
Generalising Axelrod’s Metanorms Game
Through the Use of Explicit

Domain-Specific Norms

Abira Sengupta1 , Stephen Cranefield1(B) , and Jeremy Pitt2

1 University of Otago, Dunedin, New Zealand
abira.sengupta@postgrad.otago.ac.nz, stephen.cranefield@otago.ac.nz

2 Imperial College London, London, England

j.pitt@imperial.ac.uk

Abstract. Achieving social order in societies of self-interested
autonomous agents is a difficult problem due to lack of trust in the
actions of others and the temptation to seek rewards at the expense
of others. In human society, social norms play a strong role in foster-
ing cooperative behaviour—as long as the value of cooperation and the
cost of defection are understood by a large proportion of society. Prior
work has shown the importance of both norms and metanorms (requir-
ing punishment of defection) to produce and maintain norm-compliant
behaviour in a society, e.g. as in Axelrod’s approach of learning of indi-
vidual behavioural characteristics of boldness and vengefulness. However,
much of this work (including Axelrod’s) uses simplified simulation sce-
narios in which norms are implicit in the code or are represented as
simple bit strings, which limits the practical application of these meth-
ods for agents that interact across a range of real-world scenarios with
complex norms. This work presents a generalisation of Axelrod’s app-
roach in which norms are explicitly represented and agents can choose
their actions after performing what-if reasoning using a version of the
event calculus that tracks the creation, fulfilment and violation of expec-
tations. This approach allows agents to continually learn and apply their
boldness and vengefulness parameters across multiple scenarios with dif-
fering norms. The approach is illustrated using Axelrod’s scenario as well
as a social dilemma from the behavioural game theory literature.

Keywords: Norms · Metanorms game · Expectation event calculus

1 Introduction

The conflict between social benefit and an individual’s self-interest is a central
challenge in all social relationships as individuals may put their own interests
ahead of those of the society as a whole, often leading to a suboptimal outcome
for all—a situation known as a social dilemma.
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Understanding how societies can solve this conflict and achieve cooperation
toward the collective good is essential. In a fishing scenario, for example, it is
profitable for a fisherman to catch as many fish as possible, but if everyone is
selfishly doing the same thing, the fishery will eventually run out of fish.

The question of why people often do cooperate with others remains, despite
the fact that individuals may benefit more from defecting than from cooperating.
The classical game theory literature from the last few decades models social
dilemmas using payoff matrices or trees and solution concepts such as the Nash
equilibrium, while making the assumption that all agents are perfectly rational
and well-informed. However, this becomes intractable to reason about for a large
number of agents.

Human society suggests that cooperation can occur due to internal and social
motivations such as altruism, rational expectations (e.g. focal points), social
choice mechanisms (e.g. voting and bargaining) and social norms [9].

One body of prior work has focused on the role of norms, providing evidence
that social norms play an important role in fostering cooperation. Social norms
imply that members of society should comply with prescribed behaviour while
avoiding proscribed behaviours [15]. Bicchieri explains why agents adhere to
social norms, claiming that a social norm emerges as a result of our expectations
of others and beliefs about their expectations [4]. Axelrod uses an evolutionary
computing approach to show how agents adopt normative behaviour after learn-
ing individual parameters of boldness and vengefulness, where their boldness
represents their propensity to violate norms and vengefulness represents their
inclination to punish others for violating norms [3]. However, his approach is
based on an implicit representation of norms. The norms themselves play no role
in his simulation. Instead the agents have hard-coded logic for using the boldness
and vengefulness parameters to inform decisions about whether to cooperate or
defect and whether to punish defectors and agents that observe defections but
do not punish the defectors. This limits its practical use for agents that interact
in a variety of real-world situations with a range of different norms.

In this work, we propose a generalisation of Axelrod’s method where norms
are represented explicitly and agents can choose their course of action after
engaging in what-if reasoning to compare the normative outcomes of alternative
actions. This approach is significant because it enables agents to continuously
learn and apply their boldness and vengefulness parameters across a variety of
scenarios with various norms.

