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Chapter 1
Endophytic Fungi: Symbiotic Bioresource 
for Production of Plant Secondary 
Metabolites

Lovelesh Singh Saini, Swati Patel, Arti Gaur, Priti Warghane,  
Rashmi Saini, and Ashish Warghane

Abstract  Endophytes are a diverse group of microbes that asymptomatically colo-
nize the interior organs of higher plants. Fungi and bacteria are also considered 
endophytes, although the former is more common, adaptable, and pervasive micro-
organisms that colonize plants growing in practically all geoclimatic situations. 
Endophytic fungi are a kind of symbiotic fungus that lives inside the tissues of a 
plant. These fungi have a symbiotic relationship with the plant, providing nutrients 
and protection while receiving shelter and food from its host. Endophytic fungi can 
play a significant role in the sustainability of a plant species. Different strains of 
endophytic fungus are being researched, and the accompanying restrictions are 
being addressed for maximum use/multidimensional applications as beneficial 
metabolites with multifaceted environmental effects are progressively being discov-
ered. The current chapter reveals that endophytic fungi are a chemical reservoir of 
novel compounds and elicit plant secondary metabolites with numerous applica-
tions in the pharmaceutical and agrochemical industries. Various bioactive metabo-
lites produced by endophytic fungi have shown socioeconomic value and found 
uses in agriculture and the environment, as well as biofuels and biocatalysts.
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1 � Introduction

Higher plants provide complex, multilayered, diversified environments in spatial 
and temporal habitats that are home to assemblages of microorganisms of various 
species. Plants inside and outside their tissues contain many microorganisms, 
including bacteria, fungi, archaea, algae, and protists. Complex interactions between 
these species have progressively developed over a long-term, resulting in their sym-
biosis as a group rather than leaving them as separate species (Hassani et al. 2018). 
The interactions between these microbes and plants positively impact plant sustain-
ability, biodiversity, and ecological stability (Rosier et  al. 2016; Bai et  al. 2017; 
Sasse et al. 2017).

Microorganisms, known as endophytes, inhabit plants for at least a portion of 
their life cycle without producing disease symptoms (Bacon and White 2000). Thus, 
“endophytism” is a special plant-microbe relationship defined by “location” (not 
“function”) that is momentarily symptomless, inconspicuous, and established 
within the living host plant tissues (Kusari and Spiteller 2012). Plants that possess 
poisonous alkaloids and interact with endophytes show high resistance to biotic and 
abiotic stresses (Carroll 1988; Chagas et al. 2018). Later on, a large body of evi-
dence suggested that endophytic associations were crucial for the development of 
the plant immune system (Soliman et al. 2015), the control of disease (Terhonen 
et al. 2016), the uptake of nutrients (Hiruma et al. 2016), and to enhance the ability 
to withstand abiotic pressures (Khan et al. 2013).

In the accumulations of plants and microbes, microfungi predominate, coloniz-
ing the surfaces of leaves and twigs (epiphytes), the tissues inside leaves (foliar 
endophytes), the young and old bark (bark endophytes), and the wood (xylem endo-
phytes and wood decomposers) (Stone et al. 2004). Endophytic fungus is highly 
varied and polyphyletic; it includes organisms that can live asymptomatically in the 
above- and belowground tissues of plants and play a wide range of ecological tasks 
(Saikkonen et al. 1998). Numerous endophytes can produce a range of bioactive 
compounds that may be employed directly or indirectly as therapeutic agents against 
a variety of ailments (Strobel et  al. 2004; Staniek et  al. 2008; Aly et  al. 2010; 
Kharwar et  al. 2011; Kusari and Spiteller 2012; Passari et  al. 2015, 2016). 
Additionally, a large number of endophytic fungi are sources of cytotoxic com-
pounds and secondary metabolites that are biologically active, like paclitaxel, podo-
phyllotoxin, deoxypodophyllotoxin, camptothecin, hypericin, emodin, and 
azadirachtin (Stierle et al. 1993; Eyberger et al. 2006; Puri et al. 2005, 2006; Kusari 
et al. 2008, 2009, 2012; Shweta et al. 2010). Various coniferous and deciduous tree 
hosts for endophytic Pezicula species strains produce bioactive secondary 
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metabolites in culture (Noble et al. 1991; Schulz et al. 1995). Cytochalasins and 
indole diterpenes with significant biological activity are commonly produced by 
endophytic species of the Xylariaceae (Brunner and Petrini 1992).

Endophyte synthesis of bioactive substances, mainly those unique to their host 
plants, is significant from a biochemical, pharmacological, and ecological stand-
point. Exciting opportunities exist to use endophytic fungus to produce a wide range 
of recognized and undiscovered physiologically active secondary metabolites.

