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Abstract. Digital signatures are a cornerstone of security and trust
in cryptography, providing authenticity, integrity, and non-repudiation.
Despite their benefits, traditional digital signature schemes suffer from
inherent immutability, offering no provision for a signer to retract a pre-
viously issued signature. This paper introduces the concept of a with-
drawable signature scheme, which allows for the retraction of a signature
without revealing the signer’s private key or compromising the security
of other signatures the signer created before. This property, defined as
“withdrawability”, is particularly relevant in decentralized systems, such
as e-voting, blockchain-based smart contracts, and escrow services, where
signers may wish to revoke or alter their commitment.

The core idea of our construction of a withdrawable signature scheme
is to ensure that the parties with a withdrawable signature are not con-
vinced whether the signer signed a specific message. This ability to gen-
erate a signature while preventing validity from being verified is a fun-
damental requirement of our scheme, epitomizing the property of with-
drawability. After formally defining security notions for withdrawable sig-
natures, we present two constructions of the scheme based on the pairing
and the discrete logarithm. We provide proofs that both constructions
are unforgeable under insider corruption and satisfy the criteria of with-
drawability. We anticipate our new type of signature will significantly
enhance flexibility and security in digital transactions and communica-
tions.

Keywords: Digital signatures · Withdrawable signature scheme ·
Withdrawability

1 Introduction

Digital signatures are instrumental in constructing trust and security, acting as
the essential mechanism for authentication, data integrity, and non-repudiation
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in contemporary digital communications and transactions. In specific applica-
tions of digital signature schemes, such as decentralized e-voting systems, there
may arise a natural need for the signer to possess the capability to “undo” a
digital signature. Undoing a digital signature implies that the signer may desire
to retract the signature they created, as seen in e-voting systems where a voter
might wish to change or withdraw their vote before the final vote tally.

However, in traditional digital signature schemes, undoing a digital signature
is impossible, as it persists indefinitely once a signature is created. Furthermore,
digital signatures provide authenticity, integrity, and non-repudiation for signed
messages. As a result, when a message is signed, the non-repudiation of its con-
tent is guaranteed, meaning that once the signature is generated, the signer
cannot rescind it. In light of this limitation, one might ask whether it is pos-
sible for a signer to efficiently revoke or withdraw a previously issued digital
signature without revealing their private key or compromising the security of
other signatures created by the signer. We answer this question by presenting a
withdrawable signature scheme that provides a practical and secure solution for
revocating or withdrawing a signature in a desirable situation.

We note that a traditional signature scheme can achieve “withdrawability”
by employing a trusted third party (TTP) to establish signature revocation
lists. In cases where a signer desires to invalidate a signature, they notify the
TTP, which subsequently adds the revoked signature to the revocation list. This
enables future verifiers to consult the revocation list via the TTP, allowing them
to determine if the signature has been previously revoked before acknowledging
its validity. As all participants fully trust the TTP, including the revoked sig-
nature in the revocation list ensures its validity and enables the withdrawal of
the signature. However, this approach has a centralized nature as it depends on
the TTP’s involvement, which may not be desirable in decentralized systems. As
in decentralized systems, signers may prefer to manage their signatures without
relying on centralized authorities. Therefore, constructing a withdrawable signa-
ture scheme that does not rely on a TTP turns out to be a non-trivial problem
to solve.

Withdrawable signatures can have various applications in different scenarios
where the ability to revoke a signature without compromising the signer’s private
key is demanded. Here are some potential applications:
Smart Contracts [19]. In the context of blockchain-based smart contracts, with-
drawable signatures can enable users to sign off on contract conditions while
retaining the ability to revoke their commitment. This can be particularly use-
ful in situations where the fulfillment of the contract depends on the actions of
multiple parties or external events.
E-Voting Systems [9]. In a decentralized e-voting system, withdrawable signa-
tures enable voters to securely sign their votes while retaining the option to
modify or retract their choices before the final votes count. This additional flex-
ibility improves the voting procedure by allowing voters to respond to fresh
insights or unfolding events before the voting period concludes.
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Escrow Services [6]. Withdrawable signatures could be employed in decentralized
escrow services where multiple parties must sign off on a transaction. If one
party decides not to proceed with the transaction due to disputes or changes
in conditions, they can revoke their signature without affecting the security of
other parties’ signatures.

In light of the above discussion, we require the following three properties
from the withdrawable signature:

1. A withdrawable signature should be verifiable, especially, it should be verified
through the signer’s valid public key.

2. Only the signer can generate a valid withdrawable signature.
3. A withdrawable signature, once withdrawn, cannot become valid again with-

out the original signer’s involvement.

In the forthcoming subsection, we provide a technical outline of the with-
drawable signature scheme, focusing on the technical challenges we had to face.

