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Preface

Welcome to the 26th Information Security Conference (ISC).
We are delighted to present to you the proceedings of ISC 2023. They are the outcome

of several weeks of work from a group of people, representing a cross-section of the
research community in cryptography and systems security. As program co-chairs, we
had the great honor to handle this process, and we are grateful to all reviewers, authors,
and members of the organizing committee who made it possible.

First, we have been able to assemble a diverse program committee composed of both
young and senior researchers. Writing good reviews is a hard task, and yet we found
that many colleagues were eager to volunteer their time and serve on the ISC program
committee. One of the primary aims we had for ISC was to recruit part of the next
generation of PC members, therefore we tried to invite a significant fraction of junior
faculty members and researchers.

Overall we invited 90 members and our invitation was accepted by 41 researchers
distributed over 17 different countries. We also tried to balance the expertise between
cryptography and systems security. During the hard and long review process, we were
impressed by the quality of the reviews and the positivity we saw in the online discus-
sions. We were pleasantly surprised by the many PC members who championed papers
energetically and engaged in constructive debates with the other reviewers. At this point,
we also want to recognize those who provided additional reviews at the last minute, in
some cases with only a few hours’ notice, namely Chitchanok Chuengsatiansup, Lilika-
Evangelia Markatou, and Koen de Boer. Unfortunately, a few PC members were unable
to complete all their reviews.

Additionally, the papers included in these proceedings reflect the high quality of
research established through the years by ISC. We received 98 submissions, and the
PC decided to accept 29 of them, resulting in an acceptance rate of around 30%, which
is in line with previous ISC events. The final program of 29 papers includes advances
in cryptography, and in particular in symmetric cryptography, key management, post-
quantumcryptography, andmultiparty computation, aswell asworks in systems security,
and in particular in machine learning and privacy, web/mobile security, and intrusion
detection systems.

Every organizer undertakes financial risks associatedwith the conference’s organiza-
tion and needs to overcome several issues with the conference logistics. We are grateful
to our sponsors for making ISC 2023 possible and for ensuring that the registration fees
remained sufficiently low for students to attend the event. In particular, we thank our
sponsor Gemeente Groningen for their financial and logistical support in realizing the
conference, and our publisher, Springer, for sponsoring the best paper award.

We further thank the rest of the organizing committee for their commitment and sup-
port in preparing the ISC 2023 proceedings: the publication chair, Olga Gadyatskaya,
and the publicity chair, Kaitai Liang. Above all, we thank the general chair Fatih Turk-
men for organizing ISC 2023 in Groningen, The Netherlands, and for ensuring the
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smooth operation of the conference, and Apostolis Zarras for initial discussions about
the organizational matters.

As a final word, we would like to express our gratitude to the community of cryp-
tographers and systems security researchers who made these proceedings possible with
their great work. We believe that ISC is a unique event in the calendar circus of security
conferences that offers such a balance between cryptography and systems security. We
therefore would like to close by thanking the sponsors, organizers, reviewers, authors,
and all attendees for making ISC such a lively conference!

October 2023 Elias Athanasopoulos
Bart Mennink

ISC 2023 PC Co-chairs
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Exploring Privacy-Preserving Techniques
on Synthetic Data as a Defense Against

Model Inversion Attacks

Manel Slokom1,2,3(B), Peter-Paul de Wolf3, and Martha Larson4

1 Delft University of Technology, Delft, The Netherlands
m.slokom@tudelft.nl

2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
3 Statistics Netherlands, The Hague, The Netherlands

pp.dewolf@cbs.nl
4 Radboud University, Nijmegen, The Netherlands
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Abstract. In this work, we investigate privacy risks associated with
model inversion attribute inference attacks. Specifically, we explore a
case in which a governmental institute aims to release a trained machine
learning model to the public (i.e., for collaboration or transparency rea-
sons) without threatening privacy. The model predicts change of living
place and is important for studying individuals’ tendency to relocate. For
this reason, it is called a propensity-to-move model. Our results first show
that there is a potential leak of sensitive information when a propensity-
to-move model is trained on the original data, in the form collected from
the individuals. To address this privacy risk, we propose a data synthesis
+ privacy preservation approach: we replace the original training data
with synthetic data on top of which we apply privacy preserving tech-
niques. Our approach aims to maintain the prediction performance of
the model, while controlling the privacy risk. Related work has studied a
one-step synthesis of privacy preserving data. In contrast, here, we first
synthesize data and then apply privacy preserving techniques. We carry
out experiments involving attacks on individuals included in the train-
ing data (“inclusive individuals”) as well as attacks on individuals not
included in the training data (“exclusive individuals”). In this regard,
our work goes beyond conventional model inversion attribute inference
attacks, which focus on individuals contained in the training data. Our
results show that a propensity-to-move model trained on synthetic train-
ing data protected with privacy-preserving techniques achieves perfor-
mance comparable to a model trained on the original training data. At
the same time, we observe a reduction in the efficacy of certain attacks.

Keywords: Synthetic data · privacy-preserving techniques ·
propensity-to-move · model inversion attack · attribute inference
attack · machine learning

P.-P. de Wolf—The views expressed in this paper are those of the authors and do not
necessarily reflect the policy of Statistics Netherlands.
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E. Athanasopoulos and B. Mennink (Eds.): ISC 2023, LNCS 14411, pp. 3–23, 2023.
https://doi.org/10.1007/978-3-031-49187-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49187-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-49187-0_1


4 M. Slokom et al.

1 Introduction

A governmental institute that is responsible for providing reliable statistical
information may use machine learning (ML) approaches to estimate values that
are missing in their data or to infer attributes whose values are not possible to
collect. Ideally, the machine learning model that is used to make the estimates
can be made available outside of the institute in order to promote transparency
and support collaboration with external parties. Currently, however, an impor-
tant unsolved problem stands in the way of providing external access to machine
learning models: the models may pose a privacy threat because they are suscepti-
ble to model inversion attribute inference attacks. In other words, they may leak
information about sensitive characteristics of individuals whose data they were
trained on (“inclusive individuals”). Further, going beyond the strict definition
of model inversion, access to models may enable the inference of attributes of
individuals whose data is not included in the original training set (“exclusive
individuals”).

In this paper, we investigate the potential leaks that could occur when exter-
nal access is provided to machine learning models. We carry out a case study on
a model that is trained to predict whether an individual is likely to move or to
relocate within the next two years. Such models are helpful for understanding
tendencies in the population to change their living location and are, for this rea-
son, called propensity-to-move models. We study the case in which an institute
would like to provide access to the model by allowing external parties to query
the model and receive output predictions and by releasing the marginal distribu-
tions of the data the model is trained on. Additionally, the output might include
confidence scores. Finally, access might include releasing a confusion matrix of
the model calculated on the training data. Attackers wish to target a certain set
of target individuals to obtain values of sensitive attributes for these individuals.
We assume that for this set of target individuals, attackers possess a set of non-
sensitive attributes that they have previously obtained, e.g., by scraping social
media, including the correct value for the propensity-to-move attribute.

First, we show the effectiveness of our propensity-to-move prediction model.
Then, we evaluate a number of existing model inversion attribute inference
attacks [14,28] and demonstrate that, if access would be provided to the model,
a privacy threat would occur. Next, we address this threat by proposing a syn-
thesis + privacy preservation approach, which applies privacy preserving tech-
niques designed to inhibit attribute inference attacks on top of synthetic data.
This two-step approach is motivated by the fact that within our case study,
training models on synthetic data is an already established practice and the
goal is to address the threat posed by synthetic data. In our previous work [42],
we demonstrated that training on synthetic data has the potential to provide a
small measure of protection, and here we build on that result.

Our results show that a propensity-to-move model trained on data created
with our synthesis + privacy preservation approach achieves performance com-
parable to a propensity-to-move model trained on original training data. We
also observe that the data created by our synthesis + privacy preservation app-
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roach contributes to the reduced success of certain attacks over a certain group
of target individuals. Last but not least, we use the Correct Attribution Proba-
bility (CAP) metric [27] from Statistical Disclosure Control as a disclosure risk
measure to calculate the risk of attribute disclosure for individuals.

We summarize our contributions as follows:

– Threat Model: Our attacks consider both target individuals who are
included in the data on which the model is trained (“inclusive individuals”)
and target individuals who are not (“exclusive individuals”). Studying exclu-
sive individuals goes beyond the strict definition of model inversion and is
not well-studied in the literature.

– Data synthesis + privacy preservation: We explore a two-step approach
that applies privacy-preserving techniques on top of synthetic data. Our app-
roach aims to maintain model utility, i.e., the prediction performance of the
model, while at the same time inhibiting inference of the sensitive attributes
of target individuals.

– Disclosure Risk: In contrast to measures that rely on machine learning met-
rics, which often average or aggregate scores, we employ the Correct Attribu-
tion Probability (CAP) to quantify the level of disclosure risk for individual
cases.

2 Threat Model

We start characterizing the case we study in terms of a threat model [39], a
theoretical formulation that describes: the adversary’s objective, the resources
at the adversary’s disposal, the vulnerability that the adversary seeks to exploit,
and the types of countermeasures that come into consideration. Table 1 presents
our threat model. We cover each of the dimensions, in turn, explaining their
specification for our case.

As objective, the attacker seeks to infer sensitive information about a set
of target individuals. As resources, we assume that the attacker has collected a
set of data for each target individual, i.e., from previous data releases or social
media. The set contains non-sensitive attributes of the target individuals and
that includes the individual’s ID and the corresponding true label for propensity-
to-move. The target individuals are either in the training data used to train the
released model (“inclusive individuals”) or not in the training data (“exclusive
individuals”). The vulnerability is related to how the model is released, i.e., the
access that has been provided to the model. The attacker can query the model
and collect the output of the model, both predictions and confidence scores,
for unlimited number of inputs. The attacker also has information about the
marginal distribution for each attribute in the training data. The countermeasure
that we study is a change in the model that is released, which is accomplished
by modifying the training data.
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Table 1. Model inversion attribute inference threat model, defined for our case.

Component Description

Adversary: Objective Specific sensitive attributes of the target
individuals

Adversary: Resources A set of non-sensitive attributes of the target
individuals, including the correct value for the
propensity-to-move attribute, for “inclusive
individuals” (in the training set) or “exclusive
individuals” (not in the training set)

Vulnerability:Opportunity Ability to query the model to obtain output plus
the marginal distributions of the data that the
model was trained on. Additionally, the output
might include confidence scores and a confusion
matrix calculated on the training data might be
available

Countermeasure Modify the data on which the model is trained

3 Background and Related Work

In this section, we provide a brief overview of existing literature on data syn-
thesis, privacy-preserving techniques, and model inversion attribute inference
attacks.

3.1 Synthetic Data Generation

Synthetic data generation methods involve constructing a model of the data
and generating synthetic data from this model. These methods are designed
to preserve specific statistical properties and relationships between attributes
in the original data [9,16,47]. Synthetic data generation techniques fall into
two categories [20]: partially synthetic data and fully synthetic data. Partially
synthetic data contain a mix of original and synthetic records [10]. Techniques
to achieve partial synthesis replace only observed values for attributes that bear
a high risk of disclosure (i.e., sensitive attributes) [11]. Fully synthetic data,
which we use in our experiments, creates an entirely synthetic data set based on
the original data [10,11]. Next, we discuss existing work on fully synthetic data
generation from Statistical Disclosure Control [9,47] and deep learning [48,51].

Data Synthesis in Statistical Disclosure Control. Several approaches have
been proposed in the literature for generating synthetic data, such as data distor-
tion by probability distribution [23], synthetic data by multiple imputation [38],
and synthetic data by Latin Hypercube Sampling [8]. In [12], the authors pro-
posed an empirical evaluation of different machine learning algorithms, e.g., clas-
sification and regression trees (CART), bagging, random forests, and Support
Vector Machines for generating synthetic data. The authors showed that data
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synthesis using CART results in synthetic data that provides reliable predictions
and low disclosure risks. CART, being a non-parametric method, helps in han-
dling mixed data types and effectively captures complex relationships between
attributes [12].

Data Synthesis Using Generative Models. A lot of research has been car-
ried out lately focusing on tabular data synthesis [7,31,51]. In [7], the authors
proposed MedGAN, one of the earliest tabular GAN-based data synthesis used
to generate synthetic Health Records. MedGAN transformed binary and cate-
gorical attributes into a continuous space by combining an auto-encoder with
GAN. In [31], the authors proposed TableGAN, a GAN-based method to synthe-
size fake data that are statistically similar to the original data while protecting
against information leakage, e.g., re-identification attack and membership attack.
TableGAN uses a convolutional neural network that optimizes the label column’s
quality such that the generated data can be used to train classifiers. In [51], the
authors pointed out different shortcomings that were not addressed in previous
GAN models, e.g., a mixture of data types, non-Gaussian and multimodal distri-
bution, learning from sparse one-hot encoded vectors and the problem of highly
imbalanced categorical attributes. In [51], a new GAN model called CTGAN
is introduced, which uses a conditional generator to properly model continuous
and categorical columns.

3.2 Privacy-Preserving Techniques

In this section, we provide an overview of existing work on privacy-preserving
techniques. Privacy-preserving techniques can be categorized as perturbative
or non perturbative methods. Perturbative methods involve introducing slight
modifications or noise to the original data to protect privacy, while non pertur-
bative methods achieve privacy through data transformation techniques without
altering the data itself [47]. These techniques, which have been studied for many
years, include randomization, data shuffling, data swapping [29,33], obfusca-
tion [4], post-randomization [50]. We discuss the privacy-preserving techniques
that we use in our experiments in more depth:

Data swapping is a non-perturbative method that is based on randomly
interchanging values of an attribute across records. Swapping maintains the
marginal distributions in the shuffled data. By shuffling values of sensitive
attributes, data swapping provides a high level of utility while minimizing risk
of disclosure [29].

Post-randomization (PRAM) is a perturbative method. Applying PRAM
to a specific attribute (or a number of attributes) means that the values of the
record in the PRAMmed attribute will be changed according to a specific prob-
ability. Following notations used in [50], let ξ denote the categorical attribute
in the original data to which PRAM will be applied. X denotes the same cat-
egorical attribute in the PRAMmed data. We suppose that ξ and X have K
categories 1, . . . , K. pkl = P(X = l|ξ = k) denotes the transition probabilities
that define PRAM. This means the probability that an original value ξ = k is
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changed to value X = l for k, l = 1, . . . , K. Using the transition probabilities as
entries of a K × K matrix, we obtain P (called the PRAM-matrix).

Differential privacy has gained a lot of attention in recent years [1,22]. Dif-
ferential privacy (DP) uses a mathematical formulation to measure privacy. DP
creates differentially private protected data by injecting noise expressed by ε into
the original data. In [52] a differentially private Bayesian Network, PrivBayes
is proposed to make possible the release of high-dimensional data. PrivBayes
first constructs a Bayesian network that captures the correlations among the
attributes and learns the distribution of data. After that, PrivBayes injects noise
to ensure differential privacy and it uses the noisy marginals and the Bayesian
network to construct an approximation of the data distribution. In [34], the
authors introduced two methods for creating differentially private synthetic data.
The first method adds noise to a cross-tabulation of all the attributes and creates
synthetic data by a multinomial sampling from the resulting probabilities. The
second method uses an iterative proportional fitting algorithm to obtain a fit to
the probabilities computed from noisy marginals. Then, it generates synthetic
data from the resulting probability distributions. A more recent work, Differen-
tially Private CTGAN (DPCTGAN) [13] adds a differentially private noise to
CTGAN. Specifically, DPCTGAN adds ε − δ noise to the discriminator D and
clips the norm to make it differentially private. We consider DPCTGAN to be
a one-step synthesis approach, as it combines the application of noise and the
synthesis process. Here, we test DPCTGAN, alongside our two-step synthesis +
privacy preservation approaches.

3.3 Model Inversion Attribute Inference Attacks

Privacy attacks on data [25] include identification (or identity disclosure)
attacks [2,3,51], membership inference attacks [41], and attribute inference
attacks (or attribute disclosure) [3,19,44]. A lot of attention has been given
to identification attacks on synthetic data [26,40,43]. However, less attention
has been given to attribute inference attacks on synthetic data [40]. Attacks
on data include attacks on models aimed at acquiring information about the
training data. Here we investigate a model inversion attribute inference attack.

Model inversion attacks (MIA) aim to reconstruct the data a model is trained
on or expose sensitive information inherent in the data [18,49]. Attribute infer-
ence attacks use machine learning algorithms to predict, and perform attacks
that infer sensitive attributes, i.e., gender, age, income. In a model inversion
attribute inference attack, the attacker is interested in inferring sensitive infor-
mation, e.g., demographic attributes, about an individual [14,25,28].

We distinguish between three categories of model inversion attribute infer-
ence attacks [18,25]. An attack is black-box if the attacker only gets access to
predictions generated by the model, i.e., can query the model with target indi-
viduals to receive the model’s output. An attack is gray-box if the structure of
the model and or some auxiliary information is further known, e.g., the attacker
knows that the prediction is based on decision tree model, or attacker knows
about the estimated weights of the model. An attack is white-box if an attacker
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has the full model, e.g., predictions, estimated weights or structure of model,
and other information about training data.

In [14,15], the authors showed that it is possible to use black-box access
to prediction models (access to commercial machine learning as a service APIs
such as BigML) to learn genomic information about individuals. In [14], the
authors developed an attack model that exploits adversarial access to a model
to learn information about its training data. To perform the attack, the adver-
sary uses the confidence scores included with the predictions as well as the
confusion matrix of the target model and the marginal distributions of the sen-
sitive attributes. In [28], the authors proposed two attack models: confidence
score-based MIA (CSMIA) and label-only MIA (LOMIA). CSMIA exploits con-
fidence scores returned by the target model. Different from Fredrikson et al. [14],
in CSMIA an attacker is assumed to not have access to the marginal distri-
butions or confusion matrix. LOMIA uses only the model’s predicted labels.
CSMIA, LOMIA, and Fredrikson et al., [14] are the attacks we study in our
work. The three attacks aim to achieve the adversary’s objective of inferring
sensitive attributes about target individuals, while assuming different resources
and opportunities available to the attacker. (Further details are in Sect. 4.4).
Other model inversion attacks use variational inference [49] or imputation [21]
to infer sensitive attributes.

3.4 Attribute Disclosure Risk

Previous work on identity and attribute disclosure risk has looked either at
matching probability by comparing perceived, expected, and true match risk [36],
or at a Bayesian estimation approach, assuming that an attacker seeks a Bayesian
posterior distribution [37]. Similar to [36], other work [19,27,46] has looked at
the concept of Correct Attribution Probability (CAP).

CAP assumes that the attacker knows the values of a set of key attributes for
an individual in the original data set, and aims to learn the respective value of
a target attribute. The key attributes encompass all attributes within the data,
excluding the sensitive attribute that is the target attribute. Correct Attribution
Probability (CAP) measures the disclosure risk of the individual’s real value in
the case where an adversary has access to protected data, and was originally
proposed for synthetic data [19,46]. The basic idea of CAP is that an attacker
is supposed to search for all records in the synthetic data that match records
in the original data for given key attributes. The CAP score is the propor-
tion of matches leading to correct attribution out of the total matches for a
given individual [46]. In [46], the authors extended their previous preliminary
work [27]. They proposed a new CAP measure called differential correct attri-
bution probability (DCAP). DCAP captures the effect of multiple imputations
on the disclosure risk of synthetic data. The authors of [46] stated that DCAP
is well-suited for fully synthetic data. In [24], the authors introduced TCAP, for
targeted correct attribution probability. TCAP calculates CAP value for tar-
geted individuals that the attacker knows their existence in the original data. In
our experiments, we use the CAP measure introduced in [27].
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4 Experimental Setup

In this section, we describe our experimental setup. First, we provide an overview
of our data set. Second, we describe how we synthesize data and the privacy
protection techniques that we use. Next, we discuss target machine learning
algorithms that we will use to predict propensity-to-move. Then, we describe
the model inversion attribute inference attacks we study in our experiments.

4.1 Data Set

For our experiments, we use a data set from a governmental institute. The data
set was previously collected and first used in [5]. It combines different regis-
ters from the System of Social Statistical Data sets (SSD). In our experiments,
we use the same version of the data set used in [42]. Our data contains 150K
individuals’ records between 2013 and 2015. We have 40 attributes (categorical
and numerical) containing information about individual demographic attributes
such as gender and age, and time-dependent personal, household, and housing
attributes. The target attribute “y01” is binary, indicating whether (=1) or not
(=0) a person moved in year j where j = 2013, 2015. The target attribute is
imbalanced with 129428 0 s (majority class) and 24971 1 s (minority class).

We have three distinct groups of individuals within the data. The difference
between the three groups resides in the fact that there are some individuals who
are in the data in the year 2013 (called Inclusive individuals 2013). The same
individuals appear again in the year 2015 (called Inclusive individuals 2015),
where they may have different values for the time-dependent attributes than
they did in 2013. The last group (called Exclusive individuals 2015) contains
individuals who are “new in the country”. We have a total of: 76904 Inclusive
individuals 2013, 74591 Inclusive individuals 2015, and 2904 Exclusive individ-
uals 2015.

Our propensity-to-move classifier (i.e., the target model) is trained on all 2013
data (76904 records). The classifier is tested on the 2015 data (77495 records) as
in [42]. For the target model trained on (privacy-preserving) synthetic data, we
use TSTR evaluation strategy such that we train classifiers on 2013 (privacy-
preserving) synthetically generated data and we test on 2015 original data [17,
42].

As adversary resources, we assume that the attacker has access to a set of
non-sensitive attributes of the target individuals (see our threat model in Sect. 2).
As in [42], we consider three cases:

– Inclusive individuals (2013): the attacker has access to data from the
year 2013, which aligns with the data used to train the target model.

– Inclusive individuals (2015): Here, the attacker possesses more recent
data from 2015, but it corresponds to the same set of individuals used in
training the target model. The data being more recent implies that some of
the (time-sensitive) attributes for particular individuals may have changed
somewhat.
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– Exclusive individuals (2015): In this case, the attacker’s data is from
2015, but it pertains to a distinct group of individuals who were not part of
the training set for the target model.

We create data sets for each of the three cases. As in [42], for Exclusive individ-
uals (2015) we use all 2904 individuals and for the other two cases we randomly
sample to create data sets of the same size (2904 individuals each). The attributes
of the target individuals that are in the possession of the attacker include the
correct value of the propensity-to-move attribute but do not include the sensitive
attributes gender, age, and income, which are targeted by the attack.

4.2 Privacy-Preserving Techniques on Synthetic Training Data

In this section, we describe how we synthesized data, and how we then applied
privacy preserving approaches to it. The synthesis and privacy-preserving tech-
niques are applied to the training data of the target model (the 76904 Inclusive
individuals 2013), which is intended for release.

Our experiments with our two-step synthesis + privacy protection approach
use a classification and regression tree (CART) model to synthesize data since
it is shown to perform the best in the literature [12,35]. Recall that CART is a
non-parametric method that can handle mixed data types and is able to capture
complex and non-linear relationships between attributes. We apply CART to
the training data of the target model, which includes individuals from 2013. We
use the open public R package, Synthpop for our implementation of the CART
model [30]1. Within Synthpop, there are a number of parameters that can be
optimized to achieve a good quality of synthesis [30]. Visiting.sequence parameter
specifies the order in which attributes are synthesized. The order is determined
institute-internally by a human expert. Stopping rules parameter dictates the
number of observations that are assigned to a node in the tree. Stopping rules
parameter helps to avoid over-fitting.

Following synthesis using CART, we apply privacy-preserving techniques,
data swapping and PRAM (cf. Sect. 3.2), to the synthetic data. We use two
data swapping approaches, referred to as Swapping and Conditional swapping.
For Swapping, we perform data swapping separately for each sensitive attribute,
which includes gender, age, and income. Specifically, for the age attribute, we
interchange numerical age values among individuals and subsequently map these
values to their respective age groups. For Conditional swapping, we perform
simultaneous data swapping for gender, age, and income conditioned on the
propensity-to-move target attribute. Conditional data swapping ensures that
sensitive attributes are swapped while preserving the influence of the target
attribute. Additionally, we apply Post-randomization (PRAM) independently
to the attributes of gender, age, and income within the synthetic data generated
using CART. Our transition matrices can be found in supplementary material.2

1 http://www.synthpop.org.uk/.
2 Supplemental material is at this link in Section.2: PRAM.

http://www.synthpop.org.uk/
https://surfdrive.surf.nl/files/index.php/s/YzfuWc4qu0qmarM
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We use the sdcMicro toolkit.3 It is important to note that our evaluation includes
separate testing of PRAM and data-swapping techniques.

In addition to experiments with our two-step synthesis + privacy protec-
tion approach, we explore a GAN-based one-step approach for generating (pri-
vacy preserving) synthetic data generation. We use CTGAN, a popular and
widely used GAN-based generative model [51]. The data synthesis procedure of
CTGAN involves three key elements, namely: the conditional vector, the gen-
erator loss, and the training-by-sampling method. CTGAN uses a conditional
generator to deal with the class imbalance problem. The conditional genera-
tor generates synthetic rows conditioned on one of the discrete columns. With
training-by-sampling, the conditional and training data are sampled according to
the log frequency of each category. We used open public toolkit Synthetic Data
Vault (SDV)4 implemented in Python [32]. In our implementation, hyperparam-
eter tuning is applied to batch size, number of epochs, generator dimension, and
discriminator dimension. We left other parameters set to default. We generate
differentially private CTGAN data using DPCTGAN, which takes the state-
of-the-art CTGAN and incorporates differential privacy. We chose to make a
comparison with CTGAN and DPCTGAN because of the success of the two
techniques reported in the literature [51].

4.3 Target Machine Learning Model

In this section, we discuss the target machine learning algorithm used to predict
the propensity to move. We trained and tested a number of machine learning
algorithms, including decision tree, random forest, näıve Bayes, and extra trees.
We found that all classifiers outperform the majority-class classifier, with classi-
fiers using trees generally being the best performers. For simplicity, in the rest of
the paper, we will use random forest classifier as it is shown to perform the best
on the original data and on the synthetic data. We report the results of random
classifier using the most frequent (majority-class) strategy as a näıve baseline.

Recall that we must ensure that the prediction performance of the model is
maintained when it is trained on synthetic + privacy-preservation data. To this
end, we use the following metrics: F1-Macro, Matthews Correlation Coefficient
(MCC), geometric mean (G-mean), True Negative (TN), False Positive (FP),
False Negative (FN), and True Positive (TP). Our choice is motivated by the
imbalance of the target attribute.

The macro-averaged F1 score (F1-Macro) is computed using the arithmetic
mean (i.e., unweighted mean) of all the per-class F1 scores. This method treats
all classes equally regardless of their support values.

The Geometric mean (G-mean) is the geometric mean of sensitivity and
specificity [45]. G-mean takes all of the TP, TN, FP, and FN into account.

G-mean =

√
TP

TP + FN
∗ TN

TN + FP
(1)

3 https://cran.r-project.org/web/packages/sdcMicro/sdcMicro.pdf.
4 https://github.com/sdv-dev/SDV.

https://cran.r-project.org/web/packages/sdcMicro/sdcMicro.pdf
https://github.com/sdv-dev/SDV
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Matthews Correlation Coefficient (MCC) metric is a balanced measure that
can be used especially if the classes of the target attribute are of different sizes [6].
It returns a value between -1 and 1.

MCC =
(TP ∗ TN) − (FP ∗ FN)√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
(2)

4.4 Model Inversion Attribute Inference Attacks

In this section, we describe three model inversion attacks that we use in
our paper: confidence-score MIA (CSMIA) [28], label-only MIA (LOMIA +
Marginals), and the Fredrikson et al. MIA (FMIA) [14].

Confidence-Score MIA (CSMIA) [28] uses the output and confidence
scores returned when the attacker queries the target propensity-to-move model.
The attacker also has knowledge of the possible values for the sensitive attribute.
For each target individual, the attacker creates different versions of the individ-
ual’s records by substituting in for the missing sensitive attribute all values that
would be possible for that attribute. The attacker then queries the model with
each version and obtains the predicted class labels and the corresponding model
confidence scores. Then, the attacker uses the predicted labels and confidence
scores as follows [28]:

Case (1): when the target model’s prediction is correct for only a single
sensitive attribute value, then, the attacker selects the sensitive attribute value
to be the one for which the prediction is correct.

Case (2): when target model’s prediction is correct for multiple sensitive
attribute values, then the attacker selects the sensitive value to be the one for
which prediction confidence score is maximum.

Case (3): when target model’s prediction is incorrect for all sensitive
attribute values, then the attacker selects the sensitive value to be the one for
which prediction confidence score is minimum.

Label-Only MIA with Marginals (LOMIA + Marginals) is based
on the LOMIA attack proposed by [28]. LOMIA + Marginals uses the output
returned when the attacker queries the target propensity-to-move model and
the marginal distributions of the training data (which includes the information
about the possible values of sensitive attributes).

As with CSMIA, for each target individual, the attacker queries the target
model multiple times, varying the value of the sensitive attribute. To determine
the value of the sensitive attribute, the attacker follows Case (1) of CSMIA,
as described in [28]. Specifically, if the target model’s prediction is correct for a
single sensitive attribute value, the attacker selects that value as the sensitive
attribute. Differently from [28], for cases where the attacker cannot infer the
sensitive attribute, we do not run an auxiliary machine learning model. Instead,
the attacker uses the released marginal distribution to predict the most probable
value of the sensitive attribute.

The Fredrikson et al. MIA (FMIA) [14] uses the output returned when
the attacker queries the target propensity-to-move model and the marginal dis-
tributions of the training data. Following the threat model of [14], the attacker
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also has access to a confusion matrix of the target model’s predictions on its
training data. As with CSMIA and LOMIA + Marginals, the attacker queries
the target model multiple times for each target individual, changing the sensitive
attribute to take on all possible values and obtaining the predicted labels. Next,
the attacker calculates the product of the probability that the target model’s pre-
diction aligns with the true label and the marginal distribution for each potential
sensitive attribute value across all possibilities. Then, the attacker predicts the
sensitive attribute value for which this product is maximized.

Measuring Success of Attribute Inference Attack. We use two ways to
measure attribute inference attacks:

(1) From a machine learning perspective, we evaluate the success of the attack by
measuring precision (also called the positive predicted value (PPV) [21]). The
precision metric measures the ratio of true positive predictions considering
all positive predictions. A precision score of 1 indicates that the positive
predictions of the attack are always correct.

(2) From statistical disclosure control, we use CAP to measure the disclosure
risk of the individuals. Following [46], we define Dorg as the original data
and Korg and Torg as vectors for the key and target sensitive attributes
of the original data: Dorg = {Korg, Torg}. Similarly, we denote by Dsyn

as the synthetic data and Ksyn and Tsyn as the vectors for the key and
target sensitive attributes of the synthetic data: Dsyn = {Ksyn, Tsyn}. Note
that when we are calculating CAP, the synthetic data we use is the data
reconstructed by the attacker by inferring the missing sensitive value and
adding it to the previously-possessed non-sensitive attributes used for the
attack. We consider gender, age, and income as target sensitive attributes,
evaluating CAP for each sensitive attribute separately. Key attributes are
all other attributes for an individual except for the sensitive attribute being
measured by CAP. The CAP for a record j is the probability of its target
attributes given its key attributes.

CAPorg,j = Pr(Torg,j |Korg,j) =

∑M
i=1 [Torg,i = Torg,j , Korg,i = Korg,j ]∑M

i=1(Korg,i = Korg,j)
(3)

where M is the number of records. The CAP score for the original data is
considered as an approximate upper bound. Then, the CAP for the record j
based on a corresponding synthetic data Dsyn is the same probability but derived
from synthetic data Dsyn.

CAPsyn,j = (Pr(Torg,j |Korg,j))syn =

∑M
i=1 [Tsyn,i = Torg,j , Ksyn,i = Korg,j ]∑M

i=1(Ksyn,i = Korg,j)
(4)

CAP has a score between 0 and 1: a low score (close to 0) indicates that the
synthetic data has a little risk of disclosure and a high score (close to 1) indicates
a high risk of disclosure.
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5 Performance of the Target Models

In this section, we compare the performance of the target propensity-to-move
models. We evaluate whether a random forest classifier trained on protected
synthetic data can attain performance comparable to a random forest classi-
fier trained on the original data. Our results are reported in Table 2. Column
“privacy-preservation” provides different privacy-preserving techniques that we
applied to synthetic training data. “Privacy-preservation” with “None” means
that there are no privacy-preserving techniques applied on top of the synthesis.

In Table 2, we see that random forest classifier trained on synthetic data using
CART with None (i.e., no privacy-preserving technique applied) has quite close
and comparable results to random forest classifier trained on original data. As
a sanity check, we observe that both outperform the majority-class classifier.

Table 2. Classification performance of the target model. We generate synthetic data
using CART and CTGAN. For privacy-preserving techniques, we used swapping, con-
ditional swapping, PRAM, and differential privacy (ε = 3). In each case, the test data
is used in its original (unprotected) form.

Target MLs to be Released Data sets Privacy-preservation F1-Macro MCC G-mean TN FP FN TP

Majority-class Original data None 0.4924 0.0012 0.4924 46452 9539 17818 3686

Random Forest Original Data None 0.5946 0.2407 0.5779 61907 2363 10677 2548

Random Forest Synthetic data using CART None 0.5946 0.2426 0.5793 61848 2422 10628 2597

Swapping 0.5881 0.2389 0.5742 62174 2096 10831 2394

Conditional swapping 0.4654 0.0216 0.5028 63704 566 13034 191

PRAM 0.5941 0.2415 0.5789 61844 2426 10638 2587

Synthetic data using CTGAN None 0.4586 0.0392 0.5021 64207 63 13155 70

Differential privacy 0.4534 0.000 0.5000 64270 0 13225 0

We observe that in two cases the model trained on our synthesis + pri-
vacy preservation data retains a level of performance comparable to a model
trained on the original data: CART with Swapping and CART with PRAM.
Surprisingly, we find that when the training data is created with CART synthe-
sis and Conditional swapping or CTGAN (with or without Differential privacy)
the performance is comparable to that of a majority-class classifier. This result
suggests that the use of conditional swapping and differential privacy may not
effectively preserve the utility of the propensity-to-move data. For the rest of
the paper, we will assume that we intend to release machine learning models
trained on synthetic data using CART with: None, Swapping, and PRAM as
privacy-preserving techniques.

6 Results of Model Inversion Attribute Inference Attacks

In this section, we report the performance of different model inversion attribute
inference attacks. We evaluate the performance of attacks on the model when it
is trained on the original training data. Then, we investigate whether training
the model on synthesis + privacy preservation data can protect against model
inversion attribute inference attacks.
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6.1 Attacks on the Model Trained on Original Data

First, we look at the performance of model inversion attribute inference attacks
on the target model trained on original training data. The results are reported
in Table 3.

Table 3. Results of model inversion attribute inference attacks measured using pre-
cision (positive predictive value) for three different target individual sets. The target
propensity-to-move model is trained on original training data. Numbers in bold
and italic represent the first and second best inference scores across conditions. A high
precision indicates that the attack is good at correctly inferring the sensitive attribute
values. We run experiments ten times and we report average scores. The standard
deviation is below 0.01.

Adversary Resources Inclusive individuals (2013) Inclusive individuals (2015) Exclusive individuals (2015)

Attack models Gender Age Income Gender Age Income Gender Age Income

Marginals Only 0.4977 0.1238 0.1982 0.5029 0.1244 0.1991 0.5012 0.1275 0.2001

CSMIA 0.3206 0.0105 0.0514 0.4660 0.0638 0.1581 0.4943 0.0721 0.1602

LOMIA + Marginals 0.5157 0.1336 0.2105 0.5035 0.1291 0.1983 0.5014 0.1234 0.2005

FMIA 0.7563 0.6777 0.6898 0.4647 0.0170 0.2499 0.5205 0.1091 0.1452

The attack models show varying performances compared to the Marginals
Only Attack. We observe that attribute inference scores for the attack mod-
els “LOMIA + Marginals” and “FMIA” outperform the inference scores of the
Marginals Only Attack. In particular, FMIA for Inclusive individuals (2013)
achieves the highest precision for all three sensitive attributes gender, age, and
income. It outperforms other attack models in terms of correctly predicting pos-
itive instances. LOMIA + Marginals shows moderate performance, obtaining
precision values higher than Marginals Only Attack. The fact that the attack
performance for Inclusive individuals (2013) is highest is not surprising since
these individuals are in the training set of the target model. For Inclusive indi-
viduals (2015) and Exclusive individuals (2015), we see that the performance
for all attack models is relatively low and comparable to the Marginals Only
Attack, except for a few cases such as FMIA on age for Inclusive individuals
(2015). Recall that for FMIA, the attacker is exploiting a larger opportunity for
attack than for the other attacks. Specifically, the attacker can query the model
but also possesses the marginal distributions of the training data and a confusion
matrix (cf. Sect. 4.4. For this reason, it is not particularly surprising that FMIA
is the strongest attack).

6.2 Attacks on the Model Trained on Protected Synthetic Data

Second, we investigate whether we can counter the attack by replacing original
data used to train target model by a privacy-preserving synthetic data. The
results of the model inversion attribute inference attacks are reported in Table 4.
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Table 4. Results of model inversion attribute inference attacks measured using pre-
cision for three different target individual sets. The target propensity to move model
is trained on privacy-preserving (PP) + synthetic training data. Numbers in bold and
italic represent the first and second best inference scores across conditions. We run
experiments ten times and we report average scores. The standard deviation is below
0.02.

PP+ Synthetic data Attack Models Inclusive individuals (2013) Inclusive individuals (2015) Exclusive individuals (2015)

Gender Age Income Gender Age Income Gender Age Income

Synthesis Only Marginals Only 0.5036 0.1228 0.2021 0.4938 0.1225 0.2033 0.4979 0.1233 0.1980

CSMIA 0.4901 0.0675 0.1423 0.4947 0.0775 0.1544 0.5018 0.1012 0.1826

LOMIA + Marginals 0.4980 0.1261 0.1995 0.5003 0.1282 0.1972 0.4989 0.1252 0.1985

FMIA 0.5153 0.0498 0.3453 0.5007 0.0588 0.2772 0.5069 0.1080 0.1452

Synthesis + Swapping Marginals Only 0.4980 0.1238 0.1974 0.4979 0.1233 0.2060 0.4975 0.1248 0.1973

CSMIA 0.4958 0.1198 0.2032 0.4996 0.1175 0.1848 0.5093 0.1457 0.1986

LOMIA + Marginals 0.5012 0.1280 0.1984 0.4972 0.1265 0.1984 0.5032 0.1242 0.1988

FMIA 0.4473 0.0901 0.0792 0.4320 0.1362 0.3098 0.5351 0.1020 0.1452

Synthesis + PRAM Marginals Only 0.5002 0.1259 0.2010 0.5063 0.1239 0.2039 0.5002 0.1255 0.2000

CSMIA 0.4967 0.1175 0.1701 0.4913 0.1059 0.1827 0.4895 0.1371 0.2070

LOMIA + Marginals 0.5038 0.1274 0.1963 0.5004 0.1238 0.2002 0.5004 0.1247 0.1987

FMIA 0.4827 0.0282 0.1635 0.5286 0.1129 0.1188 0.5120 0.1019 0.1452

Overall we see that the effectiveness of the synthesis + privacy-preserving
techniques varies across different attributes, attack models, and adversary
resources (target sets). While some attributes have an inference score higher
than the inference score of the Marginals Only attack, others only have com-
parable performance to the Marginals Only attack. We notice a decrease in the
performance of attack models specifically for Inclusive individuals (2013) com-
pared to the performance of attack models for the same group of individuals in
Table 3. For Inclusive individuals (2015) and Exclusive individuals (2015) which
were not part of the training of the synthesis nor the training of the target model,
we do not see a clear impact of privacy-preserving techniques on attack models.
In most cases, the leak of sensitive information is low and comparable to the
performance of the Marginals Only attack.

7 Correct Attribution Probability

Now, we shift our focus to calculate the risk of attribute disclosure for individual
target subjects using CAP (Correct Attribution Probability). CAP captures how
many specific individuals face a high risk of attribute disclosure and how many a
lower risk. We measure CAP using Eq. 4, where Dorg is the attacker’s data with
key attributes Korg and the original target sensitive attribute Torg (gender, age,
income). Dsyn represents the attacker’s data where Ksyn = Korg are the key
attributes and Tsyn is the outcome of the model inversion attribute inference
attacks.

Figure 1 and Fig. 2 show the frequency of CAP scores for sensitive attributes
age and income, respectively. Due to space limitation, we specifically, focus on
FMIA attack because it outperformed other attack models in Table 3. The top
row of Fig. 1 and Fig. 2 shows the frequency of CAP scores on the original data
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Fig. 1. Frequency of CAP scores for attribute age. The total number of queries is 2904.
The numbers inside the bars represent the count of individuals with corresponding CAP
scores.

5 14 4

2881

2605

2 4 2 291

2612

2 4 2 284

2596

2 4 4 298

6 21 38 20 26 4 10 14

2765

2373

4 1 4 18 10
494

2379

4 3 2 18 6
492

2360

10 1 4 18 6 3
502

16 23 20 13 20 48 6 9

2749

2897

7

2895

9

2318

2 2 5 2 38 2
535

syndata_(exclusive 2015) syndata_(inclusive 2013) syndata_(inclusive 2015)

Swap_(exclusive 2015) Swap_(inclusive 2013) Swap_(inclusive 2015)

PRAM_(exclusive 2015) PRAM_(inclusive 2013) PRAM_(inclusive 2015)

Original_(exclusive 2015) Original_(inclusive 2013) Original_(inclusive 2015)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

CAP Score

F
re

q
u

en
cy

Fig. 2. Frequency of CAP scores for attribute income. The attack model is FMIA. The
total number of queries is 2904. The numbers inside the bars represent the count of
individuals with corresponding CAP scores.

(unprotected data). We see that across all three cases, Inclusive individuals
(2013), Inclusive individuals (2015), and Exclusive individuals (2015), there is a
high CAP score, signifying a high disclosure risk. However, when we calculate
CAP scores based on the outcome of the model inversion attack, we observe
that the risk of disclosure is relatively low, with approximately up to 92% of
individuals considered protected. Only for the remaining individuals (8% indi-
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viduals), we observe that an attacker can easily infer sensitive attributes age,
and income with high CAP scores. Also, the number of disclosed individuals
varies depending on the privacy-preserving technique applied. Comparing differ-
ent resources, we see that for sensitive attribute age, Inclusive individuals (2013)
have the highest number of disclosed individuals, next are Inclusive individuals
(2015), and finally, Exclusive individuals (2015) have the lowest number of dis-
closed individuals. This aligns with the findings in Table 4. Notably, even though
we generated privacy-preserving synthetic training data sets, the target model
appears to retain some information about the original data, leading to a risk of
disclosure for certain individuals.

8 Conclusion and Future Work

We have conducted an investigation aimed at protecting sensitive attributes
against model inversion attacks, with a specific focus on a case study for a gov-
ernmental institute. Our objective was to determine the feasibility of releasing
a trained machine learning model predicting propensity-to-move to the pub-
lic without causing privacy concerns. To accomplish this, we evaluated a num-
ber of existing privacy attacks, including CSMIA, LOMIA + Marginals, and
FMIA, each distinguished by the resources available to the attacker. Our find-
ings revealed that FMIA presented the highest degree of information leakage,
followed by LOMIA + Marginals, while CSMIA exhibited the least leakage.

To mitigate these privacy risks, we employed privacy-preserving techniques
on top of synthetic data utilized to train the machine learning model prior to its
public release. Our results indicated that, in specific cases, such as with Inclusive
individuals (2013), our privacy-preserving techniques successfully reduced infor-
mation leakage. However, in other cases Inclusive individuals (2015) and Exclu-
sive individuals (2015), the leakage remained comparable to that of a Marginals
Only Attack, which uses the marginal distributions of the training data. We
found a high disclosure risk, measured with CAP, when the target model is
trained on original data. When the target model is trained on data protected
with our two step synthesis + privacy preservation approach a lower percentage
of individuals risk disclosure.

Furthermore, we think that the performance of the target machine learning
model, as well as the correlation between the sensitive attribute and the target
attribute, play a key role in the success of model inversion attacks. Future work
should explore other case studies, in which this correlation might be different.
Also, future work can look at other threat models such as white-box attacks,
where the model predictions, model parameters, and explanation of the model’s
output are made public.
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Abstract. Outstanding performance has been observed in a number
of real-world applications such as speech processing and image classi-
fication using deep learning models. However, developing these kinds
of models in sensitive domains such as healthcare usually necessitates
dealing with a specific level of privacy challenges which provide unique
concerns. For managing such privacy concerns, a practical method might
involve generating feasible synthetic data that not only provides accept-
able data quality but also helps to improve the efficiency of the model.
Synthetic Data Generation (SDG) innately includes Generative Adver-
sarial Networks (GANs) that have drawn significant interest in this field
as a result of their achievement in various other research areas. In the
study, a framework safeguarding privacy, which employs Rényi Differ-
ential Privacy along with Generative Adversarial Networks and a Vari-
ational Autoencoder (RDP-VAEGAN), is introduced. This approach is
evaluated and contrasted with other top-tier models having identical pri-
vacy constraints, utilizing both unsupervised and supervised methods on
two medical datasets that are publicly accessible.

Keywords: Adversarial Learning · Rényi Differential Privacy · GAN ·
Variational Autoencoders · Synthetic Data Generation · Healthcare ·
Medical data

1 Introduction

Deep learning (DL) has shown remarkable achievements in various domains,
including natural language processing, information retrieval, and computer
vision, thanks to its immense capabilities. However, the effectiveness of deep
learning heavily depends on having access to large volumes of training data.
Consequently, incorporating deep learning models into industries that priori-
tize data privacy, such as healthcare, may face obstacles. In order to effectively
utilize data-driven approaches in medical fields, it is crucial to address privacy
concerns. Typically, personally identifiable information is anonymized to protect
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the sensitivity of the data. However, these methods can be vulnerable to de-
anonymization attacks [22], leading researchers to explore alternative approaches
like privacy-preserving machine learning (ML) [3] to further improve a system’s
resilience against such attacks. In addition to this primary privacy concern, han-
dling noisy and intricate data further adds complexity to the process, as the
data may include different types, such as categorical, discrete, and continuous
variables.

Synthetic Data Generation (SDG) stands out as one of the most viable meth-
ods for maintaining privacy. By generating synthetic data, privacy concerns can
be alleviated, opening up numerous collaborative research opportunities. This
process is particularly advantageous in tasks such as pattern identification and
predictive model creation. Generative Adversarial Networks (GANs) have drawn
substantial interest in the realm of SDG due to their achievements in other areas
[10]. Since SDG relies on a generative process, GANs are well-suited for this pur-
pose. Utilizing GANs makes it challenging to differentiate between real samples
and those that are generated, due to the underlying distribution of the actual
data. Consequently, the results of GANs cannot be reversed using a deterministic
function.

On the other hand, the utilization of GANs for SDG solely does not actually
ensure the privacy of the system. Depending only on the irreversibility of GANs
is not sufficient, as GANs have already been proven to be vulnerable [13]. There-
fore, additional steps must be considered to assure the privacy of SDG systems.
The usage of private patient data in medical applications increases concerns
about the severe consequences of privacy breaches. Consequently, two funda-
mental questions must be considered: (1) What amount of information becomes
revealed during the training stage? and (2) How strong are the system’s security
measures? Hence, evaluating the system’s privacy level is crucial to ensure its
commitment to safeguarding privacy.

Differential Privacy (DP) [9] is a mathematical framework that provides a
means of ensuring and quantifying the privacy of a system. It has emerged as
the standard approach for exploring databases containing sensitive information.
DP’s strength lies in its ability to provide precise mathematical representation to
ensure privacy without limiting statistical reasoning. Additionally, DP allows for
the measurement of the privacy level of a system. In the domains of ML and DL,
where sensitive data is often employed to enhance predictive accuracy, the role
of DP is crucial. The privacy of an ML model can be compromised by various
attacks, therefore it’s wise to anticipate the existence of a potent adversary with
a thorough understanding of the system’s entire pipeline, including the model
and its training process [27]. In order to shield the privacy of the system, it’s
imperative to defend from this type of adversary, or at the minimum, quantify
the greatest possible extent of privacy intrusion in that context. A system that is
entirely differentially private guarantees that the training of the algorithm does
not depend on the sensitive information of any individual.

Differentially Private Stochastic Gradient Descent (DP-SGD), introduced in
[1], is a widely adopted technique that ensures differential privacy while main-
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taining model accuracy within a given privacy budget. DP-SGD serves as the
foundation for numerous research studies [2,31]. In essence, the DP-SGD app-
roach consists of three primary steps. Firstly, it limits the gradients to set the
algorithm’s sensitivity to individual data. Secondly, it introduces Gaussian noise
into the data. Finally, it performs gradient descent optimization. Currently, the
utilization of SGD within the DP-SGD framework is regarded as a very impor-
tant technique for preserving privacy without sacrificing accuracy in ML models.

Generating synthetic data in the medical domain is faced with a number of
challenges. The first challenge is ensuring privacy during the model training,
which is often not directly addressed in current works, and instead, statistical
or machine learning-based techniques are used. The second difficulty involves
handling discrete data, a task with which GAN-based techniques often grapple,
as these are designed for continuous data. The third challenge involves evaluat-
ing the quality of generated data within realistic, real-world contexts, which is
particularly important in the healthcare sector. Here, inferior synthetic data can
result in serious repercussions, potentially endangering human lives. The fourth
challenge is the integration of local and temporal correlations among features,
something that is frequently overlooked but is vital in the medical field. This
is because patient histories and disease occurrences frequently display coherent
patterns, and acknowledging these interdependencies can substantially enhance
the reliability of synthetic data.

In this paper, we present our model that produces higher-quality synthetic
data while working within similar privacy constraints. Additionally, our model
provides not just high-quality synthetic data but also superior privacy safe-
guards.

The layout of the paper is arranged in the following manner: In Sect. 2,
previous research on synthetic data generation, GAN, and their challenges are
discussed. Section 3 presents the proposed algorithmic framework for privacy-
preserving medical data generation. The experimental results are outlined in
Sect. 4. Section 5 offers a conclusion of the research.

2 Background

2.1 Related Works

Many studies utilize Differential Privacy to generate synthetic data, often follow-
ing a method described in [1]. This approach involves training a neural network
while maintaining differential privacy by adding noise and using gradient clipping
to restrict the norms of the gradients, in accordance with the standard procedure
introduced in [9]. One of the major contributions of [1] is the introduction of the
privacy accountant that monitors privacy loss. Inspired by the effectiveness of
this method, we expand our privacy-preserving framework by adopting Rényi
Differential Privacy (RDP) [20] as a novel notion of DP to estimate privacy loss.

Recent research has focused on tackling the challenges related to generating
synthetic healthcare data [5,11]. MedGAN is an early system used to generate
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synthetic medical data, which only relies on GAN models and does not imple-
ment any privacy-preserving mechanism [8]. While the method exhibits strong
performance in data generation, it lacks privacy assurance, as GANs can be
susceptible to attacks. In contrast, MedGAN utilizes denoising autoencoders to
produce discrete data [8]. Tools like Synthea, synthetic patient generator, are
not widely utilized as they depend solely on conventional specifications and do
not account for factors vital to predictive analysis [7,30]. Other research, such as
CorGAN [19] and TableGAN [23], employs convolutional GANs for generating
sequences of longitudinal events, while CTGAN [32] is specifically designed to
handle tabular data comprising both continuous and discrete features. However,
none of these approaches ensures any privacy during data generation. This lack
of privacy protection makes these models vulnerable in practice and could com-
promise the privacy of original medical data. This paper will delve into different
strategies for preserving privacy.

2.2 Differential Privacy

Differential Privacy ensures the safeguarding of individual privacy by quanti-
fying the privacy loss that takes place when information is disclosed from a
database, relying on a defined mathematical concept [9]. The most commonly
used definition of Differential Privacy is (ε, δ)-differential privacy.

Definition 1 ((ε, δ)-DP). If a randomized algorithm A that takes a dataset
X as input and returns a query outcome Q satisfies the definition of (ε, δ)-
differential privacy, then it ensures individuals’ privacy for all possible query
outcomes Q and all neighbouring datasets D and D′.

Pr[A(D) ∈ Q] ≤ eε Pr[A(D′) ∈ Q] + δ (1)

Datasets D and D′, which differ only by one record, are referred to as neigh-
bor datasets, highlighting the importance of maintaining individual privacy. The
parameters (ε, δ) are used to represent the privacy budget, meaning that differ-
entially private algorithms do not guarantee absolute privacy but only indicate
the level of confidence in privacy preservation for the given (ε, δ) values. The
smaller the values of (ε, δ), the more confident we are about the algorithm’s
privacy. The value of (ε, δ) with δ = 0 is known as ε-DP, which is the original
definition [9] and provides a stronger promise of privacy since even a small value
of δ can lead to privacy violations due to the shift in the distribution. The use
of (ε, δ)-DP is common because it allows for advanced composition theorem to
be applied.

Theorem 1 (Advanced Composition [9]). Suppose we apply an adaptive
composition of a (ε, δ)-DP mechanism k times. Then, the resulting composite
mechanism will be (ε′, kδ′ + δ) − DP with respect to δ′, where the parameter ε′

is defined as ε′ =
√

2k ln
(

1
δ′

)
ε + kε(eε − 1).
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2.3 Rényi Differential Privacy

Compared to the basic composition theorem, Theorem 1, known as strong or
advanced composition, establishes a more precise upper limit for the privacy
loss in (ε, δ) − DP compositions. However, the strong composition theorem has
the drawback of rapidly increasing privacy parameters as the theorem is used
repeatedly, leading to a selection of possible (ε(δ), δ) values. A novel approach
called Rényi Differential Privacy (RDP) was introduced in [20] to overcome some
of the constraints associated with (ε, δ) − DP. This approach is grounded in the
idea of Rényi divergence, as detailed in Eq. 2.

Definition 2 (Rényi divergence of order α [25]). Rényi divergence of order
α, which quantifies the difference between two probability distributions P and P ′,
is specified as follows:

Dα(P | |P ′) =
1

α − 1
log

(∑
x∈X

(
P (x)αP ′(x)1−α

))
(2)

The Rényi divergence, which is a more general form of the Kullback-Leibler
divergence, is equivalent to the Kullback-Leibler divergence when α is equal to 1.
When α is equal to infinity, the special case is:

D∞(P | |P ′) = log
(

sup
x∈X

P (x)
P ′(x)

)
(3)

The value given by the logarithm of the highest ratio of probabilities for a
given x over P ′(x) is used to calculate the Rényi divergence. The relationship
between ε-DP and Rényi divergence is established when the value of α = ∞.
In case a randomized mechanism A demonstrates ε-differential privacy, then for
a pair of datasets D and D′, differing by a single record, the condition depicted
in Eq. 4 has to be satisfied. Using the definitions discussed earlier, the work [20]
unveiled a novel concept in differential privacy known as RDP.

Definition 3 (RDP rm [20]). The (α, ε) − RDP is a randomized algorithm
A : D → U , and it is defined as satisfying the condition that for all neighbour
datasets D and D′, the following condition is satisfied:

Dα(A(D)||A (D′)) ≤ ε (4)

Two essential characteristics of the RDP definition (Definition 3) must be
taken into account.

Proposition 1 (Composition of RDP [20]). Assuming A is a randomized
function that maps from a set X to a set U1 and conforms to (α, ε1) − RDP ,
and B is a randomized function that maps from U1×X to a set U2 and conforms
to (α, ε2) − RDP . Then, by applying A to X , we obtain M1, and by applying
B to M2 and X , we obtain M2. The resulting mechanism (M1,M2) meets the
conditions of (α, ε1 + ε2)-RDP.
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Proposition 2. Assuming A is a randomized function that maps from a set
X to a set U and adheres to (α, ε) − RDP, then it must also comply with

(ε +
log( 1

δ )
(α−1) , δ) − DP for any value of δ that falls between 0 and 1.

The two propositions mentioned above are fundamental to our privacy preser-
vation approach. Proposition 1 deals with computing the privacy cost by combin-
ing the autoencoder and GAN structures. Proposition 2 is useful for evaluating
the level of differential privacy in our system using the standard (ε, δ) definition
(as defined in Definition 1).

3 Algorithmic Framework

We have developed a GAN model that secures privacy through the implementa-
tion of Rényi differential privacy. GAN models have historically faced challenges
when generating non-continuous data [15], prompting us to integrate autoen-
coders [18] to establish a continuous feature space representative of the input.
This enables the GAN to produce high-quality synthetic data, simultaneously
protecting privacy. No matter the type of input data, whether continuous, dis-
crete, or a combination of both, the autoencoder can convert the input space
into a continuous one. The autoencoder functions as a conduit between the non-
continuous data and the GAN model which is often common in medical domains.

The framework we propose is depicted in Fig. 1. In this configuration, ran-
dom noise z ∈ R

r, which follows a normal distribution N (0, 1), is taken by the
generator G and mapped to the generator’s domain Dd

g . The discriminator D
takes real data x ∈ R

n and maps it to the discriminator domain Dd, typically
a set of binary values or values within the range [−1, 1]. In our RDPVAEGAN
framework, the synthetic data undergoes decoding before being inputted into the
discriminator, which deviates from the standard training process used in tradi-
tional GANs. This decoding step involves guiding the artificial data through a
pre-trained variational autoencoder.

3.1 GAN

Most of the studies in synthetic data generation [8] overlook the local or temporal
correlations of the features. Multilayer perceptrons are commonly used, though
they don’t correspond well with real-life situations such as the development of
diseases. To overcome this limitation, we deploy one-dimensional convolutional
neural networks (CNNs) in our variational autoencoder as well as in the gener-
ator and discriminator components of our GAN architecture. CNNs are capable
of recognizing patterns in correlated input features as well as capturing temporal
information [12].

The procedure for training the GAN is described in Algorithm 2, referred
to as the GAN Training Step. Remarkably, differential privacy is exclusively
applied to the discriminator, as it is the pivotal component with access to
authentic data. To effectively thwart mode collapse during training, we harness
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Fig. 1. The overall block diagram of GAN framework

the remarkable capabilities of the Wasserstein GAN [4], which adeptly approx-
imates the Earth Mover’s (EM) distance. The Wasserstein GAN has garnered
acclaim for its unparalleled effectiveness in evading mode collapse. Distinguished
as the Wasserstein-1 distance, the EM distance signifies the minimal expendi-
ture required to seamlessly convert a synthesized data distribution Pg into an
authentic data distribution Px.

W (Px, Pg) = inf
vε

∏
Px, Pg

E(x,y)∼ v [‖x − y‖] (5)

Here,
∏

Px, Pg represents the collection of all joint distributions ϑ(x, y) with
marginals given by Px and Pg, respectively. The function ϑ(x, y) measures the
amount of “mass” that needs to be shifted from x to y to effectively transform
Px into Pg.

To tackle the challenging infimum in Eq. 5, WGAN employs an optimization
strategy outlined in Eq. 6, inspired by the Kantorovich-Rubinstein duality [29],
reflecting the intrinsic difficulty of the issue.

W (Px, Pg) = sup
‖f‖L≤1

Ex∼Px
[f(x)] − Ex∼Pg

[f(x)] (6)

To offer a more simplified explanation, the terms “supremum” and “infi-
mum” correspond to the smallest upper bound and the largest lower bound,
respectively.
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Definition 4 (1-Lipschitz functions). If we have two metric spaces (X, dX)
and (Y, dY ) where ′d′ is the distance metric, the function f : X → Y is known
as K − Lipschitz when:

∀(x, x′) ∈ X, ∃K∈ R : dY (f(x), f(x′)) ≤ KdX(x, x′) (7)

With K = 1 and using the distance metric, Eq. 7 can be expressed as:

∀(x, x′) ∈ X : |f(x) − f(x′)| ≤ |x − x′| (8)

In order to compute the Wasserstein distance, it becomes imperative to dis-
cover a function that adheres to the 1-Lipschitz constraint (as specified in Defi-
nition 4 and Eq. 8). To accomplish this, a neural model is constructed to acquire
knowledge of the function. This entails the development of a discriminator D,
which deviates from employing the Sigmoid function and instead produces a
scalar output, rather than a probability of confidence.

When it comes to privacy issues, it should be highlighted that the generator
is not granted direct access to the actual data, yet it is able to access the discrim-
inator’s gradients. Solely the discriminator is granted access to real data, and
we propose training it while maintaining differential privacy. Fundamentally, this
approach is rooted in the post-processing theorem of differential privacy, which
presents the following recommended methodology.

Theorem 2 (Post-processing [9]). Suppose we have an algorithm D :
N

|X | → D that satisfies (ε, δ)−differential privacy, and we have an arbitrary
function G: D → O. If we compose G with D, i.e., G ◦ D : N

|X |→ O, then
the resulting algorithm also satisfies (ε, δ)-differential privacy, as per the post-
processing theorem [9].

Drawing from the aforementioned rationale, we consider the generator and
discriminator as G and D, respectively. By considering the generator as a random
mapping that’s layered over the discriminator, ensuring differential privacy solely
on the discriminator ensures the entire system maintains differential privacy.
This makes it unnecessary to train a generator that maintains privacy. During
the generator’s training process, as demonstrated in lines 17–20 of Algorithm
2, a private generator is unnecessary, and we can employ the conventional loss
function for the generator within the WGAN framework [4].

3.2 Variational Autoencoders

The autoencoder is architected to realize multiple goals at the same time, such
as detecting correlations among neighbouring features, creating a compressed
feature space, converting discrete records into a continuous domain, and handling
both discrete and continuous data. Autoencoders are a type of neural network
design composed of an encoder and a decoder. The encoding function Enc(·) :
R

n → R
d is crafted to map the input x ∈ R

n into the latent space L ∈ R
d,

equipped with weights and biases θ. Alternatively, the decoding function Dec(·) :



32 P. P. Das et al.

Algorithm 1. Pre-Training of Variational Autoencoder
Require: Real dataset X = {xi}N

i=1, weights of the network θ, φ, learning rate η,
number of epochs nvae and standard deviation of the additive noise σvae.

2: for k = 1 . . . nvae do
Sample a mini − batch of n examples. X = {xi}n

i=1

4: Split X into X1, . . . , Xr where r =
⌊

n
k

⌋

for l = 1 . . . r do
6: Calculate Loss(θ, φ, Xl) using Eq. 10.

gθ,φ,l ← ∇θ,φLoss(θ, φ Xl)
8: end for

ĝθ,φ ← 1
r

∑r
l=1 (gθ,φ,l+N (0, σ2

vae))

10: θ̂, φ = Update(θ, φ, η, ĝθ,φ)
end for

Algorithm 2. GAN Training
Require: Real dataset X = {xi}N

i=1, generator and discriminator weights ψ and
ω, respectively, learning rate η, random noise z where each zi follows a normal
distribution zi ∼ N (0, 1), number of epochs ngan, number of training steps for
discriminator per one step of generator training nd, norm bound C and standard
deviation of the additive noise σgan.

2: for j = 1 . . . ngan do
for k = 1 . . . nd do

4: Take a mini − batch from real data X = {xi}n
i=1

Sample a mini − batch Z = {zi}n
i=1

6: Partition real data mini − batches into X1, . . . , Xr

Partition noise data mini − batches into Z1, . . . , Zr

8: for l = 1 . . . r do
xi ∈ Xl and zi ∈ Zl

10: Loss = 1
k

∑k
i=1(D(xi) − D(Dec(G(zi))))

gω,l ← ∇ωLoss(ω, Xl)
12: ĝω,l ← gω,l

max(1,
‖gω,l‖2

C
)

end for
14: ĝω ← 1

r

∑r
l=1 (ĝω,l+N (0, σ2

ganC2
I))

Update: ω̂ = ω − ηĝω

16: end for
Sample {zi}n

i=1 from noise prior
18: Loss = − 1

n

∑n
i (D(Dec(G(zi))))

gψ ← ∇ψLoss(ψ, Z)

20: Update : ψ̂ ← ψ − ηgψ

end for
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R
d → R

n seeks to reconstruct x̂ ∈ R
n from the latent space, also with its own

set of weights and biases φ. The end goal is to precisely recreate the initial input
data, which means that x = x̂. Autoencoders typically utilize Mean Square
Error (MSE) for handling continuous inputs and Binary Cross Entropy (BCE)
for managing binary inputs. However, in this research, we apply Variational
Autoencoders (VAEs) which serve as a generative model offering a method to
learn complex data distributions. Unlike conventional autoencoders which can
encode and then reconstruct input data, VAEs also learn a model of the data
distribution, enabling the generation of new instances. Training a VAE involves
managing two main tasks:

– The aim of the Encoder is to approximate the posterior P (L | x) in such a
manner that P (L) conforms to a unit Gaussian distribution.

– The goal of the Decoder is to estimate P (x | L) in such a manner that it
permits a highly probable reconstruction of the original input x.

P (x) =
∫

P (x | L)P (L)dL (9)

The loss function for the VAE is the negative log-likelihood with a regularizer.
Since there are no shared global representations for all data points, we can
decompose the loss function into only terms that depend on a single datapoint
li. The total loss is then given by

∑N
i=1 li for N total data points. The loss

function li for each datapoint xi is given by:

li(θ, φ) = −EL∼Enc(L|xi,θ)[log Dec(xi | L, φ)]
+KL(Enc(L | xi, θ) || Dec(L))

(10)

The initial part refers to the reconstruction loss, which is essentially the expected
negative log-likelihood of the i-th data point. The subsequent component is a
regularization term often referred to as the Kullback-Leibler divergence. This
divergence measures the difference between the distribution produced by the
encoder Enc(L | xi) and the distribution generated by the decoder Dec(L).

Algorithm 1 presents the step-by-step guide to the pre-training process of
the autoencoder, encapsulating the following:

We pre-train the VAE for nvae steps, where the number of steps is deter-
mined based on the desired level of privacy budget ε. To process a mini-batch,
we split it into several micro-batches. We compute the loss (line 6) and determine
the gradients (line 7) for each individual micro-batch with a size of 1. We then
introduce Gaussian noise N (0, σ2

vae) independently to the gradients which are
calculated from micro-batch (line 9). Finally, the optimizer updates the param-
eters (line 10). Encoder mainly approximates mean μ and variance σ2 from the
input. Afterwards, latent space is sampled using μ and σ2.

3.3 Model Architecture

To maximize effectiveness, we strategically employed four 1 dimensional (D)
convolutional layers in both the GAN discriminator and generator, as well as
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in the encoder of the autoencoder. Notably, the final dense layer, pivotal for
decision-making, possesses an output size of 1. Throughout the network, each
layer employed the PReLU activation function [14], with the exception of the
concluding layer, which operated without any activation. We employed 1-D
fractionally-strided convolutions, usually referred to as transposed convolutions
in the generator, following the approach described in [24]. Notably, the generator
was fed with a noise of size 128 in the input, ultimately yielding an output size
of 128 for optimal outcomes.

The encoder’s architecture closely resembled that of the GAN discrimina-
tor, except for the omission of the last layer. In the decoder, we made use of
1-D transposed convolutional layers, arranging them in the reverse sequence of
those utilized in the encoder, similar to the approach used in the generator. The
encoder efficiently utilized PReLU activation functions, with the exception of the
final layer, which employed Tanh activation to align with the generator’s output.
The decoder also adopted PReLU activation for all of its layers, with the excep-
tion of the final layer. The concluding layer used a Sigmoid activation function
to restrict the output data range to be between [0, 1]. This strategic choice facil-
itated the reconstruction of discrete data that accurately corresponded to the
input data. Importantly, the input size of the decoder was meticulously matched
with the output dimension of the GAN generator.

To ensure versatility across diverse datasets, we adeptly tailored the input
pipeline of both the GAN discriminator and autoencoder to seamlessly accom-
modate varying input sizes. Notably, these adjustments enabled smooth adapt-
ability and compatibility. However, it is worth highlighting that no modifications
were required for the GAN generator, as we consistently employed a fixed noise
dimension throughout all experiments. This approach demonstrated the genera-
tor’s robustness and autonomy, eliminating the need for additional adaptations.

3.4 Privacy Loss

For precise and efficient privacy loss calculations, we leveraged the advanced
RDP privacy accountant [1], surpassing the computational accuracy of conven-
tional DP methods. Proposition 2 proved instrumental in seamlessly converting
RDP computations to DP, expanding the applicability of our approach. The
technique of adding Gaussian noise, commonly known as the Sampled Gaussian
Mechanism (SGM) [21], served as a reliable tool for introducing noise. To effec-
tively monitor and track privacy loss, we relied upon the guidance of the following
theorem, ensuring a comprehensive understanding of the privacy landscape.

Theorem 3 (Privacy loss of SGM [21]). Assume that D and D′ are two
datasets that differ by only one entry, and let G be a Sampled Gaussian Mecha-
nism applied to a function f with an l2 sensitivity of one, then if we define the
following:

G(D) ∼ ϕ1 � N (0, σ2) (11)

G(D′) ∼ ϕ2 � (1 − q)N (0, σ2 ) + qN (1, σ2) (12)
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Assuming ϕ1 and ϕ2 represent probability density functions, the (α, ε)−RDP
privacy requirement is met by G, if the following condition holds:

ε ≤ 1
α − 1

log(max {Aα, Bα}) (13)

where, Aα � Ex∼ϕ1 [(
ϕ2
ϕ1

)α] and Bα � Ex∼ϕ2 [(
ϕ1
ϕ2

)α].

Through careful analysis, it has been firmly established that Aα is consis-
tently less than or equal to Bα, effectively simplifying the privacy computations
utilizing the RDP framework. This simplified approach strategically focuses on
upper bounding Aα, streamlining the privacy calculations. By employing a com-
bination of closed-form bounds and numerical computations, we are able to
accurately determine the value of Aα [21]. It should be noted, this method sets
a limit on ε for each individual step. Nonetheless, to ascertain the cumulative
bound of ε for the full training procedure, we need to multiply the number of
steps by ε, in line with what Proposition 1 delineates. For a tighter upper bound
assurance, we execute experiments across a range of α values and use the RDP
privacy accountant to pinpoint the smallest (ε) and its associated α. Finally,
Proposition 2 is employed to precisely compute the (ε, δ) − DP , providing a
comprehensive measure of privacy.

When combining autoencoder and GAN training, it is important to deter-
mine how to calculate the (α, ε) − RDP . Proposition 1 examines the specific
input and output domains, denoted by X , U1, and U2, corresponding to the
autoencoder and the discriminator in the given context. Here, the autoencoder
is represented by the mechanism A, and the discriminator is represented by
the mechanism B. U1 becomes the output space after the decoder processes the
fake samples. Subsequently, the discriminator observes U1, while the real input
space is represented by X . With α held constant, Proposition 1 suggests that
the entire system maintains (α, εvae + εgan) − RDP . Nevertheless, it’s not
assured that there can be a constant value for α, since the RDP contains a
budget constraint that is specified by this variable. To determine a fixed α, we
use the following procedure: Consider two systems, S1 one for the autoencoder
with (α1, ε1) − RDP and S2 for the GAN with (α2, ε2) − RDP . Assuming
ε1 ≤ ε2 without any loss of generality, we can choose αtotal = α2. This results
in S2 having (αtotal, ε2) − RDP . For the system S1, we choose αtotal = α1 and
compute ε′ in a way that ensures ε ≤ ε′. The entire system, comprised of S1 and
S2, subsequently meets the (αtotal, ε2 + ε′) − RDP condition.

4 Experimental Evaluation

In this section, we outline the specifics of the experimental design, convey the
results procured from multiple experiments, and perform a comparative analysis
with multiple approaches documented in the existing research literature.

The dataset is partitioned into two segments.: Dtr for training and Dte for
testing. We employ Dtr for model training, subsequently using these trained
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models to generate synthesized samples, denoted as Dsyn. As elaborated in
Sect. 3, although the structures may change depending on the size of the dataset,
the dimensions of the latent space (also serving as the input space for the
decoder) sampled from encoder’s output (mean μ and variance σ2) and the
output space of the generator remain unchanged. Likewise, the dimensions of
the input space for the encoder, the output space for the decoder, and the input
space for the discriminator also remain the same. It’s essential to highlight that
all stated ε values correspond to the definition of (ε, δ) − DP where δ = 10−5,
except when explicitly stated otherwise.

We trained both the Convolutional GAN and the Convolutional Variational
Autoencoder with a mini-batch size of 64, using the Adam optimizer [17], and
applying a learning rate of 0.005. To enhance the training process, we employed
Batch Normalization (BN) [16] for both the discriminator and the generator. A
single GeForce RTX 3080 NVIDIA GPU was utilized for our experimental work.

4.1 Datasets

In our research, we utilized two datasets to assess the effectiveness of our model.

– Early Prediction of Sepsis from Clinical Data (Sepsis) [26]: The first
dataset used in this study was obtained from the publicly available 2019 Phy-
sioNet Challenge. In accordance with the Sepsis III guidelines, the diagnosis
of sepsis relies on the identification of a two-point increase in the patient’s
Sequential Organ Failure Assessment (SOFA) score, along with the presence
of clinical signs and symptoms indicating a potential infection. The dataset
consists of approximately 40,000 electronic health records of patients admit-
ted to the ICU with suspected or confirmed sepsis. The data was collected
from Beth Israel Deaconess Medical Center and Emory University Hospital.
Each patient record comprises a time series of clinical measurements taken
at 1-hour intervals with a binary label indicating the presence or absence
of sepsis at each time point, thereby represented by a single row. The clin-
ical measurements are a set of 40 numerical and categorical attributes that
encompass patient demographics, vital signs and laboratory values. Notably,
the dataset contains a total of 2,932 septic and 37,404 non-septic patients.

– Cardiovascular Diseases Dataset [28]: The second dataset utilized in this
study was retrieved from Kaggle. The dataset includes approximately 70,000
records of patients’ data with 12 attributes encompassing both numerical
and categorical types. The dataset is primarily composed of three types of
input features, namely objective features representing patient demographics,
results of medical examination conducted at that time and subjective infor-
mation provided by the patients themselves. The target feature is denoted by
a binary value that signifies the presence or absence of cardiovascular disease.
Additionally, the dataset demonstrates a well-balanced distribution of male
and female records. Similarly, the target feature exhibits a balanced spread
of binary values, enhancing the dataset’s reliability.
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4.2 Comparison

Our model is juxtaposed with two benchmark methods for comparison. The
choice of benchmark models hinges on the specific characteristics inherent to
the experiments being performed.

DPGAN [31]: This model is capable of generating superior quality data points
while maintaining adequate differential privacy safeguards. This is accomplished
by injecting carefully engineered noise into the gradients during the learning
phase. For this research, we employed an open-source edition of DPGAN.

MedGAN [8]: Structured to generate discrete entries, such as those required
for unsupervised synthetic data creation, MedGAN’s architecture incorporates
an autoencoder and a traditional GAN. However, it does not ensure data privacy.
For our experimentation, we used an open-source version of MedGAN.

4.3 Synthetic Data Generation

We opted for electronic health records, which were transformed into a high-
dimensional dataset, to illustrate the privacy-protection abilities of our suggested
model. In this situation, the data features are comprised of two types: numerical
and multi-label. Multi-label features (such as gender categories) are encoded
using one-hot encoding. Our aim is to harness the insight relating to a private
dataset and utilize it to generate a synthetic dataset that have a comparable
distribution while maintaining a commitment to privacy. At first, we aligned
our method with various models that neither require labeled data nor rely on
it, and are tailored for creating synthetic data in an unsupervised manner, all
while continuing to adhere to the principles of privacy preservation. We employed
Eq. 10 as the loss function for pretraining the variational autoencoder.

In order to gauge the quality of the artificially generated data in an unsu-
pervised setting, we employed two evaluative metrics:

– Maximum Mean Discrepancy (MMD): This metric shows the magnitude to
which the model replicates the statistical distribution acquired from the
actual data. Recently, a work [33] underscored that MMD encapsulates many
desirable characteristics of an evaluative metric, especially pertinent to GANs.
MMD is typically employed in an unsupervised environment due to the
absence of labelled data for statistical quantifications. To record MMD, we
drew comparisons between two sample sets of real and synthetic data, each
comprising 800 entries. Figure 2 shows the comparison of MMD scores obtain
from generated and real data distributions from different datasets. A lower
MMD score suggests a greater similarity between the synthetic and real data
distributions, suggesting a more effective model.

– Dimension-wise Prediction: This evaluation method elucidates the interde-
pendencies among features, in other words, it assesses the model’s capability
to predict absent features by using the features already present in the dataset.
Let’s suppose that from Dtr, we derive Dsyn. We then randomly pick one
specific dimension (denoted as k) from both Dsyn and Dtr, labeling them
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as Dsyn,k and Dtr,k respectively. This chosen dimension is what we refer to
as the testing dimension. All the remaining dimensions, namely Dsyn,nk and
Dtr,nk, serve to train a classifier. The classifier’s objective is to anticipate the
test set’s testing dimension value, represented by Dte,k. For prediction tasks,
the Random Forests algorithm [6] was used. The efficiency of the holistic pre-
dictive models (those trained on synthetic data) and across all attributes are
presented in terms of the F1-score in Table 1.

From Table 1, it’s evident that our proposed model (RDPVAEGAN) has
a superior performance in capturing correlated features compared to DPGAN
and MedGAN across both datasets. The nearer the outcomes align with real
data experiments, the superior the quality of the synthetic data, indicating a
more effective model. However, it’s worth noting that only RDPVAEGAN and
DPGAN provide privacy guarantees as previously mentioned.

Fig. 2. The analysis of the differences and similarities between the real and the gen-
erated distributions. A lower MMD score means a greater similarity between the data
distributions. (a) for the Sepsis dataset and (b) for the Cardiovascular Diseases dataset

Table 1. The table illustrates a comparison of different techniques utilizing the F-
1 score within the dimension-wise prediction setting. Except for the column labelled
“Real Data”, classifiers are trained using synthetic data

Dataset Real Data DPGAN MedGAN RDPVAEGAN

Sepsis 0.53 0.39 0.43 0.45

Cardiovascular Disease 0.49 0.27 0.31 0.38

We’ve extended our approach to accommodate a supervised environment
and create labelled synthetic data as well. All the experiments were carried
out, with each one repeated ten times. To assess the models, we provide the



Privacy-Preserving Medical Data Generation Using Adversarial Learning 39

average AUROC (Area Under the Receiver Operating Characteristic Curve)
and AUPRC (Area Under the Precision-Recall Curve) scores. Table 2 provides
the AUROC results, while Table 3 details the AUPRC outcomes. When ε = ∞,
privacy constraints are not applied. Based on the information in these tables,
our model surpasses DPGAN in a supervised setting. Even though MedGAN
displays superior results compared to both DPGAN and RDPVAEGAN in terms
of AUROC and AUPRC, it does not ensure the privacy of the generated data.

Table 2. This table compares various models in terms of AUROC within the context
of the (1, 10−5) − DP setting. For ε = ∞, we implemented our RDPVAEGAN model
without the privacy enforcement component. MedGAN does not have any privacy
enforcement as well. All models were trained utilizing synthetic data

Dataset ε = ∞ DPGAN MedGAN RDPVAEGAN

Sepsis 0.86 0.69 0.81 0.75

Cardiovascular Disease 0.77 0.62 0.73 0.70

Table 3. This table compares various models in terms of AUPRC within the context
of the (1, 10−5) − DP setting. For ε = ∞, we implemented our RDPVAEGAN model
without the privacy enforcement component. MedGAN does not have any privacy
enforcement as well. All models were trained utilizing synthetic data.

Dataset ε = ∞ DPGAN MedGAN RDPVAEGAN

Sepsis 0.83 0.67 0.80 0.76

Cardiovascular Disease 0.76 0.60 0.72 0.68

This discussion outlines the performance of different methods within the
framework of DP. The base model is anticipated to yield the highest accuracy.
Thus, the primary investigation is: To what extent does the accuracy decrease
across different models when keeping the privacy budget (ε, δ) at the same level?
Tables 2 and 3 illustrate the results for this specific condition. In most experi-
ments, the artificial data generated by our system demonstrates superior quality
in classification tasks when contrasted with other models, all while operating
under the equal privacy budget.

5 Conclusion

In this research, we formulated and implemented a method for generating syn-
thetic data that maintains differential privacy, making use of Rényi Differential
Privacy. The objective of our model was to extract temporal data and feature
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correlations through the use of convolutional neural networks. The empirical
evidence showed that utilizing variational autoencoders allows for effective man-
agement of variables, whether they are discrete, continuous, or a blend of the two.
We found that our model surpasses other models in performance while operating
within the same privacy constraints. This superior performance can be partially
attributed to the reporting of a tighter bound, the use of convolutional networks,
and the variational autoencoder. We demonstrated the performance of several
models in both supervised and unsupervised approaches, utilizing various met-
rics across two distinct datasets.

Acknowledgements. This project has been partially funded by the BMBF and
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Abstract. The preservation of privacy during the learning phase of
machine learning is challenging. There are two methods to achieve
privacy-preserving machine learning: adding noise to machine-learning
model parameters, which is often selected for its higher accuracy; and
executing learning using noisy data, which is preferred for privacy.
Recently, a Scalable Unified Privacy-preserving Machine learning frame-
work (SUPM) has been proposed, which controls the balance between
privacy and accuracy by harmonizing the privacy mechanisms used in
dimension reduction, training and testing phases. This paper proposes
a novel method that allocates privacy budgets according to their effec-
tiveness that improves the accuracy without sacrificing the number of
available attributes. Our privacy budget allocation algorithm can be
applied into SUPM and improve the accuracy while keeping the privacy.
We evaluate its performance using logistic regression and support vector
machines as machine learning algorithms. SUPM using our privacy bud-
get allocation algorithm is effective in terms of accuracy and the number
of available attributes. We also clarify the conditions under which our
method is more effective for a given dataset.

Keywords: local differential privacy · dimension reduction · odds ratio

1 Introduction

Machine learning is a powerful technique that is used to extract useful insights
from large and complex datasets. However, the application of machine learning
to sensitive data, such as personal or medical information, poses serious privacy
risks. One approach for preserving privacy is to de-identify data [2], safeguard-
ing individuals’ privacy by processing the data or data parameters. These stud-
ies focus on differential privacy, particularly to counteract complex attacks on
machine learning models [3]. Differential privacy mechanisms can be centralized
or localized. Centralized mechanisms build models using raw data, but with the
addition of noise to parameters during the learning phase, as shown in Fig. 1.

Localized mechanisms enable each data owner to add noise to their own data,
and use noisy data instead of raw data to build models, as shown in Fig. 2.

In many cases, the centralized method is chosen because achieving high accu-
racy with the localized method is difficult. However, the centralized method is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Collect raw data and add noise when building models (centralized differential
privacy mechanism)

Fig. 2. Collect noise-added data and build models (local differential privacy mecha-
nism)

inferior in terms of privacy because it sends all raw data to an entity that exe-
cutes the learning phase. In contrast, the localized methods, those which execute
learning using noisy data, can deal with privacy well, but controlling reasonable
accuracy using multiple attributes while maintaining privacy is not easy. Local
differential privacy (LDP) has been proposed and applied to the parameters of
federated learning as a localized differential privacy mechanism in [10]. Although
a privacy-preserving dimension reduction using PCA is based on LDP in [9], it
cannot achieve a balance between privacy and performance in combination with
the training and testing phases. Recently, a Scalable Unified Privacy-preserving
Machine learning framework (SUPM) has been proposed, which controls both
privacy and accuracy by dealing with the dimension reduction, training and test-
ing phases separately [5,6]. SUPM harmonizes and controls privacy mechanisms
used in the three phases to enhance not only privacy but also performance. They
also proposed a unified, data-independent anonymization algorithm WALDP to
control the performance and privacy of machine learning, where the data is
first normalized and converted to discrete values (i.e. WA) and then randomized
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response noise is added. To effectively decide the attributes used for training and
testing, three privacy-preserving dimension reduction algorithms have also been
proposed: correlation coefficient with WA and WALDP [5], and odds ratio with
WALDP [6].

In this study, we propose a novel method for allocating the privacy budget
to each attribute in a more efficient manner when applying the LDP mechanism
with dimension reduction based on odds ratio (OR). Since SUPM uses the same
privacy budget for attributes selected for dimension reduction phase and exe-
cutes training and testing phases, it may cause degradation of accuracy. Our
purpose for the privacy budget allocation is to increase the number of avail-
able attributes as much as possible with the same overall privacy budget and
improve performance. Our method, which is called balanced privacy budget allo-
cation (BPBA), considers the effectiveness of each attribute with respect to the
target attribute and assigns a higher privacy budget to the attributes that have a
greater impact on the target attribute rather than treating each attribute equally.
In this way, we can preserve more attributes of the data while keeping privacy
budget small; moreover, it improves accuracy. We apply BPBA into the train-
ing and testing phases in SUPM and propose a new privacy-reserving machine
learning workflow, BPP.ML. We evaluate its performance by conducting experi-
ments on two datasets from the UCI Machine Learning Repository using logistic
regression and support vector machine as machine learning algorithms from the
point of view of accuracy, privacy budget, and the number of attributes. We have
experimentally shown that our method can utilize more attributes and achieve
better accuracy while keeping the same privacy budget. From our experimental
results, we expect to be able to control privacy and accuracy more smoothly in
datasets where more attributes are desired. We also analyzed the dependence of
the BPP.ML performance on the characteristics of the datasets and the number
of selected attributes.

The remainder of this paper is organized as follows. Section 2 introduces the
preliminary concepts and notations. Section 3 reviews related works on privacy-
preserving machine learning with LDP and dimension reduction. Section 4
presents the proposed method BPBA and workflow BPP.ML. Then, Sect. 5
presents the experimental results and analysis. Finally, Sect. 6 concludes the
paper and discusses future work.

2 Preliminary

2.1 Notation

The notation used in this study is as follows:

– LDP(DP): local differential privacy (differential privacy)
– RR: randomized response mechanism
– Agg: aggregator
– n: total number of records
– m: total number of attributes for one data (i.e., dimension)
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– K: number of explanatory attributes selected from m − 1 explanatory
attributes

– L: number of setting classes of attributes
– TA: target attribute, which should be binary
– Aj : j-th (continuous/discrete) explanatory attributes (j ∈ [1,m−1]) (exclud-

ing TA). Assume that Aj has L classes of {Aj [1], · · · , Aj [L]} if it is discrete,
or is normalized in [−1, 1] if continuous.

– D, Di: record, i-th record, i = 1, · · · , n, which consists of m attributes, Di

= [Di,1, · · · ,Di,m−1,TAi]
– Di,j : j-th attribute of i-th record Di (j ∈ [1,m − 1])
– tai: target attribute of Di

– εj : privacy budget for j-th explanatory attribute
– εTA: privacy budget for target attribute
– ε: privacy budget for one record, which has ε = εTA +

∑
εj

– Aj1 , · · · , AjK
: selected attributes

– WAj [1], · · · ,WAj [L]: WA-transformed Aj ’s data

2.2 Local Differential Privacy

Local differential privacy [1], where each data owner uses a random noise function
f(Di), is defined in Definition 1.

Definition 1. For every possible input combination x, x′ of the function f ,
Pr[f(x) = y] ≤ exp(ε) · Pr[f(x′) = y], f satisfies ε-local differential privacy.

The randomized response (RR) mechanism [4] is a random noise function
that satisfies the local differential privacy for discrete values, and is given by
Algorithm 1. The input x and output y take L kinds of values as well, and

Algorithm 1. Randomized response mechanism (RR) [4]
Require: discrete value xj , number of classes L, privacy budget ε
Ensure: perturbed data yj

1: Sample x uniformly at random from [0, 1]

2: if x ≤ exp(ε)
L−1+exp(ε)

then
3: yj = xj

4: else
5: Sample yj uniformly at random from {1, · · · , L} except xj

6: end if
7: return yj

the output value is equal to or different from the original value with probability
exp(ε)

n−1+exp(ε) or n
n−1+exp(ε) , respectively. The RR mechanism adds noise as follows:

p(y | x) =

{
exp(ε)

L−1+exp(ε) , if y = x,
1

L−1+exp(ε) , if y �= x.
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2.3 Classification Methods Using Machine Learning

Logistic Regression is an algorithm that fits a logistic model, and takes
explanatory variables xn×m and target variable yn×1 as inputs and outputs
a weight vector, where n represents the number of records. Logistic models are
used to statistically model the probability of the occurrence of an event. Logistic
regression is used to estimate the parameters of the logistic model, which has
the following form:

p(x1×m) =
1

1 + exp
(− (

w0 + w1×mxT
1×m

)) ,

where m represents the number of attributes, x1×m is a vector of explanatory
variables, and w1×m is a weight vector. In the logistic model, wj is defined as
the log-odds of attribute Aj ; thus, w is also a vector of log-odds. A logistic model
can be used to predict the target variable y (which must be binary) as follows:

y =

{
1, p(x) ≥ 0.5,

0, p(x) < 0.5.

For reproducibility, all logistic regression algorithms in this study use the
implementation by scikit-learn [7]. Let LR denote such logistic regression algo-
rithm, which takes the data of explanatory attributes xn×m and the data of tar-
get attribute yn×1 as input, and outputs the weight vector w = {w1, · · · , wm}.

Support Vector Machine (SVM) is an algorithm that finds a hyperplane
that separates the data into different classes such that the margin between the
hyperplane and closest data points is maximized. The decision function for a
binary classification problem is given by

f(x) = sgn

(
n∑

i=1

αiyiK(xi,x) + b

)

,

where x denotes the input vector, yi the target attribute of the ith record, αi the
Lagrange multiplier associated with the ith record, K(xi,x) the kernel function
that maps the input vectors into a higher-dimensional space, b the bias term,
and n the total number of records.

SVM can handle both linear and nonlinear classification problems using dif-
ferent kernel functions such as polynomials, radial basis functions (RBF), or
sigmoids. In this study, we used RBF as the kernel function, and it is defined as

K(xi, x) = exp
(
−γ ‖xi − x‖2

)
,

where γ is a parameter that controls the shape of the kernel.
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3 Related Work

In machine learning, models are constructed by establishing mappings between
explanatory and target attributes. The private data of individuals maybe used
for model training and testing. If the data owner does not want to provide their
raw data to either entity who constructs a training model or tests the training
model, it is necessary for the owner to generate LDP data by adding noise to the
raw data.

Generally, data used in machine learning consists of multiple attributes. Some
attributes are continuous values, while others are discrete values. In this section,
we review the previous unified, data-independent anonymization algorithms WA
and WALDP, and the privacy-preserving machine learning framework SUPM
proposed in [5].

3.1 Unified LDP-Algorithm

WALDP can effectively control the privacy and accuracy of machine learning
using two parameters, ε and WA-parameter (K,L), as shown in Algorithm 2.

Algorithm 2. Unified LDP-Mechanism (WALDP)

Require: data Di,j of attribute Aj , min(Aj), max(Aj), number of classes L, privacy
budget ε

Ensure: noisy data Di,j

1: Dstd ← (Di,j − min(Aj)/(max(Aj) − min(Aj))
2: Dscaled ← 2Dstd − 1 � scale data to [−1, 1]
3: class index ← None

4: class mid ← []
5: for i = 1 to L do � find the class where Dscaled is located
6: class min ← −1 + 2i/L
7: class max ← −1 + 2(i + 1)/L
8: class mid [i] ← (class min + class max)/2
9: if class min ≤ Dscaled ≤ class max then

10: class index ← i
11: end if
12: end for
13: noisy class index ← RR(class index, L, ε) � add some randomized response
14: return class mid [noisy class index]

3.2 Scalable Unified Privacy-Preserving Machine Learning
Framework (SUPM)

To control the privacy and accuracy of machine learning, where perturbed data
is used for both training and testing phases, the most difficult issue is to deal
with the number of attributes. From the perspective of privacy, given the privacy
budget for each attribute ε and the total number of attributes m, the privacy
budget for a single record becomes mε. The larger the number of attributes,
the more privacy is wasted. To deal with such an issue, SUPM executes privacy-
preserving dimension reduction first, then execute training and testing using
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Algorithm 3. Computation of odds ratio with missing values (LR.OR.MV)
Require: x: data of explanatory attributes xn×m with missing values; y: data of target

attribute yn×1.
Ensure: odds ratio OR1, · · · ,ORm between each attributes A1, · · · , Am and target

attribute TA.
1: for j = 1 to m do
2: x′ ← [], y′ ← []
3: for i = 1 to n do
4: if Di,j �= null then
5: x′.append({Di,j}), y′.append(tai)
6: end if
7: end for
8: {wj} ← LR(x′,y′).
9: end for

10: return {ew1 , · · · , ewm}

Algorithm 4. Dimension reduction using odds ratio (DR.OR)
Require: m-dimension raw data D = [Di,1, · · · , Di,m−1,TAi], min(Aj), Rangej , num-

ber of setting classes of attribute L, number of used attribute K, privacy budget
ε

Ensure: selected attributes Aj1 , · · · , AjK

1: Sample K values of (Di,j1 , · · · , Di,jK ) and target attribute TAi ∈ {−1, 1} uni-
formly.

2: εjs ← ε/(K + 1) for s = 1, · · · , K.
3: {yjs} ← {WALDP(Di,js , min(Ajs), max(Ajs), L, εjs} for s = 1, · · · , K.
4: {yt} ← {yjs if ∃js = t else null} for t = 1, · · · , m.
5: ym+1 ← WALDP(TAi, −1, 1, 2, ε/(K + 1)).
6: Send {y1, · · · , ym, ym+1} to Agg.
7: Agg collects perturbed parts of data without seeing any raw data:
8: if received data {y1, · · · , ym, ym+1} then
9: x.append({y1, · · · , ym}).

10: y.append(ym+1).
11: end if
12: {OR1, · · · ,ORm} ← LR.OR.MV(x,y).
13: {w1, · · · , wm} ← {ln(OR1), · · · , ln(ORm)}.
14: {�1, · · · , �K} ← argmaxK(|w1|, · · · , |wm|)
15: return K attribute A�1 , · · · , A�K

selected attributes. In Algorithm 3, we show LR.OR.MV for computing odds
ratios with missing values and show DR.OR in Algorithm 4 for the dimension
reduction [6]. Remark that SUPM considers the privacy also in the dimension
reduction phase, so that WALDP is used as a subroutine in DR.OR.

WALDP is also used as a subroutine for the training and testing phases,
which is denoted by PPTraining and PPTesting. Algorithms 5 and 6 respectively
represent PPTraining and PPTesting when WALDP is used.
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Algorithm 5. Privacy-preserving training (PPTraining)
Require: K data and target data [Di,j1 , · · · , Di,jK , tai] for each training record Di,

number of setting classes of attribute L, privacy budget ε
Ensure: training model
1: for each training record Di do � locally executed by i-th data provider
2: εj ← ε/(K + 1) for j = j1, · · · , jK .
3: εTA ← ε/(K + 1).
4: yj ← WALDP(Di,j , min(Aj), max(Aj), L, εj) for j = j1, · · · , jK .
5: yjK+1 ← WALDP(tai, −1, 1, 2, εTA).
6: Send (K + 1)-tuple perturbed data to Agg.
7: end for
8: Agg collects perturbed K + 1 data and constructs training model.
9: return training model.

Algorithm 6. Privacy-preserving testing (PPTesting)

Require: K data and target data [Di,j1 , · · · , Di,jK , tai] for each testing record Di,
number of setting classes of attribute L, privacy budget ε

Ensure: results.
1: for each testing record Di do � locally executed by i-th data provider
2: εj ← ε/(K + 1) for j = j1, · · · , jK .
3: εTA ← ε/(K + 1).
4: yj ← WALDP(Di,s, min(As), max(As), εj) for j = j1, · · · , jK .
5: yjK+1 ← WALDP(tai, −1, 1, 2, εTA).
6: Send (K + 1)-tuple perturbed data to training model.
7: end for
8: Training model executes perturbed data and gets the results.
9: return results.

4 Contribution-Based Privacy-Budget Allocation

In this section, we demonstrate the privacy budget allocation to each attribute
considering its contribution to the target attribute when adding noise to the
data, and we propose a modified version of a privacy-preserving machine learning
workflow called BPP.ML, which fully utilizes the overall privacy budget.

4.1 Contribution-Based Dimension Reduction Using Odds Ratio

The OR of the explanatory attribute Aj is defined in [6] as ewj , where wj is the
log-odds (defined in Sect. 2.3) of Aj in the logistic model; hence, wj = ln(ORj).
For clarity, we call the log-odds wj the weight of the attribute, Aj . The
dimension-reduction algorithm DR.OR determines the attributes used in machine
learning by computing the odds ratio ORj between each explanatory attribute
Aj and target attribute TA, and by selecting K attributes with the largest abso-
lute value of weight |wj |, j ∈ [1,m− 1]. Weights are used not only for dimension
reduction but also when adding noise. Instead of assigning εj = ε/(K+1) to each
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attribute, we add weights to the privacy budget assigned to each attribute, which
is divided into explanatory and target attributes. We define a contribution-based
privacy budget allocation in Definition 2:

Definition 2. For the given data {x1, · · · , xK} of K explanatory attributes
{Aj} and data ta for the target attribute TA, let each weight wj of the logistic
regression LR(xj , ta). Then, for a given privacy budget ε, we define the balanced
allocation of contribution-based privacy budgets for the explanatory and target
attributes as follows:

εj =
K

K + 1
· wj
∑K

�=1 w�

· ε,

εTA =
ε

K + 1
,

respectively.

Definition 2 implies that the attributes that are most associated with the target
attributes will have the greatest allocation of the privacy budget so that the data
will retain as many features as possible, even when there are many attributes.

In order to use weights in the training and testing phases, we need to addi-
tionally return the weights of each attribute in the dimension reduction phase.
Here we extend Algorithm 4 as Algorithm 7 to output the weight of each selected
attribute.

Algorithm 7. Contribution-based dimension reduction using odds ratio
(C.DR.OR)
Require: m-dimension raw data D = [Di,1, · · · , Di,m−1,TAi], min(Aj), Rangej , num-

ber of setting classes of attribute L, number of used attribute K, privacy budget
ε

Ensure: selected attributes and corresponding weights (Aj1 , wj1), · · · , (AjK , wjK )
1: Sample K values of (Di,j1 , · · · , Di,jK ) and target attribute TAi ∈ {−1, 1} uni-

formly.
2: εjs ← ε/(K + 1) for s = 1, · · · , K.
3: {yjs} ← {WALDP(Di,js , min(Ajs), max(Ajs), L, εjs} for s = 1, · · · , K.
4: {yt} ← {yjs if ∃js = t else null} for t = 1, · · · , m.
5: ym+1 ← WALDP(TAi, −1, 1, 2, ε/(K + 1)).
6: Send {y1, · · · , ym, ym+1} to Agg.
7: Agg collects perturbed parts of data without seeing any raw data:
8: if received data {y1, · · · , ym, ym+1} then
9: x.append({y1, · · · , ym}).

10: y.append(ym+1).
11: end if
12: {OR1, · · · ,ORm} ← LR.OR.MV(x,y).
13: {w1, · · · , wm} ← {ln(OR1), · · · , ln(ORm)}.
14: {�1, · · · , �K} ← argmaxK(|w1|, · · · , |wm|)
15: return K attribute and weight tuples (A�1 , w�1), · · · , (A�K , w�K )
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4.2 Privacy-Preserving Machine Learning with Balanced Privacy
Budget Allocation

We defined a contribution-based privacy budget allocation in Definition 2. As it
may not be the only method of allocation, we abstract the contribution-based
privacy budget allocation to the AllocateEpsilon algorithm as defined in Algo-
rithm 8, which will be invoked as a subroutine in privacy-preserving training
and testing.

Algorithm 8. Contribution-based privacy budget allocation (AllocateEpsilon)

Require: number of selected attributes K, weights of K attributes [wj1 , · · · , wjK ],
privacy budget ε

Ensure: privacy budget for each explanatory and target attribute εj1 , · · · , εjK , εTA
1: for j = j1, · · · , jK do
2: εj = K

K+1

wj
∑K

�=1 w�
ε

3: end for
4: εTA ← ε/(K + 1)
5: return εj1 , · · · , εjK , εTA

Based on the previous privacy-preserving training and testing algorithms
PPTraining and PPTesting defined in Algorithms 5 and 6, we formally propose
privacy-preserving training and testing algorithms with balanced privacy budget
allocations BPPTraining and BPPTesting which use the output of C.DR.OR as
input, as defined in Algorithms 9 and 10.

Algorithm 9. Balanced privacy-preserving training (BPPTraining)
Require: K data and target data [Di,j1 , · · · , Di,jK , tai] for each training record Di,

weights of K attributes [wj1 , · · · , wjK ], number of setting classes of attribute L,
privacy budget ε

Ensure: training model
1: εj1 , · · · , εjK , εTA ← AllocateEpsilon(K, [wj1 , · · · , wjK ], ε)
2: for each training record Di do � locally executed by i-th data provider
3: for j = j1, · · · , jK do
4: yj ← WALDP(Di,j , min(Aj), max(Aj), L, εj)
5: end for
6: yjK+1 ← WALDP(tai, −1, 1, 2, εTA).
7: Send (K + 1)-tuple perturbed data to Agg.
8: end for
9: Agg collects perturbed K + 1 data and constructs training model.

10: return training model.

In Sect. 5, we will compare the performances of PP.ML and BPP.ML using
noise-added dimension reduction based on the odds ratios DR.OR. This perfor-
mance comparison reflects the usefulness of a balanced privacy budget allocation
with a relatively small overall privacy budget ε and more explanatory attributes.
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Algorithm 10. Balanced privacy-preserving testing (BPPTesting)
Require: K data and target data [Di,j1 , · · · , Di,jK , tai] for each testing record Di,

weights of K attributes [wj1 , · · · , wjK ], number of setting classes of attribute L,
privacy budget ε

Ensure: results.
1: εj1 , · · · , εjK , εTA ← AllocateEpsilon(K, [wj1 , · · · , wjK ], ε)
2: for each testing record Di do � locally executed by i-th data provider
3: for j = j1, · · · , jK do
4: yj ← WALDP(xi,j , min(Aj), max(Aj), L, εj)
5: end for
6: yjK+1 ← WALDP(TAi, −1, 1, 2, εTA),
7: Send (K + 1)-tuple perturbed data to training model.
8: end for
9: Training model executes perturbed data and gets the results.

10: return results.

5 Experiments Analysis

In this section, we experimentally confirm how the proposed BPP.ML can
increase the number of attributes while keeping high accuracy. We also com-
pare our BPP.ML to the previous PP.ML from the point of view of accuracy and
the number of available attributes while keeping the privacy.

5.1 Experiment Settings

This study used two datasets from the UCI Machine Learning Repository: Breast
Cancer Wisconsin (Diagnostic) (WDBC) [11] and Ionosphere (Ionosphere) [8].
The WDBC dataset contains 30 continuous features and one categorical target,
whereas the Ionosphere dataset contains 34 continuous features and one categor-
ical target.

We used logistic regression (LR) and support vec-
tor machines (SVM) as machine learning algorithms in PPTraining/PPTesting
and BPPTraining/BPPTesting. Both algorithms were implemented by invoking
the classifier of the scikit-learn [7] machine learning library (version 1.2.1). We
set some initial parameters as follows and left the others as defaults.

LogisticRegression(random_state=0, max_iter=10000,) # LR
SVC(random_state=0, max_iter=10000,) # SVM

For each machine learning algorithm, we evaluated the accuracy of the two
frameworks with a fixed ε and each K ∈ [2,10]∩Z for WDBC and [2,11]∩Z for
Ionosphere. For each Ki, the accuracy is defined as the maximum score with
(Ki, L), where the number of classes L takes each integer in [2,5]∩Z. To confirm
the performance of the proposed BPP.ML with a relatively small overall privacy
budget, we set ε = 5 in the PPTraining and BPPTraining phases. To clearly
confirm the performance of the trained model on data with and without noise,
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in both the PPTesting and BPPTesting phases, we also conducted experiments
for ε = 10000 in addition to ε = 5 to simulate weak anonymization WA.

5.2 Logistic Regression

The results of the evaluation using logistic regression on WDBC and Ionosphere
data sets are shown in Figs. 3 and 4, respectively.

The experimental results show that for a relatively small ε, the proposed
BPP.ML performs better than PP.ML. Furthermore, with an increased K, the
performance advantage of BPP.ML continues to increase. This enables privacy-
preserving machine learning frameworks to achieve better performance when the
dataset has more attributes without increasing the privacy budget.

In Figs. 3 and 4, the accuracy shows a different tendency as K increases.
This indicates that although our method is better than PP.ML in general, it
performs differently for different datasets. We collected the weights w1, · · · , wk

that were output from C.DR.OR for the two datasets, and computed the variance
of their absolute values |w1|, · · · , |wk| to learn their distributions. The results
show that the attribute weights of the Ionosphere dataset have a variance of
0.397, which is significantly lower than that of the WDBC dataset, which has a

Fig. 3. Accuracy of model trained by LR in BPP.ML and PP.ML on WDBC dataset
with different K

Fig. 4. Accuracy of model trained by LR in BPP.ML and PP.ML on Ionosphere dataset
with different K
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variance of 8.829. This indicates that the performance advantage of our proposed
method is greater when the attribute weights are unevenly distributed, whereas
the performance is slightly better than PP.ML when the attribute weights are
more evenly distributed.

5.3 Support Vector Machine

The evaluation results obtained using SVM on WDBC and Ionosphere datasets
are shown in Figs. 5 and 6.

The experimental results do not differ significantly from those in Sect. 5.2.
For the same privacy budget, BPP.ML outperformed PP.ML. The performance
advantage is more significant for more selected attributes (i.e., K) if the attribute
weights are unevenly distributed. This indicates that our method also performs
well without using LR as a machine learning algorithm.

Fig. 5. Accuracy of model trained by SVM in BPP.ML and PP.ML on WDBC dataset
with different K

Fig. 6. Accuracy of model trained by SVM in BPP.ML and PP.ML on Ionosphere dataset
with different K
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6 Conclusion

This study proposed a new method for the allocation of the overall privacy bud-
get to each attribute for privacy-preserving machine learning frameworks, and
confirmed the effectiveness of the privacy-preserving machine learning frame-
work for LR and SVM with this mechanism, BPP.ML, based on WALDP with
DR.OR. The proposed mechanism allocates the privacy budget to each attribute
considering its weight to the target; thus, the mechanism shows better perfor-
mance with a small ε and large number of attributes. Our proposed allocation
mechanism has been abstracted as AllocateEpsilon algorithm to facilitate future
research to come up with better algorithms.

We further confirmed the performance advantage of learning models using
WALDP-data in tests with both WALDP-data and weakly anonymized WA-data.

We also observe that the proposed BPP.ML almost certainly results in a
performance improvement compared to PP.ML, but the degree of performance
improvement depends on the characteristics of the dataset. When there is a sig-
nificant difference in the weights of the individual attributes with respect to the
target attribute, our method leads to a more substantial performance improve-
ment. However, for small weight differences, the performance improvement is
relatively modest.
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Abstract. Unix Shell is a powerful tool for system developers and engi-
neers, but it poses serious security risks when used by cybercriminals
to execute malicious scripts. These scripts can compromise servers, steal
confidential data, or cause system crashes. Therefore, detecting and pre-
venting malicious scripts is an important task for intrusion detection
systems. In this paper, we propose a novel framework, called SIFAST,
for embedding and detecting malicious Unix Shell scripts. Our frame-
work consists of Smooth Inverse Frequency (SIF) and Abstract Syntax
Tree (AST) techniques to rapidly convert Unix Shell commands and
scripts into vectors and capture their semantic and syntactic features.
These vectors can then be beneficial for various downstream machine
learning models for classification or anomaly detection. Compared with
other embedding methods with multiple downstream detection models,
We have demonstrated that SIFAST can significantly improve the accu-
racy and efficiency on different downstream models. We also provide a
supervised dataset of normal and abnormal Unix commands and scripts,
which was collected from various open-source data. Hopefully, we can
make a humble contribution to the field of intrusion detection systems
by offering a solution to identifying malicious scripts in Unix Shell.

Keywords: Unix Shell · Malicious Detection · Sentence Embedding

1 Introduction

Developers, system engineers and DevOps engineers frequently use the
command-line(CLI) as the operating system interface. And among all the CLIs,
Unix Shell interface is the most widely used interface in web servers. Although
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the Graphic User Interface(GUI) seems like a more friendly choice, the Unix
Shell interface is still the most convenient, accurate and efficient way for the
programmers to connect to the Unix servers.

The Unix Shell is the core component of the Unix. It can receive user-input
commands and Shell scripts, interpret them and send the results into the Unix
kernel for execution [24]. With the sufficient user authority, Unix Shell has the
ability to schedule nearly all the commands in the Unix according to the require-
ments. It is powerful, but it may cause some exceptions on Unix. Thus, the
Unix Shell gradually becomes a favorite tool for many cybercriminals to execute
attacks, like Living-off-the-Land attacks on Unix. In order to attack a certain
server and steal confidential data, reverse shell or privilege escalation is used to
obtain Unix Shell and write Shell scripts or directly run malicious commands to
get access to the host server’s confidential data [5].

Because of the various security problems that may be caused by the Unix
Shell, empirical rules have been used by the security companies to detect mali-
cious Unix scripts and commands, including setting regular expressions and
detecting system indicators [2]. In addition, traditional machine learning meth-
ods have also been used [33]. However, due to the complexity and flexibility of
the Unix commands and scripts, these types of methods will probably make false
alarms, which lead to great deviations from the correct results in the real-world
scenarios. In recent years, with the development of NLP techniques, it has been
proved that NLP algorithms can solve part of the malicious command detection
and script detection problems, and that using NLP methods to find specific pat-
terns of high-risk scripts has been tried. Some malicious detection methods from
other script languages have been widely used by collecting structural data from
Abstract Syntax Trees(AST) and Control Flow Graphs(CFG). However, these
pre-trained models require a large amount of data for training, and hardware
resources to support their running which are not available in many Unix servers.
Although these pre-trained models provide open APIs to support downstream
detection models, it is not acceptable for companies to provide confidential shell
scripts which contain file names, accessed URLs, OS information, user behaviors,
etc. to external service providers. Therefore, it is urgent to have a detection tool
that can directly detect malicious scripts in Unix servers with efficiency.

In this paper, we propose an efficient Unix Shell script embedding method
based on SIF and AST, which embeds Unix Shell commands and scripts to sup-
port malicious detection. We call it SIFAST. This method extracts the AST in
the Shell scripts to generate the AST depth vectors, then uses the pre-trained
word embedding model to construct the token vectors of the Shell scripts tok-
enized by AShellTokenizer, and finally send these two vectors to the SIFAST
model. SIFAST is based on the SIF embedding, a sentence embedding method,
which makes the word vectors in a script weighted and averaged from the AST
depth vector to jointly synthesize the embedding vector of the Shell scripts. It
has proved through experiments that, compared with other embedding models,
the SIFAST Embedding Framework can greatly improve the accuracy of almost
all downstream machine learning models.
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The contributions of our work are summarized as follows:

1. We propose an efficient Embedding framework for malicious Unix Shell detec-
tion. Our framework can convert the Unix Shell scripts and commands into
vectors in the Unix servers to provide support to the downstream detection
model.

2. We use word vector representations in Shell scripts to establish a Unix Shell
script embedding model based on SIF, and use AST features to generate
AST Depth vectors to anisotropically normalize SIF vectors which can greatly
improve the detection ability of the downstream malicious detection models.

3. Likewise, we conducted experiments on several downstream machine learning
models and deep learning models. The experiments showed that our model
can greatly improve the accuracy. It can be demonstrated that our embedding
framework is feasible to detect malicious Shell scripts.

2 Problem Definition and Background

2.1 Malicious Unix Shell Operations

Since the emergence of Unix Operating System in 1969, the Unix Shell has
undertaken the work of parsing and executing user commands. As an important
system tool, Unix Shell can connect to the system kernel and perform almost all
Unix operations under the premise of sufficient user privileges.

In a Unix server, in order to disrupt or control the system, adversaries often
need to use Unix Shell commands to elevate privileges, evade defenses, search
information and control the system. To achieve these goals, adversaries often
implant well-written malicious scripts by using the Unix Shell as a means of
attack. Although there are already methods, like static regular expressions and
Anti-Virus tools, to evade malicious scripts executing, adversaries often write
scripts or directly execute commands to uninstall monitoring agents, disable
firewalls, interrupt Unix security modules, modify ACLs, change attributes, and
rename public utilities [1]. [2] introduces a malicious script, which can uninstall
Cloud related monitoring agent, causing malfunction of security services.

It has been noticed that in recent years, Living-Off-the-Land(LOL) attacks
have gradually been used by advanced adversaries [20]. LOL attacks mainly
use the system tools to achieve the purpose of fileless attacks, which aim to
erase their relevant traces after the attack. One commonly used tool for LOL
attacks is CLI. PowerShell is the most commonly used CLI for LOL attacks, for
Windows is one of the most popular system today. Unix Shell is also a CLI that
cannot be ignored, because Unix is the most used system on web servers. For
the convenience of using Unix Shell, some configured scripts are set which are
used by Unix users almost every day and become an integral part of Unix, like
“memfd_create”. At the same time, developers will also write multiple scripts
to quickly execute designated commands. Although this gives the developers
freedom to have access to the Unix, it gives a chance for adversaries to make it
as an execution tool for LOL attacks [7].
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Aiming at the adversaries’ attack methods, we have designed a framework
that can quickly detect malicious Unix Shell commands and scripts called
SIFAST. Through our detection framework, malicious scripts executed on Unix
servers and related users who have executed malicious commands will be detected
in a timely manner.

2.2 Threat Model

We consider a type of attack, where the adversaries can get access to Unix
Shell through some means (external intervention or internal control) in a Unix
server. The adversaries need to evade existing shell detection tools for further
attacks to ensure the effect of covert attacks. The adversaries may interfere with
the command detection tools by writing obfuscated Unix scripts, or by slightly
modifying the malicious commands to evade static regular expression rules. The
adversaries may need to remain undetected for a long time to maintain the attack
chain for the ultimate goal may be to steal information to disrupt a system.

We assume that our shell detection framework cannot be disabled from adver-
saries because it will be part of the Unix kernel. Although the adversary may
disable some common tools that can collect commands, such as “bash_history”,
“auditd”, as part of a Unix kernel, has the ability to collects all the operations
from users. We can collect the scripts and commands added by the system in
memory at the first time through “auditd”, transform them into confidential data
through our framework, and quickly send the embedded result to cloud monitors
for further classification and analysis.

3 Related Works

3.1 Command and Script Detection Using NLP Techniques

For Unix Shell commands and scripts, Elmasry et al. [15] proposed using Deep
Neural Networks to detect masquerade detection. They used DNN, CNN and
LSTM to detect masqueraders and reached 0.99 F1 score on SEA, Greenberg
and Lane’s dataset. Liu et al. [28] proposed a sequence-to-sequence model for
masquerade detection on SEA. Zhai et al. [40] proposed using TCN to detect
masqueraders on SEA dataset with the same accuracy but lower time cost. These
models can greatly catch the relationship between user commands, however,
because their ideas were to build the command detection models to detect user
behaviors from command blocks which contain several commands, it is impossi-
ble for masquerade detection models to detect specific malicious Unix commands.
In order to detect maliciousness of one command or script, Al-janabi et al. [8]
proposed several machine learning models to detect malicious software, including
malicious Shell scripts. Hussain et al. [23] proposed NLP techniques to calculate
the command similarities by using Unix system manuals to get the descriptions
and arguments of one command. At last, he used TF-IDF and cosine similar-
ity to calculate. Trizna et al. [38] proposed a tokenizer called ShellTokenizer to
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tokenize all the Unix Shell scripts and commands for malicious detection. They
also proposed a dataset containing different commands collected from NL2Bash
[26] and GitHub. Andrew et al. [10] proposed a mapping method which used
NLP techniques to map malicious Unix commands to MITRE ATT&CK. They
evaluated different NLP embeddings including TF-IDF, BOW and pre-trained
word embeddings. Boffa et al. [11] proposed using clustering methods to detect
malicious Shell command actions on Honeypot. They used NLP embeddings to
embed all the Unix Shell commands. These methods used different NLP tech-
niques on different Unix command datasets, but they simply treat Unix com-
mands or scripts as text, not considering their programming grammars.

Apart from Unix Shell commands and scripts, several malicious detection
using NLP techniques on PowerShell scripts were proposed. Hendler et al. [21]
proposed character-level CNN to detect malicious PowerShell scripts and reached
high accuracy and recall. In the later research [22], they also proposed using
contextual embeddings and information collected from AMSI, an Anti-Virus
software created by Microsoft, to detect malicious PowerShell commands and
scripts. Mimura et al. [30] proposed using Word Embedding techniques to split
malicious PowerShell commands for static analysis. Ongun et al. [31] proposed a
framework by using Active Learning and a novel embedding technique to detect
Living-Off-the-Land(LOtL) PowerShell commands. Their framework can greatly
lower the annotation cost and improve detection performance. Alahmadi et al.
[9] proposed a stacked Denoising AutoEncoders(sDAs) to embed PowerShell
scripts in character-level then use logistic classifier to detection maliciousness
of one script. Except MPSAutodetect, other detection methods all require some
external information in PowerShell language, including AMSI messages, expert
annotation, which is much difficult to migrate them to Unix Shell.

3.2 Command and Script Detection Using Hybrid Features

Recently, inspired by Maxion et al., many researchers found that other fea-
tures hidden in PowerShell or Unix Shell commands can greatly improve the
accuracy of the detection models. Bohannon and Holmes [12] proposed Revoke-
Obfuscation to detect obfuscated malicious PowerShell scripts. They used AST
to extract thousands of features in PowerShell scripts and compared feature
vector with pre-defined feature vector for classification. Rousseau [35] proposed
“hijacking” .NET structure to defend against malicious PowerShell attacks which
can evade the AMSI interface. Fang et al. [17] proposed using hybrid features,
including AMSI information, Control Flow Graph(CFG) and other features to
classify malicious PowerShell scripts. Song et al. [36] also proposed a deep learn-
ing framework by using AST to detect malicious PowerShell scripts. They split
the token vectors into AST tree and used contextual embeddings to find the
maliciousness of scripts. Chai et al. [14] proposed an AST-based method to
deobfuscate possible malicious PowerShell scripts to readable scripts, which can
improve the accuracy of downstream malicious detection models. Fang et al.
[16] proposed an AST-based and CFG-based framework for detecting malicious
JavaScript by using Graph Neural Network. Tsai et al. [39] proposed PowerDP
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framework to deobfuscate and detect malicious PowerShell scripts. These meth-
ods all used their detection target’s unique features, including different AST,
CFG, AMSI information, special tokens, etc. However, due to the unique AST
structure in the Unix Shell, it is hard to simply use the Unix Shell AST Parser
in the above methods to detect malicious Unix Shell commands and scripts.
Bashlex’s generated ASTs lack many node features compared to the PowerShell
AST parser and JavaScript AST parser. It’s also hard to obtain a full CFG or
Anti-Virus software messages from Unix Shell commands and scripts.

4 Methodology

In this section, we will elaborate on the details of the overall framework. Given
that our work focuses on the analysis of the Shell commands and scripts in the
Unix, we propose an embedding framework for Unix scripts based on SIF and
AST. An overview of SIFAST is shown in Fig. 1:

Fig. 1. An Overview of SIFAST Framework

The overall SIFAST can be divided into three parts:

1. AShellTokenizer. Inspired by Trizna et al. [38], we used the ShellTokenizer
designed by them to tokenize Unix script text, but we have also made some
change to fit our needs. First, we used the whole script to build script ASTs.
Then we tokenized all the commands in the script and built command ASTs.

2. Command Embedding. This is the core of our architecture. We input
the tokenized commands and ASTs built in the AShellTokenizer into the
Word2Vec model and AST Depth Parser respectively to build the word vec-
tors and AST depth vectors for each token, and then input the word vectors
and AST depth vectors into the Command Embedding model to build com-
mand vectors. Here, we modified SIF to build command vectors, and our
word frequency database and Word2Vec model are obtained through pre-
acquisition and pre-training.
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3. Script Embedding. When all the command vectors are collected, we can
extract the features of these vectors to make a “commands-in-script vector”
by Max-Pooling. Then we used the script AST to build an AST vector(Not
AST Depth Vector) through AST-Node-Embedding. Then we concatenated
these two vectors together to build a script vector. Here, The script AST is
different from the command AST, which can be regarded as a subtree of the
former.

After obtaining the script vector, we input the script vector into the detec-
tion model. Model selection is not one of our concerns. We will prove that our
embedding can improve any machine learning model in the experiment section.

4.1 Data Preprocessing and AShellTokenizer

Data Preprocessing. We first collected numerous Unix Shell scripts from
different repositories on GitHub, and read some of them in detail. We did the
some measures to preprocess the scripts for better training.

Since malicious URLs that may be contained in scripts are not included in our
analysis, we replaced all URLs with the same name to improve the Word2Vec
model. Since the file distributions are different in different hosts, we replaced
all relative file paths except .sh files with the same placeholder. Note that we
have reserved some absolute file paths, because we believe that the absolute
file paths may infer the intentions of scripts. For customized commands, we have
partially reserved them, because we believe that customized commands and their
corresponding command identifiers and command arguments often have some
characteristics. We insert a script directly into another script that calls it to
simulate script execution.

AShellTokenizer. Traditional NLP tokenizers have the following problems:

1. The traditional NLP tokenizer is oriented to natural language, and its rules
are mainly for natural language, which cannot be applied to scripting lan-
guage.

2. Traditional NLP tokenizers cannot build abstract syntax trees based on Unix
Shell.

In response to the above problems, we adopted the method mentioned by
Trizna et al. [38] and established a Tokenizer based on Bashlex as the backend
to generate the AST of Unix Shell while performing word tokenization. Bashlex
is a powerful tool for “Unix Shell command” syntax analyzing as it can simulate
the Unix shell interpretation process for complicated command. However, it is
difficult for Bashlex to effectively generate a script AST for loops, conditions,
and functions, so we firstly used Tree-Sitter [4] to analyze complex Unix scripts
and leave command node to Bashlex for command analysis. Tree-Sitter is a
widely-used tool for generating AST of different programming languages. It has
been used in multiple code analysis tools like CodeBERT [18]. However, Tree-
Sitter is not well-performed in generating Unix Shell Command for it will take all
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Fig. 2. The Structure of AShellTokenizer

the tokens after the command as “arguments”, which is harmful for generating
AST depth features. We extended Bashlex by setting command flags as the
separated nodes directly connected to commands, not just one of the command
arguments in AST. Command flags come from Unix Shell Manual gained from
“man” command. It means that if one command has a “flag”, the “flag node” will
be connected to the command node and the argument nodes belonging to the flag
will be connected to the flag node. This is to ensure the structural complexity
of each AST so that the AST structural feature will contain more information
which can better benefit for generating AST vector.

We call our tokenizer AShellTokenizer. Figure 2 shows the structure of AShell-
Tokenizer. The script AST is generated by Tree-Sitter while the command AST
is by Bashlex.

For the subsequent Command Embedding and AST-Embedding, our AShell-
Tokenizer can simultaneously build the script AST and the command AST. We
can think of the latter as distinct subtrees of the former. We do this to reduce the
complexity of the AST in complex scripts to improve the speed of Embedding,
and also to avoid the ambiguous command AST interfering total structure of
the script AST.

4.2 Command Embedding

Command Embedding is the core component of our framework, which relies
on SIF. SIF is an embedding method for generating sentence vectors by using
weighted word vectors, which has been proved to be effective in many tasks. SIF
uses Eq. 1 to generate sentence vectors:

fw (c̃s) = log
[
αp(w) + (1 − α)

exp (〈vw, c̃s〉)
Z

]
(1)
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where c̃s represents the sentence vector, c̃s = βc0 + (1 − β)cs, c0 ⊥ cs, α and β
are scalar hyperparameters, and

Z(c̃s) =
∑
w∈V

exp (< c̃s, vw >)

is the normalizing constant.
When weighting the word vectors in a sentence, SIF believes that words with

smaller word frequencies are more important for the expression of the entire
sentence. Based on this, we are inspired to integrate the command AST in Unix
commands into SIF. This will make the representation of the Unix commands
more differentiated.

Because of the flexibility of Unix commands, the command identifiers and
arguments can be adjusted almost arbitrarily, which makes the command AST
unable to be unified. The overall structure of the AST can be easily broken due
to changes in command identifiers or argument positions. But we found that no
matter how the positions of command arguments and identifiers change, their
depth in the entire AST does not change. So we can represent the command
AST structure by the AST depth vector dw. The definition of a token’s dw is:

dw (treew) =

⎡
⎢⎢⎢⎣

d1
d2
...

dn

⎤
⎥⎥⎥⎦ , di ∈ {0, 1},

n∑
i=1

di = 1, i ∈ {1, 2, · · · , n} (2)

where n represents the AST depth. Since one token can have only one depth in
the AST, we let

∑n
i=1 di = 1 to make a one-hot encoding.

After generating the AST depth vector, we pass it through a weight matrix
to get the weighted AST depth vector. We then perform Hadamard product on
the obtained weighted AST vector and the token’s word vector to obtain the
weighted AST word vector. The total algorithm is as follows:

ṽw = vw ◦ fwβ
(dw) (3)

where ṽw is the weighted AST word vector, wβ is the AST depth weight, and
fwβ

is the AST weight function. wβ is from:

wβ(d × m) =
(
softmax

(
wv (wdJ+ bd)

T + bv

))T

(4)

where

J =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1
1

. . . 1
...

. . .
...

1 1 · · · 1

⎤
⎥⎥⎥⎥⎦

wv, bv, wd, bd are all neural network parameters for Pre-training AST
depth weights. d is the max AST depth and m is the word vector size. We used
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Fig. 3. SIFAST Algorithm for Command Vector

Command Embedding and MLP for pre-training to get a fine-tuned wβ . Note
that AST depth weights will be certain once after the pre-training. These neural
networks which requires GPU will never be used again in malicious detection.

Recall the SIF equation. By computing the gradient of c̃s and by Taylor
expansion on it, we have the maximum likelihood estimator for c̃s which is
approximately:

argmax
∑
w∈s

fw (c̃s) ∝
∑
w∈s

a

p(w) + a
vw, where a =

1 − α

αZ

Now we replace vw with ṽw, so that we get the SIF sentence vector weighted
by the AST depth vector:

argmax
∑
w∈s

fw (ṽc) ∝
∑
w∈s

a

p(w) + a
vw ◦ fwβ

(dw) (5)

where ṽc now represents the Shell command embeddings. Finally, in order to
ensure the isotropy of the Shell command embedding vectors, we need to remove
the principal component in all the Shell commands.

At last, while FastText can handle the out-of-vocabulary tokens while
Word2Vec cannot, we set all the out-of-vocabulary tokens as nomarlized all-one
vectors to attend the SIF vectorization.

Through the above algorithm, we combine word vectors and AST depth
vectors to represent Shell command embedding vectors. In general, the Shell
command vector embedding algorithm can be expressed in the pseudo codes
Algorithm 1, and all the Algorithm procedure can be expressed in Fig. 3.

4.3 Script Embedding

After obtaining the command embedding vector, we also need to fuse the AST
structure of each script, which is script AST, and finally obtain multiple script
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Algorithm 1. Shell Command Vector Generation Algorithm based on Com-
mand Embedding
Input: Shell token embeddings {vw : vw ∈ V}, token corpus {W} Shell commands

{C}, estimated probabilities {p(w) : w ∈ V}, AST depth vectors {dw : d ∈ D}, AST
depth weights {wβ}

Output: Command embeddings {ṽc : c ∈ C}
while c ∈ C do

if w ∈ W then
ṽw ← vw ◦ fwβ (dw)

else
dw ← assume w ∈ AST’s first layer
vw ← normalized all-ones vector
ṽw ← vw ◦ fwβ (dw)

end if
vc ← 1

|c|
∑

w∈c
a

p(w)+a
ṽw

end while
Calculate u as the first singular vector in c ∈ C
while c ∈ C do

vc ← vc − uuT vc

end while

vectors for each Unix Shell script. Note that Script Embedding is different from
Command Embedding, because we do not have “command token frequency” for
each command, so we cannot balance the AST depth vector by using p(c). It
should also be noticed that the script AST’s structure is clearer than the com-
mand AST, so its structure contains much information. In order to ensure the
speed of our overall SIFAST architecture, we use a lightweight method to perform
Max-Pooling on multiple Shell command vectors from Command Embedding.
Then we transformed AST into an AST structure vector based on the modi-
fied AST-Node-Encoding [32]. Equation 6 shows how an AST structure vector
is built. Supposing vec(p) is the non-leaf node p’s representation, then all the
vec(ci) are the vec(p)’s leaf node representations.

vec(p) ≈ tanh

(
n∑

i=1

liWi · vec (ci) + b

)
(6)

where vec(·) ∈ R
Nf , li = # leaves under ci

# leaves under p and

Wi =
n − i

n − 1
Wl +

i − 1
n − 1

Wr

.
i is the ith leaf node of vec(p).
The reason why we don’t use the AST-Node-Encoding in our SIFAST com-

mand embedding is the Unix Shell commmand’s flexibility that the command
ASTs are more ambiguous than script ASTs which makes the positions of param-
eters, flags, combinations in AST much more flexible than script ASTs. However,
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a proper AST-Node-Encoding deeply relies on the node positions of one AST
which will make the command AST encoding over-fitting.

At last, we take the root node vector, which is the script node’s vector as the
AST vector and connect the obtained AST vector with the command vectors
after Max-Pooling, and finally generate the script vector, as is shown in Fig. 4.

Fig. 4. Generating the script vector by Using Max-Pooling and AST-Node-Encoding

5 Experiment Settings and Results

In this section, we will elaborate on our experiment settings and evaluation
results.

5.1 Experiment Settings

We will elaborate on three parts: dataset setting, embedding method selection
and detection model selection.

Dataset Settings. In order to prove that the command embedding method and
script embedding method of the SIFAST model have certain effects, we need to
build a Unix command dataset and a Unix script dataset. At the same time, in
order to train our Word2Vec model, we also need to collect numerous unlabeled
Unix Shell scripts to support training. We explained our data sources and dataset
generating methods below. The distribution of labeled and unlabeled dataset is
shown in Table 1.

We used shell scripts from GitHub high-star repositories as the training data
of our word embedding model. We conducted data pre-processing of these shell
scripts according to the method described in Sect. 3 to ensure the training effec-
tiveness. Furthermore, we use our AShellTokenizer to obtain accurate tokens.
At the same time, we once again remove meaningless tokens, such as “#”, “$”
and other identifiers, but we retain pipelines and concatenation labels like “||”
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Table 1. Distribution of Labeled and Unlabeled Dataset on Commands and Scripts

Class Labeled Unlabeled

Command Benign 5681607 Null
Malicious 1564381

Script Benign 160000 1064509
Malicious 160000

and “&&”. In the end, we got an unlabeled dataset containing 1064,509 scripts,
including about 34,416,978 tokenized commands with about 650,000,000 token.

We used the following data sources to create our labeled Unix command
dataset:

NL2Bash [26] A bash dataset collected from stackoverflow.com and other Q&A
forums. The dataset contains Unix commands and their corresponding natural
language explanations, which allows us to clearly understand that all the
commands contained in the dataset are benign and do no harm to any servers

Reverse Shell Cheat Sheet [37] A reverse shell script command sheet from
GitHub, which contains many commands for reverse shell in Unix Shell, and
can automatically build reverse shell commands based on the tools it provides.

GTFOBins [6] This data set contains commands and scripts corresponding to
various methods that might cause LOL attacks, such as reverse shell, file
upload, file download, file read and write, and library loading. There is also
a Windows PowerShell version of the LOL dataset called LOLBAS [3].

LinEnum [34] a repository containing multiple malicious scripts on GitHub.
These scripts can be used to steal user data, disrupt system, etc.

Furthermore, we separated our malicious commands into multi classes by
GTFOBins classification including Reverse Shell, Bind Shell, File Upload, File
Download, File Write, File read, Library Load, SUID, Sudo, Capabilities, Lim-
ited SUID. This is to test our embedding method is useful to diversify malicious
commands. We used data augmentation method [27] to expand our data size by
changing variable names, move/remove identifiers, modifying positions of differ-
ent arguments while remaining the functionality of these commands.

Embedding Method and Model Selection. In order to test the ability of our
embedding method to improve the downstream model, we selected a variety of
different embedding methods and downstream models to test the general ability
of SIFAST. We chose some embedding methods for comparison, including TF-
IDF, Doc2Vec, MPSAutodetect, SimCSE, etc.

We also selected two word embedding models in our SIFAST framework
to support SIF algorithm: Word2Vec [29] and FastText [13], and we selected
Random Forest, XGBoost, SVM and MLP as the downstream models for per-
formance evaluation.
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5.2 Evaluations

Evaluations on Unix Shell Command Dataset. We first tested on the com-
mand dataset with multiple labels. After detecting all the labels’ classification
accuracy and FPR, The average test results on different labels were collected
altogether and shown in the table Tables 2 and 3. Note that we have tested all
the averaged accuracy and FPR between different labels and benign commands.
The results from different labels have all been averaged and shown in the table.
We used this average multi-classification result as the result in the following
experiments.

Table 2. Avg. F1 Score Results from Different Labels in Command Dataset. Results
Averaged from Multiple Label Classification Results

TF-IDF Doc2Vec MPSAutodetect SimCSE SIFAST

Random Forest 0.63 0.67 0.79 0.84 0.96
XGBoost 0.65 0.7 0.76 0.86 0.99
SVM 0.68 0.69 0.73 0.86 0.95
MLP 0.65 0.71 0.75 0.87 0.98
avg 0.63 0.69 0.73 0.86 0.97

Table 3. Avg. FPR Results on Command Dataset. Results Averaged from Multiple
Label Classification Results

TF-IDF Doc2Vec MPSAutodetect SimCSE SIFAST

Random Forest 0.397 0.229 0.191 0.073 0.036
XGBoost 0.368 0.225 0.192 0.044 0.006
SVM 0.300 0.293 0.194 0.088 0.028
MLP 0.312 0.227 0.190 0.166 0.017
avg 0.324 0.218 0.191 0.092 0.021

Before the experiment, we trained our AST depth weight neural network.
As described in Sect. 3.2, after training, we only need to obtain AST depth
weights and do not need to use the network in SIFAST again. According to
the content of the table Tables 2 and 3, we found that our SIFAST embedding
has been greatly improved compared to non-deep learning models. In Trizna’s
experiments, TF-IDF with XGBoost has reached 0.99 AUC and 0.03 FPR, but
because we have increased the number of LOL attack commands compared to
the dataset provided by Trizna [38], the diversity of data has been increased,
causing AUC relatively reduced and FPR added. SIFAST with XGBoost model
is the best combination as FPR has reached 0.006, and F1 score has reached 0.97.
Compared to deep learning models, SIFAST is better than MPSAutodetect, and
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the detection speed is far faster than MPSAutodetect. The effect of SimCSE is
not as good as imagined. The reason may be that the SimCSE itself is not a
sentence vector model for Unix Shell script, but a model for natural language.
According to our experimental results, we found that the F1 value and AUC
of the SIFAST command embedding based on the Word2Vec model increased
by 0.01 compared to FastText, which may be because we processed unregistered
tokens in the Word2Vec model in the SIF algorithm. In the commands, the tokens
not included in the Word2Vec model are often file names, path names, etc.,
and they express the same semantics in the commands. We uniformly represent
this type of token with the same vector, which increases the versatility of the
Word2Vec model.

Evaluations on Unix Shell Script Dataset. We also conducted related tests
in the labeled Unix Shell script dataset, and the test results are in the table
Tables 4 and 5:

Table 4. Avg. F1 Score Results in Script Dataset. Results Averaged from Multiple
Label Classification Results

TF-IDF Doc2Vec MPSAutodetect SimCSE SIFAST

Random Forest 0.68 0.8 0.81 0.84 0.93
XGBoost 0.65 0.79 0.82 0.86 0.95
SVM 0.7 0.81 0.76 0.86 0.92
MLP 0.71 0.8 0.84 0.87 0.94
avg 0.69 0.80 0.81 0.86 0.94

Table 5. Avg. FPR Results in Script Dataset. Results Averaged from Multiple Label
Classification Results

TF-IDF Doc2Vec MPSAutodetect SimCSE SIFAST

Random Forest 0.466 0.359 0.190 0.272 0.144
XGBoost 0.469 0.353 0.189 0.291 0.139
SVM 0.452 0.375 0.191 0.271 0.146
MLP 0.480 0.369 0.193 0.260 0.142
avg 0.470 0.361 0.190 0.274 0.143

The results show that compared with other machine learning models, SIFAST
with XGBoost still achieves better results, with an average F1-score of 0.94 and
FPR of 0.039.
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We concurrently conducted several performance tests to ensure the detec-
tion efficiency of our embedding framework on general servers. Additionally, we
conducted comparative experiments with several baseline models, the results of
which are illustrated in the Fig. 5. The experimental outcomes indicate that our
embedding framework achieves a high detection speed on general servers, with
relatively low resource consumption. The primary memory resource consump-
tion in our framework arises from the Word2Vec model, while the CPU resource
consumption stems from the AST construction process. Furthermore, our model
does not require GPU usage, enabling deployment on the majority of servers.

Fig. 5. Performance Test on Script Dataset

We also conducted ablation experiments for SIFAST and AST-Embedding
module, and the experimental results are shown in the Table 6 and 7. We elim-
inated the Max-Pooling commands vector and AST-Node-Embedding vector
before script vector generation to verify their impact on the overall architec-
ture. Experiments show that the Max-Pooling commands vector is crucial to
the generation of script vectors, and AST-Node-Embedding has relatively lit-
tle effect on it, and may even interfere. However, AST-Node-Embedding also
requires little computing resources. We can split out this module when an Unix
server is facing short-text scripts or user commands. But when faced with long-
text Unix scripts with complicated grammars, AST-Node-Embedding module
can be added to the total framework.
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Table 6. Ablation Experiment Results by using F1 score on Command Dataset

SIF SIFAST RDV SIFAST RW SIFAST

Random Forest 0.86 0.89 0.79 0.92
XGBoost 0.93 0.94 0.85 0.98
SVM 0.90 0.88 0.84 0.91
MLP 0.87 0.89 0.67 0.94
avg 0.89 0.90 0.79 0.94

Table 7. Ablation Experiment by using F1 Score on Script Dataset

Max-Pooling SIFAST AST-Node-Embedding SIFAST

Random Forest 0.85 0.76 0.88
XGBoost 0.86 0.74 0.9
SVM 0.88 0.77 0.87
MLP 0.89 0.71 0.89
avg 0.87 0.75 0.89

6 Conclusion

We propose a Unix Shell Embedding Framework which leverages the SIF sen-
tence embedding combined with the limited depth features and structural fea-
tures of the Unix Shell AST to enhance the discrimination between benign and
malicious commands and scripts. Our embedding model can be applied to a vari-
ety of detection models and can significantly enhance the detection capabilities of
downstream detection models. Compared with various deep learning embedding
models, our embedding model has better universality and faster speed, which can
be applied in Unix servers. We collected multiple public data sources to create
a command dataset and script dataset for training and testing. Through experi-
ments, we found that our embedding method combined with the XGBoost down-
stream detection model can achieve the highest 0.98 F1-Score on the command
dataset, which surpasses deep learning models. Besides, regarding the detection
performance on the script dataset, our model rivals deep learning models. But
more significantly, our model shows remarkably better performances in terms of
detection accuracy and false alarm rate. We believe that with the continuous
development of the Unix Shell detection model in the future, we can find more
command and script’s related features to enhance the detection capabilities of
different types of Unix Shell malicious scripts and commands.
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Appendix

TF-IDF This is the most basic sentence vector generation method in the field
of natural language, and it is also the sentence vector embedding method
mentioned in Trizna et al. It first generates a TF-IDF representation of each
word in a sentence, and then adds each word to form a TF-IDF representation
of a sentence.

Doc2Vec [25] This is a method that trains the sentence vector and other words
in the sentence to directly generate the sentence vector. Its method is similar
to Word2Vec, but on the basis of Word2Vec, sentence vectors are added for
joint training.

MPSAutodetect [9] This is a deep learning framework for detecting PowerShell
malicious scripts, which uses a character-based embedding method and inputs
it into a denoising AutoEncoder to extract features, and finally inputs the
features into a classifier for classification.

SimCSE [19] An Advanced Pretrained Sentence Vector Embedding Model
Based on Contrastive Learning. We employ the unsupervised learning part
of SimCSE to learn code representations for shell scripts. Although SimCSE
requires powerful hardware capabilities, making it impossible to be embedded
in Unix, we still use it as one of our comparison objects to illustrate the gap
between our model and conventional deep learning models.
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Abstract. Recently, autonomous and connected vehicles have gained
popularity, revolutionizing consumer mobility. On the other hand, they
are also becoming new targets exposing new attack vectors and vulnera-
bilities that may lead to critical consequences. In this paper, we propose
VNGuard, an intrusion detection system for two critical in-vehicle net-
works (IVNs), namely, the Local Interconnect Network (LIN) and the
Automotive Ethernet (AE). In the proposed system, LIN messages and
AE network packets are converted into images, and then a state-of-the-
art deep convolutional neural networks (DCNN) model is applied to not
only detect anomalous traffic, but also to classify types of attacks. Our
experimental results showed that the VNGuard achieves more than 96%
detection accuracy for LIN and 99% attack classification accuracy for
AE. In addition, the VNGuard is able to perform the intrusion detec-
tion within 3 ms for LIN and 4 ms for AE significantly within the latency
constraint required by the autonomous and connected vehicles to achieve
human-level safety.

Keywords: Intrusion Detection System · Local Interconnect Network ·
Automotive Ethernet · Deep Learning · Autonomous Vehicles

1 Introduction

The development of autonomous driving (AD) has the potential to revolution-
ize the way consumers experience mobility. AD systems could make driving
safer, more convenient and enjoyable. Most vehicles today include basic advanced
driver-assistance systems (ADAS) features. Technological advancement in Arti-
ficial Intelligence (AI), computer vision, Internet of Things (IoT), cloud tech-
nologies, smart robotics and mobility are fostering innovation in the connected
and autonomous vehicles industry. It is anticipated that vehicles will ultimately
achieve Society of Automotive Engineers (SAE) Level 4 (L4), or driverless control
under certain conditions. McKinsey’s report in 2023 indicated that consumers
would like to have access to AD features [5]. While autonomous and connected
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vehicles improve traffic flow, safety and other benefits, they are also becom-
ing a new target exposing new attack vectors and vulnerabilities according to
Upstream’s global automotive cybersecurity report 2023 [25]. A compromise of
security may result in, among others, failure of the driving function, failure of
the vehicle system, theft of the vehicle, data theft, collision, commercial loss,
and other consequences.

Typically, autonomous and connected vehicles communicate with IVNs, with
infrastructure (V2I), with devices (V2D), with each other (V2V) and with other
networks (V2N). IVNs comprise a variety of communication networks within a
vehicle designed to enable electronic components and systems to communicate
with one another and exchange information. IVNs facilitate the transmission of
data, commands, and signals among different modules, control units, sensors, and
actuators. Commonly used IVNs in modern autonomous and connected vehicles
include Controller Area Network (CAN), flexible data rate CAN (CAN-FD),
LIN, FlexRay, AE and Media Oriented Systems Transport (MOST).

In this work, we propose VNGuard, an intrusion detection system for two
critical IVNs, namely, LIN and AE. The VNGuard system transforms LIN mes-
sages and AE network packets into images and employs a state-of-the-art DCNN
model to detect the anomalous traffic and perform attack type classification.

Our Contributions: (a) To the best of our knowledge, there is no publicly
available dataset for the LIN bus. We are the first to develop comprehensive
attack scenarios for the LIN bus and have created the labelled dataset collected
using an autonomous vehicles security testbed which features actual vehicle com-
ponents.

(b) We are also the first to propose a deep learning based intrusion detection
system for the LIN bus. Using two data pre-processing techniques, we show that
the proposed DCNN model is able to classify anomalous LIN messages against
normal ones with more than 96% detection accuracy while meeting the real-time
constraints required by autonomous and connected vehicles.

