev [11] and the more recent one by Altisen et al. [2] for more detail), and
several of them have seen practical applications [8,9].

More formally, we adopt the same self-stabilizing setting assumed by Baren-
boim, Elkin, and Goldenberg [5]. In this setting, the memory of each vertex
consists of two parts: the immutable read-only memory (ROM) and the mutable
random access memory (RAM). The ROM part is faultless but cannot change
during execution; and it may be used to store hard-wired data such as vertex
identity and graph parameters, as well as the program code. The RAM part on
the other hand, can change during algorithm execution; and it is for storing the
internal states of the algorithm. The RAM part is subject to error and controlled
by an adversary called Eve. At any moment during the execution, the adversary
can examine the entire memory (including both ROM and RAM) of all vertices,
and then make arbitrary changes to the RAM part of all vertices.

An algorithm is self-stabilizing if it can still compute a proper solution once
the adversary stops disrupting its execution. Specifically, assume T0 is the last
round in which the adversary makes any changes to vertices’ RAM areas, if it is
always guaranteed that by the end of round T0+T a desired solution is produced,
then the algorithm is self-stabilizing with stabilization time T .
An Open Question. Interestingly, for the distributed (Δ + 1)-coloring prob-
lem, there is a considerable efficiency gap between general algorithms and self-
stabilizing ones. On the one hand, non-fault-tolerant distributed coloring algo-
rithms with sublinear-in-Δ runtime were already known around 2016 [3,12]. On
the other hand, once we desire self-stabilization, the state of the art which has
linear-in-Δ stabilization time was only discovered in a recent breakthrough [5].
Though researchers have proposed generic techniques for converting general col-
oring algorithms into self-stabilizing ones [17], such approach usually results in
large message size, rendering the converted algorithms unpractical. Therefore,
an important open question is, can one compute a proper (Δ + 1)-coloring with
o(Δ) + log∗ n stabilization time, using only small messages?

1.1 Our Results

In this paper, we give affirmative answer to the above question:

Theorem 1 (Efficient Self-stabilizing Coloring Algorithm). There exists
a self-stabilizing coloring algorithm such that, for any input graph with n vertices

234 X. Fu et al.

and maximum degree Δ, produces a proper (Δ+1)-coloring with O(Δ3/4 log Δ)+
log∗ n stabilization time, using messages of O(log n) bits.

To the best of our knowledge, this is the first self-stabilizing algorithm for
(Δ+1)-coloring in the CONGEST model with sublinear-in-Δ stabilization time.
The key building block of this algorithm is a new non-fault-tolerant locally-
iterative coloring algorithm with sublinear-in-Δ runtime. Next, we will introduce
the concept of locally-iterative algorithms, give an overview of the new locally-
iterative coloring algorithm, and discuss the connection between locally-iterative
algorithms and self-stabilizing algorithms.
New Locally-Iterative Coloring Algorithm. Locally-iterative coloring algo-
rithms are introduced by Szegedy and Vishwanathan [24]. Throughout the exe-
cution of such algorithms, a proper coloring of the network graph is maintained
and updated from round to round. Moreover, in each round, for each vertex
v ∈ V , its next color is computed from its current color and the current colors
of its neighbors N(v) = {u ∈ V | (u, v) ∈ E)}. More formally,

Definition 1. In the synchronous message-passing model, an algorithm for
graph coloring is said to be locally-iterative if it maintains a sequence of proper
colorings φt of the input G = (V,E) such that:

– The initial coloring φ0 is constructed locally in the sense that, for every vertex
v, its initial color φ0(v) is computed locally from id(v).

– In each round t ≥ 1, every vertex v computes its next color φt(v) based only
on its current color φt−1(v) along with the multiset of colors {φt−1(u) | u ∈
N(v)} appearing in v’s neighborhood. Particularly, in each round t ≥ 1, every
vertex v only broadcasts φt−1(v) to its neighbors.

Due to the simplicity and naturalness of its framework, locally-iterative algo-
rithms often play the role of starting points for self-stabilizing algorithms. Indeed,
currently the fastest known self-stabilizing (Δ + 1)-coloring algorithm is con-
verted from a simple yet elegant locally-iterative coloring algorithm [5].

In this paper, we also start with developing a non-fault-tolerant locally-
iterative coloring algorithm. Nonetheless, to achieve sublinear-in-Δ time com-
plexity, our locally-iterative algorithm adopts a more sophisticated three-phases
framework used by several recent work [3,5]. In this framework, the first phase
employs Linial’s celebrated algorithm [18] (or some variant of it) and produces
a proper α-coloring within log∗ n + O(1) rounds, where α = O(Δ2). The sec-
ond phase takes the proper O(Δ2)-coloring as input and reduces it into another
proper β-coloring, where β ∈ (Δ+1, α). In the last phase, a folklore reduce-one-
color-per-round procedure is executed, hence within another β − (Δ+1) rounds,
a proper (Δ + 1)-coloring is obtained.

The key novelty of our new locally-iterative algorithm lies in a faster and
stronger second phase: it only takes O(Δ3/4 log Δ) rounds and produces a proper
Δ+O(Δ3/4 log Δ) coloring. As a result, the total runtime of our locally-iterative
algorithm is O(Δ3/4 log Δ) + log∗ n. To sum up,

Self-stabilizing (Δ + 1)-Coloring in Sublinear (in Δ) Rounds 235

Theorem 2 (Efficient Locally-Iterative Coloring Algorithm). There
exists a locally-iterative coloring algorithm such that, for any input graph with
n vertices and maximum degree Δ, produces a proper (Δ + 1)-coloring within
O(Δ3/4 log Δ) + log∗ n rounds, using messages of O(log n) bits.

This is the first locally-iterative (Δ+1)-coloring algorithm achieving a sublinear-
in-Δ runtime while only using small messages. It is another major technical
contribution of this paper. This algorithm also gives an affirmative answer to
the main open question raised by previous best result [5].
Reconfigurable Locally-Iterative Coloring and Self-stabilization. In
adopting the locally-iterative algorithm to the self-stabilizing setting, we cope
with a strong level of “asynchrony” among vertices, as the adversary can manip-
ulate vertices’ states and put them in different stages of the algorithm. We
have also crafted an error-correction procedure ensuring that once the adversary
stops disrupting algorithm execution, any vertex with an “improper” state will
be detected within one round and resets itself to some proper state.

Interestingly, we find that if a locally-iterative algorithm supports above
“reconfiguration” (i.e., state resetting upon detecting illicit status), and if the
algorithm’s correctness is still enforced under such reconfiguration, then the
locally-iterative algorithm in consideration can be modified into a self-stabilizing
one with relative ease, with limited or no complexity overhead. Formally, we
propose reconfigurable locally-iterative coloring algorithms. As an example, the
locally-iterative coloring algorithm developed in [5] is reconfigurable out of the
box, whereas converting ours into a self-stabilizing one needs more efforts.

Definition 2. A locally-iterative coloring algorithm A is reconfigurable if it sat-
isfies the following properties:

– The algorithm has a build-in function LegitA that, upon inputting a vertex
v’s color and the colors of v’s neighbors, outputs a single bit indicating whether
v’s status is legit or illicit.

– For each vertex v, its status after initialization is legit:

LegitA (φ0(v), {φ0(u) | u ∈ N(v)}) = 1.

– Normal execution maintains legitimacy. Moreover, when external interference
occur, resetting illicit vertices to initial colors resumes legitimacy. Specifically,
for any round t ≥ 1, let Vφt−1 denote the set of vertices that have illicit status
in (a not necessarily proper) coloring φt−1, if every vertex updates its color
using the following rule, then in φt all vertices’ status are legit.

φt(v) ←
{

φ0(v) if v ∈ Vφt−1 ,

UpdateA (φt−1(v), {φt−1(u) | u ∈ N(v)}) if v ∈ V \ Vφt−1 .

2 The Locally-Iterative Coloring Algorithm

Our locally-iterative algorithm contains three phases, but vertices cannot depend
on current round number to determine which phase they are in per Definition 1.

236 X. Fu et al.

To solve this issue, we assign each phase an interval so that vertices running
that phase will have colors in the corresponding interval. By assigning disjoint
intervals to different phases, vertices can correctly determine its progress by
observing its current color. More specifically, the intervals used by the three
phases are I1, I2, and I3, where

|I1| = �1, |I2| = �2, and |I3| = �3,

I1 � [�3 + �2, �3 + �2 + �1), I2 � [�3, �3 + �2), and I3 � [0, �3).

Next, we introduce each phase in more detail and give precise values for �1, �2, �3.
Due to space constraints, complete description and analysis of our locally-
iterative coloring algorithm are provided in the full version of the paper.1

First Phase: Linial Phase. The first phase runs a locally-iterative version of
Linial’s well-known coloring algorithm [18]. Let n0 = n, and for i ≥ 1, define

ni =

{
4(Δ + 1)2 log2(ni−1) if ni−1 > 8(Δ + 1)3,
4(Δ + 1)2 if ni−1 ≤ 8(Δ + 1)3.

Let r∗ be the smallest r ≥ 0 such that nr ≤ 4(Δ + 1)2. It has been shown r∗ ≤
log∗ n + O(1). (See, e.g., Sect. 3.10 of [4].) During the Linial phase, vertices will
reduce the number of colors used to ni after i rounds, thus within log∗ n + O(1)
rounds the algorithm produces a proper O(Δ2)-coloring.

More specifically, we set interval length �1 and each vertex v’s initial color in
the following manner:

φ0(v) ← �3 + �2 +
r∗∑

i=1

ni + id(v),

|I1| = �1 =
r∗∑

i=0

ni = n + O(log∗ n · Δ2 · log2 n).

Furthermore, we partition I1 into r∗ + 1 sub-intervals I
(0)
1 , I

(1)
1 , · · · , I

(r∗)
1 , such

that for each 0 ≤ t ≤ r∗: I
(t)
1 � [�3 + �2 +

∑
t+1≤i≤r∗ ni , �3 + �2 +

∑
t≤i≤r∗ ni).

Notice that I
(r∗)
1 = [�3 + �2, �3 + �2 + nr∗). During the Linial phase, in each

round, vertices will construct Δ-cover-free set families to compute their next
colors. (Definition and relevant results regarding cover-free set systems are pro-
vided in the full paper.) This mechanism ensures after t rounds where t ∈ [0, r∗],
all vertices’ colors are in interval I

(t)
1 , and the coloring φt is proper. To sum up,

Lemma 1 (Linial Phase). By the end of round r∗ = log∗ n+O(1), all vertices
have completed the Linial phase, producing a proper coloring φr∗ where φr∗(v) ∈
[�3 + �2, �3 + �2 + O(Δ2)) ⊆ I1 for every vertex v. Moreover, φt is proper for
every round t ∈ [1, r∗].

1 The full version of the paper is available at https://arxiv.org/abs/2207.14458.

https://arxiv.org/abs/2207.14458

Self-stabilizing (Δ + 1)-Coloring in Sublinear (in Δ) Rounds 237

Second Phase: Quadratic Reduction Phase. Before diving into the details,
we introduce the concept of (arb)defective colorings as they are the key to under-
stand the second phase of our algorithm. A coloring φ of an undirected graph
G = (V,E) is said to be: (1) d-defective if for every v ∈ V , the number of
neighbors u ∈ N(v) with φ(u) = φ(v) is at most d; (2) a-arbdefective if we can
define an orientation for each edge such that the out-degree of the oriented graph
induced by each color class is at most a. Essentially, (arb)defective colorings are
“improper colorings with bounded collisions”.

The second phase is the most complex component of our algorithm, it is
also the key for achieving sublinear-in-Δ runtime. Recall vertices use colors in
I2 � [�3, �3 + �2) during phase two, where |I2| = �2 and |I3| = �3. To give precise
values for �2 and �3, we first define three integers and three prime numbers:

m1 � 4Δ3/2 log2(nr∗), m2 � 4
√

Δ log2(nr∗), and m3 � 16
√

Δ log2(λ2m2);

λ ∈ (
√

m1 + 1, 2(
√

m1 + 1)], μ ∈ (
√

Δ +
√

m3, 2(
√

Δ +
√

m3)], and τ ∈ (
√

m3, 2
√

m3].

Due to Bertrand-Chebyshev theorem [7], prime numbers λ, μ, τ exist. We set:

|I2| = �2 = 2λ3(μ + 1) · m3 = O(Δ13/4 log5 Δ),

|I3| = �3 = Δ + (2
√

m3 + 1) · μ = Δ + O(Δ3/4 log Δ).

Since �2 = 2λ3(μ + 1) · m3, for every color (�3 + i) ∈ I2 where i ∈ [�2], we can
use a unique quadruple 〈a, b, c, d〉 to identify it, where:

a = �i/ (2λ(μ + 1)m3)� ,

b = �(i − a · 2λ(μ + 1)m3) / (2λ(μ + 1))� ,

c = �(i − a · 2λ(μ + 1)m3 − b · 2λ(μ + 1)) / (μ + 1)� ,

d = i mod (μ + 1).

In other words, i = a · 2λ(μ + 1)m3 + b · 2λ(μ + 1) + c · (μ + 1) + d. Clearly,
a ∈ [λ2], b ∈ [m3], c ∈ [2λ], and d ∈ [μ + 1]. Throughout the paper, for any
round t ≥ r∗ + 1, for any vertex v, if φt(v) ∈ I2, we denote the values of
a(v), b(v), c(v), d(v) in φt(v) as at(v), bt(v), ct(v), dt(v).

We now introduce the second phase, which is further divided into three stages.
The first stage is the transition-in stage, which takes one round and trans-

forms φr∗ to a proper coloring with colors from interval I2. (Recall that the Linial
phase takes r∗ rounds.) Specifically, we employ the defective coloring algorithm
developed by Barenboim, Elkin, and Kuhn [6], with suitable parameters tailored
for our purpose. As a result, by the end of round r∗ + 1, for any vertex v, its
a(v) value may collide with up to Δ1/4 neighbors. Moreover, for neighbors with
potentially colliding a value, we build Δ1/4-cover-free set families to assign dis-
tinct b values. In the end, φr∗+1 still corresponds to a proper coloring. Lastly, we
note that every vertex v initializes c(v) = 0 and d(v) = μ during the transition-in
stage, though they are not used in this stage.

Once the transition-in stage is done, the a values of all vertices correspond to
a Δ1/4-defective coloring, using a palette containing λ2 colors, as a ∈ [λ2]. The
main objective of the second stage—which is called the core stage—is to start

238 X. Fu et al.

from this Δ1/4-defective λ2-coloring to gradually obtain a (2 ·Δ1/4)-arbdefective
λ-coloring. Notice that this reduces the number of colors used—or more precisely,
the range of the a values of all vertices—from [λ2] to [λ]. To achieve this quadratic
reduction, for every vertex v, we interpret the first coordinate a(v) of its color
quadruple in the following manner:

a(v) = â(v) · λ + ã(v), where â(v) = �a(v)/λ� and ã(v) = a(v) mod λ.

During the core stage, we run a locally-iterative arbdefective coloring algorithm
inspired by [5] that makes a series of updates to a(v) so that eventually â(v) = 0,
reducing a(v) from [λ2] to [λ]. During this process, vertices also update their c
values to implicitly define the orientations of edges: for neighbors u and v, vertex
v points to vertex u if and only if c(v) ≥ c(u). By guaranteeing that the out-
degree of the oriented graph induced by each a value is at most 2·Δ1/4, the a and
c values of vertices together constitute a (2 · Δ1/4)-arbdefective coloring during
the core stage. On the other hand, similar to the first stage, we also use (2·Δ1/4)-
cover-free set families to assign distinct b values for neighbors with potentially
colliding a value, hence enforcing the overall coloring is always proper. Lastly, we
note that vertices may complete the core stage at different times: once a vertex
v has at(v) ∈ [λ] by the end of round t, its core stage is considered done.

The last stage of the second phase is called the transition-out stage, in which
vertices produce a proper (Δ + O(Δ3/4 log Δ))-coloring using colors in inter-
val I3. The approach we took during the transition-out stage is inspired by the
techniques developed by Barenboim [3]. Nonetheless, important adjustments are
made on both the implementation and the analysis, as we are in the more restric-
tive locally-iterative setting, and have to take the “asynchrony” that vertices may
start the transition-out stage in different rounds into consideration. We also note
that the transition-out stage is the only stage where the d values of vertices’ color
quadruple are used.

We conclude this subsection by stating the key guarantees provided by the
second phase. We also note that an alternative approach that phase two could
take to achieve similar results is to adopt the techniques proposed by Maus [20].

Lemma 2 (Quadratic Reduction Phase). By the end of round r∗ + 2 + 3λ,
all vertices have completed the quadratic reduction phase, producing a proper
coloring φr∗+2+3λ where φr∗+2+3λ(v) ∈ I3 for every vertex v. Moreover, φt is
proper for every round t ∈ [r∗ + 1, r∗ + 2 + 3λ].

Third Phase: Standard Reduction Phase. In the standard reduction phase,
each vertex v maps color φt#v

∈ I3 to another color in [Δ + 1] ⊂ I3, completing
(Δ+1)-coloring. Here, t#v denotes the smallest round number such that φt#v

(v) ∈
I3. Hence, t#v +1 is the first round in which v runs the standard reduction phase.

For each vertex v, for each round t ≥ t#v + 1, if every neighbor u ∈ N(v)
has also entered the standard reduction phase, and if v has the maximum color
value in its one-hop neighborhood, then v will update its color to be the minimum
value in [Δ + 1] that still has not been used by any of its neighbors. Clearly,

Self-stabilizing (Δ + 1)-Coloring in Sublinear (in Δ) Rounds 239

such color must exist. In all other cases, v keeps its color unchanged in round t.
Effectively, this procedure reduces the maximum color value used by any vertex
by at least one in each round. Hence, within �3 − (Δ + 1) rounds into the third
phase, a proper (Δ + 1)-coloring is obtained. As a result,

Lemma 3 (Standard Reduction Phase). By the end of round r∗ +1+3λ+
(2

√
m3 + 1)μ, the coloring φr∗+1+3λ+(2

√
m3+1)μ is a proper (Δ + 1)-coloring.

Moreover, φt is proper for every round t ∈ [r∗ + 3 + 3λ,∞).

Fig. 1. Structure of the locally-iterative (Δ + 1)-coloring algorithm.

Summary. We conclude this section by noting that Lemma 1, Lemma 2, and
Lemma 3 together could easily lead to Theorem 2. Figure 1 provides a graphical
overview of the locally-iterative coloring algorithm’s structure.

3 The Self-stabilizing Coloring Algorithm

In this section, we discuss how to convert the above locally-iterative algorithm
into a self-stabilizing one. To begin with, we specify what are stored in the ROM

240 X. Fu et al.

and the RAM areas of vertices: in the ROM area of a vertex v, we store its
identity id(v), graph parameters n and Δ, and the program code; in the RAM
area of v, we store the colors of its local neighborhood, a boolean vector Tv of
size Δ, and other variables that are used during execution.

The boolean vector Tv is used to determine the orientation of the edges inci-
dent to v, replacing the role of c(v). Specifically, in the self-stabilizing algorithm,
for each edge (v, u), vertex v maintains a bit in Tv denoted as Tv[u], and we treat
v points to u if and only if Tv[u] = 1. The reason that we replace c(v) with bit
vector Tv is that in the self-stabilizing setting, the adversary can employ a certain
strategy to grow the c values indefinitely. However, a side effect of this replace-
ment is that v must maintain a variable for each incident edge to determine
its orientation. Moreover, for two neighbors v and u to correctly determine the
orientation of edge (v, u), bit entries Tv[u] and Tu[v] must be exchanged. There-
fore, for every vertex v, it has to send different information to different neighbors
(particularly, Tv[u] for each neighbor u), making our self-stabilizing algorithm
no longer locally-iterative per Definition 1. Nonetheless, when describing the
self-stabilizing algorithm, for consistency and ease of presentation, we keep the
c entry in vertices’ color quadruples, but they are not used throughout.

For each vertex v, the self-stabilizing algorithm still contains three phases:
the Linial phase, the quadratic reduction phase, and the standard reduction
phase. Initially, every vertex v sets its color to φ0(v) = �3 + �2 +

∑r∗

1 ni + id(v).
At the beginning of each round t, for every neighbor u ∈ N(v), vertex v sends
a message to u including its current color φt−1(v) and a boolean variable Tv[u].
After receiving messages from neighbors, vertex v will perform an error-checking
procedure to determine if it is in a proper state. If the error-checking passes then
we say v is in a proper state, and v updates its color and vector Tv according
to its local information and the messages received from neighbors. Otherwise, if
the error-checking fails, v is in an improper state. In such case, v resets its color.

The following two lemmas show the correctness and time complexity of our
self-stabilizing algorithm, together they easily lead to Theorem 1.

Lemma 4 (Correctness of the Self-stabilizing Algorithm). Assume T0 is
the last round in which the adversary makes any changes to the RAM areas of
vertices, then for every round t ≥ T0 + 2, for every vertex v, the error-checking
procedure will not reset vertex v’s color.

Lemma 5 (Time Complexity of the Self-stabilizing Algorithm).
Assume T0 is the last round in which the adversary makes any changes to the
RAM areas of vertices, then for every round t ≥ T0 + r∗ +4λ+2+2(

√
m3 +1)μ

, every vertex v has φt(v) ∈ [Δ + 1].

We now introduce each phase in more detail. Complete description and anal-
ysis are provided in the full version of the paper due to space constraints.
The Linial Phase and the Transition-in Stage of the Quadratic Reduc-
tion Phase. At the beginning of a round t, if a vertex v finds its color φt−1(v)
not in I2 ∪ I3, it will do error-checking to see if any of the following condi-
tions is satisfied: (1) its color collide with some neighbor; (2) its color is not

Self-stabilizing (Δ + 1)-Coloring in Sublinear (in Δ) Rounds 241

in (
⋃r∗

i=1 I
(i)
1) ∪ I2 ∪ I3, which implies v should be running the first iteration

of the Linial phase but its current color is not �3 + �2 +
∑r∗

i=1 ni + id(v). If
any of these conditions is satisfied, then vertex v treats itself in an improper
state and resets its color to �3 + �2 +

∑r∗

i=1 ni + id(v). That is, it sets φt(v) =
�3 + �2 +

∑r∗

i=1 ni + id(v).
Otherwise, v is in a proper state with φt−1(v) ∈ I1. In such case, v first

determines which interval I
(t′)
1 it is in, and then runs either the Linial phase or

the transition-in stage of the quadratic reduction phase, according to value of t′.
If 0 ≤ t′ < r∗, then vertex v computes its new color in a similar fashion as

in the Linial phase of the locally-iterative algorithm.
If t′ = r∗, then vertex v transforms its color from interval I1 to I2, effectively

running the transition-in stage of the quadratic reduction phase. The transition-
in stage of the self-stabilizing algorithm is similar to the one in the locally-
iterative algorithm. The only difference is that vertices may end the Linial phase
and start the transition-in stage in different rounds. This brings the side effect
that the a values of all vertices are not necessarily Δ1/4-defective. Instead, we
maintain a Δ1/4-arbdefective λ2-coloring. Specifically, each vertex v still com-
putes a(v) based on its color and the colors of its neighbors using the defective
coloring algorithm; moreover, v again uses b(v) to differentiate itself from the
neighbors with identical a value. On the other hand, v sets Tv[u] = 1 if a(v)
might collide with neighbor u, otherwise v sets Tv[u] = 0. (Recall that Tv[u] and
Tu[v] determine the orientation of edge (u, v) in arbdefective colorings.)
The Core Stage of the Quadratic Reduction Phase. A vertex v with
φ(v) ∈ I2 and a(v) ≥ λ should run the core stage. Nonetheless, before proceeding,
it will do error-checking to see if any of the following conditions is satisfied: (1)
there exists a neighbor u of v such that a(v) = a(u) and b(v) = b(u), effectively
implying u and v have colliding color; (2) there exists a neighbor u of v such that
a(v) = a(u) yet Tv[u] + Tu[v] = 0, implying that the orientation of edge (u, v)
is still undetermined when a(v) = a(u); (3) the number of neighbors u ∈ N(v)
with Tv[u] = 1 is larger than Δ1/4, violating the bounded arboricity assumption
during the core stage; (4) there exists a vertex u ∈ N(v) ∪ {v} with its color
in I2 and a(u) ≥ λ, yet b(u) ≥ m2, violating the range requirement of b values
during the core stage. If any of these conditions is satisfied, then vertex v resets
its color. Otherwise, it executes the core stage of the quadratic reduction phase
to reduce its a value from [λ, λ2) to [0, λ).

The procedure we use in the self-stabilizing settings to transform a Δ1/4-
arbdefective λ2-coloring to a (2 ·Δ1/4)-arbdefective λ-coloring is almost identical
to the one we used in the locally-iterative setting. The only difference is that we
have altered the definition of some variables to incorporate relevant bits in Tv.
This is because, in the self-stabilizing setting, vertices start the core stage with
an arbdefective coloring instead of a defective coloring.

Once the reduction of the a value occurs in some round t, vertex v obtains
an at(v) ∈ [λ], and updates bt(v) to differentiate itself from neighbors that may
have colliding a value. It also sets Tv[u] = 1 for certain entries in Tv, recording
the orientation of corresponding edges. Notice that Tv here is used to maintain

242 X. Fu et al.

the arboricity of a (2 · Δ1/4)-arbdefective λ-coloring for vertices with a(v) < λ,
whereas in the transition-in stage, Tv is used to maintain the arboricity of a
Δ1/4-arbdefective λ2-coloring for vertices with a(v) ≥ λ.
The Transition-Out Stage of the Quadratic Reduction Phase. At the
beginning of a round t, if vertex v finds φt−1(v) ∈ I2 and a(v) ∈ [λ], then it
is in the transition-out stage. Once again, it does the following error-checking
before proceeding: (1) there exists a neighbor u of v such that a(v) = a(u) and
b(v) = b(u), effectively implying u and v have colliding color; (2) there exists
a neighbor u of v such that a(v) = a(u) yet Tv[u] + Tu[v] = 0, implying that
the orientation of edge (u, v) is still undetermined when a(v) = a(u); (3) the
number of neighbors u ∈ N(v) with Tv[u] = 1 is larger than 2 · Δ1/4, violating
the bounded arboricity assumption during the transition-out stage. If any of
these conditions is satisfied, then v is in an improper state and resets its color.
Otherwise, it executes the transition-out stage to transform its color from I2 to
I3.

For each vertex v, the transformation is similar to the transition-out stage
of the locally-iterative algorithm, except that: (1) we replace the constraints on
c(v) with corresponding constraints on Tv; and (2) we add an error-checking
mechanism for d(v) as the adversary can arbitrarily manipulate it. If the error-
checking for d(v) fails, vertex v resets d(v) to μ, so that later it can obtain a
proper d(v). We note that such resetting occurs at most once for each vertex
once the adversary stops disrupting.
The Standard Reduction Phase. For a vertex v with its color in I3, it
considers itself in the standard reduction phase, whose error-checking proce-
dure is simple: if its color collides with any neighbor, then it resets φ(v) to
�3 + �2 +

∑r∗

1 ni + id(v). Otherwise, vertex v considers itself in a proper state,
and runs exactly the same standard reduction procedure described in the locally-
iterative setting.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (NSFC) under Grant No. 62172207 and 62332009, and by the Depart-
ment of Science and Technology of Jiangsu Province under Grant No. BK20211148.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

2. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to Distributed Self-
Stabilizing Algorithms. Morgan & Claypool, San Rafael (2019)

3. Barenboim, L.: Deterministic (Δ+1)-coloring in sublinear (in Δ) time in static,
dynamic, and faulty networks. J. ACM 63(5), 1–22 (2016)

4. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers, San Rafael (2013)

5. Barenboim, L., Elkin, M., Goldenberg, U.: Locally-iterative distributed (Δ+1)-
coloring and applications. J. ACM 69(1), 1–26 (2021)

Self-stabilizing (Δ + 1)-Coloring in Sublinear (in Δ) Rounds 243

6. Barenboim, L., Elkin, M., Kuhn, F.: Distributed (Δ+1)-coloring in linear (in Δ)
time. SIAM J. Comput. 43(1), 72–95 (2014)

7. Chebyshev, P.L.: Mémoire sur les nombres premiers. Journal de mathématiques
pures et appliquées 1, 366–390 (1852)

8. Chen, Y., Datta, A.K., Tixeuil, S.: Stabilizing inter-domain routing in the internet.
J. High Speed Netw. 14(1), 21–37 (2005)

9. Datta, A.K., Outley, E., Thiagarajan, V., Flatebo, M.: Stabilization of the x.25
connection management protocol. In: International Conference on Computing and
Information, ICCI 1994, pp. 1637–1654 (1994)

10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

11. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
12. Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: Proceedings

of the 2016 IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, pp. 625–634. IEEE (2016)

13. Ghaffari, M., Kuhn, F.: Deterministic distributed vertex coloring: simpler, faster,
and without network decomposition. In: Proceedings of the 62nd Annual Sym-
posium on Foundations of Computer Science, FOCS 2022, pp. 1009–1020. IEEE
(2022)

14. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for indepen-
dence, domination, coloring, and matching in graphs. J. Parallel Distrib. Comput.
70(4), 406–415 (2010)

15. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: Pro-
ceedings of the 21st Annual Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2009, pp. 138–144. ACM (2009)

16. Lamport, L.: Solved problems, unsolved problems and non-problems in concur-
rency. ACM SIGOPS Oper. Syst. Rev. 19(4), 34–44 (1985)

17. Lenzen, C., Suomela, J., Wattenhofer, R.: Local algorithms: self-stabilization on
speed. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 17–34.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05118-0 2

18. Linial, N.: Distributive graph algorithms global solutions from local data. In: Pro-
ceedings of the 28th Annual Symposium on Foundations of Computer Science,
FOCS 1987, pp. 331–335. IEEE (1987)

19. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15(4), 1036–1053 (1986)

20. Maus, Y.: Distributed graph coloring made easy. In: Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA 2021, pp. 362–
372. ACM (2021)

21. Maus, Y., Tonoyan, T.: Local Conflict Coloring Revisited: Linial for Lists. In:
Proceedings of the 34th International Symposium on Distributed Computing, DISC
2020, pp. 16:1–16:18. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

22. Naor, M., Stockmeyer, L.: What can be computed locally? In: Proceedings of the
25th Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 184–193.
ACM (1993)

23. Peleg, D.: Distributed computing: a locality-sensitive approach. In: SIAM (2000)
24. Szegedy, M., Vishwanathan, S.: Locality based graph coloring. In: Proceedings of

the 25th Annual ACM Symposium on Theory of Computing, STOC 1993, pp.
201–207. ACM (1993)

https://doi.org/10.1007/978-3-642-05118-0_2

On Detecting Some Defective Items
in Group Testing

Nader H. Bshouty and Catherine A. Haddad-Zaknoon(B)

Technion - Israel Institute of Technology, Haifa, Israel
{bshouty,catherine}@cs.technion.ac.il

Abstract. Group testing is an approach aimed at identifying up to d
defective items among a total of n elements. This is accomplished by
examining subsets to determine if at least one defective item is present.
We focus on the problem of identifying a subset of � < d defective items.
We develop upper and lower bounds on the number of tests required to
detect � defective items in both the adaptive and non-adaptive settings
while considering scenarios where no prior knowledge of d is available,
and situations where some non-trivial estimate of d is at hand.

When no prior knowledge on d is available, we prove a lower bound

of Ω(� log2 n
log �+log log n

) tests in the randomized non-adaptive settings and

an upper bound of O(� log2 n) for the same settings. Furthermore, we
demonstrate that any non-adaptive deterministic algorithm must ask
Θ(n) tests, signifying a fundamental limitation in this scenario. For adap-
tive algorithms, we establish tight bounds in different scenarios. In the
deterministic case, we prove a tight bound of Θ(� log (n/�)). Moreover,
in the randomized settings, we derive a tight bound of Θ(� log (n/d)).

When d, or at least some non-trivial estimate of d, is known, we prove
a tight bound of Θ(d log(n/d)) for the deterministic non-adaptive set-
tings, and Θ(� log(n/d)) for the randomized non-adaptive settings. In
the adaptive case, we present an upper bound of O(� log(n/�)) for the
deterministic settings, and a lower bound of Ω(� log(n/d)+ log n). Addi-
tionally, we establish a tight bound of Θ(� log(n/d)) for the randomized
adaptive settings.

Keywords: Group testing · Pooling design · Finding defectives
partially

1 Introduction

Group testing is a technique for identifying a subset of items known as defective
items set within a large amount of items using small number of tests called group
tests. A group test is a subset of items, where the test result is positive if the
subset contains at least one defective item and negative otherwise. Formally, let
X = {1, 2, . . . , n} be a set of items, and I ⊆ X is the set of defectives. A group
test is set Q ⊆ X. The answer of the test Q with respect to the defective set I

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 244–271, 2024.
https://doi.org/10.1007/978-3-031-49190-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_18&domain=pdf
http://orcid.org/0009-0007-7356-7824
http://orcid.org/0009-0008-1503-594X
https://doi.org/10.1007/978-3-031-49190-0_18

On Detecting Some Defective Items in Group Testing 245

is 1 if Q∩ I �= ∅, and 0 otherwise. Throughout the paper, we denote the number
of defective items by d and the number of items by n := |X|.

Group testing was formerly purposed by Robert Dorfman [12], for econo-
mizing mass blood testing during WWII. Since it was initially proposed, group
testing methods have been utilized in a variety of applications including DNA
library screening, product quality control and neural group testing for acceler-
ating deep learning [17,18,27,29,36,38]. Among its recent applications, group
testing has been advocated for accelerating mass testing for COVID-19 PCR-
based tests around the world [8,20,23,24,30,35,41].

Several settings for group testing has been developed over the years. The
distinction between adaptive and non-adaptive algorithms is widely considered.
In adaptive algorithms, the tests can depend on the answers to the previous ones.
In the non-adaptive algorithms, they are independent of the previous ones and;
therefore, one can make all the tests in one parallel step.

Unlike conventional group testing, we consider the problem of finding only a
subset of size � < d from the d defective items. In [1], the authors solve this prob-
lem for � = 1 in the adaptive deterministic settings. They prove a tight bound of
log n tests. For general �, they prove an upper bound of O(� log n). Both results
are derived under the assumption that d is known exactly to the algorithm.
When no prior knowledge on d is available, Katona, [26], proves that for the
deterministic non-adaptive settings, finding a single defective item requires n
tests. For � = 1 in the adaptive deterministic settings, however, Katona proves
a tight bound of Θ(log n) tests.

The problem of detecting a subset of defective items with a predetermined
size holds significant practical applications, especially when operational limita-
tions necessitate the detection of a subset of a specific size �. In Appendix B,
we present some examples of real-world applications of this problem, including:
(1) accelerating PCR-detectable syndromes and (2) abnormal event detection in
surveillance camera videos using deep neural networks.

In this paper, we study the test complexity of this problem in adaptive, non-
adaptive, randomized and deterministic settings. We establish lower and upper
bounds for the scenario where no prior knowledge of the value of d is available.
Moreover, we study the same problem when there is either an estimation or at
least an upper bound on the value of d. In the literature, some results assume
that d is known exactly, or some upper bound on the number of defective items is
known in advance to the algorithm. In practice, only an estimate of d is known. In
this paper, when we say that d is known in advance to the algorithm, we assume
that some estimate D that satisfies d/4 ≤ D ≤ 4d is known to the algorithm. All
the results assume that � ≤ d/4. If � > d/4, employ the algorithm that detects
all defective items. Our results are summarized in the following subsection.

1.1 Detecting � Defective Items from d Defective Items

The Table in Fig. 1 presents the results obtained by this work. Below, a concise
explanation of the findings depicted in Fig. 1 is provided. The results indicated
by � in Fig. 1 are the most challenging results of this paper.

246 N. H. Bshouty and C. A. Haddad-Zaknoon

Fig. 1. Results of detecting � from d defective items where � ≤ d/4. In (1) and (2), the
bounds are asymptotically tight when there is a constant c < 1, such that d ≤ nc. The
results marked with � are the most difficult and challenging results of this paper.

– In (1) and (2), the algorithm is deterministic adaptive, and d is known in
advance to the algorithm. The upper bound is � log(n/�)+O(�). The algorithm
splits the items into equal sizes � disjoint sets and uses binary search to detect
� defective items in the sets. The lower bound is max(� log(n/d), log n). In
what follows, when we say input, we mean I ⊂ [n], |I| = d (the defective
items)1 and, when we say output, we mean a subset L ⊂ I of size �. A set of �
items can be an output of at most

(
n−�

d

)
inputs. This gives a lower bound for

the number of outputs of the algorithm, which, in turn, (its log) gives a lower
bound � log(n/d) − � for the test complexity. For the lower bound log n, we
show that if the number of possible outputs of the algorithm is less than n−d,
then one can construct a size d input I that contains no output. Therefore,
the test complexity is at least log(n − d).

– In (3) and (4), the algorithm is deterministic adaptive, and d is unknown to
the algorithm. The upper bound is � log(n/�) + O(�). The algorithm in (1)
also works when d is unknown to the algorithm. The lower bound follows
from (2) when we choose d = 4�.

– In (5) and (6), the algorithm is randomized adaptive, and d is known in
advance to the algorithm. The upper bound is � log(n/d)+O(�). The algorithm
uniformly at random chooses each element in X with probability O(�/d) and
puts the items in X ′. We show that, with high probability, X ′ contains �
defective items and |X ′| = O(n�/d). Then, the algorithm deterministically
detects � defective items in X ′ using the algorithm of (3). This gives the
result. For the lower bound, � log(n/d) − 1, we use the same argument as in
the proof of (2) in Fig. 1 with Yao’s principle.

1 A lower bound for the number of tests when the algorithm knows exactly d, is also
a lower bound when the algorithm knows some estimate of d or does know d.

On Detecting Some Defective Items in Group Testing 247

– In (7) and (8), the algorithm is randomized adaptive, and d is unknown. The
upper bound is � log(n/�) + O(� + log log(min(n/d, d))) = O(� log(n/�)). We
develop a new algorithm for estimating d that uses log log(min(n/d, d)) tests
and then use the algorithm in (5). The lower bound follows from (4).

– In (9) and (10), the algorithm is deterministic non-adaptive, and d is known in
advance to the algorithm. For the upper bound, we first define the (2d, d+�)-
restricted weight one t × n-matrix. This is a t × n 0-1-matrix such that any
set of 2d columns contains at least d + � distinct weight one vectors. Using
this matrix, we show how to detect � defective items with t tests. Then we
show that there is such a matrix with t = O(d log(n/d)) rows. We then give a
tight lower bound. We show that such construction is not avoidable. From any
non-adaptive algorithm, one can construct a (2d, 1)-restricted weight one t×n-
matrix. We then show that such a matrix must have at least t = Ω(d log(n/d))
rows.

– In (11) and (12), the algorithm is deterministic non-adaptive, and d is
unknown. We show that any such algorithm must test all the items indi-
vidually.

– In (13) and (14), the algorithm is randomized non-adaptive, and d is known in
advance to the algorithm. The upper bound is O(� log(n/d)). The algorithm
runs t = O(�) parallel iterations. At each iteration, it uniformly at random
chooses each element in X = [n] with probability O(1/D) and puts it in X ′.
With constant probability, X ′ contains one defective item. Then it uses the
algorithm that tests if X ′ contains exactly one defective item and detects it.
The lower bound follows from (6).

– In (15) and (16), the algorithm is randomized non-adaptive, and d is unknown
to the algorithm. The upper bound is O(� log2 n). The algorithm runs the
non-adaptive algorithm that gives an estimation d/2 ≤ D ≤ 2d of d [4,
11,21], and, in parallel, it runs log n randomized non-adaptive algorithms
that find � defective items assuming D = 2i for all i = 1, 2, . . . , log n (the
algorithm in (13)). The lower bound is Ω̃(� log2 n). The idea of the proof
is the following. Suppose a randomized non-adaptive algorithm exists that
makes � log2 n/(c log R) tests where R = � log n and c is a large constant.
We partition the internal [0, n] of all the possible sizes of the tests |Q| into
r = Θ(log n/ log R) disjoint sets Ni = {m|n/R8i+8 < m ≤ n/R8i}, i ∈ [r].
We then show that, with high probability, there is an interval Nj where
the algorithm makes at most (�/c) log n tests Q that satisfy |Q| ∈ Nj . We
then show that if we choose uniformly at random a set of defective items
I of size d = (� log n)8j+4, then with high probability, all the tests Q of
size |Q| < n/(� log n)8j+8 give answers 0, and all the tests Q of size |Q| >
n/(� log n)8j give answers 1. So, the only useful tests are those in Nj , which,
by the lower bound in (14) (and some manipulation), are insufficient for
detecting � defective items.

All the algorithms in this paper run in polynomial time, except for the algorithm
in result (9), where we demonstrate its existence.

In Appendix A, we bring known results for detecting all the defective items.

248 N. H. Bshouty and C. A. Haddad-Zaknoon

2 Definitions and Preliminary Results

Let X = [n] := {1, 2, . . . , n} be a set of items that contains defective items
I ⊆ X. In group testing, we test a subset Q ⊆ X of items, and the answer to the
test is TI(Q) := 1 if Q ∩ I �= ∅, and TI(Q) = 0 otherwise. The size of the set I is
denoted by d := |I|. When we say that d is known in advance to the algorithm,
we assume that some estimate D that satisfies d/4 ≤ D ≤ 4d is known to the
algorithm.

3 Non-adaptive Algorithms

In this section, we give lower and upper bounds on the test complexity for finding
� defective items in the non-adaptive settings.

3.1 Deterministic Algorithms

Definition 1. A (r, s)-restricted weight one t×n-matrix M is a t×n 0-1-matrix
such that any r columns in M contains at least s distinct weight one vectors.

That is, for every r distinct columns j1, j2, . . . , jr ∈ [n] in M , there are s rows
i1, i2, . . . , is ∈ [t] such that {(Mik,j1 ,Mik,j2 , . . . ,Mik,jr

)}k=1,...,s are s distinct
vectors of weight one.

We prove the following simple properties of such a matrix. The following lemma
is obvious:

Lemma 1. Let � < s. If M is (r, s)-restricted weight one t × n-matrix, then it
is (r − �, s − �) and (r, s − �)-restricted weight one t × n-matrix.

Lemma 2. Let n > d > � > 0. Let M be a (2d, d + �)-restricted weight one
t × n-matrix. Let Q(i) = {j|Mi,j = 1} for i ∈ [t].

1. For every two sets A ⊂ B ⊆ [n] where |A| = d and |B| = 2d, there is Q(i)

such that Q(i) ∩ A = ∅ and Q(i) ∩ B �= ∅.
2. For every C ⊆ E ⊆ [n] where |C| = d and |E| ≤ 2d there are � sets

Q(i1), . . . , Q(i�) such that |Q(ij) ∩ E| = |Q(ij) ∩ C| = 1 and for every j1 �= j2,
Q(ij1) ∩ C �= Q(ij2) ∩ C.

Proof. Consider the columns of M with the indices of A and B. There are d + �
distinct weight one vectors in the columns with indices B. Since d + � > d and
|A| = d, one of those vectors is zero in all the indices of A. Therefore, M contains
a row i that is zero in the indices of A and of weight one on the indices of B.
Thus, Q(i) satisfies Q(i) ∩ A = ∅ and Q(i) ∩ B �= ∅. This proves 1.

Assume that |E| = 2d. Otherwise, add 2d−|E| new items to E. Consider the
columns of M with the indices of E and C ⊆ E. There are d + � distinct weight
one vectors in the columns of M with indices of E. Since C ⊂ E and |E\C| = d,
at least � of those vectors are zero in the indices of E\C and weight one in the
indices of C. Let i1, . . . , i� be the rows that correspond to those vectors. Then
|Q(ij) ∩ E| = |Q(ij) ∩ C| = 1, and for every j1 �= j2, Q(ij1) ∩ C �= Q(ij2) ∩ C. 	

On Detecting Some Defective Items in Group Testing 249

The following lemma can be shown using standard probability techniques. Its
proof is given in Appendix D.

Lemma 3. Let s ≤ cr for some constant 1/2 < c < 1. Let

t = O

(
r log(n/r) + log(1/δ)

log(1/c)

)
.

Consider a t × n 0-1-matrix M where Mi,j = 1 with probability 1/r. Then, with
probability at least 1− δ, M is a (r, s)-restricted weight one t×n-matrix. In par-
ticular, there is a (r, s)-restricted weight one t×n-matrix with t = O

(
r log(n/r)
log(1/c)

)
.

We now show how to use the (r, s)-restricted weight one matrix for testing.

Lemma 4. Let D be an integer. If there is a t × n-matrix such that for every
D/4 ≤ d′ ≤ 4D, M is (2d′, d′ + �)-restricted weight one matrix, then there is
a non-adaptive deterministic algorithm that, when d/4 ≤ D ≤ 4d is known in
advance to the algorithm, detects � defective items and makes t tests.

Proof. Since d/4 ≤ D ≤ 4d, we have D/4 ≤ d ≤ 4D, and therefore, the matrix
M is (2d, d + �)-restricted weight one t × n-matrix. The tests of the algorithm
are Q(i) = {j|Mi,j = 1}, i ∈ [t]. The algorithm is given in Fig. 2.

Let X ′ = X after executing steps 3-4. We first show that |X ′| < 2d and
I ⊂ X ′, i.e., X ′ contains all the defective items. First, if Answeri = TI(Q(i)) = 0,
then Q(i) ∩ I = ∅, and therefore, I ⊂ X\Q(i). Thus, by step 4, I ⊆ X ′.

By step 4, it follows that if TI(Q(i)) = 0, then X ′ ∩ Q(i) = ∅. Now, assume
to the contrary that |X ′| ≥ 2d. Consider any subset X ′′ ⊂ X ′ of size |X ′′| = 2d.
Since |I| = d, by Lemma 2, there is Q(j) such that Q(j)∩I = ∅ and Q(j)∩X ′′ �= ∅.
Therefore, TI(Q(j)) = 0 and X ′ ∩ Q(j) �= ∅. A contradiction.

Now I ⊆ X ′, |I| = d and |X ′| ≤ 2d. By Lemma 2 it follows that there are �
sets Q(i1), . . . , Q(i�) such that |Q(ij) ∩I| = |Q(ij) ∩X ′| = 1, and for every j1 �= j2,
Q(ij1) ∩ I �= Q(ij2) ∩ I. Therefore, step 6 detects at least � defective items. 	

Fig. 2. A non-adaptive deterministic algorithm for detecting � defectives when d/4 ≤
D ≤ 4d is known.

We are now ready to prove the upper bound. This proves (9) in Fig. 1.

250 N. H. Bshouty and C. A. Haddad-Zaknoon

Theorem 1. Let � ≤ D/8. There is a non-adaptive deterministic algorithm
that, when d/4 ≤ D ≤ 4d is known in advance to the algorithm, detects � defective
items and makes O(d log(n/d)) tests.

Proof. Since d/4 ≤ D ≤ 4d, we have D/4 ≤ d ≤ 4D. We construct a (r, s)-
restricted weight one t×n-matrix where r = 8D and s = 73

4D+�. Since � ≤ D/8,
we have s/r ≤ 0.985, and by Lemma 3, there is a

(
8D, 7 3

4D + �
)
-restricted weight

one t × n-matrix with t = O
(
8D log n

8D

)
= O

(
d log n

d

)
. Let D/4 ≤ d′ ≤ 4D. By

Lemma 1, M is also a (8D, 73
4D+ �− (d′ −D/4) = 8D−d′ + �)-restricted weight

one t×n-matrix and (8D− (8D−2d′), (8D−d′ + �)− (8D−2d′)) = (2d′, d′ + �)-
restricted weight one t × n-matrix. Then, by Lemma 4, the result follows. 	

We now prove the lower bound. This proves (10) in Fig. 1.

Theorem 2. Suppose some integer D is known in advance to the algorithm
where d/4 ≤ D ≤ 4d. Any non-adaptive deterministic algorithm that detects one
defective item must make at least Ω(d log(n/d)) tests.

Proof. Consider any non-adaptive deterministic algorithm A that detects one
defective item. Let M be a 0-1-matrix of size t × n that their rows are the 0-1-
vectors that correspond to the tests of A. That is, if Q(i) is the ith test of A,
then the ith row of M is (Mi,1, . . . ,Mi,n) when Mi,j = 1 if j ∈ Q(i) and Mi,j = 0
otherwise. Let M (i) be the ith column of M . Let I = {i1, i2, . . . , iw} ⊆ [n] be
any set of size w ∈ {d, d + 1, . . . , 2d}. If I is the set of defective items, then
∨i∈IM

(i) (bitwise or) is the vector of the answers of the tests of A. Suppose that
when I is the set of defective items, A outputs ij . Consider the case when the
set of defective items is I ′ = I\{ij}. Since the answer of A on I ′ is different from
the answer on I, and A is deterministic, we must have ∨i∈IM

(i) �= ∨i∈I′M (i).
Therefore, columns I must contain a vector of weight one in M . So far, we proved
that every w ∈ {d, d + 1, . . . , 2d} columns in M contains a vector of weight one.
This also implies that if J ⊂ [n] and |J | ∈ {d, d+1, . . . , 2d}, then ⊕j∈JM (j) �= 0
(bitwise xor). This is because if ⊕j∈JM (j) = 0, then the columns J do not
contain a vector of weight one.

Consider the maximum size subset J0 ⊂ [n], |J0| < d such that ⊕j∈J0M
(j) =

0. We claim that there is no set J ′ ⊂ [n]\J0, |J ′| ≤ d, such that ⊕j∈J ′M (j) = 0.
This is because if such J ′ exists, then ⊕j∈J0∪J ′M (j) = 0. Then if |J0 ∪ J ′| ∈
{d, d+1, . . . , 2d}, we get a contradiction, and if |J0∪J ′| < d, then |J0∪J ′| > |J0|
and J0 is not maximum, and again we get a contradiction. Therefore, no set
J ′ ⊂ [n]\J0, |J ′| ≤ d satisfies ⊕j∈J ′M (j) = 0.

Consider the sub-matrix M ′ composed of the n − |J0| ≥ n − d columns
[n]\J0 of M . The above property shows that every 2d columns in M ′ are linearly
independent over the field GF (2). Then the result immediately follows from the
bounds on the number of rows of the parity check matrix in coding theory [32].
We give the proof for completeness.

We now show that the xor of any d columns in M ′ is district from the xor of
any other d columns. If there are two sets of d columns J1 and J2 that have the
same xor, then ⊕j∈J1ΔJ2M

(j) = 0 and |J1ΔJ2| ≤ 2d. A contradiction. Therefore,

On Detecting Some Defective Items in Group Testing 251

by summing all the possible d columns of M ′, we get
(
n
d

)
distinct vectors. Thus,

the number of rows of M ′ is at least t ≥ log
(
n
d

)
= Ω

(
d log n

d

)
. 	

The following theorem summarizes the result on the lower bound when d is
unknown to the algorithm (result (11) in Fig. 1). Result (12) follows from the
algorithm that tests every item individually. Theorem 3 is proved in Appendix D.

Theorem 3. If d is unknown, then any non-adaptive deterministic algorithm
that detects one defective item must make at least Ω(n) tests.

3.2 Randomized Algorithms

In this subsection, we summarize results (13)-(16) in Fig. 1. We give here a
detailed proof of result (16). We start our discussion with Lemmas and Theorems
that are used to show the results (13)-(15). Full proofs of these results are detailed
in Appendix D. We start with result (13):

Theorem 4. Suppose some integer D is known in advance to the algorithm
where d/4 ≤ D ≤ 4d. There is a polynomial time non-adaptive randomized
algorithm that makes O(� log(n/d)+log(1/δ) log(n/d)) tests and, with probability
at least 1 − δ, detects � defective items.

Result (14) in Fig. 1 is captured in the following theorem:

Theorem 5. Let � ≤ d ≤ n/2 and d be known in advance to the algorithm. Any
non-adaptive randomized algorithm that, with probability at least 2/3, detects �
defective items must make at least � log(n/d) − 1 tests.

The following Theorem gives the upper bound for non-adaptive randomized
algorithms when d is unknown to the algorithm. This is result (15) in Fig. 1.

Theorem 6. Let c < 1 be any constant, � ≤ nc, and d be unknown to the
algorithm. There is a polynomial time non-adaptive randomized algorithm that
makes O(� log2 n+log(1/δ) log2 n) tests, and with probability at least 1−δ, detects
� defective items.

We now prove the lower bound when d is unknown to the algorithm. This proves
result (16) in Fig. 1.

Theorem 7. Let c < 1 be any constant, � ≤ nc, and d be unknown to the
algorithm. Any non-adaptive randomized algorithm that, with probability at least
3/4, detects � defectives must make at least Ω((� log2 n)/(log � + log log n)) tests.

Proof. If nc ≥ � ≥ n1/32, then for d = n(1+c)/2 > �, by Theorem 5, the lower
bound is Ω(� log(n/d)) = Ω((� log2 n)/(log � + log log n)). Hence, � < n1/32

can be assumed. Suppose, to the contrary, there is a non-adaptive random-
ized algorithm A(s, I) that, with probability at least 3/4, detects � defec-
tive items and makes t = (� log2 n)/(3072(log � + log log n)). Here s is the

252 N. H. Bshouty and C. A. Haddad-Zaknoon

random seeds, and I is the set of defective items. Define the set of inte-
gers Ni = {k|n/(� log n)8i+8 ≤ k < n/(� log n)8i} for i = 1, 2, . . . , r where
r = log n/(32(log � + log log n)). Let ti be a random variable representing the
number of tests Q made by A(s, I) where |Q| ∈ Ni. Then t ≥ t1 + t2 + · · · + tr
and (� log2 n)/(3072(log � + log log n)) = t = E[t] ≥ ∑r

i=1 E[ti]. Therefore, there
is j ∈ [r] such that E[tj] ≤ E[t]/r = (� log n)/96. By Markov’s bound, with prob-
ability at least 1−4/96 = 1−1/24 we have tj < (� log n)/4. Let d = (� log n)8j+4.
Define the following sets random variables: M1 the set of all tests Q that A(s, I)
makes where |Q| < n/(� log n)8j+8, M2 the set of all tests Q that A(s, I) makes
where |Q| ≥ n/(� log n)8j and M3 the set of tests Q that A(s, I) makes where
|Q| ∈ Nj = {k|n/(� log n)8j+8 ≤ k < n/(� log n)8j}. For a set of defective items
I, let A1(I) be the event that all the tests in M1 give answers 0 and A2(I) the
event that all the tests in M2 give answers 1. Let D be the distribution over
I ⊂ [n], |I| = d, where the items of I are selected uniformly at random without
replacement from [n]. Let D′ be the distribution over I = {i1, . . . , id} ⊂ [n],
where the items of I are selected uniformly at random with replacement from
[n]. Let B be the event that I, chosen according to D′, has d items. Then, since
� < n1/32,

Pr
D′

[¬B] = 1 −
d−1∏

i=1

(
1 − i

n

)
≤d(d − 1)

2n
≤ (� log n)16j+8

2n
≤

≤ (� log n)16r+8

2n
=

(� log n)8

2
√

n
= o(1).

We now have

Pr
I∼D

[¬A1(I)] ≤ Pr
I∼D′

[(∃Q ∈ M1)Q ∩ I �= ∅] + Pr
I∼D′

[¬B]

≤t Pr
I∼D′

[Q ∩ I �= ∅|Q ∈ M1] + o(1)

≤ � log2 n

3072(log � + log log n)

(

1 −
(

1 − 1
(� log n)8j+8

)d
)

+ o(1)

≤ � log2 n

3072(log � + log log n)
d

(� log n)8j+8
+ o(1)

≤ 1
3072 log log n

1
�3 log2 n

+ o(1) = o(1).

On Detecting Some Defective Items in Group Testing 253

and

Pr
I∼D

[¬A2(I)] ≤ Pr
I∼D′

[(∃Q ∈ M2)Q ∩ I = ∅] + Pr
I∼D′

[¬B]

≤t Pr
I∼D′

[Q ∩ I = ∅|Q ∈ M2] + o(1)

≤ � log2 n

3072(log � + log log n)

(
1 − 1

(� log n)8j

)d

+ o(1)

≤ � log2 n

3072(log � + log log n)
e

− d

(� log n)8j + o(1)

≤ � log2 n

3072(log � + log log n)
e−�4 log4 n + o(1) = o(1).

We give a non-adaptive randomized algorithm that for d = (� log n)8j+4

makes (�/4) log n tests and with probability at least 2/3 detects � defective items.
By Theorem 5, and since � < n1/32 and d = (� log n)8j+4 ≤ (� log n)8r+4 =
(� log n)4n1/4 ≤ n1/2/2, the test complexity is at least � log(n/d) − 1 ≥
(1/2)� log n, and we get a contradiction.

The algorithm is the following. Choose uniformly at random a permutation
φ : [n] → [n]. Consider the tests of algorithm A. Let Mi, i = 1, 2, 3, be the sets
defined above. Define M ′

i = {(aφ(1), . . . , aφ(n))|(a1, . . . , an) ∈ Mi}. Answer 0 for
all the tests in M ′

1 and 1 for all the tests in M ′
2. If |M ′

3| > (�/4) log n, then return
FAIL. Otherwise, make all the tests in M ′

3. Give the above answers of the tests
to the algorithm A and let L be its output. Output φ−1(L) = {φ−1(i)|i ∈ L}.

Since φ is chosen uniformly at random, the new set of defective items φ(I)
is distributed uniformly at random over all the subsets of [n] of size d. The
probability that the answers for tests in M ′

1 and M ′
2 are wrong is o(1). The

probability that |M ′
3| > (�/4) log n is at most 1/24. By the promises, the failure

probability of A is at most 1/4. Therefore, the probability that this algorithm
fails is at most 1/4 + 1/24 + o(1) < 1/3. This completes the proof. 	

4 Adaptive Algorithms

In this section, we study the test complexity of adaptive deterministic and adap-
tive randomized algorithms. We demonstrate the results (1)–(8) in Fig. 1. All
proofs for the theorems in this section are detailed in Appendix E.

4.1 Deterministic Algorithms

The following Theorem summarizes the results (1) and (3) in Fig. 1. Here d can
be known or unknown to the algorithm.

254 N. H. Bshouty and C. A. Haddad-Zaknoon

Theorem 8. Let d ≥ �. There is a polynomial time adaptive deterministic
algorithm that detects � defective items and makes at most � log(n/�) + 3� =
O(� log(n/�)) tests.

The following Theorem, summarizes the lower bound (2) in Fig. 1. We remind
the reader that when we say that d is known in advance to the algorithm,
we mean that an estimate D that satisfies d/4 ≤ D ≤ 4d is known to the
algorithm. The following lower bound holds even if the algorithm knows d exactly
in advance.

Theorem 9. Let � ≤ d ≤ n/2 and d be known in advance to the algorithm.
Any adaptive deterministic algorithm that detects � defective items must make
at least max(� log(n/d), log n − 1) = Ω(� log(n/d) + log n) tests.

Note that the upper bound O(� log(n/�)) in Theorem 8 asymptotically
matches the lower bound Ω(� log(n/d)) in Theorem 9 when d = no(1).

The following Theorem summarizes result (4) in Fig. 1.

Theorem 10. Let � ≤ d ≤ n/2 and d be unknown to the algorithm. Any adap-
tive deterministic algorithm that detects � defective items must make at least
� log(n/�) tests.

4.2 Randomized Algorithms

In this subsection, we demonstrate the results on the test complexity of adaptive
randomized algorithms. The following theorem proves the upper bound when d
is known in advance to the algorithm. This proves result (5) in Fig. 1.

Theorem 11. Let � ≤ d/2. Suppose some integer D is known in advance to the
algorithm where d/4 ≤ D ≤ 4d. There is a polynomial time adaptive randomized
algorithm that makes � log(n/d)+ � log log(1/δ)+O(�) tests and, with probability
at least 1 − δ, detects � defective items.

The following theorem captures the lower bounds (6) and (8) in Fig. 1. These
suit the case when d is known in advance.

Theorem 12. Let � ≤ d ≤ n/2 and d be known in advance to the algorithm.
Any adaptive randomized algorithm that, with probability at least 2/3, detects �
defective items must make at least � log(n/d) − 1 tests.