2 � Evolution of Endophytic Fungi in Plants

Endophytic fungi, which dwell inside plant tissues permanently or for a specific 
time during their life cycles, colonize plants, especially perennials (Stone et  al. 
2004; Demain 2014), causing no apparent harm or morphological alterations. These 
microorganisms typically coexist alongside diseases and comprise fungi and bacte-
ria (Zhang et al. 2006; Gouda et al. 2016). In plant tissues, fungal endophytes exist 
internally, intercellularly or intracellularly, and asymptomatically. Endophytes are 
distinguishable from mycorrhizae by missing external hyphae or mantels, and they 
often reside in aboveground plant tissues but can also occasionally be found in 
roots. Over the past 10 years, the definition of “endophyte” has undergone several 
changes (Sinclair and Cerkauskas 1996; Bills 1996; Saikkonen et al. 1998).

Parasitic or pathogenic fungi are believed to have originated endophytes on both 
grasses and woody plants (Carroll 1986, 1991, 1992). Woody plant endophytes are 
closely related to pathogenic fungi and are thought to have descended from them by 
lengthening their latency periods and decreasing their pathogenicity (Petrini et al. 
1992). It is also believed that the fungal grass diseases of the genus Epichloe are the 
ancestors of the Neotyphodium grass endophytes. But there doesn’t seem to be a 
clear coevolutionary route between the host plant and the endophyte. Plants have 
faced a variety of abiotic and biotic stressors throughout evolution. Since they can-
not move, plants have relied on vegetative growth, sophisticated physiology, and 
seed dissemination to avoid or lessen stress’s effects. All plants are known to sense 
signals, transfer them, and react to stresses, including disease, salt, heat, and drought 
(Bohnert et al. 1995; Bartels and Sunkar 2005).

Surprisingly complex microscopic specimens have been found in the Canadian 
Arctic. The earliest documented appearance of fungus may have occurred around 1 
billion years ago, more than 500 million years earlier than previously thought, 
according to tiny fossils discovered in remote Arctic Canada. Endophytes have 
developed unique biotransformation skills due to the long-term coevolution of fun-
gal endophytes and host plants, which can significantly affect the metabolism and 
makeup of plants.

Geographical considerations, interactions with other species in the community, 
phylogenetic and life history restrictions, and abiotic factors all affect the contin-
uum of antagonistic-mutualistic interactions between any two interacting species 
(Thompson and Pellmyr 1992; Thompson 1994). Similar to this, even during the 
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life span of the microbe and host plant, complex microbial mutualisms with host 
plants fluctuate along a continuum from pathogenic to mutualistic (Sinclair and 
Cerkauskas 1996). Although endophytic fungal-host plant interactions are complex 
and variable, evolutionary traits like mode of transmission and infection patterns as 
well as ecological factors like host condition, competition with other microorgan-
isms, population structure, and prevailing abiotic factors allow predictions of where 
endophyte-plant associations are likely to fall along the continuum.

The byproducts of main metabolic pathways are termed primary metabolites, 
encompassing lipids, proteins, carbohydrates, and amino acids. They are crucial to 
the metabolism of building blocks and an organism’s growth. Without them, the 
organism’s growth and development are very likely to have flaws. The fact that the 
by-products of several crucial stages serve as precursors for producing secondary 
metabolites is an essential function of basic metabolism. These precursors are used 
by both endophytes and their host plants in their separate secondary metabolites 
(SMs) biosynthesis processes. According to Kirby and Keasling (2009) and Deepika 
et al. (2016), SMs in EFs may imitate the host pathways and use those pathways as 
their biosynthetic route. Using blocking mutant and radiolabeling approaches, 
researchers have explored the synthesis of certain phytochemicals, including ergot 
alkaloids, aflatoxin, and lovastatin (Keller et  al. 2005; Rekadwad et  al. 2022). 
Although varied, a few shared biosynthetic pathways synthesize SMs, and endo-
phytic fungal communities and their host plants’ metabolomic pathways are compa-
rable. It is unclear whether these low-molecular-weight phytochemicals are 
produced by plants directly or through symbiosis with microbes inside them.

3 � Biodiversity of Endophytic Fungi

Nearly every plant on the earth has endophytes, which are the most distinctive 
microbes. It has mainly been extracted from the soil of large and small trees, coastal 
grasses, and lichens. Many different microbes, such as bacteria, actinobacteria, 
fungi, and algae, are found inside the plant tissue (Saini et al. 2015; Zhang et al. 
2018; Passari et  al. 2020; Sriravali et  al. 2022). They all establish symbiotic or 
asymbiotic biological relationships with the host-plant body. Prokaryotic cells con-
nected with plants through vertical or horizontal transmission through stomata and 
colonizing the internal plant tissue make up the wide endophytic variety in our 
ecosystem. Endophytic microorganisms target various parts of the host-plant body, 
so they can enter and establish a habitat.