(c) A recent state-of-the-art intrusion detection system for AE achieved high
detection accuracy to classify anomalous network traffic from normal traffic. In
this paper, we show that we are able to perform not only a binary classification
but also a multi-class classification of attack types. Again, we are not aware of
any prior work on multi-class classification for attacks targeting AE.

(d) Last but not least, we evaluated the DCNN model on an embedded single-
board computing platform reComputer 2021 powered by Nvidia Jetson Xavier
NX GPU and assessed its potential use as an edge AI system within autonomous
or connected vehicles.

Organization: The remainder of this paper is organised as follows. Section 2
provides a brief background on LIN and AE, and related work on intrusion
detection systems for IVNs. Section 3 and 4 provides attack scenarios for LIN
and AE respectively. We present our methods of intrusion detection based on
deep convolutional networks in Sect. 5 followed by a detailed implementation of
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the proposed approach and its evaluation in Sect. 6. We provide conclusion for
this work in Sect. 7.

2 Background and Related Work

This section begins with a brief introduction on LIN and AE, and reviews the
existing start-of-the-art work on intrusion detection systems for IVNs.

2.1 Local Interconnect Network (LIN)

LIN bus technology has been widely used since its inception in the automotive
industry. As compared with the more expensive CAN/CAN-FD networks, this
is primarily due to its cost-effectiveness, particularly for components that do
not require high bandwidth, such as doors, windows, sunroofs, mirrors, seat
controls, and door locks. LIN networks serve as an invaluable complement to
CAN/CAN-FD networks, minimizing resource requirements and reducing cost.
LIN bus is a serial unidirectional messaging system where the slaves listen for
message identifiers addressed by a master. A typical LIN network is limited to
one master and 15 slave nodes. The bandwidth for LIN is limited to 20 kbps.

There are several distinct segments in a complete LIN frame, which include
the frame interval, synchronization interval segment, synchronization segment,
inter-byte interval, protected ID (PID) segment, answer interval, data segment,
and checksum segment. The synchronization interval segment serves as the ‘Start
of the Frame’ by maintaining a continuous 11-bit dominant level on the bus. The
synchronization segment plays a crucial role in determining the baud rate of the
master node. The PID serves the purpose of identifying the message class and
length. Messages are carried by the data segment within the frame structure,
which may contain 2, 4 or 8 bytes of data. The checksum segment ensures the
validity and integrity of the LIN frame, and represents the end of the LIN frame.

2.2 Automotive Ethernet (AE)

Automotive Ethernet addresses the higher bandwidth requirements of ADAS
and autonomous vehicle components, such as LIDAR, raw camera data, GPS,
image data, high resolution displays, etc. AE typically consists of the following
main protocols: Audio Video Transport Protocol (AVTP), (Precision Time Pro-
tocol) gPTP, and CAN protocol. The AVTP protocol is designed for the trans-
mission of audio, video, and control information over a network that is capable
of Time-Sensitive Networking. It consists of the Audio-Video Bridging (AVB)
talker (i.e., a producer of an AVTP stream) and AVB listener (i.e., a consumer
of an AVTP stream). AVTP is synchronized with one or more linked AVB lis-
teners for transmitting streams from the AVB talker depending on gPTP. gPTP
performs precision time synchronization of all endpoints included in the AVB
network and provides the time information required for audio or video stream
transmission. The CAN protocol is used in AE networks as the core method of
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communication between the various devices of a vehicle. This protocol transmits
and receives CAN messages through Engine Control Unit (ECU) nodes parallel
in the CAN bus.

2.3 Intrusion Detection Systems for In-Vehicle Networks

Threats targeting autonomous and connected vehicles have prompted a greater
emphasis on the security of in-vehicle networks in recent years [26]. AI-based
intrusion detection systems have been proposed as a complementary approach
to access control and encryption algorithms due to their advantages in scalabil-
ity, extensibility and effectiveness to enhance security [15]. They rely on obser-
vation of data in the context of in-vehicle networks, which primarily involves
data exchange between ECUs. A typical CAN message, for example, includes
a message ID, data content, and checksum, and represents a specific process or
event. Features such as message timestamps and data ranges could be utilized
to differentiate between normal and abnormal messages, enabling the intrusion
detection.

Rajapaksha et al. [20] conducted a comprehensive study on AI-based intru-
sion detection systems (IDSs) for IVNs. Seo et al. [21] proposed an IDS for the
CAN bus utilizing Generative Adversarial Networks that is capable of detecting
multiple attack types, including Denial of Service (DoS), fuzzing, and remote
packet manipulation. Furthermore, Cheng et al. [4] presented a temporal con-
volutional network intrusion detection system (TCAN-IDS) based on sequence
features of CAN IDs. Song et al. [22] presented a DCNN based IDS that takes
advantage of the sequential characteristics of CAN data. Qin et al. [19] and
Ashraf et al. [2] have proposed an anomaly detection algorithm based on Long
Short-Term Memory utilizing the CAN message payload.

In addition, Limbasiya et al. [13] provided a comprehensive review on attack
detection and defense systems that target the CAN network in autonomous
and connected vehicles. As indicated by our literature review, existing intrusion
detection systems focus primarily on the security of the CAN bus. However,
modern IVN incorporates hybrid architectures. A study conducted by Huang et
al. [10] highlighted the vulnerabilities present in hybrid networks, so it is impor-
tant to consider the security of other networks as well. Huang et al. [9] developed
the attack traffic generation tool, while Yeo et al. [24] proposed the VitroBench
testbed. Both works demonstrated the successful execution of spoofing, fuzzing,
injection and flooding attacks, thereby affirming the significant risk they impose
on the safety of vehicular operations.

The significance of addressing security issues with the LIN network has only
recently gained attention. Ernst et al. [6] conducted a study on the security issues
associated with the LIN bus. Their study highlighted that the physical layer of
LIN is susceptible to compromise, making the encryption techniques employed in
LIN insecure. Moreover, the study also compared LIN’s vulnerability to attacks
with that of other bus systems, such as CAN and FlexRay, emphasizing LIN’s
heightened vulnerability to attacks. Páez et al. [16] [17] [18] proposed a message
authentication code that utilizes the BLAKE2s hash function and symmetric
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encryption algorithm Speck64 for LIN. Since LIN’s maximum payload size is only
8 bytes, they utilized two consecutive response frames in order to authenticate
and encrypt the payload. The authors mitigated replay attacks by utilizing the
timestamp feature of LIN data packets. Takahashi et al. [23] looked at how the
proposed attack scenarios for LIN might be countered through an experimental
analysis. The LIN node detects the consistency of bus voltage level and sends
an abnormal signal to notify others of the need to transition to a secure state.
Additionally, the study also identified the absence of detailed error-handling
mechanisms in the LIN protocol specification.

Regarding the AE network, despite its numerous advantages such as high
bandwidth and low latency, the interconnected nature of vehicle leads to increas-
ingly complex IVNs, thereby expanding the attack surface. The evolution of AE
from traditional Ethernet also entails its advantages and security vulnerabilities.
As a result, while harnessing the technical benefits of AE, it becomes imperative
to address vulnerabilities caused by AE in the automotive context. As discussed
in Sect. 2.2, AE consists of several protocols, such as AVTP, gPTP, and CAN,
each with its own set of characteristics. However, existing intrusion detection sys-
tems are proposed mainly for use with individual protocols. For instance, Jeong
et al. [11] have developed a feature generator and convolutional neural network-
based intrusion detection model for the AVTP protocol. Buscemi et al. [3] intro-
duced a machine learning-based intrusion detection system for gPTP. Koyama et
al. [12] proposed a whitelist-based IDS for SOME/IP protocol whereas Alkhatib
et al. [1] proposed an offline IDS based on a sequential deep learning model for
detecting intrusions. In a recent paper, Han et al. [7] proposed TOW-IDS, a
state-of-the-art intrusion detection system for AE that considers multiple pro-
tocols. Nevertheless, their work primarily focused on binary classification and
they did not explore multi-class classification.

Our literature review indicates that future research on novel intrusion detec-
tion techniques for LIN and AE is essential. On the one hand, it is necessary to
deal with the challenges posed by the use of cryptography and message authen-
tication on the LIN bus, which could result in increased data processing and
computation burdens, and, in turn, increased transmission delays. While on the
other hand, it is imperative to address the limitations of most existing IDS that
are focused only on a single AE protocol, while exploring the possibility of a
multi-class classification approach.

3 Attack Scenarios for LIN

We consider four attack scenarios targeting the LIN bus: 1) collision between
responses, 2) header bombing, 3) flooding attack, and 4) injection attack as
illustrated in Fig. 1. We describe the details of each attack scenario as follows.

Collision Between Responses: The details of this attack scenario are
described in [23], and illustrated in Fig. 1(a). Typically, the master node sends
a frame header (PID : 0x2E), the slave node 1 (PID : 0x2E) receives the frame
header and sends a corresponding response (Data : 0x0A). The slave node 2
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Fig. 1. Attack Scenarios for LIN

receives the response and executes the corresponding commands. Provided that
the attacker has access to the LIN bus, then according to the scheduling table,
the attacker sends a fake response (Data : 0x05) at the same time as the response
from the slave node 1 leading to the response collision. At this time, the slave
node 1 stops sending the response due to bit errors, and the attacker keeps send-
ing the fake response, and the slave node 2 (attack target) receives and stores
the fake response.

Header Bombing: A cluster with LIN devices, via LIN bus, is generally con-
nected to the CAN bus in which the CAN node is acting as a master node. When
the master node is subjected to a hijacking attack, the attacker is able to contin-
uously send frame headers ID : 0x00 − 0x3C, known as header bombing as the
master node, and corresponding LIN slaves send valid responses (see Fig. 1(b)).
By exploiting this situation, the attacker gains access to all the transmitted con-
tent on the LIN bus, enabling further attacks such as spoofing, data tampering,
and replay.

Flooding Attack: In a flooding attack, the attacker gains access to the LIN
bus and employs a software tool to rapidly send a large number of invalid mes-
sages (refer to Fig. 1(c)), causing bandwidth and resource exhaustion impact
on the LIN bus. A breakdown in LIN communication may prevent the engine
control module from receiving and processing data from sensors in a timely man-
ner, and the instrument panel module may not accurately display vehicle status
information and posing serious risks.

Injection Attack: Injection attacks manifest in various forms, except for the
flooding attack above, in this case, we mainly consider message replay injection
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and forged data injection, as shown in Fig. 1(d). An attacker controls one of the
ECUs of the CAN serving as the master node for a LIN cluster. Through this
compromised master node, the attacker transmits false or altered messages to
the slave nodes, leading to erroneous data and status on these nodes. Replay
attacks involve the attacker reinserting a valid message onto the bus, deceiving
either the slave node or the system into executing a duplicate operation. The
communication mechanism of LIN makes it relatively easy for attackers to carry
out message injection attacks on LIN [6].

4 Attack Scenarios for AE

In this work, we rely on the AE intrusion dataset, which was published via the
IEEE DataPort by Han et al [8]. The authors focus on the CAN, AVB, and
gPTP protocols in Automotive Ethernet. These protocols generate and trans-
mit network traffic, such as AVB stream data, gPTP sync, and encapsulated
CAN messages. The IVN traffic data is extracted using port mirroring with the
100BASE-T1 switch while all linked nodes communicate each other. The dataset
contains three kinds of IVN data, i.e., AVTP, gPTP, and UDP. In particular, the
UDP traffic is converted from CAN messages. The collected data were divided
into two separate datasets. One contains normal driving data without any attack.
The other includes abnormal driving data that occurred when an attack is per-
formed. The abnormal traffic is based on the defined five attack scenarios. A
brief description of each attack scenario is provided below.

Frame Injection Attack: Frame injection attack refers to a form of attack
that continuously injects back into the normal output stream after extracting
an MPEG frame corresponding to a specific part of a typical video stream. The
hexadecimal data in the header of the MPEG frame starts with ‘47 40’, and this
part can be extracted and inserted as video content for the attack into the middle
of the MPEG frame. If this attack occurs in an autonomous driving environment
where a driver’s cognition is not required, the driving function will fail since the
detection system of the IVN is not able to identify and detect external objects.

PTP Sync Attack: In order to provide audio or video services in real-time, all
network devices on the data transmission path must be synchronized. Time syn-
chronization between vehicle network devices is performed through PTP of the
IEEE 1588 standard, which provides a protocol that enables networked devices
to utilize the most precise and accurate clock synchronization. The PTP sync
attack causes a time delay in the time synchronization process by modulating
or flooding the time information of the sync message during the PTP synchro-
nization. This attack makes the time synchronization between master and slaves
impossible after injecting an incorrect sync message during the initial synchro-
nization of the PTP.

Switch Attack (MAC Flooding): A network switch is often utilized to route
various network packets in Automotive Ethernet. In general, a switch follows a
fail-open-policy allowing specific elements in the event of a traffic, permission, or
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service failure. If there is a problem in the system itself, the switch operates as a
type of hub. If an attacker sends a large amount of frame packets to the switch, all
the Media Access Control (MAC) addresses coming into the switch are stored
in the buffer of the MAC table. Eventually, this leads to overflow, the switch
starts functioning as a hub. Alternatively, an environment is created in which
other hosts are able to sniff all the frame packets being broadcasted and the
Automotive network becomes overloaded. As such, the authors injected packets
randomly composed of MAC and IP addresses for the source and destination
into the Automotive Ethernet network to achieve the MAC flooding attack.

CAN DoS and CAN Replay Attacks: As a multi-master of all ECU nodes
connected to the CAN bus, the method of message broadcasting in a CAN
bus topology and the priority principle for CAN messages constitute the main
characteristics of the CAN protocol. However, these characteristics can be the
basis for DoS, replay, and fuzzing types of attacks. Firstly, the CAN DoS attack
allows the highest priority arbitration ID transmitted from a malicious ECU
node to occupy many of the resources allocated to the CAN bus. Subsequently,
in the CAN replay attack, the series of dumped data extracted from the normal
traffic of the CAN bus are injected into the CAN bus again. This attacks the
CAN bus system without conducting the reversing engineering for the functional
information assigned to the arbitration ID. The CAN replay attack is performed
by changing only the data field values in the CAN message frame.

5 Methodology

This section presents VNGuard, an intrusion detection system for in-vehicle
networks, particularly for LIN and AE. The VNGuard system comprises of three
major components, namely, 1) data extraction, 2) data pre-processing and 3)
intrusion detection with DCNN as shown in Fig. 2.

5.1 Data Extraction

LIN. According to our findings in the existing literature, there is no publicly
available dataset for the LIN bus. As such, we rely on the VitroBench [24],
an autonomous vehicle security testbed, to generate the LIN dataset. The
testbed consists of real vehicle components, including a few devices intercon-
nected via the LIN bus. The available LIN devices include mirror adjusting
(top/bottom/left/right), fold-in and fold-out, left/right and auto curb monitor,
power windows and safety switch. Additionally, the LIN bus analyzer hardware
kit connects to the LIN bus, and the software running on the PC performs trace
logging. By activating one function at a time, we collect various LIN messages,
log them using the LIN Bus Analyzer, and obtain a dataset labelled as ‘Normal’
under normal conditions.
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Fig. 2. VNGuard: Intrusion Detection System for In-Vehicle Networks

The attacks for LIN encompass the four previously mentioned attack scenar-
ios in Sect. 3. 1) Response Collision: Though the response data from the slave
node is supposed to be 0x00/0x0A, the data changes to 0x05 by means of this
attack. 2) Flooding Attack: No attack is performed in the beginning for 20 s.
After that, a large amount of invalid data (ID = 0x10, DLC = 0x4, Data = 0x00)
is sent, which consequently overwhelms the LIN communication and prevents
the devices from operating normally. 3) Header Bombing: This attack involves
utilizing the LIN Bus Analyzer software to send frame headers with IDs ranging
from 0x00–0x3C. The attacker waits for the response from the corresponding
slave nodes and captures the transmitted content on the LIN bus. 4) Injection
Attacks: One of these attacks involves sending forged LIN messages while the
button is in normal operation. The bus transmits normal traffic, but at the
same time, the attacker constantly injects forged messages with (PID = 0x6F,
alter the third byte of data). The other is to replay valid messages, manually
operate the right mirror button to send a message and use the LIN Bus Ana-
lyzer software to re-transmit valid messages to make the left mirror rotate at the
same time, resulting in two mirrors rotating at the same time, forming an attack.
Table 1 provides the distribution of LIN messages under normal operations and
four attack scenarios. The dataset contains 121,926 LIN messages both normal
and abnormal messages combined. It is noted that normal LIN messages are
also captured before and after the attacks are undertaken since LIN devices are
communicating periodically.

AE. The AE intrusion dataset released by Han et al. consists of two network
traffic PCAP files; one used for training and another used for testing purpose.
Furthermore, the dataset contains two CSV files that provide labels for all the
packets in the two PCAP files. There are six distinct labels: ‘Normal’ for network
packet without any attack, ‘F I’ for the packets with Frame Injection attack, ‘P I’
for PTP Sync attack, ‘M F’ for Switch (MAC Flooding) attack, ‘C D’ for CAN
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Table 1. LIN Dataset

Data Type # Packets

Normal Abnormal

Normal 29,149 0

Collision between Responses 1,654 75

Header Bombing 3,600 324

Flooding Attack 6,551 3,286

Injection Attacks 73,326 3,961

Total 114,280 7,646

DoS attack and ‘C R’ for CAN Replay attack according to the attack scenarios
described in Sect. 4. The number of packets for each label in the training and test
dataset is provided in Table 2. Overall, the training dataset contains 1,196,737
packets and the test dataset contains 791,611 packets.

Table 2. AE Dataset with Network Packets

Data Type # Packets

Train Dataset Test Dataset

Normal 947,912 660,777

Frame Injection 35,112 16,962

PTP Sync 64,635 26,013

Switch 33,765 16,809

CAN DoS 85,466 41,203

CAN Replay 29,847 29,847

Total 1,196,737 791,611

5.2 Data Pre-processing

LIN. The raw LIN traces contain various attributes such as timestamp, PID,
data field length, and data field for each LIN message. As a result, it is necessary
to perform data cleaning and feature selection in order to reduce the complexity
of the neural network and trainable parameters. We first extracts and concate-
nates the PID, data field length, and data field content of each LIN message.
We then convert each LIN message into an image utilizing (1) one-hot encoding
and (2) 2D Discrete Wavelet Transform (DWT) techniques. Both methods are
described in details below.

(1) One-Hot Encoding: As shown in Fig. 3, the processed LIN message con-
sists of a string of hexadecimal numbers with a length equal to or less than 76
bits (PID: 1 byte, Data Length: a nibble, Data: 8 bytes). To ensure a uniform
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image size, LIN messages with a length less than n bits are appended with the
‘*’ symbol. This feature vector representation is referred to as LIN pac.

Considering that each bit of the n-bit LIN pac takes 16 possible values
(0x00 – 0x0F), with the ‘*’ sign represented as 0, we encode each bit into
a 16-dimensional one-hot vector. Therefore, a single LIN pac is encoded into
a 16 × n = 16n dimension one-hot vector. For instance, if the LIN pac is
0x8E43C003CC3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗, the equivalent one-hot encoding is [0 . . . 10000000],
[0000 . . . 0010], [00001 . . . 000], [0001 . . . 0000], [0000 . . . 1000], . . ., [0000 . . . 0000],
[0000 . . . 0000]. Subsequently, 10 LIN pacs are grouped to form a 16 × n × 10 =
160n dimension one-hot matrix, referred to as the ‘LIN image’. The ‘LIN image’
is then converted into a feature image comprised of 16 × 10n pixel values. This
10n-pixel valued feature image is labeled as ‘Normal’ or ‘Abnormal’, where the
presence of any abnormal LIN message within the 10 messages classifies the fea-
ture image as abnormal. Following processing of the entire LIN dataset, a total of
8,561 feature images were generated, of which 5,175 represented normal images
and 3,386 represented abnormal images.

Fig. 3. One-Hot Encoding of LIN Messages

(2) 2D DWT: Wavelet transforms ensure efficient utilization of limited
resources and faster model learning. Moreover, two dimensional discrete wavelet
transform has the data compression capability while preserving the core infor-
mation of the image. 2D DWT decomposes a given image into four sub-bands:
low-low (LL), low-high (LH), high-low (HL), and high-high (HH). The LL sub-
band is the approximate input image and the size is around 1/4 of the input
image. LH, HL and HH sub-bands extract horizontal, vertical, and diagonal
features respectively.

Similar to the one-hot encoding approach, we extract and concatenate the
LIN PID, data field length, and data content to form a feature vector. However,
LIN messages have varying lengths (0–8 bytes) depending on the data field
length. In order to have a uniform feature vector, we fix the LIN message length
to 32 bytes. If the LIN message length is less than 32, it is padded with zeros.
Since the range of input values (i.e., 0–255) could affect the feature value’s
saturation and weight convergence in the deep learning step, we normalize them
to be between 0 and 1. Considering 32 consecutive LIN messages, 32×32 images
are obtained.

Subsequently, a 2D DWT is employed to compress the data. We use three
wavelet filters (Coiflet 1, Daubechies 3, and Reverse Biorthogonal 1.3) each
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decomposing the LIN image into four sub-bands. The three low-low (LL) sub-
bands, which are approximate of the input image, coefficients are stacked
together to form a single RGB image. Labeling of the images is performed sim-
ilarly to the one-hot encoding approach. A total of 3,809 RGB images were
generated which comprise of 2,118 normal images and 1,691 abnormal images.

AE. The number of bytes in each packet varies for each AE protocol. For exam-
ple, AVTP packets contain 434 bytes whereas gPTP packet ranges from 60–90
bytes. The UDP packets, which are converted from CAN messages, have 60
bytes. In order to train, validate and test the DCNN for intrusion detection,
N × M images are generated from the network packets. In this case, N refers
to the number of packets and M refers to the packet length. If M is less than
a selected image width, zero padding is performed. On the other hand, if M is
larger than the image width, the number of bytes that correspond to the image
width are considered and the remaining bytes are discarded.

The value of each byte of the network packet ranges from 0 to 255. This
wide range affects the feature value’s saturation (no weight update) and weight
convergence (fast gradient descent convergence) in the deep learning step. Hence,
the pixel values are normalized between zero and one. Similar to generating RGB
images from LIN messages, we use the same wavelet filters for the AE packets.
The resulting LL sub-bands are stacked together to create RGB images from
the network packets. These images are used as inputs to the DCNN in training,
validation and testing to realize the intrusion detection system.

5.3 Model Structure

Fig. 4. Deep Convolutional Neural Network Model for Intrusion Detection

Our classification model to detect intrusion on LIN and AE is based on the
ResNet deep learning model. As the authors proposed in [7], we performed the
adjustment to the ResNet model to reduce the number of parameters. Our pro-
posed DCNN model is shown in Fig. 4. The model consists of three main convo-
lutional blocks, namely, Block A, Block B and Block C.
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Block A: This first layer serves as the input layer with an expected input
feature image dimension of (N, M, 3), taking (16, 190, 3) for example. The
second and third layers consist of separable convolutional layers with 256 filters
of size 3 × 3 and a stride of 2. The Rectified Linear Unit (ReLU) activation
function is then applied, resulting in an image dimensionality of (4, 48, 256).
The fourth layer corresponds to the batch mormalization layer, which ensures
batch-wise normalization of the output from the convolutional layer, preserving
the dimensionality. The final layer is the max-pooling layer, modifying the feature
image dimension to (2, 24, 256) through the max-pooling operation.

Block B: The first and second layers are separable convolutional layers, similar
to those in Block A, with identical filter sizes and numbers. However, the stride
size is set to 1 in this case, and the ReLU activation function is used. The
third layer corresponds to the batch normalization layer. Notably, a residual
network architecture is employed, connecting the five instances of Block B by
summing the features from previous layers with the output of the current layer.
This approach addresses the challenge of vanishing gradients and enhances the
network’s ability to learn and optimize more effectively, thereby improving the
detection accuracy of the model.

Block C: The first layer is also a separable convolutional layer, but with a dou-
bled number of filters and a stride size of 3. The activation function used remains
the same. After this layer, the image dimension becomes (1, 8, 512). The second
layer is a global average pooling layer, which transforms the feature images into
feature vectors with a length of 512. The third, fourth, and fifth layers are fully-
connected layers with 512, 256, and 64 neurons, respectively, all employing the
ReLU activation function. The sixth layer is the dropout layer, which randomly
drops neurons during the training process with a probability of 0.3 to prevent
overfitting of the model. Lastly, a Sigmoid is used as the output layer for binary
classification. A Softmax is used in the case of multi-class classification, as it
produces a probability distribution and exhibits better numerical stability.

The proposed intrusion detection model is trained, validated and tested using
both normal and abnormal dataset. The dataset encompasses various attack
scenarios targeting LIN and AE as described in Sect. 3 and 4.

6 Experimental Results

In this section, we present experimental results on intrusion detection for LIN
and AE. We evaluate the detection performance of the proposed IDS model by
analyzing the confusion matrix, accuracy, and F1 score. Moreover, we evaluate
the system’s response time to determine whether it meets the real-time require-
ments of autonomous vehicles (AVs).

6.1 IDS for LIN

The pre-processing of data and the generation of feature images have been dis-
cussed in Sect. 5.2. After one-hot encoding, 8,561 feature images of size 16× 190



92 Y. L. Aung et al.

are generated whereas 3,809 feature images of size 32×32 are obtained following
the 2D DWT processing. We divide both datasets into training, validation, and
test sets maintaining a ratio of 65%, 15% and 20% respectively.

We use the Keras Python library for deep learning and build the DCNN
model. Using the pre-processed dataset with one-hot encoding and 2D DWT,
iterative training and learning take place in two separate workflows The gradi-
ent descent optimization algorithm is employed, along with the Adam optimizer
and a Binary Cross-Entropy (BCE) loss function. During each iteration, 10 fea-
ture images are extracted for training and validation, with a learning rate of
0.0001. To prevent overfitting and enhance training efficiency, we use early stop-
ping criteria where training is halted if the validation loss does not improve for
three consecutive training epochs. Figure 5(a) shows the training and validation
accuracy for the LIN IDS with 2D wavelet transform implementation.

Fig. 5. Training Accuracy for LIN IDS and ROC Curve for AE IDS

Testing is conducted after training, and the experimental results are shown
in Table 3. The results obtained from both approaches achieve more than 95%
for both the intrusion detection accuracy and the F1 score. This indicates that
the DCNN model is capable to detect and classify normal and abnormal LIN
messages. Comparing the two approaches, the 2D DWT approach slightly out-
performs the one-hot encoding achieving 1% higher in detection accuracy and
F1 score.

As provided in Table 1, the LIN dataset consists of a significantly smaller
number of Abnormal LIN messages. This is mainly due to a very limited devices
interconnected via the LIN bus with the VitroBench testbed. We anticipate a
more comprehensive LIN dataset to perform a meaningful multi-class attack
type classification and the detection accuracy evaluation for LIN IDS.
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Table 3. Detection Accuracy, Performance and Response Time of LIN IDS

Method Accuracy TN∗ FN∗ FP∗ TP∗ F1 Score Time

One-Hot (16 × 190) 95.43% 445 3 56 777 0.9638 2.1 ms

2D DWT (32 × 32) 96.86% 256 8 10 299 0.9708 3 ms
∗ True Negative (TN), False Negative (FN), False Positive (FP) and True Pos-
itive (TP).

6.2 IDS for AE

We use two network traffic PCAP files as provided by Han et al. in [8] to generate
RGB color images. We also set the height N and width M of images to be the
same. Since the packet size varies among different types of packets, five image
resolutions (i.e., 32 × 32, 60 × 60, 116 × 116, 228 × 228 and 452 × 452) are
considered in our experiments. For binary classification, Table 4 provides total
number of images generated for Normal and Abnormal in the training and test
dataset for each image resolution. For multi-class classification, Table 5 shows
total number of images for Normal and five other attack types for each image
resolution.

Table 4. AE Dataset with Pre-Processed Images

Image Training Test

Normal Abnormal Normal Abnormal

32 × 32 17,753 19,863 13,958 10,779

60 × 60 9,209 10,853 7,316 5,877

116 × 116 4,501 5,876 3,660 3,164

228 × 228 2,141 3,138 1,796 1,675

452 × 452 1,075 1,589 903 848

Table 5. AE Dataset for Multi-Class Classification

Image Normal FI∗ PI∗ MF∗ CD∗ CR∗ Total

32 × 32 31,711 2,684 8,423 4,847 8,296 6,394 62,353

60 × 60 16,525 1,812 4,495 2,587 4,424 3,412 33,255

116 × 116 8,161 1,317 2,329 1,340 2,289 1,765 17,201

228 × 228 3,987 877 1,186 684 1,166 900 8,750

452 × 452 1,977 446 601 346 589 455 4,414
∗ Frame Injection Attack (FI), PTP Sync Attack (PI), MAC Flood-
ing Attack (MF), CAN DoS Attack (CD) and CAN Replay Attack
(CR).
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As described in Sect. 5.2, the image size becomes 1/4 of the input image after
2D wavelet transform. For example, 2D wavelet transform outputs 228 × 228
resolution LL sub-band images for 452×452 resolution input images. For binary
classification, we consider an image as Abnormal whenever there are one or
more attack packets in the image. For multi-class classification, we label an
image accordingly if it contains at least one packet that corresponds to a specific
attack type. We also noted that there is no overlap of attacks within an image
for all image resolutions.

Subsequently, the DCNN model for intrusion detection is trained and val-
idated with the training dataset using the Keras library in the Google Colab
environment. Again, we use the BCE loss function, which measures the BCE
between the target and the input probabilities. We also set the learning rate of
the Adam optimizer to 0.0001 and the maximum number of iterations to 100.
During the training and validation, early stopping criteria are also set to mon-
itor the validation loss and to stop the training after no improvement is made
between three consecutive epochs. The model checkpoint functionality is also
configured to monitor the validation accuracy and to save the trained model
with the best performance. After the training is completed, the model perfor-
mance is evaluated with the test dataset using evaluate() method of the Keras
library to obtain the testing loss as well as testing accuracy.

Binary Classification Results: Table 6 provides detection accuracy, perfor-
mance and response time of AE IDS for binary classification. Based on the five
different image resolutions considered, the ‘Accuracy’ column provides the test-
ing accuracy of the intrusion detection system for AE. It is noted the detection
accuracy for 32 × 32 resolution is a mere 76.67% while other resolutions achieve
more than 95% accuracy. For 32 × 32 resolution, the image width (i.e., packet
length) is 32 bytes and all AE packet types in the dataset have at least 60 bytes.
The poor detection performance is due to the significant number of data bytes
in the packet are discarded when the packet length is larger than 32 bytes as it
occurs to all packet types in the dataset. The 116 × 116 resolution achieves the
highest detection accuracy of 98.01%. To provide a deeper understanding of the
detection performance of the intrusion detection model, we measure True Nega-
tive (TN), False Negative (FN), False Positive (FP), and True Positive (TP) as
well as the F1 score for the test dataset. The results are also reported in Table 6.
Receiver Operating Characteristics (ROC) curve measures the performance of
the classification model at various threshold settings. ROC is a probability curve
and area under the curve represents the degree of separability indicating how
much the model is capable of distinguishing between classes. We plotted the
ROC curve for 228 × 228 resolution as shown in Fig. 5(b).

Multi-class Classification Results: Table 7 provides detection accuracy, per-
formance and response time of AE IDS for multi-class classification. Similar to
the binary classification results, the 32 × 32 resolution exhibits poor detection
accuracy. Meanwhile, all other resolutions except 452 × 452 achieve more than
98% accuracy, resulting in higher accuracy than the binary classification. In par-
ticular, the 116× 116 resolution reports more than 99% detection accuracy with
F1 score of 0.9913.
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Table 6. Detection Accuracy, Performance and Response Time of AE IDS for Binary
Classification

Image Accuracy TN∗ FN∗ FP∗ TP∗ F1 Score Time∗

32 × 32 76.67% 8,060 3,052 2,719 10,906 0.7364 4 ms

60 × 60 96.48% 5,764 352 113 6,964 0.9612 4 ms

116 × 116 98.01% 3,048 20 116 3,640 0.9782 4 ms

228 × 228 96.74% 1,593 31 82 1,765 0.9657 5 ms

452 × 452 97.43% 809 6 39 897 0.9729 5 ms
∗ True Negative (TN), False Negative (FN), False Positive (FP) and True
Positive (TP).

Table 7. Detection Accuracy, Performance and Response Time of AE IDS for Multi-
Class Classification

Image Accuracy TN∗ FN∗ FP∗ TP∗ F1 Score Time

32 × 32 76.17% 45,436 2,720 1,604 6,688 0.7557 3 ms

60 × 60 98.68% 24,894 66 66 4,926 0.9868 3 ms

116 × 116 99.14% 13,417 24 23 2,664 0.9913 3 ms

228 × 228 98.74% 6,705 17 15 1,327 0.9881 3 ms

452 × 452 92.84% 3,786 55 54 713 0.9290 4 ms

6.3 Response Time Evaluation

We also evaluated the response time (i.e., the inference time required by the
model to perform the classification) of the intrusion detection model for both
LIN and AE in Google Colab using predict() method of the Keras library. The
Google Colab runtime includes Intel Xeon CPU (2.30 GHz) with 2 virtual CPUs
(vCPUs) and 13 GB of RAM, and Nvidia Tesla T4 GPU with 16 GB of RAM.
For LIN, the one-hot encoding approach takes 2.1 ms whereas the 2D wavelet
transform approach takes 3 ms. The response time difference in this case could be
explained by the fact that the one-hot encoding approach has 10 LIN messages
in one image while the 2D wavelet transform considers 32 LIN messages in one
image.

Table 6 and 7 provides the response time of AE IDS for binary and multi-class
classification respectively. For the binary classification, smaller image resolutions
require 4 ms whereas 228×228 and 452×452 resolutions require 5 ms to perform
the detection. On the other hand, the multi-class classifications requires 3 ms
response time except 452 × 452 resolution which takes 4 ms.

To access the feasibility of using the proposed detection model as the edge
AI system, the response time is also evaluated using an embedded single-board
computing platform reComputer 2021 with Nvidia Jetson Xavier NX with 8
GB RAM. In this case, the trained model is ported to reComputer J2021 and
response time is measured during the AI inference. The intrusion detection for
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LIN with 2D wavelet transform and Automotive Ethernet with binary classifi-
cation requires 14 ms whereas multi-class classification requires 12 ms.

According to [14], AV systems should normally complete the operations faster
than human drivers, within the latency of 100 ms to offer better safety in
autonomous driving environments. The response time of the DCNN is signif-
icantly less than 100 ms, which is the end-to-end processing latency constraint
for AV systems to achieve human-level safety. Therefore, the proposed DCNN
model for intrusion detection is well-suited for deployment on connected vehicles
or AV that incorporates AI hardware accelerators/components.

7 Conclusion

Given the increasing security threats targeting autonomous and connected vehi-
cles, intrusion detection systems are becoming essential to ensure in-vehicle net-
work security. Addressing the existing challenges in anomaly detection within the
in-vehicle LIN and AE networks, this work proposes VNGuard intrusion detec-
tion system based on deep learning model. Leveraging the one-hot encoding and
2D DWT techniques, the LIN messages are transformed into images capturing
the characteristics of PIDs, data field length, and data content as feature vectors.
This approach enhances model performance and computational efficiency while
reducing data dimensionality. Using the dataset with 121,926 LIN messages from
which 3,809 32× 32 images are generated, our experimental results demonstrate
that the proposed LIN IDS model achieves more than 96% detection accuracy
with the 2D DWT method slightly outperforming the one-hot approach while
meeting real-time latency constraint. Similarly, the experimental results evalu-
ated with the AE dataset, which contains 1,988,348 packets from which 17,201
116×116 images are generated, the IDS for AE achieves more than 98% and 99%
detection accuracy for binary and multi-class classification respectively thereby
validating the effectiveness of the proposed deep learning model. In addition, the
proposed IDS is able to achieve a response time of 3 ms and 4 ms for LIN and
AE respectively meeting the real-time latency constraint for autonomous and
connected vehicles.
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Abstract. Securing operating system (OS) kernel is one central chal-
lenge in today’s cyber security landscape. The cutting-edge testing tech-
nique of OS kernel is software fuzz testing. By mutating the program
inputs with random variations for iterations, fuzz testing aims to trig-
ger program crashes and hangs caused by potential bugs that can be
abused by the inputs. To achieve high OS code coverage, the de facto
OS fuzzer typically composes system call traces as the input seed to
mutate and to interact with OS kernels. Hence, quality and diversity of
the employed system call traces become the prominent factor to decide
the effectiveness of OS fuzzing. However, these system call traces to date
are generated with hand-coded rules, or by analyzing system call logs of
OS utility programs. Our observation shows that such system call traces
can only subsume common usage scenarios of OS system calls, and likely
omit hidden bugs.

In this research, we propose a deep reinforcement learning-based solu-
tion, called RLTrace, to synthesize diverse and comprehensive system
call traces as the seed to fuzz OS kernels. During model training, the deep
learning model interacts with OS kernels and infers optimal system call
traces w.r.t. our learning goal — maximizing kernel code coverage. Our
evaluation shows that RLTrace outperforms other seed generators by
producing more comprehensive system call traces, subsuming system call
corner usage cases and subtle dependencies. By feeding the de facto OS
fuzzer, Syzkaller, with system call traces synthesized by RLTrace,
we show that Syzkaller can achieve higher code coverage for testing
Linux kernels. Furthermore, RLTrace found one vulnerability in the
Linux kernel (version 5.5-rc6), which is publicly unknown to the best of
our knowledge by the time of writing. We conclude the paper with dis-
cussions on the limitations, tentative exploration of technical migration
to other OS kernels, and future directions of our work. We believe the
proposed RLTrace can be a promising solution to improve the reliabil-
ity of OS fuzzing in various scenarios, over different OS kernels, and for
different reliability purposes.
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1 Introduction

An operating system (OS) kernel usually contains millions lines of code, with
complex program structures, deep call hierarchies, and also stateful execution
models. Nowadays, OS-level vulnerabilities are gaining more and more atten-
tion, not only because it is usually much more challenging to be detected, but
also because OS vulnerabilities, once being exploited, can lead to whole-system
security breaches with much more severe damages. To date, real-world vulner-
abilities has been constantly reported from OS kernels on various computing
platforms, including the multi-purpose computers (e.g., Windows and Mac OS),
mobile phones, and also embedded devices. Demonstrated by industrial hackers,
such vulnerabilities can often lead to severe threats to the financial stability and
public safety towards tremendous amounts of users in the real world [2,22].

Software fuzz testing performs vast mutation towards program inputs, exer-
cises its underlying functionalities and reveals vulnerabilities residing within the
target software that is difficult to find by traditional testing tools [25]. Despite its
simplicity, fuzz testing outperforms many vulnerability detection techniques due
to its efficiency and robustness. So far, fuzz testing has helped to detect tremen-
dous amounts of defects from real-life applications, including PDF readers, web
browsers, and commonly-used mobile apps [5–7].

To fuzz an OS kernel, the primary strategy is to extensively mutate inputs
of the system-call interface, since the interface serves as the main points to
interact between the OS kernel and user-level applications [1,9]. The state-of-
the-art (SOTA) OS fuzzer takes OS system call traces as the fuzzing seed, and
extensively mutates values of system call parameters to achieve high kernel code
coverage [11,18]. This naturally solves the problem to generate valid inputs for a
system call, for instance, a legitimate file descriptor for write can be created by
first calling open and returning a file descriptor. More importantly, OS kernels
are stateful software, meaning that the coverage of invoking each system call
depends on the OS kernel state created by previously executed system calls.
Therefore, de facto OS fuzzers often take traces of system calls as the starting
point (i.e., fuzzing seeds) to bootstrap the campaign.

Existing research work mostly relies on ad-hoc approaches to generating valid
system call traces as OS fuzzer seeds [1,9,11,18]. For instance, the de facto
industry strength OS fuzzer, Syzkaller, pre-defines thousands of hand-coded
rules to encode dependencies among different system calls (see Sect. 2.1 on why
“dependencies” are critical) and use them to generate system call traces. A recent
work [18] extracts system call traces from the system call logs of OS utility
programs. Despite the simplicity, our observation (see Sect. 3) shows that system
call traces generated from logs or manually-written rules could only subsume
some commonly-seen cases. Rarely-used system call traces may not be included,
and even for the executed system calls, many of the corner usage scenarios may
not be covered as well. Indeed, the performance of software fuzzing tools largely
depends on the quality and diversity of their input seeds [19,26], and as shown
in our study, the quality of system call traces undoubtedly limits the OS attack
surface that can be tested, which further impedes OS fuzzers from identifying
real-world security flaws to a great extent.
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In this research, we propose a unified and systematic solution, called
RLTrace, to synthesize high quality seeds to promote OS kernel fuzzing.
RLTrace employs deep reinforcement learning (RL), particularly Deep Q-
Network (DQN), to synthesize comprehensive sets of system call traces as the
kernel fuzzing seeds. RLTrace trains a DQN model to interact with the OS ker-
nel and explore optimal combinations of system calls. The kernel code coverage is
used as the reward for the learning process, and we feed our synthesized system
call traces as the seed of the SOTA OS fuzzer, Syzkaller, to fuzz Linux kernels.
After training for 14.9 h, RLTrace generates a set of 1,526 system call traces
to test the Linux kernel (ver. 5.5-rc6). We compare our synthesized system call
traces with the SOTA research in this field, Moonshine [18], which leverages
heavyweight static analysis techniques to generate fuzzing seeds. Our evaluation
shows promising findings: 42.0% of traces synthesized by RLTrace overlap with
outputs of Moonshine. Moreover, manual study from the non-overlapped traces
(58.0%) shows that RLTrace can find many corner cases where Moonshine
is incapable of reasoning. Further inspection reveals that the seed generated by
RLTrace, without employing any pre-knowledge or static analysis techniques,
can extensively capture subtle dependencies among system calls, outperform-
ing seeds generated by Moonshine (for 300.0%) and the default seeds used by
Syzkaller (for 20.1%). By fuzzing with seeds produced by RLTracefor 24 h,
we successfully found one 0-day kernel vulnerability. Moreover, we illustrate the
high generalizability of RLTrace by discussing the migration to other (embed-
ded) OS kernels. We show that RLTrace can be easily migrated to fuzz other
OS kernels, and we expect that the synthesized seeds can achieve comparable
performance as the seeds generated by Moonshine. This indicates the high
potential of RLTrace in promoting OS kernel fuzzing in various scenarios, over
different OS kernels, and for different reliability purposes. We leave it as our
future work to extend RLTrace and demonstrate its high generalizability on
other OS kernels. We also discuss the limitations and future directions of our
work to paint a complete picture and the high potential of RLTrace. In sum,
we make the following contributions:

– We introduce a new focus to use a generative learning model to promote
OS kernel fuzzing by synthesizing quality seeds — system call traces. Our
technique is unified and systematic, without relying on any manual-written
rules or heavy-weight static analysis techniques.

– We build a practical tool named RLTrace in coordinating with the de facto
industry OS fuzzer, Syzkaller. Our throughout design and implementation
enables the comprehensive testing of production Linux kernels.

– Our evaluation shows that RLTrace can outperform the SOTA fuzzing seed
generators by generating more comprehensive system call traces, achieving
higher code coverage, and unveiling more vulnerabilities.

– We present a case study to demonstrate the high generalizability of RLTrace
by discussing the migration to other OS kernels. We show that RLTrace can
be easily migrated to fuzz other OS kernels, and we expect that by extending
RLTrace, we shall be able to achieve comparable performance and constantly
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uncover security defects of various properties on other OS kernels or platforms.
We accordingly discuss the limitations and future directions of our work.

Fig. 1. Overviews of OS fuzzers and RLTrace.

2 Background

2.1 Testing OS Kernels

To secure OS kernels, the de facto technique is OS kernel fuzz testing [11,18]. The
SOTA OS fuzzers, Syzkaller [9] and Trinity [1], take a set of system call traces
(each set is called a “corpus”) as their seed inputs for fuzzing. Figure 1(a) presents
an overview of OS fuzzing workflow. By feeding a corpus of system call traces into
the OS fuzzer, the OS fuzzer will vastly perturb the corpus (including fuzzing
parameter values and shuffling system calls on the trace) to interact with the OS
kernel. Advanced OS fuzzer like Syzkaller can also generate new traces during
the fuzzing campaign (see Sect. 5.1 on how Syzkaller mutates and generates
new traces). Taking system call traces as the fuzzing inputs is intuitive. The
execution of a system call depends on the validity of its input parameters (e.g.,
a legitimate file descriptor). In addition, internal kernel state created or changed
by previous system calls can also influence the execution of succeeding system
calls. Invoking a single system call without setting up the proper “context” would
merely explore all the functional components of this system call.

Fig. 2. A sample system call trace used by the OS fuzzer, Syzkaller. To achieve high
coverage, both explicit and implicit dependencies need to be satisfied, which is quite
challenging for existing rule-based or program analysis-based seed generators [9,18].

In fact, a common assumption shared by existing research and industry OS
fuzzers [1,9,11,18] is that the quality of fuzzing seeds heavily depends on the
number of explicit and implicit dependencies satisfied on each system call trace.
Figure 2 presents a sample trace of five Linux system calls used as a high-quality
seed. System call read and close explicitly depend on system call open, since
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the output of open creates a valid file descriptor which can be used as the
input parameter of read and close. As a result, simultaneously fuzzing open,
write, and close can effectively cover functional components of all these sys-
tem calls [18], while merely fuzzing read or close along may be trapped in the
exception handling routines for most of the time (since the inputs are usually
invalid). More importantly, a system call may implicitly depend on another sys-
tem call, if the execution of one system call affects the execution of the other
system call via shared kernel data structures (i.e., OS internal states), for exam-
ple the execution of accept4 and setsocketopt both affect and depend on the
socket’s private data, and by mutating the parameters of accept4, execution of
setsocketopt will cover different paths in the kernel (see the third diagram in
Fig. 2), although their parameters do not depend on each other explicitly.

While explicit dependencies can be summarized by analyzing the system call
documents, obtaining implicit dependencies among system calls, however, is very
difficult. Typical (closed-source) OS kernels are highly complex and conducting
precise program analysis to pinpoint such dependencies are very challenging,
if at all possible. Indeed, as shown in Fig. 1(a), existing OS fuzzers derive sys-
tem call traces with manually-written rules, or by analyzing system call logs of
OS utility programs to infer dependencies. However, our investigation (Sect. 3)
shows that these ad-hoc approaches have limited comprehension and presum-
ably miss hidden defects in the kernel. In contrast, our research takes a learning
approach to synthesize diverse system call traces from scratch. Our evaluation
shows RLTrace successfully finds four times more implicitly dependent system
calls, without any manual efforts (see evaluations reported in Table 2) (Table 1).

Table 1. Kernel data access dependencies of a Linux system call pwritev. We report
that the state-of-the-art OS fuzzing seed generator (Moonshine [18]) only covers open.

Total Number System Call Names

27 openat; mq_open; epoll_ctl; shmdt; epoll_create1; mmap_pgoff; fadvise64_64; swapoff; acct
shmctl; msync; flock; open; uselib; accept4; dup; setns; socketpair; remap_file_pages; dup3
shmat; socket; open_by_handle_at; memfd_create; pipe2; eventfd2; perf_event_open

2.2 Deep Reinforcement Learning (DRL)

RLTrace is built on top of a deep reinforcement learning (DRL) model to
synthesize quality system call traces. RL is a framework that trains an agent’s
behavior by interacting with the surrounding environment. During the learning
process, the agent observes the environment and performs actions accordingly.
For each step of interaction, the agent earns some rewards from the environment,
and usually the system goes through a state transition as well. During the overall
time of learning, the agent gradually learns to maximize its cumulative reward
(i.e., a long-term objective).

We formulate a typical RL process related to the presentation given in [24],
where the action of the agent can be viewed as a stochastic process. In particular,
the Markov decision procedure is a triple M = (X ,A,P), where X denotes the
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set of states in the environment, A is the set of actions an agent can take, and
P represents the transition probability kernel, which assigns a probabilistic value
denoted as P(·|x, a) for each state-action pair (x, a) ∈ X × A. For each reward
U ∈ R, P(U |x, a) gives probability such that performing action a at state x
engenders the system to transition from x into y ∈ X and returns reward value
U ∈ R. During the stochastic process (xt+1, rt+1) ∼ P(·|xt, at), the goal of the
agent is to choose a sequence of actions to maximizes the expected cumulative
rewards R =

∑∞
t=0 γtRt+1, where γ ∈ (0, 1) is discount factor.

The deep Q-network (DQN) technique is a specific approach for training a
model to select optimal sequences of actions. It has been broadly used in solving
real-world challenges and achieved prominent success, including playing strategy
board games [21] and video games [16]. In this research, we show that DQN can
be leveraged to synthesize quality OS fuzzing seeds and outperform existing
rule-based or log-based seed generators.

3 Limitation of De Facto OS Fuzzers

The de facto industry strength OS fuzzer, Syzkaller, implements thousands of
manually-written rules to summarize potential dependencies among system calls
and generate system call traces (i.e., default seeds shipped with Syzkaller).
Nevertheless, it has been pointed out [18] (and also consistently reported in our
evaluation; see Sect. 6) that such rule-based approach cannot achieve highly effec-
tive fuzz testing. The reason is that many of its generated traces are lengthy and
repetitive. From a holistic view, while having a large number of system calls on
each trace intuitively improve the “diversity” and coverage, an unforeseen draw-
back is that within a given amount of time, fuzzer would perform less throughout
exploration for each individual system call (too many system calls on a trace),
thus scaling down the coverage.

In contrast, the SOTA research, Moonshine [18], generates system call
traces by analyzing system call logs of OS utility programs. By further per-
forming OS kernel dependency analysis, this work detects dependencies across
different system calls to “distills” system call logs; system call traces will primar-
ily retain system calls that depend on each other. It is reported that Moon-
shine can largely promote the fuzzing efficiency compared to the vanilla seeds
of Syzkaller [18]. Intuitively, by decreasing the number of system calls present
on a trace and only focusing on system calls dependent on each other, the fuzzer
can allocate more time to mutate inputs of each system call, and likely increase
the code coverage. Nevertheless, our preliminary study shows that system call
traces simplified from program execution logs become less comprehensive and
insufficient to cover the diverse set of Linux kernel system calls.

We collecte system call traces covered by Moonshine and compared them
with the whole set of Linux system calls. Linux kernel (version 5.5-rc6) has 407
system calls, and the OS fuzzing tool, Syzkaller, supports 331 system calls.
We report that out of these 331 system calls, Moonshine can only cover 180
system calls (53.9%; see Table 2) since certain system calls are never used by
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selected OS utility programs or are trimmed off after its dependency analysis.
Moreover, Moonshine can hardly consider all usage scenarios of a system call
and rarely-used system calls may not be included since it depends on selected
programs, which undoubtedly limits the OS attack surface that can be tested.

4 Design

Figure 1(b) depicts the overview of the proposed technique. Instead of pulling
out system call traces from execution logs or some manually-written rules, we
synthesize system call traces from scratch with the guidance of learning-based
methods and with the learning goal of achieving high code coverage. The synthe-
sized traces would form a diverse and comprehensive basis to explore OS kernels,
by smoothly taking rarely-used system calls and different system call execution
contexts into account, as long as they notably increase code coverage.

Inspired by recent advances in RL-based program analysis and testing [8,
10,20], where an agent is trained to learn good policies by trial-and-error, we
leverage RL models to synthesize system call traces and solve this demanding
problem. RLTrace is constructed as a DQN with two fully connected layer
with non-linear activation function relu. Each hidden layer contains 512 hid-
den units. We encode system call traces as a practical learning representation
(Sect. 4.1), and our agent is trained to continuously perturb system calls on a
trace (Sect. 4.2). The code coverage will be used as the learning reward to train
the agent (Sect. 4.3). For each episode, the model training forms an iterative
process until our cumulative reward becomes higher than a predefined threshold
T1, or becomes lower than another threshold T2. Parameters T1 and T2 can be
configured by users. We harvest optimal traces and pack them into a seed file
(i.e., named “corpus”) for use.

Application Scope. RLTrace is evaluated on widely-used Linux OS kernels.
Although the source code is available, we treat the OS kernel as a “black-box”
(no need for source code). Hence, the proposed techniques can be used during in-
house development where source code is available, and also smoothly employed
to test closed-source OS kernels (e.g., Windows or Mac OS). In contrast, one
SOTA seed generator, Moonshine, performs heavy-weight static dependency
analysis on the source code of the Linux kernel. One may question if RLTrace,
to some extent, is only applicable to mainstream OS kernerls (e.g., Linux) which
are fully and clearly documented. We however anticipate that RLTrace can be
seamlessly integrated to test commercial, embedded OS kernels even if the APIs
documents are not fully disclosed (e.g., due to commercial confidentiality or IP
protection). We believe there is no major technical challenges with the enhance-
ment of modern learning techniques like transfer learning or active learning. See
our discussions on extension and future directions in Sect. 7.

4.1 State

State is a basic element in formulating a RL learning procedure. We define a state
is a trace of OS system calls (f1, f2, . . . , fL) where L is the length of the trace
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(see Sect. 5). We encode the system call with one-hot embedding. Then, a system
call trace is treated as a set of system calls, which is encoded with the sum of all
system call embeddings. The reason to not adopt sequential embedding methods
(e.g., LSTM [4]) is that Syzkaller indeed shuffles each system call trace during
fuzzing. In other words, it is sufficient to only use the multi-hot embedding (no
need to preserve the “order” with sequential embedding methods).

Typical RL process takes a considerable number of episodes to train an agent:
each episode denotes a sequence of state changes starting from the initial state
and ending at a terminal state (see Sect. 4.3 for terminal state definition). In
this research, we randomly generate the initial state as the starting point of
each episode. Also, note that the encoding is only fed to the agent for learning
within each episode. We translate each numeric encoding in a state back to its
corresponding OS system call before fuzzing the OS kernel.

Deciding an optimal and adaptive length of each trace is difficult. As dis-
cussed in Sect. 3, deciding optimal length forms a dilemma: by decreasing the
number of system calls present on the trace, the fuzzer allocates more time to
mutate inputs of each system call. However, succinct trace may only subsume
limited system calls and prone to missing a large portion of OS interfaces, expos-
ing negative effects on code coverage. Similarly, lengthy traces (e.g., the default
seed of Syzkaller) possess more system calls, but can allocate less time to
mutate each individual call. Given the general challenge to infer an optimal
length, we resort to launch empirical studies and find out that length L = 5
usually leads to favorable coverage (see Sect. 5.2).

4.2 Action

We now define all the actions that an agent can perform toward the state during
the learning. Given a state (f1, f2, . . . , fL) which consists of L system calls, we
mimic how a human agent could take actions and perturb the trace. Overall, the
agent first navigates within the trace, flags certain fi where i ∈ [1, L], and then
updates the state by changing fi to some other system call f ′

i . While a “random”
navigation could provide maximal flexibility by selecting one arbitrary element
fi within the state to perturb, the search space is indeed quite large: L × N
where N is the total number of system calls that can be tested (331 for Linux
kernel 5.5-rc6).

To practically reduce the search space, our agent starts from the first element
f1 to mutate, and each learning step only moves one element forward. When it
reaches the end, it will re-start from the first element again. This way, our agent
picks only one system call fi each learning step and replaces it with a predicted
f ′
i . Note that our agent can also retain the current state, as long as fi equals

to f ′
i . The search space of our agent is reduced into N . Evaluation shows that

the model training is efficient in practice. Although there are still considerable
states to explore (since N is still large), deep Q-networks have been shown to
handle large state spaces efficiently, as we will show in Sect. 6.
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4.3 Reward

The reward function is the key to RL frameworks. The central assumption behind
the SOTA coverage-based fuzzer is that coverage increase indicates a higher
possibility of detecting new vulnerabilities. Therefore, to construct the search
witness, we take the coverage increase into account. The OS fuzzer employed
in this research provides basic block coverage for each individual system call on
the trace for use. Let c1c2 . . . ci . . . cL be the code coverage of individual system
calls on the trace s = (f1f2 . . . fi . . . fL). Suppose by replacing fi with f ′

i , the
produced new system call trace is s′ = (f1f2 . . . f ′

i . . . fL). Then, the reward

function w.r.t. this action fi → fi′ is formulated as, R =
∑L

i=1 log
c′
i

ci

L , where c′
i

are the code coverage of individual system calls on our new trace. The learning
reward is a positive number, in case a higher code coverage is achieved by the new
trace. Nevertheless, we penalize coverage decrease by computing and assigning
a negative reward to the agent.

Overall, the coverage feedback depends on the entire system call trace syn-
thesized so far rather than on the very last system call being picked. In other
words, our formulation indeed takes long-term rewards into consideration, which
progressively infers the optimal system call traces.

Hyperparameters. For long-term reward harvesting, we use a discount rate of
0.9. Our learning rate is 0.01. We follow the common practice to adopt a ε-greedy
policy with ε decayed from 0.95 to 0. ε will be fixed at 0 thereafter. The agent
will select the predicted optimal action with the probability of 1−ε, and explores
random actions with the probability of ε. Hence, the training starts by focusing
on random explorations and gradually converge to optimal decisions. Overall,
while we follow common and standard practice to decide model hyperparameters
and settings, evaluation results already report promising findings.

Terminal State. In the context of RL, “episode” defines a sequence of state
transitions which ends with terminal state. A RL model training usually takes
hundreds of episodes until saturation. We define the terminal state such that the
cumulative reward is greater than a threshold T1 (10.0 in our current implemen-
tation). The current episode will also be terminated, if the cumulative reward is
lower than another threshold T2 (–5.0 in our current implementation), indicat-
ing that there should be few chances we can find an optimal trace during this
episode. Hence, we terminate the current episode. At the end of an episode, we
archive the synthesized optimal trace for reuse. Archived traces will be packed
into a corpus and fed to the OS fuzzer as its seed.

5 Implementation

The RL learning framework is built on top of Tensorflow (ver. 1.14.0), writ-
ten in Python (about 500 lines of code). We also instrumented the OS fuzzer,
Syzkaller (see Sect. 5.1). This patch is written in Go, with approximate 300
lines of code.
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5.1 Syzkaller Instrumentation

The de facto OS fuzzer used in this research, Syzkaller, is widely used in
testing real-world OS kernels and has been constantly finding (security-critical)
bugs. Given a seed generated by packing system call traces, Syzkaller per-
forms four mutation strategies including 1) mutating system call parameters, 2)
shuffling system calls on a trace, 3) removing system calls on a trace or adding
extra calls, and 4) generating new system call traces from hand-written rules
and templates. In general, the first three strategies primarily depend on the
quality of seeds, while the last one implements a carefully crafted “generation”
strategy to synthesize new inputs during the long run. Although the standard
Syzkaller mingles all four mutation strategies together, during model training,
we instrument Syzkaller and only enable the first three strategies to better
reflect quality of synthesized seeds. Similarly for the fuzzing evaluation, we mea-
sure the seed quality by only using the first three strategies (Sect. 6.3). We also
resort to the default setting of Syzkaller with all strategies enabled to mimic
the “real-world” usage in the evaluation (Sect. 6.3).

The standard workflow of Syzkaller requires to re-boot the tested OS
kernel (hosted in a virtual machine instance) every time before fuzzing. Hence
for every learning step, we need to terminate and reboot the VM instance,
exposing high cost to model training. To optimize the procedure, we instru-
ment Syzkaller by adding an agent module. After booting the VM instance
for the first time, the agent listens for requests from RLTrace and forwards
synthesized traces to the fuzzer module of Syzkaller. In this way, the VM
instance will be booted for only once during the entire training. This instrumen-
tation reduces the training time from 67.4 CPU hours to 14.9 CPU hours (see
Sect. 6.1 for model training).

Fig. 3. Kernal code coverage and loss function curves.

5.2 Decide the Length of System Call Trace

To decide the length of an optimal system call trace, we launch empirical studies
to explore the change of length with respect to their corresponding coverage
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data. In general, our observation shows that too lengthy traces can notably slow
down the fuzzer, and therefore are not desired. Hence, we empirically decide to
vary the trace length from two to nine and record the corresponding basic block
coverage.

Let N be the number of total system calls we decide to use in this study, we
start by randomly constructing S2 system call traces with a fixed length as two,
such that S2 × 2 ≈ N . We then feed Syzkaller with this set of traces, fuzz the
Linux kernel, and record the coverage increase. We then randomly construct S3

traces of three system calls (to present a fair comparison, here S3 × 3 ≈ N) and
re-launch the whole experiments until we have tested S9 traces of nine system
calls (again, S9 × 9 ≈ N). For this study, N is 7,679 which equals to the total
number of system calls used in the seed generated by Moonshine (see relevant
information in Sect. 6). Figure 3(a) reports the evaluation results in terms of basic
block coverage increase. We report that traces with five system calls can outper-
form other settings with sufficient time of fuzzing (after about 27,000 s). Given
this empirical observation, the implementation adopts five as the length of each
synthesized system call traces. Indeed, we report that empirical results revealed
at this step is essentially consistent with Moonshine: the average length of
traces generated by Moonshine is 5.2.

6 Evaluation

We evaluate the proposed technique in terms of its ability to promote real-
world OS fuzz testing. As aforementioned, we feed the synthesized system call
traces into an industrial-strength OS fuzzer, Syzkaller [9], to fuzz the Linux
kernel. We use Linux kernel version 5.5-rc6 (released 12 January 2020) for the
evaluation unless stated otherwise. To evaluate the effectiveness of RLTrace, we
compare the outputs of RLTrace with the SOTA OS fuzzing input generator,
Moonshine [18], and also the default seeds of Syzkaller generated by hand-
written rules. For the ease of presentation, we use Srl and Smoon to represent
seeds generated by RLTrace and Moonshine, and Sdef to represent the default
seeds of Syzkaller.

The empirical study in Sect. 5.2 decides the length of each system call trace
as five. To provide a fair comparison, we first compute the total number of
system calls from Smoon (Smoon is shared by the paper author): we report that
from 525 traces in Smoon, 7,679 system calls are included. Hence, we decide to
configure RLTrace and generate 1,526 traces. Recall as introduced in Sect. 5.1,
Syzkaller implements mutation strategies to extend certain traces with extra
system calls. We observe that when feeding these 1,526 traces into Syzkaller,
Syzkaller indeed extends certain traces with in total 47 extra system calls
(e.g., when detecting timespec, Syzkaller will add clock_gettime ahead of
timespec). In short, the total system call numbers in Srl is 7,677 (1526×5+47).
Also, we confirm that no extra system calls need to be inserted into Smoon when
fed to Syzkaller; this is reasonable since Smoon is derived from system call
logs, where real programs are generally required to “compensate” extra system
calls.
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Syzkaller leverages hand-written rules to generate a large amount of
lengthy and repetitive traces: we randomly select 1,027 traces from Sdef that
also include 7,679 system calls in total (no extra system calls are added as well).
Overall, while Srl and its two competitors have different number of traces, the
total number of system calls are (almost) identical, qualifying a fair comparison.

A Fair Comparison. It is easy to see that RLTrace can smoothly synthe-
size more traces with little cost, by simply taking more episodes. In contrast,
Moonshine and Syzkaller are bounded by the availability of quality OS test
suites or expert efforts. We consider this actually highlights the conceptual-level
difference and advantage of RLTrace. Overall, we would like to emphasize that
our evaluation in the rest of this section presents a fair comparison which indeed
undermines the full potential of RLTrace.

6.1 Model Training

We first report the model training results. The training was conducted on a server
machine with an Intel Xeon E5-2680 v4 CPU at 2.40GHz and 256 GB of memory.
The machine runs Ubuntu 18.04. The training takes in total 14.9 CPU hours for
480 episodes. As reported in Fig. 3(b), the loss function keeps decreasing until
reaching low total loss scores (after about 9.5K steps). We interpret the results
as promising; the trained model can be progressively improved to a good extent
and find optimal system call traces more rapidly along the training. We then
randomly select 1,526 optimal traces and pack them into a seed (i.e., “corpus”).
Further studies on the seed quality (Sect. 6.2) and code coverage (Sect. 6.3) will
be conducted on this seed.

6.2 Exploring System Call Trace Quality

Cross Comparison. We now take a close look at Srl and compare it with
Smoon and Sdef . To this end, we first count and compare the number of unique
system calls that are included in these three seeds.

Table 2. System call coverage and explicit/implicit dependencies comparison.

Seed #Covered Unique System Calls Explicit Dependency Implicit Dependency

Srl 291 423 376
Smoon 180 247 94
Sdef 115 775 313

Table 2 reports the comparison results which is encouraging. Out of in total
331 Linux system calls, 1,526 traces synthesized by RLTrace cover 291 unique
system calls. In contrast, Smoon has a low coverage: from in total 525 system
call traces subsumed in Smoon, only 180 unique system calls are covered. Sdef

yields an even worse coverage: 115 unique system calls are included.
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Fig. 4. Analysis of call trace quality.

Figure 4(a) reports and compares the usage of each system call in these three
seeds. In particular, we count how many different traces a system call can be
found from. As aforementioned, different traces intuitively denote various “exe-
cution contexts.” We are anticipating to systematically explore a system call, if
more contexts can be provided. As reported in Fig. 4(a), 78.9% of system calls
are used for only less than ten times by Smoon. Similar trending can also be
observed from Sdef . In contrast, the output of RLTrace domains the second
range: majority system calls are used for over ten times. Overall, we interpret
that Table 2 and Fig. 4(a) demonstrate promising and intuitive findings. Enabled
by the systematic and in-depth exploration in RLTrace, less commonly used
system calls and diverse contexts can be taken into account as long as they
reasonably contribute to code coverage.

We also measured the agreement of three seeds by counting the number of
equivalent traces. We relax the notion of trace “equivalence” by entailing the
partial order of two traces (note that traces are shuffled within Syzkaller and
therefore is reasonable to treat as “sets” without considering orders): t

.= t′ ↔
t ⊆ t′ ∨ t′ ⊆ t.

Figure 4(b) reports the analysis results. Srl and Smoon agree on 271 traces,
while Srl and Sdef agree on 450. Smoon and Sdef have 332 agreements (63.2%
of all traces in Smoon; highest in terms of percentage). Overall, we interpret the
results as promising: we show that considerable amount of system call traces
(641; 42.0% of all traces in Srl) can be synthesized without employing heavy-
weight program analysis or hand-coded rules. Moreover, the 58.0% disagree-
ment, to some extent, shows that RLTrace enables the construction of more
diverse system call traces enable the coverage of corner cases. Accordingly, we
now present case studies on system call traces generated by RLTrace.

Case Study. Our study shows that pwritev implicitly depends on 27 system
calls of the Linux kernel. Srl consists of 10 traces containing pwritev, and these
10 traces cover three unique system calls that pwritev implicitly depends on. In
contrast, as noted in Sect. 3, pwritev and only one of its implicitly dependent
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system call can be found from Smoon, and this particular case is subsumed by
Srl as well. Consider the system call trace below:

lseek → openat → getxattr → chmod → pwritev

where the system call openat and pwritev implicitly depend on each other
(i.e., they access and depend on the same kernel data structure). We report
that this system call trace can be found in Srl, but is not included in Smoon.
In other words, kernel code coverage derived from this implicit dependency will
presumably not be revealed by Moonshine.

Similarly, we find another system call fchown implicitly depends on 97 system
calls of the kernel. RLTrace generates 32 traces containing this system calls,
covering 15 unique system calls that fchown implicitly depends on. For instance:

pipe2 → getresuid → fchown → getresuid → getpgrp

where the system call pipe2 and fchown implicitly depend on each other. In
contrast, we report that Moonshine only identifies one implicitly dependent
system call for fchown. Further quantitative data regarding explicit/implicit
dependencies is given in Sect. 6.2.

Dependency Analysis. As discussed in Sect. 2.1, OS fuzz testing leverages sys-
tem call traces of good quality, and therefore, aims at satisfying both explicit and
implicit dependencies and achieving high code coverage. Nevertheless, directly
analyzing dependencies could be challenging. We now measure the quality of
system traces, in terms of how they subsume explicit and implicit dependencies.

Explicit Dependency. Explicit dependencies denote system call parameter
and return value-level dependencies. To measure the performance, we collect
all the explicit dependencies of each system call. Syzkaller provides a data
structure named target which can be parsed to acquire such information. The
summarized explicit dependencies (i.e., pairs of system calls; in total 4,429) deem
a “ground truth” dataset, and we measure three seeds w.r.t. this ground truth.
The evaluation results are reported in the second column of Table 2.

Overall, enabled by thousands of manually-written rules which extensively
encode system call dependencies among parameters and return values, Sdef

largely outperforms the other two seeds by recovering more explicitly depen-
dent system calls. Moonshine analyzes execution logs of OS utility programs
to gather system call traces. Real-world programs must satisfy these explicit
dependencies to function properly. Nevertheless, RLTrace still demonstrates
encouraging results, by inferring considerable explicit dependencies from scratch
and outperform Smoon (finding 176 more explicit dependencies). Envisioning
the necessity and opportunity of improving RLTrace at this step, we present
discussions in Sect. 7.

Implicit Dependency. Moonshine releases a dataset to summarize implicit
dependencies among system calls, which is gathered by performing static depen-
dency analysis toward Linux kernel. Similarly, we reuse this dataset (in total
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9,891 pairs of system calls) to measure three seeds. Performing static depen-
dency analysis toward complex system software like Linux kernel is unlikely to
yield accurate results. Nevertheless, by measuring dependency recovery regard-
ing the same baseline, this is still an “apple-to-apple” comparison.

The third column of Table 2 reports highly promising results. Srl notably
outperforms its competitors, by finding more implicitly-dependent system calls
without adopting any hand-coded rules or static analysis. Sdef primarily encodes
explicit dependencies: implicit dependencies are hard to be identified with only
manual efforts. Careful readers may wonder about the performance of Moon-
shine (since the “ground truth” dataset is even provided by Moonshine). To
clarify potential confusions: Moonshine performs whole kernel static analysis
to collect implicit dependencies. It also performs execution trace-based analy-
sis to collect system call traces. In short, a system call trace will be kept if it
matches certain implicit dependencies collected by the static analysis. Since not
all “implicitly dependent” system calls will appear on execution traces, Smoon

does not indeed perform well.

6.3 Fuzzing Evaluation

Fuzzing Without Runtime Trace Generation Enabled. We feed
Syzkaller with three seeds to fuzz the Linux kernel 5.5-rc6. To faithfully
explore the quality of the generated seeds, we disable the “generation” strategy of
Syzkaller. Recall Sect. 5.1 introduces four mutation strategies implemented in
Syzkaller. At this step, Syzkaller will only perform the first three mutation
strategies to vastly perturb input seeds. Evaluation by enabling all mutation
options will be given in Sect. 6.3. Since no “new traces” are generated, our obser-
vation shows that the fuzzing procedures rapidly reach to the saturation point
after around 0.5 h for all three seeds. Still, we fuzz each seed for 3 h to explore
their full potentials. Table 3 reports the basic block coverage after 3-h fuzzing.
Srl outperforms its competitors by achieving a higher code coverage, while Sdef

has the worst coverage (consistent with the Moonshine paper). We interpret
the results as generally encouraging; the high quality fuzzing seed generated by
RLTrace enables a practical exploration of production Linux kernels, achieving
higher coverage. We present more comprehensive evaluation in terms of coverage
and crashes in the following section.

Table 3. Kernel coverage comparison using different seeds.

Srl Smoon Sdef

coverage 25,252 24,932 14,902
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Fig. 5. Code coverage with runtime trace generation enabled during 24 h of fuzzing.

Fuzzing with Runtime Trace Generation Enabled. As aforementioned,
Syzkaller can be configured to continuously generate new traces with its thou-
sands of hand-written rules. In this research, we enable this feature to mimic
the “normal” way of using Syzkaller and launch a 24-h fuzzing. To present
a comprehensive comparison, besides the latest kernel (ver. 5.5-rc6), we also
test another kernel (ver. 4.17-rc4) evaluated in the Moonshine paper. Figure 5
reports the coverage increase during 24 h of fuzzing. Again, to present a fair
comparison with Moonshine, we only generate 1,526 traces in the evaluation.
For practical usage, users can certainly generate more traces with RLTrace.
Within 24 h of fuzzing, the Syzkaller generates a large amount of extra traces
(close to 100K), and therefore, seeds produced by RLTrace and Moonshine
become “insignificant” to some extent. Nevertheless, RLTrace still outperform
its competitors, by achieving a higher coverage in kernel 5.5-rc6. In contrast,
RLTrace and Syzkaller has less coverage compared to Moonshine while
fuzzing the older kernel. Note that we synthesize Srl w.r.t. kernel 5.5-rc6, and
some system calls in Srl are not supported by kernel 4.17-rc4. Hence, 254 traces
in Srl are directly rejected without contributing to any coverage, presumably
undermining RLTrace for kernel 4.17-rc4.

Table 4 reports the triggered kernel crashes during the 24-h campaign in
kernel 5.5-rc6 and 4.17-rc4. We count crashes by analyzing the crash report pro-
vided by Syzkaller and deduplicate if two crashes have identical call stacks.
While these seeds find close number of crashes from kernel 5.5-rc6, cross com-
parison shows that each tool can find unique crashes that are not detected by
others. Those cases are more interesting and are reported in the column #UU
of Table 4. We further check whether those unique crashes have been reported
before. We carefully searched the crash stack trace from the Linux Kernel Mail-
ing List [3], Red Hat Bugzilla [12], Lore Kernel [15], and Google. We find three
(1+2) crashes in total that cannot be found anywhere, and presumably deem
unknown bugs in kernel 5.5-rc6. Regarding the old kernel (4.17-rc4) evaluated by
Moonshine, RLTrace finds considerable more crashes compared to the other
seeds, and by checking each unique crash, ten crashes exposed by RLTrace are
not disclosed publicly to our best knowledge.
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Table 4. Crashes found in kernel 5.5-rc6 and 4.17-rc4 using different seeds. To clarify
potential confusions, “#Deduped Crashes” (#D) deduplicates repeated crashes and
each reported crash has a different call stack. “#Unique Crashes” (#U) reports number
of deduped crashes that are only found by this particular seed. #UU denotes unique
and unknown crashes by the time of writing.

Seeds 5.5-rc6 4.17-rc4
#D #U #UU #D #U #UU

Srl 20 2 1 34 16 10
Smoon 19 2 0 25 5 4
Sdef 20 4 2 20 2 1

7 Discussion and Future Direction to Industrial Scenarios

We believe this paper has revealed high potential of RLTrace in promoting OS
kernel fuzzing and reliability. As a starting point for future research and engi-
neering efforts, we list future directions of our work from the following aspects.

Combining with Offline Analysis. RLTrace trains the model from scratch
to highlight the key contribution and novelty — synthesizing diverse system
call traces from scratch with RL. To this end, RLTrace takes code coverage
to form learning reward. Nevertheless, our evaluation in Sect. 6.2 indicates the
need of integrating dependencies into the reward. Overall, to enhance the fuzzing
performance, we plan to combine RLTrace with offline analysis. For instance,
as an offline phase, we can leverage active learning techniques to gradually form
dependencies among system calls, and then integrate the analysis results to
enhance our online fuzzing and learning process. Moreover, we expect to leverage
recent progress in AI, particularly large language models (LLMs), to extract the
dependencies among system calls from OS kernel source code or documents. For
instance, GPT-4 [17] is a recently proposed LLM that can generate high-quality
text. We envision that GPT-4 can be leveraged to generate system call traces
from scratch, and we plan to explore this direction in the future.

Feasibility Study of Fuzzing Industrial, Embedded OS Kernels. From
a holistic perspective, RLTrace can be easily migrated to fuzz other OS ker-
nels since its technical pipeline is generic and systematic. We have tentatively
explored the feasibility of migrating RLTrace to fuzz other OS kernels, in par-
ticular, a commercial embedded OS kernel, xxxOS, that is being adopted in
real-world, industrial sectors.1 In short, we find that fuzzing those embedded OS
kernels is not conceptually more challenging than fuzzing Linux kernels. They
however impose new technical challenges that require further research efforts. In
particular, we list the number of APIs of the two kernels in Table 5. We observe
that the number of APIs of xxxOS is much smaller than that of Linux. This is
reasonable, as typical embedded OS kernels are designed to be lightweight and
resource-efficient. However, the small number of APIs makes it potentially more

1 The OS kernel name is blinded for commercial reasons.
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challenging to synthesize diverse system call traces. For instance, we find that
the number of system calls that can be invoked by a single API is much larger
than that of Linux. This indicates that the dependencies among system calls
are less comprehensive, and presumably more subtle. To combat this challenge,
we plan to leverage recent progress in AI, particularly large language models
(LLMs), to extract the dependencies among system calls from OS kernel source
code or documents. We also anticipate to use other static analysis or learning
techniques, whose rational has been presented above.

Table 5. Comparison of APIs in the Linux version evaluated in this research and
xxxOS.

Linux xxxOS

The number of APIs 331 112

Another major challenge is that xxxOS is an embedded OS kernel running on
a specific hardware platform. To fuzz xxxOS, our tentative exploration shows that
the underlying fuzzing framework, Syzkaller, cannot be directly used. This is
reasonable, as Syzkaller is designed to fuzz general-purpose OS kernels and it
largely relies on the full-system virtualization environment to monitor the kernel
execution. However, xxxOS is an embedded OS kernel, and it is not designed
to run in a full-system virtualization environment. Note that this could be a
general and pervasive challenge when benchmarking industrial, commercial OS
kernels. To address this challenge, we anticipate to investigate a high volume of
engineering efforts to re-develop a proper fuzzing framework for xxxOS. We leave
it as our future work.

Securing Industrial, Embedded OS Kernels. From a more general perspec-
tive, we believe that securing embedded OS kernels requires more than fuzzing.
In short, software fuzz testing mainly focuses on more obvious security properties
like memory safety, and during testing, its “testing oracle” is mainly derived from
system crash, hang, or other obvious symptoms. However, it has been reported
that embedded OS kernels are vulnerable to more subtle security properties like
information leakage, functional (driver) bugs, side channel attacks, and so on.
To this end, we believe it is of great importance to develop a more compre-
hensive and systematic solution to secure embedded OS kernels. Our effort and
tentative exploration reported in this section is a starting point, and we plan
to explore this direction in the future. In particular, we plan to leverage recent
progress in AI, particularly LLMs, to explore potential privacy leakage issues in
embedded OS kernels. Note that typical commercial embedded OS kernels may
operate on various critical devices, such as medical devices, automobiles, and so
on. Therefore, it is of great importance to secure them from the perspective of
privacy leakage. The authors have accumulated rich experience in handling and
detecting privacy leakage bugs using software testing, static analysis, and side
channel analysis methods. We plan to explore this direction in the future.
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8 Related Work

OS Fuzzers. Trinity [1] is another popular OS fuzzer. We choose Syzkaller
since it is the de facto OS fuzzing framework maintained by Google and Moon-
shine only uses this tool for fuzzing and comparison. Note that Trinity [1] is
generally not desired in our research: Trinity is not a coverage-guided fuzzer,
and, therefore, “code coverage” cannot be obtained from Trinity for model train-
ing. Overall, RLTrace does not rely on any particular OS fuzzer design, and all
OS kernel fuzzers (including Trinity) can potentially benefit from high-quality
inputs offered by RLTrace.

Security Testing of OS Kernels. In addition to perform fuzz testing toward
OS kernel system call interface and expose memory related vulnerabilities, exist-
ing research also aims to fine-tune the performance of fuzz testing with respect
to certain specific OS kernel components and vulnerabilities. For instance,
Razzer [13] performs fuzz testing to pinpoint race conditions within Linux ker-
nels. Xu et al. [27] launches effective fuzz testing toward file systems by re-
scoping the mutation target from large file image blobs into metadata blocks.
Also, besides the system call interfaces, recent research works [14,23] also pro-
pose fuzz testing framework to probe and detect bugs from the device-driver
interactions with OS kernels. Looking ahead, we leave it as one future work to
integrate those critical and specific testing tasks into RLTrace.

9 Conclusion

We have proposed a RL-based method to synthesize high-quality and diverse
system call traces for fuzzing OS kernels. The propose technique generates high-
quality traces without using software analysis or rule-based techniques. Our eval-
uation shows that the synthesized system call traces engender high OS code
coverage and also reveal vulnerabilities overlooked by existing tools.
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Abstract. Recent years have witnessed the tremendous success of dif-
fusion models in data synthesis. However, when diffusion models are
applied to sensitive data, they also give rise to severe privacy concerns.
In this paper, we present a comprehensive study about membership
inference attacks against diffusion models, which aims to infer whether
a sample was used to train the model. Two attack methods are pro-
posed, namely loss-based and likelihood-based attacks. Our attack meth-
ods are evaluated on several state-of-the-art diffusion models, over dif-
ferent datasets in relation to privacy-sensitive data. Extensive experi-
mental evaluations reveal the relationship between membership leakages
and generative mechanisms of diffusion models. Furthermore, we exhaus-
tively investigate various factors which can affect membership inference.
Finally, we evaluate the membership risks of diffusion models trained
with differential privacy.

Keywords: Membership inference attacks · Diffusion models · Human
face synthesis · Medical image generation · Privacy threats

1 Introduction

Diffusion models [34] have recently made remarkable progress in image synthe-
sis [16,19,38], even being able to generate better-quality images than generative
adversarial networks (GANs) [11] in some situations [8]. They have also been
applied to sensitive personal data, such as the human face [19,37] or medical
images [21,30], which might unwittingly lead to the leakage of training data. As
a consequence, it is paramount to study privacy breaches in diffusion models.

Membership inference (MI) attacks aim to infer whether a given sample was
used to train the model [33]. In practice, they are widely applied to analyze the
privacy risks of a machine learning model [27,35]. To date, a growing number of
studies concentrate on classification models [2,25,32,33,40], GANs [6,13], text-
to-image generative models [39], and language models [4,5]. However, there is
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still a lack of work on MI attacks against diffusion models. In addition, data pro-
tection regulations, such as GDPR [29], require that it is mandatory to assess pri-
vacy threats of technologies when they are involving sensitive data. Therefore, all
of these drive us to investigate the membership vulnerability of diffusion models.

In this paper, we systematically study the problem of membership inference
of diffusion models. Specifically, we consider two threat models: in threat model I,
adversaries are allowed to obtain the target diffusion model, and adversaries also
can calculate the loss values of a sample through the model. This scenario might
occur when institutions share a generative model with their collaborators to
avoid directly sharing original data [24,28]. We emphasize that obtaining losses
of a model is realistic because it is widely adopted in studying MI attacks on
classification models [2,25,33,40]. In threat model II, adversaries can obtain
the likelihood value of a sample from a diffusion model. Providing the exact
likelihood value of any sample is one of the advantages of diffusion models [38].
Thus, here we aim to study whether the likelihood value of a sample can be
considered as a clue to infer membership. Based on both threat models, two types
of attack methods are developed respectively: loss-based attack and likelihood-
based attack. They are detailed in Sect. 3.

We evaluate our methods on four state-of-the-art diffusion models:
DDPM [16], SMLD [37], VPSDE [38] and VESDE [38]. We use two privacy-
sensitive datasets: a human face dataset FFHQ [20] and a diabetic retinopathy
dataset DRD [18]. Extensive experimental evaluations show that our methods
can achieve excellent attack performance, and provide novel insights into mem-
bership vulnerabilities in diffusion models (see Sect. 5). For instance, the loss-
based attack demonstrates that different diffusion steps of a diffusion model
have significantly different privacy risks, and there exist high-risk regions which
lead to leakage of training samples. The likelihood-based attack shows that the
likelihood values of samples from a diffusion model provide a strong indication
to infer training samples. We also analyze attack performance with respect to
various factors in Sect. 6. For example, we find that the high-risk regions still
exist with the increase in the number of training samples (see Fig. 5). This indi-
cates that it is urgent to redesign the current noise mechanisms used by almost
all diffusion models. Finally, we evaluate our attack performance on a classical
defense - differential privacy [10] (see Sect. 7). Specifically, we train target models
using differentially-private stochastic gradient descent (DP-SGD) [1]. Extensive
evaluations show that although the performance of both types of attack can
be alleviated on models trained with DP-SGD, they sacrifice too much model
utility, which also gives a new research direction for the future.

Our contributions in this paper are twofold. (1) We propose two types of
attacks to infer the membership of diffusion models. Our attack methods reveal
the relationship between the leakage of training samples and the generative mech-
anism of diffusion models. (2) We evaluate our attacks on one classical defense—
diffusion models trained with DP-SGD, showing that it mitigates our attacks at
the cost of the quality of synthetic samples.
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In the end, we want to emphasize that although we study membership infer-
ence from the perspective of attackers, our proposed methods can directly be
applied to audit the privacy risks of diffusion models when model providers need
to evaluate the privacy risks of their models.

2 Background: Diffusion Models

Diffusion models [34] are a class of probabilistic generative models. They aim to
learn the distribution of a training set, and the resulting model can be utilized
to synthesize new data samples.

In general, a diffusion model includes two processes: a forward process and a
reverse process [34]. In the forward process, i.e. the diffusion process, it aims to
transform a complex data distribution pdata into a simple prior distribution, e.g.
Gaussian distribution N (0, σ2I), by gradually adding different levels of noise 0 =
σ0 < σ1 <, ..., < σT = σmax , into the data x. In the reverse process, it targets
at synthesizing a new data sample x̃0 through step by step denoising a data
sample x̃T ∼ N (0, σ2

maxI). Both processes are defined as Markov chains, and
the transitions from one step to another step are described by transition kernels.
In the following, we briefly introduce three typical diffusion models.

DDPM. A denoising diffusion probabilistic model (DDPM) proposed by Ho et
al. [16] defines the forward process: q(x1, ..., xT |x0) =

∏T
t=1 q(xt|xt−1), where

T is the number of diffusion steps. The transition kernel uses a Gaussian tran-
sition kernel: q(xt|xt−1) = N (xt;

√
1 − βtxt−1, βtI), where the hyperparameter

βt ∈ (0, 1) is a variance schedule. Based on the transition kernel, we can get a
perturbed sample by: xt ← √

1 − βtxt−1 +
√

βtε, where ε ∼ N (0, I). The tran-
sition kernel from the initial step to any t step can be expressed as: q(xt|x0) =
N (xt;

√
ᾱtx0, (1 − ᾱt)I), where ᾱt =

∏t
i=0 αi and αt := 1 − βt. Therefore, any

perturbed sample can be obtained by: xt ← √
ᾱtx0 +

√
1 − ᾱtε. In the reverse

process, DDPM generates a new sample by: x̃t−1 ← 1√
αt

(x̃t− βt√
1−ᾱt

εθ(x̃t, t))+σtε,
where εθ(xt, t) is a neural network predicting noise. In practice, DDPM is trained
by minimizing the following loss:

L(θ) = Et∼[1,T ],x∼pdata ,ε∼N (0,I)[||ε − εθ(
√

ᾱtx +
√

1 − ᾱtε, t)||2]. (1)

SMLD. Score matching with Langevin dynamics (SMLD) [37] first learns to
estimate the score, then generates new samples by Langevin dynamics. The
score refers to the gradient of the log probability density with respect to data,
i.e. ∇xlog p(x). The transition kernel in the forward process is: q(xt|x0) =
N (xt;x0, σ

2
t I). Thus, a perturbed sample is obtained by: xt ← x0 + σtε. In

the reverse process, SMLD uses an annealed Langevin dynamics to generate a
new sample by: x̃t ← x̃t−1 + αi

2 sθ(x̃t−1, σi) +
√

αiε, where the hyperparameter
σi controls the updating magnitudes and sθ(xt, σi) is a noise conditioned neural
network predicting the score. Training of the SMLD is performed by minimizing
the following loss:

Lθ = Et∼[1,T ],x∼pdata ,xt∼q(xt|x)[λ(σt)||sθ(xt, σt) − ∇xt
log q(xt|x)||2], (2)
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where λ(σt) is a coefficient function and ∇xt
log q(xt|x) = −xt−x

σ2
t

.

SSDE. Unlike prior works DDPM or SMLD which utilize a finite number of
noise distributions, i.e. t is discrete and usually at most T , Song et al. [38]
propose a score-based generative framework through the lens of stochastic dif-
ferential equations (SDEs), which can add an infinite number of noise distri-
butions to further improve the performance of generative models. The forward
process which adds an infinite number of noise distributions can be described
as a continuous-time stochastic process. Specifically, the forward process of the
score-based SDE (SSDE) is defined as:

dx = f(x, t)dt + g(t)dw, (3)

where f(x, t), g(t) and dw are the drift coefficient, the diffusion coefficient and
a standard Wiener process, respectively. The reverse process corresponds to a
reverse-time SDE: dx = [f(x, t) − g(t)2∇xlog qt(x)]dt + g(t)dw̄, where w̄ is a
standard Wiener process in the reverse time. Training of the SSDE is performed
by minimizing the following loss:

Lθ = Et∈U(0,T ),x∼pdata ,xt∼q(xt|x)[λ(t)||sθ(xt, t) − ∇xt
log q(xt|x)||2]. (4)

The SSDE is a general and unified framework. Based on different coefficients in
Eq. 3, the variance preserving (VP) and variance exploding (VE) are instanti-
ated. The VPSDE is defined as: dx = − 1

2β(t)xdt +
√

β(t)dw. The VESDE is

defined as: dx =
√

d[σ2(t)]
dt dw. Furthermore, the SSDE also shows the noise per-

turbations of DDPM and SMLD are discretizations of VP and VE, respectively.
Note that, diffusion steps usually used in diffusion models also refer to time steps
that are used in SDEs. In this work, we study the privacy risks of four target
models: DDPM, SMLD, VPSDE, and VESDE.

3 Methodology

The objective of MI attacks is to infer if a sample was used to train a model. This
provides model providers with a method to evaluate the information leakage of
a machine learning model. In this section, we first introduce threat models and
then present our MI methods.

3.1 Threat Models

Threat Model I. In this setting, we assume adversaries can only obtain the tar-
get model, i.e. the victim diffusion model. This setting is realistic because insti-
tutions might share generative models with their collaborators instead of directly
utilizing original data, considering privacy threats or data regulations [24,28].
We emphasize that adversaries do not gain any knowledge of the training set.
Obtaining the target model indicates that adversaries can get the loss values
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through the model, and this is realistic because most MI attacks on classifica-
tion models also assume adversaries can get loss values [2,25,33,40]. Under this
threat model, we propose a loss-based MI attack.

Threat Model II. In this setting, we assume adversaries can have access to
the likelihood values of samples from a diffusion model. Diffusion models have
advantages in providing the exact likelihood value of any sample [38]. Here we
aim to study whether the likelihood values of samples can be utilized as a sig-
nal to perform membership inference. Under this threat model, we propose a
likelihood-based MI attack.

3.2 Intuition

We propose MI attacks based on the following two intuitions.

Intuition I. As introduced in Sect. 2, a diffusion model aims to minimize the loss
values over the training set in the training phase. One intuition is that member
samples, i.e. the training samples, should have smaller loss values, compared
to nonmember samples. This is because training/member samples involve the
training process and their loss values could be minimized.

Intuition II. A diffusion model is a generative model that learns the distri-
bution of a training set. Therefore, the likelihood values of training/member
samples should be higher than these of nonmember samples. This is because
training/member samples are from the distribution of the training set.

3.3 Attack Methods

Problem Formulation. Given a target diffusion model Gtar , the objective of
MI attacks is to infer whether a sample x from a target dataset Xtar is used to
train the Gtar .

Loss-Based Attack. For threat model I and following intuition I, we develop a
loss-based attack. As illustrated in Sect. 2, diffusion models can add an infinite
or finite number of noise distributions, which are corresponding to continuous or
discrete SDE, respectively. Therefore, we can calculate the loss value of a sample
at each diffusion step t. Specifically, based on Eq. 1, the loss of a sample x at t
diffusion step of DDPM is calculated by:

L =
1
m

∑
||ε − εθ�(

√
ᾱtx +

√
1 − ᾱtε, t)||2, (5)

where m is the dimension of x and εθ�(.) is the trained network. By Eq. 2, the
loss of a sample x at t diffusion step of SMLD is calculated by:

L =
1
m

∑
λ(σt)||sθ�(xt, σt) − ∇xt

log q(xt|x)||2, (6)
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where sθ�(.) is the trained network. Based on Eq. 4, the loss of a sample x at t
diffusion step of VPSDE and VESDE is:

L =
1
m

∑
λ(t)||sθ�(xt, t) − ∇xt

log q(xt|x)||2. (7)

Then, we make a membership inference directly based on the loss value of a
sample at one diffusion step. Namely, if a sample’s loss value is less than certain
thresholds, this sample is marked as a member sample. For one sample, we can
get T or infinite losses, depending on continuous or discrete SDEs. In this work,
in order to thoroughly demonstrate the performance of our attack, we compute
losses of all diffusion steps T for the discrete case. We randomly select T diffusion
steps for the continuous case although it has infinite steps.

Likelihood-Based Attack. For threat model II and following intuition II, we
propose to utilize the likelihood value of a sample to infer membership. We
compute the log-likelihood of a sample x based on the equation proposed by [38].

log p(x) = log pT (xT ) −
∫ T

0

∇ · f̃θ�(xt, t)dt, (8)

where ∇· f̃θ�(x, t) is estimated by the Skilling-Hutchinson trace estimator [12]. If
the log-likelihood value of a sample is higher than certain thresholds, this sample
is predicted as a member sample. As introduced in Sect. 2, the work SSDE [38]
is a unified framework. In other words, DDPM, SMLD, VPSDE and VESDE
can be described by Eq. 3. Therefore, Eq. 8 can be applied to these models to
estimate the likelihood of one sample. In this work, we compute the likelihood
values of all training samples.

4 Experiments

4.1 Datasets

We use two different datasets to evaluate our attack methods. They cover the
human face and medical images, which are all considered privacy-sensitive data.

FFHQ. The Flickr-Faces-HQ dataset (FFHQ) [20] is a new dataset that contains
70, 000 high-quality human face images. In this work, we randomly choose 1, 000
images to train target models. We also explore the effect of the size of the training
set in Sect. 6.1.

DRD. The Diabetic Retinopathy dataset (DRD) [18] contains 88, 703 retina
images. In this work, we only consider images that have diabetic retinopathy,
which is a total of 23, 359 images. Furthermore, we randomly choose 1, 000 images
to train target models. Note that images in all datasets are resized to 64 × 64
just for the purpose of computation efficiency.
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4.2 Metrics

Evaluation Metrics for Diffusion Models. We use the popular Fréchet
Inception Distance (FID) metric to evaluate the performance of a diffusion
model [14]. A lower FID score is better, which implies that the generated sam-
ples are more realistic and diverse. Considering the efficiency of sampling, in our
work the FID score is computed with all training samples and 1, 000 generated
samples.

Evaluation Metrics for MI Attacks. We primarily use the full log-scale
receiver operating characteristic (ROC) curve to evaluate the performance of
our attack methods, because it can better characterize the worst-case privacy
threats of a victim model [2]. We also report the true-positive rate (TPR) at
the false-positive rate (FPR) as it can give a quick evaluation. We use average-
case metrics—accuracy as a reference, although it cannot assess the worst-case
privacy.

4.3 Experimental Setups

In terms of target models, we use open source codes [36] to train diffusion mod-
els, and their recommended hyperparameters about training and sampling are
adopted. More specifically, the number of training steps for all models is fixed at
500, 000. For discrete SDEs, T is fixed as 1, 000 while T is set as 1 for continu-
ous SDEs. In terms of our attack methods, we evaluate the attack performance
using all training samples as member samples and equal numbers of nonmember
samples.

5 Evaluation

5.1 Performance of Target Models

Considering their excellent performance in image generation, we choose
DDPM [16], SMLD [37], VPSDE [38] and VESDE [38] as our target models.
They are trained on the FFHQ dataset containing 1k samples. Target mod-
els with the best FID during the training progress are selected to be attacked.
Table 1 shows the performance of the target models. Figure 9 in Appendix shows
the qualitative results for these target models. Overall, all target models can
synthesize high-quality and realistic images.

Table 1. The performance of target models on FFHQ.

Target Models DDPM SMLD VPSDE VESDE

FID 57.88 92.81 20.27 63.37
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5.2 Performance of Loss-Based Attack

We present our attack performance from two aspects: TPRs at fixed FPRs for
all diffusion steps and log-scale ROC curves at one diffusion step. The former
aims to provide the holistic performance of our attacks in diffusion models. In
contrast, the latter concentrates on one diffusion step and is able to exhaustively
show TPR values at a wide range of FPR values, which is key to assessing the
worst-case privacy risks of a model.

Fig. 1. Performance of the loss-based attack on all diffusion steps. Target models are
trained on FFHQ.

TPRs at Fixed FPRs for all Diffusion Steps. Figure 1 shows the perfor-
mance of our loss-based attack on four target models trained on FFHQ. We plot
TPRs at different FPRs with regard to diffusion steps for each target model.
Recall DDPM and SMLD models are discrete SDEs while VPSDE and VESDE
models are continuous SDEs. Thus, the number of diffusion steps for DDPM and
SMLD is finite and is fixed as 1,000, while for VPSDE and VESDE models, we
uniformly generate 1, 000 points within [0, 1] and compute corresponding losses.
Overall, all models are vulnerable to our attacks, even under the worst-case, i.e.
TPR at 0.01% FPR, depicted by the purple line of Fig. 1.

We observe that our attack presents different performances in different diffu-
sion steps. To be more specific, there exist high privacy risk regions for diffusion
models in terms of diffusion steps. In these regions (i.e. diffusion steps), our
attack can achieve as high as 100% TPR at 0.01% FPR. Even for the SMLD
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model, close to 80% TPR at 0.01% FPR can be achieved. Recall the training
mechanisms of diffusion models, different levels of noise at different diffusion
steps are added during the forward process. DDPM and VPSDE and VESDE
are added growing levels of noise while SMLD starts with maximum levels of
noise and gradually decreases the levels of noise. Thus, we can see that these
models (DDPM and VPSDE, and VESDE) are more vulnerable to leak training
samples in the first half part of the diffusion steps while the SMLD model shows
membership vulnerability in the second half part of the diffusion steps.

In brief, all models are prone to suffer from membership leakage in low levels
of noise while they become more resistant in high levels of noise. In fact, in these
diffusion steps where high levels of noise are added to training data, perturbed
data is almost close to pure Gaussian noise, which can enhance the privacy
of training data to some degree. We also notice that at the starting diffusion
step, our attack performance suffers from a decrease. This is because there is an
instability issue at this step during the training process [38]. Despite this, these
peak regions still show the effectiveness of our attack.

Fig. 2. Performance of the loss-based attacks at one diffusion step. Target models are
trained on FFHQ.

Log-Scale ROC Curves at One Diffusion Step. Figure 2 plots full log-
scale ROC curves of the loss-based attack on four target models. We choose six
different diffusion steps for each target model. The rules of choosing diffusion
steps for discrete SDEs (i.e. DDPM and SMLD) are: starting and ending diffusion
step and the diffusion step that experiences significant changes in terms of attack
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performance. For continuous SDEs (i.e. VPSDE and VESDE), we first get 1, 000
points that are uniformly sampled from [0, 1]. Then, we choose diffusion steps
from these points based on the same rule of discrete SDEs. Overall, our excellent
attack performance is exhaustively shown through log-scale ROC curves.

We can observe that when the levels of noise are not too large, our method
can achieve a perfect attack, such as at t = 200 for the DDPM model, t = 800
for the SMLD model, and t = 0.21 for the VPSDE and VESDE models. Again,
we can clearly see that the ROC curves on all target models are more aligned
with the grey diagonal line with the increase in the magnitudes of noise. The
grey diagonal line means that the attack performance is equivalent to random
guesses. For example, the ROC curves are almost close to the grey diagonal
line when the maximal level of noise is added, such as the DDPM model at
t = 999, the SMLD model at t = 0, and the VPSDE and VESDE models at
t = 9.99 × 10−1. It is not surprising because at that time the input samples are
perturbed as Gaussian noise data in theory and indeed do not have something
with original training samples.

Table 2. Performance of the loss-based attack on target models trained on FFHQ.

Models T TPR@
10%FPR

TPR@
1%FPR

TPR@
0.1%FPR

TPR@
0.01%FPR

Accuracy Models T TPR@
10%FPR

TPR@
1%FPR

TPR@
0.1%FPR

TPR@
0.01%FPR

Accuracy

DDPM 0 63.50% 36.40% 22.50% 21.10% 78.25% SMLD 0 7.90% 0.80% 0.00% 0.00% 51.20%

200 100.00% 100.00% 100.00% 100.00% 100.00% 200 11.20% 0.70% 0.10% 0.00% 52.30%

500 100.00% 99.50% 80.80% 72.50% 99.30% 500 88.50% 64.40% 56.10% 35.70% 89.50%

600 59.50% 18.80% 4.30% 2.30% 81.15% 800 99.10% 91.70% 78.60% 76.10% 96.40%

800 13.90% 2.50% 0.60% 0.30% 52.80% 900 85.80% 52.00% 22.80% 15.30% 88.80%

999 12.60% 1.70% 0.00% 0.00% 52.45% 999 41.50% 8.60% 1.90% 0.10% 70.55%

VPSDE 1.97 × 10−4 93.00% 85.00% 81.60% 77.60% 93.15% VESDE 1.97 × 10−4 100.00% 100.00% 100.00% 100.00% 100.00%

0.21 100.00% 100.00% 100.00% 100.00% 100.00% 0.21 100.00% 100.00% 100.00% 100.00% 100.00%

0.52 100.00% 100.00% 99.50% 78.40% 99.90% 0.52 100.00% 100.00% 100.00% 99.90% 99.95%

0.62 66.50% 14.50% 8.20% 4.30% 85.70% 0.62 96.00% 53.60% 18.60% 14.20% 93.25%

0.72 17.90% 3.70% 1.20% 0.20% 57.30% 0.82 13.10% 1.90% 0.50% 0.30% 52.50%

9.99 × 10−1 13.00% 1.8% 0.40% 0.10% 52.20% 9.99 × 10−1 11.60% 1.70% 0.30% 0.10% 51.50%

Table 2 summarizes our attack performance on four target models with regard
to diffusion steps and FPR values. We also report the average metric accuracy
for reference. Here, we emphasize that only focusing on average metrics cannot
assess the worst-case privacy risks. For instance, for the DDPM model at t = 800,
the attack accuracy is 52.80%, which indicates the model at this diffusion step
almost does not lead to the leakage of training samples, because it is close to
50% (the accuracy of random guesses). In fact, the TPR is 0.3% at the false
positive rate of 0.01%, which is 30 times more powerful than random guesses. It
means that adversaries can infer confidently member samples under extremely
low false positive rates.

Figure 3 shows perturbed data of four target models under different diffu-
sion steps. The diffusion steps in Fig. 3 are corresponding to these in Fig. 2. We
observe that even when some perturbed data that is almost not recognized by
human beings is used to train the model, it seems not to prevent model memo-
rization. For example, for the DDPM model at t = 600, the perturbed image is
meaningless for humans. However, the attack accuracy is as high as 81.15%. At
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Fig. 3. Perturbed data of four target models under different diffusion steps. The dif-
fusion steps correspond to these in Fig. 2. Specifically, from left to right for each
model: DDPM (0, 200, 500, 600, 800, 999); SMLD (0, 200, 600, 800, 900, 999);
VPSDE (1.97 × 10−4, 0.21, 0.52, 0.62, 0.72, 9.99 × 10−1); VESDE (1.97 × 10−4, 0.21,
0.52, 0.62, 0.82, 9.99 × 10−1).

the same time, the TPR at 0.01% FPR is 2.30%, which is 230 times more pow-
erful times than random guesses. It indicates that models trained on perturbed
data, except for Gaussian noise data, can still leak training samples. The noise
mechanism of diffusion models does not provide privacy protection.

5.3 Performance of Likelihood-Based Attack

Figure 4(a) demonstrates our likelihood-based attack performance on four target
models. Overall, our attacks still perform well on all target models. For example,
our attack on the SMLD and VPSDE models almost remains 100% true positive
rates on all false positive rate regimes. For the VESDE model, attack results are
slightly inferior to the SMLD model, yet still higher than the 10% true positive
rate at an extremely low 0.001% false positive rate.

Table 3 shows our attack results at different FPR values for all target models.
Once again, we can clearly see that even at the 0.01% FPR, the lowest TPR
among all models is as high as 23.10%, which is 2, 310 times than random guesses.
In addition, we also observe that the attack accuracy is above 98% for all target
models. Our attack results also remind model providers that they should be
careful when using likelihood values.

Table 3. Likelihood-based attack. Target models are trained on FFHQ.

Models TPR@
10%FPR

TPR@
1%FPR

TPR@
0.1%FPR

TPR@
0.01%FPR

Accuracy

DDPM 98.00% 89.00% 79.70% 71.00% 95.75%

SMLD 100.00% 100.00% 100.00% 100.00% 100.00%

VPSDE 100.00% 99.60% 98.90% 98.20% 99.45%

VESDE 100.00% 93.80% 58.40% 23.10% 98.50%
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Fig. 4. Performance of the likelihood-based attack.

5.4 Takeaways

Our loss-based attack utilizes loss values to make a membership inference.
Although the loss-based attack requires adversaries to choose a suitable dif-
fusion step to mount the attack, our extensive experiments identify the high
privacy risk region. More importantly, our loss-based attack reveals the rela-
tionship between membership risks and the generative mechanism of diffusion
models. This provides a new angle to mitigate membership risks by designing
novel noise mechanisms of diffusion models. Our likelihood-based attack does
not need to choose a diffusion step and infers membership directly based on
likelihood values. Both loss and likelihood information can lead to the leakage
of training samples.

Fig. 5. Performance of loss-based attack with different sizes of datasets. The target
model is DDPM trained on FFHQ. Each subfigure shows attack performance with
different sizes of datasets on fixed FPRs.

6 Analysis

6.1 Effects of Size of a Training Dataset

We study attack performance with regard to different sizes of the training set of
a target model. Here, we choose the DDPM models trained on FFHQ as target
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models. We use FFHQ-1k, FFHQ-10k, and FFHQ-30k to represent different sizes
of a dataset, which refer to 1, 000, 10, 000, and 30, 000 training samples in each
dataset respectively. The FID of the target model DDPM trained on FFHQ-
1k, FFHQ-10k, and FFHQ-30k are 57.88, 34.34, and 24.06, respectively. In the
following, we present the performance of our both attacks.

Performance of Loss-Based Attack. Figure 5 depicts the performance of
loss-based attacks on all diffusion steps under different sizes of a training set.
Overall, we can observe that attack performance gradually becomes weak when
the size of training sets increases. For example, at diffusion step t = 200, the
TPR at 10% FPR decreases from 100% to about 15% when the training samples
increase from 1k to 30k. Here, note that the starting points of the y-axis in Fig. 5
are not 0 and we set them as the probability of random guesses. Thus, as long
as the lines can be shown in the figure, it indicates this is an effective attack.

However, the peak regions still exist even if the number of training samples
increases to 30k and the FPR value is as low as 0.1%. For instance, as shown in
Fig. 5(c), it shows our attack performance of 0.1% FPR on all models. Diffusion
steps in the range of 0 to 400 are still vulnerable to our attack, compared to
other steps. It indicates that these diffusion steps indeed lead a model to more
easily leak training data. We further show the attack performance based on each
dataset in Fig. 11 in Appendix.

Fig. 6. Performance of loss-based attack with different sizes of datasets. The target
model is DDPM. TPR-FPR Curves under different time steps.

Figure 6 shows ROC curves of our attack against target models trained on
different sizes of training sets. Based on the same rules described in Sect. 5.2,
we select several different diffusion steps and plot their ROC curves. On the one
hand, we can see that indeed models become less vulnerable as the number of
training samples increases. For instance, Fig. 6(c) shows the DDPM trained on
FFHQ-30K is more resistant to MI attacks on the full log-scale TPR-FPR curve.
On the other hand, when diffusion step t equals 250, our attack shows higher
attack performance than random guesses at the low false positive rate, such as
10−4. This is also corresponding to the peak steps in Fig. 5.

We also observe from Fig. 6 that TPR values in diffusion steps of high pri-
vacy risks do not further go down with the increase in FPR values, especially
in extremely low FPR regimes. Take the DDPM trained on FFHQ-30K as an
example (see Fig. 6(c)), the TPR value at diffusion step t = 250 are still about
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10−4 at the FPR value of 10−5, while at t = 999, the TPR value at 10−5 FPR
value is 0. This indicates that at t = 250, there are some training samples whose
loss values are always smaller than the minimal loss value of the nonmember
sample. Otherwise, the green line (t = 250) will go down to zero, similar to the
brown line (t = 999). In other words, there are partial training samples that can
be inferred with 100% confidence at this diffusion step. Note that in reality, even
if only one sample can be inferred as a member confidently, it still constitutes a
severe privacy violation [2,17,22].

Performance of Likelihood-Based Attack. Figure 4(b) shows the perfor-
mance of likelihood-based attacks in terms of different sizes of training sets.
Similar to the loss-based attack, the performance of the likelihood-based attack
decrease with an increase in the sizes of training sets. Specifically, the likelihood-
based attack shows perfect performance on the target model trained on FFHQ-
1k. When the size of a training set increases to 10K, there is a significant drop
but still better than random guesses on the full log-scale ROC curve. In par-
ticular, in the extremely low false positive rate regime, such as 10−4, the true
positive rate is about 6 × 10−4, which is 6 times more powerful than random
guesses. In the model trained on FFHQ-30K, the ROC curve is almost close to
the diagonal line, which indicates that adversaries are difficult to infer member
samples through likelihood values.

6.2 Effects of Different Datasets

In this subsection, we show our attack performance on a medical image dataset
about diabetic retinopathy. We choose the medical image dataset because the
number of images that have diabetic retinopathy is usually insufficient in prac-
tice [21]. These types of images could be used for training a diffusion model
and later the trained model is utilized to generate more novel images. We have
described this dataset DRD in Sect. 4.1. We choose the SMLD as the target
model and the number of training samples is 1, 000. Overall, the SMLD model
can achieve excellent performance in image synthesis, with an FID of 33.20.
Figure 10 in Appendix visualizes synthetic samples, which all show good quality.

Performance of Loss-Based Attack. Figure 7 shows the performance of loss-
based attacks for the target model SMLD trained on DRD. Here, note that the
levels of the noise of the SMLD model gradually become small with an increase
in diffusion steps. Figure 7(a) shows the performance of our loss-based attack on
all diffusion steps. Figure 7(b) depicts ROC curves for different diffusion steps
on target model SMLD trained on DRD. We can again observe our attacks can
still perform perfectly on DRD at diffusion steps of low levels of noise.

Performance of Likelihood-Based Attack. Figure 7(c) reports the perfor-
mance of our likelihood-based attack on the SMLD model trained on DRD. As
expected, our attack still shows excellent performance. We can clearly find that
the attack achieves 100% TPR on all FPR values, which means that all mem-
ber samples are inferred correctly. Table 4 in Appendix reports the quantitative
results of both attacks.
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Fig. 7. Attack performance on the DRD dataset.

7 Defenses

Differential privacy (DP) [1,10] is considered as a common defense measure for
preventing the leakage of training samples of a machine learning model. In this
section, we present our attack results on diffusion models using the DP defense.

We adopt Differentially-Private Stochastic Gradient Descent (DP-SGD) [1]
to train diffusion models. DP-SGD is widely used for privately training a machine
learning model. Generally, DP-SGD achieves differential privacy by adding noise
into per-sample gradients. In our work, we implement DP diffusion models
through the Opacus library [41] which allows us to set privacy budgets through
hyperparameters. Here, we set the clip bound C and the failure probability δ
as 1 and 5 × 10−4. The batch size and the number of epochs are 64 and 1, 800.
Thus, the final privacy budget ε is 19.62. Generally, a smaller privacy budget
means a higher privacy setting and more severe model utility loss. The common
choice of privacy budget is ε ≤ 10 [1,41], and in this work we choose a higher
privacy budget because we consider the utility of a diffusion model. We choose
the DDPM model as the target model. It is trained on FFHQ containing 1, 000
training samples, and the FID is 393.94.

Performance of Loss-Based Attack. Figure 8 shows the performance of both
types of attacks on DDPM trained with DP-SGD on FFHQ. In Fig. 8(a), we
present the performance of the loss-based attack on all diffusion steps. Clearly, we
can see that although differentially training DDPM, i.e. DDPM with DP-SGD,
indeed can significantly decrease the membership leakages, the peak regions can
be still identified between 400 and 800 diffusion step. Figure 8(b) further shows
ROC curves of our loss-based attack on different diffusion steps. Again, we can
observe that in the low FPR regimes, some training samples are still inferred
with a higher probability, such as 10−2 TPR at 10−4 FPR at t = 500. This is
higher than 100 times than random guesses (TPR is 10−4 at 10−4 FPR).

Performance of Likelihood-Based Attack. Figure 8(c) shows the perfor-
mance of the likelihood-based attack on DDPM training with DP-SGD on
FFHQ. Again, we can see that differentially private training of a diffusion model
indeed can mitigate our attack. At the same time, we also see at the low false
positive rate regime, our attack still remains at 0.1% true positive rate, which
illustrates the effectiveness of our attack even in the worst-case. Here, we also
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Fig. 8. Attack performance on DDPM with DP-SGD.

note that the FID of the target model is 393.94, which means that the utility of
the target model suffers from a severe performance drop. We leave developing
more usable techniques to train a diffusion model with DP-SGD as future work.
Table 5 in Appendix summarizes the quantitative results of both attacks.

8 Related Work

Diffusion Models. Diffusion models have attracted increasing attention in the
past years. Sohl-Dickstein et al. [34] first introduce nonequilibrium thermody-
namics to build generative models. The key idea is to slowly add noise into data
in the forward process and learn to generate data from noise through a reverse
process. Ho et al. [16] further propose to use parameterization techniques in dif-
fusion models, which enable diffusion models to generate high-quality images.
Song et al. [37] present to train a generative model by estimating gradients
of data distribution, i.e. score. Furthermore, Song et al. [38] propose a unified
framework to describe these diffusion models through the lens of stochastic dif-
ferential equations. However, in this work, we study diffusion models from the
perspective of privacy.

Membership Inference Attacks. There are extensive works on membership
inference (MI) attacks on classification models. Various attack methods under
different threat models are proposed, such as using fewer shadow models [32],
using loss values [2,25,33,40] and using labels of victim models [7,23]. In addi-
tion, there are several MI attacks on generative models [6,13,15]. Nevertheless,
these attacks are more specific to GANs and heavily rely on the unique character-
istics of GANs, such as discriminators or generators. They cannot be extended to
diffusion models, because diffusion models have different training and sampling
mechanisms. Therefore, our work on MI of diffusion models aims to fill this gap.

Membership Inference Attacks in Diffusion Models. In this paragraph,
we discuss our work and its relation to several similar/concurrent works studying
MI attacks in diffusion models. Wu et al. [39] study MI attacks against text-to-
image generative models. One diffusion-based text-to-image generative model,
LDM [31], is attacked by their methods based on query data pair, i.e. text and
corresponding output image. Unlike text-to-image generative models, we focus
on unconditional diffusion models. Furthermore, our MI attack methods, such
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as the loss-based attack, are totally different from their methods [39]. Subse-
quently, there are several concurrent works that investigate MI attacks against
diffusion models based on the loss information [3,9,26,42]. However, they only
consider discrete diffusion models where the number of noise distributions is
finite. Our work systematically studies both discrete and continuous diffusion
models. Although Carlini et al. [3] design more sophisticated and effective meth-
ods, they require extraordinarily huge computation resources, such as training
hundreds of shadow diffusion models or millions of queries from diffusion models.
In contrast, our method only utilizes loss values, which is much more computa-
tionally efficient. In addition, we also propose the likelihood-based method which
is not considered in these works [3,9,26,42].

9 Conclusion

In this paper, we have developed two types of membership inference attack meth-
ods: loss-based attack and likelihood-based attack. Our methods have demon-
strated the connection between membership inference risks and the generative
mechanism of diffusion models. To be more specific, our loss-based attack reveals
that in terms of diffusion steps, there exist high-risk regions where training sam-
ples can be inferred with high precision. Although membership inference becomes
more challenging with the increase in the number of training samples, the high-
risk regions still exist. Our experimental results on classic privacy protection
mechanisms, i.e. diffusion models trained with DP-SGD, further show that DP-
SGD alleviates our attacks at the expense of severe model utility.

Designing an effective differential privacy strategy to produce high-quality
images for diffusion models is promising and challenging, which is part of our
future work. In addition, it is an interesting direction to study MI attacks of
diffusion models in stricter scenarios, such as only obtaining synthetic data.

Acknowledgments. This research was funded in whole by the Luxembourg National
Research Fund (FNR), grant reference 13550291.

Appendix

In this section, we show additional results and introduce each result in its cap-
tion.
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Fig. 9. Generated images from different target models trained on FFHQ. It is corre-
sponding to Sect. 5.1.

Fig. 10. Generated images from the target model SMLD trained on the DRD dataset.
It is corresponding to Sect. 6.2.

Table 4. Quantitative results of our attacks on SMLD trained on DRD. It is corre-
sponding to Sect. 6.2.

Attack T TPR@

10%FPR

TPR@

1%FPR

TPR@

0.1%FPR

TPR@

0.01%FPR

Accuracy

Loss-based 0 7.50% 1.10% 0.00% 0.00% 50.25%

200 11.20% 0.70% 0.10% 0.00% 52.25%

700 80.60% 50.50% 33.34% 18.80% 85.45%

800 93.30% 72.20% 60.00% 40.10% 92.25%

900 79.80% 42.40% 17.70% 12.30% 86.35%

999 43.60% 9.70% 2.00% 0.10% 70.95%

Likelihood-based – 100.00% 100.00% 100.00% 99.90% 99.95%

Table 5. Quantitative results of our attacks on DDPM trained with DP-SGD. It is
corresponding to Sect. 7.

Attacks T TPR@

10%FPR

TPR@

1%FPR

TPR@

0.1%FPR

TPR@

0.01%FPR

Accuracy

Loss-based 0 8.80% 1.40% 0.00% 0.00% 52.25%

200 8.60% 1.40% 0.40% 0.30% 53.20%

500 10.70% 1.60% 0.90% 0.90% 51.85%

600 13.00% 2.30% 1.00% 1.00% 51.85%

800 11.60% 2.10% 0.30% 0.30% 51.75%

999 10.40% 0.60% 0.00% 0.00% 53.90%

Likelihood-based – 8.40% 1.10% 0.20% 0.10% 51.75%
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Fig. 11. Performance of loss-based attacks with different sizes of datasets. The target
model is DDPM trained on FFHQ. Each subfigure shows attack performance with
different FPRs on fixed dataset sizes. It is corresponding to Sect. 6.1.
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Abstract. This paper uses symmetry to make Convolutional Neu-
ral Network classifiers (CNNs) robust against adversarial perturbation
attacks. Such attacks add perturbation to original images to generate
adversarial images that fool classifiers such as road sign classifiers of
autonomous vehicles. Although symmetry is a pervasive aspect of the
natural world, CNNs are unable to handle symmetry well. For example,
a CNN can classify an image differently from its mirror image. For an
adversarial image that misclassifies with a wrong label lw, CNN inability
to handle symmetry means that a symmetric adversarial image can clas-
sify differently from the wrong label lw. Further than that, we find that
the classification of a symmetric adversarial image reverts to the correct
label. To classify an image when adversaries are unaware of the defense,
we apply symmetry to the image and use the classification label of the
symmetric image. To classify an image when adversaries are aware of the
defense, we use mirror symmetry and pixel inversion symmetry to form
a symmetry group. We apply all the group symmetries to the image and
decide on the output label based on the agreement of any two of the clas-
sification labels of the symmetry images. Adaptive attacks fail because
they need to rely on loss functions that use conflicting CNN output val-
ues for symmetric images. Without attack knowledge, the proposed sym-
metry defense succeeds against both gradient-based and random-search
attacks, with up to near-default accuracies for ImageNet. The defense
even improves the classification accuracy of original images.

Keywords: Adversarial perturbation defense · Symmetry · CNN
adversarial robustness

1 Introduction

Despite achieving state-of-the-art status in computer vision [24,29], Convolu-
tional Neural Network classifiers (CNNs) lack adversarial robustness because
they can classify imperceptibly perturbed images incorrectly [11,23,35,46]. One
of the first and still undefeated defenses against adversarial perturbation attacks
is adversarial training (AT) [30,35,46], which uses adversarial images in training.
However, AT reliance on attack knowledge during training [35] is a significant
drawback since such knowledge might not be available in real-world attacks.
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teapot panda teapot
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Fig. 1. The flip symmetry defense against zero-knowledge adversaries reverts adver-
sarial images to their correct classification by horizontally flipping the images before
classification. The defense classifies non-adversarial images in the same way.

Although engineered to incorporate symmetries such as horizontal flipping,
translations, and rotations, CNNs lack invariance with respect to these symme-
tries [19] in the classification of datasets such as ImageNet [15], CIFAR10 [28]
and MNIST [33]. CNN lack of invariance means that CNNs can classify images
differently after they have been horizontally flipped, or even slightly shifted or
rotated [3,19]. Furthermore, CNNs only provide approximate translation invari-
ance [3,4,19,26] and are unable to learn invariances with respect to symmetries
such as rotation and horizontal flipping with data augmentation [3,4,19].

Against adversarial perturbation attacks causing misclassification, the inabil-
ity of CNNs to handle symmetry well can be beneficial. While an adversarial
image classifies with a wrong label, a symmetric adversarial image, obtained
by applying a symmetry to an adversarial image, can classify with a label that
is different from the wrong label of the adversarial image. Aiming to classify
adversarial images correctly, we pose the question:

Can we achieve adversarial robustness by utilizing the inability of CNNs
to handle symmetry correctly?

Addressing this question, we design a novel symmetry defense that only uses
symmetry to counter adversarial perturbation attacks. The proposed symmetry
defense makes the following main contributions:

– We show that the proposed symmetry defense succeeds against gradient-based
attacks and a random search attack without using adversarial images or attack
knowledge. In contrast, the current best defense needs attack knowledge to
train the classifier with adversarial images.

– The symmetry defense counters zero-knowledge adversaries with near-default
accuracies by using either the horizontal flip symmetry, shown in Fig. 1, or
an artificial pixel inversion symmetry. Results are shown in Table 1 and in
Table 2.

– The defense also counters perfect-knowledge adversaries with near-default
accuracies, as shown in Table 4. Against such adversaries, the defense uses a
symmetry subgroup that consists of the identity symmetry, the mirror sym-
metry (also called horizontal flip), the pixel inversion symmetry, and the
symmetry that combines the mirror flip and the pixel inversion symmetry.

– The defense counters adaptive attacks that customize their loss with sym-
metric images. The optimization of such adaptive attacks relies on conflict-
ing CNN outputs for symmetric images, causing non-optimal optimization of
adaptive attacks.
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– The usage of the pixel intensity inversion symmetry, discussed in Sect. 5.1
and in Sect. 5.2, that does not exist in natural images of the dataset means
that the proposed defense could be applied even to datasets without inherent
symmetries.

– The symmetry defense maintains and even exceeds the non-adversarial accu-
racy against perfect-knowledge adversaries, as shown in Table 4.

2 Related Work and Background

2.1 Symmetry, Equivariance and Invariance in CNNs

Symmetry of an object is a transformation that leaves that object invariant.
Image symmetries include rotation, horizontal flipping, and inversion [37]. We
provide definitions related to symmetry groups in Appendix 1. A function f is
equivariant with respect to a transformation T if they commute with each-
other [43]: f ◦ T = T ◦ f . Invariance is a special case of equivariance where the
T transformation applied after the function is the identity transformation [43]:
f ◦ T = f .

CNNs stack equivariant convolution and pooling layers [22] followed by an
invariant map in order to learn invariant functions [5] with respect to symme-
tries, following a standard blueprint used in machine learning [5,25]. Translation
invariance for image classification means that the position of an object in an
image should not impact its classification. To achieve translation invariance,
CNN convolutional layers [29,31] compute feature maps over the translation
symmetry group [21,45] using kernel sliding [21,32]. CNN pooling layers enable
local translation invariance [5,16,22]. The pooling layers of CNNs positioned
after convolutional layers enable local invariance to translation [16] because the
output of the pooling operation does not change when the position of features
changes within the pooling region. Cohen and Welling [12] show that convolu-
tional layers, pooling, arbitrary pointwise nonlinearities, batch normalization,
and residual blocks are equivariant to translation. CNNs learn invariance with
respect to symmetries such as rotations, horizontal flipping, and scaling with
data augmentation, which augments the training dataset with images obtained
by applying symmetries to original images [29]. For ImageNet, data augmenta-
tion can consist of a random crop, horizontal flip, color jitter, and color trans-
forms of original images [18].

CNN Lack of Translation Equivariance and Invariance. Studies suggest
that CNNs are not equivariant to translation [3,4,19,26,48], not even to small
translations or rotations [19]. Bouchacourt et al. [4] claim that the CNN trans-
lation invariance is approximate and that translation invariance is primarily
learned from the data and data augmentation. The lack of translation invari-
ance has been attributed to aliasing effects caused by the subsampling of the
convolutional stride [3], by max pooling, average pooling, and strides [48], and
by image boundary effects [26].



Symmetry Defense Against CNN Adversarial Perturbation Attacks 145

CNN Data Augmentation Marginally Effective. Studies show that data
augmentation is only marginally effective at incorporating symmetries [3,4,12,
19,27] because CNNs cannot learn invariances with data augmentation [3,4,19].
Engstrom et al. [19] find that data augmentation only marginally improves invari-
ance. Azulay and Weiss [3] find that data augmentation only enables invariance
to symmetries of images that resemble dataset images. Bouchacourt et al. [4]
claim that non-translation invariance is learned from the data independently of
data augmentation.

Other Equivariance CNNs Approaches Have Dataset Limitation. CNN
architectures that handle symmetry better have only been shown to work for
simple MNIST [33], CIFAR10 [28] or synthetic datasets, not ImageNet [6,12,16,
20,21,36,41,43,44,49].

2.2 Adversarial Perturbation Attacks

Szegedy et al. [46] defined the problem of generating adversarial images as start-
ing from original images and adding a small perturbation that results in mis-
classification. Szegedy et al. [46] formalized the generation of adversarial images
as a minimization of the sum of perturbation and an adversarial loss function,
as shown in Appendix 2. The loss function uses the distance between obtained
function output values and desired function output values.

Most attacks use the classifier gradient to generate adversarial perturba-
tion [11,35], but random search [1] is also used.

PGD Attack. PGD is an iterative white-box attack with a parameter that
defines the magnitude of the perturbation of each step. PGD starts from an
initial sample point x0 and then iteratively finds the perturbation of each step
and projects the perturbation on an Lp-ball.

Auto-PGD Attack. Auto-PGD (APGD) [14] is a variant of PGD that varies
the step size and can use two different loss functions to achieve a stronger attack.

Square Attack. The Square Attack [1] is a score-based, black-box, random-
search attack based on local randomized square-shaped updates.

Fast Adaptive Boundary. The white-box Fast Adaptive Boundary attack
(FAB) [13] aims to find the minimum perturbation needed to change the classifi-
cation of an original sample. However, FAB does not scale to ImageNet because
of the large number of dataset classes.

AutoAttack. AutoAttack [14] is a parameter-free ensemble of attacks that
includes: APGDCE and APGDDLR, FAB [13] and Square Attack [1].

2.3 Adversarial Defenses

Adversarial Training. AT [30,35,46] trains classifiers with correctly-labeled
adversarial images and is one of the first and few defenses that have not been
defeated. The robust PGD AT defense [35] is formulated as a robust optimization
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problem and is considered one of the most successful adversarial defenses [34].
AT usage of adversarial images during training increases training time and makes
AT reliant on attack knowledge, which is unrealistic for real-world attacks.

Failed Defenses. Many other defenses have been shown to fail against an adap-
tive adversary. For example, defensive distillation is not robust to adversarial
attacks [8], many adversarial detection defenses have been bypassed [9,10], and
obfuscated gradient defenses [2] and other defenses have been circumvented [47].

2.4 Lack of Adversarial Robustness and Lack of Invariance Together

To the best of our knowledge, only one prior work [19] examines the lack of invari-
ance and the lack of adversarial robustness together by analysing the interplay
between rotations/translations and L∞ adversarial perturbation. Engstrom et
al. [19] apply first symmetries and then adversarial perturbation, finding rota-
tion and translation symmetries orthogonal to adversarial perturbation in their
experiments. In contrast, we examine symmetry transformations of adversarial
samples, applying symmetry transformations after the adversarial perturbation.

2.5 Summary of Related Work

Relevant to the proposed defense, we derive the following key points from the
related work:

– CNNs do not achieve full equivariance or full invariance with respect to sym-
metries such as translation, horizontal flipping, and rotation despite being
designed and trained with data augmentation to incorporate these symme-
tries.

– Adversarial perturbation attacks are still an open problem as the best current
AT defense requires advance knowledge of the attack, which is not available
for real-world attacks.

– Approaches to better incorporate symmetries into CNNs have yet to succeed
for big datasets such as ImageNet.

3 Threat Model

Based on recommendations for evaluating adversarial defenses [7], the examined
threat model consists of three cases:

– Zero-Knowledge Adversary. The adversary is unaware of the symmetry
defense.

– Perfect-Knowledge Adversary. The adversary is aware of the symmetry
defense and adapts the attack to the defense.

– Limited-Knowledge Adversary. Based on [7], this threat only needs to
be evaluated if the zero-knowledge attack fails and the perfect-knowledge
attack succeeds. Since the defense succeeds against both zero-knowledge and
perfect-knowledge adversaries, we do not evaluate this case.
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4 The Proposed Symmetry Defense

Following, we note f as the CNN function that finds the classifier boundary and
T as the pixel intensity inversion symmetry.

4.1 CNN Classifier Boundary Function f Lacks Equivariance
with Respect to Symmetries

The inability of CNNs to handle symmetries well causes boundaries in sym-
metric settings to differ. As discussed in Sect. 2, CNNs can classify symmetric
images differently. This lack of invariance of CNN classification with respect to
symmetries [3,4,19,26] indicates that the CNN function f of finding the classi-
fication boundary lacks equivariance with respect to symmetries. That is, CNN
classifier boundaries near symmetric images are not symmetric. Otherwise, if
the CNN classifier boundaries were symmetric around symmetric images, then
symmetric images would classify the same, and CNN classification would not
lack invariance.

Formally, we base our reasoning on the definition of equivariance as f ◦
T = T ◦ f , where f is the function that finds the classifier boundary and T is
the symmetry transformation. For the CNN function f that finds the classifier
boundary, equivariance with respect to T would mean that the CNN classifier
boundary would be the same whether we apply f or T first. However, the lack of
invariance of CNN classification with respect to symmetries [3,4,19,26] indicates
that f ◦ T �= T ◦ f . Otherwise, if f ◦ T = T ◦ f , then the boundaries would
be the same, and CNN classification would not lack invariance. Therefore, we
conclude that function f is not equivariant with respect to symmetries. Taking
pixel inversion as the example T symmetry, Fig. 2 shows that inverting all dataset
images and finding the classifier boundary do not commute and would result in
different class boundaries.

4.2 Adversarial Images Also Lack Equivariance

As a result of the lack of equivariance in finding classifier boundaries with
respect to symmetries, finding adversarial also lacks equivariance with respect
to symmetries. In other words, adversarial images generated from symmet-
ric original images do not correspond. Conceptually, adversarial perturbation
attacks [11,23,35,38,46] aim to change an original sample with a small pertur-
bation in order to obtain an adversarial sample that is on the other side of
the CNN classifier boundary and misclassifies as a result. Therefore, different
class boundaries in symmetric settings would cause an adversarial perturbation
attack to find adversarial images in symmetric settings that are different, as
Fig. 2 shows.
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Fig. 2. We show in two-dimensional space the lack of equivariance of the CNN func-
tion f of finding the classifier boundary with respect to the pixel invert symmetry T .
Applying first the inverse symmetry and then computing the classifier boundary (up
and right) produces a different boundary from computing the classifier boundary first
and then applying the inverse symmetry (right and up). Due to the different class
boundaries, adversarial images are also different.

4.3 Adaptive Attacks Affected by CNN Inability to Handle
Symmetry

The optimization of attacks adapting to the proposed symmetry defense is
affected by CNN lack of invariance with respect to symmetries. Such adap-
tive attacks would need to incorporate symmetric images in their optimizations
because the proposed symmetry defense makes no other changes. CNN inability
to handle symmetry well means that the CNN output for a symmetric image can
be different from the CNN output for the original image from which the sym-
metric image was obtained. Different CNN output values for symmetric images
affect the loss function values that guide the optimization of adaptive attacks
because loss functions depend on CNN output values. As a result, the attack
optimization can become non-optimal and steered to obtain adversarial images
that classify correctly.

5 Experimental Setting

We evaluate the proposed symmetry defense in the threat model cases identified
in Sect. 3, based on [7]. Our implementation is based on the robustness AT
package implementation [18] for ImageNet [42] with the same ResNet50 [24]
architecture and parameters. ImageNet [42] is a 1000-class dataset of over 1.2M
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training images and 50K testing images. The ResNet50 [24] architecture model is
trained with the stochastic gradient descent (SGD) optimizer with a momentum
of 0.9, a learning rate decaying by a factor of 10 every 50 epochs, and a batch
size of 256. The classifier takes as input images with [0, 1] pixel value ranges.
Based on [18], the evaluation is done on logits, non-softmax output.

Default Data Augmentation. We use the same data augmentation as in [18]
in the models we train: random resized crops, random horizontal flips, color
jitter, and Fancy Principal Component Analysis (Fancy PCA) [29]. The Col-
orJitter transform randomly changes the brightness, contrast, and saturation.
Fancy PCA [29] is a form of data augmentation that changes the intensities of
RGB channels in training images by performing PCA analysis on ImageNet [15]
images and adding to every image multitudes of the principal components. The
magnitudes are proportional to the eigenvalues and a random variable drawn
from a Gaussian distribution with 0 mean and 0.05 standard deviation [18].

PGD Attacks. We evaluate the proposed defense against L2 and L∞ PGD [30]
attacks parameterized according to [18] for ImageNet with ε values of 0.5, 1.0,
2.0, 3.0 for L2 attacks, and ε values of 4/255, 8/255, 16/255 for L∞ attacks.
All PGD [30] attacks have 100 steps, with a step perturbation value defined as
the ratio of 2.5 × ε over the number of steps, following [18]. All PGD attacks
are targeted according to [18], with the target label chosen uniformly at random
among the labels other than the ground truth label.

AutoAttack Attacks. We evaluate against APGD, and SquareAttack attacks
with 1, 000 random images for each experiment based on [14] experiments with
ImageNet. We do not evaluate against FAB because it does not scale to ImageNet
due to the large number of ImageNet classes [14]. All APGD attacks are targeted.
Based on Square Attack [1] settings for ImageNet, Square Attack [1] is not
targeted, has 10, 000 queries, p = 0.02 for L2, and p = 0.01 for L∞. APGDCE [14]
and APGDDLR [14] settings were based on attack settings for ImageNet in [14].

Tools. The defense was written using PyTorch [40]. PGD attacks were generated
with the Robustness (Python Library) [18], AutoAttack attacks were generated
with the IBM Adversarial Robustness 360 Toolbox (ART) [39].

We assume that all adversaries know the model and its parameters.

5.1 Symmetry Defense Against Zero-Knowledge Adversaries

Here, we conduct experiments with the flip symmetry defense and the intensity
inversion symmetry defense against zero-knowledge adversaries that are unaware
of the symmetry defense.

Horizontal Flipping Symmetry Defense Against Zero-Knowledge
Adversaries. Both the adversary and the defense use the same model trained
with the default training dataset because horizontal flips are used in the default
data augmentation. Figure 3 shows that the defense classifies an image by first
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horizontally flipping it and then classifying it with the same model used by the
adversary to generate the adversarial images. Table 1 shows the experimental
results of the defense using horizontal flip symmetry to counter zero-knowledge
adversaries.

Table 1. Evaluation of the flip symmetry defense against zero-knowledge attacks.

Norm Attack No defense Proposed defense
ε = 0.0 77.26% 77.15%

*L2 PGD - ε = 0.5 34.27% 76.13%
PGD - ε = 1.0 4.32% 75.21%
PGD - ε = 2.0 0.19% 74.25%
PGD - ε = 3.0 0.03% 73.74%
*APGDCE - ε = 3.0 0.0% 75.0%
*APGDDLR - ε = 3.0 37.9% 79.2%
*Square Attack - ε = 5.0 40.0% 71.9%

*L∞ PGD - ε = 4/255 0.00% 74.27%
PGD - ε = 8/255 0.00% 73.24%
PGD - ε = 16/255 0.00% 70.13%
*APGDCE - ε = 4/255 0.0% 71.8%
*APGDDLR - ε = 4/255 0.0% 78.7%
*Square Attack - ε = 0.05 4.9% 47.5%

*Evaluation based on 1, 000 random images.
The defense achieves close to the non-adversarial accuracy against most
attacks, even exceeding it for APGDDLR. Furthermore, the defense also
exceeds the performance of the robust PGD AT defense [18] against
PGD. The flip symmetry defense against a zero-knowledge adversary
also maintains the default non-adversarial accuracy.

Inversion Symmetry Defense Against Zero-Knowledge Adversaries.
The intensity inversion symmetry is a symmetry that is not present in natural
images. This symmetry changes image pixel values from p ∈ [0, 1] to 1 − p. We
train two models with the same preprocessing, parameters, and model archi-
tecture: M-Orig with original images and M-Invert with inverted images. The
adversary generates adversarial images using the M-Orig model. The defense
classifies a sample by inverting it and then classifying it with the M-Invert
model. Figure 4 outlines the invert symmetry defense, and Table 2 shows that
the inversion symmetry defense achieves near-default accuracies against most
attacks and maintains non-adversarial accuracy.
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Fig. 3. The flip symmetry defense against zero-knowledge adversaries horizontally flips
images before classifying them. The defense uses the same model that the adversary
uses to generate adversarial images.

Table 2. Evaluation of the invert symmetry defense against zero-knowledge attacks.

Norm Attack No defense Proposed defense
ε = 0.0 77.26% 76.88%

L2 PGD - ε = 0.5 34.27% 75.87%
PGD - ε = 1.0 4.32% 75.10%
PGD - ε = 2.0 0.19% 74.33%
PGD - ε = 3.0 0.03% 74.02%
*APGDCE - ε = 3.0 0.0% 73.8%
*APGDDLR - ε = 3.0 34.6% 76.0%
*Square Attack - ε = 5.0 40.4% 72.6%

L∞ PGD - ε = 4/255 0.00% 74.54%
PGD - ε = 8/255 0.00% 73.83%
PGD - ε = 16/255 0.00% 72.08%
*APGDCE - ε = 4/255 0.0% 69.8%
*APGDDLR - ε = 4/255 0.2% 71.2%
*Square Attack - ε = 0.05 4.0% 48.1%

*Evaluation based on 1, 000 random images.
Similarly to the flip symmetry defense, the invert symmetry defense
achieves near-default accuracy against most attacks, exceeding the per-
formance of the robust PGD AT defense [18] for PGD attacks. In addi-
tion, the invert symmetry defense accuracy maintains the accuracy for
non-adversarial images.
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Fig. 4. Whether an image is original or an adversarial image generated with the M-Orig
model by attacks, the defense first inverts the image and then classifies the inverted
image with the M-Invert model.

5.2 Symmetry Defense Against Perfect-Knowledge Adversaries

Here, we assume that the adversary is aware of the proposed symmetry defense
and can adapt the attack to the defense.

The Defense Needs more than One Symmetry. To counter a perfect-
knowledge adversary, the defense must use more than one symmetry transfor-
mation. An adversary that is aware of the defense could apply the flip or invert
symmetry after generating the adversarial sample, which would cancel out the
symmetry transformation applied by the defense in Sect. 5.1 (flipping or inverting
an image twice reverts it to the same image). In addition, the defense against a
perfect-knowledge adversary would need to use such symmetry transformations
that their possible combinations are reasonably limited in number to enable the
defense to conduct experiments for all cases.

Definition of the Discrete Subgroup of Transformations. We define sub-
group H with a discrete set of transformations H = {e, a, b, c}, where e, a, b, c
denote the identity, horizontal flipping, intensity inversion, and the composition
of flipping and inversion. The operation ∗ means that one transformation fol-
lows another. The Cayley table in Table 3 shows that the subgroup is closed
since compositions of the elements also belong to the subgroup. The defined H
subgroup is known as the Klein four-group. In this four-element group, each
element is its own inverse, and composing any two non-identity elements results
in the third non-identity element. Another way to define the Klein four-group
H is: H = {a, b|a2 = b2 = (a ∗ b)2 = e}.

Theorem 1. H = {e, a, b, c} is a subgroup of the group of symmetry transfor-
mations of images.

Proof. Based on the finite subgroup criterion in Sect. 2, a finite subset of a
group should need only to be nonempty and closed under operation ∗ [17]. H is
nonempty because it has four elements and is a subset of the symmetry transfor-
mations of images. Based on the definition of closure in Sect. 2, for H to be closed
under the ∗ operation, we need to show that ∀a, b ∈ H, we get that a ∗ b−1 ∈ H.
Table 3 shows that ∀a, b ∈ H, we get that a ∗ b ∈ H. Table 3 also shows that
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Table 3. The Cayley table shows that the defined H subgroup is closed because all
compositions of symmetries belong to the subgroup.

* e a b c

identity - e e a b c

flip - a a e c b

invert - b b c e a

flip and invert - c c b a e

each element is its own inverse element because ∀b ∈ H, we get b ∗ b = e, which
means that b = b−1. From ∀a, b ∈ H, a ∗ b ∈ H and ∀b ∈ H, b = b−1, we derive
that ∀a, b ∈ H, a ∗ b−1 ∈ H.

Original

Flipped Inverted

Flipped and

Inverted
Flip

Invert

Flip and

Invert

Identity

Fig. 5. No matter what sequence of H symmetries is performed, an image will be in
one of the four states shown.

Figure 5 shows that the defined subgroup H confines the states that an image
can be in after any consecutive combination of symmetries from H, which facil-
itates evaluating all the possible combinations of H transformations that an
adversary can apply before or after the adversarial generation, as shown in Fig. 6.

Training. We impose the H subgroup shown in Fig. 5 on the CNN model by
augmenting the original dataset with inverted images and using the default data
augmentation, which includes horizontal flips.

Evaluation. The defense evaluates both original and adversarial images in the
same way. To classify an image, the proposed defense applies all four H subgroup
symmetries to the image and classifies all four images with the same model used
by the attack to generate attacks. The defense assigns a class to the image if
the classification labels of two of the four symmetric images agree. Experimental
results are shown in Table 4. The defense achieves near-default accuracies for
many attacks, surpassing the current best defense, robust PGD AT defense [18]
against PGD attacks. The defense also exceeds the default accuracy.
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Fig. 6. The symmetry subgroup defense against adaptive perfect-knowledge adver-
saries considers that symmetries could be applied to images by adaptive adversaries
both before and after adversarial generation. Moreover, even if adversaries applied con-
secutive subgroup symmetries to images, they would not result in any other cases due
to the closure property of the symmetry subgroup.

Table 4. Accuracy evaluation of the proposed symmetry defense against an adaptive
perfect-knowledge adversary.