The following is the structure of the paper. Axelrod’s norms and metanorms
games are discussed in Sect. 2. Section 3 emphasises the use of explicit norms
to encode Axelrod’s mechanism. Section 4 depicts the results of generalisation
of Axelrod’s norms and metanorms games, as well as the use of boldness and
vengefulness in other scenarios. The prior event calculus models of norms are
described in Sect. 5. Section 6 concludes the paper.
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2 Background of Axelrod’s Model

Axelrod states that “the extent to how often a given type of action is a norm
depends on just how often the action is taken and just how often someone is
punished for not taking it”. To understand how cooperation emerges from norms,
he developed a game in which players learn the parameters of boldness and
vengefulness over generations of the population and can choose to deviate from
the norms and metanorms, receiving punishment for their violations [3].

2.1 The Norms Game

Axelrod’s norms game follows an evolutionary model in which successful agent
strategies propagate over generations. A strategy is a pair of values representing
the agent’s boldness and vengefulness. Each agent has the option of defecting by
violating a norm, and there is a chance of being observed by other agents with
the probability S, which is drawn individually for each agent from a uniform
distribution. Each of the agents has two decisions to make (Fig. 1a).

– Agents must decide whether to cooperate or defect based on their boldness
value (B). A defecting agent (when S < B) receives a Temptation payoff (T
= 3) while other agents receive a Hurt payoff (H = −1). If an agent decides
to cooperate, no one’s payoff will change as a result.

– If an agent observes others defecting (as determined by the S value), the agent
decides whether to punish those defectors based on its vengefulness (V ) (a
probability of punishment). Punishers incur an enforcement cost (E = −2)
every time they punish (P = −9) a defector.

Axelrod simulated the norms game five times with 100 generations of 20
agents.1 Between generations, the utilities of each agent are used to evolve the
population of agents. Agents with scores greater than the average population
score plus one standard deviation are reproduced twice in a new generation.
Agents with a score less than the average population score minus one standard
deviation are not reproduced. Other agents are only reproduced once.2 The
initial values of B and V are chosen at random from a uniform distribution of
eight values ranging from 0/7 to 7/7, with the numerator represented as a 3
bit string. During reproduction each bit has a 1% chance of being flipped as a
mutation.

1 Axelrod used five runs of a hundred generations to simulate the norms and
metanorms games. However, we follow the recommendation of [7] and use 100 runs.

2 Axelrod does not state how he maintains a fixed population size after applying these
reproduction rules. We follow the approach of [7] involving random sampling when
the new population is too large, and random replication when the population is too
small.
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2.2 The Metanorms Game

Axelrod found that norms alone were not sufficient to sustain norm compliance in
society. He therefore introduced a metanorm to reinforce the practice of punish-
ing defectors. The metanorms game includes punishment for those agents who do
not punish defectors after observing them defect (Fig. 1b). Metapunishers incur
a meta-enforcement cost (E′ = −2) every time they metapunish (P ′ = −9).

3 Generalising Axelrod’s Metanorms Game Using
Explicit Norms

To generalise Axelrod’s metanorms game, we provide an explicit representation
of norms and a mechanism that can compare alternative actions to determine
which will lead to a norm violation. The expectation event calculus (EEC) [5],
a discrete event calculus extension, provides this capability.

3.1 The Expectation Event Calculus

The event calculus (EC) consists of a set of predicates that are used to encode
information about the occurrence of events and dynamic properties of the state
of the world (known as fluents), as well as a set of axioms that interrelate these
predicates [14]. This logical language supports various types of reasoning. In
this work, we use it for temporal projection. This takes as input a narrative of
events that are known to occur (expressed using happensAt(E, T ), where E is
an event and T is a time point) and a domain-specific set of clauses defining
the conditions under which events will initiate and terminate fluents (expressed
using the predicates initiates(E,F, T ) and terminates(E,F, T )). The EC axioms
are then used to infer what fluents hold at each time point. By default, fluents
are assumed to have inertia, i. e. they hold until explicitly terminated by an
event.