Fungal endophytes are a common type of endophyte. Endophytic fungi can sus-
tainably increase crop output and growth by enduring severe biotic and abiotic 
stress conditions, including drought, high temperatures, and salinity (Rodriguez 
et al. 2009). Due to their extensive adaption, the fungal endophytes colonize the 
plant tissue’s intra- and intercellular regions, forming a symbiotic or mutualistic 
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relationship with the host (Aly et al. 2011). The host plant provides the fungal strain 
with food and protection, and the fungal endophyte confers resistance to pathogens 
and numerous abiotic stresses. The transfer of a fungal cell to a damaged wound 
region through surface contact or channels is called external fungal endophytes. 
Endogenous fungal endophytes, however, travel through inner organelles like mito-
chondria and chloroplasts (Yadav 2020). There are two ways that fungal endophytes 
can spread: vertically or systemically from the host plant body to the offspring or 
seeds of the host plant or horizontally or nonsystematic through sexual reproduction 
or infection (Malik et al. 2023).

Endophytic fungi belong to diverse phyla, including Ascomycota, Basidiomycota, 
and Mucoromycota. The majority of endophytic fungi belong to Ascomycota 
(89%), followed by Basidiomycota (9%), and the remaining to Mucoromycota (2%) 
(Rana et al. 2019). The diversity of fungal endophyte species in these phyla is sum-
marized in Table 1.1.

The variety of all fungal endophytes can be divided into two major groups. These 
include Clavicipitaceae (CE), which are widely dispersed and occur in asymptom-
atic tissues of nonvascular plants, conifers, ferns, and angiosperms, which infect 
specific grasses restricted to chilly climates and nonclavicipitaceous endophytes 
(NCE). NCE, however, is reportedly only found in the Ascomycota and 
Basidiomycota groups (Maldonado-González et  al. 2015). On every continent, 
fungi have been found to colonize terrestrial plants. They have been isolated from 
ferns, gymnosperms, angiosperms, arctic habitats, tropical climes, various xeric 
environments, and boreal woods (Suryanarayanan et al. 2000; Mohali et al. 2005; 
Šraj-Kržič et al. 2006; Selim et al. 2017).

Different fungal species with a variety of chemical productions are found in the 
various fungal areas of plants. A study of the microbial diversity in Paris polyphylla 
var. yunnanensis plants (Liu et  al. 2017) found that Trichoderma viride and 
Leptodontidium sp. coexisted with the dominating species Fusarium oxysporum in 
the rhizospheric endophytes. Along with these three predominant fungi, the pres-
ence of Alternaria sp., Pyrenochaeta sp., Truncatella sp., T. viride, Chaetomium sp., 
Penicillium swiecickii, and Cylindrocarpon sp. was also noted.

4 � Interaction of Endophytic Fungi with Host Plant

Filamentous fungus and vesicular–arbuscular mycorrhiza (VAM) are the most para-
mount groups included and investigated as endophytes. Certain fungi that belong to 
the genus Trichoderma, Colletotrichum, Penicillium, Aspergillus, Purpureocillium, 
Fusarium, Claviceps, Metarhizium, Xylaria, Curvularia, Cladosporium, Dreschlera, 
Alternaria, etc. colonizes either roots, shoots, or leaves (Uzma et al. 2018; Attia 
et al. 2020; Baron and Rigobelo 2021). They are populating in the endosphere of 
plants and are transmitted horizontally or vertically. Endophytes can uphold in 
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Table 1.1  Biodiversity of different groups of endophytic fungi associated with different hosts

Phyla Species References

Ascomycota Curvularia sp., Setosphaeria sp., 
Guehomyces sp., Annulohypoxylon sp., 
Trichoderma sp., Xylaria sp., Septoria sp., 
Trichosporon sp., Filobasidium sp., Mucor 
sp., Neurospora sp., Ampelomyces sp., 
Microdochium sp., Helminthosporium sp., 
Tilletiopsis sp., Anthostomella sp., 
Ophiocordyceps sp., Plectosphaerella sp., 
Emericella sp., Talaromyces sp., Glomus 
sp., Stagonospora sp., Gibberella sp., 
Alternaria sp., Cryptococcus sp., Nectria 
sp., Sordariomycetes sp., Ilyonectria sp., 
Davidella sp., Chaetomium sp., 
Rhodosporidium sp., Eurotium sp., 
Stemphylium sp., Didymella sp., 
Rigidoporus sp., Bipolaris sp., 
Coniothyrium sp., Ulocladium sp., 
Cercospora sp., Engyodontium sp., 
Porostereum sp., Paraconiothyrium sp., 
Phaeosphaeria sp., Boeremia sp., 
Cochliobolus sp., Exserohilum sp., 
Calonectria sp., Paraphoma sp., Diaporthe 
sp., Eutypella sp., Cladophialophora sp., 
Macrophomina sp., Rhizopus sp., 
Phaeosphaeriopsis sp., Corynespora sp., 
Nigrospora sp., Lasiodiplodia sp., Wallemia 
sp., Paecilomyces sp., Puccinia sp., 
Williopsis sp., Lecanicillium sp., Leptospira 
sp., Fusarium sp., Nemania sp., 
Neofusicoccum sp., Dichotomopilus sp., 
Cylindrocarpon sp., Leptosphaeria sp., 
Aspergillus sp., Pleosporales sp., 
Peyronellaea sp., Marasmius sp., Crinipellis 
sp., Mortierella sp., Eupenicillium sp., 
Bipolaris sp., Clonostachys sp., Phomopsis 
sp.

