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Abstract. Deep learning model training on cloud platforms typically
require users to upload raw input data. However, uploading raw image
data to cloud service providers raises serious privacy concerns. To
address this problem, we propose a Cycle-Gan based-image transfor-
mation scheme that leverages convolutional autoencoder image encod-
ing for domain translation. Our Cycle-GAN based image transforma-
tion scheme enhances privacy of deep neural networks while preserving
model utility. In this paper, we demonstrate that our Cycle-GAN based
image transformation scheme protects visual feature information of sen-
sitive image data. We evaluate the effectiveness of our proposed method
to preserve model utility using classification accuracy and robustness
against reconstruction attacks using structural similarity index measure
(SSIM). The classification accuracy of encoded images using our pro-
posed method is 92.48, 91.05, 90.37 for Chest X-ray, Dermoscopy and
OCT datasets, respectively. The SSIM scores for reconstruction attacks
where the attacker only has access to the encoded data and correspond-
ing labels are 0.1002, 0.0995 and 0.0329 for Chest X-ray, Dermoscopy
and OCT datasets, respectively. Our results demonstrate that the Cycle
GAN based encoding scheme effectively enhance privacy while preserving
model utility.

Keywords: Cycle-GAN · Deep Neural Networks · Convolutional
Autoencoder · Privacy · Utility

1 Introduction

The amount of data generated by worldwide data sources has increased expo-
nentially. Nevertheless, the utilization of big data is suboptimal without proper
computing resources to extract patterns and vital information from zetabytes of
data. Consequently, many businesses have switched to cloud service providers
for computationally expensive tasks using large and complex datasets [1,2]. As a
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Fig. 1. Cycle-GAN based image transformation for privacy enhanced DNNs. Where X
is the data owner’s original dataset and {Z, Y } are the data owner’s encoded images
and corresponding class labels. The encoded images and labels are uploaded to MLaaS
provider for DNN model development and deployment while keeping the original image
data private.

result, there has been a surge in the demand for cloud services. Cloud services are
often categorized into Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) and IaaS offers infrastructure such as
servers, virtual machines (VMs), storage, networks, operating systems on a pay-
as-you-go basis. PaaS offers on-demand environments for developing, testing,
delivering, and managing software applications. SaaS offers on-demand software
applications over the internet which are typically on a subscription basis.

Additionally, machine learning-as-a-service (MLaaS) includes a variety of
machine learning tools offered by cloud service providers such as Amazon, Google
and Microsoft. MLaaS enables efficient model development and deployment at
low cost. However, the adoption of MLaaS raises several data privacy concerns.
This is especially true with sensitive image data e.g., suppose that a data owner
uploads sensitive image data to an MLaaS provider for the purpose of developing
a deep learning model but a curious MLaaS developer may also want to learn
some additional sensitive information that could lead to identity theft, financial
fraud, disease misdiagnosis [3–5]. Therefore, sensitive image data privacy plays
an essential role in the deep learning life cycle.

The deep learning life cycle includes a training phase for model development
and a testing phase for model deployment. Deep learning is susceptible to several
attack methods during training and testing phase such as data poisoning attacks,
model extraction attacks, model inversion attacks and adversarial attacks. How-
ever, in this work, we focus on protecting the privacy of sensitive image data
for privacy enhanced deep neural networks (DNNs) during the training phase.
Several image transformation methods have been proposed to protect the pri-
vacy of image data during the training phase of a deep learning life cycle [6–8].
However, a major challenge in transforming image data to enhance the privacy
of DNNs is the trade-off between privacy and utility [9]. Typically, DNN model
performance on original images degrades as images are transformed for privacy
protection. To address this problem, we evaluate the effectiveness of Cycle-GAN
[10] to preserve model utility using classification accuracy and robustness against
reconstruction attacks using structural similarity index measure (SSIM).



180 D. Rodriguez and R. Krishnan

In this paper, we propose a Cycle-GAN based image transformation scheme
to enhance privacy of DNN model development and deployment on MLaas plat-
forms as depicted in Fig. 1. Our Cycle-GAN method leverages autoencoder obfus-
cated images for domain translation. First, the autoencoder is trained to out-
put visually unrecognizable versions of the original input image. Second, Cycle-
GAN is trained to translate original images to the corresponding encoded image
domain. We evaluate the robustness of our Cycle-GAN method to reconstruction
attacks. In our results, we demonstrate that the proposed Cycle-GAN method
enhances the privacy of image data while preserving model utility using Chest
X-ray, Dermoscopy and OCT datasets.

In summary our contributions are as follows:

– We develop a Cycle-GAN based image transformation scheme for privacy
enhanced deep neural networks.

– We enhance privacy of sensitive image data while maintaining classification
accuracy.

The remainder of this paper is organized as follows. In Sect. 2, we provide an
overview of related works for privacy enhancing methods in machine learning.
In Sect. 3, we discuss the proposed Cycle-GAN method formulation and loss
function. In Sect. 4, we describe the data sets, network architecture and training
procedure. In Sect. 5, we evaluate our proposed Cycle-GAN method by analyzing
the trade-off between privacy-utility and robustness to reconstruction attacks.
Finally, we conclude our paper in Sects. 6.