1.1 Technical Overview

The most important feature of our withdrawable signature scheme is withdrawa-
bility. The idea behind this is that a signer, Alice, should not only be able to sign
a message m with her private key to obtain the signature σ but also have the
option to revoke the signature if she changes her mind. This means the signature
σ will no longer be verifiable with Alice’s valid public key. In what follows, we
describe the challenges to realizing the withdrawable signature at a technical
level.
First Attempt: A Simple Withdrawable Signature Scheme with TTP. As men-
tioned earlier, one straightforward solution to achieve withdrawability is to have
a trusted third party (TTP) maintain a signature revocation list. However, if we
want to attain withdrawability without relying on a revocation list, an alternative
approach can be explored as follows: In this approach, the signer, Alice, “hides”
a signature ω by encrypting it using her public key and the TTP’s public key,
resulting in a hidden signature σ. For example, the BLS signature [4] on a mes-
sage m, computed as ω = H(m)sks with the signer’s secret key sks ∈ Zp and the
hash function H : {0, 1}∗ → Zp, can be encrypted into σ = (gskta · H(m)sks , ga),
where gskt is the TTP’s public key, with skt as the corresponding secret key, and
a ∈ Z

∗
p is a uniform random value chosen by the signer.

The hidden signature σ preserves the verifiability of the signature as the
verification works by checking whether the following equality holds: e(gskta ·
H(m)sks , g) ?= e(gskt , ga)e(H(m), gsks), where gsks is the signer’s public key.

In the above scheme, everyone can ensure that the signer has generated a
valid signature for the message m under her public key pks(= gsks), but they
cannot extract the original signature ω(= H(m)sks) from σ. (No party except
for the TTP can obtain ω.) The signer then has the option to withdraw σ
merely by taking no action. Later, the signer can request the TTP to “decrypt”
the signature σ into the original signature ω using the TTP’s secret key skt.
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Towards a Withdrawable Signature Scheme Without TTP. Implementing a with-
drawable signature scheme using a TTP presents a significant drawback, as sign-
ers, particularly in decentralized and trustless systems, may wish to achieve with-
drawability without reliance on the TTP. How can we achieve withdrawability
without the help of the TTP? One possible method involves directly removing
the TTP and allowing the signer to create σ using a secret random value r ∈ Z

∗
p

chosen by her, which can be regarded as equivalent to the TTP’s secret key skt.
Subsequently, the signer publishes the corresponding “public key”, represented
as gr, and selects another random value a ∈ Z

∗
p.

The withdrawable signature σ is then computed as σ = (gra · H(m)sks , ga),
where the verification of σ can be easily performed using the public keys gsks

and gr (with the value ga) with the following verification algorithm: e(gra ·
H(m)sks , g) ?= e(gr, ga)e(H(m), gsks).

However, without the TTP, the signature σ immediately becomes a valid
signature that can be verified using the signer’s public keys (gskt , gr); thus, the
withdrawability is lost.

Because of this issue, we still need to introduce an additional entity that,
while not a TTP, will act as a specific verifier chosen by the signer. More specif-
ically, the signer can produce a signature that cannot be authenticated solely
by the signer’s public key but also requires the verifier’s secret key. This ensures
the signature appears unverifiable to everyone except for the chosen verifier, as
everyone can only be convinced that the signature was created either by the
signer or the verifier. If the verifier cannot transform back this signature into
a signature that can be verified using the signer’s public key only, this scheme
will achieve the withdrawability. In particular, only the signer has the option
to transform this signature into a verifiable one. To optimize the length of the
withdrawable signature, we limit the number of specific verifiers to one.

Another technical issue then surfaces: How can a signer transform the with-
drawable signature into a signature that can be directly verifiable using the
signer’s public key (and possibly with additional public parameters)? A straight-
forward solution might be having the signer re-sign the message with her secret
key. However, this newly generated signature will have no connection to the
original withdrawable signature.
Our Response to the Challenges. To overcome the aforementioned limitations,
we introduce a designated-verifier signature scheme to generate a withdrawable
signature for a message m, denoted as σ, rather than directly generating a regular
signature. For a signer Alice, she can create a withdrawable signature for a
certain verifier, Bob. Later, if Alice wants to withdraw the signature σ, she
just takes no action. If Alice wants to transform the withdrawable signature,
she executes an algorithm, “Confirm”, to lift the limitation on verifying σ and
yield a signature σ̃, which we call “confirmed signature”, verifiable using both
Alice’s and Bob’s public keys. Note that the confirmed signature σ̃ can then be
deterministically traced back to the original σ.

Generally, there is a withdrawable signature scheme involving two parties,
denoted by user1 and user2. Without loss of generality, assume that user1 is
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the signing user, while user2 is the certain verifier. Let a set of their public
keys be γ = {pkuser1 , pkuser2}. At a high level, we leverage the structure of the
underlying regular signature to construct a withdrawable signature σ designated
to the verifier user2. Later with the signer’s secret key skuser1 and σ, user1 can
generate a verifiable signature for m of the public key set γ. This signature is the
confirmed signature σ̃ and can easily be linked with the withdrawable signature
σ through the public key set γ.

If we still take the BLS-like signature scheme as a concrete instantiation with
pkuser1 = gskuser1 , pkuser2 = gskuser2 , and two hash functions H1 : {0, 1}∗ → G and
H2 : {0, 1}∗ → Z

∗
p. The signer user1 can generate the withdrawable signature σ

of message m for user2 as follows:

y
$← Z

∗
p, r = H2(m, gy · H1(m)skuser1 ), u = H1(m)r

σ =
(

e(uy · H1(m)skuser1 , gskuser2 ), gy, u
)

.

The verification algorithm of σ can be performed using the secret key of user2
and the public key of user1 as follows:

e(H1(m)r·y · H1(m)skuser1 , gskuser2 ) ?= e(uskuser2 , gy)e(H1(m)skuser2 , gskuser1 ).