Sieber et al. (1988), Fisher and 
Petrini (1992), Larran et al. 
(2001), Wakelin et al. (2004), 
Tian et al. (2004), Nassar et al. 
(2005), Pan et al. (2008), 
Saunders and Kohn (2008), Naik 
et al. (2009), Yuan et al. (2010), 
Khan et al. (2011, 2012), Gao 
et al. (2011, 2012), de Souza 
Leite et al. (2013), Tenguria and 
Firodiya (2013), Impullitti and 
Malvick (2013), Amin (2013), 
Zhao et al. (2012, 2013, 2014), 
Tian et al. (2014), Fernandes 
et al. (2015), Colla et al. (2015), 
Gonzaga et al. (2015), Köhl et al. 
(2015), Chadha et al. (2015), 
Pierre et al. (2016), Marcenaro 
and Valkonen (2016), dos Santos 
et al. (2016), Parsa et al. (2016), 
Keyser et al. (2016), Ofek-Lalzar 
et al. (2016), Wang et al. (2016), 
Renuka and Ramanujam (2016), 
Bogner et al. (2016), Rothen 
et al. (2017), Potshangbam et al. 
(2017), Hamayun et al. (2017), 
Singh and Gaur (2017), 
Spagnoletti et al. (2017), 
Narayan et al. (2017), Comby 
et al. (2017), Larran et al. (2002, 
2007, 2018), Yang et al. (2014a, 
2018), Zhao et al. (2018), Xing 
et al. (2018), and Rana et al. 
(2019)

Basidiomycota Cryptococcus sp., Trichosporon sp., 
Puccinia sp., Porostereum sp., Rigidoporus 
sp., Filobasidium sp., Rhodotorula sp., 
Guehomyces sp., Tilletiopsis sp., Crinipellis 
sp., Marasmius sp., Wallemia sp., 
Rhodosporidium sp., Sporobolomyces sp., 
Cryptococcus sp., Cystobasidium sp., 
Sporobolomyces sp., Rhizoctonia sp.

Mucoromycota Glomus sp., Mucor sp., Mortierella sp.

L. S. Saini et al.
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environments like high temperatures, temperate forests, mangrove forests, and trop-
ical forests (Arnold 2008), insinuating they can survive under diverse climatic con-
ditions. Endophytic fungi are distinct in their colonization due to the expression of 
genes required for the molecules necessitated for their colonization. However, there 
are the least details available for the accountable genes (Behie and Bidochka 2014). 
It can enter the plant system via wounding of plant tissues that further secrete nutri-
ent metabolites and chemoattractants of endophytes. There is the germination of 
fungal mycelia in roots and its extensive penetration into the root cortex. Thereby, it 
commences its colonization. It spreads through the cell wall to the adjacent cells of 
plants and moves further in the plant system (Yan et  al. 2019). Endophytes are 
observed in almost all plant parts, such as root, shoot, stem, leaves, and reproductive 
tissues. The existence of endophytes is validated via surface sterilization of plant 
tissue followed by its growth on a specific media or with metagenome analysis. The 
internal parts of the plant are the protective, secure zones for the endophytic fungus 
to get the required nourishment and ameliorate competition. In turn, the fungi also 
favor plants through direct and indirect courses. They benefit plants directly with 
nutrient acquisition, secreting molecules that facilitate plant growth. Indirectly with 
the production of important secondary metabolites and other compounds, endo-
phytic fungus protects plants from biotic and abiotic stress (Fig. 1.1).

Fig. 1.1  Direct and indirect benefits offered by endophytic fungal colonization. Parameters in 
blue and green boxes show the direct effects of plant growth promotion. Pink and orange boxes 
indicate the indirect use of biotic and biotic stress tolerance to the colonized plant

1  Endophytic Fungi: Symbiotic Bioresource for Production of Plant Secondary…
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4.1 � For Sustainable Agriculture

A global climate change concern is due to deforestation, domestication, urbaniza-
tion, soil salinization, and soil pollution through the extensive use of chemical 
fertilizers and pesticides. Plants are also losing important valuable microorgan-
isms due to the abovementioned situations. Therefore, they are not acquiring the 
direct and indirect advantages imparted by them, which makes them more resis-
tant to stress.