No Proposed defense
Norm Attack defense Adversarial images generated from

Original Flipped Inverted Flip. & Inv.
images images images images

ε = 0.0 77.26% 78.30% 78.30% 78.30% 78.30%

L2

PGD - ε = 0.5 34.27% 75.65% 75.80% 75.72% 75.69%
PGD - ε = 1 4.32% 73.16% 73.27% 73.46% 73.35%
PGD - ε = 2 0.19% 70.80% 70.81% 70.80% 70.77%
PGD - ε = 3 0.03% 69.75% 69.82% 69.83% 69.89%
*APGDCE - ε = 3.0 0.0% 70.5% 70.4% 71.0% 70.7%
*APGDDLR - ε = 3.0 38.5% 77.7% 77.7% 78.0% 77.8%
*SquareAttack - ε = 5.0 43.0% 74.3% 74.5% 73.5% 73.1%

L∞

PGD - ε = 4/255 0.00% 70.68% 70.83% 70.77% 70.84%
PGD - ε = 8/255 0.00% 69.08% 69.12% 69.16% 69.21%
PGD - ε = 16/255 0.00% 65.26% 65.16% 65.32% 65.17%
*APGDCE - ε = 4/255 0.0% 66.5% 66.9% 68.1% 66.6%
*APGDDLR - ε = 4/255 0.6% 68.5% 68.1% 68.9% 69.4%
*SquareAttack - ε = 0.05 5.3% 49.0% 47.7% 48.7% 48.1%

*Evaluation based on 1, 000 random images.
The symmetry defense against perfect-knowledge adversaries exceeds the default
accuracy and achieves near-default accuracies for many attacks. The defense also
surpasses the robust PGD AT defense [18] against PGD attacks.
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Adversary Adapts to the Defense. Here, we discuss how a perfect-knowledge
adversary could adapt to the defense before, during, and after the generation of
adversarial images.

1) During the adversarial perturbation generation. An adaptive
adversarial attack must use symmetry in its adaptation because the symme-
try defense makes no other changes. Both the gradient-based attacks and the
random-search SquareAttack use loss functions that depend on CNN output
values. Adaptive attacks using symmetry to counter the defense would need to
update their optimization with loss functions that use CNN output values for
symmetric images. However, these CNN output values are affected by CNNs’
inability to handle symmetry correctly. Wrong function outputs for symmetric
images will affect the loss function, making the optimizations of attacks non-
optimal. We implement an adaptive PGD attack where the adversary attacks all
four symmetries of the image by maximizing the sum of their losses, aiming to
cause the misclassification of all symmetries of the image. We experiment with
an L∞ norm of 16/255, the strongest PGD attack in [18]. The defense obtains
an accuracy of 75.55% against the adaptive attack, exceeding the 65.16% to
65.32% accuracies in Table 4 obtained against the default PGD attack for the
same norm and perturbation. Therefore, the adaptive attack against the
proposed defense fails. The adaptive adversary cannot make any other adap-
tations based on non-symmetry changes because the preprocessing, parameters,
and model architecture do not change from [18].

2) Before the adversarial generation. An adversary can apply a sub-
group H symmetry to the original image before the adversarial generation.
Figure 5 shows that even if the adversary applies any sequence of subgroup H
symmetries, the adversary can only construct an adversarial image starting from
either an original, a flipped, an inverted, or a flipped and inverted image. We
evaluate all four cases in Table 4.

3) After the adversarial generation. The adversary can apply any
sequence of subgroup H symmetries to the adversarial image after generating it.
However, this would be irrelevant because the defense applies all four symme-
tries and would obtain the same images regardless of any sequence of subgroup
symmetries that the adversary applies, based on Fig. 5.

5.3 Discussion of the Proposed Defense

Why Adaptive Attacks Fail. We explain the failure of adaptive attacks from
two different viewpoints:

– Custom-loss adaptive attacks fail because their optimization is also affected by
CNN inability to handle symmetry well. Such attacks need to use symmetry
because the symmetry defense makes no other changes. As a result, these
attacks would need to update their loss functions to use CNN output values
evaluated at symmetric images. However, CNN outputs for symmetric images
can be different and incorrect due to CNN lack of invariance with respect to
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symmetries. This leads to loss function values that steer attack optimization
to non-optimal adversarial images.

– Adaptive attacks also fail because they are constrained in their optimizations
by the perturbation value that attacks such as PGD, APGD, and SquareAt-
tack take as input. These attacks search not in the entire space but for adver-
sarial images with a given perturbation value. If the given perturbation value
limits the attack search to where classifier boundaries are non-equivariant in
symmetric settings, the attack will not be able to find an adversarial sample.

Computational Resources. The proposed method has negligible computa-
tional overhead for the flip symmetry defense and roughly doubles the compu-
tational resources for the invert symmetry defense and the symmetry subgroup
defense. Detailed computational analysis is in Appendix 3.

Not a Detection Defense. The proposed defense is not a detection defense
because it classifies original and adversarial images in the same way, as shown
in Fig. 3, Fig. 4, and Fig. 6.

Not a Gradient Obfuscation Defense. The defense does not rely on obfusca-
tion because it keeps the exact preprocessing, parameters, and model as in [18].

6 Conclusions

The proposed symmetry defense succeeds with near-default accuracies against
different types of attacks that range from being unaware of the defense to being
aware of it. Importantly, the symmetry defense also defeats attacks that are
aware of the defense and adapt to it. Without using any attack knowledge,
the defense exceeds the classification accuracies of the current best defense,
which uses attack knowledge. The defense’s non-reliance on attack knowledge
or adversarial images makes the defense applicable to realistic attack scenarios
where the attack is unknown in advance. The defense’s preservation of classifier
preprocessing, parameters, architecture, and training facilitates the deployment
of the defense to existing classifiers. The defense maintains the non-adversarial
classification accuracy and even exceeds it against attacks aware of the defense.

Acknowledgments. The author would like to thank Prof. Antti Ylä-Jääski, Prof.
Tuomas Aura and Dr. Richard E. Howard for their support, feedback and discussions.

Appendix 1: Definitions Related to Symmetry Groups

According to [17], a group is an ordered pair (G, ∗) where G is a set and ∗ is a
binary operation on G that satisfies these axioms:

– Associativity. ∗ is associative: ∀a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).
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– Identity. There exists an identity element e ∈ G, such that a ∗ e = e ∗ a = a,
for ∀a ∈ G.

– Inverse. Every element in G has an inverse: ∀a ∈ G, there exists a−1 ∈ G
such that a ∗ a−1 = a−1 ∗ a = e.

Binary Operation. According to [17], a binary operation ∗ on a set G is a
function ∗: G × G �→ G. Instead of writing the binary operation ∗ on a, b ∈ G as
a function ∗(a, b), we can write it as a ∗ b.

Closure. Suppose that ∗ is a binary operation on the set G and H is a subset
of G. If ∗ is a binary operation on H, that is, ∀a, b ∈ H, a ∗ b ∈ H, then H is
said to be closed under the ∗ binary operation [17].

Group. According to [17], a group is an ordered pair (G, ∗) where G is a set and
∗ is a binary operation on G that satisfies the associativity, identity and inverse
axioms.

Subgroup. According to [17], a subset H of G is a subgroup of G if H is
nonempty and H is closed under products and inverses (that is, x, y ∈ H implies
that x−1 ∈ H and x ∗ y ∈ H). A subgroup H of group G is written as H ≤ G.
Informally, the subgroup of a group G is a subset of G, which is itself a group
with respect to the binary operation defined in G.

The Subgroup Criterion. A subset H of a group G is a subgroup if and only
if H �= ∅ and ∀x, y ∈ H, x ∗ y−1 ∈ H [17].

The Finite Subgroup Criterion. A finite subset H is a subgroup if H is
nonempty and closed under ∗ [17].

Appendix 2: The Minimization of Targeted Adversarial
Perturbation Attacks

The minimization for adversarial perturbation attacks targeted at a specific
adversarial label was first formulated by Szegedy et al. [46]:

minimize c · ‖δ‖ + Lf (x + δ, l) (1)

such that x + δ ∈ [0, 1]d,

where f is the classifier function, Lf is the classifier function loss, and l is an
adversarial label, c is a constant, ‖δ‖ is the Lp norm of perturbation.

Appendix 3: Computational Resources

Here, we analyse the additional computational complexity of the proposed
defense and the adversary.
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Defense

Against a Zero-Knowledge Adversary. The flip symmetry defense uses the
same computational complexity as a default classifier in training because it only
trains one model with original images. The invert symmetry defense doubles the
computational complexity of a default classifier in training because it trains two
models with original and inverted images, respectively. In testing, there is O(1)
overhead per sample due to flipping or inverting the sample.

Against a Perfect-Knowledge Adversary. The symmetry subgroup defense
doubles the computational complexity of a default classifier in training because
it trains one model with both original and inverted images. In testing, there is
O(1) overhead per sample due to flipping, inverting, or flipping and inverting
the sample.

Adversary

Zero-Knowledge Adversary. The zero-knowledge adversary is unaware of the
defense and consumes the same resources as in the default case.

Perfect-Knowledge Adversary. The perfect-knowledge adversary can sym-
metrically transform the sample before and after generating the adversarial sam-
ple, using O(1) additional computing resources per sample.
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Abstract. Current solutions for automated vulnerability discovery
increase coverage but typically do not interact with the web applica-
tion. Thus, vulnerabilities in code for handling user interactions often
remain undiscovered. This paper evaluates interactive strategies that
simulate user interaction to increase client-side JavaScript code cover-
age. We exemplarily analyze 5 widely deployed, real-world web appli-
cations and find that simple random walks can double the number of
covered branches compared to merely waiting for the page to be loaded
(“load-and-wait”). Additionally, we propose novel approaches relying on
state-independent models and demonstrate that these outperform the
non-interactive baseline by 2.4× in terms of covered branches and 3.1×
in terms of discovered data flows. Our interactive strategies have revealed
a client-side data flow in SuiteCRM that is exploitable as a stored XSS
and SSRF attack but cannot be found without user interaction.

Keywords: web security · crawling · tainting · client-side
vulnerabilities

1 Introduction

Historically, web applications served static HTML pages [43], and tools for dis-
covering vulnerabilities were focused on server-side code, e.g., reflected cross-site
scripting (XSS) [19] and cross-site request forgery (CSRF) [18]. In recent years
many complex web applications are now implemented with rich client-side com-
ponents, utilizing browser APIs to dynamically modify the underlying “docu-
ment object model” (DOM) [11] of the web page. As a result, new classes of
vulnerabilities have emerged [43], including client-side XSS [20] and client-side
CSRF [8]. Such vulnerabilities manifest themselves as insecure client-side data
flows from attacker-controlled sources to security-sensitive sinks. As a simple
example, Fig. 1 shows a website that parses a (potentially attacker-controlled)
URL fragment and uses it to set the innerHTML property of a DOM element.

Due to JavaScript’s highly dynamic and event-driven nature, statically ana-
lyzing it is challenging [32,36], and dynamic analysis such as taint-tracking
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Example of interactive client-side XSS.

is preferable [3,22,25,31,40]. Recent advances in detecting client-side XSS are
driven by techniques to more effectively track tainted inputs [22,31,40,41] or
by automatically generating exploits [3,25]. However, these approaches often
neglect interactive exploration of the target website, in stark conflict with the
design principles of modern web applications.

The majority of client-side JavaScript code is responsible for handling events,
e.g., for user interaction [34]. Since taint tracking can only discover data flows
for executed code, large parts of the code may actually remain unexplored.
The example in Fig. 1, for instance, shows such a vulnerability that becomes
active only after the user clicks a button. It thus stands to reason that cur-
rent approaches can only discover a subset of the client-side XSS vulnerabilities
present in modern web applications.

In this work we explore various analysis strategies that simulate user inter-
action, aiming to maximize the client-side JavaScript code coverage and there-
fore increase the likelihood of client-side vulnerability discovery. We find that
a simple strategy such as random walks in the web application’s state space
doubles the number of covered branches compared to merely waiting for the
page to be loaded (load-and-wait). More evolved techniques that consider a
state-independent model of the application even cover 140% more branches and
discover 210% more taint flows than non-interactive approaches. Established
related work [27] also improves on load-and-wait but falls behind random explo-
ration. In summary, we make the following contributions:

– Analysis Infrastructure. We present an infrastructure for interactively
analyzing web applications, transparently collecting client-side branch cov-
erage information and dynamic taint flows (Sect. 3).

– Interactive Strategies. We define four interactive exploration strategies
with the goal of maximizing client-side code coverage and improving vulner-
ability discovery (Sect. 4).

– Comparative Evaluation. We compare the proposed interactive strate-
gies with non-interactive load-and-wait and established related work, Crawl-
jax [27], finding that even the simplest strategies can significantly improve
coverage. Additionally, we identify a previously unknown stored XSS and
SSRF vulnerability in SuiteCRM 7.12.8 (Sect. 5).
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2 Related Work

In this section, we review related work on (1) the discovery of client-side vul-
nerabilities (XSS and CSRF), and (2) on analyzing interactive web applications.
For both, we highlight current limitations that our work attempts to eliminate.

2.1 Detection of Client-Side Vulnerabilities

A long line of research has used instrumented browsers to perform taint track-
ing for vulnerability discovery [e.g., 3,22,25,44]. For instance, by modifying the
Chromium browser’s JavaScript engine, Lekies et al. [22] show that 10% of the
web pages in the Alexa Top 5,000 have at least one client-side XSS. Stock et
al. [44] build upon this result and present a framework for detecting and pre-
venting DOM-based XSS. Similarly, Bensalim et al. [3] obtain taint information
using a fork of the Firefox browser that supports taint tracking in its JavaScript
and rendering engine [39]. Melicher et al. [25] use an instrumented Chromium
browser to show that 83% of client-side XSS originate from advertising and ana-
lytics domains. The same browser has been combined with a machine learning
pre-filter for more efficient XSS detection [26], and also extended to detect other
vulnerability classes such as prototype pollution [15]. Alternatively, FLAX [40]
performs taint analysis on browser-generated execution traces in a simplified
intermediate language called JASIL. Additionally, it relies on a sink-aware black-
box fuzzer to validate its findings. To enable taint tracking without the high-
maintenance cost of modifying a web browser, Parameshwaran et al. [31] instead
opt for source-to-source rewriting of a web application’s JavaScript code.

Khodayari and Pellegrino [16], in turn, focus on client-side CSRF [8]. Using a
combination of static and dynamic analysis, they build a hybrid property graph
that can be queried for insecure data flows. JAW contains a crawler that loads
the target page and iteratively visits extracted URLs to collect runtime traces
for HPG construction, but does not simulate user interaction with the target
page. Similar techniques are deployed to detect other client-side vulnerabilities
such as DOM clobbering [17].

Limitations. Most of the proposed methods for client-side XSS detection [3,22,
25,45] load the target page without any interaction and apply a fixed timeout
during which taint flows are tracked. We refer to this non-interactive analysis
strategy as load-and-wait. The FLAX tool [40] instead assumes an external test
harness to be in place. Only DexterJS [31] includes elementary support for filling
forms and triggering events. However, details on the exact operation are scarce
as the authors focus on novel taint-tracking mechanisms. Since all studies that
perform a large-scale analysis of client-side XSS in the wild [3,22,25,45] rely on
load-and-wait they most likely underestimate the prevalence of client-side XSS.

2.2 Analyzing Interactive Web Applications

While previous work [2,6,24] has targeted increasing server-side code coverage,
we focus on client-side JavaScript, which is heavily used by modern single-page



166 N. Weidmann et al.

applications. The research community has developed various analysis strate-
gies that are suited to interactive web applications. Crawljax [27], for instance,
has been extensively used in the past for regression [37], accessibility [9], and
browser compatibility [28] testing. It uses the Selenium [46] browser automation
framework to interact with the target page and extracts clickable elements to
dispatch click events on them. jÄk [33], on the other hand, detects registered
event listeners and dispatches synthetic events that should simulate user inter-
action. While this includes interaction beyond mere click events, the method
might perform actions that are not possible for a real user. For instance, dis-
patching a click event on an element that is visually hidden. Both Crawljax and
jÄk infer a state machine representing the analyzed application, where states
represent DOM configurations and transitions correspond to actions performed
by the analyzer. Different to Crawljax and jÄk, Black Widow [7] does not model
DOM configurations explicitly, but infers a graph-based navigation model of the
target application. It performs a breadth-first search on the navigation model to
discover inter-page data dependencies that can be tested for injection vulnera-
bilities.

Limitations. Existing research mainly focuses on discovering as many distinct
DOM states as possible. These approaches thus typically explore multiple sub-
pages of the target web application. However, for discovering client-side vulner-
abilities in JavaScript code, we need to increase client-side code coverage for
individual sub-pages. Each sub-page can be considered a separate program (a
navigation causes a new browsing context to be created). The Artemis frame-
work [1] poses an exception: It uses various feedback-guided exploration strate-
gies to maximize client-side code coverage. However, it requires control over the
application’s backend to reset it to a known state for each action the analyzer
performs, hindering its general applicability.

3 Analysis Infrastructure

Figure 2 depicts an overview of our infrastructure for analyzing web applica-
tions. We load the URL of the target application in a remote-controlled browser
and perform actions on the target according to a specific exploration strategy.
The strategy uses information provided by the browser’s instrumentation layer,
including the page’s DOM, the achieved code coverage, and observed taint flows.
In the remainder of the section, we detail (1) the browser instrumentation and
(2) the interactive analysis individually. We provide a description of the strate-
gies themselves in Sect. 4.

3.1 Browser Instrumentation

Analysis based on standalone browser engines [33] or a JavaScript-based imple-
mentation of a browser environment [1] may cause side-effects [5]. We therefore
build our infrastructure on the Foxhound browser [39], which extends Firefox
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Fig. 2. Analysis infrastructure. Double line boxes denote novel contributions.

with taint-tracking capabilities. Similar to related work [7,27], we use the Sele-
nium framework [46] to automate browser navigation and perform realistic user
interaction. In the following, we elaborate on reliably gathering code coverage
information and modifications to the browsing context.

Gathering Code Coverage Information. Measuring client-side JavaScript
code coverage is essential to provide feedback for guiding our exploration strate-
gies. Due to the lack of native support for determining code coverage in Firefox,
we resort to source-to-source rewriting [12]. We create instrumented versions of a
web application’s HTML (necessary for inline scripts) and JavaScript resources
by inserting monitoring statements at each control flow branch. For instrument-
ing loaded JavaScript code on-the-fly, we use the blocking webRequest API to
intercept all script and document (HTML) requests as a “man-in-the-middle”
between the browser tab and the web application’s backend server.

Modifications to the Browsing Context. We also instrument the browser
context in order to collect information about available actions and to block
unwanted page navigations as follows. Information on registered event handlers
(e.g., the click event) is crucial for determining which elements of a page to
interact with. We follow the approach described by Pellegrino et al. [33] for
hooking calls to the addEventListener function of the Element, Document and
Window prototypes. When the hooked function registers a handler for event type e
on object o, the hook increments a counter in a custom property of o to keep
track of the listener registration for type e. In contrast to previous works [7,
27,33], the goal of our analyzer is to maximize the client-side code coverage
for a single page. We therefore implement navigation blocking as part of our
browser instrumentation by cancelling all document requests originating from
the currently loaded top frame.

3.2 Interactive Analysis

All strategy-independent components of the analysis, namely extracting interest-
ing elements from the DOM, identifying possible action candidates, or building
and performing concrete actions are described in the following.

Extracting Interesting Elements. Similar to prior work [27,48], we extract
interesting elements by their type (namely: form, input, textarea, select, and
anchor) using XPath expressions on the DOM tree. Since we cannot assume that
every element has an ID attribute, we recurse up the tree until we find an element
with an ID, following the method used by the jÄk crawler [33]. For each extracted
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element, we determine whether it might be pointer-interactable by scrolling the
element in question into view and applying the pointer-interactability algorithm
defined in the W3C WebDriver standard [42, Sec. 12.1]. Finally, we verify that the
analyzer can indeed interact with an element by checking whether the element is
a keyboard-focusable area as defined by the HTML specification [47, Sec. 6.6.2].

Identifying Action Candidates. Based on the elements extracted from the
DOM, the analyzer constructs action candidates by filtering out uninteresting
elements. Action candidates represent abstract actions, and separate the chal-
lenge of finding potential interaction points from the task of generating suitable
input values for actions requiring keyboard input. For extracted anchors, but-
tons, and inputs of type checkbox or radio the analyzer emits an action candidate
if they are considered pointer-interactable. For anchor elements, the analyzer
additionally checks whether the anchor has a click listener attached or points
to a fragment on the same page. For elements that allow the user to enter data
via the keyboard, the analyzer emits corresponding action candidates if they are
keyboard-focusable.

Building Actions from Action Candidates. The analyzer builds actions
from action candidates by choosing concrete values for candidates that require
keyboard input. Our interactive analysis supports choosing inputs for <textarea>
and <select> elements, as well as for <input> elements with one of the types text,
email, url, date, time, and number. The input type color is not supported, while
the types datetime-local, month, tel, password, search, and week fall back to text

in the taint-aware browser [39]. For each of the supported input types, we can
build random valid and invalid input values according to the client-side HTML-
form validation attributes of the different elements. This includes the pattern,
minlength, maxlength, min, max, and step attributes.

Running Actions on the Target Page. Because of JavaScript’s asynchronous
and event-driven execution model, the analyzer cannot determine whether an
action is completed or whether the action has triggered asynchronous events that
have yet to be processed. In line with related work [27,33], we hence make the
analyzer wait for a fixed duration (0.5 s by default) after each action performed.

4 Exploration Strategies

In this section we define four distinct exploration strategies whose goal is to
decide which actions the analyzer should take in order to maximize client-side
code coverage. As motivated in the introduction, the aim is to increase the
number of stimulated taint flows and aid vulnerability discovery.

4.1 Exploration with Random Walks

As a first step towards the development of more advanced interactive explo-
ration strategies, we consider the random-walk strategy, similar to related work
on GUI testing [10], that selects the next action randomly and independently
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of previously executed actions. This strategy does not use any feedback on the
JavaScript code coverage or on observed taint flows nor does it depend on a
model of the target application.

An analysis with random-walk is split into multiple episodes, each beginning
by loading the target application. The strategy then enters a loop in which it
interacts with the application by first extracting potentially interesting elements
from the DOM and then analyzing them for available action candidates. The
strategy samples a random action candidate, builds a concrete action from it, and
executes the action on the application. An episode ends if the strategy cannot
find any action candidates, a maximum number of actions has been executed
during the episode, or the time budget for the analysis has been exhausted. We
also introduce invalid HTML form values with a probability pinvalid := 0.2 in
order to trigger multiple client-side code paths.

4.2 Random Walks with Model-Free Heuristics

In this section we introduce the random-walk+heuristics strategy, where the
random-walk strategy is enhanced to increase the probability of executing previ-
ously unexplored code.

Heuristic Candidate Sampling. Given a set of action candidates, we sample
each candidate c with a weight wc, defined as:

wc := wunexplored
c · werrored

c · wpageload
c · wcoverage

c ,

where

wunexplored
c :=

{
wunexplored, if c has not been executed before
1, otherwise

wcoverage
c :=

⎧⎨
⎩

wcoverage, if the last execution of c resulted in new
coverage

1, otherwise

werrored
c :=

{
werrored, if executing c caused an error
1, otherwise

wpageload
c :=

{
wpageload, if executing c caused a page load
1, otherwise

The parameters wunexplored, werrored, wpageload, and wcoverage are configurable
constants. Based on preliminary experiments described in Appendix A, we set
wunexplored := 15 and wcoverage := 2 to favor candidates that have not been
executed before or achieved new coverage during the last execution, while
werrored = wpageload := 0.1 to decrease the likelihood of executing candidates
that led to an error or page load in the past.
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Heuristic Detection of Dead Ends. If no new coverage has been observed
during the last sstuck actions and the number of distinct candidates in this win-
dow is below a configured threshold tstuck, the strategy assumes the analyzer is
stuck and ends the current episode (i.e., reloads the target application). For our
experiments, we set sstuck := 5 and tstruck := 2.

4.3 Model-Guided Random Walks

In this section we augment the random-walk+heuristics strategy with a model
of the target application in order to guide the analyzer towards unexplored
action candidates. To this end we define the state-independent model and state

machine model strategies as follows.

State-Independent Model. The state-independent model is motivated by the
assumption that many candidates are available in multiple states, and that their
behavior with respect to code coverage is independent of the state in which
they are executed. Intuitively, the model encodes relationships between action
candidates of the form “if you do A, then you can do B”, for example, “if you
click the button that opens a menu, then you can enter text in the menu”. This
is assumed to be independent of the state in which the button for opening the
menu is clicked. More formally, the state-independent model of a web application
is defined as the tuple (Σ,λ), where Σ is the set of all action candidates observed
during the analysis and for each executed candidate c ∈ Σ and each successor
candidate c′ ∈ Σ, the partial candidate probability function λ : Σ × Σ → [0, 1]
gives the probability λ(c, c′) that candidate c′ is available after executing candi-
date c.

An example is shown in Fig. 3, where Σ consists of the action candidates
c1, . . . , c9. The candidate probability function λ is illustrated by an edge from
the executed candidate ci to the set of candidates c′ for which λ(ci, c

′) > 0.

Fig. 3. Example of a state-independent model.

Using the Model. The purpose of the state-independent model is to guide the
analyzer towards candidates which not been have previously executed, even if
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they are not available in the current state. Referring to the previous example, this
means assigning more weight to the action candidate that opens the menu if the
menu contains action candidates that have not been explored before. In practice,
the model is used to increase the weights of available candidates that have been
executed before and have a large ratio of unexecuted successor candidates.

To formally define the assigned weight for an available candidate c, let sc be
the set of the successor candidates for c:

sc := {c′ | c′ ∈ Σ ∧ λ(c, c′) > 0}

We then define the ratio rc ∈ [0, 1] of non-executed successor candidates of c as
follows:

rc :=

⎧⎪⎨
⎪⎩

∑
c′∈sc ∧ c′ not executed λ(c, c′)

|sc| , |sc| > 0

0, otherwise

To calculate the weight wc assigned to candidate c, we multiply rc with a constant
weight parameter wmodel and use it as an additional factor to the weight assigned
by random-walk+heuristics:

wc := wrandom-walk+heuristics
c · (1 + rc · wmodel) (1)

This allows balancing the weight assigned to previously executed candidates
based on their unexplored successors with the weight assigned to unexplored
candidates. For our evaluation, we set wmodel := 25.

State Machine Model. The state-independent model assumes that the behav-
ior of an action candidate does not depend on the state in which it is executed.
In contrast, we define the state machine model as a non-deterministic finite state
machine (Σ,S, s0, δ, B, ω, λ), where the input alphabet Σ is the set of all action
candidates observed during the analysis; S is a set of visible DOM states; s0 is
the initial state before loading the target application; δ : S × Σ → P(S) is the
partial non-deterministic state transition function, such that δ(s, c)(s′) is the
probability that the target application will be in state s′ when executing action
candidate c in state s; B is the set of all known code branches of the target; the
partial transition output function ω : S × Σ × S → B∗ assigns each transition
(s, c, s′) with δ(s, c)(s′) > 0 a set of branches covered when the transition occurs;
the state output function λ : S × Σ → [0, 1] maps each state s ∈ S and action
candidate c ∈ Σ to the probability λ(s, c) that c is available in s.

Intuitively, the states of the state machine represent different DOM states,
while a transition encodes the change in the state caused by executing actions
built from a given action candidate. Additionally, each transition is associated
with a set of branches covered when executing the candidate belonging to the
transition.

Figure 4 shows a simple state machine model, where transitions are labeled
with the action candidate ck that causes the transition, the probability
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Fig. 4. A state machine model for a web application with 4 distinct DOM states.

δ(si, ck)(sj) that executing candidate ck in state si results in state sj , and the
set of branches covered during the transition.

Identifying States. We define a state similarity measure Δ using Gestalt pattern
matching [35] on the sequence of HTML tag names of elements extracted from
the page’s DOM. Two states s, s′ are considered the same if their similarity
Δ(s, s′) is greater than a configured threshold Δmin. This method of calculating
state similarity is inspired by the method used by Zheng et al. [48], with the dif-
ference that we restrict the extracted token sequences to visible elements and do
not consider the current URL in the similarity measure. For the evaluation of our
strategies, we set Δmin := 0.9 based on preliminary experiments (cf. Appendix
B).

Using the Model. To guide the analyzer towards unexplored action candidates
with the state machine model strategy, we first define a function that assigns
each state s a score based on the number and likelihood of unexplored action
candidates the analyzer can reach from state s. This includes candidates in s
itself, but also in states reachable from s. We compute the score σ(s) by applying
a breadth-first search starting at state s. For each state s′ visited during the
search at depth d, we increment the score σ(s) by

γd ·
∑

c∈Σs′
unexpl

λ(s′, c).

Here, γ is a constant, configurable discount factor and Σs′
unexpl ⊂ Σ is the set

of unexplored action candidates in state s′. For a state s′ and each candidate c
that has been executed in s′ before, the search proceeds to the successor state
arg maxs′′δ(s′, c, s′′) for which the model predicts the highest probability when
executing c in s′. The search terminates at a pre-configured maximum depth.

To incorporate the state scores into the analysis’ decision when the appli-
cation is in state s, we assign each available action candidate c executed
before, a weight based on the score σ(sc) for the most likely successor state
sc := arg maxs′δ(s, c, s′). The strategy then samples a candidate to execute
according to the weights.
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To find a trade-off between choosing an unexplored candidate from the cur-
rently available candidates and choosing a previously executed candidate with
a high score, we allocate a large portion runexpl ∈ [0, 1] of the total weight to
the available unexplored candidates Cs

unexpl. The remaining weight is distributed
across the available previously executed candidates Cs

expl according to the scoring
function. Each available candidate c is assigned the weight wc as follows:

wc :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

runexpl
|Cs

unexpl|
, c ∈ Cs

unexpl

(
1 −

∑
c′∈Cs

unexpl

wc′
)

· 1 + σ(sc)∑
c′∈Cs

expl
(1 + σ(sc′))

, c ∈ Cs
expl

(2)

5 Evaluation

In this section, we evaluate the interactive exploration strategies presented above
using five open-source, real-world web applications listed in Table 1, selected to
offer rich user-interaction with varying degrees of client-side JavaScript usage.
For each application, we provide application-specific login scripts where neces-
sary, and fix the screen resolution of the virtual frame buffer for running the
instrumented browser to 1920×1080 px. For each interactive strategy and appli-
cation, we perform up to ten at most 30 min long analyses, excluding results
which terminate early due to the application entering an error state. Strategy
performance is evaluated using code-coverage and number of taint flows as met-
rics, with each metric scaled in relation to the non-interactive load-and-wait

strategy used by previous works [3,22,25,45].

Table 1. List of web applications considered in our evaluation.

Application Version Description Branches

code-server [4] 4.3.0 in-browser IDE 114,629

diagrams.net [13] 20.2.1 diagramming application 90,654

SuiteCRM [38] 7.12.5 CRM platform 73,520

Odoo [29] 15.0 CRM platform 62,354

ownCloud [30] 10.10.0 file sharing application 34,071

5.1 Code Coverage

The mean percentage increase over load-and-wait in terms of distinct covered
branches across all target applications for each strategy is shown in Fig. 5, with
a detailed comparison shown in Table 2. All interactive exploration strategies
achieve an increase in the number of covered branches on all target applications
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Table 2. Mean distinct covered branches (br) and discovered taint flows (t). The
maxima per target application are marked in bold.

code-server diagrams.net SuiteCRM Odoo ownCloud

Strategy br t br t br t br t br t

load-and-wait 14,736 0.0 6,508 2.0 3,706 8.0 6,551 8.0 4,221 3.0

random-walk 36,028 2.1 13,743 9.0 7,820 14.3 18,575 17.3 6,531 7.6

random-walk+heur. 38,399 2.1 14,040 8.8 9,017 15.4 18,998 17.6 6,600 9.0

state-independent 38,262 2.3 13,864 9.0 9,700 18.7 18,767 17.2 7,593 10.2

state machine 35,912 1.9 13,770 9.0 8,520 14.6 18,420 17.2 7,036 9.3

Fig. 5. Increase of covered branches and taint flows over load-and-wait.

compared to the non-interactive load-and-wait baseline, ranging from 54.7% for
the random-walk strategy on ownCloud to 190.0% for random-walk+heuristics on
Odoo. Figure 6 shows the ratio of distinct actions taken for each strategy and
application, and can be interpreted as a measure of strategy efficiency.

Even the simple random-walk strategy allows a deep exploration of the target
application with 121% more covered branches on average across all applications
compared to load-and-wait. However, on some target applications, e.g., code-
server, the strategy tends to get stuck in “dead ends” (i.e., a state where none of
the available action candidates cause a change of the state) which it has no way of
leaving until the end of the episode. Additionally, the random-walk strategy has
no mechanism to prioritize action candidates it has not executed before, causing
a low ratio of distinct executed action candidates and a decreased efficiency.

Extending the random-walk strategy with heuristics (random-walk+heuristics)
increases the number of covered branches by an additional 5.5% on average. As
can be seen in Fig. 6, the increased weight for previously unexecuted candidates
leads to an increase in the ratio of distinct executed actions, which reflects the
increased efficiency of the strategy.

Model-based approaches also help the analyzer find previously unexplored
action candidates, especially during later stages of the analyses when unexplored
candidates become more sparse: adding the state-independent model to the
random-walk+heuristics strategy yields an additional increase of 4.0% on average
compared to random-walk+heuristics. However, the state machine model strat-
egy performs worse than the model-free random-walk+heuristics strategy. This
may be founded in the different notion of action-candidate distinctness when
using the state machine model: action candidate distinctness is determined per
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state when assigning weight based on the state machine model (cf. Eq. (2)). This
leads to a lower ratio of globally distinct executed actions, as shown in Fig. 6.
A global notion of candidate distinctness—as used with the state-independent

model strategy—is thus preferable for maximizing code coverage.

Fig. 6. Distinct actions vs total executed actions.

Detailed Example: SuiteCRM. Figure 7 shows the number of distinct cov-
ered branches over the number of actions executed by each strategy for Suite-
CRM, showing the mean coverage. Shaded colors show the range between the
pointwise minimum and maximum.

During the entire duration, the advanced strategies outperform the unguided
random-walk strategy. Up until 1,200 actions, random-walk+heuristics achieves
the most coverage on average. However, the model-based strategies catch up:
Beyond 1,200 actions, the state-independent model outperforms all other strate-
gies. This result illustrates the models’ ability to assist the analyzer in locating
previously unexplored candidates—in particular during later stages of the analy-
sis where the ratio of unexplored candidates decreases. The large spread between
minimum and maximum coverage on SuiteCRM is caused by individual actions
that result in a large number of newly covered branches. These high-value actions
lead to a sharp increase in coverage when they are executed.

Comparison to Crawljax. We compare our strategies to the established
Crawljax [27] crawler by performing 14 crawls on the code-server [4] applica-
tion. Each analysis is once again limited to 30 min, with no constraints on the
number of states or depth, ensuring comparability with previous experiments.
To discern states, we use the Levenshtein distance [23] with a threshold factor
of 0.9. Additionally, we enable random form inputs, randomized action ordering,
and repeated execution of actions in different states.

Overall, we find that Crawljax covers on average 31,656 branches in the
code-server application. Referring the Table 2, while this is 2.4 times more
than the non-interactive load-and-wait strategy, it falls behind the simple,
unguided random-walk strategy by 13.8%. For our best strategy on code-server,
random-walk+heuristics, the mean coverage is 21.3% higher than that of Crawl-
jax. We attribute the superior performance of our interactive strategies to fun-
damental differences in the approach. Namely, Crawljax assumes that the target
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Fig. 7. Branches covered in SuiteCRM.

application is mostly deterministic, trying to follow shortest paths in its internal
model of the application to reach states with unexplored actions. This strat-
egy is inefficient if actions cannot reliably be replayed—either because of non-
determinism or inaccuracies in the state-identification mechanism. In contrast,
our strategies take a “best-effort” approach to exploiting models of the applica-
tion, which degrades gracefully if the target is highly non-deterministic. Instead
of using the model to calculate a path of actions to follow, our strategies make
local, ad-hoc decisions based on the set of currently available actions.

5.2 Taint Flows

As a metric for the security relevance of executed code, we measure the number
of distinct taint flows between potentially security-relevant sources and sinks
that occur during analysis with the different exploration strategies. The results
are shown in Table 2 and Fig. 5. All interactive strategies result in an increase in
the number of observed taint flows compared to load-and-wait across all tested
target applications. The improvement ranges from 78.1% for random-walk on
SuiteCRM to 350% for random-walk and both model-based strategies on dia-
grams.net. The strategy based on the state-independent model performs bet-
ter than or as well as all other strategies on all targets except Odoo, where
random-walk+heuristics discovers the most flows. On average, it discovers 210%
more taint flows than load-and-wait. In addition, we observed a strong positive
correlation between the measured code coverage and the number of flows on all
targets, with Pearson correlation coefficients ranging from 0.78 on code-server
to 0.99 on diagrams.net and Odoo.

From Taint Flows to Vulnerabilities. We employ a semi-automated analysis
of taint flows to answer the question of whether our interactive strategies can
assist in the discovery of vulnerabilities. To identify the taint flows that warrant
manual investigation, we apply several filters as follows. We first deduplicate
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the discovered flows according to their sources and sinks (F1). In a second step,
only flows from an attacker-controlled or user-controlled source (the URL, the
window name, the referrer, and values of form inputs) to sinks that are sensitive
to client-side XSS or CSRF (HTML, JavaScript, XMLHttpRequest, and Web-
Socket sinks) are retained (F2). The remaining taint flows are inspected man-
ually by reviewing the relevant code to determine whether they correspond to
an exploitable vulnerability (F3). As the taint flows contain the code location of
sources, sinks and operations, only a moderate manual effort was required here.

We perform the analysis once for all flows found by all interactive strategies,
and once for the flows discovered by load-and-wait. The number of flows after
each filter is as follows:

interactive: 2, 069 F1→ 88 F2→ 18 F3→ 2
load-and-wait: 210 F1→ 21 F2→ 2 F3→ 1

All exploration strategies (including load-and-wait) find a taint flow that
corresponds to a known client-side CSRF vulnerability that has been reported
by Khodayari and Pellegrino [16]. In addition, the interactive strategies also
discover an additional flow that can be exploited in an SSRF and stored XSS
attack, which cannot be found by the load-and-wait strategy. We have confirmed
that the vulnerabilities exist in version 7.12.8 of SuiteCRM (the latest version
at the time of writing) and have disclosed them to the maintainers.

6 Discussion

Our results show that even simple random walks cover more than twice as
many branches and discover more than twice as many taint flows than the non-
interactive load-and-wait strategy. The performance can be improved even more
by using simple heuristics and automatically built models of the target appli-
cation to guide the random walks. Our strategies are able to exercise security-
relevant code that is not covered by load-and-wait, as illustrated by the vulner-
abilities discovered in SuiteCRM.

Increasing the client-side code coverage through interaction is important for
the completeness of dynamic client-side vulnerability analysis, as indicated by
the strong correlation of the covered branches and the number of observed taint
flows between security-relevant sources and sinks. Previous research [21] shows
that accepting cookies by interacting with cookie banners increases the number of
observed security-sensitive data flows by 63%. While these results were restricted
to a specific type of user interaction, our results show that the same observation
can be made for more general interactions with web applications.

One key insight from our study is that the common practice [7,27,33] of build-
ing stateful models of web applications to aid code discovery is extremely chal-
lenging due to hidden server-side states, non-deterministic application behavior,
and model inaccuracies. This means that a model may determine the application
is in a previously visited state, but the available actions may differ, leading to
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inefficient exploration or errors. This hypothesis is confirmed in Table 2, which
shows that the state machine model strategy tends to underperform when com-
pared to the random-walk strategies. This finding is reinforced by our compar-
ison with Crawljax, where even the random-walk strategy performs better. On
the other hand, the state-independent model strategy uses information about
previously executed action candidates to decide which action to take next, inde-
pendently of the current state. This technique outperforms the state machine

model for all applications we tested. Overall, we have shown that guided random
walks that perform on-the-fly decisions on the next action to execute are bet-
ter suited to deal with these challenges that those which attempt to model an
application’s state.

Limitations and Threats to Validity. Our analysis infrastructure shares
some limitations of existing approaches. Similar to Crawljax [27], the types of
supported actions are restricted to mouse clicks and keyboard inputs. Some
approaches [1,7,33] support the simulation of arbitrary events, but fail to ensure
realistic interaction. We consider extending our approach to different types of
events as engineering effort of future work. Additionally, our analyzer is cur-
rently restricted to random text inputs (while honoring HTML form validation
attributes). By generating context-aware inputs the achievable code coverage
could be increased even further. Also, in line with previous works [27,33], we
considered automatically passing the log-in form of the target application to be
an orthogonal line of research [14] and therefore out of scope.

Finally, our comparative evaluation against existing techniques is limited to
Crawljax. Unfortunately, more recent approaches either lack an open source
implementation [31], are no longer executable due to deprecated dependen-
cies [33], or tightly couple the actual analyzer and the vulnerability scanner
functionality [7] making it impossible to separate them.

7 Conclusion

Many existing approaches for discovering and measuring the prevalence of client-
side XSS vulnerabilities use simple load-and-wait strategies for observing web
pages. Our experiments show that loading the target application without any
interaction leaves large parts of the client-side code uncovered. This strategy is
thus insufficient for the automated discovery of client-side vulnerabilities. Our
results highlight that even simple interaction strategies significantly increase the
amount of code executed. Moreover, they discover additional vulnerable taint
flows that would remain undetected without interaction.

By performing (guided) random walks we improve over the load-and-wait

baseline by 140% (2.4×) in terms of covered branches and 210% (3.1×) regard-
ing the number of discovered taint flows. Existing studies on the prevalence
of client-side vulnerabilities relying on load-and-wait likely underestimate the
number of actual vulnerabilities. Future research needs to ensure proper inter-
action with the web application during dynamic analysis to reliably assess a
website’s functionality.



Load-and-Act: Increasing Page Coverage of Web Applications 179

A Heuristic Candidate Weights

In this section we describe how we chose the parameterized weight values for the
random-walk+heuristics strategy (see Sect. 4.2) by performing experiments on
the code-server application. We vary each parameter individually while setting
the remaining parameters to 1.0, effectively disabling all but one heuristic. For
each configuration of the weight parameters we perform 6 runs of 10 min, with
the results shown in Fig. 8. For comparison, the dashed line shows the mean
number of branches covered by the random-walk strategy as a baseline.

Fig. 8. Covered branches for the random-walk+heuristics strategy with different choices
for the heuristics’ weights.

The parameter with the most significant effect on the coverage is wunexplored.
For wunexplored = 15 we see an improvement of the mean number of covered
branches by 9.6% compared to the baseline. For choices below and above 15 the
gain compared to the random-walk strategy with regard to covered branches and
number of unique candidates is smaller. We therefore set wunexplored := 15 for our
experimental evaluation. For the parameter wcoverage, we choose wcoverage := 2
for the evaluation as it provides a small increase (3.9%) compared to the base-
line. For the parameters werrored and wpageload we observe a slight improvement
compared to the baseline for all parameter values. However, the significance of
these observations is limited since the number of actions that resulted in an
error or a page-load is very small: across the 6 baseline runs, only 5.7 actions
resulted in an error on average and only 2 actions led to a pageload in total.
Since actions resulting in an error or a pageload typically do not contribute any
new code coverage, we set werrored = wpageload := 0.1 in our experiments.

B State Similarity Threshold

To choose an appropriate value for Δmin (see Sect. 4.3), we performed 3 runs
on the code-server application (15 min each) for different possible values. If
Σs := {c ∈ Σ | λ(s, c) > 0} is the set of action candidates that are available in
state s, the mean candidate probability λ(s) of state s is defined as follows:

λ(s) :=

∑
c∈Σs

λ(s, c)
|Σs|
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Intuitively, λ(s) is a measure of the model’s certainty about the action candidates
that will be available in state s. If λ(s) is high, the model is good at predicting
the candidates, while a low λ(s) indicates a high uncertainty of the model.

Figure 9 shows the mean candidate probability, the number of visits to each
state and the number of states encountered during the analysis. While the mean
candidate probability increases with Δmin, a larger Δmin leads to fewer visits to
each individual state and a larger mean number of distinct states per analysis.
These results are intuitively expected: the higher Δmin is chosen, the more likely
the model is to create a new state instead of considering a DOM token sequence
to belong to a known state. This leads to a larger number of total states, while
reducing the number of visits per state. Additionally, a higher similarity between
DOM trees in the same state also increases the likelihood that the DOM trees
contain the same action candidates, thus leading to a larger mean candidate
probability. We therefore set Δmin := 0.9 for the evaluation, which yields a good
mean candidate probability of 0.8 and results in 4 visits to each state on average.

Fig. 9. Mean candidate probability λ, visits per state and number of states vs. Δmin.
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Abstract. Browser extensions allow users to customise and improve
their web browsing experience. The Manifest protocol was introduced to
mitigate the risk of accidental vulnerabilities in extensions, introduced
by inexperienced developers. In Manifest V2, the introduction of web-
accessible resources (WARs) limited the exposure of extension files to
web pages, thereby reducing the potential for exploitation by malicious
actors, which was a significant risk in the previous unrestricted access
model. Building on this, Manifest V3 coupled WARs with match pat-
terns, allowing extension developers to precisely define which websites
can interact with their extensions, thereby limiting unintended exposures
and reducing potential privacy risks associated with websites detecting
user-installed extensions. In this paper, we investigate the impact of Man-
ifest V3 on WAR-enabled extension discovery by providing an empirical
study of the Chrome Web Store. We collected and analysed 108,416
extensions and found that Manifest V3 produces a relative reduction in
WAR detectability ranging between 4% and 10%, with popular exten-
sions exhibiting a higher impact. Additionally, our study revealed that
30.78% of extensions already transitioned to Manifest V3. Finally, we
implemented X-Probe, a live demonstrator showcasing WAR-enabled dis-
covery. Our evaluation shows that our demonstrator can detect 22.74%
of Manifest V2 and 18.3% of Manifest V3 extensions. Moreover, within
the 1000 most popular extensions, the detection rates rise to a substan-
tial 58.07% and 47.61%, respectively. In conclusion, our research shows
that developers commonly associate broad match patterns to their WARs
either because of poor security practices, or due to the inherent functional
requirements of their extensions.

Keywords: Browser extension fingerprinting · Web-accessible
resources · Browser extension detection

1 Introduction

With the rapid proliferation of internet-based technologies and applications, web
security has become a primary concern in the modern digital era. The emergence
of browser extensions has played a significant role in enhancing the user expe-
rience by enabling users to customise and augment their browsing activities
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with a vast array of functionalities. However, the development and design of
browser extensions often present a difficult trade-off between usability and secu-
rity, necessitating careful consideration in order to achieve an optimal balance
[2,3,6,29,39].

In particular, as most extensions are developed by non-professional program-
mers, they may exhibit unintentional vulnerabilities, exposing users to network
attackers or malicious websites. To address this issue, Barth et al. [3] introduced
in 2010 a browser architecture which implements the principles of least privilege,
privilege separation, and process isolation. Their solution involves a protocol
called “Manifest”, which requires extension developers to declare in advance a
list of required and optional permissions. In the original Manifest protocol, how-
ever, websites could potentially access all resources within a browser extension.
This posed a significant security risk because malicious websites could exploit
this access to manipulate the extension’s functionality or to exfiltrate sensitive
information. Thus, in 2012, Manifest V2 introduced the concept of web-accessible
resources (WARs), allowing developers to explicitly expose certain files to the
web, thereby providing a more controlled and secure environment from potential
misuse or unintentional vulnerabilities. Furthermore, WARs are accessed from
a URL which embeds the associated extension’s identifier, used by browsers to
validate the integrity of its exposed files.

However, in 2017, Sjösten et al. [42] found that this measure allows the dis-
covery of installed extensions by requesting large quantities of known URLs,
associated to publicly-declared WARs. Consequently, by verifying the existence
of a certain resource, adversarial websites can unequivocally conclude that the
corresponding extension is installed on a visiting browser. Such exposure can
lead to serious privacy infringements. For instance, it can reveal personal infor-
mation about a user, such as the use of specific extensions like password man-
agers, ad-blockers, or accessibility tools. Moreover, this exposure can enhance
fingerprinting, as the combination of detected extensions may significantly boost
the uniqueness of browser fingerprints, favouring stateless identification and
cross-site tracking [12,21,23,32,48]. The uniqueness of these profiles may be fur-
ther exacerbated when extensions are installed from different, interoperable web
stores, such as those of Opera and Edge, as their WARs are reached via different
URLs, thereby expanding the fingerprint complexity. Furthermore, this form of
tracking can occur without knowledge or consent by users, further exacerbating
the privacy concerns associated with browser extensions [16,18].

As a mitigation to WAR-enabled extension discovery, in 2020, Manifest V3
introduced the concept of match patterns, allowing developers to further control
the exposure of their WARs through predefined URL restrictions. Nevertheless,
the efficacy of match patterns in thwarting WAR-enabled extension discovery is
contingent upon their adoption by extension developers. Not only is the adoption
rate of Manifest V3 yet to be reported on, but it is also unclear whether match
patterns have produced a significant impact in curtailing extension discovery.
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1.1 Our Contributions

In order to understand how match patterns are affecting WAR-enabled exten-
sion discovery, in this paper, we conduct an empirical study on the Chrome
Web Store. With this focus, we compare the relative difference in discoverability
between Manifest V2 and V3 extensions. Thus, our contributions are as follows:

1. We provide the first research effort of its kind to evaluate the impact of Man-
ifest V3 on WAR-enabled discovery, by conducting an empirical study of the
Chrome Web Store, and observe that 30% of extensions already transitioned
to Manifest V3. However, most implemented match patterns do not preclude
discovery. Overall, we measure discoverable Manifest V2 and V3 extensions
to be 22.74% and 18.3%.

2. We introduce X-Cavate, a framework to construct a database of WARs, allow-
ing to identify discoverable extensions. X-Cavate produces a database which
can be updated regularly and yields a selection of WARs to be surveyed for
conducting extension discovery.

3. We implement a live demonstrator, called X-Probe. Based on our evalua-
tion, X-Probe can identify 21.34%, 38.16%, 54.9%, and 63% of Chrome Web
Store extensions overall, and within the top 10,000, 1,000, and 100 most pop-
ular extensions, respectively. Additionally, we compare the performance of
X-Probe against existing work on extension detection.

4. We propose additional measures for mitigating WAR-enabled discovery.

The remainder of our paper is structured as follows. Section 2 provides an
overview of the Chrome Extension System. Section 3 describes how WARs can
be exploited to detect installed extensions. Section 4 delineates the methodology
of our study, illustrates the X-Cavate framework, and evaluates the X-Probe
demonstrator. Section 5 showcases the results of our empirical study and pro-
vides a comparison of our results with previous literature. Section 6 discusses the
implications of our results and drafts our conclusions. Section 7 identifies defen-
sive measures to further limit WAR probing. Section 8 identifies the state of the
art relatively to browser fingerprinting and extension detection. Section 9 sum-
marises our contributions, highlights our key takeaways, and identifies potential
avenues for future work.

2 The Chrome Extension System

Extensions are small programs which run in the browser, allowing user to cus-
tomise their browsing experience. By interfacing with browser APIs, extensions
may execute various functions such as manipulating web content, managing
active tabs, accessing browsing history, and more. However, the use of extensions
can introduce novel security risks, often as a consequence of their development
by inexperienced programmers. This lack of expertise can lead to privilege esca-
lation vulnerabilities, exposing users to exploitation by adversarial websites or
network attackers. In 2009, Liverani and Freeman demonstrated such security
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risk in Firefox extensions [28]. Successively, Barth et al. identified that the Firefox
architecture allowed full access to its powerful API [3], making most extensions
over-privileged. Thus, they proposed a novel browser architecture, implementing
the principles of least-privilege, privilege separation, and process isolation. Their
architecture lays the foundation for the Chrome Extension System, and was also
adopted by other popular browsers, including Firefox and Safari.

2.1 Architecture Overview

Fig. 1. A simplified representation of the Chrome Extension System.

The Chrome Extension System, illustrated in Fig. 1, aims to strike a balance
between flexibility and security, ensuring that developers can create powerful
extensions while minimizing the risks associated with accidental exposures. It
mainly consists of two interdependent components implementing privilege sep-
aration and process isolation: the content script and the background script1.
Furthermore, the Manifest protocol is aimed at standardising the development
of extensions and enforcing least-privilege by providing developers with granular
access to the Chrome APIs.

Chrome APIs. The Chrome APIs form the backbone of the Chrome Extension
System, providing a set of JavaScript interfaces for accessing browser function-
alities. APIs are grouped by category, each providing access to distinct capabili-
ties. Namely, the tabs API allows to manipulate browser tabs, while the storage
API provides methods for storing and retrieving data. Furthermore, the runtime
API facilitates communication between extension components, such as the con-
tent script and background script. This granular approach allows extensions to

1 For the sake of simplicity, we omitted various secondary components. Further infor-
mation can be found on Google’s official documentation at https://developer.chrome.
com/docs/extensions/mv3/architecture-overview/.

https://developer.chrome.com/docs/extensions/mv3/architecture-overview/
https://developer.chrome.com/docs/extensions/mv3/architecture-overview/
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carry out tasks while adhering to the principle of least-privilege, with developers
declaring required permissions via the Manifest protocol.

Manifest. Manifests consist in JSON files, conveying metadata about exten-
sions, including their name, version number, description, and required permis-
sions. At the time of writing, Google is spearheading a shift from Manifest V2 to
V3, with browser extensions gradually transitioning to the latest iteration. Such
transition is equally significant and controversial, as it redefines the permissions
and capabilities of background scripts [11].

Background Script. Background scripts, as the name suggests, run in the back-
ground of extensions. They access the Chrome and JavaScript APIs to perform
tasks that do not require user interaction, such as listening for events, sending
HTTP requests to the Web, running timers, storing data, and broadcasting mes-
sages to other components. In Manifest V2, background scripts could be either
persistent or non-persistent. Persistent background scripts remain active for the
whole duration of a browser session. Non-persistent background scripts, instead,
are automatically unloaded when idle. In Manifest V3, “traditional” background
scripts were deprecated in favour of service workers. In contrast, service work-
ers are non-persistent, event-driven, and guarantee unique instance behaviour
across all extension pages, windows, or tabs. However, the transition to fully-
asynchronous service workers has sparked controversy due to its limitations on
synchronous functionalities, namely, in the webRequest API [4,11,13]. Never-
theless, independently of the Manifest version, background scripts detain most
operational capabilities, except for DOM manipulation, which is delegated to
the content script via message passing.

Content Script. Content scripts are closely tied to webpages, with each tab
or window initializing its own content script. While interacting with unsanitised
webpages, content scripts face significant restrictions in accessing Chrome APIs.
To circumvent these limitations, they delegate operations requiring broader
access to the background script. Additionally, content scripts operate within a
specialized, sandboxed environment known as isolated world. The isolated world
is a distinct JavaScript runtime that provides a unique space for interacting
with the DOM, preventing exposures to the host runtime environment. Con-
sequently, their access to extension files is also limited to the Web-Accessible
Resources (WARs) declared in the Manifest.

Web-Accessible Resources. Before Manifest V2 introduced WARs in 2012,
websites could access all files within extensions installed on browsers. This design
was insecure because it allowed for malicious websites to perform fingerprinting
or detect exploitable vulnerabilities in installed extensions [19,20]. Additionally,
it could lead to unintentional exposures of sensitive data by developers. In Man-
ifest V2, the DOM is restrained from accessing extension filesystems. Instead,
developers can optionally specify a list of WARs to be injected into the DOM,
such as scripts, style sheets, or images. Each WAR can be defined as a specific
path or as a wildcard encompassing a group of files. Consequently, WARs will
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Listing 1. WARs declaration in Manifest V2 (left) and V3 (right).

{
...
"manifest_version": 2,
...
"web_accessible_resources": [

"images /*.png",
"extension.css"

],
...

}

{
...
"manifest_version": 3,
...
"web_accessible_resources": [{

"resources": ["images /*.png"],
"matches": [

"https://*. google.com/*"
]

}, {
"resources": ["extension.css"],
"matches": ["<all_urls >"]

}],
...

}

be exposed to webpages at a specialised URL, embedding the extension identi-
fier and the relative file path: chrome-extension://[EXTENSION ID]/[PATH].
The identifier is unique to each extension, and it allows browsers to validate
the integrity of exposed files. Using Manifest V2, declared WARs are exposed
to any arbitrary website. In contrast, as shown in Listing 1, Manifest V3 allows
developers to implement further accessibility restrictions via match patterns.

Match Patterns. Match patterns specify which websites an extension can inter-
act with. They are composed by a combination of URLs and wildcards. For exam-
ple, a pattern such as https://*.google.com/* would match any URL within
the Google domain. Since the inception of the Manifest protocol, match patterns
have been used, namely, to grant host permissions, determining which websites
an extension can access and modify. Additionally, they are also employed to dic-
tate where content scripts should be injected, enhancing both performance and
security. With the advent of Manifest V3, the role of match patterns has been
expanded to compound WARs, allowing developers to restrict the exposure of
WARs to specific websites, as shown in Listing 1. This measure provides devel-
opers with a more granular control over the accessibility of extension resources,
mitigating potential misuse and reducing the risk of unexpected behaviour. How-
ever, extensions needing to inject their WARs in all websites require highly per-
missive match patterns. For instance, these include https://*/*, *://*/* and
<all urls>. Therefore, the effectiveness of match patterns is not only contingent
on their thoughtful implementation by developers, but it can also be constrained
by the functional necessities of extensions.

3 Probing WARs to Detect Extensions

As explained in Sect. 2.1, WARs are defined in the Manifest, and are accessed
within the context of a webpage via extension-specific URLs. Such URLs embed
unique extension identifiers, assigned by the publishing extension store. Conse-
quently, as illustrated in Listing 2, a webpage could fetch a known WAR and
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observe whether the request is fulfilled. If so, the webpage can unequivocally
determine that the corresponding extension is installed on the visiting browser.
Furthermore, by collecting manifests from online stores, an adversarial website
could survey a large dataset of known WARs to detect installed extensions. How-
ever, it is important to note that this technique has its limitations, as not all
extensions employ WARs. Moreover, such exposure could be further mitigated
in Manifest V3, provided developers employ stringent match patterns.

Listing 2. Working example to detect a password management extension.

fetch("chrome -extension :// hdokiejnpimakedhajhdlcegeplioahd/overlay.html")
.then(response => {

if (response.ok) {
console.log("LastPass is installed.");

}
}). catch(error => {

console.log("LastPass is not installed.");
});

4 Methodology

This section reports on the methodology employed in our study, conducted in
March 2023, to evaluate the susceptibility of Chrome Web Store extensions
to WAR-enabled discovery. To determine the popularity of each extension, we
focused sequentially on the number of ratings, number of downloads, and star
rating, all in descending order, to sort extensions from the most popular to the
least popular. We prioritised the number of ratings as a metric due to observed
inconsistencies and potential artificial inflation in download numbers, evidenced
by some extensions having substantial downloads yet zero ratings.

In Sect. 4.1 we delineate the X-Cavate framework, employed to (a) collect
identifiers and popularity metrics; (b) download extensions and extract their
manifests; (c) construct a database of available extensions and associated fea-
tures; and (d) produce a sample of WARs exposed to any arbitrary URL. Succes-
sively, in Sect. 4.2 we introduce our online demonstrator X-Probe, which imple-
ments extension discovery through the collected dataset.

4.1 X-Cavate Framework

For the purpose of this study, we developed a data collection utility following the
X-Cavate framework, shown in Fig. 2. While in this study we focused our efforts
on the Chrome Web Store, X-Cavate is aimed at automating the collection of
extensions from any given online store. We present below the main modules
constituting our proposed framework:
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Fig. 2. Abstract structure of the X-Cavate Framework.

Data Collector. The Data Collector refers to a configuration file containing
a URL to an online store and CSS selectors to the extension identifiers and
associated metrics (e.g. downloads, ratings, and category) to be scraped from the
DOM. After collecting an identifier, it downloads the corresponding extension.
Finally, it provides the downloaded extensions and the scraped details to the
Archive Manager and Data Manager, respectively.

Archive Manager. The Archive Manager handles downloaded extensions,
which consist of crx files – i.e. zip archives with additional headers. After
an extension is downloaded, the Archive Manager stores it into a structured
directory tree, strips the crx headers, and extracts the manifest.json file.
Successively, it redacts a list of exposed files, by matching the declared WARs
(if any) with the files located in the archive. Therefore, if a WAR is not located
in its specified path, it is not inserted in the list. Finally, the Archive Manager
provides the extrapolated subset of WARs to the Data Manager.

Data Manager. The Data Manager processes online details scraped by the Data
Collector and downloaded extensions’ metadata, extrapolated by the Archive
Manager. It maintains a normalised database by validating inserted records and
ensuring relational consistency and integrity. The database architecture connects
online information with data extrapolated from downloaded archives. Thus, it
supports repeated insertions of various extension releases overtime, enabling
researchers to perform long-term studies. Finally, based on popularity metrics,
it compiles a series of datasets to be employed by the X-Probe demonstrator.

4.2 X-Probe Demonstrator

We introduce X-Probe, a practical implementation of WAR-enabled discovery,
targeted at Chrome extensions2. X-Probe was evaluated against the four exten-
sions shown in Table 1, each exposing their WARs with exclusively one vulnerable

2 X-Probe can be tested on all Chromium-based browsers at: https://xprobe.dev.

https://xprobe.dev
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match pattern. We repeated our evaluation on various Chromium-based browsers
(i.e. Chrome, Brave, Opera, and Edge) and observed consistent results.

Table 1. Extensions used to validate discoverable patterns.

Extension Release Manifest Pattern Detected?

Speed Dial 81.3.1 V3 <all urls> yes

Custom Cursor 3.3.0 V3 *://*/* yes

Talend API Tester 25.11.2 V3 https://*/* yes

ShopQuangChauVN 5.1 V3 http://*/* yes

Hola VPN 1.208.689 V2 N/A yes

X-Probe relies on four JSON-formatted datasets produced with the X-Cavate
framework, containing extension identifiers, each paired with one exposed WAR.
Each dataset represents either the top 100, 1000, and 10,000 most popular exten-
sions on the Chrome Web Store. Additionally, a dataset containing all discov-
erable extensions was included in the demonstration. While the comprehensive
dataset provides a thorough but resource-intensive scan, smaller datasets offer a
quicker analysis, albeit limited. Based on our evaluation, X-Probe can identify
in the varying datasets 21.34%, 38.16%, 54.9%, and 63% of extensions, overall
and within the 10,000, 1,000, and 100 most popular extensions, respectively.

5 Results

In March 2023 we scraped details for 111,467 extensions, of which 108,416 were
successfully downloaded and analysed. Of the 3051 failures, 105 were due to
corrupted archives, while 2946 were visible on the Chrome Web Store, but no
longer available for downloading. We ranked extensions by their rating count,
download count, and average rating. We prioritised the rating count as it is a
continuous metric, and because reviews can only be provided by authenticated
Google users. Finally, we grouped extensions in the Top 100, Top 1000, and Top
10,000 popularity groups, shown in Fig. 3.

5.1 Susceptibility to WAR-Enabled Discovery

In total, 23,132 extensions are detectable via WAR-enabled discovery, account-
ing for 21.35% of the analysed set. Figure 4 shows a positive correlation between
popularity and discoverable proportions, with a detection rate of 64%, 59.4%,
and 38.14% in Top 100, Top 1000, and Top 10,000 groups, respectively. Addi-
tionally, we observe that some categories are more susceptible to WAR-enabled
discovery. Namely, “Shopping” extensions consistently exhibit higher detection
rates than other categories. We performed a one-sided Mann-Whitney U test
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Fig. 3. Categories overview split across popularity groups.

to determine if there was a significant difference in the distribution of rating
counts between discoverable and hidden extensions. A statistic of approximately
1.33 × 1012 and p-value < 0.05, rejected the null-hypothesis. Therefore, we con-
clude that discoverable extensions have a higher rating count than hidden ones.

5.2 Manifest V3 Adoption Rate

In total, 75,048 extensions use Manifest V2, while 33,368 transitioned to V3,
corresponding to 30.78%. As shown in Fig. 5, Manifest V3 extensions account
for 33%, 29.4%, and 28.89% of the Top 100, Top 1000, and Top 10,000 groups,
respectively. Notably, none of the “Developer Tools” and “News & Weather”
extensions in the Top 100 group transitioned to V3. Furthermore, “Blogging”
extensions consistently exhibit lower adoption rates than other categories. This
might be due to the requirements of extensions which extensively use background
scripts and broad permissions to capture, modify, and deliver information: tasks
that could become increasingly challenging to perform under the more restrictive
and event-driven environment of Manifest V3.
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Fig. 4. WAR-enabled discovery rates.

Fig. 5. Manifest V3 rate of adoption.

5.3 Manifest V3 Impact on WAR-Enabled Discovery

We employed Manifest V2 extensions to establish a baseline for evaluating the
impact of Manifest V3 in mitigating WAR-enabled discovery. Successively, we
compared the relative proportions of discoverable extensions to assess whether
there was a difference between each Manifest iteration across popularity groups.
Table 2 shows a consistent positive correlation between popularity and detectable
rates in both Manifest iterations. However, we also observe an increasing miti-
gatory effect of Manifest V3, with a relative reduction ranging between 4% and
10%. In contrast, Manifest V2 extensions in the Top 100 group are less likely to
be detectable than V3 extensions.

5.4 Comparative Evaluation

Table 3 provides a comparison between our work and the existing literature in
the field of extension discovery. Despite DOM analysis being a popular method,
its effectiveness is limited, with detection percentages below 10%. A substan-
tial leap in detectability was observed with the advent of WAR probing, as
demonstrated by [42]. In the work of [16], a multi-class strategy was employed,
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Table 2. Discoverable rates across popularity groups, measured between Manifest
iterations (Δ = V 2 − V 3).

Group Overall V2 V3 Δ

All 21.35% 22.74% 18.3% 4.44%

Top 10,000 38.14% 40.47% 32.39% 8.08%

Top 1000 55% 58.07% 47.61% 10.46%

Top 100 65% 62.68% 66.67% −3.99%

Table 3. Comparison with previous work.

Paper Attack Class # Extensions % Detectable

[48] DOM analysis 10,000 9.2%

[24] DOM analysis (CSS rules) 116,485 3.8%

[44] DOM analysis (user actions) 102,482 2.87%

[16] Multi-class 102,482 28.72%*

[30] Multi-class 91,147 17.68%*

[42] WAR probing 43,429 28%*

Ours WAR probing 108,416 21.34%

Note: We report percentages over the complete set of analysed
extensions when the original work reports absolute numbers. *Eval-
uated on WARs prior to Manifest V3.

merging WAR probing with DOM analysis and interception broadcast communi-
cation by extension components, achieving even higher detection rates. Notably,
within their approach, WAR probing alone was able to detect 25.24% of exten-
sions, underscoring its superior efficacy in extension discovery. Similarly, [30]
implemented a strategy combining WAR probing with DOM analysis, although,
their results were significantly lower than [16], with 11.37% of extensions being
detected through WAR probing alone. However, these studies were conducted
with WARs under the Manifest V2 framework. With the transition to the more
restrictive Manifest V3, a new set of challenges emerges, leaving the effectiveness
of these previous methods in the updated constraints uncertain. Our research
addresses this challenge by adapting WAR probing to the Manifest V3 environ-
ment, providing an up-to-date study on the effectiveness of this strategy.

6 Discussion

6.1 Popular Extensions are More Discoverable

The results from our analysis highlight a paradoxical correlation: as an exten-
sion’s popularity increases, so too does their susceptibility to WAR-enabled dis-
covery. In all analysed groups, there is a consistent trend of increased discov-
erability with increased popularity – as determined by rating count, download
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count, and average rating. However, this pattern has significant implications for
user security and privacy. A particular concern lies in browser fingerprinting, as
the set of detected extensions on a browser can greatly enhance the complexity
of fingerprints, especially when coupled with other identifiable attributes. Thus,
detectable extensions provide adversarial entities with an expanded toolset to
uniquely identify and track users across the web in a stateless manner. This
raises several questions regarding the security implications for the most used
extensions, as they appear to be more visible and hence potentially more exposed
to attacks. Extensions’ popularity, in this context, might inadvertently serve as
a double-edged sword. On the one hand, it makes these extensions more acces-
sible to users, thereby contributing to their popularity. On the other hand, it
simultaneously exposes them to potential malicious entities, aiming to carry out
targeted attacks and cross-site tracking.

6.2 Developers Employ Broad Match Patterns

Manifest V3 allows developers to enforce least-privilege in their WARs through
match patterns. Although Manifest V3 produces a quantifiable impact, its limi-
tations lay in the assumption that developers will enact appropriate restrictions.
Furthermore, many extensions provide functionalities which require exposing
WARs to all websites. For example, extensions that modify the appearance of
webpages, such as themes or custom cursors, need to inject their resources across
all domains. Similarly, extensions that provide web development tools, like colour
pickers or CSS inspectors, also require broad access to function effectively. In
these cases, the use of highly permissive match patterns becomes a necessity
rather than a choice. This implies that even with the best intentions, developers
may be forced to compromise on least-privilege due to the inherent requirements
of their extensions. Consequently, while Manifest V3’s approach to WARs is a
step in the right direction, it may not fully eliminate the risk of WAR-enabled
discovery, especially for extensions that inherently require broad access.

7 Recommended Mitigation Measures

Based on our findings and expertise acquired while developing this project, we
propose the following countermeasures for mitigating WAR-enabled discovery.

Limiting Failed Requests. WAR-enabled discovery involves probing a large
sample of WARs. For instance, our demonstrator X-Probe employs a sample
of 23,132 discoverable extensions. Consequently, the vast majority of surveyed
WARs is expected to return an error from the browser API. Therefore, since
this unreasonable amount of requests is unlikely to be performed for legitimate
purposes, we propose the introduction of a failed-request cap in the browser
API. Such cap could be enforced on the offending webpage by preventing its
JavaScript environment from requesting further resources.

Limiting Accessibility. Content scripts use the Chrome API method getUrl
to obtain a resource’s URL given its relative path in the extension repository.
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The process-isolation pattern allows browsers to determine whether getUrl was
called from a content script or a webpage. Therefore, we propose a “gate” sys-
tem, which only exposes WARs to a webpage after they are requested by the
content script. While this measure would not prevent access to WARs of highly-
active extensions (e.g. password managers), it may severely limit extension fin-
gerprinting capabilities. Furthermore, as Manifest V3 introduces background
service workers, webpages could be blocked from accessing the WARs of idle
extensions.

User-Enforced Least-Privilege. Manifest V3 empowered extension distribu-
tors to arbitrarily restrict WAR exposure. However, users intending to replicate
such restriction have to disable extensions from their browser settings, or open
an “incognito” session. Realistically, the average user is unlikely to perform
this procedure each time they visit a new website. Therefore, we recommend
that browsers introduce functionalities allowing users to enact such restrictions
on demand. This would involve blocking all WAR requests originating from
untrusted websites, and informing the user about request attempts. Finally, the
user could either deny or authorise all requests. Alternatively, they could decide
to expose specific extensions. Naturally, users should be also allowed to tailor
default settings based on their privacy needs to avoid hindering usability.

8 Related Work

8.1 Extension Detection

Over the past decade, extensions have begun to emerge as a new area of study,
with researchers exploring its potential uses and challenges in the context of
online privacy and security [4–6,8,10,16,18,33–36,39–41,46]. In this emerging
field, different strategies have been developed for detecting extensions, mostly
focused on analysing changes to the DOM and probing WARs.

DOM Analysis. Starov and Nikiforakis [48] examined the top 10,000 Chrome
Web Store extensions, and showed that at least 9.2% introduced detectable DOM
changes on any arbitrary URL. Additionally, they developed a proof-of-concept
script, able to identify 90% of the analysed 1,656 identifiable extensions. Extend-
ing this research, Starov et al. [47] revealed that 5.7% of the 58,034 analysed
extensions were detectable due to unnecessary DOM changes. Consequently,
Laperdix et al. [24] investigated how CSS rules injected by content scripts can be
used to detect installed extensions, revealing that 3.8% of the 116,485 analysed
extensions could be uniquely identified with this method. Building on this exist-
ing body of knowledge, Solomos et al. [44] highlighted that user-triggered DOM
changes had been overlooked by previous research. Thus, they identified 4,971
extensions, including over a thousand that were undetectable by previous meth-
ods. Additionally, they revealed that about 67% of extensions triggered by mouse
or keyboard events could be detected through artificial user actions. Addition-
ally, Solomos et al. [45] proposed continuous fingerprinting, a technique capable
of capturing transient modifications made by extensions, previously undetectable
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due to their ephemeral nature. This technique substantially increases the cover-
age of extensions detectable through their DOM modifications.

WAR Probing. Before the introduction of Manifest V3, Sjösten et al. [42]
conducted the first comprehensive study of non-behavioral extension discovery,
focusing on the detection of WARs in both Chrome and Firefox. Their empiri-
cal study, found that over 28% of the 43,429 analysed Chrome extensions could
be detected. Building on their work, Gulyas et al. [12] conducted a study on
16,393 participants for evaluating how browser extensions detected with WARs
contributed to the uniqueness of users. They found that 54.86% of users which
installed at least one extension were uniquely identifiable. Additionally, they
found that testing 485 carefully selected extensions produced the same level
of uniqueness. Subsequently, Sjösten et al. [43] further examined the issue of
detecting browser extensions by web pages, particularly focusing on the recent
introduction of randomised WAR URLs by Mozilla Firefox, which they found
could potentially compromise user privacy rather than protect it. They intro-
duced “revelation attacks”, to detect these randomised URLs in the code injected
by content scripts, thereby enabling enhanced user tracking.

Combined Techniques. Karami et al. [16] implemented a multi-class approach
which involves DOM analysis, WAR probing, and interception of broadcast mes-
sages by extension components. Their technique detected 29,428 out of 102,482
extensions, demonstrating resilience against countermeasures to DOM analysis
proposed by [50]. Although their results are best-performing among present lit-
erature, their evaluation dates before the diffusion of Manifest V3 on the Chrome
Web Store. On the other hand, Lyu et al. [30] presented their approach com-
prising of DOM analysis and WAR probing, detecting 16,166 extensions out of
91,947, with 11,856 being detectable by their WAR probing approach. However,
there is no mention of WAR match patterns or Manifest V3 throughout their
paper. Furthermore, it is unclear why their WAR discovery rate (i.e. 13.01%) is
comparatively lower than in previous literature and our results.

8.2 Browser Fingerprinting

There is a growing body of work exploring browser fingerprinting [51] and the
ways it can be augmented by the virtually-unlimited combinations of potentially
installed extensions [12,17,50]. Additionally, much work has been conducted on
devising defensive and mitigatory measures [7,9,14,15,22,25,31,49]. Finally, lit-
erature has focused on the utilisation of fingerprinting as a tool for streamlining
user authentication [1,37,38], although, some have highlighted the security lim-
itations of such methods [26,27].

9 Conclusion

Manifest V3 coupled WARs with match patterns to further mitigate the expo-
sure of extensions to webpages. We presented an empirical study on 108,416
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Chrome Web Store extensions, with focus on WAR-enabled discovery. To the
best of our knowledge, we are the first to evaluate the impact of Manifest V3
match patterns applied to WARs. Our results show that Manifest V3 produces a
relative reduction in detectability, growing from 4% to 10% as extensions become
more popular. In contrast, Manifest V3 extensions among the 100 most popu-
lar, exhibit a relative increase of 4% in detectability, when compared to V2.
Furthermore, independently of the adopted Manifest iteration, popular exten-
sions are more likely to be discoverable. We argue that match patterns do not
fully eliminate the risk of WAR-enabled discovery, both because some develop-
ers neglect least-privilege practices, and due to inherent extension functionalities
which require universal exposure of resources. Therefore, we proposed a range
of defensive measures to be implemented on the browser side. Through a combi-
nation of these measures, we anticipate a significant improvement in preventing
unwarranted probing of WARs.

In addition, we devise the X-Cavate framework to repetitively collect exten-
sions from online stores and extract their Manifests to maintain a structured
database overtime. Alongside X-Cavate, we developed a live demonstrator called
X-Probe to emphasize the efficacy of WAR-enabled discovery. Based on our eval-
uation, X-Probe has proven its capability in detecting 22.74% of Manifest V2
and 18.3% of Manifest V3 extensions, overall. Moreover, relatively to the 1000
most popular extensions, the detection rates rise to a substantial 58.07% and
47.61%, respectively, further highlighting the severity of this exposure.

Future work could involve the integration of a diverse array of extension
discovery techniques, alongside the development of a demonstrator that can
function across various browser architectures. In addition, once the transition
to Manifest V3 is fully completed, it could be especially insightful to conduct an
updated user study. This would allow for an examination of the uniqueness of
extension fingerprints, presenting a valuable opportunity to better understand
and further contribute to this evolving field.
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46. Somé, D.F.: EmPoWeb: empowering web applications with browser extensions. In:
2019 IEEE Symposium on Security and Privacy (SP), pp. 227–245 (2019). https://
doi.org/10.1109/SP.2019.00058

47. Starov, O., Laperdrix, P., Kapravelos, A., Nikiforakis, N.: Unnecessarily identifi-
able: quantifying the fingerprintability of browser extensions due to bloat. In: The

https://doi.org/10.1109/msp.2018.3111249
https://doi.org/10.1109/msp.2018.3111249
https://doi.org/10.1145/3564625.3567988
https://doi.org/10.1145/3564625.3567988
https://doi.org/10.1007/s10207-022-00610-w
https://doi.org/10.1145/2695664.2695908
https://doi.org/10.1145/3308558.3313637
https://doi.org/10.1145/3308558.3313637
https://doi.org/10.1109/ICSCSS57650.2023.10169483
https://doi.org/10.1109/ICSCSS57650.2023.10169483
https://doi.org/10.14722/usec.2016.23017
https://doi.org/10.1145/3029806.3029820
https://doi.org/10.1145/3029806.3029820
https://doi.org/10.14722/ndss.2019.23309
https://doi.org/10.1145/3548606.3560576
https://doi.org/10.1109/SP.2019.00058
https://doi.org/10.1109/SP.2019.00058


202 V. Bucci and W. Li

World Wide Web Conference, pp. 3244–3250. WWW ’19, Association for Com-
puting Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3308558.
3313458

48. Starov, O., Nikiforakis, N.: XHOUND: quantifying the fingerprintability of browser
extensions. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 941–956
(2017). https://doi.org/10.1109/SP.2017.18

49. Torres, C.F., Jonker, H., Mauw, S.: FP-Block: usable web privacy by controlling
browser fingerprinting. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS
2015. LNCS, vol. 9327, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24177-7 1

50. Trickel, E., Starov, O., Kapravelos, A., Nikiforakis, N., Doupé, A.: Everyone is dif-
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Abstract. In the Android apps ecosystem, third-party libraries play a
crucial role in providing common services and features. However, these
libraries introduce complex dependencies that can impact stability, per-
formance, and security. Therefore, detecting libraries used in Android
apps is critical for understanding functionality, compliance, and secu-
rity risks. Existing library identification approaches face challenges when
obfuscation is applied to apps, leading to performance degradation. In
this study, we propose Libra, a novel solution for library identification
in obfuscated Android apps. Libra leverages method headers and bodies,
encodes instructions compactly, and employs piecewise fuzzy hashing for
effective detection of libraries in obfuscated apps. Our two-phase app-
roach achieves high F1 scores of 88% for non-obfuscated and 50–87%
for obfuscated apps, surpassing previous works by significant margins.
Extensive evaluations demonstrate Libra’s effectiveness and robustness
against various obfuscation techniques.

Keywords: Library Identification · Obfuscation · SBOM · Android

1 Introduction

With three billion active devices, Android has become the dominant mobile
platform with over three and a half million apps on the Google Play Store alone
[10,11]. These apps cater to the needs of billions of users in an ever-evolving
landscape. To accelerate development and enhance user experience, apps often
incorporate various third-party libraries to leverage their prebuilt functionalities
[35,44]. While these third-party libraries offer considerable development advan-
tages, they introduce complex dependencies into the apps that can significantly
impact stability, performance, and security.

Detecting libraries used in Android apps has become a critical pursuit for
developers, security analysts, and researchers alike [28]. Identifying the libraries
that make up an app allows for a deeper understanding of the app’s functional-
ity, licensing compliance, and potential security risks. Moreover, tracking these
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dependencies aids in the timely integration of updates, ensuring the apps stay
current with the latest feature enhancements and security patches1.

Various library identification approaches were introduced in the recent years,
including clustering techniques [24,26,29,42], learning-based techniques [25,27],
and similarity-based techniques [15,19–21,31,34,36,37,41,43]. A variety of dif-
ferent app and library features are used by these approaches, ranging from pack-
age and class hierarchies to GUI resources and layout files. These techniques
operate with the same end goal, that is to identify the libraries (names and
versions) used by an app given the app published binary package.

Most of these tools have been developed with obfuscation in mind and select
features that have resiliency to obfuscation techniques. Yet, it has been shown
[38,39,42] that when obfuscation is applied to apps the performance of the state-
of-the-art tools degrades significantly. Obfuscation is not a new reality for soft-
ware and has been used to hide malicious software such as the SolarWinds attack
[8] where the attackers used multiple obfuscation layers to hide the malicious soft-
ware from detection. This exemplifies the need for identification techniques with
increased resilience to the various obfuscation techniques that can be applied
to Android apps, including identifier renaming, code shrinking and removal,
control-flow randomization, package flattening, among others.

To this end, we propose Libra in this study as a novel solution to identify
library names and versions in an Android app package with higher resilience to
obfuscation than the state of the art. By examining the current state-of-the-art
techniques, we shed light on some of the overlooked challenges that arise when
analyzing obfuscated apps and discuss how Libra tackles these challenges to
achieve higher detection power than the state of the art.

Libra is designed around three novel ideas: (1) leveraging both method
headers and bodies to enhance robustness to obfuscation, (2) encoding method
instructions into a compact representation to mitigate learning bias of instruc-
tion sequences, and (3) employing piecewise fuzzy hashing for effective adapta-
tion to changes introduced by obfuscators. Libra employs a two-phase approach
for library identification. In the learning phase, it extracts packages, encodes
methods, and generates signatures. In the detection phase, it extracts library
candidates, follows the same procedure in learning for method encoding and
signature generation, pairs library candidates and actual libraries to shrink the
search space, then applies a two-component weighted similarity computation to
arrive at a final similarity score between a library candidate and a library.

We performed an extensive evaluation using multiple state-of-the-art Android
library identification tools on various obfuscated benchmarks. For each tool we
look at its capabilities and its resilience to different obfuscation techniques and
highlight how it compares to Libra. Our experiments reveal that Libra achieves
a high F1 score of 88% for non-obfuscated apps, surpassing prior works by a
margin ranging from 7% to 540%. For obfuscated apps, Libra achieves F1 scores

1 The process of identifying components used in a software is generally known as
creating a Software Bill of Materials (SBOM). See https://www.cisa.gov/sbom for
more information about the SBOM concept and standards.

https://www.cisa.gov/sbom


Libra: Library Identification in Obfuscated Android Apps 207

ranging from 50% to 87%, achieving a substantial improvement over previous
approaches from 7% and up to 1386% in certain cases.

To summarize, the contributions of this work are:

– We introduce Libra, a novel approach to library identification using fuzzy
method signatures of hashed instructions.

– We provide a characterization of the state-of-the-art tools and highlight chal-
lenges unique to identifying libraries in obfuscated apps.

– We demonstrate the effectiveness of Libra by extensively evaluating it against
recent Android library identification tools on multiple datasets with various
degrees of obfuscation.

2 Background

2.1 Android Third Party Libraries

An Android app is packaged into an Android Package file (APK) which contains
the app’s Dalvik Executable (DEX) bytecode files, resource files, and assets. The
bytecode is organized into package hierarchies, e.g. com/example, where each
package in the hierarchy may contain one or more implementation units (a class
file) and other subpackages. The APK contains both the app’s own bytecode
as well as the bytecode for all the third-party libraries (and their transitive
dependencies) on which the app depends.

Several recent studies have shown that almost all Android apps use third-
party libraries [9,35,39,44]. These libraries are used to leverage existing func-
tionalities and enable various services, such as advertisements, maps, and social
networks [35,44]. However, despite the widespread usage of libraries in Android
apps, concerns have been raised about the security impact of depending on third-
party libraries. Multiple studies revealed that apps often use outdated libraries
[14,16,35,44]. A recent study [9] of apps on Google Play has shown that 98%
used libraries, with an average of 20 libraries per app. Alarmingly, nearly half of
the apps used a library that suffered from a high-risk vulnerability.

These vulnerable libraries pose significant challenges for developers and end
users. The scope of a vulnerability in a library does not only impact the library,
but also extends to its dependencies and other apps and libraries depending on
it. Therefore, it is paramount that libraries packaged with an app are identified in
order to allow for quick remediation and confinement of potential vulnerabilities.

2.2 Library Detection and Obfuscated Apps

Android app developers use obfuscation techniques to mask the structure, data,
and resources of their apps to hinder reverse engineering attempts. Bad actors
also use obfuscation to hide malicious code. Obfuscation typically takes place
during the build or post-build processes where the obfuscators operate on the
bytecode in an APK. Given an obfuscated app APK, the line between what
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bytecode is app code vs. library code is often blurred due to the various trans-
formations that occur during the obfuscation process.

Android obfuscators such as ProGuard [6], DashO [2], and Allatori [1] are
among the most popular and studied obfuscators in the literature. Several stud-
ies [15,28,33] have analyzed the configurations of these obfuscators and summa-
rized their distinct obfuscation techniques. Pertinent to this study are techniques
that apply transformations to the bytecode of an app, such as identifier renam-
ing (transforming package/class/method names into random non-meaningful
strings), code addition (adding redundant or bloating code to increase analysis
cost), code removal (eliminating unused classes and methods while retaining the
functionality of the app), package flattening/repackaging (consolidating multiple
packages into one), control flow randomization (shuffling the app’s basic blocks
while maintaining functionality), among others. Some of these techniques overlap
and may be categorized as optimization or code shrinking techniques.

To detect libraries integrated in an app APK, researchers have gone through
a number of techniques. Initial efforts to library detection involved utilizing a
whitelist of common library package names [29]. However, whitelisting disallows
the identification of library versions and does not perform well when obfuscation
techniques such as package renaming are applied, leading to low precision and
recall. This has led to the development of other detection techniques, such as
clustering and similarity comparisons. Clustering techniques [24,26,32,42] pack
app packages and library packages together and use a threshold for the cluster
size to determine if a cluster of packages can be identified as a library. Clus-
tering can be an exhaustive process, especially given the overwhelming number
of library artifacts on the market2. To strike a better balance between perfor-
mance and detection power, techniques based on similarity comparisons were
introduced [15,38] where they identify and compare certain features of library
candidates from an app against a prebuilt library features database. Libra falls
under this category. We discuss related work in more depth in Sect. 7.

3 Overview and Key Challenges

3.1 Motivating Example

By examining the state-of-the-art techniques, we observed that obfuscators
that perform code shrinking are particularly difficult to handle. Code shrink-
ing removes unused classes, fields, methods, and instructions that do not have
an impact on the functionality of an app. This shrinks the size of libraries in the
app and leaves less bytecode to operate on to calculate similarity.

We
encountered an instance of this with a library called com.github.gabriele
-mariotti.changeloglib:changelog:2.1.0 within the SensorsSandbox
app [13]. A comparison of the package structures between the unobfuscated

2 At the time of this writing, the Maven Central repository [5] had over 11 million
indexed library packages.
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Fig. 1. Library package structure for the SensorsSandbox app without (left) and with
code shrinking (right). The removal of a few classes causes the library to be missed by
all prior solutions examined in this work.

and obfuscated versions of the library is depicted in Fig. 1. Three classes from
the library’s internal subpackage and two classes from the view subpackage
were removed due to code shrinkage during compilation process. Overall, code
shrinking resulted in a decrease of 36.9% in the number of instructions within
the library.

Despite the small size of the app, the fact it had only this third-party library
dependency, and the low degree of shrinking, all recent tools failed at identifying
the library in the app APK when code shrinking was applied. Specifically, Lib-
Scout [15], ATVHunter [37], and Libloom [21], were able to detect the library
without code shrinking, but not once it was applied, despite being obfuscation
aware. On the other hand, LibScout [15], ATVHunter [37], Orlis [34], and others,
do not have any mechanism to account for this common obfuscation.

Code shrinking is one example of the challenges encountered when identifying
libraries in obfuscated apps. In the following, we highlight multiple key challenges
to library identification in obfuscated apps and how Libra tackles them.

3.2 Challenges to Library Identification

C1: Multiple Root Packages. In some cases, a library may have multiple
root packages, e.g., com/foo and com/bar, which presents a challenge for library
identification techniques since they need to be able to accurately associate both
packages with the same library. However, if there are no interactions between
these packages, traditional approaches using method calls, inheritance, and field
access/writes to create class and library relations may struggle.

To address this, Libra identifies all root packages in a library by looking
for first-level code units, and ensuring that a root package subsumes all its sub
packages. This is done with a bottom-up approach to ensure the root package has
first-level code units. This allows Libra to independently evaluate each package
in an app against all root packages of a library to accurately identify the library.
This also allows Libra to effectively manage transitive dependencies by treating
them as multiple root packages.
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C2: Shared Root Packages. Libraries may have a common root package,
either intentionally or due to obfuscation techniques such as package flattening.
This causes an enlarged pool of classes, making it difficult to distinguish between
the libraries under this shared root package as their classes in the APK, despite
being under the same root package, belong to different libraries.

In order to address this challenge, Libra introduces a two-component sim-
ilarity measure where the first component represents the number of matched
methods within the library candidate in the app, and the second component
represents the number of matched methods in the actual library. When mul-
tiple libraries are present under the same root package, the library-candidate
component naturally yields a lower value. Conversely, the library ratio compo-
nent remains unaffected by the number of libraries within the library candidate.
Incorporating these two components together allows Libra to accurately detect
libraries sharing a root package as the similarity measure adjusts per each can-
didate under the shared root package.

C3: Code Shrinking. A standard step in the building of an app APK is Code
Shrinking, where the compiler or obfuscator removes code deemed not required at
runtime, such as unused classes, fields, methods, and instructions, from the app
[12]. This process permanently removes code artifacts from the app, potentially
diminishing the identity of a library in an irreversible manner. Tools have made
the observation that a substantial difference (e.g., three times or more) in the
size of a candidate library in an APK and an actual library package indicates
that they are likely different libraries [37,40]. As shown in Sect. 3.1, this causes
problems for library identification as the overall similarity between a shrunk
library bytecode in an app APK and its corresponding actual library package
decreases significantly.

To address this, Libra utilizes a resilient two-component weighted similarity
calculation. By incorporating weights, Libra effectively addresses the impact of
missing methods, reducing its influence on the overall similarity score. Specifi-
cally, by assigning less weight to the in-app ratio, Libra maintains its effectiveness
in scenarios involving Code Shrinking.

C4: Instruction Bias. The Dalvik bytecode Instruction Set encompasses a
wide range of instructions, which may initially appear beneficial for improving
discrimination power when used for learning the identity of a library. However, in
reality, this complexity presents a challenge as app compilation and obfuscation
can introduce alterations to the bytecode, resulting in discrepancies compared
to the libraries’ bytecode used to build the models. These alterations include
instruction reordering, arithmetic operation splitting, condition flipping, call res-
olution changes, and more. If a detection approach learns too much about the
instructions, it becomes overly sensitive to obfuscation techniques that modify
instructions and opcodes. Conversely, learning too little about the instructions
leads to a loss of precision, causing different methods to appear too similar.
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Fig. 2. Workflow of Libra with an offline learning phase and an online detection phase.

To overcome this, Libra encodes the instructions into a compact representa-
tion by mapping multiple opcodes to the same symbol. Moreover, it solely focuses
on the mnemonic of the instructions, disregarding the operands as they are often
subject to change by obfuscators. This approach enables Libra to strike a good
balance between overlearning and underlearning the instructions, providing a
more effective detection capability.

4 Detailed Design of Libra

Figure 2 shows the workflow of Libra. We formulate the problem of Android
third-party library identification as a pair-wise similarity problem. The problem
takes in a set of library artifacts (JAR or AAR files) and an input app (APK
file) where both consist of a set of classes which need to be compared with
particular data and a similarity operator. Libra uses a two phase approach:
An offline learning phase in which it builds a database of library signatures
by processing the library artifacts and extracting pertinent information; and an
online detection phase in which it identifies library candidates in an app, extracts
their signatures and performs a pair-wise similarity computation with the offline
database to identify the names and versions of the library candidates used in
the app.

4.1 Learning Library Identities

In the learning phase, Libra first takes in an input library file, disassembles it,
then extracts the root package name(s) of the library and groups the associated
classes for signature extraction. Libra processes the classes under each identified
package and computes a signature composed of a header and a body for each
method defined in a class. Finally, it stores the library metadata (e.g., name,
version) and signature into a database for later retrieval during the online detec-
tion phase. The following learning phases of Libra will be elucidated: (1) Root
Package Extraction and (2) Signature Extraction.

Root Package Extraction. Libra traverses the package hierarchy of the library
in breadth-first order looking for the first non-empty package, i.e., a root package
that contains at least one class definition. Note that there may be multiple
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Fig. 3. An example of a library having multiple root packages and the resulting root
packages extracted along with the classes.

packages associated with a single library if there are more than one package
containing code units at the same level in the hierarchy. This allows Libra to
handle the case of multiple root packages (C1). An example of this is shown
in Fig. 3. Each package has the associated classes grouped with it for signature
extraction. The extracted root package is flattened where each class under the
package, including in subpackages, become associated with the root package.

Method Encoding. For each method in a class group, Libra encodes the
Smali disassembly of the method body into a compact representation by map-
ping multiple instruction opcodes to the same symbol and discarding instruction
operands. Figures 4a and 4b show a sample method and its encoded body. The
full encoding map between is shown in Table 10. This encoding step allows Libra
to avoid instruction bias during learning (C4) by creating a lower-resolution
method body (counters overlearning) without destroying the information con-
tained in the instructions order (counters underlearning).

Signature Generation. For each method in a class group, Libra extracts the
method’s parameter types, return type, and encoded body3. With these data
points Libra constructs a fuzzy signature which includes a header and a body as
explained in the following.
3 We exclude the instance initializer method (<init>), the class initializer method

(<clinit>), and the resources class (R) since these tend to be highly similar amongst
apps and libraries which may lead to spurious matches.
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Fig. 4. Encoding and signature generation process. The signature header has the
method parameter and return types where non-primitives changed to X. The body
has the computed fuzzy hash of method mnemonics.

To compute the signature header, Libra constructs a fuzzy method descrip-
tor using the following transformation: The types are kept if they are prim-
itives in Java, such as int, boolean, but are changed to X if they are non-
primitive, such as java.lang.Object, java.lang.String (C4). Masking the
types is essential in cases where identifier renaming obfuscation has been applied.
If non-primitive types were utilized, and renaming has occurred, a mismatch
would arise between the signature headers of the method signatures being
compared (C4). For example, if the parameter types okhttp3/OkHttpClient,
okhttp3/Request, and okhttp/RealCall, from Fig. 4, were used for the sig-
nature header instead of replacing each with X, and identifier renaming was
applied renaming them to A, B, and C, respectively, the two signature headers,
(okhttp3/OkHttpClientokhttp3/RequestZ)okhttp3/RealCall and (ABZ)C,
would then never match.

To compute the signature body, Libra applies context-triggered piecewise
hashing (CTPH) [22] on the encoded opcodes sequence, producing a hash in the
format shown in Fig. 4c4. The first part of the hash is the size of the rolling
window used to calculate each piece of the hash, the second part is a hash

4 CTPH offers advantages over other hashing methods in this setup as it employs a
recursive rolling hash where each piece of the hash is computed based on parts of the
data and is not influenced by previously processed data. Consequently, if there are
changes to the sequences being hashed, only a small portion of the hash is affected.
This is a desirable property for library identification in obfuscated apps since changes
to the library bytecode packed in the app are expected.
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computed with the chunk size, and the third part is the hash with the chunk
size doubled. This approach enhances the ability to handle both coarse- and
fine-grained changes within a sequence due to obfuscation (C4).

Finally, and due to the nature of offline learning, it is necessary to store the
results for lookup during the online detection phase. Libra stores each library
identity (name and version), root package names, fuzzy signature (header and
body), and metadata associated with the library in a database.

4.2 Detection and Similarity Computation

In the online detection phase, Libra identifies the library names and versions
used by an incoming Android app (typically an APK file). The detection phase
consists of the following stages: (1) Library Candidate Extraction, (2) Signature
Extraction, (3) Library Pairing, (4) Similarity Computation. Each stage depends
on the previous as pertinent information and data is extracted and propagated.

Library Candidate Extraction. Similar to the root package extraction step in
the learning phase, Libra traverses the package hierarchy of the app and identifies
all the app root packages. It then parses the AndroidManifest.xml file of the
app and identifies the main components and their packages, and discards root
packages that belong to the app main components since these belong the app’s
own code and therefore not libraries. It then considers each of the remaining
root packages a library candidate and groups its classes in the same manner as
in the learning phase for usage by the subsequent stages of the analysis.

Method Encoding and Signature Generation. For each library candidate,
Libra encodes methods and constructs their signatures following the same app-
roach in Sect. 4.1.

Library Pairing. To reduce detection time complexity, Libra attempts to avoid
unnecessary similarity comparisons by first trying to pair each library candidate
with libraries learned in the offline phase grouped by name, i.e., a group of differ-
ent versions of the same library. Libra pairs a library candidate with a member
of a library group if both of the following conditions are met: (1) The library
candidate package name matches with one or more of the root package names of
the library in the database. (2) The difference between the number of classes of
the library candidate and the library in question is less than a predefined thresh-
old τ (defaults to 0.4). A formulation of the reduction in search space is provided
in AppendixB. The first condition states that Libra is aware of the root package
linked with the library candidate and exclusively compares it with other libraries
that have the same package association. The second condition originates from
a heuristic, suggesting that a substantial discrepancy in the number of classes
between the library candidate and another library indicates a lower probability
of them being the same [37,40].
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Similarity Computation. For each library candidate C and learned library
L pair 〈C,L〉, Libra computes a pair-wise similarity score between the methods
MC of the library candidate and the methods ML of the learned library by, first,
computing the set M of pair-wise mutually-similar methods:

M = {〈mC ,mL〉 | mC ∈ MC ,mL ∈ ML,

S(mC) = S(mL),Δ(H(mC),H(mL)) ≤ δ} (1)

where S is the fuzzy method signature function, H is the fuzzy method hash
function, Δ is the Levenshtein distance [23] which represents how similar the
two method hashes are to each other, and δ is a predefined threshold (defaults
to 0.85). The threshold δ is used to handle changes in the method instructions
due to obfuscation (C3, C4) and was chosen from prior work [37].

Given M , Libra computes the final similarity score as the weighted sum of
the ratios of matched methods in the library and the app, given by:

sim(C,L) = α · min(|ML|, |M |)
|ML| + β · min(|MC |, |M |)

|MC | (2)

where α, β are weighting parameters such that α + β = 1. The similarity score
ranges from 0 (lowest) to 1.0 (highest).

The purpose of these weighting parameters is to adapt to different degrees of
code shrinkage by dampening the impact of code removal on the overall similarity
score. In our experiments, we observed that α and β values of 0.8 and 0.2,
respectively, yielded satisfactory overall results when code shrinking has been
applied (C2), or there exists a shared root package between libraries (C3). The
latter scenario arises when multiple libraries are associated with the same root
package, potentially resulting in a low match ratio for the library candidate.
However, through appropriate weighting, this challenge is overcome, enabling
the determination that the library candidate and library are indeed similar.

Finally, Libra ranks the results based on the final similarity score, serving as
a confidence indicator for the likelihood of the library’s presence in the app, and
reports the top k matches (defaults to 1).

5 Evaluation

We implemented Libra in Python in 2.4k SLOC. For fuzzy hashing, Libra relies
on ssdeep [22]. Our experiments were conducted on an Ubuntu 20.04 server with
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz and 252 GiB of RAM.

We conducted several experiments to determine the effectiveness of Libra
against state-of-the-art tools, including LibScout [15], LibPecker [43], Orlis [34],
LibID-S [41], and Libloom [21]5.

5 Note that the Android SDK Support Library [7] was excluded from the counts for
consistency with all evaluated tools.
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We used the default settings for all the tools. For LibID [41], we used the
LibID-S variant since it performs the best [41] and set a 0.8 threshold for Lib-
Scout to maintain consistency with LibID.

We used two public benchmarks in our experiments: the ATVHunter [37] and
Orlis [4,34] datasets. These two datasets were selected due to their widespread
usage by prior work and their inclusion of diverse obfuscation techniques. The
ATVHunter dataset consists of 88 non-obfuscated apps, and three sets of 88
(3 × 88) apps obfuscated with control flow randomization, package flattening
and renaming, and code shrinking using Dasho [2]. In contrast, the Orlis dataset
is organized based on the obfuscator used, encompassing the obfuscation tech-
niques used in the ATVHunter dataset along with string encryption. The dataset
consists of 162 non-obfuscated apps, and three sets of 162 (3 × 162) apps obfus-
cated with the obfuscators Allatori [1], Dasho [2], and Proguard [6].

For each experiment, we measured Precision, Recall, and F1 score for detec-
tion effectiveness, and the average detection time for the runtime overhead. The
identify of a library in all experiments consists of both a name and a version
number. A true positive (TP) is identified when a tool reports a library and the
app contains that library. A false positive (FP) is identified when a tool reports
some library that is not contained in the app. A false negative (FN) is counted
when a tool does not report a library even though it is contained in the app.

5.1 Effectiveness Results

Table 1 shows detection results on the non-obfuscated ATVHunter dataset. The
effectiveness of Libra is evident where it successfully identifies all non-obfuscated
libraries contained in the apps. Here, Libra outperforms prior studies achieving
an overall 88% F1 score, showcasing an improvement from prior work ranging
from 7% up to 484%. Other tools show lower precision values resulting from
higher numbers of falsely identified libraries.

With obfuscation enabled, Libra’s TP rate consistently outperforms all prior
work with its recall ranging from 43% to 90% across all techniques. Table 2 shows
Libra and Libloom both displaying effectiveness against control flow randomiza-
tion with low FNs for the two, while others prove unsuccessful. Interestingly,
Libloom scores a higher F1 score with this technique. This is due to Libloom
discarding the order of instructions within a method, making it more resilient
to techniques that also disrupt instructions order, at a cost of reduced precision
as more methods appear similar (C4). Nevertheless, Libra still outperforms it
across all the remaining obfuscation techniques.

With package flattening in Table 3, there is a general decrease in detection
power for all tools as most utilize package hierarchy structures as features how-
ever, Libra maintains the best TP rate while achieving an F1 score performance
increase from 67% up to 1386% across all tools. Libra’s robust weighted sim-
ilarity calculation proves resilient against code shrinking in Table 4, correctly
identifying 90% of libraries, and outperforming the remaining tools in F1 score
by a range of 24% to 755%.
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Table 1. Detection results on ATVHunter non-obfuscated apps.

Tool TP FP FN Precision Recall F1 score

LibScout 57 84 1 0.4043 0.9828 0.5729

LibPecker 50 43 8 0.5341 0.8621 0.6596

Orlis 5 3 53 0.5889 0.0862 0.1504

LibID-S 57 112 1 0.3373 0.9828 0.5022

Libloom 58 25 0 0.6988 1.0000 0.8227

Libra 58 16 0 0.7838 1.0000 0.8788

Table 2. Detection results on ATVHunter control-flow-randomization-obfuscated
apps.

Tool TP FP FN Precision Recall F1 score

LibScout 5 0 53 1.0000 0.0862 0.1587

LibPecker 23 15 35 0.6012 0.3966 0.4779

Orlis 5 4 53 0.5484 0.0862 0.1490

LibID-S 0 12 58 0.0000 0.0000 –

Libloom 58 25 0 0.6988 1.0000 0.8227

Libra 48 40 10 0.5455 0.8276 0.6575

Table 3. Detection results on ATVHunter pkg-flattening-obfuscated apps.

Tool TP FP FN Precision Recall F1 score

LibScout 0 0 58 – 0.0000 –

LibPecker 2 1 56 0.5740 0.0345 0.0651

Orlis 5 3 53 0.5889 0.0862 0.1504

LibID-S 1 1 57 0.5000 0.0172 0.0333

Libloom 12 11 46 0.5217 0.2069 0.2963

Libra 25 18 33 0.5814 0.4310 0.4950

Table 4. Detection results on ATVHunter code-shrinking-obfuscated apps.

Tool TP FP FN Precision Recall F1 score

LibScout 0 1 58 0.0000 0.0000 –

LibPecker 3 2 55 0.5735 0.0517 0.0949

Orlis 4 2 54 0.5904 0.0690 0.1235

LibID-S 3 11 55 0.2143 0.0517 0.0833

Libloom 33 24 25 0.5789 0.5690 0.5739

Libra 52 36 6 0.5909 0.8966 0.7123
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Table 5. Detection results on Orlis non-obfuscated apps.

Tool TP FP FN Precision Recall F1 score

LibScout 102 144 1 0.4146 0.9903 0.5845

LibPecker 99 87 4 0.5309 0.9612 0.6840

Orlis 8 5 95 0.6116 0.0777 0.1378

LibID-S 101 216 2 0.3186 0.9806 0.4810

Libloom 103 53 0 0.6603 1.0000 0.7954

Libra 101 25 2 0.8016 0.9806 0.8821

Table 6. Detection results on Orlis Allatori-obfuscated apps.

Tool TP FP FN Precision Recall F1 score

LibScout 7 0 96 1.0000 0.0680 0.1273

LibPecker 71 40 32 0.6357 0.6893 0.6614

Orlis 6 3 97 0.6169 0.0583 0.1065

LibID-S 72 166 31 0.3025 0.6990 0.4223

Libloom 89 61 14 0.5933 0.8641 0.7036

Libra 92 50 11 0.6479 0.8932 0.7510

Table 7. Detection results on Orlis Dasho-obfuscated apps.

Tool TP FP FN Precision Recall F1 score

LibScout 37 52 66 0.4157 0.3592 0.3854

LibPecker 6 11 97 0.3481 0.0583 0.0998

Orlis 8 11 95 0.4039 0.0777 0.1303

LibID-S 37 97 66 0.2761 0.3592 0.3122

Libloom 96 201 7 0.3232 0.9320 0.4800

Libra 51 30 52 0.6296 0.4951 0.5543

Table 8. Detection results on Orlis Proguard-obfuscated apps.

Tool TP FP FN Precision Recall F1 score

LibScout 102 144 1 0.4146 0.9903 0.5845

LibPecker 99 87 4 0.5309 0.9612 0.6840

Orlis 8 5 95 0.6116 0.0777 0.1378

LibID-S 101 216 2 0.3186 0.9806 0.4810

Libloom 103 53 0 0.6603 1.0000 0.7954

Libra 101 27 2 0.7891 0.9806 0.8745
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Table 9. Average runtime of all experiments.

Tools Library Learning App Learning Library Detection

(seconds per library) (seconds per app) (seconds per app)

LibScout 1.66 – 5.04

LibPecker – – 509.40

Orlis 5.18 – 850.30

LibID-S 0.23 2.07 0.60

Libloom 0.25 0.42 1.26

Libra 4.39 – 9.20

With the non-obfuscated Orlis dataset in Table 5, Libra outperforms all com-
pared tools by 11% to 540%, maintaining the same F1 score observed in the
previous section and retaining the highest precision. This trend persists across
all obfuscated apps, where Libra consistently achieves the highest F1 score.

Tables 6 and 7 show detection results for apps obfuscated by Allatori and
Dasho. Overall, even though the results show a decline in F1 score performances
by all tools, Libra demonstrates the most resilience towards these techniques
with an improvement ranging from 7% to 605% and 15% to 455% for the F1
score on Allatori and Dasho-obfucated apps respectively. Libra correctly iden-
tifies the most libraries with the apps obfuscated by Allatori, and achieves the
highest precision against both obfuscators. In contrast, the detection rates of Lib-
Scout, LibPecker, and LibID-S decline due to the effects of package flattening
and control flow randomization on their package hierarchy structure features.

Finally, for Proguard in Table 8 where only identifier renaming and package
flattening are enabled, the metrics across all tools remain unchanged from the
non-obfuscated results. The results show that Libra outperforms other tools by
10% to 535%, displaying its resilience to the techniques applied by Proguard.

Overall, the results demonstrate Libra’s greater detection effectiveness than
the state of the art, surpassing prior works by a margin ranging from 7% to
540% for non-obfuscated apps, and from 7% and to 1,386% for obfuscated ones.

5.2 Runtime Overhead

Table 9 shows the aggregate average learning and detection time per library
and app for experimented tools. Time is divided into Library Learning, App
Learning, and Library Detection, as tools perform different operations. Libra
exhibits slightly longer learning and detection times (4.39 s learning per library,
9.20 s detection per app) than three of the five tools, although still within the
same order of a few seconds. This is partially attributed to its relatively costly
method-level granularity for computing fuzzy hashes. LibScout’s fuzzy hashing
similarly contributed to a higher detection time. LibPecker and Orlis were the
least efficient, with longer runtimes due to class matching and code analysis.
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Both LibID-S and Libloom demonstrated fast learning and detection, although
this comes at the expense of precision.

Overall, the performance of Libra meets the practical requirements and
expectations for its intended use.

6 Discussion and Limitations

6.1 Threats to Validity

The obfuscation techniques used to evaluate the effectiveness of Libra and the
state of the art were chosen from readily available, established benchmarks in the
field. There may exist other obfuscation techniques in the literature that are not
captured by these obfuscators. The used obfuscation tools are what developers
commercially use for their apps which gives an accurate representation of how
the different detection tools perform on apps in the wild.

The default values for the thresholds in Sect. 4 were chosen to offer good
trade-offs for library detection in general cases out of the box. However, these
thresholds may prove to be too high when dealing with specific obfuscation
techniques that involve the insertion or removal of significant amount of code.
To address this, the thresholds could be parameterized based on the detection
of certain obfuscation techniques, allowing for better adaptability and accuracy
in different scenarios. Parameter tuning against different obfuscation techniques
could also be performed to further refine the thresholds and the detection power
of Libra.

6.2 Performance Optimization

Certain aspects of the approach and its implementation can be optimized to
achieve higher runtime performance. First, libraries can be processed in parallel
during the learning process to cut down on the overall effective learning time.
Second, early cutoffs can be employed during the detection phase if it is unlikely
that the number of matched methods would exceed what is need to produce a
high-enough final similarity score. This can be a check that is calculated on-
the-fly while comparisons are being made. Finally, the comparisons performed
during the library pairing step are all independent and can be parallelized to
reduce the overall detection time per app.

6.3 Native Libraries

Libra currently only supports identifying bytecode libraries within Android apps.
Apps could also utilize native libraries, written in C/C++, via the Java Native
Interface (JNI) [3]. Identifying (obfuscated) native libraries in an app comes with
its own challenges that extend beyond the scope of this work [14,17,30]. As such,
we defer the identification of native libraries to future work.
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7 Related Work

Prior studies on bytecode library identification have explored diverse approaches
with varying degrees of effectiveness against obfuscation. Earlier techniques
relied on package and class hierarchies to measure similarity between app pack-
ages and libraries. For example, LibScout [15] used package-flattened Merkle
trees to obtain fuzzy method signature hashes. LibPecker [43] constructed class
signatures from class dependencies and employed fuzzy class matching at the
package level for similarity comparisons. LibRadar [26] built clusters of apps
and libraries and generated fuzzy hashing features from the clusters based on
the frequency of Android API calls. Techniques dependent on class and package
hierarchies showed limited resilience to obfuscation techniques [28,39], particu-
larly package renaming and flattening, since obfuscators could easily manipulate
class connectivity by merging or splitting classes and packages.

In more recent approaches, method instructions were used to enhance
resilience to obfuscation. For instance, LibD [24] constructed library instances
using homogeny graphs and utilized opcode hashes in each block of a method’s
Control-Flow Graph (CFG) for feature extraction. Orlis [34] constructed a tex-
tual call graph for methods and employed fuzzy method signatures to compute
similarity. LibID [41] constructed CFGs from library binaries for feature extrac-
tion and utilized Locality-Sensitive Hashing for similarity. ATVHunter [37] used
class dependency graphs to split library candidates and utilized both method
CFGs and basic-block opcodes features for similarity measurement. Libloom [21]
encoded signature sets from package and classes in a Bloom Filter and computed
similarity with a membership threshold. While these tools offered some resilience
to obfuscation techniques, their detection power degraded with package flatten-
ing and code shrinking as demonstrated in our experiments.

8 Conclusion

We introduced Libra, an Android library identification tool designed to tackle
the challenges of detecting libraries within Android apps, particularly in the
presence of obfuscation. Libra effectively addresses issues such as multiple and
shared root packages, code shrinking, and instruction bias. Employing a two-
phase learning and detection approach, Libra utilizes novel techniques to handle
obfuscation and code shrinkage. These techniques involve leveraging data from
method descriptors and instructions, encoding method instructions, employing
fuzzy algorithms, and utilizing a two-component weighted similarity calculation.
Our benchmarking results on multiple datasets showcase the effectiveness of
Libra, demonstrating its ability to accurately identify library names and versions
across various degrees of obfuscation.

Acknowledgment. We thank the anonymous reviewers for their insightful feedback.
Opinions expressed in this article are those of the authors and do not necessarily reflect
the official policy or position of their respective institutions.
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A Method Encoding Codebook

Table 10 shows the codebook used by Libra to encode method instructions.
We conducted feature selection to determine the best mapping using Fisher’s
score [18] to gain insights into the most discriminatory instructions. Our anal-
ysis revealed that field getters, setters, and arithmetic operators exhibited low
variance, making them less useful for discrimination. Consequently, we decided
to combine these arithmetic instructions into a single move instruction.

B Search Space Reduction from Library Pairing

The pairing size complexity for pairs that satisfy condition one is O(k), where n
is the number of libraries in the database, and k � n represents the group size.
On the other hand, the pairing size complexity for condition two is O(|PC2|),
where PC2 is defined as:

PC2 =
{

〈C,L〉 | C ∈ A,L ∈ D,
abs(|A| − |D|)
max(|A|, |D|) < τ

}

Table 10. Bytecode encoding codebook used by Libra.

Smali Instruction Encoded Representation

nop -

move* v0, v1 move

move-result* v0 move

return* return

const* v0, lit move

monitor-* v0 monitor

check-cast v0, type call

instance-of v0, v1, type call; move

array-length v0, v1 call; move

new-* v0..vn, type call; move

goto* ref jump

cmp* v0, v1, v2 if; move

if-* v0, v1, ref if

*get* v0, v1, v2 move

*put* v0, v1, v2 move

invoke-* v0..vn ref call

neg-* v0, v1 move

not-* v0, v1 move

*-to-<type> v0, v1 call; move

arith./log.-* v0, v1, v2 move



Libra: Library Identification in Obfuscated Android Apps 223

where C is the library candidate, L is the library, A is the app, and D is the
database. If no conditions are met, the library candidate is paired with the
entire database, resulting in a pairing size complexity of O(n). Note that this is
unlikely as there are a wide range of library sizes from the order of 100 to 103

and condition two is likely to be met.
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Abstract. The widespread adoption of Android apps has led to increas-
ing concerns about the concept of “recycled trust” derived from the reuse
of digital certificates. Android app developers frequently depend on dig-
ital certificates to sign their applications, and users place their trust in
an app when they recognize the owner provided by the same certificate.
Although the presence of cryptographic misuse has been acknowledged
by several studies, its extent and characteristics are not well understood.
In this work, we perform a large-scale analysis of certificate reuse across
the Android ecosystem and malware binaries on a collection of over 19
million certificates and over 9 million keys extracted from PE files and
Android applications collected over several years. Our results reveal that
despite the growing nature of the Android ecosystem, the misuse of cryp-
tographic elements is common and persistent. Our findings uncover sev-
eral issues and enable us to provide a series of applicable solutions to the
seen security flaws.

Keywords: Cryptography · Android · Malware · Digital Certificates

1 Introduction

Cryptography plays a crucial role in the Android ecosystem. Cryptographic
operations are used to enable secure storage of sensitive information, verify the
authenticity of the applications, and protect communication. The underlying sys-
tem that enables this functionality is Public Key Infrastructure (PKI). PKI is a
system that manages digital certificates and cryptographic keys and establishes
trust between participating parties by associating a public key with an entity
and enabling the verification of their identity. The trusted Certificate Author-
ity (CA) plays a vital role in this infrastructure issuing certificates to software
vendors and attesting to their identity.

Digital certificates and keys are essential components that enable secure
communication, code signing, authentication, and other security-related features
within apps. They play a vital role in establishing trust and ensuring the integrity
of the Android ecosystem. However, the improper use or mishandling of these
certificates and keys poses a substantial risk to the overall security of the ecosys-
tem.

Instances of compromised certificates and keys within the PKI ecosystem are
not uncommon. The infamous Stuxnet worm and Diqu malware were signed with
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legitimate digital certificates [6,15]. The study by Kim et al. [9] demonstrated
that malware uses valid certificates to evade anti-virus programs and bypass
system protection mechanisms. Kang et al. [8] showed that analyzing the serial
numbers of certificates can potentially reveal indicators of Android malware.
While these examples provide evidence of valid digital certificates being misused,
it remains unclear whether this phenomenon is limited to a specific domain and
what the broader security implications are.

In this work, we conduct a systematic study to measure and characterize the
use of compromised digital certificates across two domains. We focus on Android
applications (apps) and Windows executable files.

One of the challenges in this context is to collect compromised certificates
and keys, as there is no official service that provides a list of all compromised
certificates. To overcome this problem, we collect malicious binaries and Android
apps to extract their corresponding digital certificates. We analyze the reuse of
these deemed to be compromised certificates among the apps.

Our findings show that certificate reuse is more pervasive and widespread
than previously observed, 48% of our collected certificates (over 9 million) are
reused across the collected sets of APK and malicious binary files. Among them,
40% of the certificates used to sign malware binaries are also reused in Android
malicious apps for various purposes. In other words, these certificates are exten-
sively reused in malware across domains.

Although using the same certificate for signing multiple Android applications
is generally discouraged by Google, we found this practice commonly ignored by
both benign and malicious apps. For example, 59% benign apps in our collections
were signed with duplicate certificates. At the same time, we discovered 9,931
unique certificates employed to sign 142,579 malicious and 84,922 benign apps.

To summarize, this study makes the following contributions:

– We conduct the most comprehensive and the largest analysis of cryptographic
elements across Android applications.

– We measure and characterize the extent of certificates and RSA public keys
sharing across APKs and malware binaries on a diverse set of over 19 million
valid certificates and over 9 million reused keys collected from multiple sources
over a period of several years (up to eleven years in some cases).

– Based on our analysis, we provide a set of recommendations to help security
practitioners improve overall cryptographic security.

– To facilitate analysis of cryptographic reuse, we make the set of reused cer-
tificates publicly available1,2.

2 Background

APK (Android Package Kit) file acts as a bundle containing all the necessary
components and resources of an Android application, including the compiled
1 https://key-explorer.com/.
2 https://github.com/thecyberlab/RSA-keys-analysis.

https://key-explorer.com/
https://github.com/thecyberlab/RSA-keys-analysis
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code, assets, resources, cryptographic files (e.g., digital certificates, keys), etc. In
Android applications, digital certificates and keys are used for various purposes:

Integrity and authenticity of the APK : The Android apps have to be signed,
using unique digital certificates, before distribution. This mechanism not only
ensures the integrity of the application but also provides Google, as the official
market, with confidence that the owner’s identity has been verified. However,
Android apps can be self-signed by the owner, or signed with a verified third-
party certificate.

There are two ways to create a key pair for signing apps3. The first involves
using embedded manager tools in the development environment, such as Android
Studio (apksigner, jarsigner) or Microsoft Visual Studio (archive manager), to
automatically generate a keystore (a secure storage container where applications
store and manage cryptographic keys and certificates) and a certificate with the
identity information of the app’s owner. Alternatively, developers can configure
a personalized cryptographic key pair to create a custom key, allowing them to
define their preferred signature and digest algorithms and key size. While this
approach provides greater flexibility, it may also allow for weaker configurations.
In the end, the cryptographic key pair, along with the owner’s identity infor-
mation, forms a signing certificate used to sign the APK file and consequently
perform APK validation during installation.

Data protection and privacy : Cryptographic keys are employed to encrypt
sensitive data within Android apps, safeguarding user information, passwords,
and app-specific data from unauthorized access.

Authentication: Android applications that integrate with external services or
APIs may use authentication and authorization services, e.g., OAuth. These cre-
dentials are used to authenticate the app and obtain access tokens for accessing
protected resources.

Portable Executable (PE). Like APKs, other software applications, including
executable files, utilize digital certificates and cryptographic keys for ensuring
data integrity and authentication. PE serves as the standard format for Win-
dows executables (.exe) and dynamic link libraries (.dll). Microsoft code-signing
technologies, Authenticode and SignTool, are widely used for code signing and
digital signature verification of Windows executable files, including PE (.exe),
dynamic link libraries (.dll), installers (.msi), and other file types.

Cryptographic Infrastructure. Digital certificates: serve as an attestation of
the identity of a certificate’s owner (e.g., hostname, organization) bound to its
public key. The X.509 format is one of the most widely used standards for digital
certificates that, in addition to the public key and owner’s identity, contains a
period during which the certificate is considered valid, and a digital signature
of the issuing certificate authority (CA). Generally, CA is a trusted third party
that can vouch for the identity of a server/certificate’s owner by signing the leaf
certificate with its private key.

3 https://developer.android.com/studio/publish/app-signing.

https://developer.android.com/studio/publish/app-signing
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Pretty Good Privacy (PGP) and GNU Privacy Guard (GPG): PGP is crypto-
graphic technology for secure communication. GPG, often seen as an alternative
to PGP, is an open-source implementation of the OpenPGP standard. Both are
widely used for securing email and data encryption. The standard extensions for
such files include pgp, asc, sig, gpg, pubkey pgp, seckey pgp, and secring pgp.

3 Related Work

Over the past decade, several studies explored the misuse of cryptographic APIs
in Android applications. The vast majority of the approaches use verification-
based analysis that offers assurances for the correct implementation of crypto-
graphic primitives. For example, the static analysis frameworks CryptoLint [4]
and BinSight [12] perform analysis of cryptographic misuse at scale. Cryp-
toLint [4] discovered that 88% of 11,748 Android applications had at least one
mistake in API use. BinSight [12] in its follow-up analysis showed that crypto-
graphic API misuse originated in third-party libraries. Specifically, they observed
that 90% of 132,000 Android apps violated cryptographic API guidelines. Sim-
ilarly, Gao et al. [7] found that 96% of the analyzed 8 million APKs from the
AndroZoo [1] dataset exhibited some crypto-API misuses.

CRYLOGGER [13] employed dynamic analysis for the detection of crypto-
graphic misuse in Android apps. Similar to CryptoLint and BinSight, CRYLOG-
GER explored the correctness of cryptographic API calls based on the defined
rules (e.g., constant keys, weak passwords).

Zhang et al. [18] proposed LibExtractor to detect potentially malicious
libraries and identify malware families based on their digital certificates.

Wickert et al. [16] focused on the crypto misuses of two Java libraries, the
Java Cryptography Architecture (JCA) and Bouncy Castle (BC). Their study
of 936 open-source Android apps showed that 88% of their collected apps failed
to use cryptographic APIs securely.

Numerous studies explored more generic detection of cryptographic mis-
uses. Li et al. [11] conducted a large-scale analysis of API misuse in GitHub
projects. K-Hunt focused on weak cryptographic keys through analysis of bina-
ries [10]. CryptoGuard [14] detected cryptographic misuse in Java programs
including 6,181 Android apps. Similar to other studies, CryptoGuard discovered
that around 95% of discovered vulnerabilities originate from libraries that are
packaged with the application code.

Zhang et al. [17] have proposed CryptoREX, a framework to identify cryp-
tographic misuse of IoT devices. Analyzing 521 firmware images with 165 pre-
defined cryptographic APIs, CryptoREX showed that 24.2% of firmware images
violate at least one misuse rule.

All these approaches focus on whether cryptographic functionality is imple-
mented by the cryptographic libraries embedded in Android correctly. Hence,
their primary focus is on benign applications. We, on the other hand, investi-
gate the reuse of certificates. Kim et al. [9] was the first study to explore the
presence of PE files signed by malicious certificates. We take this further and
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investigate the extent and characteristics of malicious certificates across domains
of Windows binaries and Android apps including malicious and benign apps.

Fig. 1. The flow of the analysis

4 Methodology

The goal of our study is to measure and characterize the extent of compro-
mised certificates and key reuse across Android apps. The flow of the analysis,
illustrated in Fig. 1, includes 3 main steps.

In this study, we analyzed a large collection of Android apps and Windows
executable files. For each of the files, we extracted all cryptographic elements
such as digital certificates, and public and private keys that were included in the
Android application packages and PE files.

The Android apps were unpacked and analyzed for the presence of cryp-
tographic keys, i.e., files with standard extensions indicating the presence of
cryptographic materials such as rsa, pem, crt, and cer. During this process, we
observed the presence of files that did not match any of the standard extensions,
yet appeared to contain digital certificates and keys. We thus parsed the remain-
ing files using the Linux file command to identify hidden files that previously
had standard cryptographic extensions that were later changed.

Malware binaries were parsed using GoLang’s sigtool4, which is a PE package
designed to extract information from PE files. The certificates used for signing
code are contained in the “Attribute certificate” section of PE files in DER
format. For consistency, the extracted certificates were converted to the PEM
format, which was then parsed to extract the certificate and key information.

In the next step, we obtained and verified signature schemes, package
integrity, and package manifest using “apksigner” and AAPT2 (Android Asset

4 https://github.com/doowon/sigtool.

https://github.com/doowon/sigtool


Certificate Reuse in Android Applications 231

Table 1. The summary of collected Android apks

Source Collection Period #apks Valid apks #apks with crypto

AndroGalaxy 2017–2019 7,462 6,845 6,839

AndroidAPKsFree 2020 1,333 1,316 1,312

Anzhi Market 2017, 2020 5,894 5,842 5,840

APKGOD 2020 4,690 4,046 4,044

Apkmaza 2020 111 109 109

APKPure 2020, 2021, 2023 109,216 109,048 108,512

AppsApk 2020 6,146 5,848 5,845

Appvn 2020 33,986 33,311 33,304

CracksHash 2021, 2022 3,486 3,469 3,461

F-Droid 2020 7,073 7,065 7,065

Google Play Store 2020, 2023 5,468 5,283 5,222

1Mobile Market 2020 1,370 1,370 1,370

Mob.org 2020 1,147 1,141 1,141

SlideME 2020 18,052 18,049 18,049

Uptodown 2020 59,717 56,819 56,686

VirusShare 2012–2023 440,106 411,629 411,214

VirusTotal 2020, 2021 8,160 98 85

Xiaomi 2020 1,199 1,175 1,175

Total – 714,616 672,463 671,273

Packaging Tool) included in Android Studio SDK build tools and APK parser35.
At this stage, we discarded a set of 32,003 APKs that were not successfully com-
piled or verified.

Several cryptographic libraries were used to parse the files collected from the
APKs and the PE files for certificates and keys. These libraries include the Java
library keytool6, and the Python libraries: CERT Keyfinder7, PyOpenSSL, Cryp-
tography, and PyJKS. However, not all the certificates and keys are parsable due
to corrupted formats, password protections, or outdated (no longer supported
by libraries) standards.

In order to assess the reuse within the collected data, we conducted a pairwise
analysis of the collected certificates using their fingerprints, i.e., the SHA-1 hash
of the certificates. Along with matching certificates, we also compared valid RSA
keys.

5 https://github.com/itomsu/apk parse3.
6 https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html.
7 https://github.com/CERTCC/keyfinder.

https://github.com/itomsu/apk_parse3
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://github.com/CERTCC/keyfinder
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5 Data

To ensure a robust dataset, we collected Android apk files from several Android
app distribution platforms, including Google’s official market called Google Play
Store, and Chinese app stores, which cater primarily to Chinese users, such as
Xiaomi and Anzhi; free open-source repositories for Android apps such as F-
Droid and AndroidAPKsFree; markets focused on game apps such as Mob.org;
several unofficial repositories such as APKPure, Appvn, AppsApk, SlideME,
Uptodown, APKGOD, Apkmaza, and CracksHash; and stores allowing a direct
download of apps such as AndroGalaxy, and 1Mobile Market.

We also collected 448,266 apps from malware repositories VirusShare and
VirusTotal.

By utilizing a combination of these sources, we aimed to gather a represen-
tative sample of Android apk files, encompassing benign used by different cate-
gories of users and malicious apps. Our set included benign applications collected
between 2017 and 2023 thus presumably following the most recent standards and
malicious apps from 2012 to 2022. Our final set consists of 714,616 of apk files
summarized in Table 1.

From this set, 672,463 were found to be valid, i.e., parsable by the official
Android tool, AAPT2, which verifies package correctness and integrity. Sur-
prisingly, 1,190 apps did not contain any cryptographic components, which was
unexpected. Although Google installation requirements require apps to be signed
for distribution through the official Google Play application8, we expected all
Android developers to follow this security practice.

Overall, we were left with 671,273 applications containing cryptographic
elements for our analysis. Although benign apps were collected from legiti-
mate sources, we verified them using VirusTotal service and Malshare and
VirusShare hashes. We gathered 3,266,932 hash values of malicious binaries from
the Malshare Daily Digest9 (covering the period from September 2017 to July
2023) along with 40,894,458 hash values of the malware samples provided by
VirusShare10. We further matched our benign set against these hashes. As a
result, 247 apk files from benign sources were detected as malicious. The rest of
our analysis was conducted on a set of 259,677 benign apps (38.7%) and 411,596
malicious apk files (61.3%).

In addition to Android apps, we collected a set of 40,270,387 files in PE format
reported as malicious from VX underground’s APT collection11 and VirusShare
repository12 ranging from 2012 to 2021.

8 https://developer.android.com/google/play/requirements/target-sdk.
9 https://malshare.com/daily/.

10 https://virusshare.com/hashes.
11 https://vx-underground.org/apts.html.
12 https://virusshare.com.

https://developer.android.com/google/play/requirements/target-sdk
https://malshare.com/daily/
https://virusshare.com/hashes
https://vx-underground.org/apts.html
https://virusshare.com
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Table 2. Summary of RSA certificates and public keys from APK files

Source Certificate Public key

Total In files In signature block Total From certificates In files

Malicious APK 789,117 789,117 0 802,117 789,117 13,000

Benign APK 778,260 778,044 216 793,980 778,260 15,720

Total∗ 1,567,377 1,567,161 216 1,596,097 1,567,377 28,720
∗duplicates within sets are removed, across sets retained

6 Analysis

In our study, the collected cryptographic files were parsed to identify the presence
of certificates and keys. In cases where APK files included the signing certificate
within the signature block rather than a distinct cryptographic file, we also
extracted those certificates.

After filtering only RSA certificates and keys, we obtained 789,117 certificates
and 802,117 public keys distributed across 411,596 malicious Android apps and
778,260 certificates and 793,980 public keys extracted from 259,677 benign apps
(Table 2). Parsing 40,270,387 malware binary files, we identified 18,081,489 RSA
certificates and their corresponding public keys. Overall, we derived 19,648,866
certificates for our analysis (Tables 5).

In the absence of an official repository providing a comprehensive list of com-
promised certificates, we focused on the certificates associated with instances of
PE files and APKs that were officially reported as malicious. We consider these
certificates to be compromised (as the adversary likely has access to the corre-
sponding private key), and in short, we refer to them as malicious certificates.

6.1 Cryptographic File Formats

Out of 671,273 APKs analyzed, we discovered 2,376,721 files that may contain
cryptographic components indicating digital certificates and keys (Table 3).

APKs typically incorporate a range of cryptographic components, utilizing
diverse encryption algorithms, each serving specific purposes. Cryptographic
file formats can exhibit varying configurations of cryptographic elements. As
our analysis showed, cryptographic components may appear in file formats not
related to cryptographic extensions, hence we parsed all collected files.

We discovered that not all of the initially identified file extensions within our
collected APKs reflected the actual content of the file, i.e., many appeared to be
renamed. This phenomenon typically happens when the original file extensions
are changed, potentially to disguise or obfuscate the file content. Overall, out of
2,376,721 crypto-related files, 1,433,458 (60.3%) have been found renamed. The
summary of renaming instances is presented in Table 4, where we can clearly
observe two major recurring patterns.

Files containing certificates and keys (i.e., with file extensions appkey, pub-
key pgp, and seckey pgp, along with others like pem, jks, exe, key, der, and
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csr) are commonly stripped of their original extensions (showed as <None>) or
changed to pose as innocuous extensions. For example, a large number of files
containing pgp keys were renamed to appear as image files, i.e., with png and
jpg extensions.

Among the 104,044 files without extensions, 87,072 (83.7%) were identified
as being in the “appkey” format. While the remaining formats were distributed
randomly throughout the apps’ file structures, the “appkey” files were specif-
ically located either in the “assets” or the “assets/res” folders. Generally, the
application key is the signature of the public key certificate of the private key,
that is used to sign the APK, stored in a text format. Devices should only accept
updates from an app when its signature matches the installed app’s signature as
a secure process. Another visible pattern is the renaming of Windows executa-
bles from exe extension to dll extension. This practice can help evade security
measures and mislead users or analysts by disguising standalone executables.

Malicious apps appear to have fewer certificates in general, 817,479 in 411,596
apps, compared to benign apps, 820,997 in 259,677 apps (see Table 9). Having
fewer certificates can help malicious apps avoid detection and maintain a low
profile in their malicious activities. Similar behavior has been observed with
public keys.

On the other hand, more private keys have been seen in malicious apps,
(1,174 compared to 423) (see Table 9) which may be necessary to facilitate the
decryption of encrypted malware data (e.g., in ransomware cases).

Table 3. Summary of parsable cryptographic files in apps

Category Unique Total Benign apps Malicious apps

All files 1,216,354 2,376,721 1,246,846 (52.46%) 1,129,875 (47.54%)

Files containing certificate(s) 646,176 826,674 294,323 (35.60%) 532,351 (64.40%)

Files containing public key(s) 2,150 28,872 15,764 (54.60%) 13,108 (45.40%)

Files containing private key(s) 500 1,604 425 (26.50%) 1,179 (73.50%)

6.2 Reused Certificates

Out of 19,648,866 RSA certificates, 9,412,099 (48%) are reused across the col-
lected sets of APK and malicious PE files, with 11,251 (0.12%) of them being
unique instances. As the results in Table 5 show, there is significant duplication
of certificates within and across sets. Even more interesting is the presence of
significant overlap between sets, which highlights the extensive reuse of certifi-
cates between benign apps and malware, including malicious apps and binaries.
We will explore each of these aspects further.
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Table 4. The summary of renamed file extensions

Renamed extensions Total files Unique Malicious APK Benign APK Most frequent original extensions

Total Unique Total Unique

exe 979,127 240,857 272,002 78,253 707,125 178,900 .dll, .temp, .binary, <None>, .so

seckey pgp 217,462 145,336 110,759 74,191 106,703 68,564 .enc, .bin, .png, .html, .lhs

pubkey pgp 139,184 89,700 84,809 55,307 83,998 55,969 .enc, .html, .png, <None>, .jpg

appkey 87,072 56,615 55,186 35,092 5,253 2,170 <None>

pem 10,116 1,244 4,863 562 2,263 911 <None>, .0, .jpg, .cer, .txt

jks 389 138 250 88 139 60 <None>, .jilin, .pro, .ts, .keystore

key 56 31 27 12 29 20 <None>, .txt, .mqtt, .dat

der 16 5 10 1 6 4 <None>, .pk, .ab, .split4

bks 13 1 9 1 4 1 <None>

cer 7 1 0 0 7 1 <None>

pfx 7 2 3 1 4 1 <None>

crt 6 2 4 1 2 1 <None>

keystore 2 1 2 1 0 0 <None>

csr 1 1 1 1 0 0 <None>

Total 1,433,458 533,934 527,925 243,511 905,533 306,602 .dll, .enc, <None>, .png, .bin

Table 5. Shared Certificates

Source Total Certificates Unique Certificates Unique shared per set** Shared across

Total Malware binaries Malicious APKs Benign APKs

Malware binaries 18,081,489 41,282 (0.23%) 194 421,175 * 166,844 254,331

Malicious APKs 789,117 146,329 (18.54%) 11,234 5,224,399 4,629,047 * 595,352

Benign APKs 778,260 135,895 (17.46%) 11,213 3,766,525 3,256,951 509,574 *

Total 19,648,866 323,506 22,641 9,412,099 (48%) 11,251 (0.12%) are distinct across sets
∗∗duplicates within a set are removed, across sets retained

Reuse of Signing Certificates from Malware Binaries. As shown in
Table 5, out of a total of 18,081,489 signing certificates extracted from malware
binaries, 2% (421,175) were found to be reused in our collected set of APKs.
To our surprise, only 3 of these certificates have been used for signing malicious
apps, the rest were widely used for other purposes.

Around 60% (254,331) of these compromised certificates were reused in
benign apps and as we saw in other instances of reuses, these certificates were
heavily duplicated, where only 156 were unique. These apps are present in our
Google Play Store and alternative market collections indicating that this reuse
practice has been continuing over time.

In our analysis, we found that 40% (166,844) of the certificates found in
malware binaries are also reused in Android malicious apps. The use of signed
malware is not a new phenomenon, numerous sources reported that legitimate
certificates are readily available for purchase in underground markets13. The
previous study by Kim et al. [9] showed the use of legitimate certificates to
sign malicious Windows binaries. However, our latest findings demonstrate that
this practice is even more pervasive and widespread than previously observed.

13 https://cyware.com/news/certificate-authorities-duped-to-sell-legitimate-digital-
certificates-that-can-spread-malware-bcf63b15.

https://cyware.com/news/certificate-authorities-duped-to-sell-legitimate-digital-certificates-that-can-spread-malware-bcf63b15
https://cyware.com/news/certificate-authorities-duped-to-sell-legitimate-digital-certificates-that-can-spread-malware-bcf63b15
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These certificates are being employed in malware across various domains and
are extensively used.

During our investigation, we found 45 benign apps that were reported by
Malshare and VirusShare as malware samples due to the contained cryptographic
content. These benign apps appeared in both the official Google Play Store
and alternative markets over several years (2019 to 2023). Further investigation
revealed a total of 11 unique certificates were embedded in these apps. These
files were flagged as malicious by multiple vendors and reported by VirusTotal. A
pairwise match of certificates disclosed the usage of such certificates for signing
1,993 apps including 1,920 malicious apps and 73 benign apps.

Reuse of APK Signing Certificates. APKs are structured files that can
include a signing digital certificate as a cryptographic file introduced in either a
stand-alone META-INF file or included inside a signature block, depending on
the version of the signature scheme. We parsed each APK to identify the presence
of all signing certificates. As a result, out of 671,273 valid APKs, the majority
(668,392) were digitally signed, while < 1% (2,881) lacked signing certificates,
including 2,134 malicious apps, and 747 benign apps.

During this process, we discovered that the “jarsigner” tool treats a signif-
icant number of 594,971 (89%) signed apps as unsigned, issuing warnings due
to deprecated signature algorithms and weak key sizes included in the signing
certificate.

Out of 258,930 digitally signed benign apps, 59% (153,294) apps were signed
with 25,135 certificates indicating significant reuse of certificates among benign
apps. Using the same certificate for multiple Android applications is generally
discouraged. Reusing certificate makes it challenging to determine the true source
and verify the integrity of the application. If one app signed with a shared
certificate becomes compromised, it can have significant implications for the
security of all other apps that utilize the same signing certificate.

However, there are instances where a developer might reuse a certificate, for
example, for different versions of their application or to facilitate communication
between apps that belong to the same organization. A closer manual analysis
of reused benign certificates showed that these legitimate cases are only respon-
sible for a small portion of reuse. For example, one certificate has been used 6
times to sign apps belonging to Amazon Mobile LLC (Amazon Prime Video,
Amazon Shopping, and Amazon Music). Similarly, another certificate has been
used 4 times to sign apps published by Microsoft Corporation (Microsoft 365 and
Microsoft Teams). Yet, our findings show that not all signing certificate reuse
cases are related to developers following these legitimate practices.

Surprisingly, 9,931 unique certificates have been employed to sign 142,579
malicious apps, 34% of total 411,596 apps, while at the same time, these certifi-
cates have been also used to sign 84,922 benign apps, 32% of 259,677 apps. These
benign apps were collected from all sets, excluding the SlideMe market which
appeared to repackage and sign all posted apps with its market’s certificate.
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In November 2022, several platform certificates have been discovered to be
used for signing malware14. The so-called platform certificates are used to sign
the system Android apps, and thus give elevated privileges to apps signed with
these certificates. Hence, if a malicious application is signed with such platform
certificate, the Android OS will treat the malicious app with the same elevated
access as a legitimate system app. Surprisingly, we found 332 apps in our col-
lected set signed with 5 of the reported leaked platform certificates, within both
our benign and malicious set of APKs, corresponding to apps released in 2023
and present in Google Play Store, and in sets dating as back as 2014.

The most shared default signing certificates are shown in Table 6. The top
most widely used certificate is the default certificate of Android Studio, used
in 12,639 benign and 34,291 malicious apps. This certificate, also known as
“testkey”, is one of the four key pairs that are generated by the Android team in
the Android Open Source Project (AOSP) and are located in the “release-keys”
folder. The other three pairs (“platform”, “shared”, and “media”) are used to
sign 911 benign apps and 1,482 malicious apps in total. However, it is crucial
for developers to avoid using these default keys since they are publicly known.
When multiple apps are signed with such certificates, they often gain a privileged
position, granting them special access to those apps. As a result, if a malicious
app is signed with the same certificate, it may gain elevated access to sensitive
resources that would otherwise be inaccessible.

We also discovered 18,049 apps signed with a certificate associated with the
SlideMe market. It appears that this certificate has been used to replace the
original signing certificate in order to publish apps in the market. Another case
of certificate reuse involves a service provider named “Qbiki Networks”. The
provider enables customers to create mobile apps with minimal coding and signs
these apps on their behalf. This case was initially reported by Fahl et al. [5] back
in 2014. Interestingly, after several years we still observe a similar situation in
1,590 apps in our benign and malicious sets containing apps from 2014 to 2022.
The practice of certificate reuse by Qbiki Networks’ customers seems to persist
over time.

We were able to detect the presence of a total of 68,962 (10.27%) apps signed
with these known key pairs (Table 6).

Reuse Beyond Signing Certificate. Another concern in this context is the
reuse of signing certificates for other purposes beyond their intended use. Signing
certificates are meant to verify the authenticity and integrity of specific software
applications or digital documents.

We further examined the reuse of signing certificates for other operations.
As a result, we found 297 unique signing certificates reused within 70,077 apps,
including 20,758 benign and 49,319 malicious apps.

The CAs (Certificate Authorities) define the purpose of the keys when issuing
digital certificates through designated fields known as Key Usage, Extended Key
Usage, and Basic Constraints. These extensions provide additional insights into
14 https://bugs.chromium.org/p/apvi/issues/detail?id=100.

https://bugs.chromium.org/p/apvi/issues/detail?id=100
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Table 6. Use of known and default certificates in apps

SHA-1 Name Total APKs Benign APKs Malicious APKs Apps’ Sources

61ED377E85D386A8D
FEE6B864BD85B0B
FAA5AF81

testkey 46,930 12,639 34,291 AndroGalaxy,
AndroidAPKsFree,
Anzhi Market,
APKGOD,
Apkmaza,APKPure,
AppsApk, Appvn,
CracksHash,Uptodown,
VirusShare, VirusTotal,
Xiaomi

27196E386B875E76
ADF700E7EA84E4C6
EEE33DFA

platform 1,230 9 1,221 APKPure, Appvn,
Uptodown, VirusShare

5B368CFF2DA2686
996BC95EAC190EAA
4F5630FE5

shared 927 781 146 AndroGalaxy, Anzhi
Market, APKPure,
Appvn, Uptodown,
VirusShare

B79DF4A82E90B57
EA76525AB7037AB2
38A42F5D3

media 236 121 115 AndroGalaxy,
APKGOD,
Appvn,Uptodown,
VirusShare

C0DE76E80C8F1BF
EDAC64231B9582DF
0EBC4F19E

SlideME 18,049 18,049 0 SlideME

9EDF7FE12ED2A247
2FB07DF1E398D1
039B9D2F5D

Qbiki Networks 1,590 1,441 149 AndroidAPKsFree,
APKPure, Appvn,
Google Play Store,
1Mobile Market,
Mob.org, Uptodown,
VirusShare

Total – 68,962 33,040 35,922 –

permitted cryptographic operations and the intended purposes of the associated
public key such as digital signature, key encipherment, client authentication, or
code signing. These extensions enable certificate verifiers to assess the suitability
of cryptographic operations and enforce robust security measures.