In particular,

Theorem 13. Let � ≤ d ≤ n/2 and d is unknown to the algorithm. Any adaptive
randomized algorithm that, with probability at least 2/3, detects � defective items
must make at least � log(n/d) − 1 tests.

The following theorem summarizes the upper bound when d is unknown to
the algorithm. This proves result (7) in Fig. 1.

Theorem 14. Let � ≤ d/2 and d be unknown to the algorithm. There is a
polynomial time adaptive randomized algorithm that detects � defective items
and makes � log(n/d) + � log log(1/δ) + O(� + log log(min(n/d, d)) + log(1/δ))
tests.

On Detecting Some Defective Items in Group Testing 255

A Known Results for Detecting All the Defective Items

The following results are known for detecting all the d defective items. See the
Table in Fig. 3.

Fig. 3. Results for the test complexity of detecting the d defective items. The lower
bounds are in the Ω-symbol and the upper bound are in the O-symbol

– In (1) and (2) (in the table in Fig. 3), the algorithm is deterministic adaptive,
and d is known in advance to the algorithm. The best lower bound is the
information-theoretic lower bound log

(
n
d

) ≥ d log(n/d)+Ω(d). Hwang in [25]
gives a generalized binary splitting algorithm that makes log

(
n
d

)
+ d − 1 =

d log(n/d) + O(d) tests.
– In (3) and (4), the algorithm is deterministic adaptive, and d is unknown

to the algorithm. The upper bound d log(n/d) + O(d) follows from [3,10,
14–16,34,39] and the best constant currently known in O(d) is 5 − log 5 ≈
2.678 [39]. The lower bound follows from (2). In [5], Bshouty et al. show that
estimating the number of defective items within a constant factor requires at
least Ω(d log(n/d)) tests.

– In (5) and (6), the algorithm is randomized adaptive, and d is known in
advance. The upper bound follows from (1). The lower bound follows from
Yao’s principle with the information-theoretic lower bound.

– In (7) and (8), the algorithm is randomized adaptive, and d is unknown to the
algorithm. The upper bound d log(n/d) + O(d) follows from (3). The lower
bound follows from (6).

– In (9) and (10), the algorithm is deterministic non-adaptive, and d is known
in advance to the algorithm. The lower bound Ω(d2 log n/ log d) is proved
in [9,19,22,33]. A polynomial time algorithm that constructs an algorithm
that makes O(d2 log n) tests was first given by Porat and Rothschild [31].

256 N. H. Bshouty and C. A. Haddad-Zaknoon

– In (11) and (12), the algorithm is deterministic non-adaptive and d is unknown
to the algorithm. In [4], Bshouty shows that estimating the number of defec-
tive items within a constant factor requires at least Ω(n) tests. The upper
bound is the trivial bound of testing all the items individually.

– In (13) and (14), the algorithm is randomized non-adaptive, and d is known in
advance to the algorithm. The lower bound follows from (6). The upper bound
is O(d log(n/d)). The constant in the O-symbol was studied in [2,6,7,13]
and referenced within. The best constant known in the O-symbol is log e ≈
1.443 [7].

– In (15) and (16), the algorithm is randomized non-adaptive, and d is unknown
to the algorithm. The lower bound Ω(n) follows from Yao’s principle and the
fact that, for a random uniform i ∈ [n], to detect the defective items [n]\{i},
we need at least Ω(n) tests. The upper bound is the trivial bound of testing
all the items individually.

B Applications

In many cases, the detection of a specific number of defective items, �, is of
utmost importance due to system limitations or operational requirements. For
instance, in scenarios like blood tests or medical facilities with limited resources
such as ventilators, doctors, beds, or medicine supply, it becomes crucial to
employ algorithms that can precisely identify � defectives instead of detecting
all potential cases. This targeted approach offers significant advantages in terms
of efficiency, as the time required to detect only � defective items is generally
much shorter than the time needed to identify all defects. By focusing on any
subset of � defectives, the algorithms proposed in this paper offer more efficient
procedures.

B.1 Identifying a Subset of Samples that Exhibit a PCR-Detectable
Syndrome

Polymerase Chain Reaction or PCR testing is a widely used laboratory technique
in molecular biology. This technique is used to amplify specific segments of DNA
or RNA in a sample, and therefore, allowing for detection, quantification and
analyses of these specific genetic sequences [13,24,41]. PCR tests can be designed
to identify various organisms, including pathogens such as viruses or bacteria
(e.g. COVID-19), by targeting their unique DNA or RNA signatures. Although
PCR tests are associated with high costs and time consumption, they are exten-
sively utilized in a wide range of fields, including medical diagnostics, research
laboratories, forensic analysis, and other applications that demand accurate and
sensitive detection of genetic material. This popularity is primarily attributed
to their exceptional accuracy. To enhance the efficiency and cost-effectiveness of
PCR testing, group testing methodologies can be applied to PCR testing. Apply-
ing group testing to PCR involves combining multiple samples into a single test
sample. The combined sample, also called the group test, is then examined. If

On Detecting Some Defective Items in Group Testing 257

the sample screening indicates an infectious sample, this implies that at least
one of the original samples is infected. Conversely, if none of the samples in the
combined sample exhibit signs of infection, then none of the individual samples
are infected. Typically, PCR tests are conducted by specialized machines capa-
ble of simultaneously performing approximately 96 tests. Each test-run can span
over several hours. Therefore, when applying group testing to accelerate PCR
process, it is recommended to employ non-adaptive methodologies.

Assume that a scientific experiment need to be conducted over a group of
study participants to examine the efficiency of a new drug developed for medi-
cating some disease related to bacterial or virus infection. Suppose that a PCR
test is required to check whether a participant is affected by the disease or not.
Moreover, assume that the number of the participants that volunteered for the
experiment is n and the incidence rate of the infection among them is known
in advance, denote that by p. Therefore, an approximation of the number of
infected participants can be derived from n and p, denote that value by d. In
situations where logistic constraints necessitate selecting a limited number of
infected individuals, specifically � ≤ d, to participate in an experiment, a non-
adaptive group testing algorithm for identifying � defectives (virus carriers) from
n samples when d is known can be employed.

B.2 Abnormal Event Detection in Surveillance Camera Videos

Efficiently detecting abnormal behavior in surveillance camera videos plays a
vital role in combating crimes. These videos are comprised of a sequence of con-
tinuous images, often referred to as frames. The task of identifying suspicious
behavior within a video is equivalent to searching for abnormal behavior within a
collection of frames. Training deep neural networks (shortly, DNN) for automat-
ing suspicious image recognition is currently a widely adopted approach for the
task [28,37,40]. By utilizing the trained DNN, it becomes possible to classify a
new image and determine whether it exhibits suspicious characteristics or not.
However, once the training process is complete, there are further challenges to
address, specially when dealing with substantial amount of images that need to
be classified via the trained network. In this context, inference is the process of
utilizing the trained model to make predictions on new data that was not part of
the training phase. Due to the complexity of the DNN, inference time of images
can cost hundreds of seconds of GPU time for a single image. Long inference
time poses challenges in scenarios where real-time or near-real-time processing
is required, prompting the need for optimizing and accelerating the inference
process.

The detection of abnormal behavior in surveillance camera videos is often
characterized by an imbalanced distribution of frames portraying abnormal
behavior, also called abnormal frames, in relation to the total number of frames
within the video. Denote the total number of frames in a video by n and the
number of abnormal frames by d. To identify suspicious behavior in a video, the
goal is to find at least one abnormal frame among the d frames. In most cases,
we cannot assume any non-trivial upper bound or estimation of any kind for

258 N. H. Bshouty and C. A. Haddad-Zaknoon

d. Therefore, applying non-adaptive group testing algorithms for finding � < d
defectives when d is unknown best suits this task.

It is unclear, however, how group testing can be applied to instances like
images. Liang and Zou, [29], proposed three different methods for pooling image
instances: 1) merging samples in the pixel space, 2) merging samples in the fea-
ture space, and 3) merging samples hierarchically and recursively at different
levels of the network. For each grouping method, they provide network enhance-
ments that ensure that the group testing paradigm continues to hold. This means
that a positive prediction is inferred on a group if and only if it contains at least
one positive image (abnormal frame).

C Useful Lemmas

We will use the following version of Chernoff’s bound.

Lemma 5. Chernoff’s Bound. Let X1, . . . , Xm be independent random vari-
ables taking values in {0, 1}. Let X =

∑m
i=1 Xi denotes their sum, and μ = E[X]

denotes the sum’s expected value. Then

Pr[X > (1 + λ)μ] ≤
(

eλ

(1 + λ)(1+λ)

)μ

≤ e− λ2μ
2+λ ≤

{
e− λ2μ

3 if 0 < λ ≤ 1
e− λμ

3 if λ > 1.
(1)

In particular,

Pr[X > Λ] ≤
(eμ

Λ

)Λ

. (2)

For 0 ≤ λ ≤ 1 we have

Pr[X < (1 − λ)μ] ≤
(

e−λ

(1 − λ)(1−λ)

)μ

≤ e− λ2μ
2 . (3)

D Proofs for Non-adaptive Settings

In this section, we give all the proofs that were stated in Sect. 3. We restate the
Theorems and Lemmas for convenience.

D.1 Deterministic Algorithms

In this subsection, we prove Theorem 3. This proves result (12) in Fig. 1. Result
(11) follows from the algorithm that tests every item individually. Moreover, we
give a detailed proof for Lemma 3.
Lemma 3. Let s ≤ cr for some constant 1/2 < c < 1. Let

t = O

(
r log(n/r) + log(1/δ)

log(1/c)

)
.

Consider a t × n 0-1-matrix M where Mi,j = 1 with probability 1/r. Then, with
probability at least 1−δ, M is a (r, s)-restricted weight one t×n-matrix. In par-
ticular, there is a (r, s)-restricted weight one t×n-matrix with t = O

(
r log(n/r)
log(1/c)

)
.

On Detecting Some Defective Items in Group Testing 259

Proof. Consider any r columns J = {j1, . . . , jr} in M . Let AJ be the event
that columns J in M do not contain at least s distinct weight one vectors. For
every i ∈ [t], the probability that (Mi,j1 , . . . ,Mi,jr

) is of weight 1 is
(
r
1

)
(1/r)(1−

1/r)r−1 ≥ 1/2. In every such row, the entry that is equal to 1 is distributed
uniformly at random over J . Let mJ be the number of such rows. The probability
that columns J in M do not contain at least s distinct weight one vectors is at
most Pr[AJ |mJ = m] ≤ (

r
s−1

) (
s−1

r

)m ≤ 2rcm. Since E[mJ] ≥ t/2, by Chernoff’s
bound (Lemma 5), Pr

[
mJ < t

4

] ≤ 2−t/16. Therefore, the probability that M is
not (r, s)-restricted weight one t × n-matrix is at most

Pr[(∃J ⊂ [n], |J | = r)AJ] ≤
(n

r

)
Pr[AJ] ≤

(n

r

) (
Pr[AJ |mJ ≥ t

4
] + Pr[mJ <

t

4
]

)

≤
(n

r

) (
2rct/4 + 2−t/16

)
≤

(n

r

)
2r+1ct/16 ≤ δ.

	

Theorem 3. If d is unknown, then any non-adaptive deterministic algorithm
that detects one defective item must make at least Ω(n) tests.

Proof. Consider any non-adaptive deterministic algorithm A that detects one
defective item. Let M be a 0-1-matrix of size t×n whose rows correspond to the
tests of A. Suppose for the set of defective items I0 = [n] the algorithm outputs
i1, for the set I1 = [n]\{i1} outputs i2, for I2 = [n]\{i1, i2} outputs i3, etc.
Obviously, {i1, . . . , in} = [n]. Now, since the output for I0 is distinct from the
output for I1, we must have a row in M that is equal to 1 in entry i1 and zero
elsewhere. Since the output for I1 is distinct from the output for I2, we must
have a row in M that is equal to 1 in entry i2 and zero in entries [n]\{i1, i2}.
Etc. Therefore, M must have at least n rows. 	

D.2 Random Algorithms

In this subsection, we give detailed proofs for results (13)–(15) in Fig. 1, that are
summarized in Subsect. 3.2. We start with proving the following lemma:

Lemma 6. There is a non-adaptive deterministic algorithm that makes t =
log n + 0.5 log log n + O(1) tests and decides whether d ≤ 1 and if d = 1 detects
the defective item.

Proof. We define a 0-1-matrix M , where the rows of the matrix correspond to
the tests of the algorithm. The size of the matrix is t×n, where t is the smallest
integer such that n ≤ (

t
�t/2�

)
and its columns contain distinct Boolean vectors

of weight �t/2�. Therefore t = log n + 0.5 log log n + O(1).
Now, if there are no defective items, we get 0 in all the answers of the tests.

If there is only one defective item, and it is i ∈ [n], then the vector of answers
to the tests is equal to the column i of M . If there is more than one defective
item, then the weight of the vector of the answers is greater than �t/2�. 	

260 N. H. Bshouty and C. A. Haddad-Zaknoon

Theorem 4 shows result (13) in Fig. 1:

Theorem 4. Suppose some integer D is known in advance to the algorithm
where d/4 ≤ D ≤ 4d. There is a polynomial time non-adaptive randomized algo-
rithm that makes O(� log(n/d)+ log(1/δ) log(n/d)) tests and, with probability at
least 1 − δ, detects � defective items.

Proof. If � ≥ D/32, then the non-adaptive randomized algorithm that finds
all the defective items makes O(d log(n/d)) = O(� log(n/d)) tests. So, we may
assume that � < D/32 ≤ d/8.

Let � ≤ d/8. The algorithm runs t = O(� + log(1/δ)) iterations. At each iter-
ation, it uniformly at random chooses each element in X = [n] with probability
1/(2D) and puts it in X ′. If |X ′| > 4n/D, then it continues to the next iteration.
If |X ′| ≤ 4n/D, then it uses the algorithm in Lemma 6 to detect if X ′ contains
one defective item, and if it does, it detects the item. If X ′ contains no defective
item or more than one item, it continues to the next iteration.

Although the presentation of the above algorithm is adaptive, it is clear that
all the iterations can be run non-adaptively.

Let A be the event that X ′ contains exactly one defective item. The proba-
bility of A is

Pr[A] =
(

d

1

)
1

2D

(
1 − 1

2D

)d−1

≥ 1
10

.

Since E[|X ′|] = n/(2D), by Chernoff’s bound (Lemma 5)

Pr[|X ′| > 4n/D] ≤
(

e7

88

)n/(2D)

≤ 1
20

.

Therefore,

Pr[A and |X ′| ≤ 4n/D] ≥ 1
20

.

Now, assuming A occurs, the defective in X ′ is distributed uniformly at random
over the d defective items. Since � < d/8, at each iteration, as long as the
algorithm does not get � defective items, the probability of getting a new defective
item in the next iteration is at least 7/8. Let Bi be the event that, in iteration
i, the algorithm gets a new defective item. Then

Pr[Bi] =
7
8

Pr[A and |X ′| ≤ 4n/D] ≥ 7
160

.

By Chernoff’s bound (Lemma 5) , after O(� + log(1/δ)) iterations, with proba-
bility at least 1 − δ, the algorithm detects � defective items.

Therefore, by Lemma 6, the test complexity of the algorithm is

O((� + log(1/δ)) log |X ′|) = O
(
� log

n

d
+ log(1/δ) log

n

d

)
.

	

On Detecting Some Defective Items in Group Testing 261

The following lower bound follows from Theorem 12 from Sect. 4. This is
result (14) in Fig. 1.

Theorem 5. Let � ≤ d ≤ n/2 and d be known in advance to the algorithm. Any
non-adaptive randomized algorithm that, with probability at least 2/3, detects �
defective items must make at least � log(n/d) − 1 tests.

In [4,11,21], the following is proved

Lemma 7. There is a polynomial time non-adaptive randomized algorithm that
makes O(log(1/δ) log n) tests and, with probability at least 1−δ, finds an integer
D that satisfies d/2 < D < 2d.

Result (15) in Fig. 1 is summarized in Theorem 6.

Theorem 6. Let c < 1 be any constant, � ≤ nc, and d be unknown to the
algorithm. There is a polynomial time non-adaptive randomized algorithm that
makes O(� log2 n+log(1/δ) log2 n) tests, and with probability at least 1−δ, detects
� defective items.

Proof. We make all the tests of the non-adaptive algorithm that, with probability
at least 1− δ/2, 1/4-estimate d, i.e., finds an integer D such that d/4 < D < 4d.
By Lemma 7, this can be done with O(log(1/δ) log n) tests.

We also make all the tests of the non-adaptive algorithms that, with probabil-
ity at least 1−δ/2, detects � defective items for all d = 2i�, i = 1, 2, . . . , log(n/�).
By Theorem 4, this can be done with

O

⎛

⎝
log(n/�)∑

i=1

� log
n

2i�
+ log

2
δ

log
n

2i�

⎞

⎠ = O((� + log(1/δ)) log2 n)

tests. 	

E Proofs for Adaptive Settings

In this section, we bring all the proofs of the Theorems that appeared in Sect. 4.
We restate the Theorems for convenience.

E.1 Deterministic Algorithms

In the following, we bring proofs for all the Theorems in Sect. 4.1.

Theorem 8. Let d ≥ �. There is a polynomial time adaptive deterministic
algorithm that detects � defective items and makes at most � log(n/�) + 3� =
O(� log(n/�)) tests.

Proof. We first split the items X = [n] to � disjoint sets X1, . . . , X� of (almost)
equal sizes (each of size �n/�� or �n/��). Then we use the binary search algorithm

262 N. H. Bshouty and C. A. Haddad-Zaknoon

(binary splitting algorithm) for each i to detect all the defective items in Xi until
we get � defective items.

Each binary search takes at most �log(n/�)�+1 tests, and testing all Xi takes
at most � tests. 	

The following Theorem, summarizes the lower bound (2) in Fig. 1. We remind
the reader that when we say that d is known in advance to the algorithm, we
mean that an estimate D that satisfies d/4 ≤ D ≤ 4d is known to the algo-
rithm. The following lower bound holds even if the algorithm knows d exactly
in advance.

Theorem 9. Let � ≤ d ≤ n/2 and d be known in advance to the algorithm.
Any adaptive deterministic algorithm that detects � defective items must make
at least max(� log(n/d), log n − 1) = Ω(� log(n/d) + log n) tests.

Proof. Let A be an adaptive deterministic algorithm that detects � defective
items. Let L1, . . . , Lt be all the possible �-subsets of X that A outputs. Since
the algorithm is deterministic, the test complexity of A is at least log t. Since
Li ⊆ I (the set of d defective items), each Li can be an output of at most

(
n−�
d−�

)

sets I. Since the number of possible sets of defective items I is
(
n
d

)
, we have

t ≥
(
n
d

)

(
n−�
d−�

) ≥ n(n − 1) · · · (n − � + 1)
d(d − 1) · · · (d − � + 1)

≥
(n

d

)�

.

Therefore the test complexity of A is at least log t ≥ � log(n/d).
We now show that t > n − d. Now suppose, to the contrary, that t ≤ n − d.

Choose any xi ∈ Li and consider any S ⊆ X\{xi|i ∈ [t]} of size d. For the set
of defective items I = S, the algorithm outputs some Li, i ∈ [t]. Since Li �⊆ S,
we get a contradiction. Therefore, t > n − d and log t > log(n − d) ≥ log(n/2) =
log n − 1. 	

Note that the upper bound O(� log(n/�)) in Theorem 8 asymptotically
matches the lower bound Ω(� log(n/d)) in Theorem 9 when d = no(1).

The following Theorem proves result (4) in Fig. 3.
Theorem 10. Let � ≤ d ≤ n/2 and d be unknown to the algorithm. Any
adaptive deterministic algorithm that detects � defective items must make at
least � log(n/�) tests.

Proof. Since the algorithm works for any d, we let d = 4�. Then by the first
bound in Theorem 9, the result follows. 	

E.2 Random Algorithms

In this subsection, we demonstrate the results on the test complexity of adaptive
randomized algorithms. The following theorem proves the upper bound when d
is known in advance to the algorithm. This proves result (5) in Fig. 1.

On Detecting Some Defective Items in Group Testing 263

Theorem 11. Let � ≤ d/2. Suppose some integer D is known in advance to the
algorithm where d/4 ≤ D ≤ 4d. There is a polynomial time adaptive randomized
algorithm that makes � log(n/d)+ � log log(1/δ)+O(�) tests and, with probability
at least 1 − δ, detects � defective items.

Proof. Let c = 32 log(2/δ). If D < c�, we can use the deterministic algorithm
in Theorem 8. The test complexity is � log(n/�) + 2� = � log(cn/D) + 2� =
� log(n/d) + � log log(1/δ) + O(�).

If D > c�, then the algorithm uniformly at random chooses each element in
X with probability c�/D < 1 and puts the items in X ′. If |X ′| ≤ 3c�n/D, then
deterministically detects � defective items in X ′ using Theorem 8.

Let Yi be an indicator random variable that is 1 if the ith defective item
is in X ′ and 0 otherwise. Then E[Yi] = c�/D. The number of defective items
in X ′ is Y = Y1 + · · · + Yd and μ := E[Y] = cd�/D ≥ c�/4. By Chernoff’s
bound (Lemma 5), we have Pr[Y < �] ≤ e−(1−4/c)2c�/8 < e−c�/32 ≤ δ/2. Also,
E[|X ′|] = c�n/D, and by Chernoff’s bound (Lemma 5), Pr[|X ′| > 3c�n/D] ≤
(e/3)3c�n/D ≤ δ/2. Therefore, with probability at least 1 − δ, the number of
defective items in X ′ is at least � and |X ′| ≤ 3c�n/D. Therefore, with probability
at least 1 − δ, the algorithm detects � defective items.

Since |X ′| ≤ 3c�n/D ≤ 12c�n/d, by Theorem 8, the test complexity is at
most � log(|X ′|/�) + 2� = � log(n/d) + � log log(1/δ) + O(�). 	

We now prove the lower bound when d is known in advance to the algorithm.
This proves results (6) and (8) in Fig. 1. These are summarized in Theorem 12.

Theorem 12. Let � ≤ d ≤ n/2 and d be known in advance to the algorithm.
Any adaptive randomized algorithm that, with probability at least 2/3, detects �
defective items must make at least � log(n/d) − 1 tests.

Proof. We use Yao’s principle in the standard way. Let A(s, I) be any adaptive
randomized algorithm that, with probability at least 2/3, detects � defective
items. Here s is the random seeds, and I is the set of defective items. Let X(I, s)
be an indicator random variable that is equal 1 if A(s, I) returns a subset L ⊂
I of size � and 0 otherwise. Then for every I, Es[X(s, I)] ≥ 2/3. Therefore,
Es[EI [X(s, I)]] = EI [Es[X(s, I)]] ≥ 2/3, where the distribution in EI is the
uniform distribution. Thus, there is a seed s0 such that EI [X(s0, I)] ≥ 2/3.
That is, for at least 2

(
n
d

)
/3 sets of defective items I, the deterministic algorithm

A(s0, I) returns L ⊆ I of size �. Now, similar to the proof of Theorem 9, the
algorithm A(s0, I) makes at least

log
2
3

(
n
d

)

(
n−�
d−�

) ≥ � log(n/d) − 1.

	

In particular,

264 N. H. Bshouty and C. A. Haddad-Zaknoon

Theorem 13. Let � ≤ d ≤ n/2 and d is unknown to the algorithm. Any adaptive
randomized algorithm that, with probability at least 2/3, detects � defective items
must make at least � log(n/d) − 1 tests.

We now prove the upper bound when d is unknown to the algorithm. This
proves result (7) in Fig. 1.

Theorem 14. Let � ≤ d/2 and d be unknown to the algorithm. There is a
polynomial time adaptive randomized algorithm that detects � defective items
and makes � log(n/d) + � log log(1/δ) + O(� + log log(min(n/d, d)) + log(1/δ))
tests.

Proof. We first estimate d within a factor of 2 and probability at least 1−δ/2. By
Lemma 9, this can be done in 2 log log(n/d)+O(log(1/δ)). Then, by Theorem 11,
the result follows. 	

F Estimating d

The following lemma follows from [5,21].

Lemma 8. Let ε < 1 be any positive constant. There is a polynomial time adap-
tive algorithm that makes O(log log d + log(1/δ)) expected number of tests and
with probability at least 1 − δ outputs D such that (1 − ε)d ≤ D ≤ (1 + ε)d.

In Appendix F, we use a similar technique to prove:

Lemma 9. Let ε < 1 be any positive constant. There is a polynomial time adap-
tive algorithm that makes O(log log(min(d, n/d)) + log(1/δ)) expected number of
tests and with probability at least 1−δ outputs D such that (1−ε)d ≤ D ≤ (1+ε)d.

To prove Lemma 9, we first prove:

Lemma 10. Let ε < 1 be any positive constant. There is a polynomial time
adaptive algorithm that makes O(log log(n/d)+log(1/δ)) expected number of tests
and with probability at least 1 − δ outputs D such that (1 − ε)d ≤ D ≤ (1 + ε)d.

We first give an algorithm that makes O(log log(n/d)) expected number of
tests and outputs D that with probability at least 1 − δ satisfies

δd2

4n log2(2/δ)
≤ D ≤ d. (4)

The algorithm is

1. λ = 2.
2. Let each x ∈ [n] be chosen to be in the test Q with probability 1 − 2−λ/n.
3. If TI(Q) = 0 then λ ← λ2; Return to step 2.
4. D = δn/(4λ).
5. Output D.

On Detecting Some Defective Items in Group Testing 265

We now prove

Lemma 11. We have

Pr
[

δd2

4n log2(2/δ)
≤ D ≤ d

]
≥ 1 − δ.

Proof. Let λi = 22i

and Qi be a set where each x ∈ [n] is chosen to be in Qi ⊆ [n]
with probability 1 − 2−λi/n, i = 0, 1, · · · . Let i′ be such that λi′ < δn/(4d) and
λi′+1 ≥ δn/(4d). Let D = δn/(4λj) be the output of the algorithm. Then, since
λi ≤ λi+1/2, we have λi′−t < δn/(2t+2d) and

Pr[D > d] =Pr[δn/(4λj) > d] = Pr[λj < δn/(4d)] = Pr[j ∈ {0, 1, . . . , i′}]

=Pr[TI(Q0) = 1 ∨ TI(Q1) = 1 ∨ · · · ∨ TI(Qi′) = 1] ≤
i′∑

i=0

Pr[TI(Qi) = 1]

=
i′∑

i=0

(1 − 2−dλi/n) ≤
i′∑

i=0

dλi

n
≤ · · · + δ

8
+

δ

4
≤ δ

2
.

Also, since λj > a implies λj−1 >
√

a,

Pr
[
D <

δd2

4n log2(2/δ)

]
= Pr

[
λj ≥ n2

d2
log2 2

δ

]

= Pr
[
TI(Qj−1) = 0 ∧ λj ≥ n2

d2
log2 2

δ

]

≤2−dλj−1/n ≤ 2− log(2/δ) =
δ

2
.

This completes the proof. 	

Lemma 12. The expected number of tests of the algorithm is log log(n/d) +
O(1).

Proof. For (n/d)2 > λk ≥ (n/d), the probability that the algorithm makes
k + t + 1 tests is less than

2−dλk+t/n = 2−dλ2t

k /n ≤ 2−(n/d)2
t−1

.

Therefore the expected number of tests of the algorithm is at most k + O(1).
Since λk = 22k

< (n/d)2, we have k = log log(n/d) + O(1). 	

We now give another adaptive algorithm that, given that (4) holds, it makes

log log(n/d) + O(log log(1/δ)) tests and with probability at least 1 − δ outputs
D′ that satisfies dδ/8 ≤ D′ ≤ 8d/δ.

By (4), we have

1 ≤ d

D
≤ H :=

√
4 log2(2/δ)

δ

n

D

266 N. H. Bshouty and C. A. Haddad-Zaknoon

Let τ = �log(1+log H)�. Then 1 ≤ d/D ≤ 22τ −1 and 0 ≤ log(d/D) ≤ 2τ −1.
Consider an algorithm that, given a hidden number 0 ≤ i ≤ 2τ − 1, binary

searches for i with queries of the form “Is i > m”. Consider the tree T (τ) that
represents all the possible runs of this algorithm, with nodes labeled with m.
See, for example, the tree T (4) in Fig. 4.

Fig. 4. The tree T (4), which is all the runs of the binary search algorithm for 0 ≤ i ≤ 15.
Suppose we search for the hidden number i = 9. We start from the tree’s root, and the
first query is “Is i > 7.5”. The answer is yes, and we move to the right son of the root.
The following query is “Is i > 11.5” the answer is no, and we move to the left son. Etc.

We will do a binary search for an integer close to log(d/D) in the tree T (τ).
The algorithm is the following

1. Let � = 0; r = 2τ − 1;
2. While � �= r do
3. Let m = (� + r)/2
4. Let each x ∈ [n] be chosen to be in the test Q with probability 1−2−1/(2mD).
5. If TI(Q) = 1 then � = �m� else r = �m�.
6. Output D′ := D2�.

We first prove

Lemma 13. Consider T (τ) for some integer τ . Consider an integer 0 ≤ i ≤
2τ − 1 and the path Pi in T (τ) from the root to the leave i. Then

1. Pi passes through a node labeled with i − 1/2, and the next node in Pi is its
right son.

2. Pi passes through a node labeled with i + 1/2, and the next node in Pi is its
left son.

Proof. If the path does not go through the node labeled with i − 1/2 (resp.
i + 1/2), then, in the search, we cannot distinguish between i and i − 1 (resp.
i + 1). Obviously, if we search for i and reach the node labeled with i − 1/2, the
next node in the binary search is the right son. 	

On Detecting Some Defective Items in Group Testing 267

Now, by Lemma 13, if the algorithm outputs �′, then there is a node labeled
with m = �′ − 1/2 that the algorithm went through, and the answer to the test
was 1. That is, the algorithm continues to the right node.

Pr

[
D′ >

8d

δ

]
=Pr

[
D2� >

8d

δ

]
= Pr

[
� > log

d

D
+ log

8

δ

]

=

2τ −1∑
�′=�log(d/D)+log(8/δ)�

Pr[� = �′]

=

2τ −1∑
�′=�log(d/D)+log(8/δ)�

Pr[Answer in node labeled with m = �′ − 1/2 is 1]

=

2τ −1∑
�′=�log(d/D)+log(8/δ)�

1 − 2−d/(2�′−1/2D)

≤
2τ −1∑

�′=�log(d/D)+log(8/δ)�

d

D2�′−1/2
≤ δ

4
+

δ

8
· · · ≤ δ

2
.

By Lemma 13, if the algorithm outputs �′, then there is a node labeled with
m = �′ + 1/2 that the algorithm went through, and the answer to the test was
0.

Pr

[
D′ <

δd

8

]
=Pr

[
D2� <

δd

8

]
= Pr

[
� < log

d

D
− log

8

δ

]

=

�log(d/D)−log(8/δ)�∑
�′=0

Pr[� = �′]

=

�log(d/D)−log(8/δ)�∑
�′=0

Pr[Answer in node labeled with m = �′ + 1/2 is 0]

=

�log(d/D)−log(8/δ)�∑
�′=0

2−d/(D2�′+1/2)

≤2−4/δ + 2−8/δ + 2−16/δ + · · · ≤ δ

4
+

δ

8
+ · · · = δ

2
.

Therefore, with probability at least 1 − δ, D′ satisfies dδ/8 ≤ D′ ≤ 8d/δ.

Lemma 14. The number of tests of the algorithm is log log(n/d) + O(log log
(1/δ)).

268 N. H. Bshouty and C. A. Haddad-Zaknoon

Proof. Since, by (4), δd2/(4n log2(2/δ)) ≤ D, the number of tests is

τ + 1 ≤ log log H + 3

≤3 + log log

√
4 log2(2/δ)

δ

n

D

≤3 + log log

(
4 log2 2

δ

δ
· n

d

)

= log log
n

d
+ O

(
log log

1
δ

)
.

	

Finally, given D′ that satisfies dδ/8 ≤ D′ ≤ 8d/δ, Falahatgar et al. [21]

presented an algorithm that, for any constant ε > 0, makes O(log(1/δ)) queries
and, with probability at least 1−δ, returns an integer D′′ that satisfies (1−ε)d ≤
D′′ ≤ (1 + ε)d.

By Lemma 12 and 14, Lemma 10 follows.
One way to prove Lemma 9 is by running the algorithms in Lemma 8 and

Lemma 10 in parallel, one step in each algorithm, and halt when one of them
halts. Another way is by using the following result.

Lemma 15. Let d and m be integers, and ε ≤ 1 be any real number. There is a
non-adaptive randomized algorithm that makes O((1/ε2) log(1/δ)) tests and

– If d < m then, with probability at least 1 − δ, the algorithm returns 0.
– If d > (1 + ε)m, then, with probability at least 1 − δ, the algorithm returns 1.
– If m ≤ d ≤ (1 + ε)m then, the algorithm returns 0 or 1.

Proof. Consider a random test Q ⊆ X where each x ∈ X is chosen to be in
Q with probability 1 − (1 + ε)−1/(mε). The probability that TI(Q) = 0 is (1 +
ε)−d/(mε). Since

Pr[TI(Q) = 0|d < m] − Pr[TI(Q) = 0|d > (1 + ε)m] ≥(1 + ε)−1/ε − (1 + ε)−(1+ε)/ε

=(1 + ε)−1/ε ε

1 + ε

≥ ε

2e
.

By Chernoff’s bound (Lemma 5), we can, with probability at least 1−δ, estimate
Pr[TI(Q) = 0] up to an additive error of ε/(8e) using O((1/ε2) log(1/δ)) tests. If
the estimation is less than (1 + ε)−(1+ε)/ε + ε/(4e) we output 0. Otherwise, we
output 1. This implies the result. 	

Now, to prove Lemma 9, we first run the algorithm in Lemma 15 with m =

√
n

and ε = 1. If the output is 0 (d < 2
√

n), then we run the algorithm in Lemma 8.
Otherwise, we run the algorithm in Lemma 10.

On Detecting Some Defective Items in Group Testing 269

References

1. Ahlswede, R., Deppe, C., Lebedev, V.: Finding one of d defective elements in some
group testing models. Probl. Inf. Transm. 48, 04 (2012)

2. Balding, D.J., Bruno, W.J., Torney, D., Knill, E.: A comparative survey of non-
adaptive pooling designs. In: Speed, T., Waterman, M.S. (eds.) Genetic Mapping
and DNA Sequencing. The IMA Volumes in Mathematics and its Applications, vol.
81, pp. 133–154. Springer, New York, NY (1996). https://doi.org/10.1007/978-1-
4612-0751-1 8

3. Bar-Noy, A., Hwang, F.K., Kessler, I., Kutten, S.: A new competitive algorithm
for group testing. Discret. Appl. Math. 52(1), 29–38 (1994)

4. Bshouty, N.H.: Lower bound for non-adaptive estimation of the number of defective
items. In: 30th International Symposium on Algorithms and Computation, ISAAC
2019, December 8–11, 2019, Shanghai University of Finance and Economics, Shang-
hai, China, pp. 2:1–2:9 (2019)

5. Bshouty, N.H., Bshouty-Hurani, V.E., Haddad, G., Hashem, T., Khoury, F.,
Sharafy, O.: Adaptive group testing algorithms to estimate the number of defec-
tives. In: Algorithmic Learning Theory, ALT 2018, 7–9 April 2018, Lanzarote,
Canary Islands, Spain, pp. 93–110 (2018)

6. Bshouty, N.H., Diab, N., Kawar, S.R., Shahla, R.J.: Non-adaptive randomized
algorithm for group testing. In: International Conference on Algorithmic Learning
Theory, ALT 2017, 15–17 October 2017, Kyoto University, Kyoto, Japan, pp. 109–
128 (2017)

7. Bshouty, N.H., Haddad, G., Haddad-Zaknoon, C.A.: Bounds for the number of
tests in non-adaptive randomized algorithms for group testing. In: Chatzigeorgiou,
A., et al. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp. 101–112. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-38919-2 9

8. Cabrera Alvargonzalez, J.J., et al.: Pooling for SARs-COV-2 control in care insti-
tutions. BMC Inf. Dis. 20(1), 1–6 (2020)

9. Chen, H., Hwang, F.K.: Exploring the missing link among d-separable, d−-
separable and d-disjunct matrices. Discret. Appl. Math. 155(5), 662–664 (2007)

10. Cheng, Y., Du, D., Xu, Y.: A zig-zag approach for competitive group testing.
INFORMS J. Comput. 26(4), 677–689 (2014)

11. Damaschke, P., Muhammad, A.S.: Randomized group testing both query-optimal
and minimal adaptive. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser,
S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 214–225. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-27660-6 18

12. Dorfman, R.: The detection of defective members of large populations. Ann. Math.
Stat. 14(4), 436–440 (1943)

13. Du, D., Hwang, F.K.: Pooling Design and Nonadaptive Group Testing: Important
Tools for DNA Sequencing. World Scientific Publishing Company, Singapore (2006)

14. Du, D., Hwang, F.K.: Competitive group testing. Discret. Appl. Math. 45(3), 221–
232 (1993)

15. Du, D., Park, H.: On competitive group testing. SIAM J. Comput. 23(5), 1019–
1025 (1994)

16. Du, D., Xue, G., Sun, S., Cheng, S.: Modifications of competitive group testing.
SIAM J. Comput. 23(1), 82–96 (1994)

17. Du, D.-Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World
Scientfic Publishing, Singapore (1993)

https://doi.org/10.1007/978-1-4612-0751-1_8
https://doi.org/10.1007/978-1-4612-0751-1_8
https://doi.org/10.1007/978-3-030-38919-2_9
https://doi.org/10.1007/978-3-642-27660-6_18

270 N. H. Bshouty and C. A. Haddad-Zaknoon

18. D.-Z. Du and F. K. Hwang. Pooling Designs And Nonadaptive Group Testing:
Important Tools For DNA Sequencing. World Scientfic Publishing, Singapore
(2006)

19. D’yachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Probl.
peredachi Inf. 18(3), 7–13 (1982)

20. Eis-Hübinger, A.M.: Ad hoc laboratory-based surveillance of SARS-CoV-2 by real-
time rt-RT-PCR using minipools of RNA prepared from routine respiratory sam-
ples. J. Clin. Virol. 127, 104381 (2020)

21. Falahatgar, M., Jafarpour, A., Orlitsky, A., Pichapati, V., Suresh, A.T.: Estimating
the number of defectives with group testing. In: IEEE International Symposium on
Information Theory, ISIT 2016, Barcelona, Spain, 10–15 July 2016, pp. 1376–1380.
IEEE (2016)

22. Füredi, Z.: On r-cover-free families. J. Comb. Theory, Ser. A 73(1), 172–173 (1996)
23. Gollier, C., Gossner, O.: Group testing against covid-19. Covid Economics, pp.

32–42, April 2020
24. Haddad-Zaknoon, C.A.: Heuristic random designs for exact identification of defec-

tives using single round non-adaptive group testing and compressed sensing. In:
The Fourteenth International Conference on Bioinformatics, Biocomputational
Systems and Biotechnologies, BIOTECHNO 2022 (2022)

25. Hwang, F.K.: A method for detecting all defective members in a population by
group testing. J. Amer. Stat. Assoc. 67, 605–608 (1972)

26. Katona, G.O.: Finding at least one excellent element in two rounds. J. Stat. Plan-
ning Inf. 141(8), 2946–2952 (2011)

27. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans.
Inf. Theory 10(4), 363–377 (1964)

28. Kuppusamy, P., Bharathi, V.: Human abnormal behavior detection using CNNs in
crowded and uncrowded surveillance - a survey. Meas. Sens. 24, 100510 (2022)

29. Liang, W., Zou, J.: Neural group testing to accelerate deep learning. In: IEEE
International Symposium on Information Theory, ISIT 2021. IEEE (2021)

30. Mentus, C., Romeo, M., DiPaola, C.: Analysis and applications of adaptive group
testing methods for covid-19. medRxiv (2020)

31. Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing
schemes. IEEE Trans. Inf. Theory 57(12), 7982–7989 (2011)

32. Roth, R.M.: Introduction to Coding Theory. Cambridge University Press, Cam-
bridge (2006)

33. Ruszinkó, M.: On the upper bound of the size of the r-cover-free families. J. Comb.
Theory Ser. A 66(2), 302–310 (1994)

34. Schlaghoff, J., Triesch, E.: Improved results for competitive group testing. Comb.
Probab. Comput. 14(1–2), 191–202 (2005)

35. Shani-Narkiss, H., Gilday, O.D., Yayon, N., Landau, I.D.: Efficient and practical
sample pooling for high-throughput PCR diagnosis of covid-19. medRxiv (2020)

36. Sobel, M., Groll, P.A.: Group testing to eliminate efficiently all defectives in a
binomial sample. Bell Syst. Tech. J. 38, 1179–1252 (1959)

37. Wang, W., Siau, K.: Artificial intelligence, machine learning, automation, robotics,
future of work and future of humanity: a review and research agenda. J. Database
Manage. (JDM) 30(1), 61–79 (2019)

38. Wolf, J.: Born again group testing: multiaccess communications. IEEE Trans. Inf.
Theory 31(2), 185–191 (1985)

39. Wu, J., Cheng, Y., Du, D.: An improved zig zag approach for competitive group
testing. Discret. Optim. 43, 100687 (2022)

On Detecting Some Defective Items in Group Testing 271

40. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1492–1500 (2017)

41. Yelin, I., et al.: Evaluation of covid-19 rt-qPCR test in multi-sample pools.
medRxiv (2020)

An Efficient Data Analysis Method for Big
Data Using Multiple-Model Linear

Regression

Bohan Lyu1,2(B) and Jianzhong Li1,2

1 Harbin Institute of Technology, Harbin, Heilongjiang, China
18b903024@stu.hit.edu.cn, lijzh@hit.edu.cn

2 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

Abstract. This paper introduces a new data analysis method for big
data using a newly defined regression model named multiple model linear
regression(MMLR), which separates input datasets into subsets and con-
struct local linear regression models of them. The proposed data analysis
method is shown to be more efficient and flexible than other regression
based methods. This paper also proposes an approximate algorithm to
construct MMLR models based on (ε, δ)-estimator, and gives mathemat-
ical proofs of the correctness and efficiency of MMLR algorithm, of which
the time complexity is linear with respect to the size of input datasets.
This paper also empirically implements the method on both synthetic
and real-world datasets, the algorithm shows to have comparable per-
formance to existing regression methods in many cases, while it takes
almost the shortest time to provide a high prediction accuracy.

Keywords: Data analysis · Big data · Linear regression · Segmented
regression · Machine learning

1 Introduction

Data analysis plays an important role in various aspects, because it tells the
features of data and helps predicting tasks. Regression with parametric models,
especially linear models, is a typical data analysis method.

Let DS = {(y, x1, x2, · · · , xk)} be a k + 1 dimensional dataset with n ele-
ments, where y is called as response variable, xi is called as explanatory vari-
able for reach 1 ≤ i ≤ k. The task of regression is to determine a function
ŷ = f(x1, x2, · · · , xk) using DS, minimizing E(y − ŷ)2. As for linear regres-
sion, f(x1, · · · , xk) is a linear function of xis. And there’s the assumption that

This work was supported by the National Natural Science Foundation of
China under grants 61832003, Shenzhen Science and Technology Program
(JCYJ202208181002205012) and Shenzhen Key Laboratory of Intelligent Bioinformat-
ics (ZDSYS20220422103800001).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 272–284, 2024.
https://doi.org/10.1007/978-3-031-49190-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_19&domain=pdf
http://orcid.org/0009-0005-6462-8942
http://orcid.org/0000-0002-4119-0571
https://doi.org/10.1007/978-3-031-49190-0_19

An Efficient Data Analysis Method for Big Data 273

y = β0+β1x1+β2x2+ · · ·+βkxk + ε for each (y, x1, x2, · · · , xk) ∈ DS, where ε
is a random noise obeying normal distribution, and βi (1 ≤ i ≤ k) are constants.

Under such assumptions, linear regression model has statistical advantages and
high interpretability. The numeric value of parameters can show the importance
of variables, and the belonging information about the confidence coefficients and
intervals make the model more credible in practice [9]. Therefore, linear regression
is widely used in research areas requiring high interpretability, such as financial
prediction, investment forecasting, biological and medical modelling, etc. Most
machine learning and deep learning models might be more precise in predicting
tasks, but the black-box feature limits their ranges of application.

However, linear regression still faces challenges in case of big data. Because
big data has a feature that different subsets of a dataset fitting highly differ-
ent regression models, which is described as diverse predictor-response variable
relationships(DPRVR) in [5]. An example of real-world data is TBI dataset in
[6], which is used to predict traumatic brain injury patients’ response with six-
teen explanatory variables. The researchers in [5] have shown that the root mean
square error (RMSE) is 10.45 when one linear regression model is used to model
the whole TBI. While TBI is divided into 7 subsets and 7 different linear regres-
sion models are used individually, the RMSE is reduced to 3.51. TBI shows
that the DPRVR commonly appears in real-world data and big datasets. This
feature indicates that it is much better to use multiple linear models rather than
only one to model a big dataset.

Nevertheless, there is no efficient multi-model based regression algorithms
for big datasets till now since the time complexities of existing multi-model
based regression algorithms are too high to model big datasets. Piecewise Linear
Regression, or segmented regression [1,2,7,10,11] are the only kinds so far. They
divide the input datasets into several connected areas, and then construct local
models using data points in each connected area, which is similar to the example
in Fig. 1 from Appendix A of [8]. These kinds of regression models has high
prediction accuracy because it considers DPRVR, and has high interpretability
since the local models could have explicit expressions.

But there are still shortcomings of the existing multiple models based regres-
sion methods, which are shown as follows.

1. The time complexity of the methods is high. The state-of-art algorithm, PLR,
has the time complexity of O(k2n5) [10].

2. The subsets being used to construct multiple regression models must be hyper
cubes [4] or generated by partition the given dataset by hyperplanes [7]. Thus,
the accuracy of the methods is lower when the subsets of a given dataset are
not hyper cubes or can not be generated by hyperplanes.

3. Some methods need apriori knowledge that is difficult to get [1].

To overcome the three disadvantages above, this paper proposes a new multi-
model based linear regression method named as MMLR.

Specifically, MMLR algorithm is outlined in Algorithm 1. Noticing that every
d ∈ DS has the form d = (y, x1, x2, · · · , xk) and the output of the MMLR

274 B. Lyu and J. Li

algorithm is M = {(fi, Si)}, where Si is a subset of DS and fi is a linear
regression model fits Si.

Algorithm 1: MMLR
Input: (k + 1)-dimensional Dataset DS with n data points;
Output: regression model M = {(fi, Si)}

1 i = 0,M = ∅, W S = DS;
2 while W S �= ∅ do
3 i = i + 1 ;
4 Select a hypercube Hi with small size in W S;
5 Construct a linear regression model fi of Hi ;
6 Compute the error bound ebi using fi to predict Hi ;
7 Si = Hi ;
8 for each (y, x1, ..., xk) in W S − Hi do
9 if |fi(x1, ..., xk) − y| < ebi then

10 Si=Si ∪ (y, x1, ..., xk);

11 W S = W S − Si, M = M ∪ {(fi, Si)} ;

12 return M

This paper has proved that the time for constructing every fi is O(k2/ε2),
where ε is a user-given upper bound of the max error of all fi’s parameters. It’s
been proved that the time cost of MMLR algorithm is O(m(n + (k/ε)2 + k3))
in Sect. 4, where m is the number of models. The time complexity of MMLR is
much lower than O(k2n5), since (k/ε)2 is far more less than n5. Therefore, the
disadvantage 1 above is overcome.

From steps 4–10 of the MMLR algorithm, every subset Si can be any shape
rather than a hypercube or a subset generated by partitioning DS using only
hyper-planes. Thus, the disadvantage 2 above is overcome also.

The MMLR algorithm iteratively increase the number of regression models so
that it could always find the suitable number of models to optimize the prediction
accuracy without knowing the number of models as apriori knowledge. In fact,
MMLR only take DS as input, which overcomes the disadvantage 3 above.

The major contributions of this paper are as follows.

– The problem of constructing the optimized multiple linear regression models
for a given dataset is formally defined and analyzed.

– A heuristic MMLR algorithm is designed for solving the problem above.
MMLR algorithm can deal with the DPRVR of big datasets, and overcomes
the disadvantages of the existing multi-model based linear regression meth-
ods.

– The time complexity of MMLR algorithm is analyzed, which is lower than
the state-of-art algorithm. The accuracy of MMLR algorithm and related
mathematical conclusions are proved.

An Efficient Data Analysis Method for Big Data 275

The rest of this paper is organized as follows. Section 2 gives the formal
definition of the problem. Section 3 proves the necessary mathematical theorems.
Section 4 gives the design and analysis of the algorithm. Finally, Sect. 5 concludes
the paper.

2 Preliminaries and Problem Definition

2.1 Regression and Linear Regression

The definition of traditional linear regression problem is given as follows.

Definition 1 (Linear Regression Problem).
Input: A numerical dataset DS = {(xi, yi) |1 ≤ i ≤ n}, where xi ∈ R

k, yi ∈
R, yi = f(xi)+εi for some function f , εi ∼ N(0, σ2), and all εis are independent.

Output: A function f̂(x) = β · (1,x) = β0 + β1x1 + · · · + βkxk such that
E[(y − f̂(x))2] is minimized for ∀(x, y) ∈ DS.

Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining have
proved that minimize the E[(y − f̂(x))2] is equivalent to minimizing

∑
(yi −

f̂(xi))2 on DS in the case of linear regression [9]. Besides, it’s trivial that a
k-dimensional linear function can perfectly fit any n data points when n ≤ k+1.
It is said DS to be centralized, if using xij − xj to substitute xij , using yi − y
to substitute yi, for i = 1, 2, · · · , n, j = 1, 2, · · · , k, where xj = (x1j + · · · +
xnj)/n, y = (y1+ · · ·+yn)/n. Obviously, when DS is centralized, there’s always
β0 = 0 so that β = (β1, · · · , βk). Therefore, this paper always assumes that
n > k + 1, DS is centralized and all xi are i.i.d. and uniformly drawn from the
value domain of x for convenience of analysis.

The simplest method to construct linear regression model is pseudo-inverse
matrix method. It transforms the given DS into a vector y = (y1, y2, · · · , yn)
and an n × (k + 1) matrix X:

X =

⎛

⎜
⎜
⎜
⎝

1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
...

1 xn1 xn2 · · · xnk

⎞

⎟
⎟
⎟
⎠

.

The xij in X equals to the value of the i-th data point’s j-th dimension in DS.
It is called the data matrix of DS. Then, using the formula β̂ = (X′X)−1X′y,
the linear regression model f̂ could be constructed. The time complexity of
pseudo-inverse matrix method is O(k2n+k3) [9]. When k is big enough, gradient
methods is more efficient than pseudo-inverse matrix method. Generally, every
method’s complexity has the bound O(k2n+k3), so this paper use it as the time
complexity of linear regression in common.

To judge the goodness of a linear regression model f̂ , the p-value of F-test
is a convincing criterion, which denotes as pF (f̂) in this paper. Generally, linear
regression model f̂ ∼= f when pF (f) < 0.05, and pF (f) can be calculated in O(n)
time [9].

276 B. Lyu and J. Li

Besides, this paper uses the (ε, δ)− estimator to analyze the performance of
linear regression models constructing by subsets of DS. The formal definition
of it is as follows.

Definition 2 ((ε, δ)−estimator).
Î is an (ε, δ) − estimator of I if Pr{|Î − I| ≥ ε} ≤ δ for any ε ≥ 0 and

0 ≤ δ ≤ 1, where Pr(X) is the probability of random event X.

Intuitively, (ε, δ) − estimator Î of I has high possibility to be very close to
I’s real value. By controlling some parameters for the calculation of Î, one can
get an I’s arbitrarily precise estimator.

2.2 Multiple-Model Linear Regression

In rest of the paper, the multiple-model linear regression is denoted as MMLR.
The MMLR problem is defined as follows.

Definition 3 (Optimal MMLR problem).
Input: A numerical dataset DS = {(xi, yi) |1 ≤ i ≤ n}, where xi ∈ R

k, yi ∈
R, yi = f(xi) + εi for a function f , εi ∼ N(0, σ2) and all εis are independent,
maximal model number M0, smallest volume n0.

Output: Mopt = {(ĝi, Si)|1 ≤ i ≤ m} such that MSE(M) =∑

1≤i≤m

∑

(xj ,yj)∈Si

(yj − ĝi(xj))2 is minimized, where ĝi is a linear regressoin mod-

els of Si ⊆ DS, S1 ∪ S2 ∪ · · · ∪ Sm = DS, Si ∩ Sj = ∅ for i �= k, and
|Si| ≥ n0,m ≤ M0.

The optimal MMLR problem is expensive to solve since it has a similar to
Piecewise Linear Regression problem [10]. By far, the best algorithm to solve
piecewise linear regression problem without giving the number of pieces before-
hand is O(k2n5) [10]. Therefore, this paper focuses on the approximate opti-
mal solution of MMLR problem. To bound the error of a linear function, this
paper set |f1 − f2| = ‖β1 − β2‖∞ = max

1≤i≤k
|b1i − b2i|, where fj(x) = βjx =

bj1x1 + · · · bjkxk, j = 1, 2. The definition of Approximately Optimal MMLR
problem is as follows.

Definition 4 (Approximately Optimal MMLR problem).
Input: A numerical dataset DS = {(xi, yi) |1 ≤ i ≤ n}, where xi ∈ R

k, yi ∈
R, yi = f(xi) + εi for a function f , εi ∼ N(0, σ2) and all εis are independent,
ε > 0, 0 ≤ δ ≤ 1, maximal model number M0, smallest volume n0.

Output: M = {(f̂i, Si)|1 ≤ i ≤ m} such that Pr{max
i

|f̂i − ĝi| ≥ ε} ≤ δ, f̂i is

a linear regression models of Si ⊆ DS, S1 ∪S2 ∪· · ·∪Sm = DS and Si ∩Sj = ∅
for i �= k, and |Si| ≥ n0,m ≤ M0, Mopt = {(ĝi, Si)|1 ≤ i ≤ m}.

In the end of this section, necessary denotations are given as follows. Intu-
itively, DS is the input dataset and |DS| = n, (xi, yi) ∈ DS denotes the
i-th data points, i = 1, 2, · · · , n, xi = (xi1, xi2, · · · , xik) ∈ R

k, yi ∈ R. The

An Efficient Data Analysis Method for Big Data 277

j-th linear function is denoted as fj(x) = βj0 + βj1x1 + · · · + βjkxk, and
βj = (βj0, βj1, · · · , βjk) is the coefficient vector. Xn×(k+1) is the data matrix of
DS, of which Xij = xij . Finally, every estimator of a value, vector or function
I is Î.

3 Mathematical Foundations

This section gives proofs of the necessary mathematical theorems used for the
MMLR algorithm. We first discuss the settings and an existed mathematical
result used in this section.

Suppose that D is a centralized dataset of size n, it’s reasonable to set yi =
f(xi) = βx = β1xi1 + · · · + βkxik + εi for each (xi1, xi2, · · · , xik , yi) ∈ D,
εi ∼ N(0, σ2), from the discussion in Sect. 2.1. Besides, f̂(x) = β̂x is the linear
regression model of D constructed by least square criterion. Thus there’s the
result in the following Lemma 1.

Lemma 1. Let Xn×k be the data matrix of D,n ≥ k + 2, and β̂ be the least
square estimator of β, then β̂ is unbiased, and the covariance matrix of β̂ is:

Var(β̂) = σ2(X ′X)−1.

3.1 Theorems Related to Sampling

MMLR separates an input dataset into several disjoint subsets and construct
local models for them. This subsection discusses how to construct local linear
regression model on one subset efficiently.

The main process of constructing f̂ using subset PS ⊆ D, Cons-f̂ for short,
is given as follows.

Step 1: Independently sample PS1, PS2, · · · , PSt without replacement from
D, where |PSi| = p for 1 ≤ i ≤ t.

Step 2: Use least square method to construct linear regression model f̂ (i) =∑k
j=1 β̂(i)x for each PSi.
Step 3: Let β̂ be the average of all β̂(i), where

β̂j =
1
t

t∑

i=1

β̂
(i)
j , j = 1, · · · , k.

Let PS = PS1 ∪ PS2 ∪ · · · ∪ PSt and |PS| = ns, then f̂ is a linear regres-
sion model constructed from PS. Theorem 1 given in this section shows that f̂
satisfies

Pr
{
max

j
|β̂j − βj | ≥ ε

}
≤ δ (1)

for given ε ≥ 0 and 0 ≤ δ ≤ 1 if |PS| is big enough.

278 B. Lyu and J. Li

By the steps of Cons-f̂ , all β̂(i) obey the same distribution since every PSi

is sampled from D by the same way independently. Noticing that β̂
(i)
j is a least-

square estimator of β constructed using PSi. Lemma 1 shows that β̂ satisfies
E(β̂) = β and Var(β̂) = σ2(X ′X)−1 when n ≥ k + 2. So let p = k + 2 and
ns = pt = (k + 2)t, the minimum ns such that Pr{max |β̂j − βj | ≥ ε} ≤ δ only
depends on t. Furthermore, we can give the following Lemma 2, and then prove
Theorem 1.

Lemma 2. Letting β̂ = (β̂1, · · · , β̂j) be constructed by the procedure of Cons-f̂ ,
and Xi be the data matrix of the PSi, for 1 ≤ i ≤ t, then β̂ is an unbiased
estimator of β and the covariance matrix of β̂ is:

Var(β̂) =
σ2

t2

t∑

i=1

(X ′
iXi)−1.

Proof. By the linearity of mathematical expectation and sum of mutually inde-
pendent variables’ variance, the conclusion of this lemma is obvious [3].
�
Theorem 1. Let β̂ = (β̂0, β̂1, · · · , β̂j) be constructed by the procedure of Cons-
f̂ . If Φ(ε

√
t

ν) ≥ 2−δ
2 , then

Pr
{
max

j
|β̂j − βj | ≥ ε

}
≤ δ,

for any ε > 0 and 0 ≤ δ ≤ 1, where Φ(x) is the distribution function of standard
normal distribution, and ν is the biggest standard deviation of all β̂js.

Proof. The proof of Theorem 1 is shown in Appendix B of [8].
�
Theorem 1 can be used to decide the needed ns to satisfy inequality (1) by

the following steps.

1. Check the table of normal distribution function for Φ(ε
√

t
ν) ≥ 2−δ

2 , and ν =
max νj = max σejj

t = σ max ejj

t , get

t > (
1
ε
Φ−1(

2 − δ

2
)σmax

√
ejj)2/3;

2. Let t > (1ε Φ−1(2−δ
2)σ)2/3 since ejj is always far more less than 1;

3. Let ns = p(1ε Φ−1(2−δ
2)σ)2/3.

Besides, it doesn’t necessary to carry out the three steps of cons-f̂ in practice.
In fact, we can directly construct f̂ on the sample PS by using least square
method to satisfy inequation (1). The following Theorem 2 shows the correctness.

Theorem 2. Suppose PS, t, ns, β̂ = (β̂1, · · · , β̂k) are defined as in previous part,
β̃ = (β̃1, · · · , β̃k) is the least square estimator of PS’s β, then if β̂ satisfies
inequality (1), β̃ also satisfies inequality (1).

An Efficient Data Analysis Method for Big Data 279

Proof. The proof of Theorem 2 is shown in Appendix C of [8].
�
From Theorem 2, the Cons-f̂ can be simplified to the following Cons-f̂ -New,

which is used in Algorithm 3 in Sect. 4.
Step 1: Sample PS from D, where |PS| = ns.
Step 2: Use least square method to construct the parameters of linear regres-

sion model β̂ = (β̂1, β̂2, · · · , β̂k).
Finally, the following Theorem 3 shows that ns is not necessary to be large.

Theorem 3. There exists an ns = O(1
ε2) such that

Pr
{
max

j
|β̂j − βj | ≥ ε

}
< 10−6.