�Nutrient Availability

Endophytes do have a role in facilitating macroelements (nitrogen, potassium, 
phosphorous, calcium, magnesium, sulfur) and microelements (zinc, iron, copper, 
etc.) for the plants, which make efficient use of fertilizers applied. They can also 
play a role as biofertilizers. The first report of colonization by the endophytic 
fungus Piriformospora indica revealed that external hyphae of the fungus possess 
phosphate transporter (PiPT) expression that helps to absorb phosphate and make 
it available to maize plants. Mycorrhizal fungi Metarhizium and Beauveria have 
been reported to augment the availability of nitrogen and phosphorous in their 
symbiosis (Behie and Bidochka 2014). Under conditions of low nitrogen, the 
genes associated with nitrogen uptake and metabolism, including OSAMT1;1, 
OSAMT2;2, OSNR1, and OSGS1, are upregulated in rice due to endophytic colo-
nization by Phomopsis liquidambari. This upregulation is accompanied by ele-
vated levels of total nitrogen, amino acids, proteins,  and free NH4+ (Yang 
et al. 2014b).

�Plant Growth Promotion

Phytohormone production is also characteristic of many endophytic fungi. They can 
produce auxin, cytokinin, and gibberellic acid, mainly with siderophore (Mishra 
et  al. 2016; Tochhawng et  al. 2019; Abdalla et  al. 2020). The endophytic fungi 
Aspergillus fumigatus TS1 and Fusarium proliferatum symbionts of Oxalis cornicu-
lata roots have been screened to have indole acetic acid production and siderophore 
production with an eclectic derivative of gibberellic acid, such as GA1, GA3, and 
GA7 (Bilal et  al. 2018). Endophytic fungus belongs to the genus Fusarium, 
Alternaria, Xylogone, and Didymella isolated from a medicinally important plant 
Sophora flavescens found to produce a significant concentration of IAA (indole 
acetic acid), and it has been proven with application and observation of primary root 
length in Arabidopsis plant (Turbat et al. 2020). Endophytic colonization in root 
cortical cells with Chaetomium globosum strain ND35 fostered the growth of 
cucumber plants with the production of hormones zeatin, gibberellic acid, indole-3 
acetic acid (IAA), and indole butyric acid (IBA) (Tian et al. 2022).

L. S. Saini et al.



9

4.2 � For Stress Management

A mutualistic relationship of plants with endophytic fungus has been observed to 
produce considerable bioactive compounds and metabolites that impart stress toler-
ance to the plant. Under abiotic stress conditions like drought and salt stress, these 
endophytes encountered to regulate the levels of antioxidant enzymes catalase 
(CAT), peroxidase (POD), ascorbic peroxidase (APX), glutathione (GSH), and 
superoxide dismutase (SOD) to mitigate stress-induced injury for the cell. The 
global loss due to plant disease is expected to be 16% (Fontana et al. 2021), and 
endophytic fungi have been documented to activate induced systemic resistance 
(ISR) or systemic acquired resistance (SAR) to fight against biotic stress. The 
banana (Musa spp.) crop faces a significant loss due to a fungal pathogen. Endophytic 
root colonization with Serendipita indica increases SOD, POD, CAT, and APX 
activities, thereby obtaining resistance to Fusarium oxysporum f. sp. cubense (Foc) 
(Cheng et al. 2020). Under extreme agroecosystems of salt and drought conditions, 
endophytic colonization with fungi belonging to genus Periconia macrospinosa, 
Neocamarosporium chichastianum, and N. goegapense obtained from Salt Lake 
plants alleviates the adverse effect of stress in Hordeum vulgare L. that reminisces 
with the improvement of biomass, shoot length, proline content, and antioxidant 
enzyme activity (Moghaddam et al. 2022). Endophytic fungi bares the prospect as a 
biocontrol agent through the secretion of several enzymes (cellulase, amylase, pro-
tease, and xylanase), hydrogen cyanide, and certain secondary metabolites; this will 
reduce the use of synthetic insecticides or pesticides (Yadav et al. 2010). Penicillium 
sp. NAUSF2 can solubilize hard phosphate sources in saline conditions and makes 
phosphate available to plants with endophytic colonization. It also reduces the dis-
ease severity index for bacterial leaf spots caused by Xanthomonas axonopodis pv. 
V. radiate in Vigna radiata with a significant increase in jasmonic acid and antioxi-
dant enzyme concentration (Patel et al. 2021).

5 � Production of Secondary Metabolites by Endophytic Fungi

Plant secondary metabolites are a class of substances that are not essential for basic 
bodily processes but are crucial for plants to adapt to their environment (Bourgaud 
et al. 2001). Plants generate low-molecular-weight antimicrobial molecules known 
as phytoalexins, which comprise a variety of chemicals such as flavonoids, terpe-
noids, etc. Several studies spotlight the production of phytoalexins by pathogens 
under numerous nonbiological stress stimuli, such as UV radiation, heavy metal 
ions, or salt stress (Abraham et al. 1999). Co-culturing with an endophytic elicitor 
is an additional strategy for enhancing plant secondary metabolites and boosting 
plant resistance (Li and Tao 2009).