2 Related Works

The security and privacy of machine learning models is usually concerned with
the model’s input, the model’s output or the model itself. There are many pro-
posed methods in the literature e.g., secure multi-party computation, homomor-
phic encryption, federated learning, visual image protection and learnable image
encryption. Secure multi-party computation is a set of cryptographic protocols
that allow multiple parties to evaluate a function to perform computation over
each parties private data such that only the result of the computation is released
among participants while all other information is kept private [11]. Secure multi-
party computation methods have been applied in machine learning among multi-
ple parties by computing model parameters using gradient descent optimization
without revealing any information beyond the computed outcome [12–15]. The
proposed Cycle-GAN image encoding scheme does not require multiple parties
to compute the gradient descent of each model individually which is computa-
tionally expensive but instead enables users to encode private data individually
and develop privacy enhanced deep neural networks with greater efficiency.

Homomorphic encryption is a type of encryption that allows multiple par-
ties to perform computations on its encrypted data without having access to the
original data [16–18]. It provides strong privacy but is computationally expensive
requiring significant overhead to train machine learning models [19–21]. The pro-
posed Cycle-GAN image encoding method does not use computationally expen-
sive encryption operations or specialized primitives during model development.
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Federated learning allows multiple parties to train a machine learning model
without sharing data [22–24]. For example, in centralized federated learning a
central server sends a model to multiple parties to train locally using their own
data, then each participant sends it’s own model update back to the central
server to update the global model which is again sent to each party to obtain
the optimal model without access to the local data by iterating through this
process [25]. Essentially, federated learning builds protection into the model.
Nevertheless, federated learning requires that each user have enough computing
resources to train locally using their own data. The proposed Cycle-GAN image
encoding method allows multiple parties to share obfuscated data for model
training without the computational resource requirement of each participant.

Visual image protection methods transform plain images to unrecognizable
encoded images while preserving important feature information for model utility.
A few examples are pixelation, blurring, P3 [26], InstaHide [27] and NueraCrypt
[28] which aim at preserving privacy and utility—a model trained on an encoded
dataset should be approximately as accurate as a model trained on the original
dataset [29,30]. InstaHide mixes multiple images together with a linear pixel
blend and randomly flips the pixel signs. NeuraCrypt encodes data instances
through a neural network with random weights and adds position embeddings
to keep track of image structure then shuffles the modified output in blocks
of pixels. However, [31] showed that position information, permutation order
and image-encoding pairs could be learned given an unordered set of images
and corresponding encodings. The proposed Cycle-GAN image encoding method
inherently generates encoded images by learning a mapping function between
original images and distorted images while reducing data leakage during domain
translation.

Learnable image transformation methods obfuscate image data such that the
encoded versions are useful for classification [6–8,32,33]. However, in some cases
network adjustments are required to process learnable image transformations
such as blockwise adaptation [6]. Our proposed Cycle-GAN encoding scheme
does not require any particular changes to the network to develop models using
the encoded data. Our work is most closely related to [34] but instead of trans-
forming image data using adversarial perturbations for domain translation we
develop our encoding model leveraging obfuscated autoencoder output. The key
benefit in our method is that the autoencoder is specifically optimized to gen-
erate transformed images that retain image features that are useful for model
utility.

3 Cycle-GAN Image Transformation Formulation

We aim to transform image data using a Cycle-GAN based approach to obfus-
cate sensitive feature information while preserving classification accuracy. The
proposed method allows participants within a network to share sensitive image
data while protecting privacy and maintaining model utility. We consider fea-
tures that do not highly contribute to the classification task as sensitive features.
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For example, in chest x-ray images the features that do not highly contribute
to the classification of the pneumenia disease are considered sensitive features.
On the other hand, we consider features that highly contribute to the classi-
fication task as non-sensitive features. For example, in chest x-ray images the
features that highly contribute to the classification of the pneumenia disease are
considered non-sensitive features. Our goal is to transform image data such that
non-sensitive features are preserved for image classification. We aim to preserve
classification accuracy of transformed images similar to original images.

Our goal is to enhance the privacy of deep neural networks by transforming
image data using Cycle-GAN for image-encoding domain translation. Let X be
the set of all images in the data domain, X ⊆ X is the local subset of private
images and Y is the corresponding label set. Given the private image dataset
{xi}Ni=1 where xi ∈ X, the images are transformed using the private Cycle-GAN
encoding function GZ(x). The encoded images and corresponding labels can be
safely uploaded to remote MLaaS providers for deep learning model develop-
ment using visibly unrecognizably images. The proposed Cycle-GAN method
is similar to [34] but instead of transforming image data using adversarial per-
turbations for domain translation we develop our encoding model leveraging
modified autoencoder output. The proposed method consists of a classification
model to distinguish between non-sensitive features. Additionally, our methods
consists of an autoencoder model for initial image transformation. Finally, the
encoding network consists of a Cycle-GAN model for final image transformation.
The training objective is to optimize the model parameters of generator GZ to
transform original images into encoded images.