The EC, in general, assumes that time is dense, and time points are ordered
using explicit ‘<’ constraints. In this work, we use the discrete event calcu-
lus (DEC), which assumes that time points are discrete and identified by inte-
gers [11].

The expectation event calculus (EEC) [5] is an extension of the DEC that
includes the concepts of expectation, fulfilment, and violation. Expectations are
constraints on the future, expressed in a form of linear temporal logic, that
the agent wishes to monitor. Expectations are free from inertia and instead
are automatically progressed from one state to the next, which means they are
partially evaluated and re-expressed in terms of the next time point. During
progression, if they evaluate to true or false, a fulfilment or violation is generated.

Figure 2 illustrates temporal projection in the EEC. In addition to the stan-
dard features of the DEC, there are two special kinds of fluents: exp rule and exp.
A conditional rule to create expectations is expressed by an exp rule(Cond ,Exp)
fluent. Here, Cond is a condition on the past and/or present, while Exp repre-
sents the future expectation. Exp will be expected if Cond holds, in which case
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For each agent i

S = Uniform (0,1)

 i : Agent
 B : boldness
u : utility

Probability of
being seen

[ ]i.B <= Si.B > S[ ]

i.u += T

Agent i defects
Agent i does

not defect

i.u : i's payoff
T : Temptation (3)

For each agent j i=/ V : vengefulness
u : utility

j.u += HPayoff of all others
H : Hurt (-1)

With probability S

Agent j does not see agent iAgent j sees agent i

With probability
j.V

Agent j does not punish agent i

Agent j punishes agent i

j.u += E (-2)
i.u += P (-9)

With probability S

For each agent
k  i, j =/

Agent k does not see jAgent k sees agent j

With probability
k.V

Agent k punishes j Agent k does not punish j

k.u += E' (-2)
 j.u += P' (-9)

Norm game

Metanorm game

(a)

(b)

E : Enforcement cost
P : Punishment cost
 E' : Metapunishment enforcement cost
P' : Metapunishment cost

Fig. 1. a In Axelrod’s norms game, agent i will defect if bold enough; otherwise, agent
i will cooperate. Another agent j will punish i if the defection is observed and agent j is
vengeful enough. b The metanorms game adds the possibility of metapunishment
of agent j by another agent k. This occurs if j sees a defection from i, j does not punish
i, this lack of punishment is observed by k and k is vengeful enough.
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Event calculus axioms

Formula progression of
expectations

(linear temporal logic formulae)

Creation of expectation fulfilment
and violation eventsinitiates and

terminates
formulae 

Action theory
(effects of
actions)

initially and
happensAtNarrative

formulae

Narrative of events

label formulae

State labels

holdsAt formulae

Complete state
information

Fig. 2. Overview of reasoning in the expectation event calculus (EEC) [5].

an exp(Exp) fluent is created. In our implementation of the EEC, the condition
can test for fluents holding, the occurrence of events (expressed using happ(E))
and the presence of a symbolic label L in a state (using the expression @L).
Complex expressions involving conjunctions and linear temporal logic operators
such as next, eventually, always and never can also be used. Labels are associ-
ated with time points using label(L,T ) declarations, and are not required to be
unique. To distinguish between basic events in the narrative and the inferred ful-
filment and violation events, we use the predicate happensAtNarrative to declare
the narrative events.