Proof. The proof of Theorem 3 is shown in Appendix D of [8].
�

3.2 Theorem Related to the Measures of Subsets

By Algorithm 1, MMLR constructs f̂i using subsets Hi ∩ DS ⊆ DS initially,
where Hi is a hypercube whose edges are parallel to coordinate axis of R

k.
Subsection 3.1 shows that using a subset PS randomly sampled from Hi ∩ DS
to construct f̂i can be very accurate. However, the measures of Hi is also a
key factor influencing the accuracy of f̂i. Intuitively, the larger Hi is, the more
accurate f̂i is. However, the Hi is not necessary to be very large when ε and δ are
given. This subsection discusses the necessary measure of Hi to satisfy inequality
(1). The following subsection has the same mathematical assumptions as Sect. 3.1
.

Limited by the length of the paper, we can only show the following necessary
conclusions, the proofs of them and other intermediate results Lemma 3.1–3.4
are shown in Appendix E of [8].

Lemma 3. Given ε > 0, 0 < δ < 1, then for any ε′ > 0, there exists an n0 such
that when L ≥ 4

√
3σ

ε
√

nδ
and n > n0, Pr{|β̂j − βj | ≥ ε} ≤ δ holds with possibility no

less than 1 − ε′. Further, E(|β̂j − βj |) is monotonically decreasing at nL2.

The Lemmas in this section show that for any j = 1, 2, · · · , k, the value range
of the j-th dimension of D influences the error of β̂j , and Pr{|β̂j − βj | ≥ ε} is
in inverse proportion to L2. It means that when n is fixed, one can sample from
larger value range of D to get more precise β̂j .

Besides, the sample size n has no need to be very big. The Pr{x′Ax ≥ 1
2x′x}

in Lemma 3.3 has a very fast convergence speed. When n > 3k, Pr{x′Ax ≥
1
2x′x} has already larger than 0.99. From Lemma 3.2 we could know that when
n > 65, Pr{x′x ≥ nL2

24 } ≥ 0.95. Since Pr{|β̂j − βj | ≥ ε} ≤ δ requires both
x′x ≥ nL2

24 and x′Ax ≥ 1
2x′x, the inequality holds with possibility larger than

0.95 when n > max{65, 3k}.
According to the discuss above, we propose the following process to construct

f̂ using subset HS ⊂ D with smallest |HS|, Cons − Hf̂ for short.

280 B. Lyu and J. Li

Cons − Hf̂ :
Step 1: Given ns > max{65, 3k}, calculate L = 4

√
3σ

ε
√

nsδ
.

Step 2: Randomly choose a data point d ∈ D, which satisfies minxi + L
2 ≤

di ≤ maxxi− L
2 for i = 1, 2, · · · , k. Let H = [d1− L

2 , d1+ L
2]×· · ·×[dk− L

2 , dk+ L
2]

Step 3: Let HS = D∩H. If |HS| ≥ ns, use least square method to construct
f̂ on HS; else, increase H till |HS| ≥ ns or |HS| = |D|, use least square method
to construct f̂ on HS.

In conclusion, the following Theorem 4 is correct by the discussion above.

Theorem 4. If |DS| ≥ ns and maxxi − minxi ≥ L for i = 1, · · · , k, the least
square estimator f̂ constructing by Cons−Hf̂ satisfies Pr

{
max

j
|β̂j −βj | ≥ ε

}
≤

δ.

4 Algorithm and Analysis

This section shows the pseudo-code of MMLR algorithm, as well as the details
of illustrations and analysis.

4.1 Algorithm

Firstly, the general idea of MMLR has been shown in Sect. 1. The detail of
MMLR algorithm is shown in Algorithm 2, the invoked algorithm Subset is shown
in Algorithm 3. Specifically, MMLR uses pre-processing, pre-modelling, examine,
grouping these four important phases to iteratively solving the problem.

Line 1–8 are the pre-processing phase of MMLR. Line 1–5 construct a linear
regression model on the whole dataset DS. If the regression model is precise
enough, there’s no need to use multiple models fitting DS. MMLR uses the
index pF to determine whether one linear model is enough. If not, MMLR would
begin to construct multiple model M . In line 7–8, MMLR firstly calculate the
smallest sample size using an estimate of σ2. There are already methods to
precisely get σ2’s estimate [9]. Suppose that algorithm estimate(DS) take a
dataset DS as input and output σ2, MMLR can use anyone of them, which is
shown in Line 7. Thus MMLR could calculate ns and L for further work in Line
8.

Line 9–19 is an iteration to construct every f̂i and related Si. Generally,
MMLR samples small subsets to construct local models then finds the data
points fitting them. When every iteration ends, MMLR abandons those data
points from DS. The terminal condition is that when |DS| ≤ n0 or current
m = M0 − 1. At this time, the data points left would be marked as Sm+1.

Line 10–14 is pre-modelling phase. In this part, MMLR firstly prudently
chooses a small area of the whole value range and samples from the data points
in this area invoking Subset(DS, ns, L) in Line 10, 13. S is the sampled subset,
and D denotes the rest part. After that MMLR construct a regression model f
and get its statistical characteristic. By Theorem 2 and 4, f is a highly precise

An Efficient Data Analysis Method for Big Data 281

Algorithm 2: MMLR(DS, ε, δ,M0, N0)
Input: A k-dimensional dataset DS with N data points, error bounds

ε > 0, 0 < δ < 1, least subset volume M0 and largest model number N0;
Output: M , i.e. the approximate set of linear regression models and subsets of

DS fitting them
1 M ← ∅, m ← 0, S ← DS ;
2 f ← the linear regression model of S, pF ← the F-test’s p-value of f on S ;
3 if pF < 0.05 then
4 M ← {(f, S)} ;
5 return M ;
6 else
7 n ← |DS|, D ← DS, σ2 ← estimate(DS) ;
8 ns ← (k + 1)(1

ε
Φ−1(2−δ

2
)σ)2/3, L ← 4

√
3σ

ε
√

max{65,3k}δ
;

9 While (n > N0 and m < M0 − 1) Do
10 S ← Subset(DS, ns, L), D ← D − S;
11 f ← linear regression model of S, pF ← the F-test’s p-value of f on S ;
12 While (pF ≥ 0.05 and D �= ∅) Do
13 S ← Subset(DS, ns, L);
14 f ← linear regression model of S, pF ← the F-test’s p-value of f on

S ;

15 σ̃2
f = (y −X β̂)′(y −X β̂)

n
, where β is the coefficients of f , y and X are

response variables and data matrix of S respectively, bf ← 3σ̃f ;
16 for each d = (x, y) in DS − S do
17 if |f(x) − y| ≤ bf then
18 S ← S ∪ {d} ;

19 M ← M ∪ {(f, S)}, DS ← DS − S, n ← |DS|, m ← m + 1 ;

20 S ← DS, f ← linear regression model of S ;
21 M ← M ∪ {(f, S)} ;

22 return M ;

model, of which pF should be small enough. If not, S does not fit one linear
model, which means MMLR should sample again in Line 12–14.

Line 15–18 is the examine phase. In Line 15, MMLR firstly gives the fitting
bound bf of f . The fitting bound means that the max prediction error of a data
point (x, y) if it fits f . So MMLR can figure out (x, y) fitting f if |f(x) − y| ≤
bf . If a data point (x, y) fit f , y − f(x) ∼ N(0, σ2

f). As shown in [9], σ̃2
f =

(y−X β̂)′(y−X β̂)
n is a unbiased estimator of σ2

f . According to the characteristics
of normal distribution, MMLR chooses 3σ̃f as the fitting bound of f , since
Pr{|ξ − 0| ≤ 3σ} ≈ 0.99 when ξ ∼ N(0, σ2). MMLR tests all data points
that are not assigned into existing model’s acting scope by checking whether
f(x) − y ≤ 3σ̃f . After getting all data points that belongs to this one linear
model, MMLR updates M , and DS by deleting those points in Line 19.

282 B. Lyu and J. Li

Algorithm 3: Sample(DS, ns, L)
Input: A k-dimensional dataset DS with N data points, smallest sample size

ns, value range L;
Output: subset S ⊂ DS

1 D ← subset of DS that every (x, y) satisfies
minxi +

L
2

≤ di ≤ maxxi − L
2
, i = 1, 2, · · · , k ;

2 d(d1, · · · , dk, yd) ← randomly choose a data point from D ;
3 H ← [d1 − L

2
, d1 +

L
2
] × · · · × [dk − L

2
, dk + L

2
] , S ← DS ∩ H ;

4 if |S| ≥ ns then
5 S ← uniformly randomly choose min{ns,max{65, 3k}} from S ;
6 return S ;
7 else if |S| < max{65, 3k} then
8 While (|S| < max{65, 3k}) Do
9 j ← randomly choose from 1, 2, · · · , k ;

10 Lj ← max{65,3k}
|S| L ;

11 if dj +
Lj

2
> maxxj then

12 Hj ← [dj − Lj

2
, dj +

L
2
] ;

13 else
14 Hj ← [dj − L

2
, dj +

Lj

2
] ;

15 S ← DS ∩ H ;

16 else
17 return S ;

MMLR iteratively carries out the pre-modelling phase and examine phase
until |DS| is small enough. When |DS| < N0 or the number of models m =
M0 − 1, the iteration stops. The current DS and the linear regression model of
it will be settled as (fm, Sm) and added into M . So far, MMLR gets a solution
of the Approximately Optimal MMLR Problem.

4.2 Analysis

By the steps of Algorithm 2, Theorem 2 and 4, the correctness of Algorithm 2 is
given as the following theorem.

Theorem 5. The M = {(f̂i, Si)|1 ≤ i ≤ m} constructed by Algorithm 2 satis-
fies Pr{max

i
|f̂i − ĝi| ≥ ε} ≤ δ, where Mopt = {(ĝi, Si)|1 ≤ i ≤ m}.

At last, when the input dataset satisfies some universal assumptions, the
following theorem shows the time complexity of MMLR Algorithm. The proof
is shown in Appendix F of [8].

Theorem 6 (Time complexity of MMLR). Suppose that DS is uniformly
distributed in a big enough value range, the value range of DS could be divided
into m ≤ M0 continuous areas A1, · · · , Am, Si = DS ∩Ai, |Si| ≥ n0 and Si can

An Efficient Data Analysis Method for Big Data 283

be fitted by a linear function, then the expected time complexity of Algorithm 2
is O(M0(N + k3 + k2

ε2)).

Such assumptions are common in low dimension situations [1,4,7], such as k ≤ 7.
Besides, for many datasets, one can control the value of σ and L under prudent
normalization of DS, so as to make DS satisfy the assumptions. Several exper-
iment results on both synthetic and real-world datasets are shown in Appendix
G of [8].

5 Conclusion and Future Work

This paper introduces a new data analysis method using multiple-model lin-
ear regression, called MMLR. This paper gives the approximate MMLR algo-
rithm and related mathematical proofs. MMLR has the advantages of high inter-
pretability, high predicting precision and high efficiency of model constructing. It
can deal with DPRVR of big datasets, and the expected time complexity under
some universal assumptions is O(M0(N + k3 + k2

ε2)), which is lower than the
existing segmented regression methods.

However, there are still challenges and future work of multiple-model regres-
sion. Firstly, the linear model could be replaced by any parametric models. Since
they also have high interpretability and low time cost to construct. The conclu-
sions of smallest sample size and measures should be calculated in another way,
which is a challenge of mathematical reasoning. Secondly, a more versatile algo-
rithm of choosing subsets is required. Since several datasets might not satisfy
the assumption of Theorem 6, and normalization is not enough to make the
Algorithms work efficiently, a more flexibly sampling method might help. Lastly,
when the dimension of DS is too high(k > 10), MMLR algorithm is not suitable
since there’s always no enough data points in H. Some dimensional reduction
methods might mitigate the problem.

In conclusion,multiple model regression methodology has the potential to
make great contribution to data analysis, and need more attention on its corre-
sponding problems.

References

1. Arumugam, M.: EMPRR: a high-dimensional EM-based piecewise regression algo-
rithm. Ph.D. thesis, University of Nebraska-Lincoln (2003)

2. Bemporad, A.: A piecewise linear regression and classification algorithm with appli-
cation to learning and model predictive control of hybrid systems. IEEE Trans.
Autom. Control 68, 3194–3209 (2022)

3. Bertsekas, D., Tsitsiklis, J.N.: Introduction to Probability, vol. 1. Athena Scientific,
Nashua (2008)

4. Diakonikolas, I., Li, J., Voloshinov, A.: Efficient algorithms for multidimensional
segmented regression. arXiv preprint arXiv:2003.11086 (2020)

5. Dong, G., Taslimitehrani, V.: Pattern-aided regression modeling and prediction
model analysis. IEEE Trans. Knowl. Data Eng. 27(9), 2452–2465 (2015)

http://arxiv.org/abs/2003.11086

284 B. Lyu and J. Li

6. Hukkelhoven, C.W., et al.: Predicting outcome after traumatic brain injury: devel-
opment and validation of a prognostic score based on admission characteristics. J.
Neurotrauma 22(10), 1025–1039 (2005)

7. Lokshtanov, D., Suri, S., Xue, J.: Efficient algorithms for least square piecewise
polynomial regression. In: ESA21: Proceedings of European Symposium on Algo-
rithms (2021)

8. Lyu, B., Li, J.: An efficient data analysis method for big data using multiple-model
linear regression (2023)

9. Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to linear regression
analysis. Technical report, Wiley (2021)

10. Siahkamari, A., Gangrade, A., Kulis, B., Saligrama, V.: Piecewise linear regres-
sion via a difference of convex functions. In: International Conference on Machine
Learning, pp. 8895–8904. PMLR (2020)

11. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes
(1996)

Multi-Load Agent Path Finding
for Online Pickup and Delivery Problem

Yifei Li , Hao Ye, Ruixi Huang, Hejiao Huang(B) , and Hongwei Du

School of Computer Science and Technology, Harbin Institute of Technology
(Shenzhen), Shenzhen 518055, China

{liyifei,yehao,huangruixi}@stu.hit.edu.cn, {huanghejiao,hwdu}@hit.edu.cn

Abstract. The Multi-Agent Pickup and Delivery (MAPD) problem,
a variant of the lifelong Multi-Agent Path Finding (MAPF) problem,
allows agents to move from their initial locations via the pickup locations
of tasks to the delivery locations. In general MAPD problem, the agent
is single-load and completes only one task at a time. However, many
commercial platforms, e.g., Amazon and JD, have recently deployed
multi-load agents to improve efficiency in their automated warehouses.
As the multi-load agents can complete multiple tasks at once instead of
just one, existing solutions for the general MAPD are unsuitable for the
multi-load agent scenario. Meanwhile, a few works focus on the sched-
ule of multi-load agents because it is hard to assign tasks to suitable
multi-load agents and find conflict-free paths in real-time for multi-load
agents. Therefore, in this paper, we formally define the Multi-Load Agent
Pickup and Delivery (MLAPD) problem, in which the multi-load agents
complete the real-time pickup-and-delivery tasks and avoid conflicts with
each other to minimize the sum of the travel costs and the delay costs.
For solving the MLAPD problem, we propose an efficient task assign-
ment algorithm and a novel dynamic multi-agent path finding algorithm.
Extensive experiments show that compared with the state-of-the-art, our
solution can complete an additional 4.31%∼138.33% of tasks and save
0.38%∼12.41% of total costs while meeting real-time requirements.

Keywords: Multi-load agent · online task planning · optimization

1 Introduction

Recently, many commercial platforms, e.g., Amazon [1], Cainiao [2], and JD [9],
are deploying multi-load agents to improve the operation efficiency of their auto-
mated warehouses. Therefore, the Multi-Agent Pickup and Delivery (MAPD)
problem receives significant attention [4,5,12,13] because it is considered the core
problem in improving efficiency and reducing costs in industrial scenarios. The
existing works studying the MAPD problem mainly focus on two phases: task
assignment and path finding. The task assignment phase refers to assigning tasks
to suitable agents. For example, Dang et al. [6] propose an adaptive large neighbor-
hood search algorithm to dynamically select the task assignment strategy for each
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 285–296, 2024.
https://doi.org/10.1007/978-3-031-49190-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_20&domain=pdf
http://orcid.org/0000-0001-6238-8176
http://orcid.org/0000-0002-2030-957X
https://doi.org/10.1007/978-3-031-49190-0_20

286 Y. Li et al.

agent. Liu et al. [11] assign tasks to agents by solving a special traveling salesman
problem. Hu et al. [8] and Shi et al. [15] use learning-based methods to adaptively
assign tasks to the most suitable agents. Moreover, many works focus on the path
finding phase, i.e., the Multi-Agent Path Finding (MAPF) problem. Some previ-
ous works [3,7] use the space-time A∗ algorithm or its variants to solve the MAPF
problem. These solutions are efficient but the new planned path in the space-time
A∗ algorithm may take a detour due to the previous paths occupying some grids
on the shortest path of the new planned path. To address this drawback, recent
works [10,14] use a new algorithm, namely the Conflict-Based Search (CBS) algo-
rithm, to find the optimal result of multi-agent path finding. Although these works
can find satisfactory task assignments or efficiently find conflict-free paths to solve
the MAPD problem, there are still two issues.

– First, most existing works [10,12,14,15] solving the MAPD problem only
consider the single-load agent and ignore the multi-load agent. The single-
load agent can complete one task at once, i.e., it can complete a new task if
and only if the currently executing task is delivered. However, the schedule
of the multi-load agent is more complex. Specifically, when we assign tasks
to single-load agents, we only schedule the paths for agents to complete one
task. Nevertheless, if the agent is multi-load, there may be a set of paths that
need to visit in the schedule of the agent, so we not only need to consider the
paths for the agent to complete the assigned task but also need to consider
the existing paths in the schedule of the agent. Therefore, these solutions are
unsuitable for the multi-load agent scenario.

– Second, most existing solutions [3,6,7,11] only solve the task assignment or
the path finding. They ignore that the result of the task assignment can affect
the quality of the path finding and vice versa. Accordingly, their solutions are
ineffective in practice. Recently, a few works [5,12] realize that task assign-
ment and path finding should be solved simultaneously. They first use the
greedy approach to assign tasks to the nearest agents, and then simplify the
path finding by prohibiting conflicts between subsequent paths and previous
paths. Note that they use the space-time A∗ algorithm to find the conflict-
free paths, so the disadvantage of A∗ yet exists in their solutions. Thus, their
solutions also cannot cope with the MAPD problem well.

To address these issues, we focus on the pickup and delivery problem for multi-
load agents. For solving this problem, we need a task assignment algorithm to
efficiently assign tasks to the multi-load agent while considering that the multi-
load agent already has multiple tasks to complete. Meanwhile, we also require a
multi-agent path finding algorithm, which finds conflict-free paths in real time for
multi-load agents, to overcome the shortcomings of the space-time A∗ algorithm.

Our Contribution: In this paper, we first formally define the Multi-Load Agent
Pickup and Delivery (MLAPD) problem and analyze its competitive hardness.
Then, we not only propose an efficient task assignment algorithm and a novel
dynamic multi-agent path finding algorithm to solve the MLAPD problem but

Multi-Load Agent Path Finding for Online Pickup and Delivery Problem 287

also analyze the complexities of the proposed algorithms in detail. Moreover, we
use a heuristic method to improve the efficiency of the path finding algorithm in
practice. Finally, we conduct extensive experiments, which show that our solution
can complete an additional 4.31%∼138.33% of tasks and save 0.38%∼12.41% of
total costs while meeting real-time requirements.

We organize the rest of this paper as follows. We first present the problem
formulation in Sect. 2. In Sect. 3, we propose two algorithms for the MLAPD
problem and give detailed analyses. After conducting the empirical study in
Sect. 4, we conclude this paper and show the future work in Sect. 5.

2 Problem Formulation

In this paper, the warehouse provides a centralized service. Briefly, the warehouse
collects task information and assigns tasks to suitable multi-load agents in time.
Based on this fashion, we first give the definitions of task, agent, and cost. Then,
we formally define the MLAPD problem and analyze its hardness.

Definition 1 (Task). A task τ ∈ Γ is represented as a four-entry tuple τ =〈
lpτ , ldτ , tτ , wτ

〉
, where lpτ and ldτ are the pickup location and delivery location,

respectively, tτ is the deadline, and wτ indicates the weight.

Definition 2 (Agent). An agent v ∈ V is denoted as a four-entry tuple v =
〈lv, cv, Γv, Sv〉, where lv is the location, cv shows the maximum capacity, Γv is
the set of tasks to be completed, and Sv is the schedule of Γv.

The schedule Sv = 〈l1, l2, ..., ln〉, where li is a pickup or delivery location of
an assigned task. Note that there are several constraints: (i) a task only can be
assigned to an agent; (ii) all tasks only can be delivered after picking up; (iii)
whenever the unoccupied capacity cv = cv − ∑

τ∈Γv
wτ ≥ 0.

Definition 3 (Cost). The cost of v completing τ , which contains travel cost
and delay cost, is denoted as follows,

c(v, τ) = α · t(v, τ) + (1 − α) · d(v, τ) (1)

where α ∈ (0, 1) is a factor to balance the travel cost and delay cost. t(v, τ)
is the travel distance, and delay cost d(v, τ) = max(tvτ − tτ , 0), where tvτ is the
actual completion time of v completing τ . For simplicity, we assume that the unit
travel distance cost and unit delay cost are both 1. Then, we formally define the
MLAPD problem as follows.

Definition 4 (MLAPD problem). Given a set of agents and a stream of
tasks, the MLAPD problem aims to assign tasks to multi-load agents and plan
conflict-free paths to minimize the total cost C(V, Γ) =

∑
v∈V,τ∈Γ c(v, τ).

The MLAPD problem is NP-hard because we can easily construct an instance
of the MLAPD problem and map it to a classic NP-hard problem named the
Vehicle Routing Problem. We further prove that the competitive ratio of the
MLAPD problem cannot be guaranteed by online deterministic algorithms.

288 Y. Li et al.

Theorem 1. The competitive ratio of the MLAPD problem cannot be guaran-
teed by online deterministic algorithms.

Proof. We assume that there is an online deterministic algorithm ALG that can
minimize the total cost while guaranteeing a constant competitive ratio c in the
MLAPD problem. The total cost of ALG is no more than c times of an oblivious
adversary OPA, who knows all release information of tasks before the entire
process. In other words, if we find an instance where the ratio of the total cost
of ALG to OPA is more than c, no c−competitive algorithm exists.

Fig. 1. An instance of an agent completing a task

We construct an instance as shown in Fig. 1. There is an agent v1 and grids
l1, l2, ..., l6. A task τ appears at time 1 with the deadline 4. The pickup location
lpτ and the delivery location ldτ are l1 and l4, respectively. Meanwhile, there will
be n agents continuously passing through l3 at time 4 following the path from l6
to l5. The tasks assigned to these n agents can be completed exactly before the
deadlines. OPA knows the release information of τ , so v1 in OPA can move to l1
and pick τ up at time 1 immediately. The total cost of OPA is α·3+(1−α)·0 = 3α
because v1 does not have conflicts with other agents at l3 when the time is 3.
However, for ALG, v1 departs at time 1 because ALG assigns τ to v1 after τ is
released. Therefore, v1 in ALG will arrive at l3 when time is 4, which conflicts
with other n agents, i.e., the total cost of ALG is α ·3+(1−α) ·n = n+(3−n)α.
Then, the competitive ratio of ALG to OPA is c = n+(3−n)α

3α . In conclusion,
c → ∞ if n is large enough. Thus, no c−competitive algorithms exist and this
theorem is correct.

3 Solution

To solve the MLAPD problem, in this section, we first propose an efficient task
assignment algorithm to quickly assign tasks to suitable multi-load agents and
then propose a novel dynamic multi-agent path finding algorithm to find conflict-
free paths in real-time scenarios.

3.1 Cost-Based Task Assignment Algorithm

Task assignment is one of the core components of the MLAPD problem. Existing
works [5,12] assign the task to the nearest agent and ignore other more suitable

Multi-Load Agent Path Finding for Online Pickup and Delivery Problem 289

agents so that they cannot find the most suitable agent. To address this draw-
back, we formulate the task assignment as a min-cost max-flow problem and
propose a Cost-Based Task Assignment (CBTA) algorithm. In what follows, we
first introduce the mathematical model. We denote the directed agent-task graph
as G, where N is the node set, and A is the arc set, i.e., G = 〈N,A〉. Except
for the source and the sink, each node i ∈ N can be an agent or a task. The
details of the capacity uij and the cost cij of each arc (i, j) ∈ A are shown in
Algorithm 1 in detail. Briefly, the mathematical model of task assignment in the
MLAPD problem is shown below,

Minimize C(V, Γ) =
∑

(i,j)∈A

cijxij (2)

subject to
∑

j:(i,j)∈A

xij −
∑

j:(i,j)∈A

xji = b(i), for all i ∈ N (3)

0 ≤ xij ≤ cv, for all (i, j) ∈ A (4)

where xij denotes the flow from the node i to the node j and b(i) is the supply
or the demand of each node. Note that b(i)s of all agent or task nodes are 0
because they are intermediate nodes.

Following this model, the CBTA considers the costs between all released tasks
and all agents with unoccupied capacity and quickly assigns each task to the most
suitable agent to minimize the total costs in each batch. More specifically, we first
construct an agent-task graph, which contains a source, a sink, agents, and tasks.
Then, we run the Successive Shortest Path (SSP) algorithm, an efficient min-
cost max-flow algorithm, to find the minimum cost maximum flow on this graph,
which means finding the best assignment between agents and tasks. Next, we
show the pseudo-code of CBTA in Algorithm 1 and analyze the time complexity.

Algorithm Detail. The pseudo-code is shown in Algorithm 1, where the input
is an agent set V and a task set Γ and the output is an agent-task assignment
M. In the beginning, we initialize an assignment M and an agent-task graph G
by ∅. We also set a source S and a sink T (line 1). After that, we connect the
source S with each agent v. 〈S, v, cv, 0〉 means the capacity of arc (S, v) is the
unoccupied capacities cv and the cost is 0 (lines 2–3). Meanwhile, we connect
each task with the sink and set the arc capacity to 1, which means each task can
be assigned once (lines 4–5). After that, we first get the insert location set I ′,
which is decided by the deadline constraint (line 10). Then, we calculate the costs
between tasks and agents by trying to insert the task into each adjacent location
pair in the location set I ′ and add edges with costs into G (lines 6–16). Note that
the edge costs between source and agents or tasks and sink are all 0 but the edge
costs between agents and tasks are costs we have calculated. After constructing
the agent-task graph, we call the SSP algorithm to find the minimum cost flow

290 Y. Li et al.

Algorithm 1: CBTA Algorithm
Input: An agent set V , a task set Γ
Output: An agent-task assignment M

1 Initialize an assignment M, an agent-task graph G, a source point S, a sink
point T ;

2 foreach v ∈ V do
3 Add 〈S, v, cv, 0〉 into G;
4 foreach τ ∈ Γ do
5 Add 〈τ, T, 1, 0〉 into G;
6 foreach (v, τ) ∈ V × Γ do
7 Initialize an insert result set I;
8 c(v, τ) = ∞;
9 if cv > 0 then

10 Find the insert location set I′ from the schedule of agent v;
11 foreach adjacent location pair (li, li+1) ∈ I′ do
12 Insert lsτ , ldτ between li and li+1, respectively, and calculate path

lengths by calling A∗ algorithm;
13 Add path lengths into I;

14 Get the minimum insert result and calculate c(v, τ);

15 if c(v, τ) is not ∞ then
16 Add 〈v, τ, 1, c(v, τ)〉 into G;

17 M ← call SSP algorithm based on G;
18 while ∃ tasks can be packaged do
19 Compare costs between packaged or not and packaged these tasks if can

improve the result;
20 Update M;

21 return M;

on G (line 17). Finally, if any two tasks are assigned to the same agent and have
the same insert location, we try to package them. If packaged tasks can reduce
the total costs of the assignment, we update M and return M (lines 18–21).

Theorem 2. The time complexity of Algorithm 1 is O(|V ||Γ |(k + klogk) +
n2logn), where |V | and |Γ | are the number of agents and the number of tasks,
k is the number of grids in the warehouse, and n is the number of edges in the
agent-task graph.

Proof. O(|V |) is the time complexity of connecting source and agents, where |V |
is the number of agents (lines 2–3). O(|Γ |) is the time complexity of connecting
tasks and sink, and |Γ | is the number of agents (lines 4–5). When we connect
agents and tasks, the time complexity is O(|V ||Γ |(cv + |I ′|(k+klogk))), where k
is the number of grids in the warehouse, cv is the maximum capacity of the agent,
and |I ′| is the maximum length of the potential insert location set. Note that
O(|V ||Γ |(cv + |I ′|(k+klogk))) can be simplified to O(|V ||Γ |(k+klogk)) because
cv is a constant and |I ′| ≤ 2cv (lines 6–16). The time complexity of the SSP
algorithm is O(mncv +n2cvlogn), where m and n are the numbers of nodes and

Multi-Load Agent Path Finding for Online Pickup and Delivery Problem 291

edges in the network, i.e., constructed agent-task graph. Specifically, ncv is the
maximum supply in the network. O(m+nlogn) is the time complexity of solving
the shortest path problem with nonnegative arc lengths in the network (line
17). In addition, O(|Γ |) is the time complexity of packaging tasks (lines 18–20).
Therefore, the time complexity of Algorithm 1 is O(|V |+2|Γ |+|V ||Γ |(k+klogk)+
mncv + n2cvlogn), which can be simplified to O(|V ||Γ |(k + klogk) + n2logn).
This completes the theorem.

3.2 Dynamic Conflict-Based Search Algorithm

Path finding is considered another core component to solving the MLAPD prob-
lem. Previous works [4,5] use the space-time A∗ algorithm to find conflict-free
paths for agents. Although the space-time A∗ algorithm is highly efficient, their
solutions plan new paths while avoiding conflict with existing paths, which causes
existing paths to affect the qualities of the new paths. To solve this issue, we
propose the Dynamic Conflict-Based Search (DCBS) algorithm, which plans
the conflict-free paths for agents dynamically. Briefly, the DCBS only finds the
conflict-free paths in the current batch for all agents and ignores subsequent
conflicts. Therefore, DCBS has two advantages. One is that compared with the
CBS algorithm which finds entire conflict-free paths, DCBS has better efficiency
because it focuses on solving a few conflicts in one batch. The other is that
DCBS allows existing paths to be changed when planning new paths, so it over-
comes the disadvantage of the space-time A∗ algorithm. Moreover, we also use a
heuristic method to further improve the efficiency of DCBS to satisfy real-time
requirements. In what follows, we present the DCBS algorithm in detail.

Algorithm Detail. We present the pseudo-code of the DCBS algorithm in
Algorithm 2, where the input is an agent set V and a batch size b and the
output is a planning path set of current batch P. First, we initialize P, an
empty node set N , and a root node nroot (line 1). Then, we calculate the paths
in the current batch for all agents and add these paths into P (lines 2–4). For
nroot, we update its solution, constraint, and cost by P, ∅, and the sum of all
paths’ lengths in P, respectively (lines 5–7). Then, we add nroot into N and
select the node with minimum cost in N as the target node nt (lines 8–9). Note
that nroot is the only node in N currently, so nroot is the current target node nt.
If there is no conflict in nt.solution, we return P. Otherwise, we create two child
nodes nl and nr, and add the conflict into these two nodes’ constraints (lines
10–12). Note that the solutions and costs of child nodes are the same as nt. After
that, we use the UpdatePaths(·) to update the solutions of child nodes (line 13).
Specifically, UpdatePaths(·) uses the space-time A∗ algorithm to find the new
path (the length equals b) for one agent while prohibiting the other agent from
passing the conflict grid at the conflict time based on the constraint. Moreover,
we use the sum of all paths’ lengths and conflicts’ number of each child node as
its cost and add child nodes into the node set N (lines 14–15). Then, we find
the target node from N as above (line 16) and repeat the loop until no conflicts
exist. Finally, we return the corresponding planning path set P (lines 17–18).

292 Y. Li et al.

Algorithm 2: DCBS Algorithm
Input: An agent set V , a batch size b
Output: A planning path set P

1 Initialize a planning path set P, a node set N , a root node nroot;
2 foreach v ∈ V do

3 Calculate the path pb
v of v in the current batch b;

4 Add pb
v into P;

5 nroot.solution ← P;
6 nroot.constraint ← ∅;
7 nroot.cost ← the sum of all paths’ lengths in P;
8 Add nroot into N ;
9 Select the node with minimum cost in N as the target node nt;

10 while ∃ conflict in nt.solution do
11 N ← remove nt from N ;
12 Create two child node nl and nr for conflicted agents and add

corresponding conflict into nl.constraint and nr.constraint;
13 Update nl.solution and nr.solution ← UpdatePaths(·);
14 Update nl.cost and nr.cost based on the sum of all paths’ lengths and

conflicts’ number in their solution;
15 Add nl and nr into N ;
16 Select the node with minimum cost in N as the target node nt;

17 P ← nt.solution;
18 return P;

Analysis. If the total number of conflicts |C| is known in Algorithm 2, the time
complexity can be computed as O((|V | + |C|)(k + klogk)). O(|V |(k + klogk))
is the time complexity of calculating the solution of the root node (lines 2–4).
O(|C|(k + klogk)) is the time complexity of searching the node with a conflict-
free solution (lines 10–16). Note that the time complexity of computing conflicts’
number in the solutions of nodes is O(|C|b), which can be ignored because batch
size b is a given constant (lines 14). Nevertheless, the conflicts’ number |C|
is dynamically changed when choosing different target nodes to split, and the
number of conflicts shows an exponential explosive growth trend with the number
of agents. Therefore, it is difficult to determine the number of conflicts, i.e., it is
hard to compute the time complexity of the DCBS algorithm.

To improve the efficiency of the DCBS algorithm in practice as possible,
following existing works [10,14], we use a heuristic method to accelerate the
search for the most likely conflict-free node. Briefly, as shown in Algorithm 2
(line 14), we count the conflicts number in the solution of each node and add
this value into the cost of the node. After that, the minimum cost node means
not only fewer costs but also fewer potential conflicts. In other words, we are
more likely to find the conflict-free paths set when selecting the minimum cost
node.

Multi-Load Agent Path Finding for Online Pickup and Delivery Problem 293

4 Empirical Study

In this section, we first show the experimental settings containing the map,
parameters, compared algorithms, and metrics. Then, we present the experi-
mental results and analyses.

4.1 Experimental Settings

We perform all evaluations in a 21× 35 pickup and delivery warehouse map,
which is widely used in many related works [4,5,12]. The warehouse is shown
in Fig. 2, where blue grids are pickup and delivery points, black grids are obsta-
cles or walls, white grids are corridors, and orange grids represent the current
locations of agents.

Fig. 2. A warehouse map with 21 × 35 grids

Moreover, all tasks are released in one hour with weight 1, and are executed
in an online fashion. We set α to 0.5 to balance the travel cost and delay cost.
All parameter settings are listed in Table 1, and the default values are bold.

Table 1. Parameter settings

Parameter Value

of Tasks |Γ | 2000, 4000, 6000, 8000, 10000

of Agents |V | 10, 20, 30, 40, 50

Maximum capacity c 1, 2, 3, 4 , 5

Batch size b 5 s, 10 s, 15 s, 20 s,3 0 s

We compare our algorithm CBDC which first uses the CBTA algorithm (see
Sect. 3.1) to assign tasks and then uses the DCBS algorithm (see Sect. 3.2) to find
paths in each batch for agents, the TPMC [5] that assigns tasks to the nearest
agents and uses the space-time A∗ algorithm to plan paths, and the RMCA [4]
that assigns tasks to the agents with the minimum cost and also plans paths
by the space-time A∗ algorithm. More specifically, we evaluate the effectiveness
of all algorithms by completion ratio (CR) and total cost (TC) and test the
efficiency by the average processing time of each batch (PT).

294 Y. Li et al.

Fig. 3. Performance of |Γ | , |V | vs. CR, TC, and PT

4.2 Experimental Results

Effect of the Task Number |Γ |. We show the effect of task number |Γ | in
Figs. 3(a), 3(b), and 3(c). When increasing |Γ |, as the number of agents and
the maximum capacity are constants, i.e., the maximum transport capability is
limited, the CRs of all algorithms decrease. Among them, CBDC performs best,
its CR dominates TPMC and RMCA and the TC is also better than them, e.g.,
when |Γ | = 2k, the TC of RMCA is close to CBDC but still 0.38% higher. When
|Γ | > 6k, the TC of CBDC does not increase showing that it cannot serve more
tasks. However, more tasks mean CBDC can assign more proper tasks to agents,
so the total cost has a slight decrease. Moreover, PTs of all algorithms raise
when extending the task number.

Effect of the Agent Number |V |. The effect of the agent number |V | is
plotted in Figs. 3(d), 3(e), and 3(f). When we increase |V |, more agents can
serve more tasks so all CRs raise. CBDC has the best CR. Note that the CR of
CBDC is even 138.33% higher than that of TPMC when |V | = 10. As RMCA
considers the task assignment between all agents and tasks in each batch, RMCA
performs similarly to TPMC and has a little improvement in CR. In addition,
CBDC plans conflict-free paths dynamically. Therefore, compared with TPMC
and RMCA, CBDC has a similar TC with serving more tasks simultaneously.
TPMC has the best PT as it only tries to assign each task to the nearest agent
with unoccupied capacities. Overall, CBDC can serve more tasks than other
algorithms but reduce TC while satisfying real-time requirements.

Effect of the Maximum Capacity c. Increasing the maximum capacity of
each agent also means increasing the maximum transport capability of the entire

Multi-Load Agent Path Finding for Online Pickup and Delivery Problem 295

Fig. 4. Performance of c, b, vs. CR, TC, and PT

warehouse. Therefore, we can observe that the CR of CBDC raises with extend-
ing c and the TC also increases because agents complete more tasks. When the
capacity is 1, the CR of CBDC is 4.31% higher than RMCA and its TC is
12.41% lower than TPMC. It is worth noting that TPMC and RMCA do not
have an expected increase in CR. The main reason is that they use A∗ to plan
conflict-free paths. When we extend c, more previous paths mean the lengths of
new paths increase, so the TCs increases but the CRs even decrease. It is worth
noting that when c = 5, CBDC has a similar PT with TPMC but serves more
than twice the number of tasks than TPMC.

Effect of the Batch Size b. As the increase of batch size b, each batch contains
more release tasks. However, the fixed number of agents and capacities limit the
maximum transport capability, so CRs of TPMC and RMCA are almost no
changes. It is inserting that CBDC can find better task assignment when we
extend b because it considers the assignments between all agents and release
tasks in each batch. Therefore, the TC of CBDC decreases when b ≤ 15 because
of better assignments and increases when b > 15 because of serving more tasks.

5 Conclusion

In this paper, we formally define the MLAPD problem and analyze its hardness.
Existing works cannot cope with the MLAPD problem well. In response, we pro-
pose an efficient task assignment algorithm to assign tasks to the most suitable
multi-load agents and a novel dynamic multi-agent path finding algorithm to find
conflict-free paths for agents to complete assigned tasks. Extensive experiments

296 Y. Li et al.

show that our solution can complete an additional 4.31%∼138.33% of tasks and
save 0.38%∼12.41% of total costs while meeting real-time requirements. In the
future, we plan to extend our proposed algorithms to schedule heterogeneous
agents, which is a more complex but realistic scenario.

Acknowledgements. This work is financially supported by Shenzhen Sci-
ence and Technology Program under Grant No.GXWD20220817124827001 and
No.JCYJ20210324132406016.

References

1. Amazon. https://logistics.amazon.com/marketing
2. Cainiao (2021). https://www.cainiao.com
3. Chen, X., Feng, L., Wang, X., Wu, W., Hu, R.: A two-stage congestion-aware

routing method for automated guided vehicles in warehouses. In: Proceedings of
IEEE International Conference on Network, Sensing and Control, vol. 1, pp. 1–6
(2021)

4. Chen, Z., Alonso-Mora, J., Bai, X., Harabor, D.D., Stuckey, P.J.: Integrated task
assignment and path planning for capacitated multi-agent pickup and delivery.
IEEE Rob. Autom. Lett. 6(3), 5816–5823 (2021)

5. Çilden, E., Polat, F.: Multiagent pickup and delivery for capacitated agents. In:
Proceedings of PAAMS International Conference, pp. 76–87 (2022)

6. Dang, Q., Singh, N., Adan, I., Martagan, T., van de Sande, D.: Scheduling het-
erogeneous multi-load AGVS with battery constraints. Comput. Oper. Res. 136,
105517 (2021)

7. Goldenberg, M., et al.: Enhanced partial expansion A. Artif. Intell. Res. 50, 141–
187 (2014)

8. Hu, H., Jia, X., He, Q., Fu, S., Liu, K.: Deep reinforcement learning based AGVS
real-time scheduling with mixed rule for flexible shop floor in industry 4.0. Comput.
Ind. Eng. 149, 106749 (2020)

9. JD. https://www.jdl.cn
10. Li, J., Ruml, W., Koenig, S.: Eecbs: a bounded-suboptimal search for multi-agent

path finding. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, pp. 12353–12362 (2021)

11. Liu, M., Ma, H., Li, J., Koenig, S.: Task and path planning for multi-agent pickup
and delivery. In: Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (2019)

12. Ma, H., Li, J., Kumar, T.K.S., Koenig, S.: Lifelong multi-agent path finding for
online pickup and delivery tasks. In: Proceedings of the International Conference
on Autonomous Agents Multiagent Systems, pp. 837–845 (2017)

13. Salzman, O., Stern, R.: Research challenges and opportunities in multi-agent path
finding and multi-agent pickup and delivery problems. In: Proceedings of the Inter-
national Conference on Autonomous Agents and MultiAgent Systems, pp. 1711–
1715 (2020)

14. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for opti-
mal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

15. Shi, D., Tong, Y., Zhou, Z., Xu, K., Tan, W., Li, H.: Adaptive task planning
for large-scale robotized warehouses. In: Proceedings of the IEEE International
Conference on Data Engineering, pp. 3327–3339 (2022)

https://logistics.amazon.com/marketing
https://www.cainiao.com
https://www.jdl.cn

Improved Sourcewise Roundtrip Spanners
with Constant Stretch

Eli Stafford and Chunjiang Zhu(B)

Department of Computer Science, UNC Greensboro, Greensboro, NC, USA
chunjiang.zhu@uncg.edu

Abstract. Graph spanners are a sparse subgraph of a graph such that
shortest-path distances for all pairs of vertices are approximately pre-
served with a factor called stretch, and roundtrip-spanners are defined
for directed graphs to preserve roundtrip distances instead of one-way
distances. Sourcewise roundtrip-spanners can approximate roundtrip dis-
tances for only some pairs of vertices S×V for source vertices S ⊆ V and
are more generalized than traditional all-pairs roundtrip-spanners. While
general roundtrip-spanners have made progress in the realm of constant
stretch, it is unknown whether constant stretch (with small number of
edges dependent on |S|) can be achieved in the sourcewise setting. In this
paper, we provide an algorithm that, for a weighted, directed graph with
n vertices, m edges G and a set of sources S of size s, constructs a source-
wise roundtrip-spanner with stretch 3 and Õ(n

√
s) expected edges in

Õ(ms) time. Moreover, we develop a faster Õ(m
√

n/ε2)-time algorithm
with stretch (5+ε) and Õ(n

√
s/ε2) edges when S is randomly picked with

size s = Ω(
√

n). Our algorithms combine ideas from [RTZ08,RTZ05] and
adapt the algorithm of [DW20] to the sourcewise case.

Keywords: Graph Spanners · Roundtrip Spanners · Graph
Algorithms · Randomized Algorithms

1 Introduction

Graph spanners are sparse graph structures that approximate pairwise shortest-
path distances in graphs [PS89]. In an undirected graph G(V,E), a spanner of
stretch α, or called α-spanner, is a subgraph H(V,E′ ⊆ E) of G such that for
every u, v ∈ V , their distance in H is at most α times of their original distance in
G. It was well-established that for an integer k > 1, every undirected graph on n
vertices has a (2k − 1)-spanner of size (number of edges) O(n1+1/k) [ADD+93,
TZ05]. The definition of spanners can be easily extended to directed graphs
but it becomes trivial in this setting because of the well-known lower bound
Ω(n2) on the size. Research efforts were then devoted to roundtrip-spanners: a
k-roundtrip-spanner is a subgraph that preserves all-pairs roundtrip distances

Chunjiang Zhu is supported by UNC Greensboro Start-up Funds and Faculty First
Award.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 297–309, 2024.
https://doi.org/10.1007/978-3-031-49190-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_21&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_21

298 E. Stafford and C. Zhu

up to a factor of k [RTZ08], where the roundtrip distance between u, v ∈ G
is the distance from u to v plus the distance from v to u in G. Chechik et
al. [CLRS20] proposed algorithms that construct a roundtrip-spanner of stretch
O(k log log n) (or O(k log k)) and size Õ(n1+1/k) in time Õ(m1+1/k) with high
probability (whp), where m is the number of edges and Õ(·) hides polylog terms.
Moreover, they developed an algorithm that can compute a constant stretch 8-
roundtrip-spanner of Õ(n1.5) edges in Õ(m

√
n) time whp. Later in [DW20], the

stretch was improved to (5 + ε) while keeping other parameters asymptotically
the same. Chechik and Lifshitz [CL21] developed an algorithm that can compute
a 4-roundtrip-spanner of size O(n1.5) in time Õ(n2) w.h.p, which is optimal for
dense graphs of m = Θ(n2).

Recently, sourcewise roundtrip-spanners have been studied in [ZL17,ZHL21]
as a more general object of the all-pairs roundtrip-spanners. Given any source
vertex set S ⊆ V in a digraph G(V,E), a k-sourcewise-roundtrip-spanner is
a subgraph H(V,E′ ⊆ E) such that, for every u, v ∈ S × V , the roundtrip
distance between u and v in H is at most k times their original roundtrip dis-
tance in G. Traditional roundtrip-spanners (ones that are concerned with all
pairs V × V) have found concrete applications in networking and routing prob-
lems [SS10,RTZ08], and are closely related to cycle and girth approximation
[PRS+18,DW20,CL21]. Being generalized versions of these traditional struc-
tures, it is believed that sourcewise roundtrip-spanners can have wide algorithmic
applications, including sourcewise roundtrip distance oracles, roundtrip compact
routing schemes, and low distortion embeddings [ABS+20].

Sourcewise roundtrip-spanners concern themselves with a subset of possible
pairs (S ×V ⊆ V ×V), so for any source set a traditional k-roundtrip-spanner is
by definition also a valid k-sourcewise-roundtrip-spanner, though clearly larger
than optimal. The overarching goal of a sourcewise roundtrip-spanner algorithm
is to provide algorithms that can produce sourcewise roundtrip-spanners in faster
runtime and/or with fewer edges than these traditional algorithms when S ⊂
V . Here we also try and match the performance of previous algorithms when
S = V , thereby making our algorithms true generalizations. Previous sourcewise
roundtrip-spanner results include the algorithm of Zhu and Lam [ZL17] that
attained stretch (2k + ε) and size Õ(ns1/k) in time Õ(ms), where s is the size
of S. Zhu et al. [ZHL21] then improved the running time to nearly linear time
of Õ(ms1/k) while having O(k log n) stretch for Õ(ns1/k) edges. These results
outperform general roundtrip-spanners when s is small. While general roundtrip-
spanners have made progress in the realm of constant stretch, it is still open
whether constant stretch with small number of edges dependent on |S| can be
achieved in sourcewise roundtrip-spanners.

Our Contributions. In this paper, we answer the question affirmatively by
constructing sourcewise roundtrip-spanners of stretch 3 and 5 + ε. The main
results are formally provided in Theorems 1 and 2. Our results essentially pro-
duce a 3-sourcewise-roundtrip-spanner with Õ(n

√
s) edges in Õ(ms) time, and

when s = Ω(
√

n), a (5 + ε)-sourcewise-roundtrip-spanner with asymptotically
the same size in Õ(m

√
n/ε2) time. One might enforce the stretch (2k + ε) of

Improved Sourcewise Roundtrip Spanners with Constant Stretch 299

[ZL17] (or O(k log n) in [ZHL21]) to match our stretch 3, but the size becomes
Ω(ns2/3), much larger than our size Õ(n

√
s). In addition, our size matches

the size of 3-sourcewise spanner in undirected graphs (up to polylog factor)
[RTZ05]. One may also set the spanner size of [ZL17,ZHL21] to Õ(n

√
s), but

their stretch becomes (4+ ε) and O(log n), much larger than our stretch 3. That
is, our algorithm exhibits a better stretch-size tradeoff than the arts in source-
wise roundtrip-spanners. But the running time Õ(ms) is large especially when s
is a large integer. When S is a uniform random subset of V of size s = Ω(

√
n),

we develop the second algorithm to improve the running time to Õ(m
√

n/ε2) at
the expense of a larger stretch (5 + ε). Compared with the all-pairs roundtrip-
spanners [DW20], we reduce the number of edges from Õ(n1.5 · log2(M)/ε2) to
Õ(n

√
s · log2(M)/ε2).

Theorem 1 (Stretch 3). For a graph G(V,E) with n vertices and m edges,
and a source vertex set S ⊆ V of size s, there exists an algorithm that constructs
a 3-sourcewise-roundtrip-spanner with Õ(n

√
s) expected edges in Õ(ms) time.

Theorem 2 (Stretch 5 + ε). For a graph G(V,E) with edge weights in
{1, ...,M}, randomly sampled source vertex set S ⊆ V of size s = Ω(

√
n) and

a parameter ε > 0, there is an Õ(m
√

n log2(M)/ε2)-time algorithm that whp
constructs a (5 + ε)-sourcewise-roundtrip-spanner of Õ(n

√
s log2(M)/ε2) edges.

Related Work. Graph spanners in undirected graphs have received extensive
studies because of the power in approximating shortest-path distances. Dis-
tances can be preserved in different formats, e.g., multiplicative stretch αd
[ADD+93,TZ05], additive surplus d + β [EP04,Che13,Woo10] or mixed form
αd + β [Pet09,BKMP10], where d is the original distance. For more details
and variants of spanners, readers are referred to the good survey [ABS+20]. In
digraphs, there have been efforts for improving the stretch-size-runtime tradeoff
of roundtrip-spanners. Cen et al. [CDG20] proposed an algorithm that can con-
struct a (2k − 1)-roundtrip-spanner of size O(kn1+1/k log n) in Õ(kmn logM)
time, improving the stretch factor in a prior work [ZL18]. Pachocki et al.
[PRS+18] devised a fast algorithm that constructs an O(k log n)-roundtrip-
spanner of size Õ(n1+1/k) in time Õ(mn1/k) whp. Chechik et al. [CLRS20]
improved the stretch to O(k log log n) and O(k log k) respectively, while using
the same runtime as the algorithm in [PRS+18]. In addition, they developed
an Õ(m

√
n) time algorithm that computes an 8-roundtrip-spanner of expected

Õ(n1.5) edges. Later in [DW20], the stretch was improved to (5+ ε) for the same
runtime. Recently, the stretch was further reduced to 4 with runtime Õ(n2) and
the polylog factor in the size was also peeled off [CL21].

Another thread of works focuses on approximating distances for some pairs
of vertices, instead of all pairs. Coppersmith and Elkin [CE06] studied exact
sourcewise and pairwise preservers that preserve distances in S ×V with sources
S ⊆ V and P ⊆ V × V , respectively. They showed that for a set of sources
S of size s and a set of vertex pairs P of size p, every graph G contains a
sourcewise preserver of size O(min{n1/2s2, ns}) and a pairwise preserver of size

300 E. Stafford and C. Zhu

O(min{np1/2, n1/2p}). Recently, Bodwin [Bod17] improved the size of the pair-
wise preserver to O(n + n2/3p), even in the case of digraphs. Roditty et al.
[RTZ05] proposed an algorithm that constructs a sourcewise (2k −1)-spanner of
size O(kns1/k) in expected ˜O(kms1/k) time. Sourcewise roundtrip-spanners were
firstly studied in [ZL17] that constructs (2k + ε)-sourcewise-roundtrip-spanners
of size Õ(ns1/k) in time Õ(ms). Recently, a faster algorithm [ZHL21] can con-
struct, in nearly linear time Õ(ms1/k), O(k log n)-sourcewise-roundtrip-spanners
of the same size.

2 Definitions and Notations

A directed graph G(V,E,W) consists of a vertex set V , an edge set E and a
weight function W . W assigns weights to each edge e ∈ E and can be omitted
from the presentation if it is clear from the context. The maximum edge weight
amongst all edges is denoted by M . A (one-way) shortest path from u to v in G
is a path with the minimum distance amongst all paths from u to v in G. This
can be represented in shorthand as u → v. Its distance is called the (one-way)
distance, dG(u, v) or dG(u → v), from u to v in G and the subscript G can
be ignored when clear. A roundtrip shortest path between u and v in G is the
concatenation of a shortest path from u to v and a shortest path from v to u in
G. Its distance is called the roundtrip distance d(u � v) between u and v in G.

An (out-)shortest path tree from a vertex v to an arbitrary vertex set U in G
is a subgraph that is a tree T of G, such that for every u ∈ U , d(v → u) in T is
d(v → u) in G. This tree is said to be centered at u. Analogously for in-shortest
path trees. We follow a common assumption that all vertex degrees are at most
�m/n� since otherwise, we can construct such a graph with the same number of
vertices and edges as the original graph using the technique in [CLRS20].

3 3-Sourcewise-Roundtrip-Spanner

In this section, we present an algorithm for constructing 3-sourcewise-roundtrip-
spanners. We combine ideas from Roddity et al. [RTZ08,RTZ05] and provide a
generalization of a result from [RTZ08] which presented a 3-roundtrip-spanner
in the form of a routing scheme.

For graph G(V,E), their premise is to sample a set A from V at a probability
of 1/

√
n. The shortest paths from all vertices v ∈ V to and from every vertex

a ∈ A are recorded in the spanner H. Then for all vertices v ∈ V , they define the
center cent(v), which is the vertex in A with the minimum roundtrip distance to
v. They can then conclude that there are Õ(

√
n) vertices with roundtrip distance

to v no larger than1 to their center whp, or called bunch B(v)2. Any vertex in
this “short” set has its shortest path directly recorded. They then prove any

1 When roundtrip distances are the same, use one-way distances and vertex identifiers
for comparison. See their definition of roundtrip ordering which we do not need.

2 Called clusters in Sect. 5 of [RTZ08].

Improved Sourcewise Roundtrip Spanners with Constant Stretch 301

vertex outside of this set B(v) has a bounded stretch via the triangle inequality.
To generalize this approach to the sourcewise case there were two main obstacles.
Firstly, it was unclear that how to define bunches and cent() in the sourcewise
setting. Secondly, their approach describes a single direction. When S = V , one
only has to approximate one-way paths, as all these one-way paths together
create a roundtrip-spanner. In contrast, we need to approximate all paths v → u
but also all paths u → v, where u ∈ S and v ∈ V .

For a source vertex set S of size s, we first compute a subset A ⊆ S of expected
size O(

√
s log s) by independently sampling each source in S with probability of

s−0.5. For each u ∈ S, let its center be the sampled source with the minimum
roundtrip distance with u and ties are broken arbitrarily. That is,

cent(u) ∈ {a ∈ A | d(a � u) ≤ d(q � u),∀q ∈ A}.

We then apply Dijkstra’s search from each vertex a ∈ A in both forward and
backward directions and add the edges of the in- and out-shortest path trees
into the spanner H. Now the number of edges in H is Õ(n

√
s). For each source

u ∈ S and every v ∈ V , we will bound the distance approximation in the v → u
direction as well as the u → v direction. We are able to identify the following
important subsets of sources S called bunches and bound their expected size.

Lemma 1. Using the sample set A and the definition of cent(), we can define,
for each v ∈ V , the set B(v) = {u ∈ S | d(v � u) ≤ d(cent(u) � u)} 3 such that
E[|B(v)|] ≤ 2

√
s.

Proof. Suppose for contradiction that E[|B(v)|] > 2
√

s. Because B(v) ⊆ S and
each vertex in S is sampled into A with probability 1/

√
s, whp there exists at

least one vertex of B(v) that is sampled and included in A. Let w ∈ B(v)∩A be
such a vertex without loss of generality. Since w = cent(w), we have d(v � w) >
d(w � cent(w)) = 0. This contradicts with w ∈ B(v), completing the proof. �

Next, we prove the following lemmas that are important to bound the number
of edges in the generated spanner. Lemma 2 is for controlling the number of
edges in the shortest paths from v ∈ V to sources B(v) while Lemma 3 is for
the shortest paths from sources B(v) to v.

Lemma 2. For any shortest path v → u, where v ∈ V and u ∈ B(v), for any
vertex w on that path, u ∈ B(w).

Proof. By definition of B(v), we have that d(v � u) ≤ d(cent(u) � u). Since w
is on the shortest path from v to u, we know that the roundtrip shortest path
v � u is a valid roundtrip path between u and w. Thus the distance of the
shortest roundtrip path v � u upper bounds the roundtrip shortest distance
d(w � u), i.e., d(w � u) ≤ d(v � u). Combining the two inequalities, we get
that d(w � u) ≤ d(cent(u) � u) and thus u ∈ B(w). �

3 Our definition of bunches is not the same as the classic definition in [RTZ05,RTZ08],

though they have the same name. Firstly, our bunches are only from S; Secondly,
the distance upper bound is d(cent(u) � u), which is based on u instead of v.

302 E. Stafford and C. Zhu

Algorithm 1. 3-Sourcewise-Roundtrip-Spanner
Input: G(V, E), S ⊆ V
Output: 3-sourcewise-roundtrip-spanner H
1: H ← ∅
2: A ← Samples of each u ∈ S with probability s−0.5

3: Run Dijsktra’s algorithm centered at each u ∈ S, creating in/out trees Ein(u) and
Eout(u) to/from all v ∈ V , recording each d(u → v), d(v → u), the edge f(v, u)
(the first edge on the path v → u) and l(u, v) (the last edge of u → v).

4: for all a ∈ A do
5: H ← H ∪ Ein(a) ∪ Eout(a)
6: for all u ∈ S do
7: C(u) ← {v ∈ V | d(v � u) ≤ d(cent(u) � u)} {u ∈ B(v) iff v ∈ C(u)}
8: for all v ∈ C(u) do
9: H ← H ∪ {f(v, u), l(u, v)}

10: return H

Lemma 3. For any path u → v where v ∈ V and u ∈ B(v), for any vertex w
on this path, u ∈ B(w).

Proof. By definition of B(v), we have d(v � u) ≤ d(cent(u) � u). Because w is
on the shortest path from u to v, we get that the roundtrip distance d(v � u) is
an upper bound on the roundtrip distance d(w � u), i.e., d(w � u) ≤ d(v � u).
Therefore, we have d(w � u) ≤ d(cent(u) � u) and thus u ∈ B(w). �

Algorithm 1 presents the algorithm for constructing 3-sourcewise-roundtrip-
spanners as in Theorem 1. We prove Theorem 1 through the following two lem-
mas, where H1 and H2 are a subgraph of the spanner H constructed in Algorithm
1 and referred to only for the purpose of the proof.

Lemma 4. For a graph G(V,E) on n vertices and a source vertex set S ⊆ V
of size s, we can create a spanner H1 such that for each v ∈ V and each u ∈ S,
there exists a path v → u such that dH1(v → u) < d(v → u) + d(v � u). The
expected number of edges in H1 is Õ(n

√
s).

Proof. We construct the spanner H1 by first including the edges of the in- and
out-shortest path trees from all a ∈ A. Then for v ∈ V and u ∈ B(v), we add
the first edge f(v, u) in the shortest path from v to u. Based on Lemmas 1 and
2, the expected number of edges in H1 is Õ(n

√
s).

By construction, for v ∈ V and u ∈ B(v), all edges in the shortest path from
v to u are included into H1 and thus dH1(v → u) = dG(v → u). For u ∈ S \B(v),
the distance is approximated by the path v → cent(u) and cent(u) → u. The
following inequality describes how the distance of this path is bounded:

dH1(v → u) = d(v → cent(u)) + d(cent(u) → u)
≤ d(v → u) + d(u → cent(u)) + d(cent(u) → u)
= d(v → u) + d(cent(u) � u)
< d(v → u) + d(v � u).

Improved Sourcewise Roundtrip Spanners with Constant Stretch 303

The first inequality follows from the triangle inequality, substituting d(v →
cent(u)) with d(v → u) + d(u → cent(u)), and the last inequality derives from
the fact that u �∈ B(v). �

Analogously, we can prove the following corollary for the u → v direction
based on Lemmas 1 and 3.