3.1 Overview

First, the classification model is trained to classify original images using a con-
structed dataset that follows the probability distribution of the original dataset
and their respective class labels. Our objective function for the classification
model has a loss term for classifying non-sensitive features. The goal is to clas-
sify non-sensitive features of a given image with high classification accuracy.
Second, the classification model loss function is used to optimize the model
parameters of a randomly initialized autoencoder network given it’s output to
generate distorted versions of the input image while preserving important fea-
ture information for model utility. Third, the Cycle-GAN network is used to
transform original images to the distorted images. Our Cycle-GAN based image
transformation final objective function follows original Cycle-GAN [10] objective
which contains three loss terms: adversarial loss for mapping original images to
encoded images, adversarial loss for mapping encoded images to original images
and cycle consistency loss to prevent the learned mappings from contradicting
each other. We aim to learn a mapping function from original images to distorted
images to transform private data while preserving important feature information
for model utility.

Our proposed Cycle-GAN image transformation scheme consists of a non-
sensitive feature loss, distortion loss, adversarial loss and cycle consistency loss.
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Fig. 2. Image classification model training phase. Where XA is the developer’s con-
structed data set that follows the probability distribution of the original dataset and YA

are the corresponding class labels. Standard DNN image classification model training
is conducted to predict the labels of non-sensitive image features.

First, we develop a classification model to classify non-sensitive features using
a non-sensitive feature loss as depicted in Fig. 2. Second, we develop an autoen-
coder model to distort images using an image distortion loss as depicted in Fig. 3.
The networks are trained using a constructed dataset that follows the probability
distribution of the original dataset i.e., xa ∼ pdata(x). The non-sensitive feature
loss is used to minimize the error between the true label and the classifier’s
predicted label for non-sensitive features. For example, the true label of a chest
x-ray image is the correct class assigned to the image which specifies whether
the image has pneumonia disease or not. The distortion loss is used to minimize
the error between the true label and the pre-trained classifier’s predicted output
label given the autoencoder distorted image for each sample in the constructed
dataset. The aim is to distort image data and classify non-sensitive features with
high classification accuracy. Third, we train Cycle-GAN to using adversarial loss
and cycle consistency loss to learn a mapping function from images to distorted
images as depicted in Fig. 4.

3.2 Non-sensitive Feature Loss

The non-sensitive feature loss function Ln uses cross-entropy to measure the
performance of the image classifier I which is trained to classify non-sensitive
features.

Ln(I,XA, YA) = − 1
N

N∑

i=1

YAi
log(I(XAi

)) (1)

where XAi
is the ith image and YAi

is the corresponding ground truth identity
label. I(XAi

) is the image classifier’s predicted output for the ith image.
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Fig. 3. Distortion model training phase. An autoencoder network A is optimized to
generate distorted images that preserve important feature information for model utility
given the developer input data. The pre-trained classifier I∗ model parameters are
frozen to ensure they remain constant during the distortion model training. The error
between the predicted output label of I∗ given distorted images and the true label is
minimized. The model parameters of the A are updated based on the gradient of the
crossentropy loss.

3.3 Non-sensitive Feature Loss Objective

The goal is to find the classification model I parameters that minimize the error
between the true label and predicted label.

We aim to solve:
I∗ = argmin

I
Ln(I,XA, YA) (2)

3.4 Distortion Loss

The distortion loss function Ld uses cross-entropy to distort feature information
in sensitive image data.

Ld(A, I∗,XA, YA) = − 1
N

N∑

i=1

YAi
log(I∗(A(XAi

))) (3)

where A is a randomly initialized autoencoder network and I∗ is a pre-trained
image classification function. I(A(XAi

)) is the image classifier’s predicted output
given the ith distorted image.

3.5 Distortion Loss Objective

The goal is to find the autoencoder model A parameters that minimize the error
between the true label and the image classifier I predicted output given the ith

distorted image i.e., I∗(A(XAi
)).

We aim to solve:

A∗ = argmin
A

Ld(A, I∗,XA, YA) (4)
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Fig. 4. Cycle-GAN based image transformation for privacy enhanced DNNs. Where XA

is the developer data set and ZA is the corresponding distorted image generated using
the pre-trained distortion model A∗. Generator GZ learns a mapping function from
XA to ZA and generator GX learns a mapping function from ZA to XA. Discriminator
DX distinguishes between real and fake images while discriminator DZ distinguishes
between real and fake distorted images.

3.6 Adversarial Loss

The full adversarial loss consists of a loss term from generators (GZ , GX) and
discriminators (DZ ,DX). The following equations describe the adversarial loss
term.

LGAN (GZ ,DZ ,XA, ZA) = Eza∼penc(za)[log DZ(za)]
+Exa∼pdata(xa)[log(1 − DZ(GZ(xa)))]

(5)

where GZ tries to generate encoded images GZ(xa) that are similar to dis-
torted autoencoder images i.e., za = A∗(xa). DZ distinguishes between real
autoencoder distorted images za and generated encoded images GZ(xa). GZ

minimizes the objective while DZ maximizes the objective, minGZ
maxDZ

LGAN (GZ ,DZ ,XA, ZA).

LGAN (GX ,DX , ZA,XA) = Exa∼pdata(xa)[log DX(xa)]
+Eza∼penc(za)[log(1 − DX(GX(za)))]

(6)

where GX tries to images GX(za) that are similar to original images xa, while
DX distinguishes between the real original images and generated images GX(za).
GX minimizes the objective while DX maximizes the objective, minGX

maxDX

LGAN (GX ,DX , ZA,XA).