In other words, keys designated for signing code cannot be reused for other
purposes. Yet, as our results show the key purpose does not appear to be properly
verified.

Out of 9,412,099 reused certificates, 202,997 (2.2%) certificates were found to
be lacking any extensions, i.e., theoretically should not have been signed by CAs.
Out of the remaining certificates, 5,605,334 certificates have at least one of the
extensions which means at least some constraints have been declared regarding
their usage.

The extension characteristics of all reused certificates are summarized in
Table 7. The results indicate that the absence of proper configurations and clear
constraints for a signing certificate can result in the same certificate being reused
across multiple domains.

Surprisingly, 5,179,277 (55%) certificates were labeled with “Certificate Sign”
in their extensions, allowing them to sign other certificates and create a certificate
hierarchy. Such certificates enable the certificate holders to act as trusted enti-
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ties, issuing and signing certificates for subordinate authorities or entities. These
certificates typically belong to CAs, and the presence of these 4,503,150 certifi-
cates in malware binaries raises concerns. We have only extracted code-signing
certificates from malicious binary files, hence, the presence of these privileged
certificates in signing malicious apps suggests potential unauthorized certificate
use.

Table 7. Indented purposes of reused certificates

Characteristic Unique Total APK signing certificate Across sources

Benign APKs Malicious APKs Malware binaries

Key Usage 940 5,188,368 1,731 393,917 291,290 4,503,161

Digital Signature 524 852,104 1,731 98,494 73,862 679,748

Certificate Sign 568 5,179,277 0 390,262 285,865 4,503,150

Key Encipherment 342 22,210 10 9,938 6,143 6,129

Data Encipherment 31 1,774 0 832 942 0

Key Agreement 24 14,766 0 6,462 2,182 6,122

Extended Key Usage 492 810,480 1,954 16,205 15,983 778,292

Code Signing 116 764,571 1,834 1,672 2,777 760,122

TLS Web Client Authentication 373 43,911 55 4,322 11,263 28,326

TLS Web Server Authentication 374 56,568 0 14,851 13,389 28,328

Time Stamping 21 99,501 0 1,218 854 97,429

E-mail Protection 22 12,535 0 1,346 1,025 10,164

Microsoft Commercial Code Signing 12 168 0 42 126 0

Basic Constraints 1,322 5,591,123 63,589 458,363 376,025 4,756,735

CA: True 962 5,587,165 63,285 458,363 372,079 4,756,723

CA: False 360 7,384 304 3,426 3,946 12

Starting from 2008, certificate extensions have been categorized as either
critical or non-critical. If a certificate-using system encounters critical extensions
or information it cannot handle, it must reject the certificate. On the other hand,
non-critical extensions can be disregarded if they are unrecognized, but they
should be processed if they are recognized [3]. To ensure backward compatibility
between applications and older versions of Android, applications may decide to
implement a custom SDK overwrite that forcefully disables the verification of
certificate extensions flagged as critical. Our analysis showed that malicious apps
tend to use key extensions flagged as critical more often than benign apps. Out
of 4,730,060 (50.2%) certificates set as critical, the vast majority (4,160,892)
belongs to malware binaries, 245,592 to malicious apps, and 323,576 to benign
apps.

Thus it appears that malware not only uses privileged certificates (i.e., the
certificates issued to allow the signing of other certificates) but also commonly
requests certificate verification to fit the target profile.

In the context of APKs and PE files, the presence of the CA flag set to True
in the Basic Constraints extension indicates that the certificate is associated
with a CA, signifying it as a trusted organization that has verified and signed the
application or software from the vendor or developer. On the other hand, Android
does not mandate apps to be signed by a CA and does not currently perform
CA verification. It also provides code signing using self-signed certificates that
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developers can generate without external assistance or permission. However, a
self-signed CA certificate implies that the owner of an apk file assumes the role
of a certificate authority and has the authority to issue, validate, and sign other
certificates for various purposes.

Out of 5,587,165 reused certificates found to be flagged as CA, we discovered
2,869,140 (51.35%) are self-signed distributed as 2,106,072 in malware binaries,
450,346 in benign apps, and 312,722 in malicious apps.

These findings highlight the significant reuse of signing certificates in the
ecosystem of Android applications.

Public Keys Present in Reused Certificates. We conducted a deeper anal-
ysis of the key strength of the reused cryptographic elements found in our set
to gain insights into the level of protection they offered. Table 8 presents the
distribution of key size ranges for the public keys extracted from the reused
certificates.

Table 8. Public key size of reused certificates

Key Size Unique Keys Total Keys Benign APK Malicious APK Malware binaries

0–1023 9 728 649 47 32

1024–2047 4,540 731,740 306,780 325,600 99,360

2048–4095 6,294 8,208,281 3,256,459 4,665,343 286,479

4096–8191 287 471,348 202,636 233,408 35304

8192–up 1 2 1 1 0

Total 11,131 9,412,099 3,766,525 5,224,399 421,175

Among the reused keys, 732,468 (8%) are less than 2048 bits in length. They
are considered cryptographically weak and should not be used for cryptographic
protections. For example, NIST-compliant RSA keys are required to have a
length greater or equal to 2048 bits [2]. NIST also recommended deprecating
signing certificates that contained RSA keys of 1024 bits by the end of 2013.
However, across all our scans, 528 signing certificates were found using a depre-
cated public key with a length of less than 1024 bits.

During our analysis, we encountered 1,597 private keys, out of which only
418 are unique. The presence of unencrypted and reused private keys in apps
is concerning. Depending on the intended usage, the presence of these shared
private keys opens up the possibility for misuse, allowing to decrypt protected
data or hijack another app identity.

Out of these 418 unique private keys, we successfully reconstructed 251 RSA
public keys, and by pairwise comparison with our existing collections, 34 shared
public keys and 29 shared certificates were found to be matched to these private
keys. Overall, 563 certificates and 1,108 public keys were found in 819 apps,
distributed as 617 malicious apps and 202 benign apps, dated from 2012 to
2023.
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7 Observations and Recommendations

The prevalence of compromised certificates being reused across Android apps and
malicious binaries is substantial. Yet, our analysis highlights several observations
that underline the existing problems and enable us to propose the following
potential countermeasures:

Adequate Context-Relevant Extensions: We suggest defining context-
relevant extensions with careful use of CA and critical flags to diminish the like-
lihood of potential certificate reuse for various purposes and in multiple domains.
More specifically,

– Specified/non-generic certificates: Our analysis shows that only 5,605,334 cer-
tificates (59.5%) in our large-scale collection are well-defined. Without well-
defined certificate extensions, relying parties have limited insight into the
intended or recommended use of the certificate. This makes it challenging to
enforce appropriate security measures and determine whether the certificate
is suitable for specific operations or applications.

– Non-CA signing certificates: 4,756,723 certificates of malware binaries along
with 63,285 signing certificates in APKs are set to be CA. If a signing certifi-
cate is designated in this way, it inherits the elevated and arguably unneces-
sary authority to issue new certificates.

– Mandated purpose-related extensions: Only 4,730,060 certificates (50.25%)
mandate verifiers to process the purpose-related components of certificates.
If a verifier lacks support for a critical extension, it can safely ignore such
extension without affecting the overall validation process. Properly setting
critical flags enhances the certificate’s reliability while allowing for graceful
handling of unsupported extensions by verifiers.

Use of prevention mechanisms may serve as a simple solution to vet apps,
such as

– Avoiding the use of default or publicly known certificates: 49,323 apps (7.3%)
in our set were signed with Android’s default certificate and 19,639 apps
(2.9%) were signed with publicly known certificates.

– Use of reported malicious and compromised samples: 1,993 benign apps in
our set contain malicious files, and 332 apps were affected by the use of
compromised platform certificates. Our analysis relied on publicly available
information that is readily available to any developer.

– Avoid using not-protected private keys: We were able to extract 1,597 private
keys from malicious and benign apps, and consequently 1,108 public keys
and 563 certificates. In Android application development, it is advised not to
package unencrypted private keys in APK files and refrain from including the
signer certificate’s private key within the APK. Securely storing private keys
in trusted environments, such as servers or hardware security modules, with
limited access during the signing process is essential to enhance app security
and safeguard cryptographic assets.
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Algorithm 1. An algorithm for verifying signing certificate
1: Step 1: � Save hash value while creating the signing certificate
2: ExpectedAppKey ← signature of signing key pair
3: Step 2: � Hard-coded validation procedure
4: procedure OnStart
5: package manager ← AndroidPackageManager
6: package info ← package manager.GetPackageInfo()
7: received app key ← package info.GetSignature()
8: if ExpectedAppKey <> received app key then return false
9: end if
10: Signature verified. return true
11: end procedure

Validate Expectations

– Embedded validation procedures: Apart from considering all the settings and
configurations of keys and certificates, an APK certificate should be further
verified. We propose to use a set of steps in Algorithm 1 to guide app certifi-
cate validation. This process serves as a strong protection, ensuring that the
APK’s integrity remains intact and aligns with the expected attributes.

– Use of tools: The “jarsigner” tool used to verify signing certificates can give
the “security risk” warning due to the use of deprecated signature algorithms,
weak key sizes, and self-signed entries. This tool also informs if the Extended
Key Usage extension allows the certificate to be used for code signing. Using
such tools is encouraged to evaluate the signing certificate in order to reduce
the risk of malicious modifications during distribution.

8 Conclusion

Digital certificates play a crucial role in Android app security, but many devel-
opers prioritize convenience over security. While there are cases where it may be
justified - the app may not contain any important or identifying information - in
numerous instances, it poses substantial risks to users and app owners. Our study
reveals the extent of certificate reuse in Android apps and the widespread pres-
ence of compromised certificates. While reusing signing certificates in Android
apps can simplify the app management process and maintain user trust, it also
comes with significant security considerations. We hope that this research will
urge developers to reassess the current security practices. Prioritizing certificate
security is crucial for safeguarding both users and apps.



Certificate Reuse in Android Applications 243

A Appendix

Table 9. File formats containing cryptographic elements

Identified extensions Total Unique Parsable Benign APK Malicious APK

Certificates Public Keys Private Keys Certificates Public Keys Private Keys

aes 19,671 5,439 0 0 0 0 0 0 0

appkey 87,073 56,616 0 0 0 0 0 0 0

asc 6,008 5,169 1 0 0 1 0 0 0

bks 24,399 2,296 2,082 43,421 0 0 185,912 0 0

ca-bundle 3 2 2 6 0 0 0 0 0

cer 80,199 3,563 3,357 8,183 3 2 76,250 32 12

cert 2,338 150 87 78 0 0 95 0 0

crt 14,711 2,842 2,655 52,713 3 2 22,066 21 7

csr 431 274 0 0 0 0 0 0 0

der 18,137 763 715 1,654 603 27 9,079 282 47

dsa 6,076 6,040 0 0 0 0 0 0 0

ec 2 2 0 0 0 0 0 0 0

exe 980,685 241,893 0 0 0 0 0 0 0

gpg 91 89 0 0 0 0 0 0 0

jks 6,615 347 63 325,104 0 0 53,310 0 0

kdb 58 16 0 0 0 0 0 0 0

kdbx 57 20 0 0 0 0 0 0 0

key 9,912 827 206 7 158 95 6 253 227

keystore 1,102 385 17 0 3 0 0 37 0

ovpn 3,417 3,274 3,211 2,369 2 60 1,034 0 32

p12 2,310 717 4 0 0 0 0 1 4

p7b 89 22 14 244 0 0 104 0 0

p7m 13 10 0 0 0 0 0 0 0

p7s 1 1 0 0 0 0 0 0 0

pem 52,447 5,045 4,807 130,326 14,898 236 59,774 12,361 842

pfx 6,340 1,330 1 0 0 0 4 0 0

pgp 5 3 0 0 0 0 0 0 0

pkcs11 1 1 0 0 0 0 0 0 0

pkcs12 34 10 0 0 0 0 0 0 0

ppk 55 40 0 0 0 0 0 0 0

priv 3 1 1 0 0 0 0 0 3

private 34 4 0 0 0 0 0 0 0

pub 6,716 5,468 35 0 64 0 2 24 0

pubkey pgp 139,184 89,700 0 0 0 0 0 0 0

public 52 8 4 18 2 0 5 0 0

rsa 666,428 632,089 631,852 256,874 1 0 409,837 0 0

sec 582 291 0 0 0 0 0 0 0

seckey pgp 217,462 145,336 0 0 0 0 0 0 0

sig 23,395 6,416 3 0 5 0 1 0 0

sign 290 166 0 0 0 0 0 0 0

signature 281 68 0 0 0 0 0 0 0

spc 14 10 0 0 0 0 0 0 0

Total 2,376,721 1,216,354 649,117 820,997 15,742 423 817,479 13,011 1,174
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Abstract. We present TC4SE, a trusted channel mechanism suitable
for secure enclave-based trusted execution environments, such as Intel
SGX, that leverages the existing security properties provided by the TEE
remote attestation scheme and Transport Layer Security (TLS) protocol.
Unlike previous works that integrate attestation into the TLS handshake,
TC4SE separates these two processes and binds the trust to the authen-
tication primitives used by the TLS protocol. TC4SE avoids modify-
ing the TLS protocol itself, thereby avoiding extra overhead, dependen-
cies, and inadvertent introduction of security vulnerabilities. We argue
that TC4SE provides the same level of security assurance as related
works, while offering superior performance and implementation advan-
tages, comparable to the regular TLS protocol.

Keywords: Intel SGX · attestation · trusted channel · Transport
Layer Security · Trusted Execution Environment

1 Introduction

Having a secure communication channel is a common requirement in communi-
cation systems. The Transport Layer Security (TLS) protocol has been the de
facto standard for constructing a secure channel between two entities. While the
TLS protocol assures the integrity and confidentiality of the communication, it
does not necessarily reflect its endpoint’s integrity. To address this, Gasmi et al.
proposed the term trusted channel, a secure channel where the trustworthiness
is bound to the configuration of the endpoints [4].

The TLS protocol establishes trust by relying on a public key infrastructure,
allowing endpoints to use certificates signed by a trusted Certificate Authority
(CA). However, simply possessing a private key of a certificate does not directly
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reflect the integrity of the software behind the endpoint claiming the identity.
Any software that possesses the private key can claim the identity, rendering
it inadequate in the context of a Trusted Execution Environment (TEE). TEE
platforms address this issue by binding the authenticity of an entity to a combi-
nation of hardware and software state, which external parties can verify [2].

A TEE typically does not provide an out-of-the-box communication protocol
between softwares running on the platform. However, a trusted channel pro-
tocol can be built by combining the attestation mechanism, which is present
in every TEE platform, with an existing secure channel protocol [4,9,12,13].
Among known alternatives, most solutions are built for a TEE platform whose
architecture is similar to the one in Trusted Platform Module (TPM). Secure
enclave-based TEEs are a more recent development that differs considerably
from the TPM architecture. As a result, it has unique security properties and
capabilities to leverage when designing a trusted channel protocol.

In this paper, we propose to simplify the complex designs of trusted channel
mechanisms in previous works, making it more suitable for secure enclave TEEs.
We introduce TC4SE: Trusted Channel for Secure Enclaves, a novel trusted chan-
nel mechanism suitable for inter-enclave communication use cases. Leveraging
on the security properties provided by the secure enclave and the TLS secure
channel protocol, TC4SE is built on top of the underlying TLS protocol with-
out any modification to the TLS protocol itself or its specific components, e.g.,
X.509 certificate. In addition, we evaluate the trust model of related proposals
in [8,9] and contrast it against our design. We also analyze the performance of
each approach and compare the results to TC4SE. We argue that TC4SE offers
superior performance, comparable to the regular TLS protocol.

2 Background

This section introduces the fundamental concepts of a TEE, focusing on Intel’s
TEE implementation called SGX. Additionally, we provide an overview of the
Intel SGX remote attestation scheme, which is relevant to the design presented
in this paper.

2.1 Trusted Execution Environments and Intel SGX

A Trusted Execution Environment (TEE) defines a specification for the execu-
tion of a software that allows it to be trusted by external parties [1]. TEEs play
a significant role in confidential computing technology, providing verifiable trust
between different parties. Typically, a TEE guarantees confidentiality, integrity,
and authenticity through hardware-based protection [11]. Intel Software Guard
eXtension (SGX) is one of several implementations of a TEE. It is a set of pro-
cessor extensions that enables a user program to establish a separate trusted
execution domain called a secure enclave [3], which becomes an important com-
ponent in building a trusted application.
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Unlike the traditional operating system model, where a program runs on
top of the operating system layer, a secure enclave allows a program to iso-
late a part of its execution context from the operating system through hard-
ware support, effectively protecting its confidentiality against a higher-privilege
adversary. Moreover, the processor cryptographically protects the integrity and
authenticity of the enclave, and provides a measurement mechanism that can
be used to verify the enclave’s state to external parties. At the core of the TEE
platform lies the Trusted Computing Base (TCB).

Intel SGX provides a sealing mechanism that allows enclave secrets to be
encrypted and stored in untrusted memory [3]. The secrets are encrypted using a
private sealing key that is derived from a unique key embedded into the processor
during the manufacturing process. This key is not known by Intel, and it is unique
for each processor. Sealing prevents an adversary from moving the encrypted
secrets to another machine and decrypting the secrets by using another machine’s
key.

2.2 Remote Attestation (RA) Within Intel SGX Context

Attestation is an integral part of TEE technology. It allows a trusted application
to make a claim and provide verifiable evidence to support the claim [2]. Attes-
tation in a TEE relies on a hardware root of trust, which can perform reliable
measurements of the system state and prepare the report as evidence. The TEE
hardware digitally signs the report, ensuring that an external entity can verify
its authenticity.

SGX uses a common static measurement technique, where it relies on a secure
hash algorithm to measure the enclave image during enclave initialization. Along
with this measurement, called MRENCLAVE, the enclave image also provides
its author’s signature, referred to as MRSIGNER. These two components form
the enclave identity, indicating a specific enclave from a specific author.

SGX employs an embedded cryptographic SGX hardware key to authenticate
itself to others. This cryptographic key is retained throughout the lifetime of
the processor and cannot be changed in any way. However, unlike other TEE
implementations, such as Trusted Platform Modules1, SGX does not provide an
embedded certificate to certify the key’s authenticity. Instead, Intel provides a
centralized system known as the Intel Attestation Service (IAS) to verify and
confirm the authenticity of the private key. Developers can also use attestation
functionality provided by the Data Center Attestation Primitives (DCAP). This
paper focuses on DCAP attestation as it enables delegating the verification to
the client enclave rather than using the fully centralized IAS model.

Figure 1 presents an overview of the DCAP components. DCAP features
two special enclaves that facilitate the attestation process. The Quoting Enclave
(QE) generates the quote, which is evidence of an SGX enclave’s authenticity

1 Some TPM devices are typically provisioned with an endorsement key certificate
directly in the hardware, which can be retrieved from its API. However, this is not
a strict requirement.
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Fig. 1. The Intel SGX DCAP attestation trust chain

and integrity. The QE generates the attestation key from the root sealing key,
which is in turn derived from the owner epoch and the SGX hardware key. The
owner epoch is set by the owner of the platform during the provisioning process.
It allows the platform owner to control the lifetime of the attestation certificate
validity and sealed information. The SGX hardware key serves as a root of
trust for cryptographic operations, ensuring the authenticity and integrity of
attestation-related data.

The Platform Certification Enclave (PCE) generates a certificate that pro-
vides proof of the platform’s integrity and security configuration. By verifying
the platform certification, remote parties can verify the results of the attestation
process and establish trust with the SGX enclaves on that platform.

The platform certification enclave relies on Intel’s cloud-based Provisioning
Certification Service (PCS) for certifying SGX platforms. To reduce the commu-
nication between the enclaves and the PCS server, Intel provides a proxy, called
Provisioning Certificate Caching Services (PCCS), that can be run locally and
caches certain cryptographic elements to accelerate the attestation process.

For more details about DCAP, we refer the reader to Intel’s developer doc-
umentation [5].

3 Related Work

Other researchers have published work on securing communication between sep-
arated trusted systems. Walsh et al. [13] evaluated several mutually attested
TLS mechanisms for microservice communication, relying on a TPM-based sys-
tem as their trust anchor. Niemi et al. [9] also surveyed several attested TLS
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mechanisms and divided them into three categories based on when the attesta-
tion is done. In this section, we curated related research that specifically utilizes
SGX. We evaluate their trust chain and trust boundary, to compare against our
proposed design in Sect. 4.

Similar to the work of Walsh et al., we present the design of mutual TLS in
Fig. 2a as the baseline of a trusted channel. A mutual TLS connection depends
on trust in the ownership of a private key by its endpoints. The ownership is
certified by a Certificate Authority (CA) that signs the corresponding certificate,
which a peer can verify using the public key infrastructure. Therefore, each peer
must trust the CA, as well as the entirety of the remote endpoint’s machine.
The only security property a peer can evaluate is that the remote peer possesses
the private key.

3.1 Intel SGX ECDH with Attestation

The Intel SGX SDK provides out-of-the-box support for secure channels with
attestation using Elliptic Curve Diffie-Helmann (ECDH). The ECDH key
exchange payload is wrapped in an attestation payload, which the receiving party
can verify to establish trust. According to the Intel SGX Developer Reference
[6], SGX’s ECDH protocol is designed to only be used within local attestation
scenarios. This is reflected in the protocol steps, which are tightly coupled with
the SGX local attestation mechanism, where an SGX-supporting processor medi-
ates the attestation steps. However, developers can implement a similar ECDH
key exchange protocol with another attestation mechanism to build a trusted
channel.

Intel shipped a sample implementation of local attestation using this mecha-
nism alongside the SGX SDK source code for Linux [7]. The sample demonstrates
the SDK function that wraps the protocol into several function calls, which the
enclave can call to establish the secure channel. The secure channel uses a 128-bit
AES key which is derived from the ECDH shared key.

Figure 2b illustrates the trust model of the Intel ECDH trusted channel. The
SGX TCB certifies the ECDH key material, enabling each peer to verify the
authenticity of the remote endpoint. The trust boundary is limited to only the
SGX TCB, and the participating enclaves, aligning with the SGX trust model
that considers the non-enclave domain as untrusted. Because the private part
of the ECDH key remains within the enclave, every participant can ensure that
their peer is authentic throughout the trusted channel session.

3.2 Intel SGX Attested TLS (RA-TLS)

Knauth et al. [8] proposed integrating remote attestation with TLS, referred to
as RA-TLS, to establish a secure channel to an enclave. This technique binds
the SGX root of trust into the TLS protocol, extending the trust model of the
TLS protocol. Therefore, it allows reusing an existing protocol to build a trusted
channel that fits the SGX trust model and requirements.
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Fig. 2. Trust chains of several trusted channel designs
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RA-TLS attaches the remote attestation quote to the X.509 certificate used
within the TLS handshake. The attestation quote certifies the public key used
in the certificate. As such, it provides additional security properties, which the
remote peer can validate through attestation verification. The quote is generated
only once during the certificate’s creation. The verification occurs during the
TLS handshake, where RA-TLS adds additional verification logic that invokes
the quote verification API.

Figure 2c depicts the trust design of the RA-TLS protocol. Because the cer-
tificates used by the peers are self-signed, the PKI cannot be used to establish
trust. Instead, the trust is rooted in the Intel SGX attestation infrastructure.
The remote peer must verify the attestation to establish trust and construct the
trusted channel. It is mandatory to verify the attestation on every handshake.

Intel provides a sample implementation of RA-TLS in their SDK repository.
Moreover, Intel added relevant API functions in the SDK that simplify the inte-
gration of their custom X.509 extension and validation logic to SGX enclaves
since the release of SDK version 2.16.

3.3 Trusted Socket Layer

Niemi et al. proposed Trusted Socket Layer (TSL, [9]) to integrate the attestation
into the existing TLS 1.3 protocol. It extends the security guarantees provided
by the TLS protocol to create a secure channel with the attestation guarantee
of a TEE system. It is similar to the generalized design previously proposed by
Gasmi et al. [4], updated with the more recent TLS 1.3 protocol. Walther et
al. also proposed a similar design with their RATLS proposal [14] (not to be
confused with Intel’s RA-TLS proposal from Sect. 3.2). The TSL approach is
TEE platform agnostic and may be implemented in any platform supporting
attestation.

In principle, TSL is based on a similar approach as Intel’s RA-TLS design,
where the attestation evidence is attached to a custom X.509 extension. The
attestation evidence is also verified during the handshaking steps, where a cus-
tom attestation verification function is added to the TLS verification function.
Unlike RA-TLS, however, the evidence is created on every handshake attempt,
as the TCB is required to measure the ClientHello message of the handshake as
part of the attestation evidence that needs to be attached to the certificate. Con-
sequently, the endpoint must regenerate a fresh certificate on each handshake
right after the server receives the ClientHello message.

TSL provides a strong guarantee that every attestation quote is tied into a
specific handshake, which makes replay and relay attacks impossible. It acknowl-
edges that a powerful adversary with access to the system is able to obtain the
active TLS session key. To partially mitigate this problem, the protocol dis-
ables TLS 1.3 session resumption to prevent the leaked session key from being
used elsewhere without proper re-attestation. If TSL is implemented in a secure
enclave, the problem can also be addressed by encapsulating the endpoint within
this protected environment. Figure 2d depicts the trust chain of this approach,
assuming that the TLS connection terminates in the untrusted domain.



TC4SE: A Trusted Channel for Secure Enclaves 253

3.4 Limitations

We identified several shortcomings of the designs proposed in related work that
can affect the effectiveness to achieve their goal to build a trusted channel for a
secure enclave. This section identifies three different areas of limitations.

Dependency on the Attestation Infrastructure. The designs we evaluated
require a strong availability of the attestation infrastructure in order to estab-
lish a trusted channel. This is due to the trusted channel session primitives (e.g.,
shared key, session identification, etc.) being bound directly to the attestation
primitives. In these scenarios, a secure enclave must repeatedly contact a central
attestation provider to validate the attestation quotes. In the case of the DCAP
infrastructure, the attestation provider is Intel’s cloud-based Provisioning Cer-
fication Service.

As previously discussed in Sect. 2.2, Intel PCS holds the central authority to
establish trust in an SGX enclave. The enclave needs data obtained from the
PCS or cached by PCCS to validate the attestation quote correctly. If this data
cannot be acquired from the PCS service, an enclave will not be able to establish
a trusted channel to a remote enclave. A malicious actor can choose to sever the
connection between an enclave and the PCS/PCCS infrastructure, resulting in
a denial-of-service (DoS) to the enclave’s trusted channel altogether.

The connection to the PCS server during the handshake also introduces an
observable behavior where external adversaries can distinguish between trusted
channel handshakes and regular handshakes. It may act as a side channel for
an external adversary with access to the communication channel between secure
enclaves.

Performance and Implementation Complexity. The reliance on the attes-
tation infrastructure for the handshaking process results in a performance
penalty during the initiation of the trusted channel. The attestation verification
process adds additional complexity to the handshaking process, taking extra
time to complete. Moreover, by involving the original PCS infrastructure setup,
the verification step requires the enclave to contact the PCS server or the PCCS
proxy, which can generate substantial latency.

Attaching attestation logic within the handshaking steps also increases the
complexity of the implementation. While major TLS libraries, such as OpenSSL,
support extending verification logic within the certificate verification step, the
TSL design presented in this section adds additional processing right after the
ClientHello message to obtain session parameters and to generate the attestation
quote for the specific handshake session. OpenSSL does not provide an easy
interface for developers to manipulate its handshake sequence, increasing the
burden on the developers during implementation and maintenance.

Trust Chain and Boundary. The main principle of a trusted system is to
minimize the size of the TCB and the size of the trusted domain, collectively
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forming a trust boundary. The regular mutual authentication in the TLS protocol
requires all participants to trust the CA and the entire system possessing the
authorized private key certified by the CA. The TSL design enhances trust by
incorporating the TEE attestation, adding extra security derived from the TEE
root of trust. However, the attestation and the CA trust chain remain separated,
requiring the participant to verify the trust chain separately.

Meanwhile, the Intel RA-TLS design places trust solely in the SGX attesta-
tion scheme. The certificate used in the TLS protocol only serves as a container
for the attestation quote. Consequently, this design may not be compatible with
a traditional PKI architecture where the certificate is signed and rooted by a
trusted CA.

4 Design

We propose TC4SE, a trusted channel design for secure enclaves that only
requires performing attestation once and where trust is transferred between
enclaves through hardware-enforced security guarantees and mutually authen-
ticated TLS (mTLS). We show that our design is more performant than other
designs, resilient to external dependency availability, and easy to implement.

TC4SE leverages the guarantees provided by the secure enclave where the
information generated inside the enclave can maintain its confidentiality unless it
is explicitly leaked outside the enclave. In this way, we can consider every secret
generated in the enclave as a trust anchor, similar to a hardware-bound secret.
This section presents the trust model and the high-level design of our approach.

4.1 Trust Model

The TC4SE design simplifies the creation of a trusted channel by delegating the
trust to a private key within the secure enclave boundary. Like the Intel RA-TLS
design, the private key involved in the channel creation is generated and sealed
within the enclave. In this way, we can rely on the enclave security guarantees
to retain the confidentiality of the key and to preserve the underlying trust in
it, assuming that the enclave never leaks the private key. The main difference
with Intel’s proposal is the attestation procedure, wherein our design performs
the attestation steps outside of the TLS handshake.

Figure 3 presents the trust model of TC4SE. Similar to several related works
previously discussed in Sect. 3, TC4SE is built on top of the TLS secure channel
protocol. However, in contrast to those designs, TC4SE does not use the X.509
certificate as an attestation quote container only. Instead, the private key in the
certificate is directly linked to the attestation procedure. The client and server
go through the attestation and verification procedure once, after which they use
their respective private keys to convey trust between each other.

The TLS protocol uses a client/server paradigm and this is reflected in
TC4SE as well. The enclave that acts as a server authenticates with a private
key that is generated inside the enclave. The certificate for its public key can
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Fig. 3. The trust chain of TC4SE.

be self-signed. The server proves its authenticity to the client by quoting its
certificate and sending the attestation quote to the client. The client can verify
the attestation quote. If the verification is successful, the certificate is added
to its trusted certificate store, which is also contained inside the secure enclave
domain. From then on, any TLS connection where the certificate is used can be
linked directly to the successfully attested identity of the server enclave.

The client’s endpoint is similarly authenticated by a private key that is gen-
erated inside the client’s enclave. To certify the client’s private key, the server
enclave acts as trust anchor for the trusted channel and offers functionality sim-
ilar to a Certificate Authority (CA). For the server enclave to sign the client
certificate, the client must present a Certificate Signing Request (CSR) that
is authenticated by an attestation quote. Effectively, the CSR is cryptographi-
cally bound to the client enclave machine, as the attestation quote proves the
authenticity of the CSR to originate from a legitimate enclave running in a
secure-enclave-enabled machine. Upon successful verification of the attestation,
the server enclave generates the client certificate, signs it, and transfers it to the
client. The client can then use this certificate to establish trust with the other
enclave in subsequent mTLS connections.

When an enclave is shut down, it must seal its internal state and store it
in the untrusted domain, for it to be reloaded after an enclave restart. The
internal state includes the CA and client certificates as well as their respective
keys. Because the sealed data is bound to a specific enclave and hardware, it is
impossible to transfer the sealed state elsewhere, except if the trusted software
is programmed to do so. By preserving all secrets within the secure enclave
boundary, the trust between every participant can be preserved and guaranteed
through private key possession.

Because the cryptographic key is sealed to the SGX hardware, the key may
be lost permanently in case of processor malfunction or root-of-trust reset (i.e.,
resetting the SGX’s owner epoch parameter). To mitigate this risk, a backup
strategy for cryptographic keys can be established, with particular emphasis on
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Fig. 4. The TC4SE trust establishment procedure between enclaves

safeguarding the CA key, the foundational root of trust in the TC4SE system.
For example, a failover mechanism can be put into place by creating a replica of
the CA server, using the same cryptographic key, which can be activated in the
event of a system breakdown. If the backup needs to be stored outside of the
SGX environment, the backup process must involve an external root-of-trust;
for example, an alternative TEE device such as a TPM or smartcard. These
backup systems are out-of-scope of the TC4SE design but can be implemented
independently to increase the system’s availability.

The TC4SE design allows for extending the chain of trust to a full-fledged
external PKI infrastructure, where a recognized external CA authority signs the
CA certificate of the TC4SE server. The TC4SE server can generate a CSR and
send it to an external CA for signing. This signed certificate offers an added
advantage if TC4SE is used within a system that requires additional identity
verification other than the enclave identity, such as a domain name or IP address.
It is particularly relevant in specialized scenarios where multiple parties may
deploy the compiled enclave and interact with one another.
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4.2 Establishing the Trust

As briefly mentioned in the previous section, TC4SE performs attestation outside
of the secure channel protocol (i.e., the TLS handshake). Figure 4 describes the
sequence to establish and transfer the trust from the secure enclave TCB (i.e.,
through attestation) into the PKI primitives (i.e., a certificate and its associated
private key) between two enclaves. We divide the sequence into two parts: trust
evidence generation and trust exchange.

Trust Evidence Generation. Both enclaves must generate their authenticity
evidence and trust anchor. This is done by generating their own keypair within
their enclave boundary. The server enclave then generates a self-signed certifi-
cate, which will act as its identity, and a CA to authenticate the client’s identity.
The client enclave generates a CSR to obtain a client certificate for its authen-
tication to the server. The CA/server certificate and the CSR are quoted by the
TEE’s TCB and become the attestation evidence to establish the trust.

Trust Exchange. The generated authenticity evidence must be exchanged
between the participants to establish mutual trust. The server hands its cer-
tificate and its attestation quote to the client, where the client can verify the
attestation quote. Upon successful verification, the client can add and seal the
server certificate to its trusted certificate store. The client can continue the pro-
cess by sending its CSR and the respective quote. The server verifies the quote
and signs the CSR on successful verification of the quote. It then hands back the
signed certificate to the client. Finally, the client can store the keypair with its
certificate.

The trust exchange process uses the TLS protocol in one-way mode (i.e., the
client does not authenticate itself during the handshake) to secure the trans-
action. The attestation quote is included in the server’s certificate as an X.509
extension. The client can verify the authenticity of the attestation and check
that the TLS handshake uses the hash of the server’s public key that is included
in the attestation quote. The remainder of the trust exchange process continues
over the channel that has been set up after the TLS handshake.

4.3 Constructing the Trusted Channel

The TC4SE design constructs the trusted channel on top of the existing TLS
secure channel protocol. TC4SE specifically uses TLS 1.3 which provides stronger
security properties compared to previous TLS protocols. In order to leverage
the secure enclave protection for the TLS connection, the TLS endpoint must
terminate inside the secure enclave. This approach has been demonstrated in
several previous works, such as TaLoS [10] and Intel’s sample code in the SDK
repository.

The attestation procedure to establish trust between two parties, as described
in Sect. 4.2, happens once before a TLS connection can be set up between the
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parties. TC4SE uses mutual authentication, which requires both participants to
authenticate using X.509 certificates. As the certificates in TC4SE are directly
linked to the attestation of an enclave, the use of the certificates implies that
the peer is a trusted party according to the trusted software requirements.

The trust between the parties is pre-established before the TLS connection
is initiated. A participant in the TLS connection is not required to perform
reatesstation and reverification on every handshake. Performing attestation on
every handshake does not yield additional security benefits, given that the attes-
tation quote only changes infrequently (e.g., when the SGX firmware is updated).

5 Security Considerations

The trusted channel protocol should not undermine the security properties of
the underlying protocol it is built on. TC4SE is built by combining TLS 1.3 and
secure enclave security properties as a whole. It does not modify the existing TLS
protocol and architecture, nor does it introduce additional logic in the protocol
to achieve its security goal. Instead, TC4SE integrates the trust chain of both
protocols that unifies the security guarantee to be suitable for the trusted channel
use cases. This section presents a qualitative analysis of the security requirements
and the protection domain offered by the TC4SE design.

5.1 Security Requirements

The TC4SE design should make sure it meets the essential security require-
ments of a trusted channel. We have summarized these requirements below, and
evaluate them in the context of TC4SE.

R1 - End-to-End. The trusted channel must provide end-to-end encryption
between two enclaves in different machines. The TC4SE design is built on top of
the existing TLS 1.3 protocol, providing a solid end-to-end guarantee between
endpoints. The TLS secure channel confidentiality is guaranteed as long as the
session key used in the communication is not exposed to an adversary. Since the
key exchange occurs inside the enclave boundary, this requirement is effectively
fulfilled by leveraging the enclave’s security properties.

R2 - Authenticated. The parties involved in the trusted channel must be able
to identify themselves and verify the authenticity of their peers in relation to
their enclave identities. The TC4SE design uses the mutually authenticated TLS
(mTLS) protocol which requires both participants to present their certificate to
prove their identity. The certificates in TC4SE are cryptographically bound to an
enclave using the attestation mechanism, as described in Sect. 4.2. Accordingly,
the mTLS protocol also authenticates every participant’s enclave identity.
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R3 - Indistinguishable. A man-in-the-middle (MITM) adversary that
inspects the communication between two endpoints cannot distinguish the
TC4SE TLS handshake and other regular TLS handshakes. In TLS 1.3, every
handshake step after ServerHello is encrypted, which includes the server and
client certificate. No other observable behavior from the handshake process can
pinpoint the connection that belongs to secure enclaves trusted channel.

5.2 Trust Domain Evaluation

TC4SE guarantees the trustworthiness of the trusted channel through the cryp-
tographic link between the TLS certificates and the enclave identities. The trust
is verified through successful server and client certificate validation during the
TLS handshake. Each certificate is linked to a keypair, and the private key never
leaves the enclave boundary. Therefore, the certificate represents the guarantee
that one is communicating with a secure enclave. TC4SE considers side-channel
attacks where the secure enclave leaks private information as out-of-scope.

The remote attestation procedure establishes the trust between two remote
enclaves. The server enclave that acts as the CA proves its trustworthiness by
linking its certificate to the attestation quote from the enclave by attaching
the certificate’s hash in the quote’s authenticated data. The resulting quote
reports the link between the key pair, the enclave, and the enclave’s author. Upon
successful verification in the client enclave, the client registers the certificate into
its internal trusted certificate store. The certificate store is also sealed to the
enclave, preserving the trust within the enclave protection as well.

Like the server enclave, the client enclave also proves the link between the
private key and the enclave using an attestation quote. However, the client uses
a CSR, which the server signs if it can successfully verify the quote. This results
in the creation of a client certificate that is signed with the server’s private key.
The signed client certificate serves as the server’s acknowledgment of the client’s
attestation result. The client seals the signed certificate within its enclave and
uses it to authenticate itself and establish a trusted channel.

In the case of Intel SGX, repeated attestation and the corresponding verifica-
tion during the TLS handshake steps is unnecessary because the quote typically
remains static for the lifetime of the enclave. The quote can change if the enclave
is changed or if the Intel SGX TCB is updated.

Enclave updates can be anticipated by the enclave’s author, allowing them
to specify an update mechanism. Moreover, the enclave version information can
also be attached to the certificate data, preserving the information in the trust
chain.

Updates to the Intel SGX TCB occur relatively infrequent. The Intel SGX
attestation scheme does not have a hard requirement to distrust a quote from
an outdated SGX TCB. Instead, it is up to the enclave author to appropriately
handle to an outdated TCB. Intel updates the SGX TCB when a potential
vulnerability in SGX is fixed. Typically, this event also requires the enclave to
be updated to apply the mitigation. Hence, the procedure is similar to a normal
enclave update.
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Apart from the TCB update, Intel also maintains a revocation list of the
issued PCK certificates that sign the quotes. A PCK certificate can be revoked
when the key is compromised. Since the key resides within the SGX enclave
hardware, a compromised PCK key represents a larger problem where we can
no longer trust the SGX confidentiality guarantee. Considering this fact, we
deemed validating the CRL on every trusted channel handshake to be excessive
for an improbable event.

6 Performance Evaluation

In this section, we evaluate the performance of TC4SE and compare the result
with the related works described in Sect. 3. We analyze the results and argue
why TC4SE can outperform other similar proposals.

6.1 Implementation and System Environment

We conducted our experiment in a Linux environment that runs on Fedora 38
with Linux kernel 6.2.12, running on an Intel Core i7-10700 CPU @ 2.90GHz
and 32 GB RAM. The code is compiled using the Intel SGX SDK for Linux
version 2.19 and Intel’s SGX OpenSSL library. The source code2 is implemented
in C++ and built on top of the OpenSSL TLS library.

We also implemented TSL [9] and Intel’s RA-TLS [8] for our evaluation. The
RA-TLS implementation uses sample code from the SGX SDK repository. To
the best of our knowledge, an implementation of TSL is not readily available.
Therefore, we implemented the TSL approach according to the description in [9].

6.2 Performance Analysis

We divided our analysis into two phases: the one-time initial setup procedure
and the channel initiation procedure that is executed whenever a trusted chan-
nel is needed. The measurements are conducted independently to avoid propa-
gating the overhead between the processes. We identified four actions that are
performed by the trusted channel schemes in our evaluation: key generation,
(attestation) quote generation, quote verification, and TLS handshake. Table 1
highlights the differences between TC4SE and the related approaches. It already
provides a first indication of why TC4SE outperforms competing designs. TC4SE
is designed to do as much work as possible in the one-time initial setup phase,
and as little work as possible in the channel initiation phase, which is executed
whenever a new trusted channel is created.

Figure 5 illustrates the timing overhead of TC4SE and related approaches,
computed by measuring the overhead for each protocol across 100 repetitions.
Among the evaluated protocols, TC4SE has the largest overhead during the ini-
tial setup phase, with its average overhead being three times larger than that of

2 https://github.com/DistriNet/TC4SE.

https://github.com/DistriNet/TC4SE
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Table 1. Overview of the actions that are performed during the setup and initiation
of a trusted channel, as implemented by TC4SE and related approaches

Actions RA-TLS TSL TC4SE

Initial Channel Initial Channel Initial Channel

Setup Initiation Setup Initiation Setup Initiation

Key Generation • - • - • -

Quote Generation • - - • • -

Quote Verification - • - • • -

TLS Handshake - • - • • •

Fig. 5. Comparison of time overhead for trusted channel schemes during initial setup
and channel initiation (in milliseconds)

Table 2. Comparison of network data overhead for trusted channel schemes during
initial setup and channel initiation

Direction RA-TLS TSL TC4SE

Initial Channel Initial Channel Initial Channel

Setup Initiation Setup Initiation Setup Initiation

Client to Server - 5.80 KB - 5.81 KB 5.33 KB 1.89 KB

Server to Client - 16.59 KB - 17.01 KB 7.71 KB 3.14 KB

Combined - 22.39 KB - 22.82 KB 13.04 KB 5.02 KB

RA-TLS. However, the advantage of TC4SE becomes evident during the channel
initiation phase, which is executed whenever a trusted channel is established.
For the server endpoint, TC4SE achieves up to 90× and 116× lower overhead
compared to RA-TLS and TSL, respectively. Similarly, for the client endpoint,
TC4SE outperforms RA-TLS and TSL by up to 69× and 98×, respectively.
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Table 2 shows the network load of the evaluated approaches. The table
presents the total number of bytes exchanged until a trusted channel is estab-
lished. For Intel RA-TLS and TSL, no network communication takes place during
the initial setup phase. TC4SE shows a significant reduction in data transmitted
during the channel initiation phase, thanks to its design that avoids the need to
transmit quote data whenever a trusted channel is established.

7 Conclusions

We presented TC4SE, a novel approach that simplifies the creation of a trusted
channel between secure enclaves. TC4SE leverages the standard TLS 1.3 secure
channel protocol with mutual authentication (mTLS) and integrates it with the
security properties of a secure enclave. Unlike related work, TC4SE’s design
eliminates the need for attestation verification during the TLS handshake, elim-
inating the performance overhead and potential attack surface that may cause
a denial-of-service.

TC4SE relies on secure enclave guarantees to protect confidential information
within the enclave boundary. This protection ensures that the authentication
primitives used in trusted channel creation retain the trust established during
the attestation procedure. We demonstrated that TC4SE performs on par with
regular mTLS handshakes and much better compared to previous works, making
it more suitable for performance-sensitive secure enclave use cases.

Acknowledgements. This research is partially funded by the Research Fund KU
Leuven, and by the Flemish Research Program Cybersecurity.

A Implementation Notes

We are dedicated to supporting others who wish to replicate the TC4SE imple-
mentation. This section contains notes on the implementation process, intended
to assist developers who wish to adopt TC4SE in their own projects. The TC4SE
design can be replicated with any TLS library that is compatible with the Intel
SGX platform.

Our implementation is open source3 and can be used as a starting point
for custom implementations. It uses the OpenSSL library, which is officially
supported by Intel to be used in the SGX secure enclave environment.

A.1 Remote Attestation Setup

To enable remote attestation for the enclave, the attestation infrastructure as
described in Sect. 2 must be set up in the host machine. Intel provides the DCAP
library, which includes the QE and PCE enclaves to allow the user enclave to
create an attestation quote. According to Intel’s reference design for DCAP, the

3 https://github.com/DistriNet/TC4SE.

https://github.com/DistriNet/TC4SE
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PCCS server must also be installed either in the same machine that hosts the
enclave or in a separate machine within the same network as the host machine.

The enclave can verify the quote internally or use the DCAP-provided Quote
Verification (QV) enclave. The QV enclave integrates directly with the DCAP
infrastructure, including the PCCS server, from which it procures the attesta-
tion collateral. The DCAP repository also provides a reference implementation
for developers who wish to implement attestation verification within the enclave,
eliminating the additional communication with the QV enclave, which may intro-
duce overhead.

A.2 OpenSSL API

Our TC4SE implementation uses the OpenSSL infrastructure to establish the
trusted channel. This includes the EVP PKEY interface to generate and represent
public and private keys, the X509 certificate APIs, and the SSL APIs that imple-
ment the TLS protocol. The OpenSSL module is entirely encapsulated within
the enclave boundary, preserving its internal data structure to protect its confi-
dentiality from untrusted domains.

The enclave must also implement OCALLs (i.e., calling functions outside
the enclave) to socket functions to allow the SSL API to communicate with the
network socket in the untrusted domain. The Intel SGX OpenSSL implementa-
tion4 provides the required OCALL to utilize the SSL API properly from inside
the enclave. Developers can use the support tls branch to make this option
available when compiling the library.
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Abstract. Widely used asymmetric primitives such as RSA or Ellip-
tic Curve Diffie Hellman (ECDH), which enable authentication and key
exchange, could be broken by Quantum Computers (QCs) in the coming
years. Quantum-safe alternatives are urgently needed. However, a thor-
ough investigation of these schemes is crucial to achieve sufficient levels of
security, performance, and integrability in different application contexts.
The integration into Transport Layer Security (TLS) plays an important
role, as this security protocol is used in about 90% of today’s Internet
connections and relies heavily on asymmetric cryptography. In this work,
we evaluate different Post Quantum Cryptography (PQC) key establish-
ment schemes in TLS 1.3 by extending the framework of Paquin et al..
We analyze the TLS handshake performance under variation of network
parameters such as packet loss. This allows us to investigate the suitabil-
ity of PQC KEMs in specific application contexts. We observe that Kyber
and other structured lattice-based algorithms achieve very good overall
performance and partially beat classical schemes. Other approaches such
as FrodoKEM, HQC and BIKE show individual disadvantages. For these
algorithms, there is a clear performance decrease when increasing the
security level or using a hybrid implementation, e.g., a combination with
ECDH. This is especially true for FrodoKEM, which, however, meets
high security requirements in general. It becomes clear that performance
is strongly influenced by the underlying network processes, which must
be taken into account when selecting PQC algorithms.

Keywords: Public Key Cryptography · Post-Quantum Cryptography
(PQC) · Key Encapsulation Mechanism (KEM) · Transport Layer
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1 Introduction
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communication, e.g., when sending instant messages or paying by credit card.
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Public-key cryptography is especially used for authentication and asymmetric
encryption, to perform an authenticated key exchange (AKE) [8]. The algo-
rithms rely on different mathematical problems, and it is currently assumed
that these cannot be solved in a reasonable amount of time. However, Shor
[53] found an algorithm that will allow a solution in polynomial time as soon
as sufficiently powerful quantum computers (QC) are available. To counteract
the resulting threat, new, quantum-safe technologies, e.g., Post Quantum Cryp-
tography (PQC), need to be identified and migrated. Furthermore, encrypted
messages could be stored now and decrypted later [50], so that schemes for
key exchange should be adjusted as soon as possible. Unfortunately, due to
the individual characteristics, a simple replacement of classical algorithms with
PQC algorithms is not possible. Some schemes have larger keys or ciphertexts
and the computational efficiency differs. The most important project concerning
the PQC standardization is owned by the National Institute of Standards and
Technology (NIST). While Kyber has already been selected as future standard,
there remain some KEMs as potential alternatives. Looking at the infrastruc-
ture involved, TLS is one of the most affected protocols. It provides a secure
channel between communication partners and it was used in more than 90%
of all Internet connections in 2020 [37]. TLS uses asymmetric encryption for
key agreement and authentication while executing handshakes for connection
establishment. This raises the question of which NIST candidates could be used
without significantly compromising security, performance, and usability. A per-
formant execution plays a major role with respect to functionality, user satis-
faction [30], and applications with real-time requirements [47]. When evaluating
performance for PQC in TLS, the application context and varying network char-
acteristics such as transmission rate, packet loss or latency are often neglected.
In addition, there is a lack of comprehensive analysis that takes into account the
multitude of algorithms as well as the parameterization and hybrid execution.

Contributions. This work focuses on the TLS handshake under varying net-
work characteristics. We aim to identify suitable quantum-safe algorithms within
TLS 1.3. The main contributions are as follows. (1) First, we extend the frame-
work of Paquin et al. [44] to record the time required to establish a connection.
We consider various (a) PQC KEMs and (b) KEM parameters. We evaluate (c)
PQ-only and hybrid variants and we vary the (d) prevailing network conditions
(e.g., packet loss). (2) Second, we investigate the correlations or contradictions
between the measured performance of the handshake and the characteristics of
the respective algorithm. (3) Furthermore, we provide recommendations regard-
ing the use of algorithms and configurations given the prevailing network quality.
(4) Finally, we analyze the impact of the network technology and configuration
on handshake performance.

Outline. Section 2 gives a short introduction to cryptography, TLS and net-
work emulation. Section 3 presents related work. Section 4 and 5 describes the
experimental setup and results. Section 6 and 7 include discussion and outlook.
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2 Background

2.1 Classical Cryptography

The Internet offers not only great benefits but also great potential for threats.
Cryptography includes mathematical functions as well as associated procedures
and protocols ensuring security goals like confidentiality, integrity and authen-
ticity of data. In asymmetric cryptography, different keys are used for encryption
and decryption. When ensuring confidentiality, a public key is used to encrypt
a message, while the resulting ciphertext can be decrypted with a correspond-
ing private key. The methods rely on various mathematical problems, mostly
from the areas of factorization and discrete logarithms, which are described as
practically unsolvable. That means that for every computing capacity available
to date a solution is not possible in a reasonable amount of time. According to
Easttom et al. [22], RSA is the most widely used asymmetric scheme enabling
encryption as well as signing. Another scheme is Diffie-Hellmann key exchange,
where NIST recommends Elliptic Curves for Diffie Hellman (ECDH) [28].

A so-called Key Encapsulation Mechanism (KEM) uses asymmetric encryp-
tion and enables a shared secret establishment by following a predefined scheme.
It is independent of the underlying mathematical method and therefore pro-
motes agility of the executing system. NIST requires that future key exchange
standards be implemented in this way [57]. A KEM consists of three subalgo-
rithms. (1) KeyGen generates a key pair (pk, sk). (2) Encaps takes the pk to
compute a ciphertext c and a shared secret s. (3) Decaps uses sk and c to com-
pute corresponding s. Figure 1 shows an example key agreement between two
communication partners Alice and Bob. For more details see [11].

Fig. 1. Generic sequence of KEM with two communication parties

2.2 Post Quantum Cryptography and NIST Standardization

New technologies such as QCs pose a major threat to existing asymmetric
schemes [53,62]. PQC deals with the development and application of quantum
resistant cryptography. The topic has been discussed for several years by differ-
ent organizations [18,42]. Ultimately, in 2016 NIST initiated an official process to
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develop new, quantum-safe cryptographic standards. It focuses on key exchange
and digital signatures. The selection process went through several rounds and
gains worldwide acceptance. In Round 1 and 2, basic aspects were reviewed and
some algorithms were sorted out [18]. Round 3 began in 2020 with a total of seven
candidates, four KEMs and three signature schemes. In addition, five KEMs
and three signature schemes were selected as alternatives. NIST sees structured
lattice-based methods as most promising [2]. Currently, the process is in Round 4
and Kyber (KEM) [15] has already been selected. Nevertheless, BIKE [3], Classic
McEliece [39] and HQC [41] are still going to compete. In this work, we also con-
sider KEMs that were eliminated, as they may still be of interest in certain use
cases. However, due to TLS 1.3 size limitations, see Sect. 2.3, Classic McEliece
is not included. Furthermore, the isogeny-based KEM SIKE [31] was provably
broken in 2022 [17,38]. The investigated KEM algorithms are briefly described
below. NTRU [29], Kyber and Saber [21] are structured lattice-based KEMs.
They offer a comparatively efficient trade-off between security and performance
[2]. NTRU is the best understood of these algorithms [23]. Nevertheless, Kyber
and Saber are even more performant. The mathematical basis, in contrast, is
comparatively young and little tested [2]. Saber’s public keys and ciphers are a
bit smaller than Kyber’s, but it is even less explored. NTRU Prime [9] was
developed to close potential security gaps of NTRU. That comes at the expense
of performance. FrodoKEM is an unstructured lattice-based KEM. It is con-
sidered to be very well researched [1,2,26], but that also comes at the expense of
performance. BIKE and HQC are code-based KEMS. BIKE offers a balanced
performance, but with limitations [2]: encapsulation and decryption are slower
and private keys are larger. HQC has larger public keys and ciphers, but key
generation and decapsulation are significantly faster.

The security a particular algorithm can guarantee according to its choice of
parameters is classified by NIST into 5 security levels, see [49]. Level 4 and 5
provide extended security to counteract future threats from technological break-
throughs [57]. Table 2 (Appendix) describes the data that needs to be sent while
performing a key exchange depending on the chosen KEM algorithm and its
security parameter set. Especially Classic McEliece and FrodoKEM, but also
HQC and BIKE take larger values than comparable structured lattice-based
KEMs like Kyber. It can be seen that a higher security level always results in a
larger amount of data. However, the differences for each algorithm vary widely.
While the difference between level 1 and 3 in terms of the public key is only
about 400 bytes for Kyber, it is about 6000 bytes for FrodoKEM.

2.3 Transport Layer Security Protocol

TLS allows a secure communication channel to be established. The latest version
was standardized in 2018 [48]. The protocol sits between the transport layer and
application layer. The handshake is the central functional block for performing
an AKE. It is the only part of the protocol that relies on asymmetric cryptogra-
phy. Since TLS 1.3, only ECDH variants are used for key exchange. The client
first sends a “ClientHello” to the server. In the supported groups field it tells the
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server which ECDH groups are supported. In the “ServerHello”, the server can,
in turn, indicate which one it prefers and send its public key. In addition, the
client guesses which decision the server will make and already sends a match-
ing key in the KeyShare field of the “ClientHello”. Optimally, the server can
use this information directly and compute a shared secret to encrypt all sub-
sequent messages. Authentication can be done using various signature schemes
such as RSA or ECDSA. See also [48]. OpenSSL is one of the most widely used
implementations [24].

Initially, integration of (PQC) KEMs and hybrid approaches were not pro-
vided in TLS 1.3. However, in recent years several methods have been presented
[16,20,52] and standard designs have been published [51,55,59]. The currently
most popular design is from Stebila et al. [55]. New group values are defined
within supported groups for the selection of algorithms and parameters. For
hybrid variants, a new entry is created for each of the available combinations,
and the number of algorithms for hybrid combinations has been limited to two.
Linking two public keys is done by concatenation and the value is transmit-
ted within the “ClientHello” key share-extension or “ServerHello” key share-
extension. Similarly, the values for the shared secret can also be concatenated
so that the result can subsequently be used within the key schedule. It should
be noted that key exchange values within the key share are restricted to 216−1
Bytes. Figure 2 illustrates the message flow between client and server while per-
forming a handshake using a hybrid KEM variant, as described above. Aspects
affecting the key agreement are highlighted in blue. The required changes are
marked with a “+”.

Fig. 2. Sketched flow of TLS 1.3 Handshake using hybrid KEM procedure according
to the design of Stebila et al. [55] (Adapted from Fig. 1 from [45])
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The public project Open Quantum Safe (OQS) [56] provides a TLS imple-
mentation with PQC integration. OQS OpenSSL implements the design of Ste-
bila et al. [55] and includes all KEM schemes selected by NIST (Round 3). Only
Classic McEliece is not considered. Its public key size exceeds the limit of the
key share entry. That would require a change to the TLS 1.3 standard.

2.4 Emulating Network Communication

A comprehensive performance evaluation should not be performed in isolation
from application context. For this purpose we use various Linux Kernel tools.
(1) ip-netns [10] enables emulating different connections or participants. netns
creates isolated namespaces to which custom routing tables, network addresses
and configurations can be assigned. (2) veths (Virtual Ethernets) [35] is used
to assign virtual interfaces which allows to link the emulated networks. (3) tc-
netem [34] is used to control outgoing data traffic. Latency, packet loss, trans-
mission rates, jitter, packet duplicates, corrupt packets and packet reordering
can be emulated. (4) NetEm builds on tc [33], which is generally used to control
message traffic. The essential element of tc is QDISC, a kind of queue which is
assigned to each interface and into which the packets are queued before process-
ing.

3 Related Work

The related work can be roughly divided into (A) Architectural concepts and
Internet drafts concerning the integration of PQC in TLS and (B) Implementa-
tion and evaluation of these concepts.

(A) There are a number of IETF Internet Drafts to implement TLS 1.3
in a quantum-safe manner. Currently most implementations (see (B)) focus on
Stebila et al. [55], as described in Sect. 2.3. [59] describes a similar approach,
although it allows combining up to ten mechanisms and tries to avoid redun-
dancy for shared keys within a “ClientHello” message. On the other hand, [51]
allows to combine two key exchange mechanisms by introducing an additional
supported groups extension. It offers a second list of algorithms and replicates
the functionality of the key share. [20] gives a short overview and summarizes
the different Internet drafts. [16,43] discuss ways to combine multiple values for
hybrid procedures with the help of Key Derivation Functions (KDFs). [43] argue
that the appropriate combination is an important factor in terms of security and
performance, which is still under research.

(B) Regarding evaluation, researchers from Google, Cloudflare and Amazon
started to analyze hybrid KEMs like NTRU-HRSS, SIKE and BIKE in combi-
nation with ECDH in 2016 [44]. They used the TLS implementation BoringSSL
and integrated PQC algorithms according to [55]. [36] take the same approach
and evaluates SIKE and NTRU-HRSS in a realistic network environment. [45]
investigates Kyber in combination with various signature schemes in WolfSSL.
In addition, [61] evaluates Kyber and [7] evaluates Kyber, FrodoKEM, Saber,
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NewHope, NTRU, BIKE, and SIKE. Both in local, compartmentalized networks.
All of these approaches conclude that structured lattice-based KEMs perform
particularly well. Even in a hybrid design. [54] analyzes the performance of TLS
1.3 and SSH by using Kyber, NewHope-512-CCA and NTRU for security level
1 and 3. To ensure realistic network conditions they use servers in three loca-
tions with average delays of 37, 67 and 163 ms. They also consider RSA-2048 and
ECDH with P-256 as a control group and for hybrid runs. The experiments show
that using the specified KEM algorithms, an error-free and high-performance
handshake execution is generally possible. The same applies to hybrid runs. On
the other hand, the authors note that the number of Round Trips (RTs) depends,
among other things, on the initial size of the TCP congestion window. The dura-
tion can be reduced by increasing it within TCP configurations. [5] investigates
the impact for resource-constrained networks. OQS OpenSSL is used to evalu-
ate all NIST Round 3 KEM candidates at security level 1. Furthermore various
transmission rates are considered via tc. For high bandwidths, the results are
very similar to the experiments described previously, but it also becomes clear
that an algorithm that performs well in ideal may suffer on sub-optimal con-
nections and constrained resources. In [44] the authors introduce a framework
based on OQS and Linux Kernel Tools. It allows to evaluate PQC KEMs as
well as signature algorithms within TLS 1.3 under realistic network conditions.
The authors run experiments for hybrid key exchange by combining Kyber, Sike
and FrodoKEM with ECDH. To create realistic network scenarios they emulate
packet loss between 0% and 20% as well as a delay of 5.5, 31.1, 78.6 and 195.6 ms.
They also run their experiments on real servers in different locations to compare
the results. They find that the HandshakeCompletionT ime for fast to medium
network connections is significantly affected by the performance of the algorithm
operations. However, at packet loss rates above 3% a larger amount of data, e.g.,
when using FrodoKEM, has a noticable effect. This is due to the fragmentation
of large messages and the resulting increase in the number of packets sent.

To summarize, Table 1 shows that there is still a lack of comprehensive com-
parison between the NIST candidates and alternatives. Often, only individual
algorithms or specific security levels are considered. In addition, the investiga-
tions are often limited to either only hybrid or PQ-only variants only, and the
authors usually have limited influence on the network conditions.

Table 1. Related work concerning evaluation of PQC KEMs within TLS 1.3

[5] [7] [36] [44] [45] [54] [61] our work

Considering network characteristics � � � � � �
Dedicated investigation of network
parameters

� � �

PQ-only and hybrid � � �
Broader range of algorithms � �
Security levels 1,3, and 5 � �
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4 Experiment

The experiments can be roughly described as follows. Realistic client-server con-
nections are emulated according to the network conditions described below and
an automated execution of TLS handshakes is performed. The main goal is to
measure the time required for a handshake when using different algorithms and
varying network conditions. For this purpose, a script emulates network connec-
tions between some clients and servers and repeatedly initiates handshakes. A
connection is terminated once the handshake is complete, and the time taken per
handshake is measured within the client using a modified version of the OpenSSL
function s time. Authentication is performed via ECDSA. The process is out-
lined in Fig. 3. To emulate the physical client-server connection, virtual names-
paces strictly separate the two areas. While the processing of the TLS records up
to the virtual Ethernet interfaces takes place, the underlying network connection
is emulated using Linux QDISC. Packets to be sent via the kernel are queued in
the appropriate QDISC at the relevant interface and processed in order. Using
NetEm, packet processing can be manipulated in different ways, such as adding
delays or dropping packets. The following network parameter values are chosen
for the study. In general, packet delay values between 2 and 200 ms are used
for realistic simulations, depending on geographical distance and infrastructure
[12,19,44,58,60]. However, values greater than 120 ms are considered exception-
ally high and are rarely used [12,40]. We choose 16 values between 0 and 120 ms.
Regarding Jitter, Shehza et al. [4] give the example that a dispersion of about
500 ns can hardly be avoided with largely error-free radio links. In contrast,
delays of several milliseconds could result from the occurrence of punctual inter-
ference. Therefore, a usual latency of 20 ms is chosen for the test and the jitter
is increased stepwise in the range from 0 to 20 ms. This results in the interval
[0, 40] for the actual latency of the data packets. For transmission rate, we
choose values between 0.1 and 2000 Mbps. The selection is based on different
works that consider values between 0.17 and 2000 Mbps [12,40,60]. We vary
the transmission rates for servers and clients individually because Upstream and
Downstream rates differ significantly in many use cases. For packet loss related
works usually assume values up to 5% [12,44,58,60]. Values above 10% seems to
be anomalously high [19,58]. Nevertheless, 12% [6] and 15% [27] could be mea-
sured when analyzing WLAN and mobile networks. In order to cover also rare
edge cases and to be able to draw a direct comparison to [44], we evaluate the
TLS handshakes for packet losses between 0% and 20%. Based on [12,58,60], we
choose similar values for reordering, duplicates and corrupt packets. The
servers are implemented using a freely available NGINX implementation. We
establish 4 NGINX instances and a thread pool of 7 clients to emulate parallel
transactions. 200 measurements are performed for each network configuration
and KEM algorithm. The source code is freely available1.

1 https://code.fbi.h-da.de/pqc-benchmarking/benchmarking-pqc-in-tls.

https://code.fbi.h-da.de/pqc-benchmarking/benchmarking-pqc-in-tls
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Fig. 3. Emulation setup using NetEm while performing TLS handshakes

5 Results

In this Section, the measured results are briefly described before a discussion
follows. We focus on the median, which is not influenced by outliers at the
edges. Furthermore 0.75- and 0.95-quantiles give an estimation regarding the
upper 25% and 5%, respectively. In the figures, the different KEM algorithms
are made clear by appropriate color coding. The color assignment is listed in the
upper section of each figure. The KEMs are defined by their identifiers from OQS.
Identifiers with corresponding key and ciphertext lengths for PQC algorithms
can also be found in Table 2. For the classical ECDH variants, the identifiers are
based on the curves used for security levels 1, 3 and 5 (prime256v1, secp384r1,
secp512r1 ).The corresponding classic ECDH variant is always included in the
presentation of the measurement results. This allows a comparison with the
current status and a meaningful classification of the results.

Initially, the transmission rate was set to 500 Mbps on both sides, a constant
delay of 2.648 ms per packet was added and all other parameters were set to zero.
We started by investigating the basic behaviour of the algorithms by emulating
constant (good) conditions. Figure 4 shows the handshake duration for 20 sets of
measurements, focusing on security level 1. The measured times per KEM vary
only within a range of about 2.5 ms. It is noticeable that algorithms with longer
computation times, such as FrodoKEM or BIKE, show a larger variance. On
the other hand, the Round 3 candidates as well as NTRU Prime (all structured
lattice-based) show very good performance. They mostly undercut the ECDH
method. The comparison of hybrid and PQ-only variants at security level 1 shows
that hybrid execution has little effect on the time required. Only from security
level 3 on there is a significant difference noticeable between FrodoKEM and
FrodoKEM combined with ECDH. It is between 4 and 10 ms.
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Fig. 4. Median handshake duration with constant network parameters (rate 500 Mbps,
delay 2.648 ms) (PQ-only and security level 1)

As latency increases and the security level is low, the delay of the handshake is
linear and strictly monotonic for all schemes. As the security level increases, the
slope also increases significantly for algorithms with larger amounts of transmit-
ted data. The same is true for hybrid variants. The evolution of the handshake
duration for all the PQ-only variants investigated is shown in Fig. 5 for secu-
rity levels 1 (Fig. 5a), 3 (Fig. 5c) and 5 (Fig. 5e). Figures 5b, 5d and 5f show a
detailed view for the range between 0 and 2 ms. For security level 1 (Fig. 5b), it
can be seen that the differences between the algorithms for a given delay roughly
correspond to the values for constant network conditions. (See also Fig. 4.) How-
ever, this is not the case for security levels 3 and 5 (Figs. 5d and 5f). In all three
views (Fig. 5a, Fig. 5c, Fig. 5e) it can be seen that the graphs become steeper
from a delay of 150 ms.

When emulating transmission rates (Fig. 6), NetEm adds a delay to each
packet that depends on the packet size. Accordingly, larger packets will have an
immediate effect on the duration of the handshake (Fig. 6e). For sufficiently small
rates, the times are delayed enormously. For FrodoKEM from about 20 Mbps,
for the others between 4 and 8 Mbps. Figure 6f shows the critical range between
0 Mbps and 2 Mbps. Many of the algorithms considered have similar key and
ciphertext sizes and perform similarly well, with HQC performing slightly worse
and FrodoKEM far behind. For rates from 55 to 2000 Mbps, the converging
behaviour continues as expected. If the rate is changed unilaterally, either on
the client-side (Fig. 6a and 6b) or the server-side (Fig. 6c and 6d), the graphs
have a similar shape. However, between about 0 and 2 Mbps, the handshake
times increase as the server-side rate is reduced. At 0.5 Mbps, the measured
times increase by between 30% to 90%, particularly for HQC.

Regarding packet loss, the authors in [44] have already noted, with very low
packet loss below about 3% to 4% as well as low latency, the median measured
times for all algorithms differ solely based on the speed of the particular algo-
rithm. Only the handshake time of FrodoKEM is delayed at an early stage due to
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Fig. 5. Median handshake duration for all PQ-only-variants while latency increases.
Classification according to the respective security level.
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(a) Client (5-55 Mbps)
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(b) Client (0-2 Mbps)
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(c) Server (5-55 Mbps)
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(d) Server (0-2 Mbps)
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(e) Both (5-55 Mbps)
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(f) Both (0-2 Mbps)

Fig. 6. Median handshake duration while transmission rate decreases for client, server
and both. Investigation of PQ-only variants and security level 1.

the large amount of data. This could be confirmed in the conducted experiments
for all candidates and alternatives, see Fig. 7a. Only the handshake duration
of FrodoKEM is delayed from about 1.5% (Fig. 7b). In the further course, the
values are initially largely constant and only from about 8% to 10% a strong
increase is recognizable. Especially with FrodoKEM, which stands out with 12%
to 15%. HQC, which also has a larger amount of data, likewise increases faster in
the overall comparison. The high overall performance of the candidates Kyber,
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Saber and NTRU ascribed by NIST, which has already been verified for Kyber
(security level 1) [44], can be confirmed here for all security levels. In general,
the algorithms only show a significant delay in handshake time at around 14%
to 16%. However, in the range between 0 and 10, which is relevant for prac-
tical applications, a very good result is obtained with respect to the median.
Hybrid schemes for security level 1 show no significant differences compared to
PQ-only schemes. Up to 12% packet loss, a comparable speed of all schemes can
be expected. Especially with respect to the candidates, a hybrid approach can
therefore be chosen without hesitation in terms of handshaking time. At security
level 3, however, there is a clear difference. Even with no or little loss, the times
differ with respect to the corresponding associated PQ-only variant. The initial
difference is justified by the additional use of the slightly less efficient ECDH.
This intensifies for security level 5.
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Fig. 7. Median handshake duration packet loss (PQ-only and security level 1)

6 Discussion

Under consistently good network conditions, the average handshake duration per
KEM is relatively uniform, see Fig. 4. The differences between the algorithms can
be attributed to the efficiency of the computational operations [44]. Looking at
the results for the change in latency for security level 1 (Fig. 5a), it may be
surprising that the slope of the measured times initially behaves the same for
all algorithms. The differences between the KEMs mainly result from the differ-
ent efficiency of the KEM operations. Only at security levels 3 (Fig. 5c) and 5
(Fig. 5e) do FrodoKEM and HQC show an increased slope of the handshake time.
Due to the different amounts of data to be sent, it would be expected that the
number of packets sent would increase due to the limited size. As each packet is
given an additional delay by NetEm, a correspondingly greater increase in hand-
shake duration should be expected for sequential processing across all security
levels. The uniform increase at security level 1 implies that for all algorithms,
the configured delay is added to the simple handshake duration by the same
factor. In other words, the number of RTs is the same, even though the amount
of data differs. In principle, the following factors are involved: (1.) All TLS 1.3
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handshake messages can each fit into one IP packet. This means that the
data is not split on any of the network layers considered. TLS records themself
are usually fragmented, if the data exceeds 214 bytes in size [48]. At the same
time, however, a key change must not span multiple records. This means that
handshake messages immediately preceding a key change (“ClientHello”, “End-
OfEarlyData”, “ServerHello”, “Finished” and “KeyUpdate”) must fit into one
record. Symmetric encryption has no effect on the results of the different KEMs.
As shown in Fig. 2, only the TLS records following the key share are symmet-
rically encrypted. At this point, the KEM process is complete. At the transport
layer, the maximum size of a TCP segment body is communicated to each other
within the TCP handshake [25]. This is called Maximum Segment Size (MSS)
and is often derived from the local Maximum Transmission Unit (MTU). The
MTU is the maximum packet size for a Layer 3 protocol to fit into the frame of
the corresponding Layer 2 protocol without fragmentation [25,46]. A main objec-
tive of the MSS is to avoid IP-level fragmentation of TCP segments [14]. There
are several mechanisms for finding the minimum MTU for a multi-hop path, e.g.
[25]. At the network layer, IP packets are fragmented if their size exceeds the
MTU defined on the interface, but this is expected in less than 1% [32]. The
structure of a resulting packet is shown in Fig. 8. It is clear that MTU and MSS
play a crucial role in the number of packets to be sent. (2.) Multiple segments
can be sent at once. This is due to the control mechanisms of the intermediate
network protocol TCP. It estimates the maximum capacity of the link and then
bundles the segments. The number of segments that can be transmitted simulta-
neously is determined by the size of the Receiving Window and the Congestion
Window (cwnd). Provided the window size is sufficiently large, larger keys and
ciphertexts do not necessarily require additional TCP RTs. The gap between the
PQC schemes is eliminated. Only if the number of additional segments exceeds
the window size, the total time will be significantly delayed. During a TCP con-
nection, cwnd is constantly updated. Initially, the value is based on the precon-
figured (init cwnd) and is gradually increased over time. This is done until seg-
ments are lost or a threshold value is reached. In the event of a loss, the window is
drastically reduced and then gradually increased again. For further information
see [13]. The key parameters in terms of performance are (init cwnd), the slow-
start threshold (ssthresh), as well as the maximum window size (max cwnd).
Our measurements show that (1) and (2) do not apply when using security lev-
els 3 (Fig. 5c) and 5 (Fig. 5e) for FrodoKEM and HQC. This means that up to
a certain threshold, increasing the amount of data to be transferred has little
effect on overall performance. However, exceeding this value can lead to signif-
icant performance degradation. The increased slope from 150ms delay applies
to all algorithms and security levels. It therefore appears to be a TCP-specific
mechanism that does not need to be taken into account for PQC variants.

Looking at reduced transmission rates shows that the results for server-side
(Fig. 6c and 6d) and client-side reduction (Fig. 6a and 6b) differ. These trends
can be attributed to the different message content in the KEMs. The client-side
reduction is affected by the key size and the server-side reduction is affected by
the ciphertext size. For most algorithms, there is a relatively balanced relation-
ship between keys and ciphertexts. For HQC, however, the ciphertext size clearly
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Fig. 8. IPv4 packet dimensions as specified in [14,25]. Sizes in bytes (B).

dominates. For connections with limited transmission rates on server side, it is
therefore not advisable to use HQC. The hybrid methods of the candidates and
alternatives are clearly different from their corresponding PQ-only variants.

Packet loss and erroneous packets show outliers. Specifically, the mean hand-
shake duration decreases at several points even though the ratio of missing or
corrupt packets increases, see FrodoKEM in Fig. 7a. The following factors play
an important part. (1.) The probability configured in NetEm is applied
to each incoming packet individually. Due to the randomness, anomalies may
occur. Increasing the number of handshakes could reduce the outliners, but not
eliminate them. (2.) Unwanted scheduling of operating system processes
may have affected performance, although the machine in use was disconnected
from the network and unnecessary processes were stopped. In addition, as men-
tioned above, handshake performance is heavily influenced by (3.) TCP con-
trol mechanisms. Segmentation, flow control and error handling could all lead
to variations in transmission times. Sikeridis et al. [54] integrate PQC candi-
dates into TLS 1.3 and report a correlation between handshake duration and
the size of the TCP cwnd. If the initial size init cwnd is small, it is necessary
to wait several times for an acknowledgment of receipt first, especially when
large amounts of data are being sent. The authors show that a significant reduc-
tion in handshake time can be achieved by increasing init cwnd. Since cwnd is
variable during communication, and in particular depends on the proportion of
unacknowledged (lost) TCP segments, an automatic change of cwnd can be con-
sidered as the cause of the outliers. The behaviour is defined in RFC 5681 [13].
Finally, in rare cases, (4.) decapsulation errors may result in an incorrect key
despite a correct ciphertext transmission. The maximum percentage of incorrect
decapsulation operations is defined by the respective KEM.

7 Conclusion and Future Work

Firstly, our work confirms the results of Paquin et al. [44]. The handshake dura-
tion increases with poor network connections, while data-intensive PQC schemes
are more affected. Furthermore, it becomes clear that many candidates and alter-
natives can stand up to comparison with the classic variants under normal condi-
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tions. This is especially true for the evaluated structured lattice-based candidates
Kyber, Saber and NTRU. At transmission rates above 2 Mbps as well as with
less than 10% lost or erroneous packets, they even outperform the comparable
ECDH variant. This confirms NIST’s assessment of the high overall performance
of the candidates Kyber, Saber, and NTRU. In addition, the alternative NTRU
Prime also scores almost consistently. Greater variance is observed for other
alternatives. FrodoKEM shows a noticeable but acceptable difference for very
good connections. However, due to the huge amount of data concerning public
keys and ciphertexts, there is an increase in the time required, e.g., at around
2% packet loss or 4% erroneous packets. The behaviour can also be observed at
higher security levels. There is no consistent pattern in the differences between
security levels and hybrid variants. For the candidates as well as for NTRU
Prime, the timing differences between PQ-only and hybrid execution are very
small. Therefore, even with higher packet loss rates, increasing latency, or low
transmission rates, a hybrid variant or higher security levels can be chosen. In
contrast, for alternatives such as HQC and FrodoKEM, a significant increase
in handshake time can be observed at higher security levels or for hybrid vari-
ants. The increase is already noticeable at security level 3 and expands at level
5. Especially at low transmission rates or increasing latency. The desired secu-
rity level should be taken into account when selecting these algorithms. When
changing transmission rates, a server-side reduction has a greater impact on
the overall performance than a client-side reduction. This is due to the ratio
of key to ciphertext size per algorithm. KEM algorithms with larger cipher-
texts have a particularly large negative impact at low server-side transmission
rates. It is noticeable that the trend is not consistent, especially as packet loss
increases. Furthermore, PQC algorithms sometimes show similar performance
trends despite significant differences in the amount of data being transmitted.
E.g., while changing latency. On the other hand, when certain thresholds are
exceeded, there are suddenly significant differences. In particular, MTU, MSS
and the TCP congestion control configuration should be taken into account.
This is especially true for algorithms with larger key and ciphertext sizes in
combination with higher security levels.

As for future work, we are currently experimenting with real server connec-
tions and different hop distances. The performance impact of the prevailing net-
work conditions, MSS, MTU and TCP congestion control are analysed. Changing
from IPv4 to IPv6 or replacing the transport protocol involved could also have a
significant impact. For TLS, a variation of the handshake flow would be useful.
E.g., transmitting multiple key share entries and “ServerHelloRetry”. Authen-
tication using quantum-safe digital signatures and alternative approaches such
as pre-shared keys in TLS 1.3 and KEMTLS [52] should also be considered.
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A Appendix

Table 2. KEM candidates and alternatives of NIST PQC standardization process as
specified by Open Quantum Safe liboqs [56]. pk is public key, sk is secret key and c is
ciphertext as described in Fig. 1. Sizes in bytes.

algorithm identifier security pk size sk size c size

Classic McEliece Classic-McEliece-348864(f) level 1 261120 6492 128

Classic-McEliece-460896(f) level 3 524160 13608 188

Classic-McEliece-6688128(f) level 5 1044992 13932 240

Classic-McEliece-6960119(f) level 5 1047319 13948 226

Classic-McEliece-8192128(f) level 5 1357824 14120 240

KYBER Kyber512(-90 s) level 1 800 1632 768

Kyber768(-90 s) level 3 1184 2400 1088

Kyber1024(-90 s) level 5 1568 3168 1568

NTRU NTRU-HPS-2048-509 level 1 699 935 699

NTRU-HPS-2048-677 level 3 930 1234 930

NTRU-HRSS-701 level 3 1138 1452 1138

NTRU-HPS-4096-821 level 5 1230 1592 1230

NTRU-HPS-4096-1229 level 5 1842 2366 1842

NTRU-HRSS-1373 level 5 2401 2983 2401

SABER LightSaber level 1 672 1568 736

Saber level 3 992 2304 1088

FireSaber level 5 1312 3040 1472

BIKE BIKE-L1 level 1 1541 5223 1573

BIKE-L3 level 3 3083 10105 3115

BIKE-L5 level 5 5122 16494 5154

FrodoKEM FrodoKEM-640 level 1 9616 19888 9720

FrodoKEM-976 level 3 15632 31296 15744

FrodoKEM-1344 level 5 21520 43088 21632

HQC HQC-128 level 1 2249 2289 4481

HQC-192 level 3 4522 4562 9026

HQC-256 level 5 7245 7285 14469

NTRU PRIME sntrup653 level 1 994 1518 897

sntrup857 level 3 1322 1999 1184

sntrup1277 level 5 2067 3059 1847

ntrulpr653 level 1 897 1125 1025

ntrulpr857 level 3 1184 1463 1312

ntrulpr1277 level 5 1847 2231 1975
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Abstract. The confidentiality of cryptography keys is necessary in cryp-
tographic implementations. In order to resist memory disclosure attacks
that steal sensitive variables such as private keys, various schemes are
proposed to implement RSA and ECDSA. Meanwhile, with the migration
towards post-quantum cryptography, Dilithium has been considered as
the most potential signature algorithm. It involves more and larger sen-
sitive variables, so that existing solutions for traditional cryptographic
primitives are unapplicable. In this paper, we employ hardware transac-
tional memory (HTM) to construct the secure environment for Dilithium
signing operations, protecting private keys and all other sensitive vari-
ables against memory disclosure attacks. Based on the comprehensive
sensitivity analysis of variables in the Dilithium algorithm, we restrict the
whole sensitive operations in transactional execution regions and adopt
the transaction-splitting technology for efficiency. We implemented the
prototype using Intel TSX, demonstrating its security against memory
disclosure attacks and acceptable performance overheads. For example,
the security-enhancement implementation of Dilithium3, which is recom-
mended by NIST, achieves a factor of 0.75 compared to the throughput
of reference implementations.

Keywords: Dilithium · Protection · Hardware transactional memory ·
Memory disclosure attacks

1 Introduction

Cryptography builds the foundation of cyberspace security. It requires the con-
fidentiality of cryptographic keys to protect sensitive data. However, in conven-
tional cryptographic software implementations, private keys appear in the main
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memory as ordinary variables. Therefore, they are vulnerable to different kinds
of memory disclosure attacks, including software memory attacks which exploit
vulnerabilities (e.g., the OpenSSL HeartBleed attack [7]) and physical memory
attacks that directly access the RAM to obtain private keys (e.g., cold-boot
attacks [14]).

In recent years, researchers have already proposed a variety of cryptographic
key protection solutions [8–10,12,13,18,23,29] to resist cold-boot attacks and
other memory disclosure attacks. These schemes make use of registers, cache,
or advanced hardware features in processors to carefully manipulate sensitive
values such as private keys. Therefore, the sensitive values will not appear in the
main memory or RAM chips in the form of plain text, thereby providing secure
cryptographic computing services against memory disclosure attacks. Among
them, the most general and practical schemes are the register-based solutions [8–
10,23,29] and protections [13,18] based on the hardware transactional memory
(HTM), which have been successfully applied in popular signature primitives
such as RSA and ECDSA.

However, with the development of the quantum computer, RSA and ECDSA
will provide the required security no longer. Currently, NIST has announced
three Post-Quantum Cryptography signature schemes for standardization.
Among them, Dilithium stands out because of its strong security and excel-
lent performance with the same security level, thus recommended by NIST as
the mainstream signature scheme [24]. Compared to traditional signature algo-
rithms such as RSA and ECDSA, the lattice-based Dilithium signature scheme
has a larger private key size and a more complex signing process, therefore it faces
more severe challenges in ensuring the security and efficiency of the Dilithium’s
implementation.

In this paper, we adopt hardware transactional memory to protect private
keys and all other sensitive values that exist in Dilithium signing procedure
against memory disclosure attacks. Meanwhile, we utilize transaction splitting
to ensure that our proposed HTM-based solution is efficient and practical. The
main contributions of this work are as follows:

(1) We perform a comprehensive variable sensitivity analysis about Dilithium,
systematically analyzing the sensitive parameters and determining the pro-
tection boundary of sensitive operations. Based on the results, we found
that the register-based schemes cannot meet the storage requirements of
the sensitive variables in Dilithium, while the HTM-based protection is
effective.

(2) We propose a solution to protect sensitive variables and operations in the
Dilithium scheme based on the hardware transactional memory. Further-
more, we also divide the sensitive operations of Dilithium and employ the
transaction splitting technology to “break the whole into parts” to improve
the overall performance.

(3) We construct the prototype, demonstrating its security against memory dis-
closure attacks through confirmatory experiments. Performance evaluation
shows that, for different security levels 2, 3, and 5, our solution achieves
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a factor of 0.80, 0.75, and 0.66 compared to the throughput of Dilithium’s
reference signature implementation.

The remainder of this paper is organized as follows. Section 2 introduces the
background about Dilithium and related cryptographic key protection solutions.
We describe the design and implementation of the HTM-based protection for
Dilithium in Sects. 3 and 4. Section 5 evaluates the security and performance.
Finally, we draw the conclusion in Sect. 6.

2 Background and Related Works

In this section, we first give a brief overview of the Dilithium signature algorithm.
This is followed by an introduction of typical cryptography key protection solu-
tions based on register and hardware transactional memory respectively.

2.1 Dilithium

Dilithium is a digital signature algorithm that has been selected by the NIST
Post-Quantum Cryptography standardization organization as the primary sig-
nature scheme for standardization. Its security is based on two hard problems
over module lattices, namely, the MLWE (Module Learning With Errors) prob-
lem and the SelfTargetMSIS (Module Short Integer Solution) problem [17]. The
design of Dilithium is mainly based on Bai-Galbraith scheme [2] proposed by
Bai and Galbraith in 2014, which improves the “Fiat-Shamir with Aborts”
approach [20,21]. It is worth noting that the pseudocode presented in this
paper is the implementation version of Dilithium, which provides an alternative
way of decomposing and computing the hints compared to the reference signa-
ture scheme. Dilithium offers three different parameter sets, namely Dilithium2,
Dilithium3, and Dilithium5, correspond to three NIST security levels 2, 3, and
5 respectively. Table 1 details the Dilithium parameter sets for different security
levels. We shall just simply describe the key generation and signing algorithms
in the following paragraphs. For a comprehensive specification of the scheme, we
refer the reader to the original proposal [6].

Key Generation. The key generation procedure is listed in Algorithm 1.
Firstly, a bit string ζ is randomly generated, and placed into the hash func-
tion H to derive three seeds, namely ρ, ς, and K. Next, a k ∗ l polynomial matrix
A is generated from seed ρ. Two secret vectors s1 and s2 of lengths l and k are
sampled uniformly from ς. Then, the vector t = As1 + s2 is calculated, which
is also the instance of the LWE problem on which Dilithium relies, i.e. s1 and s2
are hard to calculate given A and t. Aiming at reducing the size of the public
key, t is split into two parts: high order bits as t1 which is made public, and
low order bits as t0 which is kept secret. Similarly, matrix A is also replaced by
the small seed ρ, which forms the public key with t1. Finally, tr is computed by
hashing ρ ‖ t1. Therefore, the output of key generation is the public key pk =
(ρ, t1) and the secret key sk = (ρ, K, tr, s1, s2, t0).
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Table 1. Overview of the Dilithium parameter sets.

NIST Security Level 2 3 5

q [modulus] 223 − 213 + 1 223 − 213 + 1 223 − 213 + 1

(k, l) [dimensions of A] (4, 4) (6, 5) (8, 7)

d [dropped bits from t] 13 13 13

γ1 [y coefficient range] 217 219 219

γ2 [low-order rounding range] (q − 1)/88 (q − 1)/32 (q − 1)/32

τ [hamming weight of c] 39 49 60

β [range of cs1 and cs2] 78 196 120

Repetitions 4.25 5.1 3.85

public key size (in bytes) 1312 1952 2592

secret key size (in bytes) 2528 4000 4864

signature size (in bytes) 2420 3293 4595

Algorithm 1: Dilithium Key Generation(taken from [6]).
Output: A public/secret key pair (pk, sk).

1 ζ ← {0, 1}256

2 (ρ, ς, K) = H(ζ)
3 A = ExpandA(ρ)
4 (s1, s2) = ExpandS(ς)
5 t = As1 + s2
6 (t1, t0) = Power2Round(t,d)
7 tr = H(ρ ‖ t1)
8 return pk = (ρ, t1), sk = (ρ, K, tr, s1, s2, t0)

Signature Generation. Algorithm 2 depicts Dilithium’s signing procedure.
The algorithm takes the secret key sk and the message M as the input. Initially,
the matrix A is reconstructed by seed ρ, and M and tr are hashed to gener-
ate a fixed-length bit string μ. Dilithium signing has two options, the default
deterministic signing and the other randomized signing admired in situations
where the side-channel attacks [25,26] are taken seriously or the signer does not
want to expose the message. The implementational difference between the two
versions occurs on Line 4 where the seed ρ′ is either produced using μ together
with K (for deterministic signing) or generated completely at random (in ran-
domized signing). Next, the masking vector y is sampled using the seed ρ′ and
a rejection counter κ whose initial value is set to 0. The vector w = Ay is then
decomposed into w1 and w0, where the high order bits w1 is used to compute
the challenge c̃. Meanwhile, c̃ is also converted into a polynomial c, which par-
ticipates in the calculation of z and r0 together with secret vectors s1 and s2.
In order to guarantee the security and correctness of the signature, a boundary
check on z and r0 is necessary. After the check passes, the hint h to make up
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Algorithm 2: Dilithium Signature Generation(taken from [6]).
Input: Secret key sk and message M .
Output: Signature σ = Sign(sk, M).

1 A = ExpandA(ρ)
2 μ = H(tr ‖ M)
3 κ = 0, (z,h) = ⊥
4 ρ′ = H(K ‖ μ) (or ρ′ ← {0, 1}384 for randomized signing)
5 while (z,h) = ⊥ do
6 y = ExpandMask(ρ′,κ)
7 w = Ay
8 (w1,w0) = Decompose(w, 2γ2)
9 c̃ = H(μ ‖ w1)

10 c = SampleInBall(c̃)
11 z = y + cs1
12 r0 = w0 - cs2
13 if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β then
14 (z,h) = ⊥
15 else
16 h = MakeHint(r0, c, t0,w1, γ2)
17 if ‖ct0‖∞ ≥ γ2 or the # of 1’s in h > ω then
18 (z,h) = ⊥
19 end

20 end
21 κ = κ + l

22 end
23 return σ = (c̃, z,h)

the lost information of t0 in the verification phase is calculated as described in
Algorithm 2. Similarly, there are two additional checks about ct0 and h to be
done here. If all conditions are met, the signature σ = (c̃, z,h) is generated suc-
cessfully. Otherwise, the signing process needs to be repeated and a new nonce
y will be generated.

2.2 Cryptographic Key Protection Solutions

Register-Based Solutions. Memory disclosure attacks can directly obtain the
cryptographic key from the main memory or memory chips. A natural idea is to
perform the sensitive cryptographic operations only inside the processor, with-
out using memory. Therefore, register-based solutions [8–10,23,29] have been
proposed.

TRESOR [23] selects the privileged debug registers for long-term storage of
the symmetric key, and completes the AES encryption and decryption only with
the participation of the registers. Compared with symmetric schemes, asym-
metric schemes require more space to store the private key and intermediate
states. But the privileged registers cannot meet the corresponding space require-
ments. Therefore, register-based public-key solutions implement the structure of
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“Key Encryption Key (KEK)”, the private key and other sensitive variables
are encrypted with the AES master key and stored in the memory. Only when
participating in sensitive operations, these values are decrypted in registers tem-
porarily. Based on this creative idea, PRIME [10], RegRSA [29], and VIRSA [9]
have completed the secure and efficient RSA solutions; while RegKey [8] is a
register-based ECC enhanced implementation.

HTM-Based Solutions. Hardware transactional memory (HTM) [5,15] is
originally proposed to eliminate expensive software synchronization mechanisms,
thereby improving the performance of parallel computing. Intel TSX [16] adds
hardware transactional memory support based on the caches. Only when a trans-
action succeeds, the operation results are submitted to the main memory; other-
wise, all the performed operations are rolled back. In detail, transactional mem-
ory is typically divided into a write-set and a read-set [11], which are deployed
in the L1 cache and L3 cache respectively. For a read-set of the transactional
execution, the read operation from other threads or processes is allowed while
the write operation will make the transaction abort. For a write-set of the trans-
actional execution, both the read and write operations from others make the
transaction abort.

Cryptographic key protection schemes can be constructed based on HTM.
Mimosa [13,18] utilizes Intel TSX to achieve a secure RSA cryptosystem, which
ensures that sensitive values such as private key only exist as cleartext in the
exclusive cache at the core of the process (i.e. the L1D Cache). When the RSA
private key does not participate in cryptographic operations, it is encrypted
with the master key and stored in memory; while the master key is located in
the privilege registers. In the computing phase, Mimosa creates a transaction for
RSA private key operation, in which the private key is decrypted and the RSA
operation is performed. In addition, Mimosa also proposes a transaction split-
ting mechanism to reduce the time-consuming cryptographic operation within a
single transaction, thereby reducing the overhead caused by transaction rollback.
This allows Mimosa to mitigate DoS attacks caused by cache contention while
maintaining good performance. Some other schemes [4,11,28] leverage HTM to
defend against cache side-channel attacks, which also enhances the robustness
of the private key.

Comparison Between Two Solutions. The register-based scheme has a
smaller security boundary, but due to the limited register space, it may not be
suitable for more complex algorithms. Moreover, the register-based scheme has
poor scalability, and the implementation based on assembly language has higher
requirements for developers. In contrast, the HTM-based scheme has higher prac-
ticability, it can be easily migrated to the realization of complex algorithms due
to the larger space provided by the cache.
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3 Key Protection for Dilithium

In this section, we briefly discuss the challenges faced by key protection for
Dilithium, prove the infeasibility of the register-based solution through quanti-
tative variable sensitivity analysis, and then give an overview of our HTM-based
protection scheme.

3.1 Technical Challenges

Compared with traditional asymmetric primitives such as RSA and ECDSA,
Dilithium has a more complicated cryptographic key structure and signature
logic. Therefore, when considering register-based or HTM-based protection of
sensitive values such as private keys in the Dilithium algorithm to achieve secure
and efficient signature operations, the following challenges need to be addressed.

(1) More sensitive variables need to be considered and protected. In
RSA and ECDSA, there are limited variables related to the private key. There-
fore, they do not need too much space to store these variables. Obviously, more
and larger sensitive variables are involved in the Dilithium scheme. Once the val-
ues are leaked, the adversary could deduce the long-term secret key. Therefore,
all sensitive variables must be protected against memory disclosure attacks.

(2) Hardening more complex sensitive operations will result in
greater performance overhead. If we place the Dilithium signature oper-
ations in an atomic transaction for protection, it will waste lots of clock cycles
and lead to a performance bottleneck. Because the long execution time and huge
memory usage requirements will lead to lots of transaction aborts, the transac-
tions cannot be successfully committed. Therefore, how to improve efficiency is
also an important challenge.

3.2 Variable Sensitivity Analysis for Dilithium

We first discuss the public and secret key fields in Dilithium. Obviously, the
public key pk = (ρ, t1) is non-sensitive in the whole scheme, and any participant
or even the adversary can obtain it publicly. Similarly, the matrix A is also
public, which is derived from the seed ρ and needs to be regenerated during both
signing and verification. The secret key sk = (ρ, K, tr, s1, s2, t0) contains six
entries. Among them, the seed ρ which appears at the intersection of the public
and secret key need not be protected. tr is also non-sensitive since it is a hash
of the public key, which does not contain any secret information. Moreover, the
vector t0 in sk is also judged as the public variable, which can be leaked. Actually,
the entire LWE vector t is publicly available in Dilithium’s basic scheme [2]; the
purpose of decomposing t into t1 and t0 is only to reduce the size of the public
key, not involving security. The rest of the variables in the secret key (i.e., K, s1,
s2) must be considered as sensitive, which must be protected against the memory
disclosure that if leaked, an adversary can use them to forge signatures. Next, we
conduct a detailed analysis of sensitive variables involved in the key generation
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Table 2. Variable sensitivity analysis for Dilithium.

Item/Procedure Sensitive Non-Sensitive

Public key pk – ρ, t1

Secret key sk K, s1, s2 ρ, tr, t0

KeyGen ζ, ς, K, s1, s2 ρ, tr, A, t, t1, t0

Sign ρ′, y, w, w0, z, r0, K, s1, s2 ρ, tr, A, μ, w1, c̃, c, h

and signing process, which may cause the leakage of long-term secrets. Table 2
lists the sensitive and non-sensitive variables in the whole Dilithium scheme.

In the key generation process, the seed ς must be regarded as a sensitive
variable, since it will derive the long-term secrets s1 and s2 directly. Similarly,
the variable ζ also needs to be protected, because it can act as an initial seed
to generate subsequent secret values, including ς and K. Other values (e.g., A
and t) that appear during the key generation are considered as non-sensitive
variables, and thus can be made public and do not need to be protected against
memory disclosure.

The signing procedure’s sensitivity analysis is more complex than the key
generation’s sensitivity analysis. At first, μ is a non-sensitive variable, since it
is the hash of the public value tr and the message M . The masking vector y is
sensitive. The reason is that the secret vector s1 can be computed by the formula
z = y + cs1 (Line 11 in Algorithm 2) when y is leaked [22], given a valid sig-
nature σ = (c̃, z,h). Therefore, the vector w must also be protected to prevent
the adversary from recovering y through solving the system of equations: w =
Ay. Considering backward the seed ρ′ to obtain the sensitive vector y, it must
be identified as the protected variable, whether it is generated deterministically
or randomly. Next, we analysis two composing parts of w (i.e., w1 and w0).
The vector w1 does not contain more information than the signature itself when
the signature is generated successfully. In fact, the verifier needs to recalculate
w1 from the signature σ. Therefore, w1 does not require additional protection.
The sensitivity determination about w0 is similar to y. we directly draw on the
theoretical achievements from [3] here, which demonstrates a practical attack
leveraging w0’s leakage to recovery the secret vector s2. At last, there is a dis-
cussion of the signature output and bound checks. The challenge c̃, c and the
hint h are all non-sensitive. The condition judgments about them are for cor-
rectness only. However, z and r0 must remain protected until the bound checks
about them have passed. After that, they do not leak any valid information.1

Infeasibility of Register-Based Solution. As analyzed above, Dilithium
contains a large number of sensitive variables that need to be protected, in
addition to the original private key members. Once these variables are leaked,
the secret information could be deduced by the adversary. Table 3 shows the sizes

1 Refer to Literature [1] for more detailed explanation.
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Table 3. The sizes of sensitive parameters in Dilithium’s signing.

Sensitive variable’s size (in bytes) Dilithium2 Dilithium3 Dilithium5

K 32 32 32

s1 4096 5120 7168

s2 4096 6144 8192

ρ′ 48 48 48

y 4096 5120 7168

w 4096 6144 8192

w0 4096 6144 8192

z 4096 5120 7168

r0 4096 6144 8192

Total 28752 40016 54352

of sensitive variables2 involved in the Dilithium signature generation procedure
under different NIST security levels. When the security levels are 2, 3, and 5,
the maximum size of a single sensitive variable reaches 4096, 6144, and 8192
bytes, respectively. In detail, these variables refer to sensitive vectors s2, w,
w0, and r̃, each of which stores a polynomial vector of length k, and the single
polynomial occupies 1024 bytes. Moreover, the total sizes of all sensitive values
included in the Dilithium signing phase have reached 28752, 40016, and 54352
bytes respectively. Therefore, these sensitive variables need to take up a large
amount of storage space actually.

The register-based asymmetric solutions rely on user-accessible registers that
exist in the system as secure data buffers for storing secret values, and carefully
implement the RSA and ECC instances. It should be noted that these registers
contain general-purpose registers and vector registers. RegRSA [29] has investi-
gated the registers available in commodity processors, which have a total size of
704 bytes on an Intel Haswell CPU. The latest processors support the AVX-512
extension, thus providing thirty-two registers with a bandwidth of 512-bit, rep-
resented as ZMM0 - ZMM31. Overall, the latest available register space includes
sixteen 64-bit general-purpose registers, eight 64-bit MM registers, and thirty-
two 512-bit ZMM registers, and the total space reaches 2240 bytes.

According to our statistics of Dilithium’s sensitive parameters and effective
register space, we can confirm the following facts: the entire available register
space in the system is not even enough to accommodate the single secret vec-
tor (e.g., the s1 or s2), let alone places all of the sensitive variables securely.
Therefore, we cannot complete the protection of private keys and other sensitive
variables in the Dilithium scheme based on the pure register’s implementation.
However, in the HTM-based solution, the transactional memory uses L1D Cache

2 The sizes of sensitive variables s1 and s2 listed here refer to the space occupied by
the form of the polynomial vector when participating in multiplication calculations,
while s1 and s2 in the private key are actually in compressed byte form.
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as the secure storage area, the size of which is generally 32KB. The space is suffi-
cient since it can store several values, and sensitive variables do not appear in the
transaction’s write set simultaneously. Therefore, we will build key protection
for Dilithium based on the HTM in our solution.

3.3 HTM-Based Key Protection

The target of this work is to achieve complete sensitive data protection for
Dilithium’s signing operations with the help of transactional memory mecha-
nism, while maintaining efficiency as much as possible.

Goal. To prevent software memory attacks and cold-boot attacks, all of the
sensitive information appearing in the entire crypto-system (including the AES
master key, Dilithium’s secret key, and intermediate sensitive variables that exist
in the signing operations) needs to be strictly limited to the scope of the write
set of the transaction (that is, the L1D Cache), and must not appear in the main
memory or RAM chips in the form of plaintext.

Threat Model and Assumptions. First, the adversaries have the ability to
launch different forms of memory disclosure attacks. Specifically, the attacker can
exploit software vulnerabilities to read memory data or launch cold-boot attacks
through physical access. Second, we assume that HTM can be implemented
correctly to provide its claimed security capabilities. We also assume that the
OS kernel is trustworthy, thus users can derive the AES master key securely
during the initialization. Finally, since our solution borrows from TRESOR [23]
to protect the master key, it also needs to follow the assumptions made by
TRESOR, such as prohibiting system calls from accessing debug registers.

System Architecture. Similar to all previous register-based or HTM-based
schemes, our solution adopts the KEK structure, which contains the two-level
key structure of “master key - Dilithium secret key”. The AES master key is gen-
erated when the system boots and then stored in the debug registers securely.
Sensitive Dilithium private key members are symmetrically encrypted offline by
using the AES master key. When participating in the signature operation, the
private key is decrypted. Then, the decrypted private key is utilized to build the
signing context and complete the final signature generation during the trans-
action execution. After that, the system cleans up all sensitive intermediate
variables and returns the signature result.

The architecture of the system is shown in Fig. 1, along with the workflow.
Our solution’s operation can be divided into two phases, namely the initializa-
tion phase and the protection computing phase. The initialization phase
is performed only once during the system initialization, responsible for initial-
izing the AES master key and preparing computing resources. The protection
computing phase is invoked on each Dilithium signing request and used to exe-
cute Dilithium’s signature generation task. All sensitive operations during the
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protection computing phase are protected by transaction memory and do not
reveal any secret values.

Fig. 1. The system architecture of key protection for Dilithium.

(1) Initialization Phase. This phase consists of two steps.

1) Init.1: During the system boot, the user enters a password to derive the AES
master key, which is then stored in each CPU core’s privileged debug registers.
All intermediate variables need to be erased.

2) Init.2: The file containing the encrypted Dilithium’s private key is loading
from the hard disks into the main memory. The private key is generated in a
secure offline environment and then symmetrically encrypted with the AES
master key.

(2) Protection Computing Phase. In the protection computing phase, our
solution creates the transaction execution environment for Dilithium’s sign-
ing operations, in which the Dilithium secret key is decrypted. And then the
decrypted key participates in the signing process. Our solution will perform the
following steps:

1) Prepare: HTM starts tracking memory accesses in the cache (maintaining the
read/write sets).

2) PrCmpt.1: Loading the AES master key to the cache from the debug registers,
the round keys are then derived in the L1D cache.

3) PrCmpt.2: Loading the ciphertext Dilithium secret key to the L1D cache from
the memory

4) PrCmpt.3: Using the master key to decrypt the secret key and generate the
private key context.

5) PrCmpt.4: Using the private key context for requesting signing operations.
The details will be covered in the following part.
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6) PrCmpt.5: Clearing all sensitive variables that exist in registers and cache.
7) Commit: Completing the signing process and returning the signature results.

Transaction Splitting. Next, we focus on the transactional execution for
Dilithium signing (i.e., PrCmpt.4 in the protection computing phase). Empiri-
cally, putting the entire signature generation procedure into a single transaction
is almost impossible to realize. Since it involves plenty of time-consuming and
memory-intensive operations such as polynomial multiplication, number theo-
retic transform (NTT) operations, and so on. In fact, we have also tried to
implement this situation, and the result is unsurprisingly failed.

Fig. 2. Transaction splitting for Dilithium signing. The rectangles in the figure repre-
sent the basic operations in the Dilithium signature scheme. The shaded ones represent
sensitive operations that need to be placed in the transaction. The mark (e.g., Line
4) on the right side of the figure indicates the specific line number in Algorithm 2
corresponding to the operation.

In order to provide an effective signature service with HTM, we must con-
sider breaking the Dilithium signing procedure into several independent sensitive
operations and placing them in different small transactions. Non-sensitive oper-
ations simply run in a normal manner. Based on the variable sensitivity analysis
for Dilithium mentioned above, we determined the six sensitive operations in
Dilithium signing logic (that is, the operations that take sensitive variables as
operation objects or operation results). For each of these sensitive operations,
we need to build an atomic transaction. Figure 2 shows the transaction splitting
for Dilithium signing. Therefore, Dilithium signing is split into six transactions
as follows.
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TX1: Generation of the seed ρ′.
TX2: Sampling of temporary secret vector y.
TX3: The matrix-vector multiplication w = Ay.
TX4: Decomposing operation against the vector w.
TX5: Computation of z, which involves the private s1 and secret vector y.
TX6: Computation of r0 using the private s2 and secret vector w0.

4 Implementation

In order to complete the comprehensive protection of Dilithium’s private key and
sensitive variables in our design, and realize secure and efficient signing opera-
tions, we implement our HTM-based solution as a Linux kernel module. In this
section, we introduce the implementation details of our solution, mainly includ-
ing transactional execution for Dilithium’s signature generation, the integration
into Linux kernel space, and the protection of the AES master key.

4.1 Transactional Execution for Dilithium’s Signing

HTM Primitive. We propose Intel TSX as an instance of HTM to build
a transactional execution environment for Dilithium’s signing against memory
disclosure attacks. Specifically, we choose the Restricted Transaction Memory
primitive as the programming interface of HTM, where the xbegin function
is called to start a transaction, and the xend function is used to commit the
transaction. The area between the two functions is the atomic region of transac-
tional execution. Of course, our solution is applicable to HTM features on other
platforms.

Listing 1.1. Pseudo code for the transactional execution.

while (1) {
if(_xbegin () == _XBEGIN_STARTED)

break;
retry ++;
if(retry == THRESHOLD)

goto fail;
}

// sensitive operations in here;
_xend ();

fail:
failure handler;

Transactional Execution and Splitting. Using Dilithium’s reference imple-
mentation3 as a basis, we provide security enhancements for Dilithium’s signing,

3 https://github.com/pq-crystals/dilithium.

https://github.com/pq-crystals/dilithium
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where the key protection techniques described in Sect. 3 are applied. Our proto-
type implements the default deterministic signing version. We cannot place the
entire signature logic in a single transaction. Therefore, we will divide the signing
operation into several sub-processes based on the previous analysis of sensitive
operations and place them in atomic transactions respectively. Since the abort
may still occur, we will repeatedly call xbegin in a loop to start the transaction,
and only when the transaction is successfully committed or the number of fail-
ures reaches the threshold, the loop will exit. The logic for a single transaction
is shown in Listing 1.1. In addition, intermediate sensitive variables need to be
encrypted using the master key with the help of AES-NI hardware instructions
before the small transaction commits. In the specific implementation, we also
made a slight adjustment to the original code to fit into the transaction, avoid-
ing calling non-sensitive functions (such as the generation of public matrix A)
in the transactional region.

4.2 Integration into Linux Kernel

Kernel Module. We implement the transactional Dilithium signing as a char
module and integrate it into the Linux kernel. This kernel module provides secure
Dilithium signing services to user space. It depends on the ioctl system call to
receive the messages to be signed and the private key in the form of ciphertext
from the user-space invoker, complete the signing operation, and then return the
signature to the user application.

Heap Allocation for Matrixes and Vectors. In the reference implemen-
tation, the public matrix A and all vectors (e.g., y and w) are defined in the
form of local variables, which are stored in the stack. However, the size of the
kernel stack is only 16KB, which cannot accommodate all of the parameters.
Once the variables exceed the size of the kernel stack, a segmentation fault will
be triggered. Therefore, these variables cannot be defined as local variables in
the kernel module. It is necessary to allocate the memory space on the heap
through the vmalloc function.

Disabling Interrupts and Kernel Preemption. Intel TSX provides atom-
icity guarantees for sensitive operations. However, Dilithium’s signing procedure
is time-consuming, and it will be interrupted by frequent context switches, which
causes the transaction aborts. Therefore, it is necessary to disable interrupts and
kernel preemption by calling local irq save and preempt disable in the trans-
actional region to improve the success rate of transaction commit. Correspond-
ingly, when the transactional execution ends, the interrupts and kernel preemp-
tion need to be re-enabled by calling local irq restore and preempt enable.

4.3 Protection for AES Master Key

We refer to the general method in TRESOR [23] to derive and protect the master
key. During the system initialization, the user inputs the password to produce the
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AES key and places it in the debug register on each CPU core. Since debug regis-
ters are used as the long-term storage unit of the master key, it needs to be guar-
anteed that other processes will not access them except the transactional signing
tasks. We modified the relevant functions to ensure that neither user-mode nor
normal kernel-mode processes can directly access the privileged debug registers.
The functions include: ptrace set debugreg and ptrace get debugreg (block-
ing the ptrace system call), native set debugreg and native get debugreg
(disabling the access from the kernel).

5 Evaluation

In this section, we conduct a security evaluation on our HTM-based solution
for Dilithium signing and then evaluate the performance of the prototype. The
experimental platform is Intel Core i7-6700 CPU with 3.4 GHz, 16 GB memory,
and the operating system is Ubuntu 16.04 64-bit.

5.1 Security

Resistance to Memory Disclosure Attacks. Our solution relies on hard-
ware transactional memory to provide security enhancements. First, all sensitive
operations in the Dilithium signature process are running in atomic transac-
tions, and the whole sensitive variables are encrypted outside the transactions.
During cryptographic operations (i.e., transactional execution), other threads
cannot obtain the private key or intermediate sensitive variables in plaintext
except Dilithium’s signature computing thread. Therefore, it can defend against
software memory attacks. Second, due to the implementation characteristics of
HTM, the entire signature operation is limited to the write set of the transac-
tion. Sensitive values such as the private key only exist in the L1D Cache and
will not appear in the RAM chips, thus cold-boot attacks can also be resisted.

We also introduce experimental validations to verify that our solution can
resist memory disclosure. We perform Dilithium’s signing in a loop and use the
lime tool to dump the memory image. We used hexdump to look for known
private key fragments in the memory image and can not obtain a binary string
that overlaps for more than 4 bytes with the private key.

Resistance to Timing Attacks and Cache Side-Channel Attacks. We
first consider the timing attacks. Dilithium adopts the design of uniform sam-
pling, and all other basic operations such as polynomial multiplication and
rounding are implemented in constant time in our reference implementation.
In addition, the encryption and decryption of private keys and other sensitive
variables are implemented using AES-NI, while AES-NI is resistant to timing
attacks [23]. Therefore, timing attacks can be effectively prevented. Moreover,
our solution performs the Dilithium signing calculations in HTM-backed trans-
actions and ensures that all sensitive data resides in the L1D Cache during the
execution. This prevents the attackers from distinguishing the timing differences
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between cache hits and misses accurately, thereby mitigating cache side-channel
attacks [19,27].

5.2 Performance

We use the number of clock cycles consumed by a single signing procedure as
the performance indicator according to the method officially demonstrated by
Dilithium. The signing operation was repeated 1000 times and we chose the aver-
age value as the result. The specific results are shown in Table 4, which shows
the cycles of the reference implementation of Dilithium and the implementation
protected by Intel TSX under three different security levels. Although we try
to reduce the abort rate as much as possible, transactional execution still has a
certain probability of failure. Once any of these transactions abort, Dilithium’s
signing will fail. We considered the success rate of signing when comparing per-
formance between two implementations. Therefore, the actual results in our
solution should be the ratio of the original cycles to the success rate of sign-
ing. For different security levels Dilithium2, Dilithium3, and Dilithium5, our
solution achieves a factor of 0.80, 0.75, and 0.66 compared to the throughout of
Dilithium’s reference implementation respectively.

Table 4. Performance comparison between reference implementation (denoted as ref)
and our solution (denoted as htm).

Security Level Cycles (ref) Cycles (htm) Success Rate (htm) Ratioa (ref/htm)

Dilithium2 1180137 1455316 98.7% 0.80

Dilithium3 1867274 2400121 96.9% 0.75

Dilithium5 2252741 3058802 90.1% 0.66
a The calculation of Ratio is as follows: Ratio = Cycles(ref)/(Cycles(htm)/Success
Rate(htm)).

We briefly analyze the experimental results. The operations that can intro-
duce performance overhead in our solution include: 1) the transmission of mes-
sages, encrypted private keys, and signature results between the user space and
the kernel space; 2) the encryption and decryption operations performed on sen-
sitive variables in the single transaction; and 3) the transaction’s rollback oper-
ation. Meanwhile, disabling interrupts and kernel preemption in kernel space
and the transaction’s atomic execution will also reduce the frequency of con-
text switching during the signing process and improve performance to a cer-
tain extent. When the security level is 2 or 3, every small transactions will be
submitted with a higher success rate without too many retries. Therefore, the
performance overhead introduced by our solution is lower compared to the ref-
erence implementation. When the security level reaches 5, the sensitive values
will occupy more space, thereby increasing the probability of transaction abort.
Plenty of clock cycles are consumed in the transaction’s rollback operation, there-
fore, greater performance overhead will be introduced.
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6 Conclusion

The Post-Quantum Cryptography software implementation represented by the
Dilithium scheme will be widely used in the future, but its private keys are
vulnerable to various forms of memory disclosure attacks. In this paper, we
thoroughly analyze all the sensitive variables involved in Dilithium’s signing
process and prove that the register-based solution cannot provide effective pro-
tection. Then, we propose the HTM-based key protection solution to execute the
Dilithium signing operation transactionally and reduce the performance over-
head by transaction splitting. We implemented the prototype with Intel TSX,
and the evaluation results show that it has comparable efficiency to Dilithium’s
reference implementation.
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Abstract. Most protocols for secure multi-party computation (MPC)
work over fields or rings, which means that encoding techniques are
needed to map rational-valued data into the algebraic structure being
used. Leveraging an encoding technique introduced in recent work of
Harmon et al. that is compatible with any MPC protocol over a prime-
order field, we present Mercury—a family of protocols for addition, mul-
tiplication, subtraction, and division of rational numbers. Notably, the
output of our division protocol is exact (i.e., it does not use iterative
methods). Our protocols offer improvements in both round complexity
and communication complexity when compared with prior art, and are
secure for a dishonest minority of semi-honest parties.

Keywords: secure multi-party computation · secret sharing · rational
numbers · rational division

1 Introduction

Secure computation is a tool which allows functions of private data to be eval-
uated without revealing those data. A well-studied form of secure computation,
and the focus of this work, is Multi-party Computation (MPC). In the clas-
sic setting, n mutually distrusting parties Pi possess private data di and wish
to jointly compute a function F (d1, . . . , dn) without revealing any information
about honest parties’ inputs to any coalition of corrupted parties. This problem
was first studied in detail by Yao [23]. Since then, much work has been done
extending Yao’s results, developing new tools for MPC, and implementing these
tools in the real world (e.g., [6,13,14,16,18,19]). Many of these protocols rely
on secret sharing. In secret sharing, each Pi is provided masked pieces (called
shares) of private data (henceforth, secrets). These shares are chosen such that
only authorized sets of parties can determine a secret if they pool their shares.
The parties use their shares to perform computations on the secrets by commu-
nicating (e.g., sending/receiving shares, creating and sending new shares, etc.)
with one another as needed. A common primitive for secret sharing is Shamir’s
scheme [20] based on polynomial interpolation over a finite field. An advantage
of that scheme is that it is additively homomorphic so that shares of two secrets
can be added locally to give a sharing of the sum of those secrets. Additively
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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homomorphic secret sharing is also used by the well-known MP-SPDZ frame-
work [18].

Most MPC protocols are defined over finite rings or fields such as Z/mZ or
GF (2�), and as such require real data (often in the form of fixed-point or floating-
point numbers) to be encoded as elements of the ring (field). Further, since the
goal is to evaluate certain functions (e.g., polynomials) over secret shared values,
the encoding method must be homomorphic with respect to the operations that
compose the function (e.g., addition and multiplication). Several works [9,11,22]
encode a fixed-point or floating-point number a with f digits after the radix point
as the integer a · 2f . Other approaches [1,10] work with floating-point numbers
by separately encoding the sign, exponent, and significand, along with an extra
bit that is set to 0 iff the number is 0.

Our approach differs significantly from all of these. Instead of choosing a set of
fixed-point numbers and designing our protocols around that set, we start with a
set of rationals (with bounded numerators and denominators) that contains some
set of fixed-point numbers. This set of rationals, paired with an encoding of those
rationals as elements of a ring/field that is homomorphic with respect to both
addition and multiplication, forms the basis of our protocols. The range of the
encoding can be any ring/field of the form Z/mZ, however we focus on the case
of m prime. This means that, for the most part, our protocols are obtained by
simply composing the encoder with existing protocols. An exception is the way
we handle division, which relies heavily on the structure of the aforementioned
set of rationals.

All our protocols for the basic arithmetic operations require only a constant
number of rounds and have communication complexity at most O(tn) field ele-
ments, where n is the number of parties and t is a bound on the number of
corrupted parties.1 Our protocols are also generic, by which we mean that they
do not depend on the underlying primitives being used, whether the majority of
parties are honest, or even whether adversaries are malicious. For example, even
though we use Shamir’s scheme as the foundation, our protocols for rational
arithmetic could easily be translated to use additive secret sharing (e.g., as used
in MP-SPDZ to tolerate all-but-one corrupted party).

The paper is organized as follows:

* Section 2 discusses notation and provides an overview of Shamir’s scheme, and
some “building block” protocols.

* Section 3 introduces the rational-to-ring-element encoder, and Mercury: our
protocols for rational addition, multiplication, subtraction, and division. We
close by discussing the security and correctness of our protocols.

* Section 4 contains a brief discussion of our (partial) compatibility with fixed-
point numbers, and then investigates how to choose a subset of the domain of
the encoder that allows for evaluation of (arithmetic) circuits up to a certain
multiplicative depth. We end with an example of securely computing the
kurtosis of a dataset held distributively by n parties.

1 After optimizations, the online communication complexity of our protocols is at
most O(t + n) field elements.
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* Section 5 discusses how the round complexity and communication complexity
of Mercury can be reduced by using well-known optimizations.

* Section 6 compares Mercury with prior work [9,11,21,22].
* Section 7 summarizes our results and discusses additional protocols which we

hope to include in Mercury in the future.

2 Preliminaries

2.1 Notation

For a positive integer m, Z/mZ denotes the ring of integers modulo m. In case
m is prime, we write Fm. The elements of Z/mZ will be represented by integers
0, 1, . . . ,m − 1. For a ring R, R[x1, x2, . . .] will denote the ring of polynomials in
the variables x1, x2, . . . with coefficients in R. For p ∈ Q[x1, x2, . . .], ‖p‖1 denotes
the �1 norm of p, i.e., the sum of the absolute values of the coefficients of p. We
use y ← A(x) to denote that a randomized algorithm A on input x outputs y.
If A is deterministic, we simply write y = A(x). All circuits we consider are
arithmetic over a field Fp, and have gates with fan-in 2.

2.2 Shamir’s Scheme

We pause here to provide a brief overview of Shamir secret sharing (SSS), and
the notation used therein. Suppose we have n parties and wish for any set of
t + 1 ≤ n parties to be able to reconstruct a secret by pooling their shares. This
is called a (t + 1)-out-of-n threshold scheme. One creates Shamir shares of a
secret s ∈ Fp, where |Fp| ≥ n, by generating a random polynomial f(x) ∈ Fp[x]
of degree at most t whose constant term is s (i.e., f(0) = s) and whose remaining
coefficients are chosen uniformly from Fp. Shares of s are the field elements f(i),
i ∈ Fp\{0}. We assume the ith party receives the share f(i). We use [x]i to denote
the ith party’s share of x ∈ Fp, and [x] to denote a sharing of x among all parties.
Then, for example, [x] + [y] will mean “each party adds their share of x to their
share of y,” and c[x] will mean “each party multiplies their share of x by c.” Any
collection of t+1 parties can pool their shares [s] and reconstruct the polynomial
f using Lagrange interpolation, thereby obtaining the secret s = f(0).

2.3 Framework

We use (t+1)-out-of-n SSS over Fp for all protocols, and assume that all parties
are connected by pair-wise secure channels which they use to send and receive
shares when necessary. The communication complexity of a protocol is measured
by the number of field elements sent by all parties in the protocol. When compar-
ing our work with existing protocols that measure communication complexity in
bits, we simply multiply our communication complexities by log2(p). All adver-
saries are assumed to be semi-honest (honest-but-curious), and we tolerate at
most t of them. As previously mentioned, given sharings [x] and [y], the parties
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can compute a sharing [x + y] of their sum without interaction by computing
[x] + [y]. For multiplication of shared values we use the protocol of Gennaro
et al. [15], which is itself an optimization of the multiplication subroutine in
the BGW protocol [5]. To ensure the multiplication protocol works, we require
t < n/2. We present the details of the relevant building block protocols in the
next section.

2.4 Building Blocks

SSS primitives will be the algorithms/protocols Share, Add, ScalarMult, and Mult.
Respectively, these create shares of a secret value s ∈ Fp, compute the shares of
the sum of two secrets without revealing either, compute shares of the product
of a secret value and a known value without revealing the secret value, and
compute shares of the product of two secrets without revealing either. Add and
ScalarMult are non-interactive. Borrowing from [1], we use s ← Output([s]) to
mean that each of a set of t parties send their share of s to another party, which
subsequently reconstructs s from the shares [s] and sends s to the other n − 1
parties. We pause briefly to describe the multplication protocol from [15] (Fig. 1).

[xy] ← Mult([x], [y])

1. For i = 1, . . . , n, the ith party Pi computes zi = [x]i · [y]i;
2. For i = 1, . . . , 2t + 1, Pi computes [zi] ← Share(zi), and sends the jth share

to Pj ;
3. once each party P1, . . . , Pn has received 2t + 1 shares, each party Pi locally

computes [xy]i using Lagrange interpolation on the received shares;
4. output [xy].

Fig. 1. Multiplying shared secrets without revealing.

Two additional protocols, RandInt and Inv ([2], Lemma 6), are required for our
rational division protocol. These protocols allow all parties to obtain shares of
a random field element (Fig. 2) and compute shares of the multiplicative inverse
of a field element (Fig. 3), respectively (Table 1).

3 Protocols for Rational Numbers

We propose a family of efficient MPC protocols for performing computations with
rational numbers. These protocols are obtained by pairing an encoder mapping
certain rational numbers to field elements with compositions of the building
block protocols described in Sect. 2.4. The protocols for computing the sum and
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[r] ← RandInt()

1. Each of a set of t + 1 parties select a uniform ri ∈ Fp, i = 1, . . . , t + 1;
2. each of the t + 1 parties computes [ri] ← Share(ri), and sends the jth share

to Pj ;
3. [r] = [r1] + · · · + [rt+1];
4. return [r].

Fig. 2. Generating shares of a random element of Fp.

[x−1] ← Inv([x])

1. [r] ← RandInt();
2. [rx] ← Mult([r], [x]);
3. rx = Output([rx]);
4. abort and restart if rx = 0, otherwise continue;
5. each party locally computes (rx)−1 = x−1r−1 mod p;
6. each party does [x−1] = ScalarMult(x−1r−1, [r]);
7. return [x−1].

Fig. 3. Calculating shares of a multiplicative inverse in Fp.

Table 1. Total communication complexity (measured in field elements) of SSS building
block protocols.

Protocol Rounds Comm. Complexity

Share 1 n − 1

Output 2 t + (n − 1)

Add 0 0

Mult 1 (2t + 1)(n − 1)

ScalarMult 0 0

RandInt 1 (t + 1)(n − 1)

Inv 4 (t + 1)(3n − 2) − 1

product of shared fractions remain unchanged from the analogous SSS primitives,
except that rational operands are encoded to field elements before those protocols
are executed. Subtraction and Division are an amalgam of the building blocks.
Division, in particular, relies on the fact that our mapping for encoding rational
numbers to integers is induced by a ring homomorphism, and therefore preserves
inverses; likewise for the decode mapping. We elaborate below.
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3.1 Encoding Rationals

We use the encoding map introduced in [17] which maps a subset of rationals,
whose denominators are co-prime with a prime p, into Fp. This map is defined
by encode(x/y) = xy−1 mod p, with domain the Farey rationals

FN :=
{
x
/
y : |x| ≤ N, 0 < y ≤ N, gcd(x, y) = 1, gcd(p, y) = 1

}
,

where N = N(p) := �√(p − 1)/2�. Notice that FN is not closed under addition
and multiplication.
The map encode is induced by a ring isomorphism, so both it and its inverse
decode are additively and multiplicatively homomorphic as long as the compo-
sition of operands in FN remains in FN .2 The inverse operations decode can
be computed efficiently using a slight modification of the Extended Euclidean
Algorithm. We summarize important properties of encode, decode, and FN in
the following lemma.

Lemma 1. Let p be a prime, N = N(p), and encode, decode be the encode and
decode maps, respectively.

(i) If x
/
y ∈ FN , then −x

/
y ∈ FN .

(ii) If x
/
y ∈ FN is nonzero, then y

/
x ∈ FN .

(iii) [−N,N ] ∩ Z ⊆ FN . Moreover, if z ∈ [0, N ] ∩ Z, then encode(z) = z.
(iv) encode and decode are homomorphic w.r.t. addition and multiplication

as long as the composition of operands in FN remains in FN .

Proof. (i)-(iii) are obvious. (iv) is proved in [17, Proposition 2].

3.2 Rational Addition, Multiplication, Subtraction, and Division

To represent shares of the encoding of x/y ∈ FN , we write
[
encode(x/y)

]
. We

first present the four protocols, and then list their complexities in Table 2. For all
protocols, we use the field Fp, and assume x0/y0, x1/y1 ∈ FN . Our addition and
multiplication protocols HgAdd and HgMult are obtained by simply pairing the
encoder with Add and Mult, respectively. As such, we omit the descriptions of
both protocols. The remaining two protocols, HgSubtr and HgDiv are introduced
below (Fig. 4).

Remark 1. We use the prefix “Hg” for our protocols because it is the chemical
symbol for the element Mercury.

Let enc0 = encode(x0/y0) and enc1 = encode(x1/y1) (Figs. 5, 6 and 7).
Observe that the output of HgDiv is exact – the output is x0y1/y0x1 on inputs
dividend = x0/y0 and divisor = x1/y1.

Remark 2. ScalarMult can be turned into HgScalarMult by simply encod-
ing a public element α ∈ FN , and then computing

[
encode(α)s

]
=

ScalarMult
(
encode(α), [s]

)
. Note that HgScalarMult also serves as a division by

public divisor protocol - simply replace α �= 0 by 1/α.

2 E.g., encode
(

x0
y0

+ x1
y1

)
= encode

(
x0
y0

)
+ encode

(
x1
y1

)
if x0

y0
, x1

y1
, x0

y0
+ x1

y1
∈ FN .
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Rational inputs Encode Share

Execute Protocols

ReconstructDecodeRational outputs

Fig. 4. Overview of Mercury protocols.

[encode(x0/y0 − x1/y1)] = HgSubtr [encode(x0/y0)], [encode(x1/y1)]
)

1. All parties compute encode(−1) = −1field ∈ Fp;
2. all parties compute [−enc1] = ScalarMult(−1field, [enc1]);
3. [enc0 − enc1] = HgAdd([enc0], [−enc1]);
4. return [enc0 − enc1] = [encode(x0/y0 − x1/y1)].

Fig. 5. Mercury subtraction protocol.

[encode(x0y1/y0x1)] = HgDiv [encode(x0/y0)], [encode(x1/y1)]
)

1. [enc−1
1 ] ← Inv([enc1]);

2. [enc0 · enc−1
1 ] ← HgMult([enc0], [enc−1

1 ]);
3. return [enc0 · enc−1

1 ] = [encode(x0y1/y0x1)].

Fig. 6. Mercury division protocol.

Inputs: [α] =
[
encode x0

y0

)]
,

[β] =
[
encode x1

y1

)] Use inverse protocol
Inv to get: [β−1]

Use multiplication protocol
Mult to get: [αβ−1]

Output:
[
encode x0

y0
· y1
x1

)]

Fig. 7. Overview of HgDiv.
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Table 2. Communication complexity (in field elements) of Mercury protocols.

Mercury

Protocol Rounds Comm. Complexity

HgAdd 0 0

HgMult 1 (2t + 1)(n − 1)

HgSubtr 0 0

HgDiv 5 (t + 1)(5n − 4) − n

3.3 Security and Correctness

It is well-known (see, e.g., [4]) that SSS is perfectly secure in the sense that
possession of fewer than the threshold number of shares does not reveal any
information about the secret. It is also easy to see that the building block pro-
tocols Share, Output, Add, ScalarMult, and Mult do not reveal any information,
as the only information received by the parties are shares and no party ever
receives enough shares to reconstruct. By invoking Canetti’s composition the-
orem [8], which roughly states that a composition of secure protocols yields a
secure protocol, we see that both RandInt and Inv are also secure.

The authors of [17] remark that for p an odd prime and N = N(p), FN is
not in bijective correspondence with Fp. In fact, |FN | ≈ 0.6p. A consequence of
this is that an attacker can reduce the set of possible secret encodings in Fp to
encode(FN ) � Fp. This is not problematic, however, as each value in encode(FN )
is equally likely to be the secret.
The following theorem provides necessary conditions for correctness of the
Mercury protocols.

Theorem 1 (Correctness of Mercury protocols). Let p be an odd prime and
N = N(p). Suppose xi/yi ∈ FN with αi = encode(xi/yi), for i = 0, 1.

(i) decode
(
HgAdd(α0, α1)

)
= x0/y0 + x1/y1 as long as x0/y0 + x1/y1 ∈ FN .

(ii) decode
(
HgMult(α0, α1)

)
= x0/y0 · x1/y1 as long as x0/y0 · x1/y1 ∈ FN .

(iii) decode
(
HgSubtr(α0, α1)

)
= x0/y0 − x1/y1 as long as x0/y0 − x1/y1 ∈ FN .

(iv) decode
(
HgDiv(α0, α1)

)
= x0/y0 ÷ x1/y1 as long as x0/y0 ÷ x1/y1 ∈ FN .

Proof. HgAdd is trivially correct if we ignore the encoded fractions and only
consider field elements. That is, HgAdd(α0, α1) = α0 + α1. So correctness is
guaranteed as long as decode(α0 + α1) = x0/y0 + x1/y1.
Now, suppose x0/y0 + x1/y1 ∈ FN . Since decode is additively homomorphic
when the sum remains in FN , decode(α0 + α1) = decode(α0) + decode(α1) =
x0/y0 + x1/y1, as desired. The correctness of the remaining Mercury protocols
follows mutatis mutandis.
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4 Which Rational Numbers Can We Use?

All our protocols use the aforementioned Farey rationals. As mentioned in
Lemma 1, FN is closed under additive inverses and multiplicative inverses, but
is not closed under addition and multiplication. This means that for applications
to MPC a suitable subset of FN must be chosen as the set of rational inputs. In
particular, we must include fractions with “small” numerators and denominators
so that adding/multiplying those fractions yields fractions that remain in FN .
Following closely the analysis of [17], this set will be chosen as

GX,Y :=
{
x/y ∈ FN | X,Y ∈ [0, N ], |x| ≤ X, 0 < y ≤ Y

}
,

for some X,Y to be specified.

4.1 Fixed-Point Numbers

Many previous works designed their protocols with fixed-point arithmetic in
mind. So, to facilitate comparison with prior art, we briefly discuss conditions
under which FN contains a given set of fixed-point numbers.

Fixed-point numbers are rational numbers represented as a list of digits split
by a radix point, and are defined by an integer (represented in a particular base
b) in a given range along with a fixed scaling factor f (called the precision).
For example, we can represent decimal numbers with integral part in the range
(−10�+1, 10�+1) and up to f decimal places after the radix point as a · 10−f =
a
/
10f , a ∈ (−10�+f+1, 10�+f+1). We will represent a set of fixed point numbers

with a tuple of the form (b, �, f), where b is the base, (−b�+1, b�+1) is range of
the integer part, and up to f base-b digits are allowed after the radix point. The
set of Farey rationals FN contains the fixed-point numbers given by (b, �, f) as
long as

N ≥ max{b�+f+1 − 1, bf − 1} = b�+f+1 − 1. (1)

Of course, N should be sufficiently large to ensure that adding/multiplying the
fixed-point numbers does not cause overflow. While FN can be made to contain
a set of fixed-point numbers with precision f , addition and multiplication of
Farey rationals does not coincide with addition and multiplication of fixed-point
numbers. This is because the fixed-point representation requires the precision
to remain f after each operation (this necessitates truncation), while FN allows
the precision to increase until overflow occurs and the output of a computation
is no longer correct. We will use the fact that FN contains certain fixed-point
numbers in Sect. 6 when we compare our protocols with prior work.

4.2 Compatible Circuits

Again borrowing from [17], for positive integers d, τ we define the class of (arith-
metic) (d, τ)-circuits over Q to be those that compute a polynomial
p ∈ Q[x1, x2, . . .] such that p satisfying: (i) �1 norm is at most τ , (ii) total degree
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is at most d, and (iii) all nonzero coefficients have absolute value greater than
or equal to 1. Note that nonzero polynomials p ∈ Z[x1, x2, . . .] with ‖p‖1 ≤ τ
and deg(p) ≤ d satisfy (iii). Let Cd,τ be the set of (d, τ)-circuits, and Pd,τ be
the set of polynomials those circuits compute. We obtain the following by slight
modification of the proof of [17, Proposition 7], which allow us to determine d, τ
so that evaluating any (d, τ)-circuit on inputs from GX,Y will have output in FN .

Proposition 1. Let d, τ ≥ 1. If x
/
y is the output of C ∈ Cd,τ evaluated on

inputs from GX,Y ⊆ FN , then |x| ≤ τXdY d(τ−1) and |y| ≤ Y dτ .

Proof. See Appendix A.
Intuitively, the bound on x is larger than the bound on y because the numerator
grows faster than the denominator when fractions are summed (since a

/
b+c

/
d =

(ad + bc)
/
bd), whereas they grow at the same rate when multiplied.

Table 3 shows some possible choices for d and τ if we use G232,214 � F21024 . Note
that in this case, p ≈ 22048.

Table 3. Possible values of d (total degree of polynomial computed by circuit) and
τ (�1 norm of polynomial computed by (d, τ)-circuit) for fractions with numerators
bounded in absolute value by 232 and denominators bounded by 214.

|num| ≤ 232, denom ≤ 214

d 1 2 3 4 5 10

τ 71 35 22 16 13 6

These numbers are not particularly useful, as many applications require thou-
sands or even millions of additions to be performed on shared values. However, for
many applications one is likely to work with decimal numbers with a small num-
ber of significant digits. In such cases, we can significantly improve the bounds
on d and τ . In general, if the fractional data all have the same denominator,
then Proposition 1 yields the following corollary.

Corollary 1. Let C ∈ Cd,τ with inputs from FN whose denominators are all
some fixed power e of an integer base b, 0 < be ≤ N , and whose numerators
are bounded in absolute value by X ≤ N . If x

/
y is the output of C, then |x| ≤

τ(Xbe)d and y ≤ bed.

Proof. Note that p ∈ Pd,τ can be written as p =
∑

i cipi, where
∑

i |ci| ≤ τ ,
each |ci| ≥ 1, and each pi is a monomial of degree at most d. Let p =

∑I
i=1 cipi,

and suppose we have k inputs xi/be.
Since deg(pi) ≤ d,

pi

(
x1

/
be, . . . , xk

/
be) =

xi1xi2 · · · xi�

be�
, for some � ≤ d and {i1, . . . , i�} ⊆ {1, . . . , k}.
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As each |xi| ≤ X, we have |xi1xi2 · · · xi�
| ≤ X� ≤ Xd.

Now, if x
/
y =

∑I
i=1 ci · pi

(
x1

/
be, . . . , xk

/
be

)
, then

x = (c1a1)be(I−1) + (c2a2)be(I−1) + · · · + (cIaI)be(I−1) and y = beI .

It follows that |x| ≤ ∑I
i=1 |ci|(Xbe)I ≤ τ · (Xbe)I and |y| ≤ beI . The proof is

completed by observing that |cα| ≥ 1, for all α, implies I ≤ τ .

Rehashing the above example (X = 232 and N ≈ 21024) with be = 214 we get
τ(232214)d ≤ 21024 =⇒ log2(τ) ≤ 1024 − 46d and (214)d ≤ 21024 =⇒ d ≤ 73.
The bound on d is in fact even smaller: since the �1 norm of a polynomial in
Pd,τ is at least 1, log2(τ) ≥ 0 =⇒ 1024 − 46d ≥ 0 =⇒ 22 ≥ d.

Table 4. Possible values of d (total degree of polynomial computed by a (d, τ)-circuit)
and τ (�1 norm of polynomial computed by (d, τ)-circuit) for fractions with numerators
bounded in absolute value by 232 and denominators all equal to 214

|num| ≤ 232, denom = 214

d 1 2 10 15 20 22

τ 2978 2932 2564 2334 2104 212

Table 4 shows that if we restrict inputs to have the same denominators, we
can perform an enourmous number of additions and a reasonable number of
multiplications before the output lands outside of FN . We can do even better
though.

Degree-constant Circuits. Each gate of an arithmetic circuit computes a polyno-
mial over (some of) the inputs. We define a degree-constant (arithmetic) circuit
to be one in which every gate computes a polynomial whose monomial sum-
mands all have the same degree; e.g., a dot product. The goal of introducing
these circuits is to ensure that whenever two fractions are summed, they already
have a common denominator.

Corollary 2. Let C ∈ Cd,τ be degree-constant with inputs from FN whose
denominators are all be and whose numerators are bounded in absolute value
by X > 0. If x

/
y is the output of C, then |x| ≤ τXd and y ≤ bed.

Proof. This follows easily from the fact that whenever two terms are added
during the evaluation of a degree-constant circuit, they already have a common
denominator which is a power of be.

Again, using a 1024-bit N , X = 232, and be = 214, we get the inequalities
log2(τ) ≤ 1024 − 32d and d ≤ 32, yielding the following table.
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Table 5. Possible values of d (total degree of polynomial computed by a (d, τ)-circuit)
and τ (�1 norm of polynomial computed by (d, τ)-circuit) for degree-constant C ∈
Cd,τ taking inputs from FN with numerators bounded in absolute value by 232 and
denominators all equal to 214

|num| ≤ 232, denom = 214

d 1 2 10 15 25 31

τ 2992 2960 2704 2544 2384 232

Incorporating Division. Once divisions are allowed, the bounds given in Corol-
lary 1 and Corollary 2 no longer apply, since the numerator of the divisor becomes
a factor of denominator of the quotient. This means any necessary divisions
should be performed as late as possible relative to other operations.

4.3 An Application: Computing Excess Kurtosis

The excess kurtosis of a distribution is a measure of its “tailedness” relative
to a normal distribution: low excess kurtosis (<0) means the distribution has
thin tails while high excess kurtosis (>0) means the distribution has thick tails.
This measure is frequently-used in descriptive analytics and rather involved to
calculate, which makes it a good candidate computation for Mercury. We derive
below the parameters necessary to guarantee that the excess kurtosis of a sample
of size k remains in FN . The excess kurtosis EKs is defined as

EKs =
k(k + 1)

∑k
i=1

(
xi − x̄

)4

(k − 1)(k − 2)(k − 3)s4
− 3(k − 1)2

(k − 2)(k − 3)
for k ≥ 4

where k is the size of the sample, s2 the variance, and x̄ is the mean of the
sample. For simplicity, and to avoid calculating s2 and x̄ separately, the formula
can be rewritten as

EKs =
k(k + 1)(k − 1)

∑k
i−1

(
kxi −

∑k
i=1 xi

)4
− 3

(
k − 1

)2(∑k
i=1

(
kxi −

∑k
i=1 xi

)2)2

(
k − 2

)(
k − 3

)( ∑k
i=1

(
kxi −

∑k
i=1 xi

)2)2

Assuming that we need to compute the excess kurtosis of a sample of about one
billion (≈ 230), and using data with denominators 214 and numerators less than
232, as in Table 5. We determine that the numerator of EKs is bounded by k82134

and the denominator is bounded by k62132. Therefore, to guarantee EKs ∈ FN ,
it suffices to take N ≥ k82134. Using N ≥ (

230
)82134, we get N ≥ 2374, or a p

on the order of 2749.
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5 Optimizations

The complexity of HgMult and HgDiv can be reduced by executing parts of
the protocols asynchronously in an offline phase. This allows certain parts of
the protocols to be executed before the desired computation, thereby reducing
the online complexity. The complexity of the offline phase depends on chosen
primitives, existence of a trusted dealer, etc. Henceforth, we emphasize the online
round complexity and the online communication complexity.

We utilize two ubiquitous tools for optimization: Beaver triples (introduced in
[3]) for more efficient multiplication, and Pseudo-Random Secret Sharing (PRSS,
[12]) to generate random field elements without interaction.

In PRSS, the parties agree on a pseudo-random function (PRF) ψ·(·) and a
common input a. They then use pre-distributed keys rA (one for each set A of
n − (t + 1) parties) to locally compute shares of a random field element s using
Replicated Secret Sharing (see [12] for details). The use of PRSS reduces the
online round and communication complexity of RandInt from 1 and (t+1)(n−1)
to 0 and 0, respectively. Further, we assume that the PRF, common input, and
keys are agreed upon and distributed during a set-up phase, whence using PRSS
makes the offline round and communication complexity of RandInt both 0.

Beaver triples are 3-tuples of shares ([a], [b], [c]) satisfying ab = c, and can
be generated asynchronously in the offline phase using PRSS and Mult. These
triples can be used to multiply secrets with only two online rounds of interac-
tion. In particular, shares [xy] can be obtained from [x] and [y] using only Add,
ScalarMult, Output, and one Beaver triple ([a], [b], [c]):

[xy] = (x + a)[y] − (y + b)[a] + [c].

Used triples must be discarded, else information is leaked. This means that a
sufficiently-large reservoir of Beaver triples should be maintained to allow the
desired functions to be computed.

These optimizations reduce the online complexities of HgMult and HgDiv, and
leave the complexities of HgSubtr and HgAdd the same. Table 6 below summarizes
the improvements.