Corollary 1. For a graph G(V,E) on n vertices, and a source vertex set S ⊆ V
of size s, we can create a spanner H2 such that for each v ∈ V and each u ∈ S,
there exists a path u → v such that dH2(u → v) < d(u → v) + d(u � v). The
expected number of edges in H2 is Õ(n

√
s).

By combining Lemma 4 and Corollary 1, we get the stretch factor of 3 in
Theorem 1. For the running time, the computation of the sets B(v) for every
v ∈ V can be obtained by the “dual”, the clusters C(u) for every u ∈ S, where
u ∈ B(v) iff v ∈ C(u), and this incurs Õ(ms) time. It should be noted that in
undirected graphs, one can compute a similar set of clusters C(v) in expected
time Õ(m

√
s) by growing a shortest path tree from v and stopping when the

distance is large enough [RTZ05]. But the technique cannot be easily adapted to
digraphs since the growing in either forward or backward direction may include
more vertices than those in C(v). Thus the total running time is Õ(ms).

4 (5 + ε)-Sourcewise-Roundtrip-Spanner

To improve the running time Õ(ms) for s = Ω(
√

n), in this section, we present an
Õ(m

√
n/ε2)-time algorithm that whp constructs a (5+ ε)-sourcewise-roundtrip-

spanner of size Õ(n
√

s/ε2), while adding the assumption that the source set
S is randomly sampled from V uniformly rather than picked arbitrarily. The
assumption is motivated in practice that roundtrip distances from different parts
of the network (e.g., transportation networks) need to be approximated. Our
algorithm is an adaption of [DW20] from preserving all-pairs roundtrip distances
to only the sourcewise roundtrip distances.

Our algorithm starts by sampling a uniform random sample Q of 100
√

s log s
size from the source vertices S. This is one of the major changes in the sourcewise
case: sampling only from S instead of all vertices V . Then it computes the
shortest path trees T in(q), T out(q) into and out of each q ∈ Q and adds all the
edges in these trees to a subgraph H of G. Let V ′ be vertices that are sufficiently
close to vertices in Q in both directions, i.e., V ′ = {v ∈ V | ∃q ∈ Q, d(v, q) ≤ d
and d(q, v) ≤ d}. Then if the shortest path between two vertices u and v passes
through at least one vertex in V ′, we have dH(u, v) ≤ dG(u, v) + 2d.

Lemma 5. Let Q ⊆ S be a random sample of 100
√

s log s vertices from S. In
Õ(m

√
s) time we can compute the shortest path trees T in(q), T out(q) into and

out of each q ∈ Q. Let H be the subgraph of G consisting of the union of the
edges in these trees. H has at most Õ(ns0.5) edges. Let V ′ = {v ∈ V | ∃q ∈
Q, d(v, q) ≤ d and d(q, v) ≤ d}. For any two vertices u, v with their shortest path
passing through at least one vertex in V ′, we have dH1(u, v) ≤ dG(u, v) + 2d.

304 E. Stafford and C. Zhu

Proof. It is easy to see that the number of edges in H is Õ(ns0.5) since we add
the edges in the shortest path trees rooted at each of the 100

√
s log s vertices

in Q. Then let us focus on the (additive) distance approximation. Suppose that
there is some vertex x ∈ V ′ on the shortest path u → v. Let q ∈ Q be such that
d(x, q), d(q, x) ≤ d. Then

dH(u, v) ≤ dH(u, q) + dH(q, v) = dG(u, q) + dG(q, v)
≤ dG(u, x) + dG(x, q) + dG(q, x) + dG(x, v)
≤ dG(u, x) + dG(x, v) + 2d ≤ dG(u, v) + 2d

The first and second inequalities are due to the triangle inequality while the
last one is due to that x lies on the shortest path u → v. �

Following typical techniques in roundtrip-spanners [RTZ08,ZL17], we now
separate the roundtrip distances into logarithmic intervals and consider each
interval [(1 + ε)i, (1 + ε)i+1) for i ∈ [0, log1+ε(Mn)). We define V ′

i in terms of i,

V ′
i = {v ∈ V | ∃q ∈ Q : d(v, q) ≤ (1 + ε)i+2 and d(q, v) ≤ (1 + ε)i+2}.

For the shortest path from or to a source that contains at least one vertex
in V ′

i we can simply turn to Lemma 5 for the distance approximation. In the
following, we will concentrate on those shortest paths that do not go through
any vertex in V ′

i and show that they can be exactly preserved in the computed
spanner. Let Zi = V \ Vi. We can focus on the subgraph induced by Zi. For
each source u ∈ S in Zi, we would like to further separate vertices in Zi into
different parts according to their distance from u. For j ≤ i, let Bj(u) = {x ∈
V | (1 + ε)j ≤ d(u, x) < (1 + ε)j+1} and B

j
(u) = {x ∈ V | d(u, x) < (1 + ε)j+1}.

Also, let Zj
i (u) = Zi ∩ Bj(u) and Z

j

i (u) = Zi ∩ B
j
(u). To include the boundary

case, let Z∅
i (u) = Zi ∩ B∅(u) = Zi ∩ {x ∈ V | d(u, x) = 0}. When we say j ≤ i,

it means j = {∅, 1, ..., i}.
We show that for all j ≤ i, if the size of Zj

i (u) is larger than O(
√

n), we are
able to find a subset Z ′j

i (u) ⊂ Zj
i (u) of size O(

√
n) while guaranteeing that for

any vertex v with roundtrip distance from u, d(u � v) ∈ [(1 + ε)i, (1 + ε)i+1),
every vertex of the shortest path from u to v that is in Zj

i (u) must also be in
Z ′j

i (u). Then we can run a modified Dijkstra algorithm over Z ′j
i (u) for all j ≤ i to

get the shortest path from u to v where u ∈ S and d(u � v) ∈ [(1+ε)i, (1+ε)i+1).
Similarly for the backward direction, the shortest path from v to u ∈ S can be
computed efficiently by a modified Dijkstra search over some reduced subsets.
In the followings, we prove the forward case and the backward case is analogous.

We prove Lemma 7 for the computation of the reduced sets Z ′j
i (u). We need

Lemma 2.3 of [DW20], restated in Lemma 6, in the proof.

Lemma 6 (Lemma 2.3 in [DW20]). Let G = (V,E) be a digraph with integer
edge weights in {1, ...,M}. Let Z ⊆ V with |Z| > c log n (for c ≥ 100/ log(10/9))
and let d be a positive integer. Let R be a random sample of c log n vertices of
Z and define Z ′ = {z ∈ Z | d(z, r) ≤ d,∀r ∈ R}. If for every z ∈ Z there are at
most 0.2|Z| vertices v ∈ V so that d(z, v), d(v, z) ≤ d, then |Z ′| ≤ 0.8|Z|.

Improved Sourcewise Roundtrip Spanners with Constant Stretch 305

Lemma 7. Fix i ∈ [0, log1+ε(Mn)), β > 1, and α ∈ (0, 1). Let Q be a random
sample of Õ(sα) vertices from S, d = β(1 + ε)i+1, and V ′

i = {v ∈ V | ∃q ∈ Q :
d(v, q) ≤ d and d(q, v) ≤ d}. Then for each u ∈ S and j ∈ [0, log1+ε(Mn)),
we can compute a sample set Rj

i (u) of size O(log2 n) from Z
j

i (u) = Zi ∩ B
j
(u),

where the number of vertices in Z
j

i (u) of distance at most d from all vertices in
Rj

i (u) is O(n1−α), in Õ(mnα) time whp.

Proof. We first assume that one can get a random sample Rj
i (u) of size c log n

from Z
j

i (u). Consider any vertex w with at least 0.2|Zj

i (u)| vertices v ∈ V such
that d(w, v), d(v, w) ≤ d. If the size of Z

j

i (u) is no larger than 10n1−α, that set is
of small enough size to use without modification. If |Zj

i (u)| ≥ 10n1−α ≥ 10s1−α,
we have 0.2Z

j

i (u) ≥ 2s1−α. Then according to the assumption that S is randomly
sampled from V , whp, Q contains some q such that d(w, q), d(q, w) ≤ d and thus
w ∈ V ′

i . Therefore, for every w �∈ V ′
i (or w ∈ Zi), there are at most 0.2|Zj

i (u)|
vertices v ∈ V such that d(w, v), d(v, w) ≤ d. Using Lemma 6, we can perform
sampling recursively until getting a subset of size O(n1−α) from Z

j

i (u) that
contains all the vertices in Zj

i (u) with distance at most d to all sampled vertices.
Specifically, we start with Zj

i,0 = Z
j

i (u). For every k ∈ [0, 2 log n], we
get a random sample Rj

i,k of size O(log n) from Zj
i,k and let Zj

i,k+1 = {z ∈
Z

j

i (u) | d(z, r) ≤ d,∀r ∈ ∪k
l=0R

j
i,l}. Then according to Lemma 6, we have

|Zj
i,k+1| ≤ 0.8|Zj

i,k| and thus |Zj
i,k+1| ≤ 0.8k|Zj

i (u)|. After the last iteration,
|Zj

i,2 log n| ≤ 10n1−α. Rj
i (u) = ∪k

l=0R
j
i,l is of size O(log2 n).

Finally, the method of randomly sampling Rj
i (u) from the unknown Z

j

i (u)
can be adapted from [DW20] (See Procedure RandomSamples in Algorithm 2).
For each possible i, j, k, get a random sample Pi,j,k of Zi by sampling each vertex
with probability p = O(log n∗nα−1). For each of the Õ(nα) vertices in Pi,j,k, run
Dijkstra search in the forward and backward directions to get the distances from
and to every vertex in V . Then formulate the set T j

i,k = {w ∈ Pi,j,k |w ∈ Z
j

i (u)
and d(w, r) ≤ d,∀r ∈ ∪l<kRj

i,l} in polylog time by making use of the distances.
Since the sampling of Pi,j,k is independent, T j

i,k is a random sample of Zj
i,k by

picking each vertex with probability p. If |T j
i,k| > 10 log n, pick a random sample

of 10 log n vertices as Rj
i,k, which is also a random sample of Zj

i,k; otherwise, use
T j

i,k directly. The running time of this procedure is Õ(mnα). �

By applying Lemma 7 with α = 0.5 and β = 1+ε, we, in Õ(m
√

n) time, whp
get the sets Rj

i (u) of size O(log2 n) from Z
j

i (u) where the number of vertices in
Z

j

i (u) of distance at most (1 + ε)i+2 from all vertices in Rj
i is O(n0.5). Then we

compute Z ′j
i (u) = {v ∈ Z

j

i (u) | d(v, r) ≤ (1 + ε)i+2,∀r ∈ Rj
i (u)} and it has size

O(n0.5). The fact that for each x ∈ Zj
i (u) in a roundtrip shortest path u � v

with (1+ε)i ≤ d(u � v) ≤ (1+ε)i+1, x ∈ {w ∈ Z
j

i (u) | d(w, y) ≤ (1+ε)i+2,∀y ∈

306 E. Stafford and C. Zhu

Z
j

i (u)} has been revealed by [DW20]. To see this, d(x, y) ≤ d(x, u) + d(u, y) =
d(u � v) − d(u, x) + d(u, y) ≤ (1 + ε)i+1 − (1 + ε)j + (1 + ε)j+1 ≤ (1 + ε)i+2.
Therefore, all vertices x ∈ Zj

i (u) that are in a roundtrip shortest path u � v

with (1 + ε)i ≤ d(u � v) ≤ (1 + ε)i+1 must also be in Z ′j
i (u).

Algorithm 2. (5 + ε)-Sourcewise-Roundtrip-Spanner
Input: G(V, E), ε ∈ (0, 1), and sources S ⊆ V
Output: Roundtrip-spanner H
1: H ← ∅
2: Get a uniform random sample set Q of size 100

√
s log s from the sources S

3: for u ∈ Q do
4: Perform Dijkstra searches from and to u in G and add the edges in the computed

shortest path trees to H
5: for each i ∈ [0, log1+ε(Mn)) do
6: R1(�), ..., Ri(�), d(�) ← RandomSamples(G, i, ε, S)
7: for each u ∈ S do
8: H ← H ∪ ModDijkstra(G, u, i, ε, R1(u), ..., Ri(u), d(�))
9: return H;

RandomSamples
Input: G, i, ε, and sources S ⊆ V
Output: Rj(u) for all u ∈ S, j ≤ i, and d(p, v), d(v, p) for all p ∈ ∪j,kPj,k and v ∈ V
1: for each j ∈ {1, ..., i} do
2: for each k ∈ {1, ..., 2 logn} do
3: Let Pj,k ⊆ V be a uniform random sample of 100

√
n logn vertices.

4: for each p ∈ Pj,k do
5: Run Dijkstra’s to and from p to get for all v, d(p, v) and d(v, p)
6: for each u ∈ S do
7: for each j ∈ {0, ..., i} do
8: Rj(u) ← ∅
9: for each k ∈ {1, ..., 2 logn} do

10: T j
k (u) ← {p ∈ Pj,k | d(u, p) < (1 + ε)j+1 and ∀y ∈ Rj(u) : d(p, y) ≤ (1 +

ε)i+2}
11: if |T j

k (u)| < 10 logn then
12: Rj(u) ← Rj(u) ∪ T j

k (u)
13: Exit this loop (over k).
14: else
15: Let Rj

k(u) be a uniform random sample of 10 log n vertices from T j
k (u).

16: Rj(u) ← Rj(u) ∪ Rj
k(u)

17: return Rj(u) for all j ≤ i, u ∈ S, and d(p, v), d(v, p) for all p ∈ ∪j,kPj,k and
v ∈ V

Theorem 3. Let u ∈ S and i be fixed. Suppose that for every j ∈ {∅}∪{1, ..., i}
we have access to sets Z ′j

i (u) ⊆ Z
j

i (u) as defined above. Using these sets we can
define a modified Dijsktra’s algorithm which will, in Õ(m log(M)/(ε

√
n)) time,

Improved Sourcewise Roundtrip Spanners with Constant Stretch 307

ModDijsktra
Input: G, u, i, ε, R1(u), ..., Ri(u), d(�)
Output: Hu (set of edges)
1: F ← empty Fibonacci heap
2: Extracted ← empty hash table
3: F.insert(u, 0)
4: Hu ← ∅
5: while F is nonempty do
6: (x, d[x]) ← F.extractmin
7: Extracted.instert(x)
8: if for every r ∈ Rj(u), d(x, r) ≤ (1 + ε)i+2 then
9: for all y s.t (x, y) ∈ E do

10: if y �∈ Extracted then
11: if y is in F then
12: F.DecreaseKey(y, d[x] + w(x, y))
13: else
14: F.insert(y, d[x] + w(x, y))
15: Hu ← Hu ∪ {e(x, y)}

find the shortest paths from u to each v ∈ V , where those paths do not contain a
vertex of V ′

i . The Õ(
√

n log(M)/ε) edges returned by this algorithm contain all
these shortest paths.

Proof. We define our modified Djikstra’s algorithm on vertex u as follows (see
Procedure ModDijkstra in the Appendix). We begin by placing u in the
Fibonacci heap with d[u] = 0, and all others with d[−] = ∞. When we extract
a vertex x with estimate d[x], we determine the j for which (1 + ε)j ≤ d[x] ≤
(1 + ε)j+1. If d[x] = 0 we use our boundary case j = ∅. Then we determine if
x ∈ Z ′j

i (u). If it is not, we extract a new vertex. Otherwise, we go through all its
out-edges (x, y), and if d[y] ≥ d[x] + w(x, y), we update d[y] = d[x] + w(x, y). It
is not difficult to see that this search can find the shortest path from u to v ∈ V
with (1 + ε)i ≤ d(u � v) ≤ (1 + ε)i+1 that does not contain a vertex of V ′

i . It is
because for any v such that (1 + ε)i ≤ d(u � v) ≤ (1 + ε)i+1, and every j ≤ i,
every vertex on the shortest path u to v that is in Zj

i (u) is also in Z ′j
i (u).

Checking whether x ∈ Z ′j
i (u) = {v ∈ Z

j

i (u) | d(v, r) ≤ (1+ ε)i+2,∀r ∈ Rj
i (u)}

takes only polylog time: we know that x is always in B
j
(u), as d(u, x) ≤ d[x] <

(1+ε)j+1. Then we only need to check if x ∈ Zi (which is easy since the distances
from Q are known) and whether d(x, r) ≤ (1 + ε)i+2,∀r ∈ Rj

i (u), which takes
O(log2 n) time. Since we only go through the edges of at most O(

√
n log(Mn)/ε)

vertices (Lemma 7) and all vertex degrees are O(m/n), the running time
is O(m log(Mn)/(ε

√
n)). This algorithm produces at most O(

√
n log(Mn)/ε)

edges. �

Combining these theorems and lemmas yields the proof of Theorem 2.

Proof. (Theorem 2) Algorithm 2 summarizes the algorithms mentioned in the
above. We first prove the stretch factor. For roundtrip shortest path between

308 E. Stafford and C. Zhu

u ∈ S and v ∈ V with (1 + ε)i ≤ d(u � v) ≤ (1 + ε)i+1, if the one-way
shortest path u → v (or shortest path v → u) contains a vertex in V ′, then we
apply Lemma 5 with d = (1 + ε)i+2 to get that dH(u, v) ≤ d(u, v) + 2(1 + ε)i+2

(dH(v, u) ≤ d(v, u) + 2(1 + ε)i+2, respectively). Otherwise (i.e., the one-way
shortest path does not contain a vertex of V ′

i), Theorem 3 provides guarantee
that dH(u, v) = d(u, v) (or dH(v, u) = d(v, u)). In either case, we have

dH(u � v) ≤ d(u � v) + 4(1 + ε)i+2

≤ d(u � v)(1 + 4(1 + 3ε)) = d(u � v)(5 + 12ε).

As we run ModDijkstra (Theorem 3) for each u ∈ S and i ∈ [0, log1+ε(Mn)),
the final number of edges to be unioned with graph H is Õ(s

√
n log2(M)/ε2)

and the running time is Õ(ms log2(M)/(ε2
√

n)). Combining with Lemma 5, the
total number of edges in the spanner H is Õ(n

√
s + s

√
n log2(M)/ε2). Since

s = Ω(
√

n), we have n
√

s ≥ s
√

n and thus the size of H is Õ(n
√

s log2(M)/ε2).
By adding the Õ(m

√
n log(M)/ε) time to compute Rj

i (log1+ε(Mn) calls of
RandomSamples in Lemma 7) and Õ(m

√
s) time of Dijkstra’s from Q (Lemma

5), the overall running time is Õ(m
√

n log2(M)/ε2). �

5 Conclusion

We have developed two algorithms for the creation of sourcewise roundtrip-
spanners with specific stretch. Our first algorithm improves upon the thought to
be near optimal 3-roundtrip-spanner algorithm from [RTZ08], fully generalizing
to the sourcewise case. Our second algorithm acts as an alternative to the first,
create a spanner with worse stretch 5 + ε in exchange for a faster runtime in
the case that

√
n ≤ s. In the future, we will look at reducing the runtime of

our algorithm for the 3-sourcewise-roundtrip-spanner to O(n
√

s), as has been
done for most other sourcewise roundtrip-spanner solutions. We can also look
into improving further our 5 + ε result by removing the requirement for S to be
randomized.

References

[ABS+20] Ahmed, R., et al.: Graph spanners: a tutorial review. Comput. Sci. Rev.
37, 100253 (2020)

[ADD+93] Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse span-
ners of weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993)

[BKMP10] Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and
(α, β)-spanners. ACM Trans. Algorithms 7(1), 1–26 (2010)

[Bod17] Bodwin, G.: Linear size distance preservers. In: Proceedings of SODA Con-
ference, pp. 600–615 (2017)

[CDG20] Cen, R., Duan, R., Gu, Y.: Roundtrip spanners with (2k − 1) stretch. In:
Proceedings of ICALP Conference, pp. 24:1–24:11 (2020)

[CE06] Coppersmith, D., Elkin, M.: Sparse source-wise and pair-wise preservers.
SIAM J. Discret. Math. 20(2), 463–501 (2006)

Improved Sourcewise Roundtrip Spanners with Constant Stretch 309

[Che13] Chechik, S.: New additive spanners. In: Proceedings of SIAM SODA Con-
ference, pp. 498–512 (2013)

[CL21] Chechik, S., Lifshitz, G.: Optimal girth approximation for dense directed
graphs. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 290–300. SIAM (2021)

[CLRS20] Chechik, S., Liu, Y.P., Rotem, O., Sidford, A.: Constant girth approxima-
tion for directed graphs in subquadratic time. In: Proceedings of STOC
Conference, pp. 1010–1023 (2020)

[DW20] Dalirrooyfard, M., Williams, V.V.: Conditionally optimal approximation
algorithms for the girth of a directed graph. In: Proceedings of ICALP
Conference, pp. 35:1–35:20 (2020)

[EP04] Elkin, M., Peleg, D.: (1 + ε, β)-spanner constructions for general graph.
SIAM J. Comput. 33(3), 608–631 (2004)

[Pet09] Pettie, S.: Low distortion spanners. ACM Trans. Algorithms 6(1), 1–22
(2009)

[PRS+18] Pachocki, J., Roditty, L., Sidford, A., Tov, R., Williams, V.: Approximating
cycles in directed graphs: fast algorithms for girth and roundtrip spanners.
In: Proceedings of SODA Conference, pp. 1374–1392 (2018)

[PS89] Peleg, D., Schaffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116
(1989)

[RTZ05] Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approxi-
mate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro,
L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–
272. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_22

[RTZ08] Roditty, I., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip rout-
ing in directed graphs. ACM Trans. Algorithms 4(3), 1–17 (2008)

[SS10] Shpungin, H., Segal, M.: Near-optimal multicriteria spanner constructions
in wireless ad hoc networks. IEEE/ACM Trans. Netw. 18(6), 1963–1976
(2010)

[TZ05] Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24
(2005)

[Woo10] Woodruff, D.P.: Additive spanners in nearly quadratic time. In: Proceed-
ings of ICALP Conference, pp. 463–474 (2010)

[ZHL21] Zhu, C.J., Han, S., Lam, K.-Y.: A fast algorithm for source-wise round-trip
spanners. Theor. Comput. Sci. 876, 34–44 (2021)

[ZL17] Zhu, C., Lam, K.: Source-wise round-trip spanners. Inf. Process. Lett. 124,
42–45 (2017)

[ZL18] Zhu, C., Lam, K.: Deterministic improved round-trip spanners. Inf. Pro-
cess. Lett. 127, 57–60 (2018)

https://doi.org/10.1007/11523468_22

Randomized Data Partitioning
with Efficient Search, Retrieval

and Privacy-Preservation

M. Oğuzhan Külekci(B)

Department of Computer Science, Indiana University Bloomington,
Bloomington, IN, USA

okulekci@iu.edu

Abstract. We introduce a new data representation that serves mainly
for privacy preserving data storage with efficient search and retrieval
capabilities over the distributed systems. The cornerstone of the pro-
posed scheme is based on a novel algorithm that splits an input bit
sequence B[1..n] into two as left and right partitions with well–control
over the partition sizes, and the reconstruction of B in absence of either
partition is hard to achieve. The algorithm processes the input bit stream
in blocks of d–bits, where initially each block is replaced with another d–
bit according to a randomly chosen permutation of the set {0, 1, ..2d−1}.
Following the replacement, the leftmost bits of each block up until and
including the qth set bit are appended to the left and the remaining
bits to the right partition. We prove that the expected length of the
left partition is � ≈ 2qn/d bits and the right partition becomes of length
|R| = n − � bits. Therefore, there is no overhead on the new representation
with respect to original input. We also show that due to the randomiza-
tion step, the input data B is not required to follow any special probability
distribution to have the mentioned partitioning ratio ρ = 2q/d and it is
possible to tune the parameters d and q to support any desired ratio ρ on
the input. We consider recursive application of that splitting algorithm
on each partitions, which can be viewed as generating a full binary tree
with k–leaves such that at each internal node the data is subject to the
proposed splitting operation. Such a construction represents an input
bit sequence B[1..n] with k partitions as P1, P2, . . . , Pk, where it is hard to
reconstruct the original data in absence of any Pi.

Keywords: randomization · data representation · data partitioning ·
distributed data storage · cloud storage · privacy-preserving data
representation

1 Introduction

We introduce a randomized data representation that preserves the privacy of the
data, while still supporting efficient access and retrieval. The building block of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 310–323, 2024.
https://doi.org/10.1007/978-3-031-49190-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_22&domain=pdf
http://orcid.org/0000-0002-4583-6261
https://doi.org/10.1007/978-3-031-49190-0_22

Randomized Data Partitioning 311

the proposed scheme is a novel randomized algorithm that splits an input n–bit
long sequence into two pieces, which we refer as the left and right partitions. The
algorithm processes the input in blocks of a predetermined length d bits. The
initial randomization step replaces each block on the input with its counterpart
according to a randomly generated permutation [8] of d-bit integers. Following
the replacement, the leftmost bits of each block up until and including the qth
set bit are appended to the left, and the remaining bits to the right partition.

We prove that the randomization step guarantees the expected size of the left
partition to be � = n · ρ bits, while the right partition becomes of length (n − �)
bits according to the input parameter 0 < ρ < 1 such that the q value can be
chosen to satisfy ρ = 2q/d. Access to any block on the original input can be
achieved efficiently with the intrinsic addressing in the construction. We show
that it is also possible to search for a queried pattern by filtering on one partition
and verifying on the other as well.

The privacy of the data in the proposed representation depends on combina-
tion of several factors, which can be summarized as follows. First, the random
permutation used in the construction is assumed to be secret, which can be
maintained by using a secret initial seed in the random number generator [8]. It
is known that the permutations are vulnerable to statistical attacks [1,16], but
due to the splitting mechanism it becomes hard to make a frequency analysis
on the left and right partitions. On the right partition, each block is represented
with variable-length bits, where the code-word boundaries cannot be determined
as these codes are not prefix-free, that lacks the possibility of frequency analy-
sis. Actually, the left partition encodes those code-word boundary information.
On the left partition, the code-word boundaries can be determined, however,
since multiple randomly chosen symbols are represented with the same code,
again running a frequency analysis becomes hard as 2d symbols on the input are
mapped to d symbols on the left partition, which introduces again an ambiguity.
Therefore, in absence of either partition and the secret permutation it is hard to
reconstruct the original input, that provides the privacy in the proposed scheme.
It is noteworthy that even the prefix-free codes have been found to be hard to
decode without proper information [9,10,18], where recent works on combin-
ing compression and security [4,7] considers the hardness of decoding asymetric
numeral codes [6], which produce variable-length non-prefix-free codes.

By applying the proposed split operation recursively to each partition, we
observe that an input sequence can be split into more than two partitions. This
can be achieved by generating a full binary tree with k–leaves, where the root
node is the original input data. Each internal node has two children and the
data on internal nodes are subject to the proposed splitting operation. Notice
that in such a multiple partition it becomes more and more difficult to analyze
and reproduce the original in absence of any partition as deeper the tree the
ambiguity in the partitions increases.

There might be several applications of the proposed scheme, where a basic
scenario is that a user wants to store a large file on the cloud or on a decentralized
network such as the IPFS [3], where keeping data secret from the owners of

312 M. O. Külekci

the storage medium is a serious concern. Splitting data into multiple pieces
and encrypting those partitions before saving to the cloud or the distributed
network provides the ultimate secrecy. However, search and retrieval, which are
vital operations on any data management scheme, becomes difficult to achieve on
such encrypted data. The encryption algorithms, mainly the homomorphic [14]
and multi-party computation [5] schemes, support those operations, but their
computational load might be prohibiting, particularly on distributed networks
or IoT environments with limited resources [11,19]. On such a case, the proposed
scheme would serve as an alternative solution.

Such a scenario have been previously considered and data splitting have been
proposed by Li et al. [13], where the authors proposed to use a key and create
two bit streams from the input by using this key. It becomes hard to decode
the original again in absence of the partitions and the key. Each bit stream is
of equal length with the input, and hence, total storage requirement increases
to 2n bits for n bit input. Yet another point is although random access might
be supported, the search operation is not possible. Therefore, when compared
to [13], the randomized algorithm in this study becomes advantageous in two
dimensions by not creating an overhead storage and supporting efficient search
and access.

The outline of the paper is as follows. In Sect. 2 we introduce the proposed
randomized data splitting algorithm and provide the proofs of well-control over
the sizes of the partitions. The support mechanisms for efficient random access
and search operations are explained in Sect. 3, which id=s followed by the anal-
ysis of the privacy aspects in Sect. 4. We describe how to partition a data into
multiple splits according to desired proportions in Sect. 5. We conclude by a
summary and discussions of possible further research directions.

2 The Split Coding and Its Properties

Definition 1 (Split–Coding). The split coding of an input d-bit sequence
A = a1a2..ad according to the parameter q, d>q>0, is denoted by S(A, q) →
〈LA, RA〉 and produces the left partition LA and right partition RA as follows

i) If A has at least q 1 bits, then LA=a1a2..ai=(0∗1)q and RA=ai+1...ad=(0|1)d−i

ii) Otherwise, LA = a1a2..ad = A and RA = ∅ (empty).

where (0∗1) denotes any number of 0 bits followed by a 1 bit. (0|1) means either 0
or 1 bit. The superscripts over them represent how many times they are repeated.

The split–coding that partitions an input d–bit integer into two according to a
parameter q is given in Definition 1, where some examples are S(01001101, 1) →
〈01, 001101〉, S(01001101, 2) → 〈01001, 101〉, S(01001101, 4) → 〈01001101, ∅〉.
Let the n-bits long input bit sequence is shown by B[1..n] = b1b2 . . . bn and
d∈O(log n) is a chosen fixed block-length, which we assume d|n, as B can be
padded with random bits otherwise. The input B can be shown by B = D1D2 . . . Dm,
where Di = B[d(i−1)+1..i·d] is a block for 1 ≤ i ≤ m, and m = n/d. The

Randomized Data Partitioning 313

Fig. 1. The split-coding of B = 100101001000010110111011 with d = 3, q = 1, and
π = 〈5, 2, 0, 1, 3, 7, 4, 6〉 as P(B, d, π, q) → (L = 01101100011001, R = 1110010010). The
decoding process to merge LB and RB partitions to restore B can also be traced on the
example strings. For example, scanning the initial bits from L returns 2 bits sequence
01 as we hit a set bit. Therefore, we need to append 1 = 3−2 bits from R, which creates
D′
1 = 011. Applying the inverse permutation D1 = π−1(3) = 4 restores the original bits

100.

d–bits long blocks are the binary encoding of the integers from the set
U = {0, 1, .., 2d−1}.

Let π[0..2d − 1] = {π0, π1, . . . , π2d−1} be a randomly generated permutation
of the set U. We apply the permutation π on the input B = D1D2 . . . Dm that
produces B′ = D′

1D
′
2 . . . D′

m such that D′
i = π[Di]. The random permutation π can

be constructed by using a pseudo-random number generator that is initialized
with a selected seed. Following the permutation step, we apply split–coding to
each d-bits long block D′

1≤k≤m that produces the left and right partitions as
S(D′

k, q) → 〈Lk, Rk〉 according to the chosen parameter q, 0<q<d. For each block,
the left partition Lk is the sequence of leftmost bits up until and including the
qth set bit, and the right partition Rk is the remaining bits succeeding the qth
set bit. As stated in Definition 1, if qth set bit appears on the last position or
there are less than qth set bits on the block, then the right partition will be
empty, and the block is copied into left partition and nothing is written to the
right partition. We concatenate the left partitions L1 to Lm in order and generate
the L–partition as LB = L1L2..Lm. Similarly, RB = R1R2..Rm denotes the R–partition.
This complete process is represented by SplitEncode(B, d, π, q) → 〈L, R〉.

Given the L– and R–partitions, the permutation π, and the parameters q and
d, the decoding process reconstructs B by simply scanning the L- and R–partitions
from left-to-right. The decoding procedure starts by initializing the read pointers
on LB and RB to their first positions, and reads bits from LB–partition until q set
bits are observed or total number of bits examined reaches d with less than q
set bits. Assuming t bits are read on LB, the remaining (d−t) bits are read
from the RB–partition in order. The concatenation of these bits creates a d–bits
long block, say T, from which the original block is restored via π−1[T]. This
procedure is repeatedly applied until all m blocks are restored. A sample split
encoding and decoding is depicted on Fig. 1 with the parameters q = 1, d = 3,
and π = 〈5, 2, 0, 1, 3, 7, 4, 6〉 on a bitmap B = 100101001000010110111011.

We now analyze the expected bit lengths of the partitions created by split–
coding process on a n bits long input B and prove that the expected length of

314 M. O. Külekci

the left partition is n · 2q/d bits long, which leaves the right partition to be
≈ n · (d − 2q)/d bits long.

Proposition 1 (Length Invariance). The sum of the lengths of the L– and
R– partitions created by the split-coding SplitEncode(B, d, π, q) → 〈LB, RB〉 is
equal to the length of the input bit string B.

Proof. Each d-bits long block Di on B is split into two bit strings Li and Ri
without any insertion or deletion of bits. Therefore, per each block, the lengths
of its corresponding bits on LB and RB partitions sum up to d as Li + Ri = d for
all i = 1 to m. Thus,

∑
1≤i≤m(Li + Ri) = m · d = |B| holds. 	

Lemma 1 (Expected bit lengths of partitions for q = 1). For q = 1 and
d ≥ 1, the expected bit lengths of the L and R partitions of a randomly chosen
integer from U = {0, 1, ..., 2d−1} are E(|L|) = 2− 1

2d−1 and E(|R|) = d−2+ 1
2d−1 .

Proof. A randomly selected d-bit integer i can take any value in
{0, 1, . . . , 2d − 1} with probability 1/2d. For all values of i ≥ 2d−1, the L par-
tition will be equal to 1, and thus, |L| = 1. Since there are 2d−1 such i values,
the probability that the length of the L partition will be one is 2d−1/2d = 1/2.
Similarly, if 2d−2 ≤ i < 2d−1, then L will be 01 that will dictate |L| = 2 with
probability 2d−2/2d = 1/4, which can be generalized to |L| = � with probability
1/2� for 1 ≤ � ≤ (d − 1). When i = 0 or i = 1, the L partitions will completely
include i, and thus, the corresponding length |L| will be d with probability 2/2d.
Therefore, the expected length E(|L|) by the split coding can be calculated as
follows.

E(|L|) =
1

2
· 1 +

1

4
· 2 + · · · +

1

2d−1
· (d − 1) +

2

2d
· d =

2

2d
· d +

d−1∑

�=1

� · 1

2�
(1)

The algebraic identity
∑n

i=1 i · ri= r−rn+1(1+n−nr)
(1−r)2 with r=1/2 and n=d−1,

reduces Eq. 1 to

E(|L|) =
2d

2d
+ 4 · (

1

2
− d + 1

2d+1
) =

2d

2d
+ 2 − 2d + 2

2d
= 2 − 1

2d−1
(2)

For any integer i the sum of the lengths of L and R sum up to d as |L| + |R| = d
by definition and E(|R|) = E(d − |L|) = d − E(|L|) = d − 2 + 1/2d−1 holds. 	

Lemma 2 (Expected bit lengths of the partitions on a d-bit block).
For any 0 < q < d/2, the expected bit lengths of the L– and R– partitions of a
randomly chosen d-bit integer from U = {0, 1, . . . , 2d − 1} are

q ≤ E(|L|) ≤ 2q − q

2d−1
and (d − q) > E(|R|) > d − 2q +

q

2d−1

Randomized Data Partitioning 315

Proof. Let p1, p2, ..pq denote the first q set bit positions on the randomly chosen
integer i ∈ {0, 1, .., 2d − 1}, and x1, x2, ..xq represent the differences in between
the positions such that x1 = p1, and xj = pj − pj−1. For instance, if the positions
of the first four set bits are, say 2, 5, 6, 8, then the 〈x1, x2, x3, x4〉 = 〈2, 3, 1, 2〉.
The length of the L partition is then |L| = x1 + x2 + .. + xq.

We observe that xj is the length of the L–partition of a dj = d − ∑j−1
r=1 xr bits

long sequence. Due to Lemma 1, E(xj) = 2 − 1/2dj−1. Since the lengths of the
sequences decrease at each step as d1 > d2 > .. > dq, the expected values decline
accordingly E(x1) > E(x2) > .. > E(xq), e.g., for d=8, E(|L|) = 2 − 1/27 = 1.992,
where for d=6, E(|L|) = 2 − 1/27 = 1.984. That defines E(|L|) to be upper
bounded by q·E(x1) due to E(x1)>E(x2)>..>E(xq) as shown in Eq. 5. Therefore,
the expected value E(|L|) can be represented as in Eq. 3 due to the linearity of
expectations.

E(|L|) =E(x1 + x2 + .. + xq) =
q∑

j=1

E(xj) (3)

=2q −
(1

2d1−1
+

1

2d2−1
+ .. +

1

2dq−1

)
(4)

≤q · E(x1) = 2q − q

2d−1
(5)

By Definition 1, the length of the L–partition is at least one bit, and thus,
xi ≥ 1 holds for each i, which provides the lower bound for E(|L|) ≥ q. Again by
using |L| + |R| = d, E(|R|) = d − E(|R|), the upper– and lower–bounds for E(|R|) is
obtained. 	

Theorem 1. The split-coding of a given n bits long B with a randomly chosen
permutation π, block length d, and parameter 0 < q ≤ d/2 generates left partition
LB with an expected length of E(|LB|) ≤ n · (2q

d − q
d·2d−1). Accordingly, the right

partition is expected to be E(|RB|) > n · (1 − 2q
d

+ q
d·2d−1) bits long.

Proof. Split-coding operates on the n-bits long input sequence by n/d blocks,
each of which is a d-bit integer. The blocks are replaced by their corresponding
integers in the set {0, 1, 2, . . . , 2d − 1} with the randomly generated permutation
π. Let X1, X2, . . . X2d denote the lengths of the L–partitions of randomly assigned
integers to each distinct d-bit integers and f1, f2, . . . , f2d represent the frequen-
cies of each integer. The expected length E(|L(B)|) for the L–partition of input B
can be expressed as

316 M. O. Külekci

E(|LB|) =E
(2d∑

i=1

fi · Xi
)
=

2d∑

i=1

fi · E(Xi) by linearity of expectations

≤
2d∑

i=1

fi · (2q − q

2d−1
) by substituting E(Xi) due to Lemma 2

≤(2q − q

2d−1
) · n

d
since

2d∑

i=1

fi =
n

d
by definition

≤n ·
(2q

d
− q

d · 2d−1

)

Since |LB| + |RB| = n, E(|RB|) = n − E(|LB|) > n ·
(
1 − 2q

d
+ q

d·2d−1

)
. 	

Corollary 1. The lengths of the LB and RB partitions of an input n-bits long
B approach respectively to 2nq/d and n(d − 2q)/d bits as the term q/d · 2d−1 in
Theorem 1 becomes insignificant especially on larger values of d, e.g.,assuming
d = 8 and q = 1, q/d · 2d−1 = 1/(8 · 27) = 1/210 = 0.00097, which makes
E(|L(B)|) = 0.24903n and E(|R(B)|) = 0.75097n bits that can be assumed to be
0.25n and 0.75n.

3 The Random Access and Search Operations

In this section we investigate the random access and search mechanisms of the
split-coding scheme.

Lemma 3 (Random access support). Let Q =
(
d
0

)
+

(
d
1

)
+ .. +

(
d

q−1

)
denote

the number of distinct d-bit integers that has less than q set bits. Given the LB and
RB partitions of an input sequence B, if the number of unique d-bit blocks on B
is less than 2d − Q, then the random access to any block Di of B = D1D2 . . . Dm can
be achieved in O(log |LB|)–time by using an extra space of o(|LB|) bits. Otherwise,
it takes O(q log(n/d))–time at the expense of O((n/d) · (Q/2d) · log n) additional
bits space.

Proof. Once the LB and RB partitions are given, the retrieval of any d–bit block
D′
i on B′ = D′

1D
′
2..D

′
m can be done by using the observation that D′

1D
′
2..D

′
i−1 is

w = d · (i − 1) bits long, where � of those bits have been deposited on LB and the
rest (w − �) on RB. Therefore, given �, we know the starting bit position of the
left and right partitions of queried D′

i on LB and RB, respectively.
We start reading the bits on LB from the first position and keep scanning until

we read either d bits or encounter q set bits, whichever happens first. Once, one
of these cases occurs, then the bits are actually the left partition of the first block
of the input. Re-initiating the same procedure starting from the next bit position
will retrieve the left partition of the second block, and so on. After repeating
this operation (i − 1) times, we reach the first bit of the left partition Li of the
queried D′

i. If we have scanned � bits until we reach the beginning of Li, then it

Randomized Data Partitioning 317

is immediate that the Ri starts just after (w − �) bits on RB. Therefore, once we
retrieve Li from LB, we read Ri by depositing the remaining (d − |Li|) bits from
the starting bit position (w−�+1) of the RB. Combining the extracted partitions
will reconstruct D′

i = LiRi and deploying the inverse permutation would return
the original block Di = π−1(D′

i).
The time complexity of that random access procedure depends on finding �,

since once � is known, rest is simple constant time operation. Let’s first assume
each block in D′

1D
′
2..D

′
i−1 includes at least q set bits. Then, the left partitions of

these blocks have exactly q set bits and each end with a set bit on LB, e.g., the
initial bits of LB up until and including the qth set bit are the left partition of
D′
1. Therefore, �+1 is the position of the first bit after the q · (i − 1)th set bit

on LB. Finding the position of the kth set bit on a static bitmap of n bits can
be achieved in constant or logarithmic time by constructing a dictionary struc-
ture (the rank/select(R/S) dictionary) that occupies o(n) bits space [15,17,20].
Therefore, the position of the q · (i − 1)th set bit on LB can be returned by cre-
ating that R/S data structure in expense of o(|LB|) additional space. In this case,
detecting the � value can be achieved in O(log |LB|) in the worst case, and thus,
the random access. On the other hand, possible occurrences of the blocks with
less than q set bits, which are directly copied to the LB, corrupts the above proce-
dure. That requires maintaining the indices of such blocks separately. Assume Sz
is the sorted list of block ids that have z set bits for all z < q. On list Sz, let the
number of items less than the queried i is represented by cz. Therefore, the total
number of set bits of D′

1D
′
2..D

′
i−1 on LB is � = q · (i − ∑q−1

z=0 cz) +
∑q−1

z=0(z · cz). As
a last step to find the initial position of D′

i, it is necessary to check whether the
immediately preceding blocks are in S0, and the correct position is computed
accordingly. Algorithm 1 lists the complete pseudo-code to retrieve Di.

The space overhead for the random access support by Algorithm 1 is the sum
of the space occupied by the Sz lists and the additional space used by rank/select
(R/S) data structure for efficient execution of line 9. The number of unique d–bit
sequences that have less than q set bit is Q =

(
d
0

)
+

(
d
1

)
+ .. +

(
d

q−1

)
. Assuming all

distinct 2d blocks are equally likely among observed (n/d) blocks of the input,
the size of the Sz list is expected to be ≈ (n/d) · (Q/2d). Therefore, the space
required to store the Sz lists becomes around ≈ (n/d) · (Q/2d) · log n bits, where
the space overhead of the (R/S) dictionaries can be kept around o(|Lb| ≈ 2qn/d)
with the state-of-the-art implementations. The time complexity of Algorithm 1
depends on detecting the blocks with less than q set bits via the for loop in
between lines 3 and 7 and also the select query run on line 9. The for loop
takes roughly O(q log(n/d))–time where the select query can be executed in O(1)
or O(log(2qn/d)) time according to the R/S data structure used. Thus, the total
time complexity is upper bounded by O(q log(n/d)). 	

It is important to note that if the number of distinct d–bit symbols on the input is
less than 2d − Q, then the random permutation over integers {Q, Q + 1, .., 2d − 1}
can be used for the observed blocks, which guarantees to have at least q set
bits per block on LB, and thus, removes the necessity of maintaining Sz lists. In
such a case, the time and space complexity of the random access is determined

318 M. O. Külekci

Algorithm 1: RandomAccess(i, LB, RB, d, π, q, S0, S1, .., Sq−1)
input : i is the queried block index, LB and RB are the partitions, d, q, π are

the parameters of the coding, Sz is the list of block indices that has
z < q set bits.

output: The original d–bit block Di.

1 C ← 0

2 r ← 1

3 for z = 0 to (q − 1) do
4 t ← number of indices less than i in Sz
5 C ← C + z · t
6 r ← r + t

7 end
8 � ← q · (i − r) + C

9 p ←1+ The position of the �th set bit on LB
10 r ← i − 1

11 while (r ∈ S0) do p ← p + d, r ← r − 1

12 detected ← 0, step ← 0

13 while ((detected < q) ∧ (step < d)) do
14 if LB[p + step] == 1 then detected++
15 step++

16 end
17 L ← LB[p..p + step − 1]
18 w ← d · (i − 1) − p + 1

19 R ← RB[w..w + (d − step) − 1]
20 D′

i ← L � R

21 return π−1(D′
i)

solely by the integrated R/S dictionary data structure, where the state of the
art solutions provide O(log |LB|)–time with o(|LB|) extra space.

Lemma 4 (Search on split encoded sequences). When the number of dis-
tinct d bit blocks on input is less than 2d − Q, it is possible to efficiently detect all
occurrences of a queried pattern P on a split encoded sequence B by maintaining
a rank-support on left partition LB.

Proof. Let P = p1p2 . . . pm be a binary sequence that we would like to find its all
occurrences on the split encoded B. We apply split encoding to P with the same
parameters as SplitEncode(P, d, π, q) → (LP, RP). The basic idea of the search is
to find the matching positions of LP on LB, and then verifying each match by
comparing RP with the corresponding position of the candidate on RB. The first
step is to search LP on LB. Notice that not all matching positions are valid left
partitions as a match can appear bridging two consecutive blocks. Hence, while
scanning for LP, we should accept only completely matching left partitions on LB.
Since we assume the number of distinct d bit blocks on input is less than 2d − Q,
the permutation π can be constructed over integers {Q, Q + 1, .., 2d − 1}, which
guarantees that each block has exactly q set bits on LB. Therefore, the validity of

Randomized Data Partitioning 319

a matching position can be confirmed by checking whether i) the bit preceding
the match position on LB is a set bit, and ii) total number of previous set bits
is a multiple of q. For each such valid matching left partition on LB, we can find
the corresponding positions on RB to extract its right partition via Algorithm 1.
We then extract its corresponding right partition from RB and verify whether the
constructed pattern matches the query. The performance of the search process
greatly depends the efficiency of the filtering phase, where short P sequences
would result in larger set of verification points, and longer ones less. 	

4 The Privacy Aspects

Each d–bit block of input B is represented on RB with variable number of bits
whose lengths are ranging from 0 to d − 1. We observe that these variable-length
blocks are not prefix-free, and thus, the code–word boundaries on RB are uncer-
tain, which can only be determined by using the LB partition, assuming the
parameters d and q are known. For instance, in Fig. 1, the code–word bound-
aries on RB = 1110010010 can be detected by using the LB = 01101100011001.
One can simply use the random access function Algorithm 1 to detect the bits
of a queried ith block on RB. It is important to address that even after the con-
struction the d–bit block, the permutation function π should be known to reach
the original d–bit on B by finding the inverse permutation mapping of the block.
Therefore,in absence of the LB partition and the permutation π, it seems hard to
reconstruct the original data B even we assume all other parameters d, q, n are
known in advance. We investigate this hardness by analyzing the information
released by each partition about the other partition by counting the number of
possible bit sequences of length n that produce the same left or right partition.
Ideally, given the left partition, all bit sequences of length n − |LB| should be
a valid right partition and decode a distinct B sequence. Therefore, the correct
right partition is indistinguishable in the search space of size 2n−|LB|. Lemma 5
proves that this is indeed the case.

Lemma 5 (Number of distinct sequences with the same LB). Given the
left partition LB of an input n bits long sequence B, there are exactly 2n−|LB|

different bit sequences of length n that generates the same LB.

Proof. Let’s assume we have chosen a random binary string B of length n and
generated the left partition LB and right-partition RB. Since there is no restriction
on the possible bits of the right partition, any binary string X of length n − |LB|
will be valid and produce a different n–bit sequence by the decoding process. In
other words, the L partition of all these 2n−|LB| sequences will be equal, where
the correct right partition is only one of them. 	

However, we observe interestingly that the same does not hold for the right
partition by Lemma 6, which means the knowledge of right partition narrows
the possibilities of left partition. Although this exhibits an information leakage,
it still provides a reasonable privacy with large enough search space.

320 M. O. Külekci

Lemma 6 (Number of distinct sequences with the same RB). Given
the right partition RB of an input n bits long sequence B, there are less than
2n−|RB| different bit sequences of length n that generates the same RB. It is also
expected that the number of bit sequences sharing the same RB is also more than
22qn/d/(2qn/d + 1).

Proof. There are n/d blocks and the length of the LB partition is (n − |RB|) bits.
Each block has at least zero and at most q set bits on LB, which means the
left partition should include certain number of set bits. Therefore, the binary
strings of length (n − |RB|) that include less number of set bits then dictated by
the original input are not valid and can not be decoded properly, which means
the number of possible n bit input strings generating the known RB is less than
2n−|RB|.

If we assume all blocks are represented by q set bits on LB (in other words, the
number of observed distinct blocks on the input is less than 2d − Q and we used
only blocks with at least q set bits in the permutation step), then the number
of |LB| bits long binary strings with qn/d set bits are all valid left partitions for
the given right partition and each of those strings spell a different B. According
to Theorem 1, the length of LB is expected to be ≈ 2qm bits with m = n/d.
The number of sequences of length 2qm bits with qm set bits is greater than
22qn/d/(2qn/d + 1) due to the simple bounds of the central binomial coefficient
4x = (1 + 1)2x =

∑2x
k=0

(
2x
k

)
. 	

Due to Lemma 5, given the left partition LB of a split encoded bit sequence,
there is no information released about the right partition RB, since any bit
sequence of length n − |LB| is a valid RB partition and correctly decodes with
the given LB. On the other hand, due to Lemma 6, once the right partition RB is
given, not all bit sequences of length n − |RB| are valid left partitions, and thus,
the knowledge of RB narrows down the search space of LB. However, this reduc-
tion is limited and on large input sequences, still it can provide some privacy.
It is noteworthy that the above analyses assume the permutation π is known,
where actually keeping that π secret improves security significantly.

5 Splitting Beyond Two Partitions

We observe that recursive application of the splitting mechanism on each parti-
tion will generate further splits. As long as the depth of this partitioning increases
the partitions gets smaller and it gets harder to reconstruct the data in absence
of the one piece. Such a cascaded splitting operation might make sense as in
distributed storage systems or recent block-chain style storage like IPFS [3].
We generalize our observation and provide a mechanism such that an input bit
stream is divided into k partitions, where any ratio on the size of the partitions
can be supported, e.g., creating 5 partitions that will occupy approximately
4/16, 5/16, 1/16, 3/16, 3/16 of the input size, respectively.

Lemma 7 (Splitting into multiple pieces). Let {r1, r2, . . . , rk} represent
the given ratios such that

∑k
i=1 ri = 1 and k > 2. An input bit string of length n

Randomized Data Partitioning 321

can be split into k pieces p1, p2, .., pk by recursive application of the split coding,
where |pi| ≈ ri · n.
Proof. Assume a full binary tree of s = 2k − 1 elements, which is shown by
an array A[1..s]. In this tree, the leaf nodes represent the final partitions we
aim to generate. We place the ratios to the last k elements of the array, i.e.,
A[s − i] = rk−i for i = 0..(k − 1). We compute the values of the vacant positions
A[t] in the array starting from t = s − k down to the root t = 1 by summing
up their corresponding children, where the indices of the children of A[t] are
A[2t] and A[2t + 1]. Notice that the already filled positions are the leaf nodes
and thus, the internal nodes can be computed from them. As an example, for
〈r1, r2, r3, r4, r5〉 = 〈4/16, 5/16, 1/16, 3/16, 3/16〉, the array will end up with
A[1..9] = [1,10/16,6/16,6/16, 4/16, 5/16, 1/16, 3/16, 3/16].

Considering that the root node A[1] corresponds to the input bit string, we
apply the split coding at each internal node with the most appropriate q and d
parameters to support the ratios mentioned in its children. For instance, in the
example case, since A[2] = 10/16 and A[3] = 6/16, choosing d = 16 and q = 5
provides us the left partition to be close to n · 10/16 bits as desired and right
partition automatically scales to the remaining n · 6/16. We keep applying the
split coding to the internal nodes until we produce all the leaves. In our sample
case, for instance, we need to split the A[2] according to its childrens’s ratios as
A[4] = 6/16 and A[5] = 4/16, which dictates the left partition A[4] is desired to
be around 6/10 of its parent A[2] = 10/16. This can be achived by setting d = 10
and q = 3. The bits deposited at the leaf nodes finalize the splitting construction,
where reconstruction of the original input requires traversing the tree from the
leaves to the root and applying split decode procedure for each internal node. 	

6 Conclusions and Further Studies

We have presented a randomized data splitting algorithm that provides well–
control on the sizes of the partitions with efficient search and access mechanisms.
Reconstruction of the original input is hard without having access to both par-
titions and the permutation used in the construction.

Such a privacy-preserving data splitting scheme may find application areas in
secure and searchable massive data storage on the cloud. For example, the user
may keep the permutation secret, and then store the left and right partitions on
different remote servers. Due to the privacy aspects, the admins of those remote
locations will not be able to extract the content, while the user will still be able
to achieve search and retrieval with the mechanisms described in this study. It
is also possible to maintain the left partition on-premise and save right partition
encrypted on a cloud to make it completely secure. The user can still perform
search operations on the encrypted cloud storage by filtering the candidates from
the data on-premise, and then verify the candidates by fetching and decrypting
them from the cloud. Obviously, such applications require further analysis of
some different possible architectures. Similar applications might be considered

322 M. O. Külekci

for other distributed storage schemes including block-chain storage systems [12].
The recursive application of the proposed split coding may be used to privacy-
preserving partitioning of the data into some desired proportions. This can also
serve as an alternative in secret sharing schemes [2].

References

1. Bard, G.V., Ault, S.V., Courtois, N.T.: Statistics of random permutations and the
cryptanalysis of periodic block ciphers. Cryptologia 36(3), 240–262 (2012)

2. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC
2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20901-7 2

3. Benet, J.: IPFS-content addressed, versioned, P2P file system. arXiv preprint
arXiv:1407.3561 (2014)

4. Camtepe, S., et al.: Compcrypt-lightweight ANS-based compression and encryp-
tion. IEEE Trans. Inf. Forensics Secur. 16, 3859–3873 (2021)

5. Du, W., Atallah, M.J.: Secure multi-party computation problems and their appli-
cations: a review and open problems. In: Proceedings of the 2001 Workshop on
New Security Paradigms, pp. 13–22 (2001)

6. Duda, J.: Asymmetric numeral systems. arXiv preprint arXiv:0902.0271 (2009)
7. Duda, J., Niemiec, M.: Lightweight compression with encryption based on asym-

metric numeral systems. arXiv preprint arXiv:1612.04662 (2016)
8. Durstenfeld, R.: Algorithm 235: random permutation. Commun. ACM 7(7), 420

(1964). https://doi.org/10.1145/364520.364540
9. Fraenkel, A.S., Klein, S.T.: Complexity aspects of guessing prefix codes. Algorith-

mica 12, 409–419 (1994)
10. Gillman, D.W., Mohtashemi, M., Rivest, R.L.: On breaking a huffman code. IEEE

Trans. Inf. Theory 42(3), 972–976 (1996)
11. Kaaniche, N., Laurent, M.: Data security and privacy preservation in cloud storage

environments based on cryptographic mechanisms. Comput. Commun. 111, 120–
141 (2017)

12. Li, R., Song, T., Mei, B., Li, H., Cheng, X., Sun, L.: Blockchain for large-scale
internet of things data storage and protection. IEEE Trans. Serv. Comput. 12(5),
762–771 (2018)

13. Li, Y., Gai, K., Qiu, L., Qiu, M., Zhao, H.: Intelligent cryptography approach
for secure distributed big data storage in cloud computing. Inf. Sci. 387, 103–
115 (2017). https://doi.org/10.1016/j.ins.2016.09.005. https://www.sciencedirect.
com/science/article/pii/S0020025516307319

14. Martins, P., Sousa, L., Mariano, A.: A survey on fully homomorphic encryption:
an engineering perspective. ACM Comput. Surv. (CSUR) 50(6), 1–33 (2017)

15. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: 2007 Proceedings of the Ninth Workshop on Algorithm Engineering and Exper-
iments (ALENEX), pp. 60–70. SIAM (2007)

16. Plackett, R.L.: The analysis of permutations. J. R. Stat. Soc.: Ser. C: Appl. Stat.
24(2), 193–202 (1975)

17. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
(TALG) 3(4), 43-es (2007)

https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2
http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/0902.0271
http://arxiv.org/abs/1612.04662
https://doi.org/10.1145/364520.364540
https://doi.org/10.1016/j.ins.2016.09.005
https://www.sciencedirect.com/science/article/pii/S0020025516307319
https://www.sciencedirect.com/science/article/pii/S0020025516307319

Randomized Data Partitioning 323

18. Rubin, F.: Cryptographic aspects of data compression codes. Cryptologia 3(4),
202–205 (1979)

19. Sharma, P., Jindal, R., Borah, M.D.: Blockchain technology for cloud storage: a
systematic literature review. ACM Comput. Surv. (CSUR) 53(4), 1–32 (2020)

20. Vigna, S.: Broadword implementation of rank/select queries. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 154–168. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68552-4 12

https://doi.org/10.1007/978-3-540-68552-4_12

The k Edge-Vertex Domination Problem

Peng Li(B), Xingli Zhou, and Zhiang Zhou

Chongqing University of Technology,
69 Hongguang Road, Chongqing 400054, China

lipengcqut@cqut.edu.cn

Abstract. Let G = (V (G), E(G)) be a simple n-vertex graph with m
edges. Take any e = uv ∈ E(G). We say e dominates a vertex w ∈ V (G)
provided w belongs to the closed neighborhood of u or v. Let S ⊆ V (G),
D ⊆ E(G). Take a positive integer k. If w is edge-dominated by k edges
of D, then D is called a k edge-vertex dominating set of G with respect
to S. In this paper, we study the k edge-vertex domination problem
and present O(m lgm + k|S| + n)-time algorithms to find a minimum
k edge-vertex dominating set of G with respect to any S ⊆ V (G) on
interval graphs. In addition, we design O(n|S|)-time algorithms to find
a minimum k edge-vertex dominating set of T with respect to any S ⊆
V (T) on trees.

Keywords: domination · edge-vertex domination · k edge-vertex
domination · interval graphs · trees

1 Introduction

Domination is one of the most popular research directions over the last few years,
which has attracted the interest of many mathematicians. It is widely used in
many fields, such as RNA sequence [6], electric power networks [3], chemical
materials which are used in drug chemistry [2], distribution centers in logistics
[1] and computer science for investigation of the complexity problem [7,15]. The
domination and its variations have attracted considerable attention and have
been widely studied, see [4,5].

All the graphs are finite, simple and undirected in this paper. Let G =
(V (G), E(G)) be any graph. For any v ∈ V (G), the open neighborhood NG(v)
is the set {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is the set
NG[v] = NG(v) ∪ {v}. Take any subset D of V (G). If every vertex of G is either
in D or adjacent to a vertex in D, then we say D is a dominating set of G. The
domination number γ(G) is the minimum cardinality of a dominating set in G.

Take a map I that assigns to every vertex v ∈ V (G) a nonempty closed
interval I(v) = [�I(v), rI(v)]. If vu ∈ E(G) if and only if v �= u and I(v)∩I(u) �=
∅ for all v, u ∈ V (G), then we say I is an interval representation of G. We
may assume that all the endpoints in {I(x) : x ∈ V (G)} are distinct in this
article. If all intervals have the same length, then we refer to I as a unit interval
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 324–334, 2024.
https://doi.org/10.1007/978-3-031-49190-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_23&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_23

The k Edge-Vertex Domination Problem 325

representation. A graph is a (unit) interval graph if and only if it has a (unit)
interval representation.