3.7 Cycle Consistency Loss

The cycle consistency loss term is computed using generator GZ and generator
GX . First, the original images X are translated into the distorted image domain
ZA using generator GZ . Then the generated distorted image is translated back
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into the original image domain using generator GX i.e., forward cycle. Second,
the autoencoder distorted image ZA is translated into the original image X
domain using generator GX . Then the generated original image is translated
back into distorted image domain using generator GZ i.e., backward cycle. The
mean absolute error between the original images and the forward cycled images
is computed. The mean absolute error between the distorted images and the
backward cycled images is computed.

The computed cycle consistency loss values for the original images and dis-
torted images are summed together below.

Lcyc(GZ , GX) = Exa∼pdata(xa)[||GX(GZ(xa)) − xa||1]
+Eza∼penc(za)[||GZ(GX(za)) − za||1]

(7)

GX(GZ(xa)) is the forward cycled original image and GZ(GX(za)) is the
backward cycled distorted image. The error between the cycled images and real
images is minimized and summed to compute the total cycle consistency loss.

3.8 Cycle-GAN Encoding Full Objective

The adversarial and cycle consistency loss terms are summed together for the
full objective. The full objective for the Cycle-GAN encoding loss consists of an
adversarial loss term and cycle consistency loss term.

The full objective is:

L(GZ , GX ,DX ,DZ) = LGAN (GZ ,DZ ,XA, ZA)
+LGAN (GX ,DX , ZA,XA)

+λLcyc(GZ , GX)
(8)

where λ controls the importance of the objectives. We solve the following opti-
mization problem:

G∗
Z , G∗

X = argmin
GZ ,GX

max
DZ ,DX

L(GZ , GX ,DX ,DZ) (9)

4 Methods

4.1 Dataset

In this work, we use three publicly available medical image datasets to develop
our Cycle-GAN encoding scheme, which include Chest X-Ray, Dermoscopy and
Optical Coherence Tomography (OCT). The Chest X-ray dataset [35] consists
of 5,863 grayscale chest radiograph images used to diagnose thorax disease. It
includes two classes, where each image is labeled as “Pneumonia” or “Nor-
mal”. The Dermoscopy dataset [36] contains 17.8K color images of skin lesions,
which are used to diagnose melanoma skin cancer. It includes two classes, where
each image is labeled as “Melanoma” or “NotMelanoma”. We consider all non-
melanoma images to be part of the NotMelanoma class [37]. The OCT dataset
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[35] consists of 84,495 grayscale images with four classes—including “Choroidal
Neovascularization (CNV)”, “Drusen”, “Diabetic macular edema (DME)”, and
“Normal”. It utilizes light waves to take cross-section imagery of the retina to
assist in diagnosing retina disease and disorders in the optic nerve.

4.2 Network Architecture

The Cycle-GAN based image encoding architecture consists of three parts: a
Resnet-50 for image classification, a standard convolutional autoencoder (CAE)
for image distortion and a Cycle-GAN for image encoding. Resnets are large
state-of-the-art DL architectures that consist of several blocks of residual mod-
ules and skip connections [38]. The classification model architecture consists of
a Resnet-50 network trained to classify non-sensitive features i.e., features that
highly contribute to the classification task. The CAE network consists of three
convolution layers with 32, 64 and 128 filters, respectively. The kernel size is
3 × 3 with a stride of 2 and a latent space of 128. Each convolution layer consists
of a leaky relu activation function with alpha 0.2 followed by a batch normaliza-
tion layer. The decoder network consists of three transposed convolution layers
with 128, 64 and 32 filters, respectively. The kernel size is 3 × 3 with a stride of 2
and output size of 224 × 224 × 3. Each transposed convolution layer consists of a
leaky relu activation function with alpha 0.2 followed by a batch normalization
layer.

The Cycle-GAN network consists of two generators (GZ , GX), two discrimi-
nators (DZ ,DX). The generator networks contain three convolutions, 9 residual
blocks [38], two transpose convolutions and one convolution that maps features
to RGB. Also, we use instance normalization [39]. Similar to [10] we use 70 ×
70 PatchGANs for the discriminator networks. Generator GZ is used to trans-
late original images to the distorted image domain and generator GX is used to
translate distorted images to original image domain. Discriminator DZ is used
to distinguish between real and fake distorted images and discriminator DX is
used to distinguish between the real and fake original images.

4.3 Training Procedure

Image Classification Model. Our training procedure consists of an image
classification phase to classify non-sensitive features, an image distortion phase
to obfuscate sensitive image data and an image encoding phase to reduce the
risk of data leakage. First, in the image classification phase we train a Resnet-50
model from randomly initialized parameters using the original image dataset
and corresponding class labels for non-sensitive features. We train using binary
crossentropy loss function for dataset with two classes. Additionally, we train
using categorical crossentropy loss function for dataset with more than two
classes. We wish to classify non-sensitive features for a given data set i.e., fea-
tures that are strongly correlated with the class label. The classification model
loss function is used to optimize our image distortion model.
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Image Distortion Model. Second, in the image distortion phase we ran-
domly initialize the CAE model parameters and add its output to the pre-trained
Resnet-50 classification model input for each of the given original images. We
freeze the Resnet-50 classifier model parameters to ensure that the weights do
not change during training for the image distortion phase. During training we
use the classification model loss function to find the CAE model parameters
that minimize the error between the true label and the image classifier predicted
label given the distorted image for the original image dataset. We wish to pre-
serve non-sensitive feature information while reconstructing an unrecognizable
version of the original image. The reconstructed image is a distorted version of
the original image that is useful for classification. It is generated to obfuscate
sensitive image data. To obfuscate sensitive image data we use the output of the
image classifier to optimize the CAE model with crossentopy loss function.