Now, assume that user1 needs to transform σ into a confirmed signature
that is associated with γ. Since user1 has the secret key skuser1 , user1 can easily
reconstruct randomness r = H2(m, gy · H1(m)skuser1 ) and transform σ into a
confirmed signature σ̃ for m of public key set γ with r as follows.

σ̃ =
(

gskuser2 ·skuser1 ·rH1(m)skuser1 , gr, u, (gskuser2 )r
)

.

This withdrawable signature scheme achieves withdrawability in such a way
that even if user2 reveals its secret key skuser2 , other users won’t be convinced
that σ was generated from user1. This is due to the potential for user2 to compute
the same σ using skuser2 , as described below:

σ =
(

e(uy · H1(m)skuser2 , gskuser1 ), gy, u
)

=
(

e(uy · H1(m)skuser1 , gskuser2 ), gy, u
)

.

Later in this paper, we show that a withdrawable signature scheme can be
constructed using the Schnorr [16]-like signature scheme.

1.2 Our Contributions

Motivated by the absence of the type of signature scheme we want for vari-
ous aforementioned applications, we present the concept withdrawable signature
scheme. Our contributions in this regard can be summarized as follows:

1. We provide a formal definition of a withdrawable signature scheme that reflects
all the characteristics we discussed previously.
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2. We formulate security notions of withdrawable signature, reflecting the with-
drawability and unforgeability, two essential security properties.

3. We propose two constructions of withdrawable signature schemes based on
discrete logarithm (DL) and pairing.

This paper is organized as follows: We first review the related work in
Sect. 2. In Sect. 3, we provide a comprehensive definition of withdrawable sig-
natures, including their syntax and security notion. Section 4 begins with a
detailed overview of the preliminaries we used to build our withdrawable signa-
ture schemes, then we give the full description of our two proposed constructions.
Following that, Sect. 5 focuses on the security analysis of these two withdrawable
signature constructions.

2 Related Work

In this section, we review the previous work relevant to our withdrawable signa-
ture scheme and highlight differences between our scheme and existing ones.

Designated-Verifier Signature Scheme. The concept of designated-verifier signa-
ture (or proof) (DVS) was introduced by Jakobsson et al. [8], and independently
by Chaum [5]. Since then, the field has been studied for several decades and
admitted instantiations from a variety of assumptions [11,21–24].
Revocable Group Signature Scheme. Group signature [1,3,5] allows any member
within a group to authenticate a message on behalf of the collective. In the
context of revocable group signature schemes [2,12,15], revocation refers to the
capability of the group manager to revoke a member’s signing privilege.

Revocable Ring Signature Scheme. The notion of revocable ring signatures [13]
was first introduced in 2007. This concept added new functionality where a
specified group of revocation authorities could remove the signer’s anonymity.
In [27], Zhang et al. presented a revocable and linkable ring signature (RLRS)
scheme. This innovative framework empowers a revocation authority to reveal
the real signer’s identity in a linkable ring signature scheme [14].

Universal Designated Verifier Signature Scheme. Designated-verifier signature
schemes have multiple variations, including Universal Designated Verifier Signa-
ture (UDVS) schemes. Steinfeld et al. proposed the first UDVS scheme based
on the bilinear group [17]. They developed two other UDVS schemes, which
expanded the conventional Schnorr/RSA signature schemes [18]. Following the
work by Steinfeld et al., several UDVS schemes have been proposed in litera-
ture [7,20,25,26]. Additionally, the first lattice-based UDVS was proposed in [10],
this approach was subsequently further developed in other studies, one of which
is referenced here.

Discussion on Differences. Our withdrawable signature constructions presented
above comprise two primary parts: withdrawable signature generation and trans-
formation of a withdrawable signature into a confirmed one. When viewed
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through the “withdrawability” requirements of the first part, our withdrawable
signature scheme is relevant to existing group and ring signatures, wherein the
signer retains anonymity within a two-party setup. What distinguishes our app-
roach is the second transformation stage, which offers a unique feature not found
in the aforementioned revocable group and ring signatures. Our scheme empow-
ers signers to retract their signatures independently, without relying on a cer-
tain group manager or a set of revocation authorities. Additionally, the right to
remove its “anonymity” rests solely with the signer.

Readers might also discern similarities between our withdrawable signature
scheme and the designated-verifier signature (DVS) scheme. In the withdraw-
able signature generation phase of our scheme, the generated signature can only
convince a specific verifier (the designated verifier) that the signer has generated
a signature, the same as the core concept of DVS. Note that a DVS holds ‘non-
transferability”, which means that a DVS cannot be transferred by either the
signer or the verifier to convince a third party. Although this non-transferability
aligns with our concept of withdrawability, our scheme diverges by permitting
the signer to transform the withdrawable signature into one that’s verifiable
using both the signer’s and verifier’s public keys, challenging the foundational
property of DVS.