Take a positive integer k. For any vw ∈ E(G) and u ∈ V (G), we say vw is
vertex-dominated by u, or u is edge-dominated by vw, provide u ∈ NG[v]∪NG[w]
[10]. A set T ⊆ V (G) is a k vertex-edge dominating set if each edge of E(G) is
vertex-dominated by k vertices of T . The k vertex-edge dominating number
γkve(G) of G is the minimum cardinality of a k vertex-edge dominating set of
G. Take any S ⊆ V (G). A set D ⊆ E(G) is k edge-vertex dominating set of G
w.r.t. S if each vertex of S is edge-dominated by k edges of D. The k edge-vertex
dominating number γkev(G) of G is the minimum cardinality of k edge-vertex
dominating set of G w.r.t. V (G). The k vertex-edge domination problem is to
search a minimum k vertex-edge dominating set of G. Similarly, the k edge-
vertex domination problem is to find a minimum k edge-vertex dominating set
of G.

In 1986, Peters [10] introduced the vertex-edge domination problem. In 2007,
Lewis [8] showed that the vertex-edge domination problem is NP-hard for bipar-
tite, chordal, planar and circle graphs, and the independent vertex-edge domina-
tion problem is NP-hard even on bipartite and chordal graphs. Recently, Li and
Wang [9] designed linear time algorithms for the vertex-edge domination and
double vertex-edge domination problems on interval graphs, and O(nm) time
algorithms for k vertex-edge domination problem for any positive integer k on
interval graphs.

Next, we introduce the research progress of edge-vertex domination. In 1986,
Peters [10] introduced the edge-vertex domination problem. In 2018, Venkatakr-
ishnan and Krishnakumari [14] obtained an improved upper bound of edge-
vertex domination number of a tree. In 2021, Şahin [13] et al. found some rela-
tions between double edge-vertex domination and other domination parameters,
investigated the relation between γ2ev(G) and γev(G), and determined γ2ev(G)
on paths and cycles. There are few research results on the algorithm of this
problem.

In this article, we study the minimum k edge-vertex domination problems on
interval graphs and trees. Given some n-vertex interval graph G with m edges,
a positive integer k and S ⊆ V (G), we present an O(m lg m + k|S| + n)-time
algorithm to obtain some minimum k edge-vertex dominating set of G w.r.t.
S, which implies that the minimum k edge-vertex domination problem can be
solved in O(m lg m+kn) time. In addition, we present an O(n|S|)-time algorithm
to obtain a minimum k edge-vertex dominating set of any n-vertex tree T w.r.t.
any S ⊆ V (T), which implies the minimum k edge-vertex domination problem
can be solved in O(n2) time.

The rest of this article is organized as follows. Firstly, we give the necessary
terminologies in Sect. 2. Then we present an algorithm to obtain a minimum k
edge-vertex dominating set of interval graph G w.r.t. any S ⊆ V (G) for each
positive integer k, prove the correctness of this algorithm and explain how to
implement it in Sect. 3. In Sect. 4, we study the minimum k edge-vertex dominat-
ing problem on trees. We design an algorithm to obtain a minimum k edge-vertex

326 P. Li et al.

dominating set of a tree T w.r.t. some S ⊆ V (T) for every positive integer k and
prove the correctness of this algorithm. Finally, we raise some open questions
and end the paper in Sect. 5.

2 Preliminaries and Notation

For any positive integers i and j with i ≤ j, let [i, j] denote the integers k with
i ≤ k ≤ j. If i = 1, we often abbreviate [1, j] as [j]. Let π = (π1, π2, . . . , πn) be
an ordering of some set V . For all 1 ≤ i ≤ j ≤ n, let π[i, j] denote the ordering
(πi, πi+1, . . . , πj). Let π = (π1, π2, . . . , πn) be an ordering of the vertex set of
graph G. We say π is an I-ordering provided πiπk ∈ E(G) implies πiπj ∈ E(G)
for every 1 ≤ i < j < k ≤ n. Take some v ∈ V (G). Let rπ(v) = max{i : πi ∈
NG[v]} and �π(v) = min{i : πi ∈ NG[v]}.

Lemma 2.1. [11,12] A graph G is an interval graph if and only if there is an
interval ordering of V (G).

In the following, we always assume that G is an interval graph, V (G) =
{v1, v2, . . . , vn}, and I is an interval representation of G where rI(v1) < rI(v2) <
· · · < rI(vn). Let’s take an interval graph as an example, and the following is its
interval representation.

Fig. 1. An interval graph G and its interval representation.

3 The M-IG-EVD(G,S, k) Algorithm for Interval Graphs

For each ab ∈ E(G), let NG[ab] denote the set NG[a]∪NG[b]. Let xy, zw ∈ E(G).
Assume that rI(x) < rI(y) and rI(z) < rI(w). We say xy <I zw, if it provided

The k Edge-Vertex Domination Problem 327

rI(y) < rI(w), or y = w and rI(x) < rI(z). For each v ∈ V (G), let FG[v] denote
the set {ab ∈ E(G) : v ∈ NG[ab]}. Let W = {u1w1, u2w2, . . . , upwp} ⊆ E(G) be
a set with u1w1 >I u2w2 >I · · · >I upwp. For any positive integer q with q ≤ p,
denote the edge set {u1w1, u2w2, . . . , uqwq} by Mq(W).

Now let’s provide the algorithm to obtain a minimum k edge-vertex domi-
nating set of G w.r.t. a subset S ⊆ V (G) for each positive integer k.

M-IG-EVD(G, S, k)
1 � Input interval graph G, S ⊆ V (G), positive integer k;
2 � Output a minimum k edge-vertex dominating set D of G w.r.t. S;
3 If there is any x ∈ S with |FG[x]| < k, output “there is not any
4 k edge-vertex dominating set of G w.r.t. S”, exit.
5 Else, take an interval representation I of G where V (G) = {v1, v2, . . . , vn} with
6 rI(v1) < rI(v2) < · · · < rI(vn), let S = {vi1 , vi2 , . . . , vih} with i1 < i2 · · · < ih.
7 D ← ∅;
8 for j ← 1 to h
9 do if |D ∩ (FG[vij])| < k

10 then Let q = k − |D ∩ (FG[vij])|.
11 Do D ← D ∪ Mq(FG[vij] \ D).
12 Output D.
13 � Exit

Before proving the correctness of this algorithm, let’s give an example to
illustrate how it runs.

Example 3.1. Let G be the interval graph as depicted in Fig. 1, S =
{vi1 , vi2 , . . . , vih} = {v1, v4, v5, v8, v11, v15}. h = 6, i1 = 1, i2 = 4, i3 = 5, i4 =
8, i5 = 11, i6 = 15. Consider the algorithm M-IG-EVD(G,S, 3).

FG(v1) = {v5v12, v5v7, v5v6, v2v6, v4v5, v3v5, v2v5, v1v5, v2v3, v1v2},
FG(v4) = {v12v16, v12v14, v11v12, v10v12, v9v12, v8v12, v7v12, v6v12, v5v12, v4v12,
v6v7,
v5v7, v5v6, v4v6, v3v6, v2v6, v4v5, v3v5, v2v5, v1v5},
FG(v5) = {v12v16, v12v14, v11v12, v10v12, v9v12, v8v12, v7v12, v6v12, v5v12, v4v12,
v7v10,
v6v7, v5v7, v5v6, v4v6, v3v6, v2v6, v4v5, v3v5, v2v5, v1v5, v2v3, v1v2},
FG(v8) = {v12v16, v12v14, v11v12, v10v12, v9v12, v8v12, v7v12, v6v12, v5v12, v4v12,
v9v10,
v8v10, v7v10},
FG(v11) = {v15v16, v14v16, v13v16, v12v16, v11v16, v10v16, v13v14, v12v14, v11v14,
v11v12,
v10v12, v9v12, v8v12, v7v12, v6v12, v5v12, v4v12},
FG(v15) = {v15v16, v14v16, v13v16, v12v16, v11v16, v10v16}.

328 P. Li et al.

Iteration 0, D0 = ∅;
Iteration 1, |D0 ∩ (FG[vi1])| = 0 < k = 3, q = k − |D0 ∩ (FG[vi1])| = 3,

D1 = D0 ∪ Mq(FG[vi1] \ D0) = {v5v12, v5v7, v5v6};
Iteration 2, |D1 ∩ (FG[vi2])| = 3,D2 = D1;
Iteration 3, |D2 ∩ (FG[vi3])| = 3,D3 = D2;
Iteration 4, |D3 ∩ (FG[vi4])| = 1 < k = 3, q = k − |D3 ∩ (FG[vi4])| = 2,

D4 = D3 ∪ Mq(FG[vi4] \ D3) = {v12v16, v12v14, v5v12, v5v7, v5v6};
Iteration 5, |D4 ∩ (FG[vi5])| = 3,D5 = D4;
Iteration 6, |D5 ∩ (FG[vi4])| = 1 < k = 3, q = k − |D5 ∩ (FG[vi6])| = 2,

D6 = D5 ∪ Mq(FG[vi6] \ D5) = {v15v16, v14v16, v12v16, v12v14, v5v12, v5v7, v5v6};
output D = D6, end.

Next we turn to show the correctness of the algorithm, then give an imple-
mentation of it. In the following of this section, let S = {vi1 , vi2 , . . . , vih}
with i1 < i2 · · · < ih. Take any positive integer k. Suppose that |FG[x]| ≥ k
holds for every x ∈ S. Recall that I is an interval representation of G and
V (G) = {v1, . . . , vn} where rI(v1) < · · · < rI(vn).

Lemma 3.2. Suppose ab and uw be edges of G with ab >I uw. Let vp and vq

be two vertices of V (G) with p < q. If vq ∈ NG[uw] \ NG[ab], then vp /∈ NG[ab].

Proof. As vq ∈ NG[uw] \ NG[ab] and ab >I uw, it holds I(vq) < I(a) and
I(vq) < I(b). Since p < q, we obtain rI(vp) < rI(vq), hence I(vp) < I(a) and
I(vp) < I(b), which means vp /∈ NG[ab].
�
Lemma 3.3. There is some minimum k edge-vertex dominating set X of G
w.r.t. S which satisfies that Mk(FG[vi1]) ⊆ X.

Proof. Let FG[vi1] = {u1w1, . . . , upwp} where u1w1 >I · · · >I upwp. Notice that
Mk(FG[vi1]) = {u1w1, . . . , ukwk}. Let X be a minimum k edge-vertex dominat-
ing set X of G w.r.t. S with maximum edges of Mk(FG[vi1]). If Mk(FG[vi1]) ⊆ X
were no true, take some edge ujwj of Mk(FG[vi1]) \ X with minimum j. Since
X is a k edge-vertex dominating set of G w.r.t. S, it holds |FG[vi1] ∩ X| ≥ k,
hence there is some usws ∈ (FG[vi1] ∩ X) \ Mk(FG[vi1]). Note that j < s.

Consider the set X ′ = (X \ {usws}) ∪ {ujwj}. We want to show that X ′ is
also a k edge-vertex dominating set of G w.r.t. S. If not, then there is vit ∈ S
with vit ∈ NG[usws] \ NG[ujwj]. Since i1 < it, we deduce vi1 /∈ NG[ujwj],
contradicting with ujwj ∈ FG[vi1], finishing the proof.
�
Lemma 3.4. Let j ∈ [h] and Dj−1 be some k edge-vertex dominating set of G
w.r.t. Sj−1 = {vi1 , . . . , vij−1}. Assume that there is a minimum k edge-vertex
dominating set D′

j−1 of G w.r.t. S with Dj−1 ⊆ D′
j−1. Suppose |D∩(FG[vij])| <

k. Let q = k−|D∩(FG[vij])|, W = Mq(FG[vij]\Dj−1) and Dj = Dj−1∪W . Then
Dj is a k edge-vertex dominating set of G w.r.t. Sj = {vi1 , . . . , vij}. Furthermore,
there is some minimum k edge-vertex dominating set D′

j of G w.r.t. S with
Dj ⊆ D′

j.

The k Edge-Vertex Domination Problem 329

Proof. Notice that: (i) Dj−1 is a k edge-vertex dominating set of G w.r.t. Sj−1;
(ii) q = k − |D ∩ (FG[vij])|, W = Mq(FG[vij] \ Dj−1) and Dj = Dj−1 ∪ W . It
follows from (i) and (ii) that Dj is a k edge-vertex dominating set of G w.r.t.
Sj .

Next we turn to show there is some minimum k edge-vertex dominating
set D′

j of G w.r.t. S such that Dj ⊆ D′
j . Take some minimum k edge-vertex

dominating set X of G w.r.t. S which contains Dj−1 and with maximum edges
of W . Notice that there is some minimum k edge-vertex dominating set D′

j−1 of
G w.r.t. S with Dj−1 ⊆ D′

j−1, it holds X �= ∅.
Suppose W = {u1w1, . . . , uqwq} where u1w1 >I · · · >I uqwq. We shall show

W ⊆ X. If this were no true, take any edge usws ∈ W \ X with minimum s. As
X is a k edge-vertex dominating set of G w.r.t. S, there is some ab ∈ (FG[vij] ∩
X) \ Dj . By the definition of W and by the choice of s, we have ab <I usws.
Consider the edge set X ′ = (X \ {ab}) ∪ {usws}. Note that |X ′| = |X|. By
the choice of X and ab, X ′ is not a k edge-vertex dominating set of G w.r.t.
S. Therefore, there is some vit ∈ S such that |X ′ ∩ (FG[vit])| < k. Note that
Dj−1 ⊆ D′

j and Dj−1 is a k edge-vertex dominating set of G w.r.t. Sj−1, we get
t > j. Because X is a k edge-vertex dominating set of G w.r.t. S, we deduce
that vit ∈ NG[ab] \ NG[usws]. By Lemma 3.2, vij /∈ NG[usws], a contradiction.
So it holds W ⊆ X, hence there is some minimum k edge-vertex dominating set
D′

j = X of G w.r.t. S such that Dj ⊆ D′
j , finishing the proof.
�

Theorem 3.5. Take a positive integer k. Let G be any n-vertex interval graph
and S ⊆ V (G). Suppose |FG[v]| ≥ k holds for every v ∈ S. The output of M-
IG-EVD(G,S, k), say D, is a minimum k edge-vertex dominating set of G w.r.t.
S.

Proof. Take an interval representation I of G so that V (G) = {v1, . . . , vn} and
rI(v1) < · · · < rI(vn). Let S = {vi1 , vi2 , . . . , vih} with i1 < i2 · · · < ih. For each
j ∈ [h], let Dj denote the set D right after step j. Denote the set {vi1 , vi2 , . . . , vij}
by Sj . Let D0 = S0 = ∅. It follows from Lemmas 3.3 and 3.4 that for each
j ∈ [h], Dj is a k edge-vertex dominating set of G w.r.t. Sj . In addition, there is
a minimum k edge-vertex dominating set D′

j of G w.r.t. S such that Dj ⊆ D′
j .

Now, we find that D = Dh is a k edge-vertex dominating set of G w.r.t. Sh = S
and there is a minimum k edge-vertex dominating set D′

h of G w.r.t. S such that
Dh ⊆ D′

h. Note that D itself is a k edge-vertex dominating set of G w.r.t. S, so
it must hold that D = Dh = D′

h, as required.
�
Theorem 3.6. Take a positive integer k. Let G be any n-vertex interval graph
with m edges. For each S ⊆ V (G), the algorithm M-IG-EVD(G,S, k) can be
implemented in O(m lg m + k|S| + n) time.

Proof. It is well known that constructing an interval representation I of G takes
O(n + m) time. Sorting the elements in set E(G) = {u1w1, . . . , umwm} so that
u1w1 >I · · · >I umwm costs us O(m lg m) time. It needs O(k|S|) time to deter-
mine whether there is any x ∈ S with |FG[x]| < k or not. If |D ∩ (FG[x])| < k, it
needs at most O(k) time to do D ← D∪Mq(FG[x]\D) where q = k−|D∩(FG[x])|.
So the whole algorithm can be implemented in O(m lg m + k|S| + n) time.
�

330 P. Li et al.

Corollary 3.7. Let G be some n-vertex interval graph with m edges. The k
edge-vertex domination problem can be solved in O(m lg m + kn) time for each
positive integer k.

4 The M-T-EVD(T, S, k) Algorithm for Trees

Let T be any n-vertex tree. Take some v0 ∈ V (T). For any nonnegative integer
i, let denote the vertex set {u : dT (u, v) = i} by Li. We also say L−1(u) = i
if u ∈ Li. For each j ∈ [4] and each u ∈ Li, let Ej(u) denote the edge set
{xy : dT (u, x) = i − 3 + j, dT (u, y) = i − 2 + j, (x ∈ NT [u]) ∨ (y ∈ NT [u])}.
For u ∈ V (T), we sort the elements in set FT [u] = {x1y1, . . . , xpyp} so that
i < j provided xiyi ∈ Es(u) and xjyj ∈ Et(u) where s < t. The first q edges in
FT [u] will be referred to as Mq(FT [u]) for any positive integer q. After laying the
groundwork above, let’s provide the algorithm to find some minimum k edge-
vertex dominating set of a tree T w.r.t. a subset S ⊆ V (T) for any positive
integer k.

M-T-EVD(T, S, k)
1 � Input tree T rooted at v0, S ⊆ V (T), positive integer k;
2 � Output a minimum k edge-vertex dominating set D of T w.r.t. S;
3 If there is any x ∈ S where |FG[x]| < k, then output “there is not any
4 k edge-vertex dominating set of T w.r.t. S”, exit.
5 Else, compute Ej(u) for each j ∈ [4] and u ∈ V (T). Sorting the elements in set
6 FT [u] = {x1y1, . . . , xpyp} where i < j if xiyi ∈ Es(u), xjyj ∈ Et(u) and s < t.
7 Sorting the elements in S = {vq1 , . . . , vqz} so that L−1(vq1) ≥ · · · ≥ L−1(vqt).
8 D ← ∅;
9 for i ← 1 to z

10 do if |D ∩ (FT [vqi])| < k
11 then Let r = k − |D ∩ (FT [vqi])|
12 Do D ← D ∪ Mr(FT [vqi] \ D).
13 Output D.
14 � Exit

To help readers better understand the algorithm and the terminology
involved in it, we will provide an example to describe how the algorithm runs.

Example 4.1. Let T be the tree as depicted in Fig. 2, S = {v1, v2, v5, v7, v8,
v12, v17, v26}. Consider the algorithm M-T-EVD(T, S, 3). E1(v1) = ∅, E2(v1) =
{v0v1, v0v2, v0v3}, E3(v1) = {v1v4, v1v5}, E4(v1) = {v4v11, v4v12, v4v13, v5v14};
E1(v2) = ∅, E2(v2) = {v0v1, v0v2, v0v3}, E3(v2) = {v2v6, v2v7}, E4(v2) =
{v6v15, v7v16, v7v17}; E1(v5) = v0v1, E2(v5) = {v1v4, v1v5}, E3(v5) =
{v5v14}, E4(v5) = {v14v26, v14v27}; E1(v7) = v0v2, E2(v7) = {v2v6, v2v7},
E3(v7) = {v7v16, v7v17}, E4(v7) = {v17v30}; E1(v8) = {v0v3}, E2(v8) =
{v3v8, v3v9, v3v10}, E3(v8) = {v8v18}, E4(v8) = {v18v31, v18v32}; E1(v12) =
{v1v4}, E2(v12) = {v4v11, v4v12, v4v13}, E3(v12) = {v12v23, v12v24, v12v25},
E4(v12) = {v23v37, v23v38}; E1(v17) = {v2v7}, E2(v17) = {v7v16, v7v17},

The k Edge-Vertex Domination Problem 331

Fig. 2. A tree T which is rooted at v0.

E3(v17) = {v17v30},E4(v17) = {v30v42, v30v43}; E1(v26) = {v5v14}, E2(v26) =
{v14v26, v14v27}, E3(v26) = {v26v39, v26v40, v26v41}, E4(v26) = ∅.

S = {vq1 , . . . , vqz} = {v26, v17, v12, v8, v7, v5, v2, v1}, z = 8, q1 = 26, q2 =
17, q3 = 12, q4 = 8, q5 = 7, q6 = 5, q7 = 2, q8 = 1. FT [vqi] = ∪j∈[4](Ej(vqi)) for
each i ∈ [8].

Iteration 0, D0 = ∅.
Iteration 1, |D0 ∩ (FT [vq1])| = 0 < k = 3, r = k − |D ∩ (FT [vq1])|=3,

D1 = D0 ∪ Mr(FT [vq1] \ D0) = {v5v14, v14v26, v14v27}.
Iteration 2, |D1 ∩ (FT [vq2])| = 0 < k, r = k − |D ∩ (FT [vq2])|=3, D2 =

D1 ∪ Mr(FT [vq2] \ D1) = {v2v7, v5v14, v7v16, v7v17, v14v26, v14v27}.
Iteration 3, |D2 ∩ (FT [vq3])| = 0 < k, r = k − |D ∩ (FT [vq2])|=3, D3 = D2 ∪

Mr(FT [vq3] \ D2) = {v1v4, v2v7, v4v11, v4v12, v5v14, v7v16, v7v17, v14v26, v14v27}.
Iteration 4, |D3 ∩ (FT [vq4])| = 0 < k, r = k − |D ∩ (FT [vq3])| = 3,

D4 = D3 ∪ Mr(FT [vq4] \ D3) = {v0v3, v1v4, v2v7, v3v8, v3v9, v4v11, v4v12, v5v14,
v7v16, v7v17, v14v26, v14v27}.

Iteration 5, |D4 ∩ (FT [vq5])| ≥ 3, D5 = D4;
Iteration 6, |D5 ∩ (FT [vq6])| ≥ 3, D6 = D5;
Iteration 7, |D6 ∩ (FT [vq7])| ≥ 3, D7 = D6;
Iteration 8, |D7 ∩ (FT [vq8])| ≥ 3, D8 = D7.
output D = D8, end.

Now let’s prove the correctness of this algorithm.

Lemma 4.2. Let T be a tree rooted at v0. Take any u ∈ Li. Denote the set
∪0≤j≤iLj by L−

i . It holds that:

332 P. Li et al.

(a) For any j ∈ [4] and xy, x′y′ ∈ Ej(u), NT [xy] ∩ L−
i = NT [x′y′] ∩ L−

i .
(b) For any xy ∈ Ej(u) and x′y′ ∈ Ej′(u) with 1 ≤ j < j′ ≤ 4, NT [xy] ∩ L−

i ⊇
NT [x′y′] ∩ L−

i .

Proof.(a) Note that |E1(u)| = 1, so (a) holds for j = 1.
Take xy, x′y′ ∈ E2(u). Assume that x = x′ ∈ Li+1 ∩NT (u) (x is the parent of
u). Notice that y, y′ ∈ Li. Since (NT [y]\NT [x])∩L−

i = (NT [y′]\NT [x])∩L−
i =

∅, it holds NT [xy] ∩ L−
i = NT [x′y′] ∩ L−

i .
Next we pick any xy, x′y′ ∈ E3(u). Note that x = x′ = u and y, y′ are children
of u. Since y, y′ ∈ Li+1, (NT [y] \ NT [u]) ∩ L−

i = (NT [y′] \ NT [u]) ∩ L−
i = ∅,

hence NT [xy] ∩ L−
i = NT [x′y′] ∩ L−

i .
Choose any xy, x′y′ ∈ E4(u). Note that x, x′ ∈ Li+1 and y, y′ ∈ Li+2, we see
x, x′ ∈ NT [u] and NT [xy] ∩ L−

i = NT [x′y′] ∩ L−
i = {u}, establishing (a).

(b) As NT [x′′y′′] ∩ L−
i = {u} holds for any x′′y′′ ∈ E4(u), we just need to

consider j′ ≤ 3. For any w ∈ V (T), denote the parent of w by par(w).
Observe that NT [x′′y′′] ∩ L−

i = {u, par(u)} holds for each x′′y′′ ∈ E3(u),
NT [x′′y′′]∩L−

i = NT [par(u)] holds for each x′′y′′ ∈ E2(u), NT [x′′y′′]∩L−
i =

NT [par(u)] ∪ NT [par(par(u))] holds for x′′y′′ ∈ E1(u). Taken together, we
establish (b).
�

Theorem 4.3. Take a tree T with n vertices and a positive integer k. The algo-
rithm M-T-EVD(T, S, k) is correct for each S ⊆ V (T).

Proof. Suppose T is rooted at v0, S ⊆ V (T) and |FG[v]| ≥ k holds for any v ∈ S.
Assume that the elements in set FT [u] = {x1y1, . . . , xpyp} is sorted so that i < j
if xiyi ∈ Es(u),xjyj ∈ Et(u) and s < t, and the elements in S = {vq1 , . . . , vqz} is
sorted with L−1(vq1) ≥ · · · ≥ L−1(vqt). Let Di denote the edge set D obtained
just after step i. For each 0 ≤ i ≤ z, we will prove the following statements:

(a) Di is k edge-vertex dominating set of T w.r.t. Si = {vq1 , . . . , vqi}.
(b) There is a minimum k edge-vertex dominating set of T w.r.t. S which con-

tains Di.

We shall proceed by induction on i. Note that (a) and (b) hold for i = 0.
Assume that i > 1 and (a) and (b) hold for each i′ < i. According to (b), there is
some minimum k edge-vertex dominating set of T w.r.t. S which contains Di−1,
say W . Suppose vqi ∈ Ls. Notice that L−1(w) ≤ s holds for all w ∈ S \ Si−1,
we have S \ Si−1 ⊆ L−1(s). If vqi is already k edge-vertex dominated by Di−1,
then Di = Di−1 and statements (a) and (b) hold for i. If vqi is not k edge-vertex
dominated by Di−1, then |Di−1 ∩ (FT [vqi])| < k. Let r = k − |Di−1 ∩ (FT [vqi])|.
Note that Di = Di−1 ∪ Mr(FT [vqi] \ Di−1). Obviously, Di is k edge-vertex
dominating set of T w.r.t. Si, so (a) holds. By Lemma 4.2, we can replace a
certain r elements in set W with set Mr(FT [vqi]\Di−1), and the resulting set W ′

still satisfies the condition that W ′ is also a minimum k edge-vertex dominating
set of T w.r.t. S. This establishes (b), as desired.

Theorem 4.4. Take some n-vertex T be a tree and a positive integer k. Pick
any S ⊆ V (T), the algorithm M-T-EVD(T, S, k) can be implemented in O(n|S|)
time.

The k Edge-Vertex Domination Problem 333

Proof. Note that |E(T)| = n−1. Suppose T is rooted at v0. For every u ∈ V (T),
FG[u] = ∪1≤j≤4Ej(u). To decide whether there is some v ∈ S with |FG[v]| < k
or not takes us O(k|S|) time. Sorting the elements in S = {vq1 , . . . , vqz} so that
L−1(vq1) ≥ · · · ≥ L−1(vqt) needs O(n) time. Take any u ∈ S. To decide wether
|D∩ (FT [vqi])| < k or not takes us O(n) time for each qi ∈ S. If |D∩ (FT [vqi])| <
k, it takes O(n) time to get Mr(FT [vqi] \ D). So the entire algorithm can be
implemented within O(n|S|) time.

Corollary 4.5. Let T be a tree with n vertices. The k edge-vertex domination
problem can be solved in O(n2) time for each positive integer k.

5 Conclusion

This article starts the research work on the k edge-vertex domination problems,
mainly focusing on interval graphs and trees. We design O(m lg m + kn)-time
algorithms to solve these problems for any given interval graph G with n vertices
and m edges, and O(n2)-time algorithms to solve these problems for any tree
with n vertices. Note that our algorithms are simple and natural, using only the
interval representation of the interval graph and the tree representation of the
tree graph, so their algorithm implementation is not difficult. We hope that the
research method in this article can be extended to more general graph classes.
The following questions are worth further investigation:

(1) Design polynomial time algorithms for the k edge-vertex domination prob-
lems on weighed interval graphs and trees;

(2) Design polynomial time algorithms for the k edge-vertex domination prob-
lems on other non-trivial graph classes;

(3) Find the connection between the k edge-vertex dominating number and the
k vertex-edge dominating number for interval graphs and trees.

Acknowledgements. Thanks very much to the reviewers and editors for their hard
work and valuable suggestions. This work is supported by the National Natural Science
Foundation of China (Nos. 11701059, 12171061), Chongqing Natural Science Founda-
tion Innovation and Development Joint Fund (Municipal Education Commission)(No.
CSTB2022NSCQ-LZX0003) and Youth project of science and technology research pro-
gram of Chongqing Education Commission of China (No. KJQN202101130).

References

1. Desormeaux, W.J., Haynes, T.W., Hedetniemi, S.T., Moore, C.: Distribution cen-
ters in graphs. Discret. Appl. Math. 243, 286–293 (2018)

2. Ediz, S., Cancan, M.: On molecular topological properties of alkylating agents
based anticancer drug candidates via some VE-degree topological indices. Curr.
Comput. Aided Drug Des. 16(2), 190–195 (2020)

3. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in
graphs applied to electric power networks. SIAM J. Discret. Math. 15(4), 519–529
(2002)

334 P. Li et al.

4. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced
Topics. Marcel Dekker Inc., New York (1998)

5. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Marcel Dekker Inc., New York (1998)

6. Haynes, T.W., Knisley, D., Seier, E., Zou, Y.: A quantitive analysis of secondary
RNA structure using domination based parameters on trees. BMC Bioinform. 7,
Article ID 108 (2006)

7. Henning, M.A., Pandey, A.: Alghoritmic aspects of semitotal domination in graphs.
Theoret. Comput. Sci. 766, 46–57 (2019)

8. Lewis, J.R.: Vertex-edge and edge-vertex parameters in graphs. Ph.D. thesis, Clem-
son, SC, USA (2007)

9. Li, P., Wang, A.: A polynomial time algorithm for k-vertex-edge dominating prob-
lem in interval graphs. J. Comb. Optim. 45, 45 (2023). https://doi.org/10.1007/
s10878-022-00982-8

10. Peters, J.K.W.: Theoretical and algorithmic results on domination and connectivity
(Nordhaus-Gaddum, Gallai type results, max-min relationships, linear time, series-
parallel). Ph.D. thesis, Clemson, SC, USA (1986)

11. Ramalingam, G., Rangan, C.P.: A uniform approach to domination problems on
interval graphs. Inf. Process. Lett. 27, 271–274 (1988)

12. Raychaudhuri, A.: On powers of interval and unit interval graphs. Congr. Numer.
59, 235–242 (1987)

13. Şahin, B., Şahin, A.: Double edge–vertex domination. In: Kahraman, C., Cevik
Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC,
vol. 1197, pp. 1564–1572. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-51156-2 182

14. Venkatakrishnan, Y.B., Krishnakumari, B.: An improved upper bound of edge-
vertex domination of a tree. Inf. Process. Lett. 134, 14–17 (2018)

15. Venkatakrishnan, Y.B., Naresh Kumar, H.: On the algorithmic complexity of dou-
ble vertex-edge domination in graphs. In: Das, G.K., Mandal, P.S., Mukhopad-
hyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS, vol. 11355, pp. 188–198.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10564-8 15

https://doi.org/10.1007/s10878-022-00982-8
https://doi.org/10.1007/s10878-022-00982-8
https://doi.org/10.1007/978-3-030-51156-2_182
https://doi.org/10.1007/978-3-030-51156-2_182
https://doi.org/10.1007/978-3-030-10564-8_15

Resource-Adaptive Newton’s Method
for Distributed Learning

Shuzhen Chen1, Yuan Yuan2(B), Youming Tao1, Zhipeng Cai3,
and Dongxiao Yu1

1 School of Computer Science and Technology, Shandong University,
Qingdao 266237, China

{szchen,ym.tao99}@mail.sdu.edu.cn, dxyu@sdu.edu.cn
2 School of Software & Joint SDU-NTU Centre for Artificial Intelligence Research

(C-FAIR), Shandong University, Jinan 250100, China
yyuan@sdu.edu.cn

3 Department of Computer Science, Georgia State University,
Atlanta, GA 30303, USA

zcai@gsu.edu

Abstract. By leveraging curvature information for improved perfor-
mance, Newton’s method offers significant advantages over first-order
methods for distributed learning problems. However, the practical appli-
cability of Newton’s method is hindered in large-scale and heteroge-
neous learning environments due to challenges such as high computation
and communication costs associated with the Hessian matrix, sub-model
diversity, staleness in training, and data heterogeneity. To address these
challenges, this paper introduces a novel and efficient algorithm called
Resource-Adaptive Newton Learning (RANL), which overcomes the lim-
itations of Newton’s method by employing a simple Hessian initializa-
tion and adaptive assignments of training regions. The algorithm demon-
strates impressive convergence properties, which are rigorously analyzed
under standard assumptions in stochastic optimization. The theoreti-
cal analysis establishes that RANL achieves a linear convergence rate
while effectively adapting to available resources and maintaining high
efficiency. Moreover, RANL exhibits remarkable independence from the
condition number of the problem and eliminates the need for complex
parameter tuning. These advantages make RANL a promising approach
for distributed learning in practical scenarios.

Keywords: Distributed learning · Newton’s method ·
resource-adaptation · sub-model diversity · data heterogeneity

Supported in part by National Natural Science Foundation of China (NSFC) under
Grant 62122042 and 62302247, in part by Fundamental Research Funds for the Central
Universities under Grant 2022JC016, in part by Shandong Natural Science Foundation,
China under Grant ZR2022QF140.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 335–346, 2024.
https://doi.org/10.1007/978-3-031-49190-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_24&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_24

336 S. Chen et al.

1 Introduction

In recent years, the field of machine learning has witnessed exponential growth
in both the volume and complexity of data. This surge in data has necessitated
the development of innovative approaches to process and analyze information
efficiently. Distributed machine learning has emerged as a pivotal solution, cap-
italizing on the parallelism and scalability of modern computing architectures.
By leveraging distributed systems, this approach enables the effective processing
of large datasets, thereby addressing the challenges posed by the ever-expanding
data landscape. Distributed machine learning encompasses a diverse range of
techniques that enable the collaborative training and inference of models across
multiple computing nodes. Among the key research problems in this field, dis-
tributed stochastic optimization has gained significant attention since it lies at
the heart of various distributed machine learning applications, including feder-
ated learning, distributed deep learning, and distributed reinforcement learning.

First-order methods, such as stochastic gradient descent (SGD), have become
popular for distributed stochastic optimization problems due to their simplicity
and scalability. However, first-order methods have limitations, especially when
the objective function is ill-conditioned or non-smooth. For example, they suffer
from slow convergence rates and are highly sensitive to the choice of step size
and the condition number1 of the objective function [2,5,7,22]. Furthermore,
in distributed settings, first-order methods require frequent gradient exchanges
between machines, resulting in large number of communication rounds. In con-
trast, second-order methods, such as Newton’s method, offer several advantages
over first-order methods. These methods leverage additional curvature informa-
tion, leading to faster and more precise convergence. By utilizing second-order
derivatives, they can capture more intricate aspects of the objective function’s
geometry, allowing for efficient optimization in complex landscapes. Moreover,
second-order methods can reduce the required communication rounds in dis-
tributed settings since they often require fewer iterations to converge compared
to first-order methods [1].

Although Newton’s method offers distinct advantages over first-order meth-
ods, its application to distributed stochastic optimization is not trivial, especially
in practical large-scale and heterogeneous learning environments. The limited
computation, storage, and communication resources in such settings exacerbate
the convergence degradation. Computationally, inverting, storing, and transmit-
ting the objective function’s Hessian matrix can be prohibitive for large-scale
problems [4]. High-dimensional problems further intensify the issue, requiring
substantial storage and manipulation for the colossal and dense Hessian matrix.
Additionally, the communication overhead of transmitting the matrix across dis-
tributed workers and servers poses a significant challenge in distributed learning.
Resource limitations further impede the learning process, while the diverse con-
straints among workers, such as processing speeds, memory limitations, and bat-
tery life, hinder local model training. In practical scenarios, workers often access

1 For Lg-smooth μ-strongly convex functions, the condition number is defined as Lg/μ.

Resource-Adaptive Newton’s Method for Distributed Learning 337

or compute on only a subset of model parameters, forming sub-models. The het-
erogeneity and discrepancy among machines and data sources introduce noise,
bias, and variance, impacting the convergence and accuracy of distributed learn-
ing [11]. Given the difficulties above, a natural question arises: can Newton’s
method efficiently address distributed stochastic optimization in heterogeneous
environments? Motivated by this question, we aim to design an efficient and
heterogeneous distributed learning algorithm for stochastic optimization based
on Newton’s method, capable of adapting to the dynamic and diverse resource
constraints of different distributed workers.

Challenges. To achieve this, we have to tackle several non-trivial challenges.

(1). Hessian computation and communication. Developing a more streamlined
computation and communication process for generating the Hessian matrix
is necessary. Existing methods have explored strategies such as low-rank
approximations [9], subsampling techniques [4], or Hessian-free methods [8]
to leverage local curvature information without explicitly forming or storing
the complete Hessian matrix. However, these methods may rely on heuristics
or introduce additional approximation errors in practical implementations.

(2). Sub-model diversity. Sub-model diversity involves partitioning the model
into different regions that can be trained independently by individual work-
ers. This allows for adaptive resource allocation, as each worker can focus on
training specific regions based on their available resources. This approach
deviates from training all regions consistently in each round and promotes
local optimization instead of global optimization. While sub-model diver-
sity has been addressed in first-order methods of distributed stochastic opti-
mization by researchers such as [20,24], there is a lack of related research
for second-order methods.

(3). Staleness in training. Since sub-models are constructed arbitrarily, not every
region of the model can be trained by workers in each round. As a result, cer-
tain regions may remain untrained for extended periods. This lack of train-
ing for some regions can hinder the convergence of the entire distributed
stochastic optimization process. This challenge remains unresolved in cur-
rent research.

(4). Data heterogeneity. Data heterogeneity arises when different machines have
varying data distributions or qualities due to their local contexts. Various
techniques have been proposed to tackle this issue for first-order optimiza-
tion methods, including data selection [13], transfer learning [25], regular
optimization [12] and meta learning [10]. However, there is a dearth of effi-
cient solutions for second-order methods to effectively handle data hetero-
geneity. Future research is needed to bridge this gap and develop effective
strategies for addressing data heterogeneity in the context of second-order
optimization methods.

Our Contributions. This paper presents an innovative algorithm called
Resource-Adaptive Newton Learning (RANL) to address the above challenges.
RANL employs simple Hessian initialization and adaptive assignments of training

338 S. Chen et al.

regions to tackle these challenges effectively. In RANL, during each optimiza-
tion round, the server broadcasts the global model to all workers, who generate
masks based on their own preferences without any constraints and train hetero-
geneous sub-models. The server then collects and aggregates the accumulated
local updates for each region from the workers.

To address the challenge of Hessian computation and communication, a Hes-
sian matrix is generated during the initialization phase, eliminating the need
for repetitive computation and frequent communication. To tackle sub-model
diversity, staleness in training, and data heterogeneity, RANL introduces a server
aggregation mechanism that continuously monitors the latest updates for differ-
ent regions of the global model in each worker and reuses them as approxima-
tions for the update of the current region. This approach efficiently addresses
the challenges while minimizing memory requirements on the server side.

In summary, this paper introduces RANL, a novel distributed stochastic opti-
mization algorithm based on Newton’s method. A rigorous convergence analysis
of RANL is provided, considering standard assumptions in stochastic optimiza-
tion. The analysis demonstrates that RANL achieves a linear convergence rate
and exhibits insensitivity to the condition number and complex parameter tun-
ing compared to first-order methods.

2 Related Work

First-Order Methods. Various first-order methods have been proposed to tackle
distributed stochastic optimization problems, including distributed SGD [14],
variance reduction SGD [17], and accelerated SGD [19]. Pu et al. propose
DSGD, achieving optimal network-independent convergence rates compared to
centralized SGD [14]. Reddi et al. explore variance reduction algorithms in asyn-
chronous parallel and distributed settings [17]. Shamir et al. systematically study
distributed stochastic optimization, demonstrating the effectiveness of acceler-
ated mini-batched SGD [19]. While these methods lower computation costs,
they may escalate communication costs due to increased communication rounds.
Moreover, they have limitations regarding the use of first-order information,
potentially underutilizing curvature details in the objective function. Parameter
tuning and dependence on the data’s condition number can be intensive.

Second-Order Methods. Newton’s method, utilizing the Hessian information, has
demonstrated resilience in optimization problems, including federated learning
with Newton-type methods [15,18], communication-efficient Newton-type meth-
ods [3,16], and quasi-Newton methods [21,23]. Qian et al. propose Basis Learn
(BL) for federated learning, reducing communication costs through a change of
basis in the matrix space [15]. Safaryan et al. introduce Federated Newton Learn
(FedNL) methods, leveraging approximate Hessian information for improved
solutions [18]. Bullins et al. present FEDSN, a communication-efficient stochas-
tic Newton algorithm [3]. Qiu et al. develop St-SoPro, a stochastic second-order
proximal method with decentralized second-order approximation [16]. Zhang et
al. devise SpiderSQN, a faster quasi-Newton method that incorporates variance

Resource-Adaptive Newton’s Method for Distributed Learning 339

reduction techniques [23], and propose stochastic quasi-Newton methods with
linear convergence guarantees [21].

However, there is limited work addressing heterogeneous methods for second-
order optimization, particularly considering resource constraints and sub-model
diversity. In this study, we investigate distributed learning problems concerning
resource adaptation in stochastic Newton’s method optimization.

3 Preliminaries

3.1 Distributed Learning Setup

We consider a distributed learning setup where N workers collaborate with a
central server to solve the stochastic optimization problem. The learning process
is synchronized and is divided into a series of communication rounds of t =
1, 2, · · · and thus resulting in a sequence of model parameters x1, x2, · · · , xN .
The learning objective is to find an optimal model parameter vector x∗ from the
d-dimensional parameter space R

d that minimizes the global population risk ˜f ,
which can be formulated as:

x∗ = arg min
x∈Rd

{

˜f(x) � 1
N

N
∑

i=1

Eξi∼Di
[Fi(x; ξi)]

}

, (1)

where Di is the local data distribution of worker i, ξi is a random data sample
drawn from Di, and Fi(x; ξi) is the per-sample loss of worker i incurred by
the model parameter x. In each round t, we denote the group of data samples
drawn by the workers as (ξt

1, ξ
t
2, · · · , ξt

N), and denote the model parameter at the
beginning of round t as xt. For any feasible (ξt

1, ξ
t
2, · · · , ξt

N) and xt, we define

˜F (xt; ξt
1, ξ

t
2, · · · , ξt

N) � 1
N

N
∑

i=1

Fi(xt; ξt
i), (2)

which represents the instant global loss incurred by the data samples generated in
round t under model xt. In the remainder of the paper, we use ∇ ˜F t to denote the
gradient of function F at xt for simplicity, i.e., ∇ ˜F t � ∇xF (xt; ξt

1, ξ
t
2, · · · , ξt

N).

3.2 Newton’s Method

Typically, to apply Newton’s method for solving the population risk minimiza-
tion problem described in (1), one can modify the stochastic gradient descent
(SGD) framework and leverage gradients preconditioned by the inverse Hessian
therein. Let Ht ∈ R

d×d be the Hessian matrix of function F evaluated at xt with
data samples being (ξt

1, ξ
t
2, · · · , ξt

N), i.e., Ht � ∇2F (xt; ξt
1, ξ

t
2, · · · , ξt

N). Then the
model parameter updating step in round t can be written as:

xt+1 = xt − [Ht]−1∇ ˜F t, (3)

where [Ht]−1 is the inverse of Ht.

340 S. Chen et al.

3.3 Resource-Adaptive Learning via Online Model Pruning

One popular way to achieve resource-adaptive learning is online model pruning,
which is first introduced in [24]. For each local loss Fi(x, ξi) with parameters
x and input data ξi. The pruning process takes Fi as the input and generates
a new training model Fi(x � mi; ξi), where mi ∈ {0, 1}d is a binary mask for
indicating whether each parameter is trainable by worker i, � denotes element-
wise multiplication, and x � mi denotes the pruned model at worker i, which
has a reduced model size and is more efficient for communication and local
training. The pruning mask mi can be generated from various pruning policies
in practice. In this work, we consider a generic pruning policy P such that (i)
pruning masks are allowed to be time-varying, enabling online adjustment of
pruned local models during the entire training process and (ii) pruning policies
may vary for different clients, making it possible to optimize the pruned local
models with respect to individual clients’ heterogeneous computing resource and
network conditions. We use mt

i to denote the mask used by worker i in round
t and define xt

i � xt � mt
i as the pruned local model that contains trainable

parameters of worker i in round t. In cater to different available local resources
among workers, the global model into Q disjoint regions with varying number
of parameters before the training. During the learning process, different workers
leverage adaptive online masks to train heterogeneous pruned models composed
of varying regions according to local resources. Let B be the set of all regions. It
is possible that (i) only part of the regions are trained by at least one worker in
each round t due to the adaptive online pruning and (ii) certain region can stay
untrained for several consecutive rounds. To characterize the regions covered
by each round of training, we introduce the notation of Bt to denote the set of
regions that get trained in round t. For each region q ∈ Bt, we use N t,q to denote
the set of workers that train on region q in round t. With these notations, we
define the minimum worker coverage number as follows:

τ∗ � min
t,q∈Bt

|N t,q|. (4)

To capture the delay between adjacent training rounds for each region, we intro-
duce the notation of κt,q

i to denote the maximum number of consecutive rounds
where region q remains untrained by worker i till round t. Based on this, we
define κt to denote the maximum number of consecutive rounds a region can
remain untrained across all workers in round t:

κt � max
q∈B,i∈[N]

κt,q
i . (5)

3.4 Other Notations

We use ‖ · ‖ to denote the �2 norm for vectors or the spectral norm for matrices,
and use ‖ · ‖F to denote the Frobenius norm for matrices. In accordance with
(2), we define the following global empirical loss function F :

F (xt
1, x

t
2, · · · , xt

N ; ξt
1, ξ

t
2, · · · , ξt

N) � 1
N

N
∑

i=1

Fi(xt
i; ξ

t
i), (6)

Resource-Adaptive Newton’s Method for Distributed Learning 341

which measures the instant global empirical loss under the pruned models given
the sampled data points in round t. For simplicity, we will just write F (x) instead
of F (xt

1, x
t
2, · · · , xt

N ; ξt
1, ξ

t
2, · · · , ξt

N) when it is clear from the context.

4 The Resource-Adaptive Newton Learning Algorithm

In this section, we provide a detailed description of our algorithm, namely
Resource-Adaptive Newton Learning (RANL). RANL leverages only the initial
second-order information, namely the Hessian H at the 0-th round. Moreover,
each worker transmits a pruned gradient to the server with a pruned model,
aiming to reduce communication costs. RANL can be roughly divided into two
phases.

Phase I: Initialization. Each worker i calculates the local Hessian ∇2Fi(x0, ξ0i)
based on the initial global parameter x0 and sends it to the server. The server
then aggregates the Hessians, resulting in H = 1

N

∑N
i=1 ∇2Fi(x0, ξ0i). Notably,

this aggregation step is based on the initial second-order information and will
be used throughout the subsequent learning rounds. Next, a projected Hessian
estimate, denoted by [H]μ ∈ {M ∈ Rd×d : M� = M, μI � M}, is computed,
which is utilized for updating the global parameter in each updating step. The
projection method satisfies the following definition.

Definition 1 (Projection [18]). The projection of symmetric matrix A onto
the cone of positive semi-definite matrices {M ∈ Rd×d : M� = M, μI � M} is
computed by

[A]μ := [A − μI]0 + μI, [A]0 :=
d

∑

i=1

max {λi, 0} uiu
�
i ,

where
∑

i

λiuiu
�
i is an eigenvalue decomposition of the matrix A.

Phase II: Resource-Adaptive Learning. In each round t ∈ {1, 2, . . . , T},
all workers first receive the latest global parameter xt from the server. Then
each worker generates a local adaptive mask mt

i, and compute a pruned local
gradient ∇F t

i � ∇Fi(xt � mt
i, ξ

0
i) � mt

i based on mt
i. The pruned local gradients

are used to generate the global gradient ∇F t by the server. Now we expand on
how to generate ∇F t. ∇F t can be partitioned into Q discontinuous fragments
with each corresponding to a region of the model. Formally, we use ∇F t,q to
denote the gradient fragment corresponding to region q. Since only partial model
regions can get trained by the workers in round t, to generate a reasonable global
gradient, the server has to keep track of the latest gradient information for each
model region. To this end, in RANL, the server maintains Ct,q

i to store the most
recent accessible local gradient fragment that is received from each worker i and
corresponds to region q. ∇F t,q is formed by aggregating all Ct,q

i ’s for i ∈ [N]
and ∇F t is generated by re-combining all fragments ∇F t,q’s for q ∈ [Q]. Finally,
∇F t is used to update xt via the preconditioned gradient descent step.

342 S. Chen et al.

The overall scheme is summarized in Algorithm 1.

Algorithm 1: RANL: Resource-Adaptive Newton Learning
Input: Local datasets {Di}N

i=1, pruning policy P, initialized model x0.
Output: xT .
/* Phase I: Initialization */

1 Server broadcasts x0 to all workers;
2 for every worker i in parallel do
3 Compute local gradient ∇Fi(x

0, ξ0i) and local Hessian ∇2Fi(x
0, ξ0i) ;

4 Send ∇Fi(x
0, ξ0i) and ∇2Fi(x

0, ξ0i) to the server ;

5 Server aggregates the local Hessian matrices: H = 1
N

N∑

i=1

∇2Fi(x
0, ξ0i) ;

6 Server initializes C0,q
i for each worker i and region q: C0,q

i = ∇F q
i (x0, ξ0i) ;

7 Server updates the global model: x1 = x0 − [H]−1
μ

(
N∑

i=1
∇Fi(x

0,ξ0i)/N

)

;

8 Server broadcasts x1 to all workers ;
/* Phase II: Resource-Adaptive Learning */

9 for round t = 1, · · · , T do
10 for every worker i in parallel do
11 Generate the mask mt

i = P(xt, i) ;
12 Prune the model: xt

i = xt � mt
i ;

13 Compute the gradient after pruning: ∇F t
i = ∇Fi(x

t
i, ξ

t
i) � mt

i ;
14 Send ∇F t

i to the server ;

15 for every region q = 1, · · · , Q do

16 Server finds N t,q = {i : mt,q
i = 1};

17 for i = 1 to N do

18 Ct,q
i =

{ ∇F t,q
i if i ∈ N t,q

Ct−1,q
i if i /∈ N t,q

;

19 Server updates ∇F t,q = 1
N

N∑

i=1

Ct,q
i ;

20 Server updates the global parameter: xt+1 = xt − [H]−1
μ ∇F t ;

21 Server broadcasts xt+1 to all workers ;

5 Convergence Analysis

In this section, we analyze the performance of Algorithm 1. Specifically, we aim to
show that our proposed Algorithm1 exhibits linear convergence rate. To achieve
this, we first introduce some key concepts in optimization.

Definition 2 (Lipschitzness). A function � : Rd → R
d is L-Lipschitz if for

∀x1, x2 ∈ R
d,

‖�(x1) − �(x2)‖≤ L‖x1 − x2‖.

Then, the function � has Lg Lipschitz continuous gradient and Lh Lipschitz
continuous Hessian if for ∀x1, x2 ∈ R

d,

‖∇�(x1) − ∇�(x2)‖≤ Lg‖x1 − x2‖.

Resource-Adaptive Newton’s Method for Distributed Learning 343

‖∇2�(x1) − ∇2�(x2)‖≤ Lh‖x1 − x2‖.

Definition 3 (Bounded variance). Define a function L(x, ξ) and its unbiased
expectation function �(x). �(x) is an unbiased estimator of L(x, ξ) with a bounded
variance if for ∀x ∈ R

d,

Eξ∼D‖L(x, ξ) − �(x)‖2 ≤ σ2.

Definition 4 (μ-strong convexity). A differentiable function � : Rd → R
d is

μ-strongly convex if for ∀x1, x2 ∈ R
d,

�(x1) ≥ �(x2) + 〈∇�(x2), x1 − x2〉 +
μ

2
‖x1 − x2‖.

For twice differentiable functions, μ-strong convexity is equivalent to that
λmin

(∇2�(x)
) ≥ μ, where λmin(·) represents the minimum eigenvalue.

We adopt the following standard assumptions throughout the analysis.

Assumption 1. The average loss function ˜f(x) is μ-strongly convex.

Assumption 2. For ∀i ∈ [N], each function fi(x) is L-Lipschitz for any x ∈ R
d

and twice continuously differentiable in respect of x ∈ R
d. Each function fi(x)

has a Lg-Lipschitz gradient and a Lh-Lipschitz Hessian for any x ∈ R
d.

Assumption 3. There exists a constant Δ ≥ 0 and a constant σ ≥ 0 such that:
(i) for ∀i ∈ [N] with any x ∈ Rd, it holds that Eξ∼Di

‖∇Fi(x, ξ) − ∇fi(x)‖2 ≤
Δ2; (ii) for ∀i ∈ [N] with the x0 ∈ Rd, it holds that Eξ∼Di

‖∇2Fi(x0, ξ) −
∇2fi(x0)‖2F ≤ σ2.

Assumption 4. For ∀i ∈ [N] and ∀t ∈ [T], there exists a constant δ ≥ 0 such
that E‖xt − xt

i‖2 ≤ δ2.

The above three assumptions are fairly standard and have been widely
adopted in previous work, e.g., [18,23,24]. To establish the linear convergence of
RANL, we need four Lemmas 1–4 as follows. All detailed proofs are included in
the full version [6] due to space limitation.

Lemma 1. The projected Hessian estimate [H]μ ∈ {M ∈ Rd×d : M� =
M, μI � M} is computed by Definition 1. We have the following inequality

‖Hμ − H∗‖F ≤ ‖H − H∗‖F , H∗ = ∇2
˜f (x∗) . (7)

Lemma 1 quantifies the proximity of the projected Hessian matrix [H]μ to
the optimal Hessian matrix H∗.

Lemma 2. Under Assumption 3(ii), we have

E

∥

∥

∥H − ∇2
˜f (x∗)

∥

∥

∥

2

≤ 2E
∥

∥

∥∇2
˜f
(

x0
) − ∇2

˜f (x∗)
∥

∥

∥

2

F
+ 2σ2. (8)

344 S. Chen et al.

Lemma 2 measures the stochastic error induced by the local Hessian aggre-
gation based on workers’ random local data in the initial stage.

Lemma 3. Under Assumption 3(i), we have

E

∥

∥

∥∇2
˜f (x∗)

(

xt − x∗) − ∇F t + ∇ ˜f (x∗)
∥

∥

∥

2

≤ 2E
∥

∥

∥∇2
˜f (x∗)

(

xt − x∗) − ∇f t + ∇ ˜f (x∗)
∥

∥

∥

2

+
2N

τ∗ Δ2 + 2Δ2.

(9)

Lemma 3 quantifies the stochastic error of the local gradient aggregation
during the learning process. The error consists of two parts based on whether
regions are trained or not. The aggregated gradient information for the trained
regions may not include all the N workers’ gradients. Therefore, the error for
the trained regions is limited by the defined minimum worker coverage number
τ∗. For the untrained regions, the gradients of all the N workers are used, which
reduces the stochastic error but introduces the delay error.

Lemma 4. Under Assumption 2 and 4, we have

E

∥

∥

∥∇f t − ∇ ˜f (x∗) − ∇2
˜f (x∗)

(

xt − x∗)
∥

∥

∥

2

≤ N

τ∗
(

2L2
gδ

2
)

+ κ2
t

8L2L2
g

μ2
+ 4L2

gδ
2 +

L2
hN

2τ∗ E
∥

∥xt − x∗∥
∥

4
.

(10)

Lemma 4 quantifies the pruning error and the delay accumulation error by
establishing the relationship between the gradient and the parameter.

Before presenting Theorem 1, we define some variables: a = L2
hN
2τ∗ , b = μ2

16 −σ2,

c = N
τ∗

(

2L2
gδ

2 + Δ2
)

+ κ2
t
8L2L2

g

μ2 + 4L2
gδ

2 + Δ2 and ρ = b2 − 4ac.

Theorem 1. Under Assumption 1, 2, 3 and 4, assume there exists a con-
stant α ≥ 0 satisfying c ≤ αE‖x0 − x∗‖2, E‖x0 − x∗‖2 ≤ b−α

a and

E

∥

∥

∥∇2
˜f
(

x0
) − ∇2

˜f (x∗)
∥

∥

∥

2

F
≤ μ2

16 with ρ ≥ 0. Then, Algorithm 1 converges lin-
early with the rate

E‖xt+1 − x∗‖2 ≤ 1
2
E

∥

∥xt − x∗∥
∥

2
. (11)

Corollary 1. Let all assumptions hold. Supposing α = b−√
ρ

2 in Theorem1,

E‖x0 − x∗‖2 ≤ b+
√

ρ

2a and E

∥

∥

∥∇2
˜f
(

x0
) − ∇2

˜f (x∗)
∥

∥

∥

2

F
≤ μ2

16 . Then, Algorithm1
converges linearly with the rate

E‖xt+1 − x∗‖2 ≤ 1
2
E

∥

∥xt − x∗∥
∥

2
. (12)

One can observe from (12) that the local linear convergence rate of the iter-
ates does not rely on any specific constant. This constant is universal, meaning
that it is independent of the problem’s condition number, the training data’s
size, or the problem’s dimension. In fact, the squared distance to the optimal
solution is reduced by half at every iteration.

Resource-Adaptive Newton’s Method for Distributed Learning 345

6 Conclusion

In this paper, we have presented a novel approach for addressing distributed
stochastic optimization problems in resource-constrained and heterogeneous set-
tings using Newton’s method. Our proposed algorithm, RANL, combines an effi-
cient Hessian initialization with adaptive region partitioning. We have demon-
strated that RANL is an effective and adaptable distributed learning algorithm
that can handle the dynamic and diverse resource limitations of distributed work-
ers. Our work also opens up several promising avenues for future research. One
potential direction is to extend RANL to asynchronous or decentralized scenarios
and incorporating more sophisticated Hessian approximation methods. Overall,
our contributions shed light on the challenges and opportunities of distributed
stochastic optimization in resource-constrained and heterogeneous environments.