Cycle-GAN Encoding Model. Third, in the Cycle-GAN encoding phase
we learn a mapping function between original images and distorted images.
The distorted images are generated using the pre-trained autoencoder i.e.,
ZA = A∗(XA). The Cycle-GAN adversarial loss is computed using generator GZ ,
generator GX , discriminator DZ and discriminator DX . Generator GZ is used as
a mapping function from the original image domain XA to the distorted image
domain ZA. Discriminator DZ is a binary classifier used to distinguish between
real distorted images ZA and generated distorted images GZ(XA). Generator GZ

wishes to minimize the probability of GZ(XA) being classified as generated dis-
torted images by discriminator DZ while DZ aims to maximize the probability
of the real distorted images ZA being classified as real and generated distorted
images GZ(XA) being classified as fake. The aim is to learn a generator GZ that
translates original images XA into the distorted image domain.

Discriminator DX is a binary classifier used to distinguish between real and
generated original images. We obtain generated original images using generator
GX given distorted images as input to generator GX , i.e. GX(ZA). Generator
GX wishes to minimize the probability of GX(ZA) being classified as a generated
original image by discriminator DX while DX aims to maximize the probability
of the real original images XA being classified as a real and generated original
images GX(ZA) being classified as fake. As a result, we learn a generator that
translates original images into the distorted image domain.

Generator GZ and generator GX are used to compute the cycle consistency
loss. The original images are translated into the distorted image domain and
then back to the original image domain which is called a forward cycle i.e.,
GX(GZ(XA)). Then the distorted images are translated into the original image
domain and then back to the distorted image domain which is called a backward
cycle i.e., GZ(GX(ZA)). The mean absolute error between the original images
and the forward cycled images is computed. The mean absolute error between
the distorted images and the backward cycled images is computed. Both values
are summed to ensure that the real and generated images remain similar.
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All networks were trained using the adam optimizer with a batch size of
32. We utilize check points to save the model with the highest validation accu-
racy during model development. The classification and autoencoder models were
trained for 100 epochs and Cycle-GAN network was trained for 200 epochs. Dur-
ing Cycle-GAN training we set λ = 10. All images were resized to 224 × 224 and
normalized between 0 and 1. Each dataset was randomly shuffled and split ten
times to generate multiple subsets of the train, test and validation set. Each net-
work was trained ten times for a given dataset to assess the average performance
of all models across multiple subsets of the data.

5 Evaluation

5.1 Evaluating Privacy/Utility Trade-Off

We develop classification models using Resnet-50 architecture as described in
Sect. 4.2 and encoded images generated by the proposed Cycle-GAN encod-
ing scheme. Additionally, we also develop classification models using Resnet-50
architecture and original images to evaluate the trade-off between privacy and
model utility, i.e. we measure the change in classification accuracy for a network
trained with original images compared to a network trained with encoded images.
First, we transform the original images using our Cycle-GAN image transforma-
tion method. Second, we compare the classification accuracy of original images
and the transformed images. The classification accuracy of networks trained
using Cycle-GAN transformed images exhibits a slight performance decrease
compared to networks trained using original images. To quantify the trade-off
between privacy and utility we measure the reduction in classification accu-
racy for the network trained using original images and the network trained
using encoded images. Additionally, we measure the SSIM score between orig-
inal images and encoded images. SSIM measures similarities within pixels i.e.,
it checks whether the pixels in the images line up and or if the images have
similar pixel density values. In our experiments, we demonstrate that the pro-
posed Cycle-GAN method allows us to maintain high classification accuracy of
92.48 ± 1.53%, 91.05 ± 1.10%, 90.37 ± 2.06% for Chest X-ray, Dermoscopy and
OCT datasets, respectively, compared to models trained using plain images with
classification accuracy of 96.90 ± 1.26%, 95.20 ± 0.85%, 95.20 ± 2.71% for Chest
X-ray, Dermoscopy and OCT datasets, respectively which is similar to original
images as shown in Table 1. Additionally, we demonstrate that the proposed
Cycle-GAN method enhances privacy using SSIM scores between original and
encoded images. The SSIM scores closer to zero indicate that the images are
highly dissimilar. The SSIM scores in our privacy versus utility experiments
were 0.0935, 0.0582, 0.0277 for Chest X-ray, Dermoscopy and OCT datasets,
respectively,
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Table 1. Trade-off between privacy and model utility for medical image deep learning
models. Classification accuracy slightly decreases for networks trained using encoded
medical images compared to networks trained using plain images i.e., original images.
The proposed scheme enhances privacy of medical image DNNs while preserving model
utility.