To achieve this additional property at the transformation stage, we consider
leveraging the structural properties of existing regular signatures. Provided that
our withdrawable signature scheme was derived from a particular signature,
which has been generated with the signer’s secret key, only the signer can access
this underlying regular signature during the transformation stage. Then one
might have also noticed that the construction of our withdrawable signature
scheme is related to the UDVS scheme. In a UDVS scheme, once the signer
produces a signature on a message, any party possessing this message-signature
pair can designate a third party as the certain verifier by producing a DVS with
this message-signature pair for this verifier. Much like DVS, UDVS is bound by
non-transferability as well. Meanwhile, our withdrawable signature scheme takes
another different approach than UDVS’s as our scheme does not require the
signer to reveal the underlying regular signature at the withdrawable signature
generation stage.

In our withdrawable signature scheme construction, the underlying regular
signature is treated as a secret held by the signer. This secret ensures the signer
creates a corresponding withdrawable signature specific to a certain (designated)
verifier. Later at the transformation stage, we require the additional input as the
public key set of signer and verifier and the signer’s secret key to reconstruct the
underlying additional regular signature. With these inputs, we can finalize our
transformation algorithm.

3 Definitions

In this section, we provide a comprehensive overview of the syntax and security
notion of withdrawable signature.
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3.1 Notation and Terminology

Throughout this paper, we use λ as the security parameter. By a
$← S, we denote

an element a is chosen uniformly at random from a set S. Let S = {pk1, · · · , pkμ}
be a set of public keys, where each public key pki is generated by the same key
generation algorithm KeyGen(1k) and μ = |S|. The corresponding secret key of
pki is denoted by ski. Given two distinct public keys pks, pkj

$← S where j �= s,
the signer’s public key is denoted by pks.

3.2 Withdrawable Signature: A Formal Definition

Naturally, our withdrawable signature scheme involves two parties: signers and
verifiers. At a high level, the scheme consists of two stages, i.e., generating a
withdrawable signature and transforming it into a confirmed signature. These
two stages are all completed by the signer.

More precisely, a withdrawable signature scheme WS consists of five polyno-
mial time algorithms, (KeyGen,WSign,WSVerify,Confirm,CVerify), each of which
is described below:

– (pk, sk) ← KeyGen(1k): The key generation algorithm takes the security
parameters 1k as input, to return a public/secret key pair (pk, sk).

– σ ← WSign(m, sks, γ): The “withdrawable signing” algorithm takes as input
a message m, signer’s secret key sks and γ = {pks, pkj} where pks, pkj ∈
S, to return a new withdrawable signature σ of m respect to pks, which is
designated to verifier pkj .

– 1/0 ← WSVerify(m, skj , pks, σ): The “withdrawable signature verification”
algorithm takes as input a withdrawable signature σ of m with respect to
pks, the designated verifier’s secret key skj , to return either 1 or 0.

– σ̃ ← Confirm(m, sks, γ, σ): The “confirm” algorithm takes as input a with-
drawable signature σ of m with respect to pks, signer’s secret key sks, the
public key set γ, to return a confirmed signature σ̃ of m, σ̃ is a verifiable
signature with respect to γ.

– 1/0 ← CVerify(m, γ, σ, σ̃): The “confirmed signature verification” algorithm
takes as input a confirmed signature σ̃ of m with respect to γ, and the corre-
sponding withdrawable signature σ, to return either 1 or 0.

3.3 Security Notions of Withdrawable Signature

The security notion of a withdrawable signature scheme WS covers the proper-
ties of correctness, unforgeability under insider corruption, and withdrawability
three aspects.

Correctness. As long as the withdrawable signature σ is verifiable through the
withdrawable signature verification algorithm WSVerify, it can be concluded
that the corresponding confirmed signature σ̃ will also be verifiable through
the confirm verification algorithm CVerify.
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Unforgeability under insider corruption. Nobody except the signer can
transform a verifiable withdrawable signature σ generated from sks for pkj

into corresponding confirmed signature σ̃, even the adversary can always
obtain the secret key skj of the verifier.

Withdrawability. The withdrawability means that, given a verifiable with-
drawable signature σ, it must be intractable for any PPT adversary A to
distinguish whether σ was generated by the signer or the verifier.

Below, we provide formal security definitions. The formal definitions of cor-
rectness, unforgeability under insider corruption, and withdrawability.

We call a withdrawable signature scheme WS secure if it is correct, unforge-
able under insider corruption, withdrawable.

Definition 1 (Correctness). A withdrawable signature scheme WS is consid-
ered correct for any security parameter k, any public key set γ, and any message
m ∈ {0, 1}∗, if with following algorithms:

– (pks, sks), (pkj , skj) ← KeyGen(1k)
– γ ← {pks, pkj}
– σ ← WSign(m, sks, γ)
– σ̃ ← Confirm(m, sks, γ, σ)

it holds with an overwhelming probability (in k) that the corresponding verifica-
tion algorithms:

WSVerify(m, skj , pks, σ) = 1 and CVerify(m, γ, σ, σ̃) = 1.

Definition 2 (Unforgeability under insider corruption). Considering an
unforgeability under insider corruption experiment ExpEUF-CMA

WS,A (1k) for a PPT
adversary A and security parameter k.

The three oracles we use to build the ExpEUF-CMA
WS,A (1k) are shown as follows.