In contrast to the earlier approach of Cranefield [5], we represent fulfilments
and violations as events rather than fluents, denoted fulf (Cond ,Exp,T ,Res) and
viol(Cond ,Exp,T ,Res), where Cond and Exp are the condition and expectation
of an expectation rule that was triggered at time T to create the expectation,
and Res is the residual expectation (after being progressed zero or more times
since its creation) at the time of its fulfilment or violation.3

Our EEC implementation includes a what-if predicate that accepts two alter-
native event lists (E1 and E2) as arguments and infers the fluents that would
hold and the events (including violation and fulfilment events) that would occur
if E1 or, alternatively, E2 occurred at the current time point. It returns the flu-
ents and events that would occur if the events in E1 are performed but not those
in E2, and those that would occur if the events in E2 occur but not those in E1.
This can be used as a basic form of look-ahead to assist an agent in deciding
between two alternative sets of actions. In particular, in this work we consider
options that are singleton lists and use the what-if predicate to compare which
(if any) of two actions will cause one or more expectation violations.

3.2 Modelling Axelrod’s Scenario with the EEC

We model time as a repeated cycle of steps and associate an EEC label with each
step. We use the event calculus initiates and terminates clauses to define the
3 There is also an extended version of the exp fluent with these four arguments—the

version used in this paper has only the residual expectation as its argument.
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effects of events that update an agent’s S value, give payoff to an agent as the
outcome of all agents’ cooperate or defect actions, and punish and metapunish
agents.

We use the EEC within a simulation platform [6] that integrates Repast
Simphony [12] with the EEC through queries to SWI Prolog. This includes an
institutional model in which agents take on roles by asserting to the EEC nar-
rative that certain institution-related events have occurred, such as joining an
institution and adding a role. Each role has an associated set of conditional rules.
A rule engine4 is run at the start of selected simulation steps when agents must
choose an action and these role-specific rules recommend the actions that are
relevant to the agent’s current role based on queries to the EEC, e.g. to check
the current step’s label and the fluents that currently hold. Then the agent can
run scenario-specific code to select one of the actions to perform.5

In contrast to Axelrod’s implicit representation of a norm and metanorm,
our explicit representation of a norm implies that three norms are required. In
the metanorms game, each action choice is governed by a norm. As there are
three choice-points, there are three norms that we model using exp rule fluents.

First-Order Norm

initially(
exp_rule(member(A, society),

never(happ(defect(A))))).

This initially clause creates an expectation rule (exp rule) expressing
the first-order norm, which states that no defection should occur for any
agent who is a member of the society.

As the first-order norm described above is likely to be insufficient to motivate
selfish agents to follow the norm and cooperate with others, a second-order norm
is required.

Second-Order Norm

initially(
exp_rule(and([sawViolation(B,A,R,_),

pl(contains_term(defect(A), R))]),
happ(punish(B,A)))).

The second-order norm states that if the first-order norm is violated by
an agent, another agent who observes the violation should punish the
first-order norm defector. The pl term in the rule’s condition indicates
a goal to be evaluated using Prolog.

4 https://github.com/maxant/rules.
5 At present we assume there are no more than two relevant actions.

https://github.com/maxant/rules
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This second-order norm is triggered by a sawViolation fluent, which is created
when a violation of the first-order norm occurs and a defector is observed. The
following initiates clause creates this fluent.

initiates(viol(_,_,_,ResidualExp),
sawViolation(B,A,ResidualExp,T),
T) :-

responsible(ResidualExp, A),
agent(B),
B \== A,
holdsAt(s(A,S), T),
random(R),
R < S.

The condition for this clause first determines which agent is responsible for
the unfulfilled expectation, then generates a possible observer different from the
violator and compares that agent’s S value with a random number to determine
whether or not the violation has been observed.

In our application, the violated expectation will include an instantiation of
one of the event terms defect(A), punish(A) or metapunish(A), and we can
use these to identify the responsible agent. We therefore define the responsible
predicate in Prolog as follows.

responsible(Expectation, A) :-
contains_term(defect(A), Expectation).

responsible(Expectation, A) :-
contains_term(punish(A,_), Expectation).

responsible(Expectation, A) :-
contains_term(metapunish(A,_), Expectation).

To encourage the punishment of second-order norm violators, a third-order
norm, is required.