Encoding Scheme Classification Acc.%

Chest X-ray Dermoscopy OCT

Plain Images 96.90± 1.26 95.20± 0.85 95.20± 2.71

Proposed Method 92.48± 1.53 91.05± 1.10 90.37± 2.06

5.2 Evaluating Robustness to Attacks

Model Stealing Attack. We evaluate the robustness of our proposed Cycle-
GAN based image encoding method against reconstruction attacks given the
assumption that the data owner’s Cycle-GAN encoder is publicly available to
an attacker. The goal of an attacker is to learn GX given GZ . In this case,
the attacker begins training Cycle-GAN by querying GZ using his own con-
structed dataset XB to obtain the predicted output. GZ(XB) is used to train
the attacker’s generator FX which is a randomly initialized version of GX . Addi-
tionally, the attacker randomly initializes two discriminators QX to distinguish
between real and fake images and QZ to distinguish between real and fake dis-
tortions. Following the previously discussed Cycle-GAN standard training proce-
dure, the attacker learns a mapping function F ∗

X to reconstruct the data owner’s
original image dataset. During training, we freeze the weights of the data owner’s
original encoder GZ .

Model Stealing Attack Results. We evaluate the performance of the model
stealing attack using structural similarity index measure (SSIM). The SSIM
values that are closer to 1 indicate that the reconstructed images are similar
to the original images and values closer to 0 indicate that reconstructed images
are poor quality compared to original images. The model stealing attack SSIM
scores are shown in row 1 of Table 2. The model stealing attack SSIM scores
for Chest X-ray, Dermoscopy and OCT datasets are 0.6064, 0.7783 and 0.5981,
respectively. It is evident from our SSIM results that the attacker can reconstruct
the data owner’s original dataset with poor quality given that he has access
to data owner’s original encoder GZ . The model stealing attacks is a baseline
attack method with the strong assumption that an attacker has access to the
data owner’s original encoding function.

Minimal Data Subset Attack. We evaluate the robustness of our proposed
Cycle-GAN image encoding method against minimal data subset attacks where
the adversary is granted access to a subset of the data owner’s original image
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Table 2. Proposed Cycle-GAN image reconstruction attack SSIM results. SSIM scores
near 1 indicate high quality image reconstruction whereas scores closer to 0 indicate
poor quality imge reconstruction.

Attack Method Attacker’s
Knowledge

SSIM Score

Chest X-ray Dermoscopy OCT

Model Stealing GZ , Z, Y 0.6064 0.7783 0.5981

Min. Data Subset (FT) X,Z, Y 0.7582 0.8154 0.7109

Min. Data Subset (RI) X,Z, Y 0.7461 0.8033 0.7082

Cycle GAN Recon Z, Y 0.1002 0.0995 0.0329

dataset and corresponding encoded images. The goal is to develop a deep learn-
ing model to reconstruct original images given encoded images. The attack
is performed by incrementally updating the model parameters using a single
image-encoding pair from the data owner’s original dataset and corresponding
encoded images i.e., {X,Z}. Image-encoding pairs are gradually included dur-
ing the training process until SSIM saturates. The image reconstruction model
parameters are updated by minimizing the mean squared error between original
images and reconstructed images given the encoded samples. At the conclusion
of each training step, we measure the SSIM score of the data owner’s original
images and the reconstructed images. First, the attacker develops a randomly
initialized (RI) reconstruction model with a subset of the data owner’s origi-
nal image-encoding pair. Second, the attacker pre-trains a reconstruction model
using his constructed dataset XB and later fine-tunes the network (FT) with a
subset of the data owner’s original image-encoding pair. Afterwards, the recon-
struction model is used to reconstruct the data owner’s original image dataset.

Minimal Data Subset Attack Results. The reconstruction model perfor-
mance is evaluated using SSIM. The SSIM results reflect the model performance
as SSIM scores begins to saturate. The fine-tuned reconstruction model SSIM
scores are shown in row 2 of Table 2. The fine-tuned SSIM scores for Chest
X-ray, Dermoscopy and OCT datasets are 0.7582, 0.8154 and 0.7109, respec-
tively. The randomly initialized reconstruction model SSIM scores are shown in
row 3 of Table 2. The fine-tuned SSIM scores for Chest X-ray, Dermoscopy and
OCT datasets are 0.7461, 0.8033 and 0.7082, respectively. The SSIM scores are
indicative of good quality image reconstruction. The minimal data subset attack
is a baseline attack method in which the attacker has access to a subset of the
original image-encoding pairs.

Reconstruction Cycle GAN Attack. We evaluate the robustness of our
proposed method against Cycle-GAN reconstruction attacks. In this case, an
attacker constructs a dataset that follows the probability distribution of the
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data owner’s original dataset i.e., xb ∼ pdata(x) and attempts to reconstruct
the original dataset by learning his own mapping function using a Cycle-Gan
based approach. First, the attacker develops his own image classification model
using the constructed dataset and corresponding class labels by following the
previously mentioned procedure from our proposed method. Second, the attacker
develops a distortion model using the constructed dataset and corresponding
class labels by following the previously mentioned procedure from our proposed
method. Third, the attacker develops a Cycle-GAN encoding model using the
constructed dataset and corresponding class labels by following the previously
mentioned procedure from our proposed method. The goal is to learn a mapping
function between the attacker’s constructed dataset and the attacker’s distorted
dataset. We assume an attacker only has access to the data owner’s encoded
dataset and corresponding labels.