The reader may notice that optimizing Mult actually increases the round
complexity in the online phase from 1 to 2. This results from invocations of
Output (executed in parallel) which requires 2 rounds per invocation, and is
the cost of reducing the online communication from O(tn) to O(t + n). A user
preferring instead to minimize the round complexity can do so by not using
Beaver triples. Table 6 lists the optimized complexities of the Mercury protocols,
along with the complexities of HgMult and HgDiv obtained by using PRSS but
not Beaver triples.

We use the complexities listed in Table 6 for the comparisons in Sect. 6.
Henceforth, “rounds” will mean “online rounds + offline rounds”, and “total
communication” will mean “online communication + offline communication”.
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Table 6. Optimized round and communication complexities for our protocols.

Optimizations Protocol Online
Rounds

Offline
Rounds

Online Comm. Offline Comm.

PRSS and
Beaver triples

HgAdd 0 0 0 0

HgSubtr 0 0 0 0

HgMult 2 1 t + (n − 1) (2t + 1)(n − 1)

HgDiv 6 2 3t + 3(n − 1) 2(2t + 1)(n − 1)

PRSS HgMult 1 0 (2t + 1)(n − 1) 0

HgDiv 4 0 (4t + 3)(n − 1) 0

6 Comparison with Prior Work

In [11], Catrina and Saxena introduced semi-honest secure protocols for fixed-
point multiplication and division - their division is based on (the iterative) Gold-
schmidt’s method. A variant of their protocol is used by MP-SPDZ for fixed-
point division. Catrina subsequently improved the round and communication
complexities in [9]. To measure the complexities of their protocols, they use the
set of fixed-point numbers given by (2, 2f, f); i.e., the set of rationals a · 2−f

with a ∈ [−2−2f , 22f ) ∩ Z. Their fixed-point encoding technique requires a field
Fq with q > 22f+κ, κ a statistical security parameter. For our protocols, we use
the same field Fq, whence our set of rationals is FN with N = N(q); specifically
log2(N) ≥ f + κ/2. Table 7 shows that for reasonable values of n and t (e.g.
n = 3, t = 1), our protocols far outperform those of [9].

Table 7. Complexity comparison between our work (optimized with PRSS and Beaver
triples) and that of [9]. Both the online and offline communication complexity are
measured in elements of Fq sent among all parties throughout a protocol. n and t
are the number of parties and the threshold, resp., θ is the number of iterations of
Goldschmidt’s method, and f is the fixed-point precision.

Protocol Rounds Online Comm. Offline Comm.

Mercury Multiplication 3 t + (n − 1) (2t + 1)(n − 1)

Division 8 3t + 3(n − 1) 2(2t + 1)(n − 1)

[9] Multiplication 1 n nf

Division 9 + θ n(10f + 2θ) n(16f + 4θf)

Let n = 3 and t = 1, so two parties can reconstruct. In an example, the
authors choose f ∈ [32, 56] and θ = 5, which results in a 14 round division with
online communication complexity 330n = 990 field elements. In contrast, our
division requires 8 rounds, and has online communication complexity 9 field ele-
ments. There is, however, a bit more subtlety to this comparison. As mentioned
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in Sect. 4.1, operations on fixed-point numbers require a truncation, and the pro-
tocols of Catrina et al. use truncation. Consequently, there is no limit to how
many times they can multiply/divide two fixed-point numbers. However, there
is a number of multiplications, say, that will render their outputs of little use
because so many bits have been truncated. Our limitation, on the other hand, is
overflow – computations over FN are only meaningful if all intermediate outputs
and the final output are in FN . We can address this in two ways: (i) only take
inputs from the subset GX,Y ⊆ FN defined in the beginning of Sect. 4, for X,Y
sufficiently smaller than N , or (ii) use a larger field than [9]. As long as we don’t
choose too large a field, (ii) will preserve our complexity advantage.

Another interesting solution, albeit only for integer division, was proposed
by Veugen and Abspoel in [21]. They present three division variations: public
divisor, private divisor (only one party knows the divisor), and secret divisor
(hidden from all parties). Their protocols are implemented using MP-SPDZ with
three parties, and runtimes along with communication complexities (in MB) for
dividing a k-bit integer by a k/2-bit integer are provided. Even though our
division protocol uses rationals in general, comparison makes sense because FN

contains the integers [−N,N ] ∩ Z (see Lemma 1). For comparison, we use n = 3
and t = 1, and use the smallest prime field Fp allowed by [21]:

log2(p) ≈ 4max
{

log2(dividend), log2(divisor)
}

+ 40

E.g., this means that for a 64 bit dividend and 32 bit divisor, we have log2(p) =
296 and N = N(p) ≈ 148 bits (Table 8).

Table 8. Total communication complexity in megabytes (MB) of our division proto-
col (applied to integers) vs. the (secret divisor) integer division protocol of [21]. The
communication complexity for (fully optimized) HgDiv was estimated using Table 6.

dividend bits 8 16 32 64

divisor bits 4 8 16 32

Mercury 0.00018MB 0.00026MB 0.00042MB 0.00074MB

[21] (semi-honest security) 8.6MB 32.6MB 121.0MB 492.7MB

The last comparison we shall show is against Pika [22]. Pika uses Function
Secret Sharing [7] to construct a three-party protocol (one party is used only
to generate correlated randomness) for computing functions such as reciprocal,
sigmoid, and square root. Their protocol Pika takes as inputs (binary) fixed-point
numbers x with precision f , such that x · 2f ∈ (−2k−1, 2k−1], and creates shares
in the ring Z2� , where � ≥ 2k. For comparison, we choose N = N(p) = 2k−1

(meaning we share secrets over Fp with p ≈ 22k). This guarantees that FN

contains the fixed-point numbers used by Pika regardless of the chosen precision
f . As with the preceding comparisons, we take n = 3 and t = 1.
Using the same parameter values for (semi-honest secure) Pika as the author, we
found that total communication complexity for securely computing the reciprocal
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with k = 16 and � = 32 was 8524 bits over three rounds (one offline). In contrast,
we can compute the reciprocal of an element of F215 in 6 rounds (one offline)
with communication complexity 21 log2(p) ≈ 21 · 2k = 672 bits.

7 Conclusions and Future Work

Conclusion. This work uses Shamir Secret Sharing with a minority of semi-
honest adversaries, but Mercury is flexible in the sense that it can be easily
realized over other primitives with better security assumptions; e.g. additive
secret sharing à la MP-SPDZ along with a majority of malicious adversaries.
Mercury provides an efficient low round and communication complexity solution
to exact computation over rational numbers using MPC. A cost of exactness,
though, is that our protocols are not intrinsically compatible with fixed-point
arithmetic. Instead of truncating after every operation to not exceed the chosen
fixed-point precision, we allow the precision to grow until overflow occurs. This
means that we may need to work over a larger field Fp than prior art ([9,21,22]),
but our communication and round complexity are sufficiently low as to make
using a slightly larger field not problematic.

Future Work. A sequel which introduces a novel truncation protocol and a pri-
vate comparison protocol is currently in preparation. These new protocols will
allow Mercury to perform fixed-point arithmetic in any base and make Mercury a
more complete and versatile family of protocols for secure computation with
rational numbers.
Our next step is to implement Mercury to facilitate more comprehensive com-
parison with existing protocols. As mentioned in the introduction, even though
Mercury is built on SSS, its protocols could easily be adapted to use additive
secret sharing, meaning we can implement Mercury using MP-SPDZ.

Acknowlegment. The authors warmly thank Professor Jonathan Katz for reading
early drafts of this paper, and providing helpful insights and suggestions. This work is
fully supported by Algemetric Inc.

A Proofs

Proof (of Proposition 1). Note that p ∈ Pd,τ can be written as p =
∑

i

cipi, where
∑

i

|ci| ≤ τ , each |ci| ≥ 1, and each pi is a monomial of degree at most d.

Let p =
I∑

i=1

cipi. Since deg(pi) ≤ d, the output pi

(
x1

/
y1, . . . , xk

/
yk

)
is a fraction

of the form
ai

bi
=

xi1xi2 · · · xi�

yi1yi2 · · · yi�

, for some � ≤ d and {i1, . . . , i�} ⊆ {1, . . . , k}.
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As each xi

/
yi ∈ GM , we have |ai| ≤ X� ≤ Xd and |bi| ≤ Y � ≤ Y d. Since

x
/
y =

I∑

i=1

ci · ai

/
bi,

x = (c1a1)b2b3 · · · bI + b1(c2a2)b3 · · · bI + b1b2 · · · bI−1(cIaI) and
y = b1b2 · · · bI .

It follows from
∑ |ci| ≤ τ and the above bound on |ai|, |bi| that

|x| ≤
I∑

i=1

|ci|(Xd)(Y d)I−1 ≤ τ · XdY d(I−1) and |y| ≤ Y d(I−1).

The proof is completed by observing that |cα| ≥ 1, for all α, implies I ≤ τ .
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Abstract. In this work, we define and study the notion of evolving
conditional disclosure of secrets (CDS) protocols. In this model, parties
arrive infinitely in sequential order. Each party holds a private input,
and when arrives, it sends a random message to a referee. In turn, at
any stage of the protocol, the referee should be able to reconstruct a
secret string, held by all the parties, from the messages it gets, if and
only if the inputs of the parties that arrived satisfy some condition.

A similar notion was previously presented for secret sharing, a closely
related cryptographic primitive used in many secure protocols. In a secret
sharing scheme, a dealer holds a secret string. It randomly generates
shares and distributes them to a set of parties, one share for each party,
such that only some predefined subsets of the parties would be able to
reconstruct the secret from their shares.

In addition to the initiation of evolving CDS, we present a few con-
structions of evolving CDS protocols, for different classes of conditions
that should be satisfied by the inputs of the parties. We believe that our
new notion can be used to better understand evolving secret sharing and
other related cryptographic primitives, and that further applications and
constructions of it will be found in the future.

Keywords: Evolving secret sharing · conditional disclosure of secrets ·
information-theoretic cryptography

1 Introduction

Secret sharing is a fundamental cryptographic primitive, first presented by Blak-
ley [Bla79] and Shamir [Sha79] for the threshold setting, and later by Ito, Saito,
and Nishizeki [ISN87,ISN93] for the general setting. In a secret sharing scheme,
a dealer holds a secret string, and distributes random string shares to a set of n
parties, such that only some authorized subsets of the parties can reconstruct the
secret from their shares. Other unauthorized subsets should not learn information
on the secret. The collection of authorized subsets of parties is referred to as the
access structure. Secret sharing schemes have been used in many cryptographic
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applications, such as attribute-based encryption (ABE), secure multi-party com-
putation (MPC) protocols, access control, and threshold cryptography.

A main problem in the secret sharing regime is to determine the share size
(i.e., the size of the share of each party) required in a secret sharing scheme
for a given access structure. The first constructions for the threshold setting
[Bla79,Sha79] are for threshold access structures, in which the authorized sub-
sets are all the subsets of parties whose size is greater than some threshold.
These constructions are very efficient in terms of the share size, i.e., the size of
each share is logarithmic in the number of parties n. For general access struc-
tures, following the secret sharing scheme of [ISN87,ISN93], new constructions of
secret sharing schemes were presented [BL88,BD91,BI92,KW93,LV18,ABF+19,
ABNP20,AN21,BOP21,BOP23]. However, all these constructions require expo-
nential (in the number of parties n) share size, while the best known lower bound
on the share size of secret sharing schemes for general access structures is linear
in n (up to a logarithmic factor) [Csi94,Csi96,Csi97].

Additionally, many variants of secret sharing were introduced, e.g., verifi-
able secret sharing [CGMA85,Fel87], proactive secret sharing [HJKY95,SW99],
quantum secret sharing [HBB99,KKI99], leakage-resilient secret sharing [DP07,
DDV10], function secret sharing [BGI15,BGI16b], homomorphic secret sharing
[BGI16a,BCG+17], and non-malleable secret sharing [GK18a,GK18b].

Evolving secret sharing is another variant of secret sharing, presented by
Komargodski, Naor, and Yogev [KNY16]. In contrast to classical secret sharing,
in evolving secret sharing the number of parties is unbounded.

The parties arrive infinitely in sequential order, while when a new party
arrives, the dealer provides it its share. After a share was given to a party from
the dealer, this share cannot be updated later, when more parties arrive. How-
ever, in order to generate the random share of some party, the dealer can use the
randomness used for the shares of previous parties that arrived before. As a con-
sequence, the (possibly infinite) evolving access structure is constantly updated
when each party arrives. That is, when a new party arrives, all authorized sets
that contain this new party are added to the evolving access structure.

One of the motivations for considering and studying the evolving setting is
that in the real world, updates could be very costly. In addition, the evolving
setting supports infinitely many parties, and even for an unknown finite number
of parties, the dealer does not need to assume it (or even the evolving access
structure) beforehand.1 If the dealer is required to do so and it overestimates the
number of arriving parties, then it will distribute to the parties shares that are
too large, resulting in inefficient scheme. Otherwise, if the dealer underestimates
the number of arriving parties, then it will have to update the shares of the
parties, and maybe even generate new shares to some parties that arrived first.

While in classical secret sharing the share size of each party is measured as
a function of the foretold number of parties n, in evolving secret sharing the
share size of the tth party is measured as a function of t. In [KNY16], they con-

1 The dealer may learn the new authorized sets added to the evolving access structure
when a new party arrives only at that stage, just before distributing the new share.
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structed evolving secret sharing scheme for general evolving access structures, in
which the share size of the tth party is exponential in t. The best known lower
bound on the share size of evolving secret sharing schemes for general evolving
access structure is almost tight [Maz23]. Evolving secret sharing schemes have
been extensively studied for evolving threshold access structures [KP17,DPS+18,
DDM19,PA20,OK20,CDS20,Cha20,XY21,PA21,YLH23]. In particular, these
works showed constructions of evolving schemes for several different evolving
variants of threshold access structures. Additionally, constructions of evolv-
ing secret sharing schemes for other evolving access structures were presented
[BO18,DRF+19,BO20,PSAM21,Cha22], and other models closely related to
evolving secret sharing were also studied [Cac95,CT12,CDS21].

Another cryptographic primitive related to secret sharing is conditional dis-
closure of secrets (CDS), first presented by Gertner, Ishai, Kushilevitz, and
Malkin [GIKM00]. In a CDS protocol, n parties holds a secret, and in addi-
tion each of them holds a private input. Each party sends a random message to
a referee, that depends on its input, the secret, and a common randomness held
by all the parties. The referee can reconstruct the secret from the messages it
gets if and only if the inputs of the parties satisfy some condition, specified by
a predicate. That is, the secret can be reconstructed by the referee only when
some predicate holds on the inputs of the parties. Otherwise, the referee should
not learn information about the secret.

CDS protocols are used in several applications, such as oblivious trans-
fer (OT) protocols, attribute-based encryption (ABE), symmetrically private
information retrieval (SPIR) protocols, and secret sharing schemes. One of
the main goals when developing CDS protocols is to minimize the message
size, that is, the size of the message sent by each party. Constructions of
CDS protocols for general predicates have been developed in a few works
[LVW18,AA18,BP18,BOP21,BOP23]. In the former, an efficient construction
of CDS protocol with sub-exponential (in the number of parties n and the
input domain size of each party) message size was presented. In particu-
lar, the CDS protocols of [LVW18,BP18,BOP21,BOP23] were used to con-
struct the best known secret sharing schemes for general access structures
[LV18,ABF+19,ABNP20,AN21,BOP21,BOP23].2

Our Contribution. As our conceptual contribution, we introduce the notion of
evolving conditional disclosure of secrets, as described below. Besides its peda-
gogical and theoretical interest, this notion is motivated by the advantages of
the evolving setting and the applications of CDS protocols. As in evolving secret
sharing, the number of parties is unbounded also in evolving CDS, where the

2 In [ABNP20,AN21], they used a robust version of the CDS protocols of [LVW18,
BP18], in which the referee should learn no information on the secret, even when
some parties deviated from the protocol by sending more than one message. In
[BOP21,BOP23], they developed a new CDS protocol and used the robust version
of it to construct a new secret sharing scheme.
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parties arrive infinitely in sequential order. Each party, when arrives, sends one
random message to a referee, that depends on its input, the secret, and a common
randomness. It can use the randomness used by all the parties arrived before,
and in addition another new fresh randomness. In evolving CDS protocols, the
evolving predicate used to determine whether the secret can be reconstructed by
the referee consists of an infinite sequence of multi-input predicates, one pred-
icate for every possible number of inputs (of the parties), which is constantly
updated when a new party arrives. This sequence of predicates is monotone, is
a sense that if a predicate holds on some sequence of inputs, then the following
predicate will also holds on the same sequence of inputs, while adding to it any
new possible input, which is the one held by the new party.

Our technical contribution contains several constructions of evolving CDS
protocols, with perfect information-theoretic security, described as follow.

– We first present an evolving CDS protocol for general evolving predicates,
that is, a construction for any possible evolving predicate. In order to get
the desired protocol, we show an evolving secret sharing scheme for evolv-
ing hypergraph access structures, obtained by optimizing the general evolv-
ing secret sharing scheme of [KNY16], and reduce evolving CDS protocols
for general predicates to evolving secret sharing schemes for such evolving
hypergraph access structures.

– In addition, we show an evolving CDS protocol for evolving min-sum pred-
icates, which hold if and only if the sum of the inputs is larger than some
minimal value.3 This construction is obtained by reducing evolving CDS pro-
tocols for evolving min-sum predicates to evolving secret sharing schemes for
evolving threshold access structures.

– Finally, we construct an evolving CDS protocol for evolving constrained
predicates, which hold if and only if enough individual inputs satisfy some
attributes. As the protocol for evolving min-sum predicates, we get it by a
reduction to evolving threshold secret sharing schemes.

We believe that the notion of evolving CDS can be used to better understand
evolving secret sharing, classical CDS, and other related cryptographic primi-
tives, and that further applications and constructions of evolving CDS protocols
will be found in the future.

2 Preliminaries

Notations. We denote the logarithmic function with base 2 by log. For n ∈ N, we
denote by [n] the set {1, . . . , n}. For a set X , we denote x ← X as a uniformly
random sample x from X . We also denote 2X as the collection of all subsets
of X . For two probability distributions X and Y , we denote X ≡ Y when the
random variables X and Y are identically distributed.

3 The minimal value can be different for any number of inputs. However, the sequence
of minimal values should be non-decreasing.
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Secret Sharing. In a secret sharing scheme, a dealer, which holds a secret s, sam-
ples a random string r, and uses the secret s and the random string r to generate
n shares according to some access structures over a set of n parties P1, . . . ,Pn.
Then, it privately distributes the ith share to party Pi. Any authorized subset
of parties in the access structure should be able to reconstruct the secret from
its share, while subsets not in the access structure should learn no information
on the secret. We now present the formal definition of secret sharing schemes.

Definition 1 (Access Structures). Let P = {P1, . . . ,Pn} be a set of parties.
A collection A ⊆ 2P is monotone if A ∈ A and A ⊆ B imply that B ∈ A.
An access structure is a monotone collection A ⊆ 2P of non-empty subsets of
P. Sets in A are called authorized, and sets not in A are called unauthorized.
We say that A ∈ A is minimal authorized set if B /∈ A for every B ⊂ A. The
collection of minimal authorized sets of A is denoted by min A.

Definition 2 (Secret Sharing Schemes). Let A ⊆ 2P be an access structure.
A secret sharing scheme Σ with domain of secrets S, domain of random strings
R, and share domains S1, . . . ,Sn, consists of deterministic sharing algorithm
Sh : S ×R → S1 ×· · ·×Sn, that takes a secret and a random string, and outputs
n shares for the n parties, and |A| deterministic reconstruction algorithms RecA :
Si1 × · · · × Si|A| → S, for every authorized set A = {Pi1 , . . . ,Pi|A|} ∈ A,4 that
takes |A| shares from the parties of A, and outputs a secret. For every set A ⊆ P,
denote ShA(s, r) as the restriction of Sh(s, r) to its A-entries (i.e., the shares of
the parties in A). We say that Σ is a secret sharing scheme realizing the access
structure A if it satisfies the following requirements.

Correctness. The secret can be reconstructed by any authorized set of parties
from A. That is, for every set A ∈ A, every secret s ∈ S, and every random
string r ∈ R, it holds that

RecA(ShA(s, r)) = s.

Security. Any unauthorized set cannot learn any information about the secret
from its shares. That is, for every set A /∈ A and every two secrets s, s′ ∈ S,

ShA(s, r) ≡ ShA(s′, r),

where r ← R.

4 Observe that the secret sharing scheme can contain reconstruction algorithms RecA
only for every minimal authorized set A ∈ min A. In that case, a non-minimal autho-
rized set can apply the reconstruction algorithm of some minimal authorized set that
contained in it.
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Complexity. The secret size is defined as log |S|, the share size of party Pi is
defined as log |Si|, and the total share size is defined as

∑n
i=1 log |Si|.

Evolving Secret Sharing. In an evolving secret sharing scheme, the number of
parties is unbounded, and the parties arrive infinitely in sequential order. When
party Pt arrives, the dealer generates its share by first sampling a new fresh
random string rt, and then uses the secret s and all the random strings r1, . . . , rt
sampled until party Pt arrived, to generate the tth share and send it to party Pt.
The evolving access structure is therefore constantly updated when a new party
arrives, by determining the authorized sets that contain the new party. Below
we provide the formal definition of evolving secret sharing schemes.

Definition 3 (Evolving Access Structures). Let P = {Pt}t∈N be an infinite
set of parties. An evolving access structure is a collection A ⊆ 2P , where each
set of A is finite, and for every t ∈ N, the collection At := A ∩ 2{P1,...,Pt} is an
access structure, as in Definition 1. The collection of minimal authorized sets of
A is denoted by min A, again as in Definition 1.

Definition 4 (Evolving Secret Sharing Schemes). Let A ⊆ 2P be an
evolving access structure. An evolving secret sharing scheme Σ with domain
of secrets S, sequence of domains of random strings {Rt}t∈N, and sequence of
share domains {St}t∈N, consists of a sequence of deterministic sharing algorithms
{Sht : S × R1 × · · · × Rt → St}t∈N, that takes a secret and t random strings,
and outputs a share for party Pt, and (possibly infinite number of) determin-
istic reconstruction algorithms RecA : St1 × · · · × St|A| → S, for every autho-
rized set A = {Pt1 , . . . ,Pt|A|} ∈ A, that takes |A| shares from the parties of
A, and outputs a secret. We say that Σ is an evolving secret sharing scheme
realizing the evolving access structure A if for every t ∈ N, the secret sharing
scheme Σt, with the sharing algorithm Sht : S × R1 × · · · × Rt → S1 × · · · × St,
where Sht(s, r1, . . . , rn) = (Sh1(s, r1), . . . ,Sht(s, r1, . . . , rn)), and the reconstruc-
tion algorithms RecA for every A ∈ At, is a secret sharing scheme realizing the
access structure At (defined in Definition 3), as in Definition 2.

The following definition of evolving threshold access structures was presented
in [KNY16,KP17].5

Definition 5 (Evolving Threshold Access Structures). Let P = {Pt}t∈N

be an infinite set of parties, and let K = {kt}t∈N be a sequence of non-decreasing
integers, where kt ≤ t for every t ∈ N. The evolving K-threshold access structure
AK is the evolving access structure in which for every t ∈ N, contain as minimal
authorized sets all the subsets of size exactly kt, such that Pt is the party with
the larger index in the set.6 I.e., Ak is the infinite union, for every t ∈ N, of the
5 In [KP17], they refer to it as dynamic threshold access structures. In this work, we

also focus on the special case in which all the thresholds are the same constant value.
6 In particular, if for a (possibly infinite) set of consecutive natural numbers T ⊆ N,

the integers kt, for every t ∈ T , are equal to the same value k, then all subsets of
size k that contain Pt as their larger party, are minimal authorized sets.



Evolving Conditional Disclosure of Secrets 333

kt-out-of-t threshold access structure over the parties P1, . . . ,Pt. If kt = k for
every t ∈ N, we say that Ak := AK is the evolving k-threshold access structure.

Example 1. Consider the evolving access structure A2 with the minimal autho-
rized sets min A2 := {{Pt,Pt′} : t 
= t′ ∈ N}, that is, any subset of 2 parties
can reconstruct the secret, while single parties cannot learn information on the
secret. Then, for example, after 3 parties have been arrived, the collection of
minimal authorized sets is minA2

3 := {{P1,P2}, {P1,P3}, {P2,P3}}.
Additionally, for K = {t − 2}t∈N (i.e., kt = t − 2 for every t ∈ N), we have

min AK := {{Pi1 , . . . ,Pit−3 ,Pt} : t ∈ N, {i1, . . . , it−3} ⊂ [t − 1]}.

Then, after 4 parties have been arrived, the collection of minimal authorized sets
is min AK

4 := {{P3}, {P1,P4}, {P2,P4}, {P3,P4}}.

Conditional Disclosure of Secrets. In a conditional disclosure of secrets (CDS)
protocol, n parties Q1, . . . ,Qn hold a secret s and a common random string r,7

and each of them holds a private input xi for some n-input predicate f . Then,
each of the parties Qi sends one message to a referee, which is based on its
private input xi, the secret s, and the common random string r. The referee,
knowing the inputs x1, . . . , xn of the parties, should learn the secret if and only
if the inputs of the parties satisfy the predicate, that is, f(x1, . . . , xn) = 1. We
next show the formal definition of CDS protocols.

Definition 6 (Conditional Disclosure of Secrets Protocols). Let X :=
X1×· · ·×Xn be an n-input domain and let f : X → {0, 1} be an n-input predicate.
A conditional disclosure of secrets (CDS) protocol Π with domain of secrets S,
domain of common random strings R, and message domains M1, . . . ,Mn, con-
sists of n deterministic message computation algorithms Enci : Xi×S×R → Mi,
for every i ∈ [n], that takes an input, a secret, and a random string, and
outputs a message for party Qi, and deterministic reconstruction algorithm
Dec : X1 × · · · × Xn × M1 × · · · × Mn → S that takes n inputs and n mes-
sages, and (possibly) outputs a secret. For every input x = (x1, . . . , xn) ∈ X ,
denote Enc(x, s, r) := (Enc1(x1, s, r), . . . ,Encn(xn, s, r)). We say that Π is a
CDS protocol for the predicate f if it satisfies the following requirements.

Correctness. The secret can be reconstructed by the messages on any 1-input of
f . That is, for every input x ∈ X for which f(x) = 1, every secret s ∈ S, and
every common random string r ∈ R, it holds that

Dec(x,Enc(x, s, r)) = s.

7 In order to distinguish from the parties in the secret sharing model, we denote the
parties in the CDS model by Q1, . . . ,Qn.
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Security. Any information about the secret cannot be learned from the messages
on any 0-input of f . That is, for every input x ∈ X for which f(x) = 0 and
every two secrets s, s′ ∈ S, it holds that

(x,Enc(x, s, r)) ≡ (x,Enc(x, s′, r)),

where r ← R.

Complexity. The secret size is defined as log |S|, the message size of party Qi is
defined as log |Mi|, and the total message size is defined as

∑n
i=1 log |Mi|.

3 Definition of Evolving Conditional Disclosure of Secrets

In this section, we present our definition of evolving conditional disclosure of
secrets protocols. As in evolving secret sharing schemes, in an evolving CDS
protocol, the number of parties is unbounded, and parties arrive infinitely in
sequential order. The common random string is consists of infinite sequence
of finite common random strings r1, r2, r3, . . . , where the random string rt is
associated with party Qt. When party Qt arrives, it sends one message to the
referee, which is based on its private input xt, the secret s, and the common
random strings r1, . . . , rt. The evolving predicate, through which it is determined
whether the referee can reconstruct the secret or not, is constantly extended to
be defined on one additional input, every time a new party arrives. We are now
ready to introduce the formal definition of evolving CDS protocols.

Definition 7 (Evolving Predicates). Let {Xt}t∈N be a sequence of input
domains. An evolving predicate is a sequence of predicates F = {ft : X1 ×
· · · × Xt → {0, 1}}t∈N, such that for every t ∈ N and every (x1, . . . , xt+1) ∈
X1 × · · · × Xt+1, it holds that

ft+1(x1, . . . , xt+1) ≥ ft(x1, . . . , xt).

Note that Definition 7 implies that if ft holds on the input (x1, . . . , xt) ∈ X1×
· · ·×Xt, then fi also holds on (x1, . . . , xt, xt+1, . . . , xi) for every (xt+1, . . . , xi) ∈
Xt+1 ×· · ·×Xi, and if ft does not hold on the input (x1, . . . , xt) ∈ X1 ×· · ·×Xt,
then fi also does not hold on (x1, . . . , xi) for every i ∈ [t − 1].

Definition 8 (Evolving Conditional Disclosure of Secrets Protocols).
Let {Xt}t∈N be a sequence of input domains, and let F = {ft : X1 × · · · × Xt →
{0, 1}}t∈N be an evolving predicate. An evolving conditional disclosure of secrets
protocol Π with domain of secrets S, sequence of domains of random strings
{Rt}t∈N, and sequence of message domains {Mt}t∈N, consists of a sequence of
deterministic message computation algorithms {Enct : Xt ×S ×R1 ×· · ·×Rt →
Mt}t∈N, that takes an input, a secret, and t random strings, and outputs a
message for party Qt, and an infinite number of deterministic reconstruction
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algorithms Dect : X1 × · · · × Xt × M1 × · · · × Mt → S, for every t ∈ N, that
takes t inputs and t messages, and (possibly) outputs a secret. We say that Π
is an evolving CDS protocol for the evolving predicate F if for every t ∈ N,
the CDS protocol Πt, with the message computation algorithms Encti : Xi ×
S × R1 × · · · × Rt → Mi, for every i ∈ [t], where Encti(xi, s, r1, . . . , rt) :=
Enci(xi, s, r1, . . . , ri),8 and the reconstruction algorithm Dect, is a CDS protocol
for the predicate ft, as in Definition 6.

4 Evolving CDS for General Predicates

In this section, we consider the class of all possible evolving predicates, in which
the input domain size of each party is N , that is, evolving predicates of the form
FN = {ft : [N ]t → {0, 1}}t∈N.

We show how to construct evolving CDS protocols for the every evolving
predicate FN using evolving secret sharing schemes for evolving hypergraph
access structures, as defined below.

Definition 9 (Evolving Hypergraph Access Structures). Let N ∈ N.
An evolving hypergraph access structure AN is the evolving access struc-
ture in which for every t ∈ N, the minimal authorized sets of size exactly
t are some of the subsets of the form {Pi1 ,PN+i2 , . . . ,P(t−1)N+it}, for some
i1, i2, . . . , it ∈ [N ]. That is, the minimal authorized sets of size t are some of
the subsets that for every i ∈ [t], contain exactly one party among the N parties
P(i−1)N+1,P(i−1)N+2, . . . ,PiN .

Remark 1. An evolving hypergraph access structure AN can be represented by
an infinite multi-partite hypergraph H = (V, E), where the (infinite) set of ver-
tices is V = (V1,V2,V3, . . . ), such that |Vt| = N for every t ∈ N, and the set of
hyperedges is E = (E1, E2, E3, . . . ), where Et is a set of t-hyperedges (i.e., for every
et ∈ Et we have |et| = t), such that for every et ∈ Et, it holds that |et∩Vi| = 1 for
every i ∈ [t]. That is, the vertices are partitioned into infinite number of subsets
of size N , and every t-hyperedge contains exactly one vertex from each of the
first t subsets of the partition.

Observe that in evolving secret sharing schemes realizing evolving hypergraph
access structures, we require that every unauthorized set (i.e., an independent
set not containing an hyperedge, in the hypergraph representation) should not
learn any information about the secret, while in evolving CDS protocols, we
require security only for inputs for which the predicate does not hold.

In particular, in evolving CDS, we do not require security for the case that
the referee gets two messages (or more) from the same party on different inputs
(unless the predicate holds on some combination of the inputs), while for evolv-
ing secret sharing schemes realizing evolving hypergraph access structures, we

8 We define Encti, for every i ∈ [t], only for syntactic reasons; the algorithm Encti just
ignores the last t − i random strings and simply applies Enci.
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require security for unauthorized sets that may have two parties (or more) from
the same part. One possible direction to obtain better evolving secret sharing
schemes (in terms of the share size) may be to relax the definition of evolving
hypergraph access structures, by adding to the access structure subsets with
more than one party from the same part.

Theorem 1. Let �,N ∈ N, and let FN = {ft : [N ]t → {0, 1}}t∈N be an evolving
predicate. Assume that for every evolving hypergraph access structure AN there
is an evolving secret sharing scheme realizing AN , in which the secret size is
� and the share size of party Pt is c(t,N, �). Then, there is an evolving CDS
protocol for FN , in which the secret size is � and the message size of party Qt is
c((t − 1)N + xt, N, �), where xt ∈ [N ] is the input of party Qt.

Fig. 1. An evolving CDS protocol for FN = {ft : [N ]t → {0, 1}}t∈N.
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Proof. Given an evolving secret sharing scheme realizing the evolving hyper-
graph access structure AN (as defined in Fig. 1), we show how to construct
an evolving CDS protocol for the evolving predicate FN . The construction is
described in Fig. 1.

Correctness. To prove the correctness of the evolving CDS protocol, we need
to show that for every t ∈ N, the referee can compute the secret from any t
messages on any t inputs for which the predicate ft on the t inputs holds.

Let (x1, . . . , xt) ∈ [N ]t such that ft(x1, . . . , xt) = 1. Hence, by the definition
of AN , we have that At = {Px1 ,PN+x2 , . . . ,P(t−1)N+xt

} ∈ AN . Moreover, for
every i ∈ [t], party Qi sends to the referee the share Shg(i,xi)(s, r1, . . . , rg(i,xi));
also, since g(i, xi) = (i−1)N+xi, we get that it is the share of party Pg(i,xi) ∈ At.
Thus, the referee applies the reconstruction algorithm of the authorized set At

on the shares of the parties in At, so by the correctness of the evolving secret
sharing scheme ΣN , it reconstructs the secret, that is, it computes and returns
Dec(xt,Enc(xt, s, qt)) = RecAt

({Shi(s, r1, . . . , ri)}Pi∈At
) = s.

Security. To prove the security of the evolving CDS protocol, we need to show
that for every t ∈ N, the referee cannot learn any information about the secret
when receiving any t messages on any t inputs for which the predicate ft on the
t inputs does not hold.

Let (x1, . . . , xt) ∈ [N ]t such that ft(x1, . . . , xt) = 0. Hence, by the definition
of AN , it holds that At = {Pg(1,x1), . . . ,Pg(t,xt)} /∈ AN .9 Observe that the referee
gets only the shares Shg(1,x1)(s, r1, . . . , rg(1,x1)), . . . ,Shg(t,xt)(s, r1, . . . , rg(t,xt))
from the parties Q1, . . . ,Qt, respectively. Therefore, since the referee gets the
shares of the unauthorized set At, then by the security of the evolving secret
sharing scheme ΣN , the referee cannot learn any information on the secret s.

Complexity. The message size of party Qt in the resulting evolving CDS protocol
is equal to share size of party Pg(t,xt) = P(t−1)N+xt

in the underlined evolving
secret sharing scheme ΣN , which is c((t − 1)N + xt, N, �). �

In [KNY16], an evolving secret sharing scheme for every evolving access struc-
ture was presented. However, for the worst evolving access structures, the share
size of party Pt in this scheme is 2t−1 (times the size of the secret). Next, we
show that the share size in an optimized version of the scheme of [KNY16] is
much smaller for evolving hypergraph access structures.

Theorem 2. Let �,N ∈ N, and let AN be an evolving hypergraph access struc-
ture. Then, there is an evolving secret sharing scheme for AN , in which the secret
size is � and the share size of party Pt is at most 2N

t−(t mod N)
N · �.

9 By Definition 7, we have that fi(x1, . . . , xi) = 0 for every i ∈ [t], so every subset of
At = {Pg(1,x1), . . . ,Pg(t,xt)} is also unauthorized. Thus, the evolving access structure
AN is well defined.
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Proof. First, let us present an optimized version of the evolving secret sharing
scheme of [KNY16] for a secret s ∈ {0, 1},10 realizing an arbitrary evolving access
structure A. For every t ∈ N, the share of party Pt consists of two sets of bits:

– For every subset of parties A = {Pi1 , . . . ,Pi|A|−1 ,Pt} /∈ A such that A ⊆
{P1, . . . ,Pt} and there exists a subset A′ ∈ min A such that A ⊂ A′,11 the
share of party Pt contains a random bit rA ← {0, 1}.

– For every subset of parties A = {Pi1 , . . . ,Pi|A|−1 ,Pt} ∈ min A such that
A ⊆ {P1, . . . ,Pt} and A \ {Pt} /∈ A,12 the share of party Pt contains the bit
s ⊕ ⊕|A|−1

j=1 rAj
, where Aj = {Pi1 , . . . ,Pij}.

Observe that the bits {rAj
}j∈[|A|−1], in the exclusive-or of the bit s⊕⊕|A|−1

j=1 rAj

of party Pt, are the random bits that were given to the parties of {Pij}j∈[|A|−1]

for the subsets {Aj}j∈[|A|−1], before party Pt received its share.
The correctness and the security of the scheme follow from similar arguments

as detailed in [KNY16]. The share of party Pt contains at most one bit for every
subset A = {Pi1 , . . . ,Pi|A|−1 ,Pt} such that A ⊂ {P1, . . . ,Pt}; since there are at
most 2t−1 such sets, the share size of party Pt is at most 2t−1.

Now, assume that A = AN is an evolving hypergraph access structure, and
consider the party Pt, where t = aN + b for some a ∈ N and b ∈ {0, . . . , N − 1}.
In that case, by Definition 9, the unauthorized subsets A /∈ A from the first item
of the scheme must contain exactly a + 1 parties (including Pt), where we have
Pij ∈ {P(j−1)N+1, . . . ,PjN} for every j ∈ [a] (otherwise, there is no A′ ∈ min A
such that A ⊂ A′). The number of such sets is at most Na. Additionally, again
by Definition 9, the authorized subsets A ∈ min A from the second item of the
scheme must also satisfy exactly the same condition. Therefore, the number of
such sets is also at most Na.

Overall, for �-bit secrets, we apply the above scheme independently for each
bit of the secret. Thus, the share size of party Pt, when t = aN + b, is

c(t,N, �) ≤ 2Na� = 2N
t−(t mod N)

N · �.

�
Remark 2. The share size of the above evolving secret sharing scheme for evolv-
ing hypergraph access structures AN is better than the non-optimized evolving
secret sharing scheme of [KNY16], for every value of N . For example, the share
size of Pt is less than 2t/2 for N = 5, and less than 20.01t for N = 1000, compared
to 2t−1 as in [KNY16] (for one-bit secrets).
10 Here and in [KNY16], the scheme is described for one-bit secrets; for larger secrets,

we share each bit independently. Thus, we get a share size that is equal to the share
size for one-bit secrets multiplied by the secret size.

11 This condition was not appeared in the scheme of [KNY16]; we add it in order to
reduce the share size. However, it is easy to verify that the correctness and the
security of the scheme are still preserved.

12 Here, we only consider subsets A ∈ min A, in contrast to [KNY16] that consider
subsets A ∈ A. Also, assume without loss of generality that i1 < · · · < i|A|−1 < t.
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Finally, we use the evolving scheme of Theorem 2 and the construction of
Theorem 1 to get an evolving CDS protocol for every evolving predicate.

Corollary 1. Let �,N ∈ N, and let FN = {ft : [N ]t → {0, 1}}t∈N be an evolving
predicate. Then, there is an evolving CDS protocol for FN , in which the secret
size is � and the message size of party Qt is at most 2N t−1�.

Proof. By using Theorem 1 with the evolving secret sharing scheme of Theorem
2 as an oracle, we get an evolving CDS protocol for the evolving predicate FN ,
in which the message size of party Qt is

c((t − 1)N + xt, N, �) ≤ 2N
(t−1)N+xt−xt

N · � = 2N t−1�.

�

5 Evolving CDS for Min-Sum Predicates

We start by defining evolving min-sum predicates, which hold only when the
sum of the inputs is at least some minimal value determined by the predicates.
The formal definition of min-sum evolving predicates is given below.

Definition 10 (Evolving Min-Sum Predicates). Let N ∈ N and let W =
{wt}t∈N be a non-decreasing sequence of integers, where wt ≤ tN for every t ∈ N.
The evolving W-min-sum predicate FW = {ft : {0, 1, . . . , N}t → {0, 1}}t∈N is
the evolving predicate in which for every t ∈ N, we have that ft(x1, . . . , xt) = 1
if and only if

∑i
j=1 xj ≥ wi for some i ∈ [t]. That is, the predicate ft holds on

the input (x1, . . . , xt) if and only if for some i ∈ [t], the sum of the first i inputs
x1, . . . , xi ∈ {0, 1, . . . , N} is at least wi. If wt = w for every t ∈ N, we say that
Fw := FW is the evolving w-min-sum predicate.

Example 2. Consider the evolving W-min-sum predicate FW = {ft :
{0, 1, . . . , 10}t → {0, 1}}t∈N with W = {5t}t∈N (i.e., wt = 5t for every
t ∈ N). Then, for every t ∈ N, the predicate ft holds on inputs (x1, . . . , xt) ∈
{0, 1, . . . , 10}t, for which there exists some i ∈ [t] such that

∑i
j=1 xj ≥ 5i. That

is, ft holds on (x1, . . . , xt) only when the average input among some prefix of
the inputs x1, . . . , xt ∈ {0, 1, . . . , 10} is at least 5.

In the following, we show how to construct evolving CDS protocols for min-
sum predicates.

Theorem 3. Let �,N ∈ N, let W = {wt}t∈N be a non-decreasing sequence of
integers such that wt ≤ tN for every t ∈ N, and let FW = {ft : {0, 1, . . . , N}t →
{0, 1}}t∈N be the evolving W-min-sum predicate. Define K = {kt}t∈N, where
k(t−1)N+1 = k(t−1)N+2 = . . . = ktN = wt for every t ∈ N, and assume that there
is an evolving secret sharing scheme realizing the evolving K-threshold access
structure AK, in which the secret size is � and the share size of party Pt is
c(t, kt, N, �). Then, there is an evolving CDS protocol for FW , in which the secret
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size is � and the message size of party Qt is
∑xt

j=1 c((t−1)N + j, wt, N, �), where
xt ∈ {0, 1, . . . , N} is the input of party Qt.13

Proof. Given an evolving secret sharing scheme realizing the evolving K-
threshold access structure AK, we construct an evolving CDS protocol for the
evolving min-sum predicate FW . The construction is described in Fig. 2.

Fig. 2. An evolving CDS protocol for FW = {ft : {0, 1, . . . , N}t → {0, 1}}t∈N.

Correctness. Let (x1, . . . , xt) ∈ {0, 1, . . . , N}t such that ft(x1, . . . , xt) = 1,
and assume without loss of generality that ft−1(x1, . . . , xt−1) = 0 (otherwise,
we look at the minimal t ∈ N that satisfies that). As described in the pro-
tocol, the referee gets xi distinct shares from party Qi, for every i ∈ [t].

13 However, for the special case xt = 0, the message size of party Qt is zero.
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Therefore, the referee gets distinct
∑t

i=1 xi ≥ wt shares, where the inequal-
ity follows from Definition 10. In addition, the last share that referee gets
(from party Qt) is Shg(t,xt)(s, r1, . . . , rg(t,xt)) (since our assumption implies that
xt 
= 0), and by the definition of K, we get that kg(t,xt) = wt, regardless
of xt ∈ [N ] (recall that g(t, xt) = (t − 1)N + xt). Thus, by the correct-
ness of the scheme ΣK, the referee can reconstruct the secret using the recon-
struction algorithm of the authorized subset Bt =

⋃t
i=1{Pg(i,j)}j∈[xi], that is,

Dec(xt,Enc(xt, s, rt)) = RecBt
({Shi(s, r1, . . . , ri)}Pi∈Bt

) = s.

Security. Let (x1, . . . , xt) ∈ {0, 1, . . . , N}t such that ft(x1, . . . , xt) = 0. That
is, for every i ∈ [t], we have that

∑i
j=1 xj < wi. Moreover, as mention above,

the referee gets xi distinct shares from party Qi, for every i ∈ [t]. Thus, by the
definition of K and the security of the scheme ΣK, the referee cannot learn any
information on the secret s from the messages it gets.

Complexity. The message size of party Qt in the resulting evolving CDS protocol
is equal to the sum of the sizes of the shares Shg(t,j), for every j ∈ [xt], in the
evolving secret sharing scheme ΣK, which is

∑xt

j=1 c((t − 1)N + j, wt, N, �).14 �
Theorem 3 together with the evolving k-threshold secret sharing scheme of

[KNY16], in which the share size of party Pt is (k − 1) log t + k4� · o(log t),15

imply the following corollary.

Corollary 2. Let �,N,w ∈ N, and let Fw = {ft : {0, 1, . . . , N}t → {0, 1}}t∈N

be the evolving w-min-sum predicate. Then, there is an evolving CDS protocol
for Fw, in which the secret size is �, and the message size of party Qt is at most

xt(w − 1) log(tN) + xt · w4� · o(log(tN)),

where xt ∈ {0, 1, . . . , N} is the input of party Qt. Moreover, if w = 2, then for
any constant ε > 0 and any large enough t, the message size of party Qt is at
most xt(1 + ε) log(tN) · �.16

Theorem 3 together with the evolving K-threshold secret sharing scheme of
[XY21], in which the share size of party Pt is at most t4 (times the secret size),17

imply the following corollary.
14 Note that as defined in the theorem, for every t ∈ N and every j ∈ [xt], the threshold

kg(t,j) for the party Pg(t,j), receiving the share Shg(t,j), is equal to wt.
15 We denote f(n) = o(g(n)) if and only if for every constant c > 0 there exists n0 ∈ N

such that f(n) < c · g(n) for every n > n0.
16 For k = 2, [KNY16] showed an evolving 2-threshold secret sharing scheme for one-bit

secrets, in which the share size of party Pt is less than (1 + ε) log t, for any constant
ε > 0 and any large enough values of t (that depend on ε).

17 Observe that the share size in the evolving K-threshold secret sharing scheme of
[XY21] is independent of K.
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Corollary 3. Let �,N ∈ N, let W = {wt}t∈N be a non-decreasing sequence of
integers such that wt ≤ tN for every t ∈ N, and let FW = {ft : {0, 1, . . . , N}t →
{0, 1}}t∈N be the evolving W-min-sum predicate. Then, there is an evolving CDS
protocol for FW , in which the secret size is � and the message size of party Qt

is at most xt · t4N4�, where xt ∈ {0, 1, . . . , N} is the input of party Qt.

6 Evolving CDS for Constrained Predicates

Finally, we discuss the class of evolving constrained predicates. Evolving predi-
cates from this class hold if and only if there are enough individual inputs that
satisfy some attributes; such evolving constrained predicates can be viewed as
some (distant) threshold version of key-policy attribute-based encryption (KP-
ABE). We specify the attributes that an individual input should satisfy as a
subset of “non-valid” inputs, for which the input should not belong in order to
be considered “valid”.

In our construction, a party with an input that does not satisfy the attributes
is not allowed to send a message to the referee, because the secret is disclosed
to the referee only when enough parties with “valid” inputs have been arrived.

Definition 11 (Evolving Constrained Predicates). Let K = {kt}t∈N be a
non-decreasing sequence of integers, where kt ≤ t for every t ∈ N. An evolving
K-constrained predicate FK = {ft : X1 × · · · × Xt → {0, 1}}t∈N is an evolving
predicate, in which there exist a sequence of constrained subsets {St}t∈N such
that St ⊆ Xt for every t ∈ N, where for every t ∈ N, we have that ft(x1, . . . , xt) =
1 if and only if there exists some i ∈ [t] and a set of indices J ⊆ [i], such that
|J | ≥ ki and xj /∈ Sj for every j ∈ J . That is, the predicate ft holds on the input
(x1, . . . , xt) if and only if for some i ∈ [t], there are at least ki “valid” inputs
that are not in the constrained subsets (i.e., inputs xj /∈ Sj). If kt = k for every
t ∈ N, we say that Fk := FK is an evolving k-constrained predicate.

Example 3. Consider the evolving k-constrained predicate Fk = {ft : [N ]t →
{0, 1}}t∈N with the constrained subsets St = {N/4, . . . , 3N/4} for every t ∈ N.
Then, for every t ∈ N, the predicate ft holds on inputs (x1, . . . , xt) ∈ [N ]t,
such that there are at least k inputs among x1, . . . , xt ∈ [N ] that are not in the
constrained range [N/4, . . . , 3N/4].

Given an evolving secret sharing scheme realizing AK, we construct an evolv-
ing CDS protocol for FK. The construction is described in Fig. 3; the proof of
its correctness and security is similar to the proof of Theorem 3.

Theorem 4. Let � ∈ N, let K = {kt}t∈N be a non-decreasing sequence of inte-
gers, where kt ≤ t for every t ∈ N, and let FK = {ft : X1 ×· · ·×Xt → {0, 1}}t∈N

be an evolving K-constrained predicate for a sequence of constrained subsets
{St}t∈N. Assume that there is an evolving secret sharing scheme realizing the
evolving K-threshold access structure AK, in which the secret size is � and the
share size of party Qt is c(t, kt, �). Then, there is an evolving CDS protocol for
FK, in which the secret size is � and the message size of party Qt is c(t, kt, �).18

18 If xt ∈ St, then the message size of party Qt is zero.
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Fig. 3. An evolving CDS protocol for FK = {ft : X1 × · · · × Xt → {0, 1}}t∈N.

Theorem 4 together with the evolving k-threshold secret sharing scheme of
[KNY16] imply the following corollary.

Corollary 4. Let �, k ∈ N, and let Fk = {ft : X1 × · · · × Xt → {0, 1}}t∈N be
an evolving k-constrained predicate. Then, there is an evolving CDS protocol for
Fk, in which the secret size is � and the message size of party Qt is at most
(k − 1) log t + k4� · o(log t). Moreover, if k = 2, then for any constant ε > 0 and
any large enough t, the message size of party Qt is at most (1 + ε) log t · �.

Theorem 4 together with the evolving K-threshold secret sharing scheme of
[XY21] imply the following corollary.

Corollary 5. Let � ∈ N, let K = {kt}t∈N be a non-decreasing sequence of inte-
gers such that kt ≤ t for every t ∈ N, and let FK = {ft : X1 × · · · × Xt →
{0, 1}}t∈N be an evolving K-constrained predicate. Then, there is an evolving
CDS protocol for FK, in which the secret size is � and the message size of party
Qt is at most t4 · �.

7 Conclusions and Open Problems

Motivated by evolving secret sharing, in this work we initiate the notion of evolv-
ing CDS. We formally present the definition of evolving CDS, and provide several
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constructions of evolving CDS protocols, for general evolving predicated, evolv-
ing min-sum predicated, and evolving constrained predicates. As CDS protocols
were used to construct the best known secret sharing schemes, an interesting
direction for future research is trying to find an efficient construction of evolving
secret sharing schemes by using evolving CDS protocols. Another open problem
is developing efficient evolving CDS protocols for more classes of evolving pred-
icates. Furthermore, the model of evolving CDS (or the ideas behind it) may
be used to show more notions of secure evolving protocols, in which the num-
ber of parties is not known in advance and could be unbounded. Additionally,
other variants of evolving CDS protocols can be studied, e.g., where some of the
parties do not know the evolving predicate or the secret.
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Abstract. Deterministic authenticated encryption (DAE) provides
data integrity and authenticity with certain robustness. Previous DAE
schemes for low memory are based on block ciphers (BCs) or tweakable
block ciphers (TBCs), which can be implemented with 3s bits of memory
for s-bit security. On the other hand, schemes based on cryptographic
permutations have attracted many researchers and standardization bod-
ies. However, existing permutation-based DAEs require at least 4s bits,
or even 5s bits of memory. In this paper, PALM, a new permutation-
based DAE mode that can be implemented only with 3s bits of memory
is proposed, implying that permutation-based DAEs achieve a competi-
tive memory size with BC- and TBC-based DAEs. Our hardware imple-
mentation of PALM, instantiated with PHOTON256 for 128-bit secu-
rity, achieves 3,585 GE, comparable with the state-of-the-art TBC-based
DAE. Finally, optimality of 3s bits of memory of PALM is shown.

Keywords: Deterministic Authenticated Encryption · Permutation ·
Low Memory · Mode · SIV · Security Proof · Hardware · PHOTON256

1 Introduction

Authenticated encryption with associated data (AE) is fundamental symmetric-
key cryptographic schemes, providing both integrity and authenticity of a mes-
sage. Traditionally they were provided independently by encryption schemes and
message authentication codes (MACs), while AE schemes generate both simul-
taneously. This simplifies complex security issues that arise when independently
developed encryption schemes and MACs are combined, and enables more effi-
cient computations by sharing computing resources between the two.

Some AE schemes use nonce, a value that must not be repeated more than
once under the same key (nonce-based AEs). Those achieve elegant performance
thanks to the nonce property. However, ensuring the uniqueness of nonce is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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not easy when implementing AE schemes, and in fact many security incidents
occurred due to improper handling of nonce, e.g., a low-quality random number,
a tiny nonce space, and even a constant nonce [12]. Even if implementers are
careful enough, proper nonce management is impossible in resource-constrained
platforms; stateful nonce management is necessary to ensure the uniqueness, but
some devices may not have nonvolatile memory, and even if they have, wireless
power supply may not provide enough power to write to it [4,21].

For communicating sensitive data, more robust schemes that do not rely on
nonce are required. Key wrap schemes used for sending keys is one example;
National Institute of Standards and Technology (NIST) standardized a nonce-
independent AE scheme for key wrap [17]. Rogaway and Shrimpton called such
schemes deterministic AE (DAE) and formalized its definition and security [28].

Lightweight cryptography is a technology intended for use in extremely
resource-constrained environments such as sensor networks and RFID tags. In
particular, designs of lightweight schemes have been actively studied in recent
years due to the NIST lightweight cryptography standardization process [26].
Because nonce support was a design requirement in NIST’s standardization
project, DAE is less discussed than nonce-based AE in the context of lightweight
cryptography. For resource-constrained devices, DAE is a useful option, not only
because of its security robustness, but also because it does not require a ran-
dom number generator or non-volatile memory. Although DAE needs a buffer
for scanning the entire message twice, numerous IoT protocols limit the message
length to several dozen bytes (e.g., 64 bytes for CAN FD) [3] that fit within a
cheap non-volatile memory, which makes DAE a practical option. As a result,
there are several existing studies that propose low memory DAE, which includes
SUNDAE [5], ANYDAE [14], ESTATE [13], and SIV-TEM-PHOTON [6].

The above lightweight DAEs use a block cipher (BC) or a tweakable block
cipher (TBC) as an underlying primitive. On the other hand, cryptographic-
permutation-based designs such as the sponge and duplex constructions [8–10]
have been actively discussed recently. Permutation-based schemes do not require
designing a key schedule and tweak schedule compared to BC- and TBC-based
schemes, and have a clear advantage in terms of minimizing design and imple-
mentation. Also, various functions such as AEs, hash functions, stream ciphers,
and extendable-output functions (XOFs) can be realized by making only minor
changes to a single permutation design. Furthermore, it allows flexible support
for different platforms by simply changing the parameters called rate and capac-
ity. These properties make permutation-based design a very attractive option,
and the goal of this paper is to propose a permutation-based DAE.

1.1 Memory Usage in DAE

There are several ways to count the memory size based on different philosophies.
For example, some count the memory to store the key as the memory required to
implement the scheme, while others do not include it assuming that it is supplied
externally. Before summarizing the memory size for existing DAE schemes, We
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discuss what should be counted as a key performance indicator (KPI) for the
memory amount of a hardware implementations in DAE.

Message Buffer (Uncounted). In the encryption of DAE, by security defini-
tion, the output (ciphertext C and tag T ) must change randomly when the input
(associated data A and message M) changes by even a single bit. Therefore, it
is necessary to first compute a value using all bits of A,M , and then access M
again for generating ciphertext based on the computed value. That is, encryp-
tion of DAE must be 2-passes, and DAE needs a message buffer for storing the
entire message for two-pass scanning. We can safely exclude a message buffer in
comparing DAE schemes because it is necessary for any DAE. Also, the mem-
ory size is not homogeneous because the message buffer can be implemented
with an efficient SRAM, while implementing cryptographic algorithms requires
expensive registers. The register size determines the cost of coprocessor, and the
buffer size is not a KPI of hardware implementations.

Tweak Register Without Schedule (Counted). TBC-based schemes
require a tweak value to compute the primitive. When a tweak schedule is not
needed, some existing works e.g. [6] evaluate the tweak register as unnecessary,
assuming that an external provider will send the tweak multiple times when it is
needed. We argue that if the value is accessed multiple times, the tweak requires
a memory even if a tweak schedule is not needed. Coprocessors receive data in
a streaming manner and returns data also in a streaming manner, hence cannot
read the data multiple times. Hence, the tweak must be stored in a memory.

Key Register (Counted). Similar to tweak, some existing works evaluate the
key register as unnecessary when the scheme does not need the key schedule.
We argue that the key register must be counted regardless of the presence or
absence of a schedule. This is because DAE schemes needs K for both the first
and second passes, so it is inevitable to access K multiple times.

Tag in Decryption of SIV-like DAE (Uncounted). In a popular DAE
mode SIV [28], T is first generated from (A,M), and then C is generated using
T as an initial value IV . In the decryption of SIV, M is first decrypted from
C using T , then the tag is generated from (A,M) and verified if it matches T
received at the beginning. Hence, it is necessary to keep T from the beginning
to the end. We argue that T during the decryption of SIV-like DAEs does not
count as memory required for implementing it by the following reasons. 1) Com-
putations performed by a hardware is up to the tag generation and the cost of
comparing tags should not be counted as a hardware cost for a DAE scheme. 2)
Hardware implementations consider sharing the components used for encryption
and decryption, thus tag comparison, performed only in decryption, should be
done by an upper layer. 3) One of the purposes of hardware implementations is
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to accelerate the performance. Since it does not impact the performance, the tag
comparison is naturally performed by an upper layer. In fact, previous schemes
also do not count T as required memory.1

1.2 Related Works and Research Challenges

Using the above counting method, we discuss the memory size of existing BC-
and TBC-based lightweight DAEs and permutation-based DAEs (Table 1).

BC- and TBC-Based Lightweight DAEs. SUNDAE [5] is a BC-based DAE
mode, which updates a b-bit state by using a BC with b-bit block and a k-bit
key to ensure b/2-bit security. When the target bit security level is s bits, b = 2s
and k = s. Hence, it requires total 3s bits of state. ESTATE [13] is a slight
optimization of SUNDAE and the memory evaluation is the same. LM-DAE is
a TBC-based DAE mode [24]. It uses a TBC with b-bit block, a t-bit tweak, and
a k-bit key, to ensure b-bit security. A b + t-bit state is iteratively updated by
the TBC. For s-bit security, it requires b = t = k = s. Hence, the total memory
size is 3s bits. SIV-TEM-PHOTON [6] is a dedicated TBC-based DAE scheme.
A b-bit state is updated with a TBC having b-bit block, a b/2-bit tweak, and a
k-bit key to ensure b/2-bit security. For s-bit security, b = 2s and k = s. Hence
the total memory size is 4s bits.2

Permutation-Based DAEs. Bertoni et al. presented a permutation-based
DAE called HADDOC [11], which is a permutation-based SIV using a (r+c)-bit
permutation to ensure c/2-bit security. It first generates a t-bit tag T using a
k-bit key K, then C is generated with a CTR-like mode; K‖T‖i, where i is the
counter value, is processed by a sponge construction to provide a key stream
for block i. Hence, besides the r + c-bit state, it needs a memory for K,T and
ĩ-bit memory for the counter value, where ĩ is the maximum counter size. For
s-bit security, c = t = 2s and k = s. Hence, the total memory size is 5s + r + ĩ.
Bertoni et al. presented a parallel permutation-based mode Farfalle and specified
its SIV variant Farfalle-SIV [7]. Owing to its parallel construction, it uses a 2s-bit
accumulator as well as a 2s-bit state to compute a tag. Hence, together with an
s-bit key, a total of 5s bits of memory is required. Another way to achieve DAE

1 There may be a case that the tag comparison is included in hardware by using addi-
tional memory. As long as the comparison targets are all SIV-like schemes with the
same tag size, as in this paper, there is no impact on the fairness of the compari-
son by whether or not T is counted during decryption. The situation changes when
side-channel attack (SCA) is a concern. In such a case, tag comparison needs an
SCA protection [16] and should be included in the hardware implementation. This
increases the memory requirement in Table 1 in all the schemes but HADDOC that
anyway stores the tag during encryption and decryption.

2 The designers claim that “since key bits and tweak bits are used without schedule in
TEM-PHOTON, in the case where they can be sent multiple times by the external
provider, local storage can be saved.” They also claim that “When key and tweak
has to be stored locally, they can be stored using 256 regular 1-bit flip-flops.” As
discussed above, we argue that the latter is the most natural implementation.
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with a permutation is to replace a BC of SUNDAE or ESTATE with the Even-
Monsour construction [18], where an encryption is computed by π((·) ⊕ K) ⊕ K
using a permutation π. To ensure s-bit security, both the permutation size and
the key size must be 2s bits. Hence, the memory size is 4s bits.

Research Challenges. Both BC-based and TBC-based DAEs are realized with
3s bits of memory while existing permutation-based DAEs require a larger mem-
ory. Designing permutation-based DAEs with 3 s bits of memory or even smaller
DAEs is an important research challenge.

Table 1. Memory size comparison of DAE schemes with s-bit security.

Scheme Primitive Memory Rate Ref. Remarks

state key tweak total [bit/call]

SUNDAE BC 2s s − 3s s [5]

ESTATE BC 2s s − 3s s [13]

LM-DAE TBC s s s 3s s/2 [24]

SIV-TEM-PHOTON TBC 2s s s 4s 6s/5 [6] high rate

HADDOC perm. 4s + r + ĩ s − 5s + r + ĩ (r + 2s)/2 [11] high rate

Farfalle-SIV perm. 4s s − 5s s/2 [7] parallel

EM + SUNDAE perm. 2s 2s − 4s s [5,18]

PALM perm. 2s s − 3s s Ours

Fig. 1. PALM. If A �= ε∧M �= ε then IV = 0b−k; if A = ε∧M �= ε then IV = 0b−k−210;
if A �= ε ∧ M = ε then IV = 0b−k−11; if A �= ε = M = ε then IV = 0b−k−211. g is an
LFSR. g1(S) := g(S) and g2(S) := g(g(S)). If |A| mod b �= 0 then jA = 1; else jA = 2.
If |M | mod b �= 0 then jM = 1; else jM = 2.
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1.3 Our Contribution

In this paper, we propose a permutation-based DAE mode PALM that can be
implemented with 3s bits of memory. This shows that permutation-based DAEs
can be implemented with a competitive memory size compared to existing BC-
and TBC-based DAEs. Given the flexible functionality of permutation-based
cryptography, this is a very useful result.

Design Overview. The structure of PALM is given in Fig. 1. We design PALM
by following the SIV design paradigm [28], so PALM has the MAC-then-Encrypt
structure. To minimize the state size, PALM has an iterated structure of a b-bit
permutation π and does not require additional state except for a key K. Hence,
the state size is b + k bits, and b = 2s and k = s for s-bit security. The key
masking is introduced to prevent internal state values being recovered.

In the MAC part, b-bit associated data (AD) blocks A1, . . . , Aa are processed,
and then b-bit plaintext blocks M1, . . . ,Mm are processed, where a one-zero
padding is applied to the last AD and plaintext blocks if the length is less than
b. After processing these blocks, a tag is defined. To avoid a length extension
attack and an attack using the padding rule, a b-bit LFSR g is applied to the
internal states with the last AD and plaintext blocks. jA (resp. jM ) is the number
of the LFSR calls and is defined according to the length |Aa| (resp. |Mm|). In the
PRNG part, each key stream block is defined by XORing an output of π with
K. A plaintext block is encrypted by being XORed with a key stream block.
The full description of PALM will be given in Sect. 3.

Note that the design of iterating a permutation has been employed by
Chaskey [23] and Even-Mansour-based DAEs. These schemes require a key of
length k = b, whereas PALM allows k < b.

Security. We prove that PALM achieves min
{
k, b

2

}
-bit security3 assuming that

π is a random permutation (RP). Let σ be the number of π calls in online queries
and p be the number of π calls in offline ones (direct access to π by an adversary).
We give an intuition of obtaining the security bound below.

We first consider an event that some internal state value of PALM is recovered,
that is, a collision event between π’s values of PALM and of offline queries. By
the masking with K, the k-bit part of the internal state becomes secret but the
remaining r bits, where r = b−k, is public. If the Even-Mansour-style proof [2,23]
is used, the probability for the state recovery event relies on only the length of the
secret k-bit state, yielding the birthday bound O

(
pσ
2k

)
which is a k

2 -bit security
bound. We thus use the technique for sponge-based AE schemes [22] that uses
a multi-collision on the r-bit public part. Using this technique, we can prove a
min

{
k, b

2

}
-bit bound regarding the collision event.

We next assume that the collision event does not occur. Then, the permuta-
tion π in PALM can be seen as a secret permutation. In this setting, similarly
to the existing secret random permutation-based proofs such as [5,14], one can
prove the b

2 -bit security bound.

3 Specifically, our security bound is min
{
k − log2(b − k), b

2

}
bits. Since log2(b − k) is

small, we omit the term in this paper.
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By these bounds, we obtain the min
{
k, b

2

}
-bit security bound of PALM. More

detailed analysis will be given in Sect. 4.

HW Implementation. Next, we instantiate PALM for 128-bit security using
PHOTON256 [20] and make hardware performance evaluation in Sect. 5. Our
PALM implementation achieves 3,585 GE, which is smaller than 3,717 GE of
the conventional LM-DAE implementation [24]. The overhead for extending
PHOTON256 to PALM is 1,059 GE, mostly occupied by the 128-bit key regis-
ter. Moreover, the PALM implementation achieves the processing speed of 107.2
cycles/byte, outperforming 127.3 cycles/byte of LM-DAE.

Memory Optimality of PALM. Finally, we show that 3s-bits of memory
achieved by PALM is optimal as long as an SIV-like structure is used to achieve
s-bit security. Specifically, in Sect. 6, we show an attack that breaks integrity
with a complexity smaller than s bits when the memory size is less than 3s bits.

2 Preliminaries

Notation. Let ε be an empty string and {0, 1}∗ be the set of all bit strings.
For an integer i ≥ 0, let {0, 1}i be the set of all i-bit strings, {0, 1}0 := {ε}, and
{0, 1}≤i := {0, 1}1 ∪{0, 1}2 ∪ · · · ∪ {0, 1}i be the set of all bit strings of length at
most i, except for ε. Let 0i be the bit string of i-bit zeros. For integers 0 ≤ i ≤ j,
let [i, j] := {i, i + 1, . . . , j} and [j] := [1, j]. For a non-empty set T , T

$←− T
means that an element is chosen uniformly at random from T and is assigned to
T . For sets T1 and T2, T1

∪←− T2 means T1 ← T1 ∪ T2. The concatenation of two
bit strings X and Y is written as X‖Y or XY when no confusion is possible. For
integers 0 ≤ i ≤ j and X ∈ {0, 1}j , let msbi(X) (resp. lsbi(X)) be the most (resp.
least) significant i bits of X, and |X| be the bit length of X, i.e., |X| = j. For an
integer b ≥ 0 and a bit string X, we denote the parsing into fixed-length b-bit
strings as (X1, . . . , X�)

b←− X, where if X 	= ε then X = X1‖ · · · ‖X�, |Xi| = b
for i ∈ [� − 1], and 0 < |X�| ≤ b; if X = ε then � = 1 and X1 = ε. For an
integer b > 0, let ozp : {0, 1}≤b → {0, 1}b be a one-zero padding function: for
X ∈ {0, 1}≤b, ozp(X) = X if |X| = b; ozp(X) = X‖10b−1−|X| if |X| < b.

Throughout this paper, the permutation size is denoted by b. Let Perm be the
set of all b-bit permutations. For π ∈ Perm, let π−1 be the inverse permutation.

TBC-Based DAE. Let K,M, C,A, and T be sets of keys, plaintexts, cipher-
texts, associated data (AD), and tags, respectively. A DAE scheme Π using
π ∈ Perm and having a key K ∈ K, denoted by Ππ

K , is a pair of encryption and
decryption algorithms (Ππ

K .Enc,Ππ
K .Dec). The encryption algorithm Ππ

K .Enc
takes AD A ∈ A, and a plaintext M ∈ M, and returns, deterministically, a
pair of a ciphertext C ∈ C and a tag T ∈ T . The decryption algorithm Ππ

K .Dec

takes a tuple (A,C, T̂ ) ∈ A × C × T , and deterministically returns either the
distinguished invalid symbol reject 	∈ M or a plaintext M ∈ M. We require
|Ππ

K .Enc(A,M)| = |Ππ
K .Enc(A,M ′)| when |M | = |M ′|.
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We define an advantage function of permutation-based DAE. We consider
dae-security which is indistinguishability between Ππ

K and an ideal DAE. An
ideal DAE consists of two oracles ($,⊥). $ is a random-bits oracle that has
the same interface as Ππ

K .Enc and for a query (A,M ) returns a random bit
string of length |Ππ

K .Enc(A,M )|. ⊥ is a reject oracle that returns reject for any
query. In the DAE-security game, firstly an adversary A interacts with either
(Ππ

K .Enc,Ππ
K .Dec, π, π−1) or ($,⊥, π, π−1) where K

$←− K and π
$←− Perm. After

finishing the interaction, A returns a decision bit. For a set of oracles O, let
AO ∈ {0, 1} be an A’s output after interacting with O. Then the DAE-security
advantage function is defined as

Advdae
Π (A) = Pr[AΠπ

K .Enc,Ππ
K .Dec,π,π−1

= 1] − Pr[A$,⊥,π,π−1
= 1],

where the probabilities are taken over π,K, $, and A. Throughout this paper, we
call queries to an encryption oracle, a decryption oracle, π, and π−1 “encryption
queries,” “decryption queries,” “forward queries,” and “inverse queries,” respec-
tively. We call queries to encryption or decryption queries “online queries,” and
forward or inverse queries “offline queries,” respectively. We demand that A
never asks a trivial decryption query (A,C, T ), i.e., there is a prior encryption
query (A,M) with (C, T ) = Π.Enc[π](A,M), and that A never repeats a query.

3 PALM: Specification and Security Bound

Specification. The specification of PALM is given in Algorithm 1 and in Fig. 1.
PALMπ

K .Enc (resp. PALMπ
K .Dec) is an encryption (resp. a decryption) function

of PALM. PALMπ
K .MAC is a tag-generation function, and PALMπ

K .PRNG is a
pseudorandom generator that is used to encrypt/decrypt a plaintext/ciphertext.
These functions are subroutines of PALMπ

K .Enc and PALMπ
K .Dec. π is the under-

lying permutation and the permutation size is b bits.
In PALM, the sizes of AD block, plaintext/ciphertext block, and tag are equal

to b. Let k be the key size of PALM and r = b − k.
Let g be a b-bit LFSR. For a b-bit value S, let g0(S) := S, g1(S) := g(S)

and g2(S) := g(g(S)). We require the following properties: for b-bit variables
S1 and S2, and two distinct values i, j ∈ (2], if S2 is fixed, then the equation
gi(S1) ⊕ gj(S1) = S2 offers a unique solution for S1. For a chunk size n ≤ b,
the following LFSR satisfies the condition and is efficient both in software and
hardware implementations.

g(S) = (S2 ⊕ S3)‖S3‖S4‖ · · · ‖Sb/n‖S1, where (S1, S2, . . . , Sb/n) n←− S. (1)

Security of PALM. The following theorem gives PALM’s DAE-security bound.

Theorem 1. For any positive integer μ and adversary A making p offline
queries and q online queries such that the total number of permutation calls in
online queries is σ, we have Advdae

PALM(A) ≤ 2σ
2k + 4.5σ2

2b + 4pσ
2b + 2μp

2k +2r ·
(

eσ
μ2r

)μ

.
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Algorithm 1. PALM
Encryption PALMπ

K .Enc(A, M)

1: T ← PALMπ
K .MAC(A, M); C ← M ⊕ PALMπ

K .PRNG(T, |M |); return (C, T )

Decryption PALMπ
K .Dec(A, C, T̂ )

1: M ← C ⊕ PALMπ
K .PRNG(T̂ , |C|); T ← PALMπ

K .MAC(A, M)
2: if T = T̂ then return M else return reject end if

MAC PALMπ
K .MAC(A, M)

1: if A �= ε then x0 ← 0 else x0 ← 1 end if
2: if M �= ε then x1 ← 0 else x1 ← 1 end if
3: IV ← 0b−k−2‖x1‖x0; S ← π(IV ‖K)

4: (A1, . . . , Aa)
b←− ozp(A); (M1, . . . , Mm)

b←− ozp(M)
5: if |A| mod b �= 0 then jA = 1 else jA = 2 end if
6: if |M | mod b �= 0 then jM = 1 else jM = 2 end if
7: if A = ε then goto step 9 end if
8: for i = 1, . . . , a do if i = a then S ← gjA(S) end if

S ← S ⊕ Ai; S ← π(S) end for
9: if M = ε then goto step 11 end if

10: for i = 1, . . . , m do if i = m then S ← gjM (S) end if
S ← S ⊕ Mi; S ← π(S) end for

11: T ← S ⊕ 0r‖K; return T

PRNG PALMπ
K .PRNG(T, l)

1: KS ← ε; S ← T ⊕ (0r‖K); m ← �l/b�
2: for i = 1, . . . , m do S ← π(S); KS ← KS‖ (S ⊕ (0r‖K)) end for
3: KS ← msbl(KS); return KS

Putting two concrete values for μ to the bound, we obtain the following bounds.

Corollary 1. For any positive integer μ and adversary A making p offline
queries and q online queries such that the total number of permutation calls
in online queries is σ, if r = k = b/2 and μ = k

log2 k , then we have

Advdae
PALM(A) ≤ 2σ

2k + 4.5σ2

2b + 4pσ
2b +

2k
log2 k ·p

2k +
(

(e log2 k)σ
2k

) k
log2 k

,

and if μ = max
{

r,
(

2e·2kσ
2rp

) 1
2
}

, then we have

Advdae
PALM(A) ≤ 2σ

2k + 4.5σ2

2b + 4pσ
2b + 2rp

2k +
(
8epσ
2b

) 1
2 .

We study the above bounds. The above bounds show that PALM is DAE-secure
as long as σ � 2b/2, pσ � 2b, p � 2k, and σ � 2k, that is, PALM achieves
min

{
k, b

2

}
-bit DAE-security. Note that both bounds show the same level of secu-

rity but the first bound which does not have the term with the exponent 1/2 is
sharper than the second one.
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4 Proof of Theorem 1

Without loss of generality, we assume that an adversary is deterministic. We also
assume that p + σ ≤ 2b−1. In this proof, a random permutation π is realized by
lazy sampling. Let Lπ be a table that is initially empty and keeps query-response
tuples of π or π−1. Let L1

π := {X | (X,Y ) ∈ Lπ} and L2
π := {Y | (X,Y ) ∈ Lπ}.4

4.1 Deriving the Upper-Bound Using Coefficient H Technique

Our proof uses the coefficient H technique [27]. Let TR be a transcript in the
real world obtained by random samples of a user’s key and an RP. Let TI

be a transcript in the ideal world obtained by random samples of a random-
bit oracle, an RP, and additional values defined later. For a transcript τ , an
adversary’s view (or information obtained) in the security game, we call τ a
valid transcript if Pr[TI = τ ] > 0. Let T be the set of all valid transcripts
such that ∀τ ∈ T : Pr[TR = τ ] ≤ Pr[TI = τ ]. Then, the advantage function
Advdae

PALM(A) is upper-bounded by the statistical distance, i.e., Advdae
PALM(A) ≤

SD(TR,TI) :=
∑

τ∈T(Pr[TI = τ ] − Pr[TR = τ ]). Using the following lemma, we
can derive the upper-bound of Advdae

PALM(A).

Lemma 1. Let Tgood and Tbad be respectively the sets of good transcripts and
of bad ones into which T is partitioned. For good transcripts Tgood and bad
transcripts Tbad, if ∀τ ∈ Tgood : Pr[TR=τ ]

Pr[TI=τ ] ≥ 1 − ε s.t. 0 ≤ ε ≤ 1, then
SD(TR,TI) ≤ Pr[TI ∈ Tbad] + ε.

In the following proof, we (1) partition T into Tgood and Tbad (Sect. 4.5); (2)
upper-bound Pr[TI ∈ Tbad] (the bound is given in Eq. (2) in Sect. 4.6); and
(3) lower-bound Pr[TR=τ ]

Pr[TI=τ ] for any τ ∈ Tgood (the bound is given in Eq. (3) in
Sect. 4.7). We finally obtain the DAE-security bound in Theorem 1 by combining
these bounds.

4.2 Definition

Let q, qE , and qD be the number of online, forward, and inverse queries, respec-
tively. Let σE (resp. σD) be the number of π calls in encryption (resp. decryption)
queries. The 1st through qE -th (resp. (qE +1)-th through q-th) online queries are
assigned to encryption (resp. decryption). Hence, α-th encryption (resp. decryp-
tion) query is said to be the α-th (resp. (qE +α)-th) online query. Note that this
assignment defines just online-query numbers, and does not restrict the order of
adversary’s queries.

For α ∈ [q], values defined at the α-th online query are denoted by
using the superscript of (α), and the lengths a and m at the α-th online

4 For a forward query X to π (resp. inverse query Y to π−1), the response Y (resp.

X) is defined as Y
$←− {0, 1}b\L2

π (resp. X
$←− {0, 1}b\L1

π), and the query-response

pair (X, Y ) is added to Lπ: Lπ
∪←− Lπ ∪ {(X, Y )}.
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Algorithm 2. Dummy Internal Values in the Ideal World

1: K
$←− {0, 1}k � Dummy key

2: for α ∈ [qE ] do � Dummy internal values of PALMπ
K .Enc

3: for i ∈ [dα] do (V
(α)

i−1 , W
(α)
i−1) ← PALMπ

K .MAC(A(α), M (α))[i] end for

4: V
(α)

dα
← gj

(α)
M (W

(α)
dα−1) ⊕ ozp(M

(α)
mα); W

(α)
dα

← T (α) ⊕ 0r‖K; Lπ
∪←− (V

(α)
dα

, W
(α)
dα

)

5: for i ∈ [dα + 1, �α − 1] do R ← {0, 1}b−|M(α)
i−dα

|
; V

(α)
i ← W

(α)
i−1;

W
(α)
i ←

((
C

(α)
i−dα

⊕ M
(α)
i−dα

)
‖R

)
⊕ (0r‖K); Lπ

∪←− (V
(α)

i , W
(α)
i ) end for

6: end for
7: for α ∈ [qE + 1, q] do � Dummy internal values of PALMπ

K .Dec
8: M (α) ← C(α) ⊕ PALMπ

K .PRNG(T̂ (α), |C(α)|)
9: for i ∈ [dα + 1] do (V

(α)
i−1 , W

(α)
i−1) ← PALMπ

K .MAC(A(α), M (α))[i] end for
10: for i ∈ [mα] do

(V
(α)

dα+i, W
(α)
dα+i) ← PALMπ

K .PRNG(T̂ (α), |C(α)|)[i] end for
11: end for

query are denoted by aα and mα. Let dα := aα + mα be the number
of data blocks in the α-th online query. Let �α := aα + 2mα + 1 be the
number of π calls in the α-th online query. Let PALMπ

K .MAC(A(α),M (α))[i]
be an input-output pair of the i-th π call in PALMπ

K .MAC(A(α),M (α)). Let
PALMπ

K .PRNG(T (α), |M (α)|)[i] be an input-output pair of the i-th π call in
PALMπ

K .PRNG(T (α), |M (α)|). In the real world, for α ∈ [q], i ∈ [dα + 1], and j ∈
[mα], let (V (α)

i−1 ,W
(α)
i−1) := PALMπ

K .MAC(A(α),M (α))[i] and (V (α)
dα+j ,W

(α)
dα+j) :=

PALMπ
K .PRNG(T (α), |M (α)|)[j]. See Fig. 1 for these values. In the ideal world,

these values are defined in Sect. 4.3.
The β-th offline query-response pair is denoted by (X(β), Y (β)), where Y (β) =

π(X(β)) for a forward query and X(β) = π−1(Y (β)) for an inverse query.
Hereafter, We call a period from the start of the game to the end of A’s

queries “query phase”, and a phase after finishing A’s queries “decision phase”.
In the decision phase, dummy internal values are defined in the ideal world
(defined below).

4.3 Dummy Values in the Ideal World

In the decision stage of the ideal world, a dummy key K and dummy internal
values (V (α)

i ,W
(α)
i ) are defined by Algorithm 2. In this algorithm, first K is

defined (Step 1). Then, for each encryption query, the dummy internal values
are defined (Steps 2-6): For the MAC part, the internal values are defined by
using π and by following the structure of the MAC part. The last output in
the MAC part, in order to ensure consistency with the encryption query, is
defined by using the tag and the key in Step 4, which does not perform π.
The input-output pair is stored in the RP table Lπ. For the PRNG part, the
internal values are defined by using plaintext blocks, ciphertext blocks, and the
key according to the structure of this part. Finally, for each decryption query,
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the dummy internal values are defined by using π and by following the structure
of PALMπ

K .Dec (Steps 7–11). Note that since decryption queries are all reject,
we define the dummy internal values without taking into account consistency
with the queries.

4.4 Adversary’s View

In the decision phase, the proof permits A to obtain a key and all internal
values for online queries. Hence, a transcript τ (or an adversary’s view) consists
of a key K; online query-response tuples (A(α),M (α), C(α), T (α)) where α ∈ [qE ];
online query-response tuples (A(α), C(α), T ′(α), RV (α)) where α ∈ [qE + 1, q] and
RV (α) ∈ {reject,M (α)} is the response to the α-th online query; input-output
pairs (V (α)

i ,W
(α)
i ) where α ∈ [q] and i ∈ [0, dα − 1]; and offline query-response

pairs (X(β), Y (β)) where β ∈ [p].

4.5 Good and Bad Transcripts

We define Tbad such that at least one of the following conditions is satisfied, and
Tgood := T\Tbad.

The event bad1 considers a collision between initial inputs in the MAC part
and other inputs to π. The event bad2 considers a collision in the MAC part.
The event bad3 considers a collision between the PRNG part of the encryption
and the MAC part. The event bad4 considers a collision in the PRNG part of
the encryption. The event bad5 considers a collision between online and offline
queries. The event bad6 considers a forgery event. Note that a collision event
between the PRNG part of the decryption and other parts in online queries is
not considered as a bad event, since the event does not trigger an attack.5

The formal definitions of these bad events are given below.

– bad1:
(
∃α ∈ [p] s.t. lsbk(X(α)) = K

)
∨

(
∃α ∈ [qE ], i ∈ [�α] s.t. lsbk(V (α)

i ) =

K
)

∨
(
∃α ∈ [qE + 1, q], i ∈ [dα] s.t. lsbk(V (α)

i ) = K
)
.

– bad2: ∃(α, i) ∈ [q] × [dα], (β, j) ∈ [q] × [dβ ] s.t. V
(α)
i−1 	= V

(β)
j−1 ∧ V

(α)
i = V

(β)
j .

– bad3: ∃(α, i) ∈ [qE ] × [dα + 1, �α], (β, j) ∈ [q] × [dβ ] s.t.
V

(α)
i = V

(β)
j ∨

(
W

(α)
i = W

(β)
j ∧ j 	= dβ

)
.6

– bad4: ∃(α, i) ∈ [qE ] × [dα, �α], (β, j) ∈ [qE ] × [dβ , �β ] s.t.
(α, i) 	= (β, j) ∧ W

(α)
i = W

(β)
j .7

– bad5: ∃(α, i) ∈ [q] × [�α], β ∈ [p] s.t. V
(α)
i = X(β) ∨ W

(α)
i = Y (β).

– bad6: ∃α ∈ [qE + 1, q] s.t. T (α) = T̂ (α).

5 Specifically, internal values of the PRNG part of the decryption are not revealed as
long as no forgery occurs (bad6). Hence, the collision event does not yield an attack.

6 Note that a collision for the last output block W
(β)
dβ

, which is defined by using a tag,

is not considered in this event, and instead considered in bad4.
7 Since V

(α)
i+1 = W

(α)
i and V

(β)
j+1 = W

(β)
j , bad4 covers collisions with the input blocks.
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4.6 Analysis for Bad Transcripts

In this analysis, we use the following multi-collision event regarding r-bit state
values in the PRNG part.

– bad7: ∃(α1, i1) ∈ [qE ] × [dα1 , �α1 ], . . . , (αμ, iμ) ∈ [qE ] × [dαμ
, �αμ

] s.t.(
j 	= j′ ⇒ (αj , ij) 	= (αj′ , ij′)

)
∧

(
msbr(Wi1) = · · · = msbr(Wiμ

)
)
.

Without loss of generality, assume that an adversary aborts if one of the
bad events (including bad7) occurs. Hence, for i ∈ [7], Pr[badi] is the probability
that badi occurs as long as the other events have not occurred. Then, we have
Pr[TI ∈ Tbad] ≤

∑
i∈[7] Pr[badi]. These bounds are given below, which offer the

following bound:

Pr[TI ∈ Tbad] ≤ 2σ

2k
+

4.5σ2

2b
+

4pσ

2b
+

2μp

2k
+ 2r ·

(
eσ

μ2r

)μ

. (2)

Upper-Bounding Pr[bad1]. Regarding the first condition of bad1, by the ran-
domness of K, we have Pr[∃α ∈ [p] s.t. lsbk(X(α)) = K] ≤ p

2k .
We next evaluate the probability for the second condition of bad1. For each

α ∈ [qE ] and i ∈ [dα], as V
(α)
i is chosen from at least 2b − σ − p ≥ 2b−1 elements

in {0, 1}b, we have Pr[lsbk(V (α)
i ) = K] ≤ 2r

2b−1 ≤ 2
2k . For each α ∈ [qE ] and

i ∈ [dα + 1, �α], by the randomness of K, we have Pr[lsbk(V (α)
i ) = K] ≤ 1

2k .
These bounds give Pr[∃α ∈ [qE ], i ∈ [�α] s.t. lsbk(V (α)

i ) = K] ≤ 2σE
2k .

Similarly, we have Pr[∃α ∈ [qE + 1, q], i ∈ [dα] s.t. lsbk(V (α)
i ) = K] ≤ 2σD

2k .
By using the above bounds, we have Pr[bad1] ≤ p

2k + 2σE
2k + 2σD

2k = p
2k + 2σ

2k .

Upper-Bounding Pr[bad2]. For each (α, i) ∈ [q] × [dα], (β, j) ∈ [q] × [dβ ] s.t.

V
(α)
i−1 	= V

(β)
j−1, V

(α)
i = W

(α)
i−1 ⊕ A

(α)
i and V

(β)
j = W

(β)
j−1 ⊕ A

(β)
j are satisfied, and

W
(α)
i−1 and W

(β)
j−1 are respectively chosen from at least 2b−1 elements in {0, 1}b

due to the condition V
(α)
i−1 	= V

(β)
j−1. We thus have Pr[V (α)

i = V
(β)
j ] ≤ 2

2b .

Summing the bound for each (α, i), (β, j), we have Pr[bad2] ≤
(
σ
2

)
· 2
2b ≤ σ2

2b .

Upper-Bounding Pr[bad3]. Fix (α, i) ∈ [qE ]× [dα+1, �α] and (β, j) ∈ [q]× [dβ ],

and evaluate the probability Pr[V (α)
i = V

(β)
j ], where V

(β)
j is defined by using

W
(β)
j−1. Since bad1 and bad5 have not occurred, W

(β)
j−1 is defined independently of

primitive queries. Since bad3 has not occurred before, W
(β)
j−1 is defined indepen-

dently of V
(α)
i . Hence, W

(α)
i−1 is chosen from at least 2b−1 elements in {0, 1}b. We

thus have Pr[V (α)
i = V

(β)
j ] ≤ 2

2b . Similarly, Pr[W (α)
i = W

(β)
j ] ≤ 2

2b .

Summing the bound for each (α, i), (β, j), we have Pr[bad3] ≤
(
σ
2

)
· 4
2b ≤ 2σ2

2b .

Upper-Bounding Pr[bad4]. For each (α, i) ∈ [qE ] × [dα, �α], (β, j) ∈ [qE ] ×
[dβ , �β ], since W

(α)
i and W

(β)
j are respectively chosen from {0, 1}b, we have

Pr[W (α)
i = W

(β)
j ] ≤ 1

2b . By using the bound, we have Pr[bad4] ≤
(
σE
2

)
· 1
2b ≤ 0.5σ2

E
2b .
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Upper-Bounding Pr[bad5]. We first consider a collision between the decryp-
tion and offline queries, i.e.,

bad5,1 : (α, i) ∈ [qD] × [�α], β ∈ [p] s.t. V
(α)
i = X(β) ∨ W

(α)
i = Y (β).

Since W
(α)
i is chosen from at least 2b−1 elements in {0, 1}b and V

(α)
i is defined

by using the previous output W
(α)
i−1, we have Pr[bad5,1] ≤ 2pσD

2b .
We next consider a collision between the MAC part of the encryption and

offline query-response pairs, i.e.,

bad5,2 : (α, i) ∈ [qE ] × [dα], β ∈ [p] s.t. V
(α)
i = X(β), where V

(α)
i = W

(α)
i−1 ⊕ A

(α)
i ,

bad5,3 : (α, i) ∈ [qE ] × [dα − 1], β ∈ [p] s.t. W
(α)
i = Y (β).

As W
(α)
i−1 is chosen from at least 2b−1 elements in {0, 1}b, we have Pr[bad5,2] ≤

2pσE
2b . Similarly, we have Pr[bad5,3] ≤ 2pσE

2b .
We next consider a collision between the PRNG part of the encryption and

offline query-response pairs, i.e.,

bad5,4 : (α, i) ∈ [qE ]×[dα, �α], β ∈ [p] s.t. X(β) = W
(α)
i (= V

(α)
i+1 ) ∨ Y (β) = W

(α)
i .

Fix β ∈ [p]. For the first condition X(β) = W
(α)
i , by ¬bad7, the number of inputs

W
(α)
i such that msbr(W

(α)
i ) = msbr(X(β)) is at most μ−1. Then, the remaining

k-bit parts of the (at most) μ − 1 inputs are defined by using a key K. Since
K is chosen from {0, 1}κ, the probability that one of the k-bit parts is equal to
lsbk(X(β)) is at most μ−1

2k . For the second condition, the evaluation is similar to
the first condition. Summing the bounds for each β, we have Pr[bad5,2] ≤ 2(μ−1)p

2k .
We thus have Pr[bad5] ≤

∑
i∈[4] Pr[bad5,i] ≤ 2pσD

2b + 4pσE
2b + 2(μ−1)p

2k .

Upper-Bounding Pr[bad6]. Since an adversary does not make trivial queries
and repeated queries, for each α ∈ [qE ] and β ∈ [qE + 1, q], (A(α),M (α)) 	=
(A(β),M (β)) is satisfied. By ¬bad2, the inputs at the last π call in the MAC part
are distinct, i.e., V

(α)
dα

	= V
(β)
dβ

. Hence, for each β ∈ [qE + 1, q], T (β) is chosen
independently from tags in encryption queries. By ¬bad3, T (β) is chosen inde-
pendently of ciphertext blocks in encryption queries. By ¬bad5, T (β) is chosen
independently of primitive queries. Hence, W

(β)
dα

, which is used to define T (β),
is defined by π in the decision stage, and chosen from at least 2b−1 elements.
Hence, for each β ∈ [qE + 1, q], we have Pr[T (β) = T̂ (β)] ≤ 2

2b .
Summing the bound for each α ∈ [qE + 1, q], Pr[bad6] ≤ 2qD

2b .

Upper-Bounding Pr[bad7]. Fix μ distinct pairs (α1, i1) ∈ [qE ] ×
[dα1 , �α1 ], . . . , (αμ, iμ) ∈ [qE ] × [dαμ

, �αμ
], and evaluate the probability

Pr[msbr(W
(α1)
i1

) = · · · = msbr(W
(αμ)
iμ

)]. For each j ∈ [μ], msbr(W
(αj)
ij

) is cho-

sen uniformly at random from {0, 1}r. We thus have Pr[msbr(W
(α1)
i1

) = · · · =

msbr(W
(αμ)
iμ

)] ≤
(

1
2r

)μ−1.
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Summing the bound for each (α1, i1), . . . , (αμ, iμ), we have Pr[bad7] ≤
(
σE
μ

)
·

(
1
2r

)μ−1 ≤ 2r ·
(

eσE
μ2r

)μ

, using Stirling’s approximation (x! ≥
(

x
e

)x for any x).

4.7 Analysis for Good Transcript

Let τ ∈ Tgood. Tags and ciphertexts in τ can be obtained from (dummy) input-
output tuples in online queries. By ¬bad6, response of decryption queries in τ
are all reject. Hence, we have only to consider a (dummy) user’s key, (dummy)
input-output pairs of π in online queries, and offline query-response pairs. Let τK

be the subset of τ with a user’s key. Let τonline be the set of offline query-response
tuples, τenc the set of input-output tuples defined by encryption query-response
tuples that are not in τonline, and τdec the set of input-output tuples defined by
decryption query-response tuples that are not in τenc ∪τonline. For a subset τ ′ ⊆ τ
and W ∈ {R, I}, let TW � τ ′ be an event that the values defined by TW satisfy
those in τ ′.

Firstly, we evaluate Pr[TR � τoffline] and Pr[TI � τoffline], the probabilities for
offline queries. In both worlds, the responses to offline queries are defined by an
RP π. We thus have Pr[TR � τonline] = Pr[TI � τonline]. Hereafter, we assume
that TR � τonline and TI � τonline are satisfied.

Secondly, we evaluate Pr[TR � τK ] and Pr[TI � τK ], the probabilities for
a user’s key. In both worlds, a user’s key is chosen uniformly at random from
{0, 1}k. We thus have Pr[TR � τK ] = Pr[TI � τK ]. Hereafter, we assume that
TR � τK and TI � τK are satisfied.

Thirdly, we evaluate Pr[TR � τenc] and Pr[TI � τenc], the probabilities for
encryption queries. By bad1, bad2, bad3, and bad4, there is no collision among
π’s inputs in τenc. By bad5, there is no collision between τonline and τenc. Hence,
we all inputs in τenc are new. By bad3, bad4, and bad5, there is no collision
among outputs in τenc. Hence, we have Pr[TR � τenc] > 0. In the real world, all
internal values in encryption queries are defined by π, and in the ideal world,
by Algorithm 2. In this algorithm, all outputs in the MAC part except for the
last outputs are defined by π and the remaining ones are chosen uniformly at
random from {0, 1}b, as all ciphetext blocks and tag ones are chosen uniformly
at random from {0, 1}b. Hence, the output spaces in the ideal world are larger
than those in the real one, and we have Pr[TR � τenc] ≥ Pr[TI � τenc]. Hereafter,
we assume that TR � τenc and TI � τenc are satisfied.

Fourthly, we evaluate Pr[TR � τdec] and Pr[TI � τdec], the probabilities for
decryption queries. In both worlds, the internal values in decryption queries are
defined by π, that is, chosen from the same spaces. Note that the ideal-world
values are defined by Algorithm 2. Hence, we have Pr[TR � τdec] = Pr[TI � τdec]

Finally, using the above evaluations, we have

Pr[TR = τ ]
Pr[TI = τ ]

=
Pr[TR � τoffline]Pr[TR � τK ]Pr[TR � τenc]Pr[TR � τdec]
Pr[TI � τoffline]Pr[TI � τK ]Pr[TI � τenc]Pr[TI � τdec]

≥ 1 . (3)
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5 Hardware Performance

We instantiate PALM for 128-bit security using the PHOTON256 lightweight
permutation [20]. The instantiation satisfies 128-bit security (s = 128). PALM
can be realized with 384 bits of memory: a 256-bit state for PHOTON256 and
a 128-bit key. We use the g function with n = 4 (see Eq. 1) because nibble
is PHOTON256’s minimum processing unit. Our PALM implementation follows
the previous LM-DAE implementation with a coprocessor interface and serial-
ized datapath prioritizing circuit area over speed [24]. The TBC-based scheme
LM-DAE is selected as a comparison target because it achieves the smallest 3s
memory, as summarized in Table 1. For a comparison with a permutation-based
scheme, we also implement Ascon-128 [15].

Figure 2 shows the datapath architecture of PALM including PHOTON256

based on the conventional nibble-serial design [1]. The state array is the main
component integrating MixColumnsSerial (MCS) and ShiftRows into a shift reg-
ister. Each row can shift independently, which is used to implement ShiftRows
without a wide selector. MCS is realized by applying the A matrix 8 times [20].
A single PHOTON256 round is composed of 143 cycles: 7 for ShiftRows, 72 for
MCS, and 64 for SubCells. A single PHOTON256 permutation takes 1,716 cycles.
The following components are added to extend from PHOTON256 to PALM: (i)
a 128-bit shift register for storing the secret key K, which is the main overhead,
(ii) the g function integrated into the state array, and (iii) additional datapath
for feeding message and ciphertext blocks to the state.

Fig. 2. Datapath architecture of PALM

Figure 3 shows the datapath architecture of our Ascon-128 implementation.
By following the design policy for our PALM implementation (and the previous
LM-DAE implementation [24]), we implemented Ascon-128 with a serialized
architecture and a coprocessor-style interface. The basic architecture follows the
conventional serialized implementation of Ascon [19]. The state array comprises
five independent 64-bit shift registers that integrate the linear diffusion layer.
The implementation processes a single 5-bit S-box calculation for each cycle. A
single 320-bit permutation takes 444 cycles in total.

Table 2 compares our PHOTON256, PALM, and Ascon-128 implementations
with the conventional LM-DAE implementation [24]. The table summarizes the
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Fig. 3. Datapath architecture of Ascon

circuit area in the number of the NAND gates (GE) and the speed in cycle/byte.8

The circuit area is obtained by synthesizing the hardware design with the Nan-
Gate 45-nm standard cell library [25].

Our PALM implementation achieves 3,585 GE, smaller than the 3,824 GE of
LM-DAE. Roughly 30% of the PALM implementation is occupied by the 128-bit
key register, which is the main overhead for extending from PHOTON256 to
PALM. The circuit area is mainly proportional to the memory size because the
combinatorial area is small in the serialized architectures. PALM is also faster
than LM-DAE; the speed of the PALM and LM-DAE implementations are 107.2
and 127.3 cycles/byte, respectively.

Table 2. Hardware Performance Comparison

Target Circuit Area (GE) Enc. Speed Memory

Total State Key Tweak S-box (cycles/byte) (bits)

LM-DAE† 3,717 1,102 1,004 1,012 N/A 127.3 384

Ascon-128 5,707 4,367 953 0 28 55.6 448

PHOTON256 2,526 2,187 N/A‡ 0 28 53.6 256

PALM 3,585 2,222 951 0 28 107.2 384
†The hardware performance from [24] evaluated with the same standard cell
library. ‡No key is involved in the PHOTON256 hash function.

6 Optimality of Memory Size of PALM

We show that the memory size of PALM, i.e. 3s bits, is optimal for a permutation-
based SIV-like mode with s-bit security by demonstrating an attack faster than
8 Obtained by dividing the primitive’s latency with the message block size.
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s bits against a generic construction whose memory size is less than 3s bits.
The minimum key size is s bits because otherwise the exhaustive key search can
be performed with less than 2s operations. Hence we show an attack against a
generic construction only with less than 2s bits of state.

Fig. 4. MAC Part of Generic SIV-like Permutation-Based DAE in Simplified Form.

Generic SIV-Like Permutation-Based DAE. We first specify a generic SIV-
like construction, which is depicted in Fig. 4. It first computes a MAC that takes
(K,A,M) as input and outputs a 2s-bit tag. More specifically, a b-bit state S,
where b < 2s, is first initialized to IV . Then, S is updated by b-bit permutation
π in every block. Before each invocation of π, partial bits of K, the whole bits
of K, or an empty string is added to S by an updating function ρ, where ρ
can be different in each block. A and M can be pre-processed in an injective
and invertible way, and does not use additional memory. The generated data
is described by a symbol D. Then, a part of bits in D is used to update S in
each block, which is iterated until all bits of D are used. Finally, a 2s-bit tag
T is computed from S by some finalization function. Our attack only targets
MAC, thus we omit the other part. Moreover, we simplify the construction as
follows. We divide D into Dα‖Dβ . Then, the MAC can be described only with
two functions; to generate an intermediate S from IV and Dα, and to compute
T from S and Dβ .

Attack. Attacker’s goal is to break the integrity. Namely, the attacker is given
an oracle that implements either the encryption of the above generic construc-
tion with b < 2s (real) or a random-bit oracle (ideal). The attacker needs to
distinguish which oracle is implemented with a complexity less than s bits.

The attacker chooses A,M so that Dα is sufficiently long to generate a col-
lision on S and Dβ is very short, say 1 block. Then, the following is processed.

1. The attacker chooses 2b/2 distinct choices of Dα and a fixed choice of Dβ to
make 2b/2 online queries of Dα‖Dβ to collect the corresponding T .

2. Pick up all the pairs of Dα‖Dβ and D′
α‖Dβ that collide on T .

3. For all the picked up pairs, replace Dβ with another D′
β and make two more

online queries Dα‖D′
β and D′

α‖D′
β to check if the resulting tags collide.

4. If a tag collision is generated, the oracle is real, otherwise ideal.
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Analysis. In step 1, because 2b/2 distinct Dα are examined, a collision occurs
with a high probability at S after processing Dα. Because Dβ is fixed, the occur-
rence of the collision can be observed by checking the tag collision. Note that
even if S after processing Dα does not collide, the tag may collide due to the
collision generated during the process of Dβ . Hence, several tag collisions can
be observed. Then in Step 3, we pick up all the colliding pairs. By setting Dβ

short, the number of additional collisions is negligibly small. For a colliding pair
(Dα,D′

α), the tag will collide for any choice of Dβ . Hence the tags of Dα‖D′
β

and D′
α‖D′

β will collide. The attack complexity is 2b/2 online queries.
If the oracle is ideal, i.e. the random-bit oracle, the probability of having

colliding tags in Step 1 is smaller than the real construction due to b < 2s.
Moreover, the probability that the 2s-bit tags for Dα‖D′

β and D′
α‖D′

β collide is
2−2s. Since b < 2s, the tag collision cannot be generated only with 2b/2 online
queries.

7 Conclusion

In this paper, we proposed a new permutation-based DAE mode PALM that can
be implemented with low memory. For a permutation of size b bits and a key of
size k bits, we prove min

{
k, b

2

}
-bit security assuming that the permutation is RP.

We then instantiated PALM with PHOTON256 and benchmarked its hardware
performance to show that the memory size of PALM is in fact competitive with
LM-DAE. We also showed that 3s bits of memory of PALM is optimal; an attack
breaking integrity exists if the memory size is less than 3s bits.
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Abstract. The FBC block cipher is an award-winning algorithm of
the recent Cryptographic Algorithm Design Competition in China. It
employs a generalised Feistel structure and has three versions FBC128-
128, FBC128-256 and FBC256, which have a 128-bit block size with a
128- or 256-bit user key and a 256-bit block size with a 256-bit user key,
respectively. The best previously published cryptanalysis results on FBC
are Zhang et al.’s impossible differential attack on 13-round FBC128-
128 and Ren et al.’s boomerang attack on 13-round FBC128-256. In this
paper, we observe that when conducting impossible differential crypt-
analysis of FBC, both inactive and active nibble differences on plaintext
and ciphertext as well as a few intermediate states may be exploited for
some refined sorting conditions on plaintexts and ciphertexts to filter
out preliminary satisfying plaintext/ciphertext pairs efficiently. Taking
advantage of this observation, we use Zhang et al.’s 9-round impossi-
ble differentials of FBC128 to make key-recovery attacks on 14-round
FBC128-128 and 15-round FBC128-256, and similarly we exploit 13-
round impossible differentials on FBC256 and make a key-recovery attack
on 19-round FBC256. Our results are better than any previously pub-
lished cryptanalytic results on FBC in terms of the numbers of attacked
rounds.

Keywords: Block cipher · FBC · Impossible differential cryptanalysis

1 Introduction

The FBC block cipher was designed by Feng et al. [4] for the Cryptographic
Algorithm Design Competition in China, that was organised by the Chinese
Association of Cryptologic Research under the guidance of State Cryptography
Administration Office, and it became an award-winning algorithm in 2020. FBC
employs a generalised Feistel structure, and has three versions FBC128-128,
FBC128-256 and FBC256: a 128-bit block size with a 128- or 256-bit user key,
and a 256-bit block size with a 256-bit user key, which have a total of 48, 64 and
80 rounds, respectively.
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Table 1. Main cryptanalytic results on FBC

Cipher Attack Type Rounds Data Memory Time Source

FBC128-128 Linear 11 284 KP / 2112.54 [7]
Differential 12 2122 CP / 293.41 [7]
Impossible differential 11 2127 CP / 294.54 [7]

13 2126 CP 252 2122.96 [8]
14 2125.5 CP 282.5 2124 Section 3.1

FBC128-256 Boomerang 13 2117.67 CP / 2247.67 [7]
Impossible differential 15 2126.9CP 2115.9 2249.9 Section 3.2

FBC256 Impossible differential 19 2255.3CP 2116.3 2246.4 Section 4
KP/CP: Known/Chosen plaintexts; Memory unit: Bytes; Time unit: Encryptions.

The main published cryptanalytic results on FBC are as follows. In 2019,
Ren et al. [7] presented linear [6] and impossible differential [2,5] attacks on
11-round FBC128-128, a differential attack [1] on 12-round FBC128-128, and
a boomerang attack on 13-round FBC128-256. In 2022, Zhang et al. [8] gave
9-round impossible differentials and an 13-round impossible differential attack
on FBC128-128 using 274 structures of 252 chosen plaintexts; and in particu-
lar, they defined a plaintext structure to have a fixed value in the 19 inactive
nibble positions on plaintexts and used an usual sorting way by the expected
14 inactive nibble positions on ciphertexts to sieve out preliminary satisfying
plaintext/ciphertext pairs efficiently.

In this paper, we observe that when conducting impossible differential crypt-
analysis of FBC, both inactive and active nibble differences on plaintext and
ciphertext as well as a few intermediate states may be exploited for some sort-
ing conditions on plaintexts and ciphertexts to filter out preliminary satisfying
plaintext/ciphertext pairs more efficiently; more specifically, for a structure of
plaintexts, except the usual sorting way by the expected inactive nibble posi-
tions on ciphertexts (as Zhang et al. have done in [8]), we can exploit some more
specific relations among the expected non-zero differences (i.e. at active nibble
positions) on both plaintexts and ciphetexts as well as the expected intermediate
differences to make a much more refined sorting on plaintexts and ciphertexts,
so that preliminary satisfying plaintext/ciphertext pairs can be more efficiently
sieved out without additional workload. Taking advantage of this observation,
we use Zhang et al.’s 9-round impossible differentials on FBC128 to make key-
recovery attacks on 14-round FBC128-128 and 15-round FBC128-256, breaking
one or two more rounds than the best previously published attacks on FBC128-
128 and FBC128-256, respectively. Similarly, we exploit 13-round impossible
differentials on FBC256 to make a key-recovery attack on 19-round FBC256.
Table 1 summarises previous and our main cryptanalytic results on FBC.

The remainder of the paper is organised as follows. We briefly describe the
notation and the FBC cipher in the next section, present our attacks on FBC128
and FBC256 in Sects. 3 and 4, respectively. Section 5 concludes this paper.
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2 Preliminaries

In this section, we give the notation and briefly describe the FBC block cipher.

2.1 Notation

In all descriptions we assume that the bits of an n-bit value are numbered from
0 to n − 1 from left to right, a number without a prefix represents a decimal
number, a number with prefix 0x represents a hexadecimal number, and we use
the following notation throughout this paper.

|| bit string concatenation
⊕ bitwise logical exclusive XOR
& bitwise logical AND
¬ bitwise logical complement
≪/≫ left/right rotation of a bit string
� an arbitrary value of some length, where two values represented by the

� symbol may be different
e the base of the natural logarithm (e = 2.71828 · · · )

2.2 The FBC Block Cipher

FBC [4] has three versions FBC128-128, FBC128-256 and FBC256, which have
a 128-bit block size with a 128- or 256-bit user key, and a 256-bit block size with
a 256-bit user key, and a total of 48, 64 and 80 rounds, respectively, with Round
0 as the first round.

Fig. 1. The FBC round function

The F function of FBC, as depicted in Fig. 1, consists of the following three
elementary operations:

– Key Addition: Input is XORed with a round key to produce output u.
– Column Transform S: Depending on the block length of the FBC cipher ver-

sion, representing u as four 32- or 64-bit words u = (u0||u1||u2||u3), apply
the same 4× 4-bit bijective S-box S 8 or 16 times in parallel to u to produce
output v = (v0||v1||v2||v3) as (v0,j ||v1,j ||v2,j ||v3,j) = S(u0,j ||u1,j ||u2,j ||u3,j),
where ui and vi are 8-bit for FBC128 and 16-bit for FBC256, and ui,j and
vi,j are respectively the j-th bit of ui and vi (i ∈ [0, 3], j ∈ [0, 7] for FBC128,
and j ∈ [0, 15] for FBC256).
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– Row Transform P: Given input v, the output z is defined as z = v ⊕ (v ≪
3) ⊕ (v ≪ 10) for FBC128, and z = v ⊕ (v ≪ 17) ⊕ (v ≪ 58) for FBC256.

Table 2. Details of Row Transform of the FBC128 round function

v 0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

v ≪ 3 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26
27 28 29 30 31 0 1 2

v ≪ 10 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25
26 27 28 29 30 31 0 1
2 3 4 5 6 7 8 9

Table 3. Details of Row Transform of the FBC256 round function

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

v ≪ 17 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

v ≪ 58 58 59 60 61 62 63 0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

The key schedules of FBC128-128 and FBC256 are as follows. Represent
the 128- or 256-bit user key as four 32- or 64-bit words (K0,K1,K2,K3)
respectively, and generate the remaining round keys as Ki+4 = (¬Ki) ⊕
(¬Ki+1)&Ki+2&Ki+3 ⊕ i and Ki+4 = Ki+4 ⊕ (Ki+4 ≪ 13) ⊕ (Ki+4 ≪ 22),
where i = 0, 1, · · · , 2r − 5, and r is 48 for FBC128-128 and 80 for FBC256.

The key schedule of FBC128-256 is as follows. Represent the 256-bit user
key as eight 32-bit words (K0,K1,K2,K3,K4,K5,K6,K7), and generate the
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remaining round keys as Ki+8 = (¬Ki) ⊕ (¬Ki+1)&(Ki+2)&(Ki+3) ⊕ i and
Ki+8 = (Ki+8) ⊕ (Ki+8 ≪ 13) ⊕ (Ki+8 ≪ 22), where i = 0, 1, · · · , 119.

At last, to simplify our subsequent cryptanalysis, we give the details of the
Row Transform of FBC128 and FBC256 in Tables 2 and 3, respectively.

3 Impossible Differential Attacks on 14-Round
FBC128-128 and 15-Round FBC128-256

In this section, we apply Zhang et al.’s 9-round impossible differentials (0, 0, e0, 0)
� (ej , 0, ej , 0) [8] to attack 14-round FBC128-128 and 15-round FBC128-256, by
exploiting both inactive and active nibble differences on plaintext and ciphertext
as well as a few intermediate states for some more refined sorting conditions
on plaintexts and ciphertexts to filter out satisfying plaintext/ciphertext pairs
efficiently, where em denotes a 32-bit word with zeros in all positions except
the 4 bits of the m-th column (m = 0 or j) and j ∈ {1, 3, 5, 7}. We refer the
reader to [8] for more details of Zhang et al.’s 9-round impossible differentials
and 13-round FBC128-128 attack.

3.1 Attacking 14-Round FBC128-128

Below we attack Rounds 0–13 of FBC128-128, as illustrated in Fig. 2, by append-
ing two rounds at the beginning and three rounds at the end of Zhang et al.’s
9-round impossible differential.

1. Choose 273.5 structures of 252 plaintexts (P j
0 , P j

1 , P j
2 , P j

3 ), where in a struc-
ture the 19 nibbles (1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 17, 23, 25, 26, 27, 28, 31)
of the 252 plaintexts are fixed to certain values and the other 13 nibbles
take all the possible values. For each structure, store the 252 plaintexts into
a hash table indexed by the following 100 bits:

(P j
1 [0] ≪ 1) ⊕ P j

1 [5], (1)

(P j
1 [0] ≪ 2) ⊕ P j

1 [6], (2)

(P j
2 [2] ≪ 1) ⊕ P j

2 [3] ⊕ (P j
2 [4] ≫ 1), (3)

(P j
0 [0] ≪ 1) ⊕ (P j

2 [0] ≪ 1) ⊕ P j
2 [2] ⊕ P j

2 [5], (4)

(P j
0 [0] ≪ 2) ⊕ (P j

2 [0] ≪ 2) ⊕ (P j
2 [4] ≫ 1) ⊕ P j

2 [6], (5)

(P j
3 [0] ≪ 1) ⊕ P j

3 [5], (6)

(P j
3 [0] ≪ 2) ⊕ P j

3 [6], (7)

Cj
0 [0, 2], (8)

(Cj
0 [3] ≪ 1) ⊕ Cj

0 [4] ⊕ (Cj
0 [5] ≫ 1), (9)

(Cj
0 [3] ≪ 1) ⊕ (Cj

0 [5] ≫ 1) ⊕ (Cj
0 [6] ≪ 1) ⊕ Cj

0 [7], (10)

Cj
2 [0, 2], (11)
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Fig. 2. Impossible differential attack on 14-round FBC128-128

Cj
3 [0] ⊕ Cj

3 [3] ⊕ Cj
3 [6] ⊕ ((Cj

3 [1] ⊕ Cj
3 [2] ⊕ Cj

3 [4] ⊕ Cj
3 [7]) ≪ 1)⊕

((Cj
3 [0] ⊕ Cj

3 [4] ⊕ Cj
3 [6] ⊕ Cj

3 [7]) ≪ 2) ⊕ (Cj
3 [6] ≪ 3), (12)

Cj
3 [2] ⊕ (Cj

3 [4] ≪ 1) ⊕ Cj
3 [5] ⊕ (Cj

3 [6] ≪ 2)⊕
((Cj

3 [1] ⊕ Cj
3 [4] ⊕ Cj

3 [7]) ≪ 3) ⊕ ((Cj
3 [0] ⊕ Cj

3 [6]) ≪ 4), (13)

((Cj
0 [3] ⊕ Cj

2 [3]) ≪ 1) ⊕ Cj
0 [4] ⊕ Cj

2 [4] ⊕ ((Cj
0 [5] ⊕ Cj

2 [5]) ≫ 1), (14)

((Cj
0 [1] ⊕ Cj

2 [1]) ≪ 1) ⊕ Cj
0 [3] ⊕ Cj

2 [3] ⊕ Cj
0 [6] ⊕ Cj

2 [6], (15)

((Cj
0 [1] ⊕ Cj

2 [1]) ≪ 2) ⊕ ((Cj
0 [5] ⊕ Cj

2 [5]) ≫ 1) ⊕ Cj
0 [7] ⊕ Cj

2 [7], (16)

Cj
1 [0, 2, 3, 4, 5] ⊕ Cj

3 [0, 2, 3, 4, 5], (17)

Cj
1 [1] ⊕ Cj

3 [1] ⊕ (Cj
1 [6] ≫ 1) ⊕ (Cj

3 [6] ≫ 1), (18)

Cj
1 [1] ⊕ Cj

3 [1] ⊕ (Cj
1 [7] ≫ 2) ⊕ (Cj

3 [7] ≫ 2). (19)
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As justified in the appendix, two plaintexts P j0 and P j1 with the same
100-bit index have an input difference (ΔX0

0 = 0xα̂0000000,ΔX0
1 =

0xγ0
00000(γ

0
0 ≪ 1)(γ0

0 ≪ 2)0,ΔX0
2 = 0x(α̂⊕γ0

1)0γ
0
2(γ

0
3 ⊕(γ0

2 ≪ 1))(γ0
3 ≪

1)(γ0
2 ⊕ (γ0

1 ≪ 1))(γ0
3 ⊕ (γ0

1 ≪ 2))0,ΔX0
3 = 0xγ1

00000(γ
1
0 ≪ 1)(γ1

0 ≪ 2)0)
and an output difference (ΔX14

0 = 0x0η00η1(η2 ⊕ (η1 ≪ 1))(η2 ≪
1)((η3 ≪ 1) ⊕ η1)((η3 ≪ 2) ⊕ η2),ΔX14

1 = ΔX14
3 ⊕ 0x0η50000(η5 ≪

1)(η5 ≪ 2),ΔX14
2 = ΔX14

0 ⊕ 0x0γ12
0 0γ12

1 (γ12
2 ⊕ (γ12

1 ≪ 1))(γ12
2 ≪

1)((γ12
0 ≪ 1) ⊕ γ12

1 )(γ12
2 ⊕ (γ12

0 ≪ 2)),ΔX14
3 = 0xγ13

1 (η4 ⊕ γ13
2 ⊕ (γ13

1 ≪
1))(γ13

3 ⊕ (γ13
2 ≪ 1))(γ13

1 ⊕ γ13
4 ⊕ (γ13

3 ≪ 1))(γ13
2 ⊕ γ13

5 ⊕ (γ13
4 ≪

1))(γ13
3 ⊕ (γ13

5 ≪ 1))(γ13
4 ⊕ (η4 ≪ 1))(γ13

5 ⊕ (η4 ≪ 2))), and by this
100-bit index, we can easily obtain such plaintext pairs, obtain α̂,

̂β = ΔX14
2 [1] ⊕ ((ΔX14

2 [6] ⊕ ΔX14
2 [3]) ≫ 1),

γ0
0 , γ0

1 , γ0
2 , γ0

3 , γ1
0 , γ12

0 , γ12
1 , γ12

2 , γ13
1 , γ13

2 , γ13
3 , γ13

4 , γ13
5 , η0, η1, η2, η3, η4, η5 from

(ΔX0
0 ,ΔX0

1 ,ΔX0
2 ,ΔX0

3 ,ΔX14
0 ,ΔX14

1 ,ΔX14
2 ,ΔX14

3 ) for a plaintext pair,
and keep only the satisfying plaintext pairs with α̂, ̂β, γ0

0 , γ0
1 , γ0

2 , γ0
3 ,

γ1
0 , γ12

0 , γ12
1 , γ12

2 , γ13
1 , γ13

2 , γ13
3 , γ13

4 , γ13
5 being nonzero. It is expected that the

273.5 structures provide a total of
(

252

2

) × 2−100 × 273.5 = 276.5 preliminary
satisfying plaintext pairs.

2. Guess K0[0], partially encrypt every preliminary satisfying plaintext pair
(P j0 , P j1) to check whether there is a difference γ0

0 at nibble (0) just after
the left S function of Round 0, and keep only the qualified plaintext pairs,
whose number is expected to be 276.5 × 2−4 = 272.5 on average.

3. Guess K1[0, 5, 6], partially encrypt every remaining plaintext pair (P j0 , P j1)
to check whether there is a difference (γ0

1 , γ0
2 , γ0

3) at nibbles (0, 5, 6) just after
the right S function of Round 0, and keep only the qualified plaintext pairs,
whose number is expected to be 272.5 × 2−4×3 = 260.5 on average.

4. Guess K26[1, 6, 7], partially decrypt every remaining ciphertext pair (Cj0 ,
Cj1) to check whether there is a difference (γ13

6 , γ13
7 , γ13

8 ) = ((ΔX14
2 [3] ⊕

ΔX14
2 [6]) ≫ 1,ΔX14

2 [3],ΔX14
2 [5] ≫ 1) at nibbles (1, 6, 7) just after the

left S function of Round 13, and keep only the qualified ciphertext pairs,
whose number is expected to be 260.5 × 2−4×3 = 248.5 on average.

5. Guess K27[1, 3, 4, 5, 6, 7], partially decrypt every remaining ciphertext pair
(Cj0 , Cj1) to get nibbles (1, 3, 4, 5, 6, 7) of their intermediate values just after
the right S function of Round 13, check whether they produce a difference
(χ13

0 , χ13
1 , · · · , χ13

7 ) = 0x(γ13
1 �(γ13

3 ⊕(γ13
2 ≪ 1))(γ13

1 ⊕γ13
4 ⊕(γ13

3 ≪ 1))(γ13
2 ⊕

γ13
5 ⊕ (γ13

4 ≪ 1))(γ13
3 ⊕ (γ13

5 ≪ 1)) � �) just after the right P function of
Round 13, and keep only the qualified ciphertext pairs, whose number is
expected to be 248.5 × 2−20 = 228.5 on average. Now we can obtain γ12

3 =
χ13
1 ⊕ ΔX14

3 [1] and γ11
0 = γ12

3 ⊕ η5.
6. Guess (K1[2, 3],K3[0]), partially decrypt every remaining plaintext pair

(P j0 , P j1) to check whether there is a difference γ1
0 at nibble (0) just after

the right S function of Round 1, and keep only the qualified plaintext pairs,
whose number is expected to be 228.5 × 2−4 = 224.5 on average.

7. Guess (K26[3, 4],K24[1]), partially decrypt every remaining ciphertext pair
(Cj0 , Cj1) to check whether there is a difference γ12

3 at nibble (1) just after
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the left S function of Round 12, and keep only the qualified ciphertext pairs,
whose number is expected to be 224.5 × 2−4 = 220.5 on average.

8. Guess (K27[0, 2],K25[1, 6, 7]), partially decrypt every remaining ciphertext
pair (Cj0 , Cj1) to check whether there is a difference (γ12

0 , γ12
1 , γ12

2 ) at nibbles
(1, 6, 7) just after the right S function of Round 12, and keep only the qual-
ified ciphertext pairs, whose number is expected to be 220.5 × 2−4×3 = 28.5

on average.
9. Guess K25[3, 4], compute K23[1] with (K24[1],K25[1],K26[1],K27[0 − 7]) by

FBC128-128 key schedule, partially decrypt every remaining ciphertext pair
(Cj0 , Cj1) to check whether there is a difference γ11

0 at nibble (1) just after
the right S function of Round 11; if yes, discard the guessed 104-bit subkey
and try another one.

10. For every remaining (K24[1],K25[1, 3, 4, 6, 7],K26[1, 3, 4, 6, 7],K27[0 − 7])
after Step 9, exhaustively search the remaining 52 key bits (K24[0, 2 −
7],K25[0, 2, 5], K26[0, 2, 5]) to determine the 128-bit user key by the FBC
key schedule.

The attack requires 273.5 × 252 = 2125.5 chosen plaintexts, and has a mem-
ory complexity of about 252 × 16 × 2 + 276.5 × 16 × 2 × 2 ≈ 282.5 bytes if
we filter out the 276.5 preliminary satisfying plaintext pairs by checking the
273.5 structures one by one and reusing the storage for a structure. The attack’s
time complexity is dominated by Steps 8 and 10. Step 8 has a time complex-
ity of about 2 × 220.5 × 296 ≈ 2117.5 0.5-round FBC128-128 encryptions. It is
expected that there are 2104 × (1 − 2−4)2

8.5 ≈ 2104 × e−24.5 ≈ 272 guesses of
(K0[0],K1[0, 2, 3, 5, 6],K3[0],K24[1],K25[1, 3, 4, 6, 7],K26[1, 3, 4, 6, 7],K27[0 − 7])
passing Step 9, and thus Step 10 has a time complexity of about 272×252 ≈ 2124

14-round FBC128-128 encryptions. Therefore, except the 2125.5 chosen plain-
texts, the attack has a total time complexity of approximately 2117.5 × 1

14 × 1
2 +

2124 ≈ 2124 14-round FBC128-128 encryptions.

3.2 Attacking 15-Round FBC128-256

Similarly, we can attack 15-round FBC128-256 by appending three rounds at
the beginning and three rounds at the end of Zhang et al.’s 9-round impossible
differential, as follows. Figure 3 illustrates the attack.

1. Choose 234.9 structures of 292 plaintexts (P j
0 , P j

1 , P j
2 , P j

3 ), where in a struc-
ture the 9 nibbles (1, 2, 3, 4, 7, 9, 15, 25, 31) of the 292 plaintexts are fixed to
certain values and the other 23 nibbles take all the possible values. For each
structure, store the 292 plaintexts into a hash table indexed by the following
108 bits:

(P j
0 [0] ≪ 1) ⊕ P j

0 [5], (20)

(P j
0 [0] ≪ 2) ⊕ P j

0 [6], (21)

(P j
1 [2] ≪ 1) ⊕ P j

1 [3] ⊕ (P j
1 [4] ≫ 1), (22)
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Fig. 3. Impossible differential attack on 15-round FBC128-256

(P j
1 [2] ≪ 1) ⊕ (P j

1 [4] ≫ 1) ⊕ (P j
1 [5] ≪ 1) ⊕ P j

1 [6], (23)

(P j
2 [0] ≪ 1) ⊕ (P j

2 [1] ≪ 1) ⊕ P j
2 [2] ⊕ (P j

2 [3] ≪ 1) ⊕ (P j
2 [3] ≪ 2)⊕

P j
2 [5] ⊕ (P j

2 [5] ≪ 2) ⊕ (P j
2 [5] ≪ 3) ⊕ (P j

2 [6] ≪ 1) ⊕ (P j
2 [6] ≪ 2)⊕

(P j
2 [7] ≪ 1) ⊕ (P j

2 [7] ≫ 1), (24)
(P j

2 [0] ≪ 2) ⊕ (P j
2 [1] ≫ 1) ⊕ P j

2 [3] ⊕ (P j
2 [3] ≪ 2) ⊕ (P j

2 [4] ≫ 1) ⊕
(P j

2 [5] ≪ 1) ⊕ (P j
2 [5] ≪ 3) ⊕ (P j

2 [6] ≪ 2) ⊕ (P j
2 [7] ≪ 2), (25)

(P j
3 [2] ≪ 1) ⊕ (P j

3 [4] ≫ 1) ⊕ P j
3 [3], (26)

(P j
3 [0] ≪ 1) ⊕ P j

3 [2] ⊕ P j
3 [5], (27)

(P j
3 [0] ≪ 2) ⊕ (P j

3 [4] ≫ 1) ⊕ P j
3 [6], (28)

Indexes (8)−(19) in Sect. 3.1 with superscripts plus 1.

Likewise, two plaintexts P j0 and P j1 with the same 108-bit index have an
input difference (ΔX0

0 = 0xφ00000(φ0 ≪ 1)(φ0 ≪ 2)0,ΔX0
1 = 0x(γ0

6 ⊕
α̂)0γ0

7(γ
0
8 ⊕ (γ0

7 ≪ 1))(γ0
8 ≪ 1)(γ0

7 ⊕ (γ0
6 ≪ 1))(γ0

8 ⊕ (γ0
6 ≪ 2))0,ΔX0

2 =
0x(φ1⊕γ0

2 ⊕(γ0
1 ≪ 1))(γ0

3 ⊕(γ0
2 ≪ 1))(γ0

1 ⊕γ0
4 ⊕(γ0

3 ≪ 1))(γ0
2 ⊕γ0

5 ⊕(γ0
4 ≪

1))(γ0
3 ⊕ (γ0

5 ≪ 1))(γ0
4 ⊕ (φ1 ≪ 1))(γ0

5 ⊕ (φ1 ≪ 2))(γ0
1 ≪ 1),ΔX0

3 =
0xγ1

10γ
1
2(γ

1
3 ⊕ (γ1

2 ≪ 1))(γ1
3 ≪ 1)(γ1

2 ⊕ (γ1
1 ≪ 1))(γ1

3 ⊕ (γ1
1 ≪ 2))0) and an

output difference (ΔX15
0 = 0x0η00η1(η2 ⊕ (η1 ≪ 1))(η2 ≪ 1)((η3 ≪ 1) ⊕
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η1)((η3 ≪ 2)⊕η2),ΔX15
1 = ΔX15

3 ⊕0x0η50000(η5 ≪ 1)(η5 ≪ 2),ΔX15
2 =

ΔX15
0 ⊕ 0x0γ13

0 0γ13
1 (γ13

2 ⊕ (γ13
1 ≪ 1))(γ13

2 ≪ 1)((γ13
0 ≪ 1) ⊕ γ13

1 )(γ13
2 ⊕

(γ13
0 ≪ 2)),ΔX15

3 = 0xγ14
1 (η4 ⊕ γ14

2 ⊕ (γ14
1 ≪ 1))(γ14

3 ⊕ (γ14
2 ≪ 1))(γ14

1 ⊕
γ14
4 ⊕ (γ14

3 ≪ 1))(γ14
2 ⊕ γ14

5 ⊕ (γ14
4 ≪ 1))(γ14

3 ⊕ (γ14
5 ≪ 1))(γ14

4 ⊕ (η4 ≪
1))(γ14

5 ⊕ (η4 ≪ 2))), and by this 108-bit index, we can easily obtain such
plaintext pairs, obtain α̂,

̂β = ΔX15
2 [1] ⊕ ((ΔX15

2 [6] ⊕ ΔX15
2 [3]) ≫ 1),

γ0
1 , γ0

2 , · · · , γ0
8 , γ1

1 , γ1
2 , γ1

3 , γ13
0 , γ13

1 , γ13
2 , γ14

1 , γ14
2 , γ14

3 , γ14
4 , γ14

5 , φ0, φ1, η0, η1, η2,
η3, η4, η5 from (ΔX0

0 ,ΔX0
1 ,ΔX0

2 ,ΔX0
3 ,ΔX15

0 ,ΔX15
1 ,ΔX15

2 ,ΔX15
3 ) for a

plaintext pair, and keep only the satisfying plaintext pairs with α̂, ̂β,
γ0
1 , γ0

2 , · · · , γ0
8 , γ1

1 , γ1
2 , γ1

3 , γ13
0 , γ13

1 , γ13
2 , γ14

1 , γ14
2 , γ14

3 , γ14
4 , γ14

5 being nonzero.
(A justification is given in the full version of this paper.) It is expected
that the 234.9 structures provide a total of

(

292

2

) × 2−108 × 234.9 = 2109.9

preliminary satisfying plaintext pairs.
2. Guess K0[0, 5, 6], partially encrypt every preliminary satisfying plaintext pair

(P j0 , P j1) to check whether there is a difference (γ0
6 , γ0

7 , γ0
8) at nibbles (0, 5, 6)

just after the left S function of Round 0, and keep only the qualified plaintext
pairs, whose number is expected to be 2109.9 × 2−4×3 = 297.9 on average.

3. Guess K28[1, 6, 7], partially decrypt every remaining ciphertext pair (Cj0 ,
Cj1) to check whether there is a difference (γ14

6 , γ14
7 , γ14

8 ) = ((ΔX15
2 [3] ⊕

ΔX15
2 [6]) ≫ 1,ΔX15

2 [3],ΔX15
2 [5] ≫ 1) at nibbles (1, 6, 7) just after the left

S function of Round 14, and keep only the qualified ciphertext pairs, whose
number is expected to be 297.9 × 2−4×3 = 285.9 on average.

4. Guess K1[0, 2, 3, 4, 5, 6], partially encrypt every remaining plaintext pair
(P j0 , P j1) to get nibbles (0, 2, 3, 4, 5, 6) of their intermediate values just
after the right S function of Round 0, check whether they produce a dif-
ference (λ0

0λ
0
1λ

0
2λ

0
3λ

0
4λ

0
5λ

0
6λ

0
7) = 0x � (γ0

3 ⊕ (γ0
2 ≪ 1))(γ0

1 ⊕ γ0
4 ⊕ (γ0

3 ≪
1))(γ0

2 ⊕ γ0
5 ⊕ (γ0

4 ≪ 1))(γ0
3 ⊕ (γ0

5 ≪ 1)) � �(γ0
1 ≪ 1) just after the right

P function of Round 0, and keep only the qualified plaintext pairs, whose
number is expected to be 285.9 × 2−4×5 = 265.9 on average. Now we can
obtain γ2

0 = λ0
0 ⊕ ΔX0

2 [0], γ0
0 = γ2

0 ⊕ φ1 and γ1
0 = γ2

0 ⊕ φ0.
5. Guess K29[1, 3, 4, 5, 6, 7], partially decrypt every remaining ciphertext pair

(Cj0 , Cj1) to get nibbles (1, 3, 4, 5, 6, 7) of their intermediate values just after
the right S function of Round 14, check whether they produce a difference
(χ14

0 , χ14
1 , · · · , χ14

7 ) = 0x(γ14
1 �(γ14

3 ⊕(γ14
2 ≪ 1))(γ14

1 ⊕γ14
4 ⊕(γ14

3 ≪ 1))(γ14
2 ⊕

γ14
5 ⊕ (γ14

4 ≪ 1))(γ14
3 ⊕ (γ14

5 ≪ 1)) � �) just after the right P function
of Round 14, and keep only the qualified ciphertext pairs, whose number
is expected to be 265.9 × 2−4×5 = 245.9 on average. Now we can obtain
γ13
3 = χ14

1 ⊕ ΔX15
3 [1] and γ12

0 = γ13
3 ⊕ η5.

6. Guess (K0[2, 3],K2[0]), partially encrypt every satisfying plaintext pair (P j0 ,
P j1) to check whether there is a difference γ1

0 at nibble (0) just after the left
S function of Round 1, and keep only the qualified plaintext pairs, whose
number is expected to be 245.9 × 2−4 = 241.9 on average.

7. Guess (K28[3, 4],K26[1]), partially decrypt every remaining ciphertext pair
(Cj0 , Cj1) to check whether there is a difference γ13

3 at nibble (1) just after
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the left S function of Round 13, and keep only the qualified ciphertext pairs,
whose number is expected to be 241.9 × 2−4 = 237.9 on average.

8. Guess (K1[1, 7],K3[0, 5, 6]), partially encrypt every remaining plaintext pair
(P j0 , P j1) to check whether there is a difference (γ1

1 , γ1
2 , γ1

3) at nibbles (0, 5, 6)
just after the right S function of Round 1, and keep only the qualified plain-
text pairs, whose number is expected to be 237.9 ×2−4×3 = 225.9 on average.

9. Guess (K3[2, 3],K5[0]), partially decrypt every remaining plaintext pair (P j0 ,
P j1) to check whether there is a difference γ2

0 at nibble (0) just after the right
S function of Round 2, and keep only the qualified plaintext pairs, whose
number is expected to be 225.9 × 2−4 = 221.9 on average.

10. Guess (K29[0, 2],K27[1, 6, 7]), partially decrypt every remaining ciphertext
pair (Cj0 , Cj1) to check whether there is a difference (γ13

0 , γ13
1 , γ13

2 ) at nibbles
(1, 6, 7) just after the right S function of Round 13, and keep only the qual-
ified ciphertext pairs, whose number is expected to be 221.9 × 2−4×3 = 29.9

on average.
11. Guess (K27[3, 4],K25[1]), partially decrypt every remaining ciphertext pair

(Cj0 , Cj1) to check whether there is a difference γ12
0 at nibble (1) just after

the right S function of Round 12; if yes, discard the guessed 160-bit subkey
and try another one.

12. For every remaining (K0[0, 2, 3, 5, 6],K1,K2[0],K3[0, 2, 3, 5, 6],K5[0]) after
Step 11, exhaustively search the remaining 176 key bits to determine the
256-bit user key by the FBC128-256 key schedule.

The attack requires 234.9 × 292 = 2126.9 chosen plaintexts, and has a memory
complexity of about 292×16×2+2109.9×16×2×2 ≈ 2115.9 bytes if we filter out
the 2109.9 qualified plaintext pairs by checking the 234.9 structures one by one and
reusing the storage for a structure. The attack’s time complexity is dominated by
Step 12. It is expected that there are 2160 × (1− 2−4)2

9.9 ≈ 2160 × e−25.9 ≈ 273.9

guessed 160-bit subkeys passing Step 11, and thus Step 12 has a time complexity
of about 273.9 × 2176 ≈ 2249.9 15-round FBC128-256 encryptions.

4 Impossible Differential Attack on 19-Round FBC256

In this section, we give 13-round impossible differentials of FBC256 and present
an impossible differential attack on 19-round FBC256. Likewise, an important
point for this attack is that we exploit some specific relations among the con-
cerned differences to devise sorting conditions on plaintexts and ciphertexts so
as to filter out preliminary satisfying plaintext/ciphertext pairs efficiently.

4.1 13-Round Impossible Differentials of FBC256

Our 13-round impossible differentials on FBC256 are (0, 0, e0, 0) � (ej , 0, ej , 0),
constructed in a miss-in-the-middle manner [3], where em denotes a 64-bit word
with zeros in all positions except the 4 bits of the m-th column (m = 0 or j)
and j ∈ {1, 15}. A proof is given in the full version of this paper.
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4.2 Attacking 19-Round FBC256

As illustrated in Fig. 4, we can use a 13-round impossible differential to attack
19-round FBC256, by appending three rounds at the beginning and three rounds
at the end of the 13-round impossible differential, as follows.

1. Choose 2155.3 structures of 2100 plaintexts (P j
0 , P j

1 , P j
2 , P j

3 ), where in a struc-
ture the 39 nibbles (1−5, 7−14, 1−4, 7−11, 13, 1, 3, 7−10, 1−4, 7−11, 13)
of the 2100 plaintexts are fixed to certain values and the other 25 nibbles
take all the possible values. For each structure, store the 2100 plaintexts into
a hash table indexed by the following 244 bits:

P j
0 [0] ⊕ P j

0 [6], (29)

(P j
0 [0] ≪ 2) ⊕ P j

0 [15], (30)

P j
1 [5] ⊕ (P j

1 [12] ≪ 1) ⊕ (P j
1 [14] ≪ 2), (31)

(P j
1 [6] ≪ 2) ⊕ (P j

1 [12] ≪ 2) ⊕ (P j
1 [14] ≫ 1) ⊕ P j

1 [15], (32)

(P j
2 [2] ≫ 2)⊕ (P j

2 [4] ≫ 1)⊕ P j
2 [5]⊕ (P j

2 [12] ≪ 1)⊕ (P j
2 [14] ≪ 2), (33)

P j
2 [0] ⊕ (P j

2 [2] ≫ 3) ⊕ P j
2 [6] ⊕ P j

2 [12], (34)

(P j
2 [2] ≫ 2) ⊕ (P j

2 [4] ≫ 1) ⊕ P j
2 [11] ⊕ (P j

2 [13] ≪ 1), (35)

(P j
2 [0] ≪ 2) ⊕ (P j

2 [13] ≫ 2) ⊕ (P j
2 [14] ≫ 1) ⊕ P j

2 [15], (36)

P j
3 [5] ⊕ (P j

3 [12] ≪ 1) ⊕ (P j
3 [14] ≪ 2), (37)

P j
3 [0] ⊕ P j

3 [6] ⊕ P j
3 [12], (38)

(P j
3 [0] ≪ 2) ⊕ (P j

3 [14] ≫ 1) ⊕ P j
3 [15], (39)

Cj
0 [2, 3, 4, 5, 8, 9, 10, 11, 12, 14], (40)

Cj
0 [0] ⊕ (Cj

0 [7] ≪ 1) ⊕ (Cj
0 [13] ≪ 1) ⊕ (Cj

0 [15] ≫ 2), (41)

Cj
0 [6] ⊕ (Cj

0 [13] ≪ 1) ⊕ (Cj
0 [15] ≫ 2), (42)

Cj
1 [2, 4, 8, 9, 10, 11], (43)

Cj
2 [2, 3, 4, 5, 8, 9, 10, 11, 12, 14], (44)

Cj
3 [2, 4, 8, 9, 10, 11], (45)

Cj
3 [0] ⊕ (Cj

3 [5] ≫ 1) ⊕ Cj
3 [6] ⊕ (Cj

3 [7] ≪ 1) ⊕ (Cj
3 [14] ≪ 1), (46)

(Cj
3 [3] ≫ 2) ⊕ (Cj

3 [5] ≫ 1) ⊕ Cj
3 [12] ⊕ (Cj

3 [14] ≪ 1), (47)

Cj
3 [1] ⊕ (Cj

3 [3] ≫ 3) ⊕ Cj
3 [7] ⊕ Cj

3 [13], (48)

(Cj
3 [0] ≪ 2) ⊕ (Cj

3 [1] ≪ 3) ⊕ (Cj
3 [14] ≫ 1) ⊕ Cj

3 [15], (49)

Cj
1 [3, 5, 6, 12, 13, 14, 15] ⊕ Cj

3 [3, 5, 6, 12, 13, 14, 15], (50)

(Cj
1 [0] ≫ 1) ⊕ Cj

1 [1] ⊕ (Cj
3 [0] ≫ 1) ⊕ Cj

3 [1], (51)

(Cj
1 [0] ≫ 1) ⊕ Cj

1 [7] ⊕ (Cj
3 [0] ≫ 1) ⊕ Cj

3 [7], (52)

Cj
0 [0] ⊕ (Cj

0 [1] ≪ 1) ⊕ (Cj
0 [15] ≫ 2) ⊕ Cj

2 [0] ⊕ (Cj
2 [1] ≪ 1)⊕
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(Cj
2 [15] ≫ 2), (53)

Cj
0 [6] ⊕ (Cj

0 [13] ≪ 1) ⊕ (Cj
0 [15] ≫ 2) ⊕ Cj

2 [6] ⊕ (Cj
2 [13] ≪ 1)⊕

(Cj
2 [15] ≫ 2), (54)

Cj
0 [1] ⊕ Cj

0 [7] ⊕ Cj
0 [13] ⊕ Cj

2 [1] ⊕ Cj
2 [7] ⊕ Cj

2 [13]. (55)

Likewise, two plaintexts P j0 and P j1 with the same 244-bit index have an
input difference (ΔX0

0 = 0xφ000000φ000000000(φ0 ≪ 2),ΔX0
1 = 0x(γ0

0 ⊕
α̂)0000((γ0

1 ≪ 1) ⊕ (γ0
2 ≪ 3))(γ0

1 ⊕ γ0
0)00000γ

0
10(γ

0
2 ≪ 1)(γ0

2 ⊕ (γ0
0 ≪

2)),ΔX0
2 = 0xφ10(γ0

6 ≪ 3)0((γ0
4 ≪ 1) ⊕ (γ0

7 ≪ 3))(γ0
4 ⊕ (γ0

5 ≪
1)⊕ (γ0

8 ≪ 3))(φ1 ⊕γ0
5)0000((γ

0
6 ≪ 1)⊕γ0

4)(γ
0
6 ⊕γ0

5)(γ
0
7 ≪ 1)(γ0

7 ⊕ (γ0
8 ≪

1))(γ0
8 ⊕ (φ1 ≪ 2)),ΔX0

3 = 0xγ1
00000((γ

1
1 ≪ 1) ⊕ (γ1

2 ≪ 3))(γ1
1 ⊕

γ1
0)00000γ

1
10(γ

1
2 ≪ 1)(γ1

2 ⊕ (γ1
0 ≪ 2))) and an output difference (ΔX19

0 =
0x(φ2 ⊕ (φ3 ≪ 1))(φ3 ⊕ ̂β)0000(φ2 ⊕ (φ4 ≪ 1))(φ3 ⊕ φ4)00000φ40(φ2 ≪
2),ΔX19

1 = ΔX19
3 ⊕ 0x(φ6 ≪ 1)φ600000φ600000000,ΔX19

2 = ΔX19
0 ⊕

0x(γ17
1 ⊕ (γ17

2 ≪ 1))γ17
2 0000((γ17

3 ≪ 1)⊕ γ17
1 )(γ17

2 ⊕ γ17
3 )00000γ17

3 0(γ17
1 ≪

2),ΔX19
3 = 0x(γ18

3 ⊕(φ5 ≪ 1))φ50(γ18
7 ≪ 3)0((γ18

5 ≪ 1) ⊕ (γ18
8 ≪

3))(γ18
5 ⊕(γ18

6 ≪ 1)⊕γ18
3 )(γ18

6 ⊕φ5)0000((γ18
7 ≪ 1)⊕γ18

5 )(γ18
7 ⊕γ18

6 )(γ18
8 ≪

1)(γ18
8 ⊕(γ18

3 ≪ 2))), and by this 244-bit index, we can efficiently obtain such
plaintext pairs, obtain α̂, ̂β, γ0

0 , γ0
1 , γ0

2 , γ0
4 , γ0

5 , · · · , γ0
8 , γ1

0 , γ1
1 , γ1

2 , γ17
1 , γ17

2 , γ17
3 ,

γ18
3 , γ18

5 , γ18
6 , γ18

7 , γ18
8 , φ0, φ1, · · · , φ6 from the (ΔX0

0 ,ΔX0
1 ,ΔX0

2 ,ΔX0
3 ,

ΔX19
0 ,ΔX19

1 ,ΔX19
2 , ΔX19

3 ) for a plaintext pair, and keep only the
satisfying plaintext pairs with α̂, ̂β, γ0

0 , γ0
1 , γ0

2 , γ0
4 , γ0

5 , · · · , γ0
8 , γ1

0 , γ1
1 , γ1

2 , γ17
1 ,

γ17
2 , γ17

3 , γ18
3 , γ18

5 , γ18
6 , γ18

7 , γ18
8 being nonzero. (A justification is given in the

full version of this paper.) It is expected that the 2155.3 structures provide a
total of

(

2100

2

)×2−244 ×2155.3 = 2110.3 preliminary satisfying plaintext pairs.
2. Guess K0[0, 6, 15], partially encrypt every preliminary satisfying plaintext

pair (P j0 , P j1) to check whether there is a difference (γ0
0 , γ0

1 , γ0
2) at nibbles

(0, 6, 15) just after the left S function of Round 0, and keep only the qualified
plaintext pairs, whose number is expected to be 2110.3 × 2−4×3 = 298.3 on
average.