Oracle OCorrupt
i (·)

if i �= s,

CO ← CO ∪ ski

return ski

else return ⊥

Oracle OWSign
sks,γ (·)

if pks ∈ γ ∧ s /∈ CO,
σ ← WSign(m, sks, γ)

W ← W ∪ {σ}
return σ

else return ⊥

Oracle OConfirm
sks,σ,γ (·)

if σ ∈ W
M ← M ∪ {m}
σ̃ ← Confirm(m, sks, γ, σ)

return σ̃

else return ⊥

With these three oracles, we have the following experiment ExpEUF-CMA
WS,A (1k):
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ExpEUF-CMA
WS,A (1k)

for i = 1to μ do

(pki, ski) ← KeyGen(1k), s, j ∈ [1, μ], j �= s;
CO, W, M ← ∅;
(m∗, σ̃∗) ← AOCorrupt

i (·),OWSign
sks,γ

(·),OConfirm
sks,σ,γ(·)

(1k, γ∗, σ∗)

if γ∗ = {pks, pkj}, j ∈ CO ∧ m∗ /∈ M
∧WSVerify(m∗, skj , pks, σ

∗) = 1 ∧ CVerify(m∗, γ∗, σ∗, σ̃∗) = 1

return 1

else return 0

A withdrawable signature scheme WS is unforgeable under insider corruption of
EUF-CMA security if for all PPT adversary A, there exists a negligible function
negl such that:

Pr[ExpEUF-CMA
WS,A (1k) = 1] ≤ negl

(

1k
)

.

Definition 3 (Withdrawability). Assume two public/secret key pairs are
generated as (pk0, sk0), (pk1, sk1) ← KeyGen(1k). Let γ = {pk0, pk1} and
b

$← {0, 1}, considering a withdrawability experiment ExpWithdraw
WS,A (1k) for a PPT

adversary A and security parameter k.
The oracle we use to build our withdrawability experiment ExpWithdraw

WS (1k) is
shown as follows.

Oracle OWSign
sks,γ (·)

if γ = {pk0, pk1}, b
$← {0, 1}

σb ← WSign(m, skb, γ)

M ← M ∪ {m}
return σb

else return ⊥

With this signing oracle, we have the following experiment ExpWithdraw
WS (1k):

ExpWithdraw
WS,A (1k)

for i = 0 to 1 do

(pki, ski) ← KeyGen(1k), γ = {pk0, pk1}
b

$← {0, 1}, M ← ∅;
if γ = {pk0, pk1} ∧ m∗ /∈ M

σb ← WSign(m∗, skb, γ)

b′ ← AOWSign
skb,γ

(·)
(1k, m∗, σ∗

b )

if b = b′

return 1

else return 0
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A withdrawable signature WS achieves withdrawability if, for any PPT adversary
A, as long as the Confirm algorithm hasn’t been executed, there exists a negligible
function negl such that:

Pr[ExpWithdraw
WS,A (1k) = 1] ≤ 1

2
+ negl

(

1k
)

.

4 Our Withdrawable Signature Schemes

In this section, we present two specific constructions of withdrawable signatures.
We start by introducing the necessary preliminaries that form the basis of our
constructions.

4.1 Preliminaries

Digital Signatures. A signature scheme DS consists of three PPT algorithms,
described as follows:

DS =

⎧

⎪

⎨

⎪

⎩

(pk, sk) ← KeyGen(1k)
σ ← Sign(m, sk)
0/1 ← Verify(m, pk, σ)

The relevant security model of existential unforgeability against chosen-message
attacks (EUF-CMA) for digital signature schemes is given in Appendix A.

Bilinear Groups. Let G1, G2 and GT be three (multiplicative) cyclic groups of
prime order p. Let g1 be a generator of G1 and g2 be a generator of G2. A bilinear
map is a map e : G1 × G2 → GT with the following properties:

– Bilinearity: For all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) =
e(u, v)ab.

– Non-degeneracy: e(g1, g2) �= 1 (i.e. e(g1, g2) generates GT ).
– Computability: For all u ∈ G1, v ∈ G2, there exists an efficient algorithm

to compute e(u, v).

If G1 = G2, then e is symmetric (Type-1) and asymmetric (Type-2 or 3)
otherwise. For Type-2 pairings, there is an efficiently computable homomorphism
φ: G2 → G1. For Type-3 pairings no such homomorphism is known.

4.2 A Construction Based on BLS

Suppose G is a generic group of prime order p, and g is a generator, with two
hash functions H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Z

∗
p. PG : G × G = GT is a

Type-1 bilinear pairing as defined in Sect. 4.1.
Let BLS.DS denotes the BLS signature scheme [4], which contains three

algorithms: BLS.DS = (KeyGen,BLS.Sign,BLS.Verify). Comprehensive details of
these three algorithms are outlined in [4]. The output of the signing algorithm is
denoted as ω ← BLS.Sign(m, sks) where ω is derived as follows: ω = H1(m)sks .

Following this, we have a construction of a withdrawable signature based on
the original BLS signature (Fig. 1):
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Fig. 1. A Construction Based on BLS

4.3 A Construction Based on Schnorr

Recall that G is a generic group of prime order p, and g is a generator, with
hash function H : {0, 1}∗ → Zp.

Let Sch.DS denote the Schnorr signature scheme [16], which contains three
algorithms: Sch.DS = (KeyGen,Sch.Sign,Sch.Verify). Details of these three algo-
rithms are outlined in [16]. The output of the signing algorithm is also denoted
as ω ← Sch.Sign(m, sks) where ω = (t, z) is derived as follows:

A randomness e is randomly selected from Zp, then u is calculated as u = ge.
The value t is computed using the hash function t = H(m,u). Finally, z is
calculated as z = (e − x · t) mod p.