The attacker’s reconstruction Cycle-GAN attack network consists of the same
components of the proposed method i.e., two generators (FZ , FX), two discrim-
inators (QZ , QX). The attacker’s distorted dataset ZB is generated using pre-
trained distortion model ZB = A∗

B(XB). Generator FZ is used to translate the
attacker’s constructed images to the distorted image domain and generator FX is
used to translate distorted images to the attacker’s constructed image domain.
Discriminator QZ is used to distinguish between the real and fake distorted
images and discriminator QX is used to distinguish between the attacker’s real
and fake constructed images.

Reconstruction Cycle-GAN Adversarial Loss. The adversarial loss term is
computed using generator FZ , generator FX , discriminator QZ and discriminator
QX . Discriminator QZ is a binary classifier used to distinguish between the
distorted set ZB and the generated distorted set FZ(XB). First, generator FZ is
used as a mapping function from the attacker’s constructed image domain to the
distorted image domain Z ′

B = FZ(XB). Generator FZ wishes to minimize the
probability of Z ′

B being classified as a generated distorted image by discriminator
QZ while QZ aims to maximize the probability of the real distorted images ZB

being classified as real and generated distorted images Z ′
B being classified as

fake. The attacker learns a generator FZ that translates constructed images XB

into the distorted image domain.
Discriminator QX is a binary classifier used to distinguish between real and

generated constructed images. We obtain X ′
B using generator FX given the dis-

torted set as input to generator FX , i.e. X ′
B = FX(ZB). Generator FX wishes to

minimize the probability of X ′
B being classified as a generated construct image

by discriminator QX while QX aims to maximize the probability of real con-
structed images XB being classified as a real and generated constructed images
X ′

B being classified as fake. The attacker learns a generator FX that translates
distorted images into the attacker’s constructed image domain.

The full adversarial loss consists of a loss term from generators (FZ , FX) and
discriminators (QZ , QX). The following equations describe the adversarial loss
term.
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LGAN (FZ , QZ ,XB , ZB) = Ezb∼penc(zb)[log QZ(zb)]
+Exb∼pdata(xb)[log(1 − QZ(FZ(xb)))]

(10)

where FZ tries to generate distorted images FZ(xb) that are similar to the
real distorted images zb, while QZ distinguishes between real distorted images
zb and generated distorted images FZ(xb). FZ minimizes the objective while QZ

maximizes the objective, minFZ
maxQZ

LGAN (FZ , QZ ,XB , ZB).

LGAN (FX , QX , ZB ,XB) = Exb∼pdata(xb)[log QX(xb)]
+Ezb∼penc(zb)[log(1 − QX(FX(zb)))]

(11)

where FX tries to generate constructed images FX(zb) that are similar to
the attacker’s constructed images xb, while QX distinguishes between the
attacker’s real constructed data and generated FX(zb) constructed data. FX

minimizes the objective while QX maximizes the objective, minFX
maxQX

LGAN (FX , QX , ZB ,XB).

Reconstruction Cycle-GAN Cycle Consistency Loss. Next, we compute
the cycle consistency loss terms using generator FZ and generator FX . First,
the attacker translates his constructed data set XB into the distorted image
domain using generator FZ . Then the generated distorted image is translated
back into the attacker’s constructed image domain using generator FX . Sec-
ond, the attacker translates distorted images ZB into the constructed image
domain using generator FX . Then the generated construct image set is trans-
lated back into distorted image domain using generator FZ . The mean absolute
error between the constructed images and the cycled constructed images are
computed. Additionally, the mean absolute error between the distorted images
and the cycled distorted images are computed.

The computed cycle consistency loss values for the constructed and distorted
data are summed together below.

Lcyc(FZ , FX) = Exb∼pdata(xb)[||FX(FZ(xb)) − xb||1]
+Ezb∼penc(zb)[||FZ(FX(zb)) − zb||1]

(12)

FX(FZ(xb)) is the attacker’s cycled constructed data and FZ(FX(zb)) is the
attacker’s cycled distorted data. The error between the cycled constructed data
and real constructed data is minimized. Also, the error between the cycled dis-
torted data and real distorted data is minimized. Both values are combined to
compute the total cycle consistency loss.

Reconstruction Cycle-GAN Attack Full Objective. All of the previously
discussed loss terms are summed together for the full objective. The full objective
for the attack consists of two adversarial loss terms and a cycle consistency loss
term.
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The full objective is:

L(FZ , FX , QX , QZ) = LGAN (FZ , QZ ,XB , ZB)
+LGAN (FX , QX , ZB ,XB)

+λLcyc(FZ , FX)
(13)

where λ controls the importance of each objective. In our experiments, λ = 10.
We solve the following optimization problem:

F ∗
Z , F ∗

X = argmin
FZ ,FX

max
QZ ,QX

L(FZ , FX , QX , QZ) (14)

Reconstruction Cycle-GAN Attack Results. The reconstruction Cycle-
GAN attack results demonstrate an attacker’s ability to reconstruct the data
owner’s original image dataset using the learned mapping function F ∗