3. Guess K36[0, 1, 7], partially decrypt every remaining ciphertext pair (Cj0 ,
Cj1) to check whether there is a difference (γ18

0 , γ18
1 , γ18

2 ) = (ΔX19
2 [15] ≫

2, ΔX19
2 [7] ⊕ ΔX19

2 [13],ΔX19
2 [13]) at nibbles (0, 1, 7) just after the left S

function of Round 18, and keep only the qualified ciphertext pairs, whose
number is expected to be 298.3 × 2−4×3 = 286.3 on average.

4. Guess K1[0, 5, 6, 12, 14, 15], partially encrypt every remaining plaintext pair
(P j0 , P j1) to get nibbles (0, 5, 6, 12, 14, 15) of their intermediate values just
after the right S function of Round 0, check whether they produce a difference
0x(η0

00η
0
10η

0
2η

0
3η

0
40000η

0
5η

0
6η

0
7η

0
8η

0
9) = 0x(�0(γ0

6 ≪ 3)0((γ0
4 ≪ 1) ⊕ (γ0

7 ≪
3))(γ0

4 ⊕ (γ0
5 ≪ 1) ⊕ (γ0

8 ≪ 3)) � 0000((γ0
6 ≪ 1) ⊕ γ0

4)(γ
0
6 ⊕ γ0

5)(γ
0
7 ≪

1)(γ0
7 ⊕ (γ0

8 ≪ 1))�) after the right P function of Round 0, and keep only
the qualified plaintext pairs, whose number is expected to be 286.3×2−4×5 =
266.3 on average. Now we can obtain γ2

0 = η0
0 ⊕ ΔX0

2 [0], γ0
3 = γ2

0 ⊕ φ1 and
γ1
3 = γ2

0 ⊕ φ0.
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Fig. 4. Impossible differential attack on 19-round FBC256

5. Guess K37[0, 1, 6, 7, 13, 15], partially decrypt every remaining ciphertext pair
(Cj0 , Cj1) to get nibbles (0, 1, 6, 7, 13, 15) of their intermediate values just
after the right S function of Round 18, check whether they produce a
difference 0x(χ18

0 χ18
1 0χ18

2 0χ18
3 χ18

4 χ18
5 0000χ18

6 χ18
7 χ18

8 χ18
9 ) = 0x(� � 0(γ18

7 ≪
3)0((γ18

5 ≪ 1) ⊕ (γ18
8 ≪ 3))(γ18

5 ⊕ (γ18
6 ≪ 1) ⊕ γ18

3 ) � 0000((γ18
7 ≪

1) ⊕ γ18
5 )(γ18

7 ⊕ γ18
6 )(γ18

8 ≪ 1)(γ18
8 ⊕ (γ18

3 ≪ 2))) just after the right P
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function of Round 18, and keep only the qualified ciphertext pairs, whose
number is expected to be 266.3×2−20 = 246.3 on average. Now we can obtain
γ17
0 = χ18

1 ⊕ ΔX19
3 [1] and γ16

0 = γ17
0 ⊕ φ6.

6. Guess (K0[1, 10],K2[0]), partially decrypt every remaining plaintext pair
(P j0 , P j1) to check whether there is a difference γ1

3 at nibble (0) just after
the left S function of Round 1, and keep only the qualified plaintext pairs,
whose number is expected to be 246.3 × 2−4 = 242.3 on average.

7. Guess (K36[2, 11],K34[1]), partially decrypt every remaining ciphertext pair
(Cj0 , Cj1) to check whether there is a difference γ17

0 at nibble (1) of their
intermediate values just after the left S function of Round 17, and keep only
the qualified plaintext pairs, whose number is expected to be 242.3 × 2−4 =
238.3 on average.

8. Guess (K1[1, 7, 9, 10],K3[0, 6, 15]), partially encrypt every remaining plain-
text pair (P j0 , P j1) to check whether there is a difference (γ1

0 , γ1
1 , γ1

2) at nib-
bles (0, 6, 15) just after the right S function of Round 1, and keep only the
qualified plaintext pairs, whose number is expected to be 238.3×2−4×3 = 226.3

on average.
9. Guess (K37[2, 8, 10, 11],K35[0, 1, 7]), partially decrypt every remaining

ciphertext pair (Cj0 , Cj1) to check whether there is a difference (γ17
1 , γ17

2 , γ17
3 )

at nibbles (0, 1, 7) just after the right S function of Round 17, and keep only
the qualified plaintext pairs, whose number is expected to be 226.3×2−4×3 =
214.3 on average.

10. Guess (K1[2, 4, 11],K3[1, 10],K5[0]), partially encrypt every remaining plain-
text pair (P j0 , P j1) to check whether there is a difference γ2

0 at nibble (0) just
after the right S function of Round 2, and keep only the qualified plaintext
pairs, whose number is expected to be 214.3 × 2−4 = 210.3 on average.

11. Guess (K37[3, 5, 12],K35[2, 11],K33[1]), partially decrypt every remaining
ciphertext pair (Cj0 , Cj1) to check whether there is a difference γ16

0 at nibble
(1) just after the right S function of Round 16; if yes, discard the guessed
200-bit subkey and try another one.

12. For every remaining subkey guess (K0[0, 1, 6, 10, 15],K1[0, 1, 2, 4, 5, 6, 7, 9, 10,
11, 12, 14, 15],K2[0],K3[0, 1, 6, 10, 15]), exhaustively search the remaining
160 key bits (K0[2 − 5, 7 − 9, 11 − 14],K1[3, 8, 13],K2[1 − 15],K3[2 − 5, 7 −
9, 11 − 14]) to determine the 256-bit user key by the FBC256 key schedule.

The attack requires 2155.3×2100 = 2255.3 chosen plaintexts, and has a memory
complexity of about 2100 × 16× 2 + 2110.3 × 16× 2× 2 ≈ 2116.3 bytes if we filter
out the 2110.3 qualified plaintext pairs by checking the 2155.3 structures one by
one and reusing the storage for a structure. Except the 2255.3 chosen plaintexts,
the attack’s time complexity is dominated by Step 12. It is expected that there
are 2200 × (1 − 2−4)2

10.3 ≈ 2200 × e−26.3 ≈ 286.4 subkey guess passing Step 11,
and thus Step 12 has a time complexity of about 286.4 × 2160 = 2246.4 19-round
FBC256 encryptions.
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5 Conclusion

The FBC block cipher is an award-winning algorithm of the Cryptographic Algo-
rithm Design Competition in China. In this paper, by exploiting both inactive
and active nibble differences on plaintext and ciphertext as well as some inter-
mediate states to sieve out preliminary satisfying plaintext/ciphertext pairs effi-
ciently, we have used Zhang et al.’s 9-round impossible differential on FBC128 to
make key-recovery attacks on 14-round FBC128-128 and 15-round FBC128-256,
and we have exploited 13-round impossible differentials on FBC256 to make a
key-recovery attack on 19-round FBC256. Our attacks are better than any pre-
viously published attacks on FBC in terms of the numbers of attacked rounds.

Acknowledgements. This work was supported by State Key Laboratory of Cryptol-
ogy (No. MMKFKT202114). Jiqiang Lu was Qianjiang Special Expert of Hangzhou.

Appendix: Filtering Details of the 100-Bit Index
on FBC128-128

Under a structure, a pair of plaintexts (P j0 , P j1) with the same 100-bit index
(1)–(18) have the following features:

– Indexes (1) and (2) guarantee that P j0
1 ⊕ P j1

1 = ΔX0
1 = 0xγ0

00000(γ
0
0 ≪

1)(γ0
0 ≪ 2)0, where γ0

0 is an indeterminate nibble difference. This is because

Index (1) : (P j0
1 [0] ≪ 1) ⊕ P j0

1 [5] = (P j1
1 [0] ≪ 1) ⊕ P j1

1 [5]
⇒ ΔP1[5] = ΔP1[0] ≪ 1,

Index (2) : (P j0
1 [0] ≪ 2) ⊕ P j0

1 [6] = (P j1
1 [0] ≪ 2) ⊕ P j1

1 [6]
⇒ ΔP1[6] = ΔP1[0] ≪ 2,

so under a plaintext structure we have the above guarantee after letting

γ0
0 = P j0

1 [0] ⊕ P j1
1 [0] = ΔP1[0].

– Indexes (3)–(5) guarantee that P j0
0 ⊕ P j1

0 = ΔX0
0 = 0xα̂0000000 and P j0

2 ⊕
P j1
2 = ΔX0

2 = 0x(α̂ ⊕ γ0
1)0γ

0
2(γ

0
3 ⊕ (γ0

2 ≪ 1))(γ0
3 ≪ 1)(γ0

2 ⊕ (γ0
1 ≪ 1))(γ0

3 ⊕
(γ0

1 ≪ 2))0, where α̂, γ0
1 , γ0

2 , γ0
3 are indeterminate nibble differences. This is

because



388 J. Lu and X. Zhang

Index (3) : (P j0
2 [2] ≪ 1) ⊕ P j0

2 [3] ⊕ (P j0
2 [4] ≫ 1) =

(P j1
2 [2] ≪ 1) ⊕ P j1

2 [3] ⊕ (P j1
2 [4] ≫ 1)

⇒ ΔP2[3] = (ΔP2[4] ≫ 1) ⊕ (ΔP2[2] ≪ 1),
Index (4) : (P j0

0 [0] ≪ 1) ⊕ (P j0
2 [0] ≪ 1) ⊕ P j0

2 [2] ⊕ P j0
2 [5] =

(P j1
0 [0] ≪ 1) ⊕ (P j1

2 [0] ≪ 1) ⊕ P j1
2 [2] ⊕ P j1

2 [5]
⇒ ΔP2[5] = ΔP2[2] ⊕ ((ΔP0[0] ⊕ ΔP2[0]) ≪ 1),

Index (5) : (P j0
0 [0] ≪ 2) ⊕ (P j0

2 [0] ≪ 2) ⊕ (P j0
2 [4] ≫ 1) ⊕ P j0

2 [6] =

(P j1
0 [0] ≪ 2) ⊕ (P j1

2 [0] ≪ 2) ⊕ (P j1
2 [4] ≫ 1) ⊕ P j1

2 [6]
⇒ ΔP2[6] = (ΔP2[4] ≫ 1) ⊕ ((ΔP0[0] ⊕ ΔP2[0]) ≪ 2),

so under a plaintext structure we have the above guarantees after letting

α̂ = P j0
0 [0] ⊕ P j1

0 [0] = ΔP0[0],

γ0
1 = (P j0

2 [0] ⊕ P j1
2 [0]) ⊕ α̂ = ΔP2[0] ⊕ α̂,

γ0
2 = P j0

2 [2] ⊕ P j1
2 [2] = ΔP2[2],

γ0
3 = (P j0

2 [4] ⊕ P j1
2 [4]) ≫ 1 = ΔP2[4] ≫ 1.

– Indexes (6) and (7) guarantee that P j0
3 ⊕ P j1

3 = ΔX0
3 = 0xγ1

00000(γ
1
0 ≪

1)(γ1
0 ≪ 2)0, where γ1

0 is an indeterminate nibble difference. This is because

Index (6) : (P j0
3 [0] ≪ 1) ⊕ P j0

3 [5] = (P j1
3 [0] ≪ 1) ⊕ P j1

3 [5]
⇒ ΔP3[5] = ΔP3[0] ≪ 1,

Index (7) : (P j0
3 [0] ≪ 2) ⊕ P j0

3 [6] = (P j1
3 [0] ≪ 2) ⊕ P j1

3 [6]
⇒ ΔP3[6] = ΔP3[0] ≪ 2,

so under a plaintext structure we have the above guarantee after letting

γ1
0 = P j0

3 [0] ⊕ P j1
3 [0] = ΔP3[0].

– Indexes (8)–(10) guarantee that Cj0
0 ⊕ Cj1

0 = ΔX14
0 = 0x0 � 0 � � � �� =

0x0η00η1(η2 ⊕ (η1 ≪ 1))(η2 ≪ 1)((η3 ≪ 1) ⊕ η1)((η3 ≪ 2) ⊕ η2), where
η0, η1, η2, η3 are indeterminate nibble differences. This is because

Index (8) : Cj0
0 [0, 2] = Cj1

0 [0, 2] ⇒ ΔX14
0 [0, 2] = 0,

Index (9) : (Cj0
0 [3] ≪ 1) ⊕ Cj0

0 [4] ⊕ (Cj0
0 [5] ≫ 1) =

(Cj1
0 [3] ≪ 1) ⊕ Cj1

0 [4] ⊕ (Cj1
0 [5] ≫ 1)

⇒ ΔC0[4] = (ΔC0[5] ≫ 1) ⊕ (ΔC0[3] ≪ 1),
Index (10) : (Cj0

0 [3] ≪ 1) ⊕ (Cj0
0 [5] ≫ 1) ⊕ (Cj0

0 [6] ≪ 1) ⊕ Cj0
0 [7] =

(Cj1
0 [3] ≪ 1) ⊕ (Cj1

0 [5] ≫ 1) ⊕ (Cj1
0 [6] ≪ 1) ⊕ Cj1

0 [7]
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⇒ ΔC0[7] = (ΔC0[3] ≪ 1) ⊕ (ΔC0[5] ≫ 1) ⊕ (ΔC0[6] ≪ 1),

so under a plaintext structure we have the above guarantee after letting

η0 = Cj0
0 [1] ⊕ Cj1

0 [1] = ΔC0[1],

η1 = Cj0
0 [3] ⊕ Cj1

0 [3] = ΔC0[3],

η2 = (Cj0
0 [5] ⊕ Cj1

0 [5]) ≫ 1 = ΔC0[5] ≫ 1,

η3 = (Cj0
0 [6] ⊕ Cj1

0 [6] ⊕ η1) ≫ 1 = (ΔC0[6] ⊕ η1) ≫ 1.

– Index (11) guarantees that Cj0
2 [0, 2] ⊕ Cj1

2 [0, 2] = ΔX14
2 [0, 2] = 0, because

Index (11) : Cj0
2 [0, 2] = Cj1

2 [0, 2] ⇒ ΔX14
2 [0, 2] = 0.

– Indexes (12)–(13) guarantee that Cj0
3 ⊕ Cj1

3 = ΔX14
3 = 0xγ13

1 (η4 ⊕ γ13
2 ⊕

(γ13
1 ≪ 1))(γ13

3 ⊕ (γ13
2 ≪ 1))(γ13

1 ⊕ γ13
4 ⊕ (γ13

3 ≪ 1))(γ13
2 ⊕ γ13

5 ⊕ (γ13
4 ≪

1))(γ13
3 ⊕(γ13

5 ≪ 1))(γ13
4 ⊕(η4 ≪ 1))(γ13

5 ⊕(η4 ≪ 2)), where η4, γ
13
1 , γ13

2 , γ13
3 ,

γ13
4 , γ13

5 are indeterminate nibble differences. This is because

Index (12) : Cj0
3 [0] ⊕ Cj0

3 [3] ⊕ Cj0
3 [6] ⊕ ((Cj0

3 [1] ⊕ Cj0
3 [2] ⊕ Cj0

3 [4] ⊕
Cj0

3 [7]) ≪ 1) ⊕ ((Cj0
3 [0] ⊕ Cj0

3 [4] ⊕ Cj0
3 [6] ⊕ Cj0

3 [7]) ≪ 2) ⊕
(Cj0

3 [6] ≪ 3) = Cj1
3 [0] ⊕ Cj1

3 [3] ⊕ Cj1
3 [6] ⊕ ((Cj1

3 [1] ⊕
Cj1

3 [2] ⊕ Cj1
3 [4] ⊕ Cj1

3 [7]) ≪ 1) ⊕ ((Cj1
3 [0] ⊕ Cj1

3 [4] ⊕ Cj1
3 [6]

⊕Cj1
3 [7]) ≪ 2) ⊕ (Cj1

3 [6] ≪ 3)
⇒ ΔC3[3] = ΔC3[0] ⊕ ΔC3[6] ⊕ (ΔC3[6] ≪ 3) ⊕

((ΔC3[1] ⊕ ΔC3[2] ⊕ ΔC3[4] ⊕ ΔC3[7]) ≪ 1) ⊕
((ΔC3[0] ⊕ ΔC3[4] ⊕ ΔC3[6] ⊕ ΔC3[7]) ≪ 2),

Index (13) : Cj0
3 [2] ⊕ (Cj0

3 [4] ≪ 1) ⊕ Cj0
3 [5] ⊕ (Cj0

3 [6] ≪ 2) ⊕
((Cj0

3 [1] ⊕ Cj0
3 [4] ⊕ Cj0

3 [7]) ≪ 3) ⊕ ((Cj0
3 [0] ⊕ Cj0

3 [6]) ≪ 4)

= Cj1
3 [2] ⊕ (Cj1

3 [4] ≪ 1) ⊕ Cj1
3 [5] ⊕ (Cj1

3 [6] ≪ 2) ⊕
((Cj1

3 [1] ⊕ Cj1
3 [4] ⊕ Cj1

3 [7]) ≪ 3) ⊕ ((Cj1
3 [0] ⊕ Cj1

3 [6]) ≪ 4)
⇒ ΔC3[5]=ΔC3[2]⊕(ΔC3[4] ≪ 1)⊕(ΔC3[6] ≪ 2) ⊕ ((ΔC3[1]

⊕ΔC3[4] ⊕ ΔC3[7]) ≪ 3) ⊕ ((ΔC3[0] ⊕ ΔC3[6]) ≪ 4),

so under a plaintext structure we have the above guarantee after letting

η4 = Cj0
3 [1] ⊕ Cj1

3 [1] ⊕ Cj0
3 [4] ⊕ Cj1

3 [4] ⊕ Cj0
3 [7] ⊕ Cj1

3 [7] ⊕
((Cj0

3 [0] ⊕ Cj1
3 [0] ⊕ Cj0

3 [6] ⊕ Cj1
3 [6]) ≪ 1)

= ΔC3[1] ⊕ ΔC3[4] ⊕ ΔC3[7] ⊕ ((ΔC3[0] ⊕ ΔC3[6]) ≪ 1),
γ13
1 = Cj0

3 [0] ⊕ Cj1
3 [0] = ΔC3[0],
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γ13
2 = Cj0

3 [4] ⊕ Cj1
3 [4] ⊕ ((Cj0

3 [6] ⊕ Cj1
3 [6]) ≪ 1) ⊕ Cj0

3 [7] ⊕ Cj1
3 [7]

= ΔC3[4] ⊕ (ΔC3[6] ≪ 1) ⊕ ΔC3[7],
γ13
3 = Cj0

3 [2] ⊕ Cj1
3 [2] ⊕ ((Cj0

3 [4] ⊕ Cj1
3 [4] ⊕ Cj0

3 [7] ⊕ Cj1
3 [7]) ≪ 1) ⊕

((Cj0
3 [6] ⊕ Cj1

3 [6]) ≪ 2)
= ΔC3[2] ⊕ ((ΔC3[4] ⊕ ΔC3[7]) ≪ 1) ⊕ (ΔC3[6] ≪ 2),

γ13
4 = Cj0

3 [6] ⊕ Cj1
3 [6] ⊕ ((Cj0

3 [0] ⊕ Cj1
3 [0] ⊕ Cj0

3 [6] ⊕ Cj1
3 [6]) ≪ 2) ⊕

((Cj0
3 [1] ⊕ Cj1

3 [1] ⊕ Cj0
3 [4] ⊕ Cj1

3 [4] ⊕ Cj0
3 [7] ⊕ Cj1

3 [7]) ≪ 1)
= ΔC3[6] ⊕ ((ΔC3[0] ⊕ ΔC3[6]) ≪ 2) ⊕

((ΔC3[1] ⊕ ΔC3[4] ⊕ ΔC3[7]) ≪ 1),
γ13
5 = Cj0

3 [7] ⊕ Cj1
3 [7] ⊕ ((Cj0

3 [0] ⊕ Cj1
3 [0] ⊕ Cj0

3 [6] ⊕ Cj1
3 [6]) ≪ 3) ⊕

((Cj0
3 [1] ⊕ Cj1

3 [1] ⊕ Cj0
3 [4] ⊕ Cj1

3 [4] ⊕ Cj0
3 [7] ⊕ Cj1

3 [7]) ≪ 2)
= ΔC3[7] ⊕ ((ΔC3[0] ⊕ ΔC3[6]) ≪ 3) ⊕

((ΔC3[1] ⊕ ΔC3[4] ⊕ ΔC3[7]) ≪ 2).

– Indexes (14)–(16) guarantee that Cj0
0 ⊕Cj1

0 ⊕Cj0
2 ⊕Cj1

2 = ΔX13
3 = 0x0γ12

0 0γ12
1

(γ12
2 ⊕ (γ12

1 ≪ 1))(γ12
2 ≪ 1)((γ12

0 ≪ 1) ⊕ γ12
1 )(γ12

2 ⊕ (γ12
0 ≪ 2)), where

γ12
0 , γ12

1 , γ12
2 are indeterminate nibble differences. This is because

Index (14) : ((Cj0
0 [3] ⊕ Cj0

2 [3]) ≪ 1) ⊕ Cj0
0 [4] ⊕ Cj0

2 [4] ⊕
((Cj0

0 [5] ⊕ Cj0
2 [5]) ≫ 1) = ((Cj1

0 [3] ⊕ Cj1
2 [3]) ≪ 1) ⊕

Cj1
0 [4] ⊕ Cj1

2 [4] ⊕ ((Cj1
0 [5] ⊕ Cj1

2 [5]) ≫ 1)
⇒ ΔC0[4] ⊕ ΔC2[4] = ((ΔC0[3] ⊕ ΔC2[3]) ≪ 1) ⊕

((ΔC0[5] ⊕ ΔC2[5]) ≫ 1),
Index (15) : ((Cj0

0 [1] ⊕ Cj0
2 [1]) ≪ 1) ⊕ Cj0

0 [3]⊕Cj0
2 [3]⊕Cj0

0 [6]⊕Cj0
2 [6]=

((Cj1
0 [1] ⊕ Cj1

2 [1]) ≪ 1) ⊕ Cj1
0 [3] ⊕ Cj1

2 [3] ⊕ Cj1
0 [6] ⊕ Cj1

2 [6]
⇒ ΔC0[6] ⊕ ΔC2[6] = ((ΔC0[1] ⊕ ΔC2[1]) ≪ 1) ⊕

ΔC0[3] ⊕ ΔC2[3],
Index (16) : ((Cj0

0 [1] ⊕ Cj0
2 [1]) ≪ 2) ⊕ ((Cj0

0 [5] ⊕ Cj0
2 [5]) ≫ 1) ⊕

Cj0
0 [7] ⊕ Cj0

2 [7] = ((Cj1
0 [1] ⊕ Cj1

2 [1]) ≪ 2) ⊕
((Cj1

0 [5] ⊕ Cj1
2 [5]) ≫ 1) ⊕ Cj1

0 [7] ⊕ Cj1
2 [7]

⇒ ΔC0[7] ⊕ ΔC2[7] = ((ΔC0[1] ⊕ ΔC2[1]) ≪ 2) ⊕
((ΔC0[5] ⊕ ΔC2[5]) ≫ 1),

so under a plaintext structure we have the above guarantee after letting

γ12
0 = Cj0

0 [1] ⊕ Cj1
0 [1] ⊕ Cj0

2 [1] ⊕ Cj1
2 [1] = ΔC0[1] ⊕ ΔC2[1],

γ12
1 = Cj0

0 [3] ⊕ Cj1
0 [3] ⊕ Cj0

2 [3] ⊕ Cj1
2 [3] = ΔC0[3] ⊕ ΔC2[3],

γ12
2 = (Cj0

0 [5] ⊕ Cj1
0 [5] ⊕ Cj0

2 [5] ⊕ Cj1
2 [5]) ≫ 1 = (ΔC0[5] ⊕ ΔC2[5]) ≫ 1.
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– Index (17) guarantees that Cj0
1 [0, 2, 3, 4, 5] ⊕ Cj1

1 [0, 2, 3, 4, 5] = ΔX14
1 [0, 2,

3, 4, 5] = ΔX14
3 [0, 2, 3, 4, 5] = Cj0

3 [0, 2, 3, 4, 5] ⊕ Cj1
3 [0, 2, 3, 4, 5], because

Index (17) : Cj0
1 [0, 2, 3, 4, 5] ⊕ Cj0

3 [0, 2, 3, 4, 5] =

Cj1
1 [0, 2, 3, 4, 5] ⊕ Cj1

3 [0, 2, 3, 4, 5]
⇒ ΔC1[0, 2, 3, 4, 5] = ΔC3[0, 2, 3, 4, 5].

– Indexes (18) and (19) guarantee that Cj0
1 ⊕ Cj1

1 ⊕ Cj0
3 ⊕ Cj1

3 = ΔX13
0 =

0x0η50000(η5 ≪ 1)(η5 ≪ 2), where η5 is an indeterminate nibble difference.
This is because

Index (18) : Cj0
1 [1] ⊕ Cj0

3 [1] ⊕ (Cj0
1 [6] ≫ 1) ⊕ (Cj0

3 [6] ≫ 1) =

Cj1
1 [1] ⊕ Cj1

3 [1] ⊕ (Cj1
1 [6] ≫ 1) ⊕ (Cj1

3 [6] ≫ 1)
⇒ ΔC1[6] ⊕ ΔC3[6] = (ΔC1[1] ⊕ ΔC3[1]) ≪ 1,

Index (19) : Cj0
1 [1] ⊕ Cj0

3 [1] ⊕ (Cj0
1 [7] ≫ 2) ⊕ (Cj0

3 [7] ≫ 2) =

Cj1
1 [1] ⊕ Cj1

3 [1] ⊕ (Cj1
1 [7] ≫ 2) ⊕ (Cj1

3 [7] ≫ 2)
⇒ ΔC1[7] ⊕ ΔC3[7] = (ΔC1[1] ⊕ ΔC3[1]) ≪ 2,

so under a plaintext structure we have the above guarantee after letting

η5 = Cj0
1 [1] ⊕ Cj1

1 [1] ⊕ Cj0
3 [1] ⊕ Cj1

3 [1] = ΔC1[1] ⊕ ΔC3[1].
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Abstract. Gentry et al. [26] first presented a homomorphic evaluation
of the AES-128 based on the BGV scheme, however, it suffered from
high evaluation latency. Despite considerable efforts have been directed
towards designing FHE-friendly symmetric encryption algorithms, the
efficient homomorphic evaluation of the well-studied and standardized
AES remains an attractive challenge for researchers in the transcipher-
ing community.

In this paper, we present a novel homomorphic evaluation framework
based on the TFHE scheme, demonstrating the optimal latency for AES-
128 evaluation. Specifically, we propose mixed packing to achieve efficient
S-box evaluation and an optimized circuit bootstrapping as a bridge to
connect the whole evaluation framework. Furthermore, we show the ver-
satility of our evaluation framework by extending it to other ciphers,
such as SM4. To validate the effectiveness of our proposed framework,
we conduct implementation experiments, which indicate that the eval-
uation of AES takes 86 s on a single core, a 3× improvement over the
state-of-the-art [39]. Moreover, with a 16-thread parallel implementa-
tion, it takes about 9 s. For SM4 evaluation, it takes only 78 s on a single
core, about 73× improvement compared to publicly available BGV-based
solution [40].

Keywords: TFHE · Transciphering · AES · Circuit bootstrapping

1 Introduction

Fully homomorphic encryption (FHE) enables the computation of arbitrary func-
tions to be performed on encrypted data without decryption. Prior to 2009, FHE
had been considered an open problem until Gentry proposed the first feasible
fully homomorphic encryption based in ideal lattices [25]. This seminal work
starts the prelude to the booming development of fully homomorphic encryp-
tion. Some representative schemes include BGV [6], BFV [5,24], CKKS [10],
FHEW [23], TFHE [11,12], Final [3] and [30].
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However, the size of homomorphic ciphertext is generally several orders of
magnitude larger than the corresponding plaintext, as a result, the data sender
would suffer from large ciphertext expansion and communication cost, particu-
larly on the embedded devices with limited bandwidth, memory and computing
power. To address this problem, transciphering is firstly proposed by Naehrig
et al. [36]. The main idea behind transciphering is that instead of using homo-
morphic encryption to encrypt data, the client sends the data encrypted by
symmetric encryption (E) to the server. Then, the server homomorphically eval-
uates the symmetric encryption scheme’s decryption circuit (E−1) to convert the
symmetrically-encrypted data (E(m)) into homomorphic ciphertext. Afterward,
the server can proceed to perform the actual function on homomorphic cipher-
text. Therefore, the homomorphic evaluation of E−1 becomes a critical problem
within the transciphering framework.

The Advanced Encryption Standard (AES) is a widely embraced block
encryption standard by the United States federal government, known for its
efficiency and prevalent use in securing sensitive information across diverse appli-
cations. Therefore, AES stands as one of the top choices for application in
the transciphering framework. However, despite its popularity, current research
widely acknowledges that AES is not inherently well-suited as an FHE-friendly
symmetric encryption scheme. The primary limitation lies in its exceptionally
high multiplicative depth, leading to significantly long latency during homomor-
phic evaluation. To address this issue, some researchers have shifted their focus
on designing FHE-friendly symmetric encryption algorithms like LowMC [1],
Chaghri [2], Rubato [28], Pasta [20], Elisabeth [16]. However, none of these alter-
natives have been standardized, and some have been found to be vulnerable to
attacks. The efficient homomorphic evaluation of the well-studied and standard-
ized AES remains an attractive challenge for researchers in the transciphering
community. Consequently, extensive efforts have been dedicated to improving
the homomorphic evaluation latency of AES to make it more amenable to fully
homomorphic encryption.

State-of-the-Art. Early in 2012, Gentry et al. [26] presented the first homo-
morphic evaluation of the AES circuit based on the BGV scheme. The main
breakthrough in their work is the homomorphic evaluation of the S-box, which
converts the inverse X−1 of the finite field F28 into the multiplication X254,
requiring only three multiplicative depths by leveraging the frobenius automor-
phism. Overall, the multiplicative depth required to evaluate AES-128 is 40. And
they provided two versions of implementation: (1) leveled evaluation version (no
bootstrapping): this version demands larger encryption parameter sets but has
a relatively shorter latency of about 4 min, resulting in a throughput of 2 s per
block. However, it comes with the limitation of not supporting the evaluation of
further operations beyond the current computation. (2) bootstrapping version:
this version allows for the use of smaller parameters, but the overall evaluation
latency increases to up to 18 min due to the use of bootstrapping, resulting in
a throughput of 5.8 s per block. Despite the longer delay, this allows further
calculations after the homomorphic execution of the AES.
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The TFHE scheme supports faster bootstrapping, in particular the introduc-
tion of functional bootstrapping [4], which provides a powerful tool to support
lookup table calculation for arbitrary functions. Stracovsky et al. [38] reported
that they utilized functional bootstrapping technique to evaluate a single block
of AES in 4 min. Note that they utilize 16 threads to process 16 bytes in the
state matrix in parallel. But they did not provide detailed implementation, only
a poster presentation was made at FHE.org in 2022. Recently Trama et al. [39]
conducted a comprehensive analysis of a faster AES evaluation implementation
based on functional bootstrapping and multi-value bootstrapping techniques.
Specifically, instead of directly encrypting a byte, they divide 8-bit into two 4-
bit messages to be encrypted, allowing them to use smaller parameters. Thus,
for XOR, S-box and multiplication operations on 8-bit message in the encrypted
domain, they are transformed into operations between 4-bit messages and evalu-
ated by functional bootstrapping lookup tables. Finally, they evaluated an AES
block in 4.5 min using sequential execution on a standard laptop. Indeed, func-
tional bootstrapping is effective for handling S-box lookup table calculation effi-
ciently, but it may be not efficient enough for a substantial number of XOR and
multiplication operations. Relying on functional bootstrapping for these opera-
tions lead to a reduction in the overall evaluation efficiency. Moreover, the latency
for the parallel implementation using 16 cores is about 28 s and still much lower
than the amortization time of the BGV-based scheme. An intriguing question
arises:

Whether the homomorphic evaluation latency of an AES block based on the
TFHE scheme can approach or even reach the same amortization time as that
achieved by the BGV-based scheme?

1.1 Contributions

In this paper, we present a novel evaluation framework for faster AES homo-
morphic evaluation. Specifically, instead of relying on expensive functional boot-
strapping, we use inexpensive CMUX gate as the base unit and propose mixed
packing technique for efficient S-box evaluation. We also incorporate optimized
circuit bootstrapping as a bridge of the framework to speed up the overall evalua-
tion efficiency. We also show that our new evaluation framework can be extended
to other Feistel structure ciphers, such as SM4.

Finally, we implemented our proposed framework based on the TFHEpp
homomorphic encryption library [34]. Experiment results demonstrate remark-
able performance improvements for both AES and SM4 homomorphic evalu-
ation. For AES, the evaluation time of a single block takes only 86 s with a
single thread, which is a 3× improvement compared to the state-of-the-art [39].
With 16-thread parallelization, the evaluation time reduces to approximately 9 s,
which is very close to the amortization time of the BGV method. For SM4, the
evaluation time is about 78 s, a 73× improvement when compared to publicly
available BGV-based approach [40].
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1.2 Related Works

The homomorphic evaluation of AES has been studied using various homomor-
phic encryption schemes, in addition to the BGV-based approach presented by
Gentry et al. [26]. Cheon et al. [9] evaluated the AES circuit based on vDGHV
[18] scheme that supports integer batch processing, and Coron et al. [15] used
a variant of vDGHV scheme with the scale-invariant property. Doröz et al. [21]
proposed the AES evaluation based on the modified LTV scheme. However, their
evaluation efficiency is still unsatisfactory.

Although AES has an algebraic structure that matches well with the plain-
text space of some homomorphic encryption schemes, it is not trivial and has
great multiplicative depth, resulting very long evaluation time. Therefore, some
works attempt to perform the homomorphic evaluation on lightweight block
ciphers with low evaluation depth, such as SIMON [31] and Prince [22] algo-
rithm. Moreover, symmetric ciphers with low multiplicative depth are designed
for FHE, such as block cipher LowMC [1].

Since stream ciphers only involve XOR operations in the process of encryp-
tion and decryption, thus key generation can be done offline in advance, new
stream cipher design criteria for FHE is to minimize the multiplicative complex-
ity and depth of the algorithm, such as FLIP [35], Kreyvium [7], Rasta [19] and
its variants Dasta [29], Masta [27], Pasta [20], Fasta [14] and Elisabeth [16].

1.3 Organization.

We first review the TFHE scheme and give a brief introduction to different boot-
strapping types in Sect. 2. In Sect. 3, we provide a short specification of AES.
A novel framework is proposed to evaluate AES in Sect. 4. We demonstrate the
scalability of our evaluation framework by giving an efficient evaluation imple-
mentation of SM4 in Sect. 5. Implementation results and performance analysis
are provided in Sect. 6. Our conclusion is shown in Sect. 7.

2 Preliminaries

2.1 Notations

We denote by λ the security parameter. The set {0, 1} is written as B. The real
torus T = R/Z is the set of real numbers modulo 1. R is the ring Z[X]/(XN +1)
of integer polynomials modulo XN + 1, and TN [X] is R[X]/(XN + 1) mod 1
of torus polynomials, where N is a power of 2. BN [X] denotes the polynomials
with binary coefficients. Note that T is a Z-module and TN [X] is a R-module.
We use < · > to denote the inner product.

2.2 The TFHE Scheme

In this subsection, we will review the TFHE scheme. TFHE is a fully homo-
morphic encryption scheme proposed by Chillotti et al. [11], which is based on
the (ring) learning with errors [33,37] problem. There are three main forms of
ciphertext in TFHE, which are summarized as follows:
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– TLWE ciphertext: TLWE encrypts a plaintext value μ ∈ T into a ciphertext
(�a, b) ∈ T

n+1, where b =< �a,�s > +μ + e, the vector �a is uniformly sampled
from T

n, the secret key �s is uniformly sampled from B
n, and the error e ∈ T

is sampled from a Gaussian distribution with mean 0 and standard deviation
σ.

– TRLWE ciphertext: TRLWE encrypts a plaintext polynomial μ(x) ∈
TN [X] into a ciphertext (�a, b) ∈ TN [X]k+1, where b =< �a,�s > +μ + e,
the vector �a is uniformly sampled from TN [X]k, the secret key �s is uniformly
sampled from BN [X]k, and the error e ∈ TN [X] is a polynomial with random
coefficients ei ∈ T sampled from a Gaussian distribution with mean 0 and
standard deviation σ. If omitted, k = 1.

– TRGSW ciphertext: TRGSW encrypts the message μ ∈ R into C = Z +
μ · G ∈ M(k+1)l,k+1(TN [X]), where Z ∈ M(k+1)l,k+1(TN [X]) is matrix such
that each line is a random TRLWE ciphertext of 0 under the same key, and
G is gadget matrix which is used to control the noise propagation.

2.3 Homomorphic Arithmetic of TFHE

In this subsection, we briefly revisit some algorithms in the TFHE scheme.

Controlled Mux Gate. There are two kinds of controlled Mux gates as follows,
one built by gate bootstrapping, named bootsMUX and the other by external
product, called CMUX.

– bootsMUX(c, d0, d1) = c?d1 : d0 = (c ∧ d1) ⊕ ((1 − c) ∧ d0)
– CMUX(c, d1, d0) = c� (d1 − d0)+ d0, where � denotes the external product

TRGSW × TRLWE → TRLWE.

Key Switching. In [12], Chillotti et al. proposed two kinds of Key Switching.
The first one is Public Functional KeySwitching, which allows switching from
TLWE to T(R)LWE samples, such as packing TLWE samples into TRLWE
sample or switching secret key. It can also evaluate the public linear function f
on the input TLWE samples. The second one is Private Functional KeySwitching.
The private linear function on the input TLWE samples is evaluated by encoding
the secret f into the KeySwitch key.

Blind Rotation. Blind rotation is the core operation of TFHE bootstrapping.
It rotates the coefficients of test polynomial blindly using encrypted numbers.
The blind rotation operation is mainly constructed by the external product, and
its complexity comes from the frequent transformations of FFT and IFFT.

2.4 Bootstrapping Types of TFHE

There are several types of bootstrapping involved in the TFHE scheme, we sum-
marize as follows.
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Functional Bootstrapping (FBS). The most important feature of TFHE
is the so-called gate bootstrapping. The term gate bootstrapping refers to the
fact that every gate evaluation is followed by fast bootstrapping. For example,
homomorphic NAND gate is bootsNAND(c1, c2) = Bootstrap((�0, 5

8 ) − c1 − c2).
Functional bootstrapping (or programmable bootstrapping, PBS) was firstly
proposed by Boura et al. [4]. The technique is an extension of TFHE gate
bootstrapping, which allows to reset the noise to a fixed level and evaluates
an arbitrary function on the input at the same time. In more detail, the test
polynomial can encode all function values in a discrete manner, then lookup
table (LUT) evaluation is performed by using LWE ciphertext as a selector in
Blind Rotation.

Multi-Value Bootstrapping (MVBS). Carpov et al. [8] firstly introduced a
multi-value bootstrapping technique, which supports the evaluation of multiple
functions on the same input ciphertext using only one blind rotation. Firstly,
extract a common function v from all functions (TVFi

), then use the input
ciphertext to blindly rotate test polynomial v, finally TVFi

v (with small norm
coefficient) is multiplied by accumulator ACC to obtain the functional result
respectively.

An alternative multi-value bootstrapping technique, PBSmanyLUT, was pro-
posed by Chillotti et al. [13]. PBSmanyLUT firstly uses modulus switching to
set some of the lowest bits of the phase to zero so that all function values can be
encoded in a test polynomial. Then only one blind rotation is utilized to obtain
all desired function values.

Circuit Bootstrapping (CBS). Circuit bootstrapping, proposed in [12], can
convert a TLWE sample with large noise amplitude over binary message space
(e.g., amplitude 1

4 over {0, 1
2}) to a TRGSW sample with a lower noise over the

integer message space {0, 1}, which is 10 times more expensive than the gate
bootstrapping, but enables the possibility of fully composable CMUX circuits.

3 Specification of AES

AES-128, being the variant of AES with a 128-bit key, operates on a 128-
bit plaintext message (16 bytes), which is represented as a state matrix. The
AES encryption process comprises multiple rounds (in this case, 10 rounds for
AES-128), each consisting of four main operations: SubBytes, ShiftRows, Mix-
Columns, and AddRoundKey. These operations are applied to the state matrix
iteratively to achieve encryption. The state matrix is organized as a 4×4 array of
bytes, where each byte represents a single element of the state matrix as follows.

⎛
⎜⎜⎝

A0 A4 A8 A12

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15

⎞
⎟⎟⎠
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– SubBytes: Also known as S-box, the S-box transforms each element of state
matrix non-linearly using a lookup table with special mathematical proper-
ties: ⎛

⎜⎜⎝
B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

S(A0) S(A4) S(A8) S(A12)
S(A1) S(A5) S(A9) S(A13)
S(A2) S(A6) S(A10) S(A14)
S(A3) S(A7) S(A11) S(A15)

⎞
⎟⎟⎠

– ShiftRows: In a 4 × 4 state matrix, the first row remains unchanged, while
the second row undergoes a cyclic shift to the left by one byte. Similarly, the
third row is shifted cyclically to the left by two bytes, and the fourth row is
shifted cyclically to the left by three bytes.

– MixColumns: This is essentially a multiplication operation of the state
matrix and fixed scalar matrix:

⎛
⎜⎜⎝

C0 C4 C8 C12

C1 C5 C9 C13

C2 C6 C10 C14

C3 C7 C11 C15

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠

⎛
⎜⎜⎝

B0 B4 B8 B12

B5 B9 B13 B1

B10 B14 B2 B6

B15 B3 B7 B11

⎞
⎟⎟⎠

– AddRoundKey: Key addition is very simple, it refers to performing bitwise
XOR of state matrix Ci with the current round key. All round keys are gen-
erated in advance by the key schedule, and each round key is also 16 bytes
(128 bits).

Notice that there is one more AddRoundKey operation before the first round
starts. And in the last round, no MixColumns operation is performed.

4 Homomorphic Evaluation of AES

In the TFHE scheme, gate bootstrapping or functional bootstrapping imple-
ments the computation of the accumulator through the successive CMUX gates,
that is to say, assuming that the dimension of TLWE ciphertext is n, then the
computation cost of a gate bootstrapping is about n times that of external mul-
tiplication. Thus, we consider using a cheaper CMUX as basic gate, constructed
by the external multiplication of TRGSW and TRLWE ciphertext, to evaluate
the S-box. However, note that the output ciphertext form of external multipli-
cation is TRLWE. When we move to the next round of evaluation of AES, we
need TRGSW ciphertext as the selector ciphertext. Thus, in order to address
this incompatibility, the circuit bootstrapping must be used to convert TLWE
ciphertext to TRGSW ciphertext to maintain the operation of the whole circuit.
Meanwhile, in order to efficiently evaluate the XOR operation in AddRoundKey,
we choose to encode the message {0,1} to {0,1/2} over Torus, which makes XOR
to be simple addition.

In [12], the authors give three packing techniques to optimize lookup table:
horizontal packing, vertical packing and mixed packing. Next, in Sect. 4.1, we
analyze the cost of their application to the S-box. Circuit bootstrapping, as a
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bridge for ciphertext conversion, would be the bottleneck of the whole computa-
tion. We combine the recently proposed PBSmanyLUT technique [13] to reduce
the internal computational cost in Sect. 4.2. Our full description of the AES
evaluation is shown in Sect. 4.3.

4.1 Discussion on S-Box Lookup Table

For an 8-to-8-bit S-box lookup table, its output table size is 256×8. Specifically,
in the parameter settings we assume the degree of the ring polynomial N =
1024 and give a customized lookup table optimization algorithm for the S-box.
Next, we analyze the effect of different packing methods on S-box evaluation
optimization. Notice that we now assume that the ciphertext form of all selector
bits is TRGSW.

– Horizontal packing: We can pack each line of the output result as a TRLWE
ciphertext, each S-box lookup table can get the lookup results at the same
time using 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 CMUX gates, located
in the first 8 coefficients of the result TRLWE ciphertext, so we can reduce
CMUX consumption by 8 times compared with no packing.

– Vertical packing: We can pack each column of the output result as a TRLWE
sample, and then use the blind rotation algorithm for each TRLWE ciphertext
to obtain the desired value, which is located at the constant term position
of each resulting TRLWE ciphertext. Each blind rotation requires 8 CMUX
gates, thus, we need 8×8 = 64 CMUX gates in total in one S-box evaluation,
decreasing by a factor of 32 CMUX consumption compared with no packing.

– Mixed packing: here 28 · 8 = 2 · N = 2048, we can combine horizontal and
vertical packing to pack all the output results into two TRLWE ciphertexts.
Firstly, we use the last one TRGSW ciphertext to pick out the target TRLWE
through one CMUX gate, and then use the remaining 7 TRGSW samples to
perform the blind rotation on the target TRLWE, the desired value would be
located in the first 8 positions of the resulting TRLWE. In this way, we only
need to use 8 CMUX gates to implement the evaluation of the S-box.

Based on the above analysis, we choose to use mixed packing to accelerate
the evaluation of the S-box further. It is noted that to be compatible with other
operations of AES, we just need to use the SampleExtract algorithm to obtain
the corresponding TLWE without any cost. And finally, we use KeySwitch algo-
rithm to switch the dimension of TLWE ciphertext. Our S-box lookup table
combined with mixed packing is shown in Algorithm 1.

4.2 Optimization of Circuit Bootstrapping

Circuit bootstrapping, as a bridge, can convert TLWE to TRGSW ciphertext,
connecting the entire leveled evaluation circuit. The authors of [12] observed that
each line of TRGSW is TRLWE ciphertext encrypting the message μ · si · 1

Bj

for 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ �. Thus the core idea of circuit bootstrapping
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Algorithm 1. LUTMixedPacking
Input: Eight TRGSW ciphertexts C0, · · · , C7

Input: Two TRLWE ciphertexts used for packing S-box d0, d1

Output: Eight TLWE ciphertexts c0, · · · , c7
1: ACC ← CMUX(C7, d1, d0)
2: for i = 0 to 6 do
3: ACC ← CMUX(Ci, X

−8·2i (mod 2N) · ACC, ACC)
4: end for
5: for i = 0 to 7 do
6: c′

i ← SampleExtract(ACC, i)
7: ci ← KeySwitch(c′

i)
8: end for
9: return c0, · · · , c7

is to reconstruct each TRLWE ciphertext in the TRGSW ciphertext using the
TLWE ciphertext, which runs about 0.137 s for a 110-bit security parameter.
Circuit bootstrapping algorithm is divided into two steps:

– The first step converts the TLWE encryption of μ into the TLWE ciphertexts
μ · 1

Bj using the � TFHE functional bootstrapping technique, which accounts
for about 70% of the total time.

– The second step is to multiply the secret key si to the TLWE ciphertext
obtained in the previous step using the (k + 1)� private key switching algo-
rithm, which accounts for 30% of the total time.

It is worth noting that since the input TLWE ciphertext is the same in the
first step, � bootstrapping operations can be optimized by multi-value boot-
strapping [8] or PBSmanyLUT technique [13]. In detail, multi-value bootstrap-
ping supports the evaluation of multiple functions on the same input using
only one blind rotation. Firstly, extract a common function v0 from all func-
tions TVFi

, then use the input ciphertext to blindly rotate test polynomial
v0, finally TVFi

/v0(with small norm coefficient) is multiplied by accumulator
ACC to obtain the result respectively. The PBSmanyLUT first uses the mod-
ulus switching to set some lowest bits of the phase to zero, and then uses just
one blind rotation to obtain all the function values, it must be noted that we
need to set the test polynomial accordingly. The resultant ciphertext produced
by PBSmanyLUT has less noise compared with multi-value bootstrapping, so
we use PBSmanyLUT to accelerate the first step of circuit bootstrapping.

Recall that our message space of TLWE is the entire Torus, however, the LUT
evaluation can only compute polynomial functions with negacyclic property due
to the fact that Xi+N ≡ −Xi mod XN + 1. We set a new test polynomial that
satisfies this property for PBSmanyLUT as follows:

P (X) =

N
2ρ·2−1∑

i=0

2ρ−1∑
j=0

(−1) · 1
2Bj

X2ρ·i+j +

N
2ρ −1∑

i= N
2ρ·2

2ρ−1∑
j=0

1
2Bj

X2ρ·i+j
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where ρ = �log2(�)	 and B is the basis of gadget. Then, the � independent
bootstrappings in circuit bootstrapping could be replaced by:

{
{cti}i∈[1,�] ← PBSmanyLUT

(
ctin,BSK, P (x) · XN/2ρ+1

, 1, 0, ρ
)

∀i ∈ [1, �], cti +
(
0, 1

2Bi

)

For more details on PBSmanyLUT please refer to Algorithm 6 of [13], and
the proof is the same as Lemma 4 of [13]. Our circuit bootstrapping combined
with the PBSmanyLUT technique is presented in Algorithm 2.

Algorithm 2. CBwithPBSmanyLUT
Input: a test polynomial P (X)
Input: a level 0 TLWE ciphertext: ctin

Input: a bootstrapping key from level 0 to level 2: BSK
Input: k + 1 private keyswitch keys from level 2 to level 1: KS
Output: a level 1 TRGSW ciphertext C

1: {cti}i∈[1,�] ← PBSmanyLUT
(
ctin, BSK, P (X) · XN/2ρ+1

, 1, 0, ρ
)

2: for w = 1 to � do
3: ct′

w = ctw +
(
0, 1

2Bw

)
4: for u = 1 to k + 1 do
5: c(u,w) = Private KeySwitch(KS, ct′

w)
6: end for
7: end for
8: return C = (cu,w)1≤u≤k+1,1≤w≤�

4.3 Full Description of the AES Evaluation

In the above two subsections, we have presented an efficient evaluation of Sub-
Bytes and an optimization regarding circuit bootstrapping. It is obvious that the
ShiftRows operation is free and AddRoundKey is also almost free due to message
encoding. The additional operation that needs to be handled is MixColumns.
The MixColumns operation is a 4×4 matrix multiplication with constant terms
{x+1, x, 1} modulo (x8+x4+x3+x+1). Interestingly, this modular multiplication
can be computed by simple XOR and shift operation [21], as shown below. Here
we represent a byte from the lowest bit to the highest bit as (b0b1b2b3b4b5b6b7).

b0b1b2b3b4b5b6b7
×1−−→ b0b1b2b3b4b5b6b7

b0b1b2b3b4b5b6b7
×x−−→ b7b0b1b2b3b4b5b6 ⊕ 0b70b7b7000

b0b1b2b3b4b5b6b7
×(x+1)−−−−−→ b0b1b2b3b4b5b6b7 ⊕ b7b0b1b2b3b4b5b6 ⊕ 0b70b7b7000

In this way, we can convert all the multiplication operations in MixColumns
into bitwise XOR operation and simple shift, which is exactly what we want.
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Thus, ShiftRows, AddRoundKey and MixColumns can be performed at Level 0,
while SubBytes would be performed in Level 1. Our evaluation framework1 is
clearly presented in Fig. 1, the details of the corresponding algorithm are given
in Appendix A.

Fig. 1. Fregata: the homomorphic evaluation framework of AES performed at different
levels.

Noise Analysis. The circuit bootstrapping algorithm crosses 3 levels, each
involving different ciphertext types with their own parameter settings and associ-
ated keys. The main difference between the three encryption levels is the amount
of noise supported, the higher the level, the lower the noise. Level 0 corresponds
to small parameters, large noise, instantaneous computation, but only very lim-
ited linear operations can be tolerated.

Indeed, the first step of the circuit bootstrapping, that is, the PBSmanyLUT,
plays the role of refreshing noise throughout the evaluation process. Now we
analyze the internal noise variance of the ciphertext from the PBSmanyLUT to
the end in each round.

The homomorphic evaluation of S-box in Fig. 1 contains five homomorphic
operations: PBSmanyLUT, Private KeySwitch, Sbox lookup table, SampleEx-
tract and Public KeySwitch, where the SampleExtract operation does not intro-
duce any noise and Public KeySwitch is utilized to adjust the parameters from
(N,S) to (n, s). Thus, we can calculate the error after Public KeySwitch on Level
0 by analyzing the error variance of each step separately. Firstly, according to
Theorem 4 in [13], we have

1 We called our framework “Fregata”, which cleverly reads like “Free Gate”, empha-
sizing the fact that it eliminates the cost for XOR gate due to message encoding. Its
speed reflects our efficient homomorphic evaluation of S-box.
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V ar(PBSmanyLUT ) ≤ n�̄(k + 1)N̄
B̄g

2 + 2
12

V ar(BSK)

+ n
q2 − B̄g

2�̄

24B̄g
2�̄

(1 +
kN̄

2
) +

nkN̄

32
+

n

16
(1 − kN̄

2
)2

After performing Private KeySwitch, by Theorem 2.7 in [12], we have

V ar(TRGSW ) ≤ V ar(PBSmanyLUT ) + t̄N̄ B̄ks
2
V ar(privateKS)

In order to evaluate the Sbox, we use 8 CMUX gates to lookup table and then
perform SampleExtract and KeySwitch in Algorithm 1, we have

V ar(TLWELevel0) ≤ 8 · ((k + 1)�Nβ2V ar(TRGSW ))

+ V ar(TRLWESBox) + ntNB2
ksV ar(KS)

where V ar(BSK), V ar(privateKS), V ar(TRLWESbox) and V ar(KS) can be
found in [12].

5 Scalability: Homomorphic Evaluation of SM4

In this section, we will show that our evaluation framework can be also extended
to the homomorphic evaluation of other ciphers, such as symmetric encryption
scheme SM4. SM4 is a Chinese block cipher standard used for protecting wire-
less networks and was released publicly in 2006 [17]. Now it has become the
international standard of ISO/IEC, which effectively promotes the improvement
of ISO/IEC symmetric cryptographic algorithms. The structure of SM4 is sim-
ilar to the AES algorithm, but it uses generalized Feistel structure. And its
encryption computation requires up to 32 rounds, where each round contains
four parts: key addition, S-box, linear transformation and XOR operation as
follows. Let the plaintext inputs be (X0,X1,X2,X3) ∈ (Z32

2 )4 and round keys
be rki ∈ Z

32
2 (i = 0, 1, 2, · · · , 31), which are derived from the initial key through

the key expansion.

– Key addition: the 32-bit output word A = (a0, a1, a2, a3) ∈ (Z8
2)

4 = (Xi+1 ⊕
Xi+2 ⊕ Xi+3 ⊕ rki);

– Non-linear substitution(S-box) τ : the 32-bit output word B = (b0, b1, b2, b3) ∈
(Z8

2)
4 is derived by (S(a0), S(a1), S(a2), S(a3));

– Linear transformation: the 32-bit output word C = L(B) = B ⊕ (B ≪32

2) ⊕ (B ≪32 10) ⊕ (B ≪32 18) ⊕ (B ≪32 24);
– XOR operation: Xi+4 = C ⊕ Xi.

After 32 rounds the final encryption result is (X35,X34,X33,X32). Xue [40] pre-
sented the homomorphic evaluation of SM4 based on the BGV scheme using
Gentry’s method [26]. However, since the number of rounds in SM4 is more than
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three times that of AES, the evaluation of SM4 must use large encryption param-
eters to match the multiplicative depth, resulting extremely long latency. To be
specific, it takes up to 6 h and 1.5 h in leveled and bootstrapped implementation
version.

Next, we give an efficient evaluation of SM4 based on our evaluation frame-
work. Notice that in the homomorphic SM4 evaluation, the results of the previous
few rounds are superimposed on the XOR operation and key addition of next
round. To be precise, during the final XOR operation of each round, the noise
of ciphertext C would be superimposed on the noise of ciphertext Xi from the
previous round in the encrypted domain. As a result, the noise magnitude of the
ciphertext generated by the final XOR operation increases with each round of
evaluation. Moreover, three noisy TLWE ciphertexts and a fresh TLWE cipher-
text of round key will participate in key addition of the next round. Therefore,
intuitively, after several rounds of evaluation, the TLWE ciphertexts generated
by the key addition operation will be extremely noisy, leading to decryption
failure.

It is a bit tricky to actually determine at which round the decryption would
fail. We experimentally verify that the TLWE ciphertext generated by key addi-
tion after eight rounds of evaluation will fail to decrypt with a high probability
due to excessive noise. Therefore, we fix this issue by introducing the identity
bootstrapping (more details about identity bootstrapping algorithm, please see
Algorithm 3 of [11]) after each round of evaluation. In this way, we can avoid
the problem of excessive noise due to key addition.

Finally, we redesign the homomorphic evaluation flow of SM4 by introduc-
ing identity bootstrapping on level 0, all homomorphic operations performed at
different levels are presented in Fig. 2.

Fig. 2. Diagram of the homomorphic evaluation of SM4 performed at different levels.
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6 Implementation and Performance Results

In this section, we implement our proposed framwork to test the accuracy and
efficiency of evaluating AES and SM4 based on the TFHE scheme. All the exper-
iments were conducted on a single core of 12th Gen Intel(R) Core(TM) i5-12500
× 12 with 15.3 GB RAM, running the Ubuntu 20.04 operating system.

6.1 Parameters Selection.

Note that the original implementation of circuit bootstrapping2 is not compat-
ible with the TFHE library3. TFHEpp [34] is full Scracthed pure C++ version
of TFHE, which supports circuit bootstrapping and private PBSmanyLUT [13].
Therefore, we implement the homomorphic evaluation of SM4 and AES in the
TFHEpp library. Circuit bootstrapping crosses 3 levels, each involving different
ciphertext types with their own parameter settings and associated keys. Specif-
ically, the relevant parameters of the three levels are shown in Table 1. All of
our parameters are estimated to be above λ = 128 bit security according to the
latest iteration of the LWE estimator4.

Table 1. Parameters for levels 0, 1 and 2 in circuit bootstrapping mode

Level dimension of
the TLWE

noise stdev decomposition
basis

decomposition
length

0 n = 635 α = 2−15 – –

1 N = 1024 α = 2−25 Bg = 26 � = 3

2 N̄ = 2048 ᾱ = 2−44 B̄g = 29 �̄ = 4

1 → 0 – – Bks = 22 t = 7

2 → 1 – – B̄ks = 23 t̄ = 10

6.2 Performance and Analysis

Our implementation focuses on testing the latency time of the evaluation of a
single block. In order to demonstrate the efficiency of our evaluation method as
much as possible, we also evaluate the AES based on trivial gate bootstrapping
mode, where all computational units of AES are replaced by bootsXOR and
bootsMUX gates in TFHE. Meanwhile, for SM4, since the numbers of shift
bits are exactly a multiple of 2 in the linear transformation, we choose to use
two-bit wise encryption and provide efficient implementation using functional

2 https://github.com/tfhe/experimental-tfhe.
3 https://github.com/tfhe/tfhe.
4 https://bitbucket.org/malb/lwe-estimator.

https://github.com/tfhe/experimental-tfhe
https://github.com/tfhe/tfhe
https://bitbucket.org/malb/lwe-estimator
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bootstrapping. If we adopt larger-bit (> 2) wise encryption, we would need to
extract the ciphertext of the corresponding bit from the ciphertext to perform the
shift operation of linear transformation, which is an extremely costly operation
[32]. The experiments are run 1000 times on a single core of our machine, and
we take the average time as running latency time. The specific implementation
results are presented in Table 2.

Table 2. Our execution times compared to the state of the art using just one thread
(The data with ∗ refers to 16 threads).

scheme mode AES SM4

BGV leveled Gentry et al. [26] 4 mins Xue [40] 6 h

bootstrapped [26] 18 mins [40] 1.58 h

TFHE gate bootstrapping 1.43 h 1.68 h

functional bootstrapping Stracovsky et al. [38] 4.2 mins∗

Trama et al. [39] 4.5 mins 6.1 mins

circuit bootstrapping 86 s 78 s

It can be seen that our novel evaluation based on circuit bootstrapping mode
achieves the best latency performance. Specifically, the homomorphic AES eval-
uation based on circuit bootstrapping mode takes 86 s, which is about 3 times
faster than the state-of-the-art [39]. The circuit bootstrapping mode takes 78 s to
perform SM4 with one CPU thread, which is up to 73× reduction in latency com-
pared with Xue [40] and 4.7 × reduction compared with functional bootstrapping
mode. Considering that our implementation uses only one CPU thread, using the
OpenMP library can offer more speedups for our implementation since circuit
bootstrappings each round are performed in parallel in our evaluation frame-
work. For example, we expect to achieve an evaluation of AES in about 9 s if we
use the “i7-server” as described in Trama et al. [39].

Although the number of encryption rounds of AES is only 10, less than SM4,
it requires 16×10 = 160 S-box LUTs. The number of rounds of SM4 is up to 32,
with only 4 paralleled LUTs each round, requiring a total of 32×4 = 128 LUTs.
Moreover, the main consumption time of our evaluation mode comes from circuit
bootstrapping before the S-box, resulting in the homomorphic evaluation of AES
being slower than SM4. Table 3 and Table 4 detail the time portion of each part
of the AES and SM4 evaluation based on circuit bootstrapping, respectively.
Notice that the circuit bootstrapping becomes the most expensive part of the
computation, while the S-box lookup table takes about only 16 ms, which is
almost negligible.



Fregata: Faster Homomorphic Evaluation of AES via TFHE 407

Table 3. The time spent for each core operation of AES evaluation and their percentage
relative to the total time in circuit bootstrapping mode.

Operation Circuit Boot SubBytes Identity KS Total time

Time (Ratio) 84.48 s (98.31%) 18.48 ms (0.02%) 1.42 s (1.65%) 86 s

Table 4. The time spent for each core operation of SM4 evaluation and their percentage
relative to the total time in circuit bootstrapping mode. Identity KS denotes KeySwitch
after SampleExtract and Identity Boot represents Identity bootstrapping.

Operation Circuit Boot S-box LUT Identity KS Identity Boot Total time

Time (Ratio) 68.11 s (87.66%) 15.59 ms (0.02%) 1.43 s (1.83%) 8.1 s (10.41%) 78 s

7 Conclusion

In this paper, we propose a novel evaluation framework to achieve faster AES
evaluation based on the circuit bootstrapping of TFHE. We utilize techniques
such as hybrid packing and optimized circuit bootstrapping to achieve the opti-
mal latency of current AES homomorphic evaluation, which is about 3 times
faster than the state-of-the-art implementation. Meanwhile, our framework can
be extended to other Feistel structured ciphers, for example, we achieve effi-
cient evaluation of the block cipher SM4, which is 73× faster than the current
best publicly available implementation. Although TFHE-based evaluation is far
inferior to BGV-based packing method in terms of amortization rate, our frame-
work combined with multi-thread would hopefully approach the amortization
time further.

Improving the efficiency of the circuit bootstrapping would be our next
research direction, especially the optimization of private KeySwitching. We hope
that our work could provide a guide for designing new FHE-friendly symmetric
encryption algorithms.

Acknowledgement. We thank the anonymous ISC2023 reviewers for their helpful
comments. This work was supported by the Huawei Technologies Co., Ltd. and CAS
Project for Young Scientists in Basic Research Grant No. YSBR-035.
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Algorithm 3. Homomorphic evaluation of AES via circuit bootstrapping
Input: two TRLWE ciphertexts used for packing AES S-box: d0, d1

Input: the TLWE ciphertext of the (16 ∗ i + j)-th input bit Cinput tlwe
i,j , where 0 ≤

i ≤ 15, 0 ≤ j ≤ 7;
Input: the TLWE ciphertext of the (16 ∗ i + j)-th bit of the r-th round key Crk tlwe

r,i,j ,
where 0 ≤ r ≤ 10, 0 ≤ i ≤ 15, 0 ≤ j ≤ 7

Output: Coutput tlwe: double-encrypted ciphertext EncHE
(
EncAES (m, rk)

)
1: // AddRoundKey
2: Cinput tlwe = Cinput tlwe + Crk tlwe

0

3: for r = 1 to 9 do
4: // Circuit bootstrapping and SubBytes
5: for i = 0 to 15 do
6: for j = 0 to 7 do
7: Ctrgsw

i,j = CBwithPBSmanyLUT (Cinput tlwe
i,j )

8: end for
9: Cinput tlwe

i = LUTMixedPacking(Ctrgsw
i , d0, d1)

10: end for
11: // ShiftRows
12: Cinput tlwe = CipherShiftRows(Cinput tlwe)
13: // Mixcolums
14: Cinput tlwe = CipherMixcolums(Cinput tlwe)
15: // AddRoundKey
16: Cinput tlwe = Cinput tlwe + Crk tlwe

r

17: end for
18: // Circuit bootstrapping and SubBytes
19: for i = 0 to 15 do
20: for j = 0 to 7 do
21: Ctrgsw

i,j = CBwithPBSmanyLUT (Cinput tlwe
i,j )

22: end for
23: Coutput tlwe

i = LUTMixedPacking(Ctrgsw
i , d0, d1)

24: end for
25: // ShiftRows
26: Coutput tlwe = CipherShiftRows(Coutput tlwe)
27: // AddRoundKey
28: Coutput tlwe = Coutput tlwe + Crk tlwe

10

29: return Coutput tlwe

Algorithm 4. CipherShiftsRows
Input: Cinput tlwe

i,j , 0 ≤ i ≤ 15, 0 ≤ j ≤ 7

Output: Coutput tlwe
i,j , 0 ≤ i ≤ 15, 0 ≤ j ≤ 7

1: for i = 0 to 15 do
2: Coutput tlwe

i = Cinput tlwe
5i (mod 16)

3: end for
4: return Coutput tlwe
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Algorithm 5. CipherMixColums
Input: Cinput tlwe

i,j , 0 ≤ i ≤ 15, 0 ≤ j ≤ 7

Output: Coutput tlwe
i,j , 0 ≤ i ≤ 15, 0 ≤ j ≤ 7

1: for i = 0 to 3 do
2: Tmp = Cinput tlwe

4i + Cinput tlwe
4i+1 + Cinput tlwe

4i+2 + Cinput tlwe
4i+3

3: Tm = Cinput tlwe
4i + Cinput tlwe

4i+1

4: Tm = CipherMul2(Tm)
5: Coutput tlwe

4i = Cinput tlwe
4i + Tm + Tmp

6: Tm = Cinput tlwe
4i+1 + Cinput tlwe

4i+2

7: Tm = CipherMul2(Tm)
8: Coutput tlwe

4i+1 = Cinput tlwe
4i+1 + Tm + Tmp

9: Tm = Cinput tlwe
4i+2 + Cinput tlwe

4i+3

10: Tm = CipherMul2(Tm)
11: Coutput tlwe

4i+2 = Cinput tlwe
4i+2 + Tm + Tmp

12: Tm = Cinput tlwe
4i+3 + Cinput tlwe

4i

13: Tm = CipherMul2(Tm)
14: Coutput tlwe

4i+3 = Cinput tlwe
4i+3 + Tm + Tmp

15: end for
16: return Coutput tlwe

Algorithm 6. CipherMul2
Input: Cinput tlwe

i , 0 ≤ i ≤ 7
Output: Coutput tlwe

i , 0 ≤ i ≤ 7
1: Coutput tlwe

0 = Cinput tlwe
7

2: Coutput tlwe
1 = Cinput tlwe

0 + Cinput tlwe
7

3: Coutput tlwe
2 = Cinput tlwe

1

4: Coutput tlwe
3 = Cinput tlwe

2 + Cinput tlwe
7

5: Coutput tlwe
4 = Cinput tlwe

3 + Cinput tlwe
7

6: Coutput tlwe
5 = Cinput tlwe

4

7: Coutput tlwe
6 = Cinput tlwe

5

8: Coutput tlwe
7 = Cinput tlwe

6

9: return Coutput tlwe
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Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 208–220. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44774-1 17

23. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

24. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144

25. Gentry, C.: A fully homomorphic encryption scheme (2009)
26. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:

Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

27. Ha, J., et al.: Masta: an HE-friendly cipher using modular arithmetic. IEEE Access
8, 194741–194751 (2020)

28. Ha, J., Kim, S., Lee, B., Lee, J., Son, M.: Rubato: noisy ciphers for approxi-
mate homomorphic encryption. In: Dunkelman, O., Dziembowski, S. (eds.) EURO-
CRYPT 2022. LNCS, vol. 13275, pp. 581–610. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-06944-4 20

29. Hebborn, P., Leander, G.: Dasta - alternative linear layer for rasta. IACR Trans.
Symmetric Cryptol. 2020(3), 46–86 (2020)

30. Lee, Y., et al.: Efficient FHEW bootstrapping with small evaluation keys, and
applications to threshold homomorphic encryption. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023. LNCS, vol. 14006, pp. 227–256. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30620-4 8

31. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06734-6 20

32. Liu, Z., Micciancio, D., Polyakov, Y.: Large-precision homomorphic sign evalua-
tion using FHEW/TFHE bootstrapping. IACR Cryptology ePrint Archive, p. 1337
(2021). https://eprint.iacr.org/2021/1337

33. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-319-96884-1_22
https://doi.org/10.46586/tches.v2023.i3.30-73
https://doi.org/10.46586/tches.v2023.i3.30-73
https://doi.org/10.1007/s10623-015-0095-1
https://doi.org/10.1007/s10623-015-0095-1
https://doi.org/10.1007/978-3-662-44774-1_17
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-031-06944-4_20
https://doi.org/10.1007/978-3-031-06944-4_20
https://doi.org/10.1007/978-3-031-30620-4_8
https://doi.org/10.1007/978-3-319-06734-6_20
https://doi.org/10.1007/978-3-319-06734-6_20
https://eprint.iacr.org/2021/1337
https://doi.org/10.1007/978-3-642-13190-5_1


412 B. Wei et al.

34. Matsuoka, K.: TFHEpp: pure C++ implementation of TFHE cryptosystem (2020).
https://github.com/virtualsecureplatform/TFHEpp
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Abstract. Transport layer security (TLS) is by far the most important
protocol on the Internet for establishing secure session keys and provid-
ing authentication and secure communications. In various environments,
the TLS pre-shared key cipher suite (TLS-PSK) is an attractive option
for remote authentication, for example, between servers and constrained
clients like smart cards, in mobile phone authentication, EMV-based
payment, or authentication via electronic ID cards. However, without
(EC)DHE, plain TLS-PSK does not have essential security features such
as forward secrecy due to its fully symmetric keys and key schedule. In
this work, we propose highly efficient methods for enhancing the secu-
rity of plain TLS-PSK. First, we extend the key evolving scheme (KES)
notion, which enables the construction of pure symmetric key based
AKE protocols with perfect forward secrecy (PFS), and our construc-
tion of KES does not depend on any asymmetric cryptographic prim-
itives. Moreover, we design mechanisms to re-synchronize PSKs of two
communication parties with logarithmic complexity, whereas the existing
protocols only tolerate ±1 de-synchronization, or have linear complexity
for re-synchronization. In addition, we show that our protocol is highly
efficient, both asymptotically and practically, by comparing it with exist-
ing TLS-PSK in performance with identical security parameters. Finally,
we show that our generic KES construction can be perfectly integrated
into all (fully symmetric) TLS-PSK with minimum modification of the
original protocol itself.

Keywords: authenticated key exchange · pre-shared key · transport
layer security · formal security model · perfect forward secrecy

1 Introduction

TLS is undoubtedly the most prominent key exchange protocol in use today.
While the security of most popular applications is built upon the Diffie-Hellman
or RSA-based cipher suites of TLS, several important applications use less com-
mon cipher suites [17,20,21]. One such application is remote authentication of
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https://doi.org/10.1007/978-3-031-49187-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49187-0_21&domain=pdf
https://doi.org/10.1007/978-3-031-49187-0_21


416 L. Duan et al.

resource-restricted clients like smart cards. In these scenarios, efficient computa-
tion and low power consumption are usually the most demanded system features.
Instead of using the asymmetric-key-based cipher suites of TLS, applications can
employ a variant that assumes pre-shared symmetric keys (PSK) between client
and server. The corresponding cipher suite family is termed TLS with pre-shared
keys (TLS-PSK) and is available in many TLS implementations, e.g., Openssl,
BouncyCastle, CyaSSL, Cryptlib [7,10,15,16]. However, due to its fully symmet-
ric keys and key schedule, TLS-PSK does not have essential security features such
as forward secrecy [14]. If one long-term PSK is compromised, the adversary can
obtain all session keys of the past sessions and destroy the security of previously
encrypted messages. Therefore, an enhanced version of TLS-PSK with perfect
forward secrecy (PFS) is, both in theory and in practice, significant and urgent.

Forward secrecy (FS) is a de facto security requirement for authenticated key
exchange (AKE) protocols. A protocol with FS means that even if a participant’s
long term secrets are compromised after completing an AKE session, the session
keys established previously remain secure. Two typical paradigms to achieve FS
are using asymmetric cryptography (e.g., FS for TLS 1.3 from strong RSA and
GGM assumptions by Aviram et al. [1]) and using key evolving techniques.

Key Evolving Technique for Symmetric-Key AKE. The notion of forward
secrecy in symmetric cryptography was first formalized by Bellare and Yee in
2003 [4]. The authors also constructed forward secure encryption and message
authentication code from pseudorandom bit generators with FS (FSPRG).

A symmetric key evolving scheme for AKE appeared in the SASI protocol in
2007 [6], and the name key evolving scheme (KES) was given by Dousti et al. in
[9] in 2015. Although the KES notion was not well formalized then, the intuition
is similar to its asymmetric peer. A new key Ki is derived from the previous
Ki−1 as Ki = F (Ki−1), where F(·) can be a cryptographic hash function, a
pseudorandom function (PRF) and other one-way functions. F(·) can also take in
auxiliary input, such as identifiers or key versions. Later, various symmetric AKE
schemes were proposed from key evolving schemes [2,9]. Boyd et al. proposed
a symmetric key AKE based on key linear evolution and puncturable PRF in
2021 [5] with synchronization robustness. However, these protocols have to be
decomposed carefully before integrating into TLS-PSK.

Distinction from FSPRG and KLE Security. In FSPRG security [4] A gets
exactly K1,K2,K3, · · · one by one before sending a flag to get the challenged state
sti. The most notable difference in our new KES security notion is that, as shown
in GameRealKES and GameRandKES (see Fig. 1), an adversary A does not have to obtain
new keys in a fixed order or in a step length of one. KES security game allows A
to jump arbitrarily ahead and get a Kv by querying the challenger with a value
v, as long as i < v ≤ Tmax.

The key linear evolution (KLE) formalized by Boyd et al. in 2021 [5] is
similar to FSPRG, where a “key derivation key” (KDK) works identically as a
state in FSPRG. In the KLE security game in [5], A selects in advance of any
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initialization an index �, and outputs a guess bit after obtaining all keys {Ki}�
i=0

and the KDK st�+1. In this paper we do not require that the challenger knows
an � in advance, or keys that are always generated in canonical order.

The notion of non-linear evolution, especially its security, was not formalized
in [5] but implemented with puncturable PRF. Thus, our KES notion captures
KES’s functional and security requirement more generically.

1.1 Our Contribution and Organization of the Paper

To meet the challenges of enhancing symmetric key based AKE (SAKE) such as
TLS-PSK with PFS, we make the following contribution in this paper.

– We propose a more generic notions of a key evolving scheme (KES) that
captures the essential properties needed for forward secrecy.

– We design fast mechanisms to update LTK to any given version, which enables
two parties to re-synchronize keys with logarithmic complexity, whereas the
existing protocols either only tolerate ±1 de-synchronization, or have linear
complexity for re-synchronization.

– Finally, we integrate KES into TLS-PSK. We show that the resulting TLS-
PSK protocols are highly efficient in practice. Compared with other existing
solutions, our proposals are more modular, flexible, efficient, and more com-
patible with TLS-PSK.

The notations, the KES notion and the concrete construction of KES are pre-
sented in Sects. 2 and 3. The security model for symmetric key AKE is presented
in Sect. 4. The extended TLS-PSK protocols are presented in Sect. 5 and the TLS
integration is evaluated in Sect. 6.

2 Notation and Preliminaries

2.1 Notation

We let n ∈ N denote the security parameter and 1n the string that consists of n
ones. Let [n] = {1, . . . , n} ⊂ N be the set of integers {1, 2, · · · , n}. If S is a set,
a

$← S denotes the action of sampling a uniformly random element from S. If A()
is an algorithm, m

$← AO(·)() denotes that A (probabilistically) outputs m with
the help of another algorithm O(·). X||Y denote the operation concatenating
two binary strings X and Y . We use Pr[A : B] to denote the probability that B
happens if action A is taken. |E| denotes the number of objects in set E.

2.2 Cryptographic Primitives

To construct KES and TLS extension, we use standard cryptographic primi-
tives such as message authentication code (MAC, MAC = (MAC.Gen, MAC.Tag,
MAC.Vfy)), collision resistant hash function (H()), pseudorandom function
(PRF, F = (FKGen,PRF)) and authenticated symmetric key encryption with



418 L. Duan et al.

associated data (AEAD, Π = (KGen,ENC,DEC)). The syntax of these schemes
can be found in Appendix B.

Due to the page limitation, we refer the reader to [19] and [13] for the semantic
security definition of all the cryptographic primitives above.

3 Symmetric Key Evolving Scheme

Two critical components for a pure symmetric key based AKE protocol are the
key evolving scheme (KES) and the session key agreement protocol. To discuss
a KES formally, we need its syntax first.

Definition 1 (Key evolving scheme, KES). A key evolving scheme is a pair
of algorithm ΠKES = (Init,KES) defined as follows.

– Init(1n) → st0. The non-deterministic algorithm Init(1n) takes the security
parameter 1n as input and outputs the initial state st0 that also defines the
key space.

– KES(sti, v) → (Kv, stv) The deterministic algorithm KES() takes a state and
a target phase number i < v ≤ Tmax as input, and it outputs the new key Kv

and new state stv, where Tmax is the maximal possible phases.

Then, we define the most critical property of a KES called key independence.
The security game gives the adversary a real-or-random challenge, as shown in
Fig. 1, where transKey is the set of previously generated keys in each game.

Definition 2 (Key independence). We say that a key evolving scheme Π
has (t, εKES) key independence if it holds for any adversary A with running time
t′ ≤ t that its advantage

AdvΠ
A,k-ind :=

∣
∣
∣ Pr[GameRealKES(A) → 0] − Pr[GameRandKES (A) → 0]

∣
∣
∣ ≤ εKES.

3.1 Key Eolving Scheme Construction

We organize LTKs in a (virtual) binary tree structure T , where all LTKs corre-
spond to the leaves of T . Each node n of T is labelled in the following way.

– If n is the root node, then n has the label “1”;
– If n is the left child of a node with label L, then n has the label L|| “0”;
– If n is the right child of a node with label L, then n has the label L|| “1”,

where “1” and “0” are two distinct encoded characters. We also associate a key
to each node using DERIVE() shown in Fig. 2, where KL is the key for the left
child and KR for the right one. The key associated with the root node is gener-
ated uniformly at random, while all other keys are derived by calling DERIVE()
recursively. It is easy to observe that a label also reflects the “derivable” rela-
tion. Namely, if node n has label Ln, node m has label Lm and Lm is a prefix
of Ln, then the key associated with n can be derived with the key associated
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GameReal
KES(A)

1 : st0 ← Init(1n);

2 : i ← 0; flag ← false; transKey ← ∅;
3 : while i < Tmax ∧ flag = false

4 : (v, d) ← A(transKey, 1n);

5 : if i < v ≤ Tmax

6 : (Kv, stv) ← KES(sti, v);

7 : i ← v; sti ← stv;

8 : transKey ← transKey ∪ {Kv};
9 : endif

10 : if d = true

11 : flag ← true;

12 : endif

13 : endwhile

14 : b ∈ {0, 1} $← A(sti, transKey)

15 : return b

GameRand
KES (A)

1 : st0 ← Init(1n);

2 : i ← 0; flag ← false; transKey ← ∅;
3 : while i < Tmax ∧ flag = false

4 : (v, d) ← A(transKey, 1n);

5 : if i < v ≤ Tmax

6 : (Kv, stv) ← KES(sti, v);Kv
$← K;

7 : i ← v; sti ← stv;

8 : transKey ← transKey ∪ {Kv};
9 : endif

10 : if d = true

11 : flag ← true;

12 : endif

13 : endwhile

14 : b ∈ {0, 1} $← A(sti, transKey)

15 : return b

Fig. 1. The security games GameReal
KES and GameRand

KES for KES, with difference marked
in gray in line 6. The variable d (line 4 in both games) is used by A to terminate the
key derivation loop before reaching Tmax.

with m via DERIVE(). We do not distinguish i and label Li for simplicity in the
following description.

An LTK evolving can be triggered by a critical event or time change. Here
we do not distinguish these two options and use the term phase and an index to
distinguish the keys.

Working LTK, States and Basic KES. In each phase i, a key user maintains
the working LTK Ki and an internal state sti. Each sti contains a set of keys.
As shown in Fig. 2, our basic KES works as follows.

– (Initialization) At phase T = 0, there is no working LTK but an initial state
st0.

– (Derive new LTK) In each phase T > 0, first search for the ancestor1 of
Ki+1 in sti. This search can easily be done by searching for the key labels
which are prefixes of i + 1. Then Ki+1 is computed from one of its ancestors.

– (Compute new state) Once Ki+1 is located, all key labels on its RIGHT
co-path2 with ancestors in sti can be determined. These keys are then derived
using DERIVE() on their ancestors recursively.

1 We consider a node itself as one of its ancestors. Hence, its label is also a prefix of
its own.

2 From here on, we use co-path to denote the right co-path.
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– (Delete old keys and clean-up) Ki must be deleted for FS. As future
LTKs are either the sibling of Ki+1 or descendants of nodes on its co-path,
other keys are unnecessary and even harmful. Therefore, the nodes on the
path from the root to Ki+1 (excluding Ki+1) must also be deleted.

– (Confirm new LTK and state) Finally, Ki+1 is set to be the working LTK
and the remaining keys are kept as sti+1.

Fig. 2. Basic tree-based KES with one-by-one, linear evolution.

We illustrate the basic KES with the example in Fig. 3. Let the number of
leaves be four. So, there can be four LTKs in the lifespan of the tree.

– In phase T = 0, the key K at the root is kept as st0.
– In phase T = 1, K1 is the new working LTK (marked in red). As the key at

the root is an ancestor of K1, the parent of K1 can be derived from K. On the
other hand, the co-path of K1 covers K2 and KR, which can also be derived
from K and kept as st1 (marked in green). The path of K1 covers its parent
and K, so these two keys are deleted. The deleted keys are marked as dashed
circles.

– In phase T = 2, K2 becomes the new working LTK. As K2 is already in st1 and
KR is the sole node on K2’s co-path derivable from st1, so it is only necessary
to delete K1 and keep KR as st2.

– In phase T = 3, K3 becomes the new working LTK derived from KR. The
sibling of K3 is kept as st3. Key K2 and KR are deleted.

– In phase T = 4, the only leaf key in st3 can be used as K4.

Jumping Forward to an Arbitrary State and ΠKES. The basic KES can
be used in a canonical way to update from current state sti step by step to
arbitrary future states stv and keys, which takes steps linear in the gap v − i,
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Fig. 3. An example of basic KES execution. (Color figure online)

i.e., a time complexity of O(Tmax). This time complexity is also preserved in the
PRF-based FSPRG (Construction 2.4 in [4]) and KLE (Fig. 3 in [5]).

We present a more efficient way to reach stv and Kv as shown in ΠKES.KES()
in Fig. 4. In tree T , once the ancestor Kj of the target LTK Kv is found in sti,
it only takes a number logarithmic in Tmax of DERIVE() calls to derive the key
Kv. Moreover, the ancestor search takes O (log (log Tmax)) steps in a sorted list,
so in total it takes O(log Tmax) steps to evolve from sti to the target working
LTK Kv and stv.

Security of ΠKES. We summarize the security of ΠKES in Theorem 1.

Theorem 1 (ΠKES key independence). If PRF1() is a (t, εPRF1) secure PRF,
then ΠKES in Fig. 4 has key independence. More specifically, if the maximal phase
is Tmax, then for any A with running time t′ ≈ t

AdvΠKES

A,k-inde ≤ O((log(Tmax))) · εPRF1 , (1)

Proof. The proof proceeds in a sequence of games. We use Pr[A, Gj ] to denote
the probability that A outputs 0 in Game Gj .

Game 0. This game is the real KES oracle game, so we have

Pr[A,GameRealKES] = Pr[A, G0]

Game 1. In this game we change the PRF1() for leaf nodes, which output the
LTKs, to a random function with the same domain and range. As there are at
most O(log(Tmax)) such modifications, we have

Pr[A, G0] ≤ Pr[A, G1] + O(log(Tmax)) · εPRF1
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Fig. 4. Tree-based KES ΠKES, arbitrary jump with i < v ≤ Tmax. The term (v)n means
the first n bits of v.

On the other hand, this game is exactly GameRandKES . So we have

AdvΠKES

A,k-inde = |Pr[A, G0] − Pr[A, G1]| ≤ O(log(Tmax)) · εPRF1

which is exactly (1). �	

Extending the Lifetime of the Keys. Depending on the setting, the last
leaf can either be used as an LTK or as the root for the next tree but not both,
if forward secrecy is required. Let stτ−1 := {K} be the state corresponding to
the second right-most leaf of the tree. Let m be the number of leaves of the new
tree. Then the LTK Kτ is derived by calling one-step KES with K as the root
and log m as the depth. The example in Fig. 5 shows the operations needed in
T = 4 for deriving a new key K4.

4 The Symmetric AKE Security Model

We extend the formal security model for two-party AKE protocols introduced
by Bellare and Rogaway [3] and the symmetric key variant [5].

We use matching origin sessions instead of Guaranteed Delivery Matching
conversations [5] for defining the partnership of session oracles. We also separate
the KES states from LTKs in the Corrupt() query.
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Fig. 5. An example of tree extension. In phase 4, st3 is used as a root state for the
next tree.

4.1 Execution Environment

In the following let �, d ∈ N be positive integers. In the execution environment,
we fix a set of � honest parties {P1, . . . , P�}. Each party holds (symmetric) long
term keys with all other parties. We denote with LTKi,j the symmetric LTK used
by Pi to establish secure communication with Pj . Formally, all parties maintain
several state variables as described in Table 1.

Table 1. Internal States of Parties

Variable Description

LTKi a vector which contains an entry LTKi,j per party Pj

sti a vector of states maintained by Pi to evolve the corresponding LTKi,j

τi denotes, that LTKi was corrupted after the τi-th query of A
fi a vector denoting the freshness of all long term keys. It contains entry

fi,j ∈ {exposed, fresh} for each LTKi,j in LTKi

The variables of each party Pi will be initialized according to the following
rules: The state vector sti are chosen randomly from the root state space of
KES and the vector LTKi is computed accordingly. For all parties Pi, Pj with
i, j ∈ {1, . . . , �} and with i 
= j, and long-term keys LTKi, it holds that LTKi,j =
LTKj,i (synchronized), and LTKi,i := ∅. All entries in fi are set to fresh. τi is set
to τi := ∞, which means that all parties are initially not corrupted.

Each honest party Pi can sequentially and concurrently execute the protocol
multiple times, which is characterized by a collection of oracles {πs

i : i ∈ [�], s ∈
[d]}. An oracle πs

i behaves as party Pi carrying out a process to execute the s-th
protocol instance with some partner Pj . We assume each oracle πs

i maintains a
list of independent internal state variables as described in Table 2.

The variables of each oracle πs
i will be initialized with the following rules:

The execution-state Φs
i is set to negotiating. The variable kstsi is set to fresh.

All other variables are set to only contain the empty string ∅. At some point,
each oracle πs

i completes the execution with a state Φs
i ∈ {accept, reject}.



424 L. Duan et al.

Table 2. Internal States of Oracles

Variable Description

Φs
i denotes the execution-state Φs

i ∈ {negotiating, accept, reject}
Pidsi stores the identity of the intended communication partner

ρs
i denotes the role ρs

i ∈ {Client, Server}
sksi stores the session application key(s) sksi in SKS, the session key space.

Ts
i records the transcript of messages sent and received by oracle πs

i

kstsi denotes the freshness kstsi ∈ {exposed, fresh} of the session key

Furthermore, we will always assume (for simplicity) that sks
i = ∅ if an oracle has

not reached accept-state (yet).

Definition 1 (Correctness). We say that an AKE protocol Π is correct, if
for any two oracles πs

i , πt
j that are matching origin-sessions with Pids

i = j and
Pidt

j = i and Φs
i = accept and Φt

j = accept it always holds that sks
i = skt

j.

Adversarial Model. An adversary A may interact with {πs
i } by issuing the

following queries.

– Send(πs
i ,m): This query sends message m to oracle πs

i . The oracle will respond
with the next message m∗ (if there is any) that should be sent according to
the protocol specification and its internal states.

– RevealKey(πs
i ): Oracle πs

i responds to a RevealKey-query with the contents of
variable sks

i , the application keys. At the same time the challenger sets kstsi =
exposed. If at the time when A issues this query there exists another oracle πt

j

that forms matching origin-sessions with πs
i , then we also set ksttj = exposed

for πt
j .

– Corrupt(Pi, []): Depending on the second input parameter, oracle π1
i responds

with the long-term secrets of party Pi.
• If A queries Corrupt(Pi, [Pj ]), oracle π1

i returns the symmetric long term
key LTKi,j stored in LTKi and sets fi,j := exposed.

• If A queries Corrupt(Pi, []), oracle π1
i returns the vector LTKi and sti,

and sets fi,j := exposed for all entries fi,∗ ∈ fi.
– Test(πs

i ): This query may only be asked once throughout the security exper-
iment. If the oracle has state Ω = reject or sk = ∅, then it returns a pre-
defined failure symbol ⊥. Otherwise it flips a fair coin b, samples a random
element sk0 from session key space SKS, sets sk1 = sks

i to the real session
key, and returns skb.

4.2 Security Game

In the game, the following steps are performed: Given the security parameter κ
the challenger implements the collection of oracles {πs

i : i, j ∈ [�], s ∈ [d]} with
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respect to Π. In this process, the challenger also generates a long-term key vector
LTKi for each party Pi, i ∈ [�]. Finally, the challenger gives the adversary A all
identifiers {Pi} and all public information (if any) as input. Next the adversary
may start issuing Send, RevealKey, and Corrupt queries. At the end of the game,
the adversary queries the Test oracle, outputs a triple (i, s, b′) and terminates.

Definition 2 (Matching Origin-Sessions). Consider two parties Pi and Pj

with corresponding oracles πs
i and πt

j. πs
i and πt

j are said to be matching origin-
sessions, if Ts

i = Tt
j and Φs

i = Φt
j = accept.

Definition 3 (Correctness). We say that an AKE protocol Σ is correct, if
for any two oracles πs

i , πt
j that are matching origin-sessions with Pids

i = j and
Pidt

j = i and Φs
i = accept and Φt

j = accept it always holds that sks
i = skt

j.

Definition 4 (AKE Security). We say that an adversary (t, ε)-breaks an
AKE protocol, if A runs in time t′ ≤ t, and at least one of the following two
conditions holds:

1. When A terminates, then with probability at least ε there exists an oracle πs
i

such that
– πs

i ‘accepts’ with Pids
i = j when A issues its τ0-th query, and

– both Pi and the intended partner Pj are not corrupted throughout the
security game, and

– πs
i has internal state kstsi = fresh, and

– there is no unique oracle πt
j such that πs

i and πt
j are matching origin-

sessions.
If an oracle πs

i accepts in the above sense, then we say that πs
i accepts mali-

ciously and define A’s advantage in this case as

AdvA,AUTH = Pr[Malicious acceptance happens]

2. When A terminates and outputs a triple (i, s, b′) such that
– πs

i ‘accepts’ – with a unique oracle πt
j such that πs

i and πt
j are matching

origin sessions – when A issues its τ0-th query, and
– A did not issue a RevealKey-query to oracle πs

i nor to πt
j, i.e. kstsi = fresh,

and
– Pi is τi-corrupted and Pj is τj-corrupted,

If an adversary A outputs (i, s, b′) such that b′ = bs
i and the above conditions

are met, then we say that A answers the Test-challenge correctly. We define
A’s advantage in this case as the probability that b′ equals bs

i

AdvA,k-ind =
∣
∣
∣
∣
Pr[bs

i = b′] − 1
2

∣
∣
∣
∣
.

The advantage of A in the AKE security game is defined

AdvA,AKE = AdvA,AUTH + AdvA,k-ind

A (t, ε) breaks an AKE protocol if AdvA,AKE > ε with running time ≤ t. We
say that the AKE protocol is (t, ε)-secure, if there exists no adversary that (t, ε)-
breaks it.
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Definition 5 (Symmetric-key based AKE Security with Perfect For-
ward Secrecy). We say that a symmetric key based AKE protocol is (t, ε)-
secure with perfect forward secrecy (PFS), if it is (t, ε)-secure in the sense of
Definition 4 and τi, τj ≥ τ0.

Remark on the Security Model for TLS 1.2. Authenticated Confidential
Channel Establishment (ACCE) [12] is the first formal model to analyze a full
version of TLS 1.2 (TLS-(EC)DHE). A symmetric key ACCE model can be
derived from our AKE model by replacing the key indistinguishability (Test()-
query) with ciphertext indistinguishability (Encrypt()- and Decrypt()- queries)
in ACCE. We include the symmetric key ACCE model in the full version of this
paper, and we refer the reader to [12] for the complete description of the original
ACCE, its motivation and its connection with AKE models.

5 Forward Secrecy for TLS

5.1 New Construction for TLS-PSK 1.2 Protocol with PFS

PRF and Derivation of pms and ms. For TLS-PSK in TLS 1.2, a client or
a server computes from the pre-master secret (pms) the master secret (ms). If
the PSK is N bytes long, then the corresponding pms is the concatenation of the
2-byte representation (uint16) of the integer value N , N zero bytes, the 2-byte
representation of N once again, and finally, the PSK itself. The key derivation
function for ms is a pseudorandom function named as PRF TLS, which takes
pms, label1, rC and rS as input and is implemented with HMAC. More specifi-
cally,

pms = N ||0 · · · 0||N ||PSK.

ms = PRF TLS(pms, rC ||rS ||lable1)

From ms, all further secret values are derived as shown in Fig. 6 via the pseu-
dorandom function PRF TLS().

Fig. 6. Overview of TLS 1.2 key schedule. The labels label1, label2 are constants
specified in [8].
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Construction and Security

Set Up. The client has been provisioned with or evolved into Kv and the cor-
responding state stv. The server has been provisioned with or evolved to Kw

and the corresponding state stw, and here the key Kw is used as the current
pre-shared key PSK for TLS-PSK. The labels v and w can be different, i.e., not
necessarily synchronized. An unsynchronized state may be caused by misconfig-
uration, unstable network or attacks.

Protocol Execution. The protocol executes once the set-up is completed, as shown
in Fig. 7. The blue parts are our modifications. Let h be the header of a state-
ful length-hiding authenticated encryption scheme [12,18]. We use CryptoF()
as a short hand notation for the functions [8] that outputs finC ||CC , where
finC := PRF TLS(ms, label3||H(m1|| · · · ||m6)) and CC := StE.Enc(KClient

enc ,
len||h||finC ||ste) and ste is the internal state of the encryption scheme. The
output of CryptoF() on the server side is finS ||CS , where finS := PRF TLS(ms,
label4||H(m1|| · · · ||m8)) and CS := StE.Enc(KServer

enc , len||h||finS ||ste).

5.2 New Construction for TLS-PSK 1.3 Protocol with PFS

The important gadgets of TLS 1.3 key schedule are illustrated in Fig. 8. Given
a constant c, a secret K, two labels �0, �1 and a transcript T0, two PRFs F1 and
F2 are defined as:

F1(c,K||�0||T0) = HKDF.Extract(c,DeriveSecret(K, �0||T0)) (2)
F2(K, �0||�1||T0) = HKDF.Expand(DeriveSecret(K, �0||T0), �1). (3)

We use F1 and F2 in the description of our extension of TLS-PSK 1.3.

Protocol Extension and Security. In the original TLS PSK, the server con-
tinues if a PSK with the given identifier can be retrieved and binders can be
verified. Otherwise, the server aborts.

Here, we also use the PSK identifier to locate the right key to update. When
received, the PSK identifier is parsed as the concatenation of a tree id Tid and
a phase id. The server searches with Tid for this client’s KES tree and uses
the phase id to evolve the PSK. If the LTK can be derived correctly, i.e., the
KES tree exists and the phase is valid, then the process will continue till the
end. Otherwise, the server will abort. Therefore, the behaviour of the server is
identical to that in the original TLS-PSK, and the whole KES can be seamlessly
integrated into TLS without affecting the original TLS stack. See Fig. 9 for the
remaining details, where the blue parts are our modifications.

Security and Re-synchronization for Strong Robustness. The security
theorems of both extensions of TLS-PSK can be found in Appendix A, and
proofs can be found in the full version.
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Fig. 8. Gadgets in TLS 1.3 key schedule [11].

Fig. 9. Extended TLS (1.3)-PSK protocol: TLS13KES with PFS. The boxed parts are
our modifications. (Color figure online)

Both TLS12KES and TLS13KES have the weak robustness defined in [5]. If
we consider the case where a client has an unsynchronized state (i.e., client’s
state index is smaller than that of the server), then there are two approaches to
achieve strong robustness. The first approach is to let the server response with
its own label, adding one more round of communication. The second approach
is to let the client re-try with a label double as large. The round complexity of
the second approach is upper-bounded by O

(

log(Tmax)2
)

.
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6 Implementation and Performance Evaluation

We integrate our implementation with Bouncy Castle TLS library v1.703 with
less than 700 lines of code, without modifying the library. This demonstrates
also how simple it is to integrate our protocol in TLS.

Figure 10 shows the benchmark result of three PSK options in different envi-
ronments. For ECDHE-PSK, TLS ECDHE PSK WITH AES 128 GCM SHA256 with
Curve25519 for the ECDHE is applied and TLS PSK WITH AES 128 GCM SHA256
is used for this work and the plain PSK. We run the TLS server on a machine
with OS Ubuntu 18.04 LTS, and Intel(R) Xeon(R) CPU E5-2470 v2 @ 2.40GHz.
The TLS clients are on the same host as the server for the loopback test. For the
LAN tests, the TLS clients are on another machine but with the same settings
as the server. We use the tool Wonder Shaper4 to set the maximum upload and
download rate. For the WAN test, the clients are on a typical laptop (Windows
10, Intel Core i7-8565U @1.80 GHz) and are connected to the server via VPN
over the Internet.

In all tests, we start the TLS server before activating the TLS clients. The
results are taken as an average of 60 s of continuous measurements. As illustrated
in Fig. 10, in all settings, our work is only slightly slower than plain PSK, and
is obviously much faster than (TLS-)ECDHE-PSK. Further discussion about
deployment and implementation is in Appendix C.

Fig. 10. Speed of handshakes

3 https://www.bouncycastle.org/.
4 https://github.com/magnific0/wondershaper.

https://www.bouncycastle.org/
https://github.com/magnific0/wondershaper
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A Security Theorems for Extended TLS-PSK

Theorem 2 (Extended TLS 1.2, authenticity). It holds for the advantage
of any adversary A1 running in time t′ ≈ t trying to break the authenticity of
TLS12KES that

AdvA1,AUTH ≤ (d · l)2

|N | + (d · l)2 ·
(

εKES + 2εPRF TLS + εMAC

)

where d is the maximal number of parties, � the maximal number of sessions
each party can have, N the space of nonces, εPRF TLS the advantage against the
pseudorandom function PRF TLS for MAC key generation, εKES the advantage
against the key evolving scheme KES used for PSK update, εMAC the advantage
against the message authentication code MAC for acknowledgement messages,
and the running time of all these adversaries is bound by t.

Theorem 3 (Extended TLS 1.2, ACCE security). It holds for the advan-
tage of any adversary A2 running in time t′ ≈ t against the symmetric ACCE
protocol TLS12KES that

AdvA2,ACCE ≤AdvA1,AUTH +
(d · l)2

|N |
+ (d · l)2 · (εKES + 2εPRF TLS + 2εENC)

where the running time of all these adversaries is bound by t, εENC the advan-
tage against the encryption scheme5, and the other variables are as defined in
Theorem 2.

Theorem 4 (Extended TLS 1.3, authenticity). It holds for the advantage
of any adversary A1 running in time t′ ≈ t trying to break the authenticity of
TLS13KES that

AdvA1,AUTH ≤ (d · l)2

|N | + (d · l)2 ·
(

εKES + εHKDF.Extract + εPRF1

+ 2εPRF2 + εMAC + εENC

)

where d is the maximal number of parties, � the maximal number of sessions each
party can have, N the space of nonces, εHKDF.Extract the advantage against the
pseudorandom function HKDF.Extract(), εPRF1 the advantage against the pseudo
random function F1(), εKES the advantage against the key evolving scheme KES
used for PSK update, εPRF2 the advantage against the pseudorandom function
F2(), εMAC the advantage against the MAC scheme HMAC() εENC the advantage
against the AEAD scheme ENC for handshake messages, and the running time
of all these adversaries is bound by t.
5 The encryption scheme should be a stateful length-hiding authenticated encryption

as defined in [12].
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Theorem 5 (Extended TLS 1.3, key indistinguishability). It holds for
the advantage of any adversary A2 running in time t′ ≈ t against the key indis-
tinguishability of the symmetric AKE protocol TLS13KES that

AdvA2,KI ≤AdvA1,AUTH +
(d · l)2

|N |
+ (d · l)2 · (εKES + 2εPRF1 + 2εPRF2 + εENC)

where the running time of all these adversaries is bound by t, and the other
variables are as defined in Theorem 4.

B Cryptographic Primitives

Definition 3. (Message Authentication Code, MAC) A MAC scheme MAC =
(MAC.Gen,MAC.Tag,MAC.Vfy) consists of three algorithms MAC.Gen,MAC.Tag
and MAC.Vfy described as below.

– MAC.Gen(1n) $→ k. The non-deterministic key generation algorithm
MAC.Gen() takes the security parameter 1n as the input and outputs the secret
key k.

– MAC.Tag(k,m) $→ τ . The (non-deterministic) message tagging algorithm
MAC.Tag() takes the secret key k and a message m as the input and out-
puts the authentication tag τ .

– MAC.Vfy(k,m, τ) = b. The deterministic tag verification algorithm MAC.Vfy()
takes the MAC secret key k, a message m and a tag τ as input and outputs a
boolean value b. Value b is TRUE iff τ is a valid MAC tag on m.

Definition 4. (Collision-resistant Hash Function) A hash function H : M → D
is collision resistant if there exists a negligible function εcoll() such that for any
algorithm A with running time bounded by poly(n), it holds that

Pr
[

(m0,m1) ← A(1n,H) :
m0 
= m1

∧
H(m0) = H(m1)

]

≤ εcoll(n),

where M is the message space and D is the hash image space.

Definition 5. (Pseudorandom function, PRF) A pseudorandom function F =
(FKGen,PRF) consists of two algorithms FKGen and PRF described as below.

– F.FKGen(1n) $→ k. The non-deterministic key generation algorithm FKGen()
takes the security parameter 1n as the input and outputs the secret key k.

– F.PRF(k, x) = y. The PRF evaluation algorithm PRF() takes as the input the
secret key k and a value x in the domain and outputs an image y. We also
use shorthand notation F() or PRF() for F.PRF().

Definition 6. (authenticated symmetric key encryption scheme with associated
data, AEAD [19]) An AEAD encryption scheme Π = (KGen,ENC,DEC) consists
of three algorithms KGen, ENC and DEC described as below.



FS for Symmetric TLS-PSK 433

– Π.KGen(1n) $→ k. The non-deterministic key generation algorithm KGen()
takes the security parameter 1n as the input and outputs one encryption-
decryption key k.

– Π.ENC(k,m) $→ CT. The (non-deterministic) encryption algorithm ENC()
takes the key k and a message m as the input and outputs a ciphertext CT.

– Π.DEC(k,CT) = m′. The deterministic decryption algorithm DEC() takes the
key k, a ciphertext CT as input and outputs a plaintext m′.

C Discussion About Deployment and Implementation

Secure Storage of Key Materials and Side Channels. To ensure the functionality
of TLS-PSK proposed in this paper, KES trees must be maintained reliably
by the server. The persistent storage of KES trees can be realized with non-
volatile memory, or relying on hardware security module (HSM) with ciphertexts
databases. Depending on the concrete implementation, side channels may exist
in the software, the hardware, the time of I/O and network latency. It remains
an interesting research topic to mitigate the possible side channel attacks.

Parallel Sessions and Compatibility with Resumption and Session Ticket. As
long as the parallel handshakes can be serialized by the server and client, proto-
cols in Fig. 7 and Fig. 9 can work properly. On the other hand, the update can
also be periodic instead of session-triggered. In each period, parallel session can
use identical PSK as in the original TLS-PSK.

Besides KES, our current TLS-PSK implementation does not modify other
TLS extensions, including the resumption and session ticket. Thus, it can work
with resumption and session ticket as the original TLS-PSK does, but (EC)DHE
must be disabled in resumption if we stick to symmetric-key-based TLS-PSK.
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Abstract. Privacy-preserving authenticated key exchange (PPAKE)
protocols aim at providing both session key indistinguishability and party
identifier hiding. Parties in PPAKEs usually interact with a public key
infrastructure (PKI) or similar services for authentication, especially for
validating certificates and other identity-binding tokens during the hand-
shake. However, these essential validation messages, which have not been
captured in current models, open attack surfaces for adversaries. In this
paper, we propose a new refined infrastructure model (RI) for privacy in
the infrastructure. As the cryptographic core, we also present a novel cer-
tificate validation protocol (CVP) that can be instantiated with anony-
mous Bloom filter key encapsulation mechanisms (ANO-BFKEM). The
new CVP protects user identity in certificate validation, thus enhances
the privacy guarantee of PPAKE.

Keywords: privacy · cryptographic protocols · public key
infrastructure · formal model · privacy-preserving authenticated key
exchange

1 Introduction

Billions of users rely on the Internet in their daily lives, and protecting user
privacy, especially user identifiers, has always been a challenge for the research
community and industry. As exposing the victim’s identifier (ID) can be a step-
ping stone for more devastating attacks [4,14,19], avoiding ID leakage from the
beginning of the communication is ideal.

Various notions have been formalized for authenticated key exchange pro-
tocols (AKE) with privacy guarantees. Identity concealed key exchange [21,32]
and privacy-preserving authenticated key exchange (PPAKE) [2,25,27] are fre-
quently used for their privacy feature. On the other hand, PPAKE protocols still
rely on infrastructures for validating the participants’ certificates or ID-binding
tokens. Typical infrastructures are key generation center (KGC), key manage-
ment system (KMS), and public key infrastructure (PKI). PKI provides status
information on certificates via interactive protocols.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Athanasopoulos and B. Mennink (Eds.): ISC 2023, LNCS 14411, pp. 435–454, 2023.
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The certificate validation logic has been modeled in previous AKE and
PPAKE works with a simple operation usually called verify certificate [2,8,18,
20,27]. Theoretically, an AKE session should reach the state of reject and set its
session key to an invalid value ⊥, when the certificate status response indicates
invalidity. In practice, any participants should terminate the handshake immedi-
ately upon seeing an invalid certificate. For instance, in Transport Layer Security
(TLS) [15], a client should terminate its connection with the server, if the server’s
certificate is in the certificate revocation list (CRL) [9] or the response of the
Online Certificate Status Protocol (OCSP) [16] is invalid or unknown.

1.1 Certificate Validation Tells ID

However, this oversimplification of certificate validation in AKE/PPAKE models
leaves chances for adversaries who look for the ID, as the validation responses
are required to be non-malleable but not necessarily confidential in the ideal
world [7] in theory. We show a concrete attack against ID privacy here. The
messages sent to and received from the certification authority (CA) during the
TLS handshake are marked red in Fig. 1.

ServerClient

Validate server cert.

ServerKeyExchange

ClientHello

ServerHello

Server Cert.

Client Cert.
Validate client cert.

ClientKeyExchange

Finished

Finished

TLS

Certification Authority (CA)

Fig. 1. Certificate status queries in TLS Handshake, marked in dotted red lines. (Color
figure online)

Suppose that a client and a server use OCSP for validating certificates. An
OCSP request [16] contains the protocol version, the service request, the target
certificate identifier and optional extensions. The OCSP response for each
certificate contains the target certificate identifier, certificate status value,
response validity interval and optional extensions. Thus, it is straight forward
to identify the real communicating parties.

Similar patterns can be observed in PPAKE proposals in [2,25,27] as
shown in Fig. 2. During the handshake, a party sends its certificate certV , V ∈
{Client,Server} encrypted with a handshake key k to its peer, which will trigger
a certificate validation implicitly. If the validation is implemented with plain
OCSP, then the OCSP messages enable an adversary to break the privacy of the
protocol without much effort.
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ServerClient Certification Authority (CA)

Validate server cert. status

· · ·

Validate client cert. status· · ·

· · ·

Enck(CertS , · · ·)

Enck(CertC , · · ·)

Fig. 2. Privacy leakage from certificate status checking messages in dotted red lines.
This pattern can be found in Protocols 1, 2 and 3 in [25]. The IB-CAKE in Figure 2
of [21] also has this pattern, where ID functions as a certificate and must be verified.
(Color figure online)

1.2 Problem Statement and Technical Overview

Adversaries. We model the adversary A as an information thief who aims to
know the ID of a legitimate user of CA. Intuitively, A is an external attacker who
can manipulate all the communications over a well-defined part of the network
and even obtain secret information held by a CA under certain conditions. But
A cannot control any CA or the target client directly. This intuition will be
formalized with oracle queries and the CVP freshness in Sect. 3.2.

Avoid Channel Assumptions. The attacks in Sect. 1.1 originate from the fact that
current PPAKE notions have not captured any infrastructure protocol messages
in the handshake, and an external adversary A can read the ID-related messages
in plaintexts.

To mitigate such attacks, one may be tempted to assume that secure channels
exist before a PPAKE handshake, such as active TLS channels between clients
and CA. This assumption, however, falls into a circular argument, which can be
easily seen by asking the following questions. How can such channels themselves
be established initially? Is another protocol Π ′ needed for establishing such a
channel so that ID is not leaked? If so, how can the infrastructure supporting
Π ′ avoid ID leakage? Does it rely on another such channel? One may also argue
that a fully manual setup of a private channel can evict the attacks, but that
solution does not scale, and it also introduces strong system assumptions.

Challenges and Our Solution. Hence, we tackle the ID-leaking problem in the
infrastructure in another way. We aim to construct a self-contained infrastructure
which has confidentiality and privacy against any information-stealing adversary
A. To systematically construct the cryptographic core of this infrastructure,
we first provide an abstraction of any certificate validation mechanism called
certificate verification protocol (CVP). Then, we set the constraints for public
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parameters. As CVP is formalized as a public service which does not assume
pre-shared symmetric keys or long-term user key pairs, we leverage public key
encryption (PKE) variants and compose them with other tools to meet the
following secrecy and privacy (anonymity) challenges.

– Forward secrecy of Queries. Client and CA have to exchange messages, but
conventional IND-CPA and IND-CCA PKE do not guarantee secrecy after
decryption key exposure. On the other hand, as mentioned in our adversary
model, A can corrupt the CA to obtain the decryption key at some time τ .
Moreover, forward secrecy, i.e., secrecy of messages sent before τ , is essen-
tial for CVP. Thus we use an enhanced PKE primitive called Bloom Filter
Encryption [10] for the CVP messages, which can disable the decryption key
on received ciphertexts without changing the public key. This disabling oper-
ation is called puncturing.

– Receiver-anonymity of Queries. Encryption and puncturing do not directly
lead to anonymity or privacy, as the ciphertext itself may leak the receiver’s
ID. An example is any PKE with ciphertexts containing a linkable signature
σ. By linkable we mean it is easy to link σ to a public verification key bound
to a unique ID. However, CA usually has a unique ID, and a user C0 may
always contact the same CA Server0. If such a PKE with signatures is used,
C0’s behaviour can be distinguished from another C1 who does not use this
Server0 by verifying σ against Server0’s public key. Therefore, we also need
the encryption scheme to be an anonymous PKE [3] which hides the correct
receiver’s public key and identity in the ciphertext.

– Forward Receiver-anonymity. The previous problems are addressed in this
paper with pure algorithmic solutions, but the impact of a leaked decryption
key (via A’s corruption) on anonymity must also be considered. The subtlety
is that in Bloom Filter Encryption, the decryption key records information
about the punctured ciphertext to disable their decryption. If the key is seen
in plaintext, it tells whether the key owner has received a given ciphertext,
breaking the receiver’s forward anonymity against A. Therefore, we need
extra tools together with another layer of encryption to hide the records
against later corruption. We opt for a physical unclonable function (PUF) as
it is a well-understood notion and widely deployed in practice [11].

1.3 Our Contribution and Paper Outline

We believe it is essential to have clear assumptions about the privacy guarantee
in infrastructures and sound construction of certificate validation protocols, so
we made the following contributions in this paper.

– We propose a formal model with set-up assumptions and queries to analyze
the privacy threats to PKI-like infrastructure. We call it the Refined Infras-
tructure Model (RI).

– The cryptographic core of a privacy-preserving infrastructure is a certifi-
cate validation protocol (CVP). We formalize CVP and present new CVP
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protocols based on anonymous Bloom filter key encapsulation mechanism
(ANO-BFKEM) and PUF. Although our results should primarily be con-
sidered as an initial exploration of CVP with provable forward secrecy and
anonymity, it is also possible to implement the instantiation in Fig. 7.

The related work is surveyed in Sect. 1.4 and the essential cryptographic
primitives are introduced in Sect. 2. The refined infrastructure model (RI) is
presented in Sect. 3. Our new CVP protocol is presented in Sect. 3.3 with its
instantiation from ANO-BFKEM and PUF. Finally, the conclusion and possible
future work are covered in Sect. 4.

1.4 Related Work

AKE with Privacy. In 2019, Arfaoui et al. [2] defined privacy in AKE protocols
with a formal indistinguishability-based (game-based) model to analyze TLS 1.3.
This privacy-preserving authenticated key exchange (PPAKE) model constrains
an adversary’s ability to link sessions to party identifiers. For example, attacks
are only allowed for completed sessions and server’s ID cannot be a target. The
unilateral privacy guarantee of TLS 1.3 [15] is discussed thoroughly under this
model [2]. In the sequel, Schäge et al. [27] proposed a strong model for privacy
preserving authenticated key exchange in 2020, by removing some constraints
on the privacy adversary. An alternative model, the ID-concealing AKE, was
proposed by Zhao [32] in 2016 and then extended by Lian et al. [21] with new
constructions in 2021. The construction depends on a key generation center
(KGC), an infrastructure frequently used in identity-based encryption schemes.
In the same conference, Ramacher et al. proposed a model with fine-grained
definitions of privacy in PPAKE [25], relaxing even more constraints on pri-
vacy adversaries. For example, interrupted sessions can be the target of privacy
attacks. Except for the one relying on a pre-shared symmetric key, which is less
secure, the constructions in [25] use certificates for the exact identification of the
communicating peers. In 2022, Lyu et al. [24] present another alternative model
and constructions for PPAKE over broadcast channels. All of the models above
assume anonymity on the network layer and that the adversary can only see
part of the messages on the application layer but does not make any assumption
about the cryptographic infrastructure.

Bloom Filter Encryption and Anonymous Public Key Encryption. As a variant
of puncturable encryption (PE) [12], Bloom filter key encapsulation mechanism
(BFKEM) was first introduced by Derler et al. [10] (DGJSS henceforth) for
constructing efficient 0-RTT AKE with forward secrecy. BFKEM has its public-
private key pair associated with a Bloom filter (BF) [5]. As in a PE, the private
key sk of BFKEM can be updated (punctured) to disable it on a set of ciphertexts
but remain useful for others. Another attractive merit of BFKEM is that its
public key remains unmodified after puncturing. However, BFKEM alone cannot
guarantee forward privacy, as the private key stores the information about which
ciphertext is punctured.
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Initially formalized by Bellare et al. [3] in 2001 and refined in Halevi’s note
on sufficient condition for key-privacy in 2005 [13], the notion of anonymous
public key encryption (ANO-PKE) has been widely used in analyzing anony-
mous identity-based encryption (IBE/ANO-IBE) [1], designing anonymous hier-
archical identity-based encryption [6] and broadcast encryption [22]. ANO-PKE
ensures that any adversary A cannot efficiently decide whether a given ciphertext
is encrypted under which public key, even when the plaintext(s) and the candi-
date public keys are chosen by A. Nevertheless, ANO-PKE alone as a primitive
does not guarantee anything after private key exposure. Given all static pri-
vate keys, it is trivial to find out what the content and who the receiver is by
decrypting the ciphertext, i.e., ANO-PKE alone does guarantee forward secrecy.

2 Notation and Preliminaries

The Greek letter λ ∈ N is used to denote the security parameter and 1λ for the
unary string of length λ. Let [n] = {1, . . . , n} ⊂ N be the set of integers from 1
to n. The term a

$← S denotes the action of sampling an element a from a set
S uniformly at random, and |S| is the number of elements in set S. If A() is an
algorithm, then m

$← AO(·)() means that A outputs m with the help of another
oracle O(·). Let X||Y denote the operation concatenating two binary strings X
and Y . Pr[A : B] denotes the probability that event A happens if B holds or
action B has been taken. We use PPT for polynomial probabilistic time. We use
εZ
X,Y and AdvZ

X,Y to denote the advantage of adversary X against scheme Y in
security game Z. Other notations will be introduced when necessary.

Bloom filter [5] can offer efficient membership testing.

Definition 1 (Bloom Filter). A Bloom filter for a given data set D consists
of three algorithms (BFGen, BFUpdate, BFCheck) defined as follows.

– BFGen(m, k) $→ (HBF, T ). This initialization algorithm generates the set of
hash functions HBF = {Hj : D → [m]}j∈[k] and a bit array T of length m on
input of positive integer m and the number of hash functions k. T is initialized
with all zeros.

– BFUpdate(HBF, T, c) → T ′. This algorithm records a new element c in D by
hashing c with every Hj ∈ HBF, sets {T [Hj(c)]}j∈[k] to one, and outputs the
updated array T ′.

– BFCheck(HBF, T, c) → b. This algorithm outputs one only if every bit in the
set {T [Hγ(c)]}j∈[k] is one. It outputs zero otherwise.

Definition 2 (BFKEM [10]). A Bloom filter key encapsulation scheme
BFKEM consists of the following four PPT algorithms.

– BFK.KGen(1λ,m, k) $→ (ek, dk). The non-deterministic key generation algo-
rithm BFK.KGen takes the security parameter 1λ, parameters m and k as the
input, and outputs a public-private key pair (ek, dk).
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– BFK.Enc(ek) $→ (c,K). The encapsulation algorithm BFK.Enc() takes ek as
the input and outputs a ciphertext CT and a symmetric key K.

– BFK.Punc(dk, c) → dk′. The puncture algorithm BFK.Punc() takes the private
key dk as input and outputs an updated private key dk′.

– BFK.Dec(dk, c) → K. The decapsulation algorithm BFK.Dec() takes dk and
CT as input, and outputs a symmetric key K or ⊥ if decapsulation fails.

Similarly to Anonymous Public Key Encryption [1,3], we can formalize
anonymous BFKEM (ANO-BFKEM). For better readability, we defer the for-
mal definition of anonymity to Sect. 3 and refer the reader to [10] for IND-CPA
and IND-CCA BFKEM definitions.

Definition 3 (Physical unclonable function, PUF, [26,30]). Let λ be the
security parameter. Let dist(y, z) be the statistical distance between two random
variables y and z. Uκ the uniform random distribution over {0, 1}κ. We say a
function F() : {0, 1}κ1 → {0, 1}κ2 is a physical unclonable function if it can fulfill
all the requirements below, where κ1 and κ2 are polynomial functions of λ.

1. (Unclonable) Let F̂() be any data-based clone of F generated in polynomial
time. We say that F() is unclonable, if for negl(λ), a negligible functions of
λ, it holds that

Pr

⎡
⎣

y = z :
x

$← Uκ1 ; y ← F(x);
z ← F̂(x);

⎤
⎦ ≤ negl(λ);

2. (Unpredictable and indistinguishable) For any PPT A1 and A2, it holds that

AdvPRE-PUF
A1,F (1λ) ≤ neglPRE-PUF(λ) and AdvIND-PUF

A2,F (1λ) ≤ neglIND-PUF(λ),

where neglPRE-PUF(λ) and neglIND-PUF(λ) are two negligible functions of λ and

AdvPRE-PUF
A,F (1λ) =

∣∣∣∣∣∣
Pr

⎡
⎣

y = z :
begin challenge ← AOF()(1λ);
x

$← Uκ1 ; y ← F(x); z ← A(x)

⎤
⎦

∣∣∣∣∣∣
(1)

AdvIND-PUF
A,F (1λ) =

∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣

b = b′ = z :
b

$← {0, 1};
x

$← Uκ1 ; z0 ← F(x); z1
$← Uκ2

b′ ← AOF()(zb)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
. (2)

We also use an EUF-CMA signature scheme SIG = (SIG.Gen SIG.Sign,
SIG.Vfy) and a symmetric encryption scheme Π = (KGen,ENC,DEC) with
IND-CCA security.

3 Refined Infrastructure Model and CVP Construction

Execution Environment Intuition. When analyzing cryptographic infrastruc-
tures, we assume that the adversary cannot effectively utilize the leakage from
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the carrier protocol below the application layer, such as TCP/IP and LTE, as
there are other ways to obfuscate low-level messages, such as anonymous routing
[28]. Therefore, we adopt a network setting that is similar to the one in [25,27] as
shown in Fig. 3, where trusted gateway, router or proxy can be used to permute
message origins/destinations in the low level and A cannot see this permutation.

· · ·

Gateways Gateways

C1 C2 Cd
· · ·

S1 S2 Sd

{m2}

{m1}

Fig. 3. Intuition of network setting in Refined Infrastructure Model and PPAKE. C1

communicates with S2 and dashed parts cannot be seen by A directly.

3.1 CVP Syntax and Setup Assumptions

In the Refined Infrastructure model (RI), we consider the infrastructure as a
set of servers {Si} that provide certificate validation services via a certificate
validation protocol (CVP). Each server has its own public parameters PP and
public-private key pairs.

Definition 4 (Parameter Generation). A (public) parameter generation
algorithm PPGen(·) for an infrastructure works as follows. For a given server
identifier Si, compute

(
PPSi

, (pkSi
, skSi

)
) $← PPGen(1λ,Si), where 1λ is the

security parameter, PPSi
is the public parameter published by Si, and (pkSi

, skSi
)

the public-private key pair(s) of Si.

We allow pkSi
to be an empty string to keep our definition compatible

with KGC and KMS, which use symmetric cryptography only. We also allow
(pkSi

, skSi
) to be a list of keys for different purposes. For example, pkSi

may
contain an encryption key ekSi

and a signature verification key pkSi
, so is the

corresponding skSi
1. With the outputs of PPGen(), we now model the CVP.

Definition 5 (Abstract Certificate). We define an abstract certificate cert
as cert = (cID, ID, pkcID, σCA), where cID is the identifier of cert, ID the identifier
of the certificate owner (subject), pkcID the public key of the subject if it exists,
and σCA the authentication token generated on the certificate by the certification
authority.
1 We abuse the notation a little here for conciseness. Please see our concrete construc-

tion for the instantiation of (pkSi
, skSi).
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Definition 6 (Two-message CVP). A two-message certificate validation pro-
tocol (CVP) is a tuple of algorithms Πcvp = (CVP1,CVP2,CVP3) that work as
follows. Let PPSi

and (pkSi
, skSi

) be as defined in Definition 4.

– The client computes (m1, st1)
$← CVP1(PPSi

, pkSi
, cert), sends m1 to the

server Si and keeps the state st1.
– Si responds with m2 ← CVP2(PPSi

, skSi
,m1) and then enters state �, where

� is the state of “finished”.
– The client recovers the validation result as v ← CVP3(st1,m2). In any case,

the client session will enter the state � after receiving m2 and stop reacting.

We also need set-up assumptions in Fig. 4 to eliminate trivial attacks. First,
it is trivial to distinguish different ciphersuites and lengths of certificate chains,
both of which are determined by PP. Therefore we restrict our modeling to the
case where Assumptions 1 and 2 hold. Although Assumptions 3 and 4 eliminate
timing attacks in the current model, we believe that timing attacks must be
considered but can be mitigated in the real world [31].

1. All system members (clients and CAs) share the same PP.
2. All cipher suites, channels, CVP message format and the number of CVP

executions for validating each certificate are determined by PP.
3. All operations happen instantly.
4. Certificate status change happens, and the information propagates in-

stantly to all CAs.

Fig. 4. List of set-up assumptions for privacy-preserving infrastructures.

3.2 The Refined Infrastructure Model

Execution Environment. The numbers d, � ∈ N are positive integers. A set of
d honest parties {P1, . . . , Pd} is fixed in the execution environment. We use
an index i ∈ [d] to identify a party in the security experiment. We use {PK}
and {SK} to denote spaces for long-term public or private keys, respectively.
Furthermore, all parties maintain state variables listed in Table 1.

Table 1. Internal states of parties

Variable Description

ski the secret key of a public key pair (pki, ski)

ci the corruption status ci ∈ {exposed, fresh} of ski

τi the index of the query (τi-th) made by the
adversary, which causes ski to be exposed
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Each party Pi can execute the protocol for arbitrary times sequentially and
concurrently, which is modelled by a collection of oracles {πs

i : i ∈ [d], s ∈ [�]}.
Oracle πs

i behaves as party Pi executing the s-th protocol instance with some
intended partner Pj .

Adversarial Model. An adversary A in our model is a probabilistic algorithm with
polynomial running time (PPT), which takes as input the security parameter 1λ

and the public information. A may interact with these oracles by issuing the
following queries.

The additional functions and lists are as in Table 2.

Table 2. Additional variables, functions and lists in RI model

Term Description

vid is a virtual identifier of a party Pi, emulating what a
real-world proxy or a gate way does to hide a real party (See
Fig. 3 for the intuition.)

Lvid stores active vids
dvid indicates the bit choice in the DrawOracle() and TestID()

real(vid) denotes the party ID that is chosen for vid, if that vid is
defined

Linst stores all vid that have been used. Each element has the form
{(vid, dvid, Pi, Pj)}

Lact stores party indices that bound with active vids

– DrawOracle(Pi, Pj): This query takes as input two party indices and binds
them to a vid. If Pi ∈ Lact or Pj ∈ Lact, this query aborts and outputs ⊥.
A new vid will be chosen at random. The challenger will flip a random coin
dvid

$← {0, 1}. Then real(vid) will be set to i if evid = 0, and real(vid) = j if
evid = 1. The list Lact will be updated to Lact ∪ {Pi, Pj}. Finally, if no aborts
happens, vid and additional information will be recorded in Lvid and Linst,
and vid will be output to A.

– NewSession(vid, vid
′
): If vid ∈ Lvid and vid

′ ∈ Lvid, this query will initiate a
new oracle πs

i with real(vid) = Pi and Pids
i = real(vid

′
), and output the handle

πs
vid to A. Otherwise it will output ⊥.

– Send(πs
vid,m): If vid /∈ Lvid, this query will output ⊥. Otherwise, this query

sends message m to oracle πs
real(vid). The oracle will respond with the next

message m∗ (if there is any) that should be sent according to the protocol
specification and its internal states.

– RevealID(vid): If vid ∈ Linst, return real(vid).
– Corrupt(Pi): Oracle πi responds with the long-term secret key ski (if any

defined) of party Pi. Once a party has responded to any Corrupt()− query, it
stops responding to any other queries.
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– Free(vid): this query will not output anything but do the following. If vid ∈
Lvid, look for the parties in Linst, remove vid from Lvid and parties from Lact.
End all negotiating sessions that are associated with party Preal(vid).

Each (session) process oracle πs
vid have extra state variables defined in Table 3.

Initially, cstcID = unknown.

Table 3. (Extra) State variables of oracle πs
vid

ρ the role of in πs
vid in CVP, ρ ∈ {Client, Server}

cID the certificate identity πs
vid is querying

cstcID the certificate state, cstcID ∈ {good, revoked, unknown}
Server the vid of the CA server that the client πs

vid contacts
st the state of an oracle, st ∈ {�, negotiating}

Let LcID be the list of certificate identities involved, and LS the list of all
CAs. We have the following Test-oracles to assess the impact of A’s behaviors.

– TestCert(πs
vid): This oracle first tosses a fair coin b

$← {0, 1}. If |LcID| ≤ 1,
return ⊥. If πs

vid or πs
vid.cID is undefined, return ⊥. Otherwise, TestCert() sets

cID0 ← πs
vid.cID and cID1

$← LcID\{πs
vid.cID}, and finally responses to A with

cIDb.
– TestCA(Cs

vid): If Cs
vid or Cs

vid.Server is undefined, or |LS | ≤ 1, set e
$← {0, 1} and

return ⊥. Otherwise, this oracle set e = eπs
vid.Server.

Intuitively, TestCert() checks if the certificate ID is leaked, and TestCA()
checks if the CA’s ID is leaked. To eliminate trivial attacks, we need a freshness
definition for the oracles.

Definition 7 (Matching conversation [17]). Let Tx,y be all the messages sent
and received by πy

x, and T ′
x,y be Tx,y truncated by the last message. We say that

πs
i and πt

j have matching conversations, if

– πs
i sends the last message of the CVP and it holds that Tj,t = Ti,s, or

– πt
j sends the last message of the CVP and it holds that T ′

j,t = T ′
i,s.

Definition 8 (Two-message CVP freshness). Let Send(m) be the τ -th query
that make πs

vid enter state �. We say that an oracle πs
vid is CVP-fresh, if all the

following conditions hold.

– If πs
vid.ρ = Server, then there must exist a Ct

vid′ to which πs
vid has matching

conversations and the first Corrupt(real(vid)) must be a τi-th query, τi > τ .
– If πs

vid.ρ = Client with πs
vid.Server = vid′, then there must exist a St

vid′ to which
πs

vid has matching conversations, and the first Corrupt(real(vid′)) must be a
τj-th query with τj > τ .
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– RevealID(vid) has never been made. If πs
vid has matching conversations with

πt
vid′ , then RevealID(vid′) has never been made.

Intuitively, one oracle’s freshness implies its talking partner’s freshness.
To model privacy threats against CVP we need more fine-grained definitions

that depend on the number of CAs and whether they can be corrupted. An
overview of the privacy notions can be found in Fig. 5. In a notion RI-XY ,
X ∈ {S,M} means whether there is only a single (S) CA, or multiple (M) CAs,
while Y ∈ {S,W} denotes whether strong corruption (S) of CA is allowed, or
only weak corruption (W ) is allowed.

RI-SW

RI-MW RI-SS

RI-MS

(
Single CA, no CA Corrupt(·)

)

(
Multiple CAs, no CA Corrupt(·)

)

(
Multiple CAs, with CA Corrupt(·)

)

(
Signle CA, with CA Corrupt(·)

)

Fig. 5. The hierarchy of RI privacy notions, where A → B means A implies B.

There is no need to consider TestCA() for RI-SW and RI-SS, where all
clients contact the same CA with a publicly known identity. For conciseness, we
present only the strongest privacy definition in the multi-CA settings. We define
ORI-MS = {DrawOracle(), NewSession(), Send(), Corrupt(), RevealID(), Free()}.

Definition 9 (CVP strong privacy in multi-CA setting, RI-MS). We
define the advantage for RI-MS privacy as

AdvRI-MS
A,Πcvp

= AdvRI-MS-cert
A,Πcvp

+ AdvRI-MS-CA
A,Πcvp

with (3)

AdvRI-MS-cert
A,Πcvp

=

∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎣

b = b′ :
{(PPi, pki)} $← PPGen(1λ);

πs
vid

$← AORI-MS(1λ, {(PPi, pki)})
b

$← TestCert(πs
vid);

b′ ← AORI-MS(1λ, {(PPi, pki)});

⎤
⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣

, (4)

AdvRI-MS-CA
A,Πcvp

=

∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎣

e′ = e :
{(PPi, pki)} $← PPGen(1λ);

Cs
vid

$← AORI-MS(1λ, {(PPi, pki)})
e

$← TestCA(Cs
vid);

e′ ← AORI-MS(1λ, {(PPi, pki)});

⎤
⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣

, (5)

where πs
vid and Cs

vid are fresh in the sense of Definition 8.



PPAKE Infrastructure 447

3.3 CVP Construction

We finally present our CVP construction from DGJSS Bloom Filter Key Encap-
sulation Mechanism [10] which fulfills the following definition of anonymity. The
shaded parts are where this notion does not support full corruption and where
we need PUFs for a complete CVP.

Definition 10 (Weak ANO-BFKEM). An IND-CCA BFKEM is also (weakly)
anonymous if for every PPT adversary A, there exists a negligible function
neglANO, such that

AdvwANO-BFKEM
A,BFKEM =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e = e′ :
{ek} ← BFK.KGen(1λ); C ← ∅;
(eki, ekj) ← AO(·)(1λ, {ek})
with eki, ekj ∈ {ek}, i, j /∈ C;

e
$← {0, 1};
if e = 0

then (ek0, dk0) ← (eki, dki);
else (ek0, dk0) ← (ekj , dkj);
(c,K) $← BFK.Enc(ek0);

BFK.Punc(dk0, c);

e′ ← AOw(i,j,·)(c) ;

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ neglANO(λ),

(6)

where O(·) := {BFK.Enc(i, ·),BFK.Punc(i, ·),BFK.Dec(i, ·),Corrupt(i, ·)}d
i=1,

Ow(i, j, ·) := {BFK.Enc(i, ·), BFK.Punc(i, ·),BFK.Dec(i, ·), Corrupti′ /∈{i,j}(i′, ·)
}d

i,i′=1, the oracle BFK.Enc(i,m) calls BFK.Enc(eki,m) and returns the cipher-
text, BFK.Punc(i, ·) has no output but takes a ciphertext c as input and
calls BFK.Punc(dki, c), BFK.Dec(i, ·) takes a ciphertext c as input and returns
BFK.Dec (dki, c), and Corrupt(i) returns dki and sets C ← C ∪ {i}.

In Fig. 6 we review the IND-CPA DGJSS. IND-CPA DGJSS can be trans-
formed into an IND-CCA secure BFKEM via a variant of Fujisaki-Okamoto trans-
formation as proved by the authors [10].

To prove its anonymity, we need the following bilinear computational Diffie-
Hellman problem to be hard.

Definition 11 (BCDH). Let param = (q, e, G1, G2, GT , g1, g2)
$← BilGen

(1λ), BilGen() be a bilinear group generation algorithm, and (gr
1, g

α
1 , gα

2 , h2)
with (r, α) $← Zq and h2

$← G2. We define the advantage of an adversary A in
the bilinear computational Diffie-Hellman (BCDH) problem w.r.t. BilGen as

AdvBCDH
A,BilGen = Pr[ha = e(g1, h2)rα : ha ← A(param, gr

1, g
α
1 , gα

2 , h2)]
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Fig. 6. DGJSS, an IND-CPA BFKEM from hashed BF-IBE.

Theorem 1 (Anonymity of DGJSS). If the public parameters are indis-
tinguishable, and BCDH is hard w.r.t. BilGen, then the Fujisaki-Okamoto-
transformed DGJSS is a weak ANO-BFKEM in the sense of Definition 10.

Note that FO-transformed DGJSS has exactly the same form of ciphertexts.
See Appendix A for the proof.



PPAKE Infrastructure 449

Adding PUF Against Full Corruption. As we cannot let the adversary
see dk in plaintext via Corrupt(), we take the controlled PUF defined in [30] as
a building block. The merits of PUF include that (1) it cannot be cloned by
repeated sampling by any A in polynomial time, and (2) its output is pseudo-
random. Thus, A cannot compute the output of a PUF unless it has physical
access to it. See Definition 3 for the syntax and security of PUF.

Let F() : {0, 1}λ → {0, 1}L(λ) be a PUF. Let H() : {0, 1}L(λ) → K, where
K is a key space of Π ′ and Π ′ = (KGen′,Enc′,Dec′) is an IND-CCA symmetric
key encryption scheme. Let s

$← {0, 1}λ and CTdkj
$← Enc′(H(F(s)), dkj). We

construct Πhw
cvp shown in Fig. 7, where N is the nonce space.

Fig. 7. Πhw
cvp: two-message CVP based on PUF F() and BFKEM instantiated with

DGJSS. The shaded parts rely on PUF and the encryption Π ′.

We can argue the security and anonymity of Πhw
cvp as follows. The indistin-

guishability of cert is guaranteed by the IND-CCA security and puncturability
of DGJSS. On the other hand, A only learns s and CTdkj via Corrupt(), as
F() cannot be taken away or cloned by A. Due to the pseudo-randomness and
unpredictability of F()’s outputs, and the indistinguishability of CTdkj , A learns
nothing about the “real” decryption key dkj . Therefore, CA’s anonymity is also
preserved. We refer the reader to Appendix B for the proof.
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Theorem 2. If BFKEM is DGJSS, H() a cryptographic hash function mod-
elled as a random oracle, F() a controlled PUF, Π = (KGen, ENC, DEC) and Π ′

= (KGen′, ENC′, DEC′) are IND-CCA secure symmetric length-hiding encryption
schemes, and SIG = ( SIG.Gen SIG.Sign, SIG.Vfy) is an EUF-CMA secure sig-
nature scheme, then the protocol Πcvp has RI-MS privacy (Definition 9) in the
multi-CA setting in the random oracle model. More specifically, for any PPT A
against Πcvp, there exist adversaries B1 against SIG, B2 and B3 against F(), B4

against Π ′, B5 against BFKEM, and B6 against Π such that

AdvRI-MS
A,Πcvp

≤ 2 ·
( (d�)2

|N | + (d�)2 ·
(
εEUF-CMA
B1,SIG + εPRE-PUF

B2,F + εIND-PUF
B3,F

+ εIND-CCA
B4,Π′ + εwANO-BFKEM

B5,BFKEM + εIND-CCA
B6,Π

))
, (7)

where N is the nonce space, d the maximal number of parties, � the maximal
number of sessions owned by one party.

4 Conclusion and Future Work

In this paper, we propose a refined infrastructure model (RI) and construct a
concrete CVP with provable security and near-optimal anonymity for an infras-
tructure that supports PPAKE. It is interesting to investigate how we can use
obfuscations to replace PUF in the construction. Direct application of indistin-
guishability obfuscation [23] does not seem to work, as hard-coded Dec(dki, ·)
and Dec(dkj , ·) are two distinct circuits with different functionalities.

A Proof of Theorem 1

Proof. The forward IND-CCA security of DGJSS after Fujisaki-Okamoto trans-
formation (FO) can be obtained directly from the original Theorem 1, 2 and 3
in [10]. Moreover, FO-transformed DGJSS has exactly the same form of cipher-
texts, although the changes lies in encryption and decryption.

Hence, we only have to prove the anonymity.

Anonymity Against Weak Corruptions. After receiving the challenge c, A can-
not use Corrupt() on i and j (See Definition 10), so whether dki or dkj has
been punctured on c is hidden from A. Any other party’s keys, thanks to the
IND-CCA security, will output ⊥ when used for decrypting c, except when colli-
sion of nonces happens. Moreover, the probability that a nonce collision happens
is negligible. Thus, the anonymity against weak corruption can be reduced to
ciphertext anonymity.



PPAKE Infrastructure 451

Ciphertext Anonymity. The transformation does not change the form of the
encapsulation (ciphertext), which is c =

(
gr
1, {E(yj) ⊕ K}j∈[k]

)
. The first term

is uniformly random in G1. If K is uniformly random in {0, 1}λ, then the distri-
bution of any E(yj) ⊕ K, is uniformly random in {0, 1}λ when observed alone.
So for any α0, α1, it is hard to distinguish (gr

1, E(e (gα0
1 , G(ij))

r) ⊕ K) from (gr
1,

E(e (gα1
1 , G(ij))

r) ⊕ K).
Furthermore, note that the adversary A cannot corrupt party 0 or party 1

for the corresponding ek0 or ek1 before receiving the challenge c. So if BCDH
is hard, then it is also hard for A to distinguish the following two ensembles for
any α0, α1, ij , j in the random oracle model.

(gr
1, E(e (gα0

1 , G(ij))
r) ⊕ K, E(e (gα0

1 , G(ij+1))
r) ⊕ K)

(gr
1, E(e (gα0

1 , G(ij))
r) ⊕ K, E(e (gα1

1 , G(ij+1))
r) ⊕ K)

This is because A has zero advantage if it has not made a correct E(yj) query
to the random oracle E(·) with yj = e (gα0

1 , G(ij))
r or yj = e (gα1

1 , G(ij))
r.

With a hybrid argument for j = 1 to k, we can conclude that A
has negligible advantage in distinguishing

(
gr
1, {E(e (gα0

1 , G(ij))
r}j∈[k]

)
from(

gr
1, {E(e (gα1

1 , G(ij))
r}j∈[k]

)
.

Therefore, the FO-transformed DGJSS is a weak ANO-BFKEM. ��

B Proof Sketch of Theorem 2

Proof. (sketch) We use a sequence of games [29]. Let Adv[SA,i] be the advantage
of A’s advantage in Game i.
Game 0. This game is identical to the RI-MS security experiment described in
Definition 9. Thus, we have

Adv[SA,0] = AdvRI-MS
A,Πhw

cvp

Game 1. In this game we add an abort rule. The challenger aborts, if there exists
any oracle πs

i that chooses a random nonce ri or rj which is not unique.

Adv[SA,0] ≤ Adv[SA,1] +
(d · �)2

|N |
Game 2. We add another abort rule in this game. The challenger try to guess
which oracle will be the oracle received TestCert() and TestCA, and its partner
oracle. If the guess is incorrect, then we abort this game. Thus

Adv[SA,1] ≤ (d · �)2 · Adv[SA,2]

Game 3. This game is identical to the previous one except for one abort rule.
If the adversary succeeds in making any client accept a forged signature, abort.
Then we have

Adv[SA,2] ≤ Adv[SA,3] + εEUF-CMA
B1,SIG .
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Game 4. We modify the game such that on receiving Corrupt(), the challenger
return a randomly encrypted CT instead of CTdkj . Thanks to the IND-PUF,
PRE-PUF properties of the PUF F, and IND-CCA security of Π ′, we have

Adv[SA,3] ≤ Adv[SA,4] + εPRE-PUF
B2,F + εIND-PUF

B3,F + εIND-CCA
B4,Π′ .