Third-Order Norm

initially(
exp_rule(and([sawViolation(B,A,R,_),

pl((contains_term(punish(A,C), R), B \== C))]),
happ(metapunish(B,A)))).

According to this EEC rule, observer agents are expected to metapunish
the violators of the second-order norm when the violating agents fail to
punish the first-order norm defector after observing their defection.

Figure 3a, b illustrate the differences between our implementations of the
metanorms game with implicit and explicit norms. Figure 3a makes hard-coded
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Table 1. Roles and their possible actions

Step Role Possible actions

Cooperate or defect Temptation role Cooperate or defect

Punishment Possible punisher role Punish or do not punish

Metapunishment Possible punisher role Metapunish or do not metapunish

action choices, following Axelrod’s algorithm. However, in Fig. 3b, whenever
there is an action choice to be made, the two action choices are compared using
what-if reasoning that is informed by one of the three norms. For the decision
between cooperation or defection, if only one of the action choices will cause norm
violation, the agent’s boldness parameter is used to decide whether the violat-
ing option (cooperation) is chosen. For decisions between (meta)punishment or
no punishment, the vengefulness parameter (V ) is used: the violating option is
chosen with probability 1 − V .

The box labelled “Cooperate or defect” indicates a time step in which an
agent must decide whether to cooperate or defect based on whether it has a high
boldness value (Fig. 3a). In Fig. 3b, the first-order norm’s exp rule expressing the
first-order will have been created in the initial time step and triggered once for
each agent, resulting in exp fluents stating that each agent should never defect.
Therefore, an agent can use the what-if mechanism to compare the outcomes
of the two alternative actions, cooperate or defect. If the agent’s boldness value
exceeds S, the agent will violate the first-order norm by defecting; otherwise,
the agent will cooperate.

Figure 3a shows how the punishment step of the implicit norm simulation
hard-codes the decision to punish each observed defector with a probability
given by an agent’s vengefulness parameter. In contrast, the explicit norm rep-
resentation simulation cycle in Fig. 3b shows how what-if reasoning informed by
the explicit second-order norm detects that failure to punish will cause a norm
violation. That norm-violating option is then chosen with probability 1 − V .

In the metapunishment step of the implicit norm simulation, if an agent
chose not to punish an observed defector in the punishment step, then every
agent with sufficiently high vengefulness will metapunish that agent (Fig. 3(a)).
However, when using explicit norms, (Fig. 3b), what-if reasoning detects that
failure to metapunish will cause a violation of the explicit third-order norm, and
this option will be chosen with probability 1 − V .

Figure 4 depicts in more detail our use of explicit norms with agents that
are aware of norm violations. We have three norms represented by exp rule
fluents, which are triggered at different time steps. After triggering, each exp rule
fluent creates an expectation. The EEC initially clauses generated the exp rule
fluents for the first-order norm (N1), second-order norm (N2), and third-order
norm (N3). Each agent has two roles: temptation role and possible punisher role.
Table 1 shows what actions an agent can take in the simulation when assigned
to a specific role for each step. The temptation role specifies that an agent can
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Generate random S
value

Cooperate or
defect

Receive payoff

what-if(cooperate,
defect)

what-if(punish,
do_not_punish)

what-if(metapunish,
do_not_metapunish)

Every four cycles: regenerate population of
(B,V) values

N1: First-Order Norm
 N2: Second-Order Norm
N3: Third-Order Norm

N1

Punish observed
defectors

EEC creates sawViolation
fluents.

choose do_not_punish
(violating N2) with probability

1 - V
else punish N2

metapunish
observed non-

punishers

EEC creates
sawViolation fluents.