Following this, we have a construction of a withdrawable signature based on
the Schnorr signature (Fig. 2):
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Fig. 2. A Construction Based on Schnorr

5 Security Analysis

In this section, we provide the security analysis of our two constructed with-
drawable signature schemes.

5.1 Security of Our Withdrawable Signature Scheme Based on BLS

Theorem 1. If the underlying BLS signature scheme BLS.DS is unforgeable
against chosen-message attacks (EUF-CMA) as defined in Appendix A, our with-
drawable signature scheme based on BLS presented in Sect. 4.2 is unforgeable
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under insider corruption (Definition 2) in the random oracle model with reduc-
tion loss L = qH1 where qH1 denotes the number of hash queries to the random
oracle H1.

Proof. We show how to build a simulator B to provide unforgeability under
insider corruption for our withdrawable signature scheme based on BLS in the
random oracle model.
Setup. B has access to the algorithm C, which provides unforgeability in the
random oracle for our underlying signature scheme BLS.DS. C executes the
EUF-CMA game of BLS.DS, denoted as ExpEUF-CMA

A which includes a signing
oracle denoted as OBLS.DS

sks
(·), where OBLS.DS

sks
(·) : ω ← BLS.Sign(m, sks).

For s ∈ [1, qμ], C first generates (pks, sks) ← KeyGen(1k). B then generates
S = {pk1, · · · , pks−1, pks+1, · · · , pkμ} and gains pks from C.

B now can set the public key set of the signer and a specific (designated)
verifier as γ = {pks, pkj} where j �= s and provide γ to A.

Oracle Simulation. B answers the oracle queries as follows.

Corruption Query. The adversary A makes secret key queries of pki, i ∈ [1, μ] in
this phase. If A queries for the secret key of pks, abort. Otherwise, B returns the
corresponding ski to A, and adds ski to the corrupted secret key list CO.

H-Query. The adversary A makes hash queries in this phase. C simulates H1 as
a random oracle, B then answers the hash queries of H1 through C.

Signature Query. A outputs a message mi and queries for withdrawable signature
with signer pks and the specific (designated) verifier pkj . If the signer isn’t pks,
B abort. Otherwise, B sets mi as the input of C. B then asks for the signing
output of C as ωi ← BLS.Sign(mi, sks). With ωi = H1(mi)sks from C, B could
respond to the signature query of A with the specific verifier pkj as follows:

– OWSign
sks,γ (·): Given the output ωi of C, B can compute the withdrawable signa-

ture σi ← OWSign
sks,γ (·) for A as:

1. ri, yi
$← Z

∗
p, σi =

(

e(H1(mi)yi·ri · ωi, pkj),H1(mi)ri , gyi
)

– OConfirm
sks,σ,γ (·): With ωi and σi, B can compute the corresponding confirmed sig-

nature σ̃i ← OConfirm
sks,σ,γ (·) for A with underlying signature ωi = H1(mi)sks and

ri as:
1. Compute δ1,i = pkskj ·ri

s · σi.
2. Compute δ2,i = pkri

j , δ3,i = gri , δ4,i = H1(mi)ri

3. σ̃i = (δ1,i, δ2,i, δ3,i, δ4,i)

Meanwhile, B sets M ← M ∪ mi and W ← W ∪ σi.

Forgery. On the forgery phase, the simulator B returns a withdrawable signature
σ∗ for signer pks that designated to verifier pkj , and γ∗ = {pks, pkj} on some
m∗ that has not been queried before. σ∗ is generated by B as follows:

σ∗ =
(

e(H1(m∗)r
∗·y∗

H1(m∗)skj , pks), g
y∗

,H1(m∗)r
∗)
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Then σ∗ could be transformed into σ̃∗ under γ∗ correctly. After A transforms
σ∗ into σ̃∗, if σ̃∗ could not be verified through CVerify(m∗, γ∗, σ∗, σ̃∗), abort.

Otherwise, if σ̃∗ = (δ∗
1 , δ

∗
2 , δ

∗
3 , δ

∗
4) is valid, B then could obtain a forged sig-

nature ω∗ for pks on m∗. Since B is capable of directly computing pkskj ·r
s , the

forged signature ω∗ can be determined as: ω∗ = δ∗
1/pk

skj ·r
s .

Therefore, we can use A to break the unforgeability in the EUF-CMA model
of our underlying signature scheme BLS.DS, which contradicts the property of
our underlying signature scheme.

Probability of Successful Simulation. All queried signatures ωi are simu-
latable, and the forged signature is reducible because the message m∗ cannot be
chosen for a signature query as it will be used for the signature forgery. Therefore,
the probability of successful simulation is 1

qH1
for qH1 queries. �	

Theorem 2. Our withdrawable signature scheme based on BLS presented in
Sect. 4.2 is withdrawable (Definition 3) in the random oracle model.

Proof. In our proof of Theorem 2, B sets the challenge signer/verifier public key
set as γ = {pk0, pk1} and associated secret key set as δ = {sk0, sk1}. The signer
is denoted as pkb where b

$← {0, 1}, and the specific verifier is denoted as pk1−b.