Note that A can only steal information but cannot physically control any party
or access the PUF F(). Moreover, even the honest owner (CA) cannot duplicate
F() or efficiently predict the output of F() with probability greater than εPRE-PUF

B2,F .
So A cannot generate a good enough F

′, which can produce the decryption key
with probability greater than εPRE-PUF

B2,F , or distinguish a random key from the
output of F with probability greater than εIND-PUF

B3,F .

Game 5. Now we modify the game such that m1 is encrypted with the public key
of another candidate of vid. Due to the fact that DGJSS is a weak ANO-BFKEM
and the IND-CCA of Π, we have

Adv[SA,4] ≤ Adv[SA,5] + εANO,IND-CCA
B5,BFKEM + εIND-CCA

B6,Π .

By collecting all the relations above, we proved Theorem 2.
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Abstract. We expand the security model for group key exchange of
Poettering et al. (CT-RSA 2021) to allow for more fine-tuned reveal of
both state and keying material. The expanded model is used to anal-
yse the security of hybrid group key exchange schemes, compositions of
distinct group key exchange schemes where either subprotocol may be
separately compromised. We then construct a hybrid group key exchange
protocol that we show to be as secure as its sub-protocols. Furthermore,
we use the notion of a secure element to develop a lightweight, low trans-
mission group key exchange protocol. This protocol is used to develop a
hybrid scheme that offers dynamic group membership and is suitable for
use in constrained networks.

Keywords: hybrid scheme · group key exchange · mobile ad hoc
networks · secure element

1 Introduction

When developing a cryptographic protocol for a specific use case the intended
environment, the application and the expected adversarial threat, should be
taken into consideration. However, sometimes the stakeholder requirements are
contradictory, e.g. a lightweight system with limited key storage will have trouble
running a key exchange protocol which needs to use post-quantum cryptogra-
phy (PQC). There are then three approaches; one is to relax the requirements
sufficiently until a protocol can be found; a second is to develop an entirely new
protocol that fulfills all the requirements; a third is to partition the stakeholder
requirements into distinct requirement sets such that a suitable protocol can be
found for each set of requirements, and then somehow combine these protocols.

Initially, the first approach is a good place to start. Often in an initial phase
requirements are set as desired and not as needed. A second evaluation could
resolve any conflicting requirements. If this, however, does not resolve the con-
flicts then relaxing/removing requirements is not an ideal approach.
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The second approach, developing a new protocol, is a favorite of all cryptog-
raphers, but not a good solution for systems that are likely to be deployed in
the near future. If a completely new scheme is to be developed, it is likely that
it has not had enough time to mature nor for extensive testing.

In this paper we explore the third approach. We consider the combination
of multiple group key exchange protocols to generate a new hybrid protocol
that can achieve a set of properties that neither of the initial protocols achieve
independently. These properties may range from security notions to network and
architectural features.

1.1 Use Case

The use case that inspired this work is group key exchange for search and rescue
operations over emergency networks. They are mobile ad hoc networks meant
to function even when general telecommunication infrastructure is compromised
due to natural or man-made disasters [8]. Semi-permanent mobile infrastructure
can be flown in and supplement remaining infrastructure or be used standalone.
Handheld and vehicle mounted devices can also be used in a transmission mode
to function as nodes in the network [9,10,19]. Naturally, these networks are
sub-optimal compared to the permanent networks.

Law enforcement and rescue organizations use such emergency networks
when participating in rescue missions. It is used by the participants to commu-
nicate during the mission, both in and out of field, to enable cooperation. One of
the main forms of communication is voice messages with short life expectancy;
such as voice commands that only need to remain secure until the action is
performed. After that the command will be known by everyone independent of
whether security was broken or not (e.g. the message «A go to B» is leaked once
it is evident that A is moving towards B). Yet, the ability to inform the team
where medical personnel is needed or when a situation has become so unstable
that the team needs to retreat, is life critical information that needs to be reli-
ably communicated. Therefore, due to the short message lifespan, reliability and
availability have traditionally had a higher priority than confidentiality, integrity
and forward secrecy in these settings [12].

Current real-world solutions for key management in these scenarios load pre-
shared keys prior to mission start [23]. As a result, emergency networks are
vulnerable to loss of keying material since no dynamic key agreement is in place.
A more robust solution is therefore desirable.

1.2 Our Contributions

Our main contributions in this paper are threefold.

Hybrid protocol. First, we build upon the security model of Poettering et
al. [18] to allow a more fine-grained reveal suitable when running multiple group
key exchange algorithms as one. We use this model to develop and prove a hybrid
group key exchange protocol at least as secure as its subprotocols. Furthermore,
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we show that depending on how session windows (epochs) are computed the
security notions inherited by the resulting hybrid protocol vary.

Secure element. As our second contribution, we consider how to model secure
elements used for group key exchange. The secure element is tamper-proof and
user-specific, and hence it is reasonable to prevent adversarial access to internally
stored secret information and states. As a result, an adversary may only access
the element (if at all) the same way specific users would access it.

We design a group key exchange protocol using secure elements. We show
that this protocol offers forward secrecy (FS), a limited form of post-compromise
security (PCS) as well as exclusion-style based dynamic group membership.

Protocol properties. Finally, we combine the secure element protocol with
a group key exchange protocol that offers dynamic group membership to get a
stronger, novel protocol with full dynamic group membership.

The secure element protocol will be used as the main contributor for FS and
weak PCS and as a result the hybrid construction will have minimal overhead.
Only when group members are added or removed is the second protocol utilized.
As such we achieve a group key exchange protocol with minimal transmission
overhead while at the same time offering full dynamic group membership.

1.3 Related Work

Hybrid constructions are known constructions in the cryptographic commu-
nity, either by combining symmetric and asymmetric schemes [3,11,13], or more
recently combining PQC schemes with classical schemes [7,21]. In this paper we
introduce a model for hybrid construction that only requires that the subproto-
cols are group key exchange protocols.

Secure elements have been used in the literature before. A session key dis-
tribution scheme using secure elements was proposed by Shoup [20]. It focuses
on extending the key exchange model [4] and introducing a two-party key distri-
bution scheme. It does not perform a full key exchange, nor does it take group
communication into account; two of the main focus areas of this paper.

The continuous group key exchange protocol MLS [2] also offers the use of
pre-shared keys to lower the update cost and potentially increase security. The
reduced cost is, however, only computational and does not lower the size of trans-
mitted packets. In order for a session to maintain forward secrecy, updates for all
end users in the session still need to be performed regularly. In comparison, the
pre-shared keys used in our secure element protocol will reduce computational
costs, as well as greatly reduce transmission size. The greatest benefit, however,
is that key generation failure due to missing packets can be easily rectified with
minimal overhead, both computational as well as transmission-wise.

2 Prerequisites

We build upon the generic group key exchange model presented by Poettering
et al. [17], and use the syntax presented in Definition 1 in our work.
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Definition 1 (Group Key Agreement (adapted from [18])). A group
key exchange protocol, Π, is a tuple of PPT algorithms (gen, init, exec,proc),
defined as follows:

– gen generates a pair of public and private authentication keys, (sk, pk), per
user when applicable.

– init takes an instance identifier, iid, and generates an initial state, σ.
– exec takes as input a secret key, sk (when applicable), a state σ, and a com-

mand, cmd , and returns a new state σ′.
– proc takes as input a secret key, sk (when applicable), a state, σ, and a

ciphertext, c, and returns either a new state, σ′ or ⊥ (failure).

In addition to these four algorithms, two procedures are used to distribute and
store information. Their detail is part of the environment running the protocol.

– sndiid is an instance-specific procedure that takes a ciphertext, c, as input
and distributes it to the desired recipients as well as the adversary.

– keyiid is an instance-specific key-processing procedure. It takes a group key,
k, with corresponding id, kid, as input and delivers it to the application layer.
The identifier is passed to the adversary.

Another three functions are utilized to extract encoded information. The
specifics are defined by the concrete protocol being analyzed.

– mem takes a key identifier, kid, as input and returns the set of instances
with access to the key.

– rec takes a ciphertext, c, as input and returns the set of instances that should
receive the data.

– getEpoch takes either a state, σ, or key identifier, kid, as input and returns
the current epoch, t.

Additionally, we consider there to be an implicit mapping between instance
ids and public keys, and let pkiid denote a public key associated with instance iid.
Furthermore, two instances iid1 and iid2, with key ids kid1 and kid2, respectively,
are considered partners if kid1 = kid2.

Epochs are used to capture the notion of PCS as well as forward secrecy (FS)
by compartmentalising the generated session keys into smaller time frames or
windows. Conceptually, a protocol offers FS when all session keys from previous
epochs are secure when a state of the current epoch is exposed. Equivalently, a
protocol offers PCS when all session keys in future epochs are secure if a state
of the current epoch is exposed.

The security of the model is game-based. Authentication is optional and
marked with gray boxes in the experiment (Fig. 1). The experiment has been
adapted to include a toggle, X ∈ {{FS}, {FS, PCS}}, to prove only FS or
also include PCS. The non-shaded boxed parts in Fig. 1 are only included when
PCS ∈ X. The goal of the adversary is key indistinguishability (KIND).
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Definition 2 (X-KIND Secure (adapted from [18])). Let Π be a group
key exchange protocol and let A be an X-KIND-adversary against Π playing the
black parts of the security game in Fig. 1. The advantage of A is

AdvX-KIND
Π (A) = |Pr [X-KINDΠ(A) = 0] − Pr [X-KINDΠ(A) = 1]|.

The protocol, Π, is X-KIND ε-secure if AdvX-KIND
Π (A) < ε.

A group key exchange protocol is dynamic if group members can be added
or removed during run time, otherwise the protocol is static.

3 Hybrid Group Key Exchange

Sometimes we want to combine two group key exchange protocols, either to com-
bine properties of each subprotocol into one protocol, or because we do not fully
trust either one. Specifically, we desire that the combined protocol gains the best
properties and security goals from either of its subprotocols. Furthermore, we
want the combined protocol to remain secure unless both protocols are broken.

3.1 Hybrid Security Model

Our hybrid scheme runs the two protocols independently as subprotocols. The
two group keys produced by the sub-protocols will be combined using a key
derivation function in order to generate a group key for the hybrid scheme.

Definition 3. Let Πi = (geni, initi, execi,proci), i ∈ {1, 2}, be two group key
exchange protocols. We define a hybrid group key exchange protocol, Π, to be a
group key exchange protocol with the following additional algorithmic properties.

– gen generates public and private authentication keys (sk, pk), where sk =
(sk0, sk1, sk2) and pk = (pk0, pk1, pk2) and (ski, pki), i ∈ {1, 2} is a long term
key pair for protocol Πi, and (sk0, pk0) is a long term key pair for the hybrid
protocol when applicable. If subprotocol Πi does not have authentication, the
long term key pair is set to ε.

– init takes an instance identifier, iid, as input. Returns a three tuple state
σ = (σ0, σ1, σ2) where σ1 and σ2 are independent initial states for instance
iid in protocols Π1 and Π2, respectively.

– exec takes a secret key sk = (sk0, sk1, sk2) (when applicable), state σ =
(σ0, σ1, σ2), and command cmd as input, and outputs state σ′ = (σ′

0, σ
′
1, σ

′
2).

The states σ′
1 and σ′

2 are generated by exec1 and exec2 on the inputs
(sk1, cmd1, σ1) and (sk2, cmd2, σ2), respectively, when cmd i, i ∈ {1, 2} is a
valid command in the specific subprotocol extracted from cmd .

– proc takes a secret key, sk = (sk0, sk1, sk2) (when applicable), state, σ =
(σ0, σ1, σ2), and ciphertext, c, as input, and outputs state σ′ = (σ′

0, σ
′
1, σ

′
2).

The states σ′
1 and σ′

2 are generated by proc1 and proc2 on inputs (sk1, c1, σ1)
and (sk2, c2, σ2), respectively, when ci, i ∈ {1, 2} is a valid ciphertext in the
specific subprotocol derived from c.
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The group key k = kdf(k0, k1, k2) is created by combining keys k1 and k2
as generated by protocols Π1 and Π2, respectively, together with any additional
secret information k0. Let ki, i ∈ {0, 1, 2} have session key id kidi. The session
key id of k is then a combination of the sub key ids, kid = (kid0, kid1, kid2).

Together with the helper functions and procedures defined and available in
the group key exchange model we add two information extraction algorithms.

– isHybrid Takes a group key exchange protocol, Π, as input and returns true
if Π is a hybrid group key exchange protocol, or false otherwise.

– subProt Takes a group session key id, kid, as input and returns either a
value 0, 1, or 2 as output depending on whether the key id belongs to a
key generated by the entire protocol, i.e. return 0; or to the first or second
subprotocol, i.e. return 1 or 2, respectively.

It is clear that a hybrid scheme is a group key exchange protocol as in accor-
dance to Definition 1, and we can use the security model to prove the hybrid
protocol is secure. However, the reveal oracle does not capture the full complex-
ity of the hybrid protocol. Since the subprotocols used in a hybrid protocol can
run and store information on separate hardware it should be possible to expose
the subprotocol states separately. The experiment as it originally stands (black
part of Fig. 1), does not allow for such distinctions. An additional reveal oracle
is added to the protocol to allow this more fine-grained reveal. Additionally, we
allow corruption of an instance as well as the corruption of its separate subpro-
tocols. Lastly, we allow session keys of the subprotocols to be revealed and add
bookkeeping to ensure that the revealed information is appropriately tracked.
The new information is displayed in blue in Fig. 1.

Definition 4. Let Π be a hybrid group key exchange protocol and let A be a
KIND-adversary against Π playing the security game presented in Fig. 1. The
advantage of A is

AdvX-KIND
Π (A) = |Pr [X-KINDΠ(A) = 0] − Pr [X-KINDΠ(A) = 1]|.

The protocol, Π is X-KIND ε-secure if AdvX-KIND
Π (A) < ε.

There are two natural ways of registering epochs that will yield different
security guarantees. The first version is to represent the epoch as a two tuple
t = (t1, t2) consisting of the epochs t1 and t2 from the two subprotocols Π1

and Π2, respectively. The second possibility is to use the epoch of only one
of the subprotocols directly. We call an epoch generated as in the first style for
combined. If the epoch is generated according to the second style, then the epoch
is inherited. Depending on the style of epoch the hybrid protocol may achieve
drastically different security notions.
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Fig. 1. The security experiment for group key exchange. Information in black is accord-
ing to the original model [17] while the blue has been added to allow for hybrid con-
struction. K is the set of group keys, ST is the state set, ASK, APK are the secret and
public authentication key set, respectively, CR is the set of corrupted long term keys,
WK are the weak group keys, CH is the set of challenged group keys, CP is the set of
computed group keys and TR is the set of messages to be transmitted.
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3.2 Hybrid Protocol Construction

The natural construction of a hybrid group key exchange protocol combines the
resulting session keys from two independently running subprotocols. No addi-
tional operations are performed by the scheme itself.

In order to incorporate this construction into our model we make two minor
alteration to the subprotocols. First, the hybrid scheme needs access to the gener-
ated session keys. Second, the subprotocols are blocked from sending ciphertexts.
Sending will only be performed by the hybrid scheme. In both cases additional
information needs to be available to the hybrid construction. As such, we slightly
augment what parameters are returned: the subprotocol algorithms execi and
proci return the state σ1, generated key ki, key id kidi and generated ciphertext
ci. Figure 2 formally defines a canonical hybrid scheme.

Fig. 2. Formal protocol definition of a hybrid protocol Π = (gen, init, exec,proc)
generated from group key exchange protocols Π1 = (gen1, init1, exec1,proc1) and
Π2 = (gen2, init2, exec2,proc2).

Theorem 1. Let Π be the hybrid protocol from Fig. 2 with subprotocols Π1 and
Π2. Let A be a PPT-adversary against Π, then there exists a PPT-adversary B1

against Π1 and a PPT-adversary B2 against Π2, such that

AdvY-KIND
Π (A) ≤ min

[
AdvX1-KIND

Π (B1), AdvX2-KIND
Π (B2)

]
,
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and X1,X2 ∈ {{FS}, {FS, PCS}}.
If epoch is inherited from subprotocol Πi then Y = Xi. On the other hand,

if epoch is combined then Y = X1 ∩ X2.

Proof (sketch). We construct the adversaries Bi, i ∈ {1, 2}. They interact with a
security experiment for the subprotocol Πi that has challenge bit bi. The security
experiment is modified so that Bi uses its own security experiment for Πi with
(unknown) challenge bit bi while it executes Π3−i and the combined protocol,
Π, itself. The hybrid protocol Π uses epoch style inherited from Πi.

The simulation of Π by Bi is further modified so that the session key is never
computed until the adversary either reveals the session key or a challenge query
is made. If the session key is revealed, then Bi makes a reveal query to its security
experiment to get ki,bi . If the instance is challenged, then Bi makes a challenge
query to its security experiment.

If A queries ExposeSubprotocol( iid, i) for a challenged instance iid the adver-
sary Bi returns challenge key ki,bi . If A terminates with ⊥ that means it discovers
that the output from ExposeSubprotocol( iid, i) was fabricated and we let Bi out-
put 0 and stops, if A returns b then B stops and returns b.

If ExposeSubprotocol( iid, i) was not queried at a challenged instance, then
Bi terminates with output b when A stops with output b.

As a result we get that

AdvXi-KIND
Π (A) ≤ AdvXi-KIND

Π (Bi),

meaning that

AdvY-KIND
Π (A) ≤ min

[
AdvX1-KIND

Π (B1), AdvX2-KIND
Π (B2)

]

where Y is either X1 or X2 depending on who it inherited its epoch from.
In the case of a combined epoch, recall that the only difference between a

protocol that is FS secure and one that also provides PCS, is the amount and
combination of queries it is legally allowed to make, where queries against an FS
protocol is a subset of valid queries made against the same protocol but for FS
and PCS. Keeping the argument form above but setting the security notion to
the lower bound of the two subprotocols we get the second theorem statement
where Y is the intersection of both X1 and X2. ��

As a result, we discover that a hybrid protocol consisting of two subpro-
tocols with identical security notions will obtain that security notion as well,
independent of how epochs are computed. If, however, the two protocols have
distinct security achievements, the level of security the hybrid scheme achieves
relies solely on the choice of epoch computation. What this intuitively means is
that the hybrid scheme achieves a form of reduced PCS, where certain types of
updates will result in a healed state while others will only ensure FS.
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4 Secure Element

A secure element is a tamper-resistant chip that contains storage, computing
power and memory [14–16,22,24]. It is designed to deliberately hinder both
leakage and side-channel attacks. It is tamper-resistant to prevent an adversary
from physically opening the hardware device to extract keying information [16].
Any such attempt should result in a physical reaction that automatically destroys
any keys stored on the device. Similarly, trying to load new software will result
in key-removal, where new keys would have to be reloaded.

Due to the tamper-resistant nature of the secure element, the interface of the
device can be carefully chosen to limit information flow out of the secured envi-
ronment. Only specific queries can be made available and will not be processed
if the input arguments do not comply with internally stored access restrictions.
In such cases no output will be returned.

We consider key generation and distribution as well as software loading to be
performed in accordance to current security and cryptographic standards, but
essentially consider it to be out of scope for this paper. (Any discussion of these
issues will largely be orthogonal to what we do discuss.) We will instead focus
on the interface and functional requirements needed of the secure element.

4.1 Representation

Secure elements are real-world hardware devices that act like an interactive black
box and can as such be modeled as an oracle, OSE .

The secure element is user-specific and loaded with a pre-shared symmetric
secret key mkτ called master key, along with a corresponding timestamp τ . The
secure element might not have access to a clock, but will evolve the master key
based on received timestamps τ ′. The new timestamp will then be stored in place
of the old value. The master key can only be ratcheted forward and the secure
element will not process any input if the received timestamp τ ′ is less than the
internally stored value τ .

The holder of a secure element does not have knowledge or access to the
master key mkτ directly. It can only access mkτ indirectly by querying the
secure element with a group G, timestamp τ ′ and session transcript Γ. The
secure element will then return a session master key smτ ′,0 created by hashing
the received group together with the master key evolved to timestamp τ ′ and the
received transcript. If either the timestamp τ ′ is less than the internally stored
value, or the owner of the secure element is not a member of the group G, then
smτ ′,0 = ⊥. Formally we define the secure element oracle as follows:

Definition 5. Let G be a group, Γ a transcript, τ ′ the timestamp input by the
user, and τ the current timestamp of the master key. Then an instance iid may
query the secure element oracle, O(iid)

SE , for a session master key according to
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O(iid)
SE (G, Γ, τ ′)

1 : if iid /∈ G or τ > τ ′ :

2 : return ⊥
3 : mkτ ′ ← Evolve(mkτ , τ ′ − τ)

4 : smτ ′,0 ← H(G, mkτ ′ , Γ)

5 : return smτ ′,0

where H is a hash function, and Evolve(·, ·) is an algorithm that takes two argu-
ments. The second argument specifies the number of times the first argument is
to be ratcheted using a key derivation function.

4.2 A Basic Group Key Exchange Protocol

The secure element oracle described in the previous section can be viewed as a
very simple group key exchange protocol as seen in Fig. 3. The oracle provides
FS and PCS but as we will see in this section the group key exchange protocol
provides forward secrecy but only a limited version of post compromise security.

The protocol has two commands, CmdΠ = {(newSMK,G, Γ, τ), (ratchet)},
that either generates a new session master key using the oracle from Defini-
tion 5 (newSMK) or ratchets the existing session master key (ratchet). Since
newSMK takes the group as input, the secure element ratchet protocol offers
dynamic group membership although the exclusion of members relies on the fact
that the secure element is secure and acts as desired.

The secure element ratchet protocol offers implicit authentication through
the use of a pre-shared master key, and does not use an asymmetric key pair to
sign and authenticate messages.

The epoch is defined as a tuple (τ, t) where the first variable refers to the
timestamp of the secure element and the second to the number of ratchets of
the session master key generated from mkτ . The epochs are compared using
lexicographic ordering.

Theorem 2. Let A be an adversary against Π, the secure element ratchet pro-
tocol described in Fig. 3. Then the advantage of A is

AdvFS-KIND
Π (A) ≤ (lh1 + lh2)/n + AdvROR

OSE
(B),

where n is the number of possible key values, and lh1 is the number of Expose
queries and lh2 is the number of Reveal queries.

Proof. We model Evolve(·, ·) and G as hash functions in the random oracle model.
The proof will be executed as a series of game hops (Fig. 4).
Game 0 : Original secure element ratchet protocol.

Pr [G0] = AdvFS-KIND
Π (A)

Game 1: The protocol execution of the ratchet command is exchanged with a
random value.
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Fig. 3. Secure Element ratchet protocol description consisting of two commands to
either generate a new session master key or to ratchet the existing key forward. The
function Evolve(·, ·) is a function as described in Definition 5 and G is a hash function.

An adversary that can differentiate between Game 0 and Game 1 can differ-
entiate between a random value and a value generated by a hash function from
an unknown random value. Since we are in the random oracle model, in order to
differentiate the adversary must have queried the random oracle at the existing
pre-image, so

|Pr [G0] − Pr [G1]| ≤ lh1

n
.

Game 2: The protocol execution of the secure element oracle is exchanged for a
random value.

An adversary that can differentiate between Game 1 and Game 2 can differ-
entiate between a random value and a secure element oracle, so

|Pr [G1] − Pr [G2]| ≤ AdvROR
OSE

(B).

Game 3: The session key is exchanged for a random value.
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Fig. 4. Gamehops of protocol Fig. 3 for protocol Theorem 2.

An adversary that differentiates between Game 2 and Game 3 can differen-
tiate between a hash value and a random value, so

|Pr [G2] − Pr [G3]| ≤ lh2

n
.

Finally, an adversary can only win in Game 3 with probability 1
2 since either

value that could be returned by the challenge oracle would be sampled from the
same, uniform distribution, so it has advantage 0. The claim follows. ��

Note that if the epoch window was only changed when the secure element
oracle is queried, the protocol would be PCS. However, this would potentially
mean larger session windows.

5 Protocol

Finally, we developed a group key exchange protocol with dynamic group mem-
bership that functions over mobile ad hoc networks. The developed protocol
provides forward secrecy as well as post compromise security.
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Situational Requirements. For group communication over emergency networks,
we should distinguish between required and desired properties.

Availability is a requirement. Some transmissions may be dropped but even
when some key updates are lost the group members should be able to reconnect
without major overhead.

The ability to add users is a requirement. In rescue missions new personnel
may join after the operation has started. However, they need to be able to do so
without having reliable access to all group members, as we do not want to recall
everyone to redistribute key material. It is important that existing members are
not in danger of being ejected from a group when new members are added.

The ability to remove users from the group is a desired property. The same
restrictions apply for removing as for adding users, but it is of lower priority due
to the emphasis on availability. The ability to remove users also gives rise to a
desire for post-compromise security ; we want future communication to recover
after a corruption has been detected.

Forward secrecy allows for earlier keys to remain secure after a session key of
a device has been compromised. Since loss of equipment is not an unreasonable
assumption, and since personal information such as medical history might be sent
over these networks, we consider this a highly desirable property and should be
a priority when developing the protocol. That said, due to availability concerns,
it is not a strict requirement.

Situational Restrictions. Communication over emergency networks comes with a
number of restrictions. In particular there will be varying connectivity, restricted
bandwidth, high bit error rate and a high probability of packet loss due to
the lack of reliable infrastructure. There will also be dead-spots where group
members will be temporarily out of reach, and at times users may intentionally
not answer while still being able to receive, e.g. due to radio silence.

Thus, our communication protocol must tolerate that some group member
does not receive some messages or packets. If a key update message is lost, the
affected user should be able to catch up later with minimal overhead [12].

Furthermore, there should be no response requirement or need to acknowl-
edge that a message has been received. Since users may be in silent mode, or the
response message is lost in transit, the instance that initiates an update should
therefore not rely on other group members being able to respond.

The setup phase does not face the same network restrictions and difficulties
that are present later during use. During setup, information can be shared using
a more stable network or through a wired connection. We therefore allow for
larger transmissions without errors or packet loss to occur during this stage.

Discussion. Existing continuous group key agreement schemes such as MLS [2]
have the desired properties that we would like to achieve for our protocol where it
obtains both dynamic group membership as well as post compromise security and
forward secrecy. It does, however, not take the situational restrictions applicable
to a mobile ad hoc network into consideration since it requires all members to be
active in order to achieve its security goal [2]. In fact, it specifically states that
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the protocol should «mandate key updates from clients that are not otherwise
sending messages and evict clients which are idle for too long.» [5, Section 7.2.2].

Furthermore, if packets are dropped such that existing group members miss
out on updates, then a reintroduction to the group needs to be issued to every
member that did not receive the update. This operation is essentially a new
group member addition and has substantial transmission overhead when multiple
members need to be reintroduced. It is thus not an ideal solution for unreliable
networks as it may substantially lower availability.

5.1 Protocol Description

The hybrid scheme presented in this section combines the secure element ratchet
protocol from Fig. 3 with a group key exchange protocol that provides dynamic
group membership, e.g. TreeKEM [1,6].

The desired result follows almost directly from Theorem 1, only epoch style
and command set needs to be specified. In the remainder of the paper we let
subprotocol one, Π1, be the secure element ratchet protocol from Fig. 3 and let
subprotocol two, Π2, be a PCS,FS-KIND ε-secure group key exchange protocol
with dynamic group membership. The hybrid protocol will be denoted Π.

To specify the command set we need to make some requirements of the second
protocol. Let CmdΠ2 be the command set of subprotocol Π2. We require that
CmdΠ2 contains two commands, here denoted AddΠ and RemoveΠ, where the
former includes a specified instance into the group while the second algorithm
excludes. The command set CmdΠ can be viewed as a subset of the space CmdΠ1×
CmdΠ2 defined as follows:

CmdΠ = {(newSMK, cmd2) : cmd2 ∈ (CmdΠ2 ∪ {ε})} ∪ {(ratchet, ε)}
It should be noted that the second subprotocol is the main contributor for

dynamic group membership in order to reduce some of the trust placed on
the secure element component. We do, however, allow addition and removal
of group members without communication with Π2, as seen in the command
cmd = (newSMK, ε). This is to ensure that the protocol offers dynamic group
membership even when the bandwidth is limited.

Using a combined epoch or an epoch inherited from Π1 the protocol achieves
forward secrecy. If the epoch is inherited from Π2 the hybrid construction
achieves PCS as well. In practice this means that any time a user is added
or removed to the group all previous or future session keys are secured.

From the discussion above and Theorem 1 the following statement follows.

Lemma 1. Let Π be the hybrid protocol described above. Let A be a PPT-
adversary against Π, then there exists a PPT-adversary B1 against Π1 and a
PPT-adversary B2 against Π2, such that

AdvY-KIND
Π (A) ≤ min

[
(lh1 + lh2)/n + AdvROR

OSE
(B), AdvFS,PCS-KIND

Π2
(B2)

]
.

If epoch is inherited from the secure element ratchet protocol then Y = FS.
On the other hand, if epoch is inherited from Π2 then Y = FS, PCS.
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5.2 Discussion on Credibility of the Secure Element Assumptions

Is the assumption of a secure element as presented above too strong for real
world applications? Also, assuming a secure element, do we need anything else?

The answer to the first question is almost. As with any technology, a secure
element cannot be guaranteed to be safe against future attacks. We therefore
considered secure elements as hardware devices more secure than regular tech-
nology products, but not impenetrable.

The applications described for this use case are mobile ad hoc networks and
more specifically emergency networks. These are circumstances that generally
require special equipment to function. Hence requiring this equipment to be fitted
with special hardware is not an unrealistic assumption. This can be specially
constructed equipment for the environment or physical add-ons that are plugged
into an already existing device such as a phone. It is important to note that
information generated by a secure element, but processed and used by a non-
secure CPU, does not have the security guarantee of secure elements, since an
adversary can access the information while it is being processed. Hence, any
information that needs the highest degree of protection, such as the master key,
should only be indirectly available through the secure element oracle.

It should be required that the master key is evolved on a regular basis since
a total attack prevention can never be guaranteed. If the secure element were
to be compromised at any point in time the current master key and any future
derivations of said key will be compromised. However, all messages sent using
previous master key will remain secure.

The second question, is a secure element sufficient on its own, is largely
answered by the above discussion. By relying only on the secure element, we
leave ourselves vulnerable to a singular point of failure that would completely
remove any future security if a successful attack was launched. Furthermore,
without adding any additional protection to the construction we rely on the
trustworthiness of any secure-element manufacturer to not add any back-doors,
either intentionally or unintentionally. Both of these concerns can be alleviated
by using the secure element as part of a hybrid scheme.
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Abstract. In this paper, we propose the Dynamic Multi-Server Updat-
able Encryption (DMUE) primitive as an extension of standard public-
key updatable encryption. Traditional UE aims to have efficient cipher-
text updates performed by an untrusted server such that the compro-
mise of several cryptographic keys and update tokens does not reduce
the standard security of encryption. The update token supports out-
sourced ciphertext updates without requiring the server to decrypt and
re-encrypt the ciphertext and it is typically derived from old and new
keys. To mitigate the risk of a single point of failure in single-server UE
and thus improve the resilience of the scheme, we formalise a multi-server
variant of UE to treat the issue of token leakage. We can achieve a dis-
tributed update process by providing each server with an update token
and requiring a threshold of servers to engage honestly. However, servers
may act dishonestly or need to be replaced over time, so our primitive
must cater to dynamic committee changes in the servers participating
across epochs. Inspired by the work of Benhamouda et al. (TCC’20) on
dynamic proactive secret sharing, we propose a generic DMUE scheme
built from public-key UE and dynamic proactive secret sharing primi-
tives and prove the ciphertext unlinkability of freshly encrypted versus
updated ciphertexts.

Keywords: Public-Key Updatable Encryption · Dynamic
Committees · Threshold Secret Sharing · Trust Management · and
Security

1 Introduction

Outsourcing encrypted data is a common practice for individuals and organisa-
tions wanting to store their information in a secure manner over long periods.
Yet the server storing the information cannot always be trusted and there is
greater opportunity for an adversary to corrupt the cryptographic key used for
encryption. One solution to managing security in this setting is the updatable
encryption (UE) primitive [6,14,22], which is utilised for privacy preservation
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in multiple applications such as cloud storage; online medical information and
blockchain technology. Informally, UE allows a data owner to outsource the stor-
age and key rotation of ciphertexts, from one epoch to the next, to an untrusted
server. The server updates the ciphertext using an update token derived from
old and new cryptographic keys, which evolve with every epoch, such that they
do not learn anything about the underlying information in the update process.
Updatable encryption is traditionally viewed as a symmetric primitive, however,
more recently it has been defined in the public-key setting (PKUE) [20] which
has allowed research to explore outsourced ciphertext updates whereby the users
can receive messages from multiple senders directly in the cloud environment
[1,16,26]. We focus on the PKUE primitive in this work.1

The core purpose of (PK)UE is to reduce the impact of key exposure and, in turn,
token exposure, preserving standard encryption security such as confidentiality
and the updatable notion of unlinkability [19]. Despite efforts to increase security
in any UE setting, there remain risks with respect to security and resilience. The
most prevalent risk is a single point of failure if the server is corrupted by an
external adversary. In this scenario, a data owner’s encrypted data will remain
encrypted under the same key, defeating the purpose of UE as an adversary has
more time in which to corrupt the cryptographic key and learn the underlying
message. A second possible scenario occurs when the server acts dishonestly in
the sense of failure to update ciphertexts correctly, if at all. If the ciphertext
is updated incorrectly then the data owner may be misled upon decrypting the
ciphertext. To illustrate, if the encrypted data is regarding a personal financial
account and the update is incorrect then the data owner may be misinformed
about the amount of money in their account.
A natural solution to this issue is to distribute the token, used to update cipher-
texts, across multiple servers such that some pre-defined threshold of servers
can ensure the ciphertext is updated in each epoch. This solution works, but a
static set of servers does not reflect the real world because servers often change
over long periods or possibly need to be removed from a scheme due to dishon-
est behaviour. To illustrate, suppose we wish to store a secret on a public-key
blockchain such that nodes of the blockchain structure are considered to be the
servers in a multi-server UE scheme. The authors of [3] demonstrated that node
churning needs to be taken into consideration when designing a scheme for this
application. This led us to propose a multi-server PKUE primitive supporting a
dynamic committee of servers from one epoch to the next. We call this primitive
dynamic multi-server updatable encryption (DMUE) such that the ciphertext
update process is designed to be deterministic and ciphertext-independent. We
note that the approach of having an evolving committee of servers is similar to
previous works such as [2,21,23,28].

1 The authors of [11,12] established definitions for updatable public-key encryption
(UPKE) using an alternative update procedure. One can view UPKE as a distinct
primitive to PKUE [20] since the token mechanism used in a UPKE scheme only
updates the public key. By contrast, PKUE updates public and secret key pairs as
well as the ciphertext.
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More concretely, DMUE captures servers in specific epochs each possessing an
update token, whereby their tokens are utilised in the process of updating a
ciphertext. Moreover, the committee of servers in consecutive epochs may differ
and so a redistribution protocol is required to provide new servers with their
corresponding tokens. Defining the security of a DMUE primitive proves to be
challenging and nuanced due to the bi-directional nature of key updates [18,24]
in the design of a PKUE scheme. Moreover, the inference of keys from tokens
is further complicated in the multi-server setting since an adversary can only
succeed in their attack if they corrupt a threshold of server tokens in any given
time period, with the servers and threshold potentially evolving with each epoch.
Note, the adversary modelled is assumed to be mobile [28], which means they can
dynamically and actively corrupt servers at any given time in a DMUE scheme,
provided their corruption capabilities are bounded.
Contributions. Our contributions are threefold: we formalise a dynamic multi-
server updatable primitive called DMUE in Sect. 2, used to mitigate the problem
of a single point of failure in standard PKUE schemes. In Sect. 3 we present
a new notion of security against update unlinkable chosen ciphertext attacks
(MUE-IND-CCA), which captures a mobile adversary attempting to corrupt a
threshold or more of secret update tokens. It is crucial to maintain confidentiality
through the ciphertext update unlinkability notion as it guarantees a ciphertext
generated by the update algorithm is unlinkable from a ciphertext generated
by fresh encryption, even when the adversary sees many updated ciphertexts of
chosen messages. We highlight that the focus of our paper is to capture a notion
of confidentiality in the threshold multi-server PKUE setting. However, we also
note that extending the security framework to capture ciphertext integrity is
possible, thus preventing adversarial ciphertext forgeries, and is included in a full
version of this work for completeness. In Sect. 4 we present a generic construction
of DMUE built from a single-server public-key UE primitive and a dynamic
threshold secret sharing scheme. The crux of our generic construction is that the
data owner acts as the dealer and distributes a vector of n update tokens shares
per epoch to the corresponding servers. Then at least a threshold of t servers can
reconstruct the complete (master) token and proceed to update the ciphertext
to encryption in epoch (e + 1). This is achieved using standard PKUE and
secret-sharing techniques. We then consider the practicalities of applying DMUE
by providing an overview of a concrete scheme built from dynamic proactive
secret sharing, in which an old server committee participates in a redistribution
process to refresh and securely distribute update tokens to the new epoch server
committee. We conclude our work by proving that our generic DMUE scheme
satisfies the ciphertext unlinkability security notion we propose.
Related Work To the best of our knowledge, there has been no discussion
within the UE literature that considers the insecurity of a UE scheme following
a single-point-of-failure (SPOF) with respect to the server performing cipher-
text updates. We believe it is a natural step to explore the resilience of a UE
scheme to further support the strong security guarantees desired in this area of
research. Not only is our solution of a multi-server UE primitive a novel design,
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but it also enables us to consider dynamic changes in servers over time which is
essential if a server becomes corrupt or can no longer provide a service. The most
closely aligned primitive to DMUE is threshold proxy re-encryption (PRE) [7,31]
whereby schemes distribute the process of ciphertext re-encryption and decryp-
tion delegation using secret sharing and standard PRE as building blocks. More
recently, the authors of [27] proposed the first proactive threshold PRE primitive,
labelled PB-TPRE, which extends the work of [7,31] by addressing the issue of
long-term secret shares as well a change in the proxies possessing shares. Con-
sequently, the authors of [27] propose similar techniques to our generic DMUE
construction. However, it is notable that the work on PB-TPRE demonstrates
provable security of a concrete scheme that achieves the weaker confidentiality
notion of chosen plaintext security as opposed to our work which is proven to
satisfy security against chosen ciphertext attacks. Furthermore, we highlight that
the fundamental differences between DMUE and PB-TPRE primitives stem from
the distinctions between the standard PKUE and PRE primitives. In particular,
proxy re-encryption (PRE) was first introduced by [5] as a primitive in which a
proxy server re-encrypts a ciphertext under a sender’s secret key and delegates
decryption under a recipient’s secret key. In contrast, UE uses the technique of
key rotation for time updates from one epoch to the next. Further differences
between the two primitives have been explored extensively in [10,19,22]. Besides
the PRE primitive, the recent work of [15] uses a similar approach to our own
ideas. The authors propose the first policy-based single-sign-on (SSO) system to
prevent service providers from tracking users’ behaviour. To achieve this, their
primitive distributes tokens, conditioned on users’ attributes, to multiple service
providers in order to shield attributes and access patterns from individual enti-
ties. Whilst access control is not a focus of UE research, we observe that the
methods used in [15] to mitigate SPOF are akin to our own core ideas.

2 Dynamic Multi-server Updatable Encryption

In this Section, we introduce the notation used in this paper, followed by a formal
definition of a DMUE scheme and the corresponding definition of correctness.
Notation. A traditional updatable encryption scheme is defined by epochs of
time ei from the range of time i = {0, . . . ,max}. We denote the current epoch e
or use the subscript notation ei for i ∈ N if we define multiple epochs at once.
Further, (ei, ei+1) are two consecutive epochs for any i ∈ N, the token is denoted
Δei+1 to update a ciphertext to epoch ei+1, and ẽ represents the challenge epoch
in security games. In the dynamic multi-server setting, we define for epoch ei a
set of servers Sei

= {Sj}j∈[n] where Sei+1 may not be the same set, and update
token Δj

ei+1
pertains to the token server Sj possesses. We use (MSP, CSP) to

respectively denote the message space and ciphertext space of our scheme.
Extending the PKUE primitive to the dynamic multi-server setting (DMUE),
a data owner must distribute tokens to every qualified server in the commit-
tee for that epoch, who respectively work together to update the ciphertext.
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The dynamic aspect of this primitive enables different sets of servers, cho-
sen by the data owner at the time of token creation, to perform the cipher-
text update in successive epochs. Formally, a DMUE primitive is defined as
ΠDMUE = (Setup,KG,TG,Enc,Dec,Upd) whereby algorithms (KG,Enc,Dec) are
formalised as in standard PKUE [20] and the data owner runs all algorithms
asides from Upd, the latter of which is run by the servers in a given epoch.2

Definition 1 (DMUE). Given a set of servers S of size n ∈ N and a threshold
t ≤ n, a dynamic multi-server updatable encryption scheme is defined by a tuple
of six PPT algorithms ΠDMUE = (Setup,KG,TG,Enc,Dec,Upd) as follows.

1. Setup(1λ) $→ pp : the setup algorithm is run by the data owner, who uses
security parameter 1λ as input and randomly outputs the public parameters
pp.

2. KG(pp, ei)
$→ kei

:= (pkei
, skei

) : given public parameters, the data owner
runs the probabilistic key generation algorithm and outputs the public and
private key pair (pkei

, skei
) for epoch {ei}i∈[0,max].

3. TG(pp, skei
, kei+1 , Sei+1) → {Δj

ei+1
}j∈[n] : the token generation algorithm is

run by the data owner, who uses the following inputs: public parameters,
the old epoch secret key skei

, the new epoch public and private key-pair
kei+1 := (pkei+1 , skei+1) generated by the key generation algorithm, and the
new set of servers Sei+1 = {Sj}j∈[n]. The deterministically computed output
is n update tokens {Δj

ei+1
}j∈[n], which are securely sent to the chosen servers

Sj ∈ Sei+1 .
3

4. Enc(pp, pkei
,m) $→ Cei

: given public parameters and the epoch public key
pkei

, the data owner runs the probabilistic encryption algorithm on message
m ∈ MSP and outputs the ciphertext Cei

.
5. Dec(pp, skei

, Cei
) → {m,⊥} : given public parameters and the epoch secret

key, the data owner is able to run the deterministic decryption algorithm in
order to output message m or abort (⊥).

6. Upd(pp, {Δk
ei+1

}k∈N, Cei
) → Cei+1 : for some k ≥ t, the subset S′ ∈ Sei+1 of

servers, such that |S′| = k, can deterministically update ciphertext Cei
using

their tokens Δk
ei+1

to output an updated ciphertext Cei+1 .

Correctness. Intuitively, defining the correctness of the DMUE primitive fol-
lows from the definition of correctness for the single server PKUE primitive.
Specifically, the correctness property ensures that fresh encryptions and updated
ciphertexts should decrypt to the underlying plaintext, given the appropriate
epoch key. However, the multi-server setting additionally has to encapsulate the

2 We note that in the multi-server setting, the update process is interactive and is
therefore a protocol. However, we chose to use the term algorithm to stay in keeping
with the single-server PKUE terminology as ΠDMUE can reduce to the single-server
setting when n = t = 1.

3 Note in the definition of DMUE that the data owner chooses the committee of servers
{Sei+1}∀i∈N.
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concept of ciphertext updates from a threshold number of tokens. The formal
definition of correctness follows.

Definition 2 (Correctness). Given security parameter λ and threshold t ≤
k ≤ n, dynamic multi-server updatable encryption scheme (ΠDMUE) for n
servers, as formalised in Definition 1, is correct if for any message m ∈ MSP,
for any l ∈ {0, . . . ,max−1} such that max denotes the final epoch of the scheme,
and i = (l + 1), there exists a negligible function negl such that the following
holds with overwhelming probability.

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pp
$← Setup(1λ);

kei
= (pkei

, skei
) $← KG(pp, ei);

{Δj
ei

}j∈[n] ← TG(pp, skei−1 , kei
, Sei

);

Cel

$← Enc(pp, pkel
,m);

{Cei
← Upd(pp, {Δk

ei
}k∈N, Cei−1) :

i ∈ {l + 1, · · · ,max} ∧ |k| ≥ t};
Dec(pp, skemax , Cemax) = m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 1 − negl(1λ).

Remark 1. The multi-server aspect of Definition 1 affects the TG and Upd algo-
rithm definitions compared to standard PKUE algorithms. Note, we have omit-
ted the formal definition of traditional PKUE [20] due to lack of space, however,
we emphasise that Definition 1 satisfies the PKUE definition when t = n = 1.

3 Security Modelling

In this Section, we define a notion of security satisfying the highest level of
confidentiality achievable in deterministic PKUE schemes. More specifically, the
experiment models dynamic multi-server PKUE security against update unlink-
able chosen ciphertext attacks (MUE-IND-CCA security). Crucially, unlinkability
needs modelling to ensure that a ciphertext generated by the update algorithm is
indistinguishable from a ciphertext generated by fresh encryption. Note, captur-
ing the full capabilities of an adversary attacking a DMUE scheme is inherently
challenging due to the bi-directional nature of ciphertext updates [18,24,30].
Consequently, it is necessary to record inferable information obtained from cor-
rupted keys, tokens, and ciphertexts.
We start by detailing the lists recorded and oracles necessary to model the
security of a DMUE scheme. For clarity, we will separate descriptions of oracles
specific to the DMUE setting versus standard PKUE oracles, that is, the remain-
ing oracles required in security modelling that are unchanged from the security
framework of single-server PKUE [20]. The lists and oracles play a vital role



Dynamic Multi-server Updatable Encryption 481

in preventing trivial wins and guaranteeing security by capturing, in the lists a
challenger maintains, the information an adversary can infer. Further, lists are
checked after oracle queries as well and they’re incorporated into the winning
conditions of the security experiment.
We observe that our security model defines an adversary A := {AI ,AII}, repre-
senting a malicious outside adversary (AI) and dishonest server (AII). Typically,
only adversary AI is considered in single server PKUE, as the literature assumes
the lone server is honest. Conversely, the main motivation in our work is tack-
ling the issue of a single point of failure regarding server updates. Thus, we have
to consider adversary AII to capture the threat of dishonesty or collusion of a
threshold or more servers. To be succinct, our security experiment and defini-
tion uses the notation A, however, we capture both types simultaneously. That
is, an outside adversary is modelled in the usual manner of UE, through lists
recording corrupted and inferable information. Specific to a corrupt server, the
token corruption oracle is crucial in recording any epoch in which a threshold or
more tokens have been corrupted.

– L = {(e′, Ce′)e′∈[e]} : the list containing the epoch and corresponding cipher-
text in which the adversary learns (through queries to the update oracle OUpd)
an updated version of an honestly generated ciphertext.

– K = {e′ ∈ [e]} : the list of epoch(s) in which the adversary has obtained an
epoch secret key through calls to OCorrupt-Key(e′).

– T = {e′ ∈ [e]} : the list of epoch(s) in which the adversary has obtained at
least a threshold number of update tokens through calls to OCorrupt-Token(e′).

– C = {(e′, Ce′)e′∈[e]} : the list containing the epoch and corresponding cipher-
text in which the adversary learns (through queries to the update oracle OUpd)
an updated version of the challenge ciphertext.

– C∗ ← {e′ ∈ {0, . . . , emax}|challenge-equal(e′) = true} : the list of challenge-
equal ciphertexts, defined by a recursive predicate challenge-equal, such that
true ← challenge-equal(e′) iff : (e′ ∈ C) ∨ (challenge-equal(e′ − 1) ∧ e′ ∈ T ) ∨
(challenge-equal(e′ + 1) ∧ (e′ + 1) ∈ T ).

Fig. 1. The set of lists L := {L, K, T , C∗} the challenger maintains in the global state
(GS) as a record of during security games.

Lists. We provide Fig. 1 as a descriptive summary of the lists maintained by the
challenger (as part of the global state GS) in the ensuing security experiment. We
note that the main deviation in the list description compared to the single server
PKUE setting [20] is found in list T . Here, the challenger maintains a count of
how many server tokens have been corrupted per epoch (see Fig. 2), and only
records the epochs in which a threshold number token have been corrupted. List
C∗, which is an extension of list C, is also modified to the multi-server setting.
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This list contains the epoch and corresponding ciphertext in which the adver-
sary learns (through queries to the update oracle OUpd) an updated version of
the challenge ciphertext. In greater detail, a CCA-secure DMUE scheme with
deterministic re-encryption requires a challenger to record all updates of hon-
estly generated ciphertexts and maintain a list of challenge-equal epochs (C∗)
in which a version of the challenge ciphertext can be inferred. That is, list C∗

incorporates a challenge-equal predicate presented in Fig. 1 which encapsulate
all of the challenge-equal epochs in which the adversary knows a version of the
challenge ciphertext, either from calls to the update oracle or through compu-
tation. To illustrate, if {e, e + 1} ∈ C∗, it is possible for an adversary to perform
the update computation of the ciphertext since the adversary can infer infor-
mation using corrupted ciphertexts and tokens from epochs {e, e + 1} ∈ (C, T ).
Thus, if an adversary knows a ciphertext C̃e from challenge epoch e and the
update token Δe+1, then the adversary can compute the updated ciphertext to
the epoch (e + 1) and realise challenge ciphertext C̃e+1.

3.1 Oracles

First, we present an important predicate in updatable encryption security mod-
elling as it will be utilised in the running of decryption and update oracles in our
security experiment.4 Crucially, the isChallenge predicate defined by [19] is used
to prevent the decryption of an updated challenge ciphertext, irrespective of
whether the updatable encryption scheme is designed for probabilistic or deter-
ministic ciphertext updates. Informally, the isChallenge(kei

, C) predicate detects
any queries to the decryption and update oracles on challenge ciphertexts (C̃),
or versions (i.e., updates) of the challenge ciphertext.

Definition 3 (isChallenge Predicate). Given challenge epoch ẽ and challenge
ciphertext C̃, the isChallenge predicate, on inputs of the current epoch key kei

and
queried ciphertext Cei

, responds in one of three ways:

1. If (ei = ẽ) ∧ (Cei
= C̃), return true;

2. If (ei > ẽ) ∧ (C̃ 	= ⊥), return true if C̃ei
= Cei

in which C̃ei
is computed

iteratively by running Upd(pp,Δel+1 , C̃el
) for el = {ẽ, . . . , ei};

3. Otherwise, return false.

Now we describe the five oracles O = {ODec,ONext,OUpd,OCorrupt-Token,
OCorrupt-Key} at a high level before providing detail of how they run.

– ODec : to prevent an adversary from trivially winning by querying the decryp-
tion of a queried challenge ciphertext, the following condition must be satis-
fied. The predicate isChallenge (Definition 3) must return false. In this case,
the decryption of a valid ciphertext under the current epoch secret key is
returned. Else, the failure symbol ⊥ is returned.

4 A predicate is a statement or mathematical assertion that contains variables. The
outcome of the predicate may be true or false depending on the input values.
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– OUpd : the update oracle only accepts and responds to calls regarding honestly
generated ciphertexts or derivations of the challenge ciphertext, by checking
lists {L, C∗} respectively. If this is the case, the output is an update of the
queried ciphertext to the current epoch. Next, the updated ciphertext and
current epoch are added to the list L. Moreover, if the isChallenge predicate
returns true on the input of the queried key and ciphertext, then the current
epoch is added to the challenge-equal epoch list C∗.

– ONext : queries to the next oracle in challenge epoch e result in an update of
the global state to the epoch (e+1). This is achieved by running key and token
generation algorithms to output the epoch key pair ke+1 = (pke+1, ske+1) and
tokens Δj

e+1,∀j ∈ [n], respectively. If the query is in an epoch such that the
adversary has corrupted the epoch key or the epoch belongs to list L, then
the current challenge ciphertext must be updated to the next epoch using a
threshold or more of the generated update tokens and the new ciphertext is
added to the list of honestly updated ciphertexts (L).

– OCorrupt-Token,OCorrupt-Key : queries to these oracles allow the corruption of a
threshold number of tokens and epoch secret key respectively. The restriction
for both oracles is that the adversary’s query must be from an epoch preceding
the challenge-epoch e. Additionally, if an adversary queries the corrupt-token
oracle for server Sj , not in the queried epoch server committee Se′ then the
corrupt-token oracle returns a failure symbol ⊥.

Security Experiment. After the initialisation which outputs a global state
(Fig. 3) and with a challenge public key pke, the adversary proceeds to query
the oracles in Figs. 2 and 3. They output a challenge message m′ and ciphertext
C ′ in the queried epoch e. Before proceeding, the challenger must check that the
given message and ciphertext are valid (belongs to MSP, CSP respectively).
Otherwise, the challenger aborts the game and returns ⊥. Moving forward, the
challenger randomly chooses bit b ∈ {0, 1} which dictates whether the DMUE
encryption algorithm or a version of the update algorithm is run on the respective
challenge inputs {m′, C ′}. The resulting output is a challenge ciphertext C(b)

such that for b = 0 the ciphertext is from fresh encryption and for b = 1 the
ciphertext is generated by the update algorithm UpdateCh.5 The global state
must be updated by the challenger, especially the set of lists L. Equipped with a
challenge output C(b) and public parameters, the adversary can query the oracles
again before outputting a guess bit b′ ∈ {0, 1}. The adversary succeeds in the
security experiment if they satisfy certain winning conditions and successfully
guess the correct bit (b′ = b).

Definition 4 (MUE-IND-CCA-Security). Definition 1 of a dynamic multi-
server updatable encryption scheme (ΠDMUE) is MUE-IND-CCA secure against
update unlinkable chosen ciphertext attacks following Fig. 4 if for any PPT adver-
sary A the following advantage is negligible over security parameter λ:
5 Algorithm UpdateCh is used as compact notation, following the notation of [8], to

denote the process of repeated application of the update algorithm from epoch {e +
1, . . . , ẽ}.
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OUpd(Cei)
if ((ei, Cei) L∈� ) ∨ (ei /∈ C∗) then

return ⊥
else

for el = {ei+1, . . . , e} do
Cel←Upd(pp, {Δk

el}t≤k≤n, Cei)

Ce ← Cel

return Ce

L ← L ∪ {(e, Ce)}
if isChallenge(kei , Cei) = true then

C∗ ← C∗ ∪ {e}
ONext(e)

ke+1 := (pke+1, ske+1)
$← KG(pp, e + 1)

{Δj
e+1}j∈[n] ← TG(pp, ske, ke+1, Se+1)

Update GS
(pp, ke+1, Te+1,L, e + 1)
if (e ∈ K) ∨ (C, e) ∈ L then

(C′, e + 1)←Upd(pp, {Δk
e+1}|k|≥t, C)

L ← L ∪ {(C′, e + 1)}
OCorrupt-Token(e′, j)

if (e′ ≥ e) ∨ (Sj �∈ Se′) then
return ⊥

else
return Δj

e′ some j ∈ [n]
Store tokens in a list Te′

if |Te′ | ≥ t tokens have been corrupted in epoch e′ then
T ← T ∪ {e′}

Fig. 2. Details of oracles an adversary A has access to during the security experiment
of Definition 4 that is specific to the multi-server setting.

AdvMUE-IND-CCA,b
ΠDMUE,A (1λ) :=|Pr[ExpMUE-IND-CCA,0

ΠDMUE,A (1λ) = 1]−
Pr[ExpMUE-IND-CCA,1

ΠDMUE,A (1λ) = 1]| ≤ negl(1λ),

for some polynomial time function negl(·).
Preventing Trivial Wins and Ciphertext Updates. We demonstrate the
importance of the challenger recording lists T in the corrupt-token oracle, and
list C∗ in the update oracle. Without the restrictions imposed on the corrupt-
token oracle, the following can occur. If an adversary A corrupts t or more tokens
{Δk

e+1}k≥t from the corresponding server committee Se+1, in an epoch proceed-
ing the challenge epoch ẽ, then A is capable of trivially updating the ciphertext
into the next epoch (e + 1), using a computed token, following Definition 1.
Consequently, we place restrictions on calls to OCorrupt-Token and impose the win-
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Init(1λ)

pp
$← Setup(1λ)

k0 := (pk0, sk0)
$← KG(pp, 0);

Δ0 ← ⊥
T0 ← TG(pp, k0, S0) such that

T0 := {Δ1
0, . . . , Δ

n
0 }

e ← 0
L ∈ ∅
return GS
GS := (pp, k0, T0,L, 0)

ODec(Ce)
if isChallenge(kei , Cei) = true then

return ⊥
else

m ← Dec(pp, ske, C)
return m

OCorrupt-Key(e′)

if (e′ ≥ e) then
return ⊥

else
return ske′

K ← K ∪ {e′}

Fig. 3. The oracles an adversary has access to for the experiment capturing Definition
4 that remain unchanged from the single-server setting of a PKUE scheme.

ning condition in Fig. 4. This condition states that the intersection of lists K
and C∗ must be empty. Thus, the challenge epoch cannot belong to the set of
epochs in which a threshold of update tokens have been obtained/inferred, and
there doesn’t exist a single epoch where the adversary knows both the epoch key
(public and secret key components) and the (updated) challenge-ciphertext [22].
The distinction of DMUE security modelling from single-server PKUE is that
list T ∈ C∗ does not record epochs in which token corruption occurred when the
number of tokens corrupted is less than some threshold. That is, DMUE security
modelling tolerates a certain level (below the threshold) of token corruption in
any given epoch as less than the threshold of corrupted tokens does not provide
the adversary with meaningful information.

4 Our Construction

In this Section, we use Definition 1 as a basis for formalising a generic DMUE
construction. We achieve this using dynamic proactive secret sharing (DPSS)
[2,21,23] and single server PKUE primitives as building blocks. Before going
into detail about our construction, we present the formal definition of a DPSS
protocol, as well as defining DPSS correctness and secrecy properties.

4.1 Construction Preliminaries

Dynamic proactive secret sharing (DPSS) [23] is an extension of traditional secret
sharing [4,29] such that shares belonging to a committee of parties are refreshed
after some time has passed. A standard threshold secret sharing scheme (SS)
[4,29] has a dealer D distribute some secret s among a set of shareholders P =
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ExpMUE-IND-CCA,b
ΠDMUE,A (1λ)

GS $← Init(1λ); GS := (pp, k0, T0,L, 0) such that L := {L, K, T , C∗}
ke−1

$← KG(pp, e − 1); ke
$← KG(pp, e) such that

ke−1 := (pke−1, ske−1), ke := (pke, ske)
{Δj

e}j∈[n] ← TG(pp, ske−1, ke, Se)

(m′, C′) $← AO(pp, pke)
if (m′ PSM∈� ) ∨ (C′ PSC∈� ) then

return ⊥
else

b
$← {0, 1}

C(0) $← Enc(pp, pke, m
′) and

C(1) ← UpdCh(pp, {Δk
e}|k|≥t, C

′)
C∗ ← C∗ ∪ {e}; ẽ ← {e}

b′ $← AO(pp, C(b))
if (K ∩ C∗ = ∅) then

return b′

Else abort.

Fig. 4. The security experiment for MUE-IND-CCA-security of a DMUE scheme. Let
O = {ODec, OCorrupt-Key, ONext, OUpd, OCorrupt-Token} denote the set of oracles that adver-
sary A calls during the experiment, where the latter three oracles capture the multi-
server aspect of a DMUE scheme.

{P 1, P 2, . . . , Pn} of n parties, according to an efficiently samplable distribution
of the set of secrets labelled S = {Sλ}λ∈N, with security parameter λ. The aim
of threshold SS is that no subset t′ < t of parties in P can learn the secret
s, including an adversary controlling t′ parties. Conversely, every subset t′ ≥ t
of parties in P is capable of reconstructing s. Proactive secret sharing schemes
[17,25] (PSS) are designed for applications in which the long-term confidentiality
of a secret matter, is achieved by a refresh of shares and consequently enable a
reset of corrupted parties to uncorrupted. Observe that the secret itself remains
constant, it is only the shares that are refreshed. Dynamic PSS (DPSS) [2,21,23]
is a primitive with the same benefits as PSS plus an additional feature allowing
the group of parties participating to change periodically. The following is a formal
definition of DPSS protocol ΠDPSS=(Share, Redistribute, Recon) [2].

Definition 5 (DPSS Protocol). Given a dealer D, a secret s ∈ Sλ for secu-
rity parameter λ, L ∈ N periods, and a set of {n(i)}i∈[L] authorised parties
P i = {P i

1, . . . , P
i
n}, a (t, n) dynamic proactive secret sharing scheme is a tuple

of four PPT algorithms ΠDPSS = (Setup,Share,Redistribute,Recon) defined as
follows:

– Share Phase: D takes as input the secret s and performs the following steps
non-interactively:
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1. Setup(1λ) $→ pp : a probabilistic algorithm that takes as input security
parameter 1λ and outputs public parameters pp, which are broadcast to
all parties in P .

2. Share(pp, s, i) $→ {si
1, . . . , s

i
n} : a probabilistic algorithm that takes as

input the secret s ∈ Sλ and period i, outputting n secret shares {si
j}j∈[n],

one for each party in P .
3. Distribute si

j to party P i
j ∈ P i for every i ∈ [L] over a secret, authenti-

cated channel.
– Redistribution Phase: the algorithm Redistribute takes as input consecutive

periods (i, i + 1) ≤ L, the set of parties (P i, P i+1) and the vector of secrets
{si

j}j∈[n] belonging to P i, such that P i need to refresh and communicate
their vector of secret shares to the potentially different set of parties P i+1.
The output is a vector of secrets {si+1

j′ }j′∈[n].
– Reconstruction Phase: In period i, any party in P i = {P i

1, . . . , P
i
n}i∈[L]

can participate in the following steps.
1. Communication:

(a) Each party P i
j , j ∈ [n] sends their share si

j over a secure broadcast
channel to all other parties in P i.

(b) P i parties independently check that they have received (t−1) or more
shares. If so, they proceed to the processing phase.

2. Processing: Once P i
j has a set of t′ shares labelled S′, they independently

do the following:
(a) Recon(pp, S′, i) → {s,⊥} : a deterministic algorithm that takes as

input the set S′ of t′ shares and outputs the secret s for period i ∈ [L]
if t′ ≥ t or outputs abort ⊥ otherwise.

The following two definitions are regarding the correctness and secrecy of a
dynamic proactive secret sharing scheme ΠDPSS. We assume these properties hold
when proving the correctness and security of a proposed construction presented
in Chapter 5.

Definition 6 (DPSS Correctness). ΠDPSS is correct if ∀λ ∈ N and for

all possible sets of {n(i)}i∈[L] authorised parties P i, given Setup(1λ) $→ pp; for

all secrets s ∈ Sλ and any subset of t′ ≥ t shares S′ from Share(pp, s, i) $→
{si

1, . . . , s
i
n} communicated by parties in P i, there exists a negligible function

negl(·) such that
Pr[Recon(pp, S′, i) 	= s] ≤ negl(1λ).

Definition 7 (DPSS Secrecy). ΠDPSS is secret if ∀λ ∈ N and for all possible

sets of {n(i)}i∈[L] authorised parties P i, given Setup(1λ) $→ pp; for all secrets

s ∈ Sλ and any subset of t′ < t shares S′ from Share(pp, s, i) $→ {si
1, . . . , s

i
n}

communicated by parties in P , there exists a negligible function negl(·) such that

Pr[Recon(pp, S′, i) 	= ⊥] ≤ negl(1λ).
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Remark 2. In this work we focus on building our DMUE scheme from dynamic
threshold secret sharing, however, observe that we can easily extend the con-
struction of DMUE to be built from an alternative multi-party functionality,
namely, a version of multi-party computation (MPC) [9,13].

4.2 Building DMUE

Recall, a DMUE primitive is designed for the distribution of tokens, to multiple
untrusted servers, which are used in the ciphertext update process. A threshold
of servers can reconstruct the whole update token (Δe) for a given epoch (e),
using the corresponding server tokens. By design, the threshold is necessary to
correctly update the ciphertext into a new epoch. Moreover, the set of servers
in any given epoch is fluid to allow for the removal of corrupted servers and
support the realistic nature of long-term secret storage in which servers may
need to change. Intuitively, DPSS is an ideal building block candidate since the
techniques used cater to changes in the shareholders, achieved via a redistribu-
tion process from one epoch to the next. Additionally, it is required in a DPSS
scheme (see Definition 5) that the secret is re-shared in every period in such
a way that the shares from different windows of time cannot be combined to
recover the secret. The only way to recover the secret is to obtain enough shares
from the same period, a task which the literature [17] assumes is beyond the
adversary’s grasp and the redundancy of sharing allows robustness in the periods
of the scheme. We incorporate the aforementioned techniques into the design of
our DMUE construction.
High-Level Idea. The key idea of our construction is that we leverage a single-
server PKUE scheme and share the update token using a threshold secret sharing
protocol. Intuitively, the update token in our construction will be formed from
the current and preceding epoch keys, such that the data owner (D), taking
the position of the dealer in the DPSS scheme, distributes a vector of token
shares {Δj

ei
}j∈[n] to the set of n servers Sei

:= {S1
ei

, . . . , Sn
ei

} for current epoch
ei,∀i ∈ N. Token share generation will take place after TG is run by D and this
will occur for every epoch up to the final epoch (emax). The algorithm Upd will
also be adapted to the multi-server setting in line with Definition 1, such that a
threshold of t or more servers in set Sei+1 are required to reconstruct the update
token Δei+1 and then independently perform the update process in the classical
PKUE sense. Observe a key point clarified after the construction (Remark 3) is
that the set of servers in consecutive epochs may overlap, and so they should not
be able to learn the shares of the old or new epochs even though they participate
in the redistribution process.
For ease of defining a generic construction, we design the scheme such that
the dynamic feature is achieved in a trivial way, and does not use the DPSS
techniques to evolve server committees. In other words, we do not trust the
servers and assume the server committees for each epoch are selected by data
owner D in some way. However, after presenting our construction in Definition 8
we will make practical considerations which allow for the servers in a given epoch
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to participate in the redistribution process of token shares in order to reduce the
data owners’ computational cost. More formally, we construct a DMUE scheme
as follows.

Definition 8 (DMUE Generic Construction). Given a (t,n) dynamic
secret sharing scheme ΠSS = (SS.Setup,Share,Redistribute,Recon) from Def-
inition 5 (Definition 5) and a standard public-key UE scheme ΠPKUE =
(UE.Setup,UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd), a DMUE scheme is defined
by a tuple of six PPT algorithms ΠDMUE = (Setup,KG,TG,Enc,Dec,Upd) as
follows.

1. Setup(1λ) $→ pp : run SS.Setup and UE.Setup on input security parameter 1λ

to randomly output the public parameters pp := (ppSS, ppUE) respectively.

2. KG(pp, ei)
$→ kei

:= (pkei
, skei

) : given public parameters pp, run the proba-
bilistic key generation algorithm UE.KG to output the public and private key
pair kei

= (pkei
, skei

) for epoch ei, i ∈ N, i ≤ (max − 1).
3. TG(pp, skei

, kei+1 , Sei+1) → {Δj
ei+1

}j∈[n] : the data owner runs UE.TG to
compute token Δei+1 , followed by Share(ppSS, Sei+1 ,Δei+1) → {Δj

ei+1
}j∈[n].

Next, the data owner securely distributes Δj
ei+1

to server Sj ∈ Sei+1 , where
Sei+1 is the committee of servers for new epoch ei+1.

4. Enc(pp, pkei
,m) $→ Cei

: given public parameters and the epoch public key
pkei

, the data owner runs the probabilistic encryption algorithm UE.Enc on
message m ∈ MSP and outputs the ciphertext Cei

.
5. Dec(pp, skei

, Cei
) → {m,⊥} : given public parameters and the epoch secret

key, the owner is able to run the deterministic decryption algorithm UE.Dec
in order to output message m or abort (⊥).

6. Upd(pp, {Δk
ei+1

}k∈N,|k|≥t, Cei
) → Cei+1 : given any valid subset S′ ⊆ Sei+1 of

the epoch ei+1 committee of servers, such that |S′| ≥ t, shareholders in S′ can
reconstruct the update token by running Recon(ppSS, {Δk

ei+1
}k≥t) → Δei+1 :

Individually they can then update the ciphertext using the update algorithm
UE.Upd(ppUE,Δei+1 , Cei

) → Cei+1 .

Correctness. We show below our construction ΠDMUE, presented in Defini-
tion 8, satisfies correctness (Definition 2). Observe that by definition, the secret
reconstruction algorithm Recon from ΠDPSS, used in step 6 of the update pro-
cess, satisfies correctness following Definition 6 formalised at the start of this
Section.

Theorem 1 (Correctness of Construction). ΠDMUE is correct assuming
the underlying public-key UE scheme ΠPKUE and the underlying secret sharing
scheme ΠSS satisfy their respective definitions of correctness.

Proof. Following Definition 2, ΠDMUE is correct if Dec(pp, skemax , Cemax) outputs m
with overwhelming probability, whereby Cemax has been generated iteratively by
the update algorithm Upd. In fact, this means the decryption algorithm UE.Dec
is run and outputs m on the same honestly generated inputs. Note, one of the
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inputs is an update of the ciphertext to the final epoch (Cemax). Therefore, we
assume this ciphertext has been generated correctly by entering a reconstruction
phase of the SS scheme, that is, Recon(ppSS, {Δk

ei+1}k≥t) is run to output token
Δei+1. In turn, the resulting token is input into UE.Upd(ppUE,Δei+1, Cei

) such
that Cemax is output. Let us assume instead that Recon and/or UE.Upd output
⊥, contradicting both correctness assumptions, resulting in UE.Dec outputting
⊥. In turn, the DMUE decryption algorithm Dec will also output ⊥ instead of
m, which violates correctness in Definition 2. However, the assumptions that
the failure symbol ⊥ is output by the reconstruction phase or PKUE update
algorithm contradict our assumption that the SS and PKUE schemes satisfy
correctness. Thus, using proof by contradiction we can conclude that the DMUE
scheme ΠDMUE also satisfies correctness. �

Practical Considerations: In Definition 8 of a generic DMUE scheme, the
selection of epoch committees and generation of their respective update tokens
arise from the data owner (D). The advent of every epoch calls for D to generate
token shares for the newly selected server committee. However, in Definition
8 we can also consider the involvement of the epoch server committee as a
more elegant and practical solution to sharing the computational cost of token
generation. That is, we can introduce a redistribution phase (following Definition
5) amongst the server committee during the running of token generation (TG) to
exchange secret shares from one server committee to the next. Importantly, the
redistribution techniques from DPSS literature support the refresh of the shares
as an additional layer of security, such that these new shares still reconstruct the
same secret. In the following, we redefine the running of token generation (Step
3 of Definition 8) to support server committee involvement in the redistribution
phase.
TG(pp, skei

, kei+1 , Sei+1) → {Δj
ei+1

}j∈[n] :

1. TG(pp, ske0 , ke1 , Se1) → {Δj
e1

}j∈[n] : the DMUE token generation algorithm
is run in epoch e0, as detailed in step 3 of Definition 8.

2. Redistribution Phase: To proactively redistribute token shares to a new epoch,
the redistribution phase is run by data owner D and the committee of servers
(Sei

) in epoch ei,∀i ∈ [1,max − 1]. Using information provided by the data
owner (this could be, for instance, a masking polynomial if Shamir’s secret
sharing [29] is being used), the servers in Sei

proceed to refresh their individual
secret token shares {Δj

ei
}j∈[n]. The new vector of token shares is labelled

{Δj′
ei+1

}j′∈[n], and they are securely distributed to the corresponding server
Sj′ ∈ Sei+1 .

To explain the second step in more detail, the refresh of token shares can be
achieved during the running of token share generation described above, using the
underlying redistribution phase of the chosen concrete DPSS scheme (ΠDPSS).
For instance, secret shares are refreshed in the Shamir-based [29] DPSS scheme
of [2] in such a way that shareholders from the current committee mask their
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polynomial P with some polynomial Q, such that no party in this committee
learns shares for new polynomial P ′ := P + Q given to the next shareholder
committee, and vice versa. Thus, care needs to be taken in the choice of DPSS
scheme so as to preserve security, especially if there is a crossover between the
old and new server committees. In line with the proposed DPSS scheme from
the authors of [2], an overlap of one server possessing the same share in both
committees is not a security issue, since the threshold of the scheme is not
violated. However, we must make the following stipulation if the crossover of
servers is above the threshold to ensure the security (Definition 4, Sect. 3) holds
in Definition 8.

Remark 3. If a threshold t or more servers, Sj = Sj′
for Sj ∈ Sei

and Sj′ ∈ Sei+1

respectively, overlap in two consecutive server committees then we necessitate
distinct token shares (Δj

ei
	= Δj′

ei+1
).

5 Security Analysis

In this Section, we present and prove the formal statements of security for our
DMUE generic construction ΠDMUE from Definition 8. The following statement
of security is for our ciphertext unlinkability notion defined in Sect. 3. At a high
level, we will separate our proof into two cases: when an adversary corrupts less
than the threshold number of token shares, versus an adversary that corrupts
a threshold or more token shares. In each case, we can rely on the security of
the underlying building blocks. Specifically, we assume the secrecy of the DPSS
scheme and the satisfaction of the corresponding single-server PKUE security
notion.

Theorem 2. Assume that ΠDPSS satisfies secrecy and suppose that ΠPKUE is
a public-key updatable encryption scheme satisfying MUE-IND-CCA security for
t = n = 1. Then ΠDMUE is a MUE-IND-CCA secure scheme.

Proof. Following Definition 4, we want to show that there exists some negligible
function negl under security parameter λ such that

AdvMUE-IND-CCA,b
ΠDMUE,A (1λ) ≤ negl(1λ). (1)

given the security experiment detailed in Sect. 3, Fig. 4. To prove Eq. 1, we must
focus on two separate cases: first when an adversary A has corrupted l < t
token shares in the corresponding security game epoch ẽ and second when A has
corrupted l ≥ t token shares. Following the assumptions in Theorem 2, we note
that for either scenario we also assume the adversary’s challenge message and
ciphertext (m′, C ′) were created in some epoch e < ẽ before the current epoch
ẽ, otherwise, the security experiment will output ⊥.
Case (l < t) : Recall that secrecy is satisfied in the DPSS scheme ΠDPSS, the
formal definition of which is detailed in Sect. 4. Consequently, an adversary has
too few token shares from epoch ẽ to reconstruct the secret update token Δẽ.
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In the case that the challenger randomly chose bit b = 1 (for b = {0, 1}) A
cannot manually update their challenge ciphertext C ′ to ciphertext C ′

ẽ := C(1)

due to the secrecy property. Moreover, if A queries oracle OUpd(C ′) to update
the challenge ciphertext iteratively via epochs {e+1, . . . , ẽ}, as detailed in Fig. 2,
A is still incapable of winning the experiment as the update oracle will add ẽ to
the list of challenge-equal epochs C∗ and winning conditions (K ∩ C∗) = ∅ mean
that ⊥ is output. Therefore, A is reduced to guessing bit b (in this case b = 1)
which results in the advantage

AdvMUE-IND-CCA,1
ΠDMUE,A (1λ) = |Pr[ExpMUE-IND-CCA,1

ΠDMUE,A (1λ) = 1] − 1
2
| ≤ negl(1λ).

If the challenger randomly chose bit b = 0, A would either have to query the
epoch secret key corruption oracle to obtain skẽ to manually decrypt the cipher-
text C(0), or make calls to the decryption oracle. The assumed security of ΠPKUE

is essential in this instance to prevent trivial wins. We note that both of the
named oracles are detailed in Fig. 3. The former scenario requires A query ora-
cle OCorrupt-Key(ẽ) which results in output ⊥ to prevent trivial wins. The latter
scenario means A calls oracle ODec(C(0)) which will result in output ⊥ due to the
decryption oracle conditions. Specifically, the first condition of the isChallenge
predicate (Definition 3, Sect. 3.1) is satisfied since C(0) is a challenge cipher-
text and ⊥ is output. Note that the output (⊥) does not inform the adversary
whether or not the ciphertext is derived from fresh encryption in epoch ẽ or an
update from a prior epoch. Therefore, A is reduced to guessing bit b (in this
case b = 0) which results in the advantage

AdvMUE-IND-CCA,0
ΠDMUE,A (1λ) = |Pr[ExpMUE-IND-CCA,0

ΠDMUE,A (1λ) = 1] − 1
2
| ≤ negl(1λ).

Consequently, Eq. 1 holds when l < r.
Case (l ≥ t) : oracle OCorrupt-Token stipulates that the challenger needs to add
the challenge epoch ẽ to list T (Fig. 1). Crucially, epochs in T are incorporated
into list C∗ which captures all challenge-equal epochs. Thus, epoch ẽ belongs to
C∗ and winning conditions in our security experiment prevent trivial wins. That
is, the intersection of sets (K ∩ C∗) must be empty to prevent a trivial win from
occurring. See the end of Sect. 3 for more depth on trivial wins.
If t = n = 1 we can rely on the assumed security of ΠPKUE, namely, Definition 4
is satisfied. Therefore, in the case of (l ≥ r) and for either choice of b = {0, 1},
A is reduced to guessing bit b which results in the advantage

AdvMUE-IND-CCA,b
ΠDMUE,A (1λ) = |Pr[ExpMUE-IND-CCA,b

ΠDMUE,A (1λ) = 1] − 1
2
| ≤ negl(1λ).

Given the above, we can conclude that the Eq. 1 is satisfied for any number (l)
of corrupted tokens. �
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Closing Discussion. In this paper, we formalised a DMUE primitive and
defined a generic construction, the latter of which was built from single-server
PKUE and dynamic threshold secret sharing (DPSS) primitives. As such, the
performance of our proposed DMUE scheme (from Definition 8) is directly
reflected by the cost of adding a DPSS scheme to PKUE. In the future, we
believe it is of interest to develop concrete DMUE schemes to formally anal-
yse the efficiency, costs and security levels attained in the multi-server versus
single-server setting of PKUE.
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Abstract. This work investigates trace-and-revoke system in the con-
text of functional encryption (FE) for quadratic functions. Trace-and-
revoke system allows a content distributor to identify malicious users
who distribute their secret keys to build a pirate decryption box, and
revoke their decryption capabilities. FE scheme for quadratic functions
restricts the decryption of an encrypted message x, such that the use
of secret key associated with a quadratic function (or degree-2 polyno-
mial) f recovers only f(x) and nothing else. Our construction achieves
semi-adaptive simulation-based security with private black-box traceabil-
ity under (bilateral) k-Lin assumptions. This is the first traceable FE
scheme for quadratic functions. Prior to our work, all known the trace-
able FE schemes only deal with inner-product evaluation [CT-RSA’20,
ESORICS’22]. Technically, we employ Wee’s FE scheme for quadratic
functions [TCC’20], with tracing technique from the trace-and-revoke
systems of Agrawal et al. [CCS’17] and Luo et al. [ESORICS’22] to
achieve our goal.
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function · Black-box traceability

1 Introduction

Traitor tracing scheme [9] studied the problem of identifying the users that
contributed to building a malicious decoder. In a traitor tracing scheme, cipher-
texts are associated with encrypted data and public key pk; each legitimate user
i ∈ [N ] of the system is provided a secret key ski that allows him to decrypt
the content, where N denotes the total number of users in the scheme. In the
face of some malicious users (traitors) colluding to build a pirate decoder with a
non-negligible probability of decrypting the ciphertext, there is an efficient trac-
ing algorithm that outputs at least one malicious user by interacting with any
such (black-box) pirate decoder. Notice that, this is the demand for the tracing
security of traitor tracing scheme.

The traitor tracing schemes have been studied extensively [6,8,18,21], and
many primitives become more practical when they have the property of tracing,
such as broadcast encryption(BE) [7,14], attribute-based encryption(ABE) [19],
identity-based encryption(IBE) [15] and so on. Traitor tracing schemes are mainly
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explored in the context of traditional public key encryption (PKE), without
considering the primitives beyond the all-or-nothing property of PKE.

Recently, Do et al. [10] introduce tracing feature into functional encryption
(FE), namely the notion of traceable functional encryption (TFE). They employ
the FE scheme for inner product functionality of Abdalla et al. [1], with tracing
technique of Boneh-Franklin scheme [6], and give the first concrete construction
of traceable inner product functional encryption (TIPFE). In their scheme, the
ciphertext is associated with message vector x, and the secret key is generated
for a tuple (i,y) representing user identity and functional vector; the decryption
reveals nothing about message x except the inner product 〈x,y〉. Their scheme
supports one-target security and private traceability which means that the trac-
ing algorithm requires the master secret key of system, and only the central
authority can find out the traitors’ identities.

Luo et al. [20] propose an adaptively (indistinguishability-based) secure
TIPFE construction that supports public traceability [8,21], which means the
tracing algorithm only needs the public key and no additional secrets. Further-
more, there is a revocation set R in their scheme. A user can decrypt the cipher-
text if and only if the user’s identity does not belong to this revocation set R [2].
If any traitors are identified, the authority can add their identities into R, so
that these traitors can no longer decrypt future generated ciphertexts.

Traceable functional encryption offers unique capabilities for digital rights
management and secure data sharing in real-world scenarios. Content providers
can encrypt their content using TFE, allowing authorized users to perform spe-
cific operations on the content while preserving privacy to a certain extent and
providing the ability to trace any unauthorized sharing or misuse.

Besides the inner product functionality, functional encryption for quadratic
functions (or quadratic functional encryption, QFE) is desirable from the view-
point of both theory and practice. For a function class Fn,m, each function
f ∈ Fn,m is represented by a vector y ∈ Z

nm
p . The ciphertext is associated with

message vectors (x1,x2) ∈ Z
n
p × Z

m
p , and a secret key is generated for the func-

tional vector y; the decryption reveals nothing about message (x1,x2) except
the result of y�(x1 ⊗ x2), where ⊗ denotes the Kronecker product.

At this point, given recent progress in the quadratic functional encryptions
[4,5,12,22,23], a natural question is: Can we construct TFE for quadratic func-
tions?

1.1 Result

In this paper, we initiate the study of trace-and-revoke quadratic functional
encryption (TRQFE, or more formally trace-and-revoke functional encryption
for quadratic functions). We investigate traitor tracing system in the context of
QFE, and obtain the first traceable QFE scheme that achieves semi-adaptive
simulation-based security under k-Lin and bilateral k-Lin assumptions. Our
scheme considers a strong notion of black-box distinguisher [10,14]. Given an
oracle access to a black-box pirate decoder D, this tracing notion requires D to
distinguish the ciphertexts from two messages of its choice, instead of requiring
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its ability of decryption. Our scheme satisfies private traceability, and tracing
algorithm can only be performed by the central authority who owns the master
secret key. Moreover, our scheme supports the functionality of user revocation
as in [20].

1.2 Technical Overview

In this overview, we explain our construction of TRQFE scheme with private
traceability. The top-level strategy of our TRQFE construction is to combine the
tracing technique of [2,20] with Wee’s QFE scheme [23], which can be proven the
semi-adaptive secure under k-Lin assumption and bilateral k-Lin assumption in
prime-order bilinear groups. Before the details, we begin with some preliminaries.

Notation. We will work with asymmetric bilinear group (G1, G2, GT , e) of
prime order p and use implicit representation [M]s = gMs for matrix M over
Zp, where s ∈ {1, 2, T} and gs is the respective generator of Gs. Besides, we
use ⊗ to denote the Kronecker product of matrices and 〈·〉 to denote the inner
product of vectors. The mixed-product property of Kronecker product tells us
that (A⊗B)(C⊗D) = AC⊗BD for any matrices A,B,C,D of proper sizes.
We use [N ] to denote the set of natural numbers {1, 2, . . . , N}. Then, we review
the following concrete FE scheme which will be used in our TRQFE.

Tools. A two-slot Functional encryption for inner products (two-slot IPFE)
[13,16,17] scheme IPFE consists of four algorithms (iSetup, iKeyGen, iEnc, iDec):
algorithm iSetup generates the master public key impk and master secret key
imsk; algorithm iEnc encrypts the vector x1,x2 which are the input of the public
slot and private slot respectively; algorithm iKeyGen generates the secret key for
vector y1 and y2; and algorithm iDec gives 〈x1,y1〉 + 〈x2,y2〉. We require the
simulation-based security with following simulator: ˜iEnc does not take x1,x2 as
input and ˜iKeyGen has an extra input 〈x1,y1〉 + 〈x2,y2〉. Notice that, in a real
two-slot IPFE scheme, the private slot encrypts 0.

Recap. Let us review the trace-and-revoke IPFE scheme of Luo et al. [20].
iSetup is used to generate public-private key pair (impk, imsk) and publish a
public directory pd. For the sake of brevity, we denote

iEnc(·) = iEnc(impk, ·) and iKeyGen(·) = iKeyGen(imsk, ·).

A ciphertext of vector x ∈ Z
n
p , and a secret key for user i with inner product

function y′ ∈ Z
n
p are as follows:

ctx : iEnc(x ⊗ vR)
sky′,i : iKeyGen(y′ ⊗ ui) ui ← Z

t
p

where vR ∈ Z
t
p \ {0} is generated deterministically from the revocation set R

such that u�
ivR = 0 for all i ∈ R; each (i,ui) pair should be appended to pd.
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For sky′,i where i /∈ R, decryption uses the mixed-product property of Kronecker
product and works as follows:

iDec(ctx, sky′,i)
〈vR,ui〉

=
〈x ⊗ vR,y′ ⊗ ui〉

〈vR,ui〉
=

〈x,y′〉 · 〈vR,ui〉
〈vR,ui〉

= 〈x,y′〉. (1)

Our Strategy. We want to apply the above tracing technique into QFE. This
is based on the observation that we can rewrite the equality (1) as follows:

y�(x1 ⊗ x2) =
y�(x1 ⊗ x2) · u�

ivR
u�

ivR
=

(y ⊗ ui)�((x1 ⊗ x2) ⊗ vR)
u�

ivR

=
(y ⊗ ui)�(x1 ⊗ x2 ⊗ vR,1 ⊗ vR,2)

u�
ivR

(2)

where x1,x2 ∈ Z
n
p , quadratic function y ∈ Z

n2

p and vR,ui ∈ Z
t
p. Here,

– the first row follows the idea from previous TIPFE that we reviewed above;
– the second row decomposes vR into two smaller vectors vR,1,vR,2 ∈ Z

√
t

p

such that vR = vR,1 ⊗ vR,2.

There exists a permutation matrix T ∈ Z
n2t×n2t
p , which is uniquely determined

by n and t (see Sect. 2.1), such that

x1 ⊗ x2 ⊗ vR,1 ⊗ vR,2 = T(x1 ⊗ vR,1 ⊗ x2 ⊗ vR,2).

We further rewrite the equality (2) as

y�(x1 ⊗ x2) =
(y ⊗ ui)�T(x1 ⊗ vR,1 ⊗ x2 ⊗ vR,2)

u�
ivR

(3)

We obtain the form of (x1⊗vR,1)⊗(x2⊗vR,2) that fits the quadratic functions.
With this, we can simply employ Wee’s QFE scheme [23] to achieve our goal:
The ciphertext for vectors x1,x2 ∈ Z

n
p , and a secret key for user i with quadratic

function y ∈ Z
n2

p are as follows:

ctx1,x2 :

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[A1s1 + x1 ⊗ vR,1
︸ ︷︷ ︸

c1

]1, [A2s2 + x2 ⊗ vR,2
︸ ︷︷ ︸

c2

]2,

iEnc
(

[

s1 ⊗ (x2 ⊗ vR,2), c1 ⊗ s2
]

1

)

︸ ︷︷ ︸

ict

sky,i : iKeyGen
(

[

(y ⊗ ui)�T(A1 ⊗ In
√

t), (y ⊗ ui)�T(In
√

t ⊗ A2)
]

2

)

(4)

where A1,A2 ← Z
n

√
t×k

p , s1, s2 ← Z
k
p,ui ← Z

t
p, In

√
t is the identity matrix

of size n
√

t. Here we slightly abuse the notation [a,b]s to denote the input of
concatenated vectors [a‖b]s (or [(a‖b)�]s) in the context of iKeyGen and iEnc,
where s ∈ {1, 2}.
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The decryption follows the equality (3). More specifically, we first assemble
ict and sky,i together by the decryption procedure of underlying IPFE as follows:

iDec(ict, sky,i)

=(y ⊗ ui)�T)
(

(A1 ⊗ In
√

t)
(

s1 ⊗ (x2 ⊗ vR,2)
)

+ (In
√

t ⊗ A2)(c1 ⊗ s2)
)

=(y ⊗ ui)�T)
(

A1s1 ⊗ (x2 ⊗ vR,2) + c1 ⊗ A2s2
)

.

The decryption result is constructed in such a way that it exactly satisfies the
following equation:

c1 ⊗ c2 =
the part we need

︷ ︸︸ ︷

x1 ⊗ vR,1 ⊗ x2 ⊗ vR,2 +

cross terms
︷ ︸︸ ︷

A1s1 ⊗ (x2 ⊗ vR,2) + c1 ⊗ A2s2 . (5)

Observe that, given ctx1,x2 and sky,i, one can recover

(y ⊗ ui)�T(x1 ⊗ vR,1 ⊗ x2 ⊗ vR,2) = (y ⊗ ui)�T(c1 ⊗ c2) − iDec(ict, sky,i)

and even obtain y�(x1 ⊗ x2) according to the equality (3).
The semi-adaptive security inherits from Wee’s QFE and we will focus on

the tracing algorithm.

Traceability. We use the notion of black-box distinguisher from [10,14], which
requires the pirate distinguisher D to be able to distinguish the encryption of
two adversarially-chosen message tuples (x∗

0,1,x
∗
0,2), (x

∗
1,1,x

∗
1,2). Let N be the

number of users and each user is assigned with a unique index i ∈ [N ]. We
adapt the construction idea of probe ciphertexts as [2,20]. Considering a subset
of suspect traitors Si = {i, i+1, . . . , N +1}\R for i = 1, . . . , N +1. The tracing
algorithm will generate a series of probe ciphertexts cSi associated to Si with
following properties:

– The distribution of cS1 corresponds to the normal encryption of (x∗
0,1,x

∗
0,2).

– The distribution of cSN+1 corresponds to the normal encryption of (x∗
1,1,x

∗
1,2).

– The probe ciphertexts cSi and cSi+1 are indistinguishable without the secret
key for index i.

To achieve these properties, we first set vSi
∈ Z

t
p as follows: If i = 1, set vSi

= 0;
If i = N + 1, set vSi

= vR; Otherwise, compute vSi
such that:

u�
jvSi

= 0 or all j ∈ Si ∪ R; u�
jvSi

= u�
jvR for all j ∈ S1 \ Si.

Then find vSi,1,vSi,2 ∈ Z

√
t

p such that vSi,1 ⊗ vSi,2 = vSi
. Given imsk and

([A1]1, [A1]2, [A2]2) within pk, we complete the structure of sky,i in (4) and
construct the probe ciphertext associated to Si as follows:
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cSi :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[A1s1 + x̃∗
i,1

︸ ︷︷ ︸

ci,1

]1, [A2s2 + x̃∗
i,2]2,

iEnc
(

[

s1 ⊗ x̃∗
i,2, ci,1 ⊗ s2

]

1
,
[

ci,3, 0
]

1

)

sky,i : iKeyGen
(

[

(y ⊗ ui)�T(A1 ⊗ In
√

t), (y ⊗ ui)�T(In
√

t ⊗ A2)
]

2
,
[

(y ⊗ ui)�, 0
]

2
︸ ︷︷ ︸

private slot of IPFE

)

(6)
where s1, s2 ← Z

k
p,ui ← Z

t
p and

x̃∗
i,1 = x∗

0,1 ⊗ vSi,1 + x∗
1,1 ⊗ vSi,1, x̃∗

i,2 = −x∗
0,2 ⊗ vSi,2 + x∗

1,2 ⊗ vSi,2,

ci,3 = x∗
0,1 ⊗ x∗

1,2 ⊗ vSi
− x∗

1,1 ⊗ x∗
0,2 ⊗ vSi

− x∗
0,1 ⊗ x∗

0,2 ⊗ vR.

We remark that (x̃∗
i,1, x̃

∗
i,2) comes from the combination of (x∗

0,1,x
∗
0,2),

(x∗
1,1,x

∗
1,2). Taking advantage of the private slot of IPFE, we use ci,3 to cancel

the cross terms, which come from the expansion of Kronecker product x̃∗
i,1⊗ x̃∗

i,2,
and keep only the parts we need. The construction of ci,3 is similar to the cross
terms in equality (5). By this construction, the decryption of probe ciphertext
cSi , under functional secret key sky,j of user j ∈ [N ], reveals the result ẑ where

ẑ = y�(x∗
0,1 ⊗ x∗

0,2) · (u�
jvR − u�

jvSi
) + y�(x∗

1,1 ⊗ x∗
1,2) · u�

jvSi
.

Considering the assignment of vSi
, we have

ẑ =

{

y�(x∗
0,1 ⊗ x∗

0,2) · u�
jvR ⇐= if u�

jvSi
= 0 ⇐= if j ∈ Si ∪ R,

y�(x∗
1,1 ⊗ x∗

1,2) · u�
jvR ⇐= if u�

jvSi
= u�

jvR ⇐= if j ∈ S1 \ Si.

Therefore, the three properties mentioned above are satisfied readily. See Sect. 4
for more details. We finally mention that the last position of IPFE private slot
will only be used in the security proof. In our real TRQFE scheme, this position
of private slot only encrypts 0, as shown in (6).

Organization. In Sect. 2, we provide some definitions and recall some assump-
tions required for our work. In Sect. 3, we present the detailed construction of
our TRQFE scheme, and prove its security. In Sect. 4, we will demonstrate the
core properties of probe ciphertexts, which is derived from their construction
in tracing algorithm, and then prove the black-box traceability. In Sect. 5, we
provide a brief summary of the entire paper.

2 Preliminaries

Notation. For a finite set S, we write s ← S to denote that s is picked uniformly
from finite set S. Then, we use |S| to denote the size of the set S. Let ≈s

stand for two distributions being statistically indistinguishable, and ≈c denote



502 Q. Zheng and J. Zhao

two distributions being computationally indistinguishable. We use lower-case
boldface to denote vectors (e.g., s) and upper-case boldface to denote matrices
(e.g. S). We use In to denote the identity matrix of size n. For any positive
integer N , we use [N ] to denote the set {1, 2, . . . , N}.

Lemma 1 (Two-tailed Chernoff Bound). Let X1,X2, . . . , Xn be indepen-
dent Poisson trials with success probabilities p1, p2, . . . , pn. Let X =

∑n
i=1 Xi

and μ =
∑n

i=1 pi. For 0 < δ < 1, we have

Pr [|X − μ| ≥ δμ] ≤ 2e−μδ2/3.

2.1 Kronecker Product

The Kronecker product for matrices A = (ai,j) ∈ Z
m×n
p , B ∈ Z

s×t
p is defined as

A ⊗ B =

⎛

⎜

⎝

a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

⎞

⎟

⎠
∈ Z

ms×nt
p

and for matrices A,B,C,D of proper sizes, we will use the following facts:

(A ⊗ B)(C ⊗ D) = AC ⊗ BD, (A ⊗ B)� = A� ⊗ B�.

For column vectors (a,b, c,d) ∈ Z
s
p × Z

m
p × Z

n
p × Z

t
p, there exists permutation

matrices T1 ∈ Z
mn×mn
p and T2 ∈ Z

mnst×mnst
p such that

a ⊗ c ⊗ b ⊗ d = a ⊗ T1(b ⊗ c) ⊗ d = T2(a ⊗ b ⊗ c ⊗ d)

where T1 is uniquely determined by m and n, T2 = Is ⊗ T1 ⊗ It. Formally, T1

is a square binary matrix that has exactly one entry of 1 in each row and each
column and 0 s elsewhere, which can permute the rows of b ⊗ c to make c ⊗ b.

2.2 Bilinear Groups

A generator G takes as input a security parameter 1λ and outputs a description
G := (p, G1, G2, GT , e), where p is a prime, G1, G2 and GT are cyclic groups
of order p, and e : G1 × G2 → GT is a non-degenerate bilinear map. Group
operations in G1, G2, GT and bilinear map e are computable in deterministic
polynomial time in λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be
the respective generators, we employ implicit representation of group elements:
for a matrix M over Zp, we define [M]s = gMs for all s ∈ {1, 2, T}, where
exponentiation is carried out component-wise. Given [A]1, [B]2 where A and
B have proper sizes, we let e([A]1, [B]2) = [AB]T . This computation can be
performed via element-wise bilinear mapping over matrix multiplication. Further
more, we can even compute [A ⊗ B]T from [A]1, [B]2, by applying e into the
definition of Kronecker product.

For s ∈ {1, 2}, we recall matrix Diffie-Hellman (MDDH) assumption on
Gs [11]:
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Assumption 1 (MDDHm
k,� Assumption on Gs, s ∈ {1, 2}) Let k, �,m ∈ N.

We say that the MDDHm
k,� assumption holds in Gs if for all PPT adversaries A,

the following advantage function is negligible in λ.

Adv
MDDHm

k,�

A,Gs
(λ) =

∣

∣Pr[A(G, [M]s, [MS]s) = 1] − Pr[A(G, [M]s, [U]s) = 1]
∣

∣

where G := (p, G1, G2, GT , e) ← G(1λ), M ← Z
�×k
p , S ← Z

k×m
p and U ← Z

�×m
p .

Escala et al. [11] showed that

k-Lin ⇒ MDDH1
k,� ⇒ MDDHm

k,�

with a tight security reduction. The MDDHm
k,� assumption holds unconditionally

when � ≤ k and is implied by k-Lin assumption when � > k. When k = 1, we
call it symmetric external Diffie-Hellman (SXDH) assumption; when k = 2, we
call it decisional linear (DLIN) assumption.

Assumption 2 (Bilateral MDDHm
k,� Assumption on Gs, s ∈ {1, 2}) Let k,

�,m ∈ N. We say that the Bi-MDDHm
k,� assumption holds in Gs if for all PPT

adversaries A, the following advantage function is negligible in λ.

Adv
Bi-MDDHm

k,�

A,Gs
(λ) =

∣

∣Pr[A(G, {[M]s, [MS]s}s∈{1,2}) = 1] − Pr[A(G, {[M]s, [U]s}s∈{1,2}) = 1]
∣

∣

where G := (p, G1, G2, GT , e) ← G(1λ), M ← Z
�×k
p , S ← Z

k×m
p and U ← Z

�×m
p .

The Bi-MDDHm
k,� assumption does not hold with parameter k = 1. For param-

eter k > 1 , we have Bi-MDDHm
k,� ⇒ MDDHm

k,�. When k = 2, we call it bilateral
decisional linear (Bi-DLIN) assumption.

2.3 Two-Slot IPFE over Bilinear Groups

We adapt Gong’s two-slot IPFE over cyclic groups [13]. Let n,m represent two
independent parameters. Here, we will focus on the following functionality:

X = G
n
1 × G

m
1 ,Y = G

n
2 × G

m
2 ,Z = GT

F : [x1,x2]1 × [y1,y2]2 �→ [x�
1y1 + x�

2y2]T

and equipped with two-slot IPFE simulator (ĩSetup, ˜iEnc, ˜iKeyGen) which takes
a value from G2 as the last input for the SIM-security.

2.4 Trace-and-Revoke Functional Encryption

For set X ,Y,Z, we call F : X × Y → Z an functionality which induces a
family of functions mapping from X to Z indexed by Y. Let p be a prime and
X = Z

n
p × Z

m
p ,Y = Z

nm
p ,Z = Zp with some n,m ∈ N. For (x1,x2) ∈ X ,y ∈ Y,

we define the quadratic function (QF):

FQF : ((x1,x2),y) �→ y�(x1 ⊗ x2).

We follow the definition in [2] and a trace-and-revoke functional encryption
scheme for functionality F : X × Y → Z consists of the following five PPT
algorithms:



504 Q. Zheng and J. Zhao

– Setup(1λ, 1N ) → (pk,msk, pd) : The Setup algorithm takes security parameter
1λ and the number of users 1N as input, outputs master public/secret key
pair (pk,msk) and an initially empty public directory pd.

– KeyGen(msk, y, i) → (sky,i, pdi) : The KeyGen algorithm takes master secret
key msk, function y ∈ Y and the index of user i ∈ [N ] as input, outputs a
functional secret key sky and some public information pdi for i.

– Enc(pk, x,R) → ctx : The Enc algorithm takes public key pk, message x ∈ X
and a revocation set R as input, outputs a ciphertext ctx.

– Dec(pd, ctx, sky,i) → z : The decryption algorithm takes public directory pd,
a ciphertext ctx and a functional secret key sky,i for user i as input, outputs
z ∈ Z.

– TraceD(msk, pd,R, μ(·), x∗
0, x

∗
1) → T : The tracing algorithm takes msk, pd,

R ⊆ [N ], two messages x∗
0, x

∗
1 ∈ X which can be got from decoder D and

μ(·) denoting the probability that the decoder D can distinguish between the
ciphertexts of x∗

0 and x∗
1 as input. It has oracle access to black-box decoder D

and outputs a set T of traitor(s) which contains at least one identity i∗ ∈ [N ]
or ⊥.

Correctness. We require that for all λ ∈ N, x ∈ X and y ∈ Y, R ⊆ [N ],
i ∈ [N ] \ R, it holds that

Pr

⎡

⎣Dec(pd, ctx, sky,i) = F(x, y) :
(pk,msk, pd) ← Setup(1λ, 1N )
(sky,i, pdi) ← KeyGen(msk, y, i)

ctx ← Enc(pk, x,R)

⎤

⎦ = 1.

For quadratic function FQF, as a relaxation, we require the correctness described
above holds when FQF(x, y) ∈ B where B ⊆ Zp has polynomial size [13,23].

Semi-adaptive Simulation-Based Security (SIM-security) [3]. There
exists a simulator (S̃etup, ˜Enc, K̃eyGen) such that: for every efficient stateful
adversary A, the advantage AdvTFEA in distinguishing the following two distri-
butions are negligible in λ.
⎡

⎢

⎢

⎣

(mpk,msk) ← Setup(1λ, 1N )
x∗ ← A(mpk)
ct∗ ← Enc(mpk, x∗)

output α ← AKeyGen(msk,·)(mpk, ct∗)

⎤

⎥

⎥

⎦

and

⎡

⎢

⎢

⎢

⎣

(mpk, ˜msk) ← S̃etup(1λ, 1N )
x∗ ← A(mpk)
˜ct

∗ ← ˜Enc(˜msk)
output α ← AK̃eyGen(˜msk,·,·)(mpk, ˜ct

∗
)

⎤

⎥

⎥

⎥

⎦

where K̃eyGen(˜msk, ·, ·) gets y along with F(x∗, y) whenever A makes a query
y ∈ Y to KeyGen(msk, ·).

µ-useful Black-box Distinguisher D [10]. For all λ ∈ N, x ∈ X , set R ⊆ [N ],
i ∈ [N ], a non-negligible function μ(·) in λ and every efficient stateful adversary
A, we define the advantage AdvD

A of black-box distinguisher D that A wins the
following game ExpD

b (1λ,A) where

AdvD
A = |1 − 2Pr[ExpD

b (1λ,A) = 1]| ≥ 2μ(λ).
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ExpD
b (1λ,A)

(pk,msk, pd) ← Setup(1λ, 1N )

(D,R, x∗
0, x

∗
1) ← AKeyGen(msk,·,·)(pk)

b ← {0, 1}, ctx∗
b

← Enc(pk, x∗
b ,R)

b′ ← AD(ctx∗
b
)

output 1 if b′ = b, 0 otherwise

where A makes secret key query with y ∈ Y and i ∈ [N ] to KeyGen(msk, ·, ·)
satisfying F(x∗

0, y) �= F(x∗
1, y).

In this paper, we call black-box distinguisher D is indeed μ-useful (μ-useful
black-box distinguisher D) when AdvD

A ≥ 2μ(λ), i.e., it can distinguish between
the encryption of two messages x∗

0, x
∗
1 (of the adversary’s choice) with a non-

negligible probability.

Traceability. Here, we show the definition of private black-box traceability. For
every efficient stateful adversary A, we define the advantage AdvTFE,Tracing

A that
A wins the following game:

– Setup : Challenger runs (pk,msk, pd) ← Setup(1λ, 1N ) and give pk to A. In
addition, challenger maintains the public directory pd.

– Key Query : A submit key query (y, i) ∈ Y × [N ], the challenger stores all
these pairs and replies with the functional secret keys sky,i for those queried
pairs. Let I be the set of key queries performed by A.

– Black-Box Distinguisher Generation : A outputs a revocation set R ⊆ [N ], two
messages x∗

0, x
∗
1 ∈ X such that F(x∗

0, yi) �= F(x∗
1, yi) for all yi ∈ Y and i ∈ I,

and a μ-useful black-box distinguisher D.
– Output : The challenger runs Trace(pd,msk,R, μ(·), x∗

0, x
∗
1) and outputs an

index set T ⊆ [N ] of malicious users.

We say that the adversary A wins the game if the provided black-box distin-
guisher D is μ-useful; and T = ∅ or T �⊆ I.

Definition 1 (Black-box Traceability). A traceable quadratic functional
encryption scheme satisfies black-box traceability if for all PPT A, the advan-
tage AdvTFE,Tracing

A is negligible for any μ-useful distinguisher D, where μ is non-
negligible.

3 Trace-and-Revoke Functional Encryption for Quadratic
Functions

In this section, we present our trace-and-revoke quadratic function encryption
(TRQFE) scheme, which achieves semi-adaptive simulation-based security under
MDDH and Bi-MDDH assumption.
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3.1 Scheme

Let the tuple IPFE = (iSetup, iKeyGen, iEnc, iDec) be a two-slot IPFE scheme,
as defined in Sect. 2.3. Our trace-and-revoke functional encryption scheme for
quadratic functions works as follows.

– Setup(1λ, 1N ) → (pk,msk, pd) : Algorithm runs G = (G1, G2, GT , e) ← G(p)
to generate bilinear group parameters and (impk, imsk) ← iSetup(1λ, 12nk

√
t).

Sample A1,A2 ← Z
n

√
t×k

p and outputs pk = (G, [A1]1, [A1]2, [A2]2, impk), a
master secret key msk = imsk and an initially empty public directory pd.

– KeyGen(msk,y, i) → (sky,i, pdi) : Given the msk, a quadratic function y ∈
Z

n2

p , and an index i ∈ [N ], it samples a vector ui ← Z
t
p. The pair pdi = (i,ui)

is appended to the public directory pd. Then, output

sky,i ← iKeyGen
(

msk,
[

(y ⊗ ui)�T(A1 ⊗ In
√

t), (y ⊗ ui)�T(In
√

t ⊗ A2)
]

2
,

[(y ⊗ ui)�, 0]2
︸ ︷︷ ︸

private slot of IPFE

)

where the permutation matrix T ∈ Z
n2t×n2t
p is uniquely determined by n

and
√

t.
– Enc (pk, (x1,x2),R) → ct : Given the pk, vectors (x1,x2) ∈ Z

n
p × Z

n
p , and

a revocation set R where |R| ≤ N , it computes vR ∈ Z
t
p \ {0} such that

u�
jvR = 0 for all j ∈ R. Then, sample s1, s2 ← Z

k
p and compute

c1 = A1s1 + x1 ⊗ vR,1, c2 = A2s2 + x2 ⊗ vR,2,

ict ← iEnc (impk, [s1 ⊗ (x2 ⊗ vR,2), c1 ⊗ s2]1, [0]1)

where vR,1 ⊗ vR,2 = vR and vR,1,vR,2 ∈ Z

√
t

p ,0 ∈ Z
n2t+1
p . Output the

ciphertext as ct = ([c1]1, [c2]2, ict,R).
– Dec(pd, ct, sky,i) → z : Given the public directory pd, ciphertext ct, and

functional secret key sky,i, proceed as follows:
1. Parse ct as ([c1]1, [c2]2, ict,R). If i ∈ R, then abort.
2. Compute vR ∈ Z

t
p \ {0} such that u�

jvR = 0 for all j ∈ R.
3. Compute

[ẑ]T = [(y ⊗ ui)�T · (c1 ⊗ c2)]T · (iDec(ict, sky,i))
−1

and recover ẑ ∈ Zp via discrete logarithm in basis GT . Finally, output

z =
ẑ

u�
ivR

.

– TraceD
(

msk, pd,R, μ(·), (x∗
0,1,x

∗
0,2), (x

∗
1,1,x

∗
1,2)

)

→ T : The algorithm takes
the master secret key msk, public directory pd, a revocation set R ⊆ [N ], a
non-negligible function μ(·) in λ and two different tuples of vectors (x∗

0,1,x
∗
0,2)

∈ Z
n
p × Z

n
p , (x∗

1,1,x
∗
1,2) ∈ Z

n
p × Z

n
p as input, and proceed as follows:

1. Denote Si = {i, i + 1, . . . , N + 1} \ R for each i ∈ [N + 1].
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2. Compute vR ∈ Z
t
p \ {0} such that u�

jvR = 0 for all j ∈ R. Find
vR,1,vR,2 ∈ Z

√
t

p such that vR,1 ⊗ vR,2 = vR.
3. For i = 1, 2, . . . , N + 1, do:

(a) Compute vSi
∈ Z

t
p as follows:

If i = 1, set vSi
= 0. If i = N +1, set vSi

= vR. Otherwise, compute
vSi

such that:
i. u�

jvSi
= 0 for all j ∈ Si ∪ R,

ii. u�
jvSi

= u�
jvR for all j ∈ S1 \ Si.

Then find vSi,1,vSi,2 ∈ Z

√
t

p such that vSi,1 ⊗ vSi,2 = vSi
.

(b) Let counti = 0.
(c) Prepare and compute parts of the probe ciphertext as follows:

x̃∗
i,1 = x∗

0,1 ⊗ vSi,1 + x∗
1,1 ⊗ vSi,1, x̃

∗
i,2 = −x∗

0,2 ⊗ vSi,2 + x∗
1,2 ⊗ vSi,2,

ci,3 = x∗
0,1 ⊗ x∗

1,2 ⊗ vSi
− x∗

1,1 ⊗ x∗
0,2 ⊗ vSi

− x∗
0,1 ⊗ x∗

0,2 ⊗ vR.
(7)

(d) For l = 1, 2, . . . , L = λN2/μ(λ), do:
i. Sample s1, s2 ← Z

k
p, compute

ci,1 = A1s1 + x̃∗
i,1, ci,2 = A2s2 + x̃∗

i,2,

icti ← iEnc
(

impk, imsk, [s1 ⊗ x̃∗
i,2, ci,1 ⊗ s2]1, [ci,3, 0]1

) (8)

and compose the probe ciphertext cSi

l = ([ci,1]1, [ci,2]2, icti,R).
ii. Feed D with cSi

l and obtain a binary value bi
l. If bi

l = 0, then set
counti = counti + 1.

(e) Output P̃i = counti/N .
4. Let T be the set of all i ∈ [N ] for which |P̃i − P̃i+1| ≥ μ(λ)/N . If there is

no such i, assign T = ∅. Finally, output the set T as malicious user(s).

For the correctness and the security proof, we require that t > N , and the
vector vR should be uniquely determined by R and pd, in the same unique
way across all algorithms (i.e., in algorithm Enc, step 2 of algorithm Dec, and
step 2 of algorithm Trace) in the scheme. A trivial method is that sorting the
vectors uj(j ∈ R) based on numerical order or lexicographic order, and running
a deterministic linear system solver. We remark that vector vSi

in step 3.(a) of
algorithm Trace should be computed in the same way.

As for splitting the vector vR (or vSi
) into the Kronecker product of two

smaller vectors such that vR,1⊗vR,2 = vR (or vSi,1⊗vSi,2 = vSi
), this problem

is well-known as nearest Kronecker product (or Kronecker product approxima-
tion), and can be solved by applying the singular value decomposition (SVD).

Remark 1. When we construct probe ciphertext cSi , encryption for icti requires
imsk and the input of ci,3 in private slot of IPFE, so it follows that our scheme
supports only private black-box traceability. It leaves as an open problem to
construct a traceable QFE scheme which supports public black-box traceability.
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Correctness. For all x1,x2 ∈ Z
n
p and y ∈ Z

n2

p , we have

[z1]T := [(y ⊗ ui)�T(c1 ⊗ c2)]T ,

z1 = (y ⊗ ui)�T(x̂1 ⊗ x̂2)
︸ ︷︷ ︸

a1

+(y ⊗ ui)�T(A1s1 ⊗ x̂2)
︸ ︷︷ ︸

a2

+(y ⊗ ui)�T(c1 ⊗ A2s2)
︸ ︷︷ ︸

a3

(9)
where x̂1 = x1 ⊗ vR,1, x̂2 = x2 ⊗ vR,2. By the correctness of underlying IPFE
scheme, we have

[z2]T := iDec(ict, sky,i)

=
[

(y ⊗ ui)�T(A1 ⊗ In
√

t)(s1 ⊗ x̂2) + (y ⊗ ui)�T(In
√

t ⊗ A2)(c1 ⊗ s2)
]

T

=
[

(y ⊗ ui)�T(A1s1 ⊗ x̂2)
︸ ︷︷ ︸

a2

+(y ⊗ ui)�T(c1 ⊗ A2s2)
︸ ︷︷ ︸

a3

]

T

(10)
where the equality uses the mixed-product property of the Kronecker product.
According to equality (9) and (10), we have [ẑ]T = [z1]T · [z2]−1

T = [z1 − z2]T
where
ẑ = z1 − z2 = (y ⊗ ui)�T(x̂1 ⊗ x̂2)

︸ ︷︷ ︸

a1

= (y ⊗ ui)�T(x1 ⊗ vR,1 ⊗ x2 ⊗ vR,2)
= (y ⊗ ui)�(x1 ⊗ x2 ⊗ vR,1 ⊗ vR,2) = (y� ⊗ u�

i ) ((x1 ⊗ x2) ⊗ vR)
= y�(x1 ⊗ x2) ⊗ u�

ivR = y�(x1 ⊗ x2) · u�
ivR

(11)
Correctness then follows readily.

3.2 Simulator

Before proceeding the security proof, we first describe the simulator. Let (ĩSetup,
˜iKeyGen, ˜iEnc) be the simulator of underlying IPFE scheme, the simulator of our

scheme works as follows.

– S̃etup(1λ, 1N ) : Run G = (G1, G2, GT , e) ← G(p). Sample

A1,A2 ← Z
n

√
t×k

p , ui ← Z
t
p for all i ∈ [N ], (impk, ˜imsk) ← ĩSetup(1λ, 12nk

√
t)

and set pd := {(i,ui)}. Then output

pk = (G, [A1]1, [A1]2, [A2]2, ĩmpk) and ˜msk = (˜imsk,A1,A2, pd).

– K̃eyGen(˜msk,y, i) : Sample c1, c2 ← Z
n

√
t

p and output

sky,i ← ˜iKeyGen
(

˜imsk,
[

(y ⊗ ui)�T(A1 ⊗ In
√

t), (y ⊗ ui)�T(In
√

t ⊗ A2)
]

2
,

[(y ⊗ ui)�, (y ⊗ ui)�T(c1 ⊗ c2) − μ]2
)

.

– ˜Enc(˜imsk,R) : Output ˜ct =
(

[c1]1, [c2]2, ˜iEnc(˜imsk),R
)

.
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3.3 Security

Theorem 1. Under the MDDH and Bi-MDDH assumption on G1, G2, if the
underlying IPFE satisfies semi-adaptive SIM-security as defined in Sect. 2.4, our
TRQFE scheme achieves semi-adaptive SIM-security.

Proof. We proceed via a series of games. Let y, (x1,x2) be the semi-adaptive
challenge. Considering a fixed revocation set R and its derived vectors vR =
vR,1⊗vR,2 ∈ Z

t
p (where vR,1,vR,2 ∈ Z

√
t

p ) as described in algorithm Enc, across
all the games.

Game 0. Real Game.

Game 1. Identical to Game0 except we replace (iSetup, iKeyGen, iEnc) with
(ĩSetup, ˜iKeyGen, ˜iEnc). The challenge ciphertext and secret key for (y, i) are
as follows:

˜ct =
(

[c1]1, [c2]2, ˜iEnc(˜imsk),R
)

sky,i ← ˜iKeyGen
(

˜imsk,
[

(y ⊗ ui)�T(A1 ⊗ In
√

t), (y ⊗ ui)�T(In
√

t ⊗ A2)
]

2
,

[

(y ⊗ ui)�, (y ⊗ ui)�T (A1s1 ⊗ (x2 ⊗ vR,2) + c1 ⊗ A2s2)
]

2

)

where c1 = A1s1+x1 ⊗vR,1, c2 = A2s2+x2 ⊗vR,2. We have Game0 ≈c Game1
by the security of underlying IPFE scheme. The reduction samples

A1,A2 ← Z
n

√
t×k

p , s1, s2 ← Z
k
p

and upon receiving y, (x1,x2) from A, submits [s1 ⊗ (x2 ⊗vR,2), c1 ⊗ s2]1 as the
semi-adaptive challenge of IPFE.

Game 2. Identical to Game1 except we replace sky,i with

sky,i ← ˜iKeyGen
(

˜imsk,
[

(y ⊗ ui)�T(A1 ⊗ In
√

t), (y ⊗ ui)�T(In
√

t ⊗ A2)
]

2
,

[

(y ⊗ ui)�, (y ⊗ ui)�T(c1 ⊗ c2) − y�(x1 ⊗ x2) · u�
ivR

]

2

)

.

We have Game2 ≡ Game1 according to the correctness (11), which tells us that

(y ⊗ ui)�T(c1 ⊗ c2) − y�(x1 ⊗ x2) · u�
ivR = (y ⊗ ui)�T (A1s1 ⊗ (x2 ⊗ vR,2) + c1 ⊗ A2s2) .

Game 3. Identical to Game2 except we replace [A1s1 + x1 ⊗ vR,1]1 in ˜ct with

[c1]1 where c1 ← Z
n

√
t

p . Then we have Game3 ≈c Game2 via Bi-MDDH1
k,n

√
t

assumption, which tells us that for all x1,

([A1]1, [A1]2, [A1s+x1⊗vR,1]1, [A1s+x1⊗vR,1]2) ≈c ([A1]1, [A1]2, [c1]1, [c1]2)
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where s ← Z
k
p, c1 ← Z

n
√

t
p . The reduction then samples

A2 ← Z
n

√
t×k

p , s2 ← Z
k
p, (impk, ˜imsk) ← ĩSetup(1λ, 12nk

√
t)

and sets c2 := A2s2 + x2 ⊗ vR,2. Note that we can compute pk and ˜ct given
[A1]1, [A1]2, [c1]1. And we can sample sky,i by computing [c1 ⊗ c2]2 given
[c1]2, c2.

Game 4. Identical to Game3 except we replace [A2s2 + x2 ⊗ vR,2]2 in ˜ct with

[c2]2 where c2 ← Z
n

√
t

p . Then we have Game4 ≈c Game3 via MDDH1
k,n

√
t

assumption, which tells us that for all x2,

([A2]2, [A2s+ x2 ⊗ vR,2]2) ≈c ([A2]2, [c2]2),

where s ← Z
k
p, c2 ← Z

n
√

t
p .

Finally, the Game4 is exactly the output of the simulator described in Sect. 3.2
by setting μ = y�(x1 ⊗ x2) · u�

ivR.

4 Traceability

In this section, we prove the traceability of our TRQFE scheme. We start with
the following lemma.

Lemma 2. Given a μ-useful black-box distinguisher D, two different tuples of
vectors (x∗

0,1,x
∗
0,2), (x

∗
1,1,x

∗
1,2), and a revocation set R∗ of up to N revoked users,

then the algorithm Trace interacting with D does not return ∅ with overwhelming
probability. Furthermore, for T �= ∅, D contains the secret keys for all i ∈ T .

Proof. We first demonstrate the core properties of probe ciphertext cSi , which is
defined in the algorithm Trace of Sect. 3.1. Follow the correctness (11), we know
that the decryption of probe ciphertext cSi =

(

[ci,1]1, [ci,2]2, icti,R∗), by func-
tional secret key sky,j of user j ∈ [N ], reveals [ẑij ]T = [zij,1 − zij,2]T . Recalling
the variables assignment in (7) and (8) of algorithm Trace, we have

zij,1 := (y ⊗ uj)�T(ci,1 ⊗ ci,2)
= (y ⊗ uj)�T(x̃∗

i,1 ⊗ x̃∗
i,2)

︸ ︷︷ ︸

b1

+(y ⊗ uj)�T(A1s1 ⊗ x̃∗
i,2)

︸ ︷︷ ︸

b2

+(y ⊗ uj)�T(ci,1 ⊗ A2s2)
︸ ︷︷ ︸

b3

zij,2 := iDec(icti, sky,j)
= (y ⊗ uj)�T(A1s1 ⊗ x̃∗

i,2)
︸ ︷︷ ︸

b2

+(y ⊗ uj)�T(ci,1 ⊗ A2s2)
︸ ︷︷ ︸

b3

+(y ⊗ uj)�ci,3
︸ ︷︷ ︸

b4

ẑij = zij,1 − zij,2 = (y ⊗ uj)�T(x̃∗
i,1 ⊗ x̃∗

i,2)
︸ ︷︷ ︸

b1

− (y ⊗ uj)�ci,3
︸ ︷︷ ︸

b4
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where T(x̃∗
i,1⊗x̃∗

i,2)−ci,3 = −x∗
0,1⊗x∗

0,2⊗vSi
+x∗

1,1⊗x∗
1,2⊗vSi

+x∗
0,1⊗x∗

0,2⊗vR∗ .
The construction of ci,3 exactly cancels the cross terms that come from x̃∗

i,1⊗x̃∗
i,2.

Hence we know that

ẑij = (y ⊗ uj)�(−x∗
0,1 ⊗ x∗

0,2 ⊗ vSi
+ x∗

1,1 ⊗ x∗
1,2 ⊗ vSi

+ x∗
0,1 ⊗ x∗

0,2 ⊗ vR∗)

= −y�(x∗
0,1 ⊗ x∗

0,2) · u�
jvSi

+ y�(x∗
1,1 ⊗ x∗

1,2) · u�
jvSi

+ y�(x∗
0,1 ⊗ x∗

0,2) · u�
jvR∗

= y�(x∗
0,1 ⊗ x∗

0,2) · (u�
jvR − u�

jvSi
) + y�(x∗

1,1 ⊗ x∗
1,2) · u�

jvSi
.

Further, considering the properties of vSi
and vSi+1 , we have

ẑij =

{

y�(x∗
0,1 ⊗ x∗

0,2) · u�
jvR∗ , if j ∈ Si ∪ R∗,

y�(x∗
1,1 ⊗ x∗

1,2) · u�
jvR∗ , if j ∈ S1 \ Si,

ẑ(i+1)j =

{

y�(x∗
0,1 ⊗ x∗

0,2) · u�
jvR∗ , if j ∈ Si+1 ∪ R∗,

y�(x∗
1,1 ⊗ x∗

1,2) · u�
jvR∗ , if j ∈ S1 \ Si+1.

(12)

Therefore, ẑij = ẑ(i+1)j holds for any j ∈ [N ]\{i}. That is, the decryption results
of the probe ciphertexts cSi , cSi+1 are the same under all secret keys, except for
sky,i. It implies that no adversary can distinguish between the probe ciphertexts
cSi and cSi+1 without having the functional secret key for the user of index i.

We now show that the algorithm Trace will output at least one index i ∈ [N ]
of malicious user(s). Let Pi = Pr

[

D(cSi) = 0 : cSi
]

for i ∈ [N + 1], where
cSi = ([ci,1]1, [ci,2]2, icti,R∗) is the probe ciphertext as described in algorithm
Trace. We already know that the decryption of cSi , by secret key sky,j of user
j ∈ [N ], gives

ẑij = y�(x∗
0,1 ⊗ x∗

0,2) · (u�
jvR − u�

jvSi
) + y�(x∗

1,1 ⊗ x∗
1,2) · u�

jvSi
.

Since vS1 = 0 and vSN+1 = vR∗ , it implies that cS1 and cSN+1 are the
genuine encryption of the message vectors (x∗

0,1,x
∗
0,2) and (x∗

1,1,x
∗
1,2), respec-

tively. According the definition of μ-useful black-box distinguisher, we have
|P1 − PN+1| ≥ 2μ(λ). Hence there exists at least one index i ∈ [N ] such
that |Pi − Pi+1| ≥ 2μ(λ)/N by the triangle inequality. Applying Lemma 1
about Chernoff bound, since the number of times L = λN2/μ(λ), we have
|P̃i − Pi| ≤ μ(λ)/2N for all i ∈ [N ] with overwhelming probability. There-
fore, |P̃i − P̃i+1| ≥ 2μ(λ)/N − 2(μ(λ)/2N) = μ(λ)/N , which implies that the
algorithm Trace will output at least one such index i ∈ [N ].

We conclude that |P̃i − P̃i+1| ≥ μ(λ)/N holds for all i ∈ T . We already show
that D cannot distinguish between cSi and cSi+1 without having the secret key
for the index i ∈ T by the security of our TRQFE scheme. On the contrary, if D
does not hold the secret key sky,i for i ∈ T , we cannot observe that |P̃i − P̃i+1| ≥
μ(λ)/N .

Then, we prove the black-box traceability of our scheme.

Theorem 2. Under the MDDH and Bi-MDDH assumption on G1, G2, if the
underlying IPFE satisfies semi-adaptive SIM-security, our TRQFE scheme sat-
isfies private black-box traceability as defined in Definition 1.
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Proof. Suppose that an adversary A can break the black-box traceability with
non-negligible probability. We will build a probabilistic polynomial-time adver-
sary B that breaks the semi-adaptive SIM-security of our TRQFE scheme. We
adapt the security game from [20] into the context of QFE. A, B and the TRQFE
challenger proceed as follows:

– Setup: The challenger runs (pk,msk, pd) ← Setup(1λ, 1N ). B obtains the
public key pk = (G, [A1]1, [A1]2, [A2]2, impk) and relays it to A. Note that pd
is an initially empty public directory.

– Query:
• Public Information Query. When A asks an index i ∈ [N ], B sample

a vector ui ← Z
t
p and sends it to A. And B set pdi = (i, ui) and updates

the public directory pd = pd ∪ {pdi}.
• Revoked User’s Key Query. This query can be made only once. A

submit a set R∗ of up to N revoked users, and the corresponding function
vectors y∗

j ∈ Y for all j ∈ R∗. For any index j ∈ R∗ such that pdj /∈ pd,
B generates pdj and updates the public directory pd = pd ∪ {pdj}. Then
B forwards to the challenger who runs (sky∗

j ,j , pdj) ← KeyGen(msk,y∗
j , j),

and returns all the secret keys sky∗
j ,j for all j ∈ R∗.

• Non-Revoked User’s Key Query. When A makes a secret key query
for a pair (i, y) ∈ [N ] × Y, B updates the set of queried pairs Q =
Q ∪ {(i, y)} and the set of queried indices I = I ∪ {i}. If pdi /∈ pd, B
generates pdi and updates the public directory pd = pd ∪ {pdi}. Then B
forwards to the challenger who runs (sky,i, pdi) ← KeyGen(msk,y, j), and
returns the secret keys sky,i.

– Black-box Distinguisher Generation: A outputs a μ-useful black-box
distinguisher D and two different tuples of vectors (x∗

0,1,x
∗
0,2) ∈ Z

n
p × Z

n
p ,

(x∗
1,1,x

∗
1,2) ∈ Z

n
p × Z

n
p such that y�(x∗

0,1 ⊗ x∗
0,2) �= y�(x∗

1,1 ⊗ x∗
1,2) for all

functions y ∈ Q. B forwards to the challenger who runs TraceD, and generates
x̃∗

i,1, x̃
∗
i,2, ci,3 for all i ∈ [N ], as described in (7) of algorithm Trace. Then the

challenger outputs a set T .
– Output: Suppose that A breaks the private black-box traceability, that is,

D is indeed μ-useful and T = ∅ or T �⊆ I. If T = ∅, B aborts. Otherwise,
B chooses a random index r such that r ∈ T but r /∈ I, and sends r to
the challenger. Then challenger generates two probe ciphertexts cSr , cSr+1 as
described in (8) of algorithm Trace. Take cSr for example, that is,

s1, s2 ← Z
k
p, cr,1 = A1s1 + x̃∗

r,1, cr,2 = A2s2 + x̃∗
r,2,

ictr ← iEnc
(

impk, imsk, [s1 ⊗ x̃∗
r,2, cr,1 ⊗ s2]1, [cr,3, 0]1

)

,

cSr = ([cr,1]1, [cr,2]2, ictr,R∗) .

The challenger sample a random bit b ← {0, 1} to decide which ciphertext to
return to B. If b = 0, let c∗

b = cSr . Otherwise, let c∗
b = cSr+1 . Upon receiving

the challenge ciphertext c∗
b from the challenger, B runs D on c∗

b which outputs
a bit b′ ∈ {0, 1}. If b′ = b we say that B succeeds.
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Based on Lemma 2, we already know that the set T , which is output by
running algorithm Trace on D, contains at least one user index i ∈ [N ] with
overwhelming probability, and D contains the secret keys for all i ∈ T . Besides,
equations (12) tell us that D can only distinguish between c∗

0 = cSr and c∗
1 =

cSr+1 when it holds the secret key for the index r ∈ T . We conclude that D
holds the secret key for index r since r ∈ T , and so that D is able to distinguish
between c∗

0 and c∗
1. Formally, the decryption of c∗

0 = cSr under secret key sky,r

gives y�(x∗
0,1 ⊗ x∗

0,2), while the decryption of c∗
1 = cSr+1 under secret key sky,r

gives y�(x∗
1,1 ⊗x∗

1,2). Therefore, (b′ = b, b′ ← D(c∗
b)) holds with a non-negligible

probability.
In summary, the advantage of A that breaks the private black-box traceability

is exactly the the same as the advantage of B that breaks the security of our
TRQFE scheme with overwhelming probability.

5 Conclusion

In this paper, we proposed the first trace-and-revoke functional encryption
for quadratic functions, which achieves semi-adaptive simulation-based security
under k-Lin and bilateral k-Lin assumptions. Our scheme supports the func-
tionality of traitor tracing and user revocation. More specifically, the scheme
was proven to satisfy private black-box traceability under the same assump-
tions mentioned earlier. The reason it is limited to private traceability is due to
the necessity of the master secret key for constructing probe ciphertext during
the traitor tracing process. The construction of a traceable quadratic functional
encryption scheme with improved efficiency, while also supporting public black-
box traceability, remains an open problem.
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Abstract. In this work, we investigate the possibility of constructing
function-hiding predicate functional encryption (FH-P-FE), which pro-
vides full attribute-hiding and function-hiding securities. Concretely, the
security of FH-P-FE guarantees that (1), the functional secret keys hide
the underlying functions and (2), the decryption works with an access
control as in predicate encryption (PE). Our results show that the new
paradigm is achievable. To achieve this goal, we first give a formal defi-
nition of FH-P-FE and its security model under an indistinguishability-
based notion. Then we construct a secret-key function-hiding zero pred-
icate inner product functional encryption (FH-ZP-IPFE) from pairings.
In a FH-ZP-IPFE, both secret keys and ciphertexts are associated with
vectors. Given a secret key for a policy x ∈ Z

n
q and a function u ∈ Z

m
q ,

and a ciphertext for an attribute y ∈ Z
n
q and a message v ∈ Z

m
q , a

decryptor learns the inner product value 〈u, v〉 if and only if 〈x,y〉 = 0
mod q. Our construction is efficient, where the functional secret key and
ciphertext both contain (n+m+1) group elements. We prove the security
in the generic group model of bilinear groups.

Keywords: Predicate Encryption · Function Privacy · Inner Product
Functional Encryption · Generic Group Model

1 Introduction

In the last two decades, various advanced encryption primitives such as
identity-based encryption (IBE) [2,3,13,18], attribute-based encryption (ABE)
[10,14,21,32] and predicate encryption (PE) [4,22,24] have been introduced to
provide more fine-grained control over encrypted data. Later, these works were
unified under the general notion of functional encryption (FE) [5,17,25,28]. In
a FE scheme, the holder of the master secret key is able to delegate arbitrary
decryption keys that allow users to learn specific functions of the data, and noth-
ing else. Specifically, given an encryption of a message x and a functional secret
key for a function f in some function class F , a decryptor only learns the value
f (x) and no additional information about x.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Athanasopoulos and B. Mennink (Eds.): ISC 2023, LNCS 14411, pp. 516–534, 2023.
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FH-FE and FH-IPFE. Function-hiding functional encryption (FH-FE) [8,
15,16] is a strengthened notion of FE. It has the additional property that the
functional secret keys themselves also hide the underlying functions. In normal
FE schemes, the functional secret keys may reveal the associated functions and
leak sensitive information. To address this problem, the security notion of FH-FE
is defined by the property that no additional information about both message x
and function f will be leaked to decryptors. Particularly, function-hiding inner
product functional encryption (FH-IPFE) [11,19,25,35] is a special case of FH-
FE supporting inner product functionality. Specifically, in a FH-IPFE scheme,
both secret keys and ciphertexts are associated with vectors x ∈ Z

n
q and y ∈ Z

n
q .

Given a secret key skx for x and a ciphertext cty for y, the decryption algorithm
outputs the inner product value 〈x,y〉. Moreover, the security notion of FH-IPFE
guarantees that the decryptor learns no additional information about both x and
y. Interestingly, FH-IPFE has been shown to be expressive and efficient enough
to support many practical applications [25].

FE with Fine-Grained Access Control. Recently, the notion of FE with
a more fine-grained syntax [1,26,29] (also known as attribute-based functional
encryption (AB-FE)), has been studied in the literature to capture various set-
tings of FE. They consider the setting that each plaintext m consists of two
parts, namely m := (x, u), where x is an attribute and u is a message. Further-
more, each function f also consists of two parts, namely, f := (P, g) ∈ P × G,
where P is a predicate over the attributes, and g is a function over the mes-
sages. Then, given a secret key for f and a ciphertext for m, a decryptor acts

as: f (m) =

{
g(u) P (x) = 1
⊥ P (x) = 0

. If x is also hidden, then it is called predicate

functional encryption (P-FE). This notion is also somewhat stronger than the
original FE since the value g(u) is extracted if and only if P (x) = 1. As it was
pointed out in [20], for inner product functional encryption (IPFE), releasing a
set of n secret keys corresponding to a basis of Zn

q entirely breaks the security
of the IPFE system. If allowed to embed access policies, the IPFE system may
be more resilient from such information leakage even when many secret keys are
issued. They considered the cases where the attribute x is public [1,26,29] or
private [20] and gave various constructions of attribute-based inner product func-
tional encryption (AB-IPFE) or predicate inner product functional encryption
(P-IPFE) depending on group-based and lattice-based assumptions.

FH-P-FE. However, all previous FE schemes with fine-grained access control
did not consider the function-hiding property. In some specific application sce-
narios such as biometric authentication and statistical analysis on encrypted
data, the associated functions may contain sensitive information. This motivates
us to ask the following question:

Question 1. Is it possible to design a function-hiding predicate functional
encryption (FH-P-FE) scheme that achieves the function-hiding property and
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fine-grained access control, without revealing any additional information about
m := (x, u) and f := (P, g) apart from whether they are satisfied or not by the
embedded policy?

In this paper, we answer the above question by constructing a (secret-key)
function-hiding zero predicate inner product encryption (FH-ZP-IPFE) scheme,
where the attribute is set to be private. Roughly speaking, in a FH-ZP-IPFE,
both secret keys and ciphertexts are associated with vectors. Given a secret key
for a policy x ∈ Z

n
q and a function u ∈ Z

m
q , and a ciphertext for an attribute

y ∈ Z
n
q and a message v ∈ Z

m
q , a decryptor learns the inner product value

〈u,v〉 if and only if 〈x,y〉 = 0 mod q. The syntax of FH-ZP-IPFE corresponds
to the notion of FH-P-FE by defining the predicate P and the function g as
Py (x) = 1 if 〈x,y〉 = 0 mod q (called zero predicate), and gu (v) = 〈u,v〉
mod q, respectively. Additionally, the function-hiding property guarantees that
(1) with a successful decryption, the decryptor only learns the inner product
value and no additional information about (x,u) and (y,v) and (2) otherwise,
the decryptor gains no information about both (x,u) and (y,v). In other words,
the proposed scheme simultaneously achieves data privacy (with respect to y and
v) and function privacy (with respect to x and u) [8,16,30].

1.1 Our Contribution

In this work, we focus on the construction of (secret-key) FH-P-FE scheme,
specifically, the FH-ZP-IPFE scheme. This is the first work that considers P-FE
with function-hiding property. Our results show that FH-P-FE is achievable and
our main contributions include:

– We formally define the notion of (secret-key) FH-P-FE and its security model.
We generalize the notion of FH-FE and predicate functional encryption (P-
FE) to FH-P-FE. We also define a notion of indistinguishability-based secu-
rity for FH-P-FE, where an adversary may request any polynomial-size func-
tional secret keys and ciphertexts but can not decide which random bit b is
chosen in the challenge phase.

– We then give a construction of (secret-key) FH-ZP-IPFE scheme, where func-
tional secret key and ciphertext both contain n + m + 1 group elements.
Here, n is the dimension of policy x and attribute y, m is the dimension
of function u and message v. Note that it is almost optimal sized since in
the state-of-the-art construction of plain FH-IPFE [25] without fine-grained
access control, their functional secret key and ciphertext both contain m + 1
group elements. We consider the fine-grained access control supporting zero
inner product predicate, so parameters (specifically for functional secret key
and ciphertext) in our scheme grow with n group elements. At last, we prove
the indistinguishability-based security of the proposed scheme in the generic
group model.

– To assess the practicality of our FH-ZP-IPFE scheme, we provide a complete
implementation of our scheme in C++. We also perform a series of micro-
benchmarks on our FH-ZP-IPFE scheme for a wide range of dimension set-
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tings. Our results show that our scheme is efficient and practical enough to
deploy for real-world scenarios.

In Table 1, we provide a comparison of existing AB-FE, P-FE and FH-FE
schemes with our proposed FH-ZP-IPFE with respect to the functionality and
security model.

Table 1. Comparison of our results with existing schemes

Scheme Access Policy Functionality Attribute-Hiding Function-Hiding

[11,19,25,35] � Inner Product � �

[1] NC1 Inner Product � �

[26] GC Inner Product � �

[29] ABP Inner Product Partially �

[20] Inner Product Inner Product � �

This work Inner Product Inner Product � �
GC: general circuits and ABP: arithmetic branching programs.

1.2 Technical Overview

The main idea of our construction is to use a random matrix R ∈ Z
(n+m)×(n+m)
q

to hide the information of x,u and y,v. In more detail, in our construction, the
master secret key is R and R−1. The ciphertext cty ,v = (C1, C2) for y,v contains

two parts C1 = gγ
2 and C2 = g

R

⎛
⎝γv

βy

⎞
⎠

2 and the decryption key skx,u = (K1,K2)

for x, u also contains two parts K1 = gω
1 and K2 = g

(ωu�,αx�)R−1

1 . Note that
α, β, ω and γ are random values, generated while running the corresponding
algorithms. The decryption algorithm works as, first computing D1 = e (K1, C1)
and D2 = e(K2, C2), then finding z such that (D1)z = D2. The correctness
follows by the fact if 〈x,y〉 = 0 mod q, then z = 〈u,v〉 and otherwise, z is a
random value.

The security of our FH-ZP-IPFE scheme guarantees two aspects:

– First, if 〈x,y〉 = 0 mod q, except for the predicate Px(y) and inner product
value 〈u,v〉, no additional information about x, u,y,v is leaked.

– Second, if 〈x,y〉 �= 0 mod q, except for the predicate Px(y), no additional
information about x, u,y,v is leaked.

Note that D1 = [ωγ]T and D2 = [ωγ〈u,v〉 + αβ〈x,y〉]T and α, β, γ, ω are all
random elements. In this case, if 〈x,y〉 = 0 mod q, 〈u,v〉 is extracted and
x,u,y,v is hidden by uniformly random R in addition to α, ω, β and γ, respec-
tively. This is due to the fact that in the generic model, those random elements
are all replaced by formal variables and can not be canceled else where. On the
other hand, 〈x,y〉 �= 0 mod q, then 〈u,v〉 is also hidden by ωγ, see Sect. 4 for
more details.
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1.3 Related Work

AB-IPFE was first considered in [1,26,29], where they viewed the attributes
as public. A very recent work [20] also gave a construction of P-IPFE, where
the attributes are private. However, they all did not achieve the function-hiding
property. In fact, in their constructions, they even need the function as a part of
input for decryption algorithms. Another line of researching for FH-IPFE was
by [11,19,25,35], they all only considered the plain FH-IPFE without any access
control. In other words, the functional secret key always decrypts the ciphertext
to get the inner product value as long as the value is located in a limited range.

1.4 Organization

The rest of this paper is organized as follows. In Sect. 2, we define notation
and provide background definitions. In Sect. 3, we formally define the syntax
of FH-P-FE and its security model. In Sect. 4, we present our construction for
(secret-key) FH-ZP-IPFE and prove it secure in the generic group model. In
Sect. 5, we implement our scheme and show the experiment results. Finally, we
conclude the paper in Sect. 6.

2 Preliminaries

Notation. In this work, we use λ to denote the security parameter. We say a
function ε (λ) is negligible in λ if ε (λ) = o

(
1
λc

)
for all positive integers c. For a

positive integer n, we write [n] to denote the set {1, 2, · · · , n}. For a finite set
S, we denote by x ← S the operation of sampling a uniformly random element
x from S. Similarly, for a distribution D, we denote by x ← D the operation of
sampling a random x according to the distribution D.

We use lowercase unbolded letters (e.g., α or a) to denote scalars. We write
column vectors as lowercase bold letters (e.g., v) and matrices as uppercase bold
letters (e.g., M). We recall that GLn (Zq) is the general linear group of (n × n)
matrices over Zq (i.e., invertible matrices over Zq). For a matrix R, we use R�

to denote the transpose of R and det (R) to denote its determinant. We use the
shorthand gv where v = (v1, · · · , vn)� to denote the vector of group elements
(gv1 , · · · , gvn)� and naturally extend this notation to matrices M.

2.1 Bilinear Groups

We briefly recall the basic definition of an asymmetric bilinear group [13,23].
Let G1, G2 and GT be three distinct groups of prime order q, and let e : G1 ×
G2 �→ GT be a function mapping two elements from G1 and G2 onto the target
group GT . Let g1, g2 and gT be generators of G1, G2 and GT , respectively. We
write the group operation in groups multiplicatively and write 1 to denote their
multiplicative identity. We say that the tuple (G1,G2,GT , q, e) is an asymmetric
bilinear group if the following properities hold:
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– Efficiency: The group operations in G1,G2,GT as well the map e (·, ·) are
all efficiently computable.

– Non-degeneracy: e (g1, g2) = gT �= 1.
– Bilinearity: e

(
ga
1 , gb

2

)
= gab

T for all a, b ∈ Zq.

In this work, we additionally let [a]1 , [b]2 and [c]T denote encodings of a, b, c in
G1,G2,GT , i.e. ga

1 , gb
2 and gc

T respectively. For a vector v or matrix M, we use the
shorthand [v] or [M] (for any of the three groups) to denote the group elements
obtained by encoding each entry of v and M respectively. Furthermore, for any
scalar k ∈ Zq and vectors v,w ∈ Z

n
q , we write [v]k = [kv] and [v] [w] = [v + w] .

The pairing operation over groups is also extended to vectors and matrices as
follows, e

([
v�]

1
, [w]2

)
= [〈v,w〉]T and e

([
v�]

1
, [M]2

)
=

[
v�M

]
T

. It is not
hard to see that the above operations are all efficiently computable.