References

1. Agarwal, N., Bullins, B., Hazan, E.: Second-order stochastic optimization for
machine learning in linear time. J. Mach. Learn. Res. 18, 116:1–116:40 (2017)

2. Beck, A.: Introduction to Nonlinear Optimization - Theory, Algorithms, and Appli-
cations with MATLAB, MOS-SIAM Series on Optimization, vol. 19. SIAM (2014)

3. Bullins, B., Patel, K.K., Shamir, O., Srebro, N., Woodworth, B.E.: A stochastic
newton algorithm for distributed convex optimization. In: Annual Conference on
Neural Information Processing Systems, NeurIPS, pp. 26818–26830 (2021)

4. Byrd, R.H., Hansen, S.L., Nocedal, J., Singer, Y.: A stochastic quasi-newton
method for large-scale optimization. SIAM J. Optim. 26(2), 1008–1031 (2016)

5. Chen, J., Yuan, R., Garrigos, G., Gower, R.M.: SAN: stochastic average newton
algorithm for minimizing finite sums. In: International Conference on Artificial
Intelligence and Statistics, AISTATS. Proceedings of Machine Learning Research,
vol. 151, pp. 279–318. PMLR (2022)

6. Chen, S., Yuan, Y., Tao, Y., Cai, Z., Yu, D.: Resource-adaptive newton’s method
for distributed learning. arXiv preprint arXiv:2308.10154 (2023)

7. Islamov, R., Qian, X., Richtárik, P.: Distributed second order methods with
fast rates and compressed communication. In: Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML. Proceedings of Machine Learning
Research, vol. 139, pp. 4617–4628. PMLR (2021)

8. James, M.: Deep learning via hessian-free optimization. In: Proceedings of the
International Conference on Machine Learning (ICML), vol. 27, pp. 735–742 (2010)

9. James, M., Roger, G.: Optimizing neural networks with kronecker-factored approx-
imate curvature. In: International Conference on Machine Learning, pp. 2408–2417.
PMLR (2015)

10. Jiang, Y., Konečný, J., Rush, K., Kannan, S.: Improving federated learning per-
sonalization via model agnostic meta learning. CoRR abs/1909.12488 (2019)

11. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N.,
et al.: Advances and open problems in federated learning. Found. Trends Mach.
Learn. 14(1–2), 1–210 (2021)

12. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated
optimization in heterogeneous networks. In: Dhillon, I.S., Papailiopoulos, D.S., Sze,
V. (eds.) Proceedings of Machine Learning and Systems, MLSys. mlsys.org (2020)

http://arxiv.org/abs/2308.10154

346 S. Chen et al.

13. de Luca, A.B., Zhang, G., Chen, X., Yu, Y.: Mitigating data heterogeneity in
federated learning with data augmentation. CoRR abs/2206.09979 (2022)

14. Pu, S., Olshevsky, A., Paschalidis, I.C.: A sharp estimate on the transient time
of distributed stochastic gradient descent. IEEE Trans. Autom. Control 67, 5900–
5915 (2021)

15. Qian, X., Islamov, R., Safaryan, M., Richtárik, P.: Basis matters: better
communication-efficient second order methods for federated learning. In: Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS. Proceedings
of Machine Learning Research, vol. 151, pp. 680–720. PMLR (2022)

16. Qiu, C., Zhu, S., Ou, Z., Lu, J.: A stochastic second-order proximal method for
distributed optimization. IEEE Control. Syst. Lett. 7, 1405–1410 (2023)

17. Reddi, S.J., Hefny, A., Sra, S., Póczos, B., Smola, A.J.: On variance reduction
in stochastic gradient descent and its asynchronous variants. In: Conference on
Neural Information Processing Systems, pp. 2647–2655 (2015)

18. Safaryan, M., Islamov, R., Qian, X., Richtárik, P.: FEDNL: making newton-type
methods applicable to federated learning. In: International Conference on Machine
Learning, vol. 162, pp. 18959–19010. PMLR (2022)

19. Shamir, O., Srebro, N.: Distributed stochastic optimization and learning. In: 52nd
Annual Allerton Conference on Communication, Control, and Computing, pp. 850–
857. IEEE (2014)

20. Yuan, B., Wolfe, C.R., Dun, C., Tang, Y., Kyrillidis, A., Jermaine, C.: Distributed
learning of fully connected neural networks using independent subnet training.
Proc. VLDB Endow. 15(8), 1581–1590 (2022)

21. Zhang, J., Liu, H., So, A.M., Ling, Q.: Variance-reduced stochastic quasi-newton
methods for decentralized learning. IEEE Trans. Sig. Process. 71, 311–326 (2023)

22. Zhang, J., You, K., Basar, T.: Achieving globally superlinear convergence for dis-
tributed optimization with adaptive newton method. In: 59th IEEE Conference on
Decision and Control, CDC, pp. 2329–2334. IEEE (2020)

23. Zhang, Q., Huang, F., Deng, C., Huang, H.: Faster stochastic quasi-newton meth-
ods. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 4388–4397 (2022)

24. Zhou, H., Lan, T., Venkataramani, G., Ding, W.: On the convergence of hetero-
geneous federated learning with arbitrary adaptive online model pruning. CoRR
abs/2201.11803 (2022)

25. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1),
43–76 (2021)

DR-Submodular Function Maximization
with Adaptive Stepsize

Yanfei Li, Min Li, Qian Liu, and Yang Zhou(B)

School of Mathematics and Statistics, Shandong Normal University, Jinan 250014,
China

zhouyang@sdnu.edu.cn

Abstract. The DR-submodular function maximization problem has
been gaining increasing attention due to its important applications in
many fields. In [1], a framework was proposed to describe algorithms
using differential dynamical systems and discretization to obtain imple-
mentable algorithms. In this framework, the time domain is discretized
with equal stepsizes, which also determined the computational com-
plexity of the algorithm. In this paper, we propose an adaptive app-
roach to determine the stepsize, which is applicable for various scenar-
ios. With the guarantee of achieving the same approximation ratio as
the state-of-art results, the iteration complexity of our stepsize selec-
tion strategy is O(‖∇F (0)‖1

ε
) when the objective function is monotone

and O(n + ‖∇F (0)‖1
ε

) when it is non-monotone, where F denotes the
objective function, and ε represents the approximation loss by discretiza-
tion process. This strategy has been shown to have lower computational
complexity in some of the most common application scenarios for DR-
submodular function maximization.

Keywords: DR-submodular functions · adaptive stepsize · binary
search · computational complexity

1 Introduction

Diminishing-returns (DR) submodular functions have a wide range of appli-
cations in economics, engineering, machine learning, etc. The submodularity,
which describes a diminishing return property of a function, has a profound the-
oretical influence on optimization. It can achieve effective minimization [2] and
approximate maximization [3,4] in polynomial time. In [5], it is proved that the
continuous submodularity is equivalent to a weak form of diminishing returns
(DR) property.

This paper is supported by National Science Foundation of China (No. 12371099)
and Natural Science Foundation of Shandong Province (Nos. ZR2020MA029,
ZR2021MA100)) of China.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 347–358, 2024.
https://doi.org/10.1007/978-3-031-49190-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_25&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_25

348 Y. Li et al.

Maximizing a DR-submodular function is an NP-hard problem. For the
unconstrained case, in [6] Niazadeh et al. presents a tight 1

2 -approximation algo-
rithm. Specifically, quasi-linear time algorithm with 1

2 -approximation for DR-
submodular maximization is designed that improves previous work in [7–9]. For
the convex-constrained maximization of DR-submodular functions, there exists
a

(
1 − 1

e

)
-approximation algorithm when the objective function is monotone.

If the objective function is non-monotone and the constraint is down-closed,
there exists a 1

e -approximation algorithm [7], otherwise, only a 1
4 -approximation

algorithm is known [1,10].
In [1] a framework using Lyapunov function and exponential integrator

method to design and analysing algorithms for DR-submodular function max-
imization problem is proposed. According to the given framework, some com-
monly used algorithms for DR-submodular function minimization problem, e.g.
continuous greedy algorithm, Frank-Wolfe algorithm, can be regarded as a dis-
cretized form of initial-valued ordinary differential equations defined in time
domain [0, 1]. Base on this point of view, the approximation ratio of the solution
output by the discrete-time system at the end differs from that of the continuous-
time system at the final moment in the approximation ratio only by a residual
term, which will tend to 0 as the iteration stepsizes decreases to 0.

One possible approach for improving the computational complexity of the
existing algorithms in above framework is to adaptively select stepsizes. How-
ever, a uniform result for this idea has not been established yet. Despite this,
there have been some achievements in improving algorithm complexity by adopt-
ing an adaptive stepsize strategy under specific settings. In [11] Chen et al.
propose a 1

2 -approximation algorithm to solve box-constrained DR-submodular
function maximization problems, which needs only O(1ε) adaptivity rounds. The
stepsizes in each iteration of the algorithm is obtained by enumeration in a
candidate set of size O(log 1

ε) according to certain rules. In [12] Ene et al. con-
sider maximizing the multilinear extension of submodular set functions with
packing constraints. Their algorithms can achieve 1/e-approximation guarantee
with O(log(n

ε) log(1ε) log 2n+m
ε2) parallel rounds for the non-monotone case, and

1−1/e approximation guarantee with O(log(n
ε) log m+n

ε2) parallel rounds for the
monotone case, where m denotes the number of the packing constraints.

1.1 Contributions

In this paper, we present an adaptive approach for determining the time stepsize
in various scenarios. Our approach guarantees the same approximation ratio as
the state-of-the-art results. The iteration complexity of our stepsize selection
strategy is O(||∇F (0)||1

ε) for monotone objective functions and O(n + ||∇F (0)||1
ε)

for non-monotone objective functions, where F represents the objective func-
tion and ε accounts for the approximation loss due to discretization process.
To evaluate functions, we employ the binary search method, which multiplies
the complexity by O(log nL

ε) in addition to the computational complexity of the
iterative steps. Moreover, our strategy exhibits lower computational complexity
in common application scenarios of DR-submodular function maximization.

DR-Submodular Function Maximization with Adaptive Stepsize 349

1.2 Organizations

The rest of this paper will be presented in the following order. In Sect. 2, we will
provide detailed definitions of concepts and previous results used in this paper.
In Sect. 3, we present the design ideas of our strategy and provide theoretical
results for the case where the objective function is monotone. In Sect. 4 we
propose algorithms and theoretical analysis of our strategy for the non-monotone
case. In Sect. 5, we will discuss the computational complexity of applying our
strategy to solve three common DR-submodular functions: multi-linear extension
of set submodular functions, DR-submodular quadratic function, and softmax
extension for DPP MAP problem.

2 Preliminaries

The problem that will be considered in this paper can be written as

max
x∈P

F (x), (1)

where the feasibility region P ⊆ [0, 1]n is convex, and F : [0, 1]n �→ R+ is a
DR-submodular function, whose definition is given in Definition 1.

Definition 1. A function F : [0, 1]n �→ R+ is DR-submodular if for ∀x ≤ y ∈
[0, 1]n and ∀a ≥ 0 such that x + aei, y + aei ∈ [0, 1]n, there holds

F (x + aei) − F (x) ≥ F (y + aei) − F (y) ∀i = 1, ..., n

Given two vectors x, y ∈ R
n, the notation x ≤ y means that xi ≤ yi for

i ∈ [n]. The notion x ∨ y denotes the coordinate-wise maximum of x and y, and
x∧y denotes the coordinate-wise minimum of x and y. When F is differentiable,
the DR-submodularity is equivalent to the monotonicity of its gradient, that
is, F is DR-submodular if and only if ∇F (x) ≥ ∇F (y) for ∀x ≤ y ∈ [0, 1]n.
The concavity of a differentiable DR-submodular function in the non-negative
direction has an important consequence as follows.

Proposition 1. [13] If F is continuously differentiable and DR-submodular,
then the following inequality holds

〈∇F (x), y − x〉 ≥ F (x ∨ y) + F (x ∧ y) − 2F (x),

for ∀x, y ∈ [0, 1]n.

To analyze the computational complexity of the algorithm, we need to intro-
duce the concept of gradient Lipschitz continuity.

Definition 2. A function F is L-smooth if for all x, y ∈ P it holds that

‖ ∇F (x) − ∇F (y) ‖≤ L ‖ x − y ‖, (2)

where ‖ · ‖ denotes || · ||2 for simplicity.

350 Y. Li et al.

A necessary but not sufficient condition of L-smoothness of function F is that

F (y) − F (x) ≥ 〈∇F (x), y − x〉 − L

2
‖ y − x ‖2. (3)

All the algorithms and theoretical discussions regarding problem (1) in this paper
are based on the following assumption.

Assumption 1. Problem (1) that will be discussed in this paper is assumed to
satisfy the following conditions.

1. F is DR-submodular and L-smooth on [0, 1]n.
2. F (0) = 0 and F (x) ≥ 0 for ∀x ∈ [0, 1]n.
3. P is convex and 0 ∈ P .
4. There exists a Linear-Objective Optimization (LOO) oracle which returns an

optimal solution of the optimization problem

max
x∈P

cT x,

for ∀c ∈ R
n.

By Assumption 1.2 it is noteworthy to conclude that ∇F (0) ≥ 0. This fact
is natural since by the DR-submodularity we have ∇F (x) ≤ ∇F (0) for ∀x ∈ P .
If for some i ∈ [n] we have ∂F

∂xi
(0) < 0, then this entry will make no positive

gain onto the objective function over the whole feasible region and thus it can
be omitted throughout the algorithm. In the following text, unless otherwise
specified, all the results regarding problem (1) are given based on Assumption
1.

From [1], the ideal algorithms described via differential systems for maximiz-
ing DR-submodular can be given as

v(x(t)) ∈ arg max
v∈P

〈∇F (x(t)), v〉
ẋ(t) = v(x(t))

for monotone case with F (x(1)) ≥ (1 − 1
e)F (x∗) where x∗ denotes the optimal

solution,

v(x(t)) ∈ arg max
v∈P∩{v:v≤1−x(t)}

〈∇F (x(t)), v〉

ẋ(t) = αtv(x(t))

for F is non-monotone, P is down-closed with F (x(1)) ≥ 1
eF (x∗) and

v(x(t)) ∈ arg max
v∈P

〈∇F (x(t)), v〉
ẋ(t) = αtv(x(t))

for F is non-monotone, P is only convex with F (x(1)) ≥ 1
4F (x∗). The initial

condition of all the three systems above is x(0) = 0 due to the assumption that
0 ∈ P .

DR-Submodular Function Maximization with Adaptive Stepsize 351

3 Maximizing a Monotone DR-Submodular Function
with Convex Constraint

In this section, we will discuss the adaptive stepsize algorithm for solving the
problem of maximizing a monotonically increasing objective function and its
approximation guarantee. In order to better illustrate the strategy of how to
choose the stepsize, we first give an ideal algorithm who needs an oracle which
can return a solution of a uni-variate continuous monotone equation and then
propose the actual implementable algorithm.

3.1 Algorithm with Uni-Variate Equation Oracle

The ideal version mentioned above is shown as Algorithm 1. In this algorithm,
the stepsize denoted as δj is determined by solving Eq. (4) whose LHS is mono-
tonically decreasing with respect to the unique variable δj .

Algorithm 1: Continuous greedy via line-search (CGLS)
Input: feasible region P , function F which is monotone
x0 ← 0, j ← 0, t0 ← 0.
while tj < 1 do

Find vj ∈ arg maxv∈P

〈∇F (xj), v
〉

Find δj ∈ [0, 1 − tj] (δj = 1 − tj if not exists) such that

〈
∇F (xj + δjvj), vj

〉
=

〈
∇F (xj), vj

〉
− ε (4)

xj+1 ← xj + δjvj ;
j ← j + 1.

end

Return: x ← xj .

In contrast to the fixed stepsize strategy that δj ≡ 1
K in [1] where K denotes

the iteration number, in this algorithm we obtain a stepsize through solving
Eq. (4). From a high level perspective, this stepsize is chosen to guarantee that
the directional derivatives along the direction vj between two adjacent iteration
points differ exactly ε.

We must ensure that the output of Algorithm 1 is feasible before analyzing
its complexity and approximation ratio. The following lemma establishes its
feasibility.

Lemma 1. The output of Algorithm 1 satisfies x ∈ P .

Let K denote the total number of steps taken by the “while” loop. We will
now prove the following lemma.

Lemma 2. For Algorithm 1 we have K ≤ min{‖∇F (0)‖1,nL}
ε + 2.

352 Y. Li et al.

Proof. For j = 0, . . . ,K − 2 we have
〈∇F (xj) − ∇F (xj+1),1

〉 ≥ 〈∇F (xj) − ∇F (xj+1), vj
〉

= ε.

Adding up the above equation for j from 0 to K − 2 yields

(K − 2)ε ≤
K−3∑

j=0

〈∇F (xj) − ∇F (xj+1),1
〉

=
〈∇F (x0) − ∇F (xK−2),1

〉
.

Further noting that ‖∇F (0)‖1 ≥ 〈∇F (x0) − ∇F (xK−2),1
〉

due to the mono-
tonicity of F , we can conclude that K ≤ ‖∇F (0)‖1

ε + 2.
On the other hand, by the L-smoothness and DR-submodularity of F , we

also have
〈∇F (x0) − ∇F (xK−2),1

〉 ≤ 〈∇F (0) − ∇F (1),1〉 ≤ nL.

We complete the proof. ��
It is worth noting that the iteration complexity of this algorithm is upper-

bounded by the iteration complexity presented in [1]. Additionally, even when the
original function F is not L-smooth, the algorithm can still achieve its complexity
by assuming the uni-variate equation oracle hypothesis.

Theorem 1. When F is monotone, the solution x output by Algorithm 1 satis-
fies

F (x) ≥ (1 − e−1)F (x∗) − ε.

3.2 Algorithm with Binary Search

Due to the general intractability of obtaining an exact solution for Eq. (4) within
polynomial time, we plan to utilize a binary search approach to obtain an approx-
imate solution without sacrificing the approximation ratio achieved by Algorithm
1. This will give rise to Algorithm 2. The only difference in the descriptions of
the two algorithms lies in the requirement for the stepsize δj in each iteration.

Analogue with previous analysis for Algorithm 1, the iteration number K of
the ‘while’ loop in Algorithm 2 can also be bounded.

Corollary 1. For Algorithm 2 we have K ≤ 2min{‖∇F (0)‖1,nL}
ε + 2.

To obtain the complexity of the gradient evaluation of F , we also need to
discuss the number of steps of the binary search process in each iteration.

Lemma 3. For each iteration j ∈ {0, . . . , K − 1}, the stepsize δj can be found
after at most M = 1 + log2

nL
ε steps of binary search if it exists.

DR-Submodular Function Maximization with Adaptive Stepsize 353

Algorithm 2: Continuous greedy with binary search (CGBS)
Input: feasible region P ⊆ [0, 1]n, function F which is monotone.
Initialization: x0 ← 0, j ← 0, t0 ← 0.
while tj < 1 do

Find vj ∈ arg maxv∈P

〈∇F (xj), v
〉
.

Binary search a δj ∈ [0, 1 − tj] such that (δj = 1 − tj if not exists)

〈
∇F (xj), vj

〉
−

〈
∇F (xj + δjvj), vj

〉
∈ [

ε

2
, ε]. (5)

tj+1 ← tj + δj ;
xj+1 ← xj + δjvj ;
j ← j + 1.

end

Return x ← xj .

Proof. Denote δ∗ as the exact solution of equation

φ(δj) :=
〈∇F (xj), vj

〉 − 〈∇F (xj + δjvj), vj
〉 − ε

2
= 0. (6)

By the monotonicity and continuity of the uni-variate function φ(δj), an interval
that contains δ∗ with length 2−M can be found using the binary search. Let the
right endpoint of the interval be δj and we can conclude that

0 ≤ δj − δ∗ ≤ 2−M ≤ ε

2nL
.

By the L-smoothness of F , we then have
∣
∣〈∇F (xj + δ∗vj), vj

〉 − 〈∇F (xj + δjvj), vj
〉∣∣

=
∣
∣〈∇F (xj + δ∗vj) − ∇F (xj + δjvj), vj

〉∣∣

≤ L(δj − δ∗)‖vj‖2 ≤ ε

2
,

and thus
〈∇F (xj), vj

〉 − 〈∇F (xj + δjvj), vj
〉

=
ε

2
+

〈∇F (xj + δ∗vj), vj
〉 − 〈∇F (xj + δjvj), vj

〉

≤ ε.

On the other hand, by the monotonicity of ∇F , we have
〈∇F (xj + δ∗vj), vj

〉 ≥ 〈∇F (xj + δjvj), vj
〉
.

Together with the definition of δ∗ the proof can be completed. ��

354 Y. Li et al.

Theorem 2. Assume that F is monotone. Then Algorithm 2 output a solution
x satisfying

F (x) ≥ (1 − e−1)F (x∗) − ε.

The LOO oracle complexity is at most O(‖∇F (0)‖1
ε). The gradient evaluation

complexity is at most O(‖∇F (0)‖1
ε log nL

ε).

4 Non-monotone DR-Submodular Maximization

In this section, we will discuss how to address the problem of maximizing a
non-monotone DR-submodular function. For this scenario, we will provide two
different algorithms depending on whether the constraints satisfy the down-
closed property.

4.1 Down-Closed Constraint

Algorithm 3 is designed for the down-closed case, which means that if there are
x ∈ P and 0 ≤ y ≤ x then there holds y ∈ P . Its main framework is originally
from the measured continuous greedy algorithm in [14], which was first proposed
for solving the maximization problem of the multilinear extension relaxation of
submodular set functions, and later it was proven to be applicable to general
DR-submodular functions maximization as well. In [1], this algorithm was proven
to require O(nL

ε) iterations to guarantee an approximation loss of ε. Similar to
the previous section, we can also demonstrate that the use of adaptive stepsizes
can improve the iteration complexity.

Algorithm 3: Measured continuous greedy via binary-search (MCGBS)
Input: feasible region P ⊆ [0, 1]n which is down-closed, function F .
x0 ← 0, j ← 0, t0 ← 0.
while tj < 1 do

Find vj ∈ arg maxv∈P∩{v:v≤1−xj}
〈∇F (xj), v

〉
.

Binary search a δj ∈ [0, 1 − tj] such that (δj = 1 − tj if not exists)

〈
∇F (xj), vj

〉
−

〈
∇F (xj +

δj

eδj vj), vj

〉
∈ [

ε

2
, ε]. (7)

tj+1 ← tj + δj ;

xj+1 ← xj + δj

eδj vj ;
j ← j + 1.

end

Return: x ← xj .

The feasibility of the output of Algorithm 3 can be guaranteed by the down-
closeness of P .

DR-Submodular Function Maximization with Adaptive Stepsize 355

Lemma 4. The output of Algorithm 3 satisfies x ∈ P .

Due to the lack of monotonicity assumption of F , the analysis of the iteration
complexity of Algorithm 3 is different with that of Algorithm 2.

Lemma 5. For Algorithm 3, there holds K ≤ min{n + 2‖∇F (0)‖1
ε , 2nL

ε } + 2.

Theorem 3. Let the feasible region P ⊆ [0, 1]n be down-closed. Then Algorithm
3 outputs a solution x satisfying

F (x) ≥ e−1F (x∗) − ε.

The LOO oracle complexity is at most O(n+ ‖∇F (0)‖1
ε). The gradient evaluation

complexity is at most O((n + ‖∇F (0)‖1
ε) log nL

ε).

4.2 General Convex Constraint

In this section, a Frank-Wolfe type algorithm is presented for non-monotone DR-
submodular function maximization with convex constraint via binary search. In
the algorithm, the stepsize is determined by solving (8). Unlike the algorithms
presented in [1] and the previous sections of this paper, this algorithm introduces
a noteworthy variation. In this approach, it is necessary to keep track of the value
and corresponding function value of each iteration point. Upon completion of
the iteration process, the algorithm returns the iteration point with the highest
function value, rather than solely using the last obtained point.

Algorithm 4: Frank-Wolfe with binary search (FWBS)
Input: feasible region P ⊆ [0, 1]n , function F .
Initialization: x0 ← 0, j ← 0, t0 ← 0.
while tj < 1 do

Find vj ∈ arg maxv∈P

〈∇F (xj), v
〉
.

Binary search a δj ∈ [0, 1 − tj] such that (δj = 1 − tj if not exists)

〈
∇F (xj), vj

〉
−

〈
∇F (xj +

(
1 − 2−δj

)
(vj − xj)), vj

〉
∈ [

ε

2
, ε]; (8)

tj+1 ← tj + δj ;

xj+1 ← xj +
(
1 − 2−δj

)
(vj − xj);

j ← j + 1.
end

Return x ← arg max
xj

F (xj).

The feasibility of x output by Algorithm 4 is shown as follows.

Lemma 6. Algorithm 4 outputs a solution satisfying x ∈ P .

356 Y. Li et al.

Theorem 4. Algorithm 4 outputs a solution x satisfying

F (x) ≥ 1
4
F (x∗) − ε

2
.

The LOO oracle complexity is at most O(n+ ‖∇F (0)‖1
ε). The gradient evaluation

complexity is at most O((n + ‖∇F (0)‖1
ε) log nL

ε).

5 Examples

Our focus in this article lies in enhancing the complexity of maximizing DR-
submodular functions. To verify that whether the adaptive stepsize strategy can
be faster, we present three examples in this section.

Multilinear Extension (MLE) for Submodular Set Functions. Given a
finite ground set V , and a function f : 2V �→ R, its multilinear extension is
defined as follows:

F (x) = E [f(R(x))] =
∑

S⊆V

f(S)
∏

i∈S

xi

∏

i/∈S

(1 − xi),

where x ∈ [0, 1]|V | and R(x) denote a random subset of V that each element i
belongs to R(x) with probability xi independently. It can be proven that func-
tion f is submodular (i.e., f(X ∩Y)+ f(X ∪Y) ≤ f(X)+ f(Y) for ∀X,Y ⊆ V)
if and only if its multilinear extension F is DR-submodular. Continuous greedy
algorithms designed using the concept of multilinear extension can be used to
solve the maximization problem of submodular set functions under various con-
straints, and have been shown to have high approximation guarantees [15,16].

Denote the vector with the i-th entry equal to 1 and the others equal to 0
by ei. The upper bound of ||∇F (0)||1 can be bounded as follows.

Lemma 7. Assume that F is a multilinear extension of a submodular set func-
tion f and the feasible region P ⊇ {ei}n

i=1. Then we have

||∇F (0)||1 ≤ nF (x∗).

The Lipschitz constant L of the multilinear extension for submodular set
function is L = O(n2)F (x∗) [14].

Softmax Extension for DPP MAP Problems. Determinantal point pro-
cesses are probabilistic models of repulsion, that have been used to model diver-
sity in machine learning. Let A be the positive semi-definite kernel matrix of a
DPP. The softmax extension of the DPP MAP problem is

F (x) = log det(diag(x)(A − I) + I), x ∈ [0, 1]n,

where I is the identity matrix, diag(x) denotes the diagonal matrix induced by
x. By Corollary 2 in [17], the gradient of the softmax extension f(x) is

∇iF (x) = ((diag(x)(A − I) + I)−1(A − I))ii, for ∀i ∈ [n],

DR-Submodular Function Maximization with Adaptive Stepsize 357

and thus ‖∇iF (0)‖1 =
∑n

i=1 |Aii − 1|. By the application of DPP problem, the
matrix A is usually a Gram matrix and Aii is universally bounded. Hence we can
conclude that the asymptotic bound of ‖∇iF (0)‖1 is at most O(n). However,
the asymptotic bound of the gradient Lipshcitz constant with respect to n of
the softmax extension remains unfounded.

DR-Submodular Quadratic Functions. Let F (x) be a quadratic function
with the form

F (x) =
1
2
xT Hx + hT x + c.

In this scenario, F (x) is DR-submodular when H ∈ R
n×n
− . It is easy to observe

that ‖∇F (0)‖1 = ‖h‖1 ≤ n and the gradient Lipschitz constant L = ‖H‖2.

Table 1. Comparisons of complexities between adaptive stepsizes and constant step-
sizes for three examples. (grad.eval: the complexity of gradient evaluation)

Examples Adaptive stepsize Constant stepsize

LOO grad.eval LOO (grad.eval)

MLE O
(

n
ε

)
O(n

ε
log n

ε
) O(n3

ε
)

Softmax O
(

n
ε

)
O(n

ε
log nL

ε
) O(nL

ε
)

quadratic O
(

||h||1
ε

)
O(||h||1

ε
log n||H||2

ε
) O(n||H||2

ε
)

The complexities of algorithms to solve the above three constrained DR-
submodular function maximization problems are shown as in Table 1. From the
table, it can be observed that the adaptive stepsize strategy proposed in this
paper has lower complexity compared to the constant stepsize strategy in both
MLE and softmax scenarios. However, in the quadratic scenario, it is not pos-
sible to definitively compare their complexities as they depend on two different
parameters of the original problem.

References

1. Du, D.: Lyapunov function approach for approximation algorithm design and
analysis: with applications in submodular maximization (2022). arXiv preprint
arXiv:2205.12442

2. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. J. ACM (JACM) 48(4), 761–777
(2001)

3. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions–i. Math. Program. 14, 265–294 (1978)

4. Krause, A., Golovin, D.: Submodular function maximization. Tractability 3, 71–
104 (2014)

http://arxiv.org/abs/2205.12442

358 Y. Li et al.

5. Bian, Y., Buhmann, J.M., Krause, A.: Continuous submodular function maximiza-
tion (2020). arXiv preprint arXiv:2006.13474

6. Niazadeh, R., Roughgarden, T., Wang, J.R.: Optimal algorithms for continuous
non-monotone submodular and dr-submodular maximization. J. Mach. Learn. Res.
21, 4937–4967 (2020)

7. Bian, A., Levy, K., Krause, A., Buhmann, J.M.: Continuous DR-submodular maxi-
mization: structure and algorithms. In: Advances in Neural Information Processing
Systems, vol. 30 (2017)

8. Bian, A.A., Mirzasoleiman, B., Buhmann, J., Krause, A.: Guaranteed non-convex
optimization: Submodular maximization over continuous domains. In: Artificial
Intelligence and Statistics, PMLR, pp. 111–120 (2017)

9. Soma, T., Yoshida, Y.: Non-monotone DR-submodular function maximization. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

10. Mualem, L., Feldman, M.: Resolving the approximability of offline and online non-
monotone dr-submodular maximization over general convex sets. In: International
Conference on Artificial Intelligence and Statistics, PMLR, pp. 2542–2564 (2023)

11. Chen, L., Feldman, M., Karbasi, A.: Unconstrained submodular maximization with
constant adaptive complexity. In: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pp. 102–113 (2019)

12. Ene, A., Nguyen, H.: Parallel algorithm for non-monotone DR-submodular maxi-
mization. In: International Conference on Machine Learning, PMLR, pp. 2902–2911
(2020)

13. Hassani, H., Soltanolkotabi, M., Karbasi, A.: Gradient methods for submodular
maximization. In: Guyon, I., et al. (eds.) Advances in Neural Information Process-
ing Systems, vol. 30, Curran Associates, Inc. (2017)

14. Feldman, M., Naor, J., Schwartz, R., A unified continuous greedy algorithm for
submodular maximization. In: IEEE 52nd Annual Symposium on Foundations of
Computer Science. IEEE 2011, pp. 570–579 (2011)

15. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011)

16. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM J. Comput.
43(6), 1831–1879 (2014)

17. Gillenwater, J., Kulesza, A., Taskar, B.: Near-optimal map inference for determi-
nantal point processes. In: NIPS 2012, pp. 2735–2743. Curran Associates Inc., Red
Hook (2012)

http://arxiv.org/abs/2006.13474

On the Routing Problems in Graphs
with Ordered Forbidden Transitions

Kota Kumakura, Akira Suzuki , Yuma Tamura(B), and Xiao Zhou

Graduate School of Information Sciences, Tohoku University, Sendai, Japan
kota.kumakura.s8@dc.tohoku.ac.jp, {akira,tamura,zhou}@tohoku.ac.jp

Abstract. Finding a path between two vertices of a given graph is one of
the most classic problems in graph theory. Recently, problems of finding
a route avoiding forbidden transitions, that is, two edges that cannot be
passed through consecutively, have been studied. In this paper, we intro-
duce the ordered variants of these problems, namely the Path Avoid-

ing Ordered Forbidden Transitions problem (PAOFT for short)
and the Trail Avoiding Ordered Forbidden Transitions problem
(TAOFT for short). We show that both the problems are NP-complete
even for bipartite planar graphs with maximum degree three. Since the
problems are solvable for graphs with maximum degree two, the NP-
completeness results are tight with respect to the maximum degree of
a graph. Furthermore, we show that TAOFT remains NP-complete for
cactus graphs. As positive results of PAOFT, we give a polynomial-time
algorithm for bounded treewidth graphs and a linear-time algorithm for
cactus graphs.

Keywords: Graph algorithms · NP-completenss · Forbidden
transitions

1 Introduction

Nowadays, it is quite common to use car navigation systems and map applica-
tions to find a route from a current location to a destination. Road networks are
typically represented as graphs. Finding routes on graphs has been studied since
the earliest days in the fields of graph theory and graph algorithms. In particular,
a path between two vertices of a graph can be obtained in linear time by using
classic algorithms such as breadth-first search and depth-first search. However,
the actual road networks have various constraints that cannot be fully captured
by conventional graph modeling alone. For instance, to prohibit travel in a spec-
ified direction, such as “no left turn” or “no entry,” additional constraints are
required on the graph.

A. Suzuki—Partially supported by JSPS KAKENHI Grant Number JP20K11666,
Japan.
Y. Tamura—Partially supported by JSPS KAKENHI Grant Number JP21K21278,
Japan.
X. Zhou—Partially supported by JSPS KAKENHI Grant Number JP19K11813, Japan.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 359–370, 2024.
https://doi.org/10.1007/978-3-031-49190-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_26&domain=pdf
http://orcid.org/0000-0002-5212-0202
https://doi.org/10.1007/978-3-031-49190-0_26

360 K. Kumakura et al.

One way to represent this constraint is to provide forbidden transitions on
the graph [7]. A transition {e1, e2} is a pair of adjacent edges e1, e2 in a graph.
By making it impossible to consecutively pass through the two edges in the tran-
sition, possible routes between two vertices of the graph are restricted. Given a
graph G = (V,E), two vertices s, t ∈ V , and a set F of forbidden transitions in
G, the Path Avoiding Forbidden Transitions problem (PAFT for short)
asks whether there exists an s-t path of G that avoids forbidden transitions in
F . While this problem is known to be NP-complete on general graphs [9] and
even on grid graphs [5], it has been studied from viewpoints of fixed-parameter
tractability [1,5] and an exact algorithm [4]. On the other hand, the problem of
finding an s-t trail that avoids forbidden transitions, namely the Trail Avoid-

ing Forbidden Transitions problem (TAFT for short), is known to be solv-
able in polynomial time [8]. Recall that a trail can pass through the same vertex
more than once.

However, when focusing on the real road network again, the road network
cannot be completely modeled with forbidden transitions. If “no left turn” (from
a point a to a point b) at an intersection is represented by a forbidden transition
on a graph, then “no right turn” (from b to a) is also provided. This is because
a forbidden transition consists of an unordered pair of adjacent edges, not an
ordered pair of adjacent edges.

1.1 Our Contributions

In this paper, motivated by the above situation, we introduce the Path Avoid-

ing Ordered Forbidden Transitions problem (PAOFT for short) and the
Trail Avoiding Ordered Forbidden Transitions problem (TAOFT for
short). For a graph G = (V,E), an ordered transition (e1, e2) in G is an ordered
pair of adjacent edges e1, e2 ∈ E, that is, transitions (e1, e2) and (e2, e1) are dis-
tinguished. Let F ⊆ E×E be a set of ordered forbidden transitions in G. A path
or a trail 〈e1, e2, . . . , e�〉 consisting of consecutive edges in G is compatible with
F or F-compatible if (ei, ei+1) /∈ F for every i ∈ {1, . . . , � − 1}. The PAOFT

problem (resp. the TAOFT problem) asks whether given a graph G = (V,E),
two vertices s, t ∈ V , and a set F of ordered forbidden transitions in G, there
exists an F-compatible s-t path (resp. an F-compatible s-t trail) of G.

Since PAOFT is a generalization of PAFT, all intractable results of PAFT

are inherited by PAOFT. In this paper, we show that the intractability of the
ordered variants is more severe: PAOFT and TAOFT are NP-complete for
bipartite planar graphs with maximum degree three. It is clear that PAOFT

and TAOFT are solvable for graphs with maximum degree at most two, that is,
paths or cycles. Thus, our NP-completeness results for PAOFT and TAOFT

are tight with respect to maximum degree of a graph. Furthermore, we show
that TAOFT remains NP-complete for cactus graphs.

In contrast to the intractability, we first observe that PAFT on graphs with
maximum degree at most three is solvable in polynomial time. Combined with
the result of Kanté et al. [5], this gives a complexity dichotomy of PAFT with
respect to maximum degree of a graph. We then provide a polynomial-time

On the Routing Problems in Graphs with Ordered Forbidden Transitions 361

Table 1. The complexity of PAOFT, PAFT, TAOFT, and TAFT

PAOFT PAFT TAOFT TAFT

General graphs NP-comp. [9] Poly.time [8]

Grid graphs NP-comp. [5]

Graphs with max.
degree 3

NP-comp.
[Thm. 1]

Linear time
[Thm. 3]

NP-comp.
[Thm. 1]

Bipartite planar graphs
with max. degree 3

Bounded treewidth
graphs

Poly. time
[Thm. 4]

Poly. time
[5]

NP-comp.
[Thm. 2]

Cactus graphs Linear time [Thm. 5]

algorithm for PAOFT on bounded treewidth graphs, whereas TAOFT remains
NP-complete for cactus graphs, which have bounded treewidth. Our algorithm
for bounded treewidth graphs also improves the polynomial factor of the existing
algorithm of PAFT for bounded treewidth graphs [5]. Finally, we design a linear-
time algorithm of PAOFT for cactus graphs. Since all cactus graphs are planar
graphs, the tractability of PAOFT on cactus graphs gives a nice contrast to
the hardness result for planar graphs. Moreover, the linear-time algorithm for
cactus graphs runs polynomially faster than the algorithm for bounded treewidth
graphs.

We summarize our results in Table 1, which highlights interesting differences
between the problems involving unordered or ordered forbidden transitions. In
the unordered variants, TAFT is more tractable than PAFT because TAFT is
solvable in polynomial time for general graphs [8]. In the ordered variants, how-
ever, a reversal of the tractability occurs in some sense: TAOFT is intractable
even for cactus graphs, whereas PAOFT is tractable for bounded treewidth
graphs.

2 Preliminaries

Let G = (V,E) be a graph: we denote by V (G) and E(G) the vertex set and
the edge set of G, respectively. We assume that all the graphs in this paper are
simple, undirected and unweighted. For a vertex v of G, we denote by NG(v)
the neighborhood of v in G, that is, NG(v) = {w ∈ V | vw ∈ E}. The degree of
a vertex v in G is defined as the size of NG(v). For a positive integer n, let Kn

and Pn denote the complete graph and the path with n vertices, respectively.
For two graphs G1 = (V1, E1) and G2 = (V2, E2), we denote by G1 + G2 the
disjoint union of G1 and G2, that is, G1 + G2 = (V1 ∪ V2, E1 ∪ E2). For positive
integers i, we write [i] as the shorthand for the set {1, 2, . . . , i} of integers. A
graph G is said to be connected if there is a path between any two vertices of G.
A maximal connected subgraph of G is called a connected component of G.

362 K. Kumakura et al.

A graph G is planar if G can be embedded in a plane without crossing edges.
A graph G is a cactus if any two cycles share at most one vertex. Every cactus
graph is planar.

The endpoints of an edge e in a graph G are vertices incident to e. Edges e
and e′ of G are said to be adjacent if e shares an endpoint with e′. A sequence
〈e1, e2, . . . , e�〉 of edges in G is called a walk W of G if there is a sequence
〈v1, v2, . . . , v�+1〉 of vertices in G such that ei = vivi+1 for each i ∈ [�], where �
is the length of W , that is, the number of edges in W . For an edge e of G, we
say that a walk W = 〈e1, e2, . . . , e�〉 passes through e if e = ei for some i ∈ [�].
Similarly, for a vertex v of G, we say that the walk passes through v if v is an
endpoint of ei for some i ∈ [�]. A walk is a path (resp. a trail) of G if the walk
passes through each vertex (resp. edge) at most once.

The problems PAFT, TAFT, PAOFT, and TAOFT are defined as in
Introduction. Instead of a set F of ordered forbidden transitions in a graph
G = (V,E), we sometimes use a set A of ordered allowed transitions in G defined
as A = E × E \ F . For adjacent two edges e1 and e2 of G, we write {e1, e2} as
a shorthand for two ordered transitions (e1, e2) and (e2, e1).

3 NP-Completeness

3.1 PAOFT and TAOFT for Graphs with Maximum Degree Three

Recall that PAFT remains NP-complete even for grid graphs [5]. This directly
means that PAFT and PAOFT are NP-complete for bipartite planar graphs
with maximum degree four. In this section, inspired by the proof in [5], we show
that PAOFT and TAOFT remain NP-complete for more restricted graphs.

Theorem 1. PAOFT and TAOFT are NP-complete for bipartite planar
graphs with maximum degree three.

Due to space limitation, we here show the NP-completeness of PAOFT on
graphs with maximum degree three. Clearly, PAOFT is in NP. To show the NP-
hardness of PAOFT, we reduce the Satisfiability problem (SAT for short) to
PAOFT on graphs with maximum degree three. Recall that SAT asks whether
there exists a satisfying truth assignment of a CNF formula φ. SAT is a well-
known NP-complete problem [6].

We transform a CNF formula φ for SAT to a graph for PAOFT. We first
give an overview of the transformation. Suppose that φ has n variables and m
clauses. For simplicity of the reduction, we assume that m is even. (If m is odd,
add the clause (x1∨¬x1) into φ.) For each clause Ci and each variable xj , where
i ∈ [m] and j ∈ [n], we prepare a variable gadget Gi,j whose edges are assigned
to red or blue. Then, we arrange them in a grid pattern as shown in Fig. 1, and
connect adjacent graphs. In the grid, rows and columns correspond to clauses
and variables of φ, respectively. We will construct a set F of ordered forbidden
transitions in G such that, there exists an F-compatible s-t path in G if and
only if the path changes the color of passing edges once during traversing of

On the Routing Problems in Graphs with Ordered Forbidden Transitions 363

Fig. 1. We arrange variable gadgets in a grid pattern such that φ is satisfiable if and
only if there exists an F-compatible s-t path.

Fig. 2. (a) A variable gadget Gi,j when Ci contains no variable xj , and (b) a variable
gadget Gi,j when Ci contains both a positive literal xj and a negative literal ¬xj . Some
labels are omitted for visibility.

Gi,1, . . . , Gi,n for each i ∈ [m]. The changes of the colors indicate that there is a
satisfying truth assignment of φ.

We now explain the details of the reduction. A literal in φ is said to be
negative if it has a negation; otherwise, positive. For each i ∈ [m] and each
j ∈ [n], a variable gadget Gi,j consists of a red cycle and a blue cycle as shown
in Fig. 2(a). We denote by sr

i,j and tri,j the left-most vertex and the right-most
vertex of the red cycle, respectively. Similarly, sb

i,j and tbi,j are the left-most
vertex and the right-most vertex of the blue cycle, respectively. The upper sr

i,j-
tri,j path in red and the upper sb

i,j-t
b
i,j path in blue of Gi,j are called positive

paths, and the lower sr
i,j-t

r
i,j path in red and the lower sb

i,j-t
b
i,j path in blue of

Gi,j are called negative paths. For c ∈ {r, b}, let 〈dc,T
i,j , ec,T

i,j , fc,T
i,j 〉 denote the edge

sequence corresponding to the sc
i,j-t

c
i,j positive path, and 〈dc,F

i,j ec,F
i,j , fc,F

i,j 〉 the edge
sequence corresponding to the sc

i,j-t
c
i,j negative path. As shown in Fig. 2(b), if a

clause Ci contains a positive literal xj , then add an edge eposi,j between positive
paths, and if Ci contains a negative literal ¬xj , then add an edge enegi,j between
negative paths,

364 K. Kumakura et al.

Fig. 3. A gate gadget. The gray arrows represent ordered allowed transitions.

Let Fi,j denote a set of ordered forbidden transitions in Gi,j . For each graph
Gi,j , we add transitions {fr,T

i,j , fr,F
i,j }, {f b,T

i,j , f b,F
i,j } into Fi,j . Furthermore, if Gi,j

contains eposi,j , we add ordered transitions (eposi,j , dr,T
i,j), (eposi,j , db,T

i,j) into Fi,j , and if
Gi,j contains enegi,j , we add ordered transitions (enegi,j , dr,F

i,j), (enegi,j , db,F
i,j) into Fi,j .

These ordered forbidden transitions prohibit traveling in the reverse direction,
that is, any Fi,j-compatible path of Gi,j starting with sr

i,j or sb
i,j proceeds from

left to right.
We next arrange variable gadgets in a grid pattern like Fig. 1. For each odd

i ∈ [m], Gi denotes the graph obtained from Gi,1, . . . , Gi,n by joining tri,j and
sr

i,j+1 by a red edge, and joining tbi,j and sb
i,j+1 by a blue edge for each j ∈ [n−1].

On the other hand, for each even i ∈ [m], Gi denotes the graph obtained from
Gi,1, . . . , Gi,n by join sr

i,j and tri,j+1 by a red edge, and join sb
i,j and tbi,j+1 by a

blue edge for each j ∈ [n− 1]. In addition, for each i ∈ [m− 1], we join tbi,n in Gi

and sb
i+1,n in Gi+1 by a blue edge if i is odd; otherwise, join tri,1 in Gi and sr

i+1,1

in Gi+1 by a red edge. Let s = sr
1,1 and t = trm,1 (under the assumption that m

is even). We denote by G′ the graph constructed above. We also define a set F ′

of ordered forbidden transitions of G′ as a union of Fi,j for i ∈ [m] and j ∈ [n].
Note that every F ′-compatible s-t path of G′ traverses Gi,1, Gi,2, . . . , Gi,n in
this order if i is odd; otherwise, it traverses Gi,n, Gi,n−1, . . . , Gi,1 in this order.
Moreover, for each i ∈ [m], it must pass through an edge eposi,j or enegi,j for some
j ∈ [n]; otherwise, the path cannot reach Gi+1 if i < m and t if i = m.

As previously mentioned, our goal is to construct a graph G so that there
exists an F-compatible s-t path P in G if and only if P changes the color
of passing edges during traversing of Gi. The graph G′ already satisfies the
condition, but P still cannot correspond to a satisfying truth assignment of φ.
For distinct i, i′ ∈ [m], the path P may pass through edges of positive paths in
Gi,j and may pass through edges of negative paths in Gi′,j . We desire that P
passes through edges of positive paths in G1,j if and only if P passes through
edges of positive paths in Gi,j for every i ∈ [m].

To this end, we modify G′ by using a gate gadget H illustrated in Fig. 3. Let
AH = {(h1h3, h3h4), (h3h4, h4h2), (h6h4, h4h3), (h4h3, h3h5)} be a set of ordered
allowed transitions and let FH = E(H)×E(H)\AH be a set of ordered forbidden

On the Routing Problems in Graphs with Ordered Forbidden Transitions 365

Fig. 4. Bonding the negative paths of Gi,j and the positive paths of Gi′,j by four gate
gadgets, where i′ = i + 1 if i < m and i′ = 1 if i = m. The center vertices correspond
to h3 and h4 of the gate gadgets.

transitions of H. If an FH -compatible path P starts from h1, then it must pass
through h3, h4 and reach h2. If P starts from h6, then it must pass through h4, h3

and reach h5. Thus, for any gate gadget H in G, an FH -compatible s-t path of
G cannot visit both h1 and h6 of H. This property of H allows us to restrict
positive or negative paths that can be traversed by an s-t path avoiding ordered
forbidden transitions. For each i ∈ [m] and each j ∈ [n], we subdivide fc,B

i,j into
four vertices for each pair of c ∈ {r, b} and B ∈ {T, F}, and bond the negative
paths of Gi,j and the positive paths of Gi′,j as shown in Fig. 4, where i′ = i + 1
if i < m and i′ = 1 if i = m. Notice that, if i is even, each gate gadget is flipped
horizontally because P proceeds from right to left on Gi and from left to right
on Gi′ . By these gate gadgets, P traverses a positive path of Gi,j if and only if
P also traverses a positive path of Gi′,j . Thus, for each j ∈ [n], P traverses the
same type of paths in G1,j , . . . , Gm,j . This completes the construction of a graph
G. We define F as a union of F ′ and a set of all ordered forbidden transitions
added by gate gadgets. It is not hard to see that G has maximum degree three
and our construction of G takes polynomial time. The following lemma gives the
correctness of our reduction.

Lemma 1. Let φ be a CNF-formula and G be the graph obtained from φ by the
above construction. Then, there exists a satisfying truth assignment of φ if and
only if G has an F-compatible s-t path.

Proof. Suppose that there exists a satisfying truth assignment of φ. We show
that it is possible to depart from s and arrive at t without passing through
ordered forbidden transitions in F . For each i ∈ [m] and each j ∈ [n], traverse
positive paths of Gi,j if xj = T ; otherwise, traverse negative paths of Gi,j . In
particular, if a clause Ci contains a literal xj (resp. ¬xj) evaluated as True, pass
through eposi,j (resp. enegi,j) so that the color of passing edges changes exactly once
during traversing Gi. Since φ has a satisfying truth assignment, we can change
the color for each Gi, and hence successfully arrive at t. Our walking corresponds
to an F-compatible s-t path of G.

Conversely, suppose that P is an F-compatible s-t path of G. We claim that
for every Gi,j , P traverses either positive paths or negative paths. The path P

366 K. Kumakura et al.

starts from s. Although G1,1 is bonded to G2,1 and Gm,1 by gate gadgets, the
ordered forbidden transitions in the gate gadgets prevent P from reaching G2,1

and Gm,1 without visiting tr1,1 or tb1,1. In addition, a subset F1,1 of F forces P to
proceed from left to right in G. Thus, P must visit tr1,1 or tb1,1, reach vertices of
G1,2, and then never come back to G1,1. Therefore, P traverses either positive
paths or negative paths of G1,1. The above argument can be applied to every
Gi,j . Furthermore, for each j ∈ [n], the gate gadgets force P to travel the same
type of paths in G1,j , . . . , Gm,j . This yields a truth assignment of φ. Since there
exists j ∈ [n] for each i ∈ [m] such that P passes through eposi,j or enegi,j , which
corresponds to a literal evaluated as True, the truth assignment indeed satisfies
φ. This completes the proof of lemma. �	

3.2 TAOFT for Cactus Graphs

As we will see in Sect. 4.2, PAOFT is solvable in polynomial time for bounded
treewidth graphs. In this section, on the contrary, we show that TAOFT remains
NP-complete even for cactus graphs, whose treewidth is at most two.

Theorem 2. TAOFT remains NP-complete even for cactus graphs.

Clearly, TAOFT is in NP. We reduce TAOFT on general graphs to TAOFT

on cactus graphs. Let (G, s, t,F) be an instance of TAOFT. We denote V (G) =
{v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em}, where s = v1, t = vn. For each
ei ∈ E(G), we construct a cycle Ci of length three. Select an arbitrary vertex
of Ci for each i ∈ [m] and then identify them with a single vertex c. For ei =
vk1vk2 ∈ E(G), let ek1

i and ek2
i denote edges of Ci incident to c, and let e′

i denote
the other edge of Ci. We also join a vertex s′ (resp. t′) and c by an edge es (resp.
et). Then, G′ denotes the graph constructed above. We next define a set A′ of
ordered allowed transitions in G′ as follows:

A′ ={{ek1
i , e′

i}, {e′
i, e

k2
i } : i ∈ [m], k1, k2 ∈ [n], and

vk1 , vk2 are distinct endpoints of ei}
∪ {(ek

i , ek
j) : i, j ∈ [m], k ∈ [n], (ei, ej) /∈ F , and

ei shares an endpoint vk with ej}
∪ {(es, e

1
i) : i ∈ [m] and ei is incident to s}

∪ {(en
i , et) : i ∈ [m] and ei is incident to t}

Finally, let F ′ = E(G′) × E(G′) \ A′ be a set of ordered forbidden transitions of
G′. This completes the construction of a new instance (G′, s′, t′,F ′) of TAOFT.
Clearly, the construction can be done in polynomial time and G′ is a cactus
graph. The correctness of this reduction is given by the following lemma, whose
proof is omitted due to space limitation.

Lemma 2. G has an F-compatible s-t trail if and only if G′ has an F ′-
compatible s′-t′ trail.

On the Routing Problems in Graphs with Ordered Forbidden Transitions 367

4 Polynomial-Time Algorithms

4.1 PAFT for Graphs with Maximum Degree Three

We first revisit PAFT and give the following theorem in order to contrast with
Theorem 1. The result in [5] that PAFT is NP-complete for grid graphs also
indicates that Theorem 3 is tight with respect to maximum degree. We here omit
its proof because it follows from the result of Szeider [9].

Theorem 3. PAFT is solvable in linear time for graphs with maximum degree
at most three.

4.2 PAOFT for Bounded Treewidth Graphs

Kanté et al. designed a polynomial-time algorithm1 of PAFT for bounded
treewidth graphs [5]. We extend the algorithm so that it can be applied to
PAOFT.

Theorem 4. Let G be an n-vertex graph with maximum degree Δ. Given a tree
decomposition of width k, there exists an algorithm that solves PAOFT on G in
O(h(k)Δ2k+3n) time, where h is some computable function.

Proof Sketch. Our algorithm solves PAOFT by means of dynamic programming
over a nice tree-decomposition T = 〈T, {Xu ⊆ V (G) : u ∈ V (T)}〉 of G. (See [2]
for its definition.) For a node u ∈ V (T), let Tu be a subtree of T rooted at u
and let Vu =

⋃
v∈V (Tu)

Xv. We denote by Gu the subgraph of G induced by Vu.
For an F-compatible s-t path P of G, the intersection of P with Gu forms F-
compatible subpaths of Gu such that the subpaths are pairwise vertex-disjoint
and both endpoints of each subpath are in Xu except for s and t. Based on the
subpaths, Kanté et al. considered a 5-tuple (X0

u,X1
u,X2

u,Mu, Su) consisting of
the following sets: for d ∈ {0, 1, 2}, Xd

u is a set of vertices a ∈ Xu such that
the subpaths pass through exactly d edges in Ea

u, where Ea
u is a set of edges

incident to a in Gu; M is a matching of X1
u whose element {a, b} indicates

that a and b are endpoints of the same subpath; and S is a set of edges e such
that e is incident to a vertex in X1

u and one of the subpaths passes through
e. In PAOFT, however, the direction of the subpaths must also be taken into
account. This is accomplished by giving orders to pairs in M . For each node u of
T and each possible 5-tuple (X0

u,X1
u,X2

u,Mu, Su), we determine whether there
exist subpaths of Gu that satisfy the conditions above. For a join node u of T , we
compute the existence of such subpaths by combining solutions of two 5-tuples for
children of u. We omit the details, but the number of possible 5-tuples is bounded
by O(h′(k)Δk+1), where h′ is some function, and the computation takes O(kΔ)
time for each pair of 5-tuples. Since T has O(kn) nodes, we conclude that there
exists a computable function h such that our algorithm runs in O(h(k)Δ2k+3n),
as claimed in Theorem 4.

�	
1 In [5], only a sketch of the algorithm was given. For more details, see a full version

from the following URL: https://inria.hal.science/hal-01115395/file/PAFT.pdf.

https://inria.hal.science/hal-01115395/file/PAFT.pdf

368 K. Kumakura et al.

4.3 PAOFT for Cactus Graphs

Since every cactus graph has treewidth at most two, we have already designed the
algorithm that solves PAOFT on cactus graphs in polynomial time by applying
Theorem 4. In this section, we give a faster algorithm of PAOFT for cactus
graphs.

Theorem 5. PAOFT is solvable in O(|F| + n) time for cactus graphs.

We first remove redundant vertices from a given graph G. A cut vertex of G is
a vertex whose removal from G increases the number of connected components.
A graph G is called 2-connected if G has no cut vertex. A block of a graph G is
a maximal 2-connected subgraph of G. For a connected cactus graph G with at
least two vertices, every block of G is either a cycle or a path with one edge.

One can verify that the following proposition is true.

Proposition 1. For a connected graph G and two vertices s, t ∈ V (G), suppose
that G is divided into two graphs G1 and G2 by a cut vertex c of G such that
s ∈ V (G1). Then, one of the following two properties holds:

(1) when t ∈ V (G1), any s-t path of G is contained in G1; and
(2) when t ∈ V (G2), any s-t path of G passes through c.

Proposition 1 ensures that if s, t ∈ V (G1), then V (G2) \ {c} can be removed
from G. Let G′ be an induced subgraph obtained by removing all redundant
vertices from G based on Proposition 1. It is not hard to see that G′ consists of
a sequence of blocks in G. Moreover, if G is a cactus graph, since each block of
G forms either a cycle or a path with one edge, then G′ has maximum degree
at most four. Applying Theorem 4 to G′, we can also obtain an O(|F| + n)-
time2 algorithm for cactus graphs. However, a very large constant is hidden in
the computation time of the algorithm. Moreover, a simpler algorithm can be
helpful. For these reasons, we here design a faster and simpler algorithm for
cactus graphs.

We label the blocks of G′ as B1, B2, . . . , B� so that an s-t path P of G
traverses Bi prior to Bj for every integers i, j with 1 ≤ i < j ≤ �. Note that
s ∈ V (B1) and t ∈ V (B�). We denote by ci the cut vertex of G′ that contains
in both Bi and Bi+1 for each i ∈ [� − 1]. For algorithmic convenience, we also
set c0 = s and c� = t. For i ∈ [�], let Eh

i and Et
i be sets of edges in Bi that are

incident to ci−1 and ci, respectively. Observe that 1 ≤ |Eh
i | = |Et

i | ≤ 2 for each
i ∈ [�]. We denote by G′

i the subgraph induced by V (B1) ∪ V (B2) ∪ · · · ∪ V (Bi).
For each i ∈ [�] and each e ∈ Et

i , we define a Boolean function gi(e) as follows:

gi(e) =

⎧
⎪⎨

⎪⎩

1 if there is an F-compatible s-ci pathP of G′
i

that passes through e,

0 otherwise.

2 A set of ordered forbidden transitions for G′ can be constructed by scanning F and
removing redundant transitions from F in O(|F|) time. Then, PAOFT on G′ can
be solved in O(n) time.

On the Routing Problems in Graphs with Ordered Forbidden Transitions 369

Since c� = t and G′
� = G′, G′ has an F-compatible s-t path if and only if

g�(e) = 1 for some e ∈ E�.
We compute gi(e) for each i ∈ [�] and each e ∈ Et

i by means of dynamic
programming. If i = 1, then an s-c1 path that passes through e is uniquely
determined because G1 is a cycle or a path with one edge. Thus, g1(e) can
be computed. For i > 1, assume that gi−1(e′) for each e′ ∈ Et

i−1 has already
obtained. If G′

i has an F-compatible s-ci path P that passes through e, then it
holds that

1. G′
i−1 has an F-compatible s-ci−1 path P ′ that passes through some edge

e′ ∈ Et
i−1;

2. Bi has an F-compatible ci−1-ci path P ′′ that passes through e and some edge
e′′ ∈ Eh

i ; and
3. (e′, e′′) /∈ F .

One can see that the converse is also true. We define a Boolean function bi(e′′, e)
such that bi(e′′, e) = 1 if and only if Bi has an F-compatible ci−1-ci path P ′′

such that e′′, e ∈ E(P ′′). Then, we have

gi(e) =
∨

e′∈Et
i−1,e′′∈Eh

i

gi−1(e′) ∧ bi(e′′, e) ∧ (e′, e′′) /∈ F .

We bound the running time of our algorithm. For a graph G = (V,E), we
denote n = |V | and m = |E|. We first find all blocks in O(n + m) time [3], and
then obtain a reduced graph G′ of G. We also obtain a value of bi(e′′, e) in advance
for each i ∈ [�], e′′ ∈ Eh

i , and e ∈ Et
i . Since 1 ≤ |Eh

i | = |Et
i | ≤ 2 and Bi is a

path or a cycle, it can be done in O(n) time. Then, compute gi(e) for each i ∈ [�]
and each e ∈ Et

i by the above formula. By a naive implementation such that the
whole of F is scanned to decide whether (e′, e′′) /∈ F , the computation runs in
O(|F|) time for each i ∈ [�]. This yields an O(|F|n)-time algorithm for PAOFT

on cactus graphs. To improve the running time, we prepare m′ = |E(G′)| buckets
in advance, each of which corresponds to an edge of G′ and is accessible in O(1)
time. If there is an ordered forbidden transition (e1, e2) in F , then we store it into
the bucket corresponding to e1. Notice that, after completing the preprocessing
in O(|F|) time, each bucket has O(1) ordered forbidden transitions because G′

has maximum degree at most four. Thus, we decide whether (e′, e′′) /∈ F in O(1)
time. As a conclusion, since it is known that m = O(n) holds for cactus graphs,
PAOFT is solvable in O(|F|+n) time for cactus graphs, completing the proof. �	

5 Conclusion

In this paper, we introduced Path Avoiding Ordered Forbidden Transi-

tions and Trail Avoiding Ordered Forbidden Transitions to generalize
the unordered variants Path Avoiding Forbidden Transitions and Trail

Avoiding Forbidden Transitions, and investigated the complexity of the
ordered variants. Combined some known results for the unordered variants, we

370 K. Kumakura et al.

provided interesting contrasts to these problems as summarized in Table 1. In
particular, for the problems of finding a path avoiding forbidden transitions, we
gave the tight hardness results with respect to maximum degree of a given graph.

We finally discuss future work. For an n-vertex graph G and a set F of forbid-
den transitions in G, Kanté et al. pointed out that, if |F| = O(log n), there is an
algorithm that solves Path Avoiding Forbidden Transitions in polynomial
time [4]. Indeed, on the actual road network, the number of forbidden transitions
is expected to be considerably smaller than the total number of transitions. It
would be interesting to design such algorithms for the ordered variants.