Oracle Simulation. B answers the oracle queries as follows.

H-Query. The adversary A makes hash queries in this phase, where B simulates
H1 as a random oracle.

Signature Query. A outputs a message mi and queries for withdrawable signa-
ture with corresponding signer pks and the specific verifier pkj , B responses the
signature query of A as follows:

– OWSign
skb,γ (·):

ri, yi
$← Z

∗
p, σb,i =

(

e(H1(mi)ri·yi · H1(mi)skb , pk1−b),H1(mi)ri , gyi
)

.

Meanwhile, B sets M ← M ∪ mi.

Challenge. On the challenge phrase, A gives B a message m∗ /∈ M, where
m∗ /∈ M. B now executes the challenge phrase and computes the challenge
withdrawable signature σ∗

b for A where b
$← [0, 1] as follows:

σ∗
0 =

(

e(H1(m∗)r
∗·y∗ · H1(m∗)sk0 , pk1),H1(m∗)r

∗
, gy∗)

σ∗
1 =

(

e(H1(m∗)r
∗·y∗ · H1(m)sk1 , pk0),H1(m∗)r

∗
, gy∗)

=
(

e(H1(m∗)r
∗·y∗ · H1(m∗)sk0 , pk1),H1(m∗)r

∗
, gy∗)

= σ∗
0 .

Guess. A outputs a guess b′ of b. The simulator outputs true if b′ = b. Otherwise,
false.

Probability of Breaking the Withdrawability Property. It’s easy to see
that σ∗

0 and σ∗
1 have the same distributions, hence they are indistinguishable.
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Therefore, the adversary A only has a probability 1/2 of guessing the signer’s
identity correctly.

Probability of Successful Simulation. There is no abort in our simulation,
the probability of successful simulation is 1. �	

5.2 Security of the Withdrawable Signature Scheme Based
on Schnorr

Theorem 3. If the underlying Schnorr signature scheme Sch.DS is unforgeable
against chosen-message attacks (EUF-CMA) as defined in Appendix A, our with-
drawable signature scheme based on Schnorr presented in Sect. 4.3 is unforgeable
under insider corruption (Definition 2) in the random oracle model with reduc-
tion loss L = 2qH −1 where qH denotes the number of hash queries to the random
oracle H.

The proof of Theorem 3 follows the same proof structure shown in Proof 5.1,
which also contains three algorithms, A, B, and C. The completed proof of The-
orem 3 is given in Appendix B.

Theorem 4. Our withdrawable signature scheme based on Schnorr presented in
Sect. 4.3 is withdrawable (Definition 3) in the random oracle model.

The complete detailed proof of Theorem 4 is available in Appendix B.

6 Conclusion

In this paper, we discussed the challenges associated with traditional signature
schemes and the need for a mechanism to revoke or replace signatures. We intro-
duced a unique withdrawability feature for signature schemes, allowing signers
to have the ability to call off their signatures as withdrawable signatures, and
later, the signature could be transformed into a confirmed signature that could
be verified through their public keys.

Furthermore, we proposed cryptographic primitives and two constructions of
the withdrawable signature based on the BLS/Schnorr signature. We formally
proved that the two proposed constructions are unforgeable under insider cor-
ruption and satisfy withdrawability.

There are several directions for future work: one is improving the efficiency
of our withdrawable signature scheme. Exploring further to discover practical
applications and use cases of withdrawable signature schemes can also be an
interesting avenue for future work.

A Security Definitions of Existing Cryptographic
Primitives

Definition 4 (EUF-CMA). Given a signature scheme DS = (KeyGen,Sign,
Verify), and a ppt adversary A, considering the following game ExpEUF-CMA

A :
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– Let SP be the system parameters. The challenger B runs the key generation
algorithm to generate a key pair (pk, sk) and sends pk to the adversary A.
The challenger keeps sk to respond to signature queries from the adversary.

– A is given access to an oracle OSign
sk (·) such that OSign

sk (·) : σ ← Sign(m, sk).
– A outputs a message m∗, and returns a forged signature σm∗ on m∗.
– A succeeds if σm∗ is a valid signature of the message m∗ and the signature of

m∗ has not been queried in the query phase.

A signature scheme is (t, qs, ε)-secure in the EUF-CMA security model if
there exists no adversary who can win the above game in time t with advantage
ε after it has made qs signature queries.

B Security Proofs of Our Withdrawable Signature

We give the detailed proof of Theorem 3 as follows.

Proof. We show how to build a simulator B to provide unforgeability under
insider corruption for our withdrawable signature scheme based on Schnorr in
the random oracle model.

Setup. Simulator B has access to algorithm C, which provides unforgeability in
the random oracle for our underlying Schnorr signature scheme Sch.DS.

C executes the EUF-CMA game of Sch.DS, denoted as ExpEUF-CMA
A which

includes a signing oracle OSch.Sign
sks

(·), where OSch.Sign
sks

(·) : ω ← Sch.Sign(m, sks).
B first generates S = {pk1, · · · , pks−1, pks+1, · · · , pkμ}, C generates (pks, sks) ←
KeyGen(1k), B then gains pks from C and sets s ∈ [1, qμ].

B now can set the public key set of the signer with a specific (designated)
verifier as γ = {pks, pkj} where j �= s and provide γ to A.