1  Endophytic Fungi: Symbiotic Bioresource for Production of Plant Secondary…
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Endophytic fungi are categorized by biological processes that affect plant sys-
tems and the proliferation of endophytic fungi. Group I endophytic fungi move a 
genetic element into plant systems by vertical gene transfer, whereas group II endo-
phytes generally help to combat external stresses. Group III endophytic fungi 
acquire genes from other fungal species via horizontal gene transfer that produces 
bioactive chemicals. Depending on the plant’s state and age, endophytes present in 
plant systems create secondary metabolites. Endophytic fungi generate a variety of 
metabolites from different structural classes, such as terpenoids, steroids, aliphatic 
chemicals, flavonoids, alkaloids, quinines, phenols, coumarins, peptides, etc. 
(Calhoun et al. 1992). These metabolites are produced in different pathways like 
shikimate pathway (alkaloids, flavonoids) (Tohge et al. 2013; Peek and Christendat 
2015) and TCA cycle (isoprenoids, polyketide, terpenoids) (Meena et  al. 2019). 
Tejesvi et al. (2007) found that endophytic fungi of medicinal plants create second-
ary metabolites that can be researched for treating various ailments. All of these 
studies show that endophytic fungi are a chemical reservoir of novel compounds 
that have numerous applications in the pharmaceutical and agrochemical industries, 
including those for antimicrobial, antiviral, antifungal, anticancer, antiparasitic, 
antitubercular, antioxidant, immunomodulatory, and insecticidal properties 
(Fig. 1.2) (Calhoun et al. 1992).

In addition to providing novel sources for cytotoxic chemicals, including anti-
cancer and antibacterial compounds (Uzma et al. 2018; Radic and Strukelj 2012), 
endophytic fungi (EFs) also operate as biostimulants for the production of essential 
oils (Enshasy et al. 2019). This has led to a great deal of attention in the field. They 
might function as biological control agents (Poveda and Baptista 2021), encourage 
plant growth (Mehta et al. 2019), increase nutrient solubilization in the rhizosphere 

Fig. 1.2  Applications of different bioactive secondary metabolites compounds produced by endo-
phytic fungi
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of the plant (Poveda et al. 2021), or activate systemic plant defenses against biotic 
(Poveda et al. 2020) or abiotic (Cui et al. 2021) stresses.

5.1 � Symbiotic Interaction

Endophytes create various connections with their host plants throughout their 
growth inside the living tissues of the plant, including symbiotic, mutualistic, or 
parasitic ones. The host plant’s cells or intercellular space are home to fungal endo-
phytes, which appear to inflict no harm (Saikkonen et al. 1998). In mutualistic sym-
biosis, EF partners and host plants benefit from this advantageous symbiotic 
continuum and eventually succeed in evolution and the environment (Fig. 1.3) (Jia 
et al. 2016). The host plants’ metabolic processes are changed by EFs, which also 
increase drought and metal tolerance, growth, and nutrient uptake (Poveda et  al. 
2021; Cui et al. 2021).

However, EFs can also sporulate quickly and interact with host plants in a latent 
pathogenic or commensalism relationship, with or without appreciable positive 
impacts on plant physiology (Fig. 1.3) (Hiruma et al. 2016). They can also colonize 
and flourish asymptomatically inside healthy plant tissues (Saikkonen et al. 1998; 
Kogel et al. 2006). These endophytes can trigger host plant disease symptoms under 
stress (Schulz and Boyle 2005), such as those caused by Cordana, Deightoniella, 
Verticillium, Curvularia, Nigrospora, Periconiella, Colletotrichum, Guignardia, 
Phoma, Cladosporium, and Fusarium (Photita et  al. 2004; Cui et  al. 2021). 
Equilibrium between these organisms has been achieved during the long-term 
coevolution of endophytes and plants. Thus, the real endophyte will exist once a 
balance is reached between fungal activity and the plant response and is sustained 
throughout time (Gimenez et al. 2007).

Fig. 1.3  Interaction of endophytic fungi with host plant
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5.2 � In Stress Conditions

Plants create many different pathways, such as jasmonic acid, abscisic acid, and 
salicylic acid, due to abiotic stress stimuli and function as defense signaling chemi-
cals. As fungal endophytes may develop from plant pathogenic fungi, they may act 
as pathogens and cause plants to defend themselves. To promote plant development 
under stressful conditions, fungal endophytes produce siderophores, antibiotics, 
and phytohormones; mineralize nutrients; and perform other tasks (Yung et  al. 
2021). Siderophores increase iron intake and phosphate solubilization and plant 
uptake of these nutrients, promoting plant development and executing defense 
against many pathogens (Chowdappa et al. 2020). Endophytes also accelerate bio-
mass formation and nitrogen intake while biodegrading the trash (Idbella et  al. 
2019). Over 500 siderophores from different fungi have been identified (Chowdappa 
et  al. 2020). Aspergillus fumigatus, Aspergillus niger, Curvularia, Trichoderma, 
and other fungal endophytes have all been recently discovered to solubilize and 
mobilize phosphorus, potassium, and zinc salts, which in turn promote plant growth 
and high crop production (Mehta et al. 2019; Haro and Benito 2019).

Phytohormone gibberellins are secreted by Penicillium sp., which inhabits 
Suaeda japonica, as an example of the reduced amount of plant growth-promoting 
compounds the fungal endophytes release during stress. The fungi Penicillium sp., 
Ascomycete sp., Aspergillus sp., Verticillium sp., Cladosporium sp., and Fusarium 
sp., which live on Panax ginseng, also release triterpenoid, ginsenosides, and sapo-
nins, which improve stress resistance and root development (Sahoo et al. 2017). To 
increase the phytoimmobilization and availability of zinc, nitrogen, and phosphorus 
for the host, siderophores can biodegrade biomass and recycle it in the environment 
(Yung et al. 2021). They can also lower levels of the hormone ethylene by inhibiting 
1-aminocyclopropane-1-carboxylate deaminase (ACC) in plants. Hence by immo-
bilizing osmolytes and regulating membrane ion conductivity during stress, phyto-
immobilization by endophytes eventually aids in withstanding abiotic stressors 
by plants.

Endophytic fungi are also accountable for protecting crops from biotic stress in 
the wake of the chain of events (Singh et al. 2021a). The three main ways fungi 
defend themselves from phytopathogens are competition within the biological 
niche, antibiotics production, and mycoparasitism, which strengthens plant defenses 
and raises tolerance to virulence factors generated by pathogenic bacteria. The pri-
mary endophytes that begin to tolerate biotic stress while simultaneously enhancing 
the host plant’s development and yield components are Trichoderma species, 
Epicoccum species, Aspergillus species, Colletotrichum species, Gliocladium spe-
cies, Fusarium species, Petriella species, Piriformospora species, Epichloe species, 
etc.; mildews, rots, nematodes, blights, and leaf mosaics are just a few of the dis-
eases that P. indica can successfully treat (Ali et al. 2019). They ought to be consid-
ered as potential biocontrol agents as a result. According to Laihonen et al. (2022), 
Epichloe sp. controls herbivorous insects and offers its host plant biotic resilience. 
Host plants’ roots, twigs, and stems are colonized by the filamentous anamorphic 
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saprophytic fungus known as Trichoderma sp. due to its antibacterial, antifungal, 
and cytotoxic qualities; it can be utilized as a biocontrol agent.

6 � Biotic Potential of Secondary Metabolites Produced by 
Entophytic Fungi

Many secondary metabolites are produced by endophytic fungi, such as phenols, 
alkaloids, polyketides, quinones, steroids, enzymes, and peptides, which have a 
higher therapeutic value than primary metabolites (Xu et al. 2021). They can protect 
the plants from disease-causing invaders. This protection is made possible by pro-
ducing secondary metabolites, which act as a defense against the invasion of patho-
gens (Kaur et al. 2022). These secondary metabolites, such as bioactive compounds, 
are the primary source of the beneficial characteristics of endophytic fungi. 
Endophytes can stop the development of resistance mechanisms in plants, which 
can lead to disease. The production of these bioactive compounds also allows for the 
release of enzymes, antioxidants, and other beneficial compounds that help protect 
the plant from external threats (Wen et  al. 2022). Additionally, these secondary 
metabolites can be used for plant growth and development as well as for the 
improvement of crop yields. Endophytic fungi are crucial for protecting plants from 
disease and promoting growth, and their ability to produce secondary metabolites is 
key to their beneficial qualities (Manganyi and Ateba 2020).

Endophytic fungi are an essential source of secondary metabolites, including 
terpenoids, polyketides, shikimic acid derivatives, and terpenes. They are found in 
many plants and play an important role in the pharmaceutical and drug industries 
through the production of alcohol, antibiotics, enzymes, and other medicinal ingre-
dients (Singh et al. 2021b). These secondary metabolites can create new drugs and 
treatments and provide a valuable treasure for medical research. Endophytic fungi 
benefit both the environment and humans, since they are natural sources of these 
compounds, which can decrease the need for chemical synthesis. Additionally, they 
offer substitutes for chemical-based drugs, which can have a number of health haz-
ards. Endophytic fungi are also valuable in developing treatments for diseases such 
as cancer and Alzheimer’s, since they can produce compounds that can be used to 
fight these diseases. These compounds have potential applications in drug discovery 
and can be used to treat various disease conditions. Endophyte-derived natural prod-
ucts can also be used as pesticides, insecticides, and herbicides to control agricul-
tural pests (Zheng et al. 2021; Wen et al. 2022)

Endophytic fungi potentially produce novel bioactive compounds. Suitable 
media, growth parameters, and nutrient limitations should be explored to gain 
insight into fungal metabolism and discover novel pharmaceutical products; such 
compounds can be used to treat many diseases. Furthermore, endophytic fungi pro-
vide a sustainable source of novel bioactive compounds which is environmentally 
friendly (Adeleke and Babalola 2021).
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7 � Application of Secondary Metabolites Produced 
from Symbiotic Fungi

Endophytic fungi have recently gained tremendous attention due to their ability to 
produce novel bioactive compounds with a wide range of biological properties. 
These compounds have been used in a variety of applications, especially in the 
fields of medicine, pharmaceuticals, and agriculture. In addition to their bioactive 
compounds, endophytic fungi have also been found to possess many other benefi-
cial attributes, including the ability to increase a plant’s resistance to pathogens, 
reduce the amount of fertilizer needed, and promote crop yield (Manganyi and 
Ateba 2020). Moreover, endophytic fungi can act as a natural source of antibiotics, 
providing potential alternatives to traditional antibiotics. Endophytic fungi can also 
be used for bioremediation and to clean up contaminated soil and water. Overall, 
endophytic fungi have a wide range of potential applications, and their ability to 
produce novel bioactive compounds is an invaluable asset to many industries 
(Stępniewska and Kuźniar 2013).

The antimicrobial and antifungal properties of endophytic fungi metabolites 
have been especially noted, as these compounds have the potential to provide novel 
solutions to existing and emerging drug-resistant microbial and fungal infections 
(Deshmukh et  al. 2022). For instance, endophytic fungi metabolites have been 
proven to effectively inhibit the growth of several drug-resistant bacterial and fungal 
pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), 
vancomycin-resistant Enterococci (VRE), and Candida albicans. In addition, the 
antifungal activities of endophytic fungi metabolites have been demonstrated 
against several fungal species, such as Aspergillus flavus, Fusarium solani, and 
Rhizoctonia solani. Additionally, the antiprotozoal activity of endophytic fungi 
metabolites has been shown against several protozoan species, such as Trypanosoma 
cruzi, Toxoplasma gondii, and Leishmania. Moreover, the antiparasitic activity of 
endophytic fungi metabolites has been demonstrated against several parasitic spe-
cies, such as Plasmodium falciparum, Schistosoma mansoni, and Fasciola hepatica 
(Liu et al. 2019; Deshmukh et al. 2022).

Several studies have also reported the antioxidant, immunosuppressant, and anti-
cancer activities of endophytic fungi metabolites. Endophytic fungi metabolites 
have been demonstrated to possess antioxidant activities, which are beneficial in 
reducing oxidative stress and protecting against numerous diseases (Almustafa and 
Yehia 2023). In addition, the immunosuppressant activities of these metabolites 
have been demonstrated in several studies, as these compounds have been found to 
reduce inflammation and suppress the immune system. Finally, the anticancer activ-
ities of endophytic fungi metabolites have been demonstrated in several studies, as 
these compounds have been found to inhibit the growth of cancer cells (Table 1.2) 
(Sharma et al. 2020).
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Table 1.2  Examples of biotechnologically relevant fungal secondary metabolites

S. 
no.

Secondary 
metabolite Producing fungus Application

1 Cephalosporin C Acremonium 
chrysogenum

Resource for the production of 
Cephalosporins

2 Β-carotene Blakeslea trispora Pigment
3 Astaxanthin Phaffia rhodozyma Pigment
4 Griseofulvin Penicillium griseofulvum Antifungal agent
5 Cyclosporine A Tolypocladium inflatum Immunosuppressant
6 Gibberellic acid Gibberella fujikuroi Plant growth regulator
7 Penicillin G Penicillium rubens Antibiotic
8 Taxol Taxomyces andreanae Anticancer drug
9 Lovastatin Aspergillus terreus Cholesterol-lowering drug

8 � Challenges and Future Perspectives of Endophytic Fungi

To regulate and manipulate the biosynthesis process for increased production, we 
must elucidate the entire biosynthesis pathway, including all of the enzymes and 
associated genes. To solve the issues of poor yield and attenuation, the two main 
obstacles to commercial success, we need to learn more about the functions of host 
plant-endophyte interactions. For the successful industrial-scale synthesis of phar-
maceutically valuable compounds or leads, scientists working in this area and the 
pharmacological business must collaborate. The pharmaceutical sector must priori-
tize the endophyte-dependent production of natural plant chemicals. For the phar-
maceutical and healthcare sectors, as well as for a “green drug revolution,” the 
concept of endophyte-dependent improved in vivo and in vitro production of plant-
derived useful metabolites is crucial.

9 � Conclusion

In conclusion, endophytic fungi represent a fascinating group of microorganisms 
that reside within the tissues of plants without causing any apparent harm. These 
fungi have coevolved with their host plants, establishing mutualistic relationships 
that can profoundly affect the fungi and the plants. Over the years, extensive research 
has revealed various applications for endophytic fungi in various fields. Moreover, 
endophytic fungi have demonstrated remarkable potential as a source of bioactive 
compounds with pharmaceutical and industrial importance. Many endophytic fungi 
produce secondary metabolites with antimicrobial, antiviral, anticancer, and anti-
oxidant properties. These bioactive compounds promise to develop new drugs, 
nutraceuticals, and natural products for various applications, including medicine, 
cosmetics, and agriculture.
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