Acknowledgements. We thank the referees for their valuable comments and sugges-
tions which greatly helped to improve the presentation of this paper.

References

1. Bellitto, T., Li, S., Okrasa, K., Pilipczuk, M., Sorge, M.: The complexity of rout-
ing problems in forbidden-transition graphs and edge-colored graphs. Algorithmica
85(5), 1202–1250 (2023). https://doi.org/10.1007/s00453-022-01064-1

2. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996). https://doi.org/10.
1006/jagm.1996.0049

3. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation.
Commun. ACM 16(6), 372–378 (1973). https://doi.org/10.1145/362248.362272

4. Kanté, M.M., Laforest, C., Momège, B.: An exact algorithm to check the existence of
(elementary) paths and a generalisation of the cut problem in graphs with forbidden
transitions. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J.,
Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 257–267. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35843-2 23

5. Kanté, M.M., Moataz, F.Z., Momège, B., Nisse, N.: Finding paths in grids with
forbidden transitions. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 154–
168. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7 12

6. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher,
J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103.
Springer (1972). https://doi.org/10.1007/978-1-4684-2001-2

7. Kotzig, A.: Moves without forbidden transitions in a graph. Matematický časopis
18(1), 76–80 (1968). https://eudml.org/doc/33972

8. Nguyên, L.T.D.: Unique perfect matchings, forbidden transitions and proof nets for
linear logic with Mix. Logical Methods in Computer Science 16(1) (2020). https://
doi.org/10.23638/LMCS-16(1:27)2020

9. Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discret. Appl.
Math. 126(2), 261–273 (2003). https://doi.org/10.1016/S0166-218X(02)00251-2

https://doi.org/10.1007/s00453-022-01064-1
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1145/362248.362272
https://doi.org/10.1007/978-3-642-35843-2_23
https://doi.org/10.1007/978-3-662-53174-7_12
https://doi.org/10.1007/978-1-4684-2001-2
https://eudml.org/doc/33972
https://doi.org/10.23638/LMCS-16(1:27)2020
https://doi.org/10.23638/LMCS-16(1:27)2020
https://doi.org/10.1016/S0166-218X(02)00251-2

Delaying Decisions and Reservation Costs

Elisabet Burjons1 , Fabian Frei2(B) , Matthias Gehnen3 , Henri Lotze3 ,
Daniel Mock3 , and Peter Rossmanith3

1 York University, Toronto, Canada
burjons@yorku.ca

2 ETH Zürich, Zürich, Switzerland
fabian.frei@inf.ethz.ch

3 RWTH Aachen University, Aachen, Germany
{gehnen,lotze,mock,rossmani}@cs.rwth-aachen.de

Abstract. We study the Feedback Vertex Set and the Vertex
Cover problem in a natural variant of the classical online model that
allows for delayed decisions and reservations. Both problems can be char-
acterized by an obstruction set of subgraphs that the online graph needs
to avoid. In the case of the Vertex Cover problem, the obstruction
set consists of an edge (i.e., the graph of two adjacent vertices), while
for the Feedback Vertex Set problem, the obstruction set contains all
cycles. In the delayed-decision model, an algorithm needs to maintain a
valid partial solution after every request, thus allowing it to postpone
decisions until the current partial solution is no longer valid for the cur-
rent request. The reservation model grants an online algorithm the new
and additional option to pay a so-called reservation cost for any given
element in order to delay the decision of adding or rejecting it until the
end of the instance. For the Feedback Vertex Set problem, we first
analyze the variant with only delayed decisions, proving a lower bound
of 4 and an upper bound of 5 on the competitive ratio. Then we look at
the variant with both delayed decisions and reservation. We show that
given bounds on the competitive ratio of a problem with delayed deci-
sions imply lower and upper bounds for the same problem when adding
the option of reservations. This observation allows us to give a lower
bound of min {1 + 3α, 4} and an upper bound of min {1 + 5α, 5} for the
Feedback Vertex Set problem, where α ∈ R≥0 is the reservation
cost per reserved vertex. Finally, we show that the online Vertex Cover
problem, when both delayed decisions and reservations are allowed, is
min {1 + 2α, 2}-competitive.

1 Introduction

In contrast to classical offline problems, where an algorithm is given the entire
instance it must then solve, an online algorithms has no advance knowledge
about the instance it needs to solve. Whenever a new element of the instance is
given, some irrevocable decision must be taken before the next piece is revealed.

An online algorithm tries to optimize an objective function that is dependent
on the solution set formed by its decisions. The strict competitive ratio of an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 371–383, 2024.
https://doi.org/10.1007/978-3-031-49190-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_27&domain=pdf
http://orcid.org/0000-0001-6161-7440
http://orcid.org/0000-0002-1368-3205
http://orcid.org/0000-0001-9595-2992
http://orcid.org/0000-0001-5013-8831
http://orcid.org/0000-0002-0011-6754
http://orcid.org/0000-0003-0177-8028
https://doi.org/10.1007/978-3-031-49190-0_27

372 E. Burjons et al.

algorithm, as defined by Sleator and Tarjan [12], is the worst-case ratio of the
performance of an algorithm compared to that of an optimal solution computed
by an offline algorithm for the given instance, over all instances. The competitive
ratio of an online problem is then the best competitive ratio over all online
algorithms. For a general introduction to online problems, we refer to the books
of Borodin and Ran El-Yaniv [4] and of Komm [11].

Not all online problems admit a competitive algorithm (i.e., one whose com-
petitive ratio is bounded by a constant) under the classical model. In particular,
this is the case for the problems Vertex Cover and Feedback Vertex Set
discussed in this paper.

The goal in the general Vertex Cover problem is, given a graph G =
(V,E), to find a minimum set of vertices S ⊆ V such that G[V \ S] contains
no edges, i.e., the obstruction set is a path of length 1. In the classical online
version of Vertex Cover, the graph is revealed vertex by vertex, including
all induced edges, and an online algorithm must immediately and irrevocably
decide for each vertex whether to add it to the proposed vertex cover or not.

The goal of the Feedback Vertex Set problem is, given a graph G =
(V,E), to find a minimum set of vertices S ⊆ V such that G[V \ S] contains no
cycles. In this case, the obstruction set contains all cycles.

In both problems, the non-competitiveness is easy to see: If the first vertex
is added to the solution set, the instance stops and thus leaving a single-vertex
instance with an optimal solution size of zero. On the other hand, not selecting
the first vertex will lead to an instance where this vertex becomes a central
vertex, either of a star at Vertex Cover, or of a friendship graph at Feedback
Vertex Set.

These adversarial strategies are arguably pathological and unnatural, as deci-
sions are enforced that are not based in the properties of the very problem to be
solved: We need to start constructing a vertex cover before any edge is presented
or a feedback vertex set without it being clear if there are even any cycles in
the instance. To address this issue in general online Vertex- and Edge-Deletion
problems, Boyar et al. [5,6] introduced the late accept online model, which was
re-introduced by Chen et al. [9] as the delayed-decision model. This model allows
an online algorithm to remain idle until a “need to act” occurs, which in our
case means waiting until a graph from the obstruction set appears in the online
graph. The online algorithm may then choose to delete any vertices in the cur-
rent online graph. The main remaining restriction is that an online algorithm
may not undo any of these deletions.

Definition 1. Let G be an online graph induced by its vertices V (G) =
v1, . . . , vn, ordered by their occurrence in an online instance. The Delayed
Vertex Cover problem is to select, for every i, a subset of vertices Si ⊆
{v1, . . . , vi} with S1 ⊆ . . . ⊆ Sn such that the induced subgraph G[{v1, . . . , vi}\Si]
contains no edge. The goal is to minimize |Sn|.
The definition of the Delayed Feedback Vertex Set problem is identical,
except that “contains no edge” is replaced by “is cycle-free.”

Delaying Decisions and Reservation Costs 373

A constant competitive ratio of 2 for the Delayed Vertex Cover problem
is simple to prove and given in the introduction of the paper by Chen et al. [9].
The Delayed Feedback Vertex Set problem, in contrast, is more involved.
We show that no algorithm can admit a competitive ratio better than 4 and
adapt results by Bar-Yehuda et al. [1] to give an algorithm that is strictly 5-
competitive as an upper bound.

We also consider the model where decisions can be delayed even further by
allowing an algorithm to reserve vertices (or edges) of an instance. If remov-
ing the reserved vertices from the instance would mean that a valid solution is
maintained, the instance continues. Once an instance has ended, the algorithm
can freely select the vertices to be included in the final solution (in addition to
the already irrevocably chosen ones) among all presented vertices, regardless of
their reservation status. This reservation is not free: When computing the final
competitive ratio, the algorithm has to pay a constant α ∈ R≥0 for each reserved
vertex; these costs are then added to the size of the chosen solution set.

Definition 2. Let α ∈ R≥0 be a constant and G an online graph induced by its
vertices V (G) = v1, . . . , vn, ordered by their occurrence in an online instance.
The Delayed Vertex Cover problem with reservations is to select, for every
i, vertex subsets Si, Ri ⊆ {v1, . . . , vi} with S1 ⊆ . . . ⊆ Sn and R1 ⊆ . . . ⊆ Rn

such that G[{v1, . . . , vi} \ (Si ∪ Ri)] contains no edge. The goal is to minimize
the sum |Sn| + |T | + α|Rn|, where T ⊆ V (G) is a minimal vertex subset such
that G − (Sn ∪ T) contains no edge.

Again, the definition for the Delayed Feedback Vertex Set problem with
reservations is identical, except for replacing “contains no edge” with “is cycle-
free.”

For reservation costs of α = 0, the problem becomes equivalent to the offline
version, whereas for α ≥ 1 taking an element directly into the solution set
becomes strictly better than reserving it, rendering this reservation option use-
less. The results for Delayed Vertex Cover and Delayed Feedback Ver-
tex Set, each with reservations, are depicted in Fig. 1.

The reservation model is still relatively new and has been applied to the
simple knapsack problem [3] and the secretary problem [8]. We note that the
two cited papers consider relative reservation costs, while for the two problems
in the present paper the cost per item are fixed.

The online Vertex Cover problem has not received a lot of attention in
the past years. Demange and Paschos [10] analyzed the online Vertex Cover
problem with two variations of how the online graph is revealed: either vertex
by vertex or in clusters, per induced subgraphs of the final graph. The proven
competitive ratios are functions on the maximum degree of the graph. Zhang et
al. [15] looked at a variant called the Online 3-Path Vertex Cover problem,
where every induced path on three vertices needs to be covered. In this setting,
the competitive ratio is again dominated by the maximum degree of the graph.
Buchbinder and Naor [7] considered online integral and fractional covering prob-
lems formulated as linear programs where the covering constraints arrive online.

374 E. Burjons et al.

Fig. 1. Upper and lower bounds on the competitive ratios of Delayed Vertex Cover
(left) and Delayed Feedback Vertex Set (right), each with reservations.

As these are a strong generalization of the online Vertex Cover problem, they
achieve only logarithmic and not constant competitive ratios.

There has been some work on improving upon the bound of 2 for some special
cases of Vertex Cover in the model with delayed decisions (under different
names). For the Vertex Cover problem on bipartite graphs where one side is
offline, Wang and Wong [14] give an algorithm achieving a competitive ratio of

1
1−1/e ≈ 1.582. Using the same techniques they achieve a competitive ratio of
1.901 for the full online Vertex Cover problem for bipartite graphs and for
the online fractional Vertex Cover problem on general graphs.

To the best of our knowledge, the Feedback Vertex Set problem has
received no attention in the online setting so far, most likely due to the fact that
there is no competitive online algorithm for this problem in the classical setting.
The offline Feedback Vertex Set problem, however, has been extensively
studied, especially in the approximation setting. One notable algorithm is the
one in the paper of Bar-Yehuda et al. [1], yielding an approximation ratio of
4− 2/n on an undirected, unweighted graph. We adapt their notation in Sect. 2,
and our delayed-decision algorithm with a competitive ratio of 5 is based on their
aforementioned approximation algorithm. The currently best known approxima-
tion ratio of 2 by an (offline) polynomial-time algorithm was given by Becker
and Geiger [2].

The paper is organized as follows. We first look at the Delayed Feedback
Vertex Set problem, giving a lower bound of 4 and an upper bound of 5 on
the competitive ratio. Then, we discuss how bounds on obstruction set problems
without reservation imply bounds on the equivalent problems with reservations
and vice versa, and how this applies to the Delayed Feedback Vertex Set
problem. Finally, we consider the Delayed Vertex Cover problem with reser-
vations, giving tight bounds dependent on the reservation costs.

Delaying Decisions and Reservation Costs 375

2 Feedback Vertex Set with Delayed Decisions

In this section, we consider the Delayed Feedback Vertex Set problem,
which is concerned with finding the smallest subset of the vertices of a graph such
that their removal yields a cycle-free graph. We give almost matching bounds
on the competitive ratio in the delayed decision model.

Theorem 1 (Lower Bound). Given an ε > 0, there is no algorithm for
Delayed Feedback Vertex Set achieving a competitive ratio of 4 − ε.

Fig. 2. Sketch of the lower bound graph, revealed from left to right. The marked vertices
are deleted by an algorithm. Then dashed edges (gray) and finally the self-loops (blue)
force more deletions. The competitive ratio tends to 4 with increasing instance size.
(Color figure online)

Proof. The adversarial strategy depicted in Fig. 2 provides the lower bound.
First, a cycle is presented, which forces any algorithm to delete a single vertex.

The adversary now repeats the following scheme n times: From the cycle that
was presented in the previous step, select two different vertices. Then connect
these vertices by a new path, thus forming a new cycle (the large, “layered”
cycles in the figure).

Every time such a semicycle is added, any algorithm has to delete a vertex
from it. This is sketched in Fig. 2 by the black cycles with red dots for exemplary
deletions of some algorithm. We assume w.l.o.g. that an algorithm chooses one
of the vertices of degree 3 between two cycles for deletion, we call these vertices
of degree 3 branchpoints. If an algorithm deletes vertices of degree 2 instead, the
adversary can force the algorithm to delete even more vertices.

After following this scheme, we split the remaining branchpoints (one for each
new cycle) into two sets A and B alternatingly. We now take each (a, b)-pair with
a ∈ A and b ∈ B and connect the two vertices with two paths, forming a new
cycle between each pair of branching vertices. In order to remove all cycles with
the lowest amount of deletions, any algorithm has to delete either all vertices
from the set A or all vertices from the set B. Once such a set is chosen, say A,
the adversary adds “self-loops”, i.e., new cycles each only connected to a vertex
of B, forcing the deletion of all (branchpoint) vertices of B.

376 E. Burjons et al.

The optimal solution consists only of the vertices of B and possibly, and
depending on whether n is even and on the choice of A or B, another vertex
from the first and the last cycle.

Thus, any online algorithm has to delete at least 2n − 1 vertices, while an
optimal algorithm only deletes at most n/2+1 vertices. The resulting competitive
ratio is hence worse than 4 − ε for large enough values of n. ��

Next, we present Algorithm 1, which guarantees a competitive ratio of 5. It
is a modified version of the 4-approximative algorithm for Feedback Vertex
Set by Bar-Yehuda et al. [1]. Algorithm 1 maintains a maximal so-called 2-3-
subgraph H in the presented graph G and selects a feedback vertex set F for G
within H. It is important to note that H is not necessarily an induced subgraph
of G and also does not have to be connected.

Definition 3 (2-3-subgraph). A 2-3-subgraph of a graph G is a subgraph H
of G where every vertex has degree exactly 2 or 3 in H.

Given a 2-3-subgraph H, a vertex is called a branchpoint of H if it has exactly
degree 3 in H. We say a vertex v is a linkpoint in H if it has exactly degree 2
in H and there is a cycle in G whose only intersection with H is v. A cycle is
called isolated in H if every vertex of this cycle (in G) is contained in H and
has exactly degree 2 in H.

Algorithm 1 adds every branchpoint, linkpoint and one vertex per isolated
cycle without linkpoints in H to the solution set F .

Note that it is possible that vertices, who were added to F as linkpoints or due
to isolated cycles, can still become branchpoints with degree 3, if H is expanded
in later steps. For the sake of the analysis, we consider them as branchpoints.
The extension of H is not necessarily unique, as often there are several ways of
extending and the algorithm just chooses an arbitrary way.

Algorithm 1. Online SubG-2-3
H ← ∅, F ← ∅
for every new edge in G do

if H is not a maximal 2-3-subgraph then
Extend H to a maximal 2-3-subgraph, converting linkpoints to branchpoints
whenever possible.

F ← F ∪ All new branchpoints
F ← F ∪ All new linkpoints
F ← F ∪ A set of one vertex per new isolated cycle without linkpoints in H

return F

Lemma 1 (Correctness of Online SubG-2-3). Algorithm 1 returns a feed-
back vertex set for the given input graph G.

Delaying Decisions and Reservation Costs 377

Proof. By contradiction, assume there is a cycle C in G without a vertex in F .
If C contains no point of H, then the complete cycle C can be added to the

subgraph H as an isolated cycle, thus H is not maximal. This contradicts the
procedure of Algorithm 1.

Therefore, we can assume that there is at least one vertex of C in H. If
the cycle contains no branchpoints, three situations are possible: First, C is an
isolated cycle, where all vertices are in H and one vertex is added to F . Second,
C intersects with H at just a single vertex which will be a linkpoint and part of
F as well. The third case is that C intersects H on two or more vertices and none
of them are branchpoints (thus of degree 2). Then H would have been extended
from one of those points along C towards another one, making the two vertices
branchpoints.

Thus, every cycle in G has to contain at least one vertex of F , which is a
feedback vertex set at the end. ��
Proving that Algorithm 1 is 5-competitive is more tricky. First, note that an
optimal feedback vertex set does not change if we consider a reduction graph G′

instead of a graph G.

Definition 4 (Reduction Graph). A reduction graph G′ of a graph G is
obtained by deleting vertices of degree 1 and their incident edges, and by deleting
vertices of degree 2 without a self-loop and connecting the two neighbors directly.

The following lemma bounds the size of a reduced graph by its maximum
degree and the size of any feedback vertex set. This will be used in the analysis
of Algorithm 1. The lemma is due to Voss [13] and is used in the proof of 4-
competitiveness by Bar-Yehuda et al. [1].

Lemma 2. Let G be a graph where no vertex has degree less than 2. Then for
every feedback vertex set F , that contains all vertices of degree 2,

|V (G)| ≤ (Δ(G) + 1)|F | − 2

holds, where Δ(G) is the maximum degree of G. In particular, if every vertex
has a degree of at most 3, |V (G)| ≤ 4|F | − 2 holds.

Theorem 2. Algorithm 1 achieves a strict competitive ratio of 5−2/|V (G)| for
the online Feedback Vertex Set with delayed decisions.

Proof. At the end of the instance, after running Algorithm 1, call the set of
branchpoints B ⊆ F , the set of linkpoints L ⊆ F , and the set of vertices added
due to isolated cycles I. Again note that vertices can become branchpoints in
later steps, even if they were added to F as a linkpoint or for an isolated cycle.
Let μ be the size of an optimal feedback vertex set for the graph G.

The vertices in I are part of pairwise independent cycles. This follows from
the fact that every isolated cycle was added completely to H, thus new isolated
cycles cannot contain a vertex of one already added to H. Therefore, |I| ≤ μ,

378 E. Burjons et al.

since an optimal solution must contain at least one vertex for each of the pairwise
independent cycles.

Moreover, the set of cycles which caused adding vertices as linkpoints to F
are also pairwise independent, if no linkpoint was relabeled to a branchpoint
later:

For a contradiction, assume that two cycles overlap at a vertex v and intersect
with H at the linkpoints �1 and �2. Now H could easily be extended by a path
from �1 through v to �2, if none of those vertices are added to H before. This
would make �1 and �2 branchpoints, contradicting the assumption.

The algorithm would also convert either �1 or �2 to a branchpoint, if—at one
point—it was possible to extend H by connecting one of the linkpoints along
the mentioned path to one vertex in H of degree 2 (with respect to H).

The only remaining case is when the first vertex of H along this path was a
branchpoint immediately at the time it was added to H, thus making it impos-
sible to connect it with one of the linkpoints.

Note that w.l.o.g. �1 must have been considered as a linkpoint at this time,
since—by definition—no cycle would have caused any vertex to become a link-
point if some vertices of the cycle were already considered as branchpoints. In
particular, x cannot have been added immediately to H when it was presented.

Since the adversary presents the instance vertex-wise, there must be a vertex
s such that there was no possibility to add x to H before s was presented, but
such that x immediately could become a branchpoint when s was added to G.

Therefore, there must be at least two independent paths in G \ H from x to
s. Therefore, in this situation it would also be possible to extend H by adding
the two independent paths from x to s towards H, and also one path from x to
�1 along the cycle. Since the algorithm prioritizes extensions to H which convert
linkpoints to branchpoints over others that do not, it has to add the path from
x to �1 first. Therefore �1 becomes a branchpoint, which finally contradicts our
assumption. Note that priority is unambiguous, since there are no paths in G\H
from x to some other linkpoints: Then �1 and the other linkpoint would already
be connected within H, thus making them branchpoints.

Thus we have |L| ≤ μ. This also shows that there cannot be a branchpoint
inside a cycle that was used to delete a linkpoint, without also converting the
linkpoint to a branchpoint.

It follows that |L|+|I| ≤ 2μ. If |B| ≤ 2|L|, then we have |F | = |I|+|L|+|B| ≤
3|L| + |I| ≤ 4μ, which proves the statement.

In every other case, assume |B| > 2|L|. We now consider a reduction graph
H ′ of the graph H \ L, and delete every component consisting of only a single
vertex. Every vertex in the resulting graph has degree 3. In the graph H we can
have up to 2|L| more branchpoints than in the resulting graph here.

By Lemma 2, |B| − 2|L| is less than 4μ(H ′) − 2, where μ(H ′) is the optimal
size of a feedback vertex set for the graph H ′.

The size of an optimal feedback vertex set of the original graph G must be
at least μ(H ′) + |L| since every linkpoint in G is part of a cycle that is not
intersecting H ′.

Delaying Decisions and Reservation Costs 379

The inequality chain |F | = |I| + |L| + |B| = |I| + 3|L| + |B| − 2|L| ≤ |I| +
4|L| + 4μ(H ′) − 2 ≤ |I| + 4μ(G) − 2 ≤ 5μ(G) − 2 concludes the proof. ��

One could think that the reason Algorithm 1 does not match the competitive
ratio of 4 is because the algorithm deletes vertices even in cases where it is not
necessary. However, this is not the case.

Lemma 3. The competitive ratio of Algorithm 1 is at least 5 − 2/|V (G)|, even
if vertices are only deleted whenever necessary.

3 Adding Reservations to the Delayed-Decision Model

We now extend the previous results for the delayed-decision model without reser-
vations by presenting two general theorems that translate both upper and lower
bounds to the model with reservation.

The delayed-decision model allows us to delay decisions free of cost as long as
a valid solution is maintained. Combining delayed decisions with reservations, we
have to distinguish minimization and maximization: For a minimization problem
the default is that the union of selected vertices and reserved ones constitutes a
valid solution at any point. For a maximization problem, in contrast, it is that
the selected vertices without the reserved ones always constitute a valid solution.

Whether the goal is minimizing or maximizing, any algorithm for a problem
without reservations is also an algorithm for the problem with reservations, it
just never uses this third option. We present a slightly smarter approach for any
minimization problem such as the Delayed Feedback Vertex Set problem.

Theorem 3. In the delayed-decision model, a c-competitive algorithm for a min-
imization problem without reservation yields a min{c, 1 + cα}-competitive algo-
rithm for the variant with reservation.

Proof. Modify the c-competitive algorithm such that it reserves whatever piece
of the input it would usually have immediately selected until the instance ends –
incurring an additional cost c·α·Opt – and then pick an optimal solution for a cost
of Opt. This already provides an upper bound of 1+cα on the competitive ratio.
But running the algorithm without modification still yields an upper bound of c
of course. The algorithm can now choose the better of these two options based
on the given α, yielding an algorithm that is max{c, 1 + cα}-competitive. ��
Corollary 1. There is a min{5, 1+5α}-competitive algorithm for the Delayed
Feedback Vertex Set problem with reservations.

Theorem 4. In the delayed-decision model, a lower bound of c on the competi-
tive ratio for a minimization problem without reservations yields a lower bound
of min{1+(c−1)α, c} on the competitive ratio for the problem with reservation.

380 E. Burjons et al.

Proof. The statement is trivial for α ≥ 1; we thus consider now the case of
α < 1. Assume that we have an algorithm with reservations with a competitive
ratio better than 1 + (c − 1)α. Even though this algorithm has the option of
reserving, it must select a definitive solution, at the latest when the instance
ends. This definitive solution is of course at least as expensive as the optimal
solution. Achieving a competitive ratio better than 1 + (c − 1)α is thus possible
only if less the algorithm is guaranteed to reserve fewer than c − 1 input pieces
in total. But in this case, we can modify the algorithm with reservation such
that it immediately accepts whatever it would have only reserved otherwise.
This increases the incurred costs by 1−α for each formerly reserved input piece,
yielding an algorithm without reservations that achieves a competitive ratio
better than 1 + (c − 1)α + (c − 1)(1 − α) = c. ��
Corollary 2. There is no algorithm solving the Delayed Feedback Ver-
tex Set problem with reservations that can achieve a lower bound better than
min{1 + 3α, 4}.

4 Vertex Cover

As already mentioned, the Delayed Vertex Cover has a competitive ratio
of 2 without reservation. We now present tight bounds for all reservation-cost
values α, beginning with the upper bound.

Theorem 5. There is an algorithm for the Delayed Vertex Cover problem
with reservations that achieves a competitive ratio of min{1 + 2α, 2} for any
reservation value.

These upper bounds, depicted in Fig. 1, have matching lower bounds. We
start by giving a lower bound for α ≤ 1

2 .

Theorem 6. Given an ε > 0, there is no algorithm for the Delayed Vertex
Cover problem with reservations achieving a competitive ratio of 1+2α− ε for
any α ≤ 1

2 .

Proof. We present the following exhaustive set of adversarial instances as
depicted in Fig. 3. First an adversary presents two vertices u1 and v1 connected
to each other. Any algorithm for online Vertex Cover with reservations is
forced to cover this edge either by irrevocably choosing one vertex for the cover
or by placing one of the vertices in the temporary cover (i.e., reserving it). In
the first case, assume w.l.o.g. that v1 is the chosen vertex for the cover. The
adversary then presents a vertex v2 connected only to u1 and ends the instance.
Such an algorithm would have a competitive ratio of 2 as it must then cover the
edge (u1, v2) by placing one of its endpoints in the cover. Choosing vertex u1

alone would have been optimal, however. This is the same lower bound as given
for the model without reservations.

If, again w.l.o.g., the vertex v1 is temporarily covered instead, the adversary
still presents a vertex v2 connected to u1. Now an algorithm has four options to

Delaying Decisions and Reservation Costs 381

Fig. 3. Illustration for the proof of Theorem 5. Adversarial strategy for α ≤ 1
2
. Black

squares are vertices irrevocably included into the vertex cover, white square vertices are
reserved to be temporarily in the vertex cover, and round vertices are not yet chosen.

cover the edge (u1, v2): Each of the two vertex u1 or v2 can be either irrevocably
chosen or temporarily reserved. If u1 or v2 are temporarily covered, the instance
will end here and the reservation costs of the algorithm will be 2α. Both the
algorithm and the optimal solution will end up choosing only vertex u1, which
implies a final competitive ratio of 1+2α in this case. If vertex v2 is chosen, the
instance will also end, yielding a competitive ratio worse than 2.

Thus, the only option remaining is to irrevocably cover the vertex u1. In this
case, the adversary presents a vertex u2 connected to v2. An algorithm can then
irrevocably or temporarily take v2 or u2 respectively. If an algorithm temporarily
takes v2 or u2, the adversary will present one more vertex u0 connected to v1
and end the instance. This results in a graph that can be minimally covered by
the vertices v1 and v2. The algorithm, however, will have 3 vertices in the cover
and additional reservation costs of 2α for the temporarily chosen vertices. Thus
it will have a competitive ratio of 3

2 + α, which is larger than 1 + 2α for the
considered values of α. If an algorithm irrevocably takes u2, the same vertex u0

will be presented and then the instance will end with another auxiliary vertex
a2 connected to v2. An optimal vertex cover would take vertices v1 and v2. Any
algorithm that has already irrevocably chosen u1 and u2, however, will have to
choose two more vertices in order to cover the edges {v1, u0} and {v2, a2}; thus,
its competitive ratio will be worse than 2.

Again, the only remaining option is to irrevocably choose the vertex v2,
after which an adversary presents a vertex v3 connected to u2. An algorithm
may choose to irrevocably or temporarily take the vertex u2 or v3. If an algo-
rithm decides to temporarily take any vertex or irrevocably choose v3, then the
adversary presents an auxiliary vertex b2 connected to u2 and ends the request
sequence. An optimal vertex cover in this case has size two, containing only the

382 E. Burjons et al.

vertices u1 and u2. In the best case, however, such an algorithm has a vertex
cover of size 3 and two temporary covers, thus its competitive ratio will be at
best 3

2 + α, which again is worse than 1 + 2α, as already observed.
In general, after irrevocably choosing u1, . . . , uk−1 and v2, . . . , vk−1, and tem-

porarily choosing v1, the adversary presents the vertex uk connected to vk. If an
algorithm chooses to reserve any of the endpoints or irrevocably selects ui, then
the adversary presents the vertex u0 and ends the request sequence. In this case
an optimal vertex cover only contains the vertices vi for every i = 1, . . . k, thus it
has size k. The algorithm, however, will have to take v1 and vk in addition to the
previously irrevocably taken vertices, thus obtaining a vertex cover of size 2k−1
at best together with two temporarily taken vertices. Thus the competitive ratio
is 2k−1+2α

k = 2 − 1−2α
k ≥ 1 + 2α , where the inequality holds for every k ≥ 1.

In the other case, after irrevocably choosing vertices u1, . . . , uk−1 and
v2, . . . , vk, the adversary presents the vertex vk+1 connected to uk. If an algo-
rithm chooses to reserve one of the two endpoints or irrevocably chooses vk+1,
then the adversary stops the request sequence. An optimal vertex cover of such
a graph consists of the vertices ui for every i = 1, . . . , k and it has size k. The
algorithm will have to choose ui in order to obtain a vertex cover at all, obtain-
ing a vertex cover of size 2k − 1 at best together with at least one reservation,
thus achieving a competitive ratio of 2k−1+α

k ≥ 1 + 2α − ε for any k ≥ 1
ε . ��

For larger values of α the same adversarial strategy holds, but it gives us the
following lower bound.

Theorem 7. For α > 1/2, no algorithm for the Delayed Vertex Cover
problem with reservations is better than 2-competitive.

Proof. The lower bound of Theorem 6 for α = 1/2 is 2 − ε. For larger values of
α the same adversarial strategy will give us a lower bound of 2. This is because,
at all points during the analysis, either the value of the competitive ratio for
each strategy was at least 2, or it had a positive correlation with the value of α,
meaning that for larger values of α any algorithm following that strategy obtains
strictly worse competitive ratios. ��

5 Conclusion

We have shown that some problems that are non-competitive in the classical
model become competitive in modified, but natural variations of the classical
online model. Some questions remain open, such as the best competitive ratio
for the Delayed Feedback Vertex Set problem, which we believe to be 4.

It may be worthwhile to investigate which results can be found for restricted
graph classes. For example, it is easy to see that the online version of Delayed
Feedback Vertex Set is 2-competitive on graphs with maximum degree three.

In addition we also introduced the reservation model on graphs, providing
an upper and a lower bound for general graph problems. It would be interesting
try to find matching bounds, also on specific graph problems.

Delaying Decisions and Reservation Costs 383

References

1. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for
the feedback vertex set problem with applications to constraint satisfaction and
bayesian inference. SIAM J. Comput. 27(4), 942–959 (1998)

2. Becker, A., Geiger, D.: Optimization of pearl’s method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem. Artif. Intell.
83(1), 167–188 (1996)

3. Böckenhauer, H., Burjons, E., Hromkovič, J., Lotze, H., Rossmanith, P.: Online
simple knapsack with reservation costs. In: STACS 2021. LIPIcs, vol. 187, pp.
16:1–16:18 (2021)

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

5. Boyar, J., Eidenbenz, S.J., Favrholdt, L.M., Kotrbćık, M., Larsen, K.S.: Online
dominating set. In: Pagh, R. (ed.) 15th Scandinavian Symposium and Workshops
on Algorithm Theory, SWAT 2016, June 22–24, 2016, Reykjavik, Iceland. LIPIcs,
vol. 53, pp. 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016).
https://doi.org/10.4230/LIPIcs.SWAT.2016.21

6. Boyar, J., Favrholdt, L.M., Kotrbč́ık, M., Larsen, K.S.: Relaxing the irrevocability
requirement for online graph algorithms. In: WADS 2017. LNCS, vol. 10389, pp.
217–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2 19

7. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing.
Math. Oper. Res. 34(2), 270–286 (2009)

8. Burjons, E., Gehnen, M., Lotze, H., Mock, D., Rossmanith, P.: The secretary
problem with reservation costs. In: Chen, C.-Y., Hon, W.-K., Hung, L.-J., Lee,
C.-W. (eds.) COCOON 2021. LNCS, vol. 13025, pp. 553–564. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-89543-3 46

9. Chen, L., Hung, L., Lotze, H., Rossmanith, P.: Online node- and edge-deletion
problems with advice. Algorithmica 83(9), 2719–2753 (2021)

10. Demange, M., Paschos, V.T.: On-line vertex-covering. Theoret. Comput. Sci.
332(1), 83–108 (2005)

11. Komm, D.: An Introduction to Online Computation - Determinism, Random-
ization, Advice. Texts in Theoretical Computer Science, Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42749-2

12. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

13. Voss, H.J.: Some properties of graphs containing k independent circuits. Theory
of Graphs. In: Proceedings of Colloquium Tihany, pp. 321–334 (1968)

14. Wang, Y., Wong, S.C.: Two-sided online bipartite matching and vertex cover:
beating the greedy algorithm. In: Halldórsson, M.M., Iwama, K., Kobayashi, N.,
Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 1070–1081. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7 87

15. Zhang, Y., Zhang, Z., Shi, Y., Li, X.: Algorithm for online 3-path vertex cover.
Theory Comput. Syst. 64(2), 327–338 (2020)

https://doi.org/10.4230/LIPIcs.SWAT.2016.21
https://doi.org/10.1007/978-3-319-62127-2_19
https://doi.org/10.1007/978-3-030-89543-3_46
https://doi.org/10.1007/978-3-319-42749-2
https://doi.org/10.1007/978-3-662-47672-7_87

A PTAS Framework for Clustering
Problems in Doubling Metrics

Di Wu1,2, Jinhui Xu3, and Jianxin Wang1,2,4(B)

1 School of Computer Science and Engineering, Central South University,
Changsha, China

2 Xiangjiang Laboratory, Changsha 410205, China
3 Department of Computer Science and Engineering, State University of New York

at Buffalo, Buffalo, NY, USA
4 The Hunan Provincial Key Lab of Bioinformatics, Central South University,

Changsha, China
jxwang@mail.csu.edu.cn

Abstract. Constrained clustering problems have been studied exten-
sively in recent years. In this paper, we focus on a class of constrained
k-median problems with general constraints on facilities, denoted as GCF
k-CMedian problems. We present a randomized polynomial-time approx-
imation scheme (PTAS) framework based on the split-tree decomposition
and dynamic programming process for GCF k-CMedian problems, such
as k-median with service installation costs, k-facility location and prior-
ity k-median problems in doubling metrics.

Keywords: Approximation algorithm · k-median

1 Introduction

Clustering algorithms provide a fundamental tool in many machine learning
libraries. The goal of clustering is to partition the given dataset into several
clusters according to the similarity. Among different clustering objectives, the
k-median is widely used in applications such as operations research, data sum-
mation and data analysis [10,14,26]. It was known that the k-median problem is
NP-hard [18]. The current best-known approximation ratio in polynomial time
for the k-median problem is 2.67059+ ε given by Cohen-Addad et al. [12], which
was obtained based on the LP rounding technique.

A crucial property used in the approximation algorithms for the standard
k-median problem is that all clients of a cluster in an optimal solution lie fully
in the Voronoi cell of the corresponding facility. However, in many applications
involving constrained clustering, the clusters are no longer obtained from the

This work was supported by National Natural Science Foundation of China
(62172446, 62350004), Open Project of Xiangjiang Laboratory (22XJ02002), and Cen-
tral South University Research Programme of Advanced Interdisciplinary Studies
(2023QYJC023).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 384–397, 2024.
https://doi.org/10.1007/978-3-031-49190-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_28&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_28

A PTAS Framework for Clustering Problems in Doubling Metrics 385

Voronoi cell of the opened facilities, which means that the partition of clients
and locations of the opened facilities in an optimal solution might be quite arbi-
trary. Moreover, the certain constraints can be imposed at either client or facility
level [15]. Client-level constraints are mainly imposed on clients inside each clus-
ter, such as fair constraints [5,6]. Facility-level constraints are restrictions on
the facility, mainly referring to the constrained k-median problems with general
constraints on facilities, such as service installation constraint [28], and facility-
opening constraints [22,31]. In recent years, much attention has been paid to
various types of constrained clustering problems with client-level [1,19,21]. The
constant factor approximation for constrained clustering problems with client-
level in metrics was given by Zhang et al. [17], who showed that the reduced
search space technique yields O(1)-approximation with FPT(k)-time. Moreover,
several sampling-based FPT(k)-time algorithms yield (1 + ε)-approximation for
constrained clustering problems with client-level in Euclidean space [15,16,23].
However, how to design a (1 + ε)-approximation algorithm for the constrained
clustering problems with facility-level is still an open problem.

The current results for the constrained k-median problems with general con-
straints on facilities are O(1)-approximation algorithms with polynomial time in
metric space [8,25,30], where the approximation ratio is still large compared to
the optimal solution. It was pointed out in [13] that identifying a near-optimal
solution within nO(1)g(k) time (where g is a positive function) is unlikely for the
constrained k-median problems with general constraints on facilities in general
metrics. In [13], Cohen-Addad et al. showed that if the Gap-Exponential Time
Hypothesis [7,27] holds, then any algorithm for the GCF k-CMedian problem
with an approximation ratio better than 1 + e/2 − ε must run in time at least
nkg(ε)

. However, this negative result does not reject the possibility of obtaining
a near-optimal solution within bounded time for the problem in doubling met-
rics. The doubling metric space is a metric space with fixed doubling dimension,
where the doubling dimension of the metric space is the smallest d such that any
ball of radius 2r can be covered by 2d balls of radius r. Gupta et al. [20] first pro-
posed the concept of doubling metrics. This concept for metrics abstraction has
been proposed as a natural analog to Euclidean space. Following [20], Euclidean
metrics of dimension d have doubling dimension Θ(d). Moreover, the submet-
rics of a given metric exhibit reduced dimensions, and this concept generalizes
the growth restriction assumption outlined in [20]. According to [32], metric
embeddings have proved to be extremely useful tools for algorithm design. Such
low dimension restrictions are natural in several practical applications such as
data analysis [33] and peer-to-peer networks [29]. Hence, it is urgent to design
polynomial-time approximation schemes with (1+ ε)-approximation for the con-
strained k-median problems with general constraints on facilities in doubling
metrics (Fig. 1).

In this work, we consider the constrained k-median problems with general
constraints on facilities (GCF k-CMedian) such as k-median with service instal-
lation costs [30], k-facility location [8], and priority k-median [34] problems in

386 D. Wu et al.

Fig. 1. In 2-dimensional Euclidean space, seven balls of radius r/2 can cover any ball
of radius r, so 2-dimensional Euclidean space is a doubling metric space with doubling
dimension log2 7.

doubling metrics. The following is the definition of the constrained k-median
with general constraints on facilities considered in this paper.

Definition 1 (GCF k-CMedian). Given a set P of n points in metric space
with fixed doubling dimension d, a positive integer k, some constraint C on
the opened facilities and each opened facility is associated with a facility cost,
the constrained k-median problem with general constraints on facilities (GCF
k-CMedian) is to partition P into k clusters satisfying the constraint C and
minimize the sum of client-connection cost and opened facility costs.

1.1 Our Results and Techniques

In this paper, we develop a randomized polynomial-time approximation frame-
work with (1+ε)-approximation for the k-median with service installation costs,
k-facility location, and priority k-median problems in metric space with fixed
doubling dimension d.

Our framework for the GCF k-CMedian problems is based on portal approach
and dynamic programming method. Intuitively speaking, portals are the bridges
to get the pairwise distances between the points in the tree embedding. Given
a dataset in doubling metrics, we first construct a split-tree decomposition of
the input metrics. The split-tree decomposition is a hierarchical decomposition
that partitions the metrics into several subsets, which are called blocks. For each
block, a subset of points, called portals, is constructed as bridges to get the
pairwise distances between the points in the split-tree. The distance between
any two points at different blocks on the split-tree can be defined as the length
of the path that is constructed by the subpath through the portals of the blocks.
In the following, we briefly remark on the commonly used techniques for the
clustering problems to show the obstacles in obtaining PTAS for the GCF k-
CMedian problems in doubling metrics.

– As far as we know, many results have been proposed by applying portal
approaches and dynamic programming methods (e.g., [2,24,32]). In [2], they
gave a quasi-polynomial time approximation scheme (QPTAS) for the k-
median problem in Euclidean space. It should be noted that they showed the

A PTAS Framework for Clustering Problems in Doubling Metrics 387

running time of the dynamic programming process depends exponentially on
the number of portals. Kolliopoulos and Rao [24] improved the above result in
[2] and obtained a PTAS for the k-median problem and facility location prob-
lem in d-dimensional Euclidean space. In [24], based on an adaptive decompo-
sition scheme in Euclidean space, they proposed a new structural theorem to
characterize the structure of the near-optimal solutions such that the number
of portals can be reduced to a constant number. Unfortunately, Kolliopoulos
and Rao’s algorithm is not directly applicable to doubling metrics as it relies
on the specific structure of Euclidean space.

– For applying a dynamic programming process to solve the k-median prob-
lem, the enumeration of the pairwise distances between portals and opened
facilities is inevitable for using the standard dynamic programming method
[2,9,11,24,32]. The difficulty in extending this approach to the GCF k-
CMedian problems is due to the constraints associated with the facilities.
In the GCF k-CMedian problems, the enumeration of the pairwise distances
between portals and opened facilities leads to an O(m log n) loss on the num-
ber of parameters of the dynamic programming table entry where m is the size
of portal set in a block, which increases the time complexity of the dynamic
programming process.

To bypass the above obstacles in solving the GCF k-CMedian problems, we
propose a PTAS framework for the GCF k-CMedian problems in doubling met-
rics. In this work, we present a new dynamic programming framework based
on the split-tree decomposition to solve the GCF k-CMedian problems, which
is based on the relation between the subproblem and the subproblems of its
children. Furthermore, it can reduce the enumeration loss from O(m log n) to
O(m) based on newly designed multiple auxiliary bipartite graphs and mini-
mum weighted perfect matching. Our portal approach is based on the badly-cut
technique. Intuitively speaking, the general idea behind this technique is to opti-
mize the solution by estimating the distance between the client and the facility
of the optimal solution serving it, such that the exponential dependence of the
dynamic programming process on O(log n) factor is avoided. The idea underly-
ing this technique is that when the distance between a client and the optimal
facility serving it is large, using the dynamic programming process to determine
the best facility for this client becomes time-consuming. Then, these clients are
denoted as special badly-cut points to deal with. It is difficult to directly extend
this approach to the GCF k-CMedian problems due to the constraints associated
with the facilities. In such settings, it cannot be proved that there exists a near-
optimal solution with the opened badly-cut facilities by directly embedding the
badly-cut facilities into the optimal solution since the reassignment of the clients
may violate the additional constraints. To overcome the difficulties caused by the
additional constraints in the proof, we construct a new combination model based
on the reassignment of the clients.

Theorem 1. Given an instance for the k-median with service installation costs
problem in metrics of fixed doubling dimension d, with probability at least 1− ε,
there exists a randomized (1 + ε)-approximation algorithm with running time

388 D. Wu et al.

Õ(nO(1
ε)

O(d)|S|)1, where the size of X is n and |S| is an integer that denotes the
number of the services in the metrics.

Theorem 2. Given an instance for the k-facility location problem in metrics of
fixed doubling dimension d, with probability at least 1− ε, there exists a random-
ized (1 + ε)-approximation algorithm with running time Õ(nO(1

ε)
O(d)

), where the
size of X is n.

Theorem 3. Given an instance for the priority k-median problem in metrics of
fixed doubling dimension d, with probability at least 1− ε, there exists a random-
ized (1 + ε)-approximation algorithm with running time Õ(nO(1

ε)
O(d)|P|), where

the size of X is n and |P| is an integer that denotes the number of the priorities
of the points in the metrics.

2 Preliminaries

Definition 2 (metric space). Given a space X = (X,dist) where X is a set
of points associated with a distance function dist : X ×X → R, space X is called
a metric space if for any point x, y, z in X, the following properties are satisfied:
(1) dist(x, y) = 0 iff x = y; (2) dist(x, y) = dist(y, x); (3) dist(x, y)+dist(y, z) ≥
dist(x, z).

Definition 3 (doubling dimension). Given a metric space (X,dist) and an
arbitrary non-negative real number r, for any point x ∈ X, let B(x, r) =
{y ∈ X | dist(x, y) ≤ r} denote the set of points in the ball around x with
radius r. The doubling dimension of the metric space (X,dist) is the smallest
integer d such that any ball B(x, 2r) can be covered by at most 2d balls B(yi, r). A
metric space with bounded doubling dimension is called a doubling metric space.

Given a metric space X = (X,dist), let Δ be the ratio between the largest
and the smallest inter-point distance in X , which is called the aspect ratio of X .
For any subset Y ⊆ X, the aspect ratio of Y is defined as maxy,y′∈Y dist(y,y′)

miny �=y′∈Y dist(y,y′) . For
a positive integer l, let [l] = {1, 2, ..., l}.

For an instance (X,dist, C,F , k,C) of the GCF k-CMedian problem, given
a solution (F, μ) of instance (X,dist, C,F , k,C), the facilities in F are called
candidate facilities. For a facility f ∈ F and a client c ∈ C, if μ(c) = f , then it is
called that f serves client c. Let X = C ∪F , and assume that the size of X is n.

3 Decomposition of Metrics

In this section, we introduce a split-tree decomposition of the metrics. Our
dynamic programming process is based on the split-tree decomposition. (All
proofs are in the complete version.)

1 We use Õ(·) notation to hide polylogarithmic factors.

A PTAS Framework for Clustering Problems in Doubling Metrics 389

Given an instance (X,dist, C,F , k,C) of the GCF k-CMedian problem where
C denotes the specific constraint of the k-median problem, following the assump-
tions in [4,11], the aspect ratio Δ of the input metrics should be at most O(n4/ε)
(where n is the size of C ∪ F , and ε is a constant). In order to satisfy the aspect
ratio assumption, we first deal with the points in X by the following preprocess-
ing step and we use OPT to denote an optimal solution to the GCF k-CMedian
problem. We now show that the aspect ratio of the metrics can be polynomially
bounded by the following lemma, which induces an additional εcost(OPT) loss
in the approximate guarantee.

Lemma 1. Given an instance I = (X,dist, C,F , k,C) of the GCF k-
CMedian problem and a real number ε > 0, there exists an instance I ′ =
(X,dist′, C,F , k,C) of the GCF k-CMedian problem with metric distance func-
tion, such that the aspect ratio of the metrics is at most O(n4/ε), and any λ-
approximation solution to I ′ is a (1 + ε)λ-approximation to I for any constant
λ > 1. A set of |C||F| instances containing such an instance I ′ can be constructed
in polynomial time.

For ease of presentation, we reset the metric distance function dist′ as dist
in the following.

3.1 Split-Tree Decomposition

For any set Y of points, a ρ-covering of Y is a subset S ⊆ Y if for any point
y ∈ Y , there is a point s ∈ S such that dist(y, s) ≤ ρ. A ρ-packing of Y is a
subset S ⊆ Y if for any s, s′ ∈ S, dist(s, s′) ≥ ρ. A subset S ⊆ Y is called a
ρ-net in Y if it is both a ρ-covering of Y and a ρ-packing of Y . The size of a net
in metrics with fixed doubling dimension d is bounded by the following lemma.

Lemma 2 ([20]). Let (X,dist) be a metric space with fixed doubling dimension
d and aspect ratio Δ, and let S ⊆ X be a ρ-net. Then |S| ≤ (Δ

ρ)
d.

We use the randomized split-tree decomposition of [32] for doubling metrics.
A decomposition of the metric (X,dist) is a partition of X, and a partition of
X is a disjoint collection of subsets, called block. A hierarchical decomposition
consists of a sequence of �+1 decompositions D0,D1, ...,D� such that every block
of Di+1 is the union of blocks in Di with D� = {X} and D0 = {{x} | x ∈ X}.
Di is called the i-th level of the hierarchical decomposition. Given a hierarchical
decomposition D0,D1, ...,D�, the corresponding split-tree is as follows: the root
node is the level � block D� = {X}, and the leaves are the singletons such that
D0 = {{x} | x ∈ X}. We now construct a split-tree with the above properties.
Given a metric space (X,dist), let Δ = O(2�) be the diameter of the metrics.
We start by constructing a sequence of sets X = Y0 ⊇ Y1 ⊇ Y2 . . . ⊇ Y�−1 such
that Yi is a 2i−2-net of Yi−1. By the triangle inequality, Yi is a 2i−1-covering
of X, and a 2i−2-packing of X. Choose � uniform randomly from [12 ,1), and let
π be a random ordering of the points in X. For each point x ∈ X, let π(x) be
the order of x in π. For the set Yi, let {y1, . . . , yh} (h ≤ 2O(d)) be the set of

390 D. Wu et al.

points in Yi with decreasing order in π. Starting from D� = {X}, we recursively
partition the metrics until each block only contains one point. For 0 ≤ i ≤ �− 1,
the blocks at level i can be constructed as follows. Let ri = 2i�. For each block
Bl ∈ Di+1 and for each point yj ∈ Yi (1 ≤ j ≤ h), a new block B

yj

l can be
obtained at level i by the following way. Let B

yj

l = {x ∈ Bl | x ∈ B(yj , ri) and
(∀j′ > j : π(yj′) < π(yj))[x /∈ B(yj′ , ri)]}. That is, for each point x ∈ Bl, if
x is contained in B

yj

l , then x is not contained in any block {B
yj+1
l , . . . , Byh

l }.
In brief, each level i + 1 block is the union of at most 2O(d) level i blocks. The
followings are the specific properties of the split-tree decomposition.

Lemma 3 ([32]). Given a split-tree of metric space (X,dist) with a sequence
of decompositions D0,D1, ...,D�, the split-tree decomposition has the following
properties:

1. The total number of levels � is O(log n) (since Δ = O(n4/ε)).
2. Each block of level i has diameter at most 2i+1, namely the maximum distance

between any pair of points in a block of level i is at most 2i+1.
3. Each level i block is the union of at most 2O(d) level i − 1 blocks.
4. For any pair of points u, v ∈ X, the probability that they are in different sets

corresponding to the blocks at level i of the split-tree is at most O(d) · dist(u,v)
2i .

Lemma 4. For any metric (X,dist) with fixed doubling dimension d, given a
randomized split-tree T , for any x ∈ X and radius r, the probability that the
points of B(x, r) are in different sets corresponding to the blocks at level i of
split-tree is at most 4d · r/2i.

Given an instance (X,dist, C,F , k,C) of the GCF k-CMedian problem, let
T be the split-tree obtained by using the methods in [32]. For each block B at
level i in T , we compute a ρ2i+1-net P of block B. Each point in P is called a
portal, and P is also called a portal set. By Lemma 2, the number of portals at
a given block is at most ρ−O(d). Moreover, the split-tree with the portal sets can
be found in time (1/ρ)O(d)n logΔ [3,11]. For the portal set P of a block B at
level i in T , there is an important property as follows.

Lemma 5 ([32]). For the portal set P of a block B of level i in T , assume
that the children of B at level i − 1 are B1, B2, . . . , Bu and each block Bj has
the portal set Pj ⊆ Bj. Then, P is a subset of the portal sets computed for the
descendant blocks of B, i.e. P ⊆ P1 ∪ P2 ∪ . . . Pu.

Given a split-tree T and two blocks B1 and B2 at level i of T , and for two
points u ∈ B1, and v ∈ B2, the distance between u and v on the split-tree is
defined as the length of the path which is constructed by the subpath from u
to a portal pi of B1, the subpath from pi to a portal pj of B2, and the subpath
from pi to v. Given a block B at level i of split-tree T and a portal set P ⊆ B, if
there is a client c1 outside B that is assigned to a facility f1 inside B crossing at
a portal p1 ∈ P , then we say that client c1 enters B through portal p1. Similarly,
if there is a client c2 inside B that is assigned to a facility f2 outside B crossing
at a portal p2 ∈ P , then we say that client c2 leaves B through portal p2. In the
following, all the distances considered are the distances on the split-tree T .

A PTAS Framework for Clustering Problems in Doubling Metrics 391

Lemma 6. For any metric (X,dist) with fixed doubling dimension d and any
ρ > 0, given a randomized split-tree T , a pair of blocks B1 and B2 of level i, the
portal set P1 of B1 where P1 is a ρ2i+1-net of block B1, the portal set P2 of B2

where P2 is a ρ2i+1-net of block B2, and any two points u ∈ B1 and v ∈ B2,
for the distance between u and v on the split-tree T and the distance dist(u, v)
in metric space, we have: min

pi∈P1,pj∈P2
{dist(u, pi) + dist(pi, pj) + dist(pj , v)} ≤

dist(u, v) + 4 · ρ2i+1.

3.2 Definition of Badly-Cut Points

In this section, we give the formal definition of the badly-cut points as follows,
which is similar to the definition in [11]. For any pair of points u, v ∈ X, if
they are in different sets corresponding to the blocks at level i of the split-tree,
we say that u, v are cut at level i. For any point x ∈ X and radius r, if the
points of B(x, r) are in different sets corresponding to the blocks at level i of
the split-tree, we say that B(x, r) is cut at level i. We start by finding an O(1)-
approximate feasible solution L to the specific GCF k-CMedian problem. For
each client c ∈ C, we denote L(c) as the facility of L that serves c. Let Lc denote
the distance between c and L(c). For each facility f of L, we denote OPT(f) as
the nearest facility to f in OPT. Let OPTf denote the distance between f and
OPT(f). We now give the formal definition of the badly-cut points as follows.

Definition 4. ([11]) Let (X,dist) be a metric space with fixed doubling dimen-
sion d, given a randomized split-tree T and a constant ε > 0, a client c ∈ C is
called badly-cut if there exists an integer i such that B(c, 2i) is cut at level j

greater than i + log d + 3 + log log(1/ε) + log(1/(ε2

2)) (where 2i ∈ [εLc, Lc/ε]).
A facility f of L is called badly-cut if there exists an integer i such that

B(f, 2i) is cut at level j greater than i + log d + 3 + log log(1/ε) + log(1/(ε2

2))
(where 2i ∈ [εOPTf ,OPTf/ε]).

Let ζ(ε, d) = log d + 3 + log log(1/ε) + log(1/(ε2

2)) for short in the following.
With a slight modification of the definition in [11], we show the probability of
each point being badly-cut in the following lemma.

Lemma 7. For a metric space (X,dist) with fixed doubling dimension d, given
a randomized split-tree T , for a point x ∈ X, the probability that x is badly-cut
is at most ε2

2 .

4 A PTAS for k-median with Service Installation Costs
Problem

In the k-median with service installation costs problem [35], we are given a set
C of clients and a set F of facilities, a non-negative integer k, and a set S of
services. Moreover, each client c ∈ C is associated with a service M(c) ∈ S, and
each service s ∈ S is associated with a cost f(s) > 0 for installing it at a facility.

392 D. Wu et al.

The goal of the k-median with service installation costs problem is to find a
subset F ⊆ F of size at most k and an assignment function μ : C → F , such
that: (1) for any f ∈ F , a set S(f) ⊆ S of services is installed at f , and for each
client c ∈ C, c is assigned to an opened facility f ∈ F satisfying M(c) ∈ S(f);
(2) the total cost (including the sum of service installation and client-connection
costs) is minimized.

In this section, we show how to use the portal approach and the dynamic
programming process based on the badly-cut technique to obtain a PTAS for
the k-median with service installation costs (k-MSIC) problem in doubling met-
rics. Our portal approach is based on the framework of the badly-cut technique
outlined in [11]. For a given instance, the precondition of applying a dynamic
programming process in this instance is that there exists an optimal solution in
the instance. To reduce the time complexity of the dynamic programming pro-
cess, we modify the given instance to reduce the assignment cost of the badly-cut
clients to 0. Hence, since the given instance of the k-MSIC problem has been
modified, it is necessary to prove that there exists a near-optimal solution to the
k-MSIC problem in the new instance. In the following, we first give our main
proofs for solving the k-MSIC problem.

4.1 Modification of Instance for k-MSIC Problem

In this section, we show how to modify the instance for the k-MSIC problem by
relocating the badly-cut clients.

We now show that the modified instance induces an arbitrarily small loss in
the approximate guarantee with probability at least 1 − ε.

Lemma 8. Given an instance I ′ = (X,dist, C,F , k,S,M, f) of the k-MSIC
problem and a real number ε > 0, let T be a randomized split-tree, we can
convert it to into a new instance IT = (X,dist∗, C,F , k,S,M, f) by mov-
ing each badly-cut client c to the position of L(c), such that with probabil-
ity at least 1 − ε, the difference between the cost of any solution S to IT

and the solution S to I ′ can be bounded by at most O(εcost(L)). That is,
max

S
{cost(I(S)) − cost(IT (S)), cost(IT (S)) − cost(I(S))} ≤ O(εcost(L)).

4.2 Construction of Near-Optimal Solution for k-MSIC Problem

In this section, we prove that there exists a near-optimal solution to the k-MSIC
problem with the badly-cut facilities of L based on the modified instance. We
now give the general idea of the proof.

Given an instance IT = (X,dist∗, C,F , k,S,M, f) obtained by modifying I ′,
for the facilities of L in the instance IT , if a facility of L is badly-cut, open this
facility. Thus, based on the probability that a point is badly-cut, it holds trivially
that there are at most εk badly-cut facilities of L opened. To deal with the case
that the obtained solution with more than k facilities, for each badly-cut facility
f of L, we open f and close some facility f ′ of OPT, and reassign the clients

A PTAS Framework for Clustering Problems in Doubling Metrics 393

assigned to f ′ to f . This guarantees that the resulting solution is of cost at most
(1+O(ε))cost(OPT)+O(ε)cost(L). The following lemma shows that there exists
a near-optimal solution S′ containing the opened badly-cut facilities of L in IT .

Lemma 9. Given an instance IT = (X,dist∗, C,F , k,S,M, f) of the k-MSIC
problem and a real number ε > 0, with probability at least 1 − ε, there exists a
near-optimal solution S′ containing the opened badly-cut facilities of L with cost
at most (1 + O(ε))cost(OPT) + O(ε)cost(L).

4.3 Dynamic Programming Process for k-MSIC Problem

In this section, we show how to design the dynamic programming process based
on the split-tree. Before the dynamic programming process, we should open each
badly-cut facility of L based on Sect. 4.2.