choose
do_not_metapunish
(violating N3) with
probability 1 - V
else metapunish

N3
Cooperate or

defect

Receive
payoffPunish observed

defectors with
probability V

100 runs 10
0 r

uns

Cycle of events
for each agent

of the metanorms
game

metapunish observed
non-punishers with

probability V

Every four cycles: regenerate population
of (B,V) values

If B > S
cooperate

else
defect

Receive payoff:
Sum of hurt from violations,

cost of punishing, cost of
temptation & cost of being

punished

S: Probability of the agent's defection being seen
B: Boldness of the agent
V: Vengefulness of the agent

10
0 r

un
s100 runs

Generate random S
value

White boxes are run for
each agent

choose defect
(violating N1)

if
B > S

else cooperate

Cycle of events
in the

generalisation of
the metanorms

game

Fig. 3. The distinction between implicit and explicit metanorms. The cycle of events
for Axelrod’s metanorms game is shown in a its original form with implicit norms, and
b in our generalised form with explicit norms.

choose to cooperate or defect at the cooperate or defect step. At the punishment
step an agent with the possible punisher role can choose to punish or do not
punish, and an agent with the possible punisher role can choose to metapunish
or not to metapunish at the metapunishment step. At the initial time step of the
simulation, both roles (temptation role and possible punisher role) are activated
for each agent.

The EEC what-if predicate is used to consider two options: cooperate or
defect, punish or do not punish, metapunish or do not metapunish (depending
on the current step in the simulation cycle), and determine whether one option
produces a violation while the other does not. The non-violating option is then
chosen (or a random choice if there is no violation). If both options result in a
violation, the cost of each violation is calculated (using domain-specific knowl-
edge) and the less costly option is chosen. If the costs are the same, a random
selection is made.

At the simulation’s final step, regenerate population, successful agents are
replicated and mutated to form a new generation of the same size [7]. In this
simulation, folded outlined arrows represent iteration: one for the three norms
and their corresponding expectations within one generation, and the other for
100 generations of simulation.
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Strategy (boldness, vengefulness)

exp( never( happ( defect( agent 1 ))))

temptation
role

 choose( cooperate, defect, B )
what-if

possible punisher
role

 choose( punish, do not punish, 1 - V )
what-if

Step:
cooperate or defect

 

Step:
punishment

 

Mutate

Selected agents

New generation of agents
with constant size

Repeated
100 times

Repeated

Step: 
meta punishment

   Relevant actions

exp( happ( punish( agent 1, agent 2 )))

At Time = 2

At Time = 3

At Time = 4

N1:

N2:

N3:

N1

cooperate defect

Compliant Not compliant

do not punishpunish

Not compliantCompliant
N2

metapunish do not metapunish

N3

choose(Action1, Action2, ViolProb):

Calc. V1 = violations Action1 will cause
Calc. V2 = violations Action2 will cause

If V1 and V2 are empty: 
 return a random choice 

If V1 and V2 are both non-empty:
calc. viol. cost for V1 and V2

Return action with lowest viol. cost 

Otherwise, return the compliant action

                    
with probability 1 - V or the violating
action with probability V                   

Not compliantCompliant

Relevant actions

Relevant actions

exp( never( happ( defect( agent 3 ))))

exp( happ( punish( agent 3, agent 2 )))

exp( happ( metapunish( agent 1, agent 3 )))

Step:
regenerate_population

exp( never( happ( defect( agent 2 ))))

possible punisher
role

  choose( metapunish, do not metapunish, 1 - V )
what-if

First-Order Norm : N1

Second-Order Norm : N2

Third-Order Norm : N3

Fig. 4. The generalisation of Axelrod’s approach in which norms are explicitly repre-
sented and agents can choose their actions based on what-if reasoning using expecta-
tion event calculus, which tracks the creation, fulfilment, and violation of expectations.
For illustration, in the top section, we assume there are three agents. All agents are
expected never to defect under the first-order norm, but we assume that agent 2 chooses
to defect. According to the second-order norm, agents 1 and 3 are expected to punish
agent 2. Then, according to the third-order norm, if agent 1 notices that agent 3 did
not punish agent 2, agent 1 should punish agent 3.
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4 Experiments

Fig. 5. a Scatter plot of mean boldness along x-axis wise and mean vengefulness
along y-axis wise of generalisation of Axelrod’s study with all three norms. b Vector
plot representation of mean boldness and vengefulness.