X given the
data owner’s encoded dataset Z i.e., F ∗

X(Z). Generator F ∗
X was optimized to

translate encoded images to plain images. The translated images are expected
to consist of inherent features from the distorted image domain as Cycle-GAN
learns a mapping from one domain to another. Thus, we translate the data
owner’s encoded set to the attacker’s constructed plain image domain FX(Z)
to reconstruct the data owner’s original image given the data owner’s encoded
images. The SSIM score between the reconstructed images and the original
images are shown in row 5 of Table 2. We report SSIM scores using X and FX(Z)
for Chest X-ray, Dermoscopy and OCT datasets. Our results demonstrate that
image reconstruction exhibits poor quality given that only the encoded set and
corresponding labels are available to an attacker. Consequently, given that an
attacker’s knowledge is restricted to {Z, Y } it is evident that the reconstructed
images consist of poor quality when compared to original private images.

6 Conclusion

We proposed a Cycle-GAN image transformation scheme that leverages autoen-
coder image encoding for domain translation to enhance the privacy of deep
neural networks. The visible image feature information is encoded using autoen-
coder and Cycle-GAN to reduce the risk of information leakage. The impor-
tant feature information is retained for image classification while obfuscating
the sensitive image features. In this paper, we demonstrated that the proposed
Cycle-GAN image encoding method successfully enhances the privacy of sensi-
tive image data while preserving model utility with high classification accuracy.
In our experiments, we evaluated the effectiveness of our Cycle-GAN encoding
scheme by assessing the privacy versus model utility trade-off using classifica-
tion accuracy. Additionally, we show that our proposed method is robust against
reconstruction attacks when an attacker only has access to encoded data and
corresponding class labels using SSIM.
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erated learning: strategies for improving communication efficiency (2016). https://
arxiv.org/abs/1610.05492

26. McPherson, R., Shokri, R., Shmatikov, V.: Defeating image obfuscation with deep
learning, arXiv preprint arXiv:1609.00408 (2016)

27. Huang, Y., Song, Z., Li, K., Arora, S.: InstaHide: instance-hiding schemes for
private distributed learning. In: Daume III, H., Singh, A. (eds.) Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, vol. 119, pp. 4507–4518. PMLR (2020). https://proceedings.
mlr.press/v119/huang20i.html

28. Yala, A., et al.: Neuracrypt: hiding private health data via random neural networks
for public training (2021). https://arxiv.org/abs/2106.02484

29. Carlini, N., et al.: Is private learning possible with instance encoding? (2020).
https://arxiv.org/abs/2011.05315

30. Raynal, M., Achanta, R., Humbert, M.: Image obfuscation for privacy-preserving
machine learning (2020). https://arxiv.org/abs/2010.10139

31. Carlini, N., Garg, S., Jha, S., Mahloujifar, S., Mahmoody, M., Tramer, F.: Neu-
racrypt is not private (2021)

32. Sirichotedumrong, W., Kinoshita, Y., Kiya, H.: Pixel-based image encryption with-
out key management for privacy-preserving deep neural networks. IEEE Access 7,
177844–177855 (2019)

33. Chen, Z., Zhu, T., Xiong, P., Wang, C., Ren, W.: Privacy preservation for image
data: a GAN-based method. Int. J. Intell. Syst. 36(4), 1668–1685 (2021)

34. Sirichotedumrong, W., Kiya, H.: A GAN-based image transformation scheme for
privacy-preserving deep neural networks (2020)

35. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by
image-based deep learning. Cell 172(5), 1122–1131 (2018)

36. Scarlat, A.: dermoscopic pigmented skin lesions from ham10k (2019). https://www.
kaggle.com/drscarlat/melanoma. Accessed 02 May 2020

37. Rasul, M.F., Kumar Dey, N., Hashem, M.: A comparative study of neural network
architectures for lesion segmentation and melanoma detection (2020)

38. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015). https://arxiv.org/abs/1512.03385

39. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingre-
dient for fast stylization (2017)

https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-642-37682-5_1
http://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1609.00408
https://proceedings.mlr.press/v119/huang20i.html
https://proceedings.mlr.press/v119/huang20i.html
https://arxiv.org/abs/2106.02484
https://arxiv.org/abs/2011.05315
https://arxiv.org/abs/2010.10139
https://www.kaggle.com/drscarlat/melanoma
https://www.kaggle.com/drscarlat/melanoma
https://arxiv.org/abs/1512.03385

	A Cycle-GAN Based Image Encoding Scheme for Privacy Enhanced Deep Neural Networks
	1 Introduction
	2 Related Works
	3 Cycle-GAN Image Transformation Formulation
	3.1 Overview
	3.2 Non-sensitive Feature Loss
	3.3 Non-sensitive Feature Loss Objective
	3.4 Distortion Loss
	3.5 Distortion Loss Objective
	3.6 Adversarial Loss
	3.7 Cycle Consistency Loss
	3.8 Cycle-GAN Encoding Full Objective

	4 Methods
	4.1 Dataset
	4.2 Network Architecture
	4.3 Training Procedure

	5 Evaluation
	5.1 Evaluating Privacy/Utility Trade-Off
	5.2 Evaluating Robustness to Attacks

	6 Conclusion
	References