Given an instance IT = (X,dist∗, C,F , k,S,M, f) of the k-MSIC problem,
let T be a randomized split-tree, the dynamic programming process proceeds
on T from the leaves to the root. For each block B of the split-tree T , let TB

denote the subtree rooted at block B, and each subtree is a subproblem in our
dynamic programming process, which includes the information that how many
clients with each service entering or leaving the subtree through the portals
of the subtree. A table entry in the dynamic programming process is a tuple
M [B, kB , I, O], where the parameters are defined as follows: (1) m is the size of
portal set in B and m = ρ−O(d); (2) B is the root node of the subtree TB ; (3)
kB (0 ≤ kB ≤ k) is the number of opened facilities in B; (4) I is a tuple with
m|S| elements where I = [N I

1 , N I
2 , . . . , N I

m], N I
i (i ∈ [m]) in I is an |S|-tuple

where N I
i = [nI(i)

1 , n
I(i)
2 , . . . , n

I(i)
S], and for t ∈ [|S|], n

I(i)
t (0 ≤ n

I(i)
t ≤ n) in

N I
i denotes the number of clients with the t-th service entering B through the

i-th portal; (5) O is a tuple with m|S| elements where O = [NO
1 , NO

2 , . . . , NO
m],

NO
i (i ∈ [m]) in O is an |S|-tuple where NO

i = [nO(i)
1 , n

O(i)
2 , . . . , n

O(i)
S], and for

t ∈ [|S|], n
O(i)
t (−n ≤ n

O(i)
t ≤ 0) in NO

i is a non-positive number such that
n

O(i)
t =−n

O(i)′
t , where n

O(i)′
t denotes the number of clients with the t-th service

leaving B through the i-th portal.
The cost of table entry M [B, kB , I, O] consists of the following three parts:

(1) The cost of assigning clients inside of B to facilities inside of B; (2) For the
clients inside of B assigned to facilities outside of B through portals of B, the
cost from the clients inside of B to portals of B; (3) For the clients outside of B
assigned to facilities inside of B through portals of B, the cost from portals of
B to the assigned facilities inside of B.

The solutions at the root R of T are in the table entry M [R, k, φ, φ], where φ
is a tuple with m|S| zero components. Among all these solutions in M [R, k, φ, φ],
the algorithm outputs the one with the minimum cost.

The base case of the dynamic programming process is located at the leaves
(which are singletons) of the split-tree. For a leaf of the split-tree, the corre-
sponding block has only one portal and we only need to set N I

1 and NO
1 , while

the parameters in the remaining N I
i ’s and NO

i ’s can be set as 0. Since there is

394 D. Wu et al.

only one facility or client in each leaf of the split-tree, we consider the following
three cases for the table entry of leaf node B: (1) If there is only one facility
in the block and this facility is opened, then the table value of this block is
M [B, 1, I, φ] =

∑|S|
t=1 x

I(1)
t · f t(s), where I = [N I

1 , φ′, . . . , φ′] and φ′ is a tuple
with |S| zero components. In addition, the t-th value of N I

1 is denoted as nt, i.e.,
nt is the number of clients with the t-th service outside of B that are served by
the facility inside B. x

I(1)
t denotes whether there are clients with the t-th service

entering B through the first portal, and f t(s) denotes the cost of installing the
t-th service at the opened facility. If nt
= 0, x

I(1)
t = 1. Otherwise, x

I(1)
t = 0; (2)

If there is only one facility in the block but this facility is not opened, then the
table value of this block is M [B, 0, φ, φ] = 0; (3) If there is only one client in
the block, then the table value of this block is M [B, 0, φ,O] = 0. If the client is
associated with the t-th service (t ∈ [|S|]), then the t-th value in NO

1 is -1 and
the other values in O are 0.

Now we consider the subproblem on the subtree TB , where block B is at
level i of the split-tree T . We formalize the children of B as the following
parameters. We define the children of B as B1, B2, . . . , Bu, where u is at most
2O(d). Let {B1, B2, . . . , Bu} be the set of children of block B. Assume that
there is an ordering from left to right in {B1, B2, . . . , Bu}. Let (B, kB , I, O)
denote the configuration of B and (Bj , kBj

, Ij , Oj) be the configuration of
Bj , where Bj (j ∈ [u]) denotes the j-th child of B, kBj

is the number of
opened facilities in Bj , Ij is a tuple with m|S| elements and the i-th element
N

I(j)
i in Ij (i ∈ [m], j ∈ [u]) is an |S|-tuple, and each value n

I(ij)
t in N

I(j)
i

(0 ≤ n
I(ij)
t ≤ n, t ∈ [|S|]) denotes the number of clients with the t-th service

entering Bj through the i-th portal of Bj , Oj is a tuple with m|S| elements and
the i-th element N

O(j)
i in Oj (i ∈ [m], j ∈ [u]) is an |S|-tuple, and each value

n
O(ij)
t in N

O(j)
i (−n ≤ n

O(ij)
t ≤ 0, t ∈ [|S|]) is a non-positive number such that

n
O(ij)
t = −n

O(ij)′
t , where n

O(ij)′
t denotes the number of clients with the t-th ser-

vice leaving Bj through the i-th portal of Bj . The values of kBj
, Ij and Oj have

the following constraints: (1) kB1 + kB2 + . . .+ kBu
≤ kB ; (2) For each t ∈ [|S|],

∑m
i=1

∑u
j=1 n

I(ij)
t +

∑m
i=1

∑u
j=1 n

O(ij)
t =

∑m
i=1 n

I(i)
t +

∑m
i=1 n

O(i)
t .

Lemma 10. Given a subproblem B at level i of the split-tree T (i
= 0) and its
children B1, B2, . . . , Bu, where u is at most 2O(d), let (B, kB , I, O) be the config-
uration of B and (Bj , kBj

, Ij , Oj) be the configuration of each children Bj (1 ≤
j ≤ u), we have M [B, kB , I, O] = minj∈[u]:kBj

,Ij ,Oj

∑u
j=1{M [Bj , kBj

, Ij , Oj]+ω}
with (1) kB1 + kB2 + . . . + kBu

≤ kB; (2) ∀t ∈ [|S|],∑m
i=1

∑u
j=1 n

I(ij)
t +

∑m
i=1

∑u
j=1 n

O(ij)
t =

∑m
i=1 n

I(i)
t +

∑m
i=1 n

O(i)
t , where ω is the cost of moving

clients between portals of B1, B2, . . . , Bu and the ones in B, and can be calcu-
lated in polynomial time.

A PTAS Framework for Clustering Problems in Doubling Metrics 395

4.4 Analysis and Running Time

In this section, we analyze the running time of our algorithm for solving the
k-MSIC problem in doubling metrics.

Given an instance (X,dist, C,F , k,S,M, f) of the k-MSIC problem in dou-
bling metrics, with probability at least 1−ε, there exists a randomized algorithm
such that a solution of cost at most (1 + O(ε))cost(OPT) + O(εcost(L)) can be
obtained, and the running time is at most Õ(nO(1

ε)
O(d)|S|).

5 Extension to k-facility Location Problem and Priority
k-median Problem in Doubling Metrics

Our techniques can be generalized to variants of the clustering problems. We
consider two of them: k-facility location problem and priority k-median problem.
We analyze the running time of the algorithms for the k-facility location and
priority k-median problems by the same approach of the k-MSIC problem.

In the k-facility location problem, we are given a set C of clients and a set
F of facilities, a non-negative integer k, and a facility-opening cost function
o : F → R. The goal of the k-facility location problem is to find a subset F ⊆ F
of size at most k and an assignment function μ : C → F such that the sum
of facility-opening and client-connection costs is minimized. Given an instance
(X,dist, C,F , k, o) of the k-facility location problem in doubling metrics, with
probability at least 1−ε, there exists a randomized algorithm such that a solution
of cost at most (1 + O(ε))cost(OPT) + O(εcost(L)) can be obtained, and the
running time is at most Õ(nO(1

ε)
O(d)

).
In the priority k-median problem, we are given a set C of clients and a set F

of facilities, a non-negative integer k, and a set P = {1, 2, . . . , |P|} of priorities.
Moreover, each client c ∈ C is associated with a priority p(c) ∈ P, and each
priority p ∈ P is associated with a cost f(p) > 0 for opening any facility at
the priority, where f(p1) ≥ f(p2) for each p1, p2 ∈ P with p1 > p2. The goal
of the priority k-median problem is to find a subset F ⊆ F of size at most k
and an assignment function μ : C → F , such that each client is assigned to a
facility opened at the same or higher priority and the sum of facility-opening and
client-connection costs is minimized. Given an instance (X,dist, C,F , k,P, p, f)
of the priority k-median problem in doubling metrics, with probability at least
1 − ε, there exists a randomized algorithm such that a solution of cost at most
(1 +O(ε))cost(OPT)+O(εcost(L)) can be obtained, and the running time is at
most Õ(nO(1

ε)
O(d)|P|).

396 D. Wu et al.

References

1. Adamczyk, M., Byrka, J., Marcinkowski, J., Meesum, S.M., Wlodarczyk, M.:
Constant-factor FPT approximation for capacitated k-median. In: Proceedings of
27th Annual European Symposium on Algorithms, p. 1 (2019)

2. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians
and related problems. In: Proceedings of 30th Annual ACM Symposium on Theory
of Computing, pp. 106–113 (1998)

3. Bartal, Y., Gottlieb, L.A.: A linear time approximation scheme for Euclidean TSP.
In: Proceedings of 54th Annual Symposium on Foundations of Computer Science,
pp. 698–706 (2013)

4. Behsaz, B., Friggstad, Z., Salavatipour, M.R., Sivakumar, R.: Approximation algo-
rithms for min-sum k-clustering and balanced k-median. Algorithmica 81(3), 1006–
1030 (2019)

5. Bera, S., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for clustering.
In: Proceedings of 33rd Advances in Neural Information Processing Systems, pp.
4954–4965 (2019)

6. Bercea, I.O., et al.: On the cost of essentially fair clusterings. In: Proceedings of
22nd International Conference on Approximation Algorithms for Combinatorial
Optimization Problems and 23rd International Conference on Randomization and
Computation, p. 18 (2019)

7. Chalermsook, P., et al.: From gap-ETH to FPT-inapproximability: clique, domi-
nating set, and more. In: Proceedings of 58th IEEE Annual Symposium on Foun-
dations of Computer Science, pp. 743–754 (2017)

8. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approxima-
tion algorithm for the k-median problem. In: Proceedings of 31st Annual ACM
Symposium on Theory of Computing, pp. 1–10 (1999)

9. Cohen-Addad, V.: Approximation schemes for capacitated clustering in doubling
metrics. In: Proceedings of 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 2241–2259 (2020)

10. Cohen-Addad, V., Esfandiari, H., Mirrokni, V., Narayanan, S.: Improved approx-
imations for Euclidean k-means and k-median, via nested quasi-independent sets.
In: Proceedings of 54th Annual ACM SIGACT Symposium on Theory of Comput-
ing, pp. 1621–1628 (2022)

11. Cohen-Addad, V., Feldmann, A.E., Saulpic, D.: Near-linear time approximations
schemes for clustering in doubling metrics. In: Proceedings of 60th Annual Sym-
posium on Foundations of Computer Science, pp. 540–559 (2019)

12. Cohen-Addad, V., Grandoni, F., Lee, E., Schwiegelshohn, C.: Breaching the 2
LMP approximation barrier for facility location with applications to k-median. In:
Proceedings of 34th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
940–986 (2023)

13. Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight FPT approxima-
tions for k-median and k-means. In: Proceedings of 46th International Colloquium
on Automata, Languages, and Programming, pp. 42-1 (2019)

14. Current, J., Daskin, M., Schilling, D., et al.: Discrete network location models. In:
Facility Location: Applications and Theory, vol. 1, pp. 81–118 (2002)

15. Ding, H., Xu, J.: A unified framework for clustering constrained data without
locality property. Algorithmica 82(4), 808–852 (2020)

16. Feng, Q., Hu, J., Huang, N., Wang, J.: Improved PTAS for the constrained k-means
problem. J. Comb. Optim. 37(4), 1091–1110 (2019)

A PTAS Framework for Clustering Problems in Doubling Metrics 397

17. Feng, Q., Zhang, Z., Huang, Z., Xu, J., Wang, J.: A unified framework of FPT
approximation algorithms for clustering problems. In: Proceedings of 31st Interna-
tional Symposium on Algorithms and Computation, pp. 51–517 (2020)

18. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms.
J. Algorithms 31(1), 228–248 (1999)

19. Guo, Y., Huang, J., Zhang, Z.: A constant factor approximation for lower-bounded
k-median. In: Proceedings of 16th International Conference Theory and Applica-
tions of Models of Computation, pp. 119–131 (2020)

20. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: Proceedings of 44th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 534–543 (2003)

21. Hajiaghayi, M., Hu, W., Li, J., Li, S., Saha, B.: A constant factor approximation
algorithm for fault-tolerant k-median. ACM Trans. Algorithms 12(3), 1–19 (2016)

22. Han, L., Xu, D., Du, D., Zhang, D.: A local search approximation algorithm for the
uniform capacitated k-facility location problem. J. Comb. Optim. 35(2), 409–423
(2018)

23. Jaiswal, R., Kumar, A., Sen, S.: A simple D2-sampling based PTAS for k-means
and other clustering problems. Algorithmica 70(1), 22–46 (2014)

24. Kolliopoulos, S.G., Rao, S.: A nearly linear-time approximation scheme for the
Euclidean k-median problem. SIAM J. Comput. 37(3), 757–782 (2007)

25. Kumar, A., Sabharwal, Y.: The priority k-median problem. In: Proceedings of 27th
Foundations of Software Technology and Theoretical Computer Science, pp. 71–83
(2007)

26. Love, R., Morris, J., Wesolowsky, G.: Facilities location: models and methods.
Operations Research Series, vol. 7 (1988)

27. Manurangsi, P., Raghavendra, P.: A birthday repetition theorem and complexity
of approximating dense CSPs. In: Proceedings of 44th International Colloquium
on Automata, Languages, and Programming, p. 78 (2017)

28. Markarian, C.: Online non-metric facility location with service installation costs.
In: ICEIS, pp. 737–743 (2021)

29. Ng, T.E., Zhang, H.: Predicting internet network distance with coordinates-based
approaches. In: Proceedings of 21st Annual Joint Conference of the IEEE Computer
and Communications Societies, pp. 170–179 (2002)

30. Shmoys, D.B., Swamy, C., Levi, R.: Facility location with service installation costs.
In: Proceedings of 15th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1088–1097 (2004)

31. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location prob-
lems. Algorithmica 40(4), 245–269 (2004)

32. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In:
Proceedings of 36th Annual ACM Symposium on Theory of Computing, pp. 281–
290 (2004)

33. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

34. Zhang, Z., Feng, Q., Xu, J., Wang, J.: An approximation algorithm for k-median
with priorities. Sci. China Inf. Sci. 64(5), 150104 (2021)

35. Zhang, Z., Zhou, Y., Yu, S.: Better guarantees for k-median with service installation
costs. Theoret. Comput. Sci. 923, 292–303 (2022)

A Physical Zero-Knowledge Proof
for Sumplete, a Puzzle Generated

by ChatGPT

Kyosuke Hatsugai1(B), Kyoichi Asano1, and Yoshiki Abe1,2

1 The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu,
Tokyo 182-8585, Japan

{hatsugai,k.asano,yoshiki}@uec.ac.jp
2 National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi,

Koto-ku, Tokyo 135-0064, Japan

Abstract. In March 2023, ChatGPT generated a new puzzle, Sumplete.
Sumplete consists of an n × n grid, each whose cell has an integer. In
addition, each row and column of the grid has an integer, which we call
a target value. The goal of Sumplete is to make the sum of integers in
each row and column equal to the target value by deleting some inte-
gers of the cells. In this paper, we prove that Sumplete is NP-complete
and propose a physical zero-knowledge proof for Sumplete. To show the
NP-completeness, we give a polynomial reduction from the subset sum
problem to Sumplete. In our physical zero-knowledge proof protocol, we
use a card protocol that realizes the addition of negative and positive
integers using cyclic permutation on a sequence of cards. To keep the
solution secret, we use a technique named decoy technique.

Keywords: Physical Zero-knowledge Proof · Card-based
Cryptographic Protocol · Sumplete

1 Introduction

1.1 Background

Chat Generative Pre-trained Transformer (ChatGPT) is an artificial intelligence
chatbot developed by OpenAI [18]. ChatGPT can response to questions more
naturally than usual artificial intelligence. Moreover, it can work on generative
tasks such as writing sentences, programming, drawing pictures and making
puzzles.

In March 2023, ChatGPT generated a puzzle named Sumplete1 [19].
Sumplete is a puzzle consisting of a grid with n × n cells. Each cell in the grid
has an integer. In addition, each row and column in the grid also has an integer,
and we call it the target value hereafter. The goal of Sumplete is to delete some

1 This name was also named by ChatGPT [19].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 398–410, 2024.
https://doi.org/10.1007/978-3-031-49190-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49190-0_29&domain=pdf
https://doi.org/10.1007/978-3-031-49190-0_29

A Physical Zero-Knowledge Proof for Sumplete 399

Fig. 1. Example of a problem (left) and its solution (right) of Sumplete.

integers in the cells so that the sum of the non-deleted integers in every row
(resp., column) is equal to the target value of the row (resp., column). Figure 1
shows an example of the Sumplete problem and its solution: deleted integers’
locations.

Since there are 2n2
possible combinations of locations to delete integers, it

seems hard to judge whether the given Sumplete problem has a solution if n
becomes large. Indeed, as described later, Sumpelte is NP-complete. It is inter-
esting that AI generates an NP-complete puzzle.

This paper considers a situation where a contestant wants to convince a
challenger the existence of a solution to a given Sumplete problem while the
contestant does not want to tell the solution to the challenger. Although these
requirements may seem contradictory at first glance, they can be satisfied simul-
taneously using a cryptographic technique called Zero-knowledge proof (ZKP).

ZKP is an interactive proof proposed by Goldwasser, Micali, and Rackoff
in 1989 [7]. ZKP allows a prover P , who knows the solution to a problem, to
convince a verifier V of the existence of the problem’s solution without reveal-
ing the solution itself. Usually, ZKP protocols are implemented using comput-
ers. However, ZKP protocols implemented by physical tools like cards instead of
computers are also studied, called physical zero-knowledge proof (physical ZKP).
The first physical ZKP protocol is that for a pencil puzzle, Sudoku, proposed
by Gradwohl, Naor, Pinkas, and Rothblum in 2007 [8]. Since then, physical
ZKP protocols are proposed for various puzzles such as Sudoku [8,20,28,29],
Nonogram [4,21], Slitherlink [11,12], Akari [2], Numberlink [23,24], Norinori [6],
Makaro [3,27], Takuzu [2,14], Kakuro [2,15], Shikaku [26], and Pancake sort-
ing [10].

Most card operations used in physical ZKP protocols come from card-based
cryptography, secure multiparty computation (MPC) using cards. The study of
card-based cryptographic protocol began with the protocol for computing the
two-input logical AND function by den Boar in 1989 [1] and that for computing
the two-input logical XOR function by Crepeau and Kilian in 1993 [5]. After
their work, to realize MPC with cards for more complex functions, card shuffle
operations called pile-shifting shuffle [30,31] and pile-scramble shuffle [9] are
proposed. We also use these operations in this paper.

400 K. Hatsugai et al.

1.2 Our Contributions

Neither NP-completeness of Sumplete nor zero-knowledge proof protocol for
Sumplete has been proven. In this paper, we prove that Sumplete is NP-complete.
Our proof is based on the reduction from the Subset Sum Problem (SSP), known
as an NP-complete problem.

In addition, we propose a physical zero-knowledge proof protocol for
Sumplete. Our card-based ZKP protocol allows a prover P to convince a verifier
V that integers in a Sumplete instance’s cells can be deleted to satisfy the sum
conditions in each row and column. On the other hand, during the protocol,
the verifier V cannot get any information about which integers in the cells are
deleted. Because of the NP-completeness of Sumplete, the larger problem’s size
n becomes, the more difficult it is to obtain the solution. Therefore, it is worth
proposing a zero-knowledge proof protocol for Sumplete.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we introduce zero-
knowledge proof and card operations. Section 3 is devoted to show the NP-
completeness of Sumplete. In Sect. 4, we propose a physical ZKP protocol for
Sumplete. Then, in Sect. 5, we show our proposed protocol satisfies the condi-
tions required for ZKP. Finally, Sect. 6 concludes this paper.

2 Preliminaries

2.1 Notation

(Multi)sets are denoted by uppercase letters of the italic font, e.g., A = {a1, a2,
a3}. Vectors are denoted by lowercase letters of the bold font and the i-th element
of a vector v is denoted by vi, e.g., v = (v1, v2, v3). Matrices are denoted by
uppercase letters of the bold font and the element of the i-th row and j-th
column of a matrix M is denoted by mi,j , e.g.,

M =
(

m1,1 m1,2

m2,1 m2,2

)
.

2.2 Zero-Knowledge Proof

Zero-knowledge proof is an interactive proof between a prover P and a verifier V .
From now, we assume that P is a probabilistic Turing machine with unbounded
computational ability and V is a probabilistic polynomial-time Turing machine.
Let x be an instance of a NP language. For a given x which has the witness, we
suppose that P can calculate the witness from x, however V cannot. We note
that x has the witness if and only if P knows the witness since the computational
ability of P is unbound. In zero-knowledge proof, P interacts with V and finally
convince V that the problem x has the witness without revealing the witness.
Zero-knowledge proof protocols must achieve the following three conditions.

A Physical Zero-Knowledge Proof for Sumplete 401

Completeness. If P knows the witness, V is always convinced.
Soundness. If P does not know the witness, V is not convinced with more

than negligible probability. The probability that V is convinced when P does
not know the witness is called soundness error. If soundness error is less
than 1, it approaches asymptotically to 0 by executing proof many times.
However, repeating physical protocols by human hands is hard. Therefore, it
is desirable that soundness error of physical zero-knowledge proof is 0.

Zero Knowledge. V cannot obtain any information of the witness. Formally,
for every V , there exists a probabilistic polynomial-time algorithm S that
does not know the witness. If the output of S is indistinguishable from the
output of the interaction of P and V , any information about the solution is
not leaked during the interaction.

2.3 Card Operations

In this paper, we use cards whose front side is either ♣ or ♥ and whose back side
is ? . We assume that the front sides of cards with the same suit are identical,
i.e., we cannot distinguish them. In addition, the back sides of all cards are also
assumed to be indistinguishable. For understanding, we denote a face-down card
♣ (resp., ♥) by ?

♣
(resp., ?

♥
).

Cyclic Shift. Let a c := (c1, c2, . . . , ck) be a card sequence of k cards. Left cyclic
shift over c is defined as a operation that outputs

(cρ−1(1), cρ−1(2), . . . , cρ−1(k)),

where ρ is a cyclic permutation ρ:=(1 k k − 1 . . . 3 2).
Similarly, right cyclic shift over c is defined as a operation that outputs

(cσ−1(1), cσ−1(2), . . . , cσ−1(k)),

where σ is a cyclic permutation σ:=(1 2 3 . . . k − 1 k).

Pile-Scramble Shuffle. Let a p:=(p1, p2, . . . , pk) be a sequence of k piles of
cards. Note that each pile has the same number of cards. Pile-scramble shuffle
over p is a operation that outputs

(pπ−1(1), pπ−1(2), . . . , pπ−1(k)),

where a permutation π is an element of Sk, the symmetric group of degree k.

2.4 Representation of an Integer

Here, we show a representation of an integer using cards. In physical ZKP proto-
cols and card-based cryptography protocols, e.g., [10,13,22,25,32], integers from

402 K. Hatsugai et al.

1 to n are represented by a sequence of n cards, which consists of a ♥ card
and n − 1♣ cards. Specifically, an integer i (1 ≤ i ≤ n) is represented by the
position of ♥ in the sequence: if ♥ is at the i-th leftmost position, the sequence
represents the integer i. For example, 1 and 3 are represented as follows.

1 = ♥ ♣ ♣ ♣ ♣
3 = ♣ ♣ ♥ ♣ ♣

In this paper, we apply this method to represent integers including less than 1.

Definition 1 (Integer Counter). Let α and β be positive integers. An integer
i (−α ≤ i ≤ β) is represented by a sequence of α + β + 1 cards, consisting of
a ♥ card and α + β ♣ cards. Specifically, if ♥ is at the i-th leftmost position
of the sequence, the sequence represents the integer i − α − 1. We call the card
sequence to represent an integer an integer counter.

For example, 0 and −2 are represented as follows when α = 3 and β = 2.

0 = ♣ ♣ ♣ ♥ ♣ ♣
−2 = ♣ ♥ ♣ ♣ ♣ ♣

We execute the addition by shifting the counter. This method is used by Shi-
nagawa et al. [31] and Ruangwises and Itoh [26]. Suppose there is an integer
counter representing x ∈ Z, where the number of cards (i.e., the values α and
β for the counter) is large enough so that ♥ does not overflow. Then, we can
obtain the counter representing x + y (y ∈ Z) as follows: if y < 0, we execute
the left cyclic shift over the card sequence |y| times; otherwise (i.e., if y ≥ 0), we
execute the right cyclic shift over the card sequence |y| times. Since these cyclic
shift operations can be performed even if the cards of the counter are face-down,
the addition of y can be performed without revealing the value of x.

3 NP-Completeness of Sumplete

In this section, we prove that Sumplete is NP-complete. To prove the NP-
completeness, we show a polynomial-time reduction from an NP-complete prob-
lem SSP to Sumplete.

3.1 Formal Definition of Problems

Before proving Sumplete’s NP-completeness, we formally define the decisional
version of Sumplete and SSP.

Definition 2 (Sumplete). An instance of Sumplete consists of three ingredi-
ents: an n × n matrix G ∈ Z

n×n that represents each integer of the correspond-
ing cell, a vector R ∈ Z

n that represents each row’s target value, and a vector

A Physical Zero-Knowledge Proof for Sumplete 403

C ∈ Z
n that represents each column’s target value. The answer of the instance

S = (G,R,C) is Yes if there exists an n×n matrix Ĝ ∈ {0, 1}n×n that satisfies
following equations:

ri =
n∑

j=1

gi,j ĝi,j for all i ∈ {1, . . . , n} ,

cj =
n∑

i=1

gi,j ĝi,j for all j ∈ {1, . . . , n} .

If there does not exist such Ĝ, the answer is No.

For instance, the example of Fig. 2 can be represented as follows:

G =

⎛
⎜⎜⎜⎜⎝

−3 3 2 −7 9
5 −1 −9 8 −7
1 8 6 3 5
9 9 −6 8 −8

−7 3 −9 5 8

⎞
⎟⎟⎟⎟⎠ ,

R =
(−8 −5 14 3 16

)
,

C =
(
11 10 −7 6 0

)
.

The answer of above instance is Yes since there exists the following solution Ĝ:

Ĝ =

⎛
⎜⎜⎜⎜⎝

1 0 1 1 0
1 1 1 0 0
0 1 1 0 0
1 0 1 1 1
0 1 0 1 1

⎞
⎟⎟⎟⎟⎠ .

Definition 3 (Subset Sum Problem). The Subset Sum Problem (SSP) con-
sists of a multiset A ⊂ Z

n and an integer N ∈ Z. The answer of the instance
SSP = (A, N) is Yes if there exists a subset A′ ⊆ A that satisfies

∑
a∈A′ a = N .

If there does not exist such A′, the answer is No.

For example, let us consider the instance SSP = (A, N) where A:={−3, 3, 2,
−7, 9} and N := − 8. The answer of this instance is Yes since there exists the
solution A′ = {−3, 2,−7} ⊂ A.

3.2 Proof of NP-Completeness

To show that Sumplete is NP-complete, we prove that the following holds.

(1) Sumplete is in NP.
(2) Sumplete is polynomial-time reductive from SSP.

404 K. Hatsugai et al.

Proof of (1). We prove the existence of a non-deterministic polynomial-time
algorithm which can decide whether Yes or No for a given instance of Sumplete.
Let us consider the non-deterministic algorithm M that works as follows.

1. M non-deterministically chooses some cells.
2. M deletes integers in chosen cells.
3. For every row and column, M calculates the sum of non-deleted integers and

compares it with the target value. M rejects if there are rows or columns
whose sum does not equal the target value. Otherwise, M accepts.

Since each operation ends in polynomial time, M halts in polynomial time. Thus,
(1) holds.

Proof of (2). We prove (2) by showing the following three conditions hold.

(i) There exists a polynomial-time reduction f from SSP to Sumplete.
(ii) For arbitrary SSP’s instance SSP, if the answer of SSP is Yes, then the

answer of the reducted Sumplete’s instance S′:=f(SSP) is Yes.
(iii) For arbitrary SSP’s instance SSP, if the answer of S′:=f(SSP) is Yes, the

answer of SSP is Yes.

First, we show (i). Let us consider the following polynomial-time reduction
f (See also Fig. 2).

– f receives an instance of SSP, denoted by SSP:=(A, N) where
A:={a1, a2, . . . , an} ∈ Z

n and N ∈ Z.
– f outputs an instance of Sumplete, denoted by S′:=(G′,R′,C′), where G′,

R′, and C′ are defined as follows:

G′:=

⎛
⎜⎜⎜⎝

a1 a2 · · · an

aρ−1(1) aρ−1(2) · · · aρ−1(n)

...
...

. . .
...

aρ−(n−1)(1) aρ−(n−1)(2) · · · aρ−(n−1)(n)

⎞
⎟⎟⎟⎠ ,

R′:=
(
N N · · · N

)
,

C′:=
(
N N · · · N

)
,

where ρ:=(1 n n − 1 · · · 3 2) is a cyclic permutation.

We note that all the target values in S′ are N . In addition, each element of
A appears once for each row and column. In reduction f , n2 + 2n times writing
of integers and n times shifting are executed. Therefore, the running time of f
is polynomial in n.

Next, we show (ii). Since the answer of SSP is Yes, there exists the solution
A′ ⊆ A such that

∑
a′∈A′ a′ = N . Here, let us consider to delete all integers

in G′ excluding all integers in A′. Then, the set of the non-deleted integers for
each row and column in G′ equals A′ since each row and column in G′ equals

A Physical Zero-Knowledge Proof for Sumplete 405

Fig. 2. Instance of Sumplete constructed form an instance of the subset sum problem.

A. Thus, the sum of the non-deleted integers for each row and column is N .
Therefore, the answer of S′ is Yes.

Finally, we show (iii). For each row and column in S′ after deletion, the set
of non-deleted integers equals the solution of SSP. Therefore, if the answer of S′

is Yes, then the answer of SSP is Yes.
From (i), (ii), and (iii), (2) holds. 	

Hence, from (1) and (2), Sumplete is NP-complete.

4 Physical Zero-Knowledge Proof Protocol for Sumplete

In our proposed protocol, the prover represents the solution of a Sumplete’s
instance using cards, and the verifier checks whether the sum of non-deleted
integers equals the target value for each row and column.

4.1 Idea of Proposed Protocol

The outline of our proposed protocol is as follows. The prover calculates the
sum of non-deleted integers for each row and column of the grid using an integer
counter. Then, the verifier checks that the sum equals the target value. If the sum
equals the target value for all rows and columns, the verifier can be convinced
of the solution’s existence.

Decoy Technique. To realize the above operation without revealing the solution,
i.e., the locations of cells whose integer is deleted, we prepare two integer counters
called a true counter and a false counter for each row and column. The true
(resp., false) counter is used to calculate the sum of the non-deleted (resp.,
deleted) integers in a row or column. In our protocol, for each integer in a row
or column, the prover add the integer to the true or false counter depending
on the solution: if it is a non-deleted (resp., deleted) integer, it is added to the
true (resp., false) counter. By using a technique we call decoy technique, we can
add integers while hiding the solution, i.e., which counter they were added to.
Similar technique is widely seen in physical cryptography, e.g., [16,17].

406 K. Hatsugai et al.

4.2 Proposed Protocol

Proposed protocol proceeds as follows.

1. For each cell, the prover places a pair of face-down cards ?
♥
?
♣

on non-deleted

integer’s cells and ?
♣
?
♥

on deleted integer’s cells.

2. For each row and column, the prover and the verifier execute the following
operations.
(a) The prover calculates α (resp., β), an absolute value of the sum of negative

(resp., positive) integers. The prover also makes a true counter and a false
counter which can represent an integer i (−α ≤ i ≤ β). Then, the prover
places the false counter below the true counter. In addition, the verifier
checks that both counters indicates 0.

(b) The prover places ♥ on the left of the true counter and ♣ on the left
of the false counter. After placing them, the prover makes all the cards
face-down. We call these two sequences of cards a card matrix.

?
♥

? · · · ?︸ ︷︷ ︸
the true counter

?
♣

? · · · ?︸ ︷︷ ︸
the false counter

(c) For every cell in the row (or column), the prover and the verifier execute
the following operations.
i. The prover picks a pair of cards on the cell and places left (resp.,

right) card of the pair to leftmost position of the upper (resp., lower)
sequence of the card matrix made in Step 2(b).

?
♥

?︸︷︷︸
left card

? · · · ?︸ ︷︷ ︸
the true counter

?
♣

?︸︷︷︸
right card

? · · · ?︸ ︷︷ ︸
the false counter

ii. The prover regards each of the upper row and lower row in the matrix
made in Step 2(c)i as a pile and applies pile-scramble shuffle to these
two piles.

iii. The prover opens the leftmost card of each row and adds the integer
of the cell to the counter in the row whose opened leftmost card is
♥ . Note that this addition must be executed keeping the cards of the
counter face-down.

?♣ ? · · · ?

?♥ ? · · · ? add integer
︸ ︷︷ ︸

the true/false counter

A Physical Zero-Knowledge Proof for Sumplete 407

iv. The prover makes all cards face-down. The prover regards upper and
lower row as two piles and applies pile-scramble shuffle in same way
as Step 2(c)ii.

v. The verifier opens the second leftmost card of each row. The verifier
regards the upper and lower row as two piles and replaces these rows
so that the row in which ♥ is opened becomes the upper row.

♥? ? · · · ?
♣? ? · · · ?

vi. The prover makes all the cards face-down and returns the pair of
leftmost cards of the rows to the cell.

?
♥

?︸︷︷︸
left card

? · · · ?

?
♣

?︸︷︷︸
right card

? · · · ?

(d) The verifier opens the leftmost card of each row and opens the counter in
the row whose opened leftmost card is ♥ card. If the value indicated by
opened counter does not equal the target value, the verifier rejects.

3. If the verifier did not reject fot all rows and columns, the verifier accepts.

4.3 Decoy Technique

The decoy techniqueis used in Step 2(c)ii and Step 2(c)iii. In Step 2(c)iii, the
counter in the same row with ♥ is the true (resp., false) counter if the inte-
gers’ cell is non-deleted (resp., deleted). Thanks to the pile-scramble shuffle in
Step 2(c)ii, the location of ♥ in the leftmost column is independent from the
card matrix made in Step (c)i. Therefore, the verifier cannot know which counter
appears on the right of ♥ .

4.4 The Numbers of Cards and Shuffles

At first, we consider the number of cards used in our protocol. In Step 1, the
prover uses n2 pairs of ♥ and ♣ cards. In Step 2, the prover and verifier check
n rows and n columns. Let M be the max value of α+β in each row and column,
where α and β are those in Step 2(a). Then, Step 2(a) needs a ♥ card and at
most M ♣ cards for each counter. In addition, Step 2(b) needs a ♥ card and
a ♣ card. Since we can reuse the cards required for Steps 2(a) and 2(b), it is
sufficient to consider the maximum number of cards required for the counter
within the 2n times check. Thus, the prover and the verifier need 3 ♥ cards and
2M + 1 ♣ cards in Step 2 Therefore, our protocol needs 2n2 + 2M + 4 cards
(specifically, n2 + 3 ♥ cards and n2 + 2M + 1 ♣ cards) in total.

408 K. Hatsugai et al.

Next, we consider the number of shuffle in our protocol. Since pile-scramble
shuffle is executed in Step 2(c)ii and Step 2(c)iv, 2n shuffles are executed in
Step 2(c). In addition, Step 2(c) is executed 2n times in Step 2 Thus, our protocol
needs 2n × 2n = 4n2 shuffles.

5 Proof of Security

Here, we show our protocol satisfies the three conditions for ZKP.

5.1 Completeness

Lemma 1. If the prover knows the solution, the verifier always accepts.

Proof. If the prover knows the solution, the sum of the integers in cells, where
two cards ♥ ♣ are placed in this order, equals the target value for all rows and
columns. Thus, the verifier does not reject for all rows and columns. Therefore,
the verifier always accepts. 	

5.2 Soundness

Lemma 2. The soundness error is 0, that is, if the prover does not know the
solution, the verifier always rejects.

Proof. We prove a contraposition of this lemma: if the verifier accepts, the prover
knows the solution of the given instance of Sumplete. When the verifier accepts,
the sum of cells where ♥ ♣ are placed equals the target value for every row and
column. Thus, we can see that the positions of the integers in the cells where
♣ ♥ are placed are the solution. This fact implies that the prover knows the
solution. Since the above argument holds with probability 1, the contraposition
of Lemma 2 holds. 	

5.3 Zero Knowledge

Lemma 3. During the protocol, the verifier learns nothing about the solution
of the given instance.

Proof. To prove zero-knowledge, it is sufficient that all distributions of opened
cards can be simulated without the solution. In order to prove the zero-knowledge
property, it is sufficient to show that all distributions of cards opened during the
protocol execution can be simulated without the solution.

– In Step 2(c)iii, we open the leftmost column in the card matrix made in
Step 2(c)i. Before the opening operation, we apply the pile-scramble shuffle
to the two piles; one consists of the upper row, and the other consists of the
lower row of the card matrix. Thus, ♥ appears at each row with the same
probability, i.e., probability 1/2. Therefore, the distribution of cards opened
in Step 2(c)iii can be simulated without the solution.

A Physical Zero-Knowledge Proof for Sumplete 409

– In Step 2(c)v, we open the second leftmost column in the card matrix made
in Step 2(c)i. Before the opening operation, we apply the pile-scramble shuffle
to the two piles of the upper row and the lower row of the card matrix. Thus,
♥ appears at each low with the probability 1/2. Therefore, the distribution
of cards opened in Step 2(c)v can be simulated without the solution.

– In Step 2(d), we open the true counter after adding integers in the row or
column for every row and column. If the prover knows the solution, the value
represented by the true counter equals the target value of the row (or column).
Therefore, the distribution of the true counter’ cards opened in Step 2(d) can
be simulated without the solution. Specifically, the true counter represents
the target value with the probability of 1.

Therefore, the verifier learns nothing about the solution. 	

6 Conclusion

In this paper, we proved that Sumplete, a puzzle generated by ChatGPT, is NP-
complete and proposed a physical zero-knowledge proof protocol. In our zero-
knowledge proof protocol, we realized the addition of not only positive integers
but negative integers by expansion the usual technique. Moreover, we use the
decoy technique to conceal the solution from the verifier.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
JP22KJ1362 and JP23KJ0968.

References

1. Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

2. Bultel, X., Dreier, J., Dumas, J., Lafourcade, P.: Physical zero-knowledge proofs
for Akari, Takuzu, Kakuro and KenKen. In: FUN, vol. 49, pp. 8:1–8:20 (2016)

3. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: SSS, pp. 111–125
(2018)

4. Chien, Y., Hon, W.: Cryptographic and physical zero-knowledge proof: from
Sudoku to Nonogram. In: FUN, pp. 102–112 (2010)

5. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2_27

6. Dumas, J., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interac-
tive physical zero-knowledge proof for Norinori. In: COCOON, pp. 166–177 (2019)

7. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

8. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput.
Syst. 44(2), 245–268 (2009)

https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27

410 K. Hatsugai et al.

9. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: UCNC, vol. 9252, pp. 215–
226 (2015)

10. Komano, Y., Mizuki, T.: Card-based zero-knowledge proof protocol for pancake
sorting. In: SecITC, pp. 222–239 (2022)

11. Lafourcade, P., et al.: How to construct physical zero-knowledge proofs for puzzles
with a “single loop condition.” Theor. Comput. Sci. 888, 41–55 (2021)

12. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical ZKP for
slitherlink: how to perform physical topology-preserving computation. In: ISPEC,
pp. 135–151 (2019)

13. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)

14. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: FUN,
pp. 20:1–20:21 (2021)

15. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge
proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102-
A(9), 1072–1078 (2019)

16. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: FAW,
pp. 358–369 (2009)

17. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based
cryptographic protocols for millionaires’ problem utilizing private permutations.
In: CANS, pp. 500–517 (2016)

18. OpenAI: GPT-4 technical report (2023)
19. Penguin, P.: ChatGPT invented its own puzzle game (2023). https://

puzzledpenguin.substack.com/p/chatgpt-invented-its-own-puzzle-game
20. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for

sudoku. New Gener. Comput. 40(1), 49–65 (2022)
21. Ruangwises, S.: An improved physical ZKP for nonogram and nonogram color. J.

Comb. Optim. 45(5), 122 (2023)
22. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with

2n cards. In: TAMC, pp. 25–36 (2020)
23. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink. In: FUN,

vol. 157, pp. 22:1–22:11 (2021)
24. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and

k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)
25. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Ripple Effect. In: WAL-

COM, vol. 12635, pp. 296–307 (2021)
26. Ruangwises, S., Itoh, T.: How to physically verify a rectangle in a grid: a physical

ZKP for shikaku. In: FUN, pp. 24:1–24:12 (2022)
27. Ruangwises, S., Itoh, T.: Physical ZKP for makaro using a standard deck of cards.

In: TAMC, vol. 13571, pp. 43–54 (2022)
28. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge

proof for sudoku. Theor. Comput. Sci. 839, 135–142 (2020)
29. Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for sudoku. In:

FUN, vol. 100, pp. 29:1–29:10 (2018)
30. Shinagawa, K., et al.: Multi-party computation with small shuffle complexity using

regular polygon cards. In: ProvSec, pp. 127–146 (2015)
31. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE

Trans. Fundam. Electron. Commun. Comput. Sci. 100-A(9), 1900–1909 (2017)
32. Takashima, K., et al.: Card-based protocols for secure ranking computations.

Theor. Comput. Sci. 845, 122–135 (2020)

https://puzzledpenguin.substack.com/p/chatgpt-invented-its-own-puzzle-game
https://puzzledpenguin.substack.com/p/chatgpt-invented-its-own-puzzle-game

Author Index

A
Abe, Yoshiki I-398
Anderson, Matthew II-41
Asahiro, Yuichi I-141
Asano, Kyoichi I-398

B
Bai, Yun II-366
Bailey, Lora I-3
Baklan Şen, Banu I-168
Bereg, Sergey I-220
Bhattacharya, Binay II-69
Blake, Heather Smith I-3
Bshouty, Nader H. I-244
Burjons, Elisabet I-371

C
Cai, Zhipeng I-335
Chen, Guihai II-340
Chen, Shuzhen I-335
Chen, Xianrun II-295
Chen, Xue II-184
Cheng, Kuan II-184
Cochran, Garner I-3

D
Drucker, Andrew II-392
Du, Hongwei I-285, II-198
Du, Liman II-317
Duan, Zhenhua II-82

E
Erlebach, Thomas I-168

F
Fang, Jun II-340
Fang, Ziyi II-279
Fox, Nathan I-3
Frei, Fabian I-371
Fu, Xinyu I-232

G
Gagie, Travis I-195
Gao, Hong II-250
Gao, Suixiang II-317
Gao, Xiaofeng II-340
Gao, Yucen II-340
Gehnen, Matthias I-371
Ghosh, Smita II-329
Gudmundsson, Joachim I-71
Guo, Hongjie II-250
Guo, Jianxiong II-263

H
Haddad-Zaknoon, Catherine A. I-244
Hamasaki, Haruki II-17
Han, Congying II-118
Han, Lu II-295
Hančl, J. II-210
Hatano, Kohei II-17
Hatsugai, Kyosuke I-398
He, Meng I-195
Hellmuth, Marc I-115, II-225
Higashikawa, Yuya I-155, I-220
Hsieh, Sun-Yuan I-97
Huang, Hejiao I-285
Huang, Ruixi I-285
Huang, Zijin I-71
Hung, Ling-Ju I-97

J
Jansson, Jesper I-141
Jia, Weijia II-404
Jiang, Haitao II-279

K
Kabela, A. II-210
Kakimura, Naonori II-238
Katoh, Naoki I-220
Kawachi, Akinori II-3
Khoussainov, Bakh II-144
Kjos-Hanssen, Bjørn I-15

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
W. Wu and G. Tong (Eds.): COCOON 2023, LNCS 14422, pp. 411–413, 2024.
https://doi.org/10.1007/978-3-031-49190-0

https://doi.org/10.1007/978-3-031-49190-0

412 Author Index

Külekci, M. Oğuzhan I-310
Kumakura, Kota I-359
Kurokawa, Yuta II-17

L
Le, Vu II-41
Levet, Michael I-3
Li, Jianping II-94
Li, Jianzhong I-272, II-106, II-250
Li, Min I-347
Li, Peng I-324
Li, Runzhi II-329
Li, Xiaowei II-303
Li, Xin I-29, II-184
Li, Yandi II-263
Li, Yanfei I-347
Li, Yifei I-285
Li, Yuan II-392
Liang, Zihui II-144
Lichen, Junran II-94
Lingas, Andrzej II-55
Liu, Qian I-347
Liu, Ying I-83
Lotze, Henri I-371
Lu, Xiwen II-303
Luo, Weidong I-127
Lyu, Bohan I-272
Lyu, Xing I-195

M
Ma, Hengzhao II-106
Ma, Mingqian II-340
Mahmoud, Reem I-3
Mao, Songtao II-184
Matson, Elizabeth Bailey I-3
Melkman, Avraham A. I-141
Mitsuboshi, Ryotaro II-17
Miyano, Eiji I-141
Mock, Daniel I-371
Mozafari, Amirhossein II-69

N
Naito, Yuki II-3
Nakano, Shin-ichi I-209
Nakayoshi, Tomohiro II-238
Nekrich, Yakov I-195
Ni, Qiufen II-366
Nishii, Ayano I-155

O
Ono, Hirotaka I-141
Opler, M. II-210

P
Pan, Pengxiang II-94
Persson, Mia II-55

R
Rahmanian, Holakou II-17
Rossmanith, Peter I-371

S
Šámal, R. II-210
Scholz, Guillaume E. I-115
Shen, Fangyao II-250
Sheng, Zimo II-171
Shermer, Thomas C. II-69
Singgih, Inne I-3
Sosnovec, J. II-210
Stadler, Peter F. II-225
Stadnyk, Grace I-3
Stafford, Eli I-297
Su, Jingfang II-198
Sun, Xin II-118
Suzuki, Akira I-359

T
Takimoto, Eiji II-17
Tamura, Yuma I-359
Tang, Shaojie I-61
Tang, Zhongzheng II-366
Tao, Youming I-335
Teruyama, Junichi I-155, I-220
Thekkumpadan Puthiyaveedu, Sandhya

II-225
Tian, Cong II-82
Tian, Kangyi I-182
Tokuni, Yuki I-155, I-220
Tong, Xin II-279
Tsai, Meng-Shiou I-97

V
Vajnovszki, Vincent II-29
Valtr, P. II-210

W
Wang, Chenhao II-404
Wang, Jianbo II-353

Author Index 413

Wang, Jianxin I-384
Wang, Lusheng II-279
Wang, Shiwen II-404
Wang, Tian II-404
Wang, Xinyi I-3
Wiedemann, Alexander I-3
Wong, Dennis II-29
Wong, Sampson I-71
Wu, Chenchen II-118
Wu, Di I-384
Wu, Weili II-329

X
Xiao, Mingyu I-182, II-171, II-378
Xu, Chao II-353
Xu, Dachuan II-118, II-295
Xu, Jinhui I-384
Xu, Yicheng II-295
Xue, Quan I-141

Y
Yang, Boting I-182
Yang, Haidong II-144
Yang, Jianting II-157
Yang, Ping II-94
Yang, Wenguo II-317
Yaşar Diner, Öznur I-168
Ye, Hao I-285

Ye, Ke II-157
Yin, Yitong I-232
Yu, Chaofeng II-82
Yu, Dongxiao I-335
Yu, Yixiao II-279
Yuan, Jing I-61
Yuan, Yuan I-335

Z
Zakov, Shay I-141
Zeh, Norbert I-195
Zhang, Jiale II-340
Zhang, Nan II-82
Zhang, Songjian II-340
Zhang, Yong II-295
Zhao, Jingyang II-378
Zheng, Chaodong I-232
Zheng, Yu I-29
Zhi, Lihong II-157
Zhou, Siyun II-353
Zhou, Xiao I-359
Zhou, Xingli I-324
Zhou, Yang I-347, II-118
Zhou, Zhiang I-324
Zhu, Binhai I-220, II-279
Zhu, Chunjiang I-297
Zhu, Daming II-279
Zhu, Jianming II-329

	 Preface
	 Organization
	 Contents – Part I
	 Contents – Part II
	Complexity and Approximation
	Complexity and Enumeration in Models of Genome Rearrangement
	1 Introduction
	2 Preliminaries
	2.1 Genome Rearrangement

	3 Enumerating All-Crowns Sorting Scenarios
	4 Pairwise Rearrangement is #P-Complete
	5 Conclusion
	References

	Conditional Automatic Complexity and Its Metrics
	1 Introduction
	2 Conditional Complexity
	3 Bearing on the Unique vs. Exact Problem
	4 A Jaccard Distance Metric
	5 A Normalized Information Distance Metric
	References

	Streaming and Query Once Space Complexity of Longest Increasing Subsequence
	1 Introduction
	1.1 Our Results
	1.2 Technique Overview
	1.3 Related Work

	2 Computing LIS in the Query-Once Model
	3 Lower Bounds for Streaming LIS in Different Orders
	4 Open Problems
	A Preliminaries
	B Proofs Omitted in Section2
	B.1 Proof of Claim 1 in Section2
	B.2 Proof of Claim 2 in Section2

	C Lower Bounds for Streaming LIS in Different Orders
	C.1 Lower Bounds for Type 1 Orders
	C.2 Lower Bounds for Type 2 Orders

	References

	Approximating Decision Trees with Priority Hypotheses
	1 Introduction
	2 Preliminaries
	3 Group Greedy Algorithm and Analysis
	3.1 Discrete Function Evaluation Problem
	3.2 Design of Group Greedy Decision Tree

	4 Conclusion
	References

	Approximating the -low-density Value
	1 Introduction
	2 Overview
	2.1 A Basic Property

	3 Augmenting the Compressed Quadtree
	3.1 Preliminaries
	3.2 Covering a Minimal Enclosing Box with Canonical Squares
	3.3 Merging Canonical Squares
	3.4 An Efficient Construction Using Compressed Quadtrees
	3.5 Query Equal or Larger Nearby Objects

	4 Approximating the Low-Density Value
	4.1 Improving the Approximation Factor to 2 +

	5 Experiments
	6 Concluding Remarks
	References

	Exponential Time Complexity of the Complex Weighted Boolean #CSP
	1 Introduction
	1.1 Main Results and Proof Outlines

	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Counting Exponential Time Hypothesis
	2.3 Gadget Construction
	2.4 Block Interpolation

	3 Pinning
	4 The Fine-Grained Dichotomy
	4.1 One Binary Function
	4.2 Proof of Theorem 2

	5 Conclusion
	References

	Hardness and Approximation for the Star -Hub Routing Cost Problem in -Metric Graphs
	1 Introduction
	2 Approximation Algorithms for -SpHRP for < 1
	3 Approximation Algorithms for -SpHRP for 1
	4 Conclusion
	References

	Graph Algorithms
	Linear Time Algorithms for NP-Hard Problems Restricted to GaTEx Graphs
	1 Introduction
	2 Preliminaries
	3 Linear-Time Algorithms for Hard Problems
	4 Outlook and Summary
	References

	Polynomial Turing Compressions for Some Graph Problems Parameterized by Modular-Width
	1 Introduction
	2 Preliminaries
	3 Recipe for Polynomial Turing Compression in Parameter Modular-Width
	4 Polynomial Turing Compressions for Problems
	5 Polynomial Compression Lower Bounds for Problems
	6 Conclusions
	References

	Shortest Longest-Path Graph Orientations
	1 Introduction
	1.1 Background
	1.2 New Results

	2 Preliminaries
	3 NP-Hardness for Subcubic Planar Graphs
	4 Algorithms for Path Graphs
	4.1 A Generic Algorithm for Path Graphs
	4.2 Running Time Under Cost Function Hs
	4.3 Running Time Under Cost Function Hm

	5 Algorithms for Cycle Graphs
	5.1 An Algorithm for Cost Function Hs
	5.2 An Algorithm for Cost Function Hm

	6 Algorithms for Star Graphs
	6.1 An Algorithm for Cost Function Hm
	6.2 An Algorithm for Cost Function Hs

	References

	Sink Location Problems in Dynamic Flow Grid Networks
	1 Introduction
	2 Preliminaries
	2.1 Models
	2.2 Evacuation Completion Time
	2.3 Residual Networks
	2.4 Envelope of Two-Dimensional Line Segments

	3 Sink Location on an Edge
	3.1 Properties of (X,y)
	3.2 Dominant Source Sets
	3.3 Algorithms

	4 Conclusion
	References

	List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs
	1 Introduction
	2 Related Work
	3 List 3-Coloring Caterpillar-Convex Bipartite Graphs
	4 Recognition of Caterpillar-Convex Bipartite Graphs
	5 Conclusion
	References

	Parameterized Algorithms for Cluster Vertex Deletion on Degree-4 Graphs and General Graphs
	1 Introduction
	2 Notations
	3 Properties for Algorithm of Degree-4 Graph
	3.1 The CVD-Dominating Family
	3.2 Core Branching Processing

	4 Reduction Rules
	5 The Algorithm for Degree-4 Graphs
	5.1 Degree-1 Vertices
	5.2 4-Cliques
	5.3 Degree-4 Vertices
	5.4 Two Triangles Sharing One Edge
	5.5 Triangles
	5.6 The Remaining Case

	6 Conclusion
	References

	Sum-of-Local-Effects Data Structures for Separable Graphs
	1 Introduction
	2 A SOLE Data Structure for Trees
	2.1 Designing SOLE Data Structures for Trees
	2.2 Supporting Queries over Trees

	3 A SOLE Data Structures for Separable Graphs
	3.1 Designing SOLE Data Structures for Separable Graphs
	3.2 Sum and Top-k over Wx with an Uncommon Query Range
	3.3 Supporting Queries over Separable Graphs

	References

	Applied Algorithms
	Variants of Euclidean k-Center Clusterings
	1 Introduction
	2 Preliminaries
	3 Algorithms for the Euclidean k-Center r-Gather Clustering Problem
	4 Algorithms for the Euclidean k-Center Capacitated Clustering Problem
	5 Algorithms for the Euclidean k-Center (,u)-Clustering Problem
	6 Conclusion
	References

	Red-Black Spanners for Mixed-Charging Vehicular Networks
	1 Introduction
	2 Preliminaries
	3 Red-Black Spanner in 1-D
	4 Red-Black Spanner Under the Euclidean Distance in 2-D
	4.1 Constructing the Red-Black Spanner
	4.2 The Lower Bounds

	5 Red-Black Spanner Under the Manhattan Distance in 2-D
	6 Concluding Remarks
	References

	Self-stabilizing (+1)-Coloring in Sublinear (in) Rounds via Locally-Iterative Algorithms
	1 Introduction
	1.1 Our Results

	2 The Locally-Iterative Coloring Algorithm
	3 The Self-stabilizing Coloring Algorithm
	References

	On Detecting Some Defective Items in Group Testing
	1 Introduction
	1.1 Detecting Defective Items from d Defective Items

	2 Definitions and Preliminary Results
	3 Non-adaptive Algorithms
	3.1 Deterministic Algorithms
	3.2 Randomized Algorithms

	4 Adaptive Algorithms
	4.1 Deterministic Algorithms
	4.2 Randomized Algorithms

	A Known Results for Detecting All the Defective Items
	B Applications
	B.1 Identifying a Subset of Samples that Exhibit a PCR-Detectable Syndrome
	B.2 Abnormal Event Detection in Surveillance Camera Videos

	C Useful Lemmas
	D Proofs for Non-adaptive Settings
	D.1 Deterministic Algorithms
	D.2 Random Algorithms

	E Proofs for Adaptive Settings
	E.1 Deterministic Algorithms
	E.2 Random Algorithms

	F Estimating d
	References

	An Efficient Data Analysis Method for Big Data Using Multiple-Model Linear Regression
	1 Introduction
	2 Preliminaries and Problem Definition
	2.1 Regression and Linear Regression
	2.2 Multiple-Model Linear Regression

	3 Mathematical Foundations
	3.1 Theorems Related to Sampling
	3.2 Theorem Related to the Measures of Subsets

	4 Algorithm and Analysis
	4.1 Algorithm
	4.2 Analysis

	5 Conclusion and Future Work
	References

	Multi-Load Agent Path Finding for Online Pickup and Delivery Problem
	1 Introduction
	2 Problem Formulation
	3 Solution
	3.1 Cost-Based Task Assignment Algorithm
	3.2 Dynamic Conflict-Based Search Algorithm

	4 Empirical Study
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusion
	References

	Improved Sourcewise Roundtrip Spanners with Constant Stretch
	1 Introduction
	2 Definitions and Notations
	3 3-Sourcewise-Roundtrip-Spanner
	4 (5+)-Sourcewise-Roundtrip-Spanner
	5 Conclusion
	References

	Randomized Data Partitioning with Efficient Search, Retrieval and Privacy-Preservation
	1 Introduction
	2 The Split Coding and Its Properties
	3 The Random Access and Search Operations
	4 The Privacy Aspects
	5 Splitting Beyond Two Partitions
	6 Conclusions and Further Studies
	References

	The k Edge-Vertex Domination Problem
	1 Introduction
	2 Preliminaries and Notation
	3 The M-IG-EVD(G,S,k) Algorithm for Interval Graphs
	4 The M-T-EVD(T,S,k) Algorithm for Trees
	5 Conclusion
	References

	Resource-Adaptive Newton's Method for Distributed Learning
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Distributed Learning Setup
	3.2 Newton's Method
	3.3 Resource-Adaptive Learning via Online Model Pruning
	3.4 Other Notations

	4 The Resource-Adaptive Newton Learning Algorithm
	5 Convergence Analysis
	6 Conclusion
	References

	DR-Submodular Function Maximization with Adaptive Stepsize
	1 Introduction
	1.1 Contributions
	1.2 Organizations

	2 Preliminaries
	3 Maximizing a Monotone DR-Submodular Function with Convex Constraint
	3.1 Algorithm with Uni-Variate Equation Oracle
	3.2 Algorithm with Binary Search

	4 Non-monotone DR-Submodular Maximization
	4.1 Down-Closed Constraint
	4.2 General Convex Constraint

	5 Examples
	References

	On the Routing Problems in Graphs with Ordered Forbidden Transitions
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 NP-Completeness
	3.1 PAOFT and TAOFT for Graphs with Maximum Degree Three
	3.2 TAOFT for Cactus Graphs

	4 Polynomial-Time Algorithms
	4.1 PAFT for Graphs with Maximum Degree Three
	4.2 PAOFT for Bounded Treewidth Graphs
	4.3 PAOFT for Cactus Graphs

	5 Conclusion
	References

	Delaying Decisions and Reservation Costs
	1 Introduction
	2 Feedback Vertex Set with Delayed Decisions
	3 Adding Reservations to the Delayed-Decision Model
	4 Vertex Cover
	5 Conclusion
	References

	A PTAS Framework for Clustering Problems in Doubling Metrics
	1 Introduction
	1.1 Our Results and Techniques

	2 Preliminaries
	3 Decomposition of Metrics
	3.1 Split-Tree Decomposition
	3.2 Definition of Badly-Cut Points

	4 A PTAS for k-median with Service Installation Costs Problem
	4.1 Modification of Instance for k-MSIC Problem
	4.2 Construction of Near-Optimal Solution for k-MSIC Problem
	4.3 Dynamic Programming Process for k-MSIC Problem
	4.4 Analysis and Running Time

	5 Extension to k-facility Location Problem and Priority k-median Problem in Doubling Metrics
	References

	A Physical Zero-Knowledge Proof for Sumplete, a Puzzle Generated by ChatGPT
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Zero-Knowledge Proof
	2.3 Card Operations
	2.4 Representation of an Integer

	3 NP-Completeness of Sumplete
	3.1 Formal Definition of Problems
	3.2 Proof of NP-Completeness

	4 Physical Zero-Knowledge Proof Protocol for Sumplete
	4.1 Idea of Proposed Protocol
	4.2 Proposed Protocol
	4.3 Decoy Technique
	4.4 The Numbers of Cards and Shuffles

	5 Proof of Security
	5.1 Completeness
	5.2 Soundness
	5.3 Zero Knowledge

	6 Conclusion
	References

	Author Index