Experiment 1: Generalisation of Axelrod’s metanorms game This exper-
iment illustrates that our generalised metanorms game with explicit norms gen-
erates punishment and metapunishment events that sustain norm-compliant
behaviour. We used 20 agents, 100 generations and 100 runs. Figure 5a shows
a scatter plot of the mean boldness and vengefulness values at the end of each
run, and we observe that mean boldness is always low and mean vengefulness
ranges from high to average.

Figure 5b depicts the vector representation of the same data set.6 Vectors
show how boldness and vengefulness change across generations in the population.
The results show that what-if reasoning with explicit norms causes the first-order
norm to be largely upheld in the society due to low boldness being maintained.

Experiment 2: Using the boldness and vengefulness in another sce-
nario Klein [10] introduced a scenario that we refer to as the plain-plateau
scenario in our previous work [13]. The scenario depicts a society in which peo-
ple have the option of living on a river plain with easy access to water, otherwise,
they can live on a plateau. Flooding is a risk for river-plain residents. When the
government has complete discretionary power, it is in the government’s best
interests to compensate citizens whose homes have been flooded by taxing cit-
izens who live on the plateau, creating a prisoner’s dilemma situation. In our
previous work, we experimented with the use of social norm-based expectations
to achieve coordination where citizen agents are hard-coded to prefer actions
that will result in no violation.
6 Populations with similar average levels of boldness and vengefulness are grouped

together to create each vector. The end point of each arrow shows the average levels
of these features one generation later [3].
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Initial
expectation

exp_rule(member(A,citizens),
                       never(location(A,plain))). exp(never(location(A,plain))).

exp_rule(and([ happ(viol(never(location(A, plain)))), location(B, plateau) ]), happ(punish(B,A))).

exp(happ(punish(B,A))).

Norm
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what-if

Plain-plateau scenario: agents are compliant
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Plateau dweller role
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what-if

Strategy = ( boldness, vengefulness )
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Compliant   Not Compliant   
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Not compliant   Compliant   

Selected action 

 Stay plateau
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Plain-plateau scenario: with boldness and vengefulness strategy
 agents are not always compliant, and can select violation or fulfilment

(a)
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Fig. 6. a The plain-plateau scenario in which agents are hard-coded to always
choose the non-violating actions. b The plain-plateau scenario as an application of
our generalised metanorms game.

Figure 6a illustrates this prior work. Each agent has either a plain dweller or
a plateau dweller role, and in each simulation cycle there are two choices: agents
can stay on the plateau or move to the plain. In this scenario, we assume there
exists a norm that no one should live in the plain and a metanorm stating that
plateau dwellers should punish those who live on the plain.

Figure 6b illustrates the application of our generalisation of the metanorms
game to this scenario.7 This simulates an agent finding itself in a new scenario
after having already evolved its personality with respect to norms, and illustrates
the generality of our approach using explicit norms and what-if reasoning. In the
plain-dweller role, the EEC what-if predicate is used to consider two options:
move to the plateau or stay in the plain; similarly, in the plateau-dweller role, the
what-if mechanism is used to consider either move plain or stay plateau. When
agents with high boldness in the plain-dweller role choose to stay in the plain,
they violate the norm. When other vengeful agents observe violators, they punish
them, unless insufficient vengefulness causes them to violate the metanorm.