Oracle Simulation. B answers the oracle queries as follows.

Corruption Query. The adversary A makes secret key queries of public key
pki, i ∈ [1, μ] in this phase. If A queries for the secret key of pks, abort. Other-
wise, B returns the corresponding ski to A, and add ski to the corrupted secret
key list CO.

H-Query. C simulates H as a random oracle, B then answers the hash queries of
H through C.

Signature Query. A outputs a message mi and queries for withdrawable signature
with corresponding signer pks and specific verifier pkj . If the signer isn’t pks,
abort. Otherwise, B sets mi as the input of C. B then asks the signing output of
C as ωi = Sch.Sign(mi, sks). With ωi, B could response the signature query for
the specific verifier pkj chosen by A as follows:

– OWSign
sks,γ (·): With the output of C, B can compute the withdrawable signature

σi ← OWSign
sks,γ (·) for A with ωi = (ti, zi) = (H(mi, ui), zi) as:

1. Randomly choose ri
$← Z

∗
p
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2. Compute σ1,i = gzipkti
s , σ2,i = pkzi−ri·ti

j , σ3,i = gri

3. σi = (σ1,i, σ2,i, σ3,i)
– OConfirm

sks,σ,γ (·): B then queries for the Schnorr signature of mi again to C and
returns a corresponding ωs,i = (ts,i, zs,i) instead. With ωi, ωs,i and σi, B can
compute the confirmed signature σ̃i ← OConfirm

sks,σ,γ (·) for A as follows:
1. Compute δ1,i = gzs,ipkts,i

s , δ2,i = zs,i − ri · ts,i.
2. Randomly choose ej,i, tj,i

$← Z
∗
p, δ4,i = tj,i

3. Compute δ5,i = ej,i − ri · tj,i
4. σ̃i = (δ1,i, δ2,i, δ3,i, δ4,i, δ5,i)

Meanwhile, B sets the queried message set as M ← M ∪ m and queried
withdrawable signature set as W ← W ∪ σ.

Forgery. On the forgery phase, B returns a withdrawable signature σ∗ for γ∗ =
{pks, pkj} on some m∗ that has not been queried before. Then σ∗ could be
transformed into σ̃∗ under γ∗ correctly. After A transforms σ∗ into σ̃∗, if σ̃∗

could not be verified through CVerify(m∗, γ∗, σ∗, σ̃∗), abort.
Otherwise, if σ̃∗ = (δ∗

1 , δ
∗
2 , δ

∗
3 , δ

∗
4 , δ

∗
5) is valid, B then could obtain a forged

signature ω∗ for pks on m∗. Since B is capable of directly computing r∗ · t∗s, the
forged signature ω∗ can be determined as: ω∗ = δ∗

2 + r∗ · t∗s·.
Therefore, we can use A to break the unforgeability in the EUF-CMA model

of our underlying signature scheme Sch.DS, which contradicts the property of
our underlying signature scheme.

Probability of Successful Simulation. All queried signatures ωi are simu-
latable, and the forged signature is reducible because the message m∗ cannot be
chosen for a signature query as it will be used for the signature forgery. Therefore,
the probability of successful simulation is 1

2qH−1 . �	
We give the proof of Theorem 4 as follows.

Proof. In our proof of Theorem 4, B sets the challenge public key set as γ =
{pk0, pk1} and associated secret key set δ = {sk0, sk1}. The signer is denoted as
pkb where b

$← {0, 1}, and the specific verifier is denoted as pk1−b.

Oracle Simulation. B answers the oracle queries as follows.

H-Query. The adversary A makes hash queries in this phase where B simulates
H as a random oracle.

Signature Query. A outputs a message mi and queries the withdrawable sig-
nature for corresponding signer pks and specific verifier pkj , B responses the
signature queries of A as follows:

– OWSign
skb,γ (·): ei

$← Z
∗
p, ti = H(mi, g

ei), σb,i =
(

gei , pk
zb,i

1−b

)

=
(

gei , pkei−skb·ti

1−b

)

Meanwhile, B sets M ← M ∪ mi.
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Challenge. In the challenge phase, A gives B a message m∗, where m∗ /∈ M.
B now computes the challenge withdrawable signature of m∗ as σ∗

b for A where
b

$← {0, 1} and r∗ $← Z
∗
p as follows:

σ∗
0 =

(

ge∗
, pk

z∗
0−r∗·t∗

1

)

=
(

ge∗
, gsk1(e

∗−sk0·t∗−r∗·t∗)
)

σ∗
1 =

(

ge∗
, pkz∗

1−r∗·t∗
s

)

=
(

ge∗
, (ge∗

)sk1pk−sk1·t∗
0 g−sk1·r∗·t∗)

=
(

ge∗
, gsk1(e

∗−sk0·t∗−r∗·t∗)
)

= σ∗
0 .

Guess. A outputs a guess b′ of b. The simulator outputs true if b′ = b. Otherwise,
false.

Probability of Breaking the Withdrawability Property. It’s easy to see
that σ∗

0 and σ∗
1 have the same distributions, hence they are indistinguishable.

Therefore, the adversary A only has a probability 1/2 of guessing the signer’s
identity correctly.

Probability of Successful Simulation. There is no abort in our simulation,
therefore, the probability of successful simulation is 1. �	
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