2.2 Generic Bilinear Group Model

We prove the security of our constructions in a generic model of bilinear groups
[12], which is an extension of generic group model [27,34] adapted to bilinear
groups. In the generic group model, access to the group elements is replaced by
“handles.” In this case, an adversary in the generic group model is also only
given access to a stateful oracle which carries out the group operations, and in
the bilinear group setting, the pairing operation. The generic group oracle main-
tains internally a list mapping from handles to group elements, which is used
to answer the oracle queries. Thus, when a cryptographic scheme is shown to
satisfy some security property in the generic group model, it means that no effi-
cient adversary can break that security property applying the group operations
as a black-box oracle. The following definition is taken verbatim from [8] and
originally appeared in [25].

Definition 2 (Generic Bilinear Group Oracle). A generic bilinear group
oracle is a stateful oracle BG that responds to queries as follows:

– On a query BG.Setup
(
1λ

)
, the oracle generates two fresh handles pp, sp ←

{0, 1}λ and a prime q. It outputs (pp, sp, q). It stores the generated values,
initializes an empty table T ← {}, and sets the internal state so subsequent
invocations of BG.Setup fail.

– On a query BG.Encode (k, x, i), where k ∈ {0, 1}λ, x ∈ Zq and i ∈ {1, 2, T},
the oracle checks that k = sp (return ⊥ otherwise). The oracle then generates
a fresh handle h ← {0, 1}λ, adds the entry h �→ (x, i) to table T, and outputs
h.

– On a query BG.Add (k, h1, h2), where k, h1, h2 ∈ {0, 1}λ, the oracle checks
that k = pp, that the handles h1, h2 are present in its internal table T and are
mapped to the values (x1, i1) and (x2, i2), respectively, with i1 = i2 (return ⊥
otherwise). The oracle then generates a fresh handle h ← {0, 1}λ, computes
x = x1 + x2 ∈ Zq, adds the entry h �→ (x, i1) to T, and outputs h.
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– On a query BG.Pair (k, h1, h2), where k, h1, h2 , the oracle checks that k = pp,
that the handles h1, h2 are present in T and are mapped to values (x1, 1) and
(x2, 2), respectively (returning ⊥ otherwise). The oracle then generates a fresh
handle h ← {0, 1}λ, computes x = x1x2 ∈ Zq, adds the entry h �→ (x, T ) to
T, and outputs h.

– On a query BG.ZeroTest (k, h) where k, h ∈ {0, 1}λ , the oracle checks that
k = pp, that the handle h is present in T and it maps to some value (x, i)
(returning ⊥ otherwise). The oracle then outputs “zero” if x = 0 ∈ Zq and
“non-zero” otherwise.

We notice that in the generic group model, the random elements will often
be substituted to formal variables when analyzing the security of constructed
schemes. In order to distinguish between a specific value and a formal variable,
we will explicitly write x if it is a specific value and x̂ if it is a formal variable.
This notation will also naturally extend to vectors v̂ and matrices M̂ where their
each entry is a formal variable.

We also use the Schwartz-Zippel lemma [33,37] in the security proof, stated
below.

Lemma 3 (Schwartz-Zippel [33,37], adapted). Fix a prime q and let f ∈
Fq [x̂1, · · · , x̂n] be an n-variate polynomial with degree at most d and which is
not identically zero. Then,

Pr [x1, · · · , xn ← Fq : f (x1, · · · , xn) = 0] ≤ d

q
.

2.3 Function-Hiding Functional Encryption

We recall the definition of FH-FE and its security model [19,25,35].

Definition 4. A (secret-key) FH-FE is a tuple of algorithms Π =
(Setup,KeyGen,Enc,Dec) defined over a message space M and a function class
F with the following properties:

– Setup
(
1λ

) �→ (pp,msk): On input a security parameter λ, the setup algorithm
Setup outputs the public parameters pp and the master secret key msk.

– KeyGen (pp,msk, f) �→ skf : On input the public parameters pp, the maser
secret key msk and a function f ∈ F , the key generation algorithm KeyGen
outputs a functional secret key skf .

– Enc (pp,msk,m) �→ ctm: On input the public parameters pp, the master secret
key msk and a message m ∈ M, the encryption algorithm Enc outputs a
ciphertext ctm.

– Dec (pp, skf , ctm) �→ z: On input the public parameters pp, a functional secret
key skf , and a ciphertext ctm, the decryption algorithm Dec outputs a value z.
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Correctness. An FH-FE scheme Π = (Setup,KeyGen,Enc,Dec) defined above
is correct if for all messages m ∈ M and all functions f ∈ F , the following
condition holds: Letting (pp,msk) ← Setup

(
1λ

)
, skf ← KeyGen (pp,msk, f),

and ctm ← Enc (pp,msk,m), then

Pr [Dec (pp, skf , ctm) = f(m)] = 1 − ε (λ) ,

where the probability is taken over the internal randomness of the Setup, Enc
and KeyGen algorithms, and ε (λ) is a negligible function.

IND Security. We review the indistinguishability-based security for FH-FE.
Let Π = (Setup,KeyGen,Enc,Dec) be a FH-FE scheme. We define the following
experiment between a challenger C and an adversary A that can make key gener-
ation and encryption oracle queries. In the following, we let M be our attribute
space and F be our function class.

Definition 5
(
Experiment Expb

Π

)
. Let b ∈ {0, 1}. The challenger C computes

(pp,msk) ← Setup
(
1λ

)
, gives pp to the adversary A, and then responds to each

oracle query type made by A in the following manner.

– Key generation oracle. on input a pair of (f0, f1), the challenger computes
and returns skfb

← KeyGen (pp,msk, fb).
– Encryption oracle. On input a pair of (m0,m1), the challenger computes

and returns ctmb
← Enc (pp,msk,mb).

Eventually, A outputs a bit b′, which is also the output of the experiment,
denoted by Expb

Π (A).

Definition 6 (Admissibility) . For an adversary A, let Q1 and Q2 be the total
number of key generation and encryption oracle queries made by A, respectively.
For b ∈ {0, 1}, let f

(1)
b , · · · , f

(Q1)
b ∈ F and m

(1)
b , · · · ,m

(Q2)
b ∈ M be the cor-

responding functions and messages that A submits to the key generation and
encryption oracles, respectively. We say that A is admissible if for all i ∈ [Q1]
and j ∈ [Q2], we have that

f
(i)
0 (m(j)

0 ) = f
(i)
1 (m(j)

1 ).

Definition 7 (IND Security for FH-FE). We define a FH-FE scheme denoted
as Π = (Setup,KeyGen,Enc,Dec) as fully-secure if for all efficient and admis-
sible adversaries A,∣∣ Pr

[
Exp0

Π (A) = 1
] − Pr

[
Exp1

Π (A) = 1
] ∣∣ = ε(λ),

where ε (λ) is a negligible function.
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3 Function-Hiding Predicate Functional Encryption

In this section, we formally give the definition of FH-P-FE, which is inspired by
combining FHFE [11,19,25,35] with P-FE [1,20,26,29]. Generally, in a (secret-
key) FH-P-FE scheme, the secret key is associated with a predicate P and a
function g, and the ciphertext is associated with an attribute x and a message
u. Given a secret key for f := (P, g), and a ciphertext for m := (x, u), a decryptor
learns the functional value g(u) if and only if P(x) = 1.

Definition 8. A (secret-key) FH-P-FE is a tuple of algorithms Π =
(Setup,KeyGen,Enc,Dec) defined over an attribute space X and a message space
U as well as a predicate class P and a function class G with the following prop-
erties:

– Setup
(
1λ

) �→ (pp,msk): On input a security parameter λ, the setup algorithm
Setup outputs the public parameters pp and the master secret key msk.

– KeyGen (pp,msk,P, g) �→ skP,g: On input the public parameters pp, the
maser secret key msk, a predicate P ∈ P and a function g ∈ G, the key
generation algorithm KeyGen outputs a functional secret key skP,g.

– Enc (pp,msk, x, u) �→ ctx,u: On input the public parameters pp, the maser
secret key msk, an attribute x ∈ X and a message u ∈ U , the encryption
algorithm Enc outputs a ciphertext ctx,u.

– Dec (pp, skP,g, ctx,u) �→ z/⊥: On input the public parameters pp, a functional
secret key skP,g, and a ciphertext ctx,u, the decryption algorithm Dec outputs
a value z or ⊥.

Correctness. An FH-P-FE scheme Π = (Setup,KeyGen,Enc,Dec) defined
above is correct if for all attributes x ∈ X , messages u ∈ U and all predicates
P ∈ P, functions g ∈ G, the following condition holds: Letting (pp,msk) ←
Setup

(
1λ

)
, skP,g ← KeyGen (msk,P, g), and ctx,u ← Enc (pp,msk, x, u), then

– If P(x) = 1, Pr [Dec (pp, skP,g, ctx,u) = g(u)] = 1 − ε (λ),
– If P(x) = 0, Pr [Dec (pp, skP,g, ctx,u) = ⊥] = 1 − ε (λ),

where the probability is taken over the internal randomness of the Setup, Enc
and KeyGen algorithms, and ε (λ) is a negligible function.

Indistinguishability-Based Security. Let Π = (Setup,KeyGen,Enc,Dec) be
a FH-P-FE scheme. We now define the following experiment between a challenger
C and an adversary A that can make key generation and encryption oracle
queries. In the following, we let X be our attribute space, U be our message
space, P be our predicate class and G be our function class.

Definition 9
(
Experiment Expb

Π

)
. Let b ∈ {0, 1}. The challenger C computes

(pp,msk) ← Setup
(
1λ

)
, gives pp to the adversary A, and then responds to each

oracle query type made by A in the following manner.
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– Key generation oracle. on input a pair of (P0, g0), (P1, g1), the challenger
computes and returns skPb,gb

← KeyGen (pp,msk,Pb, gb).
– Encryption oracle. On input a pair of (x0, u0), (x1, u1), the challenger com-

putes and returns ctxb,ub
← Enc (pp,msk, xb, ub).

Eventually, A outputs a bit b′, which is also the output of the experiment,
denoted by Expb

Π (A).

Definition 10 (Admissibility) . For an adversary A, let Q1 and Q2 be the
total number of key generation and encryption oracle queries made by A,
respectively. For b ∈ {0, 1}, let (P(1)

b , g
(1)
b ), · · · , (P(Q1)

b , g
(Q1)
b ) ∈ P × G and

(x(1)
b , u

(1)
b ), · · · , (x(Q2)

b , u
(Q2)
b ) ∈ X×U be the corresponding predicates (functions)

and attributes (messages) that A submits to the key generation and encryption
oracles, respectively. We say that A is admissible if for all i ∈ [Q1] and j ∈ [Q2],
we have that

– if P(i)
0 (x(j)

0 ) = 0, then P(i)
1 (x(j)

1 ) = 0,
– and if P(i)

0 (x(j)
0 ) = 1, then P(i)

1 (x(j)
1 ) = 1 and g

(i)
0 (u(j)

0 ) = g
(i)
1 (u(j)

1 ).

Definition 11 (IND Security for FH-P-FE). We define a FH-P-FE scheme
denoted as Π = (Setup,KeyGen,Enc,Dec) as fully-secure if for all efficient and
admissible adversaries A,∣∣ Pr

[
Exp0

Π (A) = 1
] − Pr

[
Exp1

Π (A) = 1
] ∣∣ = ε(λ),

where ε (λ) is a negligible function.

4 Our FH-ZP-IPFE Scheme

In this section, we give our construction of function-hiding zero predicate inner
product functional encryption (FH-ZP-IPFE). FH-ZP-IPFE is a special case of
FH-P-FE that supports inner product functionality. Additionally, the predicate
is represented by a vector x as Px such that for an attribute y, Px(y) = 1 if and
only if 〈x,y〉 = 0 mod q. The function is represented by a vector u as gu such
that for a message v, gu (v) = 〈u,v〉. In more details, in a FH-ZP-IPFE, each
secret key skx,u is associated with vectors x ∈ Z

n
q ,u ∈ Z

m
q and each ciphertext

cty ,v is also associated with vectors y ∈ Z
n
q ,v ∈ Z

m
q . Given a secret key skx,u and

a ciphertext cty ,v , a decryptor learns the inner product value 〈u,v〉 if and only if
Px(y) = 1. Then we show that the proposed scheme is indistinguishability-based
secure (Definition 11) in the generic group model.

4.1 Construction

Fix a security parameter λ ∈ N and let n,m be a positive integer. Let
S be a polynomial-sized subset of Zq. We construct a FH-ZP-IPFE scheme
Π = (Setup,KeyGen,Enc,Dec) as follows.



526 M. Wan et al.

– Setup
(
1λ, S

) �→ (pp,msk): On input a security parameter λ and a set
S ⊆ Zq, the setup algorithm Setup samples an asymmetric bilinear group
(G1,G2,GT , q, e) and chooses generators g1 ∈ G1 and g2 ∈ G2. Then it sam-
ples R ← GLn+m(Zq) and computes R−1. Finally, the setup algorithm out-
puts the public parameters pp = (G1,G2,GT , q, e, S) and the master secret
key msk = (pp, g1, g2,R,R−1).

– KeyGen (pp,msk,x,u) �→ skx,u : On input the public parameters pp, the
maser secret key msk, a policy x ∈ Z

n
q and a function u ∈ Z

m
q , the key gen-

eration algorithm KeyGen chooses random elements ω, α ← Zq and outputs
the pair

sk = (K1,K2) = ([ω]1 ,
[(

ωu�, αx�)
R−1

]
1
).

– Enc (pp,msk,y,v) �→ cty ,v : On input the public parameters pp, the maser
secret key msk, an attribute y ∈ Z

n
q and a message v ∈ Z

m
q , the encryption

algorithm Enc chooses random elements β, γ ← Zq and outputs the pair

cty ,v = (ct1, ct2) =
(

[γ]2 ,

[
R

(
γv
βy

)]
2

)
.

– Dec (pp, skx,u , cty ,v ) �→ z: On input the public parameters pp, a functional
secret key skx,u and a ciphertext cty ,v , the decryption algorithm Dec com-
putes

D1 = e(K1, C1) and D2 = e(K2, C2).

Then it checks whether there exists z ∈ S such that (D1)z = D2, If so,
the decryption algorithm outputs z. Otherwise, it outputs ⊥. Note that this
algorithm is efficient1 since |S| = poly (λ).

Correctness. The correctness of Π follows from the fact that for any secret
key skx,u = (K1,K2) corresponding to a policy x and a function u and any
ciphertext cty ,v = (C1, C2) corresponding to an attribute y and a message v,
we have that

D1 = e(k1, C1) = [ωγ]T and D2 = e(K2, C2) = [ωγ〈u,v〉 + αβ〈x,y〉]T .

In this case, if Px(y) = 1, namely, 〈x,y〉 = 0 mod q, then D2 = [ωγ〈u,v〉]T and
the decryption algorithm outputs z = 〈u,v〉 as long as z ∈ S. The correctness
follows.

4.2 IND Security

We first state a lemma that plays an important role in our proof. Specifically, we
use a variant of lemma due to [9] that originally appeared in [7]. The following
is taken verbatim from [8].

1 Usually, S is set to [−B, B] for polynomial bounded B, the discrete log can be
efficiently computed by Pollard-Lambda algorithms.
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Lemma 12 ([7–9]). Let R̂ be an n × n matrix of distinct formal variables
r̂i,j, and u,v ∈ F

n
q be two arbitrary non-zero vectors. Let û� = u�R̂−1 and

v̂ = R̂v be two vectors of rational functions over the r̂i,j formal variables. Let P
be a polynomial over the entries of û and v̂ such that each monomial contains
exactly one entry from û and one from v̂. Then if P is identically a constant
over the r̂i,j variables, it must be a constant multiple of the inner product of û
and v̂.

Theorem 13. The FH-ZP-IPFE scheme Π constructed above is IND secure in
the generic group model.

Proof. Let Q1 and Q2 be the total number of key generation and encryption
oracle queries made by A, respectively. We present two hybrid experiments,
beginning with the original IND experiment defined in Definition 11.

– Exp(b)
0 is the original experiment. The adversary A receives the public param-

eters, the secret keys for
(
x

(1)
b ,u

(1)
b

)
, · · · ,

(
x

(Q1)
b ,u

(Q1)
b

)
∈ Z

n+m
q and the

ciphertexts for
(
y

(1)
b ,v

(1)
b

)
, · · · ,

(
y

(Q2)
b ,v

(Q2)
b

)
∈ Z

n+m
q . Thus, in the generic

group model, the adversary A has access to the handles of elements {[ωi]1}i,{[(
ωi(u

(i)
b )�, αi(x

(i)
b )�

)
R−1

]
1

}
i
, {[γj ]2}j and {

[
R

(
γjv

(j)
b

βjy
(j)
b

)]
2

}j .

– Exp(b)
1 is obtained from Exp(b)

0 by modifying the random elements chosen by
challenger C to formal variables. Recall that the only distinguishing informa-
tion the adversary can obtain in the generic group model is the responses to
zero-test queries in the target group. We can imagine replacing {ωi}i, {αi}i,
{βj}j , {γj}j and the entries of R with formal variables. So we let R̂ be a
(n + m) × (n + m) matrix of formal variables r̂i,j for i, j ∈ [n + m]. In this
case, for every zero-test query submitted by A, the resulting zero-test expres-
sions are substituted by rational functions of above variables. For simplicity,
when taking each zero-test query, we multiply the expressions by |det (R̂)|,
which does not change whether the final result is zero or not. By construction,
this results in a polynomial of degree at most (n + m + 4) over the formal
variables. Hence, for each zero-test, the difference between Exp0 and Exp1

is n+m+4
q , due to the Schwartz-Zippel lemma (Lemma 3). Assuming that A

makes zero-tests for p (which is a polynomial-size) times, by union bound,
the difference between Exp0 and Exp1 can be bounded by p(n+m+4)

q , which
is negligible. In other words, A can not distinguish this switch except with
negligible probability.

For simplicity, we define (ĉ(i))� :=
[(

α̂−1
i ω̂i(u

(i)
b )�, (x(i)

b )�
)
R̂−1

]
1

and ŵ(j) =[
R̂

(
β̂−1

j γ̂jv
(j)
b

y
(j)
b

)]
2

. Now in Exp1, we rewrite the handles of the elements given to

A, {[ω̂i]1}i,
{[(

ω̂i(u
(i)
b )�, α̂i(x

(i)
b )�

)
R−1

]
1

}
i
, {[γ̂j ]2}j and {

[
R̂

(
γ̂jv

(j)
b

β̂jy
(j)
b

)]
2

}j .
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Using this notation, we will write down a general expression for any zero-test
query submitted by the adversary. We consider all the possible ways that A can
produce elements in the target group, (1) pairing its ciphertext or functional
secret key elements with a constant in the other group, or (2) pairing its cipher-
text elements with functional secret key elements, where δi, ζi,j , ηi,j,l, θi,k, κi,j,k,
μi,j,k,l, νj and ρj,l represent coefficients submitted by A.

– Pairing K
(i)
1 with constants in G2: δiω̂i.

– Pairing K
(i)
1 with C

(j)
1 : ζi,jω̂iγ̂j .

– Pairing K
(i)
1 with C

(j)
2 :

∑
l ηi,j,lω̂iβ̂j(ŵ

(j))(l).
– Pairing K

(i)
2 with constants in G2:

∑
k θi,kα̂i(ĉ

(i))(k).
– Pairing K

(i)
2 with C

(j)
1 :

∑
k κi,j,kα̂i(ĉ

(i))(k)γ̂j .
– Pairing K

(i)
2 with C

(j)
2 :

∑
k,l μi,j,k,lα̂i(ĉ

(i))(k)β̂j(ŵ
(j))(l).

– Pairing C
(j)
1 with constants in G1: νj γ̂j .

– Pairing C
(j)
2 with constants in G1:

∑
l ρj,lβ̂j(ŵ

(j))(l).

Then we write a general linear combination of such elements, and this results in
the following expression.

∑

i

δiω̂i +
∑

i,j

ζi,jω̂iγ̂j +
∑

i,j,l

ηi,j,lω̂iβ̂j(ŵ
(j))(l) +

∑

i,k

θi,kα̂i(ĉ
(i))(k)

+
∑

i,j,k

κi,j,kα̂i(ĉ
(i))(k)γ̂j +

∑

i,j,k,l

μi,j,k,lα̂i(ĉ
(i))(k)β̂j(ŵ

(j))(l)

+
∑

j

νj γ̂j +
∑

j,l

ρj,lβ̂j(ŵ
(j))(l)

=
∑

j

β̂j

⎛

⎝
∑

i,l

ηi,j,lω̂i(ŵ
(j))(l) +

∑

i,k,l

μi,j,k,lα̂i(ĉ
(i))(k)(ŵ(j))(l) +

∑

l

ρj,l(ŵ
(j))(l)

⎞

⎠

+
∑

i

δiω̂i +
∑

i,j

ζi,jω̂iγ̂j +
∑

i,k

θi,kα̂i(ĉ
(i))(k) +

∑

i,j,k

κi,j,kα̂i(ĉ
(i))(k)γ̂j +

∑

j

νj γ̂j

Now any potentially distinguishing zero-test query must result in an identically
zero rational function for at least one setting of b ∈ {0, 1} and thus must set the
coefficient on β̂j to some scaling of β̂−1

j for one of these settings since β̂j does
not appear in the other terms. This implies a few things about the adversary’s
coefficients.

– Condition 1. For each j, l, ρj,l = 0, since each entry of ŵ(j) is a sum over
distinct formal variables from R̂ which cannot be canceled out elsewhere in
the coefficient on β̂j . Then we can rewrite the above expression as,

∑
j

β̂j

⎛
⎝∑

i,l

ηi,j,lω̂i(ŵ
(j))(l) +

∑
i,k,l

μi,j,k,lα̂i(ĉ
(i))(k)(ŵ(j))(l)

⎞
⎠ +

∑
i

δiω̂i

+
∑
i,j

ζi,jω̂iγ̂j +
∑
i,k

θi,kα̂i(ĉ
(i))(k) +

∑
i,j,k

κi,j,kα̂i(ĉ
(i))(k)γ̂j +

∑
j

νj γ̂j
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– Condition 2. By a similar argument, for each i, j, l, ηi,j,l = 0, since each
entry of ŵ(j) cannot be canceled out elsewhere in the coefficient on ω̂iβ̂j .
Then we can rewrite the above expression as,

∑
j

β̂j

⎛
⎝∑

i

α̂i

⎛
⎝∑

k,l

μi,j,k,l(ĉ
(i))(k)(ŵ(j))(l)

⎞
⎠

⎞
⎠ +

∑
i

δiω̂i +
∑
i,j

ζi,jω̂iγ̂j

+
∑
i,k

θi,kα̂i(ĉ
(i))(k) +

∑
i,j,k

κi,j,kα̂i(ĉ
(i))(k)γ̂j +

∑
j

νj γ̂j .

– Condition 3. For each i, j, the coefficient on α̂i within each β̂j coefficient
must be some scaling of α̂−1

i . Then by Lemma 12, for each i, j, the coefficients
{μi,j,k,l}k,l must be set to induce a scaling of the inner product of ĉ(i) and
ŵ(j). Let ki,j denote this scaling. We can rewrite the above expression as
follows.∑

i,j

α̂iβ̂jki,j

(
α̂−1

i β̂−1
j ω̂iγ̂j〈u(i)

b ,v
(j)
b 〉 + 〈x(i)

b ,y
(j)
b 〉

)
+

∑
i

δiω̂i +
∑
i,j

ζi,jω̂iγ̂j

+
∑
i,k

θi,kα̂i(ĉ
(i))(k) +

∑
i,j,k

κi,j,kα̂i(ĉ
(i))(k)γ̂j +

∑
j

νj γ̂j

=
∑
i,j

ki,jω̂iγ̂j〈u(i)
b ,v

(j)
b 〉 +

∑
i,j

α̂iβ̂jki,j〈x(i)
b ,y

(j)
b 〉 +

∑
i

δiω̂i +
∑
i,j

ζi,jω̂iγ̂j

+
∑
i,k

θi,kα̂i(ĉ
(i))(k) +

∑
i,j,k

κi,j,kα̂i(ĉ
(i))(k)γ̂j +

∑
j

νj γ̂j .

– Condition 4. For each i, k, θi,k = 0, by a similar argument as in Condition
1, since each entry of ĉ(i) is a sum over distinct formal variables from R̂ which
cannot be canceled out elsewhere in the coefficient on α̂i. We can rewrite the
above expression as follows.

=
∑
i,j

ki,jω̂iγ̂j〈u(i)
b ,v

(j)
b 〉 +

∑
i,j

α̂iβ̂jki,j〈x(i)
b ,y

(j)
b 〉 +

∑
i

δiω̂i

+
∑
i,j

ζi,jω̂iγ̂j +
∑
i,j,k

κi,j,kα̂i(ĉ
(i))(k)γ̂j +

∑
j

νj γ̂j .

– Condition 5. for each i, j, k, κi,j,k = 0, since each entry of ĉ(i) cannot be
canceled out elsewhere in the coefficient on α̂iγ̂j . Then we can rewrite the
above expression as,∑

i,j

ki,jω̂iγ̂j〈u(i)
b ,v

(j)
b 〉 +

∑
i,j

α̂iβ̂jki,j〈x(i)
b ,y

(j)
b 〉

+
∑

i

δiω̂i +
∑
i,j

ζi,jω̂iγ̂j +
∑

j

νj γ̂j .
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Now observe that we need the coefficient on α̂iβ̂j to be zero in order to obtain
a successful zero-test. We consider two cases.

– For each i, j, ki,j = 0, then the remaining term is∑
i

δiω̂i +
∑
i,j

ζi,jω̂iγ̂j +
∑

j

νj γ̂j ,

which is independent of the bit b. Thus, such a zero-test cannot be used to
distinguish.

– Otherwise, let Q be the sets of pair (i, j) such that ki,j �= 0. If the coeffi-
cients on α̂iβ̂j is zero for some b, this implies that 〈x(i)

b ,y
(j)
b 〉 = 0 mod q for

each pair (i, j) ∈ Q. Then by admissibility, this implies that 〈u(i)
0 ,v

(j)
0 〉 =

〈u(i)
1 ,v

(j)
1 〉. Then it is clear that the remaining expression∑

i

δiω̂i +
∑
i,j

ζi,jω̂iγ̂j +
∑

j

νj γ̂j ,

is also independent of the bit b. This completes the proof.

5 Implementation and Evaluation

To evaluate the practicality of our main construction, we implemented our FH-
ZP-IPFE scheme. Our implementation uses the RELIC [6] library to implement
the pairing group operations and the finite field arithmetic in Zq. In our bench-
marks, we measure the time needed to encrypt, issue functional secret keys for,
and decrypt the inner product for (n+m)-dimensional binary vectors for several
different values of (n + m). Following by the suggestion in [25], we measure the
performance with respect to matrices R and R∗ that are sampled uniformly at
random. Using simulated rather than real matrices has no effect on the bench-
marks of the underlying FH-ZP-IPFE operations.

We run all of our benchmarks on a Linux desktop with a 6-core Intel Core
i5-10500H 2.50 GHz processor and 16 GB of RAM. We run benchmarks over the
curve MNT224 and assume the bound of inner products as 3×109 when solving
discrete logarithm. The concrete performance numbers of FH-ZP-IPFE scheme
are summarized in Table 2.

Table 2. Micro-benchmarks for our FH-ZP-IPFE scheme over the MNT224 curve

Dimension (n + m) Encryption KeyGen Dec

(n + m) = 1024 1.01 s 5.058 s 4.446 s

(n + m) = 2048 2.694 s 10.772 s 8.104 s

(n + m) = 4096 8.556 s 24.604 s 16.138 s
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6 Conclusion and Future Work

In this paper, we give the first formal definition of function-hiding predicate
functional encryption (FH-P-FE) and its security model. We then show that
this paradigm is achievable by giving a direct construction of secret-key function-
hiding zero predicate inner product functional encryption (FH-ZP-IPFE) from
pairings and prove it secure in the generic bilinear group model. This is the
first construction of FE with fine-grained access control in the function-hiding
setting. There are also several work desired to be further considered.

– Construction of FH-ZP-IPFE with smaller master secret key size. Note in
our construction, the size of master secret key is O(n2) and the run-time
complexity of setup algorithm is O(n3) since we need to compute R−1.

– Construction of quadratic functional encryption (QFE) [31,36] with fine-
grained access control (such as inner product predicates). QFE is the only
one FE schemes that has proven to be achievable beyond linear function
without trivial expansions. So it is interesting to give such a construction,
although it may not be in the function-hiding setting.

Acknowledgment. This work is supported by the National Natural Science Foun-
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Abstract. Boyle et al. introduced the Property-Preserving Hash (PPH)
concept in 2019, spawning a series of subsequent research endeavors over
the following two years. A PPH function compresses an input x into a
short hash value while revealing a pre-defined one-bit property of the
input from that hash value. A PPH is robust (RPPH) if no probabilistic
polynomial-time adversary can find an input whose hash value cannot
correctly reveal the property of inputs.

This research studies a homomorphic variant of RPPH, denoted as
Homomorphic Robust Property-Preserving Hash (HRPPH). This variant
is particularly beneficial in privacy computing scenarios, where certain
computations of private data are required, but access to the original data
is intentionally restricted. The contributions of our study are twofold:
1. We define HRPPH and demonstrate two previously explored prop-

erties: Hamming weight and Gap-k Greater-Than, which lack an
HRPPH.

2. We prove that two types of properties, the perfectly compressive and
enumerable properties, may construct corresponding HRPPH.

Keywords: Homomorphism · Property-Preserving Hash · Privacy
Computing · Collision Resistance

1 Introduction

The ability to compress data into a short hash value while preserving specific
properties of the inputs is of considerable importance nowadays. A well-known
example is the Collision-Resistant Hash Function (CRHF), which can determine
the equality of different inputs through their fixed-length outputs. In 2019, Boyle
et al. introduced a novel concept, the Property-Preserving Hash (PPH), which
preserves one pre-defined property other than equlity [7]. A PPH enables the
evaluation of a predetermined property predicate P using an evaluation function
Eval predicated on the hash values of the inputs. With overwhelming probability,
the results of the property predicates (i.e., P (x, y) for two inputs x and y) will
coincide with the output of the evaluation function utilizing the hash values (i.e.,
Eval(h(x), h(y)) for the PPH function h).
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To address the security concern, Boyle et al. introduced the concept of
(direct-access) robustness. A PPH is robust if any Probabilistic Polynomial-
Time (PPT) adversary, given access to the scheme’s description (i.e., h), can
only find incorrect inputs that violate the correctness (i.e., finding x, y such that
P (x, y) �= Eval(h(x), h(y))) with a negligible probability. The following stud-
ies [13–15] have focused on constructing (R)PPH for testifying if the Hamming
distance between two bit-strings is less than a pre-defined threshold t.

We notice the utility of RPPH is limited, as it can only reveal the proper-
ties of inputs. This limitation is particularly evident in its inability to handle
complex data preprocessing, such as scaling or computing the mean of inputs,
which are helpful in numerous applications. This work introduces the concept
of homomorphism into RPPH to overcome this limitation. We denote this new
primitive as the Homomorphic Robust Property-Preserving Hash (HRPPH).

1.1 Motivation

We propose HRPPH for the scenario where the server needs to process pri-
vate data from clients for its goodness (e.g., training a generative AI model
with data of users). In such a scenario, access to plaintext data easily trig-
gers privacy concerns, interaction with clients is impossible, and computation
over raw data is necessary. HRPPH facilitates the server’s computation of
P (f(x1, x2, ...)) = Eval(f(h(x1), h(x2), ...)) for a certain function f that is sup-
ported by the homomorphism. HRPPH can be a novel tool for constructing
privacy-preserving applications in this context.

One concrete example is evaluating a linear regression model f(x) = ax+ b.
The server wants to check whether the predicted result f(x) is adequately close
to the actual data y. If both x and y are private, complex protocols such as
multi-party computation would be required to yield the result |f(x) − y| < t.
However, these solutions are usually costly, typically when frequent computations
and comparisons are necessary for model tuning. With an HRPPH h of property
P (x, y) = |x−y| < t, we only need to compute Eval(ah(x)+h(b), h(y)) to testify
P . We provide a candidate HRPPH for this use case in Sect. 4.3.

1.2 Related Works

Prior Works of PPH. Boyle et al. pioneered the study of PPH in [7]. They
proposed the definition of PPH and introduced the term ’robust’ for evaluating
the correctness of compression techniques. Additionally, they proposed certain
gap property predicates that effectively disregard the inputs’ properties within a
pre-defined interval in Robust Property Preserving Hash (RPPH) constructions.
This gap serves as a mechanism to cover errors introduced through compression,
thereby ensuring the correctness of the property. The plausible construction of
RPPH for the newly introduced gap-Hamming weight property was both elegant
and precise, subsequently inciting other researchers’ interest in this field.

In 2021, Fleischhacker and Simkin [14] studied the property of the exact
Hamming attribute and offered a refined construction of RPPH based on a
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bilinear group. In the following work [13], Fleischhacker et al. use Bloom look-
up tables and standard Short Integer Solution (SIS) assumptions to propose a
new quantum-resistant RPPH. The most recent result in RPPH is attributed to
Holmgren et al. [15]. They harnessed the power of error-correcting code technol-
ogy alongside certain collision-resistant hash functions for constructing RPPHs.

In summary, current research primarily concentrates on the properties of
Hamming distances, approaching the compactness to the possible lower bound.
While most constructions employ some form of homomorphism, they are not con-
sistently homomorphic beyond certain operations, leading to additional overhead
for output length, as demonstrated in [15].

HRPPH Compared to Other Primitives. To delineate the distinction of
HRPPH, it is helpful to briefly review some similar cryptographic primitives and
their comparison with HRPPH.

Homomorphic encryption(HE), as in [8,10], is a cryptographic protocol that
allows for outsourcing complex computations to a server. The server can manip-
ulate the ciphertext to perform these computations, yet the plaintext results are
accessible exclusively to the user possessing the secret key. HE requires addi-
tional interaction with the data owner for decryption, while HRPPH doesn’t
need that with the cost of a one-bit-only result. Therefore, HRPPH is more suit-
able for privacy-preserving protocols where interaction is limited, and the result
is simple.

Homomorphic hash functions, another cryptographic primitive, are pivotal
in protocols devised to authenticate dynamic content. LtHash [3] is an excellent
example widely used for validating incremental data updates. HRPPH extends
the utility of homomorphic hash functions beyond revealing equality to disclosing
an additional one-bit property. This extra property makes HRPPH more usable
in secure computation protocols [18].

Functional Encryption (FE) [6] is similar to HRPPH in terms of function-
ality. In FE, a data owner may encrypt data into ciphertext, while the data
consumer can obtain a result of a pre-defined computation using a derived key.
For instance, [9] offers a practical construction to compute the inner product of
inputs with another public vector. The distinction between functional encryption
and HRPPH lies in two aspects: 1. HRPPH reduces the data owner’s workload
since there is no key in HRPPH, and anyone can reveal the property freely. 2.
HRPPH is more flexible with homomorphic operations than the fixed operation
supported by FE.

1.3 Our Contributions and Techniques

In this paper, we introduce the definition of HRPPH. We discuss the impossible
results of the Exact Hamming weight property and the integer Gap-k Greater-
Than property. We propose two methodologies for building HRPPH for two
distinct property types and provide practical examples for each. The main con-
tributions are summarized as follows:
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HRPPH Definition and Theoretical Outcomes. In Sect. 3, we define
HRPPH and examine whether the previously studied property predicates of
RPPH can have an HRPPH. We present two negative findings indicating that
robustness, homomorphism, and property preservation may conflict.

No HRPPH for Hamming Weight. Our first result demonstrates that it is not
feasible to construct an HRPPH for the Hamming weight property, defined as
Hammingt(x) := |x| < t;x ∈ {0, 1}n. We first show that any HRPPH for
Hammingt(x) must be collision resistant. Next, we prove no homomorphism
on ({0, 1}n,

⊕
) that is collision-resistant. Consequently, there is no HRPPH for

Hammingt(x).

No HRPPH for Gap-k Greater-Than. We further illustrate that the Gap-k
Greater-Than property proposed by [7] cannot possess an HRPPH for any k.
The reason is that the property partitions the group in a way that contradicts
the homomorphism structure.

Our Proposed HRPPH Constructions. Section 4 proposes two methodolo-
gies for constructing an HRPPH, accompanied by applicable instances.

HRPPH for Perfectly Compressive Property. Initially, we define perfectly com-
pressive properties and demonstrate that they consistently possess an HRPPH.
A perfectly compressive property needs a non-trivial normal subgroup of the
domain group, wherein cosets consistently share identical properties. The term
“perfectly” indicates that the compression from the domain group to the quotient
group will not introduce errors when evaluating the property. We show that these
properties result in a perfectly compressive HRPPH that remains invulnerable
to robustness compromise by any adversary.

HRPPH for Enumerable Property. Secondly, inspired by existing works [15], we
proposed a general HRPPH construction for enumerable properties. This con-
struction is suitable for properties that segregate the input domain X into two
sets X1 and X0 where |X0| � |X1|. This construction requires X1 to be enu-
merable under specific constraints. We use these constraints with a generalized
homomorphic collision-resistant hash function (HCRHF) to reveal the property
robustly. As an example, we propose an HRPPH of integer-close-to property
ICTt(x) := |x| < t, given an integer t > 0 and x ∈ (Z,+). Our HRPPH sup-
ports integer addition and constant scaling, which allows our construction to be
applied to linear systems.

2 Preliminary

This section provides the basic notations and definitions used throughout the
paper.
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We use the notation x ←r X to denote sampling x uniformly at random from
a set X and |X| to represent the cardinality of X. The symbol ← denotes the
assignment of a variable. A group defined over set X with a binary operation

⊙

is denoted as (X,
⊙

). We will also use X to represent the group if the operation
is clear from the context. Z denotes integer ring. For any positive integer n, Zn

represents the additive group of integers modulo n. N represents the additive
group of natural numbers. A column vector is denoted by the bold character x.
λ ∈ N represents the security parameter. poly(λ) denotes any function bounded
by a polynomial in λ. We use negl(λ) to denote any negligible function f that
for any c ∈ N, there exists an l ∈ N such that for all λ > l, f(λ) < 1/λc.

2.1 Boolean Group

Here, we recall the definition of the boolean group.

Definition 1 (Boolean Group [17]). A boolean group (X,
⊙

) is a group that
satisfies the property that for every element x ∈ X, x

⊙
x = 0, where 0 is the

identity element of X.

Since every element in a boolean group is self-inversive, a boolean group is
abelian. Therefore, a boolean group is an elementary abelian group of order 2,
which leads to the following property:

Property 1 (Basis Theorem for Finite Abelian Groups). Every finite boolean
group is isomorphic to a finite direct product of a 2-elements group.

Above property implies that any boolean group (X,
⊙

) is isomorphic to
(Zlog|X|

2 ,+). Hence, we can always find a primary decomposition that maps X

into a binary vector space Z
log|X|
2 .

2.2 Cryptographic Assumption

We recall the strong RSA assumption for general groups of unknown order as
introduced in [5].

Definition 2 (Strong RSA for General Groups of Unknown Order [5]).
Given a security parameter λ, let GGen(λ) be a randomized function that returns
a group G of unknown order. For any generator g ∈ G and for all probabilistic
polynomial time (PPT) adversaries A, we have:

Pr
[
(x, e) ∈ G × Z ← A(G, g)

s.t. e is an odd prime : xe ≡ g

]

≤ negl(λ).

This assumption extends the traditional strong RSA assumption [1] to groups
such as ideal class groups or hyperelliptic Jacobians [11]. By using ideal class
groups in the function GGen, we can reduce the size of the group elements and
remove the trusted setup process required by RSA modulo.
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3 Homomorphic Robust Property-Preserving Hash
(HRPPH)

We now define HRPPH as an extension of RPPH [7].

Definition 3 (HRPPH). Given a security parameter λ, an HRPPH family
H = {h : X → Y } for 2 groups (X,

⊙
) and (Y,

⊗
) and a predicate P : X →

{0, 1} has the following three algorithms:

– Samp(λ) → h is a randomized PPT algorithm that samples h ←r H.
– Hash(h, x) → y is an efficient deterministic PPT algorithm that computes

the hash of the input x.
– Eval(h, y) → {0, 1} is an efficient deterministic PPT algorithm that takes

the input of a hash value and outputs a single bit.

The HRPPH scheme requires the following properties:

– Homomorphism: ∀x0, x1 ∈ X and h ∈ H,

h(x0

⊙
x1) = h(x0)

⊗
h(x1).

– Compression: ∀h ∈ H, the kernel Kh satisfies |Kh| > 1. If |X| is finite, the
compression rate is defined as η = log|Y |

log|X| .
– Robustness: For any PPT adversary A,

Pr
[

h ← Samp(λ)
x ← A(h) : Eval(h, h(x)) �= P (x)

]

≤ negl(λ).

Compared to the original definition of RPPH, HRPPH changes:

1 The evaluation function Eval only takes one input because the users can
compute functions of hash values through homomorphic operations.

2 We rewrite the compression requirement to allow inputs from infinity groups.
An HRPPH scheme is compressive if its kernel has more than one element.

3 The Robustness of RPPH in the original paper [7] can have different oracles
that the adversary could access to distinguish various types of robustness. In
this paper, we only discuss the most challenging case where the adversary has
direct access to the description of the RPPH (i.e., h).

3.1 No HRPPH for Hamming Weight

Given the definition of HRPPH, our first interest is to examine the possibil-
ity of constructing an HRPPH from existing RPPHs. We define a single-input
predicate accepting inputs from ({0, 1}n,

⊕
) for measuring hamming weights.

Definition 4 (Hamming weight predicates). Let n ∈ N, 0 < t < n, and
x ∈ {0, 1}n. The Hamming weight predicate, Hamn,t(x), is defined as follows:

Hamn,t(x) :=

{
1 |x| ≤ t

0 |x| > t
.



Robust Property-Preserving Hash Meets Homomorphism 543

It is straightforward to deduce that the Hamming weight predicate implies
an exact Hamming predicate when the second input corresponds to an all-
zero string. By integrating the concept of homomorphism, we can compute
P (x1

⊕ · · · ⊕xn) derived from h(x1), · · · , h(xn) for any (x1, · · · , xn) ∈ Z
n
2 . Con-

sequently, an HRPPH of hamming weight predicate leads to an RPPH for the
Exact Hamming Predicate. However, existing constructions of RPPH for the
exact Hamming predicate, as described in [13–15], are not holomorphic accord-
ing to our standard definition. Thus, they cannot construct an HRPPH for our
Hamming weight predicate. We will demonstrate that no HRPPH construction
exists for the Hamming weight predicate and the exact Hamming predicate.

We start with the definition of collision resistance. Given a security parameter
λ, a function h is collision-resistant if it satisfies the following criteria for all
Probabilistic Polynomial-Time (PPT) adversaries A:

Pr

⎡

⎣
h ← Samp(λ)
(x0, x1) ← A(h)
s.t. x0, x1 ∈ X

:
x0 �= x1

h(x0) = h(x1)

⎤

⎦ ≤ negl(λ).

Our first result shows no HRPPH exists for the Hamming weight predicate:

Theorem 1. Given a security parameter λ and arbitrary integer 0 < t < n,
there is no HRPPH for ({0, 1}n,

⊕
) and predicate Hamn,t.

Proof. We first show that the HRPPH for Hamn,t must be collision-resistant.
Denote the identity element of ({0, 1}n,

⊕
) as 0n. Let us assume the existence

of an HRPPH for Hamn,t that is not collision-resistant. Under this assumption,
there exists an adversary A such that

Pr

⎡

⎣
h ← Samp(λ)
(x0, x1) ← A(h)
s.t. x0, x1 ∈ X

:
x0 �= x1

h(x0) = h(x1)

⎤

⎦ > negl(λ).

Let y ← x0

⊕
x1 ∈ Kh and y �= 0n.

If |y| > t, we have h(y) = h(0n) and Hamn,t(y) �= Hamn,t(0n).
If |y| ≤ t, let’s define y′ by randomly flipping t − |y| + 1 zeros of y, and

y′′ ← y′ ⊕ y. It is straightforward that |y′′| = t − |y| + 1 and |y′| = t + 1, which
implies Hamn,t(y′) �= Hamn,t(y′′) even though h(y′) = h(y′′). Therefore

Pr
[

x ← A(h)
Eval(h, h(x)) �= Hamn,t(x)

∣
∣
∣
∣

x0, x1 ← A(h)
s.t. x0 �= x1, h(x0) = h(x1)

]

= 1.

Pr
[

x ← A(h)
s.t. Eval(h, h(x)) �= Hamn,t(x)

]

≥ Pr

⎡

⎣
(x0, x1) ← A(h)

s.t. x0 �= x1

h(x0) = h(x1)

⎤

⎦

> negl(λ).
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Hence, h is not robust, contradicting the definition of HRPPH. Therefore,
any HRPPH for Hamn,t must be collision-resistant.

The next step is to prove there does not exist a Collision-Resistant Hash
Function (CRHF) for ({0, 1}n,

⊕
).

Assume there is a CRHF h : ({0, 1}n,
⊕

) → (Y,
⊗

). As h is a homomor-
phic function and ({0, 1}n,

⊕
) constitutes a Boolean group, it follows that Y

must also be a Boolean group. By Property 1, Y is isomorphic to (Zm
2 ,+) for a

0 < m < n. By encoding ({0, 1}n,
⊕

) in (Zn
2 ,+), we can derive an isomorphic

homomorphic function h′ : Zn
2 → Z

m
2 .

We define ai ∀ 0 < i ≤ n as the bit string in {0, 1}n, wherein only the ith bit
is 1, and the remaining bits are all 0. We extend this notation to represent the
corresponding vector ai ∈ Z

n
2 . An adversary A can query h(a1), · · · , h(an) to

acquire n elements in Y . Utilizing the isomorphism, A obtains h′(ai) for every
0 < i ≤ n and subsequently constructs a matrix A ∈ Z

m×n
2 by positioning each

component h′(ai) as a column. It is straightforward to infer that h′(x) = Ax.
Since the equation Ax = 0 can be solved in polynomial time, A can output

a y ∈ Z
n
2 such that Ay = 0. For any arbitrary x ∈ Z

n
2 , it holds that h′(x+y) =

Ax+Ay = h′(x). Leveraging the isomorphism, we deduce that the corresponding
bit strings x and y satisfy h(x

⊕
y) = h(x). Consequently, (x, x

⊕
y) constitutes

a collision pair for h, which can be computed by n = poly(λ) queries and a PPT
algorithm. Therefore, h is not collision-resistant.

By synthesizing the results above, we can claim that it is impossible to con-
struct a collision-resistant hash for ({0, 1}n,

⊕
), and by extension, to construct

an HRPPH for Hamn,t.
��

The above result shows that the Hamming weight property prevents HRPPH
construction.

3.2 No HRPPH for Gap-k Greater-Than

Boyle et al. studied another property known as the Gap-k Greater-Than [7] and
gave an RPPH construction. We also explore whether this property could yield
a corresponding HRPPH. We reformulate it into a single-input property:

Definition 5 (Gap-k Greater-Than predicates). Let k > 0 be an arbitrary
integer and ∗ be an arbitrary symbol (indicating it can be either 0 or 1). Given
an input x ∈ Z, the Gap-k Greater-Than property is defined as follows:

Gapk(x) =

⎧
⎪⎨

⎪⎩

1 x > k

0 x < −k

∗ otherwise

.

We now present our second negative claim: it is not possible to construct an
HRPPH for the Gap-k Greater-Than property over (Z,+).

Theorem 2. For arbitrary integer k > 0, there is no HRPPH for (Z,+) and
predicates Gapk.
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Intuitively, the Gap-k Greater-Than property roughly divides the integer
group into two symmetrical infinite sets (i.e., (−∞,−k) and (k,∞), while the
interval [−k, k] is negligible in comparison to Z). Because all quotient groups of
(Z,+) must follow the form of Zl for some l > 0, any evaluation function will
incorrectly evaluate approximately half of the elements within the input group.
An adversary can always find inputs that breach the robustness requirement by
employing an appropriate sampling algorithm. Appendix A presents the formal
proof of Theorem 2.

The Theorem 2 and Theorem 1 signify that there can be a conflict between
the distribution of a property over the input group and the structure of the group
itself. We cannot reveal arbitrary property from a homomorphic hash even if an
RPPH can be constructed over one operation. However, it is still possible to
create many HRPPHs for other properties. In the subsequent section, we will
present two properties with generic methods for constructing an HRPPH.

4 Our Constructions of HRPPH

The main idea of our constructions is to define property from the view of homo-
morphism rather than vice versa. An HRPPH, denoted as h, is a homomorphic
surjection that segregates the definition domain into discrete cosets of the kernel
Kh. These cosets collectively constitute a partition of the domain group. On the
other hand, the property P divide the underlying set of domain group X into
two sets, X0 and X1, where Xi = {x|x ∈ X, i ∈ {0, 1}, P (x) = i}. If any pair of
elements originating from the same cosets defined by h are located in distinct
sets X0 and X1, one of these elements must be evaluated incorrectly. Thus, our
goal is to prevent any adversary from finding these pairs.

The first approach is to prevent such bad inputs. This requires identifying
a non-trivial kernel in which each coset of the kernel falls entirely within either
X0 or X1. Therefore, any property defined over a non-trivial kernel’s cosets can
effectively create an HRPPH construction.

The second approach deals with situations where bad inputs are unavoidable
due to the structure of the domain group. In this case, the strategy is to: 1.
make the bad inputs relatively less than the input domain; 2. hide these bad
inputs through computational hard problems. For the first requirement, our
input domain should be considerably larger than the kernel (i.e., it has a big
enough group order). Since a bad input can form a collision pair from its coset,
we can leverage collision resistance to hide the kernel (i.e., the group order) for
our second requirement. This solution leads to our second HRPPH construction.

4.1 HRPPH for Perfectly Compressive Property

First, we introduce the Perfectly Compressive Property:

Definition 6 (Perfectly Compressive Property). A property predicate P :
X → {0, 1} is a Perfectly Compressive Property for a group (X,

⊙
) if there

exists a normal subgroup G � X such that |G| > 1 and P (x
⊙

y) = P (x) holds
for all y ∈ G.
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This definition requires the property to be a partition of all cosets by a non-
trivial normal subgroup. The term perfect illustrates the compression caused by
the homomorphism will not affect the evaluation of the property. A property
demonstrating such perfect compression attributes implies the existence of a
construction for the HRPPH:

Theorem 3 (Perfectly Compressive HRPPH). For any perfectly compres-
sive property P defined on (X,

⊙
) with a normal subgroup G, there exists an

HRPPH h : X → X/G where Eval(h, h(x)) := P (h(x)).

Proof. Given that G � X, we can define a homomorphism h according to the
homomorphism axiom. As h(x) ∈ X/G ⊂ X, both P (h(x)) and Eval(h, h(x))
are computable.

Since |G| > 1, h demonstrates compressive characteristics.
For an arbitrary input x, if x ∈ X/G, Eval(h, h(x)) = Eval(h, x) = P (x)

holds trivially. For x /∈ X/G, there exists y ∈ G such that x = h(x)
⊙

y.
Consequently, Eval(h, h(x)) = P (h(x)) = P (h(x)

⊙
y) = P (x). Therefore, for

all x ∈ X,Pr[Eval(h, h(x) = P (x))] = 1, implying h is robust.
Thus, h qualifies as an HRPPH.

��
This construction derives from the definition of HRPPH and its inherent

compression behavior. Its robustness, with a probability of one, qualifies it as
perfectly compressive.

This solution is difficult to apply for a given predicate like hamming weight.
However, it is not difficult to define such a property when the input domain group
is clear. Therefore, this property can be used to reveal if a specific computation
flow over inputs can yield an output satisfying some properties. We present an
example of HRPPH for set operation in Appendix B.

4.2 HRPPH for Enumerable Property

For properties that do not have perfect compressibility, an alternative solution
is to make finding the kernel a difficult problem. Therefore, we must hide the
bad inputs with a homomorphic collision-resistant hash function. Without loss
of generality, we assume |X0| � |X1| (recall Xi := {x|x ∈ X;P (x) = i} ). We
define the enumerable property as follows:

Definition 7. A property P is termed an enumerable property if a normal sub-
group G � X and a subset X1 exist, such that a deterministic polynomial-time
algorithm is capable of enumerating all elements from aG ∩ X1, ∀ a ∈ X.

The enumerable property needs a polynomial-time algorithm capable of enu-
merating all possible input candidates x satisfying P (x) = 1 for the given hash
value. Later, we can verify the correctness of the guess through the collision-
resistant function. We will demonstrate that this enumeration algorithm is cru-
cial for revealing the property. Holmgren et al. have demonstrated that the exact



Robust Property-Preserving Hash Meets Homomorphism 547

Hamming property is enumerable [15], employing a parity check matrix P of an
efficient syndrome list decodable code against t errors. It is crucial to note that
since the input candidate could expose the pre-image of the hash value in X1,
the real domain of this HRPPH should be within X0 to prevent leakage. This
HRPPH will only reveal if the function of multiple inputs belongs to X1.

Before constructing an HRPPH, we present a generalized definition of the
homomorphic collision-resistant hash function (HCRHF):

Definition 8. Given a security parameter λ, a family of HCRHF H = {h : X →
Y } for two groups (X,

⊙
) and (Y,

⊗
) requires the following two algorithms:

– Samp(λ) → h is a randomized PPT algorithm that samples h ←r H.
– Hash(h, x) → y is an efficient deterministic PPT algorithm that computes

the hash h(x) ∈ Y .

The HCRHF scheme requires the following properties:

– Homomorphism: ∀x0, x1 ∈ X and h ∈ H, h(x0

⊙
x1) = h(x0)

⊗
h(x1).

– Compression: ∀h ∈ H, the kernel Kh satisfying |Kh| > 1. If |X| is finite,
the compression rate is defined as η = log|Y |

log|X| .
– Collision-Resistance: For all PPT adversary A, satisfying

Pr

⎡

⎣
h ← Samp(λ)
x0, x1 ← A(h)
s.t. x0, x1 ∈ X

:
x0 �= x1

h(x0) = h(x1)

⎤

⎦ ≤ negl(λ).

Our definition extends the one proposed by [15] by using the standard homo-
morphism definition where the homomorphic operations exist for the whole
input domain. This allows our HCRHF to support homomorphism with arbi-
trary times, unlike its predecessor, which only supports a single homomorphic
operation. We give a general construction of HRPPH for enumerable properties
based on HCRHF:

Theorem 4 (Enumerable HRPPH). Given a security parameter λ, a group
(X,

⊙
) of size log |X| > poly(λ), and an enumerable property P with the corre-

sponding normal subgroup G, if there exists a HCRHF D for (X,
⊙

) with kernel
KD satisfying |KD| ∗ |G| > |X|, then there exists an HRPPH for P on (X,

⊙
).

Proof. We can construct a homomorphism E : X → X/G, and define the fol-
lowing HRPPH:

– Samp: Randomly sample D ← SampHCRHF (λ), and return the description
of h ← (E,D).

– Hash: For an arbitrary input x ∈ X, return h(x) ← (E(x),D(x)).
– Eval: For a hash value h(x) = (y1, y2), enumerate Z ← {z|D(z) = y2, z ∈

y1G ∩ X1}. If |Z| > 0, then return 1; otherwise, return 0.
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E(z)G ∩ X1 is the intersection of a coset E(z)G and X1. Since we can enumer-
ate it in a deterministic polynomial-time algorithm, Eval can be executed in
polynomial time.

It is trivial to show that h is compressive (η = log(|x|2/(|KD|∗|G|))
log(|X|) = 2 −

log(|KD|∗|G|)
log(|X|) < 1) and homomorphic (both D and E are homomorphisms for the

same domain group). We only prove it is robust:
If P (x) = 1, then x ∈ Z. Since x ∈ E(x)G ∩ X1, we have

Pr
[

x ← A(h)
s.t.P (x) = 1, Eval(h, h(x)) = 0

]

= 0.

If P (x) = 0, suppose a PPT adversary A can break the robustness with
probability ρ:

Pr
[

x ← A(h)
s.t.P (x) = 0, Eval(h, h(x)) = 1

]

= ρ.

By computing Eval(h, h(x)) = 1, the adversary can obtain y such that y ∈
E(x)G ∩ X1 and D(x) = D(y) in polynomial time. Hence,

Pr
[

x, y ← A(h)
s.t.D(x) = D(y)

]

≥ ρ.

Since D is collision-resistant, we have

Pr

⎡

⎣
x ← A(h)

s.t.P (x) = 0,
Eval(h, h(x)) = 1

⎤

⎦ ≤ Pr
[

x, y ← A(h)
s.t.D(x) = D(y)

]

≤ negl(λ).

Ultimately, h is robust:

Pr
[

x ← A(h)
s.t.P (x) �= Eval(h, h(x))

]

≤ negl(λ).

��
The above construction generalizes the construction of RPPH in [15] with

homomorphism. If an HCRHF exists, this construction can be used for any enu-
merable property defined over the domain groups. We now provide an example
of HRPPH for property over (Z,+).

4.3 HRPPH for Integer-Close-To Property

Following the idea of Hamming weight property, we propose an Integer-Close-To
(ICT) predicate for the integer addition group (Z,+) as follows:

Definition 9. Given a positive integer t and an arbitrary input x from Z. The
ICT property is defined as:

ICTt(x) =

{
1 |x| < t

0 otherwise
;x ∈ Z.
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The ICT property provides a measure of proximity between two integers.
This measure is a fundamental operation in classification tasks or regression
computations. This property can be evaluated privately using techniques such
as zero-knowledge range proofs. However, homomorphism in our HRPPH allows
the ICT property to be evaluated for the computational result of input data
without leaking the computation flow and input data.

For instance, consider a machine learning model f(x1, x2, · · · , xn), where
different participants hold each xi. We can compare if the predicted results of
this model are sufficiently close to the actual result y through homomorphism.

Since small integers are countable, we can map each integer to an appropriate
subgroup E : Z → Zd, ensuring that | td | < poly(λ). This mapping allows us to
recover candidate inputs directly from their encoded values.

Next, we need to identify an HCRHF for the integer addition group. We
propose the unknown-order-based homomorphic hash and demonstrate that it
is an HCRHF for the integer group Z.

Definition 10 (Unknown-Order-based Homomorphic Hash). For a
given security parameter λ and a randomized function GGen that can return
a group of unknown order, we define the following hash function:

– SampUO (λ) → h: Sample G ← GGen(λ) and g ←r G and return h ← (G, g).
– Hash(h, x) → y: For an input x ∈ Z, output h(x) = gx.

The above scheme supports homomorphic operations : h(x1)h(x2) = h(x1 + x2).

Lemma 1. The homomorphic hash defined in Definition 10 is an HCRHF for
inputs from (Z,+).

Proof. Compression and homomorphism are trivial. We only prove the collision
resistance by extending the proof in [1].

We assume that the existing PPT adversary A can find a collision for the
above scheme such that gx0 ≡ gx1 for x0, x1 ∈ Z with probability ρ. Without
loss of generality, assume x0 < x1. Randomly pick an odd prime integer l < x0

and gcd(l, x1 − x0) = 1, and let x′
1 = x1 − x0 + l. We will have gl ≡ gx

′
1 where

l �= x′
1 and gcd(l, x′

1) = 1.
Since l is co-prime to x′

1, we can get rl+ bx′
1 = 1 for r, b ∈ Z by the extended

Euclidean function. Assuming m = gr+b and e = l, we get me = glrglb =
glr+bx′

1 ≡ g.
If the Strong RSA for general groups of unknown order holds

negl(λ) ≥ Pr
[
(x, e) ∈ G × Z ← A(G, g)

s.t. e is an odd prime : xe ≡ g

]

≥ ρ.

Hence,

Pr

⎡

⎣
(G, g) ← SampUO (λ)

x0, x1 ← A(G, g)
s.t. x0 �= x1

: gx0 ≡ gx1

⎤

⎦ ≤ negl(λ).

��
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Fig. 1. HRPPH for ICTt

Using this HCRHF, we can have the HRPPH as Fig. 1. The above scheme is
an HRPPH following Theorem 4. We offer three remarks about the construction:

1. According to our HCRHF from Definition 10, x is defined over the integer
group (Z,+).

2. Our scheme also supports linear scaling. Given that h(x) = (y1, y2), we can
state h(ax) = (ay1, y

a
2 ) for all a ∈ Z. This property supports applications like

integer linear regression.
3. The output is a fixed length log(d) + log(n) = poly(λ).

Our construction supports linear computation over the inputs. Hence, one
could employ this HRPPH in a privacy-preserving computing scheme like a linear
regression model f , such that y = f(h(x1), h(x2), . . . , h(xn)) where xi ∈ X0, and
subsequently evaluate Eval(y − h(c)) to ascertain whether f(x1, x2, . . . , xn) is
proximate to c or not.

5 Conclusion and Future Works

In this study, we introduced the definitions for Homomorphic Robust Property-
Preserving Hash (HRPPH) (Definition 3). We demonstrated the impracticality
of constructing an HRPPH for the Hamming weight property (Theorem 1) and
the Gap-k Greater-Than property (Theorem 2). This limitation arises because
the property’s input partitioning is incompatible with its inherent homomor-
phism. Subsequently, we presented two methods for constructing HRPPHs: one
for perfectly compressive properties (Theorem 3) and another for enumerable
properties (Theorem 4). We also provided an example of HRPPH construction
for the Integer-Close-To property (Subsect. 4.3).

Despite these developments, several questions remain open for further explo-
ration. First, we are interested in establishing a general connection between
property predicates, the structure of the input group (or ring), and the potential
existence of an HRPPH. Secondly, our interest is in whether we can construct
a ring homomorphic collision-resistant hash function and thereby ring HRPPH.
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Finally, considering the potential of HRPPH as a building block for privacy-
preserving computational protocols, we aim to find applications that can fully
harness the capabilities of HRPPH.
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A Proof of Theorem 2

Theorem 2. For arbitrary integer k > 0, there is no HRPPH for (Z,+) and
predicates Gapk.

Proof. Assume we have h as an HRPPH for Gap-k Greater-Than. As the kernel
Kh satisfies |Kh| > 1, there exists l ∈ Kh such that h(x) ∼= Zl, which is finite.
Suppose h encodes the outputs into a finite group Y , represented by log(n) bits.
We will check set S− = [−2n,−n] and S+ = [n, 2n]. It’s easy to see that for all
x ∈ S+, P (x) = 1 and for all x ∈ S−, P (x) = 0. Since n ≥ l, we can suppose
n = al + b, where 0 ≤ b < l. We denote Lx as the pre-image of h(x) such that
Lx := [· · · , x−2l, x− l, x, x+ l, x+2l, · · · ]. If b ≤ l

3 , we examine below five cases:

1. If 0 < x ≤ b, |Lx ∩ S−| = |Lx ∩ S+| = a. Hence, Eval(h, x) is wrong with
probability P1 = 1

2 .
2. If b < x ≤ l − 2b, |Lx ∩ S−| = a, while |Lx ∩ S+| = a + 1. Hence, Eval(h, x)

is wrong with probability P2 > a
2a+1 ≥ 1

3 .
3. If l − 2b < x ≤ 2b, |Lx ∩ S−| = |Lx ∩ S+| = a+1. Hence, Eval(h, x) is wrong

with probability P3 = 1
2 .

4. If 2b < x ≤ l − b, |Lx ∩ S−| = a + 1 and |Lx ∩ S+| = a. Hence, Eval(h, x) is
wrong with probability P4 > a

2a+1 ≥ 1
3 .

5. If l − b < x ≤ l, |Lx ∩ S−| = |Lx ∩ S+| = a. Hence, Eval(h, x) is wrong with
probability P5 = 1

2 .

By adding them all, we obtain

Pr
[

Eval(h, h(x)) �= P (x)
∣
∣
∣
∣
x ∈ S+ ∪ S−

b ≤ l
3

]

= P1 × Pr[0 < x mod l ≤ b]

+ P2 × Pr[b < x mod l ≤ l − 2b]
· · ·
+ P5 × Pr[l − b < x mod l ≤ l]

≥ 1
3
.

We obtain the same result for l
3 < b ≤ l

2 by switching (b, l − 2b) to (2b, l − b)
and similar result for 2l

3 < b ≤ l by switching (2b − l, l − b) to (b, 2l − 2b).
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Adding up all the cases for b, we have:

Pr[Eval(h, h(x)) �= P (x)|x ∈ S+ ∪ S−] ≥ 1
3
.

By randomly picking elements from S+ ∪S−, the adversary can find a wrong
result with a probability of at least 1

3 , which contradicts the robustness require-
ments. Hence, no HRPPH exists for Gapk with an arbitrary k.

��

B Computing Private Set Intersection Subset by HRPPH

In this section, we propose a new variant of Private Set Intersection (PSI) and
resolve it with an HRPPH:

Problem 1 (Private Set Intersection Subset (PSIS)). Given a universal set U
and n > 2 participants A1, A2, · · · , An each with their corresponding sets
S1, S2, · · · , Sn, where Si ⊂ U , 0 < i ≤ n. Let S0 ⊂ U be a small query set
such that |Si| � |S0|,∀0 < i ≤ n. All participants must return S0 ∩S1 ∩ · · · ∩Sn

without disclosing any information about other elements in each private set Si.

The scenario outlined above can arise when multiple participants possess
large amounts of data (e.g., database sharding), and auditors need to verify
the consistency of specific data across all participants. Several protocols can be
used to resolve this problem, and we provide a method that utilizes HRPPH to
highlight its features. For the sake of this discussion, we will not compare our
approach with existing PSI protocols.

We assume all participants to be honest but curious, meaning they will adhere
to the protocol but are interested in learning more about the others’ sets. We
begin by defining a property of the PSI predicate:

PSIt(S) :=

{
1 t ∈ S

0 otherwise
, S ⊂ U .

Previous works [14,16] have demonstrated that if a global pseudo-random func-
tion (PRF) f : Z × U → Zq exists to encode a universal set U into Zq for some
large prime q with poly(λ) bits, any set S ⊂ U can be encoded as a deterministic
polynomial QS =

∏
i(x − si) ∈ Zq[x],∀si ∈ S. The polynomial ring Zq[x] can

define the following zero point property:

ZeroPointt(QS) :=

{
1 QS(t) = 0
0 otherwise

.

Below, we prove a lemma for applying our property to the PSIS problem.

Lemma 2. For two random sets S1 and S2 drawn from a universal set U
encoded into Zq through a PRF, and the corresponding polynomials QS1 , QS2

defined as QS =
∏

si∈S(x−si) ∈ Zq[x],∀si ∈ S, it holds that Pr[PSIt(S1∩S2) �=
ZeroPointt(QS1 + QS2)] ≤ negl(λ).
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Proof. 1. If PSIt(S1 ∩ S2) = 1, then PSIt(S1) = 1 and PSIt(S2) = 1, which
implies QS1(t) = QS2(t) = 0. Therefore,

Pr [ZeroPointt(QS1 + QS2) = 1|PSIt(S1 ∩ S2) = 1] = 1.

2. If PSIt(S1 ∩ S2) = 0, then both QS1(t) and QS2(t) are non-zero. We have

Pr[ZeroPointt(QS1 + QS2) = 1|PSIt(S1 ∩ S2) = 0]
= Pr[QS1(t) + QS2(t) = 0|QS1(t), QS2(t) �= 0].

Given that QS1(t) =
∏

i(t − si) for all si ∈ S1, and S1 is independent to
S2 encoded through a pseudo-random hash, QS1(t) and QS2(t) are random in
Zq. Therefore, the above equation is equivalent to randomly selecting two values
from Zq that sum to zero, which has a probability of 1

q = negl(λ). Hence,

Pr[PSIt(S1 ∩ S2) �= ZeroPointt(QS1 + QS2)]

=
1
q
Pr[PSIt(S1 ∩ S2) = 0] ≤ negl(λ).

��
Assuming we have an HRPPH h : Zq[x] → Y for the property ZeroPointt,

for all t ∈ S0, we can use a secure aggregation to construct a probabilistic
algorithm to solve the Private Set Intersection with Subsets (PSIS) problem.

Inspired by the one-time pad protocol of [4], we present a simple construction
using our HRPPH for PSIS in Fig. 2. Our model assumes access to a global
random coin c, which can be distributed.

Fig. 2. Protocol for PSIS

Since F =
∑

i Fi =
∑

i Ri, it holds that Evalt(h,
∑

i Ri) =
ZeroPointt(

∑
i QSi

) by Lemma 2. Therefore, with overwhelming probability,
I = S0 ∩ S1 ∩ · · · ∩ Sn in our protocol. The protocol is entirely randomized by
Uij . The only message containing information about the private sets is Fi(t),
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obscured by random values from all participants. The hash is also random-
ized by ri without compromising the correctness of Eval (ZeroPointt(QS) =
ZeroPointt(r ∗ QS) for all r ∈ Zq, r �= 0). Thus, the protocol preserves privacy
and protects against collusion among n − 2 participants.

We now construct an HRPPH for the property ZeroPointt, ∀t ∈ S0. It is
evident that G ← {kQS0 ,∀k ∈ Zq[x]} is a free group generated by QS0 ∈ Zq[x]
which is non-trivial and normal. Therefore, it defines a quotient group, specif-
ically Zq[x]/QS0 , and we get an surjective homomorphism Zq[x] → Zq[x]/QS0 .
Moreover, due to QS + QS0(t) = QS(t) for all t ∈ S0, we establish that

∀k ∈ Zq[x], ZeroPointt(QS + k ∗ QS0) = ZeroPointt(QS).

According to Definition 6, ZeroPointt(Q) is a perfectly compressive property.
By Theorem 3, we have an HRPPH construction we depict in Fig. 3 for all
properties ZeroPointt, ∀t ∈ S0.

Fig. 3. HRPPH for ZeroPointt

We can use this HRPPH in our protocol. In our PSIS protocol, we can use
the query set S0 to generate the description of the hash hQS0

. Since U is finite,
the compression rate equals |S0|

|Si| with lower bound |S0|
q .

The above HRPPH scheme shares some ideas with the multi-input intersec-
tion RPPH proposed by [14]. We show three distinct features of our construction:

1. Our HRPPH is perfectly compressive and does not rely on any difficult
assumptions for its robustness.

2. Our HRPPH is indeed a ring homomorphism, i.e., it supports polynomial
multiplication. Since ZeroPointt(QS1 ∗ QS2) = PSIt(QS1∪S2), our construc-
tion can compute a mix of PSI and PSU over the subset in a more complicated
scenario.

3. For multiple query cases, each participant Ai can compute QSi
in the offline

phase and only quickly compute the polynomial division for hQS0
(QSi

) for
each query.
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In the case of n parties, where |S0| = w and |Si| = m and each element has
l bits. Our scheme requires a total message size of 2wnl bits for secure aggrega-
tion. Each party must perform O(m logm+w logw) operations for hash compu-
tation and results evaluation [12]. Regarding communication cost, our scheme
is comparable to the state-of-the-art O(wnl) bits [2]. However, our scheme is
more costly regarding computation overhead, which should be O(m) in [2].
This is primarily due to the need to perform modulation operations for all pri-
vate polynomials, which are more costly than the set intersection over plaintext.
In addition, Our scheme is more powerful than the work [2] since our scheme
supports PSU operations.
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Abstract. Digital signatures are a cornerstone of security and trust
in cryptography, providing authenticity, integrity, and non-repudiation.
Despite their benefits, traditional digital signature schemes suffer from
inherent immutability, offering no provision for a signer to retract a pre-
viously issued signature. This paper introduces the concept of a with-
drawable signature scheme, which allows for the retraction of a signature
without revealing the signer’s private key or compromising the security
of other signatures the signer created before. This property, defined as
“withdrawability”, is particularly relevant in decentralized systems, such
as e-voting, blockchain-based smart contracts, and escrow services, where
signers may wish to revoke or alter their commitment.

The core idea of our construction of a withdrawable signature scheme
is to ensure that the parties with a withdrawable signature are not con-
vinced whether the signer signed a specific message. This ability to gen-
erate a signature while preventing validity from being verified is a fun-
damental requirement of our scheme, epitomizing the property of with-
drawability. After formally defining security notions for withdrawable sig-
natures, we present two constructions of the scheme based on the pairing
and the discrete logarithm. We provide proofs that both constructions
are unforgeable under insider corruption and satisfy the criteria of with-
drawability. We anticipate our new type of signature will significantly
enhance flexibility and security in digital transactions and communica-
tions.

Keywords: Digital signatures · Withdrawable signature scheme ·
Withdrawability

1 Introduction

Digital signatures are instrumental in constructing trust and security, acting as
the essential mechanism for authentication, data integrity, and non-repudiation
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in contemporary digital communications and transactions. In specific applica-
tions of digital signature schemes, such as decentralized e-voting systems, there
may arise a natural need for the signer to possess the capability to “undo” a
digital signature. Undoing a digital signature implies that the signer may desire
to retract the signature they created, as seen in e-voting systems where a voter
might wish to change or withdraw their vote before the final vote tally.

However, in traditional digital signature schemes, undoing a digital signature
is impossible, as it persists indefinitely once a signature is created. Furthermore,
digital signatures provide authenticity, integrity, and non-repudiation for signed
messages. As a result, when a message is signed, the non-repudiation of its con-
tent is guaranteed, meaning that once the signature is generated, the signer
cannot rescind it. In light of this limitation, one might ask whether it is pos-
sible for a signer to efficiently revoke or withdraw a previously issued digital
signature without revealing their private key or compromising the security of
other signatures created by the signer. We answer this question by presenting a
withdrawable signature scheme that provides a practical and secure solution for
revocating or withdrawing a signature in a desirable situation.

We note that a traditional signature scheme can achieve “withdrawability”
by employing a trusted third party (TTP) to establish signature revocation
lists. In cases where a signer desires to invalidate a signature, they notify the
TTP, which subsequently adds the revoked signature to the revocation list. This
enables future verifiers to consult the revocation list via the TTP, allowing them
to determine if the signature has been previously revoked before acknowledging
its validity. As all participants fully trust the TTP, including the revoked sig-
nature in the revocation list ensures its validity and enables the withdrawal of
the signature. However, this approach has a centralized nature as it depends on
the TTP’s involvement, which may not be desirable in decentralized systems. As
in decentralized systems, signers may prefer to manage their signatures without
relying on centralized authorities. Therefore, constructing a withdrawable signa-
ture scheme that does not rely on a TTP turns out to be a non-trivial problem
to solve.

Withdrawable signatures can have various applications in different scenarios
where the ability to revoke a signature without compromising the signer’s private
key is demanded. Here are some potential applications:
Smart Contracts [19]. In the context of blockchain-based smart contracts, with-
drawable signatures can enable users to sign off on contract conditions while
retaining the ability to revoke their commitment. This can be particularly use-
ful in situations where the fulfillment of the contract depends on the actions of
multiple parties or external events.
E-Voting Systems [9]. In a decentralized e-voting system, withdrawable signa-
tures enable voters to securely sign their votes while retaining the option to
modify or retract their choices before the final votes count. This additional flex-
ibility improves the voting procedure by allowing voters to respond to fresh
insights or unfolding events before the voting period concludes.
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Escrow Services [6]. Withdrawable signatures could be employed in decentralized
escrow services where multiple parties must sign off on a transaction. If one
party decides not to proceed with the transaction due to disputes or changes
in conditions, they can revoke their signature without affecting the security of
other parties’ signatures.

In light of the above discussion, we require the following three properties
from the withdrawable signature:

1. A withdrawable signature should be verifiable, especially, it should be verified
through the signer’s valid public key.

2. Only the signer can generate a valid withdrawable signature.
3. A withdrawable signature, once withdrawn, cannot become valid again with-

out the original signer’s involvement.

In the forthcoming subsection, we provide a technical outline of the with-
drawable signature scheme, focusing on the technical challenges we had to face.

1.1 Technical Overview

The most important feature of our withdrawable signature scheme is withdrawa-
bility. The idea behind this is that a signer, Alice, should not only be able to sign
a message m with her private key to obtain the signature σ but also have the
option to revoke the signature if she changes her mind. This means the signature
σ will no longer be verifiable with Alice’s valid public key. In what follows, we
describe the challenges to realizing the withdrawable signature at a technical
level.
First Attempt: A Simple Withdrawable Signature Scheme with TTP. As men-
tioned earlier, one straightforward solution to achieve withdrawability is to have
a trusted third party (TTP) maintain a signature revocation list. However, if we
want to attain withdrawability without relying on a revocation list, an alternative
approach can be explored as follows: In this approach, the signer, Alice, “hides”
a signature ω by encrypting it using her public key and the TTP’s public key,
resulting in a hidden signature σ. For example, the BLS signature [4] on a mes-
sage m, computed as ω = H(m)sks with the signer’s secret key sks ∈ Zp and the
hash function H : {0, 1}∗ → Zp, can be encrypted into σ = (gskta · H(m)sks , ga),
where gskt is the TTP’s public key, with skt as the corresponding secret key, and
a ∈ Z

∗
p is a uniform random value chosen by the signer.

The hidden signature σ preserves the verifiability of the signature as the
verification works by checking whether the following equality holds: e(gskta ·
H(m)sks , g) ?= e(gskt , ga)e(H(m), gsks), where gsks is the signer’s public key.

In the above scheme, everyone can ensure that the signer has generated a
valid signature for the message m under her public key pks(= gsks), but they
cannot extract the original signature ω(= H(m)sks) from σ. (No party except
for the TTP can obtain ω.) The signer then has the option to withdraw σ
merely by taking no action. Later, the signer can request the TTP to “decrypt”
the signature σ into the original signature ω using the TTP’s secret key skt.
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Towards a Withdrawable Signature Scheme Without TTP. Implementing a with-
drawable signature scheme using a TTP presents a significant drawback, as sign-
ers, particularly in decentralized and trustless systems, may wish to achieve with-
drawability without reliance on the TTP. How can we achieve withdrawability
without the help of the TTP? One possible method involves directly removing
the TTP and allowing the signer to create σ using a secret random value r ∈ Z

∗
p

chosen by her, which can be regarded as equivalent to the TTP’s secret key skt.
Subsequently, the signer publishes the corresponding “public key”, represented
as gr, and selects another random value a ∈ Z

∗
p.

The withdrawable signature σ is then computed as σ = (gra · H(m)sks , ga),
where the verification of σ can be easily performed using the public keys gsks

and gr (with the value ga) with the following verification algorithm: e(gra ·
H(m)sks , g) ?= e(gr, ga)e(H(m), gsks).

However, without the TTP, the signature σ immediately becomes a valid
signature that can be verified using the signer’s public keys (gskt , gr); thus, the
withdrawability is lost.

Because of this issue, we still need to introduce an additional entity that,
while not a TTP, will act as a specific verifier chosen by the signer. More specif-
ically, the signer can produce a signature that cannot be authenticated solely
by the signer’s public key but also requires the verifier’s secret key. This ensures
the signature appears unverifiable to everyone except for the chosen verifier, as
everyone can only be convinced that the signature was created either by the
signer or the verifier. If the verifier cannot transform back this signature into
a signature that can be verified using the signer’s public key only, this scheme
will achieve the withdrawability. In particular, only the signer has the option
to transform this signature into a verifiable one. To optimize the length of the
withdrawable signature, we limit the number of specific verifiers to one.

Another technical issue then surfaces: How can a signer transform the with-
drawable signature into a signature that can be directly verifiable using the
signer’s public key (and possibly with additional public parameters)? A straight-
forward solution might be having the signer re-sign the message with her secret
key. However, this newly generated signature will have no connection to the
original withdrawable signature.
Our Response to the Challenges. To overcome the aforementioned limitations,
we introduce a designated-verifier signature scheme to generate a withdrawable
signature for a message m, denoted as σ, rather than directly generating a regular
signature. For a signer Alice, she can create a withdrawable signature for a
certain verifier, Bob. Later, if Alice wants to withdraw the signature σ, she
just takes no action. If Alice wants to transform the withdrawable signature,
she executes an algorithm, “Confirm”, to lift the limitation on verifying σ and
yield a signature σ̃, which we call “confirmed signature”, verifiable using both
Alice’s and Bob’s public keys. Note that the confirmed signature σ̃ can then be
deterministically traced back to the original σ.

Generally, there is a withdrawable signature scheme involving two parties,
denoted by user1 and user2. Without loss of generality, assume that user1 is
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the signing user, while user2 is the certain verifier. Let a set of their public
keys be γ = {pkuser1 , pkuser2}. At a high level, we leverage the structure of the
underlying regular signature to construct a withdrawable signature σ designated
to the verifier user2. Later with the signer’s secret key skuser1 and σ, user1 can
generate a verifiable signature for m of the public key set γ. This signature is the
confirmed signature σ̃ and can easily be linked with the withdrawable signature
σ through the public key set γ.

If we still take the BLS-like signature scheme as a concrete instantiation with
pkuser1 = gskuser1 , pkuser2 = gskuser2 , and two hash functions H1 : {0, 1}∗ → G and
H2 : {0, 1}∗ → Z

∗
p. The signer user1 can generate the withdrawable signature σ

of message m for user2 as follows:

y
$← Z

∗
p, r = H2(m, gy · H1(m)skuser1 ), u = H1(m)r

σ =
(

e(uy · H1(m)skuser1 , gskuser2 ), gy, u
)

.

The verification algorithm of σ can be performed using the secret key of user2
and the public key of user1 as follows:

e(H1(m)r·y · H1(m)skuser1 , gskuser2 ) ?= e(uskuser2 , gy)e(H1(m)skuser2 , gskuser1 ).

Now, assume that user1 needs to transform σ into a confirmed signature
that is associated with γ. Since user1 has the secret key skuser1 , user1 can easily
reconstruct randomness r = H2(m, gy · H1(m)skuser1 ) and transform σ into a
confirmed signature σ̃ for m of public key set γ with r as follows.

σ̃ =
(

gskuser2 ·skuser1 ·rH1(m)skuser1 , gr, u, (gskuser2 )r
)

.

This withdrawable signature scheme achieves withdrawability in such a way
that even if user2 reveals its secret key skuser2 , other users won’t be convinced
that σ was generated from user1. This is due to the potential for user2 to compute
the same σ using skuser2 , as described below:

σ =
(

e(uy · H1(m)skuser2 , gskuser1 ), gy, u
)

=
(

e(uy · H1(m)skuser1 , gskuser2 ), gy, u
)

.

Later in this paper, we show that a withdrawable signature scheme can be
constructed using the Schnorr [16]-like signature scheme.

1.2 Our Contributions

Motivated by the absence of the type of signature scheme we want for vari-
ous aforementioned applications, we present the concept withdrawable signature
scheme. Our contributions in this regard can be summarized as follows:

1. We provide a formal definition of a withdrawable signature scheme that reflects
all the characteristics we discussed previously.
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2. We formulate security notions of withdrawable signature, reflecting the with-
drawability and unforgeability, two essential security properties.

3. We propose two constructions of withdrawable signature schemes based on
discrete logarithm (DL) and pairing.

This paper is organized as follows: We first review the related work in
Sect. 2. In Sect. 3, we provide a comprehensive definition of withdrawable sig-
natures, including their syntax and security notion. Section 4 begins with a
detailed overview of the preliminaries we used to build our withdrawable signa-
ture schemes, then we give the full description of our two proposed constructions.
Following that, Sect. 5 focuses on the security analysis of these two withdrawable
signature constructions.

2 Related Work

In this section, we review the previous work relevant to our withdrawable signa-
ture scheme and highlight differences between our scheme and existing ones.

Designated-Verifier Signature Scheme. The concept of designated-verifier signa-
ture (or proof) (DVS) was introduced by Jakobsson et al. [8], and independently
by Chaum [5]. Since then, the field has been studied for several decades and
admitted instantiations from a variety of assumptions [11,21–24].
Revocable Group Signature Scheme. Group signature [1,3,5] allows any member
within a group to authenticate a message on behalf of the collective. In the
context of revocable group signature schemes [2,12,15], revocation refers to the
capability of the group manager to revoke a member’s signing privilege.

Revocable Ring Signature Scheme. The notion of revocable ring signatures [13]
was first introduced in 2007. This concept added new functionality where a
specified group of revocation authorities could remove the signer’s anonymity.
In [27], Zhang et al. presented a revocable and linkable ring signature (RLRS)
scheme. This innovative framework empowers a revocation authority to reveal
the real signer’s identity in a linkable ring signature scheme [14].

Universal Designated Verifier Signature Scheme. Designated-verifier signature
schemes have multiple variations, including Universal Designated Verifier Signa-
ture (UDVS) schemes. Steinfeld et al. proposed the first UDVS scheme based
on the bilinear group [17]. They developed two other UDVS schemes, which
expanded the conventional Schnorr/RSA signature schemes [18]. Following the
work by Steinfeld et al., several UDVS schemes have been proposed in litera-
ture [7,20,25,26]. Additionally, the first lattice-based UDVS was proposed in [10],
this approach was subsequently further developed in other studies, one of which
is referenced here.

Discussion on Differences. Our withdrawable signature constructions presented
above comprise two primary parts: withdrawable signature generation and trans-
formation of a withdrawable signature into a confirmed one. When viewed
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through the “withdrawability” requirements of the first part, our withdrawable
signature scheme is relevant to existing group and ring signatures, wherein the
signer retains anonymity within a two-party setup. What distinguishes our app-
roach is the second transformation stage, which offers a unique feature not found
in the aforementioned revocable group and ring signatures. Our scheme empow-
ers signers to retract their signatures independently, without relying on a cer-
tain group manager or a set of revocation authorities. Additionally, the right to
remove its “anonymity” rests solely with the signer.

Readers might also discern similarities between our withdrawable signature
scheme and the designated-verifier signature (DVS) scheme. In the withdraw-
able signature generation phase of our scheme, the generated signature can only
convince a specific verifier (the designated verifier) that the signer has generated
a signature, the same as the core concept of DVS. Note that a DVS holds ‘non-
transferability”, which means that a DVS cannot be transferred by either the
signer or the verifier to convince a third party. Although this non-transferability
aligns with our concept of withdrawability, our scheme diverges by permitting
the signer to transform the withdrawable signature into one that’s verifiable
using both the signer’s and verifier’s public keys, challenging the foundational
property of DVS.

To achieve this additional property at the transformation stage, we consider
leveraging the structural properties of existing regular signatures. Provided that
our withdrawable signature scheme was derived from a particular signature,
which has been generated with the signer’s secret key, only the signer can access
this underlying regular signature during the transformation stage. Then one
might have also noticed that the construction of our withdrawable signature
scheme is related to the UDVS scheme. In a UDVS scheme, once the signer
produces a signature on a message, any party possessing this message-signature
pair can designate a third party as the certain verifier by producing a DVS with
this message-signature pair for this verifier. Much like DVS, UDVS is bound by
non-transferability as well. Meanwhile, our withdrawable signature scheme takes
another different approach than UDVS’s as our scheme does not require the
signer to reveal the underlying regular signature at the withdrawable signature
generation stage.

In our withdrawable signature scheme construction, the underlying regular
signature is treated as a secret held by the signer. This secret ensures the signer
creates a corresponding withdrawable signature specific to a certain (designated)
verifier. Later at the transformation stage, we require the additional input as the
public key set of signer and verifier and the signer’s secret key to reconstruct the
underlying additional regular signature. With these inputs, we can finalize our
transformation algorithm.

3 Definitions

In this section, we provide a comprehensive overview of the syntax and security
notion of withdrawable signature.
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3.1 Notation and Terminology

Throughout this paper, we use λ as the security parameter. By a
$← S, we denote

an element a is chosen uniformly at random from a set S. Let S = {pk1, · · · , pkμ}
be a set of public keys, where each public key pki is generated by the same key
generation algorithm KeyGen(1k) and μ = |S|. The corresponding secret key of
pki is denoted by ski. Given two distinct public keys pks, pkj

$← S where j �= s,
the signer’s public key is denoted by pks.

3.2 Withdrawable Signature: A Formal Definition

Naturally, our withdrawable signature scheme involves two parties: signers and
verifiers. At a high level, the scheme consists of two stages, i.e., generating a
withdrawable signature and transforming it into a confirmed signature. These
two stages are all completed by the signer.

More precisely, a withdrawable signature scheme WS consists of five polyno-
mial time algorithms, (KeyGen,WSign,WSVerify,Confirm,CVerify), each of which
is described below:

– (pk, sk) ← KeyGen(1k): The key generation algorithm takes the security
parameters 1k as input, to return a public/secret key pair (pk, sk).

– σ ← WSign(m, sks, γ): The “withdrawable signing” algorithm takes as input
a message m, signer’s secret key sks and γ = {pks, pkj} where pks, pkj ∈
S, to return a new withdrawable signature σ of m respect to pks, which is
designated to verifier pkj .

– 1/0 ← WSVerify(m, skj , pks, σ): The “withdrawable signature verification”
algorithm takes as input a withdrawable signature σ of m with respect to
pks, the designated verifier’s secret key skj , to return either 1 or 0.

– σ̃ ← Confirm(m, sks, γ, σ): The “confirm” algorithm takes as input a with-
drawable signature σ of m with respect to pks, signer’s secret key sks, the
public key set γ, to return a confirmed signature σ̃ of m, σ̃ is a verifiable
signature with respect to γ.

– 1/0 ← CVerify(m, γ, σ, σ̃): The “confirmed signature verification” algorithm
takes as input a confirmed signature σ̃ of m with respect to γ, and the corre-
sponding withdrawable signature σ, to return either 1 or 0.

3.3 Security Notions of Withdrawable Signature

The security notion of a withdrawable signature scheme WS covers the proper-
ties of correctness, unforgeability under insider corruption, and withdrawability
three aspects.

Correctness. As long as the withdrawable signature σ is verifiable through the
withdrawable signature verification algorithm WSVerify, it can be concluded
that the corresponding confirmed signature σ̃ will also be verifiable through
the confirm verification algorithm CVerify.
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Unforgeability under insider corruption. Nobody except the signer can
transform a verifiable withdrawable signature σ generated from sks for pkj

into corresponding confirmed signature σ̃, even the adversary can always
obtain the secret key skj of the verifier.

Withdrawability. The withdrawability means that, given a verifiable with-
drawable signature σ, it must be intractable for any PPT adversary A to
distinguish whether σ was generated by the signer or the verifier.

Below, we provide formal security definitions. The formal definitions of cor-
rectness, unforgeability under insider corruption, and withdrawability.

We call a withdrawable signature scheme WS secure if it is correct, unforge-
able under insider corruption, withdrawable.

Definition 1 (Correctness). A withdrawable signature scheme WS is consid-
ered correct for any security parameter k, any public key set γ, and any message
m ∈ {0, 1}∗, if with following algorithms:

– (pks, sks), (pkj , skj) ← KeyGen(1k)
– γ ← {pks, pkj}
– σ ← WSign(m, sks, γ)
– σ̃ ← Confirm(m, sks, γ, σ)

it holds with an overwhelming probability (in k) that the corresponding verifica-
tion algorithms:

WSVerify(m, skj , pks, σ) = 1 and CVerify(m, γ, σ, σ̃) = 1.

Definition 2 (Unforgeability under insider corruption). Considering an
unforgeability under insider corruption experiment ExpEUF-CMA

WS,A (1k) for a PPT
adversary A and security parameter k.

The three oracles we use to build the ExpEUF-CMA
WS,A (1k) are shown as follows.

Oracle OCorrupt
i (·)

if i �= s,

CO ← CO ∪ ski

return ski

else return ⊥

Oracle OWSign
sks,γ (·)

if pks ∈ γ ∧ s /∈ CO,
σ ← WSign(m, sks, γ)

W ← W ∪ {σ}
return σ

else return ⊥

Oracle OConfirm
sks,σ,γ (·)

if σ ∈ W
M ← M ∪ {m}
σ̃ ← Confirm(m, sks, γ, σ)

return σ̃

else return ⊥

With these three oracles, we have the following experiment ExpEUF-CMA
WS,A (1k):
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ExpEUF-CMA
WS,A (1k)

for i = 1to μ do

(pki, ski) ← KeyGen(1k), s, j ∈ [1, μ], j �= s;
CO, W, M ← ∅;
(m∗, σ̃∗) ← AOCorrupt

i (·),OWSign
sks,γ

(·),OConfirm
sks,σ,γ(·)

(1k, γ∗, σ∗)

if γ∗ = {pks, pkj}, j ∈ CO ∧ m∗ /∈ M
∧WSVerify(m∗, skj , pks, σ

∗) = 1 ∧ CVerify(m∗, γ∗, σ∗, σ̃∗) = 1

return 1

else return 0

A withdrawable signature scheme WS is unforgeable under insider corruption of
EUF-CMA security if for all PPT adversary A, there exists a negligible function
negl such that:

Pr[ExpEUF-CMA
WS,A (1k) = 1] ≤ negl

(

1k
)

.

Definition 3 (Withdrawability). Assume two public/secret key pairs are
generated as (pk0, sk0), (pk1, sk1) ← KeyGen(1k). Let γ = {pk0, pk1} and
b

$← {0, 1}, considering a withdrawability experiment ExpWithdraw
WS,A (1k) for a PPT

adversary A and security parameter k.
The oracle we use to build our withdrawability experiment ExpWithdraw

WS (1k) is
shown as follows.

Oracle OWSign
sks,γ (·)

if γ = {pk0, pk1}, b
$← {0, 1}

σb ← WSign(m, skb, γ)

M ← M ∪ {m}
return σb

else return ⊥

With this signing oracle, we have the following experiment ExpWithdraw
WS (1k):

ExpWithdraw
WS,A (1k)

for i = 0 to 1 do

(pki, ski) ← KeyGen(1k), γ = {pk0, pk1}
b

$← {0, 1}, M ← ∅;
if γ = {pk0, pk1} ∧ m∗ /∈ M

σb ← WSign(m∗, skb, γ)

b′ ← AOWSign
skb,γ

(·)
(1k, m∗, σ∗

b )

if b = b′

return 1

else return 0
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A withdrawable signature WS achieves withdrawability if, for any PPT adversary
A, as long as the Confirm algorithm hasn’t been executed, there exists a negligible
function negl such that:

Pr[ExpWithdraw
WS,A (1k) = 1] ≤ 1

2
+ negl

(

1k
)

.

4 Our Withdrawable Signature Schemes

In this section, we present two specific constructions of withdrawable signatures.
We start by introducing the necessary preliminaries that form the basis of our
constructions.

4.1 Preliminaries

Digital Signatures. A signature scheme DS consists of three PPT algorithms,
described as follows:

DS =

⎧

⎪

⎨

⎪

⎩

(pk, sk) ← KeyGen(1k)
σ ← Sign(m, sk)
0/1 ← Verify(m, pk, σ)

The relevant security model of existential unforgeability against chosen-message
attacks (EUF-CMA) for digital signature schemes is given in Appendix A.

Bilinear Groups. Let G1, G2 and GT be three (multiplicative) cyclic groups of
prime order p. Let g1 be a generator of G1 and g2 be a generator of G2. A bilinear
map is a map e : G1 × G2 → GT with the following properties:

– Bilinearity: For all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) =
e(u, v)ab.

– Non-degeneracy: e(g1, g2) �= 1 (i.e. e(g1, g2) generates GT ).
– Computability: For all u ∈ G1, v ∈ G2, there exists an efficient algorithm

to compute e(u, v).

If G1 = G2, then e is symmetric (Type-1) and asymmetric (Type-2 or 3)
otherwise. For Type-2 pairings, there is an efficiently computable homomorphism
φ: G2 → G1. For Type-3 pairings no such homomorphism is known.

4.2 A Construction Based on BLS

Suppose G is a generic group of prime order p, and g is a generator, with two
hash functions H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Z

∗
p. PG : G × G = GT is a

Type-1 bilinear pairing as defined in Sect. 4.1.
Let BLS.DS denotes the BLS signature scheme [4], which contains three

algorithms: BLS.DS = (KeyGen,BLS.Sign,BLS.Verify). Comprehensive details of
these three algorithms are outlined in [4]. The output of the signing algorithm is
denoted as ω ← BLS.Sign(m, sks) where ω is derived as follows: ω = H1(m)sks .

Following this, we have a construction of a withdrawable signature based on
the original BLS signature (Fig. 1):
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Fig. 1. A Construction Based on BLS

4.3 A Construction Based on Schnorr

Recall that G is a generic group of prime order p, and g is a generator, with
hash function H : {0, 1}∗ → Zp.

Let Sch.DS denote the Schnorr signature scheme [16], which contains three
algorithms: Sch.DS = (KeyGen,Sch.Sign,Sch.Verify). Details of these three algo-
rithms are outlined in [16]. The output of the signing algorithm is also denoted
as ω ← Sch.Sign(m, sks) where ω = (t, z) is derived as follows:

A randomness e is randomly selected from Zp, then u is calculated as u = ge.
The value t is computed using the hash function t = H(m,u). Finally, z is
calculated as z = (e − x · t) mod p.

Following this, we have a construction of a withdrawable signature based on
the Schnorr signature (Fig. 2):
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Fig. 2. A Construction Based on Schnorr

5 Security Analysis

In this section, we provide the security analysis of our two constructed with-
drawable signature schemes.

5.1 Security of Our Withdrawable Signature Scheme Based on BLS

Theorem 1. If the underlying BLS signature scheme BLS.DS is unforgeable
against chosen-message attacks (EUF-CMA) as defined in Appendix A, our with-
drawable signature scheme based on BLS presented in Sect. 4.2 is unforgeable
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under insider corruption (Definition 2) in the random oracle model with reduc-
tion loss L = qH1 where qH1 denotes the number of hash queries to the random
oracle H1.

Proof. We show how to build a simulator B to provide unforgeability under
insider corruption for our withdrawable signature scheme based on BLS in the
random oracle model.
Setup. B has access to the algorithm C, which provides unforgeability in the
random oracle for our underlying signature scheme BLS.DS. C executes the
EUF-CMA game of BLS.DS, denoted as ExpEUF-CMA

A which includes a signing
oracle denoted as OBLS.DS

sks
(·), where OBLS.DS

sks
(·) : ω ← BLS.Sign(m, sks).

For s ∈ [1, qμ], C first generates (pks, sks) ← KeyGen(1k). B then generates
S = {pk1, · · · , pks−1, pks+1, · · · , pkμ} and gains pks from C.

B now can set the public key set of the signer and a specific (designated)
verifier as γ = {pks, pkj} where j �= s and provide γ to A.

Oracle Simulation. B answers the oracle queries as follows.

Corruption Query. The adversary A makes secret key queries of pki, i ∈ [1, μ] in
this phase. If A queries for the secret key of pks, abort. Otherwise, B returns the
corresponding ski to A, and adds ski to the corrupted secret key list CO.

H-Query. The adversary A makes hash queries in this phase. C simulates H1 as
a random oracle, B then answers the hash queries of H1 through C.

Signature Query. A outputs a message mi and queries for withdrawable signature
with signer pks and the specific (designated) verifier pkj . If the signer isn’t pks,
B abort. Otherwise, B sets mi as the input of C. B then asks for the signing
output of C as ωi ← BLS.Sign(mi, sks). With ωi = H1(mi)sks from C, B could
respond to the signature query of A with the specific verifier pkj as follows:

– OWSign
sks,γ (·): Given the output ωi of C, B can compute the withdrawable signa-

ture σi ← OWSign
sks,γ (·) for A as:

1. ri, yi
$← Z

∗
p, σi =

(

e(H1(mi)yi·ri · ωi, pkj),H1(mi)ri , gyi
)

– OConfirm
sks,σ,γ (·): With ωi and σi, B can compute the corresponding confirmed sig-

nature σ̃i ← OConfirm
sks,σ,γ (·) for A with underlying signature ωi = H1(mi)sks and

ri as:
1. Compute δ1,i = pkskj ·ri

s · σi.
2. Compute δ2,i = pkri

j , δ3,i = gri , δ4,i = H1(mi)ri

3. σ̃i = (δ1,i, δ2,i, δ3,i, δ4,i)

Meanwhile, B sets M ← M ∪ mi and W ← W ∪ σi.

Forgery. On the forgery phase, the simulator B returns a withdrawable signature
σ∗ for signer pks that designated to verifier pkj , and γ∗ = {pks, pkj} on some
m∗ that has not been queried before. σ∗ is generated by B as follows:

σ∗ =
(

e(H1(m∗)r
∗·y∗

H1(m∗)skj , pks), g
y∗

,H1(m∗)r
∗)
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Then σ∗ could be transformed into σ̃∗ under γ∗ correctly. After A transforms
σ∗ into σ̃∗, if σ̃∗ could not be verified through CVerify(m∗, γ∗, σ∗, σ̃∗), abort.

Otherwise, if σ̃∗ = (δ∗
1 , δ

∗
2 , δ

∗
3 , δ

∗
4) is valid, B then could obtain a forged sig-

nature ω∗ for pks on m∗. Since B is capable of directly computing pkskj ·r
s , the

forged signature ω∗ can be determined as: ω∗ = δ∗
1/pk

skj ·r
s .

Therefore, we can use A to break the unforgeability in the EUF-CMA model
of our underlying signature scheme BLS.DS, which contradicts the property of
our underlying signature scheme.

Probability of Successful Simulation. All queried signatures ωi are simu-
latable, and the forged signature is reducible because the message m∗ cannot be
chosen for a signature query as it will be used for the signature forgery. Therefore,
the probability of successful simulation is 1

qH1
for qH1 queries. �	

Theorem 2. Our withdrawable signature scheme based on BLS presented in
Sect. 4.2 is withdrawable (Definition 3) in the random oracle model.

Proof. In our proof of Theorem 2, B sets the challenge signer/verifier public key
set as γ = {pk0, pk1} and associated secret key set as δ = {sk0, sk1}. The signer
is denoted as pkb where b

$← {0, 1}, and the specific verifier is denoted as pk1−b.

Oracle Simulation. B answers the oracle queries as follows.

H-Query. The adversary A makes hash queries in this phase, where B simulates
H1 as a random oracle.

Signature Query. A outputs a message mi and queries for withdrawable signa-
ture with corresponding signer pks and the specific verifier pkj , B responses the
signature query of A as follows:

– OWSign
skb,γ (·):

ri, yi
$← Z

∗
p, σb,i =

(

e(H1(mi)ri·yi · H1(mi)skb , pk1−b),H1(mi)ri , gyi
)

.

Meanwhile, B sets M ← M ∪ mi.

Challenge. On the challenge phrase, A gives B a message m∗ /∈ M, where
m∗ /∈ M. B now executes the challenge phrase and computes the challenge
withdrawable signature σ∗

b for A where b
$← [0, 1] as follows:

σ∗
0 =

(

e(H1(m∗)r
∗·y∗ · H1(m∗)sk0 , pk1),H1(m∗)r

∗
, gy∗)

σ∗
1 =

(

e(H1(m∗)r
∗·y∗ · H1(m)sk1 , pk0),H1(m∗)r

∗
, gy∗)

=
(

e(H1(m∗)r
∗·y∗ · H1(m∗)sk0 , pk1),H1(m∗)r

∗
, gy∗)

= σ∗
0 .

Guess. A outputs a guess b′ of b. The simulator outputs true if b′ = b. Otherwise,
false.

Probability of Breaking the Withdrawability Property. It’s easy to see
that σ∗

0 and σ∗
1 have the same distributions, hence they are indistinguishable.



572 X. Liu et al.

Therefore, the adversary A only has a probability 1/2 of guessing the signer’s
identity correctly.

Probability of Successful Simulation. There is no abort in our simulation,
the probability of successful simulation is 1. �	

5.2 Security of the Withdrawable Signature Scheme Based
on Schnorr

Theorem 3. If the underlying Schnorr signature scheme Sch.DS is unforgeable
against chosen-message attacks (EUF-CMA) as defined in Appendix A, our with-
drawable signature scheme based on Schnorr presented in Sect. 4.3 is unforgeable
under insider corruption (Definition 2) in the random oracle model with reduc-
tion loss L = 2qH −1 where qH denotes the number of hash queries to the random
oracle H.

The proof of Theorem 3 follows the same proof structure shown in Proof 5.1,
which also contains three algorithms, A, B, and C. The completed proof of The-
orem 3 is given in Appendix B.

Theorem 4. Our withdrawable signature scheme based on Schnorr presented in
Sect. 4.3 is withdrawable (Definition 3) in the random oracle model.

The complete detailed proof of Theorem 4 is available in Appendix B.

6 Conclusion

In this paper, we discussed the challenges associated with traditional signature
schemes and the need for a mechanism to revoke or replace signatures. We intro-
duced a unique withdrawability feature for signature schemes, allowing signers
to have the ability to call off their signatures as withdrawable signatures, and
later, the signature could be transformed into a confirmed signature that could
be verified through their public keys.

Furthermore, we proposed cryptographic primitives and two constructions of
the withdrawable signature based on the BLS/Schnorr signature. We formally
proved that the two proposed constructions are unforgeable under insider cor-
ruption and satisfy withdrawability.

There are several directions for future work: one is improving the efficiency
of our withdrawable signature scheme. Exploring further to discover practical
applications and use cases of withdrawable signature schemes can also be an
interesting avenue for future work.

A Security Definitions of Existing Cryptographic
Primitives

Definition 4 (EUF-CMA). Given a signature scheme DS = (KeyGen,Sign,
Verify), and a ppt adversary A, considering the following game ExpEUF-CMA

A :
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– Let SP be the system parameters. The challenger B runs the key generation
algorithm to generate a key pair (pk, sk) and sends pk to the adversary A.
The challenger keeps sk to respond to signature queries from the adversary.

– A is given access to an oracle OSign
sk (·) such that OSign

sk (·) : σ ← Sign(m, sk).
– A outputs a message m∗, and returns a forged signature σm∗ on m∗.
– A succeeds if σm∗ is a valid signature of the message m∗ and the signature of

m∗ has not been queried in the query phase.

A signature scheme is (t, qs, ε)-secure in the EUF-CMA security model if
there exists no adversary who can win the above game in time t with advantage
ε after it has made qs signature queries.

B Security Proofs of Our Withdrawable Signature

We give the detailed proof of Theorem 3 as follows.

Proof. We show how to build a simulator B to provide unforgeability under
insider corruption for our withdrawable signature scheme based on Schnorr in
the random oracle model.

Setup. Simulator B has access to algorithm C, which provides unforgeability in
the random oracle for our underlying Schnorr signature scheme Sch.DS.

C executes the EUF-CMA game of Sch.DS, denoted as ExpEUF-CMA
A which

includes a signing oracle OSch.Sign
sks

(·), where OSch.Sign
sks

(·) : ω ← Sch.Sign(m, sks).
B first generates S = {pk1, · · · , pks−1, pks+1, · · · , pkμ}, C generates (pks, sks) ←
KeyGen(1k), B then gains pks from C and sets s ∈ [1, qμ].

B now can set the public key set of the signer with a specific (designated)
verifier as γ = {pks, pkj} where j �= s and provide γ to A.

Oracle Simulation. B answers the oracle queries as follows.

Corruption Query. The adversary A makes secret key queries of public key
pki, i ∈ [1, μ] in this phase. If A queries for the secret key of pks, abort. Other-
wise, B returns the corresponding ski to A, and add ski to the corrupted secret
key list CO.

H-Query. C simulates H as a random oracle, B then answers the hash queries of
H through C.

Signature Query. A outputs a message mi and queries for withdrawable signature
with corresponding signer pks and specific verifier pkj . If the signer isn’t pks,
abort. Otherwise, B sets mi as the input of C. B then asks the signing output of
C as ωi = Sch.Sign(mi, sks). With ωi, B could response the signature query for
the specific verifier pkj chosen by A as follows:

– OWSign
sks,γ (·): With the output of C, B can compute the withdrawable signature

σi ← OWSign
sks,γ (·) for A with ωi = (ti, zi) = (H(mi, ui), zi) as:

1. Randomly choose ri
$← Z

∗
p
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2. Compute σ1,i = gzipkti
s , σ2,i = pkzi−ri·ti

j , σ3,i = gri

3. σi = (σ1,i, σ2,i, σ3,i)
– OConfirm

sks,σ,γ (·): B then queries for the Schnorr signature of mi again to C and
returns a corresponding ωs,i = (ts,i, zs,i) instead. With ωi, ωs,i and σi, B can
compute the confirmed signature σ̃i ← OConfirm

sks,σ,γ (·) for A as follows:
1. Compute δ1,i = gzs,ipkts,i

s , δ2,i = zs,i − ri · ts,i.
2. Randomly choose ej,i, tj,i

$← Z
∗
p, δ4,i = tj,i

3. Compute δ5,i = ej,i − ri · tj,i
4. σ̃i = (δ1,i, δ2,i, δ3,i, δ4,i, δ5,i)

Meanwhile, B sets the queried message set as M ← M ∪ m and queried
withdrawable signature set as W ← W ∪ σ.

Forgery. On the forgery phase, B returns a withdrawable signature σ∗ for γ∗ =
{pks, pkj} on some m∗ that has not been queried before. Then σ∗ could be
transformed into σ̃∗ under γ∗ correctly. After A transforms σ∗ into σ̃∗, if σ̃∗

could not be verified through CVerify(m∗, γ∗, σ∗, σ̃∗), abort.
Otherwise, if σ̃∗ = (δ∗

1 , δ
∗
2 , δ

∗
3 , δ

∗
4 , δ

∗
5) is valid, B then could obtain a forged

signature ω∗ for pks on m∗. Since B is capable of directly computing r∗ · t∗s, the
forged signature ω∗ can be determined as: ω∗ = δ∗

2 + r∗ · t∗s·.
Therefore, we can use A to break the unforgeability in the EUF-CMA model

of our underlying signature scheme Sch.DS, which contradicts the property of
our underlying signature scheme.

Probability of Successful Simulation. All queried signatures ωi are simu-
latable, and the forged signature is reducible because the message m∗ cannot be
chosen for a signature query as it will be used for the signature forgery. Therefore,
the probability of successful simulation is 1

2qH−1 . �	
We give the proof of Theorem 4 as follows.

Proof. In our proof of Theorem 4, B sets the challenge public key set as γ =
{pk0, pk1} and associated secret key set δ = {sk0, sk1}. The signer is denoted as
pkb where b

$← {0, 1}, and the specific verifier is denoted as pk1−b.

Oracle Simulation. B answers the oracle queries as follows.

H-Query. The adversary A makes hash queries in this phase where B simulates
H as a random oracle.

Signature Query. A outputs a message mi and queries the withdrawable sig-
nature for corresponding signer pks and specific verifier pkj , B responses the
signature queries of A as follows:

– OWSign
skb,γ (·): ei

$← Z
∗
p, ti = H(mi, g

ei), σb,i =
(

gei , pk
zb,i

1−b

)

=
(

gei , pkei−skb·ti

1−b

)

Meanwhile, B sets M ← M ∪ mi.
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Challenge. In the challenge phase, A gives B a message m∗, where m∗ /∈ M.
B now computes the challenge withdrawable signature of m∗ as σ∗

b for A where
b

$← {0, 1} and r∗ $← Z
∗
p as follows:

σ∗
0 =

(

ge∗
, pk

z∗
0−r∗·t∗

1

)

=
(

ge∗
, gsk1(e

∗−sk0·t∗−r∗·t∗)
)

σ∗
1 =

(

ge∗
, pkz∗

1−r∗·t∗
s

)

=
(

ge∗
, (ge∗

)sk1pk−sk1·t∗
0 g−sk1·r∗·t∗)

=
(

ge∗
, gsk1(e

∗−sk0·t∗−r∗·t∗)
)

= σ∗
0 .

Guess. A outputs a guess b′ of b. The simulator outputs true if b′ = b. Otherwise,
false.

Probability of Breaking the Withdrawability Property. It’s easy to see
that σ∗

0 and σ∗
1 have the same distributions, hence they are indistinguishable.

Therefore, the adversary A only has a probability 1/2 of guessing the signer’s
identity correctly.

Probability of Successful Simulation. There is no abort in our simulation,
therefore, the probability of successful simulation is 1. �	
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Abstract. The Blum–Kalai–Wasserman (BKW) algorithm is an impor-
tant combinatorial algorithm for solving the Learning With Errors
(LWE) problem. In this paper, we focus on the LWE problem with small
secrets and present an improved BKW algorithm. BKW algorithm has
two phases, the reduction phase and the solving phase and our new algo-
rithm uses new techniques to optimize both of them. For the first phase,
we combine the modulus switching technique with coding theory and for
the second one, we use a new pruning guessing strategy for the small
secrets. To the best of our knowledge, our algorithm is currently the
fastest BKW-style algorithm for solving LWE with small secrets. The
bit-security of our new algorithm reduces by 6–19 bits compared with
the most efficient and commonly used BKW algorithm introduced in
[CRYPTO’15].

Keywords: Lattice-based cryptography · Concrete security · Learning
with Errors · BKW

1 Introduction

With the development of quantum computers, post-quantum cryptography has
become a major topic in recent years. Since cryptosystems based on lattice hard
problems can resist attacks from quantum computers, they are being studied
extensively by cryptologists.

The LWE problem, introduced by Regev [36] in 2005, has become one of
the most promising cryptographic problems in lattice-based cryptography. It is
a crucial component for designing advanced cryptographic primitives. It has a
wide range of cryptographic applications and the schemes based their security
on LWE are believed quantum-safe.

Informally, a set of LWE instances can be presented as

(A, z = sA+ e mod q) ∈ Z
n×m
q × Z

m
q ,

where s is a fixed secret vector sampled from a given distribution over Zq and
e ∈ Z

m
q is a short error vector. The Search-LWE problem aims to recover s given
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E. Athanasopoulos and B. Mennink (Eds.): ISC 2023, LNCS 14411, pp. 578–595, 2023.
https://doi.org/10.1007/978-3-031-49187-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49187-0_29&domain=pdf
http://orcid.org/0000-0001-9053-2171
https://doi.org/10.1007/978-3-031-49187-0_29


An Improved BKW Algorithm for Solving LWE with Small Secrets 579

a set of LWE instances. The Decision-LWE problem is to distinguish a set of
LWE instances from uniform ones over Z

n×m
q × Z

m
q .

In practical cryptographic constructions, the entries of s are usually taken
from a bounded alphabet of size B. For example, B = 3 means that the secret is
ternary, which is usually used in Fully Homomorphic Encryption (FHE) schemes
[12,21]. What’s more, there are also some cryptographic schemes in the NIST’s
PQC standardization process selecting secret vectors from small distributions,
such as Kyber [11] and Saber [19].

The existing attacks on LWE can be categorized into three groups: the alge-
braic attacks, the lattice reduction attacks, and the combinatorial attacks. The
algebraic attacks [4,7] transform solving LWE into solving non-linear equations
in a sub-exponential time when the error is sufficiently small. The lattice reduc-
tion attacks [5,15,29,30,32,37] usually reduce the LWE problem to a Short Inte-
ger Solution (SIS) problem or a Bounded Distance Decoding (BDD) problem and
then settle it with lattice reduction algorithms. The combinatorial attacks gen-
erally include the well-known BKW algorithm [2] and the Meet-In-The-Middle
(MITM) attack [16].

We focus on the BKW algorithm in this paper. BKW has two phases, the
reduction phase and the solving phase. The reduction phase, a type of Gaus-
sian elimination, reduces some positions to zero in each step. The solving phase
refers to the hypothesis testing stage. Specifically, in the reduction phase, the
BKW algorithm utilizes a sort-and-match technique on the columns of matrix
A to reduce a fixed number of b positions to zero in each reduction step. After
the reduction, it deals with a new LWE problem with reduced dimensions and
increased noise. In the solving phase, it performs hypothesis testing on some
candidate sub-solutions to recover some entries of s. Figure 1 provides a brief
framework of the BKW algorithm.

Fig. 1. The brief framework of the BKW algorithm. After t reduction steps, there are
t · b positions that are reduced to zero. A new matrix A′ ∈ Z

n′×m′
q are obtained. The

values of n′, m′ will be described in detail in Sect. 3.

In this paper, we present a new BKW algorithm for solving LWE with small
secrets, both the reduction phase and the solving phase are improved. For the
first phase, we combine the modulus switching technique with coding theory and
for the second one, we use a new pruning guessing strategy for the small secrets.
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1.1 Contributions

Our main contributions are as follows.

The Reduction Phase. In the previous work, the most efficient and commonly
used BKW-style algorithm is the coded-BKW algorithm [25], which realizes the
sort-and-match technique by using coding theory. However, we have discovered
that using this method can become costly in terms of decoding and reduction
if the value of q is large. This is due to the fact that the time complexity of
coded-BKW is essentially dependent on qb with b being independent of q.

Intuitively, decreasing q can reduce the time complexity of the reduction
phase and we accomplish this by using the modulus switching technique. There-
fore, we consider applying the modulus switching to map the LWE instance mod
q to a scaled LWE instance mod p, where p < q is a positive integer, to reduce
the time complexity. However, the usage of the modulus switching technique
results in an additional rounding noise, the size of which is related to that of s.
It means that the modulus switching technique in this context only works well
when the secret is small.

Specifically, we perform modulus switching to the subvectors of the column
vectors in A to make sure that the sort-and-match is applied in the sense of mod
p, where p < q is a positive integer. After the modulus switching, we map the
subvectors into the nearest codeword in a linear lattice code over Zp. Then the
subvectors mapped to the same codeword are matched (added or subtracted) to
generate new columns of A.

Our new reduction method decreases the time complexity of the decoding
procedure and reduction procedure while ensuring that more positions can be
reduced. This process may result in an additional rounding noise except for
the coding noise, but by selecting the entries of s small enough, this effect is
negligible. With appropriate parameter selection in our algorithm, the final noise
can be controlled to a small level that does not affect the whole procedure.

The Solving Phase. In the solving phase, we guess some candidates of the sub-
secret and then distinguish the correct one. The coded-BKW utilizes exhaustive
searching and the FFT distinguisher which is questioned by Ducas [18] whether
it can really effectively distinguish two known distributions. For the fact that
the entries of the secret vector in our cases are relatively small, we use a new
pruning guessing strategy [14] and utilize the optimal distinguisher instead of
the FFT distinguisher for the hypothesis testing.

Our new pruning guessing strategy inspired by [14] is to guess a certain
number of candidates of s in decreasing order of probability until find the correct
one instead of exhaustive searching. Although the impact on the overall cost is
minimal, it makes our guessing step simpler and more efficient. Then for the
hypothesis testing of the candidates of the secret, we distinguish the distributions
by using the optimal distinguished [26], which computes the log-likelihood ratio
based on the Neyman-Pearson lemma [34].
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Applications and Comparisons. We estimate the bit-security by using our
new BKW algorithm on some LWE instances with small secrets, under the
assumption that the number of samples is unlimited. We also compare the esti-
mation results of our new algorithm with the most efficient and commonly used
BKW-style algorithm, i.e., the coded-BKW in the lattice-estimator [1]. We use
the parameters of the schemes Kyber [11], Saber [19] and FHE [12,21] to show
the comparison. The results are given in Tables 1 and 2. It can be seen that our
new BKW algorithm outperforms coded-BKW, with an improvement of 6–19
bits.

We note that we do not compare our BKW algorithm with lattice attacks
because BKW-style algorithms are less efficient in practical security estimation.
We focus on improving the BKW-style algorithm to close the gap between it and
the lattice attacks. It turns out that our new BKW algorithm does narrow down
the gap between the BKW-style algorithm and the lattice reduction attacks.

Table 1. Comparison of the bit-security by using BKW-style algorithms on Kyber and
Saber

Schemes n q Secret Dist coded-BKW [1] OURS Improvements

Kyber512 512 3329 B3 178.8 167.4 11.4
Kyber768 768 3329 B2 238.3 225.3 13.0
Kyber1024 1024 3329 B2 315.0 308.5 6.5
LightSaber 512 8192 B5 171.7 158.7 13.0
Saber 768 8192 B4 237.3 224.5 12.8
FireSaber 1024 8192 B3 302.7 290.0 12.7

� Bη is a central Binomial distribution which draws entries in [−η, η].

1.2 Related Work

The BKW algorithm, which is similar to Wagner’s [38] generalized birthday
algorithm, was originally proposed to solve the Learning Parity with Noise (LPN)
problem with sub-exponential complexity [8]. Later, a lot of improvements for
BKW on solving the LPN problem appeared [9,10,20,22,28,41].

Subsequently, the BKW algorithm was extended to solve the LWE prob-
lem. The first BKW algorithm (plain BKW) was proposed for solving LWE by
Albrecht [2] in 2013. Then in the past ten years, the BKW algorithm has had
many developments in the reduction phase and the solving phase [3,13,17,23–
27,33,35].

All the developments in the reduction phase can be summarized into two
main categories, one combining modulus switching technique and one combining
coding theory, both of which reduce the entries of column vectors in A to small
values but not to zero, allowing to reduce more entries per step.
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Table 2. Comparison of the bit-security by using BKW-style algorithms on FHE

log n log q coded-BKW [1] OURS Improvements

10 25 255.1 237.0 18.1
10 27 288.6 271.1 17.5
10 29 271.1 259.7 11.4
10 31 298.4 281.1 16.9
11 27 532.8 524.1 8.7
11 29 542.4 531.4 11.0
11 48 500.5 490.5 10.0
11 50 520.1 514.6 5.5
11 51 530.0 510.3 19.7

9 200 619.7 604.7 15.0
9 250 770.2 755.2 15.0
10 270 563.6 553.7 9.9
10 300 619.7 610.8 8.9
10 320 657.8 648.4 9.4
11 200 625.8 610.2 15.6
11 250 773.9 760.5 13.4

� The standard deviation of the error is σ = 3.2 and
s ∈ {−1, 0, 1}n.

The LMS-BKW algorithm [3], which combines lazy modulus switching with
plain BKW, searches for collisions by considering the top log2 p bits of each
element in Zq. It looks for collisions in the sense of mod p but still performs
reduction in the sense of mod q. This kind of reduction method was improved
in [13], which was called Smooth-LMS. It partially reduces one additional posi-
tion after reducing a given number of positions of column vectors in A. The
coded-BKW algorithm [25] maps the considered subvectors of matrix A into the
nearest codeword in a linear lattice code over Zq. If the subvectors are mapped
to the same codeword, they are matched (added or subtracted) to form a new
subvector for the subsequent reduction step. It was improved in [23,24,33] with
a combination of lattice sieving.

There are other improvements of the BKW algorithm except those in the
reduction phase. In 2015, the solving phase was improved by using the FFT
technique [17]. The research of sample complexity of the BKW algorithm can be
checked in [26,27]. In 2020, Qian et al. [35] introduced a new BKW algorithm
for binary uniform errors.

1.3 Organization

The rest of this paper is arranged as follows. In Sect. 2 we state some necessary
background. In Sect. 3 we discuss the framework of the previous BKW algorithm
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on LWE briefly. Then, in Sect. 4 we introduce our new BKW algorithm in terms
of both the reduction phase and the solving phase. Next, in Sect. 5 we analyze the
time complexity of our new algorithm in detail and show some results of solving
specific LWE instances in Sect. 6. Finally, we conclude this paper in Sect. 7.

2 Preliminaries

2.1 Notations

We denote matrices by bold uppercase letters, e.g. A, and vectors by bold low-
ercase letters, e.g. v. The L2-norm of a vector v = (v1, v2, · · · , vn) in Euclidean
space Rn with n dimensions is defined as the square root of the sum of the squares
of its components: ||v|| =

√
v2
1 + · · · + v2

n. We denote ||v−w|| as the Euclidean
distance between two vectors v and w in R

n. Select x ∈ R, let [x] denote the
closest integer to x and {x} = x− [x]. We let log(·) denote the 2-logarithm. The
set of integers in

[− q−1
2 , q−1

2

]
represents elements in Zq.

2.2 Discrete Gaussian Distribution

Denote the discrete Gaussian distribution over Z with mean 0 and variance σ2

as DZ,σ. The distribution χσ,q with variance σ2 over Zq (often be written as
χσ) is obtained by folding DZ,σ and accumulating the probability mass function
over all integers in each residue class mod q. Even while the discrete Gaussian
distribution often does not precisely take the typical features of the continuous
one, we will still be able to use the continuous features since they will be close
enough. If two independent distributions X is taken from χσ1 and Y is taken
from χσ2 , then their sum X + Y is taken from χ√

σ2
1+σ2

2
.

2.3 The LWE Problem

Definition 1 ([36]). Let n, q,m be positive integers. S is the secret distribution
over Z

n
q and χ is an error distribution over Z. For s ← S, denote LWEs,χ

the probability distribution on Z
n
q × Zq obtained by sampling a ∈ Z

n
q uniformly

random, sampling e ← χ and returning

(a, z) = (a, 〈a, s〉 + e) ∈ Z
n
q × Zq.

We define two kinds of LWE problems:

– Decision-LWE: Given m samples, distinguish the uniform distribution over
Z

n
q × Zq from LWEs,χ.

– Search-LWE: Given m samples from LWEn,q,s,χ, recover s.

The LWE problem can be reformulated as a decoding problem. Here are m
samples

(a1, z1), (a2, z2), · · · , (am, zm),
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selected from Ls,χ, where ai ∈ Z
n
q , zi ∈ Zq. Write y = (y1, y2, · · · , ym) = sA

and z = (z1, z2, · · · , zm) ∈ Z
m
q . Therefore,

z = sA+ e,

where A =
[
aT1 a

T
2 · · · aTm

] ∈ Z
n×m
q , zi = yi + ei = 〈s,ai〉 + ei and ei ← χ.

The matrix A is responsible for generating a linear code in the field of Zq and z
represents the received message. The task of discovering s is equivalent to finding
the codeword y = sA, where the distance between z and y is smallest.

2.4 The Transformation of Secret Distribution

A simple transformation [6,28] can be used to guarantee that s follows the error
distribution χσ.

Through Gaussian elimination, we first transform An×m into systematic
form. Suppose that the first n columns of A are linearly independent and denoted
by the matrix A0. Write D = A−1

0 and ŝ = sD−1 − (z1, z2 · · · , zn). Thus, we
can get a similar problem that Â =

(
I, âTn+1, â

T
n+2, · · · , âTm

)
, where Â = DA.

And then calculate

ẑ = z − (z1, z2, · · · , zn) Â = (0, ẑn+1, ẑn+2, · · · , ẑm) .

By this transformation, each component in s is distributed according to χσ,
which makes sense to some famous attack algorithms for solving LWE.

2.5 Sample Amplification

Since many LWE-based schemes only supply a finite number of samples,
the BKW attack, which requires an exponential number of samples, is
not practical. As a result, sample amplification is frequently required to
increase the number of available samples. Assume that here are m samples
(a1, z1), (a2, z2), · · · , (am, zm), selected from Ls,χ, where ai ∈ Z

n
q , zi ∈ Zq. In

order to create more samples, we can calculate
⎛

⎝
∑

j∈I

±aj ,
∑

j∈I

±zj

⎞

⎠ ,

where I is an index set of size k.
We can generate up to Ck

m2k−1 samples from an initial set of m samples.
The standard deviation of the noise rises to

√
k · σ. Additionally, The sample

dependency also rises.

2.6 The Coding Theory

Definition 2 (Construction A). Let q be a prime and C ∈ Zq be a linear
code of length n and dimension k. Applying construction A to C we can get the
lattice L denoted by

L(C ) = {x ∈ R
n : x = c mod q, c ∈ C }.
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Thus, the task to find the nearest vector to y ∈ Z
n
q in C is equivalent to finding

the nearest lattice vector in L(C ) of y. We usually take a mean-squared-error
quantizer to perform this task. Let V (L) be the fundamental Voronoi region of
L, that is V = {v ∈ R

n : ||v|| ≤ ||v − x||,∀x ∈ L}. The distance obtained by the
mean-squared quantizer can be represented by the normalized second moment

G =
1

V ol(V) 2
n · n

∫

V

||v||2
V ol(V )

dv, (1)

where V ol(V ) = qn−k. It is known that

1
2πe

< G <
1
12

, (2)

where when the lattice is generated by Zn we can get the upper bound and when
the lattice is generated by construction A from q-ary random linear codes we
can get the lower bound asymptotically [31,40].

3 The BKW Algorithm

In this section, we introduce the framework of BKW, specifically focusing on its
reduction phase and solving phase.

3.1 The Reduction Phase

The BKW algorithm utilizes a sort-and-match technique on the columns of
matrix A to reduce a fixed number of b positions to zero. Thus the row dimension
of matrix A will be reduced step by step and we will get a new LWE instance
with a smaller dimension and larger error norm. The main procedure of the
reduction step is as follows.

In the first iteration, we sort the columns of A into different groups based
on the last b entries and search for collisions. If the b positions of some columns
are matched, such columns are in the same group. By using two columns aTi1 ,a

T
i2

satisfying
aTi1 ± aTi2 = (∗ · · · ∗ 0 · · · 0︸ ︷︷ ︸

b

),

we create a new column vector a(1) = ai1 ± ai2 for the new matrix A(1) (orig-
inal matrix A = A(0)). For the new column, the corresponding error term is
calculated as z(1) = zi1 ± zi2 . So we get a new equation

z(1) = s · a(1) + e(1) mod q,

where e(1) = ei1 ± ei2 follows the discrete Gaussian distribution with standard
deviation

√
2σ.
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Fig. 2. A high-level description of the variation of matrix A in the reduction step. The
red color refers to positions that have not been reduced yet and the white color refers
to reduced positions. (Color figure online)

There are two approaches to match vectors in the reduction phase:

– LF1 Select a fixed column in each group and then add or subtract others
with it to generate new samples. This method ensures the independence of
the samples in the solving stage, but it gradually reduces the sample size by
qb−1
2 in each iteration, and therefore a large initial sample size is required.

– LF2 Add or subtract any pairs of columns in each group to generate new
samples. This method can create a huge number of new columns but lead to
an increase in the sample correlation.

We use LF1 to create new columns for the next reduction step. After the first
iteration, the last b positions of column vectors in A(1) is zero, and the number
of columns in A(1) is m − qb−1

2 . Corresponding to A(1), we have

z(1) =
(

z
(1)
1 , z

(1)
2 , · · · , z

(1)

m− qb−1
2

)
,

and the error follows the discrete Gaussian distribution with standard deviation√
2σ. The variation of matrix A can be seen in Fig. 2.

Repeat the reduction step for t times, we will reduce the last n − t · b entries
of columns in A to zero. The noise is increased, following the discrete Gaussian
distribution with standard deviation

√
2tσ.

3.2 The Solving Phase

After the reduction phase, we have a new LWE instance where the dimension
of the secret is n′ = n − t · b and the error has standard deviation

√
2tσ. The

column vectors in A are all zero except for the n′ positions. Then we have new
samples like

zi = s̄ · ā+ ēi mod q, (3)

where s̄, ā denote the first n′ positions of the original s,a respectively, the error
ēi follow the Gaussian distribution χ√

2tσ and i = 1, 2, · · · ,m′, m′ = m− (qb−1)t
2 .
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Now the problem is to find the correct s̄ ∈ Z
n′
q among all candidates. For

each candidate s̃, we compute

ẽi = zi − s̃ · ā mod q (4)

and determine the accuracy by checking the distribution of ẽi. If ẽi follows a
discrete Gaussian distribution, we determine the corresponding candidate s̃ is
correct.

4 Our Improved BKW Algorithm

In this section, we introduce our new BKW algorithm on LWE with small secrets.
The improvements of the reduction phase and the solving phase are in Subsect.
4.1 and Subsect. 4.2, respectively.

4.1 A New Reduction Method

We present a new reduction step that combines coding theory from previous
work and the idea of modulus switching, based on the sort-and-match.

The time complexity of the BKW algorithm is primarily based on the size
of its collision set, which is (qb − 1)/2 and b does not depend on q. Therefore,
reducing the value of q by modulus switching can potentially lower the time
complexity. So we first apply the modulus switching, instead of directly mapping
some subvectors into the nearest codewords. This involves mapping the LWE
instance mod q to a scaled LWE instance mod p before searching for collisions,
where p < q is a positive integer.

After performing modulus switching to the considered subvectors of the
columns in A, we can map them into the nearest codewords in a linear lattice
code over Zp. Then, each of them will be sorted according to which codeword it
was mapped into. Then the subvectors mapped to the same codeword are added
or subtracted to create new columns of A. The main framework of the reduction
method of our new BKW algorithm is shown in Fig. 3.

This method can significantly reduce the time complexity of the decoding
procedure and the reduction procedure while ensuring that more positions are
reduced per step, at the expense of adding some additional rounding noise and
coding noise. But with suitable parameter selection in our algorithm, these noises
can be controlled small enough that does not affect the whole BKW algorithm.

Begin with zi = 〈ai, s〉 + ei mod q, where ei follows the discrete Gaussian
distribution with the standard deviation σ. For simplicity, we write it as z =
〈a, s〉 + e mod q and then rewrite it slightly as an equality

z = 〈a, s〉 + e + kq (5)

over integers, for some k ∈ Z. Select another modulo p < q and multiply both
sides of the above equation by p/q, we get

p

q
z =

p

q
〈a, s〉 + p

q
e + kp =

〈
p

q
a, s
〉
+

p

q
e + kp. (6)
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Fig. 3. The main framework of the reduction method of our new BKW algorithm.

By writing p
qa =
[

p
qa
]
+
{

p
qa
}

, we get

p

q
z =
〈[

p

q
a
]

, s
〉
+
〈{

p

q
a
}

, s
〉
+

p

q
e + kp. (7)

Take a collision index set I with size pb−1
2 and denote

[
p
qaI

]
as the subvector

corresponding to this collision index set. We obtain

p

q
z′ =
〈[

p

q
aI

]
, sI

〉
+
〈{

p

q
aI

}
, sI

〉
+

p

q
e′ mod p, (8)

where z′ and e′ are parts of the real z and e since we only consider the collision
parts of vectors here.

We denote the rounding term
〈{

p
qaI

}
, sI

〉
as the new noise e′′. The term

{
p
qaI

}
will take values in a narrow small interval [−1/2, 1/2]. So we find that in

order to keep the rounding noise e′′ as small as possible, the entries of the secret
should be selected from a small distribution.

Here we get a new LWE instance

z̄ = 〈ā, sI〉 + ē mod p, (9)

where z̄ = p
q z′, ā =

[
p
qaI

]
, ē = e′′ + p

q e′.
Now, we can improve the reduction step by employing coding theory in the

sense of modulo p. In the i-th iteration step, find a p-ary linear code

Ci = {Gu : u ∈ Z
b
p}

with dimension b, length li ≥ b, and a generating matrix G ∈ Z
li×b
p . It can

generate a linear lattice code by construction A. Then we can map the considered
subvectors after modulus switching into the closest codeword in the lattice code.
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If decoding efficiently, we can find uI ∈ Z
b
p satisfying that GuI is very near

to
[

p
qaI

]
∈ Z

li
p . The Euclidean distance between GuI and

[
p
qaI

]
is as small as

possible. Thus we have
[
p

q
aI

]
= GuI + tI mod p, (10)

where the norm of error part tI ∈ Z
li
p is small enough. So we get a new LWE

problem
¯̄z = 〈¯̄a, sI〉 + ¯̄e mod p, (11)

where ¯̄z is the same as z̄ = p
q z′, ¯̄a = GuI , and the new error consists of three

parts ¯̄e = 〈sI , tI〉 + ē = 〈sI , tI〉 + e′′ + p
q e′ = 〈sI , tI〉 +

〈
sI ,
{

p
qaI

}〉
+ p

q e′.

According to which codeword
[

p
qaI

]
was mapped to, we can sort them into

different groups. Then we can create new vectors for the next iteration step by
adding or subtracting vectors in the same group. Assume that two subvectors
¯̄a1 and ¯̄a2 are mapped to the same codeword, we can cancel out the first term
of Eq. (11) by calculating

〈¯̄a1, sI〉 ± 〈¯̄a2, sI〉 (12)

and leave behind an accumulated error term ¯̄e(1) = ¯̄e1 ± ¯̄e2. The accumulated
error is introduced by the coding, modulus switching, and the original error.

After t reduction steps like this, we will reduce nred =
∑t

i=1 li positions of
column vectors in A. The error corresponding to each column is

ê =
2t
∑

j=1

¯̄eij
. (13)

Assume that the coding noise remains discrete Gaussian. From some known
results in Subsect. 2.6, the variance of noise introduced by code [li, b] in the i-th
step is

σ2
c =

2ip2(1−b/li)

12
. (14)

In order to keep the coding noise equal in every dimension, we will employ a list
of codes with decreasing rate as the coding noise in the initial steps will increase
exponentially. To summarize, the variance of the total noise is upper bounded
by σ2

f = 5
4 · 2t ·σ2 +nred ·σ2 ·σ2

c . With suitable parameter selection, these noises
can be controlled small enough that does not affect the next phase.

4.2 A New Solving Method

In this subsection, we present a new pruning guessing strategy to guess some pos-
sible s in decreasing order of probability. And then we utilize the most powerful
distinguishing method to test whether the guesses are correct or not.
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Assume that after reduction, we have a new LWE problem where the dimen-
sion of the new secret is nguess. Then the reduced equations are in the form
of

e = z −
nguess∑

j=1

aj · sj . (15)

The next task in the solving phase is to guess some possible values of s =
(s1, s2, · · · , snguess) and then distinguish whether the guess is correct or not. For
the right guess, the observed error will follow a discrete Gaussian distribution.
Otherwise, it will be uniform.

A Pruning Guessing Strategy. We use a pruning guessing strategy that lim-
its the number of candidates to guess the secret in decreasing order of probability
until finding the right guess.

More precisely, we sort the candidates of the secret vector s in decreasing
order of probability. Then start guessing from the candidate with the highest
probability until finding the right solution. When the probability of the candidate
is very small, we have no need to guess. Therefore, we use a pruning guessing
strategy to limit the number of candidates. Although the impact on the overall
cost is minimal, it can make our guessing step simpler and more efficient. Then
we use a polynomial-time method inspired by [14] to calculate the expected
number of guesses until we find the correct secret.

Suppose that each si has r possible values, there are rnguess possible values
if using exhaustive search. We find that it is very costly to calculate all the
probabilities of every single outcome, sort them in decreasing order of probability,
and then calculate the expected number of guesses.

To deal with this problem, we take advantage of the fact that the frequency
of each possible secret follows a multinomial distribution [39]. Assume that there
are n0 entries are 0 with probability p0, n1 entries are 1 with probability p1, · · · ,
and nr−1 entries are r − 1 with probability pr−1, where

∑r−1
i=0 ni = nguess. Thus

this kind of secret has the same probability
r−1∏

k=0

pk
nk =

n!
n0!n1! · · · nr−1!

(16)

The total number of different probabilities is just C
nguess
nguess+r−1, roughly about

O(nr−1
guess) for a fixed small r. Therefore, the number of unique probabilities is

limited so that it is efficient to sort them and then calculate the expected number
of guesses.

Now we can use a polynomial-time approach to evaluate the expected number
of guesses. Let p̄1, p̄2, · · · , p̄t denote the unique probabilities satisfying that p̄1 ≤
p̄2 ≤ · · · ≤ p̄t. The number of p̄i occurs is denoted by fi. And we let Fi =∑i

j=1 ft−i+j . So the expected number of guesses is

Nguess =
t∑

i=1

p̄t−i+1(Fi +
ft−i+1∑

j=1

j) =
t∑

i=1

p̄t−i+1(Fi +
p̄t−i+1(p̄t−i+1 + 1)

2
) (17)



An Improved BKW Algorithm for Solving LWE with Small Secrets 591

Optimal Distinguisher. To distinguish whether the guess is correct or not, we
use the optimal distinguisher based on the Neyman-Pearson lemma to perform
hypothesis testing. The main idea is to calculate the log-likelihood ratio, which
is the optimal test to distinguish two known distributions.

Let χσf
denote the discrete Gaussian distribution under the right guess. Let

U denote the uniform distribution under the wrong guess. We compute the log-
likelihood ratio

(q−1)/2∑

i=−(q−1)/2

F (e) log
Pr[e ← χσf

: e = i]
Pr[e ← U : e = i]

, (18)

where F (e) denotes the frequency of e corresponding to the guess of s. We select
the guess of s that optimizes the Eq. (18) by maximizing its value.

4.3 Algorithm Summary

The detailed description of our improved BKW algorithm is presented in Algo-
rithm 1, which consists of four main steps. Performing t1 plain BKW steps aims
to balance the merging noise and the additional noise. If not, directly perform-
ing new BKW reduction steps will cause a huge accumulation of coding noise
and rounding noise at the beginning of the iteration. This new BKW algorithm
significantly outperforms the previous best BKW-style variants for some specific
LWE parameters, which will be demonstrated in Sect. 6.

Algorithm 1: Improved BKW algorithm (framework)
Input: Matrix A ∈ Z

n×m
q , received vector z ∈ Z

m
q , parameters

t1, t2, b, nguess, nfft.
begin

Gaussian elimination to transform the secret distribution into error
distribution;
Perform t1 plain BKW steps to eliminate t1 · b positions;
Perform t2 new BKW reduction steps to eliminate nred positions;
for each guess of nguess positions do

distinguish it with the optimal distinguisher;
return correct guess

5 Complexity Analysis

In this section, we analyze the time complexity of the presented BKW algorithm
in Algorithm 1.

Theorem 1. Let (n, q, σ) be LWE parameters. Let t1, t2, b, nguess, p,m be the
parameters in our BKW algorithm. Let M be the required number of samples
in the solving phase and Nguess is the value of Eq. (17). The time complexity
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required for a successful run of our BKW algorithm can be estimated as CBKW
P0

,
where P0 is the successful probability and

CBKW = Creduce + Csolve,

where Creduce = Ctrans + Cplain + Cred, Csolve = Nguess · M.

– Ctrans = (m−n−t1 ·b)·(n+1)·
⌈

n−t1·b
b−1

⌉
is the complexity of the transformation

from secret distribution to noise distribution by Gaussian elimination.
– Cplain =

∑t1
i=1(m − (qb−1)·i

2 )(n + 1 − i · b) is the cost of t1 plain BKW steps,

where (qb−1)
2 is the collision index size and the sample size gradually decrease

by (qb−1)
2 because we use LF1 to merge.

– Cred =
∑t2

i=1 4 · li · (M + i·(pb−1)
2 )+

∑t2
i=1(M + (pb−1)·(i−1)

2 )(nguess +
∑i

j=1 lj)
is the cost of t2 new BKW steps, where

M = c0 · e2π(
σfinal

√
2π

p )2

is the required number of samples in the solving phase, c0 is a small positive
constant and σ2

final = nredσ
2
cσ

2 + 2t1+t2σ2 + 1
4 · 2t2σ2, where nred and σ2

c can

be checked in Subsect. 4.1. The first term
∑t2

i=1 4 · li · (M + i·(pb−1)
2 ) is the

upper bound of the decoding cost, where M + i·(pb−1)
2 is the sample size in the

(t2 − i + 1)-th step.

6 Bit-Security Estimation and Comparison

In this section, we apply our new BKW algorithm and coded-BKW algorithm for
solving various LWE with small secrets. The bit-security estimation results are
shown in Tables 1 and 2. To simplify the calculation, we make some assumptions.

– The number of required samples is unlimited.
– The complexity of operations over C and Zq is equal in our estimation.
– The successful probability is P0 = 0.99.

We consider Kyber [11] and Saber [19] schemes, whose secrets are usually
taken from a central Binomial distribution Bη (draws entries in [−η, η]). We
also consider some FHE-type parameters with the entries of the secret vector
chosen from {−1, 0, 1}.

We estimate the bit-security of the schemes by using our new BKW algorithm
and compare the results with coded-BKW. The comparison is shown in Tables 1
and 2. As can be seen, our new BKW algorithm outperforms the former best
coded-BKW in the lattice-estimator [1] and the improvement is 6–19 bits.
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7 Conclusion

In this paper, we introduce a new BKW algorithm for LWE with small secrets.
For the two phases of BKW, we improve them by combining the modulus switch-
ing technique with coding theory and using a new pruning guessing strategy
respectively. We compare our algorithm with previous coded-BKW on LWE
with different type parameters. The result shows that our algorithm outper-
forms coded-BKW in all cases and the improvement is up to 19 bits. However,
the BKW-style algorithms require a large memory consumption that limits their
practical application and it is interesting to find time-sample trade-offs for these
algorithms in the future.
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