We simulated a group of agents who encounter the plain-plateau scenario
after evolving their boldness and vengefulness parameters in the Axelrod sce-
nario. From the first run of Experiment 1, we randomly sampled six (boldness,

7 We do not include a third-order norm for the plain-plateau scenario as this was not
part of Klein’s model [10].
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vengefulness) pairs from personalities of the twenty agents at the end of that
run. This resulted in six agents with a boldness of zero.8

We used the expectation-aware action-selection mechanism generalised ver-
sion of Axelrod’s metanorms game with the input norms replaced with those
shown at the top of Fig. 6. As before, boldness was used as the probability of
choosing a violating action over a non-violating one, and 1−vengefulness as the
probability of choosing to violate an expectation to punish. As all six agents
had a boldness of zero, they all opted to live on the plateau (which counts as
cooperation in this scenario) whenever they had an opportunity to change their
location. Therefore, there were no norm violations and no expectations to punish
were created.

While this cooperative behaviour was not surprising given the lack of boldness
of the simulated agents, this was an emergent outcome from the transfer of
attitudes to normative behaviour learned in the previous scenario, a uniform
action-selection mechanism that can be used across scenarios, and the ability to
provide new norms as symbolic inputs to inform this mechanism.

5 Prior Event Calculus Models of Norms

This section of the paper reviews some research on the use of event calculus in
autonomous agent reasoning to examine the effects of norms.

Alrawagfeh [1] suggests formalising prohibition and obligation norms using
event calculus and offers a method for BDI agents to reason about their
behaviour at runtime while taking into account the norms in effect at the time
and previous actions. Norms are represented by EC rules that initiate fluents
with special meanings. The introduced fluents represent punishments for break-
ing a prohibition norm or failing to fulfil obligation norms, or the rewards for
fulfilling obligation norms. The normative reasoning strategy assists agents in
selecting the most profitable plan by temporarily asserting to the event calcu-
lus the actions that each plan would generate and considering the punishments
and/or rewards it would trigger.

In Alrawagfeh’s work, norms cannot be changed dynamically without chang-
ing the event calculus rule base, because they are defined by EC initiates clauses.
In contrast, in our approach, EC rules can be instantiated automatically from
exp rule fluents, which can be changed dynamically by events.

Alrawagfeh has no representation of active norms, violations or fulfilments:
only punishments and rewards. In our work, expectation creation, fulfilment,
and violation are represented as events, and the what-if predicate compares
alternative events to track expectation creation, fulfilment, and violation. We do
not assume that rewards and/or punishments will always follow violations and
fulfilments; these could be defined by separate exp rules or EC initiates clauses.

Hashmi et al. [8] propose a number of new EC predicates to allow them to
model different types of obligation that occur in legal norms. In particular, they
8 Run 1 of Experiment 2 ended with only one agent with a non-zero boldness value:

4/7.
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introduce a deontically holds at predicate that ensures an obligation enters into
force at the same time that the triggering event occurs. In contrast, our app-
roach using the EEC does not necessitate the introduction of a new type of EC
predicate in order to initiate a deontic predicate. An exp rule or an expectation
can be created with a standard initiates clause and an exp fluent is created by
an exp rule in the state where the condition of the rule becomes true. The EEC
does, however, include additional axioms to handle the progression of expecta-
tions.

Alrawagfeh and Hashmi et al. both use standard EC, whereas we use discrete
EC because this work involves discrete time simulations.

6 Conclusion and Future Work

In previous work [13], we used the EEC what-if mechanism for choosing actions
in the presence of expectations. However, we assumed that all agents are com-
pliant and will always choose a non-violating action if possible. The current
work removes this assumption, but it also makes the following significant stan-
dalone contribution: it generalises Axelrod’s metanorms game to use explicitly
represented norms. This allows the metanorms game to be used across multiple
scenarios.

Applying our generalised version of Axelrod’s metanorms game to varying
scenarios will require changing the mechanism for evolving boldness and venge-
fulness parameters. Strategy evolution through population regeneration is not
realistic for agents that continually evolve their boldness and vengefulness as
they move between different scenarios. Therefore, in future work we will inves-
tigate the use of a pairwise comparison approach where an agent may adopt
another agent”s strategy based on a comparison of their respective fitnesses, e.g.
by using the Fermi process [2].
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