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Abstract. Massive advancements in Generative Artificial Intelligence
in the recent years, have introduced hyper-realistic fake multimedia con-
tent. Where such technologies have become a boon to industries such as
entertainment and gaming, malicious uses of the same in disseminating
fabricated information eventually have invited serious social perils. Gen-
erative Adversarial Network (GAN) generated images, especially non-
existent human facial images, lately have widely been used to dissemi-
nate propaganda and fake news in Online Social Networks (OSNs), by
creating fake OSN profiles. Being visually indistinguishable from authen-
tic images, GAN-generated image detection has become a massive chal-
lenge to the forensic community. Even though countermeasure solutions
based on various Machine Learning (ML) and Deep Learning (DL) tech-
niques have been proposed recently, most of their performance drops
significantly for OSN-compressed images. Also, DL solutions based on
Convolutional Neural Networks (CNN) tend to be highly complex and
time-consuming for training.

This work proposes a solution to these problems by introducing STN-
Net, a CNN classifier with an extremely reduced set of parameters, which
adopts a carefully crafted minimal image feature set, computed based on
Sine Transformed Noise (STN). Despite having a much-reduced feature
set compared to other State-of-the-Art (SOTA) CNN-based solutions,
our model achieves very high detection accuracy (average ≥ 99%). It
also achieves promising detection performance on post-processed images,
which mimic real-world OSN contexts.

1 Introduction

Although the origins of image forgery and manipulation can be traced in history
as far back as the 1840s [19], contemporary technological advancements have
eased forgery creation to a great extent. The invention of Generative Adversar-
ial Networks (GANs) in 2014 [9] is considered one of the milestones in artificial
image generation. Eventually, other GAN architectures like PGGAN [13], Style-
GAN [15], StyleGAN2 [16], StyleGAN3 [14] etc. have further advanced the capa-
bilities of GANs in generating hyper-realistic and high-quality images. Through
easily accessible interfaces1, anyone can generate synthetic images in a matter of
1 https://thispersondoesnotexist.com/.
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seconds. Whereas such technologies have brought immense progress in various
fields like the entertainment and gaming industries, illicit uses of the same have
also raised concerns regarding the authenticity and trustworthiness of digital
content2. Moreover, the prevalence of fake images has become a significant issue
due to the ever-increasing presence of Online Social Networks (OSNs) in our
daily lives. Illicit users often utilize OSN to spread disinformation and propa-
ganda, potentially harming individuals and society as a whole3,4.

While earlier AI-generated face detection was highly dependent on visual
inconsistency, like different eye colours in both eyes, asymmetric face shapes,
irregular pupil shapes, etc. [5], with the technological advancements of Style-
GAN, such artifacts have been largely omitted. A recent study [21] found that
regular human observers find AI-generated faces more trustworthy than real
faces. Having human accuracy of identifying synthetic faces around ≈50%–60%
makes them highly vulnerable to trusting fake content online. Hence, to identify
GAN-generated images, automated detectors that rely on apparently ‘hidden’
characteristics of visually indistinguishable hyper-realistic GAN-generated syn-
thetic images are of paramount need in the multimedia forensics community.

A few successful detectors have already been proposed in the literature.
Most of them almost accurately (average detection accuracy as high as 99%)

detect synthetic faces in the lab environment, where the training and testing
dataset is pre-known [4,7]. However, deploying these detectors in real-world sce-
narios remain challenging, as they often face performance degradation for OSN-
circulated images. It happens due to the fact that images circulated through
OSNs go through various compression algorithms and transformations, which
can alter their statistical features and make them more difficult to detect using
traditional methods. The specific operations performed by any OSN on images
are usually unknown, posing a challenge for designing detectors that can suc-
cessfully handle various image modifications encountered in real-life situations.
A few recent works [22,23,31] have addressed this issue and studied the perfor-
mance of their solutions on post-processed images. They use complex feature
sets with deep CNN-based classifiers, which makes them hard to implement in
resource-constrained platforms like edge devices. In this work, we formulate the
synthetic image detection problem as a binary classification problem between
real and fake faces. We propose a solution based on a hand-crafted feature set
followed by a well-designed CNN. Our solution achieves a high average accu-
racy of 99.53% for images from our test set. We evaluate the performance of our
solution on post-processed images to understand its real-world usability. Con-
sisting of a minimal feature set compared to SOTA CNN-based solutions, our
solution performs well in the context of post-processed images. Specifically, the
main contributions of this paper are:

2 https://www.npr.org/2022/12/15/1143114122/ai-generated-fake-faces-have-
become-a-hallmark-of-online-influence-operations.

3 https://edition.cnn.com/2020/02/28/tech/fake-twitter-candidate-2020/index.html.
4 https://edition.cnn.com/2020/02/20/tech/fake-faces-deepfake/index.html.
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Fig. 1. Example of Real and GAN-generated images from dataset (https://github.
com/NVlabs/ffhq-dataset), (https://github.com/NVlabs/stylegan2), (https://github.
com/NVlabs/stylegan3)

– We introduce a novel feature set Sine Transformed Noise (STN) that
enhances differentiating features between real and synthetic images. Our fea-
ture set, STN is of size m×n×1 for an RGB image of size m×n×3. STN is
the minimal-sized feature map compared to existing feature sets for detecting
fake images using any CNN-based network.

– We introduce STN-Net, a CNN-based detector utilising STN feature set and
augmented STN feature set, which uses very few parameters compared to
existing CNN-based detectors while maintaining high detection accuracy. We
compare STN-Net with several well-known CNN detectors in the field.

– Proposed STN-Net is tested on various post-processing conditions such as
Median filtering, Gaussian Noise addition, Contrast Limited Adaptive His-
togram Equalization (CLAHE), Average Blurring, Gamma Correction and
Resizing with different parameters, as well as JPEG compression. Our exten-
sive experimental results prove the effectiveness of the proposed network in
the presence of such post-processing operations that images undergo in real-
world scenarios.

The rest of this paper is organised as follows. Section 2 reviews the relevant
related works in the field of GAN image detection. Section 3 presents the pro-
posed STN-Net approach, including the generation of the STN feature set and
the architecture of the proposed CNN-based detector. Section 4 presents the
experimental setup and evaluation results, comparing STN-Net with other state-
of-the-art detectors, while Sect. 5 concludes the paper and provides directions for
future research in the field.

2 Related Works

While the primary GAN model [9] was able to generate synthetic images that
were identifiable with bare eyes, the advanced GAN model StyleGAN and their
variants [14–16] generated images have become visually hardly distinguishable

https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan3
https://github.com/NVlabs/stylegan3
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from authentic images. The existing community of Digital Image Forensics
started synthetic image detection. GAN image detection is considered a binary
classification problem, similar to binary detection of forged images [28]. Having
a strong similarity with traditional image forgery detection, most of the earlier
solutions consisted of steganalysis-based features like Co-occurrence matrix [20],
SRM [17] etc. Later, semantic inconsistency-related features like Corneal spec-
ular highlight [18], Landmark locations [32], Irregular pupil shape [11] etc. were
explored to identify GAN-faces. Once explored, such artefacts could be used by
regular users in their daily lives to some extent to identify fakes. However, with
improvements in GAN architecture, such visual inconsistency-based artefacts
have been reduced to a great extent, making synthetic images hard to detect.

Another approach to GAN-image detection is purely deep neural network-
based. Automatically learned features by DL-based classifiers [4] have been
proven to be very successful in detecting synthetic faces. However, a major hurdle
for such classifiers is the architectural setting of GAN models. GANs simultane-
ously use a generator and a discriminator network to learn the data distribution
of real datasets and mimic them to generate new data. If a purely DL-based GAN
image detector is used as a discriminator inside GAN architecture, eventually,
the generator module of GAN will be trained to fool the discriminator, making
the DL-based detector useless. As a result, using hand-crafted features in con-
junction with deep neural networks (DNN) has gained traction as a prevalent
solution method in contemporary contexts [3,22,23]. Spatial domain features
are primarily used in such solutions. From a different perspective, symmetries
in GAN-faces in the frequency domain have also been explored [7,30].

However, even though progress in GAN image detection is gaining momen-
tum lately, the performance of existing GAN-image detectors in real-world sce-
narios remains a big challenge. Marra et al. [17] first explored the problem of
performance degradation of synthetic image detectors while tested on OSN-like
compressed images. Recently, Chen et al. [3] proposed the inclusion of two mod-
ules from multiple colour domains, named block attention module and a multi-
layer feature aggregation module, into the Xception model to increase robust-
ness against such post-processing degradation. Lately, another problem domain
related to GAN-image detection has been explored: The generalisation problem
[6]. In real-world scenarios, guessing the exact source model of any GAN image is
difficult. Hence, any practical detector should be capable of detecting fake faces
even though the training and test datasets mismatch. The work [10] contains a
performance comparison between existing solutions.

Recently, the study of anti-forensics in the context of detecting GAN-
generated images has gained significance. Carlini et al. [1] explored the anti-
forensics aspect of GAN-generated image detectors. They explored five white-
box and black-box attack scenarios that severely degraded the performance of
GAN-image detection. As our scope for this work is to propose a GAN-image
detector that performs well in OSN-context, we consider only common OSN-
specific perturbations, as discussed in earlier similar studies [22,23]. The study
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of the detector’s robustness against additional white-box and black-box attacks
is reserved for future research endeavours.

We can infer from the high detection performance of existing solutions that
detecting GAN faces is not a big hurdle these days while training and testing
dataset matches. The bigger problem remains maintaining the detection perfor-
mance while test images have different statistical characteristics due to unknown
manipulation. Hence, we aim to propose a GAN-generated face detection solution
robust to image manipulations. In that direction, we design a reliable GAN-face
detector combining hand-crafted features with a DNN-based classifier, imple-
mentable in real-world scenarios.

3 Proposed Methodology

As shown in Fig. 2, our proposed solution consists of two major blocks of oper-
ations: Preprocessing and Feature Extraction followed by Deep-Learning-based
Classifier.

Fig. 2. Proposed Framework

3.1 Preprocessing

Given an input RGB image I(x, y), which represents the intensity of the image at
coordinates x and y in the spatial domain, we first convert it to grayscale using
the Eq. 1. The grayscale value at a pixel location (x, y) is denoted as Igray(x, y),
and it is calculated as a weighted sum of the red, green, and blue channels.

Igray(x, y) = 0.2989 × R(x, y) + 0.5870 × G(x, y) + 0.1140 × B(x, y) (1)

where R(x, y), G(x, y), and B(x, y) are the red, green, and blue intensity values
of the pixel at coordinates (x, y), respectively.

Although a few earlier works [2,8,20,22] have explored strong discriminat-
ing features in colour-domain statistics, such methods usually have large fea-
ture sizes. We convert a three-channel RGB image to a one-channel grayscale
image based on the finding in Fig. 3, which we explain below. Here, we calculate
pixel-wise mean values from 400 real images (Fig. 3a), 400 StyleGAN2 generated
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images (Fig. 3b) and 400 StyleGAN3 generated images (Fig. 3c). As all synthe-
sised images use the same FFHQ dataset for generating synthetic images, it
is trivial that generated photos from both generative architectures look simi-
lar to originals, as depicted in Fig. 1. However, as shown in Fig. 3, there are
visible differences between the three mean images. GAN-generated images pos-
sess much more structure than real ones, especially the mean of StyleGAN2
images, which have a visible common structure. This hints towards the presence
of model-specific similar high-frequency components in each type of GAN, which
are different from other GAN models and real images. Hence, it is shown that
even single-channel grayscale images possess visually discriminating features.

Fig. 3. Pixel-wise average of grayscale images

In light of the insights gathered from this discourse, we focus on identifying
robust feature representations with high-frequency content in grayscale images
generated by GANs. Laplacian of Gaussian (LoG) is a well-known method in
image processing for high-frequency image feature extraction in the context of
faces [24,29].

Hereby, we employ Gaussian Blur with kernel size 3 × 3 and 0 standard
deviation (σ) followed by Laplacian kernel to extract high-frequency information.
Gaussian kernel, as shown in Eq. 2, is computed using the Gaussian distribution
formula. Smoothened image Ismoothed(x, y) is generated by convolving this kernel
with Igray(x, y), using Eq. 3, where i and j are the indices of the kernel’s rows
and columns, respectively. Here Gaussian blur is used to mitigate the influence
of random high-frequency noise on images.

kernel(i, j) =
1

2πσ2
exp

(
− i2 + j2

2σ2

)
(2)

Ismoothed(x, y) =
1∑

i=−1

1∑
j=−1

Igray(x + i, y + j) × kernel(i, j) (3)

On smoothened image Ismoothed(x, y), the Laplacian operator is applied to
compute the Laplacian Response, which denotes the second order derivative of
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the image intensity, for the spatial coordinates x and y, hence obtaining rate of
intensity change.

Mathematically, the Laplacian kernel (L) is defined as:

L =

⎡
⎣0 1 0

1 −4 1
0 1 0

⎤
⎦

The Laplacian response (Ilaplacian(x, y)) at a pixel location (x, y) is calculated
by convolving the smoothened image Ismoothed(x, y) with the Laplacian kernel
using Eq. 4.

Ilaplacian(x, y) =
1∑

i=−1

1∑
j=−1

Ismoothed(x + i, y + j) × L(i, j) (4)

Fig. 4. Visualisation of STN-Feature evolution: (a) Input RGB Image; (b) Grayscaled
Image; (c) Gaussian Blurred Image; (d) Laplacian Transformed Image; (f) Sine Trans-
formed Feature

3.2 Sine-Transformed Noise

Primarily, sine transformations are used in the frequency domain accompanied
by Fourier Transform. However, we use sine transformation on direct pixel values
obtained by Ilaplacian(x, y) using Eq. 5. As shown in Fig. 4, Sine transformation
preserves texture and high-frequency information at the pixel level. After exten-
sive experiments with different frequencies, we found the best performance with
frequency ten. We have shown a visual representation of feature ISTN (x, y) in
Fig. 5 for varying frequencies from 1 to 50.

ISTN (x, y) = sin
(

2π × frequency × Ilaplacian(x, y)
255.0

)
(5)

We utilize the normalized form of the ISTN (x, y) as feature, as shown in Eq. 6.

ISTNNormalized
(x, y) =

ISTN (x, y) − min(ISTN (x, y))
max(ISTN (x, y)) − min(ISTN (x, y))

× 255.0 (6)

Given an RGB image, the evolution of feature ISTN (x, y) is pictorially shown
in Fig. 4.
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It is evident from the visualisation that for frequency 1, the feature set visu-
ally depicts merely high-frequency edge information. As the frequency increases
to 10, the features get much more accentuated.

Fig. 5. Visualisation of STN-feature for various frequency values

3.3 Classifier

Convolutional Neural Networks (CNN) are conventionally used for image clas-
sification for their efficient capability of extracting features hierarchically. As
shown in Fig. 6, our proposed CNN-based classifier consists of five convolution
blocks. Each block consists of a Convolutional Layer with 3 × 3 sized kernel,
followed by a Batch Normalization layer and Max Pooling Layer with window
size 2×2. The batch Normalization layer is used to increase stability in training,
whereas the Max Pooling Layer is used to downsample the feature size after each
convolution for computational efficiency.

The number of filters in the convolutional layer varies in each block. Block 1
has 8 filters, Block 2 has 16 filters, Block 3 has 32 filters, Block 4 has 64 filters,
and Block 5 has 128 filters. It is because, with deeper levels, the network needs
to capture more complex and abstract features, which require a larger number
of filters. In each block, ‘ReLU’ is used as an activation function to induce
non-linearity. The last convolution block is followed by a flattening layer, which
reshapes the high-dimensional feature maps into a one-dimensional vector, then
connected to a fully connected (dense) layer with 64 neurons. The final dense
layer consists of a single neuron, representing the output layer of the classifier
with the sigmoid activation function.
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Fig. 6. STN-Net Architecture

4 Experimental Results and Analysis

We study the detection performance of our solutions on two versions of
StyleGAN-generated images. StyleGAN2-generated images are widely available
throughout the OSN and easily accessible to ordinary people, whereas Style-
GAN3 is the improved version of StyleGAN2, with exceptionally good hyper-
photorealism. Detection of both StyleGAN model-generated images is essential
in identifying manipulated or fake images on online social networks in current
time.

4.1 Solution Models

We experiment with our proposed feature set and CNN in three different settings:

– In the Baseline configuration, our proposed CNN model is utilized for binary
classification without preprocessing. In this case, the input provided to our
model consists of only grayscaled image Igray(x, y). The performance of this
model serves as an indicator of the effectiveness and quality of our CNN
framework. It is further mentioned as ‘Only CNN’ setting.

– In the second case, we examine the influence of various preprocessing stages:
Gaussian Blurring (GB), Laplacian Transformation (LT) and Sine Trans-
formation (ST) separately. In all cases, the classifier is fixed. It is further
mentioned as ‘Feature + CNN’ setting.

• GB + ST: Sine Transformation is directly applied on Gaussian Blur oper-
ated grayscaled image.

• LT + ST: The input grayscaled image undergoes two transformations:
the Laplacian Transformation and the Sine Transformation.

• GB + LT: The grayscaled image undergoes Gaussian blur and subsequent
Laplacian transformation without any sine transformation applied.

• GB + LT + ST: Input image in preprocessed with all above-discussed
operations. Along with CNN, this model is STN-Net (Single Layer).
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– In the last case, input to CNN consists of two layers of GB + LT + ST feature
set stacked together. While all other preprocessing parameters are kept the
same, the kernel for the Gaussian Blur of the second layer is set to 5. It is
further mentioned as ‘Augmented Feature + CNN’ setting. We call this model
STN-Net (Dual Layer).

4.2 Dataset

– For StyleGAN2 face detection, we select 20,000 random real-face images from
the FFHQ dataset [15] and 20,000 random synthetic face images from the
StyleGAN2 dataset [16]. We divide these 40,000 images: 28,000 for training,
8,000 for validation and 4,000 for testing. We consider image size 256 × 256
for all experiments.

– For StyleGAN3 face detection, we select 1,592 StyleGAN3 face images gener-
ated from the FFHQ dataset, provided by official dataset [14], and we collect
the same number of images from the FFHQ dataset as real face images. We
further divide these images: 2,228 for training, 638 for validation and 318 for
testing. We use 256 × 256 sized images in all experiments.

4.3 Settings

We use the ‘Adam’ optimizer and ‘Binary Cross-Entropy’ loss function for all
experiments. We train our classifier for 40 epochs for each case of StyleGAN2
and 100 epochs for StyleGAN3 detector. We use a Learning Rate (LR) scheduler
for efficient convergence. For the first ten epochs, LR is set to 1 × 10−3; for the
subsequent ten epochs, LR is multiplied by 1×10−1; while for the last 20 epochs,
LR is multiplied by 1 × 10−3.

4.4 Performance Evaluation

For detection performance evaluation, we consider five metrics: Accuracy, Area
Under the ROC Curve (AUC) Score, Precision, Recall and F-1 Score. Accuracy,
the most common metric for classification tasks, is the ratio of correctly pre-
dicted instances to the total number of instances in the test dataset. Precision
is the ratio of correctly predicted positive instances, called true positives to the
total number of predicted positive instances (sum of true positives and false
positives). Recall, also known as Sensitivity or True Positive Rate, is the ratio
of correctly predicted positive instances (true positives) to the total number of
actual positive instances (sum of true positives and false negatives). The ROC
curve plots the True Positive Rate (Recall) against the False Positive Rate. AUC
measures the area under this curve, providing a single value that represents the
overall discriminative power of a model. An AUC of 1 indicates perfect sepa-
ration between the classes, while an AUC of 0.5 indicates random guessing. In
the context of our problem of detecting real and synthetic images, as discussed
earlier, we utilize a balanced dataset for training and testing our models. Hence,
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accuracy is considered a suitable metric. However, as our main focus is not to
misclassify any fake images as real, ‘Recall’ is chosen as a metric. Higher precision
signifies fewer ‘fake’ predictions that are ‘real’.

As shown in Table 1, our baseline model, with only grayscaled image as input,
performs quite well in discriminating StyleGAN2 images from Real images with
an average accuracy greater than 91%, while performing exceptionally well in

Table 1. Detection Performances

Detector

type
GB LT ST

StyleGAN2 StyleGAN3

Accuracy AUC Precision Recall F1-Score Accuracy AUC Precision Recall F1-Score

Baseline

(Gray)
- - - 91.79 97.51 94.04 89.49 91.47 80.90 88.70 75.64 89.96 81.77

1-layer

(Gray)

Y - Y 98.19 99.80 98.11 98.31 98.14 80.80 90.90 77.78 86.21 81.31

- Y Y 89.89 95.86 92.23 85.34 88.33 80.77 86.66 80.25 81.63 80.54

Y Y - 98.39 99.88 98.97 97.76 98.26 81.38 84.53 77.15 89.23 82.37

Y Y Y 99.38 99.96 99.45 99.08 99.24 84.21 92.34 82.14 87.35 84.28

2-layer

(Augmented)
Y Y Y 99.53 99.97 99.55 99.28 99.43 83.49 93.17 80.18 88.71 83.85

Fig. 7. ROC curve for Single Layer and Dual Layer STN-Net: (a) and (b) for Style-
GAN2 dataset, (c) and (d) for StyleGAN3 dataset
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terms of Precision and Recall for StyleGAN3 images. As discussed earlier, this
result proves the strength of our designed CNN.

It is very evident from Table 1 that models with Gaussian Blur transfor-
mation bring significant performance enhancement to CNN model. While Sine
transformation is constant in the first two cases of ‘Feature + CNN’ setting, only
LT transformed models face sharp performance degradation, compared with only
GB models for both StyleGAN2 and StyleGAN3. We may take the insight that
LT alone enhances high-frequency components, many of which may be unneces-
sary, while GB smoothens them, making CNN learn more generalised features.
GB + LT performs slightly better than GB + ST in most of the metrics for
StyleGAN2 images. For StyleGAN3 we perform similar tests. Even though GB
+ LT performed well together compared to their single transformation perfor-
mance, GB + LT + ST outperformed them, proving the effectiveness of the pro-
posed Sine Transformation on synthetic image detection. For StyleGAN3 image
detection, this feature pipeline achieves the best performance with an average
accuracy of 84.21%.

Following the earlier result proving the effectiveness of GB transformation, in
‘Augmented Feature + CNN’ case, we use two layers of GB + LT + ST feature
as discussed earlier. It achieves the best performance for all metrics with 99.53%
average accuracy for StyleGAN2 case. For StyleGAN3, two layers of GB + LT
+ ST feature achieve best AUC score.

We show ROC curve for STN-Net for both StyleGAN2 and StyleGAN3
datasets in Fig. 7.

4.5 Performance Comparison with Other Solutions

Table 2 compares detection performance for StyleGAN2 images with other State-
of-the-art (SOTA) solutions. Our best model performs better than most SOTA
models, only slightly less than the solution proposed by Qiao et al. [23]. How-
ever, our model attains such performance with the minimum size feature set
of 1 grayscale channel compared with other solutions. While their solution [23]
utilizes colour domain information with ten channels through a CNN, other
works [20,22] utilize co-occurrence and cross co-occurrence metrics with three
channels and six channels features respectively. Chen et al. [3] fuse information
from multiple colour domains with a six channels-sized feature set. Frank et
al. [7] use frequency domain artefacts.

Table 2. Performance comparison with SOTA

Metric Ours (Best

Model)

Qiao [23] Nowroozi [22] Nataraj [20] Chen [3] Frank [7]

Accuracy (%) 99.53 99.80 99.33 96.11 97.70 98.58

As shown in Fig. 8, we compare the performance of our two models, STN-Net
(Single-Layer) and STN-Net (Dual-Layer) with other available transfer-learning-
based models: XceptionNet [4], ResNet50 [12], VGG-16 [25], InceptionV3 [26]
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Fig. 8. Comparison with other CNNs

and EfficientNetB0 [27] for StyleGAN2 image detection. In all these cases, we
import pre-trained models from the Keras library. We use weights from ‘ima-
genet’. For all these models, on top of base pre-trained models, we add a Global
Average Pooling Layer followed by a Fully Connected Layer with 256 neurons.
The final layer of the model is added, consisting of a single neuron, which is
activated using the sigmoid activation function. Raw RGB image is provided as
input in every case. All models are compiled using the Adam optimizer and the
binary cross-entropy loss function.

In Fig. 8, Accuracy is multiplied by 0.1 for better visibility in the chart.
Parameters are shown in millions, and the Average time to train per epoch is
shown in minutes. Among transfer learning models, ResNet50 performs best with
the detection accuracy of 98.33%, having the largest number of parameters, 24.11
million and three channels of feature space. Our model having ≈1.61% parame-
ters of ResNet50, with grayscale images, achieves 99.53% detection accuracy.

As shown in Table 3, we further compare the computational complexity of
the above-mentioned transfer learning-based models with our proposed solutions
regarding Floating point operations (FLOPs) and Average Latency. We have
calculated the Average Latency as the average inference time for 500 test samples
in all cases. Further, for both our solutions, we have calculated latency with the
preprocessing steps included, i.e., the calculation of the STN feature. It is evident
from both Fig. 8 and Table 3 that our solutions obtain excellent performance
despite having the lowest number of model parameters, training time, FLOPs
and output latency.
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Table 3. Computational Complexity Comparison with other CNN models

Model FLOPs (Billion) Latency
(Only DL model)
[Millisecond]

Latency (With
Preprocessing)
[Millisecond]

STN-Net (Single Layer) 0.06 31.30 32.87

STN-Net (Dual Layer) 0.07 33.36 34.46

Xception 5.95 35.11 –

VGG-16 20.05 36.48 –

InceptionV3 3.85 36.95 –

EfficientNetB0 0.51 60.88 –

Resnet50 5.04 87.74 –

Table 4. Detection performance on post-processed images

Operations Parameters Baseline

Model

STN-Net Dual layer

STN-Net

CSC-Net

[23]

Co-Net

[20]

CC-Net

[22]

Median Filter 3 × 3 91.62 96.92 98.78 99.35 81.48 85.13

5 × 5 91.12 63.77 78.92 93.80 75.98 83.65

Gaussian

Noise

1.0 91.82 99.21 99.38 94.43 76.35 93.68

2.0 91.84 99.28 99.33 74.25 76.73 96.80

CLAHE 3 × 3 85.54 97.10 98.99 94.70 51.43 50.32

Average

Blurring

3 × 3 91.37 86.11 94.84 97.30 93.68 86.90

5 × 5 90.40 50.12 53.77 82.68 88.23 76.63

Gamma

Correction

0.8 90.10 99.28 99.26 95.08 82.28 83.15

0.9 91.69 99.23 99.45 98.00 87.23 90.98

1.2 89.56 99.40 99.36 96.90 87.20 85.53

Resizing 0.5 91.42 72.40 86.31 79.80 57.93 92.47

Average – 90.58 87.53 91.67 91.48 78.04 84.11

4.6 Performance in the Context of OSN

As previously discussed, the exact operations of OSN platforms on images are
unknown but must be investigated further by the research community to develop
any solution for fake image detection in practical cases. Hence, to check the
robustness of our solutions, we apply common post-processing operations like
Median filtering, Gaussian Noise addition, Contrast Limited Adaptive Histogram
Equalization (CLAHE), Average Blurring, Gamma Correction and Resizing with
different parameters on StyleGAN2 dataset as shown in Table 4. The best per-
formance of each operation is marked in bold, and the second-best performance
is underlined. We examine performances in terms of detection accuracy for our
three models: Baseline (Only CNN), STN-Net (Single Layer) and STN-Net (Dual
Layer). Our model STN-Net (Dual Layer) achieves the best average accuracy of
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91.67%, closely followed by CSC-Net [23]. Both versions of STN-Net perform
exceptionally well on Gaussian noise-added images. While for Gaussian noise
with a standard deviation of 2.0, Single layer STN has a performance drop of
0.10%, Dual-Layer STN has 0.20% performance drops. Interestingly, our base-
line model has a much smaller performance drop than others. Detailed results
are shown in Table 4.

4.7 Performance in the Context of JPEG Compression

As discussed earlier, even though mostly GAN-generated images are by default
in PNG format, they are commonly converted into JPEG format while uploaded
or downloaded to or from OSNs. Unlike lossless PNG images, JPEG images use
lossy compression, which enables discarding of some image data to reduce file
size. This can lead to a loss of image quality and a change in the statistical
properties of images.

Table 5. Performance on JPEG Compression

Quality
Factor

Base
Model

STN-Net Dual-Layer
STN-Net

CSC-Net
[23]

Cross
Co-Net [22]

Co-Net [20]

90 91.38 99.33 99.33 97.53 94.50 95.58

80 91.37 98.71 99.08 97.44 88.66 94.93

70 91.29 97.99 98.69 97.23 83.50 94.03

60 91.34 96.90 98.26 96.83 94.00 94.65

50 91.22 96.88 97.89 96.51 80.05 96.66

CNN models learn abstract information from provided training data. Most
CNN-based GAN-image detectors face performance drop issues when training
data is from PNG images and testing data from JPEG images. We check the
performance of our models on JPEG quality factors: 90, 80, 70, 60 and 50 and
compare their performance with SOTA solutions. As shown in Table 5, the Dual
layer variant of our proposed STN model performs best for all mentioned JPEG
compression levels.

4.8 Generalization Performance

We further explore the generalization capability of our proposed solutions: STN-
Net with both single-layer and dual-layer variations. We show results using ROC
curve, as shown in Fig. 9. Firstly, we test StyleGAN3-generated faces on models
trained on the StyleGAN2 dataset (Fig. 9a, Fig. 9b). Next, we test StyleGAN2-
generated faces on models trained on StyleGAN3 dataset (Fig. 9c, Fig. 9d). As
shown in Fig. 9, while the training set is from StyleGAN3, in both single-layer and
dual-layer versions, detection performance for StyleGAN2 images is satisfactory
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Fig. 9. Generalization Performance: (a) and (b) trained on StyleGAN2 while tested on
StyleGAN3, (c) and (d) trained on StyleGAN3 while tested on StyleGAN2

with AUC score ≥ 80%. While the training set is from StyleGAN2, in both
single-layer and dual-layer versions, the detection performance for StyleGAN3
images is worse than the previous case. However, it still performs better than
random guesses.

We may infer that StyleGAN3-trained models learn more generalised fea-
tures than StyleGAN2-trained models. StyleGAN3 is an improved version of
StyleGAN2. Hence, it is possible that models that learn statistical features of
StyleGAN3 images naturally cover many of StyleGAN2 features.

5 Concluding Remarks

In this work, we propose a solution to identify authentic and GAN-generated
face images in the context of OSNs. Hence, we test our proposed detector’s per-
formance against standard perturbation in OSN. However, we have not included
the study of other sophisticated black-box and white-box attacks [1] like adaptive
attacks in this work. We wish to include such studies in future work.

In this work, we introduce a feature Sine Transformed Noise (STN) that
is highly capable of discriminating between real and GAN images. Accompa-
nied by a well-designed deep neural network, STN is capable of performing at
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par with SOTA solutions in ideal scenarios and achieves prominent performance
for post-processed and compressed images. Compared with other SOTA solu-
tions, STN-Net uses lightweight CNN with fewer parameters, lesser computa-
tional complexity and high inference time. All these advantages make STN-Net
very usable in real-world scenarios